
EDELKAMP 19-ch15-671-700-9780123725127 2011/5/28 14:50 Page 672 #2

This page intentionally left blank

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — FM-9780123869425 — 2012/5/31 — 12:45 — Page i — #1

Numerical Methods
Using MATLAB®

EDELKAMP 19-ch15-671-700-9780123725127 2011/5/28 14:50 Page 672 #2

This page intentionally left blank

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — FM-9780123869425 — 2012/5/31 — 13:00 — Page iii — #3

Numerical Methods
Using MATLAB®

Third Edition

G.R. Lindfield

J.E.T. Penny

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Academic Press is an imprint of Elsevier

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — FM-9780123869425 — 2012/6/7 — 15:03 — Page iv — #4

Academic Press is an imprint of Elsevier
225 Wyman Street, Waltham, MA 02451,USA
The Boulevard, Langford Lane, Kidlington, Oxford, OX5 1GB, UK

© 2012 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or any information storage and retrieval system, without
permission in writing from the publisher. Details on how to seek permission, further information about
the Publisher’s permissions policies and our arrangements with organizations such as the Copyright
Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/
permissions.

This book and the individual contributions contained in it are protected under copyright by the
Publisher (other than as may be noted herein).

Notices
Knowledge and best practice in this field are constantly changing. As new research and experience
broaden our understanding, changes in research methods, professional practices, or medical treatment
may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating
and using any information, methods, compounds, or experiments described herein. In using such
information or methods they should be mindful of their own safety and the safety of others, including
parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume
any liability for any injury and/or damage to persons or property as a matter of products liability,
negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas
contained in the material herein.

MATLAB® is a trademark of The MathWorks, Inc., and is used with permission. The MathWorks does not
warrant the accuracy of the text or exercises in this book. This book’s use or discussion of MATLAB®

software or related products does not constitute endorsement or sponsorship by The MathWorks of a
particular pedagogical approach or particular use of the MATLAB® software.

MATLAB® and Handle Graphics® are registered trademarks of The MathWorks, Inc.

Library of Congress Cataloging-in-Publication Data
Lindfield, G.R. (George R.) Numerical methods using MATLAB® / G.R. Lindfield, J.E.T. Penny. — 3rd ed.

p. cm.
Penny’s name appears first on the earlier edition.
Includes bibliographical references and index.
ISBN 978-0-12-386942-5 (pbk.)

1. Numerical analysis—Data processing. 2. MATLAB. I. Penny, J.E.T. (John E.T.) II. Title.
QA297.P45 2012
518.0285’53–dc23 2012015199

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

For information on all Academic Press publications
visit our website at http://store.elsevier.com

2013

\Printed in the United States of America
Transferred to Digital Printing in

http://www.elsevier.com/permissions
http://www.elsevier.com/permissions
http://store.elsevier.com

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Dedication-9780123869425 — 2012/5/31 — 14:12 — Page v — #1

To our wives, Zena Lindfield and Wendy Penny, and our now adult children,
Helen and Katy, and Debra, Mark and Joanne, for their patience and sup-
port. Also to our various cats, who have walked over, and even slept on, the
computer keyboard!

EDELKAMP 19-ch15-671-700-9780123725127 2011/5/28 14:50 Page 672 #2

This page intentionally left blank

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — 03-toc-vii-xii-9780123869425 — 2012/6/15 — 15:42 — Page vii — #1

Contents

Preface xiii

List of Figures xv

1. An Introduction to MATLAB® 1

1.1 The MATLAB Software Package 1

1.2 Matrices and Matrix Operations in MATLAB 3

1.3 Manipulating the Elements of a Matrix 5

1.4 Transposing Matrices 8

1.5 Special Matrices 9

1.6 Generating Matrices and Vectors with Specified

Element Values 10

1.7 Matrix Functions 13

1.8 Using the MATLAB \ Operator for Matrix Division 14

1.9 Element-by-Element Operations 14

1.10 Scalar Operations and Functions 15

1.11 String Variables 19

1.12 Input and Output in MATLAB 24

1.13 MATLAB Graphics 27

1.14 Three-Dimensional Graphics 34

1.15 Manipulating Graphics—Handle Graphics 35

1.16 Scripting in MATLAB 43

1.17 User-Defined Functions in MATLAB 49

1.18 Data Structures in MATLAB 53

1.19 Editing MATLAB Scripts 57

1.20 Some Pitfalls in MATLAB 59

Traveling Wave Analysis of Partial Differential Equations
Copyright © 2011 by Elsevier Ltd. All rights reserved.

vii

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — 03-toc-vii-xii-9780123869425 — 2012/6/15 — 15:42 — Page viii — #2

viii Contents

1.21 Faster Calculations in MATLAB 60

Problems 61

2. Linear Equations and Eigensystems 67

2.1 Introduction 67

2.2 Linear Equation Systems 70

2.3 Operators \ and / for Solving Ax = b 75

2.4 Accuracy of Solutions and Ill-Conditioning 80

2.5 Elementary Row Operations 83

2.6 Solution of Ax = b by Gaussian Elimination 84

2.7 LU Decomposition 86

2.8 Cholesky Decomposition 91

2.9 QR Decomposition 93

2.10 Singular Value Decomposition 97

2.11 The Pseudo-Inverse 100

2.12 Over- and Underdetermined Systems 106

2.13 Iterative Methods 114

2.14 Sparse Matrices 115

2.15 The Eigenvalue Problem 126

2.16 Iterative Methods for Solving the Eigenvalue Problem 130

2.17 The MATLAB Function eig 135

2.18 Summary 139

Problems 140

3. Solution of Nonlinear Equations 147

3.1 Introduction 147

3.2 The Nature of Solutions to Nonlinear Equations 149

3.3 The Bisection Algorithm 150

3.4 Iterative or Fixed Point Methods 151

3.5 The Convergence of Iterative Methods 152

3.6 Ranges for Convergence and Chaotic Behavior 153

3.7 Newton’s Method 156

3.8 Schroder’s Method 160

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — 03-toc-vii-xii-9780123869425 — 2012/6/15 — 15:42 — Page ix — #3

Contents ix

3.9 Numerical Problems 162

3.10 The MATLAB Function fzero and Comparative Studies 164

3.11 Methods for Finding All the Roots of a Polynomial 166

3.12 Solving Systems of Nonlinear Equations 171

3.13 Broyden’s Method for Solving Nonlinear Equations 175

3.14 Comparing the Newton and Broyden Methods 178

3.15 Summary 178

Problems 179

4. Differentiation and Integration 185

4.1 Introduction 185

4.2 Numerical Differentiation 185

4.3 Numerical Integration 189

4.4 Simpson’s Rule 190

4.5 Newton–Cotes Formulae 194

4.6 Romberg Integration 196

4.7 Gaussian Integration 198

4.8 Infinite Ranges of Integration 201

4.9 Gauss–Chebyshev Formula 206

4.10 Gauss–Lobatto Integration 207

4.11 Filon’s Sine and Cosine Formulae 211

4.12 Problems in the Evaluation of Integrals 215

4.13 Test Integrals 217

4.14 Repeated Integrals 219

4.15 MATLAB Functions for Double and Triple Integration 224

4.16 Summary 225

Problems 226

5. Solution of Differential Equations 233

5.1 Introduction 233

5.2 Euler’s Method 235

5.3 The Problem of Stability 237

5.4 The Trapezoidal Method 239

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — 03-toc-vii-xii-9780123869425 — 2012/6/15 — 15:42 — Page x — #4

x Contents

5.5 Runge–Kutta Methods 242

5.6 Predictor–Corrector Methods 246

5.7 Hamming’s Method and the Use of Error Estimates 249

5.8 Error Propagation in Differential Equations 251

5.9 The Stability of Particular Numerical Methods 252

5.10 Systems of Simultaneous Differential Equations 256

5.11 The Lorenz Equations 259

5.12 The Predator–Prey Problem 260

5.13 Differential Equations Applied to Neural Networks 262

5.14 Higher-Order Differential Equations 266

5.15 Stiff Equations 267

5.16 Special Techniques 270

5.17 Extrapolation Techniques 274

5.18 Summary 276

Problems 276

6. Boundary Value Problems 283

6.1 Classification of Second-Order Partial Differential

Equations 283

6.2 The Shooting Method 284

6.3 The Finite Difference Method 287

6.4 Two-Point Boundary Value Problems 289

6.5 Parabolic Partial Differential Equations 295

6.6 Hyperbolic Partial Differential Equations 299

6.7 Elliptic Partial Differential Equations 302

6.8 Summary 309

Problems 310

7. Fitting Functions to Data 313

7.1 Introduction 313

7.2 Interpolation Using Polynomials 313

7.3 Interpolation Using Splines 317

7.4 Fourier Analysis of Discrete Data 321

7.5 Multiple Regression: Least Squares Criterion 335

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — 03-toc-vii-xii-9780123869425 — 2012/6/15 — 15:42 — Page xi — #5

Contents xi

7.6 Diagnostics for Model Improvement 339

7.7 Analysis of Residuals 343

7.8 Polynomial Regression 347

7.9 Fitting General Functions to Data 355

7.10 Nonlinear Least Squares Regression 356

7.11 Transforming Data 359

7.12 Summary 363

Problems 363

8. Optimization Methods 371

8.1 Introduction 371

8.2 Linear Programming Problems 371

8.3 Optimizing Single-Variable Functions 378

8.4 The Conjugate Gradient Method 382

8.5 Moller’s Scaled Conjugate Gradient Method 388

8.6 Conjugate Gradient Method for Solving Linear Systems 394

8.7 Genetic Algorithms 397

8.8 Continuous Genetic Algorithm 413

8.9 Simulated Annealing 418

8.10 Constrained Nonlinear Optimization 421

8.11 The Sequential Unconstrained Minimization Technique 426

8.12 Summary 429

Problems 429

9. Applications of the Symbolic Toolbox 433

9.1 Introduction to the Symbolic Toolbox 433

9.2 Symbolic Variables and Expressions 434

9.3 Variable-Precision Arithmetic in Symbolic Calculations 439

9.4 Series Expansion and Summation 441

9.5 Manipulation of Symbolic Matrices 444

9.6 Symbolic Methods for the Solution of Equations 449

9.7 Special Functions 450

9.8 Symbolic Differentiation 452

9.9 Symbolic Partial Differentiation 454

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — 03-toc-vii-xii-9780123869425 — 2012/6/15 — 15:42 — Page xii — #6

xii Contents

9.10 Symbolic Integration 456

9.11 Symbolic Solution of Ordinary Differential Equations 459

9.12 The Laplace Transform 464

9.13 The Z-Transform 466

9.14 Fourier Transform Methods 468

9.15 Linking Symbolic and Numerical Processes 472

9.16 Summary 475

Problems 475

Appendices

A. Matrix Algebra 481

A.1 Introduction 481

A.2 Matrices and Vectors 481

A.3 Some Special Matrices 482

A.4 Determinants 483

A.5 Matrix Operations 484

A.6 Complex Matrices 485

A.7 Matrix Properties 486

A.8 Some Matrix Relationships 486

A.9 Eigenvalues 487

A.10 Definition of Norms 487

A.11 Reduced Row Echelon Form 488

A.12 Differentiating Matrices 489

A.13 Square Root of a Matrix 490

B. Error Analysis 491

B.1 Introduction 491

B.2 Errors in Arithmetic Operations 492

B.3 Errors in the Solution of Linear Equation Systems 493

Solutions to Selected Problems 497

Bibliography 521

Index 525

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Preface-9780123869425 — 2012/5/31 — 17:15 — Page xiii — #1

Preface

The third edition of Numerical Methods Using MATLAB® is an extensive development of
the first and second editions of this book. All MATLAB scripts and functions have been
checked and revised to ensure that they are executable in the current version of MATLAB,
version 7.13.

Our primary aim in this text is unchanged from previous editions; it is to introduce
the reader to a wide range of numerical algorithms, explain their fundamental principles,
and illustrate their application. The algorithms are implemented in the software package
MATLAB, which is constantly being enhanced and provides a powerful tool to help with
these studies.

Many important theoretical results are discussed, but it is not intended that a detailed
and rigorous theoretical development in every area be provided. Rather, we wish to show
how numerical procedures can be applied to solve problems from many fields of applica-
tion, and that the numerical procedures give the expected theoretical performance when
used to solve specific problems.

When used with care, MATLAB provides a natural and succinct way of describing numer-
ical algorithms and a powerful means of experimenting with them. However, no tool,
irrespective of its power, should be used carelessly or uncritically.

This text allows the reader to study numerical methods by encouraging systematic
experimentation with some of the many fascinating problems of numerical analysis.
Although MATLAB provides many useful functions, this text also introduces the reader to
numerous useful and important algorithms and develops MATLAB functions to implement
them. The reader is encouraged to use these functions to produce results in numerical and
graphical form. MATLAB provides powerful and varied graphics facilities to give a clearer
understanding of the nature of the results produced by the numerical procedures. Par-
ticular examples are given throughout the text to illustrate how numerical methods are
used to study problems, including applications in the biosciences, chaos, neural networks,
engineering, and science.

It should be noted that this introduction to MATLAB is relatively brief and is meant as
an aid to the reader. It can in no way be expected to replace the standard MATLAB manual
or textbooks devoted to MATLAB software. We provide a broad introduction to the topics,
develop algorithms in the form of MATLAB functions, and encourage the reader to exper-
iment with these functions, which have been kept as simple as possible for reasons of

Traveling Wave Analysis of Partial Differential Equations
Copyright © 2011 by Elsevier Ltd. All rights reserved.

xiii

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Preface-9780123869425 — 2012/5/31 — 17:15 — Page xiv — #2

xiv Preface

clarity. These functions can be improved, and we urge readers to develop those that are
of particular interest to them.

In addition to a general introduction to MATLAB, the text covers the solution of linear
equations and eigenvalue problems; methods for solving nonlinear equations; numerical
integration and differentiation; the solution of initial value and boundary value problems;
curve fitting, including splines, least squares, and Fourier analysis; and topics in opti-
mization such as interior point methods, nonlinear programming, and genetic algorithms.
Finally, we show how symbolic computing can be integrated with numerical algorithms.
Specifically in this third edition, in Chapter 1 we have added descriptions and given
examples of some functions recently added to MATLAB and have included a dicussion of
handle graphics with examples. Chapter 4 now includes a section on Lobatto’s method
for integration and the Kronrod extension. Chapter 8 has been extensively revised and
includes a description of the continuous genetic algorithm, Moller’s scaled conjugate
gradient method, and methods for solving constrained optimization problems.

The text contains many worked examples, practice problems (many of which are new
to this edition), and solutions. We hope we have provided an interesting range of problems.

The text is suitable for undergraduate and postgraduate students and for those work-
ing in industry and education. We hope readers will share our enthusiasm for this area
of study. For those who do not currently have access to MATLAB, this text provides a gen-
eral introduction to a wide range of numerical algorithms and many useful and interesting
examples and problems.

For readers of this book, additional materials, including all .m file scripts and func-
tions listed in the text, are available on the book’s companion site: www.elsevierdirect
.com/9780123869425. For instructors using this book as a text for their courses, a solutions
manual is available by registering at the textbook site: www.textbooks.elsevier.com.

We would like to thank the many readers from all over the world who provided helpful
comments, which have enhanced this edition. We also acknowledge the valuable assis-
tance given to us by our colleague, David Wilson, in guiding us in the restructuring of
Sections 7.5, 7.6, and 7.7.

We would be pleased to hear from readers who note errors or have suggestions for
improvements. Also, we would like to thank key Elsevier staff, including Patricia Osborn,
Acquisitions Editor; Kathryn Morrissey, Editorial Project Manager; Joe Hayton, Publisher;
Fiona Geraghty, Editorial Project Manager; Kristen Davis, Designer; and Marilyn Rash,
Project Manager.

George Lindfield and John Penny
Aston University

Birmingham

http://www.elsevierdirect.com/9780123869425
http://www.elsevierdirect.com/9780123869425
http://www.textbooks.elsevier.com

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — 05-lof-xv-xviii-9780123869425 — 2012/6/15 — 12:21 — Page xv — #1

List of Figures

1.1 Superimposed graphs obtained using plot(x,y) and hold statements 29

1.2 Plot of y = sin(x3) using 51 equispaced plotting points . 30

1.3 Plot of y = sin(x3) using the function fplot to choose plotting points
adaptively . 30

1.4 Function plotted over the range−4 to 4. It has a maximum value of 4× 106 31

1.5 The same function as plotted in Figure 1.4 but with a limit on the range
of the y-axis . 32

1.6 An example of the use of the subplot function . 33

1.7 polar and compass plots showing the roots of x5
− 1= 0 . 34

1.8 Three-dimensional surface using default view. 36

1.9 Three-dimensional contour plot . 36

1.10 Filled contour plot . 36

1.11 Plots illustrating aspects of Handle Graphics . 38

1.12 Plot of functions shown in Figure 1.11 illustrating further Handle
Graphics features . 40

1.13 Plot of cos(2x). 40

1.14 Plot of (ω2+ x)2α cos(ω1x) . 41

2.1 Electrical network . 68

2.2 Three intersecting planes representing three equations in three variables. 71

2.3 Planes representing an underdetermined system of equations . 74

2.4 Planes representing an overdetermined system of equations . 76

2.5 Plot of inconsistent equation system (2.28) . 106

2.6 Plot of inconsistent equation system (2.28) showing the region of intersection
of the equations, where+ indicates the “best” solution . 109

2.7 Effect of minimum degree ordering on LU decomposition. 123

2.8 Mass-spring system with three degrees of freedom .. 126

3.1 Solution of x = exp(−x/c). Results from the function fzero are indicated
by ◦ and those from the Armstrong and Kulesza formula by+ . 148

3.2 Plot of the function f (x)= (x− 1)3(x+ 2)2(x− 3) . 149

3.3 Plot of f (x)= exp(−x/10)sin(10x) . 150

Traveling Wave Analysis of Partial Differential Equations
Copyright © 2011 by Elsevier Ltd. All rights reserved.

xv

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — 05-lof-xv-xviii-9780123869425 — 2012/6/15 — 12:21 — Page xvi — #2

xvi List of Figures

3.4 Iterates in the solution of (x− 1)(x− 2)(x− 3)= 0 from close but different
starting points . 154

3.5 Geometric interpretation of Newton’s method . 156

3.6 Plot of x3
− 10x2

+ 29x− 20= 0 with the iterates of Newton’s method
shown by ◦ . 158

3.7 Plot showing the complex roots of cosx− x = 0 . 159

3.8 Plot of the iterates for five complex initial approximations for the solution
of cosx− x = 0 using Newton’s method . 160

3.9 The cursor is shown close to the position of the root. 163

3.10 Plot of graph f (x)= sin(1/x). This plot is spurious in the range±0.2 164

3.11 Plot of system (3.30) . 174

4.1 A log-log plot showing the error in a simple derivative approximation 186

4.2 Simpson’s rule, using a quadratic approximation over two intervals 191

4.3 The function sin(1/x) in the range x = 2× 10−4 to 2.05× 10−4 . 217

4.4 Plots of functions defined in script e3s411 . 218

4.5 Graph of z = y2 sinx . 220

5.1 Exact (◦) and approximate (+) solution for dy/dt =−0.1(y− 10) 234

5.2 Geometric interpretation of Euler’s method . 236

5.3 Points from the Euler solution of dy/dt = y− 20 given that y = 100 when t = 0 . . 236

5.4 Absolute errors in the solution of dy/dt = y where y = 1 when t = 0, using
Euler’s method with h= 0.1 . 238

5.5 Relative errors in the solution of dy/dt = y where y = 1 when t = 0, using
Euler’s method with h= 0.1 . 239

5.6 Absolute error in the solution of dy/dt = y using Euler (∗) and trapezoidal
method (◦). Step h= 0.1 and y0 = 1 at t = 0 . 241

5.7 Relative error in the solution of dy/dt =−y. ∗ represents the Butcher method,
+ the Merson method, and ◦ the classical method . 246

5.8 Absolute error in the solution of dy/dt =−2y using the Adams–Bashforth–
Moulton method . 249

5.9 Relative error in the solution of dy/dt = y where y = 1 when t = 0 251

5.10 Solution of Zeeman’s model with p= 1 and accuracy 0.005 . 257

5.11 Solution of Zeeman’s model with p= 20 and accuracy 0.005 . 258

5.12 Sections of the cusp catastrophe curve in Zeeman’s model for
p= 0 : 10 : 40 . 258

5.13 Solution of Lorenz equations for r = 126.52, using an accuracy of
0.000005 and terminating at t = 8 . 260

5.14 Solution of Lorenz equations where each variable is plotted against time.
Conditions are the same as those used to generate Figure 5.13 . 260

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — 05-lof-xv-xviii-9780123869425 — 2012/6/15 — 12:21 — Page xvii — #3

List of Figures xvii

5.15 Variation in the population of lynxes (dashed line) and hares (solid line) against
time using an accuracy of 0.005 beginning with 5000 hares and 100 lynxes. 262

5.16 Plot of sigmoid function V = (1+ tanhu)/2 . 263

5.17 A neural network finds the binary equivalent of 5 using 3 neurons and an
accuracy of 0.005 . 265

5.18 Relative error in the solution of dy/dt = y using Hermite’s method with an
initial condition y = 1 when t = 0 and a step of 0.5 . 273

6.1 Second-order differential equations with one or two independent variables
and their solutions . 284

6.2 Solutions for x2(d2y/dx2)− 6y = 0 with y = 1 and dy/dx = s when x = 1,
for trial values of s . 285

6.3 Equispaced nodal points . 287

6.4 Grid mesh in rectangular coordinates . 288

6.5 Node numbering used in the solution of (6.15) . 290

6.6 Finite difference solution of (1+ x2)(d2z/dx2)+ xdz/dx− z = x2 293

6.7 Node numbering used in the solution of (6.17) . 293

6.8 The finite difference estimates for the first (∗) and second (◦)
eigenfunctions of x(d2z/dx2)+dz/dx+ λz/x = 0 . 295

6.9 Plot showing how the distribution of temperature through a wall varies
with time . 299

6.10 Variation in temperature in the center of a wall. 299

6.11 Solution of (6.29) subject to specific boundary and initial conditions 302

6.12 Temperature distribution around a plane section . 303

6.13 Finite difference estimate for the temperature distribution for the problem
defined in Figure 6.12 . 307

6.14 Deflection of a square membrane subject to a distributed load . 308

6.15 Finite difference approximation of the second mode of vibration of a uniform
rectangular membrane . 309

6.16 Region for Problem 6.10 . 312

7.1 Increasing the degree of the polynomial fit . 315

7.2 Use of splines to define cross-sections of a ship’s hull . 318

7.3 Spline fit to the data of Table 7.1 (denoted by ◦) . 320

7.4 The solid curve shows the function y = 2{1+ tanh(2x)}− x/10 . 321

7.5 Numbering scheme for data points. 322

7.6 Relationship between a signal frequency and its component in the DFT
derived by sampling using a Nyquist frequency fmax . 324

7.7 Stages in the FFT algorithm.. 327

7.8 Plots of the real and imaginary part of the DFT . 330

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — 05-lof-xv-xviii-9780123869425 — 2012/6/15 — 12:21 — Page xviii — #4

xviii List of Figures

7.9 Frequency spectra . 330

7.10 Signal and frequency spectrum showing frequency components at 20,
50, and 70 Hz . 332

7.11 Spectrum of a sequence of data . 335

7.12 Fitting a cubic polynomial to data. Data points are denoted by ◦ 349

7.13 Fitting third- and fifth-degree polynomials (that is, a full line and a dashed line,
respectively) to a sequence of data. Data points are denoted by ◦ 352

7.14 Polynomials of degree 4, 8, and 12 attempting to fit a sequence of data
indicated by ◦ in the graph. 354

7.15 Data sampled from the function y = sin[1/(x+ 0.2)]+ 0.2x . 356

7.16 Fitting y = a1ea2x
+a3ea4x to data values indicated by “◦” . 359

7.17 Fitting transformed data denoted by “◦” to a quadratic function. 360

7.18 Fitting (7.30) to the given data denoted by ◦ . 361

7.19 This graph shows the original data and the fits obtained from y = be(ax)

(full line) and y = axb (dotted line). 363

8.1 Graphical representation of an optimization problem .. 373

8.2 Graph of a function with a minimum in the range [xa xb] . 379

8.3 A plot of the Bessel function of the second kind showing three minima. 381

8.4 Three-dimensional plot of f (x1,x2)=
(
x4

1− 16x2
1+ 5x1

)
/2+(

x4
2− 16x2

2+ 5x2
)
/2 . 387

8.5 Contour plot of the function f (x1,x2)=
(
x4

1− 16x2
1+ 5x1

)
/2+(

x4
2− 16x2

2+ 5x2
)
/2 showing the location of four local minima . 387

8.6 Each member of the population is represented by ◦ . 407

8.7 Plot of the function 10+ [1/{(x− 0.16)2+ 0.1}]sin(1/x) showing many local
maximum and minimum values . 409

8.8 Initial random distribution of bits . 410

8.9 Distribution of bits after 50 generations . 410

8.10 Graph showing the value of function f (x1,x2)=
(
x4

1− 16x2
1+ 5x1

)
/2+(

x4
2− 16x2

2+ 5x2
)
/2 for the final 40 iterations. 421

8.11 Contour plot of function f (x1,x2)=
(
x4

1− 16x2
1+ 5x1

)
/2+

(
x4

2− 16x2
2+ 5x2

)
/2 . . . 421

8.12 Function and constraints. The four solutions are also indicated 425

8.13 Graph of loge(x) . 427

9.1 A plot of the normal curve using the function ezplot . 440

9.2 Plot of the Fresnel sine integral . 451

9.3 Symbolic solution and numeric solution indicated by+ . 464

9.4 The Fourier transform of a cosine function. 470

9.5 The Fourier transforms of a “top-hat” function . 470

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch01-9780123869425 — 2012/5/30 — 9:28 — Page 1 — #1

1
An Introduction to MATLAB®

MATLAB® is a software package produced by The MathWorks, Inc. (www.mathworks.com)
and is available on systems ranging from personal computers to supercomputers, includ-
ing parallel computing. In this chapter we aim to provide a useful introduction to MATLAB,
giving sufficient background for the numerical methods we consider. The reader is referred
to the MATLAB manual for a full description of the package.

1.1 The MATLAB Software Package
MATLAB is probably the world’s most successful commercial numerical analyis software
package, and its name is derived from the term “matrix laboratory.” It provides an inter-
active development tool for scientific and engineering problems and more generally for
those areas where significant numeric computations have to be performed. The package
can be used to evaluate single statements directly or a list of statements called a script can
be prepared. Once named and saved, a script can be executed as an entity. The package
was originally based on software produced by the LINPACK and EISPACK projects but cur-
rently includes LAPACK and BLAS libraries which represent the current “state-of-the-art”
numerical software for matrix computations. MATLAB provides the user with

1. Easy manipulation of matrix structures
2. A vast number of powerful built-in routines that are constantly growing and

developing
3. Powerful two- and three-dimensional graphing facilities
4. A scripting system that allows users to develop and modify the software for their own

needs
5. Collections of functions, called toolboxes, that may be added to the facilities of the

core MATLAB. These are designed for specific applications, for example, neural
networks, optimization, digital signal processing, and higher-order spectral analysis.

It is not difficult to use MATLAB, although to use it with maximum efficiency for complex
tasks requires experience. Generally MATLAB works with rectangular or square arrays of data
(matrices), the elements of which may be real or complex. A scalar quantity is thus a matrix
containing a single element. This is an elegant and powerful notion but it can present
the user with an initial conceptual difficulty. A user schooled in such languages as C++
or Python is familiar with a pseudo-statement of the form A= B+C and can immediately
interpret it as an instruction that A is assigned the sum of values of the numbers stored in

Numerical Methods Using MATLAB
®. DOI: 10.1016/B978-0-12-386942-5.00001-1

© 2012 Elsevier Inc. All rights reserved.
1

www.mathworks.com
http://dx.doi.org/10.1016/B978-0-12-386942-5.00001-1

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch01-9780123869425 — 2012/5/30 — 9:28 — Page 2 — #2

2 Chapter 1 . An Introduction to MATLAB®

B and C. In MATLAB the variables B and C may represent arrays so that each element of the
array A will become the sum of the values of corresponding elements of B and C.

There are several languages or software packages that have some similarities to MATLAB.
These packages include

APL. The letters stand for A Programming Language. This language was designed
mainly for manipulating arrays. It contains many powerful facilities but it used
nonstandard symbols and the syntax was unusual. The keyboard had to be remapped
for these special characters. This language had an important influence on other
languages and was replaced by APL 2, which is still available today.

The NAg Library. This is a very extensive, high-quality collection of subroutines for
numerical analysis. There is a MATLAB toolbox for the NAg Library.

Mathematica and Maple. These packages are known for their ability to carry out
complicated symbolic mathematical manipulation, but they are also able to undertake
high precision numerical computation. In contrast MATLAB is known for its powerful
numerical computational and matrix manipulation facilties. However, MATLAB also
provides an optional symbolic toolbox. This is discussed in Chapter 9.

Other packages. Packages such as Scilab,1 Octave2 (on UNIX platforms only), and
Freemat3 are somewhat similar to MATLAB in that they implement a wide range of
numerical methods. A commercial alternative to MATLAB is O-Matrix.4

The current MATLAB release, version 7.13.0.564 (R2011b), is available on a wide variety of
platforms. Generally Mathworks releases an upgraded version of MATLAB every six months.
When MATLAB is invoked it opens a command window; graphics, editing, and help windows
may also be opened if required. Users can design their MATLAB working environment as
they see fit. MATLAB scripts and functions are generally platform independent and they can
be readily ported from one system to another. To install and start MATLAB, readers should
consult the manual appropriate to their particular working environment.

The scripts and functions given in this book have been tested under MATLAB release, ver-
sion 7.13.0.564 (R2011b). However, most of them will work directly using earlier versions
of MATLAB although some may require modification.

The remainder of this chapter is devoted to introducing some of the statements and
syntax of MATLAB. The intention is to give the reader a sound but brief introduction to the
power of MATLAB. Some details of structure and syntax are omitted and must be obtained
from the MATLAB manual. A detailed description of MATLAB is given by Higham and Higham
(2005). Other sources of information are the Mathworks website and Wikipedia. Wikipedia
should be used with some care.

1www.scilab.org
2www.gnu.orgsoftwareoctave
3freemat.sourceforge.net
4www.omatrix.com

http://www.scilab.org
http://www.gnu.orgsoftwareoctave
freemat.sourceforge.net
http://www.omatrix.com

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch01-9780123869425 — 2012/5/30 — 9:28 — Page 3 — #3

1.2 Matrices and Matrix Operations in MATLAB 3

1.2 Matrices and Matrix Operations in MATLAB

The matrix is fundamental to MATLAB and we have provided a broad and simple introduc-
tion to matrices in Appendix A. In MATLAB the names used for matrices must start with
a letter and may be followed by any combination of letters or digits. The letters may be
upper- or lower- case. Note that throughout this text a distinctive font is used to denote
MATLAB statements and output, for example disp.

In MATLAB the arithmetic operations of addition, subtraction, multiplication, and divi-
sion can be performed in the usual way on scalar quanties, but they can also be used
directly with matrices or arrays of data. To use these arithmetic operators on matrices,
the matrices must first be created. There are several ways of doing this in MATLAB and the
simplest method, which is suitable for small matrices, is as follows. We assign an array of
values to A by opening the command window and then typing

>> A = [1 3 5;1 0 1;5 0 9]

after the prompt >>. Notice that the elements of the matrix are placed in square brackets,
each row element separated by at least one space or comma. A semicolon (;) indicates the
end of a row and the beginning of another. When the return key is pressed the matrix will
be displayed:

A =

1 3 5

1 0 1

5 0 9

All statements are executed by pressing the return or enter key. Thus, for example, by typ-
ing B = [1 3 51;2 6 12;10 7 28] after the >> prompt, and pressing the return key, we
assign values to B. To add the matrices in the command window and assign the result to
C we type C = A+B and similarly if we type C = A-B the matrices are subtracted. In both
cases the results are displayed row by row in the command window. Note that terminating
a MATLAB statement with a semicolon suppresses any output.

For simple problems we can use the command window. By simple we mean MATLAB

statements of limited complexity; even MATLAB statements of limited complexity can pro-
vide some powerful numerical computation. However, if we require the execution of an
ordered sequence of MATLAB statements (commands) then it is sensible for these state-
ments to be typed in the MATLAB editor window to create a script, which must be saved
under a suitable name for future use as required. There will be no execution or output until
the name of this script is typed into the command window and it is executed by pressing
return.

A matrix that has only one row or column is called a vector. A row vector consists of one
row of elements and a column vector consists of one column of elements. Conventionally
in mathematics, engineering, and science an emboldened uppercase letter is usually used

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch01-9780123869425 — 2012/5/30 — 9:28 — Page 4 — #4

4 Chapter 1 . An Introduction to MATLAB®

to represent a matrix, for example A. An emboldened lowercase letter usually represents a
column vector, that is, x. The transpose operator converts a row to a column and vice versa
so that we can represent a row vector as a column vector transposed. Using the superscript
> in mathematics to indicate a transpose, we can write a row vector as x>. In MATLAB it is
often convenient to ignore the convention that the initial form of a vector is a column; the
user can define the initial form of a vector as a row or a column.

The implementation of vector and matrix multiplication in MATLAB is straightforward.
Beginning with vector multiplication, we assume that row vectors having the same number
of elements have been assigned to d and p. To multiply them together we write x = d*p'.
Note that the symbol ' transposes the row p into a column so that the multiplication is
valid. The result, x, is a scalar. Many practitioners use .' to indicate a transpose. The reason
for this is discussed in Section 1.4.

Assuming the two matrices A and B have been assigned, for matrix multiplication the
user simply types C = A*B. This computes A postmultiplied by B, assigns the result to C,
and displays it, providing the multiplication is valid. Otherwise MATLAB gives an appro-
priate error indication. The conditions for matrix multiplication to be valid are given in
Appendix A. Notice that the symbol * must be used for multiplication because in MATLAB

multiplication is not implied.
A very useful MATLAB function is whos (and the similar function, who). These functions

tell us the current content of the workspace. For example, provided A, B, and C described
previously have not been cleared from the memory, then

>> whos

Name Size Bytes Class

A 3x3 72 double array

B 3x3 72 double array

C 3x3 72 double array

Grand total is 27 elements using 216 bytes

This tells us that A, B, and C are all 3× 3 matrices. They are stored as double precision arrays.
A double precison number requires 8 bytes to store it, so each array of 9 elements requires
72 bytes. Consider now the following operations:

>> clear A

>> B = [];

>> C = zeros(4,4);

>> whos

Name Size Bytes Class

B 0x0 0 double array

C 4x4 128 double array

Grand total is 16 elements using 128 bytes

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch01-9780123869425 — 2012/5/30 — 9:28 — Page 5 — #5

1.3 Manipulating the Elements of a Matrix 5

Here we see that we have cleared (i.e., deleted) A from memory, and assigned an empty
matrix to B and a 4× 4 array of zeros to C.

Note that the size of matrices can also be determined using the size and length

functions:

>> A = zeros(4,8);

>> B = ones(7,3);

>> [p q] = size(A)

p =

4

q =

8

>> length(A)

ans =

8

>> L = length(B)

L =

7

size gives the size of the matrix whereas length gives the number of elements in the largest
dimension.

1.3 Manipulating the Elements of a Matrix
In MATLAB, matrix elements can be manipulated individually or in blocks. For example,

>> X(1,3) = C(4,5)+V(9,1)

>> A(1) = B(1)+D(1)

>> C(i,j+1) = D(i,j+1)+E(i,j)

are valid statements relating elements of matrices. Rows and columns can be manipu-
lated as complete entities. Thus A(:,3), B(5,:) refer respectively to the third column of A
and fifth row of B. If B has 10 rows and 10 columns—that is, it is a 10× 10 matrix—then
B(:,4:9) refers to columns 4 through 9 of the matrix. The : by itself indicates all the rows,
and hence all elements of columns 4 through 9. Note that in MATLAB, by default, the low-
est matrix index starts at 1. This can be a source of confusion when implementing some
algorithms.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch01-9780123869425 — 2012/5/30 — 9:28 — Page 6 — #6

6 Chapter 1 . An Introduction to MATLAB®

The following examples illustrate some of the ways subscripts can be used in MATLAB.
First we assign a matrix:

>> A = [2 3 4 5 6;-4 -5 -6 -7 -8; 3 5 7 9 1; ...

4 6 8 10 12;-2 -3 -4 -5 -6]

A =

2 3 4 5 6

-4 -5 -6 -7 -8

3 5 7 9 1

4 6 8 10 12

-2 -3 -4 -5 -6

Note the use of ... (an ellipsis) to indicate that the MATLAB statement continues on the
next line. Executing the statements

>> v = [1 3 5];

>> b = A(v,2)

gives

b =

3

5

-3

Thus b is composed of the elements of the first, third, and fifth rows in the second column
of A. Executing

>> C = A(v,:)

gives

C =

2 3 4 5 6

3 5 7 9 1

-2 -3 -4 -5 -6

Thus C is composed of the first, third, and fifth rows of A. Executing

>> D = zeros(3);

>> D(:,1) = A(v,2)

gives

D =

3 0 0

5 0 0

-3 0 0

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch01-9780123869425 — 2012/5/30 — 9:28 — Page 7 — #7

1.3 Manipulating the Elements of a Matrix 7

Here D is a 3× 3 matrix of zeros with column 1 replaced by the first, third, and fifth elements
of column 2 of A. Executing

>> E = A(1:2,4:5)

gives

E =

5 6

-7 -8

Note that if we index an existing square or rectangular array with a single index, then the
elements of the array are identified as follows. Index 1 gives the top left element of the
array, and the index is incremented down the columns in sequence, from left to right. For
example, with reference to the preceding array C

C1 = C;

C1(1:4:15) = 10

C1 =

10 3 4 5 10

3 10 7 9 1

-2 -3 10 -5 -6

Note that in this example the index is incremented by 4.
When manipulating very large matrices it is easy to become unsure of the size of the

matrix. Thus, if we want to find the value of the element in the penultimate row and last
column of A defined previously we could write

>> size(A)

ans =

5 5

>> A(4,5)

ans =

12

but it is easier to use end:

>> A(end-1,end)

ans =

12

The reshape function may be used to manipulate a complete matrix. As the name implies,
the function reshapes a given matrix into a new matrix of any specified size provided it has

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch01-9780123869425 — 2012/5/30 — 9:28 — Page 8 — #8

8 Chapter 1 . An Introduction to MATLAB®

an identical number of elements. For example, a 3× 4 matrix can be reshaped into a 6× 2
matrix but a 3× 3 matrix cannot be reshaped into a 5× 2 matrix. It is important to note
that this function takes each column of the original matrix in turn until the new required
column size is achieved and then repeats the process for the next column. For example,
consider the matrix P:

>> P = C(:,1:4)

P =

2 3 4 5

3 5 7 9

-2 -3 -4 -5

>> reshape(P,6,2)

ans =

2 4

3 7

-2 -4

3 5

5 9

-3 -5

>> s = reshape(P,1,12);

>> s(1:10)

ans =

2 3 -2 3 5 -3 4 7 -4 5

1.4 Transposing Matrices
A simple operation that may be performed on a matrix is transposition, which inter-
changes rows and columns. Transposition of a vector is briefly discussed in Section 1.2.
In MATLAB transposition is denoted by the symbol '. For example, consider the matrix A,
where

>> A = [1 2 3;4 5 6;7 8 9]

A =

1 2 3

4 5 6

7 8 9

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch01-9780123869425 — 2012/5/30 — 9:28 — Page 9 — #9

1.5 Special Matrices 9

To assign the transpose of A to B we write

>> B = A'

B =

1 4 7

2 5 8

3 6 9

Had we used .' to obtain the transpose we would have obtained the same result. How-
ever, if A is complex then the MATLAB operator ' gives the complex conjugate transpose.
For example,

>> A = [1+2i 3+5i;4+2i 3+4i]

A =

1.0000 + 2.0000i 3.0000 + 5.0000i

4.0000 + 2.0000i 3.0000 + 4.0000i

>> B = A'

B =

1.0000 - 2.0000i 4.0000 - 2.0000i

3.0000 - 5.0000i 3.0000 - 4.0000i

To provide the transpose without conjugation we execute

>> C = A.'

C =

1.0000 + 2.0000i 4.0000 + 2.0000i

3.0000 + 5.0000i 3.0000 + 4.0000i

1.5 Special Matrices
Certain matrices occur frequently in matrix manipulations and MATLAB ensures that these
are generated easily. Some of the most common are ones(m,n), zeros(m,n), rand(m,n),
randn(m,n), and randi(p,m,n). These MATLAB functions generate m×n matrices com-
posed of ones, zeros, uniformly distributed random numbers, normally distributed ran-
dom numbers, and uniformly distributed random integers, respectively. In the case of
randi(p,m,n), p is the maximum integer. If only a single scalar parameter is given, then
these statements generate a square matrix of the size given by the parameter. The MATLAB

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch01-9780123869425 — 2012/5/30 — 9:28 — Page 10 — #10

10 Chapter 1 . An Introduction to MATLAB®

function eye(n) generates the n×n unit matrix. The function eye(m,n) generates a matrix
of m rows and n columns with a diagonal of ones:

>> A = eye(3,4), B = eye(4,3)

A =

1 0 0 0

0 1 0 0

0 0 1 0

B =

1 0 0

0 1 0

0 0 1

0 0 0

If we wish to generate a random matrix C of the same size as an already existing matrix
A, then the statement C = rand(size(A)) can be used. Similarly D = zeros(size(A)) and
E = ones(size(A)) generate a matrix D of zeros and a matrix E of ones, both of which are
the same size as matrix A.

Some special matrices with more complex features are introduced in Chapter 2.

1.6 Generating Matrices and Vectors with Specified
Element Values

Here we confine ourselves to some relatively simple examples:

x = -8:1:8 (or x = -8:8) sets x to a vector having the elements−8,−7, ...,7,8

y = -2:.2:2 sets y to a vector having the elements−2,−1.8,−1.6, ...,1.8,2

z = [1:3 4:2:8 10:0.5:11] sets z to a vector having the elements

[1 2 3 4 6 8 10 10.5 11]

The MATLAB function linspace also generates a vector. However, in this function the user
defines the begining and end values of the vector and the number of elements in the vector.
For example,

>> w = linspace(-2,2,5)

w =

-2 -1 0 1 2

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch01-9780123869425 — 2012/5/30 — 9:28 — Page 11 — #11

1.6 Generating Matrices and Vectors with Specified Element Values 11

This is simple and could just as well have been created by w = -2:1:2 or even w = -2:2.
However,

>> w = linspace(0.2598,0.3024,5)

w =

0.2598 0.2704 0.2811 0.2918 0.3024

Generating this sequence of values by other means would be more difficult. If we require
logarithmic spacing then we can use

>> w = logspace(1,2,5)

w =

10.0000 17.7828 31.6228 56.2341 100.0000

Note that the values produced are between 101 and 102, not 1 and 2. Again, generating
these values by any other means would require some thought! The user of logspace should
be warned that if the second parameter is pi the values run to π , not 10π . Consider the
following:

>> w = logspace(1,pi,5)

w =

10.0000 7.4866 5.6050 4.1963 3.1416

More complicated matrices can be generated by combining other matrices. For example,
consider the two statements

>> C = [2.3 4.9; 0.9 3.1];

>> D = [C ones(size(C)); eye(size(C)) zeros(size(C))]

These two statements generate a new matrix D the size of which is double that of the
original C; thus

D =

2.3000 4.9000 1.0000 1.0000

0.9000 3.1000 1.0000 1.0000

1.0000 0 0 0

0 1.0000 0 0

The MATLAB function repmat replicates a given matrix a required number of times. For
example, assuming the matrix C is defined in the preceding, then

>> E = repmat(C,2,3)

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch01-9780123869425 — 2012/5/30 — 9:28 — Page 12 — #12

12 Chapter 1 . An Introduction to MATLAB®

replicates C as a block to give a matrix with twice as many rows and three times as many
columns. Thus we have a matrix E of 4 rows and 6 columns:

E =

2.3000 4.9000 2.3000 4.9000 2.3000 4.9000

0.9000 3.1000 0.9000 3.1000 0.9000 3.1000

2.3000 4.9000 2.3000 4.9000 2.3000 4.9000

0.9000 3.1000 0.9000 3.1000 0.9000 3.1000

The MATLAB function diag allows us to generate a diagonal matrix from a specified vector
of diagonal elements. Thus

>> H = diag([2 3 4])

generates

H =

2 0 0

0 3 0

0 0 4

There is a second use of the function diag, which is to obtain the elements on the leading
diagonal of a given matrix. Consider

>> P = rand(3,4)

P =

0.3825 0.9379 0.2935 0.8548

0.4658 0.8146 0.2502 0.3160

0.1030 0.0296 0.5830 0.6325

then

>> diag(P)

ans =

0.3825

0.8146

0.5830

A more complicated form of diagonal matrix is the block diagonal matrix. This type of
matrix can be generated using the MATLAB function blkdiag. We set matrices A1 and A2 as
follows:

>> A1 = [1 2 5;3 4 6;3 4 5];

>> A2 = [1.2 3.5,8;0.6 0.9,56];

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch01-9780123869425 — 2012/5/30 — 9:28 — Page 13 — #13

1.7 Matrix Functions 13

Then,

>> blkdiag(A1,A2,78)

ans =

1.0000 2.0000 5.0000 0 0 0 0

3.0000 4.0000 6.0000 0 0 0 0

3.0000 4.0000 5.0000 0 0 0 0

0 0 0 1.2000 3.5000 8.0000 0

0 0 0 0.6000 0.9000 56.0000 0

0 0 0 0 0 0 78.0000

The preceding functions can be very useful in allowing the user to create matrices with
complicated structures, without detailed programming.

1.7 Matrix Functions
Some arithmetic operations are simple to evaluate for single scalar values but involve a
great deal of computation for matrices. For large matrices such operations may take a sig-
nificant amount of time. An example of this is where a matrix is raised to a power. We can
write this in MATLAB as A^p where p is a scalar value and A is a square matrix. This produces
the power of the matrix for any value of p. For the case where the power equals 0.5 it is bet-
ter to use sqrtm(A), which gives the principal square root of the matrix A (see Appendix A,
Section A.13). Similarly, for the case where the power equals −1 it is better to use inv(A).
Another special operation directly available in MATLAB is expm(A), which gives the expo-
nential of the matrix A. The MATLAB function logm(A) provides the principal logarithm to
the base e of A. If B = logm(A), then the principal logarithm B is the unique logarithm for
which every eigenvalue has an imaginary part lying strictly betweeen−π and π .

For example,

>> A = [61 45;60 76]

A =

61 45

60 76

>> B = sqrtm(A)

B =

7.0000 3.0000

4.0000 8.0000

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch01-9780123869425 — 2012/5/30 — 9:28 — Page 14 — #14

14 Chapter 1 . An Introduction to MATLAB®

>> B^2

ans =

61.0000 45.0000

60.0000 76.0000

1.8 Using the MATLAB \ Operator for Matrix Division
As an example of the power of MATLAB we consider the solution of a system of linear equa-
tions. It is easy to solve the problem ax = b where a and b are simple scalar constants and x
is the unknown. Given a and b then x = b/a. However, consider the corresponding matrix
equation

Ax= b (1.1)

where A is a square matrix and x and b are column vectors. We wish to find x. Computa-
tionally this is a much more difficult problem and in MATLAB it is solved by executing the
statement

x = A\b

This statement uses the important MATLAB division operator \ and solves the linear
equation system (1.1).

Solving linear equation systems is an important problem and the computational effi-
ciency and other aspects of this type of problem are discussed in considerable detail
in Chapter 2.

1.9 Element-by-Element Operations
Element-by-element operations differ from the standard matrix operations but they can
be very useful. They are achieved by using a period or dot (.) to precede the operator.
If X and Y are matrices (or vectors), then X.^Y raises each element of X to the power of
the corresponding element of Y. Similarly X.*Y and Y.\X multiply or divide each ele-
ment of X by the corresponding element in Y respectively. The form X./Y gives the same
result as Y.\X. For these operations to be executed the matrices and vectors used must
be the same size. Note that a period is not used in the operations + and - because ordi-
nary matrix addition and subtraction are element-by-element operations. Examples of
element-by-element operations are given as follows:

>> A = [1 2;3 4]

A =

1 2

3 4

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch01-9780123869425 — 2012/5/30 — 9:28 — Page 15 — #15

1.10 Scalar Operations and Functions 15

>> B = [5 6;7 8]

B =

5 6

7 8

First we use normal matrix multiplication:

>> A*B

ans =

19 22

43 50

However, using the dot operator (.) we have

>> A.*B

ans =

5 12

21 32

which is element-by-element multiplication. Now consider the statement

>> A.^B

ans =

1 64

2187 65536

In the preceding, each element of A is raised to the corresponding power in B.
Element-by-element operations have many applications. An important use is in plot-

ting graphs (see Section 1.13). For example,

>> x = -1:0.1:1;

>> y = x.*cos(x);

>> y1 = x.^3.*(x.^2+3*x+sin(x));

Notice here that using a vector of many values, x, allows a vector of corresponding values
for y and y1 to be computed simultaneously from single statements. Element-by-element
operations are in effect processes on scalar quatities performed simultaneously.

1.10 Scalar Operations and Functions
In MATLAB we can define and manipulate scalar quanties, as in most other computer lan-
guages, but no distinction is made in the naming of matrices and scalars. Thus A could
represent a scalar or matrix quantity. The process of assignment makes the distinction.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch01-9780123869425 — 2012/5/30 — 9:28 — Page 16 — #16

16 Chapter 1 . An Introduction to MATLAB®

For example,

>> x = 2;

>> y = x^2+3*x-7

y =

3

>> x = [1 2;3 4]

x =

1 2

3 4

>> y = x.^2+3*x-7

y =

-3 3

11 21

Note in the preceding examples that when vectors are used the dot must be placed before
the operator. This is not required for scalar operations, but does not cause errors if used.

If we multiply a square matrix by itself, for example, in the form x^2, then we get
full matrix multiplication as shown in the following, rather than element-by-element
multiplication as given by x.^2.

>> y = x^2+3*x-7

y =

3 9

17 27

A very large number of mathematical functions are directly built into MATLAB. They act
on scalar quanties, arrays, or vectors on an element-by-element basis. They may be called
by using the function name together with the parameters that define the function. These
functions may return one or more values. A small selection of MATLAB functions is given in
Table 1.1, which lists the function name, the function use, and an example function call.
Note that all function names must be in lowercase letters.

All MATLAB functions were not listed in Table 1.1, but MATLAB provides a complete range
of trigonometric and inverse trigonometric functions, hyperbolic and inverse hyperbolic
functions, and logarithmic functions. The following examples illustrate the use of some of
the functions listed before.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch01-9780123869425 — 2012/5/30 — 9:28 — Page 17 — #17

1.10 Scalar Operations and Functions 17

Table 1.1 Selected MATLAB Mathematical Functions

Function Function gives Example

sqrt(x) square root of x y = sqrt(x+2.5);

abs(x) if x is real, gives positive value of x

If x is complex, gives scalar measure of x d = abs(x)*y;

real(x) real part of x when x is complex d = real(x)*y;

imag(x) imaginary part of x when x is complex d = imag(x)*y;

conj(x) complex conjugate of x x = conj(y);

sin(x) sine of x in radians t = x+sin(x);

asin(x) inverse sine of x returned in radians t = x+sin(x);

sind(x) sine of x in degrees t = x+sind(x);

log(x) log to base e of x z = log(1+x);

log10(x) log to base 10 of x z = log10(1-2*x);

cosh(x) hyperbolic cosine of x u = cosh(pi*x);

exp(x) exponential of x, i.e., ex p = .7*exp(x);

gamma(x) gamma function of x f = gamma(y);

bessel(n,x) nth-order Bessel function of x f = bessel(2,y);

>> x = [-4 3];

>> abs(x)

ans =

4 3

>> x = 3+4i;

>> abs(x)

ans =

5

>> imag(x)

ans =

4

>> y = sin(pi/4)

y =

0.7071

>> x = linspace(0,pi,5)

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch01-9780123869425 — 2012/5/30 — 9:28 — Page 18 — #18

18 Chapter 1 . An Introduction to MATLAB®

x =

0 0.7854 1.5708 2.3562 3.1416

>> sin(x)

ans =

0 0.7071 1.0000 0.7071 0.0000

>> x = [0 pi/2;pi 3*pi/2]

x =

0 1.5708

3.1416 4.7124

>> y = sin(x)

y =

0 1.0000

0.0000 -1.0000

Some functions perform special calculations for important and general mathematical
processes. These functions often require more than one input parameter and may provide
several outputs. For example, bessel(n,x) gives the nth-order Bessel function of x. The
statement y = fzero('fun',x0) determines the root of the function fun near x0 where
fun is a function defined by the user that provides the equation for which we are finding
the root. For examples of the use of fzero, see Section 3.1. The statement [Y,I] = sort(X)

is an example of a function that can return two output values. Y is the sorted matrix and I

is a matrix containing the indices of the sort.
In addition to a large number of mathematical functions, MATLAB provides several utility

functions that may be used for examining the operation of scripts. These follow:

. pause causes the execution of the script to pause until the user presses a key. Note that
the cursor is turned into the symbol P, warning the script is in pause mode. This is
often used when the script is operating with echo on.. echo on displays each line of script in the command window before execution. This is
useful for demonstrations. To turn it off, use the statement echo off.. who lists the variables in the current workspace.. whos lists all the variables in the current workspace, together with information about
their size and class, and so on.

MATLAB also provides functions related to time:

. clock returns the current date and time in the form<year month day hour min sec>.. etime(t2,t1) calculates elapsed time between t1 and t2. Note that t1 and t2 are
output from the clock function.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch01-9780123869425 — 2012/5/30 — 9:28 — Page 19 — #19

1.11 String Variables 19

. tic ... toc provides a way of finding the time taken to execute a segment of script.
The statement tic starts the timing and toc gives the elapsed time since the
last tic.. cputime returns the total time in seconds since MATLAB was launched.

The following script uses the timing functions described previously to estimate
the time taken to solve a 1000× 1000 system of linear equations:

% e3s107.m Solves a 1000x1000 linear equation system

A = rand(1000); b = rand(1000,1);

T_before = clock;

tic

t0 = cputime;

y = A\b;

timetaken = etime(clock,T_before);

tend = toc;

t1 = cputime-t0;

disp('etime tic-toc cputime')

fprintf('%5.2f %10.2f %10.2f\n\n', timetaken,tend,t1);

Running this script on a particular computer gave the following results:

etime tic-toc cputime

0.30 0.31 0.30

The output shows that the three alternative methods of timing give essentially the same
value. When measuring computing times the displayed times vary from run to run and the
shorter the run time, the greater the percentage variation.

1.11 String Variables
We have found that MATLAB makes no distinction in naming matrices and scalar quantities.
This is also true of string variables or strings. For example, A = [1 2; 3 4], A = 17.23,
or A = 'help' are each valid statements and assign an array, a scalar, or a text string
respectively to A.

Characters and strings of characters can be assigned to variables directly in MATLAB by
placing the string in quotes and then assigning it to a variable name. Strings can then be
manipulated by specific MATLAB string functions, which we list in this section. Some exam-
ples showing the manipulation of strings using standard MATLAB assignments are given in
the following.

>> s1 = 'Matlab ', s2 = 'is ', s3 = 'useful'

s1 =

Matlab

s2 =

is

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch01-9780123869425 — 2012/5/30 — 9:28 — Page 20 — #20

20 Chapter 1 . An Introduction to MATLAB®

s3 =

useful

Strings in MATLAB are represented as vectors of the equivalent ASCII code numbers; it
is only the way that we assign and access them that makes them strings. For example, the
string 'is ' is actually saved as the vector [105 115 32]. Hence we can see that the ASCII
codes for the letters i and s and a space are 105, 115, and 32, respectively. This vector
structure has important implications when we manipulate strings. For example, we can
concatenate strings, because of their vector nature, by using the square brackets as follows:

>> sc = [s1 s2 s3]

sc =

Matlab is useful

Note the spaces are recognized. To identify any item in the string array we can write

>> sc(2)

ans =

a

To identify a subset of the elements of this string we can write

>> sc(3:10)

ans =

tlab is

We can display a string vertically by transposing the string vector:

>> sc(1:3)'

ans =

M

a

t

We can also reverse the order of a substring and assign it to another string as follows:

>>a = sc(6:-1:1)

a =

baltaM

We can define string arrays as well. For example, using the string sc as defined previously
we have

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch01-9780123869425 — 2012/5/30 — 9:28 — Page 21 — #21

1.11 String Variables 21

>> sd = 'Numerical method'

>> s = [sc; sd]

s =

Matlab is useful

Numerical method

To obtain the 12th column of this string we use

>> s(:,12)

ans =

s

e

Note that the string lengths must be the same in order to form a rectangular array of ASCII
code numbers. In this case the array is 2× 16.

We now show how MATLAB string functions can be used to manipulate strings. To
replace one string by another we use strrep as follows:

>> strrep(sc,'useful','super')

ans =

Matlab is super

Notice that this statement causes useful in sc to be replaced by super.
We can determine if a particular character or string is present in another string by using

findstr. For example,

>> findstr(sd,'e')

ans =

4 12

This tells us that the 4th and 12th characters in the string are 'e'. We can also use this
function to find the location of a substring of this string as follows:

>> findstr(sd, 'meth')

ans =

11

The string 'meth' begins at the 11th character in the string. If the substring or character is
not in the original string we obtain the result illustrated by the example that follows:

>> findstr(sd,'E')

ans =

[]

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch01-9780123869425 — 2012/5/30 — 9:28 — Page 22 — #22

22 Chapter 1 . An Introduction to MATLAB®

We can convert a string to its ASCII code equivalent by either using the function double or
invoking any arithmetic operation. Thus, operating on the existing string sd we have

>> p = double(sd(1:9))

p =

78 117 109 101 114 105 99 97 108

>> q = 1*sd(1:9)

q =

78 117 109 101 114 105 99 97 108

Note that in the case where we are multiplying the string by 1, MATLAB treats the
string as a vector of ASCII equivalent numbers and multiplies it by 1. Recalling that
sd(1:9) = 'Numerical' we can deduce that the ASCII code for N is 78, for u it is 117, and
so on.

We convert a vector of ASCII code to a string using the MATLAB char function. For
example,

>> char(q)

ans =

Numerical

To increase each ASCII code number by 3 and then convert to the character equivalent we
have

>> char(q+3)

ans =

Qxphulfdo

>> char((q+3)/2)

ans =

(<84:6327

>> double(ans)

ans =

40 60 56 52 58 54 51 50 55

As seen in the preceding, char(q) converts the ASCII string back to characters. Here we
have shown that it is possible to do arithmetic on the ASCII code numbers and, if we wish,

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch01-9780123869425 — 2012/5/30 — 9:28 — Page 23 — #23

1.11 String Variables 23

convert back to characters. If after manipulation the ASCII code values are noninteger,
they are rounded down.

It is important to appreciate that the string '123' and the number 123 are not the same.
Thus

>> a = 123

a =

123

>> s1 = '123'

s1 =

123

Using whos shows the class of the variables a and s1 as follows:

>> whos

Name Size Bytes Class

a 1x1 8 double array

s1 1x3 6 char array

Grand total is 4 elements using 14 bytes

A character requires 2 bytes, while a double precision number requires 8 bytes. We can
convert strings to their numeric equivalent using the functions str2num and str2double

as follows:

>> x=str2num('123.56')

x =

123.5600

Appropriate strings can be converted to complex numbers but the user should take
care, as we illustrate in the following:

>> x = str2num('1+2j')

x =

1.0 + 2.0000i

but

>> x = str2num('1+2 j')

x =

3.0000 0 + 1.0000i

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch01-9780123869425 — 2012/5/30 — 9:28 — Page 24 — #24

24 Chapter 1 . An Introduction to MATLAB®

Note that str2double can be used to convert to complex numbers and is more tolerant
of spaces.

>> x = str2double('1+2 j')

x =

1.0 + 2.0000i

There are many MATLAB functions that are available to manipulate strings; for more
information see the MATLAB manuals. Here we illustrate the use of some functions.

. bin2dec('111001') or bin2dec('111 001') returns 57. dec2bin(57) returns the string '111001'. int2str([3.9 6.2]) returns the string '4 6'. num2str([3.9 6.2]) returns the string '3.9 6.2'. str2num('3.9 6.2') returns 3.9000 6.2000. strcat('how ','why ','when') returns the string 'howwhywhen'. strcmp('whitehouse','whitepaint') returns 0 because the strings are not identical. strncmp('whitehouse','whitepaint',5) returns 1 because the first 5 characters of
the strings are identical. date returns the current date, in the form 24-Aug-2011

A useful and common application of the function num2str is in the disp and title

functions; see Sections 1.12 and 1.13, respectively.

1.12 Input and Output in MATLAB

To output the names and values of variables the semicolon can be omitted from assign-
ment statements. However, this does not produce clear scripts or well-organized and tidy
output. It is often better practice to use the function disp since this leads to clearer scripts.
The disp function allows the display of text and values on the screen. To output the con-
tents of the matrix A on the screen we write disp(A). Text output must be placed in single
quotes, for example,

>> disp('This will display this test')

This will display this test

Combinations of strings can be printed using square brackets [], and numerical values
can be placed in text strings if they are converted to strings using the num2str function. For
example,

>> x = 2.678;

>> disp(['Value of iterate is ', num2str(x), ' at this stage'])

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch01-9780123869425 — 2012/5/30 — 9:28 — Page 25 — #25

1.12 Input and Output in MATLAB 25

will place on the screen

Value of iterate is 2.678 at this stage

The more flexible fprintf function allows formatted output to the screen or to a file. It
takes the form

fprintf('filename','format_string',list);

Here list is a list of variable names separated by commas. The filename parameter is
optional; if not present, output is to the screen rather than to the filename. The format
string formats the output. The basic elements that may be used in the format string are

. %P.Qe for exponential notation. %P.Qf for fixed point. %P.Qg becomes %P.Qe or %P.Qf, whichever is shorter. \n gives a new line

Note that P and Q in the preceding are integers. The integer string characters, including a
period (.), must follow the % symbol and precede the letter e, f, or g. The integer before
the period (P) sets the field width; the integer after the period (Q) sets the number of deci-
mal places after the decimal point. For example, %8.4f and %10.3f give field width 8 with
four decimal places and 10 with three decimal places, respectively. Note that one space is
allocated to the decimal point. For example,

>> x = 1007.461; y = 2.1278; k = 17;

>> fprintf('\n x = %8.2f y = %8.6f k = %2.0f \n',x,y,k)

outputs

x = 1007.46 y = 2.127800 k = 17

whereas

>> p = sprintf('\n x = %8.2f y = %8.6f k = %2.0f \n',x,y,k)

gives

p =

x = 1007.46 y = 2.127800 k = 17

Note that p is a string vector, and can be manipulated if required.
The degree to which the MATLAB user will want to improve the style of MATLAB out-

put will depend on the circumstances. Is the output for other persons to read, perhaps
requiring a clearly structured ouput, or is it just for the user alone, therefore requiring only

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch01-9780123869425 — 2012/5/30 — 9:28 — Page 26 — #26

26 Chapter 1 . An Introduction to MATLAB®

a simple output? Will the output be filed away for future use, or is it a result that is rapidly
discarded? In this text we have given examples of very simple output and sometimes quite
elaborate output.

We now consider the input of text and data via the keyboard. An interactive way of
obtaining input is to use the function input. One form of this function is

>> variable = input('Enter data: ');

Enter data: 67.3

The input function displays the text as a prompt and then waits for a numeric entry
from the keyboard, 67.3 in this example. This is assigned to variable when return is
pressed. Scalar values or arrays can be entered in this way. The alternative form of the
input function allows string input:

>> variable = input('Enter text: ','s');

Enter text: Male

This assigns the string Male to variable.
For large amounts of data, perhaps saved in a previous MATLAB session, the function

load allows the loading of files from disk using

load filename

The filename normally ends in .mat or .dat. A file of sunspot data already exists in the
MATLAB package and can be loaded into memory using the command

>> load sunspot.dat

In the following example, we save the values of x, y, and z in file test001, clear the
workspace, and then reload x, y, and z into the workspace:

>> x = 1:5; y = sin(x); z = cos(x);

>> whos

Name Size Bytes Class

x 1x5 40 double array

y 1x5 40 double array

z 1x5 40 double array

>> save test001

>> clear all, whos Nothing listed

>> load test001

>> whos

Name Size Bytes Class

x 1x5 40 double array

y 1x5 40 double array

z 1x5 40 double array

>> x = 1:5; y = sin(x); z = cos(x);

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch01-9780123869425 — 2012/5/30 — 9:28 — Page 27 — #27

1.13 MATLAB Graphics 27

Here we only save x, y in file test002 and then we clear the workspace and reload x, y:

>> save test002 x y

>> clear all, whos Nothing listed

>> load test002 x y, whos

Name Size Bytes Class

x 1x5 40 double array

y 1x5 40 double array

Note that the statement load test002 has the same effect as load test002 x y. Finally
we clear the workspace and reload x into the workspace:

>> clear all, whos Nothing listed

>> load test002 x, whos

Name Size Bytes Class

x 1x5 40 double array

Files composed of Comma Separated Values (CSV) are commonly used to exchange
large amounts of tabular data between software applications. The data is stored in plain-
text and the fields are separated by commas. The files are easily editable using common
spreadsheet applications (e.g., Microsoft Excel). If data has been generated elsewhere and
saved as a CSV file it can be imported into MATLAB using csvread. We use csvwrite to gen-
erate a CSV file from MATLAB. In the following MATLAB statements we save the vector p, clear
the workspace, and then reload p, but now call it the vector g:

>> p = 1:6;

>> whos

Name Size Bytes Class

p 1x6 48 double array

>> csvwrite('test003',p)

>> clear

>> g = csvread('test003')

g =

1 2 3 4 5

1.13 MATLAB Graphics
MATLAB provides a wide range of graphics facilities that may be called from within a script
or used simply in command mode for direct execution. We begin by considering the plot

function. This function takes several forms. For example,

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch01-9780123869425 — 2012/5/30 — 9:28 — Page 28 — #28

28 Chapter 1 . An Introduction to MATLAB®

Table 1.2 Symbols and Characters Used in Plotting

Line Symbol Point Symbol Color Character

solid - point . yellow y
dashed - - plus + red r
dotted : star * green g
dashdot -. circle o blue b

x mark × black k

. plot(x,y) plots the vector x against y. If x and y are matrices, the first column of x is
plotted against the first column of y. This is then repeated for each pair of columns of x
and y.. plot(x1,y1,'type1',x2,y2,'type2') plots the vector x1 against y1 using the the line
or point type given by type1, and the vector x2 against y2 using the line or point type
given by type2.

The type is selected by using the required symbol from Table 1.2. This symbol may be
preceded by a character indicating a color.

Semilog and log-log graphs can be obtained by replacing plot by semilogx, semilogy,
or loglog functions and various other replacements for plot are available to give spe-
cial plots. Titles, axis labels, and other features can be added to a given graph using the
functions xlabel, ylabel, title, grid, and text. These functions have the following forms:

. title('title') displays the title that is enclosed between quotes at the top of the
graph.. xlabel('x_axis_name') displays the name that is enclosed between quotes for the
x-axis.. ylabel('y_axis_name') displays the name that is enclosed between quotes for the
y-axis.. grid superimposes a grid on the graph.. text(x,y,'text-at-x,y') displays text at position (x, y) in the graphics window
where x and y are measured in the units of the current plotting axes. There may be one
point or many at which text is placed depending on whether or not x and y are vectors.. gtext('text') allows the placement of text using the mouse by positioning it where
the text is required and then pressing the mouse button.. ginput allows information to be taken from a graphics window.

The ginput function takes two main forms. The simplest is

[x,y] = ginput

This inputs an unlimited number of points into the vectors x and y by positioning the
mouse crosshairs at the points required and then pressing the mouse button. To exit

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch01-9780123869425 — 2012/5/30 — 9:28 — Page 29 — #29

1.13 MATLAB Graphics 29

−4 −2 0 2 4
−10

−5

0

5

10

x-axis
y-

ax
is

Two tails...

FIGURE 1.1 Superimposed graphs obtained using plot(x,y) and hold statements.

ginput the return key must be pressed. If a specific number of points n are required, then
we write

[x,y] = ginput(n)

In addition, the function axis allows the user to set the limits of the axes for a particular
plot. This takes the form axis(p) where p is a four-element row vector specifying the lower
and upper limits of the axes in the x and y directions. The axis statement must be placed
after the plot statement to which it refers. Similarly the functions xlabel, ylabel, title,
grid, text, gtext, and axis must follow the plot to which they refer.

The following script gives the plot that is output as Figure. 1.1. The function hold is used
to ensure that the two graphs are superimposed.

% e3s101.m

x = -4:0.05:4;

y = exp(-0.5*x).*sin(5*x);

figure(1), plot(x,y)

xlabel('x-axis'), ylabel('y-axis')

hold on

y = exp(-0.5*x).*cos(5*x);

plot(x,y), grid

gtext('Two tails...')

hold off

Script e3s101.m illustates how few MATLAB statements are required to generate a graph.
The function fplot allows the user to plot a previously defined function between given

limits. The important difference between fplot and plot is that fplot chooses the plotting
points in the given range adaptively depending on the rate of change of the function at

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch01-9780123869425 — 2012/5/30 — 9:28 — Page 30 — #30

30 Chapter 1 . An Introduction to MATLAB®

that point. Thus more points are chosen when the function is changing more rapidly. This
is illustrated by executing the following MATLAB script:

% e3s102.m

y = @(x) sin(x.^3);

x = 2:.04:4;

figure(1)

plot(x,y(x),'o-')

xlabel('x'), ylabel('y')

figure(2)

fplot(y,[2 4])

xlabel('x'), ylabel('y')

Note figure(1) and figure(2) direct the graphic output to separate windows. The
interpretation of the anonymous function @(x) sin(x.^3) is explained in Section 1.17.

2 2.5 3 3.5 4
−1

−0.5

0

0.5

1

x

y

FIGURE 1.2 Plot of y = sin(x3) using 51 equispaced plotting points.

2 2.5 3 3.5 4
−1

−0.5

0

0.5

1

x

y

FIGURE 1.3 Plot of y = sin(x3) using the function fplot to choose plotting points adaptively.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch01-9780123869425 — 2012/5/30 — 9:28 — Page 31 — #31

1.13 MATLAB Graphics 31

Running the script just given produces Figures 1.2 and 1.3. In the plot example we have
deliberately chosen an inadequate number of plotting points and this is reflected in the
quality of Figure 1.2. The function fplot produces a smoother and more accurate curve.
Note that fplot only allows a function or functions to be plotted against an independent
variable. Parametric plots cannot be created by fplot.

The MATLAB function ezplot is similar to fplot in the sense that we only have to specify
the function, but has the disadvantage that the step size is fixed. However, ezplot does
allow parametric plots and three-dimensional plots. For example,

>> ezplot(@(t) (cos(3*t)), @(t) (sin(1.6*t)), [0 50])

is a parametric plot but the plot is rather coarse.
We have seen how fplot helps in plotting difficult functions. Other functions that help

to clarify when the plot of a function is unclear or unpredictable are ylim and xlim. The
function ylim allows the user to easily limit the range of the y-axis in the plot and xlim

performs similarly for the x-axis. Their use is illustrated by the following example.
Figure 1.4 (without the use of xlim and ylim) is unsatisfactory since it gives little under-

standing about how the function behaves except at the specific points x =−2.5, x = 1, and
x = 3.5.

>> x = -4:0.0011:4;

>> y =1./(((x+2.5).^2).*((x-3.5).^2))+1./((x-1).^2);

>> plot(x,y)

>> ylim([0,10])

Figure 1.5 shows how the MATLAB statement ylim([0,10]) restricts the y-axis to a
maximum value of 10. This gives a clear picture of the behavior of the graph.

There are a number of special features available in MATLAB for the presentation and
manipulation of graphs and some of these will now be discussed. The subplot function

−4 −2 0 2 4
0

1

2

3

4

× 106

x

y

FIGURE 1.4 Function plotted over the range −4 to 4. It has a maximum value of 4× 106.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch01-9780123869425 — 2012/5/30 — 9:28 — Page 32 — #32

32 Chapter 1 . An Introduction to MATLAB®

−4 −2 0 2 4
0

2

4

6

8

10

x

y

FIGURE 1.5 The same function as plotted in Figure 1.4 but with a limit on the range of the y-axis.

takes the form subplot(p,q,r) where p, q splits the figure window into a p×q grid of cells
and places the plot in the rth cell of the grid, numbered consecutively along the rows. This
is illustrated by running the following script, which generates six different plots, one in
each of the six cells. These plots are given in Figure 1.6.

% e3s103.m

x = 0.1:.1:5;

subplot(2,3,1), plot(x,x)

title('plot of x'), xlabel('x'), ylabel('y')

subplot(2,3,2), plot(x,x.^2)

title('plot of x^2'), xlabel('x'), ylabel('y')

subplot(2,3,3), plot(x,x.^3)

title('plot of x^3'), xlabel('x'), ylabel('y')

subplot(2,3,4), plot(x,cos(x))

title('plot of cos(x)'), xlabel('x'), ylabel('y')

subplot(2,3,5), plot(x,cos(2*x))

title('plot of cos(2x)'), xlabel('x'), ylabel('y')

subplot(2,3,6), plot(x,cos(3*x))

title('plot of cos(3x)'), xlabel('x'), ylabel('y')

The current plot can be held on screen by using the function hold and subsequent plots are
drawn over it. The function hold on switches the hold facility on while hold off switches
it off. The figure window can be cleared using the function clf.

MATLAB provides many other plot functions and styles. To illustrate two of these,
polar and compass plots, we display the roots of x5

− 1= 0, which have been determined
using the MATLAB function roots. This function is descibed in detail in Section 3.11.
Having determined the five roots of this equation we plot them using both polar and
compass. The function polar requires the absolute values and phase angles of the roots,
whereas the function compass plots the real parts of the roots against their imaginary
parts.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch01-9780123869425 — 2012/5/30 — 9:28 — Page 33 — #33

1.13 MATLAB Graphics 33

0 5
0

2

4

6
plot of x

x
y

0 5
0

10

20

30
plot of x2

x

y

0 5
0

50

100

150
plot of x3

x

y

0 5
−1

−0.5

0

0.5

1
plot of cos(x)

x

y

0 5
−1

−0.5

0

0.5

1
plot of cos(2x)

x

y

0 5
−1

−0.5

0

0.5

1
plot of cos(3x)

x

y

FIGURE 1.6 An example of the use of the subplot function.

>> p=roots([1 0 0 0 0 1])

p =

-1.0000

-0.3090 + 0.9511i

-0.3090 - 0.9511i

0.8090 + 0.5878i

0.8090 - 0.5878i

>> pm = abs(p.')

pm =

1.0000 1.0000 1.0000 1.0000 1.0000

>> pa = angle(p.')

pa =

3.1416 1.8850 -1.8850 0.6283 -0.6283

>> subplot(1,2,1), polar(pa,pm,'ok')

>> subplot(1,2,2), compass(real(p),imag(p),'k')

Figure 1.7 shows these subplots.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch01-9780123869425 — 2012/5/30 — 9:28 — Page 34 — #34

34 Chapter 1 . An Introduction to MATLAB®

1

2

30

210

60

240

90

270

120

300

150

330

180 0

1

2

30

210

60

240

90

270

120

300

150

330

180 0

FIGURE 1.7 polar and compass plots showing the roots of x5
− 1= 0.

1.14 Three-Dimensional Graphics
It is often convenient to draw a three-dimensional graph of a function or set of data to
gain a deeper insight into the nature of the function or data. MATLAB provides powerful
and extensive facilities to allow the user to draw a wide range of three-dimensional graphs.
Here we only briefly introduce a small selection of these functions. These are the functions
meshgrid, mesh, surfl, contour, and contour3. It should be noted that the more complex
graphs of this type may take a significant time to draw on the screen, depending on the
algebraic complexity of the function, the amount of detail required, and the power of the
computer being used.

Usually three-dimensional functions are plotted to illustrate particular features of the
function such as regions where maxima or minima lie. Plotting surfaces to illustrate these
features can be difficult and some careful analysis of the function may be needed before
the graph is drawn successfully. In addition, even when the region of interest is success-
fully located and plotted, the feature of interest may be hidden and it is then necessary
to choose a different viewpoint. Discontinuities may also be present and cause plotting
problems.

For the function z = f (x,y) the MATLAB function meshgrid is used to generate a complete
set of points in the x-y plane for the three-dimensional plotting functions. We can then com-
pute the values of z and these are finally plotted by using one of the functions mesh, surf,
surfl, or surfc . For example, to plot the function

z = (−20x2
+ x)/2+ (−15y2

+ 5y)/2 for x =−4 : 0.2 : 4 and

y =−4 : 0.2 : 4

we first set up the values of the x-y domain and then compute z corresponding to these x
and y values using the given function. Finally we plot the three-dimensional graph using

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch01-9780123869425 — 2012/5/30 — 9:28 — Page 35 — #35

1.15 Manipulating Graphics—Handle Graphics 35

the function surfl. This is achieved by using the following script. Note how the function
figure is used to direct the output to a graphics window so that the first plot is not
overwritten by the second.

% e3s105.m

[x,y] = meshgrid(-4.0:0.2:4.0,-4.0:0.2:4.0);

z = 0.5*(-20*x.^2+x)+0.5*(-15*y.^2+5*y);

figure(1)

surfl(x,y,z); axis([-4 4 -4 4 -400 0])

xlabel('x-axis'), ylabel('y-axis'), zlabel('z-axis')

figure(2)

contour3(x,y,z,15); axis([-4 4 -4 4 -400 0])

xlabel('x-axis'), ylabel('y-axis'), zlabel('z-axis')

figure(3)

contourf(x,y,z,10)

xlabel('x-axis'), ylabel('y-axis')

Running this script generates the plots shown in Figures 1.8 through 1.10. The first plot
is created using surfl and shows the function as a surface; the second is created by
contour3 and is a three-dimensional contour plot of the surface; and the third, created
using contourf, provides a two-dimensional filled contour plot.

When plotting surfaces a very useful function is view. This function allows the surface
or mesh to be viewed from different positions. The function has the form view(az,el)

where az is the azimuth and el is the elevation of the viewpoint required. Azimuth may be
interpreted as the viewpoint rotation about the z-axis and elevation as the rotation of the
viewpoint about the x-y plane. A positive value of the elevation gives a view from above the
object and a negative value a view from below. Similarly a positive value of azimuth gives
a counterclockwise rotation of the viewpoint about the z-axis while a negative value gives
a clockwise rotation. If the view function is not used, the default values are −37.5◦ for the
azimuth and 30◦ for the elevation.

There are many other three-dimensional plotting facilities that are outside the scope of
the text; please see the MATLAB manual for more information.

1.15 Manipulating Graphics—Handle Graphics
Handle Graphics allow the user to choose the font type, line thickness, symbol type and
size, axes form, and many other features for a particular plot. It introduces more com-
plexity into MATLAB but has considerable benefits. Here we give a very brief introduction
to some of the main features. There are two key functions, get and set. The get function
allows the user to obtain detailed information about a particular graphics function such
as plot, title, xlabel, ylabel, and others. The function set allows the user to modify the

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch01-9780123869425 — 2012/5/30 — 9:28 — Page 36 — #36

36 Chapter 1 . An Introduction to MATLAB®

−4
−2

0
2

4

−4
−2

0
2

4
−400

−200

0

x-axis
y-axis

z-
ax

is

FIGURE 1.8 Three-dimensional surface using default view.

−4
−2

0
2

4

−4
−2

0
2

4
−400

−200

0

z-
ax

is

x-axis
y-axis

FIGURE 1.9 Three-dimensional contour plot.

x-axis

y-
ax

is

−4 −2 0 2 4
−4

−2

0

2

4

FIGURE 1.10 Filled contour plot.

standard setting for a particular graphics element such as xlabel or plot. In addition, gca
can be used with set to retrieve the handles of the axes of the current figure and with get

to manipulate the properties of the axes of that figure.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch01-9780123869425 — 2012/5/30 — 9:28 — Page 37 — #37

1.15 Manipulating Graphics—Handle Graphics 37

To illustrate the details involved in a simple graphics statement, consider the following
statements, where handles h and h1 have been introduced for the plot and title functions:

>> x = -4:.1:4;

>> y = cos(x);

>> h = plot(x,y);

>> h1 = title('cos graph')

To obtain information about the detailed structure of the plot and title functions, we
use get and the appropriate handle as follows. Note that only a selection of the properties
produced by get are shown.

>> get(h)

Color: [0 0 1]

EraseMode: 'normal'

LineStyle: '-'

LineWidth: 0.5000

Marker: 'none'

MarkerSize: 6

MarkerEdgeColor: 'auto'

..........................[etc]

However, for the title function we have

>> get(h1)

FontName = Helvetica

FontSize = [10]

FontUnits = points

HorizontalAlignment = center

LineStyle = -

LineWidth = [0.5]

Margin = [2]

Position = [-0.00921659 1.03801 1.00011]

Rotation = [0]

String = cos graph

..........................[etc]

Notice there are different properties for plot and title. The follwing example illustrates
the use of Handle Graphics:

% e3s121.m

% Example for Handle Graphics

x = -5:0.1:5;

subplot(1,3,1)

e1 = plot(x,sin(x)); title('sin x')

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch01-9780123869425 — 2012/5/30 — 9:28 — Page 38 — #38

38 Chapter 1 . An Introduction to MATLAB®

−5 0 5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
sin(x)

x
−5 0 5

sin(round(x))

x
−5 0 5

sin(sin(5x))

x

FIGURE 1.11 Plots illustrating aspects of Handle Graphics.

subplot(1,3,2)

e2 = plot(x,sin(2*round(x))); title('sin round x')

subplot(1,3,3)

e3 = plot(x,sin(sin(5*x))); title('sin sin 5x')

Running this script gives Figure 1.11.
We now modify the preceding script using a sequence of set statements as follows:

% e3s122.m

% Example for Handle Graphics

x = -5:0.1:5;

s1 = subplot(1,3,1);

e1 = plot(x,sin(x)); t1 = title('sin(x)');

s2 = subplot(1,3,2);

e2 = plot(x,sin(2*round(x))); t2 = title('sin(round(x))');

s3 = subplot(1,3,3);

e3 = plot(x,sin(sin(5*x))); t3 = title('sin(sin(5x))');

% change dimensions of first subplot

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch01-9780123869425 — 2012/5/30 — 9:28 — Page 39 — #39

1.15 Manipulating Graphics—Handle Graphics 39

set(s1,'Position',[0.1 0.1 0.2 0.5]);

%change thickness of line of first graph

set(e1,'LineWidth',6)

set(s1,'XTick',[-5 -2 0 2 5])

%Change all titles to italics

set(t1,'FontAngle','italic'), set(t1,'FontWeight','bold')

set(t1,'FontSize',16)

set(t2,'FontAngle','italic')

set(t3,'FontAngle','italic')

%change dimensions of last subplot

set(s3,'Position',[0.7 0.1 0.2 0.5]);

The Position statement has the values

[shift from left, shift from bottom, width, height].

The size of the plotting area is taken as a unit square. Thus

set(s3,'Position',[0.7 0.1 0.2 0.5]);

shifts the figure 0.7 from the left and 0.1 from the bottom; its width is 0.2 and its height is
0.5. It may take some experimentation to get the required effect. Executing this script gives
Figure 1.12. Notice the differing sizes of the boxes, thicker line in the first graph, bold title,
different ticks on the x-axis, and that all the titles are in italics; many other aspects could
have been changed.

The following example shows how we can manipulate the various properties of the
axes in Figure 1.13 using gca with get, which gets the properties of the current axes. The
examples that follow show the use of gca in altering various properties of the axes:

>> x = -1:0.1:2; h = plot(x,cos(2*x));

These statements produce the left plot in Figure 1.13.

>> get(gca,'FontWeight')

ans =

normal

>> set(gca,'FontWeight','bold')

>> set(gca,'FontSize',16)

>> set(gca,'XTick',[-1 0 1 2])

These additional statements provide the right plot of Figure 1.13. Note that the differences
produced a larger bold fon

An alternative approach to manipulating font styles and other features is illustrated in
the script that follows Figure 1.14.

t.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch01-9780123869425 — 2012/5/30 — 9:28 — Page 40 — #40

40 Chapter 1 . An Introduction to MATLAB®

−5 −2 0 2 5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
sin x

−5 0 5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
sin round x

−5 0 5
−1

−0.8

−0.6

−0.4

− 0.2

0

0.2

0.4

0.6

0.8

1
sin sin 5x

FIGURE 1.12 Plot of functions shown in Figure 1.11 illustrating further Handle Graphics features.

−1
0−1 1 2

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0−1 2

FIGURE 1.13 Plot of cos(2x). The axes of the right plot are enhanced using Handle Graphics.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch01-9780123869425 — 2012/5/30 — 9:28 — Page 41 — #41

1.15 Manipulating Graphics—Handle Graphics 41

−5 0 5
−20

−10

0

10

20

30
(ω 2 + x)2α cos(ω 1 x)

x-axis

y-
ax

is

Graph for α = 2, ω 2 = 1, and ω1 = 3

FIGURE 1.14 Plot of (ω2+ x)2α cos(ω1x).

% e3s104.m

% Example of the use of special graphics parameters in MATLAB

% illustrates the use of superscripts, subscripts,

% fontsize and special characters

x = -5:.3:5;

plot(x,(1+x).^2.*cos(3*x),...

'linewidth',1,'marker','hexagram','markersize',12)

title('(\omega_2+x)^2\alpha cos(\omega_1x)','fontsize',14)

xlabel('x-axis'), ylabel('y-axis','rotation',0)

gtext('graph for \alpha = 2,\omega_2 = 1, and \omega_1 = 3')

Executing this script provides the graph shown in Figure 1.14.
We now describe the features that were used in this script. We have used Greek charac-

ters from an extensive range of symbols that can be introduced using the backslash char-
acter “\”. The following gives examples of how these characters may be introduced:

. alpha gives α. beta gives β. gamma gives γ

Any of the Greek symbols may be obtained by typing the backslash followed by the
standard English name of the Greek letter. Titles and axis labels may include superscripts
and subscripts by preceding the subscript character by “ ” and the superscript by “∧ ”.
Font sizes may be specified by placing the additional parameter 'fontsize' in the xlabel,
ylabel, or title statements, followed by and separated by a comma from the actual font
size required. For example,

title('(\omega_2+x)^2\alpha*cos(\omega_1*x)','fontsize',14)

gives

(ω2+ x)2α ∗ cos(ω1 ∗ x)

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch01-9780123869425 — 2012/5/30 — 9:28 — Page 42 — #42

42 Chapter 1 . An Introduction to MATLAB®

in 14-point font. In the plot function itself, additional markers for the graph points are
available and may be indicated by using the additional parameter 'marker' followed by
the name of the marker. For example,

'marker','hexagram'

The size of the marker may also be specified using the additional parameter 'markersize'
followed by the required marker size:

'markersize',12

The line thickness may also be adjusted using the parameter 'linewidth', for example,

'linewidth',1

Finally, the orientation of any label may be changed using 'rotation'. For example,

'rotation',0

This additional parameter with the setting zero makes the label horizontal to the y-axis
rather than the usual vertical orientation; the value of the parameter gives the angle in
degrees.

A further more complex example involving reference to a partial differential equation
in a MATLAB text statement is as follows:

gtext('Solution of \partial^2V/\partialx^2+\partial^2V/\partialy^2 = 0')

This leads to the text

Solution of ∂2V /∂x2
+ ∂2V /∂y2

= 0

being placed in the current graphics window at a point selected using the crosshairs cursor
and clicking the mouse button.

In addition, features may be included in conjunction with the \ followed by a font name
parameter, which allows the specification of any available font. Examples are \bf that gives
a bold style and \it that gives an italic style.

An important issue in placing figures in a manuscript is that they must have a con-
sistent position and size and must be easy to read. The listed graphics scripts work
satisfactorily but would not provide the quality required if directly imported into this
manuscript. An example of this is shown in Figure 1.11. To ensure that the size and posi-
tion of the figures generated by the MATLAB scripts are generally consistent and their fonts
easily read, the following statements are added to all scripts producing graphical output
except for Figures 1.11, 1.12, and 1.13.

set(0,'defaultaxesfontsize',16)

set(0,'defaultaxesfontname','Times New Roman')

set(0,'defaulttextfontsize',12)

set(0,'defaulttextfontname','Times New Roman')

axes('position',[0.30 0.30 0.50 0.50])

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch01-9780123869425 — 2012/5/30 — 9:28 — Page 43 — #43

1.16 Scripting in MATLAB 43

These statements are examples of Handle Graphics. The first and second statements
set the fonts used for the axes to 16-point Times New Roman. The third and fourth
statement set the fonts used in the plot to 12-point Times New Roman and the fifth
statement controls the size of the graph within the graphs window. Finally, we add the
statement print -deps Fig101.eps at the end of each script that generates a graph.
This statement saves the plot as an extended postscript (eps) format file for inclusion in
the manuscript.

This was used in the creation and placement of the MATLAB graphs in this book. These
are not shown in the text listings because they are the same for each script.

1.16 Scripting in MATLAB

In some of the previous sections we have created some simple MATLAB scripts that have
allowed a series of commands to be executed sequentially. However, many of the features
usually found in programming languages are also provided in MATLAB to allow the user to
create versatile scripts. The more important of these features are described in this section.
It must be noted that scripting is done in the edit window using a text editor appropriate to
the system, not in the command window, which only allows the execution of statements
one at a time or several statements provided that they are on the same line.

MATLAB does not require the declaration of variable types, but for the sake of clarity the
role and nature of key variables may be indicated by using comments. Any text follow-
ing the symbol % is considered a comment. In addition, there are certain variable names
that have predefined special values for the convenience of the user. They can, however, be
redefined if required. These are

pi equals π
inf the result of dividing by zero
eps set to the particular machine accuracy
realmax largest positive floating-point number
realmin smallest positive floating-point number
NaN “Not-a-Number”; result of operations with undefined numerical results,

such as dividing zero by zero
i,j both equal

√
− 1

Assignment statements in a MATLAB script take the form

variable = <expression>;

The expression is calculated and the value assigned to the variable on the left-hand side.
If the semicolon is omitted from the end of these statements, the names of the variable(s)
and the assigned value(s) are displayed on the screen. If an expression is not assigned
explicitly to a variable then the value of the expression is calculated, assigned to the
variable ans, and displayed.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch01-9780123869425 — 2012/5/30 — 9:28 — Page 44 — #44

44 Chapter 1 . An Introduction to MATLAB®

In previous sections it was stated that generally a variable in MATLAB is assumed to
be a matrix of some kind; its name must start with a letter and may be followed by any
combination of digits and letters; a maximum of 32 characters is recognized. It is good
practice to use a meaningful variable name. The variable name must not include spaces or
hyphens. However, the underscore character is a useful replacement for a space. For exam-
ple, test_run is acceptable; test run and test-run are not. It is very important to avoid
the use of existing MATLAB commands, function names, or even the word MATLAB itself!
MATLAB does not prevent their use but using them can lead to problems and inconsisten-
cies. An expression in MATLAB is a valid combination of variables, constants, operators, and
functions. Brackets can be used to alter or clarify the precedence of operations. The prece-
dence of operation for simple operators is first \, second *, third /, and finally + and -

where

^ raises to a power
* multiplies
/ divides
+ adds
- subtracts

The effects of these operators in MATLAB have already been discussed.
Unless there are instructions to the contrary, a set of MATLAB statements in a script is

executed in sequence. This is the case in the following example.

% e3s106.m

% Matrix calculations for two matrices A and B

A = [1 2 3;4 5 6;7 8 9];

B = [5 -6 -9;1 1 0;24 1 0];

% Addition. Result assigned to C

C = A+B; disp(C)

% Multiplication. Result assigned to D

D = A*B; disp(D)

% Division. Result assigned to E

E = A\B; disp(E)

To allow the repeated execution of one or more statements, a for loop is used. This takes
the form

for <loop_variable> = <loop_expression>

<statements>

end

The <loop_variable> is a suitably named variable and <loop_expression> is usually of
the form n:m or m:i:n where n, i, and m are the initial, incremental, and final values of
<loop_variable>. They may be constants, variables, or expressions; they can be negative

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch01-9780123869425 — 2012/5/30 — 9:28 — Page 45 — #45

1.16 Scripting in MATLAB 45

or positive but clearly they should be chosen to take values consistent with the logic of
the script. This structure should be used when the loop is to be repeated a predetermined
number of times.

Examples

for i = 1:n

for j = 1:m

C(i,j) = A(i,j)+cos((i+j)*pi/(n+m))*B(i,j);

end

end

for k = n+2:-1:n/2

a(k) = sin(pi*k);

b(k) = cos(pi*k);

end

p = 1;

for a = [2 13 5 11 7 3]

p = p*a;

end

p

p = 1;

prime_numbs = [2 13 5 11 7 3];

for a = prime_numbs

p = p*a;

end

p

The first example illustrates the use of nested for loops, while the second illustrates that
upper and lower limits can be expressions and the step value can be negative. The third
example shows that the loop does not have to use a uniform step and the fourth example,
which gives an identical result to the third, illustrates that the <loop_expression> can be
any previously defined vector.

When assigning values to a vector in a for loop, the reader should note that the vector
generated is a row vector. For example,

for i = 1:4

d(i) = i^3;

end

gives the row vector d = 1 8 27 64.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch01-9780123869425 — 2012/5/30 — 9:28 — Page 46 — #46

46 Chapter 1 . An Introduction to MATLAB®

The while statement is used when the repetition is subject to a condition being satisfied
that is dependent on values generated within the loop. This has the form

while <while_expression>

<statements>

end

The <while_expression> is a relational expression of the form e1 ◦ e2 where e1 and e2 are
ordinary arithmetic expressions as described before and ◦ is a relational operator defined
as follows:

== equals
<= less than or equals
>= greater than or equals
~= not equals
< less than
> greater than

Relational expressions may be combined using the following logical operators:

& the and operator
| the or operator
~ the not operator
&& the scalar and operator (if the first condition is false then the second is not

evaluated)
|| the scalar or operator (if the first condition is true then the second is not

evaluated)

Note that false is zero and true is nonzero. Relational operators have a higher order of
precedence than logical operators.

Examples of while Loops

dif = 1;

x2 = 1;

while dif>0.0005

x1 = x2-cos(x2)/(1+x2);

dif = abs(x2-x1);

x2 = x1;

end

x = [1 2 3];

y = [4 5 8];

while sum(x) ~= max(y)

x = x.^2;

y = y+x;

end

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch01-9780123869425 — 2012/5/30 — 9:28 — Page 47 — #47

1.16 Scripting in MATLAB 47

Note also that break stops the execution (and hence allows exit from) a while or for loop
and that break cannot be used outside of a while or for loop. The statement return must
be used in these circumstances.

A vital feature of all programming languages is the ability to change the sequence in
which instructions are executed within the program. In MATLAB the if statement is used to
achieve this and has the general form

if < if_expression1>

<statements>

elseif < if_expression2>

<statements>

elseif < if_expression3>

<statements>

...

...

else

<statements>

end

Here <if_expression1> and so on are relational expressions of the form e1 ◦ e2 where
e1 and e2 are ordinary arithmetic expressions and ◦ is a relational operator as described
before. Relational expressions may be combined using logical operators.

Examples

for k = 1:n

for p = 1:m

if k == p

z(k,p) = 1;

total = total+z(k,p);

elseif k<p

z(k,p) = -1;

total = total+z(k,p);

else

z(k,p) = 0;

end

end

end

if (x~=0) & (x<y)

b = sqrt(y-x)/x;

disp(b)

end

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch01-9780123869425 — 2012/5/30 — 9:28 — Page 48 — #48

48 Chapter 1 . An Introduction to MATLAB®

The MATLAB function switch provides an alternative to the if structure and is particu-
larly useful when many options must be considered. This has the form

switch<condition>
case

statements
case ref2

statements
case ref3

statements
otherwise

statements
end

The following fragment of code allows the user to choose a particular plot, dependent on
the value of n. In the following script, the second plot has been chosen by setting n = 2.

x = 1:.01:10; n = 2

switch n

case 1

plot(x,log(x));

case 2

plot(x,x.*log(x));

case 3

plot(x,x./(1+log(x)));

otherwise

disp('That was an invalid selection.')

end

As a further example of the switch function, the following fragment of code allows the user
to convert an astronomical distance x given in AU (an astronomical unit), LY (a light year),
or pc (a parsec) to km by setting the string variable units to AU, LY, or pc, respectively.

x = 2;

units = 'LY'

switch units

case {'AU' 'Astronomical Units'}

km = 149597871*x

case {'LY','lightyear'}

km = 149597871*63241*x

case {'pc' 'parsec'}

km = 149597871*63241*3.26156*x

otherwise

disp('That was an invalid selection.')

end

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch01-9780123869425 — 2012/5/30 — 9:28 — Page 49 — #49

1.17 User-Defined Functions in MATLAB 49

Note that if any statement in a MATLAB script is longer than one line then it must be
continued by using an ellipsis (...) at the end of the line.

The menu function creates a menu window with buttons to allow the user to select
options. For example,

frequency = 123;

units = menu('Select units for output data', 'rad/s','Hz', 'rev/min')

switch units

case 1

disp(frequency)

case 2

disp(frequency/(2*pi))

case 3

disp(frequency*60/(2*pi))

end

creates a small window (called MENU) with three buttons, labeled 'rad/s', 'Hz', and
'rev/min'. “Clicking” a particular button with the mouse provides a frequency converted
to the chosen units.

1.17 User-Defined Functions in MATLAB

MATLAB allows users to define their own functions, but a specific form of definition must
be followed. The first form of function is the m-file function and is described as follows:

function <output_params> = func_name(<input_params>)

<func body>

<input_params> is a set of variable names separated by commas and <output_params> is
either a single variable or a list of variables separated by commas or spaces and placed in
square brackets. The function body consists of the statements defining the user’s function.
These statements will utilize the values of the input arguments and must include state-
ments assigning values to the output parameters. Once the function is defined it must be
saved as an m-file under the same name as the given func_name. Then the function can be
used as required. It is good practice to put some comments describing the nature of the
function immediately after the function heading. Writing help followed by the function
name in the command window will access these comments.

To execute the function for specific parameters we write

<specific_out_params> = <func_name>(<assigned_input_params>)

where the <assigned_input_params> term is either a single parameter, or it is a list
of parameters separated by commas. The <assigned_input_params> must match the
<input_params> in the function definition.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch01-9780123869425 — 2012/5/30 — 9:28 — Page 50 — #50

50 Chapter 1 . An Introduction to MATLAB®

We now provide two examples of named functions.

Example 1.1
The Fourier series for a sawtooth wave is

where T is the period of the waveform. We can create a function to evaluate this for given values
of t and T . Since we can’t sum to infinity, we will sum to m terms, where m is a relatively large
value. Thus we can define the MATLAB function sawblade as follows. Note that this function has
three input arguments and one output.

function y = sawblade(t,T,n_trms)

% Evaluates, at instant t, the Fourier approximation of a sawtooth wave of

% period T using the first n_trms terms in the infinte series.

y = 1/2;

for n = 1:n_trms

y = y - (1/(n*pi))*sin(2*n*pi*t/T);

end

We can now use this function for a specific purpose. For example, if we wish to plot this wave-
form over the range t = 0 to 4 and a period of T = 2, using only 50 terms in the series, we
have

c = 1;

for t = 0:0.01:4, y(c) = sawblade(t,2,50); c = c+1; end

plot([0:0.01:4],y)

Further valid function calls are

y = sawblade(0.2*period,period,terms)

where period and terms have previously assigned values, or

y = sawblade(2,5.7,60)

or, using the function feval

y = feval('sawblade',2,5.7,60)

A more important application of feval, which is widely used in this text, is in the process of
defining functions that themselves have functions as parameters. These m-file functions can be
evaluated internally in the body of the calling function by using feval.

y(t)=
1
2
−

∞∑
n=1

sin
(

2πnt
T

)()
1
πn

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch01-9780123869425 — 2012/5/30 — 9:28 — Page 51 — #51

1.17 User-Defined Functions in MATLAB 51

Example 1.2
We now consider a further example that involves the generation of a matrix within a function.

The essential features of the finite element method applied to the static and/or dynamic analy-

sis of structures is to express the stiffness and inertia properties of a small section or element of

the structure in matrix form. These element matrices are then assembled to obtain matrices that

describe the overall stiffness and inertia for the whole structure. Knowing the forces acting on

the structure, we can obtain the static or dynamic response of the structure. One such element

is a uniform circular shaft. For this element the inertia matrix and the stiffness matrix, relating

angular accelerations and displacements, repectively, to applied torques are given by

K=
GJ
L

[
1 −1

−1 1

]
and

M=
ρJL

6

[
2 1

1 2

]
where L is the length of the shaft, G and ρ are material properties, and d is the diameter of the
shaft. If we intend to create a finite element package in MATLAB that includes torsional elements,
then these matrices are required. The following function generates these matrices from the shaft
properties as follows:

function [K,M] = tors_el(L,d,rho,G)

J = pi*d^4/32;

K = (G*J/L)*[1 -1;-1 1];

M = (rho*J*L/6)*[2 1;1 2];

Note that this function has four input arguments and ouputs two arrays.

Functions can be nested inside other functions. This is only useful if the nested func-
tion is only required by the main function. An example of this is shown in Section 3.11.1.
Here the function solveq is not a generally useful function but it is required by the func-
tion bairstow. Therefore it is nested in bairstow. This arrangment has the advantage
that bairstow is a complete entity; it does not require solveq to be stored and avail-
able. It has the minor disadvantage that since it is not stored separately it cannot be used
independently of bairstow.

A second, simpler form of the MATLAB user-defined function is the anonymous function.
This function is not saved as an m-file; it is either entered into the workspace from the
command window or from a script. For example, suppose we wish to define the function(x

2.4

)3
−

2x
2.4
+ cos

(πx
2.4

)

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch01-9780123869425 — 2012/5/30 — 9:28 — Page 52 — #52

52 Chapter 1 . An Introduction to MATLAB®

The MATLAB function definition is as follows:

>> f = @(x) (x/2.4).^3-2*x/2.4+cos(pi*x/2.4);

Example calls of this function are f([1 2]), which produces two values corresponding to
x = 1 and x = 2. Another way of using this function is as an input parameter to another
function. For example,

>> solution = fzero(f,2.9)

solution =

3.4825

This gives the zero of f closest to 2.9. Another example of its use is

x = 0:0.1:5; plot(x,f(x))

Here we must call f(x) because the plot function needs all the values of the function over
the range of x. Another form is

>> solution = fzero(@(x) (x/2.4).^3-2*x/2.4+cos(pi*x/2.4), 2.9)

Here we have used the anonymous function definition directly, rather than assigning it to
a handle and then using the handle.

If an m-file function has an anonymous function as one of its input arguments, then
this anonymous function can be evaluated directly without the use of the MATLAB function
feval. If, however, the function in the parameter list may require a multistatement defini-
tion, an m-file function must be used and in this case feval must be used. In this text, to
allow flexibility, when defining m-file functions we have used feval so that the user can
input a function as an m-file function or as an anonymous function.

For example, we define the m-file functions sp_cubic and minandmax as follows:

function y = sp_cubic(x)

y = x.^3-2*x.^2-6;

function [minimum maximum] = minandmax(f,v)

% v is a vector with the start, increment and end value

y = feval(f,v); minimum = min(y); maximum = max(y);

Using this definition of minandmax means that f can be an anonymous or m-file function.
Thus, using the anonymous function’s definition for f given before, we have

>> [lo hi] = minandmax(f,[-5:0.1:5]);

>> fprintf('lo = %8.4f hi = %8.4f\n',lo,hi)

lo = -181.0000 hi = 69.0000

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch01-9780123869425 — 2012/5/30 — 9:28 — Page 53 — #53

1.18 Data Structures in MATLAB 53

Alternatively, using the other form of the function

>> [lo hi] = minandmax('sp_cubic',[-5:0.1:5]);

>> fprintf('lo = %8.4f hi = %8.4f\n',lo,hi)

lo = -181.0000 hi = 69.0000

gives identical answers. However, suppose we define m-file function minandmax without
the use of feval as follows:

function [minimum maximum] = minandmax(f,v)

% v is a vector with the start, increment and end value

y = f(v); minimum = min(y); maximum = max(y);

Then, if f is an anonymous function, we obtain the preceding results, but if f is the m-file
function sp_cubic, the function minandmax fails as shown in the following:

>> [lo hi] = minandmax('sp_cubic',[-5:0.1:5]);

>> fprintf('lo = %8.4f hi = %8.4f\n',lo,hi)

??? Subscript indices must either be real positive integers or logicals.

Error in ==> minandmax at 4

y = f(v);

There is another MATLAB user-defined function called the in-line function. However, the
anonymous function has made the need for this function limited and it is not discussed
further here.

1.18 Data Structures in MATLAB

Previous sections discussed the use of numerical and nonnumerical data. We now intro-
duce the cell array structure, which allows a more complex data structure. The cell data
structure is indicated by curly brackets, that is { }. As an example,

>> A = cell(4,1);

>> A = {'maths'; 'physics'; 'history'; 'IT'}

A =

'maths'

'physics'

'history'

'IT'

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch01-9780123869425 — 2012/5/30 — 9:28 — Page 54 — #54

54 Chapter 1 . An Introduction to MATLAB®

We may refer to the individual components:

>> p = A(2)

p =

'physics'

>> A(3:4)

ans =

'history'

'IT'

To access the contents of the cell we use curly brackets:

>> cont = A{3}

cont =

history

Note that history is no longer in quotes and thus we can reference individual characters
as follows:

>> cont(4)

ans =

t

A cell array can include both numeric and string data and can also be generated using the
cell function. For example, to generate a cell with 2 rows and 2 columns we have

>> F = cell(2,2)

F =

[] []

[] []

To assign a scalar, an array, or a character string to a cell we write

>> F{1,1} = 2;

>> F{1,2} = 'test';

>> F{2,1} = ones(3);

>> F

F =

[2] 'test'

[3x3 double] []

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch01-9780123869425 — 2012/5/30 — 9:28 — Page 55 — #55

1.18 Data Structures in MATLAB 55

An equivalent way of generating F is

>> F = {[2] 'test'; [ones(3)] []}

Because we cannot see the detailed content of F{2,1} in the preceding, we use the function
celldisp:

>> celldisp(F)

F{1,1} =

2

F{2,1} =

1 1 1

1 1 1

1 1 1

F{1,2} =

test

F{2,2} =

[]

The cell array allows us to group data of different sizes and types together in the form of an
array and access its elements by using subscripts.

The last form of data we consider is the structure, implemented in MATLAB using struct.
This is similar to a cell array but individual cells are indexed by name. A structure combines
a number of fields, each of which may be a different type. There is a general name for the
field, for example, 'name' or 'phone number'. Each of these fields can have specific values
such as 'George Brown' or '12719'. To illustrate these points consider the following exam-
ple, which sets up a structure called StudentRecords containing three fields: NameField,
FeesField, and SubjectField.

Note that we begin by setting up the information for three students as specific values
held in the cell arrays: names, fees, and subjects.

>> names = {'A Best', 'D Good', 'S Green', 'J Jones'}

names =

'A Best' 'D Good' 'S Green' 'J Jones'

>> fees = {333 450 200 800}

fees =

[333] [450] [200] [800]

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch01-9780123869425 — 2012/5/30 — 9:28 — Page 56 — #56

56 Chapter 1 . An Introduction to MATLAB®

>> subjects = {'cs','cs','maths','eng'}

subjects =

'cs' 'cs' 'maths' 'eng'

>> StudentRecords = struct('NameField',names,'FeesField',fees,...

'SubjectField',subjects)

StudentRecords =

1x4 struct array with fields:

NameField

FeesField

SubjectField

Now, having set up our structure, we can refer to each individual record using a subscript:

>> StudentRecords(1)

ans =

NameField: 'A Best'

FeesField: 333

SubjectField: 'cs'

Further we can examine the contents of the components of each record:

>> StudentRecords(1).NameField

ans =

A Best

>> StudentRecords(2).SubjectField

ans =

cs

We can change or update the values of the components of the records as follows:

>> StudentRecords(3).FeeField = 1000;

Now we check the contents of this student’s FeesField:

>> StudentRecords(3).FeeField

ans =

1000

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch01-9780123869425 — 2012/5/30 — 9:28 — Page 57 — #57

1.19 Editing MATLAB Scripts 57

MATLAB provides functions that allow us to convert from one data structure to another,
and some of these are listed here.

cell2struct

struct2cell

num2cell

str2num

num2str

int2str

double

single

Most of these conversions are self-explanatory. For example, num2str converts a dou-
ble precision number to an equivalent string. The function double converts to double
precision and examples of its usage are given in Chapter 9.

The use of cells and structures is not usually essential in the development of numerical
algorithms although they can be used to enhance an algorithm’s ease of use. There is an
example of the use of structures in Chapter 9.

1.19 Editing MATLAB Scripts
To help the user develop scripts MATLAB provides a comprehensive selection of debugging
tools. These can be listed using the command help debug.

When typing a script into the MATLAB editor the user should note the small colored
square displayed at the top right of the text window. This square is colored red if the
script contains one or more fatal syntactic errors, orange warns of possible nonfatal prob-
lems, and green indicates no syntactic errors. Each error or warning is also indicated by
an appropriately colored dash beneath the square. Touching these dashes will provide a
description of the error or warning and the line in which it occurs.

Errors can be found by using checkcode. The mlint function can also be used but is now
obselete and has been replaced by checkcode. The following script contains numerous
errors and is provided to illustrate the use of checkcode:

% e3s125.m A script full of errors!!!

A = [1 2 3; 4 5 6

B = [2 3; 7 6 5]

c(1) = 1; c(1) = 2;

for k = 3:9

c(k) = c(k-1)+c(k-2)

if k = 3

displ('k = 3, working well)

end

c

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch01-9780123869425 — 2012/5/30 — 9:28 — Page 58 — #58

58 Chapter 1 . An Introduction to MATLAB®

Running and checking this script gives the following output:

>> e3s125

Error: File: e3s125.m Line: 3 Column: 3

The expression to the left of the equals sign is not a valid target

for an assignment.

Applying checkcode to script e3s125 gives

>> checkcode e3s125

L 3 (C 3): Invalid syntax at '='. Possibly, a), }, or] is missing.

L 3 (C 16): Parse error at ']': usage might be invalid MATLAB syntax.

L 5 (C 1-3): Invalid use of a reserved word.

L 7 (C 5-6): IF might not be aligned with its matching END (line 9).

L 7 (C 10): Parse error at '=': usage might be invalid MATLAB syntax.

L 8 (C 15-35): A quoted string is unterminated.

L 11 (C 0): Program might end prematurely (or an earlier error

confused Code Analyzer).

Note how the line (L), character position (C), and nature of the error are given so the errors
are clearly identified. Of course, some errors cannot be detected at this stage. For example,
the following script is a partially corrected version of the preceding script.

% e3s125c.m A script less full of errors!!!

A = [1 2 3; 4 5 6];

B = [2 3; 7 6];

c(1) = 1; c(1) = 2;

for k = 3:9

c(k) = c(k-1)+c(k-2)

if k == 3

disp('k = 3, working well')

end

end

c

Running this script gives

>> e3s125c

Attempted to access c(2); index out of bounds because numel(c)=1.

Error in e3s125c (line 6)

c(k) = c(k-1)+c(k-2)

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch01-9780123869425 — 2012/5/30 — 9:28 — Page 59 — #59

1.20 Some Pitfalls in MATLAB 59

>> checkcode e3s125c

L 6 (C 5): The variable 'c' appears to change size on every loop

iteration (within a script). Consider preallocating for speed.

L 6 (C 10): Terminate statement with semicolon to suppress output

(within a script).

L 11 (C 1): Terminate statement with semicolon to suppress output

(within a script).

Now that the script can be run as far as line 6 other possible errors are detected.
In addition, a menu option “Debug” is provided in the MATLAB text editor.

1.20 Some Pitfalls in MATLAB

We now list five important points that if observed enable the MATLAB user to avoid some
significant difficulties. This list is not exhaustive.

. It is important to take care when naming files and functions. Filenames and function
names follow the rules for variable names; that is, they must start with a letter followed
by a combination of letters or digits and names of existing functions must not be used.. Do not use MATLAB function names or commands for variable names. For example, if
we were so foolish as to assign a number to a variable that we called sin, access to the
sine function would be lost. For example,

>> sin = 4

sin =

4

>> 3*sin

ans =

12

>> sin(1)

ans =

4

>> sin(2)

??? Index exceeds matrix dimensions.

>> sin(1.1)

??? Subscript indices must either be real positive integers or logicals.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch01-9780123869425 — 2012/5/30 — 9:28 — Page 60 — #60

60 Chapter 1 . An Introduction to MATLAB®

. Matrix sizes are set by assignment so it is vital to ensure that matrix sizes are
compatible. Often it is a good idea initially to assign a matrix to an appropriately
sized matrix of zeros; this also makes execution more efficient. For example,
consider the following simple script:

for i = 1:2

b(i) = i*i;

end

A = [4 5; 6 7];

A*b'

We assign two elements to b in the for loop and define A to be a 2× 2 array, so we
would expect this script to succeed. However, if b had in the same session been
previously set to be a different size matrix, then this script would have failed. To ensure
that it works correctly we must either assign b to be a null matrix using b= [], or make
b a column vector of two elements by using b = zeros(2,1) or by using the clear

statement to clear all variables from the system.. Take care with dot products. For example, when creating a user-defined function
where any of the input parameters may be vectors, dot products must be used. Note
also that 2.^x and 2. ^x are different because the space is important. The first
example gives the dot power while the second gives 2.0 to the power x, not the dot
power. Similar care with spaces must be taken when using complex numbers. For
example, A = [1 2-4i] assigns two elements: 1 and the complex number 2− ı4. In
contrast B = [1 2 -4i] assigns three elements: 1, 2, and the imaginary number−4ı .. At the beginning of a script, it is often good practice to clear variables or set arrays
equal to the empty matrix (e.g., A = []). This avoids incompatibility in matrix
operations.

1.21 Faster Calculations in MATLAB

Calculations can be greatly sped up by using vector operations rather than using a loop to
repeat a calculation. To illustrate this consider the following simple examples.

Example 1.3
This script fills the vector b using a for loop.

% e3s108.m

% Fill b with square roots of 1 to 100000 using a for loop

tic;

for i = 1:100000

b(i) = sqrt(i);

end

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch01-9780123869425 — 2012/5/30 — 9:28 — Page 61 — #61

Problems 61

t = toc;

disp(['Time taken for loop method is ', num2str(t)]);

Example 1.4
This script fills the vector b using a vector operation.

% e3s109.m

% Fill b with square roots of 1 to 100000 using a vector

tic

a = 1:100000; b = sqrt(a);

t = toc;

disp(['Time taken for vector method is ',num2str(t)]);

If the reader runs these two scripts and compares the time taken they will notice the
vector method is substantially faster than the loop method. One of our experiments pro-
duced a 400 to 1 ratio for the times taken. There is a need to think very carefully about the
way algorithms are implemented in MATLAB, particularly with regard to the use of vectors
and arrays.

Problems
1.1. (a) Start up MATLAB. In the command window type x = -1:0.1:1 and then execute

each of the following statements by typing them in and pressing return:
sqrt(x) cos(x)

sin(x) 2./x

x.\ 3 plot(x, sin(x.^3))

plot(x, cos(x.^4))

Examine the effects of each statement carefully.
(b) Execute the following and explain the results:

x = [2 3 4 5]

y = -1:1:2

x.^y

x.*y

x./y

1.2. (a) Set up the matrix A = [1 5 8;84 81 7;12 34 71] in the command window
and examine the contents of A(1,1), A(2,1), A(1,2), A(3,3), A(1:2,:), A(:,1),
A(3,:), and A(:,2:3).

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch01-9780123869425 — 2012/5/30 — 9:28 — Page 62 — #62

62 Chapter 1 . An Introduction to MATLAB®

(b) What do the following MATLAB statements produce?

x = 1:1:10

z = rand(10)

y = [z;x]

c = rand(4)

e = [c eye(size(c)); eye(size(c)) ones(size(c))]

d = sqrt(c)

t1 = d*d

t2 = d.*d

1.3. Set up a 4× 4 matrix. Given that the function sum(x) gives the sum of the elements
of the vector x, use the function sum to find the sums of the first row and second
column of the matrix.

1.4. Solve the following system of equations using the MATLAB function inv and also
using the operators \ and / in the command window:

2x+ y+ 5z = 5

2x+ 2y+ 3z = 7

x+ 3y+ 3z = 6

Verify the solution is correct using matrix multiplication.

1.5. Write a simple script to input two square matrices A and B; then add, subtract, and
multiply them. Comment the script and use disp to output suitable titles.

1.6. Write a MATLAB script to set up a 4× 4 random matrix A and a four-element column
vector b. Calculate x = A\b and display the result. Calculate A*x and compare it
with b.

1.7. Write a simple script to plot the two functions y1 = x2 cosx and y2 = x2 sinx on the
same graph. Use comments in your script and take x =−2 : 0.1 : 2.

1.8. Write a MATLAB script to produce graphs of the functions y = cosx and y = cos(x3) in
the range x =−4 : 0.02 : 4 using the same axes. Use the MATLAB functions xlabel,
ylabel, and title to annotate your graphs clearly.

1.9. Draw the function y = exp(−x2)cos(20x) in the range x =−2 : 0.1 : 2. All axes should
be labeled and a title included. Compare the results of using the functions fplot
and plot to plot this function.

1.10. Write a MATLAB script to draw the functions y = 3sin(πx) and y = exp(−0.2x) on the
same graph for x = 0 : 0.02 : 4. All axes should be labeled. Use gtext to label one of
the several points of intersection of the graphs.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch01-9780123869425 — 2012/5/30 — 9:28 — Page 63 — #63

Problems 63

1.11. Use the functions meshgrid and mesh to obtain a three-dimensional plot of the
function

z = 2xy/(x2
+ y2) for x = 1 : 0.1 : 3 and y = 1 : 0.1 : 3

Redraw the surface using the functions surf, surfl, and contour.

1.12. An iterative equation for solving the equation x2
− x− 1= 0 is given by

xr+1 = 1+ (1/xr) for r = 0,1,2, . . .

Given x0 is 2, write a MATLAB script to solve the equation. Sufficient accuracy is
obtained when |xr+1− xr|< 0.0005. Include a check on the answer.

1.13. Given a 4× 5 matrix A, write a script to find the sums of each of the columns using
(a) The for ... end construction
(b) The function sum

1.14. Given a vector x with n elements, write a MATLAB script to form the products

pk = x1x2 . . . xk−1xk+1 . . . xn

for k = 1,2, . . . ,n. That is, pk contains the products of all the vector elements except
the kth. Run your script with specific values of x and n.

1.15. The series for loge(1+ x) is given by

loge(1+ x)= x− x2/2+ x3/3− ·· ·+ (−1)k+1xk/k · · ·

Write a MATLAB script to input a value for x and sum the series while the value of the
current term is greater than or equal to the variable tol. Use values of x = 0.5 and
0.82 and tol= 0.005 and 0.0005. The result should be checked by using the MATLAB

function log. The script should display the value of x and tol and the value of
loge(1+ x) obtained. Use the input and disp functions to obtain clear output and
prompts.

1.16. Write a MATLAB script to generate a matrix that has the values d along the main
diagonal and the values c on the diagonals above and below the main diagonal and
zero elsewhere. Your script should allow the user to input any values for c and d and
work for any size of matrix n. The script should give clear prompts for input and
display the results with a suitable heading.

1.17. Write a MATLAB function to solve the quadratic equation

ax2
+bx+ c = 0

The function will use three input parameters a, b, c and output the values of the two
roots. You should take account of the three cases:

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch01-9780123869425 — 2012/5/30 — 9:28 — Page 64 — #64

64 Chapter 1 . An Introduction to MATLAB®

(a) No real roots
(b) Real and different roots
(c) Equal roots

1.18. Adjust the function of Problem 1.17 to deal with the case when a= 0. That is, when
the equation is nonquadratic. In this case include a third output parameter that will
have the value 1 if the equation is quadratic and 0 otherwise.

1.19. Write a simple function to define f (x)= x2
− cos(x)− x and plot the graph of the

function in the range 0 to 2. Use this graph to find an initial approximation to the
root and then apply the function fzero to find the root to tolerance 0.0005.

1.20. Write a script to generate the sequence of values given by

xr+1 =

{
xr / 2 if xr is even

3xr + 1 if xr is odd
where r = 0,1,2, . . .

where x0 is any positive integer. The sequence terminates when xr = 1. Show after a
sufficient number of steps that the sequence terminates for any value of x0 you
choose. It is interesting to plot the values of xr against r.

1.21. Write a MATLAB script to plot the surface z = f (x,y) over the ranges x =−4 : 0.1 : 4
and y =−4 : 0.1 : 4 where z is given by

z = f (x,y)= (1− x2)e−p
−pe−p

− e−(x+1)2−y2

and p= x2
+ y2. The script should provide mesh, contour, and surf plots and use the

function subplot to lay out the three plots one above the other.

1.22. The following three functions are presented in parametric form:

x = a(t− sin(t)) and y = a(1− cos(t))

x = 2at and y = 2a/(1+ t2)

x = a cos(t)−b cos(at/b) and y = a sin(t)−b sin(at/b)

Write a MATLAB script to plot each of these functions one above the other using the
MATLAB subplot function given a= 2 and b= 3; t is assigned the range of values
−10 : 0.1 : 10.

1.23. The Riemann ζ function may be defined as the sum of an infinite series:

ζ(s)= 1+
1
2s +

1
3s +

1
4s + ·· ·+

1
ns · · ·

Write a MATLAB script zetainf(s,acc) to sum terms of this series until a term is less
than acc, where s is an integer.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch01-9780123869425 — 2012/5/30 — 9:28 — Page 65 — #65

Problems 65

1.24. Write a MATLAB function to sum the series

s= 1+ 22/2!+32/3!+·· ·+n2/n!

to n terms. The function should take the form sumfac(n) where n is the number of
terms used. You may use the MATLAB function factorial to evaluate the factorial
terms. Write MATLAB statements using this function to sum the series to 5 and 10
terms.

Rewrite your script avoiding the use of the function factorial by noting that the
k+ 1th term Tk+1 is given by Tk× (k+ 1)/k

1.25. Given the matrix D = [1 -1; 3 2], give the values that will be assigned to A, B, C,
and E by executing the following MATLAB statements:
(a) A = D*(D*inv(D))

(b) B = D.*D

(c) C = [D,ones(2);eye(2),zeros(2)]

(d) E = D'*ones(2)*eye(2)

1.26. The following matrices, called the Dirac matrices, are defined by

P1 =

[
0 I2

I2 0

]
, P2 =

[
0 −ıI2

ıI2 0

]
, P3 =

[
I2 0
0 −I2

]

where the 0 represents a 2× 2 matrix of zeros, I2 represents a 2× 2 unit matrix, and
ı =
√
(−1). A related set of matrices is given by

Qk =

[
0 Pk

−Pk 0

]
for k = 1,2,3

Write MATLAB statements to generate the matrices P1, P2, P3 and the matrices Qk for
k = 1, 2, 3. Note that in Qk the 0 represents a 4× 4 matrix of zeros.

1.27. Plot the function

y =
1

((x+ 2.5)2)((x− 3.5)2)

for values of x =−4 : 0.001 : 4. Then use the MATLAB functions xlim and ylim in the
form ylim([0,20]) and xlim([-3,-2]) to illustrate how this allows considerable
clarification of the nature of the function.

1.28. Write user-defined functions for the following functions:

(a) y = x2 cos(1+ x2)

(b) y =
1+ ex

cos(x)+ sin(x)

(c) z = cos(x2
+ y2)

2 .

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch01-9780123869425 — 2012/5/30 — 9:28 — Page 66 — #66

66 Chapter 1 . An Introduction to MATLAB®

Rewrite each of the previous functions as anonymous functions and illustrate the
use of these anonymous functions by using the MATLAB function subplot to plot
graphs of functions (a) and (b) in the range x = 0 to 2.

1.29. Consider the following MATLAB script, which contains some errors. Use the MATLAB

function checkcode to find these errors.

function sol = solvepoly(x0, acc)

%poly solver

d = 1+acc;

whil abs(d)>acc

x1 = (2*x0^2-1))/x0^2;

d = x1-x0;

x0 = x1/x2

end

sol = x0;

1.30. The symmetric hyperbolic Fibonacci sine and cosine functions are defined as
follows:

sFs(x)=
γ x
− γ−x
√

5
and cFs(x)=

γ x
+ γ−x
√

5

where γ = (1+
√

5)/2. Also, the complex quasi-sine Fibonacci function is defined as

cqsF(x,n)=
γ x
− cos(nπx)γ−x
√

5
+ ı

sin(nπx)γ−x
√

5

where γ is defined as before.
Write a MATLAB script that begins by defining these three functions as

anonymous functions. Then, using these anonymous functions, carry out the
following operations within the script:

(a) In a single figure, plot the graphs of sFs(x) and cFs(x) against x over the range
−5 to 5.

(b) Plot the real and imaginary parts of the function cqsF(x,5) in 3D space. Plot the
real part of the function in the y direction, the imaginary part in the z direction.
Plot the function over the range−5 to 5. Use the MATLAB function plot3.

Stakhov and Rozin (2005, 2007) provide more information on these functions.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 67 — #1

2
Linear Equations and Eigensystems

When physical systems are modeled mathematically, they are sometimes described by
linear equation systems or eigensystems, and in this chapter we will examine how such
equation systems are solved. Linear equation systems can be expressed in terms of matri-
ces and vectors, and we introduce some of the more important properties of vectors and
matrices in Appendix A.

MATLAB is an ideal environment for studying linear algebra, including linear equation
systems and eigenvalue problems, because MATLAB functions and operators can work
directly on vectors and matrices. It is rich in functions and operators, which facilitate
the manipulation of matrices. MATLAB originated as a set of linear algebra operators and
functions based on the LINPACK (Dongarra et al., 1979) and EISPACK (Smith et al., 1976;
Garbow et al., 1977) routines. These routines were developed specifically to solve linear
equations and eigenvalue problems, respectively. In 2000, MATLAB began using the LAPACK
library of linear algebra subroutines, which is the modern replacement for LINPACK and
EISPACK.

2.1 Introduction
We start with a discussion of linear equation systems and defer discussion of eigensystems
until Section 2.15. To illustrate how linear equation systems arise in the modeling of certain
physical problems we will consider how current flows are calculated in a simple electri-
cal network. The necessary equations can be developed using one of several techniques;
here we use the loop-current method together with Ohm’s law and Kirchhoff’s voltage law.
A loop current is assumed to circulate around each loop in the network. Thus, in the net-
work given in Figure 2.1, the loop current I1 circulates around the closed loop abcd. Note
that the current I1− I2 is assumed to flow in the link connecting b to c. Ohm’s law states
that the voltage across an ideal resistor is proportional to the current flow through the
resistor. For example, for the link connecting b to c

Vbc = R2(I1− I2)

where R2 is the value of the resistor in the link connecting b to c. Kirchhoff’s voltage law
states that the algebraic sum of the voltages around a loop is zero. Applying these laws to
the circuit abcd of Figure 2.1 we have

Vab+Vbc +Vcd = V

Numerical Methods Using MATLAB
®. DOI: 10.1016/B978-0-12-386942-5.00002-3

© 2012 Elsevier Inc. All rights reserved.
67

http://dx.doi.org/10.1016/B978-0-12-386942-5.00002-3

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 68 — #2

68 Chapter 2 . Linear Equations and Eigensystems

+

V = 5 volts

R1

I1 I2 I4I3

R1 R1 R1

R4

R2 R2 R3R2

R4 R4 R4

a

d c

b

FIGURE 2.1 Electrical network.

Substituting the product of current and resistance for voltage gives

R1I1+R2(I1− I2)+R4I1 = V

We can repeat this process for each loop to obtain the following four equations:

(R1+R2+R4) I1−R2I2 = V

(R1+ 2R2+R4) I2−R2I1−R2I3 = 0

(R1+ 2R2+R4) I3−R2I2−R2I4 = 0

(R1+R2+R3+R4) I4−R2I3 = 0

(2.1)

Letting R1 = R4 = 1�, R2 = 2�, R3 = 4�, and V = 5 volts, (2.1) becomes

4I1− 2I2 = 5

−2I1+ 6I2− 2I3 = 0

−2I2+ 6I3− 2I4 = 0

−2I3+ 8I4 = 0

This is a system of linear equations in four variables, I1, . . . , I4. In matrix notation it
becomes

4 −2 0 0

−2 6 −2 0

0 −2 6 −2

0 0 −2 8

I1

I2

I3

I4

=

5

0

0

0

 (2.2)

This equation has the form Ax= b where A is a square matrix of known coefficients, in this
case relating to the values of the resistors in the circuit. The vector b is a vector of known
coefficients, in this case the voltage applied to each current loop. The vector x is the vector
of unknown currents. Although this set of equations can be solved by hand, the process is
time consuming and error prone. Using MATLAB we simply enter matrix A and vector b and
use the command A\b as follows:

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 69 — #3

2.1 Introduction 69

>> A = [4 -2 0 0;-2 6 -2 0;0 -2 6 -2;0 0 -2 8];

>> b = [5 0 0 0].';

>> A\b

ans =

1.5426

0.5851

0.2128

0.0532

The sequence of operations that are invoked by this apparently simple command is
examined in Section 2.3.

In many electrical networks the ideal resistors of Figure 2.1 are more accurately rep-
resented by electrical impedances. When a harmonic alternating current (AC) supply is
connected to the network, electrical engineers represent the impedances by complex
quantities. This is to account for the effect of capacitance and/or inductance. To illustrate
this we will replace the 5 volt DC supply to the network of Figure 2.1 with a 5 volt AC supply
and replace the ideal resistors R1, . . . ,R4 by impedances Z1, . . . ,Z4. Thus (2.1) becomes

(Z1+Z2+Z4)I1−Z2I2 = V

(Z1+ 2Z2+Z4)I2−Z2I1−Z2I3 = 0

(Z1+Z2+Z3+Z4)I4−Z2I3 = 0

(2.3)

At the frequency of the 5 volt AC supply we will assume that Z1 = Z4 = (1+ 0.5), Z2 = (2+
0.5), and Z3 = (4+ 1), where =

√
−1. Electrical engineers prefer to use rather than ı

for
√
−1. This avoids any possible confusion with I or i, which are normally used to denote

the current in a circuit. Thus (2.3) becomes

(4+ 1.5)I1− (2+ 0.5)I2 = 5

−(2+ 0.5)I1+ (6+ 2.0)I2− (2+ 0.5)I3 = 0

−(2+ 0.5)I2+ (6+ 2.0)I3− (2+ 0.5)I4 = 0

−(2+ 0.5)I3+ (8+ 2.5)I4 = 0

This system of linear equations becomes, in matrix notation,

(4+ 1.5) −(2+ 0.5) 0 0

−(2+ 0.5) (6+ 2.0) −(2+ 0.5) 0

0 −(2+ 0.5) (6+ 2.0) −(2+ 0.5)

0 0 −(2+ 0.5) (8+ 2.5)

I1

I2

I3

I4

=

5

0

0

0

 (2.4)

(Z1+ 2Z2+Z4)I3 −Z2I2−Z2I4 = 0

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 70 — #4

70 Chapter 2 . Linear Equations and Eigensystems

Note that the coefficient matrix is now complex. This does not present any difficulty for
MATLAB because the operation A\b works directly with both real and complex numbers.
Thus

>> p = 4+1.5i; q = -2-0.5i;

>> r = 6+2i; s = 8+2.5i;

>> A = [p q 0 0;q r q 0;0 q r q;0 0 q s];

>> b = [5 0 0 0].';

>> A\b

ans =

1.3008 - 0.5560i

0.4560 - 0.2504i

0.1530 - 0.1026i

0.0361 - 0.0274i

Note that strictly we have no need to reenter the values in vector b, assuming that we have
not cleared the memory, reassigned the vector b, or quit MATLAB. The answer shows that
currents flowing in the network are complex. This means that there is a phase difference
between the applied harmonic voltage and the currents flowing.

We will now begin a more detailed examination of linear equation systems.

2.2 Linear Equation Systems
In general, a linear equation system can be written in matrix form as

Ax= b (2.5)

where A is an n×n matrix of known coefficients, b is a column vector of n known coef-
ficients, and x is the column vector of n unknowns. We have already seen an example of
this type of equation system in Section 2.1 where the matrix equation (2.2) is the matrix
equivalent of the linear equations (2.1).

The equation system (2.5) is called homogeneous if b= 0 and inhomogeneous if b 6= 0.
Before attempting to solve an equation system it is reasonable to ask if it has a solution and
if so is it unique? A linear inhomogeneous equation system may be consistent and have
one or an infinity of solutions or be inconsistent and have no solution. This is illustrated in
Figure 2.2 for a system of three equations in three variables x1, x2, and x3. Each equation
represents a plane surface in the x1, x2, x3 space. In Figure 2.2(a) the three planes have a
common point of intersection. The coordinates of the point of intersection give the unique
solution for the three equations. In Figure 2.2(b) the three planes intersect in a line. Any
point on the line of intersection represents a solution so there is no unique solution but
an infinite number of solutions satisfying the three equations. In Figure 2.2(c) two of the
surfaces are parallel to each other and therefore they never intersect, while in Figure 2.2(d)

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 71 — #5

2.2 Linear Equation Systems 71

S2

S3

S1

S1

S3

S2

S1

S3

S2

S1

S2

S3

(a) (b)

(c) (d)

FIGURE 2.2 Three intersecting planes representing three equations in three variables. (a) Three plane
surfaces intersecting in a point. (b) Three plane surfaces intersecting in a line. (c) Three plane surfaces,
two of which do not intersect. (d) Three plane surfaces intersecting in three lines.

the line of intersection of each pair of surfaces is different. In both of these cases there is
no solution and the equations these surfaces represent are inconsistent.

To obtain an algebraic solution to the inhomogeneous equation system (2.5) we
multiply both sides of (2.5) by a matrix called the inverse of A, denoted by A−1:

A−1Ax = A−1b (2.6)

where A−1 is defined by

A−1A= A A−1
= I (2.7)

and I is the identity matrix. Thus we obtain

x = A−1b (2.8)

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 72 — #6

72 Chapter 2 . Linear Equations and Eigensystems

The standard algebraic formula for the inverse of A is

A−1
= adj(A)/|A| (2.9)

where |A| is the determinant of A and adj(A) is the adjoint of A. The determinant and the
adjoint of a matrix are defined in Appendix A. Equations (2.8) and (2.9) are algebraic state-
ments allowing us to determine x but they do not provide an efficient means of solving the
system because computing A−1 using (2.9) is extremely inefficient, involving order (n+ 1)!
multiplications where n is the number of equations. However, (2.9) is theoretically impor-
tant because it shows that if |A| = 0 then A does not have an inverse. The matrix A is then
said to be singular and a unique solution for x does not exist. Thus establishing that |A|
is nonzero is one way of showing that an inhomogeneous equation system is a consistent
system with a unique solution. It is shown in Sections 2.6 and 2.7 that (2.5) can be solved
without formally determining the inverse of A.

An important concept in linear algebra is the rank of a matrix. For a square matrix, the
rank is the number of independent rows or columns in the matrix. Independence can be
explained as follows. The rows (or columns) of a matrix can clearly be viewed as a set of
vectors. A set of vectors is said to be linearly independent if none of them can be expressed
as a linear combination of any of the others. By linear combination we mean a sum of
scalar multiples of the vectors. For example, the matrix

 1 2 3

−2 1 4

−1 3 4

or

[1 2 3]

[−2 1 4]

[−1 3 7]

or

1

2

3

−2

1

4

−1

3

7

has linearly dependent rows and columns. This is because row3− row1− row2= 0 and
column3− 2(column2)+ column1= 0. There is only one equation relating the rows (or
columns) and thus there are two independent rows (or columns). Hence this matrix has a
rank of 2. Now consider 1 2 3

2 4 6

3 6 9

Here row2= 2(row1) and row3= 3(row1). There are two equations relating the rows and
hence only one row is independent and the matrix has a rank of 1. Note that the number of
independent rows and columns in a square matrix is identical; that is, its row rank and col-
umn rank are equal. In general matrices may be nonsquare and the rank of an m×n matrix
A is written rank(A). Matrix A is said to be of full rank if rank(A) = min(m, n); otherwise
rank(A) <min(m,n) and A is said to be rank deficient. MATLAB provides the function rank,
which works with both square and nonsquare matrices. In practice, MATLAB determines the
rank of a matrix from its singular values; see Section 2.10.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 73 — #7

2.2 Linear Equation Systems 73

For example, consider the following MATLAB statements:

>> D = [1 2 3;3 4 7;4 -3 1;-2 5 3;1 -7 6]

D =

1 2 3

3 4 7

4 -3 1

-2 5 3

1 -7 6

>> rank(D)

ans =

3

Thus D is of full rank since the rank equals the minimum size of the matrix.
A useful operation in linear algebra is the conversion of a matrix to its reduced row

echelon form (RREF). The RREF is defined in Appendix A. In MATLAB we can use the rref

function to compute the RREF of a matrix as follows:

>> rref(D)

ans =

1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

It is a property of the RREF of a matrix that the number of rows with at least one nonzero
element equals the rank of the matrix. In this example we see that there are three rows
in the RREF of the matrix containing a nonzero element, confirming that the matrix
rank is 3. The RREF also allows us to determine whether a system has a unique solution
or not.

We have discussed a number of important concepts relating to the nature of linear
equations and their solutions. We now summarize the equivalencies between these con-
cepts. Let A be an n×n matrix. If Ax= b is consistent and has a unique solution, then all
of the following statements are true:

Ax= 0 has only the trivial solution x= 0.

A is nonsingular and det(A) 6= 0.

The RREF of A is the identity matrix.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 74 — #8

74 Chapter 2 . Linear Equations and Eigensystems

A has n linearly independent rows and columns.

A has full rank, i.e., rank(A)= n.

In contrast, if Ax= b is either inconsistent or consistent but with more than one solution,
then all of the following statements are true:

Ax= 0 has more than one solution.

A is singular and det(A)= 0.

The RREF of A contains at least one zero row.

A has linearly dependent rows and columns.

A is rank deficient, i.e., rank(A) < n.

So far we have only considered the case where there are as many equations as unknowns.
Now we consider the cases where there are fewer or more equations than unknown
variables.

If there are fewer equations than unknowns, then the system is said to be underdeter-
mined. The equation system does not have a unique solution; it is either consistent with
an infinity of solutions, or inconsistent with no solution. These conditions are illustrated
by Figure 2.3. The diagram shows two plane surfaces in three-dimensional space, repre-
senting two equations in three variables. It is seen that the planes either intersect in a
line so that the equations are consistent with an infinity of solutions represented by the
line of intersection, or the surfaces do not intersect and the equations they represent are
inconsistent.

Consider the following system of equations:

[
1 2 3 4

−4 2 −3 7

]
x1

x2

x3

x4

=
[

1

3

]

S1

S2

S1

S2

(b)(a)

FIGURE 2.3 Planes representing an underdetermined system of equations. (a) Two plane surfaces
intersecting in a line. (b) Two plane surfaces which do not intersect.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 75 — #9

2.3 Operators \ and / for Solving Ax = b 75

This underdetermined system can be rearranged as follows:[
1 2

−4 2

][
x1

x2

]
+

[
3 4

−3 7

][
x3

x4

]
=

[
1

3

]

or [
1 2

−4 2

][
x1

x2

]
=

[
1

3

]
−

[
3 4

−3 7

][
x3

x4

]

Thus we have reduced this to a system of two equations in two unknowns, provided values
are assumed for x3 and x4. Thus the problem has an infinity of solutions, depending on the
values chosen for x3 and x4.

If a system has more equations than unknowns, then the system is said to be overde-
termined. Figure 2.4 shows four plane surfaces in three-dimensional space, representing
four equations in three variables. Figure 2.4(a) shows all four planes intersecting in a sin-
gle point so that the system of equations is consistent with a unique solution. Figure 2.4(b)
shows all the planes intersecting in a line and this represents a consistent system with an
infinity of solutions. Figure 2.4(d) shows planes that represent an inconsistent system of
equations with no solution. In Figure 2.4(c) the planes do not intersect in a single point and
so the system of equations is inconsistent. However, in this example the points of intersec-
tion of groups of three planes (i.e., (S1, S2, S3), (S1, S2, S4), (S1, S3, S4), and (S2, S3, S4))
are close to each other and a mean point of intersection could be determined and used
as an approximate solution. This example of marginal inconsistency often arises because
the coefficients in the equations are determined experimentally; if the coefficients were
known exactly, it is likely that the equations would be consistent with a unique solution.
Rather than accepting that the system is inconsistent we may ask what the best solution
is that satisfies the equations approximately. In Sections 2.11 and 2.12 we deal with the
problem of overdetermined and underdetermined systems in more detail.

2.3 Operators \ and / for Solving Ax = b
The purpose of this section is to introduce the reader to the MATLAB operator \. A detailed
discussion of the algorithms behind its operation will be given in later sections. This oper-
ator is a very powerful one that provides a unified approach to the solution of many
categories of linear equation systems. The operators / and \ perform matrix “division”
and have identical effects. Thus to solve Ax= b we may write either x=A\b or x'=b'/A'. In
the latter case the solution x is expressed as a row rather than a column vector. The opera-
tor / or \, when solving Ax= b, selects the appropriate algorithm dependent on the form
of the matrix A. These cases are outlined next:

. if A is a triangular matrix, the system is solved by back or forward substitution alone,
described in Section 2.6.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 76 — #10

76 Chapter 2 . Linear Equations and Eigensystems

S1

S2

S3
S4

S2

S3

S1

S4

S3

S1

S4

S2

S2

S3

S1

S4

(d)(c)

(b)(a)

FIGURE 2.4 Planes representing an overdetermined system of equations. (a) Four plane surfaces
intersecting in a point. (b) Four plane surfaces intersecting in a line. (c) Four plane surfaces not
intersecting at a single point; points of intersection of (S1, S2, S3) and (S1, S2, S4) are visible. (d) Four
plane surfaces representing inconsistent equations.

. elseif A is a positive definite, square symmetric, or Hermitian matrix, Cholesky
decomposition (described in Section 2.8) is applied. When A is sparse, Cholesky
decomposition is preceded by a symmetric minimum degree preordering (described
in Section 2.14).. elseif A is a square matrix, general LU decomposition (described in Section 2.7) is
applied. If A is sparse, this is preceded by a nonsymmetric minimum degree
preordering (described in Section 2.14).. elseif A is a full nonsquare matrix, QR decomposition (described in Section 2.9) is
applied.. elseif A is a sparse nonsquare matrix, it is augmented and then a minimum degree
preordering is applied, followed by sparse Gaussian elimination (described in
Section 2.14).

The MATLAB \ operator can also be used to solve AX= B where B and the unknown X are
m×n matrices. This could provide a simple method of finding the inverse of A. If we make

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 77 — #11

2.3 Operators \ and / for Solving Ax = b 77

B the identity matrix I then we have

AX= I

and X must be the inverse of A since AA−1
= I. Thus in MATLAB we could determine the

inverse of A by using the statement A\eye(size(A)). However, MATLAB provides the func-
tion inv(A) to find the inverse of a matrix. It is important to stress that the inverse of a
matrix should only be determined if it is specifically required. If we require the solution of
a set of linear equations it is more efficient to use the operators \ or /.

We now examine some cases to show how the \ operator works, beginning with the
solution of a system where the system matrix is triangular. The experiment in this case
examines the time taken by the operator \ to solve a system when it is full and then
when the same system is converted to triangular form by zeroing appropriate elements
to produce a triangular matrix. The script used for this experiment is

% e3s201.m

disp(' n full-time full-time/n^3 tri-time tri-time/n^2');

A = []; b = [];

for n = 2000:500:6000

A = 100*rand(n); b = [1:n].';

tic, x = A\b; t1 = toc;

t1n = 5e9*t1/n^3;

for i = 1:n

for j = i+1:n

A(i,j) = 0;

end

end

tic, x = A\b; t2 = toc;

t2n = 1e9*t2/n^2;

fprintf('%6.0f %9.4f %12.4f %12.4f %11.4f\n',n,t1,t1n,t2,t2n)

end

The results for a series of randomly generated n×n matrices are as follows:

n full-time full-time/n^3 tri-time tri-time/n^2

2000 1.7552 1.0970 0.0101 2.5203

2500 3.3604 1.0753 0.0151 2.4151

3000 5.4936 1.0173 0.0209 2.3275

3500 8.5735 0.9998 0.0282 2.3001

4000 12.6882 0.9913 0.0358 2.2393

4500 17.5680 0.9639 0.0453 2.2392

5000 24.8408 0.9936 0.0718 2.8703

Column 1 of this table gives the size of the square matrix, n. To demonstrate that the oper-
ator \ takes account of the triangular form, columns 2 and 3 contain the time taken and

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 78 — #12

78 Chapter 2 . Linear Equations and Eigensystems

the time taken divided by n3 and multiplied by the scaling factor 5× 109 for the full matrix
problem. Columns 4 and 5 give the time taken and the time taken divided by n2 and multi-
plied by the scaling factor 1× 109 for the triangular system. These interesting results show
that for the full matrix the time taken by \ is approximately proportional to n3 while for
the triangular system the time taken by \ is approximately proportional to n2. This is the
expected result for simple back substitution. In addition we see a considerable reduction
in the time taken to solve the system when the operator \ is used with a triangular system.

We now perform experiments to examine the effects of using the operator \ with pos-
itive definite symmetric systems. This is a more complex problem than those previously
discussed and the script that follows implements this test. It is based on comparing the
application of the \ operator to a positive definite system and a nonpositive definite sys-
tem of equations. We can create a positive definite matrix by letting A = M*M'. Where M is
any matrix, but in this case the matrix will be of random numbers. A will then be a posi-
tive definite matrix. To generate a nonpositive definite system we add a random matrix to
the positive definite matrix and we compare the time required to solve the two forms of
matrix. The script takes the form

% e3s202.m

disp(' n time-pos time-pos/n^3 time-npos time-b/n^3');

for n = 100:100:1000

A = []; M = 100*randn(n,n);

A = M*M'; b = [1:n].';

tic, x = A\b; t1 = toc*1000;

t1d = t1/n^3;

A = A+rand(size(A));

tic, x = A\b; t2 = toc*1000;

t2d = t2/n^3;

fprintf('%4.0f %10.4f %14.4e %11.4f %13.4e\n',n,t1,t1d,t2,t2d)

end

The result of running this script is

n time-pos time-pos/n^3 time-npos time-b/n^3

100 0.9881 9.8811e-007 1.2085 1.2085e-006

200 3.5946 4.4932e-007 3.0903 3.8629e-007

300 5.0646 1.8758e-007 9.7878 3.6251e-007

400 10.3890 1.6233e-007 20.4892 3.2014e-007

500 18.0235 1.4419e-007 36.5653 2.9252e-007

600 18.1892 8.4209e-008 37.7766 1.7489e-007

700 26.5483 7.7400e-008 58.3854 1.7022e-007

800 39.6402 7.7422e-008 79.4285 1.5513e-007

900 58.5519 8.0318e-008 110.5409 1.5163e-007

1000 67.9078 6.7908e-008 130.2029 1.3020e-007

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 79 — #13

2.3 Operators \ and / for Solving Ax = b 79

Column 1 of this table gives n, the size of the matrix. Column 2 gives the time multiplied
by 1000 for the positive definite matrix and column 4 gives the time multiplied by 1000 for
the nonpositive definite matrix. These results show that the time taken to determine the
solution for the system is somewhat faster for the positive definite system. This is because
the operator \ checks to see if the matrix is positive definite and if so uses the more efficient
Cholesky decomposition. Columns 3 and 5 give the times divide by the size of the matrix
cubed to illustrate that the processing time is approximately proportional to n3.

The next test we perform examines how the operator \ succeeds with the very badly
conditioned Hilbert matrix. The test gives the time taken to solve the system and the accu-
racy of the solution given by the Euclidean norm of the residuals, that is, norm(Ax−b).
For the definition of the norm see Appendix A, Section A.10. In addition, the test compares
these results for the \ operator with the results obtained using the inverse, that is, x= A−1b.
The script for this test is

% e3s203.m

disp(' n time-slash acc-slash time-inv acc-inv condition');

for n = 4:2:20

A = hilb(n); b = [1:n].';

tic, x = A\b; t1 = toc; t1 = t1*10000;

nm1 = norm(b-A*x);

tic, x = inv(A)*b; t2 = toc; t2 = t2*10000;

nm2 = norm(b-A*x);

c = cond(A);

fprintf('%2.0f %10.4f %10.2e %8.4f %11.2e %11.2e \n',n,t1,nm1,t2,nm2,c)

end

This produces the following table of results:

n time-slash acc-slash time-inv acc-inv condition

4 1.6427 1.39e-013 0.8549 9.85e-014 1.55e+004

6 0.9415 5.22e-012 0.7710 2.02e-009 1.50e+007

8 1.1454 5.35e-010 0.8465 3.19e-006 1.53e+010

10 1.2627 3.53e-008 1.5477 2.47e-004 1.60e+013

12 1.9332 1.40e-006 1.5589 9.39e-001 1.74e+016

14 2.1958 3.36e-005 1.5924 3.39e+002 5.13e+017

16 2.3187 5.76e-006 1.6650 1.02e+002 4.52e+017

18 2.4836 5.25e-005 2.0589 2.31e+002 1.57e+018

20 2.4417 1.11e-005 2.0869 3.72e+002 2.57e+018

This output has been edited to remove warnings about the ill-conditioning of the matrix
for n>= 10. Column 1 gives the size of the matrix. Columns 2 and 3 give the time taken
multiplied by 10,000 and accuracy when using the \ operator. Columns 4 and 5 give the
same information when using the inv function. Column 6 gives the condition number of

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 80 — #14

80 Chapter 2 . Linear Equations and Eigensystems

the system matrix. When the condition number is large, the matrix is nearly singular and
the equations are ill-conditioned. This is fully described in Section 2.4.

The results in the preceding table demonstrate convincingly the superiority of the \

operator over the inv function for solving a system of linear equations. It is considerably
more accurate than using matrix inversion. However, it should be noted that the accuracy
falls off as the matrix becomes increasingly ill-conditioned.

The MATLAB operator \ can also be used to solve under- and overdetermined systems.
In this case the \ operator uses a least squares approximation, discussed in detail in
Section 2.12.

2.4 Accuracy of Solutions and Ill-Conditioning
We now consider factors that affect the accuracy of the solution of Ax= b and how any
inaccuracies can be detected. A further discussion on the accuracy of the solution of this
equation system is given in Appendix B, Section B.3. We begin with the following examples.

Example 2.1
Consider the following MATLAB statements:

>> A = [3.021 2.714 6.913;1.031 -4.273 1.121;5.084 -5.832 9.155]

A =

3.0210 2.7140 6.9130

1.0310 -4.2730 1.1210

5.0840 -5.8320 9.1550

>> b = [12.648 -2.121 8.407].'

b =

12.6480

-2.1210

8.4070

>> A\b

ans =

1.0000

1.0000

1.0000

This result is correct and easily verified by substitution into the original equations.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 81 — #15

2.4 Accuracy of Solutions and Ill-Conditioning 81

Example 2.2
Consider Example 2.1 with A(2,2) changed from−4.2730 to−4.2750:

>> A(2,2) = -4.2750

A =

3.0210 2.7140 6.9130

1.0310 -4.2750 1.1210

5.0840 -5.8320 9.1550

>> A\b

ans =

-1.7403

0.6851

2.3212

Here we have a solution that is very different from that of Example 2.1, even though the only
change in the equation system is less than 0.1% in coefficient A(2,2).

The two examples just shown have dramatically different solutions because the coeffi-
cient matrix A is ill-conditioned. Ill-conditioning can be interpreted graphically by repre-
senting each of the equation systems by three plane surfaces, in the manner shown earlier
in Figure 2.2. In an ill-conditioned system at least two of the surfaces will be almost parallel
so that the point of intersection of the surfaces will be very sensitive to small changes in
slope, caused by small changes in coefficient values.

A system of equations is said to be ill-conditioned if a relatively small change in the
elements of the coefficient matrix A causes a relatively large change in the solution. Con-
versely a system of equations is said to be well-conditioned if a relatively small change in
the elements of the coefficient matrix A causes a relatively small change in the solution.
Clearly we require a measure of the condition of a system of equations. We know that a
system of equations without a solution—the very worst condition possible—has a coeffi-
cient matrix with a determinant of zero. It is therefore tempting to think that the size of
the determinant of A can be used as a measure of condition. However, if Ax= b and A is
an n×n diagonal matrix with each element on the leading diagonal equal to s, then A is
perfectly conditioned, regardless of the value of s. But the determinant of A in this case
is sn. Thus, the size of the determinant of A is not a suitable measure of condition because
in this example it changes with s even though the condition of the system is constant.

Two of the functions MATLAB provides to estimate the condition of a matrix are cond

and rcond. The function cond is a sophisticated function and is based on singular value
decomposition, discussed in Section 2.10. For a perfect condition cond is unity but gives

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 82 — #16

82 Chapter 2 . Linear Equations and Eigensystems

a large value for a matrix that is ill-conditioned. The function rcond is less reliable but
usually faster. This function gives a value between zero and one. The smaller the value, the
worse the conditioning. The reciprocal of rcond is usually of the same order of magnitude
as cond. We now illustrate these points with two examples.

Example 2.3
Illustration of a perfectly conditioned system:

>> A = diag([20 20 20])

A =

20 0 0

0 20 0

0 0 20

>> [det(A) rcond(A) cond(A)]

ans =

8000 1 1

Example 2.4
Illustration of a badly conditioned system:

>> A = [1 2 3;4 5 6;7 8 9.000001];

>> format short e

>> [det(A) rcond(A) 1/rcond(A) cond(A)]

ans =

-3.0000e-006 6.9444e-009 1.4400e+008 1.0109e+008

Note that the reciprocal of the rcond value is close to the value of cond. Using the MATLAB

functions cond and rcond we now investigate the condition number of the Hilbert matrix
(defined in Problem 2.1), using the script shown next:

% e3s204.m Hilbert matrix test.

disp(' n cond rcond log10(cond)')

for n = 4:2:20

A = hilb(n);

fprintf('%5.0f %16.4e',n,cond(A));

fprintf('%16.4e %10.2f\n',rcond(A),log10(cond(A)));

end

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 83 — #17

2.5 Elementary Row Operations 83

Running this script gives

n cond rcond log10(cond)

4 1.5514e+004 3.5242e-005 4.19

6 1.4951e+007 3.4399e-008 7.17

8 1.5258e+010 2.9522e-011 10.18

10 1.6025e+013 2.8286e-014 13.20

12 1.7352e+016 2.6328e-017 16.24

14 5.1317e+017 1.7082e-019 17.71

16 4.5175e+017 4.6391e-019 17.65

18 1.5745e+018 5.8371e-020 18.20

20 2.5710e+018 1.9953e-019 18.41

This shows that the Hilbert matrix is ill-conditioned even for relatively small values of n,
the size of the matrix. The last column of the preceding output gives the value of log10 of the
condition number of the appropriate Hilbert matrix. This gives a rule of thumb estimate
of the number of significant figures lost in solving an equation system with this matrix or
inverting the matrix.

The Hilbert matrix of order n was generated in the preceding script using the MATLAB

function hilb(n). Other important matrices with interesting structures and properties,
such as the Hadamard matrix and the Wilkinson matrix, can be obtained using, in these
cases, the MATLAB functions hadamard(n) and wilkinson(n)where n is the required size of
the matrix. In addition, many other interesting matrices can be accessed using the gallery
function. In almost every case we can choose the size of the matrix and in many cases we
can also choose other parameters within the matrix. Example calls are

gallery('hanowa',6,4)

gallery('cauchy',6)

gallery('forsythe',6,8)

The next section begins the detailed examination of one of the algorithms used by the \

operator.

2.5 Elementary Row Operations
We now examine the operations that can usefully be carried out on each equation of a
system of equations. Such a system will have the form

a11x1+a12x2+ ·· ·+a1nxn = b1

a21x2+a22x2+ ·· ·+a2nxn = b2

· · · · · · · · · · · · · · ·

an1xn+an2x2+ ·· ·+annxn = bn

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 84 — #18

84 Chapter 2 . Linear Equations and Eigensystems

or in matrix notation

Ax= b

where

A=

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

an1 an2 . . . ann

 b=

b1

b2
...

bn

 x=

x1

x2
...

xn

A is called the coefficient matrix. Any operation performed on an equation must be applied
to both its left and right sides. With this in mind it is helpful to combine the coefficient
matrix A with the right side vector b:

A=

a11 a12 . . . a1n b1

a21 a22 . . . a2n b2
...

...
...

...

an1 an2 . . . ann bn

This new matrix is called the augmented matrix and we will write it as [A b]. We have
chosen to adopt this notation because it is consistent with MATLAB notation for combin-
ing A and b. Note that if A is an n×n matrix, then the augmented matrix is an n× (n+ 1)
matrix. Each row of the augmented matrix holds all the coefficients of an equation and any
operation must be applied to every element in the row. The three elementary row opera-
tions described in the following can be applied to individual equations in a system without
altering the solution of the equation system. They are

1. Interchange the position of any two rows (i.e., equations).
2. Multiply a row (i.e., equation) by a nonzero scalar.
3. Replace a row by the sum of the row and a scalar multiple of another row.

These elementary row operations can be used to solve some important problems in linear
algebra and we now discuss an application of them.

2.6 Solution of Ax = b by Gaussian Elimination
Gaussian elimination is an efficient way to solve equation systems, particularly those with
a nonsymmetric coefficient matrix having a relatively small number of zero elements.
The method depends entirely on using the three elementary row operations described
in Section 2.5. Essentially the procedure is to form the augmented matrix for the system
and then reduce the coefficient matrix part to an upper triangular form. To illustrate the

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 85 — #19

2.6 Solution of Ax = b by Gaussian Elimination 85

Table 2.1 Gaussian Elimination to Transform an Augmented
Matrix to Upper Triangular Form

A1 3 6 9 3 Stage 1: Initial
matrixA2 2 (4+p) 2 4

A3 −3 −4 −11 −5

A1 3 6 9 3 Stage 2: Reduce
B2=A2−2(A1)/3 0 p −4 2 col 1 of rows
B3=A3+3(A1)/3 0 2 −2 −2 2 and 3 to zero

A1 3 6 9 3 Stage 3:
Interchange rows
2 and 3

B3 0 2 −2 −2

B2 0 p −4 2

A1 3 6 9 3 Stage 4: Reduce
col 2 of row 3 to
zero

B3 0 2 −2 −2

C3=B2−p(B3)/2 0 0 (−4+p) (2+p)

systematic use of the elementary row operations we consider the application of Gaussian
elimination to solve the following equation system:

 3 6 9

2 (4+p) 2

−3 −4 −11

x1

x2

x3

=
 3

4

−5

 (2.10)

where the value of p is known. Table 2.1 shows the sequence of operations, beginning at
Stage 1 with the augmented matrix. In Stage 1 the element in the first column of the first
row (enclosed in a box in the table) is designated the pivot. We wish to make the elements
of column 1 in rows 2 and 3 zero. To achieve this, we divide row 1 by the pivot and then add
or subtract a suitable multiple of the modified row 1 to or from rows 2 and 3. The result of
this is shown in Stage 2 of the table. We then select the next pivot. This is the element in
the second column of the new second row, which in Stage 2 is equal to p. If p is large, this
does not present a problem, but if p is small, then numerical problems may arise because
we will be dividing all the elements of the new row 2 by this small quantity p. If p is zero,
then we have an impossible situation because we cannot divide by zero.

This difficulty is not related to ill-conditioning; indeed this particular equation system
is quite well conditioned when p is zero. To circumvent these problems the usual proce-
dure is to interchange the row in question with the row containing the element of largest
modulus in the column below the pivot. In this way we provide a new and larger pivot. This
procedure is called partial pivoting. If we assume in this case that p< 2, then we inter-
change rows 2 and 3 as shown in Stage 3 of the table to replace p by 2 as the pivot. From
row 3 we now subtract row 2 divided by the pivot and multiply by a coefficient in order

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 86 — #20

86 Chapter 2 . Linear Equations and Eigensystems

to make the element of column 2, row 3, zero. Thus in Stage 4 of the table the original
coefficient matrix has been reduced to an upper triangular matrix. If, for example, p= 0,
we obtain

3x1+ 6x2+ 9x3 = 3 (2.11)

2x2− 2x3 =−2 (2.12)

−4x3 = 2 (2.13)

We can now obtain the values of the unknowns x1, x2, and x3 by a process called back
substitution. We solve the equations in reverse order. Thus from (2.13), x3 =−0.5. From
(2.12), knowing x3, we have x2 =−1.5. Finally from (2.11), knowing x2 and x3, we have
x1 = 5.5.

It can be shown that the determinant of a matrix can be evaluated from the product
of the elements on the main diagonal provided at Stage 3 in Table 2.1. This product must
be multiplied by (−1)m where m is the number of row interchanges used. For example,
in the preceding problem, with p= 0, one row interchange is used so that m= 1 and the
determinant of the coefficient matrix is given by 3× 2× (−4)× (−1)1 = 24.

A method for solving a linear equation system that is closely related to Gaussian
elimination is Gauss–Jordan elimination. The method uses the same elementary row
operations but differs from Gaussian elimination because elements both below and
above the leading diagonal are reduced to zero. This means that back substitution is
avoided. For example, solving system (2.10) with p= 0 leads to the following augmented
matrix: 3 0 0 16.5

0 2 0 −3.0

0 0 −4 2.0

Thus x1 = 16.5/3= 5.5, x2 =−3/2=−1.5, and x3 = 2/− 4=−0.5.

Gaussian elimination requires order n3/3 multiplications followed by back substitution
requiring order n2 multiplications. Gauss–Jordan elimination requires order n3/2 mul-
tiplications. Thus for large systems of equations (say n> 10), Gauss–Jordan elimination
requires approximately 50% more operations than Gaussian elimination.

2.7 LU Decomposition
LU decomposition (or factorization) is a similar process to Gaussian elimination and is
equivalent in terms of elementary row operations. The matrix A can be decomposed so
that

A= LU (2.14)

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 87 — #21

2.7 LU Decomposition 87

where L is a lower triangular matrix with a leading diagonal of ones and U is an upper
triangular matrix. Matrix A may be real or complex. Compared with Gaussian elimination,
LU decomposition has a particular advantage when the equation system we wish to solve,
Ax=b, has more than one right side or when the right sides are not known in advance. This
is because the factors L and U are obtained explicitly and they can be used for any right
sides as they arise without recalculating L and U. Gaussian elimination does not determine
L explicitly but rather forms L−1 b so that all right sides must be known when the equation
is solved.

The major steps required to solve an equation system by LU decomposition are as
follows. Since A= LU, then Ax= B becomes

LUx= b

where b is not restricted to a single column. Letting y=Ux leads to

Ly= b

Because L is a lower triangular matrix this equation is solved efficiently by forward
substitution. To find x we now solve

Ux= y

Because U is an upper triangular matrix, this equation can also be solved efficiently by
back substitution.

We now illustrate the LU decomposition process by solving (2.10) with p= 1. We are not
concerned with b and we do not form an augmented matrix. We proceed exactly as with
Gaussian elimination (see Table 2.1), except that we keep a record of the elementary row
operations performed at the ith stage in T(i) and place the results of these operations in a
matrix U(i) rather than overwriting A.

We begin with the matrix

A=

 3 6 9

2 5 2

−3 −4 −11

Following the same operations as used in Table 2.1, we will create a matrix U(1) with
zeros below the leading diagonal in the first column using the following elementary row
operations:

row 2 of U(1)
= row 2 of A− 2(row 1 of A)/3 (2.15)

and

row 3 of U(1)
= row 3 of A+ 3(row 1 of A)/3 (2.16)

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 88 — #22

88 Chapter 2 . Linear Equations and Eigensystems

Now A can be expressed as the product T(1) U(1) as follows: 3 6 9

2 5 2

−3 −4 −11

=
 1 0 0

2
/

3 1 0

−1 0 1

3 6 9

0 1 −4

0 2 −2

Note that row 1 of A and row 1 of U(1) are identical. Thus row 1 of T(1) has a unit entry in
column 1 and zero elsewhere. The remaining rows of T(1) are determined from (2.15) and
(2.16). For example, row 2 of T(1) is derived by rearranging (2.15); thus

row 2 of A= row 2 of U(1)
+ 2(row 1 of A)/3 (2.17)

or

row 2 of A= 2(row 1 of U(1))/3+ row 2 of U(1) (2.18)

since row 1 of U(1) is identical to row 1 of A. Hence row 2 of T(1) is [2/3 1 0].
We now move to the next stage of the decomposition process. In order to bring the

largest element of column 2 in U(1) onto the leading diagonal we must interchange rows 2
and 3. Thus U(1) becomes the product T(2) U(2) as follows:3 6 9

0 1 −4

0 2 −2

=
1 0 0

0 0 1

0 1 0

3 6 9

0 2 −2

0 1 −4

Finally, to complete the process of obtaining an upper triangular matrix we make

row 3 of U= row 3 of U(2)
− (row 2 of U(2))/2

Hence U(2) becomes the product T(3) U as follows:3 6 9

0 2 −2

0 1 −4

=
1 0 0

0 1 0

0 1
/

2 1

3 6 9

0 2 −2

0 0 −3

Thus A = T(1) T(2) T(3) U, implying that L = T(1) T(2) T(3) as follows: 1 0 0

2
/

3 1 0

−1 0 1

1 0 0

0 0 1

0 1 0

1 0 0

0 1 0

0 1
/

2 1

=
 1 0 0

2
/

3 1
/

2 1

−1 1 0

Note that owing to the row interchanges L is not strictly a lower triangular matrix but it can
be made so by interchanging rows.

MATLAB implements LU factorization by using the function lu and may produce a
matrix that is not strictly a lower triangular matrix. However, a permutation matrix P may
be produced, if required, such that LU = PA with L lower triangular.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 89 — #23

2.7 LU Decomposition 89

We now show how the MATLAB function lu deals with the preceding example:

>> A = [3 6 9;2 5 2;-3 -4 -11]

A =

3 6 9

2 5 2

-3 -4 -11

To obtain the L and U matrices, we must use that MATLAB facility of assigning two parame-
ters simultaneously as follows:

>> [L1 U] = lu(A)

L1 =

1.0000 0 0

0.6667 0.5000 1.0000

-1.0000 1.0000 0

U =

3 6 9

0 2 -2

0 0 -3

Note that the L1 matrix is not in lower triangular form, although its true form can easily be
deduced by interchanging rows 2 and 3 to form a triangle. To obtain a true lower triangular
matrix we must assign three parameters as follows:

>> [L U P] = lu(A)

L =

1.0000 0 0

-1.0000 1.0000 0

0.6667 0.5000 1.0000

U =

3 6 9

0 2 -2

0 0 -3

P =

1 0 0

0 0 1

0 1 0

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 90 — #24

90 Chapter 2 . Linear Equations and Eigensystems

In the preceding output P is the permutation matrix such that L*U = P*A or P'*L*U = A.
Thus P'*L is equal to L1.

The MATLAB operator \ determines the solution of Ax= b using LU factorization. As an
example of an equation system with multiple right sides we solve AX= B where

A=

3 4 −5

6 −3 4

8 9 −2

 and B=

1 3

9 5

9 4

Performing LU decomposition such that LU = A gives

L=

0.375 −0.064 1

0.750 1 0

1 0 0

 and U=

8 9 −2

0 −9.75 5.5

0 0 −3.897

Thus LY = B is given by 0.375 −0.064 1

0.750 1 0

1 0 0

y11 y12

y21 y22

y31 y32

=
1 3

9 5

9 4

We note that implicitly we have two systems of equations, which when separated can be
written

L

y11

y21

y31

=
1

9

9

 and L

y12

y22

y32

=
3

5

4

In this example L is not strictly a lower triangular matrix owing to the reordering of the
rows. However, the solution of this equation is still found by forward substitution. For
example, 1y11 = b31 = 9, so that y11 = 9. Then 0.75y11+ 1y21 = b21 = 9. Hence y21 = 2.25,
and so on. The complete Y matrix is

Y=

 9.000 4.000

2.250 2.000

−2.231 1.628

Finally, solving UX = Y by back substitution gives

X=

1.165 0.891

0.092 −0.441

0.572 −0.418

The MATLAB function det determines the determinant of a matrix using LU factorization
as follows. Since A = LU then |A| = |L| |U|. The elements of the leading diagonal of L are all

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 91 — #25

2.8 Cholesky Decomposition 91

ones so that |L| = 1. Since U is upper triangular, its determinant is the product of the ele-
ments of its leading diagonal. Thus, taking account of row interchanges, the appropriately
signed product of the diagonal elements of U gives the determinant.

2.8 Cholesky Decomposition
Cholesky decomposition or factorization is a form of triangular decomposition that can
only be applied to positive definite symmetric or positive definite Hermitian matrices.
A symmetric or Hermitian matrix A is said to be positive definite if x>Ax > 0 for any
nonzero x. A more useful definition of a positive definite matrix is one that has all eigen-
values greater than zero. The eigenvalue problem is discussed in Section 2.15. If A is
symmetric or Hermitian, we can write

A= P>P (or A= PHP when A is Hermitian) (2.19)

where P is an upper triangular matrix. The algorithm computes P row by row by equat-
ing coefficients of each side of (2.19). Thus p11, p12, p13, . . . ,p22, p23,. . . are determined in
sequence, ending with pnn. Coefficients on the leading diagonal of P are computed from
expressions that involve determining a square root. For example,

p22 =

√
a22−p2

12

A property of positive definite matrices is that the term under the square root is always
positive and so the square root will be real. Furthermore, row interchanges are not required
because the dominant coefficients will always be on the main diagonal. The whole process
requires only about half as many multiplications as LU decomposition. Cholesky factor-
ization is implemented for positive definite symmetric matrices in MATLAB by the function
chol. For example, consider the Cholesky factorization of the following positive definite
Hermitian matrix:

>> A = [2 -i 0;i 2 0;0 0 3]

A =

2.0000 0 - 1.0000i 0

0 + 1.0000i 2.0000 0

0 0 3.0000

>> P = chol(A)

P =

1.4142 0 - 0.7071i 0

0 1.2247 0

0 0 1.7321

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 92 — #26

92 Chapter 2 . Linear Equations and Eigensystems

When the operator \ detects a symmetric positive definite or Hermitian positive definite
system matrix, it solves Ax= b using the following sequence of operations. A is factorized
into P>P, and y is set to Px; then P>y= b. The algorithm solves for y by forward substitu-
tion since P> is a lower triangular matrix. Then x can be determined from y by backward
substitution since P is an upper triangular matrix. We can illustrate the steps in this process
by the following example:

A=

2 3 4

3 6 7

4 7 10

and b=

2

4

8

Then by Cholesky factorization

P=

1.414 2.121 2.828

0 1.225 0.817

0 0 1.155

Now since P>y= b, solving for y by forward substitution gives

y=

1.414

0.817

2.887

Finally, solving Px= y by back substitution gives

x=

−2.5

−1.0

2.5

We now compare the performance of the operator \ with the function chol. Clearly

their performance should be similar in the case of a positive definite matrix. To gene-
rate a symmetric positive define matrix in the following script, we multiply a matrix by
its transpose:

% e3s205.m

disp(' n time-backslash time-chol');

for n = 300:100:1300

A = []; M = 100*randn(n,n);

A = M*M'; b = [1:n].';

tic, x = A\b; t1 = toc;

tic, R = chol(A);

v = R.'\b; x = R\b;

t2 = toc;

fprintf('%4.0f %14.4f %13.4f \n',n,t1,t2)

end

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 93 — #27

2.9 QR Decomposition 93

Running this script gives

n time-backslash time-chol

300 0.0053 0.0073

400 0.0105 0.0115

500 0.0182 0.0216

600 0.0176 0.0197

700 0.0263 0.0281

800 0.0368 0.0385

900 0.0510 0.0519

1000 0.0666 0.0668

1100 0.0862 0.0869

1200 0.1113 0.1065

1300 0.1449 0.1438

The similarity in performance of the function chol and the operator \ is borne out by the
preceding table. In this table, column 1 is the size of the matrix and column 2 gives the time
taken using the \ operator. Column 3 gives the time taken using Cholesky decomposition
to solve the same problem.

Cholesky factorization can be applied to a symmetric matrix that is not positive defi-
nite but the process does not possess the numerical stability of the positive definite case.
Furthermore, one or more rows in P may be purely imaginary. For example,

If A=

1 2 3

2 −5 9

3 9 4

 then P=

1 2 3

0 3ı −ı

0 0 2ı

This is not implemented in MATLAB.

2.9 QR Decomposition
We have seen how a square matrix can be decomposed or factorized into the product of a
lower and an upper triangular matrix by the use of elementary row operations. An alterna-
tive decomposition is into an upper triangular matrix and an orthogonal matrix if A is real
or a unitary matrix if A is complex. This is called QR decomposition. Thus

A=Q R

where R is the upper triangular matrix and Q is the orthogonal, or the unitary matrix.
If Q is orthogonal, Q−1

=Q> and if Q is unitary, Q−1
=QH. The preceding are very useful

properties.
There are several procedures that provide QR decomposition; here we present House-

holder’s method. To decompose a real matrix, Householder’s method begins by defining a

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 94 — #28

94 Chapter 2 . Linear Equations and Eigensystems

matrix P:

P= I− 2ww> (2.20)

P is symmetrical and providing w>w= 1, P is also orthogonal. The orthogonality can easily
be verified by expanding the product P>P= PP as follows:

PP=
(

I− 2ww>
)(

I− 2ww>
)

= I− 4ww>+ 4ww>
(

ww>
)
= I

To decompose A into QR, we begin by forming the vector w1 from the coefficients of
the first column of A as follows:

w>1 = µ1 [(a11− s1) a21 a31 . . . an1]

where

µ1 =
1

√
2s1(s1−a11)

and s1 =±

 n∑
j=1

a2
j1

1/2

By substituting for µ1 and s1 in w1 it can be verified that the necessary orthogonality con-
dition, w>1 w1 = 1, is satisfied. Substituting w1 into (2.20) we generate an orthogonal matrix
P(1).

The matrix A(1) is now created from the product P(1)A. It can easily be verified that all
elements in the first column of A(1) are zero except for the element on the leading diagonal,
which is equal to s1. Thus

A(1) = P(1)A=

s1 + ·· · +

0 + ·· · +

...
...

...

0 + ·· · +

0 + ·· · +

In the matrix A(1),+ indicates a nonzero element.

We now begin the second stage of the orthogonalization process by forming w2 from
the coefficients of the second column of A(1):

w>2 = µ2

[
0
(

a(1)22 − s2

)
a(1)32 a(1)42 · · ·a

(1)
n2

]
where aij are the coefficients of A and

µ2 =
1√

2s2(s2−a(1)22)

and s2 =±

 n∑
j=2

(a(1)j2)
2

1/2

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 95 — #29

2.9 QR Decomposition 95

Then the orthogonal matrix P(2) is generated from

P(2) = I− 2w2w>2

The matrix A(2) is then created from the product P(2)A(1) as follows:

A(2) = P(2)A(1) = P(2)P(1)A=

s1 + ·· · +

0 s2 · · · +

...
...

...

0 0 · · · +

0 0 · · · +

Note that A(2) has zero elements in its first two columns except for the elements on and
above the leading diagonal. We can continue this process n− 1 times until we obtain an
upper triangular matrix R. Thus

R= P(n−1) . . .P(2)P(1)A (2.21)

Note that since P(i) is orthogonal, the product P(n−1). . . P(2)P(1) is also orthogonal.
We wish to determine the orthogonal matrix Q such that A=QR. Thus R=Q−1A or

R=Q>A. Hence, from (2.21),

Q> = P(n−1) . . .P(2)P(1)

Apart from the signs associated with the columns of Q and the rows of R, the decompo-
sition is unique. These signs are dependent on whether the positive or negative square
root is taken in determining s1, s2, and so on. Complete decomposition of the matrix
requires 2n3/3 multiplications and n square roots. To illustrate this procedure consider
the decomposition of the matrix

A=

4 −2 7

6 2 −3

3 4 4

Thus

s1 =
√
(

42
+ 62
+ 32

)
= 7.8102

µ1 = 1/
√

[2× 7.8102× (7.8102− 4)]= 0.1296

w>1 = 0.1296[(4− 7.8102) 6 3]= [−0.4939 0.7777 0.3889]

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 96 — #30

96 Chapter 2 . Linear Equations and Eigensystems

Using (2.20) we generate P(1) and hence A(1) as follows:

P(1) =

0.5121 0.7682 0.3841

0.7682 −0.2097 −0.6049

0.3841 −0.6049 0.6976

A(1) = P(1)A=

7.8102 2.0486 2.8168

0 −4.3753 3.5873

0 0.8123 7.2936

Note that we have reduced the elements of the first column of A(1) below the leading
diagonal to zero. We continue with the second stage:

s2 =
√
{
(−4.3753)2+ 0.81232

}
= 4.4501

µ2 = 1/
√
{2× 4.4501× (4.4501+ 4.3753)} = 0.1128

w>2 = 0.1128 [0 (−4.3753− 4.4501) 0.8123]= [0 − 0.9958 0.0917]

P(2) =

1 0 0

0 −0.9832 0.1825

0 0.1825 0.9832

R= A(2) = P(2)A(1) =

7.8102 2.0486 2.8168

0 4.4501 −2.1956

0 0 7.8259

Note that we have now reduced the first two columns of A(2) below the leading diagonal
to zero. This completes the process to determine the upper triangular matrix R. Finally we
determine the orthogonal matrix Q as follows:

Q=
(

P(2)P(1)
)>
=

0.5121 −0.6852 0.5179

0.7682 0.0958 −0.6330

0.3841 0.7220 0.5754

It is not necessary for the reader to carry out the preceding calculations since MATLAB

provides the function qr to carry out this decomposition. For example,

>> A = [4 -2 7;6 2 -3;3 4 4]

A =

4 -2 7

6 2 -3

3 4 4

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 97 — #31

2.10 Singular Value Decomposition 97

>> [Q R] = qr(A)

Q =

-0.5121 0.6852 0.5179

-0.7682 -0.0958 -0.6330

-0.3841 -0.7220 0.5754

R =

-7.8102 -2.0486 -2.8168

0 -4.4501 2.1956

0 0 7.8259

One advantage of QR decomposition is that it can be applied to nonsquare matri-
ces, decomposing an m×n matrix into an m×m orthogonal matrix and an m×n upper
triangular matrix. Note that if m> n, the decomposition is not unique.

2.10 Singular Value Decomposition
The singular value decomposition (SVD) of an m×n matrix A is given by

A= USV> (or A=USVH if A is complex)

where U is an orthogonal m×m matrix and V is an orthogonal n×n matrix. If A is com-
plex then U and V are unitary matrices. In all cases S is a real diagonal m×n matrix. The
elements of the leading diagonal of this matrix are called the singular values of A. Normally
they are arranged in decreasing value so that s1 > s2 > · · ·> sn. Thus

S=

s1 0 . . . 0

0 s2 . . . 0
...

...
...

0 0 . . . sn

0 0 . . . 0
...

...
...

0 0 . . . 0

The singular values are the nonnegative square roots of the eigenvalues of A>A. Because
A>A is symmetric or Hermitian these eigenvalues are real and nonnegative so that the sin-
gular values are also real and nonnegative. Algorithms for computing the SVD of a matrix
are given by Golub and Van Loan (1989).

The SVD of a matrix has several important applications. In Section 2.2 we introduced
the reduced row echelon form of a matrix and explained how the MATLAB function rref

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 98 — #32

98 Chapter 2 . Linear Equations and Eigensystems

gives information from which the rank of a matrix can be deduced. However, rank can be
more effectively determined from the SVD of a matrix since its rank is equal to its number
of nonzero singular values. Thus for a 5× 5 matrix of rank 3, s4, and s5 are zero. In practice,
rather than counting the nonzero singular values, MATLAB determines rank from the SVD
by counting the number of singular values greater than some tolerance value. This is a
more realistic approach to determining rank than counting any nonzero value, however
small.

To illustrate how singular value decomposition helps us to examine the properties of
a matrix we will use the MATLAB function svd to carry out a singular value decomposi-
tion and compare it with the function rref. Consider the following example in which
a Vandermonde matrix is created using the MATLAB function vander. The Vandermonde
matrix is known to be ill-conditioned. SVD allows us to examine the nature of this ill-
conditioning. In particular, a zero or a very small singular value indicates rank deficiency
and this example shows that the singular values are becoming relatively close to this
condition. In addition SVD allows us to compute the condition number of the matrix.
In fact, the MATLAB function cond uses SVD to compute the condition number and this
gives the same values as obtained by dividing the largest singular value by the small-
est singular value. Additionally, the Euclidean norm of the matrix is supplied by the first
singular value. Comparing the SVD with the RREF process in the following script, we
see that using the MATLAB functions rref and rank give the rank of this special Vander-
monde matrix as 5 but tell us nothing else. There is no warning that the matrix is badly
conditioned.

>> c = [1 1.01 1.02 1.03 1.04];

>> V = vander(c)

V =

1.0000 1.0000 1.0000 1.0000 1.0000

1.0406 1.0303 1.0201 1.0100 1.0000

1.0824 1.0612 1.0404 1.0200 1.0000

1.1255 1.0927 1.0609 1.0300 1.0000

1.1699 1.1249 1.0816 1.0400 1.0000

>> format long

>> s = svd(V)

s =

5.210367051037899

0.101918335876689

0.000699698839445

0.000002352380295

0.000000003294983

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 99 — #33

2.10 Singular Value Decomposition 99

>> norm(V)

ans =

5.210367051037899

>> cond(V)

ans =

1.581303246763933e+009

>> s(1)/s(5)

ans =

1.581303246763933e+009

>> rank(V)

ans =

5

>> rref(V)

ans =

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

The following example is very similar to the preceding one but the Vandermonde matrix
has now been generated to be rank deficient. The smallest singular value, although not
zero, is zero to machine precision and rank returns the value of 4.

>> c = [1 1.01 1.02 1.03 1.03];

>> V = vander(c)

V =

1.0000 1.0000 1.0000 1.0000 1.0000

1.0406 1.0303 1.0201 1.0100 1.0000

1.0824 1.0612 1.0404 1.0200 1.0000

1.1255 1.0927 1.0609 1.0300 1.0000

1.1255 1.0927 1.0609 1.0300 1.0000

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 100 — #34

100 Chapter 2 . Linear Equations and Eigensystems

>> format long e

>> s = svd(V)

s =

5.187797954424026e+000

8.336322098941414e-002

3.997349250042135e-004

8.462129966456217e-007

0

>> format short

>> rank(V)

ans =

4

>> rref(V)

ans =

1.0000 0 0 0 -0.9424

0 1.0000 0 0 3.8262

0 0 1.0000 0 -5.8251

0 0 0 1.0000 3.9414

0 0 0 0 0

>> cond(V)

ans =

Inf

The rank function does allow the user to vary the tolerance. However, tolerance should be
used with care since the rank function counts the number of singular values greater than
tolerance and this gives the rank of the matrix. If tolerance is very small (i.e., smaller than
the machine precision), the rank may be miscounted.

2.11 The Pseudo-Inverse
Here we discuss the pseudo-inverse and in Section 2.12 apply it to solve over- and under-
determined systems.

If A is an m×n rectangular matrix, then the system

Ax = b (2.22)

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 101 — #35

2.11 The Pseudo-Inverse 101

cannot be solved by inverting A, since A is not a square matrix. Assuming an equation
system with more equations than variables (i.e., m> n), then by premultiplying (2.22) by
A> we can convert the system matrix to a square matrix as follows:

A>Ax= A>b

The product A>A is square and, provided it is nonsingular, it can be inverted to give the
solution to (2.22):

x=
(

A>A
)−1

A>b (2.23)

Let

A+ =
(

A>A
)−1

A> (2.24)

The matrix A+ is called the Moore–Penrose pseudo-inverse of A or just the pseudo-inverse.
Thus the solution of (2.22) is

x=
(
A+
)

b (2.25)

This definition of the pseudo-inverse, A+, requires A to have full rank. If A is full rank and
m> n, then rank(A)= n. Now rank(A>A)= rank(A) and hence rank(A>A)= n. Since A>A
is an n×n array, A>A is automatically full rank and A+ is then a unique m×n array. If A is
rank deficient, then A>A is rank deficient and cannot be inverted.

If A is square and nonsingular, then A+ = A−1. If A is complex then

A+ =
(

AHA
)−1

AH (2.26)

where AH is the conjugate transpose, described in Appendix A, Section A.6. The product
A>A has a condition number, which is the square of the condition number of A. This has
implications for the computations involved in A+.

It can be shown that the pseudo-inverse has the following properties:

1. A(A+)A= A
2. (A+)A(A+)= A+

3. (A+)A and A(A+) are symmetrical matrices.

We must now consider the situation that pertains when A of (2.22) is m×n with m < n;
that is, an equation system with more variables than equations. If A is full rank, then
rank(A)=m. Now rank(A>A)=rank(A) and hence rank(A>A) =m. Since A>A is an n×n
matrix, A>A is rank deficient and cannot be inverted, even though A is full rank. We can
avoid this problem by recasting (2.22) as follows:

Ax=
(

AA>
)(

AA>
)−1

b

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 102 — #36

102 Chapter 2 . Linear Equations and Eigensystems

and hence

x= A>
(

AA>
)−1

b

Thus

x=
(
A+
)

b

where A+ = A>(AA>)−1 and is the pseudo-inverse. Note that AA> is an m×m array with
rank m and can thus be inverted.

It has been shown that if A is rank deficient, (2.24) cannot be used to determine the
pseudo-inverse of A. This doesn’t mean that the pseudo-inverse does not exist; it always
exists but we must use a different method to evaluate it. When A is rank deficient, or close
to rank deficient, A+ is best calculated from the singular value decomposition (SVD) of A.
If A is real, the SVD of A is USV> where U is an orthogonal m×m matrix, V is an orthogonal
n×n matrix, and S is a n×m matrix of singular values. Thus the SVD of A> is VS>U> so
that

A>A= (VS>U>)(USV>)= VS>SV> since U>U= I

Hence

A+ = (VS>SV>)−1VS>U> = V−>(S>S)−1V−1VS>U>

= V(S>S)−1S>U>
(2.27)

We note that V−> = (V>)−1
= (V>)> = V because by orthogonality VV> = I. Since V is an

m×m matrix, U is an n×n matrix, and S is an n×m matrix, then (2.27) is conformable
(i.e., matrix multiplication is possible); see Appendix A, Section A.5.

Consider now the case when A is rank deficient. In this situation S> S cannot be inverted
because of the very small or zero singular values. To deal with this problem we take only
the r nonzero singular values of the matrix so that S is an r× r matrix where r is the rank of
A. To make the multiplications of (2.27) conformable we take the first r columns of V and
the first r rows of U>—that is, the first r columns of U. This is illustrated in the second of
following examples in which the pseudo-inverse of A is determined.

Example 2.5
Consider the following matrix:

A=

1 2 3

4 5 9

5 6 7

−2 3 1

Computing the pseudo-inverse of A using a MATLAB implementation of (2.24) we have

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 103 — #37

2.11 The Pseudo-Inverse 103

>> A = [1 2 3;4 5 9;5 6 7;-2 3 1];

>> rank(A)

ans =

3

We note that A is full rank. Thus

>> A_cross = inv(A.'*A)*A.'

A_cross =

-0.0747 -0.1467 0.2500 -0.2057

-0.0378 -0.2039 0.2500 0.1983

0.0858 0.2795 -0.2500 -0.0231

The MATLAB function pinv provides this result directly and with greater accuracy.

A*A_cross*A

ans =

1.0000 2.0000 3.0000

4.0000 5.0000 9.0000

5.0000 6.0000 7.0000

-2.0000 3.0000 1.0000

>> A*A_cross

ans =

0.1070 0.2841 0.0000 0.1218

0.2841 0.9096 0.0000 -0.0387

0.0000 0.0000 1.0000 -0.0000

0.1218 -0.0387 -0.0000 0.9834

>> A_cross*A

ans =

1.0000 0.0000 0.0000

0.0000 1.0000 0.0000

-0.0000 -0.0000 1.0000

Note that these calculations verify that A*A_cross*A equals A and that both A*A_cross and
A_cross*A are symmetrical.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 104 — #38

104 Chapter 2 . Linear Equations and Eigensystems

Example 2.6
Consider the following rank deficient matrix:

G=

1 2 3

4 5 9

7 11 18

−2 3 1

7 1 8

Using MATLAB, we have

>> G = [1 2 3;4 5 9;7 11 18;-2 3 1;7 1 8]

G =

1 2 3

4 5 9

7 11 18

-2 3 1

7 1 8

>> rank(G)

ans =

2

Note that G has a rank of 2 (i.e., it is rank deficient) and we cannot use (2.24) to determine its
pseudo-inverse. We now find the SVD of G:

>> [U S V] = svd(G)

U =

-0.1381 0.0839 0.9724 -0.0044 -0.1681

-0.4115 0.0215 0.0539 -0.6081 0.6764

-0.8258 0.2732 -0.2165 0.0607 -0.4392

-0.0524 0.5650 0.0366 0.6373 0.5201

-0.3563 -0.7737 0.0572 0.4695 0.2253

S =

26.8394 0 0

0 6.1358 0

0 0 0.0000

0 0 0

0 0 0

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 105 — #39

2.11 The Pseudo-Inverse 105

V =

-0.3709 -0.7274 -0.5774

-0.4445 0.6849 -0.5774

-0.8154 -0.0425 0.5774

We now select the two significant singular values for use in the subsequent computation:

>> SS = S(1:2,1:2)

SS =

26.8394 0

0 6.1358

To make the multiplication conformable we use only the first two columns of U and V.

>> G_cross = V(:,1:2)*inv(SS.'*SS)*SS.'*U(:,1:2).'

G_cross =

-0.0080 0.0031 -0.0210 -0.0663 0.0966

0.0117 0.0092 0.0442 0.0639 -0.0805

0.0036 0.0124 0.0232 -0.0023 0.0162

This result can be obtained directly using the pinv function, which is based on the singular value
decomposition of G.

>> G*G_cross

ans =

0.0261 0.0586 0.1369 0.0546 -0.0157

0.0586 0.1698 0.3457 0.0337 0.1300

0.1369 0.3457 0.7565 0.1977 0.0829

0.0546 0.0337 0.1977 0.3220 -0.4185

-0.0157 0.1300 0.0829 -0.4185 0.7256

>> G_cross*G

ans =

0.6667 -0.3333 0.3333

-0.3333 0.6667 0.3333

0.3333 0.3333 0.6667

Note that G*G_cross and G_cross*G are symmetric.

In the following section we will apply these methods to solve over- and underdeter-
mined systems and discuss the meaning of the solution.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 106 — #40

106 Chapter 2 . Linear Equations and Eigensystems

2.12 Over- and Underdetermined Systems
We will begin by examining examples of overdetermined systems, that is, systems of
equations in which there are more equations than unknown variables.

Although overdetermined systems may have a unique solution, most often we are con-
cerned with equation systems that are generated from experimental data, which can lead
to a relatively small degree of inconsistency between the equations. For example, consider
the following overdetermined system of linear equations:

x1+ x2 = 1.98

2.05x1− x2 = 0.95

3.06x1+ x2 = 3.98

−1.02x1+ 2x2 = 0.92

4.08x1− x2 = 2.90

(2.28)

Figure 2.5 shows that (2.28) is such a system; the lines do not intersect in a point, although
there is a point that nearly satisfies all the equations.

We would like to choose the best point of all in the region defined by the intersections.
One criterion for doing this is that the chosen solution should minimize the sum of squares
of the residual errors (or residuals) of the equations. For example, consider the equation
system (2.28). Letting r1, . . . ,r5 be the residuals, then

x1+ x2− 1.98= r1

2.05x1− x2− 0.95= r2

3.06x1+ x2− 3.98= r3

−1.02x1+ 2x2− 0.92= r4

4.08x1− x2− 2.90= r5

−1 0 1 2 3
−1

0

1

2

3

x1

x 2

FIGURE 2.5 Plot of inconsistent equation system (2.28).

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 107 — #41

2.12 Over- and Underdetermined Systems 107

In this case the sum of the residuals squared is given by

S=
5∑

i=1

r2
i (2.29)

We wish to minimize S and we can do this by making

∂S
∂xk
= 0, k = 1, 2

Now

∂S
∂xk
=

5∑
i=1

2ri
∂ri

∂xk
, k = 1, 2

and thus

5∑
i=1

ri
∂ri

∂xk
= 0, k = 1, 2 (2.30)

It can be shown that minimizing the sum of the squares of the equation residuals using
(2.30) gives an identical solution to that given by the pseudo-inverse method of solving the
equation system.

When solving a set of overdetermined equations, determining the pseudo-inverse of
the system matrix is only part of the process and normally we do not require this interim
result. The MATLAB operator \ solves overdetermined systems automatically. Thus the
operator may be used to solve any linear equation system.

In the following example we compare the results obtained using the operator \ and
using the pseudo-inverse for solving (2.28). The MATLAB script is

% e3s206.m

A = [1 1;2.05 -1;3.06 1;-1.02 2;4.08 -1];

b = [1.98;0.95;3.98;0.92;2.90];

x = pinv(A)*b

norm_pinv = norm(A*x-b)

x = A\b

norm_op = norm(A*x-b)

Running this script gives the following numeric output:

x =

0.9631

0.9885

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 108 — #42

108 Chapter 2 . Linear Equations and Eigensystems

norm_pinv =

0.1064

x =

0.9631

0.9885

norm_op =

0.1064

Here both the MATLAB operator \ and the function pinv have provided the same “best-
fit” solution for the inconsistent set of equations. Figure 2.6 shows the region where these
equations intersect in greater detail than Figure 2.5. The symbol “+” indicates the MATLAB

solution, which lies in this region. The norm of Ax−b is the square root of the sum
of the squares of the residuals and provides a measure of how well the equations are
satisfied.

The MATLAB operator \ does not solve an overdetermined system by using the pseudo-
inverse, as given in (2.24). Instead, it solves (2.22) directly by QR decomposition. QR
decomposition can be applied to both square and rectangular matrices providing the
number of rows is greater than the number of columns. For example, applying the MATLAB

function qr to solve the overdetermined system (2.28) we have

>> A = [1 1;2.05 -1;3.06 1;-1.02 2;4.08 -1];

>> b = [1.98 0.95 3.98 0.92 2.90].';

>> [Q R] = qr(A)

Q =

-0.1761 0.4123 -0.7157 -0.2339 -0.4818

-0.3610 -0.2702 0.0998 0.6751 -0.5753

-0.5388 0.5083 0.5991 -0.2780 -0.1230

0.1796 0.6839 -0.0615 0.6363 0.3021

-0.7184 -0.1756 -0.3394 0.0857 0.5749

R =

-5.6792 0.7237

0 2.7343

0 0

0 0

0 0

In the equation Ax= b we have replaced A by QR so that QRx= b. Let Rx= y. Thus we have
y=Q−1b=Q>b since Q is orthogonal. Once y is determined we can efficiently determine

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 109 — #43

2.12 Over- and Underdetermined Systems 109

0.9 0.95 1 1.05 1.1
0.9

0.95

1

1.05

1.1

x1
x 2 +

FIGURE 2.6 Plot of inconsistent equation system (2.28) showing the region of intersection of the
equations, where + indicates the “best” solution.

x by back substitution since R is upper triangular. Thus, continuing the previous example,

>> y = Q.'*b

y =

-4.7542

2.7029

0.0212

-0.0942

-0.0446

Using the second row of R and the second row of y we can determine x2. From the first row
of R and the first row of y we can determine x1 since x2 is known. Thus

−5.6792x1+ 0.7237x2 =−4.7542

2.7343x2 = 2.7029

give x1 = 0.9631 and x2 = 0.9885, as before. The MATLAB operator \ implements this sequ-
ence of operations.

We now consider a case where the coefficient matrix of the overdetermined system is
rank deficient. The following example is rank deficient and represents a system of parallel
lines.

x1+ 2x2 = 1.00

x1+ 2x2 = 1.03

x1+ 2x2 = 0.97

x1+ 2x2 = 1.01

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 110 — #44

110 Chapter 2 . Linear Equations and Eigensystems

In MATLAB this becomes

>> A = [1 2;1 2;1 2;1 2]

A =

1 2

1 2

1 2

1 2

>> b = [1 1.03 0.97 1.01].'

b =

1.0000

1.0300

0.9700

1.0100

>> y = A\b

Warning: Rank deficient, rank = 1, tol = 3.552714e-015.

y =

0

0.5012

>> norm(y)

ans =

0.5012

The user is warned that this system is rank deficient. We have solved the system using the
\ operator and now solve it using the pinv function as follows:

>> x = pinv(A)*b

x =

0.2005

0.4010

>> norm(x)

ans =

0.4483

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 111 — #45

2.12 Over- and Underdetermined Systems 111

We see that when the pinv function and the \ operator are applied to rank deficient
systems, the pinv function gives the solution with the smallest Euclidean norm; see
Appendix A, Section A.10. Clearly there is no unique solution to this system since it
represents a set of parallel lines.

We now turn to the problem of underdetermined systems. Here there is insufficient
information to determine a unique solution. For example, consider the equation system

x1+ 2x2+ 3x3+ 4x4 = 1

−5x1+ 3x2+ 2x3+ 7x4 = 2

Expressing these equations in MATLAB we have

>> A = [1 2 3 4;-5 3 2 7];

>> b = [1 2].';

>> x1 = A\b

x1 =

-0.0370

0

0

0.2593

>> x2 = pinv(A)*b

x2 =

-0.0780

0.0787

0.0729

0.1755

We calculate the norms:

>> norm(x1)

ans =

0.2619

>> norm(x2)

ans =

0.2199

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 112 — #46

112 Chapter 2 . Linear Equations and Eigensystems

The first solution, x1, is a solution which satisfies the system; the second solution, x2,
satisfies the system of equations but also gives the solution with the minimum norm.

The definition of the Euclidean or 2-norm of a vector is the square root of the sum of the
squares of the elements of the vector; see Appendix A, Section A.10. The shortest distance
between a point in space and the origin is given by Pythagoras’s theorem as the square root
of the sum of squares of the coordinates of the point. Thus the Euclidean norm of a vector,
which is a point on a line, surface, or hypersurface, may be interpreted geometrically as the
distance between this point and the origin. The vector with the minimum norm must be
the point on the line, surface, or hypersurface that is closest to the origin. The line joining
this vector to the origin must be perpendicular to the line, surface, or hypersurface. Giving
the minimum norm solution has the advantage that, whereas there are an infinite number
of solutions to an underdetermined problem, there is only one minimum norm solution.
This provides a uniform result.

To complete the discussion of over- and underdetermined systems we consider the use
of the lsqnonneg function, which solves the nonnegative least squares problem. This solves
the problem of finding a solution x to the linear equation system

Ax= b subject to x≥ 0

where A and b must be real. This is equivalent to the problem of finding the vector x that
minimizes norm(Ax−b) subject to x≥ 0.

We can call the MATLAB function lsqnonneg for a specific problem using the statement

x = lsqnonneg(A,b)

where A corresponds to A in our definition and b to b. The solution is given by x. Consider
the example which follows. Solve

[
1 1 1 1 0

1 2 3 0 1

]

x1

x2

x3

x4

x5

=
[

7

12

]

subject to xi ≥ 0, i= 1,2, . . . ,5. In MATLAB this becomes

>> A = [1 1 1 1 0;1 2 3 0 1];

>> b = [7 12].';

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 113 — #47

2.12 Over- and Underdetermined Systems 113

Solving this system gives

>> x = lsqnonneg(A,b)

x =

0

0

4

3

0

We can solve this using \ but this will not ensure nonnegative values for x.

>> x2 = A\b

x2 =

0

0

4.0000

3.0000

0

In this case we do obtain a nonnegative solution but this is fortuitous.
The following example illustrates how the lsqnonneg function forces a nonnegative

solution that best satisfies the equations:

3.0501 4.8913

3.2311 −3.2379

1.6068 7.4565

2.4860 −0.9815

[

x1

x2

]
=

2.5

2.5

0.5

2.5

 (2.31)

>> A = [3.0501 4.8913;3.2311 -3.2379; 1.6068 7.4565;2.4860 -0.9815];

>> b = [2.5 2.5 0.5 2.5].';

We can compute the solution using \ or the lsqnonneg function:

>> x1 = A\b

x1 =

0.8307

-0.0684

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 114 — #48

114 Chapter 2 . Linear Equations and Eigensystems

>> x2 = lsqnonneg(A,b)

x2 =

0.7971

0

>> norm(A*x1-b)

ans =

0.7040

>> norm(A*x2-b)

ans =

0.9428

Thus, the best fit is given by using the operator \, but if we require all components of the
solution to be nonnegative, then we must use the lsqnonneg function.

2.13 Iterative Methods
Except in special circumstances it is unlikely that any function or script developed by the
user will outperform a function or operator that is an integral part of MATLAB. Thus we can-
not expect to develop a function that will determine the solution of Ax= b more efficiently
than by using the MATLAB operation A\b. However, we describe iterative methods here for
the sake of completeness.

Iterative methods of solution are developed as follows. We begin with a system of linear
equations

a11x1+ a12x2+ . . . +a1nxn = b1

a21x1+ a22x2+ . . . +a2nxn = b2
...

...
...

...

an1x1+ an2x2+ . . . +annxn = bn

These can be rearranged to give

x1 =
(
b1−a12x2−a13x3− . . .−a1nxn

)
/a11

x2 = (b2−a21x1−a23x3− . . .−a2nxn /a22
...

...
...

...

xn =
(
bn−an1x1−an2x2− . . .−an,n−1xn−1

)
/ann

(2.32)

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 115 — #49

2.14 Sparse Matrices 115

If we assume initial values for xi, where i= 1, . . . ,n, and substitute these values into the
right side of the preceding equations, we may determine new values for the xi from (2.32).
The iterative process is continued by substituting these values of xi into the right side of
the equations, and so on. There are several variants of the process. For example, we can
use old values of xi in the right side of the equations to determine all the new values of
xi in the left side of the equation. This is called Jacobi or simultaneous iteration. Alter-
natively, we may use a new value of xi in the right side of the equation as soon as it is
determined, to obtain the other values of xi in the right side. For example, once a new
value of x1 is determined from the first equation of (2.32), it is used in the second equa-
tion, together with the old x3, . . . ,xn to determine x2. This is called Gauss–Seidel or cyclic
iteration.

The conditions for convergence for this type of iteration are

|aii|>>

n∑
j=1, j 6=i

∣∣aij
∣∣ for i= 1, 2, . . . ,n

Thus these iterative methods are only guaranteed to work when the coefficient matrix is
diagonally dominant. An iterative method based on conjugate gradients for the solution of
systems of linear equations is discussed in Chapter 8.

2.14 Sparse Matrices
Sparse matrices arise in many problems of science and engineering—for example, in lin-
ear programming and the analysis of structures. Indeed, most large matrices that arise in
the analysis of physical systems are sparse and the recognition of this fact makes the solu-
tion of linear systems with millions of coefficients feasible. The aim of this section is to
give a brief description of the extensive sparse matrix facilities available in MATLAB and to
give practical illustrations of their value through examples. For background information
on how MATLAB implements the concept of sparsity, see Gilbert et al. (1992).

It is difficult to give a simple quantitative answer to the question: When is a matrix
sparse? A matrix is sparse if it contains a high proportion of zero elements. However, this is
significant only if the sparsity is of such an extent that we can utilize this feature to reduce
the computation time and storage facilities required for operations used on such matrices.
One major way in which time can be saved in dealing with sparse matrices is to avoid
unnecessary operations on zero elements.

MATLAB does not automatically treat a matrix as sparse and the sparsity features of
MATLAB are not introduced until invoked. Thus the user determines whether a matrix is in
the sparse class or the full class. If the user considers a matrix to be sparse and wants to use
this fact to advantage, the matrix must first be converted to sparse form. This is achieved
by using the function sparse. Thus b = sparse(a) converts the matrix a to sparse form

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 116 — #50

116 Chapter 2 . Linear Equations and Eigensystems

and subsequent MATLAB operations will take account of this sparsity. If we wish to return
this matrix to full form, we simply use c = full(b). However, the sparse function can also
be used directly to generate sparse matrices.

It is important to note that binary operators *, +, -, /, and \ produce sparse results
if both operands are sparse. Thus the property of sparsity may survive a long sequence
of matrix operations. In addition, such functions as chol(A) and lu(A) produce sparse
results if the matrix A is sparse. However, in mixed cases, where one operand is sparse and
the other is full, the result is generally a full matrix. Thus the property of sparsity may be
inadvertently lost. Notice in particular that eye(n) is not in the sparse class of matrices in
MATLAB but a sparse identity matrix can be created using speye(n). Thus the latter should
be used in manipulations with sparse matrices.

We will now introduce some of the key MATLAB functions for dealing with sparse matri-
ces, describe their use and, where appropriate, give examples of their application. The
simplest MATLAB function that helps in dealing with sparsity is the function nnz(a), which
provides the number of nonzero elements in a given matrix a, regardless of whether it
is sparse or full. A function that enables us to examine whether a given matrix has been
defined or has been propagated as sparse is the function issparse(a), which returns the
value 1 if the matrix a is sparse or 0 if it is not sparse. The function spy(a) allows the user to
view the structure of a given matrix a by displaying symbolically only its nonzero elements;
see Figure 2.7 later in the chapter for examples.

Before we can illustrate the action of these and other functions, it is useful to generate
some sparse matrices. This is easily done using a different form of the sparse function.
This time the function is supplied with the location of the nonzero entries in the matrix,
the value of these entries, the size of the sparse matrix, and the space allocated for the
nonzero entries. This function call takes the form sparse(i, j, nzvals, m, n, nzmax).
This generates an m× n matrix and allocates the nonzero values in the vector nzvals to the
positions in the matrix given by the vectors i and j. The row position is given by i and the
column position by j. Space is allocated for nzmax nonzeros. Since all but one parameter is
optional, there are many forms of this function. We cannot give examples of all these forms
but the following cases illustrate its use.

>> colpos = [1 2 1 2 5 3 4 3 4 5];

>> rowpos = [1 1 2 2 2 4 4 5 5 5];

>> value = [12 -4 7 3 -8 -13 11 2 7 -4];

>> A = sparse(rowpos,colpos,value,5,5)

These statements give the following output:

A =

(1,1) 12

(2,1) 7

(1,2) -4

(2,2) 3

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 117 — #51

2.14 Sparse Matrices 117

(4,3) -13

(5,3) 2

(4,4) 11

(5,4) 7

(2,5) -8

(5,5) -4

We see that a 5× 5 sparse matrix with 10 nonzero elements has been generated with the
required coefficient values in the required positions. This sparse matrix can be converted
to a full matrix as follows:

>> B = full(A)

B =

12 -4 0 0 0

7 3 0 0 -8

0 0 0 0 0

0 0 -13 11 0

0 0 2 7 -4

This is the equivalent full matrix. Now the following statements test to see if the matrices A
and B are in the sparse class and give the number of nonzeros they contain.

>> [issparse(A) issparse(B) nnz(A) nnz(B)]

ans =

1 0 10 10

Clearly these functions give the expected results. Since A is a member of the class of sparse
matrices, the value of issparse(A) is 1. However, although B looks sparse, it is not stored
as a sparse matrix and hence is not in the class of sparse matrices within the MATLAB

environment. The next example shows how to generate a large 5000× 5000 sparse matrix
and compares the time required to solve a linear system of equations involving this sparse
matrix with the time required for the equivalent full matrix. The script for this is

% e3s207.m Generates a sparse triple diagonal matrix

n = 5000;

rowpos = 2:n; colpos = 1:n-1;

values = 2*ones(1,n-1);

Offdiag = sparse(rowpos,colpos,values,n,n);

A = sparse(1:n,1:n,4*ones(1,n),n,n);

A = A+Offdiag+Offdiag.';

%generate full matrix

B = full(A);

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 118 — #52

118 Chapter 2 . Linear Equations and Eigensystems

%generate arbitrary right hand side for system of equations

rhs = [1:n].';

tic, x = A\rhs; f1 = toc;

tic, x = B\rhs; f2 = toc;

fprintf('Time to solve sparse matrix = %8.5f\n',f1);

fprintf('Time to solve full matrix = %8.5f\n',f2);

This provides the following results:

Time to solve sparse matrix = 0.00051

Time to solve full matrix = 5.74781

In this example there is a major reduction in the time taken to solve the system when using
the sparse class of matrix. We now perform a similar exercise, this time to determine the
lu decomposition of a 5000× 5000 matrix:

% e3s208.m

n = 5000;

offdiag = sparse(2:n,1:n-1,2*ones(1,n-1),n,n);

A = sparse(1:n,1:n,4*ones(1,n),n,n);

A = A+offdiag+offdiag';

%generate full matrix

B = full(A);

%generate arbitrary right hand side for system of equations

rhs = [1:n]';

tic, lu1 = lu(A); f1 = toc;

tic, lu2 = lu(B); f2 = toc;

fprintf('Time for sparse LU = %8.4f\n',f1);

fprintf('Time for full LU = %8.4f\n',f2);

The time taken to solve the systems is

Time for sparse LU = 0.0056

Time for full LU = 9.6355

Again this provides a considerable reduction in the time taken.
An alternative way to generate sparse matrices is to use the functions sprandn and

sprandsym. These provide random sparse matrices and random sparse symmetric matri-
ces, respectively. The call

A = sprandn(m,n,d)

produces an m×n random matrix with normally distributed nonzero entries of density d.
The density is the proportion of the nonzero entries to the total number of entries in the
matrix. Thus d must be in the range 0 to 1. To produce a symmetric random matrix with

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 119 — #53

2.14 Sparse Matrices 119

normally distributed nonzero entries of density d, we use

A = sprandsys(n,d)

Examples of calls of these functions are given by

>> A = sprandn(5,5,0.25)

A =

(2,1) -0.4326

(3,3) -1.6656

(5,3) -1.1465

(4,4) 0.1253

(5,4) 1.1909

(4,5) 0.2877

>> B = full(A)

B =

0 0 0 0 0

-0.4326 0 0 0 0

0 0 -1.6656 0 0

0 0 0 0.1253 0.2877

0 0 -1.1465 1.1909 0

>> As = sprandsym(5,0.25)

As =

(3,1) 0.3273

(1,3) 0.3273

(5,3) 0.1746

(5,4) -0.0376

(3,5) 0.1746

(4,5) -0.0376

(5,5) 1.1892

>> Bs = full(As)

Bs =

0 0 0.3273 0 0

0 0 0 0 0

0.3273 0 0 0 0.1746

0 0 0 0 -0.0376

0 0 0.1746 -0.0376 1.1892

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 120 — #54

120 Chapter 2 . Linear Equations and Eigensystems

An alternative call for sprandsym is given by

A = sprandsym(n,density,r)

If r is a scalar, then this produces a random sparse symmetric matrix with a condition
number equal to 1/r. Remarkably, if r is a vector of length n, a random sparse matrix
with eigenvalues equal to the elements of r is produced. Eigenvalues are discussed in
Section 2.15. A positive definite matrix has all positive eigenvalues and consequently such
a matrix can be generated by choosing each of the n elements of r to be positive. An
example of this form of call is

>> Apd = sprandsym(6,0.4,[1 2.5 6 9 2 4.3])

Apd =

(1,1) 1.0058

(2,1) -0.0294

(4,1) -0.0879

(1,2) -0.0294

(2,2) 8.3477

(4,2) -1.9540

(3,3) 5.4937

(5,3) -1.3300

(1,4) -0.0879

(2,4) -1.9540

(4,4) 3.1465

(3,5) -1.3300

(5,5) 2.5063

(6,6) 4.3000

>> Bpd = full(Apd)

Bpd =

1.0058 -0.0294 0 -0.0879 0 0

-0.0294 8.3477 0 -1.9540 0 0

0 0 5.4937 0 -1.3300 0

-0.0879 -1.9540 0 3.1465 0 0

0 0 -1.3300 0 2.5063 0

0 0 0 0 0 4.3000

This provides an important method for generating test matrices with required properties
since, by providing a list of eigenvalues with a range of values, we can produce positive
definite matrices that are very badly conditioned.

We now return to examine further the value of using sparsity. The reasons for the very
high level of improvement in computing efficiency when using the \ operator, illustrated

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 121 — #55

2.14 Sparse Matrices 121

in the example at the beginning of this section, are complex. The process includes a spe-
cial preordering of the columns of the matrix. This special preordering, called minimum
degree ordering, is used in the case of the \ operator. This preordering takes different
forms depending on whether the matrix is symmetric or nonsymmetric. The aim of any
preordering is to reduce the amount of fill-in from any subsequent matrix operations.
Fill-in is the introduction of additional nonzero elements.

We can examine this preordering process using the spy function and the function
symamd, which implements symmetric minimum degree ordering in MATLAB. The function is
automatically applied when working on matrices that belong to the class of sparse matri-
ces for the standard functions and operators of MATLAB. However, if we are required to use
this preordering in nonstandard applications, then we may use the symmmd function. The
following examples illustrate the use of this function.

We first consider the simple process of multiplication applied to a full and a sparse
matrix. The sparse multiplication uses the minimum degree ordering. The following script
generates a sparse matrix, obtains a minimum degree ordering for it, and then exam-
ines the result of multiplying the matrix by itself transposed. This is compared with the
same operations carried out on the full matrix, and the time required for each operation is
compared.

% e3s209.m

% generate a sparse matrix

n = 3000;

offdiag = sparse(2:n,1:n-1,2*ones(1,n-1),n,n);

offdiag2 = sparse(4:n,1:n-3,3*ones(1,n-3),n,n);

offdiag3 = sparse(n-5:n,1:6,7*ones(1,6),n,n);

A = sparse(1:n,1:n,4*ones(1,n),n,n);

A = A+offdiag+offdiag'+offdiag2+offdiag2'+offdiag3+offdiag3';

A = A*A.';

% generate full matrix

B = full(A);

m_order = symamd(A);

tic

spmult = A(m_order,m_order)*A(m_order,m_order).';

flsp = toc;

tic, fulmult = B*B.'; flful = toc;

fprintf('Time for sparse mult = %6.4f\n',flsp)

fprintf('Time for full mult = %6.4f\n',flful)

Running this script results in the following output:

Time for sparse mult = 0.0184

Time for full mult = 3.8359

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 122 — #56

122 Chapter 2 . Linear Equations and Eigensystems

We now perform a similar experiment to the preceding but for a more complex numer-
ical process than multiplication. In the script that follows we examine LU decomposition.
We consider the result of using a minimum degree ordering on the LU decomposition
process by comparing the performance of the lu function with and without a preordering.
The script has the form

% e3s210.m

% generate a sparse matrix

n = 100;

offdiag = sparse(2:n,1:n-1,2*ones(1,n-1),n,n);

offdiag2 = sparse(4:n,1:n-3,3*ones(1,n-3),n,n);

offdiag3 = sparse(n-5:n,1:6,7*ones(1,6),n,n);

A = sparse(1:n,1:n,4*ones(1,n),n,n);

A = A+offdiag+offdiag'+offdiag2+offdiag2'+offdiag3+offdiag3';

A = A*A.';

A1 = flipud(A);

A = A+A1;

n1 = nnz(A)

B = full(A); %generate full matrix

m_order = symamd(A);

tic, lud = lu(A(m_order,m_order)); flsp = toc;

n2 = nnz(lud)

tic, fullu = lu(B); flful = toc;

n3 = nnz(fullu)

subplot(2,2,1), spy(A,'k');

title('Original matrix')

subplot(2,2,2), spy(A(m_order,m_order),'k')

title('Ordered matrix')

subplot(2,2,3), spy(fullu,'k')

title('LU decomposition,unordered matrix')

subplot(2,2,4), spy(lud,'k')

title('LU decomposition, ordered matrix')

fprintf('Time for sparse lu = %6.4f\n',flsp)

fprintf('Time for full lu = %6.4f\n',flful)

Running this script gives

n1 =

2096

n2 =

1307

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 123 — #57

2.14 Sparse Matrices 123

n3 =

4465

Time for sparse lu = 0.0013

Time for full lu = 0.0047

As expected, by using a sparse operation we achieve a reduction in the time taken to
determine the LU decomposition. Figure 2.7 shows the original matrix with 2096 nonzero
elements, the reordered matrix (which has the same number of nonzeros), and the LU
decomposition structure both with and without minimum degree ordering. Notice that
the number of nonzeros in the LU matrices with preordering is 1307 and without is 4465.
Thus there is a large increase in the number of nonzero elements in the LU matrices with-
out preordering. In contrast, LU decomposition of the preordered matrix has produced
fewer nonzeros than the original matrix. The reduction of fill-in is an important feature
of sparse numerical processes and may ultimately lead to great saving in computational
effort. Note that if the size of the matrices is increased from 100× 100 to 3000× 3000 then
the output from the preceding script is

n1 =

65896

n2 =

34657

0 50 100

0

50

100

nz = 2096 nz = 2096

nz = 4465 nz = 1307

0 50 100

0

50

100

0 50 100

0

50

100

0 50 100

0

50

100

Original matrix Ordered matrix

LU decomp, unordered mtx LU decomp, ordered mtx

FIGURE 2.7 Effect of minimum degree ordering on LU decomposition.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 124 — #58

124 Chapter 2 . Linear Equations and Eigensystems

n3 =

526810

Time for sparse lu = 0.0708

Time for full lu = 2.3564

Here we obtain a more substantial reduction by using sparse operations.
The MATLAB function symamdprovides a minimum degree ordering for symmetric matri-

ces. For nonsymmetric matrices MATLAB provides the function colmmd, which gives the
column minimum degree ordering for nonsymmetric matrices. An alternative ordering,
which is used to reduce bandwidth, is the reverse Cuthill-McKee ordering. This is imple-
mented in MATLAB by the function symrcm. The execution of the statement p = symrcm(A)

provides the permutation vector p to produce the required preordering and A(p,p) is the
reordered matrix.

We have shown that in general taking account of sparsity will provide savings in
floating-point operations. However, these savings fall off as the matrices on which we are
operating become less sparse, as the following example illustrates.

% e3s211.m

n = 1000; b = 1:n;

disp(' density time_sparse time_full');

for density = 0.004:0.003:0.039

A = sprandsym(n,density)+0.1*speye(n);

density = density+1/n;

tic, x = A\b'; f1 = toc;

B = full(A);

tic, y = B\b'; f2 = toc;

fprintf('%10.4f %12.4f %12.4f\n',density,f1,f2);

end

In the preceding script a diagonal of elements has been added to the randomly generated
sparse matrix. This is done to ensure that each row of the matrix contains a nonzero ele-
ment; otherwise, the matrix may be singular. Adding this diagonal modifies the density. If
the original n×n matrix has a density of d, then, assuming that this matrix has only zeros
on the diagonal, the modified density is d+ 1/n.

density time_sparse time_full

0.0050 0.0204 0.1907

0.0080 0.0329 0.1318

0.0110 0.0508 0.1332

0.0140 0.0744 0.1399

0.0170 0.0892 0.1351

0.0200 0.1064 0.1372

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 125 — #59

2.14 Sparse Matrices 125

0.0230 0.1179 0.1348

0.0260 0.1317 0.1381

0.0290 0.1444 0.1372

0.0320 0.1516 0.1369

0.0350 0.1789 0.1404

0.0380 0.1627 0.1450

This output shows that the advantage of using a sparse class of matrix diminishes as the
density increases.

Another application where sparsity is important is in solving the least squares problem.
This problem is known to be ill-conditioned and hence any saving in computational effort
is particularly beneficial. This is directly implemented by using A\b where A is nonsquare
and sparse. To illustrate the use of the \ operator with sparse matrices and compare its
performance when no account is taken of sparsity, we use the following script:

% e3s212.m

% generate a sparse triple diagonal matrix

n = 1000;

rowpos = 2:n; colpos = 1:n-1;

values = ones(1,n-1);

offdiag = sparse(rowpos,colpos,values,n,n);

A = sparse(1:n,1:n,4*ones(1,n),n,n);

A = A+offdiag+offdiag';

%Now generate a sparse least squares system

Als = A(:,1:n/2);

%generate full matrix

Cfl = full(Als);

rhs = 1:n;

tic, x = Als\rhs'; f1 = toc;

tic, x = Cfl\rhs'; f2 = toc;

fprintf('Time for sparse least squares solve = %8.4f\n',f1)

fprintf('Time for full least squares solve = %8.4f\n',f2)

This provides the following results:

Time for sparse least squares solve = 0.0023

Time for full least squares solve = 0.2734

Again we see the advantage of using sparsity.
We have not covered all aspects of sparsity or described all the related functions.

However, we hope this section has provided a helpful introduction to this difficult but
important and valuable development of MATLAB.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 126 — #60

126 Chapter 2 . Linear Equations and Eigensystems

2.15 The Eigenvalue Problem
Eigenvalue problems arise in many branches of science and engineering. For example, the
vibration characteristics of structures are determined from the solution of an algebraic
eigenvalue problem. Here we consider a particular example of a system of masses and
springs shown in Figure 2.8. The equations of motion for this system are

m1q̈1+
(
k1+ k2+ k4

)
q1− k2q2− k4q3 = 0

m2q̈2− k2q1+
(
k2+ k3

)
q2− k3q3 = 0

m3q̈3− k4q1− k3q2+
(
k3+ k4

)
q3 = 0

(2.33)

where m1, m2, and m3 are the system masses and k1, . . . ,k4 are the spring stiffnesses. If we
assume an harmonic solution for each coordinate, then qi(t)= ui exp(ωt)where =

√
−1,

for i= 1, 2, and 3. Hence d2qi/dt2
=−ω2ui exp(ωt). Substituting in (2.33) and canceling

the common factor exp(jωt) gives

−ω2m1u1+
(
k1+ k2+ k4

)
u1− k2u2− k4u3 = 0

−ω2m2u2− k2u1+
(
k2+ k3

)
u2− k3u3 = 0

−ω2m3u3− k4u1− k3u2+
(
k3+ k4

)
u3 = 0

(2.34)

If m1 = 10 kg, m2 = 20 kg, m3 = 30 kg, k1 = 10 kN/m, k2 = 20 kN/m, k3 = 25 kN/m, and
k4 = 15 kN/m, then (2.34) becomes

−ω210u1+ 45000u1− 20000u2− 15000u3 = 0

−ω220u1− 20000u1+ 45000u2− 25000u3 = 0

−ω230u1− 15000u1− 25000u2+ 40000u3 = 0

This can be expressed in matrix notation as

−ω2Mu+Ku= 0 (2.35)

Ground

m3

q2

k4

k3k2

k1
m2

m1

q3q1

FIGURE 2.8 Mass-spring system with three degrees of freedom.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 127 — #61

2.15 The Eigenvalue Problem 127

where

M=

10 0 0

0 20 0

0 0 30

kg and K=

 45 −20 −15

−20 45 −25

−15 −25 40

kN/m

Equation (2.35) can be rearranged in a variety of ways. For example, it can be written

Mu= λKu where λ=
1

ω2
(2.36)

This is an algebraic eigenvalue problem and solving it determines values for u and λ.
MATLAB provides a function eig to solve the eigenvalue problem. To illustrate its use we
apply it to the solution of (2.35).

>> M = [10 0 0;0 20 0;0 0 30];

>> K = 1000*[45 -20 -15;-20 45 -25;-15 -25 40];

>> lambda = eig(M,K).'

lambda =

0.0002 0.0004 0.0073

>> omega = sqrt(1./lambda)

omega =

72.2165 52.2551 11.7268

This result tells us that the system of Figure 2.8 vibrates with natural frequencies 11.72,
52.25, and 72.21 rad/s. In this example we have chosen not to determine u. We will discuss
further the use of the function eig in Section 2.17.

Having provided an example of an eigenvalue problem, we consider the standard form
of this problem:

Ax= λx (2.37)

This equation is an algebraic eigenvalue problem where A is a given n×n matrix of coef-
ficients, x is an unknown column vector of n elements, and λ is an unknown scalar.
Equation (2.37) can alternatively be written as

(A− λI)x= 0 (2.38)

Our aim is to discover the values of x, called the characteristic vectors or eigenvectors, and
the corresponding values of λ, called the characteristic values or eigenvalues. The values
of λ that satisfy (2.38) are given by the roots of the equation

|A− λI| = 0 (2.39)

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 128 — #62

128 Chapter 2 . Linear Equations and Eigensystems

These values of λ are such that (A− λI) is singular. Since (2.38) is a homogeneous equa-
tion, nontrivial solutions exist for these values of λ. Evaluation of the determinant (2.39)
leads to an nth-degree polynomial in λ, which is called the characteristic polynomial. This
characteristic polynomial has n roots, some of which may be repeated, giving the n values
of λ. In MATLAB we can create the coefficients of the characteristic polynomial using the
function poly, and the roots of the resulting characteristic polynomial can be found using
the function roots. For example, if

A=

1 2 3

4 5 −6

7 −8 9

then we have

>> A = [1 2 3;4 5 -6;7 -8 9];

>> p = poly(A)

p =

1.0000 -15.0000 -18.0000 360.0000

Hence the characteristic equation is λ3
− 15λ2

− 18λ+ 360= 0. To find the roots of this we
use the statement

>> roots(p).'

ans =

14.5343 -4.7494 5.2152

We can verify this result using the function eig:

>> eig(A).'

ans =

-4.7494 5.2152 14.5343

Having obtained the eigenvalues we can substitute back into (2.38) to obtain linear
equations for the characteristic vectors:

(A − λi I)x= 0 i= 1,2, . . . ,n (2.40)

This homogeneous system provides n nontrivial solutions for x. However, the use of (2.39)
and (2.40) is not a practical means of solving eigenvalue problems.

We now consider the properties of eigensolutions where the system matrix is real. If
A is a real symmetric matrix the eigenvalues of A are real, but not necessarily positive,

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 129 — #63

2.15 The Eigenvalue Problem 129

and the corresponding eigenvectors are also real. In addition, if λi, xi and λj, xj satisfy the
eigenvalue problem (2.37) and λi and λj are distinct, then

x>i xj = 0 i 6= j (2.41)

and

x>i Axj = 0 i 6= j (2.42)

Equations (2.41) and (2.42) are called the orthogonality relationships. Note that if
i= j, then in general x>i xi and x>i Axi are not zero. The vector xi includes an arbitrary scalar
multiplier because the vector multiplies both sides of (2.37). Hence the product x>i xi must
be arbitrary. However, if the arbitrary scalar multiplier is adjusted so that

x>i xi = 1 (2.43)

then

x>i Axi = λi (2.44)

and the eigenvectors are then said to be normalized. Sometimes the eigenvalues are not
distinct and the eigenvectors associated with these equal or repeated eigenvalues are not
necessarily orthogonal. If λi = λj and the other eigenvalues, λk, are distinct, then

x>i xk = 0

x>j xk = 0

}
k = 1, 2, . . . ,n, k 6= i, k 6= j (2.45)

For consistency we can choose to make x>i xj = 0. When λi = λj, the eigenvectors xi and xj

are not unique and a linear combination of them (i.e., αxi+ γ xj, where α and γ are arbitrary
constants), also satisfies the eigenvalue problem.

Let us now consider the case where A is real but not symmetric. A pair of related
eigenvalue problems can arise as follows:

Ax= λx (2.46)

A>y= βy (2.47)

and (2.47) can be transposed to give

y>A= βy> (2.48)

The vectors x and y are called the right and left vectors of A, respectively. The equations
|A− λI| = 0 and |A>−βI| = 0 must have the same solutions for λ and β because the deter-
minant of a matrix and the determinant of its transpose are equal. Thus the eigenvalues of
A and A> are identical but the eigenvectors x and y will, in general, differ from each other.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 130 — #64

130 Chapter 2 . Linear Equations and Eigensystems

The eigenvalues and eigenvectors of a nonsymmetric real matrix are either real or pairs
of complex conjugates. If λi, xi, yi and λj, xj, yj are solutions that satisfy the eigenvalue
problems of (2.46) and (2.47) and λi and λj are distinct, then

x>i xj = 0 i 6= j (2.49)

and

x>i Axj = 0 i 6= j (2.50)

Equations (2.49) and (2.50) are called the biorthogonal relationships. As with (2.43) and
(2.44) if, in these equations, i= j, then in general y>i xi and y>i Axi are not zero. The eigen-
vectors xi and yi include arbitrary scaling factors and so the product of these vectors will
also be arbitrary. However, if the vectors are adjusted so that

y>i xi = 1 (2.51)

then

y>i Axi = λi (2.52)

We cannot, in these circumstances, describe either xi or yi as normalized. The vectors still
include an arbitrary scale factor; only their product is uniquely chosen.

2.16 Iterative Methods for Solving
the Eigenvalue Problem

The first of two simple iterative procedures described here determines the dominant or
largest eigenvalue. The method, which is called the power method or matrix iteration, can
be used on both symmetric and nonsymmetric matrices. However, for a nonsymmetric
matrix the user must be alert to the possibility that there is not a single real dominant
eigenvalue value but a complex conjugate pair. Under these conditions simple iteration
does not converge.

Consider the eigenvalue problem defined by (2.37) and let the vector u0 be an initial
trial solution. The vector u0 is an unknown linear combination of all the eigenvectors of
the system provided they are linearly independent. Thus

u0 =

n∑
i=1

αi xi (2.53)

where αi are unknown coefficients and xi are the unknown eigenvectors. Let the iterative
scheme be

u1 = Au0, u2 = Au1, . . . , up = Aup−1 (2.54)

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 131 — #65

2.16 Iterative Methods for Solving the Eigenvalue Problem 131

Substituting (2.53) into the sequence (2.54) we have

u1 =

n∑
i=1

αiAxi =

n∑
i=1

αiλixi since Axi = λixi

u2 =

n∑
i=1

αiλiAxi =

n∑
i=1

αiλ
2
i xi

. .

up =

n∑
i=1

αiλ
p−1
i Axi =

n∑
i=1

αiλ
p
i xi

(2.55)

The final equation can be rearranged as follows:

up = λ
p
1

[
α1x1+

n∑
i=2

αi

(
λi

λ1

)p

xi

]
(2.56)

It is the accepted convention that the n eigenvalues of a matrix are numbered such that

|λ1|> |λ2|> · · ·> |λn|

Hence [
λi

λ1

]p

tends to zero as p tends to infinity for i= 2,3, . . . ,n. As p becomes large, we have from (2.56):

up⇒ λ
p
1α1x1

Thus up becomes proportional to x1 and the ratio between corresponding components of
up and up−1 tends to λ1.

The algorithm is not usually implemented exactly as described previously because
problems could arise due to numeric overflows. Usually, after each iteration, the resulting
trial vector is normalized by dividing it by its largest element, thereby reducing the largest
element in the vector to unity. This can be expressed mathematically as

vp =Aup

up+1 =

(
1

max(vp)

)
vp

 p= 0,1,2, . . . (2.57)

where max(vp) is the element of vp with the maximum modulus. The pair of equa-
tions (2.57) are iterated until convergence is achieved. This modification to the algorithm
does not affect the rate of convergence of the iteration. In addition to preventing the
buildup of very large numbers, the modification described before has the added advantage
that it is now much easier to decide at what stage the iteration should be terminated.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 132 — #66

132 Chapter 2 . Linear Equations and Eigensystems

Post-multiplying the coefficient matrix A by one of its eigenvectors gives the eigenvec-
tor multiplied by the corresponding eigenvalue. Thus, when we stop the iteration because
up+1 is sufficiently close to up to ensure convergence, max(vp) will be an estimate of the
eigenvalue.

The rate of convergence of the iteration is primarily dependent on the distribution of
the eigenvalues; the smaller the ratios

∣∣λi
/
λ1
∣∣, where i= 2,3, . . . ,n, the faster the conver-

gence. The following MATLAB function eigit implements the iterative method to find the
dominant eigenvalue and the associated eigenvector.

function [lam u iter] = eigit(A,tol)

% Solves EVP to determine dominant eigenvalue and associated vector

% Sample call: [lam u iter] = eigit(A,tol)

% A is a square matrix, tol is the accuracy

% lam is the dominant eigenvalue, u is the associated vector

% iter is the number of iterations required

[n n] = size(A);

err = 100*tol;

u0 = ones(n,1); iter = 0;

while err>tol

v = A*u0;

u1 = (1/max(v))*v;

err = max(abs(u1-u0));

u0 = u1; iter = iter+1;

end

u = u0; lam = max(v);

We now apply this method to find the dominant eigenvalue and corresponding vector
for the following eigenvalue problem.1 2 3

2 5 −6

3 −6 9

x1

x2

x3

= λ
x1

x2

x3

 (2.58)

>> A = [1 2 3;2 5 -6;3 -6 9];

>> [lam u iterations] = eigit(A,1e-8)

lam =

13.4627

u =

0.1319

-0.6778

1.0000

iterations =

18

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 133 — #67

2.16 Iterative Methods for Solving the Eigenvalue Problem 133

The dominant eigenvalue, to eight decimal places, is 13.46269899.
Iteration can also be used to determine the smallest eigenvalue of a system. The

eigenvalue problem Ax= λx can be rearranged to give

A−1x= (1/λ)x

Here iteration will converge to the largest value of 1/λ—that is, the smallest value of λ.
However, as a general rule, matrix inversion should be avoided, particularly in large
systems.

We have seen that direct iteration of Ax= λx leads to the largest or dominant eigen-
value. A second iterative procedure, called inverse iteration, provides a powerful method
of determining subdominant eigensolutions. Consider again the eigenvalue problem of
(2.37). Subtracting µx from both sides of this equation we have

(A−µI)x= (λ−µ)x (2.59)

(A−µI)−1 x=
(

1
λ−µ

)
x (2.60)

Consider the iterative scheme that begins with a trial vector u0. Then, using the equivalent
of (2.57), we have

vs = (A−µI)−1 us

us+1 =

(
1

max(vs)

)
vs

 s= 0,1,2, . . . (2.61)

Iteration will lead to the largest value of 1/(λ−µ)—that is, the smallest value of (λ−µ).
The smallest value of (λ−µ) implies that the value of λ will be the eigenvalue closest to
µ and u will have converged to the eigenvector x corresponding to this particular eigen-
value. Thus, by a suitable choice of µ, we have a procedure for finding subdominant
eigensolutions.

Iteration is terminated when us+1 is sufficiently close to us. When convergence is
complete

1
λ−µ

=max(vs)

Thus the value of λ nearest to µ is given by

λ= µ+
1

max(vs)
(2.62)

The rate of convergence is fast, provided the chosen value of µ is close to an eigen-
value. If µ is equal to an eigenvalue, then (A −µI) is singular. In practice this seldom
presents difficulties because it is unlikely that µ would be chosen, by chance, to exactly
equal an eigenvalue. However, if (A−µI) is singular then we have confirmation that

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 134 — #68

134 Chapter 2 . Linear Equations and Eigensystems

the eigenvalue is known to a very high precision. The corresponding eigenvector can
then be obtained by changing µ by a small quantity and iterating to determine the
eigenvector.

Although inverse iteration can be used to find the eigensolutions of a system about
which we have no previous knowledge, it is more usual to use inverse iteration to refine
the approximate eigensolution obtained by some other technique. In practice (A−µI)−1

is not formed explicitly; instead, (A−µI) is usually decomposed into the product of a lower
and an upper triangular matrix. Explicit matrix inversion is avoided and is replaced by two
efficient substitution procedures. In the simple MATLAB implementation of this procedure
shown next, the operator \ is used to avoid matrix inversion.

function [lam u iter] = eiginv(A,mu,tol)

% Determines eigenvalue of A closest to mu with a tolerance tol.

% Sample call: [lam u] = eiginv(A,mu,tol)

% lam is the eigenvalue and u the corresponding eigenvector.

[n,n] = size(A);

err = 100*tol;

B = A-mu*eye(n,n);

u0 = ones(n,1);

iter = 0;

while err>tol

v = B\u0; f = 1/max(v);

u1 = f*v;

err = max(abs(u1-u0));

u0 = u1; iter = iter+1;

end

u = u0; lam = mu+f;

We now apply this function to find the eigenvalue of (2.58) nearest to 4 and the correspond-
ing eigenvector.

>> A = [1 2 3;2 5 -6;3 -6 9];

>> [lam u iterations] = eiginv(A,4,1e-8)

lam =

4.1283

u =

1.0000

0.8737

0.4603

iterations =

6

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 135 — #69

2.17 The MATLAB Function eig 135

The eigenvalue closest to 4 is 4.12827017 to eight decimal places. The functions eigit

and eiginv should be used with care when solving large-scale eigenvalue problems since
convergence is not always guaranteed and in adverse circumstances may be slow.

We now discuss the MATLAB function eig in some detail.

2.17 The MATLAB Function eig

There are many algorithms available to solve the eigenvalue problem. The method chosen
is influenced by many factors such as the form and size of the eigenvalue problem, whether
or not it is symmetric, whether it is real or complex, whether or not only the eigenvalues
are required, and whether all or only some of the eigenvalues and vectors are required.

We now describe the algorithms that are used in the MATLAB function eig. This MATLAB

function can be used in several forms and, in the process, makes use of different algo-
rithms. The different forms are as follows:

1. lambda = eig(a)

2. [u lambda] = eig(a)

3. lambda = eig(a,b)

4. [u lambda]=eig(a,b)

where lambda is a vector of eigenvalues in (1) and (3) and a diagonal matrix with the eigen-
values on the diagonal in (2) and (4). In these latter cases u is a matrix, the columns of
which are the eigenvectors.

For real matrices the MATLAB function eig(a) proceeds as follows. If A is a general
matrix, it is first reduced to Hessenberg form using Householder’s transformation method.
A Hessenberg matrix has zeros everywhere below the diagonal except for the first sub-
diagonal. If A is a symmetric matrix, the transform creates a tridiagonal matrix. Then
the eigenvalues and eigenvectors of the real upper Hessenberg matrix are found by the
iterative application of the QR procedure. The QR procedure involves decomposing the
Hessenberg matrix into an upper triangular and a unitary matrix. The method is as follows:

1. k = 0.
2. Decompose Hk into Qk and Rk such that Hk =Qk Rk where Hk is a Hessenberg or

tridiagonal matrix.
3. Compute Hk+1 = Rk Qk. The estimates of the eigenvalues equal diag(Hk+1).
4. Check the accuracy of the eigenvalues. If the process has not converged, k = k+ 1;

repeat from (2).

The values on the leading diagonal of Hk tend to the eigenvalues. The following script uses
the MATLAB function hess to convert the original matrix to the Hessenberg form, followed
by the iterative application of the qr function to determine the eigenvalues of a symmetric
matrix. Note that in this script we have iterated 10 times rather than use a formal test for
convergence since the purpose of the script is merely to illustrate the functioning of the
iterative application of the QR procedure.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 136 — #70

136 Chapter 2 . Linear Equations and Eigensystems

% e3s213.m

A = [5 4 1 1;4 5 1 1; 1 1 4 2;1 1 2 4];

H1 = hess(A);

for i = 1:10

[Q R] = qr(H1);

H2 = R*Q; H1 = H2;

p = diag(H1)';

fprintf('%2.0f %8.4f %8.4f',i,p(1),p(2))

fprintf('%8.4f %8.4f\n',p(3),p(4))

end

Running this script gives

1 1.0000 8.3636 6.2420 2.3944

2 1.0000 9.4940 5.4433 2.0627

3 1.0000 9.8646 5.1255 2.0099

4 1.0000 9.9655 5.0329 2.0016

5 1.0000 9.9913 5.0084 2.0003

6 1.0000 9.9978 5.0021 2.0000

7 1.0000 9.9995 5.0005 2.0000

8 1.0000 9.9999 5.0001 2.0000

9 1.0000 10.0000 5.0000 2.0000

10 1.0000 10.0000 5.0000 2.0000

The iteration converges to the values 1, 10, 5, and 2, which are the correct values. This QR
iteration could be applied directly to the full matrix A but in general it would be inefficient.
We have not given details of how the eigenvectors are computed.

When there are two real or complex arguments in the MATLAB function eig, the QZ algo-
rithm is used instead of the QR algorithm. The QZ algorithm (Golub and Van Loan, 1989)
has been modified to deal with the complex case. When eig is called using a single complex
matrix A then the algorithm works by applying the QZ algorithm to eig(A,eye(size(A))).
The QZ algorithm begins by noting that there exists a unitary Q and Z such that QHAZ= T
and QHBZ= S are both upper triangular. This is called generalized Schur decomposition.
Providing skk is not zero then the eigenvalues are computed from the ratio tkk/skk, where
k = 1,2, . . . ,n. The following script demonstrates that the ratios of the diagonal elements of
the T and S matrices give the required eigenvalues.

% e3s214.m

A = [10+2i 1 2;1-3i 2 -1;1 1 2];

b = [1 2-2i -2;4 5 6;7+3i 9 9];

[T S Q Z V] = qz(A,b);

r1 = diag(T)./diag(S)

r2 = eig(A,b)

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 137 — #71

2.17 The MATLAB Function eig 137

Running this script gives

r1 =

1.6154 + 2.7252i

-0.4882 - 1.3680i

0.1518 + 0.0193i

r2 =

1.6154 + 2.7252i

-0.4882 - 1.3680i

0.1518 + 0.0193i

Schur decomposition is closely related to the eigenvalue problem. The MATLAB function
schur(a) produces an upper triangular matrix T with real eigenvalues on its diagonal and
complex eigenvalues in 2× 2 blocks on the diagonal. Thus A can be written

A=U T UH

where U is a unitary matrix such that UHU= I. The following script shows the similarity
between Schur decomposition and the eigenvalues of a given matrix.

% e3s215.m

A = [4 -5 0 3;0 4 -3 -5;5 -3 4 0;3 0 5 4];

T = schur(A), lam = eig(A)

Running this script gives

T =

12.0000 0.0000 -0.0000 -0.0000

0 1.0000 -5.0000 -0.0000

0 5.0000 1.0000 -0.0000

0 0 0 2.0000

lam =

12.0000

1.0000 + 5.0000i

1.0000 - 5.0000i

2.0000

We can readily identify the four eigenvalues in the matrix T. The following script compares
the performance of the eig function when solving various classes of problem.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 138 — #72

138 Chapter 2 . Linear Equations and Eigensystems

% e3s216.m

disp(' real1 realsym1 real2 realsym2 comp1 comp2')

for n = 100:50:500

A = rand(n); C = rand(n);

S = A+C*i;

T = rand(n)+i*rand(n);

tic, [U,V] = eig(A); f1 = toc;

B = A+A.'; D = C+C.';

tic, [U,V] = eig(B); f2 = toc;

tic, [U,V] = eig(A,C); f3 = toc;

tic, [U,V] = eig(B,D); f4 = toc;

tic, [U,V] = eig(S); f5 = toc;

tic, [U,V] = eig(S,T); f6 = toc;

fprintf('%12.3f %10.3f %10.3f %10.3f %10.3f %10.3f\n',f1,f2,f3,f4,f5,f6);

end

This script gives the time taken (in seconds) to carry out the various operations. The output
is as follows:

real1 realsym1 real2 realsym2 comp1 comp2

0.042 0.009 0.063 0.061 0.039 0.037

0.067 0.014 0.086 0.090 0.067 0.106

0.129 0.028 0.228 0.184 0.116 0.200

0.182 0.046 0.430 0.425 0.186 0.432

0.270 0.073 0.729 0.724 0.279 0.782

0.371 0.104 1.277 1.257 0.373 1.232

0.514 0.154 2.006 2.103 0.538 2.104

0.708 0.205 3.055 3.097 0.698 2.919

0.946 0.278 4.403 4.187 0.901 4.344

In some circumstances not all the eigenvalues and eigenvectors are required. For
example, in a complex engineering structure, modeled with many hundreds of degrees
of freedom, we may only require the first 15 eigenvalues, giving the natural frequencies
of the model, and the corresponding eigenvectors. MATLAB provides the function eigs,
which finds a small number of eigenvalues, such as those with the largest amplitude, the
largest or smallest real or imaginary part, and so on. This function is particularly useful
when seeking a small number of eigenvalues of very large sparse matrices. Eigenvalue
reduction algorithms are used to reduce the size of eigenvalue problem (for example,

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 139 — #73

2.18 Summary 139

Guyan, 1965) but still allow selected eigenvalues to be computed to an acceptable level of
accuracy.

MATLAB also includes the facility to find the eigenvalues of a sparse matrix. The following
script compares the number of floating-point operations required to find the eigenval-
ues of a matrix treated as sparse with the corresponding number required to find the
eigenvalues of the corresponding full matrix.

% e3s217.m

% generate a sparse triple diagonal matrix

n = 2000;

rowpos = 2:n; colpos = 1:n-1;

values = ones(1,n-1);

offdiag = sparse(rowpos,colpos,values,n,n);

A = sparse(1:n,1:n,4*ones(1,n),n,n);

A = A+offdiag+offdiag.';

% generate full matrix

B = full(A);

tic, eig(A); sptim = toc;

tic, eig(B); futim = toc;

fprintf('Time for sparse eigen solve = %8.6f\n',sptim)

fprintf('Time for full eigen solve = %8.6f\n',futim)

The results from running this script are as follows:

Time for sparse eigen solve = 0.349619

Time for full eigen solve = 3.000229

Clearly there is a significant savings in time.

2.18 Summary
We have described many of the important algorithms related to computational matrix
algebra and shown how the power of MATLAB can be used to illustrate the application of
these algorithms in a revealing way. We have shown how to solve over- and underde-
termined systems and eigenvalue problems. We have drawn the attention of the reader to
the importance of sparsity in linear systems and demonstrated its significance. The scripts
provided should help readers to develop their own applications.

In Chapter 9 we show how the symbolic toolbox can be usefully applied to solve some
problems in linear algebra.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 140 — #74

140 Chapter 2 . Linear Equations and Eigensystems

Problems
2.1. An n×n Hilbert matrix, A, is defined by

aij = 1/(i+ j− 1) for i, j = 1,2, . . . , n

Find the inverse of A and the inverse of A>A for n= 5. Then, noting that

(A>A)−1
= A−1(A−1)>

find the inverse of A>A using this result for n= 3, 4, 5, and 6. Compare the
accuracy of the two results by using the inverse Hilbert function invhilb to find the
exact inverse using (A>A)−1

= A−1(A−1)>. Hint: Compute norm(P−R) and
norm(Q−R)where P= (A>A)−1 and Q= A−1(A−1)> and R is the exact value of Q
obtained by using the invhilb function. .

2.2. Find the condition number of A>A where A is an n×n Hilbert matrix, defined in
Problem 2.1, for n= 3, 4, . . . ,6. How do these results relate to the results of
Problem 2.1?

2.3. It can be proved that the series = I+A+A2
+A3

+ ·· · , where A is an n×n
matrix, converges if the eigenvalues of A are all less than unity. The following n×n
matrix satisfies this condition if a+ 2b< 1 and a and b are positive:

a b 0 . . . 0 0 0

b a b . . . 0 0 0
...

...
...

...
...

...

0 0 0 . . . b a b

0 0 0 . . . 0 b a

Experiment with this matrix for various values of n, a, and b to illustrate that the
series converges under the condition stated.

2.4. Use the function eig to find the eigenvalues of the following matrix:2 3 6

2 3 −4

6 11 4

Then use the rref function on the matrix (A− λI), taking λ equal to any of the
eigenvalues. Solve the resulting equations by hand to obtain the eigenvector of the
matrix. Hint: Note that an eigenvector is the solution of (A− λI)x= 0 for λ equal to
a specific eigenvalue. Assume an arbitrary value for x3.

2.5. For the system given in Problem 2.3, find the eigenvalues, assuming both full and
sparse forms with n= 10 : 10 : 30. Compare your results with the exact solution

(I−A)−1

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 141 — #75

Problems 141

given by

λk = a+ 2bcos
{

kπ/(n+ 1)
}

, k = 1,2, . . .

2.6. Find the solution of the overdetermined system that follows using pinv, qr, and the
\ operator.

2.0 −3.0 2.0

1.9 −3.0 2.2

2.1 −2.9 2.0

6.1 2.1 −3.0

−3.0 5.0 2.1

x1

x2

x3

=

1.01

1.01

0.98

4.94

4.10

2.7. Write a script to generate E= {1/(n+ 1)}C where

cij = i(n− i+ 1) if i= j

= ci,j−1− i if j > i

= cji if j < i

Having generated E for n= 5, solve Ex= b where b= [1 : n]> by

(a) Using the \ operator
(b) Using the lu function and solving Ux= y and Ly= b

2.8. Determine the inverse of E of Problem 2.7 for n= 20 and 50. Compare with the
exact inverse, which is a matrix with 2 along the main diagonal and−1 along the
upper and lower subdiagonals and zero elsewhere.

2.9. Determine the eigenvalues of E defined in Problem 2.7 for n= 20 and 50. The exact
eigenvalues for this system are given by λk = 1/[2− 2cos {kπ/(n+ 1)}] where
k = 1, . . . ,n.

2.10. Determine the condition number of E of Problem 2.7, using the MATLAB function
cond, for n= 20 and 50. Compare your results with the theoretical expression for
the condition number, which is 4n2/π2.

2.11. Find the eigenvalues and the left and right eigenvectors using the MATLAB function
eig for the matrix

A=

 8 −1 −5

−4 4 −2

18 −5 −7

2.12. For the following matrix A, using eigit, eiginv, determine

(a) The largest eigenvalue
(b) The eigenvalue nearest 100

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 142 — #76

142 Chapter 2 . Linear Equations and Eigensystems

(c) The smallest eigenvalue

A=

122 41 40 26 25

40 170 25 14 24

27 26 172 7 3

32 22 9 106 6

31 28 −2 −1 165

2.13. Given that

A=

1 2 2

5 6 −2

1 −1 0

 and B=

2 0 1

4 −5 1

1 0 0

and defining C by

C=

[
A B
B A

]

verify using eig that the eigenvalues of C are given by a combination of the
eigenvalues of A+B and A−B.

2.14. Write a MATLAB script to generate the matrix

A=

n n− 1 n− 2 . . . 2 1

n− 1 n− 1 n− 2 . . . 2 1

n− 2 n− 2 n− 2 . . . 2 1
...

...
...

...
...

...

2 2 2 . . . 2 1

1 1 1 . . . 1 1

The eigenvalues of this matrix are given by the formula

λi =
1
2

[
1− cos

(2i− 1)π
2n+ 1

]
, i= 1, 2 . . . ,n

Taking n= 5 and n= 50 and using the MATLAB function eig, find the largest and
smallest eigenvalues. Verify your results are correct using the preceding formula.

−1

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 143 — #77

Problems 143

2.15. Taking n= 10, find the eigenvalues of the matrix

A=

1 0 0 . . . 0 1

0 1 0 . . . 0 2

0 0 1 . . . 0 3
...

...
... . . .

...
...

0 0 0 . . . 1 n− 1

1 2 3 . . . n− 1 n

using eig. As an alternative, find the eigenvalues of A by first generating the
characteristic polynomial using poly for the matrix A and then using roots to find
the roots of the resulting polynomial. What conclusions do you draw from these
results?

2.16. For the matrix given in Problem 2.12, use eig to find the eigenvalues. Then find the
eigenvalues of A by first generating the characteristic polynomial for A using poly

and then using roots to find the roots of the resulting polynomial. Use sort to
compare the results of the two approaches. What conclusions do you draw from
these results?

2.17. For the matrix given in Problem 2.14, taking n= 10, show that the trace is equal to
the sum of the eigenvalues and the determinant is equal to the product of the
eigenvalues. Use the MATLAB functions det, trace, and eig.

2.18. The matrix A is defined as follows:

A=

2 −1 0 0 . . . 0

−1 2 −1 0 . . . 0

0 −1 2 −1 . . . 0
...

...
...

...
...

...

0 0 . . . −1 2 −1

0 0 . . . 0 −1 2

The condition number for this matrix takes the form c = pnq where n is the size of
the matrix, c is the condition number, and p and q are constants. By computing the
condition number for the matrix A for n= 5 : 5 : 50 using the MATLAB function cond,
fit the function pnq to the set of results you produce. Hint: Take logs of both sides of
the equation for c and solve the system of overdetermined equations using the \

operator.

2.19. An approximation for the inverse of (I−A)where I is an n×n unit matrix and A is
an n×n matrix is given by

(I−A)−1
= I+A+A2

+A3
+ ·· ·

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 144 — #78

144 Chapter 2 . Linear Equations and Eigensystems

This series only converges and the approximation is only valid if the maximum
eigenvalue of A is less than 1. Write a MATLAB function invapprox(A,k) that obtains
an approximation to (I−A)−1 using k terms of the given series. The function must
find all eigenvalues of A using the MATLAB function eig. If the largest eigenvalue is
greater than one then a message will be output indicating that the method fails.
Otherwise, the function will compute an approximation to (I−A)−1 using k terms
of the series expansion given. Taking k = 4, test the function on the matrices:

0.2 0.3 0

0.3 0.2 0.3

0 0.3 0.2

 and

1.0 0.3 0

0.3 1.0 0.3

0 0.3 1.0

Use the norm function to compare the accuracy of the inverse of the matrix (I−A)
found using the MATLAB inv function and the function invapprox(A,k) for k = 4, 8,
16.

2.20. The system of equations Ax= b, where A is a matrix of m rows and n columns, x is
an n element column vector, and b is an m element column vector, is said to be
underdetermined if n>m. The direct use of the MATLAB inv function to solve this
system fails since the matrix A is not square. However, multiplying both sides of the
equation by A> gives

A>Ax= A>b

A>A is a square matrix and the MATLAB inv function can now be used to solve the
system. Write a MATLAB function to use this result to solve underdetermined
systems. The function should allow the input of the b vector and the A matrix, form
the necessary matrix products, and use the MATLAB inv function to solve the
system. The accuracy of the solution should be checked using the MATLAB norm

function to measure the difference between Ax and b. The function must also
include the direct use of the MATLAB \ symbol to solve the same underdetermined
linear system, again with a check on the accuracy of the solution that uses the
MATLAB norm function to measure the difference between Ax and b. The function
should take the form udsys(A,b) and return the solutions given by the different
methods and the norms produced by the two methods. Test your program by using
it to solve the underdetermined system of linear equations Ax= b where

A=

[
1 −2 −5 3

3 4 2 −7

]
and b=

[
−10

20

]

What conclusions do you draw regarding the two methods by comparing the norms
that the two methods produce?

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch02-9780123869425 — 2012/6/6 — 20:18 — Page 145 — #79

Problems 145

2.21. An orthogonal matrix A is defined as a square matrix such that the product of the
matrix and its transpose equals the unit matrix or

AA> = I

Use MATLAB to verify that the following matrices are orthogonal:

B=

1√
3

1√
6 −

1√
2

1√
3

−2√
6 0

1√
3

1√
6

1√
2

C=

[
cos(π/3) sin(π/3)

−sin(π/3) cos(π/3)

]

2.22. Write MATLAB scripts to implement both the Gauss–Seidel and the Jacobi method
and use them to solve, with an accuracy of 0.000005, the equation system Ax= b
where the elements of A are

aii =−4

aij = 2 if
∣∣i− j

∣∣= 1

aij = 0 if
∣∣i− j

∣∣≥ 2 where i, j = 1,2, . . . ,10

and

b> = [2 3 4 . . . 11]

Use initial values of xi = 0, i= 1,2, . . . ,10. (You might also like to experiment with
other initial values.) Check your results by solving the system using the MATLAB \

operator.

EDELKAMP 19-ch15-671-700-9780123725127 2011/5/28 14:50 Page 672 #2

This page intentionally left blank

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch03-9780123869425 — 2012/6/7 — 12:00 — Page 147 — #1

3
Solution of Nonlinear Equations

The problem of solving nonlinear equations arises frequently and naturally from the study
of a wide range of practical problems. The problem may involve a system of nonlinear
equations in many variables or one equation in one unknown. We shall initially confine
ourselves to considering the solution of one equation in one unknown. The general form
of the problem may be simply stated as finding a value of the variable x such that

f (x)= 0

where f is any nonlinear function of x. The value of x is then called a solution or root of
this equation and may be one of many values satisfying the equation.

3.1 Introduction
To illustrate our discussion and provide a practical insight into the solution of nonlin-
ear equations we shall consider an equation described by Armstrong and Kulesza (1981).
These authors report a problem that arises from the study of resistive mixer circuits. Given
an applied current and voltage, it is necessary to find the current flowing in part of the
circuit. This leads to a simple nonlinear equation, which after some manipulation may be
expressed in the form

x− exp(−x/c)= 0 or equivalently x = exp(−x/c) (3.1)

Here c is a given constant and x is the variable we wish to determine. The solution of such
equations is not obvious, but Armstrong and Kulesza provide an approximate solution
based on a series expansion that gives a reasonably accurate solution of this equation for
a large range of values of c. This approximation is given in terms of c by

x = cu[1− loge{(1+ c)u}/(1+u)] (3.2)

where u= loge(1+ 1/c). This is an interesting and useful result since it is reasonably accu-
rate for values of c in the five-decade range [10−3, 100] and gives a relatively easy way of
finding the solutions of a whole family of equations generated by varying c. Although this
result is useful for this particular equation, when we attempt to use this type of ad hoc

Numerical Methods Using MATLAB
®. DOI: 10.1016/B978-0-12-386942-5.00003-5

© 2012 Elsevier Inc. All rights reserved.
147

http://dx.doi.org/10.1016/B978-0-12-386942-5.00003-5

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch03-9780123869425 — 2012/6/7 — 12:00 — Page 148 — #2

148 Chapter 3 . Solution of Nonlinear Equations

0.4 0.45 0.5 0.55 0.6
0.5

0.6

0.7

0.8

0.9

1

1.1

Root x value

c
va

lu
e

FIGURE 3.1 Solution of x = exp(−x/c). Results from the function fzero are indicated by ◦ and those
from the Armstrong and Kulesza formula by +.

approach for the general solution of nonlinear equations, there are significant drawbacks.
These are

1. Ad hoc approaches to the solutions of equations are rarely as successful as this
example in finding a formula for the solution of a given equation; usually it is
impossible to obtain such formulae.

2. Even when they exist, such formulae require considerable time and ingenuity to
develop.

3. We may require greater accuracy than any ad hoc formula can provide.

To illustrate point 3 consider Figure 3.1, which is generated by the MATLAB script that
follows. This figure shows the results obtained using the formula (3.2) together with the
results using the MATLAB function fzero to solve the nonlinear equation (3.1).

% e3s301.m

ro = []; ve = []; x = [];

c = 0.5:0.1:1.1; u = log(1+1./c);

x = c.*u.*(1-log((1+c).*u)./(1+u));

% solve equation using MATLAB function fzero

i = 0;

for c1 = 0.5:0.1:1.1

i = i+1;

ro(i) = fzero(@(x) x-exp(-x/c1),1,0.00005);

end

plot(x,c,'+')

axis([0.4 0.6 0.5 1.2])

hold on

plot(ro,c,'o')

xlabel('Root x value'), ylabel('c value')

hold off

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch03-9780123869425 — 2012/6/7 — 12:00 — Page 149 — #3

3.2 The Nature of Solutions to Nonlinear Equations 149

The function fzero is discussed in detail in Section 3.10. Note that the call fzero takes
the form fzero(@(x) x-exp(-x/c1),1,0.00005). This gives an accuracy of 0.00005 for the
roots and uses an initial approximation of 1. The function fzero provides the root with
up to 16-digit accuracy, if required, whereas the formula (3.2) of Armstrong and Kulesza,
although faster, gives the result to one or two decimal places only. In fact, the method of
Armstrong and Kulesza becomes more accurate for large values of c.

From the preceding discussion we conclude that, although occasionally ingenious
alternatives may be available, in the vast majority of cases we must use algorithms which
provide, with reasonable computational effort, the solutions of general problems to any
specified accuracy. Before describing the nature of these algorithms in detail, we consider
different types of equations and the general nature of their solutions.

3.2 The Nature of Solutions to Nonlinear Equations
We illustrate the nature of the solutions to nonlinear equations by considering two
equations that we wish to solve for the variable x.

(a) (x− 1)3(x+ 2)2(x− 3)= 0 – that is,
x6
− 2x5

− 8x4
+ 14x3

+ 11x2
− 28x+ 12= 0

(b) exp(−x/10)sin(10x)= 0

The first equation is a special type of nonlinear equation known as a polynomial equa-
tion since it involves only integer powers of the variable x and no other functions. Such
polynomial equations have the important characteristic that they have n roots where n
is the degree of the polynomial. In this example the highest power of x, and hence the
degree of the polynomial, is six. The solutions of a polynomial may be complex or real,
separate or coincident. Figure 3.2 illustrates the nature of the solutions of this equation.
Although there must be six roots, three are coincident at x = 1 and two are coincident at
x =−2. There is also a single root at x = 3. Coincident roots may present difficulties for

−3 −2 −1 0 1 2 3 4
−50

0

50

100

x

f(
x)

FIGURE 3.2 Plot of the function f (x)= (x− 1)3(x+ 2)2(x− 3).

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch03-9780123869425 — 2012/6/7 — 12:00 — Page 150 — #4

150 Chapter 3 . Solution of Nonlinear Equations

0 5 10 15 20
−1.5

−1

−0.5

0

0.5

1

1.5

x

y

FIGURE 3.3 Plot of f (x)= exp(−x/10)sin(10x).

some algorithms, as do roots which are very close together, so it is important to appreciate
their existence. The user may require a particular root of the equation or all the roots. In
the case of polynomial equations special algorithms exist to find all the roots.

The preceding second equation is a nonlinear equation involving transcendental func-
tions. The task of finding all the roots of this class of nonlinear equation is a daunting one,
since the number of roots may not be known or there may be an infinity of roots. This sit-
uation is illustrated by Figure 3.3, which shows the graph of the second equation for x in
the range [0, 20]. If we extended the range of x, more roots would be revealed.

We now consider some simple algorithms to find a specific root of a given nonlinear
equation.

3.3 The Bisection Algorithm
This simple algorithm assumes that an initial interval is known in which a root of the equa-
tion f (x)= 0 lies and then proceeds to reduce this interval until the required accuracy is
achieved for the root. This algorithm is mentioned only briefly since it is not in practice
used by itself but in conjunction with other algorithms to improve their reliability. The
algorithm may be described by

input interval in which the root lies

while interval too large
1. Bisect the current interval in which the root lies.
2. Determine in which half of the interval the root lies.

end

display root

The principles on which this algorithm based is simple. Given an initial interval in which
a specific root lies, the algorithm will provide an improved approximation for the root.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch03-9780123869425 — 2012/6/7 — 12:00 — Page 151 — #5

3.4 Iterative or Fixed Point Methods 151

However, the requirement that an interval be known is sometimes difficult to achieve, and
although the algorithm is reliable it is extremely slow.

Alternative algorithms have been developed that converge more rapidly; this chapter
is concerned with describing some of the most important of these. All the algorithms we
consider are iterative in character—that is, they proceed by repeating the same sequence of
steps until the root approximation is accurate enough to satisfy the user. We now consider
the general form of an iterative method, the nature of the convergence of such methods,
and the problems they encounter.

3.4 Iterative or Fixed Point Methods
We are required to solve the general equation f (x)= 0; however, to illustrate iterative
methods clearly we consider a simple example. Suppose we wish to solve the quadratic

x2
− x− 1= 0 (3.3)

This equation can be solved by using the standard formula for solving quadratics but we
take a different approach. Rearrange (3.3) as follows:

x = 1+ 1/x

Then rewrite it in iterative form using subscripts as follows:

xr+1 = 1+ 1/xr for r = 0,1,2, . . . (3.4)

Assuming we have an initial approximation x0 to the root we are seeking, we can proceed
from one approximation to another using this formula. The iterates we obtain in this way
may or may not converge to the solution of the original equation. This is not the only
iterative procedure for attempting to solve (3.3); we can generate two others from (3.3)
as follows:

xr+1 = x2
r − 1 for r = 0,1,2, . . . (3.5)

and

xr+1 =
√

xr + 1 for r = 0,1,2, . . . (3.6)

Starting from the same initial approximation, these iterative procedures may or may not
converge to the same root. Table 3.1 shows what happens when we use the initial approx-
imation x0 = 2 with the iterative procedures (3.4), (3.5), and (3.6). It shows that iterations
(3.4) and (3.6) converge but (3.5) does not.

Note that when the root is reached no further improvement is possible and the point
remains fixed. Hence the roots of the equation are the fixed points of the iteration. To
remove the unpredictability of this approach we must be able to find general conditions

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch03-9780123869425 — 2012/6/7 — 12:00 — Page 152 — #6

152 Chapter 3 . Solution of Nonlinear Equations

Table 3.1 Difference between Exact Root
and Iterate for x2

− x− 1= 0

Iteration (3.4) Iteration (3.5) Iteration (3.6)

–0.1180 1.3820 0.1140
0.0486 6.3820 0.0349

–0.0180 61.3820 0.0107
0.0070 3966.3820 0.0033

–0.0026 15745021.3820 0.0010

that determine when such iterative schemes converge, when they do not, and the nature
of this convergence.

3.5 The Convergence of Iterative Methods
The procedure described in Section 3.4 can be applied to any equation f (x)= 0 and has
the general form

xr+1 = g(xr) for r = 0,1,2, . . . (3.7)

It is not our purpose to give the details of the derivation of convergence conditions for this
form of iteration, but to point out some of the difficulties that may arise in using them
even when this condition is satisfied. The detailed derivation is given in many textbooks;
see, for example, Lindfield and Penny (1989). It can be shown that the approximate relation
between the current error εr+1 at the (r+ 1)th iteration and the previous error εr is given by

εr+1 = εrg ′(tr)

where tr is a point lying between the exact root and the current approximation to the root.
Thus the error will be decreasing if the absolute value of the derivative at these points is
less than 1. However, this does not guarantee convergence from all starting points and the
initial approximation must be sufficiently close to the root for convergence to occur.

In the case of the specific iterative procedures (3.4) and (3.5), Table 3.2 shows how the
values of the derivatives of the corresponding g(x) vary with the values of the approxima-
tions to xr . This table provides numerical evidence for the theoretical assertion in the case
of iterations (3.4) and (3.5).

However, the concept of convergence is more complex than this. We need to give some
answer to the crucial question: If an iterative procedure converges, how can we classify
the rate of convergence? We do not derive this result but refer the reader to Lindfield and
Penny (1989) and state the answer to the question. Suppose all derivatives of the function
g(x) of order 1 to p− 1 are zero at the exact root a. Then the relation between the current

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch03-9780123869425 — 2012/6/7 — 12:00 — Page 153 — #7

3.6 Ranges for Convergence and Chaotic Behavior 153

Table 3.2 Values of the Derivatives for Iterations Given
by (3.4) and (3.5)

Iteration (3.4) Derivative Iteration (3.5) Derivative

–0.1180 –0.44 1.3820 6.00
0.0486 –0.36 6.3820 16.00

–0.0180 –0.39 61.3820 126.00
0.0070 –0.38 3966.3820 7936.00

error εr+1 at the (r + 1)th iteration and the previous error εr is given by

εr+1 = (εr)
pg(p)(tr)/p! (3.8)

where tr lies between the exact root and the current approximation to the root and g(p)

denotes the pth derivative of g. The importance of this result is that it means the current
error is proportional to the pth power of the previous error and clearly, on the basis of the
reasonable assumption that the errors are much smaller than 1, the higher the value of
p, the faster the convergence. Such methods are said to have pth-order convergence. In
general it is cumbersome to derive iterative methods of order higher than two or three and
second-order methods have proved very satisfactory in practice for solving a wide range
of nonlinear equations. In this case, the current error is proportional to the square of the
previous error. This is often called quadratic convergence; if the error is proportional to
the previous error it is called linear convergence. This provides a convenient classification
for the convergence of iterative methods but avoids the difficult questions: For what range
of starting values will the process converge and how sensitive is convergence to changes in
the starting values?

3.6 Ranges for Convergence and Chaotic Behavior
We illustrate some of the problems of convergence by considering a specific example that
highlights some of the difficulties. Short (1992) examined the behavior of the iterative
process

xr+1 =−0.5(x3
r − 6x2

r + 9xr − 6) for r = 0,1,2, . . .

for solving the equation (x− 1)(x− 2)(x− 3)= 0. This iterative procedure clearly has the
form

xr+1 = g(xr), r = 0,1,2, . . .

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch03-9780123869425 — 2012/6/7 — 12:00 — Page 154 — #8

154 Chapter 3 . Solution of Nonlinear Equations

and it is easy to verify that it has the following properties:

g ′(1)= 0 and g ′′(1) 6= 0

g ′(2) 6= 0

g ′(3)= 0 and g ′′(3) 6= 0

Thus by taking p= 2 in result (3.8), we can expect, for appropriate starting values,
quadratic convergence for the roots at x = 1 and x = 3 but at best linear convergence for
the root at x = 2. The major problem is, however, to determine the ranges of initial approx-
imation that will converge to the different roots. This is not an easy task but one simple
way of doing this is to draw a graph of y = x and y = g(x). The points of intersection pro-
vide the roots. The line y = x has a slope of 1, and points where the slope of g(x) is less than
this provide a range of initial approximations that converge to one or other of the roots.

This graphical analysis shows that points within the range 1 to 1.43 (approximately)
converge to the root 1 and points in the range 2.57 (approximately) to 3 converge to the
root 3. This is the obvious part of the analysis. However, Short demonstrates that there
are many other ranges of convergence for this iterative procedure, many of them very
narrow indeed, which lead to chaotic behavior in the iterative process. He demonstrates,
for example, that taking x0 = 4.236067968 will converge to the root x = 3 whereas taking
x0 = 4.236067970 converges to the root x = 1, a remarkable change for such a small vari-
ation in the initial approximation. This should serve as a warning to the reader that the
study of convergence properties is in general not an easy task.

Figure 3.4 illustrates this point quite strikingly. It shows the graph of x and the graph of
g(x)where

g(x)=−0.5(x3
− 6x2

+ 9x− 6)

The x line intersects with g(x) to give the roots of the original equation. The graph also
shows iterates starting from x0 = 4.236067968, indicated by “◦,” and iterates starting from

1 1.5 2 2.5 3 3.5 4 4.5
−1

0

1

2

3

4

x

g(
x)

0

12
3

4
56789

0

123
4

5
6

7 8 9

FIGURE 3.4 Iterates in the solution of (x− 1)(x− 2)(x− 3)= 0 from close but different starting points.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch03-9780123869425 — 2012/6/7 — 12:00 — Page 155 — #9

3.6 Ranges for Convergence and Chaotic Behavior 155

x = 4.236067970, indicated by “+.” The starting points are so close they are of course
superimposed on the graph. However, the iterates soon take their separate paths to con-
verge on different roots of the equation. The path indicated by “◦” converges to the root
x = 1 and the path indicated by “+” converges to the root x = 3. The sequence of numbers
on the graph shows the last nine iterates. The point referenced by zero is in fact all the
points that are initially very close together. This is a remarkable example and users should
verify these phenomena for themselves by running the following MATLAB script:

% e3s302.m

x = 0.75:0.1:4.5;

g = -0.5*(x.^3-6*x.^2+9*x-6);

plot(x,g)

axis([.75,4.5,-1,4])

hold on, plot(x,x)

xlabel('x'), ylabel('g(x)'), grid on

ch = ['o','+'];

num = ['0','1','2','3','4','5','6','7','8','9'];

ty = 0;

for x1 = [4.236067970 4.236067968]

ty = ty+1;

for i = 1:19

x2 = -0.5*(x1^3-6*x1^2+9*x1-6);

% First ten points very close, so represent by '0'

if i==10

text(4.25,-0.2,'0')

elseif i>10

text(x1,x2+0.1,num(i-9))

end

plot(x1,x2,ch(ty))

x1 = x2;

end

end

hold off

It is interesting to note that the iterative form

xr+1 = x2
r + c for r = 0,1,2, . . .

demonstrates strikingly chaotic behavior when the iterates are plotted in the complex
plane and for complex ranges of values for c.

We now return to the more mundane task of developing algorithms that work in gen-
eral for the solution of nonlinear equations. In the next section we shall consider a simple
method of order 2.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch03-9780123869425 — 2012/6/7 — 12:00 — Page 156 — #10

156 Chapter 3 . Solution of Nonlinear Equations

3.7 Newton’s Method
This method for the solution of the equation f (x)= 0 is based on the simple geo-
metric properties of the tangent to the curve f (x). The method requires some initial
approximation to the root and that the derivative of f (x) exists in the range of interest.
Figure 3.5 illustrates the operation of the method. The diagram shows the tangent to the
curve at the current approximation x0. This tangent strikes the x-axis at x1 and provides us
with an improved approximation to the root. Similarly, the tangent at x1 gives the improved
approximation x2.

The process is repeated until some convergence criterion is satisfied. It is easy to trans-
late this geometrical procedure into a numerical method for finding the root since the
tangent of the angle between the x-axis and the tangent equals

f (x0)/(x1− x0)

and the slope of this tangent itself equals f ′(x0), the derivative of f (x) at x0. So we have the
equation

f ′(x0)= f (x0)/(x1− x0)

Thus the improved approximation, x1, is given by

x1 = x0− f (x0)/f ′(x0)

This may be written in iterative form as

xr+1 = xr − f (xr)/f ′(xr) where r = 0,1,2, . . . (3.9)

We note that this method is of the general iterative form

xr+1 = g(xr) where r = 0,1,2, . . .

Consequently, the discussion of Section 3.5 applies to it. On computing g ′(a), where a is the
exact root, we find it is zero. However, g ′′(a) is in general nonzero so the method is of order

0
x0

x2

x

x1

f(x)

FIGURE 3.5 Geometric interpretation of Newton’s method.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch03-9780123869425 — 2012/6/7 — 12:00 — Page 157 — #11

3.7 Newton’s Method 157

2 and we expect convergence to be quadratic. For a sufficiently close initial approximation,
convergence to the root will be rapid.

A MATLAB function fnewton is supplied for Newton’s method. The function that forms
the left side of the equation we wish to solve and its derivative must be supplied by the
user as functions; these become the first and second parameters of the function. The third
parameter is an initial approximation to the root. The convergence criterion used is that
the difference between successive approximations to the root is less than a small preset
value. This value must be supplied by the user and is given as the fourth parameter of the
function.

function [res, it] = fnewton(func,dfunc,x,tol)

% Finds a root of f(x) = 0 using Newton's method.

% Example call: [res, it] = fnewton(func,dfunc,x,tol)

% The user defined function func is the function f(x).

% The user defined function dfunc is df/dx.

% x is an initial starting value, tol is required accuracy.

it = 0; x0 = x;

d = feval(func,x0)/feval(dfunc,x0);

while abs(d) > tol

x1 = x0-d; it = it+1; x0 = x1;

d = feval(func,x0)/feval(dfunc,x0);

end

res = x0;

We will now find a root of the equation

x3
− 10x2

+ 29x− 20= 0

To use Newton’s method we must define the function and its derivative as follows:

>> f = @(x) x.^3-10*x.^2+29*x-20;

>> df = @(x) 3*x.^2-20*x+29;

We may call the function fnewton as follows:

>> [x,it] = fnewton(f,df,7,0.00005)

x =

5.0000

it =

6

The progress of the iterations when solving x3
− 10x2

+ 29x− 20= 0 by Newton’s method
is shown in Figure 3.6.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch03-9780123869425 — 2012/6/7 — 12:00 — Page 158 — #12

158 Chapter 3 . Solution of Nonlinear Equations

0 2 4 6 8
−50

0

50

100

x

f(
x)

FIGURE 3.6 Plot of x3
− 10x2

+ 29x− 20= 0 with the iterates of Newton’s method shown by ◦.

Table 3.3 Newton’s Method to Solve x3
− 10x2

+ 29x− 20= 0
with an Initial Approximation of −2

Approximate Second
x value Error εr 2εr+1/ε2

r Derivative of g

−2.000000 3.000000 −0.320988 −0.395062
−0.444444 1.444444 −0.513956 −0.589028

0.463836 0.536164 −0.792621 −0.845260
0.886072 0.113928 −1.060275 −1.076987
0.993119 0.006881 −1.159637 −1.160775
0.999973 0.000027 −1.166639 −1.166643
1.000000 0.000000 −1.166639 −1.166667

Table 3.3 gives numerical results for this problem when Newton’s method is used to
seek a root, starting the iteration at −2. The second column of the table gives the current
error εr by subtracting the known exact root from the current iterate. The third column
contains the value of 2εr+1/ε

2
r . This value tends to a constant as the process proceeds. From

theoretical considerations, this value should approach the second derivative of the right
side of the Newton iterative formula. This follows from (3.8) with p= 2. The final column
contains the value of the second-order derivative of g(x) calculated as follows. From (3.9)
we have g(x)= x− f (x)/f ′(x). Thus from this we have

g ′(x)= 1− [{f ′(x)}2− f ′′(x)f (x)]/[f ′(x)]2
= f ′′(x)f (x)/[f ′(x)]2

On differentiating again,

g ′′(x)= [{f ′(x)}2{ f ′′′(x)f (x)+ f ′′(x)f ′(x)}− 2f ′(x){f ′′(x)}2f (x)]/[f ′(x)]4

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch03-9780123869425 — 2012/6/7 — 12:00 — Page 159 — #13

3.7 Newton’s Method 159

Putting x = a, where a is the exact root, since f (a)= 0, we have

g ′′(a)= f ′′(a)/f ′(a) (3.10)

Thus we have a value for the second derivative of g(x) when x = a. We note that as x
approaches the root, the final column of Table 3.3, which uses this formula, gives an
increasingly accurate approximation to the second derivative of g(x). The table thus
verifies our theoretical expectations.

We can find complex roots using Newton’s method, providing our initial approximation
is complex. For example, consider

cosx− x = 0 (3.11)

This equation has only one real root, which is x = 0.7391, but it has an infinity of complex
roots. Figure 3.7 shows the distribution of the roots of (3.11) in the complex plane in the
range −30< Re(x) < 30. Working with complex values presents no additional difficulty in
the MATLAB environment since MATLAB implements complex arithmetic and so we can use
the function fnewton without modification to deal with these cases.

Figure 3.8 illustrates the fact that it is difficult to predict which root we will find from a
given starting value. This figure shows that the starting values 15+ 10, 15.2+ 10, 15.4+
10, 15.8+ 10, and 16+ 10, which are close together, lead to a sequence of iterations that
converge to very different roots. In one case the complete trajectory is not shown because
the complex part of the intermediate iterates is well outside the range of the graph.

Newton’s method requires the first derivative of f (x) to be supplied by the user. To
make the procedure more self-contained we can use a standard approximation to the first
derivative, which takes the form

f ′(xr)= {f (xr)− f (xr−1)}/(xr − xr−1) (3.12)

−30 −20 −10 0 10 20 30
−10

−5

0

5

10

Real (x)

Im
ag

 (
x)

FIGURE 3.7 Plot showing the complex roots of cosx− x = 0.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch03-9780123869425 — 2012/6/7 — 12:00 — Page 160 — #14

160 Chapter 3 . Solution of Nonlinear Equations

−10 0 10 20 30
−20

−10

0

10

20

Real (x)

Im
ag

 (
x)

FIGURE 3.8 Plot of the iterates for five complex initial approximations for the solution of cosx− x = 0
using Newton’s method. Each iterate is shown by ”◦.”

Substituting this result in (3.9) gives the new procedure for calculating the improvements
to x as

xr+1 = [xr−1f (xr)− xrf (xr−1)]/[f (xr)− f (xr−1)] (3.13)

This method does not require the calculation of the first derivative of f (x) but does require
that we know two initial approximations to the root, x0 and x1. Geometrically, we have
simply approximated the slope of the tangent to the curve by the slope of a secant. For
this reason the method is known as the secant method. The convergence of this method is
slower than Newton’s method. Another procedure similar to the secant method is called
regula falsi. In this method two values of x that enclose the root are chosen to start the next
iteration rather than the most recent pair of x values as in the secant method.

Newton’s method and the secant method work well on a wide range of problems.
However, for problems where the roots of an equation are close together or equal, the con-
vergence may be slow. We now consider a simple adjustment to Newton’s method that
provides good convergence even with multiple roots.

3.8 Schroder’s Method
In Section 3.2 we described how coincident roots present significant problems for most
algorithms. In the case of Newton’s method its performance is no longer quadratic for find-
ing a coincident root and the procedure must be modified if it is to maintain this property.
The iteration for Schroder’s method for finding multiple roots has a form similar to that of
Newton’s method given in (3.9) except for the inclusion of a multiplying factor m. Thus

xr+1 = xr −mf (xr)/f ′(xr) where r = 0,1,2, . . . (3.14)

Here m is an integer equal to the multiplicity of the root to which we are trying to converge.
Since the user may not know the value of m, it may have to be found experimentally.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch03-9780123869425 — 2012/6/7 — 12:00 — Page 161 — #15

3.8 Schroder’s Method 161

It can be verified by some simple but lengthy algebraic manipulation that for a func-
tion f (x) with multiple roots at x = a, g ′(a)= 0. Here g(x) is the right side of (3.14) and a
is the exact root. This modification is sufficient to preserve the quadratic convergence of
Newton’s method

A MATLAB function for Schroder’s method, schroder, is provided as follows:

function [res, it] = schroder(func,dfunc,m,x,tol)

% Finds a multiple root of f(x) = 0 using Schroder's method.

% Example call: [res, it] = schroder(func,dfunc,m,x,tol)

% The user defined function func is the function f(x).

% The user defined function dfunc is df/dx.

% x is an initial starting value, tol is required accuracy.

% function has a root of multiplicity m.

% x is a starting value, tol is required accuracy.

it = 0; x0 = x;

d = feval(func,x0)/feval(dfunc,x0);

while abs(d)>tol

x1 = x0-m*d; it = it+1; x0 = x1;

d = feval(func,x0)/feval(dfunc,x0);

end

res = x0;

We will now use the function schroder to solve (e−x
− x)2 = 0. In this case we must set the

multiplying factor m to 2. We write the function f and its derivative df and call the function
schroder as follows:

>> f = @(x) (exp(-x)-x).^2;

>> df = @(x) 2*(exp(-x)-x).*(-exp(-x)-1);

>> [x, it] = schroder(f,df,2,-2,0.00005)

x =

0.5671

it =

5

It is interesting to note that Newton’s method took 17 iterations to solve this problem in
contrast to the 5 required by Schroder’s method.

When a function f (x) is known to have repeated roots, an alternative to Schroder’s
approach is to apply Newton’s method to the function f (x)/f ′(x) rather than to the func-
tion f (x) itself. It can be easily shown by direct differentiation that if f (x) has a root of
any multiplicity then f (x)/f ′(x) will have the same root but with multiplicity 1. Thus the
algorithm has the iterative form (3.9) but modified by replacing f (x) with f (x)/f ′(x). The
advantage of this approach is that the user does not have to know the multiplicity of

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch03-9780123869425 — 2012/6/7 — 12:00 — Page 162 — #16

162 Chapter 3 . Solution of Nonlinear Equations

the root that is to be found. The considerable disadvantage is that both the first- and
second-order derivatives must be supplied by the user.

3.9 Numerical Problems
We now consider the following problems that arise in solving single-variable nonlinear
equations.

1. Finding good initial approximations
2. Ill-conditioned functions
3. Deciding on the most suitable convergence criteria
4. Discontinuities in the equation to be solved

These problems are now examined in detail.

1. Finding an initial approximation can be difficult for some nonlinear equations and a
graph can be a considerable help in supplying such a value. The advantage of working
in a MATLAB environment is that the script for the graph of the function can easily be
generated and input can be taken from it directly. The function plotapp that is defined
here finds an approximation to the root of a function supplied by the user in the range
given by the parameters rangelow and rangeup using a step given by the interval.

function approx = plotapp(func,rangelow,interval,rangeup)

% Plots a function and allows the user to approximate a

% particular root using the cursor.

% Example call: approx = plotapp(func,rangelow,interval,rangeup)

% Plots the user defined function func in the range rangelow to

% rangeup using a step given by interval. Returns approx to root.

approx = [];

x = rangelow:interval:rangeup;

plot(x,feval(func,x))

hold on, xlabel('x'), ylabel('f(x)')

title(' ** Place cursor close to root and click mouse ** ')

grid on

% Use ginput to get approximation from graph using mouse

approx = ginput(1);

fprintf('Approximate root is %8.2f\n',approx(1)), hold off

The script that follows shows how this function may be used with the MATLAB function
fzero to find a root of x− cosx = 0.

% e3s303.m

g = @(x) x-cos(x);

approx = plotapp(g,-2,0.1,2);

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch03-9780123869425 — 2012/6/7 — 12:00 — Page 163 — #17

3.9 Numerical Problems 163

−2 −1 0 1 2
−2

−1

0

1

2

3

x
f(

x)

** Place cursor close to root and click mouse **

FIGURE 3.9 The cursor is shown close to the position of the root.

% Use this approximation and fzero to find exact root

root = fzero(g,approx(1),0.00005);

fprintf('Exact root is %8.5f\n',root)

Figure 3.9 gives the graph of x− cosx = 0 generated by plotapp and shows the
crosshairs cursor generated by the ginput function close to the root. The call
ginput(1) means only one point is taken. The cursor can be positioned over the
intersection of the curve with the f (x)= 0 line. This provides a useful initial
approximation, the accuracy of which depends on the scale of the graph. In this
example an initial approximation was found to be 0.74 and the more exact value was
found using fzero to be 0.73909.

2. Ill-conditioning in a nonlinear equation means that small changes in the coefficients
of the equation lead to unexpectedly large errors in the solutions. An interesting
example of a very ill-conditioned polynomial is Wilkinson’s polynomial. The MATLAB

function poly(v) generates the coefficients of a polynomial, beginning with the
coefficient of the highest power, with roots that are equal to the elements of the vector
v. Thus poly(1:n) generates the coefficients of the polynomial with the roots
1,2, . . . ,n, which is Wilkinson’s polynomial of degree n− 1.

3. In the design of any numerical algorithm for the solution of nonlinear equations, the
termination criterion is particularly important. There are two major indicators of
convergence: the difference between successive iterates and the value of the function
at the current iterate. Taken separately these indicators may be misleading. For
example, some nonlinear functions are such that small changes in the independent
variable value may lead to large changes in the function value. In this case it may be
better to monitor both indicators.

4. The function f (x)= sin(1/x) is particularly difficult to plot, and sin(1/x)= 0 is very
difficult to solve since it has an infinite number of roots, all clustered between 1
and−1. The function has a discontinuity at x = 0. Figure 3.10 attempts to illustrate

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch03-9780123869425 — 2012/6/7 — 12:00 — Page 164 — #18

164 Chapter 3 . Solution of Nonlinear Equations

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

y

FIGURE 3.10 Plot of graph f (x)= sin(1/x). This plot is spurious in the range ±0.2.

the behavior of this function. In fact, the graph shown does not truly represent the
function and this plotting problem is discussed in more detail in Chapter 4. Near a
discontinuity the function changes rapidly for small changes in the independent
variable and some algorithms may have problems with this.

All the preceding points emphasize that algorithms for solving nonlinear equations
need to be not only fast and efficient but robust as well. The next algorithm combines
these properties and is relatively undemanding on the user.

3.10 The MATLAB Function fzero
and Comparative Studies

Some problems may present particular difficulties for algorithms that in general work well.
For example, algorithms that have fast ultimate convergence may initially diverge. One
way to improve the reliability of an algorithm is to ensure that at each stage the root is
confined to a known interval and the method of bisection, introduced in Section 3.3, may
be used to provide an interval in which the root lies. Thus a method that combines bisec-
tion with a rapidly convergent procedure may be able to provide both rapid and reliable
convergence.

The method of Brent combines inverse quadratic interpolation with bisection to pro-
vide a powerful method that has been found to be successful on a wide range of difficult
problems. The method is easily implemented and a detailed description of the algorithm
may be found in Brent (1971). Similar algorithms of comparable efficiency have been
developed by Dekker (1969).

Experience with Brent’s algorithm has shown it to be both reliable and efficient on a
wide range of problems. A variation of this method is directly available in MATLAB and is
called fzero. It may be used as follows:

x = fzero('funcname',x0,tol,trace);

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch03-9780123869425 — 2012/6/7 — 12:00 — Page 165 — #19

3.10 The MATLAB Function fzero and Comparative Studies 165

where funcname is replaced by the name of any system function such as cos, sin, and so
on, or the name of a function predefined by the user. The initial approximation is x0. The
accuracy of the solution is set by tol and if trace is a value greater than 1, an output of the
intermediate approximations is given. Only the first two parameters need be given and so
an alternative call of this function is given by

x = fzero('funcname',x0);

To plot the function (ex
− cosx)3 and then determine some roots of (ex

− cosx)3 = 0
with tolerance 0.0005, initial approximations of 1.65 and−3, and no trace of the iterations,
we use fzero as follows:

% e3s304.m

f = @(x) (exp(x)-cos(x)).^3;

x = -4:0.02:0.5;

plot(x,f(x)), grid on

xlabel('x'), ylabel('f(x)');

title('f(x) = (exp(x)-cos(x)).^3')

root = fzero(f,1.65,0.00005);

fprintf('A root of this equation is %6.4f\n',root)

root = fzero(f,-3,0.00005);

fprintf('A root of this equation is %6.4f\n',root)

The output and plot generated by this script are not given. However, the script is provided
for reader experimentation.

Before we deal with the problem of finding many roots of a polynomial equation simul-
taneously, we present a comparative study of the MATLAB function fzero with the function
fnewton. The following functions are considered:

1. sin(1/x)= 0
2. (x− 1)5 = 0
3. x− tanx = 0
4. cos{(x2

+ 5)/(x4
+ 1)} = 0

The results of these comparative studies are given in Table 3.4. We see that fnewton is less
reliable than fzero and that fzero produces accurate answers.

Table 3.4 Solution of Equations (1) through (4) with the Same
Starting Point x =−2 and Accuracy=0.00005

Function 1 2 3 4

fnewton Fail 0.999795831 Fail −1.352673831
fzero −0.318309886 1.000000000 −1.570796327 −1.352678708

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch03-9780123869425 — 2012/6/7 — 12:00 — Page 166 — #20

166 Chapter 3 . Solution of Nonlinear Equations

3.11 Methods for Finding All the Roots
of a Polynomial

The problem of solving polynomial equations is a special one in that these equations con-
tain only combinations of integer powers of x and no other functions. Because of their
special structure, algorithms have been developed to find all of the roots of a polynomial
equation simultaneously. The function roots is provided in MATLAB. This function sets up
the companion matrix for the polynomial and determines its eigenvalues, which can be
shown to be the roots of the polynomial. For a description of the companion matrix, see
Appendix A.

The following sections describe the methods of Bairstow and Laguerre but do not give
a detailed theoretical justification of them. We provide a MATLAB function for Bairstow’s
method.

3.11.1 Bairstow’s Method

Consider the polynomial

a0xn
+a1xn−1

+a2xn−2
+ ·· ·+an = 0 (3.15)

Since this is a polynomial equation of degree n, it has n roots. A common approach for
locating the roots of a polynomial is to find all its quadratic factors. These will have the
form

x2
+ux+ v (3.16)

where u and v are the constants we wish to determine. Once all the quadratic factors are
found it is easy to solve the quadratics to find all the roots of the equation. We now outline
the major steps used in Bairstow’s method for finding these quadratic factors.

If R(x) is the remainder after the division of polynomial (3.15) by the quadratic factor
(3.16), then there will clearly exist constants b0, b1, b2, . . . such that the following equality
holds:

(x2
+ux+ v)(b0xn−2

+b1xn−3
+b2xn−4

+ ·· ·+bn−2)+R(x)= xn
+a1xn−1

+a2xn−2
+ ·· ·+an

(3.17)

where a0 has been taken as one and R(x) will have the form rx + s. To ensure that x2 + ux
+ v is an exact factor of the polynomial (3.15), the remainder R(x)must be zero. For this to
be true both r and s must be zero and we must adjust u and v until this is true. Thus since
both r and s depend on u and v, the problem reduces to solving the equations

r(u,v)= 0

s(u,v)= 0

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch03-9780123869425 — 2012/6/7 — 12:00 — Page 167 — #21

3.11 Methods for Finding All the Roots of a Polynomial 167

To solve these equations we use an iterative method that assumes some initial approx-
imations u0 and v0. Then we require improved approximations u1 and v1 where u1 =

u0+1u0 and v1 = v0+1v0 such that

r(u1,v1)= 0

s(u1,v1)= 0

or r and s are as close to zero as possible.
Now we wish to find the changes 1u0 and 1v0 that will result in this improvement.

Consequently, we must expand the two equations

r(u0+1u0,v0+1v0)= 0

s(u0+1u0,v0+1v0)= 0

using a Taylor series expansion and neglecting higher powers of 1u0 and 1v0. This leads
to two approximating linear equations for1u0 and1v0:

r(u0,v0)+ (∂r/∂u)01u0+ (∂r/∂v)01v0 = 0

s(u0,v0)+ (∂s/∂u)01u0+ (∂s/∂v)01v0 = 0
(3.18)

The subscript 0 denotes that the partial derivatives are calculated at the point u0, v0. Once
the corrections are found, the iteration can be repeated until r and s are sufficiently close
to zero. The method we have used here is a two-variable form of Newton’s method, which
will be described in Section 3.12.

Clearly this method requires the first-order partial derivatives of r and s with respect to
u and v. The form of these is not obvious; however, they may be determined using recur-
rence relations derived from equating coefficients in (3.17) and then differentiating them.
The details of this derivation are not given here but a clear description of the process is
given by Froberg (1969). Once the quadratic factor is found, the same process is applied to
the residual polynomial with the coefficients bi to obtain the remaining quadratic factors.
The details of this derivation are not provided here but a MATLAB function bairstow is given
next.

function [rts,it] = bairstow(a,n,tol)

% Bairstow's method for finding the roots of a polynomial of degree n.

% Example call: [rts,it] = bairstow(a,n,tol)

% a is a row vector of REAL coefficients so that the

% polynomial is x^n+a(1)*x^(n-1)+a(2)*x^(n-2)+...+a(n).

% The accuracy to which the polynomial is satisfied is given by tol.

% The output is produced as an (n x 2) matrix rts.

% Cols 1 & 2 of rts contain the real & imag part of root respectively.

% The number of iterations taken is given by it.

it = 1;

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch03-9780123869425 — 2012/6/7 — 12:00 — Page 168 — #22

168 Chapter 3 . Solution of Nonlinear Equations

while n>2

%Initialise for this loop

u = 1; v = 1; st = 1;

while st>tol

b(1) = a(1)-u; b(2) = a(2)-b(1)*u-v;

for k = 3:n

b(k) = a(k)-b(k-1)*u-b(k-2)*v;

end

c(1) = b(1)-u; c(2) = b(2)-c(1)*u-v;

for k = 3:n-1

c(k) = b(k)-c(k-1)*u-c(k-2)*v;

end

%calculate change in u and v

c1 = c(n-1); b1 = b(n); cb = c(n-1)*b(n-1);

c2 = c(n-2)*c(n-2); bc = b(n-1)*c(n-2);

if n>3, c1 = c1*c(n-3); b1 = b1*c(n-3); end

dn = c1-c2;

du = (b1-bc)/dn; dv = (cb-c(n-2)*b(n))/dn;

u = u+du; v = v+dv;

st = norm([du dv]); it = it+1;

end

[r1,r2,im1,im2] = solveq(u,v,n,a);

rts(n,1:2) = [r1 im1]; rts(n-1,1:2) = [r2 im2];

n = n-2;

a(1:n) = b(1:n);

end

% Solve last quadratic or linear equation

u = a(1); v = a(2);

[r1,r2,im1,im2] = solveq(u,v,n,a);

rts(n,1:2) = [r1 im1];

if n==2

rts(n-1,1:2) = [r2 im2];

end

% --

function [r1,r2,im1,im2] = solveq(u,v,n,a);

% Solves x^2 + ux + v = 0 (n ~= 1) or x + a(1) = 0 (n = 1).

% Example call: [r1,r2,im1,im2] = solveq(u,v,n,a)

% r1, r2 are real parts of the roots,

% im1, im2 are the imaginary parts of the roots.

% Called by function bairstow.

if n==1

r1 = -a(1); im1 = 0; r2 = 0; im2 = 0;

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch03-9780123869425 — 2012/6/7 — 12:00 — Page 169 — #23

3.11 Methods for Finding All the Roots of a Polynomial 169

else

d = u*u-4*v;

if d<0

d = -d;

im1 = sqrt(d)/2; r1 = -u/2; r2 = r1; im2 = -im1;

elseif d>0

r1 = (-u+sqrt(d))/2; im1 = 0; r2 = (-u-sqrt(d))/2; im2 = 0;

else

r1 = -u/2; im1 = 0; r2 = -u/2; im2 = 0;

end

end

Note that the MATLAB function solveq is nested within the function bairstow. The func-
tion is not stored separately and so it can only be accessed by bairstow. We may now use
bairstow to solve the specific polynomial equation

x5
− 3x4

− 10x3
+ 10x2

+ 44x+ 48= 0

In this case, we take the coefficient vector as c where c = [-3 -10 10 44 48] and if we
require accuracy of four decimal places we take tol as 0.00005. The script uses bairstow
to solve the given polynomial.

% e3s305.m

c = [-3 -10 10 44 48];

[rts, it] = bairstow(c,5,0.00005);

for i = 1:5

fprintf('\nroot%3.0f Real part=%7.4f',i,rts(i,1))

fprintf(' Imag part=%7.4f',rts(i,2))

end

fprintf('\n')

Note how fprintf is used to provide a clearer output from the matrix rts.

root 1 Real part= 4.0000 Imag part= 0.0000

root 2 Real part=-1.0000 Imag part=-1.0000

root 3 Real part=-1.0000 Imag part= 1.0000

root 4 Real part=-2.0000 Imag part= 0.0000

root 5 Real part= 3.0000 Imag part= 0.0000

As we have indicated, MATLAB provides a function roots to determine the roots of a
polynomial. It is interesting to compare this function with Bairstow’s method. Table 3.5
gives the results of this comparison applied to specific polynomials. The problems p1
through p5 are the polynomials:

p1 : x5
− 3x4

− 10x3
+ 10x2

+ 44x+ 48= 0

p2 : x3
− 3.001x2

+ 3.002x− 1.001= 0

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch03-9780123869425 — 2012/6/7 — 12:00 — Page 170 — #24

170 Chapter 3 . Solution of Nonlinear Equations

Table 3.5 Time Required to Obtain
All Roots (in Seconds)

roots bairstow

p1 7 33
p2 6 19
p3 6 14
p4 10 103
p5 11 37

p3 : x4
− 6x3

+ 11x2
+ 2x− 28= 0

p4 : x7
+ 1= 0

p5 : x8
+ x7
+ x6
+ x5
+ x4
+ x3
+ x2
+ x+ 1= 0

Both methods determine the correct roots for all problems, although the function roots is
more efficient.

3.11.2 Laguerre’s Method

Laguerre’s method provides a rapidly convergent procedure for locating the roots of a poly-
nomial. The algorithm is interesting and for this reason it is described in this section. The
method is applied to a polynomial in the form

p(x)= xn
+a1xn−1

+a2xn−2
+ ·· ·+an

Starting with an initial approximation x1, we apply the following iterative formula to the
polynomial p(x):

xi+1 = xi−np(xi)/[p′(xi)±
√
{h(xi)}] for i= 1,2, . . . (3.19)

where

h(xi)= (n− 1)[(n− 1){p′(xi)}
2
−np(xi)p

′′(xi)]

and n is the degree of the polynomial. The sign taken in (3.19) is determined so that it is
the same as the sign of p′(xi).

It is important to give some justification for using a formula with such a complex struc-
ture. The reader will notice that if the square root term were not present in (3.19), the
iterative form would be similar to that of Newton’s method, (3.9), and identical to that of
Schroder’s method, (3.14). Thus we would have a method with quadratic convergence for
the roots of the polynomial. In fact, the more complex structure of (3.19) provides third-
order convergence since the error is proportional to the cube of the previous error and

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch03-9780123869425 — 2012/6/7 — 12:00 — Page 171 — #25

3.12 Solving Systems of Nonlinear Equations 171

consequently provides faster convergence than Newton’s method. Thus, given an initial
approximation, the method will converge rapidly to a root of the polynomial, which we
can denote by r.

To obtain the other roots of the polynomial we divide the polynomial p(x) by the factor
(x− r), which provides another polynomial of degree n− 1. We can then apply iteration
(3.19) to this polynomial and repeat the whole procedure again. This is repeated until all
roots are found to the required accuracy. The process of dividing by (x− r) is known as
deflation and can be performed in a simple and efficient way, described as follows.

Since we have a known factor (x− r), then

a0xn
+a1xn−1

+a2xn−2
+ ·· ·+an = (x− r)(b0xn−1

+b1xn−2
+b2xn−3

+ ·· ·+bn−1) (3.20)

On equating coefficients of the powers of x on both sides we have

b0 = a0

bi = ai+ rbi−1 for i= 1,2, . . . , n− 1
(3.21)

This process is known as synthetic division. Care must be taken here, particularly if the
root is found to low accuracy, since ill-conditioning can magnify the effect of small errors
in the coefficients of the deflated polynomial.

This completes the description of the method but a few important points should be
noted. Assuming sufficient accuracy can be maintained in calculations, the method of
Laguerre will converge for any value of the initial approximation. Convergence to complex
roots and multiple roots can be achieved but at a slower rate because the convergence rate
is linear. In the case of a complex root the value of the function h(xi) becomes negative and
consequently the algorithm must be adjusted to deal with this situation. A key feature that
should be considered is that the derivatives of the polynomial can be found efficiently by
synthetic division.

To summarize the important features of the algorithm:

1. The algorithm is third order, thus providing rapid convergence to individual roots.
2. All roots of the polynomial can be found by using synthetic division.
3. Derivatives can be calculated efficiently using synthetic division.

3.12 Solving Systems of Nonlinear Equations
The methods considered so far have been concerned with finding one or all the roots of
a nonlinear algebraic equation with one independent variable. We now consider methods
for solving systems of nonlinear algebraic equations in which each equation is a function
of a specified number of variables. We can write such a system in the form

fi(x1,x2, . . . ,xn)= 0 for i= 1,2,3, . . . ,n (3.22)

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch03-9780123869425 — 2012/6/7 — 12:00 — Page 172 — #26

172 Chapter 3 . Solution of Nonlinear Equations

A simple method for solving this system of nonlinear equations is based on Newton’s
method for the single equation. To illustrate this procedure we first consider a system of
two equations in two variables:

f1(x1,x2)= 0

f2(x1,x2)= 0
(3.23)

Given initial approximations x0
1 and x0

2 for x1 and x2, we may find new approximations x1
1

and x1
2 as follows:

x1
1 = x0

1 +1x0
1

x1
2 = x0

2 +1x0
2

(3.24)

These approximations should be such that they drive the values of the functions closer to
zero, so that

f1(x1
1,x1

2)≈ 0

f2(x1
1,x1

2)≈ 0

or

f1(x0
1 +1x0

1, x0
2 +1x0

2)≈ 0

f2(x0
1 +1x0

1, x0
2 +1x0

2)≈ 0
(3.25)

Applying a two-dimensional Taylor series expansion to (3.25) gives

f1(x0
1,x0

2)+{∂f1/∂x1}
01x0

1 +{∂f1/∂x2}
01x0

2 + ·· · ≈ 0

f2(x0
1,x0

2)+{∂f2/∂x1}
01x0

1 +{∂f2/∂x2}
01x0

2 + ·· · ≈ 0
(3.26)

If we neglect terms involving powers of 1x0
1 and 1x0

2 higher than one, then (3.26) rep-
resents a system of two linear equations in two unknowns. The zero superscript means
that the function is to be calculated at the initial approximation and 1x0

1 and 1x0
2 are the

unknowns we wish to find. Having solved (3.26) we can obtain our new improved approx-
imations and then repeat the process until we have obtained the accuracy we require.
A common convergence criterion is to continue iterations until

√
(1xr

1)
2+ (1xr

2)
2 < ε

where r denotes the iteration number and ε is a small positive quantity preset by the user.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch03-9780123869425 — 2012/6/7 — 12:00 — Page 173 — #27

3.12 Solving Systems of Nonlinear Equations 173

It is a simple step to generalize this procedure for any number of variables and
equations. We may write the general system of equations as

f(x)= 0

where f denotes the column vector of n components (f1, f2, . . . , fn)
> and x is a column vector

of n components (x1,x2, . . . ,xn)
>. Let xr+1 denote the value of x at the (r+ 1)th iteration;

then

xr+1
= xr
+1xr for r = 0,1,2, . . .

If xr+1 is an improved approximation to x, then

f(xr+1)≈ 0

or

f(xr
+1xr)≈ 0 (3.27)

Expanding (3.27) by using an n-dimensional Taylor series expansion gives

f(xr
+1xr)= f(xr)+∇f(xr)1xr

+ ·· · (3.28)

where ∇ is a vector operator of partial derivatives with respect to each of the n
components of x. If we neglect higher-order terms in (1xr)2, this gives, by virtue of
(3.27),

f(xr)+ Jr1xr
≈ 0 (3.29)

where Jr =∇f(xr). Jr is called the Jacobian matrix. The subscript r denotes that the matrix
is evaluated at the point xr and it can be written in component form as

Jr = [∂fi(x
r)/∂xj] for i= 1,2, . . . ,n and j = 1,2, . . . ,n

On solving (3.29) we have the improved approximation

xr+1
= xr
− J−1

r f(xr) for r = 1,2, . . .

The matrix Jr may be singular and in this situation the inverse, J−1
r , cannot be calculated.

This is the general form of Newton’s method. However, there are two major disadvan-
tages with this method:

1. The method may not converge unless the initial approximation is a good one.
2. The method requires the user to provide the derivatives of each function with respect

to each variable. The user must therefore provide n2 derivatives and any computer
implementation must evaluate the n functions and the n2 derivatives at each iteration.

The MATLAB function newtonmv given here implements this method.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch03-9780123869425 — 2012/6/7 — 12:00 — Page 174 — #28

174 Chapter 3 . Solution of Nonlinear Equations

function [xv,it] = newtonmv(x,f,jf,n,tol)

% Newton's method for solving a system of n nonlinear equations

% in n variables.

% Example call: [xv,it] = newtonmv(x,f,jf,n,tol)

% Requires an initial approximation column vector x. tol is

% required accuracy. User must define functions f (system equations)

% and jf (partial derivatives). xv is the solution vector, the it

% parameter is number of iterations taken.

% WARNING. The method may fail, for example if initial estimates are poor.

it = 0; xv = x;

fr = feval(f,xv);

while norm(fr) > tol

Jr = feval(jf,xv); xv = xv-Jr\fr;

fr = feval(f,xv); it = it+1;

end

Figure 3.11 illustrates the following system of two equations in two variables:

x2
+ y2
= 4

xy = 1
(3.30)

To solve the system (3.30) we define the MATLAB function by f and its Jacobian by Jf and
then call newtonmv using initial approximations for the roots x = 3 and y =−1.5 and a
tolerance of 0.00005 as follows:

>> f = @(v) [v(1)^2+v(2)^2-4; v(1)*v(2)-1];

>> Jf = @(v) [2*v(1) 2*v(2); v(2) v(1)];

>> [rootvals,iter] = newtonmv([3 -1.5]',f,Jf,2,0.00005)

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x value

y
va

lu
e

FIGURE 3.11 Plot of system (3.30). Intersections show roots.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch03-9780123869425 — 2012/6/7 — 12:00 — Page 175 — #29

3.13 Broyden’s Method for Solving Nonlinear Equations 175

This results in the MATLAB output

rootvals =

1.9319

0.5176

iter =

5

The solution is x = 1.9319 and y = 0.5176. Clearly the user must supply a large amount of
information for this function. The next section attempts to deal with this problem.

3.13 Broyden’s Method for Solving
Nonlinear Equations

The method of Newton described in Section 3.12 does not provide a practical procedure for
solving any but the smallest systems of nonlinear equations. As we have seen, the method
requires the user to provide not only the function definitions but also the definitions of the
n2 partial derivatives of the functions. Thus, for a system of 10 equations in 10 unknowns,
the user must provide 110 function definitions!

To deal with this problem a number of techniques have been proposed but the group
of methods that appears most successful is the class known as the quasi-Newton methods.
The quasi-Newton methods avoid the calculation of the partial derivatives by obtaining
approximations to them involving only the function values. The set of derivatives of the
functions evaluated at any point xr may be written in the form of the Jacobian matrix

Jr = [∂fi(x
r)/∂xj] for i= 1,2, . . . ,n and j = 1,2, . . . ,n (3.31)

The quasi-Newton methods provide an updating formula, which gives successive
approximations to the Jacobian for each iteration. Broyden and others have shown that
under specified circumstances these updating formulae provide satisfactory approxi-
mations to the inverse Jacobian. The structure of the algorithm suggested by Broyden
is

1. Input an initial approximation to the solution. Set the counter r to zero.
2. Calculate or assume an initial approximation to the inverse Jacobian Br .
3. Calculate pr

=−Brf r where f r
= f(xr).

4. Determine the scalar parameter such that ||f(xr
+ tr pr)||< ||fr

||where the symbols
|| || denote that the norm of the vector is to be taken.

5. Calculate xr+1
= x r

+ trpr .

 tr

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch03-9780123869425 — 2012/6/7 — 12:00 — Page 176 — #30

176 Chapter 3 . Solution of Nonlinear Equations

6. Calculate f r+1
= f(xr+1). If ||f r+1

||< ε (where ε is a small preset positive quantity), then
exit. If not continue with step 7.

7. Use the updating formula to obtain the required approximation to the Jacobian

Br+1
= Br

− (Bryr
−pr)(pr)>Br/{(pr)>Bryr

}where yr
= f r+1

− f r .

8. Set i= i+ 1 and return to step 3.

The initial approximation to the inverse Jacobian B is usually taken as a scalar multiple
of the unit matrix. The success of this algorithm depends on the nature of the functions
to be solved and on the closeness of the initial approximation to the solution. In partic-
ular, step 4 may present major problems. It may be very expensive in computer time and
to avoid this tr is sometimes set as a constant, usually 1 or smaller. This may reduce the
stability of the algorithm but speeds it up.

It should be noted that other updating formulae have been suggested and it is fairly easy
to replace the Broyden formula by others in the preceding algorithm. In general, the prob-
lem of solving a system of nonlinear equations is a very difficult one. There is no algorithm
that is guaranteed to work for all systems of equations. For large systems of equations the
available algorithms tend to require large amounts of computer time to obtain accurate
solutions.

The MATLAB function broyden implements Broyden’s method. It should be noted that
this avoids the difficulty of implementing step 4 by taking tr = 1.

function [xv,it] = broyden(x,f,n,tol)

% Broyden's method for solving a system of n nonlinear equations

% in n variables.

% Example call: [xv,it] = broyden(x,f,n,tol)

% Requires an initial approximation column vector x. tol is required

% accuracy. User must define function f.

% xv is the solution vector, parameter it is number of iterations

% taken. WARNING. Method may fail, for example, if initial estimates

% are poor.

fr = zeros(n,1); it = 0; xv = x;

Br = eye(n); %Set initial Br

fr = feval(f, xv);

while norm(fr)>tol

it = it+1; pr = -Br*fr; tau = 1;

xv = xv+tau*pr;

oldfr = fr; fr = feval(f,xv);

% Update approximation to Jacobian using Broyden's formula

y = fr - oldfr; oldBr = Br;

oyp = oldBr*y-pr; pB = pr'*oldBr;

for i = 1:n

for j = 1:n

M(i,j) = oyp(i)*pB(j);

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch03-9780123869425 — 2012/6/7 — 12:00 — Page 177 — #31

3.13 Broyden’s Method for Solving Nonlinear Equations 177

end

end

Br = oldBr-M./(pr'*oldBr*y);

end

To solve the system (3.30) using Broyden’s method we call broyden as follows:

>> f = @(v) [v(1)^2+v(2)^2-4; v(1)*v(2)-1];

>> [x, iter] = broyden([3 -1.5]',f,2,0.00005)

This results in

x =

0.5176

1.9319

iter =

36

This is a correct root of system (3.30) but it is not the same root as that found by Newton’s
method, even though the starting values for the iteration are the same.

As a second example we consider the following system of equations, which are taken
from the MATLAB User’s Guide (1989):

sinx+ y2
+ loge z = 7

3x+ 2y− z3
=−1

x+ y+ z = 5

(3.32)

The function g, which implements (3.32), is given here

>> g = @(p) [sin(p(1))+p(2)^2+log(p(3))-7; 3*p(1)+2^p(2)-p(3)^3+1;

p(1)+p(2)+p(3)-5];

The result of solving (3.32) is given next. The starting values used are x = 0, y = 2, and z = 2.

>> x = broyden([0 2 2]',g,3,0.00005)

x =

0.5991

2.3959

2.0050

This shows that the method is successful for two problems and does not require the eval-
uation of the partial derivatives. The reader may be interested in applying the function
newtonmv to this problem. Nine first-order partial derivatives will be required.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch03-9780123869425 — 2012/6/7 — 12:00 — Page 178 — #32

178 Chapter 3 . Solution of Nonlinear Equations

3.14 Comparing the Newton and Broyden Methods
We end our discussion of the solution of nonlinear systems of equations by comparing the
performance of the functions broyden and newtonmv, developed in Sections 3.12 and 3.13,
when solving the system (3.30). The following script calls both functions and provides the
number of iterations required for convergence.

>> f = @(v) [v(1)^2+v(2)^2-4; v(1)*v(2)-1];

>> [x,it] = broyden([3 -1.5]',f,2,0.00005)

x =

0.5176

1.9319

it =

36

>> J = @(v) [2*v(1) 2*v(2);v(2) v(1)];

>> [x,it] = newtonmv([3,-1.5]',f,J,2,0.00005)

x =

1.9319

0.5176

it =

5

Note that although a correct solution is found in each case, it is a different root.
The first-order partial derivatives are required for the Newton method and this requires

a considerable effort on the part of the user. Solving the previous problem demonstrates
that the relatively simple form of the function broyden is attractive since it relieves the user
of this effort.

In Sections 3.12 and 3.13 two relatively simple algorithms were provided for the solu-
tion of a very difficult problem. They cannot always be guaranteed to work and for large
problems will converge only slowly.

3.15 Summary
The user wishing to solve nonlinear equations will find that this is an area that can present
particular difficulties. It is always possible to devise or meet problems that particular algo-
rithms either cannot solve or take a long time to solve. For example, it is just not possible
for many algorithms to find the roots of the apparently trivial problem x20

= 0 very accu-
rately. However, the algorithms described, if used with care, provide ways of solving a wide

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch03-9780123869425 — 2012/6/7 — 12:00 — Page 179 — #33

Problems 179

range of problems. MATLAB is well suited for this study because it allows interactive experi-
mentation and graphical insights into the behavior of methods and functions. The reader
is referred to Section 9.6 for applications of the symbolic toolbox for solving nonlinear
equations. The algorithms solve, fnewtsym, and newtmvsym are described and applied in
that section.

Problems
3.1. Omar Khayyam (who lived in the twelfth century) solved, by geometric means, a

cubic equation with the form

x3
− cx2

+b2x+a3
= 0

The positive roots of this equation are the x coordinates of points of intersection in
the first quadrant of the circle and parabola given in the following:

x2
+ y2
− (c−a3/b2)x+ 2by+b2

− ca3/b2
= 0

xy = a3/b

For a= 1, b= 2, and c = 3 use MATLAB to plot these two functions and note the x
coordinates of the points of intersection. Using the MATLAB function fzero, solve
the cubic equation and hence verify Omar Khayyam’s method. Hint: You may find
it helpful to use the MATLAB function ginput.

3.2. Use the MATLAB function fnewton to find a root of

x1.4
−
√

x+ 1/x− 100= 0

given an initial approximation 50. Use an accuracy of 10−4.

3.3. Find the two real roots of |x3
| + x− 6= 0 using the MATLAB function fnewton. Use

initial approximations−1 and 1 and an accuracy of 10−4. Plot the function using
MATLAB to verify that the equation has only two real roots. Hint: Take care in finding
the derivative of the function.

3.4. Explain why it is relatively difficult to find the root of tanx− c = 0 when c is large.
Use the MATLAB function fnewton, with initial approximations 1.3 and 1.4 and
accuracy 10−4, to find a root of this equation when c = 5 and c = 10. Compare the
number of iterations required in both cases. Hint: A MATLAB plot will be useful.

3.5. Find a root of the polynomial x5
− 5x4

+ 10x3
− 10x2

+ 5x− 1= 0 correct to four
decimal places by using the MATLAB function schroder with n= 5 and a starting
value x0 = 2. Use MATLAB function fnewton to solve the same problem. Compare
the result and the number of iterations using both methods. Use an accuracy of
5× 10−7.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch03-9780123869425 — 2012/6/7 — 12:00 — Page 180 — #34

180 Chapter 3 . Solution of Nonlinear Equations

3.6. Use the simple iterative method to solve the equation x10
= ex. Express the

equation in the form x = f (x) in different ways and start the iterations with the
initial approximation x = 1. Compare the efficiency of the formulae you have
devised and check your answer(s) using the MATLAB function fnewton.

3.7. The historic Kepler’s equation has the form E− e sinE =M . Solve this equation for
e = 0.96727464, the eccentricity of Halley’s comet, and M = 4.527594× 10−3. Use
the MATLAB function fnewton, with an accuracy of 0.00005 and a starting value of 1.

3.8. Examine the performance of the function fzero for solving x11
= 0 with an initial

value of−1.5 and also 1. Use an accuracy of 1× 10−5.

3.9. The smallest positive root of the equation

1− x+ x2/(2!)2− x3/(3!)2+ x4/(4!)2− ·· · = 0

is 1.4458. By considering in turn only the first four, five, and six terms in the series,
show that a root of the truncated series approaches this result. Use the MATLAB

function fzero to derive these results, with an initial value of 1 and an accuracy of
10−4.

3.10. Reduce the following system of equations to one equation in terms of x and solve
the resulting equation using the MATLAB function fnewton.

ex/10
− y = 0

2loge y− cos x = 2

Use the MATLAB function newtonmv to solve these equations directly and compare
your results. Use an initial approximation x = 1 for fnewton and approximations
x = 1, y = 1 for newtonmv and accuracy 10−4 in both cases.

3.11. Solve the pair of equations that follow using the MATLAB function broyden, with the
starting point x = 10, y =−10 and accuracy 10−4.

2x = sin{(x+ y)/2}

2y = cos{(x− y)/2}

3.12. Solve the two equations that follow using the MATLAB functions newtonmv and
broyden with the starting point x = 1,y = 2 and accuracy 10−4.

x3
− 3xy2

= 1/2

3x2y− y3
=
√

3/2

3.13. The polynomial equation

x4
− (13+ ε)x3

+ (57+ 8ε)x2
− (95+ 17ε)x+ 50+ 10ε = 0

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch03-9780123869425 — 2012/6/7 — 12:00 — Page 181 — #35

Problems 181

has roots 1, 2, 5, 5+ ε. Use the functions bairstow and roots to find all the roots of
this polynomial for ε = 0.1,0.01, and 0.001. What happens as ε becomes smaller?
Use an accuracy of 10−5.

3.14. Employ the MATLAB function bairstow to find all the roots of the following
polynomial using an accuracy requirement of 10−4.

x5
− x4
− x3
+ x2
− 2x+ 2= 0

3.15. Use the MATLAB function roots to find all the roots of the equation

t3
− 0.5−

√
(3/2)ı = 0 where ı =

√
−1

Compare with the exact solution

cos{(π/3+ 2πk)/3}+ ı sin{(π/3+ 2πk)/3} for k = 0,1,2

Use an accuracy of 10−4.

3.16. An outline algorithm for the Illinois method for finding a root of f (x)= 0 (Dowell
and Jarrett, 1971) is as follows:

For k = 0,1,2, . . .

xk+1 = xk − fk/f [xk−1,xk]

if fkfk+1 > 0 set xk = xk−1 and fk = gfk−1

where fk = f (xk), f [xk−1,xk]= (fk − fk−1)/(xk − xk−1)

and g = 0.5.

Write a MATLAB function to implement this method. Note that the regula falsi
method is similar but differs in that g is taken as 1.

3.17. The following iterative formulae can be used to solve the equation x2
−a= 0:

xk+1 = (xk+1+a/xk)/2, k = 0,1,2, . . .

and

xk+1 = (xk+1+a/xk)/2− (xk −a/xk)
2/(8xk), k = 0,1,2, . . .

These iterative formulae are second- and third-order methods, respectively, for
solving this equation. Write a MATLAB script to implement them and compare the
number of iterations required to obtain the square root of 100.112 to five decimal
places. For the purpose of illustration, use an initial approximation of 1000.

3.18. Show how MATLAB can be used to study chaotic behavior by considering the
iteration

xk+1 = g(xk) for k = 0,1,2, . . .

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch03-9780123869425 — 2012/6/7 — 12:00 — Page 182 — #36

182 Chapter 3 . Solution of Nonlinear Equations

where

g(x)= cx(1− x)

for different values of the constant c. This simple iteration arises from an attempt to
solve a simple quadratic equation. However, its behavior is complex and for some
values of c is chaotic. Write a MATLAB script to plot the value of the iterates against
the iterate number for this function and study the behavior of the iterations for
c = 2.8, 3.25, 3.5, and 3.8. Use an initial value of x0 = 0.7.

3.19. For the functions solved in Problems 3.2, 3.3, and 3.7, use the MATLAB function
plotapp, given in Section 3.9, to find approximate solutions for these functions.

3.20. It can be shown that the cubic polynomial equation

x3
−px−q= 0

will have real roots if the inequality p3/q2 > 27/4 is satisfied. Select five pairs of
values for p and q for which this inequality is satisfied and hence, using the MATLAB

function roots, verify in each case that the roots of the equation are real.

3.21. In the sixteen century the mathematician Ioannes Colla suggested the following
problem: Divide 10 into three parts such that they shall be in continued proportion
to each other and the product of the first two shall be 6. Taking x, y, and z as three
parts, this problem can be stated as

x+ y+ z = 10, x/y = y/z, xy = 6

Now by simple manipulation these equations can be expressed in terms of the
specific variable y as

y4
+ 6y2

− 60y+ 36= 0

Clearly if we can solve this equation for y then we can easily find the other variables
x and z from the original equations. Use the MATLAB function roots to find values
for y and hence solve Colla’s problem.

3.22. The natural frequencies of a simply supported beam are given by the roots of the
equation

c2
1 − x4c2

3 = 0

where

c1 = (sinh(x)+ sin(x))/(2x)

and

c3 = (sinh(x)− sin(x))/(2x3)

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch03-9780123869425 — 2012/6/7 — 12:00 — Page 183 — #37

Problems 183

Substituting for c1 and c3 gives

((sinh(x)+ sin(x))/(2x))2− x4((sinh(x)− sin(x))/(2x3))2 = 0

When searching for the roots of this equation no difficulty is found in determining
the root for trial values of x providing x is small (say x < 10). For values of x > 25 the
process becomes erratic. The roots of this equation are actually x = kπ where k is a
positive integer. Use the MATLAB function fzero with initial approximations x = 5
and x = 30 to obtain a solution close to these initial approximations for this
equation. For the purpose of this exercise, do not simplify this equation.

Why are the results so poor? If you simplify the preceding equation, which
equation do you obtain and what is its solution?

EDELKAMP 19-ch15-671-700-9780123725127 2011/5/28 14:50 Page 672 #2

This page intentionally left blank

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch04-9780123869425 — 2012/5/30 — 2:02 — Page 185 — #1

4
Differentiation and Integration

Differentiation and integration are the fundamental operations of differential calculus and
occur in almost every field of mathematics, science, and engineering. Determining the
derivative of a function analytically may be tedious but is relatively straightforward. The
inverse of this process, that of determining the integral of a function, can often be difficult
analytically or even impossible.

The difficulty of determining the analytical integral for certain functions has encour-
aged the development of many numerical procedures for determining approximately the
value of definite integrals. In many situations the procedures work well because integra-
tion is a smoothing process and errors in the approximation tend to cancel each other.
However, for certain types of functions, difficulties may arise and these will be examined
as part of our discussion of specific numerical methods for the approximate evaluation of
definite integrals.

4.1 Introduction
In the next section of this chapter we show how the derivative of a function may be
estimated for a particular value of the independent variable. The numerical approxima-
tions for derivatives require only function values. These approximations can be used to
great advantage when derivatives are required in a program. Their application saves the
program user the task of determining the analytical expressions for these derivatives.
In Section 4.3 and beyond we introduce the reader to a range of numerical integration
methods, including methods suitable for infinite ranges of integration. Generally numer-
ical integration works well, but there are pathological integrals that will defeat the best
numerical algorithms.

4.2 Numerical Differentiation
In this section we present a range of approximations for first- and higher-order derivatives.
Before we derive these approximations in detail we give a simple example that illustrates
the dangers of the careless or naive use of such derivative approximations. The simplest
approximation for the first-order derivative of a given function f (x) arises from the formal
definition of the derivative:

df
dx
= lim

h→0

(
f
(
x+h

)
− f (x)

h

)
(4.1)

Numerical Methods Using MATLAB
®. DOI: 10.1016/B978-0-12-386942-5.00004-7

© 2012 Elsevier Inc. All rights reserved.
185

http://dx.doi.org/10.1016/B978-0-12-386942-5.00004-7

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch04-9780123869425 — 2012/5/30 — 2:02 — Page 186 — #2

186 Chapter 4 . Differentiation and Integration

One interpretation of (4.1) is that the derivative of a function f (x) is the slope of the tangent
to the function at the point x. For small h we obtain the approximation to the derivative:

df
dx
≈

(
f
(
x+h

)
− f (x)

h

)
(4.2)

This would appear to imply that the smaller the value of h, the better the value of our
approximation in (4.2). The following MATLAB script plots Figure 4.1, which shows the error
for various values of h.

% e3s401.m

g = @(x) x.^9;

x = 1; h(1) = 0.5;

hvals = []; dfbydx = [];

for i = 1:17

h = h/10;

b = g(x); a = g(x+h);

hvals = [hvals h];

dfbydx(i) = (a-b)/h;

end;

exact = 9;

loglog(hvals,abs(dfbydx-exact),'*')

axis([1e-18 1 1e-8 1e4])

xlabel('h value'), ylabel('Error in approximation')

Figure 4.1 shows that for large values of h the error is large but falls rapidly as h is
decreased. However, when h becomes less than about 10−9, rounding errors dominate
and the approximation becomes much worse. Clearly care must be taken in the choice
of h. With this warning in mind we develop methods of differing accuracies for any order
derivative.

10−15 10−10 10−5

10−5

100

100

h value

E
rr

or
 in

 a
pp

ro
xi

m
at

io
n

FIGURE 4.1 A log-log plot showing the error in a simple derivative approximation.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch04-9780123869425 — 2012/5/30 — 2:02 — Page 187 — #3

4.2 Numerical Differentiation 187

We have seen how a simple approximate formula for the first derivative can be easily
obtained from the formal definition of the derivative. However, it is difficult to approximate
higher derivatives and deduce more accurate formulae in this way; instead we will use
the Taylor series expansion of the function y = f (x). To determine the central difference
approximation for the derivative of this function at xi we expand f (xi+h):

f (xi+h)= f (xi)+hf ′(xi)+ (h
2/2!)f ′′(xi)+ (h

3/3!)f ′′′(xi)+ (h
4/4!)f (iv)(xi)+ ·· · (4.3)

We sample f (x) at points a distance h apart and write xi+h as xi+1, and so on. We will also
write f (xi) as fi and f (xi+1) as fi+1. Thus

fi+1 = fi+hf ′(xi)+ (h
2/2!)f ′′(xi)+ (h

3/3!)f ′′′(xi)+ (h
4 /4!)f (iv)(xi)+ ·· · (4.4)

Similarly

fi−1 = fi−hf ′(xi)+ (h
2/2!)f ′′(xi)− (h

3/3!)f ′′′(xi)+ (h
4/4!)f (iv)(xi)− ·· · (4.5)

We can find an approximation to the first derivative as follows. Subtracting (4.5) from (4.4)
gives

fi+1− fi−1 = 2hf ′ (xi)+ 2
(

h3 /3!
)

f ′′′ (xi)+ ·· ·

Thus, neglecting terms in h3 and higher, we have

f ′ (xi)=
(
fi+1− fi−1

)
/2h with errors of O

(
h2
)

(4.6)

This is the central difference approximation and differs from (4.2), which is a forward dif-
ference approximation. Equation (4.6) is more accurate than (4.2) but in the limit as h
approaches zero, the two are identical.

To determine an approximation for the second derivative we add (4.4) and (4.5) to
obtain

fi+1+ fi−1 = 2fi+ 2
(

h2 /2!
)

(xi)+ 2
(

h4 /4!
)

f (iv) (xi)+ ·· ·

Thus, neglecting terms in h4 and higher, we have

f ′′ (xi)=
(
fi+1− 2fi+ fi−1

)
/h2 with errors of O

(
h2
)

(4.7)

By taking more terms in the Taylor series, together with the Taylor series for f (x+ 2h) and
f (x− 2h), and so on, and performing similar manipulations, we can obtain higher deriva-
tives and more accurate approximations if required. Table 4.1 gives examples of these
formulae.

f ′′

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch04-9780123869425 — 2012/5/30 — 2:02 — Page 188 — #4

188 Chapter 4 . Differentiation and Integration

Table 4.1 Derivative Approximations

Multipliers for fi−3 . . . fi+3

fi−3 fi−2 fi−1 fi fi+1 fi+2 fi+3 Order of Error

2hf ′(xi) 0 0 −1 0 1 0 0 h2

h2f ′′(xi) 0 0 1 −2 1 0 0 h2

2h3f ′′′(xi) 0 −1 2 0 −2 1 0 h2

h4f (iv)(xi) 0 1 −4 6 −4 1 0 h2

12hf ′(xi) 0 1 −8 0 8 −1 0 h4

12h2f ′′(xi) 0 −1 16 −30 16 −1 0 h4

8h3f ′′′(xi) 1 −8 13 0 −13 8 −1 h4

6h4f (iv)(xi) −1 12 −39 56 −39 12 −1 h4

The MATLAB function diffgen defined in the following computes the first, second, third,
and fourth derivative of a given function with errors of O(h4) for a specified value of x using
data from the table.

function q = diffgen(func,n,x,h)

% Numerical differentiation.

% Example call: q = diffgen(func,n,x,h)

% Provides nth order derivatives, where n = 1 or 2 or 3 or 4

% of the user defined function func at the value x, using a step h.

if (n==1)|(n==2)|(n==3)|(n==4)

c = zeros(4,7);

c(1,:) = [0 1 -8 0 8 -1 0];

c(2,:) = [0 -1 16 -30 16 -1 0];

c(3,:) = [1.5 -12 19.5 0 -19.5 12 -1.5];

c(4,:) = [-2 24 -78 112 -78 24 -2];

y = feval(func,x+[-3:3]*h);

q = c(n,:)*y.'; q = q/(12*h^n);

else

disp('n must be 1, 2, 3 or 4'), return

end

For example,

result = diffgen('cos',2,1.2,0.01)

determines the second derivative of cos(x) for x = 1.2 with h= 0.01 and gives -0.3624 for
the result. The following script calls the function diffgen four times to determine the first
four derivatives of y = x7 when x = 1:

% e3s402.m

g = @(x) x.^7;

h = 0.5; i = 1;

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch04-9780123869425 — 2012/5/30 — 2:02 — Page 189 — #5

4.3 Numerical Integration 189

disp(' h 1st deriv 2nd deriv 3rd deriv 4th deriv');

while h>=1e-5

t1 = h;

t2 = diffgen(g, 1, 1, h);

t3 = diffgen(g, 2, 1, h);

t4 = diffgen(g, 3, 1, h);

t5 = diffgen(g, 4, 1, h);

fprintf('%10.5f %10.5f %10.5f %11.5f %12.5f\n',t1,t2,t3,t4,t5);

h = h/10; i = i+1;

end

The output from the preceding script is

h 1st deriv 2nd deriv 3rd deriv 4th deriv

0.50000 1.43750 38.50000 191.62500 840.00000

0.05000 6.99947 41.99965 209.99816 840.00000

0.00500 7.00000 42.00000 210.00000 840.00001

0.00050 7.00000 42.00000 210.00000 839.97579

0.00005 7.00000 42.00000 209.98521 -290.13828

Note that as h is decreased the estimates for the first and second derivatives steadily
improve, but when h= 5× 10−4 the estimate for the fourth derivative begins to deterio-
rate. When h= 5× 10−5 the estimate for the third derivative also begins to deteriorate and
the fourth derivative is very inaccurate. In general we cannot predict when this deterio-
ration will begin. It should be noted that different platforms may give different results for
this value.

4.3 Numerical Integration
We will begin by examining the definite integral

I =

b∫
a

f (x)dx (4.8)

The evaluation of such integrals is often called quadrature and we will develop methods
for both finite and infinite values of a and b.

The definite integral (4.8) is a summation process but it may also be interpreted as the
area under the curve y = f (x) from a to b. Any areas above the x-axis are counted as pos-
itive; any areas below the x-axis are counted as negative. Many numerical methods for
integration are based on using this interpretation to derive approximations to the inte-
gral. Typically the interval [a, b] is divided into a number of smaller subintervals, and
by making simple approximations to the curve y = f (x) in the subinterval, the area of
the subinterval may be obtained. The areas of all the subintervals are then summed to

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch04-9780123869425 — 2012/5/30 — 2:02 — Page 190 — #6

190 Chapter 4 . Differentiation and Integration

give an approximation to the integral in the interval [a, b]. Variations of this technique
are developed by taking groups of subintervals and fitting different degree polynomials
to approximate y = f (x) in each of these groups. The simplest of these methods is the
trapezoidal rule.

The trapezoidal rule is based on the idea of approximating the function y = f (x) in each
subinterval by a straight line so that the shape of the area in the subinterval is trapezoidal.
Clearly, as the number of subintervals used increases, the straight lines will approximate
the function more closely. Dividing the interval from a to b into n subintervals of width
h (where h= (b−a)/n) we can calculate the area of each subinterval since the area of a
trapezium is its base times the mean of its heights. These heights are fi and fi+1 where
fi = f (xi). Thus the area of the trapezium is

h
(
fi+ fi+1

)
/2 for i= 0,1,2, . . . ,n− 1

Summing all the trapezia gives the composite trapezoidal rule for approximating (4.8):

I ≈ h
{(

f0+ fn
)
/2+ f1+ f2+ ·· ·+ fn−1

}
(4.9)

The truncation error, which is the error due to the implicit approximation in the trape-
zoidal rule, is

En ≤
(
b−a

)
h2M /12 (4.10)

where M is the upper bound for |f ′′(t)| and t must be in the range a to b. The MATLAB

function trapz implements this procedure and we use it in Section 4.4 to compare the
performance of the trapezoidal rule with the more accurate Simpson’s rule.

The level of accuracy obtained from a numerical integration procedure is dependent on
three factors. The first two are the nature of the approximating function and the number
of intervals used. These are controlled by the user and give rise to the truncation error,
that is, the error inherent in the approximation. The third factor influencing accuracy is
the rounding error, the error caused by the fact that practical computation has limited
precision. For a particular approximating function the truncation error will decrease as the
number of subintervals increases. Integration is a smoothing process and rounding errors
do not present a major problem. However, when many intervals are used, the time to solve
the problem becomes more significant because of the increased amount of computation.
This problem may be reduced by writing the script efficiently.

4.4 Simpson’s Rule
Simpson’s rule is based on using a quadratic polynomial approximation to the function
f (x) over a pair of subintervals; it is illustrated in Figure 4.2. If we integrate the quadratic
polynomial passing through the points (x0, f0), (x1, f1), (x2, f2), where f1 = f (x1), and so on,

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch04-9780123869425 — 2012/5/30 — 2:02 — Page 191 — #7

4.4 Simpson’s Rule 191

Quadratic
approximation

h h

y

x

f (x2)

f (x1)

f (x0)

x2x1x0

y = f (x)

FIGURE 4.2 Simpson’s rule, using a quadratic approximation over two intervals.

the following formula is obtained:

x2∫
x0

f (x) dx =
h
3

(
f0+ 4f1+ f2

)
(4.11)

This is Simpson’s rule for one pair of intervals. Applying the rule to all pairs of intervals in
the range a to b and adding the results produces the following expression, known as the
composite Simpson’s rule:

b∫
a

f (x) dx =
h
3

{
f0+ 4

(
f1+ f3+ f5+ ·· ·+ f2n−1

)
+ 2

(
f2+ f4+ ·· ·+ f2n−2

)
+ f2n

}
(4.12)

Here n indicates the number of pairs of intervals and h= (b−a)/(2n). The composite rule
may be also be written as a vector product:

b∫
a

f (x) dx =
h
3

(
c>f

)
(4.13)

where c= [1 4 2 4 2 . . . 2 4 1]> and f= [f1 f2 f3 . . . f2n]>.
The error arising from the approximation, called the truncation error, is approxi-

mated by

En = (b−a)h4f (iv)(t)/180

where t lies between a and b. An upper bound for the error is given by

En ≤ (b−a)h4M/180 (4.14)

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch04-9780123869425 — 2012/5/30 — 2:02 — Page 192 — #8

192 Chapter 4 . Differentiation and Integration

where M is an upper bound for |f (iv)(t)|. The upper bound for the error in the simpler
trapezoidal rule, (4.10), is proportional to h2 rather than h4. This makes Simpson’s rule
superior to the trapezoidal rule in terms of accuracy at the expense of more function
evaluations.

To illustrate different ways of implementing Simpson’s rule we provide two alterna-
tives, simp1 and simp2. The function simp1 creates a vector of coefficients v and a vector
of function values y and multiplies the two vectors together. Function simp2 provides a
more conventional implementation of Simpson’s rule. In each case the user must provide
the definition of the function to be integrated, the lower and upper limits of integration,
and the number of subintervals to be used. The number of subintervals must be an even
number since the rule fits a function to a pair of subintervals.

function q = simp1(func,a,b,m)

% Implements Simpson's rule using vectors.

% Example call: q = simp1(func,a,b,m)

% Integrates user defined function func from a to b, using m divisions

if (m/2)~=floor(m/2)

disp('m must be even'); return

end

h = (b-a)/m; x = a:h:b;

y = feval(func,x);

v = 2*ones(m+1,1); v2 = 2*ones(m/2,1);

v(2:2:m) = v(2:2:m)+v2;

v(1) = 1; v(m+1) = 1;

q = (h/3)*y*v;

The second nonvectorized form of this function is

function q = simp2(func,a,b,m)

% Implements Simpson's rule using for loop.

% Example call: q = simp2(func,a,b,m)

% Integrates user defined function

% func from a to b, using m divisions

if (m/2) ~= floor(m/2)

disp('m must be even'); return

end

h = (b-a)/m;

s = 0; yl = feval(func,a);

for j = 2:2:m

x = a+(j-1)*h; ym = feval(func,x);

x = a+j*h; yh = feval(func,x);

s = s+yl+4*ym+yh; yl = yh;

end

q = s*h/3;

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch04-9780123869425 — 2012/5/30 — 2:02 — Page 193 — #9

4.4 Simpson’s Rule 193

The following script calls either simp1 or simp2. These functions can be used to demon-
strate the effect on accuracy of the number of pairs of intervals used. The script evaluates
the integral of x7 in the range 0 to 1.

% e3s403.m

n = 4; i = 1;

tic

disp(' n integral value')

while n < 1025

simpval = simp1(@(x) x.^7,0,1,n); % or simpval = simp2(etc.);

fprintf('%5.0f %15.12f\n',n,simpval)

n = 2*n; i = i+1;

end

t = toc;

fprintf('\ntime taken = %6.4f secs\n',t)

The output from this script using simp1 is as follows:

n integral value

4 0.129150390625

8 0.125278472900

16 0.125017702579

32 0.125001111068

64 0.125000069514

128 0.125000004346

256 0.125000000272

512 0.125000000017

1024 0.125000000001

time taken = 0.0635 secs

On running this script, but using simp2, we obtain the same values for the integral but the
following results for the time taken:

time taken = 0.1335 secs

Equation (4.14) shows that the truncation error will decrease rapidly for values of h smaller
than 1. The preceding results illustrate this. The rounding error in Simpson’s rule is due to
evaluating the function f (x) and the subsequent multiplications and additions. Note also
that the vectorized version, simp1, is a little faster than simp2.

We now evaluate the same integral using the MATLAB function trapz. To call this func-
tion the user must provide a vector of function values f. The function trapz(f) estimates
the integral of the function assuming unit spacing between the data points. Thus to
determine the integral we multiply trapz(f) by the increment h.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch04-9780123869425 — 2012/5/30 — 2:02 — Page 194 — #10

194 Chapter 4 . Differentiation and Integration

% e3s404.m

n = 4; i = 1; f = @(x) x.^7;

tic

disp(' n integral value')

while n<1025

h = 1/n; x = 0:h:1;

trapval = h*trapz(f(x));

fprintf('%5.0f %15.12f\n',n,trapval)

n = 2*n; i = i+1;

end

t = toc;

fprintf('\ntime taken = %4.2f secs\n',t)

Running this script gives

n integral value

4 0.160339355469

8 0.134043693542

16 0.127274200320

32 0.125569383381

64 0.125142397981

128 0.125035602755

256 0.125008900892

512 0.125002225236

1024 0.125000556310

time taken = 0.06 secs

These results illustrate the fact that the trapezoidal rule is less accurate than the Simpson
rule.

4.5 Newton–Cotes Formulae
Simpson’s rule is an example of a Newton–Cotes formula for integration. Other examples
of these formulae can be obtained by fitting higher-degree polynomials through the appro-
priate number of points. In general we fit a polynomial of degree n through n+ 1 points.
The resulting polynomial can then be integrated to provide an integration formula. Here
are some examples of Newton–Cotes formulae together with estimates of their truncation
errors.

For n= 3 we have

x3∫
x0

f (x) dx =
3h
8

(
f0+ 3f1+ 3f2+ f3

)
+ truncation error

3h5

80
f iv(t) (4.15)

where t lies in the interval x0 to x3.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch04-9780123869425 — 2012/5/30 — 2:02 — Page 195 — #11

4.5 Newton–Cotes Formulae 195

For n= 4 we have

x4∫
x0

f (x) dx =
2h
45

(
7f0+ 32f1+ 12f2+ 32f3+ 7f4

)
+ truncation error

8h7

945
f (vi)(t) (4.16)

where t lies in the interval x0 to x4. Composite rules can be generated for both rules (4.15)
and (4.16). The truncation errors indicate that some improvement in accuracy may be
obtained by using these rules rather than Simpson’s rule. However, the rules are more
complex; consequently, greater computational effort is involved and rounding errors may
become a more significant problem.

The MATLAB function quad uses an adaptive recursive Simpson’s rule and the function
quadl uses adaptive Lobatto quadrature. The MATLAB function quadgk uses an adaptive
Gauss–Kronrod rule, which is particularly efficient for smooth and oscillatory integrals.
The limits of integration may be infinite.

The performance of quad and quadl and simp1 (called with both 1024 and 4096 panels)
are compared by determining the error when evaluating the integral ex from 0 to n where
n= 2.5 : 2.5 : 25 using the following script:

% e3s405.m

for n = 1:10; n1 = 2.5*n;

ext = exp(n1)-1;

err(n,1) = simp1('exp',0,n1,1024)-ext;

err(n,2) = simp1('exp',0,n1,4096)-ext;

err(n,3) = quadl('exp',0,n1)-ext;

err(n,4) = quad('exp',0,n1)-ext;

end

err

Running this script gives the following:

err =

2.2062e-012 8.8818e-015 7.2414e-009 3.9510e-009

4.6552e-010 1.8190e-012 1.0203e-011 8.6445e-009

2.8889e-008 1.1323e-010 2.9315e-009 1.4057e-008

1.1129e-006 4.3437e-009 4.5475e-010 1.6258e-008

3.3101e-005 1.2928e-007 0 1.5891e-008

8.3618e-004 3.2666e-006 -9.3132e-010 1.8626e-008

1.8872e-002 7.3716e-005 0 7.4506e-009

3.9221e-001 1.5321e-003 -5.9605e-008 0

7.6535e+000 2.9899e-002 9.5367e-007 9.5367e-007

1.4211e+002 5.5516e-001 -1.5259e-005 -1.5259e-005

These results show the advantage of using adaptive subinterval sizes. Simpson’s rule has
a fixed interval size. For the smaller ranges of integration it performs very well but as
the range of integration increases, accuracy decreases. Generally the adaptive methods
maintain a much higher level of accuracy.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch04-9780123869425 — 2012/5/30 — 2:02 — Page 196 — #12

196 Chapter 4 . Differentiation and Integration

4.6 Romberg Integration
A major problem that arises with the nonadaptive Simpson’s or Newton–Cotes rule is that
the number of intervals required to provide the required accuracy is initially unknown.
Clearly one approach to this problem is to double successively the number of intervals
used and compare the results of applying a particular rule, as illustrated by the examples
in Section 4.4. Romberg’s method provides an organized approach to this problem and uti-
lizes the results obtained by applying Simpson’s rule with different interval sizes to reduce
the truncation error.

Romberg integration may be formulated as follows. Let I be the exact value of the inte-
gral and Ti the approximate value of the integral obtained using Simpson’s rule with i
intervals. Consequently, we may write an approximation for the integral I that includes
contributions from the truncation error as follows (note that the error terms are expressed
in powers of h4):

I = Ti+ c1h4
+ c2h8

+ c3h12
+ ·· · (4.17)

If we double the number of intervals, h is halved, giving

I = T2i+ c1
(
h/2

)4
+ c2

(
h/2

)8
+ c3

(
h/2

)12
+ ·· · (4.18)

We can eliminate the terms in h4 by subtracting (4.17) from 16 times (4.18), giving

I = (16T2i−Ti) /15 + k2h8
+ k3h12

+ ·· · (4.19)

Notice that the dominant or most significant term in the truncation error is now of
order h8. In general this will provide a significantly improved approximation to I . For the
remainder of this discussion it is advantageous to use a double subscript notation. If we
generate an initial set of approximations by successively halving the interval we may rep-
resent them by T0,k where k = 0,1,2,3,4, These results may be combined in a similar
manner to that described in (4.19) by using the general formula

Tr,k =
(
16rTr−1,k+1−Tr−1,k

)
/
(
16r
− 1

)
for k= 0, 1, 2, 3 . . . and r= 1, 2, 3, . . . (4.20)

Here r represents the current set of approximations we are generating. The calculations
may be tabulated as follows:

T0,0 T0,1 T0,2 T0,3 T0,4

T1,0 T1,1 T1,2 T1,3

T2,0 T2,1 T2,2

T3,0 T3,1

T4,0

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch04-9780123869425 — 2012/5/30 — 2:02 — Page 197 — #13

4.6 Romberg Integration 197

In this case, the interval has been halved four times to generate the first five values in the
table denoted by T0,k. The preceding formula for Tr,k is used to calculate the remaining
values in the table and at each stage the order of the truncation error is increased by
four. A common alternative is to write the preceding table with the rows and columns
interchanged.

At each stage the interval size is given by(
b−a

)
/2k for k = 0, 1, 2, . . . (4.21)

Romberg integration is implemented in the following MATLAB function, romb:

function [W T] = romb(func,a,b,d)

% Implements Romberg integration.

% Example call: W = romb(func,a,b,d)

% Integrates user defined function func from a to b, using d stages.

T = zeros(d+1,d+1);

for k = 1:d+1

n = 2^k; T(1,k) = simp1(func,a,b,n);

end

for p = 1:d

q = 16^p;

for k = 0:d-p

T(p+1,k+1) = (q*T(p,k+2)-T(p,k+1))/(q-1);

end

end

W = T(d+1,1);

We now apply the function romb to the evaluation of x0.1 in the range 0 to 1. The call of the
function romb is

>> [integral table] = romb(@(x) x.^0.1,0,1,5)

Calling this function gives the following output. Note that the best estimate is the single
value in the last row of the table.

integral =

0.9066

table =

0.7887 0.8529 0.8829 0.8969 0.9034 0.9064

0.8572 0.8849 0.8978 0.9038 0.9066 0

0.8850 0.8978 0.9038 0.9066 0 0

0.8978 0.9038 0.9066 0 0 0

0.9038 0.9066 0 0 0 0

0.9066 0 0 0 0 0

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch04-9780123869425 — 2012/5/30 — 2:02 — Page 198 — #14

198 Chapter 4 . Differentiation and Integration

This integral is a surprisingly difficult one and obtaining an accurate result presents a
significant problem. The exact solution to four decimal places is 0.9090 so the application
of the Romberg method gives only two places of accuracy. However, taking n= 10 does
give the answer correct to four places:

>> integral = romb(@(x) x.^0.1,0,1,10)

integral =

0.9090

Generally the Romberg method is very efficient and accurate. For example, it evaluates the
integral of ex from 0 to 10 using five divisions of the interval more accurately and slightly
more quickly than the function quad with the default tolerance.

An interesting exercise for the reader is to convert the function romb to work with the
MATLAB function trapz instead of simp1.

4.7 Gaussian Integration
The common feature of the methods considered so far is that the integrand is evaluated at
equal intervals within the range of integration. In contrast, Gaussian integration requires
the evaluation of the integrand at specified, but unequal, intervals. For this reason Gaus-
sian integration cannot be applied to data values that are sampled at equal intervals of the
independent variable. The general form of the rule is

1∫
−1

f (x) dx =
n∑

i=1

Aif (xi) (4.22)

The parameters Ai and xi are chosen so that, for a given n, the rule is exact for polynomi-
als up to and including degree 2n− 1. It should be noticed that the range of integration is
required to be from −1 to 1. This does not restrict the integrals to which Gaussian inte-
gration can be applied since if f (x) is to be integrated in the range a to b, then it can be
replaced by the function g(t) integrated from−1 to 1 where

t =
(
2x−a−b

)
/
(
b−a

)
Note that in the preceding formula, when x = a, t =−1 and when x = b, t = 1.

We will now determine the four parameters Ai and xi for n= 2 in (4.22). Thus (4.22) now
becomes

1∫
−1

f (x) dx = A1f (x1)+A2f (x2) (4.23)

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch04-9780123869425 — 2012/5/30 — 2:02 — Page 199 — #15

4.7 Gaussian Integration 199

This integration rule will be exact for polynomials up to and including degree 3 by ensuring
that the rule is exact for the polynomials 1, x, x2, and x3 in turn. Thus four equations are
obtained as follows:

f (x)= 1 gives

1∫
−1

1dx = = A1+A2

f (x)= x gives

1∫
−1

xdx = = A1x1+A2x2

f (x)= x2 gives

1∫
−1

x2dx = 2/3= A1x2
1 +A2x2

2

f (x)= x3 gives

1∫
−1

x3dx = 0= A1x3
1 +A2x3

2

(4.24)

Solving these equations gives

x1 =−1/
√

3, x2 = 1/
√

3, A1 = 1, A2 = 1

Thus

1∫
−1

f (x) dx = f
(
−

1
√

3

)
+ f

(
1
√

3

)
(4.25)

Notice that this rule, like Simpson’s rule, is exact for cubic equations but requires fewer
function evaluations.

A general procedure for obtaining the values of Ai and xi is based on the fact that in
the range of integration it can be shown that x1, x2, . . . ,xn are the roots of the Legendre
polynomial of degree n. The values of Ai can then be obtained from an expression involving
the Legendre polynomial of degree n, evaluated at xi. Tables have been produced for the
values of xi and Ai for various values of n; see Abramowitz and Stegun (1965) and Olver et al.
(2010). Abramowitz and Stegun provide an excellent reference not only for these functions
but for a very extensive range of mathematical functions. However, this classic work is now
becoming outdated and a newer handbook of mathematical functions for the twenty-first
century by Olver et al. has been published with many improvements, for example, clearer,
color graphics. However, this new text contains far fewer tables of functions, since most
can now be rapidly computed on a personal computer.

The function fgauss defined as follows performs Gaussian integration. It includes a
substitution so that integration in the range a to b is converted to an integration in the
range−1 to 1.

2

0

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch04-9780123869425 — 2012/5/30 — 2:02 — Page 200 — #16

200 Chapter 4 . Differentiation and Integration

function q = fgauss(func,a,b,n)

% Implements Gaussian integration.

% Example call: q = fgauss(func,a,b,n)

% Integrates user defined function func from a to b, using n divisions

% n must be 2 or 4 or 8 or 16.

if (n==2)|(n==4)|(n==8)|(n==16)

c = zeros(8,4); t = zeros(8,4);

c(1,1) = 1;

c(1:2,2) = [.6521451548; .3478548451];

c(1:4,3) = [.3626837833; .3137066458; .2223810344; .1012285362];

c(:,4)= [.1894506104; .1826034150; .1691565193; .1495959888; ...

.1246289712; .0951585116; .0622535239; .0271524594];

t(1,1) = .5773502691;

t(1:2,2) = [.3399810435; .8611363115];

t(1:4,3) = [.1834346424; .5255324099; .7966664774; .9602898564];

t(:,4) = [.0950125098; .2816035507; .4580167776; .6178762444; ...

.7554044084; .8656312023; .9445750230; .9894009350];

j = 1;

while j<=4

if 2^j==n; break;

else

j = j+1;

end

end

s = 0;

for k = 1:n/2

x1 = (t(k,j)*(b-a)+a+b)/2;

x2 = (-t(k,j)*(b-a)+a+b)/2;

y = feval(func,x1)+feval(func,x2);

s = s+c(k,j)*y;

end

q = (b-a)*s/2;

else

disp('n must be equal to 2, 4, 8 or 16'); return

end

The following script calls the function fgauss to integrate x0.1 from 0 to 1.

% e3s406.m

disp(' n integral value');

for j = 1:4

n = 2^j;

int = fgauss(@(x) x.^0.1,0,1,n);

fprintf('%3.0f %14.9f\n',n,int)

end

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch04-9780123869425 — 2012/5/30 — 2:02 — Page 201 — #17

4.8 Infinite Ranges of Integration 201

The output of this script is

n integral value

2 0.916290737

4 0.911012914

8 0.909561226

16 0.909199952

Gaussian integration with n= 16 gives a better result than that obtained by Romberg’s
method with five divisions of the interval.

4.8 Infinite Ranges of Integration
Other formulae of the Gauss type are available to allow us to deal with integrals having a
special form and infinite ranges of integration. These are the Gauss–Laguerre and Gauss–
Hermite formulae and they take the following forms.

4.8.1 Gauss–Laguerre Formula

This method is developed from the following equation:

∞∫
0

e−xg(x)dx =
n∑

i=1

Aig(xi) (4.26)

The parameters Ai and xi are chosen so that, for a given n, the rule is exact for polynomials
up to and including degree 2n− 1. Considering the case when n= 2, we have

g(x)= 1 gives

∞∫
0

e−xdx = 1= A1+A2

g(x)= x gives

∞∫
0

xe−xdx = 1= A1x1+A2x2

g(x)= x2 gives

∞∫
0

x2e−xdx = 2= A1x2
1 +A2x2

2

g(x)= x3 gives

∞∫
0

x3e−xdx = 6= A1x3
1 +A2x3

2

(4.27)

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch04-9780123869425 — 2012/5/30 — 2:02 — Page 202 — #18

202 Chapter 4 . Differentiation and Integration

Having evaluated the integrals on the left side of equations (4.27) we may solve for the four
unknowns x1, x2, A1, and A2 so that (4.26) becomes

∞∫
0

e−xg(x)dx =
2+
√

2
4

g(2−
√

2)+
2−
√

2
4

g(2+
√

2)

It can be shown that the xi are the roots of the nth-order Laguerre polynomial and the
coefficients Ai can be calculated from an expression involving the derivative of an nth-
order Laguerre polynomial evaluated at xi.

In general we wish to evaluate integrals of the form

∞∫
0

f (x) dx

We may write this integral as

∞∫
0

e−x
{exf (x)} dx

Thus, using (4.26), we have

∞∫
0

f (x) dx =
n∑

i=1

Ai exp(xi)f (xi) (4.28)

Equation (4.28) allows integrals to be evaluated over an infinite range, assuming that the
value of the integral is finite.

The Gauss–Laguerre method is implemented by the MATLAB function galag:

function s = galag(func,n)

% Implements Gauss-Laguerre integration.

% Example call: s = galag(func,n)

% Integrates user defined function func from 0 to inf

% using n divisions. n must be 2 or 4 or 8.

if (n==2)|(n==4)|(n==8)

c = zeros(8,3); t = zeros(8,3);

c(1:2,1) = [1.533326033; 4.450957335];

c(1:4,2) = [.8327391238; 2.048102438; 3.631146305; 6.487145084];

c(:,3) = [.4377234105; 1.033869347; 1.669709765; 2.376924702;...

3.208540913; 4.268575510; 5.818083368; 8.906226215];

t(1:2,1) = [.5857864376; 3.414213562];

t(1:4,2) = [.3225476896; 1.745761101; 4.536620297; 9.395070912];

t(:,3) = [.1702796323; .9037017768; 2.251086630; 4.266700170;...

7.045905402; 10.75851601; 15.74067864; 22.86313174];

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch04-9780123869425 — 2012/5/30 — 2:02 — Page 203 — #19

4.8 Infinite Ranges of Integration 203

j = 1;

while j<=3

if 2^j==n; break

else

j = j+1;

end

end

s = 0;

for k = 1:n

x = t(k,j); y = feval(func,x);

s = s+c(k,j)*y;

end

else

disp('n must be 2, 4 or 8'); return

end

Sample values xi and the product Ai exp(xi) are given in the function definition. A more
complete list may be found in Abramowitz and Stegun (1965) and Olver et al. (2010).

We will now evaluate the integral loge(1+ e−x) from zero to infinity. The following script
evaluates the integral using the function galag.

% e3s407.m

disp(' n integral value');

for j = 1:3

n = 2^j;

int = galag(@(x) log(1+exp(-x)),n);

fprintf('%3.0f%14.9f\n',n,int)

end

The output is as follows:

n integral value

2 0.822658694

4 0.822358093

8 0.822467051

Note that the exact result is π2/12= 0.82246703342411. The eight-point integration for-
mula is accurate to six decimal places!

4.8.2 Gauss–Hermite Formula

This method is developed from the following equation:

∞∫
−∞

exp(−x2)g(x)dx =
n∑

i=1

Aig(xi) (4.29)

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch04-9780123869425 — 2012/5/30 — 2:02 — Page 204 — #20

204 Chapter 4 . Differentiation and Integration

Again, the parameters Ai and xi are chosen so that, for a given n, the rule is exact for
polynomials up to and including degree 2n− 1. For the case n= 2 we have

g(x)= 1 gives

∞∫
−∞

exp(−x2)dx =
√
π = A1+A2

g(x)= x gives

∞∫
−∞

x exp(−x2)dx = 0= A1x1+A2x2

g(x)= x2 gives

∞∫
−∞

x2 exp(−x2)dx =
√
π

2
= A1x2

1 +A2x2
2

g(x)= x3 gives

∞∫
−∞

x3 exp(−x2)dx = 0= A1x3
1 +A2x3

2

(4.30)

We have evaluated the integrals on the left side of equations (4.30) and may now solve for
the four unknowns x1, x2, A1, and A2 so that (4.29) becomes

∞∫
−∞

exp(−x2)g(x)dx =
√
π

2
g
(
−

1
√

2

)
+

√
π

2
g
(

1
√

2

)

An alternative approach is to note that xi are the roots of the nth-order Hermite polyno-
mial Hn(x). The coefficients Ai can then be determined from an expression involving the
derivative of the nth-order Hermite polynomial evaluated at xi.

In general we wish to evaluate integrals of the form

∞∫
−∞

f (x) dx

We may write this integral as

∞∫
−∞

exp
(
−x2

){
exp(x2)f (x)

}
dx

and using (4.29) we have

∞∫
−∞

f (x)dx =
n∑

i=1

Ai exp
(

x2
i

)
f (xi) (4.31)

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch04-9780123869425 — 2012/5/30 — 2:02 — Page 205 — #21

4.8 Infinite Ranges of Integration 205

Again, care must be taken to apply (4.31) only to functions that have a finite integral
in the range −∞ to∞. Extensive tables of xi and Ai are given in Abramowitz and Stegun
(1965) and Olver et al. (2010). The MATLAB function gaherm implements Gauss–Hermite
integration:

function s = gaherm(func,n)

% Implements Gauss-Hermite integration.

% Example call: s = gaherm(func,n)

% Integrates user defined function func from -inf to +inf,

% using n divisions. n must be 2 or 4 or 8 or 16

if (n==2)|(n==4)|(n==8)|(n==16)

c = zeros(8,4); t = zeros(8,4);

c(1,1) = 1.461141183;

c(1:2,2) = [1.059964483; 1.240225818];

c(1:4,3) = [.7645441286; .7928900483; .8667526065; 1.071930144];

c(:,4) = [.5473752050; .5524419573; .5632178291; .5812472754; ...

.6097369583; .6557556729; .7382456223; .9368744929];

t(1,1) = .7071067811;

t(1:2,2) = [.5246476233; 1.650680124];

t(1:4,3) = [.3811869902; 1.157193712; 1.981656757; 2.930637420];

t(:,4) = [.2734810461; .8229514491; 1.380258539; 1.951787991; ...

2.546202158; 3.176999162; 3.869447905; 4.688738939];

j = 1;

while j<=4

if 2^j==n; break;

else

j = j+1;

end

end

s=0;

for k = 1:n/2

x1 = t(k,j); x2 = -x1;

y = feval(func,x1)+feval(func,x2);

s = s+c(k,j)*y;

end

else

disp('n must be equal to 2, 4, 8 or 16'); return

end

We will now evaluate the integral

∞∫
−∞

dx

(1+ x2)2

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch04-9780123869425 — 2012/5/30 — 2:02 — Page 206 — #22

206 Chapter 4 . Differentiation and Integration

by the Gauss–Hermite method. The following script uses gaherm to integrate this function.

% e3s408.m

disp(' n integral value');

for j = 1:4

n = 2^j;

int = gaherm(@(x) 1./(1+x.^2).^2,n);

fprintf('%3.0f%14.9f\n',n,int)

end

The results from running this script are

n integral value

2 1.298792163

4 1.482336098

8 1.550273058

16 1.565939612

The exact value of this integral is π/2= 1.570796 . . .

4.9 Gauss–Chebyshev Formula
We now consider two interesting cases where the sample points xi and weights wi are
known in a closed or analytical form. The two integrals together with their closed forms
are

1∫
−1

f (x)
√

1− x2
dx =

π

n

n∑
k=1

f (xk) where xk = cos
(
(2k− 1)π

2n

)
(4.32)

1∫
−1

√
1− x2f (x)dx =

π

n+ 1

n∑
k=1

sin2
(

kπ
n+ 1

)
f (xk) where xk = cos

(
kπ

n+ 1

)
(4.33)

These expressions are members of the Gauss family, in this case variations of the Gauss–
Chebyshev formula. Clearly it is extremely easy to use these formulae for integrands of the
required form that have a specified f (x). It is simply a matter of evaluating the function at
the specified points, multiplying by the appropriate factor, and summing these products.
A MATLAB script or function can easily be developed and is left as an exercise for the reader
(see Problem 4.11).

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch04-9780123869425 — 2012/5/30 — 2:02 — Page 207 — #23

4.10 Gauss–Lobatto Integration 207

4.10 Gauss–Lobatto Integration
Lobatto integration or quadrature (Abramowitz and Stegun, 1965) is named after Dutch
mathematician Rehuel Lobatto. It is similar to Gaussian quadrature, which we discussed
previously, but the integration points include the end points of the integration interval.
This has an advantage when the procedure is used in a subinterval because data can be
shared between consecutive subintervals. However, Lobatto quadrature is less accurate
than the Gaussian formula.

Lobatto quadrature of function f (x) on interval [−1 1] is given by the formula

1∫
−1

f (x)dx =
2

n(n− 1)

[
f (1)+ f (−1)

]
+

n−1∑
i=2

wif (xi)+Rn

Here the points xi are the roots of the Legendre polynomial Pn−1(x)= 0. The weights other
than for f (1) and f (−1), which both equal 2/(n(n− 1)), are calculated from the following
formula:

wi =
2

n(n− 1)[Pn−1(xi)]2
(xi 6= ±1)

Clearly from this description it is an easy matter to calculate the weights required if the
roots of the derivative of the Legendre polynomial are found.

The coefficients of any order Legendre polynomial can be found using Bonnet’s
recursion formula

(n+ 1)Pn+1(x)= (2n+ 1)xPn(x)−nPn−1(x)

where P0(x)= 1, P1(x)= x, and Pn(x) is the nth Legendre polynomial. Alternatively, a recur-
rence relation for the polynomials can be found using the differential equation definition
of the Legendre function.

The following MATLAB function is based on generating the polynomial coefficients using
a recurrence formula and then finding the roots of the derivative of this polynomial using
the MATLAB function roots. The range has been converted to any range a to b.

function Iv = lobattof(func,a,b,n)

% Implementation of Lobatto's method

% func is the function to be integrated from the a to b

% using n points.

% Generate Legendre polynomials based on recurrence relation

% derived from the differential equation which the Legendre polynomial

% satisfies.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch04-9780123869425 — 2012/5/30 — 2:02 — Page 208 — #24

208 Chapter 4 . Differentiation and Integration

% Obtain derivitive of that polynomial

% The roots of this polynomial give the Lobatto nodes

% From the nodes calculate the weights using standard algorithm

lc = [];

for k = 0:n-1

if n>=2*k

fnk = factorial(2*n-2*k);

fnp = 2^n*factorial(k)*factorial(n-k)*factorial(n-2*k);

lc(n-2*k+1) = (-1)^k*fnk/fnp;

end

end

% Find coefficients of derivitive of the polynomial

lcd = [];

for k = 0:n-1

if n>=2*k

lcd(n-2*k+1) = (n-2*k)*lc(n-2*k+1);

end

end

lcd(n) = 0;

% Obtain Lobatto points

x = roots(fliplr(lcd(2:n+1)));

x1 = sort(x,'descend');

pv = zeros(size(x));

% Calculate Lobatto weights

for k = 1:n+1

pv = pv+lc(k)*x.^(k-1);

end

n = n+1;

w = 2./(n*(n-1)*pv.^2);

w = [2/(n*(n-1)); w; 2/(n*(n-1))];

% Transform to range a to b

x1 = (x*(b-a)+(a+b))/2;

pts = [a; x1; b];

% Implement rule for integration

Iv = (b-a)*w'*feval(func,pts)/2;

To test the function the following MATLAB script is used to integrate f (x)= e5xcos(2x)
from 0 to π/2.

% e3s414.m

g = @(x) exp(5*x).*cos(2*x); a = 0; b = pi/2;

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch04-9780123869425 — 2012/5/30 — 2:02 — Page 209 — #25

4.10 Gauss–Lobatto Integration 209

for n = [2 4 8 16 32 64]

Iv = lobattof(g,a,b,n);

fprintf('%3.0f%19.9f\n',n,real(Iv))

end

exact = -5*(exp(2.5*pi)+1)/29;

fprintf('\n Exact %15.9f\n',exact)

This gives the following results:

2 -674.125699610

4 -443.869707406

8 -444.305258005

16 -444.305258027

32 -444.307194507

64 -16.994770727

Exact -444.305258034

Note that as the number of points used is increased up to 16, the integration becomes
more accurate. However, above this value the accuracy decreases. This is because the func-
tion lobattof determines the abscissae weights by finding the roots of a polynomial. This
becomes less accurate as n increases.

An alternative approach to determine the value of an integral is to subdivide the range
of integration into subintervals and then apply a Lobatto rule with a small number of
points to each subinterval. The following function allows the user to choose the number
of points in the Lobatto integration and the number of subintervals in which the Lobatto
integration is applied.

function s = lobattomp(func,a,b,n,m)

% n is the number of points in the Labatto quadrature

% m is the number of subintervals of the range of the integration.

h = (b-a)/m; s = 0;

for panel = 0:m-1

a0 =a+panel*h; b0 = a+(panel+1)*h;

s = s+lobattof(func,a0,b0,n);

end

The following script evaluates the error in the integration of e5x cos(2x) over the range 0 to
π/2. The script considers a 4-, 5-, . . . , 8-point Lobatto integration applied to subintervals,
the number of subintervals ranging from 2, 4, 8 to 256.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch04-9780123869425 — 2012/5/30 — 2:02 — Page 210 — #26

210 Chapter 4 . Differentiation and Integration

% e3s415.m

g = @(x) exp(5*x).*cos(2*x); a = 0; b = pi/2;

format short e

m = 2; k = 0;

while m<512

% m is number of panels, k is the index

k = k+1;

p = 0;

for n = 4:8

% n number of Labotto points, p is index

p = p+1;

Integral_err(k,p) = real(lobattomp(g,a,b,n,m))+5*(exp(2.5*pi)+1)/29;

end

m = 2*m;

end

Integral_err

Running this script gives the following output. Each row gives the value of the error for the
specified number of subintervals, beginning with 2, 4, 8, and so on to 256, and each column
gives the value of the error for the specified number of points in the Lobatto integration,
from 4, 5, . . . , 8.

Integral_err =

1.5122e-002 2.6320e-004 1.6910e-006 1.8372e-009 -3.7573e-011

1.0050e-004 3.5484e-007 4.4201e-010 3.4106e-013 -1.7053e-012

4.4719e-007 3.7181e-010 3.4106e-013 5.6843e-013 -1.0800e-012

1.8037e-009 1.1369e-013 1.1369e-013 5.1159e-013 -1.0232e-012

7.0486e-012 -2.2737e-013 2.2737e-013 5.1159e-013 -9.0949e-013

-5.6843e-014 -2.2737e-013 2.8422e-013 5.1159e-013 -9.0949e-013

-1.1369e-013 -2.2737e-013 2.2737e-013 6.2528e-013 -9.0949e-013

-1.1369e-013 -2.8422e-013 2.2737e-013 6.2528e-013 -6.8212e-013

It is evident that increasing the number of subintervals (m) and increasing the number of
points in the Lobatto integration (n) reduces the error in the integration. However, when
the number of points in the Labatto integration and the number of subintervals increase
beyond certain values the accuracy of the integration begins to decrease. The values of m
and n at which this happens is problem dependent.

A further disadvantage of the Gauss formula is that the location and weight of the
abscissae change as their number increases. For example, suppose we have evaluated an
integral using an n-point Gauss quadrature rule. To increase the accuracy we could now
increase the number of points and use the Gauss rule again, but all the points would be
at a new location. An alternative strategy is to keep the existing n points and add to them
n+ 1 points located at the best positions. This is the Kronrod method (Kronrod, 1965).

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch04-9780123869425 — 2012/5/30 — 2:02 — Page 211 — #27

4.11 Filon’s Sine and Cosine Formulae 211

Thus a three-point Gauss method can be extended by keeping the three points and adding
four more to give a seven-point rule. The MATLAB function quadgk implements adaptive
Gauss–Kronrod quadrature.

A discussion of the family of Gaussian quadrature methods is given by Thompson
(2010).

4.11 Filon’s Sine and Cosine Formulae
These formulae can be applied to integrals of the form

b∫
a

f (x)coskx dx and

b∫
a

f (x)sin kx dx (4.34)

The formulae are generally more efficient than standard methods for this form of integral.
To derive the Filon formulae we first consider an integral of the form

2π∫
0

f (x)coskx dx

By the method of undetermined coefficients we can obtain an approximation to this inte-
grand as follows. Let

2π∫
0

f (x) cosx dx = A1 f (0)+A2 f (π)+A3f (2π) (4.35)

Requiring that this should be exact for f (x)= 1, x, and x2, we have

0= A1+A2+A3

0= A2π +A32π

4π = A2π
2
+A34π2

Thus A1 = 2/π , A2 =−4/π , and A3 = 2/π . Thus,

2π∫
0

f (x) cosx dx =
1
π

[2f (0)− 4f (π)+ 2f (2π)] (4.36)

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch04-9780123869425 — 2012/5/30 — 2:02 — Page 212 — #28

212 Chapter 4 . Differentiation and Integration

More general results can be developed as follows:

2π∫
0

f (x)coskx dx = h[A{f (xn)sinkxn− f (x0)sinkx0}+BCe +DCo]

2π∫
0

f (x) sinkx dx = h[A{f (x0)cos kx0− f (xn)coskxn}+BSe +DSo]

where h= (b−a)/n, q= kh and

A=
(

q2
+q sin2q/2− 2sin2q

)
/q3 (4.37)

B= 2
{

q
(

1+ cos2q
)
− sin2q

}
/q3 (4.38)

D= 4
(
sinq−q cosq

)
/q3

Co =

n−1∑
i=1, 3, 5...

f (xi)coskxi (4.39)

Ce =
1
2
{f (x0)coskx0+ f (xn)coskxn}+

n−2∑
i=2,4,6...

f (xi)coskxi

Co and Ce are odd and even sums of cosine terms. So and Se are similarly defined with
respect to sine terms.

It is important to note that Filon’s method, when applied to functions of the form
given in (4.34), usually gives better results than Simpson’s method for the same number of
intervals. Approximations may be used for the expressions for A, B, and D given in (4.37),
(4.38), and (4.11) by expanding them in series of ascending powers of q. This leads to the
following results:

A= 2q2
(

q/45−q3/315+q5/4725− ·· ·
)

B= 2
(

1/3+q2/15− 2q4/105+q6/567− ·· ·
)

D= 4/3− 2q2/15+q4/210−q6/11340+ ·· ·

When the number of intervals becomes very large, h and hence q become small. As q tends
to zero, A tends to zero, B tends to 2/3, and D tends to 4/3. Substituting these values into the
formula for Filon’s method, it can be shown that it becomes equivalent to Simpson’s rule.
However, in these circumstances the accuracy of Filon’s rule may be worse than Simpson’s
rule owing to the additional complexity of the calculations.

The MATLAB function filon implements Filon’s method for the evaluation of appropri-
ate integrals. In the parameter list, function funcdefines f (x) of (4.34) and this is multiplied
by cos kx when cas = 1 or sin kx when cas ~= 1. The parameters l and u specify the
lower and upper limit of the integral and n specifies the number of divisions required.
The script incorporates a modification to the standard Filon method such that the series

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch04-9780123869425 — 2012/5/30 — 2:02 — Page 213 — #29

4.11 Filon’s Sine and Cosine Formulae 213

approximation is used if q is less than 0.1 rather than (4.37) to (4.11). The justification for
this is that as q becomes small, the accuracy of series approximation is sufficient and easier
to compute.

function int = filon(func,cas,k,l,u,n)

% Implements filon's integration.

% Example call: int = filon(func,cas,k,l,u,n)

% If cas = 1, integrates cos(kx)*f(x) from l to u using n divisions.

% If cas ~= 1, integrates sin(kx)*f(x) from l to u using n divisions.

% User defined function func defines f(x).

if (n/2)~=floor(n/2)

disp('n must be even'); return

else

h = (u-l)/n; q = k*h;

q2 = q*q; q3 = q*q2;

if q<0.1

a = 2*q2*(q/45-q3/315+q2*q3/4725);

b = 2*(1/3+q2/15+2*q2*q2/105+q3*q3/567);

d = 4/3-2*q2/15+q2*q2/210-q3*q3/11340;

else

a = (q2+q*sin(2*q)/2-2*(sin(q))^2)/q3;

b = 2*(q*(1+(cos(q))^2)-sin(2*q))/q3;

d = 4*(sin(q)-q*cos(q))/q3;

end

x = l:h:u;

y = feval(func,x);

yodd = y(2:2:n); yeven = y(3:2:n-1);

if cas == 1

c = cos(k*x);

codd = c(2:2:n); co = codd*yodd';

ceven = c(3:2:n-1);

ce = (y(1)*c(1)+y(n+1)*c(n+1))/2;

ce = ce+ceven*yeven';

int = h*(a*(y(n+1)*sin(k*u)-y(1)*sin(k*l))+b*ce+d*co);

else

s = sin(k*x);

sodd = s(2:2:n); so = sodd*yodd';

seven = s(3:2:n-1);

se = (y(1)*s(1)+y(n+1)*s(n+1))/2;

se = se+seven*yeven';

int = h*(-a*(y(n+1)*cos(k*u)-y(1)*cos(k*l))+b*se+d*so);

end

end

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch04-9780123869425 — 2012/5/30 — 2:02 — Page 214 — #30

214 Chapter 4 . Differentiation and Integration

We now test the function filon by integrating sinx/x in the range 1× 10−10 to 1. The lower
limit is set at 1× 10−10 to avoid the singularity at zero.

The following script uses filon and filonmod to evaluate the integral. The function
filonmod removes the ability to switch to the series formula in filon. Note that from (4.34),
we define f (x)= 1/x for this particular problem.

% e3s409.m

n = 4;

g = @(x) 1./x;

disp(' n Filon no switch Filon with switch');

while n<=4096

int1 = filonmod(g,2,1,1e-10,1,n);

int2 = filon(g,2,1,1e-10,1,n);

fprintf('%4.0f %17.8e %17.8e\n',n,int1,int2)

n = 2*n;

end

Running this script gives

n Filon no switch Filon with switch

4 1.72067549e+006 1.72067549e+006

8 1.08265940e+005 1.08265940e+005

16 6.77884667e+003 6.77884667e+003

32 4.24742208e+002 4.24742207e+002

64 2.74361110e+001 2.74361124e+001

128 2.60175423e+000 2.60175321e+000

256 1.04956252e+000 1.04956313e+000

512 9.52549009e-001 9.52550585e-001

1024 9.46489412e-001 9.46487290e-001

2048 9.46109716e-001 9.46108334e-001

4096 9.46085291e-001 9.46084649e-001

The exact value of the integral is 0.9460831.
In this particular problem, the switch occurs when n= 16. The preceding output shows

that the values of the integral obtained with the switch are marginally more accurate. How-
ever, it should be noted that experiments carried out by us have shown that for a lower
accuracy of computation than that supplied in the MATLAB environment, the accuracy of
Filon’s method, including the switch, is significantly better. The reader may find it inter-
esting to experiment with the value of q at which the switch occurs. This is currently set
at 0.1.

Finally we choose a function that is appropriate for Filon’s method and compare the
results with Simpson’s rule. The function is exp(−x/2)cos(100x) integrated between 0
and 2π .

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch04-9780123869425 — 2012/5/30 — 2:02 — Page 215 — #31

4.12 Problems in the Evaluation of Integrals 215

The MATLAB script that implements this comparison is

% e3s410.m

n = 4;

disp(' n Simpsons value Filons value');

g1 = @(x) exp(-x/2);

g2 = @(x) exp(-x/2).*cos(100*x);

while n<=2048

int1 = filon(g1,1,100,0,2*pi,n);

int2 = simp1(g2,0,2*pi,n);

fprintf('%4.0f %17.8e %17.8e\n',n,int2,int1)

n = 2*n;

end

The results of this comparison are

n Simpsons value Filons value

4 1.91733833e+000 4.55229440e-005

8 -5.73192992e-001 4.72338540e-005

16 2.42801799e-002 4.72338540e-005

32 2.92263624e-002 4.76641931e-005

64 -8.74419731e-003 4.77734109e-005

128 5.55127202e-004 4.78308678e-005

256 -1.30263888e-004 4.78404787e-005

512 4.53408415e-005 4.78381786e-005

1024 4.77161559e-005 4.78381120e-005

2048 4.78309107e-005 4.78381084e-005

The exact value of the integral to 10 significant digits is 4.783810813× 10−5. In this partic-
ular problem the switch to the series approximations does not take place because of the
high value of the coefficient k. The output shows that using 2048 intervals, Filon’s method
is accurate to eight significant digits. In contrast, Simpson’s rule is accurate to only five
significant digits and its behavior is highly erratic. However, timing the evaluation of this
integral shows that Simpson’s method is about 25% faster than Filon’s method.

4.12 Problems in the Evaluation of Integrals
The methods outlined in the previous sections are based on the assumption that the func-
tion to be integrated is well behaved. If this is not so, then the numerical methods may give
poor, or totally useless, results. Problems may occur if

1. The function is continuous in the range of integration but its derivatives are
discontinuous or singular.

2. The function is discontinuous in the range of integration.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch04-9780123869425 — 2012/5/30 — 2:02 — Page 216 — #32

216 Chapter 4 . Differentiation and Integration

3. The function has singularities in the range of integration.
4. The range of integration is infinite.

It is vital that these conditions are identified because in most cases these problems can-
not be dealt with directly by numerical techniques. Consequently, some preparation of
the integrand is required before the integral can be evaluated by the appropriate numeri-
cal method. Case 1 is the least serious condition but since the derivatives of polynomials
are continuous, polynomials cannot accurately represent functions with discontinuous
derivatives. Ideally, the discontinuity or singularity in the derivative should be located and
the integral split into a sum of two or more integrals. The procedure is the same in case 2;
the position of the discontinuities must be found and the integral split into a sum of two or
more integrals, the ranges of which avoid the discontinuities. Case 3 can be dealt with in
various ways: using a change of variable, integration by parts, and splitting the integral. In
case 4 we must use a method suitable for an infinite range of integration (see Section 4.8)
or make a substitution.

The following integral, taken from Fox and Mayers (1968), is an example of case 4:

I =

∞∫
1

dx

x2+ cos(x−1)
(4.40)

This integral can be estimated either by using function galag (using the substitution y =
x− 1 to give a lower limit of zero) or by substituting z = 1/x. Thus dz =−dx/x2 and (4.40)
may be transformed as follows:

I =−

0∫
1

dz

1+ z2 cos(z)
or I =

1∫
0

dz

1+ z2 cos(z)
(4.41)

The integral (4.41) can easily be evaluated by any standard method.
We have discussed a number of techniques for numerical integration. It must be said,

however, that even the best methods have difficulty with functions that change very rapidly
for small changes in the independent variable. An example of this type of function is
sin(1/x). A MATLAB plot of this function is shown in Section 3.8. However, this plot does
not give a true representation of the function in the range−0.1 to 0.1 because in this range
the function is changing very rapidly and the number of plotting points and the screen res-
olution are inadequate. Indeed, as x tends to zero the frequency of the function tends to
infinity. A further difficulty is that the function has a singularity at x = 0. If we decrease the
range of x, then a small section of the function can be plotted and displayed. For example,
in the range x = 2× 10−4 to 2.05× 10−4 there are approximately 19 cycles of the function
sin(1/x), as shown in Figure 4.3, and in this limited range the function can be effectively
sampled and plotted. Summarizing, the value of this function can change from an extreme
positive to an extreme negative value for a relatively small change in x. The consequence

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch04-9780123869425 — 2012/5/30 — 2:02 — Page 217 — #33

4.13 Test Integrals 217

2.01 2.02 2.03 2.04 2.05

×10−4

−1

−0.5

0

0.5

1

x
si

n(
1/

x)

FIGURE 4.3 The function sin(1/x) in the range x = 2× 10−4 to 2.05× 10−4. Nineteen cycles of the
function are displayed.

of this is that when estimating the integral of the function, a great number of divisions of
the range of integration are needed to provide the required level of accuracy, particularly
for smaller values of x. For this type of problem adaptive integration methods, such as that
used by the MATLAB function quadl, have been introduced. These methods increase the
number of intervals only in those regions where the function is changing very rapidly, thus
reducing the overall number of calculations required.

4.13 Test Integrals
We now compare the Gauss and Simpson methods of integration with the MATLAB function
quadl using the following integrals:

1∫
0

x0.001dx = 1000/1001= 0.999000999 . . . (4.42)

1∫
0

dx
1+ (230x− 30)2

= (tan−1 200+ tan−1 30)/230= 0.0134924856495 (4.43)

4∫
0

x2(x− 1)2(x− 2)2(x− 3)2(x− 4)2dx = 10240/693= 14.776334776 (4.44)

To generate the comparative results we define the function ftable as follows:

function y = ftable(fname,lowerb,upperb)

% Generates table of results.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch04-9780123869425 — 2012/5/30 — 2:02 — Page 218 — #34

218 Chapter 4 . Differentiation and Integration

intg = fgauss(fname,lowerb,upperb,16);

ints = simp1(fname,lowerb,upperb,2048);

intq = quadl(fname,lowerb,upperb,.00005);

fprintf('%19.8e %18.8e %18.8e \n',intg,ints,intq)

The following script applies this function to the three test integrals:

% e3s411.m

clear

disp('function Gauss Simpson quadl')

fprintf('Func 1'), ftable(@(x) x.^0.001,0,1)

fprintf('Func 2'), ftable(@(x) 1./(1+(230*x-30).^2),0,1)

g = @(x) (x.^2).*((1-x).^2).*((2-x).^2).*((3-x).^2).*((4-x).^2);

fprintf('Func 3'), ftable(g,0,4)

The output from this script is

function Gauss Simpson quadl

Func 1 9.99003302e-001 9.98839883e-001 9.98981017e-001

Func 2 1.46785776e-002 1.34924856e-002 1.34925421e-002

Func 3 1.47763348e+001 1.47763348e+001 1.47763348e+001

The integrals (4.42) and (4.43) are difficult to evaluate and Figure 4.4 shows plots of the
integrands in the range of integration. Each function, at some point, changes rapidly with
small changes of the independent variable, making such functions extremely difficult to
integrate numerically if a high degree of accuracy is required.

0 0.5 1
0

0.5

1
Function 1

x

y

10−210−4 100

10−0.003

10−0.002

Function 1

x

y

0 2 4
0

5

10

15
Function 3

x

y

0 0.5 1
0

0.5

1
Function 2

x

y

FIGURE 4.4 Plots of functions defined in script e3s411.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch04-9780123869425 — 2012/5/30 — 2:02 — Page 219 — #35

4.14 Repeated Integrals 219

4.14 Repeated Integrals
In this section we confine ourselves to a discussion of repeated integrals using two vari-
ables. It is important to note that there is a significant difference between double integrals
and repeated integrals. However, it can be shown that if the integrand satisfies certain
requirements then double integrals and repeated integrals are equal in value. A detailed
discussion of this result is given in Jeffrey (1979).

We have considered in this chapter various techniques for evaluating single integrals.
The extension of these methods to repeated integrals can present considerable scripting
difficulties. Furthermore, the number of computations required for the accurate evalua-
tion of a repeated integral can be enormous. While many algorithms for the evaluation of
single integrals can be extended to repeated integrals, here only extensions to the Simpson
and Gauss methods with two variables are presented. These have been chosen as the best
compromise between programming simplicity and efficiency.

An example of a repeated integral is

b1∫
a1

dx

b2∫
a2

f (x,y)dy (4.45)

In this notation the function is integrated with respect to x from a1 to b1 and with respect
to y from a2 to b2. Here the limits of integration are constant but in some applications they
may be variables.

4.14.1 Simpson’s Rule for Repeated Integrals

We now apply Simpson’s rule to the repeated integral (4.45) by applying it first in the y
direction and then in the x direction. Consider three equispaced values of y: y0, y1, and y2.
On applying Simpson’s rule, (4.11), to integration with respect to y in (4.45), we have

x2∫
x0

dx

y2∫
y0

f (x,y)dy ≈

x2∫
x0

k
{

f (x,y0)+ 4f (x,y1)+ f (x,y2)
}
/3dx (4.46)

where k = y2− y1 = y1− y0.
Consider now three equispaced values of x: x0, x1, and x2. Applying Simpson’s rule

again to integration with respect to x, from (4.46) we have

I ≈ hk
[
f0,0+ f0,2+ f2,0+ f2,2+ 4

{
f0,1+ f1,0+ f1,2+ f2,1

}
+ 16f1,1

]
/9 (4.47)

where h= x2− x1 = x1− x0 and, for example, f1,2 = f (x1,y2).
This is Simpson’s rule in two variables. By applying this rule to each group of nine

points on the surface f (x,y) and summing, the composite Simpson’s rule is obtained. The
MATLAB function simp2v evaluates repeated integrals in two variables by making direct use
of the composite rule.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch04-9780123869425 — 2012/5/30 — 2:02 — Page 220 — #36

220 Chapter 4 . Differentiation and Integration

function q = simp2v(func,a,b,c,d,n)

% Implements 2 variable Simpson integration.

% Example call: q = simp2v(func,a,b,c,d,n)

% Integrates user defined 2 variable function func.

% Range for first variable is a to b, and second variable, c to d

% using n divisions of each variable.

if (n/2)~=floor(n/2)

disp('n must be even'); return

else

hx = (b-a)/n; x = a:hx:b; nx = length(x);

hy = (d-c)/n; y = c:hy:d; ny = length(y);

[xx,yy] = meshgrid(x,y);

z = feval(func,xx,yy);

v = 2*ones(n+1,1); v2 = 2*ones(n/2,1);

v(2:2:n) = v(2:2:n)+v2;

v(1) = 1; v(n+1) = 1;

S = v*v'; T = z.*S;

q = sum(sum(T))*hx*hy/9;

end

We will now apply the function simp2v to evaluate the integral

10∫
0

dx

10∫
0

y2 sinx dy

The graph of the function y2 sinx is given in Figure 4.5. The following script integrates this
function.

% e3s412.m

z = @(x,y) y.^2.*sin(x);

0
5

10

0

5

10

−100

0

100

x

y

z

FIGURE 4.5 Graph of z = y2 sinx.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch04-9780123869425 — 2012/5/30 — 2:02 — Page 221 — #37

4.14 Repeated Integrals 221

disp(' n integral value');

n = 4; j = 1;

while n<=256

int = simp2v(z,0,10,0,10,n);

fprintf('%4.0f %17.8e\n',n,int)

n = 2*n; j = j+1;

end

Running the script gives the following results:

n integral value

4 1.02333856e+003

8 6.23187046e+002

16 6.13568708e+002

32 6.13056704e+002

64 6.13025879e+002

128 6.13023970e+002

256 6.13023851e+002

The value of this integral exact to four decimal places is 613.0238 and the number of
floating-point operations tends to 7n2. It can be proved—see Salvadori and Baron (1961)—
that when Simpson’s rule is adapted to evaluate repeated integrals, the error is still of order
h4 and thus it is possible to use an extrapolation scheme similar to the Romberg method
of Section 4.6.

4.14.2 Gaussian Integration for Repeated Integrals

The Gaussian method can be developed to evaluate repeated integrals with constant limits
of integration. In Section 4.7 it was shown that for single integrals the integrand must be
evaluated at specified points. Thus, if

I =

1∫
−1

dx

1∫
−1

f (x,y) dy

then

I ≈
n∑

i=1

m∑
j=1

AiAjf (xi,yj)

The rules for calculating xi, yj, and Ai are given in Section 4.7. The MATLAB function gauss2v

evaluates integrals using this technique. Because the values of x and y are chosen on the
assumption that the integration takes place in the range –1 to 1, the function includes
the necessary manipulations to adjust it so as to accommodate an arbitrary range of
integration.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch04-9780123869425 — 2012/5/30 — 2:02 — Page 222 — #38

222 Chapter 4 . Differentiation and Integration

function q = gauss2v(func,a,b,c,d,n)

% Implements 2 variable Gaussian integration.

% Example call: q = gauss2v(func,a,b,c,d,n)

% Integrates user defined 2 variable function func,

% Range for first variable is a to b, and second variable, c to d

% using n divisions of each variable.

% n must be 2 or 4 or 8 or 16.

if (n==2)|(n==4)|(n==8)|(n==16)

co = zeros(8,4); t = zeros(8,4);

co(1,1) = 1;

co(1:2,2) = [.6521451548; .3478548451];

co(1:4,3) = [.3626837833; .3137066458; .2223810344; .1012285362];

co(:,4) = [.1894506104; .1826034150; .1691565193; .1495959888; ...

.1246289712;.0951585116; .0622535239; .0271524594];

t(1,1) = .5773502691;

t(1:2,2) = [.3399810435; .8611363115];

t(1:4,3) = [.1834346424; .5255324099; .7966664774; .9602898564];

t(:,4) = [.0950125098; .2816035507; .4580167776; .6178762444; ...

.7554044084; .8656312023; .9445750230; .9894009350];

j = 1;

while j<=4

if 2^j==n; break;

else

j = j+1;

end

end

s = 0;

for k = 1:n/2

x1 = (t(k,j)*(b-a)+a+b)/2; x2 = (-t(k,j)*(b-a)+a+b)/2;

for p = 1:n/2

y1 = (t(p,j)*(d-c)+d+c)/2; y2 = (-t(p,j)*(d-c)+d+c)/2;

z = feval(func,x1,y1)+feval(func,x1,y2)+feval(func,x2,y1);

z = z+feval(func,x2,y2);

s = s+co(k,j)*co(p,j)*z;

end

end

q = (b-a)*(d-c)*s/4;

else

disp('n must be equal to 2, 4, 8 or 16'), return

end

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch04-9780123869425 — 2012/5/30 — 2:02 — Page 223 — #39

4.14 Repeated Integrals 223

We will now consider the problem of evaluating the following integral:

x4∫
x2

dy

2∫
1

x2y dx (4.48)

Integrals of this form cannot be estimated directly by the MATLAB function gauss2v or
simp2v because neither of these functions was developed to work with variable limits of
integration. However, a transformation may be carried out in order to make the limits of
integration constant. Let

y = (x4
− x2)z+ x2 (4.49)

Thus when z = 1, y = x4 and when z = 0, y = x2 as required. Differentiating the preceding
expression, we have

dy = (x4
− x2)dz

Substituting for y and dy in (4.48), we have

1∫
0

dz

2∫
1

x2
{
(x4
− x2)z+ x2

}
(x4
− x2)dx (4.50)

This integral is now in a form that can be integrated using both gauss2v and simp2v.
However, we must define a MATLAB function as follows:

w = @(x,z) x.^2.*((x.^4-x.^2).*z+x.^2).*(x.^4-x.^2);

This function is used with the functions simp2v and gauss2v in the following script:

% e3s413.m

disp(' n Simpson value Gauss value')

w = @(x,z) x.^2.*((x.^4-x.^2).*z+x.^2).*(x.^4-x.^2);

n = 2; j = 1;

while n<=16

in1 = simp2v(w,1,2,0,1,n);

in2 = gauss2v(w,1,2,0,1,n);

fprintf('%4.0f%17.8e%17.8e\n',n,in1,in2)

n = 2*n; j = j+1;

end

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch04-9780123869425 — 2012/5/30 — 2:02 — Page 224 — #40

224 Chapter 4 . Differentiation and Integration

Running this script gives

n Simpson value Gauss value

2 9.54248047e+001 7.65255915e+001

4 8.48837042e+001 8.39728717e+001

8 8.40342951e+001 8.39740259e+001

16 8.39778477e+001 8.39740259e+001

The integral is equal to 83.97402597 (= 6466/77). This output shows that, in general,
Gaussian integration is superior to Simpson’s rule.

4.15 MATLAB Functions for Double and Triple
Integration

Recent versions of MATLAB now provide the functions dblquad and triplequad for repeated
integration. In this section we consider these functions and their parameters and provide
examples of their use.

For double integration, which is repeated integration over two dimensions, the dblquad
function may be used and has the general form

IV2 = dblquad(fname,xl,xu,yl,yu,acc)

where fname is the name of the two-variable function being integrated, which must be
defined by the user; xl and xu are the lower and upper limits of the x range of integration;
and similarly yl and yu are the lower and upper limits for the y range of integration. The
value acc provides the required accuracy of the integration and is optional.

The use of dblquad is illustrated by the following example. Consider the integral

I =

1∫
0

dx

1∫
0

1
1− xy

dy

We may solve this using the MATLAB function dblquad. It is required that the user predefine
the function to be integrated; to do this we choose to use an anonymous function directly
in the function parameter list. Using dblquad we have

>> I = dblquad(@(x,y) 1./(1-x.*y),0,1-1e-6,0,1-1e-6)

I =

1.6449

If we try to integrate this function numerically over the exact range x = 0 to 1 and y = 0 to
1 then MATLAB gives warnings because of the singularity when x = y = 1 but gives the same
answer.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch04-9780123869425 — 2012/5/30 — 2:02 — Page 225 — #41

4.16 Summary 225

For triple integration, which is repeated integration over three dimensions, the
triplequad function may be used and has the general form

IV3 = triplequad(fname,xl,xu,yl,yu,zl,zu,acc)

where fname is the name of the three variable function being integrated, and xl and xu

are the lower and upper limits of the x range of integration. Similarly yl, yu and zl, zu are
the limits for the y and z range of integration. The use of triplequad is illustrated by the
following example:

1∫
0

dx

1∫
0

dy

1∫
0

64xy(1− x)2z dz

>> I3 = triplequad(@(x,y,z) 64*x.*y.*(1-x).^2.*z,0,1,0,1,0,1)

I3 =

1.3333

The function quad2d allows the user to integrate a function of two variables (say x and
y) like the function dblquad but additionally allows the limits in y to be functions of x.
Consider the integral (4.48) repeated here:

2∫
1

dx

x4∫
x2

x2y dy

Using quad2d we have

>> IV = quad2d(@(x,y) x.^2.*y,1,2, @(x) x.^2,@(x) x.^4)

IV =

83.9740

In the preceding example, the anonymous function @(x,y) x.^2.*y is the function to be
integrated, 1 and 2 are the lower and upper limits of integration in the x variable, and
@(x) x.^2 and @(x) x.^4 are anonymous functions defining lower and upper limits in
the y range of integration.

4.16 Summary
In this chapter we have described simple methods for obtaining the approximate deriva-
tives of various orders for specified functions at given values of the independent variable.
The results indicate that these methods, although easy to program, are very sensitive to

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch04-9780123869425 — 2012/5/30 — 2:02 — Page 226 — #42

226 Chapter 4 . Differentiation and Integration

small changes in key parameters and should be used with considerable care. In addi-
tion, we have given a range of methods for integration. For integration, error generation
is not such an unpredictable problem but we must be careful to choose the most efficient
method for the integral we wish to evaluate.

The reader is referred to Sections 9.8, 9.9, and 9.10 for the application of the Symbolic
Toolbox to integration and differentiation problems.

Problems
4.1. Use the function diffgen to find the first and second derivatives of the function

x2 cosx at x = 1 using h= 0.1 and h= 0.01.

4.2. Evaluate the first derivative of cosx6 for x = 1,2, and 3 using the function diffgen

and taking h= 0.001.

4.3. Write a MATLAB function to differentiate a given function using formulae (4.6) and
(4.7). Use it to solve Problems 4.1 and 4.2.

4.4. Find the gradient of y = cosx6 at x = 3.1,3.01,3.001, and 3 using the function
diffgen with h= 0.001. Compare your results with the exact result.

4.5. The approximations for partial derivatives may be defined as

∂f /∂x ≈
{

f
(
x+h,y

)
− f

(
x−h,y

)}
/
(
2h
)

∂f /∂y ≈
{

f
(
x,y+h

)
− f

(
x,y−h

)}
/
(
2h
)

Write a function to evaluate these derivatives. The function call should have the
form

[pdx,pdy] = pdiff('func',x,y,h)

Determine the partial derivatives of exp(x2
+ y3) at x = 2, y = 1 using this function

with h= 0.005.

4.6. In a letter sent to Hardy, the Indian mathematician Ramanujan proposed that the
number of numbers between a and b that are either squares or sums of two
squares is given approximately by the integral

0.764

b∫
a

dx√
loge x

Test this proposition for the following pairs of values of a and b: (1,10), (1,17), and
(1,30). You should use the MATLAB function fgauss with 16 points to evaluate the
integrals required.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch04-9780123869425 — 2012/5/30 — 2:02 — Page 227 — #43

Problems 227

4.7. Verify the equality

∞∫
0

dx

(1+ x2)(1+ r2x2)(1+ r4x2)
=

π(r2
+ r+ 1)

2(r2+ 1)(r+ 1)2

for the values of r = 0,1,2. This result was proposed by Ramanujan. You should
use the MATLAB function galag for your investigations, using 8 points.

4.8. Raabe established the result that

a+1∫
a

loge0(x)dx = a loge a−a+ loge

√
2π

Verify this result for a= 1 and a= 2. Use the MATLAB function simp1 with 32
divisions to evaluate the integrals required and the MATLAB function gamma to
set up the integrand.

4.9. Use the MATLAB function fgauss with 16 points to evaluate the integral

1∫
0

loge xdx

1+ x2

Explain why the function fgauss is appropriate for this problem but simp1 is not.

4.10. Use the MATLAB function fgauss with 16 points to evaluate the integral

1∫
0

tan−1 x
x

dx

Note: Integration by parts shows the integrals in Problems 4.9 and 4.10 to be the
same value except for a sign.

4.11. Write a MATLAB function to implement the formulae (4.32) and (4.33) given in
Section 4.9 and use your function to evaluate the following integrals using 10
points for the formula. Compare your results with the Gauss 16-point rule.

(a)

1∫
−1

ex√
1− x2

dx (b)

1∫
−1

ex
√

1− x2 dx

4.12. Use the MATLAB function simp1 to evaluate the Fresnel integrals

C(1)=

1∫
0

cos

(
πt2

2

)
dt and S(1)=

1∫
0

sin

(
πt2

2

)
dt

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch04-9780123869425 — 2012/5/30 — 2:02 — Page 228 — #44

228 Chapter 4 . Differentiation and Integration

Use 32 intervals. The exact values, to seven decimal places, are C(1)= 0.7798934
and S(1)= 0.4382591.

4.13. Use the MATLAB function filon, with 64 intervals, to evaluate the integral

π∫
0

sinx coskx dx

for k = 0, 4, and 100. Compare your results with the exact answer, 2/(1− k2) if k
is even and 0 if k is odd.

4.14. Solve Problem 4.13 for k = 100 using Simpson’s rule with 1024 divisions and
Romberg’s methods with 9 divisions.

4.15. Evaluate the following integral using the 8-point Gauss–Laguerre method:

∞∫
0

e−xdx
x+ 100

Compare your answer with the exact solution 9.9019419× 10−3 (103/10402).

4.16. Evaluate the integral

∞∫
0

e−2x
− e−x

x
dx

using 8-point Gauss–Lagurre integration. Compare your result with the exact
answer, which is−loge 2=−0.6931.

4.17. Evaluate the following integral using the 16-point Gauss–Hermite method.
Compare your answer with the exact solution

√
π exp(−1/4).

∞∫
−∞

exp(−x2)cosx dx

4.18. Evaluate the following integrals, using Simpson’s rule for repeated integrals,
MATLAB function simp2v, with 64 divisions in each direction.

(a)

1∫
−1

dy

π∫
−π

x4y4dx (b)

1∫
−1

dy

π∫
−π

x10y10dx

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch04-9780123869425 — 2012/5/30 — 2:02 — Page 229 — #45

Problems 229

4.19. Evaluate the following integrals, using simp2v, with 64 divisions in each direction.

(a)

3∫
0

dx

√
x/3∫

1

exp(y3)dy (b)

2∫
0

dx

2−x∫
0

(1+ x+ y)−3dy

4.20. Evaluate part (b) in Problems 4.18 4.19 ATLAB

function gauss2v. Note: To use this function the range of integration must be
constant.

4.21. The definition of the sine integral Si(z) is

Si(z)=

z∫
0

sin t
t

dt

Evaluate this integral using the 16-point Gauss method for z = 0.5,1, and 2. Why
does the Gaussian method work and yet the Simpson and Romberg methods fail?

4.22. Evaluate the following double integral using Gaussian integration for two variables.

1∫
0

dy

1∫
0

1
1− xy

dx

Compare your result with the exact answer, π2/6= 1.6449.

4.23. The probability, P, that a certain type of gas turbine engine will fail within a period
of time of T hours is given by the equation

P(x < T)=

T∫
0

aba

(x+b)a+1
dx

where a= 3.5 and b= 8200.
By evaluating this integral for values of T = 500 : 100 : 2000, draw a graph of P

against T in this range. What proportion of the number of gas turbines of this type
fail within 1600 hours. For more information on the probability of failure, see Percy
(2011).

4.24. Consider the following integral:

1∫
0

xp
− xq

loge(x)
xrdx = loge

(
p+ r+ 1
q+ r+ 1

)

Use the MATLAB function quad to verify this result for p= 3,q= 4,r = 2.

 using Gaussian integration, M and

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch04-9780123869425 — 2012/5/30 — 2:02 — Page 230 — #46

230 Chapter 4 . Differentiation and Integration

4.25. Consider the following three integrals:

A=−

1∫
0

loge x dx

1+ x2
, B=

1∫
0

tan−1 x
x

dx, C =

∞∫
0

xe−x

1+ e−2x
dx

Use the MATLAB function quad to evaluate the two integrals A and B and hence
verify that they are equal.

Use 8-point Gauss–Laguerre integration to verify that the integral C is also
equal to A and B.

4.26. Use 16-point Gauss–Hermite integration to evaluate the integral

I =

∞∫
−∞

sinx

1+ x2
dx

is approximately equal to zero.

4.27. Use 16-point Gauss–Hermite integration to evaluate the integral

I =

∞∫
−∞

cosx

1+ x2
dx

Check your answer by comparing with the exact answer, π/e.

4.28. Use 8-point Gauss–Lagurre integration to find the value of the integral

I =

∞∫
0

xα−1

1+ xβ
dx

for values of α and β = (2,3), (3,4). You can verify your answers using the exact
value of the integral, which is π/(β sin(απ/β)).

4.29. An interesting relationship between the Riemann zeta function and the integral

S3 =−

∞∫
0

loge(x)
3e−x dx

is given by

S3 = γ
3
+

1
2
γπ2
+ 2ζ(3)

where γ = 0.57722. Use the MATLAB function quadgk to evaluate the integral and
show that it is a good estimate of S3.

and show that its value

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch04-9780123869425 — 2012/5/30 — 2:02 — Page 231 — #47

Problems 231

4.30. A value for the total resistance of a certain network of unit resistors has been
shown to be given by R(m,n), where

R(m,n)=
1

π2

π∫
0

dx

π∫
0

1− cosmx cosny
2− cosx− cosy

dy

Evaluate this integral for R(50,100) using the MATLAB functions dblquad and
simp2v. Use a lower limit close to zero, say 0.0001. If zero is used the denominator
in the integral is zero. For large values of m and n an approximation for this integral
is given by

R(m,n)=
1
π

(
γ +

3
2

loge 2+
1
2

loge(m
2
+n2)

)
where γ is Euler’s constant and can be obtained by evaluating the MATLAB

expression -psi(1). The function -psi is called the digamma function. Use
this to check your result.

4.31. A value for the total resistance of a cubic network of unit resistors has been
shown to be given by R(s,m,n)where

R(s,m,n)=
1

π3

π∫
0

dx

π∫
0

dy

π∫
0

1− cossx cosmy cosnz
3− cosx− cosy− cosz

dz

Evaluate this integral using the MATLAB function for triplequad using the values
s= 2, m= 1, n= 3. The lower limit should be set at a small nonzero value, say
0.0001.

EDELKAMP 19-ch15-671-700-9780123725127 2011/5/28 14:50 Page 672 #2

This page intentionally left blank

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch05-9780123869425 — 2012/6/7 — 0:40 — Page 233 — #1

5
Solution of Differential Equations

Many practical problems involve the study of how rates of change in two or more variables
are interrelated. Often the independent variable is time. These problems give rise naturally
to differential equations, which enable us to understand how the real world works and how
it changes dynamically. Essentially, differential equations provide us with a model of some
physical system and the solution of the differential equations enables us to predict the
system’s behavior. These models may be quite simple, involving one differential equation,
or may involve many interrelated simultaneous differential equations.

5.1 Introduction
To illustrate how a differential equation can model a physical situation we will examine a
relatively simple problem. Consider the way a hot object cools—for example, a saucepan
of milk, the water in a bath, or molten iron. Each of these will cool in a different way depen-
dent on the environment but we shall abstract only the most important features that are
easy to model. To model this process by a simple differential equation we use Newton’s
law of cooling, which states that the rate at which these objects lose heat as time passes
is dependent on the difference between the current temperature of the object and the
temperature of its surroundings. This leads to the differential equation

dy/dt = K (y− s) (5.1)

where y is the current temperature at time t, s is the temperature of the surroundings, and
K is a negative constant for the cooling process. In addition we require the initial temper-
ature, y0, to be specified at time t = 0 when the observations begin. This fully specifies our
model of the cooling process. We only need values for y0, K , and s to begin our study. This
type of first-order differential equation is called an initial value problem because we have
an initial value given for the dependent variable y at time t = 0.

The solution of (5.1) is easily obtained analytically and will be a function of t and the
constants of the problem. However, there are many differential equations that have no
analytic solution or the analytic solution does not provide an explicit relation between
y and t. In this situation we use numerical methods to solve the differential equation.
This means that we approximate the continuous solution with an approximate discrete
solution giving the values of y at specified time steps between the initial value of time

Numerical Methods Using MATLAB
®. DOI: 10.1016/B978-0-12-386942-5.00005-9

© 2012 Elsevier Inc. All rights reserved.
233

http://dx.doi.org/10.1016/B978-0-12-386942-5.00005-9

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch05-9780123869425 — 2012/6/7 — 0:40 — Page 234 — #2

234 Chapter 5 . Solution of Differential Equations

0 10 20 30 40 50 60
0

20

40

60

80

100

Time

y
va

lu
e

FIGURE 5.1 Exact (◦) and approximate (+) solution for dy/dt =−0.1(y− 10).

and some final time value. Thus we compute values of y, which we denote by yi, for
values of t denoted by ti where ti = t0+ ih for i= 0,1, . . . ,n. Figure 5.1 illustrates the exact
solution and an approximate solution of (5.1) where K =−0.1, s= 10, and y0 = 100. This
figure is generated using the standard MATLAB function for solving differential equations,
ode23, from time 0 to 60 and plotting the values of y using the symbol “+.” The values
of the exact solution are plotted on the same graph using the symbol “◦.”

To use ode23 to solve (5.1) we begin by writing a function yprime that defines the right
side of (5.1). Then ode23 is called in the following script and requires the initial and final
values of t, 0, and 60, which must be placed in a row vector; a starting value for y of 100;
and a low relative tolerance of 0.5. This tolerance is set using the odeset function, which
allows tolerances and other parameters to be set as required.

% e3s501.m

yprime = @(t,y) -0.1*(y-10); %RH of diff equn.

options = odeset('RelTol',0.5);

[t y] = ode23(yprime,[0 60],100,options);

plot(t,y,'+')

xlabel('Time'), ylabel('y value'),

hold on

plot(t,90*exp(-0.1.*t)+10,'o'), % Exact solution.

hold off

This type of step-by-step solution is based on computing the current yi value from a
single or combination of functions of previous y values. If the value of y is calculated from
a combination of more than one previous value, it is called a multistep method. If only
one previous value is used it is called a single-step method. We shall now describe a simple
single-step method known as Euler’s method.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch05-9780123869425 — 2012/6/7 — 0:40 — Page 235 — #3

5.2 Euler’s Method 235

5.2 Euler’s Method
The dependent variable y and the independent variable t, which we used in the preced-
ing section, can be replaced by any variable names. For example, many textbooks use y
as the dependent variable and x as the independent variable. However, for some consis-
tency with MATLAB notation we generally use y to represent the dependent variable and t
to represent the independent variable. Clearly initial value problems are not restricted to
the time domain, although in most practical situations they are.

Consider the differential equation

dy/dt = y (5.2)

One of the simplest approaches for obtaining the numerical solution of a differential equa-
tion is the method of Euler. This employs the Taylor series but uses only the first two terms
of the expansion. Consider the following form of the Taylor series in which the third term
is called the remainder term and represents the contribution of all the terms not included
in the series:

y(t0+h)= y(t0)+ y′(t0)h+ y′′(θ)h2 /2 (5.3)

where θ lies in the interval (t0, t1). For small values of h we may neglect the terms in h2, and
setting t1 = t0+h in (5.3) leads to the formula

y1 = y0+hy′0

where the prime denotes differentiation with respect to t and y′i = y′(ti). In general,

yn+1 = yn+hy′n for n= 0, 1, 2, . . .

By virtue of (5.2) this may be written

yn+1 = yn+hf (tn,yn) for n= 0, 1, 2, . . . (5.4)

This is known as Euler’s method and it is illustrated geometrically in Figure 5.2. This is an
example of the use of a single function value to determine the next step. From (5.3) we can
see that the local truncation error (i.e., the error for individual steps) is of order h2.

The method is simple to script and is implemented in the MATLAB function feuler as
follows:

function [tvals, yvals] = feuler(f,tspan, startval,step)

% Euler's method for solving

% first order differential equation dy/dt = f(t,y).

% Example call: [tvals, yvals]=feuler(f,tspan,startval,step)

% Initial and final value of t are given by tspan = [start finish].

% Initial value of y is given by startval, step size is given by step.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch05-9780123869425 — 2012/6/7 — 0:40 — Page 236 — #4

236 Chapter 5 . Solution of Differential Equations

Slope = y′0 Truncation error

x

y

h
y1

y0

y = f (x)

FIGURE 5.2 Geometric interpretation of Euler’s method.

0 1 2 3 4 5
0

2000

4000

6000

8000

10000

12000

Time

y
va

lu
e

FIGURE 5.3 Points from the Euler solution of dy/dt = y− 20 given that y = 100 when t = 0.
Approximate solutions for h= 0.2, 0.4, and 0.6 are plotted using o, +, and , respectively. The exact
solution is given by the solid line.

% The function f(t,y) must be defined by the user.

steps = (tspan(2)-tspan(1))/step+1;

y = startval; t = tspan(1);

yvals = startval; tvals = tspan(1);

for i = 2:steps

y1 = y+step*feval(f,t,y); t1 = t+step;

%collect values together for output

tvals = [tvals, t1]; yvals = [yvals, y1];

t = t1; y = y1;

end

Applying this function to the differential equation (5.1) with K = 1, s= 20, and an initial
value of y = 100 gives Figure 5.3, which illustrates how the approximate solution varies

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch05-9780123869425 — 2012/6/7 — 0:40 — Page 237 — #5

5.3 The Problem of Stability 237

for different values of h. The exact value computed from the analytical solution is given
for comparison purposes by the solid line. Clearly, in view of the very large errors shown
by Figure 5.3, the Euler method, although simple, requires a very small step h to provide
reasonable levels of accuracy. If the differential equation must be solved for a wide range of
values of t, the method becomes very expensive in terms of computer time because of the
very large number of small steps required to span the interval of interest. In addition, the
errors made at each step may accumulate in an unpredictable way. This is a crucial issue,
and we discuss this in the next section.

5.3 The Problem of Stability
To ensure that errors do not accumulate we require that the method for solving the differ-
ential equation be stable. We have seen that the error at each step in Euler’s method is of
order h2. This error is known as the local truncation error since it tells only how accurate
the individual step is, not what the error is for a sequence of steps. The error for a sequence
of steps is difficult to find since the error from one step affects the accuracy of the next in
a way that is often complex. This leads us to the issue of absolute and relative stability.
We now discuss these concepts and examine their effects in relation to a simple equation
and explain how the results for this equation may be extended to differential equations in
general.

Consider the differential equation

dy/dt = Ky (5.5)

Since f (t,y)= Ky, Euler’s method will have the form

yn+1 = yn+hKyn (5.6)

Thus using this recursion repeatedly and assuming that there are no errors in the compu-
tation from stage to stage we obtain

yn+1 = (1+hK)n+1y0 (5.7)

For small enough h it is easily shown that this value will approach the exact value eKt .
To obtain some understanding of how errors propagate when using Euler’s method let

us assume that y0 is perturbed. This perturbed value of y0 may be denoted by ya
0 where

ya
0 = (y0− e0) and e0 is the error. Thus (5.7) becomes, on using this approximate value

instead of y0,

ya
n+1 = (1+hK)n+1ya

0 = (1+hK)n+1(y0− e0)= yn+1− (1+hK)n+1e0

Consequently, the initial error will be magnified if |1+hK | ≥ 1. After many steps this initial
error will grow and may dominate the solution. This is the characteristic of instability and

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch05-9780123869425 — 2012/6/7 — 0:40 — Page 238 — #6

238 Chapter 5 . Solution of Differential Equations

in these circumstances Euler’s method is said to be unstable. If, however, |1+hK |< 1, then
the error dies away and the method is said to be absolutely stable. Rewriting this inequality
leads to the condition for absolute stability:

−2< hK < 0 (5.8)

This condition may be too demanding and we may be content if the error does not increase
as a proportion of the y values. This is called relative stability. Notice that Euler’s method
is not absolutely stable for any positive value of K .

The condition for absolute stability can be generalized to an ordinary differential
equation of the form of (5.2). It can be shown that the condition becomes

−2< h∂f /∂y < 0 (5.9)

This inequality implies that, since h> 0, ∂f /∂y must be negative for absolute stability.
Figures 5.4 and 5.5 give a comparison of the absolute and relative error for h= 0.1 for the
differential equation dy/dt = y where y = 1 when t = 0. Figure 5.4 shows that the error is
increasing rapidly and the errors are large for even relatively small step sizes. Figure 5.5
shows that the error is becoming an increasing proportion of the solution values. Thus
the relative error is increasing linearly and so the method is neither relatively stable nor
absolutely stable for this problem.

We have seen that Euler’s method may be unstable for some values of h. For exam-
ple, if K =−100, then Euler’s method is only absolutely stable for 0< h< 0.02. Clearly
if we are required to solve the differential equation between 0 and 10, we would require
500 steps. We now consider an improvement to this method called the trapezoidal
method, which has improved stability features although it is similar in principle to Euler’s
method.

0 1 2 3 4 5
0

10

20

30

40

Time

A
bs

ol
ut

e
er

ro
r

FIGURE 5.4 Absolute errors in the solution of dy/dt = y where y = 1 when t = 0, using Euler’s method
with h= 0.1.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch05-9780123869425 — 2012/6/7 — 0:40 — Page 239 — #7

5.4 The Trapezoidal Method 239

0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

Time
R

el
at

iv
e

er
ro

r

FIGURE 5.5 Relative errors in the solution of dy/dt = y where y = 1 when t = 0, using Euler’s method
with h= 0.1.

5.4 The Trapezoidal Method
The trapezoidal method has the form

yn+1 = yn+h
{

f (tn,yn)+ f (tn+1,yn+1)
}
/2 for n= 0,1,2, . . . (5.10)

Applying the error analysis of Section 5.3 to this problem gives us, from (5.5), that

yn+1 = yn+h(Kyn+Kyn+1)/2 for n= 0,1,2, . . . (5.11)

Thus expressing yn+1 in terms of yn gives

yn+1 = (1+hK/2)/(1−hK/2)yn for n= 0,1,2, . . . (5.12)

Using this result recursively for n= 0,1,2, . . . leads to the result

yn+1 =
{
(1+hK/2)/(1−hK/2)

}n+1 y0 (5.13)

Now, as in Section 5.3, we can obtain some understanding of how error propagates by
assuming that y0 is perturbed by the error e0 so that it is replaced by ya

0 = (y0− e0). Hence
using the same procedure (5.13) becomes

yn+1 =
{
(1+hK/2)/(1−hK/2)

}n+1
(y0− e0)

This leads directly to the result

ya
n=1 = yn+1−

{
(1+hK/2)/(1−hK/2)

}n+1 e0

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch05-9780123869425 — 2012/6/7 — 0:40 — Page 240 — #8

240 Chapter 5 . Solution of Differential Equations

Thus we conclude from this that the influence of the error term that involves e0 will die
away if its multiplier is less than unity in magnitude, that is

|(1+hK/2)/(1−hK/2)|< 1

If K is negative, then for all h the method is absolutely stable. For positive K it is not
absolutely stable for any h.

This completes the error analysis of this method. However, we note that the method
requires a value for yn+1 before we can start. An estimate for this value can be obtained by
using Euler’s method, that is

yn+1 = yn+hf (tn,yn) for n= 0,1,2, . . .

This value can now be used in the right side of (5.10) as an estimate for yn+1. This com-
bined method is often known as the Euler-trapezoidal method. The method can be written
formally as

1. Start with n set at zero where n indicates the number of steps taken.
2. Calculate y(1)n+1 = yn+hf (tn,yn).

3. Calculate f (tn+1,y(1)n+1)where tn+1 = tn+h.
4. For k = 1, 2, . . . calculate

y(k+1)
n+1 = yn+h

{
f (tn,yn)+ f (tn+1,y(k)n+1)

}/
2 (5.14)

At step 4, when the difference between successive values of yn+1 is sufficiently small,
increment n by 1 and repeat steps 2, 3, and 4. This method is implemented in the
MATLAB function eulertp:

function [tvals, yvals] = eulertp(f,tspan,startval,step)

% Euler trapezoidal method for solving

% first order differential equation dy/dt = f(t,y).

% Example call: [tvals, yvals] = eulertp(f,tspan,startval,step)

% Initial and final value of t are given by tspan = [start finish].

% Initial value of y is given by startval, step size is given by step.

% The function f(t,y) must be defined by the user.

steps = (tspan(2)-tspan(1))/step+1;

y = startval; t = tspan(1);

yvals = startval; tvals = tspan(1);

for i = 2:steps

y1 = y+step*feval(f,t,y);

t1 = t+step;

loopcount = 0; diff = 1;

while abs(diff)>0.05

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch05-9780123869425 — 2012/6/7 — 0:40 — Page 241 — #9

5.4 The Trapezoidal Method 241

loopcount = loopcount+1;

y2 = y+step*(feval(f,t,y)+feval(f,t1,y1))/2;

diff = y1-y2; y1 = y2;

end

%collect values together for output

tvals = [tvals, t1]; yvals = [yvals, y1];

t = t1; y = y1;

end

We use eulertp to study the performance of this method compared with Euler’s method
for solving dy/dt = y. The results are given in Figure 5.6, which shows graphs of the abso-
lute errors of the two methods. The difference is clear but although the Euler-trapezoidal
method gives much greater accuracy for this problem, in other cases the difference may
be less marked. In addition, the Euler-trapezoidal method takes longer.

An important feature of this method is the number of iterations that are required to
obtain convergence in step 4. If this is high, the method is likely to be inefficient. However,
for the example we just solved, a maximum of two iterations at step 4 was required. This
algorithm may be modified to use only one iteration at step 4 in (5.14). This is called Heun’s
method.

Finally, we examine theoretically how the error in Heun’s method compares with
Euler’s method. By considering the Taylor series expansion of yn+1 we can obtain the order
of the error in terms of the step size h:

yn+1 = yn+hy′n+h2y′′n/2!+h3y′′′n (θ)/3! (5.15)

where θ lies in the interval (tn, tn+1). It can be shown that y′′n may be approximated by

y′′n = (y
′

n+1− y′n)/h+O(h) (5.16)

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

Time

A
bs

ol
ut

e
er

ro
r

FIGURE 5.6 Absolute error in the solution of dy/dt = y using Euler () and trapezoidal method (◦).
Step h= 0.1 and y0 = 1 at t = 0.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch05-9780123869425 — 2012/6/7 — 0:40 — Page 242 — #10

242 Chapter 5 . Solution of Differential Equations

Substituting this expression for y′′n in (5.15) gives

yn+1 = yn+hy′n+h(y′n+1− y′n)/2!+O(h3)

= yn+h(y′n+1+ y′n)/2!+O(h3)

This shows that the local truncation error is of order h3 so there is a significant improve-
ment in accuracy over the basic Euler method, which has a truncation error of order h2.

We now describe a range of methods that will be considered under the collective title
of Runge–Kutta methods.

5.5 Runge–Kutta Methods
The Runge–Kutta methods comprise a large family of methods having a common struc-
ture. Heun’s method, described by (5.14) but with only one iteration of the corrector, can
be recast in the form of a simple Runge–Kutta method. We set

k1 = hf (tn,yn) and k2 = hf (tn+1,yn+1)

since

yn+1 = yn+hf (tn,yn)

We have

k2 = hf (tn+1,yn+hf (tn,yn))

Hence from (5.10) we have Heun’s method in the form for n= 0, 1, 2, . . .

k1 = hf (tn,yn)

k2 = hf (tn+1,yn+ k1)

and

yn+1 = yn+
(
k1+ k2

)
/2

This is a simple form of a Runge–Kutta method.
The most commonly used Runge–Kutta method is the classical one; it has the form for

each step n= 0,1,2, . . .

k1 = hf (tn,yn)

k2 = hf (tn+h/2,yn+ k1 /2)

k3 = hf (tn+h/2,yn+ k2/2)

k4 = hf (tn+h,yn+ k3)

(5.17)

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch05-9780123869425 — 2012/6/7 — 0:40 — Page 243 — #11

5.5 Runge–Kutta Methods 243

and

yn+1 = yn+
(
k1+ 2k2+ 2k3+ k4

)
/6

It has a global error of order h4. The next Runge–Kutta method we consider is a varia-
tion on the formula (5.17). It is due to Gill (1951) and takes the form for each step n=
0,1,2, . . .

k1 = hf (tn,yn)

k2 = hf (tn+h/2,yn+ k1 /2)

k3 = hf (tn+h/2,yn+ (
√

2− 1)k1 /2+
(
2−
√

2
)

k2 /2)

k4 = hf (tn+h,yn−
√

2k2 /2+ (1+
√

2/2)k3)

(5.18)

and

yn+1 = yn+
{

k1+ (2−
√

2)k2+ (2+
√

2)k3+ k4
}
/6

Again this method is fourth order and has a local truncation error of order h5 and a global
error of order h4.

A number of other forms of the Runge–Kutta method have been derived that have par-
ticularly advantageous properties. The equations for these methods will not be given but
their important features are as follows:

1. Merson–Runge–Kutta method (Merson, 1957). This method has an error term of order
h5 and in addition allows an estimate of the local truncation error to be obtained at
each step in terms of known values.

2. Ralston–Runge–Kutta method (Ralston, 1962). We have some degree of freedom in
assigning the coefficients for a particular Runge–Kutta method. In this formula the
values of the coefficients are chosen so as to minimize the truncation error.

3. Butcher–Runge–Kutta method (Butcher, 1964). This method provides higher accuracy
at each step, the error being of order h6.

Runge–Kutta methods have the general form for each step n= 0,1,2, . . .

k1 = hf (tn,yn)

ki = hf (tn+hdi,yn+

i−1∑
j=1

cijkj), i= 2,3, . . . , p
(5.19)

yn+1 = yn+

p∑
j=1

bjkj (5.20)

The order of this general method is p.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch05-9780123869425 — 2012/6/7 — 0:40 — Page 244 — #12

244 Chapter 5 . Solution of Differential Equations

The derivation of the various Runge–Kutta methods is based on the expansion of both
sides of (5.20) as a Taylor series and equating coefficients. This is a relatively straight-
forward idea but involves lengthy algebraic manipulation.

We now discuss the stability of the Runge–Kutta methods. Since the instability that may
arise in the Runge–Kutta methods can usually be reduced by a step size reduction, it is
known as partial instability. To avoid repeated reduction of the value of h and rerunning
the method, an estimate of the value of h that will provide stability for the fourth-order
Runge–Kutta methods is given by the inequality

−2.78< h∂f /∂y < 0

In practice ∂f /∂y may be approximated using the difference of successive values of f
and y.

Finally, it is interesting to see how we can apply MATLAB to provide an elegant func-
tion for the general Runge–Kutta method given by (5.20) and (5.19). We define two vectors
d and b, where d contains the coefficients di in (5.19) and b contains the coefficients bj

in (5.20), and a matrix c that contains the coefficients cij in (5.19). If the computed val-
ues of the kj are assigned to a vector k, then the MATLAB statements that generate the
values of the function and the new value of y are relatively simple; they will have the
form

k(1) = step*feval(f,t,y);

for i = 2:p

k(i)=step*feval(f,t+step*d(i),y+c(i,1:i-1)*k(1:i-1)');

end

y1 = y+b*k';

This is of course repeated for each step. A MATLAB function, rkgen, based on this fol-
lows. Since c and d are easily changed in the script, any form of the Runge–Kutta method
can be implemented using this function and it is useful for experimenting with different
techniques.

function[tvals,yvals] = rkgen(f,tspan,startval,step,method)

% Runge Kutta methods for solving

% first order differential equation dy/dt = f(t,y).

% Example call:[tvals,yvals]=rkgen(f,tspan,startval,step,method)

% The initial and final values of t are given by tspan = [start finish].

% Initial y is given by startval and step size is given by step.

% The function f(t,y) must be defined by the user.

% The parameter method (1, 2 or 3) selects

% Classical, Butcher or Merson RK respectively.

b = []; c = []; d = [];

switch method

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch05-9780123869425 — 2012/6/7 — 0:40 — Page 245 — #13

5.5 Runge–Kutta Methods 245

case 1

order = 4;

b = [1/6 1/3 1/3 1/6]; d = [0 .5 .5 1];

c=[0 0 0 0;0.5 0 0 0;0 .5 0 0;0 0 1 0];

disp('Classical method selected')

case 2

order = 6;

b = [0.07777777778 0 0.355555556 0.13333333 ...

0.355555556 0.0777777778];

d = [0 .25 .25 .5 .75 1];

c(1:4,:) = [0 0 0 0 0 0;0.25 0 0 0 0 0;0.125 0.125 0 0 0 0; ...

0 -0.5 1 0 0 0];

c(5,:) = [.1875 0 0 0.5625 0 0];

c(6,:) = [-.4285714 0.2857143 1.714286 -1.714286 1.1428571 0];

disp('Butcher method selected')

case 3

order = 5;

b = [1/6 0 0 2/3 1/6];

d = [0 1/3 1/3 1/2 1];

c = [0 0 0 0 0;1/3 0 0 0 0;1/6 1/6 0 0 0;1/8 0 3/8 0 0; ...

1/2 0 -3/2 2 0];

disp('Merson method selected')

otherwise

disp('Invalid selection')

end

steps = (tspan(2)-tspan(1))/step+1;

y = startval; t = tspan(1);

yvals = startval; tvals = tspan(1);

for j = 2:steps

k(1) = step*feval(f,t,y);

for i = 2:order

k(i) = step*feval(f,t+step*d(i),y+c(i,1:i-1)*k(1:i-1)');

end

y1 = y+b*k'; t1 = t+step;

%collect values together for output

tvals = [tvals, t1]; yvals = [yvals, y1];

t = t1; y = y1;

end

A further issue that needs to be considered is that of adaptive step size adjustment.
Where a function is relatively smooth in the area of interest, a large step may be used
throughout the region. If the region is such that rapid changes in y occur for small changes
in t, then a small step size is required. However, for functions where both these regions

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch05-9780123869425 — 2012/6/7 — 0:40 — Page 246 — #14

246 Chapter 5 . Solution of Differential Equations

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

Time

R
el

at
iv

e
er

ro
r

× 10−4

FIGURE 5.7 Relative error in the solution of dy/dt =−y. represents the Butcher method, + the
Merson method, and ◦ the classical method.

exist, then rather than use a small step in the whole region, adaptive step size adjustment
would be more efficient. The details of producing this step adjustment are not provided
here; however, for an elegant discussion see Press et al. (1990). This type of procedure is
implemented for Runge–Kutta methods in the MATLAB functions ode23 and ode45.

Figure 5.7 plots the relative errors in the solution of the specific differential equation
dy/dt =−y by the classical, Merson, and Butcher methods using the following MATLAB

script:

% e3s502.m

yprime = @(t,y) -y;

char = 'o*+';

for meth = 1:3

[t, y] = rkgen(yprime,[0 3],1,0.25,meth);

re = (y-exp(-t))./exp(-t);

plot(t,re,char(meth))

hold on

end

hold off, axis([0 3 0 1.5e-4])

xlabel('Time'), ylabel('Relative error')

It is clear from the graphs that the Butcher method is the best and both the Butcher and
Merson methods are significantly more accurate than the classical method.

5.6 Predictor–Corrector Methods
The trapezoidal method, which has already been described in Section 5.4, is a sim-
ple example of both a Runge–Kutta method and a predictor–corrector method with a

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch05-9780123869425 — 2012/6/7 — 0:40 — Page 247 — #15

5.6 Predictor–Corrector Methods 247

truncation error of order h3. The predictor–corrector methods we consider now have
much smaller truncation errors. As an initial example we consider the Adams–Bashforth–
Moulton method. This method is based on the following equations:

yn+1 = yn+h(55y′n− 59y′n−1+ 37y′n−2− 9y′n−3)/24 (P)

y′n+1 = f (tn+1,yn+1) (E)
(5.21)

and

yn+1 = yn+h
(
9y′n+1+ 19y′n− 5y′n−1+ y′n−2

)
/24 (C)

y′n+1 = f (tn+1,yn+1) (E)
(5.22)

where tn+1 = tn+h. In (5.21) we use the predictor equation (P), followed by a function
evaluation (E). Then in (5.22) we use the corrector equation (C), followed by a function
evaluation (E). The truncation error for both the predictor and corrector is O(h5). The first
equation in the system (5.21) requires a number of initial values to be known before y can
be calculated.

After each application of (5.21) and (5.22), that is, a complete PECE step, the indepen-
dent variable tn is incremented by h, n is incremented by one, and the process repeated
until the differential equation has been solved in the range of interest. The method is
started with n= 3 and consequently the values of y3, y2, y1, and y0 must be known before
the method can be applied. For this reason it is called a multipoint method. In practice y3,
y2, y1, and y0 must be obtained using a self-starting procedure such as one of the Runge–
Kutta methods described in Section 5.5. The self-starting procedure chosen should have
the same order truncation error as the predictor–corrector method.

The Adams–Bashforth–Moulton method is often used since its stability is relatively
good. Its range of absolute stability in PECE mode is

−1.25< h∂f /∂y < 0

Apart from the need for initial starting values, the Adams–Bashforth–Moulton method in
the PECE mode requires less computation at each step than the fourth-order Runge–Kutta
method. For a true comparison of these methods, however, it is necessary to consider
how they behave over a range of problems since applying any method to some differential
equations results, at each step, in a growth of error that ultimately swamps the calculation
since the step is outside the range of absolute stability.

The Adams–Bashforth–Moulton method is implemented by the function abm. It should
be noted that errors arise from the choice of starting procedure, in this case the classical
Runge–Kutta method. It is, however, easy to amend this function to include the option of
entering highly accurate initial values.

function [tvals, yvals] = abm(f,tspan,startval,step)

% Adams Bashforth Moulton method for solving

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch05-9780123869425 — 2012/6/7 — 0:40 — Page 248 — #16

248 Chapter 5 . Solution of Differential Equations

% first order differential equation dy/dt = f(t,y).

% Example call: [tvals, yvals] = abm(f,tspan,startval,step)

% The initial and final values of t are given by tspan = [start finish].

% Initial y is given by startval and step size is given by step.

% The function f(t,y) must be defined by the user.

% 3 steps of Runge--Kutta are required so that ABM method can start.

% Set up matrices for Runge--Kutta methods

b = []; c = []; d = []; order = 4;

b = [1/6 1/3 1/3 1/6]; d = [0 .5 .5 1];

c = [0 0 0 0;0.5 0 0 0;0 .5 0 0;0 0 1 0];

steps = (tspan(2)-tspan(1))/step+1;

y = startval; t = tspan(1); fval(1) = feval(f,t,y);

ys(1) = startval; yvals = startval; tvals = tspan(1);

for j = 2:4

k(1) = step*feval(f,t,y);

for i = 2:order

k(i) = step*feval(f,t+step*d(i),y+c(i,1:i-1)*k(1:i-1)');

end

y1 = y+b*k'; ys(j) = y1; t1 = t+step;

fval(j) = feval(f,t1,y1);

%collect values together for output

tvals = [tvals,t1]; yvals = [yvals,y1];

t = t1; y = y1;

end

%ABM now applied

for i = 5:steps

y1 = ys(4)+step*(55*fval(4)-59*fval(3)+37*fval(2)-9*fval(1))/24;

t1 = t+step; fval(5) = feval(f,t1,y1);

yc = ys(4)+step*(9*fval(5)+19*fval(4)-5*fval(3)+fval(2))/24;

fval(5) = feval(f,t1,yc);

fval(1:4) = fval(2:5);

ys(4) = yc;

tvals = [tvals,t1]; yvals = [yvals,yc];

t = t1; y = y1;

end

Figure 5.8 illustrates the behavior of the Adams–Bashforth–Moulton method when applied
to the specific problem dy/dt =−2y where y = 1 when t = 0, using a step size equal to 0.5
and 0.7 in the interval 0 to 10. It is interesting to note that for this problem, since ∂f /∂y =
−2, the range of steps for absolute stability is 0≤ h≤ 0.625. For h= 0.5, a value inside the
range of absolute stability, the plot shows that the absolute error does die away. However,
for h= 0.7, a value outside the range of absolute stability, the plot shows that the absolute
error increases.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch05-9780123869425 — 2012/6/7 — 0:40 — Page 249 — #17

5.7 Hamming’s Method and the Use of Error Estimates 249

0 2 4 6 8 10
0

0.05

0.1

Time
A

bs
ol

ut
e

er
ro

r

FIGURE 5.8 Absolute error in the solution of dy/dt =−2y using the Adams–Bashforth–Moulton
method. The solid line plots the errors with a step size of 0.5. The dot-dashed line plots the errors
with step size 0.7.

5.7 Hamming’s Method and the Use
of Error Estimates

The method of Hamming (1959) is based on the following pair of predictor–corrector
equations:

yn+1 = yn−3+ 4h
(
2y′n− y′n−1+ 2y′n−2

)
/3 (P)

y′n+1 = f
(
tn+1,yn+1

)
(E)

(5.23)

yn+1 =
{

9yn− yn−2+ 3h
(
y′n+1+ 2y′n− y′n−1

)}
/8 (C)

y′n+1 = f
(
tn+1,yn+1

)
(E)

where tn+1 = tn+h.
The first equation (P) is used as the predictor and the third as the corrector (C). To

obtain a further improvement in accuracy at each step in the predictor and corrector we
modify these equations using expressions for the local truncation errors. Approximations
for these local truncation errors can be obtained using the predicted and corrected values
of the current approximation to y. This leads to the equations

yn+1 = yn−3+ 4h
(
y′n− y′n−1+ 2y′n−2

)
/3 (P) (5.24)

(yM)n+1 = yn+1− 112(YP −YC)/121 (5.25)

In this equation YP and YC represent the predicted and corrected value of y at the nth
step.

y∗n+1 =
{

9yn− yn−2+ 3h((yM)′n+1+ 2y′n− y′n−1)
}
/8 (C) (5.26)

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch05-9780123869425 — 2012/6/7 — 0:40 — Page 250 — #18

250 Chapter 5 . Solution of Differential Equations

In this equation (yM)′n+1 is the value of y′n+1 calculated using the modified value of yn+1,
which is (yM)n+1.

yn+1 = y∗n+1+ 9(yn+1− y∗n+1) (5.27)

Equation (5.24) is the predictor and (5.25) modifies the predicted value by using an esti-
mate of the truncation error. Equation (5.26) is the corrector, which is modified by (5.27)
using an estimate of the truncation error. The equations in this form are each used only
once before n is incremented and the steps repeated again. This method is implemented
as MATLAB function fhamming as follows:

function [tvals, yvals] = fhamming(f,tspan,startval,step)

% Hamming's method for solving

% first order differential equation dy/dt = f(t,y).

% Example call: [tvals, yvals] = fhamming(f,tspan,startval,step)

% The initial and final values of t are given by tspan = [start finish].

% Initial y is given by startval and step size is given by step.

% The function f(t,y) must be defined by the user.

% 3 steps of Runge-Kutta are required so that hamming can start.

% Set up matrices for Runge-Kutta methods

b = []; c =[]; d = []; order = 4;

b = [1/6 1/3 1/3 1/6]; d = [0 0.5 0.5 1];

c = [0 0 0 0;0.5 0 0 0;0 0.5 0 0;0 0 1 0];

steps = (tspan(2)-tspan(1))/step+1;

y = startval; t = tspan(1);

fval(1) = feval(f,t,y);

ys(1) = startval;

yvals = startval; tvals = tspan(1);

for j = 2:4

k(1) = step*feval(f,t,y);

for i = 2:order

k(i) = step*feval(f,t+step*d(i),y+c(i,1:i-1)*k(1:i-1)');

end

y1 = y+b*k'; ys(j) = y1; t1 = t+step; fval(j) = feval(f,t1,y1);

%collect values together for output

tvals = [tvals, t1]; yvals = [yvals, y1]; t = t1; y = y1;

end

%Hamming now applied

for i = 5:steps

y1 = ys(1)+4*step*(2*fval(4)-fval(3)+2*fval(2))/3;

t1 = t+step; y1m = y1;

if i>5, y1m = y1+112*(c-p)/121; end

fval(5) = feval(f,t1,y1m);

yc = (9*ys(4)-ys(2)+3*step*(2*fval(4)+fval(5)-fval(3)))/8;

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch05-9780123869425 — 2012/6/7 — 0:40 — Page 251 — #19

5.8 Error Propagation in Differential Equations 251

0 1 2 3 4 5
−2

−1.5

−1

−0.5

0
×10−3

Time
R

el
at

iv
e

er
ro

r

FIGURE 5.9 Relative error in the solution of dy/dt = y where y = 1 when t = 0, using Hamming’s
method with a step size of 0.5.

ycm = yc+9*(y1-yc)/121;

p = y1; c = yc;

fval(5) = feval(f,t1,ycm); fval(2:4) = fval(3:5);

ys(1:3) = ys(2:4); ys(4) = ycm;

tvals = [tvals, t1]; yvals = [yvals, ycm];

t = t1;

end

The choice of h must be made carefully so that the error does not increase without bound.
Figure 5.9 shows Hamming’s method used to solve the equation dy/dt = y. This is the
problem used in Section 5.6.

5.8 Error Propagation in Differential Equations
In the preceding sections we described various techniques for solving differential equa-
tions and the order, or a specific expression, for the truncation error at each step was
given. As we discussed in Section 5.3 for the Euler and trapezoidal methods, it is impor-
tant to examine not only the magnitude of the error at each step but also how that error
accumulates as the number of steps taken increases.

For the predictor–corrector method described in Section 5.7, it can be shown that
the predictor–corrector formulae introduce additional spurious solutions. As the itera-
tive process proceeds, for some problems the effect of these spurious solutions may be
to overwhelm the true solution. In these circumstances the method is said to be unstable.
Clearly we seek stable methods where the error does not develop in an unpredictable and
unbounded way.

It is important to examine each numerical method to see if it is stable. In addi-
tion, if it is not stable for all differential equations we should provide tests to determine
when it can be used with confidence. The theoretical study of stability for differential

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch05-9780123869425 — 2012/6/7 — 0:40 — Page 252 — #20

252 Chapter 5 . Solution of Differential Equations

equations is a major undertaking and it is not intended to include a detailed analysis here.
Section 5.9 summarizes the stability characteristics of specific methods and compares
the performance of the major methods considered on a number of example differential
equations.

5.9 The Stability of Particular Numerical Methods
A good discussion of the stability of many of the numerical methods for solving first-order
differential equations is given by Ralston and Rabinowitz (1978) and Lambert (1973). Some
of the more significant features, assuming all variables are real, are as follows.

1. Euler and trapezoidal methods: For a detailed discussion see Sections 5.3 and 5.4.
2. Runge–Kutta methods: Runge–Kutta methods do not introduce spurious solutions but

instability may arise for some values of h. This may be removed by reducing h to a
sufficiently small value. We have already described how the Runge–Kutta methods are
less efficient than the predictor–corrector methods because of the greater number of
function evaluations that may be required at each step by the Runge–Kutta methods.
If h is reduced too far, the number of function evaluations required may make the
method uneconomic. The restriction on the size of the interval required to maintain
stability may be estimated from the inequality M < h∂f /∂y < 0 where M is dependent
on the particular Runge–Kutta method being used and may be estimated. Clearly this
emphasizes the need for careful step size adjustment during the solution process. This
is efficiently implemented in the functions ode23 and ode45 so that this question does
not present a problem when applying these MATLAB functions.

3. Adams–Bashforth–Moulton method: In PECE mode the range of absolute stability is
given by−1.25< h∂f /∂y < 0, implying that ∂f /∂y must be negative for absolute
stability.

4. Hamming’s method: In the PECE mode the range of absolute stability is given by
−0.5< h∂f ∂y < 0, again implying that ∂f ∂y must be negative for absolute stability.

Notice that the formulae given for estimating the step size can be difficult to use if f is a
general function of y and t. However, in some cases the derivative of f is easily calculated,
for example, when f = Cy where C is a constant.

We now give some results of applying the methods discussed in previous sections to
solve more general problems. The following script solves the three examples that follow by
setting example equal to 1, 2, or 3 in the first line of the script.

% e3s503.m

example = 1;

switch example

case 1

yprime = @(t,y) 2*t*y;

sol = @(t) 2*exp(t^2);

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch05-9780123869425 — 2012/6/7 — 0:40 — Page 253 — #21

5.9 The Stability of Particular Numerical Methods 253

disp('Solution of dy/dt = 2yt')

t0 = 0; y0 = 2;

case 2

yprime = @(t,y) (cos(t)-2*y*t)/(1+t^2);

sol = @(t) sin(t)/(1+t^2);

disp('Solution of (1+t^2)dy/dt = cos(t)-2yt')

t0 = 0; y0 = 0;

case 3

yprime = @(t,y) 3*y/t;

disp('Solution of dy/dt = 3y/t')

sol = @(t) t^3;

t0 = 1; y0 = 1;

end

tf = 2; tinc = 0.25; steps = floor((tf-t0)/tinc+1);

[t,x1] = abm(yprime,[t0 tf],y0,tinc);

[t,x2] = fhamming(yprime,[t0 tf],y0,tinc);

[t,x3] = rkgen(yprime,[t0 tf],y0,tinc,1);

disp('t abm Hamming Classical Exact')

for i = 1:steps

fprintf('%4.2f%12.7f%12.7f',t(i),x1(i),x2(i))

fprintf('%12.7f%12.7f\n',x3(i),sol(t(i)))

end

Example 5.1
Solve

dy/dt = 2yt where y = 2 when t = 0

Exact solution: y = 2exp(t2). Running the script e3s503.m with example = 1 produces the
following output:

Solution of dy/dt = 2yt

t abm Hamming Classical Exact

0.00 2.0000000 2.0000000 2.0000000 2.0000000

0.25 2.1289876 2.1289876 2.1289876 2.1289889

0.50 2.5680329 2.5680329 2.5680329 2.5680508

0.75 3.5099767 3.5099767 3.5099767 3.5101093

1.00 5.4340314 5.4294215 5.4357436 5.4365637

1.25 9.5206761 9.5152921 9.5369365 9.5414664

1.50 18.8575896 18.8690552 18.9519740 18.9754717

1.75 42.1631012 42.2832017 42.6424234 42.7618855

2.00 106.2068597 106.9045567 108.5814979 109.1963001

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch05-9780123869425 — 2012/6/7 — 0:40 — Page 254 — #22

254 Chapter 5 . Solution of Differential Equations

Examples 5.2 and 5.3 appear to show that there is little difference between the three meth-
ods considered and they are all fairly successful for the step size h= 0.25 in this range.
Example 5.1 is a relatively difficult problem in which the classical Runge–Kutta method
performs well.

Example 5.2
Solve

(1+ t2)dy/dt+ 2ty = cos t where y = 0 when t = 0

Exact solution: y = (sin t)/(1+ t2). Running script e3s503.m with example = 2 produces the
following output:

Solution of (1+t^2)dy/dt = cos(t)-2yt

t abm Hamming Classical Exact

0.00 0.0000000 0.0000000 0.0000000 0.0000000

0.25 0.2328491 0.2328491 0.2328491 0.2328508

0.50 0.3835216 0.3835216 0.3835216 0.3835404

0.75 0.4362151 0.4362151 0.4362151 0.4362488

1.00 0.4181300 0.4196303 0.4206992 0.4207355

1.25 0.3671577 0.3705252 0.3703035 0.3703355

1.50 0.3044513 0.3078591 0.3068955 0.3069215

1.75 0.2404465 0.2432427 0.2421911 0.2422119

2.00 0.1805739 0.1827267 0.1818429 0.1818595

Example 5.3
Solve

dy/dt = 3y/t where y = 1 when t = 1

Exact solution: y = t3. Running script e3s503.m with example = 3 produces the following out-
put:

Solution of dy/dt = 3y/t

t abm Hamming Classical Exact

1.00 1.0000000 1.0000000 1.0000000 1.0000000

1.25 1.9518519 1.9518519 1.9518519 1.9531250

1.50 3.3719182 3.3719182 3.3719182 3.3750000

1.75 5.3538346 5.3538346 5.3538346 5.3593750

2.00 7.9916917 7.9919728 7.9912355 8.0000000

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch05-9780123869425 — 2012/6/7 — 0:40 — Page 255 — #23

5.9 The Stability of Particular Numerical Methods 255

For a further comparison, we now use the MATLAB function ode113. This employs a
predictor–corrector method based on the PECE approach described in Section 5.6 in rela-
tion to the Adams–Bashforth–Moulton method. However the method implemented in
ode113 is of variable order. The standard call of the function takes the form

[t,y] = ode113(f,tspan,y0,options);

where f is the name of the function providing the right sides of the system of differential
equations; tspan is the range of solution for the differential equation, given as a vector
[to tfinal]; y0 is the vector of initial values for the differential equation at time t = 0; and
options is an optional parameter providing additional settings for the differential equation
such as accuracy.

To illustrate the use of this function we consider the example

dy/dt = 2yt with initial conditions y = 2 when t = 0

The call to solve this differential equation is

>> options = odeset('RelTol', 1e-5,'AbsTol',1e-6);

>> [t,yy] = ode113(@(t,x) 2*t*x,[0,2],[2],options); y = yy', time = t'

The result of executing these statements is

y =

Columns 1 through 7

2.0000 2.0000 2.0000 2.0002 2.0006 2.0026 2.0103

Columns 8 through 14

2.0232 2.0414 2.0650 2.0943 2.1707 2.2731 2.4048

Columns 15 through 21

2.5703 2.7755 3.0279 3.3373 3.7161 4.1805 4.7513

Columns 22 through 28

5.4557 6.3290 7.4177 8.7831 10.5069 15.5048 22.7912

Columns 29 through 32

34.6321 54.3997 88.3328 109.1944

time =

Columns 1 through 7

0 0.0022 0.0045 0.0089 0.0179 0.0358 0.0716

Columns 8 through 14

0.1073 0.1431 0.1789 0.2147 0.2862 0.3578 0.4293

Columns 15 through 21

0.5009 0.5724 0.6440 0.7155 0.7871 0.8587 0.9302

Columns 22 through 28

1.0018 1.0733 1.1449 1.2164 1.2880 1.4311 1.5599

Columns 29 through 32

1.6887 1.8175 1.9463 2.0000

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch05-9780123869425 — 2012/6/7 — 0:40 — Page 256 — #24

256 Chapter 5 . Solution of Differential Equations

Although a direct comparison between each step is not possible, because ode113 uses a
variable step size, we can compare the result for t = 2 with the results given for Example 5.1.
This shows that the final y value given by ode113 is better than those given by the other
methods.

5.10 Systems of Simultaneous Differential Equations
The numerical techniques we have described for solving a single first-order differential
equation can be applied, after simple modification, to solve systems of first-order differen-
tial equations. Systems of differential equations arise naturally from mathematical models
of the physical world. In this section we shall introduce a system of differential equations
by considering a relatively simple example. This example is based on a much simplified
model of the heart introduced by Zeeman and incorporates ideas from catastrophe theory.
The model is described briefly here but more detail is given in the excellent text of Beltrami
(1987). The resulting system of differential equations will be solved using the MATLAB func-
tion ode23 and the graphical facilities of MATLAB will help to clarify the interpretation of the
results.

The starting point for this model of the heart is Van der Pol’s equation, which may be
written in the form

dx/dt = u−µ(x3/3− x)

du/dt =−x

This is a system of two simultaneous equations. The choice of this differential equation
reflects our wish to imitate the beat of the heart. The fluctuation in the length of the heart
fiber, as the heart contracts and dilates subject to an electrical stimulus, thus pumping
blood through the system, may be represented by this pair of differential equations. The
fluctuation has certain subtleties that our model should allow for. Starting from the relaxed
state, the contraction begins with the application of the stimulus slowly at first and then
becomes faster, so giving a sufficient final impetus to the blood. When the stimulus is
removed, the heart dilates slowly at first and then more rapidly until the relaxed state is
again reached and the cycle can begin again.

To follow this behavior, the Van der Pol equation requires some modification so that
the x variable represents the length of heart fiber and the u variable can be replaced by
one that represents the stimulus applied to the heart. This is achieved by making the sub-
stitution s=−u/µ, where s represents the stimulus andµ is a constant. Since ds/dt is equal
to (−du/dt)/µ it follows that du/dt =−µds/dt. Hence we obtain

dx/dt = µ(−s− x3/3+ x)

ds/dt = x/µ

If these differential equations are solved for s and x for a range of time values, we find that
s and x oscillate in a manner representing the fluctuations in the heart fiber length and

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch05-9780123869425 — 2012/6/7 — 0:40 — Page 257 — #25

5.10 Systems of Simultaneous Differential Equations 257

stimulus. However, Zeeman proposed the introduction into this model of a tension factor
p, where p> 0, in an attempt to account for the effects of increased blood pressure in terms
of increased tension on the heart fiber. The model he suggested has the form

dx/dt = µ(−s− x3/3+px)

du/dt = x/µ

Although the motivation for such a modification is plausible, the effects of these changes
are by no means obvious.

This problem provides an interesting opportunity to apply MATLAB to simulate the
heartbeat in an experimental environment that allows us to monitor its changes under
the effects of differing tension values. The following script solves the differential equations
and draws various graphs.

% e3s504.m Solving Zeeman's Catastrophe model of the heart

clear all

p = input('enter tension value ');

simtime = input('enter runtime ');

acc = input('enter accuracy value ');

xprime = @(t,x) [0.5*(-x(2)-x(1)^3/3+p*x(1)); 2*x(1)];

options = odeset('RelTol',acc);

initx = [0 -1]';

[t x] = ode23(xprime,[0 simtime],initx,options);

% Plot results against time

plot(t,x(:,1),'--',t,x(:,2),'-')

xlabel('Time'), ylabel('x and s')

In the preceding function definition, µ= 0.5. Figure 5.10 shows graphs of the fiber length
x and the stimulus s against time for a relatively small tension factor set at 1. The graphs
show that a steady periodic oscillation of fiber length for this tension value is achieved

0 2 4 6 8 10
−4

−2

0

2

4

Time

x
an

d
s

FIGURE 5.10 Solution of Zeeman’s model with p= 1 and accuracy 0.005. The solid line represents s
and the dashed line represents x.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch05-9780123869425 — 2012/6/7 — 0:40 — Page 258 — #26

258 Chapter 5 . Solution of Differential Equations

for small stimulus values. However, Figure 5.11 plots x and s against time with the tension
set at 20. This shows that the behavior of the oscillation is clearly more labored and that
much larger values of stimulus are required to produce the fluctuations in fiber length for
the much higher tension value. Thus, the graphs show the deterioration in the beat with
increasing tension. The results parallel the expected physical effects and also give some
degree of experimental support to the validity of this simple model.

A further interesting study can be made. The interrelation of the three parameters x,
s, and p can be represented by a three-dimensional surface called the cusp catastrophe
surface. This surface can be shown to have the form

−s− x3/3+px = 0

See Beltrami (1987) for a more detailed explanation. Figure 5.12 shows a series of sections
of the cusp catastrophe curve for p= 0 : 10 : 40. The curve has a pleat that becomes
increasingly pronounced in the direction of increasing p. High tension or high p value

0 2 4 6 8 10

0

20

40

60

Time

x
an

d
s

FIGURE 5.11 Solution of Zeeman’s model with p= 20 and accuracy 0.005. The solid line represents s
and the dashed line represents x.

−1500 −1000 −500 0 500 1000 1500
−15

−10

−5

0

5

10

15

s value

x
va

lu
e

FIGURE 5.12 Sections of the cusp catastrophe curve in Zeeman’s model for p= 0 : 10 : 40.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch05-9780123869425 — 2012/6/7 — 0:40 — Page 259 — #27

5.11 The Lorenz Equations 259

consequently corresponds to movement on the sharply pleated part of this surface and
thus provides smaller changes in the heart fiber length relative to the stimulus.

5.11 The Lorenz Equations
As an example of a system of three simultaneous equations, we consider the Lorenz sys-
tem. This system has a number of important applications including weather forecasting.
The system has the form

dx/dt = s
(
y− x

)
dy /dt = rx− y− xz

dz/dt = xy−bz

subject to appropriate initial conditions. As the parameters s, r, and b are varied through
various ranges of values, the solutions of this system of differential equations vary in form.
In particular, for certain values of the parameters the system exhibits chaotic behavior.
To provide more accuracy in the computation process we use the MATLAB function ode45

rather than ode23. The MATLAB script for solving this problem is as follows:

% e3s505.m Solution of the Lorenz equations

r = input('enter a value for the constant r ');

simtime = input('enter runtime ');

acc = input('enter accuracy value ');

xprime = @(t,x) [10*(x(2)-x(1)); r*x(1)-x(2)-x(1)*x(3); ...

x(1)*x(2)-8*x(3)/3];

initx = [-7.69 -15.61 90.39]';

tspan = [0 simtime];

options = odeset('RelTol',acc);

[t x] = ode45(xprime,tspan,initx,options);

% Plot results against time

figure(1), plot(t,x,'k')

xlabel('Time'), ylabel('x')

figure(2), plot(x(:,1),x(:,3),'k')

xlabel('x'), ylabel('z')

The results of running this script are given in Figures 5.13 and 5.14. Figure 5.13 is charac-
teristic of the Lorenz equations and shows the complexity of the relationship between x
and z. Figure 5.14 shows how x, y, and z change with time.

For r = 126.52 and for other large values of r the behavior of this system is chaotic.
In fact for r > 24.7 most orbits exhibit chaotic wandering. The trajectory passes around
two points of attraction, called “strange attractors,” switching from one to another in
an apparently unpredictable fashion. This appearance of apparently random behavior is

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch05-9780123869425 — 2012/6/7 — 0:40 — Page 260 — #28

260 Chapter 5 . Solution of Differential Equations

−40 −20 0 20 40
60

80

100

120

140

160

180

x

z

FIGURE 5.13 Solution of Lorenz equations for r = 126.52, using an accuracy of 0.000005 and
terminating at t = 8.

0 2 4 6 8
−100

−50

0

50

100

150

200

Time

x

FIGURE 5.14 Solution of Lorenz equations where each variable is plotted against time. Conditions are
the same as those used to generate Figure 5.13. Note the unpredictable nature of the solutions.

remarkable considering the clearly deterministic nature of the problem. However, for other
values of r the behavior of the trajectories is simple and stable.

5.12 The Predator–Prey Problem
A system of differential equations that models the interaction of competing or predator–
prey populations is based on the Volterra equations and may be written in the form

dP/dt = K1P−CPQ

dQ/dt =−K2Q+DPQ
(5.28)

together with the initial conditions

Q=Q0 and P = P0 at time t = 0

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch05-9780123869425 — 2012/6/7 — 0:40 — Page 261 — #29

5.12 The Predator–Prey Problem 261

The variables P and Q give the size of the prey and predator populations, respectively, at
time t. These two populations interact and compete. K1, K2, C, and D are positive con-
stants. K1 relates to the rate of growth of the prey population P, and K2 relates to the rate
of decay of the predator population Q. It seems reasonable to assume that the number of
encounters of predator and prey is proportional to P multiplied by Q and that a proportion
C of these encounters will be fatal to members of the prey population. Thus the term CPQ
gives a measure of the decrease in the prey population and the unrestricted growth in this
population, which could occur assuming ample food, must be modified by the subtraction
of this term. Similarly the decrease in the population of the predator must be modified by
the addition of the term DPQ since the predator population gains food from its encounters
with its prey and therefore more of the predators survive.

The solution of the differential equation depends on the specific values of the con-
stants and will often result in nature in a stable cyclic variation of the populations. This is
because as the predators continue to eat the prey, the prey population will fall and become
insufficient to support the predator population, which itself then falls. However, as the
predator population falls, more of the prey survive and consequently the prey population
will then increase. This in turn leads to an increase in the predator population since it has
more food and the cycle begins again. This cycle maintains the predator–prey populations
between certain upper and lower limits. The Volterra differential equations can be solved
directly but this solution does not provide a simple relation between the size of the preda-
tor and prey populations; therefore, numerical methods of solution should be applied. An
interesting description of this problem is given by Simmons (1972).

We now use MATLAB to study the behavior of a system of equations of the form (5.28)
applied to the interaction of the lynx and its prey, the hare. The choice of the constants
K1, K2, C, and D is not a simple matter if we wish to obtain a stable situation where the
populations of the predator and prey never die out completely but oscillate between upper
and lower limits. The MATLAB script that follows uses K1 = 2, K2 = 10, C = 0.001, and D=
0.002, and considers the interaction of a population of lynxes and hares where it is assumed
that this interaction is the crucial feature in determining the size of the two populations.
With an initial population of 5000 hares and 100 lynxes, the following script uses these
values to produce the graph in Figure 5.15.

% e3s506.m

% x(1) and x(2) are hare and lynx populations.

simtime = input('enter runtime ');

acc = input('enter accuracy value ');

fv = @(t,x) [2*x(1)-0.001*x(1)*x(2); -10*x(2)+0.002*x(1)*x(2)];

initx = [5000 100]';

options = odeset('RelTol',acc);

[t x] = ode23(fv,[0 simtime],initx,options);

plot(t,x(:,1),'k',t,x(:,2),'k--')

xlabel('Time'), ylabel('Population of hares and lynxes')

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch05-9780123869425 — 2012/6/7 — 0:40 — Page 262 — #30

262 Chapter 5 . Solution of Differential Equations

0 1 2 3 4 5
0

2000

4000

6000

8000

10000

12000

Time

Po
pu

la
tio

n
of

 h
ar

es
 a

nd
 ly

nx
es

FIGURE 5.15 Variation in the population of lynxes (dashed line) and hares (solid line) against time
using an accuracy of 0.005 beginning with 5000 hares and 100 lynxes.

For these parameters there is a remarkably wide variation in the populations of hares and
lynxes. The lynx population, although periodically small, still recovers following a recovery
of the hare population.

5.13 Differential Equations Applied
to Neural Networks

Different types of neural networks have been used to solve a wide range of problems. Neu-
ral networks often consist of several layers of “neurons” that are “trained” by fixing a set
of weights. These weights are found by minimizing the sum of squares of the difference
between actual and required outputs. Once trained, the networks can be used to classify
a range of inputs. However, here we consider a different approach that uses a neural net-
work that may be based directly on considering a system of differential equations. This
approach is described by Hopfield and Tank (1985, 1986), who demonstrated the applica-
tion of neural networks to solving specific numerical problems. It is not our intention to
provide the full details or proofs of this process here.

Hopfield and Tank, in their 1985 and 1986 papers, utilized a system of differential
equations that take the form

dui

dt
=
−ui

τ
+

n−1∑
j=0

TijVj + Ii for i= 0,1, . . . n− 1 (5.29)

where τ is a constant usually taken as 1. This system of differential equations represents
the interaction of a system of n neurons, and each differential equation is a simple model
of a single biological neuron. (This is only one of a number of possible models of a neural
network.) Clearly, to establish a network of such neurons, they must be able to interact

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch05-9780123869425 — 2012/6/7 — 0:40 — Page 263 — #31

5.13 Differential Equations Applied to Neural Networks 263

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

u
V

FIGURE 5.16 Plot of sigmoid function V = (1+ tanhu)/2.

with each other and this interaction must be represented in the differential equations. The
Tij provide the strengths of the interconnections between the ith and jth neuron and the Ii

provide the externally applied current to the ith neuron. These Ii may be viewed as inputs
to the system. The Vj values provide the outputs from the system and are directly related
to the uj so that we may write Vj = g(uj). The function g, called a sigmoidal function, may
be specified, for example, by

Vj = (1+ tanhuj)/2 for all j = 0,1, . . . n− 1

A plot of this function is given in Figure 5.16.
Having provided such a model of a neural network, the question still remains: How

can we show that it can be used to solve specific problems? This is the key issue and a
significant problem in itself. Before we can solve a given problem using a neural network
we must first reformulate our problem so that it can be solved by this approach.

To illustrate this process, Hopfield and Tank chose as an example the simple problem
of binary conversion, that is, to find the binary equivalent of a given decimal number.
Since there is no obvious and direct relationship between this problem and the system
of differential equations (5.29) that model the neural network, a more direct link has to be
established.

Hopfield and Tank have shown that the stable state solution of (5.29), in terms of the Vj,
is given by the minima of the energy function

E =−
1
2

n−1∑
i=0

n−1∑
j=0

TijViVj −

n−1∑
j=0

IjVj (5.30)

It is an easy matter to link the solution of the binary conversion problem to the minimiza-
tion of the function (5.30).

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch05-9780123869425 — 2012/6/7 — 0:40 — Page 264 — #32

264 Chapter 5 . Solution of Differential Equations

Hopfield and Tank consider the energy function

E =
1
2

x−
n−1∑
j=0

Vj2
j

2

+

n−1∑
j=0

22j−1Vj
(
1−Vj

)
(5.31)

Now the minimum of (5.31) will be attained when x =6Vj2j and Vj = 0 or 1. Clearly the
first term ensures that the required binary representation is achieved while the second
term provides that the Vj take either 0 or 1 values when the value of E is minimized. On
expanding this energy function (5.31) and comparing it with the general energy function
(5.30) we find that if we make

Tij =−2i+j for i 6= j and Tij = 0 when i= j

Ij =−22j−1
+ 2jx

then the two energy functions are equivalent, apart from a constant. Thus the minimum
of one gives the minimum of the other. Solving the binary conversion problem expressed
in this way is thus equivalent to solving the system of differential equations (5.29) with this
special choice of values for Tij and Ii. In fact, by using an appropriate choice of Tij and
Ii, a range of problems can be represented by a neural network in the form of the system
of differential equations (5.29). Hopfield and Tank have extended this process from the
simple preceding example to attempting to solve the very challenging traveling salesman
problem. The details of this are given in Hopfield and Tank (1985, 1986).

In MATLAB we may use ode23 or ode45 to solve this problem. The crucial part of this exer-
cise is to define the function that gives the right sides of the differential equation system
for the neural network. This can be done very simply using the following function hopbin.
This function gives the right side for the differential equations that solve the binary con-
version problem. In the definition of function hopbin, sc is the decimal value we wish to
convert.

function neurf = hopbin(t,x)

global n sc

% Calculate synaptic current

I = 2.^[0:n-1]*sc-0.5*2.^(2.*[0:n-1]);

% Perform sigmoid transformation

V = (tanh(x/0.02)+1)/2;

% Compute interconnection values

p = 2.^[0:n-1].*V';

% Calculate change for each neuron

neurf = -x-2.^[0:n-1]'*sum(p)+I'+2.^(2.*[0:n-1])'.*V;

This function hopbin is called by the following script to solve the system of differential
equations that define the neural network and hence simulate its operation.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch05-9780123869425 — 2012/6/7 — 0:40 — Page 265 — #33

5.13 Differential Equations Applied to Neural Networks 265

% e3s507.m Hopfield and Tank neuron model for binary conversion problem

global n sc

n = input('enter number of neurons ');

sc = input('enter number to be converted to binary form ');

simtime = 0.2; acc = 0.005;

initx = zeros(1,n)';

options = odeset('RelTol',acc);

%Call ode45 to solve equation

[t x] = ode45('hopbin',[0 simtime],initx,options);

V = (tanh(x/0.02)+1)/2;

bin = V(end,n:-1:1);

for i = 1:n

fprintf('%8.4f', bin(i))

end

fprintf('\n\n')

plot(t,V,'k')

xlabel('Time'), ylabel('Binary values')

Running this script to convert the decimal number 5 gives

enter number of neurons 3

enter number to be converted to binary form 5

1.0000 0.0000 0.9993

together with Figure 5.17. This plot shows how the neural network model converges to
the required results, that is, V(1) = 1, V(2) = 0, and V(3) = 1 or binary number 101.

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

Time

B
in

ar
y

va
lu

es

FIGURE 5.17 A neural network finds the binary equivalent of 5 using 3 neurons and an accuracy of
0.005. The three curves show the convergence to the binary digits 1, 0, and 1.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch05-9780123869425 — 2012/6/7 — 0:40 — Page 266 — #34

266 Chapter 5 . Solution of Differential Equations

As a further example, we convert the decimal number 59 using 7 neurons as follows:

enter number of neurons 7

enter number to be converted to binary form 59

0.0000 1.0000 1.0000 1.0000 0.0000 1.0000 0.9999

Again, a correct result.
This is an application of neural networks to a trivial problem. A real test for neural com-

puting is the traveling salesman problem. The MATLAB neural network toolbox provides a
range of functions to solve neural network problems.

5.14 Higher-Order Differential Equations
Higher-order differential equations can be solved by converting them to a system of
first-order differential equations. To illustrate this consider the second-order differential
equation

2d2x/dt2
+ 4(dx/dt)2− 2x = cosx (5.32)

together with the initial conditions x = 0 and dx/dt = 10 when t = 0. If we substitute p=
dx/dt, then (5.32) becomes

2dp/dt+ 4p2
= cosx+ 2x

dx/dt = p (5.33)

with initial conditions p= 10 and x = 0 when t = 0.
The second-order differential equations have been replaced by a system of first-order

differential equations. If we have an nth-order differential equation of the form

andny/dtn
+an−1dn−1y/dtn−1

+ ·· ·+a0y = f (t,y) (5.34)

by making the substitutions

P0 = y and dPi−1/dt = Pi for i= 1, 2, . . . , n− 1 (5.35)

(5.34) becomes

andPn−1/dt = f (t,y)−an−1Pn−1−an−2Pn−2− ·· ·−a0P0 (5.36)

Now (5.35) and (5.36) together constitute a system of n first-order differential equations.
Initial values will be given for (5.34) in terms of the various order derivatives Pi for i=
1,2, . . . ,n− 1 at some initial value t0 and these can easily be translated into initial condi-
tions for the system of equations (5.35) and (5.36). In general, the solutions of the original
nth-order differential equation and the system of first-order differential equations, (5.35)

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch05-9780123869425 — 2012/6/7 — 0:40 — Page 267 — #35

5.15 Stiff Equations 267

and (5.36), are the same. In particular, the numerical solution will provide the values of y
for a specified range of t. An excellent discussion of the equivalence of the solutions of the
two problems is given in Simmons (1972). We can see from this description that any order
differential equation of the form (5.34) with given initial values can be reduced to solving
a system of first-order differential equations. This argument is easily extended to the more
general nth-order differential equation by making exactly the same substitutions as in the
preceding in

dny/dtn
= f (t,y,y′, . . . y(n−1))

where y(n−1) denotes the (n− 1)th-order derivative of y.

5.15 Stiff Equations
When the solution of a system of differential equations contains components that change
at significantly different rates for given changes in the independent variable, the equation
system is said to be “stiff.” When this phenomenon is present, a particularly careful choice
of the step size must be made if stability is to be achieved.

We will now consider how the stiffness phenomenon arises in an apparently simple
system of differential equations. Consider the following system:

dy1/dt =−by1− cy2

dy2/dt = y1 (5.37)

This system may be written in matrix form as

dy/dt = Ay (5.38)

The solution of this system is

y1 = Aexp(r1t)+B exp(r2t)

y2 = C exp(r1t)+D exp(r2t) (5.39)

where A, B, C, and D are constants set by the initial conditions. It can easily be verified that
r1 and r2 are the eigenvalues of the matrix A.

If a numerical procedure is applied to solve these systems of differential equations, the
success of the method will depend crucially on the eigenvalues of the matrix A and in par-
ticular the ratio of the smallest and largest eigenvalues. By taking various values of b and c
in (5.37) we can generate many problems of the form (5.38) having solutions (5.39) where
the eigenvalues r1 and r2 will, of course, change from problem to problem.

The purpose of the following script is to investigate how the difficulty of solving (5.37)
depends on the ratio of the largest and smallest eigenvalues by comparing the time taken
to solve specific problems.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch05-9780123869425 — 2012/6/7 — 0:40 — Page 268 — #36

268 Chapter 5 . Solution of Differential Equations

% e3s508.m

b = [20 100 500 1000 2000]; c = [0.1 1 1 1 1]; tspan = [0 2];

options = odeset('reltol',1e-5,'abstol',1e-5);

for i = 1:length(b)

et(i) = 0;

eigenratio(i) = 0;

for j = 1:100

a = [-b(i) -c(i);1 0];

lambda = eig(a);

eigenratio(i) = eigenratio(i)+max(abs(lambda))/min(abs(lambda));

v = @(t,y) a*y;

inity = [0 1]'; time0 = clock;

[t,y] = ode15s(v,tspan,inity,options);

et(i) = et(i)+etime(clock,time0);

end

end

e_ratio = eigenratio/100

time_taken = et/100

Running this script gives

e_ratio =

1.0e+006 *

0.0040 0.0100 0.2500 1.0000 4.0000

time_taken =

0.0045 0.0120 0.0484 0.0962 0.1878

As the eigenvalue ratio increases so does the time taken to solve the problem. Problems
will arise if there is a wide variation in the magnitude of the eigenvalues.

The MATLAB function ode23s is designed to deal specifically with stiff equations. Replac-
ing ode23 by ode23s in script e3s508.m and running it gives

e_ratio =

1.0e+006 *

0.0040 0.0100 0.2500 1.0000 4.0000

time_taken =

0.0122 0.0141 0.0122 0.0111 0.0108

Note the interesting difference between these results and the output from the script using
the function ode23. Using ode23 the time increases markedly with the size of the eigen-
ratio whereas with ode23s there is little difference between the time taken to solve the
differential equations, no matter what the eigenratio.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch05-9780123869425 — 2012/6/7 — 0:40 — Page 269 — #37

5.15 Stiff Equations 269

Another alternative exists for solving stiff differential equations, ode15s. This is a vari-
able order method and has the advantage that it can be used when the matrix A of (5.38)
is time dependent. Replacing ode23 by ode15s in script e3s508.m and running it we obtain
the following output:

e_ratio =

1.0e+006 *

0.0040 0.0100 0.2500 1.0000 4.0000

time_taken =

0.0136 0.0155 0.0158 0.0144 0.0141

Clearly there is little difference between the two stiff solvers.
As an example of a matrix with widely spaced eigenvalues we can take the 8× 8 Rosser

matrix; this is available in MATLAB as rosser. The sequence of statements

>> a = rosser; lambda = eig(a);

>> eigratio = max(abs(lambda))/min(abs(lambda))

eigratio =

1.8480e+015

produces a matrix with eigenvalue ratios of order 1016. Thus a system of ordinary first-
order differential equations involving this matrix would be pathologically difficult to
solve. The significance of the eigenvalue ratio in relation to the required step size can be
generalized to systems of many equations. Consider the system of n equations

dy/dt = Ay+P(t) (5.40)

where y is an n component column vector, P(t) is an n component column vector of func-
tions of t, and A is an n×n matrix of constants. It can be shown that the solution of this
system takes the form

y(t)=
n∑

i=1

vi di exp(rit)+ s(t) (5.41)

Here r1,r2, . . . are the eigenvalues and d1, d2, . . . the eigenvectors of A. The vector func-
tion s(t) is the particular integral of the system, sometimes called the steady-state solution
since for negative eigenvalues the exponential terms should die away with increasing t. If it
is assumed that the rk < 0 for k = 1,2,3, . . . and we require the steady-state solution of sys-
tem (5.40), then any numerical method applied to solve this problem may face significant
difficulties, as we have seen. We must continue the integration until the exponential com-

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch05-9780123869425 — 2012/6/7 — 0:40 — Page 270 — #38

270 Chapter 5 . Solution of Differential Equations

ponents have been reduced to negligible levels and yet we must take sufficiently small
steps to ensure stability, thus requiring many steps over a large interval. This is the most
significant effect of stiffness.

The definition of stiffness can be extended to any system of the form (5.40). The stiff-
ness ratio is defined as the ratio of the largest and smallest eigenvalues of A and gives a
measure of the stiffness of the system. The methods used to solve stiff problems must be
based on stable techniques. The MATLAB function ode23s uses continuous step size adjust-
ment and therefore is able to deal with such problems, although the solution process may
be slow. If we use a predictor–corrector method, not only must this method be stable but
the corrector must also be iterated to convergence. An interesting discussion of this topic
is given by Ralston and Rabinowitz (1978). Specialized methods have been developed for
solving stiff problems, and Gear (1971) has provided a number of techniques that have
been reported to be successful.

5.16 Special Techniques
A further set of predictor–corrector equations may be generated by making use of an
interpolation formula due to Hermite. An unusual feature of these equations is that they
contain second-order derivatives. It is usually the case that the calculation of second-order
derivatives is not particularly difficult and consequently this feature does not add a signif-
icant amount of work to the solution of the problem. However, it should be noted that in
using a computer program for this technique the user has to supply not only the function
on the right side of the differential equation but its derivative as well. To the general user
this may be unacceptable.

The equations for Hermite’s method take the form

y(1)n+1 = yn+h
(
y′n− 3y′n−1

)
/2+h2 (17y′′n+ 7y′′n−1

)
/12

y∗ (1)n+1 = y(1)n+1+ 31
(

yn− y(1)n

)
/30 (5.42)

y′(1)n+1 = f
(

tn+1,y∗ (1)n+1

)
For k = 1,2,3, . . .

y(k+1)
n+1 = yn+h

(
y′ (k)n+1 + y′n

)/
2+h2

(
−y′′ (k)n+1 + y′′n

)
/12

This method is stable and has a smaller truncation error at each step than Hamming’s
method. Thus it may be worthwhile accepting the additional effort required by the user.
We note that since we have

dy/dt = f (t,y)

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch05-9780123869425 — 2012/6/7 — 0:40 — Page 271 — #39

5.16 Special Techniques 271

then

d2y/dt2
= df /dt

and thus yn
′′ and so on are easily calculated as the first derivative of f . The MATLAB function

fhermite implements this method, and the script follows. Note that in this function, the
function f must provide both the first and second derivatives of y.

function [tvals, yvals] = fhermite(f,tspan,startval,step)

% Hermite's method for solving

% first order differential equation dy/dt = f(t,y).

% Example call: [tvals, yvals] = fhermite(f,tspan,startval,step)

% The initial and final values of t are given by tspan = [start finish].

% Initial value of y is given by startval, step size is given by step.

% The function f(t,y) and its derivative must be defined by the user.

% 3 steps of Runge-Kutta are required so that hermite can start.

% Set up matrices for Runge-Kutta methods

b = []; c = []; d = [];

order = 4;

b = [1/6 1/3 1/3 1/6]; d = [0 0.5 0.5 1];

c = [0 0 0 0;0.5 0 0 0;0 0.5 0 0;0 0 1 0];

steps = (tspan(2)-tspan(1))/step+1;

y = startval; t = tspan(1);

ys(1) = startval; w = feval(f,t,y); fval(1) = w(1); df(1) = w(2);

yvals = startval; tvals = tspan(1);

for j = 2:2

k(1) = step*fval(1);

for i = 2:order

w = feval(f,t+step*d(i),y+c(i,1:i-1)*k(1:i-1)');

k(i) = step*w(1);

end

y1 = y+b*k'; ys(j) = y1; t1 = t+step;

w = feval(f,t1,y1); fval(j) = w(1); df(j) = w(2);

%collect values together for output

tvals = [tvals, t1]; yvals = [yvals, y1];

t = t1; y = y1;

end

%hermite now applied

h2 = step*step/12; er = 1;

for i = 3:steps

y1 = ys(2)+step*(3*fval(1)-fval(2))/2+h2*(17*df(2)+7*df(1));

t1 = t+step; y1m = y1; y10 = y1;

if i>3, y1m = y1+31*(ys(2)-y10)/30; end

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch05-9780123869425 — 2012/6/7 — 0:40 — Page 272 — #40

272 Chapter 5 . Solution of Differential Equations

w = feval(f,t1,y1m); fval(3) = w(1); df(3)=w(2);

yc = 0; er = 1;

while abs(er)>0.0000001

yp = ys(2)+step*(fval(2)+fval(3))/2+h2*(df(2)-df(3));

w = feval(f,t1,yp); fval(3) = w(1); df(3) = w(2);

er = yp-yc; yc = yp;

end

fval(1:2) = fval(2:3); df(1:2) = df(2:3);

ys(2) = yp;

tvals = [tvals, t1]; yvals = [yvals, yp];

t = t1;

end

Figure 5.18 gives the error when solving the specific equation dy/dt = y using the same
step size and starting point as for Hamming’s method—see Figure 5.9. For this particular
problem Hermite’s method performs better than Hamming’s method.

Finally we compare the Hermite, Hamming, and Adams–Bashforth–Moulton methods
for the difficult problem

dy/dt =−10y given y = 1 when t = 0

The following script implements these comparisons:

% e3s509.m

vg = @(t,x) [-10*x 100*x];

v = @(t,x) -10*x;

disp('Solution of dx/dt = -10x')

t0 = 0; y0 = 1;

tf = 1; tinc = 0.1; steps = floor((tf-t0)/tinc+1);

[t,x1] = abm(v,[t0 tf],y0,tinc);

[t,x2] = fhamming(v,[t0 tf],y0,tinc);

[t,x3] = fhermite(vg,[t0 tf],y0,tinc);

disp('t abm Hamming Hermite Exact');

for i = 1:steps

fprintf('%4.2f%12.7f%12.7f',t(i),x1(i),x2(i))

fprintf('%12.7f%12.7f\n',x3(i),exp(-10*(t(i))))

end

Note that for the function fhermite we must supply both the first and second derivatives
of y with respect to t. For the first derivative, we have directly dy/dt =−10y but the second
derivative d2y/dt2 is given by −10dy/dt =−10(−10y)= 100y. Consequently, the function
takes the form

vg = @(t,x) [-10*x 100*x];

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch05-9780123869425 — 2012/6/7 — 0:40 — Page 273 — #41

5.16 Special Techniques 273

0 1 2 3 4 5

−5

−4

−3

−2

−1

0
× 10−4

Time
R

el
at

iv
e

er
ro

r

FIGURE 5.18 Relative error in the solution of dy/dt = y using Hermite’s method with an initial
condition y = 1 when t = 0 and a step of 0.5.

The functions abm and fhamming require only the first derivative of y with respect to t, and
we define the function as follows:

v = @(t,x) -10*x;

Running the preceding script provides the following results, demonstrating the superiority
of the Hermite method.

Solution of dx/dt = -10x

t abm Hamming Hermite Exact

0.00 1.0000000 1.0000000 1.0000000 1.0000000

0.10 0.3750000 0.3750000 0.3750000 0.3678794

0.20 0.1406250 0.1406250 0.1381579 0.1353353

0.30 0.0527344 0.0527344 0.0509003 0.0497871

0.40 -0.0032654 0.0109440 0.0187528 0.0183156

0.50 -0.0171851 0.0070876 0.0069089 0.0067379

0.60 -0.0010598 0.0131483 0.0025454 0.0024788

0.70 0.0023606 0.0002607 0.0009378 0.0009119

0.80 -0.0063684 0.0006066 0.0003455 0.0003355

0.90 -0.0042478 0.0096271 0.0001273 0.0001234

1.00 0.0030171 -0.0065859 0.0000469 0.0000454

One feature that may be used to improve many of the methods discussed previously is
step size adjustment. This means that we adjust the step size h according to the progress
of the iteration. One criterion for adjusting h is to monitor the size of the truncation error.
If the truncation error is smaller than the accuracy requirement, we can increase h; how-
ever, if the truncation error is too large, we can reduce h. Step size adjustment can lead to

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch05-9780123869425 — 2012/6/7 — 0:40 — Page 274 — #42

274 Chapter 5 . Solution of Differential Equations

considerable additional work; for example, if a predictor–corrector method is used, new
initial values must be calculated. The following method is an interesting alternative to this
kind of procedure.

5.17 Extrapolation Techniques
The extrapolation method described in this section is based on a similar procedure to that
used in Romberg integration, introduced in Chapter 4. The procedure begins by obtain-
ing successive initial approximations for yn+1 using a modified mid-point method. The
interval sizes used for obtaining these approximations are calculated from

hi = hi−1/2 for i= 1, 2, . . . (5.43)

with the initial value h0 given.
Once these initial approximations have been obtained, we can use (5.44), the extrapo-

lation formula, to obtain improved approximations.

Tm, k = (4
mTm−1, k+1−Tm−1, k)/(4

m
− 1) for m= 1,2, . . . and k = 1,2, . . . s−m (5.44)

The calculations are set out in an array in much the same way as the calculations for
Romberg’s method for integration described in Chapter 4. When m= 0, the values of T0,k

for k = 0,1,2, . . . ,s are taken as the successive approximations to the values of yn+1 using
the hi values obtained from (5.43).

The formula for calculating the approximations used for the initial values T0,k in the
preceding array are computed using the following equations:

y1 = y0+hy′0 yn+1 = yn−1+ 2hy′n for n= 1, 2 . . . , Nk (5.45)

Here k = 1,2, . . . and Nk is the number of steps taken in the range of interest so that Nk = 2k

as the size of the interval is halved each time. The distance 2h between yn+1 and yn−1 values
may lead to significant variations in the magnitude of the error. Because of this, instead of
using the final value of yn+1 given by (5.45), Gragg (1965) has suggested that at the final
step these values be smoothed using the intermediate value yn. This leads to the following
values for T0,k:

T0, k =
(

yk
N−1+ 2yk

N + yk
N+1

)
/4

where the superscript k denotes the value at the kth division of the interval.
Alternatives to the method of Gragg are available for finding the initial values in the

function rombergx and various combinations of predictor–correctors may be used. It

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch05-9780123869425 — 2012/6/7 — 0:40 — Page 275 — #43

5.17 Extrapolation Techniques 275

should be noted, however, that if the corrector is iterated until convergence is achieved,
this will improve the accuracy of the initial values but at considerable computational
expense for smaller step sizes, that is, for larger N values. The following MATLAB function
rombergx implements the extrapolation method.

function [v W] = rombergx(f,tspan,intdiv,inity)

% Solves dy/dt = f(t,y) using Romberg's method.

% Example call: [v W] = rombergx(f,tspan,intdiv,inity)

% The initial and final values of t are given by tspan = [start finish].

% Initial value of y is given by inity.

% The number of interval divisions is given by intdiv.

% The function f(t,y) must be defined by the user.

W = zeros(intdiv-1,intdiv-1);

for index = 1:intdiv

y0 = inity; t0 = tspan(1);

intervals = 2^index;

step = (tspan(2)-tspan(1))/intervals;

y1 = y0+step*feval(f,t0,y0);

t = t0+step;

for i = 1:intervals

y2 = y0+2*step*feval(f,t,y1);

t = t+step;

ye2 = y2; ye1 = y1; ye0 = y0; y0 = y1; y1 = y2;

end

tableval(index) = (ye0+2*ye1+ye2)/4;

end

for i = 1:intdiv-1

for j = 1:intdiv-i

table(j) = (tableval(j+1)*4^i-tableval(j))/(4^i-1);

tableval(j) = table(j);

end

tablep = table(1:intdiv-i);

W(i,1:intdiv-i) = tablep;

end

v = tablep;

We can now call this function to solve dx/dt =−10x with x = 1 at t = 0. The following
MATLAB statement solves this differential equation when t = 0.5:

>> [fv P] = rombergx(@(t,x) -10*x,[0 0.5],7,1)

fv =

0.0067

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch05-9780123869425 — 2012/6/7 — 0:40 — Page 276 — #44

276 Chapter 5 . Solution of Differential Equations

P =

-2.5677 0.2277 0.1624 0.0245 0.0080 0.0068

0.4141 0.1580 0.0153 0.0069 0.0067 0

0.1539 0.0131 0.0068 0.0067 0 0

0.0125 0.0068 0.0067 0 0 0

0.0068 0.0067 0 0 0 0

0.0067 0 0 0 0 0

The final value, 0.0067, is better than any of the results achieved for this problem by other
methods presented in this chapter. It must be noted that only the final value is found; other
values in a given interval can be obtained if intermediate ranges are considered.

This completes our discussion of those types of differential equations known as initial
value problems. In Chapter 6 we consider a different type of differential equation known
as a boundary value problem.

5.18 Summary
This chapter has defined a range of MATLAB functions for solving differential equations
and systems of differential equations that supplement those provided in MATLAB. We have
demonstrated how these functions may be used to solve a wide variety of problems.

Problems
5.1. A radioactive material decays at a rate that is proportional to the amount that

remains. The differential equation that models this process is

dy/dt =−ky where y = y0 when t = t0

Here y0 represents the mass at time t0. Solve this equation for t = 0 to 10 given that
y0 = 50 and k = 0.05, using

(a) The function feuler, with h= 1,0.1,0.01
(b) The function eulertp, with h= 1,0.1
(c) The function rkgen, set for the classical method, with h= 1

Compare your results with the exact solution, y = 50exp(−0.05t).

5.2. Solve y′ = 2xy with initial conditions y0 = 2 when x0 = 0 in the range x = 0 to 2. Use
the classical, Merson, and Butcher variants of the Runge–Kutta method, all
implemented in function rkgen, with step h= 0.2. Note that the exact solution is
y = 2exp(x2).

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch05-9780123869425 — 2012/6/7 — 0:40 — Page 277 — #45

Problems 277

5.3. Repeat Problem 5.1 using the following predictor–corrector methods with h= 2
and for t = 0 to 50:

(a) Adams–Bashforth–Moulton’s method, function abm

(b) Hamming’s method, function fhamming

5.4. Express the following second-order differential equation as a pair of first-order
equations:

with the initial conditions y = 1/2 and y′ =−1/2 at x = 1. Solve the pair of
first-order equations using both ode23 and ode45 in the range 1 to 4. The exact
solution is given by y = 1/(1+ x2).

5.5. Use function fhermite to solve

(a) Problem 5.1 with h= 1
(b) Problem 5.2 with h= 0.2
(c) Problem 5.2 with h= 0.02

5.6. Use the MATLAB function rombergx to solve the following problems. In each case use
eight divisions.

(a) y′ = 3y/x with initial conditions x = 1, y = 1. Determine y when x = 20.
(b) y′ = 2xy with initial conditions x = 0, y = 2. Determine y when x = 2.

5.7. Consider the predator–prey problem described in Section 5.12. This problem may
be extended to consider the effect of culling on the interacting populations by
subtracting a term from both equations in (5.28) as follows:

dP/dt = K1P−CPQ− S1P

dQ/dt = K2Q−DPQ− S2Q

Here S1 and S2 are constants that provide the culling level for the populations. Use
ode45 to solve this problem with K1 = 2, K2 = 10, C = 0.001, and D= 0.002 and
initial values of the population P = 5000 and Q= 100. Assuming that S1 and S2 are
equal, experiment with values in the range 1 to 2. There is a wealth of experimental
opportunity in this problem and the reader is encouraged to investigate different
values of S1 and S2.

5.8. Solve the Lorenz equations given in Section 5.11 for r = 1, using ode23.

5.9. Use the Adams–Bashforth–Moulton method to solve dy/dt =−5y, with y = 50 when
t = 0, in the range t = 0 to 6. Try step sizes h of 0.1, 0.2, 0.25, and 0.4. Plot the error
against t for each case. What can you deduce from these results with regard to the
stability of the method? The exact answer is y = 50e−5t .

xy′′− y′ 8x3y3
= 0−

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch05-9780123869425 — 2012/6/7 — 0:40 — Page 278 — #46

278 Chapter 5 . Solution of Differential Equations

5.10. The following first-order differential equation represents the growth in a
population in an environment that can support a maximum population of K :

dN/dt = rN (1−N /K)

where N(t) is the population at time t and r is a constant. Given N = 100 when
t = 0, use the MATLAB function ode23 to solve this differential equation in the range
0 to 200 and plot a graph of N against time. Take K= 10,000 and r= 0.1.

5.11. The Leslie–Gower predator–prey problem takes the form

dN1/dt =N1(r1− cN1−b1N2)

dN2/dt =N2
(
r2−b2 (N2/N1)

)
where N1 = 15 and N2 = 15 at time t = 0. Use ode45 to solve this equation given
r1 = 1, r2 = 0.3, c = 0.001, b1 = 1.8, and b2 = 0.5. Plot N1 and N2 in the range
t = 0 to 40.

5.12. By setting u= dx/dt, reduce the following second-order differential equation to
two first-order differential equations.

d2x

dt2
+ k

(
1
v1
+

1
v2

)
dx
dt
= 0

where x = 0 and dx/dt = 10 when t = 0. Use the MATLAB function ode45 to solve this
problem given that v1 = v2 = 1 and k = 10.

5.13. A model for a conflict between guerilla, g2, and government forces, g1, is given by
the equations

dg1/dt =−cg2

dg2/dt =−rg2g1

Given that the government forces number 2000 and the guerilla forces number 700
at time t = 0, use the function ode45 to solve this system of equations, taking c = 30
and r = 0.01. You should solve the equations over the time interval 0 to 0.6. Plot a
graph of the solution showing the changes in government and guerilla forces over
time.

5.14. The following differential equation provides a simple model of a suspension
system. The constant m gives the mass of moving parts, the constant k relates to
stiffness of the suspension system, and the constant c is a measure of the damping
in the system. F is a constant force applied at t = 0.

m
d2x

dt2
+ c

dx
dt
+ kx = F

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch05-9780123869425 — 2012/6/7 — 0:40 — Page 279 — #47

Problems 279

Given that m= 1, k = 4, F = 1, and both x = 0 and dx/dt = 0 when t = 0, use ode23

to determine the response, x(t) for t = 0 to 8 and plot a graph of x against t in each
case.

Assume the following values for c:

(a) c = 0 (b) c = 0.3
√
(mk) (c) c =

√
(mk)

(d) c = 2
√
(mk) (e) c = 4

√
(mk)

Comment on the nature of your solutions. The exact solutions are as follows:
For cases (a), (b), and (c)

x(t)=
F
k

[
1−

1√
1− ζ 2

e−ζωnt cos(ωdt−φ)
]

For case (d)

x (t)=
F
k

[
1− (1+ωnt)e−ωnt]

where

ωn =
√

k/m, ζ = c/(2
√

mk), ωd = ωn

√
1− ζ 2

φ = tan−1
(
ζ

/√
1− ζ 2

)
For case (e)

x(t)=
F
k

[
1+

1
2q
(s2es1t

− s1es2t)

]
where

q= ωn

√
ζ 2− 1, s1 =−ζωn+q, s2 =−ζωn−q

Plot these solutions and compare them with your numerical solutions.

5.15. Gilpin’s system for modeling the behavior of three interacting species is given by
the differential equations

dx1/dt = x1− 0.001x2
1 − 0.001kx1x2− 0.01x1x3

dx2/dt = x2− 0.001kx1x2− 0.001x2
2 − 0.001x2x3

dx3/dt =−x3+ 0.005x1x3+ 0.0005x2x3

Given x1 = 1000, x2 = 300, and x3 = 400 at time t = 0, and taking k = 0.5, use ode45

to solve this system of equations in the range t = 0 to t = 50 and plot the behavior of
the population of the three species against time.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch05-9780123869425 — 2012/6/7 — 0:40 — Page 280 — #48

280 Chapter 5 . Solution of Differential Equations

5.16. A problem that arises in planet formation is where a range of objects called
planetesimals coagulate to form larger objects and this coagulation continues until
a stable state is reached where a number of planetary size objects have been
created. To simulate this situation we assume that a minimum size object exists of
mass m1 and the masses of all other objects are integral multiples of the mass of
this object. Thus there are nk objects of mass mk where mk = km1. Then the
manner in which the number of objects of specific mass changes over time t is
given by the Coagulation Equation as follows:

dnk

dt
=

1
2

∑
i+j=k

Aijninj −nk

maxk∑
i=k+1

Akini

The values Aij are the probabilities of collisions between the objects i and j.
A simple interpretation of this equation is that number of bodies of mass nk is
increased by collisions between bodies of lesser mass but decreased by collisions
with larger bodies.

As an exercise write out the equations for this system for the case where there
are only three different sizes of planetesimals and assign Aij equal to
ninj/(1000(ni+nj)). Note that the division by 1000 ensures that impacts are
relatively rare, which seems a plausible asumption in the vast volume of space
considered. The initial values for the numbers of planetesimals n1,n2,n3 are taken
as 200, 25, and 1, respectively.

Solve the resulting system using the MATLAB function ode45 using a time interval
of 2 units. Study the case where the values of the collision probabilities are
calculated using the varying values of the number of planetesimals as time varies.
Plot graphs of your results.

5.17. The following example studies the effect of life on a planetary environment. A
relatively simple way of studying these effects is to consider the concept of daisy
world. This envisages a world inhabited by only two life forms; white and black
daisies. This situation can be modeled as a pair of differential equations where the
area covered by the black daisies ab and the area covered by the white daisies aw

changes with time t as follows:

dab/dt = ab(xβb− γ)

daw/dt = aw(xβw − γ)

where x = 1−ab−aw represents the area not covered by either daisy assuming the
total area of the planet is represented by unity. The value of γ gives the death rate
for the daisies and βb and βw give the growth rate for the black and white daisies
respectively. This is related to the energy they receive from the planetary Sun or the

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch05-9780123869425 — 2012/6/7 — 0:40 — Page 281 — #49

Problems 281

local temperature. Consequently, an empirical formula may be given for these
values as follows:

βb = 1− 0.003265(295.5−Tb)
2

and

βw = 1− 0.003265(295.5−Tw)
2

where the values of Tb and Tw lie in the range 278 to 313 K, where K denotes degrees
Kelvin. Outside this range, growth is assumed zero. Taking γ = 0.3, Tb = 295 K,
Tw = 285 K, and initial values for ab = 0.2, aw = 0.3, solve the system of equations
for t = [0,10] using the MATLAB function ode45. Plot graphs of the changes in ab and
aw with respect to time. It should be noted that the extent of the areas covered by
the black and white daisies will affect the overall temperature of the planet, since
white and dark areas react differently in the way they absorb energy from the Sun.

EDELKAMP 19-ch15-671-700-9780123725127 2011/5/28 14:50 Page 672 #2

This page intentionally left blank

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch06-9780123869425 — 2012/5/30 — 19:29 — Page 283 — #1

6
Boundary Value Problems

In Chapter 5, we examined methods for solving initial value problems. The solution of
these equations depends on the nature of the equation and the initial conditions. In this
chapter algorithms for solving certain boundary value problems and problems with both
boundary and initial values are given. The solution of a boundary value problem in one
independent variable must satisfy specified conditions at two points, and the solution of
a boundary value problem in two independent variables must satisfy specified conditions
along a curve or set of lines enclosing a specified region.

Although not considered in this chapter, a further important boundary value problem
is one with three independent variables—for example, Laplace’s equation in three dimen-
sions. In this case the solution must satisfy specified conditions over a surface enclosing
a specified volume. Note that in a mixed boundary and initial value problem one inde-
pendent variable, usually time, will be associated with one or more initial values and the
remaining independent variables will depend on boundary values.

6.1 Classification of Second-Order Partial
Differential Equations

In this chapter we restrict the discussion to second-order differential equations in one or
two independent variables; Figure 6.1 shows how these equations may be classified. The
general form of these equations for one and two independent variables is given by (6.1)
and (6.2), respectively.

A(x)
d2z

dx2
+ f

(
x,z,

dz
dx

)
= 0 (6.1)

A
(
x,y

) ∂2z

∂x2
+B

(
x,y

) ∂2z
∂x∂y

+C
(
x,y

) ∂2z

∂y2
+ f

(
x,y,z,

∂z
∂x

,
∂z
∂y

)
= 0 (6.2)

These equations are linear in the second-order terms, but the terms

f
(

x,z,
dz
dx

)
and f

(
x,y,z,

∂z
∂x

,
∂z
∂y

)

Numerical Methods Using MATLAB
®. DOI: 10.1016/B978-0-12-386942-5.00006-0

© 2012 Elsevier Inc. All rights reserved.
283

http://dx.doi.org/10.1016/B978-0-12-386942-5.00006-0

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch06-9780123869425 — 2012/5/30 — 19:29 — Page 284 — #2

284 Chapter 6 . Boundary Value Problems

Typically
Typically

Second-order partial
differential equations
in two independent

variables

Second-order ordinary
differential equations

Second-order
differential equations

Two-point
boundary value

problem

Initial
value

problem

Boundary value
problem

Elliptic equation
(e.g., Laplace or

Poisson equation)

Mixed boundary and
initial value problem

Parabolic equation
(e.g., one-dimensional

heat flow)
Hyperbolic equation

(e.g., one-dimensional
wave equation)

FIGURE 6.1 Second-order differential equations with one or two independent variables and their
solutions.

may be linear or nonlinear. In particular, (6.2) is classified as an elliptic, parabolic, or
hyperbolic partial differential equation as follows:

If B2
− 4AC < 0, the equation is elliptic.

If B2
− 4AC = 0, the equation is parabolic.

If B2
− 4AC > 0, the equation is hyperbolic.

Since the coefficients A, B, and C are, in general, functions of the independent variables,
the classification of (6.2) may vary in different regions of the domain in which the problem
is defined. We will commence with a study of (6.1).

6.2 The Shooting Method
An initial value problem and a two-point boundary value problem derived from the same
differential equation may have the same solution. For example, consider the differential
equation

d2y

dx2
+ y = cos 2x (6.3)

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch06-9780123869425 — 2012/5/30 — 19:29 — Page 285 — #3

6.2 The Shooting Method 285

1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

x

y

s = 0

s = −1

s = −1.516

s = −1.75

s = −2

FIGURE 6.2 Solutions for x2(d2y/dx2)− 6y = 0 with y = 1 and dy/dx = s when x = 1, for trial values of s.

Given the initial conditions that when x = 0, then y = 0 and dy/dx = 1, the solution of (6.3)
is

y = (cosx− cos2x) /3+ sinx

However, this solution also satisfies (6.3) with the two boundary conditions x = 0, y = 0
and x = π/2, y = 4/3.

This observation provides a useful method of solving two-point boundary value prob-
lems called “the shooting method.” As an example, consider the equation

x2 d2y

dx2
− 6y = 0 (6.4)

with boundary conditions y = 1 when x = 1 and y = 1 when x = 2. We will treat this prob-
lem as an initial value problem where y = 1 when x = 1 and assume trial values for dy/dx
when x = 1, denoted by s. Figure 6.2 shows the solution for various trial values of s. When
s=−1.516, the solution satisfies the required boundary condition that y = 1 when x = 2.
The solution for (6.4) can be found by changing it into a pair of first-order differential equa-
tions and using any appropriate numerical method described in Chapter 5. Equation (6.4)
is equivalent to

dy/dx = z

dz/dx = 6y/x2
(6.5)

We must determine the slope dy/dx that gives the correct boundary condition. This could
be achieved by trial and error, but this is tedious and in practice we can use interpolation.
The following script solves (6.5) for four trial slopes using the MATLAB function ode45. Vec-
tor s contains trial values of the slope dy/dx at x = 1. Vector b contains the corresponding
values of y when x = 2, computed by ode45. From these values of y we can interpolate to

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch06-9780123869425 — 2012/5/30 — 19:29 — Page 286 — #4

286 Chapter 6 . Boundary Value Problems

determine the value of s required to give y = 1 when x = 2. The interpolation is carried out
using the function aitken (described in Chapter 7). Finally, this interpolated value of slope,
s0, is used in ode45 to determine the correct solution to (6.5).

% e3s601.m

f = @(x,y)[y(2); 6*y(1)/x^2];

option = odeset('RelTol',0.0005);

s = -1.25:-0.25:-2; s0 = [];

ncase = length(s); b = zeros(1,ncase);

for i = 1:ncase

[x,y] = ode45(f,[1 2],[1 s(i)],option);

[m,n] = size(y);

b(1,i) = y(m,1);

end

s0 = aitken(b,s,1)

[x,y] = ode45(f,[1 2],[1 s0],option);

[x y(:,1)]

The right sides of the differential equations (6.5) are defined in the first line of this script.
Running this script gives

s0 =

-1.5161

ans =

1.0000 1.0000

1.0111 0.9836

1.0221 0.9679

1.0332 0.9529

1.0442 0.9386

1.0692 0.9084

1.0942 0.8812

1.1192

This output is very lengthy and part of it has therefore been deleted. The final stages are as
follows:

0.9293

1.9442 0.9501

1.9582 0.9622

1.9721 0.9745

1.9861 0.9871

2.0000 1.0000

The interpolated value of the slope is −1.5161. The first column of ans gives the values of
x and the second gives the corresponding values of y.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch06-9780123869425 — 2012/5/30 — 19:29 — Page 287 — #5

6.3 The Finite Difference Method 287

While the shooting method is not particularly efficient, it does have the advantage of
being able to solve nonlinear boundary value problems. We now examine an alternative
method for solving boundary problems: the finite difference method.

6.3 The Finite Difference Method
Chapter 4 shows how derivatives can be approximated by the use of finite differences. We
can use the same approach for the solution of certain types of differential equations. The
method effectively replaces the differential equation by a set of approximate difference
equations. The central difference approximations for the first and second derivatives of z
with respect to x are given by (6.6) and (6.7), which follow. In these and subsequent equa-
tions the operator Dx represents d/dx, D2

x = d2/dx2, and so on. The subscript x is omitted
where there is no danger of confusion. Thus at zi,

Dzi ≈ (−zi−1+ zi+1)/
(
2h
)

(6.6)

D2zi ≈ (zi−1− 2zi+ zi+1)/h2 (6.7)

In (6.6) and (6.7), h is the distance between the nodal points (see Figure 6.3) and these
approximating formulae have errors of order h2. Higher-order approximations can be gen-
erated that have errors of order h4, but we do not require them. To achieve the same degree
of accuracy we can make h smaller.

We can also determine the approximations for unevenly spaced nodal points. For
example, it can be shown that (6.6) and (6.7) become

Dzi ≈
1

hβ(β + 1)

{
−β2zi−1−

(
1−β2

)
zi+ zi+1

}
(6.8)

D2zi ≈
2

h2β(β + 1)

{
βzi−1− (1+β)zi+ zi+1

}
(6.9)

where h= xi− xi−1 and βh= xi+1− xi. Note that when β = 1, (6.8) and (6.9) simplify to
(6.6) and (6.7), respectively. Approximation (6.8) has an error of order h2, regardless of the
value of β, and (6.9) has an error of order h for β 6= 1 and h2 for β = 1.

h

x

z
h

i

zi−1 zi zi+1

i − 1 i + 1

FIGURE 6.3 Equispaced nodal points.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch06-9780123869425 — 2012/5/30 — 19:29 — Page 288 — #6

288 Chapter 6 . Boundary Value Problems

Equations (6.6) through (6.9) are central difference approximations; that is, the approx-
imation for a derivative uses values of the function on either side of the point at which the
derivative is to be determined. These are generally the most accurate approximations, but
in some situations it is necessary to use forward or backward difference approximations.
For example, the forward difference approximation for Dzi is

Dzi ≈
(
−zi+ zi+1

)
/h with an error of order h (6.10)

The backward difference approximation for Dzi is

Dzi ≈
(
−zi−1+ zi

)
/h with an error of order h (6.11)

To determine solutions for partial differential equations we require the finite difference
approximation for various partial derivatives in two or more variables. These approxima-
tions can be derived by combining some of the preceding equations. For example, we can
determine the finite difference approximation for ∂2z/∂x2

+ ∂2z/∂y2 (i.e., ∇2z) from the
approximation (6.7) or (6.9). To avoid double subscripts we use the notation applied to the
mesh shown in Figure 6.4. Thus, from (6.7),

∇
2zi ≈ (zl − 2zi+ zr)/h2

+ (za− 2zi+ zb)/k2
≈

{
r2zl + r2zr + za+ zb− 2

(
1+ r2

)
zi

}/(
r2h2

)
(6.12)

where r = k/h. If r = 1, then (6.12) becomes

∇
2zi ≈ (zl + zr + za+ zb− 4zi)/h2 (6.13)

These central difference approximations for ∇2zi have an error of O(h2).
The finite difference approximation for the second-order mixed derivative of z with

respect to x and y, ∂2z/∂x∂y or Dxy, is determined by applying (6.6) in the x direction to

k
h

aral

l

b

a

i r

bl br

FIGURE 6.4 Grid mesh in rectangular coordinates.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch06-9780123869425 — 2012/5/30 — 19:29 — Page 289 — #7

6.4 Two-Point Boundary Value Problems 289

each term of (6.6) in the y direction:

Dxyzi ≈
[
(zr − zl)a/(2h)− (zr − zl)b/(2h)

]
/(2k)≈ (zar − zal − zbr + zbl)/(4hk) (6.14)

We can develop the finite difference approximations in other coordinate systems such as
skew and polar coordinates, and we can have uneven spacing of the node points in any
direction; see Salvadori and Baron (1961).

6.4 Two-Point Boundary Value Problems
Before considering the application of finite difference methods to solve a differential equa-
tion, we first consider the nature of the solution. We begin by considering the following
second-order inhomogeneous differential equation in one independent variable:

(
1+ x2

) d2z

dx2
+ x

dz
dx
− z = x2 (6.15)

subject to the boundary conditions x = 0, z = 1 and x = 2, z = 2. The solution of this
equation is

z =−

√
5

6
x+

1
3

(
1+ x2

)1 /2
+

1
3

(
2+ x2

)
(6.16)

This is the only solution that satisfies both the equation and its boundary conditions. In
contrast to this, consider the solution of the second-order homogeneous equation

x
d2z

dx2
+

dz
dx
+ λx−1z = 0 (6.17)

subject to the conditions that z = 0 at x = 1 and dz/dx = 0 at x = e (where e = 2.7183 . . .). If
λ is a given constant, this homogeneous equation has the trivial solution z = 0. However,
if λ is an unknown, then we can determine values of λ to give nontrivial solutions for z.
Equation (6.17) is then a characteristic value or eigenvalue problem. Solving (6.17) gives
an infinite number of solutions for λ and z as follows:

zn = sin
{
(2n+ 1)

π

2
loge |x|

}
, λn = {(2n+ 1)π/2}2 where n= 0, 1, 2, . . . (6.18)

The values of λ that satisfy (6.18) are called characteristic values or eigenvalues, and the
corresponding values of z are called characteristic functions or eigenfunctions. This partic-
ular type of boundary value problem is called a characteristic value or eigenvalue problem.
It has arisen because both the differential equation and the specified boundary conditions
are homogeneous.

The application of finite differences to the solution of boundary value problems is now
illustrated by Examples 6.1 and 6.2.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch06-9780123869425 — 2012/5/30 — 19:29 — Page 290 — #8

290 Chapter 6 . Boundary Value Problems

Example 6.1
Determine an approximate solution for (6.15). We begin by multiplying (6.15) by 2h2 and writing

d2z/dx2 as D2z, and so on, to give

2(1+ x2)(h2D2z)+ xh
(
2hDz

)
− 2h2z = 2h2x2 (6.19)

Using (6.6) and (6.7), we can replace (6.19) by

2
(

1+ x2
i

)
(zi−1− 2zi+ zi+1)+ xih(−zi−1+ zi+1)− 2h2zi = 2h2x2

i (6.20)

Figure 6.5 shows x divided into four segments (h= 1/2) with nodes numbered 1 to 5. Applying
(6.20) to nodes 2, 3, and 4 gives

At node 2: 2(1+ 0.52)(z1− 2z2+ z3)+ 0.25(−z1+ z3)− 0.5z2 = 0.5(0.52)

At node 3: 2(1+ 1.02)(z2− 2z3+ z4)+ 0.50(−z2+ z4)− 0.5z3 = 0.5(1.02)

At node 4: 2(1+ 1.52)(z3− 2z4+ z5)+ 0.75(−z3+ z5)− 0.5z4 = 0.5(1.52)

The problem boundary conditions are x = 0, z = 1 and x = 2, z = 2. Thus z1 = 1 and z5 = 2. Using

these values, the preceding equations can be simplified and written in matrix form:−44 22 0

28 −68 36

0 46 −108

z2

z3

z4

=
 −17

4

−107

This equation system can easily be solved using MATLAB as follows:

>> A = [-44 22 0;28 -68 36;0 46 -108];

>> b = [-17 4 -107].';

>> y = A\b

y =

0.9357

1.0987

1.4587

Note that the rows in the preceding matrix equation can always be scaled in order to make the
coefficient matrix symmetrical. This is important in a large problem.

Node numbers

4

x = 0

2 531

x = 2

FIGURE 6.5 Node numbering used in the solution of (6.15).

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch06-9780123869425 — 2012/5/30 — 19:29 — Page 291 — #9

6.4 Two-Point Boundary Value Problems 291

To increase the accuracy of the solution we must increase the number of nodal points that

consequently decrease h. However, formulating the finite difference approximation by hand for

a large number of nodes is a tedious and error-prone process. The MATLAB function twopoint

implements the process of solving the second-order boundary problem comprising differential

equation (6.21) together with appropriate boundary conditions.

C (x)
d2z

dx2
+D (x)

dz
dx
+E (x)z = F (x) (6.21)

The user must supply a vector listing the values of nodal points chosen. These do not have to be
equispaced. The user must also supply vectors listing the values of C(x), D(x), E(x), and F(x) for
the nodal points. Finally, the user must provide the boundary conditions, which can be in terms
of either z or dz/dx.

function y = twopoint(x,C,D,E,F,flag1,flag2,p1,p2)

% Solves 2nd order boundary value problem

% Example call: y = twopoint(x,C,D,E,F,flag1,flag2,p1,p2)

% x is a row vector of n+1 nodal points.

% C, D, E and F are row vectors

% specifying C(x), D(x), E(x) and F(x).

% If y is specified at node 1, flag1 must equal 1.

% If y' is specified at node 1, flag1 must equal 0.

% If y is specified at node n+1, flag2 must equal 1.

% If y' is specified at node n+1, flag2 must equal 0.

% p1 & p2 are boundary values (y or y') at nodes 1 and n+1.

n = length(x)-1;

h(2:n+1) = x(2:n+1)-x(1:n);

h(1) = h(2); h(n+2) = h(n+1);

r(1:n+1) = h(2:n+2)./h(1:n+1);

s = 1+r;

if flag1==1

y(1) = p1;

else

slope0 = p1;

end

if flag2==1

y(n+1) = p2;

else

slopen = p2;

end

W = zeros(n+1,n+1);

if flag1==1

c0 = 3;

W(2,2) = E(2)-2*C(2)/(h(2)^2*r(2));

W(2,3) = 2*C(2)/(h(2)^2*r(2)*s(2))+D(2)/(h(2)*s(2));

b(2) = F(2)-y(1)*(2*C(2)/(h(2)^2*s(2))-D(2)/(h(2)*s(2)));

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch06-9780123869425 — 2012/5/30 — 19:29 — Page 292 — #10

292 Chapter 6 . Boundary Value Problems

else

c0=2;

W(1,1) = E(1)-2*C(1)/(h(1)^2*r(1));

W(1,2) = 2*C(1)*(1+1/r(1))/(h(1)^2*s(1));

b(1) = F(1)+slope0*(2*C(1)/h(1)-D(1));

end

if flag2==1

c1 = n-1;

W(n,n) = E(n)-2*C(n)/(h(n)^2*r(n));

W(n,n-1) = 2*C(n)/(h(n)^2*s(n))-D(n)/(h(n)*s(n));

b(n) = F(n)-y(n+1)*(2*C(n)/(h(n)^2*s(n))+D(n)/(h(n)*s(n)));

else

c1 = n;

W(n+1,n+1) = E(n+1)-2*C(n+1)/(h(n+1)^2*r(n+1));

W(n+1,n) = 2*C(n+1)*(1+1/r(n+1))/(h(n+1)^2*s(n+1));

b(n+1) = F(n+1)-slopen*(2*C(n+1)/h(n+1)+D(n+1));

end

for i = c0:c1

W(i,i) = E(i)-2*C(i)/(h(i)^2*r(i));

W(i,i-1) = 2*C(i)/(h(i)^2*s(i))-D(i)/(h(i)*s(i));

W(i,i+1) = 2*C(i)/(h(i)^2*r(i)*s(i))+D(i)/(h(i)*s(i));

b(i) = F(i);

end

z = W(flag1+1:n+1-flag2,flag1+1:n+1-flag2)\b(flag1+1:n+1-flag2)';

if flag1==1 & flag2==1, y = [y(1); z; y(n+1)]; end

if flag1==1 & flag2==0, y = [y(1); z]; end

if flag1==0 & flag2==1, y = [z; y(n+1)]; end

if flag1==0 & flag2==0, y = z; end

We can use this function to solve (6.15) for nine nodes using the following script:

% e3s602.m

x = 0:.2:2;

C = 1+x.^2; D = x; E = -ones(1,11); F = x.^2;

flag1 = 1; p1 = 1; flag2 = 1; p2 = 2;

z = twopoint(x,C,D,E,F,flag1,flag2,p1,p2);

B = 1/3; A = -sqrt(5)*B/2;

xx = 0:.01:2;

zz = A*xx+B*sqrt(1+xx.^2)+B*(2+xx.^2);

plot(x,z,'o',xx,zz)

xlabel('x'); ylabel('z')

This script outputs the graph of Figure 6.6.
The results from the finite difference analysis are very accurate. This is because the solution

of the boundary problem, given by (6.16), is well approximated by a low-order polynomial.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch06-9780123869425 — 2012/5/30 — 19:29 — Page 293 — #11

6.4 Two-Point Boundary Value Problems 293

0 0.5 1 1.5 2
0.8

1

1.2

1.4

1.6

1.8

2

x
z

FIGURE 6.6 Finite difference solution of (1+ x2)(d2z/dx2)+ xdz/dx− z = x2. The ◦ indicates the finite
difference estimate; the continuous line is the exact solution.

Example 6.2
Determine the approximate solution of (6.17) subject to the boundary conditions that z = 0

at x = 1 and dz/dx = 0 at x = e. The exact eigensolutions are given by λn = {(2n+ 1)π/2}2

and zn(x)= sin {(2n+ 1)(π/2) loge |x|}, where n= 0,1, . . . ,∞. We will use the node-numbering

scheme shown in Figure 6.7. To apply the boundary condition at x = e we must consider the

finite difference approximation for Dz at node 5 (i.e., at x = e) and make Dz5 = 0. Applying (6.6),

we have

2hDz5 =−z4+ z6 = 0 (6.22)

Note that we have been forced to introduce a fictitious node, node 6. However, from (6.22),
z6 = z4.

Multiplying (6.17) by 2h2 gives

2x(h2D2z)+h
(
2hDz

)
=−λ2x−1h2z

Thus,

2xi
(
zi−1− 2zi+ zi+1

)
+h

(
−zi−1+ zi+1

)
=−λ2x−1

i h2zi

Node numbers

41 3 52 6

x = 1 x = e

FIGURE 6.7 Node numbering used in the solution of (6.17).

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch06-9780123869425 — 2012/5/30 — 19:29 — Page 294 — #12

294 Chapter 6 . Boundary Value Problems

Now L= e− 1= 1.7183; thus h= L/4= 0.4296. Applying (6.19) to nodes 2 through 5, we have

At node 2: 2(1.4296)(z1− 2z2+ z3)+ 0.4296(−z1+ z3)=−2λ(1.4296)−1(0.4296)2z2

At node 3: 2(1.8591)(z2− 2z3+ z4)+ 0.4296(−z2+ z4)=−2λ(1.8591)−1(0.4296)2z3

At node 4: 2(2.2887)(z3− 2z4+ z5)+ 0.4296(−z3+ z5)=−2λ(2.2887)−1(0.4296)2z4

At node 5: 2(2.7183)(z4− 2z5+ z6)+ 0.4296(−z4+ z6)=−2λ(2.7183)−1(0.4296)2z5

Letting z1 = 0 and z6 = z4 leads to

−5.7184 3.2887 0 0

3.2887 −7.4364 4.1478 0

0 4.1478 −9.1548 5.0070

0 0 10.8731 −10.8731

z2

z3

z4

z5

= λ

−0.2582 0 0 0

0 −0.1985 0 0

0 0 −0.1613 0

0 0 0 −0.1358

z2

z3

z4

z5

We can solve these equations using MATLAB as follows:

>> A = [-5.7184 3.2887 0 0;3.2887 -7.4364 4.1478 0;

0 4.1478 -9.1548 5.0070; 0 0 10.8731 -10.8731];

>> B = diag([-0.2582 -0.1985 -0.1613 -0.1358]);

>> [u lambda] = eig(A,B)

u =

-0.5424 1.0000 -0.4365 0.0169

-0.8362 0.1389 1.0000 -0.1331

-0.9686 -0.6793 -0.3173 0.5265

-1.0000 -0.9112 -0.8839 -1.0000

lambda =

2.5110 0 0 0

0 20.3774 0 0

0 0 51.3254 0

0 0 0 122.2197

The exact values for the lowest four eigenvalues are 2.4674, 22.2066, 61.6850, and 120.9027.
The graph of Figure 6.8 shows the first two eigenfunctions z0(x) and z1(x) and the estimates
derived from the first and second columns of the preceding array u. Note that the values of u
have been scaled to make those corresponding to the node z5 either 1 or −1. The following
script evaluates and plots the exact eigenfunctions z0(x) and z1(x) and plots the scaled sample
points that estimate these functions.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch06-9780123869425 — 2012/5/30 — 19:29 — Page 295 — #13

6.5 Parabolic Partial Differential Equations 295

1 1.5 2 2.5

−1

−0.5

0

0.5

1

x
z

FIGURE 6.8 The finite difference estimates for the first () and second (◦) eigenfunctions of
x(d2z/dx2)+dz/dx+ λz/x = 0. Solid lines show the exact eigenfunctions z0(x) and z1(x).

% e3s603.m

x = 1:.01:exp(1);

% compute eigenfunction values scaled to 1 or -1.

z0 = sin((1*pi/2)*log(abs(x)));

z1 = sin((3*pi/2)*log(abs(x)));

% plot eigenfuctions

plot(x,z0,x,z1), hold on

% Discrete approximations to eigenfunctions

% Scaled to 1 or -1.

u0 = [0.5424 0.8362 0.9686 1];

u1 = (1/0.9112)*[1 0.1389 -0.6793 -0.9112];

% determine x values for plotting

r = (exp(1)-1)/4;

xx = [1+r 1+2*r 1+3*r 1+4*r];

plot(xx,u0,'*',xx,u1,'o'), hold off

axis([1 exp(1) -1.2 1.2])

xlabel('x'), ylabel('z')

6.5 Parabolic Partial Differential Equations
The general second-order partial differential equation in terms of the independent vari-
ables x and y is given by (6.2). The equation is repeated here, except that y has been
replaced by t.

A(x, t)
∂2z

∂x2
+B(x, t)

∂2z
∂x∂t

+C(x, t)
∂2z

∂t2
+ f

(
x, t,z,

∂z
∂x

,
∂z
∂t

)
= 0 (6.23)

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch06-9780123869425 — 2012/5/30 — 19:29 — Page 296 — #14

296 Chapter 6 . Boundary Value Problems

This equation will be a parabolic equation if B2
− 4AC = 0. Parabolic equations are not

defined in a closed domain, but propagate in an open domain. For example, the one-
dimensional heat-flow equation, which describes heat flow assuming no energy genera-
tion, is

K
∂2u

∂x2
=
∂u
∂t

, 0< x < L and t > 0 (6.24)

where K is the thermal diffusivity and u is the temperature of the material. Comparing
(6.24) with (6.23), we see that A, B, and C of (6.23) are K , 0, and 0, respectively, so that the
term B2

− 4AC is zero and the equation is parabolic.
To solve this equation, boundary conditions must be specified at x = 0 and x = L and

initial conditions when t = 0 must be given. To develop a finite difference solution we
divide the spatial domain into n sections, each of length h, so that h= L/n, and consider
as many time steps as required, each time step of duration k. A finite difference approx-
imation for (6.24) at node (i, j) is obtained by replacing ∂2u/∂x2 by the central difference
approximation (6.7) and ∂u/∂t by the forward difference approximation (6.10) to give

K
(

ui−1,j − 2ui,j +ui+1,j

h2

)
=

(
−ui,j +ui,j+1

k

)
(6.25)

or

ui,j+1 = ui,j +α(ui−1,j − 2ui,j +ui+1,j), i= 0, 1, . . . , n; j = 0, 1, . . . (6.26)

In (6.26), α = Kk/h2. Node (i, j) is the point x = ih at time jk. Equation (6.26) allows us to
determine ui, j+1, that is, u at time j+ 1 from values of u at time j. Values of ui,0 are provided
by the initial conditions; values of u0, j and un, j are obtained from the boundary conditions.
This method of solution is called the explicit method.

In the numeric solution of parabolic partial differential equations, solution stability
and convergence are important. It can be proved that when using the explicit method we
must make α ≤ 0.5 to ensure a steady decay of the entire solution. This requirement means
that the grid separation in time must sometimes be very small, necessitating a very large
number of time steps.

An alternative finite difference approximation for (6.24) is obtained by considering
node (i, j+ 1). We again approximate ∂2u/∂x2 by the central difference approximation
(6.7), but we approximate ∂u/∂t by the backward difference approximation (6.11) to give

K
(

ui−1,j+1− 2ui,j+1+ui+1,j+1

h2

)
=

(
−ui,j +ui,j+1

k

)
(6.27)

This equation is identical to (6.25) except that approximation is made at the (j+ 1)th time
step instead of at the jth time step. Rearranging (6.27) with α = Kk/h2 gives

(1+ 2α)ui,j+1−α(ui+1,j+1+ui−1,j+1)= ui,j (6.28)

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch06-9780123869425 — 2012/5/30 — 19:29 — Page 297 — #15

6.5 Parabolic Partial Differential Equations 297

where i= 0,1, . . . ,n; j = 0,1, The three variables on the left side of this equation are
unknown. However, if we have a grid of n+ 1 spatial points, then at time j+ 1 there are
n− 1 unknown nodal values and two known boundary values. We can assemble the set of
n− 1 equations of the form of (6.28) as follows:

γ −α 0 · · · 0

−α γ −α · · · 0

0 −α γ · · · 0
...

...
...

...

0 0 0 · · · −α

0 0 0 · · · γ

u1,j+1

u2,j+1

u3,j+1
...

un−2,j+1

un−1,j+1

=

u1,j +αu0

u2,j

u3,j
...

un−2,j

un−1,j +αun

where γ = 1+ 2α. Note that u0 and un are the known boundary conditions, assumed
to be independent of time. By solving the preceding equation system, we determine
u1,u2, . . . ,un−1 at time step j+ 1 from u1,u2, . . . ,un−1 at time step j. This approach is called
the implicit method. Compared with the explicit method, each time step requires more
computation; however, the method has the significant advantage that it is unconditionally
stable. However, although stability does not place any restriction on α, h and k must be
chosen to keep the discretization error small to maintain accuracy.

The following function heat implements an implicit finite difference solution for the
parabolic differential equation (6.24).

function [u alpha] = heat(nx,hx,nt,ht,init,lowb,hib,K)

% Solves parabolic equ'n.

% e.g. heat flow equation.

% Example call: [u alpha] = heat(nx,hx,nt,ht,init,lowb,hib,K)

% nx, hx are number and size of x panels

% nt, ht are number and size of t panels

% init is a row vector of nx+1 initial values of the function.

% lowb & hib are boundaries at low and hi values of x.

% Note that lowb and hib are scalar values.

% K is a constant in the parabolic equation.

alpha = K*ht/hx^2;

A = zeros(nx-1,nx-1); u = zeros(nt+1,nx+1);

u(:,1) = lowb*ones(nt+1,1);

u(:,nx+1) = hib*ones(nt+1,1);

u(1,:) = init;

A(1,1) = 1+2*alpha; A(1,2) = -alpha;

for i = 2:nx-2

A(i,i) = 1+2*alpha;

A(i,i-1) = -alpha; A(i,i+1) = -alpha;

end

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch06-9780123869425 — 2012/5/30 — 19:29 — Page 298 — #16

298 Chapter 6 . Boundary Value Problems

A(nx-1,nx-2) = -alpha; A(nx-1,nx-1) = 1+2*alpha;

b(1,1) = init(2)+init(1)*alpha;

for i = 2:nx-2, b(i,1) = init(i+1); end

b(nx-1,1) = init(nx)+init(nx+1)*alpha;

[L,U] = lu(A);

for j = 2:nt+1

y = L\b; x = U\y;

u(j,2:nx) = x'; b = x;

b(1,1) = b(1,1)+lowb*alpha;

b(nx-1,1) = b(nx-1,1)+hib*alpha;

end

We now use the function heat to study how the temperature distribution in a brick wall
varies with time. The wall is 0.3 m thick and is initially at a uniform temperature of 100◦C.
For the brickwork, K = 5× 10−7 m/s2. If the temperature of both surfaces is suddenly low-
ered to 20◦C and kept at this temperature, we wish to plot the subsequent variation of
temperature through the wall at 440 s (7.33 min) intervals for 22,000 s (366.67 min).

To study this problem we will use a mesh with 15 subdivisions of x and 50 subdivisions
of t.

% e3s604.m

K = 5e-7; thick = 0.3; tfinal = 22000;

nx = 15; hx = thick/nx;

nt = 50; ht = tfinal/nt;

init = 100*ones(1,nx+1); lowb = 20; hib = 20;

[u al] = heat(nx,hx,nt,ht,init,lowb,hib,K);

alpha = al, surfl(u)

axis([0 nx+1 0 nt+1 0 120])

view([-217 30]), xlabel('x - node nos.')

ylabel('Time - node nos.'), zlabel('Temperature')

Running this script gives

alpha =

0.5500

together with the plot shown in Figure 6.9.
The plot shows how the temperature across the wall decreases with time. Figure 6.10

shows the variation of temperature with time at the center of the wall, calculated by both
the implicit method (using the MATLAB function heat) and the explicit method using the
same mesh size. In the latter case a MATLAB function is not provided. The solution deter-
mined using the explicit method becomes unstable with increasing time. We expect this
because the mesh size has been chosen to make α = 0.55.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch06-9780123869425 — 2012/5/30 — 19:29 — Page 299 — #17

6.6 Hyperbolic Partial Differential Equations 299

0
5

10
15

0

50

0

50

100

x-node nos.

Time-node nos.

T
em

pe
ra

tu
re

FIGURE 6.9 Plot showing how the distribution of temperature through a wall varies with time.

0 100 200 300 40
0−20

0

20

40

60

80

100

120

T
em

pe
ra

tu
re

Time (mins)

FIGURE 6.10 Variation in temperature in the center of a wall. The steadily decaying solution was
generated using the implicit method of solution; the oscillating solution was generated using the
explicit method of solution.

6.6 Hyperbolic Partial Differential Equations
Consider the following equation:

c2 ∂
2u

∂x2
=
∂2u

∂t2
, 0< x < L and t > 0 (6.29)

This is the one-dimensional wave equation, and like the heat-flow problem of Section 6.5,
its solution usually propagates in an open domain. Equation (6.29) describes the wave in
a taut string where c is the velocity of propagation of the waves in the string. Comparing
(6.29) with (6.23), we see that B2

− 4AC =−4c2(−1). Since c2 is positive, B2
− 4AC > 0 and

the equation is hyperbolic. Equation (6.29) is subject to boundary conditions at x = 0 and
x = L and also subject to initial conditions when t = 0.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch06-9780123869425 — 2012/5/30 — 19:29 — Page 300 — #18

300 Chapter 6 . Boundary Value Problems

We now develop equivalent finite difference approximations for these equations.
Divide L into n sections so that h= L/n and consider time steps of duration k. Approxi-
mating (6.29) by central finite difference approximations based on (6.7) at node (i, j), we
have

c2
(

ui−1,j − 2ui,j +ui+1,j

h2

)
=

(
ui,j−1− 2ui,j +ui,j+1

k2

)
or

(
ui−1,j − 2ui,j +ui+1,j

)
− (1/α2)

(
ui,j−1− 2ui,j +ui,j+1

)
= 0

where α2
= c2k2/h2, i= 0,1, . . . ,n, and j = 0,1, Node (i, j) is the point x = ih at time t =

jk. Rearranging the preceding equation gives

ui,j+1 = α
2 (ui−1,j +ui+1,j

)
+ 2(1−α2)ui,j −ui,j−1 (6.30)

When j = 0, equation (6.30) becomes

ui, 1 = α
2 (ui−1, 0+ui+1, 0

)
+ 2(1−α2)ui, 0−ui,−1 (6.31)

To solve a hyperbolic partial differential equation, initial values of u(x) and ∂u/∂t must
be specified. Let these values be Ui and Vi, respectively, where i= 0,1, . . . ,n. We can replace
∂u/∂t by its central finite difference approximation based on (6.6) as follows:

Vi = (−ui,−1+ui,1)/(2k)

Thus,

−ui,−1 = 2kVi−ui,1 (6.32)

In (6.31) we replace ui,0 by Ui and ui,−1 by using (6.32) to give

ui,1 = α
2 (Ui−1+Ui+1

)
+ 2(1−α2)Ui+ 2kVi−ui,1

so that

ui,1 = α
2 (Ui−1+Ui+1

)
/2+ (1−α2)Ui+ kVi (6.33)

Equation (6.33) is the starting equation and allows us to determine the values of u at time
step j = 1. Once we obtain these values, we can use (6.30) to provide an explicit method of
solution. In order to ensure stability, the parameter α should be equal to or less than one.
However, if α is less than one, the solution becomes less accurate.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch06-9780123869425 — 2012/5/30 — 19:29 — Page 301 — #19

6.6 Hyperbolic Partial Differential Equations 301

The following function, fwave, implements an explicit finite difference solution
for (6.29).

function [u alpha] = fwave(nx,hx,nt,ht,init,initslope,lowb,hib,c)

% Solves hyperbolic equ'n, e.g. wave equation.

% Example: [u alpha] = fwave(nx,hx,nt,ht,init,initslope,lowb,hib,c)

% nx, hx are number and size of x panels

% nt, ht are number and size of t panels

% init is a row vector of nx+1 initial values of the function.

% initslope is a row vector of nx+1 initial derivatives of

% the function.

% lowb is a column vector of nt+1 boundary values at the

% low value of x.

% hib is a column vector of nt+1 boundary values at hi value of x.

% c is a constant in the hyperbolic equation.

alpha = c*ht/hx;

u = zeros(nt+1,nx+1);

u(:,1) = lowb; u(:,nx+1) = hib; u(1,:) = init;

for i = 2:nx

u(2,i) = alpha^2*(init(i+1)+init(i-1))/2+(1-alpha^2)*init(i) ...

+ht*initslope(i);

end

for j = 2:nt

for i = 2:nx

u(j+1,i)=alpha^2*(u(j,i+1)+u(j,i-1))+(2-2*alpha^2)*u(j,i) ...

-u(j-1,i);

end

end

We now use the fwave function to examine the effect of displacing the boundary at one
end of a taut string by 10 units in a positive direction for the time period t = 0.1 to t = 4
units.

% e3s605.m

T = 4; L = 1.6;

nx = 16; nt = 40; hx = L/nx; ht = T/nt;

c = 1; t = 0:nt;

hib = zeros(nt+1,1); lowb = zeros(nt+1,1);

lowb(2:5,1) = 10;

init = zeros(1,nx+1); initslope = zeros(1,nx+1);

[u al] = fwave(nx,hx,nt,ht,init,initslope,lowb,hib,c);

alpha = al, surfl(u)

axis([0 16 0 40 -10 10])

xlabel('Position along string')

ylabel('Time'), zlabel('Vertical displacement')

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch06-9780123869425 — 2012/5/30 — 19:29 — Page 302 — #20

302 Chapter 6 . Boundary Value Problems

0
5

10
15

0

20

40
−10

0

10

Position along string
Time

V
er

tic
al

 d
is

pl
ac

em
en

t

FIGURE 6.11 Solution of (6.29) subject to specific boundary and initial conditions.

Running this script produces the following output, together with Figure 6.11.

alpha =

1

The figure shows that the disturbance at the boundary travels along the string. At the other
boundary, it is reflected and becomes a negative disturbance. This process of reflection
and reversal continues at each boundary. The disturbance travels at a velocity c and its
shape does not change. Similarly, pressure fluctuations do not change as they travel along a
speaking tube; if pressure fluctuations representing the sound “HELLO” enter the tube, the
sound “HELLO” is detected at the other end. In practice, energy loss, which is not included
in this model, would cause the amplitude of the disturbance to decay to zero over a period
of time.

6.7 Elliptic Partial Differential Equations
The solution of a second-order elliptic partial differential equation is determined over a
closed region, and the shape of the boundary and its condition at every point must be
specified. Some important second-order elliptic partial differential equations, which arise
naturally in the description of physical systems, are

Laplace’s equation: ∇2z = 0 (6.34)

Poisson’s equation: ∇2z = F(x,y) (6.35)

Helmholtz’s equation: ∇2z+G(x,y)z = F(x,y) (6.36)

where ∇2z = ∂2z/∂x2
+ ∂2z/∂y2 and z(x,y) is an unknown function. Note that the Laplace

and Poisson equations are special cases of Helmholtz’s equation. In general, these equa-
tions must satisfy boundary conditions that are specified in terms of either the function
value or the derivative of the function normal to the boundary. Furthermore, a prob-
lem can have mixed boundary conditions. If we compare (6.34), (6.35), and (6.36) to the

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch06-9780123869425 — 2012/5/30 — 19:29 — Page 303 — #21

6.7 Elliptic Partial Differential Equations 303

standard second-order partial differential equation in two variables, that is,

A(x,y)
∂2z

∂x2
+B(x,y)

∂2z
∂x∂y

+C(x,y)
∂2z

∂y2
+ f

(
x,y,z,

∂z
∂x

,
∂z
∂y

)
= 0

we see that in each case A= C = 1 and B= 0, so that B2
− 4AC < 0, confirming that the

equations are elliptic.
The Laplace equation is homogeneous, and if a problem has boundary conditions that

are also homogeneous then the solution, z = 0, will be trivial. Similarly in (6.35), if F(x,y)=
0 and the problem boundary conditions are homogeneous, then z = 0. However, in (6.36)
we can scale G(x,y) by a factor λ, so that (6.36) becomes

∇
2z+ λG(x,y)z = 0 (6.37)

This is a characteristic or eigenvalue problem, and we can determine values of λ and
corresponding nontrivial values of z(x,y).

The elliptic equations (6.34) through (6.37) can only be solved in a closed form for
a limited number of situations. For most problems, it is necessary to use a numerical
approximation. Finite difference methods are relatively simple to apply, particularly for
rectangular regions. We will now use the finite difference approximation for ∇2z, given
by (6.12) or (6.13), to solve some elliptic partial differential equations over a rectangular
domain.

Example 6.3
Laplace’s equation. Determine the distribution of temperature in a rectangular plane section,

subject to a temperature distribution around its edges as follows:

x = 0,T = 100y; x = 3,T = 250y; y = 0,T = 0; and y = 2,T = 200+ (100/3)x2

The section shape, the boundary temperature distribution section and two chosen nodes are
shown in Figure 6.12.

1 2

3

0 0 0 0

Node

2

x

y

T = 200 + (100/3)x2

200

100 250

233 333 500

Node

FIGURE 6.12 Temperature distribution around a plane section. Locations of nodes 1 and 2 are shown.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch06-9780123869425 — 2012/5/30 — 19:29 — Page 304 — #22

304 Chapter 6 . Boundary Value Problems

The temperature distribution is described by Laplace’s equation. Solving this equation by

the finite difference method, we apply (6.13) to nodes 1 and 2 of the mesh shown in Figure 6.12.

This gives

(233.33+T2+ 0+ 100− 4T1)/h2
= 0

(333.33+ 250+ 0+T1− 4T2)/h2
= 0

where T1 and T2 are the unknown temperatures at nodes 1 and 2, respectively, and h= 1.

Rearranging these equations gives[
−4 1

1 −4

][
T1

T2

]
=

[
−333.33

−583.33

]

Solving this equation, we have T1 = 127.78 and T2 = 177.78.

If we require a more accurate solution of Laplace’s equation, then we must use more
nodes and the computation burden increases rapidly. The following MATLAB function
ellipgen uses the finite difference approximation (6.12) to solve the general elliptic partial
differential equations (6.34) through (6.37) for a rectangular domain only. The function is
also limited to problems in which the boundary value is specified by values of the func-
tion z(x,y), not its derivative. If the user calls the function with 10 arguments, the function
solves (6.34) through (6.36); see Examples 6.4 and 6.5. Calling it with six arguments causes
it to solve (6.37); see Example 6.6.

function [a,om] = ellipgen(nx,hx,ny,hy,G,F,bx0,bxn,by0,byn)

% Function either solves:

% nabla^2(z)+G(x,y)*z = F(x,y) over a rectangular region.

% Function call: [a,om]=ellipgen(nx,hx,ny,hy,G,F,bx0,bxn,by0,byn)

% hx, hy are panel sizes in x and y directions,

% nx, ny are number of panels in x and y directions.

% F and G are (nx+1,ny+1) arrays representing F(x,y), G(x,y).

% bx0 and bxn are row vectors of boundary conditions at x0 and xn

% each beginning at y0. Each is (ny+1) elements.

% by0 and byn are row vectors of boundary conditions at y0 and yn

% each beginning at x0. Each is (nx+1) elements.

% a is an (nx+1,ny+1) array of sol'ns, inc the boundary values.

% om has no interpretation in this case.

% or the function solves

% (nabla^2)z+lambda*G(x,y)*z = 0 over a rectangular region.

% Function call: [a,om]=ellipgen(nx,hx,ny,hy,G,F)

% hx, hy are panel sizes in x and y directions,

% nx, ny are number of panels in x and y directions.

% G are (ny+1,nx+1) arrays representing G(x,y).

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch06-9780123869425 — 2012/5/30 — 19:29 — Page 305 — #23

6.7 Elliptic Partial Differential Equations 305

% In this case F is a scalar and specifies the

% eigenvector to be returned in array a.

% Array a is an (ny+1,nx+1) array giving an eigenvector,

% including the boundary values.

% The vector om lists all the eigenvalues lambda.

nmax = (nx-1)*(ny-1); r = hy/hx;

a = zeros(ny+1,nx+1); p = zeros(ny+1,nx+1);

if nargin==6

ncase = 0; mode = F;

end

if nargin==10

test = 0;

if F==zeros(nx+1,ny+1), test = 1; end

if bx0==zeros(1,ny+1), test = test+1; end

if bxn==zeros(1,ny+1), test = test+1; end

if by0==zeros(1,nx+1), test = test+1; end

if byn==zeros(1,nx+1), test = test+1; end

if test==5

disp('WARNING - problem has trivial solution, z = 0.')

disp('To obtain eigensolution use 6 parameters only.')

return

end
bx0 = bx0(1,ny+1:-1:1); bxn = bxn(1,ny+1:-1:1);

a(1,:) = byn; a(ny+1,:) = by0;

a(:,1) = bx0'; a(:,nx+1) = bxn'; ncase = 1;

end

for i = 2:ny

for j = 2:nx

nn = (i-2)*(nx-1)+(j-1);

q(nn,1) = i; q(nn,2) = j; p(i,j) = nn;

end

end

C = zeros(nmax,nmax); e = zeros(nmax,1); om = zeros(nmax,1);

if ncase==1, g = zeros(nmax,1); end

for i = 2:ny

for j = 2:nx

nn = p(i,j); C(nn,nn) = -(2+2*r^2); e(nn) = hy^2*G(j,i);

if ncase==1, g(nn) = g(nn)+hy^2*F(j,i); end

if p(i+1,j)~=0

np = p(i+1,j); C(nn,np) = 1;

else

if ncase==1, g(nn) = g(nn)-by0(j); end

end

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch06-9780123869425 — 2012/5/30 — 19:29 — Page 306 — #24

306 Chapter 6 . Boundary Value Problems

if p(i-1,j)~=0

np = p(i-1,j); C(nn,np) = 1;

else

if ncase==1, g(nn) = g(nn)-byn(j); end

end

if p(i,j+1)~=0

np = p(i,j+1); C(nn,np) = r^2;

else

if ncase==1, g(nn) = g(nn)-r^2*bxn(i); end

end

if p(i,j-1)~=0

np = p(i,j-1); C(nn,np) = r^2;

else

if ncase==1, g(nn) = g(nn)-r^2*bx0(i); end

end

end

end

if ncase==1

C = C+diag(e); z = C\g;

for nn = 1:nmax

i = q(nn,1); j = q(nn,2); a(i,j) = z(nn);

end

else

[u,lam] = eig(C,-diag(e));

[om,k] = sort(diag(lam)); u = u(:,k);

for nn = 1:nmax

i = q(nn,1); j = q(nn,2);

a(i,j) = u(nn,mode);

end

end

We now give examples of the application of the ellipgen function.

Example 6.4
Use the function ellipgen to solve Laplace’s equation over a rectangular region subject to the
boundary conditions shown in Figure 6.12. The following script calls the function to solve this
problem using a 12× 12 mesh. The example is the same as Example 6.3, but a finer mesh is used
in the solution.

% e3s606.m

Lx = 3; Ly = 2;

nx = 12; ny = 12; hx = Lx/nx; hy = Ly/ny;

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch06-9780123869425 — 2012/5/30 — 19:29 — Page 307 — #25

6.7 Elliptic Partial Differential Equations 307

Node numbers in x direction
N

od
e

nu
m

be
rs

 in
 y

 d
ir

ec
tio

n

2 4 6 8 10 12

2

4

6

8

10

12

FIGURE 6.13 Finite difference estimate for the temperature distribution for the problem defined in
Figure 6.12.

by0 = 0*[0:hx:Lx];

byn = 200+(100/3)*[0:hx:Lx].^2;

bx0 = 100*[0:hy:Ly];

bxn = 250*[0:hy:Ly];

F = zeros(nx+1,ny+1); G = F;

a = ellipgen(nx,hx,ny,hy,G,F,bx0,bxn,by0,byn);

aa = flipud(a); contour(aa,'k')

xlabel('Node numbers in x direction');

ylabel('Node numbers in y direction');

The output from this script is the contour plot shown in Figure 6.13. The temperature is not
shown on the contour plot; if required, it can be obtained from aa.

Example 6.5
Poisson’s equation. Determine the deflection of a uniform square membrane, held at its edges
and subject to a distributed load, which can be approximated to a unit load at each node.
This problem is described by Poisson’s equation, (6.35), where F(x,y) specifies the load on the
membrane. We use the following script to determine the deflection of this membrane using the
MATLAB function ellipgen.

% e3s607.m

Lx = 1; Ly = 1;

nx = 18; ny = 18; hx = Lx/nx; hy = Ly/ny;

by0 = zeros(1,nx+1); byn = zeros(1,nx+1);

bx0 = zeros(1,ny+1); bxn = zeros(1,ny+1);

F = -ones(nx+1,ny+1); G = zeros(nx+1,ny+1);

a = ellipgen(nx,hx,ny,hy,G,F,bx0,bxn,by0,byn);

surfl(a)

axis([1 nx+1 1 ny+1 0 0.1])

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch06-9780123869425 — 2012/5/30 — 19:29 — Page 308 — #26

308 Chapter 6 . Boundary Value Problems

5
10

15
5

10
15

0

0.05

0.1

x-node nos.
y-node nos.

D
is

pl
ac

em
en

t

FIGURE 6.14 Deflection of a square membrane subject to a distributed load.

xlabel('x-node nos.'), ylabel('y-node nos.')

zlabel('Displacement')

max_disp = max(max(a))

Running this script gives the output shown in Figure 6.14 together with

max_disp =

0.0735

This compares with the exact value of 0.0737.

Example 6.6
Characteristic value problem. Determine the natural frequencies and mode shapes of a freely
vibrating square membrane held at its edges. This problem is described by the eigenvalue prob-
lem (6.37). The natural frequencies are related to the eigenvalues, and the mode shapes are
the eigenvectors. The following MATLAB script determines the eigenvalues and vectors. It calls
the function ellipgen and outputs a list of eigenvalues and provides Figure 6.15, showing the
second mode shape of the membrane.

% e3s608.m

Lx = 1; Ly = 1.5;

nx = 20; ny = 30; hx = Lx/nx; hy = Ly/ny;

G = ones(nx+1,ny+1); mode = 2;

[a,om] = ellipgen(nx,hx,ny,hy,G,mode);

eigenvalues = om(1:5), surf(a)

view(140,30)

axis([1 nx+1 1 ny+1 -1.2 1.2])

xlabel('x - node nos.'), ylabel('y - node nos.')

zlabel('Relative displacement')

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch06-9780123869425 — 2012/5/30 — 19:29 — Page 309 — #27

6.8 Summary 309

5
10

15
20

10
20

30

−1

0

1

y-node nos.x-node nos.

R
el

at
iv

e
di

sp
la

ce
m

en
t

FIGURE 6.15 Finite difference approximation of the second mode of vibration of a uniform
rectangular membrane.

Table 6.1 Finite Difference
Approximations versus Exact
Eigenvalues for Uniform
Rectangular Membrane

FD Approximation Exact Error (%)

14.2318 14.2561 0.17
27.3312 27.4156 0.31
43.5373 43.8649 0.75
49.0041 49.3480 0.70
56.6367 57.0244 0.70

Running this script gives

eigenvalues =

14.2318

27.3312

43.5373

49.0041

56.6367

These eigenvalues compare with the exact values given in Table 6.1.

6.8 Summary
In this chapter, we examined the application of finite difference methods to a broad range
of second-order ordinary and partial differential equations. A major problem in the devel-
opment of scripts is the difficulty of accounting for the wide variety of boundary conditions

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch06-9780123869425 — 2012/5/30 — 19:29 — Page 310 — #28

310 Chapter 6 . Boundary Value Problems

and boundary shapes that can occur. Software packages have been developed to solve
partial differential equations that arise in computational fluid dynamics and continuum
mechanics, using either finite difference or finite element methods; however, they are
both complex and expensive because they allow the user total freedom to define boundary
shapes and conditions.

Problems
6.1. Classify the following second-order partial differential equations:

∂2y

∂t2
+a

∂2y
∂x∂t

+
1
4
(a2
− 4)

∂2y

∂x2
= 0

∂u
∂t
−
∂

∂x

(
A(x, t)

∂u
∂x

)
= 0

∂2ϕ

∂x2
= k

∂2(ϕ2)

∂y2
where k > 0

6.2. Use the shooting method to solve y′′+ y′− 6y = 0, where the prime denotes
differentiation with respect to x, given the boundary conditions y(0)= 1 and
y(1)= 2. Note that an illustrative script for the shooting method is given in
Section 6.2. Use trial slopes in the range−3 : 0.5 : 2. Compare your results with
those you obtain using the finite difference method with 10 divisions. The finite
difference method is implemented by the function twopoint. Note that the exact
solution is

y = 0.2657exp(2x)+ 0.7343exp(−3x)

6.3. (a) Use the shooting method to solve y′′− 62y′+ 120y = 0, where the prime
denotes differentiation with respect to x, given the boundary conditions
y(0)= 0 and y(1)= 2. Solve this equation by applying the shooting method,
using trial slopes in the range−0.5 : 0.1 : 0.5. Note that the exact solution is

y = 1.751302152539304× 10−26
{exp(60x)− exp(2x)}

(b) By substituting x = 1−p in the original differential equation, show that
y′′+ 62y′+ 120y = 0, where the prime denotes differentiation with respect to p.
Note that the boundary conditions of this problem are y(0)= 2 and y(1)= 0.
Solve this equation by applying the shooting method, using trial slopes in the
range 0 to−150 in steps of−30 at p= 0. Note that a very good approximation
to the solution is y = 2exp(−60p).

Compare the two answers you obtain for (a) and (b). Note that an illustrative script
for the shooting method is given in Section 6.2. Also solve (a) and (b) using the

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch06-9780123869425 — 2012/5/30 — 19:29 — Page 311 — #29

Problems 311

finite difference method, implemented in twopoint. Use 10 divisions and repeat
with 50 divisions. You should plot your answers and compare with a plot of the
exact solution.

6.4. Solve the boundary value problem xy′′+ 2y′− xy = ex given that y(0)= 0.5 and
y(2)= 3.694528, using the finite difference method implemented by the function
twopoint. Use 10 divisions in the finite difference solution and plot the results,
together with the exact solution, y = exp(x)/2.

6.5. Determine the finite difference equivalence of the characteristic value problem
defined by y′′+ λy = 0, where y(0)= 0 and y(2)= 0. Use 20 divisions in the finite
difference method. Then solve the finite difference equations using the MATLAB

function eig λ, that is, the lowest
eigenvalue.

6.6. Solve the parabolic equation (6.24) with K = 1, subject to the following boundary
conditions: u(0, t)= 0, u(1, t)= 10, and u(x,0)= 0 for all x except x = 1. When x = 1,
u(1,0)= 10. Use the function heat to determine the solution for t = 0 to 0.5 in steps
of 0.01 with 20 divisions of x. You should plot the solution for ease of visualization.

6.7. Solve the wave equation (6.29) with c = 1, subject to the following boundary and
initial conditions: u(t,0)= u(t,1)= 0, u(0,x)= sin(πx)+ 2sin(2πx), and
ut(0,x)= 0, where the subscript t denotes partial differentiation with respect to t.
Use the function fwave to determine the solution for t = 0 to 4.5 in steps of 0.05,
and use 20 divisions of x. Plot your results and compare with a plot of the exact
solution, which is given by

u= sin(πx) cos(πt)+ 2 sin(2πx) cos(2πt)

6.8. Solve the equation

∇
2V + 4π2(x2

+ y2)V = 4π cos{π(x2
+ y2)}

over the square region 0≤ x ≤ 0.5 and 0≤ y ≤ 0.5. The boundary conditions are

V (x,0)= sin(πx2), V (x,0.5)= sin{π(x2
+ 0.25)}

V (0,y)= sin(πy2), V (0.5,y)= sin{π(y2
+ 0.25)}

Use the function ellipgen to solve this equation with 15 divisions of x and y. Plot
your results and compare with a plot of the exact solution, which is given by
V = sin{π(x2

+ y2)}.

6.9. Solve the eigenvalue problem ∇2z+ λG(x, y)z = 0 over a rectangular region
bounded by 0≤ ≤ 1 and 0 ≤ ≤ 1.5, z = 0 at all boundaries. Use the function
ellipgen with six divisions in . The function G(x,y) over this grid is
given by the MATLAB statements G = ones(10,7); G(4:7,3:5) = 3*ones(4,3);.

 to determine the lowest value of

y x
y and nine in x

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch06-9780123869425 — 2012/5/30 — 19:29 — Page 312 — #30

312 Chapter 6 . Boundary Value Problems

2

6

1

9

8

a

a

54

7

10

3

6a

5a

FIGURE 6.16 Region for Problem 6.10.

This represents a membrane with a central area thicker than its periphery. The
eigenvalues are related to the natural frequencies of this membrane.

6.10. Solve Poisson’s equation ∇2φ+ 2= 0 over the region in Figure 6.16 with a= 1 at the
boundary φ = 0. You will have to assemble the finite difference equation by hand,
applying (6.13) to the 10 nodes, and then use MATLAB to solve the resulting linear
equation system.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch07-9780123869425 — 2012/6/7 — 1:09 — Page 313 — #1

7
Fitting Functions to Data

In this chapter we consider a variety of methods for fitting functions to data, describe some
of the MATLAB functions that are available for this purpose, and develop some additional
ones. The application of these functions is illustrated by appropriate examples.

7.1 Introduction
We fit functions to two general classes of data: data that is exact and data that we know
contains errors. When we fit a function to exact data, we fit to the points exactly. When we
fit a function to data that is known to contain errors, we try to obtain the best fit to the
trend of the data, using some criterion. The user must exercise skill in making a sensible
choice of the function to fit.

We begin by examining polynomial interpolation, which is an example of fitting to exact
data.

7.2 Interpolation Using Polynomials
Suppose y is some unknown function of x. Given a table of values of x and y, we may wish
to obtain a value of y corresponding to a value of x that is not tabulated. Interpolation
implies that the untabulated value of x is within the range of the tabulated data. If the
untabulated x is outside this range, the process is called extrapolation and is often less
accurate.

The simplest form of interpolation is linear interpolation. In this method only the
pair of data points enclosing the required value are used. Thus if (x0,y0) and (x1,y1) are
two adjacent data points in a tabulation, to obtain the value of y corresponding to an
x where x0 < x < x1, we fit the straight line y = ax+b to these points and evaluate y as
follows:

y = [y0(x1− x)+ y1(x− x0)]/(x1− x0) (7.1)

We may use the MATLAB function interp1 for this purpose. For example, consider the func-
tion y = x1.9, tabulated at x = 1,2, . . . ,5. If we require estimates of y for x = 2.5 and 3.8,

Numerical Methods Using MATLAB
®. DOI: 10.1016/B978-0-12-386942-5.00007-2

© 2012 Elsevier Inc. All rights reserved.
313

http://dx.doi.org/10.1016/B978-0-12-386942-5.00007-2

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch07-9780123869425 — 2012/6/7 — 1:09 — Page 314 — #2

314 Chapter 7 . Fitting Functions to Data

we may use interp1 setting the third parameter as 'linear' to obtain linear interpolation
as follows:

>> x = 1:5;

>> y = x.^1.9;

>> interp1(x,y,[2.5,3.8],'linear')

ans =

5.8979 12.7558

The exact answers are y = 5.7028 and y = 12.6354 corresponding to x = 2.5 and 3.8,
respectively. For some applications this may be sufficiently accurate.

Interpolation becomes more accurate when more of the tabulated data values are used
because we can use a higher-degree polynomial. A polynomial of degree n can be adjusted
to pass through n+ 1 data points. We do not need to know the coefficients of the poly-
nomial explicitly, but they are used implicitly in the procedure to estimate y for a given
value of x. For example, MATLAB allows cubic interpolation by calling interp1 with the third
parameter set as 'cubic'. The following example implements cubic interpolation using
the same data as the previous example.

>> interp1(x,y,[2.5 3.8],'cubic')

ans =

5.6938 12.6430

The cubic interpolation gives a much more accurate result.
An algorithm that provides an efficient method for fitting any degree polynomial to

data is Aitken’s algorithm. In this procedure a sequence of polynomial functions are fitted
to the data. As the degree of the polynomial is increased, more of the data points are used
and the accuracy of the interpolation improves.

Aitken’s algorithm proceeds as follows. Suppose we have five pairs of data values
labeled 1, 2, . . . , 5 and we wish to determine y∗, the value of y corresponding to a given x∗.
Initially the algorithm determines straight lines (i.e., first-degree polynomials) that pass
through data points 1 and 2, 1 and 3, 1 and 4, and 1 and 5, as shown in Figure 7.1(a). These
four straight lines allow the procedure to determine four, probably poor, estimates for y∗.

Using x2, x3, . . . ,x5 from the tabulated data and the four estimates of y∗ determined
from the first-degree polynomial, the algorithm repeats the preceding procedure using
these new points, but this now provides second-degree polynomials through the sets of
data points {1,2,3}, {1,2,4}, and {1,2,5}, as shown in Figure 7.1(b). From these second-
degree polynomials, the procedure determines three improved estimates for y∗.

Using x3, x4, x5 from the tabulated data and the three new estimates for y∗ obtained
from the second-degree polynomials, the algorithm computes the third-degree polyno-
mials passing through the sets of data points {1, 2, 3, 4} and {1, 2, 3, 5}, as shown in

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch07-9780123869425 — 2012/6/7 — 1:09 — Page 315 — #3

7.2 Interpolation Using Polynomials 315

0 0.5 1 1.5 2
0

0.5

1

x

y

0 0.5 1 1.5 2
0

0.5

1

x
y

(a) (b)

(c) (d)

0 0.5 1 1.5 2
0

0.5

1

x

y

0 0.5 1 1.5 2
0

0.5

1

x

y
FIGURE 7.1 Increasing the degree of the polynomial fit: (a) 1st degree, (b) 2nd degree, (c) 3rd degree,
and (d) 4th degree.

Figure 7.1(c) to allow the procedure to determine two further improved estimates for y∗.
Finally a fourth-degree polynomial is computed that fits all the data. This fourth-degree
polynomial provides the best estimate for y∗, as shown in Figure 7.1(d).

Aitken’s algorithm has two advantages. First of all it is very efficient. Each new estimate
for y∗ requires only two multiplications and one division so that for n+ 1 data points, the
estimate using all the data requires n(n+ 1) multiplications and n(n+ 1)/2 divisions. It is
interesting to note that if we attempted to determine the coefficients of a polynomial pass-
ing through n+ 1 data points by assembling a set of n+ 1 linear equations, then in addition
to the computation required to assemble the equations, we would require (n+ 1)3/2 mul-
tiplications and divisions to solve them. The second advantage of Aitken’s algorithm is that
the process of fitting higher- and higher-degree polynomials to more and more of the data
can be terminated when we note that the estimate of y∗ is no longer changing significantly.

The following MATLAB function aitken implements Aitken’s algorithm. The user must
provide a set of data for the vectors x and y. The function then determines a value of y
corresponding to xval. The function provides the best value obtained and, if required, a
table showing all the intermediate values obtained.

function [Q R] = aitken(x,y,xval)

% Aitken's method for interpolation.

% Example call: [Q R] = aitken(x,y,xval)

% x and y give the table of values. Parameter xval is

% the value of x at which interpolation is required.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch07-9780123869425 — 2012/6/7 — 1:09 — Page 316 — #4

316 Chapter 7 . Fitting Functions to Data

% Q is interpolated value, R gives table of intermediate results.

n = length(x); P = zeros(n);

P(1,:) = y;

for j = 1:n-1

for i = j+1:n

P(j+1,i) = (P(j,i)*(xval-x(j))-P(j,j)*(xval-x(i)))/(x(i)-x(j));

end

end

Q = P(n,n); R = [x.' P.'];

We now use this function to determine the reciprocal of 1.03 from a table of 10 equispaced
values of x in the range 1 to 2 and y = 1/x. The following script calls the function aitken to
solve this example:

% e3s701.m

x = 1:.2:2; y = 1./x;

[interpval table] = aitken(x,y,1.03);

fprintf('Interpolated value= %10.8f\n\n',interpval)

disp('Table = ')

disp(table)

Running this script gives the following output:

interpolated value= 0.97095439

Table =

1.0000 1.0000 0 0 0 0 0

1.2000 0.8333 0.9750 0 0 0 0

1.4000 0.7143 0.9786 0.9720 0 0 0

1.6000 0.6250 0.9813 0.9723 0.9713 0 0

1.8000 0.5556 0.9833 0.9726 0.9713 0.9710 0

2.0000 0.5000 0.9850 0.9729 0.9714 0.9711 0.9710

Notice that the first column in this table contains the tabulated x values, the second
column contains the tabulated y values, and the remaining columns give successively
higher-degree polynomial interpolants generated by Aitken’s method. The zeros in this
table are padding: The number of estimates in each column decreases as the estimates use
more of the data. The exact value is y = 0.970873786; thus the Aitken interpolated value of
y = 0.97095439 is correct to four decimal places. Linear interpolation gives 0.9750, a much
poorer result with an error of approximately 0.2%.

Aitken’s method provides an interpolated value of y for a given value of x by fitting a
polynomial to the data, but the coefficients of the polynomial are not determined explic-
itly. Conversely, we can fit a polynomial explicitly to the data, determine its coefficients,

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch07-9780123869425 — 2012/6/7 — 1:09 — Page 317 — #5

7.3 Interpolation Using Splines 317

and then determine the required interpolated value by evaluating the polynomial. This
approach may be less computationally efficient. The MATLAB function polyfit(x,y,n) fits
a polynomial of degree n through the data given by x and y and returns the coefficients
of descending powers of x. For an exact fit, n must equal m− 1 where m is the number
of data points. The polynomial represented by p can then be evaluated using the polyval

function. For example, to determine the reciprocal of 1.03 from a table of six equispaced
values of x in the range 1 to 2 and y = 1/x, we have

% e3s702.m

x = 1:.2:2; y = 1./x;

p = polyfit(x,y,5)

interpval = polyval(p,1.03);

fprintf('interpolated value = %10.8f\n',interpval)

Running this script gives

p =

-0.1033 0.9301 -3.4516 6.7584 -7.3618 4.2282

interpolated value = 0.97095439

Thus

y =−0.1033x5
+ 0.9301x4

− 3.4516x3
+ 6.7584x2

− 7.3618x+ 4.2282

The interpolated value is identical to that given by Aitken’s method, as indeed it must be
(except for possible rounding errors in the computation) because there is only one poly-
nomial that passes through all six data points and both methods have used it. We use the
MATLAB function polyfit again in Section 7.8.

7.3 Interpolation Using Splines
The spline is used to connect data points to each other using a curve that appears to the
eye to be smooth, either for the purpose of visualization in design drawings or for inter-
polation. It has certain advantages over the use of a high-degree polynomial, which has a
tendency to oscillate between data values.

We begin with an historical example of ship design. Ships’ hulls have always curved in
a complex manner in two dimensions. Figure 7.2 shows hull sections for a 74-gun British
warship, circa 1813. The data points are taken from the original plans, and splines have

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch07-9780123869425 — 2012/6/7 — 1:09 — Page 318 — #6

318 Chapter 7 . Fitting Functions to Data

−30 −20 −10 0 10 20 30

0

10

20

30

40

Distance from center line (feet)

H
ei

gh
t a

bo
ve

 k
ee

l (
fe

et
)

FIGURE 7.2 Use of splines to define cross-sections of a ship’s hull.

been used to join the data points together smoothly. Each line shows a section of the ship;
the innermost line is close to the stern, and the outermost is near amidships. The graph
gives a clear impression of the way the ship builder chose to reduce the ship’s cross-section
toward the stern.

Polynomials of varying degrees are used for splines, but here we only consider the cubic
spline. The cubic spline is a series of cubic polynomials joining data points or “knots.” Sup-
pose we have n data points joined by n− 1 polynomials. Each cubic polynomial has four
unknown coefficients so that there are 4(n− 1) coefficients to be determined. Obviously
each polynomial must pass through the two data points it joins. This provides 2(n− 1)
equations that must be satisfied. In order that the polynomials join together smoothly,
we require both continuity of slope (y′) and curvature (y′′) between adjacent polynomi-
als at the n− 2 internal data points. This gives 2(n− 2) extra equations, making a total of
4n− 6 equations. With these equations we can determine an identical number of coef-
ficients uniquely, and so two further equations are required in order to determine all the
unknown coefficients. The two remaining conditions can be chosen arbitrarily, but usually
one of the following is used:

1. If the slope of the required curve is known at the outer ends, we can impose these two
constraints. More often than not, these slopes are not known.

2. We can make the curvature at the outer ends zero, that is, y′′1 = y′′n = 0. (These are
called natural splines but have no particular advantage.)

3. We can make the curvature at x1 and xn equal to x2 and xn−1, respectively.

4. We can make the curvature at x1 a linear extrapolation of the curvature at x2 and x3.
Similarly, we make the curvature at xn a linear extrapolation of the curvature at xn−1

and xn−2.

5. We can make y′′′ continuous at x2 and xn−1. Since at any internal point, y, y′, y′′, and y′′′

are always made continuous, adding this condition is equivalent to using the same
polynomial in the two outer panels. This is called the “not a knot” condition and is
used in the MATLAB implementation of the function spline.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch07-9780123869425 — 2012/6/7 — 1:09 — Page 319 — #7

7.3 Interpolation Using Splines 319

Table 7.1 Data for Spline Fit

x 0 1 2 3 4
y 3 1 0 2 4

We now illustrate the two uses of the MATLAB function spline applied to the small set of
data given in Table 7.1. Running the script

% e3s703.m

x = 0:4; y = [3 1 0 2 4];

xval = 1.5; yval = spline(x,y,xval)

p = spline(x,y)

gives

yval =

0.1719

p =

form: 'pp'

breaks: [0 1 2 3 4]

coefs: [4x4 double]

pieces: 4

order: 4

dim: 1

where yval is the interpolated value. There may be some occasions when the user wishes
to know the values of the coefficient of the polynomials. In this case the p-p form is
required, where the abbreviation p-p means piecewise polynomial. The variable p is a
structure array that provides this information. In particular,

>> c = p.coefs

c =

0.5417 -1.1250 -1.4167 3.0000

0.5417 0.5000 -2.0417 1.0000

-0.7083 2.1250 0.5833 0

-0.7083 -0.0000 2.7083 2.0000

In this example, the coefficients of the polynomials are combined with the powers of x as
follows:

y = c11x3
+ c12x2

+ c13x+ c14, 0≤ x ≤ 1

y = c21(x− 1)3+ c22(x− 1)2+ c23(x− 1)+ c24, 1≤ x ≤ 2

y = c31(x− 2)3+ c32(x− 2)2+ c33(x− 2)+ c34, 2≤ x ≤ 3

y = c41(x− 3)3+ c42(x− 3)2+ c43(x− 3)+ c44, 3≤ x ≤ 4

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch07-9780123869425 — 2012/6/7 — 1:09 — Page 320 — #8

320 Chapter 7 . Fitting Functions to Data

It is not necessary for the MATLAB user to know the details of how the p-p values are inter-
preted. MATLAB provides a function ppval that evaluates a composite polynomial provided
its p-p values are known. If x and y are vectors of data, then y1 = spline(x,y,x1) is
equivalent to the statements p = spline(x,y); y2 = ppval(p,x1).

The following script gives a plot of the spline fit to the data of Table 7.1.

% e3s704.m

x = 0:4; y = [3 1 0 2 4];

xx = 0:.1:4; yy = spline(x,y,xx);

plot(x,y,'o',xx,yy)

axis([0 4 -1 4])

xlabel('x'), ylabel('y')

Running this script generates Figure 7.3.
Section 7.2 described how polynomials are used in interpolation. However, their use

is not always appropriate. When the data points are widely spaced, and when there are
sudden changes in the y values, then polynomials can give very poor results. For example,
the nine data points in Figure 7.4 are taken from the function

y = 2{1+ tanh(2x)}− x/10

This function changes abruptly, and if an eighth-degree polynomial is fitted to the data
it oscillates and the path between data points bears no relationship to the true path. In
contrast the spline fit is reasonably smooth and close to the true function.

The reader should note that the MATLAB function interp1 can also be used to fit splines
to data. The call interp1(x,y,xi,'spline') is identical to spline(x,y,xi).

A special type of spline is the Bézier curve. This is a cubic function defined by four
points. The two end points are used, together with two “control” points. The slope of the
curve at one end is a tangent to the line between that end point and one of the control
points. Similarly, the slope at the other end point is a tangent to the line between that end

0 1 2 3 4
−1

0

1

2

3

4

x

y

FIGURE 7.3 Spline fit to the data of Table 7.1 (denoted by ◦).

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch07-9780123869425 — 2012/6/7 — 1:09 — Page 321 — #9

7.4 Fourier Analysis of Discrete Data 321

−6 −4 −2 0 2 4 6
−1

0

1

2

3

4

5

x
y

FIGURE 7.4 The solid curve shows the function y = 2{1+ tanh(2x)}− x/10. The dashed line shows an
eighth-degree polynomial fit; the dotted line shows a spline fit.

point and the other control point. In interactive computer graphics, the positions of the
control points can be moved on the screen in order to adjust the slope of the curve at the
end points.

7.4 Fourier Analysis of Discrete Data
Fourier analysis in its various forms is an important tool for the scientist or engineer
engaged in the interpretation of data where a knowledge of the frequencies present in the
data or function may give some insight into the mechanism that has generated it. For con-
tinuous periodic functions, the frequency content is determined from the coefficients of
the terms in the well-known Fourier series; for nonperiodic functions, it is determined
from the Fourier integral transform. In an analogous manner, the frequency content of
a sequence of data can be determined by Fourier analysis, in this case from the discrete
Fourier transform (DFT). The harmonic functions fit the data exactly, but here the purpose
is most likely to determine the harmonic content of the data rather than to interpolate new
data values.

The data can come from many sources. For example, the radial forces acting at dis-
crete points around a cylinder constitute a sequence of data that must be periodic. The
most frequently occurring form of data is a time series in which the value of some quan-
tity is given at equal intervals of time—for example, data sampled from a signal from a
transducer—and for this reason the analysis that follows is developed in terms of the inde-
pendent variable t, which represents time. It must be stressed, however, that the DFT can
be applied to any data regardless of the domain from which it originates. Determining the
DFT for a sequence of data points is straightforward, although the computation is tedious.

We begin by defining a periodic function. A function y(t) is periodic if it has the property
that for any value of time t, y(t)= y(t+T) where T is the time period, typically measured
in seconds. The reciprocal of the period is equal to the frequency, denoted by f and mea-
sured in cycles/second. In the SI system of units, 1 Hertz (Hz) is defined as 1 cycle/second.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch07-9780123869425 — 2012/6/7 — 1:09 — Page 322 — #10

322 Chapter 7 . Fitting Functions to Data

r = 0 r = 1 r = 2 r = 0r = n −1

T
Δt

FIGURE 7.5 Numbering scheme for data points.

If we are concerned with a periodic function z(x), where x is a spatial variable, then for any
value of x, z(x)= z(x+X) where X is the spatial period or wavelength, typically measured
in meters. The frequency f = 1/X is then measured in cycles/meter.

We now examine how to fit a finite set of trigonometric functions to n data points (tr ,yr)

where r = 0,1,2, . . . ,n− 1. We assume the data points are equispaced and the number of
data points, n, is even. Data values may be complex but in most practical situations they
are real. The data points are numbered as shown in Figure 7.5. The point following the
(n− 1)th is assumed to equal the value of the zero point. Thus the DFT assumes the data
is periodic with a period T equal to the range of the data.

Let the relationship between yr and tr be given by a finite set of sine and cosine
functions as follows:

yr =
1
n

A0+

m−1∑
k=1

{
Ak cos(2πktr/T)+Bk sin(2πktr/T)

}
+Am cos(2πmtr/T)

 (7.2)

where r = 0,1,2, . . . ,n− 1, m= n/2 and T is the range of the data as shown in Figure 7.5.
The n coefficients A0, Am, Ak, and Bk (where k = 1,2, . . . ,m− 1) must be determined. Since
we have n data values and n unknown coefficients, (7.2) can be made to fit the data exactly.
The factor 1/n in (7.2) is omitted by some authors, and omitting it has the effect of reducing
the size of the coefficients A0, Am, Ak, and Bk by the factor n. The reason for choosing m+ 1
coefficients multiplied by a cosine function (including cos0, which equals one and in fact
multiplies A0) and m− 1 coefficients multiplied by a sine function in (7.2) will become
apparent.

Each sine or cosine term of (7.2) represents k complete cycles in the range of the data T .
Thus the period of each sine term is T/k, where k = 1,2, . . . ,(m− 1), and the period of each
cosine term is T/k, where k = 1,2, . . . ,m. The corresponding frequencies are given by k/T .
Thus the frequencies present in (7.2) are 1/T , 2/T , . . . , m/T . Letting 1f be the frequency
increment between components and fmax be the maximum frequency, then

1f = 1/T (7.3)

and

fmax =m1f = (n/2)1f = n/(2T) (7.4)

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch07-9780123869425 — 2012/6/7 — 1:09 — Page 323 — #11

7.4 Fourier Analysis of Discrete Data 323

The data values tr are equally spaced in the range T and may be expressed as

tr = rT/n, r = 0,1,2, . . . ,n− 1 (7.5)

Letting1t be the sampling interval (see Figure 7.5), then

1t = T/n (7.6)

Let T0 be the period corresponding to fmax, the maximum frequency in (7.2). Then, from
(7.4),

fmax = 1/T0 = n/(2T)

Thus T = T0n/2. Substituting this relationship in (7.6), we have1t = T0/2. This tells us that
the maximum frequency component in the DFT contains two samples of data per cycle.
The maximum frequency, fmax, is called the Nyquist frequency, and the corresponding
sampling rate is called the Nyquist sampling rate.

A harmonic with a frequency that is exactly equal to the Nyquist frequency cannot
be properly detected because at this frequency the DFT has a cosine term but no cor-
responding sine term. This result has an important implication when data is sampled
from a continuously varying function or signal. It implies that there must be more than
two data samples per cycle at the highest frequency present in the function or signal. If
there are frequencies in the signal higher than the Nyquist frequency, then, because of
the periodic nature of the DFT itself, they appear as frequency components in the DFT
at a lower frequency. This phenomenon is called “aliasing.” For example, if data is sam-
pled at 0.005 second intervals, that is, 200 samples per second, then the Nyquist frequency,
fmax, is 100 Hz. A frequency of 125 Hz in this signal would appear as a frequency com-
ponent at 75 Hz. A frequency of 225 Hz would appear as 25 Hz. The relationship between
frequencies in a signal and the frequency components in the DFT is shown in Figure 7.6.
Frequency aliasing should be avoided because it makes it difficult or impossible to relate
the frequency components in the DFT to their physical causes.

We now return to the task of determining the n coefficients A0, Am, Ak, and Bk in (7.2).
Replacing tr = rT/n in (7.2), we obtain

yr =
1
n

A0+

m−1∑
k=1

{
Ak cos(2πkr/n)+Bk sin(2πkr/n)

}
+Am cos(πr)

 (7.7)

where r = 0,1,2, . . . ,n− 1. It was previously noted that the coefficients B0 and Bm are
absent from (7.2). It is now clear that had we introduced these coefficients they would be
multiplied by sin(0) and sin(πr), both of which are zero.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch07-9780123869425 — 2012/6/7 — 1:09 — Page 324 — #12

324 Chapter 7 . Fitting Functions to Data

C
om

po
ne

nt
 in

 D
FT

Signal frequency

fmax

fmax 4 fmax2 fmax 3 fmax

FIGURE 7.6 Relationship between a signal frequency and its component in the DFT derived by
sampling using a Nyquist frequency fmax.

In (7.7) the n unknown coefficients are real. However, (7.7) can be expressed more
concisely in terms of complex exponentials with complex coefficients. Using the fact that

cos(2πkr/n)= {exp(ı2πkr/n)+ exp(−ı2πkr/n)}/2

sin(2πkr/n)= {exp(ı2πkr/n)− exp(−ı2πkr/n)}/2ı

and

exp {ı2π(n− k)r/n} = exp(−ı2πkr/n)

where k = 1,2, . . . ,m− 1 and ı =
√
−1, then it can be shown that (7.7) reduces to

yr =
1
n

n−1∑
k=0

Yk exp(ı2πkr/n), r = 0, 1 2, . . . , n− 1 (7.8)

In (7.8),

Y0 = A0 and Ym = Am, where m= n/2

Yk = (Ak− ıBk)/2 and Yn−k = (Ak+ ıBk)/2, for k = 1,2, . . . ,m− 1

Note that if yr is real, then Ak and Bk are also real, so that Yn−k is the complex conjugate
of Yk, for k = 1,2, . . . ,(n/2− 1). To find the values of the unknown complex coefficients of
(7.8) we make use of the following orthogonal property of exponential functions sampled
at n equispaced points:

n−1∑
r=0

exp(ı2πrj/n)exp(ı2πrj/n)=

{
0 if |j− k| 6= 0, n, 2n

n if |j− k| = 0, n, 2n
(7.9)

Multiplying (7.8) by exp(−ı2πrj/n), summing over the n values of r, and then using (7.9),
an expression for the unknown coefficients can be found:

Yk =

n−1∑
r=0

yr exp(ı2πkr/n) k = 0, 1, 2, . . . , n− 1 (7.10)

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch07-9780123869425 — 2012/6/7 — 1:09 — Page 325 — #13

7.4 Fourier Analysis of Discrete Data 325

If we let Wn = exp(−ı2π/n), where Wn is a complex constant, then (7.10) becomes

Yk =

n−1∑
r=0

yrW kr
n k = 0, 1, 2, . . . , n− 1 (7.11)

Note that in (7.11) Wn is raised to the power kr. Alternatively, we can write (7.11) in matrix
notation, giving

Y =Wy (7.12)

where W kr
n is the element of the (k+ 1)th row, (r+ 1)th column of W since k and r both start

at zero. Note that W is an n×n array of complex coefficients. Y is a vector of the complex
Fourier coefficients and in this instance we are departing from our usual convention that
emboldened uppercase letters represent arrays.

We can obtain the coefficients Yk from the equispaced data (tr ,yr)by using (7.10), (7.11),
or (7.12). These equations are alternative statements of the DFT. Furthermore, by replacing
k in (7.10) by k+np, where p is any integer, it can be shown that Yk+np = Yk. Thus the DFT
is periodic over the range n. The inverse of the DFT is called the inverse discrete Fourier
transform (IDFT) and is implemented by (7.8). By replacing r in (7.8) by r+np, where p
is an integer, it can be shown that the IDFT is also periodic over the range n. Both yr and
Yk may be complex, although, as previously stated, the samples yr are usually real. These
transforms constitute a pair: If the data values are transformed by the DFT to determine
the coefficients Yk, then they can be recovered in their entirety by means of the IDFT.

To evaluate the coefficients of the DFT it would appear convenient to use (7.12).
Although using these equations is satisfactory for small sequences of data, calculating the
DFT for n real data points requires 2n2 multiplications. Thus, to transform a sequence of
4096 data points would require approximately 33 million multiplications. In 1965 this sit-
uation was dramatically changed with the publication of the fast Fourier transform (FFT)
algorithm (Cooley and Tukey, 1965). The FFT algorithm is extremely efficient, and approxi-
mately 2n log2 n multiplications are required to compute the FFT for real data. With this
development, allied to the developments in computing hardware that have occurred in
the past forty years, it is now possible to compute the FFT for a relatively large number of
data points on a personal computer.

Many refinements have been made to the basic FFT algorithm since it was first for-
mulated, and several variants have been developed. Here one of the simplest forms of the
algorithm is outlined.

To develop the basic FFT algorithm one further restriction must be placed on the data.
In addition to the data being equispaced, the number of data points must be an integer
power of 2. This allows a sequence of data to be successively subdivided. For example, 16
data points can be divided into two sequences of 8, four sequences of 4, and finally eight
sequences of only 2 data points. A crucial relationship on which the FFT algorithm is based
is now developed from (7.10) as follows. Let yr be the sequence of n data points for which

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch07-9780123869425 — 2012/6/7 — 1:09 — Page 326 — #14

326 Chapter 7 . Fitting Functions to Data

we require the DFT. We can subdivide yr into two sequences of n/2 data points ur and vr

as follows:

ur = y2r

vr = y2r+1

}
(7.13)

Note that alternate points in the original data sequence are placed in different subsets. We
now determine the DFTs of the data sets ur and vr from (7.10), with n replaced by n/2:

Uk =
n/2−1∑

r=0
ur exp{−ı2πkr/(n/2)}

Vk =
n/2−1∑

r=0
vr exp{−ı2πkr/(n/2)}

 k = 0, 1, 2, . . . , n/2− 1 (7.14)

The DFT, Yk, for the original data sequence yr is given by using (7.10) as follows:

Yk =

n−1∑
r=0

yr exp(−ı2πkr/n)

=

n/2−1∑
r=0

y2r exp{−ı2πk2r/n}+
n/2−1∑

r=0

y2r+1 exp{−ı2πk(2r+ 1)/n}

where k = 0,1,2, . . . ,n. Substituting for y2r and y2r+1 from (7.13), we have

Yk =

n/2−1∑
r=0

ur exp{−ı2πkr/(n/2)}+ exp(−ı2πk/n)
n/2−1∑

r=0

vr exp{−ı2πkr/(n/2)}

Comparing this equation with (7.14), we see that

Yk =Uk + exp(−ı2πk/n)Vk =Uk + (W
k
n)Vk (7.15)

where W k
n = exp(−ı2πk/n) and k = 0,1,2, . . . ,n/2− 1.

Equation (7.15) provides only half of the required DFT. However, using the fact that Uk

and Vk are periodic in k, it can be proved that

Yk+n/2 =Uk − exp(−ı2πk/n)Vk =Uk − (W
k
n)Vk (7.16)

We can use (7.15) and (7.16) to determine efficiently the DFT of the original data from the
DFTs of subsets composed of alternate points of the original data. Of course, we can deter-
mine the DFTs of each subset of data by further subdividing these subsets until the final
division leaves subsets consisting of a single data point. For a sequence of data comprising
a single data point, we see from (7.10) with n= 1 that the DFT is equal to the value of the
single data point. This is essentially how the FFT algorithm works.

In the preceding discussion we started from a sequence of data and continuously sub-
divided it (with alternate points in different subsets) until the subdivisions produced single

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch07-9780123869425 — 2012/6/7 — 1:09 — Page 327 — #15

7.4 Fourier Analysis of Discrete Data 327

0
000
000

0

Original data sequence:
Binary equivalent:

Reverse binary:
Data arranged so that

subsets are combined in
correct sequence

1
001
100

4

2
010
010

2

3
011
110

6

4
100
001

1

5
101
101

5

6
110
011

3

7
111
111

7

Final 8-point DFT

FIGURE 7.7 Stages in the FFT algorithm.

data points. What we require is a method of starting with single data points and ordering
them in such a way that successively combining the DFTs of the subsets ultimately forms
the required DFT of the original data. This can be achieved by the “bit reversed algorithm,”
and we illustrate it and the subsequent stages of the FFT by assuming a sequence of eight
data points, y0 to y7. To determine the correct order for combining the data we express the
subscript denoting the original position of each data point as a binary number and reverse
the order of the digits (or bits). This reversed-order binary number determines the posi-
tion of each data point in the reordered sequence and is shown for eight data points in
Figure 7.7. The diagram also shows the stages of the FFT algorithm, which repeatedly uses
(7.15) and (7.16) as follows:

Stage 1 Determine Y04 from Y0 and Y4, determine Y26 from Y2 and Y6, determine Y15

from Y1 and Y5, determine Y37 from Y3 and Y7.

Stage 2 Determine Y0246 from Y04 and Y26, determine Y1357 from Y15 and Y37.

Stage 3 Determine Y01234567 from Y0246 and Y1357.

Note that there are three stages in this process. For an n point DFT, the number of stages
equals log2 n. In this small example, n= 8 and hence log2 8= log2 23

= 3. Thus the process
requires three stages.

MATLAB provides both the function fft to determine the DFT of a sequence of data val-
ues using the FFT algorithm, and the function ifft to determine the IDFT using a slight
modification of the FFT algorithm. Thus to determine the DFT of the data in y we use the
fft function as the following script illustrates:

% e3s705.m

v = 0:15;

y = [2.8 -0.77 -2.2 -3.1 -4.9 -3.2 4.83 -2.5 3.2 ...

-3.6 -1.1 1.2 -3.2 3.3 -3.4 4.9];

s = sum(y), Y = fft(y);

[v' Y.']

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch07-9780123869425 — 2012/6/7 — 1:09 — Page 328 — #16

328 Chapter 7 . Fitting Functions to Data

Running this script gives the following results:

s =

-7.7400

ans =

0 -7.7400

1.0000 3.2959 + 8.3851i

2.0000 13.9798 +10.9313i

3.0000 8.0796 - 6.6525i

4.0000 -0.2300 + 4.7700i

5.0000 4.3150 + 6.8308i

6.0000 14.2202 + 1.4713i

7.0000 -17.2905 +15.0684i

8.0000 -0.2000

9.0000 -17.2905 -15.0684i

10.0000 14.2202 - 1.4713i

11.0000 4.3150 - 6.8308i

12.0000 -0.2300 - 4.7700i

13.0000 8.0796 + 6.6525i

14.0000 13.9798 -10.9313i

15.0000 3.2959 - 8.3851i

We have already noted that for real data Yn−k is the complex conjugate of Yk, for
k = 1,2, . . . ,(n/2− 1). The preceding results illustrate this relationship and in this case
Y15,Y14, . . . ,Y9 are the complex conjugates of Y1,Y2, . . . ,Y7, respectively, and provide no
extra information. Note also that Y0 is equal to the sum of the original data values yr .

We now give examples of the use of the fft function to examine the frequency content
of data sequences sampled from continuous functions.

Example 7.1
Determine the DFT of a sequence of 64 equispaced data points, sampled at intervals of 0.05 s
from the function y = 0.5+ 2sin(2π f1t)+ cos(2π f2t), where f1 = 3.125 Hz and f2 = 6.25 Hz. The
following script calls the fft function and displays the resulting DFT in various ways:

% e3s706.m

clf

nt = 64; dt = 0.05; T = dt*nt

df = 1/T, fmax = (nt/2)*df

t = 0:dt:(nt-1)*dt;

y = 0.5+2*sin(2*pi*3.125*t)+cos(2*pi*6.25*t);

f = 0:df:(nt-1)*df; Y = fft(y);

figure(1)

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch07-9780123869425 — 2012/6/7 — 1:09 — Page 329 — #17

7.4 Fourier Analysis of Discrete Data 329

subplot(121), bar(real(Y),'r')

axis([0 63 -100 100])

xlabel('Index k'), ylabel('real(DFT)')

subplot(122), bar(imag(Y),'r')

axis([0 63 -100 100])

xlabel('Index k'), ylabel('imag(DFT)')

fss = 0:df:(nt/2-1)*df;

Yss = zeros(1,nt/2); Yss(1:nt/2) = (2/nt)*Y(1:nt/2);

figure(2)

subplot(221), bar(fss,real(Yss),'r')

axis([0 10 -3 3])

xlabel('Frequency (Hz)'), ylabel('real(DFT)')

subplot(222), bar(fss,imag(Yss),'r')

axis([0 10 -3 3])

xlabel('Frequency (Hz)'), ylabel('imag(DFT)')

subplot(223), bar(fss,abs(Yss),'r')

axis([0 10 -3 3])

xlabel('Frequency (Hz)'), ylabel('abs(DFT)')

Running the preceding script gives

T =

3.2000

df =

0.3125

fmax =

10

together with Figures 7.8 and 7.9. Note that in the script we have used the bar rather than the
plot statement to emphasize the discrete nature of the DFT. Figure 7.8 shows the amplitudes
of the 64 real and imaginary components of the DFT plotted against the index number k. Note
that components 63 to 33 are the complex conjugates of components 1 to 31. While these plots
display the DFT, the amplitude and frequency of the harmonic components in the original sig-
nal cannot easily be recognized. To achieve this the DFT must be scaled and displayed as shown
in Figure 7.8. In the real part of the DFT there are components at k = 0, 20, and 44, each with
an amplitude of 32, and in the imaginary part of the DFT there are components at k = 10 and
54, with amplitudes of 64 and −64, respectively. Since they contain no extra information, we
ignore the components above k = 32 (i.e., k = 44 and 54) and consider only the components in
the range k = 0,1, . . . ,31; in this case specifically k = 0, 10, and 20. We can convert the DFT index
number to frequency by multiplying by1f (= 0.3125 Hz) to give components at 0 Hz, 3.125 Hz,
and 6.25 Hz, respectively. We now scale the DFT in the range k = 1,2, . . . ,31 by dividing it by
(n/2), in this case by 32.

The plots of the 31 scaled DFT components (most of which are zero) corresponding to
frequencies in the range 0 to 9.6875 Hz are shown in Figure 7.9. We now see that the real
component at 6.25 Hz has an amplitude of 1 and the imaginary component at 3.125 Hz has

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch07-9780123869425 — 2012/6/7 — 1:09 — Page 330 — #18

330 Chapter 7 . Fitting Functions to Data

0 20 40 60
−100

−80

−60

−40

−20

0

20

40

60

80

100

Index k

re
al

 (
D

FT
)

0 20 40 60
−100

−80

−60

−40

−20

0

20

40

60

80

100

Index k
im

ag
 (

D
FT

)
FIGURE 7.8 Plots of the real and imaginary part of the DFT.

0 5 10

−2

0

2

Frequency (Hz)

ab
s

(D
FT

)

0 5 10

−2

0

2

Frequency (Hz)

im
ag

 (
D

FT
)

0 5 10

−2

0

2

Frequency (Hz)

re
al

 (
D

FT
)

FIGURE 7.9 Frequency spectra.

an amplitude of−2. These components correspond, respectively, to the cosine component and
the negative of the sine component in the original signal from which the data was sampled.
If we only wish to know the amplitude of the frequency components, then we can display the
absolute values of the scaled DFT. The component at f = 0 Hz is equal to twice the mean value
of the data; in this case we have 2× 0.5= 1. These plots are called frequency spectra or peri-
odograms. If sampling is over an integer number of cycles of the harmonics present in the signal,

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch07-9780123869425 — 2012/6/7 — 1:09 — Page 331 — #19

7.4 Fourier Analysis of Discrete Data 331

the amplitude of the components in the scaled DFT equal the amplitude of the corresponding
harmonics, as shown in this example. If the sampling is not over an integer number of cycles of
any harmonic present in the signal, then the component in the DFT closest to the frequency of
the harmonic is reduced in amplitude and spread into other frequencies. This phenomenon is
called “smearing” or “leakage” and is further discussed in Problem 7.15.

Example 7.2
We now determine the spectrum of a sequence of 512 data points sampled over a period of 2

seconds from the function

y = 0.2cos(2π f1t)+ 0.35sin(2π f2t)+ 0.3sin(2π f3t)+ random noise

where f1 = 20 Hz, f2 = 50 Hz, and f3 = 70 Hz. The random noise is normally distributed with a
standard deviation of 0.5 and a mean of zero. The following script plots the time series and the
DFT scaled by the factor n/2.

% e3s707.m

clf

f1 = 20; f2 = 50; f3 = 70;

nt = 512; T = 2; dt = T/nt

t_final = (nt-1)*dt; df = 1/T

fmax = (nt/2)*df;

t = 0:dt:t_final;

dt_plt = dt/25;

t_plt = 0:dt_plt:t_final;

y_plt = 0.2*cos(2*pi*f1*t_plt)+0.35*sin(2*pi*f2*t_plt) ...

+0.3*sin(2*pi*f3*t_plt);

y_plt = y_plt+0.5*randn(size(y_plt));

y = y_plt(1:25:(nt-1)*25+1); f = 0:df:(nt/2-1)*df;

figure(1);

subplot(211), plot(t_plt,y_plt)

axis([0 0.04 -3 3])

xlabel('Time (sec)'), ylabel('y')

yf = fft(y);

yp(1:nt/2) = (2/nt)*yf(1:nt/2);

subplot(212), plot(f,abs(yp))

axis([0 fmax 0 0.5])

xlabel('Frequency (Hz)'), ylabel('abs(DFT)');

Running the preceding script gives

dt =

0.0039

df =

0.5000

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch07-9780123869425 — 2012/6/7 — 1:09 — Page 332 — #20

332 Chapter 7 . Fitting Functions to Data

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

−2

0

2

Time (sec)

y

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

Frequency (Hz)

ab
s

(D
FT

)

FIGURE 7.10 Signal and frequency spectrum showing frequency components at 20, 50, and 70 Hz.

together with the graphical output shown in Figure 7.10. The lower plot of Figure 7.10 shows
that random noise in the signal does not prevent the frequency components 20, 50, and 70 Hz
from revealing themselves in the spectrum. These components are not obviously visible in the
original time series data shown in the upper plot of Figure 7.10.

Example 7.3
Determine the spectrum of a triangular wave of amplitude±1 and period 1 second, sampled at
1/32 second intervals over one cycle. The following script outputs the DFT scaled by the factor
n/2.

% e3s708.m

nt = 32; T = 1, dt = T/nt

t = 0:dt:(nt-1)*dt;

df = 1/T, fmax = nt/(2*T)

f = 0:df:df*(nt/2-1);

y = 0.125*[8 7 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6 -7 -8 ...

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7];

Yss = zeros(1,nt/2); Y = fft(y);

Yss(1:nt/2) = (2/nt)*Y(1:nt/2);

[f' abs(Yss)']

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch07-9780123869425 — 2012/6/7 — 1:09 — Page 333 — #21

7.4 Fourier Analysis of Discrete Data 333

Running this script gives

T =

1

dt =

0.0313

df =

1

fmax =

16

ans =

0 0

1.0000 0.8132

2.0000 0

3.0000 0.0927

4.0000 0

5.0000 0.0352

6.0000 0

7.0000 0.0194

8.0000 0

9.0000 0.0131

10.0000 0

11.0000 0.0100

12.0000 0

13.0000 0.0085

14.0000 0

15.0000 0.0079

The Fourier series for the triangular wave of this example is

f (t) =
8

π2

(
cos(2πt)+

1

32
cos(6πt)+

1

52
cos(10πt)+

1

72
cos(14πt)+ ·· ·

)

The first eight frequency components in the scaled DFT at frequencies 1, 3, 5 Hz, and so
on, are not equal to 8/π2, 8/(3π)2, 8/(5π)2 (i.e., 0.8106, 0.0901, 0.0324), and so on, because of
the effect of aliasing. A triangular wave contains an infinite number of harmonics and because
of aliasing these appear as components in the DFT as shown in Table 7.2. Thus the size of the
3 Hz component in the DFT is (8/π2)(1/32

+ 1/292
+ 1/352

+ 1/612
+ ·· ·). By summing a large

number of terms down the columns of Table 7.2, the terms in the DFT are obtained. The DFT
as shown in the preceding is correct, and the inverse DFT recovers the original data. However,

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch07-9780123869425 — 2012/6/7 — 1:09 — Page 334 — #22

334 Chapter 7 . Fitting Functions to Data

Table 7.2 Coefficients of Aliased Harmonics

f 3f 5f 7f 9f 11f 13f 15f

8/π2 8/(3π)2 8/(5π)2 8/(7π)2 8/(9π)2 8/(11π)2 8/(13π)2 8/(15π)2

8/(31π)2 8/(29π)2 8/(27π)2 8/(25π)2 8/(23π)2 8/(21π)2 8/(19π)2 8/(17π)2

8/(33π)2 8/(35π)2 8/(37π)2 8/(39π)2 8/(41π)2 8/(43π)2 8/(45π)2 8/(47π)2

8/(63π)2 8/(61π)2 8/(59π)2 8/(57π)2 8/(55π)2 8/(53π)2 8/(51π)2 8/(49π)2

8/(65π)2 8/(67π)2 etc.

when using it to provide information about the contribution of frequency components in the
original data, the DFT must be interpreted with care.

Example 7.4
Determine the DFT of a sequence of 128 data points sampled from a signal at intervals of 0.0625
seconds. The signal has a constant amplitude of 1 unit which, after 10 samples, is switched to
zero.

The following script determines the DFT for the data.

% e3s709.m

clf

nt = 128; nb = 10;

y = [ones(1,nb) zeros(1,nt-nb)];

dt = 0.0625; T = dt*nt

df = 1/T, fmax = (nt/2)*df;

f = 0:df:(nt/2-1)*df;

yf = fft(y);

yp = (2/nt)*yf(1:nt/2);

figure(1), bar(f,abs(yp),'w')

axis([0 fmax 0 0.2])

xlabel('Frequency (Hz)'), ylabel('abs(DFT)')

Running this script gives

T =

8

df =

0.1250

together with the graphical output shown in Figure 7.11. The plot shows that the frequency
spectrum is continuous and the largest components are clustered near the zero frequency. This
is in contrast to the spectra of Examples 7.1 and 7.2, which show sharp peaks due to the presence

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch07-9780123869425 — 2012/6/7 — 1:09 — Page 335 — #23

7.5 Multiple Regression: Least Squares Criterion 335

0 2 4 6 8
0

0.05

0.1

0.15

0.2

Frequency (Hz)
ab

s
(D

FT
)

FIGURE 7.11 Spectrum of a sequence of data.

of periodic components in the original data. Note that because the original signal is a step and
not periodic, the amplitude of its DFT is dependent on the sampling period.

In this section we have provided examples of how the DFT (computed using the FFT)
can be used to study the distribution of frequency components in data. There are other
applications of the DFT. It is sometimes used for interpolation, as is any procedure that fits
mathematical functions to a sequence of data. MATLAB provides the function interpft to
allow interpolation using the DFT.

The advances in computer hardware have extended the range of problems to which
the DFT can usefully be applied, and this in turn has encouraged the development of new
and powerful variants of the FFT algorithm. A detailed description of the FFT algorithm is
given by Brigham (1974), and a straightforward introduction that emphasizes the practical
problems in using this type of analysis is given by Ramirez (1985).

7.5 Multiple Regression: Least Squares Criterion
We now consider the problem of fitting a function to a relatively large amount of data
that contains errors. It would not be sensible, nor computationally possible, to fit a very
high-degree polynomial to a large amount of experimental data as may be done for inter-
polation. What is required is a function that smooths out fluctuations in the data due to
errors and reveals any underlying trend. We therefore adjust the coefficients of a chosen
function to provide a “best fit” according to some criterion. For example, the criterion may
be to minimize the maximum error, the sum of the modulus of the errors, or the sum of
the squares of the errors between the chosen function and the actual data points. The least
squares method is the most widely used of these, criteria and we now examine how this
process is carried out.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch07-9780123869425 — 2012/6/7 — 1:09 — Page 336 — #24

336 Chapter 7 . Fitting Functions to Data

Suppose we have an n component vector of observations y and p separate vectors of
explanatory variables, x1, x2, . . . , xp. The variables x1, x2, . . . , xp are generally independent
variables that are measured with negligible error or even controlled in an experiment
and y is a single dependent variable, uncontrolled and containing random measurement
errors. In some cases x1, x2, and so on, may be different functions of a single explana-
tory variable—in which case we call them predictors (see Sections 7.8 and 7.9). Our basic
model consists of a regression equation and is said to be a regression of y upon the explana-
tory variables x1, x2, . . . , xp. We assume a simple linear regression model, and so for the ith
observation we have

yi = β0+β1x1i+β2x2i+ ·· ·+βpxpi+ εi, i= 1, 2, . . . , n (7.17)

where βj (j = 0,1,2, . . . ,p) are the unknown coefficients and εi are random errors. Initially
we simply assume that these random errors are identically distributed with a zero mean
and a common unknown variance, σ 2, and that they are independent of each other. This
implies that

β0+β1x1i+β2x2i+ ·· ·+βpxpi

represents the mean value of yi.
Our main task is to find an estimate bj for each unknown βj so that we can estimate the

mean of yi by fitting a function of the form

ŷj = b0+b1x1i+b2x2i+ ·· ·+bpxpi, i= 1, 2, . . . , n (7.18)

The difference between the observed and the fitted value for the ith observation

ei = yi− ŷi (7.19)

is called the residual and is an estimate of the corresponding εi. Our criterion for choosing
the bj estimates is that they should minimize the sum of the squares of the residuals, which
is often called the sum of squares of the errors and is denoted by SSE. Thus

SSE =
n∑

i=1

e2
i =

n∑
i=1

(yi− ŷi)
2 (7.20)

To perform the necessary calculations efficiently, we rewrite the model in matrix form
as follows. We define b as a (p+ 1)× 1 vector such that

b= [b0 b1 . . . bp]>

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch07-9780123869425 — 2012/6/7 — 1:09 — Page 337 — #25

7.5 Multiple Regression: Least Squares Criterion 337

Similarly we define e, y, u, and xj to be n× 1 vectors as follows:

e= [e1 e2 . . . en]>

y= [y1 y2 . . . yn]>

u= [1 1 . . . 1]>

xj = [xj1 xj2 . . . xjn]>, j = 1,2, . . . ,p

From these vectors the n× (p+ 1)matrix, X, can be defined as follows:

This matrix corresponds to the coefficients of the equation system (7.18). From (7.19) the
residuals may then be written as

e= y−Xb

and the SSE, from (7.20), is then

SSE = e>e = (y −Xb)>(y −Xb) (7.21)

Differentiating the SSE with respect to b, we get a vector of partial derivatives, as follows:

∂

∂b
(SSE)=−2X>(y−Xb)

Matrix differentiation is described in Appendix A. Equating this derivative to zero we
have Xb= y and this overdetermined system of equations could be solved directly to
obtain the coefficients b using the MATLAB operator \. However, in this instance it is more
convenient to proceed as follows. Premultiplying Xb= y by X>, we obtain what are called
the normal equations:

X>Xb = X>y

The formal solution of these equations is then

b = (X>X)−1X>y = CX>y (7.22)

where

C = (X>X)−1 (7.23)

Note that C is a (p+ 1)× (p+ 1) square matrix.
Using the expression for b in (7.22), the vector of fitted values corresponding to y is

ŷ= Xb= XCX>y

X= [u x1 x2 . . . xp]

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch07-9780123869425 — 2012/6/7 — 1:09 — Page 338 — #26

338 Chapter 7 . Fitting Functions to Data

So, defining H= XCX>, we can write

ŷ=Hy (7.24)

The matrix H, which converts y to ŷ (“y-hat”) is called the hat matrix and plays an impor-
tant role in the interpretation of the regression model. Among its important properties is
that it is idempotent (see Appendix A).

From (7.22) it can be shown that the minimum value of SSE is given by

SSE= y>(I−H)y (7.25)

where I is an n×n identity matrix. Our original data consisted of n sets of observations
and we have introduced p+ 1 constraints into the system to estimate the parameters
β0,β1, . . . ,βp, so there are now (n−p− 1) degrees of freedom. Statistical theory shows that
by dividing the minimum SSE from (7.25) by the number of degrees of freedom, we obtain
an unbiased estimate of the unknown error variance, σ 2, which is

s2
=

SSE
n−p− 1

=
y>(I−H)y
n−p− 1

(7.26)

On its own, the value of s obtained by fitting a single model is not very informative. How-
ever, we can also use H to evaluate the overall goodness of fit on an absolute scale and to
examine how good each bj is as an estimate of the corresponding βj.

The most widely used measure of the overall goodness of fit is the coefficient of
determination, R2, which is defined by

R2
=

n∑
i=1

(ŷi− ȳ)2
/ n∑

i=1

(yi− ȳ)2

where

ȳ =
1
n

n∑
i=1

yi

Thus ȳ is the mean of the observed y values. Using matrix notation, we can evaluate R2

from the equivalent definition

R2
=

y>(H−uu>/n)y
y>(I−uu>/n)y

(7.27)

The value of R2 will lie between 0 and 1 and represents the proportion of the total observed
variance of y that is accounted for by the explanatory variables. Thus a value close to
1 indicates that nearly all the observed variance is accounted for and we have a good
fit. However, on its own this does not necessarily indicate that the model is satisfactory

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch07-9780123869425 — 2012/6/7 — 1:09 — Page 339 — #27

7.6 Diagnostics for Model Improvement 339

because the value of R2 can always be increased by introducing more explanatory vari-
ables, even though their introduction can have other effects that are very undesirable.
In the next section we briefly consider some methods for deciding which explanatory
variables should be included in the model.

7.6 Diagnostics for Model Improvement
To see which variables might be removed to improve our original model, we now exam-
ine the bj estimates in more detail to check whether they indicate that the corresponding
βj coefficients are nonzero, which would confirm that the corresponding xj really do con-
tribute to explaining y, or in the case of b0, whether it is appropriate to include the constant
term β0 in the model.

If we make the assumption that the random errors, εi, are normally distributed, it can
be shown that each of the bj estimates behave as if they were observed values of normal
random variables whose means are the βj and whose covariance matrix is s2C where C is
defined by (7.23). Thus the covariance matrix is

s2C= s2

c00 c01 c02 . . . c0p

c11 c12 . . . c1p

c22 . . . c2p
...

cpp

Note that we numbered the rows and columns of C from zero to p. The matrix C is
symmetric and so the subdiagonal elements are not shown.

The variance of the distribution for bj is s2 times the corresponding diagonal element
of C, and the standard error (SE) of bj is the square root of this variance:

SE(bj)= s
√

cjj

If βj is really zero, the statistic

t = bj/SE(bj)

has a Student’s t-distribution with n−p− 1 degrees of freedom. Thus a formal hypothesis
test may be carried out to check whether it is reasonable to assume that βj is zero and
hence the predictor xj does not make a significant contribution to explaining y. However,
as an initial guide to whether xj should be included in the regression model, it is usually
sufficient to check whether the magnitude of the corresponding t-statistic is numerically
greater than about 2. If |t|> 2, then xj should be left in the model; otherwise, consideration
should be given to removing it.

When there is more than one explanatory variable or predictor in the original regres-
sion, there is a possibility that two or more of these may be highly correlated with each

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch07-9780123869425 — 2012/6/7 — 1:09 — Page 340 — #28

340 Chapter 7 . Fitting Functions to Data

other. This situation is called multicollinearity; when it occurs the columns in X corre-
sponding to the correlated variables are almost linearly related, and this causes X>X and
its inverse C to be ill-conditioned. Although we shall be able to solve the normal equa-
tions for b as long as X>X does not actually become singular, the solution is very sensitive
to small changes in the data and there will be large off-diagonal elements in C, indicat-
ing highly correlated bj estimates. It is therefore worth calculating the correlation matrix,
which shows the correlation between y and each of the explanatory variables and the
correlations between all pairs of explanatory variables. As in the case of the covariance
matrix, we number the rows and columns of the correlation matrix from 0 to p. Thus the
correlation matrix is

y x1 x2

y r00 r01 r02 . . .

x1 r10 r11 r12 . . .

x2 r20 r21 r22 . . .

.

where we define the typical element of the correlation matrix rij to be the correlation
between xi and xj and r0j to be the correlation between y and xj.

In situations such as polynomial regression, which is considered in Section 7.8, there
will always be high correlations between the predictors, but examination of the t-statistics
may indicate that some of the predictors do not contribute significantly to explaining y.
Those with the smallest |t| and the smallest |r0j| are the most obvious candidates for
discarding.

Another set of statistics that are useful in this context are the variance inflation factors
(VIFs). To find the VIF for xj, we regress xj upon the other p− 1 explanatory variables and
calculate the coefficient of determination, R2

j . The corresponding VIF is

VIFj =
1

1−R2
j

If xj is almost entirely explained by the other variables, R2
j will be close to 1 and VIF j will be

large. A good working rule is to regard any xj with VIF j > 10 as a candidate for removal.
Note that when there are only two explanatory variables, they will always have equal

variance inflation factors; if these are greater than 10, it is best to discard the variable that
has the smallest correlation with y. When the model contains predictors that are differ-
ent functions of some common explanatory variable, the corresponding VIF values may
be very large, as in the case of polynomial regression described in Section 7.8. Such mod-
els would normally be considered for physical data when predictors of this type could be
shown to have a causal relationship with y.

The following MATLAB function mregg2 implements multiple regression; the diagnostics
necessary for model improvement are also computed.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch07-9780123869425 — 2012/6/7 — 1:09 — Page 341 — #29

7.6 Diagnostics for Model Improvement 341

function [s_sqd R_sqd b SE t VIF Corr_mtrx residual] = mregg2(Xd,con)

% Multiple linear regression, using least squares.

% Example call:

% [s_sqd R_sqd bt SEt tt VIFt Corr_mtrx residual] = mregg2(Xd,con)

% Fits data to y = b0 + b1*x1 + b2*x2 + ... bp*xp

% Xd is a data array. Each row of X is a set of data.

% Xd(1,:) = x1(:), Xd(2,:) = x2(:), ... Xd(p+1,:) = y(:).

% Xd has n columns corresponding to n data points and p+1 rows.

% If con = 0, no constant is used, if con ~= 0, constant term is used.

% Output arguments:

% s_sqd = Error variance, R_Sqd = R^2.

% b is the row of coefficients b0 (if con~=0), b1, b2, ... bp.

% SE is the row of standard error for the coeff b0 (if con~=0),

% b1, b2, ... bp.

% t is the row of the t statistic for the coeff b0 (if con~=0),

% b1, b2, ... bp.

% VIF is the row of the VIF for the coeff b0 (if con~=0), b1, b2, ... bp.

% Corr_mtrx is the correlation matrix.

% residual is an arrray of 4 columns and n rows.

% For each row i, the residual

% array contains the value of y(i), the residual(i), the standardized

% residual(i) and the Cook distance(i) where i is the ith data value.

if con==0

cst = 0;

else

cst = 1;

end

[p1,n] = size(Xd);

p = p1-1; pc = p+cst;

y = Xd(p1,:)';

if cst==1

w = ones(n,1);

X = [w Xd(1:p,:)'];

else

X = Xd(1:p,:)';

end

C = inv(X'*X); b = C*X'*y; b = b.';

H = X*C*X'; SSE = y'*(eye(n)-H)*y;

s_sqd = SSE/(n-pc); Cov = s_sqd*C;

Z = (1/n)*ones(n);

num = y'*(H-Z)*y; denom = y'*(eye(n)-Z)*y;

R_sqd = num/denom;

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch07-9780123869425 — 2012/6/7 — 1:09 — Page 342 — #30

342 Chapter 7 . Fitting Functions to Data

SE = sqrt(diag(Cov)); SE = SE.';

t = b./SE;

% Compute correlation matrix

V(:,1) = (eye(n)-Z)*y;

for j = 1:p

V(:,j+1) = (eye(n)-Z)*X(:,j+cst);

end

SS = V'*V; D = zeros(p+1,p+1);

for j=1:p+1

D(j,j) = 1/sqrt(SS(j,j));

end

Corr_mtrx = D*SS*D;

% Compute VIF

for j = 1+cst:pc

ym = X(:,j);

if cst==1

Xm = X(:,[1 2:j-1,j+1:p+1]);

else

Xm = X(:,[1:j-1,j+1:p]);

end

Cm = inv(Xm'*Xm); Hm = Xm*Cm*Xm';

num = ym'*(Hm-Z)*ym; denom = ym'*(eye(n)-Z)*ym;

R_sqr(j-cst) = num/denom;

end

VIF = 1./(1-R_sqr); VIF = [0 VIF];

% Analysis of residuals

ee = zeros(length(y),1); sr = zeros(length(y),1);

cd = zeros(length(y),1);

if nargout>7

ee = (eye(n)-H)*y;

s = sqrt(s_sqd);

sr = ee./(s*sqrt(1-diag(H)));

cd = (1/pc)*(1/s^2)*ee.^2.*(diag(H)./((1-diag(H)).^2));

residual = [y ee sr cd];

end

To use mregg2 it is necessary to provide the (p+ 1)×n data array, Xd, where p is the number
of explanatory variables and n is the number of data sets. Rows 1 to p contain the values
of the explanatory variables, x1 to xp, and row p+ 1 contains the corresponding value of y.
If the parameter con is set to zero, then the constant term is removed from the regression
model; otherwise, it is included. Examples of the use of the function mregg2 are given in
Sections 7.7 and 7.8.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch07-9780123869425 — 2012/6/7 — 1:09 — Page 343 — #31

7.7 Analysis of Residuals 343

The multiple regression model has wider applications. For example:

1. Polynomial regression. Here y is a polynomial function of a single variable x, so that xj

in the general model is replaced by xj. Thus we have

yi = β0+ β1xi+β2x2
i + ·· · +βpxp

i + εi, i= 1, 2, . . . , n (7.28)

Although this is no longer linear in the explanatory variable x, it is still linear in the βj

coefficients and so the theory for the linear regression model still applies. We can use
mregg2 to carry out polynomial regression where the rows of data are x, x2, x3, . . . and
the last row of data is y. (See Examples 7.7, 7.8, and 7.9).

2. Multiple polynomial regression. Suppose that we wished to fit data to the following
regression model:

yi = β0+β1x1+β2x2+β3x2
1 +β4x2

2 +β5x1x2+ εi, i= 1, 2, . . . ,n

In this case the five predictors are x1, x2, x2
1, x2

2, and x1x2. The predictors are still linear
in the βj coefficients. To use the function mregg2 the six rows of the data array must
contain the values of x1, x2, x2

1, x2
2, x1x2, and y, respectively.

7.7 Analysis of Residuals
Besides considering the contributions made by each of the explanatory variables or pre-
dictors, it is important to consider how well the model fits at each data point and whether
our assumptions about the error distribution are valid.

We recall from (7.24) that

ŷ=Hy

so we may write the residual vector as

e= y−Hy= (I−H) y

It can be shown that the diagonal elements of s2(I−H) represent the variances of the indi-
vidual residuals, so the standard deviation of ei is s

√
1−hii. Since the standard deviation

varies from one data point to another, it is difficult to make a direct comparison between
residuals at different points. However, if we standardize the residuals by dividing each by
its standard deviation, we obtain statistics that are similar to the t-ratios that we used for
analyzing b. Thus the standardized residual ri is

ri =
ei

s
√

1−hii
i= 1, 2, . . . ,n

To distinguish this from other kinds of standardized residuals, it is sometimes called the
Studentized residual. If the assumptions behind our model are correct, the average value

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch07-9780123869425 — 2012/6/7 — 1:09 — Page 344 — #32

344 Chapter 7 . Fitting Functions to Data

of the standardized residual should be close to zero but if any |ri| is larger than about 2 this
may indicate one or more of the following:

1. The point where this occurs is an outlier.
2. The assumption about equal error variance at all points is incorrect.
3. There has been a fault in specifying the model.

In this context, an outlier is an observation that was not obtained under the same condi-
tions as the others. It is not always easy to distinguish points that result from mistakes in
observation from those that correspond to values of the explanatory variables that lie far
away from those used for the other observations. Such points tend to have a large influence
on the fitting process.

A useful statistic for measuring the influence of a particular point is the Cook’s distance,
which combines the size of the squared residual with the distance of a particular point
from the mean value, called the leverage. This is the corresponding diagonal element of H
determined by the values of the explanatory variables.

Cook’s distance, di =

(
1

p+ 1

)
e2

i

s2

[
hii(

1−hii
)2

]
i= 1, 2, . . . , n

Any point for which di > 1 will have a considerable effect on the regression and should
be checked in detail. The point may have been correctly observed and provide infor-
mation that is very useful in model building, but the modeler should be aware of its
influence.

Example 7.5
Fit a regression model to the following data. To save space the data is given in the form required
by the function mregg2. The first, second, and third rows of the matrices are the values of the
explanatory variables x1, x2, and x3, respectively, and the fourth row contains the corresponding
values of y. The following script implements this.

% e3s710.m

X0 = [1.00 1.00 1.00 1.00 1.00 2.00 2.00 2.00;

2.00 2.00 4.00 4.00 6.00 2.00 2.00 4.00;

0 1.00 0 1.00 2.00 0 1.00 0;

-2.52 -2.71 -8.34 -8.40 -14.60 -0.62 -0.47 -6.49];

X1 = [2.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00;

6.00 2.00 2.00 2.00 4.00 6.00 6.00 6.00;

0 0 1.00 2.00 1.00 0 1.00 2.00;

-12.46 1.36 1.40 1.60 -4.64 -10.34 -10.43 -10.30];

Xd = [X0 X1];

[s_sqd R_sqd b SE t VIF Corr_mtrx res] = mregg2(Xd,1);

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch07-9780123869425 — 2012/6/7 — 1:09 — Page 345 — #33

7.7 Analysis of Residuals 345

fprintf('Error variance = %7.4f R_squared = %7.4f \n\n',s_sqd,R_sqd)

fprintf(' Coeff SE t_ratio VIF \n')

fprintf('Constant : %7.4f %7.4f %8.2f \n',b(1),SE(1),t(1))

fprintf('Coeff x1 : %7.4f %7.4f %8.2f %8.2f\n',b(2),SE(2),t(2),VIF(2))

fprintf('Coeff x2 : %7.4f %7.4f %8.2f %8.2f\n',b(3),SE(3),t(3),VIF(3))

fprintf('Coeff x3 : %7.4f %7.4f %8.2f %8.2f\n\n',b(4),SE(4),t(4),VIF(4))

fprintf('Correlation matrix \n')

disp(Corr_mtrx)

fprintf('\n y Residual St Residual Cook dist\n')

for i = 1:length(Xd)

fprintf('%12.4f %12.4f %12.4f %12.4f\n',res(i,1), ...

res(i,2), res(i,3), res(i,4))

end

Running this script gives

Error variance = 0.0147 R_squared = 0.9996

Coeff SE t_ratio VIF

Constant : 1.3484 0.1006 13.40

Coeff x1 : 2.0109 0.0358 56.10 1.03

Coeff x2 : -2.9650 0.0179 -165.43 1.03

Coeff x3 : -0.0001 0.0412 -0.00 1.04

Correlation matrix

1.0000 0.2278 -0.9437 -0.0944

0.2278 1.0000 0.1064 0.1459

-0.9437 0.1064 1.0000 0.1459

-0.0944 0.1459 0.1459 1.0000

y Residual St Residual Cook dist

-2.5200 0.0508 0.4847 0.0196

-2.7100 -0.1390 -1.3223 0.1426

-8.3400 0.1609 1.5062 0.1617

-8.4000 0.1010 0.9274 0.0507

-14.6000 -0.1688 -1.9402 0.8832

-0.6200 -0.0601 -0.5458 0.0157

-0.4700 0.0901 0.8035 0.0270

-6.4900 0.0000 0.0002 0.0000

-12.4600 -0.0399 -0.3835 0.0130

1.3600 -0.0909 -0.8808 0.0730

1.4000 -0.0508 -0.4736 0.0154

1.6000 0.1493 1.5774 0.3958

-4.6400 -0.1607 -1.4227 0.0755

-10.3400 0.0692 0.6985 0.0602

-10.4300 -0.0206 -0.1930 0.0026

-10.3000 0.1095 1.1123 0.1589

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch07-9780123869425 — 2012/6/7 — 1:09 — Page 346 — #34

346 Chapter 7 . Fitting Functions to Data

The coefficient of x3 is small, and, more important, the corresponding absolute value of the
t-ratio is very small (it is in fact not zero but −0.0032). This suggests that x3 does not make a
significant contribution to the model and can be removed.

If we change the last value of y to −8.3 (and showing the analysis of the residuals only), we
have

y Residual St Residual Cook dist

-2.5200 0.3499 0.7758 0.0503

-2.7100 -0.0756 -0.1670 0.0023

-8.3400 0.3095 0.6735 0.0323

-8.4000 0.0140 0.0300 0.0001

-14.6000 -0.6418 -1.7153 0.6903

-0.6200 0.1361 0.2876 0.0044

-0.4700 0.0507 0.1052 0.0005

-6.4900 0.0457 0.0941 0.0003

-12.4600 -0.1447 -0.3232 0.0093

1.3600 0.0024 0.0054 0.0000

1.4000 -0.1930 -0.4184 0.0120

1.6000 -0.2284 -0.5610 0.0501

-4.6400 -0.4534 -0.9331 0.0325

-10.3400 -0.1384 -0.3247 0.0130

-10.4300 -0.4638 -1.0077 0.0713

-8.3000 1.4308 3.3791 1.4664

For the observation y =−8.3 we see that the residual, the standard residual, and Cook’s distance
are all large, compared with the values for the rest of the data. Either we have a recording error
in this particular observation or the data is correct and thus the model we are using fits this
particular data point poorly.

Example 7.6
Using the same data as Example 7.5, fit a regression model using the explanatory variables x1

and x2 only. The data array Xd is not shown in the following script.

% e3s711.m

X0

X1

Xd

Xd = [X0 X1];

[s_sqd R_sqd b SE t VIF Corr_mtrx] = mregg2(Xd([1 2 4],:),1);

fprintf('Error variance = %7.4f R_squared = %7.4f \n\n',s_sqd,R_sqd)

fprintf(' Coeff SE t_ratio VIF \n')

fprintf('Constant : %7.4f %7.4f %8.2f \n',b(1),SE(1),t(1))

fprintf('Coeff x1 : %7.4f %7.4f %8.2f %8.2f\n',b(2),SE(2),t(2),VIF(2))

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch07-9780123869425 — 2012/6/7 — 1:09 — Page 347 — #35

7.8 Polynomial Regression 347

fprintf('Coeff x2 : %7.4f %7.4f %8.2f %8.2f\n\n',b(3),SE(3),t(3),VIF(3))

fprintf('Correlation matrix \n')

disp(Corr_mtrx)

Running this script gives

Error variance = 0.0135 R_squared = 0.9996

Coeff SE t_ratio VIF

Constant : 1.3483 0.0960 14.04

Coeff x1 : 2.0109 0.0341 58.91 1.01

Coeff x2 : -2.9650 0.0171 -173.71 1.01

Correlation matrix

1.0000 0.2278 -0.9437

0.2278 1.0000 0.1064

-0.9437 0.1064 1.0000

This is a better model than that derived in Example 7.5 because the absolute values of the

t-ratios are now all greater than 2. In fact, the original data was generated from the model

y = 1.5 + 2x1− 3x2+ random errors

Thus x3 was not linked to the model used to generate the data and variations in x3 only appeared
to influence y because of the random errors in the measurement of y.

Note that the standard errors (SEs) can be used to construct confidence intervals for
bj. In this case the true values of each βj lie within the 95% confidence interval: that is,
the interval within which we expect that βj would lie with a probability of 0.95 if we did
not know its true value. The precise width of the 95% confidence interval depends on the
number of degrees of freedom (see Section 7.5), but to a reasonable approximation it lies
between bj− 2SE(bj) and bj+ 2SE(bj).

More comprehensive presentations of aspects of multiple regression, model improve-
ment, and regression analysis can be found in Draper and Smith (1998), Walpole and Myers
(1993), and Anderson, Sweeney and Williams (1993).

7.8 Polynomial Regression
The polynomial regression model is given by (7.28) and is repeated here:

yi = β0+ β1xi+β2x2
i + ·· · +βpxp

i + εi, i= 1, 2, . . . , n

Although this is no longer linear in the explanatory variable x, it is still linear in the βj

coefficients and so the theory for the linear regression model still applies.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch07-9780123869425 — 2012/6/7 — 1:09 — Page 348 — #36

348 Chapter 7 . Fitting Functions to Data

The processes of fitting, checking the bj estimates, and deciding whether some predic-
tors can be discarded may all be done in the same manner as in the general case described
in Section 7.5, and diagnostics for model improvement and residual analysis follow
the general case described in Sections 7.6 and 7.7. It will inevitably be found that there
are quite high correlations between the predictors, which are now all powers of the same
explanatory variable. As discussed in Section 7.6, these high correlations between predic-
tors can result in an ill-conditioned coefficient matrix X>X. For a large number of data
points this matrix tends to the Hilbert matrix.

In Chapter 2 it was shown that the Hilbert matrix is very ill-conditioned. To illustrate
the influence of this on the accuracy of computations, we note that the number of decimal
places lost when working with an ill-conditioned matrix A is given approximately by the
MATLAB expression log10(cond(A)). Thus if we were fitting a fifth-degree polynomial, the
number of decimal places that could be lost may be estimated by log10(cond(hilb(5))).
This equals 5.6782; that is, five or six of the 16 significant digits that MATLAB uses are
lost. One way to avoid this difficulty is to formulate the problem so that no system of
linear equations has to be solved. An ingenious way of doing this is to use orthogo-
nal polynomials. We will not describe this method here but refer the reader to Lindfield
and Penny (1989). However, the worst effects of ill-conditioning can be avoided pro-
vided that p (which now represents the degree of the fitted polynomial) is kept reasonably
small.

If the diagnostics that we have developed in Sections 7.5, 7.6, and 7.7 are required, then
we can use the function mregg2 given in Section 7.6 for polynomial regression; in this case
the data must be prepared as follows. The first row of the array Xd contains the values of
x, the second row contains the values of x2, and so on. The last row contains the corre-
sponding values of y. In interpreting the output from mregg2, note that all the VIF values
are inevitably high because the powers of x are correlated with each other. The usual rule
about discarding predictors with VIF > 10 should be ignored since we have good reason to
suppose that a polynomial model is appropriate.

If the diagnostics are not required, the calculation of the bj estimates can be done using
the MATLAB function polyfit. This uses the method of least squares to fit a polynomial of
specified degree to given data. The following examples illustrate some of these issues.

Example 7.7
Fit a cubic polynomial to the following data, which has been generated from y = 2+ 6x2

− x3

with added random errors. The random errors have a normal distribution with a zero mean
value and a standard deviation of 1. The following script calls the MATLAB function polyfit to
determine the coefficients of the cubic polynomial followed by polyval to evaluate it for plot-
ting. It then calls the function mregg2 to compute a regression model using x, x2, and x3 as the
explanatory variables.

% e3s712.m

x = 0:.25:6;

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch07-9780123869425 — 2012/6/7 — 1:09 — Page 349 — #37

7.8 Polynomial Regression 349

y = [1.7660 2.4778 3.6898 6.3966 6.6490 10.0451 12.9240 15.9565 ...

17.0079 21.1964 24.1129 25.5704 28.2580 32.1292 32.4935 34.0305 ...

34.0880 32.9739 31.8154 30.6468 26.0501 23.4531 17.6940 9.4439 ...

1.7344];

xx = 0:.02:6;

p = polyfit(x,y,3), yy = polyval(p,xx);

plot(x,y,'o',xx,yy)

axis([0 6 0 40]), xlabel('x'), ylabel('y')

Xd = [x; x.^2; x.^3; y];

[s_sqd R_sqd b SE t VIF Corr_mtrx] = mregg2(Xd,1);

fprintf('Error variance = %7.4f R_squared = %7.4f \n\n',s_sqd,R_sqd)

fprintf(' Coeff SE t_ratio VIF \n')

fprintf('Constant : %7.4f %7.4f %8.2f \n',b(1),SE(1),t(1))

fprintf('Coeff x : %7.4f %7.4f %8.2f %8.2f\n',b(2),SE(2),t(2),VIF(2))

fprintf('Coeff x^2 : %7.4f %7.4f %8.2f %8.2f\n',b(3),SE(3),t(3),VIF(3))

fprintf('Coeff x^3 : %7.4f %7.4f %8.2f %8.2f\n\n',b(4),SE(4),t(4),VIF(4))

fprintf('Correlation matrix \n')

disp(Corr_mtrx)

Running this script gives the following output, together with the graph shown in Figure 7.12. The
polynomial coefficients from polyfit are in the order of descending powers of x. The diagnostic
output from mregg2 is self-explanatory.

p =

-0.9855 5.8747 0.1828 2.2241

Error variance = 0.5191 R_squared = 0.9966

Coeff SE t_ratio VIF

Constant : 2.2241 0.4997 4.45

Coeff x : 0.1828 0.7363 0.25 84.85

Coeff x^2 : 5.8747 0.2886 20.36 502.98

Coeff x^3 : -0.9855 0.0316 -31.20 202.10

0 1 2 3 4 5 6
0

10

20

30

40

x

y

FIGURE 7.12 Fitting a cubic polynomial to data. Data points are denoted by ◦.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch07-9780123869425 — 2012/6/7 — 1:09 — Page 350 — #38

350 Chapter 7 . Fitting Functions to Data

Correlation matrix

1.0000 0.4917 0.2752 0.1103

0.4917 1.0000 0.9659 0.9128

0.2752 0.9659 1.0000 0.9858

0.1103 0.9128 0.9858 1.0000

Note that the absolute value of the t-ratio for the explanatory variable x is less than 2, indicating
that x should be removed (see Example 7.8).

The cubic polynomial that fits the data is

ŷ = 2.2241 + 0.1828x+ 5.8747x2
− 0.9855x3

Example 7.8
Fit a cubic polynomial to the data of Example 7.7 but use the explanatory variables x2 and x3

only. The following script solves this problem:

% e3s713.m

x = 0:.25:6; y = 2+6*x.^2-x.^3;

y = y+randn(size(x)); Xd = [x.^2; x.^3; y];

[s_sqd R_sqd b SE t VIF Corr_mtrx] = mregg2(Xd,1);

fprintf('Error variance = %7.4f R_squared = %7.4f \n\n',s_sqd,R_sqd)

fprintf(' Coeff SE t_ratio VIF \n')

fprintf('Constant : %7.4f %7.4f %8.2f \n',b(1),SE(1),t(1))

fprintf('Coeff x^2 : %7.4f %7.4f %8.2f %8.2f\n',b(2),SE(2),t(2),VIF(2))

fprintf('Coeff x^3 : %7.4f %7.4f %8.2f %8.2f\n\n',b(3),SE(3),t(3),VIF(3))

fprintf('Correlation matrix \n')

disp(Corr_mtrx)

Running this script gives

Error variance = 0.4970 R_squared = 0.9965

Coeff SE t_ratio VIF

Constant : 2.3269 0.2741 8.49

Coeff x^2 : 5.9438 0.0750 79.21 35.52

Coeff x^3 : -0.9926 0.0130 -76.61 35.52

Correlation matrix

1.0000 0.2752 0.1103

0.2752 1.0000 0.9858

0.1103 0.9858 1.0000

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch07-9780123869425 — 2012/6/7 — 1:09 — Page 351 — #39

7.8 Polynomial Regression 351

Thus our improved model (compared with Example 7.7) is

ŷ = 2.1793 + 6.0210x2
− 1.0084x3

The true βj are well within the 95% confidence limits given by this improved model. The error
variance of 0.4970 is somewhat less than the unit variance of the random errors initially added
to the data.

Example 7.9
Fit a third- and a fifth-degree polynomial to data generated from the function

y = sin{1/(x+ 0.2)} + 0.2x

contaminated with random noise, normally distributed with a standard deviation of 0.06 to
simulate measurement errors as follows:

>> xs = [0:0.05:0.25 0.25:0.2:4.85];

>> us = sin(1./(xs+1))+0.2*xs+0.06*randn(size(xs));

>> save testdata1 xs us

The 30 data values are stored in the file testdata1 so that it can be used in an example in
Section 7.9. The following script loads the data, and fits and plots the least squares polynomial.

% e3s714.m

load testdata

xx = 0:.05:5;

t1 = 'Error variance = %7.4f R_squared = %7.4f \n\n';

t2 = ' Coeff SE t_ratio VIF \n';

t3 = 'Constant : %7.4f %7.4f %8.2f \n';

t4 = 'Coeff x : %7.4f %7.4f %8.2f %12.2f\n';

t4a = 'Coeff x : %7.4f %7.4f %8.2f \n';

t5 = 'Coeff x^2 : %7.4f %7.4f %8.2f %12.2f\n';

t6 = 'Coeff x^3 : %7.4f %7.4f %8.2f %12.2f\n';

t7 = 'Coeff x^4 : %7.4f %7.4f %8.2f %12.2f\n';

t8 = 'Coeff x^5 : %7.4f %7.4f %8.2f %12.2f\n';

t9 = 'Correlation matrix \n';

p = polyfit(xs,us,3), yy = polyval(p,xx);

Xd = [xs; xs.^2; xs.^3; us];

[s_sqd R_sqd b SE t VIF Corr_mtrx] = mregg2(Xd,1);

fprintf(t1,s_sqd,R_sqd), fprintf(t2)

fprintf(t3,b(1),SE(1),t(1))

fprintf(t4,b(2),SE(2),t(2),VIF(2))

fprintf(t5,b(3),SE(3),t(3),VIF(3))

fprintf([t6 '\n'],b(4),SE(4),t(4),VIF(4))

fprintf(t9), disp(Corr_mtrx)

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch07-9780123869425 — 2012/6/7 — 1:09 — Page 352 — #40

352 Chapter 7 . Fitting Functions to Data

[s_sqd R_sqd b SE t VIF Corr_mtrx] = mregg2(Xd,0);

fprintf(t1,s_sqd,R_sqd), fprintf(t2)

fprintf(t4a,b(1),SE(1),t(1))

fprintf(t5,b(2),SE(2),t(2),VIF(2))

fprintf([t6 '\n'],b(3),SE(3),t(3),VIF(3))

fprintf(t9), disp(Corr_mtrx)

plot(xs,us,'ko',xx,yy,'k'), hold on

axis([0 5 -2 2])

p = polyfit(xs,us,5), yy = polyval(p,xx);

Xd = [xs; xs.^2; xs.^3; xs.^4; xs.^5; us];

[s_sqd R_sqd b SE t VIF Corr_mtrx] = mregg2(Xd,1);

fprintf(t1,s_sqd,R_sqd), fprintf(t2)

fprintf(t3,b(1),SE(1),t(1))

fprintf(t4,b(2),SE(2),t(2),VIF(2))

fprintf(t5,b(3),SE(3),t(3),VIF(3))

fprintf(t6,b(4),SE(4),t(4),VIF(4))

fprintf(t7,b(5),SE(5),t(5),VIF(5))

fprintf([t8 '\n'],b(6),SE(6),t(6),VIF(6))

fprintf(t9)

disp(Corr_mtrx)

plot(xx,yy,'k--'), xlabel('x'), ylabel('y'), hold off

Figure 7.13 shows the result of fitting a third- and a fifth-degree polynomial to the data and
clearly displays the inadequacies of these polynomial approximations. The polynomials oscil-
late about the points and do not fit the data satisfactorily. In Section 7.9 we see that we can
improve the fit by using different functions. The output from the script is as follows:

p =

0.0842 -0.6619 1.5324 -0.0448

Error variance = 0.0980 R_squared = 0.6215

0 1 2 3 4 5
−2

−1

0

1

2

x

y

FIGURE 7.13 Fitting third- and fifth-degree polynomials (a full line and a dashed line,
respectively) to a sequence of data. Data points are denoted by ◦.

shown by

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch07-9780123869425 — 2012/6/7 — 1:09 — Page 353 — #41

7.8 Polynomial Regression 353

Coeff SE t_ratio VIF

Constant : -0.0448 0.1402 -0.32

Coeff x : 1.5324 0.3248 4.72 79.98

Coeff x^2 : -0.6619 0.1708 -3.87 478.23

Coeff x^3 : 0.0842 0.0239 3.52 193.93

Correlation matrix

1.0000 0.5966 0.4950 0.4476

0.5966 1.0000 0.9626 0.9049

0.4950 0.9626 1.0000 0.9847

0.4476 0.9049 0.9847 1.0000

The absolute value of the t-ratio for the constant terms is low, implying that it should not be
included in the cubic model. The script also fits a cubic equation without a constant term to the
data and gives the following output:

Error variance = 0.0947 R_squared = 0.6200

Coeff SE t_ratio VIF

Coeff x : 1.4546 0.2116 6.87

Coeff x^2 : -0.6285 0.1329 -4.73 35.13

Coeff x^3 : 0.0801 0.0199 4.02 299.50

Correlation matrix

1.0000 0.5966 0.4950 0.4476

0.5966 1.0000 0.9626 0.9049

0.4950 0.9626 1.0000 0.9847

0.4476 0.9049 0.9847 1.0000

This is a more robust model. Finally, the script fits a fifth-degree polynomial to the data and
gives the following, final, output:

p =

0.0434 -0.5856 2.8998 -6.3340 5.7099 -0.5789

Error variance = 0.0341 R_squared = 0.8783

Coeff SE t_ratio VIF

Constant : -0.5789 0.1122 -5.16

Coeff x : 5.7099 0.6443 8.86 904.01

Coeff x^2 : -6.3340 0.9052 -7.00 38560.71

Coeff x^3 : 2.8998 0.4918 5.90 234903.50

Coeff x^4 : -0.5856 0.1137 -5.15 262672.06

Coeff x^5 : 0.0434 0.0094 4.62 38084.24

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch07-9780123869425 — 2012/6/7 — 1:09 — Page 354 — #42

354 Chapter 7 . Fitting Functions to Data

Correlation matrix

1.0000 0.5966 0.4950 0.4476 0.4172 0.3942

0.5966 1.0000 0.9626 0.9049 0.8511 0.8041

0.4950 0.9626 1.0000 0.9847 0.9555 0.9232

0.4476 0.9049 0.9847 1.0000 0.9918 0.9742

0.4172 0.8511 0.9555 0.9918 1.0000 0.9949

0.3942 0.8041 0.9232 0.9742 0.9949 1.0000

Note the large values of VIF, caused by the regression being based on different functions of a
single explanatory variable.

We now illustrate a difficulty that can sometime arise when trying to fit a polynomial
function to data. To illustrate the problem we will begin by simulating experimental data
based on the following relationship:

y =
1√

0.02+
(
4− x2

)2
(7.29)

Data values are generated by sampling this function from x = 1 to x = 3 in increments
of 0.05, and small random errors are added to simulate measurement errors. The results
of attempting to fit polynomials to these data values are shown in Figure 7.14. The plot
shows that as the degree of the polynomial is increased from 4 to 8, and finally to 12, the
polynomial fits the data better in the sense that the total least squares error decreases,
but the higher-degree polynomials tend to oscillate between the data points. Thus even a
twelfth-degree polynomial does not accurately represent the data, nor does it give us any
insight into the underlying mathematical relationship between x and y. We return to this
problem in Section 7.11.

1 1.5 2 2.5 3
−2

0

2

4

6

8

x

y

FIGURE 7.14 Polynomials of degree 4, 8, and 12 attempting to fit a sequence of data indicated by ◦ in
the graph.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch07-9780123869425 — 2012/6/7 — 1:09 — Page 355 — #43

7.9 Fitting General Functions to Data 355

7.9 Fitting General Functions to Data
We now consider a regression based on (7.17) with the separate explanatory variables xj

replaced by predictors that are various functions φj of a single explanatory variable x:

yi = β0+β1ϕ1 (xi)+β2ϕ2 (xi)+ ·· · +βpϕp (xi)+ εi

The analysis presented in Section 7.5 extends directly to this regression model. Hence we
can use the MATLAB function mregg2 to fit a set of any prescribed functions to data.

Consider again Example 7.9 in Section 7.8. We will fit the following function (or model)
to the data:

ŷ = b1sin {1/ (x+ 0.2)}+b2x

This function has been chosen because the data was originally generated from it with
b1 = 1 and b2 = 0.2 with normally distributed random noise added. Note that there is no
constant term in our model. The following script calls the function mregg2. Note how the
first row of the data matrix for mregg2 contains the values of sin(1/(x+ 0.2)) and the second
row contains the values of x.

% e3s715.m

load testdata

Xd = [sin(1./(xs+0.2)); xs; us];

[s_sqd R_sqd b SE t VIF Corr_mtrx] = mregg2(Xd,0);

fprintf('Error variance = %7.4f\n\n',s_sqd)

fprintf(' Coeff SE t_ratio\n')

fprintf('sin(1/(x+0.2)): %7.4f %7.4f %8.2f \n',b(1),SE(1),t(1))

fprintf('Coeff x : %7.4f %7.4f %8.2f \n\n',b(2),SE(2),t(2))

fprintf('Correlation matrix \n')

disp(Corr_mtrx)

xx = 0:.05:5; yy = b(1)*sin(1./(xx+0.2))+b(2)*xx;

plot(xs,us,'o',xx,yy,'k')

axis([0 5 -1.5 1.5]), xlabel('x'), ylabel('y')

Running this script gives

Error variance = 0.0044

Coeff SE t_ratio

sin(1/(x+0.2)): 0.9354 0.0257 36.46

Coeff x : 0.2060 0.0053 38.55

Correlation matrix

1.0000 0.7461 0.5966

0.7461 1.0000 -0.0734

0.5966 -0.0734 1.0000

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch07-9780123869425 — 2012/6/7 — 1:09 — Page 356 — #44

356 Chapter 7 . Fitting Functions to Data

0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

x

y

FIGURE 7.15 Data sampled from the function y = sin[1/(x+ 0.2)]+ 0.2x. Data points denoted by ”◦”.

and the graph of Figure 7.15. The function that fits the data in a least squares sense is given
by ŷ = 0.9354sin {1/ (x+ 0.2)}+ 0.2060x. This is very close to the original function. Note
also that the error variance of 0.0044 compares quite well with 0.0036, the variance of the
noise that was added to simulate measurement errors. If a constant term is included in the
model, it has a very low absolute t-ratio, indicating that it should be removed.

7.10 Nonlinear Least Squares Regression
We now consider the problem of fitting data to a function where the relationship between
the unknown coefficients is nonlinear. We still use the least squares criterion, and there
are several methods for fitting data to this type of model. Here we present a very simple
iterative method based on a Taylor series.

Let y = f (x, a) where f is a nonlinear function of the unknown coefficients a. To deter-
mine these coefficients, let a trial set of coefficents be a(0). Thus

y = f
(

x, a(0)
)

This trial solution will not satisfy the requirement that the sum of the squares of the errors
is a minimum. However, we can adjust the coefficients a(0) in order to minimize the sum
of the squares of the errors. Thus, letting the improved coefficients be a(1), where

a(1) = a(0)+1a

we have

y = f
(

x, a(1)
)
= f

(
x, a(0)+1a

)

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch07-9780123869425 — 2012/6/7 — 1:09 — Page 357 — #45

7.10 Nonlinear Least Squares Regression 357

Expanding the function as a Taylor series, and retaining only the first derivative terms
in the Taylor series we have

y ≈ f
(

x, a(0)
)
+

m∑
k=0

1ak
[
∂f /∂ak

](0)
Let f (0)i = f

(
xi, a(0)

)
. The error between the function and yi is given by

εi = yi− f (0)i −

m∑
k=0

1ak
[
∂fi/∂ak

](0) , i= 1,2, . . . ,n

Thus, the sum of the squares of the errors is

S=
n∑

i=0

yi− f (0)i −

m∑
k=0

1ak

[
∂fi

∂ak

](0)
2

To determine the minimum of the sum of the squares of the errors, we have

∂S
∂(1ap)

=−2
n∑

i=0

y− f (0)i −

m∑
k=0

1ak

[
∂fi

∂ak

](0)
[
∂fi

∂ap

](0)
= 0, p= 0, 1, . . . ,m

Rearranging we have

n∑
i=0

(
y− f (0)i

)[∂fi

∂ap

](0)
=

m∑
k=0

1ak

{ n∑
i=0

[
∂fi

∂ak

](0) [
∂fi

∂ap

](0)}
, p= 0, 1, . . . ,m

These equations can be expressed in matrix notation as follows:

K(1a)= b

where1a has elements1ap,p= 0, 1, . . . ,m and

Kpk =

n∑
i=0

[
∂fi

∂ak

](0) [
∂fi

∂ap

](0)

bp =

n∑
i=0

(
y− f (0)i

)[∂fi

∂ap

](0)
, p,k = 0, 1, . . . ,m

Solving for1a we can then determine new values for the coefficients from

a(1) = a(0)+1a

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch07-9780123869425 — 2012/6/7 — 1:09 — Page 358 — #46

358 Chapter 7 . Fitting Functions to Data

Because we have discarded higher-order terms in the Taylor series, a(1) is not the exact
solution, but it is a better solution than a(0). We therefore iterate until the norm of 1a is
less than a prescribed tolerance.

The following function nlls implements the preceding method for fitting a given
nonlinear function to a set of data.

function [a iter] = nlls(f,df,x,y,a0,err)

% Data given by vectors x and y are to be fitted to the function f(a)

% with an error of err. Function f(a) has n variables, a(1) ... a(n).

% a0 is a vector of n trial values for the unknown paramenters a.

% Function df is a column vector [df/da(1); df/da(2); df/da(n)].

iter = 0; n = length(a0); a = a0;

v = 10*err*ones(1,n);

while norm(v,2) > err

p = feval(df,x,a); q = y-feval(f,x,a);

A = p*p'; b = q*p'; v = A\b';

a = a + v'; iter = iter+1;

end

The next script fits the function y = a1ea2x
+a3ea4x to 16 data points using the function

nlls.

% e3s718

p = @(x,a) a(1)*exp(a(2)*x)+a(3)*exp(a(4)*x);

dp = @(x,a) [exp(a(2)*x); a(1)*x.*exp(a(2)*x);

exp(a(4)*x); a(3)*x.*exp(a(4)*x)];

x = [-10:2:0 1:1:10]; xn = length(x);

xp = -10:0.05:10;

y = [26.56 21.60 18.14 17.00 14.46 17.38 15.07 16.76 ...

16.90 17.32 18.61 20.79 21.65 25.22 26.16 27.84];

a = [7 -0.3 7 0.3];

[a iter] = nlls(p,dp,x,y,a,1e-5)

plot(x,y,'o',xp,p(xp,a))

xlabel('x'), ylabel('y')

Running this script gives the following results:

a =

5.4824 -0.1424 10.0343 0.0991

iter =

7

together with Figure 7.16.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch07-9780123869425 — 2012/6/7 — 1:09 — Page 359 — #47

7.11 Transforming Data 359

−10 −5 0 5 10
10

15

20

25

30

x
y

FIGURE 7.16 Fitting y = a1ea2x
+a3ea4x to data values indicated by “◦”.

7.11 Transforming Data
We now consider an alternative approach to the problem of fitting data to functions where
the relationship between the unknown coefficients is nonlinear. This is to transform both
the data and the function so that an equivalent function provides a linear relationship
between y and the unknown coefficients. The only difficulty with this method is that no
general rule can be given to provide a suitable transform; indeed, such a transform may
not even be possible. Consider the problem of fitting data to the following function:

ŷ =
1√

a0+ (a1−a2x2)2
(7.30)

Letting Ŷ = 1/ŷ2 and X = x2, we have

Ŷ = 1/ŷ2
= a0+ (a1−a2x2)2 = (a0+a2

1)− 2a1a2x2
+a2

2x4

Ŷ = a0+a2
1− 2a1a2X +a2

2X 2

Ŷ = b0+b1X +b2X 2

(7.31)

Thus Ŷ is a quadratic in X . If the data values are transformed by letting Yi = 1
/

y2
i and Xi =

x2
i , then the process of fitting Y = f (X) to these transformed data values will be a standard

least squares polynomial fit giving b0, b1, and b2. Hence estimates of a0, a1, and a2 can
be easily determined. Note, however, that the residual of the errors, ei = Yi− Ŷi, will not
provide a good estimate of the measurement errors, yi− ŷi, because of the transformations.

We illustrate the preceding process by considering a sequence of data values related
by (7.29) to which we have added normally distributed random errors having a zero mean
value and a standard deviation of 1%. We can transform these data points using (7.31),
and the following script generates the required data, transforms the data points, and fits a
polynomial to them.

% e3s716.m

x = 1:.05:3; xx = 1:.005:3;

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch07-9780123869425 — 2012/6/7 — 1:09 — Page 360 — #48

360 Chapter 7 . Fitting Functions to Data

y = [0.3319 0.3454 0.3614 0.3710 0.3857 0.4030 0.4372 ...

0.4605 0.4971 0.5232 0.5753 0.6363 0.6953 0.7782 ...

0.8793 1.0678 1.3024 1.6688 2.4233 4.2046 7.0961 ...

4.0581 2.3354 1.5663 1.1583 0.9278 0.7764 0.6480 ...

0.5741 0.4994 0.4441 0.4005 0.3616 0.3286 0.3051 ...

0.2841 0.2645 0.2407 0.2285 0.2104 0.2025];

Y = 1./y.^2; X = x.^2; XX = xx.^2;

p = polyfit(X,Y,2)

YY = polyval(p,XX);

for i = 1:length(xx)

if YY(i)<0

disp('Transformation fails with this data set');

return

end

end

figure(1), plot(X,Y,'o',XX,YY)

axis([1 9 0 25]), xlabel('X'), ylabel('Y')

yy = 1./sqrt(YY);

figure(2), plot(x,y,'o',xx,yy)

axis([1 3 -2 8]), xlabel('x'), ylabel('y')

Running this script gives the following results:

p =

0.9944 -7.9638 15.9688

together with the plots shown in Figures 7.17 and 7.18. From the output of the script we
see that the relationship between X and Ŷ is

Ŷ = 0.9944X 2
− 7.9638X + 15.9688

2 4 6 8
0

5

10

15

20

25

X

Y

FIGURE 7.17 Fitting transformed data denoted by ”◦” to a quadratic function.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch07-9780123869425 — 2012/6/7 — 1:09 — Page 361 — #49

7.11 Transforming Data 361

1 1.5 2 2.5 3
−2

0

2

4

6

8

x
y

FIGURE 7.18 Fitting (7.30) to the given data denoted by ◦.

We can deduce the values of the unknown coefficients by comparing the preceding
equation with (7.31) to give

a2
2 = 0.9944, hence a2 =±0.9972 (take positive value as in (7.29))

−2a1a2 = 7.9748, hence a1 = 3.9931

a2
1+a0 = 15.9688, hence a0 = 0.0149

We use these values in the original function (7.30) and fit it to the given data. This is shown
in Figure 7.18. This function provides a much better fit than the polynomials shown earlier
in Figure 7.14. However, even this fit does not pass through the peak value. This is caused
by the sensitivity of the process to small random errors in the data. If the random errors are
removed, the fit is exact. If the script is rerun with the random errors, the fit may be worse,
and if the size of the random errors is increased, the process may fail. This is because in the
region of x = 2, the value of y is essentially only dependent on a0. This has a small value
that may vary in sign.

Table 7.3 lists some functions with a nonlinear relationship between ŷ and the coeffi-
cients of the function and the corresponding transformations that linearize these relation-
ships so they have the form Ŷ = BX+C.

The following script implements the first two relationships shown in Table 7.3. It also
determines the sum of the squares of the errors for the two original relationships and plots
a graph of the data and the two fitted functions.

% e3s717.m

x = 0.2:0.2:4;

y = 2*exp(0.5*x).*(1+0.2*rand(size(x)));

X = log(x); Y = log(y);

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch07-9780123869425 — 2012/6/7 — 1:09 — Page 362 — #50

362 Chapter 7 . Fitting Functions to Data

Table 7.3 Functions with Nonlinear Relationships

Original equation Substitution Transformed equation

y = axb Y = loge(y), X = loge(x) Y = A+bX so that a= eA

y = aebx Y = loge(y) Y = A+bx so that a= eA

y = axebx Y = loge(y/x) Y = A+bx so that a= eA

y = a+ loge (bx) Y = ey Y = A+bx so that a= loge(A)

y = 1/(a+bx) Y = 1/y Y = a+bx

y = 1/(a+bx)2 Y = 1/
√
(y),X = 1/x Y = a+bx

y = x/(b+ax) Y = 1/y, X = 1/x Y = a+bX

y = ax/(b+ x) Y = 1/y, X = 1/x Y = A+BX so that a= 1/A, b= B/A

% Case 1: Fit y = a*x^b

v = polyfit(X,Y,1);

A1 = v(2); b1 = v(1); a1 = exp(A1);

e1 = y-a1*x.^b1; s1 = e1*e1';

fprintf('\n y = %8.4f*x^(%8.4f): SSE = %8.4f',a1,b1,s1)

% case 2: Fit y = a*exp(b*x)

v = polyfit(x,Y,1);

A2 = v(2); b2 = v(1); a2 = exp(A2);

e2 = y-a2*exp(b2*x); s2 = e2*e2';

fprintf('\n y = %8.4f*exp(%8.4f*x): SSE = %8.4f \n',a2,b2,s2)

% Plotting

n = length(x);

r = x(n)-x(1); inc = r/100;

xp = [x(1):inc:x(n)];

yp1 = a1*xp.^b1; yp2 = a2*exp(b2*xp);

plot(x,y,'ko',xp,yp1,'k:',xp,yp2,'k')

xlabel('x'), ylabel('f(x)')

Running this script gives

y = 4.5129*x^(0.6736): SSE = 78.3290

y = 2.2129*exp(0.5021*x): SSE = 2.0649

Figure 7.19 and the preceding output confirms that the best fit is, as one would expect, the
exponential function. Clearly this is a warning to the user to use discrimination in selecting
the function to fit. This MATLAB function could be adapted to fit data to a wide range of
mathematical functions.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch07-9780123869425 — 2012/6/7 — 1:09 — Page 363 — #51

Problems 363

0 1 2 3 4
0

5

10

15

20

x
f(

x)
FIGURE 7.19 This graph shows the original data and the fits obtained from y = be(ax) (full line) and
y = axb (dotted line).

7.12 Summary
Methods have been described for fitting functions to data for the purposes of inter-
polation. These have included Aitken’s method and spline fits. For periodic data, we have
examined the fast Fourier transform. Finally, we have discussed least squares approxima-
tions to experimental data using polynomial and more general functions.

The reader who wishes to study the application of splines may find the Mathworks
Spline toolbox useful.

Problems
7.1. The following tabulation gives values of the complete elliptic integral

E (α)=

π/2∫
0

√
(1− sin2α sin2θ) dθ

α 0◦ 5◦ 10◦ 15◦ 20◦ 25◦ 30◦

E(α) 1.57079 1.56780 1.55888 1.54415 1.52379 1.49811 1.46746

Determine E(α) for α = 2◦, 13◦, and 27◦ using the MATLAB function aitken.

7.2. Generate a table of values of f (x)= x1.4
−
√

x+ 1/x− 100 for x = 20 : 2 : 30. Find the
value of x corresponding to f (x)= 0 using the MATLAB function aitken. This is an
example of inverse interpolation since we are finding the value of x corresponding
to a given value of f (x). In particular, this gives an approximation to the root of the
equation f (x)= 0. Compare your solution with that of Problem 3.2 in Chapter 3.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch07-9780123869425 — 2012/6/7 — 1:09 — Page 364 — #52

364 Chapter 7 . Fitting Functions to Data

7.3. Given x =−1 : 0.2 : 1, calculate values of y from y = sin2(πx/2). Using the data you
have, calculate:

(a) Generate quadratic and quartic polynomials to fit this data using the least
squares MATLAB function polyfit. Display the data and the curve fitted.
Hint: Example 7.6 in Section 7.7 gives some guidance.

(b) Fit a cubic spline to the data using the MATLAB function spline. Display the
data and the fitted spline. Compare the quality of this spline fit with the two
graphs from (a).

7.4. For the data of Problem 7.3, determine the values of y for x = 0.85 using the MATLAB

function interp1 for a linear, spline, and cubic interpolating function. Also use the
MATLAB function aitken.

7.5. Fit a cubic spline and a fifth-degree polynomial to the following data.

x −2 0 2 3 4 5
y 4 0 −4 −30 −40 −50

Plot the data points, the spline, and the polynomial on the same graph. Which
curve appears to give the more realistic representation of any underlying function
from which the data might have been taken?

7.6. For the data given by the vectors x = 0 : 0.25 : 3 and

y = [6.3806 7.1338 9.1662 11.5545 15.6414 22.7371 32.0696 . . .
47.0756 73.1596 111.4684 175.9895 278.5550 446.4441]

fit the following functions:

(a) f (x)= a+bex
+ ce2x using the MATLAB function mregg2

(b) f (x)= a+b/(1+ x)+ c/(1+ x)2 using the MATLAB function mregg2

(c) f (x)= a+bx+ cx2
+dx3 using the MATLAB functions polyfit or mregg2

You should plot the three trial functions and the data. How well do these functions
fit the data? The data values were in fact generated from f (x)= 3+ 2ex

+ e2x with a
small amount of random noise added.

7.7. The following values of x and corresponding values of yu and yl define an airfoil
section:

x = [0 0.005 0.0075 0.0125 0.025 0.05 0.1 0.2 0.3 0.4 . . . 0.5 0.6 0.7 0.8 0.9 1]

yu = [0 0.0102 0.0134 0.0170 0.0250 0.0376 0.0563 0.0812 . . .
0.0962 0.1035 0.1033 0.0950 0.0802 0.0597 0.0340 0]

yl = [0 − 0.0052 − 0.0064 − 0.0063 − 0.0064 − 0.0060 − 0.0045 . . .
− 0.0016 0.0010 0.0036 0.0070 0.0121 0.0170 0.0199 0.0178 0]

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch07-9780123869425 — 2012/6/7 — 1:09 — Page 365 — #53

Problems 365

The (x, yu) coordinates define the upper surface and the (x, yl) coordinates define
the lower surface. Use the MATLAB function spline to fit separate splines to the
upper and lower surfaces and plot the results as a single figure.

7.8. Consider the approximation

∏
p<P

(
1+

1
p

)
≈ C1+C2 loge P

where the product is taken of all the prime numbers p less than a prime number P.
Write a script to generate these products from the list of prime numbers provided
and fit the function C1+C2 loge P to the points given by the primes P and the
corresponding values of the products using the MATLAB function polyfit. Generate
a list of prime numbers using the MATLAB function primes(103).

7.9. The gamma function may be approximated by a fifth-degree polynomial as

0(x+ 1) = a0+a1x+a2x2
+a3x3

+a4x4
+a5x5

Use the MATLAB function gamma to generate values of 0(x+ 1) for x = 0 : 0.1 : 1.
Then, using the MATLAB function polyfit, fit a fifth-degree polynomial to this data.
Compare your answers with the approximation for the gamma function given
by Abramowitz and Stegun (1965), which gives a0 = 1, a1 =−0.5748666,
a2 = 0.9512363, a3 =−0.6998588, a4 = 0.4245549, and a5 =−0.1010678. These
coefficients give an accuracy for the gamma function in the range 0≤ x ≤ 1 of less
than or equal to 5× 10−5.

7.10. Generate a table of values of z from the function

z
(
x,y

)
= 0.5

(
x4
− 16x2

+ 5x
)
+ 0.5

(
y4
− 16y2

+ 5y
)

in the range x =−4 : 0.2 : 4 and y =−4 : 0.2 : 4. Use this data and the MATLAB

function interp2 to interpolate a value for z at x = y =−2.9035. Use both linear
and cubic interpolation and check your answer by direct substitution in the
function. This point gives the global minimum of this function.

7.11. The difference between the mean Sun and the real Sun is called the equation of
time. Thus the value of the equation of time

E = (mean Sun time− real Sun time)

The following values represent E in minutes at 20 equispaced intervals during the
year, beginning January 1.

E = [−3.5 − 10.5 − 14.0 − 14.25 − 9.0 − 4.0 1.0 3.5 3.0 . . .
− 0.25 − 3.5 − 6.25 − 5.5 − 1.75 4.0 10.5 15.0 16.25 12.75 6.5]

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch07-9780123869425 — 2012/6/7 — 1:09 — Page 366 — #54

366 Chapter 7 . Fitting Functions to Data

Plot a graph of the data values E against time of year. Then use the function
interpft to interpolate 300 points and plot E over a period of one year. (Use the
MATLAB help function to obtain information on interpft). Finally, use the
command [x,y]=ginput(4) to read from the graph the values of the two minimum
and two maximum values of E. At what times do these maxima and minima occur?

7.12. Determine the real and imaginary parts of the DFT, using the MATLAB function fft,
for the following periodic data where the 32 data points are sampled at intervals of
0.1 second. Examine the amplitude and frequency of its components. What
conclusions can you draw from these results?

y = [2 − 0.404 0.2346 2.6687 − 1.4142 − 1.0973 0.8478 − 2.37 0 . . .
2.37 − 0.8478 1.0973 1.4142 − 2.6687 − 0.2346 0.404 − 2 . . .
1.8182 1.7654 − 1.2545 1.4142 − 0.3169 − 2.8478 0.9558 . . .
0 − 0.9558 2.8478 0.3169 − 1.4142 1.2545 − 1.7654 − 1.8182]

7.13. Determine the DFT of y = 32sin5(2π ft)where f = 30 Hz. Use 512 points sampled
over 1 second. From the imaginary part of the DFT, estimate the coefficients a0, a1,
a2 in the relationship

32sin5(2π ft)= a0 sin[2π ft]+a1 sin[2π(3f)t]+a2 sin[2π(5f)t]

Repeat the process for y = 32sin6(2π ft)where f = 30 Hz. Use 512 points sampled
over 1 second. From the real part of the DFT, estimate the coefficients b0, b1, b2, b3

in the relationship

32sin6(2π ft)= b0+b1 cos[2π(2f)t]+b2 cos[2π(4f)t]+b3 cos[2π(6f)t]

7.14. Determine the DFT of a set of 512 data points sampled over a 1 second period from

y = sin(2π f1t)+ 2sin(2π f2t)

where f1 = 30 Hz and f2 = 400 Hz. Explain why there is a large component in the
spectrum at 112 Hz.

7.15. Determine the DFT of a set of 256 data points sampled over 1 second from
y(t)= sin(2π ft) for f = 25, 30.27, and 35.49 Hz. Plot the absolute value of the DFT
against frequency for all three values of f in the same figure. It will be noted that
even though the amplitude of the sine function from which the samples are taken is
the same in each case, the frequency components corresponding to f have different
amplitudes. This is because, in the case of the 30.27 Hz and 35.49 Hz waves the
sampling is not over an integer number of periods of y. This phenomenon is known
as “leakage” or “smearing,” and part of the pure sine wave seems to have smeared
into adjacent frequencies. Its effect may be reduced by applying a “window” to the
data. The Hanning window is w(t)= 0.5{1− cos(2πt/T)}where T is the sampling

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch07-9780123869425 — 2012/6/7 — 1:09 — Page 367 — #55

Problems 367

period. Multiply y(t) by w(t) and determine the DFT of the resulting data. Plot the
absolute value of this DFT against frequency for all three values of f in the same
figure. Note that the amplitude variation of the frequency components
corresponding to f and the smearing into other frequencies has been reduced
significantly.

7.16. The following 32 data points are sampled over a period of 0.0625 second.

y = [0 0.9094 0.4251 − 0.6030 − 0.6567 0.2247 0.6840 0.1217 . . .
− 0.5462 − 0.3626 0.3120 0.4655 − 0.0575 − 0.4373 − 0.1537 . . .
0.3137 0.2822 − 0.1446 − 0.3164 − 0.0204 0.2694 0.1439 − 0.1702 . . .
− 0.2065 0.0536 0.2071 0.0496 − 0.1594 − 0.1182 0.0853 . . .
0.1441− 0.0078]

(a) Determine the DFT and estimate the frequency of the most significant
component present in the data. What is the frequency increment in the DFT?

(b) To the end of the existing data, add an additional 480 zero values, thus
increasing the number of data points to 512. This process is called “zero
padding” and is used to improve the frequency resolution in the DFT.
Determine the DFT of the new data set and estimate the frequency of the
most significant component. What is the frequency increment in the DFT?

7.17. The cost of producing an electronic component varied over a four-year period as
follows:

Year 0 1 2 3
Cost $30.2 $25.8 $22.2 $20.2

Assuming the equation relating production cost and time is (a) a cubic and (b) a
quadratic polynomial, estimate the cost of production in year 6. A small error was
discovered in the data. The cost of production in year 2 should have been $22.5 and
in year 3, $20.5. Recompute the estimated production cost in year 6 using a cubic
and a quadratic equation as before. What conclusions can you draw from the
results?

7.18. From the following table of values of the gamma function, use inverse interpolation
to find the value of x in the range x = 2 to x = 3 that makes 0(x)= 1.3. Use the
MATLAB function interp1 with the cubic option selected; also use the function
aiken.

x 2 2.2 2.4 2.6 2.8 3
0(x) 1.0000 1.1018 1.2422 1.4296 1.6765 2.0000

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch07-9780123869425 — 2012/6/7 — 1:09 — Page 368 — #56

368 Chapter 7 . Fitting Functions to Data

7.19. The following table gives the value of the integral

I =

π/2∫
0

dϕ√
1− sin2α sin2ϕ

for various values of α. (This integral is the complete elliptical integral of the first
kind.)

α 0◦ 5◦ 10◦ 15◦ 20◦ 25◦

I 1.57080 1.57379 1.58284 1.59814 1.62003 1.64900

Using polynomial interpolation, find I when α = 2◦. Then use inverse interpolation
to find the value of α such that I = 1.58. In both cases use the MATLAB function
interp1 with the cubic option selected; also use the function aiken.

7.20. It is required to find a formula to calculate the number of nodes in one corner of a
cube. If n is the number of equally spaced nodes on an edge of the cube and fn is
the number of nodes on three half-faces, including nodes on the face diagonals,
then the following table shows values of fn for given values of n.

n 1 2 3 4
fn 1 4 10 20

By fitting a cubic function to this data (using polyfit), find a general formula for
the relationship between fn and n and verify that when n= 5, fn = 35.

7.21. It is required to fit a regression model of the form z = f (x,y) to the following data:

x 0.5 1.0 1.0 2.0 2.5 2.0 3.0 3.5 4.0
y 2.0 4.0 5.0 2.0 4.0 5.0 2.0 4.0 5.0
z −0.19 −0.32 −1.00 3.71 4.49 2.48 6.31 7.71 8.51

(a) Use the function mregg2 to generate a model of the form z = a+bx+ cy and
also z = a+bx+ cy+dxy. Which model do you consider the best fit to the data?
It is important to consider the differences in the error variance.

(b) By analysis of the residuals (particularly the Cook distance), decide whether
any data point could be considered to be an outlier.

7.22. One of the data values given in Problem 7.21 has been found to be in error. The
value of z corresponding to x = 4, y = 5 should have been recorded as 9.51, not 8.51,
a common human error. Use the function mregg2 to generate models of the form
z = a+bx+ cy and also z = a+bx+ cy+dxy. Again, assess the quality of the
models.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch07-9780123869425 — 2012/6/7 — 1:09 — Page 369 — #57

Problems 369

7.23. Using the following table, obtain the pressure across a shock wave when the
upstream Mach number is 4.4 by

(a) Linear interpolation
(b) Aitken’s method
(c) Spline interpolation

Mach no. 1.00 2.00 3.00 4.00 5.00
p2/p1 1.00 4.50 10.33 18.50 29.00

7.24. MATLAB has available test data sets, including data collected for sunspot activity.
This may be obtained using the MATLAB statement

load sunspot.dat

The set of data sunspot(:,1) gives the year of the observed sunspot activity and
sunspot(:,2) the Wolfer number, which indicates the level of sunspot activity for
that year. Let wolfer = sunspot(:,2). Generate a simple plot of the the Wolfer
number against the year. To further analyze this data take the fast Fourier transform
of the variable wolfer. Scaling this data will help in its interpretation. Do this by
using the transformations Power = abs(Y(1:N/2)).^2 and freq = (1:N/2)/N;
where N is the length of the vector Y. Plot freq against power.

EDELKAMP 19-ch15-671-700-9780123725127 2011/5/28 14:50 Page 672 #2

This page intentionally left blank

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch08-9780123869425 — 2012/5/30 — 21:48 — Page 371 — #1

8
Optimization Methods

The purpose of this chapter is to bring together a selection of algorithms for optimizing
linear and nonlinear functions that have applications in science and engineering. We deal
with constrained linear optimization problems and both constrained and unconstrained
nonlinear optimization problems.

8.1 Introduction
The major techniques of optimization considered in this chapter are:

1. The solution of linear programming problems by interior point methods
2. The optimization of single-variable nonlinear functions
3. The solution of nonlinear optimization problems and systems of linear equations

using conjugate gradient methods
4. The solution of constrained nonlinear optimization problems using the sequential

unconstrained minimization technique (SUMT)
5. The solution of nonlinear optimization problems using the genetic algorithm and the

method of simulated annealing

It is not our intention to describe fully the theoretical basis for these methods but to give
some indication of the ideas that lie behind them. We begin with a discussion of linear
programming problems.

8.2 Linear Programming Problems
Linear programming is normally considered to be an operational research (OR) method
but has a very wide range of applications. A detailed description of the problem and asso-
ciated theory is beyond the scope of this text but this information can be obtained from
Dantzig (1963) and Sultan (1993). The problem may be expressed in standard form as

Minimize f = c>x

subject to Ax = b

and x≥ 0

(8.1)

Numerical Methods Using MATLAB
®. DOI: 10.1016/B978-0-12-386942-5.00008-4

© 2012 Elsevier Inc. All rights reserved.
371

http://dx.doi.org/10.1016/B978-0-12-386942-5.00008-4

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch08-9780123869425 — 2012/5/30 — 21:48 — Page 372 — #2

372 Chapter 8 . Optimization Methods

where x is the column vector of n components that we wish to determine. Note that each
element of x is constrained to be greater than zero. This is a common requirement in this
type of optimization because most practical optimization problems will require nonnega-
tive values for x. For example, if each element of x is the number of workers of a particular
skill set employed by an organization, the number of workers in any group cannot be nega-
tive. The given constants of the system are provided by an m component column vector b,
an m×n matrix A, and an n component column vector c. Clearly all the equations and the
function we wish to minimize are linear in form. The problem is an optimization problem
and in general it represents the requirement to minimize a linear function, c>x, called the
objective function, subject to satisfying a system of linear equalities.

The importance of this type of problem lies in the fact that it corresponds to the gen-
eral aim of optimizing the use of scarce resources to meet a specific objective. Although
we have given the standard form, many other forms of this problem arise that are easily
converted to this standard form. For example, the constraints may initially be inequali-
ties and these can be converted to equalities by adding or subtracting additional variables
introduced into the problem. The objective may be to maximize the function rather than
minimize it. Again this is easily converted by changing the sign of the c vector.

Some practical examples where linear programming has been applied are

1. The hospital diet problem, requiring food costs to be minimized while dietary
constraints are satisfied

2. The problem of minimizing cutting pattern loss
3. The problem of optimizing profit subject to constraints on the availability of specified

materials
4. The problem of optimizing the routing of telephone calls

An important numerical algorithm for solving this problem is called the simplex method;
see Dantzig (1963). This was applied to wartime problems of troop and material distri-
bution. However, here we consider more recent developments that have provided new
algorithms that are theoretically better. These are based on the work of Karmarkar (1984),
who produced an algorithm that differed greatly in principle from that of Dantzig. While
the theoretical complexity of Dantzig’s method is exponential in the number of variables
of the problem, some versions of Karmarkar’s algorithm have a complexity that is of the
order of the cube of the number of variables. It has been reported that for some problems
this leads to substantial saving of computational effort. Here we describe an algorithm
due to Barnes (1986) that provides an elegant modification of Karmarkar’s algorithm but
preserves its fundamental principles.

We do not describe the theoretical details of these complex algorithms but it is use-
ful to compare, in broad terms, the nature of the Karmarkar and Dantzig algorithms. The
simplex method of Dantzig is best illustrated by considering a simple linear programming
problem as follows. In a factory producing electronic components, let x1 be the number of
batches of resistors and x2 the number of batches of capacitors produced. Each batch of
resistors manufactured gains 7 units of profit and each batch of capacitors gains 13 units
of profit. Each is manufactured in a two-stage process. Stage 1 is limited to 18 units of time

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch08-9780123869425 — 2012/5/30 — 21:48 — Page 373 — #3

8.2 Linear Programming Problems 373

per week and stage 2 is limited to 54 units of time per week. A batch of resistors requires 1
unit of time in stage 1 and 5 units of time in stage 2. A batch of capacitors requires 3 units of
time in the first stage and 6 in the second. The aim of the manufacturer is to maximize prof-
itability while meeting the time constraints; this leads to the following linear programming
problem.

Maximize z = 7x1+ 13x2 (where z is the profit)

subject to

x1+ 3x2 ≤ 18 (stage 1 process)

5x1+ 6x2 ≤ 54 (stage 2 process)

and x1,x2 ≥ 0

To see how the simplex algorithm works we give a geometric interpretation of this prob-
lem in Figure 8.1. In this figure the region lying under the shaded lines and confined by the
x1- and x2-axes represents the feasible region. This is the region in which all possible solu-
tions to the problem lie. Clearly there is an infinity of such points. Fortunately, it can be
shown that the only true candidates for the optimum solution are the points that lie at the
vertices of the feasible region. In fact, we can find this optimum using simple geometric
principles. The objective function is represented in Figure 8.1 by the dashed line of con-
stant slope and variable intercept proportional to the value of the objective function. If we
move this line parallel to itself until it just leaves the feasible region, it leaves at the vertex
that gives the maximum value of the objective function. Clearly, beyond this point the val-
ues of x1 and x2 no longer satisfy the constraints. For this problem the optimum solution
is given by x1 = 6, x2 = 4 so that the profit z = 94.

Although this provides a solution for this simple two-variable problem, linear pro-
gramming problems often involve thousands or hundreds of thousands of variables. For
practical problems a well-specified numerical algorithm is required. This is provided by

0 642 108

3

2

4

5

6

Optimum

Objective function

Feasible region

5x1 + 6x2 = 54

x1 = 6, x2 = 4

x1 + 3x2 = 18

x2

x1

FIGURE 8.1 Graphical representation of an optimization problem. The dashed line represents the
objective function and the solid lines represent the constraints.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch08-9780123869425 — 2012/5/30 — 21:48 — Page 374 — #4

374 Chapter 8 . Optimization Methods

Dantzig’s simplex algorithm. We do not describe this in detail here but the general princi-
ple of its operation is to generate a sequence of points that correspond mathematically to
the vertices of the multidimensional feasible region. The algorithm proceeds from one ver-
tex to another, each time improving the value of the objective function, until the optimum
is found. These points are all on the surface of the feasible region and for larger problems
there may be a huge number of them.

The algorithm proposed by Karmarkar deals with the linear programming problem in
a different way. The algorithm was developed at AT&T to solve very large linear program-
ming problems concerned with routing telephone calls in the Pacific Basin. This algorithm
transforms the problem to a more convenient form and then searches through the interior
of the feasible region using a good direction of search toward its surface. Because this type
of algorithm uses interior points, it is often described as an interior point method. Since
its discovery, many improvements and modifications have been made to this algorithm
and here we describe a form which, although conceptually complex, leads to a remarkably
simple and elegant linear programming algorithm. This formulation was given by Barnes
(1986).

The Barnes algorithm may be applied to any linear programming problem once it is
converted to the form of (8.1). However, one important initial modification is required to
ensure the algorithm starts at an interior point x0 > 0. This modification is achieved by
introducing an additional column, that is, a new last column, to the A matrix, the elements
of which are the b vector minus the sum of the columns of the A matrix. We associate an
additional variable with this additional column and, in order that we do not have a super-
fluous variable in the solution, we introduce an extra element in the vector c. We make the
value of this element very large to ensure that the new variable is driven to zero when the
optimum is reached. Now we find that x0

= [1 1 1 . . . 1]> satisfies this set of constraints and
clearly x0

≥ 0. We now describe the Barnes algorithm:

. Step 0: Assuming n variables in the original problem,

set a (i,n+ 1)= b(i)−
∑

j

a
(
i, j
)

and c (n+ 1)= 10000

x0
= [1 1 1 . . . 1], k = 0

. Step 1: Set Dk
= diag(xk) and compute an improved point using the equation

xk+1
= xk
−

s(Dk)2(c−A>λk)

norm(Dk(c−A>λk))

where the vector λk is given by

λk
= (A(Dk)2A>)−1A(Dk)2c

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch08-9780123869425 — 2012/5/30 — 21:48 — Page 375 — #5

8.2 Linear Programming Problems 375

The step s is chosen such that

s= min

norm
((

Dk
)(

c−A>λk
))

xk
j

(
cj −A>j λ

k
)

 −α
where Aj is the jth column of the matrix A and α is a small preset constant value. Here
the minimum is taken for the values(

cj −A>j λ
k
)
> 0 only

Note also that λk provides an approximation for the solution of the dual problem (see
for example, Problems 8.1 and 8.2).. Step 2: Stop if the primal and dual values of the objective functions are approximately
equal. Else set k = k+ 1 and repeat from step 1.

Note that in step 2 we use an important result in linear programming. This is that
every primal problem (i.e., the original problem) has a corresponding dual problem and if
a solution exists, the optimal values of their objective functions are equal. There are several
other termination criteria that could be used and Barnes suggested a more complex but
more reliable one.

The algorithm provides an iterative improvement starting from the initial point x0 by
taking the maximum step that ensures that xk > 0 in the normalized direction given by
(Dk)2(c−A>λk). It is this direction that is the crucial element of the algorithm. This direc-
tion is a projection of the objective function coefficients into the constraint space. For a
proof that this direction reduces the objective function, while ensuring the constraints are
satisfied, the reader is referred to Barnes (1986).

The reader should be warned that this algorithm is deceptively simple. In fact, the com-
putation of the direction is very difficult for large problems. This is because the algorithm
requires the solution of an extremely ill-conditioned equation system. Many alternatives
have been suggested for finding the direction of search, including the use of a conjugate
gradient method that is discussed in Section 8.6. The MATLAB function barnes provided
here solves the ill-conditioned equation system in a direct manner using the MATLAB \

operator. The function barnes is easily modified to use the conjugate gradient solver given
in Section 8.6.

function [xsol,basic,objective] = barnes(A,b,c,tol)

% Barnes' method for solving a linear programming problem

% to minimize c'x subject to Ax = b. Assumes problem is non-degenerate.

% Example call: [xsol,basic]=barnes(A,b,c,tol)

% A is the matrix of coefficients of the constraints.

% b is the right-hand side column vector and c is the row vector of

% cost coefficients. xsol is the solution vector, basic is the

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch08-9780123869425 — 2012/5/30 — 21:48 — Page 376 — #6

376 Chapter 8 . Optimization Methods

% list of basic variables.

x2 = []; x = [];

[m n] = size(A);

% Set up initial problem

aplus1 = b-sum(A(1:m,:)')';

cplus1 = 1000000;

A = [A aplus1]; c = [c cplus1]; B = [];

n = n+1;

x0 = ones(1,n)'; x = x0;

alpha = .0001; lambda = zeros(1,m)';

iter = 0;

% Main step

while abs(c*x-lambda'*b)>tol

x2 = x.*x;

D = diag(x); D2 = diag(x2); AD2 = A*D2;

lambda = (AD2*A')\(AD2*c');

dualres = c'-A'*lambda;

normres = norm(D*dualres);

for i = 1:n

if dualres(i)>0

ratio(i) = normres/(x(i)*(c(i)-A(:,i)'*lambda));

else

ratio(i)=inf;

end

end

R = min(ratio)-alpha;

x1 = x-R*D2*dualres/normres;

x = x1;

basiscount = 0;

B = []; basic = [];

cb = [];

for k = 1:n

if x(k)>tol

basiscount = basiscount+1;

basic = [basic k];

end

end

% Only used if problem non-degenerate

if basiscount==m

for k = basic

B = [B A(:,k)]; cb = [cb c(k)];

end

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch08-9780123869425 — 2012/5/30 — 21:48 — Page 377 — #7

8.2 Linear Programming Problems 377

primalsol = b'/B';

xsol = primalsol;

break

end

iter = iter+1;

end

objective = c*x;

We now solve the linear programming problem

Maximize z = 2x1+ x2+ 4x3

subject to

x1+ x2+ x3 ≤ 7

x1+ 2x2+ 3x3 ≤ 12

x1,x2,x3 ≥ 0

The requirements that x1,x2,x3 ≥ 0 are called nonnegativity constraints. This linear pro-
gramming problem can be easily transformed to the standard form by adding new
positive-valued variables, called slack variables, to the left sides of the inequalities and
changing the signs of the coefficients in the objective function so that it is converted to a
minimization problem subject to equality constraints as follows:

Minimize − z =−(2x1+ x2+ 4x3)

subject to

x1+ x2+ x3+ x4 = 7

x1+ 2x2+ 3x3+ x5 = 12

x1,x2,x3,x4,x5 ≥ 0

The variables x4 and x5 are called the slack variables and they represent the difference
between the available resources and the resources used. Note that if the constraints were
of the form greater than or equal to zero, we would subtract slack variables to produce
equality. These subtracted variables are sometimes called surplus variables. Thus we have

c=
[
−2 −1 −4 0 0

]
We use the following script to solve this problem.

% e3s801.m

c = [-2 -1 -4 0 0];

A = [1 1 1 1 0;1 2 3 0 1]; b = [7 12]';

[xsol,ind,object] = barnes(A,b,c,0.00005);

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch08-9780123869425 — 2012/5/30 — 21:48 — Page 378 — #8

378 Chapter 8 . Optimization Methods

fprintf('objective = %8.4f', object)

i = 1;

fprintf('\nSolution is:');

for j = ind

fprintf('\nx(%1.0f) =%8.4f',j,xsol(i))

i = i+1;

end;

fprintf('\nAll other variables are zero\n')

Running this script provides the result

objective = -19.0000

Solution is:

x(1) = 4.5000

x(3) = 2.5000

All other variables are zero

Since the original problem was to maximize objective function, its value is 19. This solution
illustrates an important theorem of linear programming. The number of nonzero primal
variables is at most equal to the number of independent constraints (excluding nonnega-
tivity constraints). In this problem there are only two main constraints. Thus there are only
two nonzero variables, x1 and x3. The slack variables x4 and x5 are zero and so is x2.

The lsqnonneg function, discussed in Section 2.12, provides a method for finding a
solution to an equation system in which all components of the solution are nonnegative.
This corresponds to a basic feasible solution for the system but it is generally nonoptimum
for a specific objective function.

Having examined the process for solving linear optimization problems, we now con-
sider methods that are used to solve nonlinear optimization problems.

8.3 Optimizing Single-Variable Functions
We sometimes need to determine the maximum or minimum value of a one-variable non-
linear function. Throughout this discussion we assume we are seeking the minimum value
of the function. If we require the maximum value, then we merely have to change the sign
of the original function.

The most obvious way of determining the minimum of a function is to differentiate it
and find the value of the independent variable that makes this derivative zero. However,
there are situations in which it is not practical to find the derivative directly; see for exam-
ple (8.4). A method is now described that provides an approximation to the minimum to
any required accuracy.

Consider a function y = f (x) and let us assume that in the range [xa xb] there is a single
minimum, as shown in Figure 8.2. Two additional points, x1 and x2, are chosen arbitrarily
so that the range is divided into three intervals. Assuming that xa < x1 < x2 < xb, then

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch08-9780123869425 — 2012/5/30 — 21:48 — Page 379 — #9

8.3 Optimizing Single-Variable Functions 379

x

y

f(x2)

f(x1)

xa x1 x2 xb

y = f(x)

FIGURE 8.2 Graph of a function with a minimum in the range [xa xb].

If f (x1) < f (x2) then the minimum value must lie in the range [xa x2].

If f (x1) > f (x2) then the minimum value must lie in the range [x1 xb].

Either of these ranges must provide a smaller interval than [xa xb] in which the minimum
lies. This interval reduction process can be repeated continuously in successively smaller
ranges until an acceptably small interval is found for the minimum.

It might be assumed that the most efficient procedure is to select x1 and x2 so that the
range [xa xb] is subdivided into three equal intervals. In fact, this is not so and for a more
efficient procedure we take

x1 = xa+ r
(
1− g

)
, x2 = xa+ rg

where r = xb− xa and

g =
1
2

(
−1+

√
5
)
≈ 0.61803

The quantity g is called the golden ratio. This quantity has many interesting properties. For
example, it is one of the roots of the equation

x2
+ x+ 1= 0

This golden ratio is also related to the famous Fibonacci series. This series is 1,1,2,3,
5,8,13, . . . and it is generated from

Nk+1 =Nk +Nk−1, k = 2,3,4, . . .

where N2 =N1 = 1 and Nk is the kth term in the series. As k tends to infinity the ratio
Nk/Nk+1 tends to the golden ratio.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch08-9780123869425 — 2012/5/30 — 21:48 — Page 380 — #10

380 Chapter 8 . Optimization Methods

The algorithm is implemented in MATLAB as follows:

function [f,a,iter] = golden(func,p,tol)

% Golden search for finding min of one variable nonlinear function.

% Example call: [f,a] = golden(func,p,tol)

% func is the name of the user defined nonlinear function.

% p is a 2 element vector giving the search range.

% tol is the tolerance. a is the optimum value of the function.

% f is the minimum of the function. iter is the number of iterations

if p(1)<p(2)

a = p(1); b = p(2);

else

a = p(2); b = p(1);

end

g = (-1+sqrt(5))/2;

r = b-a; iter = 0;

while r>tol

x = [a+(1-g)*r a+g*r];

y = feval(func,x);

if y(1)<y(2)

b = x(2);

else

a = x(1);

end

r = b-a; iter = iter+1;

end

f = feval(func,a);

We can use the function golden to search for the minimum value of the Bessel function
of the second kind of order 2. The function bessely(2,x) is provided by MATLAB. The
following command provides the output shown:

>> format long

>> [f,x,iter] = golden(@(x) bessely(2,x),[4 10],0.000001)

f =

-0.279275263440711

x =

8.350724427010965

iter =

33

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch08-9780123869425 — 2012/5/30 — 21:48 — Page 381 — #11

8.3 Optimizing Single-Variable Functions 381

Note that if we had divided the search interval into three equal sections, rather than using
the golden ratio, then 39 iterations would have been required.

The search algorithm has been developed assuming that there is only one minimum
value of the function in the search range. If there are several minima in the search range,
then the procedure locates one, but the one located is not necessarily the global minimum
in the range. For example, a Bessel function of the second kind of order 2 has 3 minima in
the range 4 to 25, as shown in Figure 8.3.

If we use the function golden and search in the ranges 4 to 24, 4 to 25, and 4 to 26, we
obtain the results given in Table 8.1. In this table we see that a different minimum has been
found when using different search ranges, even though all three minima are in each of the
search ranges used. Ideally we require the search to determine the global minimum of the
function, something that the function golden has failed to accomplish in two out of three
tests. Obtaining a global solution is a major problem in minimization.

In this particular example we can verify the accuracy of these solutions by calculus. The
derivative of the Bessel function of the second kind of order n is given by

d
dx
{Yn (x)} =

1
2

{
Yn−1 (x)−Yn+1 (x)

}
where Yn(x) is the Bessel function of the second kind of order n. (Sometimes Nn(x) is used
instead of Yn(x).)

10 15 20 25

−0.2

−0.1

0

0.1

0.2

0.3

5
x

B
es

se
l f

un
ct

io
n

Y
 o

f
or

de
r

2

FIGURE 8.3 A plot of the Bessel function of the second kind showing three minima.

Table 8.1 Effect of Different Search Ranges

Search Range Value of f (x) at Min Value of x at Min

4 to 24 −0.20844576503764 14.76085144779431
4 to 25 −0.17404548213116 21.09284729991696
4 to 26 −0.27927526323841 8.35068549680869

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch08-9780123869425 — 2012/5/30 — 21:48 — Page 382 — #12

382 Chapter 8 . Optimization Methods

The minimum (or maximum) value of a function occurs when the derivative of the
function is zero. Hence, with n= 2 we have a minimum (or maximum) occurring when

Y1(x)−Y3(x)= 0

We cannot escape from the need to use numerical methods because the only way to find
the roots of this equation is to use a numerical procedure such as that implemented in the
MATLAB function fzero (see Chapter 3). Thus, using this function to determine a root near
8 we have

>> format long

>> fzero(@(x) bessely(1,x)-bessely(3,x),8)

ans =

8.350724701413078

We can also use fzero to find roots at 14.76090930620768 and 21.09289450441274. These
results are in good agreement with the minima found using the function golden.

8.4 The Conjugate Gradient Method
Here we confine ourselves to solving the problem

Minimize f (x) for all x ∈ Rn

where f (x) is a nonlinear function of x and x is an n-component column vector. This is
called a nonlinear unconstrained optimization problem. These problems arise in many
applications–for example, in neural network problems where an important aim is to find
weights in a network that minimize the difference between the output of the network and
the required output.

The standard approach for solving this problem is to assume an initial approximation
x0 and then to proceed to an improved approximation by using an iterative formula of the
form

xk+1
= xk
+ sdk for k = 0, 1, 2, . . . (8.2)

Clearly, to use this formula we must determine values for the scalar s and the vector dk.
The vector dk represents a direction of search and the scalar s determines how far we
should step in this direction. A vast literature has grown up that has examined the prob-
lem of choosing the best direction and the best step size to solve this problem efficiently.
For example, see Adby and Dempster (1974). A simple choice for a direction of search is
to take dk as the negative gradient vector at the point xk. For a sufficiently small step
value this can be shown to guarantee a reduction in the function value. This leads to an

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch08-9780123869425 — 2012/5/30 — 21:48 — Page 383 — #13

8.4 The Conjugate Gradient Method 383

algorithm of the form

xk+1
= xk
− s∇f

(
xk
)

for k = 0, 1, 2, . . . (8.3)

where∇f (x)= (∂f /∂x1,∂f /∂x2, . . . ,∂f /∂xn) and s is a small constant value. This is called the
steepest descent algorithm. The minimum is reached when the gradient is zero, as in the
ordinary calculus approach. We also assume that there exists only one local minimum that
we wish to find in the range considered. The problem with this method is that although it
reduces the function value, the step may be very small and therefore the algorithm is very
slow. An alternative approach is to choose the step that gives the maximum reduction in
the function value in the current direction. This may be described formally as

For each k find the value of s that minimizes f (xk
− s∇f (xk)) (8.4)

This procedure is known as a line search. The reader will note that this is also a minimiza-
tion problem. However, since xk is known, it is a one-variable minimization problem in the
step size s. Although it is a difficult problem, numerical procedures are available to solve
it, one of which is the search method given in Section 8.3. Equations (8.3) and (8.4) provide
a workable algorithm but it is still slow. One reason for this poor performance lies in our
choice of direction−∇f (xk).

Consider the function we wish to minimize in (8.4). Clearly the value of s that minimizes
f (xk
− s∇f (xk)) is such that the derivative of f (xk

− s∇f (xk)) with respect to s is zero. Now,
differentiating f (xk

− s∇f (xk))with respect to s gives

df
(

xk
− s∇f

(
xk
))

ds
=−

(
∇f

(
xk+1

))>
∇f

(
xk
)
= 0 (8.5)

This shows that the successive directions of search are orthogonal. This is not the best
way of getting from our original approximation to the optimum value since the changes in
direction are so large.

The conjugate gradient method takes a combination of the previous direction and the
new direction to approach the optimum more directly. It uses the same step size choice
procedure given by (8.4), so we must now consider how the direction vector is chosen
in the conjugate gradient method. Let gk+1

=∇f (xk+1) so that the basic formula for the
conjugate gradient direction is

dk+1
=−gk+1

+βdk (8.6)

Thus the current direction of search is a combination of the current negative gradient plus
a scalar β times the previous direction of search. The crucial question is: How is the value
of β to be determined? The criterion used is that successive directions of search should be
conjugate. This means that (dk+1

)>A dk
= 0 for some specified matrix A.

This apparently obscure choice of requirement can be shown to lead to desirable con-
vergence properties for the conjugate gradient method. In particular it has the property

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch08-9780123869425 — 2012/5/30 — 21:48 — Page 384 — #14

384 Chapter 8 . Optimization Methods

that the optimum of a positive definite quadratic function of n variables can be found in n
or fewer steps. In the case of a quadratic, A is the matrix of coefficients of the squared and
cross-product terms. It can be shown that the requirement of conjugacy leads to a value
for β given by

β =

(
gk+1

)>
gk+1(

gk
)> gk

(8.7)

Now (8.2), (8.4), (8.6), and (8.7) lead to the conjugate gradient algorithm given by Fletcher
and Reeves (1964), which has the form

. Step 0: Input value for x0 and accuracy ε. Set k = 0 and compute dk
=−∇f (xk).. Step 1: Determine sk, which is the value of s that minimizes f (xk

+ sdk
).

Calculate xk+1 where xk+1
= xk
+ skdk and compute gk+1

=∇f (xk+1).
If norm(gk+1) < ε, then terminate with solution xk+1, else go to step 2.. Step 2: Calculate new conjugate direction dk+1 where

dk+1
=−gk+1

+βdk and β = (gk+1)>gk+1/{(gk)>gk
}

. Step 3: k = k+ 1; go to step 1.

Note that in other forms of this algorithm steps 1, 2, and 3 are repeated n times and then
restarted with a steepest descent step from step 0. The following is a MATLAB function for
this method.

function [x1,df,noiter] = mincg(f,derf,ftau,x,tol)

% Finds local min of a multivariable nonlinear function in n variables

% using conjugate gradient method.

% Example call: res = mincg(f,derf,ftau,x,tol)

% f is a user defined multi-variable function,

% derf a user defined function of n first order partial derivatives.

% ftau is the line search function.

% x is a col vector of n starting values, tol gives required accuracy.

% x1 is solution, df is the gradient,

% noiter is the number of iterations required.

% WARNING. Not guaranteed to work with all functions. For difficult

% problems the linear search accuracy may have to be adjusted.

global p1 d1

n = size(x); noiter = 0;

% Calculate initial gradient

df = feval(derf,x);

% main loop

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch08-9780123869425 — 2012/5/30 — 21:48 — Page 385 — #15

8.4 The Conjugate Gradient Method 385

while norm(df)>tol

noiter = noiter+1;

df = feval(derf,x);

d1 = -df;

%Inner loop

for inner = 1:n

p1 = x; tau = fminbnd(ftau,-10,10);

% calculate new x

x1 = x+tau*d1;

% Save previous gradient

dfp = df;

% Calculate new gradient

df = feval(derf,x1);

% Update x and d

d = d1; x = x1;

% Conjugate gradient method

beta = (df'*df)/(dfp'*dfp);

d1 = -df+beta*d;

end

end

Notice that the MATLAB function fminbnd is used in the function mincg to perform the
single-variable minimization to find the best step value. It is important to note that the
function mincg requires three input functions, which must be supplied by the user. They
are the function to be minimized, the partial derivatives of this function, and the line-
search function. As implemented, the function mincg requires the input functions to be
user-defined functions, not anonymous functions. An example of the use of mincg follows.

The function to be minimized, which is taken from Styblinski and Tang (1990), is

f (x1,x2)=
(

x4
1 − 16x2

1 + 5x1

)/
2+

(
x4

2 − 16x2
2 + 5x2

)/
2

The function f01 and the derivative of this function, f01d, are defined as follows:

function f = f01(x)

f = 0.5*(x(1)^4-16*x(1)^2+5*x(1)) + 0.5*(x(2)^4-16*x(2)^2+5*x(2));

function f = f01d(x)

f = [0.5*(4*x(1)^3-32*x(1)+5); 0.5*(4*x(2)^3-32*x(2)+5)];

The MATLAB line-search function ftau2cg is defined as

function ftauv = ftau2cg(tau);

global p1 d1

q1 = p1+tau*d1;

ftauv = feval('f01',q1);

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch08-9780123869425 — 2012/5/30 — 21:48 — Page 386 — #16

386 Chapter 8 . Optimization Methods

To test the mincg function we use the following simple MATLAB commands:

>> [sol,grad,iter] = mincg('f01','f01d','ftau2cg',[1 -1]', .000005)

The results of executing these statements are

sol =

-2.9035

-2.9035

grad =

1.0e-006 *

0.0156

-0.2357

iter =

3

Note that

>> f = f01(sol)

f =

-78.3323

This is the minimum value of the function determined by mincg. It is interesting to see the
function that has been optimized and we provide both a three-dimensional and a contour
plot of the function in Figures 8.4 and 8.5. The latter includes a plot of the iterates and
shows the path taken to reach the optimum solution from a particular starting point. The
script used to obtain these graphs is

% e3s802.m

clf

[x,y] = meshgrid(-4.0:0.2:4.0,-4.0:0.2:4.0);

z = 0.5*(x.^4-16*x.^2+5*x)+0.5*(y.^4-16*y.^2+5*y);

figure(1)

surfl(x,y,z)

axis([-4 4 -4 4 -80 20])

xlabel('x1'), ylabel('x2'), zlabel('z')

x1=[1 2.8121 -2.8167 -2.9047 -2.9035];

y1=[0.5 -2.0304 -2.0295 -2.9080 -2.9035];

figure(2)

contour(-4.0:0.2:4.0,-4.0:0.2:4.0,z,15);

xlabel('x1'), ylabel('x2')

hold on

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch08-9780123869425 — 2012/5/30 — 21:48 — Page 387 — #17

8.4 The Conjugate Gradient Method 387

−4
−2

0
2

4

−4
−2

0
2

4
−80

−60

−40

−20

0

20

z

x2

x1

FIGURE 8.4 Three-dimensional plot of f (x1,x2)=
(
x4

1 − 16x2
1 + 5x1

)
/2+

(
x4

2 − 16x2
2 + 5x2

)
/2.

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

x2

x1

FIGURE 8.5 Contour plot of the function f (x1,x2)=
(
x4

1 − 16x2
1 + 5x1

)
/2+

(
x4

2 − 16x2
2 + 5x2

)
/2 showing

the location of four local minima. The conjugate gradient algorithm has found the one in the lower
left corner. The search path taken by the algorithm is also shown.

plot(x1,y1,x1,y1,'o')

xlabel('x1'), ylabel('x2')

hold off

In this script the vectors x1 and y1 contain the iterates for the conjugate gradient solu-
tion of the given function. These values were obtained by running a modified version of the
mincg function separately. The minimum we have obtained is in fact the smallest of the
four local minima that exist for this function. However, this result was fortuitous; all that
the conjugate gradient method is able to do is to find one of the four local minima and

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch08-9780123869425 — 2012/5/30 — 21:48 — Page 388 — #18

388 Chapter 8 . Optimization Methods

even this is not guaranteed for all problems. The conjugate gradient method, because of its
small storage requirements, is one of the key algorithms used in neural network problems
as part of the back propagation algorithm, but it has many other applications.

It should be noted that a MATLAB optimization toolbox is available and this provides a
range of optimization procedures.

8.5 Moller’s Scaled Conjugate Gradient Method
In 1993 Moller, when working on optimization methods for neural networks, introduced
a much improved version of Fletcher’s conjugate gradient method. Fletcher’s conjugate
gradient method uses a line-search procedure to solve a single-variable minimization
problem, which is then used to find the optimum step to take in the chosen direction of
search. The procedure used by Fletcher is a fragile, iterative, and computationally inten-
sive process. In addition, the line search depends on a number of parameters that must be
estimated by the user. Moller’s paper (Moller 1993) introduced a method that allowed the
line-search procedure to be replaced by a considerably simplified method for estimating
an acceptable step size. However, using a simple estimation of the step size often fails and
leads to nonstationary points. Moller noted that a simple approach to the problem fails
because it only works for functions with positive definite matrices. Consequently, Moller
suggested a method based on a combination of the Levenberg-Marquardt algorithm and
the conjugate gradient algorithm. An outline of the algorithm is described in the following;
for the details the reader is referred to the original paper.

Consider the n-variable nonlinear function f (x). Moller introduces a scalar parameter
λk, which is adjusted at each iteration k after considering the sign of δk where

δk = p>k Hkpk

where pk for k = 1,2, . . . ,n are a set of conjugate directions and Hk is the Hessian matrix of
the function f (x). If δk ≥ 0 then Hk is positive definite. However, since only first-order deriv-
itive information is known at each step of the conjugate gradient method, Moller suggests
that the Hessian multiplied by pk is approximated by

sk =
f ′(xk + σkpk)− f ′(xk)

σk
for 0< σk < 1

In practice the value of σk should be kept as small as possible for a good approximation.
This expression in the limit tends to the true Hessian matrix multiplied by pk. The scalar
λk is now introduced to regulate the approximation to the Hessian to ensure it is positive
definite, specifically by using the equation

sk =
f ′(xk + σkpk)− f ′(xk)

σk
+ λkpk for 0< σk < 1

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch08-9780123869425 — 2012/5/30 — 21:48 — Page 389 — #19

8.5 Moller’s Scaled Conjugate Gradient Method 389

Thus the value of λk is adjusted, and then we check the value of δk defined earlier using
the approximation to the Hessian; if this is negative then the Hessian is no longer positive
definite and the value of λk is increased and sk is checked again. This is repeated until the
current estimate of the Hessian is positive definite. The key question is how should λk be
adjusted to ensure the Hessian estimate becomes positive definite. Let the λk be increased
to λ̄k; then

s̄k = sk + (λ̄k − λk)pk

Now at any iteration k a new δk, which we can denote as δ̄k, can be computed from

δ̄k = p>k s̄k = p>k (sk + (λ̄k − λk)pk)= p>k sk + (λ̄k − λk)p
>

k pk

But p>k sk is the original value of δk before λk was increased. So we have

δ̄k
= δk
+ (λ̄k − λk)p

>

k pk

Clearly we now require that the new value of δ̄k be positive; hence we require that

δk + (λ̄k − λk)p
>

k pk > 0

This will be true if

λ̄k > λk −
δk

p>k pk

Moller suggests a reasonable choice of λ̄k is

λ̄k = 2

(
λk −

δk

p>k pk

)

It is easily verified by back-substitution of this value for λ̄k in our expression for δ̄k that

δ̄k =−δk + λkp>k pk

which, since δk is negative, λk is positive, and p>k pk is a sum of squares, is clearly positive
as required. The step size estimate is based on a quadratic approximation to the function
being optimized at the current step and is calculated from

αk =
µk

δk
=

µk

p>k sk + λkp>k pk

Hereµk is the current negative gradient times the current direction of search pk. This gives
the basis of the algorithm. However, an important issue still to be decided, is how the value
of λk can be safely and systematically varied. Moller provides a method based on a measure

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch08-9780123869425 — 2012/5/30 — 21:48 — Page 390 — #20

390 Chapter 8 . Optimization Methods

of how well the current quadratic approximation, defined as fq, approximates the original
function at the point considered. He does this by using the following definition:

1k =
f (xk)− f (xk +αkpk)

f (xk)− fq(αkpk)

By virtue of the fact that fq(αk pk) is a quadratic approximation at the current iteration, this
can be shown to be equivalent to

1k =
δ2

k(f (xk)− f (xk +αkpk))

µ2
k

Now if 1k is close to 1 then the quadratic approximation fq(αk pk) must be close to
f (xk+αkpk) and hence a good local approximation to the function. This leads to the fol-
lowing steps for the adjustment of λk. Use the definition of 1k described earlier as the
quadratic approximation measure; more details can be found in Moller (1993). Then adjust
λk as follows:

If1k > 0.75 then λk = λk/4

If1k < 0.25 then λk = λk +
δk(1−1k)

p>k pk

These steps, together with any of the methods for generating conjugate gradient directions
of search, provide an algorithm with a simple line-search process. The outline of the major
steps in Moller’s algorithm are now given:

. Step 1: Choose the initial approximation x0 and initial values for σi < 10−4, λi < 10−4,
and λ̄i = 0. These values were suggested by Moller. Calculate the initial negative
gradient and assign it to r1 and assign r1 to the initial direction of search p1. Set k = 1.. Step 2: Calculate second-order information. Specifically, calculate values for σk, s̄k,
and δk.. Step 3: Scale δk using

δ̄k
= δk
+ (λ̄k − λk)p

>

k pk

. Step 4: If δk < 0 then make the Hessian approximation positive definite using

δ̄k =−δk + λkp>k pk

Set

λ̄k = 2

(
λk −

δk

p>k pk

)

and

λ̄k = λk

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch08-9780123869425 — 2012/5/30 — 21:48 — Page 391 — #21

8.5 Moller’s Scaled Conjugate Gradient Method 391

. Step 5: Calculate step size from

αk =
µk

δk

. Step 6: Calculate the factor to test goodness of quadratic fit1k from

1k =
δ2

k(f (xk)− f (xk +αkpk))

µ2
k

. Step 7: If1k ≥ 0 then the function can be reduced toward the minimum, so use

xk+1 = xk +αkpk

Calculate the new gradient

rk+1 =−∇f (xk+1)

Set λ̄k = 0. If k mod N = 0 then restart algorithm with

pk+1 = rk+1

else calculate a new conjugate gradient direction.
Use some method to calculate the set of conjugate directions; see the Fletcher-

Reeves (1964) for example. A number of other methods are available.

If1k ≥ 0.75 then λk = 0.25λk

else

λ̄k = λk

. Step 8: If1k < 0.25 then increase the scale parameter:

λk = λk + (δk(1−1k)/p>k pk

. Step 9: If the gradient rk is still not suffiently close to zero then set k = k+ 1 and go to
step 2; otherwise terminate and return the optimum solution.

The following MATLAB function implements this method.

function [res, noiter] = minscg(f,derf,x,tol)

% Conjugate gradient optimization by Moller

% Finds local min of a multivariable nonlinear function in n variables

% Example call: [res, noiter] = minscg(f,derf,x,tol)

% f is a user defined multi-variable function,

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch08-9780123869425 — 2012/5/30 — 21:48 — Page 392 — #22

392 Chapter 8 . Optimization Methods

% derf a user defined function of n first order partial derivatives.

% x is a col vector of n starting values, tol gives required accuracy.

% res is solution, noiter is the number of iterations required.

lambda = 1e-8; lambdabar = 0; sigmac = 1e-5; sucess = 1;

deltastep = 0; [n m] = size(x);

% Calculate initial gradient

noiter = 0;

pv = -feval(derf,x); rv = pv;

while norm(rv)>tol

noiter = noiter+1;

if deltastep==0

df = feval(derf,x);

else

df = -rv;

end

deltastep = 0;

if sucess==1

sigma = sigmac/norm(pv);

dfplus = feval(derf,x+sigma*pv);

stilda = (dfplus-df)/sigma;

delta = pv'*stilda;

end

% Scale

delta = delta+(lambda-lambdabar)*norm(pv)^2;

if delta<=0

lambdabar = 2*(lambda-delta/norm(pv)^2);

delta = -delta+lambda*norm(pv)^2;

lambda = lambdabar;

end

% Step size

mu = pv'*rv; alpha = mu/delta;

fv = feval(f,x);

fvplus = feval(f,x+alpha*pv);

delta1 = 2*delta*(fv-fvplus)/mu^2;

rvold = rv; pvold = pv;

if delta1>=0

deltastep = 1;

x1 = x+alpha*pv;

rv = -feval(derf,x1);

lambdabar = 0; sucess = 1;

if rem(noiter,n) == 0

pv = rv;

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch08-9780123869425 — 2012/5/30 — 21:48 — Page 393 — #23

8.5 Moller’s Scaled Conjugate Gradient Method 393

else

%Alternative conj grad direction generators may be used here

% beta = (rv'*rv)/(rvold'*rvold);

rdiff = rv-rvold;

beta = (rdiff'*rv)/(rvold'*rvold);

pv = rv+beta*pvold;

end

if delta1>=0.75

lambda = 0.25*lambda;

end

else

lambdabar = lambda;

sucess = 0;

x1 = x+alpha*pv;

end

if delta1<0.25

lambda = lambda+delta*(1-delta1)/norm(pvold)^2;

end

x = x1;

end

res = x1;

We now show the scaled conjugate gradient method applied to two problems:

Minimize f (x1,x2)=
(

x4
1 − 16x2

1 + 5x1

)/
2+

(
x4

2 − 16x2
2 + 5x2

)/
2

and

Minimize f (x1,x2)= 100(x2− x2
1)

2
+ (1− x1)

2 (Rosenbrock’s function)

The first of these problems solved using mincg, and the user-defined functions
and f01d are given in Section 8.4. Thus we have

>> [x, iterns] = minscg('f01','f01d',[1 -1]',.000005)

x =

2.7468

-2.9035

iterns =

8

has been
f01

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch08-9780123869425 — 2012/5/30 — 21:48 — Page 394 — #24

394 Chapter 8 . Optimization Methods

This is not the same solution as that determined by mincg. It is a local minimum value
of the function but not the global minimum. Other initial values will lead to the global
minimum.

To find a minimum of Rosenbrock’s function we define the necessary anonymous
functions, and solve the problem as follows:

>> fr = @(x) 100*(x(2)-x(1).^2).^2+(1-x(1)).^2;

>> frd = @(x) [-400*x(1).*(x(2)-x(1).^2)-2*(1-x(1)); 200*(x(2)-x(1).^2)];

>> [x, iterns] = minscg(fr,frd,[-1.2 1]',.0005)

x =

1.0000

1.0000

iterns =

135

Note that a large number of iterations were required to solve this difficult problem.

8.6 Conjugate Gradient Method for Solving
Linear Systems

We now apply the conjugate gradient algorithm to minimize a positive definite quadratic
function, which has the standard form

f (x)=
(

x>Ax
)
/2+p>x+q (8.8)

Here x and p are n-component column vectors, A is an n×n positive definite symmetric
matrix, and q is a scalar. The minimum value of f (x) is such that the gradient of f (x) is zero.
However, the gradient is easily found by direct differentiation as

∇f (x)= Ax+p= 0 (8.9)

Thus finding the minimum is equivalent to solving this system of linear equations, which
becomes, on letting b=−p,

Ax= b (8.10)

Since we can use the conjugate gradient method to find the minimum of (8.8), we can use
it to solve the equivalent system of linear equations (8.10). The conjugate gradient method
provides a powerful method for solving linear equation systems with positive definite sym-
metric matrices, and it follows quite closely the algorithm we have described for solving
nonlinear optimization problems. However, the line search is greatly simplified and the

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch08-9780123869425 — 2012/5/30 — 21:48 — Page 395 — #25

8.6 Conjugate Gradient Method for Solving Linear Systems 395

value of the gradient can be computed within the algorithm in this case. The algorithm
takes the form

. Step 0: k = 0: xk
= 0, gk

= b, µk
= b>b, dk

=−gk. Step 1: While system is not satisfied

qk
= Adk, rk

= (dk
)>qk, sk

= µk/rk

xk+1
= xk
+ skdk, gk+1

= gk
+ skqk

tk
= (gk+1)>qk, k

= tk/rk

dk+1
=−gk+1

+βkdk, µk+1
= βkµk

k = k+ 1, end

Notice that the values of the gradient g and the step s are calculated directly and no MATLAB

function or user-defined function is required.
The MATLAB function solvercg implements this algorithm and utilizes the stopping

procedure suggested by Karmarkar and Ramakrishnan (1991). See this paper and also
Golub and Van Loan (1989) for more details.

function xdash = solvercg(a,b,n,tol)

% Solves linear system ax = b using conjugate gradient method.

% Example call: xdash = solvercg(a,b,n,tol)

% a is an n x n positive definite matrix, b is a vector of n

% coefficients. tol is accuracy to which system is satisfied.

% WARNING Large, ill-cond. systems will lead to reduced accuracy.

xdash = []; gdash = [];

ddash = []; qdash = [];

q=[];

mxitr = n*n;

xdash = zeros(n,1); gdash = -b;

ddash = -gdash; muinit = b'*b;

stop_criterion1 = 1;

k = 0;

mu = muinit;

% main stage

while stop_criterion1==1

qdash = a*ddash;

q = qdash; r = ddash'*q;

if r==0

error('r=0, divide by 0!!!')

end

s = mu/r;

xdash = xdash+s*ddash;

β

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch08-9780123869425 — 2012/5/30 — 21:48 — Page 396 — #26

396 Chapter 8 . Optimization Methods

gdash = gdash+s*q;

t = gdash'*qdash; beta = t/r;

ddash = -gdash+beta*ddash;

mu = beta*mu; k = k+1;

val = a*xdash;

if ((1-val'*b/(norm(val)*norm(b)))<=tol) & (mu/muinit<=tol)

stop_criterion1 = 0;

end

if k>mxitr

stop_criterion1 = 0;

end

end

The following script generates a system of 10 equations with randomly selected elements
on which this algorithm can be tested:

% e3s803.m

n = 10; tol = 1e-8;

A = 10*rand(n); b = 10*rand(n,1);

ada = A*A';

% To ensure a symmetric positive definite matrix.

sol = solvercg(ada,b,n,tol);

disp('Solution of system is:')

disp(sol)

accuracy = norm(ada*sol-b);

fprintf('Norm of residuals =%12.9f\n',accuracy)

Running this script gives the following results:

Solution of system is:

0.2527

-0.2642

-0.1706

0.4284

0.0017

-0.1391

-0.0231

-0.0109

-0.2310

0.2928

Norm of residuals = 0.000000008

We note that the norm of the residuals is very small. For ill-conditioned matrices it is
necessary to use some kind of preconditioner, which reduces the condition number of

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch08-9780123869425 — 2012/5/30 — 21:48 — Page 397 — #27

8.7 Genetic Algorithms 397

the matrix; otherwise the method becomes too slow. Karmarkar and Ramakrishnan (1991)
used a preconditioned conjugate gradient method as part of an interior point algorithm to
solve linear programming problems with 5000 rows and 333,000 columns.

MATLAB provides a range of iterative procedures based on conjugate gradient methods
for solving Ax = b. These are the MATLAB functions pcg, bicg, and cgs.

8.7 Genetic Algorithms
In this section we introduce the ideas on which genetic algorithms are based and provide
a group of MATLAB functions that implement the key features of a genetic algorithm. These
are applied to the solution of some optimization problems. It is beyond the scope of this
book to give a detailed account of this rapidly developing field of study and the reader is
referred to the excellent text of Goldberg (1989).

Genetic algorithms have been the subject of considerable interest in recent years since
they appear to provide a robust search procedure for solving difficult problems. The strik-
ing feature of these algorithms is that they are based on ideas from the science of genetics
and the process of natural selection. This cross-fertilization from one field of science to
another has led to stimulating and fruitful applications in many fields and particularly in
computer science.

We will describe the genetic algorithm in the terminology used in the field and then
explain how this relates to an optimization problem. The genetic algorithm works with an
initial population, which may, for example, correspond to numerical values of a particular
variable. The size of this population may vary and is generally related to the problem under
consideration. The members of this population are usually strings of zeros and ones, that
is, binary strings. For example, a small initial or first-generation population may take the
form

1000010

1110000

1010101

1111001

1000001

In practice the population may be far larger than this and the strings longer. The strings
themselves may be the encoded values of a variable or variables that we are examining.
This initial population is generated randomly and we can use the terminology of genetics
to characterize it. Each string in the population corresponds to a chromosome and each
binary element of the string to a gene. A new population must now develop from this
initial population; to do this we implement the analogue of specific fundamental genetic
processes. These are

1. Selection based on fitness
2. Crossover
3. Mutation

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch08-9780123869425 — 2012/5/30 — 21:48 — Page 398 — #28

398 Chapter 8 . Optimization Methods

A set of chromosomes is selected at the reproduction stage based on natural selection.
Thus members of the population are chosen for reproduction on the basis of their fitness
defined according to some specified criteria. The fittest are given a greater probability of
reproducing in proportion to the value of their fitness.

The actual process of mating is implemented using the simple idea of crossover.
This means that two members of the population exchange genes. There are many ways
of implementing this crossover—for example having a single crossover point or many
crossover points. These crossover points are selected randomly. A simple crossover is illus-
trated in the following for two chromosomes selected according to fitness. Here we have
randomly selected a crossover point after the fourth digit.

1110|000

1010|101

After crossover this gives the new chromosomes

1110|101

1010|000

Applying this procedure to our original population, we produce a new generation. The
final process is mutation. Here we randomly change a particular gene in a particular chro-
mosome. Thus a 0 may be changed to a 1 or vice versa. The process of mutation in a
genetic algorithm occurs very rarely and hence this probability of a change in a string is
kept very low.

Having described the basic principles of a genetic algorithm, we now illustrate how
it may be applied by considering a simple optimization problem and in so doing fill in
some of the details to show how a genetic algorithm may be implemented. A manufacturer
wishes to produce a container that consists of a hemisphere surmounted by a cylinder of
fixed height. The height of the cylinder is fixed but the common radius of the cylinder and
hemisphere may be varied between 2 and 4 units. The manufacturer wishes to find the
radius value that maximizes the volume of the container. This is a simple problem and the
optimum radius is 4 units. However, it serves to illustrate how the genetic algorithm may
be applied.

We can formulate this as an optimization problem by taking r as the common radius of
the cylinder and hemisphere and h as the height of the cylinder. Taking h= 2 units leads
to the formula

Maximize v = 2πr3/3+ 2π (8.11)

where 2≤ r ≤ 4.

r2

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch08-9780123869425 — 2012/5/30 — 21:48 — Page 399 — #29

8.7 Genetic Algorithms 399

The first problem we must consider is how to transform this problem so that the genetic
algorithm can be applied directly. First we must generate an initial set of strings to con-
stitute the initial population. The number of bits in each string, that is, the string length,
limits the accuracy with which we can find the solution to the problem so it must be chosen
with care. In addition, we must select the size of the initial population; again this must be
chosen with care since a large initial population increases the time taken to implement the
steps of the algorithm. A large population may be unnecessary since the algorithm auto-
matically generates new members of the population in the process of searching the region.
The MATLAB function genbin is used to generate such an initial population and takes the
form

function chromosome = genbin(bitl,numchrom)

% Example call: chromosome=genbin(bitl, numchrom)

% Generates numchrom chromosomes of bitlength bitl.

% Called by optga.m.

maxchros = 2^bitl;

if numchrom>=maxchros

numchrom = maxchros;

end

for k = 1:numchrom

for bd = 1:bitl

if rand>=0.5

chromosome(k,bd) = 1;

else

chromosome(k,bd) = 0;

end

end

end

This function can be defined more succinctly using the MATLAB round function as follows:

function chromosome = genbin(bitl,numchrom)

% Example call: chromosome = genbin(bitl,numchrom)

% Generates numchrom chromosomes of bitlength bitl.

% Called by optga.m

maxchros=2^bitl;

if numchrom>=maxchros

numchrom = maxchros;

end

chromosome = round(rand(numchrom,bitl));

To generate an initial population of five chromosomes, each with six genes, we call this
function as

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch08-9780123869425 — 2012/5/30 — 21:48 — Page 400 — #30

400 Chapter 8 . Optimization Methods

>> chroms = genbin(6,5)

chroms =

0 1 1 1 0 0 [Population member #1]

1 1 1 1 0 1 [Population member #2]

1 0 0 1 0 0 [Population member #3]

0 0 0 0 1 1 [Population member #4]

0 1 1 1 0 1 [Population member #5]

To aid the reader in the following discussion we have labeled the five members of the
population #1 to #5. These labels are not, of course, part of the MATLAB output.

Since we are interested in values of r in the range 2 to 4, we must be able to transform
these binary strings to values in the range 2 to 4. This is achieved using the MATLAB function
binvreal, which converts a binary value to a real value in the required range.

function rval = binvreal(chrom,a,b)

% Converts binary string chrom to real value in range a to b.

% Example call rval=binvreal(chrom,a,b)

% Normally called from optga.

[pop bitlength] = size(chrom);

maxchrom = 2^bitlength-1;

realel = chrom.*((2*ones(1,bitlength)).^fliplr([0:bitlength-1]));

tot = sum(realel);

rval = a+tot*(b-a)/maxchrom;

We now call this function to convert the previously generated population:

>> for i = 1:5, rval(i) = binvreal(chroms(i,:),2,4); end

>> rval

rval =

2.8889 3.9365 3.1429 2.0952 2.9206

As expected, these values are in the range 2 to 4 and provide the initial population of
values for r. However, these values tell us nothing about their fitness and to discover this
we must judge them against some fitness criterion. In this case the choice is easy since
our objective is to maximize the value of the function (8.11). We simply find the values of
our objective function (8.11) for these values of r. We must define our function as a MATLAB

function and it takes the form

>> g = @(x) pi*(0.66667*x+2).*x.^2;

Now we use this to evaluate fitness by replacing x by the values rval:

>> fit = g(rval)

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch08-9780123869425 — 2012/5/30 — 21:48 — Page 401 — #31

8.7 Genetic Algorithms 401

fit =

102.9330 225.1246 127.0806 46.8480 105.7749

Notice at this stage that the total fitness is

>> sum(fit)

ans =

607.7611

So the fittest is the value 3.9365, with a fitness value 225.1246, which corresponds to string
or population member #2. Fortuitously this is a very good result. The function fitness

implements the preceding process and is given as follows:

function [fit,fitot] = fitness(criteria,chrom,a,b)

% Example call: [fit,fitot] = fitness(criteria,chrom,a,b)

% Calculates fitness of set of chromosomes chrom in range a to b,

% using the fitness criterion given by the parameter criteria.

% Called by optga.

[pop bitl] = size(chrom);

for k = 1:pop

v(k) = binvreal(chrom(k,:),a,b);

fit(k) = feval(criteria,v(k));

end

fitot = sum(fit);

Thus, repeating the preceding calculations, we have

>> [fit, sum_fit] = fitness(g,chroms,2,4)

fit =

102.9330 225.1246 127.0806 46.8480 105.7749

sum_fit =

607.7611

as before.
The next stage is reproduction when the strings are copied according to their fitness.

Thus there is a higher probability of more of the fittest chromosomes in the mating pool.
This process of selection is more complex and is based on a process that simulates the use
of a roulette wheel. The percentage of the roulette wheel that is allocated to a particular
string is directly proportional to the fitness of the string. For the preceding fitness vector
fit the percentages can be calculated from

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch08-9780123869425 — 2012/5/30 — 21:48 — Page 402 — #32

402 Chapter 8 . Optimization Methods

>> percent = 100*fit/sum_fit

percent =

16.9364 37.0416 20.9096 7.7083 17.4040

>> sum(percent)

ans =

100.0000

Thus, conceptually, we spin a roulette wheel on which strings 1 to 5 have 16.9364, 37.0416,
20.9096, 7.7083, and 17.4040 percent of the area, respectively. These chromosomes or
strings have this chance of being selected. This is implemented by the function selectga

as follows:

function newchrom = selectga(criteria,chrom,a,b)

% Example call: newchrom = selectga(criteria,chrom,a,b)

% Selects best chromosomes from chrom for next generation

% using function criteria in range a to b.

% Called by function optga.

% Selects best chromosomes for next generation using criteria

[pop bitlength] = size(chrom);

fit = [];

% calculate fitness

[fit,fitot] = fitness(criteria,chrom,a,b);

for chromnum = 1:pop

sval(chromnum) = sum(fit(1,1:chromnum));

end

% select according to fitness

parname = [];

for i = 1:pop

rval = floor(fitot*rand);

if rval<sval(1)

parname = [parname 1];

else

for j = 1:pop-1

sl = sval(j); su = sval(j)+fit(j+1);

if (rval>=sl) & (rval<=su)

parname = [parname j+1];

end

end

end

end

newchrom(1:pop,:) = chrom(parname,:);

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch08-9780123869425 — 2012/5/30 — 21:48 — Page 403 — #33

8.7 Genetic Algorithms 403

We can now use this function to perform the selection stage as follows:

>> matepool = selectga(g,chroms,2,4)

matepool =

1 1 1 1 0 1 [Population member #2]

1 1 1 1 0 1 [Population member #2]

0 1 1 1 0 0 [Population member #1]

0 1 1 1 0 1 [Population member #5]

0 1 1 1 0 0 [Population member #1]

Note that members #1 and #2 have been favored by the selection process and duplicated.
Because of the random nature of the selection process, member #3 is not selected, even
though it is the second fittest member. We can now use the fitness function to obtain the
fitness of the new population:

>> fitness(g,matepool,2,4)

ans =

225.1246 225.1246 102.9330 105.7749 102.9330

>> sum(ans)

ans =

761.8902

Notice the substantial increase in overall fitness.
We can now mate the members of this population, but we mate only a proportion of

them, in this case 60% or 0.6. In this example the population size is 5 and 0.6× 5= 3.
This number is rounded down to an even number, that is, 2, since only an even num-
ber of members of the population can mate. Thus, 2 members of the population are
randomly selected for mating. The function that carries this out is matesome, defined as
follows:

function chrom1 = matesome(chrom,matenum)

% Example call: chrom1 = matesome(chrom,matenum)

% Mates a proportion, matenum, of chromosomes, chrom.

mateind = []; chrom1 = chrom;

[pop bitlength] = size(chrom);

ind = 1:pop;

u = floor(pop*matenum);

if floor(u/2)~=u/2

u = u-1;

end

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch08-9780123869425 — 2012/5/30 — 21:48 — Page 404 — #34

404 Chapter 8 . Optimization Methods

% select percentage to mate randomly

while length(mateind)~=u

i = round(rand*pop);

if i==0

i = 1;

end

if ind(i)~=-1

mateind = [mateind i];

ind(i) = -1;

end

end

% perform single point crossover

for i = 1:2:u-1

splitpos = floor(rand*bitlength);

if splitpos==0

splitpos = 1;

end

i1 = mateind(i); i2 = mateind(i+1);

tempgene = chrom(i1,splitpos+1:bitlength);

chrom1(i1,splitpos+1:bitlength) = chrom(i2,splitpos+1:bitlength);

chrom1(i2,splitpos+1:bitlength) = tempgene;

end

We now use this function to mate the strings in the new population matepool:

>> newgen = matesome(matepool,0.6)

newgen =

1 1 1 1 0 1 [Population member #2]

1 1 1 1 0 0 [Created from #2 and #1]

0 1 1 1 0 1 [Created from #1 and #2]

0 1 1 1 0 1 [Population member #5]

0 1 1 1 0 0 [Population member #1]

We see that two members of the original population, members #1 and #2, have mated by
crossing over after the second digit to create two new members of the population.

Computing the new population fitness we have

>> fitness(g,newgen,2,4)

ans =

225.1246 220.4945 105.7749 105.7749 102.9330

>> sum(ans)

ans =

760.1018

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch08-9780123869425 — 2012/5/30 — 21:48 — Page 405 — #35

8.7 Genetic Algorithms 405

Notice that the total fitness has not improved and indeed, at this stage, we cannot expect
improvements every time.

Finally we perform a mutation before repeating this same cycle of steps. This is imple-
mented by the function mutate as follows:

function chrom = mutate(chrom,mu)

% Example call: chrom = mutate(chrom,mu)

% mutates chrom at rate given by mu

% Called by optga

[pop bitlength] = size(chrom);

for i = 1:pop

for j = 1:bitlength

if rand<=mu

if chrom(i,j)==1

chrom(i,j) = 0;

else

chrom(i,j) = 1;

end

end

end

end

This is called with a very small value for mu and a population of this size is unlikely to be
changed in just one generation. This function is called in the following:

>> mutate(newgen,0.05)

ans =

1 1 0 1 0 1

1 1 1 1 0 0

0 1 1 1 0 1

0 1 1 1 0 1

0 1 1 1 1 0

Notice that in this example two mutations have occurred; the third element of the first
chromosome has changed from 1 to 0, and the fifth element of the last chromosome
has changed from 0 to 1. Sometimes no mutation will occur. This completes the produc-
tion of a new generation. The process of selection based on fitness, reproduction, and
mutation is now repeated using the new generation and subsequently repeated for many
generations.

The function optga includes all these steps in one function and is defined as follows:

function [xval,maxf] = optga(fun,range,bits,pop,gens,mu,matenum)

% Determines maximum of a function using the Genetic algorithm.

% Example call: [xval,maxf] = optga(fun,range,bits,pop,gens,mu,matenum)

% fun is name of a one variable user defined positive valued function.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch08-9780123869425 — 2012/5/30 — 21:48 — Page 406 — #36

406 Chapter 8 . Optimization Methods

% range is 2 element row vector giving lower and upper limits for x.

% bits is number of bits for the variable, pop is population size.

% gens is number of generations, mu is mutation rate,

% matenum is proportion mated in range 0 to 1.

% WARNING. Method is not guaranteed to find global optima.

newpop = [];

a = range(1); b = range(2);

newpop = genbin(bits,pop);

for i = 1:gens

selpop = selectga(fun,newpop,a,b);

newgen = matesome(selpop,matenum);

newgen1 = mutate(newgen,mu);

newpop = newgen1;

end

[fit,fitot] = fitness(fun,newpop,a,b);

[maxf,mostfit] = max(fit);

xval = binvreal(newpop(mostfit,:),a,b);

Now, applying this function to solve our original problem, we specify the range of x from 2
to 4, and use 8-bit chromosomes and an initial population of 10. The process is continued
for 20 generations with a mutation probability of 0.005 and a mating proportion of 0.6.
Note that matenum must be greater than zero and less than or equal to one. Thus

>> [x f] = optga(g,[2 4],8,10,20,0.005,0.6)

x =

3.8980

f =

219.5219

Since the exact solution is x = 4, this is a reasonable result. Figure 8.6 gives a graphical
representation of the progress of the genetic algorithm. It should be noted that each run
of the genetic algorithm can produce a different result because of the random nature of
the process. In addition, the number of distinct values in the search space is limited by
the chromosome length. In this example the chromosome length is 8 bits, giving 28 or
256 divisions. Thus the range of r from 2 to 4 is divided into 256 divisions, each equal to
0.0078125.

We now discuss the philosophy and theory behind this process and the real prob-
lems to which genetic algorithms may be applied. The reason why a genetic algorithm
differs from a simple direct-search procedure is that it involves two special features:
crossover and mutation. Thus, starting from an initial population, the algorithm develops
new generations, which rapidly explore the region of interest. This is useful for diffi-
cult optimization problems and in particular for those where we wish to find the global

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch08-9780123869425 — 2012/5/30 — 21:48 — Page 407 — #37

8.7 Genetic Algorithms 407

0 5 10 15 20
2

2.5

3

3.5

4

Generations
Se

ar
ch

 s
pa

ce

FIGURE 8.6 Each member of the population is represented by ◦. Successive generations of the
population concentrate toward the value 4 approximately.

maximum or minimum of a function that has many local maxima and minima. In this
case standard optimization methods such as the conjugate gradient method of Fletcher
and Reeves can locate only the local optimum. However, a genetic algorithm may locate
the global optimum, although this is not guaranteed. This is due to the way it explores the
region of interest, avoiding getting stuck at a particular local minimum. We do not consider
the theoretical justification in detail but describe the key result only.

We first introduce the concept of schemata. If we study the structure of the strings pro-
duced by a genetic algorithm, certain patterns of behavior begin to emerge. Strings that
have high fitness values often have common features, such as a particular combination
of binary elements. For example, the fittest strings may have the common feature that
they start with 11 and end with 0 or always have the middle three elements 0. We can
represent strings with this structure by 11*****0 and ***000** where the asterisks represent
“wild card” elements, which may be either 0 or 1. These structures are called schemata
and essentially they identify the common features of a set of strings. The reason why a par-
ticular schema is interesting is that we wish to study the propagation of such strings that
have this structure and are associated with high values of fitness. The length of a schema is
the distance between the outermost specified gene values. The order of a schemata is the
number of positions specified by 0 or 1. For example,

String Order Length

***********1 1 1
******10*1** 3 4
10****** 2 2
00******101 5 11
11**00 4 6

It is clear that schemata that are defined by substrings of short length are less likely to be
affected by crossover and therefore propagate through the generations unchanged.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch08-9780123869425 — 2012/5/30 — 21:48 — Page 408 — #38

408 Chapter 8 . Optimization Methods

We can now state the fundamental theorem of genetic algorithms, due to Holland, in
terms of these schemata. This states that schemata of short length and low order with
above-average fitness are propagated in exponentially increasing numbers throughout the
generations. The ones with below-average fitness die away exponentially. This key result
explains some of the success of genetic algorithms.

We now provide some further examples that apply the MATLAB genetic algorithm func-
tion optga to a specific optimization routine.

Example 8.1
Determine the maximum of the following function in the range x = 0 to x = 1.

f (x)= ex
+ sin(3πx)

Let the function h be defined by

h = @(x) exp(x)+sin(3*pi*x);

Calling optga with this function we have

>> [x f] = optga(h,[0 1],8,40,50,0.005,0.6)

x =

0.8627

f =

3.3315

We now apply the supplied MATLAB function fminsearch to solve this problem. Note that for
use with fminsearch the function h(x) has been modified by including a minus sign, thereby
negating the function since fminsearch is performing minimization.

>> h1 = @(x) -(exp(x)+sin(3*pi*x));

>> fminsearch(h1,0,1)

ans =

0.1802

>> h1(ans)

ans =

-2.1893

Here the function fminsearch has found a optimal value of the function but it is only a local
optimum. The genetic algorithm (GA) has found a good approximation to the global optimum.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch08-9780123869425 — 2012/5/30 — 21:48 — Page 409 — #39

8.7 Genetic Algorithms 409

Example 8.2
A more demanding problem is to maximize the function

f (x)= 10+
[

1

(x− 0.16)2+ 0.1

]
sin(1/x)

Calling optga with this function defined by the anonymous function phi gives the following:

>> phi = @(x) 10+(1./((x-0.16).^2+0.1)).*sin(1./x);

>> [x f] = optga(phi,[0.001 0.3],8,10,40,0.005,0.6)

x =

0.1288

f =

19.8631

Figure 8.7 illustrates the difficulty of this problem and shows that the result is a reasonable one.
The changing diversity of the population can be illustrated graphically; see Figures 8.8

and 8.9. These plots show the value of each bit (0 or 1) for each member of the popula-
tion. If the rectangle corresponding to a particular bit in a particular population member is
shaded, it indicates a unit value for the bit; if it is white, it indicates a zero value for the
bit. Figure 8.8 shows the initial randomly selected population and it is seen that there is a
random selection of white and shade rectangles. Figure 8.9 shows the final population after
50 generations and we see that many of the bits have identical values in each population
member.

0 0.05 0.1 0.15 0.2 0.25 0.3
0

5

10

15

20

f(
x)

x

FIGURE 8.7 Plot of the function 10+ [1/{(x− 0.16)2+ 0.1}]sin(1/x) showing many local maximum
and minimum values.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch08-9780123869425 — 2012/5/30 — 21:48 — Page 410 — #40

410 Chapter 8 . Optimization Methods

0 2 4 6 8
0

10

20

30

40

Bits

Po
pu

la
tio

n
m

em
be

r

FIGURE 8.8 Initial random distribution of bits.

0 2 4 6 8
0

10

20

30

40

Bits

Po
pu

la
tio

n
m

em
be

r

FIGURE 8.9 Distribution of bits after 50 generations.

Genetic algorithms are a developing area of research and many amendments could be
made to the functions that we have supplied to implement a genetic algorithm. For exam-
ple, Gray code rather than binary code can be used; the roulette wheel selection can be
implemented in many different ways; crossover can be changed to multipoint crossover
or other alternatives. It is often noticed that a genetic algorithm is slow in execution, but it
should be remembered that it is best applied to difficult problems, such as those that have
multiple optima and where the global optimum is required. Since standard algorithms
often fail in these cases, the extra time taken by the genetic algorithm is worthwhile. There
are many applications of genetic algorithms that we have not considered and the function
optga only works for positive-valued functions in one independent variable. It would be
easy to extend it to deal with two variable functions and this task is given as exercise for
the reader (Problem 8.8)

We now consider using Gray code as an alternative strategy to the standard binary
genetic algorithm. Here we interpret each of the strings as a number in Gray code. Gray
code is a binary number system where two successive numbers differ by only one bit.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch08-9780123869425 — 2012/5/30 — 21:48 — Page 411 — #41

8.7 Genetic Algorithms 411

The code was originally developed by Gray to make the operation of systems of mechan-
ical switches more reliable. It is useful at this point to define the Hamming distance. The
Hamming distance is the count of the number of bits that are different between two
binary vectors. Thus it follows that the Hamming distance between two succesive Gray
code numbers is generally smaller than that of two succesive binary code numbers.

The following shows a comparison of the three-bit Gray code and the three-bit binary
code

Decimal 0 1 2 3 4 5 6 7

Binary 000 001 010 011 100 101 110 111

Gray 000 001 011 010 110 111 101 100

For the genetic algorithm we must convert from Gray code to decimal. To do this we use
two stages: convert Gray code to binary and then convert binary to decimal. To convert
from Gray code to binary, the simple algorithm is

For bit 1 (the most significant bit), b(1)= g(1)

For bit i, where i= 2, . . . ,n,

if b(i− 1)= g(i) then b(i)= 0, else b(i)= 1

where b(i) is a binary digit and g(i) is the equivalent Gray code digit. This algorithm is
implemented in the following function grayvreal

function rval = grayvreal(gray,a,b)

% Converts gray string to real value in range a to b.

% Example call rval = grayvreal(gray,a,b)

% Normally called from optga.

[pop bitlength] = size(gray);

maxchrom = 2^bitlength-1;

% Converts gray to binary

bin(1) = gray(1);

for i = 2:bitlength

if bin(i-1) == gray(i)

bin(i) = 0;

else

bin(i) = 1;

end

end

% Converts binary to real

realel = bin.*((2*ones(1,bitlength)).^fliplr([0:bitlength-1]));

tot = sum(realel);

rval = a+tot*(b-a)/maxchrom;

This function can be used instead of binvreal in the MATLAB function fitness (renamed
fitness_g) and this function is then used in selectga (renamed selectga_g). Finally, both

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch08-9780123869425 — 2012/5/30 — 21:48 — Page 412 — #42

412 Chapter 8 . Optimization Methods

of these functions are used in the function optga_g. The following example ilustrates the
use of the function optga_g.

>> g = @(x) exp(x)+sin(3*pi*x);

>> [x f] = optga_g(g,[0 1],8,40,50,0.005,0.6)

x =

0.8588

f =

3.3317

This provides a result with similar accuracy to that achieved using the ordinary binary
algorithm.

While some researchers have found no benefit in using Gray codes, others, such as
Caruana and Schaffer (1988), claim that the Gray code GA can sometimes be of significant
value.

The genetic algorithm can be used to solve optimization problems in which the solu-
tions are constrained to members of a set of discrete values, rather than being continuous
over a defined range. For example, steel sections are rolled in specific sizes, and it would
be uneconomical to have special sections rolled. Thus a framework, for example, will be
constructed from standard beam sizes and sections. The same applies to electronic circuit
components such as resistors, which are manufactured in a set of standard values. Suppose
we wish to optimize a design that only includes components that are available in eight
sizes. Let us assume the vector of discrete values [10 15 24 36 50 75 90 120] gives some per-
formance values for each of the eight possible components. We can use the binary num-
bers 000 to 111 to represent the indices of these eight performance values. The GA opti-
mization proceeds in the normal way; however, to calculate the fitness corresponding to a
particular binary number, this number is used as the index to the vector of performance
values to obtain the corresponding performance value. For example, suppose we require
the fitness corresponding to the binary number 100 (i.e., decimal 4). The performance
value corresponding to this number is 36 and this number is used in the fitness calculation.
A difficulty arises if the number of possible components, and hence the number of mem-
bers in the set of performance values, is not an integer power of 2. For example, suppose
we only have six possible component sizes with performance values of, say, [10 15 24 36
50 75]. To represent the six indices of this vector in binary code requires a minimum of
three digits. However, the process of crossover and mutation may generate any of eight
binary numbers, but only six have corresponding properties. To overcome this difficulty,
two of the performance values are duplicated so that, for example, the properties corre-
sponding to the eight binary numbers 000 to 111 are now [10 10 15 24 36 50 75 75]. This
adjustment slightly affects the statistics of the process but it generally works satisfactorily.
Although in this discussion we have assumed sets of six or eight component sizes, in most
practical problems the component set is likely to have as many as 32 or 64 members.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch08-9780123869425 — 2012/5/30 — 21:48 — Page 413 — #43

8.8 Continuous Genetic Algorithm 413

8.8 Continuous Genetic Algorithm
The continuous genetic algorithm is similar in structure to the binary form of the genetic
algorithm we have described in Section 8.7, in that an initial population in the region of
interest is generated randomly, pairs are selected from the current population and are
mated according to fitness, crossover occurs between chromosomes, and mutation of
chromosomes occurs with a specified probabilty. However, these steps have significant
differences in their implementation in the continuous GA. Basing our description on an
optimization problem we randomly generate a set of chromosomes. This initial popula-
tion is a set of random real numbers rather than binary digits. The key feature here is that
the values can be any of the continuous set of values in the region of interest and not a
discrete set of binary values that we have used in the binary form of the algorithm.

Suppose we assume that the function to be optimized has four variables. Then initially
each chromosome is a vector of four randomly generated decimal numbers, each lying in
the search range for the variable. If we choose to have a population of 20 chromosomes,
then each has its fitness assessed according to a fitness criteria and a number of the fittest
are chosen for the mating process. For example, the most fit 8 chromosomes from a group
of 20 chromosomes may be chosen to constitute the mating pool. From this group, random
pairs are chosen for crossover and mating.

The mating process is again broadly similar to that of the binary form of the GA in that
a random point is chosen for crossover so that the parental chromosomes are intermixed
about this point by simply interchanging the real variable values within the chromosomes.
However at this point a crucial difference is introduced since crossover in this form simply
interchanges the original set of randomly generated real values without producing new
values in the region. So to help explore the region we need to introduce new values. For
example, suppose the function to be minimized is a function of four variables, u, v, w, and
x, and the two chromosomes to be mated, r1 and r2, are given by

r1 = [u1 v1 w1 x1], r2 = [u2 v2 w2 x2]

Of course, these two chromosomes are chosen at random from the mating pool according
to fitness. At a random point in the chromosome a new value in the region is created by
forming two new elements from a linear random combination of the pair of chromosome
elements at this point. These new values then replace the original chromosome values at
the selected crossover point. The suggested formulae for generating new data values take
the form

xa = x1−β(x1− x2), xb = x2+β(x1− x2)

Similar equations can be applied to the variables u, v, and w. At each generation, β, the
crossover point and the pairing of the fittest four members of the previous population will
all be rechosen.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch08-9780123869425 — 2012/5/30 — 21:48 — Page 414 — #44

414 Chapter 8 . Optimization Methods

The crossover point can occur at random at points 1, 2, 3, or 4. Depending on which
crossover point is chosen, after mating the new chromosomes are

Crossover at 1: r1 = [ua v2 w2 x2], r2 = [ub v1 w1 x1]

Crossover at 2: r1 = [u1 va w2 x2], r2 = [u2 vb w1 x1]

Crossover at 3: r1 = [u1 v1 wa x2], r2 = [u2 v2 wb x1]

Crossover at 4: r1 = [u1 v1 w1 xa], r2 = [u2 v2 w2 xb]

Other crossover rules may be applied. Note that a one-dimensional problem cannot be
solved using this particular mating algorithm.

The process of mutation is implemented in a very similar way to that of the binary
genetic algorithm. A mutation rate is chosen; then the number of mutations can be
calculated from the number of chromosomes and the number of components in the
chromosome. Then positions are randomly selected in the chromosomes and these chro-
mosome values are replaced by random values selected within the region. This is another
way of helping the algorithm to explore the region, which increases the chance of finding
the global minimum for the whole region. The contgaf function implements a continuous
genetic algorithm. This particular implementation is arranged to find the minimum of a
function.

function [x,f] = contgaf(func,nv,range,pop,gens,mu,matenum)

% function for continuous genetic algorithm

% func is the multivariable function to be optimised

% nv is the number of variables in the function (minimum = 2)

% range is row vector with 2 elements. i.e [lower bound upper bound]

% pop is the number of chromosomes, gens is the number of generations

% mu is the mutation rate in range 0 to 1.

% matenum is the proportion of the population mated in range 0 to 1.

pops = []; fitv = []; nc = pop;

% Generate chromosomes as uniformly distributed sets of random decimal

% numbers in the range 0 to 1

chrom = rand(nc,nv);

% Generate the initial population in the range a to b

a = range(1); b = range(2);

pops = (b-a)*chrom+a;

for MainIter = 1:gens

% Calculate fitness values

for i = 1:nc

fitv(i) = feval(func, pops(i,:));

end

% Sort fitness values

[sfit,indexf] = sort(fitv);

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch08-9780123869425 — 2012/5/30 — 21:48 — Page 415 — #45

8.8 Continuous Genetic Algorithm 415

% Select only the best matnum values for mating

% ensure an even number of pairs is produced

nb = round(matenum*nc);

if nb/2~=round(nb/2)

nb = round(matenum*nc)+1;

end

fitbest = sfit(1:nb);

% Choose mating pairs use rank weighting

prob = @(n) (nb-n+1)/sum(1:nb);

rankv = prob([1:nb]);

for i = 1:nb

cumprob(i) = sum(rankv(1:i));

end

% Choose two sets of mating pairs

mp = round(nb/2);

randpm = rand(1,mp); randpd = rand(1,mp);

mm = [];

for j = 1:mp

if randpm(j)<cumprob(1)

mm = [mm,1];

else

for i = 1:nb-1

if (randpm(j)>cumprob(i)) && (randpm(j)<cumprob(i+1))

mm = [mm i+1];

end

end

end

end

% The remaining elements of nb = [1 2 3,...] are the other ptnrs

md = [];

md = setdiff([1:nb],mm);

% Mating between mm and md. Choose crossover

xp = ceil(rand*nv);

addpops = [];

for i = 1:mp

% Generate new value

pd = pops(indexf(md(i)),:);

pm = pops(indexf(mm(i)),:);

% Generate random beta

beta = rand;

popm(xp) = pm(xp)-beta*(pm(xp)-pd(xp));

popd(xp) = pd(xp)+beta*(pm(xp)-pd(xp));

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch08-9780123869425 — 2012/5/30 — 21:48 — Page 416 — #46

416 Chapter 8 . Optimization Methods

if xp==nv

% Swap only to left

ch1 = [pm(1:nv-1),pd(nv)];

ch2 = [pd(1:nv-1),pm(nv)];

else

ch1 = [pd(1:xp),pm(xp+1:nv)];

ch2 = [pm(1:xp),pd(xp+1:nv)];

end

% New values introduced

ch1(xp) = popm(xp);

ch2(xp) = popd(xp);

addpops = [addpops;ch1;ch2];

end

% Add these ofspring to the best to obtain a new population

newpops = []; newpops = [pops(indexf(1:nc-nb),:); addpops];

% Calculate number of mutations, mutation rate mu

Nmut = ceil(mu*nv*(nc-1));

% Choose location of variables to mutate

for k = 1:Nmut

mui = ceil(rand*nc); muj = ceil(rand*nv);

if mui~=indexf(1)

newpops(mui,muj) = (b-a)*rand+a;

end

end

pops = newpops;

end

f = sfit(1); x = pops(indexf(1),:);

We can test this function on an example already discussed in this chapter: a two-
variable function that is taken from Styblinski and Tang (1990). This function is

f (x1,x2)=
(

x4
1 − 16x2

1 + 5x1

)/
2+

(
x4

2 − 16x2
2 + 5x2

)/
2

We may define this function in MATLAB using an anonymous function as follows:

>> tf=@(x) 0.5*(x(1).^4-16*x(1).^2+5*x(1))+0.5*(x(2).^4- ...

16*x(2).^2+5*x(2));

This function has several local minima but the global optima is at (−2.9035, −2.9035). Here
we execute three runs of the continuous genetic algorithm:

>> [x,f] = contgaf(tf,2,[-4 4],50,50,0.2,0.6)

x =

-2.9036 -2.9032

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch08-9780123869425 — 2012/5/30 — 21:48 — Page 417 — #47

8.8 Continuous Genetic Algorithm 417

f =

-78.3323

>> [x,f] = contgaf(tf,2,[-4 4],50,50,0.2,0.6)

x =

-2.9035 -2.9037

f =

-78.3323

>> [x,f] = contgaf(tf,2,[-4 4],50,50,0.2,0.6)

x =

-2.9035 -2.8996

f =

-78.3321

Notice the difference in the x values. The process involves a random element and will not
produce the same result every time.

As a further example, determine the minimim value of the function

f (x)=
4∑

n=1

[
100

(
xn+1− x2

n

)2
+ (1− xn)

2
]

Obviously, the minimum of this function is zero. Thus we have

ff = @(x)(1-x(4))^2+(1-x(3))^2+(1-x(2))^2+(1-x(1))^2+ ...

100*((x(5)-x(4)^2)^2+(x(4)-x(3)^2)^2+(x(3)-x(2)^2)^2+(x(2)-x(1)^2)^2);

>> [x,f] = contgaf(ff,5,[-5 5],20,100,0.15,0.6)

x =

0.7617 0.6677 0.6392 0.5876 0.3435

f =

8.1752

This is a good result. The actual minimum is zero at [1 1 1 1 1]. However, the function value
at [−5 − 5 − 5 − 5 − 5] is 360,144. If we sought the solution for the minimum value to the
nearest integer by evaluating the function in the range −5 to 5 in each dimension, the
function would need to be evaluated 161,051 times. To find the solution to an accuracy of
0.1, we would require 1.051× 1010 function evaluations—not a realistic approach.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch08-9780123869425 — 2012/5/30 — 21:48 — Page 418 — #48

418 Chapter 8 . Optimization Methods

For the discussion of the efficiency of the continuous GA, see Chelouah and Siarry
(2000). Comparisons between binary and continous genetic algorithms have been carried
out by several authors and the continuous GA has been found to have the advantage of
greater consistency from run to run and higher precision (Michalewicz, 1996).

8.9 Simulated Annealing
Here we provide a brief introduction to the ideas on which optimization using simu-
lated annealing is based. The technique should be applied to large and difficult problems
where we require the global optima and where other techniques are inadequate. Even for
relatively simple problems the technique can be slow.

If a metal is allowed to cool sufficiently slowly (metallurgically called postannealing),
its metallurgical structure is naturally able to find a minimum energy state for the system.
If, however, the metal is cooled quickly, say by quenching in water, then this minimum
energy state is not found. This concept of the natural process of finding a minimum energy
state can be used to find the global optima of given nonlinear functions. This optimization
method is called simulated annealing.

The analogy is not perfect but the fast cooling process may be viewed as equivalent to
finding a local minimum of a given nonlinear function corresponding to the energy level,
while the slow cooling corresponds to finding the ideal energy state or a global minimum
of the function. This slow cooling process may be implemented using the Boltzmann prob-
ability distribution of energy states, which plays a prominent part in thermodynamics and
has the form

P(E)= exp(−E/kT)

where P(E) is the probability of E, a particular energy state, k is Boltzmann’s constant, and
T is the temperature. This function is used to reflect the cooling process where a change in
the energy level, which may be initially unfavorable, ultimately leads to a final minimum
global energy state.

This corresponds to the concept of moving out of the region of a local minimum of a
nonlinear function in the search for a global solution for the problem. This may require
a temporary increase in the value of the objective function, that is, climbing out of the
valley of a local minimum, although convergence to the global optimum may still occur
if the adjustment to the temperature is slow enough. These ideas lead to an optimization
algorithm used by Kirkpatrick et al. (1983), which has the following general structure.

Let f (x) be the nonlinear function to be minimized, where x is an n-component vector.
Then

. Step 1: Set k = 0, p = 0. Chose a starting solution xk and an initial, arbitrary
temperature Tp.. Step 2: Let a new value of x, xk+1 cause a change,1f = f (xk+1)− f (xk); then

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch08-9780123869425 — 2012/5/30 — 21:48 — Page 419 — #49

8.9 Simulated Annealing 419

if1f < 0, accept the change with probability 1 and xk+1 replaces xk, k = k+ 1.
If1f > 0, accept the change with probability exp(−1f /Tp) and
xk+1 replaces xk, k = k+ 1.. Step 3: Repeat from step 2 until there is no significant change of function value.. Step 4: Lower the temperature using an appropriate reduction process Tp+1 = g(Tp),

set p= p+ 1, and repeat from step 2 until there is no further significant change in the
function value from temperature reduction.

The key difficulties with this algorithm are choosing an initial temperature and a temper-
ature reduction regime. This has generated many research papers and the details are not
discussed here.

The MATLAB function asaq is an improved implementation of the preceding algorithm.
It is based on a modified and simplified version of an algorithm described by Lester Ing-
ber (1993). This uses a exponential cooling regime with some quenching to accelerate the
convergence of the algorithm. The key parameters, such as the values of qf, tinit, and
maxstep, and the upper and lower bounds on the variables can be adjusted and may lead
to some improvements in the convergence rate. A major change would be to use a different
temperature adjustment regime and many alternatives have been suggested. The reader
should view these parameter variations as an opportunity to experiment with simulated
annealing.

function [fnew,xnew] = asaq(func,x,maxstep,qf,lb,ub,tinit)

% Determines optimum of a function using simulated annealing.

% Example call: [fnew,xnew]=asaq(func,x,maxstep,qf,lb,ub,tinit)

% func is the function to be minimized, x the initial approx.

% given as a column vector, maxstep the maximum number of main

% iterations, qf the quenching factor in range 0 to 1.

% Note: small value gives slow convergence, value close to 1 gives

% fast convergence, but may not supply global optimum.

% lb and ub are lower and upper bounds for the variables,

% tinit is the intial temperature value

% Suggested values for maxstep = 200, tinit = 100, qf = 0.9

% Initialisation

xold = x; fold = feval(func,x);

n = length(x); lk = n*10;

% Quenching factor q

q = qf*n;

% c values estimated

nv = log(maxstep*ones(n,1));

mv = 2*ones(n,1);

c = mv.*exp(-nv/n);

% Set values for tk

t0 = tinit*ones(n,1); tk = t0;

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch08-9780123869425 — 2012/5/30 — 21:48 — Page 420 — #50

420 Chapter 8 . Optimization Methods

% upper and lower bounds on x variables

% variables assumed to lie between -100 and 100

a = lb*ones(n,1); b = ub*ones(n,1);

k = 1;

% Main loop

for mloop = 1:maxstep

for tempkloop = 1:lk

% Choose xnew as random neighbour

fold = feval(func,xold);

u = rand(n,1);

y = sign(u-0.5).*tk.*((1+ones(n,1)./tk).^(abs((2*u-1))-1));

xnew = xold+y.*(b-a);

fnew = feval(func,xnew);

% Test for improvement

if fnew <= fold

xold = xnew;

elseif exp((fold-fnew)/norm(tk))>rand

xold = xnew;

end

end

% Update tk values

tk = t0.*exp(-c.*k^(q/n));

k = k+1;

end

tf = tk;

We will run this script to optimize the following function, which is taken from Styblinski
and Tang (1990), and solve it by the conjugate gradient method in Section 8.4:

f (x1,x2)=
(

x4
1 − 16x2

1 + 5x1

)/
2+

(
x4

2 − 16x2
2 + 5x2

)/
2

The results are as follows:

>> fv = @(x) 0.5*(x(1)^4-16*x(1)^2+5*x(1)) +...

0.5*(x(2)^4-16*x(2)^2+5*x(2));

>> [fnew,xnew] = asaq(fv,[0 0].',200,0.9,-10,10,100)

fnew =

-78.3323

xnew =

-2.9018

-2.9038

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch08-9780123869425 — 2012/5/30 — 21:48 — Page 421 — #51

8.10 Constrained Nonlinear Optimization 421

70 80 90 100 110
−100

−50

0

50

100

Iteration
Fu

nc
tio

n
va

lu
e

FIGURE 8.10 Graph showing the value of function f (x1,x2)=
(
x4

1 − 16x2
1 + 5x1

)
/2+

(
x4

2 − 16x2
2 + 5x2

)
/2

for the final 40 iterations.

x1

x2

−5 0 5
−5

0

5

FIGURE 8.11 Contour plot of function f (x1,x2)=
(
x4

1 − 16x2
1 + 5x1

)
/2+

(
x4

2 − 16x2
2 + 5x2

)
/2. The final

stages in the simulated annealing process are shown. Note how these values are concentrated in the
lower left corner, close to the global optimum.

Note that each run provides a different result and is not guaranteed to provide a global
optimum unless the parameters are adjusted appropriately for the particular problem.
Figure 8.10 provides a plot of the variation in the function value for the final 40 iterations.
It illustrates the behavior of the algorithm, which allows both increases and decreases in
the function value.

As a further illustration, a contour plot showing only the final stages of the iteration is
given in Figure 8.11.

8.10 Constrained Nonlinear Optimization
In this section we consider the problem of optimizing a nonlinear function, subject to
one or more nonlinear constraints. This problem can be expressed mathematically as

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch08-9780123869425 — 2012/5/30 — 21:48 — Page 422 — #52

422 Chapter 8 . Optimization Methods

follows:

Minimize f= f(x) where x> = [x1 x2 . . . xn] (8.12)

subject to the constraints

hi(x)= 0 where i= 1, . . . , p (8.13)

Sometimes the minimization problem may have additional or alternative constraints that
are of the form

gj(x)≥ bj where j= 1, . . . , q (8.14)

To solve this problem we can use the Lagrange multiplier method. This method is not
a purely numerical method; it requires the user to apply calculus, and the resulting equa-
tions are solved numerically. For large problems this is too onerous on the user, and for
this reason it is not a practical method for solving this type of problem. However, it is
theoretically important in the development of other, more practical, methods.

If constraints of the form of (8.14) are present, they must be converted to the form of
(8.13) as follows. Let θ2

j = gj(x)−bj. If the constraint gj(x)≥ bj is violated, then θ2
j is nega-

tive and θj is imaginary. Thus, we have a requirement that for the constraints to be satisfied
θj must be real. Thus the constraint equation (8.14) becomes

θ2
j − gj(x)+bj = 0 where j= 1, . . . , q (8.15)

This constraint equation is of the same general form as the constraint in (8.13).
To solve (8.12) we begin by forming the expression

L(x,θ , λ)= f (x)+
p∑

i=1

λihi(x)+
q∑

j=1

λp+j[θ
2
j − gj(x)+bj]= 0 (8.16)

The function L is called the Lagrange function and the scalar quantities λi are called the
Lagrange multipliers. We now minimize this function using calculus; that is, we take the
following partial derivatives and set them to zero.

∂L/∂xk = 0, k = 1, . . . , n

∂L/∂λr = 0, r = 1, . . . , p+q

∂L/∂θs = 0, s= 1, . . . , q

We will find that when we set the differentials with respect to λr to zero, we force both
hi(x) (i= 1,2, . . . ,n) and θ2

j − gj(x)+bj (j = 1,2, . . . ,q) to be zero. Thus the constraints to
be satisfied. If these terms are zero then minimizing (8.16) is equivalent to minimizing
(8.12) subject to (8.13) and (8.14). If we are dealing with a quadratic function with linear
constraints then the resulting equations are all linear and relativ easy to solve.lye

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch08-9780123869425 — 2012/5/30 — 21:48 — Page 423 — #53

8.10 Constrained Nonlinear Optimization 423

Example 8.3
Consider the solution of a problem with a cubic function and quadratic constraints.

Minimize f = 2x+ 3y− x3
− 2y2

subject to

x+ 3y− x2/2≤ 5.5

5x+ 2y+ x2/10≤ 10

x ≥ 0, y ≥ 0

To use the Lagrange method we change the form of the constraints to be equality constraints,
as follows:

Minimize f = 2x+ 3y− x3
− 2y2

subject to

θ2
1 + x+ 3y− x2/2− 5.5= 0

θ2
2 + 5x+ 2y+ x2/10− 10= 0

x ≥ 0, y ≥ 0

Hence, forming L we have

L= 2x+ 3y− x3
− 2y2

+ λ1(θ
2
1 + x+ 3y− x2/2− 5.5)+ λ2(θ

2
2 + 5x+ 2y+ x2/10− 10)

Taking partial derivaties of L and setting them to zero gives

∂L/∂x = 2− 3x2
+ λ1(1− x)+ λ2(5+ x/5)= 0 (8.17)

∂L/∂y = 3− 4y+ 3λ1+ 2λ2 = 0 (8.18)

∂L/∂λ1 = θ
2
1 + x+ 3y− x2/2− 5.5= 0 (8.19)

∂L/∂λ2 = θ
2
2 + 5x+ 2y+ x2/10− 10= 0 (8.20)

∂L/∂θ1 = 2λ1θ1 = 0 (8.21)

∂L/∂θ2 = 2λ2θ2 = 0 (8.22)

If (8.21) and (8.22) are to be satisfied then there are four cases to consider:

Case 1: θ2
1 = θ

2
2 = 0. Then (8.17) through (8.20) become, with some rearrangement,

2− 3x2
+ λ1(1− x)+ λ2(5+ x/5)= 0

3− 4y+ 3λ1+ 2λ2 = 0

x+ 3y− x2/2− 5.5= 0

5x+ 2y+ x2/10− 10= 0

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch08-9780123869425 — 2012/5/30 — 21:48 — Page 424 — #54

424 Chapter 8 . Optimization Methods

Case 2: λ1 = θ
2
2 = 0. Then (8.17) through (8.20) become, with some rearrangement,

2− 3x2
+ λ2(5+ x/5)= 0

3− 4y+ 2λ2 = 0

θ2
1 + x+ 3y− x2/2− 5.5= 0

5x+ 2y+ x2/10− 10= 0

Case 3: θ2
1 = λ2 = 0. Then (8.17) through (8.20) become, with some rearrangement,

2− 3x2
+ λ1(1− x)= 0

3− 4y+ 3λ1 = 0

x+ 3y− x2/2− 5.5= 0

θ2
2 + 5x+ 2y+ x2/10− 10= 0

Case 4: λ1 = λ2 = 0. Then (8.17) through (8.20) become, with some rearrangement,

2− 3x2
= 0

3− 4y = 0

θ2
1 + x+ 3y− x2/2− 5.5= 0

θ2
2 + 5x+ 2y+ x2/10− 10= 0

The solution of these sets of nonlinear equations requires some iterative procedure. The

MATLAB function fminsearch finds the minimum of a scalar function of several variables, given

an initial estimate. The application of this function to this problem is illustrated for Case 1 in

the following MATLAB script. Since the right side of each equation is zero, when the solution is

found, the function

[2− 3x2
+ λ1(1− x)+ λ2(5+ x/5)]2

+ [3− 4y+ 3λ1+ 2λ2]2
+ ·· ·

[x+ 3y− x2/2− 5.5]2
+ [5x+ 2y+ x2/10− 10]2

should equal zero. The function fminsearch will choose values of x, y, λ1, and λ2 to minimize
this expression and bring it very close to zero. This is generally referred to as unconstrained non-
linear optimization. Thus we have converted a constrained optimization to an unconstrained
one.

% e3s820.m

g = @(X) sqrt((2-3*X(1).^2+X(3).*(1-X(1))+X(4).*(5+X(1)/5)).^2 ...

+(3-4*X(2)+3*X(3)+2*X(4)).^2+(X(1)+3*X(2)-X(1).^2/2-5.5).^2 ...

+(5*X(1)+2*X(2)+X(1).^2/10-10).^2);

X = fminsearch(g, [1 1 1 1]);

x = X(1); y = X(2); f = 2*x+3*y-x^3-2*y^2;

lambda_1 = X(3); lambda_2 = X(4);

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch08-9780123869425 — 2012/5/30 — 21:48 — Page 425 — #55

8.10 Constrained Nonlinear Optimization 425

disp('Case 1')

disp(['x = ' num2str(x) ', y = ' num2str(y) ', f = ' num2str(f)])

disp(['lambda_1 = ' num2str(lambda_1) ...

', lambda_2 = ' num2str(lambda_2)])

Case 1

x = 1.2941, y = 1.6811, f = -0.18773

lambda_1 = 0.82718, lambda_2 = 0.62128

Comparing the values of f computed for each case (see Table 8.2), it is clear that Case 1 gives
the minimum solution. The function is shown in . This graph shows the function,

Table 8.2 Possible Solutions of a Minimization Problem

Case θ2
1 θ2

1 λ1 λ2 x y f

1 0 0 0.8272 0.6213 1.2941 1.6811 −0.1877
2 1.5654 0 0 0.8674 1.4826 1.1837 0.4552
3 0 2.3236 1.2270 0 0.8526 1.6703 0.5166
4 2.7669 4.3508 0 0 0.8165 0.7500 2.2137

x

y

0 0.5 1 1.5 2
0

0.5

1

1.5

2

FIGURE 8.12 Function and constraints. The four solutions are also indicated.

 ysis is similar to Case 1. Executing this script gives
 This script can be extended to include the solution of Cases 2, 3 and 4. The method of anal-

 Figure 8.12

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch08-9780123869425 — 2012/5/30 — 21:48 — Page 426 — #56

426 Chapter 8 . Optimization Methods

the constraints, and the four possible solutions. The optimal solution is not necessarily at the
intersection of the constraint boundaries as it is in a linear system. All solutions are feasible
but only Case 1 is the global minimum. Case 2 and Case 3 are local minima at the constraint
boundary and Case 4 is a local maximum. It should be noted that often one or more solutions
will not be feasible; that is, they will not satisfy the constraints.

8.11 The Sequential Unconstrained Minimization
Technique

We now give a brief introduction to a standard method for constrained optimization. The
sequential unconstrained minimization technique (SUMT) for constrained optimization
converts the solution of a constrained optimization problem to the solution of a sequence
of unconstrained problems. This method was developed by Fiacco and McCormicks and
others in the 1960s. See Fiacco and McCormicks (1964, 1990).

Consider the following optimization problem:

Minimize f (x), subject to

gi(x)≥ 0 for i= 1,2, . . . ,p

hj(x)= 0 for j = 1,2, . . . ,s

where x is a component vector. By using barrier and penalty functions the requirements of
the constraints can be included with the function to be minimized so that the problem is
converted to the unconstrained problem:

Minimize f (x)− rk

p∑
i=1

loge(gi(x))+
1
rk

s∑
j=1

hj(x)
2

Notice the effect of the added terms. The first term imposes a barrier at zero on
the inequality constraints in that as the gi(x) approaches zero the function approaches
minus infinity, thus imposing a substantial penalty. Figure 8.13 illustrates this. The last
term encourages the satisfaction of the equality constraints hj(x)= 0 since the small-
est amount is added when all the constraints are zero; otherwise, a substantial penalty
is imposed. This means that this approach encourages the maintenance of the feasibil-
ity of the solution assuming we start with an initial solution that is within the feasible
region of the inequality constraints. These methods are sometimes called interior point
methods.

A sequence of problems are generated by starting with an arbitrarily large value for
r0 and then using rk+1 = rk/c where c > 1 and solving the resulting sequence of uncon-
strained optimization problems. The unconstrained minimization steps may of course
present formidable difficulties for some problems. A simple stopping criteria is to examine

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch08-9780123869425 — 2012/5/30 — 21:48 — Page 427 — #57

8.11 The Sequential Unconstrained Minimization Technique 427

0 0.5 1 1.5 2
−10

−8

−6

−4

−2

0

2

x
L

og
 (

x)

FIGURE 8.13 Graph of loge(x).

the difference between the value of f (x) between successive unconstrained optimizations.
If the difference is below a specified tolerance then stop the procedure.

There are various alternatives to this algorithm. For example, a reciprocal barrier func-
tion can be used instead of the preceding logarithmic function. The barrier term can be
replaced by a penalty function term of the form

p∑
i=1

max(0,gi(x))
2

This term will add a substantial penalty if gi(x) < 0; otherwise, no penalty is applied. This
method has the advantage that feasibility is not required and is called an exterior point
method. However, the resulting unconstrained problems may present additional problems
for the unconstrained minimization procedure. For more details on these methods see
Lesdon et al. (1996).

Although purpose-built software is available for this method, a very simple illustration
of its operation is given. The program shows some steps of the method for solving a con-
strained minimization problem; notice that care must be taken in the choice of the initial
r value and its reduction factor. To avoid the need for the derivative, the MATLAB function
fminsearch is used to solve the following unconstrained problem first using the interior
point method.

Minimize x2
1 + 100x2

2

subject to

4x1+ x2 ≥ 6 (8.23)

x1+ x2 = 3 (8.24)

x1,x2 ≥ 0 (8.25)

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch08-9780123869425 — 2012/5/30 — 21:48 — Page 428 — #58

428 Chapter 8 . Optimization Methods

% e3s810.m

r = 10; x0 = [5 5]

while r>0.01

fm = @(x) x(1).^2+100*x(2).^2-r*log(-6+4*x(1)+x(2)) ...

+1/r*(x(1)+x(2)-3).^2-r*log(x(1))-r*log(x(2));

x1 = fminsearch(fm,x0);

r = r/5;

x0 = x1

end

optval = x1(1).^2+100*x1(2).^2

x0 =

5 5

x0 =

3.6097 0.2261

x0 =

2.1946 0.1035

x0 =

2.2084 0.0553

x0 =

2.7463 0.0377

x0 =

2.9217 0.0317

optval =

8.6366

This shows convergence to the optimum solution (3,0), which satisfies the constraints.
Using the exterior point method to solve the same problem we have:

% e3s811.m

r = 10; x0 = [5 5]

while r>0.01

fm = @(x) x(1).^2+100*x(2).^2+1/r*min(0,(6+4*x(1)+x(2))).^2 ...

+1/r*(x(1)+x(2)-3).^2+1/r*min(0,x(1)).^2+1/r*min(0,x(2)).^2;

x1 = fminsearch(fm,x0);

r = r/5;

x0 = x1

end

optval = x1(1).^2+100*x1(2).^2

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch08-9780123869425 — 2012/5/30 — 21:48 — Page 429 — #59

Problems 429

This produces the results:

x0 =

5 5

x0 =

0.2725 0.0027

x0 =

0.9967 0.0100

x0 =

2.1276 0.0213

x0 =

2.7523 0.0275

x0 =

2.9240 0.0292

optval =

8.6352

Clearly the results are very similar.

8.12 Summary
In this chapter we have introduced a number of more advanced areas of numerical analy-
sis. The genetic algorithm and simulated annealing are still topics for active research and
development, and are mainly used to tackle difficult optimization problems. The congu-
gate gradient method is well established and widely used for problems that present a range
of difficulties. MATLAB functions have been provided to allow the reader to experiment
and explore the problems more deeply. However, it must be remembered that no opti-
mization technique is guaranteed to solve all optimization problems. The structure of the
algorithms is well reflected by the structure of the MATLAB functions. The MathWorks Opti-
mization Toolbox provides a useful selection of optimization functions, which may be used
in both education and research.

Problems
8.1. Use the function barnes to minimize z = 5x1+ 7x2+ 10x3 subject to

x1+ x2+ x3 ≥ 4, x1+ 2x2+ 4x3 ≥ 5, and x1,x2,x3 ≥ 0.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch08-9780123869425 — 2012/5/30 — 21:48 — Page 430 — #60

430 Chapter 8 . Optimization Methods

8.2. Maximize p= 4y1+ 5y2 subject to y1+ y2 ≤ 5, y1+ 2y2 ≤ 7, y1+ 4y2 ≤ 10, and
y1,y2 ≥ 0.

By introducing slack variables and subtracting one from each equality, write the
constraints as equalities. Then apply the function barnes to solve this problem.
Notice that the optimum value of p for this problem is equal to the optimum value
of z in Problem 8.1. Problem 8.2 is called the dual of Problem 8.1. This is an example
of an important theorem that the optima of the objective function of a problem and
its dual are equal.

8.3. Maximize z = 2u1− 4u2+ 4u3 subject to u1+ 2u2+u3 ≤ 30, u1+u2 = 10,
u1+u2+u3 ≥ 8, and u1,u2,u3 ≥ 0.
Hint: Remember to use slack variables to ensure that the main constraints are
equalities.

8.4. Use the function mincg, with tolerance 0.005, to minimize Rosenbrock’s function

f
(
x,y

)
= 100

(
x2
− y 2

)
+ (1− x)2

starting with the initial approximation x = 0.5, y = 0.5 and using a line-search
accuracy 10 times the machine precision in the MATLAB function fminsearch. To
obtain an impression of how this function varies, plot it in the range 0≤ x ≤ 2,
0≤ y ≤ 2.

8.5. Use the function mincg, with tolerance 0.00005, to minimize the five-variable
function

z = 0.5
(

x4
1 − 16x2

1 + 5x1

)
+ 0.5

(
x4

2 − 16x2
2 + 5x2

)
+ (x3− 1)2+ (x4− 1)2+ (x5− 1)2

Use x1 = 1, x2 = 2, x3 = 0, x4 = 2, and x5 = 3 for the starting values in mincg.
Experiment further with other starting values.

8.6. Use the function solvercg to solve the matrix equation Ax = b where

A=

5 4 1 1

4 5 1 1

1 1 4 2

1 1 2 4

 b=

1

2

3

4

Check the accuracy of the solution by finding the value of norm(b-Ax).

8.7. Maximize the function y = 1/{(x− 1)2+ 2} in the range x = 0 to 2 using the function
optga. Use different initial population sizes, mutation rates, and numbers of
generations. Notice that this is not a simple exercise since for each set of conditions
it is necessary to solve the problem several times to take account of the random
nature of the process. Given that the optimum value of the function is 0.5, plot the

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch08-9780123869425 — 2012/5/30 — 21:48 — Page 431 — #61

Problems 431

error in the optimum value of the function for each run under a particular set of
parameters. Then change one of the parameters and repeat the process.
Differences in the plots may or may not be discernible.

8.8. Plot the function z = x2
+ y2 in the range 0≤ x ≤ 2 and 0≤ y ≤ 2. The genetic

algorithm given in Section 8.6 may be applied to maximize functions in more than
one variable. Use the MATLAB function optga to determine the maximum value of
the preceding function. In order to do this you must modify the fitness function
so that the first half of the chromosome corresponds to values of x and the second
half to values of y and these chromosomes must map to the values of x and y. For
example, if an 8-bit chromosome 10010111 is split into two parts, 1001 and 0111,
it will convert to x = 9 and y = 7.

8.9. Use the function golden, given in Section 8.3, to minimize the single-variable
function y = e−x cos(3x) for x in the range 0 to 2. Use a tolerance of 0.00001. You
should check your result using the MATLAB function fminsearch to minimize the
same function in the same range. As a further confirmation you might plot the
function in the range 0 to 4 using the MATLAB function fplot.

8.10. Use the simulated annealing function asaq (with the same values of parameters
used in the call of the function in Section 8.9) to minimize the two-variable
function f where

f = (x1− 1)2+ 4(x2+ 3)2

Compare your result with the exact answer, which is clearly x1 = 1 and x2 =

function has only one minimum in the region considered. As a more demanding
test, use the same call as used for the preceding function to minimize the function f
where

f = 0.5
(

x4
1 − 16x2

1 + 5x1

)
+ 0.5

(
x4

2 − 16x2
2 + 5x2

)
− 10cos {4(x1+ 2.9035)}cos {4(x2+ 2.9035)}

The global optimum for this problem is x1 =−2.9035 and x2 =−2.9035. Try several
runs of the function asaq for this problem. All runs may not provide the global
optimum since this problem has many local optima.

8.11. A method for solving a system of nonlinear equations is to re-express them as an
optimization problem. Consider the system of equations

2x− sin((x+ y)/2)= 0

2y− cos((x− y)/2)= 0

These can be rewritten as

minimize z = (2x− sin((x+ y)/2))2+ (2y− cos((x− y)/2))2

3. This−

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch08-9780123869425 — 2012/5/30 — 21:48 — Page 432 — #62

432 Chapter 8 . Optimization Methods

Use the MATLAB function minscg to minimize this function using the starting point
x = 10 and y =−10.

8.12. Write a MATLAB script that provides three-dimensional plots for the function
z = f (x,y) defined as follows:

z = f (x,y)= (1− x)2e−p
−pe−p

− e(−(x+1)2−y2)

where p is defined by

p= x2
+ y2

for x and y in the range x =−4 : 0.1 : 4 and y =−4 : 0.1 : 4. The script should use the
MATLAB surf and contour functions to provide separate three-dimensional and
contour plots. Use the MATLAB function ginput to select and assign to an
appropriate matrix three points that appear to be optimal on the contour plot. Use
the function z = f (x,y) defined earlier to find the values of z for these points. Then
find the maximum and minimum of these z values using the MATLAB functions max
and min. Finally, approximate the global minimum and maximum of the function.

An alternative method of finding the minimum is to use the MATLAB function
fminsearch in the form x = fminsearch(funxy,xv), where funxy is an anonymous
function or user-defined function given by the user and xv = [-4 4] is a vector of
initial approximations to the location of the minimum. Experiment with different
intial approximations to see if your results vary.

8.13. Solve the minimization problem described in Problem 8.12 using the continuous
genetic algorithm. Use the MATLAB function contgaf.

8.14. Write a MATLAB script to minimize f (x)= x4
1+ x2

2+ x1 subject to 4x3
1+ x2 > 6,

x1+ x2 = 3, and x1,x2 > 0. Use the sequential unconstrained minimization
technique with a logarithmic barrier function and an initial approximation vector
of x = [5, 5]. Use an initial value for the parameter r0 of 10, a reduction parameter
c = 5, and rk+1 = rk/c. Continue iterations while rk is greater than 0.0001.

8.15. Write a MATLAB script to solve the constrained optimization problem described in
Problem 8.14. However, use the penalty function of the form [min(0, gi(x))]2 instead
of the logarithmic barrier function, where the gi(x) are greater than or equal to the
constraints. Use the same initial starting point and values for r0 and c. Compare the
solution you find with this method to that achieved with Problem 8.14.

8.16. Solve the Rosenbrooks two-variable optimization problem:

Minimize f (x)= 100(x2− x2
1)

2
+ (1− x1)

2

using the MATLAB function asaq with initial approximation [−1.2 1]. With quenching
factor 0.9, the upper and lower bounds for the variables given by−10 and 10,
respectively, initial temperature value of 100 and the maximum number of main
iterations equal to 800. The solution to this problem is [1 1].

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch09-9780123869425 — 2012/5/30 — 20:05 — Page 433 — #1

9
Applications of the Symbolic

Toolbox

The Symbolic Toolbox provides an extensive list of functions for the symbolic manipu-
lation of symbolic expressions and equations. The use of symbolic functions and their
analytic manipulation can often play a useful role in association with a numerical algo-
rithm. In such algorithms the combination of the standard numerical functions with the
facilities of the Symbolic Toolbox can be particularly beneficial, relieving the user of the
tedious and error-prone task of symbolic manipulation. This allows the designer of the
algorithm to provide a more user-friendly and complete function.

Originally the MATLAB Symbolic Toolbox used the Maplesoft symbolic software to carry
out symbolic operations and pass the results to MATLAB. However, since late 2008 MATLAB

has used Mupad for its symbolic engine. This change has caused minor changes in the way
results are presented, but the results are generally equivalent.

9.1 Introduction to the Symbolic Toolbox
Since we are using the Symbolic Toolbox in the field of numerical analysis we begin by
giving some examples of the beneficial application of this toolbox. It provides

1. The symbolic first derivative of a given single-variable nonlinear function, which is
required by Newton’s method for the solution of single-variable nonlinear equations
(see Chapter 3)

2. The Jacobian for a system of nonlinear simultaneous equations (see Chapter 3)
3. The symbolic gradient vector of a given nonlinear function, which is required for the

conjugate gradient method for minimizing a nonlinear function (see Chapter 8)

An important feature of the Symbolic Toolbox is that it allows an extra dimension of exper-
imentation. For example, a user can test a given numerical algorithm by solving a test
problem symbolically, providing it has a solution in the closed form, and compare this
exact solution with a numerical solution. In addition, the study of the accuracy of compu-
tations can be enhanced using the Symbolic Toolbox variable-precision arithmetic feature.
This feature allows the user to perform certain computations to an unlimited precision.

In Sections 9.2 through 9.14 we provide an introduction to some of the Symbolic Tool-
box features but it is not our intention to provide details of all the features. In Section 9.15
we describe applications of the Symbolic Toolbox to specific numerical algorithms.

Numerical Methods Using MATLAB
®. DOI: 10.1016/B978-0-12-386942-5.00009-6

© 2012 Elsevier Inc. All rights reserved.
433

http://dx.doi.org/10.1016/B978-0-12-386942-5.00009-6

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch09-9780123869425 — 2012/5/30 — 20:05 — Page 434 — #2

434 Chapter 9 . Applications of the Symbolic Toolbox

9.2 Symbolic Variables and Expressions
The first key point to note is that symbolic variables and expressions are different from the
standard variables and expressions of MATLAB, and we must distinguish clearly between
them. Symbolic variables and symbolic expressions do not have to have numerical values
but rather define a structural relationship between symbolic variables, that is, an algebraic
expresssion.

To define any variable as a symbolic variable the sym function must be used as follows:

>> x = sym('x')

x =

x

>> d1 = sym('d1')

d1 =

d1

Alternatively, we can use the statement syms to define any number of symbolic variables.
Thus

>> syms a b c d3

provides four symbolic variables a, b, c, and d3. Note that there is no output to the screen.
This is a useful shortcut for the definition of variables and we have used this approach in
this text. To check which variables have been declared as symbolic we can use the standard
whos command. Thus if we use this command after the preceding syms declaration, we
obtain

>> whos

Name Size Bytes Class Attributes

a 1x1 60 sym

ans 1x19 38 char

b 1x1 60 sym

c 1x1 60 sym

d1 1x1 60 sym

d3 1x1 60 sym

x 1x1 60 sym

Once variables have been defined as symbolic, expressions can be written using them
directly in MATLAB and they will be treated as symbolic expressions. For example, once x

has been defined as a symbolic variable, the statement

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch09-9780123869425 — 2012/5/30 — 20:05 — Page 435 — #3

9.2 Symbolic Variables and Expressions 435

>> syms x

>> 1/(1+x)

produces the symbolic expression

ans =

1/(x + 1)

To set up a symbolic matrix we first define any symbolic variables involved in the matrix.
Then we enter the statement that defines the matrix in terms of these symbolic variables
in the usual manner. On execution the matrix will be displayed as follows:

>> syms x y

>> d = [x+1 x^2 x-y;1/x 3*y/x 1/(1+x);2-x x/4 3/2]

d =

[x + 1, x^2, x - y]

[1/x, (3*y)/x, 1/(x + 1)]

[2 - x, x/4, 3/2]

Note that d is automatically made symbolic by the assignment of a symb lic expression.
We can address individual elements or specific rows and columns as follows:

>> d(2,2)

ans =

(3*y)/x

>> c = d(2,:)

c =

[1/x, (3*y)/x, 1/(x + 1)]

We now consider the manipulation of a symbolic expression. First we set up a symbolic
expression as follows:

>> e = (1+x)^4/(1+x^2)+4/(1+x^2)

e =

(x + 1)^4/(x^2 + 1) + 4/(x^2 + 1)

To see more clearly what this expression represents we can use the function pretty to get
a more conventional layout of the function:

o

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch09-9780123869425 — 2012/5/30 — 20:05 — Page 436 — #4

436 Chapter 9 . Applications of the Symbolic Toolbox

>> pretty(e)

4

(x + 1) 4

-------- + ------

2 2

x + 1 x + 1

Not very pretty! We can simplify the symbolic expression e using the function simplify:

>> simplify(e)

ans =

x^2 + 4*x + 5

We can expand expressions using expand:

>> p = expand((1+x)^4)

p =

x^4 + 4*x^3 + 6*x^2 + 4*x + 1

Note the layout of this and other expressions may vary slightly from one computer plat-
form to another. The expression for p, in turn, can be rearranged into a nested form using
the function horner:

>> horner(p)

ans =

x*(x*(x*(x + 4) + 6) + 4) + 1

We may factorize expressions using the function factor. Assuming a, b, and c have
been declared as symbolic variables, then

>> syms a b c

>> factor(a^3+b^3+c^3-3*a*b*c)

ans =

(a + b + c)*(a^2 - a*b - a*c + b^2 - b*c + c^2)

When dealing with complicated expressions, it is useful to simplify the expression as
far as possible and as soon as possible. However, it is not always immediately obvious
which route should be taken in the simplification process. The function simple attempts

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch09-9780123869425 — 2012/5/30 — 20:05 — Page 437 — #5

9.2 Symbolic Variables and Expressions 437

to simplify the expression using a variety of methods and displays the various results to
inform the user. Some of the methods used by the function are not available as separate
functions, for example, radsimp and combine(trig). The following illustrates the use of
the function simple:

>> syms x; y = sqrt(cos(x)+i*sin(x));

>> simple(y)

simplify:

(cos(x) + sin(x)*i)^(1/2)

radsimp:

(cos(x) + sin(x)*i)^(1/2)

simplify(100):

exp(x*i)^(1/2)

.................

.................

rewrite(exp):

exp(x*i)^(1/2)

rewrite(sincos):

(cos(x) + sin(x)*i)^(1/2)

rewrite(sinhcosh):

(cosh(x*i) + sinh(x*i))^(1/2)

rewrite(tan):

((tan(x/2)*2*i)/(tan(x/2)^2 + 1)

- (tan(x/2)^2 - 1)/(tan(x/2)^2 + 1))^(1/2)

mwcos2sin:

(sin(x)*i - 2*sin(x/2)^2 + 1)^(1/2)

collect(x):

(cos(x) + sin(x)*i)^(1/2)

ans =

exp(x*i)^(1/2)

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch09-9780123869425 — 2012/5/30 — 20:05 — Page 438 — #6

438 Chapter 9 . Applications of the Symbolic Toolbox

In this example the symbolic engine has tried no fewer than fifteen methods to simplify
the original expression (not all displayed here)—many to little effect. However, the mul-
tiplicity of methods provided allows problems of differing algebraic and transcendental
functions to be simplified. The final answer is the shortest, and we would judge it the most
acceptable. A compact version of this result can be determined using

>> [r,how] = simple(y)

r =

exp(x*i)^(1/2)

how =

simplify(100)

When manipulating algebraic, trigonometric, and other expressions, it is important to
be able to substitute an expression or constant for any given variable. For example,

>> syms u v w

>> fmv = pi*v*w/(u+v+w)

fmv =

(pi*v*w)/(u + v + w)

Now we substitute for various variables in this expression. The following statement
substitutes the symbolic expression 2*v for the variable u:

>> subs(fmv,u,2*v)

ans =

(pi*v*w)/(3*v + w)

This next statement substitutes the symbolic constant 1 for the variable v in the previous
result held in ans:

>> subs(ans,v,1)

ans =

(pi*w)/(w + 3)

Finally, we substitute the symbolic constant 1 for w to give

>> subs(ans,w,1)

ans =

0.7854

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch09-9780123869425 — 2012/5/30 — 20:05 — Page 439 — #7

9.3 Variable-Precision Arithmetic in Symbolic Calculations 439

As a further example of the use of the subs function, consider the statements

>> syms y

>> f = 8019+20412*y+22842*y^2+14688*y^3+5940*y^4 ...

+1548*y^5+254*y^6+24*y^7+y^8;

Now to substitute x-3 for y we use

>> subs(f,y,x-3)

ans =

20412*x + 22842*(x - 3)^2 + 14688*(x - 3)^3 + 5940*(x - 3)^4

+ 1548*(x - 3)^5 + 254*(x - 3)^6 + 24*(x - 3)^7 + (x - 3)^8 - 53217

Using the collect function to collect terms having the same power of x, we obtain a major
simplification as follows:

>> collect(ans)

ans =

x^8 + 2*x^6

The process of rearranging and simplifying algebraic and transcendental expressions is
difficult and the Symbolic Toolbox can be both powerful and frustrating. Powerful because,
as we have shown, it is capable of simplifying complex expressions; frustrating because it
sometimes fails on relatively simple problems.

Now that we have seen how to manipulate symbolic expressions, we may require a
graphical representation. A simple approach to plotting symbolic functions is to use the
MATLAB function ezplot, although it must be emphasized that this is restricted to single-
variable functions. The following function provides the plot of the normal curve between
the values−5 and 5, as shown in Figure 9.1.

>> syms x

>> ezplot(exp(-x*x/2),-5,5); grid

The alternative to using ezplot is to substitute numerical values into the symbolic expres-
sion using the subs function and then use conventional plotting functions.

9.3 Variable-Precision Arithmetic in Symbolic
Calculations

In symbolic calculations involving numerical values, the function vpa may be used to
obtain any number of decimal places. It should be noted that the result of using this func-
tion is a symbolic constant, not a numerical value. Thus to provide

√
6 to 100 places we

write vpa(sqrt(6),100). The accuracy here is not restricted to 16 decimal places as in

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch09-9780123869425 — 2012/5/30 — 20:05 — Page 440 — #8

440 Chapter 9 . Applications of the Symbolic Toolbox

−5 0 5

0

1

x

1/exp(x2/2)

0.8

0.6

0.4

0.2

FIGURE 9.1 A plot of the normal curve using the function ezplot.

ordinary arithmetic calculations. A nice illustration of this feature is given in the follow-
ing where we provide an implementation of the famous algorithm of the Borweins, which
amazingly quadruples the number of accurate decimal places of π at each iteration! We
include this script for illustration only; MATLAB can give π to as many digits as required by
writing, for example, vpa(pi,100).

% Script e3s901.m Borwein iteration for pi

n = input('enter n')

y0 = sqrt(2)-1; a0 = 6-4*sqrt(2);

np = 4;

for k = 0:n

yv = (1-y0^4)^0.25; y1 = (1-yv)/(1+yv);

a1 = a0*(1+y1)^4-2.0^(2*k+3)*y1*(1+y1+y1^2);

rpval = a1; pval = vpa(1/rpval,np)

a0 = a1; y0 = y1; np = 4*np;

end

The results of three iterations follow:

enter n 3

n =

3

pval =

3.142

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch09-9780123869425 — 2012/5/30 — 20:05 — Page 441 — #9

9.4 Series Expansion and Summation 441

pval =

3.141592653589793

pval =

3.141592653589793238462643383279502884197169399375105820974944592

pval =

3.141592653589793238462643383279502884197169399375105820974944592

30781640628620899862803482534211706798214808651328230664709384460

95505822317253594081284811174502841027019385211055596446229489549

30381964428810975665933446128475648233786783165271201909145649

Theoretically, the function vpa can be utilized to give results to any number of decimal
places. An excellent introduction to the computation of π is given by Bailey (1988).

9.4 Series Expansion and Summation
In this section we consider both the development of series approximations for functions
and the summation of series.

We begin by showing how a symbolic function can be expanded in the form of a Taylor
series using the MATLAB function taylor(f,n). This provides the (n− 1)th-degree polyno-
mial approximation for the symbolically defined function f. If the taylor function has
only one parameter, then it provides the fifth-degree polynomial approximation for that
function.

Consider the following examples:

>> syms x

>> taylor(cos(exp(x)),4)

ans =

- (cos(1)*x^3)/2 + (- cos(1)/2 - sin(1)/2)*x^2 - sin(1)*x + cos(1)

>> s = taylor(exp(x),8)

s =

x^7/5040 + x^6/720 + x^5/120 + x^4/24 + x^3/6 + x^2/2 + x + 1

The series expansion for the exponential function can be summed using the function
symsum with x = 0.1. To use this function we must know the form of the general term. In
this case the series definition is

e0.1
=

∞∑
r=1

0.1r−1

(r− 1) !
or

∞∑
r=1

0.1r−1

0(r)

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch09-9780123869425 — 2012/5/30 — 20:05 — Page 442 — #10

442 Chapter 9 . Applications of the Symbolic Toolbox

Thus, to sum the first eight terms we have

>> syms r

>> symsum((0.1)^(r-1)/gamma(r),1,8)

ans =

55700614271/50400000000

This can then be evaluated using the function double:

>> double(ans)

ans =

1.1052

In this example a simple alternative is to use the function subs to replace x by 0.1 in the
symbolic function represented by s, and then use double to evaluate it, as follows:

>> double(subs(s,x,0.1))

ans =

1.1052

This gives a good approximation since we can see that

>> exp(0.1)

ans =

1.1052

The function symsum can be used to perform many different summations using different
combinations of parameters. The following examples illustrate the different cases. To sum
the series

S= 1+ 22
+ 32
+ 42
+ ·· ·+n2 (9.1)

we proceed as follows:

>> syms r n

>> symsum(r*r,1,n)

ans =

(n*(2*n + 1)*(n + 1))/6

Another example is to sum the series

S= 1+ 23
+ 33
+ 43
+ ·· ·+n3 (9.2)

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch09-9780123869425 — 2012/5/30 — 20:05 — Page 443 — #11

9.4 Series Expansion and Summation 443

Here we use

>> symsum(r^3,1,n)

ans =

(n^2*(n + 1)^2)/4

Infinity can be used as an upper limit. As an example of this, consider the following infinite
sum:

S= 1+
1

22
+

1

32
+

1

42
+ ·· ·

1

r2
+ ·· ·

Summing an infinity of terms, we have

>> symsum(1/r^2,1,inf)

ans =

pi^2/6

This is an interesting series and is a particular case of the Riemann zeta function (imple-
mented in MATLAB by zeta(k)), which gives the sum of the following series:

ζ(k)= 1+
1

2k
+

1

3k
+

1

4k
+ ·· ·+

1

rk
+ ·· · (9.3)

For example:

>> zeta(2)

ans =

1.6449

>> zeta(3)

ans =

1.2021

A further interesting example is a summation involving the gamma function (0), where
0(r)= 1.2.3 . . . (r− 2)(r− 1)= (r− 1)! for integer values of r. This function is implemented
in MATLAB by gamma(r). For example, to sum the series

S= 1+
1
1
+

1
2!
+

1
3!
+ ·· ·+

1
r!
+ ·· ·

to infinity, we use the MATLAB statement

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch09-9780123869425 — 2012/5/30 — 20:05 — Page 444 — #12

444 Chapter 9 . Applications of the Symbolic Toolbox

>> symsum(1/gamma(r),1,inf)

ans =

exp(1)

>> vpa(ans,100)

ans =

2.71828182845904523536028747135266249775724709369995957496696762

7724076630353547594571382178525166427

Notice that the use of the vpa function leads to an interesting evaluation of e to a large
number of decimal places.

A further example is given by

S= 1+
1
1!
+

1

(2!)2
+

1

(3!)2
+

1

(4!)2
+ ·· ·

In MATLAB, this becomes

>> symsum(1/gamma(r)^2,1,inf)

ans =

sum(1/gamma(r)^2, r = 1..Inf)

This is an example of a case where symsum has not worked.

9.5 Manipulation of Symbolic Matrices
Some of the MATLAB functions, such as eig, that can be applied to numerical matrices
can also be applied directly to symbolic matrices. However, these features must be used
with care for two reasons. First, manipulating large symbolic matrices can be a very
slow process. Second, the symbolic results derived from such operations can be of such
algebraic complexity that it is difficult or almost impossible to obtain insight into the
meaning of the equation.

We will begin by finding the eigenvalues of a simple 4× 4 matrix expressed in terms of
two symbolic variables.

>> syms a b

>> Sm = [a b 0 0;b a b 0;0 b a b;0 0 b a]

Sm =

[a, b, 0, 0]

[b, a, b, 0]

[0, b, a, b]

[0, 0, b, a]

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch09-9780123869425 — 2012/5/30 — 20:05 — Page 445 — #13

9.5 Manipulation of Symbolic Matrices 445

>> eig(Sm)

ans =

a - b/2 - (5^(1/2)*b)/2

a - b/2 + (5^(1/2)*b)/2

a + b/2 - (5^(1/2)*b)/2

a + b/2 + (5^(1/2)*b)/2

In this problem the expressions for the eigenvalues are quite simple. In contrast, we will
now consider an example that appears to be equally simple but develops into a problem
with eigenvalues that are much more complicated.

>> syms A p

>> A = [1 2 3;4 5 6;5 7 9+p]

A =

[1, 2, 3]

[4, 5, 6]

[5, 7, p + 9]

Inspection of this matrix reveals that if p= 0, the matrix is singular. Evaluating the
determinant of the matrix, we have

>> det(A)

ans =

-3*p

From this simple result it can immediately be seen that as p tends to zero, the determinant
of the matrix tends to zero, indicating that the matrix is singular. Inverting the matrix gives

>> B = inv(A)

B =

[-(5*p + 3)/(3*p), (2*p - 3)/(3*p), 1/p]

[(2*(2*p + 3))/(3*p), -(p - 6)/(3*p), -2/p]

[-1/p, -1/p, 1/p]

This is much more difficult to interpret, although it can be seen that as p tends to zero,
each element of the inverse matrix tends to infinity; that is, the inverse does not exist.
Note that every element of this inverse matrix is a function of p whereas only one ele-
ment of the original matrix is a function of p. Finally, we can compute the eigenvalues
of the original matrix using the statement v = eig(A). The value of the symbolic object
v is not shown here because it is so long and complicated. We can find out how many

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch09-9780123869425 — 2012/5/30 — 20:05 — Page 446 — #14

446 Chapter 9 . Applications of the Symbolic Toolbox

characters (including spaces) are required to express the three eigenvalues symbolically
as follows:

>>n = length(char(v))

n =

1720

This output is very difficult to read, let alone understand. Using the pretty print facility
(pretty) improves the situation, but the ouput still requires 106 character spaces per line—
far more than can be displayed on this page.

The following scripts compute the eigenvalues both symbolically and numerically. In
each case the parameter p is varied from 0 to 2 in steps of 0.1. However, only the eigenval-
ues that correspond to p= 0.9 and 1.9 are displayed. The following script determines the
eigenvalues symbolically, and then the values of p are substituted into the symbolic eigen-
value expressions using the function subs; the function double is then used to provide the
numerical results.

% e3s902.m

disp('Script 1; Symbolic - numerical solution')

c = 1; v = zeros(3,21);

tic

syms a p u w

a = [1 2 3;4 5 6;5 7 9+p];

w = eig(a); u = [];

for s = 0:0.1:2

u = [u,subs(w,p,s)];

end

v = sort(real(double(u)));

toc

v(:,[10 20])

Running this script gives

Script 1; Symbolic - numerical solution

Elapsed time is 2.108940 seconds.

ans =

-0.4255 -0.4384

0.3984 0.7854

15.9270 16.5530

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch09-9780123869425 — 2012/5/30 — 20:05 — Page 447 — #15

9.5 Manipulation of Symbolic Matrices 447

An alternative approach is to find the eigenvalues of the same matrix by substituting
numerical values of p into the numerical matrix and thus determine the eigenvalues.
A script to carry out this process follows. Again, only the eigenvalues for p= 0.9 and 1.9
are displayed.

% e3s903

disp('Script 2: Numerical solution')

c = 1; v = zeros(3,21);

tic

for p = 0:.1:2

a = [1 2 3;4 5 6;5 7 9+p];

v(:,c) = sort(eig(a));

c = c+1;

end

toc

v(:,[10 20])

Running this script gives

Script 2: Numerical solution

Elapsed time is 0.000934 seconds.

ans =

-0.4255 -0.4384

0.3984 0.7854

15.9270 16.5530

As expected, the methods give identical results and show that the eigenvalues are real. Note
that the symbolic approach is much slower.

We conclude this section with an example that illustrates the advantage of the symbolic
approach for certain problems. We wish to find the eigenvalues of a matrix that can be gen-
erated using the MATLAB statement gallery(5). We will begin by finding the eigenvalues of
this matrix in a nonsymbolic way.

>> B = gallery(5)

B =

-9 11 -21 63 -252

70 -69 141 -421 1684

-575 575 -1149 3451 -13801

3891 -3891 7782 -23345 93365

1024 -1024 2048 -6144 24572

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch09-9780123869425 — 2012/5/30 — 20:05 — Page 448 — #16

448 Chapter 9 . Applications of the Symbolic Toolbox

>> format long e

>> eig(B)

ans =

-4.052036755439267e-002

-1.177933343414123e-002 +3.828611372186529e-002i

-1.177933343414123e-002 -3.828611372186529e-002i

3.203951721060507e-002 +2.281159217067240e-002i

3.203951721060507e-002 -2.281159217067240e-002i

The eigenvalues appear to be small with one real value and the remaining values forming
complex conjugate pairs. However, using the symbolic approach we have

>> A = sym(gallery(5))

A =

[-9, 11, -21, 63, -252]

[70, -69, 141, -421, 1684]

[-575, 575, -1149, 3451, -13801]

[3891, -3891, 7782, -23345, 93365]

[1024, -1024, 2048, -6144, 24572]

>> eig(A)

ans =

0

0

0

0

0

How do we verify which of these two solutions is correct? If we rearrange the eigenvalue
problem into the form given by (2.38), that is,

(A− λI)x= 0

then the eigenvalues are the roots of |A− λI| = 0. We can find these roots symbolically in
MATLAB as follows:

>> syms lambda

>> D = A-lambda*sym(eye(5));

>> det(D)

ans =

-lambda^5

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch09-9780123869425 — 2012/5/30 — 20:05 — Page 449 — #17

9.6 Symbolic Methods for the Solution of Equations 449

We have shown that |A− λI| = −λ5 and hence the eigenvalues are the roots of−λ5
= 0, that

is, zero. Here the Symbolic Toolbox has revealed the true solution.

9.6 Symbolic Methods for the Solution of Equations
The function available in MATLAB to solve symbolic equations is solve. This function is
most useful for solving polynomials since it provides expressions for all roots. To use solve

we must set up the expression for the equation we wish to solve in terms of a symbolic
variable. For example,

>> syms x

>> f = x^3-7/2*x^2-17/2*x+5

f =

x^3 - (7*x^2)/2 - (17*x)/2 + 5

>> solve(f)

ans =

5

-2

1/2

The following example illustrates how to solve a system of two equations in two variables.
In this example we have chosen to enter the two equations directly in the function by
placing them in quotes.

>> syms x y

>> [x y] = solve('x^2+y^2=a','x^2-y^2=b')

This gives four solutions:

x =

(2^(1/2)*(a + b)^(1/2))/2

-(2^(1/2)*(a + b)^(1/2))/2

(2^(1/2)*(a + b)^(1/2))/2

-(2^(1/2)*(a + b)^(1/2))/2

y =

(2^(1/2)*(a - b)^(1/2))/2

(2^(1/2)*(a - b)^(1/2))/2

-(2^(1/2)*(a - b)^(1/2))/2

-(2^(1/2)*(a - b)^(1/2))/2

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch09-9780123869425 — 2012/5/30 — 20:05 — Page 450 — #18

450 Chapter 9 . Applications of the Symbolic Toolbox

A simple check of this solution may be obtained by inserting these solutions back in the
original equations:

>> x.^2+y.^2, x.^2-y.^2

ans =

a

a

a

a

ans =

b

b

b

b

Hence all four solutions satisfy the equations simultaneously.
It should be noted that if solve fails to obtain a symbolic solution to a given equa-

tion or set of equations, it will attempt to use the standard numerical processes where
appropriate. In practice it is rarely possible to determine the symbolic solutions of general
single-variable or multivariable nonlinear equations.

9.7 Special Functions
The MATLAB Symbolic Toolbox provides the user with access to a range of over 50 special
functions and polynomials that can be used symbolically. These functions are not m-files
and the standard MATLAB help command cannot be used to gain information about them.
We can obtain a list of these functions using the command help mfunlist. The function
mfun allows these functions to be evaluated numerically.

One of these functions is the Fresnel sine integral. In mfunlist the function FresnelS

defines the Fresnel sine integral of x. To evaluate it for x = 4.2 we enter

>> x = 4.2; y = mfun('FresnelS',x)

y =

0.5632

Note that the first and last letters in FresnelS must be capitalized. We plot this function
(Figure 9.2) using the following script:

>> x=1:.01:3; y = mfun('FresnelS',x);

>> plot(x,y)

>> xlabel('x'), ylabel('Fresnel sine integral')

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch09-9780123869425 — 2012/5/30 — 20:05 — Page 451 — #19

9.7 Special Functions 451

1 1.5 2 2.5 3
0.3

0.4

0.5

0.6

0.7

x
Fr

es
ne

l s
in

e
in

te
gr

al
FIGURE 9.2 Plot of the Fresnel sine integral.

Another interesting function available in the mfunlist is the logarithmic integral, Li.
For example,

>> y = round(mfun('Li',[1000 10000 100000]))

y =

178 1246 9630

The logarithmic integral can be used to predict the number of primes below a particular
value, and the prediction becomes more accurate as the number of primes increases. To
find the number of primes below 1000, 10000, and 100000 we have

>> p1 = length(primes(1000)); p2 = length(primes(10000));

>> p3 = length(primes(100000)); p = [p1 p2 p3]

p =

168 1229 9592

Taking the ratio between the values of the logarithmic integral y and the number of primes
p, we have

>> p./y

ans =

0.9438 0.9864 0.9961

Notice that the ratio of the value of the logarithmic integral and the number of primes less
N tends to 1 as N tends to infinity.

Two important functions are the Dirac delta and Heaviside functions. These functions
are not part of the mfunlist, and information about them can be obtained using the
command help in the usual way.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch09-9780123869425 — 2012/5/30 — 20:05 — Page 452 — #20

452 Chapter 9 . Applications of the Symbolic Toolbox

The Dirac delta, or impulse, function δ(x), is defined as follows:

δ (x− x0)= 0 x 6= x0 (9.4)

∞∫
−∞

f (x)δ (x− x0)dx = f (x0) (9.5)

If f (x)= 1, then

∞∫
−∞

δ (x− x0)dx = 1 (9.6)

By (9.4), the Dirac delta function only exists at x = x0. Furthermore, from (9.6), the area
under the Dirac delta function is unity. This function is implemented in MATLAB by
dirac(x).

The Heaviside, or unit step, function is defined as follows:

u(x− x0)=

1, for x− x0 > 0

0.5, for x− x0 = 0

0, for x− x0 < 0

(9.7)

This function is implemented in MATLAB by heaviside(x). Thus

heaviside(2)

ans =

1

In Sections 9.8, 9.10, and 9.14, we illustrate some of the properties of these functions.

9.8 Symbolic Differentiation
Essentially any function can be differentiated symbolically, but the process is not always
easy. For example, the following function given by Swift (1977) is tedious to differentiate:

f (x)= sin−1

(
ex tanx√

x2+ 4

)

Differentiating this function using the MATLAB function diff gives

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch09-9780123869425 — 2012/5/30 — 20:05 — Page 453 — #21

9.8 Symbolic Differentiation 453

>> syms x

>> diff(asin(exp(x)*tan(x)/sqrt(x^2+4)))

ans =

((exp(x)*(tan(x)^2 + 1))/(x^2 + 4)^(1/2) +

(exp(x)*tan(x))/(x^2 + 4)^(1/2) -

(x*exp(x)*tan(x))/(x^2 + 4)^(3/2))/

(1 - (exp(2*x)*tan(x)^2)/(x^2 + 4))^(1/2)

>> pretty(ans)

2

exp(x) (tan(x) + 1) exp(x) tan(x) x exp(x) tan(x)

-------------------- + ------------- - ---------------

2 1/2 2 1/2 2 3/2

(x + 4) (x + 4) (x + 4)

--

/ 2 \1/2

| exp(2 x) tan(x) |

| 1 - ---------------- |

| 2 |

\ x + 4 /

We now explain specifically how this is achieved. Differentiation is performed on a
specified function with respect to a specific variable. When using the Symbolic Toolbox,
the variables or variable of the expression must be defined as symbolic. Once this is done,
the expression will be treated as symbolic and differentiation may be performed. Consider
the following example:

>> syms z k

>> f = k*cos(z^4);

>> diff(f,z)

ans =

-4*k*z^3*sin(z^4)

Note that the differentiation is performed with respect to z, the variable indicated in the
second parameter. Differentiation may be performed with respect to k as follows:

>> diff(f,k)

ans =

cos(z^4)

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch09-9780123869425 — 2012/5/30 — 20:05 — Page 454 — #22

454 Chapter 9 . Applications of the Symbolic Toolbox

If the variable with respect to which the differentiation is being performed is not indicated,
MATLAB chooses the variable name alphabetically closest to x.

Higher-order differentiation can also be performed by including an additional integer
parameter that indicates the order of the differentiation as follows:

>> syms n

>> diff(k*z^n,4)

ans =

k*n*z^(n - 4)*(n - 1)*(n - 2)*(n - 3)

The following example illustrates how we can obtain a standard numerical value from our
symbolic differentiation:

>> syms x

>> f = x^2*cos(x);

>> df = diff(f)

df =

2*x*cos(x) - x^2*sin(x)

We can now substitute a numerical value for x:

>> subs(df,x,0.5)

ans =

0.7577

Finally, we consider the symbolic differentiation of the Heaviside, or unit step, function:

diff(heaviside(x))

ans =

dirac(x)

This is as expected since the differention of the Heaviside function is zero for all x except
when x = 0.

9.9 Symbolic Partial Differentiation
Partial derivatives of any multivariable function can be found by differentiating with
respect to each variable in turn. As an example, we set up a symbolic function of three

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch09-9780123869425 — 2012/5/30 — 20:05 — Page 455 — #23

9.9 Symbolic Partial Differentiation 455

variables, assigned to fmv, as follows:

>> syms u v w

>> fmv =u*v*w/(u+v+w)

fmv =

(u*v*w)/(u + v + w)

>> pretty(fmv)

u v w

u + v + w

Now we differentiate with respect to u, v, and w in turn:

>> d = [diff(fmv,u) diff(fmv,v) diff(fmv,w)]

d =

[(v*w)/(u + v + w) - (u*v*w)/(u + v + w)^2,

(u*w)/(u + v + w) - (u*v*w)/(u + v + w)^2,

(u*v)/(u + v + w) - (u*v*w)/(u + v + w)^2]

To obtain mixed partial derivatives we simply differentiate with respect to the second
variable the answer obtained after differentiation with respect to the first. For example,

>> diff(d(3),u)

ans =

v/(u + v + w) - (u*v)/(u + v + w)^2

- (v*w)/(u + v + w)^2 + (2*u*v*w)/(u + v + w)^3

To clarify the structure of the preceding expression, we use the function pretty:

>> pretty(ans)

v u v v w 2 u v w

--------- - ------------ - ------------ + ------------

u + v + w 2 2 3

(u + v + w) (u + v + w) (u + v + w)

This expression provides the mixed second-order partial derivative with respect to w and
then u.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch09-9780123869425 — 2012/5/30 — 20:05 — Page 456 — #24

456 Chapter 9 . Applications of the Symbolic Toolbox

9.10 Symbolic Integration
The integration process presents more difficulties than differentiation because not all
functions can be integrated in the closed form to produce a symbolic algebraic expres-
sion. Even functions that can be integrated in the closed form often require considerable
skill and experience for their evaluation.

To use the Symbolic Toolbox we begin by defining the symbolic expression f. Then the
function int(f,a,b) performs symbolic integration where a and b are the lower and upper
limits, respectively. This results in a symbolic constant. If the upper and lower limits are
omitted, the result is an expression that is the formula for the indefinite integral. In either
case, if the integral cannot be evaluated, which frequently happens, the original function
is returned. It must be stressed that many integrals can only be evaluated numerically.

Consider the following indefinite integral:

I =
∫

u2 cosudu

In MATLAB this becomes

>> syms u

>> f = u^2*cos(u); int(f)

ans =

sin(u)*(u^2 - 2) + 2*u*cos(u)

We note that the result is a formula as expected and not a numerical value. However, if
upper and lower limits are specified, we obtain a symbolic constant. For example, consider

y =

2π∫
0

e−x/2 cos(100x)dx

Thus we have

>> syms x, res = int(exp(-x/2)*cos(100*x),0,2*pi)

res =

2/40001 - 2/(40001*exp(pi))

We can obtain a numerical value for this using the vpa function as follows:

>> vpa(res)

ans =

0.000047838108134108034810408852920091

This result confirms the numerical solution given in Section 4.11.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch09-9780123869425 — 2012/5/30 — 20:05 — Page 457 — #25

9.10 Symbolic Integration 457

The following examples require infinite limits. Limits of this type are easily accommo-
dated using the symbols inf and -inf. Consider the following integrals:

y =

∞∫
0

loge
(
1+ e−x)dx and y =

∞∫
−∞

dx(
1+ x2

)2

These can be evaluated as follows:

>> syms x, int(log(1+exp(-x)),0,inf)

ans =

pi^2/12

>> syms x, f = 1/(1+x^2)^2;

>> int(f,-inf,inf)

ans =

pi/2

These results confirm those given by the numerical integration in Section 4.8.
We now consider what happens when an integral cannot be evaluated by symbolic

means. In this case we must resort to numerical procedures to find an approximate
numerical value for our integral.

>> p = sin(x^3);

>> int(p)

Warning: Explicit integral could not be found.

ans =

int(sin(x^3), x)

Note that the integral cannot be evaluated symbolically. If we now insert upper and lower
limits for this integral, we have

>> int(p,0,1)

ans =

hypergeom([2/3], [3/2, 5/3], -1/4)/4

This is the hypergeometric function; see Abramowitz and Stegun (1965) or Olver et al.
(2010). It can be evaluated under certain conditions; see MATLAB help hypergeom.

Clearly the result is not reduced to a numerical value, but in this case we can use a
numerical method to solve it as follows:

>> fv = @(x) sin(x.^3);

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch09-9780123869425 — 2012/5/30 — 20:05 — Page 458 — #26

458 Chapter 9 . Applications of the Symbolic Toolbox

>> quad(fv,0,1)

ans =

0.2338

We now consider two interesting examples that raise new issues in symbolic processing.
Consider the two integrals

∞∫
0

e−x loge (x)dx and

∞∫
0

sin4(mx)

x2
dx

We may evaluate the first integral as follows:

>> syms x; int(exp(-x)*log(x),0,inf)

ans =

-eulergamma

y = vpa('-eulergamma',10)

y =

-0.5772156649

In MATLAB, eulergamma is Euler’s constant and is defined by

C = lim
p→∞

[
− loge p+

1
2
+

1
3
+ ·· ·+

1
p

]
= 0.577215 . . .

Thus MATLAB shows how Euler’s constant arises and allows us to evaluate it to any specified
number of significant figures.

Now, considering the second integral,

>> syms m, int(sin(m*x)^4/x^2,0,inf)

Warning: Explicit integral could not be found.

ans =

piecewise([0 < m, (pi*m)/4], [m in R_, (pi*abs(m))/4],

[not m in R_, int(sin(x*m)^4/x^2, x = 0..Inf)])

This complicated MATLAB result attempts to provide, where possible, an evaluation of the
integral for various ranges of m. Finally, we integrate the Dirac delta function from −∞
to∞:

>> int(dirac(x),-inf, inf)

ans =

1

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch09-9780123869425 — 2012/5/30 — 20:05 — Page 459 — #27

9.11 Symbolic Solution of Ordinary Differential Equations 459

This result accords with the definition of the Dirac delta function. We now consider the
integral of the Heaviside function from−5 to 3:

>> int(heaviside(x),-5,3)

ans =

3

This result is as expected.
Symbolic integration can be performed for two variable functions by repeated applica-

tion of the int function. Consider the double integral defined by (4.48) and repeated here
for convenience:

x4∫
x2

dy

2∫
1

x2y dx

This can be evaluated symbolically as follows:

>> syms x y; f = x^2*y;

>> int(int(f,y,x^2,x^4),x,1,2)

ans =

6466/77

which confirms the numerical result given in Section 4.14.2.

9.11 Symbolic Solution of Ordinary Differential
Equations

The Symbolic Toolbox can be used to solve, symbolically, first-order differential equa-
tions, systems of first-order differential equations, or higher-order differential equations,
together with any initial conditions provided. This symbolic solution of differential equa-
tions is implemented in MATLAB using the function dsolve, and its use is illustrated by a
range of examples.

It is important to note that this approach only provides a symbolic solution if one exists.
If no solution exists, then the user should apply one of the numerical techniques provided
in MATLAB, such as ode45.

The general form of a call of the function dsolve to solve a differential equation
system is

sol = dsolve('de1, de2, de3, ... , den, in1, in2, in3, ... , inn');

The independent variable is assumed to be t unless given by an optional final parame-
ter of dsolve. The parameters de1, de2, de3 up to den stand for the individual differential

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch09-9780123869425 — 2012/5/30 — 20:05 — Page 460 — #28

460 Chapter 9 . Applications of the Symbolic Toolbox

equations. These must be written in symbolic form using symbolic variables, standard
MATLAB operators, and the symbols D, D2, D3, and so on, which represent the first-, second-,
third-, and higher-order differential operators, respectively. The parameters in1, in2, in3,
in4, and so on, represent the initial conditions for the differential equations, if these condi-
tions are required. An example of how these initial conditions should be written, assuming
a dependent variable y, is

y(0) = 1, Dy(0) = 0, D2y(0) = 9.1

which means that the value of y is 1, dy/dt = 0, and d2y/dt2
= 9.1 when t = 0. It is impor-

tant to note that dsolve accepts up to a maximum of 12 input parameters. If initial
conditions are required, this is a significant restriction!

The solution is returned to sol as a MATLAB structure, and consequently the names
of the dependent variables must be used to indicate the individual components. For
example, if g and y are two dependent variables for the differential equation, sol.y gives
the solution for the dependent variable y and sol.g gives the solution for the dependent
variable g.

To illustrate these points we consider some examples. Consider the following first-order
differential equation:

(
1+ t2

) dy
dt
+ 2ty = cos t

We may solve this without initial conditions using dsolve as follows:

>> s = dsolve('(1+t^2)*Dy+2*t*y=cos(t)')

s =

-(C3 - sin(t))/(t^2 + 1)

Notice that the solution contains the arbitrary constant C3. If we now solve the same
equation using an initial condition, we proceed as follows:

>> s = dsolve('(1+t^2)*Dy+2*t*y=cos(t),y(0)=0')

s =

sin(t)/(t^2 + 1)

Note that in this case there is no arbitrary constant.
We now solve a second-order system

d2y

dx2
+ y = cos2x

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch09-9780123869425 — 2012/5/30 — 20:05 — Page 461 — #29

9.11 Symbolic Solution of Ordinary Differential Equations 461

with the initial conditions y = 0 and dy/dx = 1 at x = 0. To solve this differential equation
dsolve has the form

>> dsolve('D2y+y=cos(2*x), Dy(0)=1, y(0)=0','x')

ans =

(2*cos(x))/3 + sin(x) + sin(x)*(sin(3*x)/6 + sin(x)/2) -

(2*cos(x)*(6*tan(x/2)^2 - 3*tan(x/2)^4 + 1))/(3*(tan(x/2)^2 + 1)^3)

>> simplify(ans)

ans =

sin(x) + (2*sin(x)^2)/3 - (2*sin(x/2)^2)/3

Notice that since the independent variable is x, this is indicated in dsolve by a final
parameter x in the list of parameters.

We now solve the fourth-order differential equation

d4y
dt4 = y

with initial conditions

y = 1, dy/dt = 0, d2y/dt2
=−1, d3y/dt3

= 0 when t = π/2

We again use dsolve. In this example D4 stands for the fourth derivative operator, with
respect to t, and so on.

>> dsolve('D4y=y, y(pi/2)=1, Dy(pi/2)=0, D2y(pi/2)=-1, D3y(pi/2)=0')

ans =

sin(t)

However, we note that if we try to solve the apparently simple problem

dy
dx
=

e−x

x

with the initial condition y = 1 when x = 1, difficulties arise. Applying dsolve, we have

>> dsolve('Dy=exp(-x)/x, y(1)=1', 'x')

ans =

1 - Ei(1, x) - Ei(-1)

Note that Ei(-1) = -Ei(1,1). Clearly this result is not an explicit solution. The func-
tion Ei(1,x) is the exponential integral and can be found in mfunlist. Details of this
mathematical function can be found in Abramowitz and Stegun (1965) and Olver et al.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch09-9780123869425 — 2012/5/30 — 20:05 — Page 462 — #30

462 Chapter 9 . Applications of the Symbolic Toolbox

(2010). We can evaluate the function Ei using the mfun function for any parameters.
For example

>> y = mfun('Ei',1,1)

y =

0.2194

If we require more digits in the solution, we have

vpa('Ei(1,1)',20)

ans =

0.21938393439552027368

We will now attempt to solve the following apparently simple differential equation:

dy
dx
= cos(sinx)

Applying dsolve we have

>> dsolve('Dy=cos(sin(x))','x')

ans =

C17 + int(cos(sin(x)), x, IgnoreAnalyticConstraints)

In this case dsolve fails to solve the equation.
The differential equation may also contain constants represented as symbols. For

example, if we wish to solve the equation

d2x

dt2
+

a
b

sin t = 0

with initial conditions x = 1 and dx/dt= 0 when t = 0, we enter the following:

>> syms x t a b

>> x = dsolve('D2x+(a/b)*sin(t)=0,x(0)=1,Dx(0)=0')

x =

(a*sin(t))/b - (a*t)/b + 1

Note how the variables a and b appear in the solution as expected.
As an example of solving two simultaneous differential equations, we note that this

differential equation may be rewritten as

du
dt
=−

a
b

sin t

dx
dt
= u

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch09-9780123869425 — 2012/5/30 — 20:05 — Page 463 — #31

9.11 Symbolic Solution of Ordinary Differential Equations 463

Using the same initial conditions, dsolve may be applied to solve these equations by
writing

>> syms u

>> [u x] = dsolve('Du+(a/b)*sin(t)=0,Dx=u,x(0)=1,u(0)=0')

u =

(a*cos(t))/b - a/b

x =

(a*sin(t))/b - (a*t)/b + 1

This gives the same solution as that obtained from dsolve applied directly to solve the
second-order differential equation.

The following example provides an interesting comparison of the symbolic and numer-
ical approach. It consists of a script and the output from the script. The script compares
the use of dsolve for the symbolic solution of a differential equation and the use ode45 for
the numerical solution of the same differential equation. Note that the symbolic solution
is obtained in two ways: by solving the second-order equation directly and by separat-
ing it into two first-order simultaneous equations. Both approaches provide the same
solution.

% e3s904.m Simultaneous first order differential equations

% dx/dt = y, Dy = 3*t-4*x.

% Using dsolve this becomes

syms y t x

x = dsolve('D2x+4*x=3*t','x(0)=0', 'Dx(0)=1')

tt = 0:0.1:5; p = subs(x,t,tt); pp = double(p);

% Plot the symbolic solution to the differential equ'n

plot(tt,pp,'r')

hold on

xlabel('t'), ylabel('x')

sol = dsolve('Dx=y','Dy=3*t-4*x', 'x(0)=0', 'y(0)=1');

sol_x = sol.x, sol_y = sol.y

fv = @(t,x) [x(2); 3*t-4*x(1)];

options = odeset('reltol', 1e-5,'abstol',1e-5);

tspan = [0 5]; initx = [0 1];

[t,x] = ode45(fv,tspan,initx,options);

plot(t,x(:,1),'k+');

axis([0 5 0 4])

Executing the script gives the symbolic solution

x =

(3*t)/4 + sin(2*t)/8

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch09-9780123869425 — 2012/5/30 — 20:05 — Page 464 — #32

464 Chapter 9 . Applications of the Symbolic Toolbox

0 1 2 3 4 5
0

1

2

3

4

t

x

FIGURE 9.3 Symbolic solution and numerical solution indicated by +.

sol_x =

(3*t)/4 + sin(2*t)/8

sol_y =

cos(2*t)/4 + 3/4

This script also provides the graph of the symbolic solution with alternate numerical solu-
tion values also plotted (Figure 9.3). Note how the numerical solution is consistent with
the symbolic one.

9.12 The Laplace Transform
The Symbolic Toolbox allows the symbolic determination of the Laplace transforms of
many functions. The Laplace transform is used to transform a linear differential equation
into an algebraic equation in order to simplify the process of obtaining the solution. It
can also be used to transform a system of differential equations into a system of algebraic
equations. The Laplace transform maps a continuous function f (t) in the t domain into
the function F(s) in the s domain where s= σ + ω; that is, s is complex. Let f (t) have a
finite origin, which can be assumed to be at t = 0. In this case we can write

F(s)=

∞∫
0

f (t)e−st dt (9.8)

where f (t) is a given function defined for all positive values of t and F(s) is the Laplace
transform of f (t). This transform is called the one-sided Laplace transform. The parameter

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch09-9780123869425 — 2012/5/30 — 20:05 — Page 465 — #33

9.12 The Laplace Transform 465

s is restricted so that the integral converges, and it should be noted that for many functions
the Laplace transform does not exist. The inverse transform is given by

f (t)=
1
2π

σ0+∞∫
σ0−∞

F(s)est ds (9.9)

where =
√
−1 and σ0 is any real value such that the contour σ0− ω, for −∞< ω <∞, is

in the region of convergence of F(s). In practice (9.9) is not used to compute the inverse
transform. The Laplace transform of f (t)may be denoted by the operator L. Thus

F(s)= L[f (t)] and f (t)= L−1[F(s)]

We now give examples of the use of the Symbolic Toolbox for finding Laplace trans-
forms of certain functions.

>> syms t

>> laplace(t^4)

ans =

24/s^5

We can use a variable other than t as the independent variable as follows:

>> syms x; laplace(heaviside(x))

ans =

1/s

In this brief introduction to the Laplace transform we will not discuss its properties but
merely state the following results:

L
[

df
dt

]
= sF(s)− f (0)

L
[

d2f
dt2

]
= s2F(s)− sf (0)− f (1)(0)

where f (0) and f (1)(0) are the values of f (t) and its first derivative when t = 0. This pattern
is continued for higher derivatives.

Suppose we wish to solve the following differential equation:

ÿ− 3ẏ+ 2y = 4t+ e3t , y(0)= 1, ẏ(0)=−1 (9.10)

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch09-9780123869425 — 2012/5/30 — 20:05 — Page 466 — #34

466 Chapter 9 . Applications of the Symbolic Toolbox

where the dot notation denotes differentiation with respect to time. Taking the Laplace
transform of (9.10), we have

s2Y (s)− sy(0)− y(1)(0)− 3{sY (s)− y(0)}+ 2Y (s)= L
[

4t+ e3t
]

(9.11)

Now, from the definition of the Laplace transform or from tables, we can determineL[4t+
e3t]. Here we use the Symbolic Toolbox to determine the required transform:

>> syms s t

>> laplace(4*t+exp(3*t))

ans =

1/(s - 3) + 4/s^2

Substituting this result in (9.11) and rearranging gives

(s2
− 3s+ 2)Y (s)=

4

s2
+

1
s− 3

− 3y(0)+ sy(0)+ y(1)(0)

Applying the initial conditions and further rearranging, we have

Y (s)=
(

1

s2− 3s+ 2

)(
4

s2
+

1
s− 3

− 4+ s
)

To obtain the solution y(t), we must determine the inverse transform of this equation. It
has already been stated that in practice (9.9) is not used to compute the inverse transform.
The usual procedure is to rearrange the transform into one that can be recognized in tables
of Laplace transforms, and typically the method of partial fractions is used for this purpose.
However, the MATLAB Symbolic Toolbox allows us to avoid this task and determine inverse
transforms using the ilaplace statement as follows:

>> ilaplace((4/s^2+1/(s-3)-4+s)/(s^2-3*s+2))

ans =

2*t - 2*exp(2*t) + exp(3*t)/2 - exp(t)/2 + 3

Thus y(t)= 2t+ 3+ 0.5(e3t
− et)− 2e2t .

9.13 The Z-Transform
The Z-transform plays a similar role to the Laplace transform in the solution of difference
equations representing discrete systems. The Z-transform is defined by

F(z)=
∞∑

n=0

fnz−n (9.12)

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch09-9780123869425 — 2012/5/30 — 20:05 — Page 467 — #35

9.13 The Z-Transform 467

where fn is a sequence of data beginning at f0. The function F(z) is called the unilateral or
single-sided Z-transform of fn and is denoted Z[fn]. Thus

F(z)=Z[fn]

The inverse transform is denoted by Z−1[F(z)]. Thus

fn =Z−1[F(z)]

Like the Laplace transform, the Z-transform has many important properties. These prop-
erties will not be discussed here, but we do provide the following important results:

Z
[
fn+k

]
= zkF(z)−

k−1∑
m=0

zk−mfm (9.13)

Z
[
fn−k

]
= z−kF(z)+

k∑
m=1

z−(k−m)f(−m) (9.14)

These are the left- and right-shifting properties, respectively.
We can use the Z-transform to solve difference equations in much the same way as

we use the Laplace transform to solve differential equations. For example, consider the
following difference equation:

6yn− 5yn−1+ yn−2 =
1

4n , n≥ 0 (9.15)

Here yn is a sequence of data values beginning at y0. However, when n= 0 in (9.15), we
require the values of y−1 and y−2 to be specified. These are initial conditions and play a
similar role to the initial conditions in a differential equation. Let the initial conditions be
y−1 = 1 and y−2 = 0. Taking k = 1 in (9.14), we have

Z
[
yn−1

]
= z−1Y (z)+ y−1

and taking k = 2 in (9.14), we have

Z
[
yn−2

]
= z−2Y (z)+ z−1y−1+ y−2

Taking the Z-transform of (9.15), and substituting for the transformed values of y−1 and
y−2, we have

6Y (z)− 5{z−1Y (z)+ y−1}+ {z
−2Y (z)+ z−1y−1+ y−2} =Z

[
1

4n

]
(9.16)

We could use the basic definition of the Z-transform or tabulated relationships to deter-
mine the Z-transform of the right side of this equation. However, the MATLAB Symbolic

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch09-9780123869425 — 2012/5/30 — 20:05 — Page 468 — #36

468 Chapter 9 . Applications of the Symbolic Toolbox

Toolbox gives the Z-transform of a function as follows:

>> syms z n

>> ztrans(1/4^n)

ans =

z/(z - 1/4)

Substituting this result in (9.16), we have

(6− 5z−1
+ z−2)Y (z)=

4z
4z− 1

− z−1y−1− y−2+ 5y−1

Substituting for y−1 and y−2 gives

Y (z)=
(

1

6− 5z−1+ z−2

)(
4z

z− 1
− z−1

+ 5
)

We can determine yn by taking the inverse of the Z-transform. Using the MATLAB function
iztrans we have

>> iztrans((4*z/(4*z-1)-z^(-1)+5)/(6-5*z^(-1)+z^(-2)))

ans =

(5*(1/2)^n)/2 - 2*(1/3)^n + (1/4)^n/2

Thus

yn =
5
2

(
1
2

)n

− 2
(

1
3

)n

+
1
2

(
1
4

)n

Evaluating this solution for n=−2 and−1 shows that it satisfies the initial conditions.

9.14 Fourier Transform Methods
Fourier analysis transforms data or functions from the time or spatial domain into the
frequency domain. Here, we will transform from the x domain into the ω domain because
MATLAB uses x and w (corresponding to ω) as the default parameters in the implementation
of the Fourier and inverse Fourier transforms.

The Fourier series transforms a periodic function in the x domain into corresponding
discrete values in the frequency domain; these are the Fourier coefficients. In contrast,
the Fourier transform takes a nonperiodic and continuous function in the x domain and
transforms it into a infinite and continuous function in the frequency domain.

The Fourier transform of a function f (x) is given by

F(s)= F [f (x)]=

∞∫
−∞

f (x)e−sxdx (9.17)

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch09-9780123869425 — 2012/5/30 — 20:05 — Page 469 — #37

9.14 Fourier Transform Methods 469

where s= ω; that is, s is imaginary. Thus we may write

F(ω)= F [f (x)]=

∞∫
−∞

f (x)e−ωxdx (9.18)

F(ω) is complex and is called the frequency spectrum of f (x). The inverse Fourier trans-
form is given by

f (x)= F−1[F(ω)]=
1

2π

∞∫
−∞

F(ω)eωxdω (9.19)

Here we use the operators F and F−1 to indicate the Fourier transform and the inverse
Fourier transform, respectively. Not all functions have a Fourier transform, and certain
conditions must be met if the Fourier transform is to exist (see Bracewell, 1978). The
Fourier transform has important properties that are introduced as appropriate.

We will begin by using the MATLAB symbolic function fourier to determine the Fourier
transform of cos(3x).

>> syms x, y = fourier(cos(3*x))

y =

pi*(dirac(w - 3) + dirac(w + 3))

This Fourier transform pair is shown diagrammatically in Figure 9.4. The Fourier trans-
form tells us that the frequency spectrum of this cosine function consists of two infinitely
narrow components, one at ω = 3 and one at ω =−3 (for a description of the Dirac delta
function, see Section 9.7). The MATLAB function ifourier implements the symbolic inverse
Fourier transform as follows:

>> z = ifourier(y)

z =

1/(2*exp(x*3*i)) + exp(x*3*i)/2

>> simplify(z)

ans =

cos(3*x)

As a second example of the use of the Fourier transform, consider the transform of the
function shown in Figure 9.5, which has a unit value in the range−2< x < 2 and zero else-
where. Note how this has been constructed from two Heaviside functions (the Heaviside
function is described in Section 9.7).

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch09-9780123869425 — 2012/5/30 — 20:05 — Page 470 — #38

470 Chapter 9 . Applications of the Symbolic Toolbox

x
Fourier

transform

f(x) = cos(ω0t)

−ω0 ω0

F(ω)

FIGURE 9.4 The Fourier transform of a cosine function.

ω

ω
Fourier

transformx

A

F(ω)

2A sin(x0ω)

x0−x0

FIGURE 9.5 The Fourier transform of a ”top-hat” function.

>> syms x

>> fourier(heaviside(x+2) - heaviside(x-2))

ans =

(cos(2*w)*i + sin(2*w))/w - (cos(2*w)*i - sin(2*w))/w

This expression can be simplified as follows:

simplify(ans)

ans =

(2*sin(2*w))/w

Note that the original function, which in the x domain is limited to the range −2< x < 2,
has a frequency spectrum that is continuous between −∞< ω <∞. This is shown in
Figure 9.5.

We now illustrate the use of the Fourier transform in the solution of a partial differential
equation. Consider the equation

∂u
∂t
=
∂2u

∂x2
(−∞< x <∞, t > 0) (9.20)

subject to the initial condition

u(x,0)= exp(−a2x2) where a= 0.1

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch09-9780123869425 — 2012/5/30 — 20:05 — Page 471 — #39

9.14 Fourier Transform Methods 471

It can be proved that

F
[
∂2u

∂x2

]
=−ω2F [u] and F

[
∂u
∂t

]
=
∂

∂t
{F [u]}

Thus, taking the Fourier transform of (9.20), we have

∂

∂t
{F [u]}+ω2F [u]= 0

Solving this first-order differential equation for F [u] gives

F [u]= Aexp(−ω2t) (9.21)

To determine the constant A we must apply the initial conditions. We begin by using
MATLAB to find the Fourier transform of the initial conditions:

>> syms x y z w

>> z = fourier(exp(-x^2/100))

z =

(10*pi^(1/2))/exp(25*w^2)

Hence

F [u(x,0)]=
√

100π exp(−25ω2)

Comparing this equation with (9.21) when t = 0, we see that

A=
√

100π exp(−25ω2)

Substituting this result in (9.21), we have

F [u]=
√

100π exp(−25ω2)exp(−ω2t)

Taking the inverse transform of this equation gives

u(x, t)= F−1
[√

100π exp(−25ω2)exp(−ω2t)
]

Suppose we require a solution when t = 4. Using MATLAB to compute the inverse Fourier
transform, we have

>> y = z*exp(-4*w^2)

y =

(10*pi^(1/2))/exp(29*w^2)

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch09-9780123869425 — 2012/5/30 — 20:05 — Page 472 — #40

472 Chapter 9 . Applications of the Symbolic Toolbox

>> ifourier(y)

ans =

(5*29^(1/2))/(29*exp(x^2/116))

Thus, when t = 4, the solution of (9.20) is

u(x,4)=
5
√

29
29

exp(−x2/116)

Consider now the Fourier transform of the Heaviside or step function.

>> syms x

>> fourier(heaviside(x))

ans =

pi*dirac(w) - i/w

Thus the real part of the Fourier transform of the Heaviside function is π times the Dirac
delta function at ω = 0 and the imaginary part is 1/ω, which tends to plus and minus infin-
ity when ω = 0. The step function has many applications. For example, if we require the
Fourier transform of the function

f (x)=

{
e−2x x ≥ 0

0 x < 0

using the Heaviside or unit step function, we can rewrite this as

f (x)= u(x)e−2x for all x

where u(x) is the Heaviside function. The MATLAB implementation is

>> syms x

>> fourier(heaviside(x)*exp(-2*x))

ans =

1/(w*i + 2)

9.15 Linking Symbolic and Numerical Processes
Symbolic algebra can be used to ease the burden for the user in the numerical solution
process. To illustrate this we show how the Symbolic Toolbox can be used in a version of
Newton’s method for solving a nonlinear equation that only requires the user to supply the
function itself. The usual implementation of this algorithm (see Section 3.7) requires the

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch09-9780123869425 — 2012/5/30 — 20:05 — Page 473 — #41

9.15 Linking Symbolic and Numerical Processes 473

user to supply the first-order derivative of the function as well as the function itself. The
modified algorithm takes the following form in MATLAB:

function [res, it] = fnewtsym(func,x0,tol)

% Finds a root of f(x) = 0 using Newton's method

% using the symbolic toolbox.

% Example call: [res, it] = fnewtsym(func,x,tol)

% The user defined function func is the function f(x) which must

% be defined as a symbolic function.

% x is an initial starting value, tol is required accuracy.

it = 1; syms dfunc x

% Now perform the symbolic differentiation:

dfunc = diff(sym(func));

d = double(subs(func,x,x0)/subs(dfunc,x,x0));

while abs(d)>tol

x1 = x0-d; x0 = x1;

d = double(subs(func,x,x0)/subs(dfunc,x,x0));

it = it+1;

end

res = x0;

Notice the use of the subs and double functions so that a numerical value is returned. To
illustrate the use of fnewtsym we will solve cosx− x3

= 0 to find the root closest to 1 with
an accuracy to four decimal places.

>> [r,iter] = fnewtsym('cos(x)-x^3',1,0.00005)

r =

0.8655

iter =

4

These results are identical to those obtained using function fnewton (see Section 3.7), but
here the user is not required to provide the derivative of the function.

The following examples provide further illustrations of how the Symbolic Toolbox can
help users perform the routine, tedious, and sometimes difficult tasks required by some
numerical methods. We have seen how the single-variable Newton’s method can be mod-
ified using symbolic differentiation; now we extend this to Newton’s multivariable method
to solve a system of equations. Here the use of symbolic functions provides an even greater
savings for users. The equations solved in this example are

x1x2 = 2

x2
1 + x2

2 = 4

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch09-9780123869425 — 2012/5/30 — 20:05 — Page 474 — #42

474 Chapter 9 . Applications of the Symbolic Toolbox

The MATLAB function takes the form

function [x1,fr,it] = newtmvsym(x,f,n,tol)

% Newton's method for solving a system of n nonlinear equations

% in n variables. This version is restricted to two variables.

% Example call: [xv,it] = newtmvsym(x,f,n,tol)

% Requires an initial approximation column vector x. tol is

% required accuracy.

% User must define functions f, the system equations.

% xv is the solution vector, parameter it is number of iterations.

syms a b

xv = sym([a b]); it = 0;

fr = double(subs(f,xv,x));

while norm(fr)>tol

Jr = double(subs(jacobian(f,xv),xv,x));

x1 = x-(Jr\fr')'; x = x1;

fr = double(subs(f,xv,x1));

it = it+1;

end

Notice how this function uses the symbolic Jacobian function in the line

Jr = double(subs(jacobian(f,xv),xv,x));

This ensures that the user is not required to find the four partial derivatives required in this
case. To use this function we run the script

% e3s905.m. Script for running newtonmvsym.m

syms a b

x = sym([a b]);

format long

f = [x(1)*x(2)-2,x(1)^2+x(2)^2-4];

[x1,fr,it] = newtmvsym([1 0],f,2,.000000005)

Running this script gives

x1 =

1.414244079950892 1.414183044795298

fr =

1.0e-008 *

-0.093132257461548 0.186264514923096

it =

14

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch09-9780123869425 — 2012/5/30 — 20:05 — Page 475 — #43

Problems 475

We note that this result provides an accurate solution for the given problem in two
variables.

It is interesting to note that in a similar way we can write a script for the conjugate
gradient method that enables the user to avoid having to provide the first-order partial
derivatives of the function to be minimized. This script uses the statements

for i = 1:n, dfsymb(i) = diff(sym(f),xv(i)); end

df = double(subs(dfsymb,xv(1:n),x(1:n)'));

to obtain the gradient of the function where required. To run this modified function a script
similar to that given earlier for the multivariable Newton’s method must be written. This
script defines the nonlinear function to be optimized and defines a symbolic vector x.

9.16 Summary
We have introduced a wide range of symbolic functions and shown how they can be
applied to such standard mathematical processes as integration, differentiation, expan-
sion, and simplification. We have also shown how symbolic methods can sometimes be
directly linked to numerical procedures with good effect. For those with access to the
Symbolic Toolbox, care must be taken to choose the appropriate method, symbolic or
numerical, for the problem.

Problems
9.1. Using the appropriate MATLAB symbolic function, rearrange the following

expression as a polynomial in x:(
x−

1
a
−

1
b

)(
x−

1
b
−

1
c

)(
x−

1
c
−

1
a

)
9.2. Using the appropriate MATLAB symbolic function, multiply the polynomials

f (x)= x4
+ 4x3

− 17x2
+ 27x− 19 and g(x)= x2

+ 12x− 13

and simplify the resulting expression. Then arrange the solution in a nested form.

9.3. Using the appropriate MATLAB symbolic function, expand the following functions:

(a) tan(4x) in terms of powers of tan(x)
(b) cos(x+ y) in terms of cos(x), cos(y), sin(x), sin(y)
(c) cos(3x) in terms of powers of cos(x)
(d) cos(6x) in terms of powers of cos(x).

9.4. Using the appropriate MATLAB symbolic function, expand cos(x+ y+ z) in terms of
cos(x), cos(y), cos(z), sin(x), sin(y), and sin(z).

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch09-9780123869425 — 2012/5/30 — 20:05 — Page 476 — #44

476 Chapter 9 . Applications of the Symbolic Toolbox

9.5. Using the appropriate MATLAB symbolic function, expand the following functions
in ascending powers of x up to x7:

(a) sin−1(x)
(b) cos−1(x)
(c) tan−1(x)

9.6. Using the appropriate MATLAB symbolic function, expand y = loge(cos(x)) in
ascending powers of x up to x12.

9.7. The first three terms of a series are

4
1 · 2 · 3

(
1
3

)
+

5
2 · 3 · 4

(
1
9

)
+

6
3 · 4 · 5

(
1

27

)
+ ·· ·

Sum this series to n terms using the MATLAB functions symsum and simple.

9.8. Using the appropriate MATLAB symbolic function, sum the first hundred terms of
the series whose kth term is k10.

9.9. Using the appropriate MATLAB symbolic function, verify that

∞∑
k=1

k−4
=
π4

90

9.10. For the matrix

A=

1 a a2

1 b b2

1 c c2

determine A−1 symbolically using the MATLAB function inv and, using the function
factor, express it in the following form:

cb
(a− c)(a−b)

−ac
(b− c)(a−b)

ab
(b− c)(a− c)

−(b+ c)
(a− c)(a−b)

(a+ c)
(b− c)(a−b)

−(a+b)
(b− c)(a− c)

1
(a− c)(a−b)

−1
(b− c)(a−b)

1
(b− c)(a− c)

9.11. Using the appropriate MATLAB symbolic function, show that the characteristic

equation of the matrix

A=

a1 a2 a3 a4

1 0 0 0

0 1 0 0

0 0 1 0

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch09-9780123869425 — 2012/5/30 — 20:05 — Page 477 — #45

Problems 477

is

λ4
−a1λ

3
−a2λ

2
−a3λ−a4 = 0

9.12. The rotation matrix R follows. Define it symbolically and find its second and fourth
powers using MATLAB.

R=

[
cosθ sinθ

−sinθ cosθ

]

9.13. Solve, symbolically, the general cubic equation having the form x3
+ 3hx+ g = 0.

Hint: Use the MATLAB function subexpr to simplify your result.

9.14. Using the appropriate MATLAB symbolic function, solve the cubic equation
x3
− 9x+ 28= 0.

9.15. Using the appropriate MATLAB symbolic functions, find the roots of z6
= 4
√

2(1+)
and plot these roots in the complex plane. Hint: Convert the answer using double.

9.16. Using the appropriate MATLAB symbolic function, differentiate the following
function with respect to x:

y = loge

{
(1− x)(1+ x3)

1+ x2

}

9.17. Given that Laplace’s equation is

∂2z

∂x2
+
∂2z

∂y2
= 0

use the appropriate MATLAB symbolic function to verify that this equation is
satisfied by the following functions:

(a) z = loge(x
2
+ y2)

(b) z = e−2y cos(2x)

9.18. Using the appropriate MATLAB symbolic function, verify that z = x3 siny satisfies the
following conditions:

∂2z
∂x∂y

=
∂2z
∂y∂x

and
∂10z

∂x4∂y6
=

∂10z

∂y6∂x4
= 0

9.19. Using the appropriate MATLAB symbolic functions, determine the integrals of the
following functions and then differentiate the result to recover the original
function:

(a)
1

(a+ fx)(c+ gx)
(b)

1− x2

1+ x2

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch09-9780123869425 — 2012/5/30 — 20:05 — Page 478 — #46

478 Chapter 9 . Applications of the Symbolic Toolbox

9.20. Using the appropriate MATLAB symbolic function, determine the following
indefinite integrals:

(a)
∫

1
1+ cosx+ sinx

dx (b)
∫

1
a4+ x4 dx

9.21. Using the appropriate MATLAB symbolic function, verify the following result:

∞∫
0

x3

ex− 1
dx =

π4

15

9.22. Using the appropriate MATLAB symbolic function, evaluate the following integrals:

(a)

∞∫
0

1

1+ x6
dx (b)

∞∫
0

1

1+ x10
dx

9.23. Using the appropriate MATLAB symbolic function, evaluate the integral

1∫
0

exp(−x2)dx

by expanding exp(−x2) in an ascending series of powers of x and then integrating
term by term to obtain a series approximation. Expand the series to both x6 and
x14 and hence find two approximations to the integral. Compare the accuracy of
your results. The solution to 10 decimal places is 0.7468241328.

9.24. Using the appropriate MATLAB symbolic function, verify the following result:

∞∫
0

sin(x2)

x
dx =

π

4

9.25. Using the appropriate MATLAB symbolic function, evaluate the integral

1∫
0

loge(1+ cosx)dx

by expanding loge(1+ cosx) in an ascending series of powers of x and then
integrating term by term to obtain a series approximation. Expand the series up to
the term in x4. Compare the accuracy of your result. The solution to 10 decimal
places is 0.6076250333.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Ch09-9780123869425 — 2012/5/30 — 20:05 — Page 479 — #47

Problems 479

9.26. Using the appropriate MATLAB symbolic function, evaluate the following repeated
integral:

1∫
0

dy

1∫
0

1
1− xy

dx

9.27. Using the appropriate MATLAB symbolic function, solve the following differential
equation, which arises in the study of consumer behavior:

d2y

dt2
+ (bp+aq)

dy
dt
+ab(pq− 1)y = cA

Also find the solution in the case where p= 1, q= 2, a= 2, b= 1, c = 1, and A= 20.
Hint: Use the MATLAB function subs.

9.28. Using the appropriate MATLAB symbolic function, solve the following pair of
simultaneous differential equations:

2
dx
dt
+ 4

dy
dt
= cos t

4
dx
dt
− 3

dy
dt
= sin t

9.29. Using the appropriate MATLAB symbolic function, solve the following differential
equation:

(1− x2)
d2y

dx2
− 2x

dy
dx
+ 2y = 0

9.30. Using the appropriate MATLAB symbolic function, solve the following differential
equations using the Laplace transform:

(a)
d2y
dt2 + 2y = cos(2t), y =−2 and

dy
dt
= 0 when t = 0

(b)
dy
dt
− 2y = t, y = 0 when t = 0

(c)
d2y
dt2 − 3

dy
dt
+ y = exp(−2t), y =−3 and

dy
dt
= 0 when t = 0

(d)
dq
dt
+

q
c
= 0, q= V when t = 0

9.31. Solve the following difference equations symbolically using the Z-transform:

(a) yn+ 2yn−1 = 0, y−1 = 4
(b) yn+ yn−1 = n, y−1 = 10
(c) yn− 2yn−1 = 3, y−1 = 1
(d) yn− 3yn−1+ 2yn−2 = 3(4n), y−1 =−3, y−2 = 5

EDELKAMP 19-ch15-671-700-9780123725127 2011/5/28 14:50 Page 672 #2

This page intentionally left blank

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — App˙A-9780123869425 — 2012/5/30 — 20:11 — Page 481 — #1

A
Matrix Algebra

The aim of this appendix is to give a brief overview of matrix algebra, which covers a num-
ber of issues referred to in the main text. It includes an introduction to matrix properties,
operators, and classes.

A.1 Introduction
Since many MATLAB functions and operators act on matrices and arrays, it is important
that MATLAB users feel at ease with matrix notation and matrix algebra. MATLAB is an ideal
environment in which to experiment and learn matrix algebra. While it cannot provide a
formal proof of any relationship, it does allow users to verify results and rapidly gain expe-
rience in matrix manipulation. In this appendix only definitions and results are provided.
For proofs and further explanation, it is recommended that the reader consult Golub and
Van Loan (1989).

A.2 Matrices and Vectors
A matrix is a rectangular array of elements that in itself cannot be evaluated. An element
of a matrix can be a real or complex number, an algebraic expression, or another matrix.
Normally matrices are enclosed in square brackets, parentheses, or braces. In this text
square brackets are used. A complete matrix is denoted by an emboldened character. For
example,

A=

[
3 −2

−2 4

]
, B=

[
A A 2A
A −A A

]

x=

 11

−3

7

 , e=
[
(2+ 3ı)

(
p2
+q

)
(−4+ 7ı) (3− 4ı)

]

and hence

B=

3 −2 3 −2 6 −4

−2 4 −2 4 −4 8

3 −2 −3 2 3 −2

−2 4 2 −4 −2 4

Traveling Wave Analysis of Partial Differential Equations
Copyright © 2011 by Elsevier Ltd. All rights reserved.

481

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — App˙A-9780123869425 — 2012/5/30 — 20:11 — Page 482 — #2

482 Appendix A . Matrix Algebra

where ı =
√
(−1). In the preceding examples A is a 2× 2 square matrix with two rows

and two columns of real coefficients. It also has the property of being a symmetric
matrix (see Section A.7). The matrix B is built up from the matrix A and so B is a
4× 6 real matrix. The matrix x is a 3× 1 matrix and is usually called a column vector,
and e is a 1× 4 complex matrix, usually called a row vector. Note that e has the alge-
braic expression p2

+q for its second element. In this vector each element is enclosed
in parentheses to clarify its structure. Enclosing an element in parentheses is not a
requirement.

If we wish to refer to a particular element in a matrix, we use subscript notation: The
first subscript denotes the row, the second the column. In the case of the row and column
vectors it is conventional to use a single subscript. Thus, in the preceding examples,

a21 =−2, b25 =−4, x2 =−3, e4 = 3− 4ı

Note also that although A and B are uppercase letters it is conventional to refer to their
elements by lowercase letters. In general the element in the ith row and jth column of A is
denoted by aij.

A.3 Some Special Matrices
The identity matrix. The identity matrix, denoted by I, has unit values along the leading
diagonal and zeros elsewhere. The leading diagonal is the diagonal of elements from the
top left to the bottom right of the matrix. For example,

I2 =

[
1 0

0 1

]
, I3 =

1 0 0

0 1 0

0 0 1

The subscript indicating the size of the matrix is usually omitted. The identity matrix
behaves rather like the scalar quantity 1. In particular, pre- or postmultiplying a matrix
by I does not change it.

The diagonal matrix. This matrix is square and has nonzero elements only along the
leading diagonal. Thus

A=

4 0 0 0

0 −2 0 0

0 0 0 0

0 0 0 9

 , B=

12 0 0

0 −2 0

0 0 −6

The tridiagonal matrix. This matrix is square and has nonzero elements along the lead-
ing diagonal and the diagonals immediately above and below it. Thus, using “x” to

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — App˙A-9780123869425 — 2012/5/30 — 20:11 — Page 483 — #3

A.4 Determinants 483

denote a nonzero element,

A=

x x 0 0 0

x x x 0 0

0 x x x 0

0 0 x x x

0 0 0 x x

Triangular and Hessenberg matrices. A lower triangular matrix has nonzero elements only
on and below the leading diagonal. An upper triangular matrix has nonzero elements on
and above the leading diagonal. The Hessenberg matrix is similar to the triangular matrix
except that in addition it has nonzero elements on the diagonals adjacent to the leading
diagonal.

x x x x x

0 x x x x

0 0 x x x

0 0 0 x x

0 0 0 0 x

 ,

x 0 0 0 0

x x 0 0 0

x x x 0 0

x x x x 0

x x x x x

 ,

x x x x x

x x x x x

0 x x x x

0 0 x x x

0 0 0 x x

The first matrix is upper triangular, the second is lower triangular, and the last is upper
Hessenberg.

A.4 Determinants
The determinant of A is written |A| or det(A). For a 2× 2 array we define its determinant as
follows:

If A=

[
a11 a12

a21 a22

]
then det(A)=

∣∣∣∣∣a11 a12

a21 a22

∣∣∣∣∣= a11a22−a21a12 (A.1)

In general for an n×n array A, cofactors Cij = (−1)i+j 1ij can be defined. In this definition
1ij is the determinant formed from A when the elements of the ith row and jth column are
deleted.1ij is called the minor of A. Then

det(A)=
n∑

k=1

aikCik for any i= 1,2, . . . ,n (A.2)

This is known as an expansion along the ith row. Frequently the first row is used. This
equation replaces the problem of evaluating one n×n determinant A by the evaluation
of n, (n− 1)× (n− 1) determinants. The process can be continued until the cofactors are
reduced to 2× 2 determinants. Then the formula (A.1) is used. This is the formal definition
for the determinant of A but it is not a computationally efficient procedure.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — App˙A-9780123869425 — 2012/5/30 — 20:11 — Page 484 — #4

484 Appendix A . Matrix Algebra

A.5 Matrix Operations
Matrix transposition. In this operation the rows and columns of a matrix are interchanged
or transposed. The transposition of a real matrix A is denoted by A>. For example,

A=

[
1 −2 4

2 1 7

]
, A> =

 1 2

−1 1

4 7

 , x=

1

2

3

 , x> =
[

1 2 3
]

Note that a square matrix remains square when it is transposed and a column vector
transposes into a row vector and vice versa.

Matrix addition and subtraction. This is done by adding or subtracting corresponding
elements in the matrices. Thus

[
1 3

−4 5

]
+

[
5 −4

6 6

]
=

[
6 −1

2 11

]
,

−4

6

11

−
 3

−3

2

=
−7

9

9

It is apparent that only matrices with the same number of rows and the same number of
columns can be added and subtracted. In general, if A= B+C then aij = bij+ cij.

Scalar multiplication. Every element of a matrix is multiplied by a scalar quantity. Thus if
A= sB, where s is a scalar, then aij = sbij.

Matrix multiplication. We can only multiply two matrices B and C together if the number
of columns in B is equal to the number of rows in C. Such matrices are said to be con-
formable. If B is a p×q matrix and C is a q× r matrix, then we can determine the product
A = BC and the result will be a p× r matrix. Because the order of matrix multiplication is
important, we say that B premultiplies C or C postmultiplies B. If A= BC, the elements of
A are determined from the following relationship:

aij =

q∑
k=1

bikckj for i= 1,2, . . . ,p; j = 1,2, . . . ,r

For example,

[
2 −3 1

−5 4 3

]−6 4 1

−4 2 3

3 −7 −1

=

[
2(−6)+ (−3)(−4)+ 1(3) 2(4)+ (−3)2+ 1(−7) 2(1)+ (−3)3+ 1(−1)

(−5)(−6)+ 4(−4)+ 3(3) (−5)4+ 4(2)+ 3(−7) (−5)1+ 4(3)+ 3(−1)

]

=

[
3 −5 −8

23 −33 4

]

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — App˙A-9780123869425 — 2012/5/30 — 20:11 — Page 485 — #5

A.6 Complex Matrices 485

Note that the product of a 2× 3 and a 3× 3 matrix is a 2× 3 matrix. Consider four further
examples of matrix multiplication:[

1 2

3 4

][
5 6

3 2

]
=

[
11 10

27 26

]
,

[
5 6

3 2

][
1 2

3 4

]
=

[
23 34

9 14

]

[
1 2 3

]−4

3

3

= 11,

−4

3

3

[1 2 3
]
=

−4 −8 −12

3 6 9

3 6 9

In the preceding examples note that while the 2 × 2 matrices can be multiplied in either
order, the product is different. This is an important observation and in general BC 6= CB.
Note also that multiplying a row by a column vector gives a scalar whereas multiplying a
column by a row results in a matrix.

Matrix inversion. The inverse of a square matrix A is written A−1 and is defined by

AA−1
=A−1A= I

The formal definition of A−1 is

A−1
=adj(A)/det(A) (A.3)

where adj(A) is the adjoint of A. The adjoint of A is given by

adj(A)=C>

where C is a matrix composed of the cofactors of A. Using (A.3) is not an efficient way to
compute an inverse.

A.6 Complex Matrices
A matrix can have elements that are complex and such a matrix can be expressed in terms
of two real matrices. Thus

A= B+ ıC where ı =
√
(−1)

Here A is complex and B and C are real matrices. The complex conjugate of A is normally
denoted by A∗ and is equal to

A∗ = B− ıC

Matrix A can be transposed so that

A> = B>+ ıC>

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — App˙A-9780123869425 — 2012/5/30 — 20:11 — Page 486 — #6

486 Appendix A . Matrix Algebra

Matrix A can be transposed and conjugated at the same time and this is denoted by AH

and called the Hermitian transpose. Thus

AH
= B>− ıC>

For example,

A=

[
1− ı −2− 3ı 4ı

2 1+ 2ı 7+ 5ı

]
, A∗ =

[
1+ ı −2+ 3ı −4ı

2 1− 2ı 7− 5ı

]

A> =

 1− ı 2

−2− 3ı 1+ 2ı

4ı 7+ 5ı

 , AH
=

 1+ ı 2

−2+ 3ı 1− 2ı

−4ı 7− 5ı

It is important to note that the MATLAB expression A' gives the conjugation and transpo-
sition of A when applied to a complex matrix; that is, it is equivalent to AH. However, A.'
gives ordinary transposition, which corresponds to A>.

A.7 Matrix Properties
The real square matrix A is

symmetric if A> = A

skew-symmetric if A> =−A

orthogonal if A> = A−1

nilpotent if Ap
= 0, where p is a positive integer and 0 is the matrix of zeros

idempotent if A2
= A

The complex square matrix A= B+ ıC is

Hermitian if AH
= A

unitary if AH
= A−1

A.8 Some Matrix Relationships
If P, Q, and R are matrices such that

W= P Q R

then

W> = R>Q>P> (A.4)

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — App˙A-9780123869425 — 2012/5/30 — 20:11 — Page 487 — #7

A.10 Definition of Norms 487

and

W−1
= R−1Q−1P−1 (A.5)

If P, Q, and R are complex, then (A.5) is still valid and (A.4) becomes

WH
= RHQHPH (A.6)

A.9 Eigenvalues
Consider the eigenvalue problem

Ax= λx

If A is an n×n symmetric matrix, then there are n real eigenvalues, λi, and n real eigenvec-
tors, xi, that satisfy this equation. If A is an n×n Hermitian matrix, then there are n real
eigenvalues, λi, and n complex eigenvectors, xi, that satisfy the eigenvalue problem. The
polynomial in λ given by det(A− λI)= 0 is called the characteristic equation. The roots of
this polynomial are the eigenvalues of A. The sum of the eigenvalues of A equals trace(A)
where trace(A) is defined as the sum of the elements on the leading diagonal of A. The
product of the eigenvalues of A equals det(A).

It is interesting to note that if we define C as

C=

−p1/p0 −p2/p0 . . . −pn−1/p0 −pn/p0

1 0 . . . 0 0

0 1 . . . 0 0
...

...
...

...

0 0 . . . 1 0

then the eigenvalues of C are the roots of the polynomial

p0xn
+p1xn−1

+ ·· ·+pn−1x+pn = 0

The matrix C is called the companion matrix.

A.10 Definition of Norms
The p-norm for the vector v is defined as follows:

||v||p =
(
|v1|

p
+ |v2|

p
+ ·· ·+ |vn|

p)1/p (A.7)

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — App˙A-9780123869425 — 2012/5/30 — 20:11 — Page 488 — #8

488 Appendix A . Matrix Algebra

The parameter p can take any value but only three values are commonly used. If p= 1 in
(A.7), we have the 1-norm, ||v||1:

||v||1 = |v1| + |v2| + · · · + |vn| (A.8)

If p= 2 in (A.7), we have the 2-norm or Euclidean norm of the vector v, which is written
||v|| or ||v||2 and is defined as follows:

||v||2 =
√

v2
1 + v2

2 + ·· ·+ v2
n (A.9)

Note that it is not necessary to take the modulus of the elements because in this case each
element value is squared. The Euclidean norm is also called the length of the vector. These
names arise from the fact that in two- or three-dimensional Euclidean space a vector of
two or three elements is used to specify a position in space. The distance from the origin
to the specified position is identical to the Euclidean norm of the vector.

If p tends to infinity in (A.7), we have ||v||∞ =max(|v1|, |v2|, . . . ,|vn|), the infinity norm.
At first sight this might appear inconsistent with (A.7). However, when p tends to infinity,
the modulus of each element is raised to a very large power and the largest element will
dominate the summation.

These functions are implemented in MATLAB; norm(v,1), norm(v,2) (or norm(v)), and
norm(v,inf) return the 1, 2, and infinity norms of the vector v, respectively.

A.11 Reduced Row Echelon Form
The reduced row echelon form (RREF) of a matrix also has an important role to play in the
theoretical understanding of linear algebra. A matrix is transformed into its RREF when the
following conditions have been met:

1. All zero rows, if they exist, are at the bottom of the matrix.
2. The first nonzero element in every nonzero row is unity.
3. For each nonzero row, the first nonzero element appears to the right of the first

nonzero element of the preceding row.
4. For any column in which the first nonzero element of a row appears, all other

elements are zero.

The RREF is determined by using a finite sequence of elementary row operations. It is a
standard form and the most fundamental form of a matrix that can be achieved using
elementary row operations alone.

For a system of equations Ax= b we can define the augmented matrix [A b]. If this
matrix is transformed into its RREF, the following may be deduced:

1. If [A b] is derived from an inconsistent system (i.e., no solution exists) the RREF has a
row of the form [0 . . . 0 1].

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — App˙A-9780123869425 — 2012/5/30 — 20:11 — Page 489 — #9

A.12 Differentiating Matrices 489

2. If [A b] is derived from a consistent system with an infinity of solutions, then the
number of columns of the coefficient matrix is greater than the number of nonzero
rows in the RREF; otherwise there is a unique solution and it appears in the last
(augmented) column of the RREF.

3. A zero row in the RREF indicates that the original set of equations contained equations
with redundant information, that is, information contained in other equations of the
system.

In computing the RREF, numerical problems can arise that are common to other proce-
dures that use elementary row operations (see Section 2.6).

A.12 Differentiating Matrices
The rules for matrix differentiation are essentially the same as those for scalars, but care
must be taken to ensure that the order of the matrix operations is maintained. The pro-
cess is illustrated by the following example: differentiate f (x)= x>Ax with respect to each
element of x, where x is a column vector with n elements, (x1, x2, x3, . . . , xn)>, and A has
elements aij for i, j = 1,2, . . . , n. We note first that any matrix associated with a quadratic
form must be symmetric. Hence the matrix A is symmetric. We require the gradient of
f (x) (i.e., ∇f (x)). The gradient consists of all the first-order partial derivatives of f (x) with
respect to each component of the vector x. Now multiplying out the terms of f (x) we have
f (x) expressed in component terms as

f (x)=
n∑

i=1

aiix
2
i +

n∑
i=1

n∑
j=1,
j 6=i

aijxixj

However, we note that since A is symmetric aij = aji and consequently the terms aijxixj+

ajixixj can be written as 2aijxixj. Hence

∂f (x)
∂xk

= 2akkxk + 2
n∑

j=1,
j 6=i

akjxj for k = 1, 2, . . . , n

This is of course equivalent to the matrix form

∇f (x)= 2Ax

and this provides the standard matrix result where x is a column vector.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — App˙A-9780123869425 — 2012/5/30 — 20:11 — Page 490 — #10

490 Appendix A . Matrix Algebra

A.13 Square Root of a Matrix
In order to have a square root, a matrix must be square. If A is a square matrix and B B= A,
then B is the square root of A. If A is singular, it may not have a square root.

The square matrix A can be factorized to give A= XDX−1 where D is a diagonal matrix
comprising the n eigenvalues of A, and X is an n×n array of the eigenvectors of A. We can
expand this expression for A to give

A= (XD1/2X−1)(XD1/2X−1)

Since

A= B B

then

B= XD1/2X−1

The square root of the diagonal matrix of eigenvalues, D, is determined by taking the
square root of each diagonal element, that is, each eigenvalue. Any number, real or com-
plex, will have one positive and one negative square root. Thus to determine the square
root of D (and hence A) we must consider every combination of the positive and nega-
tive square roots of the eigenvalues. This gives 2n possible combinations and hence there
are 2n expressions for D1/2. This will lead to 2n different square root matrices, B. If D1/2

comprises all the positive roots then the resulting square root matrix is called the principal
square root. This matrix is unique.

Consider the following example. If

A=

31 37 34

55 67 64

91 115 118

then, taking the 23

= 8 combinations of square roots, we obtain the following square roots
of A. Note that B0 is the principal square root.

B0 =

2.9798 2.9296 1.8721

4.3357 5.0865 3.9804

5.0313 7.1413 8.9530

 B1 =

1.0000 2.0000 3.0000

3.0000 4.0000 5.0000

8.0000 9.0000 7.0000

B2 =

2.8115 3.0713 1.8437

4.5426 4.9123 4.0153

4.9594 7.2019 8.9408

 B3 =

1.1683 1.8583 3.0284

2.7931 4.1742 4.9651

8.0719 8.9395 7.0121

The negative of these matrices give a further four square roots of A. Multiplying any one of
these matrices by itself will result in the original matrix A.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — App˙B-9780123869425 — 2012/5/30 — 21:14 — Page 491 — #1

B
Error Analysis

All numerical processes are subject to error. Errors may be of the following types:

1. Truncation errors that are inherent in the numerical algorithm
2. Rounding errors due to the necessity to work to a finite number of significant figures
3. Errors due to inaccurate input data
4. Simple human errors in coding, which should not happen but does!

Examples of the errors described in (1) can be found throughout this text—see, for exam-
ple, Chapters 3, 4, and 5. Here we consider the implications of the errors described in (2)
and (3). Errors of the type described in (4) are outside the scope of this text.

B.1 Introduction
Error analysis estimates the error in some computation caused by errors in some previous
process. The previous process may be some experimentation, observation, or rounding
in a calculation. Generally we require an upper estimate of the error that can arise when
circumstances conspire to be at their worst! We now illustrate this by a specific exam-
ple. Suppose that a= 4± 0.02 (which implies an error of ±0.5%) and b= 2± 0.03 (which
implies an error of ±1.5%); then the highest value of a/b results when we divide 4.02 by
1.97 (to give 2.041) and the lowest value of a/b results when we divide 3.98 by 2.03 (to give
1.960). Thus compared with the nominal value of a/b (= 2) we see that the extremes are
2.05% above and 2.0% below the nominal value.

A particular aspect of error analysis is to determine how sensitive a particular calcu-
lation is to an error in a specific parameter. Thus we deliberately modify the value of a
parameter to determine how sensitive the final answer is to changes in that parameter. For
example, consider the following equation:

a= 100
sinθ

x3

If a is evaluated for θ = 70◦ and x = 3, then a= 3.4803. If θ is increased by 10%, then a=
3.6088, an increase of 3.69%. If θ is decreased by 10%, then a= 3.3, a decrease of 5.18%,
Similarly, if we independently increase x by 10%, then a= 2.6148, which is a decrease of
24.8%. If we decrease x by 10%, then a= 4.7741, an increase of 37.17%. Clearly the value of
a is much more sensitive to small changes in x than in θ .

Traveling Wave Analysis of Partial Differential Equations
Copyright © 2011 by Elsevier Ltd. All rights reserved.

491

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — App˙B-9780123869425 — 2012/5/30 — 21:14 — Page 492 — #2

492 Appendix B . Error Analysis

B.2 Errors in Arithmetic Operations
More usually, each of the independent variables has a specified error and we wish to find
the overall error in a calculation. We now consider how we can estimate the errors that arise
from the standard arithmetic operations. Let xa, ya, and za be approximations to the exact
values x, y, and z, respectively. Let the errors in x, y, and z be xε, yε, and zε, respectively.
Then these are given by

xε = x− xa, yε = y− ya, zε = z− za

Thus

x = xε + xa, y = yε + ya, z = zε + za

If z = x± y, then

z = (xa+ xε)± (ya+ yε)= (xa± ya)+ (xε ± yε)

Now za = xa± ya and hence from the preceding definitions zε = xε ± yε. Normally we are
concerned with the maximum possible error and since xε and yε may be positive or
negative quantities, then

max(|zε|)= |xε| +
∣∣yε∣∣

Consider now the process of multiplication. If z = xy, then

z = (xa+ xε)(ya+ yε)= xaya+ xεya+ yεxa+ xεyε (B.1)

Assuming the errors are small, we can neglect the product of errors in the preceding equa-
tion. It is convenient to work in terms of relative error, where the relative error in x, xR

ε is
given by

xR
ε = xε

/
x ≈ xε

/
xa

Thus, dividing (B.1) by za = xaya we have

(za+ zε)
za

= 1+
xε
xa
+

yε
ya

or

zε
za
=

xε
xa
+

yε
ya

(B.2)

(B.2) can be written

zR
ε = xR

ε + yR
ε

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — App˙B-9780123869425 — 2012/5/30 — 21:14 — Page 493 — #3

B.3 Errors in the Solution of Linear Equation Systems 493

Again, we want to estimate the worst-case error in z and since the error in x and y may be
positive or negative, we have

max
(∣∣∣zR

ε

∣∣∣)= ∣∣∣xR
ε

∣∣∣+ ∣∣∣yR
ε

∣∣∣ (B.3)

It can easily be shown that if z = x/y, the maximum relative error in z is also given by (B.3).
This proof is left as an exercise for the reader.

A more general approach to error analysis is to use a Taylor series. Thus if y = f (x) and
ya = f (xa), then we can write

y = f (x)= f (xa+ xε)= f (xa)+ xεf ′(xa)+ ·· ·

Now

yε = y− ya = f (x) − f (xa)

Therefore

yε ≈ xεf ′(xa)

For example, consider y = sinθ where θ = π/3± 0.08. Thus θε =±0.08. Hence

yε ≈ θε
d

dθ
{sin(θ)} = θε cos

(
π
/

3
)
= 0.08× 0.5= 0.04

B.3 Errors in the Solution of Linear Equation Systems
We now consider the problem of estimating the error in the solution of a set of linear
equations, Ax= b. For this analysis we must introduce the concept of a matrix norm.

The formal definition of a matrix p-norm is

‖A‖p =max
‖Ax‖p

‖x‖p
if x 6= 0

where ‖x‖p is the vector norm defined in Section A.10. In practice matrix norms are not
computed using this definition directly. For example, the 1-norm, 2-norm, and the infinity-
norm are computed as follows:

||A||1 =maximum absolute column sum of A

||A||2 =maximum singular value of A

||A||∞ =maximum absolute row sum of A

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — App˙B-9780123869425 — 2012/5/30 — 21:14 — Page 494 — #4

494 Appendix B . Error Analysis

Having defined the matrix norm we now consider the solution of the equation system

Ax= b

Let the exact solution of this system be x and the computed solution be xc. Then we may
define the error as

xe = x− xc

We can also define the residual r as

r= b−Axc

We note that large residuals are indicative of inaccuracies but small residuals do not
guarantee accuracy. For example, consider the case where

A=

[
2 1

2+ ε 1

]
, b=

[
3

3+ ε

]

The exact solution of Ax = b (with a residual r = 0) is

x=

[
1

1

]

However, if we consider the very poor approximation

xc =

[
1.5

0

]

then the residual is

b−Axc =

[
0

−0.5ε

]

If ε = 0.00001, then the residual is very small even though the solution is very inaccurate.
To obtain a formula that provides bounds on the relative error of the computed value,

xc, we proceed as follows:

r= b−Axc = Ax−Axc = Axε (B.4)

From (B.4) we have

xε = A−1r

Taking the norms of this equation we have

‖xε‖ =
∥∥∥A−1r

∥∥∥ (B.5)

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — App˙B-9780123869425 — 2012/5/30 — 21:14 — Page 495 — #5

B.3 Errors in the Solution of Linear Equation Systems 495

We can choose to use any p-norm and in the analysis that follows the subscript p is
omitted. A property of norms is that ||AB|| ≤ ||A|| ||B||. Thus we have, from (B.5),

‖xε‖ ≤
∥∥∥A−1

∥∥∥‖r‖ (B.6)

But r= Axε and so

‖r‖ ≤ ‖A‖ ‖xε‖

Therefore

‖r‖
‖A‖
≤ ‖xε‖

Combining this equation with (B.6) we have

‖r‖
‖A‖
≤ ‖xε‖ ≤

∥∥∥A−1
∥∥∥ ‖r‖ (B.7)

Now since x = A−1b we have, similarly,∥∥b
∥∥

‖A‖
≤ ‖x‖ ≤

∥∥∥A−1
∥∥∥∥∥b

∥∥ (B.8)

If none of the terms in the preceding equation are zero, we can take reciprocals to give

1∥∥A−1
∥∥∥∥b

∥∥ ≤ 1
‖x‖
≤
‖A‖∥∥b
∥∥ (B.9)

Multiplying the corresponding terms in (B.7) and (B.9) gives

1

‖A‖
∥∥A−1

∥∥ ‖r‖∥∥b
∥∥ ≤ ‖xε‖‖x‖ ≤ ‖A‖ ∥∥∥A−1

∥∥∥ ‖r‖∥∥b
∥∥ (B.10)

This equation gives error bounds for the relative error in the computation that are directly
computable. The condition number of A is given by cond(A,p)= ||A||p||A−1

||p. Hence
(B.10) can be rewritten in terms of cond(A,p). When p= 2, cond(A) is the ratio of the largest
singular value of A to the smallest.

We now show how (B.10) can be used to estimate the relative error in the solution of
Ax = b when A is the Hilbert matrix. We have chosen the Hilbert matrix because its con-
dition number is large and its inverse is known and so we can compute the actual error
in the computation of x. The following MATLAB script evaluates (B.10) for a specific Hilbert
matrix using the 2-norm.

n = 6, format long

a = hilb(n); b = ones(n,1);

xc = a\b;

x = invhilb(n)*b;

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — App˙B-9780123869425 — 2012/5/30 — 21:14 — Page 496 — #6

496 Appendix B . Error Analysis

exact_x = x';

err = abs((xc-x)./x);

nrm_err = norm(xc-x)/norm(x)

r = b-a*xc;

L_Lim = (1/cond(a))*norm(r)/norm(b)

U_Lim = cond(a)*norm(r)/norm(b)

Running this script gives

n =

6

nrm_err =

3.316798106133016e-11

L_Lim =

3.351828310510846e-21

U_Lim =

7.492481073232495e-07

We see that the norm of the actual relative error, 3.316 × 10−11, lies between the bounds
3.35× 10−21 and 7.49× 10−7.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Solution-9780123869425 — 2012/5/31 — 12:32 — Page 497 — #1

Solutions to Selected Problems

Chapter 1
1.1. (a) Since some x are negative, the corresponding square roots are imaginary and

ı =
√
−1 is used.

(b) In executing x./y, the divide by zero produces the symbol∞ and a warning.

1.2. (b) Note that t2 is identical to c but t1 is not since the sqrt function gives the
square root of the individual elements of c.

1.4. x = 2.4545, y = 1.4545, z =−0.2727. Note that when using the / operator the
solution is given by x=b'/a'.

1.8. The plot does not truly represent the function cos(x3) because there are
insufficient plotting points.

1.9. The function fplot automatically adjusts to provide a smoother plot. However,
changing x to -2:0.01:2 gives a similar quality graph using the function plot.

1.12. x = 1.6180.

1.14. Using x1 = 1,x2 = 2, . . . ,x6 = 6, a suitable script is

n = 6; x = 1:n;

for j = 1:n,

p(j) = 1;

for i = 1:n

if i~=j

p(j) = p(j)*x(i);

end

end

end

p

1.15. A suitable script is

x = 0.82; tol = 0.005; s = x; i = 2; term = x;

while abs(term)>tol

term = -term*x; s = s+term/i; i = i+1;

end

s, log(1+x)

Note: The scripts may have been compressed to save space.

Traveling Wave Analysis of Partial Differential Equations
Copyright © 2011 by Elsevier Ltd. All rights reserved.

497

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Solution-9780123869425 — 2012/5/31 — 12:32 — Page 498 — #2

498 Solutions to Selected Problems

1.17. The form of the function is

function [x1,x2] = funct1(a,b,c)

d = b*b-4*a*c;

if d==0

x1 = -b/(2*a); x2 = x1;

else

x1 = (-b+sqrt(d))/(2*a); x2 = (-b-sqrt(d))/(2*a);

end

1.18. A possible script is

function [x1,x2] = funct2(a,b,c)

if a~= 0

%as in problem 1.17

else

disp('warning only one root'); x1 = -c/b; x2 = x1;

end

1.19. The graph provides an initial approximation of 1.5. Use the function call
fzero('funct3',1.5) to obtain the root as 1.2512.

1.20. A possible script is

x=[]; x(1) = 1873;

c = 1; xc = x(1);

while xc>1

if (x(c)/2)==floor(x(c)/2)

x(c+1) = (x(c))/2;

else

x(c+1) = 3*x(c)+1;

end

xc = x(c+1); c = c+1;

if c>1000

break

end

end

plot(x)

Try different values for x(1). For example, 1173, 1409, and so on.

1.21. A possible script is

x = -4:0.1:4; y = -4:0.1:4;

[x,y] = meshgrid(-4:0.1:4,-4:0.1:4);

p = x.^2+y.^2;

z = (1-x.^2).*exp(-p)-p.*exp(-p)-exp(-(x+1).^2-y.^2);

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Solution-9780123869425 — 2012/5/31 — 12:32 — Page 499 — #3

Chapter 1 499

subplot(3,1,1)

mesh(x,y,z)

xlabel('x'), ylabel('y'), zlabel('z')

title('mesh')

subplot(3,1,2)

surf(x,y,z)

xlabel('x'), ylabel('y'), zlabel('z')

title('surf')

subplot(3,1,3)

mesh(x,y,z)

xlabel('x'), ylabel('y'), zlabel('z')

title('contour')

1.22. A possible script is

clf

a = 11; b= 6;

t = -20:0.1:20;

% Cycloid

x = a*(t-sin(t));y=a*(1-cos(t));

subplot(3,1,1), plot(x,y)

xlabel('x-xis'), ylabel('y-xis'), title('Cycloid')

% witch of agnesi

x1 = 2*a*t;y1=2*a./(1+t.^2);

subplot(3,1,2), plot(x1,y1)

xlabel('x-xis'), ylabel('y-xis')

title('witch of agnesi')

% Complex structure

x2 = a*cos(t)-b*cos(a/b*t);

y2 = a*sin(t)-b*sin(a/b*t);

subplot(3,1,3), plot(x2,y2)

xlabel('x-xis'), ylabel('y-xis')

title('Complex structure')

1.23. A possible function is

function r = zetainf(s,acc)

sum = 0; n = 1; term = 1+acc;

while abs(term)>acc

term = 1/n.^s;

sum = sum +term;

n = n+1;

end

r = sum;

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Solution-9780123869425 — 2012/5/31 — 12:32 — Page 500 — #4

500 Solutions to Selected Problems

1.24. A possible function is

function res = sumfac(n)

sum = 0;

for i = 1:n

sum = sum+i^2/factorial(i);

end

res = sum;

1.26. A possible script is

rho1 = [zeros(2), eye(2); eye(2), zeros(2)]

rho2 = [zeros(2), i*eye(2); -i*eye(2), zeros(2)]

rho3 = [eye(2), zeros(2); zeros(2), -eye(2)]

q1 = [zeros(4) rho1;-rho1 zeros(4)]

q1 = [zeros(4) rho2;-rho2 zeros(4)]

q1 = [zeros(4) rho3;-rho3 zeros(4)]

1.27. A possible script is

x = -4:0.001:4;

y = 1./(((x+2.5).^2).*((x-3.5).^2));

plot(x,y)

ylim([0,20])

xlim([-3,-2])

1.28. A possible script is

y = @(x)x.^2.*cos(1+x.^2);

y1 = @(x) (1+exp(x))./(cos(x)+sin(x));

x = 0:0.1:2;

subplot(1,2,1), plot(x,y(x))

xlabel('x'), ylabel('y')

subplot(1,2,2), plot(x,y1(x))

xlabel('x'), ylabel('y')

Chapter 2
2.1.

Note the large error in the inverse of the square of the Hilbert matrix when n= 6.

For n 5, the norm of n 6 the norm of Q is lar ge.

Different versions of MATLAB and possibly diffrent platforms give slightly
different results for this problem but the trends in the results and the conclusions
that may be drawn are not affected.

 is large. For − Q−R RP ==

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Solution-9780123869425 — 2012/5/31 — 12:32 — Page 501 — #5

Chapter 2 501

2.2. For n= 3, 4, 5, and 6, the answers are 2.7464× 105, 2.4068× 108, 2.2715× 1011, and
2.2341× 1014, respectively. The large errors in Problem 2.1 arise from the fact that
the Hilbert matrix is very ill-conditioned, as shown by these results.

2.3. For example, taking n= 5, a= 0.2, and b= 0.1,a+ 2b< 1 and maximum error in
the matrix coefficients is 1.0412×10 5. Taking n= 5, a= 0.3, b= 0.5, a+ 2b> 1 and
after 10 terms, maximum error in the matrix coefficients is 10.8770. After 20 terms,
maximum error is 50.5327, clearly diverging.

2.4. The eigenvalues are 5, 2+ 2ı , and 2− 2ı . Thus taking λ= 5 in the matrix (A− λI)
and finding the RREF gives

p=

1 0 −1.3529

0 1 0.6471

0 0 0

Hence px= 0. Solving this gives x1 = 1.3529x3, x2 =−0.6471x3, and x3 is arbitrary.

2.6. x> = [0.9500 0.9811 0.9727]. All methods give the identical solution. Note that if
[q,r] = qr(a) and y = q'*b;, then x = r(1:3,1:3)\y(1:3).

2.7. The solution is [0 0 0 0 . . . n+ 1].

2.10. For n= 20 the condition number is 178.0643; the theoretical condition number is
162.1139. For n= 50 the condition number is 1053.5; the theoretical condition
number is 1013.2.

2.11. The right vectors are

 0.0484+ 0.4447ı

−0.3962+ 0.4930ı

0.4930+ 0.3962ı

 0.0484− 0.4447ı

−0.3962− 0.4930ı

0.4930− 0.3962ı

0.4082

0.8165

0.4082

The corresponding eigenvalues are 2+ 4ı , 2− 4ı , and 1. The left vectors are
obtained by using the function eig on the transposed matrix.

2.12. (a) The largest eigenvalue is 242.9773.
(b) The eigenvalue nearest 100 is 112.1542.
(c) The smallest eigenvalue is 77.6972.

2.14. For n= 5, the largest eigenvalue is 12.3435 and the smallest eigenvalue is 0.2716.
For n= 50, the largest eigenvalue is 1.0337× 103 and the smallest eigenvalue is
0.2502.

2.15. Using the function roots we compute the eigenvalues 22.9714,−11.9714,
1.0206± 0.0086ı , 1.0083± 0.0206ı , 0.9914± 0.0202ı , and 0.9798± 0.0083ı . Using
the function eig we have 22.9714,−11.9714, 1, 1, 1, 1, 1, 1, 1, and 1. This is a
more accurate solution.

−

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Solution-9780123869425 — 2012/5/31 — 12:32 — Page 502 — #6

502 Solutions to Selected Problems

2.16. Both eig and roots give results that only differ by less than 1× 10−10. The
eigenvalues are 242.9773, 77.6972, 112.1542, 167.4849, and 134.6865.

2.17. The sum of eigenvalues is 55; the product of eigenvalues is 1.

2.18. c = 0.641n1.8863.

2.19. A suitable function is

function appinv = invapprox(A,k)

ev = eig(A);

evm = max(ev);

if abs(evm)>1

disp('Method fails')

appinv = eye(size(A));

else

appinv = eye(size(A));

for i = 1:k

appinv = appinv+A^i;

end

end

2.20. The MATLAB operator gives a much better result. A suitable function is

function [res1,res2, nv1,nv2] = udsys(A,b)

newA = A'*A; newb = A'*b;

x1 = inv(newA)*newb;

nv1 = norm(A*x1-b);

x2 = A\b;

nv2 = norm(A*x2-b);

res1 = x1; res2 = x2;

2.22. The exact solution is

x= [−12.5 − 24 − 34 − 42 − 47.5 − 50 − 49 − 44 − 34.5 − 20]>.

The Gauss–Seidel method requires 149 iterations and the Jacobi method requires
283 iterations to give the result to the required accuracy.

Chapter 3
3.2. The solution is 27.8235.

3.3. The solutions are−2 and 1.6344.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Solution-9780123869425 — 2012/5/31 — 12:32 — Page 503 — #7

Chapter 3 503

3.4. For c = 5, with the initial approximation 1.3 or 1.4, the root 1.3735 is obtained after
two or three iterations. When c = 10, with the initial approximation 1.4, the root
1.4711 is obtained after five iterations. With initial approximation 1.3, convergence
is to 130.2764 after 25 iterations. This is a root, but the discontinuity in the function
has degraded the performance of the Newton algorithm.

3.5. Schroder’s method provides the solution x = 1.0 in one iteration, but Newton’s
method gives x = . and requires 6 iterations. The solution obtained by
Schroder’s method is more accurate.

3.6. The equation can be rearranged into the form x = exp(x/10). Iteration gives
x = 1.1183. There may be other successful rearrangements.

3.7. The solution is E = 0.1280.

3.8. The answers are × 10− and− ×10 − for initial values 1 and−1.5,
respectively. The exact solution is clearly 0, but this is a difficult problem.

3.9. The three answers are 1.4299, 1.4468, and 1.4458, which are obtained for four, five,
and six terms, respectively. These answers are converging to the correct
answer.

3.10. Both approaches give identical results, x = 8.2183, y = 2.2747. The single variable
function is x/5− cosx = 2. Alternatively, the following call can be used:

newtonmv([1 1]','p310','p310d',2,1e-4)

It requires the functions and derivatives to be defined as follows:

function v = p310(x)

v = zeros(2,1);

v(1) = exp(x(1)/10)-x(2);

v(2) = 2*log(x(2))-cos(x(1))-2;

function vd = p310d(x)

vd = zeros(2,2);

vd(1,:) = [exp(x(1)/10)/10 -1];

vd(2,:) = [sin(x(1)) 2/x(2)];

3.11. The solution given by broyden is x = 0.1605, y = 0.4931.

3.12. A solution is x = 0.9397, y = 0.3420. The MATLAB function newtonmv requires 7
iterations; broyden requires 33.

3.14. The five roots are 1,−ı , ı ,−
√

2,
√

2.

3.15. The solution is x =−0.1737− 0.9848ı, 0.9397+ 0.3420ı, and−0.7660+ 0.6428ı.
This is identical to the exact answer.

000
3 0 9991

1716 7.18612.1602

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Solution-9780123869425 — 2012/5/31 — 12:32 — Page 504 — #8

504 Solutions to Selected Problems

3.16. The MATLAB function required is

function v = jarrett(f,x1,x2,tol)

gamma = 0.5; d = 1;

while abs(d)>to

f2 = feval(f,x2);f1=feval(f,x1);

df = (f2-f1)/(x2-x1); x3 = x2-f2/df; d = x2-x3;

if f1*f2>0

x2 = x1; f2 = gamma*f1;

end

x2 = x3

end

3.17. The third-order method provides the required accuracy after seven iterations. The
second-order method requires ten iterations.

3.18. The graphs show that for c = 2.8 there is convergence to a single solution, for
c = 3.25 the iteration oscillates between two values, for c = 3.5 the iteration
oscillates between four values, and for c = 3.8 there is chaotic oscillation between
many values.

3.20. Here is an example with p and q chosen to give real roots:

>> p=2.5; q = -1; if p^3/q^2>27/4, r = roots([1 0 -p -q]), end

r =

-1.7523

1.3200

0.4323

3.21. The commands to solve this problem are

>> y1 = roots([1 0 6 -60 36])

y1 =

-1.8721 + 3.8101i

-1.8721 - 3.8101i

3.0999

0.6444

>> y = y1(3:4)'

y =

3.0999 0.6444

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Solution-9780123869425 — 2012/5/31 — 12:32 — Page 505 — #9

Chapter 4 505

>> x = 6./y

x =

1.9356 9.3110

>> z = 10-x-y

z =

4.9646 0.0446

3.22. A script to solve this problem is

c1=(sinh(x)+sin(x))./(2*x);

c3=(sinh(x)-sin(x))./(2*x.^3);

fzero(@ (x) c1^2-x.^4*c3.^2,5)

fzero(@ (x) c1^2-x.^4*c3.^2,30)

Chapter 4
4.1. The first derivative is 0.2391, the second derivative is−2.8256. The function

diffgen gives accurate answers using either h= 0.1 or 0.01. The function changes
slowly over this range of values.

4.2. When x = 1, the computed and exact derivative is−5.0488; when x = 2, the
computed derivative is−176.6375 (exact =−176.6450), and when x = 3, the
computed derivative is−194.4680 (exact =−218.6079).

4.3. Using the new formula for Problem 4.1, the first derivative estimate is 0.2267 and
0.2390 for h= 0.1 and 0.01, respectively. The second derivative is−2.8249 and
−2.8256 for h= 0.1 and 0.01, respectively. In Problem 4.2 for x = 1, 2, and 3 the first
derivative estimates are−5.0489,−175.5798, and−150.1775, respectively. Note that
these are less accurate than using diffgen.

4.4. The approximate derivatives are−1367.2,−979.4472,−1287.7, and−194.4680. If h
is decreased to 0.0001, then the values are the same as the exact derivatives to the
given number of decimal places.

4.5. The exact partial derivatives with respect to x and y are 593.652 and 445.2395,
respectively. The corresponding approximate values are 593.7071 and
445.2933.

4.6. The integral method estimates 6.3470 primes in the range 1 to 10, 9.633 primes in
the range 1 to 17, and 15.1851 primes in the range 1 to 30. The actual numbers are
7, 10, and 15.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Solution-9780123869425 — 2012/5/31 — 12:32 — Page 506 — #10

506 Solutions to Selected Problems

4.7. The exact values are 1.5708, 0.5890, and 0.2443 for r = 0, 1, and 2, respectively.
Approximations provided by integral are 1.5338, 0.5820, and 0.2700.

4.8. The exact values are−0.0811 for a= 1 and 0.3052 for a= 2. Using simp1 with 512
points gives agreement to 12 decimal places.

4.9. The exact answer is−0.915965591, and the answer given by fgauss is−0.9136.
Function simp1 cannot be used because of the singularity at x = 0.

4.10. The exact answer is 0.915965591; fgauss gives 0.9159655938. Note that the integrals
of Problems 4.9 and 4.10 have the same value apart from the sign.

4.11. (a) Using (4.32) with 10 points gives 3.97746326050642; 16-point Gauss gives 3.8145.
(b) Using (4.33) gives 1.77549968921218; 16-point Gauss gives 1.7758.

4.13. The function filon gives

2.00000000000098,−0.13333333344440, and−2.000199980281494× 10−4

4.14. Using Romberg’s method with nine divisions gives−2.000222004003794× 10−4.
Using Simpson’s rule with 1024 intervals gives−1.999899106566088× 10−4.

4.18. The solution for (a) is 48.96321182552904 and for (b) is 9726.56492. These
compare well with the exact solution, which can be computed from the formula
4π (n+1)/(n+ 1)2 where n is the power of x and y.

4.19. (a) To fix limits, substitute y =
√
(x/3)−1 z + 1. Answer:−1.71962748468952.

(b) To fix limits, substitute y = (2− x)z. Answer: 0.22222388780205.

4.20. The answers are (a) (b) 0.22222222200993.

4.21. Values of the integral are given in the following table:

z Exact 16-point Gauss

0.5 0.493107418 0.49310741784618
1.0 0.946083070 0.94608306999140
2.0 1.605412977 1.60541297617644

4.22. Use gauss2v and define the following function:

z = @(x,y) 1./(1-x.*y);

4.23. The folowing will provide the solution of this problem:

% Probability of engine failure

p = [];

a = 3.5; b = 8200;

i = 1;

()

9725.75264 and

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Solution-9780123869425 — 2012/5/31 — 12:32 — Page 507 — #11

Chapter 4 507

for T = 200:100:4000

P(i) = quad(@(x) a*b^a./((x+b).^(a+1)),0.001,T);

i = i+1;

end

figure(1)

plot(200:100:4000,P)

xlabel('Time in hours'), ylabel('Probability of failure')

title('plot of probaility of failure against time')

grid

4.24. The folowing will provide the solution of this problem; the value of the integral is
−0.15415 correct to 5 places.

p = 3; q = 4; r = 2;

f = @(x) (x.^p-x.^q).*x.^r ./log(x);

val = quad(f,0,1);

fprintf('\n value of integral = %6.5f\n',val)

check = log((p+r+1)/(q+r+1))

fprintf('\n value of integral = %6.5f\n',check)

4.25. The three integrals are approximately equal to 0.91597.

4.26. The integral equals zero to five decimal places.

4.27. A fairly low accuracy result is obtained.

4.28. Accuracy to two decimal places is obtained.

4.29. There is good agreement between values. The script is

f = @(x) -log(x).^3 .* exp(-x)

val = quadgk(f,0,Inf);

fprintf('\n value of integral = %6.5f\n',val)

gam = 0.57722;

S3 = gam^3+0.5*gam*pi^2+2*zeta(3)

fprintf('\n Approximate sum of series = %6.5f\n',S3)

4.30. The best result is given by dblquad and is 2.01131. The script is

R = dblquad(@(x,y) (1-cos(50*x).*cos(100*y))./(2-cos(x)-cos(y))...

,0.0001,pi,0.0001,pi);R=R/pi^2;

fprintf('\nValue of integral using dblquad = %6.5f\n',R)

R1 = simp2v(@(x,y) (1-cos(50*x).*cos(100*y))./(2-cos(x)-cos(y))...

,.00001,pi,0.00001,pi,64);R1=R1/pi^2;

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Solution-9780123869425 — 2012/5/31 — 12:32 — Page 508 — #12

508 Solutions to Selected Problems

gamma = -psi(1);

R = (gamma+3*log(2)/2+log(50^2+100^2)/2)/pi;

fprintf('\nValue of integral using simp2v = %6.5f\n',R1)

fprintf('\n Approximate value check = %6.5f\n',R)

4.31. Value of integral = 0.46306.

Chapter 5
5.1. When t = 10, the exact value is 30.326533. feuler: 29.9368, 30.2885, 30.3227 with

h= 1, 0.1, and 0.01, respectively. eulertp: 30.3281, 30.3266 with h= 1 and 0.1,
respectively. rkgen: 30.3265 with h= 1.

5.2. The classical method gives 108.9077, the Butcher method gives 109.1924, and the
Merson method gives 109.0706. The exact answer is 2exp(x2)= 109.1963.

5.3. The Adams–Bashforth–Moulton method gives 4.1042, and Hamming’s method
gives 4.1043. The exact answer is 4.1042499.

5.4. Using ode23 gives 0.0 ; using ode45 gives 0.058 .

5.5. The solution of Problem 5.1 with h= 1 is 30.3265. The solution of Problem 5.2 with
h= 0.2 is 108.8906. The solution of Problem 5.2 with h= 0.02 is 109.1963.

5.6. (a) 7998.6, exact = 8000. (b) 109.1963.

5.9. The method is stable for h= 0.1 and 0.2, and unstable for h= 0.4.

5.11. Define the right sides using the following function:

function = p511(t,x)

v = ones(2,1);

v(1) = x(1)*(1-0.001*x(1)-1.8*x(2));

v(2) = x(2)*(.3-.5*x(2)/x(1));

5.12. Define the right sides using the following function:

function v = p512(t,x)

v = ones(2,1);

v(1) = -20*x(1); v(2) = x(1);

5.13. Define the right sides using the following function:

function v = p513(t,x)

v = ones(2,1);

v(1) = -30*x(2);

v(2) = -.01*x(1)*x(2);

4254

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Solution-9780123869425 — 2012/5/31 — 12:32 — Page 509 — #13

Chapter 5 509

5.14. Define the right sides using the following function:

function v = p514(t,x)

global c

k = 4; m = 1; F = 1;

v = ones(2,1);

v(1) = (F-c*x(1)-k*x(2))/m;

v(2) = x(1);

The script to solve this equation is

global c

i = 0;

for c = [0,2,1]

i = i+1;

c

[t,x] = ode45('q514',[0 10],[0 0]');

figure(i)

plot(t,x(:,2))

end

5.16. The function to solve this problem is

function prhs = planetrhs(t,x)

% global x0

% NB global is used if initial values x0

% are used to calculate impact probabilities

% rather than x the variable values

for i=1:3

for j=1:3

A(i,j)=x(i).*x(j)./(x(i)+x(j))/1000;

end

end

prhs = zeros(3,1);

prhs(1) = -x(1).*(A(1,2).*x(2)+A(1,3).*x(3));

prhs(2) = 0.5*A(1,1)*x(1).*x(1)-x(2).*(A(2,2).*x(2)+A(2,3).*x(3));

prhs(3) = 0.5*A(1,2)*x(1).*x(2);

The script is as follows:

% Solution of planetary growth

% The coagulation equation three size model

% Let x(1), x(2) and x(3) represent the

% number of planetesimals of the three sizes

global x0

% Initially

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Solution-9780123869425 — 2012/5/31 — 12:32 — Page 510 — #14

510 Solutions to Selected Problems

x0 = [200,25,1];

tspan = [0,2];

[t,x] = ode45('planetrhs', tspan,x0);

fprintf('\n number of smallest planets= %3.0f',x(end,1))

fprintf('\n number of intermediate planets=%3.0f',x(end,2))

fprintf('\nlargest planets=%3.0f\n',x(end,3))

figure(1)

plot(t,x)

xlabel('time'), ylabel('planet numbers')

grid

5.17. The script to solve this equation is

% Solution of Daisy world problem

span = 10;

[x,t] = ode45('daisyf',span,[0.2, 0.3]);

plot(x,t)

xlabel('Time'), ylabel('black and white daisy areas')

title('daisy world')

grid

and the function is

function daisyrhs = daisyf(t,x)

daisyrhs = zeros(2,1);

gamma = 0.3;

Tb = 295; Tw = 285;

betab = 1-0.003265*(295.5-Tb)^2;

betaw = 1-0.003265*(295.5-Tw)^2;

barbit = 1-x(1)-x(2);

daisyrhs(1) = x(1).*(barbit.*betab-gamma);

daisyrhs(2) = x(2).*(barbit.*betaw-gamma);

Chapter 6
6.1. (a) hyperbolic; (b) parabolic; (c) f (x,y) > 0, hyperbolic; f (x,y) < 0, elliptic.

6.2. Initial slope=−1.6714. The shooting and FD methods give good results.

6.3. This is an example of a stiff equation. (a) The actual slope when x = 0 is
1.0158× 10−24. Because we cannot determine this slope accurately, the shooting
method gives a very inaccurate solution. (b) In this case the shooting method
provides a good result because the initial slope is−120. In both cases the FD
method requires a large number of divisions to give an accurate result.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Solution-9780123869425 — 2012/5/31 — 12:32 — Page 511 — #15

Chapter 7 511

6.5. The finite difference method gives λ1 = 2.4623. Exact λ1 = (π/L)2 = 2.4674.

6.6. At t = 0.5 the variation of z is almost linear between the boundaries at 0 and 10.

6.7. The exact and FD approximations are very similar.

6.8. The exact and FD approximations are similar with a maximum error of 0.0479.

6.10. [0.7703 1.0813 1.5548 1.583 1.1943 1.5548 1.583 1.194 1.0813 0.7703].

Chapter 7
7.1. Using the aitken function, E(2˚)= 1.5703, E(13˚)= 1.5507, and E(27˚)= 1.4864.

These are accurate to the places given.

7.2. The root is 27.8235.

7.3. (a) p(x)= 0.9814x2
+ 0.1529, and p(x)=−1.2083x4

+ 2.1897x2
+ 0.0137. The

fourth-degree polynomial gives a good fit.

7.4. Interpolation gives 0.9284 (linear), 0.9463 (spline), and 0.9380 (cubic polynomial).
The MATLAB function aitken gives 0.9455. This is the exact value to four decimal
places.

7.5. p(x)=−0.3238x5
+ 3.2x4

− 6.9905x3
− 12.8x2

+ 31.1429x. Note that the polynomial
oscillates between data points. The spline does not exhibit this characteristic,
suggesting that it better represents any underlying function from which the data
might have been taken.

7.6. (a) f (x)= 3.1276+ 1.9811ex
+ e2x.

(b) f (x)= 685.1− 2072.2/(1+ x)+ 1443.8/ (1+ x)2.
(c) f (x)= 47.3747x3

− 128.3479x2
+ 103.4153x− 5.2803. Plotting these functions

shows that the best fit is given by (a). The polynomial fit is a reasonable one.

7.7. The plot should diplay an airfoil section.

7.8. The product of primes less than P is given by 0.3679+ 1.0182loge P
approximately.

7.9. a0 = 1, a1 =−0.5740, a2 = 0.9456, a3 =−0.6865, a4 = 0.4115, a5 =−0.0966.

7.10. Exact:−78.3323. Interpolation gives−78.3340 (cubic) or−77.9876 (linear).

7.11. The minimum values of E are approximately−14.95 and−6.45 at points 40 and
170. The maximum values of E are 3.68 and 16.47 at points 110 and 252.

7.12. The data is sampled from y = sin(2π f1t)+ 2cos(2π f2t)where f1 = 1.25 Hz and
f2 = 3.4375 Hz. At 1.25 Hz, DFT =−15.9999ı and at 3.4375 Hz, DFT = 32.0001. The

6.9.
.

With 9 divisions in Even with
 36 divisions in the eigenvalues have converged.

x
notx,

�, 5.8870λ=

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Solution-9780123869425 — 2012/5/31 — 12:32 — Page 512 — #16

512 Solutions to Selected Problems

negative complex coefficient is related to the positive size of the coefficient of the
sine function, and the positive real component is related to the cosine function. To
relate the size of the DFT components to the frequency components in the data we
divide the DFT by the number of samples (32) and multiply by 2.

7.13. Algebraically,

32sin5(30t)= 20sin(30t)− 10sin(90t)+ 2sin(150t)

and

32sin6(30t)= 10− 15cos(60t)+ 6cos(120t)− cos(180t)

To verify these results from the DFT it is necessary to divide it by n and multiply
by 2. The real components are the values of the cosine coefficients. The imaginary
components in the DFT are the negative of the values of the sine coefficients. Note
also that the coefficient at zero frequency is 20, not 10. This is a consequence of the
definition of the DFT; see Section 7.4.

7.14. Components in the spectrum at 30 Hz and 112 Hz. The reason for the large
component at 112 Hz is that the component in the data at 400 Hz is above the
Nyquist frequency and is folded back to give a spurious component—that is, 400
Hz is 144 Hz above the Nyquist frequency of 256 Hz; 112 Hz is 144 Hz below it.

7.16. With 32 points the frequency increment is 16 Hz and the significant compo-
nents are at 96 Hz and 112 Hz (the largest amplitude). With 512 points the
frequency increment is reduced to 1 Hz and the significant components are at
106, 107, and 108 Hz with the largest amplitude at 107 Hz. With 1024 points
the frequency increment is reduced to 0.5 Hz and the component with the
largest amplitude is at 107.5 Hz. The original data had a frequency component
of 107.5 Hz.

7.17. The estimated production cost in year 6 is $31.80 using cubic extrapolation and
$20.88 using quadratic extrapolation. Using the revised data the estimated costs are
$24.30 and $21.57, respectively. These widely varying results, some of which are
barely credible, show the dangers of trying to estimate future costs from insufficient
data.

7.18. x

7.19. I α

7.20. fn =
n
6

(
n2
+ 3n+ 2

)
.

7.23. The values are 22.70, 22.42, and 22.42.

degre=

=

=

 2.4679.

 1.5713, 8.71406 se

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Solution-9780123869425 — 2012/5/31 — 12:32 — Page 513 — #17

Chapter 8 513

7.24. The script for this problem is

load sunspot.dat

year = sunspot(:,1);

sunact = sunspot(:,2);

figure(1)

plot(year,sunact)

xlabel('Year'), ylabel('Sunspots')

title('Sunspot activity by year')

Y = fft(sunact);

N = length(Y);

Power = abs(Y(1:N/2)).^2;

freq = (1:N/2)/(N/2)*0.5;

figure(2)

plot(freq,Power)

xlabel('freq'), ylabel('Power')

Chapter 8
8.1. The objective is 21.6667. The solution is x1 = 3.6667, x3 = 0.3333; the other

variables are zero.

8.2. The objective is 21.6667. The solution is x1 = 3.3333, x2 = 1.6667, x4 = 0.3333; the
other variables are zero. Thus this problem and the previous one have objective
functions of equal magnitude.

8.3. The objective is 100. The solution is x1 = 10, x3 = 20, x5 = 22; the other variables
are zero.

8.4. This is a difficult function for the conjugate gradient method and this is why the
accuracy of the line search for the built-in MATLAB function fminsearch was
changed to produce more accurate results. The solution is [1.0007 1.0014] with
gradient [0.33860.5226]× 10−3.

8.5. The exact and computed solutions are both [−2.9035 − 2.9035 1 1 1].

8.6. The solution is [−0.4600 0.5400 0.3200 0.8200]>. norm(b-Ax)= 1.3131× 10−14.

8.7. [xval,maxf] = optga('p807',[0 2],8,12,20,.005,.6) where p807 is a MATLAB

function defining the problem. A test run gave the following answers:

xval = 0.9098, maxf = 0.4980.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Solution-9780123869425 — 2012/5/31 — 12:32 — Page 514 — #18

514 Solutions to Selected Problems

8.8. The major modification is to the fitness function as follows:

function [fit,fitot] = fitness2d(criteria,chrom,a,b)

% calculate fitness of a set of chromosomes for a two variable

% function assuming each variable is defined in the range

% a to b using a two variable function given by criteria

[pop bitl] = size(chrom); vlength = floor(bitl/2);

for k = 1:pop

v = []; v1 = []; v2 = []; partchrom1 = chrom(k,1:vlength);

partchrom2 = chrom(k,vlength+1:2*vlength);

v1 = binvreal(partchrom1,a,b); v2 = binvreal(partchrom2,a,b);

v = [v1 v2]; fit(k) = feval(criteria,v);

end

fitot = sum(fit);

A call of the modified algorithm is optga2d('f808',[1 2],24,40,100,.005,.6),
for example, where f808 defines z = x2

+ y2. This gives the sample results
maxf=7.9795 and xval=[1.9956 1.9993].

8.11. The obtained values are 0.1605 and 0.4931.

8.12. The script to solve this question is

clf

[x,y] = meshgrid(-4:0.1:4,-4:0.1:4);

p = x.^2+y.^2;

z = (1-x).^2.*exp(-p)- p.*exp(-p) - exp(-(x+1).^2 - y.^2);

figure(1)

surf(x,y,z)

xlabel('x-axis'), ylabel('y-axis'), zlabel('z-axis')

title('mexhat plot')

figure(2)

contour(x,y,z,20)

xlabel('x-axis'), ylabel('y-axis')

title('contour plot')

optp = ginput(3);

x = optp(:,1); y = optp(:,2);

p = x.^2+y.^2;

z = (1-x).^2.*exp(-p)- p.*exp(-p) - exp(-(x+1).^2 - y.^2)

fprintf('maximum value= %6.2f\n',max(z))

fprintf('minimum value= %6.2f\n',min(z))

x

y

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Solution-9780123869425 — 2012/5/31 — 12:32 — Page 515 — #19

Chapter 9 515

P=x(1).^2+x(2).^2;

fopt=@ (x)(1-x(1)).^2 .*exp(-(x(1).^2+x(2).^2))...

- (x(1).^2+x(2).^2).*exp(-(x(1).^2+x(2).^2))...

- exp(-(x(1)+1).^2 - x(2).^2) ;

[x,fval] = fminsearch(fopt,[-4;4])

fprintf('\nNon global solution= %8.6f\n',fval)

8.13. Note that continuous GA gives good agreement with Problem 8.12. Optimum
=−0.3877

8.14. The minimum is achieved at 63.8157.

8.15. The minimum is achieved at 63.8160, a very similar result to Problem 8.14.

Chapter 9
9.1. Use

>>collect((x-1/a-1/b)*(x-1/b-1/c)*(x-1/c-1/a))

9.2. Use
>>y = x^4+4*x^3-17*x^2+27*x-19; z = x^2+12*x-13;

>>horner(collect(z*y))

9.3. Use
>>expand(tan(4*x))

>>expand(cos(x+y))

>>expand(cos(3*x))

>>expand(cos(6*x))

9.4. Use
expand(cos(x+y+z))

9.5. Use
>>taylor(asin(x),8)

>>taylor(acos(x),8)

>>taylor(atan(x),8)

9.6. Use
taylor(log(cos(x)),13)

9.7. Use
>>[solution, how] = simple(symsum((r+3)/(r*(r+1)*(r+2))*(1/3)^r,1,n))

9.8. Use
symsum(k^10,1,100)

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Solution-9780123869425 — 2012/5/31 — 12:32 — Page 516 — #20

516 Solutions to Selected Problems

9.9. Use
symsum(k^(-4),1,inf)

9.10. Use
a = [1 a a^2;1 b b^2;1 c c^2]; factor(inv(a))

9.11. Set
a = [a1 a2 a3 a4;1 0 0 0;0 1 0 0;0 0 1 0]

and use
ev = a-lam*eye(4)

and
det(ev)

9.12. Set
trans = [cos(a1) sin(a1);-sin(a1) cos(a1)];

and use
>>[solution,how] = simple(trans^2)

>>[solution,how] = simple(trans^4)

9.13. Set
r = solve('x^3+3*h*x+g=0')

and use
[solution,s] = subexpr(r,'s')

9.14. Use
>>solve('x^3-9*x+28 = 0')

9.15. Use
>>p = solve('z^6 = 4*sqrt(2)+i*4*sqrt(2)');

>>res = double(p)

9.16. Use
>>f5 = log((1-x)*(1+x^3)/(1+x^2)); p = diff(f5);

>>factor(p)

Then use pretty(ans) to help interpret this result.

9.17. Use
>>f = log(x^2+y^2);

>>d2x = diff(f,x,2)

>>d2y = diff(f,y,2)

>>factor(d2x+d2y)

>>f1 = exp(-2*y)*cos(2*x);

>>r = diff(f1,'x',2)+diff(f1,'y',2)

9.18. Use
>>z = x^3*sin(y);

>>dyx = diff(diff(z,'y'),'x')

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Solution-9780123869425 — 2012/5/31 — 12:32 — Page 517 — #21

Chapter 9 517

>>dxy = diff(diff(z,'x'),'y')

>>dxy = diff(diff(z,'x',4),'y',6)

>>dxy = diff(diff(z,'y',6),'x',4)

9.19. (a) Use
>>p = int(1/((a+f*x)*(c+g*x)));

>>[solution,how] = simple(p)

>>[solution,how] = simple(diff(solution))

(b) Use
>>solution = int((1-x^2)/(1+x^2))

>>p = diff(solution); factor(p)

9.20. Use
>>int(1/(1+cos(x)+sin(x)))

and
>>int(1/(a^4+x^4))

9.21. Use
>>int(x^3/(exp(x)-1),0,inf)

9.22. Use
>>int(1/(1+x^6),0,inf)

and
>>int(1/(1+x^10),0,inf)

9.23. Use
>>taylor(exp(-x*x),7)

>>p = int(ans,0,1); vpa(p,10)

>>taylor(exp(-x*x),15)

>>p = int(ans,0,1); vpa(p,10)

9.24. Use
>>int(sin(x^2)/x,0,inf)

9.25. Use
>>taylor(log(1+cos(x)),5)

>>int(ans,0,1)

9.26. Use
>>dint = 1/(1-x*y)

>>int(int(dint,x,0,1),y,0,1)

9.27. Use
>>[solution,s] = subexpr(dsolve('D2y+(b*p+a*q)*Dy+a*b*(p*q-1)*...

y = c*A ', 'y(0)=0', 'Dy(0)=0','t'),'s')

Using the subs function
>>subs(solution,{p,q,a,b,c,A},{1,2,2,1,1,20})

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Solution-9780123869425 — 2012/5/31 — 12:32 — Page 518 — #22

518 Solutions to Selected Problems

we obtain the solution for the given values as
ans =

10-5*s(2)/s(1)^(1/2)*exp(-1/2*s(3)*t)+5*s(3)/s(1)^(1/2)*exp(-1/2*s(2)*t)

In addition, since we also require the values of s(1), s(2), and s(3), we again use
subs as follows:
>>s = subs(s,{p,q,a,b,c},{1,2,2,1,1})

s =

[17]

[5+17^(1/2)]

[5-17^(1/2)]

9.28. Use
>>sol = dsolve('2*Dx+4*Dy = cos(t),4*Dx-3*Dy = sin(t)','t')

This gives the solution in the form
sol =

x: [1x1 sym]

y: [1x1 sym]

To see the specific elements of the solution, use
>>sol.x

ans =

C1+3/22*sin(t)-2/11*cos(t)

and
>>sol.y

ans =

C2+2/11*sin(t)+1/11*cos(t)

9.29. Use
>>dsolve('(1-x^2)*D2y-2*x*Dy+2*y = 0','x')

9.30. (a) Use
>>laplace(cos(2*t))

and then
>>p = solve('s^2*Y+2*s+2*Y = s/(s^2+4)','Y');

>>ilaplace(p)

(b) Use
>>laplace(t)

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Solution-9780123869425 — 2012/5/31 — 12:32 — Page 519 — #23

Chapter 9 519

and then
>>p = solve('s*Y-2*Y = 1/s^2','Y');

>>ilaplace(p)

(c) Use
>>laplace(exp(-2*t))

and then
>>p = solve('s^2*Y+3*s-3*(s*Y+3)+Y = 1/(s+2)','Y');]

>>ilaplace(p)

(d) The Laplace transform of zero is zero. Thus take the Laplace transform of the
equation and then use
>>p = solve('(s*Y-V)+Y/c=0','Y');

>>ilaplace(p)

9.31. (a) The Z-transform of zero is zero. Thus take the Z-transform of the equation and
then use
>>p = solve('Y=-2*(Y/z+4)','Y');

>>iztrans(p)

(b) Use
>>ztrans(n)

and then use
>>p = solve('Y+(Y/z+10) = z/(z-1)^2','Y');

>>iztrans(p)

(c) Use
>>ztrans(3*heaviside(n))

and then use
>>p = solve('Y-2*(Y/z+1)=3*z/(z-1)','Y');

>>iztrans(p)

(d) Use
>>ztrans(3*4^n)

and then use
>>p = solve('Y-3*(Y/z-3)+2*(Y/z^2+5-3/z) = 3*z/(z-4)','Y');

>>iztrans(p)

EDELKAMP 19-ch15-671-700-9780123725127 2011/5/28 14:50 Page 672 #2

This page intentionally left blank

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Bibliography-9780123869425 — 2012/5/31 — 12:22 — Page 521 — #1

Bibliography

Abramowitz, M., and Stegun, I.A. (1965). Handbook of Mathematical Functions, 9th ed. Dover, New York.

Adby, P.R., and Dempster, M.A.H. (1974). Introduction to Optimisation Methods. Chapman and Hall,
London.

Anderson, D.R., Sweeney, D.J., and Williams, T.A. (1993). Statistics for Business and Economics. West
Publishing Co., Minneapolis.

Armstrong, R., and Kulesza, B.L.J. (1981). “An approximate solution to the equation x = exp(−x/c).”
Bulletin of the Institute of Mathematics and Its Applications, 17(2-3), 56.

Bailey, D.H. (1988). “The computation of π to 29,360,000 decimal digits using Borweins’ quadratically
convergent algorithm.” Mathematics of Computation, 50, 283–296.

Barnes, E.R. (1986). “Affine transform method.” Mathematical Programming, 36, 174–182.

Beltrami, E.J. (1987). Mathematics for Dynamic Modelling. Academic Press, Boston.

Bracewell, R.N. (1978). The Fourier Transform and Its Applications. McGraw-Hill, New York.

Brent, R.P. (1971). “An algorithm with guaranteed convergence for finding the zero of a function.”
Computer Journal, 14, 422–425.

Brigham, E.O. (1974). The Fast Fourier Transform. Prentice Hall, Englewood Cliffs, NJ.

Butcher, J.C. (1964). “On Runge Kutta processes of high order.” Journal of the Australian Mathematical
Society, 4, 179–194.

Caruana, R.A., and Schaffer, J.D. (1988). “Representation and hidden bias: Grey vs. binary coding for
genetic algorithms.” Proceedings of the 5th International Conference on Machine Learning, Los Altos,
CA, pp. 153–161.

Chelouah, R., and Siarry, P. (2000). “A continuous genetic algorithm design for the global optimisation of
multimodal functions.” Journal of Heuristics, 6(2), 191–213

Cooley, P.M., and Tukey, J.W. (1965). “An algorithm for the machine calculation of complex Fourier series.”
Mathematics of Computation, 19, 297–301.

Dantzig, G.B. (1963). Linear Programming and Extensions. Princeton University Press, Princeton, NJ.

Dekker, T.J. (1969). “Finding a zero by means of successive linear interpolation” in Dejon, B. and
Henrici, P. (eds.). Constructive Aspects of the Fundamental Theorem of Algebra. Wiley-Interscience,
New York.

Dongarra, J.J., Bunch, J., Moler, C.B., and Stewart, G. (1979). LINPACK User’s Guide. SIAM, Philadelphia.

Dowell, M., and Jarrett, P. (1971). “A modified regula falsi method for computing the root of an equation.”
BIT, 11, 168–174.

Draper, N.R., and Smith H. (1998). Applied Regression Analysis, 3rd ed. Wiley, New York.

Fiacco, A.V., and McCormick, G. (1968). Nonlinear Programming: Sequential Unconstrained Minimization
Techniques. Wiley, New York.

Fiacco A.V. and McCormick, G. (1990). Nonlinear Programming: Sequential Unconstrained Minimization
Techniques. SIAM Classics in Mathematics, SIAM, Philadelphia (reissue).

Fletcher, R., and Reeves, C.M. (1964). “Function minimisation by conjugate gradients.” Computer Journal,
7, 149–154.

Traveling Wave Analysis of Partial Differential Equations
Copyright © 2011 by Elsevier Ltd. All rights reserved.

521

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Bibliography-9780123869425 — 2012/5/31 — 12:22 — Page 522 — #2

522 Bibliography

Fox, L., and Mayers, D.F. (1968). Computing Methods for Scientists and Engineers. Oxford University Press,
Oxford, UK.

Froberg, C.-E. (1969). Introduction to Numerical Analysis, 2nd ed. Addison-Wesley, Reading, MA.

Garbow, B.S., Boyle, J.M., Dongarra, J.J., and Moler, C.B. (1977). Matrix Eigensystem Routines: EISPACK
Guide Extension. Lecture Notes in Computer Science, 51. Springer-Verlag, Berlin.

Gear, C.W. (1971). Numerical Initial Value Problems in Ordinary Differential Equations. Prentice Hall,
Englewood Cliffs, NJ.

Gilbert, J.R., Moler, C.B., and Schreiber, R. (1992). “Sparse matrices in MATLAB: Design and implementa-
tion.” SIAM Journal of Matrix Analysis and Application, 13(1), 333–356.

Gill, S. (1951). “Process for the step by step integration of differential equations in an automatic digital
computing machine.” Proceedings of the Cambridge Philosophical Society, 47, 96–108.

Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley,
Reading, MA.

Golub, G.H., and Van Loan, C.F. (1989). Matrix Computations, 2nd ed. John Hopkins University Press,
Baltimore.

Gragg, W.B. (1965). “On extrapolation algorithms for ordinary initial value problems.” SIAM Journal of
Numerical Analysis, 2, 384–403.

Guyan, R.J. (1965). “Reduction of stiffness and mass matrices.” AIAA Journal, 3(2), 380.

Hamming, R.W. (1959). “Stable predictor–corrector methods for ordinary differential equations.” Journal
of the ACM, 6, 37–47.

Higham, D.J., and Higham, N.J. (2005). MATLAB Guide, 2nd ed. SIAM, Philadelphia.

Hopfield, J.J., and Tank, D.W. (1985). “Neural computation of decisions in optimisation problems.”
Biological Cybernetics, 52(3), 141–152.

Hopfield, J.J., and Tank, D.W. (1986). “Computing with neural circuits: A model.” Science, 233, 625–633.

Ingber, L. (1993). “Very fast simulated annealing.” Journal of Mathematical Computer Modelling, 18, 29–57.

Jeffrey, A. (1979). Mathematics for Engineers and Scientists. Nelson, Sunburyon-Thames, UK.

Karmarkar, N.K. (1984). “A new polynomial time algorithm for linear programming.” AT&T Bell Laborato-
ries, Murray Hill, NJ.

Karmarkar, N.K., and Ramakrishnan, K.G. (1991). “Computational results of an interior point algorithm for
large scale linear programming.” Mathematical Programming, 52(3), 555–586.

Kirkpatrick, S., Gellat, C.D., and Vecchi, M.P. (1983). “Optimisation by simulated annealing.” Science, 220,
206–212.

Kronrod, A.S. (1965). Nodes and Weights of Quadrature Formulas: Sixteen Place Tables. Consultants’
Bureau, New York.

Lambert, J.D. (1973). Computational Methods in Ordinary Differential Equations. John Wiley & Sons,
London.

Lasdon, L., Plummer, J., and Warren, A. (1996). “Nonlinear programming” in Avriel, M. and Golany,
B. (eds.). Mathematical Programming for Industrial Engineers, Chapter 6, 385–485, Marcel Dekker,
New York.

Lindfield, G.R., and Penny, J.E.T. (1989). Microcomputers in Numerical Analysis. Ellis Horwood, Chichester,
UK.

MATLAB User’s Guide. (1989). The MathWorks, Inc., Natick, MA. [This describes an earlier version of MATLAB.]

Merson, R.H. (1957). “An operational method for the study of integration processes.” Proceedings of the
Conference on Data Processing and Automatic Computing Machines. Weapons Research Establishment.
Salisbury, South Australia.

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Bibliography-9780123869425 — 2012/5/31 — 12:22 — Page 523 — #3

Bibliography 523

Michalewicz, Z. (1996). Genetic Algorithms+Data Structures= Evolution Programs, 3rd Edition. Springer-
Verlag, Berlin.

Moller M.F. (1993). “A scaled conjugate gradient algorithm for fast supervised learning.” Neural Networks,
6(4), 525–533.

Olver, F.W.J., Lozier, D.W., Boisvert. R.F., and Clark, C.W. (2010). NIST Handbook of Mathematical
Functions. National Institute of Standards and Cambridge University Press, New York. See also NIST
Digital Library of Mathematical Functions. http://dlmf.nist.gov/.

Percy, D.F. (2011). “Prior elicitation: A compromise between idealism and pragmatism,” Mathematics
Today, 47(3), 142–147.

Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T. (1990). Numerical Recipes: The Art of
Scientific Computing in Pascal. Cambridge University Press, Cambridge, UK.

Ralston, A. (1962). “Runge Kutta methods with minimum error bounds.” Mathematics of Computation, 16,
431–437.

Ralston, A., and Rabinowitz, P. (1978). A First Course in Numerical Analysis. McGraw-Hill, New York.

Ramirez, R.W. (1985). The FFT, Fundamentals and Concepts. Prentice Hall, Englewood Cliffs, NJ.

Salvadori, M.G., and Baron, M.L. (1961). Numerical Methods in Engineering. Prentice Hall, London.

Stakhov, A., and Rozin, B. (2005). “The golden shofar.” Chaos, Solitons and Fractals, 26, 677–684.

Stakhov, A., and Rozin, B. (2007). “The golden hyperbolic models of the universe.” Chaos, Solitons and
Fractals, 34, 159–171.

Sultan, A. (1993). Linear Programming—An Introduction with Applications. Academic Press, San Diego.

Short, L. (1992). “Simple iteration behaving chaotically.” Bulletin of the Institute of Mathematics and its
Applications, 28(6-8), 118–119.

Simmons, G.F. (1972). Differential Equations with Applications and Historical Notes. McGraw-Hill, New
York.

Smith, B.T., Boyle, J.M., Dongarra, J.J., Garbow, B.S., Ikebe, Y., Kleme, V.C., and Moler, C. (1976). Matrix
Eigensystem Routines: EISPACK Guide. Lecture Notes in Computer Science, 6, 2nd Ed. Springer-Verlag,
Berlin.

Styblinski, M.A., and Tang, T.-S. (1990). “Experiments in nonconvex optimisation: Stochastic approxima-
tion with function smoothing and simulated annealing.” Neural Networks, 3(4), 467–483.

Swift, A. (1977). Course Notes, Mathematics Department, Massey University, Wellington, New Zealand.

Thompson, I. (2010). “From Simpson to Kronrod: An elementary approach to quadrature formulae.”
Mathematics Today, 46(6), 308–313.

Walpole, R.E., and Myers, R.H. (1993). Probability and Statistics for Engineers and Scientists. Macmillan,
New York.

http://dlmf.nist.gov/

EDELKAMP 19-ch15-671-700-9780123725127 2011/5/28 14:50 Page 672 #2

This page intentionally left blank

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Index-9780123869425 — 2012/6/8 — 23:45 — Page 525 — #1

Index

A
Adams–Bashforth–Moulton method, 247–248
Adjoint matrix, 72
Aitken’s algorithm, 314–317
Aliasing, 323, 333

B
Bézier curve, 320
Bairstow method, 166–170
Barnes method, 374–378
Bisection method, 150
BLAS libraries, 1
Boltzmann constant, 418
Boltzmann probability, 418
Borwein’s algorithm for π , 440
Boundary value problems, ordinary

differential equations
central difference approximation, 287–289
characteristic value problem, 289
classification of systems, 283
eigenvalue problem, 289
fictitious node, 293
finite difference method, 287–289
the shooting method, 284–287
two-point examples, 289–295

Boundary value problems, partial differential
equations

characteristic value problem, 303, 308
classification of systems, 283
eigenvalue problem, 303, 308
elliptic equations, 302–309
explicit method, 296
hyperbolic equations, 299–302
implicit method, 297
parabolic equations, 295–298
symbolic solution, 454–455

Brent method, 164
Broyde method, 175–178

C
Cholesky decomposition, 76, 91–93
Condition number, 79, 82, 98
Conjugate gradient method

direction of search, 374
Fletcher–Reeves algorithm, 384
for linear systems, 394–397
gradient, 382
line search, 390
orthononal directions, 383
preconditioning, 397
symbolic differentiation, 475

Constrained nonlinear optimization, 421–429
Continuous genetic algorithm, 413, 418
Cubic spline, 317–321

end conditions, 318
knot, 318

Curve fitting
Fourier analysis, 321–325
least squares, 335–339, 355–358
nonlinear regression, 356–358
polynomial regression, 347–354
transforming data, 359–362
using spline, 317–321

D
Determinant, 72, 86, 90
Difference equation, 467
Difference equations, see Boundary value

problems; Initial value problems;
Symbolic methods, solution of ordinary
differential equations

Differentiation, see Numerical differentiation;
Symbolic methods, differentiation

Discrete Fourier Transform (DFT)
aliasing, 323
bit reversed algorithm, 327
complex form, 326
Fast Fourier Transform (FFT), 325–328
FFT example, 328–335

Traveling Wave Analysis of Partial Differential Equations
Copyright © 2011 by Elsevier Ltd. All rights reserved.

525

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Index-9780123869425 — 2012/6/8 — 23:45 — Page 526 — #2

526 Index

Discrete Fourier transform (continued)
Fourier analysis, 321
frequency, 321
frequency spectra, 330
Hanning window, 367
inverse DFT, 325
leakage, 331, 366
matrix form, 325
Nyquist frequency, 323
periodic function, 321
periodograms, 330
zero-padding, 367

E
Eigenvalue problems, 126–127

boundary value problems, 289, 303, 308
characteristic polynomial, 128
characteristic values and vectors, 127
dominant eigenvalue by iteration, 130–133
eigenvalues, 127
eigenvectors, 127
inverse iteration, 133–135
iterative methods, 130–135
normalized eigenvectors, 129
orthogonality, 129
QR decomposition, 135
QZ decomposition, 136
Schur decomposition, 136
smallest eigenvalue by iteration, 133
stiff equations, 267–270
subdominant eigenvalues by inverse

iteration, 133–135
EISPACK, 1, 67
Electrical network, 67–70
Elimination, see Gaussian elimination
Error analysis, 491–496
Euclidean norm, see Norms
Euler’s method, 235–237
Euler-gamma constant, 458
Euler-trapezoidal method, 238–241
Extrapolation, 313

F
Fast Fourier transform (FFT), see Discrete

Fourier transform (DFT)

Fibonacci series, 379

Fill-in, 121

Filon’s integration formulae, 211–215

Finite difference approximations

ordinary differential operators, 287

partial differential operators, 288–300

Fixed-point method, 151–152

Fletcher–Reeves algorithm, 384

Fourier analysis, see Discrete Fourier
transform (DFT)

Fourier transform, 467

inverse transform, 469

partial differential equations, 470

symbolic methods, 468–472

Functions

Bessel, 380

Dirac delta, 451

Heaviside, 452

unit step, 452

zeta, 443

G

Gauss–Jordan elimination, 86

Gauss–Laguerre formula, 201, 203

Gauss–Seidel iteration, 115

Gauss–Hermite formula, 203–206

Gaussian elimination, 84–86

Gaussian integration, 198–201

for repeated integrals, 221–224

Genetic algorithm

binary strings, 397

continuous, 413–418

crossover, 398

discrete value solutions, 412

fitness, 398, 400

fundamental theorem, 408

global optimum, 410

Gray code, 410

initial population, 397

mating, 398

mutation, 398

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Index-9780123869425 — 2012/6/8 — 23:45 — Page 527 — #3

Index 527

population diversity, 409
schemata, 407
selection, 401

Gragg method, 274

H
Hamming’s method, 249–251
Handle Graphics, 35–42
Heat flow equation, 296
Helmholtz equation, 302
Hermite’s method, 270–274
Heun’s method, 241
Hilbert matrix

in least squares method, 348
used in test, 79, 82

Hopfield and Tank neuron model, 264
Householder’s method, 93–96

I
Ill-conditioning

in least squares, 348
in linear equation systems, 80–83
in polynomial equations, 163, 171

Illinois method, 181
Initial value problems, 233

absolute stability, 238, 247–248
Adams–Bashforth–Moulton method,

247–248
Butcher–Runge–Kutta, 243
classic Runge–Kutta, 242–243
comparison of methods, 252–256, 272
error propagation, 251
Euler’s method, 235–237
Euler-trapezoidal method, 238–241
extrapolation techniques, 274–276
Gill–Runge–Kutta, 243
Gragg method, 274
Hamming method, 249–251
Hermite method, 270–274
Heun method, 241
higher-order equations, 266–267
Laplace transform method, 464–466
Lorenz equations, 259–260
Merson–Runge–Kutta, 243
neural networks, 262–266

predator–prey problem, 260–262
predictor–corrector methods, 246–274
Ralson–Runge–Kutta, 243
Romberg method, 274–276
stability of methods, 252
stability problems, 237–238
stiff equations, 267–270
systems of simultaneous equations, 256
Van der Pol’s equation, 256
Volterra equations, 260–262
Zeeman catastrophe model, 257–259

Integrals
elliptic, 363
exponential, Ei, 461
Fresnel, 227, 450
logarithmic, Li, 451
Rabbe, 227
sine, Si, 229

Integration, see Numerical integration;
Symbolic methods, integration

Interpolation, 313
Aitken’s algorithm, 314–317
cubic interpolation, 314
cubic spline, 317–321
inverse, 363
linear interpolation, 313

Iterative methods
chaotic behavior, 153–155
convergence, 153, 154
inverse, 133–135
roots of equations, 151–152
solving eigenvalue problems, 130–135
solving systems of equations, 114–115

J
Jacobi iteration, 115
Jacobian matrix, 173, 175

K
Karmarkar method, 372–377
Kepler’s equation, 180
Kronrod integration, 211

L
Lagrange multiplier method, 422–426
Laguerre method, 170–171

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Index-9780123869425 — 2012/6/8 — 23:45 — Page 528 — #4

528 Index

LAPACK, 1, 67
Laplace equation, 302
Laplace transform, 464–466

derivatives, 465
Heaviside function, 465
inverse, 465

Least squares
nonlinear, 356–358
nonnegative, 112
overdetermined system, 112–114
polynomial regression, 347
regression, 335–339
relation to Hilbert matrix, 348
transforming data, 359–362
underdetermined system, 112–114

Line search, 390
Linear equation system, inverse

matrix, 485
Linear equation systems

augmented matrix, 84
back substitution, 86
Cholesky decomposition, 76, 91–93
coefficient matrix, 84
condition number, 79, 82, 98
conjugate gradient method, 394–397
consistent equations, 70, 73
determinants, 72, 81, 86, 483
diagonally dominant, 115
elementary row operations, 84
fill-in, 121
forward substitution, 90
Gauss–Jordan elimination, 86
Gauss–Seidel iteration, 115
Gaussian elimination, 84–86
graphic representation, 70
homogeneous equations, 70
Householder’s method, 93–96
ill-conditioning, 80–83
inconsistent equations, 71, 74
inhomogeneous equations, 70
inverse matrix, 71, 72, 77
iterative methods, 115
Jacobi iteration, 115
linearly independent equations, 72
LU decomposition, 86–91

minimum degree ordering, 121
multiple right-hand sides, 87
nonsingular system, 73
overdetermined system, 106–114
partial pivoting, 85
permutation matrix, 88
pivot, 85
pseudo-inverse matrix, 100–108
QR decomposition, 93–97
rank, 72
rank deficient, 72
reduced row echelon form, 73, 488–489
residuals, 106–108
singular system, 72
singular value decomposition, 97–100
sparse matrices, 115–125
underdetermined system, 106–114
unique solution, 70, 73
upper triangular form, 87, 91, 93

Linear programming
Barnes method, 374–378
dual problem, 375
geometric interpretation, 373
interior point method, 374
Karmarkar method, 372–377
objective function, 372
primal dual, 375
simplex method, 372
slack variables, 377

LINPACK, 1, 67
Lobatto integration, 207–210
Lorenz equations, 259
LU decomposition, 86–91

M
MATLAB

3D graphics, 34–35
anonymous function, 51–53
data structures, 53–57
editing scripts, 57
element-by-element operations, 14–15
faster calculation, 60–61
graphics, 27–34
graphics symbols, 28

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Index-9780123869425 — 2012/6/8 — 23:45 — Page 529 — #5

Index 529

Handle Graphics, 35–43
input and output, 24–27
logical operators, 46
mathematical functions, 16
matrix division, 14
matrix elements, 5
matrix operations, 3–8
matrix transpose, 4, 9
origins, 1
pitfalls, 59
relational expressions, 46
scripting, 10, 43–49
special graphics symbols, 39–42
special matrices, 9
string variables, 19–24
Symbolic Toolbox, 433–475
timing functions, 18–19
user-defined function, 49–51

MATLAB constants
NaN, 43
eps, 43
i, j, 43
inf, 43
pi, 43
realmax, 43
realmin, 43

MATLAB functions
/, 75
\, 68
axis, 29
bar, 329
bessely, 380
bicg, 397
bin2dec, 24
blkdiag, 12
cell, 53, 54
cell2struct, 57
celldisp, 55
cgs, 397
char, 22
checkcode, 57
chol, 91, 93
colmmd, 124
compass, 32
cond, 81, 98

contour, 34
contour3, 34
csvread, 27
csvwrite, 27
date, 24
dblquad, 224
dec2bin, 24
det, 90
diag, 12
disp, 24
double, 22
echo, 18
eig, 127, 311
eigs, 138
expm, 13
eye, 10
ezplot, 31
feval, 50
fft, 327
figure, 30
findstr, 21
fminbnd, 385
fminsearch, 408
fplot, 29
fprintf, 25
full, 116
fzero, 148, 164, 179, 183, 382
gallery, 83, 447
gca, 36
get, 35
ginput, 28
grid, 28
gtext, 28
hadamard, 83
hess, 135
hilb, 83
hold, 29
ifft, 327
input, 26
int2str, 24
interp1, 313
interpft, 335
inv, 77
invhilb, 140
issparse, 116

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Index-9780123869425 — 2012/6/8 — 23:45 — Page 530 — #6

530 Index

MATLAB functions (continued)
length, 5
linspace, 10
load, 26
loglog, 28
logm, 13
logspace, 11
lsqnonneg, 112, 378
lu, 88
mesh, 34
meshgrid, 34
mlint, 57
nnz, 116
num2cell, 57
num2str, 24
ode113, 255
ode15s, 269
ode23, 234
ode23s, 268
ode45, 246, 285
odeset, 234
ones, 5
pcg, 397
pinv, 103
plot, 28
polar, 32
poly, 128, 163
polyfit, 317
polyval, 317
ppval, 320
qr, 108, 141
quad, 195
quad2d, 225
quadgk, 195
quadl, 195
qz, 136
rand, 9
randi, 9
randn, 9
rank, 72, 98
rcond, 81
repmat, 11
reshape, 7
roots, 128, 166, 207
rosser, 269
rref, 73
save, 26

schur, 137
semilogx, 28
semilogy, 28
set, 35
size, 5
sparse, 115
speye, 116
spline, 319
sprandn, 118
sprandsym, 118
spy, 116
str2double, 23
str2num, 23, 24
strcat, 24
strcmp, 24
strrep, 21
struct, 55
struct2cell, 57
subplot, 31
surf, 34
surfc, 34
surfl, 34
svd, 98
symand, 121
symmmd, 121
symrcm, 124
text, 28
title, 28
trapz, 190
tripequad, 224
vander, 98
view, 35
who, 4
whos, 4
wilkinson, 83
xlabel, 28
xlim, 31
ylabel, 28
ylim, 31
zeros, 4
qr, 96

MATLAB functions developed in text
abm, 247
aitken, 315
asaq, 419
bairstow, 167

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Index-9780123869425 — 2012/6/8 — 23:45 — Page 531 — #7

Index 531

barnes, 375
binvreal, 400
contgaf, 414
diffgen, 188
eiginv, 134
eigit, 132
ellipgen, 304
eulertp, 240
feuler, 235
fgauss, 199
fhamming, 250
fhermite, 271
filon, 212
fitness, 401
fitness2d, 514
fitness_g, 411
fnewton, 157
fnewtsym, 473
ftable, 217
ftau2cg, 385
fwave, 301
gaherm, 205
galag, 202
gauss2v, 221
genbin, 399
golden, 380
grayvreal, 411
heat, 297
hopbin, 264
jarrett, 504
lobattof, 207
lobattomp, 209
matesome, 403
mincg, 384
minscg, 391
mregg2, 340
mutate, 405
newtmvsym, 474
nlls, 358
optga, 405
optga_g, 412
plotapp, 162
rkgen, 244
romb, 197
rombergx, 275
sawblade, 50
schroder, 161

selectga, 402
selectga_g, 411
simp1, 192
simp2, 192
simp2v, 219
solveq, 169
solvercg, 395
twopoint, 291
broyden, 176
newtonmv, 173

MATLAB symbolic functions
Ei, 461
FresnelS, 450
collect, 439
det, 445
diff, 452
dirac, 452
double, 442
dsolve, 459
eig, 444
eulergamma, 458
expand, 436
ezplot, 439
factor, 436
fourier, 469
gamma, 443
heaviside, 452
horner, 436
ifourier, 469
ilaplace, 466
int, 456
inv, 445
iztrans, 468
jacobian, 474
laplace, 465
mfun, 450
mfunlist, 450
pretty, 435
simple, 436
simplify, 436
solve, 449
subs, 439
sym, 434
syms, 434
symsum, 441
taylor, 441

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Index-9780123869425 — 2012/6/8 — 23:45 — Page 532 — #8

532 Index

MATLAB symbolic functions (continued)
vpa, 439
zeta, 443
ztrans, 468

Matrices, 479
addition and subtraction of, 484
adjoint of, 72
companion, 487
complex, 485
determinant of, 483
diagonal, 482
differentiation of, 489
division, 14
Hermitian, 76, 486
Hessenberg, 135, 483
Hilbert, 79
idempotent, 486
identity, 482
inverse of, 71, 72, 77, 485
Jacobian, 173, 175
multiplication of, 484
nilpotent, 486
orthogonal, 93, 486
positive definite, 120
pseudo-inverse of, 100–108
singular, 72
skew-symmetric, 486
sparse, 115–125
square root of, 490
symmetric, 486
transpose of, 484
tridiagonal, 482
triangular, 483
unitary, 93, 486
Vandermonde, 98

Matrix inversion, 71
Minimum degree ordering, 121
Multiple regression, 335–339

N
Neural networks, 262–266
Newton method

for multiple roots, 160
for solving an equation, 156–160

for solving systems of equations, 172–175
symbolic differentiation, 472–475

Newton–Cotes formulae, 194–195
Nonlinear equation systems

Broyden method, 175–178
comparison of methods, 178
Newton method, 172–175
quasi-Newton methods, 175

Nonlinear equations, see Roots of nonlinear
equations

Numerical differentiation
approximating derivatives, 185–189
approximating partial derivatives, 226
definition of a derivative, 185

Numerical integration
as an area, 189
change of limits, 223
Filon’s formulae, 211, 215
Gauss method, 198–201
Gauss method for repeated integrals,

221–224
Gauss–Chebyshev formula, 206
Gauss–Hermite formula, 203–206
Gauss–Laguerre formula, 201–203
infinite range, 201–206
Kronrod extension, 211
Labatto method, 210
Newton–Cotes formulae, 194–195
problems in evaluation, 215–217
repeated integrals, 219
Romberg integration, 196–228
Simpson’s rule, 190–194
Simpson’s rule for repeated integrals,

219–221
test integrals, 217
trapezoidal rule, 190

Nyquist frequency, 323

O
Objective function, 372
Optimization

conjugate gradient method, 394–397
continuous genetic algorithm, 413–418
genetic algorithms, 397–418
global optimum, 410

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Index-9780123869425 — 2012/6/8 — 23:45 — Page 533 — #9

Index 533

golden ratio, 379
Lagrange multiplier method, 422–426
linear programming, 374–378
scaled conjugate gradient method, 388–394
SUMT, 426–429
simulated annealing, 418–421
single variable functions, 378–382, 400–412

Order of convergence, of iterative methods,
153

Overdetermined systems, 75, 106–114

P
Partial differentiation, see Numerical

differentiation; Symbolic methods,
differentiation

Partial pivoting, 85
Pivoting procedures, 85
Poisson equation, 302
Predator–prey problem, 260–262
Predictor–corrector methods, 246–274
Pseudo-inverse, 100–108

Q
QR decomposition, 93–97
Quadrature, see Numerical integration
QZ decomposition, 136

R
Rank deficient, 72
Rank of a matrix, 72
Reduced row echelon form, 73, 488–489
Regression analysis, 335–339, 347–354

coefficient of determination, 338
Cook’s distance, 344
correlation matrix, 340
covariance matrix, 339
diagnostics for model improvement,

339–342
hat matrix, 338
ill-conditioning, 348
multicollinearity, 340
normal equations, 340
polynomial, 347–354
regression equations, 336
residuals analysis, 343–347

sum of squares of errors, 336
variance inflation factors, 340

Regula falsi, 160
Repeated integrals, see Numerical integration
Residuals, 106–108, 343–347
Romberg integration, 196–228
Romberg method for differential equations,

274–276
Roots of nonlinear equations

Bairstow method, 166–170
bisection method, 150
Brent’s method, 164
chaotic behavior, 153
comparison of methods, 164–165
complex, 159
convergence, 151–153
discontinuities, 164
fixed-point methods, 151–152
graphical method, 162
ill-conditioning, 163
Illinois method, 181
initial approximations, 162
iterative methods, 151–152
Laguerre method, 170–171
multiple roots, 160
Newton method, 156–160
numerical problems, 162–164
regula falsi, 160
Schroder’s method, 160–162
secant method, 160
symbolic solution, 449
systems of equations, see Nonlinear

equation systems
Runge–Kutta

Butcher method, 243
classical method, 242–243
Gill method, 243
Merson method, 243
Ralston method, 243

S
Scaled conjugate gradient method, 388–394
Schroder’s method, 160–162
Schur decomposition, 136
Secant method, 160

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

Lindfield — Index-9780123869425 — 2012/6/8 — 23:45 — Page 534 — #10

534 Index

Sequential unconstrained minimization
(SUM) technique (SUMT), 426–429

Shooting method, 284–287
Simpson’s rule, 190–194

repeated integrals, 219–221
Simulated annealing, 418–421

Boltzmann constant and probability, 418
Singular function, integration of, 216–217
Singular matrix, 72
Singular value decomposition, 97–100
Solution of equations, see Roots of nonlinear

equations
Sparse matrices, 115–125
Spline, see Cubic spline
Stability, of differential equations, 237–239
Stiff equations, 267–270
Strange attractors, 259
Summation and expansion of series, 441–444

zeta function, 443
Symbolic methods

collecting terms of an expression, 439
comparing numerical and symbolic

solutions, 463–464
conjugate gradient method, 475
conversion of values to numeric, 442
differentiation, 452–455
double integrals, 459
eigenvalues, 444–449
Euler-gamma constant, 458
expanding an expression, 436
exponential integral, 461
factorization, 436
Fourier transform, 468–472
integration, 436, 456–459
integration with infinite limits, 457
Laplace transform, 464–466
linking to numerical analysis, 433, 472–475
logarithmic integral, 451
manipulation of matrices, 444–449
Newton method for roots, 472–475
partial differentiation, 454–455
pretty printing, 435, 455
simplifying an expression, 436–438
solution of difference equation, 467

solution of equations, 449–450
solution of ordinary differential equations,

459–465
solution of partial differential equations, 470
substituting in an expression, 438
summation of series, 441–444
Taylor series, 441
variable precision arithmetic, 439–441
variables and expressions, 434
Z-transform, 466–468

Symbolic Toolbox, 431
Systems of differential equations, see Initial

value problems
Systems of linear equations, see Linear

equation systems
Systems of nonlinear equations, see Nonlinear

equation systems

T
Taylor series expansion, 187
Trapezoidal rule, 190

U
Underdetermined systems, 74, 106–114

V
Van der Pol’s equation, 256
Variable precision arithmetic, 439–441
Vectors, see Matrices
Volterra equations, 260, 260–262

W
Wave equation, 299
Wilkinson’s polynomial, 163

Z
Z-transform, 466–468

difference equation, 467
inverse, 467

Zeeman’s catastrophe model, 257–259
Zeros of equations, see Roots of nonlinear

equations

	Front Cover
	Numerical Methods Using Matlab®
	Copyright
	Dedication
	Contents
	Preface
	List of Figures
	An Introduction to Matlab®
	1.1 The Matlab Software Package
	1.2 Matrices and Matrix Operations in Matlab
	1.3 Manipulating the Elements of a Matrix
	1.4 Transposing Matrices
	1.5 Special Matrices
	1.6 Generating Matrices and Vectors with Specified Element Values
	1.7 Matrix Functions
	1.8 Using the Matlab \ Operator for Matrix Division
	1.9 Element-by-Element Operations
	1.10 Scalar Operations and Functions
	1.11 String Variables
	1.12 Input and Output in Matlab
	1.13 Matlab Graphics
	1.14 Three-Dimensional Graphics
	1.15 Manipulating Graphics—Handle Graphics
	1.16 Scripting in Matlab
	1.17 User-Defined Functions in Matlab
	1.18 Data Structures in Matlab
	1.19 Editing Matlab Scripts
	1.20 Some Pitfalls in Matlab
	1.21 Faster Calculations in Matlab
	Problems

	Linear Equations and Eigensystems
	2.1 Introduction
	2.2 Linear Equation Systems
	2.3 Operators \ and / for Solving Ax = b
	2.4 Accuracy of Solutions and Ill-Conditioning
	2.5 Elementary Row Operations
	2.6 Solution of Ax = b by Gaussian Elimination
	2.7 LU Decomposition
	2.8 Cholesky Decomposition
	2.9 QR Decomposition
	2.10 Singular Value Decomposition
	2.11 The Pseudo-Inverse
	2.12 Over- and Underdetermined Systems
	2.13 Iterative Methods
	2.14 Sparse Matrices
	2.15 The Eigenvalue Problem
	2.16 Iterative Methods for Solvingthe Eigenvalue Problem
	2.17 The Matlab Function eig
	2.18 Summary
	Problems

	Solution of Nonlinear Equations
	3.1 Introduction
	3.2 The Nature of Solutions to Nonlinear Equations
	3.3 The Bisection Algorithm
	3.4 Iterative or Fixed Point Methods
	3.5 The Convergence of Iterative Methods
	3.6 Ranges for Convergence and Chaotic Behavior
	3.7 Newton's Method
	3.8 Schroder's Method
	3.9 Numerical Problems
	3.10 The Matlab Function fzero and Comparative Studies
	3.11 Methods for Finding All the Roots of a Polynomial
	3.11.1 Bairstow's Method
	3.11.2 Laguerre's Method

	3.12 Solving Systems of Nonlinear Equations
	3.13 Broyden's Method for Solving Nonlinear Equations
	3.14 Comparing the Newton and Broyden Methods
	3.15 Summary
	Problems

	Differentiation and Integration
	4.1 Introduction
	4.2 Numerical Differentiation
	4.3 Numerical Integration
	4.4 Simpson's Rule
	4.5 Newton–Cotes Formulae
	4.6 Romberg Integration
	4.7 Gaussian Integration
	4.8 Infinite Ranges of Integration
	4.8.1 Gauss–Laguerre Formula
	4.8.2 Gauss–Hermite Formula

	4.9 Gauss–Chebyshev Formula
	4.10 Gauss–Lobatto Integration
	4.11 Filon's Sine and Cosine Formulae
	4.12 Problems in the Evaluation of Integrals
	4.13 Test Integrals
	4.14 Repeated Integrals
	4.14.1 Simpson's Rule for Repeated Integrals
	4.14.2 Gaussian Integration for Repeated Integrals

	4.15 Matlab Functions for Double and Triple Integration
	4.16 Summary
	Problems

	Solution of Differential Equations
	5.1 Introduction
	5.2 Euler's Method
	5.3 The Problem of Stability
	5.4 The Trapezoidal Method
	5.5 Runge–Kutta Methods
	5.6 Predictor–Corrector Methods
	5.7 Hamming's Method and the Use of Error Estimates
	5.8 Error Propagation in Differential Equations
	5.9 The Stability of Particular Numerical Methods
	5.10 Systems of Simultaneous Differential Equations
	5.11 The Lorenz Equations
	5.12 The Predator–Prey Problem
	5.13 Differential Equations Applied to Neural Networks
	5.14 Higher-Order Differential Equations
	5.15 Stiff Equations
	5.16 Special Techniques
	5.17 Extrapolation Techniques
	5.18 Summary
	Problems

	Boundary Value Problems
	6.1 Classification of Second-Order Partial Differential Equations
	6.2 The Shooting Method
	6.3 The Finite Difference Method
	6.4 Two-Point Boundary Value Problems
	6.5 Parabolic Partial Differential Equations
	6.6 Hyperbolic Partial Differential Equations
	6.7 Elliptic Partial Differential Equations
	6.8 Summary
	Problems

	Fitting Functions to Data
	7.1 Introduction
	7.2 Interpolation Using Polynomials
	7.3 Interpolation Using Splines
	7.4 Fourier Analysis of Discrete Data
	7.5 Multiple Regression: Least Squares Criterion
	7.6 Diagnostics for Model Improvement
	7.7 Analysis of Residuals
	7.8 Polynomial Regression
	7.9 Fitting General Functions to Data
	7.10 Nonlinear Least Squares Regression
	7.11 Transforming Data
	7.12 Summary
	Problems

	Optimization Methods
	8.1 Introduction
	8.2 Linear Programming Problems
	8.3 Optimizing Single-Variable Functions
	8.4 The Conjugate Gradient Method
	8.5 Moller's Scaled Conjugate Gradient Method
	8.6 Conjugate Gradient Method for SolvingLinear Systems
	8.7 Genetic Algorithms
	8.8 Continuous Genetic Algorithm
	8.9 Simulated Annealing
	8.10 Constrained Nonlinear Optimization
	8.11 The Sequential Unconstrained Minimization Technique
	8.12 Summary
	Problems

	Applications of the Symbolic Toolbox
	9.1 Introduction to the Symbolic Toolbox
	9.2 Symbolic Variables and Expressions
	9.3 Variable-Precision Arithmetic in Symbolic Calculations
	9.4 Series Expansion and Summation
	9.5 Manipulation of Symbolic Matrices
	9.6 Symbolic Methods for the Solution of Equations
	9.7 Special Functions
	9.8 Symbolic Differentiation
	9.9 Symbolic Partial Differentiation
	9.10 Symbolic Integration
	9.11 Symbolic Solution of Ordinary Differential Equations
	9.12 The Laplace Transform
	9.13 The Z-Transform
	9.14 Fourier Transform Methods
	9.15 Linking Symbolic and Numerical Processes
	9.16 Summary
	Problems

	Appendix A: Matrix Algebra
	A.1 Introduction
	A.2 Matrices and Vectors
	A.3 Some Special Matrices
	A.4 Determinants
	A.5 Matrix Operations
	A.6 Complex Matrices
	A.7 Matrix Properties
	A.8 Some Matrix Relationships
	A.9 Eigenvalues
	A.10 Definition of Norms
	A.11 Reduced Row Echelon Form
	A.12 Differentiating Matrices
	A.13 Square Root of a Matrix

	Appendix B: Error Analysis
	B.1 Introduction
	B.2 Errors in Arithmetic Operations
	B.3 Errors in the Solution of Linear Equation Systems

	Solutions to Selected Problems
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9

	Bibliography
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

	ctip Field 1:
	ctip Field 2:
	ctip Field 3:
	ctip Field 4:
	ctip Field 5:
	ctip Field 6:
	ctip Field 7:
	ctip Field 8:
	ctip Field 9:
	ctip Field 10:
	ctip Field 11:
	ctip Field 12:
	ctip Field 13:
	ctip Field 14:
	ctip Field 15:
	ctip Field 16:
	ctip Field 17:
	ctip Field 18:
	ctip Field 19:

