

Primary MATLAB® for Life Sciences:
Guide for Beginners

Authored By

Leonid Burstein
Kinneret Academic College on the Sea of Galilee

School of Engineering
Quality Assurance Engineering Department

Israel

Bentham Science Publishers
Executive Suite Y - 2
PO Box 7917, Saif Zone
Sharjah, U.A.E.
subscriptions@benthamscience.org

Bentham Science Publishers
P.O. Box 446
Oak Park, IL 60301-0446
USA
subscriptions@benthamscience.org

Bentham Science Publishers
P.O. Box 294
1400 AG Bussum
THE NETHERLANDS
subscriptions@benthamscience.org

Please read this license agreement carefully before using this eBook. Your use of this eBook/chapter constitutes your agreement
to the terms and conditions set forth in this License Agreement. This work is protected under copyright by Bentham Science
Publishers to grant the user of this eBook/chapter, a non-exclusive, nontransferable license to download and use this
eBook/chapter under the following terms and conditions:

1. This eBook/chapter may be downloaded and used by one user on one computer. The user may make one back-up
copy of this publication to avoid losing it. The user may not give copies of this publication to others, or make it
available for others to copy or download. For a multi-user license contact permission@benthamscience.org

2. All rights reserved: All content in this publication is copyrighted and Bentham Science Publishers own the copyright.

You may not copy, reproduce, modify, remove, delete, augment, add to, publish, transmit, sell, resell, create
derivative works from, or in any way exploit any of this publication’s content, in any form by any means, in whole or
in part, without the prior written permission from Bentham Science Publishers.

3. The user may print one or more copies/pages of this eBook/chapter for their personal use. The user may not print

pages from this eBook/chapter or the entire printed eBook/chapter for general distribution, for promotion, for creating
new works, or for resale. Specific permission must be obtained from the publisher for such requirements. Requests
must be sent to the permissions department at E-mail: permission@benthamscience.org

4. The unauthorized use or distribution of copyrighted or other proprietary content is illegal and could subject the

purchaser to substantial money damages. The purchaser will be liable for any damage resulting from misuse of this
publication or any violation of this License Agreement, including any infringement of copyrights or proprietary rights.

Warranty Disclaimer: The publisher does not guarantee that the information in this publication is error-free, or warrants that it
will meet the users’ requirements or that the operation of the publication will be uninterrupted or error-free. This publication is
provided "as is" without warranty of any kind, either express or implied or statutory, including, without limitation, implied
warranties of merchantability and fitness for a particular purpose. The entire risk as to the results and performance of this
publication is assumed by the user. In no event will the publisher be liable for any damages, including, without limitation,
incidental and consequential damages and damages for lost data or profits arising out of the use or inability to use the
publication. The entire liability of the publisher shall be limited to the amount actually paid by the user for the eBook or eBook
license agreement.

Limitation of Liability: Under no circumstances shall Bentham Science Publishers, its staff, editors and authors, be liable for
any special or consequential damages that result from the use of, or the inability to use, the materials in this site.

eBook Product Disclaimer: No responsibility is assumed by Bentham Science Publishers, its staff or members of the editorial
board for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any
use or operation of any methods, products instruction, advertisements or ideas contained in the publication purchased or read by
the user(s). Any dispute will be governed exclusively by the laws of the U.A.E. and will be settled exclusively by the competent
Court at the city of Dubai, U.A.E.

You (the user) acknowledge that you have read this Agreement, and agree to be bound by its terms and conditions.

Permission for Use of Material and Reproduction

Photocopying Information for Users Outside the USA: Bentham Science Publishers grants authorization for individuals to
photocopy copyright material for private research use, on the sole basis that requests for such use are referred directly to the
requestor's local Reproduction Rights Organization (RRO). The copyright fee is US $25.00 per copy per article exclusive of any
charge or fee levied. In order to contact your local RRO, please contact the International Federation of Reproduction Rights
Organisations (IFRRO), Rue Joseph II, 9-13 I000 Brussels, Belgium; Tel: +32 2 234 62 60; Fax: +32 2 234 62 69; E-mail:
secretariat@ifrro.org; url: www.ifrro.org This authorization does not extend to any other kind of copying by any means, in any
form, and for any purpose other than private research use.

Photocopying Information for Users in the USA: Authorization to photocopy items for internal or personal use, or the internal
or personal use of specific clients, is granted by Bentham Science Publishers for libraries and other users registered with the
Copyright Clearance Center (CCC) Transactional Reporting Services, provided that the appropriate fee of US $25.00 per copy
per chapter is paid directly to Copyright Clearance Center, 222 Rosewood Drive, Danvers MA 01923, USA. Refer also to
www.copyright.com

DEDICATION

In memory of my father Matvey

To my mother Leda, my wife Inna, and my son Dmitri

CONTENTS

Preface i

Acknowledgement iii

CHAPTERS

1. Introduction 3

2. Basics 8

3. MATLAB


 Graphics 73

4. Writing Scripts and Functions: Some Functions Used in Bio-

Computations 130

5. Ordinary Differential Equations and Tools for Their Solution 173

6. Curve Fitting and Time Series 205

References 246

Appendix 1 247

Appendix 2 252

Index 256

i

PREFACE

The last two-three decades are a remarkable, revolutionary time, in which

computer- and life sciences have been contributing much to one another.

Computer engineers are actively working in bio-areas while life science

specialists are working on bio-computers, cell lasers, and other amazing devices

recently introduced into the non-biological domain. Therefore, today is a real need

to familiarize biotechnologists with the computing software used by ‘classical’

engineers. The present book is a short introductory MATLAB
®

 guide addressed to

a wide life science audience - undergraduate and graduate students and practicing

engineers. It provides the MATLAB
®
 fundamentals with a variety of application

examples and problems from current biotechnology, computational biology,

molecular biology, bio-kinetics, biomedicine, ecology, population dynamics, and

bioengineering. I hope that many non-programmer students, engineers and

scientists from this area will find the software user-friendly and extremely

convenient in solving their specific problems.

The book was planned at a time when its predecessor “MATLAB
®
 in bioscience

and biotechnology” (L. Burstein, Biohealthcare Publishing (Oxford) Limited,

Oxford-New York, 2011, pp. 230) was still in production and thus unavailable.

Accordingly, their sections 2, dealing with MATLAB
®
 basics, are similar.

Otherwise, the book is tailored to the level of a newcomer in computer

calculations, and contains topics and examples not given in the predecessor. Most

of the problems required in the latter to be solved by the reader, are reproduced

with their solutions – and vice versa. The used sample data and at least 80% of the

problems were revised or completely reformulated in this book, which contains a

new chapter on useful tools such as the Basic Fitting and Time Series interfaces.

The book accumulates the experience of many years of MATLAB teaching in

introductory and advanced courses for students, engineers and scientists

specializing in the area in question.

ii

I hope this book will prove useful to students and engineers in both the natural

and life sciences and enable them to work with one of the finest software tools.

Leonid Burstein

Kinneret College on the Sea of Galilee

School of Engineering

Quality Assurance Department

M.P. Jordan Valley, 15132

Israel

E-mail: leonidburstein@gmail.com

iii

ACKNOWLEDGEMENTS

I thank MathWorks Inc
1
, who kindly granted permission to use certain material. I

am also grateful to the Biohealthcare Publishing (Oxford) Limited
2
 for permission

to use the text, tables, figures, and screenshots from the following pages of the

previous book: Chapter 2, pp. 2-11, 13, 15-28, 32-35, 38, 41-46, 48; Chapter 3,

Table 3.3; Chapter 5, Table 5.1 (cited tables are referred to also in the text of this

book). I would like to thank the research Fund of Kinneret Academic College for

funding the editing the text of the 2 -6 Chapters of the book. I would like to thank

the research Fund of Kinneret Academic College for funding the 2 - 6 Chapters

editing.

1The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA, 01760-2098 USA, Tel: 508-647-7000, Fax: 508-647-7001, E-mail:
info@mathworks.com, Web: www.mathworks.com
2The Biohealthcare Publishing (Oxford) Limited was acquired in March 2102 by the Woodhead Publishing Limited, 80

High Street, Sawston, Cambridge CB22 3HJ, UK, Tel: 1233 499140 ext. 130., Fax: 1223 832819, E-mail:
wp@woodheadpublishing.com, Web: www.woodheadpublishing.com

 Primary MATLAB® for Life Sciences: Guide for Beginners, 2013, 3-7 3

Leonid Burstein
All rights reserved-© 2013 Bentham Science Publishers

CHAPTER 1

Introduction

Abstract: The purposes, principal audience, the main topics, and chapter design are
described here. MATLAB® advances in comparison to such popular software as
Mathematica, Mathcad, Maple, and R, are briefly lightened. The differences between
the present and author’s previous book are discussed briefly.

Keywords: Introduction; purposes; principal audience; MATLAB® releases,
Mathematica; Mathcad; Maple; R- software; chapter design; presentation order.

Live science, or biology1, is the large branch of the natural sciences concerned
with the living organisms – microspecies, plants, animals, and humans. While
general in natural sciences mathematical, physical, and computerized methods
have long been in widespread use, the live sciences, their accession is relatively
recent. It was commonly held that the biologist is not oriented towards math and
computers, whereas the mathematician, computer scientist and engineer do not
know biology. During past few decades this situation changed dramatically, with
mutual interpenetration on both “sides”. Today computer engineers serve in
biotechnological companies, and biotechnologists widely and actively use
mathematics and computers in their daily work. At present, knowledge of
computers and ability to implement relevant computer programs are of vital
importance for representatives of life science.

In recent years MATLAB®, as one of the most popular programs for technical
computing [3], has spread into new areas such as biosciences, biotechnology and
medicine. As a result, a large new community of specialists is in need of a short
and comprehensive text, easy to understand and providing access to the tool.

MATLAB® AND OTHER SOFTWARE

MATLAB® competes with other widespread software such as Mathematica,
Mathcad, and Maple, and has gained acceptance in engineering, which is today
the area for which it is intended. In some respects MATLAB® is comparable with
open programs such as R, SciPy, Octave, Scilab and other packages each of which

1From ancient Greek: bio – life, logos – word, speech, reasoning.

Send Orders for Reprints to reprints@benthamscience.net

4 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

is associated with a particular area (statistics, scientific libraries, etc.). Without
going into details, we list here some of the factors which, combine, give the
advantage to MATLAB®:

- Suitability for solution of both simple and complex program-oriented
problems;

- Adaptability for various fields of science and engineering, with the
specialized tools;

- Convenience and diversity of visualization;

- Quick access to well organized and comprehensive documentation.

PURPOSE AND PRINCIPAL AUDIENCE OF THE BOOK

The advantages listed above assured the popularity of the software in non-biological

audiences, and the purpose of this book to guide biology students, teachers,

engineers and scientists towards it. It is assumed that the reader has no prior

programming experience and will be using the software for the first time. In order to

make clear to the target audience the primary programming steps and use of

commands, they are illustrated by problems from different areas of life science and

bioengineering.

ABOUT THE TOPICS

The topics were chosen on the basis of several years of experience in teaching

MATLAB® to biotechnologists and other specialists and are presented so that the

beginner can progress gradually, with only the previously acquired material as

prerequisite for each new chapter.

The basic MATLAB® features such as environment, language design, help
options, variables, matrix and array manipulations, elementary and special
functions, flow chart control, conditional statements, etc. - are introduced in the
second chapter.

Introduction Primary MATLAB® for Life Sciences: Guide for Beginners 5

In the third chapter the visualization tool is introduced by the examples of
graphical representation of calculations. The material of these two (second and
third) chapters enables the reader to create simple MATLAB® programs.

The fourth chapter explains how to write programs in the script- or function form
and save it as an m-file; here are added the commands for common numerical
calculations such as inter- and extrapolation, differentiation, and integration.

In the fifth chapter the specific solver commands intended for solving ordinary
differential equation (ODE) are briefly presented with examples for bio-systems
that can be represented by such equations, one or a set. Reader’s familiarity with
mathematics on a somewhat higher level is assumed during the course of this
chapter.

In the final chapter the special tools for curve fitting and time series are
introduced with emphasis on use of the appropriate interface for problems, such
population data approximation, time series forecasting, etc.

The Appendix 1 lists the complete collections of the studied MATLAB®
commands and functions.

The Appendix II describes the changes in the Desktop, Help and Editor Windows
that were appeared at the time when the book already reached completion.

CHAPTER DESIGN

Each chapter begins with a short description of the targets, and then of the new
tool and main commands for its realization are presented. Each command is
explained in one or two simplest forms and possible extensions are given;
additional information is available in the MATLAB® help or original MATLAB®
documentation. Each topic is considered in concentrated form as completely as
possible. Tables list the additionally available commands and their description and
examples.

At the end - and sometimes in the middle - of each chapter, life science
application problems are introduced with their solutions by the commands
accessible to the reader; the given solutions are the easiest to understand, but not

6 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

necessarily the shortest or original. Readers are encouraged to try their own
solutions and compare the results with those in the book. For better assimilation
of the material, problems and questions for self-checking are given at the end of
each chapter, and I recommend to solve them for better MATLAB understanding.
The answers to some of these problems and questions are also given in the end of
each chapter.

The numerical values and contexts used in the problems are not factual data and
serve for learning purposes only.

THE MATLAB® RELEASES

Like every popular software, MATLAB® is constantly updated and extended; two
new versions appear every year. The version used in the book is R2012a. Each
new version is designed so as to allow work with previously written commands;
thus the basic commands in this book will remain valid in future versions. It is
assumed that the reader has installed MATLAB® in his/her computer and will be
able to perform all basic operations presented in the book.

THE ORDER OF PRESENTATION

The book is intended for a newcomer in computer calculations and topics are
arranged accordingly, but teachers using it may find it useful to choose their own
order. For example, the polynomial fitting (Subsection 6.1) and Basic Fitting
interface (Subsections 6.2 and 6.3) can be presented immediately after the script- and
function-files of Chapter 4, and the Time Series Tools (Subsection 6.4) before the
ordinal differential equation solvers (Chapter 5); script files (Subsection 4.1) can be
moved to Chapter 2 directly before the first application examples (Subsection 2.2) to
allow students to write programs already during the first steps; logical and relational
operators (subsection 2.3.1) can be presented after Chapter 3.

THE DIFFERENCES BETWEEN THE PRESENT BOOK AND
AUTHOR’S PREVIOUS BOOK ON THIS SUBJECT

The competitor2 to the present book is the author’s ‘MATLAB® in bioscience and
biotechnology’ (L. Burstein, Biohealthcare Publishing (Oxford) Limited, Oxford-

2During the time this book was written, new books [4, 5, 6] on this subject were published; these books are focused on
specific bioareas (bio-mathematics, biomedicine, etc.) and are not MATLAB® primer.

Introduction Primary MATLAB® for Life Sciences: Guide for Beginners 7

New York, 2011, pp. 230), which was still in production and thus unavailable
when the present one was planned. The above book was intended for beginners
but in turned out to be suitable for an advanced audience. The present book, by
contrast, is intended address for any newcomer to computer calculations, and
includes the topics and examples are unavailable in the previous book; most of
problems and questions, given in the previous book to be solved by the readers,
are presented here complete with their solution, and vice versa. The used sets of
data and at least 80% of the problems were revised or completely reformulated in
this book. Moreover, the chapter on Bioinformatics toolbox™ replaced by a
description of such basic and useful tools as the Basic Fitting and Time Series
interfaces.

8 Primary MATLAB® for Life Sciences: Guide for Beginners, 2013, 8-72

Leonid Burstein
All rights reserved-© 2013 Bentham Science Publishers

CHAPTER 2

Basics

Abstract: The MATLAB® windows, starting procedures; basic language constructions
and commands; vectors, matrix and array manipulations, flow control operations are
presented in this chapter. Basic commands are demonstrated on various bio-applications
such as RNA volume computing, Arrhenius’ equation, RNA bases, and many others.
The questions and life-science problems together with answers to some of them are
given in conclusion.

Keywords: MATLAB® basics; commands, matrices and arrays; flow control;
logical and relational operations; application examples; RNA bases; Arrhenius’
equation.

INTRODUCTION

In the late seventies of the last century, the American mathematician and
programmer Cleve Moler created a programming tool for mathematicians and
educators. The tool was quickly adopted by engineers as an effective tool for
technical computing and is now actively employed in the life sciences. This tool
and its language were named MATLAB®, comprising the words 'Matrix' and
'Laboratory', which emphasize that the main element of this language is the
matrix. Such an approach permitted the unification of the processes of various
calculations, graphics, modeling, simulations, and algorithm development. This
chapter introduces the starting procedure and the main windows; it describes the
main commands for simple arithmetic, algebraic and matrix operations; and
finally, presents the basic loops and relational and logical operators.

2.1. STARTING MATLAB®1

Computers are managed through a set of programs called ‘operating system’, OS.
This can take different forms, and the program language the user chooses to solve
his tasks should be suitable for the specified OS. MATLAB® can be installed on
computers with different operation systems, it is assumed here that the reader uses a

1The text, screenshots and tables used in this subsection are partly taken from pp. 2-11, 13 of the author's book [2] with the
permission of Biohealthcare Publishing (Oxford) Limited.

Send Orders for Reprints to reprints@benthamscience.net

Basics Primary MATLAB® for Life Sciences: Guide for Beginners 9

personal computer with an installed Windows operating system. To start, simply
click on the icon representing red L-shaped membrane (Fig. 2.1), provided with
the MATLAB® -version subscription; the icon is placed on the Quick Launch bar or
on the Windows Desktop. It is possible to start by selecting MATLAB® R2012a in
the MATLAB-directory in the 'All Programs' option of the Windows 'Start' menu.

Figure 2.1: Surface plot of the L-shaped membrane, the MATLAB® logo2.

2.1.1. MATLAB® Desktop

After start the opened window is the MATLAB® Desktop, shown in Fig. 2.2. It
comprises four windows: Command, Current Folder, Workspace and Command
History.

Figure 2.2: MATLAB® Desktop.

2The image produced by the logo command; the background color changed.

10 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

These windows are used intensively and will be briefly described below. There
are also Help, Editor, and Figure windows which do not appear with MATLAB®
Desktop; they are described within the chapters where they are used.

The Desktop also contains: the Menu, which can be changed depending on the
tool in use; the MATLAB® Tools bar with the more common functions; the
Shortcuts bar, where one can place icons for quick running of MATLAB®
programs or group commands; and the Start button for accessing various tools,
demos, shortcuts, and documentation.

Command Window, where commands are entered and results displayed, is the
main desktop outlet. It can be separated from the desktop, for convenience, by
clicking to the right of the title bar. Such separation is possible for all Desktop
windows. To combine windows, click on or select the Default line in the
Desktop Layout of the Desktop option at the Menu bar.

Workspace is the graphic interface that permits viewing and manages the
variables and other objects of the MATLAB® workspace; it also displays and
automatically updates the values of each variable.

Current Folder presents a browser that shows the full path to the current folder
and displays the contents of the current folder. By staring MATLAB® here we can
view the starting directory, hence called startup directory. After selecting a file,
information about the file appears in the Details panel of this window.

Command History preserves most commands entered recently in the Command
Window and shows the timestamps and a log of the statements you ran in current
and earlier sessions.

2.1.2. Elementary Functions and Interactive Calculations

Two main working modes are available in MATLAB® – interactive mode and m-
files mode. I will explain the latter in later chapters. The interactive mode is
briefly presented here.

To enter and execute a command, type it in the Command Window immediately
after the command prompt . Fig. 2.3 shows this window with some elementary
commands.

Basics Primary MATLAB® for Life Sciences: Guide for Beginners 11

Figure 2.3: The Command Window, as it appears after separation from the desktop.

The symbol , which appears to the left of the command prompt, is called
Function Browser. It helps find the needed function and information about its
syntaxes and usage.

Entering a command and manipulating with it require us to master the following
operations:

 The command must be typed next to the prompt >>;

 The Enter key must be clicked for execution;

 A command in a preceding line cannot be changed; to correct or
repeat an executed command click up-arrow key ↑;

 A long command can be continued on the next line by typing … (three
periods); the total length of the lines should not be greater than 4096
characters for one command.

The next command should be placed

12 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

 Commands in the same line should be divided by semicolons (;) or by
commas (,);

 A semicolon at the end of the command withholds displaying the
answer;

 The symbol % (percent symbol) designates comments be written in
the line following it, the comments are not executed after entering;

 The command clc clears the Command Window.

The Command Window can be used as a calculator by using the following symbols
for arithmetic operations: + (addition), - (subtraction), * (multiplication), / (right
division), \ (left division, used mostly for matrices), and ^ (exponentiation).

These operations are applicable to a wide variety of elementary and trigonometric
functions, which should be written with the name and the argument in
parentheses. For example, sin x should be written as sin(x); in trigonometric
functions the argument x should be given in radians; in trigonometric functions
written with the ending letter d, e.g. sind(x), the argument x should be written in
degrees; inverse trigonometric functions with the ending d produce results in
degrees. A short list of such functions and variables appears in Table 2.1.
Hereinafter the operations executed in the Command Window are written after the
command line prompt (>>); and it is also meant that the user presses the Enter key
after entering one or more commands written in one command line.

Table 2.1: Elementary and trigonometric mathematical functions

MATLAB® Example
(Inputs and Outputs)

MATLAB®
Presentation

Functions and Constants in Math

>> abs(-15.1234)
ans =
15.1234

abs(x) |x| - absolute value

>> exp(2.7)
ans =
14.8797

exp(x) ex – exponential function

>> log(10)
ans =

log(x) ln x – natural (base e) logarithm

Basics Primary MATLAB® for Life Sciences: Guide for Beginners 13

2.3026

>> log10(10)
ans =
1

log10(x) log10x – Napierian (base 10) logarithm

>> sqrt(2/3)
ans =
0.8165

sqrt(x) x – square root

>> 2*pi
ans =
6.2832

pi - the number  (circumference-to-diameter
ratio of circle)

>> floor(-12.1)
ans =
-13

floor(x) Round towards minus infinity

>>round(12.6)
ans =
13

round(x) Round to the nearest integer

>> sin(pi/3)
ans =
0.8660

sin(x) sin x – sine

>> sind(60)
ans =
0.8660

sind(x) sind x – sine with x in degrees

>> cos(pi/3)
ans =
0.5000

cos(x) cos x - cosine

>> cosd(60)
ans =
0.5000

cosd(x) cosd x – cosine with x in degrees

>> tan(pi/3)
ans =
1.7321

tan(x) tan x - tangent

>> tand(60)
ans =
1.7321

tand(x) tand x – tangent with x in degrees

>> cot(pi/3)
ans =
0.5774

cot(x) cot x - cotangent

>> cotd(60)
ans =
0.5774

cotd(x) cotd x –cotangent with x in degrees

>> asin(1) asin(x) arcsin x – inverse sine

14 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

ans =
1.5708

>> asind(pi/6)

ans =

31.5740

asind(x) arsind x – inverse sine with x between -1 and
1; result in degrees between -90° and 90°

>> acos(1)

ans =

0

acos(x) arccos x - inverse cosine

>> acosd(pi/6)

ans =

58.4260

acosd(x) arccosd x - inverse cosine with x between -1
and 1; result in degrees between 0° and 180°

>> atan(1)

ans =

0.7854

atan(x) arctan x - inverse tangent

>> atand(pi/6)

ans =

27.6365

atand(x) arctand x - inverse tangent; result in degrees
between -90° and 90° (asymptotically)

>> acot(1)

ans =

0.7854

acot(x) arccot x - inverse cotangent

>> acotd(pi/6)

ans =

62.3635

acotd(x) arccotd x - inverse cotangent; result in
degrees between -90° and 90°

>> factorial(5)

ans =

120

factorial(n) n! - factorial

The result of entering the command is a variable with the name ans. The sign
equal (=) is called the assignment operator and used to specify a value to a
variable, e.g. to the ans. Entering a new value cancels its predecessor.

Arithmetic operations are performed in the following order: operations in
parentheses (starting with the innermost), exponentiation, multiplication and
division, addition and subtraction. If the expression contains operations of the
same priority, they run from left to right.

Below are examples of arithmetic operations in the Command:

Basics Primary MATLAB® for Life Sciences: Guide for Beginners 15

>> 6+2/5

ans =
6.4000
>> (6+2)/5
ans =
 1.6000
>> 6+2\5
ans =
8.5000
>> 6.203*10^23

ans =
 6.2030e+023
>> 2.3^2/3,2.3^(2/3)

ans =
 1.7633
ans =

 1.7424
>> 2^.1-1.72^(1/4)+log(15*.1005)/asin(pi/8)…
-sqrt(8.3)
ans =
-1.9373

The outputted numbers are displayed here in short format (default format): – a
fixed point followed by four decimal digits. The format can be changed to long,
fourteen digits after the point, by typing the command: format long. To return to
the default format, type format.

Other formats can be obtained by typing the help format command; the word
after help appears in blue for easier viewing.

First executed 2/5 and next 6+ executed

Left division: divide 5 by 2 (not the same as right
division: divide 2 by 5) next

Result of exponentiation (10^23) and
multiplication displayed here in scientific
notations; 6.2030e+023 (means 6.2030·1023)

First executed 2.3^2 and division by 3 executed
next; after this 2.3^(2/3) computed in which
division of 2 by 3 executed first and
exponentiation executed next

Write three periods and
press Enter to continue the
expression on the next line

Note: the zero before the decimal point may be
omitted

16 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

2.1.3. Help and Help Window

For information about the use of a command, type help with the command name
after a space next to this word, e.g. help format as in the preceding subsection.
Explanations will appear in the Command Window. To find a command
concerning a topic of interest the lookfor command may be used. For example, for
MATLAB® command/s on the subject of codons enter lookfor codon; after a
long search, the commands with short explanations will appear on the screen, as
shown below:

>> lookfor codon
codonbias - reports codon usage per amino acid for a DNA sequence.
codoncount - report codon counts for a sequence.
aminolookup - displays AA codes, integers, abbreviations, names, and codons.
>>

For further information, click on the selected command or use the help command.
To interrupt the search process, simultaneously the two abort keys Ctrl and c
should be clicked; these keys should be used to interrupt of other processes, e.g.,
that of program/command execution.

For more detailed information use the doc command, e.g. doc codoncount, this
will open the Help window. The window can be opened in other ways, for
example, by selecting the Product Help line in the Help options on the
MATLAB® Desktop menu line (Fig. 2.4).

The Help window comprises three panes: the Contents and Search Results on the
left and the page containing information on the topic on the right. Information on
any subject can be obtained by typing the relevant word/s into the search line in
the upper left corner. The Search Results pane shows a preview of where the
search words appear within the page, and the concrete information is displayed on
the right.

Type lookfor codon and press Enter

Click on codoncount for further information

Basics Primary MATLAB® for Life Sciences: Guide for Beginners 17

Figure 2.4: The Help Window with information about the codoncount command.

Note that information returned by the lookfor command can differ from computer
to computer, as it is determined by the toolbox set installed with MATLAB®, e.g.,
for the request shown about codon and codoncount - the Bioinformatics
toolbox™ should be installed on your computer.

2.1.4. About toolboxes

While sin, cos, sqrt, log, and other MATLAB® functions are valid within a wide
range of natural sciences from aeronautics to medicine, each area needs
specialized commands to solve specific problems. For these purposes, basic and
problem-oriented tools are assembled in so-termed toolboxes, e.g., basic
commands discussed thereafter are assembled in the MATLAB® toolbox,
command related to statistics in Statistics toolbox, commands related to signal
processing in the Signal Processing toolbox, commands for neural networks in the
Neural Network toolbox, commands related to bioinformatics in the

18 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

Bioinformatics toolbox™, etc. To detect which toolboxes are available on your
computer, use the ver command. After typing and entering this command in the
Command Window, the header with product information and list of toolbox
names, versions, and releases will be displayed as follows:

>> ver

MATLAB Version: 7.14.0.739 (R2012a)

MATLAB License Number: 671014

Operating System: Microsoft Windows 7 Version 6.1 (Build 7601:

Service Pack 1)

Java Version: Java 1.6.0_17-b04 with Sun Microsystems Inc. Java

HotSpot(TM) 64-Bit Server VM mixed mode

MATLAB Version 7.14 (R2012a)

Simulink Version 7.9 (R2012a)

Aerospace Toolbox Version 2.9 (R2012a)

Bioinformatics Toolbox Version 4.1 (R2012a)

…

This list was interrupted, as it can be quite long, depending on the installed
toolboxes. Information about available toolboxes can also be obtained from the
pop-up menu that appears after clicking the Start button on the bottom line of the
MATLAB Desktop (Fig 2.2).

2.1.5. Variables and Commands for Management of Variables

A variable is a symbol, namely, letter/s and number/s, to which a specific
numerical value should be assigned. MATLAB® allocates space in the computer’s
memory for storage of the variable names and their values. A variable can be
assigned a single number (a scalar) or a table of numbers (an array). The name can
be as many as 63 characters long, and can contain letters, digits and underscores,
the first character being a letter. Existing commands (sin, cos, sqrt, etc.) are not
recommended to use as variable names, as their use could confuse the system.

The following screenshot demonstrates the assignment and usage of variables in
algebraic calculations:

Basics Primary MATLAB® for Life Sciences: Guide for Beginners 19

>> a=2
a =
 2
>> b=3
b =
3
>> c=sqrt(a^2+b^2)
c =
 3.6056

Some variables are assigned by MATLAB, and are permanently stored; they can
be used without a prior assignment. Such variables are termed ‘predefined’.
Besides previously mentioned pi and ans, these variables are inf (infinity), i or j
(square root of -1), and NaN (not-a-number, used when a numerical value is
moot, e.g., 0/0).

The following commands, related to variable management, can be used: clear –
for removing the memory or clear x y – for removing named variables x and y
only; who for displaying the names of variables or whos for displaying variable
names, matrix sizes, variable byte sizes and variable classes. Moreover, each
variable that has the same information as in the case of whos and has some
additional data is presented in the Workspace Window by the icon . To select
or add desirable information about a variable, the right mouse's button should be
clicked when the cursor is placed on the Workspace Window menu line; a popup
menu appears with a list of additional info that can be shown.

2.1.6. Formats for Displaying Output

MATLAB displays output on the screen in a format specified by the format
command in the following forms:

format or format format_type

The first command sets the short type of format, which is also the default format
for numeric data. Four decimal digits are displayed in this format, e.g., 3.1416. In
cases when the real number is lesser than 0.001 or greater than 1000, the number

MATLAB displays
the variable and
assigned value

The value 2 is assigned to variable a

The value 3 is assigned to variable b

The value calculated by the expression
on the right is assigned to variable c

20 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

is shown in the shortE format type, used scientific notations - a number between
1 and 10 multiplied by a power of 10 (e.g., Boltzmann constant in scientific
notations is presented as 1.3807e-023, in m2kg/(s2K), and should be read as
1.3807·10-23, and Avogadro constant 6.0221412927e023, in mol-1, should be read
as 6.0221412927·1023). Thus, the number a=1000.1 is displayed in the short and
shortE formats as 1.0001e+003 where e+003 is 103 and the whole number should
be read as 1.0001·103. Note, that scientific notations can also be used for inputting
variables, e.g., A=6.0221e23.

The format_type parameter in the second of the format commands is a word that
specifies the type of the displayed numbers. In addition to the short and shortE
some others can be used. to show more decimal digits, the display output can be
replaced by the long or longE format type. In this case 15 decimal digits are
displayed. For example, setting the longE format type and inputting Avogadro’
constant 6.0221412927, MATLAB® yields the following results:

>> format longE
>> A=6.0221412927e23
A =
6.022141292700000e+023
Note:

 The format commands, written with the format type, change the
numbers on the display but do not change the numbers in the
computer memory; nor do they affect the typing of the inputted
numbers.

 Once a certain number format type is specified, all subsequent
numbers are displayed in it.

 To return to the replaced short format, enter the format or format
short command.

Details about additional format types used with the format command can be
assessed by using the help format command.

Basics Primary MATLAB® for Life Sciences: Guide for Beginners 21

2.1.7. Output Commands

MATLAB® automatically displays the result after entering a command and does

not display the result if the semicolon follows the command. Additional

commands are available for displaying the result; two of them are most frequently

used: disp and fprintf.

The disp command displays texts or variable values without the name of the

variable and the = (equal) sign. Every new disp command yields its result in a

new line. The general form of the command reads

disp('Text string') or disp(Variable name)

The text between the quotes is displayed in blue.

For example:

>> Bol=1.3807*10^-23
Bol =
1.3807e-023
>> disp('Boltzmann Const'),disp(Bol)
Boltzmann Const
1.3807e-023

The fprintf command is used for displaying texts and data or saving them in a file.

The command has various forms that present difficulties for beginners. Here, the

simplest among them, are discussed for displaying calculation results.

The following form is used for formatted output of a text and a number on the

same line:

The variable value displayed without
the disp command

The first disp command used to display
string Boltzmann Const above the
Boltzmann's constant value displayed
by the second disp command

22 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

fprintf('Text string %6.3f additional text', variable name)

To display text with a new line, or to divide text into two or more lines the \n
(slash n) characters should be written before the word that we want to see on the
new line. The same characters should be written for appearance of the >> prompt
on the new line after executing the fprintf command. The field width number and
the number of digits after the decimal point (6.3 in the presented example) are
optional; the sign % and the character f, called conversion character, are
obligatory, e.g. if %f was written instead of % 6.3f the number will be displayed
with 6 digits after the decimal point. The f specifies the fixed point notation in
which the number is displayed. Additional notations that can be used are i (or d) -
integer, e - exponential, e.g., 2.309123e+001, and g - the more compact version
of e or f, with no trailing zeros.

The addition of several %f units (or full formatting elements) permits the
inclusion of multiple variable values in the text.

Below is an example of using the fprintf command:

A string with the text and
specific characters, e.g.,
%, \n, etc., should be
placed between two
single quotes

The name of the variable
whose value will be
displayed in the place
marked by %

% marks the place where we
intend to type the number

6 – field width – the number including sign

3 – number of digits after the point

Basics Primary MATLAB® for Life Sciences: Guide for Beginners 23

>> mO2=15.9994;
>> mCH4=16.01313;
>> fprintf(' Mass of 0_2 is %7.3f g/mol\n Mass of CH_4 is %7.3f
g/mol\n',mO2,mCH4)

Mass of 0_2 is 15.999 g/mol
Mass of CH_4 is 16.013 g/mol

The color of the text in the quotes is the same as that in disp (blue).

To display tables, described output commands can be used; they will be shown
below, following study of the vectors, arrays and matrices (see 2.2.5).

2.1.8. Application Examples

2.1.8.1. Ribosomal RNA Volume

As shown in the figure:

The volume of the ribosomal ribonucleic acid (rRNA) molecule, with some
idealization, can be calculated using the expression for sphere volume:

\n is for going to a new lineText for
display in the
first line

Variable name whose
value is displayed

Note: % signs position for the
number that should be displayed;
7 positions for the number value;
3 digits after the decimal point

Text for
display in the
second line

24 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

V=4/3(d/2)3

where d is the rRNA diameter, about 2·10-2 microns.

Problem: Calculate the rRNA volume.

The solution

>> d=0.02;
>> V_RNA=4/3*pi*(d/2)^3
V_RNA =
4.1888e-006

2.1.8.2. Distance Between Two Molecules

The distance d between the centers of two molecules shown in the figure
(produced with MATLAB graphics commands) in a Cartesian coordinate system,
is given by the expression

     2 2 2

1 2 1 2 1 2d = x - x + y - y + z - z

where x, y, and z – are the coordinates, and the numbers 1 and 2 denote the first
and second molecule, respectively. The dimensionless coordinates are: x1=0.1,
y1=0.02, z1=0.12, x2=0.2, y2=0.5 and z2=0.4.

Assign values to the d variable

Calculate the rRNA volume

Basics Primary MATLAB® for Life Sciences: Guide for Beginners 25

Problem: Calculate the distance for the given coordinates of the molecules.

The solution:

>> x1=0.1;y1=0.02;z1=0.12;
>> x2=0.2;y2=0.5;z2=0.11;
>> d=sqrt((x2-x1)^2+(y2-y1)^2+(z2-z1)^2)
d =
0.4904

2.1.8.3. Newton's Law of Cooling

A liquid (e.g. soup in a pot, coffee in a cup, etc.) is cooled during t time for the
required temperature T (e.g. to be suitable to eat or to drink). According to
Newton’s law, the cooling time can be calculated by the expression

ln s

0 s

T -T1
t = -

k T -T

where Ts is the ambient temperature, T0 is the initial temperature, k is a constant.

Problem: If the initial temperature of coffee in a cup is 73 C, the ambient
temperature is 25 C, and k is 0.3 C/min, when will the coffee be cool enough to
drink (T =29 C) ?

The solution:

>> To=73;
>> Ts=25;
>> T=29;
>> k=0.3;
>> t=-1/k*log((T-Ts)/(To-Ts))
t =
8.2830

2.1.8.4. Constant of a Chemical Reaction by the Arrhenius' Equation

The modified Arrhenius' equation represents the relationship between the chemical
reaction rate constant k and the temperature T at where the reaction passes:

Assign coordinate values to the
variables x1, y1, z1, x2, y2, z2

Calculate the distance

26 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

0

e

En aT RTk A
T

 
  

 

where Ea – the activation energy, A – the frequency of molecular collision, T0 –
reference temperature, R - the gas constant, n – dimensionless power.

Problem: Calculate the rate constant k for the reaction of interest with following
parameters: Ea=75000 J/mol, A=1·1014 sec-1, T=300 K, T0 = 293 K, R=8.314 J/(K
mol) and n=1/2.

Using specified parameters, the solution is:

>> Ea=75e3;
>> A=1e14;
>> T=300;
>> T0=293;
>> R=8.314;
>> n=1/2;
>> k=A*(T/T0)^2*exp(-Ea/(R*T))
k =
9.1490

2.2. VECTORS, MATRICES AND ARRAYS3

A normal table of numbers, which in natural sciences often represents data, is a
matrix or array. The variables that were used heretofore were given in scalar form.
Each of these variables is a 1x1 matrix in MATLAB®. Mathematical operations
using matrices and arrays are more complicated than those using scalars: for
matrices linear algebra operations should be applied [7], and for arrays - element-
wise operations should be carried out.

2.2.1. Generation of Vectors and Matrices. Vector and Matrix Operators

Generation of Vectors

Vectors are presented as numbers written sequentially in a row or in a column,
and termed respectively - row or column vectors. They can also be presented as

3Used pp. 15-28, 32; from the book cited in note 1; with permission of Biohealthcare Publishing (Oxford) Limited.

Basics Primary MATLAB® for Life Sciences: Guide for Beginners 27

lists of words or equations. In MATLAB® a row vector is generated by typing the
numbers in square brackets with spaces or comma between them, and a column
vector - by typing semicolons or pressing Enter between numbers.

Say we have the data for an aerobic biomass process of wastewater biological
treatment as in Table 2.2.

Table 2.2: Biomass data

Time, minutes 0 25 50 75 100 125 150 200

Biomass, g/l 5.15 5.21 5.52 6.55 7.15 7.75 7.59 7.45

This data can be presented as two vectors; for example:

>> time=[0 25 50 75 100 125 150 200]
time =
0 25 50 75 100 125 150 200
>> b_mass=[5.15;5.21;5.5;6.55;7.15;7.75;7.59;7.45]
b_mass =
5.1500
5.2100
5.5000
6.5500
7.1500
7.7500
7.5900
7.4500
Two frequently used operators for generating vectors with constant spacing are:

: (colon) and linspace.

The colon operator has the form

vector_name=i:j:k

where i and k are respectively the first and last term in the vector and j is the step
between the terms within it. The last number cannot exceed the last number k. The
step for j can be omitted, in which case it is equal to 1 by default, for example:

The data from the first
line in Table 2.2 is
assigned to the row
vector named time

The data from the
second line in Table
2.2 is assigned to the
column vector named
b_mass

28 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

>> time=0:25:200
time =
0 25 50 75 100 125 150 175 200

>> x=-3:7
x =
-3 -2 -1 0 1 2 3 4 5 6 7

>> y=0.2:0.12:1
y =
0.2000 0.3200 0.4400 0.5600 0.6800 0.8000 0.9200

>> z=15.2:-3.21:1.3
z =
15.2000 11.9900 8.7800 5.5700 2.3600

The linspace operator has form

vector_name=linspace(a,b,n)

where a is the first number, b is the last number and n is the amount of numbers
(this value is 100 by default when n is not specified).

For example:

>> x=linspace(0,28,8)
x =
0 4 8 12 16 20 24 28

>> y=linspace(-10,100,3)
y =
-10 45 100

>> z=linspace(15.2,1.3,5)
z =
15.2000 11.7250 8.2500 4.7750 1.3000

>> v=linspace(0,100)
v =

First number 0, last number 200, step 25

First number -3, last number 7, step by default is 1

First number 0.2, last number 1, step 0.12

First number 15.2, last number is not less than
1.3, step -3. 21

8 numbers, first number 0, last number 28

3 numbers, first number -10, last number 100

5 numbers, first number 15, last number 1.3

Amount of numbers is omitted, default is 100,
first number 0, last number 100

Basics Primary MATLAB® for Life Sciences: Guide for Beginners 29

Columns 1 through 8
0 1.0101 2.0202 3.0303 4.0404 5.0505 6.0606 7.0707

The position of an element in a vector is its address; for example, the fifth

position in the eight element vector b_mass above (p.33) can be addressed as

b_mass(5); the element located here is 7.15. The last position in a vector may be

addressed with the end terminator, e.g. b_mass(end) is the last position in the

b_mass vector and signs the number located here as 7.45; another means to

address the last element is to give the position number, namely, b_mass(8).

Generation of Matrices and Arrays

A two-dimensional matrix or an array has rows and columns of numbers. It

resembles a numeric table, the difference manifesting itself only in realization of

certain mathematical operations. When the number of rows and columns is equal,

the matrix is square; otherwise, it is rectangular. Like a vector, it is generated by

typing the row of elements in square brackets with spaces or commas between

them and with semicolons between the rows, or by pressing Enter between the

rows; the amount of elements in every row should be equal.

The elements can also be variable names or mathematical expressions.

As an example, the Table 2.3 presents repeated tests on three batches of enzyme

activity, units/mg:

Table 2.3: Enzyme activity (mg-1)

Batch 1 Batch 2 Batch 3

100.9 100.8 110.0

102.0 101.0 108.0

104.0 100.1 107.0

Matrix presentation of this table and some other examples are:

30 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

>> A=[100.9 100.8 110.0;102.0 101.0 108.0;104.0 100.1 107.0]
A =
100.9000 100.8000 110.0000
102.0000 101.0000 108.0000
 104.0000 100.1000 107.0000
>> B=[27 30
-13.4 7.25]
B =
27.0000 30.0000
 -13.4000 7.2500
>> c1=-4.21;c2=6.023;
>> C=[c1 c2;sin(2*pi*c1) log(c2)]
C =
-4.2100 6.0230
-0.9686 1.7956

Manipulations with matrix elements use row-column addressing. For example, in
matrix A in the previous example, set A(2,3) refers to the number 108.0000 and
set A(3,2) to the number - 100.1000. Row or column numbering begins with 1,
thus the first element in matrix A is A(1,1).

The semicolon can be used for sequential elements or an entire row or column,
e.g., A(2:3,2) refers to the second and the third numbers in column 2 of matrix A,
A(:,n) refers to the elements of all rows in column n, and A(m,:) refers to those of
all the columns in row m.

In addition to row-column addressing, linear addressing can be used. In this case,
a single number is used instead of the row- and column- numbers, and the
element's place within the matrix is indicated sequentially beginning from the first
element of the first column and following along it, continuing along the second
column and so forth, up to the last element in the last column. For example, A(6)
refers to element A(3,2), A(8) refers to A(2,3), A(4:6) is the same as A(:,2), etc.

By using square brackets, it is possible to generate a new matrix by combining an
existing matrix with a vector or with another matrix. Examples of matrix
manipulations of this sort are presented below, using matrix A from the previous
example (p.37).

A semicolon is placed before new line

Type Enter for inputting new line

Elements defined by variables

Elements defined by mathematical expressions

Basics Primary MATLAB® for Life Sciences: Guide for Beginners 31

>> V=linspace(127.1,252.3,3)
V =
 127.1000 189.7000 252.3000
>> B=[A;V]
B =
100.9000 100.8000 110.0000
102.0000 101.0000 108.0000
 104.0000 100.1000 107.0000
127.1000 189.7000 252.3000
>> B(3,2)
ans =
 100.1000
>> B(2:4,1)
ans =
102.0000
 104.0000
127.1000
>> B(2,1:3)
ans =
 102 101 108
>> B(3,:)
ans =
104.0000 100.1000 107.0000
>> B(2:4,1)=6.4321
B =
100.9000 100.8000 110.0000
6.4321 101.0000 108.0000
6.4321 100.1000 107.0000
6.4321 189.7000 252.3000
To convert a row/column vector into a column/row vector and to exchange
rows/columns in matrices, the transpose operator ' (quote) is applied, for example:

>> Aa=[3 1 2]
Aa =
 3 1 2
>> Bb=Aa'
Bb =

Produce vector V by the linspace

Create matrix B by joining matrix A
and vector V, with V added to A as a
new row

Refer to the element in row 3 and in
column 2 of the matrix B

Refer to the element in column 1 and
rows 2- 4 of the matrix B

Refer to the element in row 2 and
columns 1 - 3 of the matrix B

Refer to the elements in row 3 and in
column 1-3 in matrix B

Assign the value 6.4321 to the
elements in column 1 and rows 2 - 4

Produce the row vector Aa

Define the column vector Bb as
transpose of row vector Aa

32 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

3
1
 2
>> B
B =
100.9000 100.8000 110.0000
 6.4321 101.0000 108.0000
6.4321 100.1000 107.0000
6.4321 189.7000 252.3000
>> C=B'
C =
100.9000 6.4321 6.4321 6.4321
100.8000 101.0000 100.1000 189.7000
110.0000 108.0000 107.0000 252.3000

2.2.2. Matrix Operations

Vectors, matrices, and arrays can be used in various mathematical operations in
the same way as single variables, as illustrated below.

Addition and Subtraction

Addition and subtraction of two matrices are performed element by element,
provided the matrices are equal in size, e.g. when A and B are two matrices each
sized 3x2:

11 12

21 2

31 32

 
 
 
  

2

A A

A= A A

A A
 and

11 12

21 22

31 2

 
 
 
  3

B B

B = B B

B B

the sum of these matrices is

11 11 12 12

21 21 22 22

31 31 32 32

 
 
 
  

A + B A + B

A + B A + B

A + B A + B

In addition and subtraction the commutative law operations are valid, namely
A+B=B+A.

Display previously defined matrix B
with 4 rows and 3 columns

Change rows by columns in the matrix
B with ' (quote) and assign results to

the matrix C

Basics Primary MATLAB® for Life Sciences: Guide for Beginners 33

Multiplication

Multiplication of matrices is more complicated, in accordance with the rules of
linear algebra. It is feasible only when the number of row elements in the first
matrix equals to that of column elements in the second; in other words, the inner
dimensions of the matrices must be equal. Thus the above matrices A, 3×2, and B,
3x2, cannot be multiplied, but if B is replaced by another matrix with size 2×3, the
inner matrices dimensions are equal and multiplication becomes possible.

11 11 12 21 11 12 12 22 11 13 12 23

21 11 22 21 21 12 22 2 21 13 22 23

31 11 32 21 31 12 32 22 31 11 32 23

 
 
 
  

2

A B + A B A B + A B A B + A B

A B + A B A B + A B A B + A B

A B + A B A B + A B A B + A B

It is not difficult to verify that the product B*A is not the same as A*B, the
commutative law does not apply here.

Examples of matrix addition, subtraction and multiplication appear below, using
the same A and B matrices as in the preceding section.

>> A=[100.9 100.8 110.0;102.0 101.0 108.0;104.0 100.1 107.0];
>> B=[100.9000 100.8000 110.0000; 102.0000 101.0000 108.0000;
104.0000 100.1000 107.0000; 127.1000 189.7000 252.3000];
>> A*B
??? Error using ==> mtimes
Inner matrix dimensions must agree.
>> C=B*A
C =
1.0e+004 *
 3.1902 3.1363 3.3755
3.1826 3.1293 3.3684
3.1832 3.1304 3.3700
 5.8413 5.7227 6.1465

>> V1=A(1,:),V2=A(:,3)
V1 =
100.9000 100.8000 110.0000

The number of rows in the A-matrix is
3 and not equal to the number of
columns in the B-matrix which is equal
to 4; this generates the error message

Multiply B by A and assign resulting
matrix to C

Produce row vector V1 from the first
row of the A-matrix

Produce row vector V1 from the first
row of the A-matrix

34 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

V2 =
110
 108
107
>> V1*V2
ans =
 3.3755e+004
>> V2*V1
ans =
1.0e+004 *
1.1099 1.1088 1.2100
1.0897 1.0886 1.1880
1.0796 1.0786 1.1770

An important application of matrix multiplication is the possibility to present a set
of linear equations in matrix form, for example, a set of two equations with two
variables

11 1 12 2 1

21 1 22 2 2

A x + A x = B

A x + A x = B

may be written in compact matrix form as AX=B or in full matrix form as

11 12 1 1

21 22 2 2

     
     
     

A A x B
=

A A x B

Division

Division of matrices is even more complicated than their multiplication, becouse
of the above-mentioned non-commutative properties of the matrix. A full
explanation can be found in books on linear algebra. Here, the related operators
are described in the context of their usage in MATLAB®.

Identity and inverse matrices are often used in dividing operations. An identity
matrix I is a square matrix whose diagonal elements are 1's whose other elements are
0's; it can be generated with the eye command (see Table 1.4). The commutative
law applies for I - multiplication of A by I, or I by A, yields the same result:
AI=IA=A.

Multiply row vector V1 by column
vector V2, the results is a scalar
(number)

Note, the V1*V2 is scalar (size 1x1)

Multiply column vector V2 by row
vector V1, the results is a 3×3 element
matrix

Basics Primary MATLAB® for Life Sciences: Guide for Beginners 35

The matrix B is called the inverse of A when left or right multiplication leads to

the identity matrix: AB=BA=I. The inverse matrix can be written as A-1. In

MATLAB® this can be written in two ways: B=A^-1 or with operator inv as

B=inv(A).

Where matrix products are involved, left, \, or right, /, division is used. For

example, to solve the matrix equation AX=B, when A is a square matrix and X and

B are column vectors, use left division: X=A\B; to solve XC=B, when X and B row

vectors and C is a transposed matrix of A, use right division: X=B/C.

Use matrix division to solve the following set of equations.

1 2

1 2

8

8 12

x - 2x =

x + x =

Based on the above, this set of equations can be represented in two matrix forms:

AX=B with A=
1 2

6 8

 
 
 

, B=
8

12

 
 
 

, and X= 1

2

 
 
 

x

x

or

XC=D with C=
1 6

2 8

 
  

, D=[8 12], and X= 1 2x x

The second form refers to the equation set rewritten with coefficients to the right

of unknowns x1 and x2 as

1 2

1 2

2 = 8

6 8 = 12

x - x

x + x

The commands for solutions of both forms discussed above are:

36 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

>> A=[1 -2;6 8];
>> B=[8;12];
>> X_left=A\B
X_left =
4.4000
-1.8000

>> C=A';
>> D=B';
>> X_right=D/C
X_right =
4.4000 -1.8000
For an example with matrix division see Subsection 2.3.4.1.

2.2.3. Array Operations

All previously described operations concern matrices that obey the rules of linear
algebra; however, many calculations (in particular in bioscience) call for the
operations to be carried out by the so-called element-by-element procedure. In
these cases, to avoid confusion, we use for them the term 'array'. These element-
wise operations are carried out with the elements in identical positions in the
arrays. In contrast to matrix operations, element-wise operations are confined to
arrays of equal size; they are denoted by a point, typed preceding the arithmetic
operator:.* (element-wise multiplication);./ (element-wise right division),.\
(element-wise left division), and.^ (element-wise exponentiation).

For example, if we have vectors a=[a1 a2 a3] and b=[b1 b2 b3] then element-by-
element multiplication a.*b, division a./b, and exponentiation a.^b yields:

a.*b= 1 1 2 2 3 3[]a b a b a b , a./b= 1 1 2 2 3 3[/ / /]a b a b a b , and 31 2.^ []1 2 3
bb b

a b a a a

The same manipulations for two matrices A= 11 12 13

21 22 23

A A A

A A A

 
 
 

 and B=

11 12 13

21 22 23

B B B

B B B

 
 
 

 leads to:

Equation form AX=B
Solution with left division A\B

Equation form XC=D
Solution with right division D/C

Note: In the latter case, C is the
transposed A matrix, D is the
transposed B vector and the solution
X is a row vector

Basics Primary MATLAB® for Life Sciences: Guide for Beginners 37

11 11 12 12 13 13

21 21 22 22 23 23

A B A B A B
A.* B =

A B A B A B

 
 
  ,

11 11 12 12 13 13

21 21 22 22 23 23

A / B A / B A / B
A. / B =

A / B A / B A / B

 
 
  ,

and

1311 12
11 12 13

2321 22
21 22 23

 
 
 
 

BB B
A A A

A.^ B =
BB B

A A A

Element-wise operators are frequently used for calculating a function in a series
of values of its argument. Below are examples of array operations:

>> A=[3 6;11 4;5 7]
A =
3 6
11 4
 5 7
>> B=[1 2;3 10;1 4]
B =
1 2
3 10
 1 4
>> A.*B
ans =
3 12
33 40
 5 28
>> A./B
ans =
3.0000 3.0000
3.6667 0.4000
 5.0000 1.7500
>> B.^2
ans =
1 4

Generate 3x2 array A

Generate 3x2 array B

Element-by-element multiplication of A by B

Element-by-element division of A by B

Element-by-element exponentiation of
B. As a result each term in B is a power
of 3

38 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

9 100
 1 16
>> A*B
??? Error using ==> mtimes
Inner matrix dimensions must agree.

>> x=1:4
x =
 1 2 3 4
>> y=4+x/2-x.^2./4
y =
4.2500 4.0000 3.2500 2.0000

>> y=(x+5)./(3*x.^2-1)
y =
3.0000 0.6364 0.3077 0.1915

2.2.4. Commands for Generation of Special Matrices and Additional
Commands for Matrices and Arrays

There are commands for generating matrices with special values and those with
random values. In particular, the ones(m,n) and zeros(m,n) commands are used
for matrices of m rows and n columns with 1 and 0 as all elements. Various
practical problems involve random numbers, for which the rand(m,n) or
randn(m,n) command should be used, the former yielding a uniform distribution
of elements between 0 and 1 and the latter, a normal distribution with mean 0 and
standard deviation 1. For generating a square matrix (n × n), these commands can
be abbreviated as rand(n) and randn(n). Below are examples:

>> ones(2,3)
ans =
1 1 1
1 1 1
>> zeros(3,2)
ans =
0 0
0 0
0 0

A and B have different inner
dimensions: – the row number in A is
not equal to the column number in B

Generate four-element vector x

Calculate vector y=4+x/2-x2/4 at x previously
given as a four-element vector using element-by-
element operations

Calculate vector y=(x+5)/(3x2-1) at x
previously given as four-element vector using
element-by-element operations

Generate a 2×3 matrix, in which all
elements are equal to 1

Generate a 2×3 matrix, in which all
elements are equal to 0

Basics Primary MATLAB® for Life Sciences: Guide for Beginners 39

>> a=rand(2,3)
a =
0.9501 0.6068 0.8913
0.2311 0.4860 0.7621
>> v=rand(1,3)
v =
0.4565 0.0185 0.8214
>> b=randn(2,3)
b =
-0.4326 0.1253 -1.1465
-1.6656 0.2877 1.1909
>> w=randn(3,1)
w =
1.1892
-0.0376
0.3273

To generate integer random numbers use the randi-command as shown in Table
2.4.

Note: When the rand, randn, or randi command are used repeatedly, the new
random numbers are generated each time; to restore the settings of the random
number generator to produce the same random numbers as if restarting
MATLAB®, type and enter the rng default command should in the Command
Window.

In addition to the commands described in the previous sections, MATLAB® has
many other commands that can be used for manipulation, generation and analysis
of matrices and arrays; some of these are listed in Table 2.4.

Table 2.4: Command for matrix manipulations, generation and analysis

MATLAB® Example
(Inputs and Outputs)

Description Form of MATLAB® Presentation

>> x=[3 7 1];

>>length(x)

ans =

3

Returns the length of vector x. length(x)

Generate a 2×3 matrix a with uniformly
distributed random numbers between 0
and 1

Generate a row vector v with three
uniformly distributed random numbers
between 0 and 1

Generate a 2×3 matrix b with normally
distributed random numbers

Generate a 3×1 column vector w with
three normally distributed random
numbers

40 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

>>a=[1 2; 7 3; 9 6];

>>size(a)

ans=

3 2

Returns two-element row vector; the
first element is the number of rows
in matrix a and the second - the
number of columns.

size(a)

>>reshape(a,2,3)

ans=

1 9 3

7 2 6

Returns m-by-n matrix whose
elements are taken column-wise
from a. Matrix a must have m×n
elements.

reshape(a,m,n)

>> a=[0 1;1 0];

>> b =repmat(A,1,2)

b =

0 1 0 1

1 0 1 0

Generates the large matrix b
containing m×n copies of a

b = repmat(a,m,n)

>> t1 = 'Alanine';

>> t2 = 'Arginine';

>> t3 = 'Asparagine';

>> strvcat(t1,t2,t3)

ans =

Alanine

Arginine

Asparagine

Generates the matrix containing the
text strings t1,t2,t3,… as rows.

strvcat(t1,t2,t3,…)

>> zeros(2,3)

ans =

0 0 0

0 0 0

Generates a m by n matrix of all
zeros

zeros(m,n)

>> x=1:3;diag(x)

ans =

1 0 0

0 2 0

0 0 3

Generates a matrix with elements of
vector x placed in diagonal

diag(x)

>> eye(4)

ans =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

Generates square matrix with
diagonal elements 1 and others 0

eye(n)

>> randi(10,1,3)

ans =

Returns m by n matrix of integer
random numbers from value 1 up to

randi(imax,m,n)

Basics Primary MATLAB® for Life Sciences: Guide for Beginners 41

9 10 2 imax: the maximal integer value

>> a=[1 2; 7 3; 9 6];

>> b=min(a)

b =

1 2

>> a=[1 2 7 3 9 6];

>> b=min(a)

b =

1

Returns row vector b with minimal
numbers of each column in the
matrix a. If a is vector, b is equal to
the minimal number in a

b=min(a)

>> a=[1 2 7 3 9 6];

>> b=max(a)

b =

9

Analogously to min but for maximal
element

b=max(a)

>> a=[1 2; 7 3; 9 6];

>> b=mean(a)

b =

5.6667 3.6667

Returns row vector b with mean
values calculated for each column
of the matrix a. If a is a vector,
returns average value of the vector a

b=mean(a)

>> a=[1 2; 7 3; 9 6];

>> sum(a)

ans =

17 11

Returns row vector b with column
sums of matrix a. Returns vector
sum if a is a vector

sum(a)

>> a=[1 2; 7 3; 9 6];

>> std(a)

ans =

4.1633 2.0817

Analogously to sum but calculates
standard deviation

std(a)

>> a=[5 6;12 1];

>> det(a)

ans =

-67

Calculates determinant of the square
matrix a

det(a)

>> a=[5 6;12 1;1 7];
>> sort(a)
ans =
1 1
5 6
12 7

For vector or matrix. Sorts elements
of a vector or each column of a in
ascending order.

sort(a)

>> a=12.4356;
>> num2str(a)
ans =
12.4356

Convert single numbers or
numerical matrix elements into a
string representation

num2str(a)

42 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

All matrices described above, with the exception of some of those in Table 2.4,
have numerical elements, even if matrix elements written as expressions these
expressions are translated to numbers.

A string also can be element of a matrix. A string is an array of characters: letters
and/or symbols. A string is entered in MATLAB® between single quotes, e.g.

 'Protein' or

 'Human cells DNA <deoxyribonucleic acid> totals about 3 meters in
length '.

Each character of the string is presented and stored as a number (thus the set of
characters represents a vector or an array) and can be addressed as an element of
vector or an array, e.g., a(5) in the string 'Protein' is the letter 'e'. Below are
examples of string manipulations:

>> a='Protein'
a =
Protein
>> a(4)
ans =
t

>> a(5:7)
ans =
ein
>> a([1:4 3 7])
ans =
Proton

Strings can be placed as elements in a vector or a matrix. String rows are divided
by a semicolon (;) similarly to numerical rows and strings within the rows are
divided by a space or a comma. Rows should have the same number of elements,
and each column element must be the same length as the longest of the elements.
Spaces are added to shorter strings in order to achieve this alignment; for
example,

Assign the string ‘Protein’ to the variable a; it
comprise 7 letters and is a 7-element row vector

The fourth element of the vector a is the
letter t; thus a(4) is t

The fifth, sixth, and seventh elements of
the vector a are the letters e, i, and n

The 1st, 2nd, 3rd, 4th, 3rd, and 7th elements of the
vector a are the letters P, r, o, t, o, and n

Basics Primary MATLAB® for Life Sciences: Guide for Beginners 43

>> Name=['RNA';'Guanine';'Uracil']
??? Error using ==> vertcat
CAT arguments dimensions are not consistent.
>> Name=['RNA ';'Guanine';'Uracil ']

Name =
RNA
Guanine
Uracil

To avoid the calculation of the number of spaces to added to each string in the
column use the strvcat command, as shown in Table 2.4.

2.2.5. Output Table with the disp and fprintf Commands

The disp and fprintf commands can be used for displaying vectors, matrices and a
caption. These commands allow output data to be presented as a table.

First we will show how it can be done with the disp command. For example,
enzyme activity data with captions (see Table 2.3) should be displayed with the
following commands:

>> A=[100.9 100.8 110.0;102.0 101.0 108.0;104.0 100.1 107.0]
A =
100.9000 100.8000 110.0000
102.0000 101.0000 108.0000
104.0000 100.1000 107.0000
>> disp(' Table'),disp(' Batch 1 Batch2 Batch3'),disp(A)

Table

Batch1 Batch2 Batch3
100.9000 100.8000 110.0000
102.0000 101.0000 108.0000
104.0000 100.1000 107.0000

Now the fprintf command is used. This command permits a formatted output: for
example, the same A-matrix with numbers displayed with one decimal digit can
be presented as a table with the following commands:

Error due to inequality in the
length of the strings: number
of the characters in the word
RNA is 3, in Guanine is 7,
and in Uracil 6

Four spaces were added after RNA and one space after
Uracil; now the length of each of the strings is the same and
the three strings are successfully written as a column vector

Generate matrix A with enzyme
activity data (in Table 2.3)

The first two disp commands show the captions
and the third outputs numbers from the A matrix.
Note: To display the table in the presented view
all disp commands should be written on the
same command line

44 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

>> fprintf(' Table\n Batch1 Batch2 Batch3\n'),fprintf('%7.1f %7.1f %7.1f\n', A')
Table

Batch1 Batch2 Batch3
100.9 100.8 110.0
102.0 101.0 108.0
104.0 100.1 107.0

The fprintf command prints rows as columns, thus the A matrix should be
transposed (A') before outputting; type the \n (back slash and letter n without
space) to display each row on the new line at the end of the column format.

2.2.6. Application Examples

2.2.6.1. RNA Bases Table

Ribonucleic acid has four main bases: Adenine, Cytosine, Guanine, and Uracil.

Problem: Generate and display the matrix in which the first column is the serial
number and the second column is the base name.

Execute the following steps:

 Generate a numerical column vector of values from 1 to 4;

 Generate a string column vector with the names Adenine, Cytosine,
Guanine, and Uracil;

 Join these two column vectors into a matrix. In MATLAB®, all matrix
elements should be of the same type, e.g., if strings are written in one
column, then strings must be written in another column or vise-versa.
In our case we use the num2str command, which transforms
numerical data into string data;

 Display the table title 'RNA bases';

 Display the resulting matrix.

The commands to solution are:

The first fprintf command shows two caption
lines and the second outputs the numbers from
the A matrix.
Note: To display the table in the presented view
all fprintf commands should be written on the
some command line

Basics Primary MATLAB® for Life Sciences: Guide for Beginners 45

>> No=[1:4]';
>> Name=strvcat(' Adenine',' Cytosine',' Guanine',' Uracil');

>> Table=[num2str(No) Name];

>> disp(' '),disp(' RNA bases'),disp(Table)

RNA bases
1 Adenine
2 Cytosine
3 Guanine
4 Uracil

2.2.6.2. Bacterial Growth Statistics

In a laboratory, the number of bacterial cells in two batches was checked at
different times, and presented in two rows (batches) and ten columns (times) as
follows

100 200 400 800 1600 3200 6400 12800

110 190 401 798 1610 3190 6390 12790

Problem: Find the mean, the difference between the maximal and minimal values
(range), and the standard deviation for every row of the data, and display the
results in two decimal places, using the fprintf command.

Generate numerical column vector No

Generate string column vector Name;
type each base by beginning with a space
to separate the serial number from the
base name in the next command

Generate the Table as a two
column string matrix. The
num2str command transforms
numbers into strings

The first disp displays a blank line;
the second disp displays the title;
the third disp displays the RNA bases
table

46 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

The steps are as follows:

 Assign the bacterial growth data to two-row matrix;

 Calculate the mean, range and standard deviation every row of data
using the appropriate MATLAB commands;

 Display with the fprintf command the obtained statistics; show the
mean values and range as fixed numbers without decimal digits, and
the standard deviation as fixed numbers with two decimal digits.

The commands to be used follow:

>> bact=[27 27 35 28 32 33 31 35 28 30
 32 35 34 33 36 35 31 27 28 35]';
>> average=mean(bact);
>> range=max(bact)-min(bact);
>> st_dev=std(bact);

>> fprintf('\n Bacterial Statistics\n Mean %5d %5d\n Range %5d %5d\n St. dev.
%5.2f %5.2f\n',average,range,st_dev)
Bacterial Statistics dev.

Mean 31 33
Range 8 9
St. 3.10 3.10

2.2.6.3. North-American Wind Chill Index

The wind chill w is the apparent temperature at wind velocity v and air

temperature T. A formula used to calculate it in the United States is:

0.16(0.4275 - 35.75) 0.6215 + 35.74w = v T T

Enter two bacterial data rows as
columns of the bact matrix

Calculate the mean, range and
standard deviation

Display the title and obtained
bacterial growth statistics by the
fprintf command

Basics Primary MATLAB® for Life Sciences: Guide for Beginners 47

where T in degrees Fahrenheit, v in mph; v rises from 10 to 60 in steps of 10 and T

decreases from 40 to -40 in steps of 20 4.

Problem: Write the command for the wind chill matrix by giving vectors v and T

and display it as a table, so that w is arranged in rows at a constant v and in

columns at a constant T.

The steps to be used follow:

 Generate separately the column-vector v (size 5×1) and the row-

vector T (size 1×5);

 Calculate the w-matrix according to the formula. The first

multiplier of the w-expression, (after element-wise

exponentiation of v) 5×1 in size, and the second multiplier (the

terms in the parentheses) is the size 1×5. Thus, according to the

linear algebra rule, their product would be the size 5×5 (the

extreme values of the sizes of these vectors). The sum of 0.6215T

and 35.74 on the right-hand side of the w-equation represents a

column vector of size 5×1, and cannot be summarized with the

initially defined matrix, which is of the size 5×5 (according to the

rules of matrix addition, the matrices must be equal in size); thus,

this column vector should be repeated 5 times (the number of

columns in the matrix), which can be done by multiplication by the

ones(size(v)) terms;

 Display the title 'Wind chill' and the w-matrix with the digits

preceding the decimal point only.

The commands for the solution are:

4The ranges and steps are taken arbitrarily and differ from those usually used, but the accepted range is saved.

0.16v

48 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

>> v=[10:10:60]';T=40:-20:-40;
>> w==v.^.16*(.4275*T-35.75)+ones(size(v))*.6215*T+35.74;

>> disp(' '),disp(' Wind Chill'), fprintf('%5.0f %5.0f%5.0f%5.0f%5.0f\n',w')
Wind Chill

34 9 -16 -41 -66
30 4 -22 -48 -74
28 1 -26 -53 -80
27 -1 -29 -57 -84
26 -3 -31 -60 -88
25 -4 -33 -62 -91

2.2.6.4. Weight Versus Height

Measurements of a weight w (in cm) and height h (in kg) in a group of students at
an American college showed the following results:

Heights: 155 175 173 175 173 162 173 188 190 173 173 185 178 168 162 185
170 180 175 180 175 175 180 165;

Weights: - 54 66 66 71 68 53 61 86 92 57 59 80 70 59 50 145 68 78 67 90 75 74
84 53.

These data were fitted by the polynomial expression

wf = 906.14 – 11.39h + 0.03780h2

Enter the velocity values in a column
vector and the temperature values in a row
vector

Calculate the wind chill index w

Display the title for the resulting table
using disp

Display calculated wind chill indices
using fprintf

Basics Primary MATLAB® for Life Sciences: Guide for Beginners 49

Problem: Write the commands for the input data in a two-row matrix, w_h, and
calculate the weight by the expression and the percentage error, 100(w-wf)/w. Display
the results as a three-column table listing every third value of the w, wf, and the error.

The steps to be used follow:

- The height and weight values are assigned as above.

- The weights wf and the errors are calculated by the above expressions.

- Every third value of the inputted and calculated values of weight and
the calculated errors are written in a tree-row matrix tab and displayed
as a three- column table.

>> w_h=[155,175,173,175,173,162,173,188,190,173,173,185,178,168,162,.
185,170,180,175,180,175,175,180,165;
54,66,66,71,68,53,61,86,92,57,59,80,70,59,50,145,68,78,67,90,75,74,84,53];

>> w_f=906.14-11.39*w_h(1,:)+0.03780*w_h(1,:).^2;

>> error=100*(w_h(2,:)-w_f)./w_h(2,:);

>> pr=1:3:length(w_f);
>> tab=[w_h(2,pr);w_f(pr);error(pr)];
>> fprintf('%8.0f %8.0f %8.0f\n',tab)

54 49 10
71 71 1
61 67 -10
57 67 -18
70 76 -9

145 93 36
67 71 -5
74 71 5

Enter the values of height in the first row, and the values of weight
in the second row of the matrix w_h.
Note: To continue the data in the next line enter three periods (…)

Calculate the weight by the wf expression

Calculate the percentage error

Prepare three-row matrix with every
third element of the imputed and
calculated weights, and the error

Print the resulting table.
Note, the rows of the matrix tab are
printed as columns by the fprintf
command

50 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

2.3. FLOW CONTROL5

A calculating program represents a sequence of commands implemented in a
given order. However, in many cases, the written order of single- or group-
commands have to be altered, for example, when a calculation has to be repeated
with new parameters or when one expression among several has to be chosen for
calculating a variable. For instance, bacterial growth proceeds in four phases - lag,
log, stationary, and death - for each of which a different expression is used
according to the size of the population. Another example where single- or group
commands to be altered is in sequence analysis of DNA-, RNA-, and protein
sequences, where the process of comparison of two or more sequences (a
procedure called alignment) is repeated until the best-matching scores are
reached.

To realize such processes, flow control is applied. In MATLAB, special
commands, usually called conditional statements, are used for these purposes;
when these commands are used, the computer decides which command should be
carried out next. The most frequent flow control commands are described below.

2.3.1. Relational and Logical Operators

Important operations of flow control are realized with relational and logical
commands. Both groups of commands test the similarity between pairs of values
or statements, but the first operates mostly with numerical values while the second
with Boolean expressions.

Relational Operators

Operators matching a pair of values are called relational or comparison operators;
the application result of such an operator is written as 1 (true value) or 0 (false
value), e.g. the expression x<3 results in 1 if x is less than 3, and, otherwise, in 0.

The relational operators are:

< (less than);

5Used pp. 33-35, 38, 41-44 from the book cited in note 1; with the permission of Biohealthcare Publishing (Oxford)
Limited

Basics Primary MATLAB® for Life Sciences: Guide for Beginners 51

> (more than);

<= (less than or equal to);

>= (more than or equal to);

= = (equal to);

~= (not equal to).

Two-sign operators should be written without spaces.

When a relational operator is applied to a matrices or an array, it performs
element-by-element comparisons. They return the array of 1's where the relation
is true (the array has the same size as the size of the compared matrices), and the
0's where it is not. If one of the compared objects is scalar and the other a matrix,
the scalar is matched against every element of the matrix. The 1's and 0's are
logical data, which is not the same as numerical data, although they can be used in
arithmetical operations.

Some examples follow:

>> 2*2==12/3
ans =
1
>> sin(2*pi)~=1
ans =
1

>> M=[-7 8 -15;7 -8 4;-2 -15 -2]
M =
-7 8 -15
7 -8 4
 -2 -15 -2
>> B=M<=0

Since 2×2 is identical with 12/3 the
result is true and the answer is 1

Since sin 2=0 and not 1, the result is
true and the answer is 1

Produces a 3×3 matrix M

Checks whether each element in the
matrix M is less than 0

52 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

B =
1 0 1
 0 1 0
1 1 1
>> M(B)
ans =
-7
 -2
-8
-15
-15
-2

Logical Operators

Logical operators are designed for operations that contain the true or false values
within the logical expressions. They can be used as addresses in another vector,
matrix or array.

In MATLAB®, there are three logical operators: & (logical AND), | (logical OR),
and ~ (logical NOT). Like relational operators, they can be used as arithmetical
operators and with scalars, matrices, and arrays. Comparison is element-by-
element, using logical 1 or 0 according to true or false results respectively.
MATLAB® also has equivalent logical functions: and(A,B) - equivalent to A&B,
or(A,B) - to A|B, not(A,B) - A~B. If the logical operators are performed on
logical variables, then the results are according to Boolean algebra rules. In
operations with logical and/or numerical variables the results are logical 1 or 0.

Some examples are:

>> x=-1.5;

>> -2<x<-1
ans =
0

Display the elements of M which are
less than or equal to 0

Note: The displayed result is a vector that
contains the elements of M that were taken
from the positions where B is true (logical 1)

Define variable x

The statement leads to an incorrect answer
because it runs from left to right. Due to -
2<x is true (1), then 1<-1 is false (0)

Basics Primary MATLAB® for Life Sciences: Guide for Beginners 53

>> x>-2&x<-1
ans =
1

>> ~(x<3)
ans =
0

>> ~x<3
ans =
1

Another of the MATLAB logical functions is find which in its simplest forms

reads as

i=find(x) or i=find(A>c)

where i is a vector of the place addresses (indices) where are located non-zero

elements of the x (first case) are located, or are elements of A larger than c

(second case). In this case, any of the relational operators can also be used, e.g. <,

>=, etc.); for example, vector T=[11 8.5 5.5 0 -1.5], thus

>> i=find(T)
i =
1 2 3 5
>> i=find(T<6)
i =
3 4 5

The order in which combinations of relational, logical, and conditional operators

is executed (so-called precedence rules) can be obtained in advanced MATLAB

courses. The necessary order of execution of such an operator can also be reached

by the parentheses.

Here the logical & is used, leading to a
correct result. First, the inequalities are
run; both are true (1). Then the & leads to
the answer 1

x<3 is stated in the parentheses and is run
first, is true (1) and ~1 is 0

Here ~x is executed first; as x is nonzero
then it is true (1), ~1 is 0, and 0<3 is true

54 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

2.3.1.1. Application Example: Screening of the Amino Acid Molecular Weights

The molecular weights (g/mol) for ten amino acids appear in the following table:

Ala Arg Asn Asp Cys Gln Glu Gly His Ile

89 174 132 133 121 146 147 75 155 131

Problem: Use the relational and logical operators to form a list of amino acids
with molecular weights that are a) less than 100, b) between 100 and 150, and c)
more than 150. Display the molecular weights together with amino names for
each of these groups.

The steps are as follows:

- Assign the height and weight values, as they appear in the table.

- Input the names of the amino acids and their weights as a column
vector each with names Name and Weight. Assemble the vectors in
the Name_Weight matrix. Note that these vectors are of different
types: the Name vector contains strings, and the Weight – numbers.
Thus, the latter should be transformed to the string type using the
num2str command.

- Find and save the row indices that designate the locations where the
weights are less than 100; this can be done with the find logical
command; assign defined indices to the m_less100 vector.

- Calculate the number of amino acids with weights of less than 100 by
the sum command with the condition Weight >100 (relational
operator).

- Display the name of the amino acid and its molecular weight with the
Name_Weight matrix where the indices are the m_less100 vector
and all column indices assigned by the column operator (:).

- The row indices, the number of amino acids with molar weights
between 100 and 150 and above 150 g/mol, and their name-weight

Basics Primary MATLAB® for Life Sciences: Guide for Beginners 55

columns should be defined and displayed in the same way as it
described for the less than 100 weights.

The commands used to solve this problem are:

>>Name=['Ala ';'Arg ';'Asn ';'Asp ';'Cys ';'Gln ';'Glu ';'Gly ';'His ';'Ile '];
>>Weight=[89 174 132 133 121 146 147 75 155 131]';
>>Name_Weight=[Name num2str(Weight)];
>> m_less100=find(Weight<100);

>> n_m_less100=sum(Weight<100)
n_m_less100 =
2
>> Name_Weight (m_less100,:)
ans =
Ala 89
Gly 75
>> m_between100and150=find(Weight>=100&Weight<=150);

>> n_m_between100and150=sum(Weight>=100&Weight<=150)
n_m_between100and150 =

 6

>> Name_Weight (m_between100and150,:)

Define two column vectors: the
Name and Weight with the amino
name and the molecular weight data

Create the Name_Weight two
columns matrix with the amino name
and the molecular weight data

Find addresses (indices) where the
molecular weight is less than 100

Calculate the number of amino
acids with weights less than 100

Display the names and weights of
those less than 100

Find addresses with molecular
weights between 100 and 150

Calculate the number of sequences
with weights between 100 and 150

Display the weights between 100
and 150

56 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

ans =
Asn 132
Asp 133
Cys 121
Gln 146
Glu 147
Ile 131

>> m_above150=find(Weight>150);
>> n_m_above150=sum(Weight>150)

n_m_above150 =
2
>> Name_Weight (m_above150,:)
ans =
Arg 174
His 155

2.3.2. The If Statements

To manage an order of command execution, various conditional statements are
used. The first of these is the if statement, which has three forms: if … end, if …
else … end, and if … elseif … else … end. Each if construction should
terminate with the word end; its words appear on the screen in blue. The if
statement forms and their constructions are shown in Table 2.5:

Table 2.5: If Statement Forms

The Form How Commands Should be Designed

if … end

if conditional expression
MATLAB command/s

end

if … else … end

if conditional expression
MATLAB command/s

else
MATLAB command/s

end

 if conditional expression

Find addresses with molecular
weights larger than 150

Calculate the number of sequences
with weights larger than 150

List the names of aminoacids with
weights larger than 150

Basics Primary MATLAB® for Life Sciences: Guide for Beginners 57

if … elseif … else… end MATLAB command/s
elseif conditional expression
MATLAB command/s

else
MATLAB command/s

end

In Table 2.5, the conditional expression is an expression that uses the relational
and/or logical operators, for example a<=v1&a>=v2 or b ~ = c.

When the if conditional statement is typed and entered in the Command Window
next to the prompt >>, the new line (and additional lines, after entering) appears
without the prompt until the word end is typed and entered.

An application example of the if statement is presented at the end of sub-section
2.3.4.2.

2.3.3. Loops in MATLAB

A loop is another method of program flow control. It permits a single command or

a group of commands to be repeated several times. Each cycle of commands is

termed a pass. There are two loop commands in MATLAB: for … end and while

… end. These words appear on the screen in blue. Similar to the if statement case,

each for or while construction should terminate with the word end.

The loop statements are written in general form in Table 2.6:

Table 2.6: Loops

for … end loop while … end loop

for k=[initial: step: final]
MATLAB command/s

end

While conditional expression
MATLAB command/s
end.

In for … end loops, the commands written between for and end are repeated k
times, a number that increases every pass by the addition of the step-value; this
process is continued until k reaches or exceeds the final value.

58 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

The square brackets in the expression for k (Table 2.6) mean that k can be

assigned as a vector, for example k=[3.5 -1.06 1:2:6]. The brackets can be omitted

if there are only colons in k, e.g. k=1:3:10. The last pass is followed by the

command next to the loop.

For some calculations realized with for…end loops, matrix operations can also

serve. In such cases, matrix operators are actually a superior method, because the

for…end loops work slowly. The advantage of using matrix operators is

negligible for short loops with a small number of commands, but appreciable for

large loops with numerous commands.

The while … end loop is used where the number of passes is not known in

advance and loop terminates only when the conditional expression is false. In

each pass, MATLAB® executes the commands written between the while and

end; the passes are repeated until the conditional expression is true. An

incorrectly written loop may continue indefinitely, for example,

>>a=2;
>>while a >0
a=1.5*a
end

in this case, after a becomes greater than 1.7977·10308 (the maximum possible

positive real number), the expression a = inf appears repeatedly on the screen.

Press the Ctrl and C keys at the same time to interrupt the loop.

Examples of for … end and while … end loops used for calculating sin(x) via

the series at x=pi/6, are:

 
1 2

0

(1)
1 2

+ kn
k

k=

x

k !




Basics Primary MATLAB® for Life Sciences: Guide for Beginners 59

>> x=pi/6;

>> s=0;n=5;

>> for k=0:n
s=s+(-1)^k*x^(1+2*k)/factorial(1+2*k);
end
>> s
s =
0.5000

>> s=0;k=0;

>> while x^(1+2*k)/factorial(1+2*k)>=.0001
s=s+(-1)^k*x^(1+2*k)/factorial(1+2*k);
k=k+1;

end
>> fprintf('sin(x)=%f n=%i\n',s,k)
sin(x)=0.500002 n=3

In the first example, the sum s is calculated within the for … end loop. At the
beginning of the first pass the s value equals zero; during this pass the first term
(k=0) is calculated and added to the s. On the second pass k=k+1=1, the second
term of the series is calculated and added to the previous s value. This procedure
is repeated up to k=5 (n=5 in this example). After which the loop ends and the
obtained value is displayed by typing and entering the variable name s. In case of

Defining variable x

Setting the s sum to zero and the n to 5.
Note: the number of terms in the series is
counted from 0 and is n+1=6

Calculatin
g sin(x) as
series with
the for …
end loop

For … end
loop.
New element of
the series is
calculated each
pass and is added
to the sum s

Setting the first element of the sum to 1
and terms counter k to 1

while … end
loop.
New element of
series is
calculated k
times and added
to sum s until he
is greater than
0.0001

Calculati
ng sin(x)
as series
with the
while …
end loop

Displays results with the
fprintf; i - integer

60 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

for … end loop, the number of passes is fixed. Situation that is more complex is
presented by the second example, the while … end loop. In this instance, a
condition of some kind should be given for ending the loop. The value of the kth
term is larger than 0.0001 is used for this purpose. Similarly to the previous
example, in the first pass the s value is equal to zero and k=0 (k is called counter
in this case), thise values are assigned before the loop. In this pass, the first term
of the series is calculated and added to the sum s, after which the k value is
increased by 1. The new term (without a sign) is calculated and checked if it is
greater than 0.0001. If this condition is true, the next pass is started to calculate
the next term. If it is false, the loop ends and the fprintf command displays the
obtained s value and the number of the term used. The latter value is an integer;
the conversion character i then used for displaying the value of k.

Note: the for … end and while … end loops and if statements can incorporate
additional loops and/or if-statements; the order and number of such inclusions is
not restricted and predetermined solely by calculation purposes.

2.3.4. Application Examples

2.3.4.1. Mosquito Population and Rainfall

Weather conditions have a strong influence on the mosquito population. For
example, an experiment show that at a monthly rainfall q of 2, 7, 11, 18, and 23
mm, the mosquito density d (average monthly number of mosquitoes by all
mosquito-monitoring stations) was 0.8, 2.1, 4, 4.9, and 5.7 respectively. These
data can be described by the linear equation d=a1+a2q in which the coefficients a1
and a2 are obtainable from the following set of equations

1 2 i i
1 1

1 i 2 i i
1 1 1

n n

i= i=

n n n

i= i= i=

a n+a q = d

a q +a q = d q

 

  2
i

where n – the number of observed values.

This set can be represented in matrix forms AX=B or XA=B, in our case:

Basics Primary MATLAB® for Life Sciences: Guide for Beginners 61

i i
1

2 2
i i i i

n n

i=1 i=1

n n n

i=1 i=1 i=1

n q d
a

=
a

q q d q

   
            
   
   

 

  

or

 

n

i n n
i=1

1 2 i i in n
i=1 i=12

i i
i=1 i=1

n q

a a = d d q

q q

 
         
 
 


 

 

Problem: Define the a-coefficients with left- and right- divisions; print the result
as a linear equation with the relevant coefficients a1 and a2.

The steps to be taken are as follows:

- Generate two row vectors with the given d and q values;

- Generate a 2×2 matrix A with the sums on the right-hand side of the
first matrix forms; use the sum command for calculating sums;

- Generate a column vector B with the sums on the right-hand side of
the first matrix equation;

- Use the left division A\B to calculate the a-coefficients;

- Use the fprintf command to display the coefficients in the written
linear equation;

- Use right division A/B. For execution of this division, A should be
written as per the second matrix equation, using the quote operator (').
The letter serves to transform the column vector B into the row vector;
the right division in this case is a verification of the previous solution;

62 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

- Use the fprintf command to display the coefficients directly in the
written linear equation.

The commands for the solution are:

>> d=[2, 7, 11, 18, 23];

>> q=[0.8, 2.1, 4, 4.9, 5.7];
>> A=[length(q) sum(q);sum(q) sum(q.^2)];

>> B=[sum(d);sum(d.*q)];
>> a=A\B
a =

-1.9933
4.0552

>> fprintf('\n The equation is d=%5.2f+%5.2f*q\n',a(1),a(2))
The equation is d=-1.99+ 4.06*q

>> aa=B'/A'
aa =
 -1.9933 4.0552
>> fprintf('\n The equation is d=%5.2f+%5.2f*q\n',aa(1),aa(2))
The equation is d=-1.99+ 4.06*q

2.3.4.2. Population Growth of Bacteria

Changes in a bacteria population size N in cell/mL were measured from t0= 1.5 for
up to 14 (hours). Obtained results were fitted by the following expressions:

Generate vectors d and q of the
response and concentration
data

Generate the matrix A and
vector B for solving the first
matrix form: AX=B

Solution via the left division:
X=A\B

Using fprintf for displaying results with 2 digits after decimal point

The solution via the right
division: X=B/A

Note: To solve the second matrix form:
XA=B, the matrix A and the vector B should

be transposed by the quote operator (')

Basics Primary MATLAB® for Life Sciences: Guide for Beginners 63

 

 

1.5
floor 1.5 8.50

8.5 12 c
2.338 12

floor 12 14c

μ t-
N e , t <

N = N , t

- t-
N e , < t

  
  

 
  
      

where t is time in hours, N0 is the initial bacteria population at time t0, Nc is the

population in the stationary phase;  is the growth rate constant in h-1; floor

connotes that the bacteria number should be an integer; the necessary parameters

are: N0=84, Nc =35.6·108, =2.18.

Problem: Calculate bacteria populations at 1.5, 2, 3, …, 14 hours.

The required steps are:

- Determine the variables N0, Nc, and , and a 1x14 vector with the t

values;

- Use the for… end loop in which every pass runs for the new t value

defined by its index (address), t(i);

- Introduce the loop statement if … elseif … else … end, where the

conditions and expressions on the right-hand side of the N equation

should be written in the blank spaces; the N values should be indexed

for generating the vector of calculated N-values for each t.

- Use the fprintf command to display the vector of calculated N-values.

The commands for calculating N are:

64 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

>> No=84;Nc=35.6e8;mu=2.18;

>> t=[1.5 2:14];

>> for i=1:length(t)
 if t(i)>=1.5&t(i)<8.5
N(i)=floor(No*exp(mu*(t(i)-1.5)));
elseif t(i)>=8.5&t(i)<=12
 N(i)=Nc;
else
 N(i)=floor(Nc*exp(-2.338*(t(i)-12)));
end
end
>> fprintf('N=\n'), fprintf('%10.0f\n',N)
N=
 84
 249
 2210
 19551
 172960
 1530058
 13535369
 119738026
 3560000000
 3560000000
 3560000000
 3560000000
 343612931
 33165687

2.3.4.3. Dilution

The resulting molar concentration of a solution, M2, is calculated by the following
expression

1 1
2

2

M V
M

V


where V2 is the final solution volume, M1 and V1 are respectively the initial
concentration and the solution volume.

Define the No, Nc, 

Define the time values

for…elseif… end loop

if…else…end statement

Display results with the two
fprintf commands

Basics Primary MATLAB® for Life Sciences: Guide for Beginners 65

A series of standard solutions were prepared with the M1 values 0.5, 1, 1.5 and 2
mole/L and common V1 values 0.1L.

Problem: Calculate the table of molar concentrations M2 if each of the prepared
series of standard solutions had beed diluted by 0.1, 0.3, 0.6, and 0.9 L of water.

The calculation can be made using two methods: with for… end loops; and
without the loops, using only the vectors for V2 and M1.

The required steps follow:

- Enter the value of V1 and generate vectors for M1 and V2;

- Generate a matrix with the number of rows equal to the length of the
M1 vector and the number of columns equal to the length of the V2
vector; this step pre-allocates the matrix and reduce operation time
when using the for… end construction (a minor consideration for
small matrices but quite significant for large ones);

- Calculate M2 (using the expression above) in the two for… end loops:

the external one for M1 and the internal one for V2; such a construction

yields all values M2 for each V2;

- Display the calculated matrix M2 using the fprintf command, in which

the obtained values are presented with three digits after the decimal

point.

- Repeat the same calculations but without loops; for this calculation,

rewrite the expression in the form M1V1(1/ V2) so that the element-

wise division in brackets is first and followed by the multiplication;

(1/ V2) produce row vector with 1×5 in size; for the inner dimension

identity transform the vector M1 using the quote operation (') to a

column vector of 4×1 in size; the next multiplication by the scalar V1

does not change the vector size, and the product of the [4×1]*[1×5]

matrices is the final 4×5 matrix with the calculated M2 values.

66 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

>> V1=1;
>> M1=.5:.5:2;
>> V2=.1:.2:.9;

>> M2=zeros(length(M1),length(V2));
>> for k=1:length(M1)
for j=1:length(V2)
M2(k,j)=M1(k)*V1/V2(j);
end
end

>> fprintf('\n Concentration table\n'),fprintf('%5.3f %5.3f %5.3f %5.3f %5.3f\n',
M2')
Concentration table
5.000 1.667 1.000 0.714 0.556

10.000 3.333 2.000 1.429 1.111
15.000 5.000 3.000 2.143 1.667
20.000 6.667 4.000 2.857 2.222

>> M2v=M1'*V1*(1./V2);
>> fprintf('\n Concentration table\n'),fprintf('%5.3f %5.3f %5.3f %5.3f
%5.3f\n',M2v')

Concentration table
5.000 1.667 1.000 0.714 0.556

10.000 3.333 2.000 1.429 1.111
15.000 5.000 3.000 2.143 1.667
20.000 6.667 4.000 2.857 2.222

2.4. QUESTIONS AND EXERCISES6

1. Use the following command to list the variables located in the workspace
together with their byte size, and some other: a) lookfor, b) whos, c) who.
Choose the correct answer.

6Used pp. 45, problems 11-15 from the book cited in note 1; with the permission of Biohealthcare Publishing (Oxford)
Limited

Generate a 4×5 zero matrix for the
future calculated values of the solute
concentrations M2

The two for … end loops for final
solute concentrations

The final molarity calculations in the
loops

Use two fprintf for displaying the title
and results with 3 digits after the
decimal point

Title,legnd, xlabel, ylabel, and text
Use two fprintf command for
displaying the title and results with 3
digits after the decimal point

Define the scalar V1 and the two vectors M1 and V2 with the initial
solution volume and molarity, and the final solution volumes

Molarity calculations without loops

Basics Primary MATLAB® for Life Sciences: Guide for Beginners 67

2. In the shortE format, the predefined variable  is displayed as: a) 3.1416, b)
3.14, c) 3.1416e+000, d) 3.141592653589793, e) 3.141592653589793e+000.
Choose the correct answer.

3. In the MATLAB form, the
ln 2.303

log 10
y  expression should be written as

follows: a) y=ln(2.303)/log(10), b) y=ln(2.303)/log(10), c)
y=ln(2.303)/log10(10), d) y=log(2.303)/log(10).

Which of the forms presented is correct ?

4. The V=[1 2;3 4] command produces: a) a row vector V with four numbers; b) a
column vector V with four numbers; c) a square matrix V with four numbers.

5. The matrix

1 0 0

0 1 0

0 0 1

 
 
 
  

can be generated with: a) diag(1:3), b) eye(3), c)

ones(3), d) zeros(3,4). Choose the correct answer.

6. Normally distributed random numbers can be generated with the following
command: a) randi, b) randn, c) rand. Choose the correct answer.

7. Check which of the answers below is the correct result of the division [3 6;9
12]/[1 2;3 4]:

a) ans =
3 3
3 3

b) ans =
3 0
0 3

8. A row vector E of numerical values can be transformed into a column vector
with the following MATLAB expression: a) E-1, b) inv(E), c) 1/E, d) E'. Choose
the correct answer.

9. An element located in the second row and the third column of the 4×4 matrix A
should be addressed by the following MATLAB® expression: a) A(3,2), b) A(10),
A(32), c) A(6), d) A(2,3).

68 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

Note: There may be more than one correct answer.

10. With a degree of simplification, the DNA molecule can be represented as a
cylinder and its volume can be described by the expression

2
d

V = π h
2

 
 
 

where d, the diameter of the DNA molecule, is approximately 1.58·103 m, and h,
its length, is 3.34·10-3 m. Calculate the DNA volume.

11. The mass flow rate (in L/min) of blood in the human circulatory system can
be calculated by the empirical expression

0.425 0.7250.707 + 0.625ψ= m h

where m = mass in kg and h = height in m. Calculate the mass flow rate for men
with the parameters m=80 kg and h=1.8 m.

12. The temperature distribution in a biological system containing blood vessels is
described by the expression

 b a b

ln

ln

b
rT = T + T -T
b
a

Calculate the temperature at r=(a+b)/2 when a=0.5, b=0.65, Ta=315, Tb=310.

13. The velocity v of molecules in the Cartesian coordinate system is represented
via its coordinate components vx, vy, and vz by the equation

2 2 2
x y zv = v +v +v

Calculate the velocity for vx, vy, and vz 2.1, -3.1, and 0.72 respectively.

Basics Primary MATLAB® for Life Sciences: Guide for Beginners 69

14. The decay process over time of radioactive substances is described by the
equation

1
0 2

t
N = N  

 
 

where t is the number of elapsed half-live periods (the half-live being the time it
takes for a decaying substance to disintegrate by half), N0 the initial amount and N
the residual amount.

a) Calculate N for t = 0,8,16, and 24 days for substances with N0=500 Ci
(microCuries).

b) Display the data as a two-column table, with the first column t and the second
column N.

15. The Fourier series is one of the best instruments for describing complex
biological shapes; the first terms in these series can be obtained as

F=a1cos(x+1)+b1sin(x+2)

Calculate F for coefficients a1 and b1 1.2 and 0.7 respectively; phase angles 1
and 2 0.1 and 0.2 respectively; and x = /7.

16. The molecular weights of 15 randomly generated amino sequences are 1558,
1758, 1794, 1480, 1712, 1738, 1636, 1546, 688, 1648, 1654, 1676, 1616, 1726,
1760. The sequences were named Seq_1, Seq_2 and so on, up to Seq_15.

a) Generate a Weight vector with the molecular weight values;

b) Generate a Name vector with the acid name notations; use the strvcat
command;

c) Generate a 15×2 matrix in which the first column contains the sequence names
and the second column - the sequence weights; use the num2str command for the
string representation of the values of the matrix columns;

70 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

d) Display the matrix with the disp commands.

17. Use the data in Exercise 16 for listing sequences with the molecular
weights: a) less than 1650, b) between 1650 and 1700, c) more than 1700.
Display the results so that the title appears for each group and then, each row
shows the amino acid name and molecular weight; use the disp commands.
Create an empty line between displayed groups; use the disp command with a
space inside quotes (' ').

18. Wind speed and air temperature are combined in the U.S. wind chill index that
can be calculated by the so-called ‘old’ expression

  91.4 + 0.0817 3.71 5.81- 0.25 91.4w= v + * v T -

where the wind velocity v (m/s) is 4, 5, 10, 15, 20, 25, 35, 40, 45 and the air
temperature T (F) descends from 35 to -35 with step 10.

a) Calculate w for each of the given values of v and T using the for…end
statements;

b) Display the results with the fprintf command, showing only integer values (the
digits preceding the decimal point only).

19. Calculate the wind chill index by the expression from the preceding exercise
without for.0...end statements, using v- and T-vectors only.

20. Below are the blossom yield data for ten trees, checked twice at different
times:

27 27 35 28 32 33 31 35 28 30

32 35 34 33 36 35 31 27 28 35

a) Generate a vector blossom_1 with the first row of the table data;

b) Generate a vector blossom_2 with the second row of the table data;

Basics Primary MATLAB® for Life Sciences: Guide for Beginners 71

c) Joint the generated vectors within a 10×2 matrix and display it (without using
the disp or fprintf commands) as two columns in which the first column presents
blossom_1 and the second column - blossom_2;

d) Determine the minimal and maximal values for each row of the blossom data
matrix;

e) Determine the integer mean value for each row of the blossom data; use the
round command;

f) Calculate the range r as the difference between the maximal and minimal
values;

g) Display all results with a single fprintf command so that the two values appears
on a new line with its nomenclature (e.g., Average = 30.00 32.00).

21. An instrument used in biotech laboratory has a response R with the values
0.31, 0.43, 0.70, 1.1, 1.5, 1.79, and 2.2 to the following compound concentrations
c: 100,150,200, 250, 400, 550, 650, and 850 mg/mL. The best linear fit for these
data is the equation c=a1+a2R; the a1 and a2 coefficients can be defined by
solving the set of the following equations

1 2

2
1 2

n n

i i
i=1 i=1

n n n

i i i i
i=1 i=1 i=1

a n+a R = c

a R +a R = R c

 

  

where n is the number of (R,c) points.

a) Find the coefficients by solving the set with the left division rule;

b) Find the coefficients by solving the set with the right division rule;

c) Show the results in the form of a linear equation with the obtained coefficient
values displayed with three digits after the decimal point.

72 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

2.5. ANSWERS TO SELECTED QUESTIONS AND EXERCISES

2. c) 3.1416e+000

3. c) y=ln(2.303)/log10(10)

6. b) randn

8. d) E'

11.  7.5962

v

F



Wind chill index

35 32 22 16 11 8 6 4
3 2 25 22 10 2 -3 -7

-10 -12 -13 -14 15 11 -2 -11
-17 -22 -25 -27 -29 -30 5 1
-15 -25 -31 -36 -40 -43 -45 -46
-5 -10 -27 -38 -46 -51 -55 -58
-60 -62 -15 -20 -39 -51 -60 -66
-71 -74 -76 -78 -25 -31 -52 -65
-74 -81 -86 -89 -92 -94 -35 -41
-64 -78 -88 -96 -101 -105 -108 -109

19. Same answer as in Exercise 18.

21. The equation is c=-53.682+358.129*R

 Primary MATLAB® for Life Sciences: Guide for Beginners, 2013, 73-129 73

Leonid Burstein
All rights reserved-© 2013 Bentham Science Publishers

CHAPTER 3

MATLAB® Graphics

Abstract: Available two and three dimensional graphic commands are described in the
chapter. The line, bar, histogram, and many other plots are generated with the
MATLAB® plotting tool. The appropriate commands with their graphical possibilities
are presented by examples of bio-data, equilibrium reaction, microorganism population
growth, Ponderal index, etc. The questions and life-science problems together with
answers to some of them are given in conclusion.

Keywords: 2D and 3D plot commands; lines, meshes, surfaces; life science
examples; microorganism population; Ponderal index.

INTRODUCTION

In the sciences and technological fields in general and in life sciences in
particular, observational data or results of calculations are often presented
graphically. The ability to plot various graphs is a necessity for all specialists that
works in bioscience, biotechnology, and bioengineering. MATLAB has a wide
selection of available commands that facilitate the generation of two- (sometimes
called XY or 2D) and three-dimensional (XYZ or 3D) plots.

Using two-dimensional graphics it is possible to draw linear, semi- or logarithmic
plots, bars or histograms, pies, polar, and many others. In the separate Figure
Window several curves can be plotted in a plot and several plots can be presented.
A plot can be formatted for the desired line stile or marker form, and the desired
thickness or color; it is possible also to add a new line, grid, texts, captions, or a
legend to the plot.

To present data involving more than two variables, plots having three axes can be
used. MATLAB provides a variety of means to visualize three-dimensional data,
which allow the building of spatial lines, mesh- and surface- plots, and various
geometric figures and images. Generated plots can be formatted using commands
or interactively via the Figure Window.

This chapter will present the most important commands for two- and three-
dimensional plotting. It is assumed that the reader has thoroughly studied the

Send Orders for Reprints to reprints@benthamscience.net

74 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

preceding chapter; therefore, in the following description, explanations to
commands are written, in most cases, as inline MATLAB comments - next to the
percentage (%) and not in special frames (as in the preceding chapter).

3.1. GENERATION OF XY PLOTS

The plot command is the basic command used for XY plotting. In its simplest
forms, it can be written as:

plot(y) or plot(x,y)

where x and y are two vectors of equal length, the first being used for horizontal
axis and the second, – for vertical axes.

In the first form of the plot command the y values are plotted versus their indices.

After running the plot command with the given values of x and y, the curve y(x)
is created in the MATLAB Figure Window with a linear axis scale (by default).

For example, a biotechnology company is using bacteria broth to produce an
antibiotic; the acidity level (pH) of the broth was measured for five hours every
half hour. The result: 5.52, 5.73, 5.84, 6.26, 6.32, 6.3, 6.04, 6.09, 5.94, 6.03, 6.12.
To present these data, generate a plot with the x-axis as time and the y-axis as pH
by the following commands that should be typed in the Command Window:

>> t=0:.5:5;
>> pH=[5.52, 5.73, 5.84, 6.26, 6.32, 6.3, 6.04, 6.09, 5.94, 6.03, 6.12];
>> plot(t, pH)

After entering these commands, the Figure Window opens with the pH-time plot
as shown in Fig. 3.1.

To change the line style and/or marker type, its thickness or its color use the plot
command with additional optional arguments written just after the x and y
identifiers:

plot(x,y, ‘Line Specifiers’,’Property Name’,’Property Value’)

MATLAB Graphics Primary MATLAB® for Life Sciences: Guide for Beginners 75

where the Line Specifiers determines the line type, the marker symbol and the
color of the plotted lines (see Table 3.1), the Property Name assigns properties
to be specified by the Property Value. For some of the possible properties and
required values, see Table 3.2.

Figure 3.1: Acidity level data plotted in Figure Window with default settings.

Line specifiers, property names and property values are typed in the plot
commands as character strings in inverted commas. The specifiers and property
names with their values can be written in any order, and one or more of them can
be omitted altogether. The omitted properties would be taken by default.

Table 3.1: Specifiers for the ‘Line Specifiers’ character string*

Line Style Specifier Line Color Specifier Marker Type Specifier

Solid(default) - Blue (single
line)

b Circle o

Dotted : Green g Asterisk *

Dash-dot -. Red r Point .

76 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

Dashed - - Black k Square s

(none) no line Yellow y Diamond d

 Cyan c Plus +

 Magenta m Triangle
(inverted)

v

 White w Triangle (upright) ^

 Five-pointed
asterisk

p
or
pentagram

 Six-pointed
asterisk

h
or
hexagram

*incomplete

Table 3.2: Available property names, its values and purposes*

Property Name (Spelling) What it Specifies Property Value

LineWidth or linewidth The width of the line A number in points (1 point =
1/72 inch). The default line
width is one-half point

MarkerSize or markersize The size of the marker (by the
symbol)

A number in points. The
default value is 6. For '.'
marker – 1/3 of specified size

MarkerEdgeColor or
markeredgecolor

The color of the marker or the edge
color for filled markers

A character based on the color
specifiers in Table 3.1

MarkerFaceColor or
markerfacecolor

The fill color for markers that have
closed area (e.g. circle or square)

A character based on the color
specifiers in Table 3.1

*Incomplete.

The following is the some examples of the plot command with specifiers and
properties:

plot(y,’-m’) generates the magenta solid line with x-equidistant y points.

plot(x,y,’o’) generates the points with x,y coordinates marked by the circle.

plot(x,y,’y’) generates the yellow solid (default) line that connects the points.

plot(x,y,’--p’) generates the blue (default) dashed line and points marked with
five-pointed asterisks.

plot(x,y,’k:h’) generates the black dotted line and points marked with six-pointed
asterisks.

MATLAB Graphics Primary MATLAB® for Life Sciences: Guide for Beginners 77

plot(t,pH,'-mo','LineWidth',4,'MarkerSize',10,'markeredgecolor','k',
'MarkerFace Color','y') plots the magenta 3-points solid line (1 point equals 1/72
inches) and x,y-values marked with 10 points black-edged yellow circles.

By entering the last command with previously used biomass-time data, we can
obtain the plot shown in Fig. 3.2.

Figure 3.2: Acidity levels, pH, generated by the plot command with specifiers and property
settings.

In the examples above, the plots were presented by the x,y-points obtained by the
measurements: in this case the data is given as a table. In many instances the
function can be given as an y(x) expression. In this case the vector of the y values
should be calculated at given vector of x-values (see the example in the
subsections below).

Note:

 Type and enter the close command in the Command Window for
closing one Figure Window; use the close all command to close more
than one Figure Window.

0 1 2 3 4 5
5.4

5.6

5.8

6

6.2

6.4

78 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

 Each input of the plot command deletes the previous plot.

3.1.1. Single Plot with More Than One Curve

Two or more curves in the same plot can be graphed with at least two options: by
typing the pairs of x,y-vectors into the plot command and by using the hold on
/hold off commands.

The plot Command Option

Commands for creating two or three curves in a single plot have forms:

plot(x1,y1,x2,y2) or plot(x1,y1,x2,y2,x3,y3)

where x1 and y1, x2 and y2, x3 and y3 are pairs of equal-length vectors
containing the x,y data. These commands create graphs with two and three curves,
respectively. To create graph with more than three curves the new x,y-pairs should
be added in the plot command. For example, plot (in the same plot) two different
series of shrub heights: 10, 20, 28, 39, 42 and 15, 25, 32, 36, 41 (in inches),
measured at aged 1, 5, 10, 15, and 20 months. To execute this, enter the following
commands (without comments) in the Command Window:

>> x=[1 5:5:20]; %creates vector x
>> y1=[10 20 29 37 42];y2=[15 25 32 36.6 41]; %creates vectors y1 and y2
>> plot(x,y1,x,y2,'--k') % generates two lines: solid and dashed, the latter in black

The resulting two-curve plot is shown in Fig. 3.3.

The hold Command Option

When one plot already exists and it is desired to add a new curve in it, type the
hold on command; the new curve is created by entering a new plot command. To
complete the hold on process, we can enter the hold off command; this
terminates the hold process and shows the next graph in the new Figure Window.

For example, at new series of heights: 19, 23, 26, 32, 36 that measures the same
shrub’s ages can be added to an existing graph (see Fig. 3.3) by entering the
additional commands:

MATLAB Graphics Primary MATLAB® for Life Sciences: Guide for Beginners 79

Figure 3.3: Two curves presenting two series of shrub heights in a single plot.

>> y3=[17, 22, 27, 32, 36]; % create new vector y
>> hold on
>> plot(x,y3,':r') % add vector y to the same plot
>> hold off

The resulting plot is shown in Fig. 3.4.

3.1.2.3. Several Plots on the Same Page

It is often desirable to place several plots on the same page, or, in other words, to
multiply graphs in the same Figure Window. For this purpose, the subplot
command is used, in this form:

subplot(m,n,p) or subplot mnp

where m and n are the rows and columns of the panes into which the page is
divided; p is the plot number made current by this command (see Fig. 3.5, a); the
p can be a vector with two or more non-intervening spanned panes. This means

0 5 10 15 20
10

15

20

25

30

35

40

45

80 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

that the plots can be arranged asymmetrically so that one of the plots can be
placed into two or more columns or rows (see Fig. 2.5, b).

Figure 3.4: Three series of shrub heights in a single plot produced using the hold command
option.

For example:

subplot(2,2,4) or subplot 224 creates 4 panes arranged in 2 rows and 2
columns and makes subplot 4 current.

subplot(2,2,[3,4]) creates 4 panes on the page and spans the 3rd
and 4th panes for the third plot (the bottom of
the current page); makes the last subplot
current.

subplot(2,3,2) or subplot 232 creates 6 panes arranged in 2 rows and 3
columns and makes subplot 2 current.

subplot(2,1,2) or subplot 212 creates 2 panes in the same column and makes
the last subplot current.

subplot(1,2,1) or subplot 121 creates 2 panes in the same row and makes the
first subplot current.

0 5 10 15 20
10

15

20

25

30

35

40

45

MATLAB Graphics Primary MATLAB® for Life Sciences: Guide for Beginners 81

a) b)

Figure 3.5: Arrangements of the page in four (a) and three (b) panes.

As an example, generate on one page three plots aranging the panes as per Fig.
3.5, b: a one-point plot, the pH data plot as per Fig. 3.2, and an ellipse in
parametric form x=3sin(t) and y=5cos(t). The MATLAB® commands for
generating and arranging the plots in such way are:

>>subplot(2,2,1) % makes pane 1 current
>> plot(0.1,'p','MarkerSize',10) % plots a five-points asterisk of tenth size
>> subplot(2,2,2) % makes pane 2 current
>> t_pH=0:.5:5; % creates the t_pH vector
>> pH=[5.52, 5.73, 5.84, 6.26, 6.32, 6.3, 6.04, 6.09, 5.94, 6.03, 6.12]; %pH vector
>>plot(t_pH,pH,'-mo','LineWidth',2,'MarkerSize',5,'markeredgecolor','k',…
'MarkerFaceColor','y') % plots the circle
>> t=0:pi/100:2*pi; % creates the t vector
>> subplot(2,2,[3,4]) % makes pane 4 current
>> plot(5*sin(t),4*cos(t)); % plots the ellipse

The resulting plot is shown in Fig. 3.6.

82 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

Figure 3.6: Three plots on the same page.

3.1.3. Formatting 2D Plots

In practice, a figure must have a title, a grid, axis labels, suitable axes ranges, and

text, while the plotting commands described above produce bare plots only.

Explanations, captions, or other additions can be introduced into the plot by

including the specifying commands in the created program or by interactively

using the Plot Tools editor, available in the Figure Window. The first method is

preferable when the intention is to use the written program repeatedly with

different x,y values and the second method can be used when a created figure is

intended to be saved, e.g., for use in a demonstration.

3.1.3.1. Commands for 2D Plot Formatting

Commands for formatting a plot should be entered after the plot command. Some
of these commands are described below.

0 1 2
-1

0

1

2

0 2 4 6
5.5

6

6.5

-5 0 5
-4

-2

0

2

4

MATLAB Graphics Primary MATLAB® for Life Sciences: Guide for Beginners 83

The grid Command

Use the grid or grid on commands to add a grid to the created plot. The grid off

command removes the grid lines from the latticed plot, e.g., typing grid in the

Command Window immediately after the commands used to produce Fig. 3.3 will

add the grid to the figure.

The axis Command

This command has a number of forms, some of them are:

axis([xmin xmax ymin ymax])

axis equal

axis square

axis tight

axis off

In the first command, the x and y axes can be adjusted to the limits written in the

brackets; the second command sets the same scale for x, shape width, and y, shape

height, (x/y - width-to-height ratio, called the aspect ratio); the third sets the axes

region as a square; the fourth sets the axis limits to the range of the data to be

performed on the plot; and the last removes the axis from the plot.

As an example, enter the sequence commands that calculate sine and cosine, plot

them, and set axis limits with the axis tight command:

>> x=0:pi/100:pi; % pi is the maximal values of x
>> y1=sin(2*x);y2=cos(2*x); % note: 1 is the maximal value of y1 and y2
>> plot(x,y1,x,y2,'--k') % creates the plot with maximal x-axis limits 3.5
>> axis tight % sets the xmax and ymax to pi and 1 respectively

Fig. 3.7, a was produced using these commands.

84 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

a) b)

Figure 3.7: A sine2x and cosine2x plot, constructed without (a) and with (b) the axis tight
command

Fig. 3.7 shows (a) the x-axis limit is set 3.5 and the maximal x value is about 3.14
before the axis tight command can be inputted; (b) the x limit and the maximal x
value are equal, after inputting the axis tight command.

The xlabel, ylabel and title Commands

This group of commands provides text for the x and y axes and for the top of the
plot. The text should be written in string form, between single quotes. The
commands take the forms:

xlabel(‘text string’)

ylabel(‘text string’)

title(‘text string’)

In the text string, Greek letters can be include with Latin letters; the font size,
name, color, and style, text angle, and some other property options can be written
after the text (see below, Formatting of text strings).

The text and gtext Commands

These commands have the following form:

0 0.5 1 1.5 2 2.5 3 3.5
-1

-0.5

0

0.5

1

0 0.5 1 1.5 2 2.5 3
-1

-0.5

0

0.5

1

MATLAB Graphics Primary MATLAB® for Life Sciences: Guide for Beginners 85

text(x,y,‘text string’)

gtext(‘text string’)

The text command produces the text starting from the point of the x and y
coordinates. The gtext command places the text at the location chosen by the
user. After the gtext command is entered, the Figure Window appears with two
crossed lines; the user can move these lines by shifting the mouse to the proper
point and then enter the text by clicking on the left mouse button.

As an example, add the title, xlabel, ylabel, text and grid commands to the
commands that constructed the plot in Fig. 3.2:

>> title(‘ Acidity level vs. Time')
>> xlabel('Time, min'),ylabel(' Acidity level, pH)
>> text(2.5,6.3,' Acidity level’) % display the Acidity level words at x=2.5 and
y=6.3
>> grid

The resulting plot is shown below in Fig. 3.8.

Figure 3.8: Acidity level plot formatted with xlabel, ylabel, title, text, and grid commands.

0 1 2 3 4 5
5.4

5.6

5.8

6

6.2

6.4
 Acidity level vs Time

Time, min

 A
ci

di
ty

 le
ve

l,
pH

 Acidity level

86 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

The legend Command

This command should be written as:

legend(‘text string1’,’text string2’,…,'Location', location)

The command is used to explain each of the plotted curves and prints explanations
written in ‘text string1’,’ text string2’,…. The 'Location' property is optional; it
specifies the location area where the legend explanations should be placed. For
example:

location = 'NorthEastOutside' places the legend outside the plot frames, to the
right; location = 'Best' places the legend inside the plot at a location where there is
less conflict with data in plot.

The default location for the legend is in the upper-right corner of the plot.

Thus, the legend in Fig. 3.7 may be generated by inputting the command:
legend('Sin2x','Cos2x',’Location’,’best’)

Figure 3.9: Plot of the sin2x and cos2x functions with legend.

Formatting Text Strings

Text in the text string-s in the commands described above can be formatted by
writing special characters (called modifiers) inside the string or by including the
options PropertyName with PropertyValue in the command after the text string.

0 0.5 1 1.5 2 2.5 3
-1

-0.5

0

0.5

1

Sin2x

Cos2x

MATLAB Graphics Primary MATLAB® for Life Sciences: Guide for Beginners 87

Some useful modifiers used for setting the font name, style, size, color, Greek
letters, or sub- and superscripts are:

\b \it \rm Sets the bold, italic, or normal fonts

respectively.

\fontsize{number} Specifies the size of the letters, for example,

\fontsize{12} sets letter size 12.

\fontname{name} Specifies the name of the used font, for

example, \fontname{Arial} sets Arial font.

\name of the Greek letter Sets a Greek letter, for example \sigma sets 

and \Sigma sets 

_ ^ Sets subscripts and superscripts respectively,

for example, ‘^oC’ sets the superscript for ‘o’;

the resulting text is displayed as oC.

The text color or its background can be regulated by including the property (the
name and the value) in the command. Some property names and their values are:

‘Color’, ‘color specifiers from Tab.3.1’ sets the text color; for example

‘Color’, ’r’ sets the color red for the

text string.

‘BackgroundColor’, ‘color specifiers from Tab.3.1’

sets the background color (rectangular

area); for example

‘BackgroundColor’,’y’ sets the color

yellow for the background area.

A detailed explanation is available from the Text Properties section of the

MATLAB documentation (in the MATLAB Help Window).

88 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

3.1.3.2. Formatting 2D Plots with the Plot Editor

The Figure Window contains an assortment of formatting buttons and menu items
for interactively formatting the plot. Click the Edit Plot button, , on the bar
under the menu to start the Plot Edit mode. The Figure Window menu line, with
the bar containing the buttons used most frequently is shown in Fig. 3.10. The
properties of the axes and lines, as well as the entire figure can be changed by
using the pop-up menu, summoned by clicking the Edit option in the Figure
menu. The title, axis labels, texts and legend are activated by using the pop-up
menu summoned by clicking the Insert option in the menu.

Figure 3.10: Plot Editor buttons in Figure Window.

After activating the ‘Plot Edit’ mode the text, legend and objects in the plot can be
shifted by clicking on each of them. The special Property Editor is opened by
double clicking on the shifted curve, plotted point, or axes; the editor has the
means to change or edit the various characteristics of the clicked object. Detailed
information is available in the Help Window by calling the Editing Plot section.

3.2. GENERATING XYZ PLOTS

MATLAB® has three main groups of commands for the tree-dimensional
presentation of lines, meshes and surfaces. These, some other commands, and
various formatting commands are described below.

Press here to
start Plot Edit
mode

Zooming in/out;
for a variation of
graph size

Rotate the graph

Figure, Axes, and Current Object Properties
can be inserted or changed via the Edit menu

Title, legend, xlabel, ylabel, and text

Data cursor; displays
the coordinates
interactively

MATLAB Graphics Primary MATLAB® for Life Sciences: Guide for Beginners 89

3.2.1. Generating Lines in Three Dimensional Plots

Points in three-dimensional space are described by three coordinates each and the
lines that connect these points. Similar to the plot command used for two-
dimensional line plotting, the plot3 command is used for plotting a three-
dimensional line. The simplest form of this command is:

plot3 (x,y,z),

This is a more complicated form:

plot3(x,y,z, ‘Line Specifiers’,’Property Name’,’Property Value’)

In these commands, x, y, and z are the equivalent vectors, with coordinates for

each of the points; the Line Specifiers, Property Name and Property Value are

properties and they have the same significance as in the two-dimensional case.

The grid, xlabel, and ylabel commands are also used in three-dimensional plots;

in addition, the zlabel command can be used.

For example, a three-dimensional plot is produced by writing the commands as

follows:

>> t=-4*pi:pi/100:4*pi;
>> x=t.*cos(2*t);
>> y=t.*sin(2*t);
>> z=t;
>> plot3(x,y,z,'k','LineWidth',4)
>> grid
>> xlabel('x'),ylabel('y'),zlabel('z')

These commands compute the parametrically given coordinates x=t·cos(2t),
y=t·sin(2t), and z=t with t changed from -4 up to 4 with step /100. The plot3
command is used here with the property name LineWidth and their values are 4,
which increases the width of the line by four times; other commands generate
grids and captions to the axis.

90 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

The plot appears in the Figure Window after the commands are inputted. The line
has the attributes shown in Fig. 3.11.

Figure 3.11: A line in three-dimensional coordinates.

3.2.2. Mesh Plots

The main commands used in the three-dimensional plotting are mesh and surf. In
order to understand them it is necessary to understand mesh construction in
MATLAB®. Since every point in three-dimensional space has three coordinates x,
y and z, it is necessary to use them in order to reconstruct a surface. In other
words, when z is a function of two variables x and y we must generate two two-
dimensional matrices with the x- and y- coordinate values respectively and
calculate the matrix of the z-coordinates for every (x,y)-pair. The area of the x and
y coordinates for which the z-coordinates must be obtained is called the domain.
An example of point representation in three-dimensional space is shown in Fig.
3.12.

-20
-10

0
10

20

-20

-10

0

10

20
-20

-10

0

10

20

xy

z

MATLAB Graphics Primary MATLAB® for Life Sciences: Guide for Beginners 91

Figure 3.12: Three-dimensional points and their x,y- projection1.

In this figure, the domain is represented in the orthogonal grid, in the x,y plane
and constructed with the axis tick vectors x =-2…2 and y=-2…2. Each node in the
x,y plane has a pair of x,y values. We obtain the X-matrix by writing all the x-
values, ordered by rows (along each iso-y line); the same procedure yields the Y-
matrix:

 -2 -1 0 1 2 -2 -2 -2 -2 -2

 -2 -1 0 1 2 -

 -2 -1 0 1 2

 -2 -1 0 1 2

 -2 -1 0 1 2

X Y

 
 
 
  
 
 
 
 

1 -1 -1 -1 -1

 0 0 0 0 0

 1 1 1 1 1

 2 2 2 2 2

 
 
 
 
 
 
 
 

When the X and Y matrices were defined, the z-coordinates should be obtained for
every grid point; the element-by-element calculations are used for this. When the
X, Y, and Z matrices were generated, the whole surface can be plotted.

1Generated with the stem3(x,y,z) command; the expression used is: z=8+x+y

92 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

A special command, meshgrid, creates the X and Y matrices from the given
vectors of x and y. The command takes the following form:

[X,Y]= meshgrid(x,y)

X and Y here are the matrices of the grid coordinates that determine the dividing
of the domain produced by the command based on the given x and y vectors.
When the x and y vectors are equal, this command may be simplified to

[X,Y]= meshgrid(x)

For the particular case illustrated in Fig. 3.12 the X and Y matrices presented
above can be created as follows:

>> x=-2:2;
>> [X,Y]=meshgrid(x)
X =

-2 -1 0 1 2
-2 -1 0 1 2
-2 -1 0 1 2
-2 -1 0 1 2
-2 -1 0 1 2

Y =
-2 -2 -2 -2 -2
-1 -1 -1 -1 -1
0 0 0 0 0
1 1 1 1 1
2 2 2 2 2

Plot the 3-D mesh graph for the expression:



xy

z
x y

with the x and y coordinates given between 0.1 and 2 with the step 0.1.

The following command generates the mesh with colored lines:

MATLAB Graphics Primary MATLAB® for Life Sciences: Guide for Beginners 93

mesh(X,Y,Z)

where X, Y, and Z are coordinate matrices, and two of them, X and Y are defined
with the meshgrid command for the given vectors x and y, and the third matrix,
Z, is calculated with these matrices by using the above expression.

Thus the program that plots the mesh surface reads as follows:

>>x=0.1:0.1:2;
>> [X,Y]=meshgrid(x);
>> Z=(X.*Y)./(X+Y);
>>mesh(X,Y,Z)
>>xlabel('x'),ylabel('y'),zlabel('z')
>>grid on

The resulting plot is shown below in Fig. 3.13.

Figure 3.13: Mesh Plot

3.2.3. Surface Plots

The surf command is used to generate the plot with colored surfaces between the
mesh lines. This command takes the following form:

0
0.5

1
1.5

2

0

1

2
0

0.5

1

94 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

surf(X,Y,Z)

where X, Y, and Z are the same matrices as in the mesh command.

By using this command for the function in the example above, can enter
commands as follows:

>>x=0.1:0.1:2;
>> [X,Y]=meshgrid(x);
>> Z=(X.*Y)./(X+Y);
>>surf(X,Y,Z)
>>xlabel('x'),ylabel('y'),zlabel('z')
>>grid on

The resulting plot is shown in Fig. 3.14.

Figure 3.14: Surface plot.

The surf and the mesh commands can be used in the surf(Z) or mesh(Z) forms.
They plot Z values versus the indices of the Z-matrix.

0
0.5

1
1.5

2

0

1

2
0

0.5

1

xy

z

MATLAB Graphics Primary MATLAB® for Life Sciences: Guide for Beginners 95

3.2.4. Formatting and Rotation of 3D Plots

Many 2D commands, such as grid, title, xlabel, ylabel, and axis, described in section
3.1.3 are suitable for 3D plot formatting. There are many additional commands for
formatting three-dimensional plot. Some of them are described below.

3.2.4.1. The colormap Command

Surfaces or meshes have colors. Color plays important role in plots, particularly in
the generation of three-dimensional plots. After entering the mesh or surf
commands, colors are automatically generated according to the z-values. Another
option is the colormap command, in wich the colors can be set by the user. The
command takes the following form:

colormap(c)

where c is a row vector with three elements: the first specifies red color intensity,
the second, green color intensity and the third, specifies blue color intensity
(RGB); intensities are graded from 0 to 1, as follows:

c=[0 0 0] - black
c=[1 1 1] - white
c=[1 0 0] - red

c=[0 1 0] - green
c=[0 0 1] - blue
c=[0 1 1] - cyan

c=[1 1 0] - yellow
c=[1 0 1] - magenta
c=[0.5 0.5 0.5] - gray

c=[1 0.62 0.4] -
copper

c=[0.49 1 0.83] -
Aquamarine

If the colormap([0 0 1]) command is entered after entering the commands that
produced the mesh plot in Fig. 3.13, the mesh lines change in color to blue.

Another form of this command is

colormap name

This form is intended for use with built-in colormaps: the name can be jet, cool,
winter, spring, or some others. For example the colormap winter changes colors
to shades of blue and green.

3.2.4.2. The view Command

Each 3D plot is shown in MATLAB from a certain viewpoint. The plot
orientation relative to the viewer is regulated by the view command, which takes
the form

96 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

view(az,el)

where az and el are the angles, azimuth and elevation respectively; the azimuth is
the horizontal (x,y-plane) angle relative to the negative direction of the x-axes; the
elevation angle is the vertical angle that defines the geometric height above the
x,y-plane.

An az angle oriented in a counter-clockwise direction is defined as positive; the el
angle counted as positive when it is taken in the direction of the z-axes. Both
angles must be given in degrees, its default values are az=-37.5o, and el=30o.

The observation point and view angles used in a 3D plot are shown in Fig. 3.15.

Figure 3.15: An observation point and its azimuth and elevation angles in 3D plots.

Different surface plans can be viewed, depending on of the view angles, e.g.,

 The x,y-projection of the 3D plot can be obtained with az=0 and
el=90, a top view, which can be entered simply as view(2);

 The x,z-projection of the 3D plot can be obtained with az=el=0, front
view;

 The y,z- projection of the 3D plot can be obtained with az=90 and
el=0, side view.

MATLAB Graphics Primary MATLAB® for Life Sciences: Guide for Beginners 97

It is possible, for example, to plot four different views in the same Figure
Window:

 angles az=-37.5o, and el=30o, the default view;

 angles az=37.5o and el=30 o, mirroring the default view;

 angles az=0 and el=90, the top view;

 az=el=0, the front view.

The function to be blotted is Maxwell-Boltzmann velocity distribution for gaseous

helium v

3 2
-2 2 2= 4 e

2

Mv
M RTf v
RT

   
, where the molecular weight M is 0.004

kg/mol, the gas constant R=8.314 J/(mol K), v and T are changed within the
ranges 0 … 2500 m/s and 50 … 500 K respectively. The commands are:

>> M=4e-3;R=8.314;
>> v=0:100:1300;T= 50:50:500;
>> [X,Y]=meshgrid(v,T);
>> fv=4*pi*(M./(2*pi*R*Y)).^(3/2).*X.^2.*exp(-M.*X.^2./(2*R*Y));
>> subplot(2,2,1), surf(X,Y,fv)
>> xlabel('v'), ylabel('T'),zlabel('f'),title('Default view'),
>> axis tight % sets axis limits to the data range
>> subplot(2,2,2), surf(X,Y,fv)
>> view(37.5,30) % az=37.5o and el=30 o

>> xlabel('v'), ylabel('T'),zlabel('f'),title('az=37.5^o, el=30^o')
>> axis tight % sets axis limits to the data range
>> subplot(2,2,3), surf(X,Y,fv)
>> view(2) % az=0o and el=90o – top view
>> xlabel('v'), ylabel('T'),title(' az =0^o, el =90^o')
>> axis tight % sets axis limits to the data range
>> subplot(2,2,4), surf(X,Y,fv)
>> view(0,0) % az=0o and el=0o – front view
>> xlabel('v'),zlabel('f'), title(' az =0^o, el =0^o')

98 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

>> axis tight % sets axis limits to the data range

The results appear in Fig. 3.16, below:

Figure 3.16: The Maxwell-Boltzmann distribution function plotted with different view angles az
and el.

The commands above correspond to the following steps;

- Assign the M and R values;

- Create vectors v and T;

- Create X and Y grid matrices in the range of the v and T vectors
respectively using the meshgrid command;

0
500

1000
200

400

0

1

x 10
-3

v

Default view

T

f

0
500

1000 200
400

0

1

x 10
-3

T

az=37.5o, el=30o

v
f

0 500 1000

100

200

300

400

500

v

 az =0o, el =90o

T

0 500 1000
0

0.5

1

1.5

x 10
-3 az =0o, el =0o

v

f

MATLAB Graphics Primary MATLAB® for Life Sciences: Guide for Beginners 99

- Calculate the Maxwell-Boltzmann function, f, for each pair of the X
and Y values;

- Divide the page (Figure Window) into four panes and select the first
pane for the first plot using the subplot command;

- Generate the first plot with the surf command at default viewpoint;

- Set the axis limits to the data range with the axis tight command;

- Select the second pane for the second plot using the subplot
command;

- Generate the second plot with the surf command;

- Set the plot viewpoint to the angles to be mirrored to the default angle
values using view command;

- Set the axis limits to the data range with the axis tight command;

- Select the third pane for the third plot using the subplot command;

- Generate the third plot using the surf command;

- Set the top view angles using the view(2) command;

- Set the axis limits to the data range with the axis tight command;

- Select the fourth pane for the fourth plot using the subplot command;

- Generate the fourth plot using the surf command;

- Set the front view angles using the view(3) command;

- Set axis limits to the data range using the axis tight command.

3.2.4.3. Rotation Mode for the Plot

To rotate the plot with the mouth press the button on the toolbar in the Figure
Window; the azimuth and elevation angle values appear simultaneously in the

100 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

bottom- left corner of the Figure Window. A plot view in the Figure Window
using rotation mode is shown below in Fig. 3.17.

Figure 3.17: The Figure Window with the plot in rotation mode, including the rotate cursor and
the values of the azimuth and elevation angles.

Rotation mode can also be introduced by inputting the rotate3d on command.
This can be accomplished by entering this command in the Command Window
and then doing the following:

- Proceed to the Figure Window;

- By pressing on the mouse button and moving the mouse, we can rotate
the plot and simultaneously view the az and el values, which change
together as the mouse moves.

Entering the rotate3d off command interrupts this mode.

Mouse pointer that
used for rotation

Values of the
azimuth and
elevation angles

MATLAB Graphics Primary MATLAB® for Life Sciences: Guide for Beginners 101

3.3. SPECIALIZED TWO- AND THREE-DMENSIONAL PLOTS

Among the 2D and 3D graphs used by life science specialists are plots that have
error boundaries for each of the x,y points, histograms, logarithmical plots and
other objects. These graphs can be constructed by using specialized commands.
Some of these graphs together with a list of additional graphic commands are
briefly described below.

3.3.1. Plot with Error Bars

Frequently, bio-data is observed with a degree of uncertainty. Thus it is desirable
to show recorded values with error limits in each data point. This can be
accomplished by using the errorbar command, which plots observed points with
error limits. The two simplest forms of this command are

errorbar(x,y,l,u) or errorbar(x,y,e)

where x and y are the data vectors, l, u, and e are vectors with lower, upper and
symmetrical (two-sided equal) errors, respectively.

For an example, generate the Figure Window with two plots showing the acidity
level data used in Section 3.1. The first plot shows this data with the side-
asymmetric errors: the upper one is 0.15 pH and the lower is 0.75 pH. The second
plot shows this data with symmetric errors of ± 0.15 pH at each point, yielded by
entering the commands (see Fig. 3.18).

>> t=0:.5:5; % vector with the time data
>> pH=[5.52, 5.73, 5.84, 6.26, 6.32, 6.3, 6.04, 6.09, 5.94, 6.03, 6.12]; % pH data
>> u= 0.15+zeros(1,length(pH)); % creates vector with upper errors
>> l=u/2; % creates vector with lower errors
>> e=u; % creates vector of two-side equal errors
>> subplot(1,2,1),
>> errorbar(t,pH,l,u) % plot data with different lower and upper errors
>> xlabel('Time, hour'),ylabel('Acidity level, pH')
>> title('Asymmetric Error'),grid
>> subplot(1,2,2),

102 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

>> errorbar(t,pH,e) % plot data with two-side equal error
>> xlabel('Time, hour'),ylabel('Acidity level, pH')
>> title('Symmetric Error'),grid

Figure 3.18: Plot of acidity level data with error bars.

To format the line color and style, and marker include line style and/or marker
specifiers in the errorbar command, e.g., inputting the errorbar(t,pH,e,'--o')
command changes the line to a dashed line and assigns the data points with circles
into the previous plot.

3.3.2. Plotting a Histogram

The histogram is one of the popular graphs for representing data in statistical
analysis in the life sciences. The values in a histogram are divided according to
certain intervals (called bins) and are plotted in the form of vertical bars whose
heights represents the number of data in each of them. Histograms are plotted
using the hist command. The simplest form of this command follows:

hist(y)

where y is the vector containing the data points; the command generates a graph
of bins that presents the numbers of data points in each of the 10 (default) equally
spaced bins.

-2 0 2 4 6
5.4

5.6

5.8

6

6.2

6.4

6.6

6.8

Time, hour

A
ci

di
ty

 le
ve

l,
pH

Asymmetric Error

-2 0 2 4 6
5.2

5.4

5.6

5.8

6

6.2

6.4

6.6

6.8

Time, hour

A
ci

di
ty

 le
ve

l,
pH

Symmetric Error

MATLAB Graphics Primary MATLAB® for Life Sciences: Guide for Beginners 103

For example, the weights (in grams) of 29 mushrooms from an experimental plant
site were 57, 48, 42, 44, 50, 38, 57, 62, 63, 39, 32, 83, 63, 47, 48, 47, 54, 41, 36,
69, 75, 53, 71, 33, 23, 42, 29, 75, 60. To plot a histogram by these data enter the
following commands:

>> y=[57, 48, 42, 44, 50, 38, 57, 62, 63, 39, 32, 83, 63, 47, 48, 47, 54, 41, 36, …
69, 75, 53, 71, 33, 23, 42, 29, 75, 60];
>> hist(y)
>> xlabel('Mushroom weight, g'),ylabel('Number of weights per one bin')

The resulting plot is shown below in Fig. 3.19.

Figure 3.19: Histogram plot of the mushroom weight data.

The form:

n=hist(y)

allows the generation of the n vector containing the numbers of data points in
each of the bins; the command yields a numerical output but does not plot a
histogram.

26 32 38 44 50 56 62 68 74 80
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Mushroom weight, g

N
um

be
r

of
 w

ei
gh

ts
 p

er
 o

ne
 b

in

104 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

Using the n=hist(y) command for the example cited above, the following
frequencies can be displayed in the Command Window:

>> n=hist(y)
n =
2 2 4 5 4 3 4 2 2 1

Note, the n=hist(y) command does not plot a histogram but returns the number of
elements in each bin.

There are additional forms of the hist command that can be applied in order to
define frequency numbers in each of the bins or when the various numbers of the
bins and their locations have to be plotted. Enter the help hist command in the
Command Window for more detailed information.

3.3.3. Plots with Semi-Logarithmic Axes

When generating graphs in the life sciences and technology, one of the coordinates is
frequently represented on a logarithmic scale. This allows the display of values in a
wider range than can be shown using a linear axis; in addition, exponential
relationships become linear in form in a semi-logarithmic scale. Use of these
relations is widespread in biotechnology, for example, expressions for first-, second-
or higher order reactions, population growth rates, radioactive decay, sterilization
processes, etc. The semilogy or semilogx commands should to be used for this
purpose. Following is the commands in its simplest form:

semilogy(x,y,’ Line Specifiers’) and semilogx(x,y,’ Line Specifiers’)

The first command generates a plot with a log-scaled (base 10) y-axis and a linear
x –scale; the second command generates a plot with a linear y-axis and a log-
scaled x-axis; the Line Specifiers property specifies the line type, point symbol,
and color for the lines drawn in the semi-log plot.

For example, bio-oil viscosity data are 120.14, 55.45, 19.92, 8.95 cP (centipoise)
at 298.15, 306.15, 318.15, 328.15 oK respectively. A semi-logarithmic plot can be
plotted using the following commands:

MATLAB Graphics Primary MATLAB® for Life Sciences: Guide for Beginners 105

>> Vis=[120.14 55.45 19.92 8.95]; T=[298.15 306.15 318.15 328.15];
>> semilogy(T, Vis,'-o') %plots N on a semi log y axis and a lineal x-axis
>> xlabel('Temperature, ^oK'), ylabel('Bio-oil viscosity, cP')
>> axis tight, grid

Figure 3.20: The semi-log graph for the temperature-viscosity relationship of bio-oil.

In the example above, the semilogy command was used together with the axis
tight command (described above in the subsection 3.1.3.1) to set the axis limits
for the range of the viscosity and temperature data.

The data on the semi-log graph in Fig. 3.20 is nearly linear; on a normal graph
produced by the plot command these data generate an exponential-like curve.

3.3.4. Supplementary Commands for Two- and Three- Dimensional Graphics

MATLAB® provides additional commands for 2D and 3D plotting. A complete
list of 2D, 3D, and specialized plotting functions can be obtained by entering the
following commands in the Command Window: help graph2d, help graph3d,
or help specgraph. Table 3.3 presents some additional commands for two- and
three-dimensional plotting that can be useful for the graphic presentation of bio-
data; the table provides the format of the corresponding basic command with short
explanations, examples, and the resulting plots.

300 305 310 315 320 325

10
1

10
2

Temperature, oK

B
io

-o
il

vi
sc

os
ity

,
cP

106 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

Table 3.3: Additional Commands and Plots for 2D and 3D Graphics*2.

Commands Examples Plots

figure
generates a new
Figure Window;
figure(h) generates
a Figure Window
with a number h or
calls up the existing
Figure Window
with number h

>>figure(2)

fplot('function',limit
s) plots a function
y=f(x) with
specified x-limits
(the limits of the y-
axis may be added)

>>fplot('exp(.1*x)',[10,6
0])

polar(theta,rho)
generates a plot with
polar coordinates in
which theta and rho
are the angle and
radius respectively.

>>th=linspace(0,2*pi,15
0);
>> r=4*cos(3*th);
>> polar(th,r)

loglog(x,y)
generates a plot with
both the x- and the
y- axes log scaled
(base 10)

>>x=linspace(0.1,20,100
);
>> y=5+exp(-0.5*x);
>> loglog(x,y)

2The table with minor changes/additions is taken from the author’s book [2]. With the permission of Biohealthcare
Publishing (Oxford) Limited.

10 20 30 40 50 60
0

50

100

150

200

250

300

350

400

450

 1

 2

 3

 4

30

210

60

240

90

270

120

300

150

330

180 0

MATLAB Graphics Primary MATLAB® for Life Sciences: Guide for Beginners 107

sphere or
sphere(n)
plots a sphere with
20 or n mesh cells
respectively

>> sphere(40)

box on
draws a box around
the plot;
box off removes a
drawn box from the
plot >> box on

cylinder or
cylinder(r) draws an
ordinary and a
profiled cylinder
with the profile
given by the r
expression

>> t = 0:pi/10:2*pi;
>>r=atan(t);
>> cylinder(r)

contour(X,Y,Z,v)
displays in the x,y-
plane isolines of
matrix Z;
Z is interpreted as
the height with
respect to the x,y-
plane;
v is the number of
contour lines or the
vector- specified
contour lines.
The form
c=contour(X,Y,Z,n)
with clabel(c)
displays the c level

>> x=-2:.2:2;
>> [X,Y] = meshgrid(x);
>> Z=X.*exp(-X.^2-
Y.^2);
>> contour(X,Y,Z,7);
>>% Or with level
values
>> c =
contour(X,Y,Z,7);
>> clabel(c)

-1

0

1

-1

0

1
-1

0

1

-1
0

1

-1
0

1
-1

0

1

-2

0

2

-2

0

2
0

0.5

1

108 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

values of the
isolines

contour3(X,Y,Z,n)
displays isolines of
matrix Z in the x,y-
plane;
Z is interpreted as
the height with
respect to the x,y -
plane;
n is the number of
contour lines

>> x=-2:.2:2;
>> [X,Y] = meshgrid(x);
>> Z=X.*exp(-X.^2-
Y.^2);
>> contour3(X,Y,Z,7);

surfc(X,Y,Z)
generates surface
and contour plots

>> x=-2:.2:2;
>> [X,Y] = meshgrid(x);
>> Z=X.*exp(-X.^2-
Y.^2);
>> surfc(Z);

bar(x,y)
displays the values
in a vector or matrix
as vertical bars

>> x=55:5:100;
>>
y=[1,2,1,0,1,4,3,3,5,5];
>> bar(x,y)
>> xlabel('Grades'),
>> ylabel('Number of
Grades per Bin')

-0.316

-0.211

-0.105 0 0.105

0.211

0.316

-2 -1 0 1 2
-2

-1

0

1

2

0
10

20
30

0

20

40
-0.5

0

0.5

MATLAB Graphics Primary MATLAB® for Life Sciences: Guide for Beginners 109

bar3(Y)
generates 3D-bar
plot data grouped in
columns

>> Y=[2 3.4 7.1 2.2 1;
3 6 4.1 3 2;
0.3 5 6.3 4 2];
>> bar3(Y)

stem(x,y)
displays data as
lines extending from
a baseline along the
x-axis; a circle
(default) terminates
each stem

>> x=55:5:100;
>>
y=[1,2,1,0,1,4,3,3,5,5];
>> stem(x,y)
>> xlabel('Grades'),
>> ylabel('Number of
Grades per Bin')

stem3(x,y,z)
generates 3D boxed
plot with lines from
the x,y - plane to the
z value that
terminates by the
circle (default).
The x, y, and z
coordinates must be
vectors or matrices
of the same size

>> x=0:0.5:2;
>> [X,Y]=meshgrid(x);
>> z= X.*Y./(X+Y);
>> stem3(X,Y,z)

0
1

2

0

1

2
0

5

10

110 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

stairs(x,y)
generates step-like
plot of the discrete y
data given at the
specified x points.

>> x=1900:20:2000;
>> y=[76 106 132 179
227 249];
>> stairs(x,y)
>> xlabel('Year'),
>> ylabel('People, mln')

pie(x)
draws a pie chart
using the data in x;
each element in x is
represented as a
slice

>> x=[56 68 42 91 100];
>> pie(x)
>> title(‘Group Grades’)

pie3(x,explode)
generates a pie
chart; explode
specifies an offset of
a slice from the
center of the chart;
explode is a vector
of the same length
as X, in which 1
denotes an offsetted
slice and 0 a plain
slice

>> x=[56 68 42 91 100];
>> explode=[0 1 0 0 0];
>> pie3(x,explode)
>> title(‘Group Grades’)

* The commands are described in their simplest form.

1900 1950 2000
50

100

150

200

250

Year

P
eo

pl
e,

 m
ln

16%

19%

12% 25%

28%

Group Grades

25%

28%

12%

Group Grades

19%

16%

MATLAB Graphics Primary MATLAB® for Life Sciences: Guide for Beginners 111

3.4. APPLICATION EXAMPLES

3.4.1. Simple Equilibrium Reaction: Species Concentrations

Suppose two species are in equilibrium A B with initial concentrations [A]0
and [B]0 equal 0.25 and 0.1 mole/L respectively; the concentrations at time t=0,
0.1, …, 1 can be determined using the following equations

1 f b f bf[] [] e [] 1 e0 0b f
f b f b

1f b f bf[] [] 1 e [] e0 0 b f
f b f b

k k t k k tk
A A k k B

k k k k

k k t k k tk
B A B k k

k k k k

   
   
   

   
   
   

      
      
       
      
      
       

The forward and backward reaction rate constants kf and kb equal 2 and 1 min-1
respectively.

Problem: Calculate and plot results in three concentration-time subplots on the
same page divided into four panes; the first plot presents [A] - t and [B] - t curves,
has a grid and is located in the first and second panes on the page; the second plot
presents the sole [A] - t curve in the third pane; and the third - [B] - t curve is in
the fourth pane. The two latter plots have no grid; add captions to the plots.

The commands for this presentation follow:

>> A o=.25;Bo=0.1;kf=2;kb=1;%determine the initial concentration and reaction
rates
>> t=0:.1:1; % create time vector
>> r1=1/(kf+kb)*(kb+kf*exp(-(kf+kb)*t)); % addend in the A and B expressions
>> r2= kf /(kf+kb)*(1-exp(-(kf+kb)*t)); % addend in the A and B expressions
>> A=A o*r1+Bo*r2; %calculate A concentrations
>> B=A o*r2+Bo*r1; %calculate B concentrations
>> % == commands for current plot generation and it formatting ==
>> subplot(2,2,[1 2]) %for placing plot at 1 and 3 positions
>> plot(t,A,t,B,'--') %plot A and B vs. t; A - solid

line(default),B – dashed
>> xlabel('Time, min'),

112 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

>> ylabel('Concentration,g/l'), grid
>> title('Two species concentration vs. time')
>> legend('The species A', 'The species B')
>> subplot 223
>> plot(t,A) %plot A vs. t
>> xlabel('Time, min'),ylabel('Concentration, g/l'),
>> title('Concentration of the A-species vs. time')%, grid
>> subplot 224
>> plot(t,B) %plot B vs. t
>> xlabel('Time, min'),ylabel('Concentration, g/l'),
>> title('Concentration of the B-species vs. time')%,grid

The plot created by these commands follows:

3.4.2. Microorganism Growth Curve

The general equation for microorganism (microbes, bacteria, etc.) population
growth is:

0 0.5 1
0.1

0.15

0.2

Time, min

C
on

ce
nt

ra
tio

n,
 g

/l

Concentration of the B-species vs. time

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.15

0.2

0.25

Time, min

C
on

ce
nt

ra
tio

n,
g/

l

Two species concentration vs time

0 0.5 1

0.16

0.18

0.2

0.22

0.24

Time, min

C
on

ce
nt

ra
tio

n,
 g

/l

Concentration of the A-species vs. time

The species A

The species B

MATLAB Graphics Primary MATLAB® for Life Sciences: Guide for Beginners 113

n(1)0N N r 

where N and N0 are respectively the current and initial number of microorganisms;
n is the number of generations that have elapsed; and r is the growth rate in parts
shown with percentages.

If for example a type of microorganisms has a growth rate of r=.5 units per half
hour; the initial number N0 of bacteria in a flask is 150; the elapsed generation
time is a half hour and a whole observation period is 4 hours; then n is equal to 0,
1,…, 8.

Problem: Calculate and plot bacteria growth during a period of 4 hours in three
plots on one page: (a) N versus time t in discrete, step form, (b) N versus time t in
regular, continuous form, and (c) logarithm N versus t; mark calculation points by
a circle (the letter 'o') and add a grid and captions to the plots.

The commands for solving this problem follow:

>> No=150;r=.5;
>> x=0:8; % number of generations elapsed
>> N=round(No*(1+r).^x); % round to the nearest integer of microorganisms
>> t=x/2; % elapsed time
>> subplot(3,1,1)
>> stairs(t,N) % the command for stairs-like plot
>> title('Stairs plot for bacterial growth')
>> xlabel('Time elapsed, hours'), ylabel('Number of bacteria, cell')
>> grid
>> subplot(3,1,2)
>> plot(t,N,'-o') %the command for regular plot
>> title('Bacterial growth during 4 hours')
>> xlabel('Time elapsed, hours'), ylabel('Number of bacteria, cell')
>> grid
>> subplot(3,1,3)
>> semilogy(t, N,'-o') %the command for semi log plot
>> title('A log plot of bacterial growth during 4 hours')

114 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

>> xlabel('Time elapsed, hours'), ylabel('Log of number of cells'),grid

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1000

2000

3000

4000
Stairs plot for bacterial growth

Time elapsed, hours

N
um

be
r
of

 b
ac

te
ria

,
ce

ll

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1000

2000

3000

4000
Bacterial growth during 4 hours

Time elapsed, hours

N
um

be
r
of

 b
ac

te
ria

,
ce

ll

0 0.5 1 1.5 2 2.5 3 3.5 4
10

2

10
3

10
4

A log plot of bacterial growth during 4 hours

Time elapsed, hours

Lo
g

of
 n

um
be

r
of

 c
el

ls

MATLAB Graphics Primary MATLAB® for Life Sciences: Guide for Beginners 115

3.4.3. Specific Volume of Air

The specific volume, v of air at atmospheric pressure, p, and different

temperatures, T, can be calculated with the ideal gas equation of state as:

RT
v

p


with p=101.3 kN/m3, R=0.286 kJ/(kgoK), and T in degrees of K.

The experimental air density values measured at temperatures 0, 20, 40, …, 100
oC (or 273.15, 293.15, 313.15, …, 373.15 oK) with mean two-sided error

v=±0.1% are 0.7734 0.8288 0.8873 0.9372 1 1.0571 m3/kg.

Problem: Calculate and plot the air density as determined theoretically (using the

equation of state) and experimentally (using measured data with data errors at

each point).

The commands that calculate the theoretical specific volumes and plot both
theoretical and experimental specific volumes of air at atmospheric pressure and
temperatures 273.15 … 373.15 oK are given below

>> T=273.15:20:373.15; % in oK
>> v_exp=[0.7734 0.8288 0.8873 0.9372 1 1.0571]; % in kg/m3
>> p=101.3; % in atmospheric pressure in kN/m2
>> R=.286; % in kJ/(kgoK)
>> v_theor= R*T/ p;
>> error=0.001* v_theor;
>> errorbar(T, v_exp,error,'.b'),hold on % plots exper. points with error bars
>> plot(T, v_theor), grid %plots theoretically calculated curve
>> xlabel('Temperature, ^oK'),ylabel('Specific volume, m^3/ kg')
>> title('Specific volume of air'),
>> legend('experimental points', 'theoretical curve'), hold off

The resulting plot is:

116 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

3.4.4. Bivariate Normal Distribution

The single and bivariate normal (Gaussian) distributions are widely used in life-
science statistics bioinformatics, biophysics, biomathematics and other disciplines
where data analysis is necessary. In general, a two-dimensional probability
density function, , of the bivariate normal distribution of the X (e.g.
species weight) and Y (e.g. species volume) variates with the correlation
coefficient  is given by

   
2

2

2

y x yx
2 2 x2 2x y1

(,)
2 1x y

y x yx
y

f x y e

   
  

  

    
    

    
 
 
  

    




where x and y are the mean values of the x and y variates respectively, and x

and y are those of the variate deviations.

Problem: Calculate and plot the distribution function for x=60, yx =4,
y=6, =0.1 in x-axis limits x ± 3x and y-axis limits y ± 3y.

To solve this problem the following steps must be taken:

260 280 300 320 340 360 380
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

Temperature, oK

S
pe

ci
fic

 v
ol

um
e,

 m
3 /

kg

Specific volume of air

experimental points

theoretical curve

(,)f x y

MATLAB Graphics Primary MATLAB® for Life Sciences: Guide for Beginners 117

- Assign values of the x, y, x, y, and 

- Calculate boundaries for x and y as x = x ± 3x and y = y ± 3y;

- Define 40-point vectors x and y with the linspace command;

- Create an X,Y grid in the ranges of the x, y vectors by using the

meshgrid command;

- Calculate f by the above expression;

- Generate a X,Y,f plot with the surf command

- Set plot axes to the previously calculated boundaries with the axis
tight command.

The commands are:

>> muX=60; muY=90;
>> sigmaX=4; sigmaY=6;ro=.1;
>> xlim=3*sigmaX; ylim=3*sigmaY; % setting limits for x, y
>> xmin=muX-xlim;xmax=muX+xlim;
>> ymin=muY-ylim;ymax=muY+ylim;
>> x=linspace(xmin,xmax,40); % defining vector x
>> y=linspace(ymin,ymax,40); % defining vector y
>> [X,Y]=meshgrid(x,y); % create X,Y grid from the x,y vectors
>> r1= (X-muX).^2/(2*sigmaX^2);
>> r2= (Y-muY).^2/(2*sigmaY^2);
>> r3=(X-muX).* (Y-muY)/(sigmaX*sigmaY);
>> f=1/(2*pi*sigmaX*sigmaY*sqrt(1-ro^2))*exp(-(r1+r2-ro*r3)/(1-ro^2));%f(x,y)
>> surf(X,Y,f) % plot surface graph
>> xlabel('x'),ylabel('y'),zlabel('f(x,y)')
>> axis tight % set plot to the x and y variate limites

Below is the figure generated by these commands:

118 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

3.4.5. The Ponderal Index

The Ponderal Index, PI, characterizes the relations between body weight and
individual volume, when the latter is defined by body height. The expression is:

3
PI

m

h


where m is weight in kg and h is height in m, and PI is in kg/m3.

Problem: Calculate and generate a three dimensional surface plot in which m and
h are on the horizontal plane and the z-axis is the Ponderal index; take x=40, 50,
…, 160 kg, and h=1.45, 1.55, …, 2 m. Present the plot with the azimuth and
elevation angles equal to -138 and 26 degrees respectively.

To solve the problem the follows steps must be taken:

- Create the vectors of the m and h values;

50
55

60
65

70

80

90

100

2

4

6

8

x 10
-4

xy

f(
x,

y)

MATLAB Graphics Primary MATLAB® for Life Sciences: Guide for Beginners 119

- Create X,Y grid matrices in the ranges of the m and h vectors
respectively by using the meshgrid command;

- Calculate PI for each pair of m and h values using the above
expression;

- Generate 3D plot by the determined X,Y,PI-values;

- Set the required view point for generated plot.

The commands are:

>> m=40:10:160;h=1.45:0.05:2;
>> [X,Y]=meshgrid(m,h); % creates X,Y grid from the x,t vectors
>> PI=X./Y.^3; % calculate element-wise the PI
>> surf(X,Y,PI); % plot surface graph
>> xlabel('Weight, kg');ylabel('Height, m');zlabel('Ponderal Index, kg/m^3')
>> view(-138,38) % az=-138° el=38

0

100

200 1.4

1.6

1.8

2

0

20

40

60

Height, m
Weght, kg

P
on

de
ra

l I
nd

ex
,

kg
/m

3

120 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

3.4.6. Partial Pressure in a Generic First Order Reaction

For the various gaseous reaction of type AB, AB+C, 2AB, etc. the partial
pressure, PA, can be calculated by the expression:

eA 0
ktP P 

where P0 is the initial partial pressure of the A component, k is reaction rate

constant and t- time. The rate constant k changes with the temperature in

accordance with the Arrhenius equation:

Ea
RTk ae




in which a is the frequency factor, Ea is activation energy, T is temperature and R
is the gas constant.

Problem: Calculate and generate a three dimensional surface plot of the partial

pressures (z-axis) as a function of time (x-axis) and temperature (y-axis). The

values of the parameters in the above equations are P0 =55 Torr, a = 1014 min-1,

Ea=77000 J/mol, T=293,294,…, 303 K, R=8.314 j/(K mol), t=1,1.25,…, 5 min.

Present the plot with the azimuth and elevation angles 123 and 26 degrees

respectively. Change the colors to the color combination autumn. Add axis

labels, a grid and a caption to the graph.

To solve this problem the following steps must be taken:

- Assign values to the parameters P0, a, Ea, R, and create the vectors of
the t and T values;

- Create a X,Y grid in the ranges of the t and T vectors respectively
using the meshgrid command;

- Calculate k and PA for each pair of X and Y values using the above
expressions;

MATLAB Graphics Primary MATLAB® for Life Sciences: Guide for Beginners 121

- Generate a 3D plot using defined X,Y,P0-values;

- Set the required view point and color combination.

The commands are:

>> Po=55; ea=77e3;a=1e14;R=8.314;a0=.25;
>> t=1:.25:4; T=293:303;
>> [X,Y]=meshgrid(t,T);
>> k=a*exp(-ea./(R*Y));
>> Pa=Po*exp(-k.*X);
>> surf(X,Y,Pa),grid on
>> xlabel('Time, min'), ylabel('Temperature, K'), zlabel('Pressure, Torr')
>> view(67,22)
>> colormap spring

3.5. QUESTIONS AND EXERCISES

1. Choose the correct answer. Which sign or word specifies an upright
triangular marker that designates a point on the plot? Choose from: (a)
+, (b) the word 'circle', (c) ^, (d) t.

0

2

4 290 295
300 305

0

2

4

6

8

10

Temperature, KTime, min

P
re

ss
ur

e,
 T

or
r

122 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

2. In a three-dimensional graph the mesh command generates: (a) a
surface, (b) a surface mesh, (c) a line.

3. To place several plots on the same page (in the same Figure Window),
it is necessary to divide this page using the following command: (a)
hold on, (b) plot(x1, y1, x2, y2, …), (c) subplot.

4. To produce a plot without an axis it is necessery to use the following
command: (a) hold off, (b) grid off, (c) axis off.

5. In an aerobic biomass process the mass/time data are: m=5.15, 5.21, 5.5,
6.55, 7.15, 7.75, 7.59, 7.45 g/l at t=0, 25, 50, 75, 100, 125, 150, 200 min.
Plot the graph in which the x-axis is time and the y-axis is the biomass
and data points, marked by a diamond with a solid line between the data
points. Add axis labels, a grid and a caption to the plot.

6. Generate three plots on one page for the following geometrical
figures.

Hypocycloid:

 
 

= 1.1cos + cos 1.1

= 1.1sin - sin 1.1

x φ φ

y φ φ

with 200 equally spaced values in the range 0≤≤4.

Polar rose:

= 2sin4 cos

= 2sin4 sin

x φ φ

y φ φ

with 100 equally spaced values in the range 0≤≤2.

Fermat’s spiral:

= cos

= sin

x φ φ

y φ φ

MATLAB Graphics Primary MATLAB® for Life Sciences: Guide for Beginners 123

with 100 equally spaced values in the range 0≤≤8.

Place all geometrical figures on the same page (Figure Window) so that the
hypocycloid and polar rose are located in the first graph lines and the Fermat’s
spiral in the second line. Make the figure width and figure height equal and add a
captions and a grid to each of the plots.

7. Plot the reagent concentration changes in a second order reaction

 5 0.0256

0.0256

2 10 e 1

0.002e 0.01

t

tx
 



 




where t is the time that changes from 0 to 23 min, and x is the reagent
concentration in gmol.

Add a curve of this reaction velocity to the graph:

319.45(0.01)(0.002)v x x  

where v in gmol/min.

Add axis labels, a grid, and a legend to the graph.

8. The experimental kinematic viscosity - temperature T data are 120.14, 81.78,
58,.48, and 43.30 cP at 298.15, 308.15, 318.15, and 328.15 K respectively. There
is ±0.5% uncertainty for these data.

The experimental data was described and can be calculated by the Andrade-type
expression:

e
B
TA 

where A=0.00142, B=3382.

Plot the calculated and measured viscosity values. Provide the error bars at each
measured point; add axis labels, a caption, a grid, and a legend.

124 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

9. Plot the surfaces of the two following bodies on one page. Make the width and
height equal in size to the first body and make the axis squared for the second
body; add titles and remove the axis from each body plot:

a) Toroid

(cos) cos

(cos) sin

sin

x R r v u

y R r v u

z r v

   
   
 

where R=6, r=2, u=0,.,2, v=0,…, 2, take the number of the u and v values
equal 30.

b) Möbius’ strip:

1
1 cos cos

2 2

1
1 cos sin

2 2

1
sin

2 2

u
x v u

u
y v u

u
z v

    
 
    
 

 

where u is ranged between 0 toand v between -1 to 1; take the same number
for the u and v values as for the first body.

10. The radioactive substance decay data, N, are: 400, 200, 100, 50, and 25
disintegrations per minute at 0, 1, 2, 3, and 4 hours respectively. Plot these data in
semi-logarithmical coordinates in which x is time and y is log(N). Add axis labels,
a grid, and a caption.

11. The weights (in mg) of 33 vials from a lot are: 65, 80, 95, 93, 67, 81, 90, 93,
92, 83, 86, 83, 90, 94, 93, 96, 96, 98, 96, 59, 75, 81, 65, 88, 81, 65, 88, 81, 60, 57,
61, 68, 77, 75, 76, 70. Plot a histogram for these data and add a title to the graph.
Calculate the average and standard deviation and write the determined values into

MATLAB Graphics Primary MATLAB® for Life Sciences: Guide for Beginners 125

the graph using the text commands (take the initial text coordinates as follows:
x=60 and y=5.5 for the average, and x=60 and y=5.0 for the standard deviation).

12. The doubling time of a bacterium is a half hour. The initial number N0 of

bacteria in a flask was 100. The general equation for bacterial population growth

is n20N N , where n is the number of generations that have elapsed and equals

6. Calculate and plot bacteria growth during 3 hours in two plots on one page: (a)

N versus time t, and (b) logarithm N versus t; mark the calculation points with a

circle (the letter 'o'); add axis labels, a grid, and captions to each plot.

13. The V2 volume of a solute in water is calculated by the expression V2= V1

M1/M2 (see Subsection 2.2.5.4), in which M1 is the final molar concentration of

the solution, and M1 and V1 are the initial solute concentration and the solution

volume respectively. Given the initial solute concentration M1= 1mol/L, plot the

three dimensional graph V2(M2,V1) in which M2 changes in the range 0.1 … 2

mol/L and V1 changes in the range 0.1. 0.9 L. Show the three-dimensional graph

with the azimuth and elevation angles -135 and 35 degrees respectively. Add axis

labels, a grid, and a caption to the graph.

14. In a first-order reaction the concentration [A] changes with time t by the law

[] []0
ktA A e , where [A]0 is the initial concentration of the A-species; k is the

reaction rate constant that changes with temperature by the Arrhenius equation
 E RTak ae


 , where a is frequency factor, Ea - is activation energy, T – is

temperature, and R – is the gas constant. The values of the parameters in these

equations are a=1014 sec-1, Ea=77000 J/mol, T=293, 294, …, 303 K, R=8.314 J/(K

mol), [A]0 = 0.25 mol/L, t=1, 1.2, …, 4 sec. Generate a three-dimensional surface

plot of the concentration (z-axis) as a function of time (x-axis) and temperature (y-

axis). Present the plot with azimuth and elevation angles 123 and 26 degrees

respectively. Change the colors to the autumn color combination.

15. A rigid body motion, studied in fluid biomechanics, is described by time-
dependent coordinate equations. Plot the trajectory of the body that was described
by the following set of the coordinate equations:

126 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

3

= s in (2π)

= co s(2π)

=

x t

y t

z t

Use the LineWidth property equals 5. The time t is given in 0 … 1 dimensionless
units. Add axis labels, a grid, and a caption.

16. Adhesion of gas molecules on a solid surface at a constant temperature is

described by the Langmuir adsorption equation
1

bP

bP
 


 in which is called

surface coverage of an adsorbed substance, P, and b is pressure and a constant of
the given substance at a given temperature (Langmuir isotherm). Plot two graphs
in two separate Figure Windows:

a) The graph of (P,b) when P is given in the range 0…1 with step 0.01, and 50

values of the b coefficient is given in the range 0.1 … 100; and

b) The graph (P) with four lines corresponding to the four values of the b

constant: 5, 10, 20, and 100.

Add the graph axis labels, grid, and captions to each plot, and add a legend to the

second plot.

17. A bio-film lense used in ophthalmology and some other medical applications

has nano-size surface roughness that can be modeled by the equation

= asin(sin2) + asin(sin2))h πkx πky in which x and y are dimensionless surface

coordinates changed in the range 0 … 1 each with the step 0.01; k is the wave

number and is equal to 5. Plot a rough surface graph h(x,y) with the azimuth and

elevation angles: -24 and 82 respectively, add a caption to the graph and remove

the plot axis.

3.6. ANSWERS TO SELECTED QUESTIONS AND EXERCISES

3) (c) subplot

MATLAB Graphics Primary MATLAB® for Life Sciences: Guide for Beginners 127

6)

9)

-2 0 2
-2

0

2

x

y

Hypocycloid

-2 0 2

-1

0

1

x

y

Polar rose

-10 -5 0 5 10

-4

-2

0

2

4

x

y

Fermat's spiral

Toroid

Mobius' strip

128 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

13)

16)

0.5

1

1.5

2

0

0.5

1

0

0.5

1

1.5

2

M
1
- concentration, mol/l

Final solute concentration

V
1
- solution volume, l

M
2-

so
lu

te
 c

on
ce

nt
ra

tio
n,

 m
ol

/l

0

0.5

1

0

50

100
0

0.5

1

Substance pressure

Surface Coverage vs T and b

b-coefficient

S
ur

fa
ce

 c
ov

er
ag

e

MATLAB Graphics Primary MATLAB® for Life Sciences: Guide for Beginners 129

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Substance pressure

S
ur

fa
ce

 c
ov

er
ag

e

Surface Coverage vs P at b 5,10, 20, and 100

b=5

b=10
b=20

b=100

 Primary MATLAB® for Life Sciences: Guide for Beginners, 2013, 130-172 130

Leonid Burstein
All rights reserved-© 2013 Bentham Science Publishers

CHAPTER 4

Writing Scripts and Functions: Some Functions Used in Bio-
Computations

Abstract: Editor Window, script- and function files are accurately described. The
commands for solving algebraic equation, for integration, differentiation, interpolation
and extrapolation are introduced with applications to numerical problems of
bioengineering, particularly such as heat sterilization time, population dynamics,
bacterial population amount, etc. The questions and life-science problems together with
answers to some of them are given in conclusion.

Keywords: Editor; script, functions; integration; differentiation; interpolation and
extrapolation; life science applications; bacterial population amount; heat
sterilization.

INTRODUCTION

In the previous chapters all the commands described were typed and entered
interactively in the Command Window and were not saved. Therefore, they
cannot be used again. Using commands in this way has additional disadvantage:
to correct a command, the command must be called to the command line; after
correction, all previous commands including the corrected and subsequent
commands should be sequentially executed sequentially in order to obtain the
correct result. If it becomes necessary to repeat the calculations, all commands
have to be reentered. Readers of the preceding chapters have obviously
experienced this inconvenience. In order to avoid these situations, all command
sequences should be written and saved in separate files; in this case, the files can
be run when necessary. MATLAB® provides two options for this purpose: writing
script files or function files, which are described in this chapter. In addition, this
chapter introduces useful MATLAB® functions for numerical analysis1 and
presents examples related to life science and biotechnology calculations.

4.1. WRITING, SAVING AND RUNNING SCRIPT FILES

A sequence of commands that is executed without user interaction is called a
program. In MATLAB®, these written commands is called a script; the file, in

1Detailed mathematical background of numerical analysis, interpolation and approximation can be defined for example
here [10, 11].

Send Orders for Reprints to reprints@benthamscience.net

Writing Scripts and Functions Primary MATLAB® for Life Sciences: Guide for Beginners 131

which these commands are saved, is called a script file. MATLAB® executes
these commands in the order in which they are written. Each correction, new
command or any other extension may be entered directly into the script. The file
is saved with name that you provide to him and with extension ‘.m’; therefor such
generated files are called m-files. The MATLAB® Editor should be used to type
and save m-files. The Editor can be opened in different ways; the two most
suitable are: Entering the edit command in the Command Window (a) or selecting
the ‘Script’ item in the ‘New’ line of the ‘File’ menu option (b). Immediately after
executing one of these operations, the Editor Window appears (see Fig. 4.1).

Figure 4.1: The MATLAB® Editor.

The commands are typed line by line in the Editor; herewith, two or more
commands can be typed on the same line with commas or semicolons between
them. To access a new line, press the Enter key; a new line automatically appears
with a serial number on the left vertical strip. It is possible to use any other non-
MATLAB® editor to write commands; these can then be copied into the
MATLAB® Editor window.

The commands should be typed
sequentially from line to line
beginning from this vertical dash.
Each new line appears after pressing
the Enter key.

Line number

This is the location for the file name.
‘Untitled’ is the default file name.

132 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

An elementary script file typed in the Editor window is presented in Fig. 4.2. The
file, named EditorExample1, contains:

- Three lines with explanatory comments that are usually typed on the
first lines using the comments sign %; comments are printed in green
and are not executed when the program is running.

- Two lines with commands intend for calculations of the ribosomal
RNA volume (see interactive calculations of the rRNA volume in
Subsection 2.1.8.1); the commands appear in black for better
readability.

Figure 4.2: The Editor Window with the script file and the M-Lint message bar.

On the right vertical bar of the Editor Window, the so-called M-Lint analyzer is
located; it checks written commands and places the message markers which
designate detected errors and/or present comments and recommendations for better
program performance. On the top of the message bar is located the message

Comments

Assign the d value and
calculate the rRNA volume

Message marker;
click to view the
message

Message indicator;
orange means warning
or possible improving

M-Lint
message
bar

These numbers
mark the cursor
position: line 5,
column 21

M-Lint message with a recommendation to
add a semicolon at the end of the command

Writing Scripts and Functions Primary MATLAB® for Life Sciences: Guide for Beginners 133

indicator , its color changes according to the analysis executed by the M-Lint
analyzer program. A green indicator shows that everything is correct; a red indicates
that syntax errors were detected; an orange signs that there are no errors but the
analyzer warns or recommends possibly improvements. In the two latter cases, the
appropriate program text appears underlined/highlighted and a horizontal line
appears on the message bar. To see the comment message, the cursor should be
placed on this line. The comment that appears is shown in the Fig. 4.2.

Note:

- Warnings and recommendations that do not require corrections are
shown in the fig. 4.2; the comment message requires the addition of a
semicolon, but this should not be executed, because we want to
display the resulting ribosomal RNA volume value, V_RNA.

- The Editor Window includes the M-Lint analyzer by default. To
disable the analyzer uncheck the 'Enable integrated M-Lint warning
and error messages' check box, which can be found in the Code
Analyzer Preferences dialog-box, accessed by selecting the Code
Analyzer option of the Preferences window; the latter can be opened
from the File option of the Editor Window or from the Desktop menu.

After writing the script into the Editor Window, it should be saved. To do this,
follow these steps:

- Chose the ‘Save As …’ option from the ‘File’ menu;

- Type the desired file location into the ‘Save in’ field of the ‘Save file
as …’ window; the default folder named MATLAB (frequently
located in the ‘My Documents’ directory) is selected for saving your
script file. If another directory/folder is preferred, click on the arrow
to the right of the 'Save in:’ field of the window.

- Type a file name into the ‘File name:’ field of the ‘Save file as …’
window; the file name is automatically terminated with the ‘.m’
extension.

134 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

Note:

- The script file name should begin with a letter and cannot be longer
than 63 characters;

- The name should not contain signs of mathematical operations (e.g. +,
-, /, *) or repeat the user-defined and predefined variables, MATLAB
commands and functions (e.g. sin, cos, sqrt, linspace, format, etc.).
It is also not recommended to include spaces in the name.

To save the file, first check if the file is in the current MATLAB folder; if the
folder does not contain your file, the folder with your file should be selected; then
type and enter the file name, without the ‘.m’ extension, from the Command
Window.

Current Folder

The folder currently used by MATLAB® and the files in it is shown into the
'Current Folder' field and in the ‘Current Folder’ field on the MATLAB Desktop
(see Fig. 4.3). If the desired file is not in the current folder, you need to set the
folder with the file; the simplest way is:

- Open the ‘Browse for Folder’ window by clicking on the icon with
three dots to the right of the Current Folder field;

- Select the desired folder, which appears in the ‘Select a new folder’
field and click the OK button.

In the Fig. 4.3 the location of the script file EditorExample1.m is shown; the file
was saved in the ‘MATLAB’ folder of the ‘My Documents’ directory located in
the ‘Users’ folder in Disk C. To run this file, type the file name (without the m-
extension) in the Command Window, and press the Enter key:

>> EditorExample1 % runs the script written into the EditorExample1 file
V_RNA =
4.1888e-006 The RNA volume is displayed in the Command Window and

calculated by running the script EditorExample1file

Writing Scripts and Functions Primary MATLAB® for Life Sciences: Guide for Beginners 135

Figure 4.3: The 'Current Folder' field, ‘Current Folder’ and 'Browse for Folder' windows.

When a file is located in another folder, for example, if the EditorExample1 is
located in disk D in the folder named Chapter 4, the current directory should be
changed to D:\Chapter4 using the three dots button. The script file should then be
run by typing and entering the file name from the Command Window.

4.1.1. Inputting Values into a Script File

The values for variables can be assigned directly in the script file. However, in
this case, the file should be changed and saved every time new values are used.
This is not suitable when the file is used frequently for calculations with different
variable values. A better method is to assign the desired value to the variable that
appears in the file using the input command, which can be written in two forms:

Numeric_Variable = input('String to display')

Character_Variable =input('String to display','s')

where the 'String to display' prompt is displayed in the Command Window after
running the script file, the Numeric_Variable and Character_Variable are

The Current
Folder field

The Current
Folder Window
with the
EditorExample1
file

Click here to
browse and
locate the folder
needed

136 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

names of variables to which a numeric or character value should be inputted, and
's' notes that the inputted value is a string.

When the string written in the input command is displayed in the Command
Window, the user should type and enter a number or string depending on the
applied command form; the entered number or string values are assigned to the
Numeric_Variable and Character_Variable respectively.

For example, the input command is used in the following script that converts a

liquid volume, v_gal, given in US gallons to liters, v_L by the relationship

v_L=3.78541v_gal:

%Gallon to liter convertor
v_gal=input('Enter liquid volume in gallons, V = ');
v_L=3.78541178*v_gal;
fprintf('\n The volume is%5.1f liters\n',v_L)

These commands are saved in the script file under the name Gallon2Liter. To run

the file, type and enter this name in the Command Window, following which the

‘Enter liquid volume in gallons, V=’ prompt displays on the screen; now type a

volume value (in gallons) directly after the ‘=’ sign and press enter; values

converted to liters appear on the screen.

>> Gallon2Liter
Enter liquid volume in gallons, V = 9
The volume is 34.1 liters

Note:

- Vectors and matrices can be inputted with the input command entered
in the same way as for a variable, using numbers or characters in
brackets.

- When the second form of the input command is used, inputting
characters should be typed without quotes.

Writing Scripts and Functions Primary MATLAB® for Life Sciences: Guide for Beginners 137

4.2. COMMANDS PRESENTED AS A FUNCTION AND SAVED AS A
FUCTION FILE

In algebra, mathematical functions are presented in the form y=f(x), where the
right member contains one (x) or more arguments (parameters): x1, x2, x3, ….
After assigning values to the arguments, the y values are obtained. Many of
previously studied MATLAB® commands were written in this form, e.g., exp(x),
log(x), tan(x), cot(x), plot(y), surf(z), etc. and, therefore, can be used for different
calculations by typing their name with the argument presented as a number,
numerical vector, or matrix. Analogously to these functions, MATLAB® presents
the possibility to create new functions that are generated and can be used with the
desired values of arguments in different programs; a function produced by the
user is called 'user-defined'. Such functions can represent not only a specific
expression, but also a complete program. The user can save a program defined as
a function as a function file.

An example of such file is shown below in Fig. 4.4. The function presented in the
figure is named solute and calculates the molar concentration of a solute after
dilution. The function and the function file have the name solute, three input
arguments (the solute % concentration C1 and the solution volume V1, both
before dilution, and solution volume V2 after dilution), and one output argument
(the solute % concentration C2 after dilution).

Each user-created function consists of three parts: function definition, help lines
and function body. The requirements and recommendations regarding these
function parts are given below.

The Function Definition Line

The command for the definition of a function is:

function [output _arguments]=function_name(input_ arguments)

This function definition is written as the first program line with the word function
typed as the first word of the file; the word appears in blue in the Editor Window.
function_name is the name of the function; it is located to the right of the ' = '

138 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

sign, and is given by the user. The function name should follow the same rules as
those for variable names (see Subsection 2.1.4). The input_ arguments, written
between the parentheses, and output _arguments, written between square
brackets, present lists of arguments that are transferred into and derive from the
function. Commas divide the arguments; in cases of a single output argument, the
brackets can be omitted.

Figure 4.4: Editor Window with typical function file.

The function definition can be also written by omitting the arguments completely
or partially. Examples of possible function definition lines are:

function [A,B]=ex1(a,b,c) – Function name 'ex1', three input and two
output arguments;

function [A,B,C]=ex2 – Function name 'ex2', without input arguments
and with three output arguments;

function ex3(a,b,c) – Function name 'ex3', without output
arguments and with three input arguments;

The function definition,
located in the first line

The function body; it may
include more than one
command

Help lines with comments

The variable transfers the
value to the output
argument with the
identical name

Writing Scripts and Functions Primary MATLAB® for Life Sciences: Guide for Beginners 139

function ex4 – Function name 'ex4,' without input and output
arguments

Note: the word function should be written in lower-case letters.

Help Lines with Comments

Help lines contain comments concerning function and its arguments. They are

placed just after the function definition line and before the first command of the

function body. The first line of this part of the function should succinctly specify

the function. This line is displayed by the lookfor command when this command

outputs defined information, e.g., typing and entering lookfor solute in the

Command Window yields:

>> lookfor solute
solute - the function named 'solute' calculates the solute percent concentration
…

Note that the lookfor command in this example searches not only your function,

but any MATLAB® function with the word ‘solute’ in its first help line; thus, list

of defined functions may contain more than a single solute function.

The help command displays all written lines with the help comments when the

the function name is typed after it; for example, typing and entering help solute

in the Command Window yields:

>> help solute
the function named 'solute' calculates the solute percent concentration
The input parameters:
C1 - initial solute concentration, percent
V1 - initial solution volume, mL
V2 - solute volume after dilution, mL
The output parameter:
C2 - solute concentration after dilution, percent

140 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

Function Body, Local and Global Variables

One or more commands that perform actual calculations represent the body of the
function; between or at the end of these commands, the command should be
written that assigns a calculated value to the output argument. For example, in
Fig. 4.4, the last function command calculates solute concentration after dilution
and assigns a computed value to the variable C2, which is defined as an output
parameter in the function definition line.

The values of the input parameters should be assigned before running the
function.

The variables in the function file are local and relevant only within the file. This
means that after running the function, the variables are not saved and no longer
appear in the workspace. In order share some or all of them with other function/s
they have to be made them accessible; this is done using the global command:

global variable_name1 variable_name2 …

A space (not a comma) is placed between the word global and the first variable
name (variable_name1) and between other variable names, e.g.,
variable_name1 variable_name2.

The command should be placed in the function before the variable is firstly used
and should be repeated in every other functions wherever the variable is to be
used.

4.2.1. Saving a Function as a Function File

Similarly to a script, a function should be saved in a file before it is used. To save
a function as a function file, select 'Save As' from the ‘File’ menu and enter both
the desired file folder and file’s name. It is recommended to give the file the name
of the function; for example the solute function should be saved in a file named
solute.m.

Below are examples of function names that appear in the function definition lines
and the names that should be given to the function files:

Writing Scripts and Functions Primary MATLAB® for Life Sciences: Guide for Beginners 141

function M2=dilute(M1,V1,V2) – The function file name: dilute.m;

function [v, m]=r_RNA(d,h) – The function file name: r_RNA;

function heights2(age) – The function file name: heights2.m.

When a program contains more than one function, the function file should be

named for the function that starts the program (the main function).

4.2.2. Running a Function File

The function saved in the function file can be run using the Command Window or

by using another file. For this the function definition line should be typed without

the word 'function' and with assigned values of the input arguments. For example,

the solute.m function file (shown in the Fig. 4.4) runs as follows:

>>C2=solute(2,0.5,0.6)
C2 =

1.6667
Or, in the other way, by pre-assigning the input variables:

>> a=2;b=0.5;c=0.6;
>> C2= solute(a,b,c)
C2 =

1.6667

The function created by the user can be used for calculations by another

mathematical expression or by any other program. For example, the solute

function calculates the C2 solute concentration in percentages that should be

presented in mg/mL. In biochemistry, 1% of the solute is usually 10 mg of solute

in 100 mL of the solution; thus C2_mg_per_mL =10*C2 mg per ml. The

following commands should be typed in the Command Window:

>>a=2;b=0.5;c=0.6; % defines values for the input parameters in solute
>>k=10; % percentage to mg/mL coefficient

142 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

>> C2_mg_per_mL=k*solute(a,b,c) % solute amount in mg/mL
C2_mg_per_mL =
16.6667

Script and Function Files: Similarities and Differences

As it is possible to solve most life sciences problems using the script file only or,
interactively, by inputting commands directly from the Command Window, it is
difficult to the beginners to understand the differences between script and function
files. Similarities and differences between the two file types appear below:

- Both file types are produced using the Editor and saved as m-files
(files with the extension m);

- The function definition line is the first line of the function file; this is
not the case with a script file;

- The function file should have the same name as the function it
contains;

- The data is inputted and outputted from the function files through the
input and output arguments of the function definition line,
respectively; when using script files, the data is assigned into the file,
either by inputting using the input commands or by defining them
directly in the workspace;

- The variables of a function file of are local; in contrast, all variables of
the script file are global;

- The user-defined function files can be used in the same way as other
MATLAB® functions in other files or simply by typing and entering
them in the Command Window.

4.3. USEFUL FUNCTIONS FOR BIO-COMPUTING

In life science- or biotechnological- labs, various calculations [8, 9] are performed
using mathematical operations such as interpolation, extrapolation, the solution of

Writing Scripts and Functions Primary MATLAB® for Life Sciences: Guide for Beginners 143

algebraic equations, integration, differentiation and fitting. MATLAB® has special
functions for these purposes; the most frequent appearing below.

4.3.1. Data Interpolation and Extrapolation

In tables with measured, sampled, or calculated data, it is often necessary to
estimate values between or out of the table points. In these cases interpolation or
extrapolation methods are used for, respectively, the points lying inside or outside
the data range. For example, the numbers of a rare breed among the tiger
population were 21, 120, 340, 430, and 500 in the years 1940, 1971, 1985, 1996
and 2009 respectively. These data points are presented in Fig. 4.5. Calculating the
number of tigers in the years 1960 and 2000 (values between data points) is an
interpolation problem while evaluating the number of tigers in the years 1935 and
2012 (values outside data points), an extrapolation problem.

Figure 4.5: Interpolation and extrapolation: ◊ - Original data points; * - interpolation points; Δ -
extrapolation points.

1920 1940 1960 1980 2000 2020
0

100

200

300

400

500

600

Interpolated tiger
number

This year is outside the
data range and is
extrapolation problem

This year is within the
data range and is an
interpolation problem

Extrapolated tiger
number values

144 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

Both interpolation and extrapolation operations can be carried through the interp1
function which has the following forms

y_i=interp1(x,y,x_i,'method') or y_i=interp1(x,y,x_i,'method','extrap')

where the y_i is a single or vector of values obtained by inter- or extrapolation at the
desired x_i point/s; x and y are the vectors of data values; the 'method' string
specifies the name of the mathematical algorithm that is used for the y_i calculation.
Some of names of available methods is – 'linear', 'cubic', and 'spline'; a default
name is 'linear'; when the first command form is used this word can be omitted; for
extrapolation or for simultaneous inter- and extrapolation, use the 'extrap' string.

The first form of the interp1 command performs interpolation only in default
mode ('linear'); however, extrapolation but can also be carried out using the
'cubic' or 'spline' method.

The commands for the calculation of interpolated and extrapolated values
represented in Fig. 4.5 are:

>>tiger=[21, 120, 340, 430, 500]; % the x-data
>>t=[1940, 1971, 1985, 1996, 2009] % the y-data
>>ti=[1960 2000]; % x-points to interpolation
>>te=[1935 2012]; % x-points to extrapolation
>>y_interpolated=interp1(t,tiger,ti,'cubic'); % defines interpolated y-values
>>y_extrapolated=interp1(t,tiger,te,'cubic','extrap'); % defines extrapolated y-
values
>>y_interpolated,y_extrapolated % displays defined values
y_interpolated =
64.9353 455.0297
y_extrapolated =
24.1335 510.2463

In this example, the 'cubic' algorithm is used for extrapolation with the second
form of the interp1 command. However, the first command form can also be
used. The amount of tigers should be represented by an integer and the resulting
values should be truncated using the floor command (Table 2.4):

Writing Scripts and Functions Primary MATLAB® for Life Sciences: Guide for Beginners 145

>> floor(y_interpolated),floor(y_extrapolated)
ans =
64 455
ans =
24 510

4.3.2. Solution of the Nonlinear Algebraic Equation

Solution of sets of linear algebraic equations presented in matrix form has been
presented in Chapter 2 (Subsections 2.2.2, 2.3.4.1). If it is necessary to solve a
single nonlinear equation f(x) =0 the computer uses a special algorithm that finds
such x where this equation is equal to zero. The function to be used for this
process and for a nonlinear equation solution is fzero; whose general form is

x=fzero('function', x0)

This function searches for solutions near the point x0 (called the guess point) that
graphically presents the x-value where the function is zero; 'function' is the string
representing an actual equation or the name of the user-defined function with an
equation to be solved.

Define, for example, activation energy Ea from the modified Arrhenius equation

0

a
e

E- k T RT=
A T

 
 
 

where k/A= 8.7·10-14 was defined at T=310 K and the reaction-to-reference
temperature ratio was T/T0=1.3, R=8.314 J/(K·mol).

To define Ea with the fzero function, the equation should be presented in the form

0
e

x
- k T RTf(x)= -

A T

 
 
 

where x denotes Ea. For physical reasons, the value of x0

must be positive and can be selected as 1·104 J/mol (one of the known Ea for
many chemical reactions).

The command for realizing this solution is:

146 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

>> Ea=fzero('8.7e-14-1.3*exp(-x/(8.314*310))',1e4) % Ea in J/mol
Ea =
7.8184e+004

As can be seen, all the values of the variables are written into the fzero function
because the string with the solved equation can include only the name of a
variable to be selected. It cannot include pre-assigned variables, e.g., it is not
possible to define k_A=8.7271e-14, R=8.314, T=300 and then write 'k_A-exp(-
x/(R*T))' into fzero.

To include pre-assigned variables into the equation written in the fzero function,
another form of fzero can be used:

x=fzero(@ (x) fun(x, variables1, variables2,…), x0)

@ (x) fun2 is a user-defined function containing the equation with the additional
arguments variables1, variables2,… that should be assigned first.

Now, we can write the example above as a function with, for instance, the name
activation_energy

function Ea=activation_energy(k_A,R,T,T_T0,x0)
% activation energy calculation
% k_A is ratio of reaction constant to frequency factor
% R - gas constant, J/mol/K
% T_T0 - real-to-reference temperature ratio
% T – temperature, K
% x0 – initial Ea
Ea=fzero(@(x) myf(x,k_A,R,T,T_T0),x0);
function f=myf(x,k_A,R,T,T_T0)
f=k_A-T_T0*exp(-x/(R*T));

This function has the input parameters k_A, R, T, T_T0, and x0, and the output
parameter Ea, and includes the myf sub-function that is used by the command
x=fzero(@ (x) myf(x,k_A,R,T,T_T0), x0). The function definition line of the

2The symbol @ is used to denote the so-called anonymous functions, which fall outside the scope of this book.

Writing Scripts and Functions Primary MATLAB® for Life Sciences: Guide for Beginners 147

myf function should appear as function f=myf(x,k_A,R,T,T_T0). The
activation_energy function should be written in the Editor Window and saved
into the function file with the name activation_energy.m. Following these steps,
the function can be run from the Command Window with the assigned arguments
k_A, R, T, T_T0 and x0:

>> Ea=activation_energy (8.7e-14, 8.314, 310,1.3,1e4)
Ea =
7.8184e+004

4.3.3. Integration

An integral is the area between the curve of the function and the x axis and
integration is a process used to calculate the size of this area. For this purpose, the
area is divided into a number of small geometrical elements of identical form,
e.g., rectangles, trapezoids, etc.

a) b)

Figure 4.6: Integral (the shaded area) of the function given analytically (a) and by the data points
(b). (Produced with a MATLAB script file that includes the fill command)

The area of each of these elements can be easily calculated and the integral can be
defined as the sum of the squares of these elements.

The function f(x) for which the integral is defined can be given in the form of
equation or data points, such as those shown on the Fig. 4.6 a,b. MATLAB®

148 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

functions for the integration of each of these cases are the quad and trapz
functions, respectively.

Integration with the quad Function

The function takes the form:

q=quad('function',a,b,tolerance)

where 'function' is a string representing an expression f(x) to be integrated, or the
name of a function file containing the expression (this file should be created by
the same way as that for the fzero command); a and b present the interval of
integration (or the integration limits) and tolerance denotes the desired value of
absolute error who default value is no more than 1·10-6 (the tolerance arguments
is optional and can be omitted); the obtained value of the integral is assigned to
the q variable.

The quad function realizes the adaptive Simpson’s sum method, in which the area
beneath the integrated function is divided by elements, each two of which
contains a cubic parabola as a line that fits the function piece; the number of
elements increases by using special subdivision method for those parts of the
integrated area where the function is behaving ‘badly’. A detailed explanation of
this integration method is available in classic courses of numerical analysis.

The f(x) integrated expression should be written with element-wise operators '.*',
'.^', and './'.

For example, to calculate the integral
4

3

1

q x dx  (the xn function appears, for
example, in equations for reaction rates, in population dynamics, etc.) typy and
enter the following command from the Command Window:

>>q=quad('1./x.^3',1,4) %Note: the element-wise operations are used for 1/x^3
q =
0.4688

Another option for use of the quad command is to write the function in the Editor
Window as follows:

Writing Scripts and Functions Primary MATLAB® for Life Sciences: Guide for Beginners 149

function y=Ch4_ Ex(x)
y=1./x.^3;

This user-defined function should be saved in a file with the name Ch4_ Ex.m.
Next, to integrate, the quad command should contain the name Ch4_ Ex instead
of the '1./x.^3' expression. To calculate the integral, type and enter from the
Command Window:

>> q=quad('Ch4_ Ex',1,4)
q =
0.4688

To use other variables/arguments (and not only x) in the 'function' string, they
should be previously assigned in the same way as for the fzero command in
Subsection 4.3.2.

Integration with the trapz Function

The trapz function uses when a function for integration is presented as set of data
points. The simplest form of this function is

q=trapz(x,y)

where x and y are coordinate vectors representing a set of points.

For example, the microorganism mass growth rates were measured in a laboratory
and are given in the following table:

t, hour 1 2 3 4 5 6

v, pg/hour 4.1 10.2 22.1 44.3 88.6 356.9

Problem: Calculate the microorganism mass increment during the time of the
measurements, that is between 1 and 6 hours

6

1

m = v(t)dt

where v(t) under the integral is the data given numerically in the table.

150 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

To solve this problem, the following commands should be inputted from the
Command Window:

>>t=1:6;
>>v=[4.1 10.2 22.1 44.3 88.6 356.9];
>>m= trapz(t,v)
m =
345.7000

4.3.4. Derivatives of Function

In numerical calculations the derivative y’(t) of the y(t) function is the function
change y between the two neighboring t points, or when the distance between
the t points is very small:

Δ

Δ
() lim

Δ
i+1 i

t
i+1 i

y - yy
y t =

t t - t
 

Figure 4.7: A graphic interpretation of a derivative.

Geometrical interpretation of this definition is the slope of the tangent to the curve
at the yi,ti – point, as shown in Fig. 4.7.

Writing Scripts and Functions Primary MATLAB® for Life Sciences: Guide for Beginners 151

According to this premise, the derivative at each i-point can be calculated as the
ratio of y- and x-differences that are computed between the i+1 and i-th points.
The MATLAB® command that calculates these differences is named diff and has
the forms:

dy=diff(y) or dy_n=diff(y,n)

where y is the vector of the y- or any other variable, e.g., t, at points i = 1, 2, …;
the n denotes the order of the difference or shows that the command should be
applied n times, for example, if n=2 the diff should be applied twice and it is the
same as diff(diff(y)); the dy and dy_n are returned vectors containing determined
values of the differences of the 1st and n-th order respectively.

The length of the dy vector is one element shorter than length of the y vector; the
length of the dy_n vector is n elements shorter than y, e.g., if vector y has 10
elements then vector dy has 9 elements, and the fourth order difference vector
dy_4 has 6 elements only.

See, for example, the insect population size p, in individuals, that growths over
time t, day, as shown in the table below.

t, day 1 2 3 4 5 6 7

p, unit 5500 7000 7750 8200 8500 8714 8875

Problem: calculate the insect population growth rate r=
dp

dt
, unit/day, and

acceleration
2

1
2 2

i ip pdr d p
a

dt dt t
  

  


.

The commands for calculating population growth rate are:

>> t=1:7;
>> p=[5500 7000 7750 8200 8500 8714 8875];
>> dt=diff(t);dp=diff(p); % t and p differences
>> r=dp./dt; % element-wise operations

152 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

>>disp(' t r'),disp([t(1:end-1)' r'])
t r
1 1500
2 750
3 450
4 300
5 214
6 161

The command that calculates the population growth acceleration is

>>a=diff(r)./diff(t(1:end-1)) % t(1:end-1) is used as r is one element shorter
a =
-750 -300 -150 -86 -53

The values of a are negative and indicate deceleration in the insect population
growth. The same results for the acceleration can be reached applying the second-
order dp differences:

>>a=diff(p,2)./diff(t(1:end-1)).^2
a =
-750 -300 -150 -86 -53

Note, that if the values in the vector t are changed with a constant step h, then it
can be used to change diff(t); for example, the latter command can be written as
a=diff(p,2)./h^2.

In the example above, the p function was defined as a table. If the function is
given by an equation, the derivatives can be determined in the same way as
tabulated data, but the step in t in this case may be smaller, that leading to more
precise values of the calculated derivatives.

For an example, we will assume that the equation p=10000-9000/(1+t) very
accurately describes the insect population data in the above table.

Problem: Calculate the population growth rate r of each half-day with the p given
by the equation above; use the fprintf function for displaying t and r values

Writing Scripts and Functions Primary MATLAB® for Life Sciences: Guide for Beginners 153

The solution is:

>> h=0.5;

>> t=1:h:7;p=10000-9000./(1+t);

>> r=diff(p)./h;

>>fprintf(' t r\n')

>>fprintf('%7.1f %7.0f\n',[t(1:end-1);r])

t r
1.0 1800

1.5 1200

2.0 857

2.5 643
3.0 500

3.5 400

4.0 327
4.5 273

5.0 231
5.5 198
6.0 171
6.5 150

When these results and the results of previous examples are compered, we see

significant deviations of the r values for the corresponding t points meaning that

there are not enough points in the table for an exact numeric determination of

derivatives. Apparently, more points are necessary to achieve a more accurate

result that can be easily realized for analytically given function.

In certain cases, the derivative should be determined at a specific point, e.g.,

population size at a specific date, reaction rate at a desired moment, etc. In this

case, the argument t (or any other argument of a solved problem) should be

assigned at one additional point after that point. Thus, if, as in the example above,

the required rate value is t=7, the points for numerical differentiation are t=7 and

t+h = 7.5, when h is 0.5.

154 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

4.4. APPLICATION EXAMPLES

4.4.1. Celsius to Fahrenheit Convertor

The expression

9
F C 32

5
 

is used for converting degrees of Celsius oC into degrees of Fahrenheit oF.

Problem: Write a script that can be used as a C-to-F converter; display the degrees
Celsius with one decimal place and the resulting degrees Fahrenheit with two
decimal places.

The script that solved the problem is:

% Centigrade to Fahrenheit convertor
C=input('Enter temperature in Celsius = ');
F=9/5*C+32;
fprintf('\nTemperature %5.1f degrees Celsius is %5.2f degrees Fahrenheit \n',F,C)

After writing these commands in the Editor Window, they are saved in the script
file under the name C2F. The user types and enters this name in the Command
Window; after the string ‘'Enter temperature in Celsius = ’ appears, the user types
and enters a temperature value in degrees Celsius. The script commands convert
the inputted Centigrade value into degrees Fahrenheit and display both inputted
and calculated temperatures with the required decimal places.

Below is an example of this script, run in the Command Window:

>> C2F
Enter temperature in Celsius = 25.5
Temperature 25.5 degrees Celsius is 77.90 degrees Fahrenheit

4.4.2. Heat Sterilization Time

Heat sterilization process (HSP) is used for the elimination of all forms of
microbial life under height temperatures. The time t required for sterilization is

Writing Scripts and Functions Primary MATLAB® for Life Sciences: Guide for Beginners 155

different for various media and as an example can be described by the exponential
equation

0.021(170)7.13e Tt  

where T is temperature in oC, t – time in sec.

Problem: write the script that calculates and displays the sterilization time at
temperatures of 110, 120, …, 200 C; present the results in graph with time as a
function of temperature T; add axis labels, a grid, and a caption to the graph.

The script solving this problem saved as the SterilTime script file is:

% Sterilization time
T=110:10:200;
t=7.13*exp(-0.021*(T-170));
disp([' Temperature',' St.time'])
disp([T',t'])
plot(T,t)
xlabel('Temperature, C'),ylabel('Time,min')
title('Sterilization time vs. Ttemperature')
grid

After typing and entering the script file name SterilTime into the Command
Window, the program displays the following numeric and graphic results:

>> SterilTime
Temperature St.time
110.0000 25.1363
120.0000 20.3751
130.0000 16.5157
140.0000 13.3874
150.0000 10.8516
160.0000 8.7961
170.0000 7.1300
180.0000 5.7795

156 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

190.0000 4.6847
200.0000 3.7974

4.4.3. Gas Volume at a Given Pressure and Temperature

A relation between volume, pressure and temperature of gas may be described
with the Redlich-Kwong equation:

 
RT a

P = -
V - b TV V +b

where P is pressure in atm, V – is volume in L/mol, T is temperature in K, R is
ideal gas constant in atm/(mol K), and a and b are gas-specific constants that can
be defined from the expressions:

0.4275

0.08664

2 5 2
c

c

c

c

R T
a =

P

RT
b =

P

where Tc and Pc are temperature and pressure at a critical point of a substance.

Problem: Write the function file that calculates the gas volume at the following
given values of the P, T, Pc, and Tc parameters: P=6 atm, T=30 C (303.15 K),
Pc=49.8 atm, and Tc=154.6 K (oxygen); universal gas constant R=0.08206

100 120 140 160 180 200
0

5

10

15

20

25

30

Temperature, C

T
im

e,
m

in

Sterilization time vs Ttemperature

Writing Scripts and Functions Primary MATLAB® for Life Sciences: Guide for Beginners 157

L·atm/(mol·K). Use the fzero function for obtaining volume V with the initial
volume value V0=22 L/mol.

When using fzero, the variable V in the expressions above should be named x and
the Redlich-Kwong equation should be rewritten as f(x)=0:

 
0

RT a
P - - =

x - b T x x+b

The function for solving this problem is:

function V=RedlichKwong(P,T,Pc,Tc)
% defining V, L/mol, from the Redlich-Kwong equation
% P - pressure, atm
% T - temperature, K
% Pc – critical point pressure, atm
% Tc - critical point temperature, K
V=fzero(@(x) myf(x,P,T,Pc,Tc),22);
function y=myf(x,P,T,Pc,Tc)
R=0.08206;
a=0.4275*R^2*Tc^(5/2)/Pc;
b=0.08664*R*Tc/Pc;
y=P-R*T/(x-b)-a/(sqrt(T)*x*(x+b));

This function should be written in the Editor Window and saved as function file
RedlichKwong.m. The function definition line (the first line of the function file)
contents the P, T, Pc, and Tc variables as input arguments, and V variable as
output.

The fzero function in written file is used in form with the P, T, Pc, and Tc pre-
assigned variables (see Subsection 4.3.2) and with the myf sub-function, that
includes these variables as input arguments.

The command for running the file and the result of the calculations are displayed
in the Command Window:

158 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

>>V=RedlichKwong(6,303.15,49.8,154.6)
V =
4.2068

4.4.4. Population Dynamics

The population of New York City between 1920 and 2010 is qiven in the
following table:

Year 1920 1940 1960 1980 2000 2010

People,
million

5.620 7.455 7.781 7.072 8.008 8.175

Problem: Write a function file with the name NY that predicts and displays the
expected population of New York in 2015. Use for prediction the interp1 function
for the prediction with these three extrapolation alternatives: 1 – linear; 2- cubic; 3
- spline.

The function definition line should include the function name NY and the input
and output arguments. The specified input arguments are: yi – the target year; and
meth_num, the number representing the chosen alternative: 1- for the linear; 2 –
for the cubic; and 3 or any other number (except 1 and 2) – for the spline. The
argument specified for output is NYi (the predicted population).

To solve this problem the function file should be written as follows:

function NYi=NY(yi,num)
% Ney York population prediction
% yi - year for prediction
% num - mehod number: 1-linear,2 - cubic, 3 - spline
y=[1920:20:2000 2010];
p=[5.620 7.455 7.781 7.072 8.008 8.175];
if num==1
method='linear';
elseif num==2
method='cubic';
else

Writing Scripts and Functions Primary MATLAB® for Life Sciences: Guide for Beginners 159

method='spline';
end
NYi=interp1(y,p,yi,method,'extrap');

The if … elseif … else … end statement is used for assigning appropriate string
('linear', 'cubic', or 'spline') to the method variable for further inputting into the
interp1 function. For example, the NY population prediction by the 'cubic' method
should be made the following command entered in the Command Window:

>>NYi=NY(2015,2)
NYi =
8.1707

4.4.5. Parallel Reactions

In these two first-order parallel reactions AB and AC, the concentration of
the main product, C, can be expressed as:

     1 22 1 e0
2 1

k k k t
C A

k k

  
     

where [A]0 is the initial reactant concentration, k1 and k2 are the reaction rate
constants in the first and the second parallel reactions respectively, and t is time.

Problem: Write a function file with name paralrtime that evaluates and displays
time t when the product C reaches the desired concentration. The initial reactant
concentration [A]0=2.5 mol/L, the product concentration [C]=1 mol/L, the
reaction rate constants k1=5·10-3 sec-1 and k2=9·10-3 sec-1 and initial (guess) time
value that is necessary for a solution using the fzero function is x0=2 seconds.

For solution, this equation should be rewritten in the form f(x)=0:

     1 22 1 e 00
2 1

k k k x
C A

k k

  
       

where x denotes searching time t.

160 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

To solve this problem, write the following in the Editor Window and save the
function file:

function t=paralrtime(A0,C,k1,k2,x0)
% time of the current main product concentration in parallel reactions, t
% Ao is initial concentration of the initial reactant A, mol/L
% C - the main product concentration, mol/L
% k1 - rate constant of the A-to-B reaction
% k2 - rate constant of the A-to-C reaction
% x0 - initial time for the fzero function
t=fzero(@(x) kinetics(x,A0,C,k1,k2),x0);
function f=kinetics(x,A0,C,k1,k2)
f=-C+A0*k2/(k2+k1)*(1-exp(-(k1+k2)*x));

The input arguments included in the function definition line are: the
concentrations [C] and [A]0, the reaction rate constants k1 and k2, and the initial
value x0; the output argument is the reaction time t.

The Command Window displays following run command together with the result:

>> t=paralrtime(2.5,1,5e-3,9e-3,2)
t =
69.5321

4.4.6. Bacterial Population Amount

The proliferation rate of a bacterial population is given as () 0.6931 20
tv t N   ,

cell/h; N0 is the initial bacterial amount in the cells, and t is the time in hours. The
amount of the bacterial population N during a specific time t can be calculated
with the expression

t

a

()N v t dt 

where a is the low integration limits; the upper integration limit t can be changed
in the time range from a to b (the final upper limits).

Writing Scripts and Functions Primary MATLAB® for Life Sciences: Guide for Beginners 161

Problem: write a script that calculates the amount of bacteria during each hour,

from 0 to 7, using the quad function and plot the graph N(t). The initial bacterial

amount N0 was equal to 10 cells. Include in the script the calculation of the

bacterial amount after 7 hours using the left Riemann sum expression:

N=t(v1+v2+…+ vn-1)

where n is the number of points in the integration interval [a,b], a and b are the

lower and upper integration limits respectively, t=(b-a)/(n-1) is the spacing of

the time points, fi is the function value at point i=1, 2, …, n-1; take n=1000.

For natural reasons, the amount of the bacterial cells should be integer; thus the
floor command should be used.

To solve the problem, use the following steps:

- Define the t vector of value from 0 to 7 with step 1;

- Organize a loop with the for…end command for the bacterial amount
N, calculated at different upper time limits; use the quad function for
integration, in which the upper integration limit repeatedly changes
from 0 to 7 with the one hour step;

- Display the results with the fprinntf command;

- Plot the graph with the plot command;

- Define the No, dx and t values to calculate the integral with the left
Rieman sum;

- Calculate N with the left Riemann sum;

- Display the results at t=7 are with the fprinntf command for Riemann
and Simpson’s sums;

The script file for solving the problem is:

162 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

% Amount of bacteria
clear, close all% clear the memory and close all preceding graphs
t=0:7; % times for integration
for i=1:length(t) % the loop for integration by the quard command
q(i)=quad('0.6931*10*2.^t',0,t(i));
end
fprintf('\n Bacterial amount\n Hour Cell\n') %title for resulting table
fprintf(' %5.0f %8.0f\n',[floor(t);q]) %displays resulting table
plot(t,q,'-o') %plot the graph
title('Bacteria amount')
xlabel('Time, h'),ylabel('Amount,cell')
grid
n =1000;a=0;b=7;dt=(b-a)/(n-1);
t=a:dt:b;
f=0.6931*10*2.^t;
N7=floor(dt*sum(f(1:end-1)));
fprintf('\nBacterial amount after 7 hours by the\n')
fprintf(' Left Riemann N=%5.0f Simpson N=%5.0f\n',N7,q(end))

Name this script BactAmount and save it as a script file. When the file is run, the
following will display in the Command Window:

>> BactAmount
Bacterial Amount

Hour Cell
0 0
1 10
2 30
3 70
4 150
5 310
6 630
7 1270

Bacterial amount after 7 hours by the
Left Riemann N= 1266 Simpson N= 1270

Writing Scripts and Functions Primary MATLAB® for Life Sciences: Guide for Beginners 163

The resulting graph is:

The left Riemann sum method of numerical integration is not as accurate as
Simpson’s method and is very sensible to number of points for integration. When
the number of points increase the difference in the N values defined by the left
Riemann and Simpson’s sums decreases; nevertheless, it is accompanied by a
significant increase in the volume of the calculations.

4.4.7. Growth Rate

A microorganism population-time data are described by the polynomial

6 4 3 210 10 10p t t  

where p is population amount and t is time in hours.

Problem: write a function file that determines numerically the growth rate
dp

v
dt


at t=4 hour; take the p vector with values defined at one step (t) longer time than
required, e.g. t= 0,t, 2t, …,4, 4+t. Plots the p(t) and v(t) curves in two
graphs in the same Figure Window and calculate for the p and v values at t= 0,
0.01, …, 4 hour.

0 2 4 6 8
0

200

400

600

800

1000

1200

1400
Bacteria amount

Time, h

A
m

ou
nt

,c
el

l

164 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

The program solving the problem is realized in the form of a function and saved
in the GrowthRate.m file. The function has the following input arguments: tstart
the starting time, h the t time step, and t_required the time point for defining the
growth rate; the output argument v_required is the variable to which defined
growth rate is assigned.

To solve this problem the following steps should be taken:

- Calculate the population vector p at t points for the entire time interval
(from tsatrt to tend with step h);

- Calculate the population growth rates as the diff(p) to h ratio and
assign results to the vector v ;

- Plot the population and growth rate values with the subplot and plot
commands; then add the commands for the axis and plot captions; to
represent p and t vectors together with the one element shorter v vector,
the p and t vectors should be shortened by the one last element.

The function file attained is:

function v_required=GrowthRate(tstart,h,t_required)
% microorganism population growth rate at the required time
% tstart - starting time
% t_required - time point for the growth rate calculation
% h - time step
tend=t_required+h;
t=tstart:h:tend;
p=1e6+1e4*t-1e3*t.^2;
v=diff(p)./h;
v_required=v(end);
subplot(2,1,1)
plot(t(1:end-1),p(1:end-1))
xlabel('Time, hour'),ylabel('p, unit')
title('Population growth'),grid
subplot(2,1,2)

Writing Scripts and Functions Primary MATLAB® for Life Sciences: Guide for Beginners 165

plot(t(1:end-1),v)
xlabel('Time, hour'),ylabel('dp/dt, unit/hour')
title('Growth rate'),grid

After running this function file the Command and Figure windows appears as
displayed below:

>>v_required=GrowthRate(0,0.01,4)
v_required =
1.9900e+003

4.5. QUESTIONS AND EXERCISES

1. The first line of the help comments of the user-defined MATLAB function
should be: (a) Define of variables to input/output; (b) The function definition; (c)
Defines the function in short; Choose the correct answer.

2. Global variables are: (a) All variables used within the function file only; (b)
Input/output arguments, written in the function definition line; (c) The variables that
are available for any function, script or interactive work. Choose the correct answer.

0 1 2 3 4
1

1.01

1.02

1.03
x 10

6

Time, hour

p,
 u

ni
t

Population growth

0 1 2 3 4
0

5000

10000

Time, hour

dp
/d

t,
 u

ni
t/

ho
ur

Growth rate

166 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

3. Which of the following written unterp1 functions should be used for the
extrapolation: (a) unterp1(x,y,xi); (b) unterp1(x,y, 'method'); (c)
interp1(x,y,x_i,'method','extrap'). Note: The variables in these commands
correspond to those indicated in Subsection 4.3.1.

4. To define t with the fzero function, the equation C=A0e
-k/t should be written: (a)

–C+A0e
-k/t = 0; (b) ln(C/A0) = -k/t; (c) No change, as it is written: C=A0e

-k/t.

5. Which of the following written commands can be used to define derivatives of
the y= sin(x) function at the x = 0, π/10, …, π: (a) dydx=diff(x); (b)
x=linspace(0,pi,11);y=sin(x);dydx=diff(y)./diff(x); (c) x=0:pi/10:pi;diff(x); (d)
answers (b) and (c) are correct; (e) None of the above.

6. The body mass index

BMI
2

G

h


relates the body weight G in kg and the height h in m; a BMI of between 20 and
25 kg/m2 is normal for humans; below 20 is considered underweight (too thin),
between 25 and 30 overweight (large); and above 30, obese (too large).

Write and save a script that asks the recipient to enter their weight and height and
then calculates and displays the BMI together with one of the next conclusions:
‘too thin’, ‘normal’, ‘large’, or ‘too large’. To display use the fprintf command

7. The basal metabolic rate:

655 9.6 1.8 4.7 , for women
BMR

66 13.7 5 6.8 , for men

w h a

w h a

  
    

is the minimal human daily energy requirement in cal/day; here w is weight in kg;
h is height in cm and a is age in years. Write and save a script in the file with the
name Ch4_7 that calculates and displays BMR using the fprintf command.

8. The component concentrations in solutions are measured in various units, such
as molarity M in mol/L, molality m in mol/kg, and molar fraction 

Writing Scripts and Functions Primary MATLAB® for Life Sciences: Guide for Beginners 167

(dimensionless, as it is the mole solute to mole solution ratio). The following
expressions are used to convert M to m and to :

1

2

Mm =
d - MM
mχ =

m + M

1000
1000

1000

where d is the solution density, g/L; M1 the molecular weight of the solute, g/mol;
and M2=18 g/mol is the molecular weight of water. Write and save a function file
that calculates and outputs solute molality and molar fraction by the inputted solute
molarity M, its molar mass M1, and the solution density d. Calculate the molality and
the molar fraction for M=3 mol/l, d=1.5·103 g/l, and M1=40g/mol (sodium
hydroxide).

9. The population of Asia is presented in the table below:

Year 1750 1800 1850 1900 1950 1999 2010

Population,
millions

502 635 809 947 1402 3634 3879

Write and save a function with the name Ch4_9 that predicts and outputs the
value estimated for 2013. For this prediction use the interp1 function, which can
be used with any of three possible extrapolation methods: linear (to enter the
number 1); cubic (for the number 2); and spline (for the number 3). Generate a
plot with a curve for the table with the data signed by the point marker, and with
the predicted value signed with the red circle marker.

10. In the ABC consecutive reaction, the concentration of reactant B can be
calculated using the expression:

   
t1 1 2e e0

2 1

k k k t
B A

k k

  
    

where t is time; [A]0 is the initial concentration of the reactant A; k1 and k2 are the rate
constants of the AB and BC reactions respectively. Write and save a function

168 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

file that uses the fzero command to evaluate and display the time t during which the
intermediate reactant B breaks down to the current concentration. Use the following
data as input arguments: [B]=0.012 mol/l, [A]0=2.3 mol/l, k1 = 2.6·10-3 sec-1,
k2=9.5·10-3 sec-1, and initial (guess) time value is 3 sec.

11. The decay rate of a compound is expressed as

2.30.69e tv  

where t is time in h, and v - in mol/h. The amount m of the compound after time t
is:

0

0

t

m = m + v(t)dt

where m0=0.3 mol is the initial amount of the compound. Write a script that
calculates the amount of the compound each quarter of an hour over 2.5 hours.
Use the quad function to calculate the integral. Using the fprinntf command,
display a table comprising two columns, with inputted times and calculated
compound amounts. Plot a m(t) graph.

12. Solve the integral (see Subsection 3.4.6)

t

a

0.6931 2 0
tN N dt  

with the Simpson sum using the quad command and with the right Riemann sum
with the equation:

N= t(f2+f3+…+ fn)

where t is time in hours, N0 is the initial bacterial amount in cells, t is the spacing
of the time points and fi is the integrand value at point i=2, 3, …, n, n= 3000.
Write and save a function with a, b, n, and N0 as input arguments and with
bacterial amounts calculated by Simpson’s and Riemann rules as output
arguments.

Writing Scripts and Functions Primary MATLAB® for Life Sciences: Guide for Beginners 169

Note: The outputted bacterial amount values should be integers.

13. Calculate the reaction rate r=
dm

dt
 for species that dissociates according to

the equation

e0
-ktm = m

where m0 and m are the species amounts at starting and at time t respectively, and k
is the dissociation constant. Write and save a function that displays the r at t= 0,
0.25, …, 2 min, k=1.8 min-1, m0 = 5 mg, and plots the m(t) and r(t) curves in the
same graph. Write the function without output arguments and with the following
input arguments: m0- the species amount at starting time; k – the reaction constant;
tstart – the starting time; tend – the end time; and h – the time step. Using the
fprintf command, display the t and r values with 2 and 5 decimal digits respectively.

4.6. ANSWERS TO SELECTED QUESTIONS AND EXCERCISES.

2. (c) the variables that are available for any function, script or interactive work.

4. (a) –C+A0e
-k/t = 0.

7.

>> Ch4_7
Enter the sex: 1 - male, 2 - female 2
Enter your weight in kg 78
Enter your height in m 1.71
Enter your age in years 50
Your BMP is 1171.9 cal/day

9.

>>Asia_Population=Ch4_9(2013,1)
Asia_Population =
3.9458e+03

170 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

11.

>> Ch4_11
Compound amount
Hour Mole
0.50 0.09499
0.75 0.05345
1.00 0.03008
1.25 0.01692
1.50 0.00952
1.75 0.00536
2.00 0.00302
2.25 0.00170
2.50 0.00095

1750 1800 1850 1900 1950 2000 2050
500

1000

1500

2000

2500

3000

3500

4000
Asia population prediction

Year

P
eo

pl
e,

 m
ill

io
n

Original data

Predicted value

Writing Scripts and Functions Primary MATLAB® for Life Sciences: Guide for Beginners 171

13.

>> Ch4_13(5,1.8,0,2,.2)
t r

0 7.5581
0.2000 5.2731
0.4000 3.6789
0.6000 2.5667
0.8000 1.7907
1.0000 1.2493
1.2000 0.8716
1.4000 0.6081
1.6000 0.4243
1.8000 0.2960

0.5 1 1.5 2 2.5
0

0.02

0.04

0.06

0.08

0.1
Compound decay

Time, h

M
as

sa
,

m
ol

172 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

0 0.5 1 1.5
0

1

2

3

4

5

6

7

time

m
 a

nd
 d

m
/d

t

Species Dissociation and Dissociation Rate

Function m(t)

Dissociation Rate dm/dt

 Primary MATLAB® for Life Sciences: Guide for Beginners, 2013, 173-204 173

Leonid Burstein
All rights reserved-© 2013 Bentham Science Publishers

CHAPTER 5

Ordinary Differential Equations and Tools for Their Solution

Abstract: Specific ordinary differential equations and the ODE solver are briefly

presented together with examples for bio-systems that can be represented by differential

equations, one or a set. The solutions are demonstrated for the bio-molecular reaction,

the predator-prey model, the drug dissolution, the batch reactor, etc. The questions and

life-science problems together with answers to some of them are given in conclusion.

Keywords: Ordinary differential equations, ODE solvers, solution steps, bio-

molecular reaction, predator-prey, drug dissolution, batch reactor.

INTRODUCTION

Differential equations with one independent variable are one of the main

mathematical tools used in technology and the sciences, particularly in the life

sciences. These equations, called ordinary differential equations (ODE), are applied

to simulate and analyze a variety of processes and phenomena in the environmental

sciences, earth and atmospheric sciences, ecology, biology, bio-kinetics, medicine,

epidemiology, pharmacology, genetics, and other biosciences. In many cases, these

equations have no exact analytical solution and are solved by a number of

computerized numerical methods [7, 12]. There are a number of such methods and

MATLAB® provides a number of special functions, called as ODE solvers, which

implement these methods, permitting a solution for ordinal differential equations.

This chapter provides descriptions of these solvers together with examples from the

biosciences; herewith, a basic familiarity with ODE is assumed.

5.1. SOLVING ORDINARY DIFFERENTIAL EQUATIONS WITH ODE
SOLVERS

A single set or sets of ordinary differential equations can be solved if the

equations are presented in the form of first-order ODEs:

Send Orders for Reprints to reprints@benthamscience.net

174 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

where t is the independent variable and y1, y2, …, yn are the dependent variables; n

is the number of ODEs; any other variable can be used instead of t, for example,

the variable x.

To solve high-order ODEs, they should be reduced to the first order equations, for

example:

- The equation can be rewritten as two

first-order equations  1 2
2 2 1, cos

dy y b c
y y y t

t t a a


    

 


- The equation can be rewritten as three

first-order ODEs: .

However, as first order ODEs are the most common problems in the practical life

sciences, solutions for these equations are discussed in depth.

Unfortunately, there is no universal method for numerical solutions of ODEs; to

solve an actual ODE, a number of solvers realizing different methods are used.

The available solvers, the numerical method they utilize, and sort of differential

equation that can be solved with each solver, are presented in Table 5.1.

1 (, , ,...,)1 1 2

...

(, , ,...,)1 2

dy
f t y y yndt

dyn f t y y yn ndt





2
cos()

2

d y dy
a b cy t

dt dt
     
 

22

2

3
sin()

3

d y d y
y x

dx dx

  
     
   

 231 2
2 3 3 1, , sin()

dydy dy
y y y y x

dx dx dx
     

Ordinary Differential Equations and Tools Primary MATLAB® for Life Sciences: Guide for Beginners 175

Table 5.1: ODE solvers, Their Assignments, and Their Associated Numerical Methods1.

Solver
Name

Numerical Method Sort of Problem Assignment

ode45 Explicit Runge-Kutta
method

Nonstiff differential
equations

Use first when the solver is
unknown; suitable for nonstiff
equations

ode23 Explicit Runge-Kutta
method

Nonstiff differential
equations

For nonstiff and moderately stiff
problems.
While often quicker, but less precise
than ode45

ode113 Adams' method Nonstiff differential
equations

For problems with stringent error
tolerances or for solving
computationally intensive problems

ode15s Numerical
differentiation formulas,
NDFs (backward
differentiation formulas,
BDFs)

Stiff differential equations
and differential algebraic
equations, DAEs

For stiff problems when ode45 is
slow. Try first when you do not
know which solver is suitable to
your stiff equation.

ode23s Rosenbrock's method Stiff differential equations For stiff problem when ode15s is
slow

ode23t Trapezoidal rule Moderately stiff
differential- and
differential algebraic
equations, DAEs

For moderately stiff problems

ode23tb Trapezoidal rule/second
order backward
differentiation
formula,TR/BDF2

Stiff differential equations For stiff problems, sometimes more
effective than ode15s

ode15i Backward differentiation
formulas, BDFs

Fully implicit differential
equations

For any ODEs given in implicit
form

f(t, y,)=0

All the solvers presented are solved ODEs with the given initial value of the

function; for example, function value y=0 at time t=0 for an actual

equation. The ODE solution with the initial value belongs to what is called the
initial-value problem (IVP), with the initial value is called the initial condition.
An ODE solution with two boundary values specified at opposite ends of the
range is called a two-point boundary value problem (BVP). Only IVP equations
will be studied, as the BVP equations are beyond the scope of this book.

1The table is from the author’s book [2]; with the permission of Biohealthcare Publishing (Oxford) Limited.

dy

dt

(,)
dy

f t y
dt



176 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

5.2. NUMERICAL METHODS AND TYPES OF PROBLEMS THAT CAN
BE SOLVED WITH THE ODE SOLVER

The primary method for solving ODE equations is in replacing the derivatives by

finite differences according to the equation: . In this

equation, the argument and function differences, Δt and Δy, are very small, but
finite (non-zero); i is the point in the argument range [a,b]. By knowing the initial
y0 value at t0 and calculating the derivative at this point by the solving equation

, we can determine the y1 value at the second t-point as

. Now, by calculating by the defined

values, we can determine and repeat this process to the end

of the t- range, so that each function value in the range is defined. This solution
method, originally realized by Euler, is called the method of finite differences. It
was, and is still used today with improvements and complications, for example, in
more advanced methods such as Runge-Kutta, Adams, Rosenbrock, etc.

ODE solvers can solve three kinds of problems – non-stiff, stiff, and fully explicit.
There is no one rigorous criterion for defining stiffness in the two first categories of
the ODEs. When we solve an equation that contains terms that lead to jumps in the
function, or holes, ruptures, or other singularities resulting in a divergence of the
numerical solution, even when size steps are very small, then this ODE type is
known as stiff. In contrast, non-stiff ODEs are characterized by a stable convergence
solution. Unfortunately, it is impossible to define the stiff category of equations and
to determine in advance what ODE solver is suitable. In cases when solving the
ODE that simulates a real phenomenon, it can be helpful to use the needed ODE
solver. For example, fast chemical reactions, explosions, volatile processes, etc.
should be described with stiff ODEs and the appropriate ODE solvers are used (see
Table 5.1). Sometimes, as a criterion of the stiffness, the ratio of the maximal and
minimal coefficients of the ODE is used; when this ratio is larger than 1000 the
problem is categorized as stiff. This criterion is not always correct, however, and it is
therefore hard to determine in advance what ODE solver to use.

1

0
1

lim i i

t
i i

y ydy y

dt t t t


 



 

 

0 0
0

(,)
dy

f t y
dt



 1 0 1 0
0

dy
y y t t

dt
   1 1

1

(,)
dy

f t y
dt

 1 1,t y

 2 1 2 1
1

dy
y y t t

dt
  

Ordinary Differential Equations and Tools Primary MATLAB® for Life Sciences: Guide for Beginners 177

Note: If the category of the solving ODE is unknown, it is recommended to use
the ode45 solver first followed by the ode15s solver.

For the third sort of ODEs, for equations represented in the implicit form,

, that cannot be transformed to the explicit form, , the

ode15i solver should be used. The implicit form is rarely found in the bio-
sciences and there is no need to discuss it further.

5.3. THE SIMPLEST FORM OF ODE SOLVER COMMANDS AND STEPS
FOR SOLUTION

All ODE commands, except the ode15i, have an identical form that in the
simplest case is:

[t,y]=odeNN(@ode_fun,t_range,y0)

where:

 Argument t is the output vector of t-points at which the y-values were
calculated;

 y is the output vector with calculated function values that were
calculated by the solver for the ODE; when more than one ODEs y is
a matrix in which the first column is y1 values, the second column is
y2, etc.;

 The odeNN is one of the solver names, e.g., ode45 or ode15s and
the @ode_fun is the function or function file name where the
differential equations are written. The line with the function definition
should be:

function dy=function_name(t,y)

In the lines added below this function definition, the first-order differential
equation/s must be presented in the form

dy=[right side of the first ODE; right side of the second ODE; …];

(, ,) 0
dy

f t y
dt

 (,)
dy

f t y
dt



178 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

 t_range specifies the integration interval, e.g., [1 14] defines a t-
interval from 1 to 14; this vector can be written with more than two
values. This is for cases when we want to display a solution at point
values written in this vector, e.g., [1:3:10 14] means that the results of
a solution lie in the t-range of 1…14 and will be displayed at t-values
of 1, 4, 7, 10, and 14. The values given within the t_range affect the
output, but not the step that ensures the tolerance, so that the resulting
y- values are computed with a default absolute tolerance of 0.000001.

 y0 is a vector with values of y-functions at the initial t-point; in other
words, when this vector contains the initial conditions, for the set of
two first-order differential equations with the initial function values
y1=0 and y2=4, this vector is y0=[0 4]; vector y0 can also be given also
as a column, e.g., y0=[0;4].

Note: The odeNN commands can be used without the output parameters t and y;
in this case, a plot automatically appears with the obtained y(t) solution.

The Sequence of Steps for Solving an ODE

First present the equation in the form:

with the initial condition

This and the next steps are demonstrated by an example of the rate equation
solution of a bimolecular reaction A+B → C:

x is the amount of the product C at time t and k is the reaction rate constant; a and

b are the initial amounts of the A and B reactants. For an example, k=0.007 sec-1,

(,), ,
dy

f t y a t b
dt

  

 at 0 0y = y t = t

  dx
k a x b x

dt
  

Ordinary Differential Equations and Tools Primary MATLAB® for Life Sciences: Guide for Beginners 179

a= 2 and b=3 mol, the reaction time range is 0 … 10 min, and the initial amount

of the product at the beginning of the reaction is 0 mol.

For a numerical solution using one of the ODE solvers, this equation should be

rewritten as:

where x, amount of C, is signed now by y.

Second, create the function files containing the used-defined function with the
solving equation. The definition line of this function must include input

arguments t and y and the output argument dy denoting , the left side of the

ODE. In the next lines, write the ODE/s as a vector of right-hand parts of
equation/s with the ; (semicolon) sign between them. Type the commands in the
Editor Window and then save with a name given in the definition line.

In our example, such a function is

function dy=myfirstODE(t,y)
dy=[0.007*(2-y).*(3-y)];

This function should be saved in the m-file with the name myfirstODE.

Note:

 In cases when the t- argument is absent in the right part of the
differential equation, the character ~ (tilde) can be written instead and
the function definition line may appear as: function
dy=myfirstODE(~,y).

 In cases when there is a set of ODEs, the right parts of these equations
can be written on separate lines of the dy vector, e.g., two ODEs

  dy
k a y b y

dt
  

dy

dt

180 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

can be written as

dy=[y(2) -0.2*y(2)+0.03y(1)+cos(omega*t)]

instead of

dy=[y(2); -0.2*y(2)+0.03y(1)+cos(omega*t)]

In the final step, the stiffness of the ODE should be assumed together with the

necessery numerical method of the solution; then, the corresponding ODE solver

should be chosen from Table 5.1. For our example, when specific

recommendations about appropriate methods are absent, the ode45 solver should

be selected. Type and enter the following comman in the Command Window:

>> [t,y]=ode15s(@myfirstODE,[0:100:600],0) % t=0…600 sec, step 100; y0=0
t =

0
100
200
300
400
500
600

y =
0

1.5046
1.8030
1.9110
1.9589
1.9803
1.9906

1
2

2
2 10.2 0.03 cos()

dy
y

dt
dy

y y t
dt



    

Ordinary Differential Equations and Tools Primary MATLAB® for Life Sciences: Guide for Beginners 181

The process starts with initial value of y=0 mol at t=0; the final time of the
process is assumed as t=10·60=600 sec; the step of time for displaying results was
chosen as 100 sec; thus, the vector of the time span, t_range, was inputted as
0:100:600.

Given commands yield the resulting numbers but do not generate the plot. To
plot, use the plot command; however achieved seven t,y-points are insufficient to
generate a smoothed curve. To produce both results - the numbers t,y and their
plot – input t_range with the start and final t-values. In this case, the default t-
steps values will be chosen automatically and the point number will be sufficient
to generate a smoothed y(t) plot; the commands that should be entered for this
target are:

>> [t,y]=ode45(@myfirstODE,[0 600], 0); % t=0 …600 s with default step
>> plot(t,y)
>> xlabel('Time, sec'),ylabel('Amount of C, mol')
>> title('Solution of the second order reaction rate equation')
>> grid

The generated plot is:

Figure 5.1: The solution of ODE to the second-order reaction: A+B→C; product C, amount
change.

0 100 200 300 400 500 600
0

0.5

1

1.5

2

Time, sec

A
m

ou
nt

 o
f

C
,

m
ol

Solution of the second order reaction rate equation

182 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

In the described solution, parts of commands were written and saved in the
myfirstODE function file, and parts of commands, the ODE45 and the plot and
plot formatting, were written in the Command Window. In order to create a single
program that includes all these commands a function file should be written. For
the example, this file, named SecOrdReaction, reads as follows:

function t_A=SecOrdReaction(ts,tf,y0)
% Solution of the ODE for second order reaction rate
% t – time, sec; y – amount of the C-product, mol
% t_range=[ts tf], sec;y0=0, mol;
% To run:>> t_A=SecOrdReaction(0,600,0)
close all % closes all previously plotted figures
t_range=[ts,tf];
[t,y]=ode45(@myfirstODE,t_range,y0);
plot(t,y)
xlabel('Time, sec'),ylabel('Amount of C, mol')
title('Solution of the second order reaction rate equation')
grid
t_A=[t y];
function dy=myfirstODE(~,y)
dy=[0.007*(2-y)*(3-y)];

To run this file, input following command in the Command Window:

>>t_A=SecOrdReaction(0,600,0)

After entering the command, the t and y values are displayed in two columns,
each having 69 rows (not listed here for reasons of space), and the graph (see Fig.
5.1) with the C product amount as a function of time, is also plotted.

5.4. SOME ADDITIONAL FORMS OF THE ODE SOLVER COMMANDS

When the ODE includes parameters such as the reaction rate constant and the
reagent amounts, discussed in the previously example, and it is necessary to pass
them to the function containing the differential equation, a more complicated
odeNN form is necessary:

Ordinary Differential Equations and Tools Primary MATLAB® for Life Sciences: Guide for Beginners 183

[t,y]=odeNN(@ode_fun,t_range,y0,[],arg_name1,arg_name2,…)

where [] denotes an empty vector. In general, this is the location for various
integration and display control options2; when this vector is empty, the default
values are used. In most cases, a satisfactory solution is obtained, and it is
unnecessary to use these options. arg_name1, arg_name2, … are the names of
the arguments that it is our intention to transmit to the ode_fun function.

The parameters named in the odeNN solver command should be written into the
function containing the ODE with these parameters.

In the previous example, the k, a, and b coefficients in the SecOrdReaction
function can be introduced as arguments:

function t_A=SecOrdReaction(k,a,b,ts,tf,y0)
% Solution of the ODE for second order reaction rate
% t – time, sec; y – amount of the C-reactant, mol
% % tspan=[ts tf],ts=0,sec tf=600,sec; y0=0, mole;
% To run: >> t_A=SecOrdReaction(0.007,2,3,0,600,0)
close all % closes all previously plotted figures
t_range =[ts,tf];
[t,y]=ode45(@myfirstODE, t_range, y0,[],k,a,b);
plot(t,y)
xlabel('Time, sec'),ylabel('Amount of A, mol')
title('Solution of the second order reaction rate equation')
grid
t_A=[t y];
function dy=myfirstODE (~,y,k,a,b)
dy=[k*(a-y).*(b-y)];

Type and enter the following command in the Command Window:

>> t_A=SecOrdReaction2(0.007,2,3,0,600,0)

The results are identical to those discussed in Subsection 5.3.

2For more details, type and enter help odeset in the Command Window.

184 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

This form, with additional arguments, is more advanced and has more versatility,
e.g., the SecOrdReaction function with the k, a, and b arguments can be used
for second-order reaction with varies reactant amounts and different reaction-rate
constants.

In forms discussed above, the ODE solver was used with the function written in a
separate file or in a sub-function of the general function file. There is an option to
include the ODE directly in the odeNN solver command; the general command
form is:

[t,y]=odeNN(@(t,y) ode_fun(t,y, arg_name1,arg_name2,…),t_range,y0)

where @ (t,y) ode_fun(t,y, arg_name1,arg_name2,…) is a function
containing the right part of the ODE with the additional arguments
arg_name1,arg_name2,…that should be assigned beforehand (see Chapter 4,
Section 4.3.2); in this case, the ode_fun function can be written directly into the
odeNN solver command.

This form permits the creation of a program with less restrictions than the
previous cases. This command, with the included ODE, can be written and saved
in a function or script file or printed directly in the Command Window. To realize
the latter possibility, write the following commands in the Command Window.

>>t_range =[0,10,50,100,600];k=0.007;a=2;b=3;
>>[t,y]=ode45(@(t,y) k*(a-y).*(b-y), t_range, 0)
t =

0
10
50
100
600

y =
0

0.3573
1.1139
1.5051
1.9899

Ordinary Differential Equations and Tools Primary MATLAB® for Life Sciences: Guide for Beginners 185

The results are displayed here at five arbitrary time points t=0, 10, 50, 100, and
600 sec.

5.5. APPLICATION EXAMPLES

In the examples below all the programs are written for the most part in the form of
a function. In general, the first help line of the function should describe in brief
the purpose of the function and the subsequent lines should explain the input and
output parameters of the function as described in the preceding chapter. In order
to reduce their numbers, the help line is written as a single line containing a
command that should be inputted into the Command Window to run the function.

5.5.1. Predator-Prey Model

In many life-science areas where one organism (plant, animal, individual) eats
another organism the predator-prey model is widely used. Mathematical equations
describing these phenomena were originally developed by V. Volterra and A. J.
Lotka at the beginning of the previous century. The model includes two
differential equations for the velocities of the predator and prey population
changes. Prey survival, death, and proliferation decline due to crowding, and
predator survival and death rates are described in this model by the following set
of equations:

where x and y are the populations of the prey and the predators, k1 and k3 are the
survival factors of the prey and predator populations, k2 and k4 are the death
factors for each of the populations and k5 is the prey crowding factor.

Problem: Solve these equations and plot x(t) and y(t) curves. Use k1=1.011 1/year,
k2=1.002 1/year, k3=-0.999 1/year, k4=1.006 1/year, k5=0.101 1/year, the time
interval 0 … 20 years, and initial prey and predator populations x0=3 and y0=3 in
thousands. In addition generate the phase plane grapg, x versus y.

2
51 2

3 4

dx
k x k xy k x

dt
dy

k y k xy
dt

  

 

186 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

First represent the sets of these ODEs in the form suitable for the ODE solvers:

Then select the suitable ODE solver. Since there is no specific information about

the stiffness of the solving equations, the ode45 solver should be selected.

The final step is to create a function file with the ODE solver and the sub-function

containing the set of ODEs. The PredatorPrey function that solves the problem is:

function PredatorPrey(k1,k2,k3,k4,k5,ts,tf,x0,y0)

% >> PredatorPrey(1.011,1.002,-.999,1.006,.101,0,20,3,3)

close all

tspan=[ts,tf];

[t,y]=ode45(@PPM,tspan,[x0;y0],[],k1,k2,k3,k4,k5);

subplot(1,2,1)

plot(t,y)

axis square

xlabel('Time, year'),ylabel('Amount of x and y species, thousand')

title('Prey and predator amounts')

legend('Prey','Predator')

grid

subplot(1,2,2)

plot(y(:,1),y(:,2))

axis square

xlabel('Prey'),ylabel('Predator')

title('Phase plane')

grid

function dy=PPM(t,y,k1,k2,k3,k4,k5)

21
51 1 2 1 2 1

2
3 1 4 1 2

dy
k y k y y k y

dt
dy

k y k y y
dt

  

 

Ordinary Differential Equations and Tools Primary MATLAB® for Life Sciences: Guide for Beginners 187

dy=[k1*y(1)-k2*y(1)*y(2)-k5*y(1)^2

-k3*y(2)+k4*y(1)*y(2)];

This function is written as a function without output arguments. The input

arguments k1, k2, k3, k4, k5 are the same as the k1, k2, k3, k4, and k5 in the

original set; ts, and tf are the start and the end times used by the ode45 in the

t_range vector; x0 and y0 are the initial populations of the prey and predator

respectively. The solving-equations set is contained in the PredatorPrey-function

within the sub-function called PPM. For a more aesthetic plot, the axis square

command is used.

To run this function, type and enter the following command in the Command

Window:

>>PredatorPrey(1.011,1.002,-0.999,1.006,0.101,0,20,3,3)

After this the following graphs will be generated:

5.5.2. Subsequent Reaction

The rate equation set for the subsequent A→B→C reaction is

188 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

where [A], [B], and [C] are concentrations of the A and B reactants and the C
product respectively and k1 and k2 is the rate constants of the A→B and B→C
reactions respectively.

Problem: Solve the set of ODEs in the time range 0 …4 min with the initial
[A]=2.5, [B]=0, and [P]=0, in mol/L and the reaction rate constants: k1=2, and
k2=6, in min-1. Plot the component amounts as functions of time and display the
obtained data.

First represent the set of equations in the form required by the ODE solver:

where [A], [B], and [C] are denoted as y1, y2, and y3 respectively; the time range is
0≤t≤4, the rate constants are k1=2, k2=6 and the initial y values are y1=2.5, y2=0,
and y3=0.

Then, select the appropriate solver. In the absence of considerations regarding the
stiffness of the equations, the ode45 solver should be used.

The final step is to write the commands that solved the problem. The
SubsequentReaction function, which was created for this purpose is:

function t_A_B_C=SubsequentReaction(k1,k2,ts,tf,A0,B0,C0)

[]
[]1

[]
[] []1 2

[]
[]2

d A
k A

dt
d B

k A k B
dt

d C
k B

dt

 

 



1
1 1

2
1 1 2 2

3
2 3

dy
k y

dt
dy

k y k y
dt

dy
k y

dt

 

 



Ordinary Differential Equations and Tools Primary MATLAB® for Life Sciences: Guide for Beginners 189

% To run >>t_A_B_C=SubsequentReaction(2,6,0,6,2.5,0,0)
t_range=[ts tf];
[t,y]=ode45(@SR,t_range,[A0,B0,C0],[],k1,k2);
plot(t,y);
title('Subsequent reaction A->B->C')
xlabel('Time, min'),ylabel('A, B, C amounts, mol')
legend('A','B','C')
grid
t_disp=[ts.5 1:tf];% times for displaying
y_disp=interp1(t,y,t_disp,'spline');% y for displaying
t_A_B_C=[t_disp' y_disp];
function dy=SR(~,y,k1,k2)
dy=[-k1*y(1);
k1*y(1)-k2*y(2);
k2*y(2)];

The k1, kr1, k2, A0, B0, C0 is the input arguments that correspond to k1, k2, [A]0,
[B]0, and [C]0 in the original set; the ts and tf arguments represent start and final
time values intended for the t_range vector. The t_A_B_C output argument is a
matrix with the time and the A, B and C component amounts. To reduce the
number of displayed data, the y values are outputted at the ts, 0.5, 1, 2, …, and tf
time values, the vector of these values called t_disp; for y-calculations at these t
points, the interp1 command and their ‘spline’ option is used.

The following command should be typed and entered in the in the Command
Window to run the function, display the results and generate a graph:

>> t_A_B_C=SubsequentReaction(2,6,0,6,2.5,0,0)
t_A_B_C =

0 2.5000 0 0
0.5000 0.9197 0.3977 1.1826
1.0000 0.3383 0.1661 1.9956
2.0000 0.0458 0.0229 2.4313
3.0000 0.0062 0.0031 2.4907
4.0000 0.0008 0.0004 2.4987

190 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

5.0000 0.0001 0.0001 2.4998
6.0000 0.0000 0.0000 2.5000

5.5.3. Drug Dissolution

In common pharmacology models, particularly in pharmacokinetics, the
dissolution rates of a drug in the digestive system (DS) and in the blood are
described correspondingly by the following set of two Noyes-Whitney type
equations:

where x and y are the drug amounts in the DS and in the blood respectively; a and
b are the half-life of the drug in the DS and in the blood respectively; D(t) is the
dosing function. It is assumed that:

- The problem is stiff;

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5
Sebsequent reaction A->B->C

Time, min

A
,

B
,

C
 a

m
ou

nt
s,

 m
ol

/L

A

B
C

()
dx

ax D t
dt
dy

ax by
dt

  

 

Ordinary Differential Equations and Tools Primary MATLAB® for Life Sciences: Guide for Beginners 191

- A drug dissolves within one half-hour and is taken every six hours,
and the dosing function is:

where D is in mg, the ‘floor’ is the math function name that denotes rounding
towards minus infinity.

Problem: Solve the set of ODEs and plot the resulting x(t) and y(t) curves. The a
and b coefficients are 1.38 h-1 and 0.138 h-1 respectively. The initial drug amounts
in the DS and in the blood equal zero. Desired time values for the displaying of
the results are 0, 0.15, 0.3, 0.6, 0.9, 1, 1.5, 2, 2.5, 3, 4, 5 and 6 hours.

First, represent the set of equations in the form required by the ODE solver:

where D is described by the above equation, which does not require any changes
in its form.

Then, select the ode15s solver as the problem under study is stiff.

To solve this problem use the following commands:

function t_DS_Blood=DrugDissolution(a,b,ts,tf,x0,y0)
% To run: >> t_DI_Blood=DrugDissolution(1.38,0.138,0,6,0,0)
close all
t_range=[ts:0.15:0.9,1:0.5:2.5,3:tf];
[t,y]=ode15s(@Drug,t_range,[x0;y0],[],a,b);
t_plot=linspace(ts,tf);
y_plot=interp1(t,y,t_plot,'spline');
plot(t_plot,y_plot)

4, 6 floor(/6)<0.5

0, otherwise

t t
D

 
 


1
1

2
1 2

dy
ay D

dt
dy

ay by
dt

  

 

192 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

xlabel('Time, hour'),ylabel('X and Y concentrations, mg')
title('Drug concentrations in the DS and Blood')
legend('DS','Blood')
grid
t_DS_Blood=[t,y];
function dy=Drug(t,y,a,b)
if t-6*floor(t/6)<0.5
D=4;
else
D=0;
end
dy=[-a*y(1)+D;a*y(1)-b*y(2)];

The a, b, x0, and y0 are the input arguments for the DrugDissolution function;
they correspond respectively to the a and b coefficients and to the start drug
amounts in DS, x, and in blood, y, in the original set; the ts and tf input arguments
represent start and final time values intended for the t_range vector. The
t_GS_Blood is an output matrix with the time and component amounts calculated
at the desired time points that are given in the t_range vector. The generation of
a plot with two smooth curves requires the greatest number of t,y1 and t,y2 points.
To do this, the linespace and the interp1 command are used; the latter command
includes the ‘spline’ argument.

To run this function and achieve the desired results, type and enter the following
command in the Command Window:

>> t_GI_Blood=DrugDissolution(1.38,0.138,0,6,0,0)

After running this function in the Command Window, the following results are
displayed and plotted:

t_GI_Blood =
0 0 0

0.1500 0.5420 0.0576
0.3000 0.9826 0.2143

Ordinary Differential Equations and Tools Primary MATLAB® for Life Sciences: Guide for Beginners 193

0.4500 1.3409 0.4493
0.6000 1.2538 0.7190
0.7500 1.0191 0.9365
0.9000 0.8285 1.1058
1.0000 0.7219 1.1966
1.5000 0.3630 1.4621
2.0000 0.1822 1.5386
2.5000 0.0915 1.5233
3.0000 0.0460 1.4656
4.0000 0.0116 1.3083
5.0000 0.0029 1.1476
6.0000 0.0007 1.0017

5.5.4. Batch Reactor

In industry, various batch reactors are used to produce new products as a result of
reactions of the initial reactants and catalysts. Assume the processes in a batch
reactor are described by the following set of ordinary differential equations:

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time, hour

X
 a

nd
 Y

 c
on

ce
nt

ra
tio

ns
,

m
g

Drug concentrations in the DS and Blood

DS

Blood

194 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

where [A]. [P], [U] are the amounts of the species of the reactant A, the desired
product P and the undesired product U respectively; the basic reactions that take
place are AP and A+AU having the k1 and k2 reaction-rate constants
respectively.

Problem: Solve these equations, display the results and plot the [A](t), [P](t) and
[U](t) curves in the time interval 0 … 2. Use time values equal to 0, 0.1, 0.2, 0.3,
0.4, 0.6, 0.8, 1, 1.5, 2; the rate constant k1=2 is for the first reaction and k2=1 is for
the second. The initial amounts of the reagents are [A]0=2 and [P]0=[U]0=0. All
values are given here in arbitrary units; the time points are selected to display a
small number of the t-points and to obtain and generate a plot having curves that
are as smooth as possible.

First, transmit the set of differential equations to the form required by the ODE
solvers:

Since there is no specific information concerning the stiffness of the ODE set, the
ode45 solver should be used.

To solve this problem create a function file:

function t_A_P_U=BatchReactor(k1,k2,ts,tf,A0,P0,U0)

2
1 2

1

2
2

[]
[] []

[]
[]

[]

d A
k A k A

dt
d P

k A
dt

d U
k A

dt

  





21
1 1 2 1

2
1 1

23
2 1

dy
k y k y

dt
dy

k y
dt

dy
k y

dt

  





Ordinary Differential Equations and Tools Primary MATLAB® for Life Sciences: Guide for Beginners 195

% To run: >> t_A_P_U=BatchReactor(2,1,0,0.3,2,0,0)
close all
t_range=[ts:.1:.4 0.6 0.8 1 1.5 tf];
[t,y]=ode45(@BR, t_range,[A0,P0,U0],[],k1,k2);
plot(t,y)
xlabel('Time'),ylabel('A, P, U -species amount')
title('Isotermal Batch Reactor')
legend('A','P','U')
grid
t_A_P_U=[t,y];
function dy=BR(~,y,k1,k2)
dy=[-k1*y(1)-k2*y(1)^2;k1*y(1);k2*y(1)^2];

The input arguments: k1, k2, and A0,P0,U0 are respectively the same as the k1,
k2, and y1, y2, and y3 values at t=0 in the original set; the t_range is a two-element
vector with starting, ts, and end, tf, time values. The t_A_P_U output argument is
a three-column matrix with the time, reagent amount values, and the amounts of
the desired and undesired products.

After running this function in the Command Window the following results are
displayed and plotted:

>>t_A_P_U=BatchReactor(2,1,0,2,2,0,0)
t_A_P_U =

0 2.0000 0 0
0.1000 1.3862 0.3332 0.2806
0.2000 1.0082 0.5699 0.4219
0.3000 0.7565 0.7448 0.4987
0.4000 0.5796 0.8774 0.5430
0.6000 0.3547 1.0599 0.5854
0.8000 0.2246 1.1736 0.6018
1.0000 0.1452 1.2463 0.6085
1.5000 0.0511 1.3360 0.6129
2.0000 0.0185 1.3681 0.6134

196 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

5.6. QUESTIONS AND EXCERCISES

1. When the stiffness of a differential equation is unknown, which ODE
solvers are recommended to solve the problem? Choose the correct
answer: a) ode23 first and then ode23t; b) ode45 first and then
ode15s; c) ode15s first and then ode45; d) ode113 and ode15s.

Which ODE solvers should be selected for a nonstiff differential
equation? a) ode23tb, b) ode15i, c) ode45, d) ode113.

2. To specify the interval for a differential equation solution, the t_range
vector of an ODE solver should contain: a) The single starting point
value; b) Two values only, the starting and end points; c) The starting
point, the desired values within the interval and the end points, d) the
answers (a) and (c) are correct, e) the answers (b) and (c) are correct.

3. To solve a set of two ODEs, the y0 vector in the ODE solver should
include: a) The y value for the first ODE only; b) The y values of each
of the ODEs at the initial point; c) The t values at the starting points
for each of the ODEs.

0 0.5 1 1.5 2
0

0.5

1

1.5

2

Time

A
,

P
,

U
 -

sp
ec

ie
s

am
ou

nt

Isotermal Batch Reactor

A

P
U

Ordinary Differential Equations and Tools Primary MATLAB® for Life Sciences: Guide for Beginners 197

4. What occurs when the ODE solver command is written without output
arguments: a) An error message appears in the Command Window; b)
the Figure Window automatically appears with a plot of the obtained
solution; c) The obtained solution values automatically appear in the
Command Window.

5. The enzyme-catalyzed reactions E+S ESE+P are described by L.
Michaelis and M. Menten using the following set of ordinary
differential equations:

where the [] brackets denote the amounts of substrate S, the free
enzyme E, the substrate-bound enzyme ES, and the product P; k1 and
k1r are the direct and reverse rate constants in the E+S ES reaction
and k2 is the rate constant of the ESP reaction. Create a user-defined
function to solve the set of ODEs in the time range 0 … 6 sec with an
initial [S]=8 mol, [E]=4 mol, [ES]=0, and [P]=0. The reaction rate
constants are k1=2 sec-1, k1r=1 mol-1sec-1, k2=1.5 sec-1. Solve using the
function form with the input arguments for transferring the given
numeric values; perform the defined times and component amounts in
a five-column matrix and use it as the function output argument. Plot
the component amounts as a function of time; output the obtained data
at ten equidistant time points.

6. A chemostat-type bioreactor3 has volume V. The differential equations
that describe the concentrations of bacteria N and nutrients S are:

3 Sometimes referred to as a CSTB continuous stirred tank bioreactor.

 

 

1 1

1 2 1

1 1 2

2

[]
[] [][]

[]
[] [][]

[]
[][] []

[]
[]

r

r

r

d S
k ES k S E

dt
d E

k k ES k S E
dt

d ES
k S E k k ES

dt
d P

k ES
dt

 

  

  



198 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

where R is the fresh nutrient concentration, D=F/V is the dilution rate,
F is the continuously added fresh medium, r is the maximal growth
rate, a is the half-saturation constant and � is the growth yield; square
brackets [] signify concentration.

7. Solve the set of ODEs in the time range 0 … 10 h with r=1.35 h-1,
a=0.004 g/L, D=0.25 h-1, [R]=6 g/L, =0.23 1/L, [N]0=0.1 g/L and
[S]0=6 g/L. Use the ode15s solver. Write a function and save it in the
function file. Assign the variables, with numeric values, as input
arguments of the function; perform defined times and component
amounts in a three-column matrix at ten equidistant t-points and use it
as the function output argument to be displayed in the Command
Window. Plot the nutrient and bacteria concentrations as a function of
time.

8. One of the ODEs used to simulate a population growth is the Malthus-
Verhulst equation

where N is the population size, r is the population growth/decline rate
coefficient, and K is the maximum population the environment can
support. Solve this equation with an initial N0=10 million people and
constants K=387.7 and r=1.413 1/year. The time t is given here as a
centered and scaled parameter (t1–1890)/62.05 with t1=1790, 1810,
…, 2050 year. Solve the ODE, write and save the user-defined
function which has no output arguments and has the following input
parameters: K and r constants and t1 vector containing given year
values. Display the t1 and N in two columns with the fprintf command.

 

[] []
[]

[]

[] 1 []
([]) []

[]

d N r S
N D

dt a S

d S r S
D R S N

dt a S

 
   

  
 

1
dN N

rN
dt K

   
 

Ordinary Differential Equations and Tools Primary MATLAB® for Life Sciences: Guide for Beginners 199

Generate N(t1) a curve and use the axis tight command to set the plot
axis limits to the actual t1 and N ranges.

9. The simplest Lotka-Volterra model of predator-prey behavior can be
represented by these two differential equations:

10.

where k1, k3 are the growth rate of the x (preys, e.g. rabbits) and y
(predators, e.g. foxes) species respectively and k2, k4 are coefficients
characterizing the interactions between the species, the start ts and the
end tf times are 0 and 15 (dimensionless) respectively and an initial
x=5000 (rabbits), y=100 (foxes). The growth rate constants are k1=2,
k2=0.01, k3=0.8, k4=0.0002. Solve this set of ODEs; write a user-
defined function for this that has given rates, times, and initial
population amounts as the input arguments and a matrix with the
obtained values as the output argument. Display the obtained t, x, and
y data in three columns at 15 equidistantly spaced time points; plot the
species populations as a function of time.

10. According to the simple susceptible-infectious-recovered (SIR) model
of epidemiology, the rates of S, I, and R are described by the
following set of differential equations:

where S is the day susceptible number, I is the number of infectious
and R is the number of new cases per day (called the basis

1 2

3 4

dx
k x k xy

dt
dy

k y k xy
dt

 

  

dS
SI

dt
dI

SI vI
dt
dR

vI
dt

 

  



200 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

reproductive number). Solve this equation with an ODE solver in the
time range 0 … 60 days, with day-1people-1vday-1and
initial S0=700, I0=1 and R0=0 people. Write a function with input and
output arguments, and save the function in a function file. Display a
matrix containing the obtained t, S, I, and R values at the eight
equidistant time points and plot the S(t), I(t), and R(t) curves in the
same graph.

11. In a metabolically based model, the mass growth of a cancer tumor is
described by the following ordinary differential equation:

where m is the tumor mass, kg. The coefficients a and b equal 0.03 day-1
and 0.026 kg1/4day-1 respectively. Solve this equation using an ODE
solver with the following start and end time values ts=0 and tf=600, in
days; the initial m0 value is 0.001 kg. Write a function with input and
output arguments, and save it in a function file. Display the obtained t
and m values at eight equidistant time points and plot the m(t)– graph.

12. A leaf-surface growth rate can be described by an ODE. For a circled
leaf of the Victoria regia species, the equation is:

where S is the leaf surface, k1 is the proportionality coefficient, and k2
is the coefficient connected to the amount of sunlight obtained by the
leaf. Solve this equation with an ODE solver; use the option including
the solving equation directly to the selected solver command. The start
and the end time is ts=6 and tf=18, in hours; k1= 0.001309 cm-3/2h-1
and k2=0.2618 rad·h-1; the initial leaf surface is S0 is 1600 cm2. Write a
function with input and output arguments and save the function in a
function file. Display the obtained S values at ten equidistant time
points; plot the S(t)– graph.

3 4dm
bm am

dt
 

1 2
3 2 cos()

dS
k S k t

dt
  

Ordinary Differential Equations and Tools Primary MATLAB® for Life Sciences: Guide for Beginners 201

5.7. ANSWERS TO SELECTED QUESTIONS AND EXCERCISES

2. e) the answers (b) and (c) are correct.

4. b) the Figure Window automatically appears with a plot of the obtained
solution.

6.
>>t_S_E_ES_P=Ch5_6 (2,1,1.5,0,6,8,4,0,0)
t_S_E_ES_P =

0 8.0000 4.0000 0 0
0.6667 3.6555 0.4409 1.9883 2.3562
1.3333 3.0181 0.3063 1.1175 3.8644
2.0000 2.6334 0.2074 0.6446 4.7220
2.6667 2.3965 0.1373 0.3811 5.2224
3.3333 2.2492 0.0895 0.2298 5.5210
4.0000 2.1570 0.0578 0.1406 5.7024
4.6667 2.0990 0.0370 0.0870 5.8140
5.3333 2.0625 0.0236 0.0542 5.8833
6.0000 2.0395 0.0150 0.0340 5.9266

8.
>> Ch5_8(1.413,387.7,10,[1790:20:2050])

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5
Sebsequent reaction A->B->C

Time, sec

A
,

B
,

C
 a

m
ou

nt
s,

 m
ol

/L

A

B
C

202 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

Year People
1790 10.0
1810 15.5
1830 23.9
1850 36.4
1870 54.5
1890 79.4
1910 112.0
1930 151.3
1950 194.7
1970 238.0
1990 277.2
2010 309.4
2030 334.1
2050 351.9

1800 1850 1900 1950 2000 2050

50

100

150

200

250

300

350

Time, year

P
op

ul
at

io
n,

 m
ill

io
n

Malthus-Verhulst population model

Ordinary Differential Equations and Tools Primary MATLAB® for Life Sciences: Guide for Beginners 203

10.
>> t_Susceptible_Infected_Recovered=Ch5_10(0.001,0.1,[0 60],[500 1 0])
t_Susceptible_Infected_Recovered =

0 500.0000 1.0000 0
8.5714 465.3325 28.4828 7.1846

17.1429 169.0849 223.4316 108.4836
25.7143 25.3352 178.1435 297.5213
34.2857 8.4629 85.5509 406.9862
42.8571 5.1061 38.3583 457.5356
51.4286 4.0793 16.9198 480.0009
60.0000 3.6955 7.4221 489.8823

12.
>> t_LeafSurface=Ch5_12(0.001309,0.2618,[6,18],1600,10)
t_LeafSurface =

1.0e+003 *
0.0060 1.6000
0.0073 1.6195

0 10 20 30 40 50 60
0

50

100

150

200

250

300

350

400

450

500

Time, m

N
um

be
r

of
 s

us
ip

tib
le

,
in

fe
ct

ed
,

an
d

re
co

ve
r

ca
se

s

SIR epidemia model

Susceptible

Infected
Recovered

204 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

0.0087 1.6776
0.0100 1.7729
0.0113 1.9012
0.0127 2.0538
0.0140 2.2145
0.0153 2.3600
0.0167 2.4627
0.0180 2.5000

6 8 10 12 14 16 18
1600

1700

1800

1900

2000

2100

2200

2300

2400

2500

Time, hour

Le
af

 S
ur

fa
ce

,
cm

2

Leaf growth

 Primary MATLAB® for Life Sciences: Guide for Beginners, 2013, 205-245 205

Leonid Burstein
All rights reserved-© 2013 Bentham Science Publishers

CHAPTER 6

Curve Fitting and Time Series

Abstract: The polynomial fitting commands and time series calculations are presented.
The Basic Fitting and Time Series Tool interfaces are introduced through applications
to the drug dose-blood pressure relation, the hazardous substances level in the air, the
plankton concentration, time series forecasting, temperature monthly average
predictions, and others. The questions and life-science problems together with answers
to some of them are given in conclusion.

Keywords: Polynomial fitting; time series forecasting; trend and seasonality;
Basic Fitting; Time Series Tool; life science applications.

INTRODUCTION

Variable data obtained in bio-laboratories or natural observations should be fitted
with mathematical expressions that can be assigned empirically or theoretically.
In most cases, these expressions connect two variables; for example, injected drug
dose and blood pressure of animals, binding and component concentrations, and
biomass changes and temperatures. Obtained data is used for defining coefficients
relations of this kind. This process is called fitting and the required relation is
called regression.

In many cases, life science data are received as a function of time, for example,
bacterial growth rate, animal population change with time, radioactivity decay and
reaction rate. Such time data is called time series and is used in order to extract
meaningful statistics, or for prediction. Time series analysis and forecasting are
used for these objectives.

In this chapter, we show some of the commands and basic tools that MATLAB
provides, which biologists can use for data fitting and time series analysis.

6.1. FITTING DATA WITH POLYNOMIAL EXPRESSION

In cases where we search polynomial relations between two variables, one of
which is dependent, x, and other independent, y, the polyfit and polyval
commands are used. The simplest forms of these commands are:

Send Orders for Reprints to reprints@benthamscience.net

206 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

a=polyfit(x_data,y_data,n) and y_fit=polyval(a,x_polyval)

where x_data is a vector of dependent data points and y_data is a vector of

independent data points; a is a row vector of coefficients, in descending powers,

that fit the data; x_polyval is a vector of values for calculating the y_fit values

with the coefficients defined in polynomial fit; and n is the degree of the

polynomial relation n n 1 n 2
n n 1 n 2 1 0...y = a x + a x a x a x a 

     marking the

number of a coefficients. For example, in the first-degree polynomial, n=1, we

have two-element vector a containing two fit coefficients: a0 in a(2) and 1a in

a(1), and in the second degree polynomial, n=2, three-element vector a contains

a0 in a(3), a1 in a(2), and a2 in a(1).

The first of these commands defines polynomial coefficients by the (x, y)-data

points and uses the least-squares method for a better fit. In this method, the a-

coefficients are determined by minimizing the sum of the squares of the

differences between the polynomial- and data values; these differences are called

residuals and denoted R.

The second command uses fit coefficients defined by the first command for y-

value calculations by the fit polynomial and at interesting x points.

Define, for example, the relation between injected drug doses, x= 75, 62, 54 43,

37 mg per kg of animal, and changes in the blood pressures, y= 3, 13, 17, 25, 28

mmHg. For polynomial fit of this data by the first-degree polynomial (n=1), and

for generating the fit curve and data plot, the following script file, named Ch6_fit,

can be created.

% Polynomial fitting
% x_data - dosage, mg/kg
% y_data – blood pressure, mmHg
x_data=[75, 62 54 43 37]; % vector with dose data
y_data=[3,13,17,25,28]; % vector with blood pressure data
a=polyfit(x_data, y_data,1) % defines fitting coefficients

Curve Fitting and Time Series Primary MATLAB® for Life Sciences: Guide for Beginners 207

x_pol=linspace(min(x_data),max(x_data)); % vector with 100 (default)
 % x values for plotting
y_fit =polyval(a,x_pol); % vector of y values calculated at x_pol
plot(x_data, y_data,'o', x_pol, y_fit) % plots polynomial and data points
xlabel('Dose, mg/kg'), ylabel('Blood Pressure, mmHg'),grid
legend(' original data',' first degree polynomial fit')

After typing and entering the file name in the Command Window, the following
coefficients are displayed and the graph is generated:

>> Ch6_fit

a =

-0.6572 52.8199

Various bio-applications frequently require an exponential or a logarithmic fitting
function:

1 0 1 0

1e0
ln or y = log

a x
y a

y a x a a x a



  

30 40 50 60 70 80
0

5

10

15

20

25

30

Dose, mg/kg

 B
lo

od
 P

re
ss

ur
e,

 m
m

H
g

 original data

 first degree polynomial fit

208 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

In these cases, the fitting function is rewritten as polynomial. For this purpose, the

exponential function is transformed to 1 0ln ln y a x+ a and the polyfit function

should be used in the following form—a=polyfit(x, log(y),1), where in the vector

a the first element, a(1), is a1 and the second, a(2), is ln 0a , that is, a0=exp(a(2)).

In cases of logarithmic functions, the polyfit is written as a=polyfit(log(x), y, 1)

or a=polyfit(log10(x), y, 1), where in vector a the first element, a(1), is a1 and

the second, a(2), is a0.

6.2. THE BASIC FITTING INTERFACE

In addition to polynomial fitting attained with the commands described above,

MATLAB has a specific tool for interactive polynomial fit called Basic Fitting;

the data in this tool can also be interpolated. The tool permits:

 Fitting data points by choosing linear, quadratic, cubic and up to 10th

degree polynomials;

 Plotting one or more fit curves on the plot for better comparison and

showing the polynomial equations with defined fit coefficients on this

plot;

 Plotting the residuals for each polynomial fit with the norm of residual

values;

 Computing the y-values by the fit polynomials at various points

inputted by the user.

To start the interface, it is first necessary to plot the intended fit data. After the

Figure Window with the plot appears, select the Basic Fitting line from the Tools

option of the Figure Window menu as shown in the figure below, left. Following

this action, the ‘Plot fits’ panel of the Basic Fitting window appears; see figure

below, right.

Curve Fitting and Time Series Primary MATLAB® for Life Sciences: Guide for Beginners 209

To receive the whole Basic Fitting window click the ‘Show next panel’ button
. The window extends and the ‘Numerical Results’ panel appears. The next

click on this button extends the entire window form as shown in Fig. 6.1. To
minimize the last window and return to the previous panel, the ‘Hide last button
back’ button should be clicked.

210 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

Figure 6.1: The Basic Fitting Window after two repeated extensions with the ‘Show next panel’
button.

The items located in each panel of the Basic fitting window are described below.

6.2.1. The ‘Plot fits’ Panel

Select data

In the Figure Window, more than one curve can be plotted for different data sets.
However, only one data set should be chosen for the fit; only one set of points
should be screened with this item.

Center and scale x data

For a better fitting of the x points of the x, y, data can be centered and scaled by
marking this option. This is calculated for each data point, i, with the equation
zi=(xi-)/, in which is the average of x-values,  is the standard deviation of x-
values and z is x value after centering and scaling. In many cases, when the high-

Curve Fitting and Time Series Primary MATLAB® for Life Sciences: Guide for Beginners 211

degree polynomial is selected to fit and this option is not marked, the special
nameplate appears with the suggestion to center and scale the data.

Check to Display fits on Figure

This item includes fit by polynomials from the first (linear) degree to the tenth

degree and interpolation by the spline or Hermite method. More than one fit

option can be marked in this item box. When selecting the polynomials, the fit

line appears immediately in the plot.

Show Equation and Significant Digits Fields

Mark the first of these items in order to display the fit equation on the plot. The

number of significant digits in such an equation is chosen by marking the second

item.

Plot Residuals with Two Adjustent Fields

Mark this item in order plot residuals that are calculated with the equation R i =y-

yi, where the original y and the calculated yi are polynomial data values at each i-

point. For the first of the adjustent fields select the plot type bar, scatter or line.

Select the second to figure in where the residuals should be displayed—separately

or together with data set and fitted curve.

Show Norm of Residuals

For evaluation quality of the fit the norm of residuals can be displayed; mark this

item to show the fit quality. This norm is calculatied as 2
i

i 1

n

R

 where n is the

number of data points. The lower norm designates a better fit.

6.2.2. The ‘Numerical Result’ Panel

Fit

In order to explore a number of fits and to see fit equation, coefficients and
residuel norm for one of them select the needed fit from the dropdown menu.
Requested data are displayed in the ‘Coeeficients and norm of residuals’ box.

212 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

Coeeficients and Norm of Residuals

This item displays the selected polynomial, it coefficient values and norm of
residuals.

Save to Workspace

The fit, residuals and norm of residuals can be saved in the MATLAB workspace
by clicking the ‘Save to workspace’ button. After clicking this button, the window
for indexes that were selected appears with the names for variables, as they should
be saved

6.2.3. Find y=f(x) Panel

Enter Value(s) or a Valid MATLAB Expression…1

The values of x can be inputted in this field to calculate numerical y values for
specified x. The resulting numbers will display in the box below after clicking the
‘Evaluate’ button to the right of this item field.

Save to Workspace…

In order to save evaluated values, click the ‘Save to workspace…’ button. Small
windows appear in which the needed variables should be checked and the names
for specified x values and for evaluated values should be inputted.

Plot Evaluated Results

When this item is checked, the evaluated values are displayed in the plot. An
example of a problem using the Basic Fitting tool is given in the next subsection.

6.2.4. Fitting the Injection Dosage - Blood Pressure Data

The injection dosage—animal blood-pressure data were fitted in Subsection 6.1.
using the polyfit command. Here, this data are used for the same target with the
Basic Fitting interface.

Problem: Define linear and square polynomial equations that describe a drug
dose-blood pressure set of data; show fitted coefficients and norm of residuals in

1The caption of this item contains long explanations and is shortened here and below

Curve Fitting and Time Series Primary MATLAB® for Life Sciences: Guide for Beginners 213

the Fit panel and on the plot, evaluate blood pressure under doses equal to 60
mg/kg by the fit equation with lesser norm of residuals; save defined equations,
norm of residuals and evaluated dose value in the workspace.

First, the entire data set should to be inputted and plotted. Enter the following
commands in the Command Window:

>> x_data=[75, 62 54 43 37]; % vector of dosages
>> y_data=[3,13,17,25,28]; % vector of pressures
>> plot(x_data, y_data,'o') % plots data-points as circles

Then select the Basic Fitting line from the Tools menu in the Figure Window.
This opens the Basic Fitting Window. It should extend in full with the ‘Show next
panel’ button as described above. After marking the linear option in the ‘Plot fits
panel’, the defined linear equation y=p1*x+p2, coefficients p1=-0.65719 and
p2=52.82, and norm of residuals=1.3022 into the ‘Coefficients and norm of
residuals’ box of the ‘Numerical results’ panel appears.

Check the ‘Show equations’, ‘Plot Residuals’ and ‘Show norm of residuals’; two
plots—the fit curve with the linear equation and original data and the residual bar
graph with residual norm value appear in the Figure Window. Now select the
‘quadratic’ option in the ‘Plot fits panel’. The defined quadratic equation
y=p1*x^2+p2*x+p3, coefficients p1=-0.0022812, p2=-0.40247, p3=46.133 and
norm of residuals=1.0424 appear in the ‘Coefficients and norm of residuals’ box in
the ‘Numerical results’ panel. Both the linear and cubic polynomial curves together
with the fit equations (default is coefficients with two significant digits) appear
simultaneously on the upper subplot of the Figure Window; the residual bars with
their norms appear in the next figure and on the lower subplot. The norm of residuals
of the quadratic polynomial is slightly lower than the norm of residuals for the linear
polynomial. Thus, this polynomial better describes the data and is therefore used for
evaluation of the expected blood pressure at a 60 mg/kg drug-dose injection. Enter
the number 60 in the ‘Enter value(s) …’ field and press the ‘Evaluate’ button.

Check the ‘Plot evaluate results’ option to mark the evaluated point in the upper
plot of the Figure Window.

214 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

The next two figures show the Basic Fitting tool window for quadratic fit and
evaluation and the Figure window with both linear and quadratic fits.

Curve Fitting and Time Series Primary MATLAB® for Life Sciences: Guide for Beginners 215

Press the ‘Save to Workspace’ button to export fits into the Workspace. The
dialog box appears.

After clicking ‘OK’ the fit, normresid and resid variables are exported and

appear in the Workspace Window. One of these variables, named fit, has a type

called structure; this concept lies out of the scope of this book.

Enter the fit.coeff variable name into the Command Window to receive the fit

coefficients from the fit structure. Do the same operation for evaluated value and

press the ‘Save to Workspace’ button. Click OK in the dialog box that appears.

This exports the x (the drug dose) and f(x) (blood pressure) variables and they

appear in the Workspace Window.

6.3. APPLICATION EXAMPLE

High levels of hazardous substances in the air at a manufacturing plant caused

disease incidents. The 2, 2, 6, 7, 11, and 24 cancer incidents were fixed at the 1,

4.1, 10.2, 20.3, 30.4, and 41 mg/m3 concentrations of a substance.

Problem: Fit the pollutant concentrations—disease incidents data—with the three-

degree polynomial by the Basic Fitting tool and evaluate possible numbers of

cancer incidents of 45.0 dangerous components in the air. Present resulting plots

with original data, fitting curve, fit equations, residuals and residual norms.

The following steps should be executed:

216 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

 Enter the concentration-cancer data and plot them with the commands

>> concen=[1,4.1,10.2,20.3,30.4,41]; % concentrations
>> incend=[2,2,6,7,7,24]; % diseases
>> plot(concen,incend,'o') %plotting the data points

 Select the Basic Fitting line in the Tools option of the Figure Window to
open the Basic Fitting tool and extend fully the Basic Fitting window.

 Check ‘Cubic’, ‘Show equations’, ‘Plot residuals’ and ‘Show norm of
residuals’ options in the ‘Plot fits’ panel. The following results will
appear in the ‘Coefficients and norm of residuals’ box of the
‘Numerical results’ panel:

Use upper case R for Residual

Curve Fitting and Time Series Primary MATLAB® for Life Sciences: Guide for Beginners 217

y = p1*x^3 + p2*x^2 + p3*x + p4
Coefficients:
p1 = 0.00087782
p2 = -0.0416
p3 = 0.80022
p4 = 0.57752
Norm of residuals =
1.5412

 Enter the number 45 in the ‘Enter value(s)’ field of the ‘Find y=f(x)’

panel. Click the ‘Evaluate’ button. The result, 32.3 (mg/m3), appears

in the column f(x) of the panel box. The resulting plots is:

6.4. ABOUT TIME SERIES

Data that change dynamically over time, e.g., animal or human population

evolution, electrocardiogram signals records, periodical disease data and various

other data can be analyzed using time-series analysis. Such data are met

frequently in various areas of the biosciences; thus, it is desirable to have a tool to

process them. Solving such problems by special commands requires more

knowledge than beginning students of the life sciences have. This knowledge is

required to study objects, structures, constructors, methods and other specific

programming concepts. Nevertheless, novices can use the simple commands

studied in the previous chapters or the special interface—the Time Series tool—to

override these problems and execute frequently used operations of time-series

analysis. This analysis concentrates on three main problems: identifying,

modeling, and predicting, the latter used most frequently. Under this analysis, the

following operations are most frequently used: refilling missing data at certain

time points by an interpolation procedure; cleaning data from outlying points;

smoothing data by a filtering procedure; defining time trend and removing it from

the data (this operation is called detrend); and building plots for these procedures.

The following subsections describe the time series prediction with commands
presented in the previous sections and with the special tool for some time series

218 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

operations, called Time Series Tools. The material presented here assumes a
minimal acquaintance with time-series basics.

6.4.1. Prediction with Time Series

The datum Y observed in various biological observations often has a tendency to

grow or a tendency T (trend) to decline. Additionally, the data often demonstrate

periodical changes over time, or, such changes can be assumed; for example,

annual plankton biomass fluctuations, monthly environmental temperature

changes, animal population dynamics and seasonal growth rates of plants. Such

periodicity is named seasonality S. In general, the data values can be presented in

each time point, i, as the superposition of trend, seasonable, and random, R,

components:

Yi=Ti+Si+Ri

where all variables vary over time.

Prediction, frequently called forecasting, is concluded by defining the trends and

seasonal components and extrapolating their sum to times lying out of the original

data period. For example, the average air temperature for a current month can be

defined as the sum of temperatures obtained from trend relations and the monthly

average temperature obtained for this month from the data of previous years; or,

plankton seasonal biomass changes plus the derived tendency of biomass changes

can be extrapolated to the current season.

For achieving this target by applying commands that were studied previously, the

next steps should be executed:

- Input observed values—time points and their graphical representation;

- Define the data trend with the first- or two-degree polynomial fit and

then detrend data by calculation of the differences Yi-Ti;

Curve Fitting and Time Series Primary MATLAB® for Life Sciences: Guide for Beginners 219

- Define mean values of S at each identical time point, e.g., the monthly
mean: for the month of May over a period of several years, for the
month of April, and so forth;

- Calculate and graphically present the random component as Ri=Yi-Ti-
Si to validate that data are really distributed randomly;

- Predict the value of Y as the sum of the T and S taken for the desired
time, e.g., the May (month) of the next to last year of the used data.

Show this by example on chlorophyll Chl-a concentration in the phytoplankton
abundance. Say we have sequence of Chl-a bimonthly data along three years as it
presented in the Table 6.1.

Show this by example of chlorophyll, Chl-a, concentration in the abundance of
phytoplankton, a sequence of Chl-a bimonthly data along three years as presented
in Table 6.1.

Table 6.1: The plankton Chl-a concentration data, g·L-1

 Bi-month*
Year

1 2 3 4 5 6

1 0.04 0.073 0.1 0.12 0.12 0.11

2 0.08 0.12 0.14 0.13 0.13 0.13

3 0.13 0.09 0.12 0.14 0.17 0.15
* Bi-month number 1 refers to January–February, 2 to March–April, etc.

Problem: Write, save and run the function file that have the data of the Tab.6.1,
detrend data with the first-degree polynomial fit, define seasonal component, and
predict the Chl-a concentrations on the fourth year for March-April period.

The program realized solution of this problem is named ts_forecast and is
presented below:

function Chl_a=ts_forecast(month2predict)
% To run: >>Chl_a=ts_forecast(6*3+2)
close all

220 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

Y=[0.0400 0.0733 0.1000 0.1200 0.1160 0.1060,…
0.1140 0.0880 0.1200 0.1380 0.1340 0.1260,…
0.1360 0.0920 0.1240 0.1440 0.1733 0.1500];
year=1:3;
bimonth=1:length(Y); % bi-month number
T_coeff=polyfit(bimonth,Y,1); % linear fit
T=polyval(T_coeff,bimonth); % trend
SR=Y-T; % detrend - seasonality
S=mean(reshape(SR, 6,length(year))’); % 6 months, each of 3 year
R=Y-T-repmat(S,1,length(year)); % random component
Chl_a=polyval(T_coeff,month2predict)+S(2); % prediction
%================plot===================
subplot(3,1,1)
plot(bimonth,Y,'o',bimonth,T,'-'),grid
ylabel('Concentration'),title('Fit')
subplot(3,1,2)
plot(bimonth,SR),grid
ylabel('Y-T'),title('Detrend')
subplot(3,1,3)
plot(bimonth,R),grid
xlabel('bi-months'),title ('Random')

After running the program, the predicted concentration value, Chl_a, appears in
the Command Window.

The running command with the bi-month number for prediction, 6*3+2 is March–
April for the fourth year; displayed results with the Chl_a concentration value, mg
L-1, and the graph with three subplots containing the data points with linear fit, the
detrend line and the line of the random deviations are presented below.

>> >> Chl_a=ts_forecast(6*3+2)
Chl_a =
0.1364

Curve Fitting and Time Series Primary MATLAB® for Life Sciences: Guide for Beginners 221

In the ts_forecast program, the Chl-a of plankton concentrations for three years
are given in Y-vector and the year numbers, in the year vector; linear fit is
executed with the polyfit command. After detrend, the SR vector of the Y-T
difference is calculated; the SR vector is transformed in the 3x6 matrix with the
reshape and transpose (‘) commands so that every column has the values of the
same bi-month; then, the 1x6 S-vector with average seasonable values are
calculated for each bi-month number with the mean command; the random value
R is calculated as Y-T-S for which the vector S is repeated three times for each
year; predicted concentrations are calculated for the 6*3+2 bi-month (three years
in bi-months plus two months for March–April in the fourth year) as the sum of
the extrapolated T value (with the polyfit command) and the seasonable value S
for this bi-month (the second element of the S vector).

6.4.2. The Time Series Interface

This interface permits to execute some procedures with sequential data spaced at
uniform time intervals without writing special commands. To activate this
interface, load the data into the workspace and enter the tstool command in the

0 2 4 6 8 10 12 14 16 18
0

0.1

0.2
C

on
ce

nt
ra

tio
n

Fit

0 2 4 6 8 10 12 14 16 18
-0.05

0

0.05

Y
-T

Detrend

0 2 4 6 8 10 12 14 16 18
-0.05

0

0.05

bi-months

Y
-T

-S

Random

222 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

Command Window. This opens the Time Series Tools window presented in Fig.
6.2. The window has a menu, a toolbar with the operations used most frequently
and three main areas: the ‘Time Series Session’ tree, the ‘Time Series’ pane, and
the ‘Help’ pane.

Figure 6.2: The Time Series Tools window.

6.4.2.1. Menu and Toolbar

The items in the tool menu and toolbar are summarized below.

Menu Options:

 File

Permits the import of data from the array or other sources located in the
MATLAB Workspace, Excell Workbook, Text or in M-file. This item allows the
export results and saves the code produced by the Time Series Tools. This option
opens the Time Series Import Wizard that in three steps imports data to the tool

Curve Fitting and Time Series Primary MATLAB® for Life Sciences: Guide for Beginners 223

for further processing (called ‘choose the source…’, ‘specify the data and time’,
‘create time-series object and import’).

 Edit

Gives a number of simplest editing options – undo, redo, copy, paste, or remove.

 Data

After the data import, this item permits most spread operations with time-series data:
select needed data in the plot, remove time rows where data is missing, detrends,
filters, interpolates, resamples, or transforms data with an algebraic expression.

 Plot

This option permits the selection of the needed plot: time series, spectral (the data
after squared fast Fourier transform), XY (one-time series versus another time
series), correlation (after or cross-correlation for matching the degree of the
relationship between the data) or histogram (the view of data distribution with the
rectangular bins). Line properties, such as style, color, marker and other properties
are set by this option. When the data set is imported to ‘Tools’, a data plot can be
created by dragging a ‘Time Series’ data node from the ‘Time Series Session’ tree
and dropping it onto a ‘Views’ folder node.

 Help

Time series tool description from and case-sensitive help about currently executed
options can be accessed with this item.

Toolbar Options

The toolbar is located just below the menu line of the tool and includes buttons for
frequently used operations, namely, import or creation of time series, copy or
paste, undo or redo and hide/show help.

6.4.2.2. The Time Series Tools Areas

The tool window has three main areas from left to right, briefly described below,
with the items located in each of these areas. The items are explained in more
detail in the next subsection by an example of use.

224 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

Time Series Session Area

The ‘Time Series Session’ tree is located here. It contains the ‘Time Series’ node
icon and data icons that appear after entering them by means of the File menu
option, and the ‘Views’ node with the plot icons. Data from the ‘Time Series’
folder can be presented in plot with this option. The forms of plot that can be
selected are time-data, XY, spectral, correlation or histogram.

Time Series Area

This area appears empty, as shown in Fig. 6.2 until data are imported to the tool.
After importing data, manifold options and settings appear here pertaining to the
time-series node that is selected in the tree; two columns with time and data
values appear in the ‘Edit Data’ and ‘Plot time series’ panels.

The first panel is for editing data and contains the ‘Show event table’ box;
‘Attributes …’, ‘Add row’, ‘Delete row(s)’ and ‘Uniform Time Vector …’
buttons; and ‘Current time’ information line.

The second panel is for plot generating and contains the ‘Create new’ and ‘Add to
existing plot’ boxes, the ‘Type’ and ‘Name’ fields, and the ‘Display’ button.

When you edit the data you can:

- Check the ‘Show event table’ box to mark the data at a specific time.
The marked event is displayed on a plot;

- Click the ‘Attribute’ button to open the ‘Define Data Attribute’ dialog
box to enter: a quality value for each number in a data table; data units
for plot axes; or the method of interpolation for missing data
calculations;

- Add or delete rows in a data table with the ‘Add row’ and the ‘Delete
row(s)’ buttons;

- Modify the data in uniform time intervals by clicking the ‘Uniform
time vector …’ button. This leads to the appearance of the ‘Define

Curve Fitting and Time Series Primary MATLAB® for Life Sciences: Guide for Beginners 225

Uniform Time Vector’; enter here time display format, time units and
start and end times.

The ‘Plot time series’ subarea allows you to generate plots: select the type of plot,
e.g. ‘Time Plots’; enter the plot name in the ‘Name’ field; and click the ‘Display‘
button. The required plot appears in the separate ‘Time Series Plot’ window.

Note:

- Present the data uniformly distributed in time; use inputted units for
plot and table presentations only. Time interval for analysis accounts
for the number of time steps between data values, but not the actual
time elapse. For example, say that you want to import a monthly data
for 36 months, from January 31, 2009 until January 31, 2011. The
‘Units’ field of the Wizard (Step 2), only allows a selection of uniform
time intervals, e.g., days or weeks, and not months or years (both have
varies day number).

- To access ‘Data’ operations right-click inside the plot after the plot
with the data opens.

- Obtain data by interpolation in cases when one or more dates are
missing between the data.

- Use the ‘Remove’ button located in the lower middle area of this tool
to remove one or more time series from the ‘Time Series’ tree when
data is still not imported.

Content-Sensitive Help Area

This help area is called context-sensitive as it provides information about options
and settings currently shown in the tool.

6.4.3. Elephant Population Dynamics with the Time Series Tools

We used the Time Series Tools as an example for processing the elephant

population in an African park monitored between the years 1987 and 1999, on

226 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

December 31 of each year, with two interruptions—in 1989 and 1998. The

number of elephants obtained was 6898, 7344, 7278, 7470, 7632, 7834, 7806,

8064, 8320, 8371 and 9152.

Problem: Input data into the Time Series Tools; interpolate loaded values for

obtaining missing elephant numbers in the years 1989 and 1999 and detrend the

data; plot the resulted time series and export the data into the MATLAB

workspace.

Write the data as a column vector in the workspace using NaN (not a number)

where there are data absences and then activate the Time Series Tools; enter the

following commands for these operations:

>> elephant=
[6898;7344;NaN;7278;7470;7632;7834;7806;8064;8320;8371;NaN;9152];
>> tstool

The Time Series Tools window opens. Now import the elephant vector into the

Time Series Tools by selecting from the File menu the option ‘Import from

Workspace’. Then select ‘Array Data …’.

The ‘Time Series Import Wizard’ window opens with the highlighted caption:

‘Step 1: Choose the source that contains time series data’ into the ‘Current step’

area. Select the ‘MATLAB Workspace’ option in the ‘Data Source’ area in the

‘Import from:’ field; clicking the ‘Next’ button opens the ‘Import Time Series

from MATLAB Workspace’ window with the highlighted caption: ‘Step 2:

Specify the data and time’. In the ‘Specify Data’ box, mark the elephant vector

and select ‘columns’ in the ‘Data is arranged by’ field. Input the 12/31/1987 data

in the ‘Start time’ field of the ‘Specify time vector’ area. Select the ‘Date Strings’

and ‘dd/mm/yy’ options in the ‘Use’ and ‘Format options’ fields, respectively.

The figure below shows this window with inputted items.

Curve Fitting and Time Series Primary MATLAB® for Life Sciences: Guide for Beginners 227

Click the ‘Next’ button in the Wizard window to open ‘Step 3: Create time-series
object(s) and import’ in the ‘Current Step’ area. Check the ‘Create a new time
series with the name:’ box and write ‘elephant_1’ for further processing and
saving of obtained data. Then click the ‘Finish’ button. Fig. 6.3. presents the Time
Series Tools window modified by the above-mentioned operations.

Figure 6.3: The Time Series Tools window with the elephant dynamic population data.

228 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

In this window, the years are inputted by the ‘Uniform Time Vector …’. Click
this button to access the ‘Define Uniform Time Vector’ box (see below).

This box shows the selection of the ‘mm/dd/yy’ option in the ‘Display format’
item. Input the dates ‘01/31/98’, and ‘12/31/98’ respectively into the ‘Start Time’
and ‘End Time’ fields and click the ‘Apply’ button. The ‘Time interval’, ‘Number
of samples’ and ‘Current time’ values are calculated and appear automatically in
relation to the inputted dates and length of the date vector.

To interpolate data for defining the missing number of elephants in 1989 and 1998
years select the ‘Interpolate…’ line in the ’Data’ option of the ’Time Series Tools’
menu. Click the ‘Apply’ button when the ‘Process Data’ box appears. The
interpolated values will appear in the ‘Data:1’ column of the ‘Edit data for
elephant_1’ area. As the resulting values for the numbers of elephants should be
integers, use the ‘Transform Data Algebraically…’ option in the ‘Data’ item of
the tool menu. Select the ‘elephant time series’ in the box that appears and input
the floor(aa) expression as per figure below:

Curve Fitting and Time Series Primary MATLAB® for Life Sciences: Guide for Beginners 229

The interpolated values are 7311 and 8761 and they appear in place of the NaN
values in the ‘Data: 1’ column of the ‘Edit data for elephant_1’ area.

Select the ‘Detrend…’ option in the ‘Data’ menu item and check the ‘linear box’
in the ‘Remove trend type’ item to remove trend data. A plot with the resulting
values can be presented by using the ‘Display’ button in the ‘Plot time series’
area. Introduce the x-axis label ‘Time’ with the ‘Property Editor’, which can be
selected from the box that appears when the plot window first opens or by
clicking the ‘Show Plot tool and Dock Figure’ button in the toolbar of the ‘Time
Series Plots’ window. The plot achieved is shown in the figure below.

Export the detrended values to the workspace by selecting the appropriate option
in the ‘File’ menu; after selecting this option, a box will appear with the following
text: ‘Object ‘elephant_1 was exported to the base workspace’.

6.5. APPLICATION EXAMPLES

6.5.1. Fit for Thermal Conductivity of An Aqueous Solution

In a laboratory experiment, the thermal conductivities of 0.7 mol aqueous solution
of the sodium chloride were measured. The values are 0.589, 0.577, 0.579, 0.560,
0.500, and 0.460 Wm-1C-1 for 25, 50, 75, 100, 125, 150 °C respectively.

12/31/87 12/31/87 01/01/88 01/02/88 01/03/88 01/04/88 01/05/88 01/06/88 01/06/88 01/07/88 01/08/88 01/09/88 01/10/88 01/11/88 01/12/88
-300

-200

-100

0

100

200

300

400

Time Series Plot of elephant_1

Time

Time Series/elephant_1

230 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

Problem: Fit this data by the quadratic polynomial with:

a) The polyfit command. Write a program in the form of a function without

parameters that prints the fit equation with defined coefficients and plot data

together with the fit curve by the greater number of temperature points than in the

original data;

b) The Basic Fitting tool, which shows the fit equation, fit coefficients, residuals

and values of thermal conductivities at fitted temperature points.

To realize (a) the following program named FA_6_5_1a.m was written:

function FA_6_5_1a
%To run: >> FA_6_5_1a
Lambda=[0.589 0.577 0.579 0.560 0.5 0.46];
T=25:25:150;
Lambda_coeff=polyfit(T,Lambda,2); % quadratic fit
fprintf('Fit Equation: \nLambda=%11.6f*T^2+%7.5f*T%5.2f\n',Lambda_coeff)
T_fit=linspace(T(1),T(end),20); % T for the fit curve
Lambda_fit=polyval(Lambda_coeff,T_fit);% fitted lambda values
plot(T,Lambda,'o',T_fit,Lambda_fit,'-')
grid
xlabel('Temperature, ^oC'),
ylabel('\lambda, NaCl solution, W/(m^oC)')
legend('-Original Data','Second degree polynomial fit','location','best')

After running the program, a fit equation is displayed with a defined coefficients
and outputs plot with the original thermal conductivity points and quadratic fit
line as follows below:

>> FA_6_5_1a
Fit Equation:
Lambda=-0.000011*T^2+0.00092*T+0.57

Curve Fitting and Time Series Primary MATLAB® for Life Sciences: Guide for Beginners 231

The solution for (b), fit with the Basic Fitting tool, follows these steps:

- Input the thermal conductivities and temperatures as two rows, vectors
L and T respectively, into the Command Window and present these
data on the plot of the Figure window with the following commands:

>> L= [0.589 0.577 0.579 0.560 0.5 0.46];T=25:25:150;
>> plot(L,T,’o’)

- Select the Basic Fitting line in the Tool option of the Figure window
menu, after which the Basic Fitting tool window appears. Click on the

 button to open two additional panels.

- Mark the ‘quadratic’ options in the ‘Check to display fits on figure’
box of the ‘Plot fits’ panel; click the ‘Show equation’, ‘Plot residuals’,
and ‘Show norm of residuals’ boxes in this panel. The fit equation, fit
coefficients and norm of residuals will appear in the ‘Numeric
Results’ panel.

Note: x in the case described is temperature, and y is thermal
conductivity of the NaCl solution.

- Print x values (temperature) for evaluation and y values (thermal
conductivity); required x-points are: 25:25:150; then press the
Evaluate button in the ‘Find y=f(x)’ panel. Inputted and computed
values will appear in the adjacent table.

20 40 60 80 100 120 140 160
0.4

0.45

0.5

0.55

0.6

0.65

Temperature, oC

,
 N

aC
l s

ol
ut

io
n,

 W
/(

m
o C

)

-Original Data

Second degree polinomial fit

232 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

The Basic Fitting window and resulting plots with the problem solution are
presented below:

Curve Fitting and Time Series Primary MATLAB® for Life Sciences: Guide for Beginners 233

As shown above, the fit equation is identical in both the presented solutions.

6.5.2. Prediction of Air Temperature Monthly Average

The average monthly temperatures at a park in a North American city, during the
period from January 31, 2009 to December 31, 2011 were:

-1, -1, 2, 7, 13, 21, 24, 24, 22, 12, 9, 4;

2, -1, 2, 7, 12, 20, 24, 24, 24, 16, 10, 2;

2, -1, 3, 7, 13, 21, 24, 26, 22, 17, 10, 3

degrees Celsius.

Problem: a) Predict the average temperature in December 2012 using time series
prediction (see subsection 6.3.1), write a program in the form of function with the
input parameter of the month number for forecasting and without the output
parameter; display the predicted temperature value for December 2012 in an
explanation string.

b) Import temperature data from the MATLAB workspace to the Time Series
Tools; edit the time vector in respect to the given dates, plot the data, detrend the
temperature data with linear options, and smooth obtained data by the first order
filter; and export the obtained data to the workspace and display them in rows.

To solve (a) the following program-function named TSA_6_5_2a was written.

Function TSA_6_5_2a(month2predict)
% to run: >>TSA_6_5_2a(12)
Temp=[-1,-1,2,7,13,21,24,24,22,12,9,4,…
2,-1,2,7,12,20,24,24,24,16,10,2,…
2,-1,3,7,13,21,24,26,22,17,10,3];
year=2009:2011;
month=1:length(Temp); % month number
T_coeff=polyfit(month,Temp,1); % linear fit
T=polyval(T_coeff,month); % trend
Season_Rand=Temp-T; % seasonability+random

234 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

S=mean(reshape(Season_Rand,length(year),12));% monthly mean
months=length(month)+month2predict;
T_forecast=polyval(T_coeff,months)+S(month2predict);% prediction
fprintf(‘December, 2012: Forecasted Temp is%5.0f C\n’,T_forecast);
After running the program, the forecast for December 2012 is displayed as follows:

>> TSA_6_5_2a(12)

December, 2012: Forecasted Temp is 12 C
To solve (b), use the Time Series Tools interface for detrending and then for
smoothing, using the following steps:

- Input the vector of temperatures Temp into the workspace and enter
the tstool command into the Command Window as follows:

>> Temp=[-1,-1,2,7,13,21,24,24,22,12,9,4,2,-1,2,7,12,20,24,24,24,16,10,2,…
2,-1,3,7,13,21,24,26,22,17,10,3];
>>tstool

- This will open the Time Series Tools window. Select the ‘Array Data
…’ line into the ‘Import from Workspace’ option of the ‘File’ menu.
This opens the Import Wizard window;

- For the first step of the Wizard, select the ‘MATLAB workspace’
option in the ‘Import from’ field of the ‘Data Source’ panel and click
the ‘Next’ button;

- For the second step, select the Temp variable from the list under the
‘Specify data’ panel;

- Check the ‘define it now’ options in the ‘Specify time vector’ panel in
the ‘Time-vector source’ field; leave out the ‘Units’ field changes for
editing the time vector at a further stage; click the ‘Next’ button.

- For the third step, check ‘Create a new time series with the name’;
input the name ‘Temp_1’ into this item field; click the ‘Finish’ button.

- The imported data appears in the table with two columns, the ‘Time’
and the ‘Data:1’ columns, in the ‘Edit data for Temp_1’ panel; they

Curve Fitting and Time Series Primary MATLAB® for Life Sciences: Guide for Beginners 235

are arranged by time, not by the correct dates. Edit them by clicking
the ‘Uniform Time Vector …’ button; in the opened ‘Define Uniform
Time Vector’ dialog box select: mm/dd/yy in the ‘Display Format’,
print 12/31/09 in the ‘Start Time:’ field and 12/31/2011 in the ‘End
Time’ field. After clicking the ‘Apply’ button, the time interval value
is calculated automatically in days as the total number of days
between the inputted dates divided by the number of data and appears
in the ‘Time interval’ field; after clicking the ‘Apply’ button, a view
of the dialog box will appear, as shown below:

- Click the ‘OK’ button; the ‘Time Series Tools’ window looks now as
follows:

- To plot, click the ‘Display button into the ’Plot time series’ panel, as
presented in the figure below:

- To remove trend, select the ‘Detrend …’ line under the ‘Data’ option
of the tool menu; in the ‘Process data’ window that appears, check the
‘Linear’ option in the ‘Remove trend type’ item; click ‘Apply’ and
‘Close’. The previous plot is corrected automatically and shows:

236 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

Curve Fitting and Time Series Primary MATLAB® for Life Sciences: Guide for Beginners 237

- For smoothing detrended data, select the ‘Filter …’ line under the
‘Data’ option of the tool menu; in the appeared ‘Process data’
window, click the ‘Filter tab and ’check the ‘First order (1/(1+time
constant*s))’ option in the ‘Filter type’ item; click then ‘Apply’ and
‘Close’; previous plot are corrected automatically and smoothed data
has form as follows.

- To export data into the workspace, select the ‘To workspace …’
option with the ‘Export…’ line in the ‘File’ option of the ‘Time Series
Tools’ menu. The data is immediately transmitted as column vector to

12/31/09 02/21/10 04/14/10 06/05/10 07/27/10 09/17/10 11/08/10 12/31/10 02/21/11 04/14/11 06/05/11 07/27/11 09/17/11 11/08/11 12/31/11
-15

-10

-5

0

5

10

15

Time Series Plot of Temp

Time

Time Series/Temp

12/31/09 02/21/10 04/14/10 06/05/10 07/27/10 09/17/10 11/08/10 12/31/10 02/21/11 04/14/11 06/05/11 07/27/11 09/17/11 11/08/11 12/31/11
-15

-10

-5

0

5

10

15

Time Series Plot of Temp

Time

Time Series/Temp

238 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

the workspace and the Temp_1 icon appears in the Workspace
window. These data have object type. This programming concept lies
outside scope of this book; nevertheless, the data can be displayed in
the Command Window by entering the following command:

>> Temp_1.data’
Temp_1.data'
Columns 1 through 10
-7.4865 -9.4981 -7.8840 -3.8590 1.5228 8.7419 12.6896 13.5686 12.1775 4.2350
Columns 11 through 20
-0.1335 -5.0928 -7.9599 -11.0452 -9.7026 -5.7462 -1.1290 5.8969 10.5429
11.5985
Columns 21 through 30
11.7464 5.6873 -0.4466 -8.0938 -10.1460 -13.0254 -10.8835 -7.4722 -2.2456
4.9343
Columns 31 through 36
8.8721 11.2430 8.7347 4.2457 -2.2385 -9.2270

The transpose (‘) operator is used in the command above for displaying results in
rows.

6.6. QUESTIONS AND EXERCISES

1. To define fit coefficients with polynomial fit, which of the following
commands should be used: (a) polyvalue, (b) polyfit, (c) interp1, (d)
tstool.

2. To activate the Basic Fitting tool: (a) plot previously (y,x)- data points
and select the Basic Fitting line into the Tools option of the Figure
window menu, (b) select Basic Fitting option by clicking the ‘Start’
button of the MATLAB desktop, (c) both (a) and (b) answers are
correct; (d) none of the answers are correct.

3. For detrend uniformly spaced time series data with the commands
(viz. without the Time Series Tools) you need: (a) to interpolate the
data, (b) to define average values at every period in time, (c) to

Curve Fitting and Time Series Primary MATLAB® for Life Sciences: Guide for Beginners 239

smooth the data, (d) to define a trend with the polyfit command and
remove the trend from the data values.

4. To open the Time Series Tools window you need: (a) to plot
previously time series data and to select the Time Series Tools line in
the Tools option of the Figure window menu, (b) to select Time Series
Tools line from the MATLAB option of the ‘Start’ button in the
bottom of the MATLAB Desktop, (c) enter the tstool command in the
Command window, (d) both answers (b) and (c) are correct.

5. To smooth the time series values with the Time Series Tools which of
the following operations should be executed: (a) select the
‘Interpolate…’ line in the ‘Data’ option of the tool menu; (b) select
the ‘Filter…’ line in the ‘Data’ option of the tool menu and then select
the necessary filter type and time constant; (c) right-click inside the
plot with the time series data and select the ‘Filter …’ option and then
select the necessary filter type and time constant; (d) both latter
options are correct.

6. The annual biomass energy consumptions in 1973, 1975, 1980, 1985,
1990, and from 1995 to 2008 were: 4.410, 4.687, 5.428, 6.084, 6.040,
6.560, 6.600, 6.610, 6.490, 6.520, 6.100, 6.260, 6.430, 6.380, 6.270,
6.229, 6.608, 6.540, 7.221, quadrillion BTU (British Thermal Units),
respectively. Fit these data by cubic polynomial, for which you must
write the function with polynomial degree as input parameter and

norm of residuals 2
i

i 1

n

R

 as output parameter; use the year values

centered and scaled by the expression

i
i

x

=
x x

X



where x – year value, and xis the year mean and standard
deviation respectively, X is the value of x after centering and scaling, i
is the point number.

x

240 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

Present the data and fit curve in the plot.

7. Fit the data from Exercise 6 using the Basic Fitting tool; select cubic
polynomial, display polynomial coefficients, fit expression and norm
of residuals in the Result panel of the tool window, give Figure
window with two subplots of fit curve with fit equation and of
residuals with residual norm.

8. In a process of an enzyme producing by fermentation, the following
pH values are measured 8.88, 8.78, 8.60, 8.50, 8.70, 8.30, 8.30, 8.20 at
times 8, 8.3, 9, 9.3, 10, 10.3, 11, 11.3 hours respectively. Fit the data
by using the Basic Fitting tool, display polynomial coefficients, fit
expression, and norm of residuals in the Result panel of the tool; give
Figure window with two subplots of fit curve with fit equation and of
residuals with residual norm.

9. Bimonthly mean concentrations of atmospheric carbon dioxide
between the years 2008 and 2011 were: 771, 773, 776, 771, 766, 770,
774, 778, 780, 774, 769, 773, 778, 784, 785, 778, 774, 778, 783, 786,
788, 782, 778, and 782 parts per million. Write the script that uses the
data for the years 2008, 2009, and 2010 for obtaining the linear trend
and seasonality components and predict carbon dioxide concentrations
in the 2011 year, calculate error as differences between predicted and
observed values; display results as a two-column table with predicted
values in the first column and error values in the second; generate the
plot with the original data points for 2011 and line with predicted
values signed by asterisk.

10. Use the Time Series Tools with the data from Exercise 9 for 2008
(January 31) …2011 (December 31) years, detrend by the liner option
and smooth obtained data by the first-order filter type option; present
the tool window and time series plot with the smoothed data.

11. The monthly mean air pressure differences between two adjoining
African animal parks during the years 2009 and 2010 were: 16.5, 16.8,

Curve Fitting and Time Series Primary MATLAB® for Life Sciences: Guide for Beginners 241

NaN, 15.4, 9.5, 6.1, 10.1, 9.3, 5.3, 11.2, 16.6, 15.6, 12.0, 11.5, 8.6,
13.8, 8.7, NaN, 8.6, NaN, 12.8, 13.2, 14.0, 13.4, and 14.8 mbar. Data
are missing for March 2009, June 2011 and August 2011 (marked as
NaN, not a number, in air pressure series). Use the Time Series Tools
to define missing data by the ‘Interpolate…’ option. Present the
resulting Time Series Tools table and Time series plot pressures series
that include values defined for months when the data were missed;
mark date with the asterisk by the ‘Set Line Properties …’ options of
the ‘Plot’ item of the Time Series Tools menu.

6.7. ANSWER TO SELECTED QUESTIONS AND EXERCISES

2. a) to plot previously (y,x)- data points and select the Basic Fitting line into the
Tools option of the Figure window menu.

4. d) both answers (b) and (c) are correct.

6.
>> norm_of_residuals=Ch6_6(3)
norm_of_residuals =
0.9123

1970 1975 1980 1985 1990 1995 2000 2005 2010
4

4.5

5

5.5

6

6.5

7

7.5

Year

B
io

m
as

s
E

ne
rg

y,
 q

ua
dr

ill
io

n
B

T
U

Biomass Energy Consumption, 1973-2008

Original Data

Polynomial Fit

242 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

8. In the Command Window

>>pH =[8.88 8.78 8.6 8.5 8.7 8.3 8.3 8.2];
>>t=[8 8.3 9 9.3 10 10.3 11 11.3];
>>plot(t,pH,'o')

Select the Basic Fitting line in the Tools option of the Figure Window menu.

After providing solution the Basic Fitting and Figure windows appear as follows:

Curve Fitting and Time Series Primary MATLAB® for Life Sciences: Guide for Beginners 243

10. In the Command Window

>> CO2=[771, 773, 776, 771, 766, 770, 774, 778, 780, 774, 769, 773, 778, 784,
785, 778, 774, 778, 783, 786, 788, 782, 778, 782];

>> tstool

After execution the operations necessary to solve the problem, the Time Series
Tools and Time Series Plot windows will look like the one below:

11. In the Command Window

>>dp=[16.5, 16.8, NaN, 15.4, 9.5, 6.1, 10.1, 9.3, 5.3, 11.2, 16.6, 15.6, 12.0, 11.5,
8.6, 13.8, 8.7, NaN, 8.6, NaN, 12.8, 13.2, 14.0, 13.4, 14.8];

244 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

>> tstool

After executing the operations necessary to solve the problem, the Time Series
Tools window and Time Series Plot windows will look like the one below:

01/31/08 07/27/08 01/22/09 07/20/09 01/15/10 07/12/10 01/07/11 07/05/11 12/31/11
-8

-6

-4

-2

0

2

4

6

8

Time Series Plot of CO2_for_export

Time (days)

...CO2_for_export

Curve Fitting and Time Series Primary MATLAB® for Life Sciences: Guide for Beginners 245

01/31/09 04/28/09 07/24/09 10/20/09 01/15/10 04/12/10 07/09/10 10/04/10 12/31/10
4

6

8

10

12

14

16

18

Time Series Plot of dp_for_export

Time (days)

...dp_for_export

246 Primary MATLAB® for Life Sciences: Guide for Beginners, 2013, 246

Leonid Burstein
All rights reserved-© 2013 Bentham Science Publishers

REFERENCES

[1] The MathWorks, Inc., MATLAB Documentation. Retrieved April, 2013, From
http://www.mathworks.com/products/index.html?s_cid=pl_prodandservices

[2] L. Burstein, MATLAB® in Bioscience and Biotechnology. Biohealthcare Publishing
(Oxford) Limited, Oxford-New York, 2011.

[3] A. Gilat, Matlab®An Intoduction With Applications. Wiley, NJ, 2004.
[4] J. Tranquillo, MATLAB for Engineering and the Life Sciences, Morgan & Claypool

Publishers, 2011.
[5] M. R. King, N. A. Mody, Numerical and Statistical Methods for Bioengineering:

Applications in MATLAB, Cambridge University Press, NY, 2010.
[6] R. W. Shonkwiler, J. V. Herod, Mathematical Biology: An Introduction with Maple and

Matlab, Springer, Heidelberg-London-New York, 2009.
[7] G.Strang, Linear Algebra and Its Applications, Thomson, Brooks/Cole, 2006.
[8] L. A. Seidman, C. J. Moore. Basic Laboratory Methods for Biotechnology: Textbook and

Laboratory Reference. Prentice-Hall, NJ, 2000.
[9] N. S. Mosier, M. R. Ladish. Modern Biotechnology. Connecting Innovations in

Microbiology and Biochemistry to Engineering Fundamentals. Wiley, New York, 2009.
[10] P. Henrici, Elements of Numerical Analysis, John Wiley & Sons Inc., 1964.
[11] N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia, PA,

2002.
[12] E. Hairer, S. P. Nørsett, G. Wanner, Solving Ordinary Differential Equations I: Nonstiff

Problems, Springer, Berlin etc., 1993.

 Primary MATLAB® for Life Sciences: Guide for Beginners, 2013, 247-251 247

Leonid Burstein
All rights reserved-© 2013 Bentham Science Publishers

APPENDIX 1

MATLAB Characters, Operators and Commands

Abstract: The list of MATLAB® special characters, scalar and matrix operators,
commands and functions are presented in the alphabetical order.

Keywords: MATLAB® commands; special characters, scalar and matrix
operators.

OPERATORS OF SCALAR, ARRAY AND MATRIX ARITHMETIC

 Operator and description Location, page

+
-
*
.*
/
./
\
.\
^
.^

Addition
Subtraction
Scalar and matrix multiplication
Element-wise multiplication
Right division
Element-wise right division
Left division
Element-wise left division
Exponentiation
Element-wise exponentiation

12, 32
12, 32
12, 33

36
12, 35

36
12, 35

36
12
36

SPECIAL CHARACTERS

 Character and description Location, page

=
%
()
[]

(space)

:

,
;

…

‘

Assignment
Percent; is used for comments and for output format specification
Parentheses; is used for input arguments and in matrix addressing
Brackets; use for vector, matrix, array elements input
Space; separates elements into arrays, and adds into output specifications
Colon; creates vectors, used also for loops iterations and for selecting all
array elements
Comma; separates elements into arrays and commands on the same line
Semicolon; suppresses printing if wrote after the command. Separates matrix
rows and commands on the same line
Ellipsis; signs that a long statement to be continued on the next line
apostrophe; array or matrix transpose quotation mark; is used for a text string
generation

14
12, 22
12, 30

27
21, 27

27, 30, 57

12, 27, 29
11

12, 29
21, 31, 42

248 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

RELATIONAL AND LOGICAL OPERATORS

 Operator and description Location, page

==
>

>=
<
&
~=
|

<=
~

Equal; element-wise
Greater than; element-wise
Greater than or equal to; element-wise
Less than; element-wise
Logical AND
Not equal; element-wise
Logical OR
Lower than or equal to; element-wise
Logical NOT

51
51
51
50
52
51
52
51
52

ALPHABETICAL LIST OF COMMANDS AND PREDEFINED
VARIABLES

 Command and description Location, page

abs
acos
acosd
acot
acotd
and
ans
asin
asind
atan
atand
axis
bar
bar3

clabel
clc

clear
close

colormap
contour
contour3

cos
cosd
cot
cotd

Absolute value
Inverse cosine for angle in radians
Inverse cosine for angle in degrees
Inverse cotangent for angle in radians
Inverse cotangent for angle in degrees
Logical AND
Last calculated or defined value
Inverse sine for angle in radians
Inverse sine for angle in degrees
Inverse tangent for angle in radians
Inverse tangent for angle in degrees
Controls axis scaling and appearance
Generates a vertical bars on the plot
Generates 3D vertical bars on the plot
Labels iso-level lines
Clear the command window
Remove variables from the Workspace
Closes one or more Figure Windows
Sets colors
Creates a 2D-contour plot
Creates a 3D-contour plot
Cosine for angle in radians
Cosine for angle in degrees
Cotangent for angle in radians
Cotangent for angle in degrees

12
14
14
14
14
52
14
13
14
14
14
83
108
109
107
12
19
77
95
107
108
13
13
13
13

Appendix 1 Primary MATLAB® for Life Sciences: Guide for Beginners 249

cylinder
det
diag
diff
disp
doc

else, elseif
end

errorbar
exp
eye

factorial
figure
find
floor
for

format
fplot

fprintf
function

fzero
global
grid
gtext
help

help graph2d
help graph3d

help specgraph
hist

hold on/off
i

if
inf

input
interp1

inv
j

legend
length

linspace
log

log10
loglog
lookfor

Generates a cylinder
Calculates a determinant
Creates a diagonal matrix from a vector
Calculates a difference, approximates a derivative
Display output
Displays HTML documentation in the Help window
Is used with if; conditionally executes if statement condition
Terminates scope of for, while, if statements, or serves as last index
Creates a plot with error bounded points
Exponential
Creates a unit matrix
Factorial function
Creates the Figure window.
Finds indices of certain elements of array
Round off toward minus infinity
Is used to repeat execution of command/s
Sets current output format
Creates a 2D plot of a function
Display formatted output
Function Creates a new function
Solves a one-variable equation
Declares a global variable
Adds grid lines
Adds a text with the help of the mouse
Displays explanations in the Command Window
Displays list of 2D graph commands
Displays list of 3D graph commands
Displays list of specialized graph commands
Plots a histogram
Keeps current graph open/ends hold on

1

Conditionally execute
Infinity, is produced by dividing by 0
Prompt to user input
One-dimensional interpolation
Calculates the inverse matrix
The same as i
Adds a legend to the plot
Number of elements in vector
Generates a linearly spaced vector
Natural logarithm
Decimal logarithm
Generates a 2D plot with log axes
Search for the word in all help entries

107
41
40
151
21
16
56

29,56
101
12
40
14
106
53
13
57
19
106
22
137
145
140
83
84
15
105
105
105
102
78
19

56
19
135
144
35
19
86
39
28
12
13
106
16

250 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

max
mean
mesh

meshgrid
min
NaN
not

num2str
ode113
ode15i
ode15s
ode23
ode23s
ode23t
ode23tb
ode45
odeset
ones

or
pi
pie
pie3
plot
plot3
polar
polyfit
polyval
quad
rand
randi

randn
repmat
reshape

rng
rotate3d on/off

round
semilogx
semilogy

sin
sind
size
sort

sphere

Returns maximal value
Calculates mean value
Creates a 3D plot with meshed surface
Creates X,Y matrices for further plotting
Returns minimal value
Not a number
Logical NOT
Converts numbers to a string.
Solves nonstiff ODEs
Solves implicit ODEs
Solves stiff ODEs
Solves nonstiff ODEs
Solves stiff ODEs
Solves stiff ODEs
Solves stiff ODEs
Solves nonstiff ODEs
Sets ODE options
Creates an array with ones
Logical OR

Number 
Creates a 2D pie plot
Creates a 3D pie plot
Creates a 2D plot
Creates a 3D plot with points and/or lines
Creates a 2D plot in polar coordinates
Fits the data by a polynomial
Evaluates the polynomial value
Numerical integration with the Simpson's rule
Generates an array with uniformly distributed random numbers
Generates an array with integer random numbers from uniform
discrete distribution
Generates an array with normally distributed numbers
Duplicates a matrix
Changes size of a matrix
Controls random number generators
Interactively rotates/stops rotation of a 3D plot
Round off toward nearest integer
Creates a 2D plot with log-scaled x-axis
Creates a 2D plot with log-scaled y-axis
Sine
Sine for angle in degrees
Size of array/matrix
Arranges elements in ascending or descending order
Generates a sphere plot

41
41
93
92
41
19
52
41
175
175
175
175
175
175
175
175
183
38
52
13
110
110
78
89
106
205
205
148
38
40

38
40
40
39
100
13
104
104
13
13
40
41
107

Appendix 1 Primary MATLAB® for Life Sciences: Guide for Beginners 251

sqrt
stairs
std

stem
stem3
strvcat
subplot

sum
surf
surfc
tan
tand
text
title

transpose (')
trapz
ver

view
while
who
whos

xlabel
ylabel
zeros
zlabel

Square root
Creates star-like plot
Calculates standard deviation
Creates a 2D stem plot
Creates a 3D stem plot
Concatenates strings vertically
Places multiple plots on the same page
Calculates sum of elements
Creates a 3D surface plot
Generates surface and counter plots together
Tangent for angle in radians
Tangent for angle in degrees
text Adds a text to the plot
Adds a caption to the plot
Transposes elements of an array
Numerical integration with the trapezoidal rule
Displays versions of the MATLAB products
Specifies a viewpoint for 3D graph
Repeat execution of command/s
Displays variables stored in the Workspace
Displays Workspace variables and additional information about the
variables
Adds a label to x-axis
Adds a label to y-axis
Creates an array with zeros
Adds a label to z-axis

13
110
41
109
109
40
79
41
93
108
13
13
84
84
31
149
18
96
57
19
19

84
84
40
89

252 Primary MATLAB® for Life Sciences: Guide for Beginners, 2013, 252-255

Leonid Burstein
All rights reserved-© 2013 Bentham Science Publishers

APPENDIX 2

The Desktop, Help and Editor Windows in MATLAB R2012b

Abstract: The MATLAB® windows modifications, introduced by the R2012b version,
are briefly described. The Desktop and Editor toolstrips, and redesigned Help Window
is presented.

Keywords: MATLAB® R2012b; toolstrips; Desktop; Editor Window; Help
Window.

INTRODUCTION

When this book manuscript was prepared, a new version MATLAB®, R2012b,
was appeared; in this version the Desktop, Help and Editor Windows have been
modified. The changes compared to the version presented in the book are
described briefly below.

DESKTOP

The changes in the Desktop view are connected with the strip in the top of the
window. The located here, so-called, toolstrip collects the main MATLAB®
purpose operations and functions in three tabs: the Home, Plots and Apps. Tabs
are divided into sections that contain a series of related controls: buttons, drop-
down menus and other user interface elements (Fig. A1.2). The tabs contain a
number of buttons that are grouped in sections by its functionality (file, variable,
code, etc.), the sections include buttons to execution of operations (e.g., Open,
New Variable, Preferences and so on). In more details:

 The Home tab includes general purpose operations like creating new
files, importing data, managing your workspace, and setting your
Desktop layout;

 The Plots tab displays a gallery of plots available in MATLAB and
any toolboxes that you have installed;

 The Apps tab contains a gallery of applications from the toolboxes;

Appendix 2 Primary MATLAB® for Life Sciences: Guide for Beginners 253

Figure A2.1: The Desktop toolstrip. MATLAB® R2012b version.

To the right of the top of the strip, the quick access toolbar is located; this toolbar
contains frequently used options such as cut, copy, paste, etc.

In the bottom part of the strip, the current folder toolbar line is placed;
analogously to previous versions, it is intent to control the current working
directory;

Located next to the quick access toolbar, the Search Documentation box enables
to search the documentation for functions and other topics of interest.

The Aps tab and quick access toolbar are customizable.

Help Window

The R2012b release includes a redesigned Help window, represented below (Fig.
A2.2). The window appears with list of the toolboxes.

Each product's documentation is now presented by categories of functionality,
such as Graphics or Simulation, rather than by information type, such as Function
Reference or User's Guide. Categories include links to related reference pages,
examples, and topics.

The Home, Plots
and Apps tabs tabs

The strip with the
sections

The quick access
toolbar

The Search
Documentation box

The current
folder
toolbar

254 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

Figure A2.2: The Help window. MATLAB® R2012b version.

Most features of the previous Help browser are available in the new browser,
although some features has a different appearance or location. For example:

 The table of contents does not appear in this Help Window version; to
open it you need to click the Table of Contents button, , that
appears when the toolbox or the actual topics were chosen.

 Tasks performed in previous versions by the Help browser menu
items (such as setting preferences or viewing page locations), can be
accessed now via right-click menus, keyboard shortcuts, or toolbar
buttons.

 ‘Demos’ are now marked as ‘Examples’, and are accessible from the
top of each product page.

EDITOR

The Editor Window also has a toolstrip with three tabs: the Editor, Publish, and
View. When the Editor is docked in the Desktop, these tabs appear to the right of

Appendix 2 Primary MATLAB® for Life Sciences: Guide for Beginners 255

the Desktop tabs. The toolstrip of the separate Editor Window is normally looks
as:

Figure A2.3: Toolstrip of the Editor Window. MATLAB® R2012b version.

The Editor tab contains the functions to the file edition; these functions are
grouped, similarly to those in the Desktop toolstrip, into the sections (File, Edit,
Navigate, etc.).

The Publish tab takes the controls that are needed to create, format, and present in
a view suitable for publishing the programs and other documents.

The View tab is intent to control the layout and appearance of files in the Editor.

The Debug section of the Editor tab replaces the Run section, when a breakpoint
is put in the file and after the program is running. The Debug section contains the
controls that are necessary to debug the procram. The Editor toolstrip in this case
have the view:

Figure A2.4: Toolstrip of the Editor Window after clicking the Run button. MATLAB® R2012b
version.

With the exception of the changes above, all other MATLAB® windows,
functions, and commands presented in the book, can be used exactly so as they
are described.

The Debug section, appears instead of the Run section
and after clicking the Run button

256 Primary MATLAB® for Life Sciences: Guide for Beginners, 2013, 256-273

Leonid Burstein
All rights reserved-© 2013 Bentham Science Publishers

Index

A
abs, 12, 248
acceleration, population growth, 151
acos, 14, 248
acosd, 14, 248
acot, 14, 248
acotd, 14, 248
activation, energy, 145
adhesion, on solid surface, 126
air temperature, prediction, 218
Andrade-type expression, 123
animal park, monthly atmospheric
 pressure, 240
antibiotic, acidity level, 74
ans, 14, 248
answers, to selected exercises, 72, 126, 169, 201 , 241
arithmetical

operations, 12
 with arrays, matrices, 26
 operators, 26, 36
Arrhenius equation, 25, 120, 125,145
array

definition, 36
division, 36
exponentiation, 36
element-wise (or array, or element-by-element) operations, 36

 multiplication, 36
arrow key, 12
Asia, population, 167, 170
asin, 13, 248
asind, 13, 248
assignment operator, 14

Index Primary MATLAB® for Life Sciences: Guide for Beginners 257

atan, 14, 248
atand, 14, 248
axis, 83, 248
 equal, off, square, tight, 103

B
Bacteria population

amount, 160
growth, 113, 125

statistics, 46

bar, 108, 248
bar3, 109, 248
basal metabolic rate (BMR), 166
Basic Fitting
 equation, coefficients, 211

panels, 210
plot, 210

 Show/hide next panel, button, 209
 tool, interface, 208
 residuals, norm, 211

Save to workspace …, 212
select data, 210

 window, 210
batch, reactor, 193
biomass, energy consumption, 239
bio-oil, viscosity, 104
bimolecular reaction, 178
bioreactor,

chemostat-type, 197
continuous stirred-tank, CSTB, 197

blood, pressure, 206
blossom, tree, data, 70
body mass index (BMI), 166

258 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

C
cancer

 incident data, 215
tumor, 200

carbon dioxide, concentration, 240
chapter, design, 5
chemostat, 197,
clc, 12, 248
clabel, 107, 248
clear, 19, 248
close, 77, 248
codon, 16
codoncount, 16
colon (:), 27, 30, 57, 247
color,

intensity, 95
line specifiers, 75
property name, 87

colormap, 95, 248
Command Window, 11
comment (%), 12, 22, 247
compound, amount, 168
component, time series
 random, 218
 seasonal, 218
 trend, 218
concentration
 carbon dioxide, 240
 compound, 71

two species, 111
change, 123

 solution/solute, 66, 125, 137, 167
plankton, 221

 molality, 166

Index Primary MATLAB® for Life Sciences: Guide for Beginners 259

 molarity, 66, 166
 molar, 65, 125, 137
conditional statements
 if … end, 56, 249
 if…else…end, 56, 249
 if …elseif …else …end, 56,249
 while … end, 56, 249
conductivity, aqueous solution, 229
consecutive reaction, 167
contour, 107, 248
contour3, 108, 248
cos, 13, 248
cosd, 13, 248
cot, 13, 248
cotd, 13, 248
cubic, fitting, 208
Current Folder, window, 10
curve

fitting, 205
two or more, single plot, 78

cylinder, 107, 249

D
decay, rate, 168
density
 air, 115
 mosquito, 60
 probability function, 116
 solution, 167
Desktop,
 windows, 9
 toolstrip, 253
derivative, 150
det, 41, 249

260 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

determinant, 41, 249
detrend, 217
diag, 40, 249
diff, 151, 249
differential equations, 173
digestive system (DS), 190
dilution, 140
 rate, 198
dissolution, drag
 in blood, 253
 in digestive system, 253

rate, 252
dissociation, constant, 169
distance, between two molecules, 24
disp, 21, 249
display formats, 19
DNA, 16, 42
 volume, 68
doc, 16, 249

E
Editor

plot tool, 82, 88
 buttons, 88
window, 5, 131, 254
toolstrip, 255

element-wise (or element-by-element) operations, 36
else, 56, 249
elseif, 56, 249
end, 29, 56, 249
enzyme,
 activity, 29, 43
 catalyzed reactions, 197
 producing, 240

Index Primary MATLAB® for Life Sciences: Guide for Beginners 261

equal, element-wise 51, 248
equation, nonlinear algebraic, 145
equations, set of linear, 34
errorbar, 101, 249
 symmetric, 102
 asymmetric, 102
exercises, and questions, 66, 121, 165, 196, 238
exp, 12, 249
extrapolation, 143,
eye, 40, 249

F
factorial, 14, 249
false, 52
Fermat’s spiral, 122
figure, 106, 249
Figure window, 10, 74
Filter item, Time Series Tools, 237
find, 53, 249
find, y=f(x), Basic Fitting, options
 enter value(s)…, 212
 plot evaluated results, 212
fitting,

exponential, 208
logarithmic, 208
polynomial, 206

linear, quadratic, cubic, and more, 209
floor, 13, 249
flow

control, 50
commands, 51

for, 57, 249
format,
 short or shortE, 20

262 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

 long or longE, 20
formatting
 text string, 86

2D plots, 82
3D plots, 95
with plot editor, 88

fplot, 23, 249
fprintf, 22, 43, 139
function, 249

arguments, input/output, 137
definition line, 137
file, 140
 saving, 140
 running, 141
user-defined, 137

function, elementary and trigonometric, 12
fzero, 145, 249

G
gas, volume, 156
global, 140, 249
Greek characters, 84, 87
grid, 83, 249
growth, rate

bacteria, 46,
 microorganism, 163

population, 151
gtext, 84, 249

H
help, 15, 249
help, browser/window, 16, 254
help graph2d, 105, 249
help graph3d, 105, 249

Index Primary MATLAB® for Life Sciences: Guide for Beginners 263

help specgraph, 105, 249
hist, 102, 249
histogram, 102
hold on/off, 78, 249
hypocycloid, 122
human
 cell, DNA, 42
 circulatory system, 68

minimal energy, daily, 166

I
i, square root of -1, 19, 249
integer, random number, 39
identity matrix, 34
if, 56, 249
inf, 19, 249
input, arguments of function, 138
input, 135, 249
integration,

commands,
 quad, 148, 250
 trapz, 149, 251
methods
 Riemann, sum, 161

 Simpson, sum, 148
trapezoid, rule, 147

intensity, color, 95
interp1, 144, 249
interpolation,

data, 143
method, property, 144
cubic, property value, 144

 spline, property value, 144
 linear, property value, 144

264 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

interrupt, indefinite loop, 58
inv, 35, 249
inverse

matrix, 35
trigonometric functions, 13, 248

J
j, square root of -1, 19, 249

K
Kinematic viscosity, 123

L
Langmuir
 adsorbtion equation, 126
 isotherm, 126
leaf, growth rate, 200
left division, 12, 35, 247
legend, 86, 249
length, 39, 249
less than (relational), 50, 248
line, style specifiers, 75
linear, fitting, 209
LineWidth, property, 76
linspace, 28, 249
liquid, cooling, Newton's law, 25
loop, 57
 continued indefinitely, 58
log, 12, 249
log10, 12, 249
logical
 functions, 50, 52
 operators (commands), 52, 248
 variables, 52

Index Primary MATLAB® for Life Sciences: Guide for Beginners 265

loglog, 106, 249
lookfor, 16, 249
Lotka-Volterra, model, 185, 199

M
Malthus-Verhulst, equation, 198
marker, type specifiers, 75
MarkerEdgeColor, property, 76
MarkerFaceColor, property, 76
MarkerSize, property, 97
matrix
 addition/substraction, 32
 determinant, 41
 division, 34
 generation, 29
 identity, 34
 inverse, 35

multiplication, 33,
 size, 19, 32
max, 41, 250
mean, 41, 250
mesh, 93, 250
meshgrid, 92, 250
m-file, 5, 131
Michaelis and Menten
 enzyme-catalized reaction, 197
min, 41, 250
modifiers, for string, 87
more than, (relational), 51, 248

N
NaN, Not-a-Number, 19, 250
not, logical, 52, 250
not equal (relational), 51, 250

266 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

number,
display output, format, 19
scientific notation, 20

num2str, 41, 250

O
ode, 175, 250
ode15s, 175, 177, 250
ode23, 175, 250
ode23s, 175, 250
ode23t, 175, 250
ode23tb, 175, 250
ode113, 175, 250
ode45, 175, 177, 250
ODE, numerical solution method, 176
ODE solvers,
 form, 177, 182
 solution steps, 178
odeset, 183, 250
ones, 38, 250
or, logical, 52, 250
output

commands, 21
arguments of function, 138

P
parentheses, 12, 30, 247
partial pressure, first order reaction, 120
percent, symbol,

comment, 12, 247
fprintf, 22,

pi, number, 13, 250
pie, 110, 250
pie3, 110, 250

Index Primary MATLAB® for Life Sciences: Guide for Beginners 267

plankton, concentration, 219
plot
 axis, 83, 248
 limits, 83

axis labels, plot editor, 88
 bar,

two or three dimensional, 108, 109
error, 101

 Basic Fitting
interface, 208
panels, options, 210, 211, 212

color specifiers, 75, 87
contour, command
 2D, 141, 107,247
 3D, 108, 248
formatting, 82, 95
 plot editor, 88
generation,
 XY (2D), 74
 XYZ (3D), 88
grid, for points in 3D, 91
histogram, 102
labels, 84, 89
legend, 86
line
 style specifiers, 75

3D, 89
logarithmic axis, 104
type specifiers, 75

 mesh, in 3D, 93
 multiple, two or more

curves in a plot, 78
 plots on a page, 79

observation angles, 96

268 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

pie, charts, 110
polar, 106
properties, 75
residuals, 212
rotation, 99
semi-logarithmic axis, 104
specialized, 101
specifiers, some examples, 76
surface, 3D, 93
text, 84
Time Series Tools, 235
two-dimensional, 2D, 74
three-dimensional, 3D, 88
title, 84

plot editor, buttons, 88
plot, 78, 250
plot3, 89, 250
plotting, antibiotic acidity level, 75
polar, 106, 250
polar rose, 122
pollutant, disease incident, fit, 216
polyfit, 205, 250
polyval, 205, 250
ponderal index, PI, 118
population
 acceleration, 151
 animal, 218
 Asia, 167
 bacteria, 62, 125
 microorganism, 112, 164
predator-prey, model, 185, 199
prediction/forecasting, equation, 219
pressure data,
 air, 240

Index Primary MATLAB® for Life Sciences: Guide for Beginners 269

atmospheric, 115
 injection dosage-blood, 212
property, in plot command

name, 78
value, 78

protein, 42, 50

Q
quad, 148, 250
quadratic

equation, fit, 209, 213
fitting, 210

questions, and exercises, 66, 121, 165, 196, 238
quick access toolbar, 253

R
rand, 38, 250
randi, 38, 250
randn, 38, 250
random

component, 220
numbers, 38

rate
 basal metabolic (BMR), 166

decay, 168
dissolution, drug, 190
proliferation, 160

reactant
amount, 179, 183, 194
breakdown, 168
concentration, 160, 168, 188

reaction
 bimolecular, 178
 constant, 146, 169

270 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

enzyme - catalized, 197
equilibrium, 111

 first or higher order, 104,120, 123, 125, 181, 184, 194
 gaseous, 120
 parallel, 159

rate, 26, 111, 159, 169, 178, 197
 subsequent, 187
 velocity, 123
Redlich-Kwong, equation, 156
relational operators, 50, 248
repmat, 40, 250
reshape, 40, 250
residuals, 206
 plot, 212
 norm, 212, 215, 239
Riemann sum,
 left, 161
 right, 168
rigid body, motion, 125
right division, 12, 35, 247
RNA,
 bases, 44

volume, 132
rng, 39, 250
rotate3d on/off 100, 250
roughness, ophthalmology, 126
round, 13, 250

S
script file
 input values, 135
 run, 135
 saving, 133

writing, 131

Index Primary MATLAB® for Life Sciences: Guide for Beginners 271

search, Help window, 16
seasonality, time series, 218, 240
semicolon, 27, 30, 57, 247
semi-logarithmic axis, 104
semilogx, 104, 250
semilogy, 104, 250
Simpson method, sums, 148, 161
sin, 13, 250
sind, 13, 250
size, 40, 250
solute, 125, 137, 167
sort, 41, 250
sphere, 107, 250
sqrt, 12, 251
stairs, 110, 251
std, 41, 251
stem, 109, 251
stem3, 109, 251
strvcat, 40, 251
string
 array, 42

input, 135
print, 21

structure, fit variable in workspace, 215
subplot, 79, 251
subscript, in text string, 87
sum, 41, 251
superscript, in text string, 87
surf, 93, 251
surface, adhesion, 126
surfc, 108, 251
susceptible

-infections-recovered (SIR), model, 199
number, 199

272 Primary MATLAB® for Life Sciences: Guide for Beginners Leonid Burstein

T
table, display, 23, 44
tan, 13, 251
tand, 13, 251
text, 84, 251
text modifiers, 87
time series, tool
 areas, 223

Define Uniform Time Vector, box, 228
 export, 237

import, Wizard steps, 226
menu, options, 222

 plot, 235
Process Data, box, 228
 Detrend …, 229

Filter …, 337
Interpolate …, 237

window, 222
title, 84, 251
toolboxes, about, 17
trajectory, rigid bod, 125
transpose, (') operator, 31, 251
trapezoidal rule, 147, 175
trapz, 149, 251
trend, time series, 218
true, value, 50
tumor, mass growth, 200

V
variable
 global/local, 140
 name, 18
 predefined, 19
 management, 18

Index Primary MATLAB® for Life Sciences: Guide for Beginners 273

velocity, molecular, gaseous helium, 97
vector
 generation, 26
 operators, 34
viscosity,

bio-oil, 104
kinematic, 123

ver, 18, 251
view, 96, 251

W
weight

data, histogram, 103
versus height, 48
molecular, amino acids, 54
mushroom, 103
screening, 54

while, 57, 251
who, 19, 251
whos, 19, 251
wind, chill index, 46, 70

X
xlabel, 84, 251

Y
ylabel, 84, 251

Z
zeros, 40, 251
zlabel, 89, 251

	Cover

	Title

	EUL

	Dedication

	Contents

	Preface

	Acknowledgement

	Chapter 01

	Chapter 02

	Chapter 03

	Chapter 04

	Chapter 05

	Chapter 06

	References

	Appendix A

	Appendix B

	Index

