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Preface

Vibration Analysis is an exciting and challenging field and is a multidisciplinary subject. This
book is designed and organized around the concepts of Vibration Analysis of Mechanical Systems
as they have been developed for senior undergraduate course or graduate course for engineering
students of all disciplines.

This book includes the coverage of classical methods of vibration analysis: matrix analysis,
Laplace transforms and transfer functions. With this foundation of basic principles, the book
provides opportunities to explore advanced topics in mechanical vibration analysis.

Chapter 1 presents a brief introduction to vibration analysis, and a review of the abstract
concepts of analytical dynamics including the degrees of freedom, generalized coordinates,
constraints, principle of virtual work and D’Alembert’s principle for formulating the equations
of motion for systems are introduced. Energy and momentum from both the Newtonian and
analytical point of view are presented. The basic concepts and terminology used in mechanical
vibration analysis, classification of vibration and elements of vibrating systems are discussed.
The free vibration analysis of single degree of freedom of undamped translational and torsional
systems, the concept of damping in mechanical systems, including viscous, structural, and
Coulomb damping, the response to harmonic excitations are discussed. Chapter 1 also discusses
the application such as systems with rotating eccentric masses; systems with harmonically
moving support and vibration isolation ; and the response of a single degree of freedom system
under general forcing functions are briefly introduced. Methods discussed include Fourier series,
the convolution integral, Laplace transform, and numerical solution. The linear theory of free
and forced vibration of two degree of freedom systems, matrix methods is introduced to study
the multiple degrees of freedom systems. Coordinate coupling and principal coordinates,
orthogonality of modes, and beat phenomenon are also discussed. The modal analysis procedure
is used for the solution of forced vibration problems. A brief introduction to Lagrangian dynamics
is presented. Using the concepts of generalized coordinates, principle of virtual work, and
generalized forces, Lagrange's equations of motion are then derived for single and multi degree
of freedom systems in terms of scalar energy and work quantities.

An introduction to MATLAB basics is presented in Chapter 2. Chapter 2 also presents
MATLAB commands. MATLAB is considered as the software of choice. MATLAB can be used
interactively and has an inventory of routines, called as functions, which minimize the task of
programming even more. Further information on MATLAB can be obtained from: The
MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760. In the computational aspects, MATLAB
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has emerged as a very powerful tool for numerical computations involved in control systems
engineering. The idea of computer-aided design and analysis using MATLAB with the Symbolic
Math Tool Box, and the Control System Tool Box has been incorporated.

Chapter 3 consists of many solved problems that demonstrate the application of MATLAB
to the vibration analysis of mechanical systems. Presentations are limited to linear vibrating
systems.

Chapters 2 and 3 include a great number of worked examples and unsolved exercise
problems to guide the student to understand the basic principles, concepts in vibration analysis
engineering using MATLAB.

I sincerely hope that the final outcome of this book helps the students in developing an
appreciation for the topic of engineering vibration analysis using MATLAB.

An extensive bibliography to guide the student to further sources of information on
vibration analysis is provided at the end of the book. All end-of-chapter problems are fully
solved in the Solution Manual available only to Instructors.

—Author
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CHAPTER 1

Introduction to Mechanical Vibrations

Vibration is the motion of a particle or a body or system of connected bodies displaced
from a position of equilibrium. Most vibrations are undesirable in machines and structures
because they produce increased stresses, energy losses, cause added wear, increase bearing
loads, induce fatigue, create passenger discomfort in vehicles, and absorb energy from the
system. Rotating machine parts need careful balancing in order to prevent damage from
vibrations.

Vibration occurs when a system is displaced from a position of stable equilibrium. The
system tends to return to this equilibrium position under the action of restoring forces (such as
the elastic forces, as for a mass attached to a spring, or gravitational forces, as for a simple
pendulum). The system keeps moving back and forth across its position of equilibrium. A system
is a combination of elements intended to act together to accomplish an objective. For example,
an automobile is a system whose elements are the wheels, suspension, car body, and so forth.
A static element is one whose output at any given time depends only on the input at that time
while a dynamic element is one whose present output depends on past inputs. In the same way
we also speak of static and dynamic systems. A static system contains all elements while a
dynamic system contains at least one dynamic element.

A physical system undergoing a time-varying interchange or dissipation of energy among
or within its elementary storage or dissipative devices is said to be in a dynamic state. All of
the elements in general are called passive, i.e., they are incapable of generating net energy. A
dynamic system composed of a finite number of storage elements is said to be lumped or discrete,
while a system containing elements, which are dense in physical space, is called continuous.
The analytical description of the dynamics of the discrete case is a set of ordinary differential
equations, while for the continuous case it is a set of partial differential equations. The analytical
formation of a dynamic system depends upon the kinematic or geometric constraints and the
physical laws governing the behaviour of the system.

��� ����������	�
��
�� 
����	�
��

Vibrations can be classified into three categories: free, forced, and self-excited. Free vibration of
a system is vibration that occurs in the absence of external force. An external force that acts on
the system causes forced vibrations. In this case, the exciting force continuously supplies energy
to the system. Forced vibrations may be either deterministic or random (see Fig. 1.1). Self-
excited vibrations are periodic and deterministic oscillations. Under certain conditions, the

1
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equilibrium state in such a vibration system becomes unstable, and any disturbance causes
the perturbations to grow until some effect limits any further growth. In contrast to forced
vibrations, the exciting force is independent of the vibrations and can still persist even when
the system is prevented from vibrating.

x
x = x(t)

t

tt tt

Fig. 1.1(a) A deterministic (periodic) excitation.

x

t

Fig. 1.1(b) Random excitation.

��� ������	�������	��
�� 
����	�������	���

In general, a vibrating system consists of a spring (a means for storing potential energy), a
mass or inertia (a means for storing kinetic energy), and a damper (a means by which energy
is gradually lost) as shown in Fig. 1.2. An undamped vibrating system involves the transfer of
its potential energy to kinetic energy and kinetic energy to potential energy, alternatively. In
a damped vibrating system, some energy is dissipated in each cycle of vibration and should be
replaced by an external source if a steady state of vibration is to be maintained.
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Mass

m

Spring

k

Damper

c

Excitation force

F(t)
0

Displacement x

Static
equilibrium

position

Fig. 1.2 Elementary parts of vibrating systems.

��� ����
�����
	�
�

When the motion is repeated in equal intervals of time, it is known as periodic motion. Simple
harmonic motion is the simplest form of periodic motion. If x(t) represents the displacement of
a mass in a vibratory system, the motion can be expressed by the equation

x = A cos ωt = A cos 2π 
t
τ

where A is the amplitude of oscillation measured from the equilibrium position of the mass.

The repetition time τ is called the period of the oscillation, and its reciprocal, f = 
1
τ

, is called the

frequency. Any periodic motion satisfies the relationship
x (t) = x (t + τ)

That is  Period τ = ω
π2

 s/cycle

Frequency f = 
1
τ

 = 
ω
π2  cycles/s, or Hz

ω is called the circular frequency measured in rad/sec.
The velocity and acceleration of a harmonic displacement are also harmonic of the same

frequency, but lead the displacement by π/2 and π radians, respectively. When the acceleration
��X  of a particle with rectilinear motion is always proportional to its displacement from a fixed

point on the path and is directed towards the fixed point, the particle is said to have simple
harmonic motion.

The motion of many vibrating systems in general is not harmonic. In many cases the
vibrations are periodic as in the impact force generated by a forging hammer. If x(t) is a peri-
odic function with period τ, its Fourier series representation is given by

x(t) = 
a0

2
 + 

n =

∞

∑
1

(an cos nωt + bn sin nωt)

where ω = 2π/τ is the fundamental frequency and a0, a1, a2, …, b1, b2, … are constant coeffi-
cients, which are given by:

a0 = 
2

0τ

τz x(t) dt
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an =  
2

0τ

τz x(t) cos nωt dt

bn =  
2

0τ

τz x(t) sin nωt dt

The exponential form of x(t) is given by:

x(t) = 
n

n
in tc e

= − ∞

∞

∑ ω

The Fourier coefficients cn can be determined, using

cn = 
1

0τ

τz (x)t e–inωt dt

The harmonic functions an cos nωt or bn sin nωt are known as the harmonics of order n
of the periodic function x(t). The harmonic of order n has a period τ/n. These harmonics can be
plotted as vertical lines in a diagram of amplitude (an and bn) versus frequency (nω) and is
called frequency spectrum.

��� ������	�� �����
�	���
������	���

Most of the mechanical and structural systems can be described using a finite number of de-
grees of freedom. However, there are some systems, especially those include continuous elas-
tic members, have an infinite number of degree of freedom. Most mechanical and structural
systems have elastic (deformable) elements or components as members and hence have an
infinite number of degrees of freedom. Systems which have a finite number of degrees of free-
dom are known as discrete or lumped parameter systems, and those systems with an infinite
number of degrees of freedom are called continuous or distributed systems.

��� 
����	�
�� ��������

The outputs of a vibrating system, in general, depend upon the initial conditions, and external
excitations. The vibration analysis of a physical system may be summarised by the four steps:

1. Mathematical Modelling of a Physical System
2. Formulation of Governing Equations
3. Mathematical Solution of the Governing Equations

1. Mathematical modelling of a physical system
The purpose of the mathematical modelling is to determine the existence and nature of

the system, its features and aspects, and the physical elements or components involved in the
physical system. Necessary assumptions are made to simplify the modelling. Implicit assump-
tions are used that include:

(a) A physical system can be treated as a continuous piece of matter
(b) Newton’s laws of motion can be applied by assuming that the earth is an internal

frame
(c) Ignore or neglect the relativistic effects
All components or elements of the physical system are linear. The resulting mathemati-

cal model may be linear or non-linear, depending on the given physical system. Generally
speaking, all physical systems exhibit non-linear behaviour. Accurate mathematical model-
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ling of any physical system will lead to non-linear differential equations governing the behav-
iour of the system. Often, these non-linear differential equations have either no solution or
difficult to find a solution. Assumptions are made to linearise a system, which permits quick
solutions for practical purposes. The advantages of linear models are the following:

(1) their response is proportional to input
(2) superposition is applicable
(3) they closely approximate the behaviour of many dynamic systems
(4) their response characteristics can be obtained from the form of system equations

without a detailed solution
(5) a closed-form solution is often possible
(6) numerical analysis techniques are well developed, and
(7) they serve as a basis for understanding more complex non-linear system behaviours.
It should, however, be noted that in most non-linear problems it is not possible to obtain

closed-form analytic solutions for the equations of motion. Therefore, a computer simulation
is often used for the response analysis.

When analysing the results obtained from the mathematical model, one should realise
that the mathematical model is only an approximation to the true or real physical system and
therefore the actual behaviour of the system may be different.

2. Formulation of governing equations
Once the mathematical model is developed, we can apply the basic laws of nature and

the principles of dynamics and obtain the differential equations that govern the behaviour of
the system. A basic law of nature is a physical law that is applicable to all physical systems
irrespective of the material from which the system is constructed. Different materials behave
differently under different operating conditions. Constitutive equations provide information
about the materials of which a system is made. Application of geometric constraints such as
the kinematic relationship between displacement, velocity, and acceleration is often necessary
to complete the mathematical modelling of the physical system. The application of geometric
constraints is necessary in order to formulate the required boundary and/or initial conditions.

The resulting mathematical model may be linear or non-linear, depending upon the
behaviour of the elements or components of the dynamic system.

3. Mathematical solution of the governing equations
The mathematical modelling of a physical vibrating system results in the formulation of

the governing equations of motion. Mathematical modelling of typical systems leads to a sys-
tem of differential equations of motion. The governing equations of motion of a system are
solved to find the response of the system. There are many techniques available for finding the
solution, namely, the standard methods for the solution of ordinary differential equations,
Laplace transformation methods, matrix methods, and numerical methods. In general, exact
analytical solutions are available for many linear dynamic systems, but for only a few non-
linear systems. Of course, exact analytical solutions are always preferable to numerical or
approximate solutions.

4. Physical interpretation of the results
The solution of the governing equations of motion for the physical system generally

gives the performance. To verify the validity of the model, the predicted performance is com-
pared with the experimental results. The model may have to be refined or a new model is
developed and a new prediction compared with the experimental results. Physical interpreta-
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tion of the results is an important and final step in the analysis procedure. In some situations,
this may involve (a) drawing general inferences from the mathematical solution, (b) develop-
ment of design curves, (c) arrive at a simple arithmetic to arrive at a conclusion (for a typical or
specific problem), and (d) recommendations regarding the significance of the results and any
changes (if any) required or desirable in the system involved.

1.5.1 COMPONENTS OF VIBRATING SYSTEMS

(a) Stiffness elements
Some times it requires finding out the equivalent spring stiffness values when a con-

tinuous system is attached to a discrete system or when there are a number of spring elements
in the system. Stiffness of continuous elastic elements such as rods, beams, and shafts, which
produce restoring elastic forces, is obtained from deflection considerations.

The stiffness coefficient of the rod (Fig. 1.3) is given by k = 
EA
l

The cantilever beam (Fig.1.4) stiffness is   k = 
3

3

EI
l

The torsional stiffness of the shaft (Fig.1.5) is K = 
GJ

l

m

k=
l

EA

m

F

E,A, l

u

 Fig.1.3 Longitudinal vibration of rods.

E,I, l

F

v

m

k=3EI

l
3

Fig.1.4 Transverse vibration of cantilever beams.
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G , J , l
T

�

k=GJ
l

Fig. 1.5 Torsional system.

When there are several springs arranged in parallel as shown in Fig. 1.6, the equivalent
spring constant is given by algebraic sum of the stiffness of individual springs. Mathemati-
cally,

                                  keq = 
i

n

ik
=
∑

1

m

k1

k2

kn

Fig. 1.6 Springs in parallel.

When the springs are arranged in series as shown in Fig. 1.7, the same force is devel-
oped in each spring and is equal to the force acting on the mass.

k1 k2 k3
m

kn

Fig. 1.7 Springs in series.

The equivalent stiffness keq is given by:

1/keq = 
1

1

1i

n

ik=
∑

Hence, when elastic elements are in series, the reciprocal of the equivalent elastic con-
stant is equal to the reciprocals of the elastic constants of the elements in the original system.

(b) Mass or inertia elements
The mass or inertia element is assumed to be a rigid body. Once the mathematical

model of the physical vibrating system is developed, the mass or inertia elements of the sys-
tem can be easily identified.
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(c) Damping elements
In real mechanical systems, there is always energy dissipation in one form or another.

The process of energy dissipation is referred to in the study of vibration as damping. A damper
is considered to have neither mass nor elasticity. The three main forms of damping are viscous
damping, Coulomb or dry-friction damping, and hysteresis damping. The most common type
of energy-dissipating element used in vibrations study is the viscous damper, which is also
referred to as a dashpot. In viscous damping, the damping force is proportional to the velocity
of the body. Coulomb or dry-friction damping occurs when sliding contact that exists between
surfaces in contact are dry or have insufficient lubrication. In this case, the damping force is
constant in magnitude but opposite in direction to that of the motion. In dry-friction damping
energy is dissipated as heat.

Solid materials are not perfectly elastic and when they are deformed, energy is absorbed
and dissipated by the material. The effect is due to the internal friction due to the relative
motion between the internal planes of the material during the deformation process. Such
materials are known as visco-elastic solids and the type of damping which they exhibit is
called as structural or hysteretic damping, or material or solid damping.

In many practical applications, several dashpots are used in combination. It is quite
possible to replace these combinations of dashpots by a single dashpot of an equivalent damp-
ing coefficient so that the behaviour of the system with the equivalent dashpot is considered
identical to the behaviour of the actual system.

���������
����	�
��
����������������
�������
�����	���

The most basic mechanical system is the single-degree-of-freedom system, which is characterized
by the fact that its motion is described by a single variable or coordinates. Such a model is
often used as an approximation for a generally more complex system. Excitations can be broadly
divided into two types, initial excitations and externally applied forces. The behavior of a
system characterized by the motion caused by these excitations is called as the system response.
The motion is generally described by displacements.

1.6.1 FREE VIBRATION OF AN UNDAMPED TRANSLATIONAL SYSTEM

The simplest model of a vibrating mechanical system consists of a single mass element
which is connected to a rigid support through a linearly elastic massless spring as shown in
Fig. 1.8. The mass is constrained to move only in the vertical direction. The motion of the
system is described by a single coordinate x(t) and hence it has one degree of freedom (DOF).

m

k LL

Fig. 1.8 Spring mass system.



INTRODUCTION TO MECHANICAL VIBRATIONS 9

The equation of motion for the free vibration of an undamped single degree of freedom
system can be rewritten as

m ��x(t) + kx (t) = 0
Dividing through by m, the equation can be written in the form

��x(t) + ω n
2 x (t) = 0

in which ωn = k m/  is a real constant. The solution of this equation is obtained from the initial
conditions

x(0) = x0, �x(0) = v0
where x0 and v0 are the initial displacement and initial velocity, respectively.

The general solution can be written as

x(t) = A1e A ei t i n
t

nω ω+ −
2

in which A1 and A2 are constants of integration, both complex quantities. It can be finally
simplified as:

x(t) = 
X

e ei t i tn n

2
( ) ( )ω φ ω φ− − −+  = X cos (ωnt – φ)

so that now the constants of integration are X and φ.
This equation represents harmonic oscillation, for which reason such a system is called

a harmonic oscillator.
There are three quantities defining the response, the amplitude X, the phase angle φ

and the frequency ωn, the first two depending on external factors, namely, the initial excitations,
and the third depending on internal factors, namely, the system parameters. On the other
hand, for a given system, the frequency of the response is a characteristic of the system that
stays always the same, independently of the initial excitations. For this reason, ωn is called the
natural frequency of the harmonic oscillator.

The constants X and φ are obtained from the initial conditions of the system as follows:

X = x
v

n
0
2 0

2

+
F
HG

I
KJω

and φ = tan–1 
v

x n

0

0ω

L
N
M
M

O
Q
P
P

The time period τ, is defined as the time necessary for the system to complete one vibra-
tion cycle, or as the time between two consecutive peaks. It is related to the natural frequency
by

τ = 2
2

π
ω

π
n

m
k

=

Note that the natural frequency can also be defined as the reciprocal of the period, or

fn = 1 1
2τ π

=
k
m

in which case it has units of cycles per second (cps), where one cycle per second is known as one
Hertz (Hz).
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1.6.2 FREE VIBRATION OF AN UNDAMPED TORSIONAL SYSTEM

A mass attached to the end of the shaft is a simple torsional system (Fig. 1.9). The mass
of the shaft is considered to be small in comparison to the mass of the disk and is therefore
neglected.

kt

l

IG

Fig. 1.9 Torsional system.

The torque that produces the twist Mt is given by

Mt = 
GJ

l

where J = the polar mass moment of inertia of the shaft J
d=

F
HG

π 4

32
 for a circular shaft of

diameter d
I
K

G = shear modulus of the material of the shaft.
l = length of the shaft.

The torsional spring constant kt is defined as

kt = 
T GJ

lθ
=

The equation of motion of the system can be written as:

IG��θ  + ktθ = 0

The natural circular frequency of such a torsional system is ωn = 
k

I
t

G

F
HG

I
KJ

1/2

The general solution of equation of motion is given by

θ(t) = θ0 cos ωnt + 
�θ
ω

0

n

 sin ωnt

1.6.3 ENERGY METHOD

Free vibration of systems involves the cyclic interchange of kinetic and potential energy. In
undamped free vibrating systems, no energy is dissipated or removed from the system. The
kinetic energy T is stored in the mass by virtue of its velocity and the potential energy U is
stored in the form of strain energy in elastic deformation. Since the total energy in the system
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is constant, the principle of conservation of mechanical energy applies. Since the mechanical
energy is conserved, the sum of the kinetic energy and potential energy is constant and its rate
of change is zero. This principle can be expressed as

T + U = constant

or
d
dt

 (T + U) = 0

where T and U denote the kinetic and potential energy, respectively. The principle of conser-
vation of energy can be restated by

T1 + U1 = T2 + U2
where the subscripts 1 and 2 denote two different instances of time when the mass is passing
through its static equilibrium position and select U1 = 0 as reference for the potential energy.
Subscript 2 indicates the time corresponding to the maximum displacement of the mass at this
position, we have then

T2 = 0
and T1 + 0 = 0 + U2

If the system is undergoing harmonic motion, then T1 and U2 denote the maximum
values of T and U, respectively and therefore last equation becomes

Tmax = Umax

It is quite useful in calculating the natural frequency directly.

1.6.4 STABILITY OF UNDAMPED LINEAR SYSTEMS

The mass/inertia and stiffness parameters have an affect on the stability of an undamped
single degree of freedom vibratory system. The mass and stiffness coefficients enter into the
characteristic equation which defines the response of the system. Hence, any changes in these
coefficient will lead to changes in the system behavior or response. In this section, the effects
of the system inertia and stiffness parameters on the stability of the motion of an undamped
single degree of freedom system are examined. It can be shown that by a proper selection of
the inertia and stiffness coefficients, the instability of the motion of the system can be avoided.
A stable system is one which executes bounded oscillations about the equilibrium position.

1.6.5 FREE VIBRATION WITH VISCOUS DAMPING

Viscous damping force is proportional to the velocity �x of the mass and acting in the
direction opposite to the velocity of the mass and can be expressed as

F = c �x
where c is the damping constant or coefficient of viscous damping. The differential equation of
motion for free vibration of a damped spring-mass system (Fig. 1.10) is written as:

�� �x
c
m

x
k
m

x+ + = 0
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(a) (b)

k c

m
x

k( + x)	 c x
.

mg

Fig. 1.10 Damped spring-mass system.

By assuming x(t) = Cest as the solution, the auxiliary equation obtained is

s
c
m

s
k
m

2 0+ + =

which has the roots

s1, 2 = – 
c
m

c
m

k
m2 2

2

± F
HG

I
KJ −

The solution takes one of three forms, depending on whether the quantity (c/2m)2 – k/m
is zero, positive, or negative. If this quantity is zero,

c = 2mωn
This results in repeated roots s1 = s2 = – c/2m, and the solution is

x(t) = (A + Bt)e–(c/2m)t

As the case in which repeated roots occur has special significance, we shall refer to the
corresponding value of the damping constant as the critical damping constant, denoted by
Cc = 2mωn. The roots can be written as:

s1, 2 = − ± −ζ ζ ω2 1e j n

where ωn = (k/m)1/2 is the circular frequency of the corresponding undamped system, and

ζ = 
c

C
c

mc n

=
2 ω

is known as the damping factor.
If ζ < 1, the roots are both imaginary and the solution for the motion is

x(t) = Xe tnt
d

− +ζω ω φsin ( )

where ωd = 1 2− ζ ωn is called the damped circular frequency which is always less than ω,
and φ is the phase angle of the damped oscillations. The general form of the motion is shown in
Fig. 1.11. For motion of this type, the system is said to be underdamped.
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x(t)

Xe
– t��

� < 1

t

Fig. 1.11 The general form of motion.

If ζ = 1, the damping constant is equal to the critical damping constant, and the system
is said to be critically damped. The displacement is given by

x(t) = (A + Bt)e nt−ω

The solution is the product of a linear function of time and a decaying exponential.
Depending on the values of A and B, many forms of motion are possible, but each form is
characterized by amplitude which decays without oscillations, such as is shown in Fig. 1.12.

t

x(t)

� = 1

Fig. 1.12 Amplitude decaying without oscillations.

In this case ζ > 1, and the system is said to be overdamped. The solution is given by:

x(t) = C e C en nt t
1

1
2

12 2( ) ( )− + − − − −+ζ ζ ω ζ ζ ω

The motion will be non-oscillatory and will be similar to that shown in Fig. 1.13.

t

x(t)

� > 1

Fig. 1.13 Non-oscillatory motion.

1.6.6 LOGARITHMIC DECREMENT

The logarithmic decrement represents the rate at which the amplitude of a free damped vibration
decreases. It is defined as the natural logarithm of the ratio of any two successive amplitudes.
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The ratio of successive amplitudes is

 
x

x
Xe

Xe
i

i

t

t

n i

n i d
+

−

− +=
1

ζω

ζω τ( )  = e n dζω τ  = constant

The logarithmic decrement

δ = ln
x

x
ei

i
n d

n d

+

= =
1

ln ζω τ ζω τ

Substituting τd = 2π/ωd = 2π/ωn 1 2− ζ  gives

δ = 
2

1 2

πζ
ζ−

1.6.7 TORSIONAL SYSTEM WITH VISCOUS DAMPING

The equation of motion for such a system can be written as

I��θ  + ct
�θ  + ktθ = 0

where I is the mass moment of inertia of the disc, kt is the torsional spring constant (restoring
torque for unit angular displacement), and θ is the angular displacement of the disc.

1.6.8 FREE VIBRATION WITH COULOMB DAMPING

Coulomb or dry-friction damping results when sliding contact exists between two dry surfaces.
The damping force is equal to the product of the normal force and the coefficient of dry friction.
The damping force is quite independent of the velocity of the motion. Consider a spring-mass
system in which the mass slides on a horizontal surface having coefficient of friction f, as in
Fig. 1.14.

k
m

f

Fig. 1.14 Free vibration with coulomb damping.

The corresponding differential equations of motion of such system are

m ��x = – kx – Fd if ��x > 0

m ��x = – kx + Fd if ��x < 0
These differential equations and their solutions are discontinuous at the end points of

their motion.
The general solution is then

x = A sin ωt + B cos ωt + 
F

k
d ( �x < 0)

for motion toward the left. For the initial conditions of x = x0 and �x = 0 at t = 0 for the extreme
position at the right, the solution becomes
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x = x
F

k
t

F

k
d d

0 −
F
HG

I
KJ +cos ω ( �x < 0)

This holds for motion toward the left, or until �x again becomes zero.
Hence the displacement is negative, or to the left of the neutral position, and has a

magnitude 2Fd/k less than the initial displacement x0.
A constant amplitude loss of 4Fd/k occurs for each cycle of motion as shown in Fig. 1.15.

The motion is a linearly decaying harmonic function of time, consisting of one-half sine wave
parts which are offset successively up or down by Fd/k depending on whether the motion is to
the left or to the right.

x

x0 4F /kd

� � 	= 2 / n

F /kd

F /kd

t

Fig. 1.15 Response of system subjected to Coulomb damping.

1.6.9 FREE VIBRATION WITH HYSTERETIC DAMPING

In general, solid materials are not perfectly elastic solid materials, in particular, metals, exhibit
what is commonly referred to as hysteretic or structural damping. The hysteresis effect is due
to the friction between internal planes which slip or slide as the deformations takes place. The
enclosed area in the hysteresis loop is the energy loss per loading cycle. The energy loss ∆U can
then be written as

∆U = πβ kX2

where β is a dimensionless structural damping coefficient, k is the equivalent spring constant,
X is the displacement amplitude, and the factor π is included for convenience. The energy loss
is a nonlinear function of the displacement.

The equivalent viscous damping constant is given by

ce = 
β
ω

βk
mk=

��� �����	
 ��
������
��
�������	�������������	��
�������

A mechanical or structural system is often subjected to external forces or external excitations.
The external forces may be harmonic, non-harmonic but periodic, non-periodic but having a
defined form or random. The response of the system to such excitations or forces is called
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forced response. The response of a system to a harmonic excitation is called harmonic response.
The non-periodic excitations may have a long or short duration. The response of a system to
suddenly applied non-periodic excitations is called transient response. The sources of harmonic
excitations are unbalance in rotating machines, forces generated by reciprocating machines,
and the motion of the machine itself in certain cases.

1.7.1 FORCED VIBRATIONS OF DAMPED SYSTEM

Consider a viscously damped single degree of freedom spring mass system shown in Fig. 1.16,
subjected to a harmonic function F(t) = F0 sin ωt, where F0 is the force amplitude and ω is the
circular frequency of the forcing function.

ck

F(t) = F sin t0 	

X

Fig. 1.16 Forced vibration of single degree of freedom system.

The equations of motion of the system is �� � sinx
c
m

x
k
m

x
F

m
t+ + =

F
HG

I
KJ

0 ω

The solution of the equation contains two components, complimentary function xh and
particular solution xp. That is

x = xh + xp
The particular solution represents the response of the system to the forcing function.

The complementary function xh is called the transient response since in the presence of damping,
the solution dies out. The particular integral xp is known as the steady state solution. The
steady state vibration exists long after the transient vibration disappears.

The particular solution or the steady state solution xp can be assumed in the form
xp = A1 sin ωt + A2 cos ωt

By defining r = 
ω

ω
ζ

ωn c

c
C

c
m

, = =
2

, and X0 = F0/k the amplitudes A1 and A2 are obtained

as follows:

A1 = 
( )

( ) ( )

1

1 2

2
0

2 2 2

−
− +

r X

r rζ

and A2 = 
−

− +
( )

( ) ( )

2

1 2
0

2 2 2

r X

r r

ζ
ζ
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The steady state solution xp can be written as

xp = 
X

r r
r t r t0

2 2 2
2

1 2
1 2

( ) ( )
[( ) sin ( ) cos ]

−
− −

ζ
ω ζ ω

which can also be written as

xp = 
X

r r
t0

2 2 21 2( ) ( )
sin ( )

−
−

ζ
ω φ

where X0 is the forced amplitude and φ is the phase angle defined by

φ = tan−
−

F
HG

I
KJ

1
2

2
1

r
r
ζ

It can be written in a more compact form as
xp = X0β sin (ωt – φ)

where β is known as magnification factor. For damped systems β is defined as

β = 
1

1 22 2 2( ) ( )− +r rζ
This  forced  response  is  called  steady state solution, which is shown in Figures 1.17

and 1.18.
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Fig. 1.17 Non-dimensional amplitude versus frequency-ratio.
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Fig. 1.18 Phase angle versus frequency-ratio.
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The magnification factor β is found to be maximum when

r = 1 2 2− ζ

The maximum magnification factor is given by:

βmax = 
1

2 1 2ζ ζ−
In the undamped systems, the particular solution reduces to

xp(t) = 

F

k t

n

0

2

1 −
F
HG

I
KJ

L

N
M
M

O

Q
P
P

ω
ω

ωsin

The maximum amplitude can also be expressed as
X

st

n

δ ω
ω

=

−
F
HG

I
KJ

1

1
2

where δst = F0/k denotes the static deflection of the mass under a force F0 and is sometimes
know as static deflection since F0 is a constant static force. The quantity X/δst represents the
ratio of the dynamic to the static amplitude of motion and is called the magnification factor,
amplification factor, or amplitude ratio.

1.7.1.1 Resonance

The case r = 
ω

ω n

 = 1, that is, when the circular frequency of the forcing function is equal to the

circular frequency of the spring-mass system is referred to as resonance. In this case, the
displacement x(t) goes to infinity for any value of time t.

The amplitude of the forced response grows with time as in Fig. 1.19 and will eventually
become infinite at which point the spring in the mass-spring system fails in an undesirable
manner.

t

x (t)p

0

r = 1

� = 2�
	n

Fig. 1.19 Resonance response.
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1.7.2 BEATS

The phenomenon of beating occurs for an undamped forced single degree of freedom spring-
mass system when the forcing frequency ω is close, but not equal, to the system circular
frequency ωn. In this case, the amplitude builds up and then diminishes in a regular pattern.
The phenomenon of beating can be noticed in cases of audio or sound vibration and in electric
power generation when a generator is started.

1.7.3 TRANSMISSIBILITY

The forces associated with the vibrations of a machine or a structure will be transmitted to its
support structure. These transmitted forces in most instances produce undesirable effects such
as noise. Machines and structures are generally mounted on designed flexible supports known
as vibration isolators or isolators.

In general, the amplitude of vibration reduces with the increasing values of the spring
stiffness k and the damping coefficient c. In order to reduce the force transmitted to the sup-
port structure, a proper selection of the stiffness and damping coefficients must be made.

From regular spring-mass-damper model, force transmitted to the support can be writ-
ten as

FT = k xp + c �xp= X0β k c t2 2+ −( ) sin ( )ω ω φ

where φ  = φ – φt

and φt is the phase angle defined as

φt = tan–1 c
k
ωF

HG
I
KJ  = tan–1(2rζ)

Transmitted force can also be written as:

FT = F0βt sin (ωt – φ )

where βt = 
1 2

1 2

2

2 2 2

+
− +

( )

( ) ( )

r

r r

ζ
ζ

The transmissibility βt is defined as the ratio of the maximum transmitted force to the
amplitude of the applied force. Fig. 1.20 shows a plot of βt versus the frequency ratio r for
different values of the damping factor ζ.

It can be observed from Fig. 1.20, that β > 1 for r < 2  which means that in this region
the amplitude of the transmitted force is greater than the amplitude of the applied force. Also,
the r < 2 , the transmitted force to the support can be reduced by increasing the damping

factor ζ. For r = 2 , every curve passes  through the point βt = 1 and becomes asymptotic to

zero as the frequency ratio is increased. Similarly, for r > 2 , βt < 1, hence, in this region the
amplitude of the transmitted force is less than the amplitude of the applied force. Therefore,
the amplitude of the transmitted force increases by increasing the damping factor ζ. Thus,
vibration isolation is best accomplished by an isolator composed only of spring-elements for
which r > 2  with no damping element used in the system.
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Fig. 1.20 Non-dimensional force transmitted vs. frequency ratio.

1.7.4 QUALITY FACTOR AND BANDWIDTH

The value of the amplitude ratio at resonance is also known as the Q factor or Quality factor of
the system in analogy with the term used in electrical engineering applications. That is,

Q = 
1

2ζ

The points R1 and R2, whereby the amplification factor falls to Q/ 2 , are known as half
power points, since the power absorbed by the damper responding harmonically at a given
forcing frequency is given by

∆W = πcωX2

The bandwidth of the system is defined as the difference between the frequencies asso-
ciated with the half power points R1 and R2 as depicted in Fig. 1.21.

It can be shown that Q-factor can be written as:

Q = 
1

2 2 1ζ
ω

ω ω
=

−
n

The quality factor Q can be used for estimating the equivalent viscous damping in a
vibrating system.
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Fig. 1.21 Harmonic response curve showing half power points and bandwidth.

1.7.5 ROTATING UNBALANCE

Unbalance in many rotating mechanical systems is a common source of vibration excitation
which may often lead to unbalance forces. If M is the total mass of the machine including an
eccentric mass m rotating with an angular velocity ω at an eccentricity e, it can be shown that
the particular solution takes the form:

xp(t) = 
me
M

F
HG

I
KJ βr sin (ωt – φ)

where βr is the magnification factor which is given by

βr = 
r

r r

2

2 2 21 2( ) ( )− + ζ
The steady state vibration due to unbalance in rotating component is proportional to

the amount of unbalance m and its distance e from the center of the rotation and increases as
the square of the rotating speed. The maximum displacement of the system lags the maximum
value of the forcing function by the phase angle φ.

1.7.6 BASE EXCITATION

In many mechanical systems such as vehicles mounted on a moving support or base, the forced
vibration of the system is due to the moving support or base. The motion of the support or base
causes the forces being transmitted to the mounted equipment. Fig. 1.22 shows a damped
single degree of freedom mass-spring system with a moving support or base.

m

c

x

k
y =Y sin t0 	

Fig. 1.22 Harmonically excited base.
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The steady state solution can be written as:
xp(t) = Y0βb sin (ωt – φ + φb),

where phase angle φ is given by φ = tan–1 2
1 2

r
r
ζ

−
F
HG

I
KJ  and βb is known as the displacement

transmissibility given by:  βb = 
1 2

1 2

2

2 2 2

+
− +

( )

( ) ( )

r

r r

ζ
ζ

The motion of the mass relative to the support denoted by z can be written as
z = x – y

= 
Y r

r r
t0

2

2 2 21 2( ) ( )
sin ( )

− +
−

ζ
ω φ

1.7.7 RESPONSE UNDER COULOMB DAMPING

When a single-degree-of-freedom with Coulomb damping subjected to a harmonic forcing con-
ditions, the amplitude relationship is written as:

X = 
X

r F Xk
0

2 2 21 4( ) ( / )− + π

which gives X = X0 

1 4

1
0

2

2

−

−

( / )F F

r

π

This expression for X has a real value, provided that

4F < πF0 or F < 
π
4

F0

1.7.8 RESPONSE UNDER HYSTERESIS DAMPING

The steady-state motion of a single degree of freedom forced harmonically with hysteresis
damping is also harmonic. The steady-state amplitude can then be determined by defining an
equivalent viscous damping constant based on equating the energies.

The amplitude is given in terms of hysteresis damping coefficient β as follows

                                X = 
X

r
0

2 2 21( )− + β

1.7.9 GENERAL FORCING CONDITIONS AND RESPONSE

A general forcing function may be periodic or nonperiodic. The ground vibrations of a building
structure during an earthquake, the vehicle motion when it hits a pothole, are some examples
of general forcing functions. Nonperiodic excitations are referred to as transient. The term
transient is used in the sense that nonperiodic excitations are not steady state.
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1.7.10  FOURIER SERIES AND HARMONIC ANALYSIS

The Fourier series expression of a given periodic function F(t) with period T can be expressed
in terms of harmonic functions as

F(t) = 
a

a n t b n t
n

n
n

n
0

1 12
+ +

=

∞

=

∞

∑ ∑cos sinω ω

where ω = 
2π
T

 and a0, an and bn are constants.

F(t) can also be written as follows:

F(t) = F0 + 
n

n n nF t
=

∞

∑ +
1

sin ( )ω φ

where F0 = a0/2, Fn = a bn n
2 2+ , with ωn = nω and φn = tan–1 

a

b
n

n

F
HG

I
KJ

��� ��������
���������

Harmonic functions are periodic functions in which all the Fourier coefficients are zeros except
one coefficient.

1.8.1 EVEN FUNCTIONS

A periodic function F(t) is said to be even if F(t) = F(– t). A cosine function is an even function
since cos θ = cos (– θ). If the function F(t) is an even function, then the coefficients bm are all
zeros.

1.8.2 ODD FUNCTIONS

A periodic function F(t) is said to be odd if F(t) = – F(– t). The sine function is an odd function
since sin θ = – sin(– θ). For an odd function, the Fourier coefficients a0 and an are identically
zero.

1.8.3 RESPONSE UNDER A PERIODIC FORCE OF IRREGULAR FORM

Usually, the values of periodic functions at discrete points in time are available in graphical
form or tabulated form. In such cases, no analytical expression can be found or the direct
integration of the periodic functions in a closed analytical form may not be practical. In such
cases, one can find the Fourier coefficients by using a numerical integration procedure. If one
divides the period of the function T into N equal intervals, then length of each such interval is
∆t = T/N.

The coefficients are given by

a0 = 
2

1N
F t

i

N

i
=
∑ ( )
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an = 
2

1N
F t

i

N

i
=
∑ ( ) cos nωti

bn = 
2

1N
F t

i

N

i
=
∑ ( ) sin nωti

1.8.4 RESPONSE UNDER A GENERAL PERIODIC FORCE

To find the response of a system under general periodic force, consider a single degree of
freedom system shown in Fig. 1.23.

m

ck

F(t)

x

Fig. 1.23 Single degree of freedom system.

Let the periodic force F(t) can be expressed in terms of harmonic functions by the use of
Fourier series as follows:

F(t) = 
a

n

0

12
+

=

∞

∑ (an cos nωt + bn sin nωt)

Then steady-state solution can be written as

xp(t) = 
a

k

a k

r rn

n

n n

0

1
2 2 22 1 2

+
− +=

∞

∑ /

( ) ( )ξ
 cos (nωt – ψn)

+ 
n

n

n n

b k

r r=

∞

∑ − +1
2 2 21 2

/

( ) ( )ξ
 sin (nωt – ψn)

In most cases, the first two or three terms of this series are sufficient to describe the
response of the system. If one of the harmonic frequencies nω is close to or equal to ω, then
r ≈ 1, and the corresponding amplitude ratio can become large and resonance can occur.

1.8.5 TRANSIENT VIBRATION

When a mechanical or structural system is excited by a suddenly applied nonperiodic excita-
tion F(t), the response to such excitation is called transient response, as the steady-state oscil-
lations are generally not produced.
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1.8.6 UNIT IMPULSE

Impulse is time integral of the force which is finite and is written as
�F  = ∫ F(t) dt

where �F  is the linear impulse (in pound seconds or Newton seconds) of the force.

Figure 1.24 shows an impulsive force of magnitude F = �F /∈ acting at t = a over the time
interval ∈ . As ∈ approaches zero, the magnitude of the force becomes infinite but the linear

impulse �F  is well defined.

t

F

F(t)

O
a a+�

Fig. 1.24 Impulsive force.

When �F  is equal to unity, such a force in the limiting case (∈ → 0) is called the unit
impulse, or the Direc delta function δ(t – a), which has the following properties:

δ(t – a) = 0 for t ≠ a

0
1

∞z − =δ( )t a dt

0

∞z −δ( ) ( )t a F t dt  = F(a)

where 0 < a < ∞. By using these properties, an impulsive force F(t) acting at t = a to produce a

linear impulsive �F  of arbitrary magnitude can be expressed as

F(t) = �F δ(t – a)

1.8.7 IMPULSIVE RESPONSE OF A SYSTEM

The response of a damped spring-mass system to an impulsive force is given by

 x(t) = �F H(t)
where H(t) is called the impulse response function and can be written as

H(t) = 
1

m
e

d

tn

ω
ζω− sin ωd t, where ωd is damped natural frequency.

If the force applied at a time t = τ, this can be written as:

H(t – τ) = 
1

m
e

d

tn

ω
ζω τ− −( )  sin ωd (t – τ)
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1.8.8 RESPONSE TO AN ARBITRARY INPUT

The total response is obtained by finding the integration

x(t) = 
0

t
F H t dz −( ) ( )τ τ τ

This is called the convolution integral or Duhamel’s integral and is sometimes referred as the
superposition integral.

1.8.9 LAPLACE TRANSFORMATION METHOD

The Laplace transformation method can be used for calculating the response of a system to a
variety of force excitations, including periodic and nonperiodic. The Laplace transformation
method can treat discontinuous functions with no difficulty and it automatically takes into
account the initial conditions. The usefulness of the method lies in the availability of tabulated
Laplace transform pairs. From the equations of motion of a single degree of freedom system
subjected to a general forcing function F(t), the Laplace transform of the solution x(t) is given
by

x s
F s ms c x mx

ms cs k
( )

( ) ( ) ( ) �( )= + + +
+ +

0 0
2

The method of determining x(t) given x s( ) can be considered as an inverse transforma-
tion which can be expressed as

x(t) = L–1 { ( )}x s

���

���
	�����
��
����	��
�������

Systems that require two independent coordinates to describe their motion are called two
degrees of freedom systems. Some examples of two degree of freedom models of vibrating sys-
tems are shown in Fig. 1.25(a) and (b).

m1

m2

k1

x1

l1
�1

y1

y2

x2

k2
l2�2

x1

x2

m2

m1

(a) (b)

Fig. 1.25 Two degree of freedom systems.
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1.9.1 EQUATIONS OF MOTION

Consider the viscously damped two-degree of freedom spring mass system shown in Fig. 1.26.

F (t)1

k1

c3c2c1

k2 k3

m1 m2

F (t)2

x (t)1 x (t)2

Fig. 1.26 Two-degree of freedom damped spring-mass damper.

The system is completely described by the two coordinates x1(t) and x2(t), which define
the positions of the two masses m1 and m2, respectively, for any arbitrary time t, from the
respective equilibrium positions. The external forces acting on the masses m1 and m2 of the
system are F1(t) and F2(t) respectively.

Applying Newton’s second law of motion to each of the masses m1 and m2 we can write
the two equations of motion as:

m1 ��x1
(t) + (c1 + c2) �x1

(t) – c2 �x2
(t) + (k1 + k2) x1(t) – k2x2(t) = F1(t)

m2 ��x2
(t) – c2

�x1(t) + (c2 + c3) �x2
(t) – k2x1(t) + (k2 + k3) x2(t) = F2(t)

These equations reveal that the motion of m1 will influence the motion of mass m2, and
vice versa.

1.9.2 FREE VIBRATION ANALYSIS

Let the free vibration solution of the equations of motion be
x1(t) = X1 cos (ωt +φ)
x2(t) = X2 cos (ωt +φ)

where X1 and X2 are constants, which denote the maximum amplitudes of x1(t) and x2(t), and φ
is the phase angle. Substituting these expressions in equations of motion leads to a character-
istic determinant

   det 
{ ( )}

{ ( )}
− + + −

− + +
L
NM

O
QP

m k k k
k m k k

1
2

1 2 2

2 2
2

2 3

ω
ω

 which should be zero for consistency.

or (m1m2)ω
4 – {(k1 + k2) m2 + (k2 + k3) m1}ω

2 + {(k1 + k2) (k2 + k3) – k2
2) = 0

This equation is known as the frequency or characteristic equation. The solution of this
equation yields the frequencies or the characteristic values of the system.

ω1
2, ω2

2 = 
1
2

1 2 2 2 3 1

1 2

( ) ( )k k m k k m

m m

+ + +R
S|
T|

U
V|
W|

 +
+ + +R

S|
T|

U
V|
W|

L

N
M
M

1
2

1 2 2 2 3 1

1 2

2
( ) ( )k k m k k m

m m – 4
1 2 2 3 2

2

1 2

1/2
( ) ( )k k k k k

m m

+ + −R
S|
T|

U
V|
W|
O
Q
P
P

ω1 and ω2 are called the natural frequencies of the system.
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The values of X1 and X2 depend on the natural frequencies ω1 and ω2. By denoting the

values of X1 and X2 corresponding to ω1 as X1
1( )  and X2

1( )  and those corresponding to ω2 as X1
2( )

and X2
2( ) :

r1 = 
X

X

m k k

k

k

m k k
2
1

1
1

1 1
2

1 2

2

2

2 1
2

2 3

( )

( )

( )

( )
=

− + +
=

− + +
ω

ω

r2 = 
X

X

m k k

k

k

m k k
2
2

1
2

1 2
2

1 2

2

2

2 2
2

2 3

( )

( )

( )

( )
=

− + +
=

− + +
ω

ω

The normal modes of vibration corresponding to ω1
2 and ω2

2 can be expressed, respec-
tively, as

{X(1)} = 
X

X

X

r X
1
1

2
1

1
1

1 1
1

( )

( )

( )

( )

R
S|
T|

U
V|
W|

=
R
S|
T|

U
V|
W|

and {X(2)} = 
X

X

X

r X
1
2

2
2

1
2

2 1
2

( )

( )

( )

( )

R
S|
T|

U
V|
W|

=
R
S|
T|

U
V|
W|

The vectors {X(1)} and {X(2)}, which denote the normal modes of vibration, are known as
the modal vectors of the system.

1.9.3 TORSIONAL SYSTEM

Consider the torsional system shown in Fig. 1.27, consisting of two disks on a shaft supported
in frictionless bearings at the ends.

k3

k2

k1

I1

I2

Fig. 1.27 Torsional system.

The differential equations of motion as

 I1
��θ1

 + (k1 + k2)θ1 – k2θ2 = 0

I2
��θ2  + (k2 + k3) θ2 – k2θ1 = 0
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where ki is the torsional stiffness of shaft i, i = 1, 2, 3, defined as

ki = 
G J

l
i i

i

where Gi is the modulus of rigidity, Ji is the polar moment of inertia, and li is the length of the
shaft. By using the matrix notation, the differential equations of motion can be written in
matrix form as

I
I

k k k
k k k

1

2

1

2

1 2 2

2 2 3

1

2

0
0

0
0

L
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QP
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+
+ −

− +
L
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O
QP

= L
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O
QP

��

��

θ
θ

θ
θ

1.9.4 COORDINATE COUPLING AND PRINCIPAL COORDINATES

The term coupling is used in vibration analysis to indicate a connection between equations of
motion. In general an n degree of freedom vibration system requires n independent coordi-
nates to describe completely its configuration. Often, it is quite possible to find some other set
of n coordinates to describe the same configuration of the system completely. Each of these
sets of n coordinates is called the generalized coordinates.

In the dynamic equations of motion, if the mass matrix [M] is non-diagonal, then mass
or dynamic coupling exists and if the stiffness matrix [K] is non-diagonal then stiffness or
static coupling exists. In general, it is possible to find a coordinate system that has neither
mass or dynamic coupling nor stiffness or static coupling. Then the equations are decoupled
into two independent equations and can be solved independently of the other. Such coordi-
nates are called principal coordinates or normal coordinates.

1.9.5 FORCED VIBRATIONS

When a two degree of freedom undamped system is subjected to the harmonic forces, F1(t) = F1
sin ωt and F2 (t) = F2 sin ωt, then the amplitudes of displacement of masses is given by

X1 = 
a F a F

a a a a
22 1 12 2

11 22 12 21

−
−

and X2 = 
a F a F

a a a a
11 2 21 1

11 22 12 21

−
−

The denominator defines the natural frequencies of the system ω1 and ω2. The motions
of the system are coupled and hence each mass will exhibit resonance even if the resonant
force acts on only one mass of the system.

For a damped two-degree of spring-mass system under external forces the solution is
obtained from mechanical impedance concept.

The mechanical impedance Zrs (iω) is defined as
Zrs (iω) = – ω2mrs + iωcrs + krs,    (r, s = 1, 2)

1.9.6 ORTHOGONALITY PRINCIPLE

If ω1 and ω2 are two eigenvalues (natural frequencies) and X(1) and X(2) are the corresponding
eigenvectors (natural modes) they must satisfy

ω1
2 [M] X(1) = [K] X(1)

ω2
2 [M] X(2) = [K] X(2)
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Then it can be shown that
For ω1 ≠ ω2, [X

(2)]T [M]X(1) = 0
This property is very useful, as for example to check the accuracy of computation of

normal modes by its application.

1.10 MULTI-DEGREE-OF-FREEDOM SYSTEMS

A multi-degree-of-freedom system is defined as a system whose motion is described by more
than one generalized coordinate. In general, n coordinates are needed in order to describe the
motion of an n-degree-of-freedom system. Fig. 1.28 shows some examples of multi degrees of
freedom systems.

L L L

�1

m , I1 1 m , I2 2 m , I3 3

�2 �3

(a) Three-degree-of-freedom torsional system.

k1

x1 x2 x3 x4

k2 k3 k4

m1 m2 m3 m4

(b) Four-degree-of-freedom spring mass system.

Fig.1.28 Multi-degree of freedom systems.

An n degree-of-freedom system is governed by n coupled differential equations and has
n natural frequencies. The solution of coupled differential equations can be written as the sum
of a homogeneous solution and a particular solution. The free-vibration properties of the sys-
tem are represented by the homogeneous solution while the particular solution represents the
forced response.

1.10.1 EQUATIONS OF MOTION

Consider the motion of an n-degree of freedom system whose motion is described by the gener-
alized coordinates, x1, x2, …, xn as shown in Fig. 1.29.

c1 ci ci+1 cn+1

m1 m2 mn

k1 ki ki+1 kn+1

Fig. 1.29 Multi-degree of freedom system.

Applying the Newton’s second law to mass mi (i = 1, 2, …, n), one can write the differen-
tial equation of motion as:

mi ��xi (t) – ci + 1 �xi + 1
+ (ci + ci+1) �xi  – ci �xi − 1

– ki + 1 xi+1 + (ki + ki + 1) xi – kixi – 1 = 0
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For general use, it is convenient to write this equation as in the following matrix form

[M] ��x(t) + [C] �x(t) + [K]x(t) = 0
with [M], [C] and [K] being square matrices containing the coefficients mij, cij and kij respec-
tively.

In this particular case, the mass-matrix is diagonal. For a different set of coordinates,
[M] is not necessarily diagonal.

1.10.2 STIFFNESS INFLUENCE COEFFICIENTS

For a linear system, inertial, damping and stiffness properties enter explicitly in the differen-
tial equations through the mass-coefficients mij, damping-coefficients cij and stiffness coeffi-
cients kij (i, j = 1,2,…, n) respectively. Of the three, stiffness coefficients are the elastic proper-
ties causing a dynamic system to vibrate, e.g., restoring-forces. Stiffness coefficients are also
known as stiffness influence coefficients. Stiffness influence coefficients kij is defined as the
force required at x = xi to produce a unit displacement uj = 1 at point x = xj and also the
displacements at all other points for which x ≠ xj are zero. In other words, they define a rela-
tion between the displacement at a point and the forces acting at various other points of sys-
tem. Invoking the superposition principle, the force at x = xi producing displacements uj at
x = xj (j =1,2,…, n) is

Fi = 
j

n

ij jk u
=

∑
1

1.10.3 FLEXIBILITY INFLUENCE COEFFICIENTS

Let the system be acted upon by a single-force Fj at x = xj and consider the displacement of any
arbitrary point x = xi (i = 1, 2, …, n) due to force Fj. Flexibility influence coefficient is defined as
the displacement of the point x = xi due to unit force Fj = 1 applied at the point x = xj. Invoking
the principle of superposition and obtaining displacement ui at x = xi resulting from all forces
Fj (j = 1, 2, …, n) by simply summing up the individual contributions

Ui = 
j

n

ij ja F
=

∑
1

Note that the units of aij are m/N.
For a single-degree of freedom system with only one spring, the stiffness influence

coefficient is merely the spring-constant, whereas the flexibility influence coefficient is its
reciprocal.

1.10.4 MATRIX FORMULATION

For  multi-degree of freedom systems, a more general formulation is employed. Arranging the
flexibility and stiffness influence coefficients in the square matrices as

[aij] = [A], and [kij] = [K]
where [A] is the flexibility matrix and [K] is the stiffness matrix.

The flexibility and stiffness matrices are the inverse of one another. Often the stiffness
coefficients are easier to evaluate than the flexibility coefficients. When the stiffness matrix is
singular, the flexibility matrix does not exist. This implies that the system admits rigid-body
motions, in which the system undergoes no elastic deformations. This can happen when supports
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do not fully restrain the system from moving. Thus in the absence of adequate supports, the
definition of flexibility coefficients cannot be applied, so that the coefficients are not defined.

1.10.5 INERTIA INFLUENCE COEFFICIENTS

The mass-matrix is associated with the kinetic energy. For a multi-degree of freedom system

with �xi  as the velocity of mass mi (i = 1, 2, …, n.), the kinetic energy is given by

T = 
1
2

� [ ] �x M xT

where [M] is the mass-matrix or inertia matrix.
The elements of the mass-matrix mij are known as the inertia influence coefficients. The

coefficients mij can be obtained using the impulse-momentum relations. The inertia influence
coefficients m1j, m2j, …, mnj are defined as the set of impulses applied at points 1, 2, …, n
respectively, to produce a unit velocity at points 1, 2, …, n respectively, to produce a unit
velocity at point j and zero velocity at every other point. Thus, for a multi degree of freedom
system, the total impulse at point i, can be found by summing up the impulses causing the

velocities �x j  (j = 1, 2, …, n) as

~
F  = [M] �X

where [M] is the mass matrix, �X  and ~
F  are the  velocity and impulse vectors of size

n × 1 respectively.

1.10.6 NORMAL MODE SOLUTION

The general formulation of the differential equations governing the free-vibrations of a linear-
undamped n-degree-of-freedom system can be written as

[M] ��x + [K]x = 0
where [M] and [K] are symmetric n × n mass and stiffness matrices respectively and x is the n-
dimensional column-vector of generalized coordinates.

Free vibrations of a multi-degree-of-freedom system are initiated by the presence of an
initial potential or kinetic energy.

The normal-mode solution in the form of
x(t) = Xeiωt

where ω the frequency of vibration and X is an n-dimensional vector called a mode shape. Each
natural frequency has at least one corresponding mode shape. The general solution is a linear
superposition over all possible modes.

The frequency or eigenvalue equation is defined as
– ω2 [M]X + [K]X = 0

The trivial solution (X = 0) is obtained unless
det[[M]–1 [K] – ω2I] = 0

Thus ω2 must be an eigenvalue of [M]–1 [K]. This form is called characteristic equation.
The square of a real positive eigenvalue has two possible values, one positive and one negative.
While both are used to develop the general solution, the positive square root is identified as a
natural frequency. The mode shape is the corresponding eigenvector.
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1.10.7 NATURAL FREQUENCIES AND MODE SHAPES

Generally in vibration problems, the characteristic equation has only real-roots since the
matrices under consideration are symmetric. Assuming that all the eigenvalues of [M]–1 [K]
corresponding to the symmetric mass and stiffness matrices are non-negative. Then there
exist n-real natural frequencies that can be arranged by ω1 ≤ ω2 ≤ … ωn. Each distinct eigenvalue
ω i

2, i = 1, 2, …, n, has a corresponding non-trivial eigenvector Xi, which satisfies

[M]–1[K]Xi = ω i
2Xi

This mode shape Xi is an n-dimensional column vector of the form

Xi = 

X
X

X

i

i

in

1

2
�

L

N

M
M
M
M

O

Q

P
P
P
P

This mode shape is not unique. The eigenvector is unique only to arbitrary multiplica-
tive constant. Normalization schemes exist such that the constant is chosen so the eigenvector
satisfies an externally imposed condition. The algebraic complexity of the solution grows
exponentially with the number of degrees of freedom. Hence, numerical methods, which do not
require the evaluation of the characteristic equation, are used for systems with a large number
of degrees of freedom.

1.10.8 MODE SHAPE ORTHOGONALITY

In the solution of problems involving multi-degree-of-freedom vibration, one useful fundamen-
tal relation exists between the principal modes. Consider any two principal modes of oscilla-
tion of a system of several degrees of freedom. Let these be rth and sth modes and the corre-

sponding eigenvalues be ω r
2 and ω s

2, then it can shown that

{ }X r
T  [M]{X}s = 0,   r ≠ s

{ }X r
T  [K]{X}s = 0     r ≠ s

These define the matrix form of the orthogonal relationships between principal modes
of vibration. Since [M] is often a diagonal matrix and [K] is not, it is usually simpler to write
the orthogonality matrix with respect to [M]. The orthogonality relation with respect to [M] is
written in expanded form as

i

n

j

n

ij i
r

j
sm x x

= =
∑ ∑

1 1

 = 0,    r ≠ s

Thus the orthogonality relation for the principal modes of vibration is essentially a rela-
tion between the amplitudes of two principal modes. These are not necessarily successive modes
but any two modes. It is convenient to normalize mode shapes by requiring that the kinetic
energy scalar product of a mode shape with itself is equal to one.

1.10.9 RESPONSE OF A SYSTEM TO INITIAL CONDITIONS

Response of multi-degree-of-freedom system subjected to initial excitations x(0) and �x(0) in
the general form can be written as
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x(t) = 
r

n

r
T

r
r

r
T

r rU Mx t U Mx t U
=

∑ +
L
N
M
M

O
Q
P
P1

0
1

0( ) cos �( ) sinω
ω

ω

Here each of the natural modes can be excited independently of the other.
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In the equations of free motion including viscous damping, we can assume a harmonic form for
the response. Due to the presence of damping, the characteristic equation will be a polynomial
that has complex conjugate roots. For a given complex conjugate eigenvalues there are conju-
gate eigenvectors. The normal mode method or modal analysis applies only to undamped sys-
tems or systems where the damping can be made mathematically equivalent to the mass or
stiffness matrix. Sometimes damping can be ignored in the forced response of a vibrating
system.

�������������

���
���
�

For some special systems, where the damping matrix is linearly related to the mass and stiff-
ness matrices, the simultaneous diagonalization of the stiffness and mass matrices can be
accomplished along with that of the damping matrix. Such systems are called proportional
damping systems.

Here  [C] = α[K] + β[M]
where α and β are constants.

Differential equations governing the free vibrations of a linear system with propor-
tional damping can be written as

[M] ��X  + (α[K] + β[M]) �X  + [K] X = 0
If ω1 ≤ ω2 ≤ … ωn are the natural frequencies of an undamped system whose mass-

matrix is [M] and stiffness matrix [K] and U1, U2, … Un are the corresponding normalized
mode shapes. The expansion-theorem implies that X can be written as a linear combination of
the mode shape vector.

X = Σpi Ui

The matrix triple products possessing orgthogonality properties, is written as

[U]T[M][U]{ ��P } + [U]T (α[K] + β[M]) [U]{ �P} + [U]T[K][U]{P} = 0
The orthogonality of modes with respect to mass and stiffness permits the following

substitutions:
[U]T [M] [U] = [I]

and [U]T [K] [U] = [diag ω2] = [Ω]
The equations can now be decoupled into governing equations for each degree of free-

dom. Mathematically,

�� ( ) �p p pi i i i i+ + +αω β ω2 2  = 0

In this connection, modal damping ratio is defined as ξi = 
1
2

αω
β

ωi
i

+
F
HG

I
KJ
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The general solution for free vibration problem under ξi < 1 is given by

pi(t) = Aie ti it
i i i

− − −ξ ω ω ξ φsin ( )1 2

where Ai and φi are constants determined from the initial conditions. Finally the solution is
obtained in terms of generalized coordinates.
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The differential equations governing the free-vibrations of a multi-degree-of-freedom system
with viscous damping are given by

[M] ��X  + [C] �X  + [K] X = 0
If the damping is arbitrary, then the principal coordinates of the undamped system do

not uncouple the above equation. The equation can be reformulated as 2n first-order differen-
tial equations by writing

[
~

] � [
~

]M y K y+ = 0

where [
~

] [ ]
[ ] [ ]

M O M
M C

= L
NM

O
QP , [

~
] [ ]

[ ]
K M O

O K
= −L
NM

O
QP
, y = 

�X
X
L
NM

O
QP

If the values of γ are complex-conjugate eigenvalues of [
~

] [
~

]M K−1  and φ is a correspond-
ing eigenvector, then the solution takes the form as

y = φ e–γt
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Differential equations governing the motion of an n-degree of freedom undamped system sub-
ject to a single-frequency excitation with all excitation terms at the same phase can be written
as:

[M] ��x + [K]x = F sin ωt
where F is an n-dimensional vector of constant forces. A particular solution of the form is
assumed as follows:

x(t) = U sin ωt
where U is an n-dimensional vector of undetermined coefficients.

It results in by usual method as a solution
U = (–ω2 [M] + iω[C] + [K])–1 F

Alternative to this method of undetermined coefficients, Laplace transform method can
also be employed.
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The differential equations governing the forced vibration motion of an undamped linear n-
degree-of-freedom system are

  M ��X  + KX = F
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The method of modal analysis uses the principal coordinates of the system to uncouple
this equation as follows:

i

n

i j i
i

n

i j i jp X MX p X KX X F
= =
∑ ∑+ =

1 1

�� ( ) ( )

Application of mode shape orthogonality leads to only one non-zero term in each sum-
mation, i.e., the term corresponding to i = j. Since the mode shapes are normalized, the follow-
ing set of equations are obtained

�� ( )p p g tj j j j+ =ω2

where gj(t) = Xj F
If the initial conditions for pi are both zero, then the convolution integral solution is

given by

pi(t) = 
1

0ω
τ ω τ τ

i

t

i ig t dz −( ) sin [ ( )]

Once the solution for each pi is obtained, the original generalized coordinates can be
determined.

The same methodology can be applied to systems having proportional damping.
Here it leads to the differential equations for the principal coordinates as

�� � ( )p p p g ti i i i i i i+ + =2 2ξ ω ω
where ξi is modal damping-ratio.

In this case, the convolution-integral solution is given by

pi(t) = 
1

0ω
τ ω τ τξ ω τ

d
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i
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i
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There are two general approaches to classical dynamics: vectorial dynamics and analytical
dynamics. Vectorial dynamics is based directly on the application of Newton’s second law of
motion, concentrating on forces and motions. Analytical dynamics treats the system as a whole
dealing with scalar quantities such as the kinetic and potential energies of the system. Lagrange
proposed an approach, which provides a powerful and versatile method for the formulation of
the equations of motion for any dynamical system. Lagrange’s equation obtains the equation of
motion in generalized coordinates approaching the system from the analytical dynamics point
of view. Lagrange’s equations are differential equations in which one considers the energies of
the system and the work done instantaneously in time.

1.16.1 GENERALIZED COORDINATES

The coordinates used to describe the motion in each degree of freedom of a system are termed
as generalized coordinates. They may be Cartesian, polar, cylindrical or spherical coordinates,
provided any one of them can be used to describe the configuration of the system where the
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motion along any one coordinate direction is independent of others. But, sometimes they may
not have such simple physical or geometrical meaning. For example, the deflections of a string,
stretched between two points, can be expressed in the form of trigonometric Fourier series,
and the coefficients of all the terms in the series can be considered as a generalized coordinate
set. This is because each trigonometric function in the series may be considered as a unique
degree of freedom and the coefficients describe the extent of deflection in each degree of free-
dom.

It is possible to transform the coordinates from any one system to the generalized
coordinate system or vice versa, through coordinate transformation. Consider a mechanical
system consisting of N particles whose positions are (xi, yi, zi), i = 1,2,…, N, in a Cartesian
coordinate system. The motion of the mechanical system is completely defined if the variation
with time of these positions i.e. xi = xi(t), yi = yi(t), zi = zi(t), are known. These 3N coordinates
completely define a representative space.  If it is possible to find another set of generalized
coordinates, qi, i = 1,2,….n, where n = 3N, then these two coordinate systems are related by the
following:

xi(t) = xi(q1, q2, …, qn, t)
yi(t) = yi(q1, q2, …, qn, t)
zi(t) = zi(q1, q2, …, qn, t)
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The principle of virtual work is essentially a statement of the static or dynamic equilibrium of
a mechanical system. A virtual displacement, denoted by δr, is an imaginary displacement and
it occurs without the passage of time. The virtual displacement being infinitesimal obeys the
rules of differential calculus.

Consider a mechanical system with N particles in a three-dimensional space whose
cartesian coordinates are (x1, y1, z1,…,zn). Suppose the system is subject to k constraints φj (x1,
y1, z1,…,zn, t) = 0, j = 1,2,…,k. The virtual displacements δx1,δy1, δz1 etc. are said to be consist-
ent with the system constraints if the constraint equations are still satisfied.

The virtual work performed by the resultant force vector Fi over the virtual displace-

ment vector δri of particle i is

δW = F ri i
i

N

. δ
=
∑

1

When the system is in equilibrium, the resultant force acting on each particle is zero.
The resultant force is the sum of the applied force and the reaction force or the constraint
force. The virtual work done by all the forces in moving through an arbitrary virtual displace-
ment consistent with the constraints is zero.
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The principle of virtual work is extended to dynamics, in which form it is known as D’ Alembert’s
principle. The principle of virtual work is extended to the dynamic case by considering the
inertia forces and considering the systems to be in dynamic equilibrium.
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The generalized principle of D’Alembert states that the virtual work performed by the
effective forces through infinitesimal virtual displacements compatible with the system con-
straints is zero.
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If Qi is called the generalized force in the direction of the ith generalized coordinate, T is the
kinetic energy and V is potential energy, then Lagrange’s equation is given by

d
dt

T
q

T
q

V
qi i i

∂
∂

∂
∂

∂
∂�

F
HG

I
KJ

− +  = Qi

Expressing T – V = L, called the Lagrangian, the equation can be written as
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An alternative approach to the study of motion is the use of variational principle, which views
the motion as a whole from the beginning to the end. This involves a search for the path in the
configuration space, which yields a stationary value for a certain integral. Unlike as in the
case of differential equations, the initial and final points in the configuration space are fixed in
this approach. The most celebrated variational principle in dynamics is the Hamilton’s principle.
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Hamilton’s principle is the most important and powerful variational principle in dynamics. It
is derived from the generalized D’Alembert’s principle. The generalized version of Hamilton’s
principle can be written as

t

t
T W dt

0

1
0z + =( )δ δ or

t

t
T V dt

0

1
0z − =δ ( ) , δ

t

t
L dt

0

1
0z =

where L = T – V.
The usual form of Hamilton’s principle applies to a more restricted class of systems,

which are called conservative systems. In these systems all the applied forces are derivable
from a potential function V(q, t).

The usual form of Hamilton’s principle states that: The actual path in the configuration
space followed by a holonomic system from t0 and t1 is such that the integral

I =
t

t
L dt

0

1z
is stationary with respect to any path variations, which vanish at the end points.
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Terminology used frequently in the field of vibration analysis is compiled here from various
sources including from the document prepared by ISO, TCO-108, Mechanical Vibration and
Shock, American National Standards Institute Inc., New York.

Acceleration: Acceleration is a vector quantity that specifies the time rate of change of
velocity.

Amplification Factor: See magnification ratio.
Amplification: The amount of power or amplitude in an electric signal. Devices such

as transistors are used to create or increase amplification.
Amplitude Ratio: Amplitude ratio or magnifications factor is the ratio of the maxi-

mum force developed in the spring of a mass-spring-dashpot system to the maximum value of
the exciting force.

Amplitude: Amplitude is the maximum distance from either side of the natural posi-
tion that the object can travel once the object is released.

Analytical Dynamics: See analytical mechanics.
Analytical Mechanics: Analytical mechanics or variational approach to mechanics or

analytical dynamics, considers the system as a whole, rather that the individual components
separately, a process that excludes the reaction and constraint forces automatically.

Angular Frequency (Circular Frequency): The angular frequency of a periodic quan-
tity, in radians per unit time, is the frequency multiplied by 2π.

Angular Impulse: The angular impulse of a constant torque T acting for a time t is the
product Tt.

Angular Mechanical Impedance (Rotational Mechanical Impedance): Angular
mechanical impedance is the impedance involving the ratio of torque to angular velocity. (See
Impedance.)

Angular Momentum: The angular momentum of a body about its axis of rotation is
the moment of its linear momentum about the axis.

Angular Motion: See rotational particle motion.
Anti-resonance: For a system in forced oscillation, anti-resonance exists at a point

when any change, however small, in the frequency of excitation causes an increase in the
response at this point.

Auxiliary Mass Damper (Damped Vibration Absorber): An auxiliary mass damper
is a system consisting of a mass, spring, and damper which tends to reduce vibration by the
dissipation of energy in the damper as a result of relative motion between the mass and the
structure to which the damper is attached.

Balancing: Balancing is a procedure for adjusting the mass distribution of a rotor so
that vibration of the journals, or the forces on the bearings at once-per-revolution, are reduced
or controlled.

Basic Law of Nature: A basic law of nature is a physical law that applies to all physical
systems regardless of the motional from which the system is constructed.

Beats: Beats are periodic variations that result from the superposition of two simple
harmonic quantities of different frequencies fl and f2. They involve the periodic increase and
decrease of amplitude at the beat frequency.



INTRODUCTION TO MECHANICAL VIBRATIONS 41

Centrifugal Force: If a body rotates at the end of an arm, the force is provided by the
tension in the arm. The reaction to this force acts at the centre of rotation and is called the
centrifugal force. It represents the inertia force of the body, resisting the change in the direction
of its motion.

Centripetal Acceleration: The acceleration that is directed towards the centre of
rotation is called the centripetal acceleration.

Centripetal Force: A centre seeking force that causes an object to move towards the
centre.

Circular Frequency: See Angular Frequency.
Circular Motion: See rotational particle motion.
Complex Function: A complex function is a function having real and imaginary parts.
Complex Vibration: Complex vibration is vibration whose components are sinusoids

not harmonically related to one another. See Harmonic.
Compliance: Compliance is the reciprocal of stiffness.
Conservation of Angular Momentum: The total angular momentum of a system of

masses about any one axis remains constant unless acted upon by an external torque about
that axis.

Conservation of Energy: Energy can neither be created nor destroyed.
Conservation of Linear Momentum: The total momentum of a system of masses in

any one direction remains constant unless acted upon by an external force in that direction.
Conservative System: In a conservative system, there is no mechanism for dissipat-

ing or adding energy.
Continuous Assumption: The continuous assumption implies that a system can be

treated as a continuous piece of matter.
Continuous System: A system with an infinite number of degrees of freedom is called

a continuous system or distributed parameter system.
Coulomb Damping: Coulomb damping is the damping that occurs due to dry friction

when two surfaces slide against one another.
Coupled Modes: Coupled modes are modes of vibration that are not independent but

which influence one another because of energy transfer from one mode to the other. (See mode
of vibration.)

Coupling Factor, Electromechanical: The electromechanical coupling factor is a factor
used to characterize the extent to which the electrical characteristics of a transducer are modi-
fied by a coupled mechanical system, and vice versa.

Coupling: Coupling is the term used in mechanical vibration to indicate a connection
between equations of motion.

Critical Damping: Critical damping is the minimum viscous damping that will allow a
displaced system to return to its initial position without oscillation.

Critical Speed: Critical speed is a speed of a rotating system that corresponds to a
resonant frequency of the system.

Critical Velocity: The minimum velocity at the highest point of the loop in order to
complete a cycle is called the critical velocity.

Critically Damped System: The system is said to be critically damped if the amount
of damping is such that the resulting motion is on the border between the two cases of
underdamped and over damped systems.
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Cycle: A cycle is the complete sequence of values of a periodic quantity that occur dur-
ing a period.

D’Alembert’s Principle: The virtual performed by the effective forces through infini-
tesimal virtual displacements compatible with the system constraints is zero.

Damped Natural Frequency: The damped natural frequency is the frequency of free
vibration of a damped linear system. The free vibration of a damped system may be considered
periodic in the limited sense that the time interval between zero crossings in the same direc-
tion is constant, even though successive amplitudes decrease progressively. The frequency of
the vibration is the reciprocal of this time interval.

Damping Ratio: The damping ratio is defined as the ratio of the actual value of the
damping to the critical damping coefficient.

Damping: The process of energy dissipation is generally referred to in the study of
vibrations as damping.

Degrees-of-freedom: The number of degrees-of-freedom of a mechanical system is equal
to the minimum number of independent coordinates required to define completely the posi-
tions of all parts of the system at any instant of time. In general, it is equal to the number of
independent displacements that are possible.

Dependent Variables: Dependent variables are the variables that describe the physi-
cal behaviour of the system.

Deterministic Excitation: If the excitation force is known at all instants of time, the
excitation is said to be deterministic.

Discrete System: A system with a finite number of degrees of freedom is a discrete
system.

Displacement: Displacement (or linear displacement) is the net change in a particle’s
position as determined from the position function.

Displacement: Displacement is a vector quantity that specifies the change of position
of a body or particle and is usually measured from the mean position or position of rest. In
general, it can be represented as a rotation vector or a translation vector, or both.

Distributed Parameter System: See continuous system.
Distributed Systems: Systems where mass and elasticity are considered to be distrib-

uted parameters are called distributed systems.
Driving Point Impedance: Driving point impedance is the impedance involving the

ratio of force to velocity when both the force and velocity are measured at the same point and
in the same direction. (See Impedance.)

Dry Friction Damping: (See Coulomb Damping.)
Duration of Shock Pulse: The duration of a shock pulse is the time required for the

acceleration of the pulse to rise from some stated fraction of the maximum amplitude and to
decay to this value. (See Shock Pulse.)

Dynamic Vibration Absorber (Tuned Damper): A dynamic vibration absorber is an
auxiliary mass-spring system, which tends to neutralize vibration of a structure to which it is
attached. The basic principle of operation is vibration out-of-phase with the vibration of such
structure, thereby applying a counteracting force.

Dynamically Coupled: If an equation contains cross products of velocity, or if the
kinetic energy contains cross products of velocity, that equation of motion is dynamically coupled.

Dynamics: Dynamics is the study of moving objects.
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Elasticity: A material property that causes it to return to its natural state after being
compressed.

Energy: Energy is the capacity to do work, mechanical energy being equal to the work
done on a body in altering either its position or its velocity.

Environment: (See Natural Environments and Induced Environment.)
Equivalent System: An equivalent system is one that may be substituted for another

system for the purpose of analysis. Many types of equivalence are common in vibration and
shock technology: (1) equivalent stiffness; (2) equivalent damping; (3) torsional system equiva-
lent to a translational system; (4) electrical or acoustical system equivalent to a mechanical
system; etc.

Equivalent Viscous Damping: Equivalent viscous damping is a value of viscous damp-
ing assumed for the purpose of analysis of a vibratory motion, such that the dissipation of
energy per cycle at resonance is the same for either the assumed or actual damping force.

Excitation (Stimulus): Excitation is an external force (or other input) applied to a
system that causes the system to respond in some way.

External forces: Actions of other bodies on a rigid body are known as external forces.
Flexibility Matrix: The flexibility matrix is the inverse of the stiffness matrix.
Force:  Force is a push or a pull that one body exerts on another, includes gravitational,

electrostatic, magnetic and contact influences.
Forced Vibrations: Vibrations, which occurs in the presence of an external excitation,

are called forced vibrations.
Foundation (Support): A foundation is a structure that supports the gravity load of a

mechanical system. It may be fixed in space, or it may undergo a motion that provides excita-
tion for the supported system.

Fraction of Critical Damping: The fraction of critical damping (damping ratio) for a
system with viscous damping is the ratio of actual damping coefficient c to the critical damp-
ing coefficient cc.

Free Body Diagram Method: One method of deriving the differentiated equations of
motion, referred to as the free body diagram method, involves applying conservation laws to
free body diagrams of the system drawn at an arbitrary instant.

Free Vibrations: A system is undergoing free vibrations when the vibrations occur in
the absence of an external excitation.

Frequency, Angular: (See Angular Frequency.)
Frequency: The frequency is the number of cycles the system executes in a period of

time and is the reciprocal of the period.
Friction: Friction is a force that always resists motion or impending motion.
Fundamental Frequency: The natural frequencies can be arranged in order of in-

creasing magnitude and the lowest frequency is referred to as the fundamental frequency.
Fundamental Mode of Vibration: The fundamental mode of vibration of a system is

the mode having the lowest natural frequency.
Generalized Coordinates: A set of independent coordinates which properly and com-

pletely defines the configuration of a system and whose number is equal to the number of
degrees of freedom is called the generalized coordinates.

Generalized Forces: The generalized forces are not usually actual or observable forces
acting on the system, but some component of a combination of such forces.
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Gravity Acceleration: Gravity is measured in terms of the acceleration a planet gives
to an object on Earth. The value of gravity acceleration is 9.8 m/sec2.

Grid Points: See Mesh Points.
Harmonic Excitations: If the excitation force is periodic the excitations is said to be

harmonic.
Harmonic Motion: (See Simple Harmonic Motion.)
Harmonic Response: Harmonic response is the periodic response of a vibrating sys-

tem exhibiting the characteristics of resonance at a frequency that is a multiple of the excita-
tion frequency.

Harmonic: A harmonic is a sinusoidal quantity having a frequency that is an integral
multiple of the frequency of a periodic quantity to which it is related.

Holonomic Coordinates: If each of the coordinates is independent of the others, the
coordinates are known as holonomic coordinates.

Holonomic System: Systems having equations of constraint containing only coordi-
nates or coordinates and time are called holonomic systems.

Homogenous Differential Equation: A differential equation in which all terms con-
tain the unknown function or its derivative is known as a homogenous differentiated equation.

Hysteric Damping: The existence of hysterics loop leads to energy dissipation from
the system during each cycle, which causes natural damping called hysterics damping.

Impact: An impact is a single collision of one mass in motion with a second mass, which
may be either in motion or at rest.

Impedance: Mechanical impedance is the ratio of a force-like quantity to a velocity-
like quantity when the arguments of the real (or imaginary) parts of the quantities increase
linearly with time. Examples of force-like quantities are: force, sound pressure, voltage, and
temperature. Examples of velocity-like quantities are: velocity, volume velocity, current, and
heat flow. Impedance is the reciprocal of mobility.

Impulse: Impulse is the product of a force and the time during which the force is ap-
plied; more specifically, the impulse is Fdt where the force F is time dependent and equal to
zero before time t1 and after time t2.

Impulsive Force: An impulsive force is defined as a force which has a large magnitude
and acts during a very short time duration such that the time integral of the force is finite.

Impulsive Torque: A torque, which acts for a very short time, is referred to as an
impulsive torque.

Independent Variables: Independent variables are the variables with which the
dependent variable changes.

Influence Coefficient: An influence coefficient, denoted by ∝12, is defined as the sta-
tus deflection of the system at position 1 due to a unit force applied at position 2 when the unit
force is the only force acting.

Internal Forces: Internal forces hold together parts of a rigid body.
Isolation: Isolation is a reduction in the capacity of a system to respond to an excita-

tion, attained by the use of a resilient support. In steady-state forced vibration, isolation is
expressed quantitatively as the complement of transmissibility.

Jerk: Jerk is a vector that specifies the time rate of change of acceleration; jerk is the
third derivative of displacement with respect to time.
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Kinematics: Kinematics is the study of a body’s motion independent of the force on the
body.  It is a study of the geometry of motion without consideration of the causes of motion.

Kinematics: The branch of mechanics that studies the motion of objects without refer-
ence to the forces that causes the motion.

Kinetic Coefficient of Friction: Coulombs law states that the friction force is propor-
tional to the normal force developed between the mass and the surface.  The constant of pro-
portions µ is called the kinetic coefficient of friction.

Kinetic Energy: The kinetic energy of a body is the energy it possesses due to its
velocity. If a body of mass m attains a velocity v from rest under the influence of a force P and
moves a distance s, then, work done by P is Ps and the kinetic energy of the body is [1/2 mv2].

Kinetics: Kinetics is the study of motion and the forces that cause motion.
Lagrange’s Method: The technique known as Lagrange’s method utilizes both the

principle of virtual displacements and D’Alembert principle to derive the equations of motion
of a vibrating system.

Lagrangian Function: See Lagrangian.
Lagrangian or Lagrangian Function: The Lagrangian or the Lagrangian function is

defined as the difference between the kinetic energy and the potential energy of a system.
Line Spectrum: A line spectrum is a spectrum whose components occur at a number of

discrete frequencies.
Linear Damping: With linear damping, the damping force is proportional to velocity.
Linear Differential Equation: A linear differential equation is one, which contains

no products of the solution function and/or its derivatives.
Linear Mechanical Impedance: Linear mechanical impedance is the impedance in-

volving the ratio of force to linear velocity. (See Impedance.)
Linear System: A linear system is one in which particles move only in straight line.

Another name is rectilinear system.
Logarithmic Decrement: The rate of decay of amplitude expressed as the natural

logarithm of the amplitude ratio is known as the logarithmic decrement.
Longitudinal Wave: A longitudinal wave in a medium is a wave in which the direction

of displacement at each point of the medium is normal to the wave front.
Lumped Mass Systems: Systems that can be modelled as a combination of distinct

mass and elastic elements, which possess many degrees of freedom, are often called lumped-
mass systems.

Magnification Factor: The magnification factor (also known as the amplitude ratio
and amplification factor) is defined as the ratio of the steady-state vibration amplitude to the
pseudo-static deflection.

Mass: The mass of a body is determined by comparison with a standard mass, using a
beam-type balance.

Matrix Iteration: Matrix iteration is a numerical procedure that allows determination
of a system’s natural frequencies and mode shapes successively, beginning with the smallest
natural frequency.

Mean Square Value: The mean square value of a time function is found from the
average of the squared values integrated over some time interval.



46 SOLVING VIBRATION ANALYSIS PROBLEMS USING MATLAB

Mechanical Impedance: (See Impedance.)
Mechanical Shock: Mechanical shock is a nonperiodic excitation (e.g., a motion of the

foundation or an applied force) of a mechanical system that is characterized by suddenness
and severity, and usually causes significant relative displacements in the system.

Mechanical System: A mechanical system is an aggregate of matter comprising a
defined configuration of mass, stiffness, and damping.

Mesh Points: In the finite difference method, the solution domain (over which the
solution of the given differential equation is required) is replaced with a finite number of
points, referred to as mesh or grid points.

Modal Analysis: The procedure of solving the system of simultaneous differential equa-
tions of motion by transforming them into a set of independent equations by means of the
modal matrix is generally referred to as modal analysis.

Modal Matrix: The modal matrix consists of the modal vectors or characteristic vectors
representing the natural modes of the system.

Modal Numbers: When the normal modes of a system are related by a set of ordered
integers, these integers are called modal numbers.

Mode of Vibration: In a system undergoing vibration, a mode of vibration is a
characteristic pattern assumed by the system in which the motion of every particle is simple
harmonic with the same frequency. Two or more modes may exist concurrently in a multiple
degree-of-freedom system.

Modulation: Modulation is the variation in the value of some parameter, which
characterizes a periodic oscillation. Thus, amplitude modulation of a sinusoidal oscillation is a
variation in the amplitude of the sinusoidal oscillation.

Momentum: The momentum of a body is the product of its mass and velocity.
Multiple Degree-of-freedom System: A multiple degree-of-freedom system is one for

which two or more coordinates are required to define completely the position of the system at
any instant.

N Degrees of Freedom System: When n independent coordinates are required to
specify the positions of the masses of a system, the system is of n degrees of freedom.

Natural Environments: Natural environments are those conditions generated by the
forces of nature and whose effects are experienced when the equipment or structure is at rest
as well as when it is in operation.

Natural Frequencies: The positive square roots of the characteristic values or
eigenvalues are called the natural frequencies of the system and represent the circular fre-
quencies at which the system can oscillate.

Natural Frequency: Natural frequency is the frequency of free vibration of a system.
For a multiple degree-of-freedom system, the natural frequencies are the frequencies of the
normal modes of vibration.

Natural Modes: The eigenvectors are also referred to as modal vectors and represent
physically the so-called natural modes.

Natural Motions: The free vibrations problem admits special independent solutions in
which the system vibrates in any one of the natural modes.  These solutions are referred to as
natural motions.
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Natural Vibration: If the oscillating motion about an equilibrium point is the result of
a disturbing force that is applied once and then removed, the motion is known as natural (or
free) vibration.

Negative Damping: Negative damping happens when energy is added to the system
rather than the traditional dissipation. Such a system can be unstable.

Newtonian Mechanics or Vectorial Mechanics: In Newtonian mechanics, the equa-
tions of motion are expressed in terms of physical coordinates and forces, both quantities con-
veniently represented by vectors. Newtonian mechanics is often called or referred to as vectorial
mechanics.

Node: The principle-mode vibration exhibits a point for which the displacement is zero
at all times. Such a point is called a node.

Nonholonomic Systems: Systems having equations of constraint containing velocities
are called nonholonomic systems.

Nonlinear Damping: Nonlinear damping is damping due to a damping force that is
not proportional to velocity.

Nonlinear System: A system is nonlinear if its motion is governed by nonlinear differ-
ential equations.

Normal Mode of Vibration: A normal mode of vibration is a mode of vibration that is
uncoupled from (i.e., can exist independently of) other modes of vibration of a system. When
vibration of the system is defined as an eigenvalue problem, the normal modes are the
eigenvectors and the normal mode frequencies are the eigenvalues. The term “classical normal
mode” is sometimes applied to the normal modes of a vibrating system characterized by vibra-
tion of each element of the system at the same frequency and phase. In general, classical
normal modes exist only in systems having no damping or having particular types of damping.

Normal Modes: The process of adjusting the elements of the natural modes to render
their amplitude is called normalization, and the resulting vectors are referred to as normal
modes.

Normalization: It is often convenient to choose the magnitude of the modal vectors so
as to reduce matrix [m] to the identity matrix, which automatically reduces the matrix [k] to
the diagonal matrix of natural frequencies squared.  This process is known as normalization.

Number of Degrees of Freedom: The number of degrees of freedom is equal to the
number of coordinates required to completely specify the state of an object.

Orthonormal: If the modes are normalized, then they are called orthonormal.
Oscillation: Oscillation is the variation, usually with time, of the magnitude of a quan-

tity with respect to a specified reference when the magnitude is alternately greater and smaller
than the reference.

Overdamped System: If the damping is heavy, the motion is non-oscillatory, and the
system is said to be overdamped.

Partial Node: A partial node is the point, line, or surface in a standing-wave system
where some characteristic of the wave field has minimum amplitude differing from zero. The
appropriate modifier should be used with the words “partial node” to signify the type that is
intended; e.g., displacement partial node, velocity partial node, pressure partial node.

Peak Value: The peak value generally refers to the maximum stress that the vibrating
part is undergoing.
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Peak-to-Peak Value: The peak-to-peak value of a vibrating quantity is the algebraic
difference between the extremes of the quantity.

Period: The time it takes to complete a full cycle is called a period.
Periodic Quantity: A periodic quantity is an oscillating quantity whose values recur

for certain increments of the independent variable.
Phase of a Periodic Quantity: The phase of a periodic quantity, for a particular value

of the independent variable, is the fractional part of a period through which the independent
variable has advanced, measured from an arbitrary reference.

Pickup: (See Transducer.)
Positive (Negative) Semi definite Matrix: A matrix whose elements are the coeffi-

cients of a positive (negative) semi definite quadratic form is said to be a positive (negative)
semi definite matrix.

Positive Definite System: When both the mass matrix [m] and the stiffness matrix
[k] are positive definite, the system is said to be positive definite system and the motion is that
of undamped free vibrations.

Positive Semi definite System: When the mass matrix [m] is positive definite and
the stiffness matrix [– k] is only positive semi definite, the system is referred to as a positive
semi definite system and the motion is undamped free vibration.

Potential Energy: The potential energy of a body is the energy it possesses due to its
position and is equal to the work done in raising it from some datum level. Thus the potential
energy of a body of mass m at a height h above datum level is mgh.

Principle of Virtual Work: The work performed by the applied forces through infini-
tesimal virtual displacements compatible with the system constraints is zero.

Q (Quality Factor): The quantity Q is a measure of the sharpness of resonance or
frequency selectivity of a resonant vibratory system having a single degree of freedom, either
mechanical or electrical. In a mechanical system, this quantity is equal to one-half the recipro-
cal of the damping ratio. It is commonly used only with reference to a lightly damped system,
and is then approximately equal to the following:

Quasi-Sinusoid: A function of the form a = A sin (21 pi ft-theta) where either A or f, or
both, is not a constant but may be expressed readily as a function of time. Ordinarily theta is
considered constant.

Random Excitation: If the excitation force is unknown but average and standard
deviations are known, the excitation is said to be random.

Random Sine Wave: (See Narrow-band Random Vibration.)
Random Vibration: Random vibration is vibration whose instantaneous magnitude is

not specified for any given instant of time. The instantaneous magnitudes of a random vibra-
tion are specified only by-probability distribution functions giving the probable fraction of the
total time that the magnitude (or some sequence of magnitudes) lies within a specified range.
Random vibration contains no periodic or quasi-periodic constituents.

Ratio of Critical Damping: (See Fraction of Critical Damping.)
Rayleigh Method: Rayleigh method is a technique for obtaining an estimate of the

fundamental frequency of a conservative mechanical system.
Rectilinear system: See linear system.
Resonance Frequency (Resonant Frequency): A frequency at which resonance

exists.
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Resonance: The condition where the amplitude increases without bound is called reso-
nance.

Response Spectrum: See Shock Spectrum.
Response: The response of a device or system is the motion  (or other output) resulting

from an excitation (stimulus) under specified conditions.
Rigid Body: A rigid body does not deform when loaded and can be considered a combi-

nation of two or more particles that remain at as dices, finite distance from each other.
Root Mean Square Value: The root mean square (rms) value is the square root of the

mean square value.
Rotational Particle Motion: Also known as angular motion and circular motion it is

the motion of a particle around a circular path.
Self-induced (Self-excited) Vibration: The vibration of a mechanical system is self-

induced if it results from conversion, within the system, of nonoscillatory excitation to oscilla-
tory excitation.

Shock Absorber: A shock absorber is a device, which dissipates energy t, modifies the
response of a mechanical system to applied shock.

Shock Impulse: See shock pulse.
Shock Isolator (Shock Mount.): A shock isolator is a resilient support that tends to

isolate a system from a shock motion.
Shock Motion: Shock motion is an excitation involving motion of a foundation. (See

Foundation and Mechanical Shock.)
Shock Mount: (See Shock Isolator.)
Shock Pulse: A shock pulse (shock impulse) is a disturbing force characterized by a

rise and subsequent delay of acceleration in a very short period of time.
Shock Spectrum (Response Spectrum): A shock spectrum is a plot of the maximum

response experienced by a single degree-of-freedom system, as a function of its own natural
frequency, in response to an applied shock. The response may be expressed in terms of accel-
eration, velocity or displacement.

Shock: Shock is a transient phenomenon.  Shock results in a sharp, nearly sudden
change in velocity.

Shock-Pulse Duration: (See Duration of Shock Pulse.)
Simple Harmonic Motion: Simple harmonic motion is characterized by periodic oscil-

lation about the equilibrium position.
Single Degree-of-freedom System: A single degree-of-freedom system is one for which

only one coordinate is required to define completely the configuration of the system at any
instant.

Sinusoidal Motion: (See Simple Harmonic Motion.)
Spectrum: A spectrum is a definition of the magnitude of the frequency components

that constitute a quantity.
Spring Constant: See Spring Stiffness.
Spring Stiffness: A linear spring obeys a force-displacement law of F = *x where * is

called the spring stiffness or spring constant and has dimensions of force for length, and x is
the displacement of the spring.
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Spring: A spring is a flexible mechanical line between two particles in a mechanical
system.

Static Deflection: Static deflection is the deflection of a mechanical system due to
gravitational force alone.

Static Friction: The frictional force exerted on a stationery body is known as static
friction, Coulomb friction, and fluid friction.

Statically Coupled: If an equation of motion contains cross products of coordinates,
that equation of motion is statically coupled.

Steady-State Response: The steady-state response is the system response after the
transient motion has decayed sufficiently.

Steady-State Vibration: Steady-state vibration exists in a system if the velocity of
each particle is a continuing periodic quantity.

Stiffness: Stiffness is the ratio of change of force (or torque) to the corresponding change
in translational (or rotational) deflection of an elastic element.

Strain Energy: The strain energy of a body is the energy stored when the body is
deformed. If an elastic body of stiffness S is extended a distance x by a force P, then, work done
is equal to the strain energy equal to [1/2 Sx2].

Structural Damping: Structural damping, which results from within the structure,
due to energy loss in the material or at joints.

Sub Harmonic Response: Sub harmonic response is a term sometimes used to denote
a particular type of harmonic response which dominates the total response of the system. It
frequently occurs when the excitation frequency is submultiples of the frequency of the funda-
mental resource.

Sub Harmonic: A sub harmonic is a sinusoidal quantity having a frequency that is
integral submultiples of the fundamental frequency of a periodic quantity to which it is related.

Synchronous: Two harmonic oscillations are called synchronous if they have the same
frequency (or angular velocity).

Torsional Pendulum: The system of a torsional spring and mass is referred to as a
torsional pendulum.

Torsional Vibration: Torsional vibration refers to vibration of a rigid body about a
specific reference axis. The displacement is measured in terms of an angular coordinate.

Torsional Spring: A torsional spring is a link in a mechanical system where applica-
tion of a torque leads to an angular displacement between the ends of the torsional spring.

Transducer (Pickup): A transducer is a device which converts shock or vibratory motion
into an optical, a mechanical, or most commonly to an electrical signal that is proportional to a
parameter of the experienced motion.

Transducer: a device that converts an input energy into output energy. The output
energy is usually a different type of energy than the input energy.

Transfer Impedance: Transfer impedance between two points is the impedance in-
volving the ratio of force to velocity when force is measured at one point and velocity at the
other point. The term transfer impedance also is used to denote the ratio of force to velocity
measured at the same point but in different directions (See Impedance.)

Transient Vibration: Transient vibration is the temporarily sustained vibration of a
mechanical system. It may consist of forced or free vibration or both.
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Transmissibility: Transmissibility is the nondimensional ratio of the response ampli-
tude of a system in steady-state forced vibration to the excitation amplitude. The ratio may be
one of forces, displacement, velocities, or accelerations.

Transverse Wave: A transverse wave is a wave in which the direction of displacement
at each point of the medium is parallel to the wave front.

Tuned System: A tuned system is the one for which the natural frequency of the vibra-
tion absorber is equal to the frequency that is to be eliminated (i.e., the forcing frequency).

Uncoupled Mode: An uncoupled mode of vibration is a mode that can exist in a system
concurrently with and independently of other modes.

Undamped Natural Frequency: The undamped natural frequency of a mechanical
system is the frequency of free vibration resulting from only elastic and inertial forces of the
system.

Underdamped System: For the motion of a system where the displacement is a
harmonic function having amplitude which decays exponentially with time, the system is said
to be underdamped, and the damping is below critical.

Uniform Mass Damping: A system is said to possess uniform mass damping if the
damping which acts on each mass is proportional to the magnitude of the mass.

Uniform Motion: The term uniform motion means uniform velocity.
Unrestrained Systems: An unrestrained system has a rigid body mode corresponding

to a natural frequency of zero.
Unstretched length: The length of a spring when it is not subjected to external forces

is called its unstretched length.
Variance: Variance is the mean of the squares of the deviations from the mean value of

a vibrating quantity.
Variational Approach to Mechanics: See Analytical Mechanics
Vector: A mathematical term for a quantity that has both magnitude and direction.
Vectorial Mechanics: See Newtonian Mechanics.
Velocity: Velocity is the rate of linear motion of a body in a particular direction. Velocity

is a vector quantity.
Vibration Control: Vibration control is the use of vibration analysis to develop methods

to eliminate or reduce unwanted vibrations or to use vibrations to protect against unwanted
force or motion transmission.

Vibration Damper: A vibration damper is an auxiliary system composed of an inertia
element and a viscous damper that is connected to a primary system as a means of vibration
control.

Vibration Isolator: A vibration isolator is a resilient support that tends to isolate a
system from steady-state excitation.

Vibration Machine: A vibration machine is a device for subjecting a mechanical system
to control and reproducible mechanical vibration.

Vibration Meter: A vibration meter is an apparatus for the measurement of displace-
ment velocity, or acceleration of a vibrating body.

Vibration Mount: (See Vibration Isolator.)
Vibration Pickup: (See Transducer.)
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Vibration: Vibration is an oscillation where in the quantity is a parameter that defines
the motion of a mechanical system. (See Oscillation.)

Vibratory Motion: See Vibration.
Viscous Damper: Viscous damper, which is also referred to as a dashpot is character-

ized by the resistive force exerted on a body moving in a viscous fluid, and hence the name.
Viscous Damping: Viscous damping is the dissipation of energy that occurs when a

particle in a vibrating system is resisted by a force that has a magnitude proportional to the
magnitude of the velocity of the particle and direction opposite to the direction of the particle.

Wave: A wave is a disturbance, which is propagated in a medium in such a manner that
at any point in the medium the quantity serving as measure of disturbance is a function of the
time, while at any instant the displacement at a point is a function of the position of the point.
Any physical quantity that has the same relationship to some independent variable (usually
time) that a propagated disturbance has, at a particular instant, with respect to space, may be
called a wave.

Weight: The weight of a body is the force of attraction, which the earth exerts upon it
and is determined by a suitably calibrated spring-type balance.

Work: Work is the product of the average force and the distance moved in the direction
of the force by its point of application.



CHAPTER 2

MATLAB Basics
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This Chapter is a brief introduction to MATLAB (an abbreviation of MATrix LABoratory)
basics, registered trademark of computer software, version 4.0 or later developed by the Math
Works Inc. The software is widely used in many of science and engineering fields. MATLAB is
an interactive program for numerical computation and data visualization. MATLAB is supported
on Unix, Macintosh, and Windows environments. For more information on MATLAB, contact
The MathWorks.Com. A Windows version of MATLAB is assumed here. The syntax is very
similar for the DOS version.

MATLAB integrates mathematical computing, visualization, and a powerful language
to provide a flexible environment for technical computing.  The open architecture makes it
easy to use MATLAB and its companion products to explore data, create algorithms, and create
custom tools that provide early insights and competitive advantages.

Known for its highly optimized matrix and vector calculations, MATLAB offers an
intuitive language for expressing problems and their solutions both mathematically and visually.
Typical uses include:

• Numeric computation and algorithm development
• Symbolic computation (with the built-in Symbolic Math functions)
• Modeling, simulation, and prototyping
• Data analysis and signal processing
• Engineering graphics and scientific visualization
In this chapter, we will introduce the MATLAB environment. We will learn how to

create, edit, save, run, and debug m-files (ASCII files with series of MATLAB statements). We
will see how to create arrays (matrices and vectors), and explore the built-in MATLAB linear
algebra functions for matrix and vector multiplication, dot and cross products, transpose,
determinants, and inverses, and for the solution of linear equations. MATLAB is based on the
language C, but is generally much easier to use. We will also see how to program logic constructs
and loops in MATLAB, how to use subprograms and functions, how to use comments (%) for
explaining the programs and tabs for easy readability, and how to print and plot graphics both
two and three dimensional. MATLAB's functions for symbolic mathematics are presented. Use
of these functions to perform symbolic operations, to develop closed form expressions for
solutions to algebraic equations, ordinary differential equations, and system of equations was

53
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presented. Symbolic mathematics can also be used to determine analytical expressions for the
derivative and integral of an expression.

2.1.1 STARTING AND QUITTING MATLAB

To start MATLAB click on the MATLAB icon or type in MATLAB, followed by pressing the
enter or return key at the system prompt. The screen will produce the MATLAB prompt >>
(or EDU >>), which indicates that MATLAB is waiting for a command to be entered.

In order to quit MATLAB, type quit or exit after the prompt, followed by pressing the
enter or return key.

2.1.2 DISPLAY WINDOWS

MATLAB has three display windows. They are
1. A Command Window which is used to enter commands and data to display plots and

graphs.
2. A Graphics Window which is used to display plots and graphs
3. An Edit Window which is used to create and modify M-files. M-files are files that

contain a program or script of MATLAB commands.

2.1.3 ENTERING COMMANDS

Every command has to be followed by a carriage return <cr> (enter key) in order that the
command can be executed. MATLAB commands are case sensitive and lower case letters are
used throughout.

To execute an M-file (such as Project_1.m), simply enter the name of the file without its
extension (as in Project_1).

2.1.4 MATLAB EXPO

In order to see some of the MATLAB capabilities, enter the demo command. This will initiate
the MATLAB EXPO. MATLAB Expo is a graphical demonstration environment that shows
some of the different types of operations which can be conducted with MATLAB.

2.1.5 ABORT

In order to abort a command in MATLAB, hold down the control key and press c to generate a
local abort with MATLAB.

2.1.6 THE SEMICOLON (;)

If a semicolon (;) is typed at the end of a command, the output of the command is not displayed.

2.1.7 TYPING %

When percent symbol (%) is typed in the beginning of a line, the line is designated as a comment.
When the enter key is pressed, the line is not executed.

2.1.8 THE clc COMMAND

Typing clc command and pressing enter cleans the command window. Once the clc command is
executed a clear window is displayed.
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2.1.9 HELP

MATLAB has a host of built-in functions. For a complete list, refer to MATLAB user's
guide or refer to the on-line Help. To obtain help on a particular topic in the list, e.g., inverse,
type help inv.

2.1.10  STATEMENTS AND VARIABLES

Statements have the form
>> variable = expression

The equals ("=") sign implies the assignment of the expression to the variable. For
instance, to enter a 2 × 2 matrix with a variable name A, we write

>> A == [1 2 ; 3 4] <ret>

The statement is executed after the carriage return (or enter) key is pressed to display
A =

1 2

3 4
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The symbols for arithmetic operations with scalars are summarized below in Table 2.1.
Table 2.1

Arithmetic operation Symbol Example

Addition + 6 + 3 = 9

Subtraction – 6 – 3 = 3

Multiplication * 6 * 3 = 18

Right division / 6/3 = 2

Left division \ 6\3 = 3/6 = 1/2

Exponentiation ^ 6 ^ 3 (63 = 216)
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MATLAB has several different screen output formats for displaying numbers. These formats
can be found by typing the help command: help format in the Command Window. A few of
these formats are shown in Table 2.2 for 2π.

Table 2.2  Display formats

Command Description Example

format short Fixed-point with 4 >> 351/7
decimal digits ans = 50.1429

format long Fixed-point with 14 >> 351/7
decimal digits ans = 50.14285714285715

format short e Scientific notation with 4 >> 351/7
decimal digits ans = 5.0143e+001
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Command Description Example

format long e Scientific notation with 15 >> 351/7
decimal digits ans = 5.014285714285715e001

format short g Best of 5 digit fixed or >> 351/7
floating point ans = 50.143

format long g Best of 15 digit fixed or >> 351/7
floating point ans = 50.1428571428571

format bank Two decimal digits >> 351/7
ans = 50.14

format compact Eliminates empty lines to allow more lines with information
displayed on the screen

format loose Adds empty lines (opposite of compact)
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MATLAB contains a number of functions for performing computations which require the use
of logarithms, elementary math functions, and trigonometric math functions. List of these
commonly used elementary MATLAB mathematical built-in functions are given in Tables 2.3
to 2.8.

Table 2.3 Common Math Functions

Function Description

abs(x) Computes the absolute value of x.

sqrt(x) Computes the square root of x.

round(x) Rounds x to the nearest integer.

fix(x) Rounds (or truncates) x to the nearest integer toward 0.

floor(x) Rounds x to the nearest integer toward – ∞.

ceil(x) Rounds x to the nearest integer toward ∞.

sign(x) Returns a value of – 1 if x is less than 0, a value of 0 if x equals 0, and a value of 1
otherwise.

rem (x, y) Returns the remainder of x/y. For example, rem(25, 4) is 1, and rem(100, 21) is
16. This function is also called a modulus function.

exp(x) Computes ex, where e is the base for natural logarithms, or approximately 2.718282.

log (x) Computes ln x, the natural logarithm of x to the base e.

log 10(x) Computes log10 x, the common logarithm of x to the base 10.

Table 2.4 Exponential functions

Function Description

exp(x) Exponential (ex)
log(x) Natural logarithm
log10(x) Base 10 logarithm
sqrt(x) Square root
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Table 2.5 Trigonometric and hyperbolic functions

Function Description

sin(x) Computes the sine of x, where x is in radians.
cos(x) Computes the cosine of x, where x is in radians.
tan(x) Computes the tangent of x, where x is in radians.
asin(x) Computes the arcsine or inverse sine of x, where x must be between – 1 and 1. The

function returns an angle in radians between – π/2 and π/2.

acos(x) Computes the arccosine or inverse cosine of x, where x must be between – 1 and 1.
The function returns an angle in radians between 0 and π.

atan(x) Computes the arctangent or inverse tangent of x. Thefunction returns an angle in
radians between – π/2 and π/2.

atan2(y,x) Computes the arctangent or inverse tangent of the value y/x. The function returns
an  angle  in  radians  that  will  be  between  – π and π, depending on the signs of
x and y.

sinh(x) Computes the hyperbolic sine of x, which is equal to e ex x− −

2
.

cosh(x) Computes the hyperbolic cosine of x, which is equal to e ex x+ −

2
.

tanh(x) Computes the hyperbolic tangent of x, which is equal to 
sinh
cosh

x
x

 .

asinh(x) Computes the inverse hyperbolic sine of x, which is equal to ln x x+ +F
H

I
K

2 1  .

acosh(x) Computes the inverse hyperbolic cosine of x, which is equal to ln x x+ −F
H

I
K

2 1  .

atanh(x) Computes the inverse hyperbolic tangent of x, which is equal to ln 
1
1

+
−

x
x

 for

|x| ≤ 1.

Table 2.6 Round-off functions

Function Description Example

round(x) Round to the nearest integer >> round(20/6)
ans = 3

fix(x) Round towards zero >> fix(13/6)
ans = 2

ceil(x) Round towards infinity >> ceil(13/5)
ans = 3

floor(x) Round towards minus infinity >> floor(– 10/4)
ans = –3

rem(x,y) Returns the remainder after x is divided by y >> rem(14,3)
ans = 2

sign(x,y) Signum function. Returns 1 if x > 0, – 1 if x < 0, >> sign(7)
and 0 if x = 0. ans = 1
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Table 2.7 Complex number functions

Function Description

conj(x) Computes the complex conjugate of the complex number x. Thus, if x is equal to
a + i b, then conj(x) will be equal to a – i b.

real(x) Computes the real portion of the complex number x
imag(x) Computes the imaginary portion of the complex number x.

abs(x) Computes the absolute value of magnitude of the complex number x.

angle(x) Computes the angle using the value of atan2(imag(x), real(x)); thus, the angle
value is between – π and π.

Table 2.8 Arithmetic operations with complex numbers

Operation Result

c1 + c2 (a1 + a2) + i(b1 + b2)

c1 + c2 (a1 – a2) + i(b1 – b2)

c1 • c2 (a1a2 – b1b2) + i(a1b2 – a2b1)

c
c
1

2

a a b b
a b

i
a b b a
a b

1 2 1 2

2
2

2
2

2 1 2 1

2
2

2
2

+
+

F
HG

I
KJ

+ +
+

F
HG

I
KJ

|c1| a b1
2

1
2+  (magnitude or absolute value of c1)

c1* a1 – ib1 (conjugate of c1)

(Assume that c1 = a1 + ib1 and c2 = a2 + ib2.)
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A variable is a name made of a letter or a combination of several letters and digits. Variable
names can be up to 63 (in MATLAB 7) characters long (31 characters on MATLAB 6.0). MATLAB
is case sensitive. For instance, XX, Xx, xX, and xx are the names of four different variables. It
should be noted here that we should not use the names of a built-in functions for a variable.
For instance, avoid using: sin, cos, exp, sqrt, ..., etc. Once a function name is used to define a
variable, the function cannot be used.
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MATLAB includes a number of predefined variables. Some of the predefined variables that
are available for use in MATLAB programs are summarized in Table 2.9.
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Table 2.9  Predefined variables

Predefined variable Description
in MATLAB

ans Represents a value computed by an expression but not stored in variable name.
pi Represents the number π.
eps Represents the floating-point precision for the computer being used. This is

the smallest difference between two numbers.
inf Represents infinity which for instance occurs as a result of a division by zero.

A warning message will be displayed or the value will be printed as ∞.

i Defined as  − 1 which is: 0 + 1.0000i.

j Same as i.
NaN Stands for Not a Number. Typically occurs as a result of an expression being

undefined, as in the case of division of zero by zero.
clock Represents the current time in a six-element row vector containing year, month,

day, hour, minute, and seconds.
date Represents the current date in a character string format.
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Table 2.10 lists commands that can be used to eliminate variables or to obtain information
about variables that have been created. The procedure is to enter the command in the Command
Window and the Enter key is to be pressed.

Table 2.10 Commands for managing variables

Command Description

clear Removes all variables from the memory.
clear x, y, Clears/removes only variables x, y, and z from the memory.
z Lists the variables currently in the workspace.
who Displays a list of the variables currently in the memory and their
whos size together with information about their bytes and class.
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In Tables 2.11 to 2.15 the useful general commands on on-line help, workspace information,
directory information, and general information are given.

Table 2.11 On-line help

Function Description

help Lists topics on which help is available.
helpwin Opens the interactive help window.
helpdesk Opens the web browser based help facility.
help topic Provides help on topic.
lookfor string Lists help topics containing string.
demo Runs the demo program.
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Table 2.12  Workspace information

Function Description

who Lists variables currently in the workspace.
whos Lists variables currently in the workspace with their size.
what Lists m-, mat-, and mex-files on the disk.
clear Clears the workspace, all variables are removed.
clear x y z Clears only variables x, y, and z.
clear all Clears all variables and functions from workspace.
mlock fun Locks function fun so that clear cannot remove it.
munlock fun Unlocks function fun so that clear can remove it.
clc Clears command window, command history is lost.
home Same as clc.
clf Clears figure window.

Table 2.13 Directory information

Function Description

pwd Shows the current working directory.
cd Changes the current working directory.
dir Lists contents of the current directory.
ls Lists contents of the current directory, same as dir.
path Gets or sets MATLAB search path.
editpath Modifies MATLAB search path.
copyfile Copies a file.
mkdir Creates a directory.

Table 2.14 General information

Function Description

computer Tells you the computer type your are using.
clock Gives you wall clock time and date as a vector.
date Tells you the date as a string.
more Controls the paged output according to the screen size.
ver Gives the license and the version information about MATLAB installed on your

computer.
bench Benchmarks your computer on running MATLAB compared to other computers.

Table 2.15 Termination

Function Description

c (Control –c) Local abort, kills the current command execution.
quit Quits MATLAB.
exit Same as quit.
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An array is a list of numbers arranged in rows and/or columns. A one-dimensional array is a
row or a column of numbers and a two-dimensional array has a set of numbers arranged in
rows and columns. An array operation is performed element-by-element.

2.9.1 ROW VECTOR

A vector is a row or column of elements.
In a row vector the elements are entered with a space or a comma between the elements

inside the square brackets. For example,
x = [7  – 1  2  – 5  8]

2.9.2 COLUMN VECTOR

In a column vector the elements are entered with a semicolon between the elements inside the
square brackets. For example,

x = [7;  – 1;  2;  – 5;  8]

2.9.3 MATRIX

A matrix is a two-dimensional array which has numbers in rows and columns. A matrix is
entered row-wise with consecutive elements of a row separated by a space or a comma, and the
rows separated by semicolons or carriage returns. The entire matrix is enclosed within square
brackets. The elements of the matrix may be real numbers or complex numbers. For example
to enter the matrix,

A = 1 3 4
0 2 8

−
−

L
NM

O
QP

The MATLAB input command is
A = [1  3  – 4 ; 0  – 2  8]

Similarly for complex number elements of a matrix B

B = 
− +

−
L
NM

O
QP

5 2 7 3
3 5 13

x x y
i i

ln sin

The MATLAB input command is
B = [– 5*x     log(2*x) + 7*sin(3*y);  3i   5 – 13i]

2.9.4 ADDRESSING ARRAYS

A colon can be used in MATLAB to address a range of elements in a vector or a matrix.

2.9.4.1 Colon for a vector

Va(:) – refers to all the elements of the vector Va (either a row or a column vector).
Va(m:n) – refers to elements m through n of the vector Va.
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For instance
>> V = [2  5  –1  11  8  4  7  –3  11]

>> u = V (2:8)

u =

5  –1  11  8  4  7  –3  11

2.9.4.2  Colon for a matrix

Table 2.16 gives the use of a colon in addressing arrays in a matrix.

Table 2.16 Colon use for a matrix

Command Description

A(:, n) Refers to the elements in all the rows of a column n of the matrix A.
A(n, :) Refers to the elements in all the columns of row n of the matrix A.
A(:, m:n) Refers to the elements in all the rows between columns m and n of the matrix A.
A(m:n, :) Refers to the elements in all the columns between rows m and n of the matrix A.
A(m:n, p:q) Refers  to  the  elements in rows m through n and columns p through q of the

matrix A.

2.9.5 ADDING ELEMENTS TO A VECTOR OR A MATRIX

A variable that exists as a vector, or a matrix, can be changed by adding elements to it. Addition
of elements is done by assigning values of the additional elements, or by appending existing
variables. Rows and/or columns can be added to an existing matrix by assigning values to the
new rows or columns.

2.9.6 DELETING ELEMENTS

An element, or a range of elements, of an existing variable can be deleted by reassigning
blanks to these elements. This is done simply by the use of square brackets with nothing typed
in between them.

2.9.7 BUILT-IN FUNCTIONS

Some of the built-in functions available in MATLAB for managing and handling arrays as
listed in Table 2.17.

Table 2.17  Built-in functions for handling arrays

Function Description Example

length(A) Returns the number of elements in the >> A = [5  9  2  4];
vector A. >> length(A)

ans =
4
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Function Description Example

size(A) Returns a row vector [m, n], where m >> A = [2 3 0 8 11 ; 6 17 5 7 1]
and n are the size m × n of the array A. A =

2 3 0 8 11
6 17 5 7 1

>> size(A)
ans =

2 5

reshape(A, m, n) Rearrange a matrix A that has r rows and >> A = [3 1 4 ; 9 0 7]
s columns to have m rows and n columns. A =
r times s must be equal to m times n. 3 1 4

9 0 7
>> B = reshape(A, 3, 2)
B =

3  0
9  4
1  7

diag(v) When v is a vector, creates a square >> v = [3 2 1];
matrix with the elements of v in the >> A = diag(v)
diagonal A =

3 0 0
0 2 0
0 0 1

diag(A) When A is a matrix, creates a vector from >> A = [1 8 3 ; 4 2 6 ; 7 8 3]
the diagonal elements of A. A =

1 8 3
4 2 6
7 8 3

>> vec = diag(A)
vec =

1
2
3

���! ����������� "��
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We consider here matrices that have more than one row and more than one column.

2.10.1  ADDITION AND SUBTRACTION OF MATRICES

The addition (the sum) or the subtraction (the difference) of the two arrays is obtained by
adding or subtracting their corresponding elements. These operations are performed with arrays
of identical size (same number of rows and columns).
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For example if A and B are two arrays (2 × 3 matrices).

A = 
a a a
a a a

11 12 13

21 22 23

L
NM

O
QP  and B = 

b b b
b b b

11 12 13

21 22 23

L
NM

O
QP

Then, the matrix addition (A + B) is obtained by adding A and B is

a b a b a b
a b a b a b

11 11 12 12 13 13

21 21 22 22 23 23

+ + +
+ + +

L
NM

O
QP

2.10.2 DOT PRODUCT

The dot product is a scalar computed from two vectors of the same size. The scalar is the sum
of the products of the values in corresponding positions in the vectors.

For n elements in the vectors A and B:

dot product = A • B =  
i

n

=
∑

1
aibi

dot(A, B) computes the dot product of A and B. If A and B are matrices, the dot product
is a row vector containing the dot products for the corresponding columns of A and B.

2.10.3 ARRAY MULTIPLICATION

The value in position ci,j of the product C of two matrices, A and B, is the dot product of row i of
the first matrix and column j of the second matrix:

ci, j = 
k

n

=
∑

1

 ai, k bk, j

2.10.4 ARRAY DIVISION

The division operation can be explained by means of the identity matrix and the inverse matrix
operation.

2.10.5  IDENTITY MATRIX

An identity matrix is a square matrix in which all the diagonal elements are 1’s, and the
remaining elements are 0’s. If a matrix A is square, then it can be multiplied by the identity
matrix, I, from the left or from the right:

AI = IA = A

2.10.6  INVERSE OF A MATRIX

The matrix B is the inverse of the matrix A if when the two matrices are multiplied the product
is the identity matrix. Both matrices A and B must be square and the order of multiplication
can be AB or BA.

AB = BA = I

2.10.7  TRANSPOSE

The transpose of a matrix is a new matrix in which the rows of the original matrix are the
columns of the new matrix. The transpose of a given matrix A is denoted by AT. In MATLAB,
the transpose of the matrix A is denoted by A′.
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2.10.8  DETERMINANT

A determinant is a scalar computed from the entries in a square matrix. For a 2 × 2 matrix A,
the determinant is

|A| = a11 a22 – a21 a12
MATLAB will compute the determinant of a matrix using the det function:
det(A) Computes the determinant of a square matrix A.

2.10.9 ARRAY DIVISION

MATLAB has two types of array division, which are the left division and the right division.

2.10.10 LEFT DIVISION

The left division is used to solve the matrix equation Ax = B where x and B are column vectors.
Multiplying both sides of this equation by the inverse of A, A–1, we have

A–1Ax = A–1 B
or Ix = x = A–1 B

Hence x = A–1 B
In MATLAB, the above equation is written by using the left division character:

x = A\B

2.10.11 RIGHT DIVISION

The right division is used to solve the matrix equation xA = B where x and B are row vectors.
Multiplying both sides of this equation by the inverse of A, A–1, we have

x • A A–1 = B • A–1

or x = B • A–1

In MATLAB, this equation is written by using the right division character:
x = B/A

2.10.12 EIGENVALUES AND EIGENVECTORS

Consider the following equation,
AX = λX (2.1)

where A is an n × n square matrix, X is a column vector with n rows and λ is a scalar.
The values of λ for which X are nonzero are called the eigenvalues of the matrix A, and

the corresponding values of X are called the eigenvectors of the matrix A.
Eq. (2.1) can also be used to find the following equation

(A – λI)X = 0 (2.2)
where I is an n × n identity matrix. Eq. (2.2) corresponding to a set of homogeneous equations
and has nontrivial solutions only if the determinant is equal to zero, or

|A – λI| = 0 (2.3)
Eq. (2.3) is known as the characteristic equation of the matrix A. The solution to Eq.

(2.3) gives the eigenvalues of the matrix A.
MATLAB determines both the eigenvalues and eigenvectors for a matrix A.
eig(A) Computes a column vector containing the eigenvalues of A.
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[Q, d] = eig(A)   Computes a square matrix Q containing the eigenvectors of A as columns
and a square matrix d containing the eigenvlaues (λ) of A on the diagonal.
The values of Q and d are such that Q*Q is the identity matrix and A*X
equals λ times X.

Triangular factorization or lower-upper factorization: Triangular or lower-upper
factorization expresses a square matrix as the product of two triangular matrices – a lower
triangular matrix and an upper triangular matrix. The lu function in MATLAB computes the
LU factorization:

[L, U] = lu(A) Computes a permuted lower triangular factor in L and an upper
triangular factor in U such that the product of L and U is equal to A.

QR factorization: The QR factorization method factors a matrix A into the product of
an orthonormal matrix and an upper-triangular matrix. The qr function is used to perform
the QR factorization in MATLAB:

[Q, R] = qr(A) Computes the values of Q and R such that A = QR.Q will be an
orthonormal matrix, and R will be an upper triangular matrix.

For a matrix A of size m × n, the size of Q is m × m, and the size of R is m × n.
Singular Value Decomposition (SVD): Singular value decomposition decomposes a

matrix A (size m × n) into a product of three matrix factors.
A = USV

where U and V are orthogonal matrices and S is a diagonal matrix. The size of U is m × m, the
size of V is n × n, and the size of S is m × n. The values on the diagonal matrix S are called
singular values. The number of non-zero singular values is equal to the rank of the matrix.

The SVD factorization can be obtained using the svd function:
[U, S, V] = svd(A) Computes the factorization of A into the product of three matrices, USV,

where U and V are orthogonal matrices and S is a diagonal matrix.
svd(A) Returns the diagonal elements of S, which are the singular values of A.

���� �����������������������������

Element-by-element operations can only be done with arrays of the same size. Element-by-
element multiplication, division, and exponentiation of two vectors or matrices is entered in
MATLAB by typing a period in front of the arithmetic operator. Table 2.18 lists these operations.

Table 2.18  Element-by-element operations

Arithmetic operators

Matrix operators Array operators

+ Addition + Addition
– Subtraction – Subtraction
* Multiplication •* Array multiplication
^ Exponentiation •^ Array exponentiation
/ Left division •/ Array left division
\ Right division •\ Array right division
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2.11.1 BUILT-IN FUNCTIONS FOR ARRAYS

Table 2.19 lists some of the many built-in functions available in MATLAB for analyzing arrays.

Table 2.19  MATLAB built-in array functions

Function Description Example

mean(A) If A is a vector, returns the mean value of >> A = [3  7  2  16];
the elements >> mean(A)

ans =
14

C = max(A) If A is a vector, C is the largest element >> A = [3 7 2 16 9 5 18 13 0 4];
in A. If A is a matrix, C is a row vector >> C = max(A)
containing the largest element of each C =
column of A. 18

[d, n] = max(A) If A is a vector, d is the largest element >> [d, n] = max(A)
in A, n is the position of the element (the d =
first if several have the max value). 18

n =
7

Table 2.19  MATLAB built-in array functions (continued)

Function Description Example

min(A) The same as max(A), but for the >> A = [3  7  2  16];
smallest element. >> min(A)

ans =
2

[d, n] = min(A) The same as [d, n] = max(A), but for the
smallest element.

sum(A) If A is a vector, returns the sum of the >> A = [3  7  2  16];
elements of the vector. >> sum(A)

ans =
28

sort(A) If A is a vector, arranges the elements of >> A = [3  7  2  16];
the vector in ascending order. >> sort(A)

ans =
2  3  7  16

median(A) If A is a vector, returns the median value >> A = [3  7  2  16];
of the elements of the vector. >> median(A)

ans =
5
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Function Description Example

std(A) If A is a vector, returns the standard >> A = [3  7  2  16];
deviation of the elements of the vector. >> std(A)

ans =
6.3770

det(A) Returns the determinant of a square >> A = [1  2 ;  3  4];
matrix A. >> det(A)

ans =
– 2

dot(a, b) Calculates the scalar (dot) product of two >> a = [5  6  7];
vectors a and b. The vector can each be >> b = [4  3  2];
row or column vectors. >> dot(a, b)

ans =
52

cross(a, b) Calculates the cross product of two >> a = [5  6  7];
vectors a and b, (a × b). The two vectors >> b = [4  3  2];
must have 3 elements >> cross(a, b)

ans =
– 9   18   – 9

inv(A) Returns the inverse of a square >> a = [1 2 3; 4 6 8; – 1 2 3];
matrix A. >> inv(A)

ans =
– 0.5000 0.0000  – 0.5000
– 5.0000 1.5000 1.0000

3.5000 – 1.0000 – 0.5000

���� ���	����
����������������

There are many physical processes and engineering applications that require the use of random
numbers in the development of a solution.

MATLAB has two commands rand and rand n that can be used to assign random numbers
to variables.

The rand command: The rand command generates uniformly distributed over the interval
[0, 1]. A seed value is used to initiate a random sequence of values. The seed value is initially
set to zero. However, it can be changed with the seed function.

The command can be used to assign these numbers to a scalar, a vector, or a matrix, as
shown in Table 2.20.
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Table 2.20  The rand command

Command Description Example

rand Generates a single random number >> rand
between 0 and 1. ans =

0.9501

rand(1, n) Generates an n elements row vector of >> a = rand(1, 3)
random numbers between 0 and 1. a =

0.4565   0.0185   0.8214

rand(n) Generates an n × n matrix with random >> b = rand(3)
numbers between 0 and 1. b =

0.7382   0.9355   0.8936
0.1763   0.9165   0.0579
0.4057   0.4103   0.3529

rand(m, n) Generates an m × n matrix with random >> c = rand(2, 3)
numbers between 0 and 1. c =

0.2028   0.6038   0.1988
0.1987   0.2722   0.0153

randperm(n) Generates a row vector with n elements >> randperm(7)
that are random permutation of integers 1 ans =
through n. 5  2  4  7  1  6  3

2.12.1 THE RANDOM COMMAND

MATLAB will generate Gaussian values with a mean of zero and a variance of 1.0 if a normal
distribution is specified. The MATLAB functions for generating Gaussian values are as follows:

randn(n) Generates an n × n matrix containing Gaussian (or normal) random
numbers with a mean of 0 and a variance of 1.

Randn(m, n) Generates an m × n matrix containing Gaussian (or normal) random
numbers with a mean of 0 and a variance of 1.

���� �����������

A polynomial is a function of a single variable that can be expressed in the following form:
f(x) = a0x

n + a1x
n–1 + a2x

n–2 + … + an–1x1 + an
where the variable is x and the coefficients of the polynomial are represented by the values a0,
a1, … and so on. The degree of a polynomial is equal to the largest value used as an exponent.

A vector represents a polynomial in MATLAB. When entering the data in MATLAB,
simply enter each coefficient of the polynomial into the vector in descending order. For example,
consider the polynomial

5s5 + 7s4 + 2s2 – 6s + 10
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To enter this into MATLAB , we enter this as a vector as
>>x = [5  7  0  2  –6  10]

x =

5  7  0  2  –6  10

It is necessary to enter the coefficients of all the terms.
MATLAB contains functions that perform polynomial multiplication and division, which

are listed below:
conv(a, b) Computes a coefficient vector that contains the coefficients of the product

of polynomials represented by the coefficients in a and b. The vectors a
and b do not have to be the same size.

[q, r] = deconv(n, d) Returns two vectors. The first vector contains the coefficients of the
quotient and the second vector contains the coefficients of the remainder
polynomial.

The MATLAB function for determining the roots of a polynomial is the roots function:
root(a) Determines the roots of the polynomial represented by the coefficient

vector a.
The roots function returns a column vector containing the roots of the polynomial; the

number of roots is equal to the degree of the polynomial. When the roots of a polynomial are
known, the coefficients of the polynomial are determined when all the linear terms are
multiplied, we can use the poly function:

poly(r) Determines the coefficients of the polynomial whose roots are contained
in the vector r.

The output of the function is a row vector containing the polynomial coefficients.
The value of a polynomial can be computed using the polyval function, polyval (a, x). It

evaluates a polynomial with coefficients a for the values in x. The result is a matrix the same
size ad x. For instance, to find the value of the above polynomial at s = 2,

>>x = polyval([5  7 0    2  -6  10], 2)

x =

278

To find the roots of the above polynomial, we enter the command roots (a) which
determines the roots of the polynomial represented by the coefficient vector a.

>>roots([5  7  0   2  -6  10])

ans =

–1.8652

–0.4641 + 1.0832i

–0.4641 – 1.0832i

0.6967 + 0.5355i

0.6967 – 0.5355i

% or

>> x = [5 7 0 2 -6 10]

x =

5     7     0     2    -6    10

>> r = roots(x)
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r =

-1.8652

-0.4641 + 1.0832i

-0.4641 - 1.0832i

 0.6967 + 0.5355i

 0.6967 - 0.5355i

To multiply two polynomials together, we enter the command conv.
The polynomials are: x = 2x + 5 and y = x2 + 3x + 7

>>x = [2 5];

>>y = [1 3   7];

>>z = conv(x, y)

z =

2  11  29  35

To divide two polynomials, we use the command deconv.
z = [2 11 29 35]; x = [2 5]

>> [g, t] = deconv (z, x)

g = 1  3  7

t =  0     0     0     0

���� ������������������#
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A system of equations is nonsingular if the matrix A containing the coefficients of the equations
is nonsingular. A system of nonsingular simultaneous linear equations (AX = B) can be solved
using two methods:

(a) Matrix Division Method.
(b) Matrix Inversion Method.

2.14.1 MATRIX DIVISION

The solution to the matrix equation AX = B is obtained using matrix division, or X = A/B. The
vector X then contains the values of x.

2.14.2 MATRIX INVERSE

For  the solution of the matrix equation AX = B, we premultiply both sides of the equation by
A–1.

A–1AX = A–1B
or IX = A–1B
where I is the identity matrix.

Hence X = A–1B
In MATLAB, we use the command x = inv (A)*B. Similarly, for XA = B, we use the

command x = B*inv (A).
The basic computational unit in MATLAB is the matrix. A matrix expression is enclosed

in square brackets, [ ]. Blanks or commas separate the column elements, and semicolons or
carriage returns separate the rows.
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>>A = [1  2  3  4 ;  5  6  7  8 ;  9  10  11  12]

A =

1 2 3 4

5 6 7 8

9 10 11 12

The transpose of a simple matrix or a complex matrix is obtained by using the apostrophe
key

>>B = A'

B =

1 5 9

2 6 10

3 7 11

4 8 12

Matrix multiplication is accomplished as follows:
>>C = A * B

C =

30 70 110

70 174 278

110 278 446

>>C = B * A

C =

107 122 137 152

122 140 158 176

137 158 179 200

152 176 200 224

The inverse of a matrix D is obtained as
>>D = [1 2 ; 3  4]

D =

1 2

3 4

>>E = inv (D)

E =

-2.0000 1.0000

1.5000 -0.5000

Similarly, its eigenvalue is
>>eig (D)

ans =

-0.3723

  5.3723

Matrix operations require that the matrix dimensions be compatible. If A is an n × m
and B is a p × r then A ± B is allowed only if n = p and m = r. Similarly, matrix product A * B is
allowed only if m = p.
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Example 2.1. Consider the two matrices:

A = 
1 0 1
2 3 4
1 6 7−

L

N
M
M

O

Q
P
P

Using MATLAB, determine the following:
(a) A + B
(b) AB
(c) A2

(d) AT

(e) B–1

(f) BTAT

(g) A2 + B2 – AB
(h) determinant of A, determinant of B and determinant of AB.
Solution:

>> A= [1 0 1; 2 3 4; -1 6 7]

A =

1     0     1

2     3     4

-1     6     7

>> B= [7 4 2; 3 5 6; -1 2 1]

B =

7    4     2

3    5     6

-1    2     1

(a) >> C=A+B

C =

8     4     3

5     8    10

-2     8     8

(b) >>D=A*B

D =

6     6     3

19    31    26

4    40    41

(c) >> E=A^2

E =

0     6     8

4    33    42

4    60    72
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(d) >> % Let F= transpose of A

>> F=A'

F =

1     2    -1

0     3     6

1     4     7

(e) >> H = inv (B)

H =

0.1111    0.0000   -0.2222

0.1429   -0.1429    0.5714

-0.1746    0.2857   -0.3651

(f) >> J=B'*A'

J =

6    19     4

6    31    40

3    26    41

(g)  >> K= A^2 + B^2 -A * B
K =

53    52    45

15    51    58

-2    28    42

(h) det (A) =12

det (B) =-63

det (A*B) =-756

Example 2.2. Determine the eigenvalues and eigenvectors of A and B using MATLAB

A = 
4 2 3
1 1 3
2 5 7

−
−
L

N
M
M

O

Q
P
P B = 

1 2 3
8 7 6
5 3 1

L

N
M
M

O

Q
P
P

Solution:
% Determine the eigenvalues and eigenvectors
A=[4 2 -3 ; -1 1 3 ; 2 5 7]

A =

4     2    -3

-1     1     3

2     5     7

eig(A)

ans =

0.5949

3.0000

8.4051

lamda=eig(A)

lamda =

0.5949
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3.0000

8.4051

[V,D]=eig(A)

V =

-0.6713 0.9163 -0.3905

0.6713 -0.3984 0.3905

-0.3144 0.0398 0.8337

D =

0.5949    0 0

0 3.0000 0

0 0 8.4051

Example 2.3. Determine the values of x, y, and z for the following set of linear algebraic
equations:

x2 – 3x3 = – 5
2x1 + 3x2 – x3 = 7
4x1 + 5x2 – 2x3 = 10

Solution:
Here

A = 
0 1 3
2 3 1
4 5 2

−
−
−

L

N
M
M

O

Q
P
P B = 

5
7
10

1

2

3

L

N
M
M

O

Q
P
P =

L

N
M
M
M

O

Q
P
P
P

and X
x
x
x

AX = B
 A–1AX = A–1B

IX = A–1B
or X = A–1B

>> A = [0 1 -3; 2 3 -1; 4 5 -2];

>> B = [-5; 7; 10]

>> x = inv (A) * B

x =

-1.0000

4.0000

3.0000

>> check = A * x

check =

-5

7

10

% Alternative method

>> x = A\B

x =

-1

4

3
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A script is a sequence of ordinary statements and functions used at the command prompt level.
A script is invoked at the command prompt level by typing the file-name or by using the pull
down menu. Scripts can also invoke other scripts.

The commands in the Command Window cannot be saved and executed again. Also, the
Command Window is not interactive. To overcome these difficulties, the procedure is first to
create a file with a list of commands, save it, and then run the file. In this way the commands
contained are executed in the order they are listed when the file is run. In addition, as the need
arises, one can change or modify the commands in the file, the file can be saved and run again.
The files that are used in this fashion are known as script files. Thus, a script file is a text file
that contains a sequence of MATLAB commands. Script file can be edited (corrected and/or
changed) and executed many times.

2.15.1 CREATING AND SAVING A SCRIPT FILE

Any text editor can be used to create script files. In MATLAB script files are created and edited
in the Editor/Debugger Window. This window can be opened from the Command Window.
From the Command Window, select File, New, and then M-file. Once the window is open, the
commands of the script file are typed line by line. The commands can also be typed in any text
editor or word processor program and then copied and pasted in the Editor/Debugger Window.
The second type of M-files is the function file. Function file enables the user to extend the basic
library functions by adding one’s own computational procedures. Function M-files are expected
to return one or more results. Script files and function files may include reference to other
MATLAB toolbox routines.

MATLAB function file begins with a header statement of the form:
function (name of result or results) = name (argument list)

Before a script file can be executed it must be saved. All script files must be saved with
the extension ‘‘.m’’. MATLAB refers to them as m-files. When using MATLAB M-files editor,
the files will automatically be saved with a ‘‘.m’’ extension. If any other text editor is used, the
file must be saved with the ‘‘.m’’ extension, or MATLAB will not be able to find and run the
script file. This is done by choosing Save As… from the File menu, selecting a location, and
entering a name for the file. The names of user defined variables, predefined variables, MATLAB
commands or functions should not be used to name script files.

2.15.2 RUNNING A SCRIPT FILE

A script file can be executed either by typing its name in the Command Window and then
pressing the Enter key, directly from the Editor Window by clicking on the Run icon. The file
is assumed to be in the current directory, or in the search path.

2.15.3 INPUT TO A SCRIPT FILE

There are three ways of assigning a value to a variable in a script file.
1. The variable is defined and assigned value in the script file.
2. The variable is defined and assigned value in the Command Window.
3. The variable is defined in the script file, but a specified value is entered in the Command

Window when the script file is executed.
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2.15.4 OUTPUT COMMANDS

There are two commands that are commonly used to generate output. They are the disp and
fprintf commands.

1. The disp command
The disp command displays the elements of a variable without displaying the name of

the variable, and displays text.
disp(name of a variable) or disp('text as string')

>> A = [1 2 3 ; 4 5 6 ];

>> disp(A)

1  2  3

4  5  6

>> disp('Solution to the problem.')

Solution to the problem.

2. The fprintf command
The fprintf command displays output (text and data) on the screen or saves it to a file.

The output can be formatted using this command.
Example 2.4. Write a function file Veccrossprod to compute the cross product of two

vectors a, and b, where a = (a1, a2, a3), b = (b1, b2, b3), and a × b = (a2b3 – a3b2, a3b1 – a1b3, a1b2
– a2b1). Verify the function by taking the cross products of pairs of unit vectors: (i, j), (j, k), etc.

Solution:
function c = Veccrossprod (a, b);

% Veccrossprod : function to compute c = a × b where a and b are 3D vectors

% call syntax:

% c = Veccrossprod (a, b);

c = [a(2) * b(3)–a(3) * b(2); a(3) * b(1)–a(1) * b(3); a(1) * b(2)–a(2) * b(1)];

���� ���������������������

One most significant feature of MATLAB is its extendibility through user-written programs
such as the M-files. M-files are ordinary ASCII text files written in MATLAB language. A
function file is a subprogram.

2.16.1 RELATIONAL AND LOGICAL OPERATORS

A relational operator compares two numbers by finding whether a comparison statement is
true or false. A logical operator examines true/false statements and produces a result which is
true or false according to the specific operator. Relational and logical operators are used in
mathematical expressions and also in combination with other commands, to make decision
that control the flow a computer program.
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MATLAB has six relational operators as shown in Table 2.21.

Table 2.21. Relational operators

Relational operator Interpretation

< Less than
<= Less than or equal
> Greater than
>= Greater than or equal
= = Equal
~ = Not equal

The logical operators in MATLAB are shown in Table 2.22.

Table 2.22 Logical operators

Logical operator Name Description

& AND Operates on two operands (A and B). If both are true, the result is
Example: A&B  true (1), otherwise the result is  false (0).

| OR Operates on two operands (A and B). If either one, or both  are
Example: A|B true, the result is true (1), otherwise (both are false) the result is

false (0).

~ NOT Operates on one operand (A). Gives the opposite of the operand.
Example: ~ A True (1) if the operand is false, and false (0) if the operand is true.

2.16.2 ORDER OF PRECEDENCE

The following Table 2.23 shows the order of precedence used by MATLAB.

Table 2.23

Precedence Operation

1 (highest) Parentheses (If nested parentheses exist, inner have precedence).
2 Exponentiation.
3 Logical NOT (~).
4 Multiplication, Division.
5 Addition, Subtraction.
6 Relational operators (>, <, >=, <=, = =, ~=).
7 Logical AND (&).
8 (lowest) Logical OR (|).

2.16.3 BUILT-IN LOGICAL FUNCTIONS

The MATLAB built-in functions which are equivalent to the logical operators are:
and(A, B) Equivalent to A & B
or(A, B) Equivalent to A | B
not(A) Equivalent to ~A
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List the MATLAB logical built-in functions are described in Table 2.24.

Table 2.24 Additional logical built-in functions

Function Description Example

xor(a, b) Exclusive or. Returns true (1) if one >>xor(8, – 1)
operand is true and the other is false ans =

0
>>xor(8, 0)
ans =

1

all(A) Returns 1 (true) if all elements in a >>A = [5 3 11 7 8 15]
vector A are true (nonzero). Returns 0 >>all(A)
(false) if one or more elements are false ans =
(zero). If A is a matrix, treats columns 1
of A as vectors, returns a vector with >>B = [3 6 11 4 0 13]
1’s and 0’s. >>all(B)

ans =
0

any(A) Returns 1 (true) if any element in a >>A = [5 0 14 0 0 13]
vector A is true (nonzero). Returns 0 >>any(A)
(false) if all elements are false (zero). ans =
If A is a matrix, treats columns of A as 1
vectors, returns a vector with 1’s and 0’s. >>B = [0 0 0 0 0 0 ]

>>any(B)
ans =

0

find(A) If A is a vector, returns the indices of the >>A = [0 7 4 2 8 0 0 3 9]
nonzero elements. >>find(A)

find(A>d) If A is a vector, returns the address of the ans =
elements that are larger than d (any 2 3 4 5 8 9
relational operator can be used). >>find(A > 4)

ans =
4 5 6

The truth table for the operation of the four logical operators, and, or, Xor, and not are
summarized in Table 2.25.
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Table 2.25 Truth table

INPUT OUTPUT

AND OR XOR NOT NOT
A B

A&B A|B (A,B) ~A ~B

false false false false false true true
false true false true true true false
true false false true true false true
true true true true false false false

2.16.4 CONDITIONAL STATEMENTS

A conditional statement is a command that allows MATLAB to make a decision of whether to
execute a group of commands that follow the conditional statement or to skip these commands.

if conditional expression consists of relational and/or logical operators
if a < 30

count = count + 1

disp a

end

The general form of a simple if statement is as follows:
if logical expression

statements

end

If the logical expression is true, the statements between the if statement and the end
statement are executed. If the logical expression is false, then it goes to the statements follow-
ing the end statement.

2.16.5 nested if STATEMENTS

Following is an example of nested if statements:
if a < 30

count = count + 1;

disp(a);

if b > a

b = 0;

end

end

2.16.6 else AND elseif CLAUSES

The else clause allows to execute one set of statements if a logical expression is true and a
different set if the logical expression is false.

% variable name inc

if inc < 1

x_inc = inc/10;
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else

x_inc = 0.05;

end

When several levels of if-else statements are nested, it may be difficult to find which
logical expressions must be true (or false) to execute each set of statements. In such cases, the
elseif clause is used to clarify the program logic.

2.16.7 MATLAB while STRUCTURES

There is a structure in MATLAB that combines the for loop with the features of the if block.
This is called the while loop and has the form:

while logical expression
This set of statements is executed repeatedly as long as the logical expressions remain

true (equals +1) or if the expression is a matrix rather than a simple scalar variable, as long as
all the elements of the matrix remain nonzero.

end
In addition to the normal termination of a loop by means of the end statement, there

are additional MATLAB commands available to interrupt the calculations. These commands
are listed in Table 2.26 below:

Table 2.26

Command Description

break Terminates the execution of MATLAB for and while loops. In nested loops, break
will terminate only the innermost loop in which it is placed.

return Primarily used in MATLAB functions, return will cause a normal return from a
function from the point at which the return statement is executed.

error (‘text’) Terminates execution and displays the message contained in text on the screen.
Note, the text must be enclosed in single quotes.

The MATLAB functions used are summarized in Table 2.27 below:

Table 2.27

Function Description

Relational A MATLAB logical relation is a comparison between two variables x and y of
operators the same size effected by one of the six operators, <, <=, >, >=, = =, ~=. The

comparison involves corresponding elements of x and y, and yields a matrix or
scalar of the same size with values of ‘‘true’’ or ‘‘false’’ for each of its elements.
In MATLAB, the value of ‘‘false’’ is zero, and ‘‘true’’ has a value of one. Any
nonzero quantity is interpreted as ‘‘true’’.

Combinatorial The operators & (AND) and | (OR) may be used to combine two logical
operators expressions.
all, any If x is a vector, all(x) returns a value of one if all of the elements of x are

nonzero, and a value of zero otherwise. When X is a matrix, all(X) returns a row
vector of ones or zeros obtained by applying all to each of the columns of X. The
function any operates similarly if any of the elements of x are nonzero.
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Function Description

find If x is a vector, i = find(x) returns the indices of those elements of x that are
nonzero (i.e., true). Thus, replacing all the negative elements of x by zero could
be accomplished by

i = find(x < 0);
x(i) = zeros(size(i));

If X is a matrix, [i,j] = find(X) operates similarly and returns the row-column
indices of nonzero elements.

if, else, elseif The several forms of MATLAB if blocks are as follows:
if variable if variable 1 if variable 1
block of statements block of statements block of statements
executed if variable executed if variable 1 executed if variable 1 is ‘‘true’’, i.e.,
nonzero is ‘‘true’’, i.e., nonzero is ‘‘true’’,
end else elseif variable 2
block of statements block of statements
executed if variable l executed if variable 2 is ‘‘false’’, i.e., zero is ‘‘true’’,
end else end
block of statements executed if neither variable is ‘‘true’’

break Terminates the execution of a for or while loop. Only the innermost loop in
which break is encountered will be terminated.

return Causes the function to return at that point to the calling routine. MATLAB M-
file functions will return normally without this statement.

error (‘text’) Within a loop or function, if the statement error('text') is encountered, the loop
or function is terminated, and the text is displayed.

while The form of the MATLAB while loop is
while variable

block of statements executed as long as the value of variable is
‘‘true’’; i.e., nonzero

end
Useful when a function F itself calls a second ‘‘dummy’’ function ‘‘f’’. For exam-
ple, the function F might find the root of an arbitrary function identified as a
generic f(x). Then, the name of the actual M-file function, say fname, is passed
as a character string to the function F either through its argument list or as a
global variable, and the function is evaluated within F by means of feval. The
use of feval(name, x1, x2, ..., xn), where fname is a variable containing the
name of the function as a character string; i.e., enclosed in single quotes, and
x1, x2, ..., xn are the variables needed in the argument list of function fname.

���� ����	
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MATLAB has many commands that can be used to create basic 2-D plots, overlay plots, spe-
cialized 2-D plots, 3-D plots, mesh, and surface plots.
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2.17.1 BASIC 2-D PLOTS

The basic command for producing a simple 2-D plot is
plot(x values, y values, ‘style option’)

where x values and y values are vectors containing the x- and y-coordinates of points on the
graph.
style option is an optional argument that specifies the color, line-style, and the
point-marker style.

The style option in the plot command is a character string that consists of 1, 2, or 3
characters that specify the color and/or the line style. The different color, line-style and marker-
style options are summarized in Table 2.28.

Table 2.28 Color, line-style, and marker-style options

Color style-option Line style-option Marker style-option

y yellow – solid + plus sign
m magenta – – dashes O circle
c cyan : dotted * asterisk
r red –. dash-dot x x-mark
g green . point
b blue ^ up triangle
w white s square
k black d diamond, etc.

2.17.2 SPECIALIZED 2-D PLOTS

There are several specialized graphics functions available in MATLAB for 2-D plots. The list of
functions commonly used in MATLAB for plotting x-y data are given in Table 2.29.

Table 2.29 List of functions for plotting x-y data

Function Description

area Creates a filled area plot.
bar Creates a bar graph.
barh Creates a horizontal bar graph.
comet Makes an animated 2-D plot.
compass Creates arrow graph for complex numbers.
contour Makes contour plots.
contourf Makes filled contour plots.
errorbar Plots a graph and puts error bars.
feather Makes a feather plot.
fill Draws filled polygons of specified color.
fplot Plots a function of a single variable.
hist Makes histograms.
loglog Creates plot with log scale on both x and y axes.
pareto Makes pareto plots.
pcolor Makes pseudo color plot of matrix.
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Command Description

pie Creates a pie chart.
plotyy Makes a double y-axis plot.
plotmatrix Makes a scatter plot of a matrix.
polar Plots curves in polar coordinates.
quiver Plots vector fields.
rose Makes angled histograms.
scatter Creates a scatter plot.
semilogx Makes semilog plot with log scale on the x-axis.
semilogy Makes semilog plot with log scale on the y-axis.
stairs Plots a stair graph.
stem Plots a stem graph.

2.17.2.1 Overlay Plots

There are three ways of generating overlay plots in MATLAB, they are:
(a) Plot command
(b) Hold command
(c) Line command
(a) Plot command. Example 2.5(a) shows the use of plot command used with matrix

argument, each column of the second argument matrix plotted against the corresponding col-
umn of the first argument matrix.

(b) Hold command. Invoking hold on at any point during a session freezes the current
plot in the graphics window. All the next plots generated by the plot command are added to the
exiting plot. See Example 2.5(a).

(c) Line command. The line command takes a pair of vectors (or a triplet in 3-D) followed
by a parameter name/parameter value pairs as argument. For instance, the command: line (x
data, y data, parameter name, parameter value) adds lines to the existing axes. See Example
E2.5(a).

2.17.3 3-D PLOTS

MATLAB provides various options for displaying three-dimensional data. They include line
and wire, surface, mesh plots, among many others. More information can be found in the Help
Window under Plotting and Data visualization. Table 2.30 lists commonly used functions.

Table 2.30 Functions used for 3-D graphics

Command Description

plot3 Plots three-dimensional graph of the trajectory of a set of three parametric
equations x(t), y(t), and z(t) can be obtained using plot3(x,y,z).

meshgrid If x and y are two vectors containing a range of points for the evaluation of a
function, [X,Y] = meshgrid(x, y) returns two rectangular matrices containing
the x and y values at each point of a two-dimensional grid.

mesh(X,Y,z)  If X and Y are rectangular arrays containing the values of the x and y coordinates
at each point of a rectangular grid , and if z is the value of a function evaluated at
each of these points, mesh(X,Y,z) will produce a three-dimensional perspective
graph of the points. The same results can be obtained with mesh(x,y,z).
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Command Description

meshc, meshz If the xy grid is rectangular, these two functions are merely variations of the basic
plotting program mesh, and they operate in an identical fashion. meshc will pro-
duce a corresponding contour plot drawn on the xy plane below the three-dimen-
sional figure, and meshz will add a vertical wall to the outside features of the
figures drawn by mesh.

surf Produces a three-dimensional perspective drawing. Its use is usually to draw sur-
faces, as opposed to plotting functions, although the actual tasks are quite simi-
lar. The output of surf will be a shaded figure. If row vectors of length n are
defined by x = r cos θ and y = r sin θ, with 0 ≤ θ ≤ 2π, they correspond to a circle of
radius r. If r→  is a column vector equal to r = [0 1 2]’; then z = r*ones(size(x)) will
be a rectangular, 3 × n, arrays of 0's and 2’s, and surf(x, y, z) will produce a
shaded surface bounded by three circles; i.e., a cone.

surfc This function is related to surf in the same way that meshc is related to mesh.

colormap Used to change the default coloring of a figure. See the MATLAB reference manual
or the help file.

shading Controls the type of color shading used in drawing figures. See the MATLAB ref-
erence manual or the help file.

view view(az,el) controls the perspective view of a three-dimensional plot. The view of
the figure is from angle ‘‘el’’ above the xy plane with the coordinate axes (and the
figure) rotated by an angle ‘‘az’’ in a clockwise direction about the z axis. Both
angles are in degrees. The default values are az = 37½º and el = 30º.

axis Determines or changes the scaling of a plot. If the coordinate axis limits of a two-
dimensional or three-dimensional graph are contained in the row vector r = [xmin,
xmax, ymin, ymax, zmin, zmax], axis will return the values in this vector, and axis(r)
can be used to alter them. The coordinate axes can be turned on and off with
axis(‘on’) and axis(‘off’). A few other string constant inputs to axis and their
effects are given below:

axis(‘equal’) x and y scaling are forced to be the same.

axis(‘square’) The box formed by the axes is square.

axis(‘auto’) Restores the scaling to default settings.

axis(‘normal’) Restoring the scaling to full size, removing any effects of square
or equal settings.

axis (‘image’) Alters the aspect ratio and the scaling so the screen pixels are
square shaped rather than rectangular.

contour The use is contour(x,y,z). A default value of N = 10 contour lines will be drawn.
An optional fourth argument can be used to control the number of contour lines
that are drawn. contour(x,y,z,N), if N is a positive integer, will draw N contour
lines, and contour(x,y,z,V), if V is a vector containing values in the range of z
values, will draw contour lines at each value of z = V.

plot3 Plots lines or curves in three dimensions. If x, y, and z are vectors of equal length,
plot3(x,y,z) will draw, on a three-dimensional coordinate axis system, the lines
connecting the points. A fourth argument, representing the color and symbols to
be used at each point, can be added in exactly the same manner as with plot.

grid grid on adds grid lines to a two-dimensional or three-dimensional graph; grid off
removes them.

slice Draws ‘‘slices’’ of a volume at a particular location within the volume.
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Example 2.5. (a) Generate an overlay plot for plotting three lines
y1 = sin t
y2 = t

y3 = t – t
3

t
5

t
7

3 5 7

! ! !
+ +

Use (i) the plot command
(ii) the hold command

(iii) the line command
(b) Use the functions for plotting x-y data for plotting the following functions.

(i) f(t) = t cost
0 ≤ t ≤ 10π

(ii) x = et

y = 100 + e3t

0 ≤ t ≤ 2π.
Solution:

(a) overlay plot
(i) % using the plot command

t = linspace(0, 2*pi, 100);
y1 = sin(t); y2 = t;
y3 = t – (t.^3)/6 + (t.^5)/120 - (t.^7)/5040;
plot(t, y1, t, y2, '-', t, y3, 'o')
axis([0 5 -1 5])

xlabel('t')
ylabel('sin(t) approximation')
title('sin(t) function')
text(3.5,0, 'sin(t)')
gtext('Linear approximation')
gtext('4-term approximation')
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Fig. E2.5 (a) (i)
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(ii) % using the hold command

x = linspace(0, 2*pi, 100); y1 = sin(x);

plot(x, y1)

hold on

y2 = x; plot(x, y2, '-' )

y3 = x - (x.^3)/6 + (x.^5)/120 - (t.^7)/5040;

plot(x, y3, 'o')

axis([0 5 -1 5])

hold off
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0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Fig. E2.5 (a) (ii)

(iii) % using the line command
t = linspace(0, 2*pi, 100);

y1 = sin(t);

y2 = t;

y3 = t - (t.^3)/6 + (t.^5)/120 - (t.^7)/5040;

plot(t, y1)

line(t, y2, 'linestyle', '-')

line(t, y3, 'marker', 'o')

axis([0 5 -1 5])

xlabel('t')

ylabel('sin(t) approximation')

title('sin(t) function')

legend('sin(t)', 'linear approx', '7th order approx')
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(b) Using Table 2.29 functions
(i) fplot('x.*cos(x)', [0 10*pi])

This will give the following figure (Fig. E2.5 (b) (i))
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Fig. E2.5 (b) (i)

(ii) t = linspace(0, 2*pi, 200);

x = exp(t);

y = 100 + exp(3*t);

loglog(x, y), grid
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Example 2.6. (a) Plot the parametric space curve of
x (t) = t
y (t) = t2

z (t) = t3 0 ≤  t ≤ 2.0
(b) z = – 7/(1 + x2 + y2) | x | ≤ 5, | y | ≤ 5
Solution:
(a) >> t=linspace(0, 2,100);

>> x=t; y=t. ^2; z=t. ^3;

>> plot3(x, y, z), grid

The plot is shown in Figure E2.6 (a).
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90 SOLVING VIBRATION ANALYSIS PROBLEMS USING MATLAB

(b) >> t=linspace(0, 2,100);

>> x=t; y=t. ^2; z=t. ^3;

>> plot3(x, y, z), grid

>> t=linspace(-5,5,50);y=x;

>> z=-7./(1+x.^2+y.^2);

>> mesh(z)

The plot is shown in Figure E2.6(b).

Fig. E2.6(b)

2.17.4 SAVING AND PRINTING GRAPHS

To obtain a hardcopy of a graph, type print in the Command Window after the graph appears
in the Figure Window. The figure can also be saved into a specified file in the PostScripter or
Encapsulated PostScript (EPS) format. The command to save graphics to a file is

print – d devicetype – options filename
where device type for PostScript printers are listed in the following Table 2.31.

Table 2.31 Devicetype for Post Script printers

Devicetype Description Devicetype Description

ps Black and white PostScript eps Black and white EPSF
psc Color PostScript epsc Color EPSF
ps2 Level 2 BW PostScript eps2 Level 2 black and white EPSF
psc2 Level 2 color PostScript epsc2 Level 2 color EPSF

MATLAB can also generate a graphics file in the following popular formats among others.
–dill saves file in Adobe Illustrator format.
–djpeg saves file as a JPEG image.
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–dtiff saves file as a compressed TIFF image.
–dmfile saves file as an M-file with graphics handles.
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In this section, we present some of the many available commands in MATLAB for reading data
from an external file into a MATLAB matrix, or writing the numbers computed in MATLAB
into such an external file.

2.18.1 THE fopen STATEMENT

To have the MATLAB read or write a separate data file of numerical values, we need to con-
nect the file to the executing MATLAB program. The MATLAB functions used are summarized
in Table 2.32.

Table 2.32 MATLAB functions used for input/output

Function Description

fopen Connects an existing file to MATLAB or to create a new file from MATLAB.
fid = fopen(‘Filename’, permission code);

where, if fopen is successful, fid will be returned as a positive integer greater
than 2. When unsuccessful, a value of –1 is returned. Both the file name and the
permission code are string constants enclosed in single quotes. The permission
code can be a variety of flags that specify whether or not the file can be written to,
read from, appended to, or a combination of these. Some common codes are:

Code Meaning

‘r’ read only
‘w’ write only
‘r+’ read and write
‘a+’ read and append

The fopen statement positions the file at the beginning.

fclose Disconnects a file from the operating MATLAB program. The use is fclose(fid),
where fid is the file identification number of the file returned by fopen.fclose(‘all’)
will close all files.

fscanf Reads opened files. The use is
A = fscanf(fid, FORMAT, SIZE)

where FORMAT specifies the types of numbers (integers, reals with or without
exponent, character strings) and their arrangement in the data file, and optional
SIZE determines how many quantities are to be read and how they are to be
arranged into the matrix A. If SIZE is omitted, the entire file is read. The FOR-
MAT field is a string (enclosed in single quotes) specifying the form of the num-
bers in the file. The type of each number is characterized by a percent sign (%),
followed by a letter (i or d for integers, e or f for floating-point numbers with or
without exponents). Between the percent sign and the type code, one can insert an
integer specifying the maximum width of the field.
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Function Description

fprintf Writes files previously opened.
fprintf(fid, FORMAT, A)

where fid and FORMAT have the same meaning as for fscanf, with the exception
that for output formats the string must end with \n, designating the end of a line
of output.

���� �������
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In Secs. 2.1 to 2.18, the capability of MATLAB for numerical computations have been described.
In this section some of MATLAB’s capabilities for symbolic manipulations will be presented.
Specifically, the symbolic expressions, symbolic algebra, simplification of mathematical
expressions, operations on symbolic expressions, solution of a single equation or a set of linear
algebraic equations, solutions to differential equations, differentiation and integration of
functions using MATLAB are presented.

2.19.1 SYMBOLIC EXPRESSIONS

A symbolic expression is stored in MATLAB as a character string. A single quote marks are
used to define the symbolic expression. For instance:

‘sin(y/x)’; ‘x^4 + 5*x^3 + 7*x^2 – 7’
The independent variable in many functions is specified as an additional function argu-

ment. If an independent variable is not specified, then MATLAB will pick one. When several
variables exist, MATLAB will pick the one that is a single lower case letter (except i and j),
which is closest to x alphabetically.

The independent variable is returned by the function symvar,
symvar(s) Returns the independent variable for the symbolic expression s.
For example:

Expression s symvar(s)
‘5 * c * d + 34’ d

‘sin(y/x)’ x
In MATLAB, a number of functions are available to simplify mathematical expressions

by expanding the terms, factoring expressions, collecting coefficients, or simplifying the
expression. For instance:

expand(s) Performs an expansion of s.
A summary of these expressions is given in Table 2.33. A summary of basic operations is

given in Table 2.34. The standard arithmetic operation (Table 2.35) is applied to symbolic
expressions  using  symbolic  functions.  These  symbolic  expressions  are  summarized  in
Table 2.36.
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Table 2.33

Simplification

collect Collect common terms

expand Expand polynomials and elementary functions

factor Factorization

horner Nested polynomial representation

numden Numerator and denominator

simple Search for shortest form

simplify Simplification

subexpr Rewrite in terms of subexpressions

Table 2.34

Basic Operations

ccode C code representation of a symbolic expression

conj Complex conjugate

findsym Determine symbolic variables

fortran Fortran representation of a symbolic expression

imag Imaginary part of a complex number

latex LaTeX representation of a symbolic expression

pretty Pretty prints a symbolic expression

real Real part of an imaginary number

sym Create symbolic object

syms Shortcut for creating multiple symbolic objects

Table 2.35

Arithmetic Operations

+ Addition

– Subtraction

* Multiplication

.* Array multiplication

/ Right division

./ Array right division

\ Left division

.\ Array left division

^ Matrix or scalar raised to a power

.^ Array raised to a power

‘ Complex conjugate transpose

.‘ Real transpose
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Table 2.36

Symbolic expressions

horner(S) Transposes S into its Horner, or nested, representation.

numden(S) Returns two symbolic expressions that represent, respectively, the numerator
expression and the denominator expression for the rational representation of S.

numeric(S) Converts S to a numeric form (S must not contain any symbolic variables).

poly2sym(c) Converts a polynomial coefficient vector c to a symbolic polynomial.

pretty(S) Prints S in an output form that resembles typeset mathematics.

sym2poly(S) Converts S to a polynomial coefficient vector.*

symadd(A,B) Performs a symbolic addition, A + B.
symdiv(A,B) Performs a symbolic division, A/B.
symmul(A,B) Performs a symbolic multiplication, A * B.
sympow(S,p) Performs a symbolic power, S^p.
symsub(A,B) Performs a symbolic subtraction, A – B.

2.19.2 SOLUTION TO DIFFERENTIAL EQUATIONS

Symbolic math functions can be used to solve a single equation, a system of equations, and
differential equations. For example:
solve(f) Solves a symbolic equation f for its symbolic variable. If f is a symbolic

expression, this function solves the equation f = 0 for its symbolic variable.
solve(f1, … fn) Solves the system of equations represented by f1, …, fn.

The symbolic function for solving ordinary differential equation is dsolve as shown
below:
dsolve(‘equation’, ‘condition’) Symbolically solves the ordinary differential equation speci-

fied by ‘equation’. The optional argument ‘condition’ speci-
fies a boundary or initial condition.

The symbolic equation uses the letter D to denote differentiation with respect to the
independent variable. A D followed by a digit denotes repeated differentiation. Thus, Dy
represents dy/dx, and D2y represents d2y/dx2. For example, given the ordinary second order
differential equation;

 
d x

dt

dx
dt

x
2

2 5 3+ +  = 7

with the initial conditions x(0) = 0 and �x (0) = 1.
The MATLAB statement that determine the symbolic solution for the above differential

equation is the following:
x = dsolve('D2x = -5*Dx-3*x+7', 'x(0)=0', 'Dx(0)=1')

The symbolic functions are summarized in Table 2.37.
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Table 2.37

Solution of Equations

compose Functional composition

dsolve Solution of differential equations

finverse Functional inverse

solve Solution of algebraic equations

2.19.3 CALCULUS

There are four forms by which the symbolic derivative of a symbolic expression is obtained in
MATLAB. They are:
diff(f) Returns the derivative of the expression f with respect to the default inde-

pendent variable.
diff(f, ‘t’) Returns the derivative of the expression f with respect to the variable t.
diff(f,n) Returns the nth derivative of the expression f with respect to the default

independent variable.
diff(f, ‘t’,n) Returns the nth derivative of the expression f with respect to the variable t.

The various forms that are used in MATLAB to find the integral of a symbolic expres-
sion f are given below and summarized in Table 2.38.
int(f) Returns the integral of the expression f with respect to the default inde-

pendent variable.
int(f, ‘t’) Returns the integral of the expression f with respect to the variable t.
int(f,a,b) Returns the integral of the expression f with respect to the default

independent variable evaluated over the interval [a,b], where a and b are
numeric expressions.

int(f, ‘t’,a,b) Returns the integral of the expression f with respect to the variable t evalu-
ated over the interval [a,b], where a and b are numeric expressions.

int(f, ‘m’, ‘n’) Returns the integral of the expression f with respect to the default inde-
pendent variable evaluated over the interval [m,n], where m and n are
numeric expressions.

The other symbolic functions for pedagogical and graphical applications, conversions,
integral transforms, and linear algebra are summarized in Tables 2.38 to 2.42.

Table 2.38

Calculus

diff Differentiate

int Integrate

jacobian Jacobian matrix

limit Limit of an expression

symsum Summation of series

taylor Taylor series expansion
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Table 2.39

Pedagogical and Graphical Applications

ezcontour Contour plotter

ezcontourf Filled contour plotter

ezmesh Mesh plotter

ezmeshc Combined mesh and contour plotter

ezplot Function plotter

ezplot Easy-to-use function plotter

ezplot3 Three-dimensional curve plotter

ezpolar Polar coordinate plotter

ezsurf Surface plotter

ezsurfc Combined surface and contour plotter

funtool Function calculator

rsums Riemann sums

taylortool Taylor series calculator

Table 2.40

Conversions

char Convert sym object to string

double Convert symbolic matrix to double

poly2sym Function calculator

sym2poly Symbolic polynomial to coefficient vector

Table 2.41

Integral Transforms

fourier Fourier transform

ifourier Inverse Fourier transform

ilaplace Inverse Laplace transform

iztrans Inverse Z-transform

laplace Laplace transform

ztrans Z-transform
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Table 2.42

Linear Algebra

colspace Basis for column space

det Determinant

diag Create or extract diagonals

eig Eigenvalues and eigenvectors

expm Matrix exponential

inv Matrix inverse

jordan Jordan canonical form

null Basis for null space

poly Characteristic polynomial

rank Matrix rank

rref Reduced row echelon form

svd Singular value decomposition

tril Lower triangle

triu Upper triangle

����� �	���������� ����������

The Laplace transformation method is an operational method that can be used to find the
transforms of time functions, the inverse Laplace transformation using the partial-fraction
expansion of B(s)/A(s), where A(s) and B(s) are polynomials in s. In this Chapter, we present
the computational methods with MATLAB to obtain the partial-fraction expansion of B(s)/A(s)
and the zeros and poles of B(s)/A(s).

MATLAB can be used to obtain the partial-fraction expansion of the ratio of two polyno-
mials, B(s)/A(s) as follows:

B s
A s

b s b s b n
a s a s a n

n n

n n
( )
( )

( ) ( ) ... ( )
( ) ( ) ... ( )

= = + + +
+ + +

−

−
num
den

1 2
1 2

1

1

where a(1) ≠ 0 and num and den are row vectors. The coefficients of the numerator and
denominator of B(s)/A(s) are specified by the num and den vectors.

Hence num = [b(1) b(2) … b(n)]
den = [a(1) a(2)  … a(n)]

The MATLAB command
r, p, k = residue(num, den)

is used to determine the residues, poles, and direct terms of a partial-fraction expansion of the
ratio of two polynomials B(s) and A(s) is then given by
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1
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1



98 SOLVING VIBRATION ANALYSIS PROBLEMS USING MATLAB

The MATLAB command [num, den] = residue(r, p, k) where r, p, k are the output
from MATLAB converts the partial fraction expansion back to the polynomial ratio B(s)/A(s).

The command printsys (num,den‘s’) prints the num/den in terms of the ratio of poly-
nomials in s.

The command ilaplace will find the inverse Laplace transform of a Laplace function.

2.20.1 FINDING ZEROS AND POLES OF B(s)/A(s)

The MATLAB command [z,p,k] = tf2zp(num,den) is used to find the zeros, poles, and
gain K of B(s)/A(s).

If the zeros, poles, and gain K are given, the following MATLAB command can be used
to find the original num/den:

[num,den] = zp2tf (z,p,k)

���� ����������������

MATLAB has an extensive set of functions for the analysis and design of control systems. They
involve matrix operations, root determination, model conversions, and plotting of complex
functions. These functions are found in MATLAB’s control systems toolbox. The analytical
techniques used by MATLAB for the analysis and design of control systems assume the proc-
esses that are linear and time invariant. MATLAB uses models in the form of transfer-func-
tions or state-space equations.

2.21.1 TRANSFER FUNCTIONS

The transfer function of a linear time invariant system is expressed as a ratio of two polynomials.
The transfer function for a single input and a single output (SISO) system is written as

H(s) = 
b s b s b s b

a s a s a s a

n n
n n

m m
m m

0 1
1

1

0 1
1

1

+ + +
+ + + +

−
−

−
−

...

...

when the numerator and denominator of a transfer function are factored into the zero-pole-
gain form, it is given by

H(s) = k
( ) ( ) ... ( )

( ) ( ) ... ( )
s z s z s z

s p s p s p
n

m

− − −
− − −

1 2

1 2

The state-space model representation of a linear control system s is written as

�x = Ax + Bu
y = Cx + Du

2.21.2 MODEL CONVERSION

There are a number of functions in MATLAB that can be used to convert from one model to
another. These conversion functions and their applications are summarized in Table 2.43.
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Table 2.43 Model conversion functions

Function Purpose

c2d Continuous state-space to discrete state-space
residue Partial-fraction expansion

ss3tf State-space to transfer function

ss2zp State-space to zero-pole-gain

tf2ss Transfer function to state-space

tf2zp Transfer function to zero-pole-gain

zp2ss Zero-pole-gain to state-space

zp2tf Zero-pole-gain to transfer function

Residue Function: The residue function converts the polynomial transfer function

H(s) = 
b s b s b s b

a s a s a s a

n n
n n

m m
m m

0 1
1

1

0 1
1

1

+ + + +
+ + + +

−
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...

...
to the partial fraction transfer function

H(s) = 
r

s p
r

s p
r

s p
n

n

1

1

2

2−
+

−
+ +

−
...  + k(s)

[r,p,k] = residue(B, A) Determine the vectors r, p, and k, which contain the residue values,
the poles, and the direct terms from the partial-fraction expansion.
The inputs are the polynomial coefficients B and A from the
numerator and denominator of the transfer function, respectively.

ss2tf Function: The ss2tf function converts the continuous-time, state-space equa-
tions

x′ = Ax + Bu
y = Cx + Du

to the polynomial transfer function

H(s) = 
b s b s b s b

a s a s a s a
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...

The function has two output matrices:
[num,den] = ss2tf(A,B,C,D,iu) Computes vectors num and den containing the coefficients,

in descending powers of s, of the numerator and denomina-
tor of the polynomial transfer function for the iuth input.
The input arguments A,B,C, and D are the matrices of the
state-space equations corresponding to the iuth input, where
iu is the number of the input for a multi-input system. In
the case of a single-input system, iu is 1.

ss2zp Function: The ss2zp function converts the continuous-time, state-space equa-
tions

x′ = Ax + Bu
y = Cx + Du

to the zero-pole-gain transfer function
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H(s) = k ( ) ( ) ... ( )
( ) ( ) ... ( )
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The function has three output matrices:
[z,p,k] = ss2zp(A,B,C,D,iu) Determines the zeros (z) and poles (p) of the zero-pole-gain

transfer function for the iuth input, along with the associated
gain (k). The input matrices A, B, C, and D of the state-space
equations correspond to the iuth input, where iu is the number
of the input for a multi-input system. In the case of a single-
input system iu is 1.

tf2ss Function: The ts2ss function converts the polynomial transfer function

H(s) = 
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a s a s a s a
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to the controller-canonical form state-space equations
x′ = Ax + Bu
y = Cx + Du

The function has four output matrices:
[A,B,C,D] = tf2ss(num,den) Determines the matrices A, B, C, and D of the controller-ca-

nonical form state-space equations. The input arguments num
and den contain the coefficients, in descending powers of s, of
the numerator and denominator polynomials of the transfer
function that is to be converted.

tf2zp Function: The tf2zp function converts the polynomial transfer function

H(s) = 
b s b s b s b

a s a s a s a
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to the zero-pole-gain transfer function

H(s) = k
( ) ( ) ... ( )

( ) ( ) ... ( )
s z s z s z

s p s p s p
n
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− − −

1 2

1 2

The function has three output matrices:
[z,p,k] = tf2zp(num,den) Determines the zeros (z), poles (p) and associated gain (k) of

the zero-pole-gain transfer function using the coefficients, in
descending powers of s, of the numerator and denominator of
the polynomial transfer function that is to be converted.

zp2tf Function: The zp2tf function converts the zero-pole-gain transfer function

H(s) = k
( )( ) ... ( )

( )( ) ... ( )
s z s z s z

s p s p s p
n

m

− − −
− − −

1 2

1 2

to the polynomial transfer function
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H(s) = 
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The function has two output matrices:
[num,den] = zp2tf(z,p,k) Determines the vectors num and den containing the coefficients,

in descending powers of s, of the numerator and denominator of
the polynomial transfer function. p is a column vector of the pole
locations of the zero-pole-gain transfer function, z is a matrix of
the corresponding zero locations, having one column for each out-
put of a multi-output system, k is the gain of the zero-pole-gain
transfer function. In the case of a single-output system, z is a col-
umn vector of the zero locations corresponding to the pole loca-
tions of vector p.

zp2ss Function: The zp2ss function converts the zero-pole-gain transfer function

H(s) = k
( ) ( ) ... ( )

( ) ( ) ... ( )
s z s z s z

s p s p s p
n

m

− − −
− − −

1 2

1 2

to the controller-canonical form state-space equations
x′ = Ax + Bu
y = Cx + Du

The function has four output matrices:
[A,B,C,D] = zp2ss(z,p,k) Determines the matrices A, B, C, and D of the control-canonical

form state-space equations. p is a column vector of the pole loca-
tions of the zero-pole-gain transfer function, z is a matrix of the
corresponding zero locations, having one column for each output
of a multi-output system, k is the gain of the zero-pole-gain trans-
fer function. In the case of a single-output system, z is a column
vector of the zero locations corresponding to the pole locations of
vector p.

����� �	���������� ����������

MATLAB can be used to obtain the partial-fraction expansion of the ratio of two polynomials,
B(s)/A(s) as follows:

 
B s
A s

num
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a s a s a n
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where a(1) ≠ 0 and num and den are row vectors. The coefficients of the numerator and
denominator of B(s)/A(s) are specified by the num and den vectors.

Hence num = [b(1) b(2) … b(n)]
  den = [a(1) a(2) … a(n)]

The MATLAB command
r, p, k = residue(num, den)

is used to determine the residues, poles, and direct terms of a partial-fraction expansion of the
ratio of two polynomials B(s) and A(s) is then given by
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The MATLAB command [num, den] = residue(r, p, k) where r, p, k are the output
from MATLAB converts the partial fraction expansion back to the polynomial ratio B(s)/A(s).

The command printsys (num,den,‘s’) prints the num/den in terms of the ratio of poly-
nomials in s.

The command ilaplace will find the inverse Laplace transform of a Laplace function.

10.11.1  FINDING ZEROS AND POLES OF B(s)/A(s)

The MATLAB command [z,p,k] = tf2zp(num,den) is used to find the zeros, poles, and gain K
of B(s)/A(s).

If the zeros, poles, and gain K are given, the following MATLAB command can be used
to find the original num/den:

[num,den] = zp2tf (z,p,k)
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Example 2.7. Consider the function

H(s) = n s
d s

( )
( )

where n(s) = s4 + 6s3 + 5s2 + 4s + 3
d(s) = s5 + 7s4 + 6s3 + 5s2 + 4s + 7

(a) Find n(– 10), n(– 5), n(– 3) and n(– 1)
(b) Find d(– 10), d(– 5), d(– 3) and d(– 1)
(c) Find H(– 10), H(– 5), H(– 3) and H(–1)
Solution:
(a) >> n=[1 6 5 4 3];   % n=s^4+6s^3+5s^2+4s+3

>> d=[1 7 6 5 4 7];   % d=s^5+7s^4+6s^3+5s^2+4s+7

>> n2=polyval(n,[-10])

n2 = 4463

>> nn10=polyval(n,[-10])

nn10 = 4463

>> nn5=polyval(n,[-5])

nn5 = -17

>> nn3=polyval(n,[-3])

nn3 = -45

>> nn1=polyval(n,[-1])

nn1 = -1

(b) >> dn10=polyval(d,[-10])

dn10 = -35533

>> dn5=polyval(d,[-5])

dn5 = 612

>> dn3=polyval(d,[-3])
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dn3 = 202

>> dn1=polyval(d,[-1])

dn1 = 8

(c) >> Hn10=nn10/dn10

Hn10 = -0.1256

>> Hn5=nn5/dn5

Hn5 = -0.0278

>> Hn3=nn3/dn3

Hn3 = -0.2228

>> Hn1=nn1/dn1

Hn1 = -0.1250

Example 2.8. Generate a plot of
y(x) = e–0.7x sin ωx

where ω = 15 rad/s, and 0 ≤ x ≤ 15. Use the colon notation to generate the x vector in increments
of 0.1.

Solution:
>> x = [0 : 0.1 : 15];

>> w = 15;

>> y = exp(-0.7*x).*sin(w*x);

>> plot(x,y)

>> title('y(x) = e^-^0^.^7^xsin \omegax')

>> xlabel('x')

>> ylabel('y')
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y(x) = e sin x
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Fig. E2.8
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Example 2.9. Generate a plot of
y(x) = e–0.6x cos ωx

where ω = 10 rad/s, and 0 ≤ x ≤ 15. Use the colon notation to generate the x vector in increments
of 0.05.

Solution:
>> x = [0 : 0.1 : 15];

>> w = 10;

>> y = exp(-0.6*x).*cos(w*x);

>> plot(x,y)

>> title('y(x) = e^-^0^.^6^xcos \omegax')

>> xlabel('x')

>> ylabel('y')

y(x) = e cos x
–0.6x
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Fig. E2.9

Example 2.10. Using the functions for plotting x-y data given in Table 2.29 plot the
following functions.

(a) r2 = 5 cos 3t 0 ≤ t ≤ 2π
(b) r2 = 5 cos 3t 0 ≤ t ≤ 2π

x = r cos t, y = r sin t
(c) y1 = e–2x cos x 0 ≤ t ≤ 20

y2 = e2x

(d) y = 
cos x

x
( )

– 5 ≤ x ≤ 5π

(e) f = e–3t/5 cos t 0 ≤ t ≤ 2π

(f) z = – 
1
3

x2 + 2xy + y2

|x| ≤ 7, |y| ≤ 7



MATLAB BASICS 105

Solution:
(a) t = linspace(0, 2*pi, 200);

r =sqrt(abs(5*cos(3*t)));

polar(t,r)
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 Fig. E2.10(a)

(b) t = linspace(0, 2*pi, 200);

r =sqrt(abs(5*cos(3*t)));

x=r.*cos(t);

y=r.*sin(t);

fill(x,y,'k'),

axis('square')
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Fig. E2.10(b)

(c) x=1:0.1:20;

y1=exp(-2*x).*cos(x);

y2=exp(2*x);

Ax=plotyy(x,y1,x,y2);

hy1=get(Ax(1),'ylabel');

hy2=get(Ax(2),'ylabel');

set(hy1,'string','exp(-2x).cos(x)')

set(hy2,'string','exp(-2x)');
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Fig. E2.10(c)

(d) x=linspace(-5*pi,5*pi,100);

y=cos(x)./x;

area(x,y);

xlabel('x (rad)'),ylabel('cos(x)/x')

hold on

x (rad)
– 15 – 10 – 5 0 5 10 15

– 8

– 6

– 4

– 2
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)/
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Fig. E2.10(d)
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(e) t=linspace(0,2*pi,200);

f=exp(-0.6*t).*sin(t);

stem(t,f)
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Fig. E2.10(e)

(f) r=-7:0.2:7;

[X,Y]=meshgrid(r,r);

Z=-0.333*X.^2+2*X.*Y+Y.^2;

cs=contour(X,Y,Z);

label(cs)
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 Fig. E2.10(f)
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Example 2.11. Use the functions listed in Table 2.30 for plotting 3-D data for the follow-
ing.

(a) z = cos x cos y e
x y

5

2 2

−
+

|x| ≤ = 7, |y| ≤ 7
(b) Discrete data plots with stems

x = t, y = t cos(t)
z = et/5 – 2   0 ≤ t ≤ 5π

(c) A cylinder generated by
r = sin(5πz) + 3
0 ≤ z ≤ 1 0 ≤ θ ≤ 2π

Solution:
(a) u=-7:0.2:7;

[X,Y]=meshgrid(u,u);

Z=cos(X).*cos(Y).*exp(-sqrt(X.^2+Y.^2)/5);

surf(X,Y,Z)

Fig. E2.11(a)

(b) t=linspace(0,5*pi,200);

x=t;y=t.*cos(t);

z=exp(t/5)-2;

stem3(x,y,z,'filled');

xlabel('t'),ylabel('tcos(t)'),zlabel('e^t/5-1')
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Fig. E2.11(b)

(c) z=[0:0.2:1]';

r=sin(5*pi*z)+3;

cylinder(r)
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0
2

4

Fig. E2.11(c)

Example 2.12. Obtain the plot of the points for 0 ≤ t ≤ 6π when the coordinates x,y,z are
given as a function of the parameter t as follows:

x = t  sin (3t)

y = t  cos (3t)
z = 0.8t
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Solution:
% Line plots
>> t=[0:0.1:6*pi];

>> x=sqrt(t).*sin(3*t);

>> y=sqrt(t).*cos(3*t);

>> z=0.8*t;

>> plot3(x,y,z,'k','linewidth',1)

>> grid on

>> xlabel('x');ylabel('y');zlabel('z')
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Fig. E2.12

Example 2.13. Obtain the mesh and surface plots for the function z = 
2xy

x y

2

2 2+
 over the

domain –2 ≤ x ≤ 6 and 2 ≤ y ≤ 8.
Solution:
% Mesh and surface plots
x=-2:0.1:6;

>> y=2:0.1:8;

>> [x,y]=meshgrid(x,y);

>> z=2*x.*y.^2./(x.^2+y.^2);

>> mesh(x,y,z)

>> xlabel('x');ylabel('y');zlabel('z')

>> surf(x,y,z)

>> xlabel('x');ylabel('y');zlabel('z')
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Fig. E2.13 (a)
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Fig. E2.13 (b)

Example 2.14. Plot the function z 2 1.5 x y2 2

= − +  sin (x) cos (0.5 y) over the domain – 4 ≤ x
≤ 4 and – 4 ≤ y ≤ 4 using Table 2.30.

(a) Mesh plot
(b) Surface plot
(c) Mesh curtain plot
(d) Mesh and contour plot
(e) Surface and contour plot
Solution:
(a) % Mesh Plot

>> x=-4:0.25:4;

>> y=-4:0.25:4;

>> [x,y]=meshgrid(x,y);

>> z=2.^(-1.5*sqrt(x.^2 + y.^2)).*cos(0.5*y).*sin(x);

>> mesh(x,y,z)

>> xlabel('x');ylabel('y')

>> zlabel('z')
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Fig. E2.14 (a)

(b) % Surface Plot
>> x=-4:0.25:4;

>> y=-4:0.25:4;

>> [x,y]=meshgrid(x,y);

>> z=2.0.^(-1.5*sqrt(x.^2+y.^2)).*cos(0.5*y).*sin(x);

>> surf(x,y,z)

>> xlabel('x');ylabel('y')

>> zlabel('z')

0.40.4

0.20.2

00

– 0.2– 0.2

– 0.4– 0.4
44

22
00

– 2– 2
– 4– 4 – 4– 4

– 2– 2
00

22
44

xxyy

zz

 Fig. E2.14 (b)
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(c) % Mesh Curtain Plot
>> x=-4.0:0.25:4;

>> y=-4.0:0.25:4;

>> [x,y]=meshgrid(x,y);

>> z=2.0.^(-1.5*sqrt(x.^2+y.^2)).*cos(0.5*y).*sin(x);

>> meshz(x,y,z)

>> xlabel('x');ylabel('y')

>> zlabel('z')
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Fig. E2.14 (c)

(d) % Mesh and Contour Plot
>> x=-4.0:0.25:4;

>> y=-4.0:0.25:4;

>> [x,y]=meshgrid(x,y);

>> z=2.0.^(-1.5*sqrt(x.^2+y.^2)).*cos(0.5*y).*sin(x);

>> meshc(x,y,z)

>> xlabel('x');ylabel('y')

>> zlabel('z')
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Fig. E2.14 (d)

(e) % Surface and Contour Plot
>> x=-4.0:0.25:4;

>> y=-4.0:0.25:4;

>> [x, y] =meshgrid(x, y);

>> z=2.0. ^ (-1.5*sqrt (x. ^2+y. ^2)).*cos (0.5*y).*sin(x);

>> surfc(x, y, z)

>> xlabel('x');ylabel('y')

>> zlabel('z')
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Fig. E2.14 (e)
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Example 2.15. Plot the function z 2 1.5 x y2 2

= − +  sin (x) cos (0.5 y) over the domain – 4 ≤ x
≤ 4 and – 4 ≤ y ≤ 4 using Table 2.30.

(a) Surface plot with lighting
(b) Waterfall plot
(c) 3-D contour plot
(d) 2-D contour plot
Solution:
(a) % Surface Plot with Lighting

>> x=-4.0:0.25:4;

>> y=-4.0:0.25:4;

>> [x,y]=meshgrid(x,y);

>> z=2.0.^(-1.5*sqrt(x.^2+y.^2)).*cos(0.5*y).*sin(x);

>> surfl(x,y,z)

>> xlabel('x');ylabel('y')

>> zlabel('z')
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 Fig. E2.15 (a)

(b) % Waterfall Plot
>> x=-4.0:0.25:4;

>> y=-4.0:0.25:4;

>> [x,y]=meshgrid(x,y);

>> z=2.0.^(-1.5*sqrt(x.^2+y.^2)).*cos(0.5*y).*sin(x);

>> waterfall(x,y,z)

>> xlabel('x');ylabel('y')

>> zlabel('z')
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 Fig. E2.15 (b)

(c) % 3-D Contour Plot
>> x=-4.0:0.25:4;

>> y=-4.0:0.25:4;

>> [x,y]=meshgrid(x,y);

>> z=2.0.^(-1.5*sqrt(x.^2+y.^2)).*cos(0.5*y).*sin(x);

>> contour3(x,y,z,15)

>> xlabel('x');ylabel('y')

>> zlabel('z')
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Fig. E2.15 (c)

(d) % 2-D Contour Plot
>> x=-4.0:0.25:4;

>> y=-4.0:0.25:4;

>> [x,y]=meshgrid(x,y);

>> z=2.0.^(-1.5*sqrt(x.^2+y.^2)).*cos(0.5*y).*sin(x);

>> contour(x,y,z,15)
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>> xlabel('x');ylabel('y')

>> zlabel('z')
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Fig. E2.15 (d)

Example 2.16. Using the functions given in Table 2.29 for plotting x-y data, plot the
following functions:

(a) f(t) = t cost 0 ≤ t ≤ 10π
(b) x = e–2t, y = t 0 ≤ t ≤ 2π
(c) x = t, y = e2t 0 ≤ t ≤ 2π
(d) x = et, y = 50 + et 0 ≤ t ≤ 2π

(e)
r 3 sin 7t

y r sin t

2 =
= 0 ≤ t ≤ 2π

(f)
r 3 sin 4t

y r sin t

2 =
= 0 ≤ t ≤ 2π

(g) y = t sin t 0 ≤ t ≤ 5π
Solution:
(a) % Use of Plot Command

>> fplot('x.*cos(x)',[0,10*pi])
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– 40
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Fig. E2.16 (a)
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(b) % Semilog x Command
>> t=linspace(0,2*pi,200);

>> x=exp(-2*t);y=t;

>> semilogx(x,y),grid
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Fig. E2.16 (b)

(c) % Semilog y Command
t=linspace(0,2*pi,200);

>> semilogy(t,exp(-2*t)),grid
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Fig. E2.16 (c)

(d) % Use of loglog Command
>> t=linspace(0,2*pi,200);

>> x=exp(t);

>> y=50+exp(t);

>> loglog(x,y),grid
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Fig. E2.16 (d)

(e) %Use of stairs Command
>> t=linspace(0,2*pi,200);

>> r=sqrt(abs(3*sin(7*t)));

>> y=r.*sin(t);

>> stairs(t,y)

>> axis([0 pi 0 inf]);

Fig. E2.16 (e)

(f) % Use of bar Command
>> t=linspace(0,2*pi,200);

>> r=sqrt(abs(3*sin(4*t)));

>> y=r.*sin(t);

>> bar(t,y)

>> axis([0 pi 0 inf]);
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Fig. E2.16 (f)

(g) %use of comet Command
>> q=linspace(0,5*pi,200);

>> y=q.*sin(q);

>> comet(q,y)
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Fig. E2.16 (g)

Example 2.17. Consider the two matrices

A =  
3 2
5 10 2

π
j j+

L
NM

O
QP

B = 
7 15
2 18

j j−L
NM

O
QPπ

Using MATLAB, determine the following:
(a) A + B
(b) AB
(c) A2

(d) AT

(e) B–1

(f) BTAT
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(g) A2 + B2 – AB
Solution:

>> A = [3 2*pi;5j 10+sqrt(2)*j];

>> B = [7j -15j;2*pi 18];

(a) A + B
ans =

3.0000 + 7.0000i   6.2832 -15.0000i

6.2832 + 5.0000i  28.0000 + 1.4142i

(b) >> A * B
ans =

1.0e+002 *

0.3948 + 0.2100i   1.1310 - 0.4500i

0.2783 + 0.0889i   2.5500 + 0.2546i

(c) >> A^2
ans =

9.0000  +31.4159i  81.6814 + 8.8858i

-7.0711 +65.0000i  98.0000 +59.7002i

(d) >> inv(A)
ans =

 0.1597 + 0.1917i  -0.1150 - 0.1042i

 0.0829 - 0.0916i   0.0549 + 0.0498i

(e) >> B^-1
ans =

0 - 0.0817i   0.0681

0 + 0.0285i   0.0318

(f) >> inv(B) * inv(A)
ans =

 0.0213 - 0.0193i  -0.0048 + 0.0128i

-0.0028 + 0.0016i   0.0047 - 0.0017i

(g) >> (A^2 + B^2) - (A * B)

ans =

 1.0e+002*

-0.7948 - 0.8383i   0.7358 - 2.1611i

 0.7819 + 1.0010i   1.6700 - 0.6000i

Example 2.18. Find the inverse of the following matrices using MATLAB:

(a)
3 2 0
2 1 7
5 4 9

−
L

N
M
M

O

Q
P
P (b)

−
−

L

N
M
M

O

Q
P
P

4 2 5
7 1 6
2 3 7

(c)
− −

−

L

N
M
M

O

Q
P
P

1 2 5
4 3 7
7 6 1
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Solution:
>> clear % Clears the workspace

>> A = [3 2 0; 2 -1 7; 5 4 9]; % Spaces separate matrix columns - semicolons
separate matrix rows

>> B = [-4 2 5; 7 -1 6; 2 3 7]; % Spaces separate matrix columns - semicolons
separate matrix rows

>> C = [-1 2 -5; 4 3 7; 7 -6 1]; % Spaces separate matrix columns -
semicolons separate matrix rows

>> inv(A); % Finds the inverse of the selected matrix

>> inv(B); % Finds the inverse of the selected matrix

>> inv(C) % Finds the inverse of the selected matrix

% Inverse of A

ans =

    0.4805    0.2338   -0.1818

   -0.2208   -0.3506    0.2727

   -0.1688    0.0260    0.0909

% Inverse of B

ans =

   -0.1773    0.0071    0.1206

   -0.2624   -0.2695    0.4184

    0.1631    0.1135   -0.0709

% Inverse of  C

ans =

    0.1667    0.1037    0.1074

    0.1667    0.1259   -0.0481

   -0.1667    0.0296   -0.0407

Example 2.19. Determine the eigenvalues and eigenvectors of  matrix A using MATLAB.

(a) A = 
4 1 5
2 1 3
6 7 9

−

−

L

N
M
M

O

Q
P
P

(b) A = 
3 5 7
2 4 8
5 6 10

L

N
M
M

O

Q
P
P

Solution:
(a) A = [4 – 1 5 ; 2 1 3 ; 6 – 7 9]

A =

     4    -1     5

     2     1     3

     6    -7     9

%The eigenvalues of A

format short e

eig(A)

ans =
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  1.0000e+001

  5.8579e-001

  3.4142e+000

%The eigenvectors of A

[Q,d]=eig(A)

Q =

 -5.5709e-001 -8.2886e-001 -7.3925e-001

 -3.7139e-001 -3.9659e-002 -6.7174e-001

 -7.4278e-001  5.5805e-001 -4.7739e-002

d =

  1.0000e+001 0 0

0  5.8579e-001 0

0 0 3.4142e+000

(b) A =
     3     5     7

     2     4     8

     5     6    10

%The eigenvalues of A

format short e

eig(A)

ans =

  1.7686e+001

 -3.4295e-001 +1.0066e+000i

 -3.4295e-001 -1.0066e+000i

%The eigenvectors of A

[Q,d]=eig(A)

Q =

Column 1

  5.0537e-001

  4.8932e-001

  7.1075e-001

Column 2

 -2.0715e-001 -5.2772e-001i

  7.1769e-001

 -3.3783e-001 +2.2223e-001i

Column 3

 -2.0715e-001 +5.2772e-001i

  7.1769e-001

 -3.3783e-001 -2.2223e-001i

d =

Column 1

1.7686e+001

       0

       0
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Column 2

    0

-3.4295e-001 +1.0066e+000i

    0

Column 3

    0

    0

-3.4295e-001 -1.0066e+000i

Example 2.20. Determine the eigenvalues and eigenvectors of  AB using MATLAB.

A = 

3 0 2 1
1 2 5 4
7 1 2 6
1 2 3 4

−
−

L

N

M
M
M

O

Q

P
P
P

B = 

1 3 5 7
2 1 2 4
3 2 1 1
4 1 0 6

− −
L

N

M
M
M

O

Q

P
P
P

Solution:
% MATLAB Program
% The matrix “a” = A*B
>> A = [3 0 2 1; 1 2 5 4; 7 – 1 2 6; 1 – 2 3 4];

>> B = [1 3 5 7; 2 – 1 – 2 4; 3 2 1 1; 4 1 0 6];

>> a = A*B

a =

13 14 17 29

36 15 6 44

35 32 39 83

22 15 12 26

>> eig (a)

Ans. =

98.5461

2.2964

–1.3095

–6.5329

The eigenvectors are :

>> [Q, d] = eig (a)

Q =

–0.3263 –0.2845 0.3908 0.3413

–0.3619 0.7387 –0.7816 –0.9215

–0.8168 –0.6026 0.4769 0.0962

–0.3089 0.1016 –0.0950 0.1586
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d =

98.5461 0 0 0

0 2.2964 0 0

0 0 –1.3095 0

0 0 0 –6.5329

Example 2.21. Solve the following set of equations using MATLAB.
(a) x1 + 2x2 + 3x3 + 5x4 = 21

– 2x1 + 5x2 + 7x3 – 9x4 = 18
5x1 + 7x2 + 2x3 – 5x4 = 25
– x1 + 3x2 – 7x3 + 7x4 = 30

(b) x1 + 2x2 + 3x3 + 4x4 = 8
2x1 – 2x2 – x3 – x4 = – 3

x1 – 3x2 + 4x3 – 4x4 = 8
2x1 + 2x2 – 3x3 + 4x4 = – 2

Solution:
(a)
>> A= [1 2 3 5;–2 5 7 –9; 5 7 2 –5;–1 –3 –7 7];

>> B = [21; 18; 25; 30];

>> S = A\B

S =

– 8.9896

14.1285

– 5.4438

3.6128

% Therefore x1 = – 8.9896, x2 = 14.12.85, x3 = – 5.4438, x4 = 3.6128.
(b)
>> A= [1 2 3 4; 2 -2 -1 1; 1 -3 4 -4; 2 2 -3 4];

>> B = [8;-3; 8;-2];

>> S=A\B

S =

2.0000

2.0000

2.0000

– 1.0000

%Therefore x1 = 2.0000, x2 = 2.0000, x3 = 2.0000, x4 = – 1.0000.

Example 2.22. Use diff command for symbolic differentiation of the following functions:

(a) S1 = ex8

(b) S2 = 3x3 ex5

(c) S3 = 5x3 – 7x2 + 3x + 6
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Solution:
(a)

>> syms x

>> S1=exp(x^8);

>> diff (S1)

ans =

8*x^7*exp(x^8)

(b)
>> S2=3*x^3*exp(x^5);

>> diff (S2)

ans =

9*x^2*exp(x^5)+15*x^7*exp(x^5)

(c)
>> S3=5*x^3-7*x^2+3*x+6;

>> diff (S3)

ans =

15*x^2-14*x+3

Example 2.23. Use MATLAB’s symbolic commands to find the values of the following
integrals.

(a) 
0.2

0.7z  | x | dx

(b) 
0

πz  (cos y + 7y2) dy

(c) x
(d) 7x5 – 6x4 + 11x3 + 4x2 + 8x + 9
(e) cos a
Solution:
(a)

>>syms x, y, a, b

>> S1=abs(x)

>> int (S1, 0.2, 0.7)

 ans =

 9/40

 (b)
>> S2=cos (y) +7*y^2

 >> int (S2, 0, pi)

 ans =

 7/3*pi^3

(c)
>> S3=sqrt (x)

>> int (S3)

 ans =

 2/3*x^ (3/2)
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>> int (S3,'a','b')

 ans =

 2/3*b^ (3/2)-2/3*a^ (3/2)

 >> int (S3, 0.4, 0.7)

 ans =

 7/150*70^ (1/2)-4/75*10^ (1/2)

(d)
>> S4=7*x^5-6*x^4+11*x^3+4*x^2+8*x-9

>> int (S4)

 ans =

 7/6*x^6-6/5*x^5+11/4*x^4+4/3*x^3+4*x^2-9*x

(e)
>> S5=cos (a)

>> int (S5)

 ans =

 sin (a)

Example 2.24. Obtain the general solution of the following first order differential
equations:

(a) 
dy
dt

 = 5t – 6y

(b) 
d y

dt
3

dy
dt

2

2 +  + y = 0

(c) 
ds
dt  = Ax3

(d) 
ds
dA

 = Ax3

Solution:
(a)

>> solve ('Dy=5*t-6*y')

 ans =

 5/6*t-5/36+exp (-6*t)*C1

(b)
>> dsolve ('D2y+3*Dy+y=0')

 ans =

 C1*exp (1/2*(5^ (1/2)-3)*t) +C2*exp (-1/2*(5^ (1/2) +3)*t)

(c)
>> dsolve ('Ds=A*x^3','x')

 ans =

 1/4*A*x^4+C1

(d)
>> dsolve ('Ds=A*x^3','A')

ans =

1/2*A^2*x^3+C1



128 SOLVING VIBRATION ANALYSIS PROBLEMS USING MATLAB

Example 2.25. Determine the solution of the following differential equations that satisfies
the given initial conditions.

(a) 
dy
dx

 = – 7x2 y(1) = 0.7

(b) 
dy
dx

 = 5x cos2 y y(0) = π/4

(c) 
dy
dx

 = – y + e3x y(0) = 2

(d) 
dy
dt

 + 5y = 35 y(0) = 4

Solution:
(a)

>> dsolve ('Dy=-7*x^2','y (1) =0.7')

 ans =

 -7*x^2*t+7*x^2+7/10

(b)
>> dsolve ('Dy=5*x*cos (y) ^2','y (0) =pi/4')

 ans =

 atan (5*t*x+1)

(c)
>> dsolve ('Dy=-y+ exp (3*x)','y (0) =2')

 ans =

 exp (3*x) +exp (-t)*(-exp (3*x) +2)

(d)
>> dsolve ('Dy+5*y=35','y (0) =4')

 ans =

 7-3*exp (-5*t)

Example 2.26. Given the differential equation

d x

dt

2

2  + 7 
dx
dt

 + 5x = 8u(t) t ≥ 0

Using MATLAB program, find
(a) x(t) when all the initial conditions are zero

(b) x(t) when x(0) = 1 and �x(0) = 2.
Solution:
(a) x(t) when all the initial conditions are zero

>> x = dsolve ('D2x = -7*Dx - 5*x +8', 'x (0) = 0')

x =

8/5+ (-8/5-C2)*exp (1/2*(-7+29^ (1/2))*t) +C2*exp (-1/2*(7+29^ (1/2))*t)

(b) x(t) when x(0) = 1 and �x(0)  = 2
>> x = dsolve ('D2x = -7*Dx - 5*x +8', 'x (0) = 1', 'Dx (0) = 2')

x =
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8/5+ (-3/10-1/290*29^ (1/2))*exp (1/2*(-7+29^ (1/2))*t)-1/290*(-1+3*29^

(1/2))*29^ (1/2)*exp (-1/2*(7+29^ (1/2))*t)

Example 2.27. Given the differential equation

d x

dt

2

2  + 12 
dx
dt

 + 15x = 35 t ≥ 0

Using MATLAB program, find
(a) x(t) when all the initial conditions are zero

(b) x(t) when x(0) = 0 and �x(0) = 1.
Solution:
(a) x(t) when all the initial conditions are zero

>> x = dsolve ('D2x = -12*Dx - 15*x +35', 'x (0) = 0')

x =

7/3+ (-7/3-C2)*exp ((-6+21^ (1/2))*t) +C2*exp (-(6+21^ (1/2))*t)

(b) x(t) when x(0) = 0 and �x(0) = 1
>> x = dsolve ('D2x = -12*Dx - 15*x + 35', 'x (0) = 0', 'Dx (0) = 1')

x =

7/3+ (-7/6-13/42*21^ (1/2))*exp ((-6+21^ (1/2))*t)-1/126*

(-39+7*21^ (1/2))*21^ (1/2)*exp (-(6+21^ (1/2))*t)

Example 2.28. Find the inverse of the following matrix using MATLAB.

A = 
s 2 0
2 s 3
3 0 1

−
L

N
M
M

O

Q
P
P

Solution:
>> A = [s 2 0; 2 s -3; 3 0 1];

>> inv (A)

ans =

[s/(s^2-22), -2/(s^2-22), -6/(s^2-22)]

[-11/(s^2-22), s/(s^2-22), 3*s/(s^2-22)]

[-3*s/(s^2-22), 6/(s^2-22), (s^2-4)/(s^2-22)]

Example 2.29. Expand the following function F(s) into partial fractions using MATLAB.
Determine the inverse Laplace transform of F(s).

F(s) = 
1

s 5s 7s4 3 2+ +
The MATLAB program for determining the partial-fraction expansion is given below:
Solution:

>> b = [0 0 0 0 1];

>> a = [1 5 7 0 0];

>> [r, p, k] = residue (b, a)

r =

 0.0510 - 0.0648i

 0.0510 + 0.0648i
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-0.1020

 0.1429

p =

 -2.5000 + 0.8660i

 -2.5000 - 0.8660i

    0

    0

k = [ ]

% From the above MATLAB output, we have the following expression:

F(s) = 
r

s p
r

s p
r

s p
r

s p
1

1

2

2

3

3

4

4−
+

−
+

−
+

−  =

F(s) = 
0 0510 0 0648

2 5000 0 8660
0 0510 0 0648

2 5000 0 8660
. .

( . . )
( . .
( . . )

−
− − +

+ +
− − −

i
s i

i
s i  + 

−
−

+
−

0 1020
0

0 1429
0

. .
s s

% Note that the row vector k is zero implies that there is no constant term in this
example problem.

% The MATLAB program for determining the inverse Laplace transform of F(s) is given
below:

>> syms s

>> f = 1/(s^4 + 5*s^3 + 7*s^2);

>> ilaplace (f)

ans =

1/7*t-5/49+5/49*exp (-)*cos (1/2*3^ (1/2)*t) +11/147*exp (-5/2*t)*3^

(1/2)*sin(1/2*3^(1/2)*t)

Example 2.30. Expand the following function F(s) into partial fractions using MATLAB.
Determine the inverse Laplace transform of F(s).

F(s) = 
5s 3s 6

s 3s 7s 9s 12

2

4 3 2
+ +

+ + + +
Solution:
The MATLAB program for determining the partial-fraction expansion is given below:

>> b = [0 0 5 3 6];

>> a = [1 3 7 9 12];

>> [r,p,k] = residue(b,a)

r =

 -0.5357 - 1.0394i

 -0.5357 + 1.0394i

  0.5357 - 0.1856i

  0.5357 + 0.1856i

p =

 -1.5000 + 1.3229i

 -1.5000 - 1.3229i

 -0.0000 + 1.7321i

 -0.0000 - 1.7321i

k = [ ]
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% From the above MATLAB output, we have the following expression:

F(s) = 
r

s p
r

s p
r

s p
r

s p
1

1

2

2

3

3

4

4−
+

−
+

−
+

−
 =

F(s) = 
− −
− − +

+ − +
− − +

0 5357 0 0394
1500 13229

0 5357 10394
1500 1 3229

. .
( . . )

( . . )
( . . )

i
s i

i
s i

+ 
0 5357 0 1856

0 17321
0 5357 0 1856

0 17321
. .

( . )
. .

( . )
−

− − +
+ −

− − −
i

s i
i

s i
% Note that the row vector k is zero implies that there is no constant term in this

example problem.
% The MATLAB program for determining the inverse Laplace transform of F(s) is given

below:
>> syms s

>> f = (5*s^2 + 3*s +6)/(s^4 + 3*s^3 + 7*s^2 + 9*s +12);

>> ilaplace(f)

ans =

11/14*exp(-3/2*t)*7^(1/2)*sin(1/2*7^(1/2)*t)-15/14*exp(-3/2*t)*cos

(1/2*7^(1/2)*t)+3/14*3^(1/2)*sin(3^(1/2)*t)+15/14*cos(3^(1/2)*t)

Example 2.31. For the following function F(s):

F(s) = 
s 3s 5s 7s 25

s 5s 20s 40s 45

4 3 2

4 3 2
+ + + +

+ + + +
Using MATLAB, find the partial-fraction expansion of F(s). Also, find the inverse Laplace

transformation of F(s).
Solution:

F(s) = 
s s s s

s s s s

4 3 2

4 3 2

3 5 7 25
5 20 40 45
+ + + +

+ + + +
The partial-fraction expansion of F(s) using MATLAB program is given as follows:

num = [ 1  3  5  7  25];

den = [1  5  20  40  45];

[r,p,k] = residue(num,den)

r =

  -1.3849 + 1.2313i

  -1.3849 - 1.2313i

   0.3849 - 0.4702i

   0.3849 + 0.4702i

p =

  -0.8554 + 3.0054i

  -0.8554 - 3.0054i

  -1.6446 + 1.3799i

  -1.6446 - 1.3799i

k =

     1
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From the MATLAB output, the partial-fraction expansion of F(s) can be written as follows:

F(s) = 
r

s p
r

s p
r

s p
r

s p
k1

1

2

2

3

3

4

4( ) ( ) ( ) ( )−
+

−
+

−
+

−
+

F(s) = 
( 1.3849 1.2313)
( 0.8554 3.005)

( 1.3849 1.2313)
( 0.8554 3.005)

− +
+ −

+ − −
+ +

j
s j

j
s j

+ 
(0.3849 0.4702)

( 1.6446 1.3799)
(0.3849 0.4702)

( 1.6446 1.3779)
1

−
+ −

+ +
+ +

+j
s j

j
s j

Example 2.32. Obtain the partial-fraction expansion of the following function using
MATLAB:

F(s) = 
8(s 1) (s 3)

(s 2) (s 4) (s 6)2
+ +

+ + +
Solution:

F(s) = 
8 1 3
2 4 6

8 8 3
6 8 12 362 2 2

( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( )

s s
s s s

s s
s s s s

+ +
+ + +

= + +
+ + + +

The partial fraction expansion of F(s) using MATLAB program is given as follows:
EDU>> num=conv([8 8],[1 3]);

EDU>> den=conv([1 6 8],[1 12 36]);

EDU>> [r,p,k]=residue(num,den)

r =

    3.2500

   15.0000

   -3.0000

   -0.2500

p =

   -6.0000

   -6.0000

   -4.0000

   -2.0000

k = [ ]

From the above MATLAB result, we have the following expansion:

F(s) = 
r

s p
r

s p
r

s p
r

s p
1

1

2

2

3

3

4

4( ) ( ) ( ) ( )−
+

−
+

−
+

−
 + k

F(s) = 
3 25

6
15

15
3
3

0 25
0 25

.
( ) ( ) ( )

.
( . )s s s s+

+
−

+ −
+

+ −
+

 + 0

It should be noted here that the row vector k is zero, because the degree of the numerator
is lower than that of the denominator.

F(s) = 3.25e–6t + 15e15t – 3e–3t – 0.25e–0.25t

Example 2.33. Find the Laplace transform of the following function using MATLAB.
(a) f(t) = 7t3 cos (5t + 60°)
(b) f(t) = – 7t e–5t

(c) f(t) = – 3 cos 5t
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(d) f(t) = t sin 7t
(e) f(t) = 5 e–2t cos 5t
(f) f(t) = 3 sin (5t + 45º)
(g) f(t) = 5 e–3t cos (t – 45°)
Solution:
% MATLAB Program
>> syms t %tell MATLAB that "t" is a symbol.

>> f = 7 * t^3*cos(5*t + (pi/3)); % define the function.

>> laplace(f)

ans =

-84/(s^2+25)^3*s^2+21/(s^2+25)^2+336*(1/2*s-5/2*3^(1/2))/(s^2+25)

^4*s^3-168*(1/2*s-5/2*3^(1/2))/(s^2+25)^3*s

>> pretty(laplace(f)) % the pretty function prints symbolic output
% in a format that resembles typeset mathematics.

2 1/2 3
s 21 (1/2 s – 5/2 3) s

  – 84 ---------- + ---------- + 336 ---------------------
2 3 2 2 2 4

(s + 25) (s + 25) (s + 25)
                                       1/2
                   (1/2 s – 5/2 3) s

– 168 --------------------
2 3

(s + 25)
(b) >>syms t x

>>f = -7*t*exp(-5*t);

>> laplace(f,x)

ans =

-7/(x+5)^2

(c) >>syms t x

>>f = -3*cos(5*t);

>> laplace(f,x)

ans =

-3*x/(x^2+25)

(d) >>syms t x

>>f = t*sin(7*t);

>> laplace(f,x)

ans =

1/(x^2+49)*sin(2*atan(7/x))

(e) >>syms t x

>>f = 5*exp(-2*t)*cos(5*t);

>> laplace(f,x)
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ans =

5*(x+2)/((x+2)^2+25)

(f ) >>syms t x

>>f = 3*sin(5*t + (pi/4));

>> laplace(f,x)

ans =

3*(1/2*x*2^(1/2)+5/2*2^(1/2))/(x^2+25)

(g) >>syms t x

>>f = 5*exp(-3*t)*cos(t-(pi/4));

>> laplace(f,x)

ans =

5*(1/2*(x+3)*2^(1/2)+1/2*2^(1/2))/((x+3)^2+1)

Example 2.34. Generate partial-fraction expansion of the following function.

F(s) = 
10 (s 7) (s 13)

s(s 25) (s 55) (s 7s 75) (s 7s 45)

5

2 2
+ +

+ + + + + +
Solution:
Generate the partial fraction expansion of the following function:
numg=poly[-7 -13];

numg=poly([-7 -13]);

deng=poly([0 -25 -55 roots([1 7 75])' roots([1 7 45])']);

[numg,deng]=zp2tf(numg',deng',1e5);

Gtf=(numg,deng);

Gtf=tf(numg,deng);

G=zpk(Gtf);

[r,p,k]=residue(numg,deng)

r =

  1.0e-017 *

    0.0000

   -0.0014

    0.0254

   -0.1871

    0.1621

   -0.0001

    0.0000

    0.0011

p =

  1.0e+006 *

    4.6406

    1.4250

    0.3029

    0.0336

    0.0027

    0.0001
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    0.0000

         0

k = [ ]

Example 2.35. Determine the inverse Laplace transform of the following functions using
MATLAB.

(a) F(s) = 
s

s(s 2) (s 6)+ +

(b) F(s) = 
1

s (s 5)2 +

(c) F(s) = 
3s 1

(s 2s 9)2

+
+ +

(d) F(s) = 
s 25

s(s 3s 20)2

−
+ +

Solution:
(a) >> syms s

>> f = s/(s*((s + 2)*(s + 6)));

>> ilaplace(f)

ans =

1/2*exp(-4*t)*sinh(2*t)

(b) >> syms s

>> f = 1/((s^2)*(s + 5));

>> ilaplace(f)

ans =

1/3*t-2/9*exp(-3/2*t)*sinh(3/2*t)

(c) >>syms s

>> f=(3*s+1)/(s^2+2*s+9);

>> ilaplace(f)

ans =

3*exp(-t)*cos(2*2^(1/2)*t)-1/2*2^(1/2)*exp(-t)*sin(2*2^(1/2)*t)

(d) >>syms s

>> f = (s -25)/(s*(s^2 + 3*s +25));

>> ilaplace(f)

ans =

5/4*exp(-3/2*t)*cos(1/2*71^(1/2)*t)+23/284*71^(1/2)*exp(-3/2*t)

*sin(1/2*71^(1/2)*t)-5/4

Example 2.36. Find the inverse Laplace transform of the following function
using MATLAB.

G(s) = 
(s 9s 7) (s 7)

(s 2) (s 3) (s 12s 150)

2

2
+ + +

+ + + +
 .
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Solution:
% MATLAB Program
>> syms s % tell MATLAB that "s" is a symbol.

>>G = (s^2 + 9*s +7)*(s + 7)/[(s + 2)*(s + 3)*(s^2 + 12*s + 150)]; % define
the function.

>>pretty(G) % the pretty function prints symbolic output

% in a format that resembles typeset mathematics.

(s  + 9 s + 7) (s + 7)

---------------------------------

(s + 2) (s + 3) (s  + 12 s + 150)

>> g = ilaplace(G); % inverse Laplace transform

>>pretty(g)

                     44              2915 1/2

  - 7/26 exp(-2 t) + --- exp(-3 t) + ------ exp(-6 t) cos(114 t)

                     123              3198

889 1/2 1/2

+ ------- exp(-6 t) 114 sin(114 t)

20254

Example 2.37. Generate the transfer function using MATLAB.

G(s) = 
3(s 9) (s 21) (s 57)

s(s 30) (s 5s 35) (s 28s 42)2 2
+ + +

+ + + + +
using
(a) the ratio of factors
(b) the ratio of polynomials
Solution:
% MATLAB Program:
'a. The ratio of factors'

>>Gzpk = zpk([-9 -21 -57] , [0 -30 roots([1 5 35])'roots([1 28 42])'],3)

% zpk is used to create zero-pole-gain models or to convert TF or

% SS models to zero-pole-gain form.

'b. The ratio of polynomials'

>> Gp = tf(Gzpk)  % generate the transfer function

% Computer response:

ans =

(a) The ratio of factors
Zero/pole/gain:

3 (s+9) (s+21) (s+57)

-------------------------------------------

s (s+30) (s+26.41) (s+1.59) (s^2 + 5s + 35)

ans =
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(b) The ratio of polynomials
Transfer function:

3 s^3 + 261 s^2 + 5697 s + 32319

--------------------------------------------------------

s^6 + 63 s^5 + 1207 s^4 + 7700 s^3 + 37170 s^2 + 44100 s

Example 2.38. Generate the transfer function using MATLAB.

G(s) = 
s 20s 27s 17s 35

s 8s 9s 20s 29s 32

4 3 2

5 4 3 2
+ + + +

+ + + + +
using
(a) the ratio of factors
(b) the ratio of polynomials
Solution:
% MATLAB Program:
% a. the ratio of factors

>>Gtf = tf([1 20 27 17 35] , [1 8 9 20 29 32]) % generate the

% transfer function

% Computer response:

Transfer function:

s^4 + 20 s^3 + 27 s^2 + 17 s + 35

---------------------------------

s^4 + 8 s^3 + 9 s^2 + 20 s + 29

% b. the ratio of polynomials

>> Gzpk = zpk(Gtf)  % zpk is used to create zero-pole-gain models

% or to convert TF or SS models to zero-pole-gain form.

% Computer response:

Zero/pole/gain:

(s+18.59) (s+1.623) (s^2 - 0.214s + 1.16)

--------------------------------------------

(s+7.042) (s+1.417) (s^2 - 0.4593s + 2.906)

����������	


In this chapter the MATLAB environment which is an interactive environment for numeric
computation, data analysis, and graphics was presented. Arithmetic operations, display formats,
elementary built-in functions, arrays, scalars, vectors or matrices, operations with arrays
including dot product, array multiplication, array division, inverse and transpose of a matrix,
determinants, element by element operations, eigenvalues and eigenvectors, random number
generating functions, polynomials, system of linear equation, script files, programming in
MATLAB, the commands used for printing information and generating 2-D and 3-D plots,
input/output in MATLAB was presented with illustrative examples. MATLAB's functions for
symbolic mathematics were introduced. These functions are useful in performing symbolic
operations and developing closed-form expressions for solutions to linear algebraic equations,
ordinary differential equations and systems of equations. Symbolic mathematics for determining
analytical expressions for the derivative and integral of an expression was also presented.
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P2.1 Compute the following quantity using MATLAB in the Command Window:

17 5 1
15 13

5

121
11

2 2

7
10

3
4[ ]

[ ]

log ( )
ln ( )

−
−

+ + +
e

e
π
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P2.2 Compute the following quantity using MATLAB in the Command Window:

B = 
tan sin

cos
x x

x
+ 2

 + log | x5 – x2 | + cosh x – 2 tanh x

for x = 
5
6
π

.

P2.3 Compute the following quantity using MATLAB in the Command Window:

x = a + ab
c

a b

ab

( )

| |

+  + ca + 14
3

b

e c
 + ln(2) + 

log
log ( )

10

10

c
a b c+ +  + 2 sinh a – 3 tanh b

for a = 1, b = 2 and c = 1.8.
P2.4 Use MATLAB to create

(a) a row and column vectors that has the elements: 11, – 3, e7.8, ln (59), tan (π/3), 5 log10(26).
(b) a row vector with 20 equally spaced elements in which the first element is 5.
(c) a column vector with 15 equally spaced elements in which the first element is – 2.

P2.5 Enter the following matrix A in MATLAB and create:

A = 

1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40

L

N

M
M
M
M
M

O

Q

P
P
P
P
P

(a) a 4 × 5 matrix B from the 1st, 3rd, and the 5th rows, and the 1st, 2nd, 4th, and 8th

columns of the matrix A.
(b) a 16 elements-row vector C from the elements of the 5th row, and the 4th and 6th

columns of the matrix A.

P2.6 Given the function  y = x ex2 0.02
1 8

+ +e j
.

ln x. Determine the value of y for the following

values of x: 2, 3, 8, 10, – 1, – 3, – 5, – 6.2. Solve the problem using MATLAB by first
creating a vector x, and creating a vector y, using element-by-element calculations.

P2.7 Define a and b as scalars, a = 0.75, and b = 11.3, and x, y and z as the vectors, x = 2, 5, 1,
9, y = 0.2, 1.1, 1.8, 2 and z = – 3, 2, 5, 4. Use these variables to calculate A using element-
by-element computations for the vectors with MATLAB.

A = 
x y z
a b

a

z
x

y

zb a

1 2 5

3

2.1

/( )

−

+
+

+F
HG

I
KJ

P2.8 Enter the following three matrices in MATLAB and show that

A = 
1 2 3
8 5 7
8 4 6

12 5 4
7 11 6
1 8 13

7 13 4
2 8 5
9 6 11

−
−

L

N
M
M

O

Q
P
P =

−L

N
M
M

O

Q
P
P = − −

−

L

N
M
M

O

Q
P
PB C

(a) A + B = B + A
(b) A + (B + C) = (A + B)C
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(c) 7(A + C) = 7(A) + 7(C)
(d) A * (B + C) = A * B + A * C

P2.9 Consider the function

H(s) = 
n s
d s

( )
( )

where n(s) = s4 + 6s3 + 5s2 + 4s + 3
d(s) = s5 + 7s4 + 6s3 + 5s2 + 4s + 7

(a) Find n (– 10), n (– 5), n (– 3), and n (– 1)
(b) Find d (– 10), d (– 5), d (– 3), and d (– 1)
(c) Find H(– 10), H(– 5), H(– 3), and H(– 1)

P2.10 Consider the polynomials
p1(s) = s3 + 5s2 + 3s + 10
p2(s) = s4 + 7s3 + 5s2 + 8s + 15
p3(s) = s5 + 15s4 + 10s3 + 6s2 + 3s + 9

Determine
(a) p1(2), p2(2), and p3(3)
(b) p1(s) p2(s) p3(s)
(c) p1(s) p2(s)/p3(s)

P2.11 The following polynomials are given:
p1(x) = x5 + 2x4 – 3x3 + 7x2 – 8x + 7
p2(x) = x4 + 3x3 – 5x2 + 9x + 11
p3(x) = x3 – 2x2 – 3x + 9
p4(x) = x2 – 5x + 13
p5(x) = x + 5

Use MATLAB functions with polynomial coefficient vectors to evaluate the expressions
at x = 2.

P2.12 Determine the roots of the following polynomials:
(a) p1(x) = x7 + 8x6 + 5x5 + 4x4 + 3x3 + 2x2 + x + 1
(b) p2(x) = x6 – 7x6 + 7x5 + 15x4 – 10x3 – 8x2 + 7x + 15
(c) p3(x) = x5 – 13x4 + 10x3 + 12x2 + 8x – 15
(d) p4(x) = x4 + 7x3 + 12x2 – 25x + 8
(e) p5(x) = x3 + 15x2 – 23x + 105
(f) p6(x) = x2 – 18x + 23
(g) p7(x) = x + 7

P2.13 Consider the two matrices

A = 
1 0 2
2 5 4
1 8 7−

L

N
M
M

O

Q
P
P  and B = 

7 8 2
3 5 9
1 3 1−

L

N
M
M

O

Q
P
P

Using MATLAB, determine the following:
(a) A + B
(b) AB



MATLAB BASICS 141

(c) A2

(d) AT

(e) B–1

(f) BTAT

(g) A2 + B2 – AB
(h) determinant of A, determinant of B and determinant of AB.

P2.14 Use MATLAB to define the following matrices:

A = 
2 1
0 5
7 4

L

N
M
M

O

Q
P
P  B = 

5 3
2 4− −

L
NM

O
QP

C = 
2 3
5 2
0 3

− −
L

N
M
M

O

Q
P
P D = 1 2

Compute matrices and determinants if they exist.
(a) (ACT)-1

(b) | B |
(c) | ACT |
(d) (CTA)–1

P2.15 Consider the two matrices

A = 
3 2
5 10 2

π
j j+

L
NM

O
QP  B = 

7 15
2 18

j j−L
NM

O
QPπ

Using MATLAB, determine the following:
(a) A + B
(b) AB
(c) A2

(d) AT

(e) B–1

(f) BTAT

(g) A2 + B2 – AB
P2.16 Consider the two matrices

A = 
1 0 1
2 3 4
1 6 7−

L

N
M
M

O

Q
P
P
 and B = 

7 4 2
3 5 6
1 2 1−

L

N
M
M

O

Q
P
P

Using MATLAB, determine the following:
(a) A + B
(b) AB
(c) A2

(d) AT

(e) B–1

(f) BTAT
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(g) A2 + B2 – AB
(h) det A, det B, and det of AB.

P2.17 Find the inverse of the following Matrices:

(a) A = 
3 2 1
1 5 4
5 7 9

−
−

L

N
M
M

O

Q
P
P (b) B = 

1 6 3
4 5 7
8 4 2

− −
L

N
M
M

O

Q
P
P (c) C = 

− −
−

− −

L

N
M
M

O

Q
P
P

1 2 5
4 7 2
7 8 1

P2.18 Find the inverse of the following matrices using MATLAB.

(a) 
3 2 0
2 1 7
5 4 9

−
L

N
M
M

O

Q
P
P (b) 

−
−

L

N
M
M

O

Q
P
P

4 2 5
7 1 6
2 3 7

(c) 
− −

−

L

N
M
M

O

Q
P
P

1 2 5
4 3 7
7 6 1

(d) 
3 2 1
1 2 4
5 7 8

−
−

L

N
M
M

O

Q
P
P (e) 

1 2 3
4 5 7
8 4 1

− −
L

N
M
M

O

Q
P
P (f) 

− −
−

−

L

N
M
M

O

Q
P
P

1 2 5
4 5 6
7 8 1

P2.19 Determine the eigenvalues and eigenvectors of the following matrices using MATLAB.

A = 
1 2
1 5

−L
NM

O
QP   , B = 

1 5
2 7−

L
NM

O
QP

P2.20 If A = 
4 6 2
5 6 7

10 5 8

L

N
M
M

O

Q
P
P

Use MATLAB to determine the following:
(a) the three eigenvalues of A
(b) the eigenvectors of A
(c) Show that AQ = Qd where Q is the matrix containing the eigenvectors as columns

and d is the matrix containing the corresponding eigenvalues on the main diagonal
and zeros elsewhere.

P2.21 Determine eigenvalues and eigenvector of A using MATLAB.

(a) A = 0 5 0 8
0 75 10

. .
. .

−L
NM

O
QP

 (b) A = 
8 3
3 4−

L
NM

O
QP

P2.22 Determine the eigenvalues and eigenvectors of the following matrices using MATLAB.

(a) A = 
1 2
1 3

−L
NM

O
QP (b) A = 

1 5
2 4−

L
NM

O
QP

(c) A = 
4 1 5
2 1 3
6 7 9

−

−

L

N
M
M

O

Q
P
P (d) A = 

3 5 7
2 4 8
5 6 10

L

N
M
M

O

Q
P
P

(e) A = 

3 0 2 1
1 2 5 4
7 1 2 6
1 2 3 4

−
−

L

N

M
M
M

O

Q

P
P
P

(f) A = 

1 3 5 7
2 1 2 4
3 2 1 1
4 1 0 6

− −
L

N

M
M
M

O

Q

P
P
P
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P2.23 Determine the eigenvalues and eigenvectors of A * B using MATLAB.

A = 

3 1 2 1
1 2 7 4
7 1 8 6
1 2 3 4

−

−
−

L

N

M
M
M

O

Q

P
P
P

 B = 

1 2 5 7
2 1 2 4
3 2 5 1
4 1 3 6

− −

−

L

N

M
M
M

O

Q

P
P
P

P2.24 Determine the eigenvalues and eigenvectors of the following matrices using MATLAB.

(a) A = 
1 2
1 3

−L
NM

O
QP (b) A = 

1 5
2 4−

L
NM

O
QP

(c) A = 
4 1 5
2 1 3
6 7 9

−

−

L

N
M
M

O

Q
P
P (d) A = 

3 5 7
2 4 8
5 6 10

L

N
M
M

O

Q
P
P

(e) A = 

3 0 2 1
1 2 5 4
7 1 2 6
1 2 3 4

−
−

L

N

M
M
M

O

Q

P
P
P

(f) A = 

1 3 5 7
2 1 2 4
3 2 1 1
4 1 0 6

− −
L

N

M
M
M

O

Q

P
P
P

P2.25 Determine the eigenvalues and eigenvectors of A and B using MATLAB

(a) A = 
4 5 3
1 2 3
2 5 7

−
−
L

N
M
M

O

Q
P
P

B = 
1 2 3
8 9 6
5 3 1−

L

N
M
M

O

Q
P
P

P2.26 Determine the eigenvalues and eigenvectors of A = a*b using MATLAB.

a = 

6 3 4 1
0 4 2 6
1 3 8 5
2 2 1 4

−L

N

M
M
M

O

Q

P
P
P

b = 

0 1 2 3
4 5 6 1
1 5 4 2
2 3 6 7

−

−

L

N

M
M
M

O

Q

P
P
P

P2.27 Determine the values of x, y, and z for the following set of linear algebraic equations:
x2 – 3x3 = – 7

2x1 + 3x2 – x3 = 9
4x1 + 5x2 – 2x3 = 15

P2.28 Determine the values of x, y, and z for the following set of linear algebraic equations:
(a) 2x + y – 3z = 11

 4x – 2y + 3z = 8
– 2x + 2y – z = – 6

(b) 2x – y = 10
– x + 2y – z = 0

–  y + z = – 50
P2.29 Solve the following set of equations using MATLAB.

(a) 2x1 + x2 + x3 – x4 = 12
x1 + 5x2 – 5x3 + 6x4 = 35

– 7x1 + 3x2 – 7x3 – 5x4 = 7
x1 – 5x2 + 2x3 + 7x4 = 21
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(b) x1 – x2 + 3x3 + 5x4 = 7
2x1 + x2 – x3 + x4 = 6

– x1 – x2 – 2x3 + 2x4 = 5
x1 + x2 – x3 + 5x4 = 4

P2.30 Solve the following set of equations using MATLAB.
(a) 2x1 + x2 + x3 – x4 = 10

x1 + 5x2 – 5x3 + 6x4 = 25
– 7x1 + 3x2 – 7x3 – 5x4 = 5

x1 – 5x2 + 2x3 + 7x4 = 11
(b) x1 – x2 + 3x3 + 5x4 = 5

2x1 + x2 – x3 + x4 = 4
– x1 – x2 + 2x3 + 2x4 = 3

 x1 + x2 – x3 + 5x4 = 1
P2.31 Solve the following set of equations using MATLAB.

(a) x1 + 2x2 + 3x3 + 5x4 = 21
– 2x1 + 5x2 + 7x3 – 9x4 = 17

5x1 + 7x2 + 2x3 – 5x4 = 23
– x1 – 3x2 – 7x3 + 7x4 = 26

(b) x1 + 2x2 + 3x3 + 4x4 = 9
  2x1 – 2x2 – x3 + x4 = – 5
x1 – 3x2 + 4x3 – 4x4 = 7

2x1 + 2x2 – 3x3 + 4x4 = – 6
P2.32 Generate a plot of

y(x) = e–0.7x sin ωx
where ω = 15 rad/s, and 0 ≤ x ≤ 15. Use the colon notation to generate the x vector in
increments of 0.1.

P2.33 Plot the following functions using MATLAB.
(a) r2 = 5 cos 3 t 0 ≤ t ≤ 2π
(b) r2 = 5 cos 3 t 0 ≤ t ≤ 2π

x = r cos t,  y = r sin t
(c) y1 = e–2x cos x 0 ≤ x ≤ 20

y2  = e2x

(d) y =  cos (x)/x – 5π  ≤ x ≤ 5π
(e) f = e–3t/5 cos t 0 ≤ t ≤ 2π
(f) z = – (1/3) x2 + 2xy + y2 | x | ≤ 7 ,  |y| ≤ 7

P2.34 Use MATLAB for plotting 3-D data for the following functions:

(a) z = cos x cos y e
x y−

+2 2

5    | x |  ≤ 7, | y |  ≤ 7

(b) Discrete data plots with stems
x = t,   y = t cos (t)
z = et/5 – 2 0 ≤ x ≤ 5π
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(c) An ellipsoid of radii  rx = 1, ry = 2.5 and  rz = 0.7 centered  at the origin
(d) A cylinder generated by

r = sin (5πz) + 3 0 ≤ z ≤ 1
0 ≤ θ ≤ 2π

P2.35 Obtain the plot of the points for 0 ≤ t ≤ 6π when the coordinates x, y, and z are given as
a function of the parameter t as follows:

x = t tsin ( )3

y = t tcos ( )3

z = 0.8t

P2.36 Obtain the mesh and surface plots for the function z = 
2 2

2 2

xy
x y+

 over the domain – 2 ≤ x

≤ 6 and 2 ≤ y ≤ 8.

P2.37 Plot the function z = 2 1 5 2 2− +. x y  sin(x) cos (0.5y) over the domain – 4 ≤ x ≤ 4 and – 4 ≤ y
≤ 4.

(a) Mesh plot
(b) Surface plot
(c) Mesh curtain plot
(d) Mesh and contour plot
(e) Surface and contour plot
(f) Surface plot with lighting
(g) Waterfall plot
(h) 3-D contour plot
(i) 2-D contour plot

P2.38 Plot the function y = |x| cos (x) for – 200 ≤ x ≤ 200.
P2.39 Plot the following functions on the same plot for 0 ≤ x ≤ 2π using the plot function:

(a) sin2(x)
(b) cos2x
(c) cos(x)

P2.40 (a) Generate an overlay plot for plotting three lines
y1 = sin t
y2 = t

y3 = t
t t t

− + +
3 5 7

3 5 7! ! !
0 ≤ t ≤ 2π

Use   (i) the plot command
 (ii) the hold command
(iii) the line command











CHAPTER 3

MATLAB Tutorial
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MATLAB has an excellent collection of commands and functions that are useful for solving
vibration analysis problems.  The problems presented in this chapter are basic linear vibrating
systems and are normally presented in introductory mechanical vibrations courses. The
application of MATLAB to the analysis vibrating systems is presented in this chapter with a
number of illustrative examples. The MATLAB computational approach to the transient
response analysis to the simple inputs is presented.

��� 
�����
������
��� ��	����
�����

Example 3.1. Write a MATLAB script for plotting
(a) the non-dimensional response magnitude for a system with harmonically moving base

shown in Fig. E3.1.
(b) the response phase angle for system with harmonically moving base.

m

k c

x(t)

y(t)

Fig. E3.1 Single degree of freedom system with moving base.

Solution:
The magnitude of the frequency response is given as

|G (iω)| = 
1

1 2
2 2 2

1/2

−
F
HG

I
KJ

L

N
M
M

O

Q
P
P +

F
HG

I
KJ

L

N

M
M
M

O

Q

P
P
P

ω
ω

ζ ω
ωn n

150
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The magnitude of X (iω) is given as

|X (iω)| = 1
2

2 1/2

+
F
HG

I
KJ

L

N
M
M

O

Q
P
P

ζω
ω n

 |G (iω) |A

where y (t) = Re Aiωt

x (t) = X (iω) eiωt

The phase angle φ is given as

φ(ω) = tan–1 

2

1
2

3

2 2

ζ ω
ω

ω
ω

ζω
ω

n

n n

F
HG

I
KJ

−
F
HG

I
KJ +

F
HG

I
KJ

L

N

M
M
M
M
M

O

Q

P
P
P
P
P

The frequency ratio

r = 
ω

ωn

The non-dimensional response magnitude is given as the transmissibility

| ( )|X i
A

ω
  = 

1
2

1
2

2

2 2

+
F
HG

I
KJ

−
F
HG

I
KJ +

F
HG

I
KJ

L

N

M
M
M
M
M

O

Q

P
P
P
P
P

ζω
ω

ω
ω

ζω
ω

n

n n

Based on these equations MATLAB script is written as follows:
zeta= [0.05; 0.1; 0.15; 0.25; 0.5; 1.25; 1.5]; % damping factors

r= [0:0.01:3]; %frequency ratio

for k=1: length (zeta)

    G(k,:)=sqrt((1+(2*zeta(k)*r).^2)./((1-r.^2).^2+(2*zeta(k)*r).^2));

    phi(k,:)=atan2(2*zeta(k)*r.^3,1-r.^2+(2*zeta(k)*r).^2);

end

figure (1)

plot(r, G)

xlabel ('\omega/\omega_n')

ylabel ('|x (i\omega)|/A')

grid

legend ('\zeta_1=0.05','\zeta_2=0.1','\zeta_3=0.15','\zeta_4

=0.25','\zeta_5=0.5','\zeta_6=1.25','\zeta_7=1.5')

figure (2)

plot(r, phi)

xlabel ('\omega/\omega_n')

ylabel ('\phi (\omega)')

grid

ha=gca;

set (ha,'ytick',[0:pi/2:pi])



152 SOLVING VIBRATION ANALYSIS PROBLEMS USING MATLAB

set(ha,'yticklabel',{[];'pi/2';'p'})

legend('\zeta_1=0.05','\zeta_2=0.1','\zeta_3=0.15','\zeta_

4=0.25','\zeta_5=0.5','\zeta_6=1.25','\zeta_7=1.5')

The output of this program is shown in Fig. E3.1(a) and (b).

12

10

8

6

4

2

0
0 0.5 1 1.5 2 2.5 3

�/�n

|x
(i

)|
/a

�

�1 = 0.05

�2 = 0.1

�3 = 0.15

�4 = 0.25

�5 = 0.5

�6 = 1.25
�7 = 1.5

(a)

�
�(

) pi/2

0 1 1.5 20.5 2.5 3

� �/ n

�1 = 0.05

�2 = 0.1

�3 = 0.15

�4 = 0.25

�5 = 0.5

�6 = 1.25

�7 = 1.5

(b)

Fig. E3.1
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Example 3.2. An analytical expression for the response of an damped single degree of
freedom system (Fig. E3.2) to given initial displacement and velocity is given by

x(t) = C e nt−ζω   cos (ωdt – φ)
where C and φ represent the amplitude and phase angle of the response, respectively having the
values

C = x
x v

0
2 n 0 0

d

2

+
+F

HG
I
KJ

ζω
ω

 , φ = tan–1 
ζω

ω
n 0 0

d 0

x v
x
+F

HG
I
KJ  and   ωd = 1 2− ζ  ωn

m

k

x(t)

c

Fig. E3.2

Plot the response of the system using MATLAB for ωn = 5rad/s, ζ = 0.05, 0.1, 0.2 subjected

to the initial conditions x(0) = 0,  �x(0) = v0 = 60 cm/s.
Solution:
clear

clf

wn=5; % Natural frequency

zeta=[0.05;0.1;0.2]; % Damping ratio

x0=0; % Initial displacement

v0=60; % Initial velocity

t0=0; % Initial time

deltat=0.01; % Time step

tf=6; % Final time

t=[t0:deltat:tf];

for i=1:length(zeta),

   wd=sqrt(1-zeta(i)^2)*wn; % Damped frequency

   x=exp(-zeta(i)*wn*t).*(((zeta(i)*wn*x0+v0)/wd)*sin(wd*t)

+ x0*cos(wd*t));

   plot(t,x)

         hold on

end

title('Response to initial excitations')

xlabel('t[s]')

ylabel('x(t)')

grid
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The output of this program is as follows:

 

Response to initial excitations
15

10

5

0

– 5

– 10
0 1 2 3 4 5 6

t[s]

� = 0.05

� = 0.1

� = 0.2

Fig. E3.2(a)

Example 3.3. Plot the response of the system in Problem E3.2 using MATLAB for ωn = 5
rad/sec, ζ = 1.3, 1.5, 2.0 subjected to the initial conditions x(0) = 0,  �x(0) = v0 = 60 cm/s.

Solution:
Changing the program slightly, with zeta = [1.3, 1.5, 2.0] in E3.2, we obtain Fig. E3.3.

 

Response to initial excitations

3.5

3

2.5

2

1.5

1

0.5

0

4

x(
t)

0 0.5 1 21.5 2.5 3
t[s]

����	
�

����	
�

����

�

Fig. E3.3
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Example 3.4. Plot the response of the system in Problem E3.2 using MATLAB for ωn = 5
rad/sec and ζ = 1.0 subjected to the initial conditions x(0) = 0,  �x(0)  = v0 = 60 cm/s.

Solution:
The solution obtained is shown in Fig. E3.4.

 

Response to initial excitations
4.5

4

3.5

3

2.5

2

1.5

1

0.5

0

x(
t)

0 1 2 3 4 5 6
t[s]

Fig. E3.4

Example 3.5. Write MATLAB script for plotting the magnitude of the frequency response
of a system with rotating unbalanced masses as shown in Fig. E3.5.

M – m

k c

m
e

�

Fig. E3.5 Single degree of freedom system with rotating eccentric mass.

Hint: The magnitude of the frequency response is given as

 |G(iω)| = 
1

1 2
2 2 2

1/2

−
F
HG

I
KJ

F
H
GG

I
K
JJ +

F
HG

I
KJ

L

N
M
M
M

O

Q
P
P
P

ω
ω

ζ ω
ωn n

Solution:
The magnitude of the frequency response is given as

 |G(iω)| = 
1

1 2
2 2 2

1/2

−
F
HG

I
KJ

F
H
GG

I
K
JJ +

F
HG

I
KJ

L

N
M
M
M

O

Q
P
P
P

ω
ω

ζ ω
ωn n
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for ζ = 0.05, 0.01, 0.15, 0.20, 0.20, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5.
r = ω/ωn = 0 to 3 in steps of 0.01.
Following MATLAB program is developed:
zeta=[0.05;0.1;0.15;0.25;0.5;1;1.25;1.5]; % Damping factors

r=[0:0.01:3]; % Frequency ratios

for k=1:length(zeta),

   G=(r.^2)./sqrt((1-r.^2).^2+(2*zeta(k)*r).^2);

   plot(r,G)

   hold on

end

xlabel('\omega/\omega_n')

ylabel('({\omega/\omega_n})^2|G(I\omega)|')

grid

Fig. E3.5 (a) shows the output of the program

(
/

)
|G

(l
)|

�
�

�
n

2

10

9

8

7

6

5

4

3

2

1

0
0 1 2 3 4 5 6 7

� �/ n

Fig. E3.5(a)

For showing legends on the curves, gtext command can be employed.
Example 3.6. A single degree of freedom spring-mass system subjected to coulomb

damping is shown in Fig. E3.6.

m
k

W

)t(x

F = Wd k�

Fig. E3.6
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The parameters of the system have the values m = 600 kg, k = 20 × 104 N/m, µs = 0.15
and µk = 0.10. The initial conditions are x(0) = x0 =1.5 cm, �x(0)  = 0. Plot the response x(t) versus
t using MATLAB.

The magnitude of the average response value fd is given as

fd = 
F
k
d  = 

µ k mg

k
If n denotes the half-cycle just prior to the cessation of motion, then n is the smallest

integer satisfying the inequality

x0 – (2n – 1)fd < 1 +
F
HG

I
KJ

µ
µ

s

f
 fd

where µs = static coefficient of friction
µk = kinetic coefficient of friction
Solution:
The following MATLAB program can be developed:
m=600; % Mass

k=200000; % Stiffness

mus=0.15; % Static friction coefficient

muk=0.10; % Kinetic friction coefficient

x0=1.5; % Initial displacement

t0=0;

deltat=0.005; % Time increment

wn=sqrt(k/m); % Natural frequency

fd=100*muk*m*9.81/k;

N=ceil(0.5*((x0-(1+mus/muk)*fd)/fd+1)); % Half cycles

t=[];

x=[];

if N>0

     for n=1:N,

        t1=[t0:deltat:t0+pi/wn];

        x1=(x0-(2*n-1)*fd)*cos(wn*t1)+fd*(-1)^(n+1);

        t=[t t1];

        x=[x x1];

        t0=t0+pi/wn;

    end

end

plot(t,x,t,fd*ones(length(t)),'--',t,-fd*ones(length(t)),'--')

title('Response to initial excitations')

xlabel('t[s]')

ylabel('x(t)[cm]')

grid
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The output is shown in Fig. E3.6(a).
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Fig. E3.6(a)

Example 3.7. Write a MATLAB script for obtaining the response of a viscosity damped
single degree of freedom system to the force F(t) = F0 e–αt u(t) by means of the convolution
integral. The pulse is rectangular as shown in Fig. E3.7 with T = 0.1 seconds.

t
TO

F0

F(t)

Fig.  E3.7 Rectangular pulse.

Use the sampling period of T = 0.001 s and the number of sampling times n = 300. The
parameters of the system are given as m = 25 kg, c = 30 Ns/m, k = 6000 N/m, F0 = 300 N, and
α = 1. The impulse response of a mass-damper spring system is given by

g(t) = 
1

m dω
 e nt−ζω  sin ωdt u(t)

Solution:
m=25; % mass

c=30;% damping

k=6000; % stiffness

F0=300; % Force amplitude

T=0.1;

wn=sqrt(k/m);% Natural frequency
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zeta=c/(2*sqrt(m*k));%damping factor

Ts=0.001;% sampling period

N=301;% sampling times

wd=wn*sqrt(1-zeta^2);% damped frequency

for n=1:N,

  if n<=T/Ts+1; F(n)=F0; else F(n)=0; end     %force

end

n=[1:N];

g=Ts*exp(-(n-1)*zeta*wn*Ts).*sin((n-1)*wd*Ts)/(m*wd);

% discrete-time impulse response

c0=conv(F,g);%convolution sum

c=c0(1:N); % plot to N samples

n=[0:N-1];

axes('position',[0.1 0.2 0.8 0.7])

plot(n,c,'.')

title('Response to Rectangular pulse')

xlabel('n')

ylabel('x(n) m');

grid

The output is shown in Fig. E3.7 (a).

Response to rectangular pulse
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Fig. E3.7(a)

Example 3.8. A simplified single degree of freedom model of an automobile suspension
system is shown in Fig. E3.8. The automobile is traveling over a rough road at a constant
horizontal speed when it encounters a bump in the road of the shape shown in Fig. E3.8(a), (b).
The velocity of the automobile is 20 m/s, m = 1500 kg, k = 150,000 N/m, and ζ = 0.10. Determine
the response of the automobile.
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Fig. E3.8 Simplified single degree of Fig. E3.8(a) Versed sine

pulse model for bump. Freedom automobile model.
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Fig. E3.8(b) Road contour.

y(ξ) = h 1 2− F
HG

I
KJ

L
NM

O
QP

cos
πξ
d

 [1 – u(ξ – d)]

Here h = 0.012 m, d = 1.0 m and for constants automobile speed, ξ = vt. The vertical
displacement of the automobile wheels is given by

y(t) = h 1 12− F
HG

I
KJ

L
NM

O
QP

− −F
HG

I
KJ

L
NM

O
QP

cos
πv
d

t u t
d
v

The system response as per convolution integral is

x(t) = – meq 
0

22
t

n ny yz +[ � ( ) ( )]ζω τ ω τ  h(t – τ) dτ

The wheel velocity becomes

 �y (t) = 2 
πv
d

F
HG

I
KJ  sin 

2
1

πv
d

t u t
d
v

F
HG

I
KJ − −F

HG
I
KJ

L
NM

O
QP

Solution:
MATLAB program for this is given below:
% Simplified one-degree-of-freedom model of vehicle suspension system

% Vehicle encounters bump in road modelled as a versed sinusoidal pulse

% y(t)=h(1-(cos(pi*v*t/ t0))^2)*(u(t)-u(t-d/v))

%convolution integral is used to evaluate system response

syms t tau

% input parameters

digits(10)
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format short e

m=1500;

k=150000;

zeta=0.10;

hb=0.012;

d=1.0;

v=20;

% system parameters and constants

omega_n=sqrt(k/m); % Natural frequency

omega_d=omega_n*sqrt(1-zeta^2); % damped natural frequency

c1=pi/d;

% wheel displacement and velocity

% MATLAB  'Heaviside' for the unit step function

y=hb*(1-cos(c1*v*t)^2)*(1-sym('Heaviside(t-0.04)'));

ydot=hb*c1*sin(2*c1*v*tau)*(1-sym('Heaviside(tau-0.04)'))

%convolution integral evaluation

h=exp(-zeta*omega_n*(t-tau)).*sin(omega_d*(t-tau))/(m*omega_d);

g1=-2*zeta*m*omega_n*ydot*h;

g2=-omega_n^2*m*y*h;

g1a=vpa(g1,5);

g2a=vpa(g2,5);

I1=int(g1a,tau,0,t);

I1a=vpa(I1,5);

I2=int(g2a,tau,0,t);

I2a=vpa(I2,5);

x1=I1a+I2a;

x=vpa(x1,5);

vel=diff(x);

acc=diff(vel);

time=linspace(0,0.3,50);

for i=1:50

  x1=subs(x,t,time(i));

  xa(i)=vpa(x1);

end

xp=double(xa);

plot(time,xp,'-');

grid;

xlabel('time(sec)')

ylabel('x(t) [m]')

The output of this MATLAB program is given in Fig. E3.8(c)
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Fig. E3.8(c)

Example 3.9. Fig. E3.9 shows two disks of mass polar moments of inertia I1 and I2
mounted on a circular shaft with torsional stiffnesses GJ1 and GJ2. Neglect the mass of the
shaft.

GJ1 GJ2

l1
l2

M (t)1

�1(t)

�2(t)

M (t)2

Fig. E3.9

(a) Obtain the differential equations of motion for the angular displacements of the disks
(b) Determine the natural frequencies and natural modes of the system if I1 = I2 = I, GJ1 =

GJ2 = GJ, and l1 = l2 = l

(c) Obtain the response of the system to the torques M1(t) = 0, and M2(t) = M2e–∝t in discrete
time

(d) Obtain the response of the system to the torques M1(t) = 0, and M2(t) = M2e
–∝t

(e) Obtain in discrete time the response of the system to the torques M1(t) = 0, and M2(t) =
M2e

–∝t using MATLAB.
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Solution:

I1

�1(t) �2(t)

k1�1(t)

I2

M (t)1

k [ (t) – (t)]2 1 2� �

M (t)2

Fig. E3.9(a)

(a) The equations of motion are given by

I1
��θ1 = M1 – k1θ1 + k2(θ2 – θ1)

I2
��θ2 = M2 – k2(θ2 – θ1) (1)

where ki = 
GJ
L

i

i
 , i = 1, 2.

Rearranging Eq. (1), we get

I1
��θ1 + 

GJ
L

GJ
L

1

1

2

2
+

F
HG

I
KJ  θ1 – 

GJ
L

2

2
 θ2 = M1

I2
��θ2  – 

GJ
L

2

2
θ1 + 

GJ
L

2

2
 θ2 = M2 (2)

In matrix form, we can write

I
I

GJ

L

GJ

L

GJ

L
GJ

L

GJ

L

M
M

1

2

1

2

1

1

2

2

2

2

2

2

2

2

1

2

1

2

0
0

L
NM

O
QP
L
N
MM

O
Q
PP

+
+ −

−

L

N

M
M
M
MM

O

Q

P
P
P
PP

L
NM

O
QP

=
L
NM

O
QP

��

��

θ
θ

θ
θ (3)

(b) Denoting
GJ1 = GJ2 = GJ, I1 = I2 = I, L1= L2 = L (4)

the equations of motion of the system [Eq. (3)] can be written as

M ��θ  (t) + Kθ (t) = 0 (5)

where M = I 
1 0
0 1
L
NM

O
QP  , K = 

GJ
L

2 1
1 1

−
−

L
NM

O
QP  , θ(t) = 

θ
θ

1

1

( )
( )
t
t

L
NM

O
QP (6)

are the mass matrix, stiffness matrix and configuration vector, respectively. The free vibration
solution can be written as

θi(t) = Θie
iωt, i = 1, 2 (7)

where ω is the frequency of oscillation and Θ = [Θ1  Θ2]
T is a vector of constants, we have

2 1
1 1

1

2

1

2

−
−

L
NM

O
QP
L
NM

O
QP

=
L
NM

O
QP

Θ
Θ

Θ
Θλ , λ = ω2 

IL
GJ

(8)
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The characteristic equation can be written as

2 1
1 1

− −
− −

λ
λ   = λ2 – 3λ + 1 = 0                                 (9)

The eigenvalues are given by

λ
λ

1

2

3
2

5
2

= � (10)

The natural frequencies are given by

ω1 = 0.6180 GJ IL/  , ω2 = 1.6180 GJ IL/ (11)

Denote the modal vector corresponding to λ1 by Θ1 = [Θ11  Θ21]T, the modal vector is from
the matrix equation as

2 1
1 1

11

21

−
−

L
NM

O
QP
L
NM

O
QP

Θ
Θ  = λ1 

Θ
Θ

11

21

L
NM

O
QP
 = 

3 5
2

11

21

− L
NM

O
QP

Θ
Θ (12)

or Θ1 = Θ11 
1

16180.
L
NM

O
QP

(13)

In a similar way by letting Θ2 = [Θ12  Θ22]
T, we have

 
2 1
1 1

12

22

−
−

L
NM

O
QP
L
NM

O
QP

Θ
Θ   = λ2 

Θ
Θ

12

22

L
NM

O
QP  = 

3 5
2

12

22

+ L
NM

O
QP

Θ
Θ (14)

or Θ2 = Θ12 
1

16180.
L
NM

O
QP (15)

The modal vectors are shown below
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Fig. E3.9(b) Fig. E3.9(c)

(c) The equations of motion are

M ��θ  (t) + Kθ(t) = M(t) (16)

where    M = I 
1 0
0 1
L
NM

O
QP  , K =  

GJ
L

2 1
1 1

−
−

L
NM

O
QP  , θ(t) =  

θ
θ

1

2

( )
( )
t
t

L
NM

O
QP , M(t) = 

M t
M t

1

2

( )
( )

L
NM

O
QP (17)

The solution θ(t) is given by
θ(t) = η1(t) Θ1 + η2(t) Θ2 (18)

where η1(t) and η2(t) are modal coordinates and Θ1 and Θ2 are modal vectors. The modal
equations can be written as
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     m′11��η1
 (t) + m′11ω1

2 η1(t) = N1(t), m′22
��η2(t) + m′22 ω2

2 η2(t) = N2(t) (19)

where ω1 = 
3 5

2
− GJ

IL
 , ω2 =  

3 5
2

+ GJ
IL

(20)

The natural frequencies are given by Eq. (20).

 Θ1 = 
1

1 5
2

+
L

N
M
M

O

Q
P
P  ,   Θ2 =  

1
1 5

2
−

L

N
M
M

O

Q
P
P (21)

The modal vectors are given by Eq. (21).

m′11 = Θ1
T M Θ1 = 

1
1 5
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0
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1
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2
+
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O
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P

L
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Q
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I
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5 5
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+
 I
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1
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−
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P

L
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I
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5 5
2

−
 I (22)

The modal mass coefficients are given by Eq.(22).

N1(t) = Θ1
T  M(t) = 

1
1 5

2

0
2

+
L

N
M
M

O

Q
P
P

L
NM

O
QP−

T

tM e α    = 
1 5

2
+

 M2e
–αt

N2(t) = Θ2
T  M(t) =  

1
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0
2

−
L
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M

O

Q
P
P

L
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O
QP−

T

tM e α   = 
1 5

2
−

 M2e
–αt (23)

The modal forces are given by Eq. (23). The solutions η1(t) and η2(t) of the modal equations
are written in the form of the convolution integrals

η1(t) = 
1

11 1
1m

N
o

t

′ zω
  (t – τ) sin ω1τ dτ

= 
1 5

5 5 2
1
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2
1
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+
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η2(t) = 
1 5
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O
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α ω
ω α

ω
ωα

M

I
e t tt (24)

where ω1 and ω2 are given above. Hence, the response can be written as

θ1(t) = η1(t) + η2(t),   θ2(t) = 
1 5

2
+

 η1(t) + 
1 5

2
−

 η2(t) (25)

(d) The equations of motion are

M��θ  (t) + Kθ(t) = M(t) (26)

where M = I 
1 0
0 1

L
NM

O
QP  , K = 

GJ
L

2 1
1 1

−
−

L
NM

O
QP  , θ(t) = 

θ
θ

1

2

( )
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t
t

L
NM

O
QP  , M(t) = 

0
2M e t−

L
NM

O
QPα (27)

Assuming a solution of the form
θ(t) = η1(t) Θ1 + η2(t) Θ2 (28)



166 SOLVING VIBRATION ANALYSIS PROBLEMS USING MATLAB

in which η1(t) and η2(t) are modal coordinates and

Θ1 = 
1

1 5
2

+
L

N
M
M

O

Q
P
P  ,  Θ2 = 

1
1 5

2
−

L

N
M
M

O

Q
P
P (29)

are the modal vectors. The modal equations are given by

m′11 ��η1
 (t) + m′11 ω1

2  η1(t) = N1(t)

m′22
��η2 (t) + m′22 ω2

2  η2(t) = N2(t) (30)

in which ω1 = 
3 5

2
− GJ

IL
 , ω2 = 

3 5
2

+ GJ
IL

(31)

are the natural frequencies.

m′11 = 
1 5

2
+

  I,   m′22 = 
1 5

2
−

  I (32)

are modal mass coefficients.
The modal forces are given by

N1(t) = 
1 5

2
+

  M2e
–αt,  N2(t) = 

1 5
2

−
  M2e

–αt (33)

The response is given by
θ(n) = η1(n)Θ1 + η2(n)Θ2,  n = 1, 2, … (34)

where η1(n) = 
k

n

N
=

∑
0

1 (k) g1(n – k),

η2(n) = 
k

n

N
=
∑

0
2 (k) g2(n – k),   n = 1, 2, … (35)

are the discrete-time modal coordinates given in the form of convolution sums, in which the
discrete time impulse responses are given by

gi(n) = 
T

m ii i
′ ω

 sin nωiT,  i = 1, 2 (36)

where T is the sampling period. The discrete-time response is given by

θ(n) = T 
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. (37)
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Denoting GJ IL/  = 1, M2/I = 1, α = 1 and T = 0.01 s, the response is given by

θ(n) = 0.01 
k

n
ke n k
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−∑ − L
NM
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.
. (38)

The discrete-time response sequence is given by
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(e) The response θi(n) (i = 1, 2) is plotted in Fig. E3.9 (d) obtained from the following
MATLAB program.

% Response of 2-degree of freedom system

clear

clf

I=1; % mass

k=1;%=GJ/L torsional stiffness

M=I*[1 0;0 1];% mass matrix

K=k*[2 -1;-1 1];%stiffness matrix

[u,W]=eig(K,M);% eigenvalue problem

% W= eigenvalues

u(:,1)=u(:,1)/max(u(:,1)); % normalization

u(:,2)=u(:,2)/max(u(:,2));

[w(1),I1]=min(max(W)); % relabeling of the eigenvalues

[w(2),I2]=max(max(W));

w(1)=sqrt(w(1)); % Lowest natural frequency

w(2)=sqrt(w(2)); % highest natural frequency

U(:,1)=u(:,I1); % relabelling of the eigenvectors

U(:,2)=u(:,I2);

m1=U(:,1)'*M*U(:,1); % mass quantities

m2=U(:,2)'*M*U(:,2);

T=0.01; % sampling period
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N=2000; % sampling times

M2=1; % second disk torque amplitude

alpha=1;

n=[1:N];

N1=U(:,1)'*[zeros(1,N);M2*exp(-alpha*n*T)]; % modal forces

N2=U(:,2)'*[zeros(1,N);M2*exp(-alpha*n*T)];

g1=T*sin((n-1)*w(1)*T)/(m1*w(1)); %discrete time impulse responses

g2=T*sin((n-1)*w(2)*T)/(m2*w(2));

c1=conv(N1,g1); %convolution sum

c2=conv(N2,g2);

theta=U(:,1)*c1(1:N)+U(:,2)*c2(1:N); % N samples for plotting

n=[0:N-1];

axes('position',[0.1 0.2 0.8 0.7])

plot(n,theta(1,:),'.',n,theta(2,:),'.')

h=title('Response by the convolution sum');

set(h,'FontName', 'Times','FontSize',12)

h=xlabel('n')

set(h,'FontName','Times','FontSize',12)

h=ylabel('\theta_1(n),\theta_2(n)');

set(h,'FontName','Times','FontSize',12)

grid

Its output is shown in Fig. E3.9(d).
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Fig. E3.9(d)

Example 3.10. Obtain the response of the system of Problem E3.9 to the initial excita-

tion θ1(0) = 0, θ2(0) = 1.5, �θ1(0) = 1.8 GJ Il/  , and �θ2  (0) = 0. Plot the response of the system
using MATLAB.
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Solution:
The initial conditions are given as

θ1(0) = 0, θ2(0) = 1.5, �θ1
 (0) = 1.8 

GJ
IL

 , �θ2
(0) = 0 (1)

From Problem V3.9, we have

ω1 = 0.6180 
GJ
IL

 , Θ1 =  
Θ
Θ

11

21

L
NM

O
QP  = Θ11 

1
1 6180.

L
NM

O
QP

ω2 = 1.6180 
GJ
IL

 , Θ2 = 
Θ
Θ

12

22

L
NM

O
QP   = Θ12 

1
1 6180.

L
NM

O
QP (2)

The response to the initial excitation is a superposition of the natural modes. Hence
θ(t) = C1 cos(ω1t – φ1)Θ1 + C2 cos(ω2t – φ2)Θ2

or θ(t) = C1 (cos ω1t cos φ1 + sin ω1t sin φ1)Θ1
+ C2 (cos ω2t cos φ2 + sin ω2t sin φ2)Θ2 (3)

and   �θ (t) = C1ω1(sin ω1t cos φ1 – cos ω1t sin φ1)Θ1
– C2ω2 (sin ω2t cos φ2 – cos ω2t sin φ2)Θ2

If t = 0, then Eq. (3) becomes

θ(0) = 
θ
θ

1

2

0
0

( )
( )

L
NM

O
QP  = C1 cos φ1 

Θ
Θ

11

21

L
NM

O
QP + C2 cos φ2 

Θ
Θ

12

22

L
NM

O
QP

�θ (0) = 
� ( )
� ( )
θ
θ

1

2

0
0

L
N
MM

O
Q
PP
 = C1ω1 sin φ1

Θ
Θ

11

21

L
NM

O
QP  + C2ω2 sin φ2 

Θ
Θ

12

22

L
NM

O
QP (4)

From Eq. (4) we have,

C1 cos φ1 = 
Θ Θ

Θ
22 10 12 20θ θ−

| |
 , C2 cos φ2 = 

Θ Θ
Θ

11 20 21 10θ θ−
| |

C1 sin φ1 = 
Θ Θ

Θ
22 10 12 20

1

� �

| |

θ θ
ω

−
 , C2 sin φ2 = 

Θ Θ
Θ

11 20 21 10

2

� �

| |

θ θ
ω

−
(5)

where θ10 = θ1(0), θ20 = θ2(0), �θ 10 = �θ 1(0), �θ 20 = �θ 2(0) and |Θ| is the determinant of the matrix

Θ = 
Θ Θ
Θ Θ

11 12

21 22

L
NM

O
QP (6)

Letting Θ11 = Θ12 = 1,

C1 cos φ1 = 
1 5.
| |Θ  , C2 cos φ2 = 

1 5.
| |Θ  ,

C1 sin φ1 = 
1 8.
| |Θ  , C2 sin φ2 = 

1 8.
| |Θ

|Θ| = 
1 1

16180 16180. .−   = – 2.2360 (7)
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The response to the given initial excitation is given by

θ(t) = 
θ
θ

1

2

( )
( )
t
t

L
NM

O
QP  = 

1
2 2360

1 5 1 8 1
1 61801 1.

( . cos . cos ) .ω ωt t+ L
NM

O
QP

L
NM

+ (– 1.5 cos ω2t + 1.8 sin ω2t) 
1

0 6180−
L
NM

O
QP
O
QP.

or by components

θ1(t) = 0.6708 cos . cos .0 6180 1 6180
GJ
IL

t
GJ
IL

t−
F
HG

I
KJ

+ 0.8060 sin . sin .0 6180 1 6180
GJ
IL

t
GJ
IL

t+
F
HG

I
KJ

θ2(t) = 1.0854 cos 0.6180 
GJ
IL

 t + 1.3025 sin 0.6180 
GJ
IL

 t

+ 0.4146 cos 1.6180 GJ
IL

 t – 0.4975 sin 106180 
GJ
IL

 t (8)

The MATLAB program listed as follows:
% response of a two-degree-of freedom system to initial excitations

clear

clf

I=1; % inertia

k=1;%=GJ/L stiffness

M=I*[1 0;0 1];% mass

K=k*[2 -1;-1 1];%stiffness

[u,W]=eig(K,M);% eigenvalue problem

% W=matrix of eigenvalues

u(:,1)=u(:,1)/max(u(:,1)); % normalization

u(:,2)=u(:,2)/max(u(:,2));

[w(1),I1]=min(max(W)); % relabeling

[w(2),I2]=max(max(W));

w(1)=sqrt(w(1)); % lowest natural frequency

w(2)=sqrt(w(2)); % highest natural frequency

U(:,1)=u(:,I1); % relabelling

U(:,2)=u(:,I2);

x0=[0;2];% Initial displacement

v0=[2*sqrt(k/I);0]; % initial velocity

t=[0:0.1:20]; % initial time, time increment, final time

% displacement

x1=(((U(2,2)*x0(1)-U(1,2)*x0(2))*cos(w(1)*t)+(U(2,2)*v0(1)-

U(1,2)*v0(2))*sin(w(1)*t)/w(1))*U(1,1)+((U(1,1)*x0(2)

-U(2,1)*x0(1))*cos(w(2)*t)+(U(1,1)*v0(2)-U(2,1)*v0(1))*sin(w(2)*t)

/w(2))*U(1,2))/det(U);

x2=(((U(2,2)*x0(1)-U(1,2)*x0(2))*cos(w(1)*t)+(U(2,2)*v0(1)-
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U(1,2)*v0(2))*sin(w(1)*t)/w(1))*U(2,1)+((U(1,1)*x0(2)-

U(2,1)*x0(1))*cos(w(2)*t)+(U(1,1)*v0(2)-U(2,1)*v0(1))*sin(w(2)*t)

/w(2))*U(2,2))/det(U);

axes('position',[0.2 0.3 0.6 0.5])

plot(t,x1,t,x2)

title('Response to initial excitation')

ylabel('\theta_1(t),\theta_2(t)')

xlabel('t[s]')

legend('\theta_1(t)','\theta_2(t)',1)

grid

The corresponding output obtained is shown in Fig.E 3.10

Response to initial excitation
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– 1

– 2

– 3
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Fig. E3.10

Example 3.11. A simplified model of an automobile suspension system is shown in Fig.
E3.11 as a two degree of freedom system. Write a MATLAB script to determine the natural
frequencies of this model.

G

k k
x

l1 l2

Fig.  E3.11 Simplified model of an automobile.

The differential equations governing the motion of the system are given as

m x k l l k
l l k l l k

x0
0 1

2 0
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2 1

2 1 2
2
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NM

O
QP
L
NM

O
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−
− −

L
NM

O
QP
L
NM

O
QP = L

NM
O
QP

��

��

( )
( ) ( )θ θ

where x is the displacement of the mass center and θ is the angular rotation of the body from
its horizontal position.
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The parameters are given as
Automobile weight, W = 5000 lb
Centroidal moment of inertia, I = 400 slug-ft2

Spring stiffness, k = 2500 lb/ft
l1 = 3.4 ft
l2 = 4.6 ft

Solution:
The MATLAB program is given as follows:
%Two-degree-of-freedom system

W=input('Vehicle weight in lb');

I=input('Mass moment of inertia in slugs-ft^2')

k=input('Stiffness in lb/ft')

a=input('Distance from rear springs to cg in ft')

b=input('Distance from front springs to cg')

% mass matrix

g=32.2;

m=W/g;

M=[m,0;0,I];

% stiffness matrix

K=[2*k,(b-a)*k;(b-a)*k,(b^2+a^2)*k];

% eigenvalues and eigenvectors calculation

C=inv(M)*K;

[V,D]=eig(C);

om_1=sqrt(D(1,1));

om_2=sqrt(D(2,2));

X1=[V(1,1);V(2,1)];

X2=[V(1,2);V(2,2)];

% Output

disp('Vehicle weight in lb='); disp(W)

disp('moment of inertia in slugs-ft^2');disp(I)

disp('Stiffness in lb/ft='); disp(k)

disp('Distance from rear springs to cg in ft='); disp(a)

disp('Distance from front springs to cg in ft=');disp(b)

disp('Mass-matrix');disp(M)

disp('Stiffness-matrix');disp(K)

disp('Natural frequencies in rad/s=');

disp(om_1)

disp(om_2)

disp('Mode shape vectors'); disp(X1)

disp(X2)

The output of this program is as follows:
Vehicle weight in lb  5000

W=5000

Mass moment of inertia in slugs-ft^2    400
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I =  400

Stiffness in lb/ft 2500

k = 2500

Distance from rear springs to cg gravity in ft 3.4

a = 3.4000

Distance from front springs to cg 4.6

b = 4.6000

Vehicle weight in lb= 5000

Moment of inertia in slugs-ft^2   400

Stiffness in lb/ft=2500

Distance from rear springs to cg in ft=3.4000

Distance from front springs to cg in ft=4.6000

Mass-matrix

  155.2795        0

       0         400.0000

Stiffness-matrix

  1.0e+004 *

    0.5000    0.3000

    0.3000    8.1800

Natural frequencies in rad/s=

    5.6003

   14.3296

Mode shape vectors

   -0.9991

    0.0433

   -0.1109

   -0.9938

Example 3.12. Determine the free-vibration response of a two degree of freedom system

shown in Fig. E3.12 with the initial conditions x1(0) =0, x2(0) = 0.005 m, �x1  (0) = 0, �x2  (0) = 0.
The parameters of the system are given as m = 30 kg, k = 20,000 N/m, and c = 150 N.s/m.

x1

m
2k c

2m
k

x2

Fig. E3.12 Two degree of freedom system.

The differential equations governing the motion of the system are

m
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The solution is assumed as
y = φe– γt

where γ are the eigenvalues of M–1K and φ are the eigenvectors. The general solution is a linear
combination over all solutions, that is,

y = 
j =
∑

1

4

c ej j
jtφ γ−

and application of initial conditions gives

y0 = 
j

jc
=

∑
1

4

 φj = VC

and C = V–1 y0
Solution:
The MATLAB program is given as follows:
m=30; % Mass

k=20000; % Stiffness

c=150; % Damping

% 4 x 4 matrices

disp('4 x 4 Mass matrix');

mt=[0,0,m,0;0,0,0,2*m;m,0,0,0;0,2*m,0,c];

disp('4 x 4 stiffness matrix');

kt=[-m,0,0,0;0,-2*m,0,0;0,0,3*k,-2*k;0,0,-2*k,2*k];

Z=inv(mt)*kt;

[V,D]=eig(Z);

disp('Eigenvalues');

V

disp('Initial conditions');

x0=[0;0;0.005;0]

disp('Integration constants');

S=inv(V)*x0

tk=linspace(0,2,101);

% Evaluation of time dependent response

% Recall that x1=y3 and x2=y4

for k=1:101

  t=tk(k);

  for i=3:4

     x(k,i-2)=0;

     for j=1:4

x(k,i-2)=x(k,i-2)+(real(S(j))*real(V(i,j))-imag(S(j))*imag(V(i,j)))

*cos(imag(D(j,j))*t);

x(k,i-2)=x(k,i-2)+(imag(S(j))*real(V(i,j))-real(S(j))

*imag(V(i,j)))*sin(imag(V(i,j))*t);

     x(k,i-2)=x(k,i-2)*exp(-real(D(j,j))*t);

      end
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   end

end

plot(tk,x(:,1),'-',tk,x(:,2),':')

title('Solution of problem E3.12')

xlabel('t[sec]')

ylabel('x(m)')

legend('x1(t)','x2(t)')

The output of this program is given below. See also Fig.E3.12(a).
V =

  -0.9390 -0.9390 0.5886 - 0.0085i 0.5886 + 0.0085i

   0.3428 - 0.0185i 0.3428 + 0.0185i 0.8050 0.8050

   0.0001 - 0.0188i 0.0001 + 0.0188i -0.0026 + 0.0440i  -0.0026 - 0.0440i

   0.0003 + 0.0069i 0.0003 - 0.0069i -0.0044 + 0.0601i  -0.0044 - 0.0601i

Initial conditions
x0 =

         0

         0

    0.0050

         0

Integration constants
S =

  -0.0013 + 0.1048i

  -0.0013 - 0.1048i

  -0.0019 - 0.0119i

  -0.0019 + 0.0119i

Solution of problem E3.12
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Fig. E3.12(a)
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Example 3.13. For systems with arbitrary viscous-damping, the response must be
obtained in the state-space, which implies the use of the transition-matrix. If the response is to
be evaluated on a computer, then the state-equations must be transformed to discrete time.
Determine the free-vibration response of a 2-degree-of-freedom damped system with initial

conditions X(0) = {0, 0.01} and  �X (0) = {0, 0}. Given

[M] = 

0 0 30 0
0 0 0 50
30 0 0 0
0 50 0 80

L

N

M
M
M

O

Q

P
P
P

 [K] =

−
−

−
−

L

N

M
M
M

O

Q

P
P
P

40 0 0 0
0 50 0 0
0 0 35000 25000
0 0 25000 4000

Solution: The solution is similar to the problem E3.12, and the MATLAB program is
written as follows:

mt=[0 0 30 0;0,0,0,50;30,0,0,0;0,50,0,80];

kt=[-40,0,0,0;0,-50,0,0;0,0,35000,-25000;0,0,-25000, 4000];

Z=inv(mt)*kt;

[V,D]=eig(Z);

disp('Eigenvalues')

DS=[D(1,1),D(2,2),D(3,3),D(4,4)]

disp('Eigenvectors')

V

x0=[0;0;0.01;0];

S=inv(V)*x0;

tk=linspace(0,2,101);

for k=1:101

 t=tk(k);

 for i=3:4

 x(k,i-2)=0;

 for j=1:4

x(k,i-2)=x(k,i-2)+(real(S(j))*real(V(i,j))

-imag(S(j))*imag(V(i,j)))*cos(imag(D(j,j))*t);

x(k,i-2)=x(k,i-2)+(imag(S(j))*real(V(i,j))-imag(S(j))*imag(V(i,j)))

*sin(imag(V(i,j))*t);

x(k,i-2)=x(k,i-2)*exp(-real(D(j,j))*t);

end

end

end

plot(tk,x(:,1),'-',tk,x(:,2),':')

title('Free Vibration response of damped system')

xlabel('t (sec)')
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ylabel('x (m)')

legend('x1(t)','x2(t)')

The output obtained is given as follows:
Eigenvalues

DS =

Columns 1 through 2

  1.1082e-001 +4.4615e+001i  1.1082e-001 -4.4615e+001i

Columns 3 through 4

 -1.5162e+001                1.6541e+001

Eigenvectors

V =

Columns 1 through 2

  9.5465e-001                9.5465e-001

 -2.9638e-001 +9.4404e-003i -2.9638e-001 -9.4404e-003i

 -6.3783e-005 +2.5677e-002i -6.3783e-005 -2.5677e-002i

 -1.9510e-004 -6.6437e-003i -1.9510e-004 +6.6437e-003i

Columns 3 through 4

  4.6275e-001               -4.5475e-001

  8.8381e-001               -8.8839e-001

  3.6624e-002                3.2991e-002

  5.8290e-002                5.3710e-002

Fig. E3.13 shows the response in time-domain obtained from the output of the MATLAB program.

Note: Here M = 
25 0
0 50

L
NM

O
QP  , C = 

0 0
0 80

L
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O
QP  and
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25000 3000
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30 0 0 0
0 50 0 0
0 0 35000 25000
0 0 25000 3000
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Free vibration response of damped systemx 10
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Fig. E3.13

Example 3.14. In the Example E3.13, if a force Foexp(– αt) acts on the system, find the
forced vibration response using the MATLAB program. Given F0 = 60.

Solution:
Here the first few steps are common as in free-vibration response problem.
syms t tau

m=25;

k=12500;

c=80;

F0=60;

alpha=1.5;

mt=[0,0,m,0;0,0,0,2*m;m,0,0,0;0,2*m,0,c];

kt=[-m,0,0,0;0,-2*m,0,0;0,0,3*k,-2*k;0,0,-2*k,2*k];

z=inv(mt)*kt;

[V,D]=eig(z);

L=conj(V)'*mt*V;

for j=1:4

 ss=1/sqrt(L(j,j));

 for i=1:4

 P(i,j)=V(i,j)*ss;

 end

end

F=[0;0;0;F0*exp(-alpha*tau)];

G=P'*F;

G=vpa(G);
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%Convolution integral solution

for i=1:4

 f(i)=G(i)*exp(-D(i,i)*(t-tau));

 p(i)=int(f(i),tau,0,t);

end

disp('solution for modal coordinates')

p=[p(1);p(2);p(3);p(4)]; disp(p)

y=P*p;

disp('response')

disp('x1=y3, x2=y4 ')

y=vpa(y);

% Plotting the system response

time=linspace(0,1.5,101);

for k=1:101

 x1a=subs(y(3),t,time(k));

 x2a=subs(y(4),t,time(k));

 x1b(k)=vpa(real(x1a));

 x2b(k)=vpa(real(x2a));

end

x1=double(x1b);

x2=double(x2b);

plot(time,x1,'-',time,x2,':')

xlabel('t(seconds)')

ylabel('response(m)')

legend('x1(t)', 'x2(t)')

The output of the program is shown as the forced vibration response in Fig. E3.14.
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Note: In the above program, a few additional MATLAB functions have been used. They are
described as follows:

syms t tau or syms(‘t’, ‘tau’) defines the symbolic variables.
Variable substitution in symbolic expressions are performed with the function ‘subs’.
subs(f,x,s) replaces x by s in the expression f.
‘int’ function integrates a symbolic expression or the elements of a symbolic array.
int(f,s,a,b) finds symbolic expressions for the definite integral from a to b with respect to symbolic

variable s.
‘vpa’ function evaluates a single symbolic expression or character string to the default or specified accuracy.

Example 3.15. Two gears A and B in mesh are mounted on two uniform circular shafts

of equal stiffness 
GJ
L

 . If the gear A is subjected to a torque M0 cos ωt, derive an expression for

angular motion of B. Assume the radius ratio as: 
R
R

A

B
 = n. Here L is length of each shaft. Write

a MATLAB script to plot the response.
Solution:
Here the equation of motion is given by

Ieq 
��θ A  + keq.θ A  = MA = M0 cos ωt (1)

where the equivalent stiffness of the gears keq = 
GJ
L

 (1 + n2) and equivalent moment of inertia

of gears Ieq = IA + n2IB.
Simplifying the above equation of motion we get:

��θ A  + ωn
2 θA = 

M

I n IA B

0
2+

 cos ωt,  and ωn
2 = 

GJ n

L I n IA B

( )
( )

1 2

2
+

+
(2)

Since θB = n θA, the solution is given by

θB = 
M Ln

GJ n
t

n

0
2 21 1( ) [ ( / ) ]

cos
+ − ω ω

ω

The MATLAB program to plot the values of amplitude of θB for various values of ω is
given as follows:

M0=1;% amplitude of the moment

L=1; %  length of shaft

GJ=1;%  torsional stiffness

n=3;%  gear ratio

r=[0:0.01:3];% frequency ratio

thetab=(M0*L*n)./(GJ*(1+(n.^n))*(1-r.^2)); % amplitude

plot(r,thetab)

title('Response to torque')

ylabel('\theta_b')

xlabel('\omega/\omega_n')

grid

the output is shown in Fig. E3.15 (a).
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Response to torque
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Fig. E3.15(a)

Example 3.16. Derive the response of a viscously damped single-degree of freedom system
to  the  trapezoidal  pulse  shown in Fig. E3.16. Plot response for system parameters, m = 15 kg,
c = 25 NS/m and k = 5000 N/m. Use convolution sum.
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Fig. E3.16

Solution:
The system is described by:

��x + 2ξωn �x + ωn
2x  = 

F t
m
( )
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where T = 0.2 sec in Fig. E3.16.
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The discrete time response by convolution sum is:

x(n) = 
k

n

F k g n k
=

∑ −
0

( ) ( )

The MATLAB script for this problem is given below:
m=15; % mass

c=25; % damping

k=5000; % stiffness

F0=220;

T=0.2;

wn=sqrt(k/m); % Natural frequency

zeta=c/(2*sqrt(m*k));

Ts=0.003; % Sampling period

N=201; % sampling times

wd=wn*sqrt(1-zeta^2); % frequency

% force

for n=1:N,

if n<=(T/2)/Ts+1;F(n)=2*F0*(n-1)*Ts/T; else;F(n)=F0;end

if n>(3*T/2)/Ts+1;F(n)=2*F0*(2-(n-1)*Ts/T);end

if n>2*T/Ts+1;F(n)=0;end

end

n=[1:N];

g=Ts*exp(-(n-1)*zeta*wn*Ts).*sin((n-1)*wd*Ts)/(m*wd);

% discrete-time impulse response

c0=conv(F,g); % Convolution sum

c=c0(1:N); % plot to N samples

n=[0:N-1];

axes('position',[0.1 0.2 0.8 0.7])

plot(n,c,'.');

title('Response to the Trapezodial pulse');

xlabel('n')

ylabel('x(n) [m]')

grid

Output of this program is the Fig. E3.16(a)
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Response to the trapezodial pulse
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Fig. E3.16(a)

Example 3.17. A two story building is undergoing a horizontal motion y(t)=Y0. sin ωt.
Derive expression for displacement of second floor. Write MATLAB script to plot the response.
Assume appropriate values of stiffness and mass of the system.

Equations of motion for building can be written as:

2 0
0 2

x
x

4 2
2 2

x
x

Y sin t
0

1

2 2

1

2 2

0L
NM

O
QP
RST

UVW
−

−
L
NM

O
QP
RST

UVW
RST

UVW+ =

��

��
α α

ω

where α2 = 
12 EI
mH

12
m3 =  = 6

Solving for steady-state response we get:

X1 = 
( )

( ) ( )
α ω α

ω ω ω ω

2 2 2

2
1
2 2

2
2 0

−
− −

Y

X2 = 
α

ω ω ω ω

4

2
1
2 2

2
2 0

( ) ( )− −
Y

These values are to be plotted against various values of ω.
Solution:
The MATLAB script for this problem is given as follows:
m=20;% mass

k=200; % k=12EI/H3  stiffness

w0=k/m;

M=[m 0;0 m]; %mass matrix

K=[2*k -k;-k k]; % stiffness matrix

%eigenvalues

[u,W]=eig(K,M);

u(:,1)=u(:,1)/max(u(:,1));

u(:,2)=u(:,2)/max(u(:,2));
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[wn(1),I1]=min(max(W));

[wn(2),I2]=max(max(W));

wn(1)=sqrt(wn(1)); % Nat. frequency 1

wn(2)=sqrt(wn(2)); % Nat. frequency 2

U(:,1)=u(:,I1);

U(:,2)=u(:,I2);

w=[0:0.002:6];

T2=(w0^2)./((w.^2-wn(1)^2).*(w.^2-wn(2)^2));

plot(w,T2)

title('Frequency Response')

ylabel('{\it{X}}_2(\omega)/{\it{Y}}_0')

xlabel('\omega')

axis([0 8 -5 5])

grid

The MATLAB output is shown in Fig. E3.17(a).
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Fig. E3.17(a)

Example 3.18. A 3-degree of freedom system shown in Fig. E3.18. Obtain the natural
frequencies and mode shapes using MATLAB script. Assume k = m = 1.

m 2m
kk 2k

2m
2k

Fig. E3.18

The equations of motion can be written as:

M ��x(t) + Kx(t) = 0
with x(t) = [x1(t) x2(t) x3(t)]T as the displacement vector
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M = 
m 0 0
0 2m 0
0 0 2m

L

N
M
M

O

Q
P
P
  and K = 

2k k 0
k 3k 2k

0 2k 4k

−
− −

−

L

N
M
M

O

Q
P
P

as the mass and stiffness matrices.
Solution:
The MATLAB script for finding the natural frequencies and mode shapes is given as

follows:
k=1; % stiffness

m=1; % mass

M=m*[1 0 0;0 2 0;0 0 2]; % mass matrix

K=k*[2 -1 0;-1 3 -2;0 -2 4]; % stiffness matrix

N=3;

R=chol(M); % Cholesky decomposition technique

L=R';

A=inv(L)*K*inv(L');

[x,W]=eig(A);

v=inv(L')*x;

for i=1:N,

  w1(i)=sqrt(W(i,i));

end

[w,I]=sort(w1);

disp('The first three natural frequencies are')

disp(w(1))

disp(w(2))

disp(w(3))

n=[1:N];

disp('The corresponding mass-orthonormalized mode shapes are')

for j=1:N,

  U(:,j)=v(:,I(j));

  U(:,j)=U(:,j)/(U(:,j)'*M*U(:,j));

  disp('mode-')

  disp(j)

  disp(U(:,j))

end

The outputs are as follows:
The first three natural frequencies are
    0.7071

    1.4142

    1.7321

The corresponding mass-orthonormalized mode shapes are
mode-

     1

   -0.3651

   -0.5477
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   -0.3651

mode-

     2

    0.8165

   -0.0000

   -0.4082

mode-

     3

   -0.4472

    0.4472

   -0.4472

Example 3.19. In Fig. E3.18, if mass m is subjected to unit step function u(t), determine
the response using modal analysis. Write a MATLAB script to plot the displacement response of
all the masses.

Solution:
The MATLAB program is given as follows:
M=[1 0 0;0 2 0;0 0 2]; % mass matrix

C=[0 0 0;0 0 0;0 0 0]; % damping matrix

K=[2 -1 0;-1 3 -2;0 -2 4]; % stiffness

A=[zeros(size(M)) eye(size(M));-inv(M)*K -inv(M)*C];

B=[zeros(size(M)); inv(M)];

TO=10; %RISE TIME OF FORCE

N=200;

T=0.1; % SAMPLING PERIOD

NO=TO/T;

phi=eye(size(A))+T*A+T^2*A^2/2+T^3*A^3/6;

gamma=inv(A)*(phi-eye(size(A)))*B;

x(:,1)=zeros(2*length(M),1);

for k=1:N,

  f(k)=1;

F(:,k)=[1;0;0]*f(k); % Force is only applied to mass m

x(:,k+1)=phi*x(:,k)+gamma*F(:,k);

end

k=[0:N];

plot(k,x(1,:),'o',k,x(2,:),'s',k,x(3,:),'.')

title('system response for unit step at first mass E3.19')

ylabel('x_1(k),x_2(k),x_3(k)')

xlabel('k')

legend('x_1(k)','x_2(k)','x_3(k)')

grid

The output obtained is shown in Fig.E3.19(a).
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System response for unit step at first mass E3.19
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Fig. E3.19(a)

Example 3.20. A two-degree of freedom torsional system shown in Fig. E3.20 and is
subjected to a torque of unit pulse nature [u(t) – u(t – 4)] at the disc B.

A B

Fig. E3.20

The mass, stiffness and damping matrices are

M = 
3 0
0 5

L
NM

O
QP  , K = 

5 4
4 4

−
−

L
NM

O
QP and C = 

1 .6 0 . 8
0 . 8 0 . 8

−
−

L
NM

O
QP

Plot the response of disc A using MATLAB.
Solution:
The MATLAB script is given as follows:
M=[1 0;0 2]; % mass matrix

C=[1.6 -0.8; -0.8 0.8]; % damping matrix

K=[5 -4;-4 4]; % stiffness matrix

A=[zeros(size(M)) eye(size(M));-inv(M)*K -inv(M)*C];

B=[zeros(size(M)); inv(M)];

TO=4; %RISE TIME OF FORCE

N=600;

T=0.1; % SAMPLING PERIOD

NO=TO/T;

phi=eye(size(A))+T*A+T^2*A^2/2+T^3*A^3/6;

gamma=inv(A)*(phi-eye(size(A)))*B;
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x(:,1)=zeros(2*length(M),1);

for k=1:N,

  if k<=NO+1; f(k)=1;

  else;f(k)=0;end

  F(:,k)=[0;1]*f(k); % Force is only applied to mass m

  x(:,k+1)=phi*x(:,k)+gamma*F(:,k);

end

k=[0:N];

plot(k,x(1,:),'.')

title('system response for unit step at first disc E3.20')

ylabel('x_1(k)')

xlabel('k')

grid

The output of this program is given in Fig. E3.20(a).

System response for unit step at first disc E3.20
1.2

1

0.8

0.4

0.2

0

– 0.2

– 0.4

0.6

– 0.6

– 0.8
0 100 200 300 400 500 600

k

x
(k

)
1

Fig. E3.20(a)

Example 3.21. For the single degree of freedom vibrating system shown in Fig. E3.21,

determine the motion of the mass subjected to the initial conditions x(0) = 0.15 m and �x = 0.04
m/s. Given m = 1 kg, c = 5 N-s/m, and k = 5 N/m.

m

k

c

x

Fig. E3.21
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Solution:
The system equation is

m ��x + c �x + kx = 0

with the initial conditions x(0) = 0.15 m and �x = 0.04 m/s. The Laplace transform of the system
equation gives

m[s2X(s) – sx(0) – �x(0)] + c[sX(s) – x(0)] + kX(s) = 0

or (ms2 + cs + k)X(s) = mx(0)s + m �x(0) + cx(0)
Solving this last equation for X(s) and substituting the given numerical values, we obtain

X(s) = 
mx s mx cx

ms cs k

( ) � ( ) ( )0 0 0
2

+ +
+ +

 = 
0 15 0 79

5 52
. .s

s s

+
+ +

This equation can be written as

X(s) = 
0 15 0 79

5 5
12

2

. .s s
s s s

+
+ +

Hence the motion of the mass m may be obtained as the unit-step response of the following
system:

G(s) = 
0 15 0 79

5 52

. .s
s s

+
+ +

MATLAB program will give a plot of the motion of the mass. The plot is shown in Fig.
E3.21(a).

num = [0.15   0.79   0];

den = [1   5   5];

step(num,den)

grid

title('Response of spring mass-damper system to initial condition')

Step response
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Fig. E3.21(a)
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Example 3.22. For the vibrating single degree of freedom shown in Fig.E3.22, determine
the response of the system when 12 N of free (step input) is applied to the mass m and plot the
response using MATLAB. Given that the system is at rest initially and the displacement x is
measured from the equilibrium position. Assume that m = 2 kg, c = 10 N-s/m, and k = 80 N/m.

12 N

m

k

c

x

Fig. E3.22

Solution:
The equation of motion for the system is

m ��x + c �x + kx = P
By substituting the numerical values into this last equation, we get

2 ��x + 10 �x + 80x = 12
By taking the Laplace transform of this last equation and substituting the initial

conditions [x(0) = 0 and  �x(0) = 0], the result is

(s2 + 5s + 40)X(s) = 
6
s

Solving for X(s), we obtain

X(s) = 
6
5 402s s s( )+ +

The response exhibits damped vibrations.
MATLAB program is used to a plot of the response curve, which is shown in Fig. E3.22(a).
num = [0   0   6];

den = [1   5  40];

step(num,den)

grid
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Step response
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Example 3.23. For the mechanical system shown in Fig. E3.23, obtain the response x0(t)
when xi(t) is a unit step displacement input. Assume that k1 = 2 N/m, k2 = 4 N/m, c1 = 1 N-s/m,
and c2 = 2 N-s/m.

k1

c2

x

c1

k2

x0

Fig. E3.23

Solution:
The transfer function X0(s)/Xi(s) is given by

X s
X si

0 ( )
( )  = 

c
k

s
c
k

s

c
k

s
c
k

s
c
k

s

1

1

2

2

1

1

2

2

2

1

1 1

1 1

+
F
HG

I
KJ +
F
HG

I
KJ

+
F
HG

I
KJ +
F
HG

I
KJ +

Substitution of the given numerical values yields

X s
X si

0 ( )
( )

 = 
( . ) ( . )

( . ) ( . )
0 5 1 0 5 1

0 5 1 0 5 1
s s

s s s
+ +

+ + +  = 
0 25 1
0 25 2 1

2

2

.
.

s s
s s

+ +
+ +  = 

s s
s s

2

2

4 4
8 4

+ +
+ +

The MATLAB program is used to obtain the unit-step response is given below:
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num = [1   4   4];

den = [1   8   4];

step(num,den)

grid

The output is shown as in Fig. E3.23 (a)
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Example 3.24. The impulse response of a second-order system is given as

C s
R s

( )
( )

 = 
ω

ξω ω
n
2

2
n n

2s 2 s+ +
For a unit-impulse input R(s) = 1, and ωn = 1 rad/sec, C(s) is given by

C(s) = 
1

s 2 s 12 + +ξ
Plot the ten unit-impulse response curves in one diagram using MATLAB for ξ = 0.1, 0.2,

0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0.
Solution:
The MATLAB program:
num = [0   0   1];

den1 = [1  0.2  1];

t = 0:0.1:10;

impulse(num,den1,t);

text(2.2, 0.88, 'Zeta = 0.1')

hold

current plot held

den2 = [1   0.4   1]; den3 = [1   0.6   1]; den4 = [1   0.8   1];

den5 = [1   1   1]; den6 = [1   1.2   1]; den7=[1  1.4   1];

den8 = [1   1.6   1]; den9 = [1   1.8   1]; den10 = [1   2.0   1];
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impulse(num,den2,t)

text(1.3,0.7,'0.3')

impulse(num,den3,t)

text(1.15,0.58,'0.5')

impulse(num,den4,t)

text(1.1,0.46,'0.7')

impulse(num,den5,t)

text(0.8,0.38,'1.0')

impulse(num,den6,t)

text(0.7,0.28,'1.0')

impulse(num,den7,t)

text(0.6,0.24,'1.0')

impulse(num,den8,t)

text(0.5,0.21,'1.0')

impulse(num,den9,t)

text(0.4,0.18,'1.0')

impulse(num,den10,t)

text(0.3,0.15,'1.0')

grid

title('Impulse-response curve for G(s) = 1/[s^2+2(zeta)s+1]')

hold

current plot released

The output is shown in Fig. E3.24 (a)
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Fig. E3.24(a) Unit-impulse response curves.
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Example 3.25. For the mechanical system shown in Fig. E3.25, assume that m = 1 kg,
m1 = 2kg, k1 = 15 N/m, and k2 = 60 N/m. Determine the vibration when the initial conditions
are given as: x(0) = 0.23 m, �x = 0 m/s, y(0) = 1 m, �y  = 0 m/s. Write a MATLAB program to plot
curves x(t) versus t and y(t) versus t for the initial conditions.

m1

k1

y
m2

k2

x

Fig. E3.25

Solution:
The equations for the system are

(2s2 + 75)X(s) = 2sx(0) + 15Y(s) (1)
  (s2 + 15)Y(s) = sy(0) + 15X(s) (2)

Solving  we obtain

X(s) = 
2 15 0 15 0

2 105 900

2

4 2

( ) ( ) ( )s sx sy
s s
+ +

+ +
(3)

For the initial conditions

x(0) = 0.23 m, �x = 0 m/s, y(0) = 1 m, �y (0) = 0 m/s
Eq. (3) becomes as follows:

X(s) = 
0 46 21 9

2 105 900

3

4 2

. .s s
s s

+
+ +

= 
0 46 21 9

2 105 900
14 2

4 2

. .s s
s s s

+
+ +

(4)

By substituting Eq.(4) into Eq.(2) and solving for Y(s), we obtain

Y(s) = 
1

152s +
 sy(0) + 15X(s)

Substituting y(0) = 1 into the last equation and simplifying, we get

Y(s) = 
1

15
24 105 900 6 9 328 5

2 105 9002

5 3 3

4 2s
s s s s s

s s+
+ + +

+ +
. .

To obtain plot of x(t) versus t, we may enter the following MATLAB program into the
computer. The resulting plots are shown in Fig.E3.25(a). Likewise y(t) versus t can be also
plotted.
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num1 = [0.46  0  21.9  0  0];

den = [2   0  105  0 900];     % see equation (4)

t=0:0.01:20;

x=step(num1,den,t)

plot(t,x)

title('Responses mass m1- x(t) due to initial conditions')

xlabel('t sec')

ylabel('x(t)')

grid

Responses mass m1-x(t) due to initial conditions
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Fig. E3.25(a)

Example 3.26. For the mechanical system shown in Fig.E3.25, assume that m = 1 kg,
m1 = 2kg, k1 = 15 N/m, and k2 = 60 N/m. Determine the vibration when the initial conditions are

given as: x(0) = 1.75 m, �x(0) = 0 m/s, y(0) = –1 m, �y (0) = 0 m/s. Write a MATLAB program to plot
curves x(t) versus t and y(t) versus t for the initial conditions.

Solution:

X(s) = 
2 15 0 15 0

2 105 900

2

4 2

( ) ( ) ( )s sx sy
s s
+ +

+ +

 Y(s) = 
1

152s +
 sy(0) + 15 X(s)

For the initial conditions

x(0) = 1.75 m, �x(0)  = 0 m/s, y(0) = – 1 m, �y (0) = 0 m/s
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we obtain the following expressions for X(s) and Y(s):

X(s) = 
3 5 37 5

2 105 900

3

4 2

. .s s
s s

+
+ +

 = 
3 5 37 5

2 105 900
14 2

4 2

. .s s
s s s

+
+ +

Y(s) = 
1

152s +  – s + 15X(s)

A MATLAB program for obtaining plots of x(t) versus t given below. The resulting plot is
shown in Fig. E3.26.

num1 = [3.5  0 37.5 0  0];

den = [2   0  105 0 900];

step(num1,den)
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Fig. E3.26 Plot of motion of mass m1.

Example 3.27. For the mechanical system shown in Fig. E3.25, assume that m = 1 kg,
m1 = 2kg, k1 = 15 N/m, and k2 = 60 N/m. Determine the vibration when the initial conditions

are given as: x(0) = 0.5 m, �x(0) = 0 m/s, y(0) = – 0.5 m, �y (0) = 0 m/s. Write a MATLAB program
to plot curves x(t) versus t and y(t) versus t for the initial conditions.

Solution:

 X(s) = 
2 15 0 15 0

2 105 900

2

4 2

( ) ( ) ( )s sx sy
s s
+ +

+ +

 Y(s) = 
1

152s +
 sy(0) + 15X(s)

For the initial conditions

 x(0) = 0.5 m, �x(0) = 0 m/s, y(0) = – 0.5 m, �y (0)  = 0 m/s
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we obtain the following expressions for X(s) and Y(s):

 X(s) = 
s s

s s s

4 2

4 2

7 5
2 105 900

1+
+ +

.

Y(s) = 
−

+ +
0 5

15

15

152 2
. ( )s

s

X s

s
A MATLAB program for obtaining plots of x(t) versus t given below. The resulting plots

are shown in Fig. E3.27. Likewise y(t) can also be plotted
num1 = [1  0  7.5   0   0];

den = [2   0   105   0  900];

t = 0:0.02:5;

x = step(num1,den,t)

plot(t, x, 'o')

title('Responses x(t) due to initial conditions ')

xlabel('t sec')

ylabel('x(t)')

grid

Response x(t) due to initial conditions
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Fig. E3.27

��� �������

With this foundation of basic application of MATLAB, this Chapter provides opportunities to
explore advanced topics in vibration analysis engineering. Extensive worked examples are
included with a significant number of exercise problems to guide the student to understand
and as an aid for learning about the vibration analysis of mechanical systems using MATLAB.
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P3.1 A safety bumper placed at the end of a race track to stop out-of-control cars as shown in
Fig. P3.1. The bumper is designed such that the force that the bumper applies to the car
is a function of the velocity v and the displacement x of the front end of the bumper
given by the equation:

F = Kv3 (x + 1)3

where K = 35 kg-s/m5 (a constant).
A car with a mass of 2000 kg hits the bumper at a speed of 100 km/h. Determine and plot
the velocity of the car as a function of its position for 0 ≤ x ≤ 5 m.

v
x

Fig. P3.1

P3.2 The 10 kg body is moved 0.25 m to the right of the equilibrium position and released
from rest at t = 0 as shown in Fig. P3.2. Plot the displacement as a function of time for
four cases: c = 10, 40, 50 and 60 N.s/m. The stiffness of the spring is 40 N/m.

10 kg

k

c x

Fig. P3.2

P3.3 An airplane uses a parachute and other means of braking as it slows down on the run-
way after landing. The acceleration of the airplane is given by

a = – 0.005 v2 – 4 m/s2

Consider an airplane with a velocity of 500 km/h that opens its parachute and starts
decelerating at t = 0 s.

v
x

Fig. P3.3
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P3.4 The piston of 150 lb is supported by a spring of modulus k = 250 lb/in. A dashpot of
damping coefficient c = 100 lb.sec/ft acts in parallel with the spring. A fluctuating pressure
p = 0.75 sin 30t (psi) acts on the piston, whose top surface area is 100 in2. Plot the
response of the system for initial conditions x0 = 0.06 ft and �x0 = 6, 0, and – 6 ft./sec.

150 lb

piston

k
c

p = 0.75 sin 30t

Fig. P3.4

P3.5 The 15 kg oscillator contains an unbalanced motor whose speed is N rpm as shown in
Fig. P3.5. The stiffness of the spring k = 1100 N/m. The oscillator is also restrained by a
viscous  damper  whose  piston is resisted by a force of 50 N when moving at a speed of
0.6 m/s. Determine,

(a) the viscous damping factor
(b) plot the magnification factor for motor speeds from 0 to 350 rpm
(c) the maximum value of the magnification factor and the corresponding motor speed.

15 kg
kc

Fig. P3.5

P3.6 Write a MATLAB script file that computes the response of a single degree of freedom
under damped system shown in Fig. P3.6 to initial excitations. Use the program to
determine and plot the response for the following data:
Initial conditions:

x(0) = 0,  �x(0) = v0 = 30 cm./sec,
   ωn = 6 rad/s, and ξ = 0.05, 0.1, 0.2, 0.30.

m

k

c

x(t)

Fig. P3.6 Damped single degree of freedom system.



200 SOLVING VIBRATION ANALYSIS PROBLEMS USING MATLAB

The response of the under damped single degree of freedom system is given by

x(t) = A e nt− ξω  cos(ωdt – φ)
where A and φ represent the amplitude and phase angle of the response respectively.
There are

A = x
x vn

d
0
2 0 0

2

+
+F

HG
I
KJ

ζω
ω

 ωd = 1 2− ζ  ωn

and φ = tan–1 
ζω

ω
n

d

x v
x

0 0

0

+F
HG

I
KJ

P3.7 Write a MATLAB script for plotting the frequency response magnitude and phase angle
using complex notation for a single degree of freedom system given by
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P3.8 Consider the force-free, viscously damped single degree of freedom system shown in
Fig. P3.8.

m

k c

x(t)

Fig. P3.8

Plot the response of the system using MATLAB over the interval 0 ≤ t ≤ 10s to the initial
conditions x(0) = 3 cm, �x = 0 for the values of the damping factor ζ = 0.05, 0.1, 0.5. The
frequency of the undamped oscillation have the values ωn = 15 rad/s.
The expression for the response of an damped single degree of freedom system in Fig.P3.3
to initial displacement and velocity is given by

x(t) = Ce nt− ζω  cos (ωdt – φ)
where C and φ represent the amplitude and phase angle of the response, respectively
having the values
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    C = x
x vn

d
0
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d

x v
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0 0

0
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and ωd = 1 2− ζ  ωn

P3.9 Write a MATLAB script to obtain the motion of the mass subjected to the initial condition.
There is no external forcing function acting on the system. The single degree of freedom
system is shown in Fig. P3.9 and the parameters are given as m = 3 kg, k = 6 N/m, and
C = 5 N-s/m. The displacement of the mass is measured from the equilibrium position
and at t = 0, x(0) = 0.04 m and  �x(0) = 0.10 m/s.

m

kc

x

Fig. P3.9 Single degree of freedom system.

P3.10 Determine  and  plot  the  response  of  the  single degree of freedom system shown in
Fig. P3.10 using MATLAB when 25 N of force (step input) is applied to the mass m. The
system is at rest initially and the displacement of the mass m is measured from
equilibrium position. The parameters of the system are given as m = 3 kg, c = 25 N-s/m,
and k = 200 N/m. The initial conditions are x(0) = �x(0) = 0.

m

kc

x

F

Fig. P3.10 Single degree of freedom system.

P3.11 Write a MATLAB script for determining the response of a single degree of freedom
system with viscous damping to an exponential excitation F(t) = e– αt.

P3.12 A   single   degree   of   freedom  spring-mass-damper  model  has  following  properties:
m = 15 kg, c = 25 Ns/m and k = 3500 N/m. If it is subjected to a triangular pulse of
amplitude 1000 N for 0.1 seconds, compute the time-domain response and plot the same
in MATLAB.
The excitation function is shown in Fig. P3.12.

1000 N

0.1

F(t)

T(sec)
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Fig. P3.12

P3.13 Determine and plot the response of the system shown in Fig. P3.13 using MATLAB. The
response is x0(t) when the input xi(t) is a unit step displacement input. The parameters
of the system are k1 = 15 N/m, k2 = 25 N/m, c1 = 7 N-s/m, c2 = 15 N-s/m.

k1
c1

x1(t)

k2

c2 x0(t)

y(t)

Fig. P3.13

P3.14 A two-degree of freedom torsional system shown in Fig. P3.14 is subjected to initial

excitation θ1(0) = 0, θ2(0) = 2, �θ1 (0) = 2
GJ
IL

 and �θ2 (0) = 0. Write MATLAB program

and plot the response of the system. Assume I = 1 and GJ = l = 1.

I I

GJ GJ

L L

Fig. P3.14

P3.15 The mass m2 in a 2-degree of freedom system shown in Fig. P3.15 is subjected to a force
in the form of saw-tooth pulse of amplitude 1.5 N for duration of 1.5 second. Obtain the
response in terms of two coordinates x1(t) and x2(t). Assume k1= k2 = 15N/m and m1 = m2
= 2kg.

m1

k1

x (t)1

m2

k2

x2(t)

F(t)

Fig. P3.15

The mass and stiffness matrices of the system for given system are given as

M = 
m

m
1

2

0
0

L
NM

O
QP  and K = 

k k k
k k

1 2 2

2 2

+ −
−

L
NM

O
QP
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Force vector is:

F = 
F t( )
0

RST
UVW

The saw-tooth pulse takes the form as shown in Fig. P3.15(a).

1 N

1

F(t)

T( sec)

Fig. P3.15(a)

P3.16 A two-story building (Fig. P3.16) is undergoing a horizontal motion y(t) = Y0 sin ωt.

EI/2

EI/2 EI/2

EI/2H1

H2 m2

m1

y

Fig. P3.16

Derive expression for the displacement of the first floor having mass m1. Assume m1 =
m2 = 4, EI = 2 and H = 1 m.
The equations of motion for building can be written as:

4 0
0 4

2 1
1 1

1

2

2 1

2
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NM

O
QP
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UVW + −
−

L
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O
QP
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x
x

x
x

α  = α2 
Y t0

0
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UVW
where α2 = 

12
3
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mH
 = 

12 2×
m

 = 6

Solving for steady-state response we get:
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ω ω ω ω
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2
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2 2

2
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− −

Y

X2 = 
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ω ω ω ω
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2 2

2
2 0( )( )− −

Y

These values are to be plotted against various values of ω.
P3.17 Derive the response of the system shown in Fig. P3.17 in discrete time and plot the

response. Given F(t) = e–αt.
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k1
m1 m2

x (t)1

k2

x (t)2

F(t)

Fig. P3.17

P3.18 Consider the system with M = 
3 0
0 2

L
NM

O
QP  , K = 

6 4
4 5

−
−

L
NM

O
QP  with arbitrary viscous damping.

Find the eigenvalues and normalized eigenvectors.
P3.19 For  the  vibrating  system  shown  in  Fig. E3.19, a mass of 5 kg is placed on mass m at

t = 0 and the system is at rest initially (at t = 0). Given that m = 20 kg, k = 600 N/m, and
c = 60 Ns/m. Plot the response curve x(t) versus t using MATLAB.

m

3 kg

k c

x

Fig. P3.19

P3.20 For the mechanical vibrating system shown in Fig.P3.20, using MATLAB assume that
m = 3 kg, k1 = 15 N/m, k = 25 N/m, and c = 10 N-s/m. Plot the response curve x(t) versus
t when the mass m is pulled slightly downward and the initial conditions are x(0) = 0.05
m and  �x = 0.8 m/s.

m

k1 c

x

k2

Fig. P3.20
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P3.21 For the mechanical vibrating system shown in Fig. P3.21, k1 = 10 N/m, k2 = 30 N/m, c1 =
3 N-s/m, and c2 = 25 N-s/m.

(a) Determine the displacement x2(t) when F is a step force input of 4 N.
(b) Plot the response curve x2(t) versus t using MATLAB.

 

c1

F

k1

x1

x2
c2 k2

Fig. P3.21

P3.22 For the electrical system shown in Fig. E3.22, assume that R1 = 2 Ω, R2 = 1 MΩ, C1 =
0.75 µF, and C2 = 0.25 µF and the capacitors are not charged initially and e0(0) = 0 and
�e0 (0) = 0.

(a) Find the response e0(t) where et(t) = 5 V (stop input) is applied to the system.
(b) Plot the response curve e0(t) versus t using MATLAB.

ei

R2

C2

C1

R2

e0

Fig. P3.22

P3.23 For the mechanical system shown in Fig. P3.23, assume m = 3 kg, M = 25 kg, k1 =  25 N/m,
and k2 = 300 N/m. Determine

(a) the natural frequencies and modes of vibration
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(b) the vibration when the initial conditions are: x(0) = 0.05 m, �x(0) = 0 m/s, y(0) = 0 m,

and �y (0) = 0 m/s.
Use MATLAB program to plot curves x(t) versus t and y(t) versus t.

m
y

M
x

k1

k2

Fig. P3.23
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