

PRACTICAL IMAGE AND
VIDEO PROCESSING
USING MATLAB®

PRACTICAL IMAGE AND
VIDEO PROCESSING
USING MATLAB®

OGE MARQUES
Florida Atlantic University

About the Cover (by Roger Dalal)
The elegant Nautilus, with its progressive chambers and near-perfect logarithmic spiral, demonstrates the
beauty of mathematics and the power of digital image processing. Created exclusively for Practical
Image and Video Processing Using MATLAB®, this composition features multiple layers and processing
techniques. The primary image is doubly sharpened with an 8 pixel radius, and enhanced with
posterizing and edge detection algorithms. The outer, secondary image is indexed to 20 colors, pixelized
at two percent resolution of the center image, and partially hidden by a fading, offset radial mask.

Copyright © 2011 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400,
fax (978) 646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission should
be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created ore extended by sales
representatives or written sales materials. The advice and strategies contained herin may not be
suitable for your situation. You should consult with a professional where appropriate. Neither the
publisher nor author shall be liable for any loss of profit or any other commercial damages, including
but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care
Department with the U.S. at 877-762-2974, outside the U.S. at 317-572-3993 or fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print,
however, may not be available in electronic format.

Library of Congress Cataloging-in-Publication Data

Marques, Oge.
Practical image and video processing using MATLAB® / Oge Marques.

p. cm.
Includes bibliographical references and index.

ISBN 978-0-470-04815-3 (hardback)
1. Image processing–Mathematics. 2. Digital video–Mathematics. 3. Image processing–Digital

techniques. 4. MATLAB®. I. Title.
TA1637.M3375 2011
502.85’66–dc22

2011008249
oBook ISBN: 978111093467
ePDF ISBN: 9781118093481
ePub ISBN: 9781118093474

Printed in Singapore.

10 9 8 7 6 5 4 3 2 1

http://www.copyright.com

To my Son Nicholas, whose
Precious Existence has
Provided the Greatest

Motivation to Pursue this
Project.

And in Loving Memory of my
Father, Ogê Aby Marques.

CONTENTS

LIST OF FIGURES xxi

LIST OF TABLES xxxix

FOREWORD xli

PREFACE xliii

ACKNOWLEDGMENTS xlix

PART I IMAGE PROCESSING

1 INTRODUCTION AND OVERVIEW 3

1.1 Motivation / 3

1.2 Basic Concepts and Terminology / 5

1.3 Examples of Typical Image Processing Operations / 6

1.4 Components of a Digital Image Processing System / 10

1.5 Machine Vision Systems / 12

1.6 Resources / 14

1.7 Problems / 18

2 IMAGE PROCESSING BASICS 21

2.1 Digital Image Representation / 21

2.1.1 Binary (1-Bit) Images / 23

vii

viii CONTENTS

2.1.2 Gray-Level (8-Bit) Images / 24

2.1.3 Color Images / 25

2.1.4 Compression / 26

2.2 Image File Formats / 27

2.3 Basic Terminology / 28

2.4 Overview of Image Processing Operations / 30

2.4.1 Global (Point) Operations / 31

2.4.2 Neighborhood-Oriented Operations / 31

2.4.3 Operations Combining Multiple Images / 32

2.4.4 Operations in a Transform Domain / 32

3 MATLAB BASICS 35

3.1 Introduction to MATLAB / 35

3.2 Basic Elements of MATLAB / 36

3.2.1 Working Environment / 36

3.2.2 Data Types / 37

3.2.3 Array and Matrix Indexing in MATLAB / 37

3.2.4 Standard Arrays / 37

3.2.5 Command-Line Operations / 38

3.3 Programming Tools: Scripts and Functions / 38

3.3.1 M-Files / 39

3.3.2 Operators / 40

3.3.3 Important Variables and Constants / 42

3.3.4 Number Representation / 42

3.3.5 Flow Control / 43

3.3.6 Code Optimization / 43

3.3.7 Input and Output / 43

3.4 Graphics and Visualization / 43

3.5 Tutorial 3.1: MATLAB—a Guided Tour / 44

3.6 Tutorial 3.2: MATLAB Data Structures / 46

3.7 Tutorial 3.3: Programming in MATLAB / 53

3.8 Problems / 59

4 THE IMAGE PROCESSING TOOLBOX AT A GLANCE 61

4.1 The Image Processing Toolbox: an Overview / 61

4.2 Essential Functions and Features / 62

4.2.1 Displaying Information About an Image File / 62

4.2.2 Reading an Image File / 64

CONTENTS ix

4.2.3 Data Classes and Data Conversions / 65

4.2.4 Displaying the Contents of an Image / 68

4.2.5 Exploring the Contents of an Image / 69

4.2.6 Writing the Resulting Image onto a File / 70

4.3 Tutorial 4.1: MATLAB Image Processing Toolbox—a
Guided Tour / 72

4.4 Tutorial 4.2: Basic Image Manipulation / 74

4.5 Problems / 80

5 IMAGE SENSING AND ACQUISITION 83

5.1 Introduction / 83

5.2 Light, Color, and Electromagnetic Spectrum / 84

5.2.1 Light and Electromagnetic Spectrum / 84

5.2.2 Types of Images / 85

5.2.3 Light and Color Perception / 86

5.2.4 Color Encoding and Representation / 87

5.3 Image Acquisition / 89

5.3.1 Image Sensors / 89

5.3.2 Camera Optics / 92

5.4 Image Digitization / 93

5.4.1 Sampling / 95

5.4.2 Quantization / 96

5.4.3 Spatial and Gray-Level Resolution / 97

5.5 Problems / 101

6 ARITHMETIC AND LOGIC OPERATIONS 103

6.1 Arithmetic Operations: Fundamentals and Applications / 103

6.1.1 Addition / 104

6.1.2 Subtraction / 106

6.1.3 Multiplication and Division / 109

6.1.4 Combining Several Arithmetic Operations / 110

6.2 Logic Operations: Fundamentals and Applications / 111

6.3 Tutorial 6.1: Arithmetic Operations / 113

6.4 Tutorial 6.2: Logic Operations and Region of Interest
Processing / 118

6.5 Problems / 122

x CONTENTS

7 GEOMETRIC OPERATIONS 125

7.1 Introduction / 125

7.2 Mapping and Affine Transformations / 127

7.3 Interpolation Methods / 130

7.3.1 The Need for Interpolation / 130

7.3.2 A Simple Approach to Interpolation / 131

7.3.3 Zero-Order (Nearest-Neighbor) Interpolation / 132

7.3.4 First-Order (Bilinear) Interpolation / 132

7.3.5 Higher Order Interpolations / 132

7.4 Geometric Operations Using MATLAB / 132

7.4.1 Zooming, Shrinking, and Resizing / 133

7.4.2 Translation / 134

7.4.3 Rotation / 134

7.4.4 Cropping / 134

7.4.5 Flipping / 134

7.5 Other Geometric Operations and Applications / 134

7.5.1 Warping / 134

7.5.2 Nonlinear Image Transformations / 135

7.5.3 Morphing / 137

7.5.4 Seam Carving / 137

7.5.5 Image Registration / 137

7.6 Tutorial 7.1: Image Cropping, Resizing, Flipping,
and Rotation / 138

7.7 Tutorial 7.2: Spatial Transformations and Image Registration / 142

7.8 Problems / 149

8 GRAY-LEVEL TRANSFORMATIONS 151

8.1 Introduction / 151

8.2 Overview of Gray-level (Point) Transformations / 152

8.3 Examples of Point Transformations / 155

8.3.1 Contrast Manipulation / 155

8.3.2 Negative / 157

8.3.3 Power Law (Gamma) Transformations / 157

8.3.4 Log Transformations / 159

8.3.5 Piecewise Linear Transformations / 160

8.4 Specifying the Transformation Function / 161

8.5 Tutorial 8.1: Gray-level Transformations / 163

8.6 Problems / 169

CONTENTS xi

9 HISTOGRAM PROCESSING 171

9.1 Image Histogram: Definition and Example / 171

9.2 Computing Image Histograms / 173

9.3 Interpreting Image Histograms / 174

9.4 Histogram Equalization / 176

9.5 Direct Histogram Specification / 181

9.6 Other Histogram Modification Techniques / 184

9.6.1 Histogram Sliding / 185

9.6.2 Histogram Stretching / 185

9.6.3 Histogram Shrinking / 186

9.7 Tutorial 9.1: Image Histograms / 188

9.8 Tutorial 9.2: Histogram Equalization and Specification / 191

9.9 Tutorial 9.3: Other Histogram Modification Techniques / 195

9.10 Problems / 200

10 NEIGHBORHOOD PROCESSING 203

10.1 Neighborhood Processing / 203

10.2 Convolution and Correlation / 204

10.2.1 Convolution in the One-Dimensional Domain / 204

10.2.2 Convolution in the Two-Dimensional Domain / 206

10.2.3 Correlation / 208

10.2.4 Dealing with Image Borders / 210

10.3 Image Smoothing (Low-pass Filters) / 211

10.3.1 Mean Filter / 213

10.3.2 Variations / 213

10.3.3 Gaussian Blur Filter / 215

10.3.4 Median and Other Nonlinear Filters / 216

10.4 Image Sharpening (High-pass Filters) / 218

10.4.1 The Laplacian / 219

10.4.2 Composite Laplacian Mask / 220

10.4.3 Directional Difference Filters / 220

10.4.4 Unsharp Masking / 221

10.4.5 High-Boost Filtering / 221

10.5 Region of Interest Processing / 222

10.6 Combining Spatial Enhancement Methods / 223

10.7 Tutorial 10.1: Convolution and Correlation / 223

10.8 Tutorial 10.2: Smoothing Filters in the Spatial Domain / 225

xii CONTENTS

10.9 Tutorial 10.3: Sharpening Filters in the Spatial Domain / 228

10.10 Problems / 234

11 FREQUENCY-DOMAIN FILTERING 235

11.1 Introduction / 235

11.2 Fourier Transform: the Mathematical Foundation / 237

11.2.1 Basic Concepts / 237

11.2.2 The 2D Discrete Fourier Transform: Mathematical
Formulation / 239

11.2.3 Summary of Properties of the Fourier Transform / 241

11.2.4 Other Mathematical Transforms / 242

11.3 Low-pass Filtering / 243

11.3.1 Ideal LPF / 244

11.3.2 Gaussian LPF / 246

11.3.3 Butterworth LPF / 246

11.4 High-pass Filtering / 248

11.4.1 Ideal HPF / 248

11.4.2 Gaussian HPF / 250

11.4.3 Butterworth HPF / 250

11.4.4 High-Frequency Emphasis / 251

11.5 Tutorial 11.1: 2D Fourier Transform / 252

11.6 Tutorial 11.2: Low-pass Filters in the Frequency Domain / 254

11.7 Tutorial 11.3: High-pass Filters in the Frequency Domain / 258

11.8 Problems / 264

12 IMAGE RESTORATION 265

12.1 Modeling of the Image Degradation and Restoration
Problem / 265

12.2 Noise and Noise Models / 266

12.2.1 Selected Noise Probability Density Functions / 267

12.2.2 Noise Estimation / 269

12.3 Noise Reduction Using Spatial-domain Techniques / 269

12.3.1 Mean Filters / 273

12.3.2 Order Statistic Filters / 275

12.3.3 Adaptive Filters / 278

12.4 Noise Reduction Using Frequency-domain Techniques / 278

12.4.1 Periodic Noise / 279

12.4.2 Bandreject Filter / 280

12.4.3 Bandpass Filter / 281

CONTENTS xiii

12.4.4 Notch Filter / 282

12.5 Image Deblurring Techniques / 283

12.5.1 Wiener Filtering / 286

12.6 Tutorial 12.1: Noise Reduction Using Spatial-domain
Techniques / 289

12.7 Problems / 296

13 MORPHOLOGICAL IMAGE PROCESSING 299

13.1 Introduction / 299

13.2 Fundamental Concepts and Operations / 300

13.2.1 The Structuring Element / 301

13.3 Dilation and Erosion / 304

13.3.1 Dilation / 305

13.3.2 Erosion / 307

13.4 Compound Operations / 310

13.4.1 Opening / 310

13.4.2 Closing / 311

13.4.3 Hit-or-Miss Transform / 313

13.5 Morphological Filtering / 314

13.6 Basic Morphological Algorithms / 315

13.6.1 Boundary Extraction / 317

13.6.2 Region Filling / 319

13.6.3 Extraction and Labeling of Connected
Components / 321

13.7 Grayscale Morphology / 322

13.7.1 Dilation and Erosion / 323

13.7.2 Opening and Closing / 323

13.7.3 Top-Hat and Bottom-Hat Transformations / 325

13.8 Tutorial 13.1: Binary Morphological Image Processing / 325

13.9 Tutorial 13.2: Basic Morphological Algorithms / 330

13.10 Problems / 334

14 EDGE DETECTION 335

14.1 Formulation of the Problem / 335

14.2 Basic Concepts / 336

14.3 First-order Derivative Edge Detection / 338

14.4 Second-order Derivative Edge Detection / 343

14.4.1 Laplacian of Gaussian / 345

14.5 The Canny Edge Detector / 347

xiv CONTENTS

14.6 Edge Linking and Boundary Detection / 348

14.6.1 The Hough Transform / 349

14.7 Tutorial 14.1: Edge Detection / 354

14.8 Problems / 363

15 IMAGE SEGMENTATION 365

15.1 Introduction / 365

15.2 Intensity-based Segmentation / 367

15.2.1 Image Thresholding / 368

15.2.2 Global Thresholding / 369

15.2.3 The Impact of Illumination and Noise on
Thresholding / 370

15.2.4 Local Thresholding / 371

15.3 Region-based Segmentation / 373

15.3.1 Region Growing / 374

15.3.2 Region Splitting and Merging / 377

15.4 Watershed Segmentation / 377

15.4.1 The Distance Transform / 378

15.5 Tutorial 15.1: Image Thresholding / 379

15.6 Problems / 386

16 COLOR IMAGE PROCESSING 387

16.1 The Psychophysics of Color / 387

16.1.1 Basic Concepts / 388

16.1.2 The CIE XYZ Chromaticity Diagram / 390

16.1.3 Perceptually Uniform Color Spaces / 393

16.1.4 ICC Profiles / 395

16.2 Color Models / 396

16.2.1 The RGB Color Model / 396

16.2.2 The CMY and CMYK Color Models / 398

16.2.3 The HSV Color Model / 398

16.2.4 The YIQ (NTSC) Color Model / 401

16.2.5 The YCbCr Color Model / 401

16.3 Representation of Color Images in MATLAB / 401

16.3.1 RGB Images / 402

16.3.2 Indexed Images / 403

16.4 Pseudocolor Image Processing / 406

16.4.1 Intensity Slicing / 406

CONTENTS xv

16.4.2 Gray Level to Color Transformations / 407

16.4.3 Pseudocoloring in the Frequency Domain / 408

16.5 Full-color Image Processing / 409

16.5.1 Color Transformations / 410

16.5.2 Histogram Processing / 412

16.5.3 Color Image Smoothing and Sharpening / 412

16.5.4 Color Noise Reduction / 414

16.5.5 Color-Based Image Segmentation / 414

16.5.6 Color Edge Detection / 417

16.6 Tutorial 16.1: Pseudocolor Image Processing / 419

16.7 Tutorial 16.2: Full-color Image Processing / 420

16.8 Problems / 425

17 IMAGE COMPRESSION AND CODING 427

17.1 Introduction / 427

17.2 Basic Concepts / 428

17.2.1 Redundancy / 428

17.2.2 Image Encoding and Decoding Model / 431

17.3 Lossless and Lossy Compression Techniques / 432

17.3.1 Lossless Compression Techniques / 432

17.3.2 Lossy Compression Techniques / 433

17.4 Image Compression Standards / 435

17.4.1 Binary Image Compression Standards / 435

17.4.2 Continuous Tone Still Image Compression
Standards / 435

17.4.3 JPEG / 436

17.4.4 JPEG 2000 / 437

17.4.5 JPEG-LS / 437

17.5 Image Quality Measures / 438

17.5.1 Subjective Quality Measurement / 438

17.5.2 Objective Quality Measurement / 439

17.6 Tutorial 17.1: Image Compression / 440

18 FEATURE EXTRACTION AND REPRESENTATION 447

18.1 Introduction / 447

18.2 Feature Vectors and Vector Spaces / 448

18.2.1 Invariance and Robustness / 449

18.3 Binary Object Features / 450

xvi CONTENTS

18.3.1 Area / 450

18.3.2 Centroid / 450

18.3.3 Axis of Least Second Moment / 451

18.3.4 Projections / 451

18.3.5 Euler Number / 452

18.3.6 Perimeter / 453

18.3.7 Thinness Ratio / 453

18.3.8 Eccentricity / 454

18.3.9 Aspect Ratio / 454

18.3.10 Moments / 455

18.4 Boundary Descriptors / 456

18.4.1 Chain Code, Freeman Code, and Shape Number / 459

18.4.2 Signatures / 461

18.4.3 Fourier Descriptors / 462

18.5 Histogram-based (Statistical) Features / 464

18.6 Texture Features / 466

18.7 Tutorial 18.1: Feature Extraction and Representation / 470

18.8 Problems / 474

19 VISUAL PATTERN RECOGNITION 475

19.1 Introduction / 475

19.2 Fundamentals / 476

19.2.1 Design and Implementation of a Visual Pattern
Classifier / 476

19.2.2 Patterns and Pattern Classes / 478

19.2.3 Data Preprocessing / 479

19.2.4 Training and Test Sets / 480

19.2.5 Confusion Matrix / 480

19.2.6 System Errors / 481

19.2.7 Hit Rates, False Alarm Rates, and ROC Curves / 481

19.2.8 Precision and Recall / 482

19.2.9 Distance and Similarity Measures / 485

19.3 Statistical Pattern Classification Techniques / 487

19.3.1 Minimum Distance Classifier / 488

19.3.2 k-Nearest Neighbors Classifier / 490

19.3.3 Bayesian Classifier / 490

19.4 Tutorial 19.1: Pattern Classification / 491

19.5 Problems / 497

CONTENTS xvii

PART II VIDEO PROCESSING

20 VIDEO FUNDAMENTALS 501

20.1 Basic Concepts and Terminology / 501

20.2 Monochrome Analog Video / 507

20.2.1 Analog Video Raster / 507

20.2.2 Blanking Intervals / 508

20.2.3 Synchronization Signals / 509

20.2.4 Spectral Content of Composite Monochrome Analog
Video / 509

20.3 Color in Video / 510

20.4 Analog Video Standards / 512

20.4.1 NTSC / 513

20.4.2 PAL / 513

20.4.3 SECAM / 514

20.4.4 HDTV / 514

20.5 Digital Video Basics / 514

20.5.1 Advantages of Digital Video / 515

20.5.2 Parameters of a Digital Video Sequence / 516

20.5.3 The Audio Component / 517

20.6 Analog-to-Digital Conversion / 517

20.7 Color Representation and Chroma Subsampling / 520

20.8 Digital Video Formats and Standards / 521

20.8.1 The Rec. 601 Digital Video Format / 522

20.8.2 The Common Intermediate Format / 523

20.8.3 The Source Intermediate Format / 524

20.9 Video Compression Techniques and Standards / 524

20.9.1 Video Compression Standards, Codecs, and
Containers / 525

20.10 Video Processing in MATLAB / 526

20.10.1 Reading Video Files / 527

20.10.2 Processing Video Files / 527

20.10.3 Playing Video Files / 527

20.10.4 Writing Video Files / 528

20.11 Tutorial 20.1: Basic Digital Video Manipulation in
MATLAB / 528

20.12 Tutorial 20.2: Working with YUV Video Data / 534

20.13 Problems / 539

xviii CONTENTS

21 VIDEO SAMPLING RATE AND STANDARDS CONVERSION 541

21.1 Video Sampling / 541

21.2 Sampling Rate Conversion / 542

21.3 Standards Conversion / 543

21.3.1 Deinterlacing / 543

21.3.2 Conversion between PAL and NTSC Signals / 545

21.3.3 Color Space Conversion / 545

21.3.4 Aspect Ratio Conversion / 546

21.3.5 3:2 Pull-Down / 547

21.4 Tutorial 21.1: Line Down-Conversion / 548

21.5 Tutorial 21.2: Deinterlacing / 550

21.6 Tutorial 21.3: NTSC to PAL Conversion / 556

21.7 Tutorial 21.4: 3:2 Pull-Down / 557

21.8 Problems / 559

22 DIGITAL VIDEO PROCESSING TECHNIQUES
AND APPLICATIONS 561

22.1 Fundamentals of Motion Estimation and Motion
Compensation / 561

22.2 General Methodologies in Motion Estimation / 564

22.2.1 Motion Representation / 566

22.2.2 Motion Estimation Criteria / 567

22.2.3 Optimization Methods / 567

22.3 Motion Estimation Algorithms / 568

22.3.1 Exhaustive Search Block Matching Algorithm / 568

22.3.2 Fast Algorithms / 570

22.3.3 Hierarchical Block Matching Algorithm / 571

22.3.4 Phase Correlation Method / 573

22.4 Video Enhancement and Noise Reduction / 573

22.4.1 Noise Reduction in Video / 574

22.4.2 Interframe Filtering Techniques / 575

22.5 Case Study: Object Segmentation and Tracking in the Presence of
Complex Background / 576

22.6 Tutorial 22.1: Block-based Motion Estimation / 579

22.7 Tutorial 22.2: Intraframe and Interframe Filtering
Techniques / 585

22.8 Problems / 589

CONTENTS xix

Appendix A: HUMAN VISUAL PERCEPTION 591

A.1 Introduction / 591

A.2 The Human Eye / 592

A.3 Characteristics of Human Vision / 596

A.3.1 Resolution, Viewing Distance, and Viewing Angle / 596

A.3.2 Detail and Sharpness Perception / 598

A.3.3 Optical Transfer Function and Modulation Transfer
Function / 599

A.3.4 Brightness Perception / 600

A.3.5 Contrast Ratio and Contrast Sensitivity Function / 603

A.3.6 Perception of Motion / 605

A.3.7 Spatiotemporal Resolution and Frequency
Response / 606

A.3.8 Masking / 608

A.4 Implications and Applications of Knowledge about the Human
Visual System / 609

Appendix B: GUI DEVELOPMENT 611

B.1 Introduction / 611

B.2 GUI File Structure / 611

B.3 Passing System Control / 613

B.4 The UserData Object / 615

B.5 A Working GUI Demo / 616

B.6 Concluding Remarks / 618

REFERENCES 619

INDEX 627

LIST OF FIGURES

1.1 Image sharpening: (a) original image; (b) after sharpening. 7

1.2 Noise removal: (a) original (noisy) image; (b) after removing noise. 7

1.3 Deblurring: (a) original (blurry) image; (b) after removing the
(motion) blur. Original image: courtesy of MathWorks. 8

1.4 Edge extraction: (a) original image; (b) after extracting its most
relevant edges. Original image: courtesy of MathWorks. 8

1.5 Binarization: (a) original grayscale image; (b) after conversion to
a black-and-white version. Original image: courtesy of MathWorks. 9

1.6 Blurring: (a) original image; (b) after blurring to remove
unnecessary details. Original image: courtesy of MathWorks. 9

1.7 Contrast enhancement: (a) original image; (b) after histogram
equalization to improve contrast. 9

1.8 Object segmentation and labeling: (a) original image; (b) after
segmenting and labeling individual objects. Original image:
courtesy of MathWorks. 10

1.9 Components of a digital image processing system. Adapted and
redrawn from [Umb05]. 11

1.10 Diagram of a machine vision system. Adapted and redrawn
from [GW08]. 13

1.11 Test image for the design of a machine vision system to read the
label of the main integrated circuit on a printed circuit board. 18

xxi

xxii LIST OF FIGURES

1.12 (a) Test image for distance estimation: parallel lines with up to
5% difference in length. (b) Test image for area estimation:
circles with up to 10% difference in radius. Both images are
adapted and redrawn from [Jah05]. 19

1.13 (a) Test image for texture-based object segmentation. (b) Test
image for object segmentation based on “interpolation” of object
boundaries. Both images are adapted and redrawn from [Jah05]. 19

2.1 A monochrome image and the convention used to represent rows
(x) and columns (y) adopted in this book. 22

2.2 A binary image and the pixel values in a 6 × 6 neighborhood.
Original image: courtesy of MathWorks. 23

2.3 A grayscale image and the pixel values in a 6 × 6 neighborhood. 24

2.4 Color image (a) and its R (b), G (c), and B (d) components. 25

2.5 An indexed color image and the indices in a 4 × 4 neighborhood.
Original image: courtesy of MathWorks. 26

2.6 Pixels within a neighborhood. 28

2.7 Concept of neighborhood of pixel p (from an image topology
perspective): (a) 4-neighborhood; (b) diagonal neighborhood;
(c) 8-neighborhood. 28

2.8 Connected components: (a) original (binary) image; (b) results
for 8-connectivity; (c) results for 4-connectivity. 29

2.9 Example of intensity reduction using a transformation function:
(a) original image; (b) output image. 31

2.10 A 3 × 3 convolution mask, whose generic weights are W1, ..., W9. 32

2.11 Pixel-by-pixel arithmetic and logic operations. 33

2.12 Operations in a transform domain. 33

3.1 MATLAB environment. 45

4.1 Displaying an image: (a) without scaling; (b) scaling for display
purposes; (c) selecting only pixels within a specified range.
Original image: courtesy of MathWorks. 69

4.2 Displaying an image and exploring its contents with the Pixel
Region tool. Original image: courtesy of MathWorks. 69

4.3 The Image Information tool. 70

4.4 The Adjust Contrast tool. Original image: courtesy of MathWorks. 70

4.5 The Distance tool. Original image: courtesy of MathWorks. 71

4.6 Reading and writing images: (a) Original image (PNG);
(b) compressed image (JPG, q = 75, file size = 24 kB);
(c) compressed image (JPG, q = 5, file size = 8 kB);
(d) compressed image (JPG, q = 95, file size = 60 kB). Original
image: courtesy of MathWorks. 72

LIST OF FIGURES xxiii

4.7 Division of a figure using subplot. 77

5.1 Image acquisition, formation, and digitization. Adapted and
redrawn from [GW08]. 84

5.2 Electromagnetic spectrum. 85

5.3 Recording the various types of interaction of radiation with
objects and surfaces. Redrawn from [Bov00a]. 86

5.4 Newton’s prism: many “colors” in the sunlight. 87

5.5 Spectral power distributions of common physical light sources.
Redrawn from [Pra07]. 88

5.6 The Bayer pattern for single-CCD cameras. 90

5.7 The beam splitter for three-CCD color cameras. 91

5.8 X3 color sensor. 91

5.9 Image formation using a lens. 92

5.10 Examples of lens aberrations: (a) pincushion distortion; (b) barrel
distortion. 93

5.11 The main components of MATLAB Image Acquisition Toolbox. 94

5.12 Digitization = sampling + quantization. Redrawn from [Poy03]. 95

5.13 Pixel arrays of several imaging standards. Redrawn from
[Poy03]. 95

5.14 1D aliasing explanation. Redrawn from [Wat00]. 96

5.15 A mapping function for uniform quantization (N = 4). 97

5.16 Effects of sampling resolution on image quality: (a) A 1944 ×
2592 image, 256 gray levels, at a 1250 dpi resolution. The same
image resampled at (b) 300 dpi; (c) 150 dpi; (d) 72 dpi. 98

5.17 (a) A 480 × 640 image, 256 gray levels; (b–h) image requantized
to 128, 64, 32, 16, 8, 4, and 2 gray levels. 99

6.1 Adding two images: (a) first image (X); (b) second image (Y);
(c) result (Z = X + Y). 104

6.2 Additive image offset: (a) original image (X); (b) brighter
version (Z = X + 75). 104

6.3 Adding noise to an image: (a) original image (X); (b) zero-mean
Gaussian white noise (variance = 0.01) (N); (c) result (Z = X + N). 105

6.4 Subtractive image offset: (a) original image (X); (b) darker
version (Z = X − 75). 107

6.5 Example of an image negative: (a) original image; (b) negative
image. 109

6.6 Multiplication and division by a constant: (a) original image (X);
(b) multiplication result (X × 0.7); (c) division result (X/0.7). 109

6.7 Logic operations on binary images. 112

xxiv LIST OF FIGURES

6.8 The AND operation applied to monochrome images: (a) X;
(b) Y ; (c) X AND Y . 112

6.9 The OR operation applied to monochrome images: (a) X; (b) Y ;
(c) X OR Y . 112

6.10 The XOR operation applied to monochrome images: (a) X;
(b) Y ; (c) X XOR Y . 113

6.11 The NOT operation applied to a monochrome image: (a) X;
(b) NOT X. 113

7.1 Examples of typical geometric operations: (a) original image;
(b) translation (shifting); (c) scaling (resizing); (d) rotation. 126

7.2 Mapping one triangle onto another by an affine transformation. 128

7.3 Forward mapping: for each pixel position in the input image, the
corresponding (continuous) target position—resulting from
applying a geometric transformation T—is found in the output
image. In general, the target position (x′, y′) does not coincide
with any discrete raster point, and the value of the pixel in the
input image is copied to one of the adjacent target pixels.
Redrawn from [BB08]. 130

7.4 Backward mapping: for each discrete pixel position in the output
image, the corresponding continuous position in the input image
(x, y) is found by applying the inverse mapping function T−1.
The new pixel value is found by interpolation among the
neighbors of (x, y) in the input image. Redrawn from [BB08]. 131

7.5 Effects of different interpolation techniques on rotated images:
(a) original image; zoomed-in versions of rotated (35◦) image
using (b) zero-order (nearest-neighbor) interpolation;
(c) first-order (bilinear) interpolation; (d) third-order (bicubic)
interpolation. 133

7.6 Image deformation effects using Photo Booth. 136

7.7 Using seam carving for content-aware resizing: (a) original
image (334 × 500 pixels); (b) cropped image (256 × 256 pixels).
Original image from Flickr. Seam carving results were obtained
using the publicly available implementation by Mathias Lux:
http://code.google.com/p/java-imageseams/. 138

7.8 Image registration using MATLAB and the IPT. 145

7.9 Interactive image registration: (a) base image; (b) unregistered image. 145

7.10 The Control Point Selection tool. 146

7.11 Selected points. 146

8.1 The image enhancement process. Adapted and redrawn
from [Umb05]. 152

8.2 Basic gray-level transformation functions. 153

LIST OF FIGURES xxv

8.3 Linear point transformations example: input image. 154

8.4 Linear point transformations and their impact on the overall
brightness and contrast of an image: brightening (left), darkening
(middle), and contrast reduction (right). 155

8.5 Examples of gray-level transformations for contrast
enhancement. Redrawn from [GW08]. 155

8.6 Autocontrast operation. Redrawn from [BB08]. 156

8.7 (a) Example of an image whose original gray-level range was
[90, 162]; (b) the result of applying the autocontrast
transformation (equation (8.4)). 157

8.8 Examples of power law transformations for different values of γ . 158

8.9 Examples of gamma correction for two different values of γ: 0.5
(left) and 2.2 (right). 158

8.10 Example of using log transformation: (a) Fourier spectrum
(amplitude only) of the rice image (available in MATLAB);
(b) result of applying equation (8.6) with c = 1 followed by
autocontrast. 159

8.11 Piecewise linear transformation using glsdemo. 160

8.12 Gray-level slicing using glsdemo. Original image: courtesy of
MathWorks. 160

8.13 Example of using a lookup table: (a) input image; (b)
transformation function specified by equation (8.7); (c) output image. 162

9.1 Example of histogram for an image with eight gray levels. 173

9.2 Examples of images and corresponding histograms. Original
image in part (b): courtesy of MathWorks. 175

9.3 Transformation function used for histogram equalization. 177

9.4 Equalized histogram—graph. 178

9.5 Use of histogram equalization to improve image contrast. 179

9.6 Global versus local histogram equalization. Original image:
courtesy of MathWorks. 180

9.7 Histogram matching: (a) desired (specified) histogram;
(b) resulting histogram. 182

9.8 Histogram matching: (a) original image; (b) resulting image;
(c) original histogram; (d) desired histogram; (e) resulting
histogram. 184

9.9 Histogram sliding: (a) original image; (b) result of sliding to the
right by 50; (c) result of sliding to the left by 50; (d–f) histograms
corresponding to images in (a)–(c). 185

9.10 Example of using histogram stretching to improve contrast:
(a) original image (rmin = 129, rmax = 204); (b) result of

xxvi LIST OF FIGURES

stretching using equation (9.12); (c and d) histograms
corresponding to images in (a) and (b). 186

9.11 Example of using histogram shrinking to reduce contrast:
(a) original image; (b) result of shrinking using equation (9.13)
with rmin = 4, rmax = 254, smin = 49, and smax = 140; (c and d)
histograms corresponding to images in (a) and (b). 187

9.12 Gamma transformations for different values of gamma. Redrawn
from [GWE04]. 196

10.1 Neighborhood processing for the case of linear filtering. 205

10.2 Two-dimensional convolution example. 208

10.3 Applying different convolution masks to the same input image:
(a) original image; (b–d) result of 2D convolution using the
masks in Table 10.1. 209

10.4 Border geometry. Redrawn from [BB08]. 211

10.5 Examples of applying the averaging filter with different mask
sizes: (a) input image (899 × 675 pixels); (b–d) output images
corresponding to averaging masks of size 7 × 7, 15 × 15,
and 31 × 31. 214

10.6 A 2D Gaussian function (with σ = 3). 216

10.7 Example of using Gaussian blur filters. 217

10.8 Median filter. Redrawn from [BB08]. 217

10.9 (a) Original image; (b) image with salt and pepper noise;
(c) result of 3 × 3 median filtering; (d) result of 3 × 3
neighborhood averaging. 218

10.10 Example of using Laplacian masks to enhance an image. 221

10.11 Example of region of interest processing: (a) original image;
(b) result of applying a Gaussian blur to a selected ROI; (c) result
of applying a HPF to a selected ROI; (d) result of applying a
Laplacian mask to a selected ROI. 222

10.12 A 3 × 3 image region. 224

10.13 A 3 × 3 mask. 225

10.14 Uniform and nonuniform averaging masks. 227

10.15 Laplacian masks that account for corner pixels (standard and
composite). 230

10.16 Unsharp masking process including histogram adjustment. 230

10.17 Unsharp masking process with sharpening image. 231

10.18 Unsharp masking process using convolution mask. 232

10.19 High-boost masks with and without regard to corner pixels. 232

11.1 Frequency-domain operations. 236

LIST OF FIGURES xxvii

11.2 Two examples of response functions for frequency-domain
filters: (a) low-pass filter equivalent to a 3 × 3 average filter in the
spatial domain; (b) high-pass filter equivalent to a 3 × 3
composite Laplacian sharpening filter in the spatial domain. 237

11.3 Operations in a transform domain. 238

11.4 (a) Original image (256 × 256 pixels); (b) Fourier spectrum of
the image in (a). 240

11.5 Original image (a) and its 2D FT spectrum (b); rotated image (c)
and its 2D FT spectrum (d). 242

11.6 Example of using LPF to smooth false contours: (a) original
image; (b) result of applying a LPF. 243

11.7 Example of using LPF for noise reduction: (a) original image;
(b) result of applying a LPF. 243

11.8 Frequency response plot for an ideal LPF: (a) 3D view; (b) 2D
view from the top. 244

11.9 (a) Original image (256 × 256 pixels); (b) Fourier spectrum of
the image in (a). The rings represent cutoff frequencies for the
low-pass filter examples described later. 244

11.10 (a) Original image (256 × 256 pixels); (b–f) ideal LPF results for
filters with cutoff frequency corresponding to the radii in
Figure 11.9b, namely, 8, 16, 32, 64, and 128 pixels. 245

11.11 Frequency response plot for a Gaussian LPF: (a) 3D view; (b) 2D
view from the top. 246

11.12 (a) Original image (256 × 256 pixels); (b–f) Gaussian LPF
results for filters with different values for σ: 5, 10, 20, 30, and 75. 247

11.13 Frequency response plot for a Butterworth LPF of order n = 4:
(a) 3D view; (b) 2D view from the top. 248

11.14 (a) Original image (512 × 512 pixels); (b–f) fourth-order
Butterworth LPF results for filters with cutoff frequency
corresponding to the radii in Figure 11.9b, namely, 8, 16, 32, 64,
and 128 pixels. 249

11.15 Frequency response plot for an ideal HPF: (a) 3D view; (b) 2D
view from the top. 250

11.16 Frequency response plot for a Gaussian HPF: (a) 3D view;
(b) 2D view from the top. 250

11.17 Frequency response plot for a Butterworth HPF of order n = 4:
(a) 3D view; (b) 2D view from the top. 251

11.18 High-frequency emphasis: (a) input image; (b) result of applying
a second-order Butterworth HPF (with D0 = 30) to the input
image; (c) result of high-frequency emphasis with a = 0.5 and b = 1. 251

xxviii LIST OF FIGURES

12.1 Image degradation and restoration. 266

12.2 Histograms of representative noise types: (a) Gaussian,
(b) impulse (salt and pepper), (c) uniform, (d) Rayleigh,
(e) gamma (Erlang), and (e) exponential. Redrawn from [Pra07]. 270

12.3 Test images and corresponding histograms for different types of
noise: (a and b) Gaussian; (c and d) exponential; (e and f) salt and
pepper. 271

12.4 Test images and corresponding histograms for different types of
noise: (a and b) Rayleigh; (c and d) Gamma; (e and f) uniform. 272

12.5 Estimating noise type from a homogeneous patch within an
image: (a) original image; (b) noisy image (where the rectangle
indicates a manually selected patch); (c) histogram of the original
image; (d) histogram of the noisy image; (e) histogram of selected
patch showing clearly that the noise is of Gaussian type in this case. 273

12.6 (a) Original image; (b) image with Gaussian noise; (c) result of
3 × 3 arithmetic mean filtering; (d) result of 5 × 5 arithmetic
mean filtering; (e) result of 3 × 3 geometric mean filtering;
(f) result of 3 × 3 harmonic mean filtering. 275

12.7 (a) Image with salt and pepper noise; (b) result of 3 × 3
arithmetic mean filtering; (c) result of 3 × 3 geometric mean
filtering; (d) result of 3 × 3 harmonic mean filtering; (e) result of
3 × 3 contraharmonic mean filtering with R = 0.5; (f) result of
3 × 3 contraharmonic mean filtering with R = −0.5. 276

12.8 (a) Image with salt and pepper noise; (b) result of 3 × 3
arithmetic mean filtering (for comparison); (c) result of 3 × 3
median filtering; (d) result of 3 × 3 midpoint filtering. 279

12.9 Example of an image corrupted by periodic noise: (a) noisy
image; (b) periodic noise component; (c) the Fourier spectrum of
the noise component (bright dots were enlarged for viewing
purposes). 280

12.10 Example of using a bandreject filter to reduce periodic noise:
(a) noisy image; (b) noisy image spectrum (the eight spots
corresponding to the noise have been made brighter and bigger
for visualization purposes); (c) the Fourier spectrum of the image
after applying the bandreject filter; (d) resulting image. 281

12.11 Example of image restoration using inverse filtering: (a) input
(blurry) image; (b) result of naive inverse filtering; (c) applying a
10th-order Butterworth low-pass filter with cutoff frequency of
20 to the division; (d) same as (c), but with cutoff frequency of
50; (e) results of using constrained division, with threshold
T = 0.01; (f) same as (e), but with threshold T = 0.001. 285

LIST OF FIGURES xxix

12.12 Example of motion deblurring using inverse filtering: (a) input
image; (b) result of applying inverse filtering with constrained
division and threshold T = 0.05: the motion blurred has been
removed at the expense of the appearance of vertical artifacts. 286

12.13 Example of image restoration using Wiener filtering: (a) input
image (blurry and noisy); (b) result of inverse filtering, applying a
10th-order Butterworth low-pass filter with cutoff frequency of
50 to the division; (c) results of Wiener filter, with K = 10−3;
(d) same as (c), but with K = 0.1. 287

12.14 Example of image restoration using Wiener filtering: (a) input
(blurry) image; (b) result of inverse filtering, applying a
10th-order Butterworth low-pass filter with cutoff frequency of
50 to the division; (c) results of Wiener filter, with K = 10−5;
(d) same as (c), but with K = 0.1. 288

13.1 Basic set operations: (a) set A; (b) translation of A by
x = (x1, x2); (c) set B; (d) reflection of B; (e) set A and its
complement Ac; (f) set difference (A−B). 301

13.2 Logical equivalents of set theory operations: (a) Binary image
(A); (b) Binary image (B); (c) Complement (Ac); (d) Union
(A ∪ B); (e) Intersection (A ∩ B); (f) Set difference (A−B). 302

13.3 Examples of structuring elements: (a) square; (b) cross. 302

13.4 Example of dilation using three different rectangular structuring
elements. 305

13.5 Example of erosion using three different rectangular structuring
elements. 308

13.6 Example of morphological opening. 311

13.7 Geometric interpretation of the morphological opening operation. 311

13.8 Example of morphological closing. 312

13.9 Geometric interpretation of the morphological closing operation.
Adapted and redrawn from [GW08]. 313

13.10 Example of HoM transform. 314

13.11 Morphological filtering. (a) input (noisy) image; (b) partial result
(after opening) with SE of radius = 2 pixels; (c) final result with
SE of radius = 2 pixels; (d) final result with SE of radius = 4 pixels. 316

13.12 Morphological algorithms. (a) input image; (b) skeleton of (a);
(c) pruning spurious pixels from (b); (d) removing interior pixels
from (a); (e) thickening the image in (d); (f) thinning the image in
(e). Original image: courtesy of MathWorks. 318

13.13 Boundary extraction. 319

13.14 Region filling: (a) input image; (b) complement of (a); (c) partial
results (numbered according to the iteration in the algorithm
described by equation (13.27); (d) final result; (e) structuring
element. 320

xxx LIST OF FIGURES

13.15 Extraction of connected components: (a) input image; (b) first
iteration; (c) second iteration; (d) final result, showing the
contribution of each iteration (indicated by the numbers inside
the squares); (e) structuring element. 322

13.16 Grayscale erosion and dilation with a nonflat ball-shaped
structuring element with radius 5: (a) input image; (b) result of
dilation; (c) result of erosion. 323

13.17 Grayscale opening and closing with a flat disk-shaped structuring
element with radius 3: (a) input image (Gaussian noise); (b) result
of opening image (a); (c) result of closing image (b); (d) input
image (salt and pepper noise); (e) result of opening image (d);
(f) result of closing image (e). 324

13.18 Example of using top-hat and bottom-hat filtering for contrast
improvement: (a) input image; (b) output image. 326

13.19 Combining two structuring elements into one for the HoM
transformation. 330

14.1 Ideal and ramp edges: (a) ideal edge on a digital image and
corresponding profile along a horizontal line; (b) ramp edge and
corresponding profile. 337

14.2 Grayscale image containing two regions separated by a ramp
edge: intensity profile and, first and second derivative results. 338

14.3 First- and second-order edge detectors with and without noise:
(a) original image; (b) first derivative; (c) second derivative; (d–f)
horizontal profiles for images (a)–(c); (g–i) noisy versions of
images (a)–(c); (j–l) horizontal profiles for images (g)–(i). 339

14.4 Edge detection example: (a) original image; (b) result of Prewitt
horizontal kernel; (c) result of Prewitt vertical kernel;
(d) combination of (b) and (c). 341

14.5 Edge detection using Sobel operator: (a) original image;
(b) result of Sobel horizontal kernel; (c) result of Sobel vertical
kernel; (d) combination of (b) and (c). 342

14.6 Kirsch compass masks. 343

14.7 Robinson compass masks. 343

14.8 Edge detection using Sobel operator and thresholding (the
original image is the same as Figure 14.5a): (a) threshold of 0;
(b) threshold of 0.05; (c) threshold of 0.1138 (the best value);
(d) threshold of 0.2. 344

14.9 Edge detection using the zero-cross edge detector: (a) input
image (without noise); (b) results using default values; (c) results
using threshold zero; (d) noisy input image; (e) results using

LIST OF FIGURES xxxi

default values; (f) results using threshold zero. Edge results have
been inverted for clarity. 345

14.10 Laplacian of Gaussian: (a) 3D plot; (b) 2D intensity plot;
(c) cross section of (a). 346

14.11 Edge detection using the LoG edge detector: (a) input image;
(b) results using default values; (c) results using σ = 1; (d)
results using σ = 3. Edge results have been inverted for clarity. 347

14.12 Edge detection using the Canny edge detector: (a) default values
(σ = 1, Tlow = 0.0625, Thigh = 0.1563); (b) σ = 0.5; (c) σ = 2;
(d) σ = 1, Tlow = 0.01, Thigh = 0.1. 349

14.13 The Hough transform maps a point into a line. 350

14.14 The Hough transform: intersections in the transform domain
correspond to aligned points in the image. 350

14.15 The Hough transform: a line and its parameters in the polar
coordinate system. 351

14.16 Hough transform example: (a) input image; (b) results of Hough
transform, highlighting the intersections corresponding to the
predominant lines in the input image. 352

14.17 Hough transform example: (a) results of Hough transform
highlighting the two highest peaks; (b) (negative of) edge
detection results; (c) lines corresponding to the longest peaks
overlaid on top of original image. 353

14.18 Kirsch masks stored in a 3 × 3 × 8 matrix. 359

15.1 Test images for segmentation algorithms: (a) a hard test image
and (b) its grayscale equivalent; (c) an easier test image (courtesy
of MathWorks) and (d) the result of morphological preprocessing
and thresholding. 366

15.2 The histogram for the image in Figure 15.1c: an example of
histogram suitable for partitioning using a single threshold. 368

15.3 Image thresholding results for the image in Figure 15.1c using
iterative threshold selection algorithm (a) and manually selected
threshold (b). 370

15.4 An example of uneven illumination pattern used to generate the
image in Figure 15.5a. 371

15.5 Effect of illumination (left) and noise (right) on thresholding. See
text for details. 372

15.6 Local thresholding. Using a single threshold for the entire image
(a) and dividing it up into six slices and choosing a different
threshold for each vertical slice (b). 373

15.7 Region growing: (a) seed pixels; (b) first iteration; (c) final iteration. 375

15.8 Region growing results for two test images. See text for details. 376

xxxii LIST OF FIGURES

15.9 The quadtree data structure used in the split and merge
segmentation algorithm (a) and the corresponding regions in the
image (b). 377

15.10 Segmentation using the morphological watershed transform:
(a) complement of the image shown in Figure 15.3; (b) distance
transform; (c) watershed ridge lines; (d) result of segmentation. 380

15.11 Histogram plot with data cursor selection. 381

16.1 Spectral absorption curves of the short (S), medium (M), and
long (L) wavelength pigments in human cone and rod (R) cells.
Courtesy of Wikimedia Commons. 389

16.2 Additive (a) and subtractive (b) color mixtures. 389

16.3 RGB color matching function (CIE 1931). Courtesy of
Wikimedia Commons. 390

16.4 XYZ color matching function (CIE 1931). Courtesy of
Wikimedia Commons. 391

16.5 CIE XYZ color model. 393

16.6 Color gamut for three different devices: (a) CRT monitor;
(b) printer; (c) film. The RGB triangle is the same in all figures to
serve as a reference for comparison. 393

16.7 MacAdam ellipses overlapped on the CIE 1931 chromaticity
diagram. Courtesy of Wikimedia Commons. 394

16.8 RGB color model. 396

16.9 RGB color cube. 397

16.10 The HSV color model as a hexagonal cone. 399

16.11 The HSV color model as a cylinder. 400

16.12 The HSV color model as a cone. 400

16.13 RGB color image representation. 402

16.14 RGB image and its three color components (or channels).
Original image: courtesy of MathWorks. 403

16.15 Indexed color image representation. 404

16.16 A built-in indexed image. Original image: courtesy of MathWorks. 405

16.17 Pseudocoloring with intensity slicing. 407

16.18 An alternative representation of the intensity slicing technique
for an image with L gray levels pseudocolored using four colors. 407

16.19 Pseudocoloring using intensity slicing: original image (a) and
results of pseudocoloring using different color maps (b–d).
Original image: courtesy of MathWorks. 408

16.20 Block diagram for pseudocoloring using color transformation
functions. 409

LIST OF FIGURES xxxiii

16.21 (a) Block diagram for pseudocoloring in the frequency domain;
(b) frequency response of the filters. Redrawn from [Umb05]. 409

16.22 RGB processing. 411

16.23 Intensity processing using RGB to YIQ color space conversions. 411

16.24 Example of color histogram equalization. (a) Original image and
its Y channel histogram; (b) output image and its equalized Y

channel histogram. Original image: courtesy of MathWorks. 413

16.25 Spatial convolution masks for grayscale and RGB color images. 413

16.26 Thresholding in RGB space. 415

16.27 Defining spherical (ellipsoidal) regions in RGB space. 416

16.28 Example of color segmentation using requantization. 416

16.29 Another example of color segmentation using requantization:
(a) original image; (b) requantized image with two color levels;
(c) requantized image with five color levels. 417

16.30 Color edge detection example: (a) original image; (b) grayscale
equivalent; (c) edge detection on (b); (d) edge detection on
individual RGB components; (e) edge detection on Y component
only; (f) edge detection on V component only. 418

17.1 Two ways to represent the same information using different
amounts of data. See text for details. 429

17.2 A general image encoding and decoding model. 431

17.3 Source encoder. 431

17.4 Lossless predictive encoder. 433

17.5 Transform coding diagram. 434

17.6 JPEG encoder and decoder. 436

17.7 Measuring objective image quality after compression:
(a) original; (b) compressed version of (a) (using quality
factor = 90), erms = 2.1647, PSNR = 41.4230 dB; (c) compressed
version of (a) (using quality factor = 5), erms = 7.6188,
PSNR = 30.4931 dB. 441

17.8 The problem of poor correlation between objective and
subjective measures of image quality: (a) original; (b) blurred
version of (a) (using a 5 × 5 average filter), erms = 0.0689,
PSNR = 71.3623 dB; (c) partially blurred version of (a) (after
applying a severe blurring filter only to a small part of the image),
erms = 0.0629, PSNR = 72.1583 dB. 442

18.1 Test image (a) and resulting 2D feature vectors (b). 449

18.2 Axis of least second moment. 451

18.3 Horizontal and vertical projections. 452

xxxiv LIST OF FIGURES

18.4 Examples of two regions with Euler numbers equal to 0 and −1,
respectively. 453

18.5 Examples of a compact (a) and a noncompact (b) regions. 454

18.6 Eccentricity (A/B) of a region. 454

18.7 Elongatedness (a/b) of a region. 455

18.8 Tracing boundaries of objects. 459

18.9 Tracing boundaries of objects and holes. 459

18.10 Chain code and Freeman code for a contour: (a) original contour;
(b) subsampled version of the contour; (c) chain code
representation; (d) Freeman code representation. 460

18.11 Chain code, first differences, and shape number. 461

18.12 Distance × angle signatures for two different objects. Redrawn
from [GW08]. 462

18.13 Effect of noise on signatures for two different objects. Redrawn
from [GW08]. 462

18.14 Fourier descriptor of a boundary. 463

18.15 Example of boundary reconstruction using Fourier descriptors:
(a) original image; (b–f) reconstructed image using 100%, 50%,
25%, 2.5%, and 1% of the total number of points, respectively. 464

18.16 Example of images with smooth (a), coarse (b), and regular (c)
texture. Images from the Brodatz textures data set. Courtesy of
http://tinyurl.com/brodatz. 466

18.17 Histograms of images in Figure 18.16. 467

18.18 An image (a) and its cooccurrence matrix for d = (0, 1) (b). 468

18.19 An image (a) and its cooccurrence matrix for d = (1, 0) (b). 468

18.20 Test images for this tutorial: (a) steps 1–6; (b) step 7; (c) step 11. 470

19.1 Diagram of a statistical pattern classifier. Redrawn from [SS01]. 476

19.2 The interplay between feature extraction, feature selection, and
pattern classification as a function of the application at hand.
Adapted and redrawn from [Umb05]. 477

19.3 Example of two classes (sumo wrestlers—red circles—and table
tennis players—blue diamonds) described by two measurements
(weight and height). 479

19.4 Example of 4 × 4 confusion matrix. 481

19.5 Example of ROC curve. 482

19.6 Example of precision–recall (PR) graph. 484

19.7 Precision–recall graph for Example 19.4. 485

19.8 Discrimination functions for a three-class classifier in a 2D
feature space. 487

LIST OF FIGURES xxxv

19.9 Example of two classes and their mean vectors. 489

19.10 Example of three classes with relatively complex structure. 489

19.11 (a) Example of a KNN classifier (k = 1) for a five-class classifier
in a 2D feature space (obtained using the STPRTool toolbox).
(b) Minimum distance classifier results for the same data set. 490

19.12 Feature space for training set. Obtained using the Statistical
Pattern Recognition Toolbox (STPRtool), available at
http://cmp.felk.cvut.cz/cmp/software/stprtool/. 493

19.13 Confusion matrix with results of KNN classifier for the selected
features. Obtained using the Statistical Pattern Recognition
Toolbox (STPRtool), available at
http://cmp.felk.cvut.cz/cmp/software/stprtool/. 495

19.14 Number of Confusion matrix with results of KNN classifier for
the case where the images’ gray values are used as “features.”
Obtained using the Statistical Pattern Recognition Toolbox
(STPRtool), available at http://cmp.felk.cvut.cz/cmp/software/stprtool/. 496

19.15 Confusion matrix for Problem 19.1. 497

20.1 Scanning raster. Redrawn from [LI99]. 502

20.2 Scan and retrace: (a) progressive scan (dashed lines indicate
horizontal retrace); (b) interlaced scan (solid and dashed lines
represent even and odd fields, respectively). Adapted and redrawn
from [WOZ02]. 503

20.3 Aspect ratios of SDTV, HDTV, and film. Redrawn from [Poy03]. 505

20.4 Gamma correction in video and TV systems: (a) composite
video; (b) component video. 506

20.5 Typical interlaced video raster. Redrawn from [WOZ02]. 508

20.6 Fine-grained frequency spectrum of a monochrome analog video
signal. Redrawn from [LI99]. 509

20.7 NTSC spectrum, showing how luminance (Y) and chrominance
(I and Q) signals are interleaved. Redrawn from [LD04]. 512

20.8 Sampling in the horizontal, vertical, and temporal dimensions.
Redrawn from [Poy03]. 515

20.9 Analog-to-digital converters for composite (top) and component
(bottom) video. Redrawn from [LI99]. 517

20.10 Location of sampling points in component video signals.
Redrawn from [LI99]. 518

20.11 Assignment of quantization levels for component and composite
video. Redrawn from [LI99]. 519

20.12 The most common chroma subsampling patterns: 4:4:4, 4:2:2,
and 4:2:0. 520

xxxvi LIST OF FIGURES

20.13 Rec. 601 format: screen dimensions and active area for the
525/59.94/2:1 (a) and 625/50/2:1 (b) variants. Redrawn
from [WOZ02]. 523

20.14 Visual representation of a YUV file. 534

21.1 The deinterlacing process. Fields t and t + 1 form one
interlaced frame. 544

21.2 A practical method for converting PAL to NTSC formats. 545

21.3 3:2 pull-down. Redrawn from [Ack01]. 547

21.4 The problem of judder in telecine using 3:2 pull-down. Redrawn
from [Wat94b]. 548

22.1 Two frames at different time instants (t1 and t1 + �t) and the
resulting optical flow. Redrawn from [SHB08]. 562

22.2 The aperture problem. 563

22.3 Motion compensation: interpolation axes are aligned with each
moving object. Redrawn from [Wat94b]. 565

22.4 Anchor and target frames in forward and backward motion
estimation. 565

22.5 Motion estimation methods: (a) global; (b) pixel-based;
(c) block-based; (d) object-based. 566

22.6 Exhaustive search block matching algorithm (EBMA). 568

22.7 Block matching with half-pixel accuracy. The MV in this case is
(1, 1.5). Redrawn from [WOZ02]. 569

22.8 EBMA example: (a) target frame; (b) anchor frame; (c) motion
field overlapped on anchor frame; (d) reconstructed frame. 570

22.9 2D log search. In this case, the final MV is (−6, 2). Redrawn
from [MPG85]. 571

22.10 Three-step search. In this case, the final MV is (−6, 2). Redrawn
from [MPG85]. 572

22.11 Hierarchical block matching algorithm (HBMA) using three
levels. Redrawn from [WOZ02]. 572

22.12 Object detection and tracking system. 577

22.13 Keeping track of existing and candidate objects. 578

22.14 Updating the coordinates of an existing object. 578

22.15 Screenshot of the object detection and tracking system, showing
the bounding box of an object being tracked, its trajectory since it
started being tracked, and its properties (on a separate window). 579

A.1 Simplified view of the connection from the eye to the brain via
the optic nerve. Adapted and redrawn from [Umb05]. 592

A.2 The eye: a cross-sectional view. 1, sclera; 2, ciliary body; 3, iris;
4, pupil and anterior chamber filled with aqueous humor;

LIST OF FIGURES xxxvii

5, optical axis; 6, line of sight; 7, cornea; 8, crystalline lens; 9,
choroid; 10, optic nerve; 11, optic disk; 12, fovea; 13, retina; 14,
vitreous humor. 593

A.3 The eye-camera analogy. Adapted and redrawn from [Pal99]. 593

A.4 Dark adaptation. Adapted and redrawn from [Pal99]. 594

A.5 Distribution of rods and cones in the human retina for the right
eye (seen from the bottom). Adapted and redrawn from [Ost35]. 595

A.6 EIA 1956 standard test pattern. Courtesy of http://www.
bealecorner.com/ trv900/respat/. 596

A.7 Angular frequency concept. 597

A.8 Sinusoidal gratings commonly used for measures of
resolution—based on MATLAB code by Alex Petrov:
http://alexpetrov.com/softw/utils/. 597

A.9 Viewing distance for SDTV and HDTV displays. Adapted and
redrawn from [Poy03]. 599

A.10 Picture (viewing) angles for SDTV and HDTV displays. Adapted
and redrawn from [Poy03]. 600

A.11 (a) The definition of contrast index; (b) A test image with
constant CI results in an output image with falling CI; (c)
modulation transfer function: the ratio of output and input CIs.
Note: When LF response is unity, CI and MTF are
interchangeable. Redrawn from [Wat00]. 601

A.12 Range of subjective brightness sensations showing a particular
adaptation level. Redrawn from [GW08]. 602

A.13 Simultaneous contrast: the center square is perceived as
progressively darker as the background becomes brighter (from
(a) to (d)) even though it is identical in all four cases. 602

A.14 Mach bands. 603

A.15 Contrast sensitivity test pattern. 603

A.16 Contrast sensitivity function for various retinal illuminance
values (expressed in Td). Redrawn from [VNB67]. 604

A.17 Temporal frequency response of the HVS. Redrawn from [Kel61]. 606

A.18 Spatiotemporal frequency response of the HVS: (a) spatial
frequency responses for different temporal frequencies (in cpd);
(b) temporal frequency responses for different spatial (angular)
frequencies (in Hz). Redrawn from [Rob66]. 607

A.19 Temporal frequency as a function of eye movements. Redrawn
from [Wat00]. 608

B.1 System control diagram. 615

B.2 Variable stack. 616

LIST OF TABLES

3.1 MATLAB Data Classes 37

3.2 MATLAB Array and Matrix Arithmetic Operators 40

3.3 Examples of MATLAB Specialized Matrix Operations 41

3.4 Specialized Arithmetic Functions Supported by the IPT 41

3.5 Relational Operators 41

3.6 Logical Operators 42

3.7 Logical Functions 42

3.8 Selected Built-In Variables and Constants 42

4.1 IPT Functions to Perform Image Data Class Conversion 65

4.2 IPT Functions to Perform Image Data Class Conversion 68

7.1 Summary of Transformation Coefficients for Selected Affine
Transformations 128

8.1 Examples of Linear Point Transformations (Images and Curves
in Figure 8.4) 154

9.1 Example of a Histogram 172

9.2 Equalized Histogram: Values 178

9.3 Desired Histogram 182

9.4 Direct Histogram Specification: Summary 183

9.5 Resulting Histogram 184

10.1 Examples of Convolution Masks 209

xxxix

xl LIST OF TABLES

13.1 Operations Supported by bwmorph 317

16.1 IPT Functions for CIE XYZ and CIELAB Color Spaces 395

16.2 IPT Functions for ICC Profile Manipulation 395

16.3 R, G, and B Values for Eight Representative Colors
Corresponding to the Vertices of the RGB Cube 397

16.4 Color Maps in MATLAB 404

17.1 Objective Quality Measures for Three JPEG Images with
Different Quality Factors 440

17.2 Compression Ratio for Five JPEG Images with Different Quality
Factors 444

17.3 Objective Quality Measures for Five JPEG Images with Different
Quality Factors 444

18.1 RST-Invariant Moments 456

18.2 Properties of Labeled Regions 457

18.3 Statistical Texture Descriptors for the Three Images in Figure 18.16 467

18.4 Statistical Texture Descriptors for the Three Images in Figure 18.16 470

18.5 Table for Feature Extraction Results 471

20.1 Parameters of Analog Color TV Systems 514

20.2 Representative Digital Video Formats 522

20.3 ITU-R Recommendation BT.601-5 Parameters 523

20.4 Intermediate Formats 524

FOREWORD

In packing for an office move earlier this year, I was struck by how many of my books
(in many cases books sent to me free by their publishers for evaluation and potential
use) were knockoffs: books that repackaged material that had been thoroughly con-
solidated in good textbooks years or even decades ago. Oge Marques’ textbook is not
a knockoff, even though much its subject matter has been around for years. It is a
thoughtful and original compilation of material that is highly relevant today for stu-
dents of imaging science, imaging technology, image understanding, and, foremost,
image processing.

Imaging is my principal field of expertise. My interest in this book is great because
imaging and image processing have grown together in recent years. Some forms of
imaging—computational imaging is the buzzword that comes first to mind—presume
that there will be (must be, in fact) postdetection processing of the raw information
collected by the sensor system. Indeed, the sensor may output something that makes
little or no sense to the observer in the absence of critical postprocessing operations.

Ultimately, in commercial mass-produced systems, image processing is imple-
mented by specialized hardware. In the research and development stages of an
imaging system, however, the processing is almost certain to be implemented using
MATLAB®. Marques’ book addresses this fact by linking directly to MATLAB® the
many processing operations that are described.

There are of course numerous texts that describe digital image processing opera-
tions and algorithms. None, however, emphasizes as this one does the human vision
system and the interaction and intercomparison between that system and machine
vision systems.

The book contains a wealth of practical material and an invaluable up-to-date list
of references, including journals, periodicals, and web sites. I would hope that the

xli

xlii FOREWORD

book sees subsequent editions, with correspondingly updated lists. Also invaluable
to the teacher is the inclusion, now characteristic of many contemporary textbooks,
of concise chapter summaries that address the question “What have we learned?”
Tutorials punctuate the text, taking the students through important material in an
active-learning process.

I write this foreword not just because I think this book addresses its intended image
processing audience well but also because I see it influencing the thinking of my own
students, students interested in imaging systems from a physics and technological
standpoint but who must understand the relationship between imaging systems and
image processing systems.

William T. Rhodes

William T. Rhodes is Emeritus Professor of Electrical & Computer Engineering at
Georgia Institute of Technology. In 2005 he joined the Electrical Engineering faculty
at Florida Atlantic University and became Associate Director of that university’s
Imaging Technology Center. A Fellow of the Optical Society of America and of the
SPIE, he is editor-in-chief of the Springer Series in Optical Sciences and editor-in-
chief of the online journal SPIE Reviews.

PREFACE

The prospect of using computers to emulate some of the attributes of the human
visual system has attracted the interest of scientists, engineers, and mathematicians
for more than 30 years, making the field of image processing one of the fastest-
growing branches of applied computer science research. During the past 15 years,
the fields of image and video processing have experienced tremendous growth and
become more popular and accessible. This growth has been driven by several factors:
widely available and relatively inexpensive hardware; a variety of software tools for
image and video editing, manipulation, and processing; popularization of the Web
and its strong emphasis on visual information, a true revolution in photography that
has rendered film-based cameras all but obsolete; advances in the movie industry; and
groundbreaking changes on the way we watch, record, and share TV programs and
video clips.

APPROACH

This book provides a practical introduction to the most important topics in image
and video processing, using MATLAB® (and its Image Processing Toolbox) as a tool
to demonstrate relevant techniques and algorithms. The word Practical in its title
is not meant to suggest a coverage of all the latest consumer electronics products
in these fields; this knowledge would be superficial at best and would be obsolete
shortly after (or even before!) the publication of the book. The word Practical should
rather be interpreted in the sense of “enabling the reader/student to develop practical
projects, that is, working prototypes, using the knowledge gained from the book.” It
also has other implications, such as the adoption of a “just enough math” philosophy,

xliii

xliv PREFACE

which favors the computational, algorithmic, and conceptual aspects of the techniques
described along the book, over excessive mathematical formalism.

As a result, the book should appeal not only to its original target audience when
used as a textbook (namely, upper-level undergraduate and early graduate students
in Computer Science, Computer Engineering, Electrical Engineering, and related
courses) but also to researchers and practitioners who have access to MATLAB®,
solid computing/programming skills, and want to teach themselves the fundamentals
of image and video processing.

KEY FEATURES

• This is the first book to combine image processing, video processing, and a
practical, MATLAB®-oriented approach to experimenting with image and video
algorithms and techniques.

• Complete, up-to-date, technically accurate, and practical coverage of essential
topics in image and video processing techniques.

• 37 MATLAB® tutorials, which can be used either as step-by-step guides to
exploring image and video processing techniques using MATLAB® on your
own or as lab assignments by instructors adopting the textbook.

• More than 330 figures and 30 tables illustrating and summarizing the main
techniques and concepts described in the text.

• This book adopts a “just enough math” philosophy. Many students are intim-
idated by image and video processing books with heavy emphasis on the
mathematical aspects of the techniques. This book addresses this issue by
offering the minimal mathematical treatment necessary to fully understand a
technique without sacrificing the integrity of its explanation.

• The book emphasizes and encourages practical experimentation. After present-
ing a topic, it invites the readers to play on their own, reinforcing and expanding
what they have just learned and venturing into new avenues along the same
theme.

• The book has been designed to answer the most basic questions a student/reader
is likely to have when first presented with a topic. It builds on my experience
teaching image and video processing courses for 20 years, and the insights
acquired along the way.

• The book includes many extra features to reinforce the understanding of its
topics and allow the reader to learn more about them, such as exercises and
programming projects, useful Web sites, and an extensive list of bibliographical
references at the end of the chapters.

A TOUR OF THE BOOK

This book has been organized into two parts: Image Processing and Video Processing.

PREFACE xlv

Part I (Image Processing) starts with an introduction and overview of the field
(Chapter 1) that should motivate students to devote time and effort to the material
in the remaining chapters. Chapter 2 introduces the fundamental concepts, notation,
and terminology associated with image representation and basic image processing
operations. Chapters 3 and 4 are devoted to MATLAB® and its Image Processing
Toolbox, respectively, and establish the beginning of a series of chapters with hands-
on activities, presented in the form of step-by-step tutorials at the end of each chapter
from this point onward (except Chapter 5). Chapter 5 discusses the factors involved in
image acquisition and digitization. Chapter 6 presents arithmetic and logic operations
and introduces region of interest (ROI) processing. Chapter 7 covers geometric oper-
ations, such as resizing, rotation, cropping, and warping. Chapters 8–10 are devoted
to point-based (Chapter 8), histogram-based (Chapter 9), and neighborhood-based
(Chapter 10) image enhancement techniques. Chapter 11 extends the reach of image
processing operations to the frequency domain and presents the Fourier transform
and relevant frequency-domain image filtering techniques. Solutions to the problem
of image restoration—particularly in cases of noise and blurring—are discussed in
Chapter 12. Chapter 13 presents a detailed coverage of mathematical morphology
and its use in image processing. Chapter 14 is devoted to edge detection techniques.
Chapter 15 covers image segmentation. Chapter 16 transitions from grayscale to color
images and presents representative color image processing techniques and algorithms.
Image compression and coding, including the most recent and relevant standards, are
the subject of Chapter 17. Chapter 18 looks at the problem of feature extraction and
representation and leads naturally to Chapter 19 where the resulting feature vectors
could be used for classification and recognition purposes.

Part II (Video Processing) starts by presenting the main concepts and terminol-
ogy associated with analog video signals and systems and digital video formats and
standards (Chapter 20). It then proceeds to describe the technically involved problem
of standards conversion (Chapter 21). Chapter 22 discusses motion estimation and
compensation techniques, shows how video sequences can be filtered, and concludes
with an example of a simple solution to the problem of object detection and tracking
in video sequences using MATLAB®.

The book contains two appendices. Appendix A presents selected aspects of the
human visual system that bear implications in the design of image and video pro-
cessing systems. Appendix B provides a tutorial on how to develop graphical user
interfaces (GUIs) in MATLAB®.

NOTES TO INSTRUCTORS

This book can be used for upper-level undergraduate or introductory graduate courses
in image and video processing, for one or two semesters. Most of the material included
in this book has been extensively tested in many such courses during the past 20
years. The following is a summary of recommendations for instructors adopting this
textbook.

xlvi PREFACE

Part I is organized around a typical machine vision system, from image acquisition
to pattern classification. All chapters (except Chapters 16 and 17) in Part I follow
a natural logic sequence, which covers all the steps involved in acquiring images,
preprocessing them to remove imperfections or improve their properties, segmenting
them into objects of interest, extracting objects’ features, and classifying the objects
into categories. The goal of Chapter 1 is to provide breadth, perspective, early exam-
ples of what can be achieved with image processing algorithms, and a systemic view
of what constitutes a machine vision system. Some instructors may want to combine
this information with the material from Chapter 2 as they introduce the topic early in
their courses.

The material from Chapters 3 and 4 has been carefully selected to make the book
self-contained, providing students all the MATLAB® and Image Processing Toolbox
information they might need for the corresponding tutorials. Readers will likely keep
these two chapters for future reference should they ever require MATLAB®-related
help later in the course. Instructors with limited lecture time may choose to cover both
chapters briefly, assign the corresponding tutorials, and monitor students’ progress as
they work on the tutorials and answer the associated questions.

Chapter 5 briefly introduces the topic of image sensing and acquisition. Its main
goal is to equip the reader with information on the steps needed to convert a three-
dimensional (3D) real-world scene into a two-dimensional (2D) digitized version of it.
Instructors teaching courses with a strong emphasis on image capture and acquisition
hardware may want to supplement this material with detailed references, for example,
on sensors that operate outside the visible spectrum, stereo-mounted cameras, camera
calibration, and many other topics.

Chapters 6–10 are straightforward and cover essential topics in any image process-
ing class. They also provide room for many interesting discussions, lab assignments,
and small projects.

Chapter 11 may be a bit challenging to some students, due to the mathematical
formalism associated with the Fourier transform. Instructors may find the interactive
MATLAB® frequency-domain demo (fddemo) introduced in that chapter a valuable
tool to develop students’ confidence on their understanding of the basic concepts of
frequency-domain filtering techniques. Chapter 12 builds on the knowledge from
Chapters 10 and 11, with focus on noise reduction and deblurring techniques. Some
instructors may prefer to tone down the discussion of noise models (Sections 12.1
and 12.2) and present the techniques described in Sections 12.3–12.5 earlier on as
applications of spatial-domain and frequency-domain filtering techniques.

Chapter 13 is self-contained, which gives instructors the flexibility to adjust their
level of coverage—from skipping it altogether, to covering it in detail—without major
impact on the other topics in their courses.

Chapters 14 and 15 provide introductory coverage of two essential topics in any
image processing course. Instructors who want to present some of these contents
earlier in the course or in a different sequence should be able to easily extract the
associated sections and move them to a different point in time.

Chapter 16 comprises information on color image processing and is somehow
related to earlier chapters (particularly, those on enhancement, segmentation, and edge

PREFACE xlvii

extraction). We have made a conscious decision of keeping color in a separate chapter
rather than spreading color image processing throughout the text. We believe that by
the time readers reach Chapter 16, they will be able to easily navigate through its
contents focusing on the differences between what they learned earlier for grayscale
images and later for their color equivalent. Instructors who do not agree with this
decision can easily bring sections of Chapter 16 to an earlier point in their courses.

Chapter 17 deals with image compression and coding, very extensive and techni-
cally complex topics upon which entire books have been written. Since the focus of
the book is on building practical image processing and machine vision solutions using
MATLAB®, we decided to approach the topic of image coding and compression from
a broad perspective (standards in use today, categories of compression techniques and
their chief characteristics, etc.) instead of attempting to embed a deeper discussion
of these topics that could be potentially distracting and would most likely add little
value. From a pragmatic viewpoint, since the reader’s goal is to process images using
MATLAB® and its rich capabilities for reading and writing images from/to a wide
variety of formats (most of which use some type of compression), we focused on
how to use these capabilities in a meaningful way. Instructors may want to proceed
in different ways, depending on their goals, ranging from expanding the material in
Chapter 17 with additional references (if image coding and compression is an impor-
tant part of their course syllabus) to skipping the chapter altogether (if the course’s
main goal is to build a machine vision solution to a practical problem, which probably
would not require that type of knowledge).

Chapters 18 and 19 are tightly interrelated. They provide the information needed to
design and implement two of the most critical stages of image processing and machine
vision solutions: feature extraction and pattern classification. Chapter 18 offers a wide
array of choices for feature extraction and representation techniques, depending on the
type of image and the specific needs of the solution being designed. Instructors may
appreciate the fact that Chapter 19 provides all the basic concepts that students may
need from the associated fields of pattern recognition, data mining, and information
retrieval, without requiring additional references. This is particularly important if the
course does not enforce prerequisites in any of these areas. The tutorial at the end of
Chapter 19 was created to put the selection, design, and fine-tuning of the algorithms
presented in Chapters 18 and 19 under perspective. It is my hope that at this point in
the book, students will not only be fluent in MATLAB® and image processing but
will also have acquired the ability to look back and reflect critically on what works,
what does not, and why.

Part II is organized in three chapters, which can be used in the later part of a one- or
two-semester course that combines image and video processing or at the early stages
of course devoted exclusively to video processing. In the latter case, the instructor may
want to supplement the material in Part II with additional references (e.g., scholarly
papers in video processing and related topics in the case of graduate-level courses).

Chapter 20 covers a very broad range of topics, from basic analog video con-
cepts to digital video standards and codecs. It offers room for expansion in multiple
directions, from a deeper study of TV broadcasting systems to a more detailed anal-
ysis of contemporary video compression schemes and standards. Chapter 21 covers

xlviii PREFACE

the topic of standards conversion and discusses the most popular techniques used
to accomplish it. Chapter 22 expands the discussion to include motion estimation
and compensation, as well as (interframe and intraframe) video filtering techniques.
It concludes with a practical project implemented in MATLAB® by one of my for-
mer students: an object detection and tracking system in video sequences with fixed
camera and moving, complex, background. The goal of including this case study is to
conclude the discussion of Part II (and the book) reminding the reader that at this point
they should be knowledgeable enough to attempt similar projects (which instructors
may assign as end-of-course projects).

The material in Appendix A is very relevant to image and video processing systems
because it explains the relationship between properties of the human visual system and
their impact on design decisions involved in building such systems. Some instructors
may choose to present (part of) it earlier in their courses.

Appendix B is a practical guide to the development of GUIs for MATLAB® appli-
cations. It should empower students to develop visually attractive, interactive, and
functional interfaces to their MATLAB® projects.

A note about MATLAB® and the tutorials at the end of chapters. Having used
MATLAB® (and its Image Processing Toolbox) for more than a decade, I whole-
heartedly agree with Rudra Pratap [Pra02] who wrote, “MATLAB®’s ease of use is
its main feature.” MATLAB® has a shallow learning curve, which allows the user to
engage in an interactive learning style that accommodates the right degree of challenge
needed to raise the user’s skills by a certain amount, and so on, in a staircase-like pro-
gression. The MATLAB® tutorials included in this book have been conceived under
this philosophy.

Web site

The book’s companion web site (http://www.ogemarques.com) contains many supple-
mentary materials for students and instructors: MATLAB® code for all tutorials in the
book, MATLAB® code for selected figures, test images and video sequences, supple-
mentary problems, tutorials, and projects (that could not make it to the printed version),
and an ever-growing and frequently maintained list of useful web sites—including
(links to) image processing conferences, software, hardware, research groups, test
image databases, and much more.

Oge Marques

Boca Raton, FL

ACKNOWLEDGMENTS

I am deeply grateful to many people who have collaborated—directly or indirectly—
on this project. This book would not have been possible without their help.

I want to thank many inspiring professors, supervisors, and colleagues who have
guided my steps in the fields of image and video processing and related areas, particu-
larly Maria G. Te Vaarwerk, Wim Hoeks, Bart de Greef, Eric Persoon, John Bernsen,
Borko Furht, and Bob Cooper.

A very special thank you to my friend and colleague Hugo Vieira Neto, who has
been a great supporter of this project from its early planning stages to its completion.

I am deeply indebted to Gustavo Benvenutti Borba for his excellent work in the
creation of most of the figures in this book, his insightful reviews and comments, and
continuous encouragement, investing many hours of his time in return for not much
more than these few lines of thanks.

Many thanks to Liam M. Mayron for his encouragement, support, and expert help
throughout all the steps of this project.

This book could not have been produced without the invaluable contributions of
Jeremy Jacob, who wrote, revised, and documented most of the MATLAB® code
associated with the book and its tutorials and also contributed the contents for
Appendix B.

Special thanks to the MathWorks Book Program (Courtney Esposito, Naomi
Fernandes, and Meg Vulliez) for their support over the years.

Several friends and colleagues reviewed draft versions of selected portions of the
text: Liam M. Mayron, Hugo Vieira Neto, Mathias Lux, Gustavo Benvenutti Borba,
Pierre Baillargeon, Humberto Remigio Gamba, Vladimir Nedovic, Pavani Chila-
makuri, and Joel Gibson. I would like to thank them for their careful reviews and
insightful comments and suggestions. I have done my best to correct the mistakes

xlix

l ACKNOWLEDGMENTS

they pointed out and improve the contents of the book according to their suggestions.
If any error remains, it is entirely my responsibility, not theirs. If you should find
any errors, please e-mail me at omarques@ieee.org, and I will correct them in future
printings of this book.

My biggest thanks to my publisher George J. Telecki and his wonderful staff at
John Wiley & Sons, Inc. who have patiently worked with me throughout the lifetime
of this project: Lucy Hitz, Rachel Witmer, and Melissa Valentine. Their kindness and
professionalism have made the creation of this book a very enjoyable process.

Thanks to Amy Hendrickson (TeXnology Inc.) for her expert help with LATEX
issues.

I am also indebted to Roger Dalal who designed the inspiring cover art for the
book.

Last but certainly not least, I want to thank my family for their unfailing love,
patience, and understanding.

Oge Marques

PART I

IMAGE PROCESSING

CHAPTER 1

INTRODUCTION AND OVERVIEW

WHAT WILL WE LEARN?

• What is image processing?
• What are the main applications of image processing?
• What is an image?
• What is a digital image?
• What are the goals of image processing algorithms?
• What are the most common image processing operations?
• Which hardware and software components are typically needed to build an image

processing system?
• What is a machine vision system (MVS) and what are its main components?
• Why is it so hard to emulate the performance of the human visual system (HVS)

using cameras and computers?

1.1 MOTIVATION

Humans have historically relied on their vision for tasks ranging from basic instinctive
survival skills to detailed and elaborate analysis of works of art. Our ability to guide
our actions and engage our cognitive abilities based on visual input is a remarkable
trait of the human species, and much of how exactly we do what we do—and seem
to do it so well—remains to be discovered.

Practical Image and Video Processing Using MATLAB®. By Oge Marques.
© 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

3

4 INTRODUCTION AND OVERVIEW

The need to extract information from images and interpret their contents has been
one of the driving factors in the development of image processing1 and computer
vision during the past decades.

Image processing applications cover a wide range of human activities, such as the
following:

• Medical Applications: Diagnostic imaging modalities such as digital radiogra-
phy, PET (positron emission tomography), CAT (computerized axial tomogra-
phy), MRI (magnetic resonance imaging), and fMRI (functional magnetic res-
onance imaging), among others, have been adopted by the medical community
on a large scale.

• Industrial Applications: Image processing systems have been successfully used
in manufacturing systems for many tasks, such as safety systems, quality control,
and control of automated guided vehicles (AGVs).

• Military Applications: Some of the most challenging and performance-critical
scenarios for image processing solutions have been developed for military needs,
ranging from detection of soldiers or vehicles to missile guidance and object
recognition and reconnaissance tasks using unmanned aerial vehicles (UAVs).
In addition, military applications often require the use of different imaging sen-
sors, such as range cameras and thermographic forward-looking infrared (FLIR)
cameras.

• Law Enforcement and Security: Surveillance applications have become one of
the most intensely researched areas within the video processing community.
Biometric techniques (e.g., fingerprint, face, iris, and hand recognition), which
have been the subject of image processing research for more than a decade, have
recently become commercially available.

• Consumer Electronics: Digital cameras and camcorders, with sophisticated
built-in processing capabilities, have rendered film and analog tape technolo-
gies obsolete. Software packages to enhance, edit, organize, and publish images
and videos have grown in sophistication while keeping a user-friendly inter-
face. High-definition TVs, monitors, DVD players, and personal video recorders
(PVRs) are becoming increasingly popular and affordable. Image and video have
also successfully made the leap to other devices, such as personal digital assis-
tants (PDAs), cell phones, and portable music (MP3) players.

• The Internet, Particularly the World Wide Web: There is a huge amount of visual
information available on the Web. Collaborative image and video uploading,
sharing, and annotation (tagging) have become increasingly popular. Finding
and retrieving images and videos on the Web based on their contents remains
an open research challenge.

1From this point on, the use of the phrase image processing should be interpreted as digital image process-
ing. We shall only use the digital qualifier when it becomes relevant (e.g., after an analog image has been
converted to a digital representation).

BASIC CONCEPTS AND TERMINOLOGY 5

1.2 BASIC CONCEPTS AND TERMINOLOGY

In this section, we define the most frequently used terms in Part I of this book.
Although there is no universal agreement on the terminology used in this field, the
definitions presented here are consistently used throughout the book. This section is
structured in a question-and-answer format.

What Is an Image?

An image is a visual representation of an object, a person, or a scene produced by
an optical device such as a mirror, a lens, or a camera. This representation is two
dimensional (2D), although it corresponds to one of the infinitely many projections
of a real-world, three-dimensional (3D) object or scene.

What Is a Digital Image?

A digital image is a representation of a two-dimensional image using a finite number of
points, usually referred to as picture elements, pels, or pixels. Each pixel is represented
by one or more numerical values: for monochrome (grayscale) images, a single value
representing the intensity of the pixel (usually in a [0, 255] range) is enough; for color
images, three values (e.g., representing the amount of red (R), green (G), and blue
(B)) are usually required. Alternative ways of representing color images, such as the
indexed color image representation, are described in Chapter 2.

What Is Digital Image Processing?

Digital image processing can be defined as the science of modifying digital images
by means of a digital computer. Since both the images and the computers that process
them are digital in nature, we will focus exclusively on digital image processing in this
book. The changes that take place in the images are usually performed automatically
and rely on carefully designed algorithms. This is in clear contrast with another
scenario, such as touching up a photo using an airbrush tool in a photo editing software,
in which images are processed manually and the success of the task depends on
human ability and dexterity. We refer to the latter as image manipulation to make this
distinction more explicit.

What Is the Scope of Image Processing?

In this book, we adopt the terminology used in [GW08] (among others) and employ
the term image processing to refer to all the techniques and applications described in
Part I of this book, whether the output is a modified (i.e., processed) version of the
input image, an encoded version of its main attributes, or a nonpictorial description
of its contents.

6 INTRODUCTION AND OVERVIEW

Moreover, we distinguish among three levels of image processing opera-
tions [GW08]:

• Low Level: Primitive operations (e.g., noise reduction, contrast enhancement,
etc.) where both the input and the output are images.

• Mid Level: Extraction of attributes (e.g., edges, contours, regions, etc.) from
images.

• High Level: Analysis and interpretation of the contents of a scene.

This book does not cover the area of computer graphics or image synthesis, the
process by which a 2D or 3D image is rendered from numerical data. In fact, we are
often interested in the opposite process (sometimes referred to as image analysis), by
which textual and numerical data can be extracted from an array of pixels.

Image processing is a multidisciplinary field, with contributions from different
branches of science (particularly mathematics, physics, and computer science) and
computer, optical, and electrical engineering. Moreover, it overlaps other areas such
as pattern recognition, machine learning, artificial intelligence, and human vision
research. This combination of cross-disciplinary research and intersecting fields can
be seen in the list of magazines and journals presented in Section 1.6.

1.3 EXAMPLES OF TYPICAL IMAGE PROCESSING OPERATIONS

Image processing covers a wide and diverse array of techniques and algorithms, which
will be described in detail in the remainder of Part I of this book. In this section, we
provide a preview of the most representative image processing operations that you
will learn about in forthcoming chapters.

1. Sharpening (Figure 1.1): A technique by which the edges and fine details of an
image are enhanced for human viewing. Chapters 8–10 will discuss how this
is done in the spatial domain, whereas Chapter 11 will extend the discussion to
frequency-domain techniques.

2. Noise Removal (Figure 1.2): Image processing filters can be used to reduce the
amount of noise in an image before processing it any further. Depending on the
type of noise, different noise removal techniques are used, as we will learn in
Chapter 12.

3. Deblurring (Figure 1.3): An image may appear blurred for many reasons, rang-
ing from improper focusing of the lens to an insufficient shutter speed for a
fast-moving object. In Chapter 12, we will look at image deblurring algorithms.

4. Edge Extraction (Figure 1.4): Extracting edges from an image is a fundamental
preprocessing step used to separate objects from one another before identify-
ing their contents. Edge detection algorithms and techniques are discussed in
Chapter 14.

EXAMPLES OF TYPICAL IMAGE PROCESSING OPERATIONS 7

FIGURE 1.1 Image sharpening: (a) original image; (b) after sharpening.

5. Binarization (Figure 1.5): In many image analysis applications, it is often nec-
essary to reduce the number of gray levels in a monochrome image to simplify
and speed up its interpretation. Reducing a grayscale image to only two levels
of gray (black and white) is usually referred to as binarization, a process that
will be discussed in more detail in Chapter 15.

FIGURE 1.2 Noise removal: (a) original (noisy) image; (b) after removing noise.

8 INTRODUCTION AND OVERVIEW

FIGURE 1.3 Deblurring: (a) original (blurry) image; (b) after removing the (motion) blur.
Original image: courtesy of MathWorks.

6. Blurring (Figure 1.6): It is sometimes necessary to blur an image in order to
minimize the importance of texture and fine detail in a scene, for instance, in
cases where objects can be better recognized by their shape. Blurring tech-
niques in spatial and frequency domain will be discussed in Chapters 10 and
11, respectively.

7. Contrast Enhancement (Figure 1.7): In order to improve an image for human
viewing as well as make other image processing tasks (e.g., edge extraction)

FIGURE 1.4 Edge extraction: (a) original image; (b) after extracting its most relevant edges.
Original image: courtesy of MathWorks.

EXAMPLES OF TYPICAL IMAGE PROCESSING OPERATIONS 9

FIGURE 1.5 Binarization: (a) original grayscale image; (b) after conversion to a black-and-
white version. Original image: courtesy of MathWorks.

FIGURE 1.6 Blurring: (a) original image; (b) after blurring to remove unnecessary details.
Original image: courtesy of MathWorks.

FIGURE 1.7 Contrast enhancement: (a) original image; (b) after histogram equalization to
improve contrast.

10 INTRODUCTION AND OVERVIEW

FIGURE 1.8 Object segmentation and labeling: (a) original image; (b) after segmenting and
labeling individual objects. Original image: courtesy of MathWorks.

easier, it is often necessary to enhance the contrast of an image. Contrast en-
hancement techniques using transformation functions and histogram processing
will be discussed in Chapters 8 and 9, respectively.

8. Object Segmentation and Labeling (Figure 1.8): The task of segmenting and
labeling objects within a scene is a prerequisite for most object recognition
and classification systems. Once the relevant objects have been segmented and
labeled, their relevant features can be extracted and used to classify, compare,
cluster, or recognize the objects in question. Segmentation and labeling of con-
nected components from an image will be discussed in Chapters 13 and 15.
Feature extraction and representation, and pattern recognition will be covered
in Chapters 18 and 19, respectively.

1.4 COMPONENTS OF A DIGITAL IMAGE PROCESSING SYSTEM

In this section, we present a generic digital image processing system and discuss its
main building blocks (Figure 1.9). The system is built around a computer in which
most image processing tasks are carried out, but also includes hardware and software
for image acquisition, storage, and display. The actual hardware associated with each
block in Figure 1.9 changes as technology evolves. In fact, even contemporary digital
still cameras can be modeled according to that diagram: the CCD sensor corresponds
to the Acquisition block, flash memory is used for storage, a small LCD monitor for
display, and the digital signal processor (DSP) chip becomes the ‘Computer’, where
certain image processing operations (e.g., conversion from RAW format to JPEG2)
take place.

2See Section 2.2 for information on image file formats.

COMPONENTS OF A DIGITAL IMAGE PROCESSING SYSTEM 11

FIGURE 1.9 Components of a digital image processing system. Adapted and redrawn
from [Umb05].

Hardware

The hardware components of a digital image processing system typically include the
following:

• Acquisition Devices: Responsible for capturing and digitizing images or video
sequences. Examples of general-purpose acquisition devices include scanners,
cameras, and camcorders. Acquisition devices can be interfaced with the main
computer in a number of ways, for example, USB, FireWire, Camera Link, or
Ethernet. In cases where the cameras produce analog video output, an image
digitizer—usually known as frame grabber—is used to convert it to digital
format.

• Processing Equipment: The main computer itself, in whatever size, shape, or
configuration. Responsible for running software that allows the processing and
analysis of acquired images.

• Display and Hardcopy Devices: Responsible for showing the image contents
for human viewing. Examples include color monitors and printers.

• Storage Devices: Magnetic or optical disks responsible for long-term storage of
the images.

12 INTRODUCTION AND OVERVIEW

Software

The software portion of a digital image processing system usually consists of modules
that perform specialized tasks. The development and fine-tuning of software for image
processing solutions is iterative in nature. Consequently, image processing researchers
and practitioners rely on programming languages and development environments that
support modular, agile, and iterative software development.

In this book, the software of choice is MATLAB® (MATrix LABoratory), a multi-
platform, data analysis, prototyping, and visualization tool with built-in support for
matrices and matrix operations, rich graphics capabilities, and a friendly programming
language and development environment. MATLAB offers programmers the ability to
edit and interact with the main functions and their parameters, which leads to valuable
time savings in the software development cycle.

MATLAB has become very popular with engineers, scientists, and researchers in
both industry and academia, due to many factors, such as the availability of toolboxes
containing specialized functions for many application areas, ranging from data ac-
quisition to image processing (which is the main focus of our interest and will be
discussed in Chapter 4).

1.5 MACHINE VISION SYSTEMS

In this section, we introduce the main components of a machine vision system (Fig-
ure 1.10) using a practical example application: recognizing license plates at a high-
way toll booth. Image processing is not a one-step process: most solutions follow a
sequential processing scheme whose main steps are described next.

The problem domain, in this case, is the automatic recognition of license plates. The
goal is to be able to extract the alphanumeric contents of the license plate of a vehicle
passing through the toll booth in an automated and unsupervised way, that is, without
need for human intervention. Additional requirements could include 24/7 operation
(under artificial lighting), all-weather operation, minimal acceptable success rate, and
minimum and maximum vehicle speed.

The acquisition block is in charge of acquiring one or more images containing a
front or rear view of the vehicle that includes its license plate. This can be implemented
using a CCD camera and controlling the lighting conditions so as to ensure that the
image will be suitable for further processing. The output of this block is a digital image
that contains a (partial) view of the vehicle. Several factors should be considered in the
design of this block and will likely impact the quality of the resulting image as well
as the performance of the whole system, such as the maximum speed allowed for the
vehicle without risk of blurring the picture, illumination aspects (e.g., number, type,
and positioning of light sources), choice of lenses, and the specification (resolution
and speed) of the image digitizer hardware.

The goal of the preprocessing stage is to improve the quality of the acquired image.
Possible algorithms to be employed during this stage include contrast improvement,
brightness correction, and noise removal.

MACHINE VISION SYSTEMS 13

The segmentation block is responsible for partitioning an image into its main
components: relevant foreground objects and background. It produces at its output a
number of labeled regions or “subimages.” It is possible that in this particular case
segmentation will be performed at two levels: (1) extracting the license plate from
the rest of the original image; and (2) segmenting characters within the plate area.
Automatic image segmentation is one of the most challenging tasks in a machine
vision system.

The feature extraction block (also known as representation and description) con-
sists of algorithms responsible for encoding the image contents in a concise and
descriptive way. Typical features include measures of color (or intensity) distribu-
tion, texture, and shape of the most relevant (previously segmented) objects within
the image. These features are usually grouped into a feature vector that can then be
used as a numerical indicator of the image (object) contents for the subsequent stage,
where such contents will be recognized (classified).

Once the most relevant features of the image (or its relevant objects, in this
case individual characters) have been extracted and encoded into a feature vec-
tor, the next step is to use this K-dimensional numerical representation as an
input to the pattern classification (also known as recognition and interpretation)
stage. At this point, image processing meets classical pattern recognition and ben-
efits from many of its tried-and-true techniques, such as minimum distance clas-
sifiers, probabilistic classifiers, neural networks, and many more. The ultimate
goal of this block is to classify (i.e., assign a label to) each individual charac-
ter, producing a string (or ASCII file) at the output, containing the license plate
contents.

In Figure 1.10, all modules are connected to a large block called knowledge base.
These connections—inspired by a similar figure in [GW08]—are meant to indicate
that the successful solution to the license plate recognition problem will depend on
how much knowledge about the problem domain has been encoded and stored in the
MVS. The role of such knowledge base in the last stages is quite evident (e.g., the

FIGURE 1.10 Diagram of a machine vision system. Adapted and redrawn from [GW08].

14 INTRODUCTION AND OVERVIEW

knowledge that the first character must be a digit may help disambiguate between
a “0” and an “O” in the pattern classification stage). In a less obvious way, the
knowledge base should (ideally) help with all tasks within the MVS. For example,
the segmentation block could benefit from rules specifying known facts about the
license plates, such as shape and aspect ratio, most likely location within the original
image, number of characters expected to appear within the plate, size and position
information about the characters, and relevant background patterns that may appear
in the plate area.

The human visual system and a machine vision system have different strengths and
limitations and the designer of an MVS must be aware of them. A careful analysis of
these differences provides insight into why it is so hard to emulate the performance of
the human visual system using cameras and computers. Three of the biggest challenges
stand out:

• The HVS can rely on a very large database of images and associated con-
cepts that have been captured, processed, and recorded during a lifetime.
Although the storage of the images themselves is no longer an expensive
task, mapping them to high-level semantic concepts and putting them all
in context is a very hard task for an MVS, for which there is no solution
available.

• The very high speed at which the HVS makes decisions based on visual input. Al-
though several image processing and machine vision tasks can be implemented
at increasingly higher speeds (often using dedicated hardware or fast supercom-
puters), many implementations of useful algorithms still cannot match the speed
of their human counterpart and cannot, therefore, meet the demands of real-time
systems.

• The remarkable ability of the HVS to work under a wide range of conditions,
from deficient lighting to less-than-ideal perspectives for viewing a 3D object.
This is perhaps the biggest obstacle in the design of machine vision systems,
widely acknowledged by everyone in the field. In order to circumvent this limita-
tion, most MVS must impose numerous constraints on the operating conditions
of the scene, from carefully controlled lighting to removing irrelevant distractors
that may mislead the system to careful placing of objects in order to minimize
the problems of shades and occlusion.

Appendix A explores selected aspects of the HVS in more detail.

1.6 RESOURCES

In this section, we have compiled a list of useful resources for readers who want
to deepen their knowledge and tackle more advanced concepts, algorithms, and
mathematical constructs. A similar section on video processing resources appears in
Chapter 20.

RESOURCES 15

Books

The following is a list of selected books on image processing and related fields:

• Burger, W. and Burge, M. J., Digital Image Processing: An Algorithmic Intro-
duction Using Java, New York: Springer, 2008.

• Gonzalez, R. C. and Woods, R. E., Digital Image Processing, 3rd ed., Upper
Saddle River, NJ: Prentice Hall, 2008.

• Sonka, M, Hlavac, V., and Boyle, R., Image Processing, Analysis, and Computer
Vision, 3rd ed., Toronto, Ontario: Thomson Learning, 2008.

• Pratt, W. K., Digital Image Processing, 4th ed., New York: Wiley–Interscience,
2007.

• Jahne, B., Digital Image Processing: Concepts, Algorithms, and Scientific
Applications, 6th ed., Berlin: Springer, 2005.

• Davies, E. R., Machine Vision: Theory, Algorithms, Practicalities, 3rd ed., San
Francisco, CA: Morgan Kaufmann, 2005.

• Umbaugh, S. E., Computer Imaging: Digital Image Analysis and Processing,
Boca Raton, FL: CRC Press, 2005.

• Gonzalez, R. C., Woods, R. E., and Eddins, S. L., Digital Image Processing
Using MATLAB, Upper Saddle River, NJ: Prentice Hall, 2004.

• McAndrew, A., Introduction to Digital Image Processing with MATLAB, Boston,
MA: Thomson, 2004.

• Forsyth, D. F. and Ponce, J., Computer Vision: A Modern Approach, Upper
Saddle River, NJ: Prentice Hall, 2002.

• Duda, R. O., Hart, P. E., and Stork, D. G., Pattern Classification, 2nd ed., New
York: Wiley, 2001.

• Shapiro, L. G. and Stockman, G. C., Computer Vision, Upper Saddle River, NJ:
Prentice Hall, 2001.

• Bovik, A. (Ed.), Handbook of Image and Video Processing, San Diego, CA:
Academic Press, 2000.

• Efford, N., Digital Image Processing: A Practical Introduction Using Java,
Harlow, UK: Addison-Wesley, 2000.

• Seul, M., O’Gorman, L., and Sammon, M. J., Practical Algorithms for Image
Analysis, Cambridge, UK: Cambridge University Press, 2000.

• Schalkoff, R. J., Digital Image Processing and Computer Vision, New York:
Wiley, 1989.

Magazines and Journals

The following are some of the magazines and journals that publish research results
in image and video processing and related areas (in alphabetical order): Artificial
Intelligence, Computer Vision and Image Understanding, EURASIP Journal on
Advances in Signal Processing, EURASIP Journal on Image and Video Processing,

16 INTRODUCTION AND OVERVIEW

IEEE Multimedia Magazine, IEEE Transactions on Circuits and Systems for Video
Technology, IEEE Transactions on Image Processing, IEEE Transactions on Medical
Imaging, IEEE Transactions on Multimedia, IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, Image and Vision Computing, International Journal of
Computer Vision, Journal of Electronic Imaging (SPIE and IS&T), Journal of Mathe-
matical Imaging and Vision, Journal of Visual Communication and Image Represen-
tation, Machine Vision and Applications, Pattern Recognition, and Signal Processing:
Image Communication.

In addition, there are a number of useful trade magazines, such as Advanced Imag-
ing Magazine, Imaging and Machine Vision Europe Magazine, Studio Monthly, and
Vision Systems Design Magazine.

Web Sites

This section contains a selected number of useful web sites. Some of them are portals
to image processing and computer vision information (e.g., conferences, research
groups, and publicly available databases) and contain many links to other relevant
sites.

Since web pages often move and change URLs (and some disappear altogether), the
current URL for the web sites suggested in the book will be available (and maintained
up-to-date) in the book’s companion web site (http://www.ogemarques.com). The
book’s companion web site will also add relevant sites that were not available at the
time of this writing.

• CVonline: This ever-growing Compendium of Computer Vision, edited and
maintained by Professor Robert B. Fisher, School of Informatics, University
of Edinburgh, UK, includes a collection of hypertext summaries on more than
1400 topics in computer vision and related subjects.
http://homepages.inf.ed.ac.uk/rbf/CVonline

• Computer Vision Home Page: Arguably the best-known portal for image pro-
cessing research. Excellent starting point when searching for publications, test
images, research groups, and much more.
http://www.cs.cmu.edu/ cil/vision.html

• USC Annotated Computer Vision Bibliography: An extensive and structured
compilation of relevant bibliography in the fields of computer vision and image
processing.
http://iris.usc.edu/Vision-Notes/bibliography/contents.html

• USC Computer Vision Conference Listing: A structured list of computer vision
and image processing conferences and pertinent details.
http://iris.usc.edu/Information/Iris-Conferences.html

• Vision-Related Books: A list of more than 500 books—including online books
and book support sites—edited and maintained by Bob Fisher.
http://homepages.inf.ed.ac.uk/rbf/CVonline/books.htm

RESOURCES 17

• Mathtools.net: A technical computing portal containing links to thousands of
relevant code for MATLAB (among others).
http://www.mathtools.net/

• The MathWorks Central File Exchange: User-contributed MATLAB code for
image processing and many other fields.
http://www.mathworks.com/matlabcentral/fileexchange/

WHAT HAVE WE LEARNED?

• Digital image processing is the science of modifying digital images using a
digital computer.

• Digital image processing is closely related to other areas such as computer vision
and pattern recognition.

• Digital image processing algorithms, techniques, and applications usually take
an image as input and produce one of the following outputs: a modified (i.e.,
processed) image, an encoded version of the main attributes present in the input
image, or a nonpictorial description of the input image’s contents.

• Digital image processing has found applications in almost every area of modern
life, from medical imaging devices to quality control in manufacturing systems,
and from consumer electronics to law enforcement and security.

• An image is a visual representation of an object, a person, or a scene produced by
an optical device such as a mirror, a lens, or a camera. This representation is two
dimensional, although it corresponds to one of the infinitely many projections
of a real-world, three-dimensional object or scene.

• A digital image is a representation of a two-dimensional image using a finite
number of pixels, each of which indicates the gray level or color contents of the
image at that point.

• Image manipulation techniques consist of manually modifying the contents of
an image using preexisting tools (e.g., airbrush).

• Representative image processing operations include image sharpening, noise
removal, edge extraction, contrast enhancement, and object segmentation and
labeling.

• A digital image processing system is usually built around a general-purpose
computer equipped with hardware for image and video acquisition, storage, and
display. The software portion of the system usually consists of modules that
perform specialized tasks. In this book, we shall use MATLAB (and its Image
Processing Toolbox) as the software of choice.

• A machine vision system is a combination of hardware and software designed
to solve problems involving the analysis of visual scenes using intelligent
algorithms. Its main components are acquisition, preprocessing, segmentation,
feature extraction, and classification.

18 INTRODUCTION AND OVERVIEW

• It is extremely difficult to emulate the performance of the human visual system—
in terms of processing speed, previously acquired knowledge, and the ability to
resolve visual scenes under a wide range of conditions—using machine vision
systems.

LEARN MORE ABOUT IT

• Chapter 1 of [GW08] contains a detailed account of the history of image pro-
cessing and its most representative applications.

• Another good overview of image processing applications is provided by
Baxes [Bax94].

• Chapter 16 of [SHB08] contains insightful information on design decisions
involved in the development of a few selected case studies in machine vision.

1.7 PROBLEMS

1.1 Use the block diagram from Figure 1.10 as a starting point to design a machine
vision system to read the label of the main integrated circuit (IC) on a printed circuit
board (PCB) (see Figure 1.11 for an example). Explain what each block will do, their
input and output, what are the most challenging requirements, and how they will be
met by the designed solution.

FIGURE 1.11 Test image for the design of a machine vision system to read the label of the
main integrated circuit on a printed circuit board.

PROBLEMS 19

FIGURE 1.12 (a) Test image for distance estimation: parallel lines with up to 5% difference
in length. (b) Test image for area estimation: circles with up to 10% difference in radius. Both
images are adapted and redrawn from [Jah05].

1.2 In our discussion on machine vision systems, we indicated that the following are
the three biggest difficulties in emulating the human visual system: its huge database
(images and concepts captured, processed, and recorded during a lifetime), its high
speed for processing visual data and making decisions upon them, and the ability to
perform under a wide range of work conditions. Explain each of these challenges
in your own words, and comment on which ones are more likely to be minimized,
thanks to advances in image processing hardware and software.

1.3 Who do you think would perform better at the following tasks: man (HVS) or
computer (MVS)? Please explain why.

(a) Determining which line is the shortest in Figure 1.12a.

FIGURE 1.13 (a) Test image for texture-based object segmentation. (b) Test image for object
segmentation based on “interpolation” of object boundaries. Both images are adapted and
redrawn from [Jah05].

20 INTRODUCTION AND OVERVIEW

(b) Determining which circle is the smallest in Figure 1.12b.

(c) Segmenting the image containing the letter “F” from the background in
Figure 1.13a.

(d) Segmenting the white triangle (this triangle—known as “Kanizsa’s
triangle”—is a well-known optical illusion) in Figure 1.13b.

CHAPTER 2

IMAGE PROCESSING BASICS

WHAT WILL WE LEARN?

• How is a digital image represented and stored in memory?
• What are the main types of digital image representation?
• What are the most popular image file formats?
• What are the most common types of image processing operations and how do

they affect pixel values?

2.1 DIGITAL IMAGE REPRESENTATION

A digital image—whether it was obtained as a result of sampling and quantization
of an analog image or created already in digital form—can be represented as a two-
dimensional (2D) matrix of real numbers. In this book, we adopt the convention
f (x, y) to refer to monochrome images of size M×N, where x denotes the row
number (from 0 to M − 1) and y represents the column number (between 0 and
N − 1) (Figure 2.1):

f (x, y) =

⎡
⎢⎢⎢⎢⎣

f (0, 0) f (0, 1) · · · f (0, N − 1)

f (1, 0) f (1, 1) · · · f (1, N − 1)
...

...
...

f (M − 1, 0) f (M − 1, 1) · · · f (M − 1, N − 1)

⎤
⎥⎥⎥⎥⎦

(2.1)

Practical Image and Video Processing Using MATLAB®. By Oge Marques.
© 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

21

22 IMAGE PROCESSING BASICS

FIGURE 2.1 A monochrome image and the convention used to represent rows (x) and
columns (y) adopted in this book.

The value of the two-dimensional function f (x, y) at any given pixel of coordinates
(x0, y0), denoted by f (x0, y0), is called the intensity or gray level of the image at that
pixel. The maximum and minimum values that a pixel intensity can assume will vary
depending on the data type and convention used. Common ranges are as follows: 0.0
(black) to 1.0 (white) for double data type and 0 (black) to 255 (white) for uint8
(unsigned integer, 8 bits) representation.

The convention expressed by equation (2.1) and Figure 2.1 is consistent with
programming languages that use 0-based array notation (e.g., Java, C, C++) and
several other textbooks, but not with MATLAB and its Image Processing Toolbox
(IPT), which use 1-based array notation. Whenever the situation calls for explicit
disambiguation between the two conflicting conventions, we shall use the notation
f(p,q) to refer to the MATLAB representation of f (x, y) (where p denotes row
and q denotes column):

f(p,q) =

⎡
⎢⎢⎢⎢⎣

f(1,1) f(1,2) · · · f(1,N)
f(2,1) f(2,2) · · · f(2,N)

...
...

...

f(M,1) f(M,2) · · · f(M,N)

⎤
⎥⎥⎥⎥⎦

(2.2)

Monochrome images are essentially 2D matrices (or arrays). Since MATLAB
treats matrices as a built-in data type, it is easier to manipulate them without resorting

DIGITAL IMAGE REPRESENTATION 23

to common programming language constructs (such as double for loops to access
each individual element within the array), as we shall see in Chapter 3.

Images are represented in digital format in a variety of ways. At the most basic
level, there are two different ways of encoding the contents of a 2D image in digital
format: raster (also known as bitmap) and vector. Bitmap representations use one or
more two-dimensional arrays of pixels, whereas vector representations use a series
of drawing commands to represent an image. Each encoding method has its pros
and cons: the greatest advantages of bitmap graphics are their quality and display
speed; their main disadvantages include larger memory storage requirements and size
dependence (e.g., enlarging a bitmap image may lead to noticeable artifacts). Vector
representations require less memory and allow resizing and geometric manipulations
without introducing artifacts, but need to be rasterized for most presentation devices.

In either case, there is no such a thing as a perfect digital representation of an im-
age. Artifacts due to finite resolution, color mapping, and many others will always be
present. The key to selecting an adequate representation is to find a suitable compro-
mise between size (in bytes), subjective quality, and interoperability of the adopted
format or standard. For the remaining of this book, we shall focus exclusively on
bitmap images.

2.1.1 Binary (1-Bit) Images

Binary images are encoded as a 2D array, typically using 1 bit per pixel, where
a 0 usually means “black” and a 1 means “white” (although there is no universal
agreement on that). The main advantage of this representation—usually suitable for
images containing simple graphics, text, or line art—is its small size. Figure 2.2
shows a binary image (the result of an edge detection algorithm) and a 6 × 6 detailed
region, where pixels with a value of 1 correspond to edges and pixels with a value of
0 correspond to the background.

FIGURE 2.2 A binary image and the pixel values in a 6 × 6 neighborhood. Original image:
courtesy of MathWorks.

24 IMAGE PROCESSING BASICS

In MATLAB

Binary images are represented in MATLAB using a logical array of 0’s and 1’s.
Although we could also use an array ofuint8 and restrict the array values to be only 0
or 1, that would not, technically, be considered a binary image in MATLAB [GWE04].
Conversion from numerical to logical arrays can be accomplished using function
logical.

Logical arrays can also be created and processed using relational and logical op-
erators (see Chapter 6).

2.1.2 Gray-Level (8-Bit) Images

Gray-level (also referred to as monochrome) images are also encoded as a 2D array
of pixels, usually with 8 bits per pixel, where a pixel value of 0 corresponds to
“black,” a pixel value of 255 means “white,” and intermediate values indicate varying
shades of gray. The total number of gray levels is larger than the human visual system
requirements (which, in most cases, cannot appreciate any improvements beyond 64
gray levels), making this format a good compromise between subjective visual quality
and relatively compact representation and storage.

Figure 2.3 shows a grayscale image and a 6 × 6 detailed region, where brighter
pixels correspond to larger values.

In MATLAB

Intensity images can be represented in MATLAB using different data types (or
classes). For monochrome images with elements of integer classes uint8 and
uint16, each pixel has a value in the [0, 255] and the [0, 65,535] range, respectively.
Monochrome images of class double have pixel values in the [0.0, 1.0] range.

FIGURE 2.3 A grayscale image and the pixel values in a 6 × 6 neighborhood.

DIGITAL IMAGE REPRESENTATION 25

FIGURE 2.4 Color image (a) and its R (b), G (c), and B (d) components.

2.1.3 Color Images

Representation of color images is more complex and varied. The two most common
ways of storing color image contents are RGB representation—in which each pixel is
usually represented by a 24-bit number containing the amount of its red (R), green (G),
and blue (B) components—and indexed representation—where a 2D array contains
indices to a color palette (or lookup table - (LUT)).

24-Bit (RGB) Color Images Color images can be represented using three 2D
arrays of same size, one for each color channel: red (R), green (G), and blue (B)
(Figure 2.4).1 Each array element contains an 8-bit value, indicating the amount of
red, green, or blue at that point in a [0, 255] scale. The combination of the three 8-bit
values into a 24-bit number allows 224 (16,777,216, usually referred to as 16 million
or 16 M) color combinations. An alternative representation uses 32 bits per pixel
and includes a fourth channel, called the alpha channel, that provides a measure of
transparency for each pixel and is widely used in image editing effects.

1Color images can also be represented using alternative color models (or color spaces), as we shall see in
Chapter 16.

26 IMAGE PROCESSING BASICS

FIGURE 2.5 An indexed color image and the indices in a 4 × 4 neighborhood. Original
image: courtesy of MathWorks.

Indexed Color Images A problem with 24-bit color representations is backward
compatibility with older hardware that may not be able to display the 16 million
colors simultaneously. A solution—devised before 24-bit color displays and video
cards were widely available—consisted of an indexed representation, in which a 2D
array of the same size as the image contains indices (pointers) to a color palette (or
color map) of fixed maximum size (usually 256 colors). The color map is simply a
list of colors used in that image.

Figure 2.5 shows an indexed color image and a 4 × 4 detailed region, where each
pixel shows the index and the values of R, G, and B at the color palette entry that the
index points to.

2.1.4 Compression

Since raw image representations usually require a large amount of storage space (and
proportionally long transmission times in the case of file uploads/downloads), most
image file formats employ some type of compression. Compression methods can be
lossy—when a tolerable degree of deterioration in the visual quality of the resulting
image is acceptable—or lossless—when the image is encoded in its full quality. The
overall results of the compression process in terms of both storage savings—usually
expressed in terms of compression ratio or bits per pixel (bpp)—and resulting quality
loss (for the case of lossy techniques) may vary depending on the technique, format,
options (such as the quality setting for JPEG), and actual image contents. As a gen-
eral guideline, lossy compression should be used for general-purpose photographic
images, whereas lossless compression should be preferred when dealing with line
art, drawings, facsimiles, or images in which no loss of detail may be tolerable (most
notably, space images and medical images). The topic of image compression will be
discussed in detail in Chapter 17.

IMAGE FILE FORMATS 27

2.2 IMAGE FILE FORMATS

Most of the image file formats used to represent bitmap images consist of a file header
followed by (often compressed) pixel data. The image file header stores information
about the image, such as image height and width, number of bands, number of bits
per pixel, and some signature bytes indicating the file type. In more complex file
formats, the header may also contain information about the type of compression used
and other parameters that are necessary to decode (i.e., decompress) the image.

The simplest file formats are the BIN and PPM formats. The BIN format simply
consists of the raw pixel data, without any header. Consequently, the user of a BIN
file must know the relevant image parameters (such as height and width) beforehand
in order to use the image. The PPM format and its variants (PBM for binary images,
PGM for grayscale images, PPM for color images, and PNM for any of them) are
widely used in image processing research and many free tools for format conversion
include them. The headers for these image formats include a 2-byte signature, or
“magic number,” that identifies the file type, the image width and height, the number
of bands, and the maximum intensity value (which determines the number of bpp per
band).

The Microsoft Windows bitmap (BMP) format is another widely used and fairly
simple format, consisting of a header followed by raw pixel data.

The JPEG format is the most popular file format for photographic quality image
representation. It is capable of high degrees of compression with minimal perceptual
loss of quality. The technical details of the JPEG compression algorithm (and its
presumed successor, the JPEG 2000 standard) will be discussed in Chapter 17.

Two other image file formats are very widely used in image processing tasks: GIF
(Graphics Interchange Format) and TIFF (Tagged Image File Format). GIF uses an
indexed representation for color images (with a palette of a maximum of 256 colors),
the LZW (Lempel–Ziv–Welch) compression algorithm, and a 13-byte header. TIFF is
a more sophisticated format with many options and capabilities, including the ability
to represent truecolor (24 bpp) and support for five different compression schemes.

Portable Network Graphics (PNG) is an increasingly popular file format that sup-
ports both indexed and truecolor images. Moreover, it provides a patent-free replace-
ment for the GIF format.

Some image processing packages adopt their own (sometimes proprietary) formats.
Examples include XCF (the native image format of the GIMP image editing program)
and RAW (which is a family of formats mostly adopted by camera manufacturers).

Since this book focuses on using MATLAB and its IPT, which provide built-in
functionality for reading from and writing to most common image file formats,2 we
will not discuss in detail the specifics of the most popular image file formats any
further. If you are interested in knowing more about the internal representation and
details of these formats, refer to “Learn More About It” section at the end of the
chapter.

2In the words of Professor Alasdair McAndrew [McA04], “you can use MATLAB for image processing
very happily without ever really knowing the difference between GIF, TIFF, PNG, and all the other formats.”

28 IMAGE PROCESSING BASICS

FIGURE 2.6 Pixels within a neighborhood.

2.3 BASIC TERMINOLOGY

This section introduces important concepts and terminology used to understand and
express the properties of an image.

Image Topology It involves the investigation of fundamental image properties—
usually done on binary images and with the help of morphological operators (see
Chapter 13)—such as number of occurrences of a particular object, number of separate
(not connected) regions, and number of holes in an object, to mention but a few.

Neighborhood The pixels surrounding a given pixel constitute its neighborhood,
which can be interpreted as a smaller matrix containing (and usually centered around)
the reference pixel. Most neighborhoods used in image processing algorithms are
small square arrays with an odd number of pixels, for example, the 3 × 3 neighborhood
shown in Figure 2.6.

In the context of image topology, neighborhood takes a slightly different meaning.
It is common to refer to the 4-neighborhood of a pixel as the set of pixels situated
above, below, to the right, and to the left of the reference pixel (p), whereas the set of
all of p’s immediate neighbors is referred to as its 8-neighborhood. The pixels that
belong to the 8-neighborhood, but not to the 4-neighborhood, make up the diagonal
neighborhood of p (Figure 2.7).

FIGURE 2.7 Concept of neighborhood of pixel p (from an image topology perspective): (a)
4-neighborhood; (b) diagonal neighborhood; (c) 8-neighborhood.

BASIC TERMINOLOGY 29

Adjacency In the context of image topology, two pixels p and q are 4-adjacent
if they are 4-neighbors of each other and 8-adjacent if they are 8-neighbors of
one another. A third type of adjacency—known as mixed adjacency (or simply
m-adjacency)—is sometimes used to eliminate ambiguities (i.e., redundant paths)
that may arise when 8-adjacency is used.

Paths In the context of image topology, a 4-path between two pixels p and q

is a sequence of pixels starting with p and ending with q such that each pixel in
the sequence is 4-adjacent to its predecessor in the sequence. Similarly, an 8-path
indicates that each pixel in the sequence is 8-adjacent to its predecessor.

Connectivity If there is a 4-path between pixels p and q, they are said to be
4-connected. Similarly, the existence of an 8-path between them means that they are
8-connected.

Components A set of pixels that are connected to each other is called a component.
If the pixels are 4-connected, the expression 4-component is used; if the pixels are
8-connected, the set is called an 8-component. Components are often labeled (and
optionally pseudocolored) in a unique way, resulting in a labeled image, L(x, y),
whose pixel values are symbols of a chosen alphabet. The symbol value of a pixel
typically denotes the outcome of a decision made for that pixel—in this case, the
unique number of the component to which it belongs.

In MATLAB

MATLAB’s IPT contains a function bwlabel for labeling connected components
in binary images. An associated function, label2rgb, helps visualize the results
by painting each region with a different color.

Figure 2.8 shows an example of using bwlabel and label2rgb and high-
lights the fact that the number of connected components will vary from 2 (when
8-connectivity is used, Figure 2.8b) to 3 (when 4-connectivity is used, Figure 2.8c).

Distances Between Pixels There are many image processing applications that
require measuring distances between pixels. The most common distance measures

FIGURE 2.8 Connected components: (a) original (binary) image; (b) results for
8-connectivity; (c) results for 4-connectivity.

30 IMAGE PROCESSING BASICS

between two pixels p and q, of coordinates (x0, y0) and (x1, y1), respectively, are as
follows:

• Euclidean distance:

De(p, q) =
√

(x1 − x0)2 + (y1 − y0)2 (2.3)

• D4 (also known as Manhattan or city block) distance:

D4(p, q) = |x1 − x0| + |y1 − y0| (2.4)

• D8 (also known as chessboard) distance:

D8(p, q) = max(|x1 − x0|, |y1 − y0|) (2.5)

It is important to note that the distance between two pixels depends only on their
coordinates, not their values. The only exception is the Dm distance, defined as “the
shortest m-path between two m-connected pixels.”

2.4 OVERVIEW OF IMAGE PROCESSING OPERATIONS

In this section, we take a preliminary look at the main categories of image processing
operations. Although there is no universal agreement on a taxonomy for the field, we
will organize them as follows:

• Operations in the Spatial Domain: Here, arithmetic calculations and/or logical
operations are performed on the original pixel values. They can be further divided
into three types:

– Global Operations: Also known as point operations, in which the entire image
is treated in a uniform manner and the resulting value for a processed pixel
is a function of its original value, regardless of its location within the image.
Example: contrast adjustment (Chapters 8 and 9).

– Neighborhood-Oriented Operations: Also known as local or area operations,
in which the input image is treated on a pixel-by-pixel basis and the resulting
value for a processed pixel is a function of its original value and the values of
its neighbors. Example: spatial-domain filters (Chapter 10).

– Operations Combining Multiple Images: Here, two or more images are used
as an input and the result is obtained by applying a (series of) arithmetic or
logical operator(s) to them. Example: subtracting one image from another for
detecting differences between them (Chapter 6).

• Operations in a Transform Domain: Here, the image undergoes a mathematical
transformation—such as Fourier transform (FT) or discrete cosine transform
(DCT)—and the image processing algorithm works in the transform domain.
Example: frequency-domain filtering techniques (Chapter 12).

OVERVIEW OF IMAGE PROCESSING OPERATIONS 31

2.4.1 Global (Point) Operations

Point operations apply the same mathematical function, often called transformation
function, to all pixels, regardless of their location in the image or the values of their
neighbors. Transformation functions in the spatial domain can be expressed as

g(x, y) = T
[
f (x, y)

]
(2.6)

where g(x, y) is the processed image,f (x, y) is the original image, andT is an operator
on f (x, y).

Since the actual coordinates do not play any role in the way the transformation
function processes the original image, a shorthand notation can be used:

s = T [r] (2.7)

where r is the original gray level and s is the resulting gray level after processing.
Figure 2.9 shows an example of a transformation function used to reduce the overall

intensity of an image by half: s = r/2. Chapter 8 will discuss point operations and
transformation functions in more detail.

2.4.2 Neighborhood-Oriented Operations

Neighborhood-oriented (also known as local or area) operations consist of determin-
ing the resulting pixel value at coordinates (x, y) as a function of its original value
and the value of (some of) its neighbors, typically using a convolution operation. The

FIGURE 2.9 Example of intensity reduction using a transformation function: (a) original
image; (b) output image.

32 IMAGE PROCESSING BASICS

FIGURE 2.10 A 3 × 3 convolution mask, whose generic weights are W1, ..., W9.

convolution of a source image with a small 2D array (known as window, template,
mask, or kernel) produces a destination image in which each pixel value depends on
its original value and the value of (some of) its neighbors. The convolution mask
determines which neighbors are used as well as the relative weight of their original
values. Masks are normally 3 × 3, such as the one shown in Figure 2.10. Each mask
coefficient (W1, . . . , W9) can be interpreted as a weight. The mask can be thought of
as a small window that is overlaid on the image to perform the calculation on one
pixel at a time. As each pixel is processed, the window moves to the next pixel in the
source image and the process is repeated until the last pixel has been processed.

Convolution operations are widely used in image processing. Depending on the
choice of kernel, the same basic operation can be used to blur an image, enhance it,
find its edges, or remove noise from it. Chapter 10 will explain convolution in detail
and discuss image enhancement using neighborhood operations.

2.4.3 Operations Combining Multiple Images

There are many image processing applications that combine two images, pixel by
pixel, using an arithmetic or logical operator, resulting in a third image, Z:

X opn Y = Z (2.8)

where X and Y may be images (arrays) or scalars, Z is necessarily an array, and
opn is a binary mathematical (+, −, ×, /) or logical (AND, OR, XOR) operator.
Figure 2.11 shows schematically how pixel-by-pixel operations work. Chapter 6 will
discuss arithmetic and logic pixel-by-pixel operations in detail.

2.4.4 Operations in a Transform Domain

A transform is a mathematical tool that allows the conversion of a set of values
to another set of values, creating, therefore, a new way of representing the same
information. In the field of image processing, the original domain is referred to as
spatial domain, whereas the results are said to lie in the transform domain. The

OVERVIEW OF IMAGE PROCESSING OPERATIONS 33

FIGURE 2.11 Pixel-by-pixel arithmetic and logic operations.

motivation for using mathematical transforms in image processing stems from the
fact that some tasks are best performed by transforming the input images, applying
selected algorithms in the transform domain, and eventually applying the inverse
transformation to the result (Figure 2.12). This is what happens when we filter an
image in the 2D frequency domain using the FT and its inverse, as we shall see in
Chapter 11.

WHAT HAVE WE LEARNED?

• Images are represented in digital format in a variety of ways. Bitmap (also
known as raster) representations use one or more two-dimensional arrays of
pixels (picture elements), whereas vector representations use a series of drawing
commands to represent an image.

• Binary images are encoded as a 2D array, using 1 bit per pixel, where usually—
but not always—a 0 means “black” and a 1 means “white.”

FIGURE 2.12 Operations in a transform domain.

34 IMAGE PROCESSING BASICS

• Gray-level (monochrome) images are encoded as a 2D array of pixels, using 8
bits per pixel, where a pixel value of 0 usually means “black” and a pixel value
of 255 means “white,” with intermediate values corresponding to varying shades
of gray.

• The two most common ways of storing color image contents are RGB
representation—in which each pixel is usually represented by a 24-bit number
containing the amount of its red (R), green (G), and blue (B) components—and
indexed representation—where a 2D array contains indices to a color palette (or
look up table).

• Some of the most popular image file formats in use today are BMP, GIF, JPEG,
TIFF, and PNG.

• MATLAB’s built-in functions for reading images from files and writing images
to files (imread and imwrite, respectively) support most file formats and
their variants and options.

• Image topology is the field of image processing concerned with investigation
of fundamental image properties (e.g., number of connected components and
number of holes in an object) using concepts such as adjacency and connectivity.

• Image processing operations can be divided into two big groups: spatial domain
and transform domain. Spatial-domain techniques can be further divided into
pixel-by-pixel (point) or neighborhood-oriented (area) operations.

LEARN MORE ABOUT IT

• The book by Miano [Mia99] is a useful guide to graphic file formats.

CHAPTER 3

MATLAB BASICS

WHAT WILL WE LEARN?

• What is MATLAB and why has it been selected to be the tool of choice for this
book?

• What programming environment does MATLAB offer?
• What are M-files?
• What is the difference between MATLAB scripts and functions?
• How can I get started with MATLAB?

3.1 INTRODUCTION TO MATLAB

MATLAB (MATrix LABoratory) is a data analysis, prototyping, and visual-
ization tool with built-in support for matrices and matrix operations, excellent
graphics capabilities, and a high-level programming language and development
environment.

MATLAB has become very popular with engineers, scientists, and researchers in
both industry and academia, due to many factors, among them, the availability of rich
sets of specialized functions—encapsulated in toolboxes—for many important areas,

Practical Image and Video Processing Using MATLAB®. By Oge Marques.
© 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

35

36 MATLAB BASICS

from neural networks to finances to image processing (which is the main focus of our
interest and will be discussed in Chapter 4).1

MATLAB has an extensive built-in documentation. It contains descriptions of
MATLAB’s main functions, sample code, relevant demos, and general help pages.
MATLAB documentation can be accessed in a number of different ways, from
command-line text-only help to hyperlinked HTML pages (which have their online
counterpart in MathWorks’s web site: http://www.mathworks.com).

MATLAB’s basic data type is the matrix (or array). MATLAB does not require
dimensioning, that is, memory allocation prior to actual usage. All data are considered
to be matrices of some sort. Single values are considered by MATLAB to be 1×1
matrices.

The MATLAB algorithm development environment provides a command-line in-
terface, an interpreter for the MATLAB programming language, an extensive set of
numerical and string manipulation functions, 2D and 3D plotting functions, and the
ability to build graphical user interfaces (GUIs). The MATLAB programming lan-
guage interprets commands, which shortens programming time by eliminating the
need for compilation.

If you want to get started with MATLAB right away, this is a good time to try
Tutorial 3.1: MATLAB—A Guided Tour on page 44.

3.2 BASIC ELEMENTS OF MATLAB

In this section, we present the basic elements of MATLAB, its environment, data
types, and command-line operations.

3.2.1 Working Environment

The MATLAB working environment consists of the following:

• MATLAB Desktop: This typically contains five subwindows: the Command Win-
dow, the Workspace Browser, the Current Directory Window, the Command
History Window, and one or more Figure Windows, which are visible when the
user displays a graphic, such as a plot or image.

• MATLAB Editor: This is used to create and edit M-files. It includes a number of
useful functions for saving, viewing, and debugging M-files.

• Help System: This includes particularly the Help Browser, which displays
HTML documents and contains a number of search and display options.

In Tutorial 3.1: MATLAB—A Guided Tour (page 44), you will have a hands-on
introduction to the MATLAB environment.

1In 2003, MathWorks released the Image Acquisition Toolbox, which contains a collection of functions
for image acquisition. This toolbox is briefly described in Section 5.3.2 and will not be explored in more
detail in this book.

BASIC ELEMENTS OF MATLAB 37

TABLE 3.1 MATLAB Data Classes

Data Class Description

uint8 8-Bit unsigned integers (1 byte per element)
uint16 16-Bit unsigned integers (2 bytes per element)
uint32 32-Bit unsigned integers (4 bytes per element)
int8 8-Bit signed integers (1 byte per element)
int16 16-Bit signed integers (2 bytes per element)
int32 32-Bit signed integers (4 bytes per element)
single Single-precision floating numbers (4 bytes per element)
double Double-precision floating numbers (8 bytes per element)
logical Values are 0 (false) or 1 (true) (1 byte per element)
char Characters (2 bytes per element)

3.2.2 Data Types

MATLAB supports the data types (or data classes) listed in Table 3.1.
The first eight data types listed in the table are known as numeric classes. A nu-

meric value in MATLAB is of class double unless specified otherwise. Conversion
between data classes (also known as typecasting) is possible (and often necessary).
A string in MATLAB is simply a 1 × n array of characters.

3.2.3 Array and Matrix Indexing in MATLAB

MATLAB arrays (vectors and matrices) are indexed using a 1-based convention.
Therefore, a(1) is the syntax to refer to the first element of a one-dimensional array
a and f(1,1) is the syntax to refer to the first element of a two-dimensional array,
such as the top left pixel in a monochrome image f. The colon (:) operator provides
powerful indexing capabilities, as you will see in Tutorial 3.2 (page 46).

MATLAB does not restrict the number of dimensions of an array, but has an upper
limit on the maximum number of elements allowed in an array. If you type

[c, maxsize] = computer

variablemaxsizewill contain the maximum number of elements allowed in a matrix
on the computer and version of MATLAB that you are using.

3.2.4 Standard Arrays

MATLAB has a number of useful, built-in standard arrays:

• zeros(m,n) creates an m×n matrix of zeros.
• ones(m,n) creates an m×n matrix of ones.
• true(m,n) creates an m×n matrix of logical ones.

38 MATLAB BASICS

• false(m,n) creates an m×n matrix of logical zeros.
• eye(n) returns an n × n identity matrix.
• magic(m) returns a magic square2 of order m.
• rand(m,n) creates an m×nmatrix whose entries are pseudorandom numbers

uniformly distributed in the interval [0, 1].
• randn(m,n) creates an m×n matrix whose entries are pseudorandom

numbers that follow a normal (i.e., Gaussian) distribution with mean 0 and
variance 1.

3.2.5 Command-Line Operations

Much of the functionality available in MATLAB can be accessed from the command
line (as can be seen in the first steps of Tutorial 3.2: MATLAB Data Structures on
page 46). A command-line operation is equivalent to executing one line of code,
usually calling a built-in function by typing its name and parameters at the prompt
(>>). If the line does not include a variable to which the result should be assigned, it
is assigned to a built-in variable ans (as in answer). If the line does not end with a
semicolon, the result is also echoed back to the command window.

Considering the large number of available built-in functions (and the parameters
that they may take) in MATLAB, the command-line interface is a very effective
way to access these functions without having to resort to a complex series of menus
and dialog boxes. The time spent learning the names, syntax, and parameters of
useful functions is also well spent, because whatever works on a command-line (one
command at a time) fashion will also work as part of a larger program or user-defined
function. Moreover, MATLAB provides additional features to make the command-
line interaction more effective, such as the ability to easily access (with arrow keys)
previous operations (and save typing time). Successful command-line operations can
also be easily selected from the Command History Window and combined into a script.

3.3 PROGRAMMING TOOLS: SCRIPTS AND FUNCTIONS

The MATLAB development environment interprets commands written in the MAT-
LAB programming language, which is extremely convenient when our major goal is
to rapidly prototype an algorithm. Once an algorithm is stable, it can be compiled
with the MATLAB compiler (available as an add-on to the main product) for faster
execution, which is particularly important for large data sets. The MATLAB compiler
MATCOM converts MATLAB native code into C++ code, compiles the C++ code,
and links it with the MATLAB libraries. Compiled code may be up to 10 times as fast
as their interpreted equivalent, but the speedup factor depends on how vectorized the
original code was; highly optimized vectorized code may not experience any speedup
at all.

2A magic square is a square array in which the sum along any row, column, or main diagonal results in
the same value.

PROGRAMMING TOOLS: SCRIPTS AND FUNCTIONS 39

For faster computation, programmers may dynamically link C routines as
MATLAB functions through the MEX utility.

3.3.1 M-Files

M-files in MATLAB can be scripts that simply execute a series of MATLAB
commands (or statements) or can be functions that accept arguments (parameters)
and produce one or more output values. User-created functions extend the capabili-
ties of MATLAB and its toolboxes to address specific needs or applications.

An M-file containing a script consists of a sequence of commands to be interpreted
and executed. In addition to calls to built-in functions, scripts may also contain variable
declarations, calls to user-created functions (which may be stored in separate files),
decision statements, and repetition loops. Scripts are usually created using a text
editor (e.g., the built-in MATLAB Editor) and stored with a meaningful name and the
.m extension. Once a script has been created and saved, it can be invoked from the
command line by simply typing its name.

An M-file containing a function has the following components:

• Function Definition Line: It has the form
function [outputs] = function_name(inputs)
The keyword function is required. The output arguments are enclosed within
square brackets, whereas the input arguments are enclosed within parentheses.
If the function does not return any value, only the word function is used and
there is no need for the brackets or the equal sign. Function names must begin
with a letter, must not contain spaces, and be limited to 63 characters in length.

• H1 Line: It is a single comment line that follows the function definition line.
There can be no blank lines or leading spaces between the H1 line and the
function definition line. The H1 line is the first text that appears when the user
types
>> help function_name3

in the Command Window. Since this line provides important summary informa-
tion about the contents and purpose of the M-file, it should be as descriptive as
possible.

• Help Text: It is a block of text that follows the H1 line, without any blank lines
between the two. The help text is displayed after the H1 line when a user types
help function_name at the prompt.

• Function Body: This contains all the MATLAB code that performs computation
and assigns values to output parameters.4

• Comments: In MATLAB, these are preceded by the % symbol.

3Note that the prompt is different in the educational version of MATLAB (EDU>>).
4Even though the MATLAB programming language includes a “return” command, it does not take any
arguments. This is in contrast with other programming languages that may use “return” followed by a
parameter as a standard way of returning a single value or a pointer to where multiple values reside in
memory.

40 MATLAB BASICS

Here is an example of a simple function (raise_to_power) that will be used
in Tutorial 3.3 on page 53:

function z = raise_to_power(val,exp)
%RAISE_TO_POWER Calculate power of a value
% z = raise_to_power(val,exp) raise val to a power with value of exp
% and store it in z.

z = val ˆ exp;

3.3.2 Operators

MATLAB operators can be grouped into three main categories:

• Arithmetic Operators: Perform numeric computations on matrices.
• Relational Operators: Compare operands.
• Logical Operators: Perform standard logical functions (e.g., AND, NOT, and

OR)

Since MATLAB considers a matrix and its standard built-in data type, the number
of array and matrix operators available in MATLAB far exceeds the traditional oper-
ators found in a conventional programming language. Table 3.2 contains a summary
of them. All operands can be real or complex.

Table 3.3 shows a list of some of the most useful specialized matrix operations
that can also be easily performed in MATLAB.

TABLE 3.2 MATLAB Array and Matrix Arithmetic Operators

Operator Name MATLAB Function

+ Array and matrix addition plus(a,b)
- Array and matrix subtraction minus(a,b)
.* Element-by-element array

multiplication
times(a,b)

* Matrix multiplication mtimes(a,b)
./ Array right division rdivide(a,b)
.\ Array left division ldivide(a,b)
/ Matrix right division mrdivide(a,b)
\ Matrix left division mldivide(a,b)
.̂ Array power power(a,b)
.̂ Matrix power mpower(a,b)
.’ Vector and matrix transpose transpose(a)
’ Vector and matrix complex

conjugate transpose
ctranspose(a)

+ Unary plus uplus(a)
− Unary minus uminus(a)
: Colon colon(a,b) or colon(a,b,c)

PROGRAMMING TOOLS: SCRIPTS AND FUNCTIONS 41

TABLE 3.3 Examples of MATLAB Specialized Matrix Operations

Name MATLAB Operator or Function

Matrix transpose Apostrophe (’) operator
Inversion inv function
Matrix determinant det function
Flip up and down flipud function
Flip left and right fliplr function
Matrix rotation rot90 function
Matrix reshape reshape function
Sum of the diagonal elements trace function

Since monochrome images are essentially 2D arrays, that is, matrices, all operands
in Tables 3.2 and 3.3 are applicable to images. However, the MATLAB Image Pro-
cessing Toolbox (IPT) also contains specialized versions of the main arithmetic oper-
ations involving images, whose main advantage is the support of integer data classes
(MATLAB math operators require inputs of class double). These functions are
listed in Table 3.4 and will be discussed in more detail in Chapter 6.

The relational operators available in MATLAB parallel the ones you would expect
in any programming language. They are listed in Table 3.5.

TABLE 3.4 Specialized Arithmetic Functions Supported by the IPT

Function Description

imadd Adds two images or adds a constant to an image
imsubtract Subtracts two images or subtracts a constant from an image
immultiply Multiplies two images (element-by-element) or multiplies a constant

times an image
imdivide Divides two images (element-by-element) or divides an image by a

constant
imabsdiff Computes the absolute difference between two images
imcomplement Complements an image
imlincomb Computes a linear combination of two or more images

TABLE 3.5 Relational Operators

Operator Name

< Less than
<= Less than or equal to
> Greater than
>= Greater than or equal to
== Equal to
˜= Not equal to

42 MATLAB BASICS

TABLE 3.6 Logical Operators

Operator Name

& AND
| OR
∼ NOT

TABLE 3.7 Logical Functions

Function Description

xor Performs the exclusive-or (XOR) between two operands
all Returns a 1 if all the elements in a vector are nonzero or a 0 otherwise.

Operates columnwise on matrices
any Returns a 1 if any of the elements in a vector are nonzero or a 0 otherwise.

Operates columnwise on matrices

MATLAB includes a set of standard logical operators. They are listed in Table 3.6.
MATLAB also supports the logical functions listed in Table 3.7 and a vast number of
functions that return a logical 1 (true) or logical 0 (false) depending on whether the
value or condition in their arguments istrue orfalse, for example,isempty(a),
isequal(a,b), isnumeric(a), and many others (refer to the MATLAB online
documentation).

3.3.3 Important Variables and Constants

MATLAB has a number of built-in variables and constants, some of which are listed
in Table 3.8.

3.3.4 Number Representation

MATLAB can represent numbers in conventional decimal notation (with optional
decimal point and leading plus or minus sign) as well as in scientific notation (using
the letter e to specify a power-of-10 exponent). Complex numbers are represented
using either i or j as a suffix for the imaginary part.

TABLE 3.8 Selected Built-In Variables and Constants

Name Value Returned

ans Most recent answer
eps Floating-point relative accuracy
i (or j) Imaginary unit (

√−1)
NaN (or nan) Not-a-number (e.g., the result of 0/0)
Inf Infinity (e.g., the result of a division by 0)

GRAPHICS AND VISUALIZATION 43

All numbers are stored internally using the IEEE floating-point standard, resulting
in a range of approximately 10−308–10+308.

3.3.5 Flow Control

The MATLAB programming language supports the usual flow control statements
found in most other contemporary high-level programming languages: if (with op-
tional else and elseif) and switch decision statements, for and while loops
and the associated statements (break and continue), and the try...catch
block for error handling. Refer to the online documentation for specific syntax
details.

3.3.6 Code Optimization

As a result of the matrix-oriented nature of MATLAB, the MATLAB programming
language is a vectorized language, which means that it can perform many opera-
tions on numbers grouped as vectors or matrices without explicit loop statements.
Vectorized code is more compact, more efficient, and parallelizable.5 In addition to
using vectorized loops, MATLAB programmers are encouraged to employ other op-
timization tricks, such as preallocating the memory used by arrays. These ideas—and
their impact on the execution speed of MATLAB code—are discussed in Tutorial 3.3
(page 53).

3.3.7 Input and Output

Basic input and output functionality can be achieved with functionsinput (to request
user input and read data from the keyboard) and disp (to display a text or array on
the screen). MATLAB also contains many support functions to read from and write
to files.

3.4 GRAPHICS AND VISUALIZATION

MATLAB has a rich set of primitives for plotting 2D and 3D graphics. Tutorial
9.1 (page 188) will explore some of the 2D plotting capabilities in connection with
the plotting of image histograms and transformation functions, whereas Tutorials in
Chapter 11 will show examples of 3D plots in connection with the design of image
processing filters in the frequency domain.

MATLAB also includes a number of built-in functions to display (and inspect the
contents of) images, some of which will be extensively used throughout the book (and
discussed in more detail in Tutorial 4.2 on page 74).

5Getting used to writing code in a vectorized way—as opposed to the equivalent nested for loops in a
conventional programming language—is not a trivial process and it may take time to master it.

44 MATLAB BASICS

3.5 TUTORIAL 3.1: MATLAB—A GUIDED TOUR

Goal

The goal of this tutorial is to give a brief overview of the MATLAB environment.

Objectives

• Become familiar with the working environment in MATLAB.
• Learn how to use the working directory and set paths.
• Become familiar with the MATLAB help system.
• Explore functions that reveal system information and other useful built-in func-

tions.

Procedure

The environment in MATLAB has a simple layout, consisting of several key areas
(Figure 3.1).6 A description of each is given here:

• A: This pane consists of two tabbed areas: one that displays all files in your
current working directory, and another that displays your workspace. The
workspace lists all the variables you are currently using.

• B: This pane shows your history of commands.
• C: This is where you can modify your current working directory. To change the

current directory, you can either type it directly in the text box or click on the
button to select the directory. You can also change the working directory using
the path command. See help documents for more information.

• D: This is the command window. Here you control MATLAB by typing in
commands.

In order for you to use files such as M-files and images, MATLAB must know where
these files are located. There are two ways this can be done: by setting the current
directory to a specific location, or by adding the location to a list of set paths known
to MATLAB. The current directory should be used for temporary locations or when
you need to access a directory only once. This directory is reset every time MATLAB
is restarted. To change the current directory, see description C above. Setting a path
is a permanent way of telling MATLAB where files are located—the location will
remain in the settings when MATLAB is closed. The following steps will illustrate
how to set a path in MATLAB:

1. From the File menu, select Set Path...

6The exact way your MATLAB window will look may differ from Figure 3.1, depending on the operating
system, MATLAB version, and which windows and working areas have been selected—under the Desktop
menu—to be displayed.

TUTORIAL 3.1: MATLAB—A GUIDED TOUR 45

FIGURE 3.1 MATLAB environment.

The paths are presented in the list box in decreasing precedence order.

2. If the directory you wish to add has subfolders within it, then use the Add with
Subfolders... button. If your directory only contains files, you can use the Add
Folder... button. To change the precedence of your directory, use the Move
buttons.

3. Save your changes and close the Set Path window.

The help system in MATLAB is very useful. It provides information about func-
tions, such as syntax, descriptions, required and optional input parameters, and output
parameters. It also includes a number of demos. The following steps will show you
how to access help documents and navigate the help window.

4. To access the help system, type doc in the command window. Open the help
system now.

The left pane of the help window displays a tree of help information. The right
pane will show the help document that you choose. If you know exactly what function
you need help for, you can use the doc, helpwin, or help commands to directly
access the help information.

5. In the command window in MATLAB, execute the following commands to
view the help document for the function computer.

46 MATLAB BASICS

help computer
helpwin computer
doc computer

Question 1 What is the difference between the commands help, helpwin, and
doc?

There are several commands that can be used to gain information about the system.
Explore them in this step.

6. Execute the following commands, one at a time, to see their function.

realmin
realmax
bitmax
computer
ver
version
hostid
license

Question 2 What is the difference between ver and version?

7. For some MATLAB humor, repeatedly type the command why.

3.6 TUTORIAL 3.2: MATLAB DATA STRUCTURES

Goal

The goal of this tutorial is to learn how to create, initialize, and access some of the
most useful data structures available in MATLAB.

Objectives

• Learn how to use MATLAB for basic calculations involving variables, arrays,
matrices, and vectors.

• Explore multidimensional and cell arrays.
• Review matrix operations.
• Learn how to use MATLAB structures.
• Explore useful functions that can be used with MATLAB data structures.

Procedure

1. Execute the following lines of code one at a time in the Command Window to
see how MATLAB can be used as a calculator.

TUTORIAL 3.2: MATLAB DATA STRUCTURES 47

2 + 3
2*3 + 4*5 + 6*7;

Question 1 What is the variable ans used for?

Question 2 What is the purpose of using a semicolon (;) at the end of a statement?

2. Perform calculations using variables.

fruit_per_box = 20; num_of_boxes = 5;
total_num_of_fruit = fruit_per_box * num_of_boxes

Question 3 Experiment with creating your own variables. Are variables case sen-
sitive?

Question 4 What is the value/purpose of these variables: pi, eps, inf, i? Is it
possible to overwrite any of these variables? If so, how can it be undone?

3. Execute the commands who and whos, one at a time, to see their function and
the difference between them.

There are several commands that will keep the MATLAB environment clean.
Use them whenever you feel your command window or workspace is cluttered with
statements and variables.

4. Clear a variable in the workspace. After execution, note how the variable dis-
appears from the workspace.

clear fruit_per_box

5. Clear the command window and all variables with the following lines of code
(one at a time to see their effects individually).

clc
clear all

6. Create a 3 × 3 matrix by executing the following line of code.

A = [1 2 3;4 5 6;7 8 9]

Question 5 What is the use of the semicolon in this statement?

48 MATLAB BASICS

The Colon Operator

7. A very useful operator in MATLAB is the colon (:). It can be used to create a
vector of numbers.

1:5

8. A third parameter determines how to count between the starting and ending
numbers. It is specified between the start and end values.

1:1:5
5:-1:1
1:2:9
9:-2:1

Question 6 Write a statement that will generate a vector of values ranging from 0
to π in increments of π/4.

9. The colon operator can also be used to return an entire row or column of a
matrix.

A = [1 2 3;4 5 6;7 8 9]
A(:,1)
A(1,:)

Question 7 Write a line of code that would generate the same 3×3 matrix as in the
variable A above, but using the colon operator to generate the sequence of numbers
in each row instead of explicitly writing them.

10. The colon operator can be replaced with the function colon, which performs
the same operation.

colon(1,5)

As seen in the steps above, creating a vector of evenly spaced numbers is easily
done with the colon (:) operator when we know where the vector starts, ends, and
how large the space in between each value is. In certain cases, we may wish to create
a vector of numbers that range between two numbers, but we only know the quantity
of values needed (for example, create a vector that consists of 4 values between π/4
and π) . To do this, we use the linspace function.

11. Execute this command to see how the function linspace operates.

linspace(pi/4,pi,4)

TUTORIAL 3.2: MATLAB DATA STRUCTURES 49

12. Compare the result from the previous step with these values.

pi/4
pi/2
3*pi/4
pi

Special Built-In Matrices

MATLAB has several built-in functions that will generate frequently used matrices
automatically.

13. Execute the following lines of code one at a time.

zeros(3,4)
ones(3,4)
ones(3,4) * 10
rand(3,4)
randn(3,4)

Question 8 What is the difference between the functions rand(M,N) and
randn(M,N)?

Matrix Concatenation

Concatenation of matrices is done with brackets ([]) or using thecat function. Take,
for example, the statement

A = [1 2 3;4 5 6;7 8 9]

The brackets are combining three rows. Instead of explicitly defining each row all
at once, they can be defined individually as vectors and then combined into a matrix
using brackets.

14. Combine the three individual vectors into a 3 × 3 matrix.

X = [1 2 3]; Y = [4 5 6]; Z = [7 8 9];
A = [X;Y;Z]
B = cat(1,X,Y,Z)

Similarly, the brackets can be used to delete a row of a matrix.

15. Delete the last row (row 3) of the matrix A. Note how the colon operator is used
to specify the entire row.

A(3,:) = []

50 MATLAB BASICS

A vector with N elements is an array with one row and N columns. An element of
a vector can be accessed easily by addressing the number of the element, as in X(5),
which would access the fifth element of vector X. An element of a two-dimensional
matrix is accessed by first specifying the row, then the column, as in X(2,5), which
would return the element at row 2, column 5. Matrices of dimensions higher than 2
can be accessed in a similar fashion. It is relevant to note that arrays in MATLAB are
1-based—the first element of an array is assigned or accessed using 1, as opposed to
0, which is the standard in many programming languages.

16. Use the ones and rand functions to create multidimensional arrays.

A = ones(4,3,2);
B = rand(5,2,3);
size(A)
size(B)
disp(A)
disp(B)

Question 9 What does the size function do?

Question 10 What does the disp function do?

Operations Involving Matrices

Performing arithmetic operations on matrices can be achieved with the operators
+ - * /. The default for the multiply (*) and divide (/) operators is matrix multi-
plication and matrix division. To perform arithmetic operations on individual elements
of a matrix, precede the operator with a dot (.).

17. Perform matrix multiplication on two matrices.

X = [1 2 -2; 0 -3 4; 7 3 0]
Y = [1 0 -1; 2 3 -5; 1 3 5]
X * Y

18. Perform element-by-element multiplication.

X .* Y

19. Perform another matrix multiplication on two matrices.

X = eye(3,4)
Y = rand(4,2)
X * Y
Y * X

TUTORIAL 3.2: MATLAB DATA STRUCTURES 51

Question 11 Why did the last operation fail?

20. Use the diag and trace functions to perform operations on the diagonal of
a matrix.

Y = rand(3,3)*4
Y_diag = diag(Y)
Y_trace = trace(Y)

Question 12 What does the diag function do?

Question 13 What does the trace function do?

Question 14 Write an alternative statement that would produce the same results
as the trace function.

21. Calculate the transpose of a matrix.

Y
Y_t = Y’

22. Calculate the inverse of a matrix and show that YY−1 = Y−1Y = I, where I is
the identity matrix.

Y_inv = inv(Y)
Y * Y_inv
Y_inv * Y

23. Calculate the determinant of a matrix.

Y_det = det(Y)

Cell Array

As demonstrated earlier, a matrix is the fundamental data type in MATLAB. It re-
sembles the classical definition of an array as a homogeneous data structure, that
is, one in which all its components are of the same type. Cell arrays, on the other
hand, are another type of array where each cell can be any data type allowed by
MATLAB. Each cell is independent of another and, therefore, can contain any data
type that MATLAB supports. When using cell arrays, one must be careful when ac-
cessing or assigning a value to a cell; instead of parentheses, curly braces ({}) must be
used.

24. Execute the following lines of code one at a time to see how cell arrays are
handled in MATLAB.

52 MATLAB BASICS

X{1} = [1 2 3;4 5 6;7 8 9]; %Cell 1 is a matrix
X{2} = 2+3i; %Cell 2 is complex
X{3} = ’String’; %Cell 3 is a string
X{4} = 1:2:9; %Cell 4 is a vector
X
celldisp(X)
X(1)
X{1}

Question 15 What does the celldisp function do?

Question 16 What does the percent (%) character do?

Question 17 What is the difference between the last two lines in the code above
(X(1) as opposed to X{1})?

There is another way to assign values to a cell array that is syntactically different,
but yields the same results. Note in the next step how the cell index is enclosed within
normal parentheses (()), but the data that will be saved to the cell is encapsulated by
curly braces ({}).

25. Execute this line to see another way of assigning cell array values.

X(1) = {[1 2 3;4 5 6;7 8 9]};

26. The next few lines of code will demonstrate proper and improper ways of cell
array assignment when dealing with strings.

X(3) = ’This produces an error’
X(3) = {’This is okay’}
X{3} = ’This is okay too’

Structures

Structures are yet another way of storing data in MATLAB. The syntax for structures
is similar to that of other programming languages. We use the dot (.) operator to refer
to different fields in a structure. Structures with identical layout (number of fields,
their names, size, and meaning) can be combined in an array (of structures).

27. Create an array of two structures that represents two images and their sizes.

my_images(1).imagename = ’Image 1’;
my_images(1).width = 256;
my_images(1).height = 256;

TUTORIAL 3.3: PROGRAMMING IN MATLAB 53

my_images(2).imagename = ’Image 2’;
my_images(2).width = 128;
my_images(2).height = 128;

28. View details about the structure and display the contents of a field.

my_images(1)
my_images(2).imagename

29. Display information about the structure.

num_of_images = prod(size(my_images))
fieldnames(my_images)
class(my_images)
isstruct(my_images)
isstruct(num_of_images)

Question 18 What does the fieldnames function do?

Question 19 What does it mean when the result from the function isstruct is
1? What does it mean when it is 0?

Question 20 Use the help system to determine what function can be used to delete
a field from a structure.

3.7 TUTORIAL 3.3: PROGRAMMING IN MATLAB

Goal

The goal of this tutorial is to explore programming concepts using scripts and
functions.

Objectives

• Learn how to write and execute scripts.
• Explore the MATLAB Editor.
• Explore functions and how to write them.
• Learn the basics of loop vectorization.

54 MATLAB BASICS

What You Will Need

• script3_3_1.m
• script3_3_2.m
• raise_to_power.m

Procedure

Although the command window is simple and convenient to use, it does not provide
a way of saving or editing your code. The commands stored in the Command History
window can, however, be easily made into a script file. A script is a text file with the
extension .m and is used to store MATLAB code. Scripts can be created and modified
using the built-in editor.

1. To start a new script, navigate to File > New > M-File.

The MATLAB Editor may open in a separate window or it may be docked within
the MATLAB environment, depending on how your environment was previously set
up.

2. Open the file named script3_3_1.m. If the M-file is located in the current
directory, you may also open it from the Current Directory listing by double-
clicking the file name.

M-files are syntax color coded to aid in reading them. As you may have no-
ticed, comments can be added to any script using two methods: percent (%) signs, or
wrapping the comments with %{ and %}. The second method is used for the header
information in the script.

Question 1 Based on the script in file script3_3_1.m, what is the difference
between using a percent (%) sign and using %{ and %}?

To execute one or several lines of code in a script, highlight the code and press
F9.7

3. Highlight all the code in script3_3_1.m and press F9 to execute the script.

The Cell Mode

A new editing mode (available in MATLAB 7.0 and above) called cell mode al-
lows you to make minor adjustments to variables, and re-execute a block of code
easily.

7Shortcut keys may vary for different versions of MATLAB for different operating systems. The shortcut
keys listed in this book work for the PC version of MATLAB.

TUTORIAL 3.3: PROGRAMMING IN MATLAB 55

4. Open file script3_3_2.m.

5. Enable cell mode by navigating to Cell > Enable Cell Mode in the MATLAB
environment.

With cell mode activated, you will note that the comments that are preceded with
two percent signs (%%) are slightly bolder than the other comments. This corresponds
to a block title. To create a cell block, all you need to do is give it a block title. Cell
blocks allow you to modify and execute one block of code at a time. More than one
cell block can exist in a single script.

6. Execute all the code in the script.

This script is an example of stretching the histogram of a monochrome image to
the full dynamic range of allowed values, achieved by the imadjust function. This
function also allows us to make gamma adjustments to the image. At this time, the
concepts of histogram stretching and gamma correction are not important; they will
be discussed in detail in Chapter 10. Instead, let us focus on how cell mode may be
useful to us later on. By making small changes to the value of gamma, we can see the
effects of gamma on the adjusted image. Cell mode makes this task easy.

7. Locate the line of code where the variable gamma is assigned a value of 1.
Highlight only the value 1.

When cell mode is active, a new menu bar appears in the Editor. Among the icons,
there are two text boxes that allow us to make adjustments to the value we just selected
in the code. The first text box allows us to subtract and add, and the other allows us
to divide and multiply the value we highlighted in the code.

8. In the add/subtract text box, type a value of 0.1 and press the plus (+) sign to
the right.

Question 2 What happened to the value of the variable gamma in the code?

Question 3 In addition to the modification of code, what else happened when the
plus button was pressed? What happens when it is pressed again?

Question 4 Other than the ones described in this tutorial, what features are avail-
able when cell mode is active?

Functions

Functions are also .m files that contain MATLAB code, but with the added ability of
being able to be called from another script or function as well as receiving parameters.
Open the raise_to_power function to see how the file is constructed.

56 MATLAB BASICS

9. Open raise_to_power.m in the Editor.

The M-file of a function contains all necessary information to call the function,
execute it, and display its help documentation. The first line in the file defines the
function with its input and output parameters. In the case of the raise_to_power
function, it takes two parameters and returns one. Any comments immediately after
the function definition are considered help documentation.

10. Ensure that the raise_to_power.m file is located in a directory that is part
of either a set path or the current directory.

11. View the help information for the function by typing the following statement
into the command window:

help raise_to_power

Question 5 Compare the help documentation with the comments in the M-file.
How does MATLAB determine which comments are to be displayed for help and
which are just comments in the function code?

Because we are using MATLAB for image manipulation, it is important to en-
sure that we are taking advantage of CPU and memory-efficient coding practices—
particularly loop vectorization. Take, for example, the following block of pseudocode
that could easily be implemented in any programming language. NB: Depending on
your computer’s speed, you may want to change the value of MAX_CNT in the code
snippets below.

MAX_CNT = 10000
for i = 1 to MAX_CNT

do x(i) = i ˆ 2

Here, we are populating an array in which each element is the index of that element
squared. The following MATLAB code implements the pseudocode above using
typical programming techniques. In these examples, the tic and toc commands are
used to calculate the execution time.

12. Implement the pseudocode above with the following statements.

tic
MAX_CNT = 10000
for i = 1:MAX_CNT

x(i) = i ˆ 2;
end
toc

We could greatly influence the speed of this loop by simply preallocating the
memory used by the array. This is effective because every time we add data to the

TUTORIAL 3.3: PROGRAMMING IN MATLAB 57

matrix, new memory must be allocated to hold the larger variable if there is no room
for it. If the correct amount of memory is already allocated, then MATLAB only needs
to alter the data in each cell.

13. Implement the previous loop, but with preallocation.

tic
MAX_CNT = 10000
x = zeros(1,MAX_CNT);
for i = 1:MAX_CNT

x(i) = i ˆ 2;
end
toc

Question 6 By what factor did preallocating the array x increase performance?
In MATLAB, this is still considered poor programming technique. MATLAB acts

as an interpreter between the code you write and the hardware of your computer. This
means that each time a statement is encountered, it is interpreted to a lower level
language that is understood by the hardware. Because of this, loops, such as the one
above, cause MATLAB to interpret the statement in the loop, however, many times
the loop executes—in the case above, 10,000 times. Interpretation is slow compared
to the speed of computer hardware. Since MATLAB operates on matrices natively, we
can perform the same operation using loop vectorization, thus getting rid of the loop.

14. Implement a more efficient version of the loop.

tic
MAX_CNT = 10000
i = 1:MAX_CNT;
x = i .ˆ 2;
toc

Question 7 In the code above, why do we use .ˆ instead of just ˆ?

Question 8 How much faster is loop vectorization than our previous two imple-
mentations?

Here we do not need to explicitly tell MATLAB to perform the operation on each
element because that is the nature of the MATLAB environment. Loop vectorization
also takes care of the preallocation problem we saw in the first implementation.

Question 9 Consider the following pseudocode. Write a vectorized equivalent.

i = 0
for t = 0 to 2*pi in steps of pi/4

do i = i + 1
x(i) = sin(t)

58 MATLAB BASICS

Earlier it was mentioned that a script can be made from the Command History
window. Now that we have entered some commands, we can see how this can be
done.

15. To create a script from the Command History window, locate the last four
statements entered. To select all the four statements, hold down the ctrl key
and select each statement, and then right-click the highlighted statements, and
select Create M-File.

WHAT HAVE WE LEARNED?

• MATLAB (MATrix LABoratory) is a data analysis, prototyping, and visual-
ization tool with built-in support for matrices and matrix operations, excellent
graphics capabilities, and a high-level programming language and development
environment. It has been selected as the tool of choice for this book because of
its ease of use and extensive built-in support for image processing operations,
encapsulated in the Image Processing Toolbox.

• The MATLAB working environment consists of the MATLAB Desktop, the
MATLAB Editor, and the Help System.

• M-files in MATLAB can be scripts that simply execute a series of MAT-
LAB commands (or statements) or can be functions that can accept arguments
(parameters) and produce one or more output values. User-created functions
extend the capabilities of MATLAB and its toolboxes to address specific needs
or applications.

• An M-file containing a script consists of a sequence of commands to be inter-
preted and executed much like a batch file. An M-file containing a function,
on the other hand, contains a piece of code that performs a specific task, has a
meaningful name (by which other functions will call it), and (optionally) receives
parameters and returns results.

• The best ways to get started with MATLAB are to explore its excellent built-in
product documentation and the online resources at MathWorks web site.

LEARN MORE ABOUT IT

There are numerous books on MATLAB, such as the following:

• Hanselman, D. and Littlefield, B., Mastering MATLAB 7, Upper Saddle River,
NJ: Prentice Hall, 2005. Excellent reference book.

• Pratap, R., Getting Started with MATLAB, New York, NY: Oxford University
Press, 2002. Great book for beginners.

PROBLEMS 59

ON THE WEB

There are many free MATLAB tutorials available online. The book’s companion web
site (http: //www.ogemarques.com/) contains links to several of them.

3.8 PROBLEMS

3.1 Using MATLAB as a calculator, perform the following calculations:

(a) 24.4 × 365

(b) cos(π/4)

(c) 3
√

45

(d) e−0.6

(e) 4.65

(f) y = ∑6
i=1 (i2 − 3)

3.2 Use the format function to answer the following questions:

(a) What is the precision used by MATLAB for floating-point calculations?

(b) What is the default number of decimal places used to display the result of
a floating-point calculation in the command window?

(c) How can you change it to a different number of decimal places?

3.3 Initialize the following variables: x = 345.88; y = log10(45.8); and z =
sin(3π/4). Note that the MATLAB function log calculates the natural logarithm;
you need to use log10 to calculate the common (base-10) logarithm of a number.

Use them to calculate the following:

(a) e(z3−y1.2)

(b) x2 − √
(4y + z)

(c) x−y
z+5y

3.4 Initialize the following matrices:

X =

⎡
⎢⎣

4 5 1

0 2 4

3 4 1

⎤
⎥⎦

Y =

⎡
⎢⎣

−7 6 −1

3 −2 0

13 −4 1

⎤
⎥⎦

Z =

⎡
⎢⎣

0 7 1

0 2 −5

3 3 −1

⎤
⎥⎦

60 MATLAB BASICS

Use them to calculate the following:

(a) 3X + 2Y − Z

(b) X2 − Y3

(c) XT YT

(d) XY−1

3.5 What is the difference between the following MATLAB functions:

(a) log and log10

(b) rand and randn

(c) power and mpower

(d) uminus and minus

3.6 What is the purpose of function lookfor? Provide an example in which it
can be useful.

3.7 What is the purpose of function which? Provide an example in which it can
be useful.

CHAPTER 4

THE IMAGE PROCESSING TOOLBOX
AT A GLANCE

WHAT WILL WE LEARN?

• How do I read an image from a file using MATLAB?
• What are the main data classes used for image representation and how can I

convert from one to another?
• Why is it important to understand the data class and range of pixel values of

images stored in memory?
• How do I display an image using MATLAB?
• How can I explore the pixel contents of an image?
• How do I save an image to a file using MATLAB?

4.1 THE IMAGE PROCESSING TOOLBOX: AN OVERVIEW

The Image Processing Toolbox (IPT) is a collection of functions that extend the
basic capability of the MATLAB environment to enable specialized signal and image
processing operations, such as the following:

• Spatial transformations (Chapter 7)
• Image analysis and enhancement (Chapters 8–12, 14–15, and 18)

Practical Image and Video Processing Using MATLAB®. By Oge Marques.
© 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

61

62 THE IMAGE PROCESSING TOOLBOX AT A GLANCE

• Neighborhood and block operations (Chapter 10)
• Linear filtering and filter design (Chapters 10 and 11)
• Mathematical transforms (Chapters 11 and 17)
• Deblurring (Chapter 12)
• Morphological operations (Chapter 13)
• Color image processing (Chapter 16)

Most of the toolbox functions are MATLAB M-files, whose source code can be
inspected by opening the file using the MATLAB editor or simply typing
type function_name at the prompt. The directory in which the M-file has been
saved can be found by typing which function_name at the prompt. To deter-
mine which version of the IPT is installed on your system, type ver at the prompt.

You can extend the capabilities of the IPT by writing your own M-files, modifying
and expanding existing M-files, writing wrapping functions around existing ones, or
using the IPT in combination with other toolboxes.

4.2 ESSENTIAL FUNCTIONS AND FEATURES

This section presents the IPT functions used to perform essential image operations,
such as reading the image contents from a file, converting between different data
classes used to store the pixel values, displaying an image on the screen, and saving
an image to a file.

4.2.1 Displaying Information About an Image File

MATLAB’s IPT has a built-in function to display information about image files (with-
out opening them and storing their contents in the workspace) imfinfo.

� EXAMPLE 4.1

The MATLAB code below reads information about a built-in image file pout.tif.

imfinfo(’pout.tif’);

The resulting structure (stored in variable ans) will contain the following infor-
mation:1

Filename: ’/.../pout.tif’
FileModDate: ’04-Dec-2000 13:57:50’

FileSize: 69004
Format: ’tif’

1All empty fields have been omitted for space reasons.

ESSENTIAL FUNCTIONS AND FEATURES 63

Width: 240
Height: 291

BitDepth: 8
ColorType: ’grayscale’

FormatSignature: [73 73 42 0]
ByteOrder: ’little-endian’

NewSubFileType: 0
BitsPerSample: 8

Compression: ’PackBits’
PhotometricInterpretation: ’BlackIsZero’

StripOffsets: [9x1 double]
SamplesPerPixel: 1

RowsPerStrip: 34
StripByteCounts: [9x1 double]

XResolution: 72
YResolution: 72

ResolutionUnit: ’Inch’
PlanarConfiguration: ’Chunky’

Orientation: 1
FillOrder: 1

GrayResponseUnit: 0.0100
MaxSampleValue: 255
MinSampleValue: 0

Thresholding: 1

Many of these fields are too technical and some are file format dependent. Nonethe-
less, you should still be able to locate information about the image size (240 × 291
pixels), the file size (69,004 bytes), the type of image (grayscale), the number of bits
per pixel (8), and its minimum and maximum values (0 and 255).

Repeating the procedure for the built-in image coins.png will produce the
following results:2

Filename: ’/.../coins.png’
FileModDate: ’16-Apr-2003 02:05:30’

FileSize: 37906
Format: ’png’
Width: 300
Height: 246

BitDepth: 8
ColorType: ’grayscale’

FormatSignature: [137 80 78 71 13 10 26 10]
InterlaceType: ’none’

2All empty fields have been omitted for space reasons.

64 THE IMAGE PROCESSING TOOLBOX AT A GLANCE

Transparency: ’none’
ImageModTime: ’19 Sep 2002 20:31:12 +0000’

Copyright: ’Copyright The MathWorks, Inc.’

Once again, you should be able to find basic information about the image, re-
gardless of the several (potentially obscure) fields that are file format dependent.
You may also have noticed that several fields have changed between the first
and second files as a consequence of the specific file formats (TIFF and PNG,
respectively).

Finally, let us repeat this command for a truecolor (24 bits per pixel) image
peppers.png. The result will be3

Filename: ’/.../peppers.png’
FileModDate: ’16-Dec-2002 06:10:58’

FileSize: 287677
Format: ’png’
Width: 512
Height: 384

BitDepth: 24
ColorType: ’truecolor’

FormatSignature: [137 80 78 71 13 10 26 10]
InterlaceType: ’none’
Transparency: ’none’
ImageModTime: ’16 Jul 2002 16:46:41 +0000’
Description: ’Zesty peppers’

Copyright: ’Copyright The MathWorks, Inc.’

4.2.2 Reading an Image File

MATLAB’s IPT has a built-in function to open and read the contents of image files
in most popular formats (e.g., TIFF, JPEG, BMP, GIF, and PNG), imread.

Theimread function allows you to read image files of almost any type, in virtually
any format, located anywhere. This saves you from a (potentially large) number of
problems associated with file headers, memory allocation, file format conventions,
and so on, and allows to focus on what you want to do to the image once it has been
read and stored into a variable in the MATLAB workspace.

The IPT also contains specialized functions for reading DICOM (Digital
Imaging and Communications in Medicine) files (dicomread), NITF (National
Imagery Transmission Format) files (nitfread), and HDR (high dynamic range)
files (hdrread).

3All empty fields have been omitted for space reasons.

ESSENTIAL FUNCTIONS AND FEATURES 65

TABLE 4.1 IPT Functions to Perform Image Data Class Conversion

Name Converts an Image to Data Class

im2single single
im2double double
im2uint8 uint8
im2uint16 uint16
im2int16 int16

4.2.3 Data Classes and Data Conversions

The IPT ability to read images of any type, store their contents into arrays, and
make them available for further processing and display does not preclude the need to
understand how the image contents are represented in memory. This section follows
up on our discussion in Section 3.2.2 and explains the issue of data classes, data
conversions, and when they may be needed.

The most common data classes for images are as follows:

• uint8: 1 byte per pixel, in the [0, 255] range
• double: 8 bytes per pixel, usually in the [0.0, 1.0] range
• logical: 1 byte per pixel, representing its value as true (1 or white) or false

(0 or black)

Once the contents of an image have been read and stored into one or more variables,
you are encouraged to inspect the data class of these variables and their range of values
to understand how the pixel contents are represented and what is their allowed range
of values. You should ensure that the data class of the variable is compatible with the
input data class expected by the IPT functions that will be applied to that variable.
If you are writing your own functions and scripts, you must also ensure data class
compatibility, or perform the necessary conversions.4

MATLAB allows data class conversion (typecasting) to be done in a straightfor-
ward way, but this type of conversion does not handle the range problem and is usually
not what you want to do. To convert an image (or an arbitrary array for that matter) to
a data class and range suitable for image processing, you are encouraged to use one
of the specialized functions listed in Table 4.1. The input data class for any of those
functions can be logical, uint8, uint16, int16, single, or double.

4Some of the problems that may arise by overlooking these issues will only be fully appreciated once
you acquire some hands-on experience with the IPT. They include (but are not limited to) the following:
unwillingly truncating intermediate calculation results (e.g., by using an unsigned data class that does
not allow negative values), setting wrong thresholds for pixel values (e.g., by assuming that the pixels
range from 0 to 255, when in fact they range from 0.0 to 1.0), and masking out some of the problems by
displaying the image contents using the scale for display purposes option. These issues will be referred to
occasionally throughout the book.

66 THE IMAGE PROCESSING TOOLBOX AT A GLANCE

The IPT also contains other functions (not listed in Table 4.1) to convert the fol-
lowing:

• An image (of data class uint8, uint16, single, int16, or double) to a
binary image (of data class logical) based on threshold: im2bw. Note that
this is not simply a type (data class) conversion, but instead an implementation
of a global thresholding algorithm, which will be presented in Chapter 15.

• An image to an instance of the Java image class java.awt.Image:
im2java.

• An image to an instance of the Java image class java.awt.
image.BufferedImage: im2java2d.

• An image to a movie frame, im2frame, which will be discussed—together
with related functions such as frame2im and movie—in Part II of the book.

• A matrix to a grayscale image, mat2gray, where the input can be logical
or any numeric class, and the output is an array of data class double (with
values within the [0.0, 1.0] range).

� EXAMPLE 4.2

It is possible to convert a generic 2 × 2 array of class double (A) into its uint8
equivalent (B) by simply typecasting it.

A =

-8.0000 4.0000
0 0.5000

>> B = uint8(A)

B =

0 4
0 1

As you may have noticed, the conversion consisted of truncation (all negative values
became zero) and rounding off (0.5 became 1).

Using im2uint8 will lead to results within a normalized range ([0, 255])

>> C = im2uint8(A)

C =

0 255
0 128

ESSENTIAL FUNCTIONS AND FEATURES 67

from which we can infer that it treated the original values as if they were in the
[0, 1] range for data classdouble, that is, 0.5 became 128 (midrange point), anything
less than or equal to 0 was truncated to 0, and anything greater than or equal to 1 was
truncated to 255.

Let us now apply mat2gray to A and inspect the results:

>> D = mat2gray(A)

D =

0 1.0000
0.6667 0.7083

This result illustrates an important point: since A was already of data class
double, there was no data class convention per se, but simply a range conversion—
the smallest value (−8.0) became 0.0, the largest value (4.0) became 1.0, and all
intermediate values were scaled within the new range.

Finally, let us use im2bw to convert our images to binary equivalents.

>> E = im2bw(D, 0.4)

E =

0 1
1 1

The results work as expected: any value greater than 0.4 becomes 1 (true),
otherwise it becomes 0 (false). Note that since im2bw expects a threshold luminance
level as a parameter, and requires it to be a nonnegative number between 0 and 1, it
implicitly assumes that the input variable (D, in this case) is a normalized grayscale
image of class double. In other words, if you try to use A as an input image
(E = im2bw(A, 0.4)), the function will work without any error or warning,
but the result may not make sense.

The IPT also includes functions to convert between RGB (truecolor), indexed
image, and grayscale image, which are listed in Table 4.2. In Tutorial 4.2 (page 74),
you will have a chance to experiment with some of these functions.

68 THE IMAGE PROCESSING TOOLBOX AT A GLANCE

TABLE 4.2 IPT Functions to Perform Image Data Class Conversion

Name Description

Converts Into

ind2gray An indexed image Its grayscale equivalent
gray2ind A grayscale image An indexed representation
rgb2gray An RGB (truecolor) image Its grayscale equivalent
rgb2ind An RGB (truecolor) image An indexed representation
ind2rgb An indexed color image Its RGB (truecolor) equivalent

4.2.4 Displaying the Contents of an Image

MATLAB has several functions for displaying images:

• image: displays an image using the current color map.5

• imagesc: scales image data to the full range of the current color map and
displays the image.

• imshow: displays an image and contains a number of optimizations and optional
parameters for property settings associated with image display.

• imtool: displays an image and contains a number of associated tools that can
be used to explore the image contents.

� EXAMPLE 4.3

The following MATLAB code is used to open an image file and display it using
different imshow options:

I = imread(’pout.tif’);
imshow(I)
figure, imshow(I,[])
figure, imshow(I,[100 160])

The first call to imshow displays the image in its original state. The following
line opens a new figure and displays a scaled (for display purposes) version of the
same image.6 The last line specifies a range of gray levels, such that all values lower
than 100 will be displayed as black and all values greater than 160 will be displayed
as white. The three results are shown side by side in Figure 4.1.

5The color map array is an M × 3 matrix of class double, where each element is a floating-point value in
the range [0, 1]. Each row in the color map represents the R (red), G (green), and B (blue) values for that
particular row.
6The fact that the result is a much improved version of the original suggests that the image could be
improved by image processing techniques, such as histogram equalization or histogram stretching, which
will be described in Chapter 9.

ESSENTIAL FUNCTIONS AND FEATURES 69

FIGURE 4.1 Displaying an image: (a) without scaling; (b) scaling for display purposes;
(c) selecting only pixels within a specified range. Original image: courtesy of MathWorks.

4.2.5 Exploring the Contents of an Image

Image processing researchers and practitioners often need to inspect the contents of
an image more closely. In MATLAB, this is usually done using the imtool function,
which provides all the image display capabilities ofimshow as well as access to other
tools for navigating and exploring images, such as the Pixel Region tool (Figure 4.2),
Image Information tool (Figure 4.3), and Adjust Contrast tool (Figure 4.4). These
tools can also be directly accessed using their library functions impixelinfo,
imageinfo, and imcontrast, respectively.

Before imtool was introduced, the syntax imshow(I), pixval on was
used to enable the display of coordinates and values of a moused-over pixel.

FIGURE 4.2 Displaying an image and exploring its contents with the Pixel Region tool.
Original image: courtesy of MathWorks.

70 THE IMAGE PROCESSING TOOLBOX AT A GLANCE

FIGURE 4.3 The Image Information tool.

Since pixval is now obsolete, the alternative way to do it is by using
imshow(I), impixelinfo.

Two other relevant IPT functions for inspecting image contents and pixel values
are

• impixel: returns the red, green, and blue color values of image pixels specified
with the mouse.

• imdistline: creates a Distance tool—a draggable, resizable line that mea-
sures the distance between its endpoints. You can use the mouse to move and
resize the line to measure the distance between any two points within an image
(Figure 4.5).

4.2.6 Writing the Resulting Image onto a File

MATLAB’s IPT has a built-in function, imwrite, to write the contents of an image
in one of the most popular graphic file formats.

FIGURE 4.4 The Adjust Contrast tool. Original image: courtesy of MathWorks.

ESSENTIAL FUNCTIONS AND FEATURES 71

FIGURE 4.5 The Distance tool. Original image: courtesy of MathWorks.

If the output file format uses lossy compression7 (e.g., JPEG), imwrite allows
the specification of a quality parameter, used as a trade-off between the resulting
image’s subjective quality and the file size.

� EXAMPLE 4.4

In this example, we will read an image from a PNG file and save it to a JPG file using
three different quality parameters: 75 (default), 5 (poor quality, small size), and 95
(better quality, larger size).

I = imread(’peppers.png’);
imwrite(I, ’pep75.jpg’);
imwrite(I, ’pep05.jpg’, ’quality’, 5);
imwrite(I, ’pep95.jpg’, ’quality’, 95);

The results are displayed in Figure 4.6. Figure 4.6c is clearly of lower visual quality
than Figure 4.6b and d. On the other hand, the differences between Figure 4.6b and
d are not too salient.

7You will learn about compression in Chapter 17.

72 THE IMAGE PROCESSING TOOLBOX AT A GLANCE

FIGURE 4.6 Reading and writing images: (a) Original image (PNG); (b) compressed
image (JPG, q = 75, file size = 24 kB); (c) compressed image (JPG, q = 5, file size =
8 kB); (d) compressed image (JPG, q = 95, file size = 60 kB). Original image: courtesy of
MathWorks.

4.3 TUTORIAL 4.1: MATLAB IMAGE PROCESSING TOOLBOX—A
GUIDED TOUR

Goal

The goal of this tutorial is to introduce the capabilities of the Image Processing
Toolbox and demonstrate how functions can be combined to solve a particular
problem.

Objectives

• Learn how to use the help documentation for the IPT.
• Explore the Identifying Round Objects Demo.

TUTORIAL 4.1: MATLAB IMAGE PROCESSING TOOLBOX—A GUIDED TOUR 73

Procedure

The MATLAB IPT offers rich functionality that may be used as building blocks for
an imaging system. Let us begin by first exploring the help documentation that comes
with the toolbox.

1. Open the help documentation for the IPT by navigating from the start menu
located in the lower left corner of the MATLAB environment: Start > Toolboxes
> Image Processing > Help.

The home page of the help document for the IPT provides links to several key
areas of the document, such as categorical or alphabetical listings of functions, user
guides, and demos. The user guides are broken up even further, including categories
such as Spatial Transformations and Image Segmentation.

An easy and quick way to get an idea of what the IPT is capable of is to look at some
of the demos provided with the toolbox. An example of an IPT demo is the Identifying
Round Objects Demo, a sequence of steps used to demonstrate how IPT functions
can be used and combined to develop algorithms for a particular application—in this
case, identifying round objects. Most of the syntax may be unfamiliar to you at this
point, but following the explanations associated with the code can give insight into its
functionality. Any block of code in these demos can be evaluated by highlighting the
code and selecting the Evaluate Selection option from the context-sensitive menu.
Alternatively, you can open the ipexroundness.m file in the MATLAB Editor
and evaluate one cell at a time. You can also evaluate each of the (six) main blocks
of code by clicking on the Run in the Command Window hyperlink at the top right
of the demo HTML page.8

2. Open the Identifying Round Objects Demo by navigating to the IPT demos:
Start > Toolboxes > Image Processing > Demos. It will be under the Mea-
suring Image Features category.

3. Run the first block of code.

As expected, the image is displayed (using the imshow function).

4. Execute the remaining code in the demo one block at a time. Focus on under-
standing what each step (block) does, rather than how it is done.

Question 1 Run (at least) two other demos from different categories within
the IPT and comment on how each demo illustrates the capabilities of the
IPT.

8You can run the entire demo by typing ipexroundness at the command prompt, but you would only see
the final result and miss all the intermediate steps and results, which is the point of the demo.

74 THE IMAGE PROCESSING TOOLBOX AT A GLANCE

4.4 TUTORIAL 4.2: BASIC IMAGE MANIPULATION

Goal

The goal of this tutorial is to explore basic image manipulation techniques using
MATLAB and IPT.

Objectives

• Explore the different image types supported by MATLAB and IPT.
• Learn how to read images into MATLAB.
• Explore image conversion.
• Learn how to display images.
• Learn how to write images to disk.

Procedure

The IPT supports images of type binary, indexed, intensity, and truecolor. Before an
image can be processed in MATLAB, it must first be loaded into memory. To read in
an image, we use the imread function.

1. Load the image coins.png by executing the following statement:

I = imread(’coins.png’);

Question 1 What type of image is coins.png?

Question 2 Why do we use the semicolon (;) operator after the imread state-
ment? What happens if we omit it?

Binary, intensity, and truecolor images can all be read with the imread function
as demonstrated above. When reading in an indexed image, we must specify variables
for both the image and its color map. This is illustrated in the following step:

2. Load the image trees.tif.

[X,map] = imread(’trees.tif’);

Some operations may require you to convert an image from one type to another.
For example, performing image adjustments on an indexed image may not give the
results you are looking to achieve because the calculations are performed on the index
values and not the representative RGB values. To make this an easier task, we can
convert the indexed image to an RGB image using ind2rgb.

3. Convert the indexed image X with color map map to an RGB image, X_rgb.

TUTORIAL 4.2: BASIC IMAGE MANIPULATION 75

X_rgb = ind2rgb(X,map);

Question 3 How many dimensions does the variable X_rgb have and what are
their sizes?

4. Convert the indexed image X with color map map to an intensity image.

X_gray = ind2gray(X,map);

Question 4 What class type is X_gray?

5. We can verify that the new intensity image consists of pixel values in the range
[0, 255].

max(X_gray(:))
min(X_gray(:))

Question 5 Why are we required to use the colon operator (:) when specifying
the X_gray variable? What happens if we omit it?

It was demonstrated in the previous step that the X_gray image contained values
in the range [0, 255] (in this particular image, they happened to be exactly 0 and 255,
which is just a coincidence). Let us see what happens when we convert the image to
class double.

6. Convert the variable X_gray to class double.

X_gray_dbl = im2double(X_gray);

Question 6 What is the range of values for the new variable X_gray_dbl?
Similarly, you can convert to other class types by using im2uint8 and

im2uint16, for example. When converting a uint16 image to uint8, you must
be careful because the conversion quantizes the 65,536 possible values to 256 possible
values.

MATLAB comes with built-in image displaying functions. The image function
can be used to display image data, and the imagesc function will perform the same
operation but in addition will scale the image data to the full range of values. The IPT
provides an enhanced image displaying function that optimizes settings on the image
axes to provide a better display of image data: imshow.

7. Use the imshow function (with the impixelinfo option) to display the
coins.png image that is currently loaded in the variable I.

imshow(I), impixelinfo

76 THE IMAGE PROCESSING TOOLBOX AT A GLANCE

Binary, intensity, and truecolor images can all be displayed as demonstrated pre-
viously. To display indexed images, we must specify the color map along with the
image data.

8. Display the indexed image trees.tif. The image data are stored in variable
X and the color map in map. Note that the impixelinfo option provides a
clear hint that this is an indexed color image.

imshow(X,map), impixelinfo

Question 7 Consider an image where the range of possible values for each pixel
is not [0, 255], but a nonstandard range such as [0, 99]. How would we display the
image so that a value of 99 represents white and a value of 0 represents black?

The impixel function allows the inspection of the contents of selected pixels of
interest within the image.

9. Use theimpixel function to explore interactively the pixel contents of selected
points in the image. Use the mouse to click on the points of interest: normal
button clicks are used to select pixels, pressing Backspace or Delete removes
the previously selected pixel, a double-click adds a final pixel and ends the
selection, and pressing Return finishes the selection without adding a final
pixel.

RGB = imread(’peppers.png’);
[c,r,p] = impixel(RGB);

Question 8 What is the meaning of the values stored in variables r, c, and p?
The improfile function can be used to compute and plot the intensity values

along a line or a multiline path in an image.

10. Use the improfile function to explore the contents of a line in the
coins.png image that is currently loaded in the variable I.

r1 = 17; c1 = 18; r2 = 201; c2 = 286;
imshow(I)
line([c1, c2], [r1, r2], ’Color’, ’g’, ’LineWidth’, 2);
figure
improfile(I, [c1, c2], [r1, r2]);
ylabel(’Gray level’);

The imtool function is the latest and richest IPT function for displaying images.
It provides all the image display capabilities of imshow as well as access to other

TUTORIAL 4.2: BASIC IMAGE MANIPULATION 77

FIGURE 4.7 Division of a figure using subplot.

tools for navigating and exploring images, such as the Pixel Region tool, the Image
Information tool, and the Adjust Contrast tool.

11. Use the imtool function to display the image currently loaded in the variable
X_rgb. Note that a secondary window (Overview) will open as well. Explore
the additional functionality, including the possibility of measuring distances
between two points within the image.

imtool(X_rgb)

We can display multiple images within one figure using the subplot function.
When using this function, the first two parameters specify the number of rows and
columns to divide the figure. The third parameter specifies which subdivision to use.
In the case of subplot(2,3,3), we are telling MATLAB to divide the figure
into two rows and three columns and set the third cell as active. This division is
demonstrated in Figure 4.7.

12. Close any open figures (close all).

13. Execute the following statements to create a subplot with two images:

A = imread(’pout.tif’);
B = imread(’cameraman.tif’);
figure
subplot(1,2,1), imshow(A)
subplot(1,2,2), imshow(B)

78 THE IMAGE PROCESSING TOOLBOX AT A GLANCE

Question 9 What is the range of values for image A and image B?
In the previous step, we displayed two images, both of which were intensity images.

Even though there is no color map associated with intensity images, MATLAB uses
a grayscale color map to display an intensity image (this happens in the background
and is usually invisible to the user). Let us consider the case where an intensity image
and an indexed image are both displayed in one figure, using the subplot function
as before.

14. Close any open figures.

15. Display the coins.png (loaded in variable I) and the trees.tif (loaded
in variable X and its color map in variable map) images in a subplot. Execute
each statement at a time to see the effect on the images as they are displayed.

figure
subplot(1,2,1), imshow(I)
subplot(1,2,2), imshow(X,map)

Question 10 What happened to the coins image just after the trees image
was displayed? Explain your answer.

To properly display images with different color maps, we must use thesubimage
function.

16. Use the subimage function to display multiple images with different color
maps.

figure
subplot(1,2,1), subimage(I), axis off
subplot(1,2,2), subimage(X,map), axis off

The subimage function converts the image to an equivalent RGB image and then
displays that image. We can easily do this ourselves, but there is no direct conversion
from intensity to RGB, so we must first convert from intensity to indexed, and then
from indexed to RGB.

17. Manually convert the intensity image coins (loaded in the variable I) to an
indexed image and then to RGB. Note that thetrees image (loaded in variable
X with its color map in variable map) has already been converted to RGB in
step 3 (saved in variable X_rgb).

[I_ind,I_map] = gray2ind(I,256);
I_rgb = ind2rgb(I_ind,I_map);

Question 11 What do the variables I_ind and I_map contain?

18. Display the truecolor images using the imshow function.

TUTORIAL 4.2: BASIC IMAGE MANIPULATION 79

figure
subplot(1,2,1), imshow(I_rgb)
subplot(1,2,2), imshow(X_rgb)

19. Use imwrite to save two of the modified images in this tutorial to files for
further use. Use the JPEG format for one of them and the PNG extension for
the other. For example,

imwrite(X_rgb, ’rgb_trees.jpg’);
imwrite(X_gray, ’gray_trees.png’);

WHAT HAVE WE LEARNED?

• MATLAB’s IPT has a built-in function to open and read the contents of image
files in most popular formats, imread.

• The most common data classes for images are uint8 (1 byte per pixel, [0,
255]), double (8 bytes per pixel, [0.0, 1.0]), and logical (1 byte per pixel,
true—white or false—black).

• Data class compatibility is a critical prerequisite for image processing algorithms
to work properly, which occasionally requires data class conversions. In addi-
tion to standard data class conversion (typecasting), MATLAB has numerous
specialized functions for image class conversions.

• A good understanding of the different data classes (and corresponding ranges
of pixel values) of images stored in memory is essential to the success of image
processing algorithms. Ignoring or overlooking these aspects may lead to unwill-
ingly truncating of intermediate calculation results, setting of wrong thresholds
for pixel values, and many other potential problems.

• MATLAB has several functions for displaying images, such as image,
imagesc, and imshow.

• To inspect the pixel contents of an image more closely, MATLAB includes the
imtool function that provides all the image display capabilities of imshow
as well as access to other tools for navigating and exploring images.

• To save the results of your image processing to a file, use MATLAB’s built-in
function imwrite.

LEARN MORE ABOUT IT

The best ways to learn more about the IPT are

• IPT demos: the MATLAB package includes many demos, organized in
categories, that provide an excellent opportunity to learn most of the IPT’s
capabilities.

80 THE IMAGE PROCESSING TOOLBOX AT A GLANCE

• MATLAB webinars: short (1 h or less) technical presentations by MathWorks
developers and engineers.

ON THE WEB

• MATLAB Image Processing Toolbox home page.
http://www.mathworks.com/products/image/

• Steve Eddins’s blog: Many useful hints about image processing concepts,
algorithm implementations, and MATLAB.
http://blogs.mathworks.com/steve/

4.5 PROBLEMS

4.1 Create a 2 × 2 array of type double

A = [1.5 -2 ; 0.5 0]

and use it to perform the following operations:

(a) Convert to uint8 using typecasting and interpret the results.

(b) Convert to a normalized ([0, 255]) grayscale image of data class uint8
using im2uint8 and interpret the results.

(c) Convert to a normalized ([0.0, 1.0]) grayscale image of data class double
using mat2gray and interpret the results.

(d) Convert the result from the previous step to a binary image using im2bw
(with a threshold level of 0.5) and interpret the results.

4.2 Create a 2 × 2 array of type double

A = [1 4 ; 5 3]

and write MATLAB statements to perform the following operations:

(a) Convert to a normalized ([0.0, 1.0]) grayscale image of data class double.

(b) Convert to a binary image of data class logical, such that any values
greater than 2 (in the original image) will be interpreted as 1 (true).

(c) Repeat the previous step, this time producing a result of data classdouble.

4.3 The IPT function gray2ind allows conversion from a grayscale image to its
indexed equivalent. What interesting property will the resulting color map (palette)
display?

4.4 How does the IPT function rgb2ind handle the possibility that the original
RGB image contains many more colors than the maximum palette (color map) size
(65,536 colors)?

PROBLEMS 81

4.5 If you type help imdemos in MATLAB, you will see (among other things)
a list of all the sample images that come with its IPT. Select five of those images and
collect the following information about each of them:

• File name
• File format (extension)
• Type (binary, grayscale, truecolor, or indexed color)
• Size (bytes)
• Width (pixels)
• Height (pixels)

4.6 Select five images available in MATLAB (they may be the same as from the
previous problem, or not, you choose). Open each of them using imread, save it
(using imwrite) to (at least three) different file formats, and compare the resulting
file size (in bytes) for each output format.

CHAPTER 5

IMAGE SENSING AND ACQUISITION

WHAT WILL WE LEARN?

• What are the main parameters involved in the design of an image acquisition
solution?

• How do contemporary image sensors work?
• What is image digitization and what are the main parameters that impact the

digitization of an image or video clip?
• What is sampling?
• What is quantization?
• How can I use MATLAB to resample or requantize an image?

5.1 INTRODUCTION

In Chapter 1, we described an image as a two-dimensional (2D) representation of a
real-world, three-dimensional (3D) object or scene and indicated that the existence
of a light source illuminating the scene is a requirement for such an image to be
produced. We also introduced the concept of a digital image as a representation of a
two-dimensional image using a finite number of pixels.

In this chapter, we will expand upon those concepts. More specifically, we will
look at relevant issues involved in acquiring and digitizing an image, such as the

Practical Image and Video Processing Using MATLAB®. By Oge Marques.
© 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

83

84 IMAGE SENSING AND ACQUISITION

FIGURE 5.1 Image acquisition, formation, and digitization. Adapted and redrawn
from [GW08].

principles of image formation as a result of reflection of light on an object or scene,
the sensors typically used to capture the reflected energy, and the technical aspects
involved in selecting the appropriate number of (horizontal and vertical) samples
and quantization levels for the resulting image. In other words, we will present the
information necessary to understand how we go from real-world scenes to 2D digital
representations of those scenes. For the remaining chapters of Part I, we shall assume
that such digital representations are available and will learn many ways of processing
them, without looking back at how they were acquired.

Figure 5.1 shows a schematic view of the image acquisition, formation, and digiti-
zation process. The figure also highlights the need for an illumination (energy) source
(see Section 5.2), the existence of an imaging sensor capable of converting optical
information into its electrical equivalent (see Section 5.3), and the difference between
the analog version of the image and its digitized equivalent, after having undergone
sampling and quantization (see Section 5.4).

5.2 LIGHT, COLOR, AND ELECTROMAGNETIC SPECTRUM

The existence of light—or other forms of electromagnetic (EM) radiation—is an
essential requirement for an image to be created, captured, and perceived. In this
section, we will look at basic concepts related to light, the perception of color, and
the electromagnetic spectrum.

5.2.1 Light and Electromagnetic Spectrum

Light can be described in terms of electromagnetic waves or particles, called pho-
tons. A photon is a tiny packet of vibrating electromagnetic energy that can be

LIGHT, COLOR, AND ELECTROMAGNETIC SPECTRUM 85

FIGURE 5.2 Electromagnetic spectrum.

characterized by its wavelength or frequency. Wavelength is usually measured in
meters (and its multiples and submultiples). Frequency is measured in hertz (Hz)
and its multiples. Wavelength (λ) and frequency (f) are related to each other by the
following expression:

λ = v

f
(5.1)

where v is the velocity at which the wave travels, usually approximated to be equal
to the speed of light (c): 2.998 × 108 m/s.

The human visual system (HVS) is sensitive to photons of wavelengths between
400 and 700 nm, where 1 nm = 10−9 m. As shown in Figure 5.2, this is a fairly
narrow slice within the EM spectrum, which ranges from radio waves (wavelengths
of 1 m or longer) at one end to gamma rays (wavelengths of 0.01 nm or shorter) at the
other end.

Even though much of the progress in image processing has been fostered by work
on images outside the visible spectrum, captured with specialized sensors, this book
will focus exclusively on images within the visible range of the EM spectrum. Light
is the preferred energy source for most imaging tasks because it is safe, cheap, easy to
control and process with optical hardware, easy to detect using relatively inexpensive
sensors, and readily processed by signal processing hardware.

5.2.2 Types of Images

Images can be classified into three categories according to the type of interaction
between the source of radiation, the properties of the objects involved, and the relative
positioning of the image sensor (Figure 5.3) [Bov00c]:

86 IMAGE SENSING AND ACQUISITION

FIGURE 5.3 Recording the various types of interaction of radiation with objects and surfaces.
Redrawn from [Bov00a].

• Reflection Images: These are the result of radiation that has been reflected from
the surfaces of objects. The radiation may be ambient or artificial. Most of the
images we perceive in our daily experiences are reflection images. The type
of information that can be extracted from reflection images is primarily about
surfaces of objects, for example, their shapes, colors, and textures.

• Emission Images: These are the result of objects that are self-luminous, such as
stars and light bulbs (both within the visible light range), and—beyond visible
light range—thermal and infrared images.

• Absorption Images: These are the result of radiation that passes through an object
and results in an image that provides information about the object’s internal
structure. The most common example is X-ray image.

5.2.3 Light and Color Perception

Light is a particular type of EM radiation that can be sensed by the human eye.
Colors perceived by humans are determined by the nature of the light reflected by the
object, which is a function of the spectral properties of the light source as well as the
absorption and reflectance properties of the object.

In 1666, Sir Isaac Newton discovered that a beam of sunlight passing through
a prism undergoes decomposition into a continuous spectrum of components

LIGHT, COLOR, AND ELECTROMAGNETIC SPECTRUM 87

FIGURE 5.4 Newton’s prism: many “colors” in the sunlight.

(Figure 5.4). Each of these components produces a different color experience, ranging
from what we call red at one end to violet at the other. Newton’s experiments and
theories gave fundamental insights into the physical properties of light. They taught
us that sunlight is actually composed of many different “colors” of light rather than
just one. More important, the “colors” were not in the light itself but in the effect of
the light on the visual system.

The radiance (physical power) of a light source is expressed in terms of its spec-
tral power distribution (SPD). Figure 5.5 shows examples of SPDs of physical light
sources commonly found in imaging systems: sunlight, tungsten lamp, light-emitting
diode (LED), mercury arc lamp, and helium–neon laser. The human perception of
each of these light sources will vary—from the yellowish nature of light produced by
tungsten light bulbs to the extremely bright and pure red laser beam.

5.2.4 Color Encoding and Representation

Color can be encoded using three numerical components and appropriate spectral
weighting functions. Colorimetry is the science that deals with the quantitative study
of color perception. It is concerned with the representation of tristimulus values, from
which the perception of color is derived. The simplest way to encode color in cameras
and displays is by using the red (R), green (G), and blue (B) values of each pixel.

Human perception of light—and, consequently, color—is commonly described in
terms of three parameters:

88 IMAGE SENSING AND ACQUISITION

FIGURE 5.5 Spectral power distributions of common physical light sources. Redrawn
from [Pra07].

• Brightness: The subjective perception of (achromatic) luminous intensity, or
“the attribute of a visual sensation according to which an area appears to emit
more or less light” [Poy03].

• Hue: “The attribute of a visual sensation according to which an area appears
to be similar to one of the perceived colors, red, yellow, green and blue, or a
combination of two of them” [Poy03]. From a spectral viewpoint, hue can be
associated with the dominant wavelength of an SPD.

• Saturation: “The colorfulness of an area judged in proportion to its bright-
ness” [Poy03], which usually translates into a description of the whiteness of
the light source. From a spectral viewpoint, the more an SPD is concentrated at
one wavelength, the more saturated will be the associated color. The addition
of white light, that is, light that contains power at all wavelengths, causes color
desaturation.

IMAGE ACQUISITION 89

It is important to note that saturation and brightness are perceptual quantities that
cannot be measured. The Commission Internationale de L’Éclairage (International
Commission on Illumination, or simply CIE)—the international body responsible for
standards in the field of color—has defined an objective quantity that is related to
brightness: it is called luminance. Luminance can be computed as a weighted sum of
red, green and blue components present in the image. We shall resume the discussion
of color perception and representation in Chapter 16.

5.3 IMAGE ACQUISITION

In this section, we describe the basics of image acquisition and its two main building
blocks: the image sensor and the optics associated with it.

5.3.1 Image Sensors

The main goal of an image sensor is to convert EM energy into electrical signals that
can be processed, displayed, and interpreted as images. The way this is done varies
significantly from one technology to another. The technology for image sensors has
changed dramatically over the past 50 years, and sensors have shifted from vacuum
tubes to solid-state devices, notably based on CCDs (charge-coupled devices) and
CMOS (complementary metal oxide semiconductor) technologies.

Two of the most popular and relatively inexpensive devices used for image acqui-
sition are the digital camera and the flatbed scanner. Cameras typically use 2D (area)
CCD sensors, whereas scanners employ 1D (line) CCDs that move across the image
as each row is scanned. CCDs have become the sensor of choice in many imaging
applications because they do not suffer from geometric distortions and have a linear
response to incident light [Eff00].

A CCD sensor is made up of an array of light-sensitive cells called photosites,
manufactured in silicon, each of which produces a voltage proportional to the intensity
of light falling on them. A photosite has a finite capacity of about 106 energy carriers,
which imposes an upper bound on the brightness of the objects to be imaged. A
saturated photosite can overflow, corrupting its neighbors and causing a defect known
as blooming.

The nominal resolution of a CCD sensor is the size of the scene element that images
to a single pixel on the image plane. For example, if a 20 cm × 20 cm square sheet
of paper is imaged to form a 500 × 500 digital image, then the nominal resolution of
the sensor is 0.04 cm.

The field of view (FOV) of an imaging sensor is a measure of how much of a scene
it can see, for example, 10 cm × 10 cm. Since this may vary with depth, it is often
more meaningful to refer to the angular field of view, for example, 55◦ × 40◦.

A CCD camera sometimes plugs into a computer board, called frame buffer, which
contains fast access memory (typically 0.1 ms per image) for the images captured by
the camera. After being captured and temporarily stored in the frame buffer, images
can be processed or copied to a long-term storage device, for example, a hard drive.

90 IMAGE SENSING AND ACQUISITION

FIGURE 5.6 The Bayer pattern for single-CCD cameras.

Many contemporary cameras interface with the computer via fast standardized dig-
ital interfaces such as Firewire (IEEE 1394), Camera Link, or fast Ethernet. Such
interfaces are already digital and therefore do not require a frame grabber. Moreover,
most digital cameras and camcorders also include a generous amount of local storage
media (e.g., from recordable CD or DVD to a myriad of specialized cards and mem-
ory sticks) that allow a significant amount of information to be locally stored in the
device before being transferred to a computer.

In single-CCD cameras, colors are obtained by using a tricolor imager with dif-
ferent photosensors for each primary color of light (red, green, and blue), usually
arranged in a Bayer pattern (Figure 5.6). In those cases, each pixel actually records
only one of the three primary colors; to obtain a full-color image, a demosaicing
algorithm—which can run inside the actual camera, before recording the image in
JPEG format, or in a separate computer, working on the raw output from the camera—
is used to interpolate a set of complete R, G, and B values for each pixel.

More expensive cameras use three CCDs, one for each color, and an optical beam
splitter (Figure 5.7). Beam splitters have been around since the days of Plumbicon
tubes. They are made of prisms with dichroic surfaces, that is, capable of reflecting
light in one region of the spectrum and transmitting light that falls elsewhere.

An alternative technology to CCDs is CMOS. CMOS chips have the advantages
of being cheaper to produce and requiring less power to operate than comparable
CCD chips. Their main disadvantage is the increased susceptibility to noise, which
limits their performance at low illumination levels. CMOS sensors were initially

IMAGE ACQUISITION 91

FIGURE 5.7 The beam splitter for three-CCD color cameras.

used in low-end cameras, such as webcams, but have recently been extended to
much more sophisticated cameras, including the Panavision HDMAX 35 mm video
camera.

A representative recent example of CMOS sensors is the Foveon X3 sensor
(Figure 5.8), a CMOS image sensor for digital cameras, designed by Foveon, Inc.
and manufactured by National Semiconductor. It has been designed as a layered sen-
sor stack, in which each location in a grid has layered photosensors sensitive to all
three primary colors, in contrast to the mosaic Bayer filter sensor design commonly
used in digital camera sensors where each location is a single photosensor (pixel) sen-
sitive to only one primary color. To perform its function, the Foveon sensor utilizes

FIGURE 5.8 X3 color sensor.

92 IMAGE SENSING AND ACQUISITION

FIGURE 5.9 Image formation using a lens.

the physical property that different wavelengths of light penetrate silicon to different
depths.

5.3.2 Camera Optics

A camera uses a lens to focus part of the scene onto the image sensor. Two of the most
important parameters of a lens are its magnifying power and light gathering capacity.
Magnifying power can be specified by a magnification factor (m), which is the ratio
between image size and object size:

m = v

u
(5.2)

where u is the distance from an object to the lens and v is the distance from the lens
to the image plane (Figure 5.9).

The magnifying power of a lens is usually expressed in terms of its focal length,
f (in millimeters), the distance from the lens to the point at which parallel incident
rays converge (Figure 5.9), given by the lens equation:

1

f
= 1

u
+ 1

v
(5.3)

Combining equations (5.2) and (5.3), we can express f as a function of u and m:

f = um

m + 1
(5.4)

Equation (5.4) provides a practical and convenient way to determine the focal
length for a certain magnification factor and object distance and select the appropriate
lens for the job.

The light gathering capacity of a camera lens is determined by its aperture, which
is often expressed as an “f number”—a dimensionless value that represents the ratio
between focal length and aperture diameter. Most lenses have a sequence of fixed
apertures (e.g., f2.8, f4, f5.6, f8, f11) that progressively reduce the total amount
of light reaching the sensor by half.

IMAGE DIGITIZATION 93

FIGURE 5.10 Examples of lens aberrations: (a) pincushion distortion; (b) barrel distortion.

Lenses may suffer from aberrations, which can affect image quality and generate
undesired distortions on the resulting image. Examples of such aberrations include—
among many others—the pincushion distortion and the barrel distortion (Figure 5.10).
If such defects are not taken care of by the lens system itself, certain image processing
techniques1 can be used to correct them.

In MATLAB

The MATLAB Image Acquisition Toolbox (IAT) is a collection of functions that
extend the capability of MATLAB, allowing image acquisition operations from a
variety of image acquisition devices, from professional-grade frame grabbers to USB-
based webcams. The IAT software uses components called hardware device adaptors
to connect to devices through their drivers (Figure 5.11). At the time of this writing, the
IAT supports a variety of devices and drivers, such as the IIDC 1394-based Digital
Camera Specification (DCAM), and devices that provide Windows Driver Model
(WDM) or Video for Windows (VFW) drivers, such as USB and IEEE 1394 (FireWire,
i.LINK) Web cameras, digital video (DV) camcorders, and TV tuner cards. Since the
release of Version 3.0, the functionality of the IAT software is available in a desktop
application.

5.4 IMAGE DIGITIZATION

The image digitization stage bridges the gap between the analog natural world, from
which scenes are acquired, and the digital format expected by computer algorithms
in charge of processing, storing, or transmitting this image.

Digitization involves two processes (Figure 5.12): sampling (in time or space) and
quantization (in amplitude). These operations may occur in any sequence, but usually
sampling precedes quantization [Poy03]. Sampling involves selecting a finite number
of points within an interval, whereas quantization implies assigning an amplitude

1Some of these techniques will be discussed in Chapter 7.

94 IMAGE SENSING AND ACQUISITION

FIGURE 5.11 The main components of the MATLAB Image Acquisition Toolbox.

value (within a finite range of possible values) to each of those points. The result
of the digitization process is a pixel array, which is a rectangular matrix of picture
elements whose values correspond to their intensities (for monochrome images) or
color components (for color images).

For consumer cameras and camcorders, it has become common to refer to the size
of the pixel array by the product of the number of pixels along each dimension and
express the result in megapixels (Mpx).2 Figure 5.13 shows representative contempo-
rary pixel arrays ranging from the QCIF videoconferencing standard (to be discussed
in Chapter 20) to the 1920 × 1080 HDTV standard.

2It has also become common practice to associate image quality with the size of the camera’s resulting
pixel array, which is certainly one of the parameters to keep in mind when shopping for a new camera,
but by no means the only one. Many other features—from the amount of optical zoom to the ability of
working under low lighting—may turn out to be more relevant to the user.

IMAGE DIGITIZATION 95

FIGURE 5.12 Digitization = sampling + quantization. Redrawn from [Poy03].

Digitization can take place in many different portions of a machine vision system
(MVS) and has been moving progressively closer to the camera hardware during the
past few years, making products such as “video capture cards” or “frame grabbers”
more of a rarity.

5.4.1 Sampling

Sampling is the process of measuring the value of a 2D function at discrete intervals
along the x and y dimensions. A system that has equal horizontal and vertical sampling
densities is said to have square sampling. Several imaging and video systems use
sampling lattices where the horizontal and the vertical sample pitch are unequal, that
is, nonsquare sampling.

FIGURE 5.13 Pixel arrays of several imaging standards. Redrawn from [Poy03].

96 IMAGE SENSING AND ACQUISITION

Two parameters must be taken into account when sampling images:

1. The sampling rate, that is, the number of samples across the height and width of
the image. The choice of an appropriate sampling rate will impact image quality,
as we shall see in Section 5.4.3. Inadequate values may lead to a phenomenon
known as aliasing, which will be discussed later.

2. The sampling pattern, that is, the physical arrangement of the samples. A
rectangular pattern, in which pixels are aligned horizontally and vertically
into rows and columns, is by far the most common form, but other arrange-
ments are possible, for example, the hexagonal and log-polar sampling patterns
(see [SSVPB02] for an example).

If sampling takes place at a rate lower than twice the highest frequency component
of the signal (the Nyquist criterion), there will not be enough points to ensure proper
reconstruction of the original signal, which is referred to as undersampling or aliasing.
Figure 5.14 illustrates the concept for 1D signals: part (a) shows the sampling process
as a product of a train of sampling impulses and the analog signal being sampled,
part (b) shows the result of reconstructing a signal from an appropriate number of
samples, and part (c) shows that the same number of samples as in (b) would be
insufficient to reconstruct a signal with higher frequency. The effect of aliasing on
images is typically perceived in the form of Moiré patterns (which can be seen in the
changes in the tablecloth pattern in Figure 5.16c and especially d).

In the case of temporal sampling (to be discussed again in Chapters 20 and 21), a
very familiar example of the aliasing phenomenon is the wagon wheel effect, in which
the spoked wheels of a wagon appear to be moving backward if the wagon moves at
a speed that violates Nyquist theorem for the minimum number of temporal samples
per second that would be required to display the proper motion.

5.4.2 Quantization

Quantization is the process of replacing a continuously varying function with a discrete
set of quantization levels. In the case of images, the function is f (x, y) and the

FIGURE 5.14 1D aliasing explanation. Redrawn from [Wat00].

IMAGE DIGITIZATION 97

FIGURE 5.15 A mapping function for uniform quantization (N = 4).

quantization levels are also known as gray levels. It is common to adoptN quantization
levels for image digitization, where N is usually an integral power of 2 that is, N = 2n,
where n is the number of bits needed to encode each pixel value. The case where
n = 28 = 256 produces images where each pixel is represented by an unsigned byte,
with values ranging from 0 (black) to 255 (white).

Image quantization can be described as a mapping process by which groups of data
points (several pixels within a range of gray values) are mapped to a single point (i.e.,
a single gray level). This process is illustrated in Figure 5.15, which depicts the case
where the number of gray levels is reduced from 256 to 4 by uniform quantization,
meaning that the input gray level range is divided into N equal intervals of length 64.

5.4.3 Spatial and Gray-Level Resolution

Spatial resolution is a way of expressing the density of pixels in an image: the greater
the spatial resolution, the more pixels are used to display the image within a certain
fixed physical size. It is usually expressed quantitatively using units such as dots per
inch (dpi).

� EXAMPLE 5.1

Figure 5.16 shows the effects of reducing the spatial resolution of a 256-gray-level
image. The original image (Figure 5.16a) is of size 1944 × 2592 and it is displayed
at 1250 dpi. The three other images (Figure 5.16b through d) have reduced spatial
resolution to 300, 150, and 72 dpi, respectively. They have been zoomed back to their
original sizes in order to make meaningful comparisons. A close inspection of the
results will show that the quality loss between the original image and its 300 dpi
equivalent (Figure 5.16a and b) is not very noticeable, but the pixelation, jaggedness,
loss of detail, and even the appearance of Moiré patterns present on the other two
images (bottom row) are easy to notice.

98 IMAGE SENSING AND ACQUISITION

FIGURE 5.16 Effects of sampling resolution on image quality: (a) A 1944 × 2592 image,
256 gray levels, at a 1250 dpi resolution. The same image resampled at (b) 300 dpi; (c) 150
dpi; (d) 72 dpi.

Gray-level resolution refers to the smallest change in intensity level that the HVS
can discern. The adoption of 8 bits per pixel for monochrome images is a good
compromise between subjective quality and practical implementation (each pixel
value is neatly aligned with a byte). Higher end imaging applications may require
more than 8 bits per color channel and some image file formats support such need
(e.g., 12-bit RAW and 16-bit TIFF files).

In MATLAB

(Re-)quantizing an image in MATLAB can be accomplished using the grayslice
function, as illustrated in the following example.

� EXAMPLE 5.2

Figure 5.17 shows the effects of quantization (gray) levels on image quality for an
image with 480 × 640 pixels, starting with 256 gray levels and reducing it by a factor
of 2 several times, until arriving at a binary version of the original image. A close
inspection of the results will show that the quality loss between the original image and
its 32 gray levels equivalent is not very noticeable (Figure 5.17a–d), but the quality

IMAGE DIGITIZATION 99

FIGURE 5.17 (a) A 480 × 640 image, 256 gray levels; (b–h) image requantized to 128, 64,
32, 16, 8, 4, and 2 gray levels.

of the last four images is unacceptable for most purposes due to the presence of false
contouring and loss of relevant detail.

MATLAB Code

I1 = imread(’ml_gray_640_by_480_256.png’);
I2 = grayslice(I1,128); figure, imshow(I2,gray(128));
I3 = grayslice(I1,64); figure, imshow(I3,gray(64));

100 IMAGE SENSING AND ACQUISITION

I4 = grayslice(I1,32); figure, imshow(I4,gray(32));
I5 = grayslice(I1,16); figure, imshow(I5,gray(16));
I6 = grayslice(I1,8); figure, imshow(I6,gray(8));
I7 = grayslice(I1,4); figure, imshow(I7,gray(4));
I8 = grayslice(I1,2); figure, imshow(I8,gray(2));

The choice of sampling and quantization parameters (total number of pixels and
the number of gray levels per pixel) has also an impact on the resulting image file
size. For example, a 1024 × 1024 image with 256 gray levels (8 bits per pixel) would
require 10242 bytes, that is, 1 MB of disk space (neglecting any extra bytes needed
for additional information, typically stored in the file header). Not too long ago, these
image sizes were considered prohibitively large, which fostered the progress of image
compression techniques and the standardization of file formats such as GIF and JPEG
(see Chapter 17 for more details). In recent years, with significant increase in storage
capacity at decreasing costs, the concern for disk space usage has been alleviated
to some degree. Many digital image users would rather adopt more expansive file
sizes than sacrifice the quality of their digital images. This has been seen in digital
photography, with the creation and popularization of RAW file formats and increasing
interest in images with more than 8 bits per pixel per color channel.

In summary, the choice of the number of samples per unit of distance (or area)
(spatial resolution) and the number of colors or quantization (gray) levels used when
digitizing an image should be guided by a trade-off between the impact on the storage
size and the perceived resulting quality.

WHAT HAVE WE LEARNED?

• Images are formed as a result of the interaction between the source of radiation
(e.g., visible light), the properties of the objects and surfaces involved, and the
relative positioning and properties of the image sensor.

• Images can be classified into three categories according to the type of interaction
between the source of radiation, the properties of the objects involved, and the
relative positioning of the image sensor: reflection images, emission images,
and absorption images.

• Contemporary image sensors (imagers) are usually built upon CCD or CMOS
solid-state technologies. A CCD sensor is made up of an array of light-sensitive
cells called “photosites,” each of which produces a voltage proportional to the
intensity of light falling on them. The cells are combined into a (1D or 2D) array
that can be read sequentially by a computer input process.

• Image digitization is the process of sampling a continuous image (in space) and
quantizing the resulting amplitude values so that they fall within a finite range.

• Some of the main parameters that impact the digitization of an image are the
total number of pixels and the maximum number of colors (or gray levels) per
pixel.

PROBLEMS 101

• Sampling is the process of measuring the value of a function at discrete intervals.
(Re-)sampling an image in MATLAB can be accomplished using theimresize
function.

• Quantization is the process of replacing a continuously varying function with a
discrete set of quantization levels. (Re-)quantizing an image in MATLAB can
be accomplished using the grayslice function.

LEARN MORE ABOUT IT

• For a much more detailed treatment of photometry and colorimetry, we recom-
mend Chapter 3 of [Pra07] and the Appendix B of [Poy03].

• For a brief discussion and visual examples of images acquired in different ranges
of the EM spectrum, we recommend Section 2.2.2 of [Umb05] and Section 1.3
of [GW08].

• Chapter 9 of [LI99], Section 6 of [WB00], and Chapter 3 of [GH99] provide a
good overview of video cameras’ components, principles, and technologies.

• The development of the X3 sensor by Foveon and the implications of that tech-
nological breakthrough have become the subject of a book by Gilder [Gil05].

ON THE WEB

• Charles Poynton’s Frequently Asked Questions about Color
http://poynton.com/ColorFAQ.html

• The MATLAB Image Acquisition Toolbox
http://www.mathworks.com/products/imaq/

• Edmund Optics
http://www.edmundoptics.com/

• The Imaging Source
http://www.theimagingsource.com/en/products/

5.5 PROBLEMS

5.1 Experiment with a scanner’s settings (in dpi) and scan the same material (e.g.,
a photo) several times using different settings but the same file format. Compare the
resulting file size and quality for each resulting scanned image.

5.2 Repeat Problem 5.1, but this time keeping the settings the same and changing
only the file format used to save the resulting image. Are there significant differences
in file size? What about the subjective quality?

5.3 Assuming a monochrome image with 1024 × 1024 pixels and 256 gray levels,

102 IMAGE SENSING AND ACQUISITION

(a) Calculate the total file size (in bytes), assuming a header (containing basic
information, such as width and height of the image) of 32 bytes and no
compression.

(b) Suppose the original image has been subsampled by a factor of 2 in both
dimensions. Calculate the new file size (in bytes), assuming the header size
has not changed.

(c) Suppose the original image has been requantized to allow encoding 2 pixels
per byte. Calculate the new file size (in bytes), assuming the header size
has not changed.

(d) How many gray levels will the image in part (c) have?

CHAPTER 6

ARITHMETIC AND LOGIC OPERATIONS

WHAT WILL WE LEARN?

• Which arithmetic and logic operations can be applied to digital images?
• How are they performed in MATLAB?
• What are they used for?

6.1 ARITHMETIC OPERATIONS: FUNDAMENTALS AND
APPLICATIONS

Arithmetic operations involving images are typically performed on a pixel-by-pixel
basis; that is, the operation is independently applied to each pixel in the image. Given
a 2D array (X) and another 2D array of the same size or a scalar (Y), the resulting
array, Z, is obtained by calculating

X opn Y = Z (6.1)

where opn is a binary arithmetic (+, −, ×, /) operator.
This section describes each arithmetic operation in more detail, focusing on how

they can be performed and what are their typical applications.

Practical Image and Video Processing Using MATLAB®. By Oge Marques.
© 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

103

104 ARITHMETIC AND LOGIC OPERATIONS

FIGURE 6.1 Adding two images: (a) first image (X); (b) second image (Y); (c) result (Z =
X + Y).

6.1.1 Addition

Addition is used to blend the pixel contents from two images or add a constant value
to pixel values of an image. Adding the contents of two monochrome images causes
their contents to blend (Figure 6.1). Adding a constant value (scalar) to an image
causes an increase (or decrease if the value is less than zero) in its overall brightness,
a process sometimes referred to as additive image offset (Figure 6.2). Adding random
amounts to each pixel value is a common way to simulate additive noise (Figure 6.3).
The resulting (noisy) image is typically used as a test image for restoration algorithms
such as those described in Chapter 12.

FIGURE 6.2 Additive image offset: (a) original image (X); (b) brighter version (Z = X +
75).

ARITHMETIC OPERATIONS: FUNDAMENTALS AND APPLICATIONS 105

FIGURE 6.3 Adding noise to an image: (a) original image (X); (b) zero-mean Gaussian
white noise (variance = 0.01) (N); (c) result (Z = X + N).

In MATLAB

MATLAB’s Image Processing Toolbox (IPT) has a built-in function to add two
images or add a constant (scalar) to an image: imadd. In Tutorial 6.1 (page 113),
you will have a chance to experiment with this function.

When adding two images, you must be careful with values that exceed the maxi-
mum pixel value for the data type being used. There are two ways of dealing with this
overflow issue: normalization and truncation. Normalization consists in storing the
intermediate result in a temporary variable (W) and calculating each resulting pixel
value in Z using equation (6.2).

g = Lmax

fmax − fmin
(f − fmin) (6.2)

where f is the current pixel in W , Lmax is the maximum possible intensity value (e.g.,
255 for uint8 or 1.0 for double), g is the corresponding pixel in Z, fmax is the
maximum pixel value in W , and fmin is the minimum pixel value in W .

Truncation consists in simply limiting the results to the maximum positive number
that can be represented with the adopted data type.

� EXAMPLE 6.1

For the two 3 × 3 monochrome images below (X and Y), each of which represented
as an array of unsigned integers, 8-bit (uint8), calculate Z = X + Y , using (a)
normalization and (b) truncation.

X =

⎡
⎢⎣

200 100 100

0 10 50

50 250 120

⎤
⎥⎦

106 ARITHMETIC AND LOGIC OPERATIONS

Y =

⎡
⎢⎣

100 220 230

45 95 120

205 100 0

⎤
⎥⎦

Solution
The intermediate array W (an array of unsigned integers, 16-bit, uint16) is

obtained by simply adding the values of X and Y on a pixel-by-pixel basis:

W =

⎡
⎢⎣

300 320 330

45 105 170

255 350 120

⎤
⎥⎦

(a) Normalizing the [45, 350] range to the [0, 255] interval using equation (6.2),
we obtain

Za =

⎡
⎢⎣

213 230 238

0 50 105

175 255 63

⎤
⎥⎦

(b) Truncating all values above 255 in W , we obtain

Zb =

⎡
⎢⎣

255 255 255

45 105 170

255 255 120

⎤
⎥⎦

MATLAB code:

X = uint8([200 100 100; 0 10 50; 50 250 120])
Y = uint8([100 220 230; 45 95 120; 205 100 0])
W = uint16(X) + uint16(Y)
fmax = max(W(:))
fmin = min(W(:))
Za = uint8(255.0*double((W-fmin))/double((fmax-fmin)))
Zb = imadd(X,Y)

6.1.2 Subtraction

Subtraction is often used to detect differences between two images. Such differences
may be due to several factors, such as artificial addition to or removal of relevant
contents from the image (e.g., using an image manipulation program), relative object
motion between two frames of a video sequence, and many others. Subtracting a

ARITHMETIC OPERATIONS: FUNDAMENTALS AND APPLICATIONS 107

FIGURE 6.4 Subtractive image offset: (a) original image (X); (b) darker version (Z =
X − 75).

constant value (scalar) from an image causes a decrease in its overall brightness, a
process sometimes referred to as subtractive image offset (Figure 6.4).

When subtracting one image from another or a constant (scalar) from an image,
you must be careful with the possibility of obtaining negative pixel values as a result.
There are two ways of dealing with this underflow issue: treating subtraction as
absolute difference (which will always result in positive values proportional to the
difference between the two original images without indicating, however, which pixel
was brighter or darker) and truncating the result, so that negative intermediate values
become zero.

In MATLAB

The IPT has a built-in function to subtract one image from another, or subtract a
constant from an image: imsubtract. The IPT also has a built-in function to cal-
culate the absolute difference of two images: imabsdiff. The IPT also includes a
function for calculating the negative (complement) of an image,imcomplement. In
Tutorial 6.1 (page 113), you will have a chance to experiment with these functions.

� EXAMPLE 6.2

For the two 3 × 3 monochrome images below (X and Y), each of which represented
as an array of unsigned integers, 8-bit (uint8), calculate (a) Z = X − Y , (b) Z =
Y − X, and (c) Z = |Y − X|. For parts (a) and (b), use truncation to deal with possible
negative values.

X =

⎡
⎢⎣

200 100 100

0 10 50

50 250 120

⎤
⎥⎦

108 ARITHMETIC AND LOGIC OPERATIONS

Y =

⎡
⎢⎣

100 220 230

45 95 120

205 100 0

⎤
⎥⎦

Solution
MATLAB’s imsubtract will take care of parts (a) and (b), while imabsdiff

will be used for part (c).
(a)

Za =

⎡
⎢⎣

100 0 0

0 0 0

0 150 120

⎤
⎥⎦

(b)

Zb =

⎡
⎢⎣

0 120 130

45 85 70

155 0 0

⎤
⎥⎦

(c)

Zc =

⎡
⎢⎣

100 120 130

45 85 70

155 150 120

⎤
⎥⎦

MATLAB code:

X = uint8([200 100 100; 0 10 50; 50 250 120])
Y = uint8([100 220 230; 45 95 120; 205 100 0])
Za = imsubtract(X,Y)
Zb = imsubtract(Y,X)
Zc = imabsdiff(Y,X)

Image subtraction can also be used to obtain the negative of an image (Figure 6.5):

g = −f + Lmax (6.3)

where Lmax is the maximum possible intensity value (e.g., 255 for uint8 or 1.0 for
double), f is the pixel value in X, g is the corresponding pixel in Z.

ARITHMETIC OPERATIONS: FUNDAMENTALS AND APPLICATIONS 109

FIGURE 6.5 Example of an image negative: (a) original image; (b) negative image.

6.1.3 Multiplication and Division

Multiplication and division by a scalar are often used to perform brightness adjust-
ments on an image. This process—sometimes referred to as multiplicative image
scaling—makes each pixel value brighter (or darker) by multiplying its original
value by a scalar factor: if the value of the scalar multiplication factor is greater
than one, the result is a brighter image; if it is greater than zero and less than
one, it results in a darker image (Figure 6.6). Multiplicative image scaling usually
produces better subjective results than the additive image offset process described
previously.

In MATLAB

The IPT has a built-in function to multiply two images or multiply an image by a
constant: immultiply. The IPT also has a built-in function to divide one image

FIGURE 6.6 Multiplication and division by a constant: (a) original image (X); (b) multipli-
cation result (X × 0.7); (c) division result (X/0.7).

110 ARITHMETIC AND LOGIC OPERATIONS

into another or divide an image by a constant: imdivide. In Tutorial 6.1 (page 113),
you will have a chance to experiment with these functions.

6.1.4 Combining Several Arithmetic Operations

It is sometimes necessary to combine several arithmetic operations applied to one
or more images, which may compound the problems of overflow and underflow
discussed previously. To achieve more accurate results without having to explicitly
handle truncations and round-offs, the IPT offers a built-in function to perform a
linear combination of two or more images: imlincomb. This function computes
each element of the output individually, in double-precision floating point. If the
output is an integer array, imlincomb truncates elements that exceed the range of
the integer type and rounds off fractional values.

� EXAMPLE 6.3

Calculate the average of the three 3 × 3 monochrome images below (X, Y , and Z),
each of which represented as an array of unsigned integers, 8-bit (uint8), using (a)
imadd and imdivide without explicitly handling truncation and round-offs; (b)
imadd and imdivide, but this time handling truncation and round-offs; and (c)
imlincomb.

X =

⎡
⎢⎣

200 100 100

0 10 50

50 250 120

⎤
⎥⎦

Y =

⎡
⎢⎣

100 220 230

45 95 120

205 100 0

⎤
⎥⎦

Z =

⎡
⎢⎣

200 160 130

145 195 120

105 240 150

⎤
⎥⎦

Solution
(a)

Sa =

⎡
⎢⎣

85 85 85

63 85 85

85 85 85

⎤
⎥⎦

LOGIC OPERATIONS: FUNDAMENTALS AND APPLICATIONS 111

(b)

Sb =

⎡
⎢⎣

167 160 153

63 100 97

120 197 90

⎤
⎥⎦

(c)

Sc =

⎡
⎢⎣

167 160 153

63 100 97

120 197 90

⎤
⎥⎦

MATLAB code:

X = uint8([200 100 100; 0 10 50; 50 250 120])
Y = uint8([100 220 230; 45 95 120; 205 100 0])
Z = uint8([200 160 130; 145 195 120; 105 240 150])
Sa = imdivide(imadd(X,imadd(Y,Z)),3)
a = uint16(X) + uint16(Y)
b = a + uint16(Z)
Sb = uint8(b/3)
Sc = imlincomb(1/3,X,1/3,Y,1/3,Z,’uint8’)

The result in (a) is incorrect due to truncation of intermediate results. Both (b) and
(c) produce correct results, but the solution using imlincomb is much more elegant
and concise.

6.2 LOGIC OPERATIONS: FUNDAMENTALS AND APPLICATIONS

Logic operations are performed in a bit-wise fashion on the binary contents of each
pixel value. The AND, XOR, and OR operators require two or more arguments,
whereas the NOT operator requires only one argument. Figure 6.7 shows the most
common logic operations applied to binary images, using the following convention:
1 (true) for white pixels and 0 (false) for black pixels.

Figures 6.8–6.11 show examples of AND, OR, XOR, and NOT operations on
monochrome images. The AND and OR operations can be used to combine images
for special effects purposes. They are also used in masking operations, whose goal
is to extract a region of interest (ROI) from an image (see Tutorial 6.2). The XOR
operation is often used to highlight differences between two monochrome images. It
is, therefore, equivalent to calculating the absolute difference between two images.
The NOT operation extracts the binary complement of each pixel value, which is
equivalent to applying the “negative” effect on an image.

112 ARITHMETIC AND LOGIC OPERATIONS

FIGURE 6.7 Logic operations on binary images.

FIGURE 6.8 The AND operation applied to monochrome images: (a) X; (b) Y ; (c) X AND
Y .

FIGURE 6.9 The OR operation applied to monochrome images: (a) X; (b) Y ; (c) X OR Y .

In MATLAB

MATLAB has built-in functions to perform logic operations on arrays: bitand,
bitor, bitxor, and bitcmp. In Tutorial 6.2 (page 118), you will have a chance
to experiment with these functions.

TUTORIAL 6.1: ARITHMETIC OPERATIONS 113

FIGURE 6.10 The XOR operation applied to monochrome images: (a) X; (b) Y ; (c) X

XOR Y .

FIGURE 6.11 The NOT operation applied to a monochrome image: (a) X; (b) NOT X.

6.3 TUTORIAL 6.1: ARITHMETIC OPERATIONS

Goal

The goal of this tutorial is to learn how to perform arithmetic operations on images.

Objectives

• Learn how to perform image addition using the imadd function.
• Explore image subtraction using the imsubtract function.
• Explore image multiplication using the immultiply function.
• Learn how to use the imdivide function for image division.

What You Will Need

• cameraman2.tif
• earth1.tif
• earth2.tif
• gradient.tif
• gradient_with_text.tif

114 ARITHMETIC AND LOGIC OPERATIONS

Procedure

The IPT offers four functions to aid in image arithmetic: imadd, imsubtract,
immultiply, and imdivide. You could use MATLAB’s arithmetic functions
(+,−, *, /) to perform image arithmetic, but it would probably require additional
coding to ensure that the operations are performed in double precision, as well as
setting cutoff values to be sure that the result is within grayscale range. The functions
provided by the IPT do this for you automatically.

Image addition can be used to brighten (or darken) an image by adding (subtracting)
a constant value to (from) each pixel value. It can also be used to blend two images
into one.

1. Use the imadd function to brighten an image by adding a constant (scalar)
value to all its pixel values.

I = imread(’tire.tif’);
I2 = imadd(I,75);
figure
subplot(1,2,1), imshow(I), title(’Original Image’);
subplot(1,2,2), imshow(I2), title(’Brighter Image’);

Question 1 What are the maximum and minimum values of the original and the
adjusted image? Explain your results.

Question 2 How many pixels had a value of 255 in the original image and how
many have a value of 255 in the resulting image?

2. Use the imadd function to blend two images.

Ia = imread(’rice.png’);
Ib = imread(’cameraman.tif’);
Ic = imadd(Ia,Ib);
figure
imshow(Ic);

Image subtraction is useful when determining whether two images are the same.
By subtracting one image from another, we can highlight the differences between the
two.

3. Close all open figures and clear all workspace variables.

4. Load two images and display them.

I = imread(’cameraman.tif’);
J = imread(’cameraman2.tif’);

TUTORIAL 6.1: ARITHMETIC OPERATIONS 115

figure
subplot(1,2,1), imshow(I), title(’Original Image’);
subplot(1,2,2), imshow(J), title(’Altered Image’);

While it may not be obvious at first how the altered image differs from the orig-
inal image, we should be able to see where the difference is located after using the
imsubtract function.

5. Subtract both images and display the result.

diffim = imsubtract(I,J);
figure
subplot(2,2,1), imshow(diffim), title(’Subtracted Image’);

6. Use the zoom tool to zoom into the right area of the difference image about
halfway down the image. You will notice that a small region of pixels is faintly
white.

7. To zoom back out, double-click anywhere on the image.

Now that you know where the difference is located, you can look at the original
images to see the change. The difference image above does not quite seem to display
all the details of the missing building. This is because when we performed image
subtraction, some of the pixels resulted in negative values, but were then set to 0 by
the imsubtract function (the function does this on purpose to keep the data within
grayscale range). What we really want to do is calculate the absolute value of the
difference between two images.

8. Calculate the absolute difference. Make sure Figure 2 is selected before exe-
cuting this code.

diffim2 = imabsdiff(I,J);
subplot(2,2,2), imshow(diffim2), title(’Abs Diff Image’);

9. Use the zoom-in tool to inspect the new difference image.

Even though the new image may look the same as the previous one, it represents
both positive and negative differences between the two images. To see this difference
better, we will scale both difference images for display purposes, so their values
occupy the full range of the gray scale.

10. Show scaled versions of both difference images.

subplot(2,2,3), imshow(diffim,[]), ...
title(’Subtracted Image Scaled’);

116 ARITHMETIC AND LOGIC OPERATIONS

subplot(2,2,4), imshow(diffim2,[]), ...
title(’Abs Diff Image Scaled’);

11. Use the zoom tool to see the differences between all four difference images.

Question 3 How did we scale the image output?

Question 4 What happened when we scaled the difference images?

Question 5 Why does the last image show more detail than the others?
Multiplication is the process of multiplying the values of each pixel of same coor-

dinates in two images. This can be used for a brightening process known as dynamic
scaling, which results in a more naturally brighter image compared to directly adding
a constant to each pixel.

12. Close all open figures and clear all workspace variables.

13. Use immultiply to dynamically scale the moon image.

I = imread(’moon.tif’);
I2 = imadd(I,50);
I3 = immultiply(I,1.2);
figure
subplot(1,3,1), imshow(I), title(’Original Image’);
subplot(1,3,2), imshow(I2), title(’Normal Brightening’);
subplot(1,3,3), imshow(I3), title(’Dynamic Scaling’);

Question 6 When dynamically scaling the moon image, why did the dark regions
around the moon not become brighter as in the normally adjusted image?

Image multiplication can also be used for special effects such as an artificial 3D
look. By multiplying a flat image with a gradient, we create the illusion of a 3D
textured surface.

14. Close all open figures and clear all workspace variables.

15. Create an artificial 3D planet by using the immultiply function to multiply
the earth1 and earth2 images.

I = im2double(imread(’earth1.tif’));
J = im2double(imread(’earth2.tif’));
K = immultiply(I,J);
figure
subplot(1,3,1), imshow(I), title(’Planet Image’);
subplot(1,3,2), imshow(J), title(’Gradient’);
subplot(1,3,3), imshow(K,[]), title(’3D Planet’);

TUTORIAL 6.1: ARITHMETIC OPERATIONS 117

Image division can be used as the inverse operation to dynamic scaling. Image
division is accomplished with the imdivide function. When using image division
for this purpose, we can achieve the same effect using the immultiply function.

16. Close all open figures and clear all workspace variables.

17. Use image division to dynamically darken the moon image.

I = imread(’moon.tif’);

I2 = imdivide(I,2);

figure

subplot(1,3,1), imshow(I), title(’Original Image’);

subplot(1,3,2), imshow(I2), title(’Darker Image w/ Division’)

18. Display the equivalent darker image using image multiplication.

I3 = immultiply(I,0.5);
subplot(1,3,3), imshow(I3), ...

title(’Darker Image w/ Multiplication’);

Question 7 Why did the multiplication procedure produce the same result as
division?

Question 8 Write a small script that will verify that the images produced from
division and multiplication are equivalent.

Another use of the image division process is to extract the background from an
image. This is usually done during a preprocessing stage of a larger, more complex
operation.

19. Close all open figures and clear all workspace variables.

20. Load the images that will be used for background subtraction.

notext = imread(’gradient.tif’);
text = imread(’gradient_with_text.tif’);
figure, imshow(text), title(’Original Image’);

This image could represent a document that was scanned under inconsistent light-
ing conditions. Because of the background, the text in this image cannot be processed
directly—we must preprocess the image before we can do anything with the text. If
the background were homogeneous, we could use image thresholding to extract the
text pixels from the background. Thresholding is a simple process of converting an
image to its binary equivalent by defining a threshold to be used as a cutoff value:
anything below the threshold will be discarded (set to 0) and anything above it will
be kept (set to 1 or 255, depending on the data class we choose).

118 ARITHMETIC AND LOGIC OPERATIONS

21. Show how thresholding fails in this case.

level = graythresh(text);
BW = im2bw(text,level);
figure, imshow(BW)

Although the specifics of the thresholding operation (using built-in functions
graythresh and im2bw) are not important at this time, we can see that even
though we attempted to segregate the image into dark and light pixels, it produced
only part of the text we need (on the upper right portion of the image). If an image of
the background with no text on it is available, we can use the imdivide function to
extract the letters. To obtain such background image in a real scenario, such as scan-
ning documents, a blank page that would show only the inconsistently lit background
could be scanned.

22. Divide the background from the image to get rid of the background.

fixed = imdivide(text,notext);
figure
subplot(1,3,1), imshow(text), title(’Original Image’);
subplot(1,3,2), imshow(notext), title(’Background Only’);
subplot(1,3,3), imshow(fixed,[]), title(’Divided Image’)

Question 9 Would this technique still work if we were unable to obtain the back-
ground image?

6.4 TUTORIAL 6.2: LOGIC OPERATIONS AND REGION OF INTEREST
PROCESSING

Goal

The goal of this tutorial is to learn how to perform logic operations on images.

Objectives

• Explore the roipoly function to generate image masks.
• Learn how to logically AND two images using the bitand function.
• Learn how to logically OR two images using the bitor function.
• Learn how to obtain the negative of an image using the bitcmp function.
• Learn how to logically XOR two images using the bitxor function.

What You Will Need

• lindsay.tif
• cameraman2.tif

TUTORIAL 6.2: LOGIC OPERATIONS AND REGION OF INTEREST PROCESSING 119

Procedure

Logic operators are often used for image masking. We will use theroipoly function
to create the image mask. Once we have a mask, we will use it to perform logic
operations on the selected image.

1. Use the MATLAB help system to learn how to use the roipoly function when
only an image is supplied as a parameter.

Question 1 How do we add points to the polygon?

Question 2 How do we delete points from the polygon?

Question 3 How do we end the process of creating a polygon?

2. Use the roipoly function to generate a mask for the pout image.

I = imread(’pout.tif’);
bw = roipoly(I);

Question 4 What class is the variable bw?

Question 5 What does the variable bw represent?
Logic functions operate at the bit level; that is, the bits of each image pixel are

compared individually, and the new bit is calculated based on the operator we are
using (AND, OR, or XOR). This means that we can compare only two images that
have the same number of bits per pixel as well as equivalent dimensions. In order for
us to use the bw image in any logical calculation, we must ensure that it consists of
the same number of bits as the original image. Because the bw image already has the
correct number of rows and columns, we need to convert only the image to uint8,
so that each pixel is represented by 8 bits.

3. Convert the mask image to class uint8.

bw2 = uint8(bw);

Question 6 In the above conversion step, what would happen if we used the
im2uint8 function to convert the bw image as opposed to just using uint8(bw)?
(Hint: after conversion, check what is the maximum value of the image bw2.)

4. Use the bitand function to compute the logic AND between the original
image and the new mask image.

I2 = bitand(I,bw2);
imshow(I2);

120 ARITHMETIC AND LOGIC OPERATIONS

Question 7 What happens when we logically AND the two images?
To see how to OR two images, we must first visit the bitcmp function, which is

used for complementing image bits (NOT).

5. Use the bitcmp function to generate a complemented version of the bw2
mask.

bw_cmp = bitcmp(bw2);

figure

subplot(1,2,1), imshow(bw2), title(’Original Mask’);

subplot(1,2,2), imshow(bw_cmp), title(’Complemented Mask’);

Question 8 What happened when we complemented the bw2 image?
We can now use the complemented mask in conjunction with bitor.

6. Use bitor to compute the logic OR between the original image and the com-
plemented mask.

I3 = bitor(I,bw_cmp);
figure, imshow(I3)

Question 9 Why did we need to complement the mask? What would have hap-
pened if we used the original mask to perform the OR operation?

The IPT also includes function imcomplement, which performs the same
operation as the bitcmp function, complementing the image. The function
imcomplement allows input images to be binary, grayscale, or RGB, whereas
bitcmp requires that the image be an array of unsigned integers.

7. Complement an image using the imcomplement function.

bw_cmp2 = imcomplement(bw2);

Question 10 How can we check to see that the bw_cmp2 image is the same as
the bw_cmp image?

The XOR operation is commonly used for finding differences between two images.

8. Close all open figures and clear all workspace variables.

9. Use the bitxor function to find the difference between two images.

I = imread(’cameraman.tif’);
I2 = imread(’cameraman2.tif’);
I_xor = bitxor(I,I2);
figure
subplot(1,3,1), imshow(I), title(’Image 1’);

TUTORIAL 6.2: LOGIC OPERATIONS AND REGION OF INTEREST PROCESSING 121

subplot(1,3,2), imshow(I2), title(’Image 2’);
subplot(1,3,3), imshow(I_xor,[]), title(’XOR Image’);

Logic operators are often combined to achieve a particular task. In next steps, we
will use all the logic operators discussed previously to darken an image only within
a region of interest.

10. Close all open figures and clear all workspace variables.

11. Read in image and calculate an adjusted image that is darker using the
imdivide function.

I = imread(’lindsay.tif’);
I_adj = imdivide(I,1.5);

12. Generate a mask by creating a region of interest polygon.

bw = im2uint8(roipoly(I));

13. Use logic operators to show the darker image only within the region of interest,
while displaying the original image elsewhere.

bw_cmp = bitcmp(bw); %mask complement
roi = bitor(I_adj,bw_cmp); %roi image
not_roi = bitor(I,bw); %non_roi image
new_img = bitand(roi,not_roi); %generate new image
imshow(new_img) %display new image

Question 11 How could we modify the above code to display the original image
within the region of interest and the darker image elsewhere?

WHAT HAVE WE LEARNED?

• Arithmetic operations can be used to blend two images (addition), detect differ-
ences between two images or video frames (subtraction), increase an image’s
average brightness (multiplication/division by a constant), among other things.

• When performing any arithmetic image processing operation, pay special
attention to the data types involved, their ranges, and the desired way to handle
overflow and underflow situations.

• MATLAB’s IPT has built-in functions for image addition (imadd), subtraction
(imsubtract and imabsdiff), multiplication (immultiply), and divi-
sion (imdivide). It also has a function (imlincomb) that can be used to
perform several arithmetic operations without having to worry about underflow
or overflow of intermediate results.

122 ARITHMETIC AND LOGIC OPERATIONS

• Logic operations are performed on a bit-by-bit basis and are often used to mask
out a portion of an image (the region of interest) for further processing.

• MATLAB’s IPT has built-in functions for performing basic logic operations
on digital images: AND (bitand), OR (bitor), NOT (bitcmp), and XOR
(bitxor).

6.5 PROBLEMS

6.1 What would be the result of adding a positive constant (scalar) to a monochrome
image?

6.2 What would be the result of subtracting a positive constant (scalar) from a
monochrome image?

6.3 What would be the result of multiplying a monochrome image by a positive
constant greater than 1.0?

6.4 What would be the result of multiplying a monochrome image by a positive
constant less than 1.0?

6.5 Given the 3 × 3 images X and Y below, obtain (a) X AND Y ; (b) X OR Y ; (c)
X XOR Y .

X =

⎡
⎢⎣

200 100 100

0 10 50

50 250 120

⎤
⎥⎦

Y =

⎡
⎢⎣

100 220 230

45 95 120

205 100 0

⎤
⎥⎦

6.6 What happens when you add a uint8 [0, 255] monochrome image to itself?

6.7 What happens when you multiply a uint8 [0, 255] monochrome image by
itself?

6.8 What happens when you multiply a double [0, 1.0] monochrome image by
itself?

6.9 What happens when you divide a double [0, 1.0] monochrome image by
itself?

6.10 Would pixel-by-pixel division be a better way to find the differences between
two monochrome images than subtraction, absolute difference, or XOR? Explain.

PROBLEMS 123

6.11 Write a MATLAB function to perform brightness correction on monochrome
images. It should take as arguments a monochrome image, a number between 0 and
100 (amount of brightness correction, expressed in percentage terms), and a third
parameter indicating whether the correction is intended to brighten or darken the
image.

6.12 Write a MATLAB script that reads an image, performs brightness correction
using the function written for Problem 6.11, and displays a window with the image
and its histogram,1 before and after the brightness correction operation. What do
the histograms tell you? Would you be able to tell from the histograms alone what
type of brightness correction was performed? Would you be able to estimate from the
histogram information how much brightening or darkening the image experienced?

1Histograms will be introduced in Chapter 9, so you may try this problem after reading that chapter.

CHAPTER 7

GEOMETRIC OPERATIONS

WHAT WILL WE LEARN?

• What do geometric operations do to an image and what are they used for?
• What are the techniques used to enlarge/reduce a digital image?
• What are the main interpolation methods used in association with geometric

operations?
• What are affine transformations and how can they be performed using

MATLAB?
• How can I rotate, flip, crop, or resize images in MATLAB?
• What is image registration and where is it used?

7.1 INTRODUCTION

Geometric operations modify the geometry of an image by repositioning pixels in a
constrained way. In other words, rather than changing the pixel values of an image (as
most techniques studied in Part I of this book do), they modify the spatial relationships
between groups of pixels representing features or objects of interest within the image.
Figure 7.1 shows examples of typical geometric operations whose details will be
presented later in this chapter.

Practical Image and Video Processing Using MATLAB®. By Oge Marques.
© 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

125

126 GEOMETRIC OPERATIONS

FIGURE 7.1 Examples of typical geometric operations: (a) original image; (b) translation
(shifting); (c) scaling (resizing); (d) rotation.

Geometric operations can be used to accomplish different goals, such as the fol-
lowing:

• Correcting geometric distortions introduced during the image acquisition pro-
cess (e.g., due to the use of a fish-eye lens).

• Creating special effects on existing images, such as twirling, bulging, or squeez-
ing a picture of someone’s face.

• As part of image registration—the process of matching the common features of
two or more images of the same scene, acquired from different viewpoints or
using different equipment.

MAPPING AND AFFINE TRANSFORMATIONS 127

Most geometric operations consist of two basic components:

1. Mapping Function: This is typically specified using a set of spatial transfor-
mation equations (and a procedure to solve them) (Section 7.2).

2. Interpolation Methods: These are used to compute the new value of each pixel
in the spatially transformed image (Section 7.3).

7.2 MAPPING AND AFFINE TRANSFORMATIONS

A geometric operation can be described mathematically as the process of transforming
an input image f (x, y) into a new image g(x′, y′) by modifying the coordinates of
image pixels:

f (x, y) → g(x′, y′) (7.1)

that is, the pixel value originally located at coordinates (x, y) will be relocated to
coordinates (x′, y′) in the output image.

To model this process, a mapping function is needed. The mapping function spec-
ifies the new coordinates (in the output image) for each pixel in the input image:

(x′, y′) = T (x, y) (7.2)

This mapping function is an arbitrary 2D function. It is often specified as two
separate functions, one for each dimension:

x′ = Tx(x, y) (7.3)

and

y′ = Ty(x, y) (7.4)

where Tx and Ty are usually expressed as polynomials in x and y. The case where Tx

and Ty are linear combinations of x and y is called affine transformation (or affine
mapping):

x′ = a0x + a1y + a2 (7.5)

y′ = b0x + b1y + b2 (7.6)

Equations (7.5) and (7.6) can also be expressed in matrix form as follows:
⎡
⎢⎣

x′

y′

1

⎤
⎥⎦ =

⎡
⎢⎣

a0 a1 a2

b0 b1 b2

0 0 1

⎤
⎥⎦

⎡
⎢⎣

x

y

1

⎤
⎥⎦ (7.7)

Affine mapping transforms straight lines to straight lines, triangles to triangles,
and rectangles to parallelograms. Parallel lines remain parallel and the distance ratio

128 GEOMETRIC OPERATIONS

TABLE 7.1 Summary of Transformation Coefficients for Selected Affine
Transformations

Transformation a0 a1 a2 b0 b1 b2

Translation by �x, �y 1 0 �x 0 1 �y

Scaling by a factor [sx, sy] sx 0 0 0 sy 0
Counterclockwise rotation by angle θ cos θ sin θ 0 − sin θ cos θ 0
Shear by a factor [shx, shy] 1 shy 0 shx 1 0

between points on a straight line does not change. Four of the most common geomet-
ric operations—translation, scaling, rotation, and shearing—are all special cases of
equations (7.5) and (7.6), as summarized in Table 7.1.

The six parameters of the 2D affine mapping (equation (7.7)) are uniquely de-
termined by three pairs of corresponding points. Given the coordinates of relevant
points before and after the transformation, one can write n equations in x and y and
solve them to find the n transformation coefficients. Figure 7.2 shows an example of
a triangle (three vertices, n = 6), before and after the affine transformation.

In MATLAB

The IPT has two functions associated with affine transforms: maketform and
imtransform. The maketform function is used to define the desired 2D spa-
tial transformation. It creates a MATLAB structure (called a TFORM) that contains
all the parameters required to perform the transformation. In addition to affine trans-
formations, maketform also supports the creation of projective and custom trans-
formations. After having defined the desired transformation, it can be applied to an
input image using function imtransform. In Tutorial 7.2 (page 142), you will have
a chance to learn more about these functions.

� EXAMPLE 7.1

Generate the affine transformation matrix for each of the operations below: (a) rotation
by 30◦; (b) scaling by a factor 3.5 in both dimensions; (c) translation by [25, 15] pixels;

Input

(x
0
, y

0
)

(x
2
, y

2
)

(x
1
, y

1
)

(x
2
, y ′

2
)

(x
0
, y ′

0
)

(x
1
, y ′

1
)

Output

FIGURE 7.2 Mapping one triangle onto another by an affine transformation.

MAPPING AND AFFINE TRANSFORMATIONS 129

(d) shear by a factor [2, 3]. Use MATLAB to apply the resulting matrices to an input
image of your choice.

Solution

Plugging the values into Table 7.1, we obtain the following:
(a) Since cos 30◦ = 0.866 and sin 30◦ = 0.500:

⎡
⎢⎣

0.866 −0.500 0

0.500 0.866 0

0 0 1

⎤
⎥⎦

(b)

⎡
⎢⎣

3.5 0 0

0 3.5 0

0 0 1

⎤
⎥⎦

(c)

⎡
⎢⎣

1 0 0

0 1 0

25 15 1

⎤
⎥⎦

(d)

⎡
⎢⎣

1 3 0

2 1 0

0 0 1

⎤
⎥⎦

MATLAB code:

filename = ’any image of your choice’
I = imread(filename);

% Rotation
Ta = maketform(’affine’, ...

[cosd(30) -sind(30) 0; sind(30) cosd(30) 0; 0 0 1]’);
Ia = imtransform(I,Ta);

%Scaling
Tb = maketform(’affine’,[3.5 0 0; 0 3.5 0; 0 0 1]’);
Ib = imtransform(I,Tb);

130 GEOMETRIC OPERATIONS

% Translation
xform = [1 0 25; 0 1 15; 0 0 1]’;
Tc = maketform(’affine’,xform);
Ic = imtransform(I,Tc, ’XData’, ...

[1 (size(I,2)+xform(3,1))], ’YData’, ...
[1 (size(I,1)+xform(3,2))],’FillValues’, 128);

% Shearing
Td = maketform(’affine’,[1 3 0; 2 1 0; 0 0 1]’);
Id = imtransform(I,Td);

7.3 INTERPOLATION METHODS

7.3.1 The Need for Interpolation

After a geometric operation has been performed on the original image, the resulting
value for each pixel can be computed in two different ways. The first one is called
forward mapping—also known as source-to-target mapping (Figure 7.3)—and con-
sists of iterating over every pixel of the input image, computing its new coordinates,
and copying the value to the new location. This approach has a number of problems,
such as the following:

• Many coordinates calculated by the transformation equations are not integers,
and need to be rounded off to the closest integer to properly index a pixel in the
output image.

• Many coordinates may lie out of bounds (e.g., negative values).

Source image F Target image F ′

x′

y′

T

y

x

FIGURE 7.3 Forward mapping: for each pixel position in the input image, the corresponding
(continuous) target position—resulting from applying a geometric transformation T—is found
in the output image. In general, the target position (x′, y′) does not coincide with any discrete
raster point, and the value of the pixel in the input image is copied to one of the adjacent target
pixels. Redrawn from [BB08].

INTERPOLATION METHODS 131

Source image F Target image F ′

x′

y′

T
–1

y

x

FIGURE 7.4 Backward mapping: for each discrete pixel position in the output image, the
corresponding continuous position in the input image (x, y) is found by applying the inverse
mapping function T −1. The new pixel value is found by interpolation among the neighbors of
(x, y) in the input image. Redrawn from [BB08].

• Many output pixels’ coordinates are addressed several times during the calcu-
lations (which is wasteful) and some are not addressed at all (which leads to
“holes” in the output image, meaning that no pixel value was computed for that
coordinate pair).

The solution to the limitations listed above usually comes in the form of a backward
mapping—also known as target-to-source mapping (Figure 7.4)—approach, which
consists of visiting every pixel in the output image and applying the inverse transfor-
mation to determine the coordinates in the input image from which a pixel value must
be sampled. Since this backward mapping process often results in coordinates outside
the sampling grid in the original image, it usually requires some type of interpolation
to compute the best value for that pixel.

7.3.2 A Simple Approach to Interpolation

If you were asked to write code to enlarge or reduce an image by a certain factor
(e.g., a factor of 2 in both directions), you would probably deal with the problem
of removing pixels (in the case of shrinking) by subsampling the original image by
a factor of 2 in both dimensions, that is, skipping every other pixel along each row
and column. Conversely, for the task of enlarging the image by a factor of 2 in both
dimensions, you would probably opt for copying each original pixel to an n × n

block in the output image. These simple interpolation schemes (pixel removal and
pixel duplication, respectively) are fast and easy to understand, but suffer from several
limitations, such as the following:

• The “blockiness” effect that may become noticeable when enlarging an image.
• The possibility of removing essential information in the process of shrinking an

image.

132 GEOMETRIC OPERATIONS

• The difficulty in extending these approaches to arbitrary, noninteger, resizing
factors.

Other simplistic methods—such as using the mean (or median) value of the original
n × n block in the input image to determine the value of each output pixel in the shrunk
image—also produce low-quality results and are bound to fail in some cases. These
limitations call for improved interpolation methods, which will be briefly described
next.

7.3.3 Zero-Order (Nearest-Neighbor) Interpolation

This baseline interpolation scheme rounds off the calculated coordinates (x′, y′)
to their nearest integers. Zero-order (or nearest-neighbor) interpolation is simple
and computationally fast, but produces low-quality results, with artifacts such as
blockiness effects—which are more pronounced at large-scale factors—and jagged
straight lines—particularly after rotations by angles that are not multiples of 90◦ (see
Figure 7.5b).

7.3.4 First-Order (Bilinear) Interpolation

First-order (or bilinear) interpolation calculates the gray value of the interpolated
pixel (at coordinates (x′, y′)) as a weighted function of the gray values of the four
pixels surrounding the reference pixel in the input image. Bilinear interpolation pro-
duces visually better results than the nearest-neighbor interpolation at the expense of
additional CPU time (see Figure 7.5c).

7.3.5 Higher Order Interpolations

Higher order interpolations are more sophisticated—and computationally
expensive—methods for interpolating the gray value of a pixel. The third-
order interpolation scheme implemented in several MATLAB functions is also
known as bicubic interpolation. It takes into account the 4×4 neighborhood around
the reference pixel and computes the resulting gray level of the interpolated pixel by
performing the convolution of the 4×4 neighborhood with a cubic function.

Figure 7.5 shows the results of using different interpolation schemes to rotate an
image by 35◦. The jagged edge effect of the zero-order interpolation is visible (in
part b), but there is little—if any—perceived difference between the bipolar (part c)
and bicubic (part d) results.

7.4 GEOMETRIC OPERATIONS USING MATLAB

In this section, we will present a summary of typical geometric operations involving
digital images that can easily be implemented using MATLAB and the IPT.

GEOMETRIC OPERATIONS USING MATLAB 133

FIGURE 7.5 Effects of different interpolation techniques on rotated images: (a) original
image; zoomed-in versions of rotated (35◦) image using (b) zero-order (nearest-neighbor)
interpolation; (c) first-order (bilinear) interpolation; (d) third-order (bicubic) interpolation.

7.4.1 Zooming, Shrinking, and Resizing

One of the most common geometric operations is the resize operation. In this book, we
distinguish between true image resizing—where the resulting image size (in pixels)
is changed—and resizing an image for human viewing—which we will refer to as
zooming (in) and shrinking (or zooming out). They are both useful image processing
operations and often rely on the same underlying algorithms. The main difference
lies in the fact that zooming and shrinking are usually performed interactively (with
a tool such as IPT’s imshow or imtool) and their results last for a brief moment,
whereas resizing is typically accomplished in a noninteractive way (e.g., as part of a
MATLAB script) and its results are stored for longer term use.

The IPT has a function for resizing images, imresize. The imresize function
allows the user to specify the interpolation method used (nearest-neighbor, bilinear, or

134 GEOMETRIC OPERATIONS

bicubic interpolation—the default method). It is a rather sophisticated function, which
also allows specification of an interpolation kernel and additional parameter/value
pairs. In Tutorial 7.1 (page 138), you will use this function and explore some of its
options.

7.4.2 Translation

Translation of an input image f (x, y) with respect to its Cartesian origin to produce
an output image g(x′, y′) where each pixel is displaced by [�x, �y] (i.e., x′ = x + �x

and y′ = y + �y) consists of a special case of affine transform (as discussed in Sec-
tion 7.2). In Tutorial 7.2 (page 142), you will use maketform and imtransform
to perform image translation.

7.4.3 Rotation

Rotation of an image constitutes another special case of affine transform (as dis-
cussed in Section 7.2). Consequently, image rotation can also be accomplished using
maketform and imtransform.

The IPT also has a specialized function for rotating images, imrotate. Similar
to imresize, imrotate allows the user to specify the interpolation method used:
nearest-neighbor (the default method), bilinear, or bicubic. It also allows specification
of the size of the output image. In Tutorials 7.1 (page 138), and 7.2 (page 142), you
will explore the imrotate function.

7.4.4 Cropping

The IPT has a function for cropping images, imcrop, which crops an image to a
specified rectangle. The crop rectangle can be specified interactively (with the mouse)
or its coordinates be passed as parameters to the function. In Tutorial 7.1 (page 138),
you will experiment with both options for using this function.

7.4.5 Flipping

The IPT has two functions for flipping matrices (which can also be used for raster
images, of course): flipud—which flips a matrix up to down—and fliplr—
which flips a matrix left to right. In Tutorial 7.1 (page 138), you will experiment with
both functions.

7.5 OTHER GEOMETRIC OPERATIONS AND APPLICATIONS

7.5.1 Warping

Warping can be defined as the “transformation of an image by reparameterization of
the 2D plane” [FDHF+05]. Warping techniques are sometimes referred to as rubber

OTHER GEOMETRIC OPERATIONS AND APPLICATIONS 135

sheet transformations, because they resemble the process of applying an image to a
sheet of rubber and stretching it according to a predefined set of rules.

The quadratic warp is a particular case of polynomial warping, where the trans-
formed coordinates (x′, y′) for a pixel whose original coordinates are (x, y) are given
by the following equations:

x′ = a0x
2 + a1y

2 + a2xy + a3x + a4y + a5 (7.8)

y′ = b0x
2 + b1y

2 + b2xy + b3x + b4y + b5 (7.9)

where the coefficients a0, ..., a5, b0, ..., b5 are typically chosen to introduce more
complex distortions into an image, for example, turning straight lines into curves.
One practical application of the quadratic warping method is to compensate for lens
distortions, particularly the barrel and pincushion distortions discussed in Chapter
5. A variant of equations (7.8) and (7.9), using third-degree polynomials and 20
coefficients, is called a cubic warp.

Warping operations of order 2 or higher are usually specified using control points
in the source image and mapping them to specified locations in the destination image.
Control points are usually associated with key locations and features in the image,
such as corners of objects. It is possible to specify more than the minimally required
number of control points; in these cases, a least-square method is used to determine
the coefficients that best match the desired displacements.

Piecewise warping is an alternative to polynomial warping. It allows the desired
warping to be specified with the help of a control grid on top of the input image. The
user specifies which control points should be moved by dragging the intersections of
the gridlines to new locations using the mouse.

7.5.2 Nonlinear Image Transformations

Nonlinear image transformations usually involve a conversion from rectangular to
polar coordinates followed by a deliberate distortion of the resulting points.

Twirling The twirl transformation causes an image to be rotated around an anchor
point of coordinates (xc, yc) with a space-variant rotation angle: the angle has a value
of α at the anchor point and decreases linearly with the radial distance from the center.
The effect is limited to a region within the maximum radius rmax. All pixels outside
this region remain unchanged.

Since this transformation uses backward mapping, we are interested in the equa-
tions for the inverse mapping function:

Tx
−1 : x =

{
xc + r cos(θ) for r ≤ rmax

x′ for r > rmax
(7.10)

136 GEOMETRIC OPERATIONS

and

Ty
−1 : y =

{
yc + r sin(θ) for r ≤ rmax

y′ for r > rmax
(7.11)

where

dx = x′ − xc, r =
√

dx
2 + dy

2

dy = y′ − yc, θ = arctan(dx, dy) + α ·
(

rmax − r
rmax

)

Rippling The ripple transformation causes a local wave-like displacement of the
image along both directions, x and y. The parameters for this mapping function are
the (nonzero) period lengths Lx, Ly (in pixels) and the associated amplitude values
Ax, Ay. The inverse transformation function is given by the following:

Tx
−1 : x = x′ + Ax · sin

(
2π · y′

Lx

)
(7.12)

Ty
−1 : y = y′ + Ay · sin

(
2π · x′

Ly

)
(7.13)

Twirling, rippling, and many other nonlinear transformations are often used to cre-
ate an artistic (or humorous) effect on an image by causing controllable deformations
(Figure 7.6).

FIGURE 7.6 Image deformation effects using Photo Booth.

OTHER GEOMETRIC OPERATIONS AND APPLICATIONS 137

7.5.3 Morphing

Morphing is a geometric transformation technique that gradually converts an image
into another. The idea is to produce a visible metamorphosis effect as intermediate
images are being displayed. Image morphing was quite popular in TV, movies, and
advertisements in the 1980s and 1990s, but has lost impact since then.

Morphing can be seen as a modified version of piecewise warping, in which the
user specifies control points in both the initial and final images. These control points
are then used to generate two meshes (one from each image). Affine transformations
relate the resulting meshes. An important aspect of morphing is that the warp is
computed incrementally, one small step at a time, in combination with a dissolve
effect from the initial image to the final one.

An alternative method for image morphing, fields-based morphing, originally pro-
posed by Beier and Neely [BN92], does not use meshes. It relies on pairs of reference
lines drawn on both images and computes the perpendicular distance between each
pixel and each control line. It then uses distance and relative position to determine
the correct position where a pixel should be placed in the final image. In this method,
all control lines influence, to some extent, the outcome for a certain pixel: the closer
the line, the stronger the influence.

7.5.4 Seam Carving

Seam carving [AS07] is a recently proposed—but already very popular—image
operator for content-aware image resizing. The basic idea of the algorithm is to find
seams1 in the original image and use that information to either (i) reduce the image
size by removing (“carving out”) the seams that contribute the least to the image’s
contents or (ii) enlarge the image by inserting additional seams. By applying these
operators in both directions, the image can be retargeted to a new size with very
little loss of meaningful contents. Figure 7.7 shows an example of seam carving for
content-aware image resizing.

7.5.5 Image Registration

Image registration is the process of aligning two or more images of the same scene.
First, each input image is compared with a reference image—also known as base
image. Next, a spatial transformation is applied to the input image in order to align it
with the base image. The key step in image registration is determining the parameters
of the spatial transformation required to bring the images into alignment. This is a
complex and fascinating topic for which many books have been written (see “Learn
More About It” section at the end of the chapter).

1A seam is an “optimal 8-connected path of pixels on a single image from top to bottom, or left to right,
where optimality is defined by an image energy function” [AS07].

138 GEOMETRIC OPERATIONS

FIGURE 7.7 Using seam carving for content-aware resizing: (a) original image (334 × 500
pixels); (b) cropped image (256 × 256 pixels). Original image from Flickr. Seam carv-
ing results were obtained using the publicly available implementation by Mathias Lux:
http://code.google.com/p/java-imageseams/.

The IPT contains a Control Point Selection tool for interactive image registration
(Figure 7.10). You will learn how to use that tool to perform basic image registration
tasks in Tutorial 7.2 (page 142).

7.6 TUTORIAL 7.1: IMAGE CROPPING, RESIZING, FLIPPING, AND
ROTATION

Goal

The goal of this tutorial is to learn how to crop, resize, and rotate digital images.

Objectives

• Learn how to crop an image using the imcrop function.
• Learn how to resize an image using the imresize function.
• Learn how to flip an image upside down and left–right using flipud and
fliplr.

• Learn how to rotate an image using the imrotate function.
• Explore interpolation methods for resizing and rotating images.

Procedure

In the first part of this tutorial, you will learn how to crop an image. Cropping in
MATLAB can be done interactively—using the Crop Image option in the Image Tool
(imtool) toolbar—or programmatically—using the imcrop function.

TUTORIAL 7.1: IMAGE CROPPING, RESIZING, FLIPPING, AND ROTATION 139

1. Open the cameraman image and use the Crop Image option in the Image Tool
(imtool) toolbar to crop it such that only the portion of the image containing
the tallest building in the background is selected to become the cropped image.
Pay attention to (and write down) the coordinates of the top left and bottom
right corners as you select the rectangular area to be cropped. You will need
this information for the next step.

2. Double-click inside the selected area to complete the cropping operation.

3. Save the resulting image using the File > Save as... option in the imtool
menu. Call it cropped_building.png.

I = imread(’cameraman.tif’);
imtool(I)

Question 1 Which numbers did you record for the top left and bottom right co-
ordinates and what do they mean? Hint: Pay attention to the convention used by the
Pixel info status bar at the bottom of theimtoolmain window. The IPT occasionally
uses a so-called spatial coordinate system, whereas y represents rows and x represents
columns. This does not correspond to the image axis coordinate system defined in
Chapter 2.

4. Open and display the cropped image.

I2 = imread(’cropped_building.png’);
imshow(I2)

5. We shall now use the coordinates recorded earlier to perform a similar cropping
from a script.

6. The imcrop function expects the crop rectangle—a four-element vector
[xmin ymin width height]—to be passed as a parameter.

7. Perform the steps below replacing my values for x1, y1, x2, and y2 with the
values you recorded earlier.

x1 = 186; x2 = 211; y1 = 105; y2 = 159;
xmin = x1; ymin = y1; width = x2-x1; height = y2-y1;
I3 = imcrop(I, [xmin ymin width height]);
imshow(I3)

Resizing an image consists of enlarging or shrinking it, using nearest-neighbor,
bilinear, or bicubic interpolation. Both resizing procedures can be executed using the
imresize function. Let us first explore enlarging an image.

8. Enlarge the cameraman image by a scale factor of 3. By default, the function
uses bicubic interpolation.

140 GEOMETRIC OPERATIONS

I_big1 = imresize(I,3);
figure, imshow(I), title(’Original Image’);
figure, imshow(I_big1), ...

title(’Enlarged Image w/ bicubic interpolation’);

As you have seen in Chapter 4, the IPT function imtool can be used to inspect
the pixel values of an image.2 The imtool function provides added functionality to
visual inspection of images, such as zooming and pixel inspection.

9. Use the imtool function to inspect the resized image, I_big1.

imtool(I_big1)

10. Scale the image again using nearest-neighbor and bilinear interpolations.

I_big2 = imresize(I,3,’nearest’);
I_big3 = imresize(I,3,’bilinear’);
figure, imshow(I_big2), ...

title(’Resized w/ nearest-neighbor interpolation’);
figure, imshow(I_big3), ...

title(’Resized w/ bilinear interpolation’);

Question 2 Visually compare the three resized images. How do they differ?
One way to shrink an image is by simply deleting rows and columns of the image.

11. Close any open figures.

12. Reduce the size of the cameraman image by a factor of 0.5 in both dimensions.

I_rows = size(I,1);
I_cols = size(I,2);
I_sm1 = I(1:2:I_rows, 1:2:I_cols);
figure, imshow(I_sm1);

Question 3 How did we scale the image?

Question 4 What are the limitations of this technique?
Although the technique above is computationally efficient, its limitations may re-

quire us to use another method. Just as we used theimresize function for enlarging,
we can just as well use it for shrinking. When using the imresize function, a scale
factor larger than 1 will produce an image larger than the original, and a scale factor
smaller than 1 will result in an image smaller than the original.

2Note that this function is available only in MATLAB Version 7 and above.

TUTORIAL 7.1: IMAGE CROPPING, RESIZING, FLIPPING, AND ROTATION 141

13. Shrink the image using the imresize function.

I_sm2 = imresize(I,0.5,’nearest’);

I_sm3 = imresize(I,0.5,’bilinear’);

I_sm4 = imresize(I,0.5,’bicubic’);

figure, subplot(1,3,1), imshow(I_sm2), ...

title(’Nearest-neighbor Interpolation’);

subplot(1,3,2), imshow(I_sm3), title(’Bilinear Interpolation’);

subplot(1,3,3), imshow(I_sm4), title(’Bicubic Interpolation’);

Note that in the case of shrinking using either bilinear or bicubic interpolation,
the imresize function automatically applies a low-pass filter to the image (whose
default size is 11×11), slightly blurring it before the image is interpolated. This helps
to reduce the effects of aliasing during resampling (see Chapter 5).

Flipping an image upside down or left–right can be easily accomplished using the
flipud and fliplr functions.

14. Close all open figures and clear all workspace variables.

15. Flip the cameraman image upside down.

16. Flip the cameraman image from left to right.

I = imread(’cameraman.tif’);
J = flipud(I);
K = fliplr(I);
subplot(1,3,1), imshow(I), title(’Original image’)
subplot(1,3,2), imshow(J), title(’Flipped upside-down’)
subplot(1,3,3), imshow(K), title(’Flipped left-right’)

Rotating an image is achieved through the imrotate function.

17. Close all open figures and clear all workspace variables.

18. Rotate the eight image by an angle of 35◦.

I = imread(’eight.tif’);
I_rot = imrotate(I,35);
imshow(I_rot);

Question 5 Inspect the size (number of rows and columns) ofI_rot and compare
it with the size of I. Why are they different?

Question 6 The previous step rotated the image counterclockwise. How would
you rotate the image 35◦ clockwise?

142 GEOMETRIC OPERATIONS

We can also use different interpolation methods when rotating the image.

19. Rotate the same image using bilinear interpolation.

I_rot2 = imrotate(I,35,’bilinear’);
figure, imshow(I_rot2)

Question 7 How did bilinear interpolation affect the output of the rotation?
Hint: The difference is noticeable between the two images near the edges of the
rotated image and around the coins.

20. Rotate the same image, but this time crop the output.

I_rot3 = imrotate(I,35,’bilinear’,’crop’);
figure, imshow(I_rot3)

Question 8 How did the crop setting change the size of our output?

7.7 TUTORIAL 7.2: SPATIAL TRANSFORMATIONS AND IMAGE
REGISTRATION

In this tutorial, we will explore the IPT’s functionality for performing spatial trans-
formations (using the imtransform, maketform, and other related functions).
We will also show a simple example of selecting control points (using the IPT’s
Control Point Selection tool) and using spatial transformations in the context of im-
age registration.

In the first part of this tutorial, you will use imtransform and maketform
to implement affine transformations (see Table 7.1), apply them to a test image, and
inspect the results.

1. Open the cameraman image.

2. Use maketform to make an affine transformation that resizes the image by a
factor [sx, sy]. The maketform function can accept transformation matrices
of various sizes for N-dimensional transformations. But since imtransform
only performs 2D transformations, you can only specify 3 × 3 transformation
matrices. For affine transformations, the first two columns of the 3 × 3 matri-
ces will have the values a0, a1, a2, b0, b1, b2 from Table 7.1, whereas the last
column must contain 0 0 1.

3. Use imtransform to apply the affine transformation to the image.

4. Compare the resulting image with the one you had obtained using imresize.

I1 = imread(’cameraman.tif’);
sx = 2; sy = 2;

TUTORIAL 7.2: SPATIAL TRANSFORMATIONS AND IMAGE REGISTRATION 143

T = maketform(’affine’,[sx 0 0; 0 sy 0; 0 0 1]’);
I2 = imtransform(I1,T);
imshow(I2), title(’Using affine transformation’)
I3 = imresize(I1, 2);
figure, imshow(I3), title(’Using image resizing’)

Question 1 Compare the two resulting images (I2 and I3). Inspect size, gray-
level range, and visual quality. How are they different? Why?

5. Use maketform to make an affine transformation that rotates an image by an
angle θ.

6. Use imtransform to apply the affine transformation to the image.

7. Compare the resulting image with the one you had obtained using imrotate.

I1 = imread(’cameraman.tif’);

theta = 35*pi/180

xform = [cos(theta) sin(theta) 0; -sin(theta) cos(theta) 0; 0 0 1]’

T = maketform(’affine’,xform);

I4 = imtransform(I1, T);

imshow(I4), title(’Using affine transformation’)

I5 = imrotate(I1, 35);

figure, imshow(I5), title(’Using image rotating’)

Question 2 Compare the two resulting images (I4 and I5). Inspect size, gray-
level range, and visual quality. How are they different? Why?

8. Use maketform to make an affine transformation that translates an image by
�x, �y.

9. Use imtransform to apply the affine transformation to the image and use a
fill color (average gray in this case) to explicitly indicate the translation.

10. Display the resulting image.

I1 = imread(’cameraman.tif’);
delta_x = 50;
delta_y = 100;
xform = [1 0 delta_x; 0 1 delta_y; 0 0 1]’
tform_translate = maketform(’affine’,xform);
I6 = imtransform(I1, tform_translate,...

’XData’, [1 (size(I1,2)+xform(3,1))],...
’YData’, [1 (size(I1,1)+xform(3,2))],...
’FillValues’, 128);

figure, imshow(I6)

144 GEOMETRIC OPERATIONS

Question 3 Compare the two images (I1 and I6). Inspect size, gray-level range,
and visual quality. How are they different? Why?

11. Use maketform to make an affine transformation that performs shearing by
a factor [shx, shy] on an input image.

12. Use imtransform to apply the affine transformation to the image.

13. Display the resulting image.

I = imread(’cameraman.tif’);
sh_x = 2; sh_y = 1.5;
xform = [1 sh_y 0; sh_x 1 0; 0 0 1]’
T = maketform(’affine’,xform);
I7 = imtransform(I1, T);
imshow(I7)

Image Registration

In the last part of the tutorial, you will learn how to use spatial transformations in
the context of image registration. The main steps are illustrated in a block diagram
format in Figure 7.8.

14. Open the base image (Figure 7.9a) and the unregistered image (Figure 7.9b).

base = imread(’klcc_a.png’);
unregistered = imread(’klcc_b.png’);

15. Specify control points in both images usingcpselect (Figure 7.10). This is an
interactive process that is explained in detail in the IPT online documentation.
For the purpose of this tutorial, we will perform the following:
• Open the Control Point Selection tool.
• Choose a zoom value that is appropriate and lock the ratio.
• Select the Control Point Selection tool in the toolbar.
• Select a total of 10 control points per image, making sure that after we select

a point in one image with click on the corresponding point in the other image,
thereby establishing a match for that point. See Figure 7.11 for the points I
chose.

• Save the resulting control points using the File > Export Points to
Workspace option in the menu.

cpselect(unregistered, base);

TUTORIAL 7.2: SPATIAL TRANSFORMATIONS AND IMAGE REGISTRATION 145

FIGURE 7.8 Image registration using MATLAB and the IPT.

FIGURE 7.9 Interactive image registration: (a) base image; (b) unregistered image.

146 GEOMETRIC OPERATIONS

FIGURE 7.10 The Control Point Selection tool.

FIGURE 7.11 Selected points.

TUTORIAL 7.2: SPATIAL TRANSFORMATIONS AND IMAGE REGISTRATION 147

16. Inspect the coordinates of the selected control points.

base_points
input_points

17. Use cpcorr to fine-tune the selected control points.

input_points_adj = cpcorr(input_points,base_points,...
unregistered(:,:,1),base(:,:,1))

Question 4 Compare the values for input_points_adj with that for
input_points. Did you notice any changes? Why (not)?

18. This is a critical step. We need to specify the type of transformation we want to
apply to the unregistered image based on the type of distortion that it contains.
In this case, since the distortion appears to be a combination of translation,
rotation, and scaling, we shall use the ’nonreflective similarity’
transformation type. This type requires only two pairs of control points.

19. Once we have selected the type of transformation, we can determine its param-
eters using cp2tform.

20. Use the resulting tform structure to align the unregistered image (using
imtransform).

% Select the type of transformation

mytform1 = cp2tform(input_points,base_points,...

’nonreflective similarity’);

% Transform the unregistered image

info = imfinfo(’klcc_a.png’);

registered = imtransform(unregistered,mytform1,...

’XData’,[1 info.Width], ’YData’,[1 info.Height]);

21. Display the registered image overlaid on top of the base image.

figure, imshow(registered);
hold on
h = imshow(base);
set(h, ’AlphaData’, 0.6)

Question 5 Are you happy with the results? If you had to do it again, what would
you do differently?

148 GEOMETRIC OPERATIONS

WHAT HAVE WE LEARNED?

• Geometric operations modify the geometry of an image by repositioning pixels
in a constrained way. They can be used to remove distortions in the image
acquisition process or to deliberately introduce a distortion that matches an
image with another (e.g., morphing).

• Enlarging or reducing a digital image can be done with two different purposes
in mind: (1) to actually change the image’s dimensions (in pixels), which can be
accomplished in MATLAB by function imresize; (2) to temporarily change
the image size for viewing purposes, through zooming in/out operations, which
can be accomplished in MATLAB as part of the functionality of image display
primitives such as imtool and imshow.

• The main interpolation methods used in association with geometric operations
are zero-order (or nearest-neighbor) interpolation (simple and fast, but leads to
low-quality results), first-order (or bilinear) interpolation, and higher-order (e.g.,
bicubic) interpolation (more sophisticated—and computationally expensive—
but leads to best results).

• Affine transformations are a special class of geometric operations, such that
once applied to an image, straight lines are preserved and parallel lines remain
parallel. Translation, rotation, scaling, and shearing are all special cases of affine
transformations. MATLAB’s IPT has two functions associated with affine trans-
formations: maketform and imtransform.

• Image rotation can be performed using the IPT imrotate function.
• An image can be flipped horizontally or vertically in MATLAB using simple

linear algebra and matrix manipulation instructions.
• The IPT has a function for cropping images, imcrop, which crops an image

to a specified rectangle and which can be specified either interactively (with the
mouse) or via parameter passing.

• Image warping is a technique by which an image’s geometry is changed accord-
ing to a template.

• Image morphing is a geometric transformation technique that converts an image
into another in an incremental way. It was popular in TV, movies, and advertise-
ments in the 1980s and 1990s, but has lost impact since then.

LEARN MORE ABOUT IT

• Chapter 5 of [GWE04] contains a MATLAB function for visualizing affine
transforms using grids.

• For a deeper coverage of (advanced) interpolation methods, we recommend
Chapter 16 of [BB08] and Sections 10.5 and 10.6 of [Jah05].

• Zitová and Flusser [ZF03] have published a survey of image registration meth-
ods. For a book-length treatment of the topic, refer to [Gos05].

PROBLEMS 149

• The book by Wolberg [Wol90] is a historical reference for image warping.
• For more on warping and morphing, refer to [GDCV99].

ON THE WEB

• MATLAB Image Warping—E. Meyers (MIT)
http://web.mit.edu/emeyers/www/warping/warp.html

• Image warping using MATLAB GUI (U. of Sussex, England)
http://www.lifesci.sussex.ac.uk/research/cuttlefish/image warping software.
htm

• Image morphing with MATLAB
http://www.stephenmullens.co.uk/image morphing/

7.8 PROBLEMS

7.1 Use imrotate to rotate an image by an arbitrary angle (not multiple of 90◦)
using the three interpolation methods discussed in Section 7.3. Compare the visual
quality of the results obtained with each method and their computational cost (e.g.,
using MATLAB functions tic and toc).

7.2 Consider the MATLAB snippet below (assume X is a gray-level image) and
answer this question: Will X and Z be identical? Explain.

Y = imresize(X,0.5,’nearest’);
Z = imresize(Y,2.0,’nearest’);

7.3 Consider the MATLAB snippet below. It creates an 80 × 80 black-and-white
image (B) and uses a simple approach to image interpolation (described in Sec-
tion 7.3.2) to reduce it to a 40 × 40 pixel equivalent (C). Does the method accomplish
its goal? Explain.

A = eye(80,80);
A(26:2:54,:)=1;
B = imcomplement(A);
C = B(1:2:end, 1:2:end);

CHAPTER 8

GRAY-LEVEL TRANSFORMATIONS

WHAT WILL WE LEARN?

• What does it mean to “enhance” an image?
• How can image enhancement be achieved using gray-level transformations?
• What are the most commonly used gray-level transformations and how can they

be implemented using MATLAB?

8.1 INTRODUCTION

This chapter—and also Chapters 9 and 10—will discuss the topic of image enhance-
ment in the spatial domain. As discussed in Chapter 1, image enhancement techniques
usually have one of these two goals:

1. To improve the subjective quality of an image for human viewing.

2. To modify the image in such a way as to make it more suitable for further
analysis and automatic extraction of its contents.

In the first case, the ultimate goal is an improved version of the original image,
whose interpretation will be left to a human expert—for example, an enhanced X-ray
image that will be used by a medical doctor to evaluate the possibility of a fractured
bone. In the second scenario, the goal is to serve as an intermediate step toward an
automated solution that will be able to derive the semantic contents of the image—for

Practical Image and Video Processing Using MATLAB®. By Oge Marques.
© 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

151

152 GRAY-LEVEL TRANSFORMATIONS

FIGURE 8.1 The image enhancement process. Adapted and redrawn from [Umb05].

example, by improving the contrast between characters and background on a page of
text before it is examined by an OCR algorithm. Sometimes these goals can be at odds
with each other. For example, sharpening an image to allow inspection of additional
fine-grained details is usually desired for human viewing, whereas blurring an image
to reduce the amount of irrelevant information is often preferred in the preprocessing
steps of a machine vision solution.

Another way to put it is to say that image enhancement techniques are used
when either (1) an image needs improvement, or (2) the low-level features must be
detected [SS01]. Image enhancement methods “improve the detectability of important
image details or objects by man or machine” [SS01]. This is different than attempting
to restore a degraded image to its original (or ideal) condition, which is the scope of
image restoration techniques (Chapter 12).

It is important to mention that image enhancement algorithms are usually goal
specific, which implies that there is no general theory of image enhancement nor is
there a universal enhancement algorithm that always performs satisfactorily. Rather,
it is typically an interactive process in which different techniques and algorithms are
tried and parameters are fine-tuned, until an acceptable result is obtained (Figure 8.1).
Moreover, it is often a subjective process in which the human observer’s specialized
skills and prior problem-domain knowledge play a significant role (e.g., a radiology
expert may find significant differences in the quality of two X-ray images that would
go undetected by a lay person).

This chapter focuses on point operations whose common goal is to enhance an
input image. In some cases, the enhancement results are clearly targeted at a human
viewer (e.g., contrast adjustment techniques, Section 8.3.1), while in some other cases
the results may be more suitable for subsequent stages of processing in a machine
vision system (e.g., image negative, Section 8.3.2).

8.2 OVERVIEW OF GRAY-LEVEL (POINT) TRANSFORMATIONS

Point operations (briefly introduced in Section 2.4.1) are also referred to as gray-level
transformations or spatial transformations. They can be expressed as

g(x, y) = T
[
f (x, y)

]
(8.1)

OVERVIEW OF GRAY-LEVEL (POINT) TRANSFORMATIONS 153

FIGURE 8.2 Basic gray-level transformation functions.

where g(x, y) is the processed image, f (x, y) is the original image, and T is an operator
on f (x, y).

Since the actual coordinates do not play any role in the way the transformation
function processes the original image,1 equation (8.1) can be rewritten as

s = T [r] (8.2)

where r is the original gray level of a pixel and s is the resulting gray level after
processing.

Point transformations may be linear (e.g., negative), piecewise linear (e.g., gray-
level slicing), or nonlinear (e.g., gamma correction). Figure 8.2 shows examples
of basic linear (identity and negative) and nonlinear (log, inverse log, power—also
known as gamma—, and nth root) transformation functions.

Point operations are usually treated as simple mapping operations whereby the
new pixel value at a certain location (x0, y0) depends only on the original pixel value
at the same location and the mapping function. In other words, the resulting image
does not exhibit any change in size, geometry, or local structure if compared with the
original image.2

In this book, we will call linear point transformations those that can be mathemat-
ically described by a single linear equation:

s = c · r + b (8.3)

where r is the original pixel value, s is the resulting pixel value, and c is a constant—
responsible for controlling the contrast of the output image—, whereas b is another
constant whose value impacts the output image’s overall brightness.

1If the transformation function T (.) is independent of the image coordinates, the operation is called homo-
geneous.
2This is in clear contrast with the operations described in Chapter 7.

154 GRAY-LEVEL TRANSFORMATIONS

From a graphical perspective, a plot of s as a function of r will show a straight
line, whose slope (or gradient) is determined by the constant c; the constant term
b determines the point at which the line crosses the y-axis. Since the output image
should not contain any pixel values outside a certain range (e.g., a range of [0, 255]
for monochrome images of class uint8 in MATLAB), the plot usually also shows a
second, horizontal, straight line that is indicative of clamping the results to keep them
within range (see left and middle columns in Figure 8.4 for examples).

If a point transformation function requires several linear equations, one for each
interval of gray-level values, we shall call it a piecewise linear function (Section 8.3.5).

Transformation functions that cannot be expressed by one or more linear equa-
tions will be called nonlinear. The power law (Section 8.3.3) and log (Section 8.3.4)
transformations are examples of nonlinear functions.

� EXAMPLE 8.1

Figure 8.4 shows the results of applying three different linear point transformations
to the input image in Figure 8.3. Table 8.1 summarizes the values of c and b for each
of the three cases as well as the visual effect on the processed image.

FIGURE 8.3 Linear point transformations example: input image.

TABLE 8.1 Examples of Linear Point Transformations (Images and Curves in
Figure 8.4)

Column c b Effect on Image

Left 2 32 Overall brightening, including many saturated pixels
Middle 1 −56 Overall darkening
Right 0.3 0 Significant contrast reduction and overall darkening

EXAMPLES OF POINT TRANSFORMATIONS 155

250

200

150

100

50

0
0 50 100 150 200 250

250

200

150

100

50

0
0 50 100 150 200 250

250

200

150

100

50

0
0 50 100 150 200 250

FIGURE 8.4 Linear point transformations and their impact on the overall brightness and
contrast of an image: brightening (left), darkening (middle), and contrast reduction (right).

8.3 EXAMPLES OF POINT TRANSFORMATIONS

In this section, we show examples of some of the most widely used point transforma-
tions.

8.3.1 Contrast Manipulation

One of the most common applications of point transformation functions is contrast
manipulation (also known by many other names such as contrast stretching, gray-level
stretching, contrast adjustment, and amplitude scaling). These functions often exhibit
a curve that resembles the curve of a sigmoid function (Figure 8.5a): pixel values of

FIGURE 8.5 Examples of gray-level transformations for contrast enhancement. Redrawn
from [GW08].

156 GRAY-LEVEL TRANSFORMATIONS

FIGURE 8.6 Autocontrast operation. Redrawn from [BB08].

f < m are compressed toward darker values in the output image, whereas values of
f > m are mapped to brighter pixel values in the resulting image. The slope of the
curve indicates how dramatic the contrast changes will be; in its most extreme case,
a contrast manipulation function degenerates into a binary thresholding3 function
(Figure 8.5b), where pixels in the input image whose value is f < m become black
and pixels whose value is f > m are converted to white.

One of the most useful variants of contrast adjustment functions is the automatic
contrast adjustment (or simply autocontrast), a point transformation that—for images
of class uint8 in MATLAB—maps the darkest pixel value in the input image to 0
and the brightest pixel value to 255 and redistributes the intermediate values linearly
(Figure 8.6).

The autocontrast function can be described as follows:

s = L − 1

rmax − rmin
· (r − rmin) (8.4)

where r is the pixel value in the original image (in the [0, 255] range), rmax and
rmin are the values of its brightest and darkest pixels, respectively, s is the resulting
pixel value, and L − 1 is the highest gray value in the input image (usually L = 256).
Figure 8.7 shows an example of an image before and after autocontrast.

In MATLAB

MATLAB’s IPT has a built-in function imadjust to perform contrast adjustments
(including autocontrast). You will learn more about it in Tutorial 9.3 (page 195).

In MATLAB, interactive brightness and contrast adjustments can also be per-
formed using imcontrast that opens the Adjust Contrast tool introduced in
Chapter 4.

We shall revisit the topic of contrast adjustments in Chapter 9 when we present
techniques such as histogram equalization and histogram stretching.

3We shall study thresholding techniques in Chapter 15.

EXAMPLES OF POINT TRANSFORMATIONS 157

FIGURE 8.7 (a) Example of an image whose original gray-level range was [90, 162]; (b) the
result of applying the autocontrast transformation (equation (8.4)).

8.3.2 Negative

The negative point transformation function (also known as contrast reverse [Pra07])
was described in Section 6.1.2. The negative transformation is used to make the output
more suitable for the task at hand (e.g., by making it easier to notice interesting details
in the image).

In MATLAB

MATLAB’s IPT has a built-in function to compute the negative of an image:
imcomplement, which was used in Tutorial 6.1 (page 113).

8.3.3 Power Law (Gamma) Transformations

The power law transformation function is described by

s = c · rγ (8.5)

where r is the original pixel value, s is the resulting pixel value, c is a scaling con-
stant, and γ is a positive value. Figure 8.8 shows a plot of equation (8.5) for several
values of γ .

� EXAMPLE 8.2

Figure 8.9 shows the results of applying gamma correction to an input image using
two different values of γ . It should be clear from the figure that when γ < 1, the
resulting image is darker than the original one; whereas for γ > 1, the output image
is brighter than the input image.

158 GRAY-LEVEL TRANSFORMATIONS

L–1

γ = 0.4

γ = 0.1

γ = 1

γ = 2.5

γ = 10

L/2

L/2 L–10

Input gray level (r)

O
ut

pu
t g

ra
y

le
ve

l (
s
)

FIGURE 8.8 Examples of power law transformations for different values of γ .

16

14

10

8

2

0
0 50 100 150 200 250

6

4

12
16
18

× 104

14

10
8

2
0
0 50 100 150 200 250

6
4

12

FIGURE 8.9 Examples of gamma correction for two different values of γ: 0.5 (left) and 2.2
(right).

EXAMPLES OF POINT TRANSFORMATIONS 159

FIGURE 8.10 Example of using log transformation: (a) Fourier spectrum (amplitude only)
of the rice image (available in MATLAB); (b) result of applying equation (8.6) with c = 1
followed by autocontrast.

In MATLAB

The imadjust function in the IPT can be used to perform gamma correction with
the syntax: g = imadjust(f,[],[],gamma);

8.3.4 Log Transformations

The log transformation and its inverse are nonlinear transformations used, respec-
tively, when we want to compress or expand the dynamic range of pixel values in
an image.

Log transformations can be mathematically described as

s = c · log(1 + r) (8.6)

where r is the original pixel value, s is the resulting pixel value, and c is a constant.
Be aware that in many applications of the log transformation, the input “image” is

actually a 2D array with values that might lie outside the usual range for gray levels
that we usually associate with monochrome images (e.g., [0, 255]).

� EXAMPLE 8.3

This example uses the log transformation to improve the visualization and display
of Fourier transform (FT)4 results (Figure 8.10). The range of values in the matrix
in part (a) is [0, 2.8591 × 104], which—when displayed on a linearly scaled 8-bit
system—makes it hard to see anything but the bright spot at the center. Applying
a log transform, the dynamic range is compressed to [0, 10.26]. Using the proper

4The Fourier transform (FT) and its applications will be presented in Chapter 11.

160 GRAY-LEVEL TRANSFORMATIONS

250
Transformation function

200

150

100

50

0
0 50 100 150 200 250

Original image Adjusted image

FIGURE 8.11 Piecewise linear transformation using glsdemo.

autocontrast transformation to linearly extend the compressed range to [0, 255], we
obtain the image in part (b), where significant additional details (e.g., thin vertical
line at the center, concentric circles) become noticeable.

8.3.5 Piecewise Linear Transformations

Piecewise linear transformations can be described by several linear equations, one for
each interval of gray-level values in the input image. The main advantage of piecewise
linear functions is that they can be arbitrarily complex; the main disadvantage is that
they require additional user input [GW08], as discussed further in Section 8.4.

� EXAMPLE 8.4

Figure 8.11 shows an example of an arbitrary piecewise linear transformation function
used to improve the contrast of the input image. The function is specified interactively
using a GUI-based MATLAB tool glsdemo (developed by Jeremy Jacob and avail-
able at the book’s companion web site).

Figure 8.12 shows an example of gray-level slicing, a particular case of piecewise
linear transformation in which a specific range of intensity levels (in this case, the

250
Transformation function

200

150

100

50

0
0 50 100 150 200 250

Original image Adjusted image

FIGURE 8.12 Gray-level slicing usingglsdemo. Original image: courtesy of MathWorks.

SPECIFYING THE TRANSFORMATION FUNCTION 161

[100, 150] range) is highlighted in the output image, while all other values remain
untouched.5

8.4 SPECIFYING THE TRANSFORMATION FUNCTION

All the transformation functions presented in this chapter have been described mathe-
matically in a way that is elegant and appropriate for input variables in the continuous
or discrete domain.

In this section, we show that in spite of its elegance, the mathematical formulation
is not always useful in practice, for two different—but relevant—reasons:

1. From a user interaction viewpoint, it is often preferable to specify the desired
point transformation function interactively using the mouse and a GUI-based
application, such as the glsdemo in Tutorial 8.1 (page 163).

2. From the perspective of computational efficiency, point operations can be exe-
cuted at significantly higher speed using lookup tables (LUTs). For images of
typeuint8 (i.e., monochrome images with 256 gray levels), the LUT will con-
sist of a 1D array of length 256. LUTs can be easily implemented in MATLAB
as demonstrated in the following examples.

� EXAMPLE 8.5

This example shows how the piecewise linear transformation function specified by
equation (8.7) can be implemented using a LUT (and the intlut function) in
MATLAB. It is important to remember that while arrays (such as the LUT) are
1-based, pixel values vary between 0 and 255. Our MATLAB code must, there-
fore, include the proper adjustments to avoid off-by-one errors and attempts to access
out-of-bounds array elements.

s =

⎧
⎪⎨
⎪⎩

2 · f for 0 < r ≤ 64

128 for 64 < r ≤ 128

f for r > 128
(8.7)

Using the colon notation (see Chapter 5), we will specify the three linear portions
of the transformation function as follows:

LUT = uint8(zeros([1 256]));
LUT(1:65) = 2*(0:64);
LUT(66:129) = 128;
LUT(130:256) = (130:256)-1;

5A variant of the gray-level slicing technique highlights a range of values and maps all other values to a
fixed—and usually low—gray level.

162 GRAY-LEVEL TRANSFORMATIONS

Next, we will test the LUT using a 3×3 test image.

A = uint8([20 40 0; 178 198 64; 77 128 1])
B = intlut(A, LUT)

As expected, if the input array is

⎡
⎢⎣

20 40 0

178 198 64

77 128 1

⎤
⎥⎦

the resulting array will be

⎡
⎢⎣

40 80 0

178 198 128

128 128 2

⎤
⎥⎦

Finally, we will apply the LUT to a real gray-level image. The result appears in
Figure 8.13. Note how many pixels in the original image have been “flattened” to the
average gray level (128) in the output image.

I = imread(’klcc_gray.png’);
O = intlut(I,LUT);
figure, subplot(1,2,1), imshow(I), subplot(1,2,2), imshow(O)

MATLAB users should be aware that—even though MATLAB makes it extremely
simple to apply a transformation function to all pixels using a single line of code—the
use of a precomputed LUT enables a much more computationally efficient implemen-
tation of point transformations, as demonstrated in the following example.

250

200

150

100

50

0
0 50

(a) (b) (c)

100 150 200 250

FIGURE 8.13 Example of using a lookup table: (a) input image; (b) transformation function
specified by equation (8.7); (c) output image.

TUTORIAL 8.1: GRAY-LEVEL TRANSFORMATIONS 163

� EXAMPLE 8.6

Let us assume that we want to implement the nonlinear transformation function
s = c

√
r, where c = 5.

We will first code it using direct implementation and compute the execution times
using a 1944 × 2592 pixel monochrome image as input.

I = imread(’klcc_gray.png’);
I2 = double(I);
tic
J = 5*sqrt(I2);
toc
O = uint8(J);
subplot(1,2,1), imshow(I), subplot(1,2,2), imshow(O)

Using MATLAB’s tic and toc functions, we can measure the execution time
for the transformation step. The value measured using an Apple MacBook with a
2 GHz Intel Core Duo CPU and 1 GB of RAM running MATLAB 7.6.0 (R2008a)
was 0.233381 s.

Now we will repeat the process using a precomputed LUT.

I = imread(’klcc_gray.png’);
LUT = double(zeros([1 256]));
LUT(1:256) = 5 * sqrt(0:255);
LUT_int8 = uint8(LUT);
tic
O = intlut(I, LUT_int8);
toc
figure, subplot(1,2,1), imshow(I), subplot(1,2,2), imshow(O)

In this case, the measured execution time was 0.030049 s. Even if we move tic
to the line immediately after the imread operation (i.e., if we include the time spent
computing the LUT itself), the result would be 0.037198 s, which is more than six
times faster than the pixel-by-pixel computation performed earlier.

8.5 TUTORIAL 8.1: GRAY-LEVEL TRANSFORMATIONS

Goal

The goal of this tutorial is to learn how to perform basic point transformations on
grayscale images.

164 GRAY-LEVEL TRANSFORMATIONS

Objectives

• Explore linear transformations including the identity function and the negative
function.

• Learn how to perform logarithmic grayscale transformations.
• Learn how to perform power law (gamma) grayscale transformations.
• Explore gray (intensity)-level slicing.

What You Will Need

• radio.tif image
• micro.tif image
• glsdemo.m script

Procedure

The most basic transformation function is the identity function, which simply maps
each pixel value to the same value.

1. Create an identity transformation function.

x = uint8(0:255);
plot(x); xlim([0 255]); ylim([0 255]);

2. Use the transformation function on the moon image to see how the identity
function works.

I = imread(’moon.tif’);
I_adj = x(I + 1);
figure, subplot(1,2,1), imshow(I), title(’Original Image’);

subplot(1,2,2), imshow(I_adj), title(’Adjusted Image’);

Question 1 Why were we required to useI+1when performing the transformation
instead of just I?

Question 2 How can we show that the adjusted image and the original image are
equivalent?

The negative transformation function generates the negative of an image.

3. Create a negative transformation function and show the result after applied to
the moon image.

y = uint8(255:-1:0); I_neg = y(I + 1);
figure, subplot(1,3,1), plot(y), ...

TUTORIAL 8.1: GRAY-LEVEL TRANSFORMATIONS 165

title(’Transformation Function’), xlim([0 255]), ylim([0 255]);
subplot(1,3,2), imshow(I), title(’Original Image’);

subplot(1,3,3), imshow(I_neg), title(’Negative Image’);

Question 3 How did we create the negative transformation function?
A negative transformation results in the same image as if we were to complement

the image logically.

4. Complement the original image and show that it is equivalent to the negative
image generated in the previous step.

I_cmp = imcomplement(I);
I_dif = imabsdiff(I_cmp,I_neg);
figure, imshow(I_cmp)
figure, imshow(I_dif,[])

Logarithmic transformation functions can be used to compress the dynamic range
of an image in order to bring out features that were not originally as clear. The log
transformation function can be calculated using equation (8.6).

In our case, x represents the value of any particular pixel, and the constant c is
used to scale the output within grayscale range [0, 255].

5. Close all open figures and clear all workspace variables.

6. Generate a logarithmic transformation function.

x = 0:255; c = 255 / log(256);
y = c * log(x + 1);
figure, subplot(2,2,1), plot(y), ...

title(’Log Mapping Function’), axis tight, axis square

7. Use the transformation function to generate the adjusted image.

I = imread(’radio.tif’);
I_log = uint8(y(I + 1));
subplot(2,2,2), imshow(I), title(’Original Image’);
subplot(2,2,3), imshow(I_log), title(’Adjusted Image’);

In the second line of code, you will note that we convert the image to uint8. This
is necessary because the only way the function imshow will recognize a matrix with
a range of [0, 255] as an image is if it is of class uint8. In the next step, we will see
that simply brightening the image will not show the missing detail in the image.

8. Show a brightened version of the image.

166 GRAY-LEVEL TRANSFORMATIONS

I_br = imadd(I,100);

subplot(2,2,4), imshow(I_br), title(’Original Image Scaled’);

Question 4 Why does the log-transformed image display the hidden detail in the
radio image, but the brightened image does not?

The inverse of the log function is as follows.

y(x) = exp(x/c) - 1;

Again, here c is the scaling constant and x is the pixel value. We can demonstrate
that applying this equation to the image we previously created (image I_log, which
was transformed using the log transformation) will result in the original image.

9. Use inverse log transformation to undo our previous transformation.

%

z = exp(x/c) - 1;

I_invlog = uint8(z(I_log + 1));

figure, subplot(2,1,1), plot(z), title(’Inverse-log Mapping Function’);

subplot(2,1,2), imshow(I_invlog), title(’Adjusted Image’);

Power law transformations include nth root and nth power mapping functions.
These functions are more versatile than the log transformation functions because you
can specify the value of n, which ultimately changes the shape of the curve to meet
your particular needs.

10. Close all open figures and clear all workspace variables.

11. Generate an nth root function where n equals 2.

x = 0:255; n = 2; c = 255 / (255 ˆ n);
root = nthroot((x/c), n);
figure, subplot(2,2,1), plot(root), ...

title(’2nd-root transformation’), axis tight, axis square

Question 5 How does the shape of the curve change if we were to use a different
value for n?

12. Use the transformation function to generate the adjusted image.

I = imread(’drill.tif’);
I_root = uint8(root(I + 1));
subplot(2,2,2), imshow(I), title(’Original Image’);

subplot(2,2,[3 4]), imshow(I_root), title(’Nth Root Image’);

TUTORIAL 8.1: GRAY-LEVEL TRANSFORMATIONS 167

We can see that the adjusted image shows details that were not visible in the original
image.

The nth power transformation function is the inverse of the nth root.

13. Generate an nth power transformation function.

power = c * (x .ˆ n);
figure, subplot(1,2,1), plot(power), ...

title(’2nd-power transformation’);
axis tight, axis square

14. Use the nth power transformation to undo our previous transformation.

I_power = uint8(power(I_root + 1));

subplot(1,2,2), imshow(I_power), title(’Adjusted Image’);

Question 6 Show that the I_power image and the original image I are (almost)
identical.

The transformation functions we explored thus far have been defined by mathemat-
ical equations. During the next steps, we shall explore the creation and application of
piecewise linear transformation functions to perform specific tasks. Our first example
will be gray-level slicing, a process by which we can enhance a particular range of
the gray scale for further analysis.

15. Close all open figures and clear all workspace variables.

16. Load the micro image and display it.

I = imread(’micro.tif’);

figure, subplot(1,3,1), imshow(I), title(’Original Image’);

17. Create the transformation function.

y(1:175) = 0:174;
y(176:200) = 255;
y(201:256) = 200:255;
subplot(1,3,2), plot(y), axis tight, axis square

Question 7 Based on the previous step, what do you expect to be the visual effect
of applying this transformation function to the original image?

18. Generate the adjusted image.

I2 = uint8(y(I + 1));
subplot(1,3,3), imshow(I2), title(’Adjusted Image’);

168 GRAY-LEVEL TRANSFORMATIONS

In the previous steps, we enhanced a particular range of grayscale values while
leaving the others unchanged. The adjusted image reflects this change, but it is still
difficult to see the enhanced pixels because of the surrounding distractions. We
can isolate the enhanced pixels even more by setting all nonenhanced pixels to a
constant level.

19. Create a new transformation function and display the adjusted image.

z(1:175) = 50;
z(176:200) = 250;
z(201:256) = 50;
I3 = uint8(z(I + 1));
figure, subplot(1,2,1), plot(z), ...

xlim([0 255]), ylim([0 255]), axis square
subplot(1,2,2), imshow(I3)

Although it is possible to create any transformation function in MATLAB by
defining a vector of values, as we did above, this can be tedious and time consuming.
Through the use of a GUI, we can dynamically generate a function that the user
defines visually. The following demo illustrates this.

20. Review the help information for glsdemo.

21. Run glsdemo with the image micro.tif and recreate the transformation
functions that we previously used in steps 17 and 19.

WHAT HAVE WE LEARNED?

• Image enhancement is the process of modifying the pixel values within an image
in such a way that the resulting image is an improved version of the original
image for a particular purpose, whether it is the human perception of subjective
quality or further processing by machine vision algorithms.

• Image enhancement can be achieved in many different ways, including the use
of certain gray-level transformations, whose chief characteristic is the fact that
the resulting gray level of a pixel depends only on the original pixel value and
the transformation function. For this reason, gray-level transformations are also
referred to as point transformations.

• Gray-level transformations can be implemented in MATLAB using the
imadjust function.

• Gray-level transformations are often used for brightness and contrast
adjustments. In MATLAB, interactive brightness and contrast adjustments can
also be performed using imcontrast.

• Some of the most commonly used point transformations are negative, power law
(gamma), logarithmic, and piecewise linear transformations.

PROBLEMS 169

• Point transformation functions can be specified interactively using tools such as
glsdemo.

• The use of a lookup table speeds up the processing of point transformation
functions.

LEARN MORE ABOUT IT

• Sections 10.1–10.3 of [Jah05] discuss point transformations and applications
such as noise variance equalization, two-point radiometric calibration, and win-
dowing.

• Section 5.4 of [BB08] presents a modified autocontrast operation.
• Section 3.2 of [GWE04] contains MATLAB functions (intrans andgscale)

that extend the functionality of imadjust.
• Section 3.8 of [GW08] discusses the use of fuzzy techniques for intensity trans-

formations.

8.6 PROBLEMS

8.1 Write a MATLAB function to perform a piecewise linear brightness and contrast
adjustment on monochrome images using the generic method described in equation
(8.3). It should take as arguments a monochrome image, the c coefficient (slope), and
the b coefficient (offset).

8.2 Write a MATLAB function to perform a simple version of image solarization
technique (also known as Sabatier effect), a point transformation that processes an im-
age by leaving all pixels brighter than a certain value (T) untouched, while extracting
the negative of all pixels darker than T .

8.3 Write a MATLAB function to perform a point transformation by which each
pixel value in an input image of class uint8 is replaced by the square of its original
value and answer the following questions:

1. Do you have to explicitly make provisions for clamping the results (so that they
stay within range)? Why (not)?

2. Is the resulting image brighter or darker than the original image? Explain.

8.4 Repeat Problem 8.3, this time for an input image of class double. Does the
answer to any of the questions change? Why?

8.5 The sigmoid function used to generate a point transformation similar to
Figure 8.5a can be described by the equation

s = 1

1 + (m/r)S
(8.8)

170 GRAY-LEVEL TRANSFORMATIONS

where r is the original pixel value, s is the resulting pixel value, m is a user-specified
threshold, and S is a parameter that controls the slope of the curve.

Write a MATLAB script that generates and plots the point transformation function
described in equation (8.8).

8.6 Apply the transformation function developed for Problem 8.5 to different
images and experiment with different values of m and S. Report a summary of your
findings.

CHAPTER 9

HISTOGRAM PROCESSING

WHAT WILL WE LEARN?

• What is the histogram of an image?
• How can the histogram of an image be computed?
• How much information does the histogram provide about the image?
• What is histogram equalization and what happens to an image whose histogram

is equalized?
• How can the histogram be modified through direct histogram specification and

what happens to an image when we do it?
• What other histogram modification techniques can be applied to digital images

and what is the result of applying such techniques?

9.1 IMAGE HISTOGRAM: DEFINITION AND EXAMPLE

The histogram of a monochrome image is a graphical representation of the frequency
of occurrence of each gray level in the image. The data structure that stores the
frequency values is a 1D array of numerical values, h, whose individual elements store
the number (or percentage) of image pixels that correspond to each possible gray level.

Each individual histogram entry can be expressed mathematically as

h(k) = nk = card{(x, y)|f (x, y) = k} (9.1)

Practical Image and Video Processing Using MATLAB®. By Oge Marques.
© 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

171

172 HISTOGRAM PROCESSING

Here, k = 0, 1, ..., L − 1, where L is the number of gray levels of the digitized
image, and card{· · · } denotes the cardinality of a set, that is, the number of elements
in that set (nk).

A normalized histogram can be mathematically defined as

p(rk) = nk

n
(9.2)

where n is the total number of pixels in the image and p(rk) is the probability (per-
centage) of the kth gray level (rk).

Histograms are normally represented using a bar chart, with one bar per gray level,
in which the height of the bar is proportional to the number (or percentage) of pixels
that correspond to that particular gray level.

In MATLAB

MATLAB’s IPT has a built-in function to calculate and display the histogram of
a monochrome image: imhist. Alternatively, other MATLAB plotting functions
such as bar, plot, and stem can also be used to display histograms. In Tutorial
9.1 (page 188), you will have a chance to experiment with all of them.

� EXAMPLE 9.1

Table 9.1 shows the pixel counts for a hypothetical image containing 128 × 128 pixels,
with eight gray levels. The number of pixels that correspond to a given gray level
is indicated in the second column and the corresponding percentages (probabilities),
p(rk), are given in the third column. Its bar graph representation is shown in Figure 9.1.

Each value of p(rk) represents the percentage of pixels in the image whose gray
level is rk. In other words, a histogram can be interpreted as a probability mass
function of a random variable (rk) and as such it follows all the axioms and theorems
of elementary probability theory. For instance, it is easy to verify from Table 9.1 that
the sum of the values for p(rk) is 1, as expected.

TABLE 9.1 Example of a Histogram

Gray Level (rk) nk p(rk)

0 1120 0.068
1 3214 0.196
2 4850 0.296
3 3425 0.209
4 1995 0.122
5 784 0.048
6 541 0.033
7 455 0.028

Total 16,384 1.000

COMPUTING IMAGE HISTOGRAMS 173

FIGURE 9.1 Example of histogram for an image with eight gray levels.

9.2 COMPUTING IMAGE HISTOGRAMS

To compute the histogram of an 8-bit (256 gray levels) monochrome image, an array
of 256 elements (each of which acts as a counter) is created and initialized with zeros.
The image is then read, one pixel at a time, and for each pixel the array position
corresponding to its gray level is incremented.1 After the whole image is processed,
each array element will contain the number of pixels whose gray level corresponds
to the element’s index. These values can then be normalized, dividing each of them
by the total number of pixels in the image.

For images with more than 8 bits per pixel, it is not practical to map each possible
gray level k (0 ≤ k ≤ K) to an array element: the resulting array would be too large
and unwieldy. Instead, we use a technique known as binning, by which an array
of B elements—where B is the number of histogram bins (or buckets), B ≤ K—is
created and initialized with zeros. In this case, each bin h(j) stores the number of
pixels having values within the interval rj ≤ r < rj+1 and equation (9.1) can be
rewritten as

h(j) = card{(x, y)|rj ≤ f (x, y) < rj+1} for 0 ≤ j < B (9.3)

The lower limit of each bin can be obtained by the following expression:

rj = j · K

B
= j · kB (9.4)

where kB is the length of each interval.

1Keep in mind that arrays in MATLAB are 1 based, and therefore, in MATLAB, the array element with
index k + 1 will store the number or percentage of pixels whose value is k, where k ≥ 0.

174 HISTOGRAM PROCESSING

9.3 INTERPRETING IMAGE HISTOGRAMS

Histograms provide an easy, practical, and straightforward way of evaluating im-
age attributes, such as overall contrast and average brightness. The histogram of a
predominantly dark image contains a concentration of bars on the lower end of the
gray-level range (Figure 9.2c), whereas the histogram for a bright image is mostly
concentrated on the opposite end (Figure 9.2d). For a low contrast image, the his-
togram is clustered within a narrow range of gray levels (Figure 9.2a), whereas a high
contrast image usually exhibits a bimodal histogram with clear separation between
the two predominant modes (Figure 9.2b).2

� EXAMPLE 9.2

Figure 9.2 shows four examples of monochrome images and their corresponding
histograms (obtained using the imhist function in MATLAB).

The histogram in Figure 9.2a shows that the pixels are grouped around intermediate
gray-level values (mostly in the [100, 150] range), which corresponds to an image
with low contrast. Figure 9.2b shows a typical bimodal histogram, one that has two
distinctive hills, a more pronounced one in the dark region (background) and the
other smaller one in the light region of the histogram (foreground objects). In these
situations, it can be said that the corresponding image has high contrast since the
two modes are well spaced from each other.3 In part (c), the histogram exhibits a
large concentration of pixels in the lower gray levels, which corresponds to a mostly
dark image. Finally, in Figure 9.2d, the pixel values are grouped close to the higher
gray-level values, which corresponds to a bright image.

It is important to note that even though a histogram carries significant qualitative
and quantitative information about the corresponding image (e.g., minimum, average,
and maximum gray-level values, dominance of bright or dark pixels, etc.), other
qualitative conclusions can be reached only upon examining the image itself (e.g.,
overall quality of the image, presence or absence of noise, etc.). A quick analysis
of Figure 9.2 should be enough to prove this statement true. Moreover, although a
histogram provides the frequency distribution of gray levels in an image, it tells us
nothing about the spatial distribution of the pixels whose gray levels are represented
in the histogram (see Problem 9.8).

Histograms have become a popular tool for conveying image statistics and helping
determine certain problems in an image. Their usefulness can be demonstrated by the

2In many cases, those two modes (hills) correspond to background and one or more objects of interest in
the foreground, for example, Figure 9.2b.
3It is interesting to note that the concepts of high and low contrast in this case are only related to the
average spacing between groups of histogram bars. The expression “good contrast,” on the other hand,
should be used with caution, for it often refers to one’s subjective opinion about the image quality. Such
quality judgments usually cannot be made based upon looking at the histogram alone.

INTERPRETING IMAGE HISTOGRAMS 175

FIGURE 9.2 Examples of images and corresponding histograms. Original image in part (b):
courtesy of MathWorks.

fact that many contemporary digital cameras have an optional real-time histogram
overlay in the viewfinder to prevent taking underexposed or overexposed pictures.

Histograms can be used whenever a statistical representation of the gray-level
distribution in an image or video frame is desired. Histograms can also be used to

176 HISTOGRAM PROCESSING

enhance or modify the characteristics of an image, particularly its contrast. Some of
these techniques, generally called histogram modification (or modeling) techniques,
are histogram equalization, histogram specification (matching), histogram stretching
(input cropping), and histogram shrinking (output cropping). They are described in
more detail later.

9.4 HISTOGRAM EQUALIZATION

Histogram equalization is a technique by which the gray-level distribution of an
image is changed in such a way as to obtain a uniform (flat) resulting histogram, in
which the percentage of pixels of every gray level is the same. To perform histogram
equalization, it is necessary to use an auxiliary function, called the transformation
function, T (r). Such transformation function must satisfy two criteria [GW08]:

1. T (r) must be a monotonically increasing function in the interval 0 ≤ r ≤ L − 1.

2. 0 ≤ T (r) ≤ L − 1 for 0 ≤ r ≤ L − 1.

The most usual transformation function is the cumulative distribution function
(cdf) of the original probability mass function, given by

sk = T (rk) =
k∑

j=0

nj

n
=

k∑
j=0

p(rj) (9.5)

where sk is the new (mapped) gray level for all pixels whose original gray level used
to be rk.

The inverse of this function is given by

rk = T−1(sk) for k = 0, 1, . . . , L − 1 (9.6)

Even though the inverse of the cdf is not needed during the equalization process, it
will be used during the direct histogram specification method, described later in this
chapter.

In MATLAB

MATLAB’s IPT has a built-in function to perform histogram equalization of a
monochrome image: histeq. For the sake of histogram equalization, the syntax
for histeq is usually J = histeq(I,n), where n (whose default value is 64)4

is the number of desired gray levels in the output image. In addition to histogram equal-
ization, this function can also be used to perform histogram matching (Section 9.5),
as it will be seen in Tutorial 9.2.

4Caution: This value is not the same as the default value for the imhist function that uses n = 256 as a
default.

HISTOGRAM EQUALIZATION 177

� EXAMPLE 9.3

Assume the histogram data from Table 9.1 and its graphic representation (Figure 9.1).
Calculate the equalized histogram using the cdf of the original probability mass func-
tion as a transformation function and plot the resulting histogram.

Solution

Using the cdf as the transformation function, we can calculate

s0 = T (r0) =
0∑

j=0

p(rj) = p(r0) = 0.068 (9.7)

Similarly,

s1 = T (r1) =
1∑

j=0

p(rj) = p(r0) + p(r1) = 0.264 (9.8)

and s2 = 0.560, s3 = 0.769, s4 = 0.891, s5 = 0.939, s6 = 0.972, and s7 = 1. The
transformation function is plotted in Figure 9.3.

Since the image was quantized with only eight gray levels, each value of sk must
be rounded to the closest valid (multiple of 1/7) value. Thus, s0 � 0, s1 � 2, s2 � 4,
s3 � 5, s4 � 6, s5 � 7, s6 � 7, and s7 � 7.

The above values indicate that the original histogram bars must be shifted (and
occasionally grouped) according to the following mapping: the original level r0 = 0
should be mapped to the new level s0 = 0, which means the corresponding bar should
not change. The 3214 pixels whose original gray level was (1/7) should be mapped
to s1 = 2(1/7). Similarly, those pixels whose gray level was 2 should be mapped to

FIGURE 9.3 Transformation function used for histogram equalization.

178 HISTOGRAM PROCESSING

TABLE 9.2 Equalized Histogram: Values

Gray Level (sk) nk p(sk)

0 1120 0.068
1 0 0.000
2 3214 0.196
3 0 0.000
4 4850 0.296
5 3425 0.209
6 1995 0.122
7 1780 0.109

Total 16,384 1.000

FIGURE 9.4 Equalized histogram—graph.

4, those with r = 3 should be mapped to 5, and those with gray level 4 should be
mapped to 6. Finally, the three bins that correspond to pixels with gray levels 5, 6,
and 7 should be added and mapped to 7.

The resulting (equalized) histogram is shown in Figure 9.4 and the corresponding
values are presented in Table 9.2. It should be noted that in the equalized histogram
(Figure 9.4), the pixels are more evenly distributed along the gray scale than in the
original one (Figure 9.1). Although clearly not a perfectly flat result, it should be
interpreted as “the best possible result that can be obtained for this particular image
using this transformation function.”

� EXAMPLE 9.4

Figure 9.5 shows an example (obtained using the histeq function in MATLAB)
of employing histogram equalization to improve the contrast of a 600 × 800

HISTOGRAM EQUALIZATION 179

FIGURE 9.5 Use of histogram equalization to improve image contrast.

image with 256 gray levels. Part (a) shows the original image, whose histogram
is plotted in Figure 9.5b. Part (d) shows the equalized histogram, corresponding to
the image in Figure 9.5c. You may have noticed that the image after equalization
exhibits a little bit of false contouring (see Chapter 5), particularly in the sky por-
tion of the image. This can be seen as an inevitable “side effect” of the histogram
equalization process.

The histogram equalization algorithm described above is global; that is, once the
mapping (transformation) function is computed, it is applied (as a lookup table) to
all pixels of the input image. When the goal is to enhance details in small areas
within an image, it is sometimes necessary to apply a local version of the algo-
rithm. The local variant of histogram equalization consists of adopting a rectangular
(usually square) sliding window (also called a tile) and moving it across the en-
tire image. For each image pixel (aligned with the center of the sliding window),
the histogram in the neighborhood delimited by the window is computed, the map-
ping function is calculated, and the reference pixel is remapped to the new value as
determined by the transformation function. This process is clearly much more com-
putationally expensive than its global variant and often results in a noisy-looking
output image.

180 HISTOGRAM PROCESSING

� EXAMPLE 9.5

Figure 9.6 shows a comparison between local and global histogram equalization
(obtained using the adapthisteq and histeq functions in MATLAB, respec-
tively). Parts (a) and (b) show the original image and its histogram, parts (c) and (d)
show the results of global histogram equalization, and parts (e) and (f) show the re-
sults of local histogram equalization that preserves the bimodal nature of the original
histogram while still improving the contrast of the image.

FIGURE 9.6 Global versus local histogram equalization. Original image: courtesy of
MathWorks.

DIRECT HISTOGRAM SPECIFICATION 181

In MATLAB

MATLAB’s IPT has a built-in function to perform local histogram equalization of a
monochrome image,adapthisteq, which, unlikehisteq, operates on small data
regions (tiles), rather than the entire image. You will learn how to use this function in
Tutorial 9.2.

9.5 DIRECT HISTOGRAM SPECIFICATION

Despite its usefulness in contrast enhancement, histogram equalization is a rather
inflexible technique. Its only modifiable parameter is the choice of transformation
function, which is normally chosen to be the cdf of the original probability mass
function (a convenient choice since the information needed to compute the trans-
formation function can be extracted directly from the pixel values). There might be
situations, however, in which one wants to be able to perform specific changes on
the original histogram. In these situations, a useful technique is the direct histogram
specification, also known as histogram matching.

Given an image (and its original histogram) and the desired resulting histogram,
the direct histogram specification consists of the following:

1. Equalizing the original image’s histogram using the cdf as a transformation
function:

sk = T (rk) =
k∑

j=0

nj

n
=

k∑
j=0

p(rj) (9.9)

2. Equalizing the desired probability mass function (in other words, equalizing
the desired histogram):

vk = G(zk) =
k∑

j=0

p(zj) (9.10)

3. Applying the inverse transformation function

z = G−1(s) (9.11)

to the values obtained in step 1.

In MATLAB

Thehisteq function introduced previously can also be used for histogram matching.
In this case, the syntax for histeq usually changes to J = histeq(I,h), where
h (a 1D array of integers) represents the specified histogram.

182 HISTOGRAM PROCESSING

TABLE 9.3 Desired Histogram

Gray Level (sk) nk p(sk)

0 0 0.0
1 0 0.0
2 0 0.0
3 1638 0.1
4 3277 0.2
5 6554 0.4
6 3277 0.2
7 1638 0.1

Total 16,384 1.0

� EXAMPLE 9.6

Let us use the histogram from Table 9.1 one more time. Assume that we want to
modify this histogram in such a way as to have the resulting pixel distribution as
shown in Table 9.3 and plotted in Figure 9.7a. Following the steps outlined above,
calculate and plot the resulting histogram that best matches the desired characteristics.

Solution

The equalized histogram has already been calculated before and its results are
shown in Table 9.2.

The next step consists in obtaining the cdf of the desired probability mass function.
Using equation (9.10), we find the following values:

v0 = 0, v1 = 0, v2 = 0, v3 = 0.1, v4 = 0.3, v5 = 0.7, v6 = 0.9, and v7 = 1.
The last step—and the most difficult to understand when studying this technique

for the first time—is obtaining the inverse function. Since we are dealing with discrete
values, the inverse function can be obtained simply by searching, for each value of
sk, the closest value of vk. For instance, for s1 = 2/7 � 0.286, the closest value of vk

is v4 = G(z4) = 0.3. In inverse function notation, G−1(0.3) = z4. Therefore, pixels

FIGURE 9.7 Histogram matching: (a) desired (specified) histogram; (b) resulting histogram.

DIRECT HISTOGRAM SPECIFICATION 183

TABLE 9.4 Direct Histogram Specification:
Summary

k p(rk) sk (×1/7) Maps to vk p(zk)

0 0.068 0 z2 0.00 0.000
1 0.196 2 z4 0.00 0.000
2 0.296 4 z5 0.00 0.000
3 0.209 5 z5 0.10 0.100
4 0.122 6 z6 0.30 0.200
5 0.048 7 z7 0.70 0.400
6 0.033 7 z7 0.90 0.200
7 0.028 7 z7 1.00 0.100

that were shifted to gray level s1 after the original histogram equalization should be
mapped to gray level z4. In other words, the 3214 pixels whose original gray level
was 1/7 and that were remapped to gray level s1 = 2/7 during the equalization step
should now be shifted again to gray level z4 = 4/7. Similarly, for the remaining values
of sk, the following mappings should be performed:

s0 = 0 → z2
s1 = 2/7 � 0.286 → z4
s2 = 4/7 � 0.571 → z5
s3 = 5/7 � 0.714 → z5
s4 = 6/7 � 0.857 → z6
s5 = 1 → z7
s6 = 1 → z7
s7 = 1 → z7
In this case, we have assumed that the algorithm for obtaining the inverse of

the transformation function for a given value of sk would search through the val-
ues of vk and store the index of the most recent (i.e., last) value whose absolute
difference (|vk − sk|) is the smallest so far. If the algorithm used another way of
breaking ties, s0 could map to z0 or z1 in this example. Table 9.4 summarizes the
original and desired histograms, their corresponding cdfs, and the mapping process
described above.

Table 9.5 presents the numerical values for the resulting histogram, where p̂(zk)—
which was obtained by adding the contents of all rows in column p(rk) in Table 9.4
that match to each zk—corresponds to the best possible approximation to the specified
p(zk). For an easy visual comparison between the desired and the resulting histograms,
they are plotted side by side in Figure 9.7.

You will probably agree that the resulting histogram approaches, within certain
limits, the desired (specified) one.

� EXAMPLE 9.7

Figure 9.8 shows an example (obtained using the histeq function in MATLAB) of
direct histogram specification applied to a 600 × 800 image with 256 gray levels.

184 HISTOGRAM PROCESSING

TABLE 9.5 Resulting Histogram

zk (×1/7) p̂(zk)

0 0.000
1 0.000
2 0.068
3 0.000
4 0.196
5 0.505
6 0.122
7 0.109

Total 1

FIGURE 9.8 Histogram matching: (a) original image; (b) resulting image; (c) original his-
togram; (d) desired histogram; (e) resulting histogram.

9.6 OTHER HISTOGRAM MODIFICATION TECHNIQUES

In this section, we present other techniques by which a histogram can be processed to
achieve a specific goal, such as brightness increase (or decrease) or contrast improve-
ment. These techniques parallel some of the point transformation functions presented
in Chapter 8, with the main difference being that whereas in Chapter 8 our focus was
on the transformation function and its effect on the input image, in this chapter we
also inspect the effect on the image’s histogram.

OTHER HISTOGRAM MODIFICATION TECHNIQUES 185

FIGURE 9.9 Histogram sliding: (a) original image; (b) result of sliding to the right by 50;
(c) result of sliding to the left by 50; (d–f) histograms corresponding to images in (a)–(c).

9.6.1 Histogram Sliding

This technique consists of simply adding or subtracting a constant brightness value to
all pixels in the image. The overall effect will be an image with comparable contrast
properties, but higher or lower (respectively) average brightness.

In MATLAB

The imadd and imsubtract functions introduced earlier in the book can be used
for histogram sliding.

� EXAMPLE 9.8

Figure 9.9 shows an example of histogram sliding using imadd and imsubtract.

9.6.2 Histogram Stretching

This technique—also known as input cropping—consists of a linear transformation
that expands (stretches) part of the original histogram so that its nonzero intensity
range [rmin, rmax] occupies the full dynamic gray scale, [0, L − 1]. Mathematically,
each input intensity value, r, is mapped to an output value, s, according to the following
linear mapping function:

s = r − rmin

rmax − rmin
× (L − 1) (9.12)

186 HISTOGRAM PROCESSING

FIGURE 9.10 Example of using histogram stretching to improve contrast: (a) original image
(rmin = 129, rmax = 204); (b) result of stretching using equation (9.12); (c and d) histograms
corresponding to images in (a) and (b).

You may have noticed that equation (9.12) is identical to equation (8.4), introduced
during our discussion of autocontrast in Chapter 8.

Histogram stretching increases contrast without modifying the shape of the original
histogram. It is effective only in cases where the gray-level range of an image is
compressed to a narrow range around the middle portion of the dynamic grayscale
range. It will not be effective if applied to a poor contrast image whose histogram’s
lowest and highest occupied bins are close to the minimum and maximum of the full
range, such as the one in Figure 9.2c.

� EXAMPLE 9.9

Figure 9.10 shows an example (using the imadjust function in MATLAB) of using
the histogram stretching technique to enhance image contrast.

9.6.3 Histogram Shrinking

This technique—also known as output cropping—modifies the original histogram in
such a way as to compress its dynamic grayscale range, [rmin, rmax], into a narrower

OTHER HISTOGRAM MODIFICATION TECHNIQUES 187

FIGURE 9.11 Example of using histogram shrinking to reduce contrast: (a) original image;
(b) result of shrinking using equation (9.13) with rmin = 4, rmax = 254, smin = 49, and smax =
140; (c and d) histograms corresponding to images in (a) and (b).

gray scale, between smin and smax. As a consequence, the resulting image contrast is
reduced.

Mathematically,

s =
[
smax − smin

rmax − rmin

]
(r − rmin) + smin (9.13)

� EXAMPLE 9.10

Figure 9.11 shows an example (using the imadjust function in MATLAB) of ap-
plying the histogram shrinking technique to a monochrome image.

In MATLAB

MATLAB’s IPT has a built-in function to perform histogram stretching and shrinking
(among other operations): imadjust. You will learn how to use this function in
Tutorial 9.3.

188 HISTOGRAM PROCESSING

9.7 TUTORIAL 9.1: IMAGE HISTOGRAMS

Goal

The goal of this tutorial is to use MATLAB and IPT to calculate and display image
histograms.

Objectives

• Learn how to use the IPT function imhist.
• Learn how other MATLAB plotting techniques can be used to view and analyze

histogram data.

Procedure

Let us begin exploring the imhist function that is responsible for computing and
displaying the histogram of an image.

1. Display an image and its histogram.

I = imread(’circuit.tif’);
figure, subplot(2,2,1), imshow(I), title(’Image’)

subplot(2,2,2), imhist(I,256), axis tight, title(’Histogram’)

2. The previous step displayed the default histogram for the image—a histogram
with 256 bins. Let us see what happens if we change this value to 64 and 32.

subplot(2,2,3), imhist(I,64), axis tight, ...
title(’Histogram with 64 bins’)

subplot(2,2,4), imhist(I,32), axis tight, ...
title(’Histogram with 32 bins’)

You may have noticed that we set the axis to tight when displaying histograms.
This adjusts the axis limits to the range of the data.

Question 1 Explain the drastic change of the Y -axis values when the histogram is
displayed with fewer bins.

There may be a need to postprocess the histogram data or display it using other
plotting techniques. To do this, we need the values for each bin of the histogram. The
following step illustrates this procedure.

3. Get the values of each bin in the histogram for later use.

c = imhist(I,32);

TUTORIAL 9.1: IMAGE HISTOGRAMS 189

We can now use the values inc to display histogram using other plotting techniques.
Naturally, the plot of a histogram displays the count of each bin, but it may be more
relevant to plot each bin’s percentage. This can be done by normalizing the data, as
shown in the next step.

4. Normalize the values in c.

c_norm = c / numel(I);

Question 2 What does the function numel do?

Question 3 Write a one line MATLAB statement that will verify that the sum of
the normalized values add to 1.

5. Close any open figures.

6. Display the histogram data using a bar chart.

figure, subplot(1,2,1), bar_1 = bar(c);
set(gca, ’XLim’, [0 32], ’YLim’, [0 max(c)]);

In the previous step, we saw how the bar chart can be customized. In MATLAB,
almost every object you create can be customized. When we create the bar chart,
there is an axes object and a bar chart object displayed on the axes object. Here, the
variable bar_1 is set to the bar chart object so that we can reference it later for
further customization. The set function allows us to change settings of a particular
object. The first parameter of the set function is the object you wish to customize. In
this case, the first object we customize isgca, which stands for get current axes. Here,
we set the limits of the X and Y axes. Even though the limits have been set, the graph
is still ambiguous because the tick marks on the X and Y axes do not reflect the limits.

7. Set the tick marks to reflect the limits of the graph.

set(gca, ’XTick’, [0:8:32], ’YTick’, ...
[linspace(0,7000,8) max(c)]);

Now the tick marks reflect the limits of the data. We used the set function to change
settings of the current axes, but we can just as easily use it to customize the bar chart.

8. Use the set function to change the color of the bar chart. Also, give the chart
a title.

set(bar_1, ’FaceColor’, ’r’), title(’Bar Chart’)

Question 4 How would we change the width of the bars in a bar chart?

190 HISTOGRAM PROCESSING

Notice in the previous step how we used the bar chart objectbar_1when changing
settings. Similarly, we can display the normalized bar chart on the same figure using
subplot.

9. Display the normalized bar chart and customize its display.

subplot(1,2,2), bar_2 = bar(c_norm);
set(gca, ’XTick’, [0:8:32], ’YTick’, ...

[linspace(0,0.09,10) max(c_norm)])
xlim([0 32]), ylim([0 max(c_norm)])
title(’Normalized Bar Chart’)
set(bar_2, ’FaceColor’, ’g’)

Here, we made similar modifications as before. You may have noticed that we used
xlim and ylim functions to set the limits of the axes. Sometimes there is more than
one way to accomplish the same task, and this is an example of just that.Stem charts
are similar to bar charts.

10. Close any open figures.

11. Display stem charts for both standard and normalized histogram data.

figure,
subplot(1,2,1), stem(c,’fill’,’MarkerFaceColor’,’red’), ...

axis tight, title(’Stem Chart’)
subplot(1,2,2), stem(c_norm,’fill’,’MarkerFaceColor’,’red’), ...

axis tight, title(’Normalized Stem Chart’)

In the previous step, we set visual properties of the stem charts by specifying the
settings directly in the stem function call—we filled the marker and colored it red.
We could have just as easily set a variable equal to the stem plot object and used the
set function to make the changes.

Question 5 Explore the properties of stem charts. How can we make the lines
dotted instead of solid?

Question 6 Alter the axes limits and tick marks to reflect the data being displayed
in the stem plot.

The plot function will display the data by connecting each point with a straight
line.

12. Display a plot graph for both standard and normalized histogram data.

figure, subplot(1,2,1), plot(c), axis auto, title(’Plot Graph’)
subplot(1,2,2), plot(c_norm), axis auto, ...

title(’Normalized Plot Graph’)

TUTORIAL 9.2: HISTOGRAM EQUALIZATION AND SPECIFICATION 191

Question 7 Explore the properties of plot graphs. In the above code, the points for
each bin are visually lost within the graph line. How can we make the points bolder
so that they are more visible?

9.8 TUTORIAL 9.2: HISTOGRAM EQUALIZATION AND SPECIFICATION

Goal

The goal of this tutorial is to learn how to use the IPT for (global and local) histogram
equalization and histogram specification (matching).

Objectives

• Explore the process of histogram equalization.
• Learn how to use the histeq function.
• Learn how to perform histogram specification (matching).
• Explore the Interactive Histogram Matching demo.
• Learn how to perform local histogram equalization with the adapthisteq

function.

What You Will Need

ihmdemo.m—interactive Histogram Matching demo M-file

Procedure

Let us begin by using the function histeq to perform histogram equalization on our
own images, and by using the imhist function, we can view the histogram of the
original and the adjusted image.

1. Display the image pout and its histogram.

I = imread(’pout.tif’);
figure, subplot(2,2,1), imshow(I), ...

title(’Original Image’)
subplot(2,2,2), imhist(I), ...

title(’Original Histogram’)

2. Use the histeq function to perform histogram equalization.

I_eq = histeq(I,256);

192 HISTOGRAM PROCESSING

Question 1 Why must we include the second parameter (256) in the histeq
function call?

3. Display the equalized image and its histogram.

subplot(2,2,3), imshow(I_eq), title(’Equalized Image’)
subplot(2,2,4), imhist(I_eq), title(’Equalized Histogram’)

Question 2 What is the effect of histogram equalization on images with low con-
trast?

4. Close any open figures and clear all workspace variables.

5. Execute the following code to perform histogram equalization on the tire
image.

I = imread(’tire.tif’); I_eq = histeq(I,256);
figure, subplot(2,2,1), imshow(I), title(’Original Image’)
subplot(2,2,2), imhist(I), title(’Original Histogram’)
subplot(2,2,3), imshow(I_eq), title(’Equalized Image’)
subplot(2,2,4), imhist(I_eq), title(’Equalized Histogram’)

Question 3 Based on the tire image’s original histogram, what can be said about
its overall brightness?

Question 4 How did histogram equalization affect the overall image brightness
in this case?

Histogram equalization does not always perform well. As we will see in the next
steps, it depends on the original image.

6. Close any open figures and clear all workspace variables.

7. Perform histogram equalization on the eight image.

I = imread(’eight.tif’); I_eq = histeq(I,256);
figure, subplot(2,2,1), imshow(I), title(’Original Image’)
subplot(2,2,2), imhist(I), title(’Original Histogram’)
subplot(2,2,3), imshow(I_eq), title(’Equalized Image’)
subplot(2,2,4), imhist(I_eq), title(’Equalized Histogram’)

Question 5 Why was there such a loss in image quality after histogram equaliza-
tion?

The transformation function for histogram equalization is simply the cdf of the
original image.

TUTORIAL 9.2: HISTOGRAM EQUALIZATION AND SPECIFICATION 193

8. Display the normalized cdf for the eight.tif image.

I_hist = imhist(I); tf = cumsum(I_hist); tf_norm = tf / max(tf);

figure, plot(tf_norm), axis tight

Question 6 What does the cumsum function do in the previous step?

9. The transformation function can also be obtained without using the cumsum
function.

[newmap, T] = histeq(I);
figure, plot(T)

As we have learned, the histogram equalization process attempts to flatten the
image histogram. Histogram specification (also known as histogram matching) tries
to match the image histogram to a specified histogram. The histeq function can
also be used for this operation.

10. Close any open figures and clear all workspace variables.

11. Prepare a subplot and display original image and its histogram.

img1 = imread(’pout.tif’);
figure, subplot(3,3,1), imshow(img1), title(’Original Image’)

subplot(3,3,2), imhist(img1), title(’Original Histogram’)

12. Display the image after histogram equalization for comparison.

img1_eq = histeq(img1); m1 = ones(1,256)*0.5;
subplot(3,3,4), imshow(img1_eq), title(’Equalized Image’)
subplot(3,3,5), imhist(img1_eq), title(’Equalized Histogram’)
subplot(3,3,6), plot(m1), title(’Desired Histogram Shape’), ...

ylim([0 1]), xlim([1 256])

13. Display matched image where the desired histogram shape is a straight line
from (0, 0) to (1, 1).

m2 = linspace(0,1,256); img2 = histeq(img1,m2);
subplot(3,3,7), imshow(img2), title(’Matched Image’)
subplot(3,3,8), imhist(img2), title(’Matched Histogram’)
subplot(3,3,9), plot(m2), title(’Desired Histogram Shape’), ...

ylim([0 1]), xlim([1 256])

As we can see from the previous steps, performing histogram specification means
we must generate a function that represents the shape of the desired histogram. The
Interactive Histogram Matching demo (developed by Jeremy Jacob and available at

194 HISTOGRAM PROCESSING

the book’s companion web site) shows us how creating a desired histogram shape can
be an interactive process.

14. Close any open figures and clear all workspace variables.

15. Run the Interactive Histogram Matching demo.

ihmdemo

16. Experiment with creating your own desired histogram shape. To create new
points on the function curve, click the curve at the desired location. To move
a point, press and drag the point. To delete a point, simply click it.

Question 7 What does the Continuous Update checkbox do?

Question 8 How do the different interpolation methods change the shape of the
desired histogram curve?

Question 9 How can the demo be loaded with a different image?
Local histogram equalization is performed by the adapthisteq function. This

function performs contrast limited adaptive histogram equalization (CLAHE) and
operates on small data regions (called tiles), whose size can be passed as a parameter.

17. Perform local histogram equalization on the coins image.

I = imread(’coins.png’);
I_eq = histeq(I,256);
I_leq = adapthisteq(I,’ClipLimit’,0.1);
figure, subplot(3,2,1), imshow(I), title(’Original Image’)
subplot(3,2,2), imhist(I), title(’Original Histogram’)
subplot(3,2,3), imshow(I_eq), title(’Equalized Image’)
subplot(3,2,4), imhist(I_eq), title(’Equalized Histogram’)
subplot(3,2,5), imshow(I_leq), ...

title(’Local Histogram Equalization’)
subplot(3,2,6), imhist(I_leq), ...

title(’Local Hist Equalization Histogram’)

The original image’s histogram is clearly bimodal, which separates the pixels of
the background from the pixels that make up the coins. We have already seen how
images with bimodal distribution of pixel shades do not perform well under (global)
histogram equalization.

Question 10 What does the ClipLimit setting do in the adapthisteq func-
tion?

Question 11 What is the default tile size when using adapthisteq?

TUTORIAL 9.3: OTHER HISTOGRAM MODIFICATION TECHNIQUES 195

9.9 TUTORIAL 9.3: OTHER HISTOGRAM MODIFICATION
TECHNIQUES

Goal

The goal of this tutorial is to learn how to perform other common histogram modifi-
cation operations.

Objectives

• Learn how to adjust brightness of an image by histogram sliding.
• Learn how to use the imadjust function.
• Learn how to use the stretchlim function.
• Explore adjusting image contrast through histogram stretching (also known as

input cropping).
• Learn how to adjust image contrast with histogram shrinking (also known as

output cropping).

Procedure

Histogram sliding is the process of adding or subtracting a constant brightness value
to all pixels in the image. When implementing histogram sliding, we must make sure
that pixel values do not go outside the boundaries of the gray scale. Therefore, any
pixels that result in values greater than 1 after adjustment will be set to 1. Likewise,
any pixels resulting in values less than zero after adjustment will be set to 0.

1. Display original image and prepare subplot.

J = imread(’pout.tif’);
I = im2double(J);
clear J
figure, subplot(3,2,1), imshow(I), title(’Original Image’)
subplot(3,2,2), imhist(I), axis tight, ...

title(’Original Histogram’)

2. Obtain a brighter version of the input image by adding 0.1 to each pixel.

const = 0.1;
I2 = I + const;
subplot(3,2,3), imshow(I2), title(’Original Image + 0.1’)
subplot(3,2,4), imhist(I2), axis tight, ...

title(’Original Hist + 0.1’)

Question 1 How did the histogram change after the adjustment?

3. Produce another brighter image by adding 0.5 to original image.

196 HISTOGRAM PROCESSING

FIGURE 9.12 Gamma transformations for different values of gamma. Redrawn
from [GWE04].

const = 0.5;
I3 = I + const;
bad_values = find(I3 > 1);
I3(bad_values) = 1;
subplot(3,2,5), imshow(I3), title(’Original Image + 0.5’)
subplot(3,2,6), imhist(I3), axis tight, ...

title(’Original Hist + 0.5’)

Question 2 What does the variable bad_values contain?

Question 3 Why does the third plot show such an excessive number of pixels with
a value of 1?

The brightness of an image can also be modified using the imadd function (intro-
duced in Tutorial 6.1), which takes care of truncating and rounding off values outside
the desired range in the output image.

Histogram stretching and shrinking can be achieved through use of theimadjust
function. The syntax for the function is as follows:

J = imadjust(I,[low_in; high_in],[low_out; high_out], gamma)

Figure 9.12 illustrates what the transformation functions look like when different
values of gamma are used. As we already know from Chapter 9, the value of gamma
is the exponent in power law transformation.

Any values below low_in and above high_in are clipped or simply mapped
to low_out and high_out, respectively. Only values in between these limits are
affected by the curve. Gamma values less than 1 create a weighted curve toward the
brighter range, and gamma values greater than 1 weight toward the darker region.
The default value of gamma is 1.

Let us explore how to use imadjust to perform histogram stretching.

4. Close any open figures.

5. Execute the following code to see histogram stretching on the pout image,
which is already loaded in variable I.

TUTORIAL 9.3: OTHER HISTOGRAM MODIFICATION TECHNIQUES 197

img_limits = stretchlim(I);
I_stretch = imadjust(I,img_limits,[]);
figure
subplot(3,2,1), imshow(I), title(’Original Image’)
subplot(3,2,2), imhist(I), axis tight, ...

title(’Original Histogram’)
subplot(3,2,3), imshow(I_stretch), ...

title(’Stretched Image’)
subplot(3,2,4), imhist(I_stretch), axis tight, ...

title(’Stretched Histogram’)

Question 4 How did the histogram change after the adjustment?

Question 5 What is the purpose of using the stretchlim function?
In the previous step, we specified the low_in, high_in, low_out, and

high_out parameters when calling the imadjust function when in fact the
default operation is histogram stretching—meaning these parameters are not nec-
essary to perform histogram stretching. Notice in the next step how just calling
the function and only specifying the image as its parameter will give the same
results.

6. Perform histogram stretching with imadjust using default parameters and
confirm that the results are identical to the ones obtained before.

I_stretch2 = imadjust(I);
subplot(3,2,5), imshow(I_stretch2), ...

title(’Stretched Image’)
subplot(3,2,6), imhist(I_stretch2), axis tight, ...

title(’Stretched Histogram’)
I_stretch_diff = imabsdiff(I_stretch, I_stretch2);
figure, imshow(I_stretch_diff,[])
min(I_stretch_diff(:))
max(I_stretch_diff(:))

Question 6 How does the difference image look?

Question 7 What is the purpose of inspecting its maximum and minimum values?
To shrink an image histogram, we must specify the parameters explicitly.

7. Close any open figures and clear all workspace variables.

8. Execute the following code to see the result of histogram shrinking.

I = imread(’westconcordorthophoto.png’);
I_shrink = imadjust(I,stretchlim(I),[0.25 0.75]);

198 HISTOGRAM PROCESSING

figure
subplot(2,2,1), imshow(I), title(’Original Image’)
subplot(2,2,2), imhist(I), axis tight, ...

title(’Original Histogram’)
subplot(2,2,3), imshow(I_shrink), ...

title(’Shrunk Image’)
subplot(2,2,4), imhist(I_shrink), axis tight, ...

title(’Shrunk Histogram’)

When we use other techniques to adjust the histogram of an image, we have a
means to view the transformation function (i.e., the histeq function will return
the transformation function as an output parameter if requested). There is no built-in
technique for viewing a transformation function when performing histogram sliding,
stretching, or shrinking, but we can achieve a visual representation of the transforma-
tion function by using the plot function. To do so, we specify the original image as
the X values and the adjusted image as the Y values.

9. Display the transformation function for the adjustment performed in the previ-
ous step.

X = reshape(I,1,prod(size(I)));
Y = reshape(I_shrink,1,prod(size(I_shrink)));
figure, plot(X,Y,’.’)
xlim([0 255]); ylim([0 255]);
xlabel(’Original Image’);
ylabel(’Adjusted Image’);

Question 8 What do the above first two statements in the code do?

Question 9 What does the xlabel and ylabel functions do?
As noted earlier, gamma values other than 1 will specify the shape of the curve,

toward either the bright or the dark region.

10. Close any open figures.

11. Perform histogram shrinking with a gamma value of 2.

I_shrink = imadjust(I,stretchlim(I),[0.25 0.75],2);
X = reshape(I,1,prod(size(I)));
Y = reshape(I_shrink,1,prod(size(I_shrink)));
figure
subplot(2,2,1), imshow(I), title(’Original Image’)
subplot(2,2,2), imhist(I), axis tight, ...

title(’Original Histogram’)
subplot(2,2,3), imshow(I_shrink), title(’Adjusted Image’)
subplot(2,2,4), imhist(I_shrink), axis tight, ...

TUTORIAL 9.3: OTHER HISTOGRAM MODIFICATION TECHNIQUES 199

title(’Adjusted Histogram’)
figure, plot(X,Y,’.’), xlim([0 255]), ylim([0 255])

Question 10 The transformation function plot displays a gap from 0 to 12 (on the
X axis) where there are no points. Why is this so?

WHAT HAVE WE LEARNED?

• Histograms are a convenient mathematical representation of how many pixels
occur at each gray level in a monochrome image.

• In MATLAB, the histogram of an image can be computed and displayed using
the imhist function.

• Histograms provide valuable quantitative information about an image, such as
minimum, maximum and average gray level, global standard deviation, and
absolute contrast.

• Histograms also provide valuable qualitative information about an image, such
as average brightness level and contrast.

• Histogram equalization is a mathematical technique by which we modify the
histogram of the input image in such a way as to approximate a uniform distribu-
tion (flat histogram). Histogram equalization is used as a contrast enhancement
technique.

• Histograms (and the images to which they correspond) can also be modified
through direct histogram specification, whose goal is to change the histogram
so as to match a desired shape.

• Other histogram modification techniques include histogram sliding (used to
modify the brightness properties of an image), histogram stretching (used to
increase contrast without modifying the shape of the original histogram), and
histogram shrinking (used to reduce the dynamic grayscale range of an image).

LEARN MORE ABOUT IT

• Chapter 4 of [BB08] discusses histograms in detail and provides useful insights
into how to use histograms to investigate image acquisition problems and image
defects.

• The paper by Hummel [Hum75] provides a review of techniques related to the
material in this chapter.

• Many alternative histogram modification techniques have been proposed in the
literature. The paper by Stark [Sta00] is a representative recent example.

• Section 5.6 of [BB08] discusses histogram specification in more detail.
• Section 10.2 of [Pra07] provides a deeper discussion on histogram modification

techniques.

200 HISTOGRAM PROCESSING

• Section 2.2 of [SOS00] contains a modified version of the basic histogram
expansion algorithm, in which the user can select a cutoff percentage p and
a modified version of the general histogram transformation algorithm and the
output histogram has the shape of a linear ramp whose slope can be specified as
a parameter.

• Many image enhancement techniques based on local and global histogram statis-
tics have been proposed. Section 3.3.4 of [GW08] and Section 8.2.3 of [Umb05]
describe representative algorithms under this category.

9.10 PROBLEMS

9.1 The 7 × 7 image with eight gray levels is given below, where each gray level
value is represented in normalized form from 0 (black pixel) to 1 (white pixel).

0 3/7 2/7 2/7 1/7 1/7 4/7
3/7 2/7 1/7 1/7 1/7 1/7 4/7
2/7 0 1 1/7 3/7 0 0
0 5/7 1/7 0 6/7 0 1/7

1/7 1/7 1/7 3/7 6/7 6/7 5/7
1/7 1/7 1/7 1/7 5/7 6/7 4/7
0 1 0 0 0 0 4/7

(a) Calculate the probabilities of each gray level and plot the image’s histogram.

(b) Which pixels are predominant in the original image, dark or bright?

(c) Using the cumulative distribution function, equalize the histogram calcu-
lated in part (a) and plot the resulting (equalized) histogram.

(d) Show the resulting 7 × 7 image after histogram equalization.

9.2 Write a MATLAB script to show that a second (or third, fourth, etc.) consecutive
application of the histogram equalization algorithm to an image will not produce any
significant change in the histogram (and, consequently, in the image).

9.3 Given a 256 × 256 pixels image with eight gray levels, whose gray-level dis-
tribution is given in the following table.

Gray Level (rk) nk p(rk)

0 2621 0.04
1/7 0 0.00
2/7 0 0.00
3/7 5243 0.08
4/7 7209 0.11
5/7 12,452 0.19
6/7 24,904 0.38
1 13,107 0.20

PROBLEMS 201

It is desired that the original histogram is changed to approach the histogram
corresponding to the table below.

zk p̂(zk)

0 0.27
1/7 0.16
2/7 0.19
3/7 0.16
4/7 0.11
5/7 0.06
6/7 0.03
1 0.02

(a) Which pixels predominate in the original image, dark or bright? Explain.

(b) Assuming the histogram modification will be successful, what will be the
probable effect of this modification on the original image?

(c) Equalize the original histogram using the function s = T (r).

(d) Obtain the function v = G(z) and its inverse.

(e) Plot the most relevant histograms: original, desired, equalized, and result-
ing.

(f) Fill out the table below with the final values for nk and p̂(zk) for the eight
values of zk, comparing with the desired values and explaining possible
differences.

zk nk p̂(zk)

0
1/7
2/7
3/7
4/7
5/7
6/7
1

9.4 Write a MATLAB script that implements region-based histogram equalization.
Your script should allow the user to interactively select (with the mouse) a region of
interest (ROI) within an image to which the histogram equalization operation will be
applied.

9.5
(a) Write a MATLAB function that creates an 8-bit random image with a

uniform distribution of pixel values and takes two parameters: height and
width. Hint: use MATLAB function rand.

202 HISTOGRAM PROCESSING

(b) Write a MATLAB script that uses the function you have just written to
create a 128 × 128 random image.

(c) Inspect the image’s histogram. Does it show a uniform (i.e., flat-shaped)
distribution as expected? Explain.

9.6
(a) Write a MATLAB function that creates an 8-bit random image with a Gaus-

sian (normal) distribution of pixel values and takes four parameters: height,
width, mean value (μ), and standard deviation (σ). Hint: use MATLAB
function randn—which returns a pseudorandom normal distribution with
μ = 0 and σ = 1—and make the necessary adjustments to μ and σ.

(b) Write a MATLAB script that uses the function you have just written to
create a 128 × 128 random image with a Gaussian (normal) distribution of
pixel values, with mean value μ = 128 and standard deviation σ = 60.

(c) Inspect the image’s histogram. Does it show a Gaussian (i.e., bell-shaped)
distribution as expected? Explain.

(d) Repeat the previous two steps for different values of μ and σ.

9.7 An 8-bit image has a minimum gray level of 140 and a maximum gray level of
195. Describe the effect on the histogram of this image after each of these operations
is performed (separately):

(a) Subtraction of 130 from all pixel gray levels (histogram sliding).

(b) Histogram stretching.

(c) Histogram equalization.

9.8 Provide empirical evidence of the nonuniqueness of a histogram by writing a
MATLAB script that reads a monochrome image, displays its histogram, and generates
another gray-level image very different from the original, but whose histogram is
identical to the original image’s histogram. Hint: “Given an image f with a particular
histogram Hf , every image that is a spatial shuffling of the gray levels of f has the
same histogram Hf ” [Bov00a].

CHAPTER 10

NEIGHBORHOOD PROCESSING

WHAT WILL WE LEARN?

• What is neighborhood processing and how does it differ from point processing?
• What is convolution and how is it used to process digital images?
• What is a low-pass linear filter, what is it used for, and how can it be implemented

using 2D convolution?
• What is a median filter and what is it used for?
• What is a high-pass linear filter, what is it used for, and how can it be implemented

using 2D convolution?

10.1 NEIGHBORHOOD PROCESSING

The underlying theme throughout this chapter is the use of neighborhood-oriented
operations for image enhancement. The basics of neighborhood processing were
introduced in Section 2.4.2. We call neighborhood-oriented operations those image
processing techniques in which the resulting value for a pixel at coordinates (x0, y0)—
which we shall call the reference pixel—is a function of the original pixel value at that
point as well as the original pixel value of some of its neighbors. The way by which
the neighboring values and the reference pixel value are combined to produce the
result can vary significantly among different algorithms. Many algorithms work in a

Practical Image and Video Processing Using MATLAB®. By Oge Marques.
© 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

203

204 NEIGHBORHOOD PROCESSING

linear way and use 2D convolution (which essentially consists of sums of products,
see Section 10.2), while others process the input values in a nonlinear way.

Regardless of the type (linear or nonlinear), neighborhood processing operations
follow a sequence of steps [GWE04]:

1. Define a reference point in the input image, f (x0, y0).

2. Perform an operation that involves only pixels within a neighborhood around
the reference point in the input image.

3. Apply the result of that operation to the pixel of same coordinates in the output
image, g(x0, y0).

4. Repeat the process for every pixel in the input image.

In this chapter, we provide a representative collection of neighborhood-based im-
age processing techniques for the sake of image enhancement, particularly blurring
or sharpening.1

The techniques described in this chapter belong to one of these two categories:

• Linear Filters: Here the resulting output pixel is computed as a sum of products
of the pixel values and mask coefficients in the pixel’s neighborhood in the
original image. Example: mean filter (Section 10.3.1).

• Nonlinear Filters: Here the resulting output pixel is selected from an ordered
(ranked) sequence of pixel values in the pixel’s neighborhood in the original
image. Example: median filter (Section 10.3.4).

10.2 CONVOLUTION AND CORRELATION

Convolution is a widely used mathematical operator that processes an image by
computing—for each pixel—a weighted sum of the values of that pixel and its neigh-
bors (Figure 10.1). Depending on the choice of weights, a wide variety of image
processing operations can be implemented. Convolution and correlation are the two
fundamental mathematical operations involved in linear neighborhood-oriented im-
age processing algorithms. The two operations differ in a very subtle way, which will
be explained later in this section.

10.2.1 Convolution in the One-Dimensional Domain

The convolution between two discrete one-dimensional (1D) arrays A(x) and B(x),
denoted by A ∗ B, is mathematically described by the equation

A ∗ B =
∞∑

j=−∞
A(j) · B(x − j) (10.1)

1We shall see additional examples of neighborhood operations for different purposes—for example, image
restoration (Chapter 12) and edge detection (Chapter 14)—later in the book.

CONVOLUTION AND CORRELATION 205

FIGURE 10.1 Neighborhood processing for the case of linear filtering.

� EXAMPLE 10.1

In this example, we show how the result of a 1D convolution operation can be obtained
step-by-step. Let A = {0, 1, 2, 3, 2, 1, 0} and B = {1, 3, −1}. The partial results of
multiplying elements in A with corresponding elements in B, as B shifts from −∞
to ∞, are displayed below.

1. Initially, we mirror array B and align its center (reference) value with the first
(leftmost) value of array A.2 The partial result of the convolution calculation
(0 × (−1)) + (0 × 3) + (1 × 1) = 1 (where empty spots are assumed as zero)
is stored in the resulting array (A ∗ B).

A 0 1 2 3 2 1 0
B −1 3 1

A ∗ B 1

2. Array B is shifted one position to the right. The partial result of the convolution
calculation (0 × (−1)) + (1 × 3) + (2 × 1) = 5 is stored in the resulting array
(A ∗ B).

A 0 1 2 3 2 1 0
B −1 3 1

A ∗ B 1 5

3. Array B is shifted another position to the right. The partial result of the convo-
lution calculation (1 × (−1)) + (2 × 3) + (3 × 1) = 8 is stored in the resulting
array (A ∗ B).

A 0 1 2 3 2 1 0
B −1 3 1

A ∗ B 1 5 8

2This is equivalent to saying that all the partial products from −∞ until that point are equal to zero and,
therefore, do not contribute to the result of the convolution operation.

206 NEIGHBORHOOD PROCESSING

4. Array B is shifted another position to the right. The partial result of the convo-
lution calculation (2 × (−1)) + (3 × 3) + (2 × 1) = 9 is stored in the resulting
array (A ∗ B).

A 0 1 2 3 2 1 0
B −1 3 1

A ∗ B 1 5 8 8

5. Array B is shifted another position to the right. The partial result of the convo-
lution calculation (3 × (−1)) + (2 × 3) + (1 × 1) = 4 is stored in the resulting
array (A ∗ B).

A 0 1 2 3 2 1 0
B −1 3 1

A ∗ B 1 5 8 8 4

6. Array B is shifted another position to the right. The partial result of the convo-
lution calculation (2 × (−1)) + (1 × 3) + (0 × 1) = 1 is stored in the resulting
array (A ∗ B).

A 0 1 2 3 2 1 0
B −1 3 1

A ∗ B 1 5 8 8 4 1

7. Array B is shifted another position to the right. The partial result of the convolu-
tion calculation (1 × (−1)) + (0 × 3) + (0 × 1) = −1 is stored in the resulting
array (A ∗ B).

A 0 1 2 3 2 1 0
B −1 3 1

A ∗ B 1 5 8 8 4 1 −1

The final result of the convolution operation is the array {1, 5, 8, 8, 4, 1, −1}.

10.2.2 Convolution in the Two-Dimensional Domain

The mathematical definition for 2D convolution is

g(x, y) =
∞∑

k=−∞

∞∑
j=−∞

h(j, k) · f (x − j, y − k) (10.2)

In practice, this is rewritten as

g(x, y) =
n2∑

k=−n2

m2∑
j=−m2

h(j, k) · f (x − j, y − k) (10.3)

where m2 is equal to half of the mask’s width and n2 is equal to half of the mask’s
height, that is,

m2 = �m/2� (10.4)

CONVOLUTION AND CORRELATION 207

and

n2 = �n/2� (10.5)

where �x� is the floor operator, which rounds a number to the nearest integer less than
or equal to x.

The basic mechanism used to understand 1D convolution can be expanded to the
2D domain. In such cases, the 2D array A is usually the input image and B is a small
(usually 3×3) mask. The idea of mirroring B and shifting it across A can be adapted
to the 2D case as well: mirroring will now take place in both x and y dimensions, and
shifting will be done starting from the top left point in the image, moving along each
line, until the bottom right pixel in A has been processed.

� EXAMPLE 10.2

Let

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5 8 3 4 6 2 3 7

3 2 1 1 9 5 1 0

0 9 5 3 0 4 8 3

4 2 7 2 1 9 0 6

9 7 9 8 0 4 2 4

5 2 1 8 4 1 0 9

1 8 5 4 9 2 3 8

3 7 1 2 3 4 4 6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

B =

⎡
⎢⎣

2 1 0

1 1 −1

0 −1 −2

⎤
⎥⎦

The result of the convolution A ∗ B will be

A ∗ B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

20 10 2 26 23 6 9 4

18 1 −8 2 7 3 3 −11

14 22 5 −1 9 −2 8 −1

29 21 9 −9 10 12 −9 −9

21 1 16 −1 −3 −4 2 5

15 −9 −3 7 −6 1 17 9

21 9 1 6 −2 −1 23 2

9 −5 −25 −10 −12 −15 −1 −12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

208 NEIGHBORHOOD PROCESSING

FIGURE 10.2 Two-dimensional convolution example.

Figure 10.2 shows the calculation of the top left pixel in the resulting image in
detail. Note how B has been flipped in both dimensions before the sum of products
was calculated.

Convolution with masks is a very versatile image processing method. Depending
on the choice of mask coefficients, entirely different results can be obtained, for
example, image blurring, image sharpening, or edge detection.

� EXAMPLE 10.3

Suppose we apply the three convolution masks from Table 10.1 (one at a time,
independently) to the same input image (Figure 10.3a). The resulting images will
be a blurred version of the original (part (b)), a sharpened version of the original
(part (c)), and an image indicating the presence of horizontal edges in the input image
(part (d)).

10.2.3 Correlation

In the context of this chapter, 1D correlation3 can be mathematically expressed as

A � B =
∞∑

j=−∞
A(j) · B(x + j) (10.6)

whereas the 2D equivalent is given by

g(x, y) =
∞∑

k=−∞

∞∑
j=−∞

h(j, k) · f (x + j, y + k) (10.7)

3This definition of correlation should not be confused with the most common use of the word, usually
to express the degree to which two or more quantities are linearly associated (by means of a correlation
coefficient).

CONVOLUTION AND CORRELATION 209

TABLE 10.1 Examples of Convolution Masks

Low-Pass Filter High-Pass Filter Horizontal Edge Detection
[

1/9 1/9 1/9
1/9 1/9 1/9
1/9 1/9 1/9

] [
0 −1 0

−1 5 −1
0 −1 0

] [
1 1 1
0 0 0

−1 −1 −1

]

In practice, this is rewritten as

g(x, y) =
n2∑

k=−n2

m2∑
j=−m2

h(j, k) · f (x + j, y + k) (10.8)

where m2 and n2 are as defined earlier.
Simply put, correlation is the same as convolution without the mirroring (flipping)

of the mask before the sums of products are computed. The difference between us-
ing correlation and convolution in 2D neighborhood processing operations is often
irrelevant because many popular masks used in image processing are
symmetrical around the origin. Consequently, many texts omit this distinction and

FIGURE 10.3 Applying different convolution masks to the same input image: (a) original
image; (b–d) result of 2D convolution using the masks in Table 10.1.

210 NEIGHBORHOOD PROCESSING

refer to convolution or spatial filtering when referring to what technically should be
called correlation.

In MATLAB

MATLAB’s Image Processing Toolbox (IPT) has two built-in functions that can be
used to implement 2D convolution:

• conv2: It computes the 2D convolution between two matrices. In addition to
the two matrices, it takes a third parameter that specifies the size of the output:

– full: Returns the full 2D convolution (default).

– same: Returns the central part of the convolution of the same size as A.

– valid: Returns only those parts of the convolution that are computed without
the zero-padded edges.

• filter2: It rotates the convolution mask (which is treated as a 2D FIR filter)
180◦ in each direction to create a convolution kernel and then calls conv2 to
perform the convolution operation.

10.2.4 Dealing with Image Borders

Our discussion of convolution and correlation so far has overlooked the need to deal
with image borders, that is, those points in the input image for which part of the mask
falls outside the image borders (Figure 10.4). There are several ways of handling this:

1. Ignore the borders, that is, apply the mask only to the pixels in the input image
for which the mask falls entirely within the image. There are two variants of
this approach:

(a) Keep the pixel values that cannot be reached by the overlapping mask
untouched. This will introduce artifacts due to the difference between the
processed and unprocessed pixels in the output image.

(b) Replace the pixel values that cannot be reached by the overlapping mask
with a constant fixed value, usually zero (black). If you use this approach,
the resulting image will be smaller than the original image. This is unaccept-
able because the image size will be further decreased by every subsequent
filtering operation. Moreover, it will make it harder to combine the input
and output images using an arithmetic or logic operation (see Chapter 6)
or even to compare them on a pixel-by-pixel basis.

2. Pad the input image with zeros, that is, assume that all values outside the im-
age are equal to zero. If you use this approach, the resulting image will show
unwanted artifacts, in this case artificial dark borders, whose width is propor-
tional to the size of the convolution mask. This is implemented in MATLAB by
choosing the option X (with X = 0) for the boundary_options parameter
for function imfilter.

IMAGE SMOOTHING (LOW-PASS FILTERS) 211

FIGURE 10.4 Border geometry. Redrawn from [BB08].

3. Pad with extended values, that is, assume that the pixel values in the input image
extend beyond the image borders. This is equivalent to assuming that the input
image has extra rows and columns whose pixel values are identical to the ones
of the row/column closest to the border. This is the preferred method because
of its simplicity and the relatively low impact of the resulting artifacts on the
quality of the output image. This is implemented in MATLAB by choosing the
option ’replicate’ for the boundary_options parameter for function
imfilter.

4. Pad with mirrored values, that is, assume that the pixel values in the input image
extend beyond the image borders in such a way as to mirror the pixel values
in the rows/columns closest to the border. For small mask sizes, the result is
comparable to using the padding with extended values approach.

5. Treat the input image as a 2D periodic function whose values repeat themselves
in both horizontal and vertical directions. This is implemented in MATLAB by
choosing the option ’circular’ for the boundary_options parameter
for function imfilter.

10.3 IMAGE SMOOTHING (LOW-PASS FILTERS)

We have seen that different convolution masks can dramatically produce different
results when applied to the same input image (Figure 10.3). It is common to refer
to these operations as filtering operations and to the masks themselves as spatial fil-
ters. Spatial filters are often named based on their behavior in the spatial frequency

212 NEIGHBORHOOD PROCESSING

domain4: we call low-pass filters (LPFs) those spatial filters whose effect on the out-
put image is equivalent to attenuating high-frequency components (i.e., fine details in
the image) and preserving low-frequency components (i.e., coarser details and homo-
geneous areas in the image). Linear LPFs can be implemented using 2D convolution
masks with nonnegative coefficients. Linear LPFs are typically used to either blur an
image or reduce the amount of noise present in the image. In this chapter we refer
to both uses, but defer a more detailed discussion of noise reduction techniques until
Chapter 12.

High-pass filters (HPFs) work in a complementary way to LPFs, that is, they
preserve or enhance high-frequency components (with the possible side effect of
enhancing noisy pixels as well). HPFs will be discussed in Section 10.4.

In MATLAB

Linear filters are implemented in MATLAB using two functions: imfilter and—
optionally—fspecial.

The syntax for imfilter is

g = imfilter(f, h, mode, boundary_options, size_options);

where

• f is the input image.
• h is the filter mask.
• mode can be either ’conv’ or ’corr’, indicating, respectively, whether

filtering will be done using convolution or correlation (which is the default);
• boundary_options refer to how the filtering algorithm should treat border

values. There are four possibilities:

1. X: The boundaries of the input array (image) are extended by padding with
a value X. This is the default option (with X = 0).

2. ’symmetric’: The boundaries of the input array (image) are extended by
mirror-reflecting the image across its border.

3. ’replicate’: The boundaries of the input array (image) are extended by
replicating the values nearest to the image border.

4. ’circular’: The boundaries of the input array (image) are extended by
implicitly assuming the input array is periodic, that is, treating the image as
one period of a 2D periodic function.

• size_options: There are two options for the size of the resulting im-
age: ’full’ (output image is the full filtered result, that is, the size of the
extended/padded image) or ’same’ (output image is of the same size as input
image), which is the default.

• g is the output image.

4Frequency-domain image processing techniques will be discussed in Chapter 11.

IMAGE SMOOTHING (LOW-PASS FILTERS) 213

fspecial is an IPT function designed to simplify the creation of common 2D
image filters. Its syntax is h = fspecial(type, parameters), where

• h is the filter mask.
• type is one of the following:

– ’average’: Averaging filter

– ’disk’: Circular averaging filter

– ’gaussian’: Gaussian low-pass filter

– ’laplacian’: 2D Laplacian operator

– ’log’: Laplacian of Gaussian (LoG) filter

– ’motion’: Approximates the linear motion of a camera

– ’prewitt’ and ’sobel’: horizontal edge-emphasizing filters

– ’unsharp’: unsharp contrast enhancement filter
• parameters are optional parameters that vary depending on the type of

filter, for example, mask size, standard deviation (for ’gaussian’ filter), and
so on. See the IPT documentation for full details.

10.3.1 Mean Filter

The mean (also known as neighborhood averaging) filter is perhaps the simplest and
most widely known spatial smoothing filter. It uses convolution with a (usually 3 × 3)
mask whose coefficients have a value of 1 and divides the result by a scaling factor
(the total number of elements in the mask). A neighborhood averaging filter in which
all coefficients are equal is also referred to as a box filter.

The convolution mask for a 3 × 3 mean filter is given by

h(x, y) =

⎡
⎢⎣

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

⎤
⎥⎦ = 1

9

⎡
⎢⎣

1 1 1

1 1 1

1 1 1

⎤
⎥⎦ (10.9)

Figure 10.3b shows the result of applying the mask in equation (10.9) to the image
in Figure 10.3a.

The same concept can be applied to larger neighborhoods with a proportional
increase in the degree of blurriness of the resulting image. This is illustrated in
Figure 10.5 for masks of size 7 × 7 (part (b)), 15 × 15 (part (c)), and 31 × 31
(part (d)).

10.3.2 Variations

Many variations on the basic neighborhood averaging filter have been proposed in
the literature. In this section we summarize some of them.

214 NEIGHBORHOOD PROCESSING

FIGURE 10.5 Examples of applying the averaging filter with different mask sizes: (a) input
image (899 × 675 pixels); (b–d) output images corresponding to averaging masks of size 7 × 7,
15 × 15, and 31 × 31.

Modified Mask Coefficients The mask coefficients from equation (10.9) can be
modified, for example, to give more importance to the center pixel and its 4-connected
neighbors:

h(x, y) =

⎡
⎢⎣

0.075 0.125 0.075

0.125 0.2 0.125

0.075 0.125 0.075

⎤
⎥⎦ (10.10)

Directional Averaging The square mask can be replaced by a rectangular equiv-
alent to emphasize that the blurring is done in a specific direction.

Selective Application of Averaging Calculation Results Another variation
of the basic neighborhood averaging filter consists in applying a decision step between
calculating of the neighborhood average for a certain reference pixel and applying
the result to the output image. A simple decision step would compare the difference
between the original and processed values against a predefined threshold (T): if the

IMAGE SMOOTHING (LOW-PASS FILTERS) 215

difference is less than T , the calculated value is applied; otherwise, the original value
is kept. This is usually done to minimize the blurring of important edges in the image.

Removal of Outliers Before Calculating the Average This is the underlying
idea of the average of k nearest-neighbors technique [DR78], which is a variation of
the average filter, whose basic procedure consists of four steps:

1. Sort all pixel values in the neighborhood.

2. Select k values around the median value.

3. Calculate the average gray-level value of the k values selected in step 2.

4. Replace reference (central) pixel in the destination image with the value calcu-
lated in step 3.

It was conceived to allow the exclusion of high-contrast or edge pixels from the
average calculations and, therefore, reduce the degree of edge blurring in the resulting
image. For larger values of k, this filter’s performance will approach the conventional
average filter.

10.3.3 Gaussian Blur Filter

The Gaussian blur filter is the best-known example of a LPF implemented with a
nonuniform kernel. The mask coefficients for the Gaussian blur filter are samples
from a 2D Gaussian function (plotted in Figure 10.6):

h(x, y) = exp

[−(x2 + y2)

2σ2

]
(10.11)

The parameter σ controls the overall shape of the curve: the larger the value of σ,
the flatter the resulting curve.

� EXAMPLE 10.4

Figure 10.7 shows an example (using the imfilter and fspecial functions in
MATLAB) of applying a Gaussian blur filter to a monochrome image using different
kernel sizes and values of σ. You should be able to notice that the Gaussian blur pro-
duces a more natural blurring effect than the averaging filter. Moreover, the impact of
increasing mask size is less dramatic on the Gaussian blur filter than on the averaging
filter.

Some of the most notable properties of the Gaussian blur filter are as follows:

• The kernel is symmetric with respect to rotation; therefore, there is no directional
bias in the result.

• The kernel is separable, which can lead to fast computational implementations.
• The kernel’s coefficients fall off to (almost) zero at the kernel’s edges.

216 NEIGHBORHOOD PROCESSING

FIGURE 10.6 A 2D Gaussian function (with σ = 3).

• The Fourier transform (FT) of a Gaussian filter is another Gaussian (this will be
explained in Chapter 11).

• The convolution of two Gaussians is another Gaussian.
• The output image obtained after applying the Gaussian blur filter is more pleasing

to the eye than the one obtained using other low-pass filters.

10.3.4 Median and Other Nonlinear Filters

As stated earlier in this chapter, nonlinear filters also work at a neighborhood level,
but do not process the pixel values using the convolution operator. Instead, they
usually apply a ranking (sorting) function to the pixel values within the neighborhood
and select a value from the sorted list. For this reason, these are sometimes called
rank filters. Examples of nonlinear filters include the median filter (described in this
section) and the max and min filters (which will be described in Chapter 12).

The median filter is a popular nonlinear filter used in image processing. It works by
sorting the pixel values within a neighborhood, finding the median value, and replacing
the original pixel value with the median of that neighborhood (Figure 10.8).

The median filter works very well (and significantly better than an averaging filter
with comparable neighborhood size) in reducing “salt and pepper” noise (a type of
noise that causes very bright—salt— and very dark—pepper—isolated spots to appear
in an image) from images. Figure 10.9 compares the results obtained using median
filtering and the averaging filter for the case of an image contaminated with salt and
pepper noise.

IMAGE SMOOTHING (LOW-PASS FILTERS) 217

FIGURE 10.7 Example of using Gaussian blur filters.

FIGURE 10.8 Median filter. Redrawn from [BB08].

218 NEIGHBORHOOD PROCESSING

FIGURE 10.9 (a) Original image; (b) image with salt and pepper noise; (c) result of 3 × 3
median filtering; (d) result of 3 × 3 neighborhood averaging.

We shall resume our discussion of median filter, its implementation details, some
of its variants, and its use in noise reduction in Chapter 12.

10.4 IMAGE SHARPENING (HIGH-PASS FILTERS)

We call high-pass filters those spatial filters whose effect on an image is equivalent to
preserving or emphasizing its high-frequency components (i.e., fine details, points,
lines, and edges), that is, to highlight transitions in intensity within the image.

IMAGE SHARPENING (HIGH-PASS FILTERS) 219

Linear HPFs can be implemented using 2D convolution masks with positive and
negative coefficients, which correspond to a digital approximation of the Laplacian,
a simple, isotropic (i.e., rotation invariant) second-order derivative that is capable of
responding to intensity transitions in any direction.

10.4.1 The Laplacian

The Laplacian of an image f (x, y) is defined as

∇2(x, y) = ∂2(x, y)

∂x2 + ∂2(x, y)

∂y2 (10.12)

where the second derivatives are usually approximated—for digital signals—as

∂2(x, y)

∂x2 = f (x + 1, y) + f (x − 1, y) − 2f (x, y) (10.13)

and

∂2(x, y)

∂y2 = f (x, y + 1) + f (x, y − 1) − 2f (x, y) (10.14)

which results in a convenient expression for the Laplacian expressed as a sum of
products:

∇2(x, y) = f (x + 1, y) + f (x − 1, y) + f (x, y + 1) + f (x, y − 1) − 4f (x, y)

(10.15)

This expression can be implemented by the convolution mask below:

⎡
⎢⎣

0 −1 0

−1 4 −1

0 −1 0

⎤
⎥⎦

An alternative digital implementation of the Laplacian takes into account all eight
neighbors of the reference pixel in the input image and can be implemented by the
convolution mask below:

⎡
⎢⎣

−1 −1 −1

−1 8 −1

−1 −1 −1

⎤
⎥⎦

Note that it is common to find implementations in which the signs of each coeffi-
cient in the convolution masks above are reversed.

220 NEIGHBORHOOD PROCESSING

10.4.2 Composite Laplacian Mask

High-pass filters can be implemented using the Laplacian defined in equation (10.15)
and combining the result with the original image as follows:

g(x, y) = f (x, y) + c[∇2(x, y)] (10.16)

where c is a constant used to comply with the sign convention for the particular
implementation of the Laplacian mask: c = 1 if the center coefficient is positive,
while c = −1 if the same is negative.

The goal of adding the original image to the results of the Laplacian is to restore
the gray-level tonality that was lost in the Laplacian calculations.5

It is worth noting that if we want to implement the composite Laplacian mask
using the fspecial function in MATLAB, we need to figure out the correct value
of alpha.6 Choosing alpha = 0 will result in the following mask:

⎡
⎢⎣

0 1 0

1 −4 1

0 1 0

⎤
⎥⎦

It is also common to factor equation (10.16) into the design of the mask, which
produces the composite Laplacian mask below:

⎡
⎢⎣

0 −1 0

−1 5 −1

0 −1 0

⎤
⎥⎦

� EXAMPLE 10.5

Figure 10.10 shows an example (using the imfilter and fspecial functions in
MATLAB) of applying a high-pass filter to enhance (sharpen) a monochrome image.
Figure 10.10a shows the original image. Figure 10.10b shows the resulting enhanced
image obtained by applying equation (10.16) with c = −1 and Figure 10.10c shows
the result of using the eight-directional Laplacian operator instead. It can be claimed
that the results in part (c) are crisper than the ones obtained in part (b).

10.4.3 Directional Difference Filters

Directional difference filters are similar to the Laplacian high-frequency filter dis-
cussed earlier. The main difference is that—as their name suggests—directional

5The Laplacian mask, as well as any mask whose coefficients add up to zero, tends to produce results
centered around zero, which correspond to very dark images, whose only bright spots are indicative of
what the mask is designed to detect or emphasize, in this case, omnidirectional edges.
6Refer to the IPT documentation for further details.

IMAGE SHARPENING (HIGH-PASS FILTERS) 221

FIGURE 10.10 Example of using Laplacian masks to enhance an image.

difference filters emphasize edges in a specific direction. There filters are usually
called emboss filters. There are four representative masks that can be used to imple-
ment the emboss effect:

[
0 1 0
0 0 0
0 −1 0

] [
1 0 0
0 0 0
0 0 −1

] [
0 0 0
1 0 −1
0 0 0

] [
0 0 −1
0 0 0
1 0 0

]

10.4.4 Unsharp Masking

The unsharp masking technique consists of computing the subtraction between the
input image and a blurred (low-pass filtered) version of the input image. The ratio-
nale behind this technique is to “increase the amount of high-frequency (fine) detail
by reducing the importance of its low-frequency contents.” There have been many
variants of this basic idea proposed in the literature. In Tutorial 10.3 (page 227), you
will use MATLAB to implement unsharp masking in three different ways.

10.4.5 High-Boost Filtering

The high-boost filtering technique—sometimes referred to as high-frequency
emphasis—emphasizes the fine details of an image by applying a convolution mask:

⎡
⎢⎣

−1 −1 −1

−1 c −1

−1 −1 −1

⎤
⎥⎦

where c (c > 8) is a coefficient—sometimes called amplification factor—that controls
how much weight is given to the original image and the high-pass filtered version of
that image. For c = 8, the results would be equivalent to those seen earlier for the
conventional isotropic Laplacian mask (Figure 10.10c). Greater values of c will cause
significantly less sharpening.

222 NEIGHBORHOOD PROCESSING

10.5 REGION OF INTEREST PROCESSING

Filtering operations are sometimes performed only in a small part of an image—
known as a region of interest (ROI)—which can be specified by defining a (usually
binary) mask that delimits the portion of the image in which the operation will take
place. Image masking is the process of extracting such a subimage (or ROI) from a
larger image for further processing.

In MATLAB

ROI processing can be implemented in MATLAB using a combination of two func-
tions: roipoly—introduced in Tutorial 6.2—for image masking and roifilt2
for the actual processing of the selected ROI. Selecting a polygonal ROI can be done
interactively—clicking on the polygon vertices—or programmatically—specifying
the coordinates of the vertices using two separate vectors (one for rows and one for
columns).

� EXAMPLE 10.6

Figure 10.11 shows an example of ROI processing using the roifilt2 function in
MATLAB.

FIGURE 10.11 Example of region of interest processing: (a) original image; (b) result of
applying a Gaussian blur to a selected ROI; (c) result of applying a HPF to a selected ROI;
(d) result of applying a Laplacian mask to a selected ROI.

TUTORIAL 10.1: CONVOLUTION AND CORRELATION 223

10.6 COMBINING SPATIAL ENHANCEMENT METHODS

At the end of this chapter—especially after working on its tutorials—you must
have seen a significant number of useful methods and algorithms for processing
monochrome images. A legitimate question to ask at this point is as follows “When
faced with a practical image processing problem, which techniques should I use and in
which sequence?” Naturally, there is no universal answer to this question. Most image
processing solutions are problem specific and usually involve the application of sev-
eral algorithms—in a meaningful sequence—to achieve the desired goal. The choice
of algorithms and fine-tuning of their parameters is an almost inevitable trial-and-error
process that most image processing solution designers have to go through. Using the
knowledge acquired so far and a tool that allows easy experimentation—MATLAB—
you should be able to implement, configure, fine-tune, and combine image processing
algorithms for a wide variety of real-world problems.

10.7 TUTORIAL 10.1: CONVOLUTION AND CORRELATION

Goal

The goal of this tutorial is to learn how to perform a correlation and convolution
calculations in MATLAB.

Objectives

• Learn how to perform a correlation of two (1D and 2D) matrices.
• Learn how to perform a convolution of two (1D and 2D) matrices.
• Explore the imfilter function to perform correlation and convolution in

MATLAB.

Procedure

We shall start by exploring convolution and correlation in one dimension. This can
be achieved by means of the imfilter function.

1. Specify the two matrices to be used.

a = [0 0 0 1 0 0 0];
f = [1 2 3 4 5];

2. Perform convolution, using a as the input matrix and f as the filter.

g = imfilter(a,f,’full’,’conv’)

Question 1 What is the relationship between the size of the output matrix, the size
of the original matrix, and the length of the filter?

224 NEIGHBORHOOD PROCESSING

Question 2 How does changing the third parameter from ’full’ to ’same’
affect the output?

3. Perform correlation on the same set of matrices.

h = imfilter(a,f,’full’,’corr’)

The results from the previous step should confirm that convolution is related to
correlation by a reflection of the filter matrix, regardless of the number of dimensions
involved.

Let us see how correlation works on a small window of size 3 × 3. Consider the
window of values extracted from a larger image in Figure 10.12.

The correlation of two matrices is a sum of products. Numerically, the calculation
would be as follows:

(140)(−1) + (108)(0) + (94)(1) + (89)(−2) + (99)(0) + (125)(2)

+ (121)(−1) + (134)(0) + (221)(1) = 126

Here, we specify the image (which in our case will be the image region as in
Figure 10.12) and the mask from Figure 10.13. We will also explicitly tell the function
to use correlation, as it can perform both correlation and convolution.

4. Clear all workspace variables.

5. Use imfilter to perform a correlation of the two matrices.

FIGURE 10.12 A 3 × 3 image region.

TUTORIAL 10.2: SMOOTHING FILTERS IN THE SPATIAL DOMAIN 225

FIGURE 10.13 A 3 × 3 mask.

x = [140 108 94;89 99 125;121 134 221]
y = [-1 0 1;-2 0 2;-1 0 1]
z = imfilter(x,y,’corr’)

Question 3 In the resulting matrix (z), we are interested only in the center value.
How does this value compare with our calculation illustrated above?

Question 4 What are the other values in the resulting matrix?

Question 5 Note in the last step we did not specify if the output should be’full’
or ’same’. What is the default for this setting if it is not specified?

To perform convolution, we use the same technique as in correlation. The difference
here is that the filter matrix is rotated 180◦ before performing the sum of products.
Again, the calculation of the convolution of the given image region and mask is
performed as follows:

(140)(1) + (108)(0) + (94)(−1) + (89)(2) + (99)(0) + (125)(−2) + (121)(1)

+(134)(0) + (221)(−1) = −126

6. Use imfilter to perform a convolution of the two matrices.

z2 = imfilter(x,y,’conv’)

Question 6 How does the center value of the resulting matrix compare with our
calculation above?

10.8 TUTORIAL 10.2: SMOOTHING FILTERS IN THE SPATIAL DOMAIN

Goal

The goal of this tutorial is to learn how to implement smoothing filters in the spatial
domain.

Objectives

• Learn how to use the fspecial function to generate commonly used kernels.

226 NEIGHBORHOOD PROCESSING

• Explore applying smoothing filters to images using the imfilter function.
• Learn how to implement uniform and nonuniform averaging masks.
• Learn how to implement a Gaussian mask.

Procedure

In the first part of this procedure, we will use the imfilter function to implement a
3 × 3 mean (average) filter. We could easily generate the mask array ourselves (nine
values, each equal to 1/9), but the IPT offers a function that will automatically create
this and several other commonly used masks.

1. Load the cameraman image and prepare a subplot.

I = imread(’cameraman.tif’);
figure, subplot(1,2,1), imshow(I), title(’Original Image’);

2. Create a mean (averaging) filter automatically through thefspecial function.

fn = fspecial(’average’)

Question 1 Explain what the value of the variable fn represents.

Question 2 What other commonly used masks is the fspecial function capable
of generating?

3. Filter the cameraman image with the generated mask.

I_new = imfilter(I,fn);
subplot(1,2,2), imshow(I_new), title(’Filtered Image’);

Question 3 What was the effect of the averaging filter?
The mean filter we just implemented was a uniform filter—all coefficients were

equivalent. The nonuniform version of the mean filter gives the center of the mask (the
pixel in question) a higher weighted value, while all other coefficients are weighted
by their distance from the center. This particular mask cannot be generated by the
fspecial function, so we must create it ourselves.

4. Create a nonuniform version of the mean filter.

fn2 = [1 2 1; 2 4 2; 1 2 1]
fn2 = fn2 * (1/16)

TUTORIAL 10.2: SMOOTHING FILTERS IN THE SPATIAL DOMAIN 227

FIGURE 10.14 Uniform and nonuniform averaging masks.

Recall that the uniform mean filter could be created by generating a 3 × 3 matrix of
1’s, and then multiplying each coefficient by a factor of 1/9. In the nonuniform mean
filter implantation above, note that the sum of all the original values in the filter equals
16—this is why we divide each coefficient by 16 in the second step. Figure 10.14
illustrates the previous two masks we created.

5. Filter the original image with the new, nonuniform averaging mask.

I_new2 = imfilter(I,fn2);

figure, subplot(1,2,1), imshow(I_new), title(’Uniform Average’);

subplot(1,2,2), imshow(I_new2), title(’Non-uniform Average’);

Question 4 Comment on the subjective differences between using the uniform
averaging filter and the nonuniform averaging filter.

The Gaussian filter is similar to the nonuniform averaging filter in that the coeffi-
cients are not equivalent. The coefficient values, however, are not a function of their
distance from the center pixel, but instead are modeled from the Gaussian curve.

6. Create a Gaussian filter and display the kernel as a 3D plot.

fn_gau = fspecial(’gaussian’,9,1.5);
figure, bar3(fn_gau,’b’), ...
title(’Gaussian filter as a 3D graph’);

7. Filter the cameraman image using the Gaussian mask.

I_new3 = imfilter(I,fn_gau);
figure
subplot(1,3,1), imshow(I), title(’Original Image’);
subplot(1,3,2), imshow(I_new), title(’Average Filter’);
subplot(1,3,3), imshow(I_new3), title(’Gaussian Filter’);

Question 5 Experiment with the size of the Gaussian filter and the value of σ.
How can you change the amount of blur that results from the filter?

228 NEIGHBORHOOD PROCESSING

10.9 TUTORIAL 10.3: SHARPENING FILTERS IN THE SPATIAL
DOMAIN

Goal

The goal of this tutorial is to learn how to implement sharpening filters in the spatial
domain.

Objectives

• Learn how to implement the several variations of the Laplacian mask.
• Explore different implementations of the unsharp masking technique.
• Learn how to apply a high-boost filtering mask.

Procedure

To implement the Laplacian filter, we can either create our own mask or use the
fspecial function to generate the mask for us. In the next step, we will use
fspecial, but keep in mind that you can just as well create the mask on your
own.

1. Load the moon image and prepare a subplot figure.

I = imread(’moon.tif’);

Id = im2double(I);

figure, subplot(2,2,1), imshow(Id), title(’Original Image’);

We are required to convert the image to doubles because a Laplacian filtered image
can result in negative values. If we were to keep the image as classuint8, all negative
values would be truncated and, therefore, would not accurately reflect the results of
having applied a Laplacian mask. By converting the image to doubles, all negative
values will remain intact.

2. Create a Laplacian kernel and apply it to the image using the imfilter
function.

f = fspecial(’laplacian’,0);

I_filt = imfilter(Id,f);

subplot(2,2,2), imshow(I_filt), title(’Laplacian of Original’);

Question 1 When specifying the Laplacian filter in thefspecial function, what
is the second parameter (in the case above, 0) used for?

Question 2 What is the minimum value of the filtered image?

TUTORIAL 10.3: SHARPENING FILTERS IN THE SPATIAL DOMAIN 229

Question 3 Verify that auint8filtered image would not reflect negative numbers.
You can use the image I that was previously loaded.

You will notice that it is difficult to see details of the Laplacian filtered image. To
get a better perspective of the detail the Laplacian mask produced, we can scale the
image for display purposes so that its values span the dynamic range of the gray scale.

3. Display a scaled version of the Laplacian image for display purposes.

subplot(2,2,3), imshow(I_filt,[]), title(’Scaled Laplacian’);

The center coefficient of the Laplacian mask we created is negative. Recall from
the chapter that if the mask center is negative, we subtract the filtered image from the
original, and if it is positive, we add. In our case, we will subtract them.

4. Subtract the filtered image from the original image to create the sharpened
image.

I_sharp = imsubtract(Id,I_filt);
subplot(2,2,4), imshow(I_sharp), title(’Sharpened Image’);

A composite version of the Laplacian mask performs the entire operation all at
once. By using this composite mask, we do not need to add or subtract the filtered
image—the resulting image is the sharpened image.

5. Use the composite Laplacian mask to perform image sharpening in one step.

f2 = [0 -1 0; -1 5 -1; 0 -1 0]

I_sharp2 = imfilter(Id,f2);

figure, subplot(1,2,1), imshow(Id), title(’Original Image’);

subplot(1,2,2), imshow(I_sharp2), title(’Composite Laplacian’);

Question 4 You may have noticed that we created the mask without using the
fspecial function. Is the fspecial function capable of generating the simplified
Laplacian mask?

Question 5 Both Laplacian masks used above did not take into account the four
corner pixels (their coefficients are 0). Reapply the Laplacian mask, but this time
use the version of the mask that accounts for the corner pixels as well. Both the
standard and simplified versions of this mask are illustrated in Figure 10.15. How
does accounting for corner pixels change the output?

Unsharp Masking Unsharp masking is a simple process of subtracting a blurred
image from its original to generate a sharper image. Although the concept is

230 NEIGHBORHOOD PROCESSING

FIGURE 10.15 Laplacian masks that account for corner pixels (standard and composite).

straightforward, there are three ways it can be implemented. Figures 10.16–10.18
illustrate these processes.

Let us first implement the process described in Figure 10.16.

6. Close all open figures and clear all workspace variables.

7. Load the moon image and generate the blurred image.

I = imread(’moon.tif’);
f_blur = fspecial(’average’,5);
I_blur = imfilter(I,f_blur);
figure, subplot(1,3,1), imshow(I), title(’Original Image’);
subplot(1,3,2), imshow(I_blur), title(’Blurred Image’);

Question 6 What does the second parameter of the fspecial function call
mean?

We must now shrink the histogram of the blurred image. The amount by which we
shrink the histogram will ultimately determine the level of enhancement in the final
result. In our case, we will scale the histogram to range between 0.0 and 0.4, where
the full dynamic grayscale range is [0.0 1.0].

8. Shrink the histogram of the blurred image.

I_blur_adj = imadjust(I_blur,stretchlim(I_blur),[0 0.4]);

9. Now subtract the blurred image from the original image.

I_sharp = imsubtract(I,I_blur_adj);

FIGURE 10.16 Unsharp masking process including histogram adjustment.

TUTORIAL 10.3: SHARPENING FILTERS IN THE SPATIAL DOMAIN 231

FIGURE 10.17 Unsharp masking process with sharpening image.

We must now perform a histogram stretch on the new image in order to account
for previously shrinking the blurred image.

10. Stretch the sharpened image histogram to the full dynamic grayscale range and
display the final result.

I_sharp_adj = imadjust(I_sharp);
subplot(1,3,3), imshow(I_sharp_adj), title(’Sharp Image’);

Question 7 We learned that by shrinking the blurred image’s histogram, we can
control the amount of sharpening in the final image by specifying the maximum range
value. What other factor can alter the amount of sharpening?

We will now look at the second implementation of the unsharp masking technique,
illustrated in Figure 10.17. We have already generated a blurred version of the moon
image, so we can skip that step.

11. Subtract the blurred image from the original image to generate a sharpening
image.

I_sharpening = imsubtract(I,I_blur);

12. Add sharpening image to original image to produce the final result.

I_sharp2 = imadd(I,I_sharpening);
figure, subplot(1,2,1), imshow(I), title(’Original Image’);
subplot(1,2,2), imshow(I_sharp2), title(’Sharp Image’);

Question 8 How can we adjust the amount of sharpening when using this imple-
mentation?

The third implementation uses a convolution mask, which can be generated using
the fspecial function. This implementation is illustrated in Figure 10.18.

13. Generate unsharp masking kernel using the fspecial function.

f_unsharp = fspecial(’unsharp’);

232 NEIGHBORHOOD PROCESSING

FIGURE 10.18 Unsharp masking process using convolution mask.

14. Apply the mask to the original image to create a sharper image.

I_sharp3 = imfilter(I,f_unsharp);
figure, subplot(1,2,1), imshow(I), title(’Original Image’);
subplot(1,2,2), imshow(I_sharp3), title(’Sharp Image’);

Question 9 How do we control the level of sharpening with this implementation?

High-Boost Filtering High-boost filtering is a sharpening technique that involves
creating a sharpening image and adding it to the original image. The mask used to
create the sharpening image is illustrated in Figure 10.19. Note that there are two
versions of the mask: one that does not include the corner pixels and another that
does.

15. Close any open figures.

16. Create a high-boost mask (where A = 1) and apply it to the moon image.

f_hb = [0 -1 0; -1 5 -1; 0 -1 0];
I_sharp4 = imfilter(I,f_hb);
figure, subplot(1,2,1), imshow(I), title(’Original Image’);
subplot(1,2,2), imshow(I_sharp4), title(’Sharp Image’);

Question 10 What happens to the output image when A is less than 1? What about
when A is greater than 1?

You may have noticed that when A = 1, the high-boost filter generalizes to the
composite Laplacian mask discussed in step 5. As the value of A increases, the output
image starts to resemble an image multiplied by a constant.

FIGURE 10.19 High-boost masks with and without regard to corner pixels.

TUTORIAL 10.3: SHARPENING FILTERS IN THE SPATIAL DOMAIN 233

17. Show that a high-boost mask when A = 3 looks similar to the image simply
multiplied by 3.

f_hb2 = [0 -1 0; -1 7 -1; 0 -1 0];

I_sharp5 = imfilter(I,f_hb2);

I_mult = immultiply(I,3);

figure, subplot(1,3,1), imshow(I), title(’Original Image’);

subplot(1,3,2), imshow(I_sharp5), title(’High Boost, A = 3’);

subplot(1,3,3), imshow(I_mult), title(’Multiplied by 3’);

Question 11 At what value of A does this filter stop being effective (resemble the
image multiplied by a constant)?

WHAT HAVE WE LEARNED?

• Neighborhood processing is the name given to image processing techniques in
which the new value of a processed image pixel is a function of its original
value and the values of (some of) its neighbors. It differs from point processing
(Chapters 8 and 9), where the resulting pixel value depends only on the original
value and on the transformation function applied to each pixel in the original
image.

• Convolution is a widely used mathematical operator that processes an image
by computing—for each pixel—a weighted sum of values of that pixel and
its neighbors. Depending on the choice of weights, a wide variety of image
processing operations can be implemented.

• Low-pass filters are used to smooth an image or reduce the amount of noise in
it. Low-pass linear filters can be implemented using 2D convolution masks with
nonnegative coefficients. The mean (averaging) filter is the simplest—and most
popular—low-pass linear filter. It works by averaging out the pixel values within
a neighborhood.

• Low-pass nonlinear filters also work at a neighborhood level, but do not process
the pixel values using the convolution operator. The median filter is one of the
most popular low-pass linear filters. It works by sorting the pixel values within
a neighborhood, finding the median value, and replacing the original pixel value
with the median of that neighborhood. The median filter works extremely well
in removing salt and pepper noise from images.

• Convolution operators can also be used to detect or emphasize the high-
frequency contents of an image, such as fine details, points, lines, and edges.
In such cases, the resulting filter is usually called a high-pass filter. High-pass
linear filters can be implemented using 2D convolution masks with positive and
negative coefficients.

• The spatial-domain image enhancement techniques discussed in Chapters 8–10
can be combined to solve specific image processing problems. The secret of

234 NEIGHBORHOOD PROCESSING

success consists in deciding which techniques to use, how to configure their
parameters (e.g., window size and mask coefficients), and in which sequence
they should be applied.

LEARN MORE ABOUT IT

• Section 6.5 of [BB08] and Section 7.2 of [Eff00] discuss implementation aspects
associated with spatial filters.

• Chapter 7 of [Pra07] discusses convolution and correlation in greater mathemat-
ical depth.

• Chapter 4 of [Jah05] and Section 6.3 of [BB08] describe the formal properties
of linear filters.

• Chapter 11 of [Jah05] is entirely devoted to an in-depth discussion of linear
filters.

• Section 3.4 of [Dav04] introduces mode filters and compares them with mean
and median filters in the context of machine vision applications.

• Section 5.3.1 of [SHB08] discusses several edge-preserving variants of the
basic neighborhood averaging filter. MATLAB implementation for one of
these methods—smoothing using a rotating mask—appears in Section 5.4
of [SKH08].

• Section 3.8 of [GW08] discusses the use of fuzzy techniques for spatial filtering.

10.10 PROBLEMS

10.1 Image processing tasks such as blurring or sharpening an image can easily
be accomplished using neighborhood-oriented techniques described in this chapter.
Can these tasks also be achieved using point operations (such as the ones described
in Chapters 8 and 9)? Explain.

10.2 Write MATLAB code to reproduce the results from Example 10.1.

10.3 Write MATLAB code to reproduce the results from Example 10.2.

10.4 Write MATLAB code to implement a linear filter that creates a horizontal blur
over a length of 9 pixels, comparable to what would happen to a image if the camera
were moved during the exposure interval.

10.5 Write MATLAB code to implement the emboss effect described in
Section 10.4.3 and test it with an input image of your choice. Do the results cor-
respond to what you expected?

CHAPTER 11

FREQUENCY-DOMAIN FILTERING

WHAT WILL WE LEARN?

• Which mathematical tools are used to represent an image’s contents in the 2D
frequency domain?

• What is the Fourier transform, what are its main properties, and how is it used
in the context of frequency-domain filtering?

• How are image processing filters designed and implemented in the frequency
domain?

• What are the differences between low-pass and high-pass filters (HPFs)?
• What are the differences among ideal, Butterworth, and Gaussian filters?

11.1 INTRODUCTION

This chapter builds upon the ideas introduced in Section 2.4.4, which state that some
image processing tasks can be performed by transforming the input images to a dif-
ferent domain, applying selected algorithms in the transform domain, and eventually
applying the inverse transformation to the result. In this chapter, we are particularly
interested in a special case of operations in the transform domain, which we call
frequency-domain filtering. Frequency-domain filters work by following a straight-
forward sequence of steps (Figure 11.1):

Practical Image and Video Processing Using MATLAB®. By Oge Marques.
© 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

235

236 FREQUENCY-DOMAIN FILTERING

FIGURE 11.1 Frequency-domain operations.

1. The input image is transformed to a 2D frequency-domain representation using
the 2D Fourier transform (FT).

2. A filter of specific type (e.g., ideal, Butterworth, Gaussian) and behavior (e.g.,
low pass, high pass) is specified and applied to the frequency-domain represen-
tation of the image.

3. The resulting values are transformed back to the 2D spatial domain by applying
the inverse 2D Fourier transform, producing an output (filtered) image.

The mathematical foundation of frequency-domain techniques is the convolution
theorem. Let g(x, y) be an image obtained by the convolution1 (denoted by the ∗
symbol) of an image f (x, y) with a linear, position invariant operator h(x, y), that is,

g(x, y) = f (x, y) ∗ h(x, y) (11.1)

From the convolution theorem, the following frequency-domain relation holds:

G(u, v) = F (u, v)H(u, v) (11.2)

where G, F , and H are the Fourier transforms of g, f , and h, respectively.
Many image processing problems can be expressed in the form of equation (11.2).

In a noise removal application, for instance, given f (x, y), the goal, after computing
F (u, v), will be to select H(u, v) such that the desired resulting image,

g(x, y) = F−1 [F (u, v)H(u, v)] (11.3)

where F−1 is the inverse 2D Fourier transform operation, exhibits a reduction in
the noisy contents present in the original image f (x, y). For certain types of noise,

1Two-dimensional discrete convolution was introduced in Section 10.2.2.

FOURIER TRANSFORM: THE MATHEMATICAL FOUNDATION 237

FIGURE 11.2 Two examples of response functions for frequency-domain filters: (a) low-pass
filter equivalent to a 3 × 3 average filter in the spatial domain; (b) high-pass filter equivalent
to a 3 × 3 composite Laplacian sharpening filter in the spatial domain.

this result could be achieved using a low-pass Butterworth filter (Section 11.3.3), for
example.

There are two options for designing and implementing image filters in the
frequency domain using MATLAB and IPT:

1. Obtain the frequency-domain filter response function from spatial filter con-
volution mask. The IPT has a function that does exactly that: freqz2.
Figure 11.2 shows examples of such response functions for the 3 × 3 average
filter described by equation (10.9) and the 3 × 3 composite Laplacian sharpen-
ing filter described by equation (10.16).

2. Generate filters directly in the frequency domain. In this case, a meshgrid ar-
ray (of the same size as the image) is created using the MATLAB function
meshgrid. This is the method used in the tutorials of this chapter.

11.2 FOURIER TRANSFORM: THE MATHEMATICAL FOUNDATION

The FT is a fundamental tool in signal and image processing.2 In this section, we
discuss the mathematical aspects of 2D transforms in general and then introduce the
2D FT and its main properties.

11.2.1 Basic Concepts

A transform is a mathematical tool that allows the conversion of a set of values
to another set of values, creating, therefore, a new way of representing the same

2A complete, detailed analysis of the FT and associated concepts for 1D signals is beyond the scope of
this book. Refer to the section “Learn More About It” for useful pointers.

238 FREQUENCY-DOMAIN FILTERING

FIGURE 11.3 Operations in a transform domain.

information. In the field of image processing, the original domain is referred to as
spatial domain, whereas the results are said to lie in the transform domain. The
motivation for using mathematical transforms in image processing stems from the
fact that some tasks are best performed by transforming the input images, applying
selected algorithms in the transform domain, and eventually applying the inverse
transformation to the result (Figure 11.3).

Linear 2D transforms can be expressed in generic form in terms of a forward
transform T (u, v) as

T (u, v) =
M−1∑
x=0

N−1∑
y=0

f (x, y) · r(x, y, u, v) (11.4)

where u (u = 0, 1, 2, . . . , M − 1) and v (v = 0, 1, 2, . . . , N − 1) are called trans-
form variables, f (x, y) is the input image, x and y are the row and column
dimensions of f (x, y) (as described in Section 2.1), and r(x, y, u, v) is called
the forward transformation kernel, sometimes expressed as a collection of basis
images.

The original image f (x, y) can be recovered by applying the inverse transform of
T (u, v):

f (x, y) =
M−1∑
u=0

N−1∑
v=0

T (u, v) · s(x, y, u, v) (11.5)

where x = 0, 1, 2, . . . , M − 1, y = 0, 1, 2, . . . , N − 1, and s(x, y, u, v) is called the
inverse transformation kernel.

The combination of equations (11.4) and (11.5) is usually referred to as a
transform pair. Different mathematical transforms use different transformation ker-
nels. For the sake of this chapter, we shall limit the discussion to the Fourier
Transform.3

3The interested reader should refer to the section “Learn More About It” for useful references on other
mathematical transforms.

FOURIER TRANSFORM: THE MATHEMATICAL FOUNDATION 239

11.2.2 The 2D Discrete Fourier Transform: Mathematical Formulation

The 2D Fourier transform of an image is a special case of equations (11.4) and (11.5)
where

r(x, y, u, v) = exp[−j2π(ux/M + vy/N)] (11.6)

and

s(x, y, u, v) = 1

MN
exp[j2π(ux/M + vy/N)] (11.7)

where j = √−1.
Substituting equations (11.6) and (11.7) into equations (11.4) and (11.5), we have

F (u, v) = T (u, v) =
M−1∑
x=0

N−1∑
y=0

f (x, y) · exp[−j2π(ux/M + vy/N)] (11.8)

and

f (x, y) = F−1[F (u, v)] = 1

MN

M−1∑
u=0

N−1∑
v=0

T (u, v) · exp[j2π(ux/M + vy/N)]

(11.9)

Remember from our discussion in Chapter 2 that array indices in MATLAB start
at 1; therefore, F(1,1) and f(1,1) in MATLAB correspond to F (0, 0) and f (0, 0)
in equations (11.8) and (11.9).

The value of the 2D FT at the origin of the frequency domain (i.e, F (0, 0)) is called
the DC component of the FT, a terminology borrowed from electrical engineering,
where DC means direct current, that is, alternating current of zero frequency. The
DC component of the FT is the product of the average intensity value of f (x, y)
and a factor (MN). The FT is usually implemented using a computationally efficient
algorithm known as fast Fourier transform (FFT) [Bri74].

The 2D FT of an image is an array of complex numbers, usually expressed in polar
coordinates, whose components are magnitude (or amplitude) (|F (u, v)|) and phase
(φ(u, v)), which can be expressed as

|F (u, v)| =
√

[R(u, v)]2 + [I(u, v)]2 (11.10)

and

φ(u, v) = arctan

[
I(u, v)

R(u, v)

]
(11.11)

where R(u, v) and I(u, v) are the real and imaginary parts of F (u, v), that is, F (u, v) =
R(u, v) + jI(u, v).

240 FREQUENCY-DOMAIN FILTERING

In MATLAB

The 2D FT and its inverse are implemented in MATLAB by functions fft2 and
ifft2, respectively. 2D FT results are usually shifted for visualization purposes in
such a way as to position the zero-frequency component at the center of the figure
(exploiting the periodicity property of the 2D FT, described in Section 11.2.3). This
can be accomplished by function fftshift. These functions are extensively used
in the tutorials of this chapter. MATLAB also includes function ifftshift, whose
basic function is to undo the results of fftshift.

� EXAMPLE 11.1

Figure 11.4 shows an image and its frequency spectrum (the log transformation of
the amplitude component of its 2D FT coefficients). The transformed version of the
image clearly bears no resemblance to the original version. Moreover, it does not
provide any obvious visual hints as to what the original image contents were. Do not
be discouraged by these facts, though. As you will soon see, these apparent limitations
of the transformed version of the image will not prevent us from designing frequency-
domain filters to achieve specific goals. The resulting image—obtained after applying
the inverse transform—will allow us to judge whether those goals were successfully
achieved or not.

MATLAB code:

I = imread(’Figure11_04_a.png’);
Id = im2double(I);
ft = fft2(Id);
ft_shift = fftshift(ft);
imshow(log(1 + abs(ft_shift)), [])

FIGURE 11.4 (a) Original image (256 × 256 pixels); (b) Fourier spectrum of the image in
(a).

FOURIER TRANSFORM: THE MATHEMATICAL FOUNDATION 241

11.2.3 Summary of Properties of the Fourier Transform

In this section, we present selected properties of the 2D FT and its inverse that are
particularly important in image processing.

Linearity The Fourier transform is a linear operator, that is,

F[a · f1(x, y) + b · f2(x, y)] = a · F1(u, v) + b · F2(u, v) (11.12)

and

a · f1(x, y) + b · f2(x, y) = F−1[a · F1(u, v) + b · F2(u, v)] (11.13)

where a and b are constants.

Translation The translation property of the Fourier transform shows that if an
image is moved (translated), the resulting frequency-domain spectrum undergoes a
phase shift, but its amplitude remains the same. Mathematically,

F[f (x − x0, y − y0)] = F (u, v) · exp[−j2π(ux0/M + vy0/N)] (11.14)

and

f (x − x0, y − y0) = F−1F (u, v) · exp[j2π(ux0/M + vy0/N)] (11.15)

Conjugate Symmetry If f (x, y) is real, its FT is conjugate symmetric about the
origin:

F (u, v) = F∗(−u, −v) (11.16)

where F∗(u, v) is the conjugate of F (u, v); that is, if F (u, v) = R(u, v) + jI(u, v),
then F∗(u, v) = R(u, v) − jI(u, v).

Combining equations (11.10) and (11.16), we have

|F (u, v)| = |F (−u, −v)| (11.17)

Periodicity The FT (and its inverse) are infinitely periodic in both the u and v
directions. Mathematically,

F (u, v) = F (u + M, v + N) (11.18)

and

f (x, y) = f (x + M, y + N) (11.19)

Separability The Fourier transform is separable; that is, the FT of a 2D image can
be computed by two passes of the 1D FT algorithm, one along the rows (columns),
and the other along the columns (rows) of the result.

242 FREQUENCY-DOMAIN FILTERING

FIGURE 11.5 Original image (a) and its 2D FT spectrum (b); rotated image (c) and its 2D
FT spectrum (d).

Rotation If an image is rotated by a certain angle θ, its 2D FT will be rotated by
the same angle (Figure 11.5).

11.2.4 Other Mathematical Transforms

In addition to the Fourier transform, there are many other mathematical transforms
used in image processing and analysis. Some of those transforms will be described
later in the book, whenever needed (e.g., the discrete cosine transform (DCT) in
Chapter 17), while many others (e.g., sine, Hartley, Walsh, Hadamard, wavelet,
and slant, to mention but a few) will not be discussed in this text. Refer to the
Section “Learn More About It” at the end of the chapter for useful pointers and
references.

LOW-PASS FILTERING 243

FIGURE 11.6 Example of using LPF to smooth false contours: (a) original image; (b) result
of applying a LPF.

FIGURE 11.7 Example of using LPF for noise reduction: (a) original image; (b) result of
applying a LPF.

11.3 LOW-PASS FILTERING

Low-pass filters attenuate the high-frequency components of the Fourier transform
of an image, while leaving the low-frequency components unchanged. The typical
overall effect of applying a low-pass filter (LPF) to an image is a controlled degree of
blurring. Figures 11.6 and 11.7 show examples of applications of LPFs for smoothing
of false contours (Section 5.4.3) and noise reduction,4 respectively.

4We shall discuss noise reduction in more detail in Chapter 12.

244 FREQUENCY-DOMAIN FILTERING

FIGURE 11.8 Frequency response plot for an ideal LPF: (a) 3D view; (b) 2D view from
the top.

11.3.1 Ideal LPF

An ideal low-pass filter enhances all frequency components within a specified radius
(from the center of the FT), while attenuating all others. Its mathematical formulation
is given as follows:

HI (u, v) =
{

1 if D(u, v) ≤ D0

0 if D(u, v) > D0
(11.20)

where D(u, v) =
√

(u2 + v2) represents the distance between a point of coordinates
(u, v) and the origin of the 2D frequency plan, and D0 is a nonnegative value, referred
to as the cutoff frequency (or cutoff radius).

Figure 11.8 shows the frequency response plot for an ideal LPF. Figure 11.9 shows
an example image and its Fourier spectrum. The rings in Figure 11.9b represent
different values for cutoff frequencies (D0): 8, 16, 32, 64, and 128.

FIGURE 11.9 (a) Original image (256 × 256 pixels); (b) Fourier spectrum of the image in
(a). The rings represent cutoff frequencies for the low-pass filter examples described later.

LOW-PASS FILTERING 245

FIGURE 11.10 (a) Original image (256 × 256 pixels); (b–f) ideal LPF results for filters with
cutoff frequency corresponding to the radii in Figure 11.9b, namely, 8, 16, 32, 64, and 128
pixels.

246 FREQUENCY-DOMAIN FILTERING

FIGURE 11.11 Frequency response plot for a Gaussian LPF: (a) 3D view; (b) 2D view from
the top.

Figure 11.10 shows the results of applying ideal low-pass filters with different
cutoff frequencies to the original image: lower values of D0 correspond to blurrier
results. A close inspection of Figure 11.10 shows that the filtered images not only are
blurry versions of the input image—an expected outcome, common to all low-pass
filters—but also exhibits noticeable ringing artifacts that appear because of the sharp
transition between passband and stopband in ideal (low-pass) filters.5

11.3.2 Gaussian LPF

A Gaussian low-pass filter attenuates high frequencies using a transfer function whose
shape is based on a Gaussian curve. The width of the bell-shaped curve can be con-
trolled by specifying the parameter σ, which is functionally equivalent to the cutoff
frequency D0 defined previously: lower values of σ correspond to more strict filtering,
resulting in blurrier results. The smooth transition between passband and stopband of
the Gaussian LPF guarantees that there will be no noticeable ringing artifacts in the
output image. The Gaussian LPF can be mathematically described as

HG(u, v) = e−(D(u,v)2)/2σ2
(11.21)

Figure 11.11 shows the frequency response plot for a Gaussian LPF.
Figure 11.12 shows the results of applying Gaussian low-pass filters with different

values of σ.

11.3.3 Butterworth LPF

The Butterworth family of filters—widely used in 1D analog signal processing—
provides an alternative filtering strategy whose behavior is a function of the cutoff

5The fact that the “ideal” LPF produces less than perfect results might seem ironic to the reader; in the
context of this discussion, “ideal” refers to abrupt transition between passband and stopband.

LOW-PASS FILTERING 247

FIGURE 11.12 (a) Original image (256 × 256 pixels); (b–f) Gaussian LPF results for filters
with different values for σ: 5, 10, 20, 30, and 75.

frequency, D0, and the order of the filter, n. The shape of the filter’s frequency re-
sponse, particularly the steepness of the transition between passband and stopband, is
also controlled by the value of n: higher values of n correspond to steeper transitions,
approaching the ideal filter behavior.

248 FREQUENCY-DOMAIN FILTERING

FIGURE 11.13 Frequency response plot for a Butterworth LPF of order n = 4: (a) 3D view;
(b) 2D view from the top.

The Butterworth filter can be mathematically described as

HB(u, v) = 1

1 + [D(u, v)/D0]2n
(11.22)

where D0 is the cutoff frequency and n is the order of the filter. Figure 11.13 shows
the frequency response plot for a Butterworth LPF of order n = 4.

Figure 11.14 shows the results of applying Butterworth low-pass filters with n = 4
and different cutoff frequencies to the original image. Comparing these results with
the ones observed for the ideal LPF (Figure 11.10) for the same cutoff frequency, we
can see that they show a comparable amount of blurring, but no ringing effect.

11.4 HIGH-PASS FILTERING

High-pass filters attenuate the low-frequency components of the Fourier transform
of an image, while enhancing the high-frequency components (or leaving them un-
changed). The typical overall effect of applying a high-pass filter to an image is a
controlled degree of sharpening.

11.4.1 Ideal HPF

An ideal high-pass filter attenuates all frequency components within a specified radius
(from the center of the FT), while enhancing all others. Its mathematical formulation
is given as follows:

HI (u, v) =
{

0 if D(u, v) ≤ D0

1 if D(u, v) > D0
(11.23)

HIGH-PASS FILTERING 249

FIGURE 11.14 (a) Original image (512 × 512 pixels); (b–f) fourth-order Butterworth LPF
results for filters with cutoff frequency corresponding to the radii in Figure 11.9b, namely,
8, 16, 32, 64, and 128 pixels.

where D(u, v) =
√

(u2 + v2) represents the distance between a point of coordinates
(u, v) and the origin of the 2D frequency plan, and D0 is a nonnegative value, referred
to as the cutoff frequency (or cutoff radius).

Figure 11.15 shows the frequency response plot for an ideal HPF.

250 FREQUENCY-DOMAIN FILTERING

FIGURE 11.15 Frequency response plot for an ideal HPF: (a) 3D view; (b) 2D view from
the top.

11.4.2 Gaussian HPF

A Gaussian high-pass filter attenuates low frequencies using a transfer function whose
shape is based on a Gaussian curve. The behavior of the filter can be controlled by
specifying the parameter σ, which is functionally equivalent to the cutoff frequency
D0. The Gaussian HPF can be mathematically described as

HG(u, v) = 1 − e−(D(u,v)2)/2σ2
(11.24)

Figure 11.16 shows the frequency response plot for a Gaussian HPF.

11.4.3 Butterworth HPF

The Butterworth high-pass filter can be mathematically described as

HB(u, v) = 1

1 + [D0/D(u, v)]2n
(11.25)

where D0 is the cutoff frequency and n is the order of the filter.

FIGURE 11.16 Frequency response plot for a Gaussian HPF: (a) 3D view; (b) 2D view from
the top.

HIGH-PASS FILTERING 251

FIGURE 11.17 Frequency response plot for a Butterworth HPF of order n = 4: (a) 3D view;
(b) 2D view from the top.

Figure 11.17 shows the frequency response plot for a Butterworth HPF of order
n = 4.

11.4.4 High-Frequency Emphasis

The application of a HPF to an image usually causes a crispening of the high-frequency
contents of the image at the expense of the low-frequency contents, which are severely
attenuated, leading to a loss of information present in large patches of the original
image (its low-frequency components). High-frequency emphasis is a technique that
preserves the low-frequency contents of the input image (while enhancing its high-
frequency components) by multiplying the high-pass filter function by a constant and
adding an offset to the result, that is,

Hhfe(u, v) = a + bH(u, v) (11.26)

where H(u, v) is the HPF transfer function, a ≥ 0 and b > a. Figure 11.18 shows an
example of high-frequency emphasis.

FIGURE 11.18 High-frequency emphasis: (a) input image; (b) result of applying a second-
order Butterworth HPF (with D0 = 30) to the input image; (c) result of high-frequency emphasis
with a = 0.5 and b = 1.

252 FREQUENCY-DOMAIN FILTERING

11.5 TUTORIAL 11.1: 2D FOURIER TRANSFORM

Goals

The goals of this tutorial are to learn how to compute and display the FT of an image
and how to develop filters to be used in the frequency domain.

Objectives

• Learn how to use the fft2 function to compute the FT of a monochrome image.
• Learn how to visualize the FT results.
• Learn how to generate filters to be used in the frequency domain.

What You Will Need

• distmatrix.m

Procedure

To generate the FT of an image (a 2D function), we use the IPT function fft2, which
implements the FFT algorithm.

1. Load the cameraman image, convert it to double (one of the data classes
accepted as an input to fft2), and generate its FT.

I = imread(’cameraman.tif’);
Id = im2double(I);
ft = fft2(Id);

Question 1 What are the minimum and maximum values of the resulting discrete
Fourier transform coefficients for the cameraman image?

To view the spectrum of the image, that is, the amplitude component of the FT
results, we must shift the zero-frequency (DC) component to the center of the image
using the fftshift function.

2. Shift the FT array of results.

ft_shift = fftshift(ft);

From your answer to Question 1, you should by now know that the range of values
in the FT array of results (ft) extends well beyond the typical values of a grayscale
image ([0, 255]). Consequently, we will try to display the resulting spectrum as an
image using the “scaling for display purposes” option of function imshow.

3. Display the FT results, remapped to a grayscale range.

TUTORIAL 11.1: 2D FOURIER TRANSFORM 253

figure, subplot(1,2,1), imshow(abs(ft_shift),[]), ...
title(’Direct remap’);

Question 2 Why are we required to use the abs function when displaying the
ft_shift image?

Question 3 How did we remap the image to a different (narrower) grayscale range?
As you may have noticed, directly remapping the image to the grayscale range does

not give us any useful information (only a white pixel at the center of the image—
the DC component of the FT results—with all other pixels displayed as black). This
suggests that there might be a significant amount of detail in other frequencies that
we just cannot see. Recall from Chapter 8 that images with similar attributes (very
large dynamic range of gray values) can be brought up by remapping the image with
a log transformation.

We can perform the log transformation within the imshow function call and then
remap the adjusted values to the grayscale range by specifying ’[]’ in the second
parameter.

4. Display the log of the shifted FT image.

subplot(1,2,2), imshow(log(1 + abs(ft_shift)), []), ...
title(’Log remap’);

Question 4 How does the log remap compare to the direct remap?

Distance Matrices

In the second part of this tutorial, we will look at distance matrices. To specify and
implement frequency-domain filters, we must first generate a matrix that represents
the distance of each pixel from the center of the image. We can create such matrix
using the distmatrix function. The function takes two parameters, M and N, and
will return the distance matrix of size M × N.

5. Close any open figures.

6. Generate a distance matrix that is the same size as the image I.

[M, N] = size(I);
D = distmatrix(M, N);

We can visualize the distance matrix in a 3D mesh plot, but we must first shift the
image similar to the way we shifted the frequency spectrum earlier.

7. Create a 3D mesh plot of the distance matrix.

254 FREQUENCY-DOMAIN FILTERING

D_shift = fftshift(D);
figure, mesh(D_shift)

Question 5 Explain the shape of the 3D plot.
After obtaining the distance matrix, we can generate the filter of our choice. From

that point, filtering in the frequency domain is as simple as multiplying the filter by
the FT image and converting back to the spatial domain. These processes will be
examined in the remaining tutorials of this chapter.

11.6 TUTORIAL 11.2: LOW-PASS FILTERS IN THE FREQUENCY
DOMAIN

Goal

The goal of this tutorial is to demonstrate how to implement low-pass filters in the
frequency domain.

Objectives

• Learn how to generate and apply an ideal low-pass filter.
• Learn how to generate and apply a Gaussian low-pass filter.
• Learn how to generate and apply a Butterworth low-pass filter.

What You Will Need

• distmatrix.m
• fddemo.m

Procedure

As we have learned in Tutorial 11.1, the distmatrix function returns a two di-
mensional array, which should be of the same size as the image being processed. The
values in the array represent the distance from each pixel to the center of the image.
To begin, we will use this matrix to generate an ideal low-pass filter.

1. Load the eight image, generate a FT, and display it.

I = imread(’eight.tif’);
Id = im2double(I);
I_dft = fft2(Id);
figure, imshow(Id), title(’Original Image’);
figure, imshow(log(1 + abs(fftshift(I_dft))),[]), ...

title(’FT of original image’);

TUTORIAL 11.2: LOW-PASS FILTERS IN THE FREQUENCY DOMAIN 255

2. Generate a distance matrix with size equal to the input image.

[M, N] = size(I);
dist = distmatrix(M, N);
figure, mesh(fftshift(dist)), title(’Distance Matrix’);

Question 1 Verify that the size of the distance matrix is in fact equal to the size
of the image.

Question 2 What happens if we display the distance matrix without shifting?

Ideal LPF

To create an ideal low-pass filter, we will start out with a matrix of all zeros and then
set specific values to 1 that will represent all frequencies for which we will allow to
pass through. Since we are defining an ideal filter, we can simply define the radius of
the filter and then set any values within that radius to 1, while all others remain zero.

3. Create initial filter with all values of zero.

H = zeros(M, N);

4. Create the ideal filter.

radius = 35;
ind = dist <= radius;
H(ind) = 1;
Hd = double(H);

Question 3 Explain how the previous code sets all values within a given radius
to 1.

We can visualize the filter’s frequency response by displaying it as an image.

5. Display the filter’s frequency response.

figure, imshow(fftshift(H)), title(’Ideal low-pass filter’);

To apply the filter to the image, we simply multiply each value of the filter by its
corresponding frequency value in the FT image.

6. Apply the filter to the FT image.

DFT_filt = Hd .* I_dft;
I2 = real(ifft2(DFT_filt));

256 FREQUENCY-DOMAIN FILTERING

Question 4 Why do we take only the real values when converting the FT of the
filtered image back to the spatial domain?

7. Display both the filtered FT image and the final filtered image.

figure, imshow(log(1 + abs(fftshift(DFT_filt))),[]), ...
title(’Filtered FT’);

figure, imshow(I2), title(’Filtered Image’);

Question 5 How does the filtered image compare to the original image? Can you
see any noticeable artifacts?

To see how the choice of radius affects the filtered image, we can use the frequency-
domain demo, fddemo (developed by Jeremy Jacob and available at the book’s
companion web site).

8. Load the frequency-domain demo.

fddemo

The default filter is the ideal low pass. To modify the cutoff value, select the
magenta circle within the filter profile and drag it to a desired radius. The value of the
radius is displayed below the filter profile.

Question 6 Experiment with different values for the radius of the filter. How does
your choice of radius affect the amount of ringing in the output image?

9. Close the demo.

Gaussian LPF

The Gaussian low-pass filter is usually specified by providing a value for the standard
deviation σ. We can use the distance matrix previously generated to create a Gaussian
filter.

10. Create a Gaussian low-pass filter with σ = 30.

sigma = 30;

H_gau = exp(-(dist .ˆ 2) / (2 * (sigma ˆ 2)));

figure, imshow(Id), title(’Original Image’);

figure, imshow(log(1 + abs(fftshift(I_dft))),[]), ...

title(’DFT of original image’);

figure, mesh(fftshift(dist)), title(’Distance Matrix’);

figure, imshow(fftshift(H_gau)), title(’Gaussian low-pass’);

TUTORIAL 11.2: LOW-PASS FILTERS IN THE FREQUENCY DOMAIN 257

11. Filter the FT image with the Gaussian low-pass filter and display the filtered
image.

DFT_filt_gau = H_gau .* I_dft;

I3 = real(ifft2(DFT_filt_gau));

figure, imshow(log(1 + abs(fftshift(DFT_filt_gau))),[]), ...

title(’Filtered FT’);

figure, imshow(I3), title(’Filtered Image’);

Question 7 Compare the output images between the ideal filter and the Gaussian
filter. What are their similarities? What are their differences?

Question 8 Start the frequency-domain demo (fddemo) once again, and this
time select the Gaussian low-pass filter. Experiment with different values of sigma
(standard deviation). How does this value affect the output image?

Butterworth LPF

The Butterworth low-pass filter is usually specified by providing two parameters: the
order of the filter, n, and the cutoff value, D0. In our implementation of the ideal
low-pass filter, earlier in this tutorial, we set the cutoff value to 35. For comparison
purposes, we will use the same value for our Butterworth filter.

12. Generate a third-order Butterworth filter, where the cutoff value is 35.

D0 = 35; n = 3;

H_but = 1 ./ (1 + (dist ./ D0) .ˆ (2 * n));

figure, imshow(Id), title(’Original Image’);

figure, imshow(log(1 + abs(fftshift(I_dft))),[]), ...

title(’FT of original image’);

figure, mesh(fftshift(dist)), title(’Distance Matrix’);

figure, imshow(fftshift(H_but)), title(’Butterworth low-pass’);

13. Filter the image with the Butterworth low-pass filter and display the resulting
image.

DFT_filt_but = H_but .* I_dft;

I4 = real(ifft2(DFT_filt_but));

figure, imshow(log(1 + abs(fftshift(DFT_filt_but))),[]), ...

title(’Filtered FT’);

figure, imshow(I4), title(’Filtered Image’);

Question 9 Compare the ideal-filtered FT image and the Butterworth-filtered
FT image.

258 FREQUENCY-DOMAIN FILTERING

14. Display all three filters as meshes in 3D and use the Rotate 3D option of function
imshow to explore them in detail.

figure, mesh(fftshift(Hd)), title(’Ideal low-pass filter’);

figure, mesh(fftshift(H_gau)), title(’Gaussian low-pass filter’);

figure, mesh(fftshift(H_but)), title(’Butterworth low-pass filter’);

Question 10 Implement the Butterworth filter again, but this time using a much
higher order, such as 20. How does this output compare to the ideal filter?

Question 11 Experiment with the Butterworth filter by using the frequency-
domain demo (fddemo). What is the advantage of using this filter over the previous
two?

11.7 TUTORIAL 11.3: HIGH-PASS FILTERS IN THE FREQUENCY
DOMAIN

Goal

The goal of this tutorial is how to implement high-pass filters in the frequency domain.

Objectives

• Learn how to generate and apply an ideal high-pass filter.
• Learn how to generate and apply a Gaussian high-pass filter.
• Learn how to generate and apply a Butterworth high-pass filter.

What You Will Need

• distmatrix.m
• fddemo.m

Procedure

High-pass filters are conceptually the opposite of low-pass filters and can be imple-
mented in MATLAB using techniques that are very similar to the ones described in
Tutorial 11.2. There is, however, a problem when implementing high-pass filters: be-
cause a high-pass filter attenuates low frequencies, this means that the zero-frequency
term (also known as the DC term) will be set to zero, in turn setting the average value
of the image to zero. To compensate for this, we use a technique known as high-
frequency emphasis filtering, which can be implemented by applying the high-pass
filter as we normally would, then multiplying the result (still in the frequency domain)
by a constant b, and finally adding an offset constant a.

To begin, let us implement an ideal high-pass filter.

TUTORIAL 11.3: HIGH-PASS FILTERS IN THE FREQUENCY DOMAIN 259

1. Load the eight image, generate, and display its FT.

I = im2double(imread(’eight.tif’));
I_dft = fft2(I);
figure, imshow(I), title(’Original Image’);
figure, imshow(log(1 + abs(fftshift(I_dft))),[]), ...

title(’FT of original image’);

Just as in low-pass filtering, we must generate a distance matrix and use the
fftshift function when displaying it.

2. Generate a distance matrix based on the size of the input image.

[M, N] = size(I);
dist = distmatrix(M, N);

Ideal HPF

3. Create the ideal high-pass filter.

H = ones(M, N);
radius = 30;
ind = dist <= radius;
H(ind) = 0;

Question 1 Explain how the previous code generates an ideal high-pass filter.
We will now apply the high-frequency emphasis filtering technique with a =

b = 1.

4. Apply high-frequency emphasis filtering to the high-pass filter.

a = 1; b = 1;
Hd = double(a + (b .* H));

5. Apply the filter to the FT image and display the results.

DFT_filt = Hd .* I_dft;
I2 = real(ifft2(DFT_filt));
figure, imshow(log(1 + abs(fftshift(DFT_filt))),[]), ...

title(’Filtered FT’);
figure, imshow(I2), title(’Filtered Image’);

6. Display the filter as an image and as a 3D mesh in separate figures.

260 FREQUENCY-DOMAIN FILTERING

figure, imshow(fftshift(Hd),[]), title(’Filter as an image’);

figure, mesh(fftshift(Hd)), zlim([0 2]), title(’Filter as a mesh’);

Question 2 When displaying the filter as an image, why must we scale the output
for display purposes?

Question 3 How does the filtered image compare to the original image?
We can use the frequency-domain demo (fddemo) to experiment with dif-

ferent values for the radius of the filter. Note that to use fddemo, the M-file
distmatrix.m must be in the same directory.

7. Start the frequency-domain demo.

fddemo

8. From the filter pull-down menu, select Ideal High Pass.

Notice that the filter profile shows a magenta circle, indicating the current cutoff
value for the filter. The cutoff value is displayed below the profile figure. To change
the cutoff value, drag the magenta circle in or out. You will notice that as you drag
the circle, the displayed cutoff value changes.

9. Drag the cutoff circle so that the cutoff value is 30 to create the same filtered
image as we did above.

10. Change the cutoff value to 10.

Question 4 How does the new image compare to the original image?

Question 5 How does the output compare between using a cutoff value of 30
and 10?

Question 6 What happens to the filtered image as we increase the cutoff value
(beyond 30) with respect to the original image?

11. Close any open figures or demos.

Gaussian HPF

We can implement the Gaussian high-pass filter using the existing distance matrix
(stored in variable dist).

12. Generate a Gaussian high-pass filter.

sigma = 30;
H_gau = 1 - exp(-(dist .ˆ 2) / (2 * (sigma ˆ 2)));

TUTORIAL 11.3: HIGH-PASS FILTERS IN THE FREQUENCY DOMAIN 261

13. Apply high-frequency emphasis filtering to the high-pass filter and display
the filter.

H_gau_hfe = a + (b .* H_gau);
figure, mesh(fftshift(H_gau_hfe)), zlim([0 2]), ...

title(’Gaussian high-pass filter’);

We can now apply the filter to the image.

14. Apply the filter and display the results.

DFT_filt_gau = H_gau_hfe .* I_dft;

I3 = real(ifft2(DFT_filt_gau));

figure, imshow(I), title(’Original Image’);

figure, imshow(log(1 + abs(fftshift(I_dft))),[]), ...

title(’FT of original image’);

figure, imshow(log(1 + abs(fftshift(DFT_filt_gau))),[]), ...

title(’Filtered FT’);

figure, imshow(I3), title(’Filtered Image’);

Question 7 How does the Gaussian-filtered image compare to the ideal-filtered
image?

We can see the effects of the value chosen for σ (sigma) by using the frequency-
domain demo.

15. Start the frequency-domain demo.

fddemo

16. From the filter pull-down menu, select Gaussian High Pass.

Notice that the default value for the standard deviation (σ) is 30, so the filtered
image should be equal to what we have implemented above. Let us now change this
value to see its effect on both the filter and the resulting image.

17. Change the standard deviation to 10.

Question 8 What happened to the filter?

Question 9 How was the filtered image affected?

Question 10 In general, how does the filter change when the standard deviation
of the filter is increased or decreased?

18. Close any open figures or demos.

262 FREQUENCY-DOMAIN FILTERING

Butterworth HPF

To implement the Butterworth high-pass filter, we can again use the existing distance
matrix (stored in variable dist).

19. Generate a Butterworth high-pass filter.

cutoff = 30; order = 2;
H_but = 1 ./ (1 + (cutoff ./ dist) .ˆ (2 * order));

20. Apply high-frequency emphasis filtering to the high-pass filter and display the
resulting filter.

H_but_hfe = a + (b .* H_but);
figure, mesh(fftshift(H_but_hfe)), zlim([0 2]), ...

title(’Butterworth high-pass filter’);

21. Apply the filter to the input image and display the results.

DFT_filt_but = H_but_hfe .* I_dft;

I4 = real(ifft2(DFT_filt_but));

figure, imshow(I), title(’Original Image’);

figure, imshow(log(1 + abs(fftshift(I_dft))),[]), ...

title(’FT of original image’);

figure, imshow(log(1 + abs(fftshift(DFT_filt_but))),[]), ...

title(’Filtered FT’);

figure, imshow(I4), title(’Filtered Image’);

In the last portion of this tutorial, we will further explore Butterworth high-pass
filters using the fddemo.

22. Load fddemo.

fddemo

23. From the filter pull-down menu, select Butterworth High Pass.

This filter has two parameters: cutoff value and order. The cutoff value can be
adjusted simply by dragging the magenta circle. To change the order of the filter, type
a new value and press Update.

Question 11 How does the order parameter change the shape of the filter?

Question 12 For large order values (such as 10), the Butterworth begins to take
the shape of what other high-pass filters take?

TUTORIAL 11.3: HIGH-PASS FILTERS IN THE FREQUENCY DOMAIN 263

WHAT HAVE WE LEARNED?

• The Fourier transform is the main mathematical tool used to obtain the 2D
frequency contents of a digital image. The resulting image is said to be in Fourier
space or Fourier domain. The 2D Fourier transform is implemented in MATLAB
by function fft2 and its results are displayed with function fftshow.

• The design of an image processing filter in the frequency domain involves the
following steps: (1) determining the desired behavior (low pass, high pass, etc.),
(2) choosing the type of filter (ideal, Gaussian, Butterworth, etc.), and (3) speci-
fying the parameters associated with the chosen filter type (e.g, cutoff frequency
for ideal filters, filter order for Butterworth filters, etc.).

• Low-pass filters attenuate the high-frequency components of the Fourier trans-
form of an image, while leaving the low-frequency components unchanged. The
typical overall effect of applying a low-pass filter to an image is a controlled
degree of blurring.

• High-pass filters attenuate the low-frequency components of the Fourier trans-
form of an image, while enhancing the high-frequency components (or leaving
them unchanged). The typical overall effect of applying a high-pass filter to an
image is a controlled degree of sharpening.

• Ideal (low-pass and high-pass) filters have a sharp transition from passband to
stopband, which can lead to undesirable image artifacts, most noticeably ringing.
Gaussian filters, on the other hand, show a smooth transition from passband to
stopband. Butterworth filters allow the designer to choose their order—which
impacts the shape of the transition between passband and stopband—and control
how close to an ideal filter they should behave.

LEARN MORE ABOUT IT

• There are entire books devoted to the Fourier transform (e.g., [Pap62]) and its
fast implementation (e.g., [Bri74]).

• Recommended references for one- and multidimensional signal analysis and
Fourier transform are Chapters 13 and 14 of [BB08], Chapters 2–6 of [vdEV89],
Chapters 4 and 5 of [OWY83], and Chapters 1 and 3 of [Lim90], among many
others.

• Section 5.1 of [Umb05] provides useful examples of the relationships between
mathematical transforms, transform coefficients, and basis images.

• Section 9.3 of [Pra07] discusses computational aspects of 2D FT calculations
using the FFT implementation.

• Chapter 2.3 of [Bov00a] provides a friendly and informative explanation of the
Fourier transform and image processing in the frequency domain.

• [Pra07] is a good source of additional information for mathematical transforms
not covered in this book, for example, the cosine, sine, and Hartley transforms

264 FREQUENCY-DOMAIN FILTERING

(Section 8.3), the Hadamard, Haar, and Daubechies (a class of wavelets) trans-
forms (Section 8.4), and the Kahunen–Loeve transform (KLT) (Section 8.5).

• Chapter 5 of [Umb05] also covers mathematical transforms not included in
this chapter, such as cosine, Walsh–Hadamard, wavelet, Haar, and the principal
components transform (PCT).

• A homomorphic filter is a special type of frequency-domain filter that can be par-
ticularly useful in situations where the input image shows significant variations
in illumination. Homomorphic filtering is discussed in Section 4.9.6 of [GW08]
and Section 7.9 of [McA04], among many other references.

• Other types of filters with image processing applications include bandpass, ban-
dreject, and notch filters. These selective filters will be discussed in Section 12.4
in the context of noise reduction.

• The discussion on the computational cost of spatial-domain filtering versus
frequency-domain filtering (and other related implementation implications) is
beyond the scope of this book. The interested reader may consult Chapter 7
of [SOS00].

11.8 PROBLEMS

11.1 Write a MATLAB script to generate a 256 × 256 test image consisting of
a white circle against a black background, use this image as an input to the fft2
function, and display the resulting spectrum. You should be able to notice the presence
of “ringing” artifacts in the resulting spectrum, owing to the sharp transitions between
the circle and the background.

11.2 Implement the solution to the ringing artifact in Problem 11.1, while keeping
the input image similar to the original (white circle against a black background) as
much as possible.

11.3 In this problem,

(a) Design a spatial-domain averaging filter whose output is the average of
the four neighbors of the center pixel in a 3 × 3 neighborhood.

(b) Use the MATLAB function freqz2 to obtain its frequency-domain
equivalent and plot the resulting filter function.

(c) Apply the two filters, one at a time, to an input image of your choice and
observe the results. Are there any noticeable differences? Explain.

CHAPTER 12

IMAGE RESTORATION

WHAT WILL WE LEARN?

• What is noise (in the context of image processing) and how can it be modeled?
• What are the main types of noise that may affect an image?
• What is blurring (in the context of image processing) and how can it be modeled?
• Which noise removal techniques are typically used in image processing?
• Which deblurring techniques are typically used in image processing?

12.1 MODELING OF THE IMAGE DEGRADATION AND RESTORATION
PROBLEM

This chapter presents techniques used to improve the appearance of an image that has
been subject to degradation and noise. Figure 12.1 shows a diagram of the degradation
and restoration processes. In this diagram, it is assumed that an original image f (x, y)
has been subject to some sort of quality degradation (e.g., blurring caused by lack of
focus or camera motion, atmospheric disturbances, or geometric distortions caused by
imperfect lenses) that can be modeled by a functionh(x, y). The image may (also) have
been contaminated by additive noise (n(x, y)). The resulting degraded image, g(x, y),
is the input for the image restoration algorithms described later. These algorithms are
usually implemented as restoration filters that are able to undo—to some extent—the

Practical Image and Video Processing Using MATLAB®. By Oge Marques.
© 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

265

266 IMAGE RESTORATION

FIGURE 12.1 Image degradation and restoration.

degradation process, resulting in a restored image r(x, y) (which should be interpreted
as an estimate of the original image f (x, y) and is often referred to as f̂ (x, y)). In
other words, the goal of restoration techniques is to obtain an image that is as close
to the original image as possible.

Mathematically, the degradation and restoration problem can be described as

g(x, y) = f (x, y) ∗ h(x, y) + n(x, y) (12.1)

where ∗ denotes convolution.
From the convolution theorem, the following frequency-domain relation among

the Fourier transform of f (x, y), g(x, y), h(x, y), and n(x, y) holds:

G(u, v) = F (u, v)H(u, v) + N(u, v) (12.2)

The restoration filter block in Figure 12.1 is typically designed following these
steps:

1. Collect knowledge about the degradation process (usually through examples of
degraded images and knowledge of the image acquisition process).

2. Use that knowledge to develop a degradation model.

3. Develop the inverse degradation process and model it as a filter.

Restoration filters are, therefore, specifically designed to solve one particular type
of degradation. They can work in the spatial domain or in the frequency domain.

Note that the goal of image restoration techniques is clearly distinct from the goal
of image enhancement techniques—such as the ones described in Chapters 8–11—
where no mathematical modeling of (the inverse of) a degradation process is needed.
This chapter presents representative examples of restoration filters, particularly for
noise reduction and deblurring, and their application to digital images.

12.2 NOISE AND NOISE MODELS

Noise can be defined as any undesired artifact that contaminates an image. The
presence of noise in an image can be due to several sources, resulting in different
types of noise, from thermal noise in acquisition devices to periodic noise in the

NOISE AND NOISE MODELS 267

communication channel used to transmit an image from a remote sensing location to
a base station, among many others.

In this section, we present an overview of the main types of noise that may be
found in degraded digital images. Our main goals are threefold: (1) to describe the
main noise models in a mathematical and graphical way, (2) to remind the reader that
different types of noise will require different noise reduction techniques, and (3) to
introduce the problem of noise estimation.

We treat noise as a random variable whose probability density function (PDF),
or histogram, describes its shape and distribution across the range of gray levels. In
addition to that spatial-domain representation, noise patterns can sometimes also be
represented in the frequency domain (through their frequency spectrum).

12.2.1 Selected Noise Probability Density Functions

Gaussian Noise The PDF of a Gaussian random variable z is given by

pg(z) = 1√
2πσ

e−(z−z̄)2/2σ2
(12.3)

where z represents the gray level, z̄ is its mean, and σ is its standard deviation (σ2 is
called the variance of z). A plot of this function is shown in Figure 12.2a.

Impulse (Salt and Pepper) Noise The PDF of (bipolar) impulse noise is given
by

psp(z) =

⎧
⎪⎨
⎪⎩

Pp for z = p

Ps for z = s

0 otherwise
(12.4)

where Pp and Ps are the probability of occurrence of pixel whose values are equal to
p (pepper) or s (salt), respectively. A plot of this function is shown in Figure 12.2b.

Uniform Noise The histogram of uniform noise is given by

pu(z) =
{ 1

b−a
if a ≤ z ≤ b

0 otherwise
(12.5)

where a ≥ 0 and 0 < a < b.
The mean of the uniform noise is given by

z̄ = a + b

2
(12.6)

whereas the variance is given by

σ2 = (b − a)2

12
(12.7)

A plot of this function is shown in Figure 12.2c.

268 IMAGE RESTORATION

Rayleigh Noise The PDF of Rayleigh noise is given by

pr(z) =
{

2
b
(z − a)e−(z−a)2/b for z ≥ a

0 for z < a
(12.8)

where a ≥ 0 and 0 < a < b.
The mean and the variance of the Rayleigh PDF are given by

z̄ = a +
√

πb/4 (12.9)

and

σ2 = b(4 − π)

4
(12.10)

A plot of this function is shown in Figure 12.2d.

Gamma (Erlang) Noise The histogram of gamma (Erlang) noise is given by

pE(z) =
⎧⎨
⎩

abzb−1

(b−1)! e
−az for z ≥ 0

0 for z < 0
(12.11)

where a > 0, b is a positive integer, and “!” indicates factorial.
The mean and the variance of the gamma PDF are given by

z̄ = b

a
(12.12)

and

σ2 = b

a2 (12.13)

A plot of this function is shown in Figure 12.2e.

Exponential Noise The PDF of exponential noise (a special case of the Erlang
PDF, with b = 1) is given by

pexp(z) =
{

ae−az for z ≥ 0

0 for z < 0
(12.14)

The mean and the variance of the exponential PDF are given by

z̄ = 1

a
(12.15)

and

σ2 = 1

a2 (12.16)

A plot of this function is shown in Figure 12.2f.

NOISE REDUCTION USING SPATIAL-DOMAIN TECHNIQUES 269

� EXAMPLE 12.1

Figures 12.3 and 12.4 show a test image contaminated by different types of noise
and the resulting histograms. Since the test image contains only two gray levels, it is
possible to map the histograms to the plots in Figure 12.2.1

12.2.2 Noise Estimation

It is often necessary to estimate the type of noise (and the main parameters of its PDF)
before designing a solution for noise reduction. In cases where the acquisition device
(sensor) is the primary source of noise, it is common to generate test images con-
sisting of large patches of homogeneous gray-level values and observe the resulting
histograms. If creating such test images is not possible, a widely used alternative is to
crop a relatively large homogeneous region from an image and inspect its histogram:
even though the histogram of the entire image may not provide an adequate hint as
to the type of noise present in the image, the histogram of the cropped portion will.

� EXAMPLE 12.2

Figure 12.5 shows the process of noise estimation. The addition of noise to the original
image (a) causes dramatic changes to its histogram (from (c) to (d)), without, however,
providing a reliable hint as to the type of noise present in the image (b). Inspecting
the histogram (e) of the cropped portion of the image (indicated by a rectangle in (b))
allows us to conclude that the noise is of Gaussian type.

In MATLAB

MATLAB’s IPT has a built-in function to add noise to an image: imnoise. It allows
the generation of noisy versions of input images. It supports several types of noise,
including Gaussian and salt and pepper additive noise and speckle multiplicative
noise. It does not, however, support other types of noise described in this section
(e.g., Rayleigh, uniform, Erlang, and exponential) (see Problem 12.1). You will learn
how to use this function in Tutorial 12.1.

12.3 NOISE REDUCTION USING SPATIAL-DOMAIN TECHNIQUES

Noise reduction filters work under the assumption that the only degradation present
in an image is additive noise.2 Mathematically, equations (12.1) and (12.2) become

g(x, y) = f (x, y) + n(x, y) (12.17)

and

G(u, v) = F (u, v) + N(u, v) (12.18)

1Some of the histograms show a peak at the rightmost value because the corresponding noise PDF has a
“long tail” and, consequently, many values get truncated at 1.
2From the perspective of Figure 12.1, you can think of the degradation function as an all-pass filter.

270 IMAGE RESTORATION

pg(z)

pE(z)

p
u
(z)

p
r
(z)

pexp(z)

(b–1)/a z z

psp(z)

p
p

p
s

1

√2πσ

0.607

√2πσ

z–σ

0.607√2/b

a+√b/2a

a

1

b–a

a(b–1)
b–1

e
– (b-1)

(b–1)!
K =

K

-
z+σ z

Gaussian Impulse

(a) (b)

(c) (d)

(e) (f)

Gamma Exponential

Uniform Rayleigh

a b z z

s p z
-

z
-

FIGURE 12.2 Histograms of representative noise types: (a) Gaussian, (b) impulse (salt
and pepper), (c) uniform, (d) Rayleigh, (e) gamma (Erlang), and (e) exponential. Redrawn
from [Pra07].

NOISE REDUCTION USING SPATIAL-DOMAIN TECHNIQUES 271

FIGURE 12.3 Test images and corresponding histograms for different types of noise: (a and
b) Gaussian; (c and d) exponential; (e and f) salt and pepper.

This section presents the most popular spatial-domain techniques for noise reduc-
tion. Although some of them have been introduced previously (Chapter 10), they are
being discussed again in this section. There are two main groups of spatial-domain
noise reduction techniques: mean filters (Section 12.3.1) and order statistic (or rank)

272 IMAGE RESTORATION

FIGURE 12.4 Test images and corresponding histograms for different types of noise: (a and
b) Rayleigh; (c and d) Gamma; (e and f) uniform.

NOISE REDUCTION USING SPATIAL-DOMAIN TECHNIQUES 273

FIGURE 12.5 Estimating noise type from a homogeneous patch within an image: (a) original
image; (b) noisy image (where the rectangle indicates a manually selected patch); (c) histogram
of the original image; (d) histogram of the noisy image; (e) histogram of selected patch showing
clearly that the noise is of Gaussian type in this case.

filters (Section 12.3.2). At the end of this section, we will briefly introduce the third
category of spatial domain noise reduction techniques: adaptive filters.

12.3.1 Mean Filters

In this section, we revisit the arithmetic mean filter introduced in Section 10.3.1—
from the perspective of its noise reduction capabilities—and expand the discussion
to include other related filters and discuss their performance.

Arithmetic Mean Filter The arithmetic mean filter, also known as averaging filter,
operates on an m × n sliding window by calculating the average of all pixel values
within the window and replacing the center pixel value in the destination image with
the result. Its mathematical formulation is given as follows:

f̂ (x, y) = 1

mn

∑
(r,c)∈W

g(r, c) (12.19)

274 IMAGE RESTORATION

where g is the noisy image, f̂ is the restored image, and r and c are the row and column
coordinates, respectively, within a window W of size m × n where the operation takes
place.

The arithmetic mean filter causes a certain amount of blurring (proportional to the
window size) to the image, thereby reducing the effects of noise. It can be used to
reduce noise of different types, but works best for Gaussian, uniform, or Erlang noise.

Geometric Mean Filter The geometric mean filter is a variation of the arithmetic
mean filter and is primarily used on images with Gaussian noise. This filter is known to
retain image detail better than the arithmetic mean filter. Its mathematical formulation
is as follows:

f̂ (x, y) =
⎡
⎣ ∏

(r,c)∈W

g(r, c)

⎤
⎦

1/mn

(12.20)

Harmonic Mean Filter The harmonic mean filter is yet another variation of the
arithmetic mean filter and is useful for images with Gaussian or salt noise. Black pixels
(pepper noise) are not filtered. The filter’s mathematical formulation is as follows:

f̂ (x, y) = mn∑
(r,c)∈W (1/g(r, c))

(12.21)

Contraharmonic Mean Filter The contra-harmonic mean filter is another vari-
ation of the arithmetic mean filter and is primarily used for filtering salt or pepper
noise (but not both). Images with salt noise can be filtered using negative values of
R, whereas those with pepper noise can be filtered using positive values of R. The
filter’s mathematical formulation is

f̂ (x, y) =
∑

(r,c)∈W g(r, c)R+1

∑
(r,c)∈W g(r, c)R

(12.22)

where R is called the order of the filter.

� EXAMPLE 12.3

Figure 12.6 shows the effects of applying different filters to an image corrupted by
Gaussian noise of zero mean and variance 0.01. The result obtained with any of the
four filters contains less noise than that with the image in Figure 12.6b. Moreover, you
may also have noticed that the geometric and harmonic mean filters generate more
dark pixels in the resulting image. Finally, the figure also helps to confirm the trade-
off involved when choosing the mask size for a mean averaging filter: the result for
Figure 12.6d (5 × 5 window) contains less noise—but is significantly more
blurry—than the one for Figure 12.6c (3 × 3 window).

NOISE REDUCTION USING SPATIAL-DOMAIN TECHNIQUES 275

FIGURE 12.6 (a) Original image; (b) image with Gaussian noise; (c) result of 3 × 3 arith-
metic mean filtering; (d) result of 5 × 5 arithmetic mean filtering; (e) result of 3 × 3 geometric
mean filtering; (f) result of 3 × 3 harmonic mean filtering.

� EXAMPLE 12.4

Figure 12.7 shows the effects of applying different filters to an image corrupted by
salt and pepper noise. The result obtained with the mean averaging filter is the only
acceptable one. The geometric and the harmonic mean filters perform very poorly for
the pepper portion of the noise, whereas the performance of the contraharmonic filter
confirms what we had stated earlier: depending on the choice of R, it will reduce the
amount of salt or pepper noise, but not both.

12.3.2 Order Statistic Filters

Order statistic filters (also known as rank filters, or simply order filters) operate on
a neighborhood around a reference pixel by ordering (i.e., ranking) the pixel values
and then performing an operation on those ordered values to obtain the new value for

276 IMAGE RESTORATION

FIGURE 12.7 (a) Image with salt and pepper noise; (b) result of 3 × 3 arithmetic mean filter-
ing; (c) result of 3 × 3 geometric mean filtering; (d) result of 3 × 3 harmonic mean filtering; (e)
result of 3 × 3 contraharmonic mean filtering with R = 0.5; (f) result of 3 × 3 contraharmonic
mean filtering with R = −0.5.

the reference pixel. Order statistic filters perform very well in the presence of salt and
pepper noise but are computationally more expensive than mean filters.

In this section, we revisit the median filter introduced in Section 10.3.4—from the
perspective of its noise reduction capabilities—and expand the discussion to include
other related filters (the min filter, the max filter, the midpoint filter, and the alpha-
trimmed mean filter) and discuss their performance.

The Median Filter The most popular and useful of the rank filters is the median
filter. It works by selecting the middle pixel value from the ordered set of values within
the m × n neighborhood (W) around the reference pixel. If mn is an even number
(which is not common), the arithmetic average of the two values closest to the middle
of the ordered set is used instead.

NOISE REDUCTION USING SPATIAL-DOMAIN TECHNIQUES 277

Mathematically,

f̂ (x, y) = median {g(r, c)|(r, c) ∈ W} (12.23)

There have been many variants, extensions, and optimized implementations of the
median filter proposed in the literature. Please refer to the “Learn More About It”
section at the end of the chapter for useful pointers.

The Min and Max Filters The min and max filters also work on a ranked set of
pixel values. Contrary to the median filter—which replaces the reference pixel with
the median of the ordered set—the min filter, also known as the zeroth percentile
filter, replaces it with the lowest value instead.

Mathematically,

f̂ (x, y) = min {g(r, c)|(r, c) ∈ W} (12.24)

Similarly, the max filter, also known as the 100th percentile filter, replaces the
reference pixel within the window with the highest value, that is,

f̂ (x, y) = max {g(r, c)|(r, c) ∈ W} (12.25)

The min filter is useful for reduction of salt noise, whereas the max filter can help
remove pepper noise.

The Midpoint Filter The midpoint filter calculates the average of the highest and
lowest pixel values within a window, thereby combining order statistics and averaging
into one filter. It is used to reduce Gaussian and uniform noise in images.

Mathematically,

f̂ (x, y) = 1

2

[
max {g(r, c)|(r, c) ∈ W} + min {g(r, c)|(r, c) ∈ W}] (12.26)

The Alpha-Trimmed Mean Filter The alpha-trimmed filter uses another com-
bination of order statistics and averaging, in this case an average of the pixel values
closest to the median, after the D lowest and D highest values in an ordered set have
been excluded. The rationale behind this filter is to allow its user to control its behavior
by specifying the parameter D: for D = 0, the filter behaves as a regular arithmetic
mean filter; for D = (mn − 1)/2, it is equivalent to the median filter. It is used in cases
where the image is corrupted by more than one type of noise, for example, salt and
pepper (where the median filter performs well) and Gaussian (where the arithmetic
mean filter shows satisfactory performance).

The mathematical description of the alpha-trimmed filter is as follows:

f̂ (x, y) = 1

mn − 2D

∑
(r,c)∈W

g(r, c) (12.27)

where D is the number of pixel values excluded at each end of the ordered set, which
can range from 0 to (mn − 1)/2.

278 IMAGE RESTORATION

� EXAMPLE 12.5

Figure 12.8 shows the effects of applying different rank filters to an image corrupted
by salt and pepper noise. The results obtained with the median filter (part (c)) are
clearly better than the ones obtained with the average filter of same window size (part
(b)) as expected. The midpoint filter not only is ineffective in removing this type
of noise, but also makes it worse by replacing the noisy pixels (and their immediate
neighbors) with the average between the minimum—pepper—and maximum—salt—
values.

In MATLAB

Sliding window neighborhood operations are implemented in the IPT using one
of these two functions: nlfilter or colfilt. Both functions accept a (user-
defined) function as a parameter. Such function can perform linear (e.g., averag-
ing) or nonlinear (e.g., median) operations on the pixels within a window. Both
functions might take long to process results on an image with hundreds (or thou-
sands) of pixels in each dimension; they both provide a progress bar indicator to
inform to the user that the processing is taking place, but colfilt is considerably
faster than nlfilter. You will have a chance to use nlfilter in Tutorial 12.1
(page 289).

For rank filters, the IPT function ordfilt2makes it very easy to create the min,
max, and median filters, as demonstrated in Tutorial 12.1. Since the median filter is
by far the most popular rank filter, the IPT has another function with a more familiar
name, medfilt2, that implements it.

12.3.3 Adaptive Filters

The basic idea behind adaptive filters is to design the filter in such a way that its
behavior changes depending on the pixel values of the neighborhood currently be-
ing processed. A classical use of adaptive filters is found under the category of
edge-preserving smoothing filters: in this case, the goal is to apply a low-pass fil-
ter to an image in a selective way, minimizing the edge blurring effect that would
be present if a standard LPF had been applied to the image. There are many vari-
ants of adaptive filters for noise reduction and image restoration in the literature.
Refer to the “Learn More About It” section at the end of the chapter for useful
pointers.

12.4 NOISE REDUCTION USING FREQUENCY-DOMAIN TECHNIQUES

In Chapter 11, we studied frequency-domain filters commonly used in image en-
hancement tasks, notably high-pass and low-pass filters. In this section, we in-
troduce three additional types of frequency-domain filters—bandpass, bandreject,

NOISE REDUCTION USING FREQUENCY-DOMAIN TECHNIQUES 279

FIGURE 12.8 (a) Image with salt and pepper noise; (b) result of 3 × 3 arithmetic mean
filtering (for comparison); (c) result of 3 × 3 median filtering; (d) result of 3 × 3 midpoint
filtering.

and notch—whose main application is in the reduction or removal of periodic
noise.

12.4.1 Periodic Noise

This is a type of noise that usually arises as a result of electrical or electromechanical
interference during the image acquisition process.

280 IMAGE RESTORATION

FIGURE 12.9 Example of an image corrupted by periodic noise: (a) noisy image; (b) periodic
noise component; (c) the Fourier spectrum of the noise component (bright dots were enlarged
for viewing purposes).

� EXAMPLE 12.6

Figure 12.9 shows an example of an image corrupted by periodic noise, the noise
component, and its Fourier spectrum. The bright dots in the spectrum indicate four
pairs of impulse functions, each pair corresponding to a sinusoidal noise source.

12.4.2 Bandreject Filter

A bandreject filter, as its name suggests, attenuates frequency components within a
certain range (the stopband of the filter), while leaving all other frequency components
untouched (or amplifying them by a certain gain). The mathematical formulation for
an ideal bandreject filter is as follows:

H i
br(u, v) =

⎧
⎪⎪⎨
⎪⎪⎩

1 if D(u, v) < D0 − W
2

0 if D0 − W
2 ≤ D(u, v) ≤ D0 + W

2

1 if D(u, v) > D0 + W
2

(12.28)

where D(u, v) is the distance from the origin of the frequency spectrum, W is the
width of the band, and D0 is the radius of the circle-shaped band.

A Butterworth bandreject filter of order n is described mathematically as

Hb
br(u, v) = 1

1 +
[

D(u,v)W
D2(u,v)−D2

0

]2n
(12.29)

whereas the transfer function for a Gaussian bandreject filter is given by the following
equation:

H
g
br(u, v) = 1 − e

− 1
2

[
D2(u,v)−D2

0
D(u,v)W

]2

(12.30)

NOISE REDUCTION USING FREQUENCY-DOMAIN TECHNIQUES 281

FIGURE 12.10 Example of using a bandreject filter to reduce periodic noise: (a) noisy image;
(b) noisy image spectrum (the eight spots corresponding to the noise have been made brighter
and bigger for visualization purposes); (c) the Fourier spectrum of the image after applying the
bandreject filter; (d) resulting image.

� EXAMPLE 12.7

Figure 12.10 shows an example of an ideal bandreject filter (of radius D0 = 32 and
width W = 6) used to reduce periodic noise. Although the periodic noise has been
successfully removed, the resulting image shows an undesirable ringing effect as a
result of the sharp transition between passband and stopband in the bandreject filter.

12.4.3 Bandpass Filter

A bandpass filter allows certain frequencies (within its passband) to be preserved while
attenuating all others. It is, in effect, the opposite of a bandreject filter (Section 12.4.2),
and its mathematical formulation can be simply stated as follows:

Hbp(u, v) = 1 − Hbr(u, v) (12.31)

where Hbr(u, v) is the transfer function of a bandreject filter.

282 IMAGE RESTORATION

Applying equation (12.31) to equations (12.28)–(12.30) leads to the mathematical
formulations for the different types of bandpass filters:

Ideal BPF

Hi
bp(u, v) =

⎧⎪⎪⎨
⎪⎪⎩

0 if D(u, v) < D0 − W
2

1 if D0 − W
2 ≤ D(u, v) ≤ D0 + W

2

0 if D(u, v) > D0 + W
2

(12.32)

Butterworth BPF

Hb
bp(u, v) =

[
D(u,v)W

D2(u,v)−D2
0

]2n

1 +
[

D(u,v)W
D2(u,v)−D2

0

]2n
(12.33)

Gaussian BPF

H
g
bp(u, v) = e

− 1
2

[
D2(u,v)−D2

0
D(u,v)W

]2

(12.34)

12.4.4 Notch Filter

The notch filter is a special kind of frequency-domain filter that attenuates (or allows)
frequencies within a neighborhood around a center frequency. Owing to the symmetry
property of the Fourier transform (Section 11.2.3), the spectrum of notch filters shows
symmetric pairs around the origin (except for a notch filter located at the origin, of
course).

The mathematical formulation for an ideal notch filter of radius D0 with center at
(u0, v0) (and by symmetry at (−u0, −v0)) that rejects frequencies within a predefined
neighborhood is

H i
nr(u, v) =

{
0 if D1(u, v) < D0 or D2(u, v) < D0

1 otherwise
(12.35)

where

D1(u, v) =
[
(u − M/2 − u0)2 + (v − N/2 − v0)2

]1/2
(12.36)

and

D2(u, v) =
[
(u − M/2 + u0)2 + (v − N/2 + v0)2

]1/2
(12.37)

IMAGE DEBLURRING TECHNIQUES 283

It is assumed that the spectrum has been shifted by (M/2, N/2)3 and the values of
(u0, v0) are relative to the shifted center.

A Butterworth notch filter of order n can be mathematically described as

Hb
nr(u, v) = 1

1 +
[

D2
0

D1(u,v)D2(u,v)

]n (12.38)

where D1(u, v) and D2(u, v) are given by equations (12.36) and (12.37), respectively.
A Gaussian notch filter is mathematically described by the following equation:

Hg
nr(u, v) = 1 − e

− 1
2

[
D1(u,v)D2(u,v)

D2
0

]

(12.39)

To convert a notch filter that rejects certain frequencies into one that allows those
same frequencies to pass, one has to simply compute

Hnp(u, v) = 1 − Hnr(u, v) (12.40)

where Hnp(u, v) is the transfer function of the notch pass filter that corresponds to the
notch reject filter whose transfer function is Hnr(u, v).

12.5 IMAGE DEBLURRING TECHNIQUES

The goal of image deblurring techniques is to process an image that has been subject
to blurring caused, for example, by camera motion during image capture or poor
focusing of the lenses. The simplest image deblurring filtering technique, inverse
filtering, operates in the frequency domain, according to the model in Figure 12.1,
and assuming that there is no significant noise in the degraded image,

G(u, v) = F (u, v)H(u, v) + 0 (12.41)

which leads to

F (u, v) = G(u, v)

H(u, v)
= G(u, v)

1

H(u, v)
(12.42)

where the term 1/H(u, v) is the FT of the restoration filter, which will be denoted by
Rinv(u, v).

The simplicity of this formulation hides some of its pitfalls. If there are any points
in H(u, v) that are zero, a divide by zero exception will be generated.4 Even worse,
if the assumption of no additive noise is correct, the degraded image H(u, v) will

3The shift can be performed using MATLAB function fftshift, similarly to what we did in the tutorials for
Chapter 11.
4Even a milder version of this problem—where the values of H(u, v) are close to zero—will lead to
unacceptable results, as the following example demonstrates.

284 IMAGE RESTORATION

exhibit zeros at the same points, which will lead to a 0/0 indeterminate form. On
the other hand, if the image is contaminated by noise—although we assumed it had
not—the zeros will not coincide but the result of the inverse filter calculations will
be heavily biased by the noise term. The latter problem will be handled by Wiener
filters (Section 12.5.1).

There are two common solutions to the former problem:

1. Apply a low-pass filter with transfer function L(u, v) to the division, thus
limiting the restoration to a range of frequencies below the restoration cutoff
frequency, that is,

F (u, v) = G(u, v)

H(u, v)
L(u, v) (12.43)

For frequencies within the filter’s passband, the filter’s gain is set to any desired
positive value (usually the gain is set to 1); for frequencies within the filter’s
stopband, the gain should be zero. If the transition between the passband and
stopband is too sharp (as in the case of the ideal LPF), however, ringing artifacts
may appear in the restored image; other filter types (e.g., Butterworth with high
order) may be preferred in this case.

2. Use constrained division where a threshold value T is chosen such that if
|H(u, v)| < T , the division does not take place and the original value is kept
untouched:

F (u, v) =
⎧⎨
⎩

G(u,v)
H(u,v) if |H(u, v)| ≥ T

G(u, v) otherwise
(12.44)

� EXAMPLE 12.8

Figure 12.11 shows an example of image restoration using inverse filtering. Part (a)
shows the input (blurry) image. Part (b) shows the result of naively applying inverse
filtering (equation (12.42)), which is completely unacceptable due to the division by
very small values of H(u, v). Parts (c) and (d) show the results of applying a 10th-
order Butterworth low-pass filter to the division, with different cutoff frequencies.
Parts (e) and (f) show the results of using constrained division, with different values
for the threshold T .

Motion deblurring can be considered a special case of inverse filtering. Figure 12.12
shows the results of applying inverse filtering with constrained division to a blurry
image (generated using fspecial(’motion’,10,0) to simulate a horizontal
displacement equivalent to 10 pixels).

IMAGE DEBLURRING TECHNIQUES 285

FIGURE 12.11 Example of image restoration using inverse filtering: (a) input (blurry) image;
(b) result of naive inverse filtering; (c) applying a 10th-order Butterworth low-pass filter with
cutoff frequency of 20 to the division; (d) same as (c), but with cutoff frequency of 50; (e) results
of using constrained division, with threshold T = 0.01; (f) same as (e), but with threshold
T = 0.001.

286 IMAGE RESTORATION

FIGURE 12.12 Example of motion deblurring using inverse filtering: (a) input image; (b)
result of applying inverse filtering with constrained division and threshold T = 0.05: the motion
blurred has been removed at the expense of the appearance of vertical artifacts.

12.5.1 Wiener Filtering

The Wiener filter (developed by Norbert Wiener in 1942) is an image restoration
solution that can be applied to images that have been subject to a degradation function
and also contain noise, which corresponds to the worst-case scenario for the degraded
image g(x, y) in Figure 12.1.

The design of the Wiener filter is guided by an attempt to model the error in the
restored image through statistical methods, particularly the minimum mean square
estimator: once the error is modeled, the average error is mathematically minimized.
Assuming a degraded version g(x, y) of some original image f (x, y), and a restored
version r(x, y), if we compute the sum of the squared differences between each and
every pixel in f (x, y) and the corresponding pixel in r(x, y), we have a figure of merit
that captures how well the restoration algorithm worked: smaller values mean better
results.

The transfer function of a Wiener filter is given by

R(u, v) =
[

1

H(u, v)

|H(u, v)|2
|H(u, v)|2 + K

]
G(u, v) (12.45)

where H(u, v) is the degradation function and K is a constant used to approximate
the amount of noise. When K = 0, equation (12.45) reduces to equation (12.42).

In MATLAB

The IPT has a function that implements image deblurring using Wiener filter:
deconvwnr.

IMAGE DEBLURRING TECHNIQUES 287

FIGURE 12.13 Example of image restoration using Wiener filtering: (a) input image (blurry
and noisy); (b) result of inverse filtering, applying a 10th-order Butterworth low-pass filter with
cutoff frequency of 50 to the division; (c) results of Wiener filter, with K = 10−3; (d) same as
(c), but with K = 0.1.

� EXAMPLE 12.9

Figure 12.13 shows an example of image restoration using Wiener filtering. Part (a)
shows the input image, which has been degraded by blur and noise. Part (b) shows
the results of applying inverse filtering, using a 10th-order Butterworth low-pass filter
and limiting the restoration cutoff frequency to 50. Part (c) shows the results of using
Wiener filter with different values of K, to illustrate the trade-off between noise
reduction (which improves for higher values of K) and deblurring (which is best for
lower values of K).

The Wiener filter can also be used to restore images in the presence of blurring
only (i.e., without noise), as shown in Figure 12.14. In such cases, the best results are
obtained for lower values of K (Figure 12.14c), but the resulting image is still not as
crisp as the one obtained with the inverse filter (Figure 12.14b).

288 IMAGE RESTORATION

FIGURE 12.14 Example of image restoration using Wiener filtering: (a) input (blurry) image;
(b) result of inverse filtering, applying a 10th-order Butterworth low-pass filter with cutoff
frequency of 50 to the division; (c) results of Wiener filter, with K = 10−5; (d) same as (c), but
with K = 0.1.

In MATLAB

The IPT has several other built-in functions for image deblurring, namely,

• deconvreg: deblur image using regularized filter
• deconvlucy: deblur image using Lucy–Richardson method
• deconvblind: deblur image using blind deconvolution

The complexity of these functions (in terms of both their mathematical formulation
and the number of parameters that need to be adjusted for better performance) is
beyond the scope of this book. The reader should refer to the corresponding MATLAB
documentation and demos for additional information.

TUTORIAL 12.1: NOISE REDUCTION USING SPATIAL-DOMAIN TECHNIQUES 289

12.6 TUTORIAL 12.1: NOISE REDUCTION USING SPATIAL-DOMAIN
TECHNIQUES

Goal

The goal of this tutorial is to learn how to perform noise reduction using spatial-
domain techniques.

Objectives

• Learn how to implement the arithmetic mean filter, as well as some of its varia-
tions, such as the contraharmonic mean, the harmonic mean, and the geometric
mean filters.

• Learn how to perform order statistic filtering, including median, min, max, mid-
point, and alpha-trimmed mean filters.

What You Will Need

• atmean.m
• geometric.m
• harmonic.m
• c_harmonic.m

Procedure

Arithmetic Mean Filter

The arithmetic mean filter, also known as an averaging or low-pass (from its
frequency-domain equivalent) filter, is a simple process of replacing each pixel value
with the average of an N × N window surrounding the pixel. The averaging filter
can be implemented as a convolution mask. As in previous tutorials, we will use the
function fspecial to generate the averaging convolution mask.

1. Load theeight image, add (Gaussian) noise to it, and display the image before
and after adding noise.

I = imread(’eight.tif’);

In = imnoise(I,’gaussian’,0,0.001);

figure, subplot(2,2,1), imshow(I), title(’Original Image’);

subplot(2,2,2), imshow(In), title(’Noisy Image’);

2. Apply an averaging filter to the image using the default kernel size (3 × 3).

f1 = fspecial(’average’);
I_blur1 = imfilter(In,f1);

290 IMAGE RESTORATION

subplot(2,2,3), imshow(I_blur1), ...
title(’Averaging with default kernel size’);

Question 1 What is the general effect of the arithmetic mean filter?

3. Implement an averaging kernel with a 5 × 5 mask.

f2 = fspecial(’average’,[5 5]);
I_blur2 = imfilter(In,f2);
subplot(2,2,4), imshow(I_blur2), ...

title(’Averaging with 5x5 kernel’);

Question 2 How does the size of the kernel affect the resulting image?

Contraharmonic Mean Filter

The contraharmonic mean filter is used for filtering an image with either salt or pepper
noise (but not both). When choosing a value for r, it is important to remember that
negative values are used for salt noise and positive values are used for pepper noise. As
we will see, using the wrong sign will give undesired results. This filter does not have
a convolution mask equivalent, so we must implement it as a sliding neighborhood
operation using the nlfilter function. This function allows us to define how we
want to operate on the window, which can be specified within a function of our own.

4. Close any open figures.

5. Load two noisy versions of the eight image: one with salt noise and the other with
pepper. Also, display the original image along with the two affected images.

I_salt = im2double(imread(’eight_salt.tif’));
I_pepper = im2double(imread(’eight_pepper.tif’));
figure
subplot(2,3,1), imshow(I), title(’Original Image’);
subplot(2,3,2), imshow(I_salt), title(’Salt Noise’);
subplot(2,3,3), imshow(I_pepper), title(’Pepper Noise’);

The contraharmonic function requires that images be of class double. This is
why we convert the image when loading it.

6. Filter the salt noise affected image using −1 for the value of r.

I_fix1 = nlfilter(I_salt,[3 3],@c_harmonic,-1);

subplot(2,3,5), imshow(I_fix1), title(’Salt Removed, r = -1’);

TUTORIAL 12.1: NOISE REDUCTION USING SPATIAL-DOMAIN TECHNIQUES 291

Our function c_harmonic takes two parameters: the current window matrix
and a value for r. The window matrix, which gets stored into variable x, is passed
implicitly by the nlfilter function. Note how we specified the c_harmonic
function as the third parameter of the nlfilter function call. When using the
nlfilter function, if you want to pass any additional parameters to your function,
you can specify those parameters after the function handle (labeled with a ’@’ in front
of it). Notice above how we specified the value of r directly after the function handle.

7. Filter the pepper noise affected image using 1 for the value of r.

I_fix2 = nlfilter(I_pepper,[3 3],@c_harmonic,1);

subplot(2,3,6), imshow(I_fix2), title(’Pepper Removed, r = 1’);

As mentioned previously, using the wrong sign for the value of r can lead to
unwanted results.

8. Filter the pepper noise image using the wrong sign for r.

I_bad = nlfilter(I_pepper,[3 3],@c_harmonic,-1);

subplot(2,3,4), imshow(I_bad), title(’Using wrong sign for r’);

Question 3 What is the effect of using the wrong sign when filtering with the
contraharmonic mean filter?

Harmonic Mean Filter

The harmonic mean filter is another variation of the mean filter and is good for salt
and Gaussian noise. It fails, however, when used on pepper noise.

9. Close any open figures.

10. Filter the salt noise affected image with the harmonic filter.

I_fix4 = nlfilter(I_salt,[3 3],@harmonic);

figure

subplot(2,3,1), imshow(I), title(’Original Image’);

subplot(2,3,2), imshow(I_salt), title(’Salt Noise’);

subplot(2,3,3), imshow(I_pepper), title(’Pepper Noise’);

subplot(2,3,5), imshow(I_fix4), title(’Harmonic Filtered (salt)’);

11. Filter the pepper noise image and display the result.

I_bad2 = nlfilter(I_pepper,[3 3],@harmonic);

subplot(2,3,6), imshow(I_bad2), title(’Harmonic Filtered (pepper)’);

292 IMAGE RESTORATION

Question 4 Why does the harmonic mean filter fail for images with pepper noise?

12. Try to filter the In image (I with additive Gaussian noise) with the harmonic
mean filter. The image must be converted to double first.

In_d = im2double(In);

I_fix5 = nlfilter(In_d,[3 3],@harmonic);

figure

subplot(1,3,1), imshow(I), title(’Original Image’);

subplot(1,3,2), imshow(In_d), title(’Image w/ Gaussian Noise’);

subplot(1,3,3), imshow(I_fix5), title(’Filtered w/ Harmonic Mean’);

Question 5 How does the size of the window affect the output image?

Geometric Mean Filter

The last variation of the mean filters we will look at is the geometric mean filter.
This filter is known to preserve image detail better than the arithmetic mean filter and
works best on Gaussian noise.

13. Close any open figures.

14. Perform a geometric mean filter on the eight image with Gaussian noise
(currently loaded in the variable In_d).

I_fix6 = nlfilter(In_d,[3 3],@geometric);

figure

subplot(1,3,1), imshow(I), title(’Original Image’);

subplot(1,3,2), imshow(In_d), title(’Gaussian Noise’);

subplot(1,3,3), imshow(I_fix6), title(’Geometric Mean Filtered’);

Question 6 Filter the salt and pepper noise images with the geometric mean filter.
How does the filter perform?

Order Statistic Filters

The median filter is the most popular example of an order statistic filter. This filter
simply sorts all values within a window, finds the median value, and replaces the
original pixel value with the median value. It is commonly used for salt and pepper
noise. Because of its popularity, the median filter has its own function (medfilt2)
provided by the IPT.

15. Close any open figures and clear all workspace variables.

16. Load the coins image and apply salt and pepper noise.

TUTORIAL 12.1: NOISE REDUCTION USING SPATIAL-DOMAIN TECHNIQUES 293

I = imread(’coins.png’);

I_snp = imnoise(I,’salt & pepper’);

figure

subplot(1,3,1), imshow(I), title(’Original Image’);

subplot(1,3,2), imshow(I_snp), title(’Salt & Pepper Noise’);

17. Filter the image using the medfilt2 function.

I_filt = medfilt2(I_snp,[3 3]);
subplot(1,3,3), imshow(I_filt), title(’Filtered Image’);

Question 7 How does the size of the window affect the output image?

18. Apply the filter to an image with Gaussian noise.

I_g = imnoise(I,’gaussian’);
I_filt2 = medfilt2(I_g,[3 3]);
figure
subplot(1,3,1), imshow(I), title(’Original Image’);
subplot(1,3,2), imshow(I_g), title(’Gaussian Noise’);
subplot(1,3,3), imshow(I_filt2), title(’Filtered’);

Question 8 Why do you think the median filter works on salt and pepper noise
but not Gaussian noise?

A quick way to get rid of salt noise in an image is to use the min filter, which simply
takes the minimum value of a window when the values are ordered. Recall that we
previously used the imfilter function when dealing with convolution masks and
nlfilter for sliding neighborhood operations that could not be implemented as
a convolution mask. Similarly, the ordfilt2 function is used for order statistic
operations.

19. Close any open figures and clear all workspace variables.

20. Use the ordfilt2 function to implement a min filter on an image with salt
noise.

I_s = imread(’eight_salt.tif’);
I2 = ordfilt2(I_s, 1, ones(3,3));
figure
subplot(1,2,1), imshow(I_s), title(’Salt Noise’);
subplot(1,2,2), imshow(I2), title(’Min Filter’);

Question 9 Why would this filter not work on pepper noise?
The first parameter specified in the ordfilt2 function is the image we wish

to filter. The second parameter specifies the index of the value to be useed after all

294 IMAGE RESTORATION

values in the window have been ordered. Here, we specified this parameter as 1, which
means we want the first value after reordering, that is, the minimum value. The last
parameter defines the size of the window as well as which values in that window will
be used in the ordering. A 3 × 3 matrix of 1’s would indicate a 3 × 3 window and to
use all values when ordering. If we instead specified a 3 × 3 matrix where only the
first row was 1’s and the last two rows were zeros, then the sliding window would
consist of a 3 × 3 matrix, but only the top three values would be considered when
ordering. In addition, keep in mind that even though we used a special function to
implement the median filter, it is still an order statistic filter, which means we could
have implemented it using the ordfilt2 function.

Question 10 Implement the median filter using the ordfilt2 function.
The max filter is used for filtering pepper noise, similar to the technique of the min

filter.

21. Filter a pepper noise affected image with the max filter.

I_p = imread(’eight_pepper.tif’);
I3 = ordfilt2(I_p, 9, ones(3,3));
figure
subplot(1,2,1), imshow(I_p), title(’Pepper Noise’);
subplot(1,2,2), imshow(I3), title(’Max Filter’);

Although the midpoint filter is considered an order statistic filter, it cannot be
directly implemented using the ordfilt2 function because we are not selecting
a particular element from the window, but instead performing a calculation on its
values—namely, the minimum and maximum values. Rather, we will implement it
using the familiar nlfilter function. This noise removal technique is best used on
Gaussian or uniform noise.

22. Filter an image contaminated with Gaussian noise using the midpoint filter.

I = imread(’coins.png’);
I_g = imnoise(I,’gaussian’,0,0.001);
midpoint = inline(’0.5 * (max(x(:)) + min(x(:)))’);
I_filt = nlfilter(I_g,[3 3],midpoint);
figure
subplot(1,2,1), imshow(I_g), title(’Gaussian Noise’);
subplot(1,2,2), imshow(I_filt), title(’Midpoint Filter’);

You may have noticed that we have used an inline function instead of creating a
separate function, as we did in previous steps. Inline functions are good for quick
tests, but—as you may have realized—they are much slower than regular functions.

TUTORIAL 12.1: NOISE REDUCTION USING SPATIAL-DOMAIN TECHNIQUES 295

Alpha-Trimmed Mean Filters

The alpha-trimmed mean filter is basically an averaging filter whose outlying values
are removed before averaging. To do this, we sort the values in the window, discard
elements on both ends, and then take the average of the remaining values. This has
been defined in the function atmean.

23. Close any open figures and clear all workspace variables.

24. Generate a noisy image with Gaussian noise and salt and pepper noise.

I = imread(’cameraman.tif’);
Id = im2double(I);
In = imnoise(Id,’salt & pepper’);
In2 = imnoise(In,’gaussian’);

25. Filter the image using the alpha-trimmed mean filter.

I_filt = nlfilter(In2,[5 5],@atmean,6);

figure

subplot(1,3,1), imshow(I), title(’Original Image’);

subplot(1,3,2), imshow(In2), title(’S&P and Gaussian Noise’);

subplot(1,3,3), imshow(I_filt), title(’Alpha Trimmed Mean’);

Question 11 When filtering an image with both types of noise, how does the
alpha-trimmed mean filter compare to the arithmetic mean filter?

WHAT HAVE WE LEARNED?

• In the context of image processing, noise is a general term used to express
deviations from a pixel’s expected (or true) value. When these deviations are
offsets from the true value, the noise is said to be of additive type. When the true
value is rescaled as a result of noise, such noise is said to be of multiplicative
type.

• The statistical properties of noise are usually modeled in a way that is indepen-
dent of the actual causes of the noise. Common probability distribution func-
tions associated with noise are Gaussian, exponential, uniform, and gamma
(Erlang).

• Two of the most common types of noise in image processing are the Gaussian
noise and the salt and pepper noise. Both are forms of additive noise. The
Gaussian noise follows a zero-mean normal distribution. The salt and pepper
noise is a type of impulsive noise that appears as black and white specks on the
image.

296 IMAGE RESTORATION

• The most common noise removal techniques in the spatial domain are the mean
filter, the median filter, and variants and combinations of them.

• The most common noise removal techniques in the frequency domain are low-
pass, bandpass, bandreject, and notch filters.

• Blurring is the loss of sharpness in an image. It can be caused by poor focusing,
relative motion between sensor and scene, and noise, among other factors.

• Deblurring techniques typically consist of applying inverse filtering techniques
with the goal of “undoing” the degradation. The best-known approach to im-
age deblurring (even in the presence of noise) is the Wiener filter, which is
implemented in MATLAB by the deconvwnr function.

LEARN MORE ABOUT IT

• Chapter 4.5 of [Bov00a] provides additional information on noise sources and
noise models.

• Chapters 11 and 12 of [Pra07] discuss image restoration models and techniques
in more detail.

• Section 5.2 of [GWE04] discusses the generation of spatial random noise
with specified distributions and extends the functionality of the IPT function
imnoise.

• There have been many variants, extensions, and optimized implementations of
the median filter proposed in the literature, such as

– the pseudomedian [PCK85], also described in Section 10.3 of [Pra07];

– weighted median filters, described in Chapter 3.2 of [Bov00a];

– faster implementations, such as the one proposed in [HYT79].
• Nonlinear filters have been the subject of entire chapters, for example, [Dou94],

and book-length treatment, for example, [PV90].
• To learn more about adaptive filters, we recommend Section 5.3.3 of [GW08]

and Chapter 11 of [MW93].
• Sections 5.7–5.10 of [GWE04] discuss the main IPT functions for image de-

blurring.
• Chapter 4.2 of [SOS00] presents a technique for noise removal in binary images,

the kFill filter.
• Chapter 3.5 of [Bov00a] provides additional information on image restoration,

image deblurring, and blur identification techniques.

12.7 PROBLEMS

12.1 Write a modified and expanded version of the IPT function imnoise. Your
function should allow the specification of other types of noise, currently not supported
by imnoise, for example, Rayleigh, Erlang, uniform, and exponential.

PROBLEMS 297

12.2 Write a MATLAB function to generate periodic noise (and its spectrum), given
a set of coordinate pairs corresponding to different values of frequencies (u, v) in the
2D spatial frequency domain. Use your function to generate the same periodic noise
as displayed in Figure 12.9 (where the value of D0 is 32).

12.3 What is the effect on an image if we apply a contraharmonic mean filter with
the following values of R:

(a) R = 0

(b) R = −1

12.4 Write a MATLAB function to implement an ideal bandreject filter of radius
D0 and width W and use it to reduce periodic noise on an input noisy image.

12.5 Write a MATLAB function to implement a Butterworth bandreject filter of
order n, radius D0, and width W and use it to reduce periodic noise on an input noisy
image.

12.6 Write a MATLAB function to implement a Gaussian bandreject filter of radius
D0 and width W and use it to reduce periodic noise on an input noisy image.

12.7 Test your solutions to Problems 12.4–12.6 using the image from Figure 12.9a
(available at the book web site) as an input.

12.8 Write a MATLAB function to implement an ideal bandpass filter of radius D0
and width W .

12.9 Write a MATLAB function to implement a Butterworth bandpass filter of
order n, radius D0, and width W .

12.10 Write a MATLAB function to implement a Gaussian bandpass filter of radius
D0 and width W .

12.11 Test your solutions to Problems 12.8–12.10 using the image from Fig-
ure 12.9a (available at the book web site) as an input and comparing the
result produced by your function with the image in Figure 12.9b.

12.12 Write a MATLAB function to implement an ideal notch reject filter of radius
D0, centered at (u0, v0), and use it to reduce periodic noise on an input noisy image.

12.13 Write a MATLAB function to implement a Butterworth notch reject filter of
order n and radius D0, centered at (u0, v0), and use it to reduce periodic noise on an
input noisy image.

12.14 Write a MATLAB function to implement a Gaussian notch reject filter of
radius D0, centered at (u0, v0), and use it to reduce periodic noise on an input noisy
image.

12.15 Test your solutions to Problems 12.12–12.14 using a test image with one
sinusoidal noise component created with your solution to Problem 12.2.

298 IMAGE RESTORATION

12.16 Write a MATLAB function to implement a range filter whose output is the
difference between the maximum and the minimum gray levels in a neighborhood
centered on a pixel [Eff00], test it, and answer the following questions:

(a) Is the range filter a linear or nonlinear one? Explain.

(b) What can it be used for?

CHAPTER 13

MORPHOLOGICAL IMAGE
PROCESSING

WHAT WILL WE LEARN?

• What is mathematical morphology and how is it used in image processing?
• What are the main morphological operations and what is the effect of applying

them to binary and grayscale images?
• What is a structuring element (SE) and how does it impact the result of a mor-

phological operation?
• What are some of the most useful morphological image processing algorithms?

13.1 INTRODUCTION

Mathematical morphology is a branch of image processing that has been successfully
used to provide tools for representing, describing, and analyzing shapes in images.
It was initially developed by Jean Serra in the early 1980s [SC82] and—because of
its emphasis on studying the geometrical structure of the components of an image—
named after the branch of biology that deals with the form and structure of animals
and plants. In addition to providing useful tools for extracting image components,
morphological algorithms have been used for pre- or postprocessing the images con-
taining shapes of interest.

Practical Image and Video Processing Using MATLAB®. By Oge Marques.
© 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

299

300 MORPHOLOGICAL IMAGE PROCESSING

The basic principle of mathematical morphology is the extraction of geometrical
and topological information from an unknown set (an image) through transformations
using another, well-defined, set known as structuring element. In morphological image
processing, the design of SEs, their shape and size, is crucial to the success of the
morphological operations that use them.

The IPT in MATLAB has an extensive set of built-in morphological functions,
which will be introduced throughout the chapter. You will have a chance to work with
many of them in the tutorials at the end of the chapter.

13.2 FUNDAMENTAL CONCEPTS AND OPERATIONS

The basic concepts of mathematical morphology can be introduced with the help of
set theory and its standard operations: union (∪), intersection (∩), and complement,
defined as

Ac = {z|z /∈ A} (13.1)

and the difference of two sets A and B:

A − B = {z|z ∈ A, z /∈ B} = A ∩ Bc (13.2)

Let A be a set (of pixels in a binary image) and w = (x, y) be a particular coordinate
point. The translation of set A by point w is denoted by Aw and defined as

Aw = {c|c = a + w, for a ∈ A} (13.3)

The reflection of set A relative to the origin of a coordinate system, denoted Â, is
defined as

Â = {z|z = −a, for a ∈ A} (13.4)

Figure 13.1 shows a graphical representation of the basic set operations defined
above. The black dot represents the origin of the coordinate system.

Binary mathematical morphology theory views binary images as a set of its fore-
ground pixels (whose values are assumed to be 1), the elements of which are in Z2.
Classical image processing refers to a binary image as a function of x and y, whose
only possible values are 0 and 1. To avoid any potential confusion that this dual view
may cause, here is an example of how a statement expressed in set theory notation
can be translated into a set of logical operations applied to binary images:

The statement C = A ∩ B, from a set theory perspective, means

C = {(x, y)|(x, y) ∈ A and (x, y) ∈ B} (13.5)

The equivalent expression using conventional image processing notation would be

C (x, y) =
{

1 if A (x, y) and B (x, y) are both 1

0 otherwise
(13.6)

FUNDAMENTAL CONCEPTS AND OPERATIONS 301

FIGURE 13.1 Basic set operations: (a) set A; (b) translation of A by x = (x1, x2); (c) set B;
(d) reflection of B; (e) set A and its complement Ac; (f) set difference (A−B).

This expression leads quite easily to a single MATLAB statement that performs
the intersection operation using the logical operator AND (&). Similarly, complement
can be obtained using the unary NOT (˜) operator, set union can be implemented
using the logical operator OR (|), and set difference (A − B) can be expressed as
(A & ˜B). Figure 13.2 shows representative results for two binary input images.
Note that we have followed the IPT convention, representing foreground (1-valued)
pixels as white pixels against a black background.

13.2.1 The Structuring Element

The structuring element is the basic neighborhood structure associated with morpho-
logical image operations. It is usually represented as a small matrix, whose shape

302 MORPHOLOGICAL IMAGE PROCESSING

FIGURE 13.2 Logical equivalents of set theory operations: (a) Binary image (A); (b) Binary
image (B); (c) Complement (Ac); (d) Union (A ∪ B); (e) Intersection (A ∩ B); (f) Set difference
(A−B).

and size impact the results of applying a certain morphological operator to an image.
Figure 13.3 shows two examples of SEs and how they will be represented in this
chapter: the black dot corresponds to their origin (reference point), the gray squares
represent 1 (true), and the white squares represent 0 (false). Although a structuring
element can have any shape, its implementation requires that it should be converted
to a rectangular array. For each array, the shaded squares correspond to the members
of the SE, whereas the empty squares are used for padding, only.

In MATLAB

MATLAB’s IPT provides a function for creating structuring elements, strel, which
supports arbitrary shapes, as well as commonly used ones, such as square, diamond,
line, and disk. The result is stored as a variable of class strel.

(b)(a)

FIGURE 13.3 Examples of structuring elements: (a) square; (b) cross.

FUNDAMENTAL CONCEPTS AND OPERATIONS 303

� EXAMPLE 13.1

This example shows the creation of a square SE using strel and interpretation of
its results.

>> se1 = strel(’square’,4)

se1 =

Flat STREL object containing 16 neighbors.

Decomposition: 2 STREL objects containing a total of 8 neighbors

Neighborhood:

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

The 4 × 4 square SE has been stored in a variablese1. The results displayed on the
command window also indicate that the STREL object contains 16 neighbors, which
can be decomposed (for faster execution) into 2 STREL objects of 8 elements each.

We can then use the getsequence function to inspect the decomposed structur-
ing elements.

>> decomp = getsequence(se1)

decomp =

2x1 array of STREL objects

>> decomp(1)

ans =

Flat STREL object containing 4 neighbors.

Neighborhood:
1
1
1
1

>> decomp(2)

304 MORPHOLOGICAL IMAGE PROCESSING

ans =

Flat STREL object containing 4 neighbors.

Neighborhood:
1 1 1 1

� EXAMPLE 13.2

This example shows the creation of two additional SEs of different shape and size
using strel. Note that the rectangular SE does not require decomposition.

>> se2 = strel(’diamond’,4)

se2 =

Flat STREL object containing 41 neighbors.

Decomposition: 3 STREL objects containing a total of 13 neighbors

Neighborhood:

0 0 0 0 1 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 1 1 1 1 1 0 0

0 1 1 1 1 1 1 1 0

1 1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1 0

0 0 1 1 1 1 1 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 1 0 0 0 0

>> se3 = strel(’rectangle’,[1 3])

se3 =

Flat STREL object containing 3 neighbors.

Neighborhood:

1 1 1

13.3 DILATION AND EROSION

In this section, we discuss the two fundamental morphological operations upon which
all other operations and algorithms are built: dilation and erosion.

DILATION AND EROSION 305

13.3.1 Dilation

Dilation is a morphological operation whose effect is to “grow” or “thicken” objects
in a binary image. The extent and direction of this thickening are controlled by the
size and shape of the structuring element.

Mathematically, the dilation of a set A by B, denoted A ⊕ B, is defined as

A ⊕ B = {
z|(B̂)z ∩ A /= ∅}

(13.7)

Figure 13.4 illustrates how dilation works using the same input object and three dif-
ferent structuring elements: rectangular SEs cause greater dilation along their longer
dimension, as expected.

In MATLAB

Morphological dilation is implemented by function imdilate, which takes two
parameters: an image and a structuring element. In Tutorial 13.1, you will have an
opportunity to learn more about this function and apply it to binary images.

FIGURE 13.4 Example of dilation using three different rectangular structuring elements.

306 MORPHOLOGICAL IMAGE PROCESSING

� EXAMPLE 13.3

This example shows the application of imdilate to a small binary test image with
two different SEs.

>> a = [0 0 0 0 0 ; 0 1 1 0 0; 0 1 1 0 0; 0 0 1 0 0; 0 0 0 0 0]

a =

0 0 0 0 0

0 1 1 0 0

0 1 1 0 0

0 0 1 0 0

0 0 0 0 0

>> se1 = strel(’square’,2)

se1 =

Flat STREL object containing 4 neighbors.

Neighborhood:

1 1

1 1

>> b = imdilate(a,se1)

b =

0 0 0 0 0

0 1 1 1 0

0 1 1 1 0

0 1 1 1 0

0 0 1 1 0

The dilation of awith SE se1 (whose reference pixel is the top left corner) caused
every pixel in a whose value was 1 to be replaced with a 2 × 2 square of pixels equal
to 1.

>> se2 = strel(’rectangle’, [1 2])

se2 =

DILATION AND EROSION 307

Flat STREL object containing 2 neighbors.

Neighborhood:
1 1

>> c = imdilate(a,se2)

c =

0 0 0 0 0
0 1 1 1 0
0 1 1 1 0
0 0 1 1 0
0 0 0 0 0

The dilation of a with SE se2 (whose reference pixel is the leftmost one) caused
every pixel in a whose value was 1 to be replaced with a 1 × 2 rectangle of pixels
equal to 1, that is, a predominantly horizontal dilation.

13.3.2 Erosion

Erosion is a morphological operation whose effect is to “shrink” or “thin” objects in
a binary image. The direction and extent of this thinning is controlled by the shape
and size of the structuring element.

Mathematically, the erosion of a set A by B, denoted A � B, is defined as

A � B = {
z|(B̂)z ∪ Ac /= ∅}

(13.8)

Figure 13.5 illustrates how erosion works using the same input object and three
different structuring elements. Erosion is more severe in the direction of the longer
dimension of the rectangular SE.

In MATLAB

Morphological erosion is implemented by function imerode, which takes two pa-
rameters: an image and a structuring element. In Tutorial 13.1, you will have an
opportunity to learn more about this function.

� EXAMPLE 13.4

This example shows the application of imerode to a small binary test image with
two different SEs.

308 MORPHOLOGICAL IMAGE PROCESSING

FIGURE 13.5 Example of erosion using three different rectangular structuring elements.

>> a = [0 0 0 0 0 ; 0 1 1 1 0; 1 1 1 0 0; 0 1 1 1 1; 0 0 0 0 0]

a =

0 0 0 0 0

0 1 1 1 0

1 1 1 0 0

0 1 1 1 1

0 0 0 0 0

>> se1 = strel(’square’,2)

se1 =

Flat STREL object containing 4 neighbors.

Neighborhood:

1 1

1 1

>> b = imerode(a,se1)

DILATION AND EROSION 309

b =

0 0 0 0 0

0 1 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

The erosion of awith SE se1 (whose reference pixel is the top left corner) caused the
disappearance of many pixels ina; the ones that remained were the ones corresponding
to the top left corner of a 2 × 2 square of pixels equal to 1.

>> se2 = strel(’rectangle’, [1 2])

se2 =

Flat STREL object containing 2 neighbors.

Neighborhood:
1 1

>> c = imerode(a,se2)

c =

0 0 0 0 0
0 1 1 0 0
1 1 0 0 0
0 1 1 1 1
0 0 0 0 0

The erosion ofawith SEse2 (whose reference pixel is the leftmost one) caused the
disappearance of many pixels ina; the ones that remained were the ones corresponding
to the leftmost pixel of a 1×2 rectangle of pixels equal to 1.

Erosion is the dual operation of dilation and vice versa:

(A � B)c = Ac ⊕ B̂ (13.9)

A ⊕ B = (Ac � B̂)c (13.10)

Erosion and dilation can also be interpreted in terms of whether a SE hits or fits
an image (region), as follows [Eff00].

310 MORPHOLOGICAL IMAGE PROCESSING

For dilation, the resulting image g(x, y), given an input image f (x, y) and a SE se,
will be

g(x, y) =
{

1 if se hits f

0 otherwise
(13.11)

for all x and y.
For erosion, the resulting image g(x, y), given an input image f (x, y) and a SE se,

will be

g(x, y) =
{

1 if se fits f

0 otherwise
(13.12)

for all x and y.

13.4 COMPOUND OPERATIONS

In this section, we present morphological operations that combine the two fundamen-
tal operations (erosion and dilation) in different ways.

13.4.1 Opening

The morphological opening of set A by B, represented as A ◦ B, is the erosion of A

by B followed by the dilation of the result by B. Mathematically,

A ◦ B = (A � B) ⊕ B (13.13)

Alternatively, the opening operation can be expressed using set notation as

A ◦ B =
⋃

{(B)z|(B)z ⊆ A} (13.14)

where
⋃ {•} represents the union of all sets within the curly braces, and the symbol

⊆ means “is a subset of.”
The opening operation is idempotent, that is, once an image has been opened with

a certain SE, subsequent applications of the opening algorithm with the same SE will
not cause any effect on the image. Mathematically,

(A ◦ B) ◦ B = A ◦ B (13.15)

Morphological opening is typically used to remove thin protrusions from objects
and to open up a gap between objects connected by a thin bridge without shrinking
the objects (as erosion would have done). It also causes a smoothening of the object’s
contour (Figure 13.6).

The geometric interpretation of the opening operation is straightforward: A ◦ B is
the union of all translations of B that fit entirely within A (Figure 13.7).

COMPOUND OPERATIONS 311

FIGURE 13.6 Example of morphological opening.

In MATLAB

Morphological opening is implemented by function imopen, which takes two
parameters: input image and structuring element. In Tutorial 13.1, you will have
an opportunity to learn more about this function.

13.4.2 Closing

The morphological closing of set A by B, represented as A • B, is the dilation of A

by B followed by the erosion of the result by B. Mathematically,

A • B = (A ⊕ B) � B (13.16)

Just as with opening, the closing operation is idempotent, that is, once an image
has been closed with a certain SE, subsequent applications of the opening algorithm

FIGURE 13.7 Geometric interpretation of the morphological opening operation.

312 MORPHOLOGICAL IMAGE PROCESSING

FIGURE 13.8 Example of morphological closing.

with the same SE will not cause any effect on the image. Mathematically,

(A • B) • B = A • B (13.17)

Morphological closing is typically used to fill small holes, fuse narrow breaks,
and close thin gaps in the objects within an image, without changing the objects’ size
(as dilation would have done). It also causes a smoothening of the object’s contour
(Figure 13.8).

The geometric interpretation of the closing operation is as follows: A • B is the
complement of the union of all translations of B that do not overlap A (Figure 13.9).

Closing is the dual operation of opening and vice versa:

A • B = (Ac ◦ B)c (13.18)

A ◦ B = (Ac • B)c (13.19)

In MATLAB

Morphological closing is implemented by function imclose, which takes two
parameters: input image and structuring element. In Tutorial 13.1, you will have
an opportunity to learn more about this function.

COMPOUND OPERATIONS 313

FIGURE 13.9 Geometric interpretation of the morphological closing operation. Adapted and
redrawn from [GW08].

13.4.3 Hit-or-Miss Transform

The hit-or-miss (HoM) transform is a combination of morphological operations that
uses two structuring elements (B1 and B2) designed in such a way that the output
image will consist of all locations that match the pixels in B1 (a hit) and that have
none of the pixels in B2 (a miss). Mathematically, the HoM transform of image A by
the structuring element set B (B = (B1, B2)), denoted A ⊗ B, is defined as

A ⊗ B = (A � B1) ∩ (Ac � B2) (13.20)

Alternatively, the HoM transform can be expressed as

A ⊗ B = (A � B1) − (A ⊕ B̂2) (13.21)

Figure 13.101 shows how the HoM transform can be used to locate squares of a
certain size in a binary image. Figure 13.10a shows the input image (A), consisting
of two squares against a background, and Figure 13.10b shows its complement (Ac).
The two structuring elements, in this case, have been chosen to be a square of the
same size as the smallest square in the input image, B1 (Figure 13.10c), and a square
of the larger size, indicating that the smallest square should be surrounded by pixels
of opposite color, B2 (Figure 13.10d). Figure 13.10e shows the partial result after the
first erosion: the smallest square is hit at a single spot, magnified, and painted red
for viewing purposes, whereas the largest square is hit at many points. Figure 13.10f
shows the final result, containing the set of all points2 for which the HoM transform
found a hit for B1 in A and a hit for B2 in Ac (which is equivalent to a miss for B2 in A).

In MATLAB

The binary hit-or-miss transformation is implemented by function bwhitmiss,
whose basic syntax is J = bwhitmiss(I, B1, B2), where I is the input

1The thin black borders in parts (a), (d), (e), and (f) were added for viewing purposes only.
2In this case, this set contains only one point, which was enlarged and painted red for viewing purposes.

314 MORPHOLOGICAL IMAGE PROCESSING

FIGURE 13.10 Example of HoM transform.

image, B1 and B2 are the structuring elements, and J is the resulting image. You
will learn how to use this function in Tutorial 13.1.

13.5 MORPHOLOGICAL FILTERING

Morphological filters are Boolean filters that apply a many-to-one binary (or Boolean)
function h within a window W in the binary input image f (x, y), producing at the
output an image g(x, y) given by

g(x, y) = h
[
Wf (x, y)

]
(13.22)

BASIC MORPHOLOGICAL ALGORITHMS 315

Examples of Boolean operations (denoted as h in equation (13.22)) are as
follows:

• OR: This (as we have seen in Section 13.2) is equivalent to a morphological
dilation with a square SE of the same size as W .

• AND: This (as we have seen in Section 13.2) is equivalent to a morphological
erosion with a square SE of the same size as W .

• MAJ (Majority): This is the morphological equivalent to a median filter (intro-
duced in Section 12.3.2) applicable to binary images.

Morphological filters can also be used in noise reduction. Let A be a binary
image corrupted by impulse (salt and pepper) noise. The application of a mor-
phological opening operation followed by a morphological closing will remove a
significant amount of noise present in the input image, resulting in an image C

given by

C = ((A ◦ B) • B) (13.23)

where B is the chosen SE.

� EXAMPLE 13.5

Figure 13.11 shows an example of morphological filtering for noise removal on a
binary image using a circular SE of radius equal to 2 pixels. Part (a) shows the
(641 × 535) input image, contaminated by salt and pepper noise. Part (b) shows
the partial result (after the opening operation): at this stage, all the “salt” portion
of the noise has been removed, but the “pepper” noise remains. Finally, part (c) shows
the result of applying closing to the result of the opening operation. The noise has
been completely removed, at the expense of imperfections at the edges of the objects.
Such imperfections would be even more severe for larger SEs, as demonstrated in
part (d), where the radius of the circular SE is equal to 4 pixels.

13.6 BASIC MORPHOLOGICAL ALGORITHMS

In this section, we present a collection of simple and useful morphological algorithms
and show how they can be implemented using MATLAB and the IPT. Several of these
algorithms will also be covered in Tutorial 13.2.

In MATLAB

The IPT function bwmorph implements a number of useful morphological oper-
ations and algorithms, listed in Table 13.1. This function takes three arguments:
input image, desired operation, and the number of times the operation is to be
repeated.

316 MORPHOLOGICAL IMAGE PROCESSING

FIGURE 13.11 Morphological filtering. (a) input (noisy) image; (b) partial result (after open-
ing) with SE of radius = 2 pixels; (c) final result with SE of radius = 2 pixels; (d) final result
with SE of radius = 4 pixels.

� EXAMPLE 13.6

In this example, we use bwmorph to apply different operations to the same small test
image (Figure 13.12a).3

Here is the sequence of steps used to obtain the results in Figure 13.12(b–f):

B = bwmorph(A,’skel’, Inf);
C = bwmorph(B,’spur’,Inf);
D = bwmorph(A,’remove’);
E = bwmorph(D,’thicken’,3);
F = bwmorph(E,’thin’,3);

3The goal is to give you a quick glance at some of the most useful morphological algorithms and their
effect on an input test image. A detailed formulation of each operation is beyond the scope of this book.
Refer to “Learn More About It” section at the end of the chapter.

BASIC MORPHOLOGICAL ALGORITHMS 317

TABLE 13.1 Operations Supported by bwmorph

Operation Description

bothat Subtract the input image from its closing
bridge Bridge previously unconnected pixels
clean Remove isolated pixels (1s surrounded by 0s)
close Perform binary closure (dilation followed by erosion)
diag Diagonal fill to eliminate 8-connectivity of background
dilate Perform dilation using the structuring element 1s(3)
erode Perform erosion using the structuring element 1s(3)
fill Fill isolated interior pixels (0s surrounded by 1s)
hbreak Remove H-connected pixels

majority Set a pixel to 1 if five or more pixels in its 3 × 3 neighborhood are 1s
open Perform binary opening (erosion followed by dilation)
remove Set a pixel to 0 if its 4-connected neighbors are all 1s, thus leaving only

boundary pixels
shrink With N = Inf, shrink objects to points; shrink objects with holes to con-

nected rings
skel With N = Inf, remove pixels on the boundaries of objects without allow-

ing objects to break apart
spur Remove endpoints of lines without removing small objects completely

thicken With N = Inf, thicken objects by adding pixels to the exterior of objects
without connecting previously unconnected objects

thin With N = Inf, remove pixels so that an object without holes shrinks to a
minimally connected stroke, and an object with holes shrinks to a ring
halfway between the hold and outer boundary

tophat Subtract the opening from the input image

13.6.1 Boundary Extraction

Dilation, erosion, and set difference operations can be combined to perform boundary
extraction of a set A, denoted by BE(A), as follows:

• Internal Boundary: Consists of the pixels in A that sit at the edge of A.

BE(A) = A − (A � B) (13.24)

• External Boundary: Consists of the pixels outside A that sit immediately next
to A.

BE(A) = (A ⊕ B) − A (13.25)

• Morphological Gradient: Consists of the combination of internal and external
boundaries.

BE(A) = (A ⊕ B) − (A � B) (13.26)

where B is a suitable structuring element.

318 MORPHOLOGICAL IMAGE PROCESSING

FIGURE 13.12 Morphological algorithms. (a) input image; (b) skeleton of (a); (c) pruning
spurious pixels from (b); (d) removing interior pixels from (a); (e) thickening the image in (d);
(f) thinning the image in (e). Original image: courtesy of MathWorks.

BASIC MORPHOLOGICAL ALGORITHMS 319

FIGURE 13.13 Boundary extraction.

Figure 13.13 shows an example of internal boundary extraction of a small (5 × 12)
object using a 3 × 3 square as SE.

In MATLAB

The IPT function bwperim returns a binary image containing only the perimeter
pixels of objects in the input image.

� EXAMPLE 13.7

This example shows the application of bwperim (with 8-connectivity, to be consis-
tent with the SE in Figure 13.13b) to extract the internal boundary of a small binary
test image identical to the image in Figure 13.13a.

a = ones(5,12)
a (1:2,1)=0
a (1:2,9)=0
a (4:5,5)=0
b = bwperim(a,8)

When you execute the steps above, you will confirm that the result (stored in
variable b) is identical to the image in Figure 13.13d.

13.6.2 Region Filling

In this section, we present an algorithm that uses morphological and set operations to
fill regions (which can be thought of as holes) in a binary image.

320 MORPHOLOGICAL IMAGE PROCESSING

Let p be a pixel in a region surrounded by an 8-connected boundary, A. The goal of
a region filling algorithm is to fill up the entire region with 1s using p as a starting point
(i.e., setting it as 1). Region filling can be accomplished using an iterative procedure,
mathematically expressed as follows:

Xk = (Xk−1 ⊕ B) ∩ Ac k = 1, 2, 3, . . . (13.27)

where X0 = p and B is the cross-shaped structuring element. The algorithm stops at
the kth iteration if Xk = Xk−1. The union of Xk and A contains the original boundary
(A) and all the pixels within it labeled as 1.

Figure 13.14 illustrates the process. Part (a) shows the input image, whose com-
plement is in part (b). Part (c) shows the partial results of the algorithm after each
iteration (the number inside the square): the initial pixel (p, top left) corresponds to
iteration 0. This example requires six iterations to complete and uses the SE shown
in part (e). Part (d) shows the union of X6 and A.

FIGURE 13.14 Region filling: (a) input image; (b) complement of (a); (c) partial results
(numbered according to the iteration in the algorithm described by equation (13.27); (d) final
result; (e) structuring element.

BASIC MORPHOLOGICAL ALGORITHMS 321

In MATLAB

The IPT function imfill implements region filling. It can be used in an interactive
mode (where the user clicks on the image pixels that should be used as starting points)
or by passing the coordinates of the starting points. You will use imfill in Tutorial
13.2.

13.6.3 Extraction and Labeling of Connected Components

Morphological concepts and operations can be used to extract and label connected
components4 in a binary image.

The morphological algorithm for extraction of connected components is very simi-
lar to the region filling algorithm described in Section 13.6.2. Let A be a set containing
one or more connected components and p (p ∈ A) be a starting pixel. The process
of finding all other pixels in a component can be accomplished using an iterative
procedure, mathematically expressed as follows:

Xk = (Xk−1 ⊕ B) ∩ A, k = 1, 2, 3, . . . (13.28)

where X0 = p and B is a suitable structuring element: cross-shaped for 4-connectivity,
3 × 3 square for 8-connectivity.

The algorithm stops at the kth iteration if Xk = Xk−1.
Figure 13.15 shows an example of extraction of connected components. Part (a)

shows the initial set A and the starting pixel p, represented by the number 0. Part (e)
shows the SE used in this case. Parts (b) and (c) show the result of the first and second
iterations, respectively. The final result (after six iterations) is shown in Figure 13.15d.

In MATLAB

The IPT has a very useful function for computing connected components in a binary
image: bwlabel. The function takes two parameters (input image and connectivity
criterion: 4 or 8 (default)) and returns a matrix of the same size as the input image,
containing labels for the connected objects in the image. Pixels labeled 0 correspond to
the background; pixels labeled 1 and higher correspond to the connected components
in the image. You will learn how to use this function in Tutorial 13.2.

Visualization of the connected components extracted by bwlabel is often
achieved by pseudocoloring the label matrix (assigning a different color to each
component) using the label2rgb function.

The IPT also has a function for selecting objects, that is, connected components,
in a binary image: bwselect. It can be used in an interactive mode (where the user
clicks on the image pixels that should be used as starting points) or by passing the
coordinates of the starting points. You will use bwselect in Tutorial 13.2.

4The concept of connected component (a set of pixels that are 4- or 8- connected to each other) was
introduced in Section 2.3.

322 MORPHOLOGICAL IMAGE PROCESSING

FIGURE 13.15 Extraction of connected components: (a) input image; (b) first iteration;
(c) second iteration; (d) final result, showing the contribution of each iteration (indicated by
the numbers inside the squares); (e) structuring element.

13.7 GRAYSCALE MORPHOLOGY

Many morphological operations originally developed for binary images can be ex-
tended to grayscale images. This section presents the grayscale version of the basic
morphological operations (erosion, dilation, opening, and closing) and introduces the
top-hat and bottom-hat transformations.

The mathematical formulation of grayscale morphology uses an input image
f (x, y) and a structuring element (SE) b(x, y). Structuring elements in grayscale
morphology come in two categories: nonflat and flat.

In MATLAB

Nonflat SEs can be created with the same function used to create flat SEs: strel.
In the case of nonflat SEs, we must also pass a second matrix (containing the height
values) as a parameter.

GRAYSCALE MORPHOLOGY 323

13.7.1 Dilation and Erosion

The dilation of an image f (x, y) by a flat SE b(x, y) is defined as

[A ⊕ B](x, y) = max {f (x + s, y + t)|(s, t) ∈ Db} (13.29)

where Db is called the domain of b.
For a nonflat SE, bN (x, y), equation (13.29) becomes

[A ⊕ B](x, y) = max {f (x + s, y + t) + bN (s, t)|(s, t) ∈ Db} (13.30)

Some references use f (x − s, y − t) in equations (13.29) and (13.30), which just
requires the SE to be rotated by 180◦ or mirrored around its origin, that is, B̂(x, y) =
b(−x, −y).

The erosion of an image f (x, y) by a flat SE b(x, y) is defined as

[A � B](x, y) = min {f (x + s, y + t)|(s, t) ∈ Db} (13.31)

where Db is called the domain of b.
For a nonflat SE, bN (x, y), equation (13.31) becomes

[A � B](x, y) = min {f (x + s, y + t) − bN (s, t)|(s, t) ∈ Db} (13.32)

� EXAMPLE 13.8

Figure 13.16 shows examples of grayscale erosion and dilation with a nonflat ball-
shaped structuring element with radius 5 (se = strel(’ball’,5,5);).

13.7.2 Opening and Closing

Grayscale opening and closing are as defined exactly as they were for binary mor-
phology.

The opening of grayscale image f (x, y) by SE b(x, y) is given by

f ◦ b = (f � b) ⊕ b (13.33)

FIGURE 13.16 Grayscale erosion and dilation with a nonflat ball-shaped structuring element
with radius 5: (a) input image; (b) result of dilation; (c) result of erosion.

324 MORPHOLOGICAL IMAGE PROCESSING

The closing of grayscale image f (x, y) by SE b(x, y) is given by

f • b = (f ⊕ b) � b (13.34)

Grayscale opening and closing are used in combination for the purpose of smooth-
ing and noise reduction, similar to what we saw in Section 13.5 for binary images.
This technique, known as morphological smoothing, is discussed in the following
example.

� EXAMPLE 13.9

Figure 13.17 shows examples of applying grayscale opening and closing with a flat
disk-shaped structuring element with radius 3 (se = strel(’disk’,3);) for
noise reduction. The upper part of the figure refers to an input image corrupted by

FIGURE 13.17 Grayscale opening and closing with a flat disk-shaped structuring element
with radius 3: (a) input image (Gaussian noise); (b) result of opening image (a); (c) result of
closing image (b); (d) input image (salt and pepper noise); (e) result of opening image (d);
(f) result of closing image (e).

TUTORIAL 13.1: BINARY MORPHOLOGICAL IMAGE PROCESSING 325

Gaussian noise of mean 0 and variance 0.01, whereas the bottom part refers to an
input image corrupted by salt and pepper noise.

13.7.3 Top-Hat and Bottom-Hat Transformations

The top-hat and bottom-hat transformations are operations that combine morphologi-
cal openings and closings with image subtraction. The top-hat transformation is often
used in the process of shading correction, which consists in compensating for nonuni-
form illumination of the scene. Top-hat and bottom-hat operations can be combined
for contrast enhancement purposes.

Mathematically, the top-hat transformation of a grayscale image f is defined as
the subtraction of f from its opening with SE b:

Top-hat (f) = f − (f ◦ b) (13.35)

and the bottom-hat transformation of f is given by the subtraction of the closing of
f with SE b from f :

Bottom-hat (f) = (f • b) − f (13.36)

In MATLAB

IPT functions imtophat and imbothat implement top-hat and bottom-hat filter-
ing, respectively.

� EXAMPLE 13.10

Figure 13.18 shows an example of applying imtophat and imbothat to improve
the contrast of an input image I using a flat disk-shaped SE of radius 3. The output
image was obtained as follows:

J = imsubtract(imadd(I,imtophat(I,se)), imbothat(I,se));

13.8 TUTORIAL 13.1: BINARY MORPHOLOGICAL IMAGE
PROCESSING

Goal

The goal of this tutorial is to learn how to implement the basic binary morphological
operations in MATLAB.

Objectives

• Learn how to dilate an image using the imdilate function.
• Learn how to erode an image using the imerode function.

326 MORPHOLOGICAL IMAGE PROCESSING

FIGURE 13.18 Example of using top-hat and bottom-hat filtering for contrast improvement:
(a) input image; (b) output image.

• Learn how to open an image using the imopen function.
• Learn how to close an image using the imclose function.
• Explore the hit-or-miss transformation using the bwhitmiss function.

Procedure

1. Load and display the blobs test image.

I = imread(’blobs.png’);
figure, imshow(I), title(’Original Image’);

Dilation

2. Create a 3 × 3 structuring element with all coefficients equal to 1.

SE_1 = strel(’square’,3);

3. Perform dilation using the generated SE and display the results.

I_dil_1 = imdilate(I,SE_1);
figure, imshow(I_dil_1), title(’Dilated with 3x3’);

Question 1 What happened when we dilated the image with a square 3 × 3 SE?

TUTORIAL 13.1: BINARY MORPHOLOGICAL IMAGE PROCESSING 327

Let us now see what happens when using a SE shape other than a square.

4. Create a 1 × 7 SE with all elements equal to 1 and dilate the image.

SE_2 = strel(’rectangle’, [1 7]);
I_dil_2 = imdilate(I, SE_2);
figure, imshow(I_dil_2), title(’Dilated with 1x7’);

Question 2 What is the difference in results between the dilation using the 3 × 3
SE and the 1 × 7 SE?

Question 3 How would the results change if we use a 7 × 1 SE? Verify your
prediction.

Question 4 What other SE shapes does the strel function support?

Erosion

The procedure for erosion is similar to that for dilation. First, we create a structuring
element with thestrel function, followed by eroding the image using theimerode
function. We will use the same two SEs already created in the previous steps.

5. Erode the original image with a 3 × 3 structuring element and display the re-
sults.

I_ero_1 = imerode(I, SE_1);
figure, imshow(I), title(’Original Image’);
figure, imshow(I_ero_1), title(’Eroded with 3x3’);

6. Erode the original image with a 1 × 7 structuring element.

I_ero_2 = imerode(I, SE_2);
figure, imshow(I_ero_2), title(’Eroded with 1x7’);

Question 5 What is the effect of eroding the image?

Question 6 How does the size and shape of the SE affect the results?

Opening

7. Perform morphological opening on the original image using the square 3 × 3
SE created previously.

I_open_1 = imopen(I, SE_1);
figure, imshow(I), title(’Original Image’);
figure, imshow(I_open_1), title(’Opening the image’);

328 MORPHOLOGICAL IMAGE PROCESSING

Question 7 What is the overall effect of opening a binary image?

8. Compare opening with eroding.

figure, subplot(2,2,1), imshow(I), title(’Original Image’);

subplot(2,2,2), imshow(I_ero_1), title(’Result of Erosion’);

subplot(2,2,3), imshow(I_open_1), title(’Result of Opening (3x3)’);

Question 8 How do the results of opening and erosion compare?

9. Open the image with a 1 × 7 SE.

I_open_2 = imopen(I, SE_2);

subplot(2,2,4), imshow(I_open_2), title(’Result of Opening (1x7)’);

Question 9 How does the shape of the SE affect the result of opening?

Closing

10. Create a square 5 × 5 SE and perform morphological closing on the image.

SE_3 = strel(’square’,5);
I_clo_1 = imclose(I, SE_3);
figure, imshow(I), title(’Original Image’);
figure, imshow(I_clo_1), title(’Closing the image’);

Question 10 What was the overall effect of closing this image?

11. Compare closing with dilation.

figure, imshow(I), title(’Original Image’);
figure, imshow(I_dil_1), title(’Dilating the image’);
figure, imshow(I_clo_1), title(’Closing the image’);

Question 11 How does closing differ from dilation?

Hit-or-Miss Transformation

The HoM transformation is implemented through the bwhitmiss function, which
takes three variables: an image and two structuring elements. Technically, the oper-
ation will keep pixels whose neighbors match the first structuring element, and will
also keep any pixels whose neighbors do not match the second structuring element.
This justifies the name of the operations: a hit for the first structuring element or a
miss for the second structuring element.

TUTORIAL 13.1: BINARY MORPHOLOGICAL IMAGE PROCESSING 329

Normally we would use strel to generate the structuring element; but in this
case, we are not simply generating a matrix of 1s. Therefore, we will define the
structuring elements manually.

12. Close any open windows.

13. Define the two structuring elements.

SE1 = [0 0 0 0 0
0 0 0 0 0
0 1 1 0 0
0 0 1 0 0
0 0 0 0 0]

SE2 = [0 0 0 0 0
1 1 1 1 0
0 0 0 1 0
0 0 0 1 0
0 0 0 1 0]

14. Apply the HoM operation on the original image.

I_hm = bwhitmiss(I,SE1,SE2);
figure, imshow(I), title(’Original Image’);
figure, imshow(I_hm), title(’Hit-or-miss operation’);

Question 12 What was the result of applying the HoM operation to the image
with the given structuring elements?

Question 13 How could we define the structuring elements so that the bottom left
corner pixels of objects are shown in the result?

The bwhitmiss function offers a shortcut for creating structuring elements like
the one above. Because the two structuring elements above do not have any values in
common, we can actually use one array to represent both structuring elements.

In the array in Figure 13.19, 1 refers to ones in the first structuring element, −1
refers to ones in the second structuring element, and all 0s are ignored. This array is
called an interval.

15. Define an equivalent interval to that of the two structuring elements previously
defined.

interval = [0 0 0 0 0
-1 -1 -1 -1 0
0 1 1 -1 0
0 0 1 -1 0
0 0 0 -1 0]

330 MORPHOLOGICAL IMAGE PROCESSING

FIGURE 13.19 Combining two structuring elements into one for the HoM transformation.

I_hm2 = bwhitmiss(I,interval);
figure, imshow(I_hm), title(’Using two SEs’);
figure, imshow(I_hm2), title(’Using interval’);

Question 14 Will this technique work if the two structuring elements have ele-
ments in common? Explain.

13.9 TUTORIAL 13.2: BASIC MORPHOLOGICAL ALGORITHMS

Goal

The goal of this tutorial is to learn how to implement basic morphological algorithms
in MATLAB.

Objectives

• Learn how to perform boundary extraction.
• Explore the bwperim function.
• Learn how to fill object holes using the imfill function.
• Explore object selection using the bwselect function.
• Learn how to label objects in a binary image using the bwlabel function.
• Explore thebwmorph function to perform thinning, thickening, and skeletoniza-

tion.

What You Will Need

• morph.bmp

Procedure

Boundary Extraction

1. Load and display the test image.

TUTORIAL 13.2: BASIC MORPHOLOGICAL ALGORITHMS 331

I = imread(’morph.bmp’);
figure, imshow(I), title(’Original image’);

2. Subtract the original image from its eroded version to get the boundary image.

se = strel(’square’,3);
I_ero = imerode(I,se);
I_bou = imsubtract(I,I_ero);
figure, imshow(I_bou), title(’Boundary Extraction’);

3. Perform boundary extraction using the bwperim function.

I_perim = bwperim(I,8);
figure, imshow(I_perim), title(’Boundary using bwperim’);

Question 1 Show that the I_perim image is exactly the same as I_bou.

Question 2 If we specify 4-connectivity in the bwperim function call, how will
this affect the output image?

Region Filling

We can use theimfill function to fill holes within objects (among other operations).

4. Close any open figures.

5. Fill holes in the image using the imfill function.

I_fill1 = imfill(I,’holes’);
figure, imshow(I_fill1), title(’Holes filled’);

Function imfill can also be used in an interactive mode.

6. Pick two of the three holes interactively by executing this statement. After
selecting the points, press Enter.

I_fill2 = imfill(I);
imshow(I_fill2), title(’Interactive fill’);

Question 3 What other output parameters can be specified when using imfill?

Selecting and Labeling Objects

The bwselect function allows the user to interactively select connected
components—which often correspond to objects of interest—in a binary image.

332 MORPHOLOGICAL IMAGE PROCESSING

7. Close any open figures.

8. Select any of the white objects and press Enter.

bwselect(I);

Question 4 In the last step, we did not save the output image into a workspace
variable. Does this function allow us to do this? If so, what is the syntax?

In many cases, we need to label the connected components so that we can reference
them individually. We can use the function bwlabel for this purpose.

9. Label the objects in an image using bwlabel.

I_label = bwlabel(I);
figure, imshow(I_label,[]), title(’Labeled image’);

Question 5 What do the different shades of gray represent when the image is
displayed?

Question 6 What other display options can you choose to make it easier to tell
the different labeled regions apart?

Thinning

Thinning is one of the many operations that can be achieved through the use of the
bwmorph function (see Table 13.1 for a complete list).

10. Use bwmorph to thin the original image with five iterations.

I_thin = bwmorph(I,’thin’,5);
figure, imshow(I_thin), title(’Thinning, 5 iterations’);

Question 7 What happens if we specify 10, 15, or Inf (infinitely many) iterations
instead?

Thickening

11. Thicken the original image with five iterations.

I_thick = bwmorph(I,’thicken’,5);
figure, imshow(I_thick), title(’Thicken, 5 iterations’);

Question 8 What happens when we specify a higher number of iterations?

TUTORIAL 13.2: BASIC MORPHOLOGICAL ALGORITHMS 333

Question 9 How does MATLAB know when to stop thickening an object? (Hint:
Check to see what happens if we use Inf (infinitely many) iterations?

Skeletonization

12. Close any open figures.

13. Generate the skeleton using the bwmorph function.

I_skel = bwmorph(I,’skel’,Inf);
figure, imshow(I_skel), title(’Skeleton of image’);

Question 10 How does skeletonization compare with thinning? Explain.

WHAT HAVE WE LEARNED?

• Mathematical morphology is a branch of image processing that has been suc-
cessfully used to represent, describe, and analyze shapes in images. It offers
useful tools for extracting image components, such as boundaries and skeletons,
as well as pre- or postprocessing images containing shapes of interest.

• The main morphological operations are erosion (implemented by the imerode
function in MATLAB), dilation (imdilate), opening (imopen), closing
(imclose), and the hit-or-miss transform (bwhitmiss).

• The structuring element is the basic neighborhood structure associated with
morphological image operations. It is usually represented as a small matrix,
whose shape and size impact the results of applying a certain morphological
operator to an image.

• Morphological operators can be combined into useful algorithms for com-
monly used image processing operations, for example, boundary extraction,
region filling, and extraction (and labeling) of connected components within an
image.

LEARN MORE ABOUT IT

• The books by Serra ([SC82], [Ser88], and [SS96]) are considered the primary
references in the field of mathematical morphology.

• Book-length treatment of the topics discussed in this chapter can also be found
in [GD88] and [Dou92], among others.

• Section 14.2 of [Pra07] and Section 9.3.3 of [GWE04] discuss the implementa-
tion of the HoM transform using lookup tables (LUTs).

• Chapter 2.2 of [Bov00a] provides examples to illustrate the operation of basic
morphological filters.

334 MORPHOLOGICAL IMAGE PROCESSING

• Maragos and Pessoa (Chapter 3.3 of [Bov00a]) provide an extensive coverage
of morphological filtering and applications.

• For additional discussions and examples of morphological algorithms, refer to
Sections 9.5 and 9.6.3 of [GW08] and Section 10.6 of [McA04].

• The topic of morphological reconstruction [Vin93] is discussed in Sections 9.5.9
and 9.6.4 of [GW08] and Sections 9.5 and 9.6.3 of [GWE04].

• The paper by Jang and Chin [JC90] discusses morphological thinning algo-
rithms.

• Section 3.4 of [SS01] and Section 11.1 of [BB08] contain additional algorithms
for extraction and labeling of connected components.

• Chapter 13 of [SKH08] has MATLAB implementations of morphological al-
gorithms for object detection, thinning, and granulometry applications, among
others.

13.10 PROBLEMS

13.1 Use strel and getsequence to create SEs of different shape and size and
inspect their decomposed structuring elements.

13.2 Use the equations and definitions from Section 13.2 to prove that equation
(13.21) is, indeed, equivalent to equation (13.20).

13.3 Write a MATLAB script to demonstrate that erosion and dilation are dual
operations.

13.4 Repeat Example 13.7 using MATLAB commands that correspond to equation
(13.26).

13.5 Write a MATLAB script (or function) that extracts the connected components
of a binary image and displays the results using different colors for each component
and overlays a cross-shaped symbol on top of each component’s center of gravity.

13.6 How many connected components would the bwlabel function find, if pre-
sented with the negative (i.e., the image obtained by swapping white and black pixels)
of the image in Figure 2.8a as an input image? Explain.

13.7 Explore the MATLAB IPT and try to find at least two other functions—besides
bwlabel—whose results depend on whether 4- or 8-connectivity has been selected.

CHAPTER 14

EDGE DETECTION

WHAT WILL WE LEARN?

• What is edge detection and why is it so important to computer vision?
• What are the main edge detection techniques and how well do they work?
• How can edge detection be performed in MATLAB?
• What is the Hough transform and how can it be used to postprocess the results

of an edge detection algorithm?

14.1 FORMULATION OF THE PROBLEM

Edge detection is a fundamental image processing operation used in many computer
vision solutions. The goal of edge detection algorithms is to find the most relevant
edges in an image or scene. These edges should then be connected into meaningful
lines and boundaries, resulting in a segmented image1 containing two or more regions.
Subsequent stages in a machine vision system will use the segmented results for tasks
such as object counting, measuring, feature extraction, and classification.

The need for edge detection algorithms as part of a vision system also has its
roots in biological vision: there is compelling evidence that the very early stages of
the human visual system (HVS) contain edge-sensitive cells that respond strongly

1Image segmentation will be discussed in Chapter 15.

Practical Image and Video Processing Using MATLAB®. By Oge Marques.
© 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

335

336 EDGE DETECTION

(i.e., exhibit a higher firing rate) when presented with edges of certain intensity and
orientation. Edge detection algorithms, therefore, attempt to emulate an ability present
in the human visual system.

Such an ability is, according to many vision theorists, essential to all processing
steps that take place afterward in the HVS. David Marr, in his very influential theory
of vision [Mar82], speaks of primal sketches, which can be understood as the outcome
of the very early steps in the transition from an image to a symbolic representation of
its features, such as edges, lines, blobs, and terminations. In Marr’s terminology, the
result of edge detection algorithms compose the raw primal sketch; the outcome of
additional processing, linking the resulting edges together, constitute the full primal
sketch, which will be used by subsequent stages in the human visual processing
system.

Edge detection is a hard image processing problem. Most edge detection solutions
exhibit limited performance in the presence of images containing real-world scenes,
that is, images that have not been carefully controlled in their illumination, size and
position of objects, and contrast between objects and background. The impacts of
shadows, occlusion among objects and parts of the scene, and noise—to mention just
a few—on the results produced by an edge detection solution are often significant.
Consequently, it is common to precede the edge detection stage with preprocessing
operations such as noise reduction and illumination correction.

14.2 BASIC CONCEPTS

An edge can be defined as a boundary between two image regions having distinct
characteristics according to some feature (e.g., gray level, color, or texture). In this
chapter, we focus primarily on edges in grayscale 2D images, which are usually
associated with a sharp variation of the intensity function across a portion of the
image. Figure 14.1 illustrates this concept and shows the difference between an ideal
edge (sharp and abrupt transition) and a ramp edge (gradual transition between dark
and bright areas in the image).

Edge detection methods usually rely on calculations of the first or second derivative
along the intensity profile. The first derivative has the desirable property of being
directly proportional to the difference in intensity across the edge; consequently, the
magnitude of the first derivative can be used to detect the presence of an edge at a
certain point in the image. The sign of second derivative can be used to determine
whether a pixel lies on the dark or on the bright side of an edge. Moreover, the zero
crossing between its positive and negative peaks can be used to locate the center of
thick edges.

Figure 14.2 illustrates these concepts. It shows an image with a ramp edge and the
corresponding intensity profile, first and second derivatives, and zero crossing for any
horizontal line in the image. It shows that the first derivative of the intensity function
has a peak at the center of the luminance edge, whereas the second derivative—
which is the slope of the first derivative function—has a zero crossing at the center

BASIC CONCEPTS 337

FIGURE 14.1 Ideal and ramp edges: (a) ideal edge on a digital image and corresponding
profile along a horizontal line; (b) ramp edge and corresponding profile.

of the luminance edge, with a positive value on one side and a negative value on the
other.

The edges in Figures 14.1 and 14.2 were noise-free. When the input image is
corrupted by noise, the first and second derivatives respond quite differently. Even
modest noise levels—barely noticeable when you look at the original image or its
profile—can render the second derivative results useless, whereas more pronounced
noise levels will also impact the first derivative results to a point that they cannot be
used for edge detection. Figure 14.3 illustrates this problem.

In summary, the process of edge detection consists of three main steps:

1. Noise Reduction: Due to the first and second derivative’s great sensitivity to
noise, the use of image smoothing techniques (see Chapters 10–12) before
applying the edge detection operator is strongly recommended.

2. Detection of Edge Points: Here local operators that respond strongly to edges
and weakly elsewhere (described later in this chapter) are applied to the image,
resulting in an output image whose bright pixels are candidates to become edge
points.

3. Edge Localization: Here the edge detection results are postprocessed, spurious
pixels are removed, and broken edges are turned into meaningful lines and
boundaries, using techniques such as the Hough transform (Section 14.6.1).

In MATLAB

The IPT has a function for edge detection (edge), whose variants and options will
be explored throughout this chapter and its tutorial.

338 EDGE DETECTION

FIGURE 14.2 Grayscale image containing two regions separated by a ramp edge: intensity
profile and, first and second derivative results.

14.3 FIRST-ORDER DERIVATIVE EDGE DETECTION

The simplest edge detection methods work by estimating the gray-level gradient at a
pixel, which can be approximated by the digital equivalent of the first-order derivative
as follows:

gx(x, y) ≈ f (x + 1, y) − f (x − 1, y) (14.1)

gy(x, y) ≈ f (x, y + 1) − f (x, y − 1) (14.2)

FIRST-ORDER DERIVATIVE EDGE DETECTION 339

FIGURE 14.3 First- and second-order edge detectors with and without noise: (a) original
image; (b) first derivative; (c) second derivative; (d–f) horizontal profiles for images (a)–(c);
(g–i) noisy versions of images (a)–(c); (j–l) horizontal profiles for images (g)–(i).

The 2 × 2 approximations of the first-order derivative above are also known as
Roberts operators and can be represented using a 2×2 matrix notation as

gx =
[

0 −1

1 0

]
(14.3)

gy =
[
−1 0

0 1

]
(14.4)

These gradients are often computed within a 3×3 neighborhood using convolution:

gx(x, y) = hx ∗ f (x, y) (14.5)

gy(x, y) = hy ∗ f (x, y) (14.6)

where hx and hy are appropriate convolution masks (kernels).

340 EDGE DETECTION

The simplest pair of kernels, known as the Prewitt [Pre70] edge detector (operator),
are as follows:

hx =

⎡
⎢⎣

−1 0 1

−1 0 1

−1 0 1

⎤
⎥⎦ (14.7)

hy =

⎡
⎢⎣

−1 −1 −1

0 0 0

1 1 1

⎤
⎥⎦ (14.8)

A similar pair of kernels, which gives more emphasis to on-axis pixels, is the Sobel
edge detector, given by the following:

hx =

⎡
⎢⎣

−1 0 1

−2 0 2

−1 0 1

⎤
⎥⎦ (14.9)

hy =

⎡
⎢⎣

−1 −2 −1

0 0 0

1 2 1

⎤
⎥⎦ (14.10)

As you may have noticed, despite their differences, the 3×3 masks presented so
far share two properties:

• They have coefficients of opposite signs (across a row or column of coefficients
equal to zero) in order to obtain a high response in image regions with variations
in intensity (possibly due to the presence of an edge).

• The sum of the coefficients is equal to zero, which means that when applied
to perfectly homogeneous regions in the image (i.e., a patch of the image with
constant gray level), the result will be 0 (black pixel).

In MATLAB

The IPT function edge has options for both Prewitt and Sobel operators. Edge
detection using Prewitt and Sobel operators can also be achieved by using
imfilter with the corresponding 3×3 masks (which can be created using
fspecial).

� EXAMPLE 14.1

Figure 14.4 shows an example of using imfilter to apply the Prewitt edge detector
to a test image. Due to the fact that the Prewitt kernels have both positive and negative
coefficients, the resulting array contains negative and positive values. Since negative

FIRST-ORDER DERIVATIVE EDGE DETECTION 341

FIGURE 14.4 Edge detection example: (a) original image; (b) result of Prewitt horizontal
kernel; (c) result of Prewitt vertical kernel; (d) combination of (b) and (c).

values are usually truncated when displaying an image in MATLAB, the partial results
(Figure 14.4b and c) have been mapped to a modified gray-level range (where the
highest negative value becomes black, the highest positive value is displayed as white,
and all zero values are shown with a midlevel gray). This display strategy also gives
us insight into which side of the edge corresponds to a dark pixel and which side
corresponds to a bright one. Moreover, it is worth observing that both detectors can
find edges in this test image, despite the fact that it does not contain any purely vertical
or horizontal edges of significant length.

The combined final result (Figure 14.4d) was obtained by computing the magnitude
of the gradient, originally defined as

g =
√

g2
x + g2

y (14.11)

which can be approximated by

g = |gx| + |gy| (14.12)

342 EDGE DETECTION

� EXAMPLE 14.2

Figure 14.5 shows examples of edge detection using imfilter to apply the
Sobel operator on a grayscale image. All results are displayed in their negative (using
imcomplement) for better viewing on paper.

The idea of using horizontal and vertical masks used by the Prewitt and Sobel op-
erators can be extended to include all eight compass directions: north, northeast, east,
southeast, south, southwest, west, and northwest. The Kirsch [Kir71] (Figure 14.6)
and the Robinson [Rob77] (Figure 14.7) kernels are two examples of compass masks.
You will have a chance to design and apply the Kirsch and the Robinson masks to
grayscale images in Tutorial 14.1.

Edge detection results can be thresholded to reduce the number of false positives
(i.e., pixels that appear in the output image although they do not correspond to actual
edges). Figure 14.8 shows an example of usingedge to implement the Sobel operator
with different threshold levels. The results range from unacceptable because of too
many spurious pixels (part (a)) to unacceptable because of too few edge pixels (part
(d)). Part (c) shows the result using the best threshold value, as determined by the

FIGURE 14.5 Edge detection using Sobel operator: (a) original image; (b) result of Sobel
horizontal kernel; (c) result of Sobel vertical kernel; (d) combination of (b) and (c).

SECOND-ORDER DERIVATIVE EDGE DETECTION 343

FIGURE 14.6 Kirsch compass masks.

edge function using the syntax:[BW,thresh] = edge(I,’sobel’);, where
I is the input image.

14.4 SECOND-ORDER DERIVATIVE EDGE DETECTION

The Laplacian operator (originally introduced in Section 10.4.1) is a straightforward
digital approximation of the second-order derivative of the intensity. Although it has
the potential for being employed as an isotropic (i.e., omnidirectional) edge detector,
it is rarely used in isolation because of two limitations (commented earlier in this
chapter):

• It generates “double edges,” that is, positive and negative values for each edge.
• It is extremely sensitive to noise.

In MATLAB

Edge detection using the Laplacian operator can be implemented using the
fspecial function (to generate the Laplacian 3×3 convolution mask) and the

FIGURE 14.7 Robinson compass masks.

344 EDGE DETECTION

FIGURE 14.8 Edge detection using Sobel operator and thresholding (the original image
is the same as Figure 14.5a): (a) threshold of 0; (b) threshold of 0.05; (c) threshold of 0.1138
(the best value); (d) threshold of 0.2.

zerocross option in function edge as follows:

h = fspecial(’laplacian’,0);
J = edge(I,’zerocross’,t,h);

where t is a user-provided sensitivity threshold.

� EXAMPLE 14.3

Figure 14.9 shows the results of applying the zero-cross edge detector to an image
and the impact of varying the thresholds. Part (a) shows a clean input image; part
(b) shows the results of edge detection in (a) using default parameters, whereas part
(c) shows the effects of reducing the threshold to 0. Clearly the result in (b) is much
better than (c).

Part (d) is a noisy version of (a) (with zero-mean Gaussian noise with σ = 0.0001).
Parts (e) and (f) are the edge detection results using the noisy image in part (d) as an
input and the same options as in (b) and (c), respectively. In this case, although the
amount of noise is hardly noticeable in the original image (d), both edge detection
results are unacceptable.

SECOND-ORDER DERIVATIVE EDGE DETECTION 345

FIGURE 14.9 Edge detection using the zero-cross edge detector: (a) input image (without
noise); (b) results using default values; (c) results using threshold zero; (d) noisy input image;
(e) results using default values; (f) results using threshold zero. Edge results have been inverted
for clarity.

14.4.1 Laplacian of Gaussian

The Laplacian of Gaussian (LoG) edge detector works by smoothing the image with
a Gaussian low-pass filter (LPF), and then applying a Laplacian edge detector to the
result. The resulting transfer function (which resembles a Mexican hat in its 3D view)
is represented in Figure 14.10. The LoG filter can sometimes be approximated by

346 EDGE DETECTION

FIGURE 14.10 Laplacian of Gaussian: (a) 3D plot; (b) 2D intensity plot; (c) cross section
of (a).

taking the differences of two Gaussians of different widths in a method known as
difference of Gaussians (DoG).

In a landmark paper [MH80], David Marr and Ellen Hildreth proposed that LoG
filtering explains much of the low-level behavior of the human vision system, since the
response profile of an LoG filter approximates the receptive field of retinal cells tuned
to respond to edges. They proposed an architecture based on LoG filters with four or
five different spreads of σ to derive a primal sketch from a scene. The Marr–Hildreth
zero-crossing algorithm was eventually supplanted by the Canny edge detector as
the favorite edge detection solution among image processing and computer vision
practitioners, but Marr’s ideas continue to influence researchers in both human as
well as computer vision.

In MATLAB

Edge detection using the LoG filter can be implemented using the log option in
function edge.

THE CANNY EDGE DETECTOR 347

FIGURE 14.11 Edge detection using the LoG edge detector: (a) input image; (b) results
using default values; (c) results using σ = 1; (d) results using σ = 3. Edge results have been
inverted for clarity.

� EXAMPLE 14.4

Figure 14.11 shows the results of applying the LoG edge detector to an image, and
the impact of varying σ. Part (a) shows the input image; part (b) shows the results of
edge detection in (a) using default parameters (i.e., σ = 2), whereas parts (c) and (d)
show the effects of reducing or increasing sigma (to 1 and 3, respectively). Reducing
σ causes the resulting image to contain more fine details, whereas an increase in σ

leads to a coarser edge representation, as expected.

14.5 THE CANNY EDGE DETECTOR

The Canny edge detector [Can86] is one of the most popular, powerful, and effective
edge detection operators available today. Its algorithm can be described as follows:

1. The input image is smoothed using a Gaussian low-pass filter (Section 10.3.3),
with a specified value of σ: large values of σ will suppress much of the noise
at the expense of weakening potentially relevant edges.

348 EDGE DETECTION

2. The local gradient (intensity and direction) is computed for each point in the
smoothed image.

3. The edge points at the output of step 2 result in wide ridges. The algorithm
thins those ridges, leaving only the pixels at the top of each ridge, in a process
known as nonmaximal suppression.

4. The ridge pixels are then thresholded using two thresholds Tlow and Thigh: ridge
pixels with values greater than Thigh are considered strong edge pixels; ridge
pixels with values between Tlow and Thigh are said to be weak pixels. This
process is known as hysteresis thresholding.

5. The algorithm performs edge linking, aggregating weak pixels that are 8-
connected2 to the strong pixels.

In MATLAB

The edge function includes the Canny edge detector, which can be invoked using
the following syntax:

J = edge(I, ’canny’, T, sigma);

where I is the input image, T = [T_low T_high] is a 1×2 vector containing the
two thresholds explained in step 4 of the algorithm, sigma is the standard deviation
of the Gaussian smoothing filter, and J is the output image.

� EXAMPLE 14.5

Figure 14.12 shows the results of applying the Canny detector to an image (Fig-
ure 14.5a), and the impact of varying σ and the thresholds. Part (a) uses the syntax
BW = edge(J,’canny’);, which results in t = [0.0625 0.1563] and
σ = 1. In part (b), we change the value of σ (to 0.5) leaving everything else unchanged.
In part (c), we change the value of σ (to 2) leaving everything else unchanged. Chang-
ing σ causes the resulting image to contain more (part (b)) or fewer (part (c)) edge
points (compared to part (a)), as expected. Finally, in part (d), we keep σ in its default
value and change the thresholds to t = [0.01 0.1]. Since both Tlow and Thigh
were lowered, the resulting image contains more strong and weak pixels, resulting in
a larger number of edge pixels (compared to part (a)), as expected.

14.6 EDGE LINKING AND BOUNDARY DETECTION

The goal of edge detection algorithms should be to produce an image containing
only the edges of the original image. However, due to the many technical challenges
discussed earlier (noise, shadows, and occlusion, among others), most edge detec-
tion algorithms will output an image containing fragmented edges. In order to turn

2In some implementations, only the neighbors along a line normal to the gradient orientation at the edge
pixel are considered, not the entire 8-neighborhood.

EDGE LINKING AND BOUNDARY DETECTION 349

FIGURE 14.12 Edge detection using the Canny edge detector: (a) default values (σ = 1,
Tlow = 0.0625, Thigh = 0.1563); (b) σ = 0.5; (c) σ = 2; (d) σ = 1, Tlow = 0.01, Thigh = 0.1.

these fragmented edge segments into useful lines and object boundaries, additional
processing is needed. In this section, we discuss a global method for edge linking and
boundary detection: the Hough transform.3

14.6.1 The Hough Transform

The Hough transform [Hou] is a mathematical method designed to find lines in images.
It can be used for linking the results of edge detection, turning potentially sparse,
broken, or isolated edges into useful lines that correspond to the actual edges in the
image.

Let (x, y) be the coordinates of a point in a binary image.4 The Hough transform
stores in an accumulator array all pairs (a, b) that satisfy the equation y = ax + b.
The (a, b) array is called the transform array. For example, the point (x, y) = (1, 3)
in the input image will result in the equation b = −a + 3, which can be plotted as a
line that represents all pairs (a, b) that satisfy this equation (Figure 14.13).

3Pointers to other edge linking and boundary detection techniques can be found in “Learn More About It”
section at the end of the chapter.
4This binary image could, of course, be an image containing thresholded edge detection results.

350 EDGE DETECTION

FIGURE 14.13 The Hough transform maps a point into a line.

Since each point in the image will map to a line in the transform domain, repeat-
ing the process for other points will result in many intersecting lines, one per point
(Figure 14.14). The meaning of two or more lines intersecting in the transform do-
main is that the points to which they correspond are aligned in the image. The points
with the greatest number of intersections in the transform domain correspond to the
longest lines in the image.

Describing lines using the equation y = ax + b (where a represents the gradient)
poses a problem, since vertical lines have infinite gradient. This limitation can be
circumvented by using the normal representation of a line, which consists of two
parameters: ρ (the perpendicular distance from the line to the origin) and θ (the angle
between the line’s perpendicular and the horizontal axis). In this new representation
(Figure 14.15), vertical lines will have θ = 0. It is common to allow ρ to have negative
values, therefore restricting θ to the range −90◦ < θ ≤ 90◦.

FIGURE 14.14 The Hough transform: intersections in the transform domain correspond to
aligned points in the image.

EDGE LINKING AND BOUNDARY DETECTION 351

FIGURE 14.15 The Hough transform: a line and its parameters in the polar coordinate
system.

The relationship between ρ, θ, and the original coordinates (x, y) is

ρ = x cos θ + y sin θ (14.13)

Under the new set of coordinates, the Hough transform can be implemented as
follows:

1. Create a 2D array corresponding to a discrete set of values for ρ and θ. Each
element in this array is often referred to as an accumulator cell.

2. For each pixel (x, y) in the image and for each chosen value of θ, compute
x cos θ + y sin θ and write the result in the corresponding position—(ρ, θ)—in
the accumulator array.

3. The highest values in the (ρ, θ) array will correspond to the most relevant lines
in the image.

IN MATLAB

The IPT contains a function for Hough transform calculations, hough, which takes a
binary image as an input parameter, and returns the corresponding Hough transform
matrix and the arrays ofρ and θ values over which the Hough transform was calculated.
Optionally, the resolution of the discretized 2D array for both ρ and θ can be specified
as additional parameters.

� EXAMPLE 14.6

In this example, we use the hough function to find the strongest lines in a bi-
nary image obtained as a result of an edge detection operator (BW), using the

352 EDGE DETECTION

FIGURE 14.16 Hough transform example: (a) input image; (b) results of Hough transform,
highlighting the intersections corresponding to the predominant lines in the input image.

following steps:

[H,T,R] = hough(BW,’RhoResolution’,0.5,’ThetaResolution’,0.5);

Figure 14.16 shows the original image and the results of the Hough transform
calculations. You will notice that some of the highest peaks in the transform image
(approximately at θ = −60◦ and θ = 60◦) correspond to the main diagonal lines in
the scissors shape.

IN MATLAB

The IPT also includes two useful companion functions for exploring and plotting the
results of Hough transform calculations: houghpeaks (which identifies the k most
salient peaks in the Hough transform results, where k is passed as a parameter) and
houghlines, which draws the lines associated with the highest peaks on top of the
original image.

EDGE LINKING AND BOUNDARY DETECTION 353

FIGURE 14.17 Hough transform example: (a) results of Hough transform highlighting the
two highest peaks; (b) (negative of) edge detection results; (c) lines corresponding to the longest
peaks overlaid on top of original image.

� EXAMPLE 14.7

In this example, we use hough, houghpeaks, and houghlines on a grayscale
test image whose edges have been extracted using the Canny edge detector.5

Figure 14.17a shows the results of the Hough transform calculations with two
small squares indicating the two highest peaks. Figure 14.17b shows the result of
the Canny edge detector (displayed with black pixels against a white background
for better visualization). Figure 14.17c displays the original image with the highest
(cyan) and second highest (yellow) lines overlaid.

The Hough transform can be extended and generalized to find other shapes in
images. Refer to “Learn More About It” section at the end of the chapter for useful
references.

5The complete sequence of MATLAB commands is available at the book web site.

354 EDGE DETECTION

14.7 TUTORIAL 14.1: EDGE DETECTION

Goal

The goal of this tutorial is to learn how to implement edge detection and associated
techniques in MATLAB.

Objectives

• Learn how to use the IPT edge function.
• Explore the most popular first-derivative edge detectors: Roberts, Sobel, and

Prewitt.
• Explore the Marr–Hildreth Laplacian of Gaussian edge detector.
• Explore the Canny edge detector.
• Learn how to implement edge detection with compass masks (Kirsch and

Robinson).

What You Will Need

• lenna.tif
• mandrill.tif

Procedure

First-order edge detection methods, such as Prewitt and Sobel, are defined as con-
volution kernels. As we have seen in previous tutorials, convolution can be executed
in MATLAB using the imfilter function. Although we could use this function to
implement edge detection, we would be required to perform additional tasks, such as
convolving the image twice (once for horizontal edges, and another for vertical ones)
and adding the absolute values of these results to yield the final image. In practice,
this image might also then be thresholded to produce a binary image where white
pixels would represent edges. The function edge will do all this for us and will even
determine a threshold value if we choose not to specify one.

Edge Detection Using the Prewitt Operator

1. Load and display the test image.

I = imread(’lenna.tif’);
figure, subplot(2,2,1), imshow(I), title(’Original Image’);

2. Extract the edges in the image using the Prewitt operator.

[I_prw1,t1] = edge(I,’prewitt’);

subplot(2,2,2), imshow(I_prw1), title(’Prewitt, default thresh’);

TUTORIAL 14.1: EDGE DETECTION 355

Question 1 What does the t1 variable represent?
Edge detection methods are often compared by their ability to detect edges in

noisy images. Let us perform the Prewitt operator on the Lenna image with additive
Gaussian noise.

3. Add noise to the test image and extract its edges.

I_noise = imnoise(I,’gaussian’);
[I_prw2,t2] = edge(I_noise,’prewitt’);
subplot(2,2,3), imshow(I_noise), title(’Image w/ noise’);
subplot(2,2,4), imshow(I_prw2), title(’Prewitt on noise’);

Question 2 How did the Prewitt edge detector perform in the presence of noise
(compared to no noise)?

Question 3 Did MATLAB use a different threshold value for the noisy image?

Question 4 Try using different threshold values. Do these different values affect
the operator’s response to noise? How does the threshold value affect the edges of the
object?

Edge Detection Using the Sobel Operator

4. Extract the edges from the test image using the Sobel edge detector.

[I_sob1,t1] = edge(I,’sobel’);

figure, subplot(2,2,1), imshow(I), title(’Original Image’);

subplot(2,2,2), imshow(I_sob1), title(’Sobel, default thresh’);

5. Extract the edges from the test image with Gaussian noise using the Sobel edge
detector.

[I_sob2,t2] = edge(I_noise,’sobel’);
subplot(2,2,3), imshow(I_noise), title(’Image w/ noise’);
subplot(2,2,4), imshow(I_sob2), title(’Sobel on noise’);

Question 5 How does the Sobel operator compare with the Prewitt operator with
and without noise?

Another feature of the edge function is’thinning’, which reduces the thickness
of the detected edges. Although this feature is turned on by default, it can be turned
off, which results in faster edge detection.

356 EDGE DETECTION

6. Extract the edges from the test image with the Sobel operator with no thinning.

I_sob3 = edge(I,’sobel’,’nothinning’);
figure, subplot(1,2,1), imshow(I_sob1), title(’Thinning’);
subplot(1,2,2), imshow(I_sob3), title(’No Thinning’);

As you already know, the Sobel operator actually performs two convolutions (hor-
izontal and vertical). These individual images can be obtained by using additional
output parameters.

7. Display the horizontal and vertical convolution results from the Sobel operator.

[I_sob4,t,I_sobv,I_sobh] = edge(I,’sobel’);

figure

subplot(2,2,1), imshow(I), title(’Original Image’);

subplot(2,2,2), imshow(I_sob4), title(’Complete Sobel’);

subplot(2,2,3), imshow(abs(I_sobv),[]), title(’Sobel Vertical’);

subplot(2,2,4), imshow(abs(I_sobh),[]), title(’Sobel Horizontal’);

Question 6 Why do we display the absolute value of the vertical and horizontal
images? Hint: Inspect the minimum and maximum values of these images.

Question 7 Change the code in step 7 to display thresholded (binarized), not
thinned, versions of all images.

As you may have noticed, the edge function returns the vertical and horizontal
images before any thresholding takes place.

Edge Detection with the Roberts Operator

Similar options are available with the edge function when the Roberts operator is
used.

8. Extract the edges from the original image using the Roberts operator.

I_rob1 = edge(I,’roberts’);

figure

subplot(2,2,1), imshow(I), title(’Original Image’);

subplot(2,2,2), imshow(I_rob1), title(’Roberts, default thresh’);

9. Apply the Roberts operator to a noisy image.

[I_rob2,t] = edge(I_noise,’roberts’);
subplot(2,2,3), imshow(I_noise), title(’Image w/ noise’);
subplot(2,2,4), imshow(I_rob2), title(’Roberts on noise’);

TUTORIAL 14.1: EDGE DETECTION 357

Question 8 Compare the Roberts operator with the Sobel and Prewitt operators.
How does it hold up to noise?

Question 9 If we were to adjust the threshold, would we get better results when
filtering the noisy image?

Question 10 Suggest a method to reduce the noise in the image before performing
edge detection.

Edge Detection with the Laplacian of a Gaussian Operator

The LoG edge detector can be implemented with the edge function as well. Let us
see its results.

10. Extract the edges from the original image using the LoG edge detector.

I_log1 = edge(I,’log’);

figure

subplot(2,2,1), imshow(I), title(’Original Image’);

subplot(2,2,2), imshow(I_log1), title(’LoG, default parameters’);

11. Apply the LoG edge detector to the noisy image.

[I_log2,t] = edge(I_noise,’log’);
subplot(2,2,3), imshow(I_noise), title(’Image w/ noise’);
subplot(2,2,4), imshow(I_log2), title(’LoG on noise’);

Question 11 By default, the LoG edge detector uses a value of 2 for σ (the standard
deviation of the filter). What happens when we increase this value?

Edge Detection with the Canny Operator

12. Extract the edges from the original image using the Canny edge detector.

I_can1 = edge(I,’canny’);

figure

subplot(2,2,1), imshow(I), title(’Original Image’);

subplot(2,2,2), imshow(I_log1), title(’Canny, default parameters’);

13. Apply the filter to the noisy image.

[I_can2,t] = edge(I_noise,’canny’, [], 2.5);
subplot(2,2,3), imshow(I_noise), title(’Image w/ noise’);
subplot(2,2,4), imshow(I_can2), title(’Canny on noise’);

358 EDGE DETECTION

As you know, the Canny detector first applies a Gaussian smoothing function to
the image, followed by edge enhancement. To achieve better results on the noisy
image, we can increase the size of the Gaussian smoothing filter through the sigma
parameter.

14. Apply the Canny detector on the noisy image where sigma = 2.

[I_can3,t] = edge(I_noise,’canny’, [], 2);

figure

subplot(1,2,1), imshow(I_can2), title(’Canny, default parameters’);

subplot(1,2,2), imshow(I_can3), title(’Canny, sigma = 2’);

Question 12 Does increasing the value ofsigma give us better results when using
the Canny detector on a noisy image?

Another parameter of the Canny detector is the threshold value, which affects the
sensitivity of the detector.

15. Close any open figures and clear all workspace variables.

16. Load the mandrill image and perform the Canny edge detector with default
parameters.

I = imread(’mandrill.tif’);

[I_can1,thresh] = edge(I,’canny’);

figure

subplot(2,2,1), imshow(I), title(’Original Image’);

subplot(2,2,2), imshow(I_can1), title(’Canny, default parameters’);

17. Inspect the contents of variable thresh.

18. Use a threshold value higher than the one in variable thresh.

[I_can2,thresh] = edge(I, ’canny’, 0.4);

subplot(2,2,3), imshow(I_can2), title(’Canny, thresh = 0.4’);

19. Use a threshold value lower than the one in variable thresh.

[I_can2,thresh] = edge(I, ’canny’, 0.08);

subplot(2,2,4), imshow(I_can2), title(’Canny, thresh = 0.08’);

Question 13 How does the sensitivity of the Canny edge detector change when
the threshold value is increased?

TUTORIAL 14.1: EDGE DETECTION 359

Edge Detection with the Kirsch Operator

The remaining edge detection techniques discussed in this tutorial are not included
in the current implementation of the edge function, so we must implement them as
they are defined. We will begin with the Kirsch operator.

20. Close any open figures and clear all workspace variables.

21. Load the mandrill image and convert it to double format.

I = imread(’mandrill.tif’);
I = im2double(I);

Previously, when we were using the edge function, we did not need to convert the
image to class double because the function took care of this for us automatically.
Since now we are implementing the remaining edge detectors on our own, we must
perform the class conversion to properly handle negative values (preventing unwanted
truncation).

Next we will define the eight Kirsch masks. For ease of implementation, we will
store all eight masks in a 3 × 3 × 8 matrix. Figure 14.18 illustrates this storage format.

22. Create the Kirsch masks and store them in a preallocated matrix.

k = zeros(3,3,8);
k(:,:,1) = [-3 -3 5; -3 0 5; -3 -3 5];
k(:,:,2) = [-3 5 5; -3 0 5; -3 -3 -3];
k(:,:,3) = [5 5 5; -3 0 -3; -3 -3 -3];
k(:,:,4) = [5 5 -3; 5 0 -3; -3 -3 -3];
k(:,:,5) = [5 -3 -3; 5 0 -3; 5 -3 -3];
k(:,:,6) = [-3 -3 -3; 5 0 -3; 5 5 -3];
k(:,:,7) = [-3 -3 -3; -3 0 -3; 5 5 5];
k(:,:,8) = [-3 -3 -3; -3 0 5; -3 5 5];

FIGURE 14.18 Kirsch masks stored in a 3 × 3 × 8 matrix.

360 EDGE DETECTION

Next we must convolve each mask on the image, generating eight images. We will
store these images in a three-dimensional matrix just as we did for the masks. Because
all the masks are stored in one matrix, we can use a for loop to perform all eight
convolutions with less lines of code.

23. Convolve each mask with the image using a for loop.

I_k = zeros(size(I,1), size(I,2), 8);
for i = 1:8

I_k(:,:,i) = imfilter(I,k(:,:,i));
end

24. Display the resulting images.

figure
for j = 1:8

subplot(2,4,j), imshow(abs(I_k(:,:,j)),[]), ...
title([’Kirsch mask ’, num2str(j)]);

end

Question 14 Why are we required to display the absolute value of each mask?
Hint: Inspect the minimum and maximum values.

Question 15 How did we dynamically display the mask number when displaying
all eight images?

Next we must find the maximum value of all the images for each pixel. Again,
because they are all stored in one matrix, we can do this in one line of code.

25. Find the maximum values.

I_kir = max(I_k,[],3);
figure, imshow(I_kir,[]);

Question 16 When calculating the maximum values, what does the last parameter
in the max function call mean?

Question 17 Why are we required to scale the image when displaying it?
In the previous step we scaled the result for display purposes. If we wish to threshold

the image (as we did with all previous edge detectors), we must first scale the image
so that its values are within the range [0, 255] as well as convert to class uint8. To
do so, we can create a linear transformation function that maps all current values to
values within the range we want.

26. Create a transformation function to map the image to the grayscale range and
perform the transformation.

TUTORIAL 14.1: EDGE DETECTION 361

m = 255 / (max(I_kir(:)) - min(I_kir(:)));
I_kir_adj = uint8(m * I_kir);
figure, imshow(I_kir_adj);

Question 18 Why is it not necessary to scale this image (I_kir_adj) when
displaying it?

Question 19 Make a copy of the mandrill image and add Gaussian noise to
it. Then perform the Kirsch edge detector on it. Comment on its performance when
noise is present.

Edge Detection with the Robinson Operator

The Robinson edge detector can be implemented in the same manner as the Kirsch
detector. The only difference is the masks.

27. Generate the Robinson masks.

r = zeros(3,3,8);
r(:,:,1) = [-1 0 1; -2 0 2; -1 0 1];
r(:,:,2) = [0 1 2; -1 0 1; -2 -1 0];
r(:,:,3) = [1 2 1; 0 0 0; -1 -2 -1];
r(:,:,4) = [2 1 0; 1 0 -1; 0 -1 -2];
r(:,:,5) = [1 0 -1; 2 0 -2; 1 0 -1];
r(:,:,6) = [0 -1 -2; 1 0 -1; 2 1 0];
r(:,:,7) = [-1 -2 -1; 0 0 0; 1 2 1];
r(:,:,8) = [-2 -1 0; -1 0 1; 0 1 2];

28. Filter the image with the eight Robinson masks and display the output.

I_r = zeros(size(I,1), size(I,2), 8);
for i = 1:8

I_r(:,:,i) = imfilter(I,r(:,:,i));
end
figure
for j = 1:8

subplot(2,4,j), imshow(abs(I_r(:,:,j)),[]), ...
title([’Robinson mask ’, num2str(j)]);

end

29. Calculate the max of all eight images and display the result.

I_rob = max(I_r,[],3);
figure, imshow(I_kir,[]);

362 EDGE DETECTION

Question 20 How does the Robinson edge detector compare with the Kirsch
detector?

WHAT HAVE WE LEARNED?

• Edge detection is a fundamental image processing operation that attempts to
emulate an ability present in the human visual system. Edges in grayscale 2D
images are usually defined as a sharp variation of the intensity function. In a
more general sense, an edge can be defined as a boundary between two image
regions having distinct characteristics according to some feature (e.g., gray level,
color, or texture). Edge detection is a fundamental step in many image processing
techniques: after edges have been detected, the regions enclosed by these edges
are segmented and processed accordingly.

• There are numerous edge detection techniques in the image processing lit-
erature. They range from simple convolution masks (e.g., Sobel and Pre-
witt) to biologically inspired techniques (e.g., the Marr–Hildreth method)
and the quality of the results they provide vary widely. The Canny
edge detector is allegedly the most popular contemporary edge detection
method.

• MATLAB has a function edge that implements several edge detection methods
such as Prewitt, Sobel, Laplacian of Gaussian, and Canny.

• The results of the edge detection algorithm are typically postprocessed by an
edge linking algorithm that typically eliminates undesired points, bridges gaps,
and results in cleaner edges that are then used in subsequent stages of an edge-
based image segmentation solution. The Hough transform is a commonly used
technique to find long straight edges (i.e., line segments) within the edge detec-
tion results.

LEARN MORE ABOUT IT

• David Marr’s book [Mar82] is one of the most influential books ever writ-
ten in the field of vision science. Marr’s theories remain a source of in-
spiration to computer vision scientists more than 25 years after they were
published.

• Mlsna and Rodriguez discuss first- and second-order derivative edge methods,
as well as the Canny edge detector in Chapter 4.11 of [Bov00a].

• Section 15.2 of [Pra07] presents additional first-order derivative edge operators,
for example, Frei–Chen, boxcar, truncated pyramid, Argyle, Macleod, and first
derivative of Gaussian (FDOG) operators.

• Section 15.5 of [Pra07] discusses several performance criteria that might be used
for a comparative analysis of edge detection techniques.

PROBLEMS 363

• Other methods for edge linking and boundary detection are discussed in Section
10.2.7 of [GW08], Section 17.4 of [Pra07], and Section 10.3 of [SS01], among
other references.

• Chapter 9 of [Dav04] describes in detail the standard Hough transform and its
application to line detection.

• Chapters 11, 12, and 14 of [Dav04] discuss the generalized Hough transform
(GHT) and its applications to line, ellipse, polygon, and corner detection.

• Computer vision algorithms usually require that other types of relevant prim-
itive properties of the images, such as lines, corners, and points, be detected.
For line detection, refer to Section 5.3.9 of [SHB08]. Section 5.4 of [SOS00]
covers critical point detection. For corner detection, we recommend Chapter 8
of [BB08] and Section 5.3.10 of [SHB08].

14.8 PROBLEMS

14.1 Write a MATLAB script to generate a test image containing an ideal edge and
plot the intensity profile and the first and second derivatives along a horizontal line
of the image.

14.2 Repeat Problem 14.1 for a ramp edge.

14.3 Show that the LoG edge detector can be implemented using fspecial and
imfilter (instead of edge) and provide a reason why this implementation may
be preferred.

CHAPTER 15

IMAGE SEGMENTATION

WHAT WILL WE LEARN?

• What is image segmentation and why is it relevant?
• What is image thresholding and how is it implemented in MATLAB?
• What are the most commonly used image segmentation techniques and how do

they work?

15.1 INTRODUCTION

Segmentation is one of the most crucial tasks in image processing and computer vision.
As you may recall from our discussion in Chapter 1 (Section 1.5), image segmentation
is the operation that marks the transition between low-level image processing and
image analysis: the input of a segmentation block in a machine vision system is a
preprocessed image, whereas the output is a representation of the regions within that
image. This representation can take the form of the boundaries among those regions
(e.g., when edge-based segmentation techniques are used) or information about which
pixel belongs to which region (e.g., in clustering-based segmentation). Once an image
has been segmented, the resulting individual regions (or objects) can be described,
represented, analyzed, and classified with techniques such as the ones presented in
Chapters 18 and 19.

Practical Image and Video Processing Using MATLAB®. By Oge Marques.
© 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

365

366 IMAGE SEGMENTATION

Segmentation is defined as the process of partitioning an image into a set of
nonoverlapping regions whose union is the entire image. These regions should ideally
correspond to objects and their meaningful parts, and background. Most image seg-
mentation algorithms are based on one of two basic properties that can be extracted
from pixel values—discontinuity and similarity—or a combination of them.

Segmentation of nontrivial images is a very hard problem—made even harder by
nonuniform lighting, shadows, overlapping among objects, poor contrast between
objects and background, and so on—that has been approached from many different
angles, with limited success to this date. Many image segmentation techniques and
algorithms have been proposed and implemented during the past 40 years and yet,
except for relatively “easy” scenes, the problem of segmentation remains unsolved.

Figure 15.1 illustrates the problem. At the top, it shows the color and grayscale
versions of a hard test image that will be used later in this chapter. Segmenting this
image into its four main objects (Lego bricks) and the background is not a simple task
for contemporary image segmentation algorithms, due to uneven lighting, projected
shadows, and occlusion among objects. Attempting to do so without resorting to
color information makes the problem virtually impossible to solve for the techniques
described in this chapter.

FIGURE 15.1 Test images for segmentation algorithms: (a) a hard test image and (b) its
grayscale equivalent; (c) an easier test image (courtesy of MathWorks) and (d) the result of
morphological preprocessing and thresholding.

INTENSITY-BASED SEGMENTATION 367

The bottom part of Figure 15.1 shows another test image, which is considerably
simpler and will probably lead to perfect segmentation with even the simplest tech-
niques. Although the original image has a few imperfections (particularly on one
coin that is significantly darker than the others), simple preprocessing operations
such as region filling (Section 13.6.2) using imfill will turn it into an image suit-
able for global thresholding (Section 15.2.1) and subsequent labeling of the individual
regions.

There is no underlying theory of image segmentation, only ad hoc methods, whose
performance is often evaluated indirectly, based on the performance of the larger sys-
tem to which they belong. Even though they share the same goal, image segmentation
techniques can vary widely according to the type of image (e.g., binary, gray, color),
choice of mathematical framework (e.g., morphology, image statistics, graph theory),
type of features (e.g., intensity, color, texture, motion), and approach (e.g., top-down,
bottom-up, graph-based).1

There is no universally accepted taxonomy for classification of image segmenta-
tion algorithms either. In this chapter, we have organized the different segmentation
methods into the following categories:

• Intensity-based methods (Section 15.2), also known as noncontextual methods,
work based on pixel distributions (i.e., histograms). The best-known example of
intensity-based segmentation technique is thresholding.

• Region-based methods (Section 15.3), also known as contextual methods, rely on
adjacency and connectivity criteria between a pixel and its neighbors. The best-
known examples of region-based segmentation techniques are region growing
and split and merge.

• Other methods, where we have grouped relevant segmentation techniques that
do not belong to any of the two categories above. These include segmentation
based on texture, edges, and motion, among others.2

15.2 INTENSITY-BASED SEGMENTATION

Intensity-based methods are conceptually the simplest approach to segmenta-
tion. They rely on pixel statistics—usually expressed in the form of a histogram
(Chapter 9)—to determine which pixels belong to foreground objects and which pix-
els should be labeled as background. The simplest method within this category is
image thresholding, which will be described in detail in the remaining part of this
section.

1The field of image segmentation research is still very active. Most recently published algorithms are far
too complex to be included in this text, and their computational requirements often push MATLAB to its
limits. Refer to “Learn More About It” section at the end of the chapter for useful pointers.
2Segmentation of color images will be discussed in Chapter 16.

368 IMAGE SEGMENTATION

FIGURE 15.2 The histogram for the image in Figure 15.1c: an example of histogram suitable
for partitioning using a single threshold.

15.2.1 Image Thresholding

The basic problem of thresholding is the conversion of an image with many gray
levels into another image with fewer gray levels, usually only two. This conversion is
usually performed by comparing each pixel intensity with a reference value (thresh-
old, hence the name) and replacing the pixel with a value that means “white” or
“black” depending on the outcome of the comparison. Thresholding is a very popular
image processing technique, due to its simplicity, intuitive properties, and ease of
implementation.

Thresholding an image is a common preprocessing step in machine visual systems
in which there are relatively few objects of interest whose shape (silhouette) is more
important than surface properties (such as texture) and whose average brightness is
relatively higher or lower than the other elements in the image. The test image in
Figure 15.1c is an example of image suitable for image thresholding. Its histogram
(Figure 15.2) has two distinct modes, the narrowest and most prominent one (on the
left) corresponding to background pixels, the broadest one (on the right) reflecting
the intensity distribution of pixels corresponding to the coins.

Mathematically, the process of thresholding an input image f (x, y) and producing
a binarized version of it, g(x, y), can be described as

g(x, y) =
{

1 if f (x, y) > T

0 otherwise
(15.1)

where T is the threshold. If the same value of T is adopted for the entire image, the
process is called global thresholding. When the choice of value for T at a point of

INTENSITY-BASED SEGMENTATION 369

coordinates (x, y) depends on statistical properties of pixel values in a neighborhood
around (x, y), it will be referred to as local or regional thresholding.3

In MATLAB

The IPT has a function to convert a grayscale image into a binary (black-and-white)
image, im2bw, that takes an image and a threshold value as input parameters. You
will learn how to use it in Tutorial 15.1.

15.2.2 Global Thresholding

When the intensity distribution of an image allows a clear differentiation between
pixels of two distinct predominant average gray levels, the resulting histogram has a
bimodal shape (such as the one in Figure 15.2), which suggests that there may be a
single value of T that can be used as a threshold for the entire image. For the case of
a single image, the choice of the actual value of T can be done manually, in typical
trial and error fashion, as follows:

1. Inspecting the image’s histogram (using imhist).

2. Select an appropriate value for T .

3. Apply the selected value (using im2bw) to the image.

4. Inspect the results: if they are acceptable, save resulting image. Otherwise, make
adjustments and repeat steps 2–4.

For the cases where many images need to be segmented using global thresholding,
a manual, labor-intensive approach such as described above is not appropriate. An au-
tomated procedure for selecting T has to be employed. Gonzalez and Woods [GW08]
proposed an iterative algorithm for this purpose, whose MATLAB implementation
(based on [GWE04]) follows:

Id = im2double(I); % I is a uint8 grayscale image
T = 0.5*(min(Id(:)) + max(Id(:)));
deltaT = 0.01; % convergence criterion
done = false;
while ˜done

g = Id >= T;
Tnext = 0.5*(mean(Id(g)) + mean(Id(˜g)));
done = abs(T - Tnext) < deltaT;
T = Tnext;

end

3Techniques that rely on the spatial coordinates (x, y), often called dynamic or adaptive thresholding, have
also been proposed in the literature. Since they cannot be considered purely “intensity-based,” they have
been left out of this discussion.

370 IMAGE SEGMENTATION

FIGURE 15.3 Image thresholding results for the image in Figure 15.1c using iterative thresh-
old selection algorithm (a) and manually selected threshold (b).

Figure 15.3a shows the result of applying the threshold value to the image in
Figure 15.1c. In this case, the maximum and minimum gray values in Id are 1 and
0.0902, respectively, deltaT was chosen to be 0.01, and it took the algorithm three
iterations to arrive at the final result: T = 0.4947. For the sake of comparison, the
results obtained with a manually selected T = 0.25 are shown in Figure 15.3b.

Optimal Thresholding Many optimal strategies for selecting threshold values
have been suggested in the literature. These strategies usually rely on assumed statis-
tical models and consist of modeling the thresholding problem as a statistical infer-
ence problem. Unfortunately, such statistical models usually cannot take into account
important factors such as borders and continuity, shadows, nonuniform reflectance,
and other perceptual aspects that would impact a human user making the same deci-
sion. Consequently, for most of the cases, manual threshold selection by humans will
produce better results than statistical approaches would [BD00].

The most popular approach under this category was proposed by Otsu4 in
1979 [Ots79] and implemented as an IPT function: graythresh. Applying that
function to the image in Figure 15.1c results in an optimal value for T = 0.4941,
which—in this particular case—is remarkably close to the one obtained with the
(much simpler) iterative method described earlier (T = 0.4947). However, as shown
in Figure 15.3, neither of these methods produce a better (from a visual interpretation
standpoint) result than the manually chosen threshold.

15.2.3 The Impact of Illumination and Noise on Thresholding

Illumination and reflectance patterns play a critical role in thresholding. Even an easy
input image (such as thecoins image), which could be successfully segmented using
global thresholding, poses a much harder challenge if the illumination pattern changes

4A detailed description of the approach is beyond the scope of this text. See Section 10.3.3 of [GW08] or
Section 3.8.2 of [SS01] for additional information.

INTENSITY-BASED SEGMENTATION 371

FIGURE 15.4 An example of uneven illumination pattern used to generate the image in
Figure 15.5a.

from constant (uniform) to gradual (Figure 15.4). The resulting image (Figure 15.5a)
is significantly darker overall and the corresponding histogram (Figure 15.5b) shows
an expected shift to the left. Consequently, using the same value of threshold (T = 25)
that produced very good results before (Figure 15.3b) will lead to an unacceptable
binarized image (Figure 15.5c).

Noise can also have a significant impact on thresholding, as illustrated in
Figure 15.5(d–f). In this case a Gaussian noise of mean zero and variance 0.03 has
been applied to the image, resulting in the image in Figure 15.5d, whose histogram,
shown in Figure 15.5e, has lost its original bimodal shape. The result of segmenting
the image using T = 0.25 is shown in Figure 15.5f. Although not as bad as one could
expect, it would need postprocessing (noise reduction) to be truly useful.

In summary, in both cases, the images changed significantly, their histograms lost
their bimodal shape, and the originally chosen value for global threshold (T = 0.25)
was no longer adequate. In addition, no other value could be easily chosen just by
inspecting the histogram and following the trial and error procedure suggested earlier
in this chapter.

15.2.4 Local Thresholding

Local (also called adaptive) thresholding uses block processing to threshold blocks of
pixels, one at a time. The size of the block is usually specified by the user, with the two
extreme conditions being avoided: blocks that are too small may require an enormous
amount of processing time to compute, whereas large blocks may produce results that
are not substantially better than the ones obtained with global thresholding.

In MATLAB

The block processing technique is implemented using the blkproc function. You
will learn how to use this function in the context of local thresholding in Tutorial 15.1.

372 IMAGE SEGMENTATION

FIGURE 15.5 Effect of illumination (left) and noise (right) on thresholding. See text for
details.

� EXAMPLE 15.1

In this example, we divide the image in Figure 15.5a into six vertical slices, treating
each of them separately and usinggraythresh to choose a different value of thresh-
old for each slice. The resulting image (Figure 15.6b) is significantly better than the
one we would have obtained using a single value (T = 0.3020, also calculated using

REGION-BASED SEGMENTATION 373

FIGURE 15.6 Local thresholding. Using a single threshold for the entire image (a) and
dividing it up into six slices and choosing a different threshold for each vertical slice (b).

graythresh) for the entire image (Figure 15.6a). The left portion of Figure 15.6b
gives away some hints at where the slices were placed.

15.3 REGION-BASED SEGMENTATION

Region-based segmentation methods are based on the fact that a pixel cannot be
considered a part of an object or not based solely on its gray value (as intensity-based
methods do). They incorporate measures of connectivity among pixels in order to
decide whether these pixels belong to the same region (or object) or not.

Mathematically, region-based segmentation methods can be described as a sys-
tematic way to partition an image I into n regions, R1, R2, · · · , Rn, such that the
following properties hold [GW08]:

1.
⋃n

i=1 Ri = I.

2. Ri is a connected region, i = 1, 2, · · · , n.

3. Ri ∩ Rj = ∅ for all i and j, i /= j.

4. P(Ri) = TRUE for i = 1, 2, · · · , n.

5. P(Ri ∪ Rj) = FALSE for any adjacent regions Ri and Rj .

Here P(Ri) is a logical predicate defined over the points in set Ri and ∅ is the
empty set.

The first property states that the segmentation will be complete, that is, each pixel
in the image will be labeled as belonging to one of the n regions. Property 2 requires
that all points within a region be 4- or 8- connected. Property 3 states that the regions
cannot overlap. Property 4 states which criterion must be satisfied so that a pixel is
granted membership in a certain region, for example, all pixel values must be within
a certain range of intensities. Finally, property 5 ensures that two adjacent regions are
different in the sense of predicate P .

374 IMAGE SEGMENTATION

These logical predicates are also called homogeneity criteria, H(Ri). Some of the
most common homogeneity criteria for grayscale images are as follows [Umb05]:

• Pure Uniformity: All pixel values in a region are the same.
• Local Mean Relative to Global Mean: The average intensity in a region is sig-

nificantly greater (or smaller) than the average gray level in the whole image.
• Local Standard Deviation Relative to Global Mean: The standard deviation of

the pixel intensities in a region is less than a small percentage of the average
gray level in the whole image.

• Variance: At least a certain percentage of the pixels in a region are within two
standard deviations of the local mean.

• Texture: All four quadrants within a region have comparable texture.

15.3.1 Region Growing

The basic idea of region growing methods is to start from a pixel and grow a region
around it, as long as the resulting region continues to satisfy a homogeneity criterion.
It is, in that sense, a bottom-up approach to segmentation, which starts with individual
pixels (also called seeds) and produces segmented regions at the end of the process.

The key factors in region growing are as follows:

• The Choice of Similarity Criteria: For monochrome images, regions are analyzed
based on intensity levels (either the gray levels themselves or the measures
that can easily be calculated from them, for example, moments and texture
descriptors5) and connectivity properties.

• The Selection of Seed Points: These can be determined interactively (if the ap-
plication allows) or based on a preliminary cluster analysis of the image, used
to determine groups of pixels that share similar properties, from which a seed
(e.g., corresponding to the centroid of each cluster) can be chosen.

• The Definition of a Stopping Rule: A region should stop growing when there
are no further pixels that satisfy the homogeneity and connectivity criteria to be
included in that region.

It can be described in algorithmic form as follows [Eff00]:

Let f(x,y) be the input image

Define a set of regions R1, R2, ..., Rn, each consisting of a

single seed pixel

repeat

for i = 1 to n do

for each pixel p at the border of Ri do

for all neighbors of p do

5These will be discussed in Chapter 18.

REGION-BASED SEGMENTATION 375

FIGURE 15.7 Region growing: (a) seed pixels; (b) first iteration; (c) final iteration.

Let (x,y) be the neighbor’s coordinates

Let Mi be the mean gray level of pixels in Ri

if the neighbor is unassigned and

|f(x,y) - Mi| <= Delta then

Add neighbor to Ri

Update Mi

end if

end for

end for

end for

until no more pixels can be assigned to regions

� EXAMPLE 15.2

Figure 15.7 shows an example of region growing on small test image, where the
logical predicate for uniformity is given by

P(Ri) =
{

TRUE if |f (x, y) − μi| ≤ �

FALSE otherwise
(15.2)

where μi is the average intensity of all pixels in Ri except the reference pixel at (x, y)
and � is a user-selected threshold. In this example, � = 3. Figure 15.7 shows the
seed pixels (a), and the results of the first (b) and last (c) iterations.

� EXAMPLE 15.3

Figure 15.8 shows the results of applying a region growing algorithm6 to the two test
images originally introduced in Figure 15.1. Part (a) shows the hard input image with
the seed points (specified interactively by the user) overlaid. Part (b) shows the results
of using region growing (pseudocolored for easier visualization): four regions plus
background. A quick inspection shows that the results are virtually useless, primarily

6The region growing algorithm used in this example appears in [GWE04].

376 IMAGE SEGMENTATION

FIGURE 15.8 Region growing results for two test images. See text for details.

due to poor contrast between the two darker and two brighter bricks and the influence
of projected shadows.

For comparison purposes, we ran the same algorithm with an easy input image
(Figure 15.8c) in unsupervised mode, that is, without specifying any points to be
used as seeds (or even the total number of regions that the algorithm should return).
The results (Figure 15.8d) are good, comparable to the ones obtained using global
thresholding earlier in this chapter.

Limitations of Region Growing The basic region growing algorithm described
in this section has several limitations, listed below [Eff00]:

• It is not very stable: significantly different results are obtained when switching
between 4-connectivity and 8-connectivity criteria.

• Segmentation results are very sensitive to choice of logical uniformity predicate.
• The number of seeds provided by the user may not be sufficient to assign every

pixel to a region.
• If two or more seeds that should belong to the same region are incorrectly

provided to the algorithm, it will be forced to create distinct regions around
them although only one region should exist.

WATERSHED SEGMENTATION 377

FIGURE 15.9 The quadtree data structure used in the split and merge segmentation algorithm
(a) and the corresponding regions in the image (b).

15.3.2 Region Splitting and Merging

Region splitting is a top-down approach to image segmentation. It starts from the
entire image and partitions it into smaller subimages until each resulting region is
considered homogeneous by some criteria. At the end of the process, it is guaranteed
that the resulting regions satisfy the homogeneity criterion. It is possible, however,
that two or more adjacent regions are similar enough that should be combined into
one. This is the goal of the merging step: to merge two or more adjacent regions into
one if they satisfy a homogeneity criterion.

The data structure most commonly used for this algorithm is the quadtree, a special
type of tree in which each node (except for the leaves) has four children. Each leaf
node in the quadtree corresponds to a region in the segmented image (Figure 15.9).

The split and merge segmentation algorithm can be described in algorithmic form
as follows:

1. Define a logical uniformity predicate P(Ri).

2. Compute P(Ri) for each region.

3. Split into four disjoint quadrants any region Ri for which P(Ri) = FALSE.

4. Repeat steps 2 and 3 until all resulting regions satisfy the uniformity criterion,
that is, P(Ri) = TRUE.

5. Merge any adjacent regions Rj and Rk for which P(Rj ∪ Rk) = TRUE.

6. Repeat step 5 until no further merging is possible.

15.4 WATERSHED SEGMENTATION

In this section, we describe a popular application of the morphological watershed
transform in image segmentation. The watershed transform is a morphological tech-
nique that derives its name from an expression in geography, where watershed is

378 IMAGE SEGMENTATION

defined as the ridge that divides areas drained by different river systems. A related
term, catchment (or drainage) basin, is used to represent the geographical area that
drains into a river or reservoir.

In morphological image processing, the watershed transform is used to represent
regions in a segmented image (equivalent to catchment basins) and the boundaries
among them (analogous to the ridge lines).

In MATLAB

The IPT function watershed implements the watershed transform. It takes an in-
put image and (optionally) a connectivity criterion (4- or 8-connectivity) as input
parameters and produces a labeled matrix (of the same size as the input image) as
a result. Elements labeled 1 and higher belong to a unique watershed region, iden-
tified by their number, whereas elements labeled 0 do not belong to any watershed
region.

15.4.1 The Distance Transform

The distance transform is a useful tool employed in conjunction with the water-
shed transform. It computes the distance from every pixel to the nearest nonzero-
valued pixel. It is implemented in MATLAB by function bwdist, which allows
specification of the distance method (Euclidean distance being the default) to be
used.

� EXAMPLE 15.4

This example shows the creation of a test matrix of size 5×5 and the results of com-
puting the distance transform using bwdist and two different distance calculations:
Euclidean and city block.

>> a = [0 1 1 0 1; 1 1 1 0 0; 0 0 0 1 0; 0 0 0 0 0; 0 1 0 0 0]

a =

0 1 1 0 1

1 1 1 0 0

0 0 0 1 0

0 0 0 0 0

0 1 0 0 0

>> b = bwdist(a)

TUTORIAL 15.1: IMAGE THRESHOLDING 379

b =

1.0000 0 0 1.0000 0

0 0 0 1.0000 1.0000

1.0000 1.0000 1.0000 0 1.0000

1.4142 1.0000 1.4142 1.0000 1.4142

1.0000 0 1.0000 2.0000 2.2361

>> b = bwdist(a,’cityblock’)

b =

1 0 0 1 0

0 0 0 1 1

1 1 1 0 1

2 1 2 1 2

1 0 1 2 3

� EXAMPLE 15.5

Figure 15.10 shows an example of segmentation using watershed. It uses a binarized
and postprocessed version of the coins test image as input (a). Part (b) shows the
results of the distance transform calculations. Part (c) shows the ridge lines obtained
as a result of applying the watershed transform. Finally, part (d) shows the overlap
between parts (a) and (c), indicating how the watershed transform results lead to an
excellent segmentation result in this particular case.

15.5 TUTORIAL 15.1: IMAGE THRESHOLDING

Goal

The goal of this tutorial is to learn to perform image thresholding using MATLAB
and the IPT.

Objectives

• Learn how to visually select a threshold value using a heuristic approach.
• Explore the graythresh function for automatic threshold value selection.
• Learn how to implement adaptive thresholding.

What You Will Need

• gradient_with_text.tif

380 IMAGE SEGMENTATION

FIGURE 15.10 Segmentation using the morphological watershed transform: (a) complement
of the image shown in Figure 15.3; (b) distance transform; (c) watershed ridge lines; (d) result
of segmentation.

Procedure

Global Thresholding

The first method of thresholding that we will explore involves visually analyzing the
histogram of an image to determine the appropriate value of T (the threshold value).

1. Load and display the test image.

I = imread(’coins.png’);
figure, imshow(I), title(’Original Image’);

2. Display a histogram plot of the coins image to determine what threshold level
to use.

figure, imhist(I), title(’Histogram of Image’);

Question 1 Which peak of the histogram represents the background pixels and
which peak represents the pixels associated with the coins?

The histogram of the image suggests a bimodal distribution of grayscale values.
This means that the objects in the image are clearly separated from the background.

TUTORIAL 15.1: IMAGE THRESHOLDING 381

FIGURE 15.11 Histogram plot with data cursor selection.

We can inspect the X and Y values of the histogram plot by clicking the “inspect” icon
and then selecting a particular bar on the graph.

3. Inspect the histogram near the right of the background pixels by activating the
data cursor. To do so, click on the “inspect” icon.

Figure 15.11 illustrates what the selection should look like. The data cursor tool
suggests that values between 80 and 85 could possibly be used as a threshold, since
they fall immediately to the right of the leftmost peak in the histogram. Let us see
what happens if we use a threshold value of 85.

4. Set the threshold value to 85 and generate the new image.

T = 85; I_thresh = im2bw(I,(T / 255));

figure, imshow(I_thresh), title(’Threshold Image (heuristic)’);

Question 2 What is the purpose of the im2bw function?

Question 3 Why do we divide the threshold value by 255 in the im2bw function
call?

You may have noticed that several pixels—some white pixels in the background
and a few black pixels where coins are located—do not belong in the resulting image.
This small amount of noise can be cleaned up using the noise removal techniques
discussed in chapter 12.

382 IMAGE SEGMENTATION

Question 4 Write one or more lines of MATLAB code to remove the noise pixels
in the thresholded image.

The thresholding process we just explored is known as the heuristic approach.
Although it did work, it cannot be extended to automated processes. Imagine taking
on the job of thresholding a thousand images using the heuristic approach! MATLAB’s
IPT functiongraythresh uses Otsu’s method [Ots79] for automatically finding the
best threshold value.

5. Use the graythresh function to generate the threshold value automatically.

T2 = graythresh(I);

I_thresh2 = im2bw(I,T2);

figure, imshow(I_thresh2), title(’Threshold Image (graythresh)’);

Question 5 How did the graythresh function compare with the heuristic
approach?

Adaptive Thresholding

Bimodal images are fairly easy to separate using basic thresholding techniques dis-
cussed thus far. Some images, however, are not as well behaved and require a more
advanced thresholding technique such as adaptive thresholding. Take, for example,
one of the images we used back in Tutorial 6.1: a scanned text document with a
nonuniform gradient background.

6. Close all open figures and clear all workspace variables.

7. Load the gradient_with_text image and prepare a subplot.

I = imread(’gradient_with_text.tif’);
figure, imshow(I), title(’Original Image’);

Let us see what happens when we attempt to threshold this image using the tech-
niques we have learned so far.

8. Globally threshold the image.

I_gthresh = im2bw(I,graythresh(I));
figure, imshow(I_gthresh), title(’Global Thresholding’);
figure, imhist(I), title(’Histogram of Original’);

As you may have noticed, we cannot pick one particular value to set as the threshold
value because the image is clearly not bimodal. Adaptive thresholding may help
us in this instance. To properly implement adaptive thresholding, we must use the
blkproc function to perform an operation on small blocks of pixels one at a time.

TUTORIAL 15.1: IMAGE THRESHOLDING 383

In order to use the function, we must specify what is to be done on each block of
pixels. This can be specified within a function that we will create manually. Let us
first set up this function.

9. Close all open figures.

10. Start a new M-File in the MATLAB Editor.

11. Define the function as well as its input and output parameters in the first line.

function y = adapt_thresh(x)

This function will be used to define each new block of pixels in our image. Basically
all we want to do is perform thresholding on each block individually, so the code to
do so will be similar to the code we previously used for thresholding.

12. Add this line of code under the function definition.

y = im2bw(x,graythresh(x));

When the function is called, it will be passed a small portion of the image, and
will be stored in the variable x. We define our output variable y as a black and white
image calculated by thresholding the input.

13. Save your function as adapt_thresh.m in the current directory.

We can now perform the operation using the blkproc function. We will adap-
tively threshold the image, 10×10 pixel blocks at a time.

14. Perform adaptive thresholding by entering the following command in the com-
mand window. Note that it may take a moment to perform the calculation, so
be patient.

I_thresh = blkproc(I,[10 10],@adapt_thresh);

15. Display the original and new image.

figure

subplot(1,2,1), imshow(I), title(’Original Image’);

subplot(1,2,2), imshow(I_thresh), title(’Adaptive Thresholding’);

The output is not quite what we expected. If you look closely, however, the opera-
tion was successful near the text, but everywhere else it was a disaster. This suggests
that we need to add an extra step to our function to compensate for this unwanted
effect. Over the next few steps, let us examine the standard deviation of the original
image where there is text, and where there is not.

384 IMAGE SEGMENTATION

16. Calculate the standard deviation of two 10×10 blocks of pixels; one where
there is text and another where there is not.

std_without_text = std2(I(1:10, 1:10))
std_with_text = std2(I(100:110, 100:110))

Question 6 What is the difference between the standard deviation of the two blocks
of pixels? Explain.

Since there is such a difference between a block with and without text, we can
use this information to improve our function. Let us replace the one line of code we
previously wrote with the new code that will include an if statement: if the standard
deviation of the block of pixels is low, then simply label it as background; otherwise,
perform thresholding on it. This change should cause the function to only perform
thresholding where text exists. Everything else will be labeled as background.

17. Replace the last line of our function with the following code. Save the function
after the alteration.

if std2(x) < 1
y = ones(size(x,1),size(x,2));

else
y = im2bw(x,graythresh(x));

end

Question 7 How does our function label a block of pixels as background?

18. Now rerun the block process (in the command window) to see the result.

I_thresh2 = blkproc(I,[10 10],@adapt_thresh);

figure, subplot(1,2,1), imshow(I), title(’Original Image’);

subplot(1,2,2), imshow(I_thresh2), title(’Adaptive Thresholding’);

Question 8 How does the output of the new function compare with the old?

Question 9 What is the main limitation of the adaptive thresholding function
developed in this tutorial?

WHAT HAVE WE LEARNED?

• Image segmentation is the process of grouping image pixels into meaningful,
usually connected, regions. It is an important (and often required) step in many
image processing solutions. It establishes the transition between treating the
image as a whole to processing individual relevant regions.

TUTORIAL 15.1: IMAGE THRESHOLDING 385

• Image segmentation is a hard image processing problem: the quality of the results
will depend on the algorithm, careful selection of algorithm’s parameters, and
the input image.

• Thresholding is an image processing technique by which an input (grayscale)
image is requantized to two gray levels, that is, converted to a binary image.
Each pixel in the original image is compared with a threshold; the result of
such comparison will determine whether the pixel will be converted to black
or white. The simplest thresholding algorithm (global thresholding, im2bw in
MATLAB) employs one value for the entire image.

• Image segmentation techniques can be classified in three main groups: intensity-
based methods (e.g., thresholding), region-based methods (e.g., region growing
and split and merge), and other methods (e.g., segmentation based on texture,
edges, and motion).

LEARN MORE ABOUT IT

• Entire books have been written on the topic of image segmentation, for example,
[Wan08] and [Zha06a].

• Many surveys on image segmentation have been published during the past 30
years, among them (in reverse chronological order): [Zha06b], [FMR+02],
[CJSW01], [PP93], [HS85], and [FM81].

• Chapters 6 and 7 of [SHB08] provide an extensive and very readable discus-
sion of image segmentation algorithms. Several of these algorithms have been
implemented in MATLAB [SKH08].

• Chapter 4 of [Dav04] is entirely devoted to thresholding techniques.
• Section 6.1.2 of [SHB08] discusses optimal thresholding techniques.
• The concept of thresholding can be extended to cases where the original image

is to be partitioned in more than two regions, in what is known as multiple
thresholding. Refer to Section 10.3.6 of [GW08] for a discussion on this topic.

• Chapters 4.7–4.9 of [Bov00a] discuss statistical, texture-based, and motion-
based segmentation strategies, respectively.

• The discussion on watershed segmentation is expanded to include the use of
gradients and markers in Section 10.5 of [GWE04].

• Comparing and evaluating different segmentation approaches can be a chal-
lenging task, for which no universally accepted benchmarks exist. This issue
is discussed in [Zha96], [Zha01], and, more recently, [UPH05], expanded in
[UPH07].

ON THE WEB

• Color-based segmentation using K-means clustering (IPT image segmentation
demo)
http://tinyurl.com/matlab-k-means

386 IMAGE SEGMENTATION

• Color-based segmentation using the L*a*b* color space (IPT image segmenta-
tion demo)
http://tinyurl.com/matlab-lab

• Detecting a cell using image segmentation (IPT image segmentation demo)
http://tinyurl.com/cell-seg

• Marker-controlled watershed segmentation (IPT image segmentation demo)
http://tinyurl.com/watershed-seg

• Texture segmentation Using Texture Filters (IPT image segmentation demo)
http://tinyurl.com/texture-seg

• University of Washington image segmentation demo
http://www.cs.washington.edu/research/imagedatabase/demo/seg/

15.6 PROBLEMS

15.1 Explain in your own words why the image on the top right of Figure 15.1 is
significantly harder to segment than the one on the bottom left of the same figure.

15.2 Modify the MATLAB code to perform iterative threshold selection on an
input gray-level image (section 15.2.2) to include a variable that counts the number
of iterations and an array that stores the values of T for each iteration.

15.3 Write a MATLAB script to demonstrate that thresholding techniques can be
used to subtract the background of an image.

CHAPTER 16

COLOR IMAGE PROCESSING

WHAT WILL WE LEARN?

• What are the most important concepts and terms related to color perception?
• What are the main color models used to represent and quantify color?
• How are color images represented in MATLAB?
• What is pseudocolor image processing and how does it differ from full-color

image processing?
• How can monochrome image processing techniques be extended to color

images?

16.1 THE PSYCHOPHYSICS OF COLOR

Color perception is a psychophysical phenomenon that combines two main compo-
nents:

1. The physical properties of light sources (usually expressed by their spectral
power distribution (SPD)) and surfaces (e.g., their absorption and reflectance
capabilities).

2. The physiological and psychological aspects of the human visual system (HVS).

Practical Image and Video Processing Using MATLAB®. By Oge Marques.
© 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

387

388 COLOR IMAGE PROCESSING

In this section, we expand on the discussion started in Section 5.2.4 and present
the main concepts involved in color perception and representation.

16.1.1 Basic Concepts

The perception of color starts with a chromatic light source, capable of emitting elec-
tromagnetic radiation with wavelengths between approximately 400 and 700 nm. Part
of that radiation reflects on the surfaces of the objects in a scene and the resulting
reflected light reaches the human eye, giving rise to the sensation of color. An object
that reflects light almost equally in all wavelengths within the visible spectrum is per-
ceived as white, whereas an object that absorbs most of the incoming light, regardless
of the wavelength, is seen as black. The perception of several shades of gray between
pure white and pure black is usually referred to as achromatic. Objects that have more
selective properties are considered chromatic, and the range of the spectrum that they
reflect is often associated with a color name. For example, an object that absorbs most
of the energy within the 565–590 nm wavelength range is considered yellow.

A chromatic light source can be described by three basic quantities:

• Intensity (or Radiance): the total amount of energy that flows from the light
source, measured in watts (W).

• Luminance: a measure of the amount of information an observer perceives from
a light source, measured in lumen (lm). It corresponds to the radiant power of
a light source weighted by a spectral sensitivity function (characteristic of the
HVS).

• Brightness: the subjective perception of (achromatic) luminous intensity.

The human retina (the surface at the back of the eye where images are projected)
is coated with photosensitive receptors of two different types: cones and rods. Rods
cannot encode color but respond to lower luminance levels and enable vision under
darker conditions. Cones are primarily responsible for color perception and oper-
ate only under bright conditions. There are three types of cone cells (L cones, M
cones, and S cones, corresponding to long (≈ 610 nm), medium (≈ 560 nm), and
short (≈ 430 nm) wavelengths, respectively) whose spectral responses are shown in
Figure 16.1.1

The existence of three specialized types of cones in the human eye was hypoth-
esized more than a century before it could be confirmed experimentally by Thomas
Young and his trichromatic theory of vision in 1802. Young’s theory explains only
part of the color vision process, though. It does not explain, for instance, why it is
possible to speak of ‘bluish green’ colors, but not ‘bluish yellow’ ones. Such un-
derstanding came with the opponent-process theory of color vision, brought forth
by Edward Herring in 1872. The colors to which the cones respond more strongly
are known as the primary colors of light and have been standardized by the CIE

1The figure also shows the spectral absorption curve for rods, responsible for achromatic vision.

THE PSYCHOPHYSICS OF COLOR 389

FIGURE 16.1 Spectral absorption curves of the short (S), medium (M), and long (L) wave-
length pigments in human cone and rod (R) cells. Courtesy of Wikimedia Commons.

(Commission Internationale de L’Éclairage—International Commission on Illumi-
nation, an organization responsible for color standards) as red (700 nm), green
(546.1 nm), and blue (435.8 nm).

The secondary colors of light, obtained by additive mixtures of the primaries, two
colors at a time, are magenta (or purple) = red + blue, cyan (or turquoise) = blue +
green, and yellow = green + red (Figure 16.2a).

For color mixtures using pigments (or paints), the primary colors are magenta,
cyan, and yellow and the secondary colors are red, green, and blue (Figure 16.2b). It
is important to note that for pigments a color is named after the portion of the spectrum

(b)(a)

FIGURE 16.2 Additive (a) and subtractive (b) color mixtures.

390 COLOR IMAGE PROCESSING

that it absorbs, whereas for light a color is defined based on the portion of the spectrum
that it emits. Consequently, mixing all three primary colors of light results in white
(i.e., the entire spectrum of visible light), whereas mixing all three primary colors
of paints results in black (i.e., all colors have been absorbed, and nothing remains to
reflect the incoming light).

The use of the expression primary colors to refer to red, green, and blue may
lead to a common misinterpretation: that all visible colors can be obtained by mixing
different amounts of each primary color, which is not true. A related phenomenon
of color perception, the existence of color metamers, may have contributed to this
confusion. Color metamers are combinations of primary colors (e.g., red and green)
perceived by the HVS as another color (in this case, yellow) that could have been
produced by a spectral color of fixed wavelength (of ≈ 580 nm).

16.1.2 The CIE XYZ Chromaticity Diagram

In color matching experiments performed in the late 1920s, subjects were asked to
adjust the amount of red, green, and blue on one patch that were needed to match a color
on a second patch. The results of such experiments are summarized in Figure 16.3.
The existence of negative values of red and green in this figure means that the second
patch should be made brighter (i.e., equal amounts of red, green, and blue has to be
added to the color) for the subjects to report a perfect match. Since adding amounts
of primary colors on the second patch corresponds to subtracting them in the first,
negative values can occur. The amounts of three primary colors in a three-component
additive color model (on the first patch) needed to match a test color (on the second
patch) are called tristimulus values.

FIGURE 16.3 RGB color matching function (CIE 1931). Courtesy of Wikimedia Commons.

THE PSYCHOPHYSICS OF COLOR 391

FIGURE 16.4 XYZ color matching function (CIE 1931). Courtesy of Wikimedia Commons.

To remove the inconvenience of having to deal with (physically impossible) neg-
ative values to represent observable colors, in 1931 the CIE adopted standard curves
for a hypothetical standard (colorimetric) observer, considered to be the chromatic
response of the average human viewing through a 2◦ angle, due to the belief at that
time that the cones resided within a 2◦ arc of the fovea.2 These curves specify how
a SPD corresponding to the physical power (or radiance) of the light source can be
transformed into a set of three numbers that specifies a color. These curves are not
based on the values of R, G, and B, but on a new set of tristimulus values: X, Y ,
and Z.

This model, whose color matching functions are shown in Figure 16.4, is known
as the CIE XYZ (or CIE 1931) model. The tristimulus values of X, Y , and Z in
Figure 16.4 are related to the values of R, G, and B in Figure 16.3 by the following
linear transformations:

⎡
⎢⎣

X

Y

Z

⎤
⎥⎦ =

⎡
⎢⎣

0.431 0.342 0.178

0.222 0.707 0.071

0.020 0.130 0.939

⎤
⎥⎦

⎡
⎢⎣

R

G

B

⎤
⎥⎦ (16.1)

and
⎡
⎢⎣

R

G

B

⎤
⎥⎦ =

⎡
⎢⎣

3.063 −1.393 −0.476

−0.969 1.876 0.042

0.068 −0.229 1.069

⎤
⎥⎦

⎡
⎢⎣

X

Y

Z

⎤
⎥⎦ (16.2)

2This understanding was eventually revised and a new model, CIE 1964, for a 10◦ standard observer, was
produced. Interestingly enough, the CIE 1931 model is more popular than the CIE 1964 alternative even
today.

392 COLOR IMAGE PROCESSING

The CIE XYZ color space was designed so that the Y parameter corresponds to a
measure of the brightness of a color. The chromaticity of a color is specified by two
other parameters, x and y, known as chromaticity coordinates and calculated as

x = X

X + Y + Z
(16.3)

y = Y

X + Y + Z
(16.4)

where x and y are also called normalized tristimulus values. The third normalized
tristimulus value, z, can just as easily be calculated as

z = Z

X + Y + Z
(16.5)

Clearly, a combination of the three normalized tristimulus values results in

x + y + z = 1 (16.6)

The resulting CIE XYZ chromaticity diagram (Figure 16.5) allows the mapping
of a color to a point of coordinates (x, y) corresponding to the color’s chromaticity.
The complete specification of a color (chromaticity and luminance) takes the form of
an xyY triple.3

To recover X and Z from x, y, and Y , we can use

X = x

y
Y (16.7)

Z = 1 − x − y

y
Y (16.8)

The resulting CIE XYZ chromaticity diagram shows a horseshoe-shaped outer
curved boundary, representing the spectral locus of wavelengths (in nm) along the
visible light portion of the electromagnetic spectrum. The line of purples on a chro-
maticity diagram joins the two extreme points of the spectrum, suggesting that the
sensation of purple cannot be produced by a single wavelength: it requires a mixture
of shortwave and longwave light and for this reason purple is referred to as a non-
spectral color. All colors of light are contained in the area in (x, y) bounded by the
line of purples and the spectral locus, with pure white at its center.

The inner triangle in Figure 16.6a represents a color gamut, that is, a range of colors
that can be produced by a physical device, in this case a CRT monitor. Different color
image display and printing devices and technologies exhibit gamuts of different shape
and size, as shown in Figure 16.6. As a rule of thumb, the larger the gamut, the better
the device’s color reproduction capabilities.

3This explains why this color space is also known as CIExyY color space.

THE PSYCHOPHYSICS OF COLOR 393

FIGURE 16.5 CIE XYZ color model.

FIGURE 16.6 Color gamut for three different devices: (a) CRT monitor; (b) printer; (c) film.
The RGB triangle is the same in all figures to serve as a reference for comparison.

16.1.3 Perceptually Uniform Color Spaces

One of the main limitations of the CIE XYZ chromaticity diagram lies in the fact that
a distance on the xy plane does not correspond to the degree of difference between two
colors. This was demonstrated in the early 1940s by David MacAdam, who conducted

394 COLOR IMAGE PROCESSING

FIGURE 16.7 MacAdam ellipses overlapped on the CIE 1931 chromaticity diagram. Cour-
tesy of Wikimedia Commons.

experiments asking subjects to report noticeable changes in color (relative to a starting
color stimulus). The result of that study is illustrated in Figure 16.7, showing the
resulting MacAdam ellipses: regions on the chromaticity diagram corresponding to
all colors that are indistinguishable, to the average human eye, from the color at
the center of the ellipse. The contour of the ellipse represents the just noticeable
differences (JNDs) of chromaticity. Based on the work of MacAdam, several CIE color
spaces—most notably the CIE L*u*v* (also known as CIELUV) and the CIE L*a*b*
(also known as CIELAB)—were developed, with the goal of achieving perceptual
uniformity, that is, have an equal distance in the color space corresponding to equal
differences in color.

In MATLAB

The IPT has an extensive support for conversion among CIE color spaces. Con-
verting from one color space to another is usually accomplished by using function
makecform (to create a color transformation structure that defines the desired color
space conversion) followed by applycform, which takes the color transformation
structure as a parameter.

THE PSYCHOPHYSICS OF COLOR 395

TABLE 16.1 IPT Functions for CIE XYZ and CIELAB Color Spaces

Function Description

xyz2double Converts an M × 3 or M × N × 3 array of XYZ color values to
double

xyz2uint16 Converts an M × 3 or M × N × 3 array of XYZ color values to
uint16

lab2double Converts an M × 3 or M × N × 3 array of L*a*b* color values to
double

lab2uint16 Converts an M × 3 or M × N × 3 array of L*a*b* color values to
uint16

lab2uint8 Converts an M × 3 or M × N × 3 array of L*a*b* color values to
uint8

whitepoint Returns a 3×1 vector of XYZ values scaled so that Y = 1

Other functions for manipulation of CIE XYZ and CIELAB values are listed in
Table 16.1.

16.1.4 ICC Profiles

An ICC (International Color Consortium) profile is a standardized description of a
color input or output device, or a color space, according to standards established by
the ICC. Profiles are used to define a mapping between the device source or target
color space and a profile connection space (PCS), which is either CIELAB (L*a*b*)
or CIEXYZ.

In MATLAB

The IPT has several functions to support ICC profile operations. They are listed in
Table 16.2.

TABLE 16.2 IPT Functions for ICC Profile Manipulation

Function Description

iccread Reads an ICC profile into the MATLAB workspace
iccfind Finds ICC color profiles on a system, or a particular ICC color profile

whose description contains a certain text string
iccroot Returns the name of the directory that is the default system repository

for ICC profiles
iccwrite Writes an ICC color profile to disk file

396 COLOR IMAGE PROCESSING

16.2 COLOR MODELS

A color model (also called color space or color system) is a specification of a coor-
dinate system and a subspace within that system where each color is represented by
a single point.

There have been many different color models proposed over the last 400 years.
Contemporary color models have also evolved to specify colors for different pur-
poses (e.g., photography, physical measurements of light, color mixtures, etc.). In
this section, we discuss the most popular color models used in image processing.

16.2.1 The RGB Color Model

The RGB color model is based on a Cartesian coordinate system whose axes represent
the three primary colors of light (R, G, and B), usually normalized to the range [0, 1]
(Figure 16.8). The eight vertices of the resulting cube correspond to the three primary
colors of light, the three secondary colors, pure white, and pure black. Table 16.3
shows the R, G, and B values for each of these eight vertices.

RGB color coordinates are often represented in hexadecimal notation, with indi-
vidual components varying from 00 (decimal 0) to FF (decimal 255). For example, a
pure (100% saturated) red would be denoted FF0000, whereas a slightly desaturated
yellow could be written as CCCC33.

The number of discrete values of R, G, and B is a function of the pixel depth,
defined as the number of bits used to represent each pixel: a typical value is

FIGURE 16.8 RGB color model.

COLOR MODELS 397

TABLE 16.3 R, G, and B Values for Eight Representative Colors
Corresponding to the Vertices of the RGB Cube

Color Name R G B

Black 0 0 0
Blue 0 0 1
Green 0 1 0
Cyan 0 1 1
Red 1 0 0
Magenta 1 0 1
Yellow 1 1 0
White 1 1 1

24 bits = 3 image planes × 8 bits per plane. The resulting cube—with more than
16 million possible color combinations—is shown in Figure 16.9.

In MATLAB

The RGB cube in Figure 16.9 was generated using patch, a graphics function for
creating patch graphics objects, made up of one or more polygons, which can be
specified by passing the coordinates of their vertices and the coloring and lighting of
the patch as parameters.

FIGURE 16.9 RGB color cube.

398 COLOR IMAGE PROCESSING

16.2.2 The CMY and CMYK Color Models

The CMY model is based on the three primary colors of pigments (cyan, magenta, and
yellow). It is used for color printers, where each primary color usually corresponds
to an ink (or toner) cartridge. Since the addition of equal amounts of each primary
to produce black usually produces unacceptable, muddy looking black, in practice, a
fourth color, blacK, is added, and the resulting model is called CMYK.

The conversion from RGB to CMY is straightforward:
⎡
⎢⎣

C

M

Y

⎤
⎥⎦ =

⎡
⎢⎣

1

1

1

⎤
⎥⎦ −

⎡
⎢⎣

R

G

B

⎤
⎥⎦ (16.9)

The inverse operation (conversion from CMY to RGB), although it is equally easy
from a mathematical standpoint, is of little practical use.

In MATLAB

Conversion between RGB and CMY in MATLAB can also be accomplished using
the imcomplement function.

16.2.3 The HSV Color Model

Color models such as the RGB and CMYK described previously are very convenient
to specify color coordinates for display or printing, respectively. They are not, how-
ever, useful to capture a typical human description of color. After all, none of us goes
to a store looking for a FFFFCC shirt to go with the FFCC33 jacket we got for our
birthday. Rather, the human perception of color is best described in terms of hue,
saturation, and lightness. Hue describes the color type, or tone, of the color (and very
often is expressed by the “color name”), saturation provides a measure of its purity
(or how much it has been diluted in white), and lightness refers to the intensity of
light reflected from objects.

For representing colors in a way that is closer to the human description, a family of
color models have been proposed. The common aspect among these models is their
ability to dissociate the dimension of intensity (also called brightness or value) from
the chromaticity—expressed as a combination of hue and saturation—of a color.

We will look at a representative example from this family: the HSV (hue–
saturation–value) color model.4

The HSV (sometimes called HSB) color model can be obtained by looking at the
RGB color cube along its main diagonal (or gray axis), which results in a hexagon-
shaped color palette. As we move along the main axis in the pyramid in Figure 16.10,

4The terminology for color models based on hue and saturation is not universal, which is unfortunate.
What we call HSV in this book may appear under different names and acronyms elsewhere. Moreover, the
distinctions among these models are very subtle and different acronyms might be used to represent slight
variations among them.

COLOR MODELS 399

FIGURE 16.10 The HSV color model as a hexagonal cone.

the hexagon gets smaller, corresponding to decreasing values of V , from 1 (white) to
0 (black). For any hexagon, the three primary and the three secondary colors of light
are represented in its vertices. Hue, therefore, is specified as an angle relative to the
origin (the red axis by convention). Finally, saturation is specified by the distance to
the axis: the longer the distance, the more saturated the color.

Figure 16.11 shows an alternative representation of the HSV color model in which
the hexcone is replaced by a cylinder. Figure 16.12 shows yet another equivalent three-
dimensional representation for the HSV color model, as a cone with circular-shaped
base.

In summary, the main advantages of the HSV color model (and its closely related
alternatives) are its ability to match the human way of describing colors and to al-
low for independent control over hue, saturation, and intensity (value). The ability
to isolate the intensity component from the other two—which are often collectively
called chromaticity components—is a requirement in many color image processing
algorithms, as we shall see in Section 16.5. Its main disadvantages include the discon-
tinuity in numeric values of hue around red, the computationally expensive conversion
to/from RGB, and the fact that hue is undefined for a saturation of 0.

In MATLAB

Converting between HSV and RGB in MATLAB can be accomplished by the func-
tions rgb2hsv and hsv2rgb. Tutorial 16.2 explores these functions in detail.

400 COLOR IMAGE PROCESSING

FIGURE 16.11 The HSV color model as a cylinder.

FIGURE 16.12 The HSV color model as a cone.

REPRESENTATION OF COLOR IMAGES IN MATLAB 401

16.2.4 The YIQ (NTSC) Color Model

The NTSC color model is used in the American standard for analog television, which
will be described in more detail in Chapter 20. One of the main advantages of this
model is the ability to separate grayscale contents from color data, a major design
requirement at a time when emerging color TV sets and transmission equipment had
to be backward compatible with their B&W predecessors. In the NTSC color model,
the three components are luminance (Y) and two color-difference signals hue (I) and
saturation (Q).5

Conversion from RGB to YIQ can be performed using the transformation⎡
⎢⎣

Y

I

Q

⎤
⎥⎦ =

⎡
⎢⎣

0.299 0.587 0.114

0.596 −0.274 −0.322

0.211 −0.523 0.312

⎤
⎥⎦

⎡
⎢⎣

R

G

B

⎤
⎥⎦ (16.10)

In MATLAB

Converting between RGB and YIQ (NTSC) in MATLAB is accomplished using
functions rgb2ntsc and ntsc2rgb.

16.2.5 The YCbCr Color Model

The YCbCr color model is the most popular color representation for digital video.6 In
this format, one component represents luminance (Y), while the other two are color-
difference signals: Cb (the difference between the blue component and a reference
value) and Cr (the difference between the red component and a reference value).

Conversion from RGB to YCbCr is possible using the transformation⎡
⎢⎣

Y

Cb

Cr

⎤
⎥⎦ =

⎡
⎢⎣

0.299 0.587 0.114

−0.169 −0.331 0.500

0.500 −0.419 −0.081

⎤
⎥⎦

⎡
⎢⎣

R

G

B

⎤
⎥⎦ (16.11)

In MATLAB

Converting between YCbCr and RGB in MATLAB can be accomplished by the
functions rgb2ycbcr and ycbcr2rgb.

16.3 REPRESENTATION OF COLOR IMAGES IN MATLAB

As we have seen in Chapter 2, color images are usually represented as RGB (24 bits per
pixel) or indexed with a palette (color map), usually of size 256. These representation

5The choice for letters I and Q stems from the fact that one of the components is in phase, whereas the
other is off by 90◦, that is, in quadrature.
6More details in Chapter 20.

402 COLOR IMAGE PROCESSING

FIGURE 16.13 RGB color image representation.

modes are independent of file format (although GIF images are usually indexed and
JPEG images typically are not). In this section, we provide a more detailed analysis
of color image representation in MATLAB.

16.3.1 RGB Images

An RGB color image in MATLAB corresponds to a 3D array of dimensions M × N ×
3, where M and N are the image’s height and width (respectively) and 3 is the number
of color planes (channels). Each color pixel is represented as a triple containing the
values of its R, G, and B components (Figure 16.13). Each individual array of size
M × N is called a component image and corresponds to one of the color channels:
red, green, or blue. The data class of the component images determines their range of
values. For RGB images of classdouble, the range of values is [0.0, 1.0], whereas for
classes uint8 or uint16, the ranges are [0, 255] and [0, 65535], respectively. RGB
images typically have a bit depth of 24 bits per pixel (8 bits per pixel per component

image), resulting in a total number of (28)
3 = 16, 777, 216 colors.

� EXAMPLE 16.1

The following MATLAB sequence can be used to open, verify the size (in this case,
384 × 512 × 3) and data class (in this case,uint8), and display an RGB color image
(Figure 16.14).

I = imread(’peppers.png’);

size(I)

class(I)

subplot(2,2,1), imshow(I), title(’Color image (RGB)’)

REPRESENTATION OF COLOR IMAGES IN MATLAB 403

FIGURE 16.14 RGB image and its three color components (or channels). Original image:
courtesy of MathWorks.

subplot(2,2,2), imshow(I(:,:,1)), title(’Red component’)

subplot(2,2,3), imshow(I(:,:,2)), title(’Green component’)

subplot(2,2,4), imshow(I(:,:,3)), title(’Blue component’)

16.3.2 Indexed Images

An indexed image is a matrix of integers (X), where each integer refers to a particular
row of RGB values in a secondary matrix (map) known as a color map. The image
can be represented by an array of class uint8, uint16, or double. The color map
array is an M × 3 matrix of class double, where each element’s value is within the
range [0.0, 1.0]. Each row in the color map represents R (red), G (green), and B (blue)
values, in that order. The indexing mechanism works as follows (Figure 16.15): if X
is of class uint8 or uint16, all components with value 0 point to the first row in
map, all components with value 1 point to the second row, and so on. If X is of class
double, all components with value less than or equal to 1.0 point to the first row
and so on.

404 COLOR IMAGE PROCESSING

FIGURE 16.15 Indexed color image representation.

MATLAB has many built-in color maps (which can be accessed using the function
colormap), briefly described in Table 16.4. In addition, you can easily create your
own color map by defining an array of class double and size M × 3, where each
element is a floating-point value in the range [0.0, 1.0].

� EXAMPLE 16.2

The following MATLAB sequence can be used to load a built-in indexed image, verify
its size (in this case, 200 × 300) and data class (in this case, double), verify the

TABLE 16.4 Color Maps in MATLAB

Name Description

hsv Hue–saturation–value color map
hot Black–red–yellow–white color map
gray Linear gray-scale color map
bone Gray scale with tinge of blue color map
copper Linear copper-tone color map
pink Pastel shades of pink color map
white All white color map
flag Alternating red, white, blue, and black color map
lines Color map with the line colors

colorcube Enhanced color-cube color map
vga Windows color map for 16 colors
jet Variant of HSV

prism Prism color map
cool Shades of cyan and magenta color map
autumn Shades of red and yellow color map.
spring Shades of magenta and yellow color map
winter Shades of blue and green color map
summer Shades of green and yellow color map

REPRESENTATION OF COLOR IMAGES IN MATLAB 405

FIGURE 16.16 A built-in indexed image. Original image: courtesy of MathWorks.

color map’s size (in this case, 81 × 3) and data class (in this case, double), and
display the image (Figure 16.16).

load clown
size(X)
class(X)
size(map)
class(map)
imshow(X,map), title(’Color (Indexed)’)

MATLAB has many useful functions for manipulating indexed color images:

• If we need to approximate an indexed image by one with fewer colors, we can
use MATLAB’s imapprox function.

• Conversion between RGB and indexed color images is straightforward, thanks
to functions rgb2ind and ind2rgb.

• Conversion from either color format to their grayscale equivalent is equally easy,
using functions rgb2gray and ind2gray.

• We can also create an index image from an RGB image by dithering the original
image using function dither.

• Function grayslice creates an indexed image from an intensity (grayscale)
image by thresholding and can be used in pseudocolor image processing (Sec-
tion 16.4).

• Function gray2ind converts an intensity (grayscale) image into its indexed
image equivalent. It is different from grayslice. In this case, the resulting

406 COLOR IMAGE PROCESSING

image is monochrome, just as the original one;7 only the internal data represen-
tation has changed.

16.4 PSEUDOCOLOR IMAGE PROCESSING

The purpose of pseudocolor image processing techniques is to enhance a monochrome
image for human viewing purposes. Their rationale is that subtle variations of
gray levels may very often mask or hide regions of interest within an image.
This can be particularly damaging if the masked region is relevant to the appli-
cation domain (e.g., the presence of a tumor in a medical image). Since the hu-
man eye is capable of discerning thousands of color hues and intensities, compared
to only less than 100 shades of gray, replacing gray levels with colors leads to
better visualization and enhanced capability for detecting relevant details within the
image.

The typical solution consists of using a color lookup table (LUT) designed to map
the entire range of (typically 256) gray levels to a (usually much smaller) number
of colors. For better results, contrasting colors should appear in consecutive rows in
the LUT. The term pseudocolor is used to emphasize the fact that the assigned colors
usually have no correspondence whatsoever with the truecolors that might have been
present in the original image.

16.4.1 Intensity Slicing

The technique of intensity (or density) slicing is the simplest and best-known pseu-
docoloring technique. If we look at a monochrome image as if it were a 3D plot of
gray levels versus spatial coordinates, where the most prominent peaks correspond
to the brightest pixels, the technique corresponds to placing several planes paral-
lel to the coordinate plane of the image (also known as the xy plane). Each plane
“slices” the 3D function in the area of intersection, resulting in several gray-level
intervals. Each side of the plane is then assigned a different color. Figure 16.17
shows an example of intensity slicing using only one slicing plane at f (x, y) = li and
Figure 16.18 shows an alternative representation, where the chosen colors are indi-
cated as c1, c2, c3, and c4. The idea can easily be extended to M planes and M + 1
intervals.

In MATLAB

Intensity slicing can be accomplished using the grayslice function. You will learn
how to use this function in Tutorial 16.1.

7The only possible differences would have resulted from the need to requantize the number of gray levels
if the specified color map is smaller than the original number of gray levels.

PSEUDOCOLOR IMAGE PROCESSING 407

FIGURE 16.17 Pseudocoloring with intensity slicing.

FIGURE 16.18 An alternative representation of the intensity slicing technique for an image
with L gray levels pseudocolored using four colors.

� EXAMPLE 16.3

Figure 16.19 shows an example of pseudocoloring with intensity slicing using 16
levels, the same input image (a), and three different color maps summer (b), hsv
(c), and jet (d).

16.4.2 Gray Level to Color Transformations

An alternative approach to pseudocoloring consists of using three independent trans-
formation functions on each pixel of the input image and assigning the results of each

408 COLOR IMAGE PROCESSING

FIGURE 16.19 Pseudocoloring using intensity slicing: original image (a) and results of
pseudocoloring using different color maps (b–d). Original image: courtesy of MathWorks.

function to a color channel (Figure 16.20). This method provides additional flexibility,
since it allows creation of a composite color image whose contents can be modulated
by each individual transformation function. Recall from our discussion in Chapter
8 that these are point functions, that is, the resulting value for each pixel does not
depend on its spatial location or the gray level of its neighbors.

The intensity slicing method described in Section 16.4.1 is a particular case of
gray level to color transformation, in which all transformation functions are identical
and shaped like a staircase.

16.4.3 Pseudocoloring in the Frequency Domain

Pseudocoloring can also performed in the frequency domain8 by applying a Fourier
transform (FT) to the original image and then applying a low-pass, bandpass, and
high-pass filters to the transformed data. The three individual filter outputs are then
inverse transformed and used as the R, G, and B components of the resulting image.

8Frequency-domain techniques were discussed in Chapter 11.

FULL-COLOR IMAGE PROCESSING 409

R

fR(x, y)

f (x, y)

fG(x, y) fB(x, y)

transformation transformation transformation
G B

FIGURE 16.20 Block diagram for pseudocoloring using color transformation functions.

FIGURE 16.21 (a) Block diagram for pseudocoloring in the frequency domain; (b) frequency
response of the filters. Redrawn from [Umb05].

Figure 16.21 shows a block diagram of the method as well as representative examples
of the frequency response of the filters used in the process. The postprocessing stage
is optional and application dependent.

16.5 FULL-COLOR IMAGE PROCESSING

This section examines techniques that process the full contents of a digital color image.
Full-color image processing is a relatively young branch of digital image processing

410 COLOR IMAGE PROCESSING

that has become increasingly popular and relevant in recent years, thanks to the wide
availability of inexpensive hardware for capturing, storing, displaying, and printing
color images.

There are several technical challenges involved in extrapolating monochrome im-
age processing techniques to their color image equivalent, one of which is particularly
important: the choice of the appropriate color model for the task. The impact of this
choice will become evident as we look at specific examples in this section.

There are two ways to achieve color image processing:

• Componentwise: Having selected an appropriate color model, each component
image (e.g., R, G, and B) is processed individually and then forms a composite
processed image.

• Vector Methods: Color pixels are treated as vectors:

c(x, y) =

⎡
⎢⎣

cR(x, y)

cG(x, y)

cB(x, y)

⎤
⎥⎦=

⎡
⎢⎣

R(x, y)

G(x, y)

B(x, y)

⎤
⎥⎦ (16.12)

The two methods are equivalent if (and only if)

• The process is applicable to both vectors and scalars.
• The operation on each component of a vector is independent of the other com-

ponents.

Vector methods for color image processing are mathematically intensive and be-
yond the scope of this text.9 For the remaining of this discussion, we shall focus on
componentwise color image processing and the role of the chosen color model.

Several color image processing techniques can be performed on the individual R,
G, and B channels of the original image, whereas other techniques require access to a
component that is equivalent to the monochrome version of the input image (e.g., the
Y component in the YIQ color model or the V component in the HSV color model).
The former can be called RGB processing (Figure 16.22), whereas the latter can be
referred to as intensity processing (Figure 16.23).

16.5.1 Color Transformations

It is possible to extend the concept of grayscale transformations to color images. The
original formulation (see Chapter 8)

g(x, y) = T [f (x, y)] (16.13)

can be adapted for the case where the input and output images (f (x, y) and g(x, y))
are color images, that is, where each individual pixel value is no longer an unsigned

9The interested reader will find a few useful references at the end of the chapter.

FULL-COLOR IMAGE PROCESSING 411

FIGURE 16.22 RGB processing.

FIGURE 16.23 Intensity processing using RGB to YIQ color space conversions.

integer or double, but a triple of values (e.g., corresponding to the R, G, and B values
for that pixel).

Since we know that such transformation functions are point processing functions
(independent of the pixel’s location or neighbors’ values), we can adopt a modified
version of the simplified notation introduced in Chapter 8:

si = Ti(r1, r2, ..., rn), i = 1, 2, ..., n (16.14)

where ri and si are the color components of the original (f (x, y)) and the processed
(g(x, y)) image, respectively, n is the number of color components, and T1, T2, ..., Tn

is a set of color transformation (or mapping) functions that operate on ri to produce
si. For RGB images, n = 3, and r1, r2, and r3 correspond to the R, G, and B values
for each pixel in the input image.

412 COLOR IMAGE PROCESSING

Intensity Modification A simple example of color mapping function is the in-
tensity modification function described by

g(x, y) = kf (x, y) (16.15)

Clearly, if k > 1, the resulting image will be brighter than the original, whereas
for k < 1, the output image will be darker than the input image.

Color Complements The color complement operation is the color equivalent of
the grayscale negative transformation introduced in Chapter 8. It replaces each hue
by its complement (sometimes called opponent color).

If the input image is represented using the RGB color model, the operation can
be performed by applying a trivial transfer function to each individual color chan-
nel. If the input image is represented using the HSV color space, we must apply a
trivial transfer function to V , a nontrivial transfer function—that takes care of the
discontinuities in hue around 0◦—to H and leave S unchanged.

In MATLAB

Color complement for RGB images can be accomplished using the imcomplement
function.

Color Slicing Color slicing is a mapping process by which all colors outside a
range of interest are mapped to a “neutral” color (e.g., gray), while all colors of interest
remain unchanged. The color range of interest can be specified as a cube or a sphere
centered at a prototypical reference color.

16.5.2 Histogram Processing

The concept of histogram can be extended to color images, in which case each im-
age can be represented using three histograms with N (typically, 4 ≤ N ≤ 256) bins
each. Histogram techniques (e.g., histogram equalization) can be applied to an im-
age represented using a color model that allows separation between luminance and
chrominance components (e.g., HSI): the luminance (intensity, I) component of a
color image is processed, while the chromaticity components (H and S) are left un-
changed. Figure 16.24 shows an example that uses the YIQ (NTSC) color model (and
equalizes only its Y component). The resulting image is a modified version of the orig-
inal one, in which background details become more noticeable. Notice that although
the colors become somewhat washed out, they are faithful to their original hue.

16.5.3 Color Image Smoothing and Sharpening

Linear neighborhood-oriented smoothing and sharpening techniques can be extended
to color images under the componentwise paradigm. The original 3 × 3 kernel typ-
ically used in monochrome operations (see Chapters 4 and 10) becomes an array of
vectors (Figure 16.25).

FULL-COLOR IMAGE PROCESSING 413

FIGURE 16.24 Example of color histogram equalization. (a) Original image and its Y chan-
nel histogram; (b) output image and its equalized Y channel histogram. Original image: courtesy
of MathWorks.

FIGURE 16.25 Spatial convolution masks for grayscale and RGB color images.

414 COLOR IMAGE PROCESSING

For example, the vector formulation of the averaging filter for an RGB image using
a neighborhood Sxy centered around coordinates (x, y) becomes

c̄(x, y) =

⎡
⎢⎢⎣

1
K

∑
(s,t)∈Sxy

R (s, t)

1
K

∑
(s,t)∈Sxy

G (s, t)

1
K

∑
(s,t)∈Sxy

B (s, t)

⎤
⎥⎥⎦ (16.16)

Equation (16.16) indicates that the result can be obtained by performing neighbor-
hood averaging on each individual color channel using standard grayscale neighbor-
hood processing. Similarly, sharpening a color image encoded using the RGB color
model can be accomplished by applying the sharpening operator (e.g., Laplacian) to
each component image individually and combining the results.

Smoothing and sharpening operations can also be performed by processing the
intensity (luminance) component of an image encoded with the proper color model
(e.g., YIQ or HSI) and combining the result with the original chrominance channels.
Tutorial 16.2 explores smoothing and sharpening of color images.

16.5.4 Color Noise Reduction

The impact of noise on color images strongly depends on the color model used. Even
when only one of the R, G, or B channels is affected by noise, conversion to another
color model such as HSI or YIQ will spread the noise to all components. Linear noise
reduction techniques (such as the mean filter) can be applied on each R, G, and B

component separately with good results.

16.5.5 Color-Based Image Segmentation

Color Image Segmentation by Thresholding There are several possible ways
to extend the image thresholding ideas commonly used for monochrome images
(Chapter 15) to their color equivalent. The basic idea is to partition the color space
into a few regions (which hopefully should correspond to meaningful objects and
regions in the image) using appropriately chosen thresholds.

A simple option is to define one (or more) threshold(s) for each color component
(e.g., R, G, and B), which results in a partitioning of the RGB cube from which the
color range of interest (a smaller cube) can be isolated (Figure 16.26).

Color Image Segmentation in RGB Vector Space It is also possible to spec-
ify a threshold relative to a distance between any color and a reference color in the
RGB space. If we call the reference color (R0, G0, B0), the thresholding rule can be
expressed as

g(x, y) =
{

1 d(x, y) ≤ dmax

0 d(x, y) > dmax
(16.17)

FULL-COLOR IMAGE PROCESSING 415

FIGURE 16.26 Thresholding in RGB space.

where

d(x, y) =
√

[fR(x, y) − R0]2 + [fG(x, y) − G0]2 + [fB(x, y) − B0]2 (16.18)

Thresholding according to equations (16.17) and (16.18) in fact specifies a sphere
in the RGB space, whose center is the reference color. Any pixel whose color lies
inside the sphere (or on its surface) will be set to 1; all other pixels will be assigned
a value of 0.

Equations (16.17) and (16.18) can be generalized by specifying different threshold
values for each primary color, which will result in an ellipsoid (rather than a sphere)
being defined in RGB space (Figure 16.27).

In MATLAB

A simple way to segment color images in MATLAB is by using the rgb2ind func-
tion. The primary use of this function is to generate an indexed image based on an
input truecolor image, but with less number of colors. When a specific number of
colors are specified, MATLAB quantizes the image and produces an indexed image
and a color map at the output. The resulting indexed image is essentially what we want
from a segmentation process: a labeled image. If there are n regions in the image,
there will be n + 1 labels, where the additional label is for the background.

416 COLOR IMAGE PROCESSING

FIGURE 16.27 Defining spherical (ellipsoidal) regions in RGB space.

� EXAMPLE 16.4

In this example, we use rgb2ind to segment a simple image containing three pre-
dominant colors: black (background), red (marker), and desaturated yellow (marker
cap). Figure 16.28 shows the input image (a), the result of segmentation using
rgb2ind and the default color map (b), and the result of segmentation displayed
with a different color map (c). With few exceptions (caused by light reflections on
the red marker), the algorithm did a good job, segmenting the input image into three
main parts.

I = imread(’marker.png’);
n = 3;
[I2,map2] = rgb2ind(I,n,’nodither’);
imshow(I)
figure, imshow(I2,map2)
figure, imshow(I2,hsv(3))

FIGURE 16.28 Example of color segmentation using requantization.

FULL-COLOR IMAGE PROCESSING 417

FIGURE 16.29 Another example of color segmentation using requantization: (a) original
image; (b) requantized image with two color levels; (c) requantized image with five color
levels.

In Figure 16.29, we replace the input image with a more difficult scene and show
results for different values of n. The results are good: n = 2 provides good rough
separation between “flower” and “leaves,” whereas n = 5 segments the yellow fil-
aments as well. Note that the uneven lighting pattern causes most of the imperfect
results.

16.5.6 Color Edge Detection

In Chapter 14, we defined an edge as a boundary between two image regions having
distinct characteristics. We then focused on edges in grayscale 2D images, which are
relatively easy to define as “sharp variations of the intensity function across a portion
of the image.” In this section, we briefly look at the problem of color edge detection.

Several definitions of a color edge have been proposed in the literature [Pra07]:

1. An edge in a color image can be said to exist if and only if there is such an edge
in the luminance channel. This definition ignores discontinuities in the other
color channels (e.g., hue and saturation for HSV images).

2. A color edge is present if an edge exists in any of its three component images.

3. An edge exists if the sum of the results of edge detection operators applied to
individual color channels exceeds a certain threshold. This definition is con-
venient and straightforward and commonly used when the emphasis is not on
accuracy.

In general, extending the gradient-based methods for edge detection in
monochrome images described in Chapter 14 to color images by simply computing
the gradients for each component image and combining the results (e.g., by applying a
logical OR operator) will lead to erroneous—but acceptable for most cases—results.
If accuracy is important, we must resort to a new definition of the gradient that is ap-
plicable to vector quantities (e.g., the method proposed by Di Zenzo [DZ86]), which
is beyond the scope of this book.

418 COLOR IMAGE PROCESSING

FIGURE 16.30 Color edge detection example: (a) original image; (b) grayscale equivalent;
(c) edge detection on (b); (d) edge detection on individual RGB components; (e) edge detection
on Y component only; (f) edge detection on V component only.

� EXAMPLE 16.5

In this example, we show the results of using the edge function for different color
models. More specifically, we read an RGB color image, convert it to gray, HSV ,
and YIQ representations, and compare the results (Figure 16.30) obtained when
using

• Edge detection on the grayscale equivalent of the input image (c).
• The logical OR of edge detection applied to each individual channel in the

original image (R, G, and B) (d).
• Edge detection on the Y component of the input image represented in the YIQ

model (e).
• Edge detection on the V component of the input image represented in the HSV

model (f).

TUTORIAL 16.1: PSEUDOCOLOR IMAGE PROCESSING 419

16.6 TUTORIAL 16.1: PSEUDOCOLOR IMAGE PROCESSING

Goal

The goal of this tutorial is to learn how to display grayscale images using pseudocolors
in MATLAB.

Objectives

• Learn how to use the grayslice function to perform intensity slicing.
• Learn how to specify color maps with a custom number of colors.

What You Will Need

• grad.jpg
• mri.jpg

Procedure

We will start by exploring the grayslice function on a gradient image.

1. Create and display a gradient image.

I = repmat(uint8([0:255]),256,1);

figure, subplot(1,2,1), subimage(I), title(’Original Image’);

2. Slice the image and display the results.

I2 = grayslice(I,16);
subplot(1,2,2), subimage(I2,colormap(winter(16))), ...

title(’Pseudo-colored with "winter" colormap’)

Question 1 Why did we use thesubimage function to display the images (instead
of the familiar imshow)?

Question 2 What does the value 16 represent in the function call forgrayslice?

Question 3 In the statement subimage(I2,colormap(winter(16))),
what does the value 16 represent?

In the above procedure, we sliced the image into equal partitions—this is the default
for the grayslice function. We will now learn how to slice the range of grayscale
values into unequal partitions.

3. Slice the image into unequal partitions and display the result.

420 COLOR IMAGE PROCESSING

levels = [0.25*255, 0.75*255, 0.9*255];
I3 = grayslice(I,levels);
figure, imshow(I3,spring(4))

Question 4 The original image consists of values in the range [0, 255]. If our
original image values ranged [0.0, 1.0], how would the above code change?

Now that we have seen how pseudocoloring works, let us apply it to an image
where this visual information might be useful.

4. Clear all variables and close any open figures.

5. Load and display the mri.jpg.

I = imread(’mri.jpg’);

figure, subplot(1,2,1), subimage(I), title(’Original Image’);

6. Pseudocolor the image.

I2 = grayslice(I,16);
subplot(1,2,2), subimage(I2, colormap(jet(16))), ...

title(’Pseudo-colored with "jet" colormap’);

Question 5 In the previous steps, we have specified how many colors we want in
our color map. If we do not specify this number, how does MATLAB determine how
many colors to return in the color map?

16.7 TUTORIAL 16.2: FULL-COLOR IMAGE PROCESSING

Goal

The goal of this tutorial is to learn how to convert between color spaces and perform
filtering on color images in MATLAB.

Objectives

• Learn how to convert from RGB to HSV color space using the rgb2hsv func-
tion.

• Learn how to convert from HSV to RGB color space using the hsv2rgb func-
tion.

• Explore smoothing and sharpening in the RGB and HSV color spaces.

Procedure

We will start by exploring the rgb2hsv function.

TUTORIAL 16.2: FULL-COLOR IMAGE PROCESSING 421

1. Load the onions.png image and display its RGB components.

I = imread(’onion.png’);

figure, subplot(2,4,1), imshow(I), title(’Original Image’);

subplot(2,4,2), imshow(I(:,:,1)), title(’R component’);

subplot(2,4,3), imshow(I(:,:,2)), title(’G component’);

subplot(2,4,4), imshow(I(:,:,3)), title(’B component’);

2. Convert the image to HSV and display its components.

Ihsv = rgb2hsv(I);
subplot(2,4,6), imshow(Ihsv(:,:,1)), title(’Hue’)
subplot(2,4,7), imshow(Ihsv(:,:,2)), title(’Saturation’);
subplot(2,4,8), imshow(Ihsv(:,:,3)), title(’Value’);

Question 1 Why do we not display the HSV equivalent of the image?
When viewing the components of an RGB image, the grayscale visualization of

each component is intuitive because the intensity within that component corresponds
to how much of the component is being used to generate the final color. Visualization
of the components of an HSV image is not as intuitive. You may have noticed that
when displaying the hue, saturation, and value components, hue and saturation do not
give you much insight as to what the actual color is. The value component, on the
other hand, appears to be a grayscale version of the image.

3. Convert the original image to grayscale and compare it with the value compo-
nent of the HSV image.

Igray = rgb2gray(I);

figure, subplot(1,2,1), imshow(Igray), title(’Grayscale’);

subplot(1,2,2), imshow(Ihsv(:,:,3)), title(’Value component’);

Question 2 How does the grayscale version of the original image and the value
component of the HSV image compare?

Procedures for filtering a color image will vary depending on the color space being
used. Let us first learn how to apply a smoothing filter on an RGB image.

4. Apply a smoothing filter to each component and then reconstruct the image.

fn = fspecial(’average’);

I2r = imfilter(I(:,:,1), fn);

I2g = imfilter(I(:,:,2), fn);

I2b = imfilter(I(:,:,3), fn);

I2(:,:,1) = I2r;

I2(:,:,2) = I2g;

422 COLOR IMAGE PROCESSING

I2(:,:,3) = I2b;

figure, subplot(1,2,1), imshow(I), title(’Original Image’);

subplot(1,2,2), imshow(I2), title(’Averaged Image’);

Question 3 Do the results confirm that the RGB equivalent of averaging a
grayscale image is to average each component of the RGB image individually?

Now let us see what happens when we perform the same operations on an HSV
image. Note that in these steps, we will use the hsv2rgb function to convert the
HSV image back to RGB so that it can be displayed.

5. Filter all components of the HSV image.

Ihsv2h = imfilter(Ihsv(:,:,1), fn);
Ihsv2s = imfilter(Ihsv(:,:,2), fn);
Ihsv2v = imfilter(Ihsv(:,:,3), fn);
Ihsv2(:,:,1) = Ihsv2h;
Ihsv2(:,:,2) = Ihsv2s;
Ihsv2(:,:,3) = Ihsv2v;

6. Display the results.

figure, subplot(2,3,1), imshow(Ihsv(:,:,1)), ...

title(’Original Hue’);

subplot(2,3,2), imshow(Ihsv(:,:,2)), ...

title(’Original Saturation’);

subplot(2,3,3), imshow(Ihsv(:,:,3)), ...

title(’Original Value’);

subplot(2,3,4), imshow(Ihsv2(:,:,1)), ...

title(’Filtered Hue’);

subplot(2,3,5), imshow(Ihsv2(:,:,2)), ...

title(’Filtered Saturation’);

subplot(2,3,6), imshow(Ihsv2(:,:,3)), ...

title(’Filtered Value’);

figure, subplot(1,2,1), imshow(I), title(’Original Image’);

subplot(1,2,2), imshow(hsv2rgb(Ihsv2)), ...

title(’HSV with all components filtered’);

Question 4 Based on the results, does it make sense to say that the HSV equivalent
of averaging a grayscale image is to average each component of the HSV image
individually?

7. Filter only the value component and display the results.

TUTORIAL 16.2: FULL-COLOR IMAGE PROCESSING 423

Ihsv3(:,:,[1 2]) = Ihsv(:,:,[1 2]);

Ihsv3(:,:,3) = Ihsv2v;

figure, subplot(1,2,1), imshow(I), title(’Original Image’);

subplot(1,2,2), imshow(hsv2rgb(Ihsv3)), ...

title(’HSV with only value component filtered’);

Question 5 How does this result compare with the previous one?
We can sharpen an HSV image following a similar sequence of steps.

8. Sharpen the HSV image and display the result.

fn2 = fspecial(’laplacian’,0);

Ihsv4v = imfilter(Ihsv(:,:,3), fn2);

Ihsv4(:,:,[1 2]) = Ihsv(:,:,[1 2]);

Ihsv4(:,:,3) = imsubtract(Ihsv(:,:,3),Ihsv4v);

figure, subplot(1,2,1), imshow(I), title(’Original Image’);

subplot(1,2,2), imshow(hsv2rgb(Ihsv4)), ...

title(’HSV sharpened’);

Question 6 How would we perform the same sharpening technique on an RGB

image?

WHAT HAVE WE LEARNED?

• This chapter introduced the most important concepts and terms related to color
perception, representation, and processing. Understand the meaning of the main
terms in colorimetry is a required step toward the understanding of color image
processing.

• There are many color models used to represent and quantify color information.
Some of the most popular (and their use) models are as follows:

– RGB, CMY(K): display and printing devices

– YIQ, YCbCr: television and video

– XYZ: color standardization

– CIELAB, CIELUV: perceptual uniformity

– HSV, HSI, HSL: intuitive description of color properties
• Color images can be represented in MATLAB either as an M × N × 3 array (one

per color channel) or as an M × N array of indices (pointers) to a secondary
(usually 256 × 3) color palette. The former representation is called an RGB
image, whereas the latter is called an indexed image.

• Pseudocolor image processing techniques assign color to pixels based on an
interpretation of the data rather than the original scene color (which may not
even be known). Full-color image processing methods, on the other hand, process

424 COLOR IMAGE PROCESSING

the pixel values of images whose colors usually correspond to the color of the
original scene.

• Several monochrome image processing techniques, from edge detection to his-
togram equalization, can be extended to color images. The success of applying
such techniques to color images depends on the choice of color model used to
represent the images.

LEARN MORE ABOUT IT

The topics of color vision, colorimetry, color science, and color image processing
have been covered at great length elsewhere. A modest list of useful references is as
follows.

• For a deeper understanding of color vision, we recommend Chapter 5 of [Pal99].
• The book by Wyszecki and Styles [WS82] is considered a reference in the field

of color science.
• The book by Westland and Ripamonti [WR04] combines color science and

colorimetry principles with MATLAB.
• Chapter 3 of [Pra07] contains an in-depth analysis of colorimetry concepts and

mathematical formulation.
• There are several books devoted entirely to color image processing, such

as [LP06].
• Special issues of leading journals in the field devoted to this topic in-

clude [TSV05], [Luk07], and [TTP08].
• Chapter 12 of [BB08] covers color spaces and color space conversion in great

detail.
• Chapter 6 of [GWE04] includes a GUI-based MATLAB tool for color image

processing, transformations, and manipulations.

ON THE WEB

• The Color Model Museum (an exhibit of color representation models and dia-
grams dating back to the sixteenth century).
http://www.colorcube.com/articles/models/model.htm

• The Colour and Vision Research Laboratories at the Institute of Ophthalmology
(London, England): a rich repository of standard data sets relevant to color and
vision research.
http://www.cvrl.org/

• The Color FAQ document by Charles Poynton: an excellent reference on col-
orimetry and its implications in the design of image and video systems.
http://poynton.com/ColorFAQ.html

PROBLEMS 425

• International Color Consortium.
http://www.color.org

16.8 PROBLEMS

16.1 Use the MATLAB function patch to display the RGB cube in Figure 16.9.

16.2 Write MATLAB code to add two RGB color images. Test it with two test
images (of the same size) of your choice. Are the results what you had expected?

16.3 What is wrong with the following MATLAB code to add an indexed color
image to a constant for brightening purposes? Fix the code to achieve the desired
goal.

[X, map] = imread(’canoe.tif’);
X = X + 20;

16.4 In our discussion of pseudocoloring, we stated that the intensity slicing method
described in Section 16.4.1 is a particular case of the more general method (using
transformation functions) described in Section 16.4.2.

Assuming that a 256-level monochrome image has been “sliced” into four colors,
red, green, blue, and yellow, and that each range of gray levels has the same width
(64 gray levels), plot the (staircase-shaped) transformation functions for each color
channel (R, G, and B).

16.5 In our discussion of color histogram equalization (Section 16.5.2), we showed
an example in which the equalization technique was applied to the Y channel of
an image represented using the YUQ color model. Explain (using MATLAB) what
happens if the original image were represented using the RGB color model and each
color channel underwent histogram equalization individually.

16.6 Use the edge function in MATLAB and write a script to compute and display
the edges of a color image for the following cases:

(a) RGB image, combining the edges from each color channel by adding them
up.

(b) RGB image, combining the edges from each color channel with a logical
OR operation.

(c) YIQ image, combining the edges from each color channel by adding them
up.

(d) YIQ image, combining the edges from each color channel with a logical
OR operation.

16.7 Repeat Problem 16.6 for noisy versions of the input color images.

CHAPTER 17

IMAGE COMPRESSION AND CODING

WHAT WILL WE LEARN?

• What is the meaning of compressing an image?
• Which types of redundancy can be exploited when compressing images and how

is this usually done?
• What are the main (lossy and lossless) image compression techniques in use

today?
• How can we evaluate the (subjective) quality of an image that has undergone

some type of processing (e.g., lossy compression) in an objective way?
• What are the most popular contemporary image compression standards?

17.1 INTRODUCTION

Images can be represented in digital format in many different ways, the simplest
of which consists in simply storing all the pixel values in a file following a certain
convention (e.g., row first, starting from the top left corner). The result of using
such raw image representations is the need for large amounts of storage space (and
proportionally long transmission times in the case of file uploads/downloads). The
need to save storage space and shorten transmission time and the human visual system

Practical Image and Video Processing Using MATLAB®. By Oge Marques.
© 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

427

428 IMAGE COMPRESSION AND CODING

tolerance to a modest amount of loss have been the driving factors behind image
compression techniques.

Image compression techniques are behind the most popular image and video appli-
cations and devices in use today, such as DVD players, digital cameras, and web-based
video streaming. Contemporary image compression algorithms are capable of encod-
ing images with high compression efficiency and minimal noticeable degradation of
visual quality.

Compression methods can be lossy—when a tolerable degree of deterioration in
the visual quality of the resulting image is acceptable—or lossless—when the image
is encoded in its full quality and the original image can be fully recovered at the
decoding stage. The overall results of the compression process in terms of both storage
savings—usually expressed with figures of merit such as compression ratio (CR) or
bits per pixel (bpp)—and resulting quality loss (for the case of lossy techniques) may
vary depending on the technique, format, options (such as the “quality” setting for
JPEG), and image contents. As a general guideline, lossy compression should be used
for general-purpose photographic images, whereas lossless compression should be
preferred when dealing with line art, technical drawings, or images in which no loss
of detail may be tolerable (most notably, space images and medical images).

In the remainder of this chapter, we provide an overview of image compression and
coding. This is a vast and ever-growing field. Keeping up with the main goals of this
book, we emphasize key concepts, provide a brief overview of the most representative
contemporary image compression techniques and standards, and show how to evaluate
image quality when lossy image compression is used. Readers interested in a more
detailed analysis of specific techniques and standards will find many useful pointers
to further their studies in the “Learn More About It” section at the end of the chapter.

17.2 BASIC CONCEPTS

The general problem of image compression is to reduce the amount of data (i.e., bits)
required to represent a digital image. The underlying basis of the reduction process
is the removal of redundant data. Mathematically, visual data compression typically
involves transforming (encoding) a 2D pixel array into a statistically uncorrelated data
set. This transformation is applied prior to storage or transmission. At some later time,
the compressed image is decompressed to reconstruct the original image information
(if lossless techniques are used) or an approximation of it (when lossy techniques are
employed).

17.2.1 Redundancy

Image compression is a particular case of data compression: the process of reducing
the amount of data required to represent a given quantity of information. If the same
information can be represented using different amounts of data, it is reasonable to
believe that the representation that requires more data contains what is technically
called data redundancy.

BASIC CONCEPTS 429

FIGURE 17.1 Two ways to represent the same information using different amounts of data.
See text for details.

� EXAMPLE 17.1

To understand the difference between data and information, these are five different
ways of representing the same information (the quantity four) using different repre-
sentations (in increasing order of size in bits):

• The binary equivalent of the number 4 (100): 3 bits
• The Roman numeral IV encoded using the ASCII characters for I and V: 16

bits
• The word “quatro,” meaning “four” in Portuguese, encoded as a string of ASCII

characters: 48 bits
• An uncompressed 64 × 64 binary image with four white squares against a black

background (Figure 17.1a): 32,768 bits
• A compressed 143 × 231 grayscale image (Figure 17.1b): 21,7632 bits

The mathematical definition of data redundancy is given in equation (17.1). It is
assumed that b1 and b2 represent the number of information carrying units (or simply
bits) in two data sets that represent the same information. In this case, the relative
redundancy (R) of the first data set (represented by b1) can be defined as

R = 1 − 1

CR
(17.1)

where the parameter CR, commonly known as compression ratio, is given by

CR = b1

b2
(17.2)

For the case b2 = b1, CR = 1, and R = 0, it can be concluded that the first data set
contains no redundant data. When b2 � b1, CR → ∞, and R → 1, indicating high
redundancy, and, consequently, high compression. Finally, when b2 � b1, CR → 0

430 IMAGE COMPRESSION AND CODING

and R → −∞, so it can be concluded that the second data set contains much more
data than the first, suggesting the undesirable case of data expansion. In general, CR
and R lie within the [0, ∞] and [−∞, 1], respectively. A compression ratio such as
100 (or 100:1) basically means that the first data set has 100 information units (e.g.,
bits) for each unit in the second (compressed) data set. The corresponding redundancy
(0.99 in this case) indicates that 99% of the data in the first data set are redundant.

Image compression and coding techniques exploit three types of redundancies that
are commonly present in 2D image arrays: coding redundancy, interpixel (spatial)
redundancy, and psychovisual redundancy. The way each of them is exploited is
briefly described next.

Coding Redundancy The 8 bits per pixel (per color) conventionally used to
represent pixels in an image contain an amount of redundancy. From the perspective
of coding theory, each 8-bit value is a fixed-length codeword used to represent a piece
of information (in this case, the intensity or color values of each pixel). Entropy-based
coding techniques (e.g., Huffman coding, Golomb coding, and arithmetic coding)
replace those fixed-length codewords with a variable-length equivalent in such a way
that the total number of bits needed to represent the same information (b2) is less than
the original number of bits (b1).1 This type of coding is always reversible and usually
implemented using lookup tables (LUTs).

Interpixel Redundancy This type of redundancy—sometimes called spatial re-
dundancy, interframe redundancy, or geometric redundancy—exploits the fact that an
image very often contains strongly correlated pixels—in other words, large regions
whose pixel values are the same or almost the same. This redundancy can be exploited
in several ways, one of which is by predicting a pixel value based on the values of its
neighboring pixels. To do so, the original 2D array of pixels is usually mapped into a
different format, for example, an array of differences between adjacent pixels. If the
original image pixels can be reconstructed from the transformed data set, the mapping
is said to be reversible. Examples of compression techniques that exploit the interpixel
redundancy include constant area coding (CAC), Lempel–Ziv–Welch (LZW), (1D or
2D) run-length encoding (RLE) techniques, and many predictive coding algorithms
such as differential pulse code modulation (DPCM).

Psychovisual Redundancy Many experiments on the psychophysical aspects
of human vision have proven that the human eye does not respond with equal sensitiv-
ity to all incoming visual information; some pieces of information are more important
than others. The knowledge of which particular types of information are more or less
relevant to the human visual system has led to image compression techniques that
aim at eliminating or reducing any amount of data that is psychovisually redundant.
The end result of applying these techniques is a compressed image file, whose size

1You might remember from Chapter 2 that the total number of bits occupied by an image in uncompressed
form, b1, can be easily calculated by multiplying the width, height, number of bits per color channel
(usually 8), and number of color channels (1 for monochrome, 3 for color images) in the input image.

BASIC CONCEPTS 431

FIGURE 17.2 A general image encoding and decoding model.

and quality are smaller than those of the original information, but whose resulting
quality is still acceptable for the application at hand. The loss of quality that ensues
as a by-product of such techniques is frequently called quantization, so as to indicate
that a wider range of input values is normally mapped into a narrower range of output
values through an irreversible process.

Video compression techniques also exploit a fourth type of redundancy, interframe
(or temporal) redundancy, caused by the fact that consecutive frames in time are
usually very similar.

17.2.2 Image Encoding and Decoding Model

Figure 17.2 shows a general image encoding and decoding model. It consists of a
source encoder, a channel encoder, the storage or transmission media (also referred
to as channel), a channel decoder, and a source decoder. The source encoder reduces
or eliminates any redundancies in the input image, which usually leads to bit savings.
Source encoding techniques are the primary focus of this chapter. The channel encoder
increases noise immunity of source encoder’s output, usually adding extra bits to
achieve its goals. If the channel is noise-free, the channel encoder and decoder may
be omitted. At the receiver’s side, the channel and the source decoder perform the
opposite functions and ultimately recover (an approximation of) the original image.

Figure 17.3 shows the source encoder in further detail. Its main components are
as follows:

• Mapper: It transforms the input data into a (usually nonvisual) format designed
to reduce interpixel redundancies in the input image. This operation is generally

FIGURE 17.3 Source encoder.

432 IMAGE COMPRESSION AND CODING

reversible and may or may not directly reduce the amount of data required to
represent the image.

• Quantizer: It reduces the accuracy of the mapper’s output in accordance with
some pre-established fidelity criterion. This block exploits the psychovisual
redundancies of the input image. This operation is not reversible and must be
omitted if lossless compression is desired.

• Symbol (Entropy) Encoder: It creates a fixed- or variable-length code to repre-
sent the quantizer’s output and maps the output in accordance with the code. In
most cases, a variable-length code is used. This block exploits the coding re-
dundancies of the data produced at the output of the quantizer. This operation is
reversible.

17.3 LOSSLESS AND LOSSY COMPRESSION TECHNIQUES

In this section, we present a broad overview of the techniques that lie at the core
of the most common lossless and lossy compression algorithms and standards in
use today.

17.3.1 Lossless Compression Techniques

Error-Free Compression Using Variable Length Coding (VLC) Error-free
compression techniques usually rely on entropy-based encoding algorithms. The con-
cept of entropy provides an upper bound on how much compression can be achieved,
given the probability distribution of the source. In other words, it establishes a theo-
retical limit on the amount of lossless compression that can be achieved using entropy
encoding techniques alone. Most entropy-based encoding techniques rely on assign-
ing variable-length codewords to each symbol, whereas the most likely symbols are
assigned shorter codewords. In the case of image coding, the symbols may be raw
pixel values or the numerical values obtained at the output of the mapper stage (e.g.,
differences between consecutive pixels, run lengths, etc.). The most popular entropy-
based encoding technique is the Huffman code, which is used in the JPEG standard
(among others).

Run-Length Encoding RLE is one of the simplest data compression techniques.
It consists of replacing a sequence (run) of identical symbols by a pair containing the
symbol and the run length. It is used as the primary compression technique in the 1D
CCITT Group 3 fax standard and in conjunction with other techniques in the JPEG
image compression standard.

Differential Coding Differential coding techniques exploit the interpixel redun-
dancy in digital images. The basic idea consists of applying a simple difference
operator to neighboring pixels to calculate a difference image, whose values are
likely to follow within a much narrower range than the original gray-level range.

LOSSLESS AND LOSSY COMPRESSION TECHNIQUES 433

FIGURE 17.4 Lossless predictive encoder.

As a consequence of this narrower distribution, and consequently reduced entropy,
Huffman coding or other VLC schemes will produce shorter codewords for the
difference image.

Predictive Coding Predictive coding techniques also exploit interpixel redun-
dancy. The basic idea, in this case, is to encode only the new information in each
pixel, which is usually defined as the difference between the actual and the predicted
value of that pixel. Figure 17.4 shows the main blocks of a lossless predictive encoder.
The key component is the predictor, whose function is to generate an estimated (pre-
dicted) value for each pixel from the input image based on previous pixel values. The
predictor’s output is rounded to the nearest integer and compared with the actual pixel
value: the difference between the two (called prediction error) is then encoded by a
VLC encoder. Since prediction errors are likely to be smaller than the original pixel
values, the VLC encoder will likely generate shorter codewords.

There are several local, global, and adaptive prediction algorithms in the liter-
ature. In most cases, the predicted pixel value is a linear combination of previous
pixels.

Dictionary-Based Coding Dictionary-based coding techniques are based on the
idea of incrementally building a dictionary (a special type of table) while receiving
the data. Unlike VLC techniques, dictionary-based techniques use fixed-length code-
words to represent variable-length strings of symbols that commonly occur together.
Consequently, there is no need to calculate, store, or transmit the probability distribu-
tion of the source, which makes these algorithms extremely convenient and popular.
The best-known variant of dictionary-based coding algorithms is the LZW (Lempel–
Ziv–Welch) encoding scheme, used in popular multimedia file formats such as GIF,
TIFF, and PDF.

17.3.2 Lossy Compression Techniques

Lossy compression techniques deliberately introduce a certain amount of distortion
to the encoded image, exploring the psychovisual redundancies of the original image.
These techniques must find an appropriate balance between the amount of error (loss)
and the resulting bit savings.

434 IMAGE COMPRESSION AND CODING

FIGURE 17.5 Transform coding diagram.

Quantization The quantization stage is at the core of any lossy image encoding
algorithm. Quantization, in this context, is the process of partitioning of the input
data range into a smaller set of values. There are two main types of quantizers: scalar
quantizers and vector quantizers. A scalar quantizer partitions the domain of input
values into a smaller number of intervals. If the output intervals are equally spaced, the
process is called uniform scalar quantization or otherwise, for reasons usually related
to minimization of total distortion, it is called nonuniform scalar quantization. Vector
quantization (VQ) techniques extend the basic principles of scalar quantization to
multiple dimensions. VQ-based coding schemes are computationally efficient because
the decoding can be done using lookup tables.

Transform Coding The techniques discussed so far work directly on the pixel val-
ues and are usually called spatial-domain techniques. Transform coding techniques
use a reversible, linear mathematical transform to map the pixel values onto a set of
coefficients that are then quantized and encoded. The key factor behind the success of
transform-based coding schemes lies in the ability of the selected mathematical trans-
form to encode a significant amount of the visual information originally present in the
image using the few first coefficients. Consequently, most of the resulting coefficients
have small magnitudes and can be quantized (or discarded altogether) without causing
significant distortion in the decoded image. The discrete cosine transform (DCT) has
become the most widely used transform coding technique. DCT-based coding is an
essential component of the JPEG and JPEG-LS compression standards.

Transform coding algorithms (Figure 17.5) usually work on a block basis. They
start by partitioning the original image into subimages (blocks) of small size (usually
8 × 8).2 For each block, the transform coefficients are calculated, effectively convert-
ing the original 8 × 8 array of pixel values into an array of coefficients within which
the coefficients closer to the top left corner usually contain most of the information
needed to quantize and encode (and eventually perform the reverse process at the
decoder’s side) the image with little perceptual distortion. The resulting coefficients
are then quantized and the output of the quantizer is used by a (combination of) sym-
bol encoding technique(s) to produce the output bitstream representing the encoded
image. At the decoder’s side, the reverse process takes place, with the obvious differ-
ence that the “dequantization” stage will generate only an approximated version of
the original coefficient values; in other words, whatever loss was introduced by the
quantizer in the encoder stage is not reversible at the decoder.

2An undesired side effect of this division is the introduction of noticeable artifacts (known as blockiness)
in a compressed image encoded using low quality (see Tutorial 17.1).

IMAGE COMPRESSION STANDARDS 435

Wavelet Coding Wavelet coding techniques are also based on the idea of using a
transform that decorrelates the pixels of the input image, converting them into a set
of coefficients that can be coded more efficiently than the original pixel values them-
selves. Contrary to DCT-based coding, the subdivision of the input image into smaller
subimages is not necessary in wavelet coding. Wavelet coding is a core technique in
the JPEG 2000 compression standard.

17.4 IMAGE COMPRESSION STANDARDS

Work on international standards for image compression started in the late 1970s
with a United Nations organization called the Consultative Committee of the Inter-
national Telephone and Telegraph (CCITT) (currently International Telecommunica-
tions Union (ITU-T)) and its need to standardize binary image compression algorithms
for Group 3 facsimile communications. Since then, many other committees and stan-
dards have been formed to produce de jure standards (such as JPEG or JPEG 2000),
while several commercially successful initiatives have effectively become de facto
standards (such as the Adobe Systems’ PDF format for document representation).
Image compression standards bring many benefits, such as easier exchange of image
files between different devices and applications, reuse of existing hardware and soft-
ware for a wider array of products, and availability of benchmarks and reference data
sets for new and alternative developments.

17.4.1 Binary Image Compression Standards

Work on binary image compression standards was initially motivated by CCITT
Group 3 and 4 facsimile standards. The Group 3 standard uses Huffman coding and
a nonadaptive, 1D RLE technique in which the last K − 1 lines of each group of
K lines (for K = 2 or 4) are optionally coded in a 2D manner, using the Modified
Relative Element Address Designate (MREAD) algorithm. The Group 4 standard
uses only the MREAD coding algorithm. Both classes of algorithms are nonadaptive
and were optimized for a set of eight test images, containing a mix of representative
documents, which sometimes resulted in data expansion when applied to different
types of documents (e.g., halftone images). The Joint Bilevel Image Group (JBIG)—a
joint committee of the ITU-T and the International Standards Organization (ISO)—
has addressed these limitations and proposed two new standards (JBIG—also known
as JBIG1—and JBIG2) that can be used to compress binary and grayscale images of
up to 6 gray-coded bits/pixel.

17.4.2 Continuous Tone Still Image Compression Standards

For photograph quality images (both grayscale and color), different standards have
been proposed, mostly based on lossy compression techniques. The most popular
standard in this category is the JPEG standard, a lossy, DCT-based coding algorithm.

436 IMAGE COMPRESSION AND CODING

Despite its great popularity and adoption, ranging from digital cameras to the World
Wide Web, certain limitations of the original JPEG algorithm have motivated the
recent development of two alternative standards, JPEG 2000 and JPEG-LS (lossless).
JPEG, JPEG 2000, and JPEG-LS are described next.

17.4.3 JPEG

The JPEG format was originally published as a standard (ISO IS 10918-1) by the Joint
Photographic Experts Group in 1994. It has become the most widely used format for
storing digital photographs ever since. The JPEG specification defines how an image
is transformed into a stream of bytes, but not how those bytes are encapsulated in
any particular storage medium. Another standard, created by the independent JPEG
group, called JFIF (JPEG File Interchange Format) specifies how to produce a file
suitable for computer storage and transmission from a JPEG stream.

Even though the original JPEG specification defined four compression modes
(sequential, hierarchical, progressive, and lossless), most JPEG files used today
employ the sequential mode. The baseline JPEG encoder (Figure 17.6, top) consists
of the following main steps:

1. The original RGB color image is converted to an alternative color model
(YCbCr) and the color information is subsampled.

2. The image is divided into 8 × 8 blocks.

3. The 2D DCT is applied to each block image; the resulting 64 values are referred
to as DCT coefficients.

4. DCT coefficients are quantized according to a quantization table; this is the step
where acceptable loss is introduced.

FIGURE 17.6 JPEG encoder and decoder.

IMAGE COMPRESSION STANDARDS 437

5. Quantized DCT coefficients are scanned in a zigzag fashion (from top left to
bottom right). The resulting sequence is run-length encoded, in preparation for
the entropy encoding step.

6. The run-length encoded sequences are converted to variable-length binary code-
words using Huffman encoding.

At the decoder side (Figure 17.6, bottom), the process is reversed; it should be
noted that the loss introduced at the quantizer stage in the encoder cannot be canceled
at the “dequantizer” stage in the decoder; that is, the values recovered at the output
of the “dequantizer” block are approximations of the values produced at the output
of the DCT block in the encoder.

17.4.4 JPEG 2000

The JPEG 2000 format [TM01,AT04] is a wavelet-based image compression standard
(ISO/IEC 15444-1:2000), created by the Joint Photographic Experts Group committee
with the intention of superseding their original DCT-based JPEG standard. The usual
file extension is .jp2. It addresses several well-known limitations of the original JPEG
algorithm and prepares the way for next-generation imagery applications. Some of
its advertised advantages are as follows:

1. Low bit-rate compression

2. Superior lossless and lossy compression in a single bitstream

3. Ability to handle very large images without need for tiling

4. Single decompression architecture

5. Error resilience for transmission in noisy environments, such as wireless com-
munication networks

6. Region of interest (ROI) coding

7. Metadata mechanisms for incorporating additional nonimage data as part of
the file

JPEG 2000 is not yet widely supported in web browsers, and hence it is not
generally used on the World Wide Web.

17.4.5 JPEG-LS

JPEG-LS is an image compression standard (ISO/IEC-14495-1/ITU-T Rec. T.87)
designed to provide effective lossless and near-lossless compression of continuous-
tone, grayscale, and color still images. Near lossless, in this context, means a guar-
anteed maximum error between the original image data and the reconstructed image
data. One of its main potential driving forces for this encoding mode is the compres-
sion of medical images without any quality loss. The core algorithm behind JPEG-LS
is called low complexity lossless compression for images (LOCO-I), proposed by

438 IMAGE COMPRESSION AND CODING

Hewlett-Packard. LOCO-I builds upon a concept known as context modeling. The
main idea behind context modeling is to take advantage of the structure in the input
source, modeled in terms of conditional probabilities of what pixel values follow from
each other in the image.

17.5 IMAGE QUALITY MEASURES

The human visual system is the final link in the perception of images and the ultimate
judge of image quality. Therefore, in the design and specification of image processing
systems, it is necessary to establish methods for measuring the quality of the images
displayed to the viewer. Such need can be justified by looking at two extreme cases:
(1) there is no reason for designing a system whose image quality exceeds the ability
of the human eye to perceive it; (2) on the other hand, since different processing and
encoding techniques are likely to cause noticeable changes to the resulting images, it
becomes necessary to evaluate the amount and impact of the resulting loss in visual
quality.

Measuring image quality is a difficult and often imprecise task, in part because
of the vast number of variables that may impact the final result (ranging from dis-
play technology to ambient lighting to the subject’s mood, among many others).
Assessment of visual quality is inherently a subjective process that has traditionally
been evaluated with objective quality measures and criteria because such objective
measures provide accurate, repeatable results and usually rely on fewer, controllable
factors. Despite their mathematical convenience, however, most quantitative objec-
tive quality measures do not correlate well with the subjective experience of a human
viewer watching the image. Consequently, the design of objective quality measure-
ment systems that match the subjective human judgments is an open research topic.

17.5.1 Subjective Quality Measurement

The subjective quality of an image or video sequence can be established by asking
human observers to report, choose, or rank their visual experiences within a controlled
experiment. These measures can be absolute or relative.

Absolute techniques are those in which an image is classified on an isolated basis
and without regard to another image. An example is the classification of an image as
excellent, fine, passable, marginal, inferior, or unusable according to the criteria of
the Television Allocations Study Organization [FB60].

Relative measurements ask subjects to compare an image against another and
decide which is best. A popular protocol for these tests is the double stimulus con-
tinuous quality scale (DSCQS) method defined in ITU-R Recommendation BT.500-
10 [ITU00]. In this method, the subject is presented with a pair of images or short
video sequences A and B, one after another, and is asked to provide a score recorded
on a continuous line with five gradings: excellent, good, fair, poor, and bad. Experi-
ments usually consist of several tests in which either A or B is (randomly) assigned to
the “original” image or video, whereas the other is the video after some processing,

IMAGE QUALITY MEASURES 439

whose impact on perceptual quality is being evaluated. The DSCQS test is often used
as a measure of subjective visual quality, but it suffers from several shortcomings,
such as the dependency on prior knowledge among (experts and nonexperts) subjects.

17.5.2 Objective Quality Measurement

Image and video developers often rely on objective measures of visual quality for two
main reasons:

• They provide an alternative to subjective measurements and their limitations.
• They are easy to compute.

The most common measures of image quality are the root mean square (RMS) error
and the peak signal to noise ratio (PSNR). Let f (x, y) be the original (or reference)
image and f ′(x, y) the modified (or reconstructed) image. For every value of x and
y, the error e(x, y) between f (x, y) and f ′(x, y) can be defined as

e(x, y) = f ′(x, y) − f (x, y) (17.3)

and the total error between the two images (whose sizes are M × N) is

E =
M−1∑
x=0

N−1∑
y=0

|f ′(x, y) − f (x, y)| (17.4)

The RMS error, erms, between f (x, y) and f ′(x, y) can be calculated by

erms =
√√√√ 1

MN

M−1∑
x=0

N−1∑
y=0

[
f ′(x, y) − f (x, y)

]2 (17.5)

If we consider the resulting image, f ′(x, y), as the “signal” and the error as “noise,”
we can define the RMS signal to noise ratio (SNRrms) between modified and original
images as

SNRrms =
√√√√

∑M−1
x=0

∑N−1
y=0 f ′(x, y)2

∑M−1
x=0

∑N−1
y=0

[
f ′(x, y) − f (x, y)

]2 (17.6)

If we express the SNR as a function of the peak value of the original image and
the RMS error (equation (17.5)), we obtain another metric, the PSNR, defined as

PSNR = 10 log10
(L − 1)2

(erms)2
(17.7)

where L is the number of gray levels (for 8 bits/pixel monochrome images, L = 256).

440 IMAGE COMPRESSION AND CODING

TABLE 17.1 Objective Quality Measures for Three JPEG Images with
Different Quality Factors

Quality Factor File Size (B) RMS Error PSNR (dB)

90 10,8792 2.1647 41.4230
20 20,781 6.3553 32.0681
5 5992 7.6188 30.4931

� EXAMPLE 17.2

In this example, we use the imwrite function in MATLAB to generate three JPEG
files (using different quality factors) from the same input image. The result of im-
age degradation caused by lossy compression is measured by the RMS error (equa-
tion (17.5)) and the PSNR (equation (17.7)). Clearly, the use of lower quality factors
leads to a degradation in subjective quality: the image in Figure 17.7c is significantly
worse than the image in parts (a) or (b).

Table 17.1 summarizes the quality factors, file size (in B), RMS error, and PSNR
for the images in Figure 17.7a–c.

Objective quality measures suffer from a number of limitations:

• They usually require an “original” image (whose quality is assumed to be per-
fect). This image may not always be available and the assumption that it is
“perfect” may be too strong in many cases.

• They do not correlate well with human subjective evaluation of quality. For
example, in Figure 17.8 most subjects would say that the rightmost image (in
which an important portion of the image got severely blurred) has significantly
worse subjective quality than the one on the center (where the entire image was
subject to a mild blurring), even though their RMS errors (measured against the
reference image on the left) are comparable.

Finding objective measures of image and video quality that match human quality
evaluation is an ongoing field of research and the subject of recent standardization
efforts by the ITU-T Video Quality Experts Group (VQEG), among other groups.

17.6 TUTORIAL 17.1: IMAGE COMPRESSION

Goal

The goal of this tutorial is to show how we can perform image compression using
MATLAB.

Objectives

• Experiment with image compression concepts, such as compression ratio.
• Calculate objective quality measures on compressed images.

TUTORIAL 17.1: IMAGE COMPRESSION 441

FIGURE 17.7 Measuring objective image quality after compression: (a) original; (b) com-
pressed version of (a) (using quality factor = 90), erms = 2.1647, PSNR = 41.4230 dB;
(c) compressed version of (a) (using quality factor = 5), erms = 7.6188, PSNR = 30.4931 dB.

442 IMAGE COMPRESSION AND CODING

FIGURE 17.8 The problem of poor correlation between objective and subjective measures
of image quality: (a) original; (b) blurred version of (a) (using a 5 × 5 average filter), erms =
0.0689, PSNR = 71.3623 dB; (c) partially blurred version of (a) (after applying a severe blurring
filter only to a small part of the image), erms = 0.0629, PSNR = 72.1583 dB.

TUTORIAL 17.1: IMAGE COMPRESSION 443

What You Will Need

• coat_of_arms.jpg
• espresso_color.jpg
• statue.png

Procedure

In this tutorial, you will have a chance to adjust the quality factor in a JPEG encoder
and make quantitative observations on the trade-off between the resulting compression
ratio and the associated quality loss.

1. Use the sequence below to calculate the compression ratio in the JPEG test file
coat_of_arms.jpg.

filename = ’coat_of_arms.jpg’;
I = imread(filename);
fileInfo = dir(filename)
imageInfo = whos(’I’)
fileSize = fileInfo.bytes
imageSize = imageInfo.bytes
CR = imageSize / fileSize

2. Repeat the process for the JPEG test file espresso_color.jpg.

Question 1 Are the compression ratio values calculated for the two test images
comparable? Explain.

3. Load file statue.png, convert it to JPEG using MATLAB’simwrite func-
tion, and choose five different values for quality, 50, 25, 15, 5, and 0, following
the example below. Store these results in files named statue50.jpg, ...,
statue00.jpg.

org = imread(’statue.png’);
imwrite(org, ’statue50.jpg’, ’quality’, 50);

4. Display the original image as well as the five compressed images (in decreasing
degree of quality).

5. Calculate the compression ratio for each file following the example below:

K = imfinfo(’statue50.jpg’);
image_bytes = K.Width*K.Height*K.BitDepth/8;
compressed_bytes = K.FileSize;
CR = image_bytes / compressed_bytes

444 IMAGE COMPRESSION AND CODING

TABLE 17.2 Compression Ratio for Five JPEG Images
with Different Quality Factors

File Name File Size (B) CR

statue.png 243825 N/A
statue50.jpg
statue25.jpg
statue15.jpg
statue05.jpg
statue00.jpg

TABLE 17.3 Objective Quality Measures for Five JPEG Images
with Different Quality Factors

File Name RMS Error PSNR (dB) Subjective Quality

statue.png N/A N/A Very good
statue50.jpg
statue25.jpg
statue15.jpg
statue05.jpg
statue00.jpg

Question 2 How do the results for CR obtained with this method compare with
the ones obtained with the method suggested in step 1?

6. Log the results to Table 17.2.

7. Write code to calculate and display the RMS error and the PSNR (dB) between
the original image and each of the lower quality resulting images.

8. Show the results in Table 17.3 and compare them with your subjective evaluation
of image quality.

WHAT HAVE WE LEARNED?

• Image compression is a process by which the total size of a digital image rep-
resentation (in bytes) is reduced without significant loss in the visual quality of
the resulting image. The compressed image will occupy less storage space on
a computer and take less time to be transmitted from one computer (e.g., Web
server) to another (e.g., Web client browser) over a computer network.

• Three types of redundancy are usually exploited when compressing images:
coding, interpixel (spatial), and psychovisual. Video compression techniques
also exploit interframe (temporal) redundancy to achieve higher compression
ratios (fewer bits per pixel).

TUTORIAL 17.1: IMAGE COMPRESSION 445

• Image compression techniques often employ general data compression tech-
niques capable of exploiting coding redundancy (e.g., Huffman and arithmetic
coding) and spatial redundancy (e.g., predictive coding).

• The main difference between image compression methods and general data com-
pression techniques is that most image compression techniques allow a certain
amount of loss to be introduced during the compression process. This loss, which
usually can be controlled by some parameters in the encoding algorithm, is the
consequence of exploiting psychovisual redundancies within the image. Image
compression techniques are classified as lossy or lossless depending on whether
such quality loss is present.

• The field of image compression has experienced intense activity over the past
30 years. As a result, many (lossy and lossless) image compression techniques
have been proposed, a fraction of which have been adopted as part of widely
used image standards and file formats.

• Subjective evaluation of image compression algorithms can be done in absolute
or relative ways. Objective evaluation consists of straightforward methods and
calculations (e.g., PSNR and RMS errors). The design of objective image and
video quality measures with strong correlation to subjective perception of quality
is an ongoing research topic.

• The most popular image compression standards in use today are JPEG, JPEG
2000, and JPEG-LS. Other image file formats that use some form of compression
are GIF, TIFF, and PNG.

LEARN MORE ABOUT IT

• There are entire books dedicated to classic data compression, such as [NG95],
[Say05], and [Sal06].

• Many books on image processing and multimedia have one or more chapters
devoted to image coding and compression, for example, Chapter 8 of [GW08]
and Chapter 10 of [Umb05].

• The JPEG standard is described in detail in [PM92].
• The JPEG 2000 standard is presented in detail in [TM01,AT04].

ON THE WEB

• The JPEG standard
http://www.w3.org/Graphics/JPEG/itu-t81.pdf

• The JPEG committee home page
http://www.jpeg.org/

• ITU-T Video Quality Experts Group
http://www.its.bldrdoc.gov/vqeg/

CHAPTER 18

FEATURE EXTRACTION AND
REPRESENTATION

WHAT WILL WE LEARN?

• What is feature extraction and why is it a critical step in most computer vision
and image processing solutions?

• Which types of features can be extracted from an image and how is this usually
done?

• How are the extracted features usually represented for further processing?

18.1 INTRODUCTION

This chapter discusses methods and techniques for representing and describing an
image and its objects or regions of interest. Most techniques presented in this chapter
assume that an image has undergone segmentation.1 The common goal of feature
extraction and representation techniques is to convert the segmented objects into
representations that better describe their main features and attributes. The type and
complexity of the resulting representation depend on many factors, such as the type
of image (e.g., binary, grayscale, or color), the level of granularity (entire image or

1Image segmentation was the topic of Chapter 16.

Practical Image and Video Processing Using MATLAB®. By Oge Marques.
© 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

447

448 FEATURE EXTRACTION AND REPRESENTATION

individual regions) desired, and the context of the application that uses the results
(e.g., a two-class pattern classifier that tells circular objects from noncircular ones or
an image retrieval system that retrieves images judged to be similar to an example
image).

Feature extraction is the process by which certain features of interest within an
image are detected and represented for further processing. It is a critical step in most
computer vision and image processing solutions because it marks the transition from
pictorial to nonpictorial (alphanumerical, usually quantitative) data representation.
The resulting representation can be subsequently used as an input to a number of
pattern recognition and classification techniques,2 which will then label, classify, or
recognize the semantic contents of the image or its objects.

There are many ways an image (and its objects) can be represented for image
analysis purposes. In this chapter, we present several representative techniques for
feature extraction using a broad range of image properties.

18.2 FEATURE VECTORS AND VECTOR SPACES

A feature vector is a n × 1 array that encodes the n features (or measurements) of
an image or object. The array contents may be symbolic (e.g., a string containing the
name of the predominant color in the image), numerical (e.g., an integer expressing
the area of an object, in pixels), or both. In the remaining part of our discussion, we
shall focus exclusively on numerical feature vectors.

Mathematically, a numerical feature vector x is given by

x = (x1, x2, . . . , xn)T (18.1)

where n is the total number of features and T indicates the transpose operation.
The feature vector is a compact representation of an image (or object within the

image), which can be associated with the notion of a feature space, an n-dimensional
hyperspace that allows the visualization (for n < 4) and interpretation of the feature
vectors’ contents, their relative distances, and so on.3

� EXAMPLE 18.1

Suppose that the objects in Figure 18.1a have been represented by their area and
perimeter, which have been computed as follows:

Object Area Perimeter

Square (Sq) 1024 124
Large circle (LC) 3209 211
Small circle (SC) 797 105

2Pattern classification techniques will be discussed in Chapter 19.
3In Chapter 19, we shall discuss how feature vectors are used by pattern classifiers.

FEATURE VECTORS AND VECTOR SPACES 449

FIGURE 18.1 Test image (a) and resulting 2D feature vectors (b).

The resulting feature vectors will be as follows:
Sq = (1024, 124)T

LC = (3209, 211)T

SC = (797, 105)T

Figure 18.1b shows the three feature vectors plotted in a 2D graph whose axes are
the selected features, namely, area and perimeter.

In MATLAB

In MATLAB, feature vectors are usually represented using cell arrays and structures.4

18.2.1 Invariance and Robustness

A common requirement for feature extraction and representation techniques is that the
features used to represent an image be invariant to rotation, scaling, and translation,
collectively known as RST. RST invariance ensures that a machine vision system
will still be able to recognize objects even when they appear at different size, po-
sition within the image, and angle (relative to a horizontal reference). Clearly, this
requirement is application dependent. For example, if the goal of a machine vision
system is to ensure that an integrated circuit (IC) is present at the correct position and
orientation on a printed circuit board, rotation invariance is no longer a requirement;
on the contrary, being able to tell that the IC is upside down is an integral part of the
system’s functionality.

As you may recall from our discussion in Chapter 1, the goal of many machine
vision systems is to emulate—to the highest possible degree—the human visual sys-
tem’s ability to recognize objects and scenes under a variety of circumstances. In order

4Refer to Chapter 3—particularly Tutorial 3.2—if you need to refresh these concepts.

450 FEATURE EXTRACTION AND REPRESENTATION

to achieve such ability, the feature extraction and representation stage of a machine
vision system should ideally provide a representation that is not only RST invariant
but also robust to other aspects, such as poor spatial resolution, nonuniform lighting,
geometric distortions (caused by different viewing angles), and noise. This is a big
challenge for machine vision systems designers, which may require careful feature
selection as well as pre- and postprocessing techniques to be fully accomplished.

18.3 BINARY OBJECT FEATURES

In this section, we present several useful features for binary objects. A binary object,
in this case, is a connected region within a binary image f (x, y), which will be denoted
as Oi, i > 0.

Mathematically, we can define a function Oi(x, y) as follows:

Oi(x, y) =
{

1 if f (x, y) ∈ Oi

0 otherwise
(18.2)

In MATLAB

The IPT function bwlabel – introduced in Chapter 2 and also discussed in Chapter
13 – implements the operation i × Oi(x, y) by labeling regions of connected pixels in
a binary image: pixels labeled 0 correspond to the background; pixels labeled 1 and
higher correspond to the connected components in the image.

18.3.1 Area

The area of the ith object Oi, measured in pixels, is given by

Ai =
M−1∑
x=0

N−1∑
y=0

Oi(x, y) (18.3)

18.3.2 Centroid

The coordinates of the centroid (also known as center of area) of object Oi, denoted
(x̄i, ȳi), are given by

x̄i = 1

Ai

M−1∑
x=0

N−1∑
y=0

xOi(x, y) (18.4)

and

ȳi = 1

Ai

M−1∑
x=0

N−1∑
y=0

yOi(x, y) (18.5)

where Ai is the area of object Oi, as defined in equation (18.3).

BINARY OBJECT FEATURES 451

FIGURE 18.2 Axis of least second moment.

18.3.3 Axis of Least Second Moment

The axis of least second moment is used to provide information about the object’s
orientation relative to the coordinate plan of the image. It can be described as the axis
of least inertia, that is, the line about which it takes the least amount of energy to
rotate the object.

By convention, the angle θ represents the angle between the vertical axis and the
axis of least second moment, measured counterclockwise. Figure 18.2 illustrates this
concept. Note that the origin of the coordinate system has been moved to the center
of area of the object.

Mathematically, θ can be calculated using equation (18.6):

tan (2θi) = 2 ×
∑M−1

x=0
∑N−1

y=0 xOi(x, y)
∑M−1

x=0
∑N−1

y=0 x2Oi(x, y) − ∑M−1
x=0

∑N−1
y=0 y2Oi(x, y)

(18.6)

18.3.4 Projections

The horizontal and vertical projections of a binary object—hi(x) and vi(y),
respectively—are obtained by equations (18.7) and (18.8):

hi(x) =
M−1∑
x=0

Oi(x, y) (18.7)

and

vi(y) =
N−1∑
y=0

Oi(x, y) (18.8)

452 FEATURE EXTRACTION AND REPRESENTATION

FIGURE 18.3 Horizontal and vertical projections.

Projections are very useful and compact shape descriptors. For example, the
height and width of an object without holes can be computed as the maximum
value of the object’s vertical and horizontal projections, respectively, as illustrated in
Figure 18.3.

The equations for the coordinates of the center of area of the object (equations
(18.4) and (18.5)) can be rewritten as a function of the horizontal and vertical projec-
tions as follows:

x̄i = 1

Ai

M−1∑
x=0

xhi(x) (18.9)

and

ȳi = 1

Ai

N−1∑
y=0

yvi(y) (18.10)

18.3.5 Euler Number

The Euler number of an object or image (E) is defined as the number of connected
components (C) minus the number of holes (H):

E = C − H (18.11)

BINARY OBJECT FEATURES 453

FIGURE 18.4 Examples of two regions with Euler numbers equal to 0 and −1, respectively.

Alternatively, the Euler number can be expressed as the difference between the
number of convexities and the number of concavities in the image or region. The
Euler number is considered a topological descriptor, because it is unaffected by
deformations (such as rubber sheet distortions), provided that they do not fill holes
or break connected components apart. Figure 18.4 shows examples of two different
objects and their Euler numbers.

18.3.6 Perimeter

The perimeter of a binary object Oi can be calculated by counting the number of object
pixels (whose value is 1) that have one or more background pixels (whose value is 0)
as their neighbors. An alternative method consists in first extracting the edge (contour)
of the object and then counting the number of pixels in the resulting border. Due to
some inevitable imperfections in the digitization process (e.g., jagged curve outlines
and serrated edges), the value of perimeter computed using either method is not 100%
accurate; it has been suggested [Umb05] that those values should be multiplied by
π/4 for better accuracy.

In MATLAB

The IPT function bwperim—introduced in Chapter 13—computes the perimeter
of objects in a binary image using either 4- (which is the default) or 8-connectivity
criteria.

18.3.7 Thinness Ratio

The thinness ratio Ti of a binary object Oi is a figure of merit that relates the object’s
area and its perimeter by equation (8.12):

Ti = 4πAi

P2
i

(18.12)

where Ai is the area and Pi is the perimeter.

454 FEATURE EXTRACTION AND REPRESENTATION

FIGURE 18.5 Examples of a compact (a) and a noncompact (b) regions.

FIGURE 18.6 Eccentricity (A/B) of a region.

The thinness ratio is often used as a measure of roundness. Since the maximum
value for Ti is 1 (which corresponds to a perfect circle), for a generic object the
higher its thinness ratio, the more round it is. This figure of merit can also be used
as a measure of regularity and its inverse, 1/Ti is sometimes called irregularity or
compactness ratio. Figure 18.5 shows an example of a compact and a noncompact
region.

18.3.8 Eccentricity

The eccentricity of an object is defined as the ratio of the major and minor axes of
the object (Figure 18.6).

18.3.9 Aspect Ratio

The aspect ratio (AR) is a measure of the relationship between the dimensions of the
bounding box of an object. It is given by

AR = xmax − xmin + 1

ymax − ymin + 1
(18.13)

BINARY OBJECT FEATURES 455

FIGURE 18.7 Elongatedness (a/b) of a region.

where (xmin, ymin) and (xmax, ymax) are the coordinates of the top left and bottom
right corners of the bounding box surrounding an object, respectively.

It should be noted that the aspect ratio is not rotation invariant and cannot be used
to compare rotated objects against one another unless it is normalized somehow, for
example, by computing the AR after aligning the axis of least second moment to
the horizontal direction. Such normalized representations of the aspect ratio are also
referred to as the elongatedness of the object (Figure 18.7).

18.3.10 Moments

The 2D moment of order (p + q) of a digital image f (x, y) is defined as

mpq =
M−1∑
x=0

N−1∑
y=0

xpyqf (x, y) (18.14)

where M and N are the image height and width, respectively, and p and q are positive
nonzero integers.

Central moments are the translation-invariant equivalent of moments. They are
defined as

μpq =
M−1∑
x=0

N−1∑
y=0

(x − x̄)p(y − ȳ)qf (x, y) (18.15)

where

x̄ = m10

m00
and ȳ = m01

m00
(18.16)

The normalized central moments are defined as

ηpq = μpq

μ
γ
00

(18.17)

456 FEATURE EXTRACTION AND REPRESENTATION

TABLE 18.1 RST-Invariant Moments

φ1 = η20 + η02

φ2 = (η20 − η02)2 + 4η2
11

φ3 = (η30 − 3η12)2 + (3η21 − η03)2

φ4 = (η30 + η12)2 + (η21 + η03)2

φ5 = (η30 − 3η12)(η30 + η12)
[
(η30 + η12)2 − 3(η21 + η03)2

]
+(3η21 − η03)(η21 + η03)

[
3(η30 + η12)2 − (η21 + η03)2

]
φ6 = (η30 − η02)

[
(η30 + η12)2 − (η21 + η03)2

] + 4η11(η30 + η12)(η21 + η03)

φ7 = (3η21 − η03)(η30 + η12)
[
(η30 + η12)2 − 3(η21 + η03)2

]
−(η30 − 3η12)(η21 + η03)

[
3(η30 + η12)2 − (η21 + η03)2

]

where

γ = p + q

2
+ 1 (18.18)

for (p + q) > 1.
A set of seven RST-invariant moments, φ1–φ7, originally proposed by Hu in

1962 [Hu62], can be derived from second- and third-order normalized central mo-
ments. They are listed in Table 18.1.

In MATLAB

The IPT functionregionpropsmeasures a set of properties for each labeled region
L. One or more properties from Table 18.2 can be specified as parameters. You will
explore regionprops in Tutorial 18.1.

18.4 BOUNDARY DESCRIPTORS

The descriptors described in Section 18.3 are collectively referred to as region based.
In this section, we will look at contour-based representation and description tech-
niques. These techniques assume that the contour (or boundary) of an object can be
represented in a convenient coordinate system (Cartesian—the most common, polar,
or tangential) and rely exclusively on boundary pixels to describe the region or object.
Object boundaries can be represented by different techniques, ranging from simple
polygonal approximation methods to more elaborated techniques involving piecewise
polynomial interpolations such as B-spline curves.

The techniques described in this section assume that the pixels belonging to the
boundary of the object (or region) can be traced, starting from any background pixel,
using an algorithm known as bug tracing that works as follows: as soon as the con-
ceptual bug crosses into a boundary pixel, it makes a left turn and moves to the next
pixel; if that pixel is a boundary pixel, the bug makes another left turn, otherwise it
turns right; the process is repeated until the bug is back to the starting point. As the

BOUNDARY DESCRIPTORS 457

TABLE 18.2 Properties of Labeled Regions

Property Description

’Area’ The actual number of pixels in the region
’BoundingBox’ The smallest rectangle containing the region, specified

by the coordinates of the top left corner and the length
along each dimension

’Centroid’ A vector that specifies the center of mass of the region
’ConvexHull’ The smallest convex polygon that can contain the region
’ConvexImage’ Binary image that specifies the convex hull, that is, the

image for which with all pixels within the hull are set
to true

’ConvexArea’ The number of pixels in ’ConvexImage’
’Eccentricity’ The eccentricity of the ellipse that has the same second

moments as the region. The eccentricity is a value in
the [0,1] range (0 for a circle, 1 for a line segment). It
is defined as the ratio of the distance between the foci
of the ellipse and its major axis length

’EquivDiameter’ The diameter of a circle with the same area as the region,
calculated as

√
(4 ∗ Area/π)

’EulerNumber’ The difference between the number of objects in the
region and the number of holes in these objects

’Extent’ The proportion of the pixels in the bounding box that are
also in the region, that is, the ratio between the area
of region and the area of the bounding box

’Extrema’ An 8 × 2 matrix containing the coordinates of the ex-
trema points in the region

’FilledArea’ The number of pixels in FilledImage
’FilledImage’ A binary image of the same size as the bounding box

of the region, where all true pixels correspond to the
region and all holes have been filled in

’Image’ A binary image of the same size as the bounding box
of the region, where all true pixels correspond to the
region, and all other pixels are set to false

’MajorAxisLength’ The length (in pixels) of the major axis of the ellipse that
has the same normalized second central moments as
the region

’MaxIntensity’ The value of the pixel with the greatest intensity in the
region

’MeanIntensity’ The mean of all the intensity values in the region
’MinIntensity’ The value of the pixel with the lowest intensity in the

region
’MinorAxisLength’ The length (in pixels) of the minor axis of the ellipse that

has the same normalized second central moments as
the region

(Continued)

458 FEATURE EXTRACTION AND REPRESENTATION

TABLE 18.2 (Continued)

Property Description

’Orientation’ The angle (in degrees ranging from −90◦ to 90◦) be-
tween the x-axis and the major axis of the ellipse that
has the same second-moments as the region

’Perimeter’ Vector containing the perimeter of each region in the
image

’PixelIdxList’ Vector containing the linear indices of the pixels in the
region

’PixelList’ Matrix specifying the locations of pixels in the region
’PixelValues’ Vector containing the values of all pixels in a region
’Solidity’ The proportion of the pixels in the convex hull

that are also in the region. Computed as
Area/ConvexArea

’SubarrayIdx’ Vector of linear indices of nonzero elements returned in
Image

’WeightedCentroid’ Vector of coordinates specifying the center of the region
based on location and intensity value

conceptual bug follows the contour, it builds a list of coordinates of the boundary
pixels being visited.

In MATLAB

The IPT function bwtraceboundary traces objects in a binary image. The coor-
dinates of the starting point and the initial search direction (N, NE, E, SE, S, SW, W,
or NW) must be passed as parameters. Optionally, the type of connectivity (4 or 8)
and the direction of the tracing (clockwise or counterclockwise) can also be passed as
arguments. The bwtraceboundary function returns an array containing the row
and column coordinates of the boundary pixels.

� EXAMPLE 18.2

Figure 18.8a shows an example of using bwtraceboundary to trace the first 50
pixels of the boundary of the leftmost object in the input image, starting from the top
left corner and heading south, searching in counterclockwise direction. Figure 18.8b
repeats the process, this time tracing the first 40 pixels of the boundary of all objects
in the image, heading east, and searching in clockwise direction. The boundaries are
shown in red.

In MATLAB

The IPT function bwboundaries traces region boundaries in binary image. It can
trace the exterior boundaries of objects, as well as boundaries of holes inside these

BOUNDARY DESCRIPTORS 459

FIGURE 18.8 Tracing boundaries of objects.

objects. It can also trace the boundaries of children of parent objects in an image. The
bwboundaries function returns a cell array (B) in which each cell contains the
row and column coordinates of a boundary pixel. Optionally, it also returns a label
matrix L where each object and hole is assigned a unique label, the total number
of objects found (N), and an adjacency matrix used to represent parent–child–hole
dependencies.

� EXAMPLE 18.3

Figure 18.9a shows an example of using bwboundaries to trace the ob-
jects (represented in red) and holes (represented in green) in the input
image using the syntax [B,L,N] = bwboundaries(BW);. Figure 18.9b
repeats the process, this time using 4-connectivity and searching only for
object boundaries, that is, no holes, in the input image using the syntax
[B,L,N] = bwboundaries(BW, 4, ’noholes’);.

18.4.1 Chain Code, Freeman Code, and Shape Number

Chain codes are alternative methods for tracing and describing a contour. A chain
code is a boundary representation technique by which a contour is represented as a
sequence of straight line segments of specified length (usually 1) and direction. The
simplest chain code mechanism, also known as crack code, consists of assigning a

FIGURE 18.9 Tracing boundaries of objects and holes.

460 FEATURE EXTRACTION AND REPRESENTATION

FIGURE 18.10 Chain code and Freeman code for a contour: (a) original contour;
(b) subsampled version of the contour; (c) chain code representation; (d) Freeman code
representation.

number to the direction followed by a bug tracking algorithm as follows: right (0),
down (1), left (2), and up (3). Assuming that the total number of boundary points
is p (the perimeter of the contour), the array C (of size p), where C(p) = 0, 1, 2, 3,
contains the chain code of the boundary. A modified version of the basic chain code,
known as the Freeman code, uses eight directions instead of four. Figure 18.10 shows
an example of a contour, its chain code, and its Freeman code.

Once the chain code for a boundary has been computed, it is possible to convert
the resulting array into a rotation-invariant equivalent, known as the first difference,

BOUNDARY DESCRIPTORS 461

FIGURE 18.11 Chain code, first differences, and shape number.

which is obtained by encoding the number of direction changes, expressed in multi-
ples of 90◦ (according to a predefined convention, for example, counterclockwise),
between two consecutive elements of the Freeman code. The first difference of small-
est magnitude—obtained by treating the resulting array as a circular array and rotat-
ing it cyclically until the resulting numerical pattern results in the smallest possible
number—is known as the shape number of the contour. The shape number is rotation
invariant and insensitive to the starting point used to compute the original sequence.
Figure 18.11 shows an example of a contour, its chain code, first differences, and
shape number.

In MATLAB

The IPT5 does not have built-in functions for computing the chain code, Freeman
code, and shape number of a contour. Refer to Chapter 12 of [McA04] or Chapter 11
of [GWE04] for alternative implementations.

18.4.2 Signatures

A signature is a 1D representation of a boundary, usually obtained by representing
the boundary in a polar coordinate system and computing the distance r between each
pixel along the boundary and the centroid of the region, and the angle θ subtended
between a straight line connecting the boundary pixel to the centroid and a horizontal
reference (Figure 18.12, top). The resulting plot of all computed values for 0 ≤ θ ≤ 2π

(Figure 18.12, bottom) provides a concise representation of the boundary that is
translation invariant can be made rotation invariant (if the same starting point is
always selected), but is not scaling invariant.

Figure 18.13 illustrates the effects of noise on the signature of a contour.

In MATLAB

The IPT does not have a built-in function for computing the signature of a boundary.
Refer to Chapter 11 of [GWE04] for an alternative implementation.

5At the time of this writing, the latest version of the IPT is Version 7.2 (R2011a).

462 FEATURE EXTRACTION AND REPRESENTATION

FIGURE 18.12 Distance × angle signatures for two different objects. Redrawn from
[GW08].

FIGURE 18.13 Effect of noise on signatures for two different objects. Redrawn from
[GW08].

18.4.3 Fourier Descriptors

The idea behind Fourier descriptors is to traverse the pixels belonging to a boundary,
starting from an arbitrary point, and record their coordinates. Each value in the result-
ing list of coordinate pairs (x0, y0), (x1, y1), . . . , (xK−1, yK−1) is then interpreted as
a complex number xk + jyk, for k = 0, 1, . . . , K − 1. The discrete Fourier transform
(DFT)6 of this list of complex numbers is the Fourier descriptor of the boundary.
The inverse DFT restores the original boundary. Figure 18.14 shows a K-point digital
boundary in the xy plane and the first two coordinate pairs, (x0, y0) and (x1, y1).

6The discrete Fourier transform was introduced in Chapter 11.

BOUNDARY DESCRIPTORS 463

FIGURE 18.14 Fourier descriptor of a boundary.

In MATLAB

The IPT does not have a built-in function for computing the Fourier descriptor of a
boundary, but it is not too difficult to create your own function. The basic procedure
is to compute the boundaries of the region, convert the resulting coordinates into
complex numbers (e.g., using the complex function), and apply the fft function
to the resulting 1D array of complex numbers. Refer to Chapter 12 of [McA04] or
Chapter 11 of [GWE04] for possible implementations.

One of the chief advantages of using Fourier descriptors is their ability to represent
the essence of the corresponding boundary using very few coefficients. This property
is directly related to the ability of the low-order coefficients of the DFT to preserve
the main aspects of the boundary, while the high-order coefficients encode the fine
details.

� EXAMPLE 18.4

Figure 18.15 shows an example of a boundary containing 1467 points (part (a)) and
the results of reconstructing it (applying the DFT followed by IDFT) using a variable
number of terms. Part (b) shows the results of reconstructing with the same number
of points for the sake of verification. Parts (c)–(f) show the results for reconstruction
with progressively fewer points: 734, 366, 36, and 15, respectively. The chosen values
for parts (c)–(f) correspond to approximately 50%, 25%, 2.5%, and 1% of the total
number of points, respectively. A close inspection of the results shows that the image
reconstructed using 25% of the points is virtually identical to the one obtained with
50% or 100% of the points. The boundary reconstructed using 2.5% of the points still
preserves much of its overall shape, and the results using only 1% of the total number
of points can be deemed unacceptable.

464 FEATURE EXTRACTION AND REPRESENTATION

FIGURE 18.15 Example of boundary reconstruction using Fourier descriptors: (a) original
image; (b–f) reconstructed image using 100%, 50%, 25%, 2.5%, and 1% of the total number
of points, respectively.

18.5 HISTOGRAM-BASED (STATISTICAL) FEATURES

Histograms provide a concise and useful representation of the intensity levels in a
grayscale image. In Chapter 9, we learned how to compute and display an image’s his-
togram and we used histogram-based techniques for image enhancement. In Chapter
16, we extended that discussion to color images. In this section, we are interested in
using histograms (or numerical descriptors that can be derived from them) as features7

that describe an image (or its objects).
The simplest histogram-based descriptor is the mean gray value of an image,

representing its average intensity m and given by

m =
L−1∑
j=0

rjp(rj) (18.19)

where rj is the jth gray level (out of a total of L possible values), whose probability
of occurrence is p(rj).

7Histogram-based features are also referred to as amplitude features in the literature.

HISTOGRAM-BASED (STATISTICAL) FEATURES 465

The mean gray value can also be computed directly from the pixel values from the
original image f (x, y) of size M × N as follows:

m = 1

MN

M−1∑
x=0

N−1∑
y=0

f (x, y) (18.20)

The mean is a very compact descriptor (one floating-point value per image or
object) that provides a measure of the overall brightness of the corresponding image or
object. It is also RST invariant. On the negative side, it has very limited expressiveness
and discriminative power.

The standard deviation σ of an image is given by

σ =
√√√√

L−1∑
j=0

(rj − m)2p(rj) (18.21)

where m is given by equation (18.19) or equation (18.20).
The square of the standard deviation is the variance, which is also known as the

normalized second-order moment of the image.
The standard deviation provides a concise representation of the overall contrast.

Similar to the mean, it is compact and RST invariant, but has limited expressiveness
and discriminative power.

The skew of a histogram is a measure of its asymmetry about the mean level. It is
defined as

skew = 1

σ3

L−1∑
j=0

(rj − m)3p(rj) (18.22)

where σ is the standard deviation given by equation (18.21).
The sign of the skew indicates whether the histogram’s tail spreads to the right

(positive skew) or to the left (negative skew). The skew is also known as the normalized
third-order moment of the image.

If the image’s mean value (m), standard deviation (σ), and mode—defined as the
histogram’s highest peak—are known, the skew can be calculated as follows:

skew = m − mode

σ
(18.23)

The energy descriptor provides another measure of how the pixel values are dis-
tributed along the gray-level range: images with a single constant value have maximum
energy (i.e., energy = 1); images with few gray levels will have higher energy than
the ones with many gray levels. The energy descriptor can be calculated as

energy =
L−1∑
j=0

[p(rj)]2 (18.24)

466 FEATURE EXTRACTION AND REPRESENTATION

FIGURE 18.16 Example of images with smooth (a), coarse (b), and regular (c) texture.
Images from the Brodatz textures data set. Courtesy of http://tinyurl.com/brodatz.

Histograms also provide information about the complexity of the image, in the form
of entropy descriptor. The higher the entropy, the more complex the image.8 Entropy
and energy tend to vary inversely with one another. The mathematical formulation
for entropy is

entropy = −
L−1∑
j=0

p(rj) log2[p(rj)] (18.25)

Histogram-based features and their variants are usually employed as texture de-
scriptors, as we shall see in Section 18.6.

18.6 TEXTURE FEATURES

Texture can be a powerful descriptor of an image (or one of its regions). Although there
is not a universally agreed upon definition of texture, image processing techniques
usually associate the notion of texture with image (or region) properties such as
smoothness (or its opposite, roughness), coarseness, and regularity. Figure 18.16
shows one example of each and Figure 18.17 shows their histograms.

There are three main approaches to describe texture properties in image process-
ing: structural, spectral, and statistical. In this book, we will focus on the statistical
approaches, due to their popularity, usefulness, and ease of computing.9

One of the simplest set of statistical features for texture description consists of the
following histogram-based descriptors of the image (or region): mean, variance (or its
square root, the standard deviation), skew, energy (used as a measure of uniformity),

8This information also has implications for image coding and compression schemes (Chapter 17): the
amount of coding redundancy that can be exploited by such schemes is inversely proportional to the
entropy.
9Refer to “Learn More About It” section at the end of the chapter for references on structural and spectral
methods for describing texture properties.

TEXTURE FEATURES 467

FIGURE 18.17 Histograms of images in Figure 18.16.

and entropy, all of which were introduced in Section 18.5. The variance is sometimes
used as a normalized descriptor of roughness (R), defined as

R = 1 − 1

1 + σ2 (18.26)

where σ2 is the normalized (to a [0, 1] interval) variance. R = 0 for areas of constant
intensity, that is, smooth texture.

� EXAMPLE 18.5

Table 18.3 shows the values of representative statistical texture descriptors for the
three images in Figure 18.16, whose histograms are shown in Figure 18.17.

As expected, the regular texture has the highest uniformity (and lowest entropy) of
all three. Moreover, the coarse texture shows a higher value for normalized roughness
than the smooth texture, which is also consistent with our expectations.

Histogram-based texture descriptors are limited by the fact that the histogram
does not carry any information about the spatial relationships among pixels. One way
to circumvent this limitation consists in using an alternative representation for the
pixel values that encodes their relative position with respect to one another. One such
representation is the gray-level cooccurrence matrix G, defined as a matrix whose
element g(i, j) represents the number of times that pixel pairs with intensities zi and
zj occur in image f (x, y) in the position specified by an operator d. The vector d is
known as displacement vector:

d = (dx, dy) (18.27)

TABLE 18.3 Statistical Texture Descriptors for the Three Images in Figure 18.16

Texture Mean Standard Roughness Skew Uniformity Entropy
deviation R

Smooth 147.1459 47.9172 0.0341 −0.4999 0.0190 5.9223
Coarse 138.8249 81.1479 0.0920 −1.9095 0.0306 5.8405
Regular 79.9275 89.7844 0.1103 10.0278 0.1100 4.1181

468 FEATURE EXTRACTION AND REPRESENTATION

FIGURE 18.18 An image (a) and its cooccurrence matrix for d = (0, 1) (b).

where dx and dy are the displacements, in pixels, along the rows and columns, of the
image, respectively.

Figure 18.18 shows an example of gray-level cooccurrence matrix for d = (0, 1).
The array on the left is an image F (x, y) of size 4 × 4 and L = 8 (L is the total
number of gray levels). The array on the right is the gray-level cooccurrence matrix
G, using a convention 0 ≤ i, j < L. Each element in G corresponds to the number of
occurrences of a pixel of gray-level i occurs to the left of a pixel of gray-level j. For
example, since the value 6 appears to the left of the value 3 in the original image four
times, the value of g(6, 3) is equal to 4.

The contents of G clearly depend on the choice of d. If we had chosen d = (1, 0)
(which can be interpreted as “one pixel below”), the resulting gray-level cooccurrence
matrix for the same image in Figure 18.18a would be the one in Figure 18.19.

FIGURE 18.19 An image (a) and its cooccurrence matrix for d = (1, 0) (b).

TEXTURE FEATURES 469

The gray-level cooccurrence matrix can be normalized as follows:

Ng(i, j) = g(i, j)∑
i

∑
j g(i, j)

(18.28)

where Ng(i, j) is the normalized gray-level cooccurrence matrix. Since all values of
Ng(i, j) lie between 0 and 1, they can be thought of as the probability that a pair of
points satisfying d will have values (zi, zj).

Cooccurrence matrices can be used to represent the texture properties of an image.
Instead of using the entire matrix, more compact descriptors are preferred. These
are the most popular texture-based features that can be computed from a normalized
gray-level cooccurrence matrix Ng(i, j):

Maximum probability = max
i,j

Ng(i, j) (18.29)

Energy =
∑

i

∑
j

N2
g (i, j) (18.30)

Entropy = −
∑

i

∑
j

Ng(i, j) log2 Ng(i, j) (18.31)

Contrast =
∑

i

∑
j

(i − j)2Ng(i, j) (18.32)

Homogeneity =
∑

i

∑
j

Ng(i, j)

1 + |i − j| (18.33)

Correlation =
∑

i

∑
j

(i−μi)(j−μj)Ng(i,j)

σiσj
(18.34)

where μi, μj are the means and σi, σj are the standard deviations of the row and
column sums Ng(i) and Ng(j), defined as

Ng(i) =
∑

i

Ng(i, j) (18.35)

Ng(j) =
∑

j

Ng(i, j) (18.36)

� EXAMPLE 18.6

Table 18.4 shows the values of representative statistical texture descriptors for the
three images in Figure 18.16, whose histograms are shown in Figure 18.17. These
descriptors were obtained by computing the normalized gray-level cooccurrence ma-
trices with d = (0, 1).

As expected, the regular texture has the highest uniformity, highest homogeneity,
and lowest entropy of all three. Although distinguishing between the coarse and
smooth textures using these descriptors is possible (e.g., the image with coarse texture
shows significantly higher correlation, uniformity, and homogeneity than the image
with smooth texture), it is not as intuitive.

470 FEATURE EXTRACTION AND REPRESENTATION

TABLE 18.4 Statistical Texture Descriptors for the Three Images in Figure 18.16

Texture Max Correlation Contrast Uniformity Homogeneity Entropy
Probability (Energy)

Smooth 0.0013 0.5859 33.4779 0.0005 0.0982 7.9731
Coarse 0.0645 0.9420 14.5181 0.0088 0.3279 6.8345
Regular 0.1136 0.9267 13.1013 0.0380 0.5226 4.7150

18.7 TUTORIAL 18.1: FEATURE EXTRACTION AND
REPRESENTATION

Goal

The goal of this tutorial is to learn how to use MATLAB to extract features from
binary images and use these features to recognize objects within the image.

Objectives

• Learn how to use the regionprops function to extract features from binary
objects.

• Learn how to perform feature selection and use the selected features to implement
a simple, application-specific, heuristic classifier.

What You Will Need

• Test images TPTest1.png, shapes23.png, and Test3.png.

Procedure

1. Load test image TPTest1.png (Figure 18.20a) and display its contents.

FIGURE 18.20 Test images for this tutorial: (a) steps 1–6; (b) step 7; (c) step 11.

TUTORIAL 18.1: FEATURE EXTRACTION AND REPRESENTATION 471

J = imread(’TPTest1.png’);
imshow(J)

2. Use bwboundaries to display the boundaries of the objects in the test image.

[B,L] = bwboundaries(J);
figure; imshow(J); hold on;
for k=1:length(B),

boundary = B{k};
plot(boundary(:,2),boundary(:,1),’g’,’LineWidth’,2);

end

3. Use bwlabel to label the connected regions (i.e., objects) in the test image,
pseudocolor them, and display each of them with an associated numerical label.

[L, N] = bwlabel(J);

RGB = label2rgb(L,’hsv’,[.5 .5 .5], ’shuffle’);

figure; imshow(RGB); hold on;

for k=1:length(B),

boundary = B{k};

plot(boundary(:,2),boundary(:,1),’w’,’LineWidth’,2);

text(boundary(1,2)-11,boundary(1,1)+11,num2str(k),’Color’,’y’,...

’FontSize’,14,’FontWeight’,’bold’);

end

Question 1 What is the value of N returned by bwlabel? Does it make sense to
you?

4. Use regionprops to extract the following binary features for each object
in the image (top left square, top right square, small circle, big circle): area,
centroid, orientation, Euler number, eccentricity, aspect ratio, perimeter, and
thinness ratio.

5. Organize the feature values and object names in a table (see Table 18.5), for
easier comparative analysis.

TABLE 18.5 Table for Feature Extraction Results

Object Area Centroid Orientation Euler Eccentricity Aspect Perimeter Thiness
(row, col) (degrees) number ratio ratio

Top left square

Big circle

Small circle

Top right square

472 FEATURE EXTRACTION AND REPRESENTATION

stats = regionprops(L,’all’);

temp = zeros(1,N);

for k = 1:N

% Compute thinness ratio

temp(k) = 4*pi*stats(k,1).Area / (stats(k,1).Perimeter)ˆ2;

stats(k,1).ThinnessRatio = temp(k);

% Compute aspect ratio

temp(k) = (stats(k,1).BoundingBox(3))/(stats(k,1).BoundingBox(4));

stats(k,1).AspectRatio = temp(k);

end

Question 2 Do the results obtained for the extracted features correspond to your
expectations? Explain.

Question 3 Which of the extracted features have the best discriminative power to
help tell squares from circles? Explain.

Question 4 Which of the extracted features have the worst discriminative power
to help tell squares from circles? Explain.

Question 5 Which of the extracted features are ST invariant, that is, robust to
changes in size and translation? Explain.

Question 6 If you had to use only one feature to distinguish squares from circles,
in a ST-invariant way, which feature would you use? Why?

6. Plot the 2D feature vectors obtained using the area and thinness ratio of each
object.

areas = zeros(1,N);

for k = 1:N

areas(k) = stats(k).Area;

end

TR = zeros(1,N);

for k = 1:N

TR(k) = stats(k).ThinnessRatio;

end

cmap = colormap(lines(16))

for k = 1:N

scatter(areas(k), TR(k), [], cmap(k,:), ’filled’), ...

ylabel(’Thinness Ratio’), xlabel(’Area’)

hold on

end

TUTORIAL 18.1: FEATURE EXTRACTION AND REPRESENTATION 473

7. Repeat steps 1–6 for a different test image, Test3.png (Figure 18.20b).

8. Write MATLAB code to implement a heuristic three-class classifier capable of
discriminating squares from circles from unknown shapes. Hints: Use a subset
of features with enough discriminative power and encode your solution using
if-else-if statements. Use the code snippet below to get started.10

name = cell(1,N);
for k = 1:N

if (TR(k) > 0.9)
name{1,k}=’circle’;

else if (TR (k) > 0.8)
name{1,k} = ’square’;

else
name{1,k} = ’other’;

end
end

end

9. Test your solution using the TPTest1.png and Test3.png test images.

10. Test your solution using different test images.

11. Extend your classifier to be able to process color images, for example,
shapes23.png (Figure 18.20c).

WHAT HAVE WE LEARNED?

• Feature extraction is the process by which certain features of interest within an
image are detected and represented for further processing. It is a critical step
in most computer vision and image processing solutions because it marks the
transition from pictorial to nonpictorial (alphanumerical, usually quantitative)
data representation. From a pragmatic standpoint, having extracted meaningful
features from an image enables the use of a vast array of pattern recognition and
classification techniques to be applied to the resulting data.

• The types of features that can be extracted from an image depend on the type of
image (e.g., binary, gray-level, or color), the level of granularity (entire image
or individual regions) desired, and the context of the application. Several rep-
resentative techniques for feature extraction using pixel intensity, texture, and
relative positioning have been described in this chapter.

• Once the features have been extracted, they are usually represented in an al-
phanumerical way for further processing. The actual representation depends
on the technique used: chain codes are normally treated as arrays of numbers,

10This solution, although naive and inelegant, works for both test images used so far. In Chapter 19, you
will learn how to build better classifiers.

474 FEATURE EXTRACTION AND REPRESENTATION

whereas quantitative features (e.g., measures of an object’s area, perimeter, and
number of holes) are usually encoded into a feature vector.

LEARN MORE ABOUT IT

• Polygonal approximation techniques are described in Chapter 11 of [GW08],
Chapter 11 of [GWE04], Section 5.3 of [SOS00], and Section 8.2 of [SHB08].

• Section 11.1 of [GW08] and Section 17.6 of [Pra07] discuss boundary following
algorithms in greater detail.

• Many structural, spectral, and statistical texture descriptors have been proposed
in the literature and entire books have been written on the topic of texture anal-
ysis, among them are [MXS08], [Pet06], and [TT90].

18.8 PROBLEMS

18.1 Compute the first difference for the chain code: 0103212111021103.

18.2 Sketch the signature plots for the following geometrical figures:

(a) Rectangle

(b) Isosceles triangle

(c) Ellipse

(d) 6-point star

18.3 Write a MATLAB function to compute the gray-level cooccurrence matrix for
an image f (x, y) and a displacement vector d, which should be passed as parameters.

CHAPTER 19

VISUAL PATTERN RECOGNITION

WHAT WILL WE LEARN?

• What is visual pattern recognition and how does it relate to general pattern
recognition?

• What are patterns and pattern classes?
• What is a pattern classifier?
• Which steps are normally needed to design, build, and test a visual pattern

classifier?
• How can the performance of visual pattern classifiers be evaluated?

19.1 INTRODUCTION

This chapter presents the basic concepts of pattern recognition (also known as pattern
classification) and introduces a few representative techniques used in computer vision.
These techniques assume that an image has been acquired and processed and its
contents have been represented using one or more of the techniques described in
Chapter 18. The goal of pattern classification techniques is to assign a class to each
image (or object within an image) based on a numerical representation of the image’s
(or object’s) properties that is most suitable for the problem at hand.

Practical Image and Video Processing Using MATLAB®. By Oge Marques.
© 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

475

476 VISUAL PATTERN RECOGNITION

Pattern classification techniques are usually classified into two main groups:
statistical and structural (or syntactic). In this chapter, we exclusively focus on sta-
tistical pattern recognition techniques, which assume that each object or class can
be represented as a feature vector and make decisions on which class to assign to a
certain pattern based on distance calculations or probabilistic models. Since the tech-
niques presented in this chapter work with numerical feature vectors, regardless of the
meaning of their contents (and their relationship to the original images), they can also
be applied to many other classes of problems outside image processing and computer
vision. Nonetheless, since our focus is on visual pattern recognition, all examples will
refer to images and objects within images, keeping this discussion consistent with the
“big picture” presented in Chapter 1 and the feature extraction methods introduced
in Chapter 18.

19.2 FUNDAMENTALS

In this section, we introduce some of the most important concepts and terminolo-
gies associated with pattern classification. The common goal of pattern classification
techniques is to assign a class to an unknown pattern based on previously acquired
knowledge about objects and the classes to which they belong. Figure 19.1 shows a
schematic diagram indicating how a statistical pattern classifier processes numerical
information from the feature vectors, computes a series of distances or probabilities,
and uses those results to make decisions regarding which class label C(x) should be
assigned to each input pattern x.

19.2.1 Design and Implementation of a Visual Pattern Classifier

The design and implementation of a visual pattern recognition system is usually
an interactive process that also involves the selection and computation of features

FIGURE 19.1 Diagram of a statistical pattern classifier. Redrawn from [SS01].

FUNDAMENTALS 477

FIGURE 19.2 The interplay between feature extraction, feature selection, and pattern clas-
sification as a function of the application at hand. Adapted and redrawn from [Umb05].

from the images (or objects) that we want to classify. Moreover, as with most tasks in
computer vision, the decisions are often application dependent. Figure 19.2 illustrates
the process.

The design of a statistical visual pattern classifier usually consists of the following
steps:

1. Define the problem and determine the number of classes involved.
This is where it all begins. Legitimate questions to ask at this stage include

the following: How many classes are there? How well do these classes describe
the objects or images? Are certain classes subcategories of others? Is there a
reject class1 in this case?

2. Extract features that are most suitable to describe the images and allow the
classifier to label them accordingly.

This is the step where the interactive and application-dependent process
of preliminary feature extraction and selection takes place. It is also the
step where the designer of a machine vision solution is faced with many
options of types of features (e.g., color based, texture based, boundary ori-
ented, etc.) and the specific methods to extract them (e.g., color histograms,
Tamura descriptors, Fourier descriptors, etc.). Refer to Chapter 18 for detailed
information.

3. Select a classification method or algorithm.
At this point, we can benefit from the vast array of tools and techniques in

the field of data mining and machine learning and choose one that best suits
our needs, based on their complexity, computational cost, training capabilities,
and other properties. The selected technique can be as simple as a minimum
distance classifier or as complex as a support vector machine (SVM).

4. Select a data set.
At this stage, we collect representative images that can be used to train and

test the solution. If the problem domain (e.g., object recognition) has associated

1A reject class is a generic class for objects that could not be successfully labeled as belonging to any of
the other classes.

478 VISUAL PATTERN RECOGNITION

data sets that are publicly available and widely used (e.g., the Caltech 101 and
Caltech 256 for object recognition), we should consider using them. Using
standardized datasets allows for benchmarking of our solution against others.

5. Select a subset of images and use them to train the classifier.
Many pattern classification strategies require a training stage, where a small

subset of images is used to “teach” the classifier about the classes it should be
able to recognize, as well as adjust some of the classifier’s parameters.

6. Test the classifier.
At this step, we measure success and error rates, compute relevant figures of

merit (e.g., precision and recall), and compile the main numerical results into
representative plots (e.g., ROC curves).

7. Refine and improve the solution.
After having analyzed the results computed in step 6, we might need to go

back to an earlier step, process a few changes (e.g., select different features,
modify a classifier’s parameters, collect additional images, etc.), and test the
modified solution.

19.2.2 Patterns and Pattern Classes

A pattern can be defined as an arrangement of descriptors (or features). Patterns are
usually encoded in the form of feature vectors, strings, or trees.2

A feature vector—as seen in Chapter 18—is an n × 1 array of numbers corre-
sponding to the descriptors (or features) used to represent a certain pattern:

x = (x1, x2, . . . , xn)T (19.1)

where n is the total number of features and T indicates the transpose operation.
The total number of features and their meaning will depend on the selected prop-

erties of the objects and the representation techniques used to describe them. This
number can vary from one (if a certain property is discriminative enough to enable a
classification decision) to several thousand (e.g., the number of points for a boundary
encoded using Fourier descriptors, as seen in Section 18.4.3).

A class is a set of patterns that share some common properties. An ideal class
is one in which its members are very similar to one another (i.e., the class has high
intraclass similarity) and yet significantly different from members of other classes (i.e.,
interclass differences are significant). Pattern classes will be represented as follows:
ω1, ω2, . . . , ωK, where K is the total number of classes.

Figure 19.3 shows a simple example of a 2D plot of feature vectors representing
the height and weight of a group of table tennis players and a group of sumo wrestlers:

x = (x1, x2)T (19.2)

where x1 = weight and x2 = height.

2Strings and trees are used in structural pattern classification methods and will not be discussed any further.

FUNDAMENTALS 479

FIGURE 19.3 Example of two classes (sumo wrestlers—red circles—and table tennis
players—blue diamonds) described by two measurements (weight and height).

In this example, ω1 is the sumo wrestlers class, whereas ω2 is the table tennis
players class. A simple visual inspection allows us to see a clear separation between
the two clusters of data points, which typically translates into a relatively easy task
for a pattern classifier in charge of telling the two groups apart and classifying a new
instance according to which group it most likely belongs to. Another observation
that can be derived from the same figure is that the weight feature (x1) is more
discriminative than the height feature (x2) in this particular problem.

19.2.3 Data Preprocessing

Before the numerical data (e.g., a collection of feature vectors) can be input to a
pattern classifier, it is often necessary to perform an additional step known as data
preprocessing. Common preprocessing techniques include the following:

• Noise Removal (also known as Outlier Removal): A preprocessing step where
data samples that deviate too far from the average value for a class are removed,
under the rationale that (a) there may have been a mistake while measuring (or
extracting) that particular sample and (b) the sample is a poor example of the
underlying structure of the class.

• Normalization: Feature vectors may need to be normalized before distance,
similarity, and probability calculations take place. These are some representative
normalization techniques [Umb05]:

– Unit Vector Normalization: It enforces that all feature vectors have a magni-
tude of 1.

480 VISUAL PATTERN RECOGNITION

– Standard Normal Density (SND): Here, each element of a feature vector x
(x1, x2, . . . , xn) is replaced by a normalized value x̃i, given by

x̃i = xi − μ

σ
(19.3)

where μ and σ are the mean and the standard deviation of the elements in x.

– Other Linear and Nonlinear Techniques: For example, Min–Max Normaliza-
tion and Softmax Scaling: Their goal is to limit the feature values to a specific
range, for example [0, 1].

• Insertion of Missing Data: In this (optional) last preprocessing step, additional
data items—provided that they follow a similar probabilistic distribution and do
not bias the results—are added to the data set.

19.2.4 Training and Test Sets

The process of development and testing of pattern classification algorithms usually
requires that the data set be divided into two subgroups: the training set, used for
algorithm development and fine-tuning, and the test set, used to evaluate the algo-
rithm’s performance. The training set contains a small (typically 20% or less) but
representative subsample of the data set that can be selected manually or automati-
cally (i.e., randomly). The size of the training set and the method used to build it are
often dependent on the selected pattern classification technique. The goal of having
two separate sets—one for designing, improving, and fine-tuning the algorithms, and
the other for a systematic quantitative evaluation—is to avoid bias in reporting the
success rates of the approach. After all, if the designer is allowed to work on the same
data set the whole time, it is quite possible to tweak the solution enough to produce
a nearly perfect performance on that particular collection of images. There would be
no guarantee, however, that the same method and choice of parameters would work
well for other images and data sets.

19.2.5 Confusion Matrix

The confusion matrix is a 2D array of size K × K (where K is the total number of
classes) used to report raw results of classification experiments. The value in row i,
column j indicates the number of times an object whose true class is i was labeled
as belonging to class j. The main diagonal of the confusion matrix indicates the
number of cases where the classifier was successful; a perfect classifier would show
all off-diagonal elements equal to zero.

� EXAMPLE 19.1

Figure 19.4 shows an example of a confusion matrix for four generic classes ω1, . . .,
ω4. A careful analysis of the confusion matrix shows that inputs labeled as class ω3
were correctly classified all the time. Classification errors were highest (11%) for
inputs labeled as class ω2. The most common confusion incurred by the classifier was

FUNDAMENTALS 481

ω1

ω1 12097

ω2

ω2 110890

ω3

ω3 010000

ω4

ω4 92530

FIGURE 19.4 Example of 4 × 4 confusion matrix.

labeling an input of class ω2 as class ω3 (10% of the time). Moreover, the classifier’s
performance for class ω1 is also worth commenting: although three inputs labeled as
class ω1 were incorrectly classified (two as class ω3 and one as class ω4), the classifier
did not label any input from other classes as class ω1 (i.e., the remaining values for
the ω1 column are all zeros).

19.2.6 System Errors

A quantitative performance analysis of pattern classifiers usually involves measuring
error rates. Other measures, such as speed and computational complexity, may be
important, of course, but error rates are essential. Error rates measure how many times
a classifier incurred in a classification error, that is, classified an input object as classωp

when the correct class is ωq, p /= q. The error rate of a classifier is usually determined
empirically, that is, by measuring the number (percentage) of errors observed when
testing the classifier against a test set.

� EXAMPLE 19.2

Given the confusion matrix in Figure 19.4 and assuming that all classes had the same
number of objects, the classifier’s overall error rate would be

(3 + 11 + 0 + 8)/(4 × 100) = 5.5%.

19.2.7 Hit Rates, False Alarm Rates, and ROC Curves

Many visual pattern classification problems employ a two-class classifier. A classical
computer vision example is the object detection task, where a computer vision algo-
rithm is presented with an image and the question: “Is the object present in this image
or not?” If the algorithm successfully answers yes (and points to where in the image
the object is located) when the object is present, it is called a true positive. If the
algorithm correctly answers no when the object is absent, it is called a true negative.
There are two possible errors the algorithm can make: answering yes in the absence
of an object (this is called a false alarm or false positive) or answering no when the
object is present, that is, missing the object (this is called a false negative).

The cost of a false positive or a false negative is application dependent and can
lead to quite different outcomes. In surveillance applications, for example, it will
probably be best to have occasional false positives (e.g., alerting a human operator

482 VISUAL PATTERN RECOGNITION

FIGURE 19.5 Example of ROC curve.

for the presence of a suspicious object on the screen where no such object exists)
than miss real suspicious objects (or persons or events) altogether. In such case, a
legitimate goal is to minimize the false negative rate, even if it can only be achieved
by tolerating relatively high false positive rates.

The receiver operating characteristic (or simply ROC) curve is a plot that shows
the relationship between the correct detection (true positive) rate (also known as hit
rate) and the false alarm (false positive) rate. Figure 19.5 shows an example of generic
ROC curve. It also shows a dashed straight line that corresponds to the performance of
a classifier operating by chance (i.e., guessing yes or no at each time). The ideal ROC
curve is one in which the “knee” of the curve is as close to the top left corner of the
graph as possible, suggesting hit rate close to 100% with a false alarm rate close to zero.

19.2.8 Precision and Recall

Certain image processing applications, notably image retrieval, have the goal to re-
trieve relevant images while not retrieving irrelevant ones. The measures of per-
formance used in image retrieval borrow from the field of (document) information
retrieval and are based on two primary figures of merit: precision and recall. Precision
is the number of relevant documents retrieved by the system divided by the total num-
ber of documents retrieved (i.e., true positives plus false alarms). Recall is the number
of relevant documents retrieved by the system divided by the total number of relevant
documents in the database (which should, therefore, have been retrieved).

Precision can be interpreted as a measure of exactness, whereas recall provides a
measure of completeness. A perfect precision score of 1.0 means that every retrieved

FUNDAMENTALS 483

document (or image in our case) was relevant, but does not provide any insight as to
whether all relevant documents were retrieved. A perfect recall score of 1.0 means
that all relevant images were retrieved, but says nothing about how many irrelevant
images might have also been retrieved.

Precision (P) and recall (R) measures can also be adapted to and used in classi-
fication tasks and expressed in terms of true positives (tp), false positives (fp), and
false negatives (fn) as follows:

P = tp

tp + fp
(19.4)

and

R = tp

tp + fn
(19.5)

In this case, a precision score of 1.0 for a class ωi means that every item labeled
as belonging to class ωi does indeed belong to class ωi, but says nothing about the
number of items from class ωi that were not labeled correctly. A recall of 1.0 means
that every item from class ωi was labeled as belonging to class ωi, but says nothing
about how many other items were also incorrectly labeled as belonging to class ωi.

� EXAMPLE 19.3

Given the confusion matrix in Figure 19.4, the precision and recall per category can
be calculated as follows:

P1 = 97/(97 + 0 + 0 + 0) = 100%
P2 = 89/(0 + 89 + 0 + 3) = 96.74%
P3 = 100/(2 + 10 + 100 + 5) = 85.47%
P4 = 92/(1 + 1 + 0 + 92) = 97.87%
R1 = 97/(97 + 0 + 2 + 1) = 97%
R2 = 89/(0 + 89 + 10 + 1) = 89%
R3 = 100/(0 + 0 + 100 + 0) = 100%
R4 = 92/(0 + 3 + 5 + 92) = 92%

In this case, the classifier shows perfect precision for class ω1 and perfect recall
for class ω3.

Precision and recall are often interrelated and the cost of increasing one of them
is an undesired decrease in the other. In the case of document (or image) retrieval
systems, the choice of retrieving fewer documents boosts precision at the expense
of a low recall, whereas the retrieval of too many documents improves recall at the
expense of lower precision. This trade-off is often expressed in a plot, known as
the precision–recall (or simply PR) graph. A PR graph is obtained by calculating the
precision at various recall levels. The ideal PR graph shows perfect precision values
at every recall level until the point where all relevant documents (and only those) have
been retrieved; from this point on it falls monotonically until the point where recall
reaches 1. Figure 19.6 shows an example of a generic PR graph.

484 VISUAL PATTERN RECOGNITION

FIGURE 19.6 Example of precision–recall (PR) graph.

A more compact representation of the precision and recall properties of a system
consists in combing those two values into a single figure of merit, such as the F
measure (also known as F1 measure) that computes the weighted harmonic mean of
precision and recall:

F1 = 2 × precision × recall

precision + recall
(19.6)

� EXAMPLE 19.4

An image retrieval system produced the following 10 ranked results for a search
operation against a database of 500 images, of which 5 are relevant to the query:

Rank Result
1 R

2 R

3 N

4 R

5 N

6 N

7 N

8 R

9 N

10 R

where R means relevant and N means not relevant.

FUNDAMENTALS 485

FIGURE 19.7 Precision–recall graph for Example 19.4.

If we calculate the precision at all recall levels, we will have the following results:

Recall Precision

0.2 1.0000
0.4 1.0000
0.4 0.6667
0.6 0.7500
0.6 0.6000
0.6 0.5000
0.6 0.4286
0.8 0.5000
0.8 0.4444
1.0 0.5000

The corresponding PR graph is shown in Figure 19.7.

19.2.9 Distance and Similarity Measures

Two feature vectors can be compared with each other by calculating (i.e., mea-
suring) the distance between them or, conversely, establishing their degree of
similarity.

There are many distance measures in use in visual pattern classification. Given
two feature vectors a = (a1, a2, . . . , an)T and b = (b1, b2, . . . , bn)T, the following

486 VISUAL PATTERN RECOGNITION

are the equations for the most widely used distance measures:3

• Euclidean distance:

dE =
√√√√

n∑
i=1

(ai − bi)2 (19.7)

• Manhattan (or city block) distance:

dM =
n∑

i=1

|ai − bi| (19.8)

• Minkowski distance:

dM =
[

n∑
i=1

|ai − bi|r
]1/r

(19.9)

where r is a positive integer. Clearly, the Minkowski distances for r = 1 and
r = 2 are the same as the Manhattan and Euclidean distances, respectively.

In MATLAB

Computing distances in MATLAB is straightforward, thanks to MATLAB’s matrix
handling abilities. For the Euclidean distance between two vectors x and y, we can
use the norm function as an elegant alternative: d_E = norm(x - y).

Although distance measures are inversely related to the notion (and measure) of
similarity, there are other similarity measures in the literature, such as:

• The vector inner product:

n∑
i=1

aibi = a1b1 + a2b2 + · · · + anbn (19.10)

• The Tanimoto metric, which establishes a percentage(%) of similarity and is
expressed as

∑n
i=1 aibi∑n

i=1 a2
i + ∑n

i=1 b2
i − ∑n

i=1 aibi

(19.11)

3Some of these equations may seem familiar to you, since they appeared in a slightly different format back
in Chapter 2. However, in Chapter 2 we were measuring distances between pixels, whereas in this chapter
we are measuring distances between feature vectors in a feature space.

STATISTICAL PATTERN CLASSIFICATION TECHNIQUES 487

19.3 STATISTICAL PATTERN CLASSIFICATION TECHNIQUES

In this section, we present the basics of three statistical pattern classification tech-
niques: the minimum distance classifier, the k-nearest neighbors (KNN) classifier,
and the maximum likelihood (or Bayesian) classifier. The goal of this section is to
present a few alternatives for building a visual pattern recognition using the knowl-
edge from the previous chapters, particularly the feature extraction and representation
techniques learned in Chapter 18. In Tutorial 19.1, you will have an opportunity for
putting this knowledge into practice.

We have learned so far that objects’ properties can be represented using feature
vectors that are projected onto a feature space. If the features used to represent the
objects (and the classes to which they belong) are properly chosen, the resulting
points in the n-dimensional feature space will be distributed in a way that correlates
proximity in the feature space with similarity among the actual objects. In other words,
feature vectors associated with objects from the same class will appear close together
as clusters in the feature space.

The job of a statistical pattern classification technique is to find a discrimination
curve (or a hypersurface, in the case of an n-dimensional feature space) that can tell
the clusters (and the classes to which they correspond) apart. Figure 19.8 illustrates
the concept for a three-class classifier in a 2D feature space.

A statistical pattern classifier has n inputs (the features of the object to be classified,
encoded into feature vector x = (x1, x2, . . . , xn)T) and one output (the class to which

FIGURE 19.8 Discrimination functions for a three-class classifier in a 2D feature space.

488 VISUAL PATTERN RECOGNITION

the object belongs, C(x), represented by one of the symbols ω1, ω2, . . . , ωW , where
W is the total number of classes). The symbols ωw are called class identifiers.

Classifiers make comparisons among the representation of the unknown object
and the known classes. These comparisons provide information to make decision
about which class to assign to the unknown pattern. The decision of assigning an
input pattern to class ωi rather than another class ωj is based on which side of the
discrimination hypersurfaces among classes the unknown object sits on.

Mathematically, the job of the classifier is to apply a series of decision rules
that divide the feature space into W disjoint subsets Kw, w = 1, 2, . . . , W , each of
which includes the feature vectors x for which d(x) = ωw, where d(·) is the decision
rule.

19.3.1 Minimum Distance Classifier

The minimum distance classifier (also known as the nearest-class mean classifier)
works by computing a distance metric between an unknown feature vector and the
centroids (i.e., mean vectors) of each class:

dj(x) = ‖x − mj‖ (19.12)

where dj is a distance metric (between class j and the unknown feature vector x) and
mj is the mean vector for class j, defined as

mj = 1

Nj

∑
x∈ωj

xj (19.13)

where Nj is the number of pattern vectors from class ωj .
Figure 19.9 shows an example of two classes and their mean vectors.
The minimum distance classifier works well for few compact classes, but cannot

handle more complex cases, such as the one depicted in Figure 19.10. In this case,
there are two problems worth mentioning: (i) class A (clusters K1 and K4) is mul-
timodal, that is, its samples lie in two disjoint (although they are compact) clusters,
and the mean vector lies in a point in the feature space that is actually outside both
clusters; (ii) classes B (cluster K2) and C (cluster K3) have quite irregular shapes
that would potentially lead to different classification decisions for two unknown pat-
terns situated at the same distance from their mean vectors. The latter problem can
be alleviated by using a modified distance metric, known as scaled Euclidean dis-
tance (equation (19.14)), whereas the former problem usually calls for more complex
classifier schemes.

d̃E = ‖x − xj‖ =
√√√√

n∑
i=1

[(x[i] − xj[i])/σi]2 (19.14)

STATISTICAL PATTERN CLASSIFICATION TECHNIQUES 489

FIGURE 19.9 Example of two classes and their mean vectors.

FIGURE 19.10 Example of three classes with relatively complex structure.

where d̃E is the scaled Euclidean distance between an unknown pattern and a class
j, x is the feature vector of the unknown pattern, xj is the mean vector of class j, σi

is the standard deviation of class j along dimension i, and n is the dimensionality of
the feature space.

490 VISUAL PATTERN RECOGNITION

FIGURE 19.11 (a) Example of a KNN classifier (k = 1) for a five-class classifier in a 2D
feature space (obtained using the STPRTool toolbox). (b) Minimum distance classifier results
for the same data set.

19.3.2 k-Nearest Neighbors Classifier

A k-nearest neighbors (KNN) classifier works by computing the distance between an
unknown pattern’s feature vector x and the k closest points4 to it in the feature space,
and then assigning the unknown pattern to the class to which the majority of the k

sampled points belong. The main advantages of this approach are its simplicity (e.g.,
no assumptions need to be made about the probability distributions of each class)
and versatility (e.g., it handles overlapping classes or classes with complex structure
well). Its main disadvantage is the computational cost involved in computing distances
between the unknown sample and many (potentially all, if a brute force approach is
used) stored points in the feature space.

Figure 19.11a illustrates the concept for a five-class classifier in a 2D feature
space, where k = 1. It clearly shows that the KNN classifier is able to derive ir-
regularly shaped discrimination functions among classes. This is in contrast to the
minimum distance classifier, which would be constrained to using only straight lines
as discrimination functions, as shown in Figure 19.11b, which also highlights the
mean vectors for each class and the three data points that would be left out of their
classes.

19.3.3 Bayesian Classifier

The rationale behind Bayesian classifiers is that a classification decision can be made
based on the probability distributions of the training samples for each class; that is,
an unknown object is assigned to the class to which it is more likely to belong based
on the observed features.

4Note that we are referring to the k-nearest points, not the total number of classes, denoted as K.

TUTORIAL 19.1: PATTERN CLASSIFICATION 491

The mathematical calculations performed by a Bayesian classifier require three
probability distributions:

• The a priori (or prior) probability for each class ωk, denoted by P(ωk).
• The unconditional distribution of the feature vector representing the measured

pattern x, denoted by p(x).
• The class conditional distribution, that is, the probability of x given class ωk,

denoted by p(x|ωk).

These three distributions are then used, applying Bayes’ rule, to compute the a
posteriori probability that a pattern x comes from class ωk, represented as p(ωk|x),
as follows:

p(ωk|x) = p(x|ωk)P(ωk)

p(x)
= p(x|ωk)P(ωk)∑W

k=1 p(x|ωk)P(ωk)
(19.15)

The design of a Bayes classifier requires that the prior probability for each class
(P(ωk)) and the class conditional distribution (p(x|ωk)) be known. The prior prob-
ability is easy to compute, based on the number of samples per class and the total
number of samples. Estimating the class conditional distribution is a much harder
problem, though, and it is often handled by modeling probability density function
(PDF) of each class as a Gaussian (normal) distribution.

In MATLAB

There are many excellent MATLAB toolboxes for statistical pattern classification
available on the Web (the “On the Web” section at the end of the chapter lists a few
of them).

19.4 TUTORIAL 19.1: PATTERN CLASSIFICATION

Goal

The goal of this tutorial is to learn how to use MATLAB and publicly available
toolboxes and data sets to build a visual pattern classifier.

Objectives

• Learn how to build a small optical character recognition (OCR) solution to
classify digits (between 0 and 9) using regionprops and a KNN classifier.5

• Learn how to prepare and process the training and test data sets.

5The KNN classifier—and some of the supporting functions—used in this tutorial comes from the Statistical
Pattern Recognition Toolbox (STPRtool), available at http://cmp.felk.cvut.cz/cmp/software/stprtool/ .

492 VISUAL PATTERN RECOGNITION

• Learn how to perform feature selection.
• Learn how to present the classification results using a confusion matrix.

What You Will Need

• Scripts and test images available from the book web site
(ocr_example.zip).

Procedure

1. Download the ocr_example.zip file and unzip its contents, keeping the
folder structure. This file contain all the scripts and data you need, organized
into meaningful folders.

2. Run script load_data.m. This script will load the 1000 training images and
1000 test images (10 images per character between 0 and 9) to the proper folders.

load_data

3. Examine the contents of scriptload_data.m to better understand how it does
what it does.

4. Run script preprocess_images.m. This script will preprocess the training
and test images and perform outlier removal.

preprocess_images

Question 1 What type of preprocessing operations are applied to all training and
test images?

Question 2 How are outliers identified and handled?

5. Extract features from preprocessed training images using regionprops and
selecting two properties with potential discriminative power: eccentricity and
Euler number.

6. Store the results into a 2 × 1000 array corresponding to the 1000 feature vectors
(of size 2 × 1 each).

fv = zeros(2,Ntrain);

for k = 1:Ntrain

class = trn_data.y(k);

I = imread([out_dir, sprintf(’train_image_%02d_%02d_bw.png’,...

class,rem(k,100))]);

[L, N] = bwlabel(I);

% compute features and build feature vector using 2 properties

stats = regionprops(L,’all’);

TUTORIAL 19.1: PATTERN CLASSIFICATION 493

fv(1,k) = stats.Eccentricity;

fv(2,k) = stats.EulerNumber;

end

7. Save feature vector to a MAT file.

save([out_dir,’train_fv.mat’], ’fv’);

8. Format feature vectors in a way that the KNN classifier will understand.

trn_data_binary.X = fv;
trn_data_binary.y = trn_data.y;

9. Create a KNN classifier and organize data for classification.

model = knnrule(trn_data_binary, 1);

10. Plot the 2D feature space and inspect it carefully. You should see a plot identical
to Figure 19.12.

plot_feature_space

FIGURE 19.12 Feature space for training set. Obtained using the Statistical Pattern Recog-
nition Toolbox (STPRtool), available at http://cmp.felk.cvut.cz/cmp/software/stprtool/.

494 VISUAL PATTERN RECOGNITION

Question 3 Which feature is being represented on each axis of the plot?

Question 4 After inspecting the plot (and comparing it with that shown in
Figure 19.11), what can you conclude so far?

11. Extract features from preprocessed test images using regionprops and
selecting the same two properties used for the training set, namely, eccentricity
and Euler number.

12. Store the results into a 2 × 1000 array corresponding to the 1000 feature vectors
(of size 2 × 1 each).

fv_test = zeros(2,Ntest);

for k = 1:Ntest

class = tst_data.y(k);

I = imread([out_dir, sprintf(’test_image_%02d_%02d_bw.png’,...

class,rem(k,100))]);

[L, N] = bwlabel(I);

stats = regionprops(L,’all’);

fv_test(1,k) = stats.Eccentricity;

fv_test(2,k) = stats.EulerNumber;

end

13. Save feature vector to a MAT file.

save([out_dir,’test_fv.mat’], ’fv_test’);

14. Format feature vectors in a way that the KNN classifier will understand.

tst_data_binary.X = fv_test;
tst_data_binary.y = tst_data.y;

15. Run the KNN classifier to assign labels to the test images.

labels = knnclass(tst_data_binary.X,model);
display_kNN_results;

The results of running the kNN classifier on the test data set will show the following:

classification_result on test set data: 583 out of 1000 missclassified

class "0" missclassified 66 times

class "1" missclassified 46 times

class "2" missclassified 61 times

class "3" missclassified 68 times

class "4" missclassified 77 times

class "5" missclassified 71 times

class "6" missclassified 67 times

TUTORIAL 19.1: PATTERN CLASSIFICATION 495

FIGURE 19.13 Confusion matrix with results of KNN classifier for the selected fea-
tures. Obtained using the Statistical Pattern Recognition Toolbox (STPRtool), available at
http://cmp.felk.cvut.cz/cmp/software/stprtool/.

class "7" missclassified 55 times

class "8" missclassified 2 times

class "9" missclassified 70 times

Figure 19.13 shows the resulting confusion matrix.

Question 5 Why are the results so poor (less than 42% success rate) overall?

Question 6 Why is the performance for one class (the digit 8) so much better than
any other class?

Reflection

Our classifier did not perform as well as expected. It is time to look back at each and
every step of our procedure and consider what needs to be changed or improved. At
this point, all the evidence points in the direction of better, that is, more descriptive
and discriminative, features.

In case you are wondering about the quality of the classifier, Figure 19.14 shows
the resulting confusion matrix if we use the exact same classifier and test images, but
different feature vectors. In this case, the actual gray values of the original 13 × 13
images were used as “features” that is, each image was represented using a 169 × 1
feature vector, without incurring in any of the preprocessing and feature extraction
stages used in our solution. The results are remarkably better (98.2% overall success

496 VISUAL PATTERN RECOGNITION

FIGURE 19.14 Number of Confusion matrix with results of KNN classifier for the case
where the images’ gray values are used as “features.” Obtained using the Statistical Pattern
Recognition Toolbox (STPRtool), available at http://cmp.felk.cvut.cz/cmp/software/stprtool/.

rate) than the ones we obtained with our choice of features (Figure 19.13). Another
interesting remark: the worst-performing class (the number8) for the modified design
was the one that performed best in our original method.

Question 7 Does the alternative method scale well for larger (and more realistic)
image sizes? Explain.

Question 8 Which changes would you make to our design (assuming the same
dataset and classifier) and in which sequence would you experiment with them? Be
precise.

WHAT HAVE WE LEARNED?

• Visual pattern recognition is the collection of methods used to recognize and
classify patterns within images. It is a subset of the large research area of pattern
recognition, in which the data used for the recognition and classification tasks
correspond to the visual contents of a scene (and have been extracted from such
scenes using one or more of the techniques described in Chapter 18).

• A pattern is an arrangement of descriptors (or features). The two most common
arrangements are feature vectors (for quantitative descriptions) and strings (for

PROBLEMS 497

structural descriptions). A pattern class is a family of patterns that share a set
of common properties.

• A pattern classifier is a (mathematical) method by which each sample in a data
set is assigned a pattern class to which it is most likely to belong. Decision-
theoretic pattern classifiers perform such assignment decisions based on math-
ematical properties such as distance measures between feature vectors or prob-
ability distributions of the pattern vectors within a class.

LEARN MORE ABOUT IT

• Pattern classification is a vast and complex field and entire books have been
written on the topic. Two recent examples (both of which come with their own
companion MATLAB toolbox) are [DHS01] and [vdHDdRT04].

• For information on structural pattern recognition techniques, including MAT-
LAB code, refer to Chapter 8 of [DHS01] (and its companion manual) or Chapter
12 of [GWE04].

ON THE WEB

• Statistical Pattern Recognition Toolbox (STPRtool)
http://cmp.felk.cvut.cz/cmp/software/stprtool/manual/

• PRTools: The Matlab Toolbox for Pattern Recognition
http://prtools.org/

• DCPR (Data Clustering and Pattern Recognition) Toolbox
http://neural.cs.nthu.edu.tw/jang/matlab/toolbox/DCPR/

19.5 PROBLEMS

19.1 Given the confusion matrix in Figure 19.15, use MATLAB to calculate the
precision and recall per category.

19.2 Design and implement (in MATLAB) a machine vision solution to count the
number of pennies, nickels, dimes, and quarters in an image containing U.S. coins.

ω1

ω1 12097

ω2

ω2 15940

ω3

ω3 010000

ω4

ω4 92503

FIGURE 19.15 Confusion matrix for Problem 19.1.

PART II

VIDEO PROCESSING

CHAPTER 20

VIDEO FUNDAMENTALS

WHAT WILL WE LEARN?

• What is an analog video raster and what are its main components and parameters?
• What are the most popular analog TV and video standards?
• What is digital video and how it differs from analog video?
• What are the most popular digital video standards?
• How is color information encoded in analog and digital video systems?
• How can we read, manipulate, and play digital video files in MATLAB?

20.1 BASIC CONCEPTS AND TERMINOLOGY

In this section, we present a list of technical concepts and terms used in analog and
digital TV and video systems.1 Similar to what we have done earlier (Section 1.2),
this section is structured in a question-and-answer format in a sequence that starts
with relatively simple concepts and builds up to more elaborated ones.

1Since many of these concepts are interconnected, there is no perfect sequence by which they should be
presented. The reader is encouraged to read the whole chapter even if certain parts of the text refer to
concepts that have not been officially introduced yet. I believe and hope that at the end of the chapter, the
entire picture will be clear in the reader’s mind.

Practical Image and Video Processing Using MATLAB®. By Oge Marques.
© 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

501

502 VIDEO FUNDAMENTALS

What is a Video Signal?

A video signal is a one-dimensional (1D) analog or digital signal varying over time
whose spatiotemporal contents represent a sequence of images (or frames) according
to a predefined scanning convention. Mathematically, a continuous (analog) video
signal will be denoted by f (x, y, t), where t is the temporal variable.

An analog video signal refers to a 1D electrical signal f (t) obtained by sam-
pling f (x, y, t) in the vertical and temporal dimensions. A digital video signal is also
sampled along the horizontal axis of each frame.

What is Scanning?

Scanning is a method used by all video systems as part of the process of converting
optical images into electrical signals. Figure 20.1 shows the basic scanning operation
in a television camera. During the scanning process, an electronic sensing spot moves
across the image in a pattern known as a raster. The sensing spot converts differences
in brightness into differences in instantaneous voltages. Starting at the upper left
corner of the image, the spot moves in a horizontal direction across the frame to
produce a scanning line. It then quickly returns to the left edge of the frame (a process
called horizontal retrace) and begins scanning another line. These lines are slightly
tilted downward, so that after the retrace the spot is just below the previously scanned
line and ready to scan a new line. After the last line is scanned (i.e., when the sensing
spot reaches the bottom of the image), both horizontal and vertical retraces occur,
bringing the spot back to the upper left corner of the image. A complete scan of the
image is called a frame [LI99].

Scanning also occurs at the time of reproducing the frames on a display device.
The main difference, of course, is the replacement of the sensing spot by a spot of

FIGURE 20.1 Scanning raster. Redrawn from [LI99].

BASIC CONCEPTS AND TERMINOLOGY 503

FIGURE 20.2 Scan and retrace: (a) progressive scan (dashed lines indicate horizontal re-
trace); (b) interlaced scan (solid and dashed lines represent even and odd fields, respectively).
Adapted and redrawn from [WOZ02].

light whose intensity is controlled by the electrical signal originally produced at the
output of the camera.

What are the Differences Between Interlaced and Progressive
Scanning?

Progressive scanning is the process by which each image is scanned in one single pass,
called frame, at every �t (Figure 20.2a). It is used, for example, in computer displays,
where a representative value for �t is 1/72 s. Progressive scanning is a natural way
to create an analog video raster. However, due to technological limitations at the time
the early analog TV systems were being developed, it was not possible to implement
it. As a result, the concept of interlaced scanning was proposed, which trades off
spatial resolution for temporal resolution.2

With interlaced scanning (Figure 20.2b), each frame is scanned in two succes-
sive vertical passes, first the odd numbered lines and then the even numbered ones.
Each pass is called a field. Since each field contains half of the lines in a frame, it
lasts only one-half of the duration of an entire frame. Consequently, fields flash at
a rate twice as fast as entire frames would, creating a better illusion of motion. If
the field flash rate is greater than the critical flicker frequency (CFF) for the human
eye, the result is successful and the motion is perceived as smooth. Perhaps more
importantly, even though each field contains only half of the lines (in other words,
half of the horizontal resolution that one would expect), viewers tolerate this drop
in spatial resolution and are usually content with the overall quality of the resulting
video.

2Appendix A has a more detailed explanation of spatial and temporal resolution, the relationship between
them, and the implications of human visual perception experiments in the design of analog and digital
video systems.

504 VIDEO FUNDAMENTALS

What is Blanking Interval?

It is the time interval at the end of each line (horizontal retrace, A to B in Figure 20.2a)
or field (vertical retrace, C to D and E to F in Figure 20.2b) during which the video
signal must be blanked before a new line or field is scanned.

What is Refresh Rate?

Most displays for moving images involve a period when the reproduced image is
absent from the display, that is, a fraction of the frame time during which the display
is black. To avoid objectionable flicker, it is necessary to flash the image at a rate
higher than the rate necessary to portray motion. The rate at which images are flashed
is called flash (or refresh) rate.

Typical refresh rates are 48 (cinema), 60 (conventional TV), and 75 Hz (computer
monitors). The refresh rate highly depends on the ambient illumination: the brighter
the environment, the higher the flash rate must be in order to avoid flicker. Refresh
rates also depend on the display technology. In conventional movie theater projection
systems, a refresh rate of 48 Hz is obtained by displaying each negative of a 24
frames/s movie twice. For progressive scan systems, the refresh rate is the same as
the frame rate, whereas in the case of interlaced scan systems, the refresh rate is
equivalent to the field rate (twice the frame rate).

What is the Meaning of Notation Such As 525/60/2:1, 480i29.97,
or 720p?

There is no universally adopted scanning notation for video systems, which may be a
potential source of confusion, due to the lack of consistency among different sources.3

Analog monochrome video scanning systems can be denoted by

• Total number of lines (including sync and blanking overhead)
• Refresh rate (in Hz) (which will be equal to the field rate for interlaced scan or

the frame rate for progressive scan)
• Indication of interlaced (2:1) or progressive (1:1) scan

According to this notation, the analog TV system used in North America and
Japan would be represented by 525/60/2:1 (or, more accurately, 525/59.94/2:1) and
the European SDTV (standard definition TV) would be 625/50/2:1.

A more compact way of indicating the same information is by concatenating the
number of visible lines per frame with the type of scanning (progressive or interlaced)

3For example, the use of NTSC to refer to 525 lines/60 Hz/interlaced monochrome video systems is
common, but not accurate (after all, NTSC is a color TV standard). Worse yet is the use of PAL to refer
to the 625 lines/50 Hz/interlaced monochrome video system used in great part of Europe, since PAL not
only is a color encoding standard, but also contains a great number of variants. For a concrete example of
how confusing this may get, in Brazil, the analog color TV standard adopted for TV broadcast (PAL-M)
uses the PAL color encoding on a 525 lines/60 Hz/interlaced monochrome system.

BASIC CONCEPTS AND TERMINOLOGY 505

FIGURE 20.3 Aspect ratios of SDTV, HDTV, and film. Redrawn from [Poy03].

and the vertical frequency (roughly equal to the frame rate), for example, 480i29.97
and 576i25.

HDTV (high-definition TV) standards are usually represented in an even more
compact notation that includes the number of lines and the type of scanning.
Contemporary examples include the 720p and the 1080i standards.

What is Aspect Ratio?

Aspect ratio (AR) is the ratio of frame width to height. In the case of digital video,
both dimensions can be specified in terms of numbers of pixels (e.g., 640 × 480 or
1920 × 1200). For analog video, however, only the number of lines can be counted
and expressed as an integer value.

The most common values for TV are 4:3 (1.33:1) for SDTV and 16:9 (1.78:1) for
HDTV. For movies, it usually varies between 1.66:1 and 2.39:1. Figure 20.3 shows
representative examples of aspect ratios.

What is Gamma Correction?

Video acquisition and display devices are inherently nonlinear: the intensity of light
sensed at the camera input or reproduced at the display output is a nonlinear function
of the voltage levels.

For the cameras, this relationship is usually expressed as

vc = Bc
−γc (20.1)

where Bc represents the actual luminance (light intensity), vc is the resulting voltage
at the output of the camera, and γc is a value usually between 1.0 and 1.9.

Similarly, for display devices, the nonlinear relationship between the input voltage
vd and the displayed color intensity Bd is expressed as

Bd = vd
γd (20.2)

where γd is a value usually between 2.2 and 3.0.

506 VIDEO FUNDAMENTALS

FIGURE 20.4 Gamma correction in video and TV systems: (a) composite video; (b) com-
ponent video.

The process of compensating for this nonlinearity is known as gamma correction
and is typically performed at the transmitter side. By gamma correcting the signal
before displaying it, the intensity output of the display is roughly linear.

In addition to precompensating for the nonlinearity of the CRT display, gamma
correction also codes the luminance information into a perceptually uniform space,
thus compensating for the nonlinear characteristics of the human visual system in a
way that Poynton calls an “amazing coincidence” [Poy03]. Moreover, the gamma-
corrected signal also becomes less sensitive to noise.

Figure 20.4 shows how gamma correction is performed in a typical analog video
system. First, a nonlinear transfer function is applied to each of the linear color
components: R, G, and B right at the output of the color camera, resulting in the
gamma-corrected primaries R′, G′, and B′. Then, a weighted sum of the nonlinear
components is computed to form two generic chrominance signals (C1 and C2) and
a luma signal, Y ′, representative of brightness, given by:4

Y ′ = 0.30R′ + 0.59G′ + 0.11B′ (20.3)

The resulting signals (Y ′, C1, and C2) are then transmitted—with or without being
combined into a single composite signal—to the receiver, where eventually they are
converted back into the gamma-corrected primaries (R′, G′, and B′), which will be
used to drive the display device.

What are Component, Composite, and S-Video?

From our discussion on color (Chapter 16), we know that color images can be de-
scribed by assigning three values (usually the R, G, and B color components) to each
pixel. An extension of this representation scheme to color video requires using three
independent one-dimensional color component signals (e.g., R′G′B′ or Y ′CBCR),
free from mutual interference, in what is known as component analog video (CAV).

Component video representation is convenient and feasible for certain applications
(e.g., connecting a DVD player to a TV set) but could not be adopted for color TV

4The values of the coefficients in equation (20.3) are approximate. The exact values will vary among
different analog video standards.

MONOCHROME ANALOG VIDEO 507

broadcast systems. In that case, primarily for backward compatibility reasons, a video
encoding system was designed that combines the intensity and color information into
a composite signal. This is known as composite video. A composite video signal relies
on the fact that the chrominance components can be encoded using a significantly
smaller bandwidth than the luminance component. Composite video systems combine
brightness and color into one signal, at the expense of introducing a certain degree of
mutual interference. For more details, refer to Section 20.3.

The S-video (also known as Y/C video) standard is an intermediate solution con-
sisting of two components, luminance and a multiplexed chrominance component.
S-video systems require less bandwidth (or data rate) than component video and
produce better image quality than composite video.

20.2 MONOCHROME ANALOG VIDEO

In this section, we expand the discussion of the fundamental concepts and the most
important aspects of monochrome (black-and-white) analog video.

20.2.1 Analog Video Raster

An analog video raster can be defined by two parameters: the frame rate (FR) (in
frames/s or fps or Hz) that defines the temporal sampling rate and the line number
(NL) (in lines/frame or lines/picture height) that corresponds to the vertical sampling
rate. These two parameters can be used to define other useful terms, such as

• Line rate (in lines/s): the product of FR and NL.
• Temporal sampling interval (or frame interval): �t = 1/FR.
• Vertical sampling interval (or line spacing): �y = PH/NL, where PH is the

picture height.
• Line interval: Tl = �t/NL, which is the total time required to scan a line (in-

cluding the horizontal retrace, Th).
• Actual scanning time for a line: T ′

l = Tl − Th.
• Number of active lines: N ′

L = (�t − Tv)/TL = NL − Tv/Tl, where Tv is the
vertical retrace and is usually chosen to be a multiple of Tl .

A typical waveform for an interlaced analog video raster is shown in Figure 20.5.
The maximum rate at which an analog video signal can change from one amplitude

level to another is determined by the bandwidth of the video system. The bandwidth
requirements of an analog TV system can be calculated by

BW = K AR N ′
L

2T ′
l

(20.4)

where BW is the system bandwidth (in hertz), AR is the aspect ratio, N ′
L is the

number of active TV scanning lines per frame, T ′
l is the duration of a line, and K is

508 VIDEO FUNDAMENTALS

FIGURE 20.5 Typical interlaced video raster. Redrawn from [WOZ02].

the Kell factor: an attenuation factor (whose value is usually 0.7) that accounts for
the differences between the actual vertical resolution of a frame and the perceived
resolution when the human visual acuity is taken into account.

� EXAMPLE 20.1

Calculate the required bandwidth for the luminance signal of an analog TV system
with the following characteristics:

• 2:1 interlaced scanning
• 525 horizontal lines/frame, 42 of which are blanked for vertical retrace
• 30 frames per second
• 4:3 aspect ratio
• 10 �s of horizontal blanking
• Kell factor = 0.7

Solution

Tl = 1/(525 × 30) = 63.5 �s
T ′

l = 63.5 − 10 = 53.5 �s
N ′

L = 525 − 42 = 483 lines
BW = (0.7 × 4/3 × 483)/(2 × 53.5 × 10−6) = 4.21 MHz

20.2.2 Blanking Intervals

Most analog TV and video systems use a composite signal that includes all the infor-
mation needed to convey a picture (brightness, color, synchronization) encoded into
a single one-dimensional time-varying signal. As discussed previously, part of the
time occupied by the signal is used to bring the scanning starting point back to the
beginning of a new line or frame, a process known as horizontal and vertical retraces,
respectively. These retrace periods are also known as blanking intervals, during which
the amplitude of the signal is such that it cannot be seen on the screen (indicated in
Figure 20.5 as “blanking level”).

MONOCHROME ANALOG VIDEO 509

The duration of the vertical blanking interval (VBI) (also known as vertical re-
trace, Tv) is approximately 7.5% of the frame interval (�t). The horizontal blanking
interval (also known as horizontal retrace, Th) usually lasts 14–18% of the total line
interval (Tl).

20.2.3 Synchronization Signals

In analog TV and video systems, it is necessary to establish a way by which the
scanning process at the display device is synchronized with the scanning process that
took place in the imager (camera). This is done by adding synchronizing (or simply
sync) pulses to the horizontal and vertical blanking intervals. To ensure that these
pulses do not interfere with the purpose of the blanking intervals, their amplitude is
such as to correspond to “blacker than black” luminance levels. This also allows them
to be easily separated from the rest of the video by simply clipping the composite
video signal, in a process known as sync separation.

20.2.4 Spectral Content of Composite Monochrome Analog Video

A monochrome analog video signal usually covers the entire frequency spectrum
from DC to the maximum frequency determined by the desired picture resolution (see
equation (20.4)). However, the frequency spectrum is not continuous—it contains a
fine-grained structure determined by the scanning frequencies (Figure 20.6).

The spectrum shown in Figure 20.6 reflects the fact that video signals contain three
periodic components: one repeating at the line rate, one at the field rate, and one at the

FIGURE 20.6 Fine-grained frequency spectrum of a monochrome analog video signal.
Redrawn from [LI99].

510 VIDEO FUNDAMENTALS

frame rate (at 15,750, 60, and 30 Hz, respectively, for the NTSC standard adopted in
the United States). Each component can be expressed as a Fourier series—a sequence
of sinusoidal terms with frequencies that are multiple (harmonics) of the repetition
rate and amplitudes determined by the waveform of the component. The summation
of the amplitudes of the terms for the three periodic components over the entire video
spectrum is the frequency content of the signal.

Figure 20.6 also shows that the spectrum of a monochrome TV signal consists of
a series of harmonics of the line frequency, each surrounded by a cluster of frequency
components separated by the field frequency. The amplitude of the line frequency
components is determined by the horizontal variations in brightness, whereas the
amplitude of the field frequency components is determined by the vertical brightness
variations.

The gaps in the frequency spectrum of a monochrome TV signal have been utilized
for two main purposes:

1. Interleave frequency components of the color subcarrier and its sidebands,
making color TV systems backward compatible with their monochrome prede-
cessors (see Section 20.3).

2. Improve the high-frequency signal to noise ratio using comb filters.

20.3 COLOR IN VIDEO

In this section, we discuss the most relevant issues associated with representing,
encoding, transmitting, and displaying color information in analog TV and video
systems. It builds upon the general knowledge of color in image and video (Chapter
16) and focuses on specific aspects of color modulation and encoding in analog TV
and video systems.

Historically, the development of color TV came about at a time where monochrome
TV already enjoyed widespread popularity. As a result of the existing equipment and
technologies, and frequency spectrum regulations already in place, the development
of color TV needed to be an extension of the existing system and was required to
maintain backward compatibility with its predecessor. This requirement will be the
underlying theme of the discussion that follows.

Analog color TV and video systems utilize red, green, and blue as primary colors
that are then gamma corrected (resulting in R′, G′, B′) and used to calculate a luma
value:

Y ′ = 0.299R′ + 0.587G′ + 0.114B′ (20.5)

The R′, G′, B′, and Y ′ signals are then combined into color-difference signals
(B′ − Y ′) and (R′ − Y ′), in a process known as matrixing, according to the following
equations:

B′ − Y ′ = −0.299R′ − 0.587G′ + 0.889B′ (20.6)

COLOR IN VIDEO 511

R′ − Y ′ = 0.701R′ − 0.587G′ − 0.114B′ (20.7)

The remaining color-difference signal (G′ − Y ′) does not need to be transmitted.
It can be re-created at the receiver’s side by a simple arithmetic combination of the
other two color-difference signals.

The color-difference signals are then multiplied by a scaling factor (e.g., 0.493 for
the (B′ − Y ′) and 0.877 for the (R′ − Y ′)) and in the case of NTSC rotated by a certain
angle (33◦). Those two signals are then usually modulated in quadrature (90◦ phase
difference) and the result is used to modulate a color subcarrier whose bandwidth is
usually between 0.5 and 1.5 MHz (significantly narrower than the 4.5 MHz typically
used for the luma component), resulting in a single-wire composite video signal with
a total bandwidth suited to the specific transmission standard.

At the receiver’s side, first a decoder separates the composite signal into luma and
chroma. The chroma portion is then bandpass filtered and demodulated to recover the
color-difference signals that are then added to a delayed (to account for the processing
time through filters and demodulators) version of the luma signal to a matrix circuit
in charge of regenerating the gamma-corrected primaries needed as input signals for
the monitor.

The details of the resulting composite video varies from one standard to the next
(see Section 20.4) but have the following characteristics in common [RP00]:

• Monochrome Compatibility: A monochrome receiver must reproduce the bright-
ness content of a color TV signal correctly and without noticeable interference
from the color information.

• Reverse Compatibility: A color receiver must reproduce a monochrome signal
correctly in shades of gray without spurious color components.

• Scanning Compatibility: The scanning system used for color systems must be
identical to the one used by the existing monochrome standard.

• Channel Compatibility: The color signal must fit into the existing monochrome
TV channel and use the same spacing (in Hz) between the luminance and audio
carriers.

• Frequency-Division Multiplexing: All systems use two narrowband color-
difference signals that modulate a color subcarrier and the chrominance and
luminance signals are frequency-division multiplexed to obtain a single-wire
composite video signal with a total bandwidth suited to the specific transmis-
sion standard.

Composite color encoding has three major disadvantages [Poy03]:

1. Some degree of mutual interference between luma and chroma is inevitably
introduced during the encoding process.

2. It is impossible to perform certain video processing operations directly in the
composite domain. Even something as simple as resizing a frame requires
decoding.

512 VIDEO FUNDAMENTALS

FIGURE 20.7 NTSC spectrum, showing how luminance (Y) and chrominance (I and Q)
signals are interleaved. Redrawn from [LD04].

3. Digital compression techniques such as MPEG (Motion Pictures Expert Group)
cannot be directly applied to composite video signals; moreover, the artifacts
of NTSC or PAL encoding are destructive to MPEG encoding.

The spectral contents of composite color analog video differ from their
monochrome equivalent because color information encoded on a high-frequency sub-
carrier is superimposed on the luminance signal (Figure 20.7). The frequency values
have been carefully calculated so that the new spectral components due to color
occupy gaps in the original monochrome spectrum shown earlier (Figure 20.6).

20.4 ANALOG VIDEO STANDARDS

In this section, we present a summary of some of the most relevant analog TV
and video standards. There are two scanning standards used for conventional ana-
log TV broadcast: the 480i29.97 used primarily in North America and Japan,
and the 576i25 used in Europe, Asia, Australia, and Central America. The two
systems share many features, such as 4:3 aspect ratio and interlaced scanning.
Their main differences reside on the number of lines per frame and the frame
rate.

Analog broadcast of 480i usually employs NTSC color coding with a color sub-
carrier of about 3.58 MHz; analog broadcast of 576i usually adopts PAL color
encoding with a color subcarrier of approximately 4.43 MHz. Exceptions to these
rules include the PAL-M system (480i scanning combined with PAL color coding)
used in Brazil and the PAL-N system (576i scanning combined with a 3.58 MHz
color subcarrier nearly identical to the NTSC’s subcarrier) used in Argentina, among
others.

ANALOG VIDEO STANDARDS 513

20.4.1 NTSC

The NTSC (National Television System Committee) TV standard is an analog com-
posite video standard that complies with the 480i component video standard. It
uses two color-difference signals (U and V) that are scaled versions of the color-
difference signals (B′ − Y ′) and (R′ − Y ′), respectively. The U and V color differ-
ence components are subject to low-pass filtering and combined into a single chroma
signal, C:

C = U sin ωt + V cos ωt (20.8)

where ω = 2πfsc and fsc is the frequency of color subcarrier (approximately
3.58 MHz).

In the past, to be compliant with FCC regulations for broadcast, an NTSC modu-
lator was supposed to operate on I and Q components (scaled and rotated versions of
U and V), where the Q component (600 kHz) was bandwidth limited more severely
than the I component (1.3 MHz):

C = Q sin(ωt + 33◦) + I cos(ωt + 33◦) (20.9)

Figure 20.7 shows details of the frequency interleaving between luma and chroma
harmonics, as well as the overall spectral composition of the NTSC signal (including
the audio component). In analog TV systems, audio is transmitted by a separate
transmitter operating at a fixed frequency offset (in this case, 4.5 MHz) from the
video transmitter. Contemporary NTSC equipment modulate equiband U and V color-
difference signals.

20.4.2 PAL

The PAL (phase alternating line) TV standard is an analog composite video standard
that is often used in connection with the 576i component video standard.

It uses two color-difference signals (U and V) that are scaled versions of the
color-difference signals (B′ − Y ′) and (R′ − Y ′), respectively. The U and V color
difference components are subject to low-pass filtering and combined into a single
chroma signal, C:

C = U sin ωt ± V cos ωt (20.10)

where ω = 2πfsc and fsc is the frequency of color subcarrier (approximately
4.43 MHz).

The main difference between equations (20.10) and (20.8) reflects the fact that the
V component switches phases on alternating lines, which is the origin of the acronym
PAL and its most distinctive feature.

514 VIDEO FUNDAMENTALS

TABLE 20.1 Parameters of Analog Color TV Systems

Parameter NTSC PAL SECAM

Field rate 59.94 50 50
Line number/frame 525 625 625
Line rate (lines/s) 15,750 15,625 15,625
Image aspect ratio (AR) 4:3 4:3 4:3
Color space YIQ YUV YDbDr
Luminance bandwidth (MHz) 4.2 5.0, 5.5 6.0
Chrominance bandwidth (MHz) 1.5 (I), 0.5 (Q) 1.3 (U, V) 1.0 (U, V)
Color subcarrier (MHz) 3.58 4.43 4.25 (Db), 4.41 (Dr)
Color modulation QAM QAM FM
Audio subcarrier (MHz) 4.5 5.5, 6.0 6.5
Composite signal bandwidth (MHz) 6.0 8.0, 8.5 8.0

Reproduced from [WOZ02].

20.4.3 SECAM

The SECAM (Séquentiel couleur à mémoire) standard is a color TV system with
576i25 scanning used in France, Russia, and a few other countries. Table 20.1
summarizes the main parameters of SECAM and their equivalent in the PAL (576i25)
and NTSC (480i29.97) standards.

20.4.4 HDTV

HDTV is a name usually given to TV and video systems where each frame has
720 or more active lines. The most common variants of HDTV in use today are the
1280 × 720 and 1920 × 1080 image formats, also referred to as 720p60 and 1080i30
(or simply 720p and 1080i), respectively.

In addition to significantly higher spatial resolution, two salient differences
between HDTV and SDTV are the aspect ratio of 16:9 instead of 4:3 and the use
of progressive scanning.

20.5 DIGITAL VIDEO BASICS

A digital video may be obtained by sampling a raster scan (which requires analog-to-
digital conversion (ADC), see Section 20.6) or directly using a digital video camera.
Most of contemporary digital video cameras use CCD sensors. Similar to their analog
counterpart, digital cameras sample the imaged scene over time, resulting in discrete
frames. Each frame consists of output values from a CCD array, which is by nature
discrete in both horizontal and vertical dimensions.

The result of the video acquisition stage—whether the digitization takes place
within the camera or is performed by an external ADC embedded, for example,
in a video capture card—is a collection of samples. These samples are numerical
representation of pixel values along a line, for all the lines within a frame. Similar to

DIGITAL VIDEO BASICS 515

FIGURE 20.8 Sampling in the horizontal, vertical, and temporal dimensions. Redrawn from
[Poy03].

their analog counterpart, to portray a smooth motion, digital video frames are captured
and displayed at a specified frame rate.

Digital video can be understood as an alternative means of carrying a video wave-
form, in which the limitations of analog signals (any analog signal received at the
destination is a valid one, regardless of any distortion, noise, or attenuation intro-
duced on the original analog signal) are overcome by modulation techniques (such
as PCM (pulse code modulation)) that enforce that each sample is encoded with a
certain amplitude (from a finite set of values, known as quantization levels).

In analog video systems, the time axis is sampled into frames and the vertical axis
is sampled into lines. Digital video simply adds a third sampling process along the
lines (horizontal axis) (Figure 20.8).

20.5.1 Advantages of Digital Video

Digital representation of signals in general, and video in particular, have a number of
well-known advantages over their analog counterpart [LI99]:

• Robustness to signal degradation. Digital signals are inherently more robust to
signal degradation by attenuation, distortion, or noise than their analog coun-
terpart. Moreover, error correction techniques can be applied so that distortion
does not accumulate over consecutive stages in a digital video system.

• Smaller, more reliable, less expensive, and easier to design hardware implemen-
tation.

• Certain processes, such as signal delay or video special effects, are easier to
accomplish in the digital domain.

• The possibility of encapsulating video at multiple spatial and temporal resolu-
tions in a single scalable bitstream.

• Relatively easy software conversion from one format to another.

516 VIDEO FUNDAMENTALS

20.5.2 Parameters of a Digital Video Sequence

A digital video signal can be characterized by

• The frame rate (fs,t)
• The line number (fs,y)
• The number of samples per line (fs,x)

From the above three quantities, we can find

• The temporal sampling interval or frame interval �t = 1/fs,t

• The vertical sampling interval �y = PH/fs,y, where PH is the picture height
• The horizontal sampling interval �x = PW/fs,x, where PW is the picture

width

In this book, we will use the notation f (m, n, k) to represent a digital video, where
m and n are the row and column indices and k is the frame number. The relationships
between these integer indices and the actual spatial and temporal locations are x =
m�x, y = n�y, and t = k�t.

Another important parameter of digital video is the number of bits used to represent
a pixel value, Nb. For monochrome video, Nb = 8, whereas color videos require 8
bits per color component, that is, Nb = 24.

The data rate of the digital video, R, can be determined as

R = fs,t × fs,x × fs,y × Nb (in bps) (20.11)

Since the sampling rates for luma and chroma signals are usually different (see
Section 20.7), Nb should reflect the equivalent number of bits used for each pixel in
the sampling grid for the luma component. For example, if the horizontal and vertical
sampling rates for each of the two chroma components are both half of that for the
luma, then there are two chroma samples for every four luma samples. If each sample
is represented by 8 bits, the equivalent number of bits per sample in the Y ′ (luma)
resolution is (4 × 8 + 2 × 8)/4 = 12 bits.

When digital video is displayed on a monitor, each pixel is rendered as a rectangular
region with constant color. The ratio of the width to the height of this rectangular area
is the pixel aspect ratio (PAR). It is related to the aspect ratio of the entire frame
(AR) by

PAR = AR
fs,x

fs,y

(20.12)

Computer displays usually adopt a PAR of 1. In the TV industry, nonsquare pixels
are used for historical reasons and PAR may vary from 8/9 (for 525/60 systems) to
16/15 (for 625/50 systems).

ANALOG-TO-DIGITAL CONVERSION 517

FIGURE 20.9 Analog-to-digital converters for composite (top) and component (bottom)
video. Redrawn from [LI99].

20.5.3 The Audio Component

In analog TV systems, audio is transmitted by a separate transmitter operating at
a fixed frequency offset from the video transmitter. In computer originated digital
video, audio is typically encoded in a data stream that can be handled separately or
interleaved with video data. In digital TV, audio is interleaved with video. In all cases,
the audio part of the system involves processes equivalent to the ones used in video:
creation, storage, transmission, and reproduction.

Digital audio formats are usually based on the PCM technique and its variants. The
number of bits per sample and the sampling frequency are the determinant factors
of the resulting data rate (and associated audio quality): from 12 kbps (or less) for
speech to 176 kbps (or more) for CD quality stereo music.

20.6 ANALOG-TO-DIGITAL CONVERSION

Since digital video sequences are often the result of capturing and encoding a real-
world analog scene, at some point an analog-to-digital conversion step is needed.5 All
digital cameras and camcorders perform ADC at the imager. Analog cameras output
analog video that eventually needs to undergo ADC.

Figure 20.9 shows schematic block diagrams for analog-to-digital converters
for composite and component video systems. The key components are described
below [LI99].

5This statement implies that if the video sequence is generated from scratch by a computer application, no
such conversion is necessary.

518 VIDEO FUNDAMENTALS

FIGURE 20.10 Location of sampling points in component video signals. Redrawn from
[LI99].

Antialiasing Filter An optional low-pass filter with a cutoff frequency below the
Nyquist limit (i.e., below one-half the sampling rate) whose primary function is to
eliminate signal frequency components that could cause aliasing.6

Sampling The sampling block samples pixel values along a horizontal line at a
sampling rate that is standardized for the main video formats as follows:

• NTSC 4fsc (composite): 114.5 Mbps
• PAL 4fsc (composite): 141.9 Mbps
• Rec. 601 (component) (luma): 108 Mbps
• Rec. 601 (component) (chroma): 54 Mbps

For component systems, the rates standardized by Rec. 601 were chosen to rep-
resent a sampling rate of 13.5 MHz, which is an integral multiple of both NTSC
and PAL line rates. For composite signals, a sampling rate of 4fsc (where fsc is the
frequency of the color subcarrier) exceeds the Nyquist limit by a comfortable margin
and has become part of the SMPTE standard 244M.

Figure 20.10 shows the location of sampling points on individual lines for the Rec.
601 format. The luma and two color-difference sampling pulses are synchronized
so that the color difference points are cosited with alternate luminance points. For
composite signals, the sampling points follow a specified relationship with the phase
of the color sync burst. For both NTSC and PAL at 4fsc, there are four sampling
points for each cycle of the burst: for PAL, the sampling points are at 0◦, 90◦, 180◦,
and 270◦ points of the burst waveform. For NTSC, the first sample is located at 57◦
(the I axis), the second at 147◦ (the Q axis), and so on.

The sampling rate and phase must be synchronized with the line and subcarrier
frequencies and phases to maintain these precise locations. This task is performed by
the sampling clock generator.

6The concept of aliasing was introduced in Section 5.4.1.

ANALOG-TO-DIGITAL CONVERSION 519

FIGURE 20.11 Assignment of quantization levels for component and composite video.
Redrawn from [LI99].

Quantizing The next step in the ADC process is to quantize the samples using a
finite number of bits per sample. This is achieved by dividing the amplitude range into
discrete intervals and establishing a quantum level for each interval. The difference
between the quantum level and the analog signal at the sampling point is called the
quantizing error.

Most video quantization systems are based on 8-bit words, that is, 256 possible
discrete values per sample (1024 levels are sometimes used for pregamma signals in
cameras). Not all levels may be used for the video range because of the need to use
some of the values for data or control signals.

Figure 20.11 shows how the resulting 256 quantized levels are typically used for
composite and component video signals. In composite systems, the entire composite
signal, including sync pulses, is transmitted within the quantized range of levels
4–200. Luma occupies levels 16–235. Since color-difference signals can be positive
or negative, the zero level is placed at the center of the quantized range. In both cases,
the values 0 and 255 are reserved for synchronization codes.

Encoding The final step in the ADC process is the encoding of the quantized levels
of the signal samples. This is a topic that has been explored extensively, especially in
connection with video compression (Section 20.9).

520 VIDEO FUNDAMENTALS

20.7 COLOR REPRESENTATION AND CHROMA SUBSAMPLING

A monochrome video frame can be represented using just one (typically 8-bit) value
per spatiotemporal sample. This number usually indicates the gamma-corrected lu-
minance information at that point, which we call luma: the larger the number, the
brighter the pixel.

Color video requires multiple (usually three) values per sample. The meaning of
each value depends on the adopted color model. The most common color representa-
tion for digital video adopts the Y ′CrCb color model. In this format, one component
represents luma (Y ′), while the other two are color-difference signals: Cb (the dif-
ference between the blue component and a reference value) and Cr (the difference
between the red component and a reference value). Y ′CbCr is a scaled and offset
version of the Y ′UV color space.

The exact equations used to calculate Y ′, Cr, and Cb vary among standards (see
Chapter 3 of [Jac01] for details). For the sake of illustration, the following are the
equations for the Rec. 601 SDTV standard:

Y ′
601 = 0.299R′ + 0.587G′ + 0.114B′ (20.13)

Cb = −0.172R′ − 0.339G′ + 0.511B′ + 128 (20.14)

Cr = 0.511R′ − 0.428G′ − 0.083B′ + 128 (20.15)

The key advantage of Y ′CrCb over RGB is that the Cr and Cb components may be
represented with a lower spatial resolution than Y ′ because the HVS is less sensitive
to variations in color than in luminance. This reduces the amount of data required
to represent the chroma components, without significantly impacting the resulting
visual quality. This process is known as chroma subsampling.

Figure 20.12 shows three of the most common patterns for chroma subsampling.
The numbers indicate the relative sampling rate of each component in the horizontal
direction. 4:4:4 means that the three components (Y ′, Cr, and Cb) have the same
resolution; that is, there is a sample of each component at every pixel position. Another
way of explaining it is to say that for every four luma samples, there are four Cr

FIGURE 20.12 The most common chroma subsampling patterns: 4:4:4, 4:2:2, and 4:2:0.

DIGITAL VIDEO FORMATS AND STANDARDS 521

and four Cb samples. The 4:4:4 sampling pattern preserves the full fidelity of the
chroma components. In 4:2:2 sampling, the chroma components have the same vertical
resolution but only half the horizontal resolution; that is, for every four luma samples
in the horizontal direction, there are two Cr and two Cb samples. The 4:2:0 pattern
corresponds to the case where both Cr and Cb have half the horizontal and the vertical
resolution of Y ′. The 4:2:0 pattern requires half as many samples—and, consequently,
half as many bits—as the 4:4:4 video.

When chroma subsampling is used, the encoder discards selected color-difference
samples after filtering. At the decoder side, these missing samples are approximated
by interpolation. The most common interpolation scheme consists of using averaging
filters whose size and shape vary according to the chroma subsampling pattern used
at the encoder side.

� EXAMPLE 20.2

Calculate the number of bits per frame required to encode a color Rec. 601 625/50
(720 × 480 pixels per frame) video, using the following chroma subsampling patterns:
4:4:4, 4:2:2, and 4:2:0.

Solution

The key to this problem is to calculate the equivalent number of bits per pixel (Nb)
for each case. Once the value of Nb is obtained, it is a simple matter of multiplying
that value by the frame height and width.

(a) Nb = 8 × 3 = 24. The total number of bits is 720 × 480 × 24 = 8,294,400.

(b) Since for every group of four pixels, eight samples are required, Nb = 8 ×
8/4 = 16. The total number of bits is 720 × 480 × 16 = 5,529,600.

(c) Since for every group of four pixels, six samples are required, Nb = 8 × 6/4 =
12. The total number of bits is 720 × 480 × 12 = 4,147,200.

20.8 DIGITAL VIDEO FORMATS AND STANDARDS

The topic of digital video formats and standards is a broad and ever-changing one
about which many entire books have been written. The enormous amount of formats
and standards—and the myriad of technical details within each and every one of
them—can easily overwhelm the reader. In this section, we present a brief summary of
relevant digital video formats and standards. This list will be expanded in Section 20.9
when we incorporate (an even larger number of) standards for compressed video.

Digital video formats vary according to the application. For digital video with qual-
ity comparable to analog SDTV, the most important standard is the ITU-R (formerly
CCIR) Recommendation BT.601-5, 4:2:27 (Section 20.8.1). For many video coding
applications—particularly in video conferencing and video telephony—a family of

7For most of this chapter, we refer to this format simply as Rec. 601.

522 VIDEO FUNDAMENTALS

TABLE 20.2 Representative Digital Video Formats

Format Y ′ size Color Frame Raw Data
(Application) (H × V) Sampling Rate (Mbps)

QCIF 176 × 144 4:2:0 30p 9.1
(video telephony)

CIF 352 × 288 4:2:0 30p 37
(videoconference)

SIF 352 × 240 (288) 4:2:0 30p/25p 30
(VCD, MPEG-1)

Rec. 601 720 × 480 (576) 4:2:0 60i/50i 124
(SDTV distribution)

Rec. 601 720 × 480 (576) 4:2:2 60i/50i 166
(video production)

SMPTE 296M 1280 × 720 4:2:0 24p/30p/60p 265/332/664
(HDTV distribution)

SMPTE 274M 1920 × 1080 4:2:0 24p/30p/60i 597/746/746
(HDTV distribution)

Reproduced from [WOZ02].

intermediate formats is used (Section 20.8.2). For digital television, different stan-
dards are adopted in different parts of the world. Table 20.2 provides a sample of
relevant digital video formats, ranging from low bit rate QCIF for video telephony to
high-definition SMPTE 296M and SMPTE 274M for HDTV broadcast.

20.8.1 The Rec. 601 Digital Video Format

The ITU-R Recommendation BT.601-5 is a digital video format widely used for
television production. The luma component of the video signal is sampled at 13.5
MHz (which is an integer multiple of the line rate for both 50i and 60i standards) and
the chroma at 6.75 MHz to produce a 4:2:2 Y ′CrCb component signal. The parameters
of the sampled digital signal depend on the video frame rate (25 or 30 fps) and are
shown in Table 20.3. It can be seen that the higher (30 fps) frame rate is compensated
by a lower resolution, so the total bit rate is the same in both cases (216 Mbps).
Figure 20.13 shows the resulting active area—720 × 480 and 720 × 576—for each
case as well as the number of pixels left out to make up for horizontal and vertical
blanking intervals (shaded portion of the figure).

The Rec. 601 formats are used in high-quality (standard definition) digital video
applications. The 4:4:4 and 4:2:2 are typically used for video production and editing,
whereas the 4:2:0 variant is used for video distribution, whether on DVDs, video on
demand, or other format. The MPEG-2 compression standard was primarily developed
for compression of Rec. 601 4:2:0 signals, although it has been made flexible enough
to also handle video signals in lower and higher resolutions. The typical compression
ratio achieved by MPEG-2-encoded Rec. 601 4:2:0 videos allows a reduction in data
rate from 124 Mbps to about 4–8 Mbps.

DIGITAL VIDEO FORMATS AND STANDARDS 523

TABLE 20.3 ITU-R Recommendation BT.601-5 Parameters

525 lines, 625 lines,
Parameters 30 (29.97) fps 25 fps

Fields Per Second 60 (59.94) 50
Luma channel

Bandwidth (MHz) 5.5 5.5
Sampling frequency (MHz) 13.5 13.5
Number of samples per line 858 864
Number of samples per active line 720 720
Bits per sample 8 8
Bit rate (Mbps) 108 108

Chroma (color-difference) channels
Bandwidth (MHz) 2.2 2.2
Sampling frequency (MHz) 6.75 6.75
Number of samples per line 429 432
Number of samples per active line 355 358
Bits per sample 8 8
Bit rate (Mbps) 54 54

Total bit rate (Mbps) 216 216

FIGURE 20.13 Rec. 601 format: screen dimensions and active area for the 525/59.94/2:1
(a) and 625/50/2:1 (b) variants. Redrawn from [WOZ02].

20.8.2 The Common Intermediate Format

For video coding applications, video is often converted into an “intermediate format”
before compression and transmission. The names and frame sizes for the common
intermediate format (CIF) family are presented in Table 20.4. The CIF format has
about half of the horizontal and the vertical resolution of the Rec. 601 4:2:0. It was
primarily developed for videoconference applications. The QCIF format, whose res-
olution is half of that of CIF in either dimension—hence the prefix quarter—is used
for videophone and similar applications. Both are noninterlaced.

524 VIDEO FUNDAMENTALS

TABLE 20.4 Intermediate Formats

Format Luma Resolution (H × V)

Sub-QCIF 128 × 96
Quarter CIF (QCIF) 176 × 144
CIF 352 × 288
4 CIF 704 × 576

20.8.3 The Source Intermediate Format

The SIF source intermediate format is an ISO-MPEG format whose characteristics
are about the same as CIF. It was targeted at video applications with medium quality
such as Video CD (VCD) and video games. There are two variants of SIF: one with a
frame rate of 30 fps and a line number of 240 and the other with a frame rate of 25 fps
and a line number of 288. Both have 352 pixels per line. There is also a corresponding
set of SIF-I (2:1 interlaced) formats. SIF files are often used in connection with the
MPEG-1 compression algorithm that can reduce the necessary data rate to transmit
them from 30 to approximately 1.1 Mbps with a visual quality comparable to a stan-
dard VHS VCR tape (which is lower than broadcast SDTV). MPEG-1-based VCDs
have become all but obsolete with the popularization of MPEG-2-based DVDs. This
story might take yet another turn with the popularization of Blu-Ray high-definition
DVDs.

20.9 VIDEO COMPRESSION TECHNIQUES AND STANDARDS

In this section, we present a brief and broad overview of video compression prin-
ciples, techniques, and standards. As anticipated in Chapter 17, video compression
techniques exploit a type of redundancy not available in the case of image compres-
sion, but is quite intuitive for the case of video sequences, based on the fact that
consecutive frames in time are usually very similar. This is often called interframe
(or temporal) redundancy.

The simplest way to leverage the similarity between consecutive frames and save
bits while encoding a video sequence is to use predictive coding techniques. The
basic idea behind predictive coding is to predict the contents of frame k + 1 based
on frame k, compute the difference between the predicted and the actual frame, and
encode that difference. The simplest predictor would be one that claims that frame
k + 1 is identical to frame k, and the simplest measure of difference would be the
subtraction of one frame from the other. For certain video sequences (e.g., sequences
with fixed background and little foreground activity), this naive approach may work
surprisingly well. After all, regardless of the entropy-based technique used to convert
the differences into bits, the frame differences are likely to be small (i.e., a significant
entropy reduction will be obtained) and the bit savings will be significant.

In practice, predictive video coding techniques do better than that: they use block-
based motion estimation (ME) techniques (described in Chapter 22) to estimate

VIDEO COMPRESSION TECHNIQUES AND STANDARDS 525

motion vectors containing the amount and direction of motion of blocks of pixels
in the frame, compute a predicted frame based on the ME results, and encode the
errors (between the actual pixel values and the predicted ones). Once again, since
the differences are significantly smaller than the actual pixel motion vectors’ values,
the bit savings will be substantial. Moreover, the method will work for videos with
virtually any amount or type of motion.

There is no universally accepted taxonomy for video compression and coding
techniques. For the purposes of this book, we will classify them into four major
groups:

• Transform Based: This group includes techniques that leverage the properties
of mathematical transforms, particular the discrete cosine transform (DCT).

• Predictive: Techniques that encode the error terms obtained by comparing an
actual frame with a predicted version of that frame based on one or more of its
preceding (and succeeding) frames.

• Block-Based Hybrid: Combine transform-based techniques (applied to nonover-
lapping blocks in each frame) with predictive methods (using motion compen-
sated predictions of frame contents based on adjacent frames). Used in sev-
eral influential video coding standards, such as H.261, H.263, MPEG-1, and
MPEG-2.

• Advanced: In this group, we include techniques based on 2D shape and texture,
as well as scalable, region-based, and object-based video coding techniques used
in standards such as MPEG-4 and H.264.

20.9.1 Video Compression Standards, Codecs, and Containers

Numerous video compression standards have been proposed during the past 20 years.
Some have been widely adopted and incorporated into consumer electronics products
and services, while some others were little more than an academic exercise. Navigat-
ing the landscape of video coders and decoders (or codecs for short) can be a daunting
task: there are too many standards, their scope and applications often overlap, their
availability ranges from proprietary to open source, the terminology is not always
consistent, and their relevance can be fleeting. To compound the problem a bit fur-
ther, end users normally manipulate video files using containers (e.g., AVI or MOV)
mapping to different subsets of codecs, which cannot simply be determined by the
file extension and may not be widely supported by different video players.

To help you make sense of this picture and adopt a consistent terminology, we
will refer to a standard as a collection of official documents usually issued by an
international organization, a codec as a software implementation of one or more
standards, and a container as a file format that acts as a wrapper around the encoded
audiovisual data, additional information (e.g., subtitles), and associated metadata.
Here is an overview of relevant video coding and compression standards, codecs, and
containers at the time of this writing.

526 VIDEO FUNDAMENTALS

MPEG Standards The MPEG has overseen the development of video coding stan-
dards for consumer applications. The best-known representatives of the MPEG fam-
ily of video compression standards are MPEG-1 (for VCD quality videos), MPEG-2
(which became a standard for digital broadcast TV), and MPEG-4 (which is signifi-
cantly more complex than its predecessors and covers a broad range of applications).

ITU-T Standards The International Telecommunications Union (ITU-T) regu-
lated the standardization of video formats for telecommunication applications, for ex-
ample, video telephony and videoconferencing over conventional telephone lines. The
most prominent results of those efforts were the H.261 standard for video telephony,
the H.263 standard (and its variants) for videoconferencing, and the H.264 standard,
which would become—in a joint effort with the MPEG-4 Part 10, or MPEG-4 AVC
(for Advanced Video Coding) standard—the most successful video coding standard
of the early twenty-first century.

Open Source Codecs There are many free software libraries containing open
source implementations of popular video coding standards available online, such as
x264 (for H.264/MPEG-4 AVC), Xvid (for MPEG-4), and FFmpeg (for many formats
and standards).

Proprietary Codecs Proprietary codecs include DivX (for MPEG-4), Sorenson
(used in Apple’s QuickTime and Adobe Flash), Microsoft’s Windows Media Video
(WMV) (which is also the name of a container), and RealNetworks’s RealVideo.

Popular Video Containers The most popular video containers in use today
are the 3GP (for 3G mobile phones), Microsoft’s Advanced Systems Format (.asf,
.wma, .wmv), Microsoft’s AVI, the DivX Media Format, Adobe Systems’ Flash
Video (whose notable users include YouTube, Google Video, and Yahoo! Video),
MP4 (MPEG-4 Part 14), MPEG video file (.mpg, .mpeg), and Apple’s Quicktime
(.mov, .qt).

20.10 VIDEO PROCESSING IN MATLAB

MATLAB provides the necessary functionality for basic video processing using short
video clips and a limited number of video formats. Not long ago, the only video
container supported by built-in MATLAB functions was the AVI container, through
functions such as aviread, avifile, movie2avi, and aviinfo (explained
in more detail later). Moreover, the support was operating system dependent (on
UNIX platforms, only uncompressed AVI files are supported) and limited only to a
few codecs. Starting with MATLAB Version 7.5 (R2007b), a new library function
(mmreader) was added to extend video support to formats such as AVI, MPEG,
and WMV in a platform-dependent way: Windows machines can be used to read
AVI (.avi), MPEG-1 (.mpg), Windows Media Video (.wmv, .asf, .asx), and any for-
mat supported by Microsoft DirectShow, whereas Mac users can employ it to read

VIDEO PROCESSING IN MATLAB 527

AVI (.avi), MPEG-1 (.mpg), MPEG-4 (.mp4, .m4v), Apple QuickTime Movie (.mov),
and any format supported by QuickTime.

MATLAB’s ability to handle matrices makes it easy to create and manipulate 3D or
4D data structures to represent monochrome and color video, respectively, provided
that the video sequences are short (no more than a few minutes worth of video).
Moreover, once a frame needs to be processed individually, it can be converted to an
image using the frame2im function, which can then be processed using any of the
functions available in the Image Processing Toolbox (IPT).

Finally, it is worth mentioning that another MathWorks product, Simulink, contains
a Video and Image Processing Blockset8 that can be integrated with MATLAB and
its closest toolboxes, particularly the IPT and the Image Acquisition Toolbox (IAT).

20.10.1 Reading Video Files

The MATLAB functions associated with reading video files are as follows:

• aviread: reads an AVI movie and store the frames into a MATLAB movie
structure.

• aviinfo: returns a structure whose fields contain information (e.g., frame
width and height, total number of frames, frame rate, file size, etc.) about the
AVI file passed as a parameter.

• mmreader: constructs a multimedia reader object that can read video data from
a variety of multimedia file formats.

You will learn how to use these functions in Tutorial 20.1.

20.10.2 Processing Video Files

Processing video files usually consist of the following steps (which can embedded in
a for loop if the same type of processing is to be applied to all frames in a video):

1. Convert frame to an image using frame2im.

2. Process the image using any technique such as the ones described in Part I.

3. Convert the result back into a frame using im2frame.

20.10.3 Playing Video Files

The MATLAB functions associated with playing back video files are as follows:

• movie: primitive built-in video player
• implay: fully functional image and video player with VCR-like capabilities

You will learn how to use these functions in Tutorial 20.1. (page 528).

8A blockset in Simulink is equivalent to a toolbox in MATLAB.

528 VIDEO FUNDAMENTALS

20.10.4 Writing Video Files

The MATLAB functions associated with writing video files are as follows:

• avifile: creates a new AVI file that can then be populated with video frames
in a variety of ways.

• movie2avi: creates an AVI file from a MATLAB movie.

You will learn how to use some of these functions in Tutorial 20.1.

20.11 TUTORIAL 20.1: BASIC DIGITAL VIDEO MANIPULATION
IN MATLAB

Goal

The goal of this tutorial is to learn how to read and view video data in MATLAB, as
well as extract and process individual frames.

Objectives

• Learn how to gather video file information using the aviinfo function.
• Learn how to read video data into a variable using the aviread function.
• Explore the montage function for viewing multiple frames simultaneously.
• Learn how to play a video using the movie function and the implay movie

player.
• Learn how to convert from frame to image and vice versa using the frame2im

and im2frame functions.
• Explore techniques for assembling images into video, including the immovie

function.
• Learn how to write video data to a file using the movie2avi function.
• Learn how to read and play video files in different formats using the mmreader

function.

What You Will Need

• Test files original.avi and shopping_center.mpg.

Procedure

We will start by learning how to use built-in functions to read information about
video files and load them into the workspace. The aviinfo function takes a video
file name as its parameter and returns information about the file, such as compression
and number of frames.

TUTORIAL 20.1: BASIC DIGITAL VIDEO MANIPULATION IN MATLAB 529

Reading Information About Video Files

1. Read information about theoriginal.avi file and save it in a local variable.

file_name = ’original.avi’;
file_info = aviinfo(file_name);

2. View the video compression and the number of frames for this file.

file_info.VideoCompression
file_info.NumFrames

Question 1 What other information does the aviinfo function provide?

Question 2 Try viewing information for another AVI video file. What parameters
are different for the new file?

Reading a Video File

The function aviread allows us to load an AVI file into the MATLAB workspace.
The data are stored as a structure, where each field holds information for each frame.

3. Load the example.avi file using the aviread function.

my_movie = aviread(file_name);

Question 3 What is the size of the my_movie structure?
We can also load individual frames from a video file by specifying the frame

numbers as a second parameter.

4. Load frames 5, 10, 15, and 20.

frame_nums = [5 10 15 20];
my_movie2 = aviread(file_name, frame_nums);

Question 4 What is the size of my_movie2 structure?

Viewing Individual Frames

When we use aviread to load a movie file, each element of the structure holds
information for that particular frame. This information is stored in two fields: cdata,
which is the actual image data for that frame, and colormap, which stores the color
map for the cdata field when the image type is indexed. If the image is truecolor,
then the colormap field is left blank.

530 VIDEO FUNDAMENTALS

5. Inspect the first frame of the my_movie structure.

my_movie(1)

6. View the first frame as an image using the imshow function.

imshow(my_movie(1).cdata)

We can view all the frames simultaneously using the montage function. This
function will display images in an array all at once in a grid-like fashion.

7. Preallocate a 4D array that will hold the image data for all frames.

image_data = uint8(zeros(file_info.Height, file_info.Width, 3, ...

file_info.NumFrames));

8. Populate the image_data array with all the image data in my_movie.

for k = 1:file_info.NumFrames
image_data(:,:,:,k) = my_movie(k).cdata;

end

9. Use the montage function to display all images in a grid.

montage(image_data)

Question 5 Explain how the data for each frame are stored in the image_data
variable.

Playing a Video File

The function movie will play video data.

10. Play the video with default settings.

movie(my_movie)

Question 6 What is the default frame rate when playing a video?

11. Play the video five times with a frame rate of 30 fps.

movie(my_movie, 5, 30)

12. Play only frames 1–10.

TUTORIAL 20.1: BASIC DIGITAL VIDEO MANIPULATION IN MATLAB 531

frames = [5 1:10];
movie(my_movie, frames, 30)

Question 7 How many times will this movie play?

Question 8 At what frame rate will this movie play?
As you have probably noticed, the movie function has very limited functionality,

with no support for simple operations such as pausing and stepping through frames.
To make video analysis easier, we will use the implay function.

13. Play the movie with the implay function.

implay(my_movie)

The implay function opens a movie player with VCR-like controls and several
familiar options available on other video players, for example, Apple QuickTime or
Microsoft Windows Media Player.

Question 9 Explore the user interface of the movie player. How can we specify
the frame rate of playback?

Question 10 How do we play back the movie in a continuous loop?

Processing Individual Frames

To perform image processing operations on individual frames, we can use the
frame2im function, which will convert a specified frame to an image. Once we
have this image, we can use familiar image processing tools such as the ones de-
scribed in Part I.

14. Convert frame 10 to an image for further processing.

old_img = frame2im(my_movie(10));

15. Blur the image using an averaging filter and display the result.

fn = fspecial(’average’,7);
new_img = imfilter(old_img, fn);
figure
subplot(1,2,1), imshow(old_img), title(’Original Frame’);
subplot(1,2,2), imshow(new_img), title(’Filtered Frame’);

16. Using another frame, create a negative and display the result.

532 VIDEO FUNDAMENTALS

old_img2 = frame2im(my_movie(15));
image_neg = imadjust(old_img2, [0 1], [1 0]);
figure
subplot(1,2,1), imshow(old_img2), title(’Original Frame’);
subplot(1,2,2), imshow(image_neg), title(’Filtered Frame’);

Now that we have processed our image, we can convert it back to frame using the
im2frame function.

17. Convert the images back to frames and save the new frames in the video
structure.

my_movie2 = my_movie;
new_frame10 = im2frame(new_img);
new_frame15 = im2frame(image_neg);
my_movie2(10) = new_frame10;
my_movie2(15) = new_frame15;

Question 11 Use implay to view the new video with the two processed frames.
Which of the two is more noticeable during playback?

A straightforward way to perform processing on all frames is to use a for loop.

18. Create a negative of all the frames and reconstruct the frames into a video.

movie_neg = my_movie;
for k = 1:file_info.NumFrames

cur_img = frame2im(movie_neg(k));
new_img = imadjust(cur_img, [0 1], [1 0]);
movie_neg(k) = im2frame(new_img);

end
implay(movie_neg)

If you have an array of image data, another way to construct a video structure is
through the immovie function. This function will take an array of image data and
return a video structure.

19. Create an array of negative images from the original movie.

my_imgs = uint8(zeros(file_info.Height, file_info.Width,3, ...

file_info.NumFrames));

for i = 1:file_info.NumFrames

img_temp = frame2im(my_movie(i));

my_imgs(:,:,:,i) = imadjust(img_temp, [0 1], [1 0]);

end

TUTORIAL 20.1: BASIC DIGITAL VIDEO MANIPULATION IN MATLAB 533

20. Now construct a video structuring using the immovie function.

new_movie = immovie(my_imgs);
implay(new_movie);

Question 12 How does this procedure differ from using the im2frame function
in a loop? Is it beneficial?

Writing to a Video File

To write movies, that is, image sequences, to a video file, we use the movie2avi
function. Note that in the following steps an AVI file will be created in your current
directory, so make sure you have the permissions to do so.

21. Set the file name of the new movie to be created on disk.

file_name = ’new_video.avi’;

22. Create the AVI file.

movie2avi(new_movie, file_name, ’compression’, ’None’);

23. Read and play the resulting AVI file.

my_movie3 = aviread(file_name);
implay(my_movie3);

Reading and Playing Video Files in Different Formats

24. Use the sequence below to read and play the first 100 frames of an MPEG
movie.

obj = mmreader(’shopping_center.mpg’);
video = read(obj, [1 100]);
frameRate = get(obj,’FrameRate’)
implay(video, frameRate)

Question 13 What are the frame rate, frame width, frame height, and total number
of frames in file shopping_center.mpg?

534 VIDEO FUNDAMENTALS

FIGURE 20.14 Visual representation of a YUV file.

20.12 TUTORIAL 20.2: WORKING WITH YUV VIDEO DATA

Goal

The goal of this tutorial is to learn how to read, process, and display YUV video data9

in MATLAB.

Objectives

• Explore the contents of a YUV video file.
• Explore the readYUV function used to read in YUV video data.

What You Will Need

• Test files miss_am.yuv, foreman.yuv, and whale_show.yuv
• The readYUV.m script

Procedure

A YUV video file contains raw video data stored as separate components: the lu-
minance component Y is first, followed by the U and V chrominance components
(Figure 20.14). Owing to chroma subsampling (Section 20.7), each U and V compo-
nent contains only 1/4 of the data that Y does.

For the following steps, note that the miss_am.yuv video contains 30 frames,
each formatted as QCIF_PAL, that is, 176 × 144 pixels.

1. Ensure that your current directory contains the file miss_am.yuv.

Question 1 Based on the format and number of frames in the video, calculate the
size of the file (in kB).

Question 2 Does this value coincide with what MATLAB displays in the Current
Directory pane?

YUV files do not use headers to store any information about the video itself, for
example, frame size, frame rate, or color standard. Consequently, you must know in
advance what those parameters are and use them whenever needed. Once we obtain
this information, we can parse the video file, reading the proper data for each of

9YUV video files are very common in video processing research and will also be used in the following
chapters.

TUTORIAL 20.2: WORKING WITH YUV VIDEO DATA 535

the components and then converting it to a MATLAB video structure for further
manipulation.

To read in a YUV file, we will use the readYUV function10 and the test file
miss_am.yuv.

2. Define all relevant data before calling the readYUV function.

file_name = ’miss_am.yuv’;
file_format = ’QCIF_PAL’;
num_of_frames = 30;

3. Read the video data and display the movie using implay.

[yuv_movie, yuv_array] = readYUV(file_name, num_of_frames, ...

file_format);

implay(yuv_movie)

Question 3 Describe the contents and record the dimensions of the yuv_movie
variable.

Question 4 Describe the contents and record the dimensions of the yuv_array
variable. How is this variable different from yuv_movie?

4. Try to read and play the foreman.yuv and whale_show.yuv video files.

file_name = ’foreman.yuv’;

file_format = ’QCIF_PAL’;

num_of_frames = 25;

[yuv_movie, yuv_array] = readYUV(file_name, num_of_frames, ...

file_format);

implay(yuv_movie)

file_name = ’whale_show.yuv’;

file_format = ’NTSC’;

num_of_frames = 25;

[yuv_movie, yuv_array] = readYUV(file_name, num_of_frames, ...

file_format);

implay(yuv_movie)

Question 5 After reading both these files, show how do their sizes compare and
why?

10This function was developed by Jeremy Jacob and can be downloaded from the book web site.

536 VIDEO FUNDAMENTALS

Question 6 When using thereadYUV function, what happens if you specify more
frames than there actually are in the file?

Question 7 What happens if you specify fewer frames than there are in the file?

WHAT HAVE WE LEARNED?

• Video is the electronic representation of visual information whose spatial dis-
tribution of intensity values varies over time.

• The video signal is a 1D analog or digital signal varying over time in such a way
that the spatiotemporal information is ordered according to a predefined scanning
convention that samples the signal in the vertical and temporal dimensions.

• An analog video raster is a fixed pattern of parallel scanning lines disposed
across the image. A raster’s main parameters include the line rate, the frame
interval, the line spacing, the line interval, and the number of active lines.

• Some of the most important concepts and terminologies associated with (analog)
video processing include

– Aspect Ratio: the ratio of frame width to height.

– Vertical Resolution: the number of horizontal black and white lines in the
image (vertical detail) that can be distinguished or resolved in the picture
height; it is a function of the number of scanning lines per frame.

– Horizontal Resolution: the number of vertical lines in the image (horizontal
detail) that can be distinguished in a dimension equal to the picture height; it
is determined by the signal bandwidth in analog systems.

– Progressive Scanning: the process by which each image is scanned in one
single pass called frame.

– Interlaced Scanning: the process by which each frame is scanned in two
successive vertical passes, first the odd numbered lines and then the even
numbered ones. Each pass is called a field.

– Blanking Interval: the time interval at the end of each line (horizontal retrace)
or field (vertical retrace) during which the video signal must be blanked before
a new line or field is scanned.

– Component Video: an analog video representation scheme that uses three 1D
color component signals.

– Composite Video: an analog video representation scheme that combines lu-
minance and chrominance information into a single composite signal.

• Gamma correction is a process by which the nonlinearity of an image acquisition
or display device is precompensated (on the transmitter’s side) in such a way
as to ensure the display of the correct dynamic range of color values within the
signal.

• Color information is encoded in analog video systems in a backward-compatible
way. The (gamma-corrected) luma signal and the three (gamma-corrected)

TUTORIAL 20.2: WORKING WITH YUV VIDEO DATA 537

primary color channels are combined into color-difference signals that are then
used to modulate a color subcarrier. The frequency of the color subcarrier is care-
fully chosen so that its spectral components fit within the gaps of the existing
(monochrome) spectrum.

• The most popular analog SDTV and video standards used worldwide are NTSC
and PAL (with SECAM in a distant third place). Although they share many com-
mon ideas (interlaced scanning, QAM color modulation, etc.), these standards
use different values for most of the main raster parameters (such as lines per
frame and frames per second).

• A digital video is a sampled two-dimensional (2D) version of a continuous three-
dimensional (3D) scene. Digital video not only employs vertical and temporal
sampling—similar to analog video—but also includes horizontal sampling, that
is, sampling of pixel values along a line.

• The main parameters that characterize a digital video sequence are the frame
rate, the line number, and the number of samples per line. The product of these
three parameters times the average number of bits per pixel provides an estimate
of the data rate needed to transmit that video in its uncompressed form.

• Video digitization, or analog-to-digital conversion, involves four main steps: (1)
antialiasing filter—an optional low-pass filter used to eliminate signal frequency
components that could cause aliasing; (2) sampling—pixel values are sampled
along a horizontal line at a standardized rate; (3) quantizing—the samples are
represented using a finite number of bits per sample; and (4) encoding—the
quantized samples are converted to binary codewords.

• Chroma subsampling is the process of using a lower spatial resolution, and
consequently fewer bits, to represent the color information of a digital video
frame.

• Some of the most popular contemporary digital video formats are QCIF, CIF,
SIF, Rec. 601, SMPTE 296M, and SMPTE 274M.

• MATLAB can be used to read, process, and play back digital video files in
several different formats.

LEARN MORE ABOUT IT

• The following is a list of selected books on video processing and related fields:

– Bovik, A. (ed.), Handbook of Image and Video Processing, San Diego, CA:
Academic Press, 2000.

– Grob, B. and Herndon, C. E., Basic Television and Video Systems, 6th ed.,
New York: McGraw-Hill, 1999.

– Haskell, B. G., Puri, A., and Netravali, A. N., Digital Video: an Introduction
to MPEG-2, Norwell, MA: Kluwer Academic Publishers, 1997.

– Jack, K., Video Demystified: A Handbook for the Digital Engineer, 3rd ed.,
Eagle Rock, VA: LLH Technology Publishing, 1993.

538 VIDEO FUNDAMENTALS

– Luther, A. C. & Inglis, A. F., Video Engineering, 3rd ed., New York: McGraw-
Hill, 2000.

– Poynton, C., Digital Video and HDTV Algorithms and Interfaces, San Fran-
cisco, CA: Morgan Kaufmann, 2003.

– Poynton, C., A Technical Introduction to Digital Video, New York: Wiley,
1996.

– Robin, M. and Poulin, M., Digital Television Fundamentals: Design and In-
stallation of Video and Audio Systems, 2nd ed., New York: McGraw-Hill,
2000.

– Tekalp, A. M., Digital Video Processing, Upper Saddle River, NJ: Prentice
Hall, 1995.

– Wang, Y., Ostermann, J., and Zhang, Y.-Q., Video Processing and Communi-
cations, Upper Saddle River, NJ: Prentice-Hall, 2002.

– Watkinson, J., The Art of Digital Video, 3rd ed., Oxford: Focal Press, 2000.

– Whitaker, J. C. and Benson, K. B. (Ed.), Standard Handbook of Video and
Television Engineering, 3rd ed., New York: McGraw-Hill, 2000.

– Woods, J. W., Multidimensional Signal, Image, and Video Processing and
Coding, San Diego, CA: Academic Press, 2006.

• The book by Grob and Herndon [GH99] provides a broad and detailed coverage
of analog TV and video systems.

• Chapter 2 of [RP00] and Chapters 8 and 9 of [Jac01] describe analog video
standards in great detail.

• For more on gamma correction, please refer to Chapter 23 of [Poy03] and Section
5.7 of [BB08].

• Chapter 3 of [RP00] has a very detailed explanation of sampling, quantization,
and (component and composite) digital video standards from a TV engineering
perspective.

• Chapter 10 of [GH99] explains in detail the contents of VBI in analog TV
systems.

• Chapter 13 of [WOZ02] provides a good overview of video compression stan-
dards.

• Chapter 2 of [Wat00] contains a broad overview of video principles.

ON THE WEB

• World TV Standards
http://www.videouniversity.com/standard.htm

• Advanced Television Systems Committee (ATSC): American standards
http://www.atsc.org/

• Digital Video Broadcasting Project (DVB): European standards
http://www.dvb.org/

PROBLEMS 539

• Society of Motion Picture and Television Engineers (SMPTE)
http://www.smpte.org/home

• The MPEG home page
http://www.chiariglione.org/mpeg/

• MPEG Industry Forum
http://www.mpegif.org/

• Test images and YUV videos—Stanford University
http://scien.stanford.edu/pages/labsite/scien test images videos.php

• YUV 4:2:0 video sequences—Arizona State University
http://trace.eas.asu.edu/yuv/index.html

• Test video clips (with ground truth) from the CAVIAR project
http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/

• Charles Poynton’s “Gamma FAQ”
http://www.poynton.com/GammaFAQ.html

• Adobe digital audio and video primers
http://www.adobe.com/motion/primers.html

• Keith Jack’s blog
http://keithjack.net/

20.13 PROBLEMS

20.1 Explain in your own words the differences between composite and component
video systems in terms of bandwidth, historical context, and image quality.

20.2 The human visual system is much more sensitive to changes in the brightness
of an image than to changes in color. In other words, our color spatial resolution is
poor compared to the achromatic spatial resolution.

Knowledge of this property has been somehow embedded in the design of both
analog and digital video systems. Answer the following questions:

(a) How did this property get exploited in analog TV systems?

(b) How did it get factored into the design of digital video formats?

20.3 Provide an objective explanation as to why the luminance signal in PAL/NTSC
systems is calculated as Y = 0.299R + 0.587G + 0.114B, and not Y = (R + G +
B)/3.

20.4 Calculate the raw data rate of a digital video signal with the following char-
acteristics:

• 2:1 interlaced scanning
• 352 × 240 luminance samples per frame
• 30 frames per second
• 4:2:2 chroma subsampling

540 VIDEO FUNDAMENTALS

20.5 Regarding progressive and interlaced scanning methods,

(a) What are the pros and cons of each method?

(b) For the same line number per frame, what is the relation between the
maximum temporal frequency that a progressive raster can have and that
of an interlaced raster that divides each frame into two fields?

(c) What about the relation between the maximum vertical frequencies?

20.6 Which considerations would you use to determine the frame rate and line
number when designing a video capture or display system?

20.7 Why does a computer monitor use a higher temporal refresh rate and line
number than the one adopted by a typical TV monitor?

20.8 Regarding NTSC and PAL color TV systems,

(a) What do Y, I, and Q stand for in NTSC?

(b) What do Y, U, and V stand for in PAL?

(c) How are I and Q related to U and V?

(d) What is the relationship between NTSC’s Y, PAL’s Y, and CMY(K) color
model’s Y?

20.9 Write a MATLAB script to

(a) read an RGB color image and convert it to Y ′CrCb;

(b) subsample this image into the 4:2:0 format;

(c) upsample the Cr and Cb components to full size (4:4:4 format) and convert
the result back to RGB;

(d) Compute the difference between the original and processed RGB images.

20.10 Prove (using simple numerical calculations) that the raw data rate required
to transmit an SMPTE 295M digital video signal (1920 × 1080 luminance samples
per frame, 30 frames per second, progressive scanning, 4:2:0 chroma subsampling)
is approximately 746 Mbps.

CHAPTER 21

VIDEO SAMPLING RATE AND
STANDARDS CONVERSION

WHAT WILL WE LEARN?

• What is sampling rate conversion?
• What are the main practical aspects involved in converting a video sequence

from one format to another?
• Which steps are involved in PAL to NTSC (and vice versa) standard conversion?

21.1 VIDEO SAMPLING

As discussed in Chapter 20, although video signals vary continuously in space and
time, most TV cameras capture a video sequence by sampling it in the temporal and
vertical dimensions. The resulting signal is stored in a 1D raster scan, which is a
concatenation of the intensity (or color) variations along successive horizontal scan
lines. A third type of sampling (along each line) takes place when an analog video is
converted to a digital representation. In all three cases, the fact that selected intensity
values are being sampled (while others are being left off) implies that there might be
some loss in the process. To minimize such losses, the original video sequence should
be sampled at the highest possible sampling rate.

Practical Image and Video Processing Using MATLAB®. By Oge Marques.
© 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

541

542 VIDEO SAMPLING RATE AND STANDARDS CONVERSION

Based on Nyquist’s sampling theorem, the sampling rate in each dimension (x,
y, or t) should be at least twice the highest frequency along that direction. On the
other hand, studies of the human visual system (HVS) (see Appendix A) have shown
that our visual system cannot distinguish spatial and temporal variations beyond
certain high frequencies. Consequently, the visual cutoff frequencies—which are the
highest spatial and temporal frequencies that can be perceived by the HVS—should
be the driving factor in determining the sampling rates for video. After all, there is
no need to accommodate frequency components beyond those values. In addition to
the frequency content of the underlying signal and the visual thresholds in terms of
spatial and temporal cutoff frequencies imposed by the HVS, video sampling rates are
also determined by the capture and display device characteristics and the associated
processing, storage, and transmission costs.

Video sampling is a complex problem that can be mathematically modeled using
lattice theory, which is beyond the scope of this book.1 Lattice theory provides an
elegant framework to model relationships between the engineering decisions that
require adopting less than ideal sampling rates and the impact of those decisions on
the frequency-domain representation of the sampled signals.

One of the consequences of using relatively low sampling rates is the problem of
aliasing, which can manifest itself within a frame (spatial aliasing) or across multiple
frames (temporal aliasing). Spatial aliasing, which is common to images and videos,
particularly the appearance of Moiré patterns, was discussed in Chapter 5. Temporal
aliasing is a related phenomenon, particularly noticeable in video sequences where
wheels sometimes appear to move backward and slower, in what is known as the
wagon wheel effect (also known as the reverse rotation effect).

21.2 SAMPLING RATE CONVERSION

The sampling rate conversion problem consists in converting a video sequence with
a certain spatial and temporal resolution into another sequence in which one or more
of those parameters have changed. Sampling rate conversion falls within one of the
following two cases:

• When the original sequence contains less sampling points than the desired result,
the problem is known as up-conversion (or interpolation). Up-conversion usually
consists of filling all points that are in the desired video sequence but not in the
original one with zeros (a process known as zero padding), and then estimating
the values of these points, which is accomplished by an interpolation filter.
Examples of up-conversion involving contemporary TV and video standards
include

– 480i59.94 to 720p59.94

– 480i59.94 to 1080i59.94

1See Chapter 3 of [WOZ02] for a good explanation of video sampling using lattice theory.

STANDARDS CONVERSION 543

– 576i50 to 576p50

– 576i50 to 1080i50

In practice, up-conversion requires increase in resolution and calls for
deinterlacing techniques (see Section 21.3.1).

• When the original sequence contains more sampling points than the desired re-
sult, the problem is known as down-conversion (or decimation). This is not as
simple as just removing additional samples from the original sequence, which
would cause aliasing in the down-sampled signal. Proper down-conversion re-
quires applying a prefilter to the signal to limit its bandwidth, therefore avoiding
aliasing. In Tutorial 21.1 (page 548), you will learn how to perform line down-
conversion using MATLAB.

21.3 STANDARDS CONVERSION

Sampling rate conversion is also sometimes referred to as standards conversion. In
the context of this book, a standard can be defined as a video format that can be
specified by a combination of four main parameters: color encoding (composite/
component), number of lines per field/frame, frame/field rate, and scanning method
(interlaced/progressive). Hence, standard conversion will be understood as the process
of converting one or more of those parameters into another format. Contemporary
standard conversion examples include

• Frame and line rate conversion, for example, 1250i50 to 525i60 and 625i50 to
1250i50.

• Color standard conversion, for example, PAL to NTSC (see Section 21.3.2).
• Line and field doubling, for example, 625i50 to 1250i100.
• Film to video conversion, for example, 24 Hz film to 60 Hz video, a process

known as 3:2 pull-down (see Section 21.3.5).

21.3.1 Deinterlacing

The problem of deinterlacing is to fill in the skipped lines in each field, as shown in
Figure 21.1.

Deinterlacing can be achieved with the use of relatively simple methods2 (which
can be treated as filters in the spatio-temporal domain) that fall into the following
categories:

• Vertical interpolation within the same field

– Line Averaging: a simple filter in which the missing line is estimated by
averaging the lines above and below: D = (C + E)/2.

2In Tutorial 21.2 (page 550), you will learn how to perform basic deinterlacing methods using MATLAB.

544 VIDEO SAMPLING RATE AND STANDARDS CONVERSION

FIGURE 21.1 The deinterlacing process. Fields t and t + 1 form one interlaced frame.

– Line Averaging Variant: improves the vertical frequency response upon the
previous technique, bringing it closer to the desired (ideal) low-pass filter. In
this technique, the missing line is calculated as D = (A + 7C + 7E + G)/16.

• Temporal interpolation

– Field Merging: technique by which the deinterlaced frame is obtained by
combining (merging) the lines from both fields: D = K and J = C. The
frequency response of the equivalent filter shows an all-pass behavior along
the vertical axis and a low-pass behavior along the temporal axis.

– Field Averaging: improved alternative in which D = (K + R)/2, which re-
sults in a filter with better (symmetric) frequency response along the vertical
axis. The main disadvantage of this technique is that it involves three fields
for interpolating any field, increasing storage and delay requirements.

• Temporal interpolation and vertical interpolation combined

– Line and Field Averaging: a technique designed with the goal of achieving
a compromise between spatial and temporal artifacts, in which the missing
line is calculated as D = (C + E + K + R)/4. The frequency response of
the equivalent filter is close to ideal, but the method requires storage of two
frames.

When there is little or no motion between the two fields, the missing even lines in
an odd field should be exactly the same as the corresponding even lines in the previous
and the following even field. In these cases, temporal interpolation will yield perfect
results. On the other hand, when there is motion in the scene, the corresponding
lines in adjacent fields may not correspond to the same object location and temporal
interpolation will result in unacceptable artifacts, such as double images. In these
cases, although the results of vertical interpolation methods may be acceptable (at the

STANDARDS CONVERSION 545

FIGURE 21.2 A practical method for converting PAL to NTSC formats.

cost of lower spatial resolution), the preferred alternative is to use motion-adaptive
and motion-compensated interpolation methods.

21.3.2 Conversion between PAL and NTSC Signals

The conversion between PAL and NTSC signals (which in fact should be called 625i50
to 525i60 conversion) provides a practical example of line number and frame rate
conversions combined. This is a particularly challenging technical problem because
the vertical and temporal sampling rates of the two video sequences are not integer
multiples of each other.

In practice, the problem can be solved in four steps (Figure 21.2):

1. Deinterlacing each field in the PAL signal, resulting in a 625-line frame.

2. Line rate down-conversion from 625 to 525 within each deinterlaced frame.

3. Frame rate up-conversion from 50 to 60 Hz.

4. Splitting each frame into two interlacing fields.

The PAL to NTSC conversion process can be further optimized by

• Replacing the 625-to-525 lines conversion by an equivalent 25-to-21 lines con-
version problem.

• Performing the temporal conversion from 50 to 60 Hz by converting every five
frames to six frames.

The process of converting NTSC video to its PAL equivalent follows a similar
sequence of steps, with obvious modifications: the line rate undergoes up-conversion
(from 525 to 625), while the frame rate is down-converted (from 60 to 50 Hz). In
Tutorial 21.3 (page 556), you will learn how to perform NTSC to PAL conversion
using MATLAB.

21.3.3 Color Space Conversion

Color space conversion is the process of transforming the input color space to that of
the output. As discussed previously, there are multiple color spaces in use by different
video systems. To ensure the best possible color reproduction quality when converting
from one standard to another, it might be necessary to adjust the RGB primaries and
the white point to account for the differences in the standards.

546 VIDEO SAMPLING RATE AND STANDARDS CONVERSION

In particular, the conversion from Rec. 601 SDTV images to SMPTE 274M HDTV
images requires a manipulation of the color matrices to account for, among other
things, the different phosphors used in HDTV monitors [Dea01].

The SMPTE 125M—Rec. 601 (Standard Definition) standard uses SMPTE RP145
for chromaticity coordinates:3

• Red (x = 0.6400, y = 0.3300)
• Green (x = 0.3000, y = 0.6000)
• Blue (x = 0.1500, y = 0.0600)
• White (x = 0.3127, y = 0.3290)
• Y ′ = 0.2126R′ + 0.7152G′ + 0.0722B′
• U = −0.1146R′ − 0.3854G′ + 0.5000B′
• V = 0.5000R′ − 0.4542G′ − 0.0458B′

The SMPTE 274M/296M—1080i/720p (High Definition) standard uses ITU-R
BT.709 for all colorimetry measurements:

• Red (x = 0.6300, y = 0.34004)
• Green (x = 0.3100, y = 0.5950)
• Blue (x = 0.1550, y = 0.0700)
• White (x = 0.3127, y = 0.3290)
• Y ′ = 0.2990R′ + 0.5870G′ + 0.1140B′
• U = −0.1690R′ − 0.3310G′ + 0.5000B′
• V = 0.5000R′ − 0.4190G′ − 0.0810B′

Color space conversion can be performed by applying a linear transformation to
the gamma-corrected components, which produces errors that are still acceptable for
most applications. High-end format converters perform additional inverse gamma
correction before the linear transformation stage and restore gamma correction after
the colors have been linearly mapped to the desired color space, a process that is
significantly more complex and expensive to implement [Dea01].

21.3.4 Aspect Ratio Conversion

Aspect ratio (AR) conversion is another aspect that must be addressed when per-
forming certain types of conversion, for example, from SDTV (4:3 aspect ratio) to
HDTV (16:9 aspect ratio) or from “widescreen” movies (AR greater or equal to 1.85)
to a “full screen” SDTV equivalent (AR equal to 1.33). AR conversion techniques
include cropping, stretching, or squeezing each frame, which are not very complex
operations. These operations do, however, bring about a number of creative issues

3See Section 16.1.2 for an explanation of basic concepts related to chromaticity.

STANDARDS CONVERSION 547

FIGURE 21.3 3:2 pull-down. Redrawn from [Ack01].

related to how frames can be resized and reshaped while keeping most of the contents
as intended by the author of the original sequence.

21.3.5 3:2 Pull-Down

3:2 pull-down4 refers to a technique used to convert material originated at 24 frames
per second (fps), typically shot on film, to 30 or 60 fps video for broadcast.5 In the case
of 30 fps interlaced television, this means that each film of four frames is converted
to 10 fields or 5 frames of video. In the case of 60 fps progressive scan television,
each film of four frames is converted into 10 frames of video.

Figure 21.3 shows the 3:2 pull-down process for converting film material to in-
terlaced video. The film frames are labeled A, B, C, and D; the video frames are
numbered 1–5 and the corresponding video fields are called A1, A2, B1, B2, B3, C1,
C2, D1, D2, and D3. Note that video frame 3 will contain video from film frames
B and C and video frame 4 will contain video from film frames C and D. This is
potentially problematic and may cause mixed frames to appear in the resulting video
sequence when a scene change has occurred between a B and a C frame or between
a C and a D frame in the original film sequence.

Another technical issue associated with the conversion from motion picture films
to their standard video equivalent (a process known as telecine) is the appearance
of judder. Judder is a motion artifact that causes smooth motion in the original film
sequence to appear slightly jerky when telecined. Judder is particularly apparent
during slow, steady camera movements. Figure 21.4 shows how the process of copying
film frames into video fields using 3:2 pull-down causes the smooth optic flow in the

43:2 pull-down is also known as 2:3 pull-down in some references, for example, [Ack01].
5The process of 3:2 pull-down is necessary only for video formats based on 60 Hz. In 50 Hz systems, the
film is simply transferred from 24 to 25 fps (50 fields/s) by running the telecine 4% faster than normal.

548 VIDEO SAMPLING RATE AND STANDARDS CONVERSION

FIGURE 21.4 The problem of judder in telecine using 3:2 pull-down. Redrawn from
[Wat94b].

original film sequence to become jerky, with no motion for two or three fields followed
by sudden jumps in motion.

21.4 TUTORIAL 21.1: LINE DOWN-CONVERSION

Goal

The goal of this tutorial is to learn how to perform line down-conversion on a video
sequence.

Objectives

• Learn how to extract a YUV frame from a video sequence using the readYUV
function.

• Explore the MATLAB resample function to perform up- and down-
conversion.

• Explore line down-conversion using the downConversion function.

What You Will Need

• MATLAB files readYUV.m and downConversion.m6

• Test file miss_am.yuv

6These functions were developed by Jeremy Jacob and can be downloaded from the book web site.

TUTORIAL 21.1: LINE DOWN-CONVERSION 549

Procedure

We will use the readYUV function to read an individual frame from a YUV video
file. Recall that when we use this function, both a MATLAB video structure and the
YUV frame(s) are returned.

1. Read in the first frame of the miss_am.yuv file.

filename = ’miss_am.yuv’;
fileformat = ’QCIF_PAL’;
numframes = 1;
[movie, yuv] = readYUV(filename, numframes, fileformat);

The function resamplewill resample an image by a factor of p/q, where p and q
are defined in the function call. Note that this function will resample only the columns
of a matrix, so we must perform the operation twice: once on the transpose of the
image and once on the transpose of the transpose, which will bring back the original
orientation.

2. Resample the Y component of the frame by a factor of 2.

currY = yuv(:, :, 1, 1);
currY_res = double(currY);
currY_res = resample(currY_res’, 2, 1);
currY_res = resample(currY_res’, 2, 1);

Question 1 What is the size of the currY_res image? How does this relate to
the original image (currY)?

To perform line down-conversion, we use the downConversion function.

3. Perform line down-conversion on the current frame.

currY_dwn = downConversion(currY_res);
figure, subplot(1,2,1), imshow(uint8(currY_res)), ...

title(’2X resampled frame’);
subplot(1,2,2), imshow(uint8(currY_dwn)), ...

title(’line down-converted frame’);

Question 2 How does the size of the converted image compare to the original
resampled image?

4. Crop the original image at the bottom and compare it with the line down-
converted image.

550 VIDEO SAMPLING RATE AND STANDARDS CONVERSION

[r, c] = size(currY_dwn);
currY_crp = currY_res(1:r,:);
figure, subplot(1,2,1), imshow(uint8(currY_dwn)), ...

title(’Line down-converted’);
subplot(1,2,2), imshow(uint8(currY_crp)), ...

title(’Cropped’);

Question 3 How does line down-conversion compare to cropping an image?

21.5 TUTORIAL 21.2: DEINTERLACING

Goal

The goal of this tutorial is to learn several methods for deinterlacing a video sequence.

Objectives

• Learn how to obtain the two fields (top and bottom) of an interlaced movie frame.
• Explore deinterlacing by spatial interpolation.
• Explore deinterlacing by line averaging.
• Learn how to perform deinterlacing by temporal interpolation: field merging and

field averaging methods.
• Explore deinterlacing by line and field averaging.
• Learn how to create a new YUV frame composed of the deinterlaced Y frame

and the U, V color component frames.

What You Will Need

• readYUV.m
• Test file foreman.yuv

Procedure

To begin working with interlaced frames, we will read three frames of a YUV video
sequence using the readYUV function.

1. Set the appropriate variables and read in the first three frames of the
foreman.yuv video file.

filename = ’foreman.yuv’;
numframes = 3;
fileformat = ’QCIF_PAL’;
[mov,yuv] = readYUV(filename, numframes, fileformat);

TUTORIAL 21.2: DEINTERLACING 551

For the first exercise, we will need only one frame, so we will use the second
frame in the sequence. Later we will see that having a frame before and after it will
be useful.

2. Extract the Y component of the second frame and store its size for later use.

currY = yuv(:, :, 1, 2);
[rows, cols] = size(currY);

Question 1 Explain how the statementcurrY = yuv(:, :, 1, 2); above
extracts the Y component of the second frame.

Interlacing

To simulate interlaced frames, we can simply extract the even lines and store them in
one variable and the odd lines in another.

3. Create interlaced frames and display them with the original Y component.

topField = currY(1:2:rows,:);
bottomField = currY(2:2:rows,:);
figure, subplot(2,2,1), imshow(uint8(currY));
subplot(2,2,3), imshow(uint8(topField));
subplot(2,2,4), imshow(uint8(bottomField));

4. Restore the interlaced frames to the original size of the frame by filling the
blank lines with zeros.

topField2 = zeros(rows,cols);
bottomField2 = zeros(rows,cols);
topField2(1:2:rows,:) = topField;
bottomField2(2:2:rows,:) = bottomField;
figure, subplot(2,2,1), imshow(uint8(currY));
subplot(2,2,3), imshow(uint8(topField2));
subplot(2,2,4), imshow(uint8(bottomField2));

The lines in the interlaced frames may look distorted due to the resolution at
which MATLAB displays the images in the figure. To see a particular frame without
distortion, display the frame in its own figure without any subplots.

Line Averaging

We can use spatial interpolation to generate a full frame from an interlaced frame. To
do this, we average two lines together and use this to fill in the missing lines.

552 VIDEO SAMPLING RATE AND STANDARDS CONVERSION

5. Deinterlace the top and bottom frames using line averaging.

deIntField1 = topField2;
deIntField2 = bottomField2;
for m=1:2:rows-2

for n=1:cols
lineAverage1(m+1,n) = (deIntField1(m,n) + ...

deIntField1(m+2,n)) / 2;
end

end
lineAverage1(1:2:rows,:) = topField2(1:2:rows,:);
for m=2:2:rows-1

for n=1:cols
lineAverage2(m+1,n)=(bottomField2(m,n) + ...

bottomField2(m+2,n)) / 2;
end

end
lineAverage2(2:2:rows,:) = bottomField2(2:2:rows,:);

6. Display the results.

figure
subplot(2,2,1), imshow(uint8(currY)), ...

title(’Original frame’);
subplot(2,2,3), imshow(uint8(lineAverage1)), ...

title(’Top field averaged’);
subplot(2,2,4), imshow(uint8(lineAverage2)), ...

title(’Bottom field averaged’);

The deinterlaced top frame, stored in lineAverage1, is missing one line, as
you might have noticed by inspecting its dimensions compared to the original frame.
This last line is skipped in the above procedure because there is no line available
below (since it is the last line in the frame). Therefore, we will add a line of zeros just
to keep the dimensions consistent.

7. Compensate for the missing line in the lineAverage1 frame.

lineAverage1(rows,:) = zeros(1,cols);

8. Display the results.

figure
subplot(2,2,1), imshow(uint8(currY))
subplot(2,2,3), imshow(uint8(lineAverage1))
subplot(2,2,4), imshow(uint8(lineAverage2))

TUTORIAL 21.2: DEINTERLACING 553

Question 2 This “missing line effect” is also noticeable in lineAverage2 (the
bottom field), but it is at the top of the frame. Why do you think we need to compensate
for this in the top field but not the bottom?

Question 3 What are the visual differences between the original frame and the
deinterlaced frame?

We can use the imabsdiff function to see how the interpolated frames compare
to the original.

9. Display the difference between the top and bottom fields to the original frame.

dif1 = imabsdiff(double(currY), lineAverage1);

dif2 = imabsdiff(double(currY), lineAverage2);

figure

subplot(1,2,1), imshow(dif1,[]), title(’Difference of top field’);

subplot(1,2,2), imshow(dif2,[]), title(’Difference of bottom field’);

Because we already have the U and V components available, we can combine
them with one of the new interpolated frames to see what it would look like as an
RGB image.

10. Convert the interpolated top field to an RGB image using the original U and V
components.

yuv_deint = yuv(:,:,:,2);

yuv_deint(:,:,1) = lineAverage1;

rgb_deint = ycbcr2rgb(uint8(yuv_deint));

rgb_org = ycbcr2rgb(uint8(yuv(:,:,:,2)));

figure

subplot(1,2,1), imshow(rgb_org), title(’Original Frame’)

subplot(1,2,2), imshow(rgb_deint), title(’Interpolated top field’)

Question 4 How does the interpolated RGB image compare to its original?
Of course, since we have both top and bottom fields, we can merge them, which

will result in the original image.

11. Merge the two fields into a single frame.

mergeFields = zeros(rows, cols);
mergeFields(1:2:rows,:) = topField2(1:2:rows,:);
mergeFields(2:2:rows,:) = bottomField2(2:2:rows,:);
figure
subplot(1,2,1), imshow(uint8(currY)), ...

title(’Original frame’);

554 VIDEO SAMPLING RATE AND STANDARDS CONVERSION

subplot(1,2,2), imshow(uint8(mergeFields)), ...
title(’Merged fields’);

Question 5 Show that this frame is equivalent to the original by using the
imabsdiff function.

Field Averaging

Deinterlacing by field averaging requires information from both the preceding frame
and the next frame in the sequence. To perform the averaging, we use the lines from
the bottom field of the previous frame and the next frame to calculate the missing
lines for the top field of the current frame. Similarly, we will use the lines from the
top field in the previous and next frames to calculate the missing lines in the bottom
field of the current frame.

12. Close any open figures.

13. Display the Y components of the previous, current, and next frame.

prevY = yuv(:, :, 1, 1);

nextY = yuv(:, :, 1, 3);

figure

subplot(1,3,1), imshow(uint8(prevY)), title(’Previous Frame’);

subplot(1,3,2), imshow(uint8(currY)), title(’Current Frame’);

subplot(1,3,3), imshow(uint8(nextY)), title(’Next Frame’);

14. Extract the top and bottom fields for both the previous and next frames.

topFieldPrev = zeros(rows,cols);
topFieldNext = zeros(rows,cols);
topFieldCurr = topField2;
bottomFieldPrev = zeros(rows,cols);
bottomFieldNext = zeros(rows,cols);
bottomFieldCurr = bottomField2;
topFieldPrev(1:2:rows,:) = prevY(1:2:rows,:);
topFieldNext(1:2:rows,:) = nextY(1:2:rows,:);
bottomFieldPrev(2:2:rows,:) = prevY(2:2:rows,:);
bottomFieldNext(2:2:rows,:) = nextY(2:2:rows,:);

15. Perform the averaging.

for m=2:2:rows
for n=1:cols

fieldAverage1(m,n)=(bottomFieldPrev(m,n) + ...
bottomFieldNext(m,n)) / 2;

TUTORIAL 21.2: DEINTERLACING 555

end
end
fieldAverage1(1:2:rows,:) = topFieldCurr(1:2:rows,:);
for m=1:2:rows

for n=1:cols
fieldAverage2(m,n) = (topFieldPrev(m,n) + ...

topFieldNext(m,n)) / 2;
end

end
fieldAverage2(2:2:rows,:) = bottomFieldCurr(2:2:rows,:);

16. Display the results.

figure
subplot(1,2,1), imshow(uint8(fieldAverage1)), ...

title(’Top field’);
subplot(1,2,2), imshow(uint8(fieldAverage2)), ...

title(’Bottom field’);

Question 6 How does this technique compare to line averaging? More specifically,
under what circumstances does this technique perform better/worse than the line
averaging scheme?

Line and Field Averaging

Deinterlacing by line and field averaging also requires information from the previous
and the next frame. This method is a combination of line averaging and field averaging.
The missing line of the current top field is filled with the previous and next line of the
current top field averaged together with the lines from the bottom field in the previous
frame and lines from the bottom field in the next frame.

17. Perform line and field averaging using the frame fields previously defined.

for m=2:2:rows-2

for n=1:cols

lineFieldAverage1(m,n) = (topFieldCurr(m-1,n) + ...

topFieldCurr(m+1,n)+ ...

bottomFieldPrev(m,n) + ...

bottomFieldNext(m,n)) / 4;

end

end

lineFieldAverage1(1:2:rows,:) = topFieldCurr(1:2:rows,:);

for m=3:2:rows

for n=1:cols

556 VIDEO SAMPLING RATE AND STANDARDS CONVERSION

lineFieldAverage2(m,n) = (bottomFieldCurr(m-1,n) + ...

bottomFieldCurr(m+1,n) + ...

topFieldPrev(m,n) + ...

topFieldNext(m,n)) / 4;

end

end

lineFieldAverage2(2:2:rows,:) = bottomFieldCurr(2:2:rows,:);

figure

subplot(1,2,1), imshow(uint8(lineFieldAverage1)), ...

title(’Top field’);

subplot(1,2,2), imshow(uint8(lineFieldAverage2)), ...

title(’Bottom field’);

Question 7 How does line and field averaging compare to just field averaging?

21.6 TUTORIAL 21.3: NTSC TO PAL CONVERSION

Goal

The goal of this tutorial is to learn how to convert an NTSC formatted video sequence
to its equivalent in the PAL format.

Objectives

• Explore the steps in the function ntsc2pal, which converts NTSC video to
PAL video.

What You Will Need

• MATLAB m-files readYUV.m, ntsc2pal.m, downConversion.m, and
deinterlace.m

• Test file whale_show.yuv

Procedure

The MATLAB function ntsc2pal.m7 performs the NTSC to PAL conversion.

1. Open ntsc2pal.m in the MATLAB Editor and answer the questions below.

Question 1 What deinterlacing method is used in this case?

7This function was developed by Jeremy Jacob and can be downloaded from the book web site.

TUTORIAL 21.4: 3:2 PULL-DOWN 557

Question 2 What other deinterlacing possibilities are available with the
deinterlace function used in the above code? If we were to use other methods,
would we need to change the code for it to work?

Let us now perform an NTSC to PAL conversion of the whale_show.yuv video
sequence.8

2. Load the first 30 frames of the YUV video sequence whale_show.yuv using
the readYUV function.

[mov_org, yuv_org] = readYUV(’whale_show.yuv’, 30, ’NTSC’);

3. Convert the video sequence to PAL.

[mov_new, yuv_new] = ntsc2pal(yuv_org);

Question 3 Inspect the dimensions of the original YUV array and the new YUV
array. How do they compare?

Question 4 Why is the number of frames in the new video sequence different from
the original?

4. Use the implay function to view the original and new video sequences (one at
a time, or simultaneously if enough system resources are available). Be sure to
set the frame rate appropriately (30 fps for the original and 25 fps for the new
video).

Question 5 Subjectively, how does the quality of the new video sequence compare
to the original?

21.7 TUTORIAL 21.4: 3:2 PULL-DOWN

Goal

The goal of this tutorial is to learn how to convert from 24 fps film to 30 fps NTSC
video using the 3:2 pull-down method.

Objectives

• Explore the steps in the function pulldown_32, which converts 24 fps film
to 30 fps video.

8Note that when the function runs, it uses a lot of memory resources, and so it is recommended that you
close any other programs you are not currently using in order to free system resources.

558 VIDEO SAMPLING RATE AND STANDARDS CONVERSION

What You Will Need

• readYUV.m
• pulldown_32.m
• Test file whale_show.yuv

Procedure

This tutorial teaches the process of converting 24 fps film to standard 30 fps NTSC
video using the 3:2 pull-down method, implemented in functionpulldown_32.m.9

1. Load the whale_show.yuv video file, but load only the first 24 frames.

[mov_org, yuv_org] = readYUV(’whale_show.yuv’, 24, ’NTSC’);

2. Perform a 3:2 pull-down conversion on the video sequence.

[mov_new, yuv_new] = pulldown_32(yuv_org);

Question 1 Use implay to compare the quality between the original and con-
verted video sequences.

Question 2 Write a small script that will simply copy the first four frames and
generate the fifth frame by making a copy of the fourth. How does this compare to
the 3:2 pull-down method?

WHAT HAVE WE LEARNED?

• Sampling rate conversion is a common technical problem in video process-
ing. Particular cases include up-conversion, down-conversion, deinterlacing, and
conversion between PAL and NTSC signals.

• The choice of sampling frequencies to be used in the spatial and temporal di-
rections depends on the frequency content of the underlying signal, the visual
thresholds in terms of the spatial and temporal cutoff frequencies, the capture
and display device characteristics, and the associated processing, storage, and
transmission costs.

• The sampling artifact known as aliasing can be minimized—but not eliminated
completely—by a proper selection of sampling rates. In specific video sequences
(e.g., scenes containing fine striped patterns or moving wheels), some (spatial
or temporal) aliasing may still be noticeable.

9This function was developed by Jeremy Jacob and can be downloaded from the book web site.

PROBLEMS 559

• Converting a video sequence from one format to another is a technologically
challenging and economically expensive problem.

• PAL to NTSC conversion involves four main steps: (1) deinterlacing each field
in the PAL signal, resulting in a 625-line frame, (2) line rate down-conversion
from 625 to 525 within each deinterlaced frame, (3) frame rate up-conversion
from 50 to 60 Hz, and (4) splitting each frame into two interlacing fields.

LEARN MORE ABOUT IT

• E. Dubois (in [Bov00a], Chapter 7.2) presents a good summary of video sampling
and interpolation.

• Chapters 3 and 4 of [WOZ02] and Chapters 3 and 4 of [Tek95] discuss video
sampling and sampling rate conversion using lattice theory as a framework.

• Chapters 16–18 of [Poy03] offer a detailed view of the processes of sampling,
filtering, resampling, and reconstruction for 1D, 2D, and 3D signals.

• The booklet by Watkinson [Wat94b] explains standards conversion techniques
from an engineering standpoint.

• Two articles by Ackerman [Ack01,Ack02] discuss standards conversion—
particularly 3:2 pull-down, color space, and aspect ratio conversion—in more
detail.

• Chapter 16 of [Tek95] provides a detailed coverage of standards conversion
principles and techniques.

• Chapter 7 of [Jac01] and Chapters 36 and 37 of [Poy03] discuss standards con-
version, deinterlacing, and 3:2 pull-down, among many other video processing
techniques.

21.8 PROBLEMS

21.1 Explain in your own words the phenomenon known as aliasing in video pro-
cessing. In which situations is aliasing more visible? How can it be prevented/reduced?

21.2 The notion of sampling is usually associated with digitization (analog-to-
digital conversion). Give one example of sampling in the analog domain.

CHAPTER 22

DIGITAL VIDEO PROCESSING
TECHNIQUES AND APPLICATIONS

WHAT WILL WE LEARN?

• What is motion estimation (ME) and why is it relevant?
• Which techniques and algorithms can be used to estimate motion within a video

sequence?
• Which techniques can be used to filter a video sequence?
• What is the role of motion compensation (MC) in video filtering?

22.1 FUNDAMENTALS OF MOTION ESTIMATION AND MOTION
COMPENSATION

Motion is an essential aspect of video sequences. The ability to estimate, analyze, and
compensate for relative motion is a common requirement of many video processing,
analysis and compression algorithms and techniques. In this section, we present the
fundamental concepts associated with motion estimation and compensation.

Motion estimation is the process of analyzing successive frames in a video sequence
to identify objects that are in motion. The motion of an object is usually described by
a two-dimensional (2D) motion vector (MV), which encodes the length and direction
of motion.

Practical Image and Video Processing Using MATLAB®. By Oge Marques.
© 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

561

562 DIGITAL VIDEO PROCESSING TECHNIQUES AND APPLICATIONS

FIGURE 22.1 Two frames at different time instants (t1 and t1 + �t) and the resulting optical
flow. Redrawn from [SHB08].

Many two-dimensional motion estimation algorithms are based on the concept
of optical flow, which can be defined as the pattern of apparent motion of objects,
surfaces, and edges in a visual scene. The optical flow—and consequently the apparent
motion—can be computed by measuring variations (i.e., gradients) of intensity values
over time. The resulting pattern is a vector field—known as the optical flow field—
containing the motion vectors for each support region (e.g., pixel, block, or region)
in the frame, representing the best approximation of the 3D motion of object points
across the 2D frame. Figure 22.1 shows a schematic example of two consecutive
frames and the resulting optical flow.

Optical flow computations1 are based on two assumptions [SHB08]:

1. The observed brightness of an object is constant over time. This is referred to
as the constant intensity assumption.

2. Points that are spatially close to one another in the image plane tend to move
in a similar manner (the velocity smoothness constraint).

The two-dimensional motion estimation techniques aim at encoding motion infor-
mation from intensity and color values obtained from the frames in a video sequence.
This is a complex problem for many reasons, such as the following:

• The actual scene is three dimensional (and so are the objects in it), but 2D
motion estimation algorithms have access only to a 2D representation of it.
Consequently, these algorithms must rely on the apparent motion of the objects
relative to the frame, which does not always correspond to true motion in the
original scene.

There are many cases in which actual object motion would go undetected or—
conversely—a 2D motion estimation algorithm would estimate motion where
none existed. An example of the former would be a sphere rotating on its own

1The complete mathematical formulation of optical flow methods is beyond the scope of this text. Refer
to “Learn More About It” section at the end of the chapter for references.

FUNDAMENTALS OF MOTION ESTIMATION AND MOTION COMPENSATION 563

axis. The latter problem can arise as a result of lighting variations, distracting
objects, or many other scenarios.

• We can speak of motion only in relative terms, that is, by measuring how camera
(or observer), objects of interest, and background move relatively to one another.
There are six general cases to consider:

1. Still camera, single moving object, constant background.

2. Still camera, several moving objects, constant background.

3. Still camera, single moving object, moving (cluttered) background.

4. Still camera, several moving objects, moving (cluttered) background.

5. Moving camera, fixed object(s), constant background.

6. Moving camera, several moving objects, moving (cluttered) back-
ground.

Most motion estimation algorithms in use today can handle the first two cases
rather easily. There is a significant amount of ongoing work on cases where
the background is complex and contains motion (e.g., wavering tree branches,
light reflected on the ocean, etc.). The fifth case is usually treated as a separate
problem, for which the goal is to determine the type and amount of camera
movement. Finally, the sixth category is beyond the reach of contemporary
computer vision solutions.

• There is an inherent ambiguity in the process of estimating motion based on
edges of objects within the frame, which is known in the vision literature as
the aperture problem, illustrated in Figure 22.2. If we view the image through a
small circular aperture, we cannot tell exactly where a point (xi, yi) on an edge
moves to. Optical flow-based ME algorithms usually rely on the motion vector
perpendicular to the edge (indicated as �un), suggesting that the edge has moved
up and to the right in this case. Clearly, it is possible that the actual motion was

FIGURE 22.2 The aperture problem.

564 DIGITAL VIDEO PROCESSING TECHNIQUES AND APPLICATIONS

different—from purely up (indicated as �u) to purely to the right—but there is no
way to know it for sure.

• ME algorithms must work at a level of granularity that is appropriate to the task
at hand. Representing a MV for each pixel is usually not a good idea, and neither
is using a single MV for the entire frame. Many algorithms find a compromise
between these two extreme cases, by working with nonoverlapping blocks.

• In many cases (e.g., object tracking applications), we might be interested in
computing the motion of objects in the scene, which presupposes that they can
be accessed as individual entities. This increases the complexity of the overall
solution, since it would require (accurate) object segmentation before the ME
calculations.

• ME methods strongly depend on the intended application. For example, in video
compression applications, the main goal of ME algorithms is to generate mo-
tion vectors that allow a decoder to re-create a frame based on the motion-
compensated differences between the current frame and a previously decoded
frame, while saving bits in the process. In motion-compensated standards conver-
sion, on the other hand, the goal is to align the interpolation axis to the direction
of motion of objects across multiple frames, and therefore reduce artifacts such
as judder.

Motion compensation is the process by which the results of the motion estimation
algorithms (usually encoded in the form of motion vectors) are employed to improve
the performance of video processing algorithms. In its simplest case (e.g., a linear
camera motion such as panning), motion compensation computes where an object of
interest will be in an intermediate target field/frame and then shifts the object to that
position in each of the source fields/frames.

In more general cases, the results of the motion estimation algorithm (i.e., the
motion vectors) are used to create the equivalent of interpolation axes, aligned with
the trajectory of each moving object (Figure 22.3). This causes a significant reduc-
tion in motion and temporal aliasing and has a dramatic positive effect on the output
of motion-compensated algorithms for tasks such as interframe filtering (see Sec-
tion 22.4.2), de-interlacing (see Section 21.3.1), and standards conversion (see Sec-
tion 21.3), among many others. The overall performance of the motion-compensated
video processing algorithms is determined primarily by the accuracy of the motion
vectors, which underscores the importance of the motion estimation stage, which is
described in more detail in the following sections.

22.2 GENERAL METHODOLOGIES IN MOTION ESTIMATION

The 2D motion estimation techniques described in this chapter address the problem
of estimating the motion between two frames: f (x, y, t1), which will be called the
anchor frame, and f (x, y, t2), which will be referred to as the target frame. The anchor
frame may be either before or after the target frame in time. We will call it forward

GENERAL METHODOLOGIES IN MOTION ESTIMATION 565

FIGURE 22.3 Motion compensation: interpolation axes are aligned with each moving object.
Redrawn from [Wat94b].

FIGURE 22.4 Anchor and target frames in forward and backward motion estimation.

motion estimation the case where t2 > t1 and backward motion estimation the case
where t1 > t2. A motion vector d(x) = [dxdy]T will represent the displacement of
a particular point x = (xi, yi) between time t1 and t2. Figure 22.4 illustrates these
concepts and associated notation.

There are two main categories of ME approaches:

• Feature-Based Methods: Establish a correspondence between pairs of selected
feature points in the two frames and attempt to fit them into a motion model
using methods such as least-squares fitting. Feature-based methods are more
often used in applications such as object tracking and 3D reconstruction from
2D video.

566 DIGITAL VIDEO PROCESSING TECHNIQUES AND APPLICATIONS

• Intensity-Based Methods: Rely on the constant intensity assumption described
earlier and approach the motion estimation problem from the perspective of an
optimization problem, for which three key questions must be answered:

– How to represent the motion field?

– Which criteria to use to estimate motion parameters?

– How to search for optimal motion parameters?

This section focuses exclusively on intensity-based methods. The answers to the
three questions above will appear in Sections 22.2.1–22.2.3, respectively.

22.2.1 Motion Representation

Motion representation methods vary in terms of the size (and shape) of the region of
support, which can vary among the following four types (illustrated in Figure 22.5):

1. Global: In this case, the region of support is the entire frame and a single mo-
tion model applies to all points within the frame. This is the most constrained
motion model, but it is also the one that requires fewest parameters to estimate.
Global motion representation is often used to estimate camera-induced mo-
tion, that is, apparent motion caused by camera operations such as pan, zoom,
or tilt.

FIGURE 22.5 Motion estimation methods: (a) global; (b) pixel-based; (c) block-based;
(d) object-based.

GENERAL METHODOLOGIES IN MOTION ESTIMATION 567

2. Pixel-Based: This model produces the densest possible motion field, with one
MV per pixel, representing the 2D displacement of that point across successive
frames. A smoothness constraint between adjacent MVs is often employed to
ensure a more coherent motion representation. The computational complexity
of pixel-based methods is high, due to the enormous number of values (twice
the number of pixels in the frame) that need to be estimated.

3. Block-Based: In this case, the entire frame is divided into nonoverlapping
blocks, and the problem is reduced to finding the MV that best represent the
motion associated with each block. This model is widely used in video com-
pression standards such as H.261, H.263, MPEG-1, and MPEG-2.

4. Region-Based: In this model, the entire frame is divided into irregularly shaped
regions, with each region corresponding to an object or subobject with consis-
tent motion, which can be represented by a few parameters. It is used in the
MPEG-4 standard.

22.2.2 Motion Estimation Criteria

Once a model and region of support have been chosen, the problem shifts to the esti-
mation of the model parameters. One of the most popular motion estimation criteria—
and the only one described in this book—is based on the displaced frame difference
(DFD). It consists in computing the differences in intensity between every point in
the anchor frame and the corresponding point in the target frame. Mathematically,
the objective function can be written as

EDFD(d) =
∑
x∈R

(f2(x + d) − f1(x))p (22.1)

where f1(x) is the pixel value at x in time t1, f2(x + d) is the pixel value at (x + d)
in time t2, d is the estimated displacement, and R is the region of support.

When p = 1, the error EDFD(d) is called the mean absolute difference (MAD),
and when p = 2, it is called the mean squared error (MSE).

22.2.3 Optimization Methods

The error functions described by equation (22.1) can be minimized using different
methods. The three most common optimization methods are as follows:

• Exhaustive Search: As the name suggests, this method searches through all pos-
sible parameter value combinations and is guaranteed to reach the global optimal
at the expense of significant computational cost. It is typically used in conjunc-
tion with the MAD criterion described earlier.

• Gradient-Based Search: Uses numerical methods for gradient calculation and
reaches the local optimal point closest to the initial solution. It is typically used
in conjunction with the MSE criterion described earlier.

568 DIGITAL VIDEO PROCESSING TECHNIQUES AND APPLICATIONS

• Multiresolution Search: This method searches the motion parameters starting
at a coarse resolution and propagating the partial solutions to finer resolutions,
which can then be successively refined. It is a good trade-off between speed (i.e.,
it is faster than exhaustive search) and does not suffer from the problem of being
trapped into a local minimum (as the gradient-based method does).

22.3 MOTION ESTIMATION ALGORITHMS

In this section, we present a selected subset of block-based ME algorithms. These
algorithms assume that a frame has been divided into M nonoverlapping blocks that
together cover the entire frame. Moreover, the motion in each block is assumed to be
constant, that is, it is assumed that the entire block undergoes a translation that can be
encoded in the associated motion vector. The problem of block-based ME algorithms
is to find the best MV for each block. These algorithms are also called block matching
algorithms (BMA).

22.3.1 Exhaustive Search Block Matching Algorithm

The exhaustive search block matching algorithm (EBMA) (Figure 22.6) works as
follows: for each block Bm in the anchor frame, it searches all candidate blocks
(within a certain range) B′

m in the target frame, and selects the one with the minimum
error, that is, the one that optimizes a cost function such as MAD. The search range
is indicated in Figure 22.6 by Rx and Ry.

The estimation accuracy of the EBMA method is determined by the step size
for the block displacements. In the simplest case, the step size is one pixel, and
the process is known as integer-pixel accuracy search. For more accurate motion

FIGURE 22.6 Exhaustive search block matching algorithm (EBMA).

MOTION ESTIMATION ALGORITHMS 569

FIGURE 22.7 Block matching with half-pixel accuracy. The MV in this case is (1, 1.5).
Redrawn from [WOZ02].

representation, half-pixel accuracy search is often used. In order to achieve subpixel
accuracy, the target frame must be up-sampled (with the proper interpolation method,
usually bilinear interpolation) by the proper factor. Figure 22.7 illustrates the process
of block matching using half-pixel accuracy. In this figure, solid circles correspond
to samples that exist in the original target frame, whereas hollow circles correspond
to interpolated samples. In Tutorial 22.1 (page 579), you will learn how to perform
motion estimation using the EBMA method (using both full-pixel and half-pixel
accuracy) in MATLAB.

The EBMA algorithm has several weaknesses:

• It causes a blocking artifact (noticeable discontinuity across block boundaries)
in the predicted frame.

• The resulting motion field can be somewhat chaotic because MVs are indepen-
dently estimated from block to block.

• Flat regions are more likely to produce wrong MVs because motion is inde-
terminate when spatial gradient is near zero (a problem shared by all optical
flow-based methods).

� EXAMPLE 22.1

Figure 22.8 shows the full-pixel EBMA algorithm at work. Parts (a) and (b) show
the target and anchor frame, respectively. Part (c) shows the motion field, which
exemplifies the last two limitations described earlier. Finally, part (d) shows a recon-
structed frame, that is, a frame obtained by computing the estimated motion applied
to the target frame. Ideally, part (d) should result in a frame identical to the one in

570 DIGITAL VIDEO PROCESSING TECHNIQUES AND APPLICATIONS

FIGURE 22.8 EBMA example: (a) target frame; (b) anchor frame; (c) motion field over-
lapped on anchor frame; (d) reconstructed frame.

part (b), but this is clearly not the case: the presence of blocking artifacts (besides
other imperfections) in the reconstructed frame is clearly visible.

22.3.2 Fast Algorithms

The EBMA algorithm is computationally expensive (and significantly more so if
fractional pixel accuracy is used), which motivated the development of several fast
algorithms for block matching. The two most popular fast search algorithms are the
2D log and the three-step search methods. They are briefly described next.

2D Log Search Method The 2D log search method (Figure 22.9) starts from the
position corresponding to zero displacement and tests five search points, arranged
in a diamond shape. It selects the block that yields minimum error (usually MAD
is the chosen figure of merit) and uses it to form a new search region around it. If
the best matching point is the center point, it proceeds with a new search region that
has an offset of half the amount of the previous offset; otherwise, the offset remains

MOTION ESTIMATION ALGORITHMS 571

FIGURE 22.9 2D log search. In this case, the final MV is (−6, 2). Redrawn from [MPG85].

the same. The process is repeated for successively smaller ranges, until the offset is
equal to 1.

Three-Step Search Method The three-step search method (Figure 22.10) starts
from the position corresponding to zero displacement and tests nine search points,
with offset p/2, where p is half of the search range in each direction (horizontal or
vertical). It selects the block that yields minimum error and uses it to form a new
search region around it. The new search region has an offset of half the amount of
the previous offset. The process is repeated for successively smaller ranges, until the
offset is equal to 1.

22.3.3 Hierarchical Block Matching Algorithm

The hierarchical block matching algorithm (HBMA) is a multiresolution ME algo-
rithm. It works by first estimating the motion vectors in a coarse resolution using a
low-pass filtered, down-sampled frame pair. It then proceeds to modify and refine
the initial solution using successively finer resolutions and proportionally smaller
search ranges. The most common approach uses a pyramid structure (Figure 22.11)
in which the resolution is reduced by half in both dimensions between successive lev-
els. The HBMA algorithm strikes a compromise between execution time and quality
of results: it has lower computational cost than the EBMA counterpart and produces
better quality motion vectors than the fast algorithms described earlier. In Tutorial 22.1

572 DIGITAL VIDEO PROCESSING TECHNIQUES AND APPLICATIONS

FIGURE 22.10 Three-step search. In this case, the final MV is (−6, 2). Redrawn from
[MPG85].

FIGURE 22.11 Hierarchical block matching algorithm (HBMA) using three levels. Redrawn
from [WOZ02].

VIDEO ENHANCEMENT AND NOISE REDUCTION 573

(page 579), you will learn how to perform motion estimation using the HBMA method
in MATLAB.

22.3.4 Phase Correlation Method

The phase correlation method is a frequency-domain motion estimation technique
that uses a normalized cross-correlation function computed in the frequency domain
to estimate the relative shift between two blocks (one in the anchor frame, another
in the target frame). The basic idea consists in performing spectral analysis on two
successive fields and computing the phase differences. These differences undergo
a reverse transform, which reveals peaks whose positions correspond to motions
between fields.

1. Compute the discrete Fourier transform (DFT) of each block in the target and
anchor frames (which we will denote frames k and k + 1).

2. Calculate the normalized cross-power spectrum between the resulting DFTs
according to equation (22.2):

Ck,k+1 = Fk+1F
∗
k

|Fk+1F
∗
k |

(22.2)

where Fk and Fk+1 are the DFT of two blocks at the same spatial location in
frames k and k + 1 and ∗ denotes the complex conjugate.

3. Compute the phase correlation function, PCF(x), defined as the inverse DFT
of Ck,k+1, as follows:

PCF(x) = F−1(Ck,k+1) = δ(x + d) (22.3)

where d is the displacement vector.

4. Locate the peaks of the PCF.

The basic algorithm described above, however, has a major limitation. It lacks
the ability to tell which peak corresponds to which moving object in the frames.
This problem can be resolved by adding a (selective) block matching stage,
used to distinguish between valid motion vectors and false alarms. The modi-
fied phase correlation method has the following strengths: it is fast, subpixel ac-
curate, and amplitude (brightness) independent. In Tutorial 22.1 (page 579), you
will learn how to perform motion estimation using the phase correlation method in
MATLAB.

22.4 VIDEO ENHANCEMENT AND NOISE REDUCTION

In this section, we provide a brief overview of how video sequences can be pro-
cessed using filtering techniques aimed at enhancing the image quality or reducing
noise and other artifacts. The simplest approach consists of applying (spatial- or

574 DIGITAL VIDEO PROCESSING TECHNIQUES AND APPLICATIONS

frequency-domain) image processing algorithms to each individual frame: this will
be called intraframe filtering. Many techniques described in Part I can be used to
implement intraframe filtering, such as averaging filter and its variants, median and
weighted median filters, or Wiener filters, to mention but a few.

Better results, however, can be obtained by exploiting the contents of adjacent
frames with significant redundant information, using video-specific (spatiotempo-
ral) algorithms, which will be referred to as interframe filtering (Section 22.4.2). In
Tutorial 22.2 (page 585), you will experiment with inter- and intraframe video filtering
techniques in MATLAB.

22.4.1 Noise Reduction in Video

Video acquisition, transmission, and recording systems are not perfect. Consequently,
video sequences may be subject to different types of noise and distortion.

For analog video, the most common types are as follows:

• Thermal (snow) Noise: Caused by temperature-dependent random signal-level
fluctuations in amplifiers or signal attenuation due to rain. The visible effect on
the screen resembles a snowstorm.

• Composite Triple Beats (CTB): Caused by cumulative effect of third-order inter-
modulation products and overdriven amplifiers. Produces graininess and tearing
in the horizontal lines of the screen.

• Composite Second-Order Beat (CSO): Caused by nonlinearities in the electron-
ics. Appears on the screen as graininess texture or diagonal lines over the entire
picture.

• Single-Frequency Modulation Distortion: Caused by intermodulation products.
Its visible effect on the screen consists of horizontal or diagonal bands, broad
bands of color variation across the screen.

• Impulse Noise (Short Duration and High Energy): Caused by lightning, car
starters, industrial machines, and other sources. Produces spots on the screen
and sharp click sounds in the audio.

• Cochannel Interference: Caused when two pictures are received at the same
time from two different TV transmitters at different locations, but which share
the same TV channel. The visible effect occurs on the overlap of the unwanted
service and is often accompanied by a “venetian blind” effect and distorted
sound.

• Ghosting: Caused by multiple transmission paths, resulting from signal reflec-
tions. The visible effect consists in the appearance of a delayed version of the
picture on the screen.

For digital video, most of the unwanted artifacts result from side effects of
the lossy compression techniques used to store or transmit the video using fewer

VIDEO ENHANCEMENT AND NOISE REDUCTION 575

bits. These are the main types of artifacts that may be present in digital video
sequences:

• Block Edge Effect (or Simply Blockiness): Caused by coarse quantization of
DCT coefficients in block-based compression schemes (e.g., M-JPEG and
MPEG-1), which result in noticeable intensity discontinuities at the boundaries
of adjacent blocks in the decoded frame.

• False Edges (or False Contouring): Caused by coarse quantization of amplitude
levels. Its visible effect in the frame is the appearance of edges at places where
a smooth intensity transition should occur.

• Ringing: Caused by the use of ideal filters. Produces a rippling along high-
contrast edges.

• Blurring and Color Bleeding: Caused by imperfections in compression algo-
rithms. Results in loss of spatial details, running or smearing of color in areas
with complex textures or edges.

• Mosquito Noise: Caused by imperfections in compression algorithms. Produces
fluctuation of luminance/chrominance levels around high-contrast edges or mov-
ing video objects.

Video sequences, particularly old movies, can also be subject to other types of
artifacts, such as the following:

• Blotches: Large, uncorrelated, bright or dark spots, typically present in film
material, due to mishandling or aging.

• Intensity Flicker: Unnatural temporal fluctuation of frame intensities that do not
originate from the original scene.

22.4.2 Interframe Filtering Techniques

Interframe filtering techniques employ a spatiotemporal support region of size m ×
n × k, wherem andn correspond to the size of a neighborhood in a frame and k denotes
the number of frames taken into account. For the special case where m = n = 1, the
resulting filter is called a temporal filter, whereas the case where k = 1 corresponds
to intraframe filtering. Interframe filtering techniques can be motion compensated,
motion adaptive, or neither.

The simplest interframe filtering technique is the spatiotemporal averaging filter
that consists of an extension of the basic averaging filter to the spatiotemporal domain.
A purely temporal version of the algorithm is known as frame averaging. Frame
averaging is based on the fact that averaging multiple observations of essentially the
same pixel in different frames eliminates noise while resulting in no loss of spatial
image resolution. The amount of noise reduction is proportional to the number of
frames used, but so is the amount of blurring. In other words, besides the spatial

576 DIGITAL VIDEO PROCESSING TECHNIQUES AND APPLICATIONS

blurring of 2D averaging filters, we now have a potential motion blur, due to movement
of objects between consecutive frames.

There are two solutions to the blurring problem:

• Motion-adaptive, edge-preserving filters, where frame-to-frame motion is
treated as “temporal edges.”

• Motion-compensated filters, involving: low-pass filters that are applied along the
motion trajectory of each pixel, as determined by a motion estimation algorithm.

Motion-compensated filters work under the assumption that the variation of pixel
gray levels over any motion trajectory is mainly due to noise. Consequently, noise
can be reduced by low-pass filtering over the respective motion trajectory at each
pixel. Several motion-compensated filtering techniques have been proposed in the
literature. They differ according to the following factors:

• The motion estimation method.
• The support of the filter, where support is defined as the union of predetermined

spatial neighborhoods centered about the pixel (subpixel) locations along the
motion trajectory.

• The filter structure (adaptive versus nonadaptive).

The effectiveness of motion-compensated filters is strongly related to the accu-
racy of the motion estimates. In the ideal case (perfect motion estimation), direct
averaging of image intensities along a motion trajectory provides effective noise
reduction. In practice, however, motion estimation is hardly ever perfect due to
noise and sudden scene changes, as well as changes in illumination and camera
views.

22.5 CASE STUDY: OBJECT SEGMENTATION AND TRACKING IN THE
PRESENCE OF COMPLEX BACKGROUND

In this section, we present an example of object segmentation and tracking using
MATLAB and the Image Processing Toolbox (IPT).2 Object detection and tracking
are essential steps in many practical applications, for example, video surveillance
systems.

The solution presented in Figure 22.12 uses an object segmentation algorithm
for video sequences with complex background, originally proposed by Socek et al.
[SCM+05] and further refined and redesigned by Ćulibrk et al. [CMS+06,CMS+07].
The output of the segmentation algorithm is a series of binary images (frames), where
background pixels are labeled as 0 and any foreground objects are labeled as 1. The

2The MATLAB code for this example was developed by Jeremy Jacob and can be downloaded from the
book web site.

OBJECT SEGMENTATION AND TRACKING IN THE PRESENCE OF COMPLEX BACKGROUND 577

FIGURE 22.12 Object detection and tracking system.

“labeling and feature extraction” stage uses the IPT bwlabel function to label each
connected component in the foreground of the frame and the IPT regionprops
function to extract relevant features pertaining to each object, such as the coordinates
of the centroid of the object, an index list of the pixels contained in the object, and its
bounding box.

At the “tracking and matching” stage, the objects detected in the current frame are
compared with the objects currently being tracked from previous frames in order to
answer the following questions:

• Is any object new to the scene?
• Has any object left the scene?
• Where did the objects currently being tracked go?

When a new object is discovered (i.e., one for which no current objects match),
this object is placed in a “three-frame buffer.” The buffer is necessary to dismiss
false alarms caused, for example, by noise artifacts introduced in the early stages of
segmentation. If the same object is successfully tracked over three frames, it is then
removed from the buffer and entered in the “active tracking list.” Any object that
is currently in this list is considered as an object officially being tracked, and any
tracking information collected here will be reported in the final output. Figure 22.13
illustrates the process.

To determine the new position of an existing object A (which is contained in the
active tracking list), we consider any object in the current frame whose centroid falls

578 DIGITAL VIDEO PROCESSING TECHNIQUES AND APPLICATIONS

FIGURE 22.13 Keeping track of existing and candidate objects.

within the bounding box of object A as a possible candidate. If only one object meets
this criteria, then we consider it a match, run an additional test to ensure that object
cannot be considered a possible candidate for any other objects (since we now know
what that object is), and update the tracking data for object A. This is illustrated in
Figure 22.14. If there are more than one possible candidate for the new position of
object A, we then compare object sizes, and that with the closest size to object A

is considered a match. Finally, if at any given frame an object cannot be matched
up with an object in the subsequent frame, that object is removed from the “active

FIGURE 22.14 Updating the coordinates of an existing object.

TUTORIAL 22.1: BLOCK-BASED MOTION ESTIMATION 579

FIGURE 22.15 Screenshot of the object detection and tracking system, showing the bounding
box of an object being tracked, its trajectory since it started being tracked, and its properties
(on a separate window).

tracking list,” although its history remains in the “master object tracking database”
(see Figure 22.12).

For each object, the system keeps track of its size, position, velocity, and color.
The size information can be used to separate objects into application- and viewpoint-
dependent classes, for example, large, medium, and small. Similarly, brightness and
color information can be used to classify objects into categories such as “bright” or
“red.” Position is reported as the instantaneous pixel position of the centroid of the
object within the current frame. Similarly, velocity is reported as an instantaneous
change in position between consecutive frames, which can be easily calculated since
we know the frame rate of the sequence.

The MATLAB implementation uses a modified version of the implay function,
which adds the possibility of pausing the sequence and clicking within the bound-
ing box of an object within the scene to open an external window, which displays
the tracking information for that object and reports how many objects are being
tracked. A screen shot of the movie player—with objects’ bounding boxes and trajec-
tory overlapped on the original frame—along with the external window is shown in
Figure 22.15.

22.6 TUTORIAL 22.1: BLOCK-BASED MOTION ESTIMATION

Goal

The goal of this tutorial is to explore motion estimation algorithms in MATLAB.

580 DIGITAL VIDEO PROCESSING TECHNIQUES AND APPLICATIONS

Objectives

• Explore EBMA using both integer-pixel and half-pixel accuracy.
• Explore HBMA using both integer-pixel and half-pixel accuracy.
• Explore the phase correlation method.

What You Will Need

• MATLAB Functions: ebma.m, hbma.m, and PhaseCorrelation.m.3

• Test files foreman69.Y and foreman72.Y.

Procedure

Integer-Pixel EBMA

Before we perform the exhaustive block matching algorithm, let us first define a
few necessary variables. Here, we will define the anchor frame, target frame, frame
dimensions, block size, search field range (p), and finally accuracy (where 1 is for
integer-pixel and 2 is for half-pixel).

1. Define initial variables.

anchorName = ’foreman69.Y’;
targetName = ’foreman72.Y’;
frameHeight = 352;
frameWidth = 288;
blockSize = [16,16];
p = 16;
accuracy = 1;

Next, we will read in the frame data.

2. Read the frame data.

fid = fopen(anchorName,’r’);
anchorFrame= fread(fid,[frameHeight,frameWidth]);
anchorFrame = anchorFrame’;
fclose(fid);
fid = fopen(targetName,’r’);
targetFrame = fread(fid,[frameHeight,frameWidth]);
targetFrame = targetFrame’;
fclose(fid);

3These functions were developed by Jeremy Jacob and can be downloaded from the book web site.

TUTORIAL 22.1: BLOCK-BASED MOTION ESTIMATION 581

3. Run the function ebma and record the time to process the frames in variable
time_full.

tic
[predictedFrame_Full, mv_d, mv_o] = ...

ebma(targetFrame, anchorFrame, blockSize, p, accuracy);
time_full = toc

4. Display the anchor and target frames.

figure

subplot(1,2,1), imshow(uint8(anchorFrame)), title(’Anchor Frame’);

subplot(1,2,2), imshow(uint8(targetFrame)), title(’Target Frame’);

5. Display the motion vectors overlaid on the anchor frame.

figure, imshow(uint8(anchorFrame))
hold on
quiver(mv_o(1,:),mv_o(2,:),mv_d(1,:),mv_d(2,:)), ...

title(’Motion vectors: EBMA - Integer-pixel’);
hold off

6. Display the predicted frame.

figure, imshow(uint8(predictedFrame_Full)), ...
title(’Predicted Frame Full-pixel’);

7. Calculate the error frame by subtracting the predicted frame from the anchor
frame.

errorFrame = imabsdiff(anchorFrame, predictedFrame_Full);

8. Calculate the PSNR by performing the following calculation.

PSNR_Full = 10*log10(255*255/mean(mean((errorFrame.ˆ2))))

Half-Pixel EBMA

To perform half-pixel EBMA, we must first up-sample the frames.

9. Up-sample the target frame.

targetFrame2 = imresize(targetFrame,2,’bilinear’);

582 DIGITAL VIDEO PROCESSING TECHNIQUES AND APPLICATIONS

10. Set the accuracy variable appropriately for half-pixel accuracy.

accuracy = 2;

11. Run the script to perform EBMA with half-pixel accuracy and compute the
execution time.

tic

[predictedFrame_Half, mv_d, mv_o] = ...

ebma(targetFrame2, anchorFrame, blockSize, p, accuracy);

time_half = toc

12. Compare the time of execution between integer-pixel and half-pixel accuracy.

time_half
time_full

Question 1 How does the difference in time compare with the additional number
of pixels present in the up-sampled frame?

13. Display the motion vectors over the anchor frame.

figure, imshow(uint8(anchorFrame)), hold on
quiver(mv_o(1,:),mv_o(2,:),mv_d(1,:),mv_d(2,:)), ...

title(’Motion vectors: EBMA - Half-pixel’);
hold off

14. Display the predicted frame.

figure, imshow(uint8(predictedFrame_Half)), ...
title(’Predicted Frame Half-pixel’);

15. Calculate the error frame.

errorFrame = imabsdiff(anchorFrame, predictedFrame_Half);

16. Calculate the PSNR.

PSNR_Half = 10*log10(255*255/mean(mean((errorFrame.ˆ2))))

Question 2 Compare the PSNR values between integer and half-pixel accuracy.
Are the results what you expected?

Question 3 Visually, how do the results compare between integer and half-pixel
accuracy (for the predicted frames)?

TUTORIAL 22.1: BLOCK-BASED MOTION ESTIMATION 583

Multiresolution Motion Estimation: HBMA

To begin implementing HBMA motion estimation in MATLAB, we must first define
several variables. Here, we are defining the names of the frames that will be read,
the frames’ dimensions, block size, start and end ranges, accuracy, and the number
of levels to process (in our case, three).

17. Define variables needed to run HBMA.

anchorName = ’foreman69.Y’;
targetName = ’foreman72.Y’;
frameHeight = 352;
frameWidth = 288;
blockSize = [16,16];
rangs = [-32,-32];
range = [32,32];
accuracy = 1;
L = 3;

18. Read the frame data.

fid = fopen(anchorName,’r’);
anchorFrame= fread(fid,[frameHeight,frameWidth]);
fclose(fid);
fid = fopen(targetName,’r’);
targetFrame = fread(fid,[frameHeight,frameWidth]);
fclose(fid);

We can now run the hbma function by calling it with the parameters defined
earlier. The function returns the predicted frame, direction of motion vectors, and the
respective positions of the motion vectors (i.e., their orientation).

19. Run the hbma script and record the time needed to process it.

tic

[predict,mv_d,mv_o] = hbma(targetFrame, anchorFrame, blockSize, ...

rangs, range, accuracy, L);

toc

20. Display the anchor and target frames to be able to compare with the predicted
frame.

figure

subplot(1,2,1), imshow(uint8(anchorFrame’)), title(’Anchor Frame’);

subplot(1,2,2), imshow(uint8(targetFrame’)), title(’Target Frame’);

584 DIGITAL VIDEO PROCESSING TECHNIQUES AND APPLICATIONS

21. Display the motion vectors over the anchor frame.

figure, imshow(uint8(anchorFrame’))
hold on
quiver(mv_o(2,:),mv_o(1,:),mv_d(2,:),mv_d(1,:)), ...

title(’Motion vectors’);
hold off

22. Show the predicted frame.

figure, imshow(uint8(predict’)), ...
title(’Predicted Frame’);

23. Calculate the error frame and PSNR.

errorFrame = imabsdiff(anchorFrame, predict);
PSNR=10*log10(255*255/mean(mean((errorFrame.ˆ2))))

Question 4 How do the motion vectors compare between this and the EBMA
technique?

Question 5 How does the quality of the predicted frame obtained with the HBMA
algorithm compare with the one generated by the EBMA technique?

Phase Correlation Method

To perform phase correlation, we must first define and read two frames.

24. Read two frames and create the frames array to be used by the script.

anchorName = ’foreman69.Y’;
targetName = ’foreman72.Y’;
frameHeight = 352; frameWidth = 288;
fid = fopen(anchorName,’r’);
anchorFrame= fread(fid,[frameHeight,frameWidth]);
anchorFrame = anchorFrame’;
fclose(fid);
fid = fopen(targetName,’r’);
targetFrame = fread(fid,[frameHeight,frameWidth]);
targetFrame = targetFrame’;
fclose(fid);
frame(:,:,1) = anchorFrame;
frame(:,:,2) = targetFrame;

TUTORIAL 22.2: INTRAFRAME AND INTERFRAME FILTERING TECHNIQUES 585

25. Run the PhaseCorrelation.m script to generate the predicted frame, a
phase correlation plot, and a motion vector plot.

Question 6 How does the quality of this technique compare with the previous
techniques (EBMA and HBMA)?

22.7 TUTORIAL 22.2: INTRAFRAME AND INTERFRAME FILTERING
TECHNIQUES

Goal

The goal of this tutorial is to learn how to perform intraframe and interframe filtering
in MATLAB.

Objectives

• Explore the averaging filter, median filter, and Wiener filter applied to video
sequences.

• Learn how to use the noisefilter and noisefilter2 functions to apply
noise to selected frames in a video sequence and then filter them.

What You Will Need

• MATLAB Functions: readYUV.m, noisefilter.m, and
noisefilter2.m.4

• Test file football_cif_ori90.yuv.

Procedure

Intraframe Filtering

To perform intraframe filtering in MATLAB, we will use the readYUV function
to extract one frame from a YUV video sequence. We will perform filtering in the
RGB color space. When using the readYUV function, recall that it returns two data
structures; one that holds the MATLAB movie structure of the video (mov), and
another that contains the YUV data for that sequence (yuv). The CDATA portion of
the movie structure is in fact the RGB values for that particular frame—this is where
we get the RGB values from.

1. Read in the first frame of the football_cif_ori90 YUV sequence and
extract the RGB data.

4These functions were developed by Jeremy Jacob and can be downloaded from the book web site.

586 DIGITAL VIDEO PROCESSING TECHNIQUES AND APPLICATIONS

[mov, yuv] = readYUV(’football_cif_ori90.yuv’,1,’CIF_PAL’);

img = mov(1).cdata;

Before filtering, let us add artificial noise; this will give us something to filter out.

2. Create two noisy images: one with salt and pepper noise and another with
Gaussian noise.

noisySP = imnoise(img, ’salt & pepper’);
noisyGauss = imnoise(img,’gaussian’);

3. Display the frames for later comparisons.

figure

subplot(1,3,1), imshow(img), title(’Original frame’);

subplot(1,3,2), imshow(noisySP), title(’Salt & Pepper noise’);

subplot(1,3,3), imshow(noisyGauss), title(’Gaussian noise’);

Our first filter is an averaging filter. Here, the pixel in question is simply taken as
the average of the pixels in the given window size surrounding that pixel.

4. Apply an averaging filter to each noisy image.

filt = fspecial(’average’);
avgFilterFrame1 = imfilter(noisyGauss,filt);
avgFilterFrame2 = imfilter(noisySP,filt);

5. Display the results.

figure
subplot(1,3,1), imshow(img), title(’Original frame’);
subplot(1,3,2), imshow(avgFilterFrame2), ...

title(’Salt & Pepper averaged’);
subplot(1,3,3), imshow(avgFilterFrame1), ...

title(’Gaussian averaged’);

We will now filter a sequence of movie frames using the noisefilter function.

6. Clear all variables and close all figures.

7. Load 30 frames of the football_cif_ori90.yuv sequence.

[mov, yuv] = readYUV(’football_cif_ori90.yuv’,30,’CIF_PAL’);

TUTORIAL 22.2: INTRAFRAME AND INTERFRAME FILTERING TECHNIQUES 587

8. Add noise to all frames in the sequence and filter.

mov2 = noisefilter(mov,’salt & pepper’,’average’,[]);

9. Play the resulting movie.

implay(mov2)

10. Add noise to only a select number of frames.

mov3 = noisefilter(mov,’salt & pepper’,’average’,[5 10 20]);

11. Play the resulting movie.

implay(mov3)

Question 1 Was the noise noticeable even though the frames were filtered (for
both mov2 and mov3)?

Question 2 Filter the same sequences using the median filter. Is the noise notice-
able?

Interframe Filtering Techniques

To perform interframe filtering in MATLAB, we will use the function
noisefilter2. This is similar to the function noisefilter used earlier in
this tutorial in that it will apply noise to designated frames (defined in the function
call). It differs in the way the frames are filtered; frame data will be averaged over the
temporal domain.

Let us perform interframe filtering on a video sequence to see its effect.

12. Load the video sequence.

[mov, yuv] = readYUV(’football_cif_ori90.yuv’,50,’CIF_PAL’);

13. Apply noise to all frames, and average over three frames.

mov2 = noisefilter2(mov,’salt & pepper’,[],3);

14. Play the resulting movie.

implay(mov2)

588 DIGITAL VIDEO PROCESSING TECHNIQUES AND APPLICATIONS

Question 3 What is the effect of the noise once the interframe filtering is applied
(after the third frame)?

Question 4 Filter the video sequence again using a higher number of frames to
be used in the filtering process. How does this affect noise? How does it affect image
quality?

WHAT HAVE WE LEARNED?

• Motion estimation is the process of determining how much relative motion (be-
tween camera and scene) has occurred between two video frames. This infor-
mation is usually encoded using motion vectors. Motion estimation is a required
step for many video processing algorithms, from compression to spatiotemporal
filtering.

• There are numerous motion estimation techniques and algorithms in the litera-
ture. They differ in the way they represent motion, the level of granularity used
(from pixels to blocks to entire frames), the criteria used to determine whether
motion was present, and the mathematical function that should be optimized as
a result.

• Motion compensation is the process of using the results of the motion estimation
stage (usually encoded in the form of motion vectors) to perform another video
processing operation (e.g., spatiotemporal filtering) in such a way that takes into
account the motion of relevant portions of the frame over time.

• Video filtering techniques usually fall into two categories: intraframe and in-
terframe. The former treats one frame at a time and has strong resemblance to
comparable image filtering techniques. The latter processes several (e.g., three)
consecutive frames at a time and can benefit from results generated by a motion
estimation step.

LEARN MORE ABOUT IT

• The topic of motion estimation has received book-length coverage (e.g.,
in [FGW96]), and appeared in many surveys (e.g., [SK99,HCT+06]).

• Chapters 6 and 7 of [WOZ02] discuss 2D and 3D motion estimation in great
detail.

• Chapter 3.10 of [Bov00a] is entirely devoted to motion detection and estimation.
• Motion compensation techniques, especially the phase correlation method, are

described in [Wat94a].
• Chapter 10 of [Woo06] covers intraframe and interframe filtering techniques,

including many examples of motion-compensated video filtering.
• The topic of motion-compensated filtering—theory and algorithms—is covered

in great depth in Chapters 13 and 14 of [Tek95].

PROBLEMS 589

• Section 16.2 of [SHB08] provides a good introduction to optical flow and its
application in motion analysis.

• Chapter 5 of [Tek95] presents motion estimation using optical flow in great
detail.

• Sections 16.5 and 16.6 of [SHB08] discuss contemporary methods used in video
tracking solutions.

• Chapter 3.11 of [Bov00a] presents a detailed discussion on video enhancement
and restoration techniques, including blotch detection and removal and intensity
flicker correction.

22.8 PROBLEMS

22.1 Assume a very simple motion detection algorithm, in which to estimate the
motion in a scene you examine the intensity of two captured video frames,f (n1, n2, t1)
and f (n1, n2, t2) captured at t1 and t2 respectively, and you compute the absolute
difference between them: d(n1, n2) = |f (n1, n2, t2) − f (n1, n2, t1)|.

(a) If the frame difference is nonzero, can you say that motion has occurred
in the scene? Explain.

(b) If the frame difference is exactly zero, can you say that no motion has
occurred in the scene? Explain.

22.2 Consider the phase correlation method for motion estimation and answer the
following questions:

(a) What is this method’s main strength?

(b) What is its principal weakness and how can it be overcome?

22.3 Answer the following questions (in your own words) about motion estimation.

(a) Why is motion estimation in video sequences such an important problem?
(Select two–three specific video processing operations that benefit from
or rely on motion estimation and describe them.)

(b) Why is motion estimation in video sequences such a difficult problem?
(Select two–three specific problems and describe them.)

(c) What is the chief disadvantage of the exhaustive block matching algo-
rithm?

22.4 Write a MATLAB script or function that will perform the three-step motion
estimation algorithm and test it using frames 69 and 72 of the foreman sequence.

22.5 Write a MATLAB script or function that will perform the 2D log motion
estimation algorithm and test it using frames 69 and 72 of the foreman sequence.

APPENDIX A

HUMAN VISUAL PERCEPTION

A.1 INTRODUCTION

The human visual system (HVS) is the final link in the perception of images and
video sequences. A clear understanding of its capabilities and limitations can lead to
better image and video processing solutions. In applications whose ultimate goal is to
improve the image quality for human consumption, this knowledge allows designers
to establish objective performance criteria and quality measures. In machine vision
systems (MVS) whose goal is to emulate—and ultimately outperform—their human
counterpart, it is absolutely necessary that we know how the human visual system
works, which performance limits it imposes, and how this knowledge can be factored
into the design of MVS.

In this appendix, we will provide a very brief overview of the human visual system
with emphasis on aspects that are relevant—some may say essential—to the researcher
and practitioner in the field. This is a long, deep, and fascinating topic for which there
are almost as many open questions as there are answers. The interested reader may
refer to the “Learn More About It” section at the end of the appendix for suggestions
on books and other references that will broaden and deepen their understanding of
the field of human vision science.

Practical Image and Video Processing Using MATLAB®. By Oge Marques.
© 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

591

592 HUMAN VISUAL PERCEPTION

A.2 THE HUMAN EYE

The HVS has two main components, the eye (input sensor) and the brain (information
processing unit), connected by the optic nerve (transmission path) (Figure A.1). Image
perception consists of capturing the image with the eye, then recognizing it, and finally
interpreting its contents in the brain. First, light energy is focused by the lens of the
eye onto the sensors on the retina, and then those sensors respond to light energy by
an electrochemical reaction that sends an electrical signal down the optic nerve to
the brain. The brain uses these nerve signals to create neurological patterns that we
perceive as images. In this section, we look at selected anatomical and physiological
aspects of the human eye.

Figure A.2 shows a simplified cross section of the human eye. The following are
some of the anatomical properties of the eye that are of interest for our discussion:

• The eye contains a lens responsible for focusing an image. The movements of
the lens are controlled by specialized ciliary muscles.

• The anterior portion of the lens contains an iris diaphragm responsible for con-
trolling the amount of light that enters the eye. The central opening of the iris is
called pupil and varies its diameter—approximately from 2 to 8 mm—in a way
that is inversely proportional to the amount of incoming light.

• The innermost membrane of the eye is the retina, which is coated with photo-
sensitive receptors called cones and rods. It is on the surface of the retina that
an upside-down image of the scene is formed.

The combination of lens, diaphragm, and a back-projection surface is also present
in a rudimentary camera, leading to a very popular analogy known as “the eye-camera
analogy” (Figure A.3).

FIGURE A.1 Simplified view of the connection from the eye to the brain via the optic nerve.
Adapted and redrawn from [Umb05].

THE HUMAN EYE 593

FIGURE A.2 The eye: a cross-sectional view. 1, sclera; 2, ciliary body; 3, iris; 4, pupil and
anterior chamber filled with aqueous humor; 5, optical axis; 6, line of sight; 7, cornea; 8,
crystalline lens; 9, choroid; 10, optic nerve; 11, optic disk; 12, fovea; 13, retina; 14, vitreous
humor. Courtesy of Wikimedia Commons.

FIGURE A.3 The eye-camera analogy. Adapted and redrawn from [Pal99].

594 HUMAN VISUAL PERCEPTION

FIGURE A.4 Dark adaptation. Adapted and redrawn from [Pal99].

The surface of the human retina is coated with discrete photoreceptors, capable of
converting light into electrochemical reactions that will eventually be transmitted to
the brain. There are two types of photoreceptors, cones and rods, whose names were
given based on their overall shape.

Cones (typically 6–8 million in total) are primarily concentrated in the fovea—the
central part of the retina, aligned with the main visual axis—and are highly sensitive to
color. Cones work well only in bright-light (photopic) vision scenarios, though. Under
low lighting levels, they are not active and our ability to discriminate colors decreases
dramatically.1 Cones come in three varieties—S, M, and L, as in short, medium, and
long (wavelengths), roughly meaning light in the red, green, and blue portions of the
visible spectrum—each of which is primarily sensitive to certain wavelengths (and
the colors associated with them).

The existence of three types of cones provides a physiological basis for the trichro-
matic theory of vision, postulated by Thomas Young in 1802, more than 150 years
before it became possible to obtain physiological evidence of the existence of the
three types of cones.

Rods outnumber cones (there are 75–150 million rods) and are primarily not con-
centrated in the fovea; instead, they are distributed over the entire retinal surface
(except for the optic disk, a region of the retina that corresponds to the perceptual
blind spot). Rods are not sensitive to color, but are sensitive to low levels of illumi-
nation, and therefore responsible for dim-light (scotopic) vision.

Figure A.4 shows how the sensitivity of the retina increases in response to decreas-
ing incoming light in a process known as brightness adaptation or dark adaptation.
The left portion of the curve corresponds to the adaptation experienced by the cones

1Anyone who has forgotten where he parked their car and tries to look for it after dark on a poorly lit
parking lot knows firsthand how true this is.

THE HUMAN EYE 595

FIGURE A.5 Distribution of rods and cones in the human retina for the right eye (seen from
the bottom). Adapted and redrawn from [Ost35].

(photopic vision). The right part indicates the range of time beyond which scotopic
vision (primarily peripheral rod vision) becomes prevalent.

Figure A.5 shows the distribution of rods and cones in the retina. The pronounced
peak at the center of the fovea (0◦ in relation to the visual axis) is indicative of the
concentration of cones in that region. Note also that there are no cones or rods at a
small region about 20◦ from the optical axis (toward the nasal side of each eye) known
as the blind spot. This is a constructive limitation, after all the optic nerve must be
attached to the retina at some point. It is truly remarkable that the brain “fills in” and
allows us to see entire scenes even though some of the light reflected by objects in
those scenes falls onto our blind spots (one for each eye).

A significant amount of visual processing takes place in the retina, thanks to a
series of specialized (horizontal, bipolar, anacrine, and ganglion) cells. A detailed
explanation of these cells and their behavior is beyond the scope of this appendix.
It is important to note that although there are more than 100 million light receptors
in the retina, the optic nerve contains only a million fibers, which suggests that a
significant amount of data processing occurs before the electric impulses ever reach
the brain. An additional curiosity is the fact that, since the human eye has evolved as
an outgrowth of the brain, the retina appears to have been designed from the inside
out: the photoreceptors are not the innermost cells; in fact, surprisingly enough, they
point away from the incoming light.

After a retinal image is formed, it is converted into electric signals that traverse
the optic nerve, cross the optic chiasm (where the left and right halves of the visual
field of each eye cross), and reach the lateral geniculate nucleus (LGN) on its way
to a region of the occipital lobe of the brain involved in visual perception: the visual
cortex. The exact nature of the processing that occurs in the visual cortex, which cells
and regions are in charge of what, and the number of possible visual pathways from
photoreceptors in the retina to higher order regions of the cortex are among the many
aspects over which there has been an enormous amount of research but not much
agreement among researchers. Refer to the “Learn More About It” section at the end
of the appendix for useful references.

596 HUMAN VISUAL PERCEPTION

A.3 CHARACTERISTICS OF HUMAN VISION

In this section, we look at a selected subset of characteristics of human vision that
are of interest to the image and video processing researcher and system designer.
Our goal is to highlight widely accepted facts about the way we perceive properties
of scenes, such as brightness, contrast, sharpness (fine detail), color, motion, and
flicker. We do not attempt to explain why this is so (we leave that to human vision
researchers), but instead take an engineering approach and provide qualitative and—
whenever possible—quantitative information that can be used in the design of imaging
systems.

A.3.1 Resolution, Viewing Distance, and Viewing Angle

Resolution can be defined as the ability to separate two adjacent pixels, that is, resolve
the details, in a test grating (such as the EIA test pattern shown in Figure A.6) or any
other image. This ability depends on several factors, such as the picture (monitor)
height (h) and the viewer’s distance from the monitor (d), and the subtended viewing
angle (θ) (Figure A.7).

The measure of the number of changes in image intensity for a certain test grating
is referred to as its spatial frequency. The spatial frequency can be completely char-
acterized by the variation frequencies in two orthogonal directions (e.g., horizontal
and vertical). If we call fx the horizontal frequency (expressed in cycles/horizontal

FIGURE A.6 EIA 1956 standard test pattern. Courtesy of http://www.bealecorner.com/
trv900/respat/.

CHARACTERISTICS OF HUMAN VISION 597

FIGURE A.7 Angular frequency concept.

FIGURE A.8 Sinusoidal gratings commonly used for measures of resolution—based on
MATLAB code by Alex Petrov: http://alexpetrov.com/softw/utils/.

unit distance) and fy its vertical counterpart, the pair (fx, fy) characterizes the spa-
tial frequency of a 2D image. For example, the test gratings on Figure A.8 have
(fx, fy) = (0, 4) (Figure A.8a) and (fx, fy) = (7, 4.5) (Figure A.8b). These two val-
ues can be combined and expressed in terms of magnitude (fm) and angle (θ):

fm =
√(

f 2
x + f 2

y

)
(A.1)

θ = arctan

(
fy

fx

)
(A.2)

The examples in Figure A.8 have (fm, θ) = (4, 90◦) and (fm, θ) = (8.32, 32.7◦).
The spatial frequency of a test signal (as defined above) is not very useful in

determining the user’s perception of those signals because it does not account for the
viewing distance. A more useful measure, which not only is a characterization of the
signal, but also takes into account the viewing distance and the associated viewing

598 HUMAN VISUAL PERCEPTION

angle, is the angular frequency2 (fθ), expressed in cycles per degree (cpd) of viewing
angle and defined as follows (Figure A.7):

θ = 2 arctan

(
h

2d

)
≈ h

2d
(radian) = 180h

πd
(degrees) (A.3)

fθ = fs

θ
= πd

180h
fs (cpd) (A.4)

A careful look at equation (A.4) reveals that, for the same picture (e.g., grating
pattern) and a fixed picture height (PH), the angular frequency increases with the
viewing distance; conversely, for a fixed viewing distance, larger display sizes lead
to lower angular frequencies. This is consistent with our experience: the same test
pattern appears to change more frequently if viewed from farther away and more
slowly if displayed on a larger screen.

A common practical application of the concepts of resolution and viewing angle
is the determination of the optimal viewing distance for a certain display. Although
accurate calculations must take into account other parameters such as display bright-
ness, ambient lighting, and visual acuity of the observer, a typical back of the envelope
estimate of the optimal viewing distance can be obtained by assuming a subtended
angle of 1 min of arc (1/60 of a degree) between two adjacent TV lines. For con-
ventional standard definition TV (SDTV) displays (480 scan lines and a 4:3 aspect
ratio), a viewing distance of about 7 × PH is usually recommended, whereas typical
high-definition TV (HDTV) displays of the same height (with 1080 scan lines and a
16:9 aspect ratio) should be viewed at slightly less than half the distance (3.1 × PH) to
fully appreciate the additional amount of detail available and maintain the same level
of spatial frequency eye discrimination (also known as visual acuity) (Figure A.9).
The horizontal picture angles at those viewing distances are 11◦ and 33◦, respectively
(Figure A.10).

A.3.2 Detail and Sharpness Perception

The ability to perceive fine details in an image or video sequence is one of the most
important guiding factors in the design of image and video systems since it impacts
parameters such as image definition, signal to noise ratio (SNR), and bandwidth.
Perception of detail is intimately associated with the concept of visual acuity, which
can be described as “the smallest angular separation at which individual lines in a
grating pattern can be distinguished.” The most familiar experience with visual acuity
measures you may have had is a visit to the optometrist. In such visit, you are asked
to read numbers or letters on a Snellen chart at a standardized test distance of 20 ft
(6.1 m). At that distance, the width of the strokes of the letters in the 20/20 row subtends
an angle of 1 min of arc. Being able to read that row is considered the standard for
normal (20/20) vision. Visual acuity varies widely, from 0.5′ to 5′ (minutes of arc),

2Unfortunately, the expression angular frequency is not widely adopted in the literature; readers will often
find the same concept expressed as spatial frequency instead, which is potentially confusing.

CHARACTERISTICS OF HUMAN VISION 599

FIGURE A.9 Viewing distance for SDTV and HDTV displays. Adapted and redrawn
from [Poy03].

depending on the contrast ratio and the quality of vision of each individual. An acuity
of 1.7′ is usually assumed in the design of image and video systems [LI99].

A.3.3 Optical Transfer Function and Modulation Transfer Function

Most lenses, including the human eye’s lens, are not perfect optical systems. Con-
sequently, when visual stimuli with a certain amount of detail are passed through
them, they may show a certain degree of degradation. The optical transfer func-
tion (OTF) is a way to measure how well spatially varying patterns are observed
by an optical system, that is, a way to evaluate the extent of degradation. The
OTF is usually expressed as a series of complex numbers—one for each spatial
frequency—whose amplitude represents the reduction in signal strength and phase
represents the corresponding phase shift. For the sake of simplicity, we will focus
primarily on the amplitude component, which is known as modulation transfer func-
tion (MTF). The MTF is the spatial equivalent of frequency response in electronic
circuits.

600 HUMAN VISUAL PERCEPTION

FIGURE A.10 Picture (viewing) angles for SDTV and HDTV displays. Adapted and redrawn
from [Poy03].

Figure A.11 illustrates the MTF concept. Part (a) introduces the contrast index (CI),
a measure of the amplitude differences between the darkest and brightest portions of
the test image. Part (b) shows that a nonideal optical system tested with an input test
image with constant CI will exhibit a CI that falls for higher spatial frequencies. Part
(c) displays the MTF, which is the ratio between the output CI and the input CI. It is
worth noting that while the MTF resolution test illustrated in Figure A.11 provides an
objective evaluation of the possible optical degradation experienced by a test signal,
the human perception of sharpness is subjective and it is also affected by contrast.
As a result, an increase in the image contrast will cause an increased sensation of
sharpness even though the MTF is unchanged, an aspect that has been exploited in
the design of image display devices.

A.3.4 Brightness Perception

Brightness can be defined as “the attribute of a visual sensation according to which
an area appears to emit more or less light” [Poy03].

CHARACTERISTICS OF HUMAN VISION 601

FIGURE A.11 (a) The definition of contrast index; (b) A test image with constant CI results
in an output image with falling CI; (c) modulation transfer function: the ratio of output and
input CIs. Note: When LF response is unity, CI and MTF are interchangeable. Redrawn from
[Wat00].

The process of subjective brightness perception in humans is such that the per-
ceived subjective brightness is proportional to the logarithm of the luminous intensity
incident on the eye, as shown in Figure A.12. The long solid curve represents the
(remarkably high, about eight orders of magnitude) range of luminous intensities that
the HVS can adapt to. The plot also shows the transition between scotopic and pho-
topic vision that takes place at low intensity levels. The region where there is overlap
between cone-based and rod-based vision is called mesopic vision. More important,
the small segment at the middle of the curve illustrates the phenomenon of brightness
adaptation. In this case, after having adapted to a certain brightness level (Ba), the eye
is capable of responding to stimuli around that value, provided that they are above
another level (Bb in the figure). Any intensities below that will not be perceived.
Should the average ambient intensity increase (or decrease), the eyes will adapt to
another point in the main solid curve.

The perceived brightness of an area (or object) within an image also depends on the
contrast between the object and its surroundings, in what is known as simultaneous

602 HUMAN VISUAL PERCEPTION

FIGURE A.12 Range of subjective brightness sensations showing a particular adaptation
level. Redrawn from [GW08].

contrast (Figure A.13). In other words, we do not perceive gray levels as they are,
but in terms of how they differ from their surroundings.

Another well-known way to show that perceived brightness is not a simple function
of luminous intensity are the Mach bands (Figure A.14), named after Ernst Mach,
who first described the phenomenon in 1865. These bands show that our visual system
tends to undershoot or overshoot at the boundaries of regions with different intensities.
This is due to the fact that the eye possesses a lower sensitivity to high- and low-spatial
frequencies than to intermediate frequencies. It explains our ability to distinguish and
separate objects, even in dimly lit scenes, thanks to the accentuated response around
the actual edges. A possible implication of this property for designers of imaging

FIGURE A.13 Simultaneous contrast: the center square is perceived as progressively darker
as the background becomes brighter (from (a) to (d)) even though it is identical in all four cases.

CHARACTERISTICS OF HUMAN VISION 603

FIGURE A.14 Mach bands.

systems is that the reproduction of perfect edges is not a critical requirement, owing
to the eye’s imperfect response to high-frequency brightness transitions.

A.3.5 Contrast Ratio and Contrast Sensitivity Function

Contrast ratio is “the ratio of luminances of the lightest and darkest elements of a
scene” [Poy03]. Typical contrast ratios are 80:1 (movie theater), 20:1 (TV in a living
room), and 5:1 (computer monitor in an office).

The contrast sensitivity of the eye is defined as the smallest brightness difference
that can be detected by an observer. Contrast sensitivity is usually measured as the
ratio of luminances between two adjacent patches combined in a test pattern that is
presented to a human subject (Figure A.15). The observer’s field of vision is filled
mostly by the surround luminance (Y0). In the central area, the left portion of the circle
has a test luminance value (Y), whereas the right half shows a slightly increased value
(Y + �Y). Subjects are asked to inform at which point the difference between the two

FIGURE A.15 Contrast sensitivity test pattern.

604 HUMAN VISUAL PERCEPTION

FIGURE A.16 Contrast sensitivity function for various retinal illuminance values (expressed
in Td). Redrawn from [VNB67].

halves become noticeable3 and the corresponding value of Y and �Y are recorded.
The process is repeated for a wide range of luminance values.

Experiments of this type have concluded that over a range of intensities of about
300:1, the discrimination threshold of vision is approximately a constant ratio of
luminance. If one plots log(�Y/Y) as a function of Y , it will show an interval of more
than two decades of luminance over which the discrimination capability of vision
is about 1% of the test luminance level. In other words, within that range, human
vision cannot distinguish two luminance levels if the ratio between them is less than
approximately 1.01.

In vision science, contrast sensitivity is also measured using a spatial grating test
pattern. The resulting plot is called contrast sensitivity function (CSF) and it repre-
sents the contrast sensitivity as a function of the spatial frequency (in cycles/degree).
Figure A.16 shows a family of curves, representing different adaptation levels, from
very dark (0.0009 Td) to very bright (900 Td), where 9 Td is a representative value for

3This concept of just noticeable difference (JND) is also used in many other psychophysics experiments.

CHARACTERISTICS OF HUMAN VISION 605

electronic displays.4 The 9 Td curve peaks at about 4 cycles/degree. Below that spatial
frequency, the eye acts as a differentiator; for higher spatial frequencies, the eye act as
an integrator. Three important observations can be derived from this graph [Poy03]:

• Beyond a certain spatial frequency (around 50 cycles/degree for the 9 Td curve),
the contrast sensitivity falls to very low values (less than 1% of the maximum
value), which means our vision cannot perceive spatial frequencies greater than
that. The implication for image and video systems designers is that there is
no need to provide bandwidth or display resolution for those higher frequency
contents, since, ultimately, they will not be noticed.

• Each curve peaks at a contrast sensitivity value that can be used to calculate the
number of bits per pixel that must be used to quantize the image. Using more
bits per pixel will allow the representation of luminance differences too subtle
to be perceived by the human eye.

• The curve falls off for spatial frequencies lower than 1 cycle/degree, which
suggests that luminance can be lower (within reasonable limits) in areas closer
to the edges of the image without the viewer noticing it.

A.3.6 Perception of Motion

The electrochemical processes associated with the processing of incoming light in
the human eye require several milliseconds to be performed and therefore act as
a smoothing filter in the temporal domain: what the brain reconstructs is a time-
averaged version of the actual input. As a result of this temporal smoothing, there is
a critical flicker5 frequency (CFF) below which we perceive the individual flashes of
blinking light and above which those flashes merge into a continuous, smooth moving
image sequence. This is a fundamental property in the design of movie, TV, and video
systems. The CFF is directly proportional to the picture luminance and screen size
and inversely proportional to the viewing distance.

The temporal frequency response of the HVS depends on several factors, such as
viewing distance, display brightness, and ambient lighting. Figure A.17 shows the
result of an experiment in which subjects where presented a flat screen whose bright-
ness was modulated by a sinusoidal signal and were instructed to report the lowest
modulation level at which the flicker became just noticeable. The reciprocal of that
modulation level is referred to as contrast sensitivity and plotted versus the frequency
of the modulating signal. Several conclusions can be derived from Figure A.17:

• The temporal response of the HVS is similar to a bandpass filter that peaks at
intermediate frequencies and falls off quickly afterward.

4A troland (Td) is a unit of retinal illuminance equal to object luminance (in cd/m2) times pupillary
aperture area (in mm2).
5The term flicker is also used to indicate an image defect usually caused by inadequate frame repetition
rate, lower than the eye’s temporal cutoff frequency.

606 HUMAN VISUAL PERCEPTION

FIGURE A.17 Temporal frequency response of the HVS. Redrawn from [Kel61].

• The peak increases with the mean brightness of the image.
• One reason why the eye has reduced sensitivity at high frequencies is because it

can retain the sensation of an image for a short interval after the image has been
removed, a phenomenon known as persistence of vision.

• The critical flicker frequency is directly proportional to the average brightness
of the display. In Figure A.17, the critical flicker frequency varies between 20
and 80 Hz.

A.3.7 Spatiotemporal Resolution and Frequency Response

After having seen the spatial and temporal frequency responses separately, we turn
our attention to their combined effect. Figure A.18 shows experimental results by
Robson [Rob66]. Figure A.18a shows that at higher temporal frequencies, both the
peak and cutoff frequencies in the spatial frequency response shift downward. They
also help confirm our intuitive expectation that the eye is not capable of resolving
high spatial frequency details when an image moves very fast, compared to its spatial
resolution capabilities for static images (Figure A.18b). The key implication of this
finding for the design of TV and video systems is that it is possible to trade off spatial

CHARACTERISTICS OF HUMAN VISION 607

FIGURE A.18 Spatiotemporal frequency response of the HVS: (a) spatial frequency re-
sponses for different temporal frequencies (in cpd); (b) temporal frequency responses for dif-
ferent spatial (angular) frequencies (in Hz). Redrawn from [Rob66].

resolution with temporal resolution and vice versa. In Chapter 20, we discussed how
this fact is exploited in the design of TV systems using interlaced scans.

The discussion thus far has assumed that the eye is not actually tracking any
particular object within the image sequence, which is an obvious simplification that
does not correspond to reality. Before we examine the different patterns that arise when
tracking takes place, let us define a few important concepts regarding eye movements
and their role in human visual perception.

The retina does not respond to the incoming light instantly; it requires between 0.15
and 0.30 s before the brain perceives an image. The early stages are often referred
to as preattentive vision. After 0.15 s or so have elapsed, attentional mechanisms
(some of which are triggered by the presence of salient objects in the scene in a
bottom-up fashion, while other are dependent on the visual task at hand, the top-down
component) are factored in and help guide the eyes toward regions of interest within
the scene. The result of eye movements around a scene is called a scanpath.

Part of the eye movements registered in a scanpath results from involuntary un-
conscious vibrations known as saccades. The eye has a temporal filter mechanism
that integrates spatial information from different positions of the retina covered by
saccadic eye movements. This temporal filtering is responsible for the phenomenon
of “persistence of vision” described earlier in this appendix.

Figure A.19 shows how the perceived temporal frequency changes as a function
of eye movements. In both cases, the same object with the same amount of detail
moves across the observer’s field of view with the same constant speed. The temporal
frequency is the product of the amount of detail in the object (usually expressed in
lines/mm) and its speed. In Figure A.19a, the eye is fixed and the perceived temporal
frequency is high, resulting in motion blur. In Figure A.19b, the eye tracks the moving

608 HUMAN VISUAL PERCEPTION

FIGURE A.19 Temporal frequency as a function of eye movements. Redrawn from [Wat00].

object (smooth pursuit eye movement), resulting in a temporal frequency of zero and
improved ability to resolve spatial detail, besides the absence of motion blur. This is
known as dynamic resolution and it is how humans judge the ability of reproducing
detail in real moving pictures.

A.3.8 Masking

Masking is the reduction in the visibility of one image component (the target) due
to the presence of another (the masker). The HVS is subject to several masking
phenomena, such as [RP00]:

• Texture Masking: Errors in textured regions are usually harder to notice, whereas
the HVS is very sensitive to errors in uniform areas.

• Edge masking: Errors near the edges are harder to notice.

IMPLICATIONS AND APPLICATIONS OF KNOWLEDGE ABOUT THE HUMAN VISUAL SYSTEM 609

• Luminance Masking: Visual thresholds increase with background luminance, as
a result of brightness adaptation. Moreover, higher luminance levels increase the
flicker effect.

• Contrast Masking: Errors (and noise) in light regions are harder to perceive as
a result of the property of the HVS by which the visibility of an image detail is
reduced by the presence of another.

A.4 IMPLICATIONS AND APPLICATIONS OF KNOWLEDGE ABOUT
THE HUMAN VISUAL SYSTEM

In this section, we summarize some of the most relevant properties of the HVS that
have implications for designers of image and video processing systems. They are
listed as follows [Ric02]:

• The HVS is more sensitive to high contrast than low contrast regions within
an image, which means that regions with large luminance variations (such as
edges) are perceived as particularly important and should therefore be detected,
preserved, and enhanced.

• The HVS is more sensitive to low spatial frequencies (i.e., luminance changes
over a large area) than high spatial frequencies (i.e., rapid changes within small
areas), which is an often exploited aspect of most image and video compres-
sion techniques. Discarding redundant low spatial frequency contents (while
preserving edges) leads to computational savings.

• The HVS is more sensitive to image features that persist for a long duration,
which means that it is important to employ techniques that minimize temporally
persistent disturbances or artifacts in an image.

• HVS responses vary from one individual to the next, which means that subjective
evaluations of image and video systems must be conducted with a large number
of subjects. This aspect also reinforces the need to find quantitative measures
of image and video quality that can be automatically calculated from the pixel
data and yet reflect the subjective notion of perceived quality.

LEARN MORE ABOUT IT

The following are some of the books on human visual perception and related fields
that may be of interest:

• Goldstein, E. B., Sensation & Perception, 7th ed., Belmont, CA: Thomson
Wadsworth, 2007.

• Bruce, V., Green, P. R., and Georgeson, M.A., Visual Perception: Physiology,
Psychology and Ecology, Philadelphia, PA: Psychology Press, 2003.

610 HUMAN VISUAL PERCEPTION

• Purves, D. and Lotto, R.B., Why We See What We Do, Sunderland, MA: Sinauer
Associates, 2003.

• Yantis, S. (Ed.), Visual Perception: Essential Readings, Philadelphia, PA: Psy-
chology Press, 2000.

• Palmer, S. E., Vision Science: Photons to Phenomenology, Cambridge, MA:
Bradford Books/MIT Press, 1999.

• Gregory, R. L., Eye and Brain: The Psychology of Seeing, Princeton, NJ: Prince-
ton University Press, 1998.

• Rodieck, R. W., The First Steps in Seeing, Sunderland, MA: Sinauer Associates,
1998.

• Wandell, B. A., Foundations of Vision, Sunderland, MA: Sinauer Associates,
1995.

The following are some of the scientific journals that publish research results in vision
science and related areas (in alphabetical order): Cognition, Journal of Vision, Na-
ture, Nature Neuroscience, Perception, Perception & Psychophysics, Science, Spatial
Vision, Vision Research, Visual Cognition, and Visual Neuroscience.

ON THE WEB

• Vision Science Portal: an Internet resource for research in human and animal
vision, with links to relevant conferences, journals, research groups, software,
and much more.
http://visionscience.com/

• MATLAB Psychophysics Toolbox: a widely used (and well-documented) collec-
tion of MATLAB functions for psychophysics experiments.
http://psychtoolbox.org/

• Project LITE (Boston University): a great collection of interactive visual illusions
classified by category.
http://lite.bu.edu/

• Michael Bach: Optical Illusions & Visual Phenomena: Another excellent col-
lection of illusions. Many QuickTime movies.
http://www.michaelbach.de/ot/

• The Joy of Visual Perception: a “web book” by Peter K. Kaiser, York University.
http://www.yorku.ca/eye/

APPENDIX B

GUI DEVELOPMENT

B.1 INTRODUCTION

In this appendix, we provide a practical guide to develop graphical user interfaces, or
GUIs, for MATLAB applications. This walk-through will give you the general idea
of how a user interface works in MATLAB, from laying out the window in code to
passing data around your application. We will refer to an example GUI throughout
the appendix so that you can see the concepts in action.

First, we will look at the basic structure of the code that makes up a GUI. This is
important because the structure of the code is related to its function, as we will see
later. We will also take a look at how the control of the system is passed between
MATLAB and the functions that make up a GUI. This will allow you to implement a
fancy dynamic application, even though MATLAB executes code sequentially. Next,
we will inspect the method by which data are saved in the GUI and how those data
are passed around so that all necessary functions have access to them. Finally, we
will dissect a working GUI demo that will wrap up all the concepts covered as well
as solidify them.

B.2 GUI FILE STRUCTURE

The file that makes up a GUI interface is nothing more than an M-file. The typical
uses of an M-file you have most likely seen so far are to save code in a script or create

Practical Image and Video Processing Using MATLAB®. By Oge Marques.
© 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

611

612 GUI DEVELOPMENT

a stand-alone file, or a function, that performs a particular task. A GUI M-file is a lot
like a function in that it performs one task: create and execute your GUI. It differs,
however, from a function in the structure of the file. When writing a function, you
have the option of writing subfunctions to take care of operations accessible only to
your function. In a GUI M-file, there will always be subfunctions present, sometimes
many. The basic structure of a GUI M-file is shown in the pseudocode that follows:

function mygui(parameter1, parameter2, ...)

if no parameters were passed, then
initialize();

else
switch over the parameters

case 1:
subfunction1();

case 2:
subfunction2();

...
end

end

function initialize()
(code to initialize goes here)

function subfunction1()
(code for function1 goes here)

function subfunction2()
(code for function2 goes here)

...

The first line contains the function definition as usual. We will take a look at the
uses of the parameters later.

Let us analyze the subfunctions. Three subfunctions are shown in the model,
but more can exist (and usually will). The first subfunction is uniquely called
initialize(). This should always be the first subfunction. It will initialize the
GUI, as the name suggests. More specifically, this subfunction will create the GUI fig-
ure and generate all the buttons, axes, sliders, and any other graphical items necessary.
It will also load any default parameters your application may contain. For example, if
your application allows the user to blur an image dynamically by dragging a slider bar,
you may want to start out with an initial amount of blur. Even if you wanted no blur
initially, this must be defined, and you would do it in the initialize() subfunc-
tion. The initialization subfunction is executed only once—when the GUI runs for the
first time. After that, it is up to all the other subfunctions to make sure all goes well.

PASSING SYSTEM CONTROL 613

The name of the initialization subfunction is not required to be initialize(),
but this name is easy to understand and is self-explanatory. Ultimately, it is up to you
how you wish to name it.

The other subfunctions, depicted as subfunction1() and
subfunction2() in the model, represent all the other functionality that
your GUI application will contain. Any action that could take place within the GUI
will be coded in its own separate subfunction. So, when a button is pressed, there is
a subfunction that handles that action. Same goes for sliders, pull-down menus, or
any other interactive elements. Subfunctions can also be used for repetitive tasks.
For instance, if there are many interactive elements in your GUI having a common
component in their code, it is wise to factor that code out and place it in its own
subfunction, thereby reducing the complexity of the code and making your code
easier to maintain.

So far we have looked at the subfunctions of a GUI M-file, which have three
basic uses: initialization of the GUI, encapsulating the functionality of interactive
components in the user interface, and factoring out reusable code. It seems as if we
have put all of the code into subfunctions, so you may ask if there is a use for the
main function itself (in the case of the model, mygui()). The main function has a
small but very crucial role in the execution of a user interface. Let us first look at what
happens when this code is executed and later we will see why it is all necessary.

The only aspect to the main function is an if-else statement. Basically, the
functionality is as follows: if no parameters are passed when the function is called,
then its only job is to initialize the GUI. If parameters are passed, then it performs a
switch in such a way that different combinations of parameters will give access to the
subfunctions. That is it! That is the concept of the main function. You can think of it
as a hub—from the main function, we can access all other subfunctions. As you will
see later, this is what makes dynamic execution possible in MATLAB.

We will come back to our model later to see exactly how its structure meets its
function. To continue, we must look at how control is passed in MATLAB.

B.3 PASSING SYSTEM CONTROL

One of the main challenges in developing a GUI in MATLAB is to give the user the
feeling of complete control over the application, just as in any other program. By this
we mean that the user can interact with the interface in a non-predetermined way, and
the application will still execute as expected. This is a small problem in MATLAB
because code is executed in a top-down fashion, meaning when a script or function
is called, execution begins at the top of the file and works its way down and finally
exits. If we look at the system control diagram depicted in Figure B.1, we can see this
is consistent. When users run a script, they do so by calling the file name or a function
name. Control is given to that function and when the function is complete, control
is given back to MATLAB. You may have noticed that when running functions or
scripts that take some time to execute, MATLAB is not responsive until that function is

614 GUI DEVELOPMENT

complete. This is because the function has control, not the main interface of MATLAB.
Coming back to our problem, we can see that this type of execution is not consistent
with a dynamic environment where the user may click on components in random
order. By understanding how control is passed in MATLAB, we can understand the
clever design of a GUI M-file that allows a dynamic environment.

When analyzing the passing of system control, keep in mind that the structure of
the GUI M-file, as you will see, is consistent with the concepts depicted in Figure B.1.
When MATLAB is first started, the user is presented with a command prompt. To
start a GUI application, the user types the function call for that GUI, and it is loaded.
From here, MATLAB passes control from the command prompt over to the main
function (shown as step 1). Let us assume that the user did not pass any parameters
to be consistent with our M-file model. Because there were no parameters, the main
function sends control to the initialization subfunction (step 2). As stated previously,
this subfunction creates the GUI window and all other components (step 3). Once the
initialization subfunction is complete, control is returned back to the main function
(4), but there is no more code to execute here (remember the main function was only
a hub). So from here, the main function ends and control is returned to MATLAB
(exit). Although control is returned to the command prompt, we now have another
window open in MATLAB, our GUI. MATLAB is aware of this, and if we interact
with any components, MATLAB will know.

It is probably a good time to introduce the concept of a callback. A callback is
simply a line of code that executes when someone interacts with a component of
your GUI. Every component has its own callback, and it is defined when the GUI is
initialized. Remember that this code is small, so we cannot put the entire function-
ality of the component within the callback, but just one line of code that will call a
function containing the real code that implements the component. So, to summarize
the concept of a callback, the following events would take place: when the user in-
teracts with a particular component (i.e., a button), MATLAB grabs the value of the
callback for that component and then executes it as if it were typed into the command
prompt. Now, because this code must be small, we want to design our callback in
such a way that we will ultimately execute the code that gives our component its
functionality.

If we observe Figure B.1, we see that when a user interacts with a component,
MATLAB will execute the callback for that component (which is just one line of
code). But, if you remember, the implementation for that component is one of the
subfunctions of the M-file. This is a slight problem because subfunctions are only
accessible from within the M-file. Remember, we are no longer executing code in
the M-file, so currently we do not have access to that subfunction (i.e., MATLAB
currently has control). To overcome this issue, we will define the callback such that
it will again call the main function of our GUI M-file, but instead of calling with
no parameters, we will specify the specific parameters that will gain us access to
the subfunction we need. This is the heart of GUI functionality. Keep also in mind
that each component has its own unique callback code, and therefore we can define
unique ways of calling the M-file such that all the subfunctions are accessible. Once
that callback code is executed (shown as step a), we are again inside the M-file. The

THE USERDATA OBJECT 615

FIGURE B.1 System control diagram.

first chunk of code that is encountered is that hub-like if-else code. Here, we are
forwarded to the appropriate subfunction (step b), where it does its business and then
returns control to the main function (c). From here, we again see that there is nothing
else to execute in the main function, so the function ends and control is returned to
MATLAB (exit).

Once the GUI figure is initialized, the process of executing callbacks is repeated
every time the user interacts with the GUI (following the sequence a–b–c–exit). The
only time this stops is when the figure is closed. At that point, the only way to get
back to the GUI is to start it up again by calling the main function.

So now we can see how the structure of the GUI M-file meets its function. The
M-file must be structured so that the entire appropriate code is accessible by the GUI
figure. Although it is nice to understand how this all works, you will not get far with
a GUI unless you have a clear picture of how data can be saved, accessed later, and
manipulated. Thus, we come to the UserData object.

B.4 THE USERDATA OBJECT

As you will see, the concept of the UserData object is actually quite simple. Before
we have a look at it, let us first take note to a small feature of MATLAB. The variables
available for use are organized in a stack, as illustrated in Figure B.2. This means that
when MATLAB passes control from the command prompt over to the main function,
any variables that were available are no longer accessible. They still exist, but they
are accessible only from the command prompt. Similarly, when control is passed to
a subfunction, any variables that might have been present in the main function are no
longer available. Also, if variables are created within the subfunction and once we
exit the subfunction and control is passed back to the main function, we would not

616 GUI DEVELOPMENT

FIGURE B.2 Variable stack.

have access to those variables that were once accessible from the subfunction—those
variables are in fact lost forever!

What this means for us in terms of a GUI is, at this point, we have no way of
saving any data. If you notice, from the system control diagram, the main function
is constantly called, but every time it exits, all variables are lost—the function is
brought to life and killed constantly and right along with it follows its variables. In
this entire GUI environment, there is in fact only one item that is always in existence
other than MATLAB itself and that is the figure of the GUI. Because of this fact, we
will store any persistent data within the GUI figure. The data structure that houses
this information is traditionally known as the UserData object.

TheUserDataobject is a child of the GUI figure and usually goes by the nameud,
although technically the object could be named anything you want. The UserData
object is actually just a variable, and as all other variables in MATLAB, it can take on
any form that a variable may express. If the only persistent data in your application is
an image, then ud can be equal to the image data. If your application holds different
pieces of unrelated data, then ud can take on the form of a structure that is the most
common. This is by far the most flexible because future changes may require an
addition of information to the persistent data in your GUI and by initially taking on
the form of a structure, this information can easily be added to the structure (remember
a structure can contain elements of different types or classes).

With regard to the UserData object, the only thing left to look at is exactly how
we initialize it, grab its contents when needed, and how to save back to it. This will
be covered when we inspect the demo GUI in the next section.

B.5 A WORKING GUI DEMO

You should notice that the demo GUI M-file (available at book’s web site) looks
similar to our model pseudocode from earlier. There is one parameter that will be

A WORKING GUI DEMO 617

used by the GUI during run-time, and based on the switch statement, it can take on
a value of ‘average’ or ‘complement’. The initialization subfunction accounts for the
majority of the code for this demo, so let us take a look at its code first. Remember
that this is a simplified demo, and there are many other creative things that can be
done in a GUI file; these are just the basics.

If the user runs the GUI function (simply by typing guidemo at the MATLAB
command prompt), the if-else statement will direct system control over to the
initialization subfunction. The first block of code will determine whether the GUI is
already running. This is achieved by first searching MATLAB’s list of objects for the
name of the GUI. If it is present, we will close it. Of course, in your own application
you can do whatever you want. Your functionality may allow multiple instances of
the same GUI application running simultaneously. It is up to you and the design of
your application.

The next block of code creates the GUI figure and sets its properties. After this, the
figure is resized and relocated to the center of the screen. Next, all the components on
the figure are created. You will notice, for example, that when the ‘average’ button is
created, we are also saving its handle in the UserData object. A handle is simply
MATLAB’s language for a pointer to that component. We do this so that we may have
access to the button and its properties if needed later in the application. Also, notice that
the callback property of the ‘average’ button is set to guidemo(’’average’’).
Here, we are telling MATLAB to execute the guidemo() function with the param-
eter ‘average’ every time this button is pressed. It is important to know that the quotes
around ‘average’ in this statement are two single quotes, not double quotes!

The last two components added to the figure are axes. Remember that an image
is rendered on an axes—this is what these two axes are for. In the final steps of the
initialization subfunction, we load the default image and save it to the UserData
object. We then display the original loaded image in the org_axes axes. We could
just stop there and let the user decide which filter to use by pressing one of the buttons,
but at this point there is nothing rendered on the second axes, and so it will display as
an axes. This might not be the best way to present the application when first loaded,
so we execute the code to filter with an averaging filter by calling the appropriate
subfunction. Notice that this is indeed the same function that is executed when the
user presses the ‘average’ button and this is just fine.

The last two subfunctions implement the two buttons. Both for the most part are
identical, except for the filtering part, which is not of importance here, so we will look
at only one of them. In the filter_average subfunction, the first thing we do is
get the UserData object from the figure by using the function get() and save it
in our own variable ud. Remember that this variable will be gone once we leave this
subfunction, so we should remember to save any changes back to the UserData
object in the figure before exiting. The next, block of code simply filters the original
image and saves this new image in an appropriate variable inside our copy of the
UserData object. Next, we display the filtered image. Notice that we must first
select the appropriate axes by using the axes function. If this code is not placed before
the imshow function call, MATLAB will display the image in the first axes it finds,
which in this case would most likely be the original image axes. Finally, because we

618 GUI DEVELOPMENT

have altered our version of the UserData object, we save it back to the figure by
using the set function set().

B.6 CONCLUDING REMARKS

Remember that this M-file was just for demonstration purposes and most likely your
GUI M-files will be more complex to achieve your desired functionality. In this demo,
we did not allow the user to pass any parameters to the function when calling it, but
this could be done by modifying the if-else statement to allow it. Also, each
component that can be used in a GUI has many features that allow you to customize
the GUI, so it is a good idea to study the different components and their capabilities
before designing your GUI. With your understanding of what goes on behind the
scenes when a GUI is in execution, you should be able to design and implement a
GUI that will fit the needs of your next MATLAB prototype.

REFERENCES

Ack01 S. Ackerman. Film sequence detection and removal in DTV format and stan-
dards conversion. Technical report, Teranex, Inc., 2001.

Ack02 S. Ackerman. Issues faced in DTV up-conversion. Technical report, Teranex,
Inc., 2002.

AS07 S. Avidan and A. Shamir. Seam carving for content-aware image resizing. In
International Conference on Computer Graphics and Interactive Techniques,
ACM Press, New York, NY, 2007.

AT04 T. Acharya and P.-S. Tsai. JPEG2000 Standard for Image Compression: Con-
cepts, Algorithms and VLSI Architectures, Wiley–Interscience, 2004.

Bax94 G. A. Baxes. Digital Image Processing: Principles and Applications, Wiley,
New York, 1994.

BB08 W. Burger and M. J. Burge. Digital Image Processing: An algorithmic Intro-
duction Using Java, Springer, New York, 2008.

BD00 A. C. Bovik and M. D. Desai. Basic Binary Image Processing, Chapter 2.2,
Academic Press, San Diego, 2000, pp. 37–52.

BN92 T. Beier and S. Neely. Feature-based image metamorphosis. ACM SIGGRAPH
Computer Graphics, 26(2):35–42, 1992.

Bov00a A. Bovik, editor. Handbook of Image and Video Processing, Academic Press,
San Diego, 2000.

Bov00b A. C. Bovik. Basic Gray-Level Image Processing, Chapter 1.1, Academic Press,
San Diego, 2000, pp. 3–17.

Bov00c A. C. Bovik. Introduction to Digital Image and Video Processing, Chapter 1.1,
Morgan Kaufmann, 2000, pp. 3–17.

Practical Image and Video Processing Using MATLAB®. By Oge Marques.
© 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

619

620 REFERENCES

Bra95 R. N. Bracewell. Two-Dimensional Imaging, Prentice Hall, 1995.

Bri74 E. O Brigham. The Fast Fourier Transform, Prentice Hall, 1974.

Can86 J. Canny. A computational approach to edge detection. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 8(6):679–698, 1986.

Cas96 K. R. Castleman. Digital Image Processing, Prentice Hall, Upper Saddle River,
1996.

CJSW01 H. D Cheng, X. H. Jiang, Y. Sun, and J. Wang. Color image segmentation:
advances and prospects. Pattern Recognition, 34(12):2259–2281, 2001.

CMS+06 D. Ćulibrk, O. Marques, D. Socek, H. Kalva, and B. Furht. A neural net-
work approach to Bayesian background modeling for video object segmenta-
tion. In International Conference on Computer Vision Theory and Applications
(VISAPP 2006), Setúbal, Portugal, February 2006, pp. 474–479.

CMS+07 D. Ćulibrk, O. Marques, D. Socek, H. Kalva, and B. Furht. Neural network
approach to background modeling for video object segmentation. IEEE Trans-
actions on Neural Networks, 18(6):1614–1627, November 2007.

Csi90 M. Csikszentmihalyi. Flow: The Psychology of Optimal Experience, Harper
Collins, 1990.

Dav04 E. R. Davies. Machine Vision: Theory, Algorithms, Practicalities, Morgan
Kaufmann Publishers Inc., San Francisco, CA, 2004.

Dea01 J. Deame. DTV format conversion: a buyer’s guide. Technical report, Teranex,
Inc., 2001.

DG87 E. R. Dougherty and C. R. Giardina. Matrix Structured Image Processing,
Prentice Hall, 1987.

DHS01 R. O. Duda, P. E. Hart, and D. G. Stork. Pattern classification, 2nd edition,
Wiley, 2001.

Dou92 E. R. Dougherty. An Introduction to Morphological Image Processing, SPIE
Press, 1992.

Dou94 E. R. Dougherty. Digital Image Processing Methods, CRC Press, 1994.

DR78 L. S. Davis and A. Rosenfeld. Noise cleaning by iterated local averaging. IEEE
Transactions on Systems, Man, and Cybernetics, 8:705–710, 1978.

DZ86 S. Di Zenzo. A note on the gradient of a multi-image. Computer Vision, Graph-
ics, and Image Processing, 33(1):116–125, 1986.

Eff00 N. Efford. Digital Image Processing: A Practical Introduction Using Java,
Addison-Wesley, 2000. Includes CD-ROM.

FB60 G. L. Fredendall and W. L. Behrend. Picture quality: procedures for evaluating
subjective effects of interference. Proceedings of the IRE, 48(6):1030–1034,
1960.

FDHF+05 R. B. Fisher, K. Dawson-Howe, A. Fitzgibbon, C. Robertson, and E. Trucco.
Dictionary of Computer Vision and Image Processing, Wiley, 2005.

FGW96 B. Furht, J. Greenberg, and R. Westwater. Motion Estimation Algorithms for
Video Compression, Kluwer Academic Publishers, Norwell, MA, 1996.

FH04 P. F. Felzenszwalb and D. P. Huttenlocher. Efficient graph-based image seg-
mentation. International Journal of Computer Vision, 59(2):167–181, 2004.

FM81 K. S. Fu and J. K. Mui. A survey on image segmentation. Pattern Recognition,
13(1):3–16, 1981.

REFERENCES 621

FMR+02 J. Freixenet, X. Muñoz, D. Raba, J. Martı́, and X. Cufı́. Yet another survey on
image segmentation: region and boundary information integration: In Proceed-
ings of the 7th European Conference on Computer Vision: Part III, Springer,
London, 2002, pp. 408–422.

FP03 D. A. Forsyth and J. Ponce. Computer Vision: A Modern Approach, Prentice
Hall, 2003.

Fre77 W. Frei. Image enhancement by histogram hyperbolization. Computer Graphics
and Image Processing, 6(3):286–294, 1977.

FS76 R. W. Floyd and L. Steinberg. An adaptive algorithm for spatial grey scale.
Proceedings of the Society of Information Display, 17:7577, 1976.

GD88 C. R. Giardina and E. R. Dougherty. Morphological Methods in Image and
Signal Processing, Prentice Hall, Englewood Cliffs, NJ, 1988.

GDCV99 J. Gomes, L. Darsa, B. Costa, and L. Velho. Warping and Morphing of Graphical
Objects, Morgan Kaufmann, 1999.

GH99 B. Grob and C. E. Herndon. Basic Television and Video Systems, 6th edition,
McGraw-Hill, New York, 1999.

Gil05 G. F. Gilder. The Silicon Eye: How a Silicon Valley Company Aims to Make
All Current Computers, Cameras and Cell Phones Obsolete, W. W. Norton &
Company, 2005.

Gir93 B. Girod. Motion compensation: visual aspects, accuracy, and fundamental
limits. Motion Analysis and Image Sequence Processing, Kluwer Academic
Publishers, 1993, pp. 126–152.

Gol07 E. B. Goldstein. Sensation and Perception, 7th edition, Thomson Wadsworth,
Belmont, CA, 2007.

Gos05 A. A. Goshtasby. 2-D and 3-D Image Registration, Wiley, 2005.

GW08 R. C. Gonzalez and R. E. Woods. Digital Image Processing, 3rd edition, Pren-
tice Hall, Upper Saddle River, NJ, 2008.

GWE04 R. C. Gonzalez, R. E. Woods, and S. L. Eddins. Digital Image Processing Using
MATLAB, Pearson Prentice Hall, 2004.

HCT+06 Y.-W. Huang, C.-Y. Chen, C.-H. Tsai, C.-F. Shen, and L.-G. Chen.
Survey on block matching motion estimation algorithms and architectures
with new results. Journal of VLSI Signal Processing Systems, 42(3):297–320,
2006.

HL05 D. Hanselman and B. Littlefield. Mastering MATLAB 7, Pearson Prentice Hall,
Upper Saddle River, NJ, 2005.

Hou P. V. C. Hough. Method and means of recognizing complex patterns. US patent
306,965,418. December 1962.

HPN97 B. G. Haskell, A. Puri, and A. N. Netravali. Digital Video: An Introduction to
MPEG-2, Kluwer Academic Publishers, Norwell, MA, 1997.

HS85 R. M. Haralick and L.G. Shapiro. Image segmentation techniques. Applications
of Artificial Intelligence II, 548:2–9, 1985.

Hu62 M.-K. Hu. Visual pattern recognition by moment invariants. IRE Transactions
on Information Theory, 8:179–187, 1962.

Hum75 R. Hummel. Histogram modification techniques. Computer Graphics and
Image Processing, 4:209–224, 1975.

622 REFERENCES

HYT79 T. Huang, G. Yang, and G. Tang. A fast two-dimensional median filtering
algorithm. IEEE Transactions on Acoustics, Speech, and Signal Processing,
27(1):13–18, 1979.

ITU00 Recommendation 500-10. Methodology for the subjective assessment of the
quality of television pictures. ITU-R BT.500, 2000.

Jac01 K. Jack. Video Demystified: A Handbook for the Digital Engineer, 3rd edition,
LLH Technology Publishing, Eagle Rock, VA, 2001.

Jah05 B. Jahne. Digital Image Processing: Concepts, Algorithms, and Scientific
Applications, 6th edition, Springer-Verlag New York Secaucus, NJ, 2005.

Jai89 A. K. Jain. Fundamentals of Digital Image Processing, Prentice Hall, Engle-
wood Cliffs, NJ, 1989.

JC90 B. K. Jang and R. T. Chin. Analysis of thinning algorithms using mathematical
morphology. IEEE Transactions on Pattern Analysis and Machine Intelligence,
12(6):541–551, 1990.

JKS95 R. Jain, R. Kasturi, and B. G. Schunck. Machine Vision, McGraw-Hill,
1995.

JW75 D. Judd and G. Wyszecki. Color in Business, Science, and Industry, Wiley,
1975.

Kel61 D. H. Kelly. Visual responses to time-dependent stimuli. I. Amplitude sensi-
tivity measurements. Journal of the Optical Society of America, 51:422–429,
1961.

Kir71 R. Kirsch. Computer determination of the constituent structure of biological
images. Computers and Biomedical Research, 4:315–328, 1971.

LA01 D. L. Lau and G. R. Arce. Modern Digital Halftoning, Marcel Dekker, 2001.

LD04 Z.-N. Li and M. Drew. Fundamentals of Multimedia, Pearson Prentice Hall,
Upper Saddle River, NJ, 2004.

LI99 A. C. Luther and A. F. Inglis. Video Engineering, 3rd edition, McGraw-Hill,
New York, 1999.

Lim90 J. S. Lim. Two-Dimensional Signal and Image Processing, Prentice Hall,
Englewood Cliffs, NJ, 1990.

LP06 R. Lukac and K. N. Plataniotis, editors. Color Image Processing: Methods and
Applications, CRC Press / Taylor & Francis, Boca Raton, FL, 2006.

Luk07 R. Lukac. Guest editorial: special issue on applied color image processing:
editorials. International Journal of Imaging Systems and Technology,
17(3):103–104, 2007.

Mar82 D. Marr. Vision: A Computational Investigation into the Human Representation
and Processing of Visual Information, W. H. Freeman, September 1982.

McA04 A. McAndrew. An Introduction to Digital Image Processing with MATLAB,
Brooks/Cole, 2004.

MH80 D. Marr and E. Hildreth. Theory of edge detection. Proceedings of the Royal
Society of London B, 207(1167):187–217, 1980.

Mia99 J. Miano. Compressed Image File Formats, Addison-Wesley Professional,
1999.

MPG85 H. Mussmann, P. Pirsch, and H. Garllet. Advances in picture coding. Proceed-
ings of the IEEE, 73:523–548, April 1985.

REFERENCES 623

MW93 H. R. Myler and A. R. Weeks. Computer Imaging Recipes in C, Prentice Hall,
Upper Saddle River, NJ, 1993.

MXS08 M. Mirmehdi, X. H. Xie, and J. Suri. Handbook of Texture Analysis, World
Scientific, 2008.

NG95 M. Nelson and J. L. Gaily. The Data Compression Book, 2nd edition, M&T
Books, 1995.

Ost35 G. Osterberg. Topography of the Layer of Rods and Cones in the Human Retina,
Levin & Munksgaard, 1935.

Ots79 N. Otsu. A threshold selection method from gray-level histograms. IEEE Trans-
actions on Systems, Man, and Cybernetics, 9(1):62–66, 1979.

OWY83 A. V. Oppenheim, A. S. Willsky, and I. T. Young. Signals and Systems, Prentice
Hall, 1983.

Pal99 S. E. Palmer. Vision Science: Photons to Phenomenology, MIT Press, 1999.

Pap62 A. Papoulis. The Fourier Integral and Its Applications, McGraw-Hill, 1962.

Par96 J. R. Parker. Algorithms for Image Processing and Computer Vision, Wiley,
1996.

Pav82 T. Pavlidis. Algorithms for Graphics and Image Processing, Springer, 1982.

PCK85 W. K. Pratt, T. J. Cooper, and I. Kabir. Pseudomedian filter. Architectures and
Algorithms for Digital Image Processing II, SPIE Proceedings, 1985.

Pet06 M. Petrou. Image Processing: Dealing with Texture, Wiley, 2006.

PM92 W. B. Pennebaker and J. L. Mitchell. JPEG Still Image Data Compression
Standard, Kluwer Academic Publishers, Norwell, MA, 1992.

Poy C. Poynton. Color FAQ: frequently asked questions about color. Web.

Poy96 C. Poynton. A Technical Introduction to Digital Video, Wiley, New York,
1996.

Poy03 C. Poynton. Digital Video and HDTV Algorithms and Interfaces, Morgan Kauf-
mann Publishers, San Francisco, 2003.

PP93 N. R. Pal and S. K. Pal. A review on image segmentation techniques. Pattern
Recognition, 26(9):1277–1294, 1993.

Pra02 R. Pratap. Getting Started with MATLAB, Oxford University Press, New York,
2002.

Pra07 W. K. Pratt. Digital Image Processing, 4th edition, Wiley, New York, 2007.

Pre70 J. M. Prewitt. Object enhancement and extraction. Picture Processing and
Psychopictorics, Academic Press, 1970.

PV90 I. Pitas and A. N. Venetsanopoulos. Nonlinear Digital Filters: Principles and
Applications, Kluwer Academic Publishers, 1990.

Ric02 I. E. G. Richardson. Video Codec Design, Wiley, 2002.

Rob66 J. G. Robson. Spatial and temporal contrast sensitivity functions of the vi-
sual systems. Journal of the Optical Society of America, 56:1141–1142,
1966.

Rob77 G. S. Robinson. Edge detection by compass gradient masks. Computer Graph-
ics and Image Processing, 6:492–501, 1977.

ROC97 R. A. Rensink, J. K. O’Regan, and J. J. Clark. The need for attention to perceive
changes in scenes. Psychological Science, 8(5):368–373, 1997.

624 REFERENCES

RP00 M. Robin and M. Poulin. Digital Television Fundamentals: Design and
Installation of Video and Audio Systems, 2nd edition, McGraw-Hill, New York,
2000.

Sal06 D. Salomon. Data Compression: The Complete Reference, 4th edition,
Springer, 2006.

Say05 K. Sayood. Introduction to Data Compression, 3rd edition, Morgan Kaufmann,
2005.

SB91 M. J. Swain and D. H. Ballard. Color indexing. International Journal of
Computer Vision, 7(1):11–32, 1991.

SC82 J. Serra and N. A. C. Cressie. Image Analysis and Mathematical Morphology,
Vol. 1, Academic Press, 1982.

Sch89 R. J. Schalkoff. Digital Image Processing and Computer Vision, Wiley,
1989.

SCM+05 D. Socek, D. Ćulibrk, O. Marques, H. Kalva, and B. Furht. A hybrid color-
based foreground object detection method for automated marine surveillance.
In Advanced Concepts for Intelligent Vision Systems (ACIVS 2005), Antwerp,
Belgium, September 2005, pp. 340–347.

Ser82 J. Serra. Image Analysis and Mathematical Morphology, Academic Press,
London, 1982.

Ser88 J. Serra. Image Analysis and Mathematical Morphology, Vol. 2, Academic
Press, London, 1988.

SHB08 M. Sonka, V. Hlavac, and R. Boyle. Image Processing, Analysis, and Computer
Vision, 3rd edition, Thomson, Ontario, Canada, 2008.

SK99 C. Stiller and J. Konrad. Estimating motion in image sequences. IEEE Signal
Processing Magazine, 16(4):70–91, 1999.

SKH08 T. Svoboda, J. Kybic, and V. Hlavac. Image Processing, Analysis, and Machine
Vision: A MATLAB Companion, Thomson Learning, Toronto, Ontario, 2008.

SM00 J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 22(8):888–905, 2000.

SOS00 M. Seul, L. O’Gorman, and M. J. Sammon. Practical Algorithms for Image
Analysis, Cambridge University Press, Cambridge, UK, 2000.

SS96 J. P. Serra and P. Soille. Mathematical Morphology and Its Applications to
Image Processing, Kluwer Academic Publishers, 1996.

SS01 G. Stockman and L. G. Shapiro. Computer Vision, Prentice Hall, Upper Saddle
River, NJ, 2001.

SSVPB02 G. Sandini, J. Santos-Victor, T. Pajdla, and F. Berton. Omniviews: direct omni-
directional imaging based on a retina-like sensor. Sensors, 2002. Proceedings
of IEEE, 1:27–30, 2002.

Sta00 J. Stark. Adaptive image contrast enhancement using generalizations of his-
togram equalization. IEEE Transactions on Image Processing, 9(5):889–896,
2000.

Tek95 A. M. Tekalp. Digital Video Processing, Prentice Hall, Upper Saddle River, NJ,
1995.

TM01 D. Taubman and M. Marcellin, editors. JPEG2000: Image Compression
Fundamentals, Standards and Practice, Springer, 2001.

REFERENCES 625

TSV05 H. J. Trussell, E. Saber, and M. Vrhel. Color image processing [basics and
special issue overview]. IEEE Signal Processing Magazine, 22(1):14–22,
2005.

TT90 F. Tomita and S. Tsuji. Computer Analysis of Visual Textures, Kluwer, 1990.

TTP08 A. Trémeau, S. Tominaga, and K.N. Plataniotis. Color in image and video pro-
cessing: Most recent trends and future research directions. EURASIP Journal
on Image and Video Processing, vol. 2008 Article ID 581371, 26 pages, 2008.
doi:10.1155/2008/581371

Uli87 R. Ulichney. Digital Halftoning, MIT Press, Cambridge, MA, 1987.

Umb05 S. E. Umbaugh. Computer Imaging: Digital Image Analysis and Processing,
CRC Press, Boca Raton, FL, 2005.

UPH05 R. Unnikrishnan, C. Pantofaru, and M. Hebert. A measure for objective eval-
uation of image segmentation algorithms. In Proceedings of the 2005 IEEE
Conference on Computer Vision and Pattern Recognition (CVPRŠ05), Work-
shop on Empirical Evaluation Methods in Computer Vision, 2005.

UPH07 R. Unnikrishnan, C. Pantofaru, and M. Hebert. Toward objective evaluation of
image segmentation algorithms. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 29(6):929–944, 2007.

vdEV89 A. W. M. van den Enden and N.A.M. Verhoeckx. Discrete-Time Signal
Processing: An Introduction, Prentice Hall, 1989.

vdHDdRT04 F. van der Heijden, R. P. W. Duin, D. de Ridder, and D. M. J. Tax. Classification,
Parameter Estimation and State Estimation: An Engineering Approach Using
MATLAB, Wiley, 2004.

VF08 A. Vedaldi and B. Fulkerson. VLFeat: an open and portable library of computer
vision algorithms. http://www.vlfeat.org/, 2008.

Vin93 L. Vincent. Morphological grayscale reconstruction in image analysis: ap-
plications and efficient algorithms. IEEE Transactions on Image Processing,
2(2):176–201, 1993.

VNB67 F. L. Van Ness and M. A. Bouman. Spatiotemporal transfer in the human eye.
Journal of the Optical Society of America, 57(9):1082–1088, 1967.

Wan08 J. Wang. Graph Based Image Segmentation: A Modern Approach, VDM Verlag
Dr. Müller, 2008.

Wat94a J. Watkinson. The engineer’s guide to motion compensation. Technical report,
Snell & Wilcox, 1994.

Wat94b J. Watkinson. The engineer’s guide to standards conversion. Technical report,
Snell & Wilcox, 1994.

Wat00 J. Watkinson. The Art of Digital Video, 3rd edition, Focal Press, Oxford, 2000.

WB00 J. C. Whitaker and K. B. Benson, editors. Standard Handbook of Video and
Television Engineering, 3rd edition, McGraw-Hill, New York, 2000.

Wol90 G. Wolberg. Digital Image Warping, Wiley-IEEE Computer Society Press,
1990.

Won00 P. W. Wong. Image Quantization, Halftoning, and Printing, Chapter 1.1,
Morgan Kaufmann, 2000, pp. 657–667.

Woo06 J. W. Woods. Multidimensional Signal, Image, and Video Processing and
Coding, Academic Press, San Diego, 2006.

626 REFERENCES

WOZ02 Y. Wang, J. Ostermann, and Y.-Q. Zhang. Video Processing and Communica-
tions, Prentice Hall, Upper Saddle River, NJ, 2002.

WR04 S. Westland and C. Ripamonti. Computational Colour Science Using MATLAB,
Wiley, 2004.

WS82 G. Wyszecki and W. S. Styles. Color Science: Concepts and Methods, Wiley,
New York, 1982.

Yar59 A. L. Yarbus. Eye Movements and Vision, Plenum Press, New York, 1959.

YGvV I. T. Young, J. J. Gerbrands, and L. J. van Vliet. Fundamentals of image pro-
cessing. Delft University of Technology 1998, 113 Pages, ISBN:9075691017.

ZF03 B. Zitová and J. Flusser. Image registration methods: a survey. Image and Vision
Computing, 21(11):977–1000, 2003.

Zha96 Y. J. Zhang. A survey on evaluation methods for image segmentation. Pattern
Recognition, 29(8):1335–1346, 1996.

Zha01 Y. J. Zhang. A review of recent evaluation methods for image segmentation.
In Sixth International Symposium on Signal Processing and Its Applications,
Vol. 1, 2001, pp. 148–151.

Zha06a Y. J. Zhang. Advances in Image and Video Segmentation, IRM Press, 2006.

Zha06b Y. J. Zhang. An overview of image and video segmentation in the last 40 years.
In Advances in Image and Video Segmentation, Y. J. Zhang (Ed.), pp. 1–16,
2006.

INDEX

2:3 pull-down, See 3:2 pull-down
2D-log search method, 570
Three-step search method, 571
3:2 pull-down, 547, 557

in MATLAB, 557
MATLAB tutorial, 557

4-path, 29
8-path, 29

aberrations, 93
lens, 93

adapthisteq, 179, 180
ADC, 514, 517
additive image offset, 104
adjacency, 28
adjust contrast tool

in MATLAB, 69
affine transformations, 127

in MATLAB, 128
algorithms

morphological, 315
in MATLAB, 315

aliasing, 96, 542

spatial, 542
temporal, 542

analog TV system
bandwidth, 507

analog video
color, 510
monochrome, 507
raster, 507
spectrum, 509, 512
standards, 512

analog-to-digital conversion, See ADC
anchor frame, 565
angular frequency, 597
anti-aliasing filter, 517
apparent motion, 561
applycform, 394
AR, 505, 546

conversion, 541, 546
arithmetic operations, 103

division, 108
addition, 104
combining, 110
MATLAB tutorial, 113

Practical Image and Video Processing Using MATLAB®. By Oge Marques.
© 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

627

628 INDEX

arithmetic operations (cont.)
multiplication, 108
subtraction, 106

arrays
in MATLAB, 37

artifacts, 23
aspect ratio, See AR
audio, 516
auto-contrast, 156

basic image manipulation
MATLAB tutorial, 74

Bayesian classifier, 490
binarization, 6
binary images, 23

in MATLAB, 23
binary object features, 450

area, 450
aspect ratio, 454
axis of least second moment, 450
centroid, 450
eccentricity, 454
Euler number, 452
moments, 455
perimeter, 453
projections, 451
thinness ratio, 453

bitand, 111
bitcmp, 111
bitmap, 23
bitor, 111
bitxor, 111
blanking interval

horizontal, 508
vertical, 508

blanking intervals, 503, 508
blind spot, 595
block-matching algorithms, 568
blotches, 575
blurring, 7
book’s web site, 16
bottom-hat transformation, 325

in MATLAB, 325
boundary descriptors, 456

chain code, 459

Fourier descriptors, 461
Freeman code, 459
in MATLAB, 458
shape number, 460
signature, 461

boundary detection, 348
boundary extraction, 317

in MATLAB, 319
MATLAB tutorial, 330

brain, 591
brightness, 88, 388
brightness adaptation, 594
brightness perception, 600
bwboundaries, 458
bwhitmiss, 313
bwlabel, 29, 321
bwmorph, 315
bwperim, 319, 453
bwselect, 321
bwtraceboundary, 458

camera optics, 91
Canny edge detector, 347

in MATLAB, 348
CCD, 89
CCD camera, 90
CCD sensor, 89
cell array, 51
cell mode, 54
CFF, 605
charge-coupled device, See CCD
chroma subsampling, 519
chromatic light source, 388
CI, 599
CIE, 89
CIE XYZ chromaticity diagram, 390
CIF, 522
closing, 311

in MATLAB, 312
MATLAB tutorial, 328

CMOS sensor, 90
colfilt, 278
color, 84, 86

basic concepts, 388
encoding, 87

INDEX 629

perception, 387
psychophysics, 387
representation, 87, 519

color complement, 412
color image

representation
in MATLAB, 401

color images, 24
24-bit, 25
indexed, 25

color mixtures, 389
color model

CMY, 397
CMYK, 397
HSV, 398
NTSC, 399
RGB, 396
YCbCr, 401
YIQ, 399

color models, 395
color slicing, 412
color space

conversion, 541, 545
in MATLAB, 394, 398, 399, 401

color spaces
perceptually uniform, 392

color transformations, 410
color-difference signals, 510
colorimetry, 87
colormaps

in MATLAB, 403
common intermediate format,

See CIF
component video, 506
components, 29
composite Laplacian mask, 219
composite video, 506, 511

color, 511
compression, 26
compression techniques

lossless, 432
lossy, 433

cones, See photoreceptors
confusion matrix, 480
connected components, 29

extraction, 321
in MATLAB, 29
labeling, 321

in MATLAB, 321
connectivity, 29
contrast adjustment, 156
contrast enhancement, 10
Contrast Index, See CI
contrast manipulation, 155
contrast ratio, 603
contrast sensitivity, 603

test pattern, 604
contrast sensitivity function,

See CSF
contrast stretching, 155
conv2, 210
conversion

NTSC to PAL, 545, 556
PAL to NTSC, 545

convolution, 204
1D, 204
2D, 206
in MATLAB, 210
MATLAB tutorial, 223

convolution theorem, 236
coordinate convention, 21
correlation, 208

MATLAB tutorial, 223
critical flicker frequency, See CFF
CSF, 603, 604
cut-off frequencies, 542

dark adaptation, 594
deblurring, 6
decimation, 543
deconvblind, 287
deconvlucy, 287
deconvreg, 287
deinterlacing, 541, 543

field averaging, 544
field merging, 544
in MATLAB, 550
line and field averaging, 544
line averaging, 543
MATLAB tutorial, 550

630 INDEX

deinterlacing (cont.)
temporal and vertical interpolation,

544
temporal interpolation, 544
vertical interpolation, 543

DFD, 567
digital image

definition, 5
representation, 21

digital image processing, 3
definition, 5
hardware, 10
software, 11
system, 10

digital video, 514
advantages, 515
audio component, 516
basics, 514
formats, 521
parameters, 516
standards, 521

digital video manipulation
MATLAB tutorial, 528

digitization
image, 94

dilation, 304
in MATLAB, 305
MATLAB tutorial, 326

displaced frame difference, See DFD
displaying images

in MATLAB, 68
distance measures, 29
down-conversion, 543

EBMA, 568
example, 569
fast algorithms, 570
half-pixel, 581
in MATLAB, 580
integer-pixel, 580
weaknesses, 569

edge
definition, 336
ideal, 337
ramp, 337

edge (MATLAB function), 337
edge detection, 6

basic concepts, 336
color image, 417
first derivative, 336, 337
formulation of the problem, 335
in MATLAB, 337
MATLAB tutorial, 354
second derivative, 336, 343
steps, 337

edge extraction, 6
edge linking, 348
electromagnetic radiation, 86
electromagnetic spectrum, 84
encoding

video, 519
enhancement, 6
erosion, 307

in MATLAB, 307
MATLAB tutorial, 327

exhaustive search block matching algo-
rithm, See EBMA

eye, 591
eye-camera analogy, 592

false alarm rate, 481
feature extraction

introduction, 447
invariance, 449
MATLAB tutorial, 470
robustness, 449

feature representation
MATLAB tutorial, 470

feature vectors, 448
fft2, 239
fftshift, 239
field averaging, 544

in MATLAB, 554
field merging, 544
field rate, 504
filter

alpha-trimmed mean, 277
in MATLAB, 294

arithmetic mean, 273
in MATLAB, 289

INDEX 631

averaging, 213
bandpass, 281

Butterworth, 282
Gaussian, 282
ideal, 282

bandreject, 280
contra-harmonic mean, 274

in MATLAB, 290
directional difference, 220
emboss, 220
Gaussian blur, 215
geometric mean, 274

in MATLAB, 292
harmonic mean, 274

in MATLAB, 291
max, 277
mean, 213, 273
median, 216, 276
midpoint, 277
min, 277
neighborhood averaging, 213

variations, 213
notch, 282
order-statistic

in MATLAB, 292
Wiener, 284

filter2, 210
filtering

frequency-domain
introduction, 235

motion-compensated, 576
filtering techniques

video, 561
filters

adaptive, 278
high-pass, 218
low-pass, 211
morphological, 314
order-statistic, 275
sharpening

MATLAB tutorial, 227
smoothing

MATLAB tutorial, 225
flash rate, See refresh rate
flicker, 605

fliplr, 134
flipud, 134
Fourier Transform, See FT
Foveon X3 sensor, 90
frame, 502
frame rate, 504, 507
frequency spectrum, 240
freqz2, 237
fspecial, 212
FT, 235, 237

basic concepts, 237
in MATLAB, 239
mathematical foundation, 238
MATLAB tutorial, 252
properties, 240

full color image processing
MATLAB tutorial, 420

full-color image processing, 409

gamma correction, 505, 546
gamma transformation, 157
geometric operations, 125

components, 126
examples, 125
goals, 126

global operations, 30
glsdemo, 160
graphical user interface, See GUI
gratings, 596

sinusoidal, 597
gray level slicing, 160
gray-level images, 24

in MATLAB, 24
gray-level resolution, 98
gray2ind, 67
grayslice, 98, 406, 419
GUI, 611

callback, 614
demo, 616
file structure, 611
in MATLAB, 611
variable stack, 615

HBMA, 571
in MATLAB, 582

632 INDEX

HDTV, 514, 598
hierarchical block matching algorithm,

See HBMA
high boost filtering, 221, 232
high-definition TV, See HDTV
high-pass filter, See HPF
histeq, 176, 180, 181
histogram, 171

matching, 181
in MATLAB, 181

computing, 172
definition, 171
equalization, 176

in MATLAB, 176
MATLAB tutorial, 191

interpreting, 173
matching

MATLAB tutorial, 191
modification

MATLAB tutorial, 195
processing, 171
shrinking, 186

in MATLAB, 187
sliding, 184

in MATLAB, 185
specification, 181

MATLAB tutorial, 191
stretching, 185

in MATLAB, 186
histogram processing

color image, 412
histogram-based features, 463
hit rate, 481
hit-or-miss transform, See HoM
HoM, 312

in MATLAB, 313
MATLAB tutorial, 328

Hough transform, 349
in MATLAB, 351

HPF, 218, 248
frequency domain, 248

Butterworth, 250
Gaussian, 249
ideal, 248
MATLAB tutorial, 258

high-frequency emphasis, 251
hsv2rgb, 399
hue, 88
human eye, 591

anatomical properties, 592
cross section, 592
iris, 592
lens, 592
pupil, 592
retina, 592, 595

human visual system, See HVS
HVS, 14, 591

characteristics, 595
masking, 608
spatial frequency response, 604
spatiotemporal frequency response,

606
temporal frequency response, 605

IAT, 93
ICC

profiles, 395
ifft2, 239
ifftshift, 239
im2bw, 66, 369
im2double, 65
im2int16, 65
im2single, 65
im2uint16, 65
im2uint8, 65
imabsdiff, 107
imadjust, 156, 157, 186, 187
image

acquisition, 89
borders, 210
coding

basic concepts, 428
introduction, 427

compression
basic concepts, 428
introduction, 427
MATLAB tutorial, 440
standards, 435

cropping, 134
MATLAB tutorial, 138

INDEX 633

deblurring, 283
in MATLAB, 287

decoding
model, 431

definition, 5
degradation, 265
encoding

model, 431
enhancement, 151

goals, 151
flipping, 134

MATLAB tutorial, 138
histogram, 171

MATLAB tutorial, 188
morphing, 136
negative, 108, 156
registration, 137

MATLAB tutorial, 144
representation, 21
resizing, 132

MATLAB tutorial, 138
restoration, 265
rippling, 136
rotation, 134

MATLAB tutorial, 138
segmentation

intensity-based, 367
introduction, 365
region growing, 374
region splitting and merging, 376
region-based, 373
watershed, 377

sensors, 89
shrinking, 132
spatial transformations

MATLAB tutorial, 142
thresholding, 367

global, 369
illumination, 370
in MATLAB, 369
local, 371
MATLAB tutorial, 379
noise, 371
optimal, 370

translation, 134

twirling, 135
warping, 134
zooming, 132

image (MATLAB command), 68
image acquisition, 83, 84, 89
Image Acquisition Toolbox, See IAT
image addition, 103
image data class conversion

in MATLAB, 67
image digitization, 84, 94
image division, 108
image file formats, 26
image formation, 84
image information tool

in MATLAB, 69
image manipulation, 5
image multiplication, 108
image processing, 3

applications, 4
basic concepts, 4
books, 14
high-level, 5
journals, 15
levels, 5
low-level, 5
magazines, 15
mid-level, 5
operations, 6, 30
scope, 5
web sites, 16

image processing operations
examples, 6

image properties, 28
image quality

measurement, 438
objective, 439
subjective, 438

image quantization, 83
image registration, 137
image representation, 21

in MATLAB, 22
image sampling, 83
image sensors, 89
image subtraction, 106
imageinfo, 69

634 INDEX

images
absorption, 86
binary, 23
color, 24
emission, 86
gray-level, 24
reflection, 86
RGB color, 25
types of, 85

imagesc, 68
imbothat, 325
imclose, 312
imcomplement, 107, 108, 157, 398, 412
imcontrast, 69, 156
imcrop, 134
imdilate, 305
imdivide, 109
imerode, 307
imfill, 320
imfilter, 212
imfinfo, 62
imhist, 172
imlincomb, 111
immultiply, 109
imnoise, 269
imopen, 310
impixelinfo, 69
imread, 64
imresize, 133
imrotate, 134
imshow, 68
imsubtract, 107
imtool, 68
imtophat, 325
imtransform, 128
imwrite, 70
ind2gray, 67
ind2rgb, 67
indexed images

in MATLAB, 403
intensity, 388
intensity flicker, 575
intensity slicing, 406

in MATLAB, 406
interframe filtering, 574, 575

in MATLAB, 587
interframe filtering techniques

MATLAB tutorial, 585
International Color Consortium, See ICC
International Commission on

Illumination, See CIE
International Telecommunications

Union, See ITU-T
interpolation, 130, 542

bilinear, 132
first-order, 132
higher-order, 132
methods, 130
nearest neighbor, 132
zero-order, 132

intlut, 161
intraframe filtering, 574

in MATLAB, 585
intraframe filtering techniques

MATLAB tutorial, 585
inverse filtering, 284
IPT

data classes, 64
data conversions, 64
displaying information about an image

file, 62
essential features, 62
essential functions, 62
guided tour, 72
image data class conversion, 65, 67
MATLAB tutorial, 72
overview, 61
reading an image file, 64

ITU-T, 526

JND, 603
Joint Photographic Experts Group,

See JPEG
JPEG, 26, 436
JPEG 2000, 437
judder, 547
just noticeable difference, See JND

k-nearest neighbors, See KNN
KNN classifier, 489

INDEX 635

label2rgb, 29, 321
Laplacian of Gaussian, See LoG
Laplacian operator, 343

in MATLAB, 343
lateral geniculate nucleus, See LGN
lattice theory, 542
LGN, 595
light, 84, 86
light source, 87
line and field averaging

in MATLAB, 555
line averaging, 543

in MATLAB, 551
line down-conversion

in MATLAB, 548
MATLAB tutorial, 548

line number, 507
LoG, 344

in MATLAB, 346
log transformation, 159
logic operations, 103, 111

in MATLAB, 111
MATLAB tutorial, 118

low-pass filter, See LPF
LPF, 211, 242

frequency domain, 242
Butterworth, 246
Gaussian, 246
ideal, 243
MATLAB tutorial, 254

luminance, 388

M-files, 39
Mach bands, 602
machine vision system, See MVS
makecform, 394
maketform, 128
mapping, 127

backward, 131
forward, 131

masking, 608
mat2gray, 66
MATLAB, 35

arrays, 37
basic elements, 36

built-in arrays, 37
built-in constants, 42
built-in matrices, 49
built-in variables, 42
cell array, 51
cell mode, 54
code optimization, 43
colon operator, 48
command-line operations, 38
current directory, 44
data classes, 36
data structures, 46

tutorial, 46
data types, 36
flow control, 43
function, 39
functions, 55
graphics and visualization, 43
guided tour, 43
help, 45
input and output, 43
introduction, 35
M-files, 39
matrix concatenation, 49
matrix operations, 50
number representation, 42
operators, 40
path, 44
programming, 53
programming tools, 38
script, 39
structures, 52
working environment, 36

medfilt2, 278
meshgrid, 237
minimum distance classifier, 488
modulation transfer function, See MTF
Moiré patterns, 96
monochrome image representation

in MATLAB, 22
morphology

algorithms
MATLAB tutorial, 330

grayscale, 321
closing, 323

636 INDEX

morphology (cont.)
dilation, 322
erosion, 322
opening, 323

mathematical
concepts, 300
introduction, 299
operations, 300

motion, 561
2D, 561
apparent, 561
perception of, 605

motion compensation, 561, 564
motion deblurring, 284
motion estimation, 561, 562, 565

algorithms, 568
approaches, 565
backward, 565
criteria, 567
forward, 565
in MATLAB, 579
MATLAB tutorial, 579
methodologies, 565

Motion Pictures Expert Group,
See MPEG

motion representation, 566
motion vector, 561
motion-compensated filters, 576
MPEG, 525
MTF, 599
MVS, 12, 14, 591

National Television System Committee,
See NTSC

neighborhood, 28, 31
neighborhood processing, 203
neighborhood-oriented operations, 31
nlfilter, 278
noise, 266

adding, 104
Erlang, 268
estimation, 269
exponential, 268
Gamma, 268
Gaussian, 267

impulse, 267
models, 266
periodic, 279
probability density functions, 267
Rayleigh, 267
reduction

frequency-domain techniques, 278
in MATLAB, 278
spatial-domain techniques, 269

salt and pepper, 267
uniform, 267

noise reduction
color image, 414
in video, 574
video, 573

noise removal, 6
normalization, 105
NTSC, 504, 512, 545

spectrum, 513
NTSC to PAL conversion

in MATLAB, 556
MATLAB tutorial, 556

ntsc2rgb, 401
Nyquist criterion, 96
Nyquist’s sampling theorem, 542

object labeling, 10
object segmentation, 10, 576
object tracking, 576
opening, 310

in MATLAB, 310
MATLAB tutorial, 327

operations combining multiple images,
32

operations in a transform domain, 32
optical flow, 561, 562
optical transfer function, See OTF
optimization methods, 567
ordfilt2, 278
OTF, 599

PAL, 504, 513, 545
path, 29
pattern classes, 478
pattern classification

INDEX 637

fundamentals, 476
MATLAB tutorial, 491
techniques, 476, 486

pattern recognition
basic concepts, 475

patterns, 478
PCF, 573
peripheral rod vision, 594
Phase Alternating Line, See PAL
phase correlation function, See PCF
phase correlation method, 573

in MATLAB, 584
photopic vision, 594
photoreceptors, 592

cones, 592, 594
rods, 592, 594

piecewise Linear Transformation, 160
pixel, 5
pixel region tool

in MATLAB, 69
playing video files

in MATLAB, 530
point operations, 30
power-law transformation, 157
precision, 482
Prewitt operator, 339
primary colors, 390
processing

neighborhood, 203
programming in MATLAB

tutorial, 53
pseudo-color image processing, 406

frequency domain, 408
MATLAB tutorial, 419

pull-down, 547

quantization, 96
image, 83
video, 518

quantizing
video, 518

radiance, 87, 388
raster, 23
reading an image file

in MATLAB, 64
reading video files

in MATLAB, 529
Rec.601 digital video format, 522
recall, 482
redundancy, 428

coding, 430
interpixel, 430
psychovisual, 430

refresh rate, 504
region filling, 319

in MATLAB, 320
MATLAB tutorial, 331

Region of Interest, See ROI
regionprops, 456
resolution, 596, 598

gray-level, 98
spatial, 97

RGB images
in MATLAB, 402

rgb2gray, 67
rgb2hsv, 399
rgb2ind, 67, 415
rgb2ntsc, 401
rgb2ycbcr, 401
Roberts operator, 338
ROC curve, 482
rods, See photoreceptors
ROI processing, 221

in MATLAB, 118, 222
roipoly, 118, 222

S-video, 506
Séquentiel couleur à mémoire,

See SECAM
saccade, 607
sampling, 95

image, 83, 95
video, 518

sampling pattern, 96
sampling rate, 96, 541, 542

conversion, 542
saturation, 89
scanning, 502

interlaced, 503

638 INDEX

scanning (cont.)
notation, 504
progressive, 503

scanpath, 607
scotopic vision, 594
SDTV, 598
SE, 301

in MATLAB, 302
seam carving, 137
SECAM, 513
secondary colors, 389
segmentation

color image, 414
in MATLAB, 415

sharpening, 6
color image, 412

SIF, 523
similarity measures, 485
simultaneous contrast, 601
skeletonization

MATLAB tutorial, 333
smooth pursuit eye movement, 607
smoothing

color image, 412
Sobel operator, 340
source intermediate format, See SIF
spatial frequency, 596, 597
spatial resolution, 97
SPD, 87
spectral absorption curves, 388
spectral power distribution,

See SPD
spectrum, 240
split-and-merge algorithm, 377
standard-definition TV, See SDTV
standards

conversion, 543
standards conversion, 543
statistical features, 463
strel, 302, 322
structures, 52
structuring element, See SE
subtractive image offset, 106
sync separation, 509
synchronization

signals, 509

target frame, 565
telecine, 547
test set, 480
texture, 466
texture features, 466
thickening

MATLAB tutorial, 332
thinning

MATLAB tutorial, 332
thresholding

color image, 414
top-hat transformation, 325

in MATLAB, 325
topology, 28
training set, 480
transform, 32
transform domain, 32
transformation

gray level to color, 407
transformation function

specification, 161
transformations

gray level
MATLAB tutorial, 163
overview, 152

point
examples, 155
MATLAB tutorial, 163
overview, 152

truncation, 105
typecasting

in MATLAB, 65

unsharp masking, 221, 229
up-conversion, 542
UserData (MATLAB object), 615

vector, 23
vector spaces, 448
video

basic concepts, 501
codecs, 525, 526
color, 510

INDEX 639

compression, 524, 525
concepts and terminology, 501
containers, 525, 526
digital, 514
sampling, 541, 542
standards, 521, 525
terminology, 501

video compression, 524
standards, 524
techniques, 524

video enhancement, 573
video processing, 561

in MATLAB, 526
video sampling, 541, 542
video signal, 501

analog, 502
digital, 502

viewing angle, 596, 598
viewing distance, 596, 598

vision
human, 3

visual acuity, 598
visual pathways, 595
visual pattern classifier

design, 476
implementation, 476

writing image to a file
in MATLAB, 70

writing to video files
in MATLAB, 533

X3 sensor, 90

ycbcr2rgb, 401
YUV video

MATLAB tutorial, 534

	Practical Image and Video Processing Using MATLAB®
	CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	FOREWORD
	PREFACE
	ACKNOWLEDGMENTS
	PART I: IMAGE PROCESSING
	1 INTRODUCTION AND OVERVIEW
	1.1 Motivation
	1.2 Basic Concepts and Terminology
	1.3 Examples of Typical Image Processing Operations
	1.4 Components of a Digital Image Processing System
	1.5 Machine Vision Systems
	1.6 Resources
	1.7 Problems

	2 IMAGE PROCESSING BASICS
	2.1 Digital Image Representation
	2.1.1 Binary (1-Bit) Images
	2.1.2 Gray-Level (8-Bit) Images
	2.1.3 Color Images
	2.1.4 Compression

	2.2 Image File Formats
	2.3 Basic Terminology
	2.4 Overview of Image Processing Operations
	2.4.1 Global (Point) Operations
	2.4.2 Neighborhood-Oriented Operations
	2.4.3 Operations Combining Multiple Images
	2.4.4 Operations in a Transform Domain

	3 MATLAB BASICS
	3.1 Introduction to MATLAB
	3.2 Basic Elements of MATLAB
	3.2.1 Working Environment
	3.2.2 Data Types
	3.2.3 Array and Matrix Indexing in MATLAB
	3.2.4 Standard Arrays
	3.2.5 Command-Line Operations

	3.3 Programming Tools: Scripts and Functions
	3.3.1 M-Files
	3.3.2 Operators
	3.3.3 Important Variables and Constants
	3.3.4 Number Representation
	3.3.5 Flow Control
	3.3.6 Code Optimization
	3.3.7 Input and Output

	3.4 Graphics and Visualization
	3.5 Tutorial 3.1: MATLAB—a Guided Tour
	3.6 Tutorial 3.2: MATLAB Data Structures
	3.7 Tutorial 3.3: Programming in MATLAB
	3.8 Problems

	4 THE IMAGE PROCESSING TOOLBOX AT A GLANCE
	4.1 The Image Processing Toolbox: an Overview
	4.2 Essential Functions and Features
	4.2.1 Displaying Information About an Image File
	4.2.2 Reading an Image File
	4.2.3 Data Classes and Data Conversions
	4.2.4 Displaying the Contents of an Image
	4.2.5 Exploring the Contents of an Image
	4.2.6 Writing the Resulting Image onto a File

	4.3 Tutorial 4.1: MATLAB Image Processing Toolbox—a Guided Tour
	4.4 Tutorial 4.2: Basic Image Manipulation
	4.5 Problems

	5 IMAGE SENSING AND ACQUISITION
	5.1 Introduction
	5.2 Light, Color, and Electromagnetic Spectrum
	5.2.1 Light and Electromagnetic Spectrum
	5.2.2 Types of Images
	5.2.3 Light and Color Perception
	5.2.4 Color Encoding and Representation

	5.3 Image Acquisition
	5.3.1 Image Sensors
	5.3.2 Camera Optics

	5.4 Image Digitization
	5.4.1 Sampling
	5.4.2 Quantization
	5.4.3 Spatial and Gray-Level Resolution

	5.5 Problems

	6 ARITHMETIC AND LOGIC OPERATIONS
	6.1 Arithmetic Operations: Fundamentals and Applications
	6.1.1 Addition
	6.1.2 Subtraction
	6.1.3 Multiplication and Division
	6.1.4 Combining Several Arithmetic Operations

	6.2 Logic Operations: Fundamentals and Applications
	6.3 Tutorial 6.1: Arithmetic Operations
	6.4 Tutorial 6.2: Logic Operations and Region of Interest Processing
	6.5 Problems

	7 GEOMETRIC OPERATIONS
	7.1 Introduction
	7.2 Mapping and Affine Transformations
	7.3 Interpolation Methods
	7.3.1 The Need for Interpolation
	7.3.2 A Simple Approach to Interpolation
	7.3.3 Zero-Order (Nearest-Neighbor) Interpolation
	7.3.4 First-Order (Bilinear) Interpolation
	7.3.5 Higher Order Interpolations

	7.4 Geometric Operations Using MATLAB
	7.4.1 Zooming, Shrinking, and Resizing
	7.4.2 Translation
	7.4.3 Rotation
	7.4.4 Cropping
	7.4.5 Flipping

	7.5 Other Geometric Operations and Applications
	7.5.1 Warping
	7.5.2 Nonlinear Image Transformations
	7.5.3 Morphing
	7.5.4 Seam Carving
	7.5.5 Image Registration

	7.6 Tutorial 7.1: Image Cropping, Resizing, Flipping, and Rotation
	7.7 Tutorial 7.2: Spatial Transformations and Image Registration
	7.8 Problems

	8 GRAY-LEVEL TRANSFORMATIONS
	8.1 Introduction
	8.2 Overview of Gray-level (Point) Transformations
	8.3 Examples of Point Transformations
	8.3.1 Contrast Manipulation
	8.3.2 Negative
	8.3.3 Power Law (Gamma) Transformations
	8.3.4 Log Transformations
	8.3.5 Piecewise Linear Transformations

	8.4 Specifying the Transformation Function
	8.5 Tutorial 8.1: Gray-level Transformations
	8.6 Problems

	9 HISTOGRAM PROCESSING
	9.1 Image Histogram: Definition and Example
	9.2 Computing Image Histograms
	9.3 Interpreting Image Histograms
	9.4 Histogram Equalization
	9.5 Direct Histogram Specification
	9.6 Other Histogram Modification Techniques
	9.6.1 Histogram Sliding
	9.6.2 Histogram Stretching
	9.6.3 Histogram Shrinking

	9.7 Tutorial 9.1: Image Histograms
	9.8 Tutorial 9.2: Histogram Equalization and Specification
	9.9 Tutorial 9.3: Other Histogram Modification Techniques
	9.10 Problems

	10 NEIGHBORHOOD PROCESSING
	10.1 Neighborhood Processing
	10.2 Convolution and Correlation
	10.2.1 Convolution in the One-Dimensional Domain
	10.2.2 Convolution in the Two-Dimensional Domain
	10.2.3 Correlation
	10.2.4 Dealing with Image Borders

	10.3 Image Smoothing (Low-pass Filters)
	10.3.1 Mean Filter
	10.3.2 Variations
	10.3.3 Gaussian Blur Filter
	10.3.4 Median and Other Nonlinear Filters

	10.4 Image Sharpening (High-pass Filters)
	10.4.1 The Laplacian
	10.4.2 Composite Laplacian Mask
	10.4.3 Directional Difference Filters
	10.4.4 Unsharp Masking
	10.4.5 High-Boost Filtering

	10.5 Region of Interest Processing
	10.6 Combining Spatial Enhancement Methods
	10.7 Tutorial 10.1: Convolution and Correlation
	10.8 Tutorial 10.2: Smoothing Filters in the Spatial Domain
	10.9 Tutorial 10.3: Sharpening Filters in the Spatial Domain
	10.10 Problems

	11 FREQUENCY-DOMAIN FILTERING
	11.1 Introduction
	11.2 Fourier Transform: the Mathematical Foundation
	11.2.1 Basic Concepts
	11.2.2 The 2D Discrete Fourier Transform: Mathematical Formulation
	11.2.3 Summary of Properties of the Fourier Transform
	11.2.4 Other Mathematical Transforms

	11.3 Low-pass Filtering
	11.3.1 Ideal LPF
	11.3.2 Gaussian LPF
	11.3.3 Butterworth LPF

	11.4 High-pass Filtering
	11.4.1 Ideal HPF
	11.4.2 Gaussian HPF
	11.4.3 Butterworth HPF
	11.4.4 High-Frequency Emphasis

	11.5 Tutorial 11.1: 2D Fourier Transform
	11.6 Tutorial 11.2: Low-pass Filters in the Frequency Domain
	11.7 Tutorial 11.3: High-pass Filters in the Frequency Domain
	11.8 Problems

	12 IMAGE RESTORATION
	12.1 Modeling of the Image Degradation and Restoration Problem
	12.2 Noise and Noise Models
	12.2.1 Selected Noise Probability Density Functions
	12.2.2 Noise Estimation

	12.3 Noise Reduction Using Spatial-domain Techniques
	12.3.1 Mean Filters
	12.3.2 Order Statistic Filters
	12.3.3 Adaptive Filters

	12.4 Noise Reduction Using Frequency-domain Techniques
	12.4.1 Periodic Noise
	12.4.2 Bandreject Filter
	12.4.3 Bandpass Filter
	12.4.4 Notch Filter

	12.5 Image Deblurring Techniques
	12.5.1 Wiener Filtering

	12.6 Tutorial 12.1: Noise Reduction Using Spatial-domain Techniques
	12.7 Problems

	13 MORPHOLOGICAL IMAGE PROCESSING
	13.1 Introduction
	13.2 Fundamental Concepts and Operations
	13.2.1 The Structuring Element

	13.3 DILATION AND EROSION
	13.3.1 Dilation
	13.3.2 Erosion

	13.4 Compound Operations
	13.4.1 Opening
	13.4.2 Closing
	13.4.3 Hit-or-Miss Transform

	13.5 Morphological Filtering
	13.6 Basic Morphological Algorithms
	13.6.1 Boundary Extraction
	13.6.2 Region Filling
	13.6.3 Extraction and Labeling of Connected Components

	13.7 Grayscale Morphology
	13.7.1 Dilation and Erosion
	13.7.2 Opening and Closing
	13.7.3 Top-Hat and Bottom-Hat Transformations

	13.8 Tutorial 13.1: Binary Morphological Image Processing
	13.9 Tutorial 13.2: Basic Morphological Algorithms
	13.10 Problems

	14 EDGE DETECTION
	14.1 Formulation of the Problem
	14.2 Basic Concepts
	14.3 First-order Derivative Edge Detection
	14.4 Second-order Derivative Edge Detection
	14.4.1 Laplacian of Gaussian

	14.5 The Canny Edge Detector
	14.6 Edge Linking and Boundary Detection
	14.6.1 The Hough Transform

	14.7 Tutorial 14.1: Edge Detection
	14.8 Problems

	15 IMAGE SEGMENTATION
	15.1 Introduction
	15.2 Intensity-based Segmentation
	15.2.1 Image Thresholding
	15.2.2 Global Thresholding
	15.2.3 The Impact of Illumination and Noise on Thresholding
	15.2.4 Local Thresholding

	15.3 Region-based Segmentation
	15.3.1 Region Growing
	15.3.2 Region Splitting and Merging

	15.4 Watershed Segmentation
	15.4.1 The Distance Transform

	15.5 Tutorial 15.1: Image Thresholding
	15.6 Problems

	16 COLOR IMAGE PROCESSING
	16.1 The Psychophysics of Color
	16.1.1 Basic Concepts
	16.1.2 The CIE XYZ Chromaticity Diagram
	16.1.3 Perceptually Uniform Color Spaces
	16.1.4 ICC Profiles

	16.2 Color Models
	16.2.1 The RGB Color Model
	16.2.2 The CMY and CMYK Color Models
	16.2.3 The HSV Color Model
	16.2.4 The YIQ (NTSC) Color Model
	16.2.5 The YCbCr Color Model

	16.3 Representation of Color Images in MATLAB
	16.3.1 RGB Images
	16.3.2 Indexed Images

	16.4 Pseudocolor Image Processing
	16.4.1 Intensity Slicing
	16.4.2 Gray Level to Color Transformations
	16.4.3 Pseudocoloring in the Frequency Domain

	16.5 Full-color Image Processing
	16.5.1 Color Transformations
	16.5.2 Histogram Processing
	16.5.3 Color Image Smoothing and Sharpening
	16.5.4 Color Noise Reduction
	16.5.5 Color-Based Image Segmentation
	16.5.6 Color Edge Detection

	16.6 Tutorial 16.1: Pseudocolor Image Processing
	16.7 Tutorial 16.2: Full-color Image Processing
	16.8 Problems

	17 IMAGE COMPRESSION AND CODING
	17.1 Introduction
	17.2 Basic Concepts
	17.2.1 Redundancy
	17.2.2 Image Encoding and Decoding Model

	17.3 Lossless and Lossy Compression Techniques
	17.3.1 Lossless Compression Techniques
	17.3.2 Lossy Compression Techniques

	17.4 Image Compression Standards
	17.4.1 Binary Image Compression Standards
	17.4.2 Continuous Tone Still Image Compression Standards
	17.4.3 JPEG
	17.4.4 JPEG 2000
	17.4.5 JPEG-LS

	17.5 Image Quality Measures
	17.5.1 Subjective Quality Measurement
	17.5.2 Objective Quality Measurement

	17.6 Tutorial 17.1: Image Compression

	18 FEATURE EXTRACTION AND REPRESENTATION
	18.1 Introduction
	18.2 Feature Vectors and Vector Spaces
	18.2.1 Invariance and Robustness

	18.3 Binary Object Features
	18.3.1 Area
	18.3.2 Centroid
	18.3.3 Axis of Least Second Moment
	18.3.4 Projections
	18.3.5 Euler Number
	18.3.6 Perimeter
	18.3.7 Thinness Ratio
	18.3.8 Eccentricity
	18.3.9 Aspect Ratio
	18.3.10 Moments

	18.4 Boundary Descriptors
	18.4.1 Chain Code, Freeman Code, and Shape Number
	18.4.2 Signatures
	18.4.3 Fourier Descriptors

	18.5 Histogram-based (Statistical) Features
	18.6 Texture Features
	18.7 Tutorial 18.1: Feature Extraction and Representation
	18.8 Problems

	19 VISUAL PATTERN RECOGNITION
	19.1 Introduction
	19.2 Fundamentals
	19.2.1 Design and Implementation of a Visual Pattern Classifier
	19.2.2 Patterns and Pattern Classes
	19.2.3 Data Preprocessing
	19.2.4 Training and Test Sets
	19.2.5 Confusion Matrix
	19.2.6 System Errors
	19.2.7 Hit Rates, False Alarm Rates, and ROC Curves
	19.2.8 Precision and Recall
	19.2.9 Distance and Similarity Measures

	19.3 Statistical Pattern Classification Techniques
	19.3.1 Minimum Distance Classifier
	19.3.2 k-Nearest Neighbors Classifier
	19.3.3 Bayesian Classifier

	19.4 Tutorial 19.1: Pattern Classification
	19.5 Problems

	PART II: VIDEO PROCESSING
	20 VIDEO FUNDAMENTALS
	20.1 Basic Concepts and Terminology
	20.2 Monochrome Analog Video
	20.2.1 Analog Video Raster
	20.2.2 Blanking Intervals
	20.2.3 Synchronization Signals
	20.2.4 Spectral Content of Composite Monochrome Analog Video

	20.3 Color in Video
	20.4 Analog Video Standards
	20.4.1 NTSC
	20.4.2 PAL
	20.4.3 SECAM
	20.4.4 HDTV

	20.5 Digital Video Basics
	20.5.1 Advantages of Digital Video
	20.5.2 Parameters of a Digital Video Sequence
	20.5.3 The Audio Component

	20.6 Analog-to-Digital Conversion
	20.7 Color Representation and Chroma Subsampling
	20.8 Digital Video Formats and Standards
	20.8.1 The Rec. 601 Digital Video Format
	20.8.2 The Common Intermediate Format
	20.8.3 The Source Intermediate Format

	20.9 Video Compression Techniques and Standards
	20.9.1 Video Compression Standards, Codecs, and Containers

	20.10 Video Processing in MATLAB
	20.10.1 Reading Video Files
	20.10.2 Processing Video Files
	20.10.3 Playing Video Files
	20.10.4 Writing Video Files

	20.11 Tutorial 20.1: Basic Digital Video Manipulation in MATLAB
	20.12 Tutorial 20.2: Working with YUV Video Data
	20.13 Problems

	21 VIDEO SAMPLING RATE AND STANDARDS CONVERSION
	21.1 Video Sampling
	21.2 Sampling Rate Conversion
	21.3 Standards Conversion
	21.3.1 Deinterlacing
	21.3.2 Conversion between PAL and NTSC Signals
	21.3.3 Color Space Conversion
	21.3.4 Aspect Ratio Conversion
	21.3.5 3:2 Pull-Down

	21.4 Tutorial 21.1: Line Down-Conversion
	21.5 Tutorial 21.2: Deinterlacing
	21.6 Tutorial 21.3: NTSC to PAL Conversion
	21.7 Tutorial 21.4: 3:2 Pull-Down
	21.8 Problems

	22 DIGITAL VIDEO PROCESSING TECHNIQUES AND APPLICATIONS
	22.1 Fundamentals of Motion Estimation and Motion Compensation
	22.2 General Methodologies in Motion Estimation
	22.2.1 Motion Representation
	22.2.2 Motion Estimation Criteria
	22.2.3 Optimization Methods

	22.3 Motion Estimation Algorithms
	22.3.1 Exhaustive Search Block Matching Algorithm
	22.3.2 Fast Algorithms
	22.3.3 Hierarchical Block Matching Algorithm
	22.3.4 Phase Correlation Method

	22.4 Video Enhancement and Noise Reduction
	22.4.1 Noise Reduction in Video
	22.4.2 Interframe Filtering Techniques

	22.5 Case Study: Object Segmentation and Tracking in the Presence of Complex Background
	22.6 Tutorial 22.1: Block-based Motion Estimation
	22.7 Tutorial 22.2: Intraframe and Interframe Filtering Techniques
	22.8 Problems

	Appendix A: HUMAN VISUAL PERCEPTION
	A.1 Introduction
	A.2 The Human Eye
	A.3 Characteristics of Human Vision
	A.3.1 Resolution, Viewing Distance, and Viewing Angle
	A.3.2 Detail and Sharpness Perception
	A.3.3 Optical Transfer Function and Modulation Transfer Function
	A.3.4 Brightness Perception
	A.3.5 Contrast Ratio and Contrast Sensitivity Function
	A.3.6 Perception of Motion
	A.3.7 Spatiotemporal Resolution and Frequency Response
	A.3.8 Masking

	A.4 Implications and Applications of Knowledge about the Human Visual System

	Appendix B: GUI DEVELOPMENT
	B.1 Introduction
	B.2 GUI File Structure
	B.3 Passing System Control
	B.4 The UserData Object
	B.5 A Working GUI Demo
	B.6 Concluding Remarks

	REFERENCES
	INDEX

