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“The soul should always stand ajar, ready to welcome the ecstatic
experience.”

— Emily Dickinson

“The effort to understand the Universe is one of the very few things
that lifts human life above the level of farce, and gives it some of the
grace of tragedy.”

— Steven Weinberg

v
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Preface

“Computers are useless. They can only give you answers.”
— Pablo Picasso

“The purpose of computing is insight, not numbers.”
— Richard Hamming

There are only a very few solvable problems in physics. They are
extremely useful because the equations for the solutions can be plot-
ted and the parameters defining the solutions can be varied in order
to explore the dependence of the solutions on the variables of the
problem. In that way the student can build up an intuition about
the Kepler problem, for example.

However, this can only be done in a few cases and even then the
effort needed is tedious. For the others, numerical methods are needed
and the computation becomes somewhat cumbersome. As a result, it
is more difficult to vary the inputs to the problem numerically rather
than symbolically and develop an intuition about the dependence
of the solution on those parameters. In particular time development
is often obscure and “movies” can be a welcome tool in improving
physical intuition.

Nevertheless, the advent of powerful personal computing has
considerably reduced the difficulties. Indeed, the aim of this book
is to use the ensemble of symbolic and numeric tools available in
the MATLAB suite of programs to illustrate representative numer-
ical solutions to more than one hundred problems spanning several
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physics topics. The student typically works through the demonstra-
tion and alters the inputs through a menu driven script. In that way
the user driven menu allows for parametric variation.

MATLAB is a good vehicle for the computational tasks. It has
a compiler, editor and debugger which are very useful and user
friendly. The HELP utility is very extensive. The MATLAB language
is similar to a modern C++ language and it is vectorial/matrix which
makes coding simpler than older languages such as FORTRAN. Data
is easily imported and exported in a variety of formats.

MATLAB contains many special functions. Matrices and linear
algebra are covered well. Curve fitting, polynomials and fast Fourier
transforms are supplied. Numerical integration packages are avail-
able. Differential equations, symbolic, ordinary and partial, as well as
numerical solutions are available for both initial value and boundary
value versions.

As an additional package, MATLAB has symbolic mathematics.
Within that package, calculus, linear algebra, algebraic equations and
differential equations are covered. It is easy to combine a symbolic
treatment of a problem with a numerical display of the solution when
that is desirable. In this way converting from symbols to numbers is
easily achieved.

Finally, and very importantly, MATLAB has an extensive suite
of display packages. One can make bar, pie, histogram and simple
data plots. There are several contour and surface plots which are
possible. The time evolution of solutions can be made into “movies”
that illustrate the speed of a process. These extensive visualization
tools are crucial in that the student can plot, vary and then re-plot.
There are two- and three-dimensional plots of all types available.
Complex as well as real data can be shown.

The aim of using these tools is to create intuition, not to solve a
specific problem or to complete a specific number crunching exercise.
Indeed, the aim of the text is not to teach physics but to give the user
a sense of how the solutions of a given physics problem depend on
the parameters of that problem and to show the connections between,
say, wave optics and quantum mechanics.
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The script for these demonstrations is made available. Using that
material the student can write his/her own additions and explo-
rations with the supplied scripts as jumping off points. In this way,
a path is available to extend well beyond the specific demonstrations
enclosed in the book itself, making the search for further possible
insights open ended.
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Chapter 1

Symbolic Mathematics and Math Tools

“If people do not believe that mathematics is simple, it is only because
they do not realize how complicated life is.”

— John von Neumann

“Pure mathematics is, in its way, the poetry of logical ideas.”
— Albert Einstein

“There cannot be a language more universal and more simple, more
free from errors and obscurities . . . more worthy to express the invari-
able relations of all natural things [than mathematics]. [It interprets] all
phenomena by the same language, as if to attest the unity and simplicity
of the plan of the universe.”

— Joseph Fourier

1.1. MATLAB Functions

The first section will deal with mathematical tools, mostly using the
MATLAB symbolic math package. Although not strictly physics, the
tools of mathematics are crucial because they are the language of
physics and physics cannot be understood well without a facility in
that language. Some of these tools will be invoked later in the more
physics oriented demonstrations found in the following sections.

MATLAB has a very large suite of special functions which are
available to the user. They can be found for the MAPLE symbolic
functions, by invoking the command “mfunlist”. The first page of
symbolic functions is shown in Figure 1.1.

The complete set of MATLAB functions is available using the
HELP tab in the Command Window. The sequence is HELP/
MATLAB/functions. There are ten headings under functions and by
using them all, the MATLAB functions are available for examination.
There are two other useful headings, examples and demos, which give
useful aid in understanding some applications of these functions.
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Figure 1.1: First entries for MATLAB symbolic functions.

Specific descriptions and examples follow when the help function
is explicitly queried. One of the strengths of MATLAB is that there
are so many supported special functions and that they are described
using the help files. These utilities make the use of these functions
quite transparent. An example is given in Figure 1.2, where the path
to drill down the function tree to “acos” is shown.

A full list is invoked using the .m script “MATLAB Functions”
in the Command Window, which gives the complete list of sym-
bolic functions and also prints the path to retrieve all the MATLAB
numerical special functions. Tools that are useful with symbolic
math are: “sym”, “factor”, “simplify”, “pretty”, “simple” and “eval”.
These tools can be used to simplify the symbolic strings and “eval”
is used to convert them for numerical evaluations.

1.2. Symbolic Differentiation

A first demonstration of the use of symbolic math is to evaluate
derivatives. As with most of the demonstrations in this text, there
is a recurring format. First, explanatory text is printed by invoking
“help” in the script, an example is given, and then there is a menu
driven prompt which asks the user to try other functions or addi-
tional options. The example is plotted in order to see the result
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Figure 1.2: Result of using the help facility to find the description of the acos
function.

of the operations. The MATLAB script “diff” is the core of the
script “SM Diff”. The plot of the printout of the example is shown in
Figure 1.3, while the function and derivative is shown in Figure 1.4.
Most of the exercises have explanatory printout as the initial response
to starting the specific script. The format of the script used in this
text is made as uniform as possible within the different physics being
explored so as to make the script easy to use, understand, and ulti-
mately be modified by the users to follow their interests.

1.3. Symbolic Integration

A similar script performs symbolic integration, with an example
followed by possible user input functions with resulting plots. The
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Figure 1.3: Printout for the symbolic differentiation script.

Figure 1.4: Plot of the example function and the derivative. Other functions can
be input by the user in symbolic form as often as is desired in one session of the
script use.

example provided is shown in Figure 1.5. The script, “SM Int”
is set up to perform indefinite integrals. However, MATLAB has
other options using the “int” script, such as defining the variable
not to be x, but a user defined variable or supplying the limits
for a definite integral. The reader is encouraged to further explore
the available options in MATLAB should they be interested in
using the “int” function in greater depth. Invoking “help int” in
the Command Window yields examples and options for symbolic
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Figure 1.5: Example for the symbolic integration of tanh(x) as an indefinite
integral.

integration. In particular, all of the symbolic functions indicated in
Figure 1.1 are available as integrand candidates.

1.4. Taylor Expansion

Power law expansions are useful tools in several applications. They
are available using the MATLAB function “taylor”, where the expan-
sion point and the number of terms in the series can be selected. The
printout from the script “SM Taylor” for the example and the menu
for the user are shown in Figure 1.6. The plotting output for the
example expansion is given in Figure 1.7. Clearly, an intuition can
be built up fairly quickly as to the domain of validity of the expansion
as to how well it approximates the function. It is clear that the expan-
sion of the cos function with five terms is a fair representation for
|x|< 2. As with other MATLAB scripts, a full description is available
from the Command Window via the help query or using the help tab.

The user chooses the function, the number of terms, and the
offset, or expansion point in the variable x. The results are displayed
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Figure 1.6: Printout for the “SM Taylor” script with the example of cos(x) and
the menu choice of exp(x).

Figure 1.7: Example from the “SM Taylor” script for the Taylor expansion of
cos(x).
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graphically in the figure. That figure can be printed or edited using
the Figure Window and the editing tabs supplied in that window.

1.5. Series Summation

There is the ability in MATLAB to symbolically sum a series using
the “symsum” script. This script has been used with a wrapper script
called “SM Sum Series”. An example and a user input series is shown
in Figure 1.8. As always, a user driven menu is provided so that any
series can be input and summed. More details and other examples can
be accessed with the input “help symsum” in the Command Window.

Figure 1.8: Output of the series summing script for an example and then for a
user defined series with the terms being possibly definite or indefinite.

1.6. Polynomial Factorization

Polynomials can be factorized symbolically. The script “factor” is
used in the wrapper script, “SM Factor” and an example with user
input is shown in Figure 1.9. Numbers can also be factored.

1.7. Equation Solving

The MATLAB script “solve” performs the symbolic solution of a
set of equations with multiple variables. The initial dialogue for the
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Figure 1.9: Printout of the initial dialogue when the factorization script is used
and an example of user input using the menu provided.

“SM SolveEq” wrapper script is shown in Figure 1.10. This example
illustrates a simple quadratic solution of a single equation. Much
more complex problems are easily solvable. Extensive use of “solve”
and related scripts will be made later on in the text.

Figure 1.10: The result of the example provided by the “SM SolveEq” script
showing the symbolic solution for a single quadratic equation.
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1.8. Inverse Functions

The MATLAB script, “finverse” provides a symbolic solution for the
inverse of a function. A wrapper is provided; “SM Finverse” which
gives an example and asks for a user defined input. The printout is
shown in Figure 1.11 and the plot provided for a user chosen function
is shown in Figure 1.12.

Figure 1.11: Dialogue on inverse functions. The user choice was cos(x2) while
the example was 1/tan(x).

Figure 1.12: User defined input function, cos(x2) and the inverse, shown as a
function of x.
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1.9. Matrix Inversion

In solving eigenvalue and eigenvector problems in physics, it is
required to evaluate the inverse of a matrix. The MATLAB script
“inv” is available and can be used to evaluate the inverse of any
matrix symbolically. In particular, the wrapper script “Matrix Inv”
can be used. A general 2×2 matrix example is shown in Figure 1.13.
Note that in MATLAB, for many operations, one need not specify the
indices. MATLAB is a matrix language, hence the name. For example
C = A* B, yields the product matrix of the matrices A and B.

Figure 1.13: Printout of the general matrix inverse for a 2× 2 symbolic matrix.

1.10. Matrix Eigenvalues

Matrix operations are integral to many problems in physics. Fortu-
nately, MATLAB is a matrix language which simplifies much of the
coding of indices which is needed with older languages. There is also
a suite of matrix scripts available which enables the user to evaluate
matrix quantities. The provided wrapper script is “SM Eigen” which
uses the MATLAB functions “det”, “inv” and “eig”. An example
printout for the case of a symbolic rotation matrix is shown in
Figure 1.14.

MATLAB utilities will be used for matrices in several applica-
tions later in the text including determinant, inverse, eigenvalues and
eigenvectors.

1.11. Ordinary Differential Equations

Ordinary differential equations and systems of such equations may
be solved symbolically using the MATLAB script “dsolve”. Some
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Figure 1.14: Rotation matrix, the determinant, inverse matrix, and eigenvalues
of that matrix.

examples are given in the script “SM ODE2”, where equations fami-
liar in physics are given as a menu choice, as seen in Figure 1.15. The
printout for a specific case is displayed in Figure 1.16, where a Taylor
expansion is shown using the script to evaluate the expansion of the

Figure 1.15: Menu for the choice of a differential equation to solve for in
“SM ODE2”.
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Figure 1.16: Symbolic solution of the equation of a particle falling in a uniform
gravity field with a velocity dependent dissipative force, both the exact solution
and a Taylor expansion for the position x(t). At large times a terminal velocity
g/k is reached.

position as a function of time. Much use will be made of “dsolve” in
situations in physics where a closed form of the solution is possible.

In the script “SM ODE3”, the user can arbitrarily choose the
ordinary differential equation to explore and can either define initial
conditions on the function or the derivative of the function of not.
A simple example of the use of the script is shown in Figure 1.17,
in the case of the choice of simple harmonic motion with unspeci-
fied initial position and velocity. In this case, there are integration
constants C2 and C3 in the solution which will need to be evaluated.

1.12. Fourier Series

Fourier series is a powerful tool that is used to understand how
large are the frequency components which are needed to sufficiently
approximate an arbitrary waveform. In fact, any function can be
synthesized using the harmonic Fourier series. The more localized in
position the function is the larger is the span of frequencies needed
to synthesize the function.
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Figure 1.17: Printout for the case of symbolically solving the simple harmonic
oscillator when the initial position and velocity are not specified.

The script “SM fourier ex” gives three examples of a Fourier
series for a square wave, a triangular wave and for a saw tooth wave-
form. In all cases, the coefficients are printed out for the first six
terms of the series and plots of the function and the approximate
series representation for the first six terms is plotted, which shows
how the function is better approximated when more terms are added.
The integral formulae for the Fourier coefficients are displayed in
Equation (1.1).

The function is called x and is built out of sine and cosine func-
tions of time with frequencies kω, k an integer, and coefficients in
the series of frequencies ak, bk. The function is periodic with low-
est frequency ω = 2π/T and T is the period of the function. The
series coefficients are determined by evaluating integrals, which is a
function well suited to use of the MATLAB script “int”.

x = ao/2 +
∑

k

[ak cos(kωt) + bk sin(kωt)]

ak = 2
∫
x(u) cos(2π ku)du

bk = 2
∫
x(u) sin(2π ku)du

u = t/T, [−1/2, 1/2]

ω = 2π/T, ωt = 2πu (1.1)
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Figure 1.18: Fourier approximation to a square wave after 5 terms (odd terms
are zero by symmetry).

Results for a user choice of the square wave are shown in
Figure 1.18 after the series is five terms long. The function is even
about t = 0 so that the sin coefficients are all zero. Plots of the
series for all terms are provided in order to give the user a feeling
about how the series approaches the function as the number of terms
increases. Printout for this choice is given in Figure 1.19.

There is another script called “SM Fourier try” which does not
have examples to choose from, but rather has user defined functions
with symbolic input. Any function can be attempted. The results
for a function t cos(t) with five terms in the series are shown in
Figure 1.20 showing the coefficients and Figure 1.21 showing the
function and the Fourier series. The user supplies a fully symbolic
input of the function of time in two half periods and also the num-
ber of terms in the series. In distinction to “SM fourier ex” which
plots each additional term in the series for one of three examples,
“SM fourier try” plots the full series for an arbitrary function and a
user defined number of terms.
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Figure 1.19: Printout of “SM fourier ex” for the menu choice of a square wave.
The series coefficients are printed in symbolic form.

Figure 1.20: Fourier coefficients for the function t∗cos(t) using “SM fourier try”.
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Figure 1.21: Function t cos(t) and the Fourier series approximation after sum-
ming six terms.

1.13. Data Fitting

One indispensable tool in physics is the ability to fit experimental
data to some hypothesis. MATLAB has tools for this and additional
script has been developed to treat the problem. First, consider a set
of data yi at locations xi. These points can be fit to hypothesized
functions, for example polynomials. The script “Data Fits” has two
sets of experimental data stored in the script. These data are plotted
and a second order polynomial is fit to them using the MATLAB
“polyfit” function. The result for one data set is shown in Figure 1.22.

To compare to the printout from that fit, tools from MATLAB
can be used — the tab “tools” in the Figure Window gives the “basic
fitting” option for Figure 1.23. Choosing the “show eqs” and “plot
residuals” options yields the plot in Figure 1.23. The data shown in
Figure 1.22 can be fit to, and the results compared to the fit shown
in Figure 1.23 for a different order of polynomials. All the errors are
assumed to be the same, as plotted.

A more general problem can be approached with the script called
“Least SquaresFit2” which performs a least squares fit to a straight
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Figure 1.22: Fit to stored data using “polyfit” in the script “Data Fits” with
the assumed shape of a second order polynomial.

Figure 1.23: Screenshot of the use of MATLAB basic curve fitting using the
Figure editing tools provided by MATLAB.
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line in the case when the points yi have different errors. The “polyfit”
script assumes all points have the same statistical weight, whereas
the least squares fit uses the weight assigned to each data point.

The output contains the slope, intercept, the chi squared,
Equation (1.2), of the fit, the number of degrees of freedom of the
fit, the error of the slope, a, and intercept, b. The user can use the
algebra contained in the script to apply a straight line fit to any data
of their choice. The results for a straight line fit to the data shown
in Figure 1.22, which displays the assumed errors on each individual
point, are presented in Figure 1.24.

χ2 =
n∑
i

(yi − y(a, b))2/σ2
i

y = ax+ b

ndof = n− 2 (1.2)

A still more complex tool is contained in the script
“Fits Chisq Errors” which is a wrapper script using the MATLAB
function “fminsearch” to minimize the chisquared as a function of
several variables, taking proper account of the error matrix of those
variables. A fit to a cubic polynomial with properly weighted errors is
shown in Figure 1.25. The fit is visually better than the straight line
fit or the quadratic fit discussed previously. Any arbitrary function
can be fit to by adopting the script.

The printout for a fit to some Monte Carlo generated data with
a simple Gaussian is shown in Figure 1.26. The plot of the data
and the best fit, characterized by a normalized number of events
(1000 generated) a mean (0 generated) and a standard deviation
(1 generated) is shown in Figure 1.27. Note that the number of events,
mean, and standard deviation are all as generated within the quoted
error estimates. Very approximately, with N events, the percent error
is 1/

√
N , so that with 1000 generated events an error of about 3.2%

is expected, which can be compared to the diagonal error matrix
elements shown in Figure 1.26.

The script of “Fits Chisq Errors” contains the function
“Fit Fun” which defines how functions to be fit are defined. These
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Figure 1.24: Printout of the script applied to the data of Figure 1.22 with vari-
able errors in a least squares fit to a straight line. The fitted slope is a, while the
intercept is b. The error matrix for a and b, is “err” in the printout.

Figure 1.25: Chisquared minimization of a cubic fit to the temperature data fit
above to a unweighted quadratic curve and a properly weighted linear straight
line fit.
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Figure 1.26: Printout of the fit of Monte Carlo data to a Gaussian. The fitted
parameters, a, are the number of entries, the mean and the standard deviation
of the fitted Gaussian function. The “diag” refers to the diagonal elements of the
error matrix.

Figure 1.27: The Monte Carlo data shown with statistical errors and the
Gaussian fit to the data.
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two packaged scripts are available to the user to do fits to any func-
tion that is already defined or which can be defined. The entries
are the diagonal elements of the error matrix of the fit chosen and
the fit function which depends on parameters in any defined fashion.
The script “Fits Chisq Errors” is set up to fit data to a polynomial,
a Gaussian, a Poisson distribution or an exponential. The printout
and plots supplied are cubic fits to the temperature distribution and
the voltage distribution, as well as the Gaussian fit to the stored
Monte Carlo data. The user with some acquaintance with MAT-
LAB should be able to add script for any other desired functional
form.

1.14. MATLAB Utilities

MATLAB has many utilities and features and here only the surface
can be scratched. The desktop provides a workspace, but also win-
dows with the command history and the command window, providing
a history of commands issued in the present and prior sessions and
variables currently in memory.

There is a help browser with both an index and a search facility.
Help for a particular function can be invoked from the command
window, e.g. “help plot”. The editor and debugger make writing and
running scripts quite easy. Plots can be edited as well as fit using the
Figure tab options.

There is a full suite of array operations for vectors including,
“max”, “min”, “length”, “mean”, “std” (standard deviation), “sum”,
“diff” and “sort”. Matrices can use the “gradient” function which will
be used to derive fields from potentials.

There are arithmetic, e.g. +, relational, e.g. >, and logical,
e.g. ==, operators. Script flow is controlled by the use of: “if”,
“while”, “for”, “end” and “break”. The nested loops are conveniently
indented by the compiler. Any incorrect script is indicated in red by
the compiler as it is typed in.

Equations can be solved using “solve” for algebraic equations,
and “dsolve” for ordinary differential equations. Partial differential
equations in one dimension are solved using “pdepe”. If the solutions
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are not possible, ordinary differential equations can be integrated
numerically using “ode45”. General numerical integrations are han-
dled using “quad”.

There is a full suite of data handling utilities for importing and
exporting data, but they will not be discussed in this text.
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Chapter 2

Classical Mechanics

“The squares of the periodic times are to each other as the cubes of the
mean distances.”

— Johannes Kepler

“Two things that matter to me; emotional resonance and rocket
launchers.”

— Joss Whedon

“The earth doesn’t move backward (very much) when you walk only
because it’s much more massive than you are.”

— K.C. Cole

The first section was devoted to the mathematical tools which are
of general use in this text. Typically there was a script written with
a user menu which wrapped a specific MATLAB function. Now the
demonstrations for real physics problems begin. In general, the same
format for the scripts is in place; an introductory printout, an exam-
ple and then a user menu to enable the user to build up an intuition
about the problem. The displays and plots aim to be “movies” when-
ever possible, to give a sense of the dynamics of the problem as it
evolves in time. A “movie” of the time development allows the user
to appreciate both the development of the system in position and
the time dependent velocity.

2.1. Simple Harmonic Oscillator

Galileo began the study of physics described mathematically. The
story goes that he measured the periods of chandeliers in church
using his pulse to measure the time and thus found that the period
depended on the length of the device. It is now accepted almost
universally that the Universe can be apprehended mathematically
which is a great mystery why that should be so.



November 13, 2013 14:26 9in x 6in One Hundred Physics Visualizations Using MATLAB b1610-ch02

24 One Hundred Physics Visualizations Using MATLAB

One of the simplest problems in mechanics is the harmonic oscil-
lator realized as a mass,m, on a spring with spring constant k moving
in one dimension, x, in time t. The spring restoring force is a repre-
sentation of the situation for small oscillations of any bound system,
since it represents the first term in the Taylor expansion of the force
binding the particle. The one-dimensional differential equation is:

d2x/d2t = −(k/m)x− b/m(dx/dt) +B cos(ωt) (2.1)

where b is a damping factor and B is a harmonic driving term with
driving frequency ω. The damped frequency in the absence of damp-
ing and driving terms is ω2

o = k/m and the motion is oscillatory,
x ∼ e±iωot.

This second order equation needs initial values for position and
velocity to be defined in order for the solution to be fully deter-
mined. In this exercise, supplied by the script “cm osc” an initial
displacement is supplied equal to A and the initial velocity is defined
to be zero. There are three cases which are considered; no damping,
no driving term, then damped motion without driving forces, and
then damped and driven motion. All cases are solved symbolically
using the “dsolve” script introduced previously. The results can be
displayed by making the input y, yd, ydr on the keyboard in the
Command Window.

To simplify, units where the oscillation frequency is k/m = 1
are used. The under damped natural frequency and the resonant
response to a driving term at long times are:

ωo =
√
k/m

ωd =
√
ω2

o − (b/2m)2 (2.2)

ωdr =
√
ω2

o − (b/m)2/2

In the over damped case, the solutions are exponentials, while in
the under damped case, the solutions are oscillatory. The damped
frequency is less than the undamped frequency, while the driven res-
onant frequency is different from both. The frequency half width of
the resonant response to the driving force is approximately, b/2m.
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Less damping means that the resonant response to a driving force is
more sharply peaked in frequency.

The script “cm osc” first asks to choose if the initial position
and A = 1 is a reasonable choice for simplicity. The damping term
is next and b/m = 0.1 gives an under damped solution. The damped
frequency is 0.999, only slightly shifted from the natural frequency.
A movie of the un-damped and damped position is then shown.
Finally, a driving amplitude and frequency is asked as input, where
B = 1 and ω = 0.9 are used as the example. The resonant frequency
is approximately 0.997.

When another menu choice is requested, the over damped case
can be illustrated by the choice of b/m = 2.1. All the plotted results
are shown in Figure 2.1 through Figure 2.4. In Figure 2.1, it is clear
that the damped frequency is slightly less than that for the un-
damped case, when the free and damped motion of b/m = 0.1 is
compared. The amplitude in the damped case is reduced with time
and with respect to the un-damped case.

Figure 2.1: x(t) for free and damped motion with b/m = 0.1.
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Figure 2.2: Damped motion, driven and un-driven with driving amplitude = 1
and frequency 0.9.

In Figure 2.2, the driven oscillation begins to have a frequency
approaching the driving frequency at longer times for a driving fre-
quency of 0.9.

In Figure 2.3, the maximum amplitude, x(t) in the driven case
with amplitude of one and with damping factor b/m = 0.1 is plotted
for the exact solution as a function of the frequency of the driving
force. The approximate resonant frequency is also shown, as well as
the approximate width of the resonant frequency response. The exact
solution differs from the approximate case. However, the expected
resonant behavior is seen near the resonant frequency and the res-
onant width is very approximately what is indicated on the figure.
Finally, the un-driven damped response in the over damped case,
b/m = 2.1, is displayed in Figure 2.4. In that case, the solution is
a decaying exponential compared to the under damped case where
there is both an oscillatory and an exponential component of the
solution, as seen in Figure 2.1.
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Figure 2.3: Maximum x(t) as a function of driving frequency — under damped,
b/m = 0.1.

Figure 2.4: x(t) for free motion and in the over damped case, b/m = 2.1.
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There are many parameters which the solutions depend on. The
user can vary them all and see how the solutions vary in response.

2.2. Coupled Pendulums

A more complex harmonic example is the description of two pendu-
lums with a spring coupling between them. The coupled differential
equations, with pendulums defined by k and m and with a coupling
K are:

d2x1/d
2t = −(k/m)x1 − (K/m)(x1 − x2)

d2x2/d
2t = −(k/m)x2 + (K/m)(x1 − x2)

(2.3)

In this case, using the script “cm s2sho”, the MATLAB function
“dsolve” is used for the system of two coupled differential equations.
The user has a menu to specify k, m and K along with the initial
displacements of the two pendulums. This problem can easily be
treated as an eigenvalue problem, and the two eigenfrequencies are:

ω2
1 = (k/m)

ω2
2 = (k/m) + 2(K/m)

(2.4)

The eigenfrequencies correspond to solutions, eigenvectors
exhibiting simple harmonic motion. The eigenvectors correspond first
to the case where the 2 pendulums are in phase and the coupling
spring, K, is not displaced. The second eigenvector occurs with
the two pendulums out of phase. The values of x1 and x2 for an
example with initial displacements [2, 1], are shown in Figure 2.5
and clearly, in this case, the motion is not simple harmonic. The
eigenvectors, illustrating the single eigenfrequencies are plotted in
Figure 2.6.

There is a movie which shows the time evolution of the system.
The user supplies the values of k and K and the initial positions of
the two pendulums. With these options, the behavior of the eigen-
vectors can easily be seen with the proper choice of initial positions.
A frame of the movie for the specific example of Figure 2.5 appears
in Figure 2.7. Indeed, that fact can be checked by setting [1, 1] and
then [1, −1] as the initial displacements and watching the resulting
movie and associated plots.



November 13, 2013 14:26 9in x 6in One Hundred Physics Visualizations Using MATLAB b1610-ch02

2. Classical Mechanics 29

Figure 2.5: Displacements of the two pendulums for the case where k = m = 1,
K = 2 and with initial displacements of [2, 1].

Figure 2.6: Time dependence of the sum and difference of the displacements of
the pendulums for the example specified in Figure 2.5. These eigenvectors are
simple harmonic.
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Figure 2.7: Movie of the time evolution of a coupled pendulum system for k =
m = 1 and K = 2, with initial condition of [1, 2] for the positions.

2.3. Triatomic Molecule

One more demonstration with eigenvectors has been worked out,
that for the motion of a linear triatomic molecule with two atoms of
mass m on the left and right edges and an atom of mass M in the
center with two springs coupling the atoms together which simulates
atomic bonds. The system of equations to be solved for the three
displacements is, taking k = m = 1:

d2x1/d
2t = (x2 − x1)

d2x2/d
2t = b(−2x2 + x1 + x3)

d2x3/d
2t = (x2 − x3)

b = m/M

(2.5)

The eigenvalue equation is solved using the MATLAB functions “det”
and “factor” in the script “cm triatomic”. The matrix Aw is derived
assuming eigenfrequencies for the motion and substituting into Equa-
tion (2.5). The solution of the set of equations occurs when the
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determinant is zero. The three eigenfrequencies are:

ω2
1 = 0, ω2

2 = k/m, ω2
3 = k/m+ 2k/M (2.6)

The first case corresponds to an eigenvector with uniform transla-
tion of the entire molecule. The second case is the “breathing mode”,
where the central atom of mass M remains at rest while the outer
two atoms have equal and opposite displacements. The printout for
this script is shown in Figure 2.8.

Figure 2.8: Printout for the script “cm triatomic”. The eigenvalues are found
using the functions “det” and “factor”. The exact motion is found using the
MATLAB function “dsolve” for the motion of the three coupled masses.

In general, the molecule has a complex oscillatory behavior. The
result for initial displacements of [−1, 2, 1] are shown in Figure 2.9
and a movie is displayed in Figure 2.10. Finally, the simple harmonic
behavior where the central atom stays at rest can be invoked with
the user choice of [−1, 0, 1] for initial displacements. In this way, the
user can confirm the eigenvectors of the problem. All three should
be tried.

2.4. Scattering Angle and Force Laws

In physics, one way to understand the forces which act in a given
situation is to scatter a probe particle off the force center. Indeed,
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Figure 2.9: Time development of the solution for initial positions of [−1, 2, 1],
m/M = 0.3.

Figure 2.10: Movie snapshot for initial positions of the three atoms for the initial
conditions [−1, 2, 1] and m/M = 0.3.
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in that way, Rutherford discovered that an atom was mostly empty
space with the protons all clustered into a compact nucleus which
strongly scattered alpha particles when they were used as a probe.

A graphical look at different force laws is provided by the script
“Scatt Force Law”. Central forces that go as inverse power laws with
powers from one to four and with attractive and repulsive options
are provided in the user menu. Other force laws could be added to
the script by making small modifications to the script. A movie of
the trajectory with a defined initial impact parameter, b, is shown
and then the suite of trajectories is shown. The movie is in equal
time steps, so that a feeling for the velocity as a function of time
can be obtained. The relationship between impact parameter, b, and
scattering angle is plotted in a separate graph.

The MATLAB tool, “ode45” is used which is a numerical solver
for a set of ordinary differential equations. In this case, there are four
unknowns, the x and y position and the x and y velocity, which are
called y(i) in the script. The initial conditions are that x = −10 and
y = b, the impact parameter with initial x velocity = vo =

√
2 and

initial y velocity = 0. The mass and kinetic energy of the classical
probe particle are taken to be equal to one. The equations as input
to “ode45” are;

dx/dt = vx, dy(2)/dt = y(1)

dy/dt = vy, dy(4)/dt = y(3)

dvx/dt = (x/r)(q/rn) = dy(1)/dt

dvy/dt = (y/r)(q/rn) = dy(3)/dt

(2.7)

The sign of q defines whether the force is attractive or repulsive.
The power n is chosen by the user via a provided menu as is q. The
ode45 solver finds all four unknowns numerically. Results for a n = 2
attractive force are given in Figure 2.11, while results for n = 2
repulsive are shown in Figure 2.12. In general, more localized forces
with larger n, give larger deflections at small impact parameters than
forces with a weaker r dependence. The user can explore these char-
acteristics by watching all eight of the possible movies. In the special
case of an inverse square law, the attractive and repulsive orbits are
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Figure 2.11: Scattering trajectories for different b for a 1/r2 attractive force.

Figure 2.12: Scattering trajectories for different b in the case of a 1/r2 repulsive
force.
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on the two distinct hyperbolic trajectories which are explained in
more depth later in the section on Keplerian orbits.

Finally, a plot of the scattering angle as a function of impact
parameter is given in Figure 2.13. Clearly, the small impact param-
eter trajectories see a stronger force and; therefore, have larger scat-
tering angles. The experimenter cannot, alas, aim the probe so that
all impact areas are equally probable and the cross section is just
proportional to the area of a ring of impact parameters of area 2πbdb.
The resulting scattering angle distribution is easily found, since there
is a one to one relationship between scattering angle and impact
parameter;

dσ ∼ bdb = b(db/dθ)dθ (2.8)

Figure 2.13: Relationship of the scattering angle to the impact parameter for
the case of a 1/r2 repulsive force.

Because of the equally probable impact parameter areas, bdb,
most b are large which means most angles are small. In that case, the
experimentally observed angular distribution will be peaked at small
scattering angles. An example is Rutherford scattering, which falls
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as the fourth power of the scattering angle for small angles. A rough
estimate for Coulomb scattering in the Rutherford case reproduces
that dependence.

dσ/dΩ ∼ 1/θ(dσ/dθ) ∼ b/θ(db/dθ)

F ∼ 1/b2, t ∼ b/v → b ∼ 1/θ

dσ/dΩ ∼ 1/θ4

dΩ = dφd cos θ = 2π sin θdθ ∼ 2πθdθ

(2.9)

The Coulomb force, F, is large for r ∼ b and the time it acts, t,
goes as ∼b divided by the incident particles velocity, v. The scattering
angle due to the momentum impulse, Ft, is then ∼1/b, so that in this
case, the inverse fourth power is obtained for the angular distribution.
Other forces would give other predictions for the observed scattering
angle distribution. Note that the attractive and repulsive orbits are
on the two arms of hyperbolae for an inverse square law. With the
addition of negative charge, both possibilities open up as opposed to
gravitational attraction only.

2.5. Classical Hard Sphere Scattering

Kinematics plays a big role in scattering beyond that of the dynam-
ics which were previously discussed. The script to explore hard
sphere scattering is contained in “cm NR scatt”. The scattering is
m+M → m+M , where m is the projectile mass taken to be one
and M is the target mass. The user menu consists of the choice of M .
Once M is known, the kinematics for different scattering angles of
the projectile and recoil angles of the target are explored. The con-
servation of kinetic energy, T = mv2/2, and vector momentum is,
m = 1:

v2
in = v2

2M + v2
1

�vin = �v1 + �v2
(2.10)

These equations can be solved for the recoil velocity as a function
of the angle of the recoiling target, φ.

v2 = 2cos φ/(1 +M/m) (2.11)
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Once the recoil angle is chosen, the recoil velocity is solved for,
and then the scattered projectile velocity, v1 follows from momentum
conservation as does the scattering angle θ of the projectile.

v1 =
√

1 + v2
2 − 2v2 cosφ

v1 sin θ = v2 sinφ
(2.12)

The results for representative recoil angles are shown as a
“movie” which indicates the initial velocity, the scattered velocity
and angle, and the recoil angle and velocity. In this way, an intuition
is built up as regards the kinematics of scattering.

In Figure 2.14, a frame of the movie for the case of M = 1 is
shown. In this case, the projectile can transfer all its velocity to the
target, which is familiar in billiards. Note that the angle between
the scattered projectile and the recoiling target in this equal mass
case is always ninety degrees. In Figure 2.14, the target recoils with

Figure 2.14: Scattering of a projectile and the recoil momentum and angle for
the case of equal target and projectile mass. This is a snapshot of a movie covering
several scattering angles.
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almost the full velocity of the projectile. This fact for scattering has
an application in neutron moderation. Only for free protons will neu-
trons slow down significantly, so that neutron moderators normally
contain molecular hydrogen or light elements with large capture cross
sections such as boron.

The complementary case is shown in Figure 2.15, where M = 10.
In that case, the recoil target never attains more than 18% of the
velocity of the projectile, while the scattered projectile always retains
at least 82% of the projectile velocity. This behavior is also familiar
to pool players when using the “bumpers”. A light particle cannot
transfer velocity to a heavy target because it is momentum that
is transferred not velocity. This is well understood by car drivers.
A Mack truck colliding with a Smart car will not suffer a large
recoil.

Figure 2.15: Target velocity as a function of scattered projectile velocity in the
case of M = 10. There is a maximum velocity less than the projectile, which the
target can attain that depends on M .

The user can vary the masses and see how the velocity partition
between recoil and projectile particles is altered when M is varied.
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2.6. Ballistics and Air Resistance

Motion of a ballistic projectile in a uniform gravity field, g, near the
surface of the earth is a practical problem and one which needs to
take air resistance into account. The equations which are used are
solvable and are computed symbolically using the MATLAB function
“dsolve”.

d2x/d2t+ kdx/dt = 0

d2y/d2t+ kdy/dt + g = 0

x(0) = 0 = y(0)

vx(0) = vo cosα, vy(0) = vo sinα

(2.13)

The x coordinate is horizontal and y is the vertical position.
The constant k specifies the velocity dependent air resistance. The
initial angle of the projectile is α. The printout for the script
“cm ballis sym” is shown in Figure 2.16.

Note that there is a terminal velocity at long times, where
v = g/k and where the acceleration is zero. This phenomenon is
familiar for sky divers and others when the air resistance exerts a
force matched to the acceleration of gravity. At long times y ∼ (g/k)t.

A movie of the projectile motion, y as a function of x, is displayed
and the complete trajectory is plotted in Figure 2.17, comparing the
cases with and without resistance. The user menu has a choice of
initial velocity and the initial angle of the projectile. In this way,
the user can confirm the well-known fact that the maximum range
obtains when the projectile starts at 45 degrees.

2.7. Rocket Motion — Symbolic and Numerical

The motion of a rocket is defined by the exhaust velocity, vo, or the
velocity at which material of mass dm is ejected from the rocket with
respect to the rocket. For a present rocket mass m, conservation of
momentum leads to a rocket velocity change dv:

mdv = −vodm (2.14)

Integration of Equation (2.14) leads to the result that the velocity
of the rocket depends logarithmically on the ratio of the rocket mass
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Figure 2.16: Printout showing the x(t) and y(t) solutions with and without air
resistance.

to its initial value, mo, or the payload ratio:

v(m) = vo ln(m/mo) (2.15)

Assuming a constant burn rate of fuel, ṁ = dm/dt, and a total
burn time, T , if all the fuel were exhausted, with no payload, the
differential equation for a simple rocket as a function of time follows:

m = mo − ṁt

T = mo/ṁ
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Figure 2.17: Plots of the trajectory of a projectile starting at 45 degrees and
with a muzzle velocity of 10m/sec with and without air resistance, k = 0.1 sec−1.

d2y/d2t = −vo/(T − t)

d2y/d2t = −vo/(T − t) + g (2.16)

The addition of a uniform gravity field, g, makes the equation
somewhat more complex but still solvable. A closed form solution
for the presence of a real inverse square gravity field does not exist,
however.

The rocket script is contained in “cm rocket sym”. The print-
out of the symbolic solutions to the equations uses the MATLAB
“dsolve” function which appears in Figure 2.18.

Integrating the rocket equation, the relationship of the payload
mass ratio to the initial mass, defines the final velocity ratio to the
exhaust velocity as in Equation (2.15).

A movie is provided to the user after the payload ratio is cho-
sen. The rapid increase in distance as the rocket nears the end of
the burn time is evident when viewing the movie of altitude as a
function of time. Numerical results for a 1% payload ratio are shown
for the rocket acceleration in Figure 2.19 and the rocket altitude as
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Figure 2.18: Symbolic solutions to the simple rocket equation and the equation
in a uniform gravity field.

Figure 2.19: Rocket acceleration as a function of time. There is a rapid increase
in acceleration as the rocket approaches the end of a burn with a small payload
ratio.
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a function of burn time in Figure 2.20. It is interesting to observe
that rocket velocities in excess of the exhaust velocity are possible, if
the rocket has a small payload ratio. In the 1% payload case, the final
rocket velocity is about five times that of the exhaust velocity. For
small payload ratios, the altitude approaches the exhaust velocity
times the total burn time.

Figure 2.20: Rocket altitude as a function of time for a 1% payload. The movie
shows the time development of the altitude which illustrates the sharp increase
in acceleration and velocity at late times.

A more purely numerical calculation appears in the script,
“cm rocket num2”. The solutions found symbolically in the script
“cm rocket sym” are evaluated in the particular context of a Sat-
urn V rocket. As context to set the scales, the low earth orbital
velocity of 7.9 km/sec, the Earth escape velocity of 11.2 km/sec, and
the escape velocity of the solar system of 42.1 km/sec are printed
out. The equatorial launch velocity of 0.46 km/sec is also printed to
remind the user of the reason why rocket launches in the US were
placed in Florida. The effect is, however, small and ignored in what
follows. Escape velocities needed to escape from a mass M starting
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from a radius r are:

ves =
√

2GM/r (2.17)

A user menu of scaling to a Saturn V is invoked. For a rocket two
times heavier, with only a 200 kg payload and a 4 km/sec exhaust
velocity, a one stage rocket can escape from the solar system. The
acceleration of this scaled up Saturn is shown in Figure 2.21. Note
that it takes almost two minutes, 125 sec, for the rocket to build
up sufficient acceleration to lift off by overcoming the acceleration of
gravity. This is familiar to those who watch rocket launches. A movie
of the rocket distance as a function of time is provided to the user.
The velocity as a function of time appears in Figure 2.22.

Figure 2.21: Acceleration for a free rocket and a rocket in a uniform gravity field
with acceleration g. Note the delay in the gravity field case which is needed to
overcome the gravity well of the Earth.

The script gives some added printout for the user defined rocket.
The burn time in this example is 533 sec. Payload ratios for a given
final velocity are evaluated using Equation (2.15). The rocket could
put 489,000 kg into an Earth escape orbit, or a 6.1% payload ratio.
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Figure 2.22: Velocity of the scaled up Saturn V rocket with a 200 kg payload.
Note that this small payload is just small enough to attain escape velocity from
the solar system.

However, to escape the sun, this rocket can only have a 215 kg pay-
load or a payload ratio of 0.000027. A realistic scale is set by the
actual Saturn rocket and escape module with a payload ratio of 0.3%.

2.8. Taking the Free Subway

It is an amusing thought experiment to imagine a subway shaft cut
along a chord connecting two points. Because of the Gauss law that
the important thing is the mass between the center of a body and the
test mass, there is simple harmonic motion of that test body moving
along such a chord. For a uniform density, ρ, sphere of radius R, the
distance along the chord is xo, the maximum depth of the subway is
d, the angle subtended by the chord is θ, and the distance along the
Earth’s surface is s:

xo = 2R sin θ

d = R(1 − cos θ)

s = 2Rθ

(2.18)
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The circular frequency of the motion, ωo, is independent of the
particular chord and depends only on constants which define the
gravity field of the Earth in the uniform density approximation.

ω2
o = Gρ(4π/3) = g/R (2.19)

The trip time is then, T = π/ωo, which for the Earth is 2533 sec,
or about 42 minutes, independent of the trip distance. The script
which was written to cover this problem appears in “cm subway2”.
It provides some numerical printout, reproduced in Figure 2.23, a
movie of the motion in order to provide insight into the velocity as a
function of time, and the trajectory along the chord as a function of
time, given in Figure 2.24. Who says there is no free lunch? We can
use the gravity field of the earth to travel for “free.”

Figure 2.23: Printout for the user supplied distance along the subway showing
the subway depth, surface distance, and travel time.

However, the velocity of the trip increases with the distance and
the heat encountered in a “deep” trip might be a bit impractical.
Still, the study of the use of the properties of the inverse square law
for gravity is amusing.

2.9. Large Angle Oscillations — Pendulum

The pendulum equation which describes simple harmonic motion is
correct only in the small angle approximation. The approximate fre-
quency is ωo =

√
g/L, where L is the length of the pendulum. In

general, the equation is nonlinear and therefore the motion is not
harmonic.

d2y/d2θ = (g/L) sin θ → (g/L)θ (2.20)
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Figure 2.24: For a chord distance of 20,000 km the travel time is 2533 sec. The
slope (velocity) is greatest at the midpoint of the trip.

The script provided to study this problem is “cm pendul” which
uses the MATLAB numerical differential equation solver “ode45”.
The printout for a particular example is shown in Figure 2.25, while
the plot of the angular velocity in this case is shown in Figure 2.26.
A movie of the angular position in the small angle case and also the
general case is provided to the user in order to build up an intuition
as to the regions of approximate validity of the small angle solution.
In general, the large angle period is increased, and the printout gives
the first term in the series expansion for the solution.

Figure 2.25: Printout for the “cm pendul” script. The particular example has a
large initial angle but no initial angular velocity.
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Figure 2.26: Angular velocity in the simple harmonic case and the solution for
a particular large oscillation with parameters defined in Figure 2.25.

2.10. Double Pendulum

Large angle oscillations of two coupled pendulums are treated in the
script “cm chaotic”. The motion is nonlinear because the oscillations
have a large amplitude and they are called chaotic. The equations
of motion are four fold, for the angular location of the two mass
points and for the velocities of the two points. They are not very
transparent, but can be studied by examining the script provided.
The masses, m, are taken to be equal to one as are the g/L ratios.
The length, L, of both pendulums is set to be one also. The inputs
are the initial angles of the two mass points. The initial velocities are
fixed at zero.

Plots of the angular velocity and position as a function of time of
the two mass points are made and a movie of the motion is played.
The position of the mass points appears in Figure 2.27, while a
frame from the movie appears in Figure 2.28. The MATLAB function
“ode 45” was used to create the numerical solutions of these non-
linear and coupled equations. The movie viewer may be reminded of
the motion of nunchucks in kung fu movies.
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Figure 2.27: Plot of the positions of the two pendula for initial positions of 45
and −60 degrees.

Figure 2.28: A frame from the movie of the pendulum’s positions as a function
of time for initial angles of 45 and −60 degrees.
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2.11. Coriolis Force

There are several solvable problems in physics arising in accelerated
reference systems. One such problem concerns the “fictitious” forces
that arise on Earth due to its rotation with circular frequency, ω. In
particular, there is the Coriolis force which is treated in the supplied
script “cm coriolis” for the special case of dropping a particle with
no initial velocity components. The resulting solution is found using
the MATLAB symbolic tool “dsolve” for the time development in
the vertical (z) and East (y) direction at a latitude defined by θ. The
printout is shown in Figure 2.29.

Figure 2.29: Dialogue for the script which explores Coriolis force. In this simple
case, y as a function of z is easily determined. The quantity w is the angular
velocity of the Earth.

The coupled equations are:

d2y/d2t = −2ω cos θ(dz/dt)

d2z/d2t = g (2.21)

The solutions shown in Figure 2.29 can be used to remove the
time dependence to find the trajectory −y(z). The numerical value
for a drop of 10,000 m from 45 degrees of north latitude is shown
in Figure 2.30. In some real sense you aim at y = 0, but the Earth
rotates away from you by 15.5 m during the time of the fall.
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Figure 2.30: Trajectory of y as a function of z during free fall of an object
released from an altitude of 10,000 m at 45 degrees north latitude.

2.12. Kepler Orbits — Numerical

The problem of the numerical evaluation of orbits in a central inverse
square law is treated in the script “cm kepl3”. The core computation
is done with the use of “ode45”, the MATLAB numerical integrator
for a set of ordinary differential equations. The initial dialogue, in
response to a user defined choice of distance to the sun, is a request
for the initial velocity, both radial and tangential. The velocity for a
circular orbit and the escape velocity at that distance are provided
to set the scale. The values for Earth are also given, so that Kepler’s
laws can be checked numerically.

The motion defined by these initial conditions is displayed as a
(x, y) movie. The time spacing is uniform, so that an intuition for
orbital velocity can be attained by trying different configurations.
Radial velocity is largest nearest the sun, as expected. Results for
initial radial velocity = 0 and tangential velocity in AU/yr of 6.28,
8 and 9.5 are shown in Figures 2.31, 2.32 and 2.33 respectively in
the specific case of an initial radius of one astronomical unit or AU.
They correspond to the possible Keplerian orbits of a circle, ellipse
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Figure 2.31: Plot of the (x, y) trajectory for a circular orbit. The Sun is at the
origin, marked by ∗. The orbits in an inverse square force are, in fact, re-entrant
but the numerical integration is not exact.

Figure 2.32: Plot of the (x, y) trajectory for an elliptical orbit. The sun is located
at a focus of the ellipse and is marked by ∗. The speed of the orbit is largest when
nearest the sun.
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Figure 2.33: Plot of the (x, y) trajectory for a hyperbolic orbit. The location of
the sun is indicated by ∗.

and a hyperbola. In the case of the ellipse and hyperbola, the last
movie frame is shown in order to illustrate the larger velocity near
the sun in those cases.

The numerical integrations work in general, but the script choices
by the user may set plot limits which may be violated in the case
of orbits which fall into the Sun or which escape very rapidly out
of orbit. For the circular orbit, the sun is at the center, while for
the elliptical, the sun is at one of the foci. Other orbits are possible
and the user should explore the possibilities. The time scale for inte-
gration is the time span of five circular orbits at the starting radius.
Note, in particular that a circular or elliptical orbit is “re-entrant” —
it repeats in time so that the orientation of the ellipse in the plane
does not change from orbit to orbit. This is a property of the inverse
square law and is not true for other forces.

2.13. Analytic Kepler Orbits — Energy Considerations

Gravity is a central force. This means that orbital motion is confined
to a plane, (r, θ) called the ecliptic for the solar system. Furthermore,
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the angular momentum, L, is conserved which allows for the reduc-
tion of the problem to an effective one dimensional equation of
motion. The angular momentum is:

L = mr2dθ/dt (2.22)

The effective one-dimensional conserved energy is, E = Tr +Veff ,
where Tr is the radial kinetic energy and Veff is the effective radial
potential energy. Setting the orbiting mass m to be one:

E = (dr/dt)2/2 + [L2/(2r2) −GM/r] (2.23)

The energy is the sum of the radial kinetic energy, the gravita-
tional potential energy, and an effective repulsive inverse cube force
law.

The numerical orbital script, “cm kepl3” could be modified to
cover different force laws by any user willing to change a few lines
of code. In the case of the symbolic script “cm kepl”, the effort has
been focused on analytical solutions to the inverse square problem.
Some of the relevant equations for a user choice of radius= ro are:

L2
c = roGM

Ec = −GM/2ro
q = E/|Ec|
e =

√
1 + q

r/ro = 1/(1 + e cos θ)

v/vc = (dr/dt)/
√
GM/ro =

√
q + 2(1 + e cos θ)

(2.24)

The angular momentum for a circular orbit of radius ro, is Lc.
The energy for a circular orbit of that radius is Ec. The control-
ling parameter is the energy of the orbit, E, which is normalized to
the energy of the circular orbit by defining the parameter q. The
eccentricity of the orbit is e. The one-dimensional problem of r as
a function of t can be transformed into the orbit, r as a function of
polar angle, θ, by using the fact that L is a constant of the motion.
The solution for r given above corresponds to an initial angle of zero,
which initially yields the smallest radius defined to be the perihelion.
The radial velocity as a function of angle is also solved for, and is
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normalized to, the velocity of a circular orbit, vc, in Equation (2.24).
The effective potential is:

Veff = GM [ro/2r2 − 1/r] (2.25)

There is a competition between the attractive gravitational
energy which goes inversely with radius and the repulsive centrifugal
potential that goes as the inverse square of the radius. Depending on
the relative strengths of these two effects, the orbits will be closed
ellipses or open hyperbolae. The minimum of the potential occurs at
ro and is −1/2(GM/ro) which is the energy of a circular orbit. The
energy of such an orbit is less than zero since the state is bound. It
satisfies the virial theorem.

The solution for the orbit, r, and the orbital velocity, v, in circular
velocity units depends on the energy of the orbit. The ellipse major
axis is ro/|q| and the minor axis is the square root of the product of
the major axis and ro. The turning points for an ellipse where the
radial velocity is zero are at:

x1/ro = 1/q(−1 + e)

x2/ro = 1/q(−1 − e)
(2.26)

Therefore q fully defines the solutions; q < −1 means no solution,
q = −1 is a circular orbit, q between −1 and zero is an elliptical orbit,
q= zero is a parabolic orbit, and q greater than zero is a hyperbolic
orbit. Very elongated ellipses correspond to cometary orbits, which
are bound to the sun but with very low energies and very large eccen-
tricities.

The printout for the script “cm kepl” is shown in Figure 2.34.
The dialogue gives escape velocity, circular orbit parameters, and,
for elliptical orbits, the major and minor axes, the turning point
radii, the orbital period and the eccentricity.

For each choice of initial radius and energy, the effective poten-
tial energy and the (x, y) orbit is plotted, as well as the orbital time
and orbital velocity as a function of the orbital angle. The effective
potential, with contributions from the Sun and from the repulsive
centrifugal potential, is shown in Figure 2.35. The potential for a
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Figure 2.34: Printout in the dialogue for the script “cm kepl” for a user chosen
example with an elliptical orbit.

Figure 2.35: Effective potential energy for an elliptical orbit. The circular orbit
is indicated by ∗, while the turning points for the chosen energy of, q = −0.5 are
indicated by o.

circular orbit and the location of the turning points for the chosen
energy are also shown. In the particular case the limits for the ellipse
with an initial r of one AU and total energy of −1/2 is shown. The
elliptical orbit is shown in Figure 2.36, where the major and minor



November 13, 2013 14:26 9in x 6in One Hundred Physics Visualizations Using MATLAB b1610-ch02

2. Classical Mechanics 57

Figure 2.36: Elliptical orbit for the parameters printed in Figure 2.34. The dis-
tance between the turning points is the length of the elliptical major axis. The
major and minor axes are shown in green and red.

axes are shown in green and red and the major axis length corre-
sponds to the turning points printed in Figure 2.34.

The orbital velocity for the chosen elliptical orbit is shown in
Figure 2.37. Clearly, the velocity is not constant as it is for a circular
orbit. The orbital velocity is larger when the orbit is near the focus
at the Sun and smaller, by a substantial factor, when the orbit is
at a larger distance from the Sun. As indicated in the printout, the
orbital eccentricity is 0.707 in this example.

The user can also make inputs to the menu which result in
parabolic or hyperbolic orbits. At the boundary between a very
eccentric ellipse and a hyperbola, the parabolic input of q = 0 results
in the trajectory shown in Figure 2.38. A hyperbolic orbit is shown
with q = 0.015 in Figure 2.39. The orbit rapidly approaches a straight
line with an unbound trajectory which escapes the gravitational bind-
ing force. The straight lines are called the asymptotes of the orbit. In
all the plots displayed here, the initial radius was 1 AU, the chosen L
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Figure 2.37: Orbital velocity as a function of the orbital angle for an elliptical
orbit in units of the velocity for a circular orbit with radius ro. Parameters are
as quoted in Figure 2.34. Perihelion is at angle =0, while aphelion is at an angle
of 180◦.

Figure 2.38: Trajectory (x, y) for a parabolic orbit with q = 0. The scale is too
large to separate the force center and the perihelion.
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Figure 2.39: Hyperbolic orbit showing both the orbit and the asymptotes of the
hyperbola for q = 0.015. The scale is too large to separate the force center and
the perihelion. The turning point is at 0.5 AU. A repulsive force of gravity would
have an orbit on the other segment of the hyperbolae.

value was that of a circular orbit at that radius and the orbital type
was controlled by the conserved energy.

It is clear in making these plots that the bound state orbits are
re-entrant. That is, they repeat in time and the orbital paths do not
change with time averaged over many periods. This fact is unique to
the fact that gravity is an inverse square force law.

2.14. Stable Orbits and Perihelion Advance

It is of interest to explore whether orbits which are perturbed are
also stable. The script which was written to explore the question is
“cm circl orbit”. In fact, circular orbits are possible for most central
forces obeying a power law in the radius from the force center. For a
circular orbit, radius a, the centrifugal force is equal to the attractive
force, L2 = a3F (a), which is a generalization of the Kepler formula-
tion discussed already. The force law is assumed to be an attractive



November 13, 2013 14:26 9in x 6in One Hundred Physics Visualizations Using MATLAB b1610-ch02

60 One Hundred Physics Visualizations Using MATLAB

power law, F (r) ∼ 1/rn, which competes with the repulsive centrifu-
gal inverse cubed force. The restoring force for small perturbations,
r = a+x, follows from Taylor expansions of the centrifugal force and
the attractive force. The equation for a small displacement leads to
simple harmonic motion as shown in Equation (2.27):

d2x/d2t = [L2/r3 − 1/rn] ∼ [F (a)(3 − n)]x/a

ω2
o = (F (a)/a)(3 − n) = ω2(3 − n) (2.27)

First, the perturbations on circular orbits for a given force law
are plotted where the power is chosen by the user via a menu. The
perturbed orbit follows x around r = a. The result is simple harmonic
motion for small perturbations for the case n < 3, where the unper-
turbed circular frequency is ω2 = F (a)/a. Only the inverse square
law, n = 2, has closed orbits which repeat, as mentioned previously.
The perturbed orbit for n = 1 is shown in Figure 2.40. Note that

Figure 2.40: Perturbed orbit in the case of a 1/r force law.



November 13, 2013 14:26 9in x 6in One Hundred Physics Visualizations Using MATLAB b1610-ch02

2. Classical Mechanics 61

the perturbation does not close with the basic orbital frequency. The
script uses the MATLAB function “ode45” to compute the trajectory
numerically.

Therefore, any failure to close a solar orbit means that gravity is
not a pure inverse square force law, contradicting Newton. Indeed,
this was known for Mercury (the advance of the perihelion) and bril-
liantly confirmed Einstein’s general theory of relativity (GR). That
theory predicted a small, relativistic addition to the law of gravity
with an inverse fourth power. The short range of the additional force
meant that the effect was large only for planets at small orbital radii.
The user has a choice of the amount of added force and the result-
ing orbit for a coefficient of 0.2 is shown in Figure 2.41, while the

Figure 2.41: Advancing perihelion for a 20% addition of an inverse fourth power
force.
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Figure 2.42: Perturbed orbit for three circular periods showing the advance of
the perihelion with time.

advancing perihelion is shown more graphically in Figure 2.42 for
numerical integration of three orbits. Note that the effect is vastly
exaggerated for visual purposes. The actual advance is only 43 sec-
onds of arc per century for Mercury.
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Chapter 3

Electromagnetism

“Little you know the subtle electric fire that for your sake is playing
within me.”

— Walt Whitman

“It was like bouncing tennis balls off a mystery piece of furniture and
deducing, from the direction in which the balls ricocheted, whether it
was a chair or a table or a Welsh dresser.”

— Marcus Chown

There are many possible candidates for numerical results in electro-
magnetism. The first exercises shown here are in the realm of statics
which are then followed by dynamical demonstrations. In this section,
the symbol E denotes the electric field, while in others E denotes
the non-relativistic total energy or the relativistic total mass-energy.
The reader will be warned about these unfortunate, but customary,
changes of notation.

3.1. Electric Potential for Point Charges

The analytic solution for a point charge is well known. Since electro-
magnetism is a linear theory, the field and potential for a collection
of point charges follows by superposition of the point charge solution.
The supplied script is “Point Elec Static”, which finds the potential
for a set of charges which are user supplied giving (x, y) positions and
individual charges. The electric field is derived from the potential
using the MATLAB utility “gradient”.

The results for a dipole configuration of [x y q] = [−10 0 200]
and [10 0 −200] are shown for the potential in Figure 3.1 and for the
x component of the field in Figure 3.2.
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Figure 3.1: Plot of the dipole potential using the MATLAB function “meshc”
which displays both the values of the potential and the equipotential contours.
The typical dipole pattern of the contours is evident.

Figure 3.2: Field component Ex for the dipole configuration. The dipole field
between the two charges is evidently large, as is the rapid falloff with distance r
from the origin.
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As can be seen from Figure 3.2, the field Ex is strongest between
the two charges and then falls off rapidly as the distance to the
observation point increases.

3.2. Image Charge for a Grounded Sphere

There are many ways to solve boundary value problems in electro-
magnetism. One method is to place an image charge which provides
the proper boundary conditions; for example, the vanishing of the
electric field parallel to a conductor surface. A simple example of
this technique is to look at an infinite grounded plane. The boundary
conditions for a point charge placed near the plane are satisfied by
creating an “image charge” of the same magnitude, but different sign
placed in a virtual location behind the plane at the same distance
from the plane as the point charge. That choice makes the plane an
equipotential and the electric field normal at the plane.

In the special case of a grounded sphere of radius a under the
influence of an external charge, q, placed at z = c, the image charge,
qi, and image location, zi, are;

qi = −aq/c
zi = a2/c (3.1)

This configuration induces a charge density on the sphere which
follows from the requirement that the field has only a normal com-
ponent at the radius a. For the numerical case where a = q = 1, the
script “Image Charge Sphere2” asks for a z location of the charge.
A “movie” for the potential and the field is then shown for image
charges at image locations from z = 0.1 to 0.9. The user can then
watch the boundary conditions approach the solution. The plots for
an image location of z = 0.7 are shown in Figure 3.3. The equipoten-
tial, in blue, is close to the locus of the circle, shown in green. The
external and internal (image) charges are indicated by a red ∗. The
electric field at that image charge location is almost normal to the
sphere as seen in the plot on the right.

The induced charge density is shown in Figure 3.4 for several
choices of charge location, z = c. The induced charge as a function of
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Figure 3.3: Equipotential contours (left) and electric field (right) for an external
charge located at z = 1.4 and with image charge at z = 0.7 for a sphere with
radius 1.

Figure 3.4: Induced surface charge density as a function of the observation angle
with respect to the external charge located at z = c for several values of c/a,
varying from 1.4 to 5.
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angle for cases where c/a varies from 1.4 to 5 indicates how strongly
the result depends on that ratio. The charge scale is logarithmic. The
script provides several choices of c to show the dependence. Also in
the script “Image Ch Sphere2”, the user menu allows for any choice
of c in order to explore other values.

3.3. Magnetic Current Loop

Another static example comes from magnetostatics, in this case the
magnetic field of a current loop. At distances much greater than the
size of the current loop, the field approaches dipole behavior and
falls as the inverse cube of the radius. The exact solutions at any
distance are elliptic integrals, which, although they are available in
MATLAB, add little to the intuition for the problem which is to be
built up. Because of that, the solution is achieved numerically.

The script to display the magnetic fields far from the loop is con-
tained in “Current Loop”. The printout from that exercise is shown
in Figure 3.5. The field is expected at large values of r/a, where a is
the loop radius, to go as:

Br → cos θ/r3

Bθ → sin θ/r3 (3.2)

Figure 3.5: Printout for the current loop demonstration which defines the coor-
dinates of the demonstration.

The field has both radial and angular components. That reflects
the fact that there are no magnetic “charges” so that the field must
always close on itself.
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The produced field, plotted as a function of coordinates scaled
to the loop radius, is plotted for the radial component in Figure 3.6.
At large r/a, the enhancement of the radial field in the z direction,
expected from the behavior shown in Equation (3.2), is evident. The
polar angle magnetic field is also calculated and displayed for the
user to inspect.

Figure 3.6: Radial magnetic field for a current loop in the approximation that
r � a. The contours display the rapid falloff of the field with r and the dipole
enhancement at larger z/a values.

The complete solution is most easily approached using the Biot-
Savert law which relates the differential source current to the differ-
ential field increment:

d �B ∼ (d�x x d�r)/r3 (3.3)

The current element is located at �x, while �r is the vector from
the location of the current to the point where the field is evaluated.
Integrating over all source points of the field in the case of the current
loop, the z field is shown in Figure 3.7. Far from the current loop the
field approaches a dipole pattern. The integral can be done explicitly
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Figure 3.7: Contour of the z field as a function of x and z. The loop has
radius= 1. The evolution to a dipole field at large z values is evident.

and the exact solution appears in the script. It is cumbersome and
will not be given in this text.

3.4. Helmholtz Coil

Having solved the problem of a current loop at z equal to zero, it is
fairly simple to extend the solution to locations at non-zero values of
z. The result is the analogue of superimposing electric point charge
solutions. The simplest case is that of two current loops with current
flow such as to reinforce the field between the loops. The script is
“Helmholtz Coil”.

The user chooses the distance between the loops, where the radius
is taken to be equal to one. The field contours are returned for that
choice. Compare the contours of two loops to one loop. The coils are
used to provide a reasonably constant field between the loops over
a reasonably large field volume. The contour plot for Bz appears in
Figure 3.8, while the surface plot is shown in Figure 3.9.



November 13, 2013 14:26 9in x 6in One Hundred Physics Visualizations Using MATLAB b1610-ch03

70 One Hundred Physics Visualizations Using MATLAB

Figure 3.8: Contour plot for Bz due to two current loops separated by a distance
equal to their radius.

Figure 3.9: Surface mesh plot for the field contours shown in Figure 3.8. Note
that a region of roughly constant field between the current loops has been estab-
lished.
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3.5. Magnetic Shielding

It is well known that shielding from electric fields is possible in the
static case for an interior volume, by using grounded and closed con-
ductors (Section 3.1). For high frequencies, the skin depth in good
conductors is quite small so that time varying electric fields can also
be effectively shielded against, as a glance at your microwave window
confirms with its mesh of thin metallic shielding.

What about magnetic fields? It is important to shield objects like
compasses from stray fields. Consider a prototype shield consisting
of a thin shell of high magnetic permeability metal of inner radius a
and outer radius b immersed in a magnetic field, Bo, directed along
the z axis.

This problem can be solved by using standard methods in mag-
netostatics by expanding in powers of the Legendre polynomials. In
fact, only the first power of the cosine of the polar angle is needed,
and radial factors going linearly with r and as the inverse square of
r are the only ones needed. The magnetic potentials, Φ are:

Φout = −Bor cos θ + (α/r2) cos θ

Φin = δr cos θ

Φµ = βr cos θ + (γ/r2) cos θ (3.4)

where “out” refers to r > b, “in” refers to r < a, and µ refers to the
permeability value of the metal shield existing for a < r < b. The
analytic results for the parameters are somewhat tedious and appear
in the script “Magnetic Shield”, which serves as a reference for the
interested user.

The user menu asks for the value of the permeability and the
geometry, b/a. For the values 10 and 1.2, respectively, the potential is
shown in Figure 3.10. Far from the sphere the uniform field is visible.
Inside the sphere, the magnetic field is much reduced, and magnetic
shielding is achieved. This problem is of great practical interest, and
the user is encouraged to explore different choices of the shielding
parameters. For thick shields, the ratio of exterior to interior fields
is approximately 9/2(µ). The boundaries of the spherical shell are
shown as red and green (inner and outer) circles in the figures.
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Figure 3.10: Potential for a metallic sphere immersed in a uniform magnetic
field oriented along the z axis for b/a = 1.2 and µ = 10.

To derive the fields, the MATLAB function “gradient” is used
again but, in addition, the MATLAB display tool “quiver” lets the
user observe the magnitude and direction of the field as indicated by
arrows having both length and orientation. The fields are displayed
in Figure 3.11. Thicker shielding or shielding materials with larger
permeability reduces the fields. This effect is shown in Figure 3.12
for the same geometry, b/a = 1.2, but with a permeability of 100 in
this case. The field is reduced approximately ten fold, as expected.

3.6. Potentials and Complex Variables

Two-dimensional potential problems can also be solved using com-
plex variable techniques. In two dimensions, any analytic function of
the complex variable, z, will satisfy the Laplace equation for both the
real and the imaginary parts of the function. Therefore, knowing the
result in a simple case and finding the appropriate transformation,
one can find the solution in the more complex geometric situation
specified by the transformation.
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Figure 3.11: Magnetic fields for the potential shown in Figure 3.10 is reduced.
The interior field is much attenuated.

Figure 3.12: Potential for the geometry of Figure 3.10 but with a permeability
ten times larger. The shell boundaries are shown in red and green.
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Several examples are provided by the script “Laplace z”. The
user has five different transformations to choose from. In each case,
the potential contours, the x and y fields, found using the “gradi-
ent” tool, and the “quiver” plot of the fields in two dimensions are
supplied. The dialogue is shown for all five choices in Figure 3.13.

Figure 3.13: Printout of “Laplace z” for a user making all five choices sequen-
tially.

A plot of the fields for a charge at x = 0 and y = −0.5, with a
grounded conductor at y = 0 is displayed in Figure 3.14. The upper
half plane has no field, and the field is perpendicular to the grounded
plane at y = 0. The fields in the case of conductors at r = 1, where
the voltage is V for y > 0 on the circle and −V for y < 0 are shown
in Figure 3.15. Only the internal fields are plotted. The fields are
clearly strongest at the y = 0 boundary where the voltage gradient
is largest. As a last example, the equipotentials in the upper half
plane for the case of line charges on the x axis with V = 0 for x < 0
and y = 0 and V = 1/2 for x > 0 and y = 0 are given in Figure 3.16.
The field peaks at x = 0 where the voltage gradient is largest.

3.7. Numerical Solution — Laplace Equation

More complex topologies than those given in the last section can
be solved numerically. A Cartesian version of the solution in two
dimensions is supplied by “EM Laplace Test2”. MATLAB has tools
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Figure 3.14: Equipotentials in the case of a charge in the lower half plane at (0,
−0.5) and a grounded conductor at y = 0.

Figure 3.15: Interior fields for the case of a half circle at potential V for y > 0
and −V for y < 0.
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Figure 3.16: Equipotentials in the case where V = 0 at y = 0 and x < 0 and
V = 1/2 for y = 0 and x > 0.

to solve one-dimensional, partial differential equations, but higher
dimensionality problems with specified boundary conditions are not
yet available. The script which is available uses the Gauss-Seidel
method, given explicitly in the printout, to solve a two dimensional
problem on a grid of points. The expression given in the printout is
simply the finite difference expression for the vanishing of the second
partial derivative in x and y on a Cartesian grid.

The user dialogue asks for the grid size and then the voltages on
the four boundary surfaces of the square. The boundary values may
be constants or functions of x or y, depending on the boundary.

An example shown here is for a 25 × 25 grid with voltages on
the left, right, top and bottom as defined in the printout given in
Figure 3.17. The basic finite difference grid computation of the solu-
tion also appears in the printout. The whole grid is iterated ten times
using the Gauss-Seidel method. The script returns the potential, the
x and y fields, using the “gradient” tool, and the “quiver” plot of the
combined vector electric field. The potential for the example above
appears in Figure 3.18, the fields in Figure 3.19.
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Figure 3.17: Printout of the dialogue and input for “EM Laplace Test”.

Figure 3.18: The interior solution for the potential defined by the boundary
values input in the example above, Figure 3.17.

3.8. Numerical Solution — Poisson Equation

The Laplace equation treated in the last section holds in the absence
of sources of the field. The Poisson equation, Equation (3.5), applies
in the case where the solution is defined by actual sources, rather than
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Figure 3.19: x and y electric fields for the potential shown in Figure 3.18.

fixed boundary conditions enclosing a space without any sources. The
solution for the potential Φ is, rather, defined by the location and
strength of the sources as defined by the charge density ρ which exists
in the interior space.

∇2Φ = ρ (3.5)

The numerical solution in two Cartesian dimensions is encap-
sulated in “EM Poisson Test” which wraps the MATLAB tools for
fast Fourier transforms, “FFT”, “fft2” and “ifft2”. The Gauss-Seidel
method could be used with a simple extension, but the method
adopted here uses fast Fourier transforms, because script for them is
available in MATLAB. These tools allow the potential to be solved
for, Equation (3.6), in the transformed space where the charge den-
sity is transformed using “fft2”. The Fourier transform of the poten-
tial is then inverted back to the original space at the fixed grid
points using “ifft2”. The grid spacing is δ and the number of grid
points, assuming a square grid, is N2. Note that here the boundary
conditions on the space require the potential to vanish, so that the
boundaries should be far enough away from the interior sources so



November 13, 2013 14:26 9in x 6in One Hundred Physics Visualizations Using MATLAB b1610-ch03

3. Electromagnetism 79

as not to unduly influence the potential near them.

ΦFT
i,j = ρFT

i,j δ
2/[2(cos xi + cos yj − 2)]

xi = 2πi/N, yi = 2πj/N (3.6)

The dialogue with the user in the example of a model of a capac-
itor is shown in Figure 3.20.

Figure 3.20: Dialogue for an example of the use of “EM Poisson Test” for the
capacitor model.

The resulting plots are the potential, the x and y electric fields
and the “quiver” display of the vector electric field. The voltage
potential appears in Figure 3.21. The rapid gradient between the
plates of the capacitor is clearly evident as are the non-zero values
of the fields outside the regions between the plates.

The electric vector field derived from the solution shown in
Figure 3.21 appears in Figure 3.22. The strong field between the
capacitor plates is a major feature as are the fringe fields at the ends
of the plates and the rapid falloff at large distances from the center
of the object.

3.9. Light Pressure and Solar Sailing

Light exerts pressure as the photons collide and transfer momentum
to the struck object. Understanding these phenomena, science fiction
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Figure 3.21: Voltage distribution for the capacitor example using the numerical
Poisson equation solver. The plate locations are indicated by red squares.

Figure 3.22: Electric field for the capacitor example. The field is strong between
the plates, as expected. The plates are constructed using red grid sized pixels.
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writers have created the idea of solar sailing within the solar system
and for exploration to nearby stars. Solar sails have actually been
deployed in space by U.S. funding agencies. Here is an idea whose
time has come. The pressure, p, for perfect reflection due to a point
source at distance r with luminosity L is:

p = (2L/c)/4πr2 (3.7)

The basic equation of motion follows from the expression for light
pressure and the competing attraction of the sun. If a small payload
is ignored, the acceleration depends on the luminosity of the sun, Lo,
the distance, r, from the sun, the density, ρ, and thickness, d, of the
solar sail. With a finite payload, the expression is modified by the
replacement, ρd → ρd + mp/As where mp is the payload mass and
As is the sail area.

d2r/d2t = [2Lo/(4πcρd) −GM ]/r2 (3.8)

The acceleration needed for a stellar voyage must overcome the
pull of gravity from the sun, with a mass, M , and propel a “sail”. The
acceleration does not depend on the size of the “sail”, but payload
considerations argue for a large construction of light material, such
as very thin Mylar. Perfect reflection is assumed. The acceleration
does not depend on the area of the sail, only density and thickness,
and varies inversely with the square of the distance from the Sun.

The script is “Solar Sail2” and the printout of a user dialogue is
shown in Figure 3.23. The specific sail is sufficiently light and thin to
overcome the acceleration of the sun. If it is not, the sail will fall into
the sun and the “ode45” code will generate errors. The equation is
not solvable explicitly, so “ode45” is used in the script to provide a
numerical result. The acceleration falls off rapidly with radius, which
means the velocity builds up quickly. The approximate time to go five
light years is 52,900 years with a small payload of 314 kg. Note that
a launch closer to the sun is better. At a starting radius of 0.01 AU,
the same trip takes only 5244 years, a gain of a factor of ten. The user
is encouraged to try different launch positions, sail areas, thicknesses
of Mylar sail, and payloads. The velocity builds up quickly over the
first year in this example as seen in Figure 3.24. After ten years,
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Figure 3.23: Dialogue for a particular sail and launch position.

Figure 3.24: Velocity as a function of time for the first year after the launch of
a solar sail from an initial position at 1.0 AU as defined in Figure 3.23.
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the ship is at 58 AU and going 28 km/sec. The ship has attained
escape velocity less than one year after the launch. This behavior is
different from that of a rocket which quickly attains its final velocity,
as discussed previously.

3.10. Motion in Electric and Magnetic Fields

To continue with the dynamics, motion in combined magnetic and
electric fields by charged particles is explored. The script which
is used is “ExB ODE NR”. The motion is assumed to be non-
relativistic and the Lorentz force equation is integrated numerically
using the MATLAB “ode45” tool. Units with charge, q, and mass,
m, equal to one are used. The initial position is at x = y = z = 0.
The initial velocity is input by the user as is the magnetic field mag-
nitude, assumed to be oriented along the z axis and the x, y, and z

components of the electric field. The Lorentz force equations are:

d2�x/d2t = q/m[ �E + (d�x/dt)x �B] (3.9)

The trajectory in three dimensions is provided by the script.
There are four plots which are produced. The first is the x, y, and z
velocity as a function of time, the second is the x vs y velocity and
the third is the x, y and z position as a function of time. Finally,
the fourth is a plot of the (x, y) position, where a movie of the time
development of (x, y) is also shown in order to get a feeling about
the velocities in the x and y directions for the specified setup of fields
and initial velocities.

The results for an example with E = [1 0 0], B = 1 and
v = [1 1 1] are shown in Figures 3.25, 3.26 and 3.27. The electric
field here is only along x, so that the velocity along z (the magnetic
field direction) is constant. The velocities in the (x, y) plane rotate
due to the magnetic field, with an increasing velocity along the x
direction due to the electric field, as observed in Figure 3.25. The
user can also look at the special cases where there is only an electric
field or a magnetic field. Another possibility is to vary the initial
velocity conditions.
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Figure 3.25: The three velocity components as a function of time. The z compo-
nent of velocity is constant because the magnetic force is absent in this direction
and there is no electric field along z in this example.

Figure 3.26: The three position components as a function of time. The basic
circular motion of the x and y positions is evident.
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Figure 3.27: Movie frames of the trajectory of (x, y) as it evolves in time.

Because of the magnetic field, the particle tends to have a circular
(x, y) trajectory with a constant radius in this non-relativistic case.
The completely relativistic case will be treated in a distinct script
to be explored later in the text. In the present case, the Larmor
frequency for circular motion does not depend on the momentum,
and is ω = qB/m.

3.11. The Cyclotron

The cyclotron is a device to accelerate charged particles in electric
and magnetic fields. The magnetic field causes the particle to rotate
in a circular orbit with an angular frequency, ω, and radius, r. For
non-relativistic particles, the frequency depends only on the mag-
netic field, the charge and the mass of the particle. For protons, it
is 95.5 MHz for a field of 1 T or 10 kG. As the energy increases, the
radius increases proportional to the velocity perpendicular to the
magnetic field, vT .

ω = qB/m

r = vT /ω (3.10)
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A schematic of a cyclotron appears in Figure 3.28. The magnetic
field is supplied by Helmholtz coils which are not shown but which
make a field perpendicular to the plane of the figure. The two half
circles, called “dees,” are charged + and − so as to accelerate the
protons. However, it is clear they need to be reversed in polarity for
each half revolution, at the frequency quoted above.

Figure 3.28: End of the movie for a charged particle in a cyclotron with 10 half
revolutions and with an energy kick of 0.3 at each crossing of the “dees”.

A movie is provided by the script “Cyclotron” of the proton
path after the user chooses the number of half revolutions and the
energy kick supplied by the electric field. The last frame of the movie
for a specific choice, 10 half circles and a kick of 0.3 is given in
Figure 3.28. The increasing radius and velocity with time are very
clear. Obviously, higher energy particles require larger and more
expensive devices. Indeed that fact historically limited the energies
of beams accelerated by cyclotrons.

A few numbers are instructive. To achieve a velocity of 0.1 that
of light for a proton, or a proton kinetic energy of 4.7 MeV requires
the radius of the cyclotron to be 0.31 m. In general, the radius needed
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is r = 10.4 × 10−9(vT /B) where r is in m, transverse velocity is in
m/sec and B is in Tesla.

3.12. Dipole Radiation

The static dipole electric field has already appeared in Equa-
tion (3.2). In the dynamic case, accelerated charges create electric
and magnetic fields that fall as the inverse of the radius rather than
the inverse cube of the radius. Since the flux of energy through a
surface then goes as the square of the radius, radiative solutions
carrying constant flux over a surface of arbitrary size are possible.
That realization was the great discovery of Maxwell, along with many
other major contributions to many areas of physics.

The lowest order multipole is the dipole, called d here. This order
is possible because electromagnetism has both positive and negative
charges. By contrast gravity has a quadrupole moment as the low-
est multipole because gravity is always attractive. The fields can be
expanded in terms of the wave number, k, and the radius as shown
in Equation (3.11).

Err
3 = d(2z/r)(1 − ikr)eikr

Eθr
3 = d(x/r)[1 − ikr − (kr)2]eikr (3.11)

At small values of kr the solutions for the electric fields approach
the static dipole case, where d is the dipole moment of the charge
distribution which is here oriented along the z axis. However, at large
values of kr, the static terms have fallen rapidly with r and the only
remaining term has a transverse quality. The radial field has a near
zone static piece and a piece that falls as the square of the radius.
The transverse filed has a static piece going as the inverse cube of
the radius, an intermediate piece and a radiative piece that falls only
as the inverse of the radius,.

The fields, given in Equation (3.11) are evaluated in the script
“EM Dipole Rad”. They are plotted as surfaces as a function of kx
and kz so that the static near zone, kr � 1 and the radiative far
zone, kr � 1 can both be observed. The surface for the transverse
radiative field is shown in Figure 3.29. The small kx and kz regions
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Figure 3.29: Contours for the transverse theta field, Eθ, as a function of kx and
kz. The static region is at small kr, while the radiative behavior dominates at
large kr.

should be compared to the static contours displayed in Figure 3.6.
The surface for the radial field is shown in Figure 3.30. In this figure
the region r < 1 is set to zero field for the purposes of a better
display of the large r regions. The radial field falls off rapidly and is
essentially the static field. Both fields are multiplied by r so that in
the region of large r the radial field falls as 1/r while the transverse
field approaches a constant in r.

In Figure 3.29 it is evident that the radiative behavior becomes
strong when kr > 1 and that the radiative part of the wave is trans-
verse to the wave vector k. The field approaches Eθ → d sin θ(k2/r).
The magnitude of the field is proportional to the acceleration of the
charge distribution, a, where a ∼ ω2, so that the radiated power
goes as the fourth power of the oscillation frequency. The energy flux
through a sphere surrounding the source is independent of radius
which indicates a radiative solution, 4πr2E2

θ ∼ 4π(d sin θk2)2.
These considerations can be applied to the situation where low

energy photons are scattered by electrons in materials. The incident



November 13, 2013 14:26 9in x 6in One Hundred Physics Visualizations Using MATLAB b1610-ch03

3. Electromagnetism 89

Figure 3.30: Radial electric field of an oscillating dipole. The region r < 1 has
been set to zero.

light has a transverse electric field which accelerates the electrons
and drives their motion with the frequency of the incoming light. The
electrons radiate photons with the same frequency and these photons
are, in turn, transverse to the acceleration. Therefore, the radiation
is preferentially emitted in the direction of the incident light, both
forward and backward. Indeed, the angular distribution, shown in
Equation (3.12) is enhanced in the direction of the incident light
which is here taken to be the z axis. The process is called Thompson
scattering.

dσ/dΩ ∼ (1 + cos2 θ) (3.12)

This behavior has important practical implications, since when
radio waves bounce off obstacles, if they changed frequency, tuning
by locking to a specific frequency would be impossible.
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Chapter 4

Waves and Optics

“Classifications like ‘optics’ or ‘thermodynamics’ are just straitjackets,
preventing physicists from seeing countless intersections.”

— Ted Chiang

“Of Newton with his prism . . . a mind forever voyaging through strange
seas of thought, alone.”

— William Wordsworth

The electromagnetic fields have wave solutions as indicated at the
end of the last section. However, there are many other cases of wave
phenomena, so that a separate section is now devoted to general wave
behavior. There are two basic regimes; one is that of geometric optics
which obtains when the diffraction of light rays is small. That regime
exists when the size of the objects being illuminated is much larger
than the wavelength of the wave that scatters off the object. We daily
operate in such a regime because visible light contains wavelengths of
a few thousand angstroms which is much smaller than macroscopic,
everyday objects. The other regime is that of wave optics where,
for example, diffraction is important. This section starts with wave
optics and then looks at a few examples from geometric optics where
light is assumed to move in a straight line and diffraction can be
neglected.

4.1. Adding Waves

A monochromatic wave is characterized by an amplitude, a frequency
and a phase. Two waves can exhibit interference when combined.
A script called “Osc Add Waves” looks at adding two waves. The
initial printout defines the parameters of the waves in question, as
seen in Figure 4.1. Since k is here used for wave number, it no longer
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Figure 4.1: Initial printout for the case of adding two plane waves.

represents the spring constant, also called k. The circular frequency
of the wave is ωo.

A specific user defined input is shown in Figure 4.1. First, the
intensity of the sum of the amplitudes for a specific amplitude ratio
is shown as a function of the phase between the amplitudes, which
illustrates constructive and destructive interference. The second part
of the script shows the result of adding waves with the same ampli-
tude but with different frequencies. There are 20 examples shown as
a movie sequence and the “beat” frequencies build up as the differ-
ence in frequencies increases. The last plot, with a frequency ratio of
twenty, is shown in Figure 4.2. The beat frequency gives the overall
modulating behavior to the rapid oscillations with the sum of the fre-
quencies. It is instructive for the user to see the way the beats build
up with frequency difference. The phenomena of beat frequencies is
familiar in music, for example.

4.2. Damped and Driven Oscillations

A first look was taken at damped and driven oscillation in the pre-
vious section on classical mechanics. The script “Osc Damped” goes
a bit deeper, partly because the phenomena occurs in many areas
of physics and engineering. There are two series of plots which are
each shown as a function of time in movie frames. In the first, the
dialogue is shown in Figure 4.3, where the differential equation is
shown and the solution in the under damped and over damped cases
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Figure 4.2: Adding two waves with a large difference in their frequencies. There
are rapid variations at high frequencies and an envelope of slower modulations of
the sum of the waves.

Figure 4.3: Printout from the “Osc Damped” script which shows the differential
equation and the two possible solutions.

is defined. The MATLAB script “dsolve” is used to solve the problem
symbolically.

The waveform for the lightly damped case of D = 0.12 is
shown in Figure 4.4. The damping parameters D and d are defined
in Figure 4.3. The wave goes through several oscillations without



November 13, 2013 14:26 9in x 6in One Hundred Physics Visualizations Using MATLAB b1610-ch04

4. Waves and Optics 93

Figure 4.4: Waveform for the damped oscillation case of D = 0.12.

losing a significant fraction of its amplitude. For heavier damping
the oscillation is washed out.

For a driven and damped oscillator, the exact solution was shown
previously in Section 2. In the present case, only the resonant Breit-
Wigner shape is plotted. It is the steady state solution after all the
transients have died off. In general, for a system with a natural, un-
damped frequency of ωo and a damping factor d, the full width of
the resonant response at half maximum (FWHM) is approximately
2d. The amplitude is shown for the steady state solution in Equa-
tion (4.1). The FWHM of the intensity I is 2d. The wave amplitude
is A, with I = |A|2.

The resonant shape which obtains at long times is displayed in
20 plots where the response as a function of the external, driving
frequency is shown for 20 different damping factors. The specific
case of D = 0.01 is shown in Figure 4.5. In general, as the damping
increases, the amplitude of the driven response drops and the width of
the frequency response near the natural frequency increases. The user
should find the variations in the response of the damped oscillator
amusing. It can be imagined that a poorly damped system might
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Figure 4.5: Resonant response of a driven oscillator in the damping case D =
0.01 as a function of the external driving frequency.

be heavily damaged by a driving force with a frequency near that
of the natural frequency of the object. Indeed, the Verrazano bridge
collapse is a classical example.

A = 1/
√

(ω2
e − ω2

o) + (2dωe)2

A ∼ 1/
√

(ωo − ωe)2 + d2

I = |A|2, FWHM ∼ 2d (4.1)

4.3. A Plucked String

A wave equation for a string with boundary conditions that it is
held at two ends leads to the existence of only discrete frequencies
which are allowed for the string motion. Thus, the problem can be
easily treated by using the Fourier series. In fact, the square wave
and triangular wave Fourier series solutions were already used in the
section on symbolic math. In the script, “String Pluck”, the case of
a string, initially triangular in shape, is displayed as a movie, where
a Fourier series with forty terms is used to display the subsequent
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motion of the string. The Fourier expansion is:

y =
∑

i

bi sin(ωit) sin(iπx/L)

ωi = ivπ/L, v =
√
T/ρ (4.2)

The string length is, L, and the wave velocity, v, is determined by
the string tension, T , and string density, ρ. The discrete frequencies
are labeled by the integer, i.

One of the string “snapshots” is shown in Figure 4.6. The bound-
ary conditions are imposed by the choice of discrete frequencies.
Many frequency components contribute to the motion and the wave
begins to propagate to the fixed boundaries where the wave reflects
off the end points.

Figure 4.6: A snapshot of the evolution of the plucked string when the string
is assumed to be initially triangular. In this case, the string moves both left and
right, the waveform widens and the ends of the string are fixed.

The user is then asked to provide the width of a square wave
and a movie of the subsequent motion is provided. If a velocity of
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the string of one is chosen with a half width of the square wave
of 0.2, a snapshot of the subsequent motion appears as an example
in Figure 4.7. The initial shape propagates without dissipation (by
assumption), is reflected off the fixed end points and evolves as shown
in the “movie” which is provided. Clearly, this problem could be
extended to two dimensions in Cartesian coordinates. The reader is
encouraged to try that.

Figure 4.7: Square wave string amplitude evolution at a time “snapshot” prior
to reflection off the fixed end points of the string. A full width of 0.2 was chosen
initially.

4.4. A Circular Drum

The string in one dimension had solutions which were simple sin
functions with wave lengths which were a discrete set because of the
boundary conditions. This idea can be extended to solving the wave
equation in two dimensions. To make it simple, cylindrical coordi-
nates are employed. The solutions are Bessel functions in radius, sin
and cos functions in azimuth and sin and cos functions in time. The
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wave velocity is v.

∂2u/∂2t = v2(∂2u/∂2x+ ∂2u/∂2y)

um,n(r, φ, t) = cos(vλm,nt)Jm(λm,nr) cos(mφ)

Jm(λm,na) = 0 (4.3)

For simplicity the t and azimuthal functions are specialized to cos
and the radius is scaled to a equal to one as is the wave velocity v. The
boundary conditions are radial, where the Bessel functions vanish
at r = a. The MATLAB script, “besselj”, is used to evaluate the
solutions. Any motion of the drum can be expanded in terms of these
solutions, as was the case in one dimension with the plucked string
as an example. In this case, the solutions given in Equation (4.3) for
m = 0, 1, 2 and n = 1, 2, 3 are available and a movie of the drum
head motion is provided to the user, who picks an m and n value.
The user dialogue is shown in Figure 4.8.

Figure 4.8: Dialogue for the script “Drum Modes” with a scpecific choice of
Bessel function order and root index.

A frame of the movie for the case m = 1 and n = 2 is shown in
Figure 4.9. This solution is not uniform in azimuth and shows that
the choice of this radial Bessel function is one with a zero at r = 0.
The Bessel function of order zero is non-zero at the origin.

4.5. Diffraction by Slits and Apertures

Diffraction limits the ability to distinguish objects using a wave
with a wavelength comparable to the size of that object. This is
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Figure 4.9: Surface of a drum head at one frame of a movie for the mode defined
by the dialogue of Figure 4.8.

a fundamental limit, called the diffraction limit. It is the reason why
optical microscopes evolved into electron microscopes. It is also the
fundamental reason why the energy of particle accelerators continues
to increase. In order to observe smaller objects, the wavelength of the
“light” used must decrease which means the energy or frequency must
increase.

The simplest problem is the single one-dimensional slit. That
problem is illustrated in the script “Diffract” which looks at a one-
dimensional slit, a circular aperture in two dimensions and a double
slit. The intensity of the light as a function of angle after striking a
slit in one dimension with light with a wavelength twice the size of
the slit width, d, is shown in Figure 4.10. Also shown is the resulting
intensity for a circular aperture with a wavelength equal to twice the
diameter of the aperture. Note that the MATLAB function “besselj”
is used to evaluate the case of the circular aperture. The character-
istic diffraction pattern is clear. It is contained in an envelope whose
width in angle decreases as the inverse wavelength, or wave number,
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Figure 4.10: Diffraction pattern from a single slit and from a circular aper-
ture for light with wavelength twice the slit width or twice the diameter of the
aperture.

k = 2π/λ, increases. In order to have a fixed value of the intensity
as the wave number increases, the wavelength decreases, and the slit
size d must decrease to keep the intensity I constant.

α = π sin θd/λ = kd sin θ/2

I = (sinα/α)2 (4.4)

For the case of two slits, there are interference effects between the
waves emitted by the two slits. For the case where the single slit is
as defined for Figure 4.10, but with the two slits separated by twenty
times the wavelength, the resulting pattern is given in Figure 4.11.
The single slit diffraction pattern is modulated by the interference
from the second slit, which happens on an angular scale about twenty
times smaller than that of the single slit. Finally, the script shows a
slide show for a single circular aperture diffraction pattern for a wide
span of wavelengths showing how the pattern shrinks in angle as the
wave number k increases, or the wavelength decreases.
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Figure 4.11: Diffraction pattern from two slits for light with a wavelength twice
the slit width and twenty times the separation of the two slits. Compared to a
single slit, Figure 4.10, there is a rapid angular modulation in the two slit case.

4.6. Edge Diffraction

The previous examples of diffraction were given in the regime
where the observation point is far from the diffracting system in
terms of the characteristic size of the system. That is the regime of
Fraunhofer diffraction. There is another regime where the observation
point is at a location with dimensions comparable to the diffract-
ing system and the wavelength. That is called the regime of Fresnel
diffraction.

The problem of Fresnel diffraction for an edge barrier or a one
dimensional slit or a two dimensional square aperture is covered in
the script “Edge diffract”. In order to find the relevant Fresnel inte-
grals, the MATLAB tool “mfun” is used to access the Fresnel “C”
and “S” functions. This tool was previously mentioned in the section
on symbolic mathematics. These functions depend on the variable:

ω = y
√

2/λz (4.5)
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The result for a user menu choice of an observation point, z,
behind a barrier, y < 0, of 5 times the wavelength, λ is shown in
Figure 4.12. The edge diffracts the wave over a region of several
wavelengths, making the shadow of the barrier, y < 0, not a simple
step function.

Figure 4.12: Diffraction pattern for a screen in the lower half plane y < 0 with
the light observed at a z location behind the screen with z equal to five times the
wavelength of the light.

The user can choose the observation point and whether to look at
a simple edge screen or a slit of width h centered at y = 0 or a square
aperture centered at x = y = 0. The result for a slit of width 10 and
an observation point z = 5, both in wavelength units is shown in Fig-
ure 4.13. The diffraction near the slit boundaries y = +5 and y = −5
is quite evident. There are also maxima in the pattern at locations
with |y| less than 5. A diffraction pattern for a square aperture is
shown in Figure 4.14. Diffraction is strong near the aperture edges.
The user, after having finished his/her choices, is shown a slide show
where the width of the slit is varied from 1 to 20 in wavelength units,
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Figure 4.13: Diffraction pattern for light incident on a slit of full width 10
observed at a distance z = 5 behind the slit where the width and location are
given in wavelength units.

Figure 4.14: Diffraction by a square aperture of full width 10 observed at a
distance z = 5 behind the aperture with width and location in wavelength units.
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showing how the pattern begins with a single maximum at small slit
widths, and evolves to a pattern with many local maxima.

4.7. Doppler Shift and Cerenkov Radiation

The phenomena of a Doppler shift of the frequency of a wave
depending on the motion of the wave source relative to the observer
and the closely related Cerenkov effect is illustrated in the script
“Doppler Cerenkov”. There are six discrete emission times, with the
emission location depending on the source velocity, which is chosen
by the user. The observer is assumed to be at rest. There is a slide
show, where the resulting outgoing circular waveforms are sampled
and displayed. At the last plot the developing waveform is becoming
clear.

The waveforms for a velocity, v, of one half with respect to the
wave propagation velocity, vs , are shown in Figure 4.15. The angle is
that of the observer with respect to the z axis which is the direction
of uniform motion of the source.

ω/ωo = 1 − v cos θ/vs (4.6)

In the forward region the wave is blue shifted, while in the back-
ward region, the source is receding and the wave is red shifted. There
are many applications of the Doppler effect, such as Doppler radar
for traffic control and for weather mapping. The Hubble red shift is
due to the recession velocity of galaxies with respect to our own. The
red shifted and blue shifted regions are indicated by color.

The case of v/vs = 1.5 is shown in Figure 4.16. In this case,
the source outruns the wave and a coherent cone of outgoing waves
builds up, called a Mach cone. This is the shock wave that makes
a sonic boom when a jet plane exceeds the speed of sound in air.
Parenthetically, that speed is the square root of the pressure, divided
by the density and is about 0.35 km/sec at STP. It is also a tool
in high energy physics where if light is emitted by a particle, the
Cerenkov effect, in a medium then it is known that the velocity of
that particle is greater than that of light in the medium which has
an index of refraction of n, or c/n.
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Figure 4.15: Outgoing waves in the case where v/vs = 0.5. The regions of wave-
length compression and expansion are seen in the forward and backward positions.
The emission points are green ∗.

Figure 4.16: Outgoing waves in the case where v/vs = 1.5. The regions of wave-
length compression and expansion are seen in the forward and backward positions.
The emission points are green ∗.
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4.8. Reflection and Transmission at an Interface

There are, in general, both transmitted and reflected waves when
a wave strikes an interface between media with different indices of
refraction. It is now assumed that light goes in straight lines and is
not diffracted, which is the regime of geometrical optics. This is rea-
sonable since for visible light an object of size 1 cm has a wavelength
to size ratio of approximately 0.0001.

The basic relationship between the transmitted, θt and incident,
θi angles of waves with respect to the normal to the surface is called
Snell’s law.

sin θi/ sin θt = nt/ni (4.7)

There are two polarization states of the light which respond
slightly differently; polarization transverse to the plane of inci-
dence and normal to it. This problem is covered in the script
“Reflect Transmit”. The printout from a session where the user has
chosen an index ratio of 1.5 and 0.5 is shown in Figures 4.17 and 4.18.
In the first case, there is a large angle with no reflection with parallel
polarization. Indeed, that is why anti-glare sunglasses are polarized
and how the polarization blocking is oriented. There is also a phase
change upon reflection, which means a thin coating can cancel out
a reflected wave at a given wavelength. That is the principle behind

Figure 4.17: Printout for the “Reflect Transmit” script for 2 choices of index
ratio, 1.5 and 0.5.
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anti-reflection coatings on lenses. For a wave incident from n = 1 on
a thin film of thickness, t, preceding a medium of index, n, there is
no reflection at a given incident wavelength, if the thickness is chosen
to be t = λ/4

√
n. This topic will be developed later in the quantum

mechanical context.
In the user dialogue, the index ratio is chosen. Then a plot of

the transmitted angle as a function of incident angle is supplied,
along with the transmission and reflection coefficients as a function
of incident angle for both transverse and parallel polarization states.
An example appears in Figure 4.18.

Figure 4.18: Transmission and reflection coefficients as a function of incident
angle in the case where the ratio of reflected to incident index of refraction is 1.5.

In case the index ratio is less than one, there will be total internal
reflection, as displayed in Figure 4.19 in the case of parallel polariza-
tion. In that specific case, the angle at which total internal reflection
occurs is thirty degrees. It is this principle which is the basis for
transmitting data over fiber optic cables, those cables which are now
ubiquitous in technical fields.
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Figure 4.19: Transmission and reflection coefficients as a function of the incident
angle in the case where the ratio of reflected to incident index of refraction is
0.5. There is also an angle without reflection at an angle less than the internal
reflection angle.

As an aid to memory, a movie is made where five rays are incident
from outside and five from inside. The resulting last frame appears
for n = 1.5 in Figure 4.20.

4.9. A Spherical Mirror

In geometric optics, light goes in straight lines. In fact, ray tracing
is a tool used to follow the behavior of a beam of light. An example
is shown in the script “Spherical Mirror”. The ray tracing is simple;
the incident angle is equal to the reflected angle. The question is how
good a focal point exists in the case of the mirror.

The user menu allows for a choice of what fraction of the mirror
is filled with incident light. Ray traces in two cases are examined in
this example. First rays using the full aperture of a spherical mirror
are shown in Figure 4.21. It is clear that the rays’ incident at large
distances off the axis of the mirror suffer from severe aberration.
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Figure 4.20: Light rays incident from top onto n = 1.5 (blue) and incident from
the bottom (red). Since n > 1, the blue rays are bent toward the normal, the red
away, and total internal reflection occurs.

Figure 4.21: Ray tracing for a spherical mirror where the rays are incident on a
mirror of radius of curvature one out to off axis rays at 90% of the radius.
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Figure 4.22: Ray tracing for a spherical mirror where the rays are incident on a
mirror of radius of curvature one out to off axis rays at 20% of the radius. The
focal point is much better defined in this case.

In Figure 4.22, the incident parallel beam only has rays up to 20% of
the mirror radius off the mirror axis. Clearly, the off axis rays must
be limited if good focal properties are to be maintained. The user
can choose the limitation on the incident beam. The focal distance
is one half the radius of curvature of the mirror, f = R/2.

4.10. A Spherical Lens

A related problem is the focal properties of a spherical lens. The
problem is treated in the script, “Spherical Lens2”. The index of
refraction of the lens is fixed at n = 1.5. The radius of the lens is
R = 10. Ray tracing is accomplished by the use of Snell’s law. The
user chooses the angular size of the lens, limited to be less than about
60 degrees. A first example is seen in Figure 4.23, where the chosen
angle was 50 degrees. Obviously, this choice has a focal point which
is not very well localized. Larger impact rays have a reduced focal
length. The user can easily restrict the region of incident rays to see
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Figure 4.23: Ray tracing for a spherical lens with index of refraction =1.5, where
the incident beam fills the lens up to 50 degrees with respect to the lens axis.

how the focal length is better defined as the extent of the incident
light is limited.

The situation when the beam fills only up to 20 degrees appears in
Figure 4.24. It is evident that the focal point is much better localized
in this case. The active fraction of a lens is limited to the area near the
lens axis, as was the case for the spherical mirror. The lens maker’s
equation for an incident parallel beam of light is, 1/f = (n − 1)/R,
where f is the focal length, n is the index of refraction of the lens,
and R is the radius of curvature of the lens. In this example, n = 1.5
so that f = 2R, as is observed in Figure 4.24.

4.11. A Magnetic Quadrupole Lens System

This section finishes with a rather more complex problem, some-
thing more akin to the type of question a working physicist might
encounter, albeit still simplified here. The exercises refer to a sys-
tem of magnetic lenses. These lenses are manufactured to create a
quadrupole magnetic potential, Φ, where the magnetic field is the
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Figure 4.24: Ray tracing for a spherical lens with index= 1.5 where the incident
beam fills the lens up to 20 degrees with respect to the lens axis.

gradient of the potential.

Φ = (dB/dr)xy

Bx = −(dB/dr)y

By = −(dB/dr)x (4.8)

The magnetic field gradient, dB/dr, causes a charged particle
moving almost entirely along the z axis and having an x displace-
ment to be focused by encountering a force toward the x axis, while
in the y direction, a y displacement is de-focused away from the
y axis. Therefore, the simplest electromagnetic system which pro-
vides focusing in both transverse dimensions is a doublet of these
quadrupoles. This system provides net focusing of a beam of charged
particles.

Solving the equations of motion in a quadrupole magnet for a par-
ticle with momentum, P , can best be cast into a matrix form, assum-
ing that the motion is largely along the average beam direction, or z,
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axis and that displacements transverse to z are small. In the focusing
case:

k = a(dB/dr)/P

φ =
√
kL

[
x

dx/dz

]
=

[
cosφ sinφ/

√
k

−√
k sinφ cosφ

] [
xo

(dx/dz)o

]
(4.9)

the transverse motion is characterized by an initial position, xo, and
angle, (dx/dz)o, and the matrix transforms the incoming beam into
the outgoing beam at the exit of the quadrupole of length, L, for one
transverse dimension. The amount of focusing depends on the field
gradient, dB/dr, the inverse of the momentum, P , and a constant, a.
The other dimension, which must be de-focusing, has a similar matrix
with the trigonometric functions replaced by hyperbolic functions.

In analogy to the optical case, there is the behavior of a thick
lens (Figure 4.23) and a thin lens (Figure 4.24) limit where, in the
latter case, the position does not change, but the angular change in
dx/dz, is equal to kLx or x/f , where f is the thin lens focal length,
1/kL.

The script for studying the doublet of two quadrupole lenses is
spread over several files. The major file is the script “Quad Doublet”.
The script “Quadrupole” evaluates the matrix elements, the script
“Doublet Fit” uses the MATLAB function “fminsearch” to find the
focal lengths which satisfy certain beam conditions, and “Doublet
Plot” makes a plot of the solution to the fit. Because the fit is non-
linear, starting estimates for the solution are needed, and they are
provided by the script “Thin Lense” which has explicit solutions for
the case of a thin lens. The user can find the thin lens solutions there
and verify them if interested. The printout for the user dialogue is
shown in Figure 4.25.

The geometry of the doublet is defined and is completed by the
user, in this case a 10 m distance from the initial beam to the entrance
of the first quadrupole. A “drift” is a space with no magnets, and
particles are un-deflected in a “drift space”. All three solutions are
displayed, point target to parallel captured beam, parallel beam to
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Figure 4.25: Printout for the “Quad Doublet” script. The focal lengths in thin
lens approximations and after the non-linear fit are printed for the three defined
solutions.

point focus, and point target to re-focused point beam. The thin lens
starting values and the fit values are also given.

Two of the ray traces are shown in Figures 4.26 and 4.27. The
trajectory in the quadrupoles is exact, as long as the motion is largely
in the z, or beam, direction. The rays in Figure 4.26 correspond
to the case of a point like target where particles are created and
captured into a beam. The first quadrupole is y focusing and x de-
focusing, leading to rather different beam sizes in the two transverse
dimensions. The second case fully refocuses the beam. However, the
aperture of the quadrupole is again filled very asymmetrically, with
a large x value in the second one.

A real target has a finite size and a real quadrupole has magnetic
field imperfections. The solutions shown here are for a monochro-
matic beam and any real beam contains a spread in momentum. In
general, there is a central momentum, usually defined by bending
the beam in a dipole magnet and then collimating which serves to
select particles of like charge and momentum. Nevertheless, the exer-
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Figure 4.26: Solution in the case where a point target is captured into a parallel
(dx/dz = dy/dz = 0) beam. The boundaries of the quadrupoles are shown in red.

Figure 4.27: Solution in the case where a point target is captured and re-focused
into a point like beam.
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cise shown here in beam design and ray tracing is one that has use
in the practical work of an experimental physicist. This demonstra-
tion is one which shows how complex problems can be approached
by linking together module scripts which make specific and limited
computations.
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Chapter 5

Gases and Fluid Flow

“Time flows away like the water in the river.”
— Confucius

“It is life, I think, to watch the water. A man can learn so many things.”
— Nicholas Sparks

5.1. The Atmosphere

The atmosphere of the Earth is a mixture of gases. For example, there
is essentially no helium in the atmosphere, although hydrogen and
helium make up the vast bulk of the masses of the stars. This fact is
related to the distribution of the velocities of molecules with different
molecular weights. Heavier molecules move more slowly than light
ones because all species have the same mean thermal kinetic energy.
Basically, for a body to have an atmosphere, it must be cold enough
and massive enough that its gravity well defines an escape velocity
which is large with respect to the thermal velocity. Typical thermal
velocities at STP are a few km/sec.

The script “Atmosphere” begins to explore this topic. The print-
out made by this script appears in Figure 5.1. Several facts about
the ideal gas law and Boltzmann distributions are given in the user
dialogue. The parameter, E, is now again the particle kinetic energy
by established convention and not to be confused with the electric
field or the total energy.

The Maxwell–Boltzmann distribution of energy at different tem-
peratures is shown in Figure 5.2. The distribution and the related dis-
tribution of velocities are given in Equation (5.1). The distribution is
the probability of observing a kinetic energy, E, for a system of many
objects of mass, m, in thermal equilibrium at temperature, T . The
constant k in this section is the Boltzmann constant, k ∼ 1/40 eV at



November 13, 2013 14:26 9in x 6in One Hundred Physics Visualizations Using MATLAB b1610-ch05

5. Gases and Fluid Flow 117

Figure 5.1: Printout which gives some numerical values for the atmosphere of
the Earth.

Figure 5.2: Maxwell–Boltzmann energy distribution for oxygen molecules at dif-
ferent temperatures.
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300 degrees Kelvin. Normalizing to the total number of objects, N ,
the probability is 1/N(dN/dE).

dN/dE ∼
√
Ee−E/kT

dN/dv ∼ v2e−mv2/2kT
(5.1)

It is easy to convert variables by finding the value of dE/dv, for
example, in order to switch from the distribution of E to that for
velocity.

The mean velocities at room temperature, 300 K are quoted in
Figure 5.1. The mean energy increases proportional to the tempera-
ture, so that the mean velocity goes as the square root. The velocity
distribution for helium and oxygen is shown in Figure 5.3. The plot
shows that the helium is much more likely (note the logarithmic ver-
tical scale) to attain escape velocity than the oxygen, which implies

Figure 5.3: Velocity distribution for He (blue) and oxygen (red). The escape
velocity for the Earth is the ∗ in green. Escape seems unlikely, but there are
many possible thermal fluctuations in the course of eons.
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that the Earth at present has an atmosphere composed of heavier
diatomic molecules.

5.2. An Ideal Gas Model in Two Dimensions

It is instructive to make a simple model of a two-dimensional non-
interacting gas. The MATLAB function “rand” is used to create
distributions for the random variable so produced. This method of
creating models is called the Monte Carlo method. For example, in
the script “Maxwell Boltz”, the distribution of energy in two dimen-
sions is a simple exponential and that behavior can be properly
weighted by taking the log of a random number. The user should
try this by making, say, 1000 trials and histogramming the results
using the MATLAB script “hist”. The script “Maxwell Boltz” adopts
a more general case where the energy is defined between maximum
and minimum limits. The user may wish to look at that specific
code. Similarly, the initial positions of the “gas molecules” in the
two-dimensional box are randomly chosen in x and y.

The printout of the script for a specific set of user choices is given
in Figure 5.4. The user picks the temperature of the gas and the area
of the box which holds the gas. In the example shown, an area of
one and two temperatures are picked. The number of collisions of the
molecules with the walls is tracked as is the total momentum impulse
given to the walls by the reflection of the molecules. In this way, the
ideal gas law can be modeled, albeit with only about 100 molecules
and not 1023.

With a two-fold increase in temperature, the mean velocity is
expected to increase by the square root of two, while an increase of
a factor 1.38 is seen. The temperature increase leads to more wall
collisions per unit time and a larger momentum transfer impulse
per collision, with a “pressure” increase of a factor 1.68. Note that
the statistical accuracy here is limited by the small number of
“molecules”. The user can try several times with a fixed number
of “molecules” to see the statistical variations or, although it is slow,
increase the number of “molecules” or the number of time steps. A
snapshot of the gas area with parameters defined in Figure 5.4 is
shown in Figure 5.5.



November 13, 2013 14:26 9in x 6in One Hundred Physics Visualizations Using MATLAB b1610-ch05

120 One Hundred Physics Visualizations Using MATLAB

Figure 5.4: Printout for the script “Maxwell Boltz” for specific user choices, in
this case area equal to one and two temperatures, one and two.

5.3. Maxwell–Boltzmann Distributions

A classical gas of non-interacting particles follows the Maxwell–
Boltzmann distribution. The distribution follows from the statement
that all velocity components are equally probable, subject to an
overall weighting factor depending on temperature. The distribu-
tions, as yet un-normalized in velocity and kinetic energy for a three-
dimensional gas are:

dN ∼ dvxdvydvz[e−Mv2/2kT ]

dN/dv ∼ v2[e−Mv2/2kT ]

E = Mv2/2, dE/dv = Mv

dN/dE ∼
√
E[e−E/ktkT ]

(5.2)
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Figure 5.5: Snapshot of the movie of a two-dimensional area containing
“molecules” with a distribution of energies and initially random positions and
angular directions of the velocities within the area.

The distribution of kinetic energy, dN/dE, follows from the Jaco-
bian connecting energy, E, and velocity, dN/dE = dN/dv(dv/dE),
dv/dE ∼ 1/v. It is easy to see that in two dimensions, the velocity
distribution goes as dN/dv ∼ v times the exponential factor, while
in one dimension dN/dv ∼ 1 times the exponential. The energy dis-
tributions goes as ∼1 times the exponential and 1/

√
E times for

the two- and one-dimensional cases, respectively. These results were
already quoted in Section 5.2 for the two dimensional gas example.

The normalized distributions for velocity and energy are com-
puted symbolically in the script “moments max boltz”. In addition,
expressions for the mean, root mean square and most probable values
for energy and velocity are also computed and printed. The results
are given in Equation (5.3). The energy is in kT units, while the
velocity is also computed in dimensionless units, in this case

√
kT/M .

The distributions are shown in Figures 5.6 and 5.7, respectively. The
distribution in velocity is more clustered because of the dependence
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Figure 5.6: Distribution of kinetic energy in kT units for a Maxwell–Boltzmann
gas.

Figure 5.7: Distribution of velocities for a Maxwell–Boltzmann gas.
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of the distribution on the square of the velocity compared to the
energy distribution where the factor is the square root of the energy.

Velocity Energy
Mean

√
8kT/πM (3/2)kT

r.m.s.
√

3kT/M (
√

15/2)kT
most prob

√
2kT/M kT/2

(5.3)

5.4. Fermi-Dirac and Bose-Einstein Distributions

Quantum mechanics implies that non-interacting particles still have
effects due to the spin and statistics obeyed by fermions and bosons.
For bosons there can be any number of particles in a given quantum
state, while for fermions, the Fermi Exclusion Principle requires at
most two particles for spin 1/2, in a particular spatial quantum state.
Therefore, at low temperature, bosons will tend to pile up in the
lowest quantum state, while for fermions, all states up to some max-
imum energy will be populated by a pair of fermions. The functions,
f , are the mean occupation number of a quantum state of energy,
E, approximated as a continuous variable, since the spacing between
quantized energy levels is small and un-normalized here in the three
cases are shown in Equation (5.4):

Maxwell–Boltzmann fMB(E) = e−E/kT

Fermi–Dirac fFD(E) = 1/[eE/kT + 1]
Bose–Einstein fBE(E) = 1/[eE/kT − 1]

(5.4)

The normalization will be calculated later. It is defined by replac-
ing the energy, E, by E−µ, where µ is the chemical potential which
then normalizes the functions to be the mean occupation number.
A plot of these three distributions is shown in Figure 5.8. At low tem-
peratures, the Fermi–Dirac distribution becomes constant because
all the states are full, while for the Bose–Einstein case there is no
limitation. At high temperatures, the states are only sparsely filled,
so that the two quantum distributions and the classical Maxwell–
Boltzmann distribution are all similar. Note that these distributions
are not yet properly normalized, nor are the power law energy factors
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Figure 5.8: Energy distributions for the three cases of a classical gas or a
fermionic or bosonic gas.

having to do with the “phase space” of the particles included as they
were for the classical gas, Equation (5.2), in Section 5.3. The three
distributions are defined to agree at E = kT .

In the quantum case, the density of states, dn/dE, the number
per unit volume, n, has an energy distribution which is normalized
to the possible number of quantum states. The wave numbers are
quantized in a box of side L, kx = (2π/L)nx, which leads to a num-
ber per unit volume and momentum of, dn = d�k/(2π)3, d�p = �d�k.
The distribution can then be converted to energy, E. The resulting
value for dn/dE is proportional to 1/�3, and the volume of available
states in position and momentum is found to be proportional to the
quantum graininess of the world, as one might expect. This sets the
proportionality which was lacking in Equation (5.2).

dn/dE ∼
√

2M3/2
√
E/�3π2 (5.5)
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5.5. Chemical Potential, Bosons

The normalization of the mean occupation numbers of a quantum
state of energy E, f(E), will now be calculated for bosons. The nor-
malization is fixed by the total number of particles, N , and the vol-
ume in which they are contained, V . The number density is n = N/V ,
while the mass density is ρ = mn, where m is the mass of the atom
or electron. The energy density is u while the total energy is U . The
spectral energy density is u(E), whose integral is u.

The particles effectively have energies reduced by the “chemical
potential”, E → E − µ in Equation (5.4), which is, for example, the
work function of electrons bound in a metal. The chemical potential
must be evaluated by properly normalizing the probabilities.

In the Bose–Einstein case, for non-relativistic particles, the num-
ber of states goes as the square of the momentum, as shown already
in the Boltzmann case. The integral for n is then, ignoring numer-
ical factors, dn ∼ ∫ √

E[1/(e(E−µ)/kT − 1)]dE. This integral can be
done in closed form. Integrating the distribution over the particle
energy, E, the number density and total energy, U , are:

N/V = n = s(mkT/2π�
2)3/2ζ3/2(e

µ/kT )

U = 3/2kTV (mkT/2π�
2)3/2ζ5/2(e

µ/kT )

U → 3/2kTN

(5.6)

The number of quantum states of spin is s. The Riemann zeta
function, ζ, arises from integrating the spectral number density over
all energies, and the chemical potential µ is a normalization factor.
The zeta function has a radius of convergence from zero to one, or
chemical potentials from zero to infinity. The energy density, u, arises
from integrating the spectral energy density, u(E) = En(E) over all
energies and it also contains a zeta function. MATLAB has utility
functions to evaluate the zeta functions as an infinite power series.

If n = N/V is small or the temperature is high, then the Rie-
mann zeta function ratios in U/N are roughly one, and the classical
result shown in Equation (5.6) is recovered. However, at low tem-
peratures, the inter-particle spacing becomes comparable to the de
Broglie wavelength, h/P , and a critical temperature is reached when
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the chemical potential is zero. This corresponds to the behavior of
liquid helium spin zero nucleus as the temperature is decreased. At
a critical temperature it becomes a “super-fluid”.

Taking s = 1, 2.612 = the zeta function of order 3/2 and of
argument one, or chemical potential equal to zero, the critical tem-
perature when this occurs is estimated to be:

Tc = 2π�
2/Mk[(n/sζ3/2(1))

2/3

Ec = kTc = �
2k2

c/2M

kc =
√

4π[n/sζ3/2(1)]
1/3

(5.7)

The critical temperature for He, mass M , is evaluated in the
script “Chemical Potential”. The zeta functions are evaluated as a
series of five hundred terms, and the relationship ofN/V to the chem-
ical potential at a given T is evaluated using the MATLAB function
“fminsearch” in order to solve for the chemical potential explicitly
using Equation (5.6) at fixed number density. The resulting solutions
are plotted in Figure 5.9. The estimated critical temperature, using

Figure 5.9: Plot of the chemical potential for He as a function of temperature.
The approximate result of Tc at zero potential is shown as a ∗.
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Equation (5.7) for zero chemical potential, is Tc = 2.8K. The exper-
imental number when helium becomes a super-fluid is 5.2 degrees.
The explicit calculation of the chemical potential as a function of
temperature is made available using the powerful MATLAB tools
which are provided.

Note in Equation (5.7) that the wave number scales as the one-
third power of the number density. This behavior is also true for
the chemical potential for fermions. Critical behavior occurs when
the wave number becomes comparable to the intermolecular spacing.
At that temperature, quantum effects can be expected to manifest
themselves.

5.6. Chemical Potential, Fermions

The Fermi level is often thought of as the chemical potential at zero
degrees, where all states below that energy are filled so that the
occupation number is one below the “Fermi Energy” and zero above
it. In this case the integration is trivial, n ∼ ∫ EF

0

√
EdE ∼ E

3/2
F .

EF (0) = �
2/2me(3π2N/V )2/3

= �
2k2

F /2me, kF = (3π2n)1/3 (5.8)

All states above the Fermi energy are empty because no thermal
excitation is possible. The example used is for Li, and an approxi-
mate expansion for the temperature dependence of the Fermi Energy
is plotted in Figure 5.10. The zero temperature result simply again
follows from the density and is 4.7 eV, or an equivalent tempera-
ture of 56,000 degrees. The very high characteristic temperature is a
reflection of the fact that for bosons, the energies are smaller than the
classical case due to clustering, while for the fermions the effective
energies are pushed higher due to the requirements of the exclusion
principle. At room temperature, the approximation of using the zero
temperature Fermi energy is often very useful.

The energy density can easily be found in the low temperature
limit.

u(o) = 3/5(nE
F
) (5.9)
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Figure 5.10: Approximate calculation of the temperature dependence of the
chemical potential divided by the T = 0 Fermi level for Li. The red ∗ is the
T = 0 Fermi level in temperature units.

5.7. Critical Temperature for He

The temperature dependence of the chemical potential was discussed
in a previous section. Further calculations are made available in
the script “Crit Temp He4”. Printout from that script is shown in
Figure 5.11. The user chooses the atomic weight of the atom.

Figure 5.11: The estimated critical temperature is a repeat. The appropriate
scaling of important parameters is also indicated.
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It has already been commented that in a Bose-Einstein gas, the
mean energy per atom is less than that for a classical system. That
statement is quantified in Figure 5.12. The plot is the mean energy of
He as a function of temperature scaled to the classical mean energy.
This behavior is very characteristic of a bosonic system. Note that
what is plotted are approximations for large and small values of T/Tc.
The experimental critical temperature for He is also indicated by a
red ∗.

Figure 5.12: Mean thermal energy of He as a function of temperature relative
to the classical result. The red ∗ is the experimental critical temperature.

The behavior of the mean energy has two expansions, at low
temperatures and at high temperatures one of which follows from
Equation (5.6):

〈E〉 ∼ (1 − Tc/T )3/2

〈E〉 ∼ [ς5/2(e
µ/kT )/ς3/2(e

µ/kT )](T/Tc)3/2
(5.10)

Quantum effects are expected at low temperatures because,
as the temperature falls, the momentum decreases and hence the
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deBroglie wavelength rises. When that wavelength exceeds the typi-
cal spacing between atoms, estimated to be approximately (1/n)1/3,
quantum effects will become important.

λdB ∼ 2π�/
√

3kTM (5.11)

A plot of the temperature dependence of the de Broglie wave-
length using Equation (5.11), and the interatomic spacing, assumed
to be constant, is shown in Figure 5.13. The curves cross near the
critical point for helium, indicated by a red ∗, as expected. Note that
from Equation (5.6) and (5.7), n ∼ 1/λ3

dB , k ∼ 1/λdB as is expected
from simple dimensional arguments.

Figure 5.13: Temperature dependence of the de Broglie wavelength for helium
in comparison to the interatomic spacing in angstroms. The experimental value
of the critical temperature is indicated by a red ∗.

5.8. Exact Fermion Chemical Potential

The integrals that need to be evaluated such as that for the number
density, n ∼ ∫ ∞

0

√
E/[e(E−µ)/kT + 1]dE, in order to find the fermion
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chemical potential are not analytically tractable in the Fermi–
Dirac case. Because of that, the script “Fermi Dirac Tne0” uses the
MATLAB numerical integration tool “quad” to make numerical eval-
uations. The specification of the number density gives an implicit
relationship to the chemical potential as noted previously. At T = 0,
the number density should go as the third power of the Fermi energy,
as displayed by the script and quoted above.

Operationally, a chemical potential is chosen and the number
density is solved for using “quad”. This procedure is done as a func-
tion of the temperature. The results are plotted as a surface of density
in the variables of temperature and chemical potential, called Fermi
energy here, EF , in Figure 5.14. A contour plot of constant density in
the temperature — chemical potential plane is given in Figure 5.15.
Also plotted there are points from an expansion in powers of T
around T = 0 for the Fermi energy, used in computing points for
Figure 5.10. The approximate behavior is quite good if the tempera-
ture is low, however, at higher temperatures it becomes negative and
unphysical.

Figure 5.14: Density as a function of temperature and chemical potential.
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Figure 5.15: Contours, from the numerical exercise of Figure 5.14, of constant
density as a function of temperature and chemical potential. The blue ∗ are a
power law expansion in temperature used in Figure 5.10, which becomes negative
at high T .

Given the ubiquity of solid state electronics in our culture, a
nodding acquaintance with the energetics of electrons is a useful
thing.

Clearly, as the temperature increases, the Fermi level increases.
Higher number densities imply higher Fermi energies, albeit with a
weak dependence on n.

5.9. Complex Variables and Flow

The complex variable techniques which were used in two dimensional
electrostatics can also be applied to fluid flow, since the underlying
mathematics is the same. The potentials of electromagnetism become
the streamlines, and the gradient which defined the electric fields
becomes the fluid velocity. Otherwise the same differential equation
is being solved in the two cases. For a fluid flow potential of Φ, the
velocity of the fluid flow is ∇Φ = �v. Note that this flow formulation
only applies to the ideal case of no friction or viscosity for the fluid.
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The flow streamlines for an obstacle placed in a uniform flow
along the x axis are explored in the script “Flow windtun”. Plots
of the unobstructed flow, scale chosen by the user, with a circular
obstructing object and with a linear object are presented as choices.
In the linear case, an upright line is shown and then the user is
asked to give an angle to the linear obstacle. The streamlines for the
vertical line are shown in Figure 5.16, while the same object inclined
by thirty degrees appears in Figure 5.17.

5.10. Complex Variables and Airfoils

A mapping exists which gives an obstacle with a shape similar to an
airplane wing. These are called Joukowski profiles. The script used is
“Flow Airfoil”. The user dialogue allows for a choice of a parameter
which defines the airfoil shape and also a choice of the angle of attack
of the shape. There is an angle of attack with respect to the external
flow of sixty degrees in Figure 5.18.

Figure 5.16: Streamlines for a vertical linear obstacle placed in flow along the x
direction.
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Figure 5.17: Streamlines for a linear obstacle inclined at 30 degrees placed in
flow along the x direction.

Figure 5.18: Streamlines in the specific case of an airfoil shape defined by
R = 0.5 and with an angle of attack with respect to the external flow of 60 degrees.
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The velocity vectors corresponding to the streamlines of
Figure 5.18 appear in Figure 5.19. The view enhances the idea that
this airfoil has “lift”.

Figure 5.19: Velocity vector map of the fluid flow around the airfoil of
Figure 5.18.

5.11. Complex Variables and Sources of Flow

There are several flow sources displayed in the script “Flow Source”,
including both sources and sinks, rotational flow and barriers. One
example taken from the script is a point source of flow in the presence
of a barrier at x equal to zero, which extends over all y, while the
source is at positive x on the y axis.

The streamlines for this case appear in Figure 5.20, while the x
value of the velocity is displayed in Figure 5.21.

These complex variable techniques give a very nice visual presen-
tation of the potentials/streamlines and fields/velocity vectors. The
interested user can modify the provided scripts and then try different
geometric configurations since there are many mappings provided in
the literature. For example, a GOOGLE search yields http://www.
math.umn.edu/∼olver/pd /cm.pdf.
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Figure 5.20: Streamlines for the case of a point flow source located on the y axis
in the presence of a barrier at x equal zero covering all y locations.

Figure 5.21: Velocity along the x direction for the case of a point flow source
located on the y axis in the presence of a barrier at x equal zero covering all y
locations.
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5.12. Viscosity Model

Ideal gases do not self-interact, which was assumed in the flow exam-
ples shown above. As a simple attempt to make a more realistic gas
model, the script “Viscosity Model” allows the molecules of the gas
to elastically scatter off one another. The size of the molecules in the
numerical, two dimensional simulation, is such that 400 molecules
would fill the area of the gas.

The user chooses the number of molecules, the number of time
steps to follow the gas volume, the gas temperature, and the acceler-
ation due to an applied field. An ideal gas would simply flow in the
field direction without impediment. The acceleration might be due
to a heat differential as in thermal conductivity or an electric field
in the case of electrical conductivity of electrons or ions in a gas. An
example of the dialogue appears in Figure 5.22.

Figure 5.22: User dialogue for evaluating the effect of an external acceleration.

If there were no collisions, the molecules would be swept to the
right x wall of the gas area. The wall collisions and the temperature
are treated in the same way as in the case of the ideal gas model.
The script in this case checks for a collision between molecules, and
randomizes the velocity direction in case of a collision.

The user can watch the movie of the evolution of the system.
In addition, the momentum transferred to the walls is tracked and
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printed out. As can be expected for no acceleration, the left and
right momentum transfers are equal — statistically. An acceleration
of “2” enhances the right momentum transfer with respect to the left.
Increasing the temperature reduces the left-right asymmetry, since
the thermal motion washes out the acceleration. Finally, reducing the
number of molecules enhances the asymmetry because the number
of collisions between gas molecules which goes as the square of the
number of molecules, is reduced. The last frame of a movie arising
from the dialogue above appears in Figure 5.23 where the asymmetry
in space is also evident.

Figure 5.23: Last frame of the movie for the specific choice of 100 molecules,
with temperature = 1 and acceleration = 2.

For example, an electron in an applied electric field �E in a gas
has a drift velocity vd:

vd = (e �E/me)τ

τ = 1/〈vT 〉σn
(5.12)

The mean time between collisions, τ , depends on the average
thermal velocity, 〈vT 〉 the collision cross section, σ, and the gas
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number density, n. As a result, the drift velocity of the medium
is proportional to the average thermal velocity. The electrical con-
ductivity, κe, or current flow per unit electric field, is κe = ne2τ/m,
proportional to the drift velocity.

5.13. Transport and Viscosity

Transport phenomena in gases and liquids can be formulated using
the Maxwell–Boltzmann velocity distribution. An example is worked
out in the script “MB Transport”. The collision cross section, σ, for
a hard sphere gas is taken to be π times the diameter of a single
molecule squared by geometry. The mean thermal velocity of the
medium is 〈vT 〉, which was already evaluated to be

√
8kT/πm. The

number of collisions suffered by a given molecule per unit time is:

Nc = nσ〈vT 〉/
√

2 (5.13)

where n is the number of molecules per unit volume. The mean
time between collisions is the inverse of Nc. The mean free path,
L, between collisions is 〈vT 〉 times the mean time between collisions,
L = τ〈vT 〉 = 〈vT 〉/Nc =

√
2/nσ, which is independent of tempera-

ture. The viscosity, η, can then be evaluated and depends only on
the thermal velocity and the cross section:

η = mnL〈vT 〉/3 =
√

2m〈vT 〉/3σ (5.14)

The printout from the script for the user choice of hydrogen gas
is shown in Figure 5.24.

Figure 5.24: Printout for a user defined choice of H gas. Other options are He,
N2, or O2 either as a gas or a liquid.
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The experimental value for the viscosity of H2 at STP is ∼ 9.5×
10−5 gm/(cm∗sec). The treatment here implicitly assumed that the
medium is dilute and that the mean free path is much greater than
the size of the molecules, which is appropriate for a gas since the mean
free path is approximately 1000 times the size of the molecules which
are typically angstroms. The temperature dependence of H2 gas in
this model is shown in Figure 5.25, where the square root behavior of
the mean thermal velocity is observed. The simple treatment given
here is approximate but qualitatively correct.

Figure 5.25: Temperature dependence of the viscosity of H2 gas.

5.14. Fluid Flow in a Pipe

The next level of approximation for flow is to allow for internal fric-
tion, or viscosity, but not take turbulence into account. In that case,
the flow is laminar and the boundary conditions are that the velocity
of the fluid at the pipe interface is zero. For a fluid with viscosity,
there are collisions which create friction in the fluid. For example,
there is a drag force, Fd ∼ aηv, on an object of size a in a fluid
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moving with velocity, v, and having viscosity, η. The equations for
fluid velocity, v, as a function of radius, r, from the pipe center and
for the volume, V , flow with time are:

dv/dr = −pr/(2ηL) (5.15)

v = p/(ηL)[R2 − r2] (5.16)

dV/dt = πpR4/(8ηL) (5.17)

The pressure is p, the pipe length is L and the viscosity is η.
The volume flow is proportional to the fourth power of the pipe
radius and proportional to the driving pressure divided by the pipe
length.

Printout for the script “Flow Pipe” is displayed in Figure 5.26.
The user dialogue covers the choice of driving pressure, the pipe
length and transverse size, as well as a choice of two geometries; a
circular pipe or flow between two infinite plates. The fluid is assumed
to be water at near room temperature. The maximum velocity is
computed as is the overall volume flow of the water for the pipe. The
shape of the velocity profile follows from the boundary conditions
which require vanishing velocity at the pipe boundary and is shown
in Figure 5.27 for a specific choice of parameters for the circular pipe
option.

Figure 5.26: Printout for a specific example of viscous flow in a pipe.

Laminar flow is a reasonable description of viscous flow in the
absence of turbulence. Ideal flow, on the other hand, has no fric-
tional forces. This idealization is not as realistic, but it does admit of
solutions which are known from electrostatics since the Laplace and
Poisson equations apply.
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Figure 5.27: Transverse velocity profile for the case of a circular pipe with
parameters shown in Figure 5.26.

5.15. Heat and Diffusion

MATLAB has the ability to solve partial differential equations
numerically in one spatial dimension. The script is called “pdepe”
which can handle one dimension in space and first order partial
derivatives in time. The heat diffusion equation is studied numer-
ically, solving:

κ∂2T/∂2x = ∂T/dt (5.18)

The thermal conductivity is κ. The spatial and temporal coordi-
nates are x and t, respectively. The script solves for the temperature,
T (x, t), distribution subject to initial conditions and boundary con-
ditions. The boundary conditions are that T vanishes at the extreme
values of x. They should be placed far enough from the regions of
interest so as not to affect the results.

The script which was written to solve the heat equation is
“PDE Heat”. Initial conditions for the temperature distribution
T (x, 0) are supplied and the value and first derivative of T on the x
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boundaries are fixed. The shape of the initial T (x, 0) distribution is
chosen by the user from four possibilities. A more advanced use would
be to have the user rewrite T (x, 0) to enable an arbitrary symbolic
functional input or alter the conductivity κ.

The results for an initial square distribution at starting and end-
ing times are shown in Figure 5.28. The user sees a movie with all the
intermediate time solutions as the temperature evolves in time. The
heat distribution diffuses into the initially cool regions as expected.
A second option is shown in Figure 5.29.

Figure 5.28: Initial, blue, and final, red, temperature distributions for an initially
square distribution of temperature.

In addition, the heat equation is close in structure to the
Schrodinger equation, except that the appearance of i in the lat-
ter allows for diffusion but also to contain oscillatory solutions. This
aspect will be taken up in the next section which looks at quantum
mechanical demonstrations. As with the heat equation, a numeri-
cal study of the solutions of the Schrodinger equation will be made
using wave packets to simulate a “particle” localized in position
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Figure 5.29: Initial, blue, and final, red, temperature distributions for an initial
distribution with sharper structure than that in Figure 5.28.

and momentum, but whose probability density spreads spatially in
time, rather like the behavior of the temperature distributions shown
above. Clearly, many topics in physics are inter-related.

Some intuition about the diffusion of heat can be gained by trying
the several examples.
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Chapter 6

Quantum Mechanics

“We have sought for firm ground and found none. The deeper we pen-
etrate, the more restless becomes the universe; all is rushing about and
vibrating in a wild dance.”

— Max Born

“Those who are not shocked when they first come across quantum theory
cannot possibly have understood it.”

— Niels Bohr

“Photons have mass? I didn’t even know they were Catholic.”
— Woody Allen

6.1. Preliminaries — Planck Distribution

The advent of quantum mechanics began with the exploration of
black-body radiation. This problem is now viewed as the behavior
of a photon gas with zero chemical potential. In the last section,
the chemical potential was defined for a system with a fixed number
of particles. In this case, photons can be emitted and absorbed, so
that the chemical potential must be zero. The Planck distribution in
photon number is as assumed classically; all momentum, P, compo-
nents are equally probable. However, since the photon is massless,
this leads to a number distribution that goes as the square of the
energy, E, and a total energy, U, distribution that goes as the third
power, modulated by the Bose–Einstein factor.

dn/dP ∼ P 2dP/[eE/kT − 1]

E = cP, du/dE = Edn/dE

dn/dE ∼ E2dE/[eE/kT − 1] (6.1)

The moments of the distribution are evaluated in the script
“Moments Planck2”. The results are plotted in Figure 6.1 below.
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Figure 6.1: Energy density distribution for a photon gas with zero chemical
potential.

The script printout gives the symbolic values for the different
moments.

The integrals are done symbolically and are printed out.
The mean energy is expressed in terms of the Riemann zeta functions
of argument one (zero chemical potential), which is, in kT units,
numerically equal to 3.83. Since du/dE goes as the cube of E, the
energy density goes as kT to the fourth power, which is the Stefan–
Boltzmann law. The thermal energy density is u, while the power per
unit area, or the luminosity is L.

〈E/kT 〉 = 360ζ5(1)/π4

√
〈(E/kT )2〉 = π

√
40/21

u = 4/c(σT 4), L = σT 4

σ = π2k4/(60�
3c2) (6.2)

The result for u is simply, u = 4π2(kT )4/60(�c)3, where kT has
dimensions of energy and �c has dimensions of energy times distance.
Numerically σ is 5.67 × 10−8 W/m2 × k4.
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6.2. Bound States — Oscillating or Damped

Quantum mechanics has a description called the Schrödinger
equation which is formally similar to the heat diffusion equation
which was already studied. The appearance of the imaginary num-
ber i, however, allows solutions to this equation which are either
oscillatory or exponentially damped. These are then the two main
categories, bound states which are exponentially damped far from
the confining potential and scattering states which are not so con-
fined. The Schrödinger equation determines the behavior of the wave
function ψ whose square modulus gives the probability to observe
the object:

(T + V )ψ = Eψ

P → i�∂/∂x

[−(�22m)∂2/∂2x+ V (x)]ψ = Eψ

ψ ∼ eikx, �k =
√

2m(E − V (x)) (6.3)

The kinetic energy is T, the potential is V, and E is now
the total energy of the particle. It determines the wave function
ψ(x). The classical momentum, P, becomes a differential oper-
ator and the oscillatory solutions have a wave number, k, pro-
portional to the square root of (E − V ). If E is less than V,
the wave number is complex and the wave function is exponen-
tially damped. There is a more general equation allowing for time
dependence where the energy, E, is replaced by the operator,
i�∂/∂t.

The sizes of quantum systems can be estimated by looking at the
basic quantum, Planck’s reduced constant, �. The electron mass is
expressed in energy units in Equation (6.4), while Planck’s reduced
constant is expressed in energy–length units. An appropriate atomic
length scale is the angstrom, 10−10 m. Subsequently, quantities scaled
to c, for example Pc, will be written as P and energy units used.
This is customary and simplifies the formulae. One can restore the
results by inserting c later. For a system characterized by a size of
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Figure 6.2: Wave function for a 4 eV electron in a constant potential of −2 eV.

one angstrom, the energy scale is a few eV.

�c = 2000 eVÅ

mec
2 = 511000 eV

a = 1 Å, �c2/2mec
2a2 = 3.9 eV (6.4)

The script “qm intro” sets up an electron with 4 eV kinetic energy
and asks the user for a potential. The resulting plots for a poten-
tial V =−2 eV and 10 eV appear in Figures 6.2 and 6.3. Note that
the wave number is numerically the same in the two cases, 0.81
angstroms, since |E − V | is 6 eV in either case.

6.3. Hydrogen Atom

There are only a few solvable problems in quantum mechanics. One
of them is the hydrogen atom, in analogy to the Kepler solution in
classical mechanics. The binding energy depends on the principal
quantum number, n, as the inverse square. The atomic size, a, rises
with n. The overall energy scale is eV and the characteristic size is
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Figure 6.3: Wave function for a 4 eV electron in a constant potential of 10 eV.

the angstrom, Å. The fine structure constant is α = e2/�c = 1/137
and is a measure of the strength of the binding by the Coulomb
potential. In the ground state, the energy is Eo = −13.6 eV for an
electron with mass, m, and charge, e. The speed with respect to light,
β, is small, so that non-relativistic mechanics is appropriate.

Eo = −mc2α2/2 = −13.6 eV

αo = �/mcα = 0.54 Å

E = e2/2ao, β = α (6.5)

The exact solution can be evaluated using results in the litera-
ture and the MATLAB mfun Laguerre, mfun(‘L’,n,x). However, some
important features can be found more simply. First the Schrödinger
equation in three dimensions for a central force has as angular
solutions the spherical harmonics, Y m

� , which will be shown later.
These angular solutions are appropriate for all central forces and are
the quantum analogue of the classical central force motion in a plane
with conserved angular momentum.
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There is an effective one-dimensional equation of motion as was
the case in classical mechanics. A comparison to the Kepler discus-
sion provides some insight. The equation at small r is dominated by
the centrifugal potential which is effectively a repulsive inverse cube
force. At large r, the potential V falls with r, so that the energy factor
dominates.

ψ ∼ (u/r)Y m
�

d2u/d2 − [�(�+ 1)/r2 + 2m(E − V )/�2]u = 0 (6.6)

Putting that together, the behavior is a power law at small r
defined by the angular momentum quantum number and a falling
exponential (bound state with negative energy) at large r.

ψ ∼ r�e−r/a0n (6.7)

The atomic wave-functions are plotted using the script
“qm H Atom” which shows energy levels and mean radii in Figure 6.4
and wave functions in Figure 6.5 for the three lowest energy bound
states.

Figure 6.4: Mean radius and energy level for the three most deeply bound hydro-
gen states.



November 13, 2013 14:26 9in x 6in One Hundred Physics Visualizations Using MATLAB b1610-ch06

6. Quantum Mechanics 151

Figure 6.5: Probability density as a function of radius for the three lowest energy
states in hydrogen with zero angular momentum.

The mean radius increases as n2 reflecting that the higher n states
are less deeply bound in the potential. Note that, in Figure 6.5,
the number of maxima increases with n. Since the oscillation raises
the momentum which is proportional to the derivative of the wave
function, the higher n states are less deeply bound. Indeed for the
zero angular momentum states, the number of oscillations is just
the principle quantum number n.

6.4. Periodic Table — Ionization Potential
and Atomic Radius

There are atomic data which give good insights into the underly-
ing quantum structure of the elements. All of the complexity of the
periodic table is contained in the simplicity of the hydrogen atom
solution and the Fermi exclusion principle. It is a wonderful thing
that chemistry can be so simply understood, at least in broad brush
strokes.

Some of the data are presented by the script “qm Atom
Periodic Tab”. Plots of the first ionization potential and atomic
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Figure 6.6: Ionization potential (first) as a function of Z.

radius are displayed. The ionization potential has a characteristic
structure as a function of atomic number Z and is displayed in
Figure 6.6. The mean atomic radius, measured using scattering data
and are not numerically the same as the radius mentioned above, is
shown in Figure 6.7.

For a hydrogen-like atom with atomic number Z and ignoring
atomic screening of the charge Z by intervening electrons:

E = EoZ
2/n2

a = ao/Z, 〈r〉 = an2 (6.8)

The subscript refers to the hydrogen atom, as in Equation (6.5).
The behavior can be understood as due to the filling of atomic

energy levels consistent with the Fermi exclusion principle and with
the lowest energy states being filled first. For l = 0, only two spin
paired electrons are possible. For l = 1, there are three possible angu-
lar momentum projections specified by m = −1, 0 and 1 which allows
for up to six electrons, while for l = 2 there are ten electron states
possible, using the five possible m values −2, −1, 0, 1, 2. As for the
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Figure 6.7: Atomic radius as a function of Z.

energetics, the energy should scale approximately as (Z/n)2, while
the radius should scale as n2/Z. The expected state filling sequence is:

(1s)2(2s)2(2p)6(3s)2(3p)6

For historical reasons the s and p notation refers to l = 0 and 1,
respectively. The exponent refers to the number of electrons in that
state and 1, 2 and 3 refer to the quantum number n.

The 1s “shell” closes with a noble gas, helium. The 2s shell starts
with a loosely bound electron — a metal lithium. The 2p shell is
almost full at fluorine, a base, and closes with neon, another noble
gas. The 3s shell begins with a metal, sodium. The 3p shell is almost
closed with chlorine, another strong base, and closes with argon.
Clearly, much of the periodic table can be understood on the basis
of the energy states of the hydrogen atom, although the details are
computationally challenging.

It is important to observe that the properties of complex atoms
can be calculated very accurately. Let us explore the lowest order
corrections. Take the helium atom as the simplest case. The energy
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of a single electron bound to a nucleus with Z protons is given in
Equation (6.8). With two non-interacting electrons, the energy of
the helium ground state would be eight times that for hydrogen,
or −109 eV. Experimentally it is −79 eV. There is an energy shift
due to the mutual repulsion of the electrons which can be estimated
using hydrogenic wave functions and quantum perturbation theory
to be ∆E ∼ 5/8(Zα/ao) or 34 eV for helium, changing the binding
energy to −74.8 eV which is close to the observed value. The effect of
the electrons screening of the nuclear charge has not been taken into
account yet. A variational approach to the problem, letting the effec-
tive Z vary, leads to an estimate of the binding energy of −77.4 eV
which is an improvement and an effective Z value of 1.69 is obtained
which shows the screening effect.

Comparing to Figure 6.6 which plots the first ionization potential
of 24.6 eV, the 79 eV binding energy should be adjusted for the energy
after one electron is removed, Z = 2, and the once ionized binding
energy is 54.4 eV. The ionization potential is then estimated to be
24.6 eV.

Lithium, assuming perfect screening by the two 1s electrons will
have an ionization energy of about 3.4 eV in the n = 2 hydrogenic
state. Lithium, see Figure 6.6, is observed to be more deeply bound,
5.4 eV, which means the effective Z is 1.26 rather than one due to
screening by the 1s electrons. The size of hydrogen is roughly the
Bohr radius, 0.54 angstroms. For lithium, with perfect screening, a
radius of 1.55 angstroms is expected which is close to the point in
Figure 6.7. Other atoms can be explored and with modern compu-
tational tools, models of any needed accuracy are available.

6.5. Simple Harmonic Oscillator

The simple harmonic oscillator is also a solvable problem. It is, in
addition, a useful approximation to the general case of the lowest
bound state of a quantum system, since the Taylor expansion about
the minimum of an arbitrary potential yields an oscillator poten-
tial. The exact numerical solution is available using the MATLAB
mfun(‘H’,n,x) for evaluating the Hermite polynomials which are the
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solutions. However, some general characteristics can again be found
by looking at the Schrödinger equation at large displacements. The
quadratic potential is:

F = −kx, V = kx2/2 = mω2x2/2 (6.9)

The potential term in the Schrödinger equation dominates at
large x, leading to a Gaussian component of the wave function in
one dimension. This behavior ensures that the state is bound by the
potential.

1/a =
√
mω/�

ψ ∼ e−x2/2a2
(6.10)

The exact wave functions for the lowest three states are shown in
Figure 6.8. As in other cases, the increasing energy with the principle
quantum number n is due to the increasing number of oscillations,
or the increasing momentum.

Figure 6.8: Square of the harmonic oscillator wave functions in one dimension
for the three lowest energy bound states.
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6.6. Other Force Laws

It is of interest to try to connect the observed spectroscopy of energy
levels to the underlying force law. The hydrogen atom has a 1/r
potential which leads to energies which go as 1/n2. The harmonic
oscillator has a x2 potential which leads to energy levels to go as n.
Other cases are estimated by requiring that the de Broglie wavelength
corresponding to a circular orbit of radius r contain an integral num-
ber of phase advances in order to set up a stable standing wave. For
a power law potential, the energy is then minimized with respect
to the radial variable, r, which yields an estimate of the quantized
energy levels and the system size. This procedure is not rigorous and
it only meant to be indicative.

The results for this calculation are displayed in the script
“qm forcelaw” and a user menu allows for a look at other power
law potentials.

λ = �/p = r/n

V = α/rb

r = (n2/mαb)γ , γ = 1/(2 − b)

E = n−2bγm
bγ
α2γ (6.11)

The printout for the Coulomb force and the simple harmonic
oscillator is shown in Figure 6.9. The examples of the hydrogen atom
and the harmonic oscillator are printed out, as is the general solution.
Note that this procedure is not exact, but is heuristic.

The result of this exercise for a Coulomb potential is a∼n2/

αm,E ∼ mα2/n2 which agrees with the exact solution. The user
can try several other force laws in order to see how the energy levels
change.

6.7. Deep Square Well

Continuing with the study of bound states, consider the case of a
one dimensional well with very high potential sides, or a very deep
well. The wave function must vanish at the well boundaries, located
at x = a and −a, which limits the wavelengths to quantized values.
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Figure 6.9: Printout for the size and energy levels for the general case of an
arbitrary force law for two known special cases.

This is formally the same requirement as was seen already in the
“plucked string” exercise.

ka = nπ/2

E = �
2k2/2m = �

2/2m(nπ/2a)2 (6.12)

The energy levels go as n2. The script “qm infbox” has a dia-
logue with the user where the user chooses a well size and the script
returns the ground state energy and a plot of the three lowest energy
wavefunctions. The results for a well of size four angstroms full width
is shown in Figure 6.10.
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Figure 6.10: Wave functions for a deep potential well of size four angstroms full
width. The number of oscillations inside the well increases with n, thus increasing
the energy.

6.8. Shallow Square Well

The very deep well is a useful first approximation to the more prac-
tical problem of a well of finite depth. In that case, there are not an
infinite number of bound states. Indeed, it may be for a localized and
shallow well that there are no possible stable bound states.

The bound state solution has exponential behavior outside the
well and oscillatory behavior inside. The wave function and its deriva-
tive are matched on the well boundaries and that requirement quan-
tizes the energies. For V = 0 inside the well and V = Vo > 0 outside,
the bound energy is, 0 < E < Vo. The wave numbers are k and K

outside and inside the well. The energies are those that satisfy the
equations for matching at the well boundaries:

(�k)2 = 2m(Vo − E), |x| > a

(�K)2 = 2mE, |x| < a

tan(Ka) = k/K, odd

cot(Ka) = −k/K, even (6.13)
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Figure 6.11: Printout of the script “qm inwell2” for the example of a well of full
width 4 A and a depth of 5 eV.

The matching is distinct for odd (sine like) and even (cosine
like) interior solutions. The problem is explored using the script
“qm inwell2”. The script uses the infinite square well energies as
a starting value and imposes matching boundary conditions on the
interior oscillatory solutions and the external exponentially damped
solutions to find the bound state energies using the MATLAB func-
tion “fminsearch”. The printout for an example is shown in Fig-
ure 6.11. The user supplies a well size and a well depth. The script
computes the energies of the first two lowest energies, if they exist,
plots them as in Figure 6.12 and plots the wave function of the lowest
energy state, as seen in Figure 6.13.

The lowest energy state is even while the first excited state is
odd. It is instructive for the user to vary the depth and size of the
well in order to see when a bound state becomes impossible due to
the well being too narrow or too shallow. For example, with a 4-
angstrom full width, a first excited state just becomes possible for a
well depth >2.95 eV.

6.9. Wave Packets

A wave function with a precise momentum, ψ = e±ikx, a plane wave,
is totally un-localized since the modulus is the same at all spatial
points. Conversely, a completely localized wave function contains all
frequencies. That is a consequence of the fundamental uncertainty
principle in quantum mechanics, dkdx ∼ 1, dEdt ∼ �. A classical
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Figure 6.12: Energy levels for the lowest two bound states for an infinite well
and the well of full width 4 angstroms and depth 5 eV.

Figure 6.13: Wave functions for the lowest bound state for an infinite well and
the well of full width 4 angstroms and depth 5 eV.
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particle can be approximated by a superposition of waves localized
in both position and momentum with localization consistent with
quantum limitations.

A spatially localized wave packet, with a spread dx, which con-
tains a spread of frequencies, dk ∼ 1/dx, can be partially localized.
This packet will spread spatially in time because of the uncertainty
relationship. The characteristic time of spreading is dt ∼ �/dE, dE =
(�c)2(dk)2/(2mec

2). Nevertheless, the wave packet is a useful approx-
imation to the classical behavior of a particle. The characteristic time
of packet spreading is set by � and is equal to 0.66, with energy in
eV units of 10−15 sec. Light goes 3000 angstroms in this time, so a
packet with v/c of 0.01 will go about 30 angstroms. This unit of time
is adopted in what follows when the time development of a system
is explored using MATLAB to make movies of systems.

The script “qm WavePak” sets up a wave packet based on user
input. An example of the user dialogue is shown in Figure 6.14.

The input parameters are a spatial spread, dx, and a wave packet
central wave number value, k. Given that the momentum spread
follows from the uncertainty relation the energy spread is also fixed.
The energy spread sets the time for the spreading of the packet. The
packet is:

ψ ∼ e−[(x−<x>)/2dx]2eikx (6.14)

The velocity sets the size of the wave number, k = 250
β(Å−1), E(eV) = 3.9k2. These wave packets will then be used to

Figure 6.14: User dialogue and printout for the script “qm WavePak”. A typical
atomic state with size of about 1 angstrom and speed of about 1/100 that of light
is used in this example.
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Figure 6.15: Wave packet probability density for the specific case dx = 1 Å,
〈x〉 = 0 and v/c = 0.1 for time, t = 0.

study the behavior of bound states or free particles (V = 0) and are
used as the probes for numerical scattering and bound state exercises.
An example packet appears in Figure 6.15 for time equal to zero.

6.10. Numerical Solution for Bound States

Bound states are probed with wave packet “particles” in the script
“PDE Sch Well SHO”. A free particle can be studied as a special case
of a well with zero potential. Generally, a user defines a width and
depth. The harmonic oscillator potential can also be set up with the
wave packet bound near the origin. The MATLAB partial differential
equation function “pdepe” is used in analogy to the use of the package
with the heat equation.

The user is supplied with a movie of the subsequent motion of
the wave packet which the user has specified in the initial dialogue.
The packet has an energy of 5 eV and 〈x〉 = 0, starting at the center
of a potential well. The user specifies a packet width and velocity.
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Figure 6.16: Last movie frame for a fairly deeply bound wave packet. The well
extends for |x| < 5 Å and is 20 eV deep.

The well potential is zero inside |x| < a and Vo outside. The time
development over 10−15 sec. is supplied in a movie with 100 frames.

In the examples shown, dx = 1 angstrom and v/c = 0.01 is
chosen. It is amusing to start with a choice of potential equal to zero
in order to see the free particle spreading of the wave packet.

The last frame of the movie for a well of half width of 5 Å and a
Vo of 20 eV is shown in Figure 6.16. Some of the wave function leaks
out of the well because there is a spread of energies since the packet
is localized.

The case of a harmonic potential is shown using an example
shown in Figure 6.17. Again, the high energy components can leak
out to fairly large |x| values, but the bulk of the packet is localized
near the minimum of the potential.

It is difficult to show on a flat page how the packets evolve in time.
The user can and should look at free particle packet spreading, bound
state square wells of different widths and depths, and also harmonic
oscillator potentials of different strengths. These explorations should
aid the user in building up an intuition about the bound states.
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Figure 6.17: Last movie frame for a fairly deeply bound wave packet. The har-
monic potential is set with a large k, k = 2, which contains the packet in locations
near the x = 0 origin.

6.11. Scattering Off a Potential Step

Previously the focus has been on bound states, using both analytic
and numerical methods. Now there is a shift to scattering states
which are not localized in space. These states can be used to probe
the forces which act on them. The simplest example is the change in a
constant potential, Vo. The algebra is in exact analogy to the change
in index of refraction at an interface in optics, at normal incidence.
The index of refraction is defined by the potential, n ∼ √

E − V . If n
becomes complex, then the analogy is to a metal in optics and the
reflection is total. Comparing to Figure 4.17, the results are exactly
the same with n =

√
1 − Vo/E. This illustrates the deep connections

between wave optics and quantum mechanics. The solutions for inci-
dent energy, E, both for E less than the barrier height and above the
barrier are:

k =
√

2m(E − Vo)/�

K =
√

2m(Vo − E)/�

1 + r = t, t = 2k/(k +K), t = 2k/(k + iK) (6.15)
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Figure 6.18: Incident, reflected and transmitted waves for a 6 eV electron inci-
dent on a step potential of 5 eV.

For E greater than Vo, solutions are oscillatory with wave number
k. For E less than Vo, the solutions are damped exponentially with
length parameter equal to 1/K. Matching the wave functions and the
derivatives (continuity of probability and momentum) at the bound-
ary, x = 0, leads to the solutions for the reflected wave function
amplitude r and the transmitted wave amplitude t at the boundary.

The result for a 6 eV electron incident on a 5 eV potential is given
in Figure 6.18.

The matching of the solutions at x = 0 is clear in Figure 6.18.
However, these are complex functions so that the reflection coefficient
R = |r|2 is less than one as is the transmission coefficient T.

The situation for a step of 4 eV is shown in Figure 6.19. In this
case, the solution for x > 0 is exponentially decreasing. This plot
illustrates the matching at the boundary. However, it is very mislead-
ing. The reflection coefficient is, in fact, equal to one and, although
an incident wave would penetrate into the region x > 0 for a short
period of time, it is ultimately totally reflected. This fact is reflected
in Figure 6.20 which displays the R and T values for different energy
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Figure 6.19: Incident, reflected and transmitted waves on a step potential of
5 eV by a 4 eV electron.

Figure 6.20: Reflection and transmission coefficients for a wave of energy E
incident on a step of potential Vo.
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waves incident on the step. Note that R is equal to one for E less
than Vo.

The script is found in “qm step”. The user has a choice of the
energy of the particle incident from x < 0. The potential is fixed at
5 eV. Classically, there is perfect transmission for E > Vo, but, due
to the quantum wave behavior, there is a region of E greater than
Vo but near to it where the reflection coefficient is not zero. This
behavior is familiar from wave optics.

6.12. Scattering Off a Potential Well or Barrier

The next level of complexity is to scatter off a well with a finite
width. This situation is considered in the script “qm tunn”. The most
interesting case is probably the one of “tunneling” where classically
the barrier is too high to be penetrated but in quantum mechanics the
exponentially falling solutions can, with some probability, penetrate
the barrier.

The wave is incident from the left. There is a reflected wave, in
general. Inside the well/barrier there are waves with wave number K
[Equation (6.15)]. Exiting the potential region on the right, there is
a transmitted wave. The solutions for these wave amplitudes follow
from matching the wave function and its derivative at the two bound-
aries, in an extension of the technique used for the step potential.

There are two limiting cases of interest. In the case of a barrier
with height above the wave function energy, the transmission coef-
ficient depends exponentially on the width of the barrier and the
wave number in the barrier region. The most important factor is the
exponential decrease of T with tunneling distance a, although other
power law behavior is present:

T ∼ e−2Ka (6.16)

This phenomenon is known as “tunneling through” a barrier. It
is crucial, for example, in the Coulomb barriers that retard fusion
because of the repulsive Coulomb forces between positively charged
nuclei. The Sun works only because it operates at an enormous tem-
perature which gives sufficient thermal kinetic energy to the nuclei
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to overcome these barriers. On Earth, the reactions which are being
attempted for fusion reactors or already achieved in fusion weapons,
are the fusion of deuterium and tritium.

H2
1 + He3

1 → He4
1 + n(17.6MeV)

H2
1 + H2

1 → H3
1 + p(4MeV) (6.17)

There is another interesting limit which occurs for potential wells
rather than barrier penetration. It is called the Ramsauer effect, when
there is perfect transmission for an incoming wave of fixed wave num-
ber k. It occurs because of phase changes for reflected waves which
make it possible for the reflected waves to be cancelled out. The
Ramsauer relationship for incoming energy E, well potential Vo and
full well width a corresponds to an energy for a bound state in an
infinite well:

Ka = nπ

E + Vo = �
2(nπ/a)2/2m (6.18)

The Ramsauer total transmission is related by direct analogy to
anti-reflection thin film coatings in optics. There is a phase change
upon reflection. Therefore, there is a destructive interference between
the waves reflected at the two interfaces.

The printout for a specific example is shown in Figure 6.21. In
this case the well is a thin barrier, 1 eV higher than the electron
energy and 1 Å wide.

Figure 6.21: Printout for the case of a thin barrier, of width 1 Å and for a barrier
1 eV higher than the incident wave energy. The p and q are the amplitudes inside
the well with positive and negative x behavior ±Kx.
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Figure 6.22: Electron of 5 eV incident on a barrier of height 6 eV extending over
a width of 1 Å. The solution within the barrier, W, is exponentially falling with x.

The solutions which match the incident, reflected and transmit-
ted waves at the two interfaces are shown in Figure 6.22. Indeed,
the transmitted wave inside the barrier is exponentially falling with
increasing x. The surviving wave for large x is again oscillatory.

A map of the transmission coefficient for a range of constant
potentials covering both wells and barriers and with different widths
for the potential is shown in Figure 6.23. There is a steep fall in the
transmission coefficient, T, for barriers above the 5 eV energy of the
incident wave. This falloff is steeper as the width of the potential
increases, as expected.

For potential wells, the Ramsauer points of perfect transmis-
sion occur at different well widths and well depths. These points
are clearly seen in the figure. This is another connection to optics
since this condition is exactly that which applies for a Fabray–Perot
interferometer.

6.13. Wave Packet Scattering on a Well or Barrier

The wave packets which were already introduced can, in turn, be
scattered off potential wells or barriers. In this case the packet is



November 20, 2013 13:27 9in x 6in One Hundred Physics Visualizations Using MATLAB b1610-ch06

170 One Hundred Physics Visualizations Using MATLAB

Figure 6.23: Electron of 5 eV incident on a barrier, Vo < 0, or well, Vo > 0, extend-
ing over a width of a (Å). The Ramsauer solutions with T = 1 are evident.

not started at 〈x〉= 0, bound in a potential, but at 〈x〉 = −10 Å.
As before, a movie of the evolution of the wave as it encounters
the potential is provided. There are several distinct possibilities avail-
able to the user. The step can be checked by making the region of
the potential very wide. For a barrier, the mean packet energy can be
above or below the barrier height. For a well, the Ramsauer effect can
be explored, although the wave number spread of the packet makes
the effect somewhat diluted.

A specific example is shown using the script, “PDE Sch”. As
before, the MATLAB tool “pdepe” is used to numerically solve
the Schrödinger equation with the initial conditions being the
defined wave packet. The user selects a wave packet, in this exam-
ple, 〈x〉 = −10 Å, dx = 1 Å, v/c = 0.01. The scattering is off a barrier
of height 20 eV extending over 5 Å for a 5 eV incident electron. A
movie is provided, one frame of which is shown in Figure 6.24. It is
difficult to display the details available in a movie or to see how vary-
ing the parameters of the problem help to build up insight. Indeed,
that is why the exercises are open ended.
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Figure 6.24: Wave packet scattering off a barrier of height 20 eV and width 5 Å.
The wave is largely reflected but a portion is extending into the well and will
tunnel through.

In the frame shown, the wave has begun to encounter the poten-
tial, is largely reflected, but has a portion which is propagating
through the well and which will ultimately tunnel through to large x
values.

The solutions for a potential well are illustrated by one spe-
cific example of a packet scattering off a well of 20 eV depth and
2-angstrom width. One frame is shown in Figure 6.25, when the wave
has encountered the potential and the oscillatory behavior inside the
deep well becomes evident.

The user should “play” with this script in order to see the effect of
changing all the parameters. The time development of the solutions
is instructive.

6.14. Born Approximation — Scattering and Force
Laws

Continuing the study of scattering states, the Born approxima-
tion can be used to compute the scattering amplitude in the
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Figure 6.25: Wave packet scattering off a well of depth 20 eV and width 2 Å.
The packet has oscillatory behavior evident in the potential well region.

approximation that the initial state is a plane wave as is the final
state. In that case, the scattering amplitude is essentially the Fourier
transform of the scattering potential, V(r), into the momentum trans-
fer variable q.

ABorn ∼
∞∫

0

V (r)[sin(qr)/qr]r2dr (6.19)

The Born amplitude is set up by the script “qm BornScatt3”.
Use is made of the symbolic integration tool in MATLAB “int”.
Examples are given in the printout; a square well amplitude goes
as the inverse third power of q, while a Coulomb potential goes as
the inverse square, and a screened Coulomb goes as the inverse of
the sum of the squares of q and the inverse of the screening cut-
off length a. The square well amplitude is plotted in Figure 6.26.
The amplitude falls rapidly for q greater than a, the size of the
well. That falloff is true in general for an object of characteristic
size a.
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Figure 6.26: Born amplitude for scattering from a square well of depth a in qa
units.

The momentum transfer, q, is the vector difference in wave
number between the incoming and outgoing state. It assumes elastic
scattering and is determined by the incoming momentum, P, and the
scattering angle θ.

q2 = 2(p/�)2(1 − cos θ)

= (P/�)2 sin2(θ/2) (6.20)

In the case of a Coulomb potential, the amplitude A(q) goes as
the inverse square of the momentum transfer. If there is screening of
the nuclear charge by the atomic electrons, there is a cutoff distance,
a, which is on the scale of the size of the atom, which is about 100,000
times larger than the size of the nucleus. Ignoring the small screening
effect, the Rutherford cross section is obtained.

V (r) ∼ e−r/a/r

A(q) ∼ 1/(q2 + 1/a2)

dσ/dΩ ∼ |A(q)|2 → 1/ sin4(θ/2) (6.21)
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Figure 6.27: Born amplitude for power law potentials — inverse square and
inverse cube. The inverse-cubic potential gives the amplitude with the largest
value at high q values.

The user is given a choice of several potentials. The Born ampli-
tude is then evaluated numerically using the MATLAB tool for
numerical integration, “quad”. The user should try different scat-
tering force laws. The results for potentials going as two power laws
are shown in Figure 6.27 — for inverse square and inverse cube poten-
tials. The more singular power laws, such as inverse cubic, have an
amplitude that extends to higher q values. Generally more singu-
lar potentials support higher momentum transfers, allowing one to
differentiate between different force laws by studying the scattering
angular distributions.

6.15. Spherical Harmonics — 3D

The Schrödinger equation in three dimensions for central forces has
a common set of angular solutions. This feature has as its analogue
the fact that central forces have a conserved angular momentum in
classical mechanics. The solutions are characterized by a quantum
number specifying the angular momentum, �, and a quantum number
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specifying the projection of the angular momentum onto the z axis,
m. A few plots of the low � values of these functions are provided by
the script “qm Ylm2” and are displayed in Figure 6.28. MATLAB
does not provide a symbolic function to evaluate the functions. There
are �+1 maxima seen in Figure 6.28 for the m = 0 state. For � = m,
there is only a single maximum. Surfaces of the spherical harmonics
for � = 2 and m = 0 and 2 are shown in Figure 6.29. The script
supplies plots of all the harmonics for � < 3.

Figure 6.28: Contours of the spherical harmonics for � = 1 states (left) and � = 2
states (right) in the (x, z) plane.

Figure 6.29: Surfaces for the spherical harmonics for Y 0
2 (left) and Y 1

2 (right).
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6.16. Free Particle in 3D

A free particle in three dimensions is the simplest extension of
the plane wave scattering state in one dimension. In the case of a
spherically symmetric situation, the best approach is to exploit the
spherical symmetry and use the angular solution, Y m

� . The radial
Schrödinger equation is then:

d2u/d2r − u�(�+ 1)/r2 + k2u = 0 (6.22)

The terms in the radial equation are the radial kinetic energy, the
effective repulsive inverse square centrifugal potential proportional to
the square of the angular momentum, and the energy of the state,
set by the wave number k. The connections to the classical Kepler
problem should be noted.

The solutions are known and are displayed in the script
“qm Schro 3d J”. The solutions can be found symbolically in MAT-
LAB using the function “dsolve” for Equation (6.22). The solutions
are Bessel functions, which are symbolically available using the MAT-
LAB function “besselj(n,x)”

j�(z) =
√
π/2zJ�+1/2(z) (6.23)

The wave functions are then found as u(k) and the full solution
is the product of the spherical harmonics appropriate to a central, or
no, force and the Bessel functions for the free particle case. Generally
J is appropriate for cylindrical geometries, while j is appropriate for
spherical geometries.

u(r) =
√
rJ(�+1/2)(kr)

k =
√

2mE/�c

ψ = [u(r)/r]Y m
l (6.24)

The results of the symbolic printout are shown in Figure 6.30.
Explicit solutions are provided for the � = 0, 1 cases.

These solutions are plotted in Figure 6.31. It is seen that the
higher � solutions are pushed away from the origin by the cen-
trifugal potential as expected. The Bessel functions are functions
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Figure 6.30: Symbolic printout for the solutions of the free particle Schrödinger
equation in three dimensions.

Figure 6.31: Probability density for the lowest three angular momentum values
for a free particle moving in three dimensions, with m = 0.
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of cos and sin and powers of r. Their explicit forms can be found
symbolically in MATLAB by declaring x symbolic, syms x, and
then typing, for example, besselj (1/2, x) in the Command Window.
The result is (2∧(1/2)∗sin(x))/(pi∧(1/2)∗x∧(1/2)), which appears in
Figure 6.30.

6.17. Radioactive Decay — Fitting

With the discovery of radioactive decays, it became clear that
elements were unstable and could transmute. Soon after nuclear
transmutation was established experimentally using neutron bom-
bardment and by other means.

It is a prediction of quantum mechanics that such decays follow
an exponential behavior in time with a lifetime which is characteristic
of the particular dynamics.

The script “Radioactive Decay” uses the MATLAB function
“rand” to simulate decays by creating a data model of decay times
with a fixed lifetime. Random numbers are a key element in mak-
ing detailed models of processes, using what is called the “Monte
Carlo” method. A simple script to generate decay times t with unit
lifetime and plot them is shown below in Equation (6.25). The user
can enter this script easily using the Command Window. Other func-
tional dependencies are possible and, if interested, the user can try
to generate a few.

>> for i = 1 : 1000

t(i) = −log(rand);
end

>> [n, t] = hist(t, 50);

>> semilogy(t, n,′−o′) (6.25)

The user is first asked to pick a lifetime for the sample. A his-
togram of the results of choosing a lifetime of ten years is shown
in Figure 6.32. The exponential, within the statistics of the sample
of one thousand decays, is a straight line on a semilog plot. The
errors shown in Figure 6.32 are the square root of the number of
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Figure 6.32: Histogram of 1000 simulated decay times for a sample with a life-
time of 10 years.

Figure 6.33: Results of using the MATLAB fitting package. Top figure is the
histogram data plotted as the log of the bin contents. The fit is to a straight line
and the slope is 0.11.
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events in the respective histogram bin. The MATLAB simple fitting
tool is used again to fit a straight line to the log plot of the simulated
decay histogram. The result, shown in Figure 6.33, is 0.11/yr or a
lifetime of ∼9 years. If more events were used, or if the statistical
errors were more properly used to weight the fit, see Section 6.1, the
result would be a bit closer to the expected value of ten years.
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Chapter 7

Special and General Relativity

“Time is an illusion.”
— Albert Einstein

“In some sense, gravity does not exist; what moves the planets and the
stars is the distortion of space and time.”

— Michio Kaku

Relativity covers extreme situations, far removed from ‘normal” life.
Either the speeds involved are near that of light, special theory,
or the gravitational fields are very strong, general theory. In such
cases, a comparison to prior classical demonstrations, such as rocket
motion or Keplerian orbits can be made which brings out the salient
differences.

However, this is not to say that relativity is not important in our
everyday lives. To pick one example, our annual background dose of
radiation is largely due to cosmic ray muons at the Earth’s surface.
The dose is due to muons depositing ionization energy. The muons
are produced high in the atmosphere. At rest they have a lifetime
of 2.2µs. If they had a velocity of c, classically the muons would
only go a distance of 660 m before decaying into electrons. In fact,
we are bombarded by muons and that is so because of relativistic
time dilation.

7.1. Time Dilation

The basic postulate of the special theory of relativity is that light
has the same speed, c, in all reference frames moving with uniform
velocity with respect to one another. This then, immediately leads
to time dilation, where a time interval T in a frame where a clock
moves with velocity v/c= β is larger than the time measured on a
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clock at rest, the proper time To. The proper time is measured on
a single clock, while the time in the frame where the clock moves is
measured by different observers located at different spatial points,
who use a synchronized array of clocks.

T = Toγ

γ = 1/
√

1 − β2

β = ν/c (7.1)

A simple “proof” of time dilation is provided in the script
“SR Time Dilate” which uses a clock consisting of a light flasher
and a mirror. In the rest frame of the clock, the time To is 2L/c
where L is the distance between the clock and the mirror. In the
frame where the clock moves, the light must travel a longer distance,
but still at the speed c, so that the time T in that frame is larger
than the proper time, T 2 = (2L/c)2 + (βT )2.

The script makes two movies for the user. In the first, the light
goes to the mirror and back in the clock rest frame. In the second,
the clock moves through the frame and the time is counted in clock
ticks. The user chooses the velocity in that frame. The last frame
for a specific case is shown in Figure 7.1. The distance travelled by
the light flash is indicated in the figure, which then gives the time
dilation factor. The user should try several different velocities. In the
specific example, the v/c value is 0.9 and there are 20 clock “ticks”
in the rest frame and 45 in the moving frame. The “observed” time
dilation factor is 2.25, due to finite tick size, while the calculated
value is, Equation (7.1), 2.29.

7.2. Relativistic Travel

The time dilation effect can have large consequences. Consider the
case of a vehicle which has a uniform proper acceleration, in this case
g so as to make the travelers comfortable. The velocity change seen
from an observer at rest, dv, can be related to the velocity change in
the frame of the vehicle, dv∗, dv/[1− (v/c)2] = dv∗ using the Lorentz
transformation equations for time and position.
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Figure 7.1: Thought experiment for time dilation. On the left is the situation in
the rest frame on the last movie frame. On the right the situation in the frame
where the clock moves is shown.

The algebra of such a trip is displayed in the script “sr rel rock”.
The user picks a travel time, t∗, for the passengers. Formally, the
mathematics is the same as the trajectory of a charged particle in a
uniform electric field. There is a constant proper acceleration in the
rocket rest frame of g. The velocity and distance traveled and the
time elapsed for the stay at home observers are:

α = g/c

β = tanh(αt∗)
γ = cosh(αt∗)
t = sinh(αt∗)/α
z = c[cosh(αt∗) − 1]/α (7.2)

The non-relativistic (NR) limit is that v → gt∗, t → t∗ and z →
gt2/2 so the classical result is recovered. Printout from the script is
shown in Figure 7.2. For a twenty-year voyage, as experienced by the
passengers, 439 million years elapsed at home and the passengers will
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Figure 7.2: Printout for a rocket under constant proper acceleration.

travel 439 million light years. Of course, it has not been specified how
the acceleration is achieved nor how the passengers are to be shielded
against the high energy bombardment by interstellar dust. Still, it is
a wonderful fact that interstellar travel is possible in a short time for
the passengers.

The trip time for the at home observers as a function of the time
for the passengers is shown in Figure 7.3. As the velocity builds up,

Figure 7.3: Trip time for the passengers vs. time elapsed for the stay at home
observers. Note the semilogy scale. Classically time is absolute and the same
independent of speed and trip time equals home time.
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the time dilation factor continues to increase, leading to the enormous
time difference between the two sets of people. Yes, interstellar travel
is possible but truly “you can’t go home again”.

Figure 7.4: Trip time for the passengers vs the speed of the rocket. The classical
speed is not limited by light speed.

In Figure 7.4, the trip distance is shown for a classical twenty year
trip and for a relativistic trip. There is no classical “speed limit”, and
v > c is not forbidden. Even though the ship can have a speed greater
than c classically, the Lorentz length contraction is a much larger
relativistic effect, allowing the travelers to cover immense distances
at speeds close to c.

7.3. The Relativistic Rocket

This stellar travel sounds great but how is it accomplished? Previ-
ously the classical rocket was demonstrated as well as “solar sailing”
using light pressure as possible methods. First, let us look at the rel-
ativistic rocket. It can be thought of as an object of mass, m, which
“decays” into a mass (m− dm) and an exhaust object moving with
velocity νo/c= βo with respect to the rocket. The modified rocket
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equation, compare to Equation (2.14) and Equation (2.15) in the
classical rocket case, and the first integral of the equation is:

mdβ/dm = βo/γ
2

β = (1 −m/mo)2βo/(1 +m/mo)2βo (7.3)

The differential equation approaches the NR equation in the limit
of low velocity, dβ/dm → βo/m.

Clearly, light is the best propellant. There is a closed form solu-
tion which is possible for the velocity but not for the position. The
velocity is initially zero and it builds up to a value defined by the
exhaust velocity and the payload ratio. With no payload, the velocity
becomes c. Printout of the script “sr rocket3” is given in Figure 7.5.
The rocket equation is first solved symbolically using “dsolve” for the
velocity and then integrated numerically using “quad” to obtain the
position specific to the user input for the payload ratio and exhaust
velocity. The user also supplies the mass burn rate so that the mass
variable can be translated into time. The script returns the velocity
at the end of the “burn”.

Figure 7.5: Printout for the script describing the relativistic rocket.

As seen from Figure 7.5 with a reasonable payload ratio and
a fancifully optimistic exhaust velocity, a respectable time dilation
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Figure 7.6: Time dilation factor of a rocket as defined in Figure 7.5 as a function
of the mass ratio.

factor can be achieved. The plot of the gamma factor as a function
of the mass remaining in the rocket is shown in Figure 7.6. With a
high enough exhaust velocity, stellar trips are possible.

7.4. Charge in an Electric Field

A specific realization of a situation with uniform proper acceleration
occurs for a charged particle immersed in a uniform electric field.
Instead of force, in special relativity, the replacement of the force
by the time rate change of momentum is often the correct modifica-
tion to obtain relativistically correct equations. The solution of the
equations of motion in one dimension is shown in Equation (7.4).

The momentum is P , the electric field is E, a= qE/m, and the
particle energy is ε=

√
P 2 +m2. The momentum increases linearly

with time. If at is much less than one, the classical results are recov-
ered. The script “sr E Accel” solves for velocity and position symbol-
ically and creates plots both for the relativistic and the classical cases.
The velocity plot is shown in Figure 7.7. The velocity is limited to c
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Figure 7.7: Velocity as a function of time for a charged particle in a uniform
electric field.

in the case of relativistic mechanics. Note that in Equation (7.2), the
time t∗ referred to the passenger’s rest frame while t here refers to the
clock time in the frame where the charge moves and has momentum
of zero at t= 0.

dP/dt = qE

P = qEt

β = P/ε = at/
√

(at)2 + 1

a = qE/m

z = a[
√

(at)2 + 1 − 1] (7.4)

The Taylor series for the classical z result has a first correction
term, a3t4/8.

7.5. Charge in Electric and Magnetic Fields

The more complex case of both electric and magnetic fields in
three dimensions is treated in the script “ExB ODE SR”. Again, the



November 13, 2013 14:26 9in x 6in One Hundred Physics Visualizations Using MATLAB b1610-ch07

7. Special and General Relativity 189

replacement is of the force by the time rate change of the relativistic
expression for momentum. The notation is the same as was used in
Section 7.4. The equations appear in Equation (7.5). This script is
the relativistic generalization of that already described in Section 3
of the text.

d�P/dt = q(�E + �νx �B)

�β = �P/ε = �P/

√
�P 2 +M2

d�P/dt = q(�E + �Px �B/ε)

d�x/dt = c�P/ε (7.5)

When the velocity is small with respect to c, �P → m�ν, ε → M

and the NR equations are recovered, the time rate change of momen-
tum due to a magnetic field is now limited by the inverse energy
factor which replaces the NR mass factor. Classically, the Larmor
angular frequency of circular rotation qB/m becomes qB/γm, while
the radius of circular motion goes from vTm/qB to PT /qB where
the subscript T means transverse to the B-field direction. There are
practical ramifications. An accelerator needs to change the frequency
of the r.f. which supplies energy to the beam as the accelerated parti-
cles gain energy and the radius continues to increase, requiring larger
magnetic field volumes, even though the velocity approaches the limit
of c.

The script uses the “ode45” MATLAB tool to solve the six
differential equations for the three momentum components and the
three positions as was the case in the classical treatment. The units
are chosen so that all quantities are of order one. The user chooses the
three electric field components, the magnetic field magnitude and the
three initial momentum components. It is useful to start by trying
special cases with only electric or only magnetic fields. The exam-
ple which is plotted in Figure 7.8 and Figure 7.9 is for the choices
E= [0.3 0 0.3], B= 1, P = [10 0 0]. The momentum components are
plotted in Figure 7.8. The Pz starts at zero but is increased by Ez.
The Px starts at 10, increases slightly due to Ex but is also curved
by Bz. The (Px, Py) contour is shown in Figure 7.9. It is circular
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Figure 7.8: Plot of Px, Py and Pz as a function of time for a specific, user defined,
example.

Figure 7.9: Plot of Px vs Py for a specific, user defined, example. Note that the
radius of curvature in the magnetic field is now dependent on the momentum
which increases with time due to acceleration by the electric field.
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due to Bz but the radius of curvature depends on the momentum
perpendicular to Bz, which increases due to Ex leading to a radius
of curvature which is momentum dependent.

7.6. Relativistic Scattering and Decay

The relativistically correct scattering and decay kinematics are pro-
vided in the script “sr dec scat”. The situation in classical mechan-
ics was previously demonstrated in Section 2 of the text. In this
case, instead of the conservation of vector velocity and scalar kinetic
energy, the vector momentum and the scalar total energy are con-
served. These modified conservation laws define the kinematics.

There are two cases explored here. For the decay of a particle of
mass M into two particles of mass m, the center of momentum, CM,
quantities are simply:

MCM = M,βCM = P/ε, γCM = ε/M

ε∗ = M/2 (7.6)

The CM energy is simply the mass M particle, and the daughters
of mass m share the CM energy equally. The mass M particle moves
in the lab frame with momentum P .

In the second case of elastic scattering, m + M → m + M , the
initial state has a target of mass M at rest and a projectile, mass m,
moving with momentum P and energy ε. The CM in this case is:

M2
CM = m2 +M2 + 2Mε,

βCM = P/(ε+M), γCM = (ε+M)/MCM

P ∗ = PM/MCM (7.7)

The CM quantities for final state objects are indicated by a ∗

superscript. In both cases, they are defined by a single “scatter-
ing/decay angle”, θ∗. Making a Lorentz transformation back to the
laboratory:

PT = P ∗ sin θ∗

PL = γCM(P ∗ cos θ∗ + βCMε
∗) (7.8)
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Figure 7.10: Scattering of equal mass particles. The angle between the scattered
projectile and the recoiling target is less than ninety degrees for high momentum
projectiles.

As an example of a difference from the classical situation, for
the scattering of equal mass particles, (m+M → m+M in general
with target mass M), the angle between the outgoing particles is no
longer ninety degrees as it was in the NR case. An example is shown
in Figure 7.10. In this script, a “movie” is provided illustrating the
situation for several different scattering angles. The user chooses M
and the momentum of the projectile, mass m. There is also a choice
to explore scattering or decays.

In relativity mass can be converted into energy. Therefore, a
heavy object can convert to two or more lighter objects and also
impart momentum to them. Such decays are not possible in classical
mechanics where mass is independently conserved. An example of a
parent with mass, M = 3, and momentum P = 5, decaying into two
daughter particles with mass, m= 1 is shown in Figure 7.11. The
printout gives the maximum angles. The maximum of one angle cor-
responds to nearly the minimum angle of the other. A movie is shown
for different decay angles in the lab frame.
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Figure 7.11: Correlation of the decay angles with respect to the parent direction
for a parent with M =3 decaying into two daughters with m= 1. The angles are
scaled to their maximum attained values.

Figure 7.12: Printout for the specific case of the decay of a parent of mass,
M =3, with laboratory momentum =5.

The user dialogue for the case of particle decay is shown in
Figure 7.12. When the mass M and momentum of the decaying par-
ticle are specified, the only remaining variable is the decay angle in
the CM. The CM energy, beta and gamma and the momentum of
the daughters, m= 1, in the CM are already specified by the kine-
matics. The script runs over all possible decay angles in making the
plots.
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It is very useful for the user to vary the parameters for both
scattering and decay. In this way, some facility with the range of
possible effects can be attained.

7.7. Electric Field of a Moving Charge

Previously, the focus was on kinematics in relativity; time dilation,
rockets, acceleration and scattering or decay. The focus now shifts to
dynamics — the collisions between particles, the interactions between
them and the radiation arising from acceleration when particles are
in relativistic motion.

The electric field of a charge, q, in uniform motion, velocity v= cβ

depends on the angle between the velocity and the observation point
at the present position of the charge, θ, not the position when the
light was emitted (the retarded position).

�E ∼ [q(1 − β2)/(1 − β2 sin2 θ)3/2]�r/r3 (7.9)

The transverse field scales as gamma, while the longitudinal field
falls as the inverse square of gamma. The non-relativistic isotropic
field is recovered at low velocity. The fields are plotted in the script
“E SR”, where first the user chooses a velocity. Then, as shown in
Figure 7.13, contours for a representative range of velocities are com-
puted and plotted. The longitudinal field shrinks and the transverse
field grows with velocity as expected from Equation (7.9). In the limit
of highly relativistic motion, the electric field looks like a “pancake”
oriented transverse to the direction of motion.

7.8. Minimum Ionizing Particle

Again consider a charged particle moving uniformly along the z axis.
The observation point is chosen to a point fixed in space in the lab
frame at fixed x with y equal to zero. The longitudinal electric field at
the observation point integrates to zero by symmetry. The transverse
field, with increasing velocity, is compressed in time but increases in
field strength, leading to a momentum impulse, q

∫
Exdt, which is

constant, independent of incident particle velocity at high velocities.
This means all fast particles impart the same energy, independent of
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Figure 7.13: Contours of the electric field of a uniformly moving charge for
different β values.

Figure 7.14: Transverse fields of a moving charge observed at the point x= d,
y = 0= z. At left the charge moves with β = 0.1, while at right it has velocity,
β = 0.95.

velocity. The transverse field for two velocities is shown in Figure 7.14
as computed in the script “E Move Charge SR”. The field is plotted
in the natural units of e/d2, while the time is plotted in units of d/v.
In the case of slow velocities, the field should be of magnitude one
and persist for a time of order one. Indeed, as seen in the leftmost
plot in Figure 7.14, with β = 0.1, this expectation is borne out.
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A movie of the moving charge is provided, where the vector from
the charge to the observation point is shown in blue, while the electric
field vector at the point is displayed in red. One frame in the case
corresponding to the right plot of Figure 7.14 appears in Figure 7.15.

Figure 7.15: A frame of the movie for a charged particle with β = 0.95 when the
charge is near the observation point. The blue line goes from the charge, blue ∗,
to that point, while the red vector shows the size and direction of the electric
field.

At high velocity, the transverse field gets stronger (Section 7.7),
while the time of activity ∆t shrinks as illustrated in the right plot of
Figure 7.14. The result is that the momentum impulse ∆P imparted
by fast particles is independent of velocity. The transfer of kinetic
energy to the observation point ∆T approaches a constant as the
velocity approaches c. At low velocities the energy transfer is greater
than at large velocity, so that fast particles are “minimum ionizing”.

∆t = b/v → b/γv

F = e2/b2 → γe2/b2

∆P = e2/bv → e2/bc

∆T = ∆P 2/2m = e4/4Tb2 → e4/2mcb2 (7.10)
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7.9. Range and Energy Loss

The kinetic energy transfer goes as 1/T when β < 1, as shown in
Equation (7.10). For example a 100 MeV proton goes 5.35 cm in
water before giving up all its energy or what is called coming to the
end of its range. Range, R, goes as square of initial kinetic energy,
dT/dz ∼ r/T , where r is proportional to the minimum energy loss
per unit distance.

T =
√
T 2

o − 2rz

R = T 2
o /2r (7.11)

Range calculations are made for protons in water in the script
“Range Energy”. The user supplies an initial energy. Results for a
100 MeV proton are shown in Figures 7.16 and 7.17. The user can
make a series of choices, as usual.

Figure 7.16: Kinetic energy of a 100 MeV proton in water as a function of the
distance travelled.

The majority of the proton energy is deposited at the end of
the range, since dT ∼ 1/T . This feature is very useful in some med-
ical applications. In proton therapy, the initial energy can be set



November 13, 2013 14:26 9in x 6in One Hundred Physics Visualizations Using MATLAB b1610-ch07

198 One Hundred Physics Visualizations Using MATLAB

Figure 7.17: Energy deposited by a 100 MeV proton in water at a specific
location as a function of the distance travelled.

by a cyclotron in order to target the deposit of ionization energy for
radiation therapy at a very specific location. This minimizes the dose
given to healthy intervening tissue.

7.10. Relativistic Radiation

In general, the importance of radiation loss by a charged particle
increases with the velocity of the particle. Energy loss from ioniza-
tion or other processes dominates at low velocities, but radiation
takes precedence at high velocities, mirroring the growth of the elec-
tric and magnetic fields and the effect of relativity in the case of
radiation. In comparison, ionization approaches a minimum as the
velocity increases and all particles become minimum ionizing.

The radiated power depends on the square of the acceleration.
In the NR limit, the radiated power goes as a2 sin2 θ, where a is the
acceleration and the angle θ is between the observation point and
the acceleration. The radiated power, defined to be p here, for two
special cases, acceleration parallel, L, to the velocity and circular
motion with acceleration perpendicular, T , to the velocity has the
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angular dependence:

dpL/dΩ ∼ sin2 θ/(1 − β cos θ)5

dpT /dΩ ∼ 1/(1 − β cos θ)3[1 − sin2 θ/γ2(1 − β cos θ)2] (7.12)

In the case where the acceleration and the velocity are parallel,
the angle is as defined in the NR case. Now, however, there is an
angle, θmax ∼ 1/2γ, where the radiated power is at a maximum.
In general, the power is directed “forward”, in the direction of the
velocity vector. The total radiated power is larger than in the NR case
by a factor of γ6 for the parallel case. In the case of circular motion,
the velocity is taken to be along the z axis, while the acceleration is
along the x axis. The distribution shown in Equation (7.12) applies
to the case where the azimuthal angle φ is zero so that it applies in
the plane defined by the velocity and acceleration vectors. The power
in this case is a factor γ4 larger than the NR power. In the NR limit
the dipole pattern is recovered, but ∼ cos2 θ because the angle is
defined with respect to the velocity and not the acceleration.

The power spectra as a function of observation angle are
computed in the script “Rel Radiate”. The user picks a velocity to
examine. At the end of the script a family of curves is generated for
different velocities. The radiation pattern contours are shown for the
two special cases in Figures 7.18 and 7.19.

In the parallel case, the low velocity limit is a familiar dipole like
sin2 θ pattern. That pattern is distorted and tipped forward in the
high velocity case. In the perpendicular case, the pattern is already
forward — backward symmetric in the low velocity case. The effect
of high velocity is to strengthen the forward radiation and shrink its
angular extent. The forward going nature of the pattern is a general
property and it is called the “searchlight effect” in the literature.

7.11. Compton Scattering

Consider first the simpler case of a source of light at rest in the starred
frame, S∗, and moving with velocity β in a second inertial frame,
S. Using the Lorentz transformation of the energy and longitudinal
momentum of a photon, the purely kinematic effect of SR is shown
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Figure 7.18: Parallel acceleration angular pattern as a function of the source
velocity.

Figure 7.19: Perpendicular acceleration angular pattern as a function of the
source velocity.
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in Equation (7.13), assuming that the light is isotropic in the S∗

frame.

P ∗ cos θ∗ = γP (cos θ − β)

P ∗ = γP (1 − β cos θ)

cos θ∗ = (cos θ − β)/(1 − β cos θ)

dσ/dΩ = 1/[γ2(1 − β cos θ)2] (7.13)

This factor was seen already in Equation (7.12) and is purely of
kinematic origin.

Compton scattering is the scattering of a photon off an atomic
electron. The low velocity angular distribution was mentioned pre-
viously and is called Thompson scattering. The angular distribution
goes as: 1 + cos2 θ which is forward-backward symmetric. At higher
photon energies, much larger than the electron rest mass, the distri-
bution is thrown forward.

The Compton effect was one of the first experimental indications
of the particle nature of light. Since light carries energy and momen-
tum, then when it scatters off an electron, the electron recoil can
take off significant energy. The outgoing photon then has lost energy,
going from Eo incident to E outgoing. The energy relationship can
be determined solely by applying particle kinematics to the photon
and solving the equations expressing the conservation of energy and
momentum. The angular distribution was first worked out by Klein
and Nishina, where the angle θ is the angle of the outgoing photon
with respect to the incident photon.

y = E/Eo = 1/[1 + (Eo/m)(1 − cos θ)]

dσ/dΩ ∼ y2[y + 1/y − (1 − cos2 θ)]/2 (7.14)

The Compton angular distribution is evaluated in the script
“ComptonScat”. The user chooses a velocity and then the angu-
lar distribution for a set of velocities is plotted in Figure 7.20. At
10 keV, the distribution is quite isotropic, while at 100 MeV, roughly
200 times the electron mass, the forward peak of the photon is very
prominent. The NR limit where the energy is much less than the
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Figure 7.20: Angular distribution of the photon scattering angle for Compton
scattering as a function of the photon energy.

electron mass gives y → 1 and dσ/dΩ → (1+cos2 θ)/2 which are the
NR Thompson results.

7.12. Photoelectric Effect

The photoelectric effect describes the absorption of a photon of
energy, �ω, by an electron bound in a material with a work function,
Vo, and the subsequent emission of the electron with energy equal
to �ω − Vo. This effect was one of the first to display the quantum
aspects of light and was cited in the Nobel Prize of Einstein. Energy
conservation implies that �ω − Vo = P 2/2m.

The photoelectric effect has an angular distribution which is also
quite dependent on the energy of the incident photon. The photon
has transverse electric fields which, at low energies, exert forces on
the electrons and preferentially eject them at right angles to the
photon. With higher energy photons, the angular distribution for
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light elements, Zα << 1, and in an unscreened approximation is:

dσ/dΩ ∼ sin2 θ/[(Zα)2 + 2E/mc2(1 − β cos θ)]4

→ sin2 θ/(1 − β cos θ)4 (7.15)

The angle θ is the angle of the ejected electron with respect to
the incident photon direction and β refers to the electron velocity.

The angular distribution is evaluated in the script “Photoelec-
tric.” As per usual, the user chooses an energy and then the angular
distribution for a representative set of photon energies is computed.
The resulting plot is shown in Figure 7.21. At high energies, the
ejected electrons are thrown forward, while at low energies, the elec-
trons are ejected in the direction of the transverse electric fields of
the photon.

Figure 7.21: Angular distribution for electrons emitted in the photoelectric effect
for different photon energies.

7.13. Electrons and Muons in Materials

The passage of electrons and heavy electrons, or muons, through high
Z materials has points of interest. In this case, experimental data is
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used. The script is “HF Movie e u”. The data comes from work done
with beams of electrons and muons incident on a block of material
which is instrumented to sample the energy deposited as a function
of the depth in the block.

The total depth of the block is 5 inches of lead. There are 40 sam-
ples of the energy. The script provides a movie of the passage of
twenty electrons of 156 GeV (1 GeV= 109 eV) mean incident energy,
then 10 muons of 15 GeV energy, followed by 10 muons of 240 GeV
energy. Printout is shown in Figure 7.22.

Figure 7.22: Printout for the script to study energy deposits by electrons and
muons.

The electrons interact strongly by radiating and deposit
essentially all their energy in the block as seen in Figure 7.23.
They are very relativistic with a gamma factor of about
156,000/0.511= 305,000. The muons have masses about 205 times
larger than the electrons and, therefore, a smaller gamma factor.
Muons and electrons have the same charge and the same electro-
magnetic interactions.

The electrons lose energy by radiation. A cascade of electrons and
photons develops, which ultimately deposits all the electron energy
in the block. Since energy loss by radiation is proportional to a high
power of gamma, the muons do not radiate as much. In fact, they
serve as a sample of minimum ionizing particles, depositing much less
energy in the block. As seen from the printout, the electrons deposit
150 GeV, while the muons of 15 and 240 GeV energy deposit almost
the same energy of less than one GeV. Clearly, the muons represent
minimum ionizing particles that deposit the same amount of energy
independent of their own energy, as expected.
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Figure 7.23: Energy deposit for a 156 GeV electron as a function of depth in a
block of lead. There are 40 plates, 1/8′′ thick, for a total of 5 inches.

Parenthetically, most cosmic rays at the surface of the earth are
muons because they survive as minimally ionizing parts of the cos-
mic ray showers, while electrons are absorbed in the atmosphere and
because their decay times are time dilated, as mentioned previously.
The energy deposit for a 15 GeV muon is shown in Figure 7.24.
Note that, although there are large statistical fluctuations, the scale
of energy deposits is small compared to Figure 7.23. A rough esti-
mate is that the muons will lose 0.16 GeV by ionization in traversing
the block. The muons are not totally absorbed in the block, while
the electrons are. This observation shows that radiation is indeed
paramount for relativistic particles.

7.14. Radial Geodesics

In special relativity (SR) relative motion affected both time and
space. There was an invariant interval, the proper time of a clock
at rest in a frame, with time, ds. In a frame where the clock moved



November 13, 2013 14:26 9in x 6in One Hundred Physics Visualizations Using MATLAB b1610-ch07

206 One Hundred Physics Visualizations Using MATLAB

Figure 7.24: Energy deposit for a 15 GeV muon passing through a block of lead.

with a velocity, v, there was a time interval, dt

(ds)2 = (cdt)2 − (d�x)2

= (cdt/γ)2 (7.16)

In Equation (7.16), the basic time dilation effect is very clear. In
general relativity (GR) gravity and mass are incorporated into the
metric of space and time, where in SR this metric, Equation (7.16),
is Euclidian, or “flat”.

In general relativity (GR) masses determine the geometry of
space-time and then particles move on geodesics in that non-
Euclidian space-time. There are only a few solvable solutions of the
nonlinear GR field equations which relate the mass to the metric. In
addition, GR is nonlinear so that solutions are not additive. In the
case of a Schwarzschild solution for a non-rotating point mass, M ,
the metric is:

ds2 = (cdt)2(1 − rs/r) − dr2/(1 − rs/r) − r2d2Ω

rs = 2GM/c2 (7.17)
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This metric is the interval between two events labeled by
coordinate clock time, t, and ruler distance, r. The metric is spheri-
cally symmetric but the temporal interval and the radial interval are
non-Euclidian, with a characteristic length called the Schwarzschild
radius, rs, determined by the gravitational coupling, G, of the point
mass, M . This solution is the GR analogue of the classical point
particle solution for a mass, M , expressed as a GM/r potential.

Particles move on geodesics of this metric. The geodesic is the
path of maximal metric, like a great circle route on a spherical
surface. In a flat space, with no masses, the geodesic is a straight
line which is expected for a free particle. We consider only a sim-
ple case here, radial motion with an initial location ro and initial
velocity dr/dt equal to zero. The interval at large r � rs, is the
SR interval with clocks and rulers of observers at large r. In the
space ds refers to proper clocks. The solutions to the geodesic equa-
tions are:

s =
∫
ds =

√
ro/rs

∫ √
r/(ro − r)dr

ct = c

∫
dt

=
√

(ro/rs)(1 − rs/ro)
∫

(r3/2/[
√
ro − r(r − rs)])dr (7.18)

The solution for the trajectory as a function of proper time, s,
turns out to be the classical solution. The solution in terms of coor-
dinate time, t, has additional factors. Solutions for both time mark-
ers are constructed in the script “gr schwarz”. The user chooses
an initial radius and a mass, M , and the trajectories are com-
puted and plotted. The printout is shown in Figure 7.25 for the
specific choice of four solar masses and dropping from rest at a
radius of five Schwarzschild radii. The equations are integrated using
a trivial numerical approach, although symbolic solutions are pos-
sible. For example, the total proper time to reach the origin is
πr

3/2
o /2rs. Indeed, dr/ds is clearly well behaved for all r, while dr/dct

approaches zero as r → rs.
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Figure 7.25: Printout for the script “gr schwarz”. The velocities computed using
proper and coordinate times are plotted.

The two velocity measurements are shown in Figure 7.26, while
the two time markers are shown as functions of r in Figure 7.27. The
velocity dr/ds, smoothly increases as the object falls into the black
hole at the origin. In contrast, the velocity dr/dct vanishes at the
Schwarzschild radius. The proper time, or the time for an observer
at rest with respect to the particle, is well behaved and follows the
classical solution. On the other hand, the coordinate time, or the
time recorded by an observer at large radius approaches infinity as
the radius approaches the Schwarzschild radius.

This difference is due to the fact that a gravity field influences
the flow of time. Science fiction writers often use this fact. From
the viewpoint of an observer far away, the object never reaches the
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Figure 7.26: dr/ds and dr/dct velocities as a function of radius.

Figure 7.27: Times s and ct as a function of radius for motion on a Schwarzschild
radial geodesic for a particle released at rest at 5 Schwarzschild radii.
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Schwarzschild radius; while for a person riding the object, all seems
finite and classical. Time appears to run slowly in a gravity field to
an outside observer. However, as will be seen later, tidal forces will
destroy any object which falls into the “black hole”.

7.15. Inspiraling Binary Stars

As was the case in electromagnetism, accelerated gravitationally cou-
pled systems can generate gravitational waves. In most cases, these
are below the threshold of present detection methods because space-
time is “stiff” and difficult to deform. However, in extreme cases,
detection might be possible. One such case concerns binary star sys-
tems. These are very numerous in our galaxy. It is important that
the stars be compact so that the accelerations will be large because
the distances are small. We will see later that heavy stars will either
form a black hole or will become very compact neutron stars and,
therefore, the assumption of a compact star is not absurd.

The total luminosity of gravitational radiation for a binary is:

L ∼ (32G4/5c5)2M4/R5 (7.19)

Consider a binary star system of stellar mass M orbiting about
the common CM with radius R. The system radiates gravitational
energy and this causes it to be more tightly bound which means
that the radius decreases. This is the “death spiral”. The period, T ,
radius, R, and orbital frequency, ω, as a function of time, relative to
the collapse time, tc are:

dT/dt = −96/5(4π2)2/3(GM)5/3/[c521/3T 5/3]

R(t) = [(32(GM)3/5c5)(tc − t)]1/4

ω2(t) = GM/4R3(t) (7.20)

The radiation is quadrupole because there is no negative mass
and a dipole is, therefore, impossible. The radius goes to zero and
the frequency rises rapidly, hence the name “chirp” as a characteristic
signature for a binary system collapse due to gravitational radiation.

The gravitational radiation frequency increases as t as R(t)
decreases, leading to a space-time deformation going as the
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−1/4 power of t. The binary motion is demonstrated in a script
“GR Chirp”. The user chooses a binary mass, M , and an initial
radius R. A “movie” is then shown as the binary spirals in toward
a collision. The masses are assumed to have no radial extent. The
typical frequencies are a few kHz, so that gravity wave detectors
using the binaries as “standard candles” need to be sensitive in this
frequency range.

Printout for the script “GR Chirp” is shown in Figure 7.28 while
R(t) is shown in Figure 7.29. As the radius approaches zero the fre-
quency increases very rapidly, as shown in Figure 7.30.

Figure 7.28: Printout for a specific choice of binary mass and radius.

The movie which is produced can be very instructive. The system
changes radius and angular velocity in a quite characteristic way as
the binary collapses under the action of energy loss due to grav-
itational radiation. Indeed, existing detectors use the characteristic
pattern as a way to reject random noise and improve the sensitivity of
their searches using the expected “chirp” signature. The user should
try several masses and initial radii to explore how the binary system
collapses.

7.16. Gravity Wave Detector

Assuming that gravitational radiation exists, as predicted in GR,
detectors need to be designed to discover the existence and then loca-
tion of the sources of that radiation. What exactly defines gravity?
It is not a simple acceleration, because that can be removed by going
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Figure 7.29: Plot of the radius of the binary system as a function of time.

into a freely falling reference system as in the thought experiments
of the Equivalence Principle. What are definitive are the tidal forces.
For a mass M interacting with a test mass m, these forces tend to
elongate an extended object in the direction of M , z, and compress
it in a direction perpendicular to M , x. Expanding the force F about
the center of an object located at a radius r from the mass M :

Fz = 2z(GMm/r3)

Fx = −x(GMm/r3) (7.21)

The tidal forces are divergence-less, so that a tidal potential, can
be defined:

Φtide = −(z2 − x2/2)/r3/2 (7.22)

A contour plot of that potential is displayed in Figure 7.31. The
script “Grav Rad Tidal” also produces plots for the x and z forces
and a movie of the response of a gravity wave “antenna” to a passing
wave, shown in Figure 7.32. The compression and elongation of the
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Figure 7.30: Orbital frequency as a function of time for a typical binary system.

Figure 7.31: Tidal potential as a function of x and z with contours suggestive
of elongation and compression.
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Figure 7.32: Two frames of the “movie” of the response of an “antenna” to a
gravitational wave showing the wave of compression and elongation.

Figure 7.33: Change in the binary pulsar orbital period compared to that
expected due to losses of energy from gravitational radiation.
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“antenna” is due to the intrinsic gravitational tidal forces carried by
the wave.

The “antenna” consists of four small test masses. Gravitational
radiation is quadrupole not dipole as in electromagnetism, so that
more complex arrays are needed, whereas a dipole antenna can be
used for radio waves. The effect of the passing wave on the antenna is
vastly exaggerated. Fractional dimensional changes of order one part
in 1024 are more realistic and must be contemplated for the design
of a successful detector.

At present gravitational radiation has not been directly detected.
If compact binary chirps are to be detected, with circular frequencies
of about 10 kHz, then antennae of about 200 km are needed. That size
antenna array is more appropriate to a space based location and,
indeed, such a facility, called LISA, has been proposed.

Gravitational radiation has been observed by watching the reduc-
tion in the period of binary pulsars with the example given showing
the Nobel prize data shown in Figure 7.33. The observed reductions
with time are consistent with Equation (7.19). However, direct detec-
tion would be more compelling.
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Chapter 8

Astrophysics and Cosmology

“In the beginning there was nothing, which exploded.”
— Terry Pratchett

“Learn from yesterday, live for today, hope for tomorrow. The important
thing is to not stop questioning.”

— Albert Einstein

8.1. Gravity and Clustering

Gravity is always attractive, so that ultimately gravity wins. A script
“Grav Clump” illustrates this fact by simulating a two dimensional
system of particles self-interacting under gravity. There is no tem-
perature and the particles start at rest at random locations in a box.
If they encounter one another they are clustered, cease to move and
become inert. This is only a very crude model, but it gives some idea
of how gravitational clustering comes about. Obviously, any thermal
velocity slows down clustering.

The user first chooses the number of particles in the box. Start-
ing with two or three is instructive. Larger systems also tend to
clump, and the root mean square (r.m.s.) value of the initial and
final particle separation is printed. A movie of the time evolution of
the system is provided, and the last frame for ten particles is shown
in Figure 8.1. Eight of the particles have clumped together under
mutual gravitational attraction.

Gravity always wins. Random thermal motion resists the clump-
ing, but systems typically cool as they evolve. The time, tG, for a
low temperature gravitational system of particles to clump together
starting with a mass density, ρo, is:

tG =
√

3π/32Gρo (8.1)
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Figure 8.1: Final frame of the movie for an example of ten particles interacting
gravitationally at zero temperature.

Less dense systems remain unclumped longer. That is a reflection
of the fact that at higher density, more particles feel stronger grav-
itational forces due to the inverse square nature of the force. This
fact can be approximately observed using the model with different
numbers of total particles. Numerically, for a density near the present
average density of the Universe, 2× 10−26 kg/m3, the cluster time is
about 15 billion years.

8.2. Fermi Pressure and Stars

Stars start out as clusters of protons, electrons and neutrons at
high temperatures due to the gravitational binding energy rising as
clusters form. The temperatures are needed to overcome the Coulomb
barriers in order that the exothermic fusion reactions can occur. The
first cycle of reactions with the basic protons creates helium.

p + p → H2
1 + e+ + νe, 1.44MED

H2
1 + p → He3

2 + γ, 5.49MeV

He3
2 + He3

2 → He4
2 + p + p, 12.85MeV (8.2)
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The initial state nuclei Coulomb repel and therefore will react
rapidly only at high temperatures. As the star evolves more com-
plex nuclei are created because the nuclear binding energy is, very
roughly, 8 MeV per added neutron or proton. However, when iron is
reached, heavier nuclei are no longer more deeply bound. Adding
protons reduces binding because of their mutual Coulomb repul-
sion. To alleviate this repulsion, higher Z nuclei have more neutrons
than protons. The heavier nuclei beyond iron arise from reactions in
supernova explosions not stellar fusion reactions. As the saying goes,
“we are stardust”.

At some point, therefore, a star uses up its fuel, cools and begins
to contract. Gravity is always attractive and the star gains binding
energy by contracting. The star compresses, with mass density ρ,
under gravity due to self-interactions which dimensionally go as the
inverse radius of the star, R and the square of the mass, M , of the
star. The gravitational biding energy is:

UG = −(4π)2Gρ2R5

∼ GM2/R (8.3)

The compression leads to an increase in pressure, pG, which
dimensionally goes as the inverse fourth power of the radius of the
star. The notation is that UG is the gravitational potential, and V is
the volume of the star. The gravitational pressure therefore goes as
the inverse 4/3 power of the volume and as the square of the number
of nuclei, N .

pG = ∂UG/∂V ∼ GM2/R4 ∼ N2/V 4/3 (8.4)

Assuming that the star is burned out, the only resistance to grav-
itational contraction arises from the exclusion principle pressure of
the fermions, either the electrons or the nucleons. The Fermi energy
is proportional to the 2/3 power of the number density, as explored
in Section 5.6 above. Therefore, the Fermi pressure rises more rapidly
than the gravitational pressure, and an equilibrium can be achieved.

kF ∼ n1/3 = (3π2n)1/3

EF ∼ k2
F ∼ n2/3
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UF ∼ NEF ∼ N5/3/V 2/3

pF = ∂UF /∂V ∼ N5/3/V 5/3

= 2UF /3 (8.5)

Parenthetically, why does the world appear to be solid when we
know it is mostly empty space composed of atoms of angstrom size,
with almost all the mass localized in a nucleus about 100,000 times
smaller? The answer is that the stiffness of matter exists as a result
of the Fermi Exclusion Principle. Indeed, the Fermi pressure implies
a bulk modulus, B = 5p/3, where B is the inverse of the fractional
change in volume with pressure, 1/B = −1/V (∂V/∂p)T . Numeri-
cally, B can be estimated using Equation (8.5), to be 1010 nt/m2 for
Z =10, which is comparable to the measured value. It is the Fermi
pressure which makes matter stiff and provides us with the illusion
of solidity.

The stars burn by fusion and the radiation pressure stabilizes the
radius. When the fuel is exhausted the star contracts and the con-
traction is resisted first by the electrons. As they become relativistic
for massive stars, they are pushed into the protons and a neutron star
is formed. For some total number of nucleons, N , a stable radius, Rn,
exists in the balance of gravity, 1/V 4/3 and the Fermi pressure of the
neutrons, 1/V 5/3.

Rn = (81π2/16)1/3
�

2N−1/3/Gm3
n (8.6)

The velocity of particles near the top of the Fermi sea is
∼ mβc ∼ �kF :

β ∼ (π�/mc)(31/6/21/2)n1/3 (8.7)

UG scales asN2 while UF has a weaker dependence. Thus for mas-
sive stars, under contraction n rises, the Fermi momentum rises, the
particles become relativistic, and matter becomes less stiff because
the energy is then proportional to momentum as in SR and not
momentum squared as in the NR case.

pF = �
2π3(3n/π)5/3/15m

pF = �cn4/3 (8.8)
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Figure 8.2: Printout for the demonstration of Fermi pressure.

When β approaches one, the resisting matter fails and grav-
ity wins. In this case, which occurs for stars with masses of a few
solar masses, resistance crumbles and a black hole is formed. A more
precise mass value is the Chandrasekhar limit which is ∼1.44 solar
masses. The sun has a radius 7× 108 km. An electron stabilized star
will have a size about 10,000 km, while a neutron stabilized star has
a size about 10 km.

The situation is explored in a script “Fermi Pressure”. The user
supplies a mass in units of the solar mass. Printout for that choice
appears in Figure 8.2. NR and UR refer to non-relativistic and ultra-
relativistic.

The velocity for the electrons and nucleons as a function of the
contracting stellar radius is shown in Figure 8.3. The light electrons,
Equation (8.8), become relativistic at large radii, about 10,000 km.
The neutrons, about 2000 times heavier, become relativistic at radii
around 10 km.

The pressure due to gravity, resisted by the Fermi pressure, as
a function of stellar radius is shown in Figure 8.4. The contribu-
tions due to electrons are sharply reduced at radii around 10,000 km,
while the neutrons become ineffective at about 10 km. The ∗ labels
the Schwarzschild radius which indicates the formation of a black
hole when Fermi pressure fails for stellar masses of a few solar
masses.

Since this fate seems inevitable for massive stars, and since the
theory of general relativity, GR, predicts the existence of gravita-
tional waves, there is a worldwide attempt to search for these waves
which should be emitted in the process of stellar collapse.
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Figure 8.3: Velocity of electrons and neutrons for stars as a function of the stellar
radius.

Figure 8.4: Pressure due to gravity and the opposing Fermi pressure as a func-
tion of stellar radius. Electrons can stabilize large radii, while neutrons stabilize
smaller radii.
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8.3. Uniform Density Star

A reasonable model of a star is a complex undertaking. The discus-
sion of Fermi pressure above assumed a uniform density star as a first
approximation, which is a crude starting point. A simple model with
uniform density is calculated in the script “Star Constant Density”.
The user supplies the stellar mass. The gravitational pressure at the
center of the star is then:

p(0) = GM/Rc2 (8.9)

The resulting printout is given in Figure 8.5. The solar density
in this model is about that of water, which is assumed for the star in
finding the radius. A star with ten stellar masses has a Schwarzschild
radius of about 30 km and a radius, assuming a solar density, of
1.5 billion m. It is not relativistic as expected from the prior discus-
sion of Fermi pressure. Assuming a core temperature to 30 million
degrees confirms the fact that such a star is a NR object. The dimen-
sionless ratio of pressure to density, p/ρc2, is small for NR matter
since the rest mass then exceeds the kinetic mass due to motion.

Figure 8.5: Printout in the case of a star of constant uniform density as a first
approximation.

8.4. Stellar Differential Equations

A more complex model of a star can be attempted and compared
to solar data. The next level of approximation accounts for the
radial dependence of the density, mass, pressure luminosity and
temperature.
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The differential equations which describe such a simplified star
model are:

dM/dr = 4πr2ρ(r)

dp/dr = −ρ(r)GM(r)/r2

dL/dr = ε(r)dM/dr

dT/dr = −3κ(r)ρ(r)L(r)/[16πr2acT 3(r)], radiative

dT/dr = (1 − 1/γ)T/P (dp/dr), convective (8.10)

The increment in mass, M(r), in a shell of radius dr is dM/dr.
The increment in pressure, p(r), due to the mass at that r is dp/dr.
The luminosity, L(r), change due to energy production, ε(r), at that r
is dL/dr. The energy production scales with temperature as, ε ∼ T 5,
reflecting the need for high temperatures to overcome the Coulomb
barriers in fusion processes. The temperature change with r is con-
trolled by the opacity κ for radiative temperature distribution, but
by the pressure gradient for convective mixing. Convection will be
assumed to dominate in this model. The pressure due to the hydrogen
gas and the photon gas gives the star equation of state. The mean
atomic number of the gas is µ.

p = ρkT/µmp + aT 4/3 (8.11)

The user is asked for the input mass and radius of a star which are
only used as integration limits. The central density and temperature
are then requested as the defining inputs. The printout corresponding
to using values for the sun is shown in Figure 8.6.

The mass and luminosity at r = 0 are taken to be zero as a
boundary condition. The core temperature and density are used to
derive the core pressure. The solution starts at r = 0 and integrates
out to r=R using the MATLAB script “ode45”. The variables are
mass, pressure, luminosity and temperature. The density is a depen-
dent variable and is derived from the temperature and pressure using
the equation of state, Equation (8.11).

The model yields a core pressure which is quite close to the solar
value. The radial dependence of all five quantities are computed and
compared to solar data. The agreement is not too bad considering the
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Figure 8.6: Printout from “Star ODE3” for a star corresponding to the sun.

approximations which were made. Much more detailed models have
been made, but this simple model does reasonably well at bringing
out the physics of a hydrogen star somewhat like the sun.

The five variables are plotted by the script. The computed results
are compared to solar data, shown as o, in Figures 8.7 and 8.8.
The mass distribution and the temperature distribution are approx-
imately correct. The pressure and density shapes are not as good,
while the luminosity distribution reproduces the solar distribution
quite well. Although not accurate in the details, nevertheless, it is
a useful exercise to attempt to simply model the stars using well
understood physics concepts.

8.5. Radiation and Matter in the Universe

Moving from stars, their structure and their evolution, to still larger
objects, we end by considering the entire Universe. It is perhaps
astounding that the large scale properties of the Universe can be
understood by applying GR to a model and using just a few exper-
imental facts. The strangest thing about the Universe is that it is
explicable!
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Figure 8.7: Shape of the stellar mass distribution as computed, −, and with
solar data, o.

Figure 8.8: Shape of the stellar density distribution as computed, −, and with
solar data, o.
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The universe appears to have begun in a “Big Bang” at enormous
energy and temperature but at zero “size”. The matter and radiation
expanded and cooled. At early times the radiation dominated, but
it cooled as the inverse fourth power of the distance scale R, three
powers for volume expansion and one for energy redshift. At present,
it has a temperature of about 2.72 degrees Kelvin and the photon
number density is about 410 microwave photons per cm3. The num-
ber of photons is taken to be a constant and the adiabatic expansion
leads to the redshift.

The matter density is not now relativistic and is, therefore,
dominated by the rest masses of the particles. Therefore, it also
falls with expansion, but only as the inverse third power of the dis-
tance scale R, due to the volume expansion of space-time as the
Universe expands. Therefore, at long times, ignoring dark energy,
the Universe will become matter dominated.

The Universe appears to be “flat” with a total mass density
equal to the critical closure density, ρc. The three dimensional
spatial geometry is assumed to be flat in a homogeneous and
isotropic Universe. The full four dimensional geometry is curved
by the matter-energy of the Universe. Under those assumptions
the metric of the Universe is the flat Robertson–Walker metric,
defined by the scale parameter, R(t), or ds2 = (cdt)2 − R2(t)[dr2 −
(rdΩ)2].

The density is related to the current Hubble constant, Ho, where
H = (dR/dt)/R measures the expansion of the metrical scale factor,
R. The critical density arises from considerations of the GR dynamics
which relates the energy density of a model Universe, homogeneous
and isotropic, to the expansion of the metrical scale R due to gravi-
tational coupling G.

ρc = 3H2
o/8πG (8.12)

Using galactic redshifts to determine the Hubble parameter, this
average density is presently about 5.6 GeV per cubic meter or about
six protons. The present cosmic microwave background of red-shifted
photons, CMB, is about 41,000 times less than the present critical
density.
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The expansion of the Universe is tracked by the change of scale
factor R with time. It is measured by observing the redshift of light
emitted at scale, R, and wavelength, λ. As the space-time of the
Universe expands, all stars appear to be Doppler shifted with respect
to any observation point. The stars are embedded in space-time and
do not move with respect to it. Rather space-time expands, driven
by the energy density of the Universe.

1 + z = (λo − λ)/λ

= Ro/R (8.13)

The GR dynamics relating R(t) to the energy density ρ, ignor-
ing any cosmological sources, follows from Equation (8.12) and the
definition of H.

dR/dt = R
√

8πGρ/3

ρ ∼ 1/R3, R ∼ t2/3,matter

ρ ∼ 1/R4, R ∼ t1/2, radiation (8.14)

The time dependence of the scale factor is different depending on
whether the Universe is in a radiation or matter dominated phase.
This GR prediction is the needed dynamical input. The power law
solutions arise when the GR field equations relating the space-time
metric to the matter in the Universe are used. The R(t) solutions
follow from Equation (8.14). The behavior of the density with R

could already be justified heuristically as was done above.
The time dependence of the scale factor R, the mass density ρ,

and the temperature T are given in Table 8.1 for the two situations
which are encountered; early times when radiation dominated and
later times when NR matter dominated.

The script “Cosmos Power Law” produces plots of the behavior
of matter and radiation over the life of the Universe. The user chooses
a current Hubble parameter from which that behavior is derived.
Printout of the user dialogue appears in Figure 8.9.

The user makes an input of the present Hubble constant. The
present density is assumed to be the critical density (“flat” Universe).
The cosmic microwave background density and temperature are the
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Table 8.1: Power law behavior in time of matter and
radiation.

Power Law Radiation Epoch Matter Epoch

R ∼ tn 1/2 2/3
Matter Density −3/2 −2
Radiation Density −2 −8/3
Temperature −1/2 −2/3

Figure 8.9: Printout of the behavior of matter and radiation over the history of
the Universe.

other parameters used. The scaling with time displayed in Table 8.1
is then used.

The Hubble time for the user choice shown is about 13.7 billion
years. Radiation dominated until about 35,600 years at a tempera-
ture of about 63,000 degrees Kelvin. A plot of the temperature as a
function of time is shown in Figure 8.10.

The cosmic microwave background is measured today and it can
be extrapolated backwards in time because the Universe is transpar-
ent to these photons up until the point where hydrogen can be ionized
by the photons and then the Universe becomes opaque. Scaling the
present CMB kT value of 0.23 meV to 13.6 eV, the temperature would
be 163,000 degrees Kelvin. Assuming matter domination during the
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Figure 8.10: Plot of the temperature as a function of time for matter domination
(blue) and radiation dominated (red) epochs.

extrapolation, the opacity sets in at approximately the point where
matter and radiation have roughly equal effects on the evolution.

At earlier times the Universe is opaque to light. That is why the
cosmic microwave background maps are made for about 380,000 years
after the “Big Bang”. At the energy scale for nuclear binding, for
example, 2.2 MeV for deuterium binding, the temperature would
be about 2× 1010 degrees which would be relevant in the first few
seconds. However, knowing the nuclear physics and the thermody-
namics, the behavior of the Universe can be extrapolated to times
which cannot be directly observed but which yield testable predic-
tions about the elements.

The behavior of the energy density contained in the matter and
radiation as a function of time is shown in Figure 8.11. As expected,
matter dominates at present, assuming that there is no “dark energy”
component to the energy density for now. It is amazing that a mea-
surement of the present Hubble constant, the critical present density
and the cosmic microwave background enables an extrapolation over
such an enormous range of time.
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Figure 8.11: Energy density of the Universe as a function of time showing the
matter and radiation components of the total energy density.

8.6. Element Abundance and Entropy

Although the Universe is opaque at short times, knowing the physics
means that predictions about the abundance of the elements which
were formed in fusion reactions at high temperatures can be made
and compared to measurements of the primordial abundance of the
nuclei. Indeed, the agreement is quite good, indicating that events
with quite short times, a few seconds to minutes, after the Big Bang,
can be understood and the subsequent evolution of the Universe can
be explained.

With a number density of about 400 photons per cubic centime-
ter, radiation dominates the entropy of the Universe compared to the
present six protons per cubic meter. As the Universe cools, protons
and neutrons become stable particles and they, in turn, bind into
nuclei. The Boltzmann distribution for the number density of non-
relativistic nuclei of atomic weight A is:

nA ∼ T 3/2e(µA−mA)/kT (8.15)
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The chemical potential is µA. The neutron to proton ratio is
then fixed by the mass difference, Q= 1.29 MeV, where neutrons are
more massive than protons and thus less plentiful. At a “freeze out”
temperature, the rate of the reactions p→ n and n→ p becomes less
than the expansion rate, H, and the neutron and proton mixing falls
out of equilibrium. Then the relic abundance, n/p, is approximately
fixed.

n/p = e−Q/kT (8.16)

This ratio is roughly 0.17 for a 0.7 MeV freezout temperature
which depends on H which sets the scale for expansion. An approx-
imate plot of the n/p ratio as a function of temperature is shown in
Figure 8.12 using the script “Cosmos Elements”. Printout made by
that script appears in Figure 8.13. At high temperatures, the n/p
ratio is close to one. At freezeout it is about 0.17. Note that, at lower

Figure 8.12: Ratio of the abundances of n to p as a function of temperature for a
0.7 MeV freeze out temperature which is the temperature below which the Hubble
expansion is such that transitions between n and p cannot remain in equilibrium.



November 13, 2013 14:26 9in x 6in One Hundred Physics Visualizations Using MATLAB b1610-ch08

232 One Hundred Physics Visualizations Using MATLAB

Figure 8.13: Printout for “Cosmos Elements”. The Helium abundance depends
on H and the abundance of baryons.

temperatures, the ratio does not stay at 0.17 because the neutrons
quickly go into the creation of helium.

Note that the prediction of detailed solar models is that the sun
has only consumed about 0.3% of its mass over the 4.5 billion years
of its existence. Therefore, the extrapolation in time to primordial
abundance is not a large one and is not a source of large errors.

The light nuclei all have a binding energy B. Helium is very
deeply bound, for reasons in nuclear physics similar to the “noble
gas” behavior in atoms, a closed shell. Deuterium, in comparison,
is very weakly bound. Since the nuclei are bound, as the temper-
ature falls with expansion, at some point the nuclei are no longer
broken apart thermally and they also “freeze out”. Therefore, the
abundance of light nuclei, X, XA = nAA/Nn represents a balance
between the hot photon bath, or the ratio of photons to baryons, η,
and the binding energy.

XA ∼ T 3/2ηA−1eB/kTXA−Z
n XZ

p (8.17)

The fractional baryon abundance, or the X values of a nucleus A
depends on the temperature, the entropy η, the binding energy, B,
and the availability of the constituents, the Z protons and the (A−Z)
neutrons. Because of the very deep binding of 4He, (B = 28.3 MeV)
almost all the neutrons that are available after neutron freeze out
go into making that element. Very approximately, X4 ∼ 2(n/p)/[1 +
(n/p)]. The behavior of the abundance of p, deuterons (B = 2.2 MeV)



November 13, 2013 14:26 9in x 6in One Hundred Physics Visualizations Using MATLAB b1610-ch08

8. Astrophysics and Cosmology 233

Figure 8.14: Abundances of p, deuterons, 2H, and helium, 4He, nuclei as a func-
tion of temperature. The n which are available after freeze out almost all go into
the formation of helium nuclei because of the large helium binding energy.

and 4He is shown in Figure 8.14. The deuterium abundance, with a
small B, is less than that of the Helium with more constituents but
very deep binding.

It appears that the fractions of light nuclei can be well understood
by combining cosmology with nuclear physics. Surely, it is a great
achievement to understand the Universe over a range of billions of
years from first principles.

8.7. Dark Matter

Although the Universe appears to be “flat” or to have a density
equal to the critical density, the origin of this matter is not known.
Indeed, the observed matter of suns and other visible matter is only
about 4.2% of the critical density. The photons are a very small
fraction at present. It seems that there is matter with gravitational
interactions that accounts for about 23% of the critical density. This
is called “dark matter” and it is not known what it is composed
of. The remaining 73% is called “dark energy” and no one knows
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Figure 8.15: Printout for dark matter evidence.

what that is. It appears to be a “cosmological term” which will be
explored in the next section. It is humbling to realize that we have
so far explored and understood only about 4% of the Universe.

Some of the evidence for dark matter is given in the script
“DM Evidence”. The printout for that script appears in Figure 8.15.

There is a plot provided that shows a schematic of the rotation
curves of a galaxy. Simple kinematics indicates that the velocity of a
star within the galaxy goes linearly as the distance from the center,
while outside the galaxy, the velocity should fall as the inverse of
the square root of the radius. The velocities are measured by look-
ing at the Doppler shifts of the spectral lines of stars. Equating the
gravitational force to the centrifugal force:

F = GMm/r2 = mv2/r

M ∼ r3 (8.18)

Outside the galaxy, M is a constant and the velocities decrease.
What is observed is that the velocities continue to increase outside
the core of visible stars. Thus, masses which are dark are inferred to
extend well beyond the limits of the visible galaxy.

A second piece of evidence is the size of the Einstein rings that
are a consequence of the general relativistic deflection of light by a
gravity field. A schematic of the light rays is shown in Figure 8.16.
Gravity bends the light through an angle θG = 4GM/bc2 when it
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Figure 8.16: Schematic of a source which emits light, blue lines. A mass, green ∗,
is passed which deflects the light which subsequently is observed at (0,15). The
light appears to have originated at a ring source, red dashed lines. The behavior
is exactly like that of an optical lens.

passes by a mass, M , with impact parameter, b. A galaxy at distance
ds−dl away from the mass has an observer at distance dl beyond that
mass. The source emits with angle θs which has impact parameter b
when it passes the mass M . The geometry implies:

θs = b/(ds − d�)

θsds − θGd� = 0

b = θEd� =
√

4GM/c2[d�(ds − d�)/ds (8.19)

The equation for the ring size should be familiar from the previ-
ous work on the focal length of lenses, in this case with a finite object
and image distance.

The angular radius of the Einstein ring is θE which depends on
the mass, M . Again, data implies that the visible mass is woefully
insufficient to explain the observed ring sizes.

Given this information, many physicists are looking for dark
matter on Earth. As seen in the printout, Figure 8.15, our galaxy
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rotates with a velocity about 283 km/sec. Assuming that this is the
velocity of dark matter with respect to a laboratory on Earth, and
that dark matter consists of particles with 200,000 MeV mass, then
the maximum energy that could be transferred to a detection appara-
tus would be about 0.09 MeV. Since minimum ionizing particles like
cosmic rays deposit about 1.5 MeV/cm in light materials, it is clear
that these searches are hard. In addition, the collision cross section is
very small, so the collisions occur only very rarely. Nevertheless, the
importance of understanding the Universe makes such an observation
of fundamental importance.

8.8. Dark Energy

There is the possibility in the GR field equations of both ordinary
matter as a source and a vacuum energy because there are two possi-
ble tensor sources — the energy — momentum tensor which contains
matter and radiation, and the metric tensor itself. In fact, Einstein
originally included a “cosmological term” in his cosmological model
but later removed it. Nevertheless, the existence of “dark energy”, a
repulsive force, has been observed which is consistent with a vacuum
energy density. Apparently the vacuum may contain cosmological
energy density.

The matter density falls as the inverse cube of the scale R,
while the vacuum density, proportional to the metric itself, is a con-
stant. Therefore, ultimately the vacuum energy will dominate as the
Universe cools and expands and it will drive the Universe to an expo-
nential decrease in density.

In the presence of both matter and vacuum, or dark, energy the
scale R has a time dependence:

(dR/dt)2 = 8πGρR2/3 + ΛR2/3

ρm = ρo
m(R/Ro)3,Ω = ρ/ρc = 1

H(t) = Ho[(Ro/R)3(1 − Ωv) + Ωv]1/2 (8.20)

Equation (8.20) is the Friedmann equation for the special case
of a flat Universe, where a term kc2 would appear if the curvature k
were non-zero. The contribution of matter/energy to the expansion
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rate is controlled by ρ. The Universe is “flat”, with a fraction of the
critical density due to matter which is just 1 − Ωv.

The limit where the vacuum energy is small has t going as the 3/2
power of R in a matter dominated Universe. If the vacuum energy
dominates, the scale R increases exponentially with an exponent pro-
portional the square root of the vacuum density.

In the general case, the solution of Equation (8.20) for the coor-
dinate time t is:

Hot = 2/3
√

Ωv log[
√

1 + (R/Ro)3/a+
√

(R/Ro)3/a]

a = Ωv/(1 − Ωv) = Ωv/Ωm (8.21)

This result is evaluated with the script “Cosmos Vacuum2”. The
user supplies a present Hubble constant and a value for the vac-
uum energy ratio to the critical energy density. The H(t) and R(t)
functions are then computed and plotted. The printout is shown in
Figure 8.17.

The plot of Figure 8.18 shows the time dependence of the Hubble
“constant”. In the absence of dark energy H will fall with R as seen
in Equation (8.20), H =(dR/dt)/R ∼ √

8πGρ ∼ R−3/2. Dark energy,
in contrast, has a Hubble constant, H =

√
Λ/3, which is a constant.

The plot of Figure 8.19 shows the scale R as a function of time
in an initially matter dominated Universe. At short times the scale
evolves as the 2/3 power of t. At later times, where the crossover is
shown as a ∗, the scale begins to increase exponentially since the vac-
uum energy dominates. In Equation (8.20), the vacuum dominated
Hubble parameter would goes as dR/R=

√
Λ/3dt, R∼ e

√
Λ/3t. If

Figure 8.17: Printout for an example of the evaluation of the effect of vacuum
energy.
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Figure 8.18: Hubble parameter as a function of the scale factor R with dark
energy and without.

Figure 8.19: The scale R as a function of time in an initially matter dominated
Universe. The power law behavior at short times is due to matter domination,
while the exponential behavior at long times is driven by the vacuum energy.



November 20, 2013 9:34 9in x 6in One Hundred Physics Visualizations Using MATLAB b1610-ch08

8. Astrophysics and Cosmology 239

the observed dark energy is indeed a cosmological constant, then the
fate of the Universe is to suffer a “Big Stretch” after starting in a
Big Bang.

In a related topic, the Universe is now conjectured to have
undergone a rapid era of “inflation” with an exponential increase
in the scale R which smoothed out the distributions at early times.
The physical agent of that mechanism remains unknown, in con-
trast to our present knowledge of the nuclear physics and particle
physics which explains somewhat later times. Nevertheless, the time
“frontier” continues to be pushed both earlier and later.
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Appendix — Script for Classical Mechanics

All the scripts are available to the user using the enclosed media.
However, it is useful to be able to quickly jump to a written version
in order to see what MATLAB commands are used. To that end, the
script text for the section on Classical Mechanics is enclosed below.

2.1. Simple Harmonic Oscillator

%
% Program to compute oscillations - single spring, damped and
driven
%
clear; help cm osc; % Clear memory and print header
%
% spring (k,m) mass and spring constant
%
syms k m x t y yd B w
%
y = dsolve(′D2x=-k*x/m′,′x(0)=A′,′Dx(0)=0′); % free oscillation
%
fprintf(′ SHM, Initial Position = A, No Initial Velocity \n′)
pretty(y)
%
% now a damped oscillation
%
yd = dsolve(′D2x=-k*x/m-b*Dx/m′,′x(0)=A′,′Dx(0)=0′);
%
fprintf(′ SHM - Damped with Amplitude b, Initial Position = A, No
Initial Velocity \n′)
%pretty(yd);
%
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ydr = dsolve(′D2x=-k*x/m-b*Dx/m+B*cos(w*t)′ ,′x(0)=A′,′

Dx(0)=0′);
%
fprintf(′ SHM - Damped with Amplitude b, Driven with Amplitude
B, Frequency w \n′)
%pretty(ydr);
%
% now numerical evaluations
%
irun = 1;
iloop = 0;
%
while irun > 0

kk = menu(′Pick Another Driven, Damped Spring?′,′Yes′,′No′);
if kk == 2

irun = -1;
break

end
if kk == 1

%
%kkk = input(′Enter Spring Constant k: ′);
%mm = input(′Enter Mass on Spring m: ′);
%wo = sqrt(kkk ./mm);
wo = 1;
fprintf(′Spring Natural Frequency = %g \n′,wo);
AA = input(′Enter Initial Displacement A: ′);
bb = input(′Enter Damping Coefficient b/m: ′);
%
gam = bb ./2.0;
wnatsq = (wo .∧2 - gam .∧2);
if wnatsq < 0

fprintf(′Overdamped \n′)
else

wnat = sqrt(wnatsq);
fprintf(′ Underdamped Oscillation Frequency = %g \n′,wnat);

end
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%
tt = linspace(0,10,100);
k = 1;
m = 1;
A = AA;
b = bb;
for i = 1:100

t = tt(i);
yy(i) = eval(y);
yyd(i) = eval(yd);

end
%
iloop = iloop + 1;
figure(iloop)
for j = 1:length(tt)

plot(tt(j),real(yy(j)),′bo′,tt(j),real(yyd(j)),′r*:′)
title(′ Spring Motion, Undamped and Damped′)
xlabel(′t′)
ylabel(′x′)
legend(′undamped′,′damped′)
axis([0 10 -1 1])
pause(0.1);

end
plot(tt,real(yy),′b-′,tt,real(yyd),′r:′)
title(′ Spring Motion, Undamped and Damped′)
xlabel(′t′)
ylabel(′x′)
legend(′undamped′,′damped′)
%
BB = input(′Enter Driving Amplitude B: ′);
ww = input(′Enter Driving Frequency \omega: ′);
wressq = wo .∧2 - (bb .∧2) ./2.0;
wres = sqrt(wressq);
fprintf(′Driven Resonant Frequency = %g \n′,wres);
w = ww;
B = BB;
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for i = 1:100
t = tt(i);
yydr(i) = eval(ydr);

end
%
iloop = iloop + 1;
figure(iloop)
plot(tt,real(yyd),tt,real(yydr),′ :′)
title(′Damped Spring Motion, Undriven and Driven′)
xlabel(′t′)
ylabel(′x′)
legend(′undriven′,′driven′)
%
www = linspace(0,2 .*wo,25);
%
B = BB;
for j = 1:25

w = www(j);
for i = 1:100

t = tt(i);
yyydr(i) = eval(ydr);

end
ydrmx(j) = max(yyydr);

end
iloop = iloop + 1;
figure(iloop)
plot(www,abs(ydrmx))
title(′ Damped Spring Motion, Max Amplitude vs Driving
Frequency′)
xlabel(′\omega′)
ylabel(′x′)
hold on
plot(wo,AA,′ro′,abs(wnat),AA,′b*′,abs(wres),AA,′g+′,abs(wo-
gam),AA+0.5,′r+′,abs(wo+gam),AA+0.5,′r+′)
ydrvmx = max(abs(ydrmx));
ymaxplt = AA+1;
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if ydrvmx > AA+1;
ymaxplt = ydrvmx;

end
axis([min(www),max(www),0.,ymaxplt])
%
hold off
legend(′max x′,′\omegao′,′\omegadamped′,′\omegares′,
′ResWidth′)
%

end
end
%

2.2. Coupled Pendula

%
% Program to compute coupled simple harmonic motion
%
clear;
help cm 2sho;
%
% Clear memory and print header
%
% for 2 pendula both (k,m) coupled by a spring (k12)
%
syms xx x1 x2 k m k12 A1 A2 X1 X2
%
fprintf(′2 pendula with (k,m) and Coupling k12, Solution with Initial
Amplitude But No Velocity \n′)
fprintf(′D2x1=(-k*x1-k12*(x1-x2))/m,
D2x2=(-k*x2+k12*(x1-x2))/m \n′)
%
[X1, X2] = dsolve(′D2x1=(-k*x1-k12*(x1-x2))/m′ ,′D2x2=(-k*x2+
k12*(x1-x2))/m′ ,′x1(0)=A1′,′Dx1(0)=0′,′x2(0)=A2′,′Dx2(0)=0′);
%
% symbolic solution for the 2 displacements
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%
%pretty(X1)
%pretty(X2)
%
iloop = 0;
irun = 1;
while irun > 0

%
krun = menu(′Another Set of Parameters to Solve?′,′Yes′,′No′);
if krun == 2

irun = -1;
break

end
%
if krun == 1

iloop = iloop + 1
mm = input(′Enter Equal Masses: ′);
kk = input(′Enter Equal Spring Constants: ′);
kk12 = input(′Enter 1-2 Spring coupling: ′);
AA = input(′Enter Initial Displacements of the 2 Springs - [A(1),
A(2)]: ′);
m = mm;
k = kk;
k12 = kk12;
A1 = AA(1);
A2 = AA(2);
tt = linspace(0,10,100);
for i=1:100

t = tt(i);
xxx1(i) = real(eval(X1));
xxx2(i) = real(eval(X2));

end
%
figure(iloop)
plot(tt,xxx1,′b-′,tt,xxx2,′r-′)
title(′Spring Coupled Motion of 2 Pendula′)
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xlabel(′t′)
ylabel(′x 1, x 2′)
legend(′x 1′,′x 2′)
%
iloop = iloop + 1;
figure(iloop)
plot(tt,xxx1-xxx2,′b-′,tt,xxx1+xxx2,′r-′)
title(′ \omega for x 1+x 2=sqrt(k/m), \omega for x 1-x 2 =
sqrt(k+2k12)/m)′)
xlabel(′t′)
ylabel(′x 1+- x 2′)
legend(′x 1-x 2′,′x 1+x 2′)
%
iloop = iloop + 1;
figure(iloop)
x1max = max(xxx1);
x2max= max(xxx2);
x1min = min(xxx1);
x2min = min(xxx2);
xmin = x1min;
if x2min < x1min

xmin = x2min;
end
xmax = x1max;
if x2max > x1max

xmax = x2max;
end
xp1(1) = 0;
yp1(1) = 1;
yp1(2) = 0;
xp2(1) = 0;
yp2(1) = 1;
yp2(2) = 0;
xc = 0;
yc = 1;
%
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for i=1:100
xp1(2) = xxx1(i);
xp2(2) = xxx2(i) ; %+ 5;
plot(xxx1(i),0,′o′,5 + xxx2(i),0,′o′)
hold on
plot(xp1,yp1,′r-′,xp2+5,yp2,′g-′,xc,yc,′-′)
xcou(2) = xxx2(i)+5; ycou(1) = 0;
xcou(1) = xxx1(i); ycou(2) = 0;
plot(xcou,ycou,′–′)
title(′x 1 and x 2 Movie in Time′)
xlabel(′x 1 x 2′)
axis([xmin xmax+5 -0.5 1]);
pause(0.1)
hold off

end
%

end
end
%

2.3. Triatomic Molecule

%
% Program to symbolically solve ODE for linear molecule - 3 masses,
2 springs
% k/m = 1, (m/M) ratio = b, outer atoms have mass m, central
atom has M
%
clear all;
help cm triatomic % Clear the memory and print header
%
syms x1 x2 x3 b t w Aw y bb x xy
%
% now exactly solve the eqs of motion, with arbitrary initial posi-
tions, 0 initial velocities
%
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% Initialize - get Differential Eq to solve, x are w.r.t. equilibrium
% positions
%
[x1, x2, x3] = dsolve(′D2x1 = (x2-x1),D2x2 = b*(-2*x2+x1+x3),
D2x3=(x2-x3)′, .....

′x1(0)=x(1),x2(0)=x(2),x3(0)=x(3)′ ,....
′Dx1(0)=0,Dx2(0)=0,Dx3(0)=0′ );

%
fprintf(′Symbolic Solution Initial Velocities = 0, Initial Positions x(i)
\n′)
%
x1=simple(x1);
%pretty(x1)
x2=simple(x2);
%pretty(x2)
x3 = simple(x3);
%pretty(x3)
%
% use MATLAB tools to find eigenvalues , y = w∧2
%
fprintf(′ Aw is the Oscillation Matrix for the 3 Atoms, y = w∧2 \n′)
Aw = [1-y, -1, 0; -1, 2-y/bb, -1;0, -1, 1-y]
xy = det(Aw);
%
% use eigen tools on MATLAB
%
fprintf(′Eigenfrequencies = 0, 1, and sqrt(1+2b) \n′)
fprintf(′ The Determinant of Aw has Roots y = w∧2 of the Eigen-
frequencies in sqrt(k/m) Units \n′)
factor(xy)
%
iloop = 0;
irun = 1;
while irun > 0

%
krun = menu(′Another Molecule?′,′Yes′,′No′);
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if krun == 2
irun = -1;
break

end
%
if krun == 1;

iloop = iloop + 1
x = input(′Enter initial displacements [x(1) x(2) x(3)]: ′)
fprintf(′Initial Velocities are Zero \n′)
mm = input(′Enter Ratio of Small Outer Masses,m, to Inner
Mass,M: ′);
b = mm;
%
tt = linspace(0,10);
%
for i=1:100

t = tt(i);
X1(i) = eval(x1);
X2(i) = eval(x2);
X3(i) = eval(x3);

end
%
figure(iloop)
plot(tt,real(X1),tt,real(X2),′ :′,tt,real(X3),′-.′)
title(′Motion of the Three Masses, time in 1/\omega Units of
Outer Masses′)
xlabel(′time′)
ylabel(′displacement′)
legend(′x1′,′x2′,′x3′)
%
iloop = iloop + 1;
figure(iloop)
for i=1:100

plot(real(X1(i))-10,0.,′o′,real(X2(i)),0.,′*′,
real(X3(i))+10,0.,′o′)
axis([-15 15 -1 1])
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title(′ Movie of Motion of the Three Masses′)
xlabel(′displacement′)
hold on
xcou(1) = real(X1(i))-10; ycou(1) = 0;
xcou(2) = real(X2(i)); ycou(2) = 0;
xcoup(2) = real(X3(i))+10; ycoup(2) = 0;
xcoup(1) = real(X2(i)); ycoup(2) = 0;
plot(xcou,ycou,′–′,xcoup,ycoup,′–′)
hold off
pause(0.1)

end
end

end
%

2.4. Scattering Angle and Force Laws

%
% Program to compute the trajectory for scattering of diffferent
Force Laws
% use MATLAB ode
%
function Scatt Force Law
%
clear;
help Scatt Force Law; % Clear memory and print header
%
global iforce qq
%
% menu
%
fprintf(′ Energy and Mass Defined = 1 \n′)
%
irun = 1;
iloop = 0;
%
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while irun > 0
kk = menu(′Pick Another Force Law?′,′Yes′,′No′);
if kk == 2

irun = -1;
break

end
if kk == 1

%
iforce = menu(′F(r) = 1/r∧n′,′n=1′,′n=2′,′n=3′,′n=4′);
qq = menu(′ Repel/Attract?′,′Attractive ′, ′Repulsive′);
if qq == 1

qq = -1; % attractive
end
if qq == 2

qq = 1; % repulsive
end
%
E = 1;
m = 1;
vo = sqrt((2.0 .*E) ./m); % units so initial velocity = sqrt(2)
b = linspace(0.4, 4, 10); % impact parameter
iloop = iloop + 1;
jloop = iloop;
tspan = linspace(0,20,50);
N = length(tspan);
xc(1) = 0;
yc(1) = 0;
%
% protect for attractive and central forces
if qq == -1 && iforce > 2

b = linspace(1.0, 6.6, 10);
end
for ii = 1:10

[t,y] = ode45(@impact,tspan,[vo -10 0 b(ii)]); % initial vx =
vo, vy = 0, x = -10, y = b
%
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xx = y(:,2);
yy = y(:,4);
for jj = 1:N

figure(jloop)
plot(xx(jj),yy(jj),′o′,xc,yc,′*′)
title(′Trajectory of Scattering for This Force Law′)
xlabel(′x′)
ylabel(′y′)
if qq == -1
axis([-15 20 -20 5])
end
if qq == 1
axis([-15 20 0 20])
end
pause(0.05)

end
costheta = y(N,2) ./sqrt(y(N,2) .∧2 + y(N,4) .∧2); % scattered
angle
theta(ii) = acos(costheta);
figure(jloop + 1)
plot(xx,yy,′-′,xc,yc,′*′)
title(′Trajectory of Scattering for This Force Law′)
xlabel(′x′)
ylabel(′y′)
hold on

end
hold off
iloop = iloop + 2;
figure(iloop)
plot(b, theta,′-′)
title(′Scattering Angle vs. Impact parameter′)
xlabel(′b′)
ylabel(′\theta′)
%

end
end
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%
%- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
function dy = impact(t,y)
global iforce qq
%
dy = zeros(4,1);
r = sqrt(y(2) .∧2 + y(4) .∧2);
if iforce == 1

fr = qq .*1.0 ./r .∧1.0;
end
if iforce == 2

fr = qq .*1.0 ./r .∧2.0;
end
if iforce == 3

fr = qq .*1.0 ./r .∧3.0;
end
if iforce == 4

fr = qq .* 1.0 ./r .∧4.0;
end
dy(1) = (y(2) ./r) .*fr;
dy(3) = (y(4) ./r) .*fr;
dy(2) = y(1);
dy(4) = y(3);
%

2.5. Classical Hard-Sphere Scattering

%
% Program to solve 2 body NR collsions. Target at rest. No decays
%
clear all;
help cm NR scatt % Clear the memory and print header
%
% Initialize - Setup Momentum and Energy conservation
% 0 + T -> 1 + 2 but non-relativistic so mo = 1 = m1, elastic only
% assume o velocity is in +x, T is at rest
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%
fprintf(′Non Relativistic Elastic Scattering, Incident Mass = 1,
Target Mass Variable \n′)
%
% now some numerical plots
%
irun = 1;
iloop = 0;
while irun > 0

kk = menu(′Pick Another Target Mass?′,′Yes′,′No′);
if kk == 2

irun = -1;
break

end
if kk == 1

%
u = input(′Enter Target Mass: ′);
%
% loop on scattering angle of recoiling target
% find recoil velocity and scattered projectile angle and velocity
%
for i = 1:100

cph(i) = i ./101; % recoil angle
sph(i) = sin(acos(cph(i)));
%
% graphics for in line collision
%
v2(i) = (2.0 .*cph(i)) ./(1.0 + u); % recoil velocity
fact1 = 1.0 + v2(i) .∧2 - 2.0 .*v2(i) .*cph(i);
v1(i) = sqrt(fact1); % scattered projectile velocity
st(i) = (v2(i) .*sin(acos(cph(i)))) ./v1(i); % scattered projec-
tile angle
ct(i) = cos(asin(st(i)));
v1y(i) = v1(i) .*st(i);
v1x(i) = v1(i) .*ct(i);
v2y(i) = -v2(i) .*sph(i);
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v2x(i) = v2(i) .*cph(i);
end
%
iloop = iloop + 1;
figure(iloop)
plot(cph,v2,′-′);
title(′Velocity Of Outgoing Target w.r.t. Incoming Velocity vs.
Outgoing Angle′)
xlabel(′cos\phi′)
ylabel(′velocity′)
%
iloop = iloop + 1;
figure(iloop)
plot(ct,v1,′-′);
title(′Velocity Of Outgoing Projectile w.r.t. Incoming Velocity
vs. Scattering Angle′)
xlabel(′cos\theta′)
ylabel(′velocity′)
%
iloop = iloop + 1;
figure(iloop)
plot(v1,v2,′-′)
title(′Velocity of Projectile vs. Velocity of Target′)
xlabel(′v projectile′)
ylabel(′v target′)
%
iloop = iloop + 1;
for i = 1:10

figure(iloop);
%
% incident projectile
%
xp(1) = -1;
yp(1) = 0;
xp(2) = 0;
yp(2) = 0;
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xsp(1) = xp(2);
ysp(1) = yp(2);
j = i .*10;
xsp(2) = v1x(j);
ysp(2) = v1y(j);
plot(xsp,ysp,′r:′)
xst(1) = xp(2);
yst(1) = yp(2);
xst(2) = v2x(j);
yst(2) = v2y(j);
plot(xp,yp,′b-′,xsp,ysp,′r:′,xst,yst,′g-.′)
title(′Scattering for 10 Representative Angles′)
axis([-1.2 1.2 -1 1]);
xlabel(′x Component of Velocity′)
ylabel(′y Component of Velocity′)
legend(′projectile′,′scatt proj′,′recoil tar′)
pause(1);

end
end
%

end
%

2.6. Ballistics and Air Resistance

%
% Program to compute the trajectory of a projectile with air
resistance
%
clear;
help cm ballis sym; % Clear memory and print header
%
syms g k x y t vo alf ax ay p q pp qq ttt
%
% eqs of motion of projectile falling under gravity
%
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fprintf(′Projectile Motion, Air Resistance - Acceleration = k*dy/dt
\n′);
fprintf(′ Air resistance k (sec∧-1), Initial Angle/Velocity alf, vo - x(t)
and y(t) \n′);
%
p = dsolve(′D2x+k*Dx=0′,′Dx(0)=vo*cos(alf)′ ,′x(0)=0′);
pp = dsolve(′D2x=0′,′Dx(0)=vo*cos(alf)′ ,′x(0)=0′);
pretty(p)
fprintf(′x(t) With No Resistance \n′)
pretty(pp)
%
q = dsolve(′D2y+k*Dy+g=0′,′Dy(0)=vo*sin(alf)′ ,′y(0)=0′);
qq = dsolve(′D2y+g=0′,′Dy(0)=vo*sin(alf)′ ,′y(0)=0′);
pretty(q)
fprintf(′y(t) With No Resistance \n′)
pretty(qq)
%
% terminal velocity
%
fprintf(′y Velocity With Air Resistance \n′);%
ttt = diff(q,t);
pretty(ttt)
%
gg = 9.8; % MKS units m/sec∧2
kkk = 0.1; % has 1/T units
%
irun = 1;
iloop = 0;
%
while irun > 0

kk = menu(′Pick Another Initial Velocity and Angle?′,′Yes′,′No′);
if kk == 2

irun = -1;
break

end
if kk == 1
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%
syms g k x y t vo alf ax ay p q pp qq ttt
fprintf(′Projectile Motion, Air Resistance - Initial Velocity vo
\n′);
%
voo = input(′Enter Initial Projectile Velocity (m/sec): ′);
%
aa = input(′Enter Initial Projectile Angle (deg): ′);
%
aa = (aa .*2 .*pi) ./360.0;
%
% pick max time from no resistance case
%
tt = linspace(0, (2.0 .*voo .*sin(aa)) ./gg);
%
p = dsolve(′D2x+k*Dx=0′,′Dx(0)=vo*cos(alf)′ ,′x(0)=0′);
pp = dsolve(′D2x=0′,′Dx(0)=vo*cos(alf)′ ,′x(0)=0′);
q = dsolve(′D2y+k*Dy+g=0′,′Dy(0)=vo*sin(alf)′ ,′y(0)=0′);
qq = dsolve(′D2y+g=0′,′Dy(0)=vo*sin(alf)′ ,′y(0)=0′);
alf = aa;
%
g = gg;
k = kkk;
vo = voo;
%
for i=1:100

t = tt(i);
xxx(i) = eval(p); % resistance dxdt
yyy(i) = eval(q); % resistance dydt
if yyy(i) < 0;

yyy(i) = 0;
end

end
%
for i=1:100

t = tt(i);
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Xxx(i) = eval(pp); % free fall
Yyy(i) = eval(qq);
if Yyy(i) < 0

Yyy(i) = 0;
end

end
%
iloop = iloop + 1;
%
figure(iloop)
plot(tt,xxx,tt,Xxx,′:′)
title(′x as a function of t, with and without air resistance′)
xlabel(′t(sec)′)
ylabel(′x(m)′)
%
iloop = iloop + 1;
figure(iloop)
plot(tt,yyy,tt,Yyy,′ :′)
title(′y as a function of t, with and without air resistance′)
xlabel(′t(sec)′)
ylabel(′y(m)′)
%
iloop = iloop + 1;
figure(iloop)
jj = length(xxx);
xmax = max(Xxx);
ymax = max(Yyy);
for i = 1:jj

plot(xxx(i),yyy(i),′o′,Xxx(i),Yyy(i),′*′)
title(′x as a function of y, with and without air resistance′)
xlabel(′x(m)′)
ylabel(′y(m)′)
pause(0.1)
axis([0, xmax, 0, ymax])
hold on

end
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hold off
plot(xxx,yyy,′-′,Xxx,Yyy,′:′)
title(′x as a function of y, with and without air resistance′)
xlabel(′x(m)′)
ylabel(′y(m)′)
legend(′Air Resist′,′No Resist′)
%

end
end

2.7. Rocket Motion — Symbolic

%
% Solve non-relativistic rocket, symbolically - no friction or forces
%
clear all;
help cm rocket sym % Clear the memory and print header
%
% solve the rocket equation - free of forces
%
fprintf(′Solve d2y/dt2 = vo /(T-t), vo = exhaust velocity w.r.t.
rocket, T is Burn Time = mo/dmdt \n′)
%
vs = dsolve(′Dy -vo/(T-t)′,′y(0)=0′);
ys = dsolve(′D2y -vo/(T-t)′,′y(0)=0′,′Dy(0)=0′);
v =simple(vs);
v
y = simple(ys);
y
%
fprintf(′Final Velocity = vo*ln(mo/mp), mp = Payload Mass - Works
with Multi-Stage Analysis \n′)
%
fprintf(′Solve With Rocket in a Uniform Gravity Field - g \n′)
%
vg = dsolve(′Dy -vo/(T-t) + g′,′y(0)=0′);
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yg = dsolve(′D2y -vo/(T-t) + g′,′y(0)=0′,′Dy(0)=0′);
v =simple(vg);
v
y = simple(yg);
y
%
% go back to the simple rocket with no forces and make plots
% total possible burn time T is mo/(dm/dt) = 10000
% payload ratio mp/mo = 1-tp/T, tp = burn time for this
payload
%
fprintf(′Numerical Results: total possible burn time = T \n′)
fprintf(′Payload ratio mp/mo => Payload burn time tp = T(1-
mp/mo) \n′)
fprintf(′vo = exhaust velocity, acceleration in vo/T units, velocity in
vo units \n′)
fprintf(′Distance at the end of payload burn in voT units \n′)
%
%
irun = 1;
iloop = 0;
%
while irun > 0

kk = menu(′Pick Another Payload Ratio?′,′Yes′,′No′);
if kk == 2

irun = -1;
break

end
if kk == 1

%
mpmo = input(′Input the Payload Ratio: ′);
tpT = 1.0 - mpmo; % burn time for this payload
tt = linspace(0,tpT);
acel = 1.0 ./(1.0-tt); % acceleration in vo/T units
vel = log(1.0 ./(1.0-tt)); % velocity in vo units
dis = (1.0-tt) .*(1.0 ./(1.0-tt) -1.0 - log(1.0 ./(1.0-tt))); %
distance in voT units
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%
iloop = iloop + 1;
figure(iloop)
semilogy(tt,acel,′-′)
title(′Rocket - Acceleration in vo/T units′)
xlabel(′Time in Total Possible Burn Time Units from 0 to
Payload Burn Time′)
ylabel(′Acceleration in vo/T units′)
%
iloop = iloop + 1;
figure(iloop)
plot(tt,vel,′-′)
title(′Rocket - Velocity in vo units′)
xlabel(′Time in Total Possible Burn Time Units from 0 to
Payload Burn Time′)
ylabel(′Velocity in vo units′)
%
iloop = iloop + 1;
figure(iloop)
for j = 1:length(tt)

plot(tt(j),dis(j),′*′)
title(′Rocket - Distance in vo*T units′)
xlabel(′Time in Total Possible Burn Time Units from 0 to
Payload Burn Time′)
ylabel(′Distnace in vo*T units′)
axis([0,max(tt),0,1])
pause(0.1)

end
plot(tt,dis,′-′)
title(′Rocket - Distance in vo*T units′)
xlabel(′Time in Total Possible Burn Time Units from 0 to
Payload Burn Time′)
ylabel(′Distnace in vo*T units′)

%
end

end
%
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2.8. Rocket Motion — Numerical

%
% Solve non-relativistic rocket, numerically using Saturn V as an
example
%
clear all;
help cm rocket num2 % Clear the memory and print header
%
% solve the rocket equation - done in cm rocket sym
% now do some numerical evaluations
%
gg = 9.8; % accel at earth surface m/sec∧2
re = 6.378 .*10 .∧6; % earth radius - m
veq = (2.0 .*pi .*re) ./(24 .*3.6 .*10∧3); % equatorial launch velocity
km/sec
rs = 1.5 .*10 .∧11; % distance to sun - m
me = 6.0 .*10 .∧24; % earth mass - kg
ms = 2.0 .*10 .∧30; % sun mass, - kg
%
vorb = sqrt(gg .*re); % orbital velocity - circular, low orbit
ve =sqrt(2.0 .*gg .*re); % escape velocity for Earth ∼ 11.2 km/sec
vs = ve .*sqrt(ms .*re ./(me .*rs)); % escape velocity to leave solar
system ∼ 42 km/sec
%
fprintf(′Velocity, Satellite Low Circular Orbit (m/sec) = %g
\n′,vorb);
fprintf(′Escape Velocity - Earth (m/sec) = %g \n′,ve);
fprintf(′Escape Velocity - Solar System (m/sec) = %g \n′,vs);
fprintf(′Equatorial Launch Velocity (m/sec) = %g \n′,veq);
%
irun = 1;
iloop = 0;
%
while irun > 0

kk = menu(′Pick Another Rocket?′,′Yes′,′No′);
if kk == 2
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irun = -1;
break

end
if kk == 1

%
% total possible burn time T is mo/(dm/dt)
% payload ratio mp/mo = 1-tp/T, tp = burn time for this
payload
%
mo = input(′Input the Rocket Mass (in 10∧6 kg units) - Saturn
= 4x10∧6 kg: ′);
mo = mo .*10 .∧6;
mp = input(′Input the Payload Mass (in kg) - Saturn Escape
Module = 24610 kg: ′);
vo = input(′Input the Exhaust Velocity (in m/sec) - Saturn =
2200 m/sec: ′);
dmdt = input(′Input Burn Rate (in kg/sec) - Saturn = 15000
kg/sec: ′);
%
T = mo ./dmdt ; % max possible burn rate, with no payload
tp = T .*(1 - mp ./mo); % burn time for this payload
mpf = mo .*exp(-ve ./vo); % estimated payload for free rocket
to attain escape velocity
mps = mo .*exp(-vs ./vo); % escape velocity from the solar
system
%
fprintf(′Maximum Burn Time (sec) = %g \n′,T);
fprintf(′Burn Time for This Payload (sec) = %g \n′,tp);
fprintf(′Payload Mass for Free Rocket to Attain Earth Escape
Velocity = %g \n′,mpf);
fprintf(′Payload Mass for Free Rocket to Attain Solar Escape
Velocity = %g \n′,mps);
%
tt = linspace(0,tp);
tt = tt ./T;
%
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% the free rocket
%
for i = 1:length(tt)

x = 1.0 ./(1.0 - tt(i));
AF(i) = (vo ./T) .*x;
VF(i) = vo .*log(x);
YF(i) = vo .*T .*(1.0 - 1 ./x - log(x) ./x);

end
tt = tt .*T;
%
% the rocket in a uniform field = g
%
tl = -vo ./gg + T; % t=0 is ignition, t = tl is lift time, when
acceleration > 0
ul = T - tl;
fprintf(′Time After Ignition for Acceleration to be > 0, Liftoff
= %g \n′,tl);
%
for i = 1:length(tt)

if tt(i) < tl
AG(i) = 0.0;
VG(i) = 0.0;
YG(i) = 0.0;

else
%

u = T - tt(i);
AG(i) = vo ./u - gg;
VG(i) = -vo .*log(u ./ul) + gg .*(u-ul);
YG(i) = vo .*(u .*log(u ./ul) - (u-ul)) - gg .*(u-ul) .*(u-ul)

./2.0;
end

end
iloop = iloop + 1;
figure(iloop)
semilogy(tt,AF,′-′,tt, AG)
title(′ Rocket - Acceleration in m/sec∧2′)
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xlabel(′Burn Time - sec′)
ylabel(′Acceleration′)
legend(′Free rocket′,′Rocket in g′)
%
iloop = iloop + 1;
figure(iloop)
semilogy(tt,VF,′-′,tt,VG)
hold on
semilogy(tt,vorb,′r-′,tt,ve,′r:′,tt,vs,′r–′)
title(′ Rocket - Velocity in m/sec′)
xlabel(′Burn Time - sec′)
ylabel(′Velocity′)
legend(′Free rocket′,′Rocket in g′,′Orbital Velocity′, ′Earth
Escape Velocity′, ′Sun Escape Velocity′)
hold off
%
iloop = iloop + 1;
figure(iloop)
%
jj = length(YF);
xmax = max(tt);
ymax = max(YF);
for i = 1:jj

semilogy(tt(i),YF(i),′o′,tt(i),YG(i),′*′)
title(′ Rocket - Distance m′)
xlabel(′Burn Time - sec′)
ylabel(′Distance - m′)
pause(0.1)
axis([0, xmax, 0, ymax])
hold on

end
hold off
semilogy(tt,YF,′-′,tt,YG)
hold on
semilogy(tt,re,′r-′)
title(′ Rocket - Distance m′)
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xlabel(′Burn Time - sec′)
ylabel(′Distance - m′)
legend(′Free rocket′,′Rocket in g′, ′Earth Radius′)
hold off

%
end

end
%

2.9. Taking the Free Subway

%
% earth subway - compute free fall through chord of earth
%
clear all; % Clear memory
help cm subway2; % Print header
%
% Initialize variables, subway is defined by chord
%
g = 9.81; % Gravitational acceleration (m/s∧2)
re = 6.38 .*10 .∧6; % Earth radius (m)
%
fprintf(“Free” Subway - Earth Radius = %g (m) \n′,re);
%
irun = 1;
iloop = 0;
%
while irun > 0

kk = menu(′Pick Another Subway Distance?′,′Yes′,′No′);
if kk == 2

irun = -1;
break

end
if kk == 1
%
% pick chord for “free” subway
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%
dist = input(′Enter Subway Distance in km : ′);
dist = dist .*1000;
theta = asin(dist ./(2.0 .*re));
depth = re .*(1-cos(theta));
sdist = (re .*2.0 .*theta);
%
fprintf(′Free Subway Max Depth = %g (m) \n′,depth);
fprintf(′Free Subway Distance Along Earth = %g (m) \n′,sdist);
%
% Gauss law - uniform Earth density ==> force due to distance
to earth
% center, mass inside scales at r∧3
% eq of motion is; accel = gx/re, due to |a|= GM/r∧2∼ r and
dir
% cosine= x/r
% start with no velocity, supply no energy = ”free subway” -
”drop” to destination
% simple harmonic motion
%
omega = sqrt(g ./re ); % SHM frequency
T = (2.0 .*pi) ./omega; % period
T = T ./2.0; % trip is one way = 1/2 period
fprintf(′Circular Frequency = %g Trip Time = %g (sec)
\n′,omega,T)
%
t = linspace(0,T);
x = - re .*sin(theta) .*cos(omega .*t);
%
N = length(t);
for jj=1:N

plot(t(jj),real(x(jj)-x(1)),′o′)
title(′Movie of Subway Trip′)
xlabel(′time(sec)′)
ylabel(′Distance Traversed by Subway (m)′)
axis([0 t(N) 0 max(x-x(1))])
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pause(0.1)
end
iloop = iloop + 1;
figure(iloop)
plot(t,real(x-x(1)))
title(′x(m) as a function of t along the subway′)
xlabel(′t(sec)′)
ylabel(′x(m)′)
%

end
end
%

2.10. Large-Angle Oscillations — Pendulum

%
% Program to compute the motion of a simple pendulum
% using MATLAB tools
%
function cm pendul
%
clear all;
help cm pendul % Clear the memory and print header
%
global gL vo tho
%
fprintf(′Pendulum - Large Oscillations \n′);
%
irun = 1;
iloop = 0;
%
while irun > 0

kk = menu(′Pick Another Pendulum?′,′Yes′,′No′);
if kk == 2

irun = -1;
break
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end
if kk == 1

%
% Set initial position and velocity of pendulum
%
tho = input(′Enter Initial Angle (degrees): ′);
tho = (tho .*pi) ./180.0; % Convert angle to radians
vo = input(′Enter Initial Angular Velocity (degrees/sec): ′);
vo = (vo .*pi) ./180.0;
gL = input(′Enter g/L in MKS units: ′);
%
% small angle period, omeg = sqrt(gL);
%
omega = sqrt(gL);
T = (2.0 .*pi) ./omega;
tt = linspace(0, 2.0 .*T);
%
fprintf(′Small Angle Circular Frequency = %g 1/sec \n′,omega);
fprintf(′Small Angle Period (sec) = %g \n′,T);
fprintf(′Period = 2 * pi *sqrt(L/g) Increased by Factor 1 +
theta o∧2/16 \n′);
%
% numerical solution using ODE tools
%
[t,y] = ode45(@pend,tt,[vo tho]);
%
% small angle SHM for comparison
%
yyy = tho .*cos(omega .*tt) + (vo .* sin(omega .*tt)) ./omega;
yyyy = -tho .*omega .*sin(omega .*tt) + vo .*cos(omega .*tt);
%
iloop = iloop + 1;
figure(iloop)
yy = y(:,1);
plot(t,yy,′-′,tt,yyyy,′:′)
title(′Angular Velocity′)
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xlabel(′t(sec)′)
ylabel(′d\theta/dt′)
legend(′Full Solution′,′Small Oscillation′)
%
iloop= iloop + 1;
figure(iloop)
zz = y(:,2);
N = length(t);
for j = 1:N

%
plot(t(j),zz(j),′o′,tt(j),yyy(j),′*′)
title(′Angular Position′)
xlabel(′t(sec)′)
ylabel(′\theta(rad)′)
legend(′Full Solution′,′Small Oscillation′)
axis([0 max(t),min(zz),max(zz)])
pause(0.1)

end
plot(t,zz,′b-′,tt,yyy,′r:′)
title(′Angular Position′)
xlabel(′t(sec)′)
ylabel(′\theta(rad)′)
legend(′Full Solution′,′Small Oscillation′)

end
end
%
function dy = pend(t,y)
%
global gL vo tho
%
dy = zeros(2,1);
dy(1) = -gL .*sin(y(2));
dy(2) = y(1);
%
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2.11. Double Pendulum

%
% Program to compute the motion of 2 coupled pendula
% using MATLAB tools, chaotic large angle motion
%
function cm chaotic
%
clear all;
help cm chaotic % Clear the memory and print header
%
global L vo tho
%
fprintf(′Two Coupled Pendulum - Large Oscillations \n′);
%
irun = 1;
iloop = 0;
%
while irun > 0

kk = menu(′Pick Another Two Initial Angles?′,′Yes′,′No′);
if kk == 2

irun = -1;
break

end
if kk == 1

%
% Set initial position of pendula
%
tho = input(′Enter Initial Angles (degrees), Velocities = 0,[th1,
th2]: ′);
tho = (tho .*pi) ./180.0; % Convert angle to radians
% L = input(′Enter L in MKS units, m = 1 and g/L = 1: ′);
L = 1;
vo = [0 0];
%
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% numerical solution using ODE tools
%
tspan = linspace(0,50,100);
[t2,y2] = ode45(@pend2,tspan,[vo(1) vo(2) tho(1) tho(2)]);
%
iloop = iloop + 1;
figure(iloop)
yy1 = y2(:,1);
yy2 = y2(:,2);
plot(t2,yy1,′-b′,t2,yy2,′r:′)
title(′Angular Velocity of Pendula′)
xlabel(′t(sec)′)
ylabel(′d\theta/dt′)
legend(′First Pendulum′,′Second Pendulum′)
%
iloop = iloop + 1;
figure(iloop)
yy3 = y2(:,3);
yy4 = y2(:,4);
plot(t2,yy3,′-b′,t2,yy4,′r:′)
title(′Angular Position of Pendula′)
xlabel(′t(sec)′)
ylabel(′\theta(t) - rad′)
legend(′First Pendulum′,′Second Pendulum′)
%
iloop= iloop + 1;
figure(iloop)
zz1 = y2(:,3);
zz2 = y2(:,4);
N = length(t2);
for j = 1:N

%
xxx1(1) = 0;
yyy1(1) = 0;
xxx1(2) = L .*sin(zz1(j));
yyy1(2) = -L .*cos(zz1(j));
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xxx2(1) = xxx1(2);
yyy2(1) = yyy1(2);
xxx2(2) = xxx1(2) +L .*sin(zz2(j));
yyy2(2) = yyy1(2) -L .*cos(zz2(j));
plot(xxx1,yyy1,′-b′,xxx2,yyy2,′-r′,xxx1(1),yyy1(1),′*g′,

xxx1(2),yyy1(2),′bo′,xxx2(2),yyy2(2),′ro′)
title(′Two Pendula′)
xlabel(′x′)
ylabel(′y′)
axis([-1.5 1.5 -2.5 0.5])
pause(0.1)

end
end

end
%
function dy = pend2(t,y)
%
global L vo tho
%
dy = zeros(4,1);
fact = dy(3) .*dy(4) .*sin(y(3)-y(4)) + 3 .*sin(y(3));
dy(1) = - (L .∧2 .*fact) ./2.0;
fact = -dy(3) .*dy(4) .*sin(y(3)-y(4)) + sin(y(4));
dy(2) = - (L .∧2 .*fact) ./2.0;
fact = 16.0 - 9.0 .*(cos(y(3)-y(4)) .∧2);
dy(3) = 6.0 ./(L .*L .*fact);
dy(3) = dy(3) .*(2.0 .*y(1)-3.0 .*cos(y(3)-y(4)) .*y(2));
dy(4) = 6.0 ./(L .*L .*fact);
dy(4) = dy(4) .*(8.0 .*y(2)-3.0 .*cos(y(3)-y(4)) .*y(1));
%

2.12. Coriolis Force

%
% Program to look at Coriolis force, symbolic solution plus numerical
% Free fall on Surface of the Earth
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%
clear all;
help cm coriolis; % Clear memory and print header
%
fprintf(′Coriolis Force, Nothern Hemisphere, w is w*cos, Latitude
\n′);
%
% look at symbolic ODE solution, z vertical, x south, y east
%
syms y z w g yy zz
%
[yy,zz] = dsolve(′D2y=-2*Dz*w′,′Dy(0)=0′,′y(0)=0′,′D2z=g′,′Dz(0)
=0′,′z(0)=0′);
%
fprintf(′ z is Vertical, x is South and y is East \n′)
%
zz
yy
%
w = ( 2.0 .*pi) ./(24 .*60 .*60); % Earth rotation, rad/sec
g = 9.8; % acceleration in m/sec∧2
%
% now numerical evaluations
%
irun = 1;
iloop = 0;
%
while irun > 0

kk = menu(′Pick Another Free Fall Height and Latitude?′,′Yes′,
′No′);
if kk == 2

irun = -1;
break

end
if kk == 1

%
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zh = input(′Enter Initial Free Fall Height (m): ′);
th = input(′Enter Latitude (deg): ′);
th = (2.0 .*pi .*th) ./360.0;
%
z = linspace(0,zh);
zz = z(100)-z;
%
% z = gt∧2/2 - remove t to find y(z)
%
y = - ((g .*w .*cos(th)) .*(((2.0 .*z) ./g) .∧1.5)) ./3.0;
yy = y(1) - y;
%
fprintf(′Total Eastward Deflection (m) = %g \n′,yy(100));
%
iloop = iloop + 1;
figure(iloop)
plot(yy,zz)
xlabel(′y(m)′)
ylabel(′z(m)′)
title(′Free Fall Coriolis Deflection′)
%

end
%

end
%

2.13. Kepler Orbits — Numerical

%
% Kepler — Program to compute solar system orbits - simple
numerical integration
%
function cm kepl3
%
clear all; % Clear memory
help cm kepl3; % Print header
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%
global G Mo
%
% Initialize variables
%
G = 6.67 .*10 .∧-11; % MKS units
Mo = 2.0 .*10 .∧30; % solar mass
au = 1.49 .*10 .∧11; % AU = earth-Sun distance, m
yr = 60.0 .*60.0 .*24.0 .*365.0; % sec
%
irun = 1;
iloop = 0;
%
while irun > 0

kk = menu(′Pick Another Solar Orbit?′,′Yes′,′No′);
if kk == 2

irun = -1;
break

end
if kk == 1

%
ro = input(′Enter Initial Distance ro(AU): ′);
roa = ro .*au;
%
ve = sqrt((2.0 .*G .*Mo) ./roa); % escape velocity
fprintf(′Escape Velocity, v = %g m/sec\n′,ve);
%
vc = sqrt(G .*Mo ./roa);
fprintf(′Velocity of circular orbit, v = %g m/sec\n′,vc);
T = (2.0 .*pi .*roa) ./vc;
fprintf(′For circular orbit, period = %g sec\n′,T);
fprintf(′For Earth Orbit, 1 au = %g m, period = %g sec
\n′,au,yr);
%
voy = input(′Enter initial tangential velocity (AU/yr), 2\pi for
Circle: ′);
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vox = input(′Enter initial radial velocity (AU/yr): ′);
%
% Set up for plotting the orbit
%
% convert to m, sec
%
vox = (vox .*au) ./yr ;
voy = (voy .*au) ./yr ;
%
tspan = linspace(0,5.0 .*T,200);
[t,y] = ode45(@kepler,tspan,[vox roa voy 0]);
%
iloop = iloop + 1;
figure(iloop)
%
N = length(tspan);
Nloop = 0;
for j = 1:N

xx(j) = y(j,2) ./roa;
yy(j) = y(j,4) ./roa;

end
for j = 1:N-1

if (yy(j+1) .* yy(j) + 0.001 > 0) ||(yy(j+1) < 0)
Nloop = Nloop + 1;
xxl(Nloop) = xx(j);
yyl(Nloop) = yy(j);

else
break

end
end
xmax = max(xxl);
xmin = min(xxl);
ymax = max(yyl);
ymin = min(yyl);
%
% the movie first, to understand orbital velocity
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%
for i = 1:Nloop

plot(xxl(i),yyl(i),′o′)
hold on
title(′Trajectory of Orbit, 5 Circular Periods or Stop on
Repeat′)
xlabel(′x/ro′)
ylabel(′y/ro′)
plot(0.0,0.0,′r*′)
axis([xmin xmax ymin ymax])
pause(0.1)

end
hold off
%
plot(xxl,yyl,′-′,0.0,0.0,′r*′)
title(′Trajectory of Orbit, 5 Circular Periods or Stop on Repeat′)
xlabel(′x/ro′)
ylabel(′y/ro′)
axis([xmin xmax ymin ymax])

end
%
end
%
%- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
%
function dy = kepler(t,y)
global G Mo
%
dy = zeros(4,1);
r = sqrt(y(2) .∧2 + y(4) .∧2);
fr = -(G .*Mo) ./(r .∧2.0);
dy(1) = (y(2) .*fr) ./r;
dy(3) = (y(4) .*fr) ./r;
dy(2) = y(1);
dy(4) = y(3);
%
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2.14. Analytic Kepler Orbits — Energy
Considerations

%
% Program to compute solar system orbits, closed and open
%
clear all; % Clear memory
help cm kepl; % Print header
%
G = 6.67 .*10 .∧-11; % MKS units
Mo = 2.0 .*10 .∧30; % solar mass, kg
au = 1.49 .*10 .∧11; % AU = earth-Sun distance, m
yr = 60.0 .*60.0 .*24.0 .*365.0; % year in sec
%
irun = 1;
iloop = 0;
%
while irun > 0

kk = menu(′Pick Another Solar Orbit?′,′Yes′,′No′);
if kk == 2

irun = -1;
break

end
if kk == 1

%
ro = input(′Enter Initial Distance ro(AU): ′);
%
fprintf(′L∧2 is GMro/m∧2 for a Circular Orbit at Radius ro \n′);
%
% Find Effective 1-d Potential - Use centrifugal Potential,

V∼1/r∧2
%
xxx = linspace(0.25,10.0); % r variation in ro units
Veff = 1 ./(2.0 .*xxx .*xxx) - 1.0 ./xxx;
xmin = 1 ; % min of Veff
Veffmin = -1.0 ./2.0; % Veff at min
%
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iloop = iloop + 1;
figure(iloop)
plot(xxx,Veff,xmin,Veffmin,′*′)
title(′ Effective Potential for L∧2, Ec = -1/2,0 > Eellipse >

Ecircle′)
xlabel(′r/ro′)
ylabel(′Veff/(GMm/ro)′)
axis([0 10 -0.6 0.5])
%
% circular radius for this L is ro, controlling variable is energy
% E
%
ac = ro .*au; % in m
%
ve = sqrt((2.0 .*G .*Mo) ./ac); % escape velocity, circular orbit
vee = ve ./1000.;
vo = sqrt((G .*Mo) ./ac); % circular velocity
voo = vo ./1000.;
To = (2.0 .*pi .*ac) ./vo; % circular orbit period
Too = To ./yr;
%
fprintf(′Escape Velocity (km/sec) = %g at ac (au) =
%g\n′,vee,ac ./au);
fprintf(′For circular orbit, v(km/sec) = %g, Period (yr) = %g
\n′,voo,Too);
%
q = input(′Enter Total Energy in Units of Circular Energy -
G*M*m/2*ro, = q > -1: ′);
ecc = sqrt(1.0 + q); % eccentricity
%
if q < -1

fprintf(′No Solution\n′);
end
if q > 0

fprintf(′Hyperbolic Orbits\n′);
% turning points of potential in terms of ro - i.e. elliptical axes
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x1 = (1.0 ./q) .*(-1.0 + sqrt(1.0 +q));
x2 = (1.0 ./q) .*(-1.0 - sqrt(1.0 +q)); % eccentricity is e =

sqrt(1+q)
fprintf(′For Hyperbolic Orbit, Turning Point in ro units = %g
\n′,x1);
hold on
plot(x1,-q .*Veffmin,′o′)
hold off
%

end
if q == 0

fprintf(′Parabolic Orbits\n′);
end
if q < 0 & q >= -1

fprintf(′Elliptical Orbits\n′);
%
% find the turning points, axes and period
%
ac = ac ./au ; % circular orbit radius in ro units of au
ae = ac ./abs(q); % major axis
be = ae .*sqrt(1.0 - ecc .∧2); % minor axis
% period
TT = (2.0 .*pi .*(ae .*au) .∧1.5)./sqrt(G .*Mo);
TT = TT ./yr;
% turning points of potential in terms of ro - i.e. elliptical axes
x1 = (1.0 ./q) .*(-1.0 + sqrt(1.0 +q));
x2 = (1.0 ./q) .*( -1.0 - sqrt(1.0 +q)); % eccentricity is e =
sqrt(1+q)
%
fprintf(′For Elliptical Orbit, Major/Minor Axes (au) = %g,
%g \n′,ae,be);
fprintf(′For Elliptical Orbit, Turning Points in ro units = %g,
%g \n′,x1,x2);
fprintf(′For Elliptical Orbit, Orbital Period (yr) = %g \n′,TT);
fprintf(′For Elliptical Orbit, Eccentricity = %g \n′,ecc);
%
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hold on
plot(x1,-q .*Veffmin,′o′, x2,-q .*Veffmin,′o′)
hold off
%

end
%
% populate cos theta and find the radius r, in ro units - x as
above
%
iloop = iloop + 1;
figure(iloop)
theta = linspace(0,2 .*pi);
ct = cos(theta);
st = sin(theta);
Xr = 1.0 ./(1.0 + ct .*ecc);
dth = theta(2)-theta(1);
%
% numerical integration to get elapsed time on orbit points, t in
units of To
%
t(1) = 0;
for i =2:100

t(i) = t(i-1) + dth ./(2.0 .*pi .*((1.0 + ct(i) .*ecc) .∧2));
end;
%
% velocity in units of circular velocity at radius ac
%
vel = sqrt(q + 2.0 .*(1.0 + ct .*ecc));
%
xx = ct .*Xr;
yy = st .*Xr;
%
plot(xx,yy,′b-′,0,0,′r*′);
if q < 0.0 & q >= -1

hold on
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minx(1) = (x1-x2) ./2;
minx(2) = (x1-x2) ./2;
miny(1) = -be;
miny(2) = be;
majx(1) = x1;
majx(2) = -x2;
majy(1) = 0;
majy(2) = 0;
plot(minx,miny,′-r′,majx,majy,′g-′)
axis square
axis equal
hold off

end
title(′Orbit for this Choice of ro and E′)
xlabel(′x/ro′)
ylabel(′y/ro′)
%
iloop = iloop + 1;
figure(iloop)
plot(theta ./(2.0 .*pi),t .*To ./yr)
xlabel(′orbit angle/2\pi′)
ylabel(′Time Elapsed (yr)′)
title(′Orbital Time as a Function of Orbital Angle′)
%
iloop = iloop + 1;
figure(iloop)
plot(theta ./(2.0 .*pi),vel)
xlabel(′orbit angle/2\pi′)
ylabel(′Orbital Velocity′)
title(′Orbital Velocity in Units of Circular Velocity at Radius =
ro′)

end
%
end
%
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2.15. Stable Orbits and Perihelion Advance

%
% Program to look at Perturbed Circular Orbits - Stability, and
Perihelion Advance
%
function cm circl orbit
%
clear all;
help cm circl orbit; % Clear memory and print header
%
global Itype n b
%
fprintf(′Circular Orbits - Perturbed \n′);
%
% now numerical evaluations
%
irun = 1;
iloop = 0;
%
while irun > 0

kk = menu(′Pick Another Power Law?′,′Yes′,′No′);
if kk == 2

irun = -1;
break

end
if kk == 1

%
n = input(′Enter Power Law Force n for f(r) ∼ 1/r∧n : ′);
fprintf(′Circular Orbits - Perturbed, Stable only for n < 3 \n′);
%
if n < 3

fprintf(′Stable Perturbations: ′)
else

fprintf(′Unstable Perturbations: ′)
end
%
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fprintf(′For a Given n, Period T∧2 ∼ radius∧(n+1), Kepler is
T∧2 = r∧3 \n′)

%
% now time interval for 3 circular orbits
% pick a = radius = 1, f(a) = c/a∧n and c = 1% pick m = 1

==> v = 1
%
Itype = 1;
tspan = linspace(0,2.0 .*pi);
[t,y] = ode45(@Perihel,tspan,[0.0 0.1]);
%
fprintf(′Initial position is displaced by x(0) = 0.10 \n ′)
fprintf(′Initial velocity is v(o) = 1, Dimensionless Units \n ′)
%
iloop = iloop + 1;
figure(iloop)
plot(t ./(2.0 .*pi),y(:,2))
xlabel(′t(periods)′)
ylabel(′x/a′)
title(′Deviation from Circular Orbit Over One Unperturbed
Period′)
%

end
%

end
% now the perihelion advance
%
fprintf(′Perihelion Advance - Inverse Square Law Plus Small Inverse
Fourth Power \n ′)
Itype = 2;
b = input(′Input the Coefficient of the Fourth Power: ′);
tspan = linspace(0,6.0 .*pi);
[t,y] = ode45(@Perihel,tspan,[0.0 0.1]);
fprintf(′Initial position is displaced by x(0) = 0.10 \n ′)
fprintf(′Initial velocity is v(o) = 1, Dimensionless Units \n ′)
%
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iloop = iloop + 1;
figure(iloop)
plot(t ./(2.0 .*pi),y(:,2))
xlabel(′t(periods)′)
ylabel(′x/a′)
title(′Deviation from Closed Orbit Over Three Periods′)
%
iloop = iloop + 1;
figure(iloop)
plot(cos(t) + y(:,2), sin(t))
xlabel(′t(periods)′)
ylabel(′x/a′)
title(′Orbit Over Three Periods′)
%
%- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
%
function dy = Perihel(t,y)
%
global Itype n b
%
dy = zeros(2,1);
if Itype == 1; % perturbed circ orbits - different force laws - n

dy(1) = -1.0 ./(1 + y(2)) .∧n + 1.0 ./(1.0 + y(2)) .∧3 ;
dy(2) = y(1); % y(1) = vx, y(2) = x

end
%
if Itype == 2; % central inverse sq law with small (b) inverse fourth

power
dy(1) = -1.0 ./(1 + y(2)) .∧2 - b ./(1 + y(2)) .∧4 + (1.0 + b)

./(1.0 + y(2)) .∧3;
dy(2) = y(1); % y(1) = vx, y(2) = x

end
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Doppler, 103, 227, 234

double slit, 98

drift velocity, 138, 139

driven oscillator, 94
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187, 260, 261, 264

exothermic fusion, 217

far zone, 87
fast Fourier transform, 78
Fermi energy, 127, 131, 218
Fermi pressure, 217–222
Fermi-Dirac, 123
flat universe, 227, 236, 237
flow source, 135, 136
fluid flow, 116, 132, 135, 140
force laws, 31, 33, 54, 156, 171, 174,

250, 287
Fourier series, 12–14, 16, 94
free particle, 162, 163, 176, 177, 207
freeze out, 231–233
Fresnel diffraction, 100
Friedmann equation, 236
functions, 1–5, 9, 10, 13, 14, 16, 18,

30, 31, 76, 96, 97, 100, 112, 123,
125, 126, 146, 150, 154, 155, 157,
158, 160, 165, 175, 176, 208, 237

fusion, 167, 168, 217–219, 223, 230

G coupling, 207, 226
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general relativity, 181, 206, 220
geodesic, 205–207, 209
gradient, 21, 63, 72, 74, 76, 79, 111,

112, 132, 223
gravitational radiation, 210, 211, 214,
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harmonic oscillator, 13, 23, 24,
154–156, 162, 163, 240

heat, 46, 137, 142–144, 147, 162
helium, 116, 118, 126, 127, 130, 153,

154, 217, 232, 233
abundance, 232

Helmholtz, 69, 86
Hubble constant, 226, 227, 229, 237
Hubble time, 228
hydrogen atom, 148, 151–153, 156
hydrogen star, 224
hyperbola, 36, 53, 55, 57, 59

ideal gas law, 116, 119
image charge, 65, 66
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impact parameter, 33, 35, 235, 251,
252

index of refraction, 103, 106, 107,
109, 110, 164

inflation, 239
integration, 3, 5, 12, 22, 39, 52, 53,

62, 127, 131, 172, 174, 223, 276, 283
ionization, 151, 152, 154, 181, 198,

205

Joukowski profiles, 133

Kepler, 23, 51, 53, 59, 148, 150, 176,
276, 278–280, 286

kinematics, 36, 37, 191, 193, 194, 201,
234

Klein–Nishina, 201

Laplace equation, 72, 74, 77
lead block, 206
lifetime, 178–181
lift, 44, 135, 265
light deflection, 234
light polarization, 105
light pressure, 79, 81, 185
Lorentz force, 83
Lorentz transformation, 182, 191, 199
luminosity, 81, 146, 210, 222–224

magnetic current loop, 67
magnetic ray tracing, 107–111, 115
magnetic shield, 71
mass difference, 231
MATLAB, 1–5, 7, 9, 10, 13, 16–18,

21, 23, 28, 30, 31, 33, 39, 41, 47, 48,
50, 51, 61, 63, 64, 67, 72, 74, 78, 83,
92, 97, 98, 100, 112, 119, 125–127,
131, 142, 149, 154, 159, 161, 162,
170, 172, 174–176, 178–180, 189,
223, 240, 248, 250, 269, 272

matrix, 10, 11, 18–21, 30, 111, 112,
248

matter dominated, 226, 227, 237
Maxwell–Boltzmann, 116, 117, 120,

122, 123, 139
mesh, 70, 71

metric tensor, 236
microwave background, 226–229
minimum ionizing, 194, 196, 198, 204,

236
molecule, 30, 31, 116, 117, 119, 121,

137–140, 247, 248
moments, 145
momentum impulse, 36, 119, 194, 196
momentum transfer, 119, 137, 138,

172–174
movie, 23, 25, 28, 30–33, 37, 39, 41,

43, 44, 46–49, 51, 53, 65, 83, 85, 86,
91, 94–98, 107, 121, 137, 138, 143,
161–164, 170, 182, 183, 192, 196,
204, 211, 212, 214, 216, 217, 247,
250, 268, 278

moving charge, 194–196
muon, 181, 203–206

near zone, 87
neutron, 38, 217–221, 230–232

star, 210, 219
noble gas, 153, 232
non-linear, 48, 112, 113

occupation number, 123, 125, 127
ode45, 22, 33, 47, 51, 61, 81, 83, 189,

223, 251, 270, 273, 278, 286
opacity, 223, 229
opaque universe, 228–230
orbital velocity, 43, 51, 55, 57, 58,

263, 266, 278, 284
oscillator, 13, 23, 24, 26, 31, 93, 94,

143, 154–156, 162, 163, 240
overdamped, 241

packet scattering, 169, 171, 172
packet spreading, 161, 163
pancake, 194
parabola, 55, 57, 58, 282
payload, 40–45, 81, 186, 260–262, 264
pdepe, 21, 142, 162, 170
perihelion advance, 59, 285, 286
period, 13, 14, 23, 47, 55, 59, 62, 165,

210, 214, 215, 268, 270, 277, 279,
281, 282, 286, 287
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periodic table, 151, 153
permeability, 71–73
photoelectric, 202, 203
photon, 79, 88, 89, 145, 146, 199,

201–204, 223, 226, 228, 230, 232,
233

pipe, 140–142
Planck, 145, 147
plucked string, 94, 95, 97, 157
point charge, 63, 65, 69
Poisson equation, 77, 80, 141
potential barrier, 167, 169
power law solution, 227
probability, 116, 118, 144, 147, 151,

162, 165, 167, 177
proper acceleration, 182–184, 187
proper time, 182, 205, 207, 208
proton, 33, 38, 85, 86, 154, 197,

217–219, 226, 230–232
therapy, 197

quad, 22, 131, 174
quadrupole lens, 110, 112
quadrupoles doublet, 111, 112
quantum number, 148, 150, 151, 153,

155, 174
quiver, 72, 74, 76, 79

radiated power, 88, 198, 199
radiation, 87, 89, 103, 145, 181, 194,

198, 199, 204, 205, 210, 211, 214,
215, 219, 224, 226–230, 236

dominated, 226–230
radius of curvature, 108–110, 190, 191
Ramsauer, 168–170
random number, 119, 178
range, 39, 61, 169, 194, 197, 211, 229,

233
redshift, 226, 227
reflection, 81, 96, 105–108, 119, 127,

164–168, 217
relativistic decay, 191
relativistic radiation, 198
relativistic rocket, 185, 186, 260, 263
relativistic scattering, 191
relic abundance, 231

resonance, 23

Riemann zeta function, 125, 146

rocket motion, 39, 181, 260, 263

rotation curve, 234

Rutherford, 33, 35, 36, 173

scale factor R, 227, 238

scattering, 31, 33–38, 89, 147, 152,
162, 164, 167, 169–174, 176, 191,
192, 194, 199, 201, 202, 250,
252–256

Schrödinger, 143, 176

Schwarzchild, 209

radius, 209

searchlight, 199

series, 5, 7, 12–16, 47, 91, 94, 125,
126, 188, 197

single slit, 99, 100

Snell’s law, 105, 109

solar sail, 79, 81, 82, 185

solve, 7, 8, 10, 11, 21, 30, 36, 37, 65,
76, 92, 126, 142, 170, 189, 247, 253,
260, 263

spherical Bessel, 176

spherical harmonic, 149, 174–176

spherical lens, 109–111

spherical mirror, 107–110

square well, 156, 158, 159, 163, 172,
173

stellar radius, 220, 221

step scattering, 164

streamlines, 132–136

subway, 45, 46, 267–269

super fluid, 126, 127

symbolic math, 1, 2, 94

Taylor, 5, 6, 11, 12, 24, 60, 154, 188

Thompson scattering, 89, 201

tidal force, 210, 212, 215

tidal potential, 212, 213

time dilation, 181–183, 185–187, 194,
206

transmission, 105–107, 165–169

triatomic, 30, 31, 247

tunneling, 167



November 13, 2013 14:26 9in x 6in One Hundred Physics Visualizations Using MATLAB b1610-index

Index 295

undamped, 24, 242
underdamped, 241
uniform density star, 222
universe, 1, 23, 145, 217, 224,

226–230, 233, 234, 236–239
utilities, 2, 10, 21, 22

vacuum density, 236, 237
viscosity, 132, 137, 139–141
volume flow, 141

wave function, 147–151, 154–156,
158–160, 163, 165, 167, 176

wavelength, 90, 97–102, 104–106, 125,
130, 156, 227

wave number, 87, 90, 98, 99, 124, 127,
147, 148, 158, 161, 165, 167, 168,
170, 176

wave packet, 143, 159, 161–164,
169–172
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