
Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Table	of	Contents
MATLAB	Graphics	and	Data	Visualization	Cookbook
Credits
About	the	Authors
Acknowledgement
About	the	Reviewers
www.PacktPub.com
Support	files,	eBooks,	discount	offers	and	more

Why	Subscribe?
Free	Access	for	Packt	account	holders

Preface
What	this	book	covers
What	you	need	for	this	book
Who	this	book	is	for
Conventions
Reader	feedback
Customer	support

Downloading	the	example	code
Downloading	the	color	images	of	this	book
Errata
Piracy
Questions

1.	Customizing	Elements	of	MATLAB	Graphics—the	Basics
Introduction

Programmatic	manipulation	of	graphics	object	properties
Altering	graphics	object	properties	via	the	Property	Editor

Making	your	first	MATLAB	plot
Getting	ready
How	to	do	it...
How	it	works...
See	also

Laying	out	long	tick	labels	without	overwriting
Getting	ready
How	to	do	it...
How	it	works...
See	also

Using	annotations	pinned	to	the	axes
Getting	ready
How	to	do	it...
How	it	works...

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

There's	more...
See	also

Tufte	style	gridding	for	readability
Getting	ready
How	to	do	it...
How	it	works...
See	also

Bringing	order	to	chaos	with	legends
Getting	ready
How	to	do	it...
How	it	works...
There's	more...
See	also

Visualizing	details	with	data	transformations
Getting	ready
How	to	do	it...
How	it	works...
There's	more...
See	also…

Designing	multigraph	layouts
Getting	ready
How	to	do	it...
How	it	works...
See	also

A	visualization	to	compare	algorithm	test	results
Getting	ready
How	to	do	it...
How	it	works...

2.	Diving	into	One-dimensional	Data	Displays
Introduction
Pie	charts,	stem	plots,	and	stairs	plots

How	to	do	it...
How	it	works...
See	also

Box	plots
Getting	ready
How	to	do	it...
How	it	works...
See	also

Sparklines
Getting	ready
How	to	do	it...
How	it	works...

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

See	also
Stacked	line	graphs

Getting	ready
How	to	do	it...
How	it	works...
See	also

Node	link	plots
Getting	ready
How	to	do	it...
How	it	works...
There's	more...
See	also

Calendar	heat	map
Getting	ready
How	to	do	it...
How	it	works...
There's	more...
See	also

Distributional	data	analysis
Getting	ready
How	to	do	it...
How	it	works...
There's	more...
See	also

Time	series	analysis
Getting	ready
How	to	do	it...
How	it	works...
See	also

3.	Graduating	to	Two-dimensional	Data	Displays
Introduction

Surface,	patch,	and	shading
Two-dimensional	scatter	plots

Getting	ready
How	to	do	it...
How	it	works…
See	also

Scatter	plot	smoothing
Getting	ready
How	to	do	it…
How	it	works…
There's	more...
See	also

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Bidirectional	error	bars
Getting	ready
How	to	do	it...
How	it	works…
See	also

2D	node	link	plots
Getting	ready
How	to	do	it...
How	it	works…
See	also

Dendrograms	and	clustergrams
Getting	ready
How	to	do	it...
How	it	works…
See	also

Contour	plots
Getting	ready
How	to	do	it...
How	it	works…
There's	more...
See	also

Gridding	scattered	data
Getting	ready
How	to	do	it…
How	it	works...
There's	more…
See	also

Choropleth	maps
Getting	ready
How	to	do	it...
How	it	works…
See	also

Thematic	maps	with	symbols
Getting	ready
How	to	do	it…
How	it	works…
See	also

Flow	maps
Getting	ready
How	to	do	it…
How	it	works...
See	also

4.	Customizing	Elements	of	MATLAB	Graphics—Advanced
Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Introduction
Transparency

Getting	ready
How	to	do	it...
How	it	works...
See	also

Lighting
Getting	ready
How	to	do	it...
How	it	works...
There's	more...
Effect	of	vertex	normals
Use	of	the	back	face	lighting	option

See	also
View	control

Getting	ready
How	to	do	it...
How	it	works…
See	also

Interaction	between	light,	transparency,	and	view
Getting	ready
How	to	do	it...
How	it	works...
See	also

5.	Playing	in	the	Big	Leagues	with	Three-dimensional	Data	Displays
Introduction
3D	scatter	plots

Getting	ready
How	to	do	it...
How	it	works...
See	also

Slice	(cross-sectional	views)
Getting	ready
How	to	do	it...
How	it	works...
There's	more...
See	also

Isosurface,	isonormals,	isocaps
Getting	ready
How	to	do	it...
How	it	works...
There's	more...
See	also

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Stream	slice
Getting	ready
How	to	do	it...
How	it	works...
See	also

Stream	lines,	ribbons,	tubes
Getting	started
How	to	do	it...
How	it	works...
See	also

Scalar	and	vector	data	with	a	combination	of	techniques
Getting	ready
How	to	do	it...
How	it	works...
See	also

Explore	with	camera	motion
Getting	started
How	to	do	it...
How	it	works...
There's	more...
See	also

6.	Designing	for	Higher	Data	Dimensions
Introduction
Fusing	hyperspectral	data

Getting	ready
How	to	do	it…
How	it	works…
See	also

Survey	plots
Getting	ready
How	to	do	it…
How	it	works…
See	also

Glyphs
Getting	ready
How	to	do	it…
How	it	works...
There's	more...
See	also

Parallel	coordinates
Getting	ready
How	to	do	it…
How	it	works…

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

See	also
Tree	maps

Getting	ready
How	to	do	it…
How	it	works...
See	also

Andrews'	curves
Getting	ready
How	to	do	it…
How	it	works…
See	also

Downsampling	for	fast	graphs
Getting	ready
How	to	do	it…
How	it	works…
See	also

Principal	Component	Analysis
Getting	ready
How	to	do	it…
How	it	works…
There's	more...
See	also

Radial	Coordinate	Visualization
Getting	ready
How	to	do	it…
How	it	works…
See	also

7.	Creating	Interactive	Graphics	and	Animation
Introduction
Callback	functions

Getting	started
How	to	do	it...
How	it	works...
There's	more...
See	also

Obtaining	user	input	from	the	graph
Getting	started
How	to	do	it...
How	it	works...
See	also

Linked	axes	and	data	brushing
Getting	ready
How	to	do	it...

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

How	it	works...
There's	more...
See	also

The	magnifying	glass	demo
Getting	ready
How	to	do	it...
How	it	works...
See	also

Animation	with	playback	of	frame	captures
Getting	ready
How	to	do	it...
How	it	works...
There's	more...

Stream	particle	animation
Getting	ready
How	to	do	it...
How	it	works...
See	also

Animation	by	incremental	changes	to	chart	elements
Getting	ready
How	to	do	it...
How	it	works...
See	also

8.	Finalizing	Graphics	for	Publication	and	Presentations
Introduction
Export	formats	and	resolution

Getting	ready
How	to	do	it…
How	it	works…
See	also

Vector	graphics	for	inclusion	into	documents
Getting	ready
How	to	do	it…
How	it	works…
There's	more…
See	also

Preserving	onscreen	font	size	and	aspect	ratios
Getting	ready
How	to	do	it…
How	it	works…
See	also

Publishing	code	and	graphics	to	a	webpage
Getting	ready

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

How	to	do	it…
How	it	works…
There's	more…
See	also

A.	References
Index

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

MATLAB	Graphics	and	Data
Visualization	Cookbook

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

MATLAB	Graphics	and	Data
Visualization	Cookbook
Copyright	©	2012	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval
system,	or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written
permission	of	the	publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical
articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of
the	information	presented.	However,	the	information	contained	in	this	book	is	sold
without	warranty,	either	express	or	implied.	Neither	the	authors,	nor	Packt	Publishing,
and	its	dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged
to	be	caused	directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	November	2012

Production	Reference:	1191112

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-84969-316-5

www.packtpub.com

Cover	Image	by	Asher	Wishkerman	(<wishkerman@hotmail.com>)

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

http://www.packtpub.com
mailto:wishkerman@hotmail.com

Credits
Authors

Nivedita	Majumdar

Swapnonil	Banerjee

Reviewers

Dr.	John	Bemis

Adee	Ran

Ashish	Uthama

David	Woo

Acquisition	Editor

Joanna	Finchen

Lead	Technical	Editor

Kedar	Bhat

Technical	Editors

Dipesh	Panchal

Copy	Editor

Alfida	Paiva

Project	Coordinator

Yashodhan	Dere

Proofreader

Stephen	Swaney

Indexer

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Rekha	Nair

Graphics

Valentina	D'silva

Production	Coordinator

Arvindkumar	Gupta

Cover	Work

Arvindkumar	Gupta

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

About	the	Authors
Nivedita	Majumdar	is	a	software	development	engineer	with	extensive	experience
with	MATLAB.	She	has	a	PhD	in	Computational	Sciences	and	Informatics.	She	has
been	developing	data	analysis	tools	and	algorithms	for	the	communications	and	life
sciences	industries	for	the	past	decade.	She	is	deeply	interested	in	visualization	as	a
tool	for	insightful	data	exploration.	She	is	an	enthusiastic	proponent	of	MATLAB	as
the	preferred	environment	for	data	visualization	and	algorithm	prototyping.

Swapnonil	Banerjee	is	a	theoretical	physicist	with	a	PhD	in	Physics	and	a	Bachelors
degree	in	Electronics	and	Telecommunications	Engineering.	He	has	extensive
MATLAB	development	experience	in	the	areas	of	signal	processing,	numerical	data
modeling,	curve	fitting,	differential	calculus,	and	Monte	Carlo	simulations.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Acknowledgement
We	gratefully	acknowledge	the	support	of	several	individuals	and	organizations	in
developing	this	book.

We	would	like	to	begin	with	a	special	thanks	to	David	Woo	for	being	constantly
encouraging	and	providing	valuable,	actionable	ideas	for	the	book.

We	are	grateful	to	our	family	and	friends	for	their	love	and	the	pride	they	take	in	our
work.	It	has	been	very	nice	to	have	the	enthusiasm	of	Shuman	Majumdar	on	our
behalf.

We	would	like	to	thank	our	reviewers	John	Bemis,	Adee	Ran,	Ashish	Uthama,	and
David	Woo	for	patiently	providing	detailed	critique	of	our	work	and	great	suggestions
for	improvement.

Importantly,	we	would	like	to	thank	Yashodhan	Dere,	Kedar	Bhat,	Dipesh	Panchal,
Joanna	Finchen,	and	the	rest	of	the	team	at	Packt	for	being	supportive	throughout
this	project.

We	would	like	to	thank	MathWorksTM	for	their	book	program	that	made	software
licenses	available	to	us.	We	are	grateful	for	their	well	maintained	MATLAB	Central
File	Exchange	program	that	showcases	the	work	of	so	many	in	the	MATLAB
community	whose	contributions	we	were	able	to	build	upon.

We	would	like	to	thank	the	University	of	California,	Irvine	and	Stanford	University	for
maintaining	great	public	use	data	repositories	that	we	were	able	to	leverage.

Finally,	we	would	like	to	thank	Daniel	B	Carr,	professor	at	George	Mason	University,
who	introduced	us	to	the	subject	of	data	visualization.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

About	the	Reviewers
Dr.	John	Bemis	is	a	senior	manager	at	Baker	Hughes,	Inc.	John	holds	a	BA	degree
in	Chemistry	from	Grinnell	College	and	a	PhD	in	Inorganic	Chemistry	from	the
University	of	Wisconsin.	John	has	16	years	of	professional	software	development
experience	starting	at	TecMag	Inc.,	designing	and	implementing	user	interfaces	for
magnetic	resonance	instrument	data	acquisition	and	control.	He	has	spent	the	last	12
years	at	Baker	Hughes,	Inc.,	first	developing	MATLAB	based	data	analysis	software
for	magnetic	resonance	applications,	and	most	recently	as	manager	of	the	software
technical	project	engineers	for	the	Drilling	and	Evaluation	Technology	division.

Adee	Ran	received	a	BS	degree	in	Electrical	Engineering	in	1991	and	an	MS	degree
in	Electrical	Engineering	in	2000,	both	from	the	Israel	Institute	of	Technology
(Technion).	He	is	a	physical-layer	communication	systems	architect	at	Intel's	Israel
Design	Center	in	Haifa,	Israel.	He	is	also	an	active	member	of	the	IEEE	802.3
Ethernet	Working	Group	and	a	devoted	user	and	programmer	of	MATLAB	ever	since
the	days	of	Version	3.5.

Ashish	Uthama	is	a	developer	in	the	Image	Processing	Toolbox	team	at	MathWorks,
makers	of	MATLAB.	He	has	a	Bachelor's	degree	in	Electronics	and	Communication
from	PESIT,	Bangalore,	India	and	a	Master's	degree	in	Applied	Science	from	UBC,
Vancouver,	Canada.

David	Woo	manages	a	team	of	algorithm	developers	in	the	Genetic	Analysis	R&D
division	at	Life	Technologies	where	data	analysis	and	visualization	are	an	important
part	of	everyday	work.	He	has	a	Master's	degree	in	Electrical	Engineering	and	12
years	of	experience	developing	biotechnology	instrumentation	including	DNA
sequencers	and	real-time	PCR	thermal	cyclers.	He	holds	several	patents	in	this	area.
In	particular,	he	and	his	team	focus	on	the	data	transformation	from	the	time	series
images	of	biochemical	reactions	that	produce	fluorescence	to	biologically	meaningful
DNA	base	calls	and	gene	quantification.	Bridging	the	gap	between	engineering	and
biology	is	challenging,	but	ultimately	rewarding,	as	the	results	improve	health	care	and
push	the	understanding	of	molecular	biology.	DNA	sequencing	has	grown	immensely
since	the	completion	of	the	first	human	genome,	and	genetic	testing	is	rapidly
becoming	an	indispensible	tool	to	doctors,	but	as	the	volume	of	data	increases,	so
does	the	need	for	data	analysis	and	visualization.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

www.PacktPub.com

Support	files,	eBooks,	discount	offers
and	more
You	might	want	to	visit	www.PacktPub.com	for	support	files	and	downloads	related	to
your	book.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF
and	ePub	files	available?	You	can	upgrade	to	the	eBook	version	at
www.PacktPub.com	and	as	a	print	book	customer,	you	are	entitled	to	a	discount	on
the	eBook	copy.	Get	in	touch	with	us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign
up	for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on
Packt	books	and	eBooks.

http://PacktLib.PacktPub.com

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt's	online	digital
book	library.	Here,	you	can	access,	read	and	search	across	Packt's	entire	library	of
books.

Why	Subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print	and	bookmark	content
On	demand	and	accessible	via	web	browser

Free	Access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	nine	entirely	free	books.	Simply	use	your	login	credentials
for	immediate	access.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.PacktPub.com

Preface
MATLAB	Graphics	and	Data	Visualization	is	a	cookbook	with	recipes	providing	a
menu	of	graphs	to	rapidly	identify	the	type	of	plot	appropriate	for	your	data.	The
step-by-step	recipe	style	allows	applying	the	techniques	to	your	data	within	a	short
time.	Several	attractive	customizations	are	provided	as	functions	that	can	be	easily
integrated	into	your	data	analysis	workflow.	The	hand	created	indexing	into	the
recipes	makes	navigation	through	the	book	simple	and	powerful	to	quickly	locate	what
you	need.	The	book	approaches	the	topic	of	visualization	using	data	dimensionality
and	complexity	as	the	central	themes	to	organize	the	techniques.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

What	this	book	covers
Chapter	1,	Customizing	Elements	of	MATLAB	Graphics—the	Basics,	introduces	how
to	work	with	MATLAB	handle	graphics	technology	to	customize	graphs	built	in
MATLAB.	It	covers	recipes	showing	how	to	change	basic	graph	elements	such	as
layout,	gridding,	labels,	and	legends.	It	also	forays	into	the	use	of	color	for	depicting
information.

Chapter	2,	Diving	into	One-dimensional	Data	Displays,	takes	a	tour	of	options
available	for	one-dimensional	data	visualizations,	beginning	with	common	chart	types
such	as	line	plots,	bar	plots,	scatter	plots,	pie	charts,	stem	plots,	and	stair	plots.
Further	recipes	cover	box	plots	and	specialized	designs	such	as	sparklines,	stacked
line	graphs,	and	node	link	plots.	A	recipe	is	devoted	to	the	use	of	heat	maps	for
presenting	daily	data	directly	on	a	calendar.	Final	recipes	point	to	analysis
approaches	such	as	distributional	data	analysis	and	time	series	data	analysis,	which
may	require	specialized	plots	for	visualizing	the	results.

Chapter	3,	Graduating	to	Two-dimensional	Data	Displays,	takes	a	tour	of	options
available	for	two-dimensional	data	visualizations,	beginning	with	common	chart	types,
such	as	scatter	plots,	and	options	for	scatter	plot	smoothing.	Further	recipes	cover
designs	such	as	2D	node	link	plots,	dendrograms,	and	clustergrams.	Further	recipes
cover	contour	plots.	A	recipe	is	devoted	to	deal	with	data	collected	on	non-uniform
grids.	Further	recipes	cover	specialized	graphics	for	presenting	data	on	maps	with
choropleth	maps,	thematic	maps	with	symbols,	and	flow	maps.

Chapter	4,	Customizing	Elements	of	MATLAB	Graphics—Advanced,	introduces
advanced	features	you	can	customize	for	graphics	built	with	MATLAB,	namely
transparency,	lighting,	and	view	control.

Chapter	5,	Playing	in	the	Big	Leagues	with	Three-dimensional	Data	Displays,	takes
a	tour	of	options	available	for	three-dimensional	data	visualizations	with	emphasis	on
volumetric	data.	It	begins	with	3D	scatter	plots.	Further	recipes	cover	designs	using
slices,	isosurfaces,	isonormals,	and	isocaps	for	scalar	data	visualization.	Further
recipes	cover	use	of	stream	slices	and	various	options	for	depicting	direction	using
lines,	ribbons,	or	tubes	for	vector	data	visualization.	Several	recipes	pool	the	basic	3D
techniques	with	lighting	and	view	control	mechanisms	to	create	effective	ways	for	3D
data	exploration.

Chapter	6,	Designing	for	Higher	Data	Dimensions,	takes	a	tour	of	visualization
options	for	higher	data	dimensions.	Recipes	cover	the	use	of	glyphs	and	parallel
coordinates	to	demonstrate	how	to	represent	multiple	dimensions	in	2D.	Further
recipes	show	how	to	code	the	extra	dimensions	among	available	graphical	features	to

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

achieve	the	same	objective.	Additional	recipes	show	how	to	transform	the	data	using
techniques	such	as	the	principal	component	analysis	or	radial	coordinate	projections
such	that	the	key	data	dimensions	that	allow	discrimination	between	them	can	be
brought	into	focus.

Chapter	7,	Creating	Interactive	Graphics	and	Animation,	showcases	MATLAB's
capabilities	of	creating	interactive	graphics	and	animations.	Recipes	cover	the
essentials	of	programming	callback	functionality	to	add	custom	behavior	to	user
interactions.	Further	recipes	cover	ways	to	obtain	user	input	directly	from	the	graph,
including	exploratory	techniques	such	as	data	brushing	and	linking.	Other	recipes
cover	how	to	animate	a	sequence	of	frames,	or	use	erase	and	redraw	strategies	to
create	animation	effects.

Chapter	8,	Finalizing	Graphics	for	Publication	and	Presentations,	covers	options	to
adjust	the	image	quality	and	formatting	requirements	for	different	presentation	goals,
including	tips	to	keep	in	mind	while	designing	graphics	for	presentation	or	publication
in	either	hard	copy	or	electronic	formats.

Appendix,	References,	provides	supplementary	material.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

What	you	need	for	this	book
A	basic	MATLAB	installation	will	be	required.	The	code	was	developed	using
MATLAB	R2012a.

One	recipe	needs	the	Image	Processing	ToolboxTM.	Several	recipes	require	the
Statistics	ToolboxTM.	A	couple	of	recipes	make	references	to	the	Statistical
ToolboxTM,	the	Mapping	ToolboxTM,	and	the	Bioinformatics	ToolboxTM	(however,	a
fallback	implementation	is	provided	in	these	cases	so	that	you	can	use	these	recipes
independent	of	these	toolboxes).

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Who	this	book	is	for
The	book	is	targeted	for	practitioners	in	the	academia	and	industry	interested	in	either
presenting	the	results	of	their	specific	analysis	or	doing	exploratory	data	visualization.
The	data	itself	could	come	from	any	source,	and	the	options	to	import	the	data	into
MATLAB	are	discussed	in	the	book.	A	basic	familiarity	with	MATLAB	programming	is
assumed.	However,	advanced	MATLAB	experience	is	not	needed.	The	recipes	are
detailed	and	broken	into	simple	steps.	It	is	intended	as	a	handbook	for	creating
compelling	graphics	that	one	can	easily	apply	to	new	data.	Several	attractive	options
for	customizations	are	made	available	as	functions	that	can	be	easily	integrated	into
any	data	analysis	workflow.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Conventions
In	this	book,	you	will	find	a	number	of	styles	of	text	that	distinguish	between	different
kinds	of	information.	Here	are	some	examples	of	these	styles,	and	an	explanation	of
their	meaning.

Code	words	in	text	are	shown	as	follows:	"The	command	xlsread	allows	you	to	read
the	numeric	columns	into	the	variable	numericData,	and	the	alphanumeric	columns	into
the	variable	headerLabels."

A	block	of	code	is	set	as	follows:

plot(x,y1);

line([mean1	mean1],get(gca,'ylim'));

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the
screen,	in	menus	or	dialog	boxes	for	example,	appear	in	the	text	like	this:	"Click	on
the	drop-down	arrow	next	to	the	publish	icon	on	the	toolbar	to	access	the	Edit
Publish	Configurations	for...	option."

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about
this	book—what	you	liked	or	may	have	disliked.	Reader	feedback	is	important	for	us
to	develop	titles	that	you	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	send	an	e-mail	to	<feedback@packtpub.com>,
and	mention	the	book	title	via	the	subject	of	your	message.

If	there	is	a	book	that	you	need	and	would	like	to	see	us	publish,	please	send	us	a
note	in	the	SUGGEST	A	TITLE	form	on	www.packtpub.com	or	e-mail
<suggest@packtpub.com>.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	on	www.packtpub.com/authors.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

mailto:feedback@packtpub.com
http://www.packtpub.com
mailto:suggest@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to
help	you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	for	all	Packt	books	you	have	purchased
from	your	account	at	http://www.PacktPub.com.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.PacktPub.com/support	and	register	to	have	the
files	e-mailed	directly	to	you.

Downloading	the	color	images	of	this	book
We	also	provide	you	a	PDF	file	that	has	color	images	of	the	screenshots	used	in	this
book.	The	color	images	will	help	you	better	understand	the	changes	in	the	output.	You
can	download	this	file	from
http://www.packtpub.com/sites/default/files/downloads/3165OT_MATLAB_Graphics_and_Data_Visualization_Cookbook.pdf

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes
do	happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or
the	code—we	would	be	grateful	if	you	would	report	this	to	us.	By	doing	so,	you	can
save	other	readers	from	frustration	and	help	us	improve	subsequent	versions	of	this
book.	If	you	find	any	errata,	please	report	them	by	visiting
http://www.packtpub.com/support,	selecting	your	book,	clicking	on	the	errata
submission	form	link,	and	entering	the	details	of	your	errata.	Once	your	errata	are
verified,	your	submission	will	be	accepted	and	the	errata	will	be	uploaded	on	our
website,	or	added	to	any	list	of	existing	errata,	under	the	Errata	section	of	that	title.
Any	existing	errata	can	be	viewed	by	selecting	your	title	from
http://www.packtpub.com/support.

Piracy
Piracy	of	copyright	material	on	the	Internet	is	an	ongoing	problem	across	all	media.
At	Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you
come	across	any	illegal	copies	of	our	works,	in	any	form,	on	the	Internet,	please
provide	us	with	the	location	address	or	website	name	immediately	so	that	we	can
pursue	a	remedy.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

http://www.PacktPub.com
http://www.PacktPub.com/support
http://www.packtpub.com/sites/default/files/downloads/3165OT_MATLAB_Graphics_and_Data_Visualization_Cookbook.pdf
http://www.packtpub.com/support
http://www.packtpub.com/support

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors,	and	our	ability	to	bring	you
valuable	content.

Questions
You	can	contact	us	at	<questions@packtpub.com>	if	you	are	having	a	problem	with
any	aspect	of	the	book,	and	we	will	do	our	best	to	address	it.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

mailto:copyright@packtpub.com
mailto:questions@packtpub.com

Chapter	1.	Customizing	Elements	of
MATLAB	Graphics—the	Basics
In	this	chapter,	we	will	cover:

Making	your	first	MATLAB	plot
Laying	out	long	tick	labels	without	overwriting
Using	annotations	pinned	to	the	axes
Tufte	style	gridding	for	readability
Bringing	order	to	chaos	with	legends
Visualizing	details	with	data	transformations
Designing	multigraph	layouts
A	visualization	to	compare	algorithm	test	results

Introduction
MATLAB	provides	a	rich	and	accessible	environment	for	building	data	displays	using
MATLAB	graphics	objects.	Each	graphics	object	has	a	set	of	characteristics	you
can	manipulate	via	their	property	settings.	While	each	property	has	a	default	factory
setting,	you	can	set	user-defined	values	for	these	properties	by	accessing	them
programmatically,	via	their	unique	identifier	called	a	handle;	or	interactively,	via	the
property	editor.	This	is	the	fundamental	way	for	customizing	MATLAB	graphics.

The	different	types	of	graphics	objects	may	be	hierarchically	related.	For	example,	a
plot	element	such	as	a	line	needs	an	axes	object	to	act	as	a	frame	of	reference.	The
axes	object	needs	the	figure	graphics	object	to	hold	it.	Sometimes,	it	is	possible	to
affect	the	property	settings	of	a	whole	group	of	graphics	objects	using	a	single
command,	depending	on	the	nature	of	their	inter-relation.	The	recipes	in	this	chapter
show	some	of	the	commonly	used	customizations	using	handle	graphics	manipulation,
applicable	to	all	types	of	MATLAB	plotting.

See	MATLAB	Product	pages	on	Handle	Graphics	Objects	for	a	complete	exposition
of	the	handle	graphics	technology.

Programmatic	manipulation	of	graphics	object
properties
All	plotting-related	MATLAB	commands	implicitly	create	the	figure	and	axes	graphics
objects	and	direct	their	output	to	the	most	recent	figure	and	its	most	recent	child

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

axes	object.	Explicitly,	you	can	use	the	command	figure	at	the	MATLAB	console	to
launch	a	new	MATLAB	figure	window;	and	the	command	axes	to	create	a	new	axes
object.	You	can	create	multiple	axes	objects	on	the	same	figure.	Each	axes	object	will
be	children	of	the	parent	figure	object.	Data	is	plotted	onto	the	axes	object	with
current	focus.	The	current	figure	handle	can	be	accessed	by	the	command	get
current	figure	or	gcf.	The	handle	to	the	current	axes	can	be	accessed	by	the
command	get	current	axes	or	gca.

get	(and	set)	commands	apply	to	all	MATLAB	graphics	objects	and	will	allow	to
query	(and	define)	their	user-settable	attributes	as	follows:

Select	the	Plot	Edit	button	(the	fifth	button	in	the	figure	toolbar)	to	get	into	the	plot
edit	mode.	Then,	select	any	object	on	the	current	figure	(figure	or	axes	or	annotation
objects).	This	becomes	your	graphic	object	with	current	focus.	Run	get(gco)	at	the
console	to	see	the	complete	list	of	user-definable	attributes	and	their	default	settings
for	the	graphic	object	in	current	focus.	Use	the	get	and	set	commands	to	alter	their
default	values	programmatically,	as	follows:

get(gco,'Property	Name');

set(gco,'property	Name',value);

The	Plot	Edit	button	is	circled	in	the	following	screenshot:

Altering	graphics	object	properties	via	the
Property	Editor
An	alternate	way	to	change	the	figure	and	axes	property	values	(and	property	values
of	other	MATLAB	graphic	objects)	is	by	means	of	the	MATLAB	Property	Editor.
Opening	up	the	detailed	property	editor	window	will	list	every	attribute	that	can	be
customized	for	the	type	of	graphics	object	you	are	using.

The	steps	to	use	the	figure	property	editor	wizard	are	shown	in	the	following
screenshot:	Edit	|	Figure	Properties	|	More	Properties	bring	up	the	Property
Inspector	Table	where	the	entries	can	be	directly	altered.	See	Axes	Properties	and
Current	Object	Properties	in	the	drop-down	options	under	the	Edit	menu	item	for
the	complete	list	of	user-definable	attributes.

The	following	screenshot	shows	steps	to	interact	with	the	Property	Editor	for
Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

reviewing	attributes	available	for	customization	for	any	MATLAB	graphics	object:

You	can	access	the	property	editor	for	other	graphics	objects	you	may	be	using	by
selecting	the	object	in	plot	edit	mode,	right-clicking	on	the	object,	and	selecting	Show
Property	Editor.

Once	the	appropriate	parameters	and	their	desired	settings	are	identified	using	the
Property	Editor,	the	user	can	make	a	command	line	statement	to	set	those	properties
to	the	new	values	and	thus	repeat	the	customizations	every	time	the	same	graph	is
generated,	programmatically.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Making	your	first	MATLAB	plot
This	recipe	takes	you	through	the	basic	commands	for	creating	a	plot	using	MATLAB.
It	demonstrates	how	to	import	data	from	an	Excel	spreadsheet,	how	to	create	a
basic	plot	with	it,	and	how	to	add	basic	annotations.	It	will	also	teach	how	to	add	a
linear	least	squares	fit	to	the	data.	It	will	show	how	you	locate	the	handle	to	this	line
object	you	created,	and	how	to	change	some	of	its	properties	to	impact	your
visualization.

Getting	ready
The	file	TemperatureXL.xls	is	part	of	the	code	repository	accompanying	this	book.
This	spreadsheet	has	two	columns	of	numeric	data	with	alphanumeric	headers	in	the
first	row.	The	first	step	is	to	import	the	data	into	the	MATLAB	workspace	with	the
xlsread	command:

[numericData	headerLabels]=xlsread('TemperatureXL.xls');

How	to	do	it...
Perform	the	following	steps:

1.	 Plot	the	data.	(Sort	the	data	before	plotting	if	order	is	not	important.	Sorting
helps	to	easily	assess	trends	in	the	data	or	lack	of	it.)

[sortedResults	I]	=	sort(numericData(:,1));

plot(numericData(I,1),	numericData(I,2),'.');

2.	 Label	the	x	and	y	axis:

xlabel(['Independent	Variable:	'	headerLabels{1}]);

ylabel(['Dependent	Variable:	'	headerLabels{2}]);

3.	 Add	a	title:

title('Scatter	plot	view	of	sorted	data');

The	output	at	this	point	should	be	as	follows:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

4.	 Estimate	the	trend	(using	a	linear	least	squares	fit):

p	=	polyfit(numericData(I,1),numericData(I,2),1);

y	=	polyval(p,numericData(I,1));

5.	 Overlay	the	trend	line	from	step	4	on	the	current	axes	using	a	dashed	line
style.	You	can	also	specify	the	color	of	the	line	as	part	of	the	linespec
definition.

hold	on;

plot(numericData(I,1),y,'r--');

6.	 Add	a	legend:

legend({'Data','Fit'},'Location','NorthWest');

The	output	at	this	point	should	be	as	follows:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

7.	 Locate	the	trend	line	based	on	the	color	you	set	for	it.	Change	the	line	style	to
continuous	instead	of	dashed.	In	this	step,	you	should	specify	the	color	of	the
line	with	a	three	element	vector	of	actual	RGB	values.

set(findobj(gca,'Color',[1	0	0]),...

		'Linestyle','-','Linewidth',1.5);

The	effect	of	step	7	is	as	follows:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

How	it	works...
The	command	xlsread	allows	you	to	read	the	numeric	columns	into	the	variable
numericData,	and	the	alphanumeric	columns	into	the	variable	headerLabels.	You	can
specify	the	location	of	the	Excel	file,	the	sheet	name,	and	the	exact	columns	to	read
by	using	the	command	xlsread.

In	step	1,	you	sorted	the	data.	The	vector	I	held	the	sort	index	order	of	the	data	such
that,	sortedResults	=	numericData(I,1).

In	step	2,	you	plotted	this	ordered	data.	Note	that	the	plot	command	does	not	use
any	specific	marker	for	the	data	points,	and	connects	the	successive	data	points	with
a	continuous	line	by	default.	Here,	as	you	specified	the	marker	style	without	the	line
style,	no	line	style	was	assumed	and	the	points	denoted	with	the	specified	marker
were	not	connected.	Another	alternative	to	create	this	type	of	graph	is	to	use	the
command	scatter.

In	step	3,	you	labelled	the	x	and	y	axis	and	added	a	title	to	the	graph.	The	string
concatenation	operator	[]	is	used	to	construct	the	labels	and	titles	using	some
hardcoded	text	and	the	column	headers	read	in	from	the	Excel	spreadsheet.	Note
how	you	used	cell	arrays	to	break	the	title	into	two	lines	with	each	string
representing	the	entry	for	a	line.

In	step	4,	you	calculated	the	linear	least	squares	fit	to	this	data	using	polyfit	which
fits	a	polynomial	of	a	degree	of	your	choice	(here,	degree	=	1	for	a	linear	fit).	The
parameters	of	the	line	derived	by	polyfit	can	be	evaluated	with	a	vector	of	your
choice.	In	this	case,	you	used	the	x	values	shown	in	this	plot.

In	step	5,	you	overlaid	the	trend	line	on	the	plot	using	a	dashed	style.	The	hold
command	ensures	that	the	display	area	is	not	cleared	before	adding	the	new	line.

In	step	6,	you	added	a	legend	to	the	graph.

In	step	7,	you	located	the	handle	to	the	line	object	you	created	based	on	the	color
you	set	for	it.	Using	this	handle	you	changed	its	style	to	a	continuous	line	style,	and	its
thickness	to	a	user-defined	value.	This	was	a	desirable	change,	since	the	dashed
style	is	distracting	the	user	without	adding	any	valuable	information.

The	findobj	command	allows	you	to	look	for	a	graphics	object	with	a	property	name
and	a	property	value	pair.	In	this	case,	you	looked	for	some	graphic	object	that	is	a
child	of	the	current	axis	that	is	red	in	color.	Once	you	found	that	handle	(returned	by
findobj),	you	called	the	set	function	with	that	handle	using	a	nested	operation	and
reset	the	thickness	and	style	of	the	trend	line.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Note	that	positional	coordinates,	as	used	in	this	example,	are	a	great	way	to	present
numerical	data.

Note
Takeaways	from	this	recipe:

Use	positional	coordinates	to	represent	numerical	data
Sort	data	before	plotting	(if	order	is	not	important)
Keep	discontinuous	lines	that	create	visual	noise	to	a	minimum

See	also
Look	up	MATLAB	help	on	the	plot,	polyfit,	polyval,	legend,	sort,	xlsread,	set,
get,	findobj,	and	scatter	commands.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Laying	out	long	tick	labels	without
overwriting
You	used	axis	labels	in	the	Making	your	first	MATLAB	plot	recipe.	Another	kind	of
label	used	in	graphs	is	tick	labels,	which	are	the	numeric	or	alphanumeric	labels
associated	with	the	tick	marks	on	the	axes.	When	the	plotting-related	commands	are
invoked,	MATLAB	sets	a	default	positioning	and	numerical	tick	labels.	As	this	recipe
shows,	you	can	customize	the	content	and	positioning	of	these	labels.	When	you	have
long	tick	labels	(such	as	dates),	this	recipe	shows	how	to	rotate	the	labels	by	an
arbitrary	angle	to	avoid	overwriting.

Getting	ready
In	this	recipe,	you	will	use	gene	expression	data	from	16,063	genes	on	14	types	of
cancer	for	198	samples.	This	data	is	part	of	the	code	repository	accompanying	this
book.	It	was	obtained	from	the	machine-learning	data	repository	maintained	by	the
Department	of	Statistics	at	Stanford	University.

load	14cancer.mat

How	to	do	it...
Perform	the	following	steps:

1.	 Display	the	expression	levels	for	gene	index	2,798	with	a	bar	chart,	error
bars,	and	associated	annotations:

%	Calculate	the	mean	and	standard	deviations

%	for	each	type	of	cancer

expressionLevel	=	[Xtrain(:,2798);	Xtest(:,2798)];

cancerTypes	=	[ytrainLabels	ytestLabels];

for	j	=	1:14

		indexes	=	expressionLevel(find(cancerTypes==j));

		meanExpressionLevel(j)	=	median(indexes);

		stdExpressionLevel(j)	=	3*std(indexes);

end

%	Plot	the	median	data	with	bars	around	it	showing	the	

3	

%	sigma	extent	of	the	data	in	that	group

errorbar(1:14,meanExpressionLevel,...

		stdExpressionLevel,stdExpressionLevel);

%	Add	annotations

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

ylabel('Gene	Expression	Values	for	gene	#	2798');

xlabel('Cancer	types');

title({'Line	charts	showing	the	median',...

	'Bars	showing	the	3\sigma	limits	around	the	

median',...

	'Gene	#2798	expression	in	198	samples,	14	cancers',...

	'Note	the	overwritten	labels	are	undecipherable!'},...		

	'Color',[1	0	0]);

2.	 Add	the	tick	labels	using	a	custom	font	size:

set(gca,'Fontsize',11,'XTick',1:14,'XTickLabel',...

		classLabels);

The	output	at	this	point	should	be	as	follows:

3.	 Rotate	tick	labels:

rotateXLabels(gca,	45);

rotateXLabels	has	the	following	effect	on	the	x	tick	labels:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

How	it	works...
The	previous	screenshot	uses	line	chart	with	error	bars	to	show	the	expression	level
for	various	cancers	for	a	particular	gene.

In	step	1,	you	extracted	the	expression	level	data	for	gene	index	number	2,798	and
collected	the	median	and	the	three	standard	deviation	values	for	each	cancer	type.
Three	standard	deviations	on	either	side	encompass	99.7	percent	of	the	data	if	a
normal	distribution	is	assumed.	Next,	you	plotted	this	series	with	the	errorbar
command.	This	produced	a	plot	with	the	median	values	for	each	group	connected
with	a	line;	additionally	for	each	group,	it	displayed	bars	above	and	below	the	median
point.	You	plotted	the	three	sigma	values	for	each	group	on	either	side	of	the
medians.

Note	that,	again,	you	have	used	positional	coordinates	to	represent	your	data.	This	is
a	visualization	best	practice.	You	used	error	bars	around	your	central	representative
data	point	to	reflect	a	realistic	picture	of	the	difference	in	the	data	between	groups.
This	is	also	a	visualization	best	practice.	From	the	previous	screenshot,	note	that	the
expression	level	for	leukemia	has	a	higher	mean.	However,	because	the	three	sigma
bars	from	other	cancers	overlap	with	the	data	from	leukaemia,	this	gene	expression

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

level	alone	cannot	be	used	as	a	definitive	indicator	for	leukaemia.

In	step	2,	you	added	the	cancer	name	labels	to	the	x	tick	marks.	You	first	set	the	tick
positions	with	the	vector	1	through	14	and	then	set	the	corresponding	tick	label
entries	for	those	positions	with	the	array	of	strings	containing	the	cancer	class
names.	Since	the	label	names	were	long,	you	observed	significant	overwriting	that
rendered	the	tick	labelling	unreadable.	Resizing	the	figure	and	reducing	the	font	size
are	some	alternatives	that	could	help	in	this	case.	However,	a	more	compelling
solution	is	to	rotate	the	labels.

In	step	3,	you	rotated	the	labels	by	45	degrees	so	that	the	labels	become	readable.
You	used	the	function	rotateXLabels.m	that	is	part	of	the	code	repository
accompanying	this	book.	The	function	takes	two	arguments,	the	axis	handle	on	which
to	work	and	the	angle	by	which	to	rotate	the	labels	in	degrees.	Internally,	this	function
creates	text	annotations	at	the	designated	tick	positions	and	rotates	them	by	the
angle	specified	in	the	second	argument.	This	function	is	adapted	from	the	submission
by	Ben	Tordoff	on	MATLAB	File	Exchange.	While	the	tick	label	rotation	solves	the
problem	of	over-writing	of	the	labels,	remember	that	the	steeper	the	angle,	the	more
difficult	it	is	to	read.

A	few	additional	steps	(included	in	source	code	lines	38	–	43)	for	resizing	the	figure
and	the	axes	as	well	as	updating	the	title	will	give	you	the	screenshot	shown	earlier.

Note
Takeaways	from	this	recipe:

Use	positional	coordinates	to	compare	between	data
Use	error	bars	(or	some	measure	of	variance)	around	your	representative	data
point	to	realistically	reflect	the	difference	in	the	data	between	groups
Use	low	angles	of	rotation	for	the	x	tick	labels,	when	needed

See	also
Look	up	MATLAB	help	on	the	errorbar	command.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Using	annotations	pinned	to	the	axes
MATLAB	provides	an	interface	to	place	custom	elements	on	the	graphics	using	the
command	annotation.	Lines,	arrows,	double-ended	arrows,	text	arrows,	textboxes,
ellipses,	and	rectangles	are	all	valid	elements	you	can	overlay	on	your	basic	graphic
to	convey	information.

Getting	ready
In	this	recipe,	you	will	plot	the	standard	normal	distribution	and	add	a	text	arrow	to
point	out	the	location	of	the	mean	value	on	the	graphic.

load	stdNormalDistribution;

How	to	do	it...
Perform	the	following	steps:

1.	 Plot	the	data.	Add	the	line	at	the	mean	position:

plot(x,y1);

line([mean1	mean1],get(gca,'ylim'));

2.	 Add	the	text	arrow	annotation	component	by	first	converting	the	desired
location	for	the	arrow	from	data	space	coordinates	to	normalized	figure	units
using	dsxy2figxy	and	then	invoking	the	annotation	command:

[xmeannfu	ymeannfu]=	dsxy2figxy(gca,[.5,0],[.15,.05]);

annotation('textarrow',xmeannfu,ymeannfu,'String',...

		'Mean');

The	output	is	as	follows:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

How	it	works...
The	MATLAB	command	annotation	works	with	Normalized	Figure	Units.	As	the
name	suggests,	these	units	range	from	0	to	1	in	both,	the	horizontal	and	vertical
directions	and	cover	the	entire	area	of	the	figure.	The	lower	bottom	left	is	0,	0;	the
upper	right	corner	is	addressed	with	1,	1.	To	place	custom	elements	such	as	axes	or
buttons	on	the	figure,	you	will	need	to	use	normalized	figure	units.	The	function
dsxy2figxy	accompanies	the	documentation	on	annotations	from	MATLAB.	It	allows
you	to	convert	coordinates	from	data	space	units	to	normalized	figure	units.	It	is
provided	as	part	of	the	code	repository	accompanying	this	book.

Note	that	when	you	need	to	place	an	annotation	on	the	screen	without	referencing	the
data	space	axes,	you	can	do	that	from	the	Insert	file	menu	item	directly,	shown	as
follows:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

You	can	later	look	up	the	Position	property	value	of	your	annotation	object,	using
get(gco,'position')	and	then	make	the	future	placements	of	this	object	on	your
graphic	using	those	positional	coordinates,	programmatically.

There's	more...
If	you	resize	the	figure,	the	annotations	can	change	shape	but	continue	to	point	to	the
same	locations	on	the	graph	because	they	and	the	figure	use	normalized	coordinates.
However,	if	you	shift	the	axes	up,	down,	left,	or	right	within	the	figure,	the	annotations
remain	fixed	in	figure	space	and	do	not	move	with	the	axes.	In	order	to	ensure	that
annotations	stay	connected	to	the	data	with	which	you	have	associated	them,	you
have	to	pin	the	annotation	to	the	data	space.	The	pinning	can	be	achieved	using	the
function	annotation_pinned	as	shown	in	the	following	code	snippet.	This	function	is
adapted	from	a	submission	by	Fred	Gruber	on	MATLAB	File	Exchange.

annotation_pinned('textarrow',[.5,0],[.15,.05],...

		'String','Mean');

The	other	alternative	is	to	edit	the	plot	in	the	Plot	Edit	mode	and	manually	pin	the
annotation	component	to	their	location	as	shown	in	the	following	screenshot:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Note
Takeaways	from	this	recipe:

Use	components	such	as	arrows	and	text	labels	to	provide	additional
annotations	to	improve	information	content	of	the	graphics

See	also
Look	up	MATLAB	help	on	the	linspace,	annotation,	dsxy2figxy,	and	line
commands.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Tufte	style	gridding	for	readability
Using	grid	lines	is	a	great	practice	because	they	guide	the	eye	and	hence	make
numerical	data	easier	to	read	and	compare.	The	MATLAB	command	grid	is	used	to
turn	the	default	grid	lines	on	or	off.	This	recipe	shows	the	use	of	these	default	lines.
This	recipe	also	demonstrates	how	to	add	alternate	grid	lines	in	different	line	styles
and	at	customized	intervals.	The	MATLAB	command	line	can	be	used	to	create	the
grid	lines	customized	for	your	needs.

Getting	ready
In	this	recipe,	a	marketing	dataset	with	responses	to	14	questions	from	8,993
responders	has	been	used.	The	data	was	obtained	from	the	machine	learning	data
repository	maintained	by	the	Department	of	Statistics	at	Stanford	University,	and	is
included	as	part	of	the	code	repository	with	this	book.

load	MarketingData.mat

How	to	do	it...
Perform	the	following	steps:

1.	 Extract	the	ethnicity	and	income	group	information:

%	Initialize	y	

y	=	NaN(length(ANNUAL_INCOMEL),...

		length(ETHNIC_CLASSIFICATION));

%	Each	data	point	in	y	has	the	number	of	responses	for	

a	

%	given	income	group	and	ethnic	classification

for	i	=	1:length(ETHNIC_CLASSIFICATION)

		forThisGroup	=	find(data(:,13)==i);

		for	j	=	1:length(ANNUAL_INCOMEL)

				y(j,i)	=	length(find(data(forThisGroup,1)==j));

		end

end

2.	 Generate	a	stacked	bar	plot	to	show	the	distribution	of	ethnicities	within	each
with	income	group:

%	Declare	figure	dimensions

figure('units','normalized',...

		'position',[0.3474				0.3481				0.2979				0.5565]);

axes('position',[0.1300				0.2240				0.6505			

0.6816]);

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

%	make	the	bar	plot

bar(y,.4,'stacked','linestyle','none');

%	Use	an	alternative	predefined	colormap

colormap('summer');

%	Add	annotations

set(gca,'Fontsize',11,...

		'Xtick',[1:9]-.5,...

		'XTickLabel',	[num2str(ANNUAL_INCOMEL')	...

		repmat('	to	',9,1)	...

		num2str(ANNUAL_INCOMEU')]);

rotateXLabels(gca,	45);

ylabel('Number	of	responses','Fontsize',11);

xlabel('Income	groups','Fontsize',11);

title({'Distribution	of	ethnicities	in	each',...

		'income	group	of	SF	bay	area	residents',...

		'Using	Default	Grid	Lines'});

box	on;

%	Add	annotations	to	the	color	bar

h=colorbar;

set(h,'Fontsize',11,'ytick',1:8,'yticklabel',...

		ETHNIC_CLASSIFICATION);

ylabel(h,'Ethnicity','Fontsize',11);

set(gcf,'Color',[1	1	1]);

3.	 Turn	the	automated	grid	on:

grid	on;

The	output	at	this	point	should	be	as	follows:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

4.	 Turn	the	minor	grid	lines	on	(and	update	title):

grid	minor;

title({'Distribution	of	ethnicities	in	each',...

		'income	group	of	SF	bay	area	residents',...

		'Using	Minor	Grid	Lines'});

The	output	is	as	follows:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

5.	 Turn	the	automated	grid	off:

grid	off;

6.	 Add	custom	grid	lines:

%	Set	axis	limits

xlim([0	10]);ylim([0	1800]);

%	Set	y	grid	positions	and	draw	lines	(no	x	grid	lines)

YgridPos	=	[0:200:1800];

set(gca,'ytick',YgridPos,'yticklabel',YgridPos);

xLimits	=	get(gca,'xlim');

line([xLimits(1)*ones(size(YgridPos),1);	...

		xLimits(2)*ones(size(YgridPos),1)],...

		[YgridPos;	YgridPos],'Color',[.7	.7	.7],...

		'LineStyle','-');

XgridPos	=	[.5:9.5];

yLimits	=	get(gca,'ylim');

%	Draw	special	y	grid	lines	for	separating	data	groups

line([XgridPos([2	9]);	XgridPos([2	9])],...

		[yLimits(1)*ones(2,1)	yLimits(2)*ones(2,1)]',...

		'Color',[.4	.4	.4],'LineStyle','-','Linewidth',2);

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

%	Wipe	out	outer	boundary	for	Tufte	style	bar	plot

line([xLimits(1)	xLimits(2)]',[YgridPos(1);...	

		YgridPos(1)],'Color',[1	1	1],'LineStyle','-');

line([xLimits(1)	xLimits(1)]',[YgridPos(1);...	

		YgridPos(end)],	'Color',[1	1	1],'LineStyle','-');

line([xLimits(end)	xLimits(end)]',	[YgridPos(1);...

		YgridPos(end)],'Color',[1	1	1],'LineStyle','-');

line([xLimits(1)	xLimits(2)]',[YgridPos(end);	...

		YgridPos(end)],'Color',[1	1	1],'LineStyle','-');

7.	 Add	more	annotations:

%	Add	an	arrow	and	a	text	arrow	annotation

[xmeannfu	ymeannfu]=	dsxy2figxy(gca,[2,1.5],

[1600,1600]);

annotation('textarrow',xmeannfu,ymeannfu,...

		'String',{'Grid	lines','to	separate	categories',...

		'with	one	missing	bound'});

[xmeannfu	ymeannfu]=...				

		dsxy2figxy(gca,[6.5,8.5],[1600,1600]);

annotation('arrow',xmeannfu,ymeannfu);

title({['Distribution	of	ethnicities	in	each	'...

		'income	group'],'of	SF	bay	area	residents'});

%	Remove	the	unnecessary	ytick	label	at	the	end

for	i	=	1:length(YgridPos)-1;	

cellticks{i}	=	num2str(YgridPos(i));

end

cellticks{i+1}	=	'';

set(gca,'ytick',YgridPos,'YTicklabel',cellticks);

%	The	colorbar	doesn't	need	a	box	around	it	either

axes(h);box	off;

The	final	output	from	this	recipe	is	as	follows:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

How	it	works...
The	previous	screenshot	shows	the	distribution	of	ethnicities	in	each	of	the	nine
income	buckets	among	bay	area	residents.	The	largest	number	of	responders
belongs	to	the	lowest	income	category.	The	ethnicity	group	White	is	the	largest	group
within	all	income	groups,	followed	by	Hispanic,	followed	by	Black.

This	recipe	explored	grid	lines	with	a	stacked	bar	chart.	The	bar	chart	uses	line	length
as	the	basic	tool	for	comparison	which	is	a	recommended	visualization	practice.
Automated	grids	and	manually	crafted	grid	lines	were	both	demonstrated.	For	the
custom	grid	lines,	continuous	and	light	color	horizontal	grid	lines	were	chosen	to	aid	in
reading	the	data	with	reduced	visual	distraction.	Unnecessary	vertical	lines	were
removed	(as	proposed	by	Edward	Tufte).	Special	functional	vertical	grid	lines	were
added	to	help	visually	distinguish	categories	that	are	missing	one	bound.	Text	arrow
annotations	were	added	to	explain	the	intent	of	the	bold	grid	lines.	The	principle	of
minimal	and	functional	grid	lines	was	thus	demonstrated.

Note	that	you	now	have	encountered	three	different	ways	of	specifying	colors	for	your
graphic	object.	The	first	is	by	using	the	line	spec	(for	example,	'r'),	the	second	is	by

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

directly	using	the	RGB	values	(for	example,	[0	0	1]),	and	in	this	recipe,	you	invoked
an	alternative	built-in	MATLAB	colormap	summer	to	get	the	colors	for	your	data.	A
color	map	is	a	matrix	of	RGB	values	that	represents	a	color	scale,	where	the	first	row
corresponds	to	the	color	with	which	to	represent	cmin	and	the	last	row	corresponds
to	the	color	with	which	to	represent	cmax.	cmin	and	cmax	correspond	to	the	minimum
and	maximum	values	in	your	data.	When	you	make	a	plot,	MATLAB	automatically
sets	the	cmin	and	cmax	values	from	your	data	and	ties	it	with	the	default	colormap
jet.

Note	that	another	new	option	you	exercised	in	this	recipe	was	to	manually	set	the
figure	dimensions	in	step	1.	The	default	units	for	doing	this	are	in	pixel	coordinates.
However,	you	changed	that	to	normalized	coordinates	by:
set(gcf,'units,'normalized').	This	allowed	you	to	specify	positional	dimensions
independent	of	the	resolution	of	the	computer	screen	on	which	the	code	is	executed.

Note
Takeaways	from	this	recipe:

Use	the	length	of	a	line	to	compare	between	numbers
Use	grid	lines	to	make	it	easy	to	read	the	data
Use	the	minimum	number	of	grid	lines	needed
Use	grid	lines	to	create	data	groups

See	also
Look	up	MATLAB	help	on	the	bar,	line,	and	grid	commands.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Bringing	order	to	chaos	with	legends
As	graphics	increase	in	complexity,	it	is	common	to	use	additional	symbols,	line
styles,	color,	and	such	others	to	code	for	different	layers	of	information.	Figure
legends	help	sort	out	this	madness.	Sometimes	there	are	too	many	variables	to	code
and	the	program	needs	to	use	clever	combinations	to	code	for	the	additional	layers	of
information.	This	recipe	demonstrates	how	the	legend	command	from	MATLAB	helps
to	build	legends	of	your	choice.	Furthermore,	it	shows	how	to	make	your	own	legends
to	accommodate	a	special	need.

Getting	ready
This	recipe	plots	a	set	of	ten	normal	distributions	with	different	parameters.

load	10NormalDistributions

How	to	do	it...
Perform	the	following	steps:

1.	 Plot	the	data	with	basic	labeling:

plot(dataVect');

title({'Ten	different	normal	distributions',...

		['using	unhelpful	legends	that	occlude	the'...

		'actual	data,'],...

		'and	uses	ill-separated	or,	repeating	colors!'},...

		'Color',[1	0	0]);

xlabel('x');

ylabel('probability	density	function	of	x');

legend(legendMatrix);

The	output	is	as	follows:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

2.	 Define	a	set	of	line	specifications:

LineStyles	=	{'-','--',':'};

MarkerSpecs	=	{'+','o'};

ColorSpecs	=	{'r','g','b','k'};

cnt	=	1;

for	i	=	1:length(LineStyles)

		for	j	=	1:length(MarkerSpecs)

				for	k	=	1:length(ColorSpecs)

						LineSpecs{cnt}	=	[LineStyles{i}	MarkerSpecs{j}	

...

								ColorSpecs{k}];

						cnt	=	cnt+1;

				end

		end

end

3.	 Apply	the	new	line	specifications	to	visualize	the	distributions.	Break	the
legend	entries	into	two	lines.	Use	smaller	fonts	to	write	them.	And	place	the
legend	outside	of	graph	area.

figure;	hold	on;

for	i	=	1:10

		dataVect(i,:)	=	(1/sqrt(2*pi*stdVect(i).^2))*...

				exp(-(x-meanVect(i)).^2/(2*stdVect(i).^2));

		plot(dataVect(i,:),	LineSpecs{i});

%	Multi	line	legend	entries

		legendMatrix{i}	=	...

				[sprintf('mean	=	%.2f,	',meanVect(i))...

				char(10)	...

				sprintf('std	=	%.2f',stdVect(i))];

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

end

title('Ten	different	normal	distributions');

xlabel('x');	ylabel('probability	density	function	of	

x');

legend(legendMatrix,'Location','NorthEastOutside',...

		'Fontsize',8);

box	on;

The	new	output	should	be	as	follows:

How	it	works...
Line	specs	are	composed	of	line	style,	line	width,	marker	style,	marker	size,	and	the
color	of	the	line	(which	can	be	specified	either	with	the	character	shorthand	used
here,	or	with	the	actual	RGB	values.	All	attributes	of	a	line	can	be	coded	with
information.	The	use	of	a	few	distinct	colors	combined	with	marker	style	and	line	style
allows	greater	distinction	between	the	set	of	ten	lines	in	this	example.	Note	that	the
colors	chosen	here	were	random.	A	sequential	palette	would	have	implied	an	order	in
the	data.	Too	many	colors	in	legends	usually	pose	a	perceptual	challenge.

Adding	the	newline	character	char(10)	between	strings	forces	the	legend	entries	to
be	broken	into	two	lines.

There's	more...
The	legend	command	internally	increments	a	counter	every	time	the	plot	command	is

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

called.	Sometimes	this	automatic	increment	process	is	too	restrictive.	You	may	need
several	of	your	plot	commands	to	correspond	to	just	one	legend	entry	shown	as
follows:

figure;	hold;

plot(dataVect(1:6,:)','Color',[1	0	0]);

plot(dataVect(7:10,:)','Color',[0	0	0]);

h=legend(['Color	1'	char(10)	'first	6	curves'],...

		['Color	2'	char(10)	'remaining	4	curves'],...	

		'Location','Best');

c=get(h,'Children');

set(c(1:3),'Color',[1	0	0]);

set(c(4:6),'Color',[0	0	0]);

The	output	is	as	follows:

A	MATLAB	file	exchange	submission	by	Kelly	Kearney	extends	the	functionality	of
legend	by	making	it	possible	to	flexibly	layout	the	components	of	the	legend,	instead
of	the	serial	columnar	format.	This	code	is	included	as	part	of	the	code	repository
with	the	book.	Following	is	an	example:

figure('units','normalized','position',...

		[0.4172				0.1769				0.2917				0.5861]);

hold	on;

for	i	=	1:10

		h(i)	=	plot(dataVect(i,:),	LineSpecs{i});

end

legendflex(h,...														%handle	to	plot	lines

		legendMatrix,...												%corresponding	legend	entries

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

		'ref',	gcf,	...													%which	figure

		'anchor',	{'nw','nw'},	...		%location	of	legend	box

		'buffer',[50	0],	...								%an	offset	wrt	the	location

		'nrow',4,	...															%number	of	rows

		'fontsize',8,...												%font	size

		'xscale',.5);															%a	scale	factor	for	actual	

symbols

The	output	is	as	follows:

A	few	additional	steps	(included	in	source	code	lines	73	–	76)	for	resizing	the	figure
and	the	axes	as	well	as	updating	the	title	give	you	the	preceding	screenshot.

Note
Takeaways	from	this	recipe:

Use	legends	that	are	carefully	worded	and	judiciously	placed,	such	that	the

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

data	still	has	the	maximum	focus.
Use	line	style	and	marker	style	over	color	to	code	information	in	legends.
Do	not	use	more	than	a	handful	of	different	colors	in	legends.	(Color	is	best
reserved	for	coding	categorical	variables.	Choosing	sequential	colors	may
imply	an	order	in	the	values.	Use	non-sequential	colors	when	coding	unordered
categorical	variables.)

See	also
Look	up	MATLAB	help	on	the	legend,	grid,	and	flexlegend	commands.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Visualizing	details	with	data
transformations
The	right	transformation	can	reveal	features	of	the	data	that	are	not	observable	in	the
original	domain.	In	this	recipe,	you	will	see	this	principle	at	work.

Getting	ready
In	this	recipe,	you	will	use	a	data	series	with	time	variant	rate	of	growth.	It	is	common
practice	to	use	log	transformations	to	effectively	visualize	the	periods	of	growth	in
such	cases.	The	original	function	generates	a	series	of	over	50	cycles	following	the
given	equation,	where	the	growth	efficiency	E	is	a	function	of	time	(execute	source
code	lines	11	–	15).

y1	=	r	*	(1+E).^x;

How	to	do	it...
Perform	the	following	steps:

1.	 Plot	the	original	and	transformed	data	with	the	plotyy	command:

y2	=	log(y1);

axes('position',[0.1300				0.1100				0.7750				

0.7805]);

[AX,H1,H2]	=	plotyy(x,y1,x,y2,'plot');	

title({'Use	log	transformations	to	effectively	...	

visualize','growth,	saturation,	decay	data	profiles'});

set(get(AX(1),'Ylabel'),'String','data');	

set(get(AX(2),'Ylabel'),'String','log(data)');

xlabel('x');	set(H1,'LineStyle','--');	

set(H2,'LineStyle',':');

2.	 Create	annotations	to	reveal	data	characteristics:

annotation('textarrow',[.26	.28],[.67,.37],...

		'String',['Exponential	Growth'	char(10)	...

		'(Cycles	1	to	30)']);

annotation('textarrow',[.7	.7],[.8,.64],'String',...

		['Non	Exponential	Decay'	char(10)	...

		'(Cycles	30	to	45)']);

annotation('textarrow',[.809	.859],[.669,.192],...

		'String',...

		['Zero	growth'	char(10)	'(Cycles	45	to	50)']);

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

legend({'Untransformed	data','Log	Transformed	

data'},...

		'Location','Best');

The	output	should	be	as	follows:

How	it	works...
The	data	in	its	original	and	transformed	domains	can	both	contain	useful	information.
Transformations	can	reveal	interesting	characteristics	about	the	data	that	is	not
apparent	from	the	view	of	the	original	data.

MATLAB	offers	the	plotyy	command	to	simultaneously	use	both,	the	left	and	the	right
y	axis	to	plot	two	sets	of	data.	This	is	especially	useful	when	the	independent	variable
x	is	the	same	(as	in	the	present	example).

The	handles	returned	by	plotyy,	stored	in	the	variable	AX	are	used	to	put	the	desired
labels	(which	in	this	case	are	the	strings	data	and	log(data)	on	the	two	sides	of	the
y	axis).

A	side	note:	MATLAB	uses	scientific	notation	on	the	tick	labels.	Sometimes,	this	is	an
unintended	effect.	You	can	turn	this	off	as	follows:

%	Resize	the	figure	so	you	can	see	the	huge	numbers

set(gcf,'units','normalized','position',...

		[0.0411				0.5157				0.7510				0.3889]);

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

%	AX(1)	stores	the	handle	to	data	on	the	untransformed	axis

n=get(AX(1),'Ytick');

set(AX(1),'yticklabel',sprintf('%d	|',n'));

The	output	is	as	follows:

There's	more...
Since	logarithms	are	such	a	common	transformation,	MATLAB	allows	you	to	directly
change	the	scale	of	x	or	y	or	both	axis	to	a	log	scale	by	changing	the	xscale	or
yscale	property.	You	can	also	use	the	semilogx,	semilogy,	and	loglog	plot	types
directly.	For	example:

subplot(2,1,1);

semilogy(x,y1);

xlabel('x');	

ylabel('data	on	log	scale');

title({'MATLAB	command	semilogy	was	directly	used',...

		'to	view	the	y	values	on	a	log	scale'});

subplot(2,1,2);

plot(x,y1);	

set(gca,'yscale','log');

xlabel('x');

ylabel('data	on	log	scale');

title({'Use	ordinary	x	versus	y	plot',...

		'Change	yscale	property	to	log	for	the	same	effect'});

The	output	is	looks	as	follows:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Note
Takeaways	from	this	recipe:

Use	data	transformations	in	your	data	exploration

See	also…
Look	up	MATLAB	help	on	the	plotyy,	semilogx,	semilogy,	and	loglog	commands
that	we	encountered	in	this	recipe.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Designing	multigraph	layouts
Related	data	is	easier	to	interpret	if	they	are	placed	in	close	proximity.	MATLAB
provides	a	default	way	to	do	this	with	the	command	subplot.	Subplots	are	sufficient
for	creating	graphs	juxtaposed	next	to	each	other	on	a	regular	grid.	Sometimes
though,	there	is	a	need	for	an	irregular	grid,	such	as	when	there	is	one	principal	graph
that	needs	more	focus	and	hence	more	physical	area	dedicated	to	it.	You	can	see
detailed	information	on	one	graph,	while	another	is	a	more	abstracted	view	that
provides	context.	This	recipe	concentrates	on	ways	to	lay	out	a	set	of	graphics.

Getting	ready
You	will	use	stock	price	indices	of	the	AAPL	stock	over	year	2011:

%	Load	data	and	reverse	the	order	to	get	earliest	date	first

[AAPL	dateAAPL]	=	xlsread('AAPL_090784_012412.csv');

dateAAPL	=	datenum({dateAAPL{2:end,1}});

dateAAPL	=	dateAAPL(end:-1:1);

AAPL	=	AAPL(end:-1:1,:);

%	Choose	a	time	window	for	the	main	display

rangeMIN	=	datenum('1/1/2011');

rangeMAX	=	datenum('12/31/2011');

idx	=	find(dateAAPL	>=	rangeMIN	&	dateAAPL	<=	rangeMAX);

How	to	do	it...
For	the	uniform	grid	layout,	perform	the	following	steps:

1.	 Use	the	subplot	function	for	a	regular	grid	layout.	Notice	the	title	on	each
subplot	to	understand	how	MATLAB	accesses	each	consecutive	position.

%	Declare	the	figure

figure('units','normalized','position',...

		[0.0609				0.0593				0.5844				0.8463]);

%	Declare	the	data	labels

matNames	=	{'Open','High','Low','Close','Volume',...

		'Adj	Close'};

%	Use	subplots	to	lay	it	out

for	i	=	1:6

		subplot(3,2,i);

		plot(idx,AAPL(idx,i));

		if	i~=5

				title([matNames{i}	'	$,	'...

						'subplot(3,2,'	num2str(i)	')'],...

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

						'Fontsize',12,'Color',[1	0	0]);

				ylabel('$');

		else

				title([matNames{i}	'	vol,	'...

						'subplot(3,2,'	num2str(i)	')'],...

				'Fontsize',12,'Color',[1	0	0]);

				ylabel('Volume');

		end

		set(gca,'xtick',linspace(idx(1),idx(end),12),...

				'xticklabel',...

				datestr(linspace(dateAAPL(idx(1)),...

						dateAAPL(idx(end)),12),...

				'mmm'),'Fontsize',10,'fontweight','bold');

		rotateXLabels(gca,40);

		box	on;	axis	tight

end

%	Add	a	title	to	tie	the	set	of	plots	together

annotation('textbox',[0.37			0.96			0.48			0.03],...

		'String','Apple	Inc	Stock	Price	over	year	2011',...

		'Fontsize',14,'Linestyle','none');

Presenting	related	information	on	a	multigraph	layout	on	a	uniform	grid:

For	the	customized	multigraph	layout	,	you	will	create	a	commonly	used	set	of
plots	for	viewing	stock	prices	over	a	certain	time	window	in	the	context	of	a	bigger
period	of	price	variations.	The	data	will	be	plotted	in	three	panels.	The	bottom	most
panel	has	the	entire	data.	The	part	in	blue	on	the	bottom	panel	is	the	part	of	the
series	that	is	blown	up	and	presented	in	the	top	panel.	The	volume	data	from	that

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

same	time	window	as	the	first	panel	is	displayed	with	a	bar	chart	in	the	central	panel.
Perform	the	following	steps:

1.	 Plot	the	data	in	panel	1:

%	Figure	dimensions

figure('units','normalized','Position',...

		[0.0427				0.2102				0.6026				0.6944]);

%	Layout	the	axis

Panel1	=	axes('Position',...

		[0.0570				0.5520				0.8850				0.3730]);hold;

%	use	area	graphs	to	create	the	plot	with	a	filled	out	

%	area	under	the	curve	

area(AAPL(idx,4),'FaceColor',...

				[188	210	238]/255,'edgecolor',...

				[54	100	139]/255);

%	set	axis	view	parameters

xlim([1	length(idx)]);	

yminv	=	min(AAPL(idx,4))-.5*range(AAPL(idx,4));

ymaxv	=	max(AAPL(idx,4))+.1*range(AAPL(idx,4));

ylim([yminv	ymaxv]);

box	on;

%	set	up	the	grid	lines

set(gca,'Ticklength',[0	0],'YAxisLocation','right');

line([linspace(1,length(idx),15);				

		linspace(1,length(idx),15)],...

		[yminv*ones(1,15);	ymaxv*ones(1,15)],...

		'Color',[.7	.7	.7]);

line([ones(1,10);	length(idx)*ones(1,10)],...

		[linspace(yminv,	ymaxv,10);	...

		linspace(yminv,	ymaxv,10);],'Color',[.9	.9	.9]);

%	set	up	the	annotations

set(gca,'xtick',linspace(1,length(idx),15),...

		'xticklabel',datestr(linspace(dateAAPL(idx(1)),...

		dateAAPL(idx(end)),15),'ddmmmyy'));

title({'Apple	Inc	Stock	Price,',...

		'(detailed	view	from	selected	time	window)'},...

				'Fontsize',12);

2.	 Plot	the	data	in	panel	2	(Specially	note	how	the	date	tick	labels	are
generated):

%	Layout	the	axis

Panel2	=	axes('Position',[.0570	.2947	.8850	.1880]);

%	Plot	the	volume	data	with	bar	chart

bar(1:length(idx),	AAPL(idx,5),.25,...

		'FaceColor',[54	100	139]/255);

hold;	xlim([1	length(idx)]);hold	on;

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

%	Add	grid	lines

yminv	=	0;

ymaxv	=	round(max(AAPL(idx,5)));

line([linspace(1,length(idx),30);...

		linspace(1,length(idx),30)],...

		[yminv*ones(1,30);	ymaxv*ones(1,30)],...

		'Color',[.9	.9	.9]);

line([ones(1,5);	length(idx)*ones(1,5)],...

		[linspace(yminv,	ymaxv,5);	...

		linspace(yminv,	ymaxv,5);],'Color',[.9	.9	.9]);

ylim([yminv	ymaxv]);

%	Set	the	special	date	tick	labels

set(gca,	'Ticklength',[0	0],...

'xtick',linspace(1,length(idx),10),'xticklabel',...

		datestr(linspace(dateAAPL(idx(1)),...

		dateAAPL(idx(end)),10),'ddmmmyy'));

tickpos	=	get(Panel2,'ytick')/1000000;

for	i	=	1:numel(tickpos)

		C{i}	=	[num2str(tickpos(i))	'M'];	

end

set(Panel2,'yticklabel',C,'YAxisLocation','right');

text(0,1.1*ymaxv,'Volume','VerticalAlignment','top',...

		'Color',[54	100	139]/255,'Fontweight','bold');

3.	 Plot	the	data	in	panel	3	(Specially	note	that	sub-selection	is	implied	by	plotting
over	the	time	window	of	interest,	a	segment	with	the	same	color	as	the	detail
view	of	panel	1,	to	establish	the	connection):

%	Layout	the	axis

Panel3	=	axes('Position',[.0570	.1100	.8850	.1273]);

%	make	the	first	plot	muted	underlying	plot

area(dateAAPL,	AAPL(:,4),'FaceColor',...

		[234	234	234]/255,'edgecolor',[.8	.8	.8]);

hold;

line([min(idx)	min(idx)],get(gca,'ylim'),'Color','k');

line([max(idx)	max(idx)],get(gca,'ylim'),'Color','k');

set(gca,'Ticklength',[0	0]);

%	overplot	for	emphasis	(use	same	color	to	establish	

%	connection)

area(dateAAPL(idx),AAPL(idx,4),'FaceColor',...

		[188	210	238]/255,'edgecolor',[54	100	139]/255);

ylim([min(AAPL(:,4))	1.1*max(AAPL(:,4))]);

xlabel('Long	term	stock	prices');

%	Add	additional	grid	lines

line([min(get(gca,'xlim'))	min(get(gca,'xlim'))],...

		get(gca,'ylim'),'Color',[1	1	1]);

line([max(get(gca,'xlim'))	max(get(gca,'xlim'))],...

		get(gca,'ylim'),'Color',[1	1	1]);

line(get(gca,'xlim'),[max(get(gca,'ylim'))	...

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

		max(get(gca,'ylim'))],'Color',[1	1	1]);

line(get(gca,'xlim'),	[min(get(gca,'ylim'))	...

		min(get(gca,'ylim'))],'Color',[1	1	1]);

set(gca,'xticklabel',datestr(get(gca,'xtick'),...

		'yyyy'),'yticklabel',[]);

The	resultant	stock	price	charts	with	AAPL	(Apple	Incorporated	Stock	Price)
is	given	in	the	following	screenshot.	The	graphic	illustrates	how	a	combination
of	plots	can	be	used	to	convey	contextual	information	using	the	top	to	bottom
drill	down	paradigm	and	how	color	can	be	used	to	associate	different	parts	of
the	layout	together.

How	it	works...
Designing	displays	that	keep	related	information	in	close	proximity	helps	the	viewer
integrate	the	different	pieces	of	information.

For	the	uniform	grid	layout,	you	presented	line	charts	of	the	six	stock	price	indices	for
AAPL.	The	command	H	=	subplot(m,n,p),	or	subplot(mnp),	breaks	the	Figure
window	into	an	m-by-n	matrix	of	small	axes,	selects	the	p-th	axis	for	the	current	plot,
and	returns	the	axes	handle.	The	axes	are	counted	along	the	top	row	of	the	Figure
window,	then	the	second	row.	This	is	the	most	efficient	way	to	make	a	set	of	plots	on
a	regular	grid	in	MATLAB.

For	the	customized	multigraph	layout,	the	way	to	generate	the	parameters	for
positioning	the	three	different	axes	using	the	normalized	figure	units	are	given	as
follows:

1.	 Create	a	blank	figure	with	the	figure	command	and	add	axes	to	it	(as	many
Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

as	you	want)	by	using	the	axes	command	for	each	axis,	without	any
parameters.

2.	 Enter	the	Plot	Edit	mode	by	selecting	circled	item	of	the	toolbar.
3.	 Select	each	axis	and	drag	and	resize	to	position	and	size	as	desired.
4.	 Select	each	axis	and	execute	get(gca,'position')	at	the	command	line	to

generate	the	parameters	for	each	axis.
5.	 Add	the	axes	command	with	these	parameters	to	your	code	to	generate	the

axes	at	the	same	position,	programmatically,	every	time.

A	set	of	steps	for	creating	a	multi	plot	graphic	with	a	flexible	layout	is	shown	in	the
following	screenshot:

Note
Takeaways	from	this	recipe:

Place	related	graphics	in	close	proximity	when	possible
Use	few	and	light	colored	grid	lines
Use	color	to	create	associations

See	also
Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Look	up	MATLAB	help	on	the	datestr,	subplot,	and	axis	commands	that	we
encountered	in	this	recipe.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

A	visualization	to	compare	algorithm
test	results
Data	analysts	often	need	to	compare	several	methods	for	solving	a	problem.	Input
samples	can	usually	be	classed	into	several	categories.	The	challenge	is	to	choose
the	method	that	handles	all	the	categories	in	the	best	way.	A	visual	way	to	quickly
compare	the	test	results	is	to	use	a	set	of	bar	charts	in	a	tabular	format	as	shown	in
this	recipe.

Getting	ready
In	the	previous	examples,	you	used	predefined	color	schemes	from	MATLAB.	In	this
recipe,	the	color	palette	was	chosen	by	Colorbrewer,	an	online	tool	for	color	selection
for	maps	and	other	graphics.	Define	a	color	matrix	to	correspond	with	the	five
different	sample	categories	under	comparison,	using	RGB	values,	as	follows:

Colors	=	[141	211	199;255	255	179;190	186	218;...

		251	128	114;128	177	211;]/255;

The	main	data	is	contained	in	the	matrix	MethodPerformanceNumbers	where	each
column	represents	one	of	the	five	algorithms	under	comparison	and	each	row
represents	a	different	category	of	source	samples.	The	matrix	CategoryTotals	is	the
total	number	of	samples	tested	by	the	five	methods	in	each	category.	Load	the	data
into	your	workspace	from	the	code	repository	for	this	book:

load	algoResultsData

How	to	do	it...
Perform	the	following	steps:

1.	 Define	the	axes	schematic:	Parameters	for	axes	positioning	were	chosen
using	methods	described	in	the	Design	multigraph	layouts	recipe	in	this
chapter.	Use	the	line	command	to	create	bars	representing	the	number	of
successes	in	each	category	using	color	scheme	defined	at	the	beginning	of
this	recipe:

%	Define	the	figure

figure('units','normalized',...

		'Position',[0.0880				0.1028				0.6000				0.6352]);

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

%	X	Tick	labeling	for	the	names	of	Algorithms	under	

comparison

%	Create	an	invisible	axis;	place	the	tick	labels	at	an	

angle

hh	=	axes('Position',[.1,.135,.8,.1]);

set(gca,'Visible','Off',...

		'TickLength',[0.0	0.0],...

		'TickDir','out',...

		'YTickLabel','',...

		'xlim',[0	nosOfMethods],...

		'FontSize',11,...

		'FontWeight','bold');

set(gca,'XTick',.5:nosOfMethods-.5,...

		'XTickLabel',{'K	Means','Fuzzy	C	Means',...

		'Hierarchical','Maximize	Expectation','Dendogram'});

catgeoryLabels	=	{'Fresh	Tissue','FFPE',...

		'Blood','DNA','Simulated'};

rotateXLabels(gca,20);

2.	 Place	five	different	axes,	one	for	each	row	corresponding	to	the	five	sample
types.	(Continue	step	2	and	3	together	as	they	are	part	of	the	same	for
loop.)

%	Split	the	available	vertical	space	into	five	

y	=	linspace(.142,.8,nosOfCategories);

%	Place	each	of	the	axes:	The	height	of	the	axes	

%	corresponds	to	the	total	number	of	samples	in	that	

%	category.

for	i	=	1	:nosOfCategories

		if	CategoryTotals(i);

				ylimup	=	CategoryTotals(i);

		else

				ylimup	=	1;	

		end

		dat	=	[MethodPerformanceNumbers(i,:)];

		h(i)	=	axes('Position',[.1,y(i),.8,y(2)-y(1)]);

		set(gca,'XTickLabel','',...

				'TickLength',[0.0	0.0],...

				'TickDir','out',...

				'YTickLabel','',...

				'xlim',[.5	nosOfMethods+.5],...

				'ylim',[0	ylimup]);

3.	 Plot	the	bars	representing	the	number	of	successes	and	add	labels	by	their
side	(this	needs	to	be	done	for	each	category	and	hence	is	inside	the	for	loop
started	in	step	2):

%	Use	the	line	command	to	create	bars	representing	the

%	number	of	successes	in	each	category	using	color	

%	defined	at	the	beginning	of	this	recipe.

line([1:nosOfMethods;	1:nosOfMethods],...

		[zeros(1,nosOfMethods);	dat],...

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

		'Color',Colors(i,:),...

		'Linewidth',7);

		box	on;

%	Place	the	actual	number	as	a	text	next	to	the	bar	

for	j=	1:nosOfMethods

		if	dat(j);	

				text(j+.01,dat(j)-.3*dat(j),...

						num2str(dat(j)),'Rotation',20,'FontSize',13);

		end

end

%	Add	the	category	label

ylabel([catgeoryLabels{i}	char(10)	...

		'#Samples'	char(10)	'	=	'	num2str(ylimup)],...

		'Fontsize',11);	

end

4.	 Add	annotations:

title(['Number	of	Successes	from	5	Clustering'...

		'Algorithms'],'Fontsize',14,'Fontweight','bold');

axes(h(3));

text(0.06,-170,...

		['Performance	#s	with	samples	from	different'	...						

		'categories'],'Fontsize',14,'rotation',90,...

		'Fontweight','bold');

set(gcf,'Color',[1	1	1],'paperpositionmode','auto');

The	output	is	as	follows:

How	it	works...
The	figure	shows	the	number	of	successes	obtained	from	testing	five	clustering

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

algorithms.	Five	different	types	of	input	samples	are	processed	with	these	algorithms.
The	results	are	presented	with	a	bar	chart	in	a	tabular	format.	The	Fuzzy	C	Means
clearly	outperforms	the	other	options	as	it	has	the	highest	percent	success	across	all
sample	categories.

This	recipe	brings	together	visualization	techniques	covered	in	previous	recipes	of
Chapter	1.

Note	that	the	length	of	the	bar	of	the	same	color	should	be	compared	to	each	other.
They	represent	the	number	of	successes	out	of	the	total	number	of	samples	denoted
on	the	left,	in	a	given	sample	category.	The	length	of	the	bars	with	different	colors
should	not	be	compared	to	each	other	as	the	total	number	of	samples	is	not	the	same
in	each	input	sample	category.	Note	that	here	you	used	a	simple	color	matrix	which	is
a	set	of	colors	defined	by	their	RGB	values.	You	did	not	use	the	concept	of	a	color
map	described	in	the	Tufte	style	gridding	for	readability	recipe.

Also	note	that	for	a	small	set	of	numbers	such	as	this,	a	graphics	design	is	usually
unnecessary.	A	table	would	be	sufficient	to	convey	this	information.

Note
Takeaways	from	this	recipe:

Use	the	same	color	to	create	associations
Use	discontinuous	colors	to	differentiate	between	categories

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Chapter	2.	Diving	into	One-dimensional
Data	Displays
In	this	chapter,	we	will	cover:

Pie	charts,	stem	plots,	and	stairs	plots
Box	plots
Sparklines
Stacked	line	graphs
Node	link	plots
Calendar	heat	map
Distributional	data	analysis
Time	series	analysis

Introduction
This	chapter	focuses	on	one-dimensional	data	displays.	The	most	common	chart
types	used	for	this	purpose	are	line	charts,	bar	charts,	and	scatter	plots.	They	use
positional	coordinates	to	represent	numerical	information.	Positional	coordinates
are	one	of	the	best	ways	to	represent	numerical	information	according	to	visualization
guru,	Edward	Tufte.	It	is	the	preferred	choice	over	other	dimensions	such	as	angle,
length,	area,	volume,	or	color	for	presenting	numerical	data.	You	used:

One-dimensional	scatter	plots	in	Chapter	1,	Making	your	first	MATLAB	plot
Line	plots	with	error	bars	in	Chapter	1,	Laying	out	long	tick	labels	without
overwriting
Bar	plots	in	Chapter	1,	Gridding	for	readability

There	are	other	plot	types	that	could	be	appropriate	too,	depending	on	the	nature	of
the	data	and	the	purpose	of	your	graphic.	The	data	analysis	approach	could	also
drive	the	visualization.	This	chapter	brings	together	a	set	of	recipes	that	cover	plot
types	and	data	analysis	approaches	for	one-dimensional	data,	using	examples	from
different	application	domains.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Pie	charts,	stem	plots,	and	stairs	plots
In	this	recipe,	you	will	see	the	popular	chart	types:	pie	charts,	stem	plots,	and	stairs
plots.

How	to	do	it...
Perform	the	following	steps:

1.	 Pie	charts	are	created	with	the	MATLAB	command	pie.	Plot	a	pie	chart	and
explode	a	slice	out	of	the	pie,	for	added	emphasis:

Expenses	=	[20	10	40	12	20	19	5	15];

ExpenseCategories	=	

{'Food','Medical','Lodging','Incidentals','Transport',.

..

		'Utilities','Gifts','Shopping'};

MostLeastExpensive	=	...

		(Expenses==max(Expenses)|Expenses==min(Expenses));

h=pie(gca,Expenses,MostLeastExpensive,ExpenseCategories

);

%	Every	alternate	handle	returned	by	pie	is	a	text	

object.	Use

%	that	to	increment	the	font	size	of	the	labels	

for	i	=2:2:16;set(h(i),'fontsize',14);end

%	Add	annotation

title('Annual	Expense	Report','fontsize',14);

The	output	is	as	follows:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

2.	 Stem	plots	are	created	with	the	MATLAB	command	stem.	Use	a	stem	plot	to
view	the	process	of	discretizing	a	continuous	signal.

Open	the	source	code	for	this	recipe	and	execute	lines	25	–	32	to	create	the
variables	x,	y,	x1,	x2,	y1,	y2	(omitted	here	for	the	sake	of	brevity).	Then,
execute	the	following	steps:

%	x	and	y	are	the	original	signals,	x1,y1	is	obtained	

from	a	

%	sampling	of	the	original	signal	and	x2,y2	is	obtained	

from	a	

%	different	sampling	of	that	original	signal

plot(x,y);	hold	on;

h1	=	stem(x1,y1);

h2	=	stem(x2,y2);

%	Choose	marker	size	and	style	of	your	choice

set(h1,'MarkerFaceColor','green','Marker','o',...

		'Markersize',7,'Color',[0	0	0]);

set(h2,'MarkerFaceColor','red','Marker','square',...

		'Color',[0	0	0]);

xlabel('x');ylabel('signal');

legend({'Original	Signal','Noisy	Discretization	1',...

		'Noisy	Discretization	2'});

The	output	is	as	follows:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

3.	 Stairs	plots	are	created	with	the	MATLAB	command	stairs.	Use	a	stairs
plot	to	plot	the	test	results	from	five	different	algorithms	on	five	different
sample	categories	as	follows:

%	Load	the	data

load	algoResultsData.mat

%	adding	a	row	of	NaNs	so	that	the	last	row	gets	

represented

%	as	a	horizontal	line	(rather	than	a	rise)

h=stairs([MethodPerformanceNumbers	nan(5,1)]');

legendMatrix	=	{'Fresh	Tissue','FFPE',...

		'Blood','DNA','Simulated'};

for	i	=	1:5;

		set(h(i),'linewidth',2);	%	thicken	the	lines

		%	add	total	#	of	samples	to	legend	entry	for	this	

category	

		legendMatrix{i}	=	[legendMatrix{i}	...

				',	Total#	=	'	num2str(CategoryTotals(i))];

end

set(gca,'xlim',[0.5	6.5],...

		'XTick',1.5:nosOfMethods+1,...

		'XTickLabel',{'K	Means','Fuzzy	C	Means',...

		'Hierarchical','Maximize	Expectation','Dendogram'});

%add	annotations

title({'Algorithm	Test	Results	with	5	Clustering',...

		'	Algorithms	on	5	Source	Sample	Types'});

legendflex(h,...						%handle	to	plot	lines

legendMatrix,...						%corresponding	legend	entries

'ref',	gcf,	...							%which	figure

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

'anchor',	{'ne','ne'},	...%location	of	legend	box

'buffer',[0	0],	...							%	an	offset	wrt	the	location

'fontsize',8,...										%font	size

'xscale',.5);													%a	scale	factor	for	symbols

rotateXLabels(gca,20);

set(gca,'position',[0.1139				0.1989				0.7750				

0.6638]);

The	output	is	as	follows:

How	it	works...
All	three	graphs	demonstrated	here	were	generated	by	single	commands	in	MATLAB.

The	pie	chart	showed	the	breakup	of	expenses	in	various	categories.	Pie	charts	code
information	in	the	area	of	its	slices.	Area	is	a	hard	dimension	for	humans	to	process.
Pie	charts	should	be	used	sparingly.

Next,	you	used	stem	plots	to	show	the	discretization	of	a	continuous	signal.	The	figure
showed	how	measurement	noise	adds	distortion	in	the	process	of	sampling.	Stem
plots	are	useful	for	displaying	discrete	data	points	where	joining	the	series	may	not
make	physical	sense.

Next,	you	used	stairs	plots	to	compare	the	performance	of	five	different	clustering
algorithms	across	five	types	of	samples.	Stairs	plot	add	a	twist	to	the	traditional	bar
plots.	A	very	dense	series	of	bars	could	be	replaced	with	a	stairs	plots	design	that
boasts	less	visual	chatter.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Other	than	the	new	plot	types,	this	recipe	reuses	the	functionalities	and	practices
introduced	in	Chapter	1,	Customizing	Elements	of	MATLAB	Graphics—the	Basics,
such	as	rotation	of	tick	labels	(Laying	out	long	tick	labels	without	overwriting)	and
flexible	placement	of	legends	(Bringing	order	to	chaos	with	legends).

Note
Takeaways	from	this	recipe:

Choose	plot	types	that	use	positional	coordinates	to	present	numerical	data,
such	as	line	charts,	bar	charts,	scatter	plots,	stem	plots,	and	stairs	plots

See	also
Look	up	MATLAB	help	on	the	plot,	bar,	line,	scatter,	pie,	stems,	and	stairs
commands.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Box	plots
A	box	plot	(also	known	as	a	box-and-whisker	diagram)	is	a	convenient	way	of
graphically	depicting	groups	of	numerical	data	through	their	five-number	summaries:
the	smallest	observation	(sample	minimum),	lower	quartile	(Q1),	median	(Q2),	upper
quartile	(Q3),	and	largest	observation	(sample	maximum).	The	box	is	constructed
between	Q1	and	Q3	and	a	special	symbol	is	used	to	denote	the	median.	The
whiskers	extend	up	to	the	smallest	and	largest	observation	on	both	sides	of	the
distribution.

A	box	plot	may	also	indicate	which	observations,	if	any,	might	be	considered	outliers
(typically	those	outside	1.5	times	the	inter-quartile	range)	on	both	extremes	of	the
distribution.	If	outliers	are	shown,	then	the	whiskers	extend	only	up	to	the	smallest
and	largest	observations	inside	1.5	times	the	inter-quartile	range	on	both	extremes	of
the	distribution.	Outlier	observations	are	marked	with	special	symbols.

You	will	use	the	function	boxplotV,	which	is	part	of	the	code	repository	with	this	book,
to	generate	the	parameters	for	drawing	a	box	plot,	and	then	use	a	series	of	line
commands	to	construct	the	box	plot,	as	shown	in	this	recipe.

Getting	ready
You	will	use	the	dataset	with	the	set	of	gene	expression	levels	for	various	cancer
types,	first	introduced	in	Chapter	1,	Laying	out	long	tick	labels	without	overwriting.
Load	the	data:

load	14cancer.mat

How	to	do	it...
There	are	two	tasks	demonstrated	in	this	recipe.	The	first	is	how	to	build	box	plots.
The	second	is	how	to	work	with	multi-tiered	tick	labels.

Perform	the	following	steps:

1.	 Generate	the	box	plot	parameters,	one	for	each	group	of	data.	The	grouping
label	for	each	data	point	is	provided	in	the	vector,	which	is	the	2nd	argument
to	the	boxplotV	function:

data	=	[Xtrain(:,2798);	Xtest(:,2798)];

[lowerQuartile	medianv	upperQuartile	...

		upperOuter	lowerInner	outliers]	=	...

		boxplotV(data,	[ytrainLabels	ytestLabels]');

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

2.	 The	figure	will	have	two	axes.	The	first	will	hold	the	data	and	the	second,	the
multi-tiered	tick	labels.

figure('units','normalized',...

		'Position',[0.3563				0.3019				0.6328				0.6028]);

hData	=	axes('position',[0.0831	0.2000	0.8930	

0.7200]);box	on;

3.	 Define	the	three	tiers	of	tick	labels	in	suitable	order:

tier1	=	classLabels;

tier2	=	{'Upper	body','Lower	body','Upper	body',...

'Lower	body','Distributed','Lower	

body','Distributed',...

'Lower	body','Distributed','Lower	body','Lower	

body',...

'Lower	body','Distributed','Upper	body'};

tier3	=	{'low','low','medium','medium','low',...

'low','low','low','medium','low','high','low',...

		'medium','medium'};

[tier1,	tier2	tier3,	sep2,	sep3]	=	...

		multiTierLabel(tier1,	tier2,	tier3);

4.	 Plot	each	of	the	i	box	plots,	where	i	goes	from	1	to	the	total	number	of
groups	you	have.	In	this	recipe,	you	have	14	cancer	types.

%	Define	the	boxwidth

boxwidth	=	.5/2;

axes(hData);hold	on;

for	i	=	1:length(tier1)

		%	draw	the	inter	quartile	box	in	blue	and	mark	the

		%	location	of	the	median	in	red

		line([i-boxwidth	i-boxwidth	i-boxwidth	i+boxwidth;	

...

				i+boxwidth	i+boxwidth	i-boxwidth	i+boxwidth;],...

				[lowerQuartile(i)	upperQuartile(i)	...

				lowerQuartile(i)	upperQuartile(i);	...

				lowerQuartile(i)	upperQuartile(i)	...

				upperQuartile(i)	lowerQuartile(i);],...

				'Color',[0	0	1]);

		line([i-boxwidth;	i+boxwidth;],...

				[medianv(i);	medianv(i);],'Color',[1	0	0]);

		%	draw	the	whiskers	in	black

				line([i	i	i-.5*boxwidth	i-.5*boxwidth;	...

				i	i	i+.5*boxwidth	i+.5*boxwidth;],...

				[upperQuartile(i)	lowerQuartile(i)	...

				lowerInner(i)	upperOuter(i);	...

				upperOuter(i)	lowerInner(i)	...

				lowerInner(i)		upperOuter(i);],...

				'Color',[0	0	0]);

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

		%	draw	the	outliers	with	the	red	+	marker

		plot(repmat(i,size(outliers(i).mat)),outliers(i).mat,

				'r+');

end

%	Add	annotations

set(gca,'xticklabel',[],'ticklength',[0	0],...

		'ylim',[1.1*min(data)	1.1*max(data)]);

ylabel('Gene	Expression	levels',	'fontsize',10);

title({'Gene	expression	boxplot	for	198	samples',...

		'for	a	specific	gene	across	14	cancers'},...

		'fontsize',10);

5.	 Estimate	the	location	of	grid	lines	and	add	the	primary	grid	lines:

%	Estimate	location	of	grid	lines

sepLine	=	unique([sep2	sep3])	+.5;

if	sepLine(end)==length(tier1)

		sepLine	=	sepLine(1:end-1);

end

%	add	primary	grid	lines

line([sepLine;	sepLine],	...

		[min(get(gca,'ylim'))*ones(size(sepLine));

		max(get(gca,'ylim'))*ones(size(sepLine))],...

		'Color',[.8	.8	.8]);

6.	 Declare	and	prepare	the	second	axis	reserved	for	the	labels	and	add	the
meta	labels:

hLabels	=	axes('position',[0.0831,.05,0.8930,.15]);box	

on;

set(hLabels,'ticklength',[0	0],'xticklabel',[],...

		'yticklabel',[],'xlim',get(hData,'xlim'),'ylim',[0	

1]);

line(get(gca,'xlim'),[1	1],'Color',[0	0	0]);

line(get(gca,'xlim'),[0	0],'Color',[0	0	0]);

%	add	meta	labels

text(-1,.1,'Fatality','fontsize',12);

text(-1,.43,'Location','fontsize',12);

text(-1,.8,'Cancer','fontsize',12);

7.	 For	each	tier	of	tick	labels,	place	the	tick	labels,	place	the	vertical	and
horizontal	divider	lines:

%	add	tier	1	labels

text([1:14]-boxwidth,.8*ones(size(tier1)),...

		strtrim(tier1),'Fontsize',10);

%	add	the	grouping	grid	lines

line([sepLine;	sepLine],	[.5*ones(size(sepLine));	...

max(get(gca,'ylim'))*ones(size(sepLine))],

		'Color',[.8	.8	.8]);

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

%	add	separator	line

line(get(gca,'xlim'),[.6	.6],'Color',[0	0	0]);

%	add	tier	2	labels

x=[0	sep2	length(tier1)];

x	=	(x(1:end-1)+	x(2:end))/2;

text(x,.43*ones(length(sep2)+1,1),...

		tier2([sep2	length(tier1)]),'Fontsize',10);

%	add	the	grouping	grid	lines

line([sepLine;	sepLine],	[.3*ones(size(sepLine));	...

max(get(gca,'ylim'))*ones(size(sepLine))],

		'Color',[.8	.8	.8]);

%	add	separator	line

line(get(gca,'xlim'),[.3	.3],'Color',[0	0	0]);

%	add	tier	3	labels

x=[0	sep3	length(tier1)];

x	=	(x(1:end-1)+	x(2:end))/2;

text(x,.1*ones(length(sep3)+1,1),...

		tier3([sep3	length(tier1)]),'Fontsize',10);

%	add	the	grouping	grid	lines

line([sep3;	sep3]+.5,	...

[min(get(gca,'ylim'))*ones(size(sep3));

		3*ones(size(sep3))],...

		'Color',[.8	.8	.8]);

The	output	should	be:

How	it	works...
This	recipe	uses	box	plots	to	visualize	the	expression	levels	of	a	certain	gene	across
14	different	cancers.	Leukemia	clearly	has	a	higher	expression	level,	but	since	the
whiskers	from	other	types	of	cancer	overlap	with	the	data	from	leukemia,	this
expression	level	alone	cannot	be	used	as	a	diagnostic	for	leukemia.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

In	step	2,	the	boxplotV	function	calculated	the	parameters	for	plotting	a	box	plot,	that
is	the	upper	and	lower	quartiles,	the	median,	the	upper	and	lower	outer	values,	and
outliers	as	per	the	definition	given	in	the	introduction	to	this	recipe,	for	each	group	of
data.	In	step	4,	you	used	the	line	command	as	shown,	to	actually	make	the	plots.
These	were	directed	into	the	data	axis	you	declared	in	step	3.

For	making	the	multi-tiered	tick	label,	you	called	the	multiTierLabel	function,	which
essentially	sorts	the	ordering	of	the	tick	labels	as	per	what	is	provided	as	the
outermost	set	of	labels,	and	then	within	each	group,	sorts	the	ordering	of	the	tick
labels	as	per	what	is	provided	as	the	2nd	set	of	labels;	and	then	further	sorts	the
ordering	as	per	what	is	provided	as	the	1st	set	of	labels.

In	step	7,	you	used	the	three	sets	of	tick	labels	and	put	them	on	three	different	rows.
This	was	directed	into	the	label	axis	you	declared	in	step	3.

The	multiTierLabel	function	will	order	any	number	of	triplets	of	tick	label	entries.	The
boxplotV	function	will	generate	box	plot	parameters	for	any	amount	of	data	and	any
number	of	groups.	You	will	have	to	adapt	the	actual	plotting	and	tick	label	placements
as	shown	in	this	recipe	to	customize	to	your	own	dataset.

Note
Takeaways	from	this	recipe:

Use	box	plots	to	present	distributional	summaries	for	your	datasets
Use	tiered	labeling	to	convey	additional	information	without	using	long	tick
labels

See	also
Look	up	MATLAB	help	on	the	boxplot	command	that	comes	as	part	of	the	MATLAB
Statistics	ToolboxTM.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Sparklines
A	sparkline	is	a	type	of	information	graphic	characterized	by	its	small	size	and	high
data	density.	They	are	used	to	present	trends	and	variations	in	the	data	in	a	simple
and	condensed	way.	The	term	sparkline	was	proposed	by	Edward	Tufte	for	"small,
high	resolution	graphics	embedded	in	a	context	of	words,	numbers,	and	images".
While	the	typical	chart	is	designed	to	show	as	much	data	as	possible,	and	is	set	off
from	the	flow	of	text,	Sparklines	are	intended	to	be	succinct,	memorable,	and	located
where	they	are	discussed.

Getting	ready
The	book	data	repository	comes	with	several	comma	separated	value	(.csv)	files
with	the	daily	stock	price	histories	over	a	year.	In	this	recipe,	this	stock	index	data	is
used	to	construct	Sparklines	highlighting	the	maximum	swing	over	a	year.	You
already	learned	how	to	import	data	from	Excel	in	Chapter	1,	Making	your	first
MATLAB	plot.	Refer	to	that	or	the	source	code	to	this	recipe	(lines	12	–	21)	to	import
the	data	into	the	variable	dt,	a	cell	array	of	vector	data,	with	one	set	of	stock	price
indices	per	vector.

Next,	preprocess	the	data	by	normalizing	between	0	and	1:

for	i	=	1:length(dt)

		%	convert	date	to	a	numeric	format

		dateD{i}	=	datenum({dateD{i}{2:end,1}});

		%	find	dates	in	range

		idx	=	find(dateD{i}	>=	rangeMIN	&	dateD{i}	<=	rangeMAX);

		dt{i}	=	dt{i}(idx);

		%	extract	data	in	range

		dateD{i}	=	dateD{i}(idx);

		%	normalize

		dtn{i}	=	dt{i}./max(dt{i});

		clear	idx

		labels2{i}	=	num2str(dt{i}(end));

end

You	use	a	new	function	datenum	to	convert	date	notations	to	absolute	numbers	that
then	become	amenable	to	numerical	operations	such	as	choosing	between	our
desired	time	windows.

How	to	do	it...
Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Perform	the	following	steps:

1.	 Call	the	function	sparkline:

sparkline(dateD,dtn,stocks,labels2);

2.	 Following	are	the	steps	you	execute	inside	the	function	sparkline:

%	Each	sparkline	is	stacked	up	next	to	one	another,	

separated

%	by	an	arbitrary	unit	of	separation.	Here	unitOfSep=1;

unitOfSep=1;

figure;

%	No	borders	necessary	-	span	the	axes	out	to	total	

available	%	space

axes('position',[0	0	1	.9]);hold	on;

endPt	=	-1;	startPt	=	1e100;

for	i	=	1:length(xdata)

		%	Plot	the	SparkLines

		plot(xdata{i},	ydata{i}+	(i-1)*+unitOfSep,'k');	

		%Locate	the	minimum	and	maximum	points	and	mark	with	

red	

		%and	blue

		maxp{i}	=	find(ydata{i}==max(ydata{i}));

		minp{i}	=	find(ydata{i}==min(ydata{i}));

		plot(xdata{i}(maxp{i}),...

				ydata{i}(maxp{i})+	(i-1)*+unitOfSep,...

				'bo','MarkerFaceColor','b');

				plot(xdata{i}(minp{i}),...

				ydata{i}(minp{i})+	(i-1)*+unitOfSep,	...

				'ro','MarkerFaceColor','r');

		%Place	the	two	labels	at	start	and	end	of	the	

sparkline	

		text(xdata{i}(end),	mean(ydata{i})+

				(i-1)*+unitOfSep,...

				labels1{i},'HorizontalAlignment','right');

				text(xdata{i}(1),	mean(ydata{i})+

				(i-1)*+unitOfSep,...

				labels2{i},'HorizontalAlignment','left');

				%	Keep	track	of	the	start	and	end	in	order	to	

correctly	

				%	set	the	x	limits	later

		endPt	=	max([xdata{i}(1)	endPt]);

		startPt=	min([xdata{i}(end)	startPt]);

end

%	Set	the	title

text(startPt+2,	i*unitOfSep+.7,...

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

'SparkLines	with	Stock	Prices	(1/1/2011	to	

12/31/2011)',...

		'fontsize',14);

set(gca,'visible','off',...

		'ylim',[0+unitOfSep/2	i*unitOfSep+unitOfSep/2],...

		'yticklabel',[],...

		'xlim',...

				[startPt-.15*(endPt-startPt)	endPt+.15*(

						endPt-startPt)],...

				'xticklabel',[],...

				'TickLength',[0	0]);

set(gcf,'Color',[1	1	1],'Paperpositionmode','auto');

The	output	is	as	follows:

How	it	works...
The	preceding	screenshot	shows	the	daily	price	fluctuations	in	seven	different	stocks
over	the	year	2011.	Red	and	blue	dots	mark	the	occurrence	of	the	highest	and	lowest
values	in	the	series.	The	numeric	label	at	the	end	of	the	series	gives	an	approximate
idea	of	the	range	of	values	represented.	MSFT,	GOOG,	and	AAPL	shows	a	slight
upswing	past	the	middle	of	the	year.

Sparklines	are	intended	to	be	data	summaries.	The	normalization	makes	the	data
comparable	despite	the	lack	of	any	real	axes.	Also,	the	one	data	point	showing	the
actual	value	provides	the	context	to	interpret	the	data	in	a	relative	sense.	Sparklines
allow	a	quick	assessment	of	the	trend	across	a	large	number	of	time	series.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

The	function	sparkline	is	called	with	two	numerical	cell	arrays,	containing	vectors	of
x	and	corresponding	y	values.	Also,	it	takes	two	cell	arrays	of	strings	called	LABELS1,
which	have	labels	for	each	spark	line	to	be	located	at	the	start	of	the	line	and
LABELS2,	which	have	the	labels	for	each	spark	line	to	be	located	at	the	end	of	the	line.

Note
Takeaways	from	this	recipe:

Use	spark	lines	for	a	quick	trends	assessment	of	a	large	number	of	time	series
data.

See	also
Look	up	MATLAB	help	on	the	datenum	command.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Stacked	line	graphs
This	recipe	illustrates	how	to	make	stacked	line	graphs	using	the	MATLAB
command	area.	The	idea	of	this	graphic	is	inspired	from	the	website
namevoyager.com,	which	tracks	the	popularity	of	thousands	of	baby	names.	The
graphic	shows	the	popularity	of	15	baby	names	over	several	decades.	The	names
are	visible	on	the	right.	In	any	given	year,	the	widest	blue	line	is	the	most	popular
male	baby	name	and	the	widest	pink	line	is	the	most	popular	female	baby	name.

Getting	ready
Load	the	data:

[ranksoverdecades	names]	=	...

		xlsread('MockDataNameVoyager.xlsx');

sex	=	names(2:end,2);

names	=	names(2:end,1);

years	=	ranksoverdecades(1,:);

ranksoverdecades	=	ranksoverdecades(2:end,:)';

How	to	do	it...
Perform	the	following	steps:

1.	 Split	data	by	male	and	female	names:

%	split	into	male	and	female	names

males	=	find(strcmp(sex,'M'));

fmales	=	find(strcmp(sex,'F'));

ymax=max(max(cumsum(ranksoverdecades,2)));

2.	 Generate	a	location	for	placing	of	name	labels:

%generate	the	y	coordinates	where	the	name	will	be	

placed

nameLoc	=	cumsum(ranksoverdecades(end,:));

nameLoc	=	[0	nameLoc];

nameLoc	=	(nameLoc(1:end-1)	+	nameLoc(2:end))/2;

3.	 Set	up	the	two	y	axis	(one	for	the	data	and	one	for	placing	the	labels):

%	set	up	the	figure

figure('units','normalized','Position',...

		[0.3432				0.1472				0.6542				0.7574]);

%create	main	axes	for	the	data

axes('position',[.05,.1,.87,.85],'ylim',[0	ymax],...

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

http://namevoyager.com

		'xlim',[min(years)	max(years)],...

		'YAxisLocation','right',	'ytick',nameLoc,...

		'yticklabel',names,	'ticklength',[0.01	0.05],...

		'tickdir','out','fontsize',14);

%	create	a	secondary	axes	to	place	the	name	labels

axes('Position',get(gca,'Position'));

4.	 Draw	the	stacked	line	graphs;	color	line	graphs	by	sex	of	the	baby:

%	draw	the	stacked	line	graphs

h	=	area(years,ranksoverdecades);

%	set	the	area	graph	colors	per	sex	of	the	baby	name

set(h(males),'FaceColor',[100			149	237]/255)

set(h(fmales),'FaceColor',[255		192	203]/255);

5.	 Define	the	edge	color,	the	x	and	y	limits,	and	annotations:

%	fix	edgecolor	and	x	and	y	limits

set(h,'edgecolor',[.5	.5	.5])	

set(gca,'ylim',[0	ymax],'xlim',[min(years)	

max(years)],...

		'xticklabel',[]	,'fontsize',14);

box	on;

%	annotate	the	graph

title('Trend	in	baby	names','Fontsize',14);

ylabel('Rank	over	the	years','Fontsize',14);

text(mean(get(gca,'xlim')),-11,'Years','Fontsize',14);

The	output	is	as	follows:

How	it	works...
Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

The	figure	uses	stacked	line	graphs/area	graphs	to	show	the	popularity	of	15	baby
names	over	several	decades.	You	can	see	that	names	like	Bella	and	Alex	were
popular	in	the	1800's	and	have	become	popular	again	recently.

Essentially,	MATLAB	supports	a	single	command	area	to	create	these	types	of
graphs.	Other	customization	such	as	the	double	y	axis,	color,	and	addition	of	tick
labels	follow	the	standard	rules	you	have	seen	in	previous	recipes.

Area	graphs	allow	to	present	large	number	of	graphs	without	overplotting.

Note
Takeaways	from	this	recipe:

Use	area	graphs	to	present	large	number	of	line	graphs	without	over	plotting

See	also
Look	up	MATLAB	help	on	the	cumsum	and	area	commands.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Node	link	plots
This	recipe	talks	about	graphics	that	could	be	used	for	showing	a	relationship
between	pairs	of	things	aka	node	link	plots.	There	are	a	couple	of	variations
available	to	represent	this	type	of	data.	This	recipe	shows	two	alternatives.

Getting	ready
In	this	dataset,	you	have	intercity	distances	between	128	US	cities	and	the	coordinate
locations	for	those	cities.	The	data	was	obtained	from	a	website	maintained	at	the
Department	of	Scientific	Computing	at	the	Florida	State	University.	Load	the	data:

[XYCoord]	=	xlsread('inter_city_distances.xlsx','Sheet3');

[intercitydist	citynames]	=		...

		xlsread('inter_city_distances.xlsx','Distances');

%	A	city	should	not	be	detected	as	the	nearest	to	itself

howManyCities	=	128;

for	i	=1:howManyCities;	intercitydist(i,i)=Inf;	end

How	to	do	it...
The	recipe	will	show	how	to	generate	a	graphic	where	each	city	location	is	connected
to	its	nearest	neighbor	with	a	line.

Perform	the	following	steps:

1.	 Define	the	adjacency	matrix:

adjacency	=	zeros(howManyCities,howManyCities);

%	find	min	distance	and	define	adjacency	=	1	for	those	

entries	

for	i	=	1:howManyCities

		alls	=	find(intercitydist(i,:)==

				min(intercitydist(i,:)));

		for	j	=	1:length(alls)

				adjacency(i,alls(j))	=	1;

				adjacency(alls(j),i)	=	1;

		end

		clear	alls

end

2.	 Plot	the	city	coordinate	with	a	marker.	Overlay	the	connections	defined	in	the
adjacency	matrix	using	the	MATLAB	command	gplot:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

plot(XYCoord(1:howManyCities,1),XYCoord(1:howManyCities

,2),...

		'ro');hold	on;

gplot(adjacency,	XYCoord);

3.	 Add	annotations:

title('Closest	cities	connected	to	each	other');

xlabel('Longitudes');ylabel('Latitudes');

The	output	should	be	as	follows:

How	it	works...
The	figure	shows	128	US	cities	with	connections	between	their	nearest	neighbors.
The	recipe	showed	how	to	define	an	adjacency	matrix,	which	is	a	matrix	for	n
vertices	of	size	n	x	n,	where	entry	i,	j	=	1,	if	the	vertices	are	to	be	connected,
otherwise	i,	j	=	0.	The	function	gplot	uses	the	definition	from	the	adjacency	matrix
along	with	a	second	argument	providing	the	coordinates	positions	for	the	nodes,	to
create	a	graph	with	all	the	nodes	that	are	connected	by	a	user	definable	line,	as	per
the	relationship	defined	in	the	adjacency	matrix.

There's	more...
A	variation	on	this	type	of	node	link	plot	is	to	create	a	plot	where	the	x	axis	holds	all
the	nodes	in	a	line	and	arcs	connecting	them	show	the	relationship	between	pairs	of
nodes.	In	this	section,	you	will	use	this	said	design	to	show	cities	that	are	within	100
miles	of	each	other	by	road.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Perform	these	steps:

1.	 Sort	the	first	row	entry	of	the	intercitydist	matrix	and	then	sort	the	city
name	list	in	the	same	order.	Although	this	does	not	guarantee	that	cities	are
exactly	sorted	according	to	their	intercity	distance,	it	will	pull	cities	near	each
other	closer	and	this	ordering	will	ultimately	yield	a	cleaner	looking	visual	when
you	put	the	arcs	connecting	the	nodes.	You	will	have	to	recalculate	the
intercity	distances,	because	of	this	sorting:

%	reset	city	distances	to	itself	to	zeros

for	i	=	1:howManyCities;		intercitydist(i,i)	=	0;	end

%	rearrange	city	name	list	by	intercity	distance,	use	

%	distances	to	any	one	city	for	sorting	and	that	will	

put	

%	approximately	close	cities	together

[balh	I]	=	sort(intercitydist(1,:));

citynames	=	citynames(I);

XYCoord	=	XYCoord(I,:);

%	recalculate	intercity	distance	matrix

for	i	=	1:howManyCities;

		for	j	=	1:howManyCities

				if	i==j

						intercitydist(i,i)	=	Inf;

				else

				intercitydist(i,j)	=	...

						sqrt((XYCoord(i,1)-XYCoord(j,1))^2	+	...

								(XYCoord(i,2)-XYCoord(j,2))^2);

				end

		end

end

2.	 Define	the	adjacency	matrix	for	this	problem:

adjacency	=	zeros(howManyCities,howManyCities);

for	i	=	1:howManyCities

		alls	=	find(intercitydist(i,:)<100);

		for	j	=	1:length(alls)

				adjacency(i,alls(j))	=	1;

				adjacency(alls(j),i)	=	1;

		end

		clear	alls

end

3.	 Define	figure	and	axes	positioning:

%figure	and	axes	positioning

figure('units','normalized','position',...

		[0.0844				0.2259				0.8839				0.4324]);

axes('Position',[0.0371				0.2893				0.9501				

0.6296]);

xlim([1	howManyCities]);

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

ylim([0	100]);

hold	on;

4.	 Put	city	names	on	the	x	axis.	Rotate	the	x	tick	labels	to	90	degrees.	The	city
name	list	is	too	long	to	be	accommodated	by	any	lower	angle	of	rotation.

set(gca,'xtick',1:howManyCities,'xticklabel',citynames,

...

		'ticklength',[0.001	0]);

box	on;

rotateXLabels(gca,90);

5.	 Draw	the	connecting	arcs	as	per	the	adjacency	matrix,	such	that	the	thickness
and	color	of	the	arc	approximately	change	with	intercity	distance.	This	will	help
to	draw	focus	on	cities	that	are	more	close	than	others.

m	=	colormap(pink(howManyCities+1));

cmin	=	min(min(intercitydist));

cmax	=	150;

%	plot	arcs

for	i	=	1:howManyCities

		for	j	=	1:howManyCities

				if	adjacency(i,j)==1

%	draw	parabolas	for	the	arcs

						x=[i	(i+j)/2	j];	

						y=[0	intercitydist(i,j)	0];

						

pol_camp=polyval(polyfit(x,y,2),linspace(i,j,25));

						plot(linspace(i,j,25),pol_camp,...

						'Color',m(fix((intercitydist(i,j)-cmin)/...

						(cmax-cmin)*howManyCities)+1,:),...

						'linewidth',100/intercitydist(i,j));								

				end

		end

end.

6.	 Add	annotations:

title('Cities	within	100	miles	of	each	other,	by	

road',...

		'fontsize',14);

ylabel('Intercity	Distance');

%add	horizontal	grid	lines	for	readability

line(repmat(get(gca,'xlim'),9,1)',...

		[linspace(10,90,9);	linspace(10,90,9)],'Color',

				[.8	.8	.8]);

%reposition	the	axes	in	case	it	moved

set(gca,'Position',[0.0371				0.2893				0.9501

		0.6296]);

ylim([0	max(get(gca,'ylim'))]);

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

The	output	is	as	follows:

How	did	you	extract	the	color	of	the	arc	such	that	it	corresponded	to	the	intercity
distance	value?	Here	is	how	you	translate	data	value	to	a	color	in	your	color	map	in
MATLAB:

As	introduced	in	Chapter	1,	Customizing	Elements	of	MATLAB	Graphics—the
Basics,	the	color	map	is	essentially	a	color	scale	with	RGB	values.	On	invoking	plot
functions	that	use	color,	MATLAB	automatically	maps	the	color	scale	defined	by	the
default	color	map,	linearly,	between	the	two	extreme	values	in	your	dataset.	You	can
manually	define	the	color	map	to	use.	In	this	case,	in	step	5,	you	extracted	a	color
map	definition	with	at	least	as	many	distinct	levels	as	the	number	of	cities	with
colormap(pink(howManyCities+1)),	where	pink	is	one	of	the	built-in	color	scales	that
come	with	MATLAB.

Now,	given	that	your	color	map	had	L	number	of	distinct	rows,	the	way	to	extract	the
color	that	corresponds	to	a	given	value	of	intercity	distance	V,	is	to	use	the	formula
fix((V-cmin)/	(cmax-cmin)*L)+1,	where	cmax	and	cmin	are	the	two	extreme	data
values	you	want	to	map	to	the	two	extreme	colors	in	your	color	map.	You	set	cmax	to
150	(slightly	larger	than	the	100	miles	to	make	sure	that	the	higher	intercity	distance
values	are	not	drawn	in	too	light	a	shade);	and	cmin	to	the	minimum	intercity	distance
in	your	dataset.

Note
Takeaways	from	this	recipe:

Use	node	link	plots	to	convey	relational	information	between	data	points

See	also
Note	that	instead	of	a	horizontal	x	axis,	there	exist	variations	of	this	design,	where	the
nodes	are	laid	out	in	a	circular	format	(with	the	labels	radiating	outward)	and	the
connections	are	represented	as	chords	of	this	circle.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

A	related	type	of	node	link	plot	is	the	tree	plot,	designed	to	represent	parent	child
relationship	structure	between	nodes.	MATLAB	supports	a	single	command	to	make
a	tree	plot.

Look	up	MATLAB	help	on	the	gplot	and	treeplot	commands.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Calendar	heat	map
This	visualization	is	for	showing	any	type	of	time	series	that	is	a	daily	reading	directly
superimposed	on	the	calendar.	In	this	example,	the	daily	closing	stock	price	for
Google	stocks	for	2010	and	2011	is	presented	as	a	heat	map	on	a	6	by	4	monthly
calendar.

Getting	ready
The	daily	price	for	Google	stocks	between	January,	2010	to	December,	2011	is
loaded	and	sorted	in	ascending	chronological	order.	A	NaN	value	is	recorded	for	those
dates	for	which	we	have	no	records.	See	the	code	for	this	recipe	(lines	12	–	36)	for
the	exact	commands	to	execute.

How	to	do	it...
Perform	the	following:

1.	 The	axes'	positions	for	the	4	by	6	layout	can	be	calculated	as	in	Chapter	1,
Designing	multigraph	layouts.	The	parameters	used	in	this	recipe	are	suited
for	a	6	by	4	format	for	data	up	to	2	years:

figure('units','normalized',...

		'Position',[0.3380				0.0889				0.6406				0.8157]);

colormap('cool');

xs	=	[0.03	.03+.005*1+1*.1525	0.03+.005*2+2*.1525	...

		0.03+.005*3+3*.1525	0.03+.005*4+4*.1525...

		0.03+.005*5+5*.1525];

ys	=	[0.14	.14+0.04*1+1*.165			.14+0.04*2+2*.165		...

		.14+0.04*3+3*.165];

In	order	to	generate	the	month	headings,	you	have	to	increment	a	pointer	for
every	month.	Estimate	how	many	days	to	count	for	each	month	by	executing
lines	46	-	55.	It	is	a	simple	list	of	days	to	expect	in	a	given	month.

2.	 For	each	month,	you	have	to	extract	the	data,	layout	the	calendar	with	the	grid
lines	and	date	labels,	and	plot	the	heat	map	with	the	actual	data.	Here	(i,	j)
are	two	indices	for	the	year	and	month.	For	example,	Dcnt=0,	i	=	1,	j	=	1
refers	to	January	2010.	Proceed	as	follows:

%	position	calendar	for	the	month	on	screen

axes('Position',[xs(j)	ys(i)	.1525				0.165]);

%	identify	which	newDatedata	days	belong	to	this	

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

segment

idx	=	find(newDateData	>=	...

		datenum([datestr(newDateData(1)+Dcnt,'mm')	'/01/'...

		datestr(newDateData(1)+Dcnt,'yyyy')])	&	...

		newDateData	<=	...

				datenum([datestr(newDateData(1)+Dcnt,'mm')	

'/31/'...

				datestr(newDateData(1)+Dcnt,'yyyy')]));

%	identify	the	calendar	entries	for	this	segment

A	=	calendar(newDateData(1)+Dcnt);

%	pull	out	data	for	corresponding	days	using	calendar	

format

data	=	NaN(size(A));

for	k	=	1:max(max(A))

		[xx	yy]	=	find(A==k);

		data(xx,yy)	=	newData(idx(k));

end

%	make	a	heatmap	with	some	transparency	to	bleach	out	

some	

%	color;	add	day	labels	(with	blanks	for	days	that	dont		

%	belong	in	your	month)

imagesc(data);	alpha(.4);hold	on;

set(gca,'fontweight','bold');

xlim([.5	7.5]);	ylim([0	6.5]);

for	m	=	1:6

		for	n=	1:7

				if	A(m,n)~=0

						text(n,m,num2str(A(m,n)));

				end

		end

end

%	add	annotations

text(.75,.25,'S','fontweight','bold');	

text(1.75,.25,'M','fontweight','bold');

text(2.75,.25,'T','fontweight','bold');

text(3.75,.25,'W','fontweight','bold');

text(4.75,.25,'R','fontweight','bold');

text(5.75,.25,'F','fontweight','bold');

text(6.75,.25,'S','fontweight','bold');

title([datestr(newDateData(1)+Dcnt,'mmm')	...

		datestr(newDateData(1)+Dcnt,'yy')]);

set(gca,'xticklabel',[],'yticklabel',[],

		'ticklength',[0	0]);

line([-.5:7.5;	-.5:7.5],	[zeros(1,9);	

6.5*ones(1,9)],...

		'Color',[.8	.8	.8]);

line([zeros(1,9);	7.5*ones(1,9)],[-.5:7.5;	-.5:7.5],...		

		'Color',[.8	.8	.8]);

box	on;

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

%	Increment	day	counter	with	#	days	as	expected	for	

this	month

Dcnt=Dcnt+D(i,j);

The	output	is	as	follows:

How	it	works...
Laying	the	data	directly	on	the	calendar	creates	a	strong	relationship	between	the
day	the	data	is	recorded	and	the	data	itself.	Records	that	contain	daily	readings	can
benefit	from	this	type	of	visualization	as	the	association	of	the	reading	to	the	time	line
is	very	strong	by	design.	It	is	easy	to	correlate	trends	in	the	data	to	a	specific	event
or	some	annual,	seasonal,	monthly	phenomenon.

There's	more...
The	final	step	is	the	addition	of	a	color	legend	and	overall	title	to	the	graphic:

colorbar('Location','SouthOutside','Position',...

		[0.1227				0.0613				0.7750				0.0263]);alpha(.4);

annotation('textbox',[0.1800	0.9354	0.8366	0.0571],...

		'String','Daily	records	of	GOOGLE	Stock	Price	from	...

		Jan	2010	to	Dec	2011,	directly	overlaid	on	a	calendar',...

		'LineStyle','none','Fontsize',14);

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Note
Takeaways	from	this	recipe:

Use	calendar	heat	maps	to	present	daily	numerical	records

See	also
Look	up	MATLAB	help	on	the	colorbar,	alpha,	imagesc,	and	calendar	commands.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Distributional	data	analysis
This	recipe	demonstrates	some	common	first	order	visualizations	used	to	investigate
the	empirical	distribution	of	a	one-dimensional	dataset.

Getting	ready
Load	distriAnalysisData.mat:

load	distriAnalysisData;

How	to	do	it...
Perform	the	following:

1.	 Look	at	a	sorted	scatter	plot	and	the	histogram:

subplot(1,2,1);

plot(sort(B),'.');

xlabel('series');ylabel('observations');

title('1D	scatter	plot');

subplot(1,2,2);

hist(B);

xlabel('bins');ylabel('frequency	of	observations');

title('Histogram');

The	output	is	as	follows:

2.	 Try	an	alternative	bin	size	for	the	histogram:
hist(B,200);

title('Alternate	binning,	bin	size	=	200');

The	output	is	as	follows:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

3.	 Plot	the	envelope	of	the	histogram	as	an	estimate	for	the	probability	density
function	for	this	dataset:

%	Re-compute	the	histogram	with	nbins	=	200

[N	c]	=	hist(B,200);

%	Compute	the	envelope	with	a	spline	fit

env	=	interp1(c,N,c,'spline');	

%plot	normalized	envelope	with	actual	data	on	xaxis

bar(c,N./max(N));hold;

plot(c,env./max(env),'r','Linewidth',2);

%	annotate

xlabel('bins');	

ylabel({'normalized	envelope',...

		'of	histogram	with	bin	size	=200'});

The	output	is	as	follows:

How	it	works...
In	this	recipe,	the	bin	size	is	chosen	as	the	square	root	of	the	number	of	points.	There
are	other	alternatives	people	recommend.	The	bin	size	will	impact	how	the	histogram
looks.	A	good	choice	of	bin	size	is	essential	to	understand	the	underlying	structure	in
the	data.	Often,	the	lack	of	empty	internal	bins	is	used	to	choose	the	lower	limit	on
the	size	of	bins.	The	smooth	appearance	of	the	histogram	profile	(versus	a	square
finish)	is	used	to	choose	the	upper	limit	of	the	size	of	bins.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

The	envelope	of	the	histogram	is	a	useful	tool	to	model	the	empirical	distribution	of
the	data.

There's	more...
It	is	often	desired	to	identify	if	two	datasets	come	from	the	same	distribution	or,	if
data	can	be	assumed	to	come	from	a	known	distribution	such	as	the	normal
distribution.	In	the	latter	case,	the	advantage	is	that,	a	lot	of	mathematics	becomes
directly	applicable	if	the	dataset	can	be	assumed	to	be	normal	(or	other	known
distributions).

One	of	the	visual	methods	to	test	for	if	two	datasets	come	from	the	same	distribution
is	the	use	of	quantile-quantile	plots,	where	the	quantiles	from	the	two	distributions	are
plotted	against	each	other.	Here,	you	compared	the	dataset	to	the	quantiles	of	the
standard	normal	distribution.

If	they	come	from	the	same	distribution,	the	plot	is	expected	to	be	close	to	linear.

The	MATLAB	function	qqplot,	part	of	the	MATLAB	statistical	toolbox,	will	display
such	a	quantile-quantile	plot;	in	this	section,	you	will	use	it	to	compare	the	sample
quantiles	of	the	current	dataset	to	the	theoretical	quantiles	from	a	normal	distribution:

qqplot(B);

The	output	is	as	follows:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

As	a	final	step,	you	will	fit	a	mix	of	normal	distributions	to	the	histogram	profile.	You
will	graphically	evaluate	the	residuals	to	assess	how	well	the	model	fits	the	profile.
The	matrix	sigma_ampl	and	mu	hold	the	mean,	standard	deviations,	and	contribution
coefficients	for	six	normal	distributions.	These	are	added	to	create	the	data	from	the
model	as	follows:

sigma_ampl	=	[79.26		8.12	5	6.25	5.06	11.11	577.45	...

		531.38	962.45	1800	1800	357.92];

mu=[29	38	51	70	103	133];

%	Gaussian	mixture	model

f_sum=0;x=1:200;

for	i=1:6

		f_sum=f_sum+sigma_ampl(i+6)./...

		(sigma_ampl(i)).*exp(-(x-mu(i)).^2./(2*sigma_ampl(i).^2));

end

subplot(2,1,1);

h(1)=plot(c,env,'Linewidth',1.5);hold	on;

h(2)=plot(c,f_sum,'r','Linewidth',1.5);	axis	tight

legendflex(h,{'Histogram	Profile',...

		'Gaussian	Mixture	Model'},'ref',gcf,...

		'anchor',{'ne','ne'},'xscale',.5,'buffer',[-50	-50]);

title('Overlay	histogram	profile	with	the	Gaussian	mixture	

model');

subplot(2,1,2);

plot(c,env-f_sum,'.');axis	tight;

title(['Residuals	=	signal	-	fit,	Mean	Squared	Error	=	'	...

		num2str(sqrt(sum(abs(env-f_sum).^2)))]);

The	output	is	as	follows:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Note
Takeaways	from	this	recipe:

Use	histograms	of	appropriate	bin	size	to	investigate	your	data
Use	quantile-quantile	plots	(QQ	plots)	to	investigate	the	normality	of	your	data
Investigate	your	residuals	after	fitting	a	model	to	the	data	to	assess	goodness
of	fit

See	also
Look	up	MATLAB	help	on	the	hist,	qqplot,	and	interpl	commands.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Time	series	analysis
A	time	series	is	a	set	of	data	points	recorded	over	time,	usually	at	uniform	intervals.
The	important	thing	that	distinguishes	time	series	from	other	one-dimensional	data	is
the	property	of	natural	temporal	ordering	present	in	the	data.	In	this	recipe,	you	will
analyze	human	heart	rate	data	and	visualize	your	findings.

Getting	ready
In	this	recipe,	you	will	use	two	time	series	that	contain	evenly-spaced	measurements
of	instantaneous	heart	rate	(in	units	of	beats	per	minute)	at	0.5	second	intervals	from
two	subjects.	The	data	was	downloaded	from	an	ECG	website	maintained	at	MIT
(GoldBerger	and	Mordy).

Load	the	data	as	follows:

load	timeseriesAnalysis;

How	to	do	it...
Perform	the	following	steps	(Code	is	shown	here	for	one	series.	Apply	similarly	to	the
other):

1.	 Plot	the	data:

subplot(2,1,1);

plot(x,ydata1);

title('Instantaneous	heart	rate,	recorded	at	0.5	

seconds	interval,	from	subject	1');

xlabel('Time	(in	seconds)');

ylabel('Heart	rate	(beats	per	minute)');

The	output	is	as	follows:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

2.	 De-trend	(remove	the	best	straight	line	fit	from	the	data):
y_detrended1	=	detrend(ydata1);	

plot(x,	ydata1,'-',x,	ydata1-y_detrended1,'r');

title('Detrended	Signal	1');

legend({'signal','trend'});

xlabel('Time	(in	seconds)');

ylabel('Heart	rate	(beats	per	minute)');

The	output	is	as	follows:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

3.	 Compute	the	auto	correlation	function.	It	is	also	known	as	a	correlogram.
y_autoCorr1	=	acf(subplot(2,1,1),ydata1,100);	

%	annotations

set(get(gca,'title'),'String',...

		'Autocorrelation	function	for	Heart	Rate	data,

				subject	1');

set(get(gca,'xlabel'),'String','Lag	(in	seconds)');

tt	=	get(gca,'xtick');

for	i	=	1:length(tt);	ttc{i}	=	

		sprintf('%.2f	',0.5*tt(i));

end

set(gca,'xticklabel',ttc);

The	output	is	as	follows:

4.	 Take	a	Fourier	transform	to	investigate	the	signal	in	frequency	domain.	Plot
the	power	spectrum	of	the	signal	(plot	of	Power	versus	Frequency):

%	Use	next	highest	power	of	2	greater	than	or	equal	to	

%	length(x)	to	calculate	fft

nfft	=	2^(nextpow2(length(x)));

%	Take	fft,	padding	with	zeros	with	zero	padding	

ySpectrum1	=	fft(y_detrended1,nfft);

NumUniquePts	=	ceil((nfft+1)/2);

%	FFT	is	symmetric,	throw	away	second	half	and	use	the	

%	magnitude	of	the	coefficients	only

powerSpectrum1	=	abs(ySpectrum1(1:NumUniquePts));

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

%	Scale	the	fft

powerSpectrum1	=	powerSpectrum1./max(powerSpectrum1);

%	Calculate	power	spectrum,	preserving	total	energy

powerSpectrum1	=	powerSpectrum1.^2;

%	odd	nfft	excludes	Nyquist	point

if	rem(nfft,	2)	

		powerSpectrum1(2:end)	=	powerSpectrum1(2:end)*2;

else

		powerSpectrum1(2:end	-1)	=	powerSpectrum1(2:end	

-1)*2;

end

%	Sampling	frequency

Fs	=	1/(x(2)-x(1));	

f	=	(0:NumUniquePts-1)*Fs/nfft;

%plotting

plot(f,powerSpectrum1,'-');

The	output	is	as	follows:

5.	 Compute	a	global	smoothing	by	zeroing	the	less	significant	Fourier
coefficients	(usually	they	will	correspond	to	the	higher	frequencies	that	give
the	noisy	appearance	to	the	signal):

%	Dont	use	zero	padding

ySpectrum1	=	fft(ydata1);

%	Zero	out	less	significant	coeffs

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

freqInd1=find(abs(ySpectrum1)<400);

ySpectrum1(freqInd1)=0;

%	Reconstruct	signal

y_cyclic1=ifft(ySpectrum1);

%plotting

h(1)=	plot(x,ydata1,'b');hold	on;

h(2)=plot(x,y_cyclic1,'r','linewidth',1.5);

title('Smoothed	Heart	Rate	Signal	1');axis	tight;

xlabel('Time	(in	secoonds)');

ylabel('Heart	rate	(beats	per	minute)');

The	output	is	as	follows:

How	it	works...
Time	series	data	analysis	is	a	complex	and	mature	discipline.	A	small	snapshot	was
presented	in	this	recipe	to	illustrate	the	special	ways	this	type	of	data	is	handled.

Line	charts	are	the	most	common	ways	of	representing	time	series	data.

Time	series	can	be	investigated	in	both	time	and	frequency	domains.	In	the	time
domain,	techniques	such	as	the	auto-correlation	function	reveal	the	similarity	between
observations	as	a	function	of	the	time	separation	between	them.	In	the	frequency
domain,	techniques	such	as	the	Fourier	transform	are	used	to	investigate	the	spectral
properties.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

In	the	analysis	performed	in	this	recipe,	the	de-trending	step	did	not	show	much
effect	(possibly	because	the	data	was	already	flat	and	did	not	have	a	significant	trend
that	could	be	removed).

The	auto-correlation	function	showed	a	distinct	difference	in	the	signatures	from	the
two	signals	and	the	non-zero	correlation	coefficients	clearly	established	that	the	data
is	far	from	random.	The	file	exchange	submission	by	Calvin	Price	was	used	to
compute	the	auto-correlation	function	in	this	recipe.

The	rapid	oscillation	visible	in	series	1	was	reflected	in	its	power	spectrum	by	a	peak
near	0.1	Hz.	This	component	of	Heart	Rate	Variation	is	probably	respiratory	sinus
arrhythmia,	a	modulation	of	heart	rate	that	is	greatest	in	young	subjects,	and
gradually	decreases	in	amplitude	with	increasing	age.	By	contrast,	almost	all	of	the
power	in	series	2	was	concentrated	at	a	much	lower	frequency	(about	0.02	Hz).
These	dynamics	are	commonly	observed	in	the	context	of	congestive	heart	failure,
where	circulatory	delays	interfere	with	the	regulation	of	carbon	dioxide	and	oxygen	in
the	blood,	leading	to	slow	oscillations	of	heart	rate.

Finally,	a	global	smooth	for	the	signals	was	shown,	computed	by	zeroing	the	less
significant	Fourier	coefficients.	In	this	case,	the	higher	frequency	components	were
the	less	significant	ones	and	hence	the	process	produced	the	effect	of	reducing	the
high	frequency	noise	in	the	signal.

Note
Takeaways	from	this	recipe:

Use	line	charts	to	present	time	series	data
Use	correlograms	to	check	for	randomness	of	your	dataset
Use	Fourier	transforms	to	investigate	spectral	properties	of	your	dataset

See	also
Look	up	MATLAB	help	on	the	acf,	fft,	and	ifft	commands.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Chapter	3.	Graduating	to	Two-
dimensional	Data	Displays
In	this	chapter,	we	will	cover:

2D	scatter	plots
Scatter	plot	smoothing
Bidirectional	error	bars
2D	node	link	plots
Dendrograms	and	clustergrams
Contour	plots
Gridding	scattered	data
Choropleth	maps
Thematic	maps	with	symbols
Flow	maps

Introduction
This	chapter	focuses	on	two-dimensional	data	displays.	The	most	common	chart
types	for	two-dimensional	data	visualization	are	scatter	plots	and	heat	maps.
Scatter	plots	use	positional	coordinates	to	show	numerical	data,	which	is	a
visualization	best	practice,	as	discussed	in	Chapter	2,	Diving	into	One-dimensional
Data	Displays.	Heat	maps	use	color	to	code	numerical	data.	Heat	maps	typically	use
a	sequential	color	scale	which	works	well	to	convey	the	sense	of	ordering	in	the
values	and	also	reveal	spatial	patterns.	MATLAB	supports	many	additional	chart
options	for	2D	data	as	you	will	see	in	this	chapter,	such	as	contour	maps,
dendrograms,	and	flow	maps.	Several	recipes	also	present	methods	to	plot	geo-
specific	data	on	a	map.

The	core	technologies	for	visualizing	multidimensional	data	in	MATLAB	are	briefly
discussed	in	the	following	section.

Surface,	patch,	and	shading
MATLAB	uses	surface	and	patch	elements	as	the	basic	planar	building	blocks.
Surface	objects	are	quadrilaterals	and	more	suitable	for	presenting	planar
topographies.	Patch	objects	are	polygons,	geared	toward	3D	modeling.	These
objects	work	with	data	on	a	uniform	grid.The	color	for	the	face	of	the	grid	element	is
determined	from	the	values	it	represents.	First,	MATLAB	transforms	the	data	value	in

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

your	matrix	to	a	color	value	by	linearly	mapping	the	data	value	to	the	color	map	(the
two	extreme	colors	in	the	color	map	correspond	to	the	highest	and	lowest	value	in
your	data	matrix).	As	per	the	shading	algorithm,	the	color	for	the	face	of	a	grid
element	is	interpreted	at	the	vertex	of	the	grid	element	(the	color	within	the	grid
element	being	a	bilinear	function	of	the	local	coordinates)	as	in	shading	type	interp;
alternately,	that	color	is	a	constant	associated	with	that	grid	element	as	in	shading
type	flat	or	faceted.	The	pcolor	command	is	a	surface	object	with	faceted	shading
and	no	grid	lines.	Another	option	is	to	use	a	wireframe	or	mesh.	(But	this	is	still	a
surface	object	plot	with	the	face	color	set	to	the	background	color	to	simulate
wireframes).

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Two-dimensional	scatter	plots
Two-dimensional	scatter	plots	are	paired	values	plotted	one	versus	the	other.	In	this
recipe,	you	will	explore	a	variety	of	techniques	used	in	making	scatter	plot
visualizations.

Getting	ready
You	will	use	a	famous	dataset	from	pattern	recognition	literature	first	reported	in
Fisher's	classic	1936	paper.	The	iris	dataset	contains	four	attributes	of	the	iris	plant
(sepal	length,	sepal	width,	petal	length,	and	petal	width).	The	data	is	widely	available,
and	also	part	of	the	code	repository	with	this	book.

[attribclassName]	=	xlsread('iris.xlsx');

How	to	do	it...
Perform	the	following	steps:

1.	 Make	the	basic	scatter	plot	using	the	command	scatter.	Execute	lines	16	–
21	from	the	source	code	of	this	recipe	to	generate	the	annotations:

scatter(attrib(:,1),attrib(:,2),10*attrib(:,3),...

		[1	0	0],'filled','Marker','^');

The	output	is	as	follows:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

2.	 Make	a	scatter	plot	matrix	using	the	command	plotmatrix.This	brings	up
scatter	plots	for	all	pairs	of	attributes,	in	a	gridded	format,	and	the	histogram
of	each	attribute.

[H,AX,BigAx,P]	=	plotmatrix(attrib,'r.');

3.	 You	can	use	the	output	vector	from	the	plotmatrix	call	to	add	annotations	to
the	figure,	as	shown	in	lines	33	–	40	of	source	code	for	this	recipe.	For
example:

for	i	=	1:4

		set(get(AX(i,1),'ylabel'),'string',...

		['Attribute	'	num2str(i)]);	

		set(get(AX(4,i),'xlabel'),'string',...

		['Attribute	'	num2str(i)]);

end

The	output	is	as	follows:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

4.	 Review	the	distribution	of	the	x	and	y	values	in	one	dimension	at	the	same
time	as	you	review	the	2D	scatter	plot,	using	the	function
scatterHistV(supplied	with	this	book):

[mainDataAxesxhistAxesyhistAxes]	=	...

		scatterHistV(attrib(:,2),attrib(:,3),50,	50);

5.	 Add	annotations	using	handles	returned	by	the	function	as	shown	in	lines	47	–
49	of	the	source	code	for	this	recipe.	For	example:

set(get(mainDataAxes,'title'),'String',...

		['Scatter	plot	view	alongside	distribution'...

		'	of	x	and	y'],'Fontsize',14);

The	output	is	as	follows:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

How	it	works…
In	this	recipe,	you	learned	to	make	2D	scatter	plots,	a	scatter	plot	matrix,	and	then	a
view	to	simultaneously	look	at	the	scatter	plot	alongside	the	univariate	distributions	of
the	two	data	dimensions.	The	scatter	plot	matrix	showed	that	the	three	classes	of	the
iris	flower	are	not	clearly	separable	using	any	two	data	dimensions.	In	the	previous
figure,	one	of	the	classes	is	clearly	separated	using	two	of	the	four	attribute
dimensions.

The	2D	scatter	plot	and	the	scatter	plot	matrix	were	built	using	direct	MATLAB
commands.	The	scatterhistV	is	a	custom	function	that	internally	splits	the	figure
area	into	three	axes.	It	uses	the	hist	function	to	calculate	the	histogram	and	then
uses	the	bar	function	to	plot	the	univariate	histograms	into	two	of	those	axes
positions.	It	sets	the	xdir	and	ydir	properties	to	reverse	to	turn	the	histograms
around.	The	main	data	plot	is	done	using	the	scatter	command.	The	code	for	this
function	is	part	of	the	source	code	with	the	book.

Note
Takeaways	from	this	recipe:

Use	scatter	plots	to	review	your	two	dimensional	data

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

See	also
Look	up	MATLAB	help	on	the	scatter,	scatterhist,	and	plotmatrix	commands.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Scatter	plot	smoothing
When	the	data	volumes	are	huge,	there	may	be	significant	over-plotting	in	a	simple
scatter	plot	view.	In	that	case,	one	may	need	to	look	at	a	higher	abstraction	of	the
data	than	all	the	data	points	at	once.	To	this	end,	there	exist	techniques	such	as
density	plots	and	scatter	plot	smoothing,	which	are	shown	in	this	recipe.

Getting	ready
In	this	recipe,	you	will	look	at	a	dataset	with	3000	points	that	shows	significant	over-
plotting	in	the	scatter	plot	view.	Generate	this	as	follows:

z	=	[repmat([1	2],1000,1)	+	randn(1000,2)*[1	.5;	0	1.32];...

		repmat([9	1],1000,1)	+	randn(1000,2)*[1.4	.2;	0	0.98];...

		repmat([4	8],1000,1)	+	randn(1000,2)*[1	.7;	0		0.71];];

How	to	do	it…
Perform	the	following	steps:

1.	 Plot	the	original	raw	data	and	observe	the	heavily	over-plotted	zones	where
the	data	is	hidden	and	the	user	has	no	idea	about	the	actual	number	of	points
in	that	blob.	See	the	results	in	the	following	screenshot:

plot(z(:,1),z(:,2),'.');

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

2.	 Create	a	density	plot	on	a	100	x	100	grid	to	obtain	the	following	plot:

densityPlot2D(z(:,1),z(:,2),100);

How	it	works…
Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

For	creating	the	density	plots,	data	is	gridded	onto	a	coarser	grid	and	the	frequency
of	data	points	in	each	grid	is	computed.	This	2D	histogram	is	then	presented	using	a
heat	map.	Note	that	you	implemented	heat	maps	in	Chapter	2,	Calendar	Heat	Map,
with	the	imagesc	command	(which	uses	MATLAB's	image	viewing	technology).	In	this
recipe,	you	used	the	surf	command,	which	fits	a	surface	to	the	data.	The	shading
algorithm	used	is	the	default	(faceted),	so	that	each	grid	element	has	one	constant
color	that	corresponds	to	the	frequency	of	points	in	that	bin.	The	densityPlot2D.m,	a
custom	function	that	is	part	of	the	code	repository	with	this	book,	implements	this
strategy.	It	takes	the	x	and	y	data	vectors	and	also	the	grid	size	on	which	to	compute
the	density	plot	as	inputs.	With	this	strategy,	over-plotting	is	no	longer	a	problem	and
the	plot	now	reveals	the	true	picture	of	the	data	distribution	to	the	user.

There's	more...
An	alternate	way	to	view	high	density	scatter	plots	is	to	use	scatter	plot	smooths.
For	this,	at	each	point,	a	Gaussian	distribution	with	a	certain	spread	is	assumed,	and
the	sum	of	all	the	Gaussians	is	computed	on	a	fine	data	grid.	This	represents	the
smoothed	version	of	the	scatter	plot	(the	spread	assumed	for	the	Gaussian	function
acts	as	a	tunable	parameter	in	this	visualization;	the	higher	the	spread,	the	more
diffused	or	smoothed	is	the	result).	The	scatterPlotSmooth2D.m,	a	custom	function
that	is	part	of	the	code	repository	with	this	book,	implements	this	strategy.	It	takes
the	two	dimensions	of	the	data,	the	spread,	and	the	grid	size	as	inputs.

scatterPlotSmooth2D(z(:,1),z(:,2),.1,300);

The	output	is	as	follows:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

An	interactive	version	of	this	plot	could	allow	the	user	to	zoom	in	on	these	heat	map
views.	When	the	total	number	of	points	in	focus	falls	under	a	certain	threshold,	the
graphic	could	switch	mode	and	reveal	the	actual	points.	One	of	the	drawbacks	of
these	methods	is	that	they	are	costly	to	evaluate	(particularly	true	for	the	scatter	plot
smooth).	This	cost	magnifies	when	the	plot	is	interactive	and	the	zoom	functionality
requires	regridding	the	data	and	refitting	the	surface	in	real	time.

Note
Takeaways	from	this	recipe:

Use	scatter	plot	smoothing	or	density	plot	views	to	review	your	high	volume
two-dimensional	data	at	a	manageable	scale

See	also
Look	up	MATLAB	help	on	the	surf,	interp2,	intersect,	cat,	and	meshgrid
commands.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Bidirectional	error	bars
In	Chapter	1,	Laying	out	long	tick	labels	without	overwriting,	you	plotted	error	bars
that	were	three	standard	deviations	out,	on	both	sides	of	the	median	gene	expression
value,	for	each	cancer	type.	In	that	case,	the	biological	and	measurement	variation
was	only	in	the	variable	plotted	along	the	y	axis.	There	was	no	such	ambiguity	in	the
variable	plotted	on	the	x	axis.	When	plotting	two-dimensional	data,	there	may	be
variability	(both	real	and	measurement	related)	along	both	data	dimensions.	This
recipe	shows	how	to	present	bidirectional	error	bars.

Getting	ready
In	this	recipe	you	will	use	recordings	of	position	and	velocity	for	turbulent	wind	flow.
Load	the	data:

load	flatPlateBoundaryLayerData

How	to	do	it...
Perform	the	following	steps:

1.	 Bin	the	data	by	executing	the	lines	14	–	31.
2.	 Call	the	custom	function	binDirErrBar.m	(part	of	the	code	bundle	with	this

book)	with	the	four	parameters:	x	and	y,	the	average	data	for	position	and
velocity,	and	e_x	and	e_y,	the	error	bars	around	the	average	position	and
velocity	for	each	bin:

h	=	biDirErrBar(x,y,e_x,e_y);

3.	 Add	annotations	using	the	handle	returned	by	the	previous	function:

set(get(h,'title'),'string',...

		'Bidirectional	Error	Bars','Fontsize',15);

set(get(h,'xlabel'),'string',...

		'Position	Measurement','Fontsize',15);

set(get(h,'ylabel'),'string','Velocity	Measurement',...

		'Fontsize',15);

The	output	is	as	follows:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

How	it	works…
The	previous	figure	shows	the	variation	in	both	x	and	y	dimensions.	Note	that	in	a	real
situation	the	measurement	variation	in	x	and	y	will	be	available	to	plug	into	this	view.
In	this	case,	you	artificially	generated	it	by	binning	the	data	in	x	and	y	and	calculating
a	spread	to	represent	uncertainty	about	the	mean	value.	The	mean	value	in	x	and	y	in
each	bin	is	joined	with	a	line.	The	three	standard	deviation	values	in	x	and	y	directions
in	each	bin	are	plotted	as	the	two	error	bars	respectively.

The	binDirErrBar.m	function	internally	calls	the	MATLAB	built-in	errorbar	function	to
plot	the	vertical	error	bars.	Then,	it	uses	the	MATLAB	command	line	to	construct	the
horizontal	error	bars.	The	vertical	bars	at	the	end	of	the	horizontal	error	bars	are	put
at	2	percent	of	the	maximum	y	observation.	For	a	different	range	of	data,	experiment
with	these	parameters	to	modify	the	bidirectional	error	bar	function.

Note
Takeaways	from	this	recipe:

Use	bidirectional	error	bars	to	present	the	physical	and/or	measurement
related	uncertainty	in	both	data	dimensions

See	also
Look	up	MATLAB	help	on	the	errorbar	command.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

2D	node	link	plots
In	this	recipe,	you	will	see	the	two-dimensional	analog	of	node	link	plots	you	built	in
Chapter	2,	Node	Link	Plots.

Getting	ready
The	data	was	obtained	from	UCI's	website	and	provided	as	part	of	the	book.	It
presents	the	network	of	co-appearances	of	characters	in	the	novel	Les	Miserables,
by	Victor	Hugo.	Nodes	represent	characters	as	indicated	by	the	labels.	Edges	hold
values	connecting	two	nodes	(or	zero	for	no	connection).	Non-zero	edge	values	in	the
matrix	represent	the	number	of	co-appearances	of	the	pair	of	characters.	Load	the
data:

load	characterCoOccurences

How	to	do	it...
Perform	the	following	steps:

1.	 Set	up	the	figure	and	axes:

figure('units','normalized','Position',...

		[0.2	0.13	0.49	0.77]);

mainAx	=	axes('position',[0.14	0.01	0.80	0.80]);

2.	 Set	up	a	color	map.	Reverse	the	color	map	matrix	so	that	low	values
correspond	to	lighter	colors:

m	=	colormap(copper);m	=	m(end:-1:1,:);colormap(m);

3.	 Create	the	heat	map	of	the	data	with	a	surface	plot:

r=surf(lesMiserables);view(2);

%	set	the	edge	to	semi-transparent	and	the	color	limits

set(r,'edgealpha',0.2);

set(gca,'clim',[min(lesMiserables(:))	

max(lesMiserables(:))]);

4.	 Add	annotations:

%	position	the	colorbar

h=colorbar('northoutside');

%	add	tick	labels

set(mainAx,'xAxisLocation','top','xtick',0:78,...

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

		'xticklabel',{'	'	LABELS{:}	'	'},...

		'ytick',0:78,'yticklabel',{'	'	LABELS{:}	'	'},...

		'ticklength',[0	0],'fontsize',8);

axis	tight;

rotateXLabels(gca,90);

5.	 Resize	axes	for	proper	visibility	of	all	elements:

%	reposition	to	correct	impact	from	tick	label	rotation

set(h,'position',...

		[0.1006				0.9209				0.8047				0.0128]);

set(get(h,'title'),'String',['Number	of	'...

		'co-appearances	of	characters	in	Les	Miserables'...

		'by	Victor	Hugo']);

set(mainAx,'position',...

		[0.1361				0.0143				0.8042			0.8038]);

The	output	is	as	follows:

How	it	works…
The	screenshot	shows	the	co-appearance	of	characters	in	Les	Miserables,	by	Victor
Hugo.	The	most	common	co-characters	are	Javerte	and	Marguerite.

In	step	2,	you	reversed	the	color	map	matrix	and	made	the	lightest	to	darkest	colors
Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

correspond	to	the	lowest	to	the	highest	values.	This	is	a	useful	measure	for	visualizing
sparse	matrix	in	a	heat	map	(otherwise	the	dark	color	makes	the	plot	appear	very
busy).

In	step	3,	you	used	the	surf	command	to	make	the	actual	data	heat	map.

In	step	4,	among	others,	you	set	the	x	axis	location	property	to	top,	which	made	the	x
labels	appear	above.	Also	notice	how	you	add	two	blank	strings	to	the	cell	array
containing	the	character	names,	at	the	first	and	last	positions	so	that	the	names	lines
up	with	the	columns	instead	of	the	tick	positions.

Note
Takeaways	from	this	recipe:

Use	heat	maps	to	present	two	relationships	between	two	data	dimensions
Use	light	color	to	represent	low	values	for	sparse	matrix	to	reduce	color
saturation

See	also
Look	up	MATLAB	help	on	the	surf	command.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Dendrograms	and	clustergrams
A	dendrogram	is	a	tree	diagram	used	to	illustrate	the	arrangement	of	clusters	in	the
data,	produced	by	agglomerative	or	hierarchical	clustering.	The	outer	most	set	of
nodes	represents	individual	observations,	and	the	remaining	nodes	represent	the
clusters	to	which	the	data	belong,	with	the	arrows	representing	the	distance
(dissimilarity).	The	distance	between	merged	clusters	is	monotone	increasing	with	the
level	of	the	merger;	the	height	of	each	node	in	the	plot	is	proportional	to	the	value	of
the	intergroup	dissimilarity	between	its	two	daughters.

A	clustergram	is	essentially	a	heat	map	with	dendrograms	attached	to	the	top	of	the
y	axis	and	the	left	of	the	x	axis	(so	that	the	heat	map	is	sorted	along	each	variable).	It
is	a	nice	way	to	observe	patterns	within	the	data	(in	terms	of	the	effect	of	either	of
the	variables	on	the	data).

Getting	ready
This	recipe	will	use	the	linkage,	pdist,	and	dendrogram	functions	from	the	MATLAB
Statistics	ToolboxTM	package.

You	will	use	the	cancer	gene	expression	dataset	(supplied	with	this	book)	to	look	at
expression	levels	from	30	genes	across	30	samples	for	leukemia.	Extract	the	data	as
follows:

load	14cancer.mat

data	=	[Xtrain(find(ytrainLabels==9),genesSet);	...

		Xtest(find(ytestLabels==9),genesSet)];

How	to	do	it...
Perform	the	following	steps:

1.	 Layout	the	three	principal	components	to	this	plot.	Two	of	them	will	hold	the
dendrograms.	One	of	them	will	hold	the	heat	map.

figure('units','normalized','Position',...

		[0.5641				0.2407				0.3807				0.6426]);

mainPanel	=	axes('Position',[.25	.08	.69	.69]);

leftPanel	=	axes('Position',[.08	.08	.17	.69]);

topPanel	=		axes('Position',[.25	.77	.69	.21]);

2.	 Construct	the	dendrograms:

Z_genes	=			linkage(pdist(data'));

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Z_samples	=	linkage(pdist(data));

3.	 Manipulate	the	color	map	such	that	lower	values	appear	in	light	color:

m	=	colormap(pink);	m	=	m(end:-1:1,:);

colormap(m);

4.	 Plot	the	dendrograms	at	their	target	axis	(with	thick	lines):

axes(leftPanel);

h	=	dendrogram(Z_samples,'orient','left');	

set(h,'color',[0.1179	0	0],'linewidth',2);

axes(topPanel);	h	=	dendrogram(Z_genes,0);

set(h,'color',[0.1179	0	0],'linewidth',2);

5.	 Extract	the	ordering	proposed	by	the	dendrograms,	rearrange	the	data	in	that
order,	and	create	a	heat	map	view	of	the	ordered	data:

%%	get	the	ordering	proposed	by	the	dendrograms

Z_samples_order	=	str2num(get(leftPanel,'yticklabel'));

Z_genes_order	=	str2num(get(topPanel,'xticklabel'));

axes(mainPanel);

%	plot	a	heat	map	of	the	ordered	data

surf(data(Z_samples_order,Z_genes_order),...

		'edgecolor',[.8	.8	.8]);view(2);

set(mainPanel,'Xticklabel',[],'yticklabel',[]);

6.	 Align	the	x	and	y	axis	between	the	dendrograms	and	the	heat	map:

set(leftPanel,'ylim',[1	size(data,1)],'Visible','Off');

set(topPanel,'xlim',[1	size(data,2)],'Visible','Off');

axes(mainPanel);axis([1	size(data,2)	1	size(data,1)]);

7.	 Add	annotations:

axes(mainPanel);	xlabel('30	different	

genes','Fontsize',14);	

colorbar('Location','northoutside','Position',...

		[0.0584				0.8761				0.3082				0.0238]);	

annotation('textbox',[.5	.87	.4	.1],'String',...

		{'Expression	levels',...

		'Leukaemia'},'Linestyle','none',...

		'fontsize',14);

8.	 Apply	this	to	show	axis	labels,	even	when	axis	is	invisible:

set(leftPanel,'yaxislocation','left');

set(get(leftPanel,'ylabel'),'string','Samples',...

		'Fontsize',14);

set(findall(leftPanel,	'type',	'text'),...

		'visible',	'on');

The	output	is	as	follows:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

How	it	works…
For	the	hierarchical	clustering,	the	linkage	function	takes	the	distance	information
generated	by	pdist	and	links	pairs	of	objects	that	are	close	together	into	binary
clusters	(clusters	made	up	of	two	objects).	The	linkage	function	then	links	these
newly	formed	clusters	to	each	other	and	to	other	objects	to	create	bigger	clusters
until	all	the	objects	in	the	original	dataset	are	linked	together	in	a	hierarchical	tree.	By
default,	pdist	uses	the	Euclidean	metric.	You	can	choose	others	or	define	your	own.

Note
Takeaways	from	this	recipe:

Use	dendrograms	to	investigate	the	natural	ordering	andclusters	in	your	data
Use	clustergrams	to	order	your	heat	map	so	that	trends	are	directly	visible

See	also
If	you	have	MATLAB's	Bioinformatics	ToolboxTM,	the	previous	graphic	can	be	created

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

with	command	clustergram.

Look	up	MATLAB	help	on	the	dendrogram,	linkage,	cluster,	and	pdist	commands.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Contour	plots
A	contour	line	is	a	curve	along	which	the	function	has	a	constant	value.	MATLAB
provides	the	function	contour	to	construct	these	lines.

Getting	ready
In	this	recipe,	you	will	use	an	elevation	dataset	from	MATLAB	(part	of	MATLAB
installation)	to	explore	contour	maps.	Load	the	data:

load('topo.mat');

How	to	do	it...
Perform	the	following	steps:

1.	 Set	up	the	figure	and	color	map	for	its	use:

figure('units','normalized','Position',...

		[.1063	.4083	.513	.4963]);

axis	equal;	box	on	

colormap(topomap1);

2.	 Construct	the	contour	lines	at	specific	values	of	elevation:

%	contour	lines	above	1000	ft,	at	every	100	ft	interval

contour(0:359,-89:90,topo,[1000:100:5800]);	hold	on;

set(gca,'clim',[min(topo(:))	max(topo(:))]);

%	add	a	thick	contour	to	0	sea	level	to	denote	the	land		

contour(0:359,-89:90,topo,[0	0],'Linewidth',2);

3.	 Add	a	color	bar	and	annotations:

colorbar;

set(gca,'XLim',[0	360],'YLim',[-90	90],	...

		'XTick',[0	60	120	180	240	300	360],	...

		'Ytick',[-90	-60	-30	0	30	60	90]);

xlabel('Longitudes','Fontsize',14);

ylabel('Latitudes','Fontsize',14);

title({'Contour	lines,	using	a	topological	

colormap',...

		['Contours	show	elevation	>	1000	ft,	at	100	ft'	...

		'interval'],['Thick	contour	at	sea	level	',...

		'delineate	land	from	sea']},'Fontsize',14);

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

The	output	is	as	follows:

How	it	works…
The	contour	command	creates	contour	lines	joining	points	on	the	grid	with	the	same
value.	In	this	figure,	you	drew	contour	lines	on	the	world	map	at	elevation	values
greater	than	1000	ft,	at	every	100	ft	interval.	The	Rockies,	Andes,	Himalayas,
Transatlantic	Mountains,	Sumatran	/Javan	ranges,	Tien	Shan,	and	Altai	ranges	among
others,	are	visible.

You	can	specify	styling	for	the	contour	lines,	as	you	did	for	the	contour	at	zero
elevation,	to	effectively	highlight	the	outline	of	land	mass	separated	from	sea.

Note	that	in	this	case	you	used	a	preconstructed	nonuniform	color	scale	that	you
loaded	with	the	data.	This	ensured	that	all	values	under	zero	mapped	to	a	shade	of
blue,	and	all	values	approximately	greater	than	1000	mapped	to	a	shade	of	brown,	in
keeping	with	the	standards	of	topographical	data	presentation.

There's	more...
Notice	how	MATLAB	used	a	nonuniform	color	map.	This	section	discusses	how	to
coerce	MATLAB	to	use	a	nonuniform	color	map	with	continuous	data	values.	Suppose
you	have	a	Gaussian	function	that	denotes	the	spread	of	a	cluster.	The	distance	of	an
observation	from	the	center	of	the	cluster	is	inversely	proportional	to	the	confidence
level	of	its	cluster	membership.	The	goal	is	to	color	the	regions	of	the	graph	where
the	confidence	levels	are	high	with	more	discernable	granularity	than	the	regions	with
lower	confidence	levels.

Perform	the	following:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

1.	 Define	a	color	map	with	the	handful	of	RGB	values	you	will	be	using:

ColorMat	=	...

		[255	255	255;	255	98	89;	255	151	99;	255	234	129;	227	

249	149;...	

		155		217	106;	76	202	130;	0	255	0;]/255;

2.	 Here	is	the	definition	for	the	Gaussian	function	(data	generation	step):

[X,Y]	=	meshgrid(linspace(0,1,50),	linspace(0,1,50));

Z	=	exp(-(((X-.25).^2)./(2*.5^2)	+	...

		((Y-.5).^2)./(2*.5^2)));

3.	 Define	the	values	at	which	you	would	like	to	change	the	contour	color	in	the
vector	x:

x	=	[0,	0.4,	0.7,	0.9,	0.95,	0.98,	.99,	1];

4.	 Now,	construct	the	vector	y	as	a	fine	grid	from	the	lowest	to	highest	values	in
your	dataset	(0	and	1	in	this	example).	For	all	values	in	y	between	two
consecutive	values	in	x,	pad	with	the	greater	of	the	two	x	values:

clim	=	[0	1];

y	=	0:0.005:1.0;

for	k=1:	length(x)-1,

		y(y>x(k)	&	y<=	x(k+1))	=	x(k+1);

end

5.	 Generate	the	color	map	corresponding	to	y	by	interpolating	the	color	map
corresponding	to	x:

cmap2	=	[interp1(x(:),ColorMat(:,1),y(:))	...

		interp1(x(:),ColorMat(:,2),y(:))	...

		interp1(x(:),ColorMat(:,3),y(:))];

6.	 Create	filled	contour	lineswith	the	surf	command:

surf(X,Y,Z);	box	on;	view(2);shading	flat;

7.	 Set	the	color	map	to	the	newly	defined	matrix:

colormap(cmap2);

8.	 Manually	set	the	color	axis	from	0	to	1.	Add	a	color	bar:

caxis(clim);

colorbar;

The	output	is	as	follows:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Note
Takeaways	from	this	recipe:

Use	contour	lines	to	investigate	the	patterns	in	your	two-dimensional	data
Use	nonuniform	color	scales	to	focus	on	data	ranges	of	interest

See	also
Look	up	MATLAB	help	on	the	contour,	clabel,	peaks,	contourc,	and	contourf
commands	that	we	encountered	in	this	recipe.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Gridding	scattered	data
If	the	two-dimensional	data	does	not	exist	on	a	uniform	grid,	methods	such	as	surf
will	not	be	applicable.	MATLAB	provides	functionality	to	fit	scatter	points	with	a
uniform	grid	and	thereby	facilitate	the	use	of	the	standard	techniques	to	2D
visualization	on	such	data,	as	shown	in	this	recipe.

Getting	ready
Generate	a	scattered	dataset	in	2D	space:

load	griddataExample;

R	=	sqrt(x.^2	+	y.^2)	+	eps;	z	=	sin(R)./R;

How	to	do	it…
Perform	the	following	steps:

1.	 Define	a	uniform	grid:

xx	=	linspace(min(x),max(x),30);

yy	=	linspace(min(y),max(y),30);

[X,Y]	=	meshgrid(xx,yy);

2.	 Fit	a	surface	to	the	scattered	data	using	MATLAB	command	griddata:

Z_griddata	=	griddata(x,y,z,X,Y);

3.	 An	alternate	method	is	using	MATLAB	command	triscatteredinterp.

triScatterInterp_F	=	

TriScatteredInterp(x,y,z,'natural');

Z_triScatterInterp	=	triScatterInterp_F(X,Y);

4.	 Visualize	using	several	techniques	as	follows:

%%	set	up	the	figure

figure('units','normalized','Position',...

		[.312	.1463	.488	.712]);

%%	plot	1	=	griddata,	with	pcolor,	no	grid	lines

subplot(2,2,1);

h=pcolor(X,Y,Z_griddata);set(h,'edgecolor','none');		

hold	on;

title({'Fit	using	\color{red}griddata',...

		'\color{black}Plot	with	\color{red}pcolor',...

		'color{black}Clear	grid	lines'},'Fontsize',12);

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

plot(x,y,'o','markerfacecolor',[0	0	0]);

box	on;	grid	on;axis([-10	10	-10	10]);

%%	plot	2	-	griddata,	mesh

subplot(2,2,2);

mesh(X,Y,Z_triScatterInterp);	hold	on;

h=mesh(X,Y,Z_griddata);view(2);

set(h,'edgecolor','none');		hold	on;	

title({'Fit	using	griddata',...

		'Plot	with	mesh'},'Fontsize',12);

plot(x,y,'o','markerfacecolor',[0	0	0]);

box	on;	grid	on;axis([-10	10	-10	10]);

%%	plot	3	-	'TriScatterInterp	+	triangular	patches

subplot(2,2,3);

tri	=	delaunay(X,Y);h= 	

trisurf(tri,X,Y,Z_triScatterInterp);	

set(h,'edgecolor','none');view(2);	hold	on;

title({'Fit	using	triScatterInterp',...

		'Plot	using	trisurf	triangular	patches)'},...

		'Fontsize',12);

plot(x,y,'o','markerfacecolor',[0	0	0]);

box	on;	grid	on;axis([-10	10	-10	10]);

%%	plot	4	-	triScatterInterp,	surf	+	interp	shading

subplot(2,2,4);	hold	on;

surf(X,Y,Z_triScatterInterp);	view(2);	shading	interp;

title({'Fit	using	triScatterInterp',...

		'Plot	with	surf	+	interp	shading'},'Fontsize',12);

plot(x,y,'o','markerfacecolor',[0	0	0]);

box	on;	grid	on;axis([-10	10	-10	10]);

The	output	is	as	follows:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

How	it	works...
In	this	recipe,	you	investigated	options	for	representing	data	from	a	nonuniform	grid.
Of	the	two	available	options	to	fit	scatter	data,	the	TriScatteredInterp	is	faster	than
the	griddata.	Both	use	the	same	triangulation	to	construct	the	results.	However,	the
latter	caches	the	interpolant	and	eliminates	the	need	to	recompute	the	triangulation
each	time	you	evaluate,	change	the	interpolation	method,	or	change	the	values	at	the
sample	locations.	Another	advantage	to	TriScatterDataInterp	is	also	the	Natural
Neighbor	interpolation	method	that	you	can	use	with	it.	This	has	an	area-of-influence
weighting	associated	with	each	sample	point,	which	is	C1	continuous	(except	at	the
sample	locations)	and	performs	well	in	both	clustered	and	sparse	data	locations.
TriScatteredInterp	also	uses	the	CGAL	Delaunay	triangulations	(as	does
DelaunayTri),	which	are	robust	against	numerical	problems,	faster,	and	more
memory	efficient.

The	recipe	also	explored	several	MATLAB	options	for	viewing	the	gridded	data
including	pcolor,	surf,	mesh,	and	trisurf	with	different	shading	algorithms.

Note	how	you	used	\color{red}griddata	to	format	part	of	the	title	string	in	a
different	color	(griddata	in	this	case	was	colored	red).

There's	more…

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

How	do	you	know	if	the	interpolated	surface	returned	by	MATLAB	is	a	good	one?
Check	the	Delaunay	triangulation.	If	triangulations	look	far	from	being	equilateral,	you
cannot	expect	to	get	good	results	in	those	neighborhoods.

dt	=	DelaunayTri(x,y)

triplot(dt);

The	output	is	as	follows:

Note
Takeaways	from	this	recipe:

Use	TriScatteredInterp	to	interpolate	large	scattered	datasets	and	infer
patterns	in	your	data.
If	the	2D	scattered	data	interpolation	produces	unexpected	results,	check	the
Delaunay	triangulation.	If	some	of	the	triangles	are	very	elongated,	you	cannot
expect	to	get	good	results	in	that	neighborhood.

See	also
Look	up	MATLAB	help	on	the	griddata,	meshgrid,	mesh,	surf,	pcolor,	delaunay,
DelaunayTri,	triplot,	and	trisurf	commands	that	we	encountered	in	this	recipe.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Choropleth	maps
Choropleth	maps	are	a	type	of	thematic	maps	in	which	areas	are	shaded	or
patterned	in	proportion	to	the	measurement	of	the	statistical	variable	being	displayed
on	the	map.	The	choropleth	map	provides	an	easy	way	to	visualize	how	a
measurement	varies	across	a	geographic	area.

Getting	ready
In	this	recipe,	you	will	visualize	a	dataset	with	the	rate	of	cancer	incidence	inthe	US.
The	data	was	obtained	from	the	CDC	website	and	provided	as	part	of	this	book.	You
will	need	the	boundary	information	for	the	US,	which	was	downloaded	from	the	US
government	census	website	and	also	provided	as	part	of	this	book.

Load	a	dataset:

[deathRatesstateNames]	=	xlsread('cancerByRegion.xlsx');

stateNames	=	{stateNames{2:end,1}};

load('USStateboundaries.mat');

How	to	do	it...
Perform	the	following	steps:

1.	 Layout	the	figure	and	set	the	color	scale	between	the	max	and	min	data	to
present:

figure('units','normalized','Position',...

		[.11	.34	.48	.56]);

%	set	the	color	scale	between	the	max	and	min	data	

climMat	=	[min(deathRates(:,1))	max(deathRates(:,1))];

set(gca,'clim',climMat);	hold	on;

m	=	colormap;

2.	 For	each	state,	you	will	have	to	draw	a	filled	polygon.	The	coordinates	of	the
polygon	should	correspond	to	the	latitude	longitude	boundary	for	the	state.
The	color	of	the	polygon	should	correspond	to	the	data	value	to	show.

%	for	each	state,

for	i	=	1:49

%	extract	the	data	value	for	this	state

dataPoint	=	deathRates(find(strcmp(states(i).Name,	...

		stateNames)),1);

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

%	extract	the	color	index	into	the	color	map	that

%	corresponds	to	this	data	value

index	=	fix((dataPoint-climMat(1))/...

		(climMat(2)-climMat(1))*63)+1;

%	draw	a	filled	polygon	(fill	color	corresponding	to	

%	colormap	value	at	aforementioned	index	position

%	Need	to	delete	NaN	values	for	fully	connected	polygon

fill(states(i).Lon(~isnan(states(i).Lon)),...

		states(i).Lat(~isnan(states(i).Lat)),m(index,:));

end

3.	 Add	annotations	and	a	colorbar:

title({'Age	adjusted	rate	of	incidence	of	cancer	'...

		'across	all	races	from	2003	-	2007'},'Fontsize',14);

%	dont	want	to	see	axis

set(gca,'visible','off');

%	but	want	to	see	title	on	invisble	axis

set(findall(gca,	'type',	'text'),	'visible',	'on');

%	add	a	color	bar

h=colorbar('Location','Southoutside');

xlabel(h,['Rate	is	reported	as	number	per	100,000	'...

		'population'],'Fontsize',13);

The	output	is	as	follows:

How	it	works…
The	screenshotshows	that	the	incidence	of	cancer	is	higher	in	the	mid-eastern	block

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

of	the	US.

The	recipe	can	be	broken	into	two	essential	steps	(which	you	accomplish	for	each
state	in	step	2).	The	first	is	the	use	of	polygons	to	plot	the	boundary	of	the	state	(you
used	MATLAB	function	fill	to	achieve	this);	the	second	is	to	map	a	data	value	to	a
color	from	the	color	map,	so	that	polygon	could	be	colored	appropriately.	The	formula
to	map	a	data	value	is	given	by:

index	=	fix((dataPoint-climMat(1))/...

		(climMat(2)-climMat(1))*63)+1;

Here	63	corresponds	to	the	number	of	color	levels	defined	in	your	color	map	minus	1.
The	63	comes	from	the	fact	that	the	default	color	map	type	jet	has	64	levels.
climMat	provides	the	two	extremes	of	the	data	values	that	map	to	your	current	color
map	(you	linked	the	data	values	to	the	color	map	by	setting	the	clim	property	in	step
1).

Note
Takeaways	from	this	recipe:

Use	choropleth	maps	to	convey	statistical	data	from	a	geographic	region,	to
highlight	patterns,	variations,	and	trends	across	the	region

See	also
Look	up	MATLAB	help	on	the	fill,	clim,	surf,	and	shading	commands	that	we
encountered	in	this	recipe.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Thematic	maps	with	symbols
The	thematic	maps	with	symbols	technique	uses	symbols	of	different	sizes	to
represent	data	associated	with	different	areas	or	locations	within	the	map.	For
example,	in	this	recipe,	you	will	use	arrows	to	depict	the	gradient	of	the	elevation	for
the	Himalayan	region,	overlaid	on	a	topographic	map	of	the	region.

Getting	ready
In	this	recipe,	you	will	use	the	same	elevation	data	you	used	in	Chapter	2,	Diving	into
One	Dimensional	Data	Displays.	You	will	focus	on	the	Himalayan	region.	Load	the
data:

load	topo

How	to	do	it…
Perform	the	following	steps:

1.	 Set	up	the	figure	as	follows:

%	layout	the	figure

figure('units','normalized','position',...

		[.36	.42	.38	.48]);

%%	define	grids

xx	=	[0:180	-179:-1];

yy	=	-89:90;

[XX,	YY]	=	meshgrid(xx,yy);

%%	calculate	the	gradient

[FX,FY]	=	gradient(topo);

2.	 Place	the	background	image:

surf(xx,yy,topo);shading	interp;	view(2);

%	Use	a	special	color	map	that	came	with	the	dataset

colormap(topomap1);

%	Make	it	semi-transparent	to	be	able	to	see	the	

additional	%	information	you	will	be	overlaying	

alpha(.5);

hold	on;

3.	 Place	the	gradient	data	with	quiver,	with	a	scaling	factor	greater	than	one:

quiver(XX,YY,FX,FY,1.7,'Color',[0	0	

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

0],'linewidth',1.5);

4.	 Focus	on	the	region	of	interest:

xlim([65	110]);	ylim([18	44]);

5.	 Add	contour	lines	joining	area	of	equal	interval	(beyond	1,000ft,	every
1,500ft):

%	Customize	contour	line	color	and	width

[C,	h]	=	contour(xx,yy,topo,

[1000:1500:max(topo(:))],...

		'Color',[.8	.8	.8],'linewidth',1);

%	Add	text	labels	to	contour	lines	with	custom	

formatting

text_handle	=	clabel(C,h);

set(text_handle,'BackgroundColor',[1	1	.6],...

		'Edgecolor',[.7	.7	.7],'fontweight','bold')

6.	 Add	annotations	for	overall	graph:

title({'A	topographical	map	of	the	Himalayan	

region',...

		['Arrows	show	the	gradient	(magnitude	and'...

		'direction);'],...

		'Contour	lines	join	areas	of	equal	elevation'},...

		'Fontsize',14);

xlabel('Longitudes','Fontsize',14);

ylabel('Latitudes','Fontsize',14);

The	output	is	as	follows:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

How	it	works…
The	graphic	uses	arrows	to	show	the	gradient	information	on	the	topographic	map.
You	can	see	the	steep	rise	of	the	mountains	in	the	Himalayan	region.

You	altered	the	transparency	of	the	image	overlay	in	step	2	with	the	command	alpha,
because	the	quiver	lines	were	being	over-plotted.	Look	at	Chapter	4,	Customizing
Elements	of	MATLAB	Graphics—Advanced,	for	more	on	transparency.

In	step	3,	you	used	the	quiver	command	to	present	the	gradient	information.	The
length	of	the	arrow	represents	the	magnitude	and	the	direction	represents	the
direction	of	the	gradient	value.	You	used	a	scaling	factor	of	1.7	on	the	gradient	values
to	stretch	the	arrows	such	that	they	are	more	pronounced	and	visible.

In	step	5,	you	added	contour	lines	with	custom	formatting,	along	with	labels	with
custom	formatting	on	them.

Note
Takeaways	from	this	recipe:

Use	thematic	maps	along	with	symbols	to	convey	data	from	a	geographic
region	highlighting	patterns,	variations,	and	trends	across	the	region

See	also
Look	up	MATLAB	help	on	the	surf,	quiver,	contour,	and	alpha	commands	that	we
encountered	in	this	recipe.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Flow	maps
Flow	maps	are	a	mix	of	maps	and	flow	charts	depicting	the	movement	of	objects
from	one	location,	indicating	information	such	as	what	is	flowing,	the	direction	of	the
flow,	source	and	destination,	how	much	is	flowing,	and	so	on.

Getting	ready
In	this	recipe,	you	will	show	the	itinerary	of	a	travel	plan	to	tour	Italy.	Load	the	data:

load	romanHoliday

Note	that	the	Google	developer	API	was	used	to	obtain	the	map	at	runtime.	So	you
will	need	an	Internet	connection	for	this	recipe	to	successfully	execute.

How	to	do	it…
Perform	the	following	steps:

1.	 Get	the	map	using	a	Google	Map	static	image	API:

%%	Parameter	Definition

height	=	640;	width	=	640;

%	construct	the	query	string	with	all	the	lat/lonvalues

pos	=	[];

for	i	=	1:length(Lats)-1

		pos=	[posnum2str(Lats(i))	','	...

		num2str(Lons(i))	'&markers='];

end

pos	=	['http://maps.google.com/staticmap?markers='	...

		posnum2str(Lats(end))	','	num2str(Lons(end))	...

		'&size='	num2str(width)	'x'	num2str(height)	...

		'&scale=2'];

%	retrieve	as	image	from	google	maps

[I	map]=imread(pos,'gif');

RGB=ind2rgb(I,map);

2.	 Layout	the	figure	and	plot	the	map	in	a	main	axes	panel:

figure('units','normalized','position',...

		[.09	.09	.34	.81]);

mapPanel	=	axes('position',[.11	.36	.78	.57]);

image(RGB);hold	on;

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

3.	 Set	the	x	and	y	tick	labeling	and	limits	for	the	map	panel:

axes(mapPanel);

set(gca,'XTickLabel',[],'YTickLabel',[]);

xlim([170	466]);	ylim([110	528]);

4.	 Declare	the	additional	flow	info	panel	and	set	its	tick	labels,	axis	limits:

metaPanel	=	axes('position',[.11	.11	.78	.25]);

ylim([0	12]);xlim([170	466]);

set(metaPanel,'ytick',1:11,'yticklabel',...

		{'Day	1','Day	2','Day	3','Day4','Day	5','Day	6',...

		'Day	7','Day8','Day9','Day10','Day	11'});

[bl	I]	=	sort(X);

set(metaPanel,'xtick',X(I),'xticklabel',stops(I));

rotateXLabels(metaPanel,90);

grid	on;hold	on;

5.	 Plot	the	path	showing	length	of	stay	at	each	stop	and	method	of
transportation	between	stops:

for	i	=	1:7

		j	=	i+1;

%	leave	out	of	Rome

		if	i==7,	j	=	4;

end

%	Draw	lines	joining	stops	using	color	to	depict	what	

%	transportation	was	used	to	travel	between	locations

axes(mapPanel);

if	strcmp(meansOfTransportation{i},'Road')

		c	=	[0	0	1];

		line([X(i)	X(j)],[Y(i)	Y(j)],...

				'Color',[0	0	1],'linewidth',2);

elseif	strcmp(meansOfTransportation{i},'Air')

		c	=	[0	.3	0];

		line([X(i)	X(j)],[Y(i)	Y(j)],...

				'Color',[0	.3	0],'linewidth',2);

elseif	strcmp(meansOfTransportation{i},'Train')

		c	=	[1	0	0];

		line([X(i)	X(j)],[Y(i)	Y(j)],...

				'Color',[1	0	0],'linewidth',2);

end

%	add	lines	showing	length	of	stay	to	the	meta	data	map

axes(metaPanel);

if	i==1

		fill([X(i)-5	X(i)+5	X(i)+5	X(i)-5	X(i)-5],...

				[0	0	sum(daysSpent(1:i))	sum(daysSpent(1:i))	0],...

				[.5	.5	.5]);alpha(.5);

		line([X(i)	X(j)],[sum(daysSpent(1))	...

				sum(daysSpent(1:2))],'Color',c,'linewidth',2);

else

		if	j	<	i

				line([X(i)	X(j)],[sum(daysSpent(1:i))	...

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

						sum(daysSpent(1:i))],'Color',c,'linewidth',2);

		else

				line([X(i)	X(j)],[sum(daysSpent(1:i))	...

						sum(daysSpent(1:j))],'Color',c,'linewidth',2);

				fill([X(i)-5	X(i)+5	X(i)+5	X(i)-5	X(i)-5],...

						[sum(daysSpent(1:i-1))	sum(daysSpent(1:i-1))	...

						sum(daysSpent(1:i))	sum(daysSpent(1:i))	...

						sum(daysSpent(1:i-1))],[.5	.5	.5]);alpha(.5);

				end

		end

end

6.	 Add	annotations:

axes(metaPanel);

ylabel('Length	Of	Stay');	box	on;

axes(mapPanel);

title({'Vacation	Plan	for	Italy',...

		['Path	Color	shows:	\color{blue}ROAD	'...

		'\color{red}TRAIN	\color[rgb]{0	.3	0}AIR']},...

		'Fontsize',14);

The	output	is	as	follows:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

How	it	works...
This	recipe	shows	how	data	flow	information	is	demonstrated	on	a	map.

The	recipe	lays	out	the	map	and	plots	the	path	of	the	travel	itinerary.	Color	is	used	to
depict	the	means	of	transportation.	A	shorthand	legend	is	used	including	color	coded
words	in	the	title	of	the	figure.

The	days	spent	panel	below	ties	the	location	information	to	time.	Notice	how	you
used	non-equal	grid	lines	by	setting	xticks	at	the	X	locations	of	the	image	(step	4).

The	Google	developer	API	was	used	with	a	set	of	marker	latitude	and	longitude
values,	and	the	size	of	the	image	as	inputs.	Google	does	not	allow	querying	the	exact

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

boundaries	using	this	static	image	retrieval	API,	so	the	image	coordinates	for	the
latitude	and	longitude	values	for	the	various	locations	was	manually	evaluated.
References	for	the	API	are	available	in	the	source	code	for	this	recipe.

Note
Takeaways	from	this	recipe:

Use	flow	maps	to	convey	a	mix	of	data	and	flow	behavior

See	also
Look	up	MATLAB	help	on	the	line	and	alpha	commands	that	we	encountered	in	this
recipe.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Chapter	4.	Customizing	Elements	of
MATLAB	Graphics—Advanced
In	this	chapter,	we	will	cover:

Transparency
Lighting
View	Control
Interaction	between	light,	transparency,	and	view

Introduction
In	Chapter	1,	Customizing	Elements	of	MATLAB	Graphics—the	Basics,	you	learned
about	a	set	of	figure	and	axes	properties	that	enable	powerful	customization	of
MATLAB	graphs,	applicable	across	all	data	dimensions.	In	this	chapter,	you	will	learn
about	programmability	to	affect	transparency,	lighting,	and	view	of	graphs	and	how
they	can	be	effectively	used	for	visualization.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Transparency
You	have	used	color	in	the	recipes	of	the	earlier	chapters	to	encode	information.	An
analogous	property	of	graphics	objects	is	their	face	transparency.	Both	color	and
transparency	can	be	used	to	encode	information.	You	have	used	transparency	in	the
recipes	of	the	earlier	chapters	to	reveal	elements	hidden	from	the	exposed	view.	In
this	recipe,	you	will	learn	to	use	transparency	to	also	encode	information.

Getting	ready
You	must	have	OpenGL	available	on	your	system	to	use	transparency.	When
rendering	transparency,	MATLAB	automatically	uses	OpenGL	if	it	is	available.	If	it	is
not	available,	transparency	does	not	display.	See	the	figure	property	RendererMode
on	MATLAB	product	pages	for	more	information.

You	will	use	a	section	of	galactic	survey	data	recorded	in	the	radio	frequency	327
MHz	by	the	Westerbork	Synthesis	Radio	Telescope	(WSRT)	in	the	Netherlands	over
several	years.	This	region	covers	several	pulsar	locations	which	will	be	overlaid	on
the	primary	dataset.	Load	the	data:

load	W6

How	to	do	it...
Perform	the	following	steps:

1.	 Plot	the	data	using	the	surf	command.	Use	the	same	data	as	the	source	of
information	for	both	color	and	transparency	for	each	grid	face:

figure('units','normalized','position',[.2	.5	.55	.4]);

%	define	grids

xx=[84-3/8:-(((84-3/8)-(77+3/8))...

		/(size(W6,2)-1)):77+3/8];

yy=[-1.5-.1:(abs((-1.5-.1)-(1.5+.1))/...

		(size(W6,1)-1)):1.5+.1];

%	surf	the	data.	Note	both	data	and	alphadata	set	to	W6

surf(xx,yy,W6,'alphadata',W6,'facealpha','interp');	

view(2);	shading	interp;	axis	tight;

%	set	the	alpha	limits

alim([-0.05	.2]);

%	add	annotations	for	overall	graph

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

title({['Transparency	(&color)	used	to	encode	same'...

		'information.	Data	recorded	in	radio	frequency'],...

		['	(327	MHz)	by	the	Westerbork	Synthesis	Radio'	...

		'Telescope	(WSRT)	in	the	Netherlands'],...

		['4(f)	gray	scale	range	0	-	150	mJy	/'...

		'beam']},'Fontsize',14);

xlabel('Galactic	Longitudes','Fontsize',14);

ylabel('Galactic	Latitudes','Fontsize',14);

The	output	is	as	follows:

2.	 Next,	plot	the	data	again.	This	time,	use	different	data	as	the	source	of
information	for	the	color	and	the	transparency	respectively:

%	Plot	the	original	data

h=surf(xx,yy,W6);	view(2);	shading	interp;	axis	tight;

%	create	a	box	mask	to	act	as	the	transparency	data

tt	=	.5*ones(size(W6));

tt1	=	repmat([.5*ones(1,140)	0*ones(1,80)	...

		0.5*ones(1,140)	0*ones(1,80)	0.5*ones(1,140)...

		0*ones(1,80)	0.5*ones(1,140)	0*ones(1,79)],365,1);

tt2	=	repmat([0.5*ones(1,65)	0*ones(1,40)	...

		0.5*ones(1,63)	0*ones(1,40)	0.5*ones(1,62)	...

		0*ones(1,40)	0.5*ones(1,55)]',1,879);

tt	=	.5*(double(tt1&tt2))	+	.5;

%	set	the	alpha	data	to	this	mask

set(h,'alphadata',tt,'facealpha','interp');

%	set	the	alpha	limits

alim([0	1]);

%	add	annotations	for	overall	graph

title({['Color	for	raw	data;	Pattern	for	'...

		'transparency']},'Fontsize',14);

xlabel('Galactic	Longitudes','Fontsize',14);

ylabel('Galactic	Latitudes','Fontsize',14);

The	output	is	as	follows:
Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

3.	 Add	markers	to	the	original	figure	to	indicate	positions	of	known	pulsars:

surf(xx,yy,W6,'alphadata',W6,'facealpha','interp');	

view(2);	hold	on;	shading	interp;	axis	tight;

alim([-0.05	.2]);

%	add	markers	to	indicate	location	of	pulsars

plot(pulsars(2).lon,pulsars(2).lat,'s',...

		'MarkerEdgeColor','none','Markersize',18,	

'Markerfacecolor',[1	1	0]);...

plot(pulsars(2).lon-.5,pulsars(2).lat-.1,'s',...

		'MarkerEdgeColor','none','Markersize',18,	

'Markerfacecolor',[1	0	1]);...

plot(pulsars(2).lon-1,pulsars(2).lat-.2,'s',...

		'MarkerEdgeColor','none','Markersize',18,	

'Markerfacecolor',[0	1	0]);...

plot(pulsars(2).lon-2,pulsars(2).lat-.3,'s',...

'MarkerEdgeColor','none','Markersize',18,	

'Markerfacecolor',[1	0	0]);...

%	add	annotations	for	overall	graph

title({['Interaction	of	opacity	and	color	between	'...

		'two	surfaces	may	create	false	color.']},...

		'Fontsize',14);

xlabel('Galactic	Longitudes','Fontsize',14);

ylabel('Galactic	Latitudes','Fontsize',14);

The	output	is	as	follows:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

How	it	works...
MATLAB	allows	the	manipulation	of	transparency	over	a	range	of	values	from	0	to	1,
and	refers	to	them	as	alpha	values.	An	alpha	value	of	0	means	completely
transparent	(that	is,	invisible);	an	alpha	value	of	1	means	completely	opaque	(that	is,
no	transparency).

Alpha	data	defines	the	transparency	information	for	the	object.	By	default,	objects
have	single-valued	alpha	data.	However,	you	can	define	surface	and	image	alpha
data	with	a	data	array	via	the	AlphaData	property.	An	alpha	data	array	has	to	be	of
the	same	size	as	the	data	points.	It	works	very	similar	to	how	MATLAB	determines
the	color	to	use	from	the	data.	When	you	create	a	surface	or	patch	object,	the
MATLAB	rendering	software	maps	each	element	in	the	data	array	to	a	color	in
colormap.	Similarly,	each	element	in	the	alpha	data	array	maps	to	a	transparency
value	in	alphamap.	Now	the	alphadatamapping	property	determines	whether	the	data
is	to	be	interpreted	as	indexes	into	alphamap	(direct)	or	linearly	mapped	between
limits	prescribed	by	alim	(scaled).	You	can	select	the	face	and	edge	rendering	you
want	to	use	via	the	facealpha	and	edgealpha	properties.	Flat	uses	one	transparency
value	per	face,	while	interpolated	performs	bilinear	interpolation	of	the	values	at
each	vertex.	For	patch	objects,	you	will	need	to	use	the	FaceVertexAlphaData
property.	By	default,	objects	have	scalar	alpha	data	(AlphaData	and
FaceVertexAlphaData)	set	to	the	value	1.

In	previous	recipes,	you	altered	the	transparency	values	of	the	surface	layer	to	either
reduce	the	color	saturation	in	the	graph	or	to	reveal	the	over-plotted	data	underneath
the	surface	(Chapter	1,	Calendar	Heat	Map	and	Chapter	2,	Thematic	map	with
symbols).	In	this	recipe,	you	used	transparency	to	code	information.

In	step	1,	you	defined	alphadata	and	Cdata	with	the	same	matrix	of	data.	The	result
was	that	the	high	values	of	data	retained	its	color.	The	low	values	of	data	appeared
faint	or	washed	out	(highly	transparent).	In	step	2,	you	defined	CData	with	the	data
matrix.	For	alphadata,	you	used	a	mask	with	pockets	of	high	and	low	transparency
values.	Note	the	use	of	alim	in	both	cases.	This	command	helps	to	define	the
extreme	data	values	to	which	the	two	extreme	values	of	alphamap	should	correspond.
In	step	1,	you	arbitrarily	set	the	higher	alim	value	to	a	value	much	lower	than	the
maximum	value	of	the	data	matrix.	This	value	was	chosen	because	it	corresponds	to
the	physical	value	of	the	areas	with	the	interesting	features	in	the	data.	You	were
making	sure	that	these	areas	did	not	get	their	color	bleached	out	by	the	transparency.

Note	that	when	overlaying	transparent	surfaces	together,	the	color	and	degree	of
opacity	of	both	surfaces	will	interact	and	may	create	what	is	referred	to	as	false
color.	Use	colors	with	opposite	hues	for	semi-transparent	layering	to	avoid	false
color.	Reduce	saturation	of	color	on	the	rear	surface,	while	keeping	the	lightness	fixed

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

to	avoid	false	color.

Note
Takeaways	from	this	recipe:

Use	transparency	to	reveal	hidden	or	occluded	features	of	your	data
Use	transparency	as	an	additional	dimension	of	your	graphic	for	encoding
information
Use	colors	with	opposite	hues	for	semi-transparent	layering	to	avoid	false
color.	Reduce	saturation	of	color	on	the	rear	surface,	while	keeping	the
lightness	fixed	to	avoid	false	color

See	also
Look	up	MATLAB	help	on	the	alpha,	alphamap,	and	alim	commands	that	we
encountered	in	this	recipe.	Look	up	MATLAB	help	on	the	AlphaData,
AlphaDataMapping,	FaceAlpha,	EdgeAlpha,	FaceVertexAlphaData,	ALim,	ALimMode,
and	Alphamap	transparency	related	figure	properties.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Lighting
Lighting	is	a	technique	used	for	adding	realism	to	a	graphical	scene.	This	is	done	by
simulating	the	highlights	and	dark	areas	that	occur	on	objects	under	natural	lighting.
The	default	light	source	is	the	ambient	light,	which	is	a	directionless	light	that	shines
uniformly	on	all	objects	in	the	scene.	You	cannot	see	the	light	sources	themselves.
Objects	created	by	functions	such	as	surf,	mesh,	pcolor,	fill,	and	fill3	as	well	as
the	surface	and	patch	functions	can	show	the	effect	of	light	and	have	several
properties	which	govern	how	they	will	be	impacted	by	the	light	sources.

Getting	ready
In	this	recipe,	you	will	use	teapotdemo	supplied	by	MATLAB	to	investigate	the	effects
of	lighting	on	visualization.	The	demo	has	a	console	window	that	shows	what
commands	were	executed	to	create	the	various	effects,	if	you	made	the	changes
using	their	GUI.

How	to	do	it...
Perform	the	following	steps:

1.	 Launch	the	demo:

teapotdemo

The	default	parameters	of	the	demo	produce	the	following	view	of	the	Newell
teapot:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

2.	 Change	the	lighting	style	to	flat	and	material	type	to	dull:

lighting	flat;

material	dull;

The	effect	on	the	Newell	teapot	in	the	demo	window	is	as	follows:

3.	 Demonstrate	the	effect	of	altering	default	values	for	SpecularExponent,
SpecularStrength,	DiffuseStrength,	and	SpecularcolorRefectance:

%Locate	the	handle	to	a	patch	object

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

h=findobj(gca,'type','patch');

%	set	the	various	lighting	related	properties

set(h,'FaceLighting','phong',...

		'FaceColor',[1	1	0],...

		'EdgeColor','none',...

		'SpecularExponent',12,...

		'DiffuseStrength',1,...

		'SpecularStrength',5,	...

		'SpecularColorReflectance',.5);

The	effect	on	the	Newell	teapot	in	the	demo	window	is	as	follows:

4.	 Demonstrate	the	effect	of	altering	default	values	for	AmbientStrength	and
AmbientLightColor:

set(h,'AmbientStrength',	0.5,...

		'DiffuseStrength',	0.6,...

		'SpecularStrength',0.9,...

		'SpecularExponent',10,...

		'SpecularColorReflectance',1);

%	AmbientLight	color	is	an	axes	object	property

set(findobj(gca,'type','axes'),'AmbientLightColor',	...

		[1	0	1]);

The	effect	on	the	Newell	teapot	in	the	demo	window	is	as	follows:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

How	it	works...
MATLAB	allows	you	to	create	light	sources	with	the	command	light.	The	MATLAB
rendering	software	determines	the	effect	of	light	sources	on	the	target	objects	in	your
graphic.	The	demo	creates	two	light	sources.	Execute	findobj(gca)	and	then	check
the	type	of	the	objects	to	identify	the	handles	to	these	two	light	objects.	You	can	then
query	the	object	properties	using	the	handles	to	the	light	sources	to	understand	the
settings	for	the	light	color,	style,	and	position.	Color	determines	the	color	of	the	light
cast	by	the	light	object;	Style	defines	the	source	at	either	infinity	or	local;	and
Position	defines	the	direction	for	infinite	light	sources	or	the	location	for	local	light
sources.

In	step	2,	you	set	the	lighting	algorithm	and	the	property	of	the	target	material	being
viewed.The	three	lighting	algorithms	supported	by	MATLAB	are	Flat,	Gouraud,	and
Phong.	Faceted	objects	should	be	visualized	with	Flat	lighting	whereas	curved
surfaces	should	be	visualized	with	Gouraud	or	Phong	lighting.	Phong	takes	the	longest
to	render	because	it	calculates	the	reflectance	at	the	pixel	level	but	produces	the
finest	results.	Gouraud	calculates	the	colors	at	the	vertices	and	then	interpolates
colors	across	the	faces.	The	material	command	sets	the	surface	reflectance
properties	of	the	surface	and	patch	objects.

In	step	3,	you	explicitly	defined	the	reflectance	properties	of	the	target	object.	A
higher	specular	strength	enhances	the	reflectivity	of	the	material.	A	higher	diffuse
strength	makes	the	object	bright	(giving	off	more	light),	but	the	effect	is	not	shiny	as
the	surface	is	assumed	to	be	rough.	The	higher	the	specular	exponent,	the	more

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

prominent	is	the	glare	from	specular	reflection.	The	color	reflectance	controls	what
additional	colors	get	reflected	(other	than	the	true	color	of	the	object).

In	step	4,	you	modified	the	color	of	the	ambient	light,	which	is	a	directionless	light	that
shines	uniformly	on	all	objects	in	the	scene.	There	are	two	properties	that	control
ambient	light	—AmbientLightColor	(an	axes	property	that	sets	the	color),	and
AmbientStrength	(a	property	of	target	objects	that	determines	the	intensity	of	the
ambient	light	on	the	particular	object).	Note	that	the	true	color	is	visible	when	there	is
a	white	light	object	present.	Otherwise,	the	surface	object	color	interacts	with	the
color	of	the	light	shining	on	it,	to	produce	the	final	color	displayed.

There's	more...
In	this	section	you	will	look	at	two	things:	Effect	of	vertex	normals	and	use	of	the
backface	lighting.

Effect	of	vertex	normals
VertexNormals	is	a	patch	and	surface	property	that	contains	normal	vectors	for	each
vertex	of	the	object.	MATLAB	uses	vertex	normal	vectors	to	perform	lighting
calculations.	While	MATLAB	automatically	generates	this	data,	you	can	also	specify
your	own	vertex	normals.	The	NormalMode	property	determines	whether	MATLAB
recalculates	vertex	normals	if	you	change	object	data	(auto)	or	uses	the	current
values	of	the	VertexNormals	property	(manual).	If	you	specify	values	for
VertexNormals,	MATLAB	sets	this	property	to	manual.

This	example	compares	the	effect	of	different	surface	normals	on	the	visual
appearance	of	lit	isosurfaces.	In	one	case,	the	triangles	used	to	draw	the	isosurface
define	the	normals.	In	the	other,	the	isonormals	function	uses	the	data	to	calculate
the	vertex	normals	based	on	the	gradient	of	the	data	points.	The	latter	approach
generally	produces	a	smoother-appearing	isosurface.

%	generate	some	data

x_lim=1-.01;	y_lim=1-.01;	z_lim=1-.01;	step=.1;

x=[-x_lim:step:x_lim];	y=[-y_lim:step:y_lim];	

z=[-z_lim:step:z_lim];

[x	y	z]=meshgrid(x,y,z);r=sqrt(x.^2+y.^2+z.^2);

r_s=.01;

w=2*sqrt(r_s*(r-r_s));	

w	=	interp3(w,3,'cubic');

%	make	the	plots

subplot(1,2,1);	p1	=	patch(isosurface(w,.05),...

		'FaceColor',	[.8	.7	.5],'EdgeColor','none');

%	set	the	view

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

view(3);	daspect([1,1,1]);	axis	tight

%	adjust	lighting

camlight;	camlight(-80,-10);	lighting	phong;

title('Triangle	Normals')

%make	the	plot	with	isonormal	calculations

subplot(1,2,2);	p2	=	patch(isosurface(w,.05),...

	'FaceColor',	[.8	.7	.5],	'EdgeColor','none');

isonormals(w,p2);

%	set	the	view

view(3);	daspect([1	1	1]);	axis	tight

%	adjust	lighting

camlight;		camlight(-80,-10);	lighting	phong;

title('Data	Normals')

The	output	is	as	follows:

Use	of	the	back	face	lighting	option
Back	face	lighting	is	useful	for	showing	the	difference	between	internal	and	external
faces.	The	default	value	for	BackFaceLighting	is	reverselit.	This	setting	reverses
the	direction	of	the	vertex	normals	that	face	away	from	the	camera,	causing	the
interior	surface	to	reflect	light	towards	the	camera.	Setting	BackFaceLighting	to
unlit	disables	lighting	on	faces	with	normals	that	point	away	from	the	camera.	See
the	effects	of	different	values	of	Backfacelighting	on	the	Newell	teapot	as	follows:

teapotdemo;

h=findobj(gca,'type','patch');

set(h,'BackFaceLighting','unlit');

The	output	is	as	follows:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Note
Takeaways	from	this	recipe:

Use	lighting	to	add	realism	to	your	3D	data
Use	Flat	lighting	algorithm	for	faceted	objects	and	Gouraud	or	Phong	for	curved
surfaces
Use	the	isonormals	command	to	calculate	the	vertex	normals	based	on	the
gradient	of	the	data	points	for	a	finer	finish	to	your	3D	rendering

See	also
Look	up	MATLAB	help	on	the	material,	light,	isonormals,	patch,	and	camlight
commands	that	we	encountered	in	this	recipe.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

View	control
The	view	is	the	vantage	point	from	which	you	observe	the	data	in	your	graphic.	It	has
a	high	impact	on	how	the	graphic	is	perceived.	Several	factors	guide	how	the	view	is
defined	such	as	the	aspect	ratio,	whether	or	not	you	manipulate	the	object	in	terms	of
rotation	or	panning,	and	whether	you	choose	to	define	a	region	of	interest	in	terms	of
the	axis	limits	or	a	zoom	in.	In	this	recipe,	you	will	explore	some	of	the	options	and
practices	for	controlling	the	view.

Getting	ready

You	will	use	data	generated	by	the	function	 .	Load	the	data:

load	viewCntrolDataSet

How	to	do	it...
Perform	the	following	steps:

1.	 Define	the	view	in	terms	of	the	angles	of	azimuth	and	elevation:

surf(x,y,w);	shading	interp;	view(38,26);

The	output	is	as	follows:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

2.	 Define	the	view	by	specifying	the	data	aspect	ratio:

surf(x,y,w);	shading	interp;	daspect([1	1	1]);

The	output	is	as	follows:

3.	 Define	the	view	by	specifying	the	camera	position:

surf(x,y,w);	shading	interp;

campos([-13.7329		-10.5376				0.0642]);

The	output	is	as	follows:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

4.	 Define	the	view	by	specifying	the	camera	up	vector	(redefine	what	is
considered	vertical):

surf(x,y,w);	shading	interp;

set(gca,'cameraUpVector',[-4	5	.5]);

The	output	is	as	follows:

How	it	works…
The	aspect	ratio	of	the	graph	can	exaggerate	or	undermine	a	trend	for	those	who	do
not	read	labels	carefully.	The	same	effect	can	also	be	caused	by	leaving	out	the	zero,
or	by	a	deliberate	choice	for	x,	y,	and	z	axis	limits.	MATLAB	provides	a	set	of
powerful	camera	tools	that	you	can	also	harness	to	create	interesting	perspectives
for	your	data.	The	view	is	thus	an	important	ingredient	to	the	graphic	design	and	one
of	the	ways	to	influence	the	viewer's	perception	of	your	data.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

In	step	1,	you	specified	the	viewpoint	in	terms	of	the	azimuth	and	elevation.	You	can
also	use	a	point	in	three-dimensional	space	with	the	view	command	to	specify	the
viewpoint.	The	azimuth	is	the	horizontal	rotation	about	the	z	axis	as	measured	in
degrees	from	the	negative	y	axis.	Positive	values	indicate	counterclockwise	rotation
of	the	viewpoint.	The	elevation	is	the	vertical	elevation	of	the	viewpoint	in	degrees
measured	from	the	x	–	y	plane.	Positive	values	of	elevation	correspond	to	moving
above	the	object;	negative	values	correspond	to	moving	below	the	object.	In	step	2,
you	specified	the	view	in	terms	of	the	data	aspect	ratio,	which	is	the	relative	scaling
of	the	data	units	along	the	x,	y,	and	z	axes.

MATLAB	also	has	the	axis	command	which	impacts	the	data	aspect	ratio.	There	are
several	useful	settings	such	as	equal,	which	sets	the	aspect	ratio	so	that	tick	mark
increments	on	the	x,	y,	and	z	axes	are	equal	in	size	(same	as	daspect([1	1	1])).
You	can	also	specify	the	exact	x,	y,	and	z	coordinate	limits	to	focus	the	graphic.	Refer
to	the	MATLAB	help	for	more	options	with	axis.

In	step	3	and	4,	you	used	camera	tools	to	direct	the	view	of	the	graph.

Note
Takeaways	from	this	recipe:

Use	a	careful	choice	of	view	point	or	data	aspect	ratio	for	your	graphic	to
influence	viewer	perception

See	also
Look	up	MATLAB	help	on	the	view,	axis,	daspect,	campos,	and	cameraupvector
commands.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Interaction	between	light,	transparency,
and	view
This	recipe	brings	together	the	three	aspects	of	visualization	discussed	in	this
chapter:	light,	transparency,	and	view.

Getting	ready
In	this	recipe,	you	will	explore	the	Klein	bottle,	which	is	a	nonorientable	surface	in
four-dimensional	space.	It	is	formed	by	attaching	two	Mobius	strips	along	their
common	boundary.	Klein	bottles	cannot	be	constructed	without	intersection	in	three-
space.	The	code	for	constructing	this	is	obtained	from	MATLAB's	help	documentation
(see	lines	11	–	29	in	the	source	code	for	this	recipe).

How	to	do	it...
Perform	the	following	steps:

1.	 Layout	the	axis:

axes('position',[-.02	.12	1	.8]);

2.	 Construct	the	two	components	of	the	Klein	bottle	(body	and	handle)	using
surface	objects:

handleHndl=surf(x1,y1,z1,X);	shading	interp;	

hold	on;

bulbHndl=surf(x2,y2,z2,Y);shading	interp;

3.	 Declare	a	colormap	and	add	a	color	bar:

colormap(hsv);

colorbar('position',[0.9071	0.1238	0.0149	0.8000]);

4.	 Set	some	properties	of	the	Klein	bottle:

%	set	wireframe	line	color	to	gray

set(handleHndl,'EdgeColor',[.5	.5	.5]);

set(bulbHndl,'EdgeColor',[.5	.5	.5])

%	make	transparency	proportional	to	y	coordinate

set(handleHndl,'alphadata',y1,'facealpha','interp');

set(bulbHndl,'alphadata',y2,'facealpha','interp');

5.	 Fix	the	view:
Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

%	freeze	aspect	ratio	properties	to	enable	rotation	of

%	3-D	objects	and	overrides	stretch-to-fill.

axis	vis3d

%	set	the	view

view(13,-18);

%	do	not	show	the	axis

axis	off	

%	zoom	by	a	certain	factor

zoom(1.4);

6.	 Add	two	light	sources	with	their	position	defined	in	terms	of	data	coordinates:

light('Position',[.5	.5	.5]);

light('Position',[-.67	-.1	-.7]);

7.	 Add	annotations:

h=annotation('textbox','position',[.06	.04	.95	.1],...

		'String',{['The	Klein	Bottle	with	surface'...

		'	transparency	proportional'],...

		['to	y	coordinate.	Two	light	sources	have	been'...

		'used.']},'linestyle','none',	'fontsize',14);

The	output	is	as	follows:

8.	 Rotate	camera	to	bring	less	transparent	surface	closer	to	the	viewer:

%	delete	previous	annotation

delete(h);

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

%	rotate	camera	to	change	the	view	point

campos([1.5017			14.2881				3.7572]);

%	add	new	annotation

annotation('textbox','position',[.06	.04	.95	.1],...

		'String',{['Less	transparent	surface	brought	'...

		'forward.']},'linestyle','none',	'fontsize',14);

The	output	is	as	follows:

How	it	works...
This	recipe	brings	the	interplay	of	lighting,	transparency,	and	view	point	into	focus.
The	Klein	bottle	is	essentially	a	four-dimensional	data	with	the	three	independent
parameters	x,	y,	z,	and	the	value	at	the	function	surface.	You	used	color	to	code	the
function	contour.	You	used	transparency	to	reveal	the	internal	hidden	structure	in	the
data.	You	added	lights	to	two	locations	to	create	a	realistic	rendering.	You	exercised
the	view	control	to	create	two	different	views	of	the	dataset.	Note	that	you	used	the
command	zoom	with	a	factor	parameter	of	1.4	to	zoom	in.

Note
Takeaways	from	this	recipe:

Use	transparency	to	reveal	hidden	structures
Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Use	color	to	code	continuous	data
Use	lights	to	add	realism
Use	view	control	to	expose	your	graphic	to	maximal	advantage

See	also
Look	up	MATLAB	help	on	the	view,	axis,	daspect,	campos,	cameraupvector,	and
zoom	commands.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Chapter	5.	Playing	in	the	Big	Leagues
with	Three-dimensional	Data	Displays
In	this	chapter,	we	will	cover:

3D	scatter	plots
Slice	(cross	sectional	views)
Isosurface,	isonormals,	and	isocaps
Stream	slice
Stream	lines,	ribbons,	tubes
Scalar	and	vector	data	with	a	combination	of	techniques
Exploring	with	camera	motion

Introduction
Three-dimensional	data	poses	a	set	of	unique	challenges	for	visualization.	Since
visualization	is	necessarily	happening	on	a	two-dimensional	plane,	you	have	to	use
special	techniques	to	explore	3D	data	space.	Taking	slices	and	visualizing	one	slice	at
a	time,	or	using	transparency	for	seeing	a	structure	behind	the	outermost	layer	are
some	of	the	common	techniques	used	for	3D	data	visualization.

A	special	case	of	3D	data	is	volumetric	data.	Volumetric	data	may	be	scalar	or
vector.	Scalar	data	has	only	magnitude	and	is	defined	per	point	in	the	3D	grid.	Vector
data	has	both	magnitude	and	direction.	Direction	is	represented	by	components	in	the
three	axis	directions.	MATLAB	supports	the	use	of	isosurface,	slice	plane,	and
contour	slice	for	viewing	scalar	data.	For	vector	data,	MATLAB	provides	stream
lines	(particles,	ribbons,	and	tubes)	and	cone	plots.	The	recipes	in	this	chapter
employ	a	combination	of	techniques	to	visualize	volumetric	data.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

3D	scatter	plots
This	recipe	explores	the	concept	of	3D	scatter	plots.

Getting	ready
In	this	recipe,	the	data	is	contained	in	a	3D	matrix	representing	the	electron	hopping
probability	computed	at	each	point	of	a	3D	lattice	structure.	Load	the	data:

load	latticeExample

How	to	do	it...
Perform	the	following	steps:

1.	 Use	3D	scatter	plots	to	construct	a	basic	scatter	plot	view	of	the	data:

%	unwrap	the	x,y	and	z	matrices

xx	=	x(:);yy	=	y(:);zz	=	z(:);

%	locate	the	non-zero	points

a	=	find(T~=0);

%	plot	the	non-zero	points	using	a	scatter	plot;	use	

the

%	values	of	T	to	represent	both	color	and	size	of	

symbols

scatter3(xx(a),yy(a),zz(a),1000*T(a),T(a),'filled');

%	set	the	view

view(3);	

campos([-7.8874	-217.1200			13.7208]);

%	add	colorbar	to	read	probability	values

h=colorbar;set(get(h,'ylabel'),'String','Probability');

%	add	annotations

ylabel('Lattice	Y');

xlabel('Lattice	X');

zlabel('Lattice	Z');

title('3D	Scatter	plot	with	probability	values');

grid	on;	box	on;

The	output	is	as	follows:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

2.	 Next,	generate	a	cloud	at	each	lattice	point	to	represent	the	interaction
between	these	molecules.	This	is	done	with	a	Gaussian	kernel	as	follows:

data	=	smooth3(TB_Eigen,'gaussian');

%	unwrap	the	smoothed	data

d	=	data(:);	

3.	 Color	will	be	used	to	represent	the	interaction	magnitudes.	Generate	color
values	for	each	point	by	querying	the	color	map:

idx	=	find(d~=0);

cmapH(:,1:3)	=	colormap;

cmin=min(5*d(idx));cmax=max(5*d(idx));

caxis([cmin	cmax]);

Cidxs	=	fix((5*d(idx)-cmin)/(cmax-

cmin)*length(cmapH))+1;

Cidxs(find(Cidxs>64))=64;

4.	 Transparency	will	also	be	used	to	represent	the	interaction	magnitudes.
Generate	alpha	values	for	each	point	by	querying	the	alpha	map:

%	generate	the	alpha	map	(with	100	levels)

amapH	=	linspace(0,1,100);

%	make	max	value	most	transparent	by	reversing	the	

alphamap

amapH	=	amapH(end:-1:1);

amin=min(d(idx));amax=max(d(idx));

Aidxs	=	fix((d(idx)-amin)/(amax-amin)*length(amapH))+1;

Aidxs(find(Aidxs>100))=100;

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

5.	 Call	bubbleplot3(x,y,z,r,c,alpha),	a	three-dimensional	bubbleplotter,	for
creating	bubbles	of	radii	r,	at	corresponding	positions	in	x,	y,	z.	The	variable	c
is	an	RGB-triplet	for	color.	Alpha	data	provides	transparency	values	for	each
bubble.

figure('units','normalized','position',...

		[.24	.28	.41	.63]);

bubbleplot3(xx(idx),yy(idx),zz(idx),5*d(idx),...

		cmapH(Cidxs,:),amapH(Aidxs));	

6.	 Set	the	view:

view(3);

axis([min(xx)	max(xx)	min(yy)	max(yy)	min(zz)	

max(zz)]);

box	on;

campos([-80.6524		-54.7234			44.2951]);

zoom(1.2);

7.	 Add	annotations:

ylabel('Lattice	Y','Fontsize',14);

xlabel('Lattice	X','Fontsize',14);

zlabel('Lattice	Z','Fontsize',14);

title({['3D	scatter	plot	with	electron	hopping	'...	

		'probability	cloud	at	each	point	in	a	lattice.'],...

		['Probability	directly	proportional	to	cloud	size'...

		'	and	color;'],['inversely	proportional	to'...	

		'	transparency.'],''},'Fontsize',14);

h=colorbar('location','SouthOutside','position',...

		[0.1286				0.0552				0.7750				0.0172]);

set(get(h,'title'),'string',...

		'Probability	value	color	key');

The	output	is	as	follows:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

How	it	works...
scatter3	is	the	3D	analog	for	ordinary	scatter	plot	and	is	commonly	used	for
displaying	discrete	data	points	in	the	three	dimensions.

You	used	a	custom	function,	bubbleplot3,	adapted	from	a	submission	by	Peter	Bodin
on	MATLAB	file	exchange.	This	function	allowed	you	to	provide	x,	y,	and	z
coordinates	as	well	as	the	radius	of	the	spheres	to	be	drawn	to	represent	each	point,
and	the	color	and	transparency	values	to	use	with	each	point.	You	used	the
probability	data	for	both	the	color	and	size	of	the	spheres.	You	used	the	inverse	of
the	probability	data	to	set	the	transparency	values.	Color	and	transparency	values
were	both	manually	extracted	from	the	color	map	and	a	custom	alpha	map	in	steps	3
and	4.

Note
Takeaways	from	this	recipe:

Use	3D	scatter	plots	to	present	scatter	points	in	3D.
Additionally,	you	can	use	color,	shape,	size,	and	transparency	of	scatter	points
to	code	other	dimensions	of	your	data;	however,	recall	from	the	first	two
chapters	that	these	attributes	are	not	high	on	the	list	of	easily	perceived

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

attributes	for	visualization.

See	also
Look	up	MATLAB	help	on	the	bubbleplot3,	smooth3,	campos,	and	colorbar
commands.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Slice	(cross-sectional	views)
In	this	recipe,	you	will	visualize	cross	sections	or	slices	of	a	3D	dataset	to
understand	its	structure.

Getting	ready
You	will	use	a	human	brain	magnetic	resonance	imaging	(MRI)	dataset	that	is
included	with	MATLAB.	Load	the	data:

load	mri

How	to	do	it...
Perform	the	following	steps:

1.	 The	MRI	data,	D,	is	stored	as	a	128-by-128-by-1-by-27	array.	The	third	array
dimension	has	no	information	and	can	be	removed	using	the	squeeze
command:

D	=	squeeze(D);

2.	 Create	horizontal	slices:

%	layout	figure;	use	colormap	that	came	with	dataset

figure('units','normalized','position',...

		[0.3016		0.3556		0.3438		0.5500],'Colormap',map);

%	choose	axes	position

axes('position',[0.1300		0.2295		0.7750		0.8150]);

%	view	horizontal	slices

whichSlices	=	3:5:27;

h=slice(1:128,1:128,1:27,double(D),[],[],whichSlices);

shading	interp;	

%	set	alphadata	=	data;	set	upper	alim	to	a	low	value

%	so	that	color	is	only	bleached	from	the	background	

image

for	i	=1:length(h)

		

set(h(i),'alphadata',double(D(:,:,whichSlices(i))),...

		'facealpha','interp');alim([0	2]);

end

%	set	the	view

zoom(1.2);campos([-706	-778		111]);axis	off;	

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

zlim([1	25]);

%	annotate

annotation('textbox',[.05	.07	.9	.1],'String',...

		{['Horizontal	\color{red}	slice	\color{black}	views	

'...

		'from	MRI	

dataset.']},'fontsize',14,'linestyle','none');

The	output	is	as	follows:

3.	 Explore	with	a	combination	of	slices:

%	pick	colormap,	invert	it	so	low	values	get	light	

colored

m=colormap('jet');m	=	m(end:-1:1,:);colormap(m);

%	do	your	slices

h=slice(1:128,1:128,1:27,double(D),90,50,[1	15]);

shading	interp;	axis	tight;

%	set	the	transparency	so	low	values	are	invisible

set(h(1),'alphadata',squeeze(double(D(90,:,:))),...

		'facealpha','interp');	alim([0	2])

set(h(2),'alphadata',squeeze(double(D(:,50,:))),...

		'facealpha','interp');	alim([0	2])

set(h(3),'alphadata',squeeze(double(D(:,:,1))),...

		'facealpha','interp');	alim([0	2])

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

set(h(4),'alphadata',squeeze(double(D(:,:,15))),...

		'facealpha','interp');	alim([0	2])

%	set	the	view

daspect([128	128	27]);

zoom(1.3);

campos([-637	366	177]);

axis	off;

%	annotate

colorbar('location','southoutside',...

		'position',[.08	.07	.83	.02]);

annotation('textbox',[.24	.88	.9	.1],'String',...

		['Combination	of	\color{red}	slice	\color{black}'...

		'views	using	MRI	dataset.	'],'fontsize',14,...

		'linestyle','none');	

The	output	is	looks	as	follows:

4.	 Create	slices	at	an	angle:

figure('Colormap',map);hold	on;view(3);

%	define	the	slice	and	rotate

hslice	=	slice(1:128,1:128,1:27,double(D),[],[],15);	

shading	interp;	axis	tight;

rotate(hslice,[-1,0,0],-35);

%	extract	the	x,	y	and	z	data	from	rotated	slice,	

remove	it

xd1	=	get(hslice,'XData');

yd1	=	get(hslice,'YData');

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

zd1	=	get(hslice,'ZData');

delete(hslice);

%	call	slice	function	with	extracted	data

h=slice(1:128,1:128,1:27,double(D),xd1,yd1,zd1);	

shading	interp;	axis	tight;

%	set	transparency	to	correspond	with	the	data	values

set(h,'alphadata',squeeze(double(D(:,:,15))),...

		'facealpha','interp');	alim([0	2])

%	declare	two	other	horizontal	slices

h=slice(1:128,1:128,1:27,double(D),[],[],[1	18]);

shading	interp;	axis	tight;

%	set	the	transparencies	for	the	additional	slices

set(h(1),'alphadata',squeeze(double(D(:,:,1))),...

		'facealpha','interp');	alim([0	2])

set(h(2),'alphadata',squeeze(double(D(:,:,18))),...

		'facealpha','interp');	alim([0	2])

%	set	the	view

zlim([1	27]);box	on;	

campos([-710.945	617.6196	126.5833]);

%	annotate

title('Using	a	tilted	planewith	MRI	dataset');	

The	output	is	as	follows:

5.	 Use	a	non-planar	surface	as	a	slicer:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

%	add	a	boundary	slice

h=slice(1:128,1:128,1:27,double(D),[],[],[1	13	18]);

shading	interp;	axis	tight;	hold	on;

%	set	transparency

set(h(1),'alphadata',squeeze(double(D(:,:,1))),...

		'facealpha','interp');	alim([0	2])

set(h(2),'alphadata',squeeze(double(D(:,:,13))),	...

		'facealpha','interp');	alim([0	2])

set(h(3),'alphadata',squeeze(double(D(:,:,18))),	...

		'facealpha','interp');	alim([0	2])

%	create	a	surface	on	which	you	want	the	projection;	

scale	

%	and	translate	it	so	that	it	covers	the	data	zone

[xsp,ysp,zsp]	=	sphere;

hsp	=	surface(30*xsp+60,30*ysp+60,10*zsp+13);

%	get	the	data	out	

xd	=	get(hsp,'XData');

yd	=	get(hsp,'YData');

zd	=	get(hsp,'ZData');

%	delete	the	temporary	surface

delete(hsp);

%	plot	the	surface	as	part	of	the	slice	command

hslicer	=	slice(1:128,1:128,1:27,squeeze(double(D)),...

		xd,yd,zd);shading	interp;

%	set	the	view

axis	tight	

view(-103.5,28);

%	annotate

title('Use	of	non-planar	surface	as	a	slicer',...

		'fontsize',14);

The	output	is	as	follows:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

How	it	works...
This	recipe	shows	how	to	plot	systematic	cross	sections	to	reveal	the	structure	of	the
data.	You	used	a	combination	of	planar	and	non-planar	surfaces	as	slices	into	your
volumetric	data	space.	Note	that	for	the	non-planar	or	orthogonal	slicing,	you	needed
to	extract	the	x,	y,	z	data	from	the	surface	objects	before	you	could	plot	them	using
the	slice	command.	Slicing	is	a	powerful	tool	to	explore	3D	datasets.

There's	more...
This	section	discusses	a	function	that	allows	you	to	visualize	your	3D	data	with	slice
positions	controlled	with	three	sliders	from	a	GUI.	It	is	adapted	from	a	File	Exchange
submission	by	Loren	Shure	on	volume	visualization.	Perform	the	following	steps	to
initialize	the	visualization	with	the	MRI	data	and	add	UI	Control	elements.	The
following	code	excerpt	shows	how	to	add	one	slider	and	the	label	associated	with	it.
Execute	lines	139	–	163	of	the	source	code	with	this	recipe	to	add	the	other	two
sliders	and	labels.

%	Initialize	the	visualization	with	the	data

s	=	volumeVisualization(1:128,1:128,1:27,double(D));

%	Add	uicontrol	for	x	(and	a	label)

annotation('textbox',[.75,.1388,.06,.05],'String','X',...

		'fontweight','bold','linestyle','none');

hSliderx	=	uicontrol(...

		'Units','normalized',	...

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

		'Position',[.79	.13	.2	.05],	...

		'Style','slider',	...

		'Min',s.xMin,	...

		'Max',s.xMax,	...

		'Value',s.xMin,	...

		'tag','x',...

		'userdata',s,...

		'Callback',@volVisSlicesUpdateSliderPosition);

The	function	volumeVisualization	takes	the	input	parameters	X,	Y,	Z,	and	V	where	X,
Y,	Z	are	the	coordinates	and	V	is	the	value	of	the	3D	dataset	at	each	of	those
coordinate	positions.	It	returns	a	structure	with	the	three	member	functions	namely,
addSlicePlanex,	addSlicePlaney,	and	addSlicePlanez	that	contain	function	handles
to	add	slices	at	the	location	defined	by	the	current	value	of	the	respective	sliders	from
an	external	GUI.	Also,	it	provides	the	handle	to	a	fourth	member	function
deleteLastSlicePLane	to	delete	the	last	slice	plane	added.	The	callback	function
associated	with	the	sliders,	volVisSlicesUpdateSliderPosition,	has	code	to	make
the	calls	to	the	above	set	of	functions	provided	by	volumeVisualization	as	needed,
based	upon	user	input.	The	concepts	around	making	interactive	graphics	are	covered
in	detail	in	Chapter	7,	Creating	Interactive	Graphics	and	Animation.	Refer	there	to
learn	more	about	callback	functions.

The	output	is	as	follows:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Note
Takeaways	from	this	recipe:

Use	a	series	of	slices	in	various	orientations	to	investigate	the	structure	of	your
3D	data
Use	interactive	designs	to	allow	the	user	to	discover	regions	of	interest	with
ease
Use	surface	transparency	for	slices	and	view	control	to	maximize	information
visualization

See	also
Look	up	MATLAB	help	on	the	slice,	contourslice,	campos,	and	squeeze	commands.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Isosurface,	isonormals,	isocaps
Isosurfaces	are	surfaces	that	join	points	of	equal	magnitude.	They	are	the	2D	analog
of	contour	lines.	In	this	recipe,	you	will	explore	isosurfaces	and	their	use	in	3D
visualization.

Getting	ready
You	will	once	again	use	the	MRI	dataset	that	comes	with	MATLAB	installation.	Load
the	data:

load	mri

D	=	squeeze(D);

How	to	do	it...
Perform	the	following	steps:

1.	 Construct	the	human	face	using	an	isosurface	and	the	MRI	plates.	The	three-
dimensional	smoothing	creates	a	smoothed	surface	for	presenting	the	human
face.	The	color	of	the	patch	is	chosen	to	match	common	skin	tones.

%	create	figure	with	predefined	colormap

figure('Colormap',map)

%	smooth	the	data

Ds	=	smooth3(D);

%	create	a	isosurface;	use	patch	to	construct	the	image

%	choose	face	color	for	common	skin	tone

hiso	=	patch(isosurface(Ds,5),...

		'FaceColor',[1,.75,.65],...

		'EdgeColor','none');

2.	 The	isonormals	are	constructed	based	on	the	gradient	values	of	the	actual
values	of	the	surface	elements.

isonormals(Ds,hiso);

3.	 Adjust	the	view:

view(35,30);	

axis	tight;

daspect([1,1,.4]);

4.	 Adjust	the	lighting	to	create	a	realistic	rendering:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

lightangle(45,30);

lighting	phong

The	output	is	as	follows:

5.	 Add	an	isocap	to	create	the	effect	of	a	cut	away	slice:

hcap	=	patch(isocaps(D,5),...

		'FaceColor','interp',...

		'EdgeColor','none');

6.	 Adjust	the	lighting	parameters	one	more	time	to	create	a	realistic	rendering,	in
this	case,	by	reducing	the	specular	shine:

set(hcap,'AmbientStrength',.6)

set(hiso,'SpecularColorReflectance',0,...

		'SpecularExponent',50);

The	output	is	as	follows:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

How	it	works...
MRI	images	contain	scalar	data.	Several	techniques	such	as	the	use	of	isosurface,
isocaps,	camera	positioning,	and	lighting	effects	are	utilized	to	bring	the	data	to	life.

There's	more...
The	user	interactivity	paradigm	for	data	exploration	demonstrated	in	previous	recipe
for	the	slice	function	is	extended	here	to	isosurfaces.	The	function
volumeVisualization_isosurface	takes	the	input	parameters	X,	Y,	Z,	and	V	where	X,
Y,	Z	are	the	coordinates	and	V	is	the	value	of	the	3D	dataset	at	each	of	those
coordinate	positions.	It	returns	a	structure	with	two	member	functions,	one	being
plotIsoSurface	that	contains	a	function	handle	to	add	an	isosurface	for	the	value
defined	by	the	current	value	of	the	slider	from	an	external	GUI.	Also,	it	provides	the
handle	to	the	function	deleteIsoSurface	to	delete	the	last	isosurface	added.	The
callback	function	associated	with	the	slider,
volVisIsoSurfaceUpdateSliderPosition,	has	code	to	make	the	calls	to	the	above
functions	provided	by	volumeVisualization_isosurface	as	needed	based	upon	user
input.	The	concepts	around	making	interactive	graphics	are	covered	in	detail	in
Chapter	7,	Creating	Interactive	Graphics	and	Animation.

The	output	is	as	follows:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Note
Takeaways	from	this	recipe:

Use	isosurfaces,	isonormals,	and	isocaps	to	create	realistic	3D	visualizations
Use	interactive	designs	to	allow	user	to	discover	regions	of	interest	with	ease

See	also
Look	up	MATLAB	help	on	the	isonormals,	isosurface,	isocap,	and	patch
commands.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Stream	slice
Vector	data	needs	to	show	direction	as	well	as	magnitude.	This	requires	an	additional
data	dimension	to	be	displayed	at	each	point	and	thus	presents	a	challenge	for	the
techniques	demonstrated	so	far.	MATLAB	provides	the	ability	to	draw	stream	lines
on	the	slices	to	show	the	direction	at	each	location.

Getting	ready
In	this	recipe,	you	will	use	data	from	the	electric	dipole.You	will	calculate	the	electric
field	generated	by	the	dipole	antenna	in	3D	space	and	visualize	it	using	the
streamslice	MATLAB	function.	Execute	lines	12	–	24	of	the	source	code	for	this
recipe	to	generate	the	data.

How	to	do	it...
Perform	the	following	steps:

1.	 Plot	the	data	using	the	MATLAB	command	streamslice:

streamslice(x,y,z,E_ang_x,E_ang_y,E_ang_z,...

		[-.3	.1],[],[]);

2.	 Set	the	view:

campos([-3,-15,5]);

box	on

3.	 Set	a	grey	background	and	black	axes	markings:

set(gca,'Color',[.8,.8,.8]	,'XColor','black',	...

		'YColor','black','ZColor','black');

The	output	is	as	follows:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

How	it	works...
The	Electric	Field	is	a	vector	data	set.	This	means	this	data	has	both	magnitude	and
direction.	The	direction	is	represented	by	three	different	numbers	denoting	the	x,	y,
and	z	components	of	the	direction	vector.	You	used	the	MATLAB	command
streamslice	to	present	the	vector	data.	In	this	case,	slices	are	placed	at	x=	-0.3	and
x	=0.1.	The	empty	matrices	imply	that	all	points	along	that	axis	should	be	used.
Streamslice	works	similarly	to	slice	commands.	It	extracts	a	certain	plane	in	which
to	display	the	information.	The	contours	draw	the	vector	data	using	streamlines.

Note
Takeaways	from	this	recipe:

Use	stream	slices	to	investigate	the	structure	of	your	3D	vector	dataset

See	also
Look	up	MATLAB	help	on	the	streamslice,	and	streamlines	commands.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Stream	lines,	ribbons,	tubes
MATLAB	offers	a	variety	of	stream	plots	(stream	lines,	stream	ribbons	,	stream
tubes,	and	cones)	to	illustrate	the	flow	of	a	3D	vector	field.

Getting	started
You	will	use	the	wind	dataset	that	comes	with	the	MATLAB	installation	to	explore
these	functions.	Load	the	data:

load	wind

How	to	do	it...
Perform	the	following	steps:

1.	 Define	the	starting	points	for	streamlines:

[sx	sy	sz]	=	meshgrid(80,	20:10:50,	0:4:16);

plot3(sx(:),sy(:),sz(:),'bo','MarkerFaceColor','b');	

hold	on;

2.	 Plot	the	stream	lines	with	custom	thickness	and	color:

h=streamline(x,y,z,u,v,w,sx(:),sy(:),sz(:));

set(h,'linewidth',2','color',[1	0	0]);

3.	 Set	the	view:

axis(volumebounds(x,y,z,u,v,w))

grid;	box;	daspect([2.5	3	1.5]);

The	output	is	as	follows:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

4.	 Next,	compute	the	curl,	which	is	a	vector	data	and	the	wind	speed,	which	is	a
scalar	data:

cav	=	curl(x,y,z,u,v,w);

wind_speed	=	sqrt(u.^2	+	v.^2	+	w.^2);

5.	 Generate	vertices	from	which	the	stream	ribbons	should	start.	Use	the
stream3	command	to	generate	streamlines:

[sx	sy	sz]	=	meshgrid(80,20:10:50,0:4:16);

verts	=	stream3(x,y,z,u,v,w,sx,sy,sz,1);

6.	 Plot	customized	stream	ribbons.	The	width	factor	is	set	to	2	to	enhance
visibility.	The	face	color	is	set	to	green,	edge	color	to	grey	and	ambient	light
strength	to	0.6:

h	=	streamribbon(verts,x,y,z,cav,wind_speed,2);

set(h,'FaceColor','g',...

		'EdgeColor',[.7	.7	.7],	'AmbientStrength',.6);

7.	 Set	the	view	for	the	plot	(including	lighting	parameters):

axis(volumebounds(x,y,z,wind_speed))

grid	on;

view(3)

camlight	left;	

lighting	phong;

The	output	is	as	follows:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

8.	 Next,	present	the	divergence	of	this	vector	data	using	streamtubes.	The	same
vertices	(or	start	points)	for	the	streamlines	are	used.

div	=	divergence(x,y,z,u,v,w);

9.	 Use	stream3	to	calculate	the	streams	and	plot	with	tubes:

[sx	sy	sz]	=	meshgrid(80,20:10:50,0:4:16);

verts	=	stream3(x,y,z,u,v,w,sx,sy,sz,1);

10.	 Plot	the	streamtubes:

h=streamtube(verts,x,y,z,div);

shading	interp;

11.	 Set	the	view	for	the	plot	(including	lighting	parameters):

daspect([1	1	1]);axis	tight

grid	on;view(3);

camlight;	lighting	gouraud

The	output	is	as	follows:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

How	it	works...
Vector	data	has	magnitude	and	direction.	The	stream	commands	offer	a	way	to
visualize	the	path.	The	u,	v,	w	vectors	are	tangents	to	any	given	point	on	the
streamline.	Note	that	some	prior	knowledge	of	your	data's	characteristics	such	as
the	primary	direction	of	flow	and	the	range	of	the	data	coordinates	helps	in	the
selection	of	the	starting	points	for	your	streamlines.

The	color,	thickness,	and	other	attributes	can	be	used	to	encode	additional
information.	You	did	this	in	step	6	by	encoding	the	rotation	about	the	flow	axis
information	with	a	proportional	twist	of	the	ribbon-shaped	flow	line.

Note
Takeaways	from	this	recipe:

Use	stream	lines,	ribbons,	and	tubes	to	investigate	the	structure	of	your	3D
vector	dataset

See	also
Look	up	MATLAB	help	on	the	streamline,	stream3,	streamtube,	and	volumebounds
commands.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Scalar	and	vector	data	with	a
combination	of	techniques
This	recipe	was	created	to	demonstrate	how	to	combine	various	techniques	such	as
the	use	of	isosurface,	isonormal	computations,	lighting	parameters	considerations,
view	angle	considerations,	transparency,	contourslice,	streamlines	,
streamtubes,	and	cone	plots	to	create	an	enhanced	visualization.

Getting	ready
You	will	use	the	wind	dataset	that	comes	with	the	MATLAB	installation	to	explore
these	functions.	Load	the	data.	Generate	some	additional	variables	from	the	data:

load	wind	

wind_speed	=	sqrt(u.^2	+	v.^2	+	w.^2);

xmin	=	min(x(:));xmax	=	max(x(:));

ymax	=	max(y(:));ymin	=	min(y(:));

How	to	do	it...
Perform	the	following	steps:

1.	 Create	an	isosurface	with	isocaps	at	wind	speed	40.	The	isocaps	create	an
effect	of	cutting	off	the	surface	and	reveal	the	distribution	of	values	on	that
plane.

%	add	isosurface

p	=	patch(isosurface(x,y,z,wind_speed,	40));

%	use	isonormals	for	a	smoother	surface

isonormals(x,y,z,wind_speed,	p);

%	set	the	facecolor	to	red	and	no	edge	marks

set(p,	'FaceColor',	'red',	'EdgeColor',	'none');

%	add	isocaps

p2	=	patch(isocaps(x,y,z,wind_speed,	40));

set(p2,	'FaceColor',	'interp',	'EdgeColor',	'none')

2.	 Set	the	view:

box	on;camproj	perspective;

axis(volumebounds(x,y,z,wind_speed))

campos([-203.7953		253.0409		129.3906]);

daspect([1	1	1]);

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

lighting	phong;

The	output	is	as	follows:

3.	 Draw	contour	slices	on	the	two	back	walls.	Change	the	transparency	of	the
isosurface	to	make	contour	lines	approximately	visible:

%	Create	one	slice	at	max	y	and	add	color	from	the	data

hold	on;hslice	=	slice(x,y,z,wind_speed,xmax,ymin,[]);

set(hslice,'FaceColor','interp','EdgeColor','none')

%	Change	the	transparency	of	the	isosurface	to	make	

contour	

%	lines	approximately	visible.

alpha(0.7);

color_lim	=	caxis;

%	add	contour	intervals	on	it

cont_intervals	=	

linspace(color_lim(1),color_lim(2),17);

hcont	=	contourslice(x,y,z,wind_speed,xmax,ymin,...

		[],cont_intervals,'linear');

set(hcont,'EdgeColor',[.4	.4	.4],'LineWidth',1);

The	output	is	as	follows:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

4.	 Show	the	wind	direction	with	cone	plots:

%	calculate	direction

[f	verts]	=	reducepatch(isosurface(...			

		x,y,z,wind_speed,30),.2);

%	plot	with	cones

h=coneplot(x,y,z,u,v,w,verts(:,1),verts(:,2),...

		verts(:,3),2);

set(h,	'Facecolor',	'cyan','EdgeColor',	'none');

The	output	is	as	follows:

5.	 Add	streamlines	to	one	side	in	grey	and	stream	tube	to	the	bottom	plane.
Note	that	additional	lighting	parameters	bring	the	scene	to	life.

%	calculate	path	for	stream	lines

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

[sx	sy	sz]	=	meshgrid(120:6:130,	50:2:60,	0:5:15);

%	add	streamlines

h2=streamline(x,y,z,u,v,w,sx,sy,sz);

set(h2,	'Color',	[.6	.6	.6],'Linewidth',1);

%	calculate	path	for	stream	lines

[sx,sy,sz]	=	meshgrid(xmin:10:xmax,ymin:10:ymax,0:2);

%	add	streamtubes

htubes	=	streamtube(x,y,z,u,v,w,sx,sy,sz,[.5	20]);

set(htubes,'EdgeColor','none','facecolor',[.2	.5	

.2],...

		'AmbientStrength',.5)

%set	lighting	params

camlight	left;	

camlight	right;

lighting	Gouraud;

The	output	is	as	follows:

How	it	works...
A	number	of	volume	visualization	techniques	have	been	brought	together	to	create	an
enhanced	visualization	for	the	wind	data.	In	this	case,	you	started	with	isosurface
and	used	the	isonormals	command	for	computing	the	isonormals	using	vertex	data,
so	that	you	obtain	a	smooth	finish	to	the	surface.	You	added	isocaps	to	create	the
cut	off	effect.	You	changed	alpha	to	impact	the	transparency	of	the	surface	to	see
the	contourslices	that	you	constructed	as	the	back	walls	to	this	visual.	You	added
coneplots	to	show	the	divergence,	and	streamlines	and	streamtube	for	visualizing
the	flow	in	the	parts	of	the	data	block	not	covered	by	the	isosurface.	You	used

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

lighting	and	camera	angle	positioning	to	set	the	view.	The	combination	of	these
techniques	creates	an	effective	way	to	explore	3D	datasets.

Note
Takeaways	from	this	recipe:

Use	a	combination	of	techniques	to	explore	your	3D	dataset

See	also
Look	up	MATLAB	help	on	the	slice,	contourslice,	alpha,	camera,	streamline,
stream3,	streamtube,	and	volumebounds	commands.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Explore	with	camera	motion
MATLAB	offers	a	plethora	of	camera	control	tools.	This	enables	you	to	move	the	view
position	around	the	body	of	the	data,	along	the	body	of	the	data,	or	directly	inside	the
body	of	the	data,	for	exploration.	This	recipe	demonstrates	programming	the
movement	of	the	view	point	to	create	data	exploration	movies	for	3D	datasets.

Getting	started
You	will	use	a	flow	dataset	which	comes	as	part	of	MATLAB	installation.	This	is
generated	at	the	command	line	as	follows:

[x	y	z	v]	=	flow;

How	to	do	it...
Perform	the	following	steps:

1.	 Create	an	isosurface.	Use	the	patch	command	so	that	you	can	retrieve	the
handle	and	alter	some	of	its	attributes:

p	=	patch(isosurface(x,y,z,v,-2));

set(p,'FaceColor','red','EdgeColor','none');

2.	 Set	the	camera	projection	to	perspective	(which	is	the	normal	way	we	see
things,	with	distant	objects	appearing	smaller	in	size):

camproj	perspective

3.	 Set	up	the	lighting	parameters	by	adding	both,	a	scene	light	as	well	as	altering
the	reflectance	properties	of	your	surface.	The	headlight	setting	ensures	that
the	light	will	move	with	the	camera	position.	For	lighting,	MATLAB	must	use
either	the	zbuffer	or,	if	available,	OpenGL	renderer	settings.	The	OpenGL
renderer	is	likely	to	be	much	faster;	you	need	to	use	Gouraud	lighting	with
OpenGL.

hlight	=	camlight('headlight');	

set(p,'AmbientStrength',.1,...

		'SpecularStrength',1,...

		'DiffuseStrength',1);

lighting	gouraud

set(gcf,'Renderer','OpenGL')

4.	 Define	a	custom	path	for	the	camera	movement.	Select	a	few	pivot	points	for
the	camera	using	the	camera	toolbar	(described	in	the	next	section).

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Generate	a	linear	path	connecting	these	positions	as	follows:

xp	=	[30*ones(1,50)	linspace(30,55,50)	...

		linspace(55,45,50)	linspace(45,-45,50)	

linspace(45,15,50)];

yp	=	[linspace(-12,5,50)	linspace(5,-0.5,50)	...

		linspace(-0.5,-30,50)	linspace(-30,-25,50)...

		linspace(-25,-15,50)];

zp	=	[5.4*ones(1,50)	linspace(5.4,-25,50)	...

		linspace(-25,10,50)	linspace(10,30,50)	

linspace(30,80,50)];

5.	 Move	the	camera	along	the	defined	path.	The	drawnow	command	is	used	to
redraw	and	show	the	effects	of	each	move.

for	i=1:length(yp)

		campos([30,yp(i),zp(i)]);

		camtarget([3.5,-0.1666,0]);

		camlight(hlight,'headlight');

		drawnow;

end

A	set	of	snapshots	taken	at	intervals	of	50	steps	is	as	follows:

How	it	works...
In	this	recipe,	you	used	camera	tools	to	explore	your	dataset.	The	view	can	be
controlled	using	camera	tools	in	several	ways.	Here,	you	moved	the	position	of	the
camera	by	the	campos	command.	You	also	simultaneously	moved	the	positions	of	the
camera	target	via	the	camtarget	command.	You	added	a	headlight	to	your	camera	to
enhance	the	realism	of	the	views.

There	are	several	ways	to	choose	the	path	for	moving	the	camera	positions.	One
option	is	to	use	a	set	of	predefined	options	such	as	setting	the	direction	for	the
cameraupvector	and	using	either	the	camorbit,	camdolly,	or	camroll	functions	to
move	your	camera	with	respect	to	the	up	vector	in	predefined	ways.	Alternatively,	you
can	define	a	custom	path,	such	as	the	one	you	used	here	using	the	camera	toolbar	to
select	your	pivots	and	then	connecting	them	with	linear	interpolation	points.	To	select
your	pivot	points,	enable	camera	movement	after	the	object	is	displayed	in	3D	by
clicking	the	camera	icon	(highlighted	in	yellow)	on	the	figure	toolbar,	as	shown	in	the
following	screenshot:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Move	the	object	as	desired	by	selecting	your	3D	object	directly	from	the	graph.	To
select	a	configuration	as	a	pivot,	access	the	associated	camera	position	and	the
camera	target	position	parameter	values	as	follows:

get(gca,'CameraTarget');

get(gca,'CameraPosition');

If	using	vector	data,	you	could	also	use	the	stream3	function	to	create	a	streamline
and	extract	the	x,	y,	z	values	along	that	stream	to	move	your	camera	along	the	path
so	defined.

There's	more...
When	the	camera	target	and	the	camera	position	are	moved	at	the	same	time	with	a
slight	constant	offset,	you	can	get	the	effect	of	a	fly	through	(as	if	you	are	flying
through	the	geometry	of	your	object).	Perform	the	following	steps:

1.	 Set	the	view	angle.	The	camva	command	helps	to	set	the	view	angle.	A	small
view	angle	has	the	effect	of	a	zoom	in	to	the	image.

camva(5);

2.	 Set	the	path:

xt	=	[linspace(1,.2,25)	linspace(.2,.1,75)];

yp	=	[linspace(0,.8,25)	.4*linspace(2,4,25)	...

		1.6+.4*linspace(0,10,50)];

yt	=	[linspace(-.4/3,-.4/3,50)	...

		-(.4/3)*linspace(1,10,50)];

zt	=	[linspace(0,0,25)	linspace(0,0,75)];

3.	 Move	the	camera	target	and	position	along	that	path:

for	i=1:length(xt)

		campos([xt(i)+10,yp(i),zt(i)]);

		camtarget([xt(i)	yt(i)	zt(i)]);

		camlight(hlight,'headlight');

		drawnow

end

A	set	of	snapshots	taken	at	certain	intervals	along	the	path	is	as	follows:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Note
Takeaways	from	this	recipe:

Use	programmatic	view	control	as	a	tool	to	explore	your	3D	dataset	with
animation

See	also
Look	up	MATLAB	help	on	the	camdolly,	camlookat,	cam,	campan,	campos,	camproj,
camro,	camtarget,	camup,	camva,	and	camzoom	camera	manipulation	commands.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Chapter	6.	Designing	for	Higher	Data
Dimensions
In	this	chapter,	we	will	cover:

Fusing	hyperspectral	data
Survey	plots
Glyphs
Parallel	coordinates
Tree	maps
Andrews'	curves
Down-sampling	for	fast	graphs
Principal	Component	Analysis
Radial	Coordinate	Visualization

Introduction
This	chapter	discusses	visualization	options	for	beyond	the	three	dimensions.	For
data	in	high	dimensions,	the	volume	increases	so	fast	that	all	objects	appear	to	be
sparse	and	a	lot	more	data	becomes	necessary	to	establish	statistical	significance	in
calling	two	objects	dissimilar,	so	that	common	data	organization	strategies	become
inefficient.	This	problem	is	often	described	as	the	curse	of	dimensionality	.	The	first
set	of	recipes	in	this	chapter	present	strategies	to	visualize	high	dimensional	data
without	any	reduction	in	the	data	dimensions.	The	last	three	recipes	address	data
reduction	strategies.	Specifically,	the	reduction	of	higher	dimensional	data	to	lower
dimensions	without	significant	information	lossis	addressed	with	the	Principal
Component	Analysis	(a	data	reduction	technique)	and	the	Radial	Coordinate
Visualization	(a	projection	technique)	in	this	chapter.

There	are	other	advanced	methods	for	dimensionality	reduction	such	as	the
projection	pursuit	and	their	interactive/guided	versions	known	as	the	grand	tour	,
which	are	commonly	used	in	the	exploratory	data	analysis	community	to	deal	with
this	problem.	The	projection	pursuit	algorithm	finds	the	most	interesting	projections
of	the	multidimensional	data,	using	a	search	algorithm	that	optimizes	some	fixed
criterion	of	interestingness	–	such	as	deviation	from	a	normal	distribution	(negative
entropy)	or	measure	of	variation	(principal	components),	class	separability	(using
some	distance	metric)	–	all	using	a	linear	mapping.	These	advanced	methods	are	not
included	as	recipes.	The	Appendix	includes	references	to	these	techniques	for	further
investigation.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Fusing	hyperspectral	data
Spectral	imaging	collects	information	from	across	the	electromagnetic	spectrum
including	and	extending	beyond	the	visible	ranges.	Objects	leave	patterns	across	the
spectrum	(their	spectral	signatures),	that	enable	their	identification.	For	example,	a
spectral	signature	for	oil	helps	mineralogists	find	new	oil	fields.	The	reason	for
imaging	across	multiple	bands	is	that	not	all	features	are	visible	in	all	bands.

These	large	volumes	of	data	collected	demand	appropriate	methods	for	scanning	and
interpretation.	Commonly,	data	is	first	transformed	using	a	method	such	as	the
Principal	Component	Analysis	and	then	the	three	most	significant	components	are
used	as	the	RGB	channel	data	to	create	false	color	images.

Getting	ready
In	this	recipe,	you	will	visualize	a	hyperspectral	dataset.	The	data	was	downloaded
from	the	free	datasets	made	available	by	SpecTIRTM	on	their	website.	The	data
covers	a	part	of	the	Gulf	of	Mexico	region,	showing	the	2010	oil	spill	images	from	360
different	spectral	bands.	Download	the	data	from	this	location:
http://www.spectir.com/free-data-samples/request-deepwater-radiance/.	Providing
the	dataset	in	the	code	repository	is	avoided	because	of	its	significant	file	size.	Once
downloaded,	import	the	data	as	follows:

X	=	multibandread(...

		'0612-1615_rad_sub.dat',...Filename

		[1160,	320,	360],...size	([lines,	samples,	bands])

		'uint16',	...precision	data	type	in	the	ENVI	header	file

		0,...offset	parameter	from	ENVI	header	file

		'bil',...interleave	parameter	'bsq',	'bil'	or	'bip'

		'ieee-le',...byteorder

		{'Band','Range',[1,5,360]},...subset	1

		{'Row','Range',[150,1,1000]},...subset	2

		{'Column','Range',[60,1,300]}...subset	3

);

Note	that	every	input	parameter	in	the	command	is	explained	with	an	accompanying
comment	on	the	same	line	(the	part	after	the	ellipses	is	treated	as	comments).	Each
subset	is	defined	as	a	triplet	of	{DIM,	METHOD,	INDEX},	where	DIM	=	'Row',	'Column'
or	'Band',	METHOD	=	'Direct'	or	'Range'	and	INDEX	gives	the	indices	to	use	to
extract	the	data	based	upon	the	METHOD	definition.	For	more	explanation	look	up
MATLAB	help	on	multibandread.

Note	that	only	a	subset	of	the	data	was	loaded	for	memory	efficiency	purposes.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

http://www.spectir.com/free-data-samples/request-deepwater-radiance/

How	to	do	it…
Perform	the	following	steps:

1.	 Normalize	and	visualize	the	median	signal	across	72	bands:

X	=	X./max(X(:));

%	visualize	median	signal	across	several	bands

surf(log(median(X,3)));	view(2);	

shading	interp;

axis	tight;

brighten(-.8);

%	annotate

title({['\color{red}False	Color	Image	\color{black}'	

...

		'showing	the	median'	...

		'\color{red}	hyperspectral	\color{black}data'],...

		['from	72	spectral	bands,	from	the	2010	oil	'	...

		'spill	in	the	Gulf	of	Mexico,',...

		'collected	at	2.2mGSD,	covering	390-2450nm,'	...

		'from	SpecTIR.']},'Fontsize',14);

The	output	is	as	follows:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

2.	 Alternately,	use	the	data	to	generate	RGB	values	and	create	a	false	color
image:

R	=	log(median(X,3));R	=	abs(R./max(abs(R(:))));

G	=	log(range(X.^2,3));G	=	abs(G./max(abs(G(:))));

B	=	log(median(X,3));B	=	abs(B./max(abs(B(:))));

d(:,:,1)	=	G;d(:,:,2)	=	B;d(:,:,3)	=	R;

image(d);

title('\color{red}False	Color	Image');

The	output	is	as	follows:

How	it	works…
The	ENVI	data	comes	in	pairs	with	a	.hdr	header	file	and	the	.dat	binary	datafile.
The	data	file	has	to	be	read	per	the	parameters	specified	in	the	header	file.	The
MATLAB	function	multibandread	takes	several	input	parameters	that	you	need	to
obtain	from	the	header	file	of	your	dataset	in	order	to	use	it	to	read	the	binary
dataset	as	was	shown	in	the	Getting	Ready	section.

While	most	of	the	parameters	needed	for	the	function	are	easily	identifiable	in	the
header	because	they	use	the	same	name,	for	two	parameters	in	particular,	you	have
to	convert	the	ENVI	values	to	a	corresponding	value	used	by	MATLAB.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Correspondence	between	ENVI	data	types	and	MATLAB	data	types	is	given	as
follows:

ENVI	data	type MATLAB	precision

1 1	byte	signed	integer	'int8'

2 2	byte	signed	integer	'int16'

3 4	byte	signed	integer	'int32'

4 4	byte	float	'float'

12 2	byte	unsigned	integer	'uint16'

Correspondence	between	ENVI	byte	order	and	MATLAB	byte	order	is	given	as
follows:

ENVI	byte	order MATLAB	byte	order

0 'ieee-le'

1 'ieee-be'

In	this	recipe,	you	first	used	the	median	data	across	72	spectral	bands	to	visualize
the	oil	spill	radiance	measurements.	Next,	you	generated	RGB	values	using	some
transformations	on	the	data	(you	could	also	split	available	data	into	groups	to	get
your	RGB	values).	Using	the	RGB	values,	you	generated	a	false	color	image.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Note
Takeaways	from	this	recipe:

Assemble	spectral	data	from	multiple	bands	into	a	single	visualization	scheme
for	detecting	features	of	interest	visible	in	one	or	more	of	the	large	number	of
spectral	bands

See	also
Look	up	MATLAB	help	on	the	multibandread.m	command.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Survey	plots
The	idea	of	survey	plots	is	to	present	heterogeneous	data	that	correspond	to	a
single	entity	in	a	way	that	facilitates	both	an	intra-dimensional	comparison	and
comparison	across	the	entities.	The	heterogeneous	data	dimensions	can	be	a	mix	of
spatial,	temporal,	numeric,	and	alphanumeric	values.

Getting	ready
The	data	in	this	recipe	represents	the	SAT	scores	and	crime	rates	reported	from
three	counties	across	five	locations.	A	county	is	allowed	two	data	points	to	allow
approximately	equal	areas	to	be	covered	by	each	point.	The	data	is	grouped	by	the
income	levels.	Additionally,	population	demographic	data	is	presented	in	the	graph	for
identifying	possible	correlations.	Load	the	data	as	follows:

load	customCountyData

How	to	do	it…
Perform	the	following	steps:

1.	 Layout	the	figure:

figure('units','normalized','position',[.04	.12	.6	

.8]);

axes('position',[0.0606				0.0515				0.9065				

0.8747]);

set(gcf,'color',[1	1	1],'paperpositionmode','auto');

2.	 Create	the	spatial	context	with	approximate	outlines	of	the	three	counties,
using	a	filled	set	of	polygons:

%	coordinate	definitions

x1	=	[2	3	4.5	3.5	2.5	1.5];y1	=	[1	1.5	3	4	3.5	2];

x2	=	[1.5	2.5	3.5	4	3	2];y2	=	[2	3.5	4	6	5.5	4.5];

x3	=	[4.5	3.5	4	5	5.5	5];y3	=	[3	4	6	5.5	5	4.5];

%	plot	the	counties	using	above	cords

patch([x1;	x2;	x3]',[y1;	y2;	y3]',...

		0.8*ones(length(x1),3),[.9	.9	.9],...

		'edgecolor',[1	1	1]);

hold;alpha(.9);

3.	 Create	the	five	data	origin	lines	in	the	z	direction	and	a	grid	connecting	these
lines	for	readability:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

%	x,y	locations	for	the	data	positions

x	=	[1.5	2			2.2	3.32			3.8	4.5	5.2];

y	=	[2			1.5	3.8	2.5			4			5			4.5];

%	draw	vertical	lines	at	the	data	positions

for	i	=	2:6

		line([x(i)	x(i)],[y(i)	y(i)],[1	11],...

				'Color',[.8	.8	.8]);

end

%	draw	connecting	grid	lines

for	i	=	2:11

		line([x(1:end-1);	x(2:end)],[y(1:end-1);	

y(2:end)],...

				i*ones(2,6),'Color',[.8	.8	.8]);

end

4.	 Declare	the	following	color	matrix	definitions:

%	cd	defines	the	colors	used	for	the	ethnicity

cd	=	[141	211	199;	255	255	179;	190	186	218;	...

		251	128	114;	128	177	211]/255;

%	ci	defines	the	colors	used	for	the	crime	rate

ci	=	[205	207	150;	254	178	76;	240	59	32]/255;

5.	 For	a	given	year	(indexed	by	j),	at	a	given	location	(indexed	by	i),	plot	a	set
of	lines	showing	the	income	groups	and	a	set	of	lines	showing	the	ethnic
makeup	at	that	position.	For	example,	for	i=2,	j=2.

i=2;	j=	2;

%	the	line	representing	the	ethnic	distribution

%	extends	along	the	y	axis

dt	=		[0	demgraphics{i-1}{j-1}/100];	

for	r	=	1:5	

		line([x(i)	x(i)],...

				[y(i)-1+sum(dt(1:r))	y(i)-1+sum(dt(1:r+1))],	...

				[j	j],'Color',cd(r,:),'Linewidth',5);

end

%	the	line	representing	the	income	groups

%	extends	along	the	x	axis

dt	=		[0	incomeGroups{i-1}{j-1}];

for	r	=	1:3

		xx1	=	x(i)+sum(dt(1:r))/2;

		xx2	=	x(i)+sum(dt(1:r+1))/2;

		line([xx1xx2],[y(i)	y(i)],	[j	j],...

				'Color',ci(r,:),'Linewidth',2);

end

6.	 On	the	lines	for	each	income	group,	draw	circles	of	area	proportional	to	the
average	SAT	scores	(above	the	lines)	and	crime	rates	(below	the	lines):

for	r	=	1:3

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

		xx1	=	x(i)+sum(dt(1:r))/2;

		xx2	=	x(i)+sum(dt(1:r+1))/2;

		switch(r)

		case	1

		scatter3((xx1+xx2)/2,y(i),...

				j+.2,100*AverageSATScoresLI(i-1,j-1),...

				ci(r,:),'filled');

		scatter3((xx1+xx2)/2,...

				y(i),j-.2,100*crimeRateLI(i-1,j-1),...

				ci(r,:),'filled');

		case	2

		scatter3((xx1+xx2)/2,y(i),j+.2,...

				100*AverageSATScoresMI(i-1,j-1),...

				ci(r,:),'filled');

		scatter3((xx1+xx2)/2,y(i),j-.2,...

				100*crimeRateMI(i-1,j-1),ci(r,:),'filled');

		case	3

		scatter3((xx1+xx2)/2,y(i),j+.2,...

				100*AverageSATScoresHI(i-1,j-1),...

				ci(r,:),'filled');

		scatter3((xx1+xx2)/2,y(i),j-.2,...

				100*crimeRateHI(i-1,j-1),ci(r,:),'filled');

		end

end

7.	 Set	the	view:

view(3);	

campos([14.7118		-42.0473			45.3905]);

axis	tight	off

8.	 Add	annotations:

annotation('textbox','position',[.27	.07	.68	.04],...

		'string',{['\color{red}Survey	plots	\color{black}'...

		'with	a	decade	of	Crime	Rate	and	SAT	'...	

		'scores	across	five	counties,'],...

		['split	by	Income	Group.	Also	shows'...

		'ethnic	makeup	of	the	data	locations.']},...

		'Fontsize',14,'linestyle','none');

%	Add	the	year	labels

for	i	=	2:11

		text(x(1),y(1),i,years{i-1});

		text(x(7),y(7),i,years{i-1});

end

%	Add	the	location	labels

for	i	=	2:6

		text(x(i),y(i),1,num2str(i-1),'fontsize',12);

end

9.	 Add	the	extensive	set	of	legends	using	hidden	axis,	lines,	and	associated	text
labels:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

axes('position',[.1107	.8478	.2881	.1347],...

		'Visible','off');

axis([0	.6	-.5	5.5]);

for	i	=	1:5

		line([0	.2],[5-(i-1)	5-(i-1)],'color',cd(i,:),...

				'Linewidth',5);

		text(.2,5	-	(i-1),lege{i},'Fontsize',12);

end

axes('position',[.3495	.8478	.2881		.1347],...

		'Visible','off');

axis([0	.6	-.5	5.5]);

for	i	=	1:3

	line([0	.2],[3-(i-1)	3-(i-1)],'color',ci(i,:),...

				'Linewidth',5);

	text(.2,3	-	(i-1),icleg{i},'Fontsize',12);

end

axes('position',[.5886	.8478	.2881	.1347]);hold	on;

line([0	.2],[.5	.5],'color',[0	0	0],'Linewidth',2);

scatter(.1,.5+.1,10,	[0	0	0],'filled');	

text(.2,.5+.1,'Average	SAT	Score	(per	income	

group)',...

		'Fontsize',12);

scatter(.1,.5-.1,100,[0	0	0],'filled');	

text(.2,.5-.1,'Crime	Rate	(per	income	group)',...

		'Fontsize',12);

axis([0	1	0	1]);

set(gca,'Visible','off');

The	output	is	as	follows:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

How	it	works…
The	graph	shows	that	over	the	decade	there	has	been	an	increase	in	the	Asian
population	at	locations	1	and	3.	The	mid	and	high	income	groups	have	consistently
had	a	higher	SAT	score	than	the	lower	income	groups	across	all	areas	and	times.
The	crime	rates	are	higher	in	the	lower	income	groups.	Other	details	emerge	from
this	representation	with	careful	review,	which	is	left	for	the	user	to	discover.

In	this	recipe,	you	used	the	patch	element	to	layout	the	county	map	outline	to	provide
a	spatial	context.	You	used	the	vertical	dimension	to	represent	the	time	series	at	each
location.	The	demographics	and	income	group	data	were	presented	as	fractions
contributing	to	the	length	of	a	line	with	color	coding	a	specific	category.	Two
additional	pieces	of	numerical	data	from	each	income	group	category	were	presented
using	area	of	circles	above	and	below	the	lines	in	corresponding	colors.

Note
Takeaways	from	this	recipe:

Use	the	concept	of	survey	plots	in	designing	your	displays	with	set	of
heterogeneous	information	about	an	entity	affording	intra-dimensional
comparisons	and	comparison	across	the	entities

See	also
Look	up	MATLAB	help	on	the	patch,	line,	and	legend	commands.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Glyphs
A	glyph	is	a	marker	that	has	the	features	of	the	marker	encoded	with	meaning.	For
example,	an	arrow	can	be	used	as	a	glyph	in	the	context	of	data	visualization.	The
length	of	the	arrow	can	depict	one	parameter;	the	orientation	of	the	arrow,	the
thickness	of	the	lines,	the	thickness	of	the	arrow	head,	and	the	color	in	which	it	is
drawn	are	all	legitimate	features	that	can	be	encoded	with	meaning	to	visualize	a
multi-dimensional	data	point.

Getting	ready
You	will	use	a	car	dataset	that	comes	with	the	MATLAB	installation.	It	has	attributes
such	as	acceleration,	number	of	cylinders,	displacement,	mileage,	horse	power,	and
weight	information	for	cars	with	different	models	and	from	different	manufacturers.

%	load	the	data

load	carsmall

dat	=	[Acceleration	Cylinders	Displacement	Horsepower	...

		MPG	Weight];

How	to	do	it…
In	this	recipe,	you	will	first	visualize	the	car	data	using	an	arrow	as	the	glyph.	In	later
sections,	you	will	use	the	MATLAB	function	glyphplot	that	comes	with	the	Statistical
ToolboxTM	to	visualize	this	same	data	with	two	other	types	of	glyphs,	namely	the	star
and	Chernoff	faces.

Perform	the	following	steps:

1.	 Construct	each	arrow	with	the	MATLAB	command	quiver,	and	change	the
appearance	of	the	arrow	based	upon	the	following	six	numerical	attribute
values	of	the	car	data	records:	acceleration,	displacement,	MPG,	cylinders,
horsepower,	and	weight:

%	layout	the	figure

figure('units','normalized','position',...

		[0.0010				0.1028				0.6443				0.8028]);

%	Because	you	will	use	color	as	one	of	the	graphical	

%	attributes	to	code	a	data	dimension,	set	the	climits

%	to	the	min	and	max	value	of	that	data	dimension

m	=	colormap;

climMat	=	[min(Weight)	max(Weight)];

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

%	choose	which	data	points	to	display	using	the	glyph

tryThese	=	[5	26	27	29	36	59	62	66];

%	generate	a	graphic	to	act	as	the	key	to	interpret	the		

%	rest	of	the	glyphs.	Label	the	meaning	of	the	start	

and	

%	end	points	of	the	glyph,	the	color,	line	width	and	

%	title;	specially	mark	it	gray	to	make	it	stand	out

subplot(3,3,1);

quiver(50,50,200,95,'Linewidth',2,'Color',...

		[0	0	0],'linestyle','--');

text(15,40,'Acceleration,	MPG');

text(100,150,'Displacement,	Horsepower');

xlim([0	350]);ylim([0	200]);

title({'\color{red}Glyph	Key',['\color{black}'...

'Linewidth	=	#cylinders']},'fontsize',12);

		set(gca,'color',[.9	.9	.9]);

%	plot	the	8	chosen	6	dimensional	data	with	the	glyph

for	ii	=	1:8

		subplot(3,3,ii+1);set(gca,'clim',climMat);	hold	on;

		i	=	tryThese(ii);	box	on;

		index	=	fix((Weight(i)-climMat(1))/...

				(climMat(2)-climMat(1))*63)+1;

		quiver(Acceleration(i),MPG(i),Displacement(i),...

				Horsepower(i),'Linewidth',Cylinders(i),...

				'Color',m(index,:));

		title({['\color{black}Model	=	\color{red}']...

				[deblank(Model(i,:))	'\color{black},']...

				['Year	=	\color{red}'	num2str(Model_Year(i,:))	

],...

				['\color{black}Mfg	=	\color{red}'	

deblank(Mfg(i,:))]...

				['\color{black},	Origin	=	\color{red}']...

				[deblank(Origin(i,:))]},'fontsize',12);	

		xlim([0	350]);ylim([0	200]);

end

%	add	a	color	bar	and	annotation

h=colorbar;

set(h,'position',[0.0323				0.1252				0.0073				

0.7172]);

ylabel(h,'Weight	of	car','fontsize',12);

annotation('textbox','position',...

		[0.2013				0.0256				0.5756				0.0323],...

		'string',{['Quiver	used	as	a		\color{red}glyph	']...

		['\color{black}	to	present	6	numerical	

properties']...

		['	associated	with	each	car']},...

		'fontsize',14,'linestyle','none');

The	output	is	as	follows:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

How	it	works...
The	command	quiver	was	used	to	construct	arrows	that	you	used	as	a	glyph	to
represent	the	six	dimensions	of	the	car	data.	The	coordinates	of	the	start	and	end	of
the	arrow,	the	line	thickness,	and	line	color	were	used	to	encode	information.	Look	at
the	glyph	key	in	shaded	plot	position	to	read	the	corresponding	glyphs.	Clearly,	the
cars	originating	in	USA	have	high	horsepower	and	displacement	values;	they	also
have	a	heavier	weight.

Glyphs	are	complicated	to	understand	and	a	clear	communication	of	the	glyph	key	is
essential	in	guiding	the	user	to	read	a	glyph.	Also,	note	that	while	it	allows	you	to	see
multiple	dimensions	at	once,	you	are	only	looking	at	one	data	record	at	a	time	with	a
glyph.	This	makes	high	numbers	of	records	difficult	to	see	together.	A	careful	choice
of	marker	or	glyph	style	may	mitigate	some	of	the	perception	challenge	evident	from
the	use	of	glyphs.	Use	techniques	such	as	the	Principal	Component	Analysis	to	rank
factors	or	transform	data	into	a	more	relevant	space,	so	that	the	features	with	the
greatest	discriminatory	power	can	be	utilized	to	represent	the	samples.

There's	more...
The	glyphplot	function	is	part	of	the	MATLAB	Statistics	Toolbox.	There	are	two
types	of	markers	that	you	can	use	with	this	command.	One	is	a	star	and	the	other	is
a	face.

A	star	plot	represents	each	observation	as	a	star	whose	ith	spoke	is	proportional	in
length	to	the	ith	coordinate	of	that	observation.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

The	command	standardizes	the	range	of	values	of	the	variables	by	shifting	and
scaling	each	column	separately	onto	the	interval	[0,	1]	before	making	the	plot.	It
centers	the	glyphs	on	a	rectangular	grid	that	is	as	close	to	square	as	possible.
glyphplot	treats	NaNs	in	the	data	vector	as	missing	values	and	does	not	plot	the
corresponding	rows.

Use	glyphplot	to	make	star	plots:

%set	up	the	figure

set(gcf,'units','normalized','position',...

		[0.3547				0.1306				0.5510				0.4041]);

set(gca,'position',...

		[0.0320				0.0035				0.9257				0.9965],'fontsize',12);

%	ready	the	data

x	=	[Acceleration	Cylinders	Displacement	Horsepower	...

		MPG	Weight];

varLabels	=	{'Acceleration','Cylinders','Displacement',...

		'Horsepower','MPG','Weight'};

%	the	default	glyph	used	by	glybphplot	is	of	type	star

h	=	glyphplot(x(tryThese(1:3),:),'standardize','column',...

		'obslabels',deblank(Model(tryThese(1:3),:)),...

		'grid',[1	3]);

%	get	the	xdata,	ydata	out	from	the	set	of	handles	returned	

%	by	glyph	plot

xdata=get(h(1,2),'XData');

ydata=get(h(1,2),'YData');

%	to	construct	the	glyph	key,	rotate	each	var	label	to	

%	align	with	the	spokes	of	the	star

r	=	[0	60	120	180	-120	-60];

for	i	=	1:6

		text(xdata(1,2+(i-1)*3),ydata(1,2+(i-1)*3),...

				varLabels{i},'rotation',r(i),'fontsize',12);

end

%	set	font	size	for	the	axis	of	each	star

set(h(1,3),'Fontsize',14);

set(h(2,3),'Fontsize',14);

set(h(3,3),'Fontsize',14);

%	set	the	view

axis	off

The	output	is	as	follows:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Next,	use	glyphplot	to	make	face	plots.	A	face	plot	represents	each	observation	as
a	face,	whose	ith	facial	feature	is	drawn	with	a	characteristic	proportional	to	the	ith
coordinate	of	that	observation.	A	total	of	17	features	of	the	face	(described	in	the
manual	pages)	can	be	used	to	encode	17	different	dimensions	of	a	data	point.	You
will	use	the	same	data	as	before.	This	time,	use	a	2	x	3	grid	layout	and	choose	a
specific	page	(such	as	page	3	here)	for	display:

glyphplot(x,'glyph','face',...

		'obslabels',Model,...

		'grid',[2	2],...

		'page',3);

The	output	is	as	follows	(use	table	for	the	facial	feature	to	data	attribute	mapping):

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Facial	feature Data	attribute

Size	of	face Acceleration

Forehead/jaw	relative	arc	length Cylinders

Shape	of	forehead Displacement

Shape	of	jaw Horsepower

Width	between	eyes MPG

Vertical	position	of	eyes Weight

Note
Takeaways	from	this	recipe:

Use	glyph	plots	to	visualize	high	dimensional	data.	Choose	dimensions	for
maximum	discrimination	by	using	techniques	such	as	the	PCA	to	transform	the
data	ranked	by	their	relative	importance.

See	also
Look	up	MATLAB	help	on	the	glyphplot	command.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Parallel	coordinates
Parallel	coordinate	plots	are	a	popular	way	to	visualize	multi-dimensional	numerical
data.	For	n	dimensions,	consider	n	points	along	the	xaxis.	The	y	axis	corresponds	to
the	normalized	range	of	values	for	each	dimension.	An	n-dimensional	data	record	is
represented	by	joining	the	points	(xi,	yi)	where	xi	=	1:	n	for	the	n	dimensions,	and	yi	is
the	normalized	value	of	the	ith	dimension	of	that	data	point.	If	the	range	of	values	for
all	dimensions	are	similar,	normalizing	across	all	the	records	for	each	dimension	is	not
necessary.

Getting	ready
You	will	use	the	car	dataset	that	comes	with	the	MATLAB	installation.	It	has	attributes
such	as	acceleration,	number	of	cylinders,	displacement,	mileage,	horsepower,	and
weight	information	for	cars	with	different	models	and	from	different	manufacturers:

%	load	the	data

load	carsmall

dat	=	[Acceleration	Cylinders	Displacement	Horsepower	...

		MPG	Weight];

How	to	do	it…
You	will	construct	the	parallel	coordinate	plot	using	the	function	parallelCoordPlot.m
that	comes	with	this	book.	Perform	the	following	steps:

1.	 Layout	the	figure:

figure('units','normalized','position',...

			[0.1214				0.2065				0.5234				0.6991]);

axes('position',[.0587			.1755			.6913			.7530]);

2.	 Format	the	input	parameters	for	the	parallel	coordinate	plotting	function:

%	need	to	normalize	each	data	dimension	

normalize=1;

%	create	the	group	Index	array	with	the	group	labels

%	of	same	size	as	the	number	of	datapoints

for	iiii=1:100

		hh{iiii}	=	deblank(Mfg(iiii,:));

end

yy=unique(hh);

for	iiii=1:100

		groupIndex(iiii)	=	find(strcmp(yy,hh(iiii)));

end

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

%	define	x	tick	labels

labl	=	{'Acceleration','Cylinders','Displacement',...

		'Horsepower','MPG','Weight'};

%	define	grouping	attribute	labels

legendLabel=yy;

3.	 Make	the	function	call	and	add	annotations:

parallelCoordPlot(dat,normalize,groupIndex	,...

		labl,legendLabel);box	on;

xlabel('Car	Attributes','Fontsize',14);

title({'	\color{red}Parallel	Coordinate	Plot	'},...

		'Fontsize',14);

The	output	is	as	follows:

How	it	works…
Parallel	coordinate	plots	allowed	you	to	visualize	the	six	numerical	dimensions	of	each
car	record	at	the	same	time.	The	previous	plot	shows	that	more	cylinders	means
worse	mileage	and	the	variance	caused	by	the	different	models	cannot	make	up	for
more	cylinders.	Also	Toyota	makes	more	fuel	efficient	cars	with	extra	cylinder	engines
than	Ford.

The	function	parallelCoordPlot	used	to	build	the	parallel	coordinate	plots	takes	an	m
x	n	data	matrix,	with	m	records	of	n	dimensions	each.	A	Boolean	input	parameter

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

normalize	controls	the	normalization	of	each	data	dimension	between	0	and	1.	The
parameter	groupIndex	can	be	the	index	of	the	variable	you	want	to	group	by,	for
coloring	purposes	(the	value	ranging	between	1	to	n),	or	you	can	provide	an	array	of
size	m	x	1	with	the	group	number	for	each	of	the	m	entries	(in	this	case,	unique	values
of	group	number	labels	will	range	from	1	to	k	for	k	groups	in	the	data).	In	this
example,	you	provided	groupIndex	as	an	array	of	the	same	size	as	the	number	of
data	points,	containing	the	labels	for	the	grouping	attribute,	a	unique	number
representing	the	name	of	the	manufacturer.	This	group	index	drives	the	line	coloring.
The	input	parameter	labl	is	an	array	of	strings	with	variable	names	(data	dimension
names)	to	be	used	as	x	tick	labels.	The	input	parameter	legendLabel	is	an	array	of
strings	with	labels	to	use	for	legend	entries	corresponding	to	the	desired	grouping.
The	last	argument,	colormapCustom	is	optional	and	takes	a	custom	color	map
definition.

To	enable	grouping	of	legend	entries,	such	that	one	legend	entry	corresponds	to
multiple	individually	constructed	lines,	you	do	the	following:

1.	 For	each	group,	you	set	the	IconDisplayStyle	property	to	off	for	all	sets	of
lines	drawn,	except	for	those	between	the	(n-1)th	and	nth	variable,	for	which
you	set	the	IconDisplayStyle	property	to	on.

2.	 Each	such	set	of	lines	with	theIconDisplayStyle	property	on	is	then	assigned
to	an	hggroup	object.

3.	 The	IconDisplayStyle	property	is	set	to	on	for	these	hggroup	objects.
4.	 The	legend	command	would	then	just	add	one	entry	per	hggroup	object.

Note
Takeaways	from	this	recipe:

Use	parallel	coordinate	plots	to	visualize	high	dimensional	data.	Normalize
each	data	dimension	between	0	and	1	(if	they	vary	largely	in	magnitude)	in
order	to	make	the	comparison	easy

See	also
Look	up	MATLAB	help	on	the	hggroup	and	legend	commands.	Check	out
parallelcoord,	part	of	the	statistics	toolbox,	for	constructing	parallel	coordinate	plots
with	a	single	MATLAB	command.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Tree	maps
Although	area-based	visualizations	are	perceptually	more	challenging	than	those
based	on	comparing	lines,	they	are	a	compact	way	to	look	at	high	dimensional	data.
Tree	maps,	which	is	the	type	of	display	you	will	use	in	this	recipe,	displays
hierarchical	(tree-structured)	data	as	a	set	of	nested	rectangles.	Each	branch	is	a
rectangle,	which	is	then	tiled	with	smaller	rectangles	representing	subbranches.	Many
tiling	algorithms	exist	as	options	for	doing	this.	Often	the	color	of	the	leaf	node	is	used
to	code	a	separate	dimension	of	the	data.	Several	algorithms	exist	to	organize	the
data	for	this	type	of	a	presentation	and	for	ensuring	that	the	area	units	are
approximately	square.	But	a	trade-off	must	be	made	between	the	aspect	ratio	and
the	order	of	placement	of	the	records.	If	the	order	is	emphasized,	the	aspect	ratio	is
degraded.	This	recipe	is	adopted	from	the	submission	by	Joe	Hicklin	on	MATLAB
Central	File	Exchange.

Getting	ready
This	recipe	shows	the	Gross	Domestic	Product	(in	millions	of	US	dollars)	across	100
countries.	The	data	was	obtained	from	OpenData	at	www.socrata.com.	Load	the
data:

gdp	=xlsread('GDP_By_Country_And_Continent_Treemap.csv',...

		'C2:C101');

[blah,	labels]	=	...	

		xlsread('GDP_By_Country_And_Continent_Treemap.csv',...

		'a2:a101');

How	to	do	it…
Perform	the	following	steps:

1.	 Set	the	color	scale:

m	=	colormap;

%set	the	color	limits

climMat=[min(log(gdp))	max(log(gdp))];

set(gca,'clim',climMat);

%	query	the	indices	into	the	color	map	corresponding	to		

%	the	data	values

index	=	fix((log(gdp)-climMat(1))/...

		(climMat(2)-climMat(1))*63)+1;

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

http://www.socrata.com

2.	 Compute	the	tree	map:

r	=	treemap(gdp);

3.	 Plot	the	results:

plotRectangles(r,labels,m(index,:));

4.	 Add	annotations:

h=colorbar('position',[.95	.03	.01	.89]);

ylabel(h,'log(Millions	of	US	Dollars)','fontsize',14);

title('\color{red}Tree	maps','fontsize',14);

The	output	is	as	follows:

How	it	works...
Tree	maps	offer	a	space	constrained	method	of	visualizing	large	volumes	of	data.	The
figure	shows	100	countries	with	the	area	representing	the	GDP	in	millions	of	US
dollars	and	the	color	representing	the	log	of	the	GDP	values	in	millions	of	US	dollars.

The	tree	map	algorithm	is	adopted	from	Hicklin's	submission	on	MATLAB	File
Exchange.	It	works	as	follows:

1.	 The	data	is	sorted	from	the	largest	to	the	smallest.
2.	 Then	a	row	or	column	is	laid	out	along	the	shortest	side	(w	or	h)	of	the

remaining	rectangle.
3.	 Blocks	are	added	to	this	new	row	or	column	until	adding	a	new	block	would

worsen	the	average	aspect	ratio	of	the	blocks	in	the	row	or	column.
4.	 Once	this	row	or	column	is	laid	out,	they	recurse	on	the	remaining	blocks	and

the	remaining	rectangle.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Note
Takeaways	from	this	recipe:

Use	tree	plots	as	a	compact	option	to	look	at	high	volume	of	data.	Be	aware
that	area	and	color	based	visualizations	pose	an	increased	perceptual
challenge

See	also
Look	up	MATLAB	help	on	the	treemap	and	plotrectangles	commands.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Andrews'	curves
The	idea	of	coding	and	representing	multivariate	data	by	curves	was	suggested	by
Andrews	in	1972.	Each	multivariate	observation	Xi	=	(Xi,1...	Xi,p)	is	transformed	into
a	curve,	such	that	the	observations	represent	the	coefficients	of	a	Fourier	series	for	t
Є	[0,	1].

Getting	ready
You	will	use	the	Fisher	iris	dataset	that	is	part	of	the	MATLAB	installation.	Load	the
data:

load	fisheriris

How	to	do	it…
Perform	the	following	steps:

1.	 Call	the	function	to	generate	the	curves:

[t	curves]	=	andrewsCurves(meas);

2.	 Group	by	the	class	labels	in	your	plot	to	demonstrate	that	different	class
labels	correspond	to	different	curve	clusters:

groupIndex	=	unique(species);

colors	=	[1	0	0;	0	1	0;	0	0	1];

hold	on;

for	i	=	1:length(groupIndex)

		idx	=	find(strcmp(species,groupIndex{i}));

		plot(t,curves(idx,:)','color',colors(i,:));

end

The	output	is	as	follows:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

How	it	works…
The	Fisher	iris	dataset	has	three	classes,	one	of	which	is	more	easily	separated	than
the	other	two.	This	property	clearly	holds	true	in	the	Andrews'	curve	visualization
space.	Note	that	the	order	of	variables	is	important.	A	different	order	may	not	render
the	classes	as	distinct	in	this	visualization	space.	It	is	recommended	that	you	use	a
technique	such	as	the	Principal	Component	Analysis	(PCA)	to	understand	how	to
order	the	variables	for	maximal	impact	(in	terms	of	bringing	out	the	similarities	and
differences)	between	the	data	points.

Note
Takeaways	from	this	recipe:

Use	Andrews'	curve	plots	to	transform	higher	dimensional	data	into	the
Fourier	series	space	for	visualization
Use	techniques	such	as	the	Principal	Component	Analysis	(PCA)	to	understand
how	to	order	the	variables	for	constructing	the	Andrews'	curves	for	maximal
differentiation

See	also
Check	out	andrewsplot.m,	part	of	the	statistics	toolbox,	as	an	alternative	method	for

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

constructing	Andrews'	curves.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Downsampling	for	fast	graphs
Visually,	it	is	difficult	to	perceive	beyond	a	certain	data	density.	This	recipe	illustrates
this	point	and	recommends	you	to	consider	downsampling	your	data	before	you
visualize	to	obtain	faster	rendering.

Getting	ready
In	this	recipe,	you	will	visualize	an	enormous	time	series	dataset	by	subsampling	or
downsampling	the	data.	The	data	will	be	binned	and	an	average	or	median	of	the
data	points	in	the	bin	will	be	used	to	represent	the	series.	Load	the	raw	data	and	plot
it:

dat	=	rand(10e6,1)	+	cos(linspace(0,360,10e6)'	...

		+	exp(rand(10e6,1)));

plot(dat);	box	on;	grid	on;

title({'The	raw	data	with	10	million	points'},...

		'Fontsize',14);

Here	is	how	the	original	looks,	and	takes	circa	.5	seconds	to	render:

How	to	do	it…
1.	 Down-sample	and	draw	the	new	series	with	connecting	lines:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

plot(1:100:10e6,dat(1:100:end),'r-');

Here	is	how	the	plot	looks	and	takes	circa	.01	seconds	to	render:

2.	 Bin	the	data	and	use	a	central	representative	from	each	bin	to	draw	the	data.
(Note	that	the	average	as	the	representative	point	may	not	always	be	a
suitable	strategy.	Here,	the	point	of	the	recipe	is	to	illustrate	that	a
representative	point	is	desirable,	rather	than	the	high	number	of	points	that
make	the	graphic	slow	but	does	not	add	to	the	information	content	of	the
graph.):

plot(dat);	box	on;	grid	on;cnt	=	1;cnt1=1;

while	cnt+100<10e6

		datbin(cnt1)	=	mean(dat(cnt:cnt+100));

		cnt	=	cnt	+	100;

		cnt1	=	cnt1	+	1;

end

plot(1:cnt1-1,datbin,'r');	box	on;	grid	on

Here	is	how	the	plot	looks	and	takes	circa	.02	seconds	to	render:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

How	it	works…
This	recipe	shows	using	a	representative	point	in	a	high	data	density	situation
captures	most	of	the	features	of	the	dataset.	All	10	million	points	are	not	really
necessary	to	observe	the	variation	present	in	this	dataset.	Note	that	subsampling	at
steps	higher	than	the	inverse	of	the	highest	frequency	component	in	the	data	will
result	in	a	loss	of	information	(as	it	will	violate	the	Nyquist	sampling	theory).	However,
for	most	practical	purposes,	a	sufficient	downsampling	interval	should	be	investigated
to	make	the	visualization	faster	and	more	responsive	to	interaction	with	the	graphics.

Note
Takeaways	from	this	recipe:

Use	the	minimum	number	of	sample	points	to	convey	the	information	contained
in	your	data	to	obtain	the	fastest	rendering

See	also
Look	up	Nyquist	Sampling	Theory	for	more	information	on	allowed	limits	on
downsampling.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Principal	Component	Analysis
Principal	Component	Analysis	(PCA)	uses	an	orthogonal	transformation	to	convert
a	set	of	observations	of	one	plus	variables	into	a	set	of	values	of	linearly
uncorrelatedvariables	called	principal	components.	It	offers	an	excellent	way	to	select
the	most	relevant	data	dimension	for	further	analysis	and	visualization.

Getting	ready
You	will	be	looking	at	a	dataset	with	records	of	the	metallic	composition	of	glass	from
a	variety	of	sources.	This	was	downloaded	from	the	UCI	Machine	learning	database.
Prepare	the	data	as	follows:

fid	=	fopen('GLASS.txt');

C	=	textscan(fid,	'%d,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f');

fclose(fid);

%	arrange	relevant	data	into	a	matrix	format,	

%	first	position	ignored	as	it	is	a	positional	index

data	=	reshape(cell2mat({C{2:11}}'),214,10);

How	to	do	it…
Perform	the	following	steps:

1.	 Layout	the	figure:

set(gcf,'units','normalized','position',...

[.21	.22	.43	.69]);	hold	on;

2.	 Perform	PCA:

[coeff,	score,	latent,	tsquared]	=	...

		princomp(data(:,1:9));

3.	 Prepare	the	labeling	for	your	legend:

glassTypes	=	[1	2	3	5	6	7];

glassTypesStr	=	{'building	windows	_{float	

processed}',...

		'building	windows_{non-float	processed}',...	

		'vehicle	windows_{float	processed}',...	

		'vehicle_{windows_non_float_processed}',...	

		'containers','tableware',	'headlamps'};

4.	 Select	a	color	palette	to	color	each	marker	by	glass	type:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

colors	=	colormap;

colors	=	...

		colors(round(linspace(1,64,length(glassTypes))),:);

5.	 Investigate	the	data	in	the	space	of	the	first	two	components:

for	i	=	1:length(glassTypes)

		idx=find(data(:,10)==glassTypes(i));

		plot(score(idx,1),score(idx,2),'.',...

				'Markersize',30,'Color',colors(i,:));	

end

box	on;	grid	on;

6.	 Add	annotation:

legend(glassTypesStr(glassTypes),'position',...

		[0.0506				0.0756				0.3429				0.2066]);

set(gca,'Fontsize',12);

xlabel('Principal	Component	1','Fontsize',12);

ylabel('Principal	Component	2','Fontsize',12);

title('Data	Viewed	in	the	first	2	PC	

Space','Fontsize',12);

The	output	is	as	follows:

7.	 Assess	the	contribution	from	each	principal	component	to	the	total	variance	in
the	dataset:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

plot(latent,'.-');	

title(['Contribution	from	each	principal	component	to'	

...

		'the	total	variance	of	the	data'],'Fontsize',	12);

xlabel(['Principal	Components	ordered	by	Eigen'...	

		'values'],'Fontsize',12);

ylabel('Variance	contribution','Fontsize',12);

The	output	is	as	follows:

How	it	works…
The	previous	output	shows	that	at	least	the	first	four	components	of	this	dataset
contribute	significantly	to	the	total	variance	in	the	dataset.	This	implies	that	the	prior
output	you	constructed	with	the	first	two	components	is	not	really	sufficient	to
segregate	the	data	into	the	self-contained	groups.	This	is	borne	out	by	the	mixed
population	of	the	clusters	shown	in	that	output.

Principal	Component	Analysis	(PCA)	uses	an	orthogonal	transformation	to	convert	a
set	of	observations	of	one	plus	variables	into	a	set	of	values	of	linearly	uncorrelated
variables	called	principal	components.	The	number	of	principal	components	is	less
than	or	equal	to	the	number	of	original	variables.	The	first	principal	component
accounts	for	as	much	of	the	variability	in	the	data	as	possible,	and	each	succeeding
component	in	turn	has	the	highest	variance	possible	under	the	constraint	that	it	be
orthogonal	to	the	preceding	components.	Principal	components	are	guaranteed	to	be
independent	only	if	the	dataset	is	jointly,	normally	distributed.	PCA	is	sensitive	to	the

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

relative	scaling	of	the	variables.	The	main	advantage	of	using	a	PCA	is	that	it	offers	a
way	to	select	the	most	relevant	and	economical	set	of	dimensions	to	represent	your
data	for	further	analysis	and	visualization.

There's	more...
MATLAB	provides	the	function	biplot	for	visualizing	the	scores	along	with	the
principal	component	coefficients	as	follows:

biplot(coeff(:,1:2),'Scores',	score(:,1:2));

The	output	is	as	follows:

biplot	allows	you	to	visualize	the	magnitude	and	sign	of	each	variable's	contribution
to	the	first	two	(or	three)	principal	components,	and	how	each	observation	is
represented	in	terms	of	those	components.	biplot	imposes	a	sign	convention,	forcing
the	element	with	the	largest	magnitude	in	each	column	of	coeffs	to	be	positive.	This
flips	some	of	the	vectors	in	coeffs	to	the	opposite	direction,	but	often	makes	the	plot
easier	to	read.	Interpretation	of	the	plot	is	unaffected,	because	changing	the	sign	of	a
coefficient	vector	does	not	change	its	meaning.

Note
Takeaways	from	this	recipe:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Use	Principal	Component	Analysis	to	transform	your	data	to	facilitate
visualization	in	terms	of	the	most	impactful	few	variables

See	also
Look	up	MATLAB	help	on	the	princomp	and	biplot	commands.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Radial	Coordinate	Visualization
Radial	Coordinate	Visualization	maps	m	dimensional	points	to	a	2D	space	using	a
nonlinear	mapping.	The	idea	is	to	consider	a	point	in	2D	space	connected	to	m
equally	spaced	points	on	a	circle	with	springs.	Now,	each	of	the	m	dimensions	of	the
data	point	is	considered	to	be	the	spring	constant	for	the	corresponding	spring.	If	the
central	data	point	is	allowed	to	move	and	reach	equilibrium	position,	this	would	then
be	the	mapping	of	the	m	dimensional	data	points	onto	2D	space.	In	order	to
determine	the	location	of	the	data	point,	the	sum	of	the	spring	forces	needs	to	equal
zero.

Getting	ready
You	will	use	the	cancer	gene	expression	dataset	that	is	provided	as	part	of	this	book
that	constitutes	198	samples	with	gene	expression	levels	from	16063	genes.	This
data	was	downloaded	from	the	machine	learning	data	repository	maintained	by	the
Department	of	Statistics	at	Stanford	University.	Load	the	dataset,	and	put	the	test
and	train	data	together	into	one	dataset:

load	14cancer.mat

data	=	[Xtest;	Xtrain];

How	to	do	it…
Perform	the	following	steps:

1.	 Layout	the	figure:

set(gcf,'units','normalized','position',...

		[.30	.35	.35	.55]);

2.	 Normalize	the	data	per	variable	between	0	and	1:

for	i	=	1:size(data,2)

		data(:,i)	=	data(:,i)./range(data(:,i));

end

3.	 Calculate	the	Radial	Coordinate	Visualization:

[uxuy]	=	radviz(data);

4.	 Select	a	color	palette	to	color	each	marker	by	cancer	type:

colors	=	colormap;

colors	=	colors(round(linspace(1,64,14)),:);

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

5.	 Plot	the	2D	projection	data	with	marker	color	determined	by	cancer	type:

hold	on;

for	i	=	1:14

		mm=find([ytestLabelsytestLabels]==i);

		plot(ux(mm),uy(mm),'.','Markersize',30,'color',...

				colors(i,:));

end

6.	 Plot	a	radial	border:

plot(cos((pi/180)*linspace(0,360,361)),...

		

sin((pi/180)*linspace(0,360,361)),'.','markersize',2);

7.	 Add	annotation:

legend(strtrim(classLabels),'location','bestoutside');

set(gca,'Fontsize',12);

title({['\color{red}Radial	Coordinate	Visualization'...

		'\color{black}.	16063	gene	expression	'],...

		'levels	per	sample	plotted	in	2D	space',...

		['Figure	shows	this	data	is	not	separable	in'...

		'2D	space'],''},'Fontsize',12);

8.	 Set	the	view:

axis	equal	square

set(gcf,'color',[1	1	1],'paperpositionmode','auto');

The	output	is	as	follows:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

How	it	works…
The	figure	shows	that	the	198	samples	with	16063	dimensions	are	not	separable	in
2D	space.	Note	that	for	m	variables,	there	are	effectively	(m-1)!	/	2	possible
projections	and	not	just	one.	The	choice	of	a	projection	can	be	made	dependent	on
maximizing	the	variance	of	the	data	points	in	2D	space	(such	that	there	is	maximal
separation	between	objects).	Or,	one	can	use	one	of	the	nearest-neighbor	distance
based	criteria.	Note	that	the	number	of	options	to	search	for	optimization	increases
very	rapidly	with	m.	Clearly	investigation	into	optimization	heuristics	for	this	problem	is
necessary	for	applying	to	cases	with	large	m.	The	drawback	of	this	visualization	is	the
over	plotting	problem.	However,	as	indicated	above,	a	suitable	criterion	for	selecting
one	projection	over	the	other	can	help	this	scheme	to	become	more	revealing.

The	function	radviz.m	is	provided	for	you	to	adopt	this	visualization	for	your	dataset.

Note
Takeaways	from	this	recipe:

Use	Radial	Coordinate	Visualization	to	project	high	dimensional	data	onto	2D
(or	3D)	space

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

See	also
Look	up	projection	pursuit,	independent	component	analysis,	targeted	projection
pursuit,	and	grand	tour	as	alternate	data	reduction	strategies	for	visualization.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Chapter	7.	Creating	Interactive
Graphics	and	Animation
In	this	chapter,	we	will	cover:

Callback	functions
Obtaining	user	input	from	the	graph
Linked	axes	and	data	brushing
The	magnifying	glass	demo
Animation	with	playback	of	frame	captures
Stream	particle	animation
Animation	by	incremental	changes	to	chart	elements

Introduction
This	chapter	showcases	MATLAB's	capabilities	for	creating	interactive	graphics	and
animations	.	A	static	graphic	is	essentially	two	dimensional.	The	ability	to	rotate	the
axes	and	change	the	view,	add	annotations	in	real	time,	delete	data,	and	zoom	in	or
zoom	out	adds	significantly	to	the	user	experience,	as	the	brain	is	able	to	process
and	see	more	from	that	interaction	(see	Appendix,	References	for	related	literature).
MATLAB	supports	interactivity	with	the	standard	zoom,	pan	features,	a	powerful	set
of	camera	tools	to	change	the	data	view,	data	brushing,	and	axes	linking.	The	set	of
functionalities	accessible	from	the	figure	and	camera	toolbars	are	outlined	briefly	as
follows:

The	steps	of	interactive	exploration	can	also	be	recorded	and	presented	as	an
animation.	This	is	very	useful	to	demonstrate	the	evolution	of	the	data	in	time	or
space	or	along	any	dimension	where	sequence	has	meaning.	In	Chapter	5,	Playing	in
the	Big	Leagues	with	Three-dimensional	Data	Displays,	you	programmatically	moved
the	figure	camera	in	a	series	of	steps	creating	an	animation	with	a	sequence	of
different	data	views	which	proved	a	very	effective	method	for	data	exploration.	Note
that	some	recipes	in	this	chapter	may	require	you	to	run	the	code	from	the	source

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

code	files	as	a	whole	unit	because	they	were	developed	as	functions.	As	functions,
they	are	not	independently	interpretable	using	the	separate	code	blocks
corresponding	to	each	step.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Callback	functions
A	mouse	drag	movement	from	the	top-left	corner	to	bottom-right	corner	is	commonly
used	for	zooming	in	or	selecting	a	group	of	objects.	You	can	also	program	a	custom
behavior	to	such	an	interaction	event,	by	using	a	callback	function	.	When	a	specific
event	occurs	(for	example,	you	click	on	a	push	button	or	double-click	with	your
mouse),	the	corresponding	callback	function	executes.	Many	event	properties	of
graphics	handle	objects	can	be	used	to	define	callback	functions.

In	Chapter	5,	Playing	in	the	Big	Leagues	with	Three-dimensional	Data	Displays,	in
two	recipes,	namely,	Slice	(cross	sectional	views)	and	Isosurface,	Isonormals,	and
Isocaps,	you	used	a	slider	element	to	get	input	from	the	user	on	where	to	create	the
slice	or	an	isosurface	for	3D	exploration.	In	this	recipe,	you	will	write	callback
functions	which	are	essential	to	implement	this	kind	of	behavior.	You	will	also	see
options	available	to	share	data	between	the	calling	and	callback	functions.

Getting	started
In	Chapter	6,	Designing	for	Higher	Data	Dimensions,	a	graphic	was	designed	that
displayed	numerical	data	within	their	spatial	context.	That	graphic	is	extended	in	this
example	by	allowing	the	user	to	interact	with	the	data	by	selecting	the	data	to	be
displayed	from	a	custom	menu	item.

Load	the	dataset.	Split	the	data	into	two	main	sets—userdataA	is	a	structure	with
variables	related	to	the	demographics	and	userdataB	is	a	structure	with	variables
related	to	the	Income	Groups.	Now	create	a	nested	structure	with	these	two	data
structures	as	shown	in	the	following	code	snippet:

load	customCountyData

userdataA.demgraphics	=	demgraphics;

userdataA.lege	=	lege;

userdataB.incomeGroups	=	incomeGroups;

userdataB.crimeRateLI	=	crimeRateLI;

userdataB.crimeRateHI	=	crimeRateHI;

userdataB.crimeRateMI	=	crimeRateMI;

userdataB.AverageSATScoresLI	=	AverageSATScoresLI;

userdataB.AverageSATScoresMI	=	AverageSATScoresMI;

userdataB.AverageSATScoresHI	=	AverageSATScoresHI;

userdataB.icleg	=	icleg;

userdataAB.years	=	years;

userdataAB.userdataA	=	userdataA;

userdataAB.userdataB	=	userdataB;

How	to	do	it...
Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Perform	the	following	steps:

1.	 Run	this	as	a	function	at	the	console:

c3165_07_01_callback_functions

2.	 A	figure	is	brought	up	with	a	non-standard	menu	item	as	highlighted	in	the
following	screenshot.	Select	the	By	Population	item:

Here	is	the	resultant	figure:

3.	 Continue	to	explore	the	other	options	to	fully	exercise	the	interactivity	built	into
this	graphic.

How	it	works...
The	function	c3165_07_01_callback_functions	works	as	follows:

A	custom	menu	item	Data	Groups	is	created,	with	additional	submenu	items—By
population,	By	Income	Groups,	or	Show	all.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

%	add	main	menu	item

f	=	uimenu('Label','Data	Groups');

%	add	sub	menu	items	with	additional	parameters

uimenu(f,'Label','By		Population','Callback','showData',...

		'tag','demographics','userdata',userdataAB);

uimenu(f,'Label','By	IncomeGroups',...

		'Callback','showData','tag','IncomeGroups',...

		'userdata',userdataAB);

uimenu(f,'Label','ShowAll','Callback','showData',...

		'tag','together','userdata',userdataAB);

You	defined	the	tag	name	and	the	callback	function	for	each	submenu	item	above.
Having	a	tag	name	makes	it	easier	to	use	the	same	callback	function	with	multiple
objects	because	you	can	query	the	tag	name	to	find	out	which	object	initiated	the	call
to	the	callback	function	(if	you	need	that	information).	In	this	example,	the	callback
function	behavior	is	dependent	upon	which	submenu	item	was	selected.	So	the	tag
property	allowed	you	to	use	the	single	function	showData	as	callback	for	all	three
submenu	items	and	still	implement	submenu	item	specific	behavior.	Alternately,	you
could	also	register	three	different	callback	functions	and	use	no	tag	names.

You	can	specify	the	value	of	a	callback	property	in	three	ways.	Here,	you	gave	it	a
function	handle.	Alternately,	you	can	supply	a	string	that	is	a	MATLAB	command	that
executes	when	the	callback	is	invoked.	Or,	a	cell	array	with	the	function	handle	and
additional	arguments	as	you	will	see	in	the	next	section.

For	passing	data	between	the	calling	and	callback	function,	you	also	have	three
options.	Here,	you	set	the	userdata	property	to	the	variable	name	that	has	the	data
needed	by	the	callback	function.	Note	that	the	userdata	is	just	one	variable	and	you
passed	a	complicated	data	structure	as	userdata	to	effectively	pass	multiple	values.
The	user	data	can	be	extracted	from	within	the	callback	function	of	the	object	or
menu	item	whose	callback	is	executing	as	follows:

userdata	=	get(gcbo,'userdata');

The	second	alternative	to	pass	data	to	callback	functions	is	by	means	of	the
application	data.	This	does	not	require	you	to	build	a	complicated	data	structure.
Depending	on	how	much	data	you	need	to	pass,	this	later	option	may	be	the	faster
mechanism.	It	also	has	the	advantage	that	the	userdata	space	cannot	inadvertently
get	overwritten	by	some	other	function.	Use	the	setappdata	function	to	pass	multiple
variables.	In	this	recipe,	you	maintained	the	main	drawing	area	axis	handles	and	the
custom	legend	axis	handles	as	application	data.

setappdata(gcf,'mainAxes',[]);

setappdata(gcf,'labelAxes',[]);

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

This	was	retrieved	each	time	within	the	executing	callback	functions,	to	clear	the
graphic	as	new	choices	are	selected	by	the	user	from	the	custom	menu.

mainAxesHandle	=	getappdata(gcf,'mainAxes');

labelAxesHandles	=	getappdata(gcf,'labelAxes');

if	~isempty(mainAxesHandle),	

		cla(mainAxesHandle);	

		[mainAxesHandle,	x,	y,	ci,	cd]	=	...

					redrawGrid(userdata.years,	mainAxesHandle);

else

		[mainAxesHandle,	x,	y,	ci,	cd]	=	...

				redrawGrid(userdata.years);

end

if	~isempty(labelAxesHandles)	

		for	ij	=	1:length(labelAxesHandles)

				cla(labelAxesHandles(ij));

		end

end

The	third	option	to	pass	data	to	callback	functions	is	at	the	time	of	defining	the
callback	property,	where	you	can	supply	a	cell	array	with	the	function	handle	and
additional	arguments	as	you	will	see	in	the	next	section.	These	are	local	copies	of
data	passed	onto	the	function	and	will	not	affect	the	global	values	of	the	variables.

The	callback	function	showData	is	given	below.	Functions	that	you	want	to	use	as
function	handle	callbacks	must	define	at	least	two	input	arguments	in	the	function
definition:	the	handle	of	the	object	generating	the	callback	(the	source	of	the	event),
the	event	data	structure	(can	be	empty	for	some	callbacks).

function	showData(src,	evt)				

userdata	=	get(gcbo,'userdata');

if	strcmp(get(gcbo,'tag'),'demographics')			

		%	Call	grid		f	drawing	code	block

		%	Call	showDemographics	with	relevant	inputs

elseif	strcmp(get(gcbo,'tag'),'IncomeGroups')

		%	Call	grid	drawing	code	block

		%	Call	showIncomeGroups	with	relevant	inputs

else

		%	Call	grid	drawing	code	block

		%	Call	showDemographics	with	relevant	inputs

		%	Call	showIncomeGroups	with	relevant	inputs

end

function	labelAxesHandle	=	...

				showDemographics(userdata,	mainAxesHandle,	x,	y,	cd)				

		%	Function	specific	code

end

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

function	labelAxesHandle	=	...

				showIncomeGroups(userdata,	mainAxesHandle,	x,	y,	ci)

		%	Function	specific	code		

end

function	[mainAxesHandle	x	y	ci	cd]	=	...

				redrawGrid(years,	mainAxesHandle)

		%	Grid	drawing	function	specific	code				

end

end

Explanations	on	the	details	of	the	actual	plotting	of	the	data	are	the	same	as	in	recipe
in	Chapter	6,	Survey	Plots,	where	the	static	version	of	this	recipe	is	presented.

There's	more...
This	section	demonstrates	the	third	option	to	pass	data	to	callback	functions	by
supplying	a	cell	array	with	the	function	handle	and	additional	arguments	at	the	time	of
defining	the	callback	property.	Add	a	fourth	submenu	item	as	follows	(uncomment	line
45	of	the	source	code):

uimenu(f,'Label',...

		'Alternative	way	to	pass	data	to	callback',...

		'Callback',{@showData1,userdataAB},'tag','blah');

Define	the	showData1	function	as	follows	(uncomment	lines	49	to	51	of	the	source
code):

function	showData1(src,	evt,	arg1)

		disp(arg1.years);

end

Execute	the	function	and	see	that	the	value	of	the	years	variable	are	displayed	at	the
MATLAB	console	when	you	select	the	last	submenu	Alternative	way	to	pass	data	to
callback	option.

Note
Takeaways	from	this	recipe:

Use	callback	functions	to	define	custom	responses	for	each	user
interaction	with	your	graphic
Use	one	of	the	three	options	for	sharing	data	between	calling	and	callback

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

functions—pass	data	as	arguments	with	the	callback	definition,	or	via	the	user
data	space,	or	via	the	application	data	space,	as	appropriate

See	also
Look	up	MATLAB	help	on	the	setappdata,	getappdata,	userdata	property,	callback
property,	and	uimenu	commands.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Obtaining	user	input	from	the	graph
User	input	may	be	desired	for	annotating	data	in	terms	of	adding	a	label	to	one	or
more	data	points,	or	allowing	user	settable	boundary	definitions	on	the	graphic.	This
recipe	illustrates	how	to	use	MATLAB	to	support	these	needs.

Getting	started
The	recipe	shows	a	two-dimensional	dataset	of	intensity	values	obtained	from	two
different	dye	fluorescence	readings.	There	are	some	clearly	identifiable	clusters	of
points	in	this	2D	space.	The	user	is	allowed	to	draw	boundaries	to	group	points	and
identify	these	clusters.	Load	the	data:

load	clusterInteractivData

The	imellipse	function	from	the	MATLAB	image	processing	ToolboxTM	is	used	in
this	recipe.	Trial	downloads	are	available	from	their	website.

How	to	do	it...
The	function	constitutes	the	following	steps:

1.	 Set	up	the	user	data	variables	to	share	the	data	between	the	callback
functions	of	the	push	button	elements	in	this	graph:

userdata.symbChoice	=	{'+','x','o','s','^'};

userdata.boundDef	=	[];

userdata.X	=	X;

userdata.Y	=	Y;

userdata.Calls	=	ones(size(X));

set(gcf,'userdata',userdata);

2.	 Make	the	initial	plot	of	the	data:

plot(userdata.X,userdata.Y,'k.','Markersize',18);	

hold	on;

3.	 Add	the	push	button	elements	to	the	graphic:

uicontrol('style','pushbutton',...

		'string','Add	cluster	boundaries?',	...

		'Callback',@addBound,	...

		'Position',	[10	21	250	20],'fontsize',12);

uicontrol('style','pushbutton',	...				

		'string','Classify',	...

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

		'Callback',@classifyPts,	...

		'Position',	[270	21	100	20],'fontsize',12);

uicontrol('style','pushbutton',	...

		'string','Clear	Boundaries',	...

		'Callback',@clearBounds,	...

		'Position',	[380	21	150	20],'fontsize',12);

4.	 Define	callback	for	each	of	the	pushbutton	elements.	The	addBound	function
is	for	defining	the	cluster	boundaries.	The	steps	are	as	follows:

%	Retrieve	the	userdata	data	

userdata	=	get(gcf,'userdata');					

%	Allow	a	maximum	of	four	cluster	boundary	definitions

if	length(userdata.boundDef)>4

		msgbox('A	maximum	of	four	clusters	allowed!');

		return;

end

%	Allow	user	to	define	a	bounding	curve

h=imellipse(gca);		

%	The	boundary	definition	is	added	to	a	cell	array	with		

%	each	element	of	the	array	storing	the	boundary	def.	

userdata.boundDef{length(userdata.boundDef)+1}	=	...

		h.getPosition;

set(gcf,'userdata',userdata);				

5.	 The	classifyPts	function	draws	points	enclosed	in	a	given	boundary	with	a
unique	symbol	per	boundary	definition.	The	logic	used	in	this	classification
function	is	simple	and	will	run	into	difficulties	with	complex	boundary
definitions.	However,	that	is	ignored	as	that	is	not	the	focus	of	this	recipe.
Here,	first	find	points	whose	coordinates	lie	in	the	range	defined	by	the
coordinates	of	the	boundary	definition.	Then,	assign	a	unique	symbol	to	all
points	within	that	boundary:

for	i	=	1:length(userdata.boundDef)

		pts	=	...

		find((userdata.X>(userdata.boundDef{i}(:,1)))&	...	

				(userdata.X<(userdata.boundDef{i}(:,1)+	...

				userdata.boundDef{i}(:,3)))	&...																								

				(userdata.Y>(userdata.boundDef{i}(:,2)))&	...		

				(userdata.Y<(userdata.boundDef{i}(:,2)+	...

				userdata.boundDef{i}(:,4))));

		userdata.Calls(pts)	=	i;		

		plot(userdata.X(pts),userdata.Y(pts),	...

				[userdata.colorChoice{i}	'.'],	...

				'Markersize',18);	hold	on;

end

6.	 The	clearBounds	function	clears	the	drawn	boundaries	and	removes	the
Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

clustering	based	upon	those	boundary	definitions.

function	clearBounds(src,	evt)

		cla;

		userdata	=	get(gcf,'userdata');

		userdata.boundDef	=	[];

		set(gcf,'userdata',userdata);

		plot(userdata.X,userdata.Y,'k.','Markersize',18);	

		hold	on;

end

7.	 Run	the	code	and	define	cluster	boundaries	using	the	mouse.	Note	that	until
you	click	the	on	the	Classify	button,	classification	does	not	occur.	Here	is	a
snapshot	of	how	it	looks	(the	arrow	and	dashed	boundary	is	used	to	depict
the	cursor	movement	from	user	interaction):

8.	 Initiate	a	classification	by	clicking	on	Classify.

The	graph	will	respond	by	re-drawing	all	points	inside	the	constructed
boundary	with	a	specific	symbol:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

How	it	works...
This	recipe	illustrates	how	user	input	is	obtained	from	the	graphical	display	in	order	to
impact	the	results	produced.	The	image	processing	toolbox	has	several	such
functions	that	allow	user	to	provide	input	by	mouse	clicks	on	the	graphical	display—
such	as	imellipse	for	drawing	elliptical	boundaries,	and	imrect	for	drawing
rectangular	boundaries.	You	can	refer	to	the	product	pages	for	more	information.

Note
Takeaways	from	this	recipe:

Obtain	user	input	directly	via	the	graph	in	terms	of	data	point	level	annotations
and/or	user	settable	boundary	definitions

See	also
Look	up	MATLAB	help	on	the	imlineimpoly,	imfreehandimrect,	and
imellipseginput	commands.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Linked	axes	and	data	brushing
MATLAB	allows	creation	of	programmatic	links	between	the	plot	and	the	data
sources	and	linking	different	plots	together.	This	feature	is	augmented	by	support	for
data	brushing,	which	is	a	way	to	select	data	and	mark	it	up	to	distinguish	from	others.
Linking	plots	to	their	data	source	allows	you	to	manipulate	the	values	in	the	variables
and	have	the	plot	automatically	get	updated	to	reflect	the	changes.	Linking	between
axes	enables	actions	such	as	zoom	or	pan	to	simultaneously	affect	the	view	in	all
linked	axes.	Data	brushing	allows	you	to	directly	manipulate	the	data	on	the	plot	and
have	the	linked	views	reflect	the	effect	of	that	manipulation	and/or	selection.	These
features	can	provide	a	live	and	synchronized	view	of	different	aspects	of	your	data.

Getting	ready
You	will	use	the	same	cluster	data	as	the	previous	recipe.	Each	point	is	denoted	by
an	x	and	y	value	pair.	The	angle	of	each	point	can	be	computed	as	the	inverse
tangent	of	the	ratio	of	the	y	value	to	the	x	value.	The	amplitude	of	each	point	can	be
computed	as	the	square	root	of	the	sum	of	squares	of	the	x	and	y	values.	The	main
panel	in	row	1	show	the	data	in	a	scatter	plot.	The	two	plots	in	the	second	row	have
the	angle	and	amplitude	values	of	each	point	respectively.	The	fourth	and	fifth	panels
in	the	third	row	are	histograms	of	the	x	and	y	values	respectively.	Load	the	data	and
calculate	the	angle	and	amplitude	data	as	described	earlier:

load	clusterInteractivData

data(:,1)	=	X;

data(:,2)	=	Y;

data(:,3)	=	atan(Y./X);

data(:,4)	=	sqrt(X.^2	+	Y.^2);

clear	X	Y	

How	to	do	it...
Perform	the	following	steps:

1.	 Plot	the	raw	data:

axes('position',[.3196	.6191	.3537	.3211],	...

		'Fontsize',12);	

scatter(data(:,1),	data(:,2),'ks',	...

		'XDataSource','data(:,1)','YDataSource','data(:,2)');

box	on;

xlabel('Dye	1	Intensity');

ylabel('Dye	1	Intensity');title('Cluster	Plot');

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

2.	 Plot	the	angle	data:

axes('position',[.0682	.3009	.4051	.2240],	...

		'Fontsize',12);	

scatter(1:length(data),data(:,3),'ks',...

		'YDataSource','data(:,3)');

box	on;

xlabel('Serial	Number	of	Points');

title('Angle	made	by	each	point	to	the	x	axis');

ylabel('tan^{-1}(Y/X)');

3.	 Plot	the	amplitude	data:

axes('position',[.5588	.3009	.4051	.2240],	...

		'Fontsize',12);	

scatter(1:length(data),data(:,4),'ks',	...

		'YDataSource','data(:,4)');

box	on;

xlabel('Serial	Number	of	Points');

title('Amplitude	of	each	point');

ylabel('{\surd(X^2	+	Y^2)}');

4.	 Plot	the	two	histograms:

axes('position',[.0682	.0407	.4051	.1730],	...

		'Fontsize',12);

hist(data(:,1));	title('Histogram	of	Dye	1	

Intensities');

axes('position',[.5588	.0407	.4051	.1730],	...

		'Fontsize',12);

hist(data(:,2));	

title('Histogram	of	Dye	2	Intensities');

The	output	is	as	follows:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

5.	 Programmatically,	link	the	data	to	their	source:

linkdata;

Programmatically,	turn	brushing	on	and	set	the	brush	color	to	green:

h	=	brush;

set(h,'Color',[0	1	0],'Enable','on');

Use	mouse	movements	to	brush	a	set	of	points.	You	could	do	this	on	any	one	of	the
first	three	panels	and	observe	the	impact	on	corresponding	points	in	the	other	graphs
by	its	turning	green.	(The	arrow	and	dashed	boundary	is	used	to	depict	the	cursor
movement	from	user	interaction	in	the	following	figure):

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

How	it	works...
Because	brushing	is	turned	on,	when	you	focus	the	mouse	on	any	of	the	graph	areas,
a	cross	hair	shows	up	at	the	cursor.	You	can	drag	to	select	an	area	of	the	graph.
Points	falling	within	the	selected	area	are	brushed	to	the	color	green,	for	the	graphs
on	rows	1	and	2.	Note	that	nothing	is	highlighted	on	the	histograms	at	this	point.	This
is	because	the	x	and	y	data	source	for	the	histograms	is	not	correctly	linked	to	the
data	source	variables	yet.	For	the	other	graphs,	you	programmatically	set	their	x	and
y	data	source	via	the	XDataSource	and	the	YDataSource	properties.	You	can	also
define	the	source	data	variables	to	link	to	a	graphic	and	turn	brushing	on	by	using	the
icons	from	the	figure	toolbar	as	shown	in	the	following	screenshot.	The	first	circle
highlights	the	brush	button;	the	second	circle	highlights	the	link	data	button.	You	can
click	on	the	Edit	link	pointed	by	the	arrow	to	exactly	define	the	x	and	y	sources:

There's	more...
To	define	the	source	data	variables	to	link	to	a	graphic	and	turn	brushing	on	by	using

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

the	icons	from	the	Figure	toolbar,	do	as	follows:

1.	 Clicking	on	Edit	(pointed	to	in	preceding	figure)	will	bring	up	the	following
window:

2.	 Enter	data(:,1)	in	the	YDataSource	column	for	row	1	and	data(:,2)	in	the
YDataSource	column	for	row	2.

3.	 Now	try	brushing	again.	Observe	that	bins	of	the	histogram	get	highlights	in	a
bottom	up	order	as	corresponding	points	get	selected	(again,	the	arrow	and
dashed	boundary	is	used	to	depict	the	cursor	movement	from	user
interaction):

4.	 Link	axes	together	to	simultaneously	investigate	multiple	aspects	of	the	same
Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

data	point.	For	example,	in	this	step	you	plot	the	cluster	data	alongside	a
random	quality	value	for	each	point	of	the	data.	Link	the	axes	such	that	zoom
and	pan	functions	on	either	will	impact	the	axes	of	the	other	linked	axes:

axes('position',[.13	.11	.34	.71]);

scatter(data(:,1),	data(:,2),'ks');box	on;

axes('position',[.57	.11	.34	.71]);

scatter(data(:,1),	data(:,2),[],rand(size(data,1),1),	

...'marker','o',	'LineWidth',2);box	on;

linkaxes;

The	output	is	as	follows.	Experiment	with	zoom	and	pan	functionalities	on	this	graph.

Note
Takeaways	from	this	recipe:

Use	data	brushing	and	linked	axes	features	to	provide	a	live	and
synchronized	view	of	different	aspects	of	your	data.

See	also
Look	up	MATLAB	help	on	the	linkdata,	linkaxes,	and	brush	commands.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

The	magnifying	glass	demo
A	virtual	magnifying	glass	function	is	developed	in	this	recipe.	Using	this,	you	can
load	any	image	and	run	the	virtual	magnifying	glass	over	it	for	closer	inspection	at
your	cursor	tip.	This	recipe	was	adapted	from	Mingjing	Zhang's	submission	on
MATLAB	Central	File	Exchange.

Getting	ready
Load	the	image	of	a	microtiter	plate	with	a	distribution	of	filled	and	empty	wells:

userdata.img_rgb	=	imread('sampleImage.png');

How	to	do	it...
Perform	the	following	steps:

1.	 Define	parameters	for	passing	to	the	callback	function	to	be	invoked	in
response	to	cursor	movement:

%	The	image	size

userdata.size_img	=	size(userdata.img_rgb);	

%	the	start	time	(to	be	used	along	with	the	frame	rate	

%	info	to	determine	how	often	image	should	be	updated)

userdata.start_time	=	tic;			

%	The	frame	rate

userdata.FPS	=	20;											

%	Magnifying	Power

userdata.MagPower	=	2;							

%	The	Radius	of	the	Magnifier

userdata.MagRadius	=	100;				

%	The	radius	of	the	image	to	be	magnified

userdata.PreMagRadius	=	

userdata.MagRadius./userdata.MagPower;	

userdata.alreadyDrawn	=	0;

2.	 Set	up	the	figure	and	axes:

MainFigureHdl	=	figure('Name',	'Magnifier	Demo',	...

		'NumberTitle'	,'off',	...

		'Units',	'normalized',	...

		'Position',	[.1854				.0963				.4599				.8083],	...

		'MenuBar',	'figure',	...

		'Renderer',	'opengl');

MainAxesHdl	=	axes('Parent',	MainFigureHdl,	...

		'Units',	'normalized',...

		'Position',	[0	0	1	1],	...

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

		'color',	[0	0	0],	...

		'YDir',	'reverse',	...

		'NextPlot',	'add',	...

		'Visible',	'on');

3.	 Plot	the	initial	image	and	initial	magnified	image	at	the	initial	cursor	tip	position:

userdata.img_hdl	=	image(0,0,userdata.img_rgb);	

axis	tight

%	The	magnified	image	object

userdata.mag_img_hdl	=	image(0,0,[]);

userdata.mag_img	=	...			

		userdata.img_rgb(1:userdata.PreMagRadius*2+1,...

		1:userdata.PreMagRadius*2+1,:);

4.	 Create	a	circular	mask	for	the	magnified	image:

[x	y]	=	...

		meshgrid(-

userdata.PreMagRadius:userdata.PreMagRadius);

dist	=	double(sqrt(x.^2+y.^2));	%	dist	pixel	to	center

in_circle_log	=	dist<userdata.PreMagRadius-1;

out_circle_log	=	dist>userdata.PreMagRadius+1;

dist(in_circle_log)	=	0;

dist(out_circle_log)	=	1;

dist(~(in_circle_log|out_circle_log))	=	...

		(dist(~(in_circle_log|out_circle_log))	-	...		

		(userdata.PreMagRadius-1))./2;

userdata.mask_img	=	1	-	dist;

5.	 Initialize	the	image	object:

set(userdata.mag_img_hdl,	'CData',userdata.mag_img,	...

		'AlphaData',	userdata.mask_img);

%designate	the	call	back	function	

set(MainFigureHdl,'userdata',userdata,...

		'WindowButtonMotionFcn',...

		@stl_magnifier_WindowButtonMotionFcn);

6.	 The	next	task	is	to	define	this	callback	function—this	function	should	select	the
image	pixels	within	the	mask	defined	at	the	cursor	tip,	and	display	a	magnified
version	of	it	at	that	location.

function	stl_magnifier_WindowButtonMotionFcn(obj,event)

		%extract	parameters

		userdata	=	get(gcbo,'userdata');

		%	determine	if	image	needs	to	be	updated	per	frame	

rate	

		%	definitions

		cur_time	=	toc(userdata.start_time);

		curFrameNo	=	floor(cur_time.*userdata.FPS);

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

		%	If	this	frame	has	not	been	drawn	yet

		if	userdata.alreadyDrawn	<	curFrameNo	

				mag_pos	=	get(obj,'CurrentPoint');

				mag_pos(1)	=	...

						round(size(userdata.img_rgb,2)*mag_pos(1));

				mag_pos(2)	=	size(userdata.img_rgb,2)	-	...

						round(size(userdata.img_rgb,2)*mag_pos(2))+1;

				%	The	size	of	the	part	of	the	image	to	be	magnified

				%	The	range	has	to	be	cropped	in	case	it	is	outside	

the

				%	image.

				mag_x	=	mag_pos(1)+[-userdata.PreMagRadius	...

				userdata.PreMagRadius];

				mag_x_cropped	=	min(max(mag_x,	1),...	

				userdata.size_img(2));

				mag_y	=	mag_pos(2)+[-userdata.PreMagRadius	...

				userdata.PreMagRadius];

				mag_y_cropped	=	min(max(mag_y,	1),...			

				userdata.size_img(1));

				%	Take	the	magnified	part	of	the	image

				userdata.mag_img([mag_y_cropped(1):...		

				mag_y_cropped(2)]-mag_pos(2)+...

				userdata.PreMagRadius+1,...

				[mag_x_cropped(1):mag_x_cropped(2)]-...

				mag_pos(1)+userdata.PreMagRadius+1,:)	=	...

				userdata.img_rgb(mag_y_cropped(1):...

				mag_y_cropped(2),...

				mag_x_cropped(1):mag_x_cropped(2),:);

				%	Show	the	image	as	twice	its	actual	size

				set(userdata.mag_img_hdl,	'CData',	...

				userdata.mag_img,'XData',	mag_pos(1)+...

				[-userdata.MagRadius	userdata.MagRadius],	...

				'YData',	mag_pos(2)+[-userdata.MagRadius	...

				userdata.MagRadius]);

				%	Update	the	object

				drawnow;

				userdata.alreadyDrawn	=	curFrameNo;

		end

		set(gcf,'userdata',userdata);

end

Here	is	a	view	of	the	final	software	in	action	(dashed	line	depicts	cursor
movement;	arrow	depicts	the	position	of	the	cursor):

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

How	it	works...
The	callback	function	accesses	the	coordinates	of	the	cursor	position	and	calculates
the	center	coordinates	of	the	magnifier	as	the	current	position	±	the	radius	of	the
circular	magnifying	glass	mask.	The	coordinates	are	then	cropped	to	ensure	that	they
do	not	access	a	location	beyond	the	coordinates	of	the	main	image.	This	image	is
then	plotted	at	twice	the	original	size.

Note
Takeaways	from	this	recipe:

Use	the	virtual	magnifying	glass	to	load	any	image	and	subject	it	to	closer
inspection	at	your	cursor	tip.

See	also
Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Look	up	MATLAB	help	on	the	image	and	WindowButtonMotionFcn	commands.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Animation	with	playback	of	frame
captures
Animation	is	a	sequence	of	images	telling	a	story.	For	a	sequence	that	is	changing	a
lot	from	frame	to	frame,	the	best	approach	to	animation	is	to	play	it	back	at	some
meaningful	rate	as	a	movie,	the	key	point	being	that	the	rendering	is	not	in	real	time;
rather,	it	is	the	playback	of	a	pre-generated	series	of	images.	In	this	recipe,	you	will
explore	the	concept	of	playing	back	a	series	of	pre-rendered	images.

Getting	ready
MATLAB	supplies	a	dataset	of	brain	MRI	slices	which	you	used	extensively	in
Chapter	5,	Playing	in	the	Big	Leagues	with	Three-dimensional	Data	Displays.	First,
load	the	data:

load	MRI

How	to	do	it...
Perform	the	following	steps:

1.	 The	first	approach	will	be	to	use	the	getframe	command	to	collect	each	frame
of	the	display	and	then	playback	using	the	movie	command.	Note	that	as	you
call	the	image	command	to	make	the	frames,	the	live	rendering	of	the	different
frames	will	be	visible.	The	command	movie	does	the	actual	off	line	playback	of
the	images.

figure;	

for	image_num	=	1:27;								

		image(D(:,:,image_num));colormap(map);

		f(image_num)	=	getframe;

end

close;

movie(f);

2.	 Another	alternative	is	to	record	the	frames	as	part	of	an	AVI	(Audio	Video
Interleave)	object	and	then	save	that	as	an	avi	file	that	you	can	play	with	any
media	player:

aviobj	=	avifile('example.avi','fps',3,...

		'quality',100,'compression','none');

for	image_num	=	1:27;								

		image(D(:,:,image_num));

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

		colormap(map);

		aviobj	=	addframe(aviobj,getframe);

end

aviobj	=	close(aviobj);

close;

3.	 Yet	another	alternative	is	to	use	the	command	imwrite	and	save	in	the	gif
format.	You	can	set	a	frame	rate	and	other	parameters	for	the	animation	as
follows:

imwrite(D,map,'letsTry.gif','gif',	'DelayTime',2,...

		'Location',	[503			289],	'LoopCount',7);

How	it	works...
In	this	recipe,	you	have	essentially	taken	snapshots	of	the	image	as	it	is	displayed
and	stored	it,	ready	to	be	played	back	at	a	later	time.	getframe	returns	a	snapshot
(pixmap)	of	the	current	axes	or	figure.	Note	that	if	the	screensaver	is	started	up	while
waiting	for	an	image	to	render	or	you	open	up	a	browser	that	plots	over	the	figure,
then	the	pixel	values	from	the	screensaver	or	whatever	else	is	displayed	in	the	same
location	as	the	figure	gets	captured.	When	running	remotely	on	virtual	desktops,	the
virtual	desktop	window	needs	to	be	active	on	your	current	desktop	for	successful
capture.

The	avifile	command	creates	an	avifile	object.	As	you	saw,	a	number	of
parameters	such	as	the	frame	rate	,	quality	,	and	compression	codec	in	use	can	be
specified	as	a	parameter	and	value	pairing	with	this	command.

The	imwrite	command	writes	the	image	D	to	the	file	specified	by	filename	in	a
specified	format.	There	are	format	specific	parameters	that	can	be	supplied	as
property	name	and	value	pairs.	In	this	recipe,	you	have	set	the	delay	time,	the
location	of	the	plot	and	the	loop	count	for	the	.gif	format.	The	delay	time	refers	to
how	long	each	frame	is	displayed.	The	location	indicates	where	on	the	browser
window	the	image	will	be	created.	The	loop	count	specifies	how	many	times	the
animation	is	run	before	it	is	stopped.

There's	more...
One	possibility	to	generate	a	smooth	playback	would	be	to	generate	the
intermediate	image	between	two	snapshots.	Here,	this	is	generated	using	the
anymate	function,	a	submission	by	Jerker	Wågberg	on	MATLAB	File	Exchange.	The
anymate	function	analyzes	the	changes	in	the	properties	of	Handle	Graphics	objects
and	can	interpolate	between	these	changes	to	generate	a	smooth	transition	between
each	given	state,	here	called	a	break.	To	generate	an	animation,	anymate	collects	the

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

values	of	all	Handle	Graphics	objects	for	each	break	and	then	estimates	the	true
changes	between	these	breaks	for	presentation.	Perform	the	following	to	generate	an
animation	that	smoothly	interpolates	between	the	given	frames:

D_less	=	D(:,:,1,1:2:end);

for	image_num	=	1:size(D_less,4)-1;

		figure;	image(D_less(:,:,image_num));

		colormap(map);

end

anymate;

The	output	is	as	follows:

Note
Takeaways	from	this	recipe:

Use	play	back	of	pre-rendered	frame	captures	to	show	evolution	of	data	in
time	or	space
Use	image	interpolation	techniques	to	generate	a	smooth	playback	from
few	available	time	lapse	snapshots

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Stream	particle	animation
A	stream	particle	animation	is	useful	for	visualizing	the	flow	direction	and	speed	of	a
vector	field.	The	"particles",	represented	by	a	line	marker,	trace	the	flow	along	a
particular	stream	line.	The	speed	of	each	particle	in	the	animation	is	proportional	to
the	magnitude	of	the	vector	field	at	any	given	point	along	the	stream	line.

Getting	ready
This	recipe	builds	a	stream	particle	animation	to	trace	the	streamline	path	of	a	certain
section	of	the	wind	flow	data	that	comes	as	part	of	the	MATLAB	installation.	Start
with	loading	the	dataset:

load	wind

How	to	do	it...
Perform	the	following	steps:

1.	 Investigate	range	of	data	and	experiment	at	different	values	of	x,	y,	and	z	to
decide	the	cross	sections	you	want	to	use	in	this	animation:

disp([min(x(:))	max(x(:))	min(y(:))	max(y(:))	...

		min(z(:))	max(z(:))]);

2.	 Define	the	mesh	over	which	stream	lines	will	be	constructed:

[sx	sy	sz]	=	meshgrid(85:20:100,	20:2:50,	6);

3.	 Define	the	stream	lines:

verts	=	stream3(x,y,z,u,v,w,sx,sy,sz);

sl	=	streamline(verts);

4.	 Define	the	view:

axis	tight;	box	on;	grid	on;

daspect([19.9445			15.1002				1.0000]);

campos([-165.7946	-223.0056			11.0223]);

5.	 Pick	the	vertices	at	which	to	place	the	particles:

iverts	=	interpstreamspeed(x,y,z,u,v,w,verts,0.08);

6.	 Start	the	animation:

set(gca,'drawmode','fast');

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

streamparticles(iverts,15,...

		'FrameRate',5,...

		'Animate',10,...

		'ParticleAlignment','on',...

		'MarkerEdgeColor','green',...

		'MarkerFaceColor','green',...

		'Marker','o');

The	output	is	as	follows:

How	it	works...
You	have	already	encountered	the	stream3	and	streamline	commands	in	Chapter	5,
Playing	in	the	Big	Leagues	with	Three-dimensional	Data	Displays.	These	commands
help	to	create	the	paths	for	the	particles	to	travel	enabling	a	visual	context	for	the
animation.	All	the	animations	start	at	the	plane	z	=	6.	The	campos	function	sets	the
position	of	the	camera	from	where	this	animation	will	be	observed.	Setting	the	data
aspect	provides	greater	resolution	along	the	x	and	y	axis.

The	interpstreamspeed	function	returns	the	vertices	at	which	the	particles	should	be
drawn.	As	the	path	is	provided,	it	is	not	required	to	draw	every	vertex.	Making	it
appear	at	a	certain	step	will	be	adequate	to	create	the	desired	effect.	The	velocity
with	which	the	particles	move	may	be	scaled	to	increase	or	decrease	the	number	of
interpolated	vertices.	In	this	example,	the	velocities	are	scaled	by	0.08	to	increase
the	number	of	interpolated	vertices.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Setting	the	axis	property	DrawMode	to	fast	makes	the	animation	run	faster.

The	streamlineparticles	function	allows	a	number	of	its	properties	to	be	set	to
impact	the	visualization.	In	addition	to	the	3D	vertices,	the	command	takes	an	integer
argument	n,	set	to	15	here,	that	determines	how	many	particles	to	draw.	Since
subsequently,	the	ParticleAlignment	property	is	set	to	On,	n	is	interpreted	as	the
number	of	particles	on	the	streamline	having	the	most	vertices	and	sets	the	spacing
on	the	other	streamlines	to	this	value.

Additionally,	you	set	properties	such	as	the	FrameRate	to	5	frames	to	be	displayed
per	second,	impacting	how	fast	the	animation	is	changing;	the	property	Animate	to	10
times	indicating	that	the	entire	sequence	is	to	be	run	10	times	before	it	stops;	and	the
properties	MarkerEdgeColor,	MarkerFaceColor	,	and	Marker	impacting	the	way	the
actual	particles	look.	Animations	run	faster	when	marker	edges	are	not	drawn,	so	the
none	value	is	recommended	for	the	MarkerEdgeColor	property.

Note	that	the	particles	on	the	z	plane	travel	much	faster	than	the	particles	along	the
spiral.

Note
Takeaways	from	this	recipe:

Use	stream	particle	animation	along	any	path	of	your	choice	(including
stream	lines	generated	by	MATLAB	command)	to	observe	the	flow	of	particles
in	time.

See	also
Look	up	MATLAB	help	on	the	interpstreamspeed	and	streamlineparticles
commands.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Animation	by	incremental	changes	to
chart	elements
An	alternative	approach	to	animation	is	to	continually	erase	and	redraw	the	objects
on	the	screen,	making	incremental	changes	with	each	redraw.	One	of	the	ways	to	do
this	is	to	redefine	the	XData,	YData,	ZData,	and/or	CData	plot	object	properties	for
every	change,	then	make	calls	to	refreshdata	followed	by	drawnow;	or	equivalently
linking	the	plot	to	the	data	sources,	which	will	cause	the	plot	to	be	automatically
updated	each	time	the	source	data	is	changed	by	implicitly	calling	refreshdata	and
drawnow.	This	alternative	approach	allows	for	faster	rendering	at	a	finite	cost	to	the
rendering	accuracy.	In	this	recipe,	you	will	create	an	animation	using	this	erase	and
redraw	strategy.

Getting	ready
This	recipe	illustrates	the	process	of	convolution	between	two	functions.	It	was
adapted	from	a	File	Exchange	submission	on	convolution	by	Laine	Berhane	Kahsay.
Convolution	is	a	mathematical	operation	on	two	functions	f	and	g,	producing	a	third
function	that	is	a	modified	version	of	one	of	the	original	function,	giving	the	area
overlap	between	the	two	functions	as	a	function	of	the	amount	by	which	the	second
function	is	translated.	This	recipe	uses	a	parabolic	and	a	square	function.	Generate
the	data.	This	involves	defining	a	range	for	the	x	values	of	each	function	and	defining
the	y	values	for	each	function.

%%	data	generation

s_int	=	0.1;															%	sampling	interval	constant

t	=	-10:s_int:10;										%	interval	for	function	'f(t)'

f	=	0.1*(t.^2);												%	definition	of	function	'f(t)'

t1	=	-7:s_int:7;											%	interval	for	function	'g(t1)'

go	=	[-1*ones(1,40)	ones(1,	61)	-1*ones(1,	40)];				

																											%	definition	of	function	'g(t1)'

c	=	s_int	*	conv(f,	go);			%	convolve:	note	the	

																											%	multiplication	by	the	

																											%	sampling	interval

	

%	flip	'go(t1)'	for	the	graphical	convolutions	g	=	go(-t1)

g	=	fliplr(go);

tf	=	fliplr(-t1);

	

%	slide	range	of	'g'	to	discard	non-overlapping	areas	with	

%	'f'	in	the	convolution

tf	=	tf	+	(min(t)-max(tf));

	

%	get	the	range	of	function	'c'	which	is	the	convolution	of	

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

%	'f(t)'	and	'go(t1)'

tc	=	[tf	t(2:end)];

tc	=	tc+max(t1);

How	to	do	it...
Perform	the	following	steps:

1.	 Plot	the	static	part	of	the	data	into	a	set	of	three	panel	graphics:

figure('units','normalized','Position',	[.16	.14	.31	

.69]);

%	Plot	f(t)	and	g0(t1)	in	panel	1	

subplot(3,1,1);

op	=	plot(t,f,	'b');	hold	on;	

plot(t1,	go,	'r');grid	on;

xlim([(min(t)-abs(max(tf)-min(tf))	-	1)	...

		(max(t)+abs(max(tf)-min(tf))	+	1)]);

title('Graph	of	f(t)	and	go(t)');

legend({'f(t)'	'go(t)'});

	

%	Plot	f	and	g	in	panel	2.	And	two	vertical	lines	

showing	

%	the	overlapped	region	between	the	two	functions.	

%	Add	yellow	on	the	overlapped	region.	

subplot(3,1,2);

plot(t,	f);hold	on;	grid	on;

title('Graphical	Convolution:	f(t)	and	g	=	go(-t1)');

q	=	plot(tf,	g,	'r');

xlim([(min(t)-abs(max(tf)-min(tf))-1)	...

		(max(t)+abs(max(tf)-min(tf))+1)]);

u_ym	=	get(gca,	'ylim');

%	bound	and	shade	the	overlapped	region

s_l	=	line([min(t)	min(t)],	...

		[u_ym(1)	u_ym(2)],	'color',	'g');

e_l	=	line([min(t)	min(t)],	...

		[u_ym(1)	u_ym(2)],	'color',	'g');

sg	=	rectangle('Position',	...

		[min(t)	u_ym(1)	0.0001	u_ym(2)-u_ym(1)],	...

		'EdgeColor',	'w',	'FaceColor',	'y',	...

		'EraseMode',	'xor');

									

%	convolution	result	in	panel	3

subplot(3,1,3);

r	=	plot(tc,	c);grid	on;	hold	on;

xlim([(min(t)-abs(max(tf)-min(tf))	-	1)	...

		(max(t)+abs(max(tf)-min(tf))	+	1)]);

title('Convolutional	Product	c(t)');

The	output	is	as	follows:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

2.	 Animation	block—perform	these	steps	for	the	range	of	time	over	which	the
convolution	product	is	going	to	show	effect.	Pause	a	certain	time	at	each	step
to	allow	user	to	observe	the	effects:

for	i=1:length(tc)

		pause(0.1);

		%	Update	the	position	of	sliding	function	'g',		

		%	its	handle	is	'q'

		tf=tf+s_int;

		set(q,'EraseMode','xor','XData',tf,'YData',g);

		%	Show	a	vertical	line	for	a	left	boundary	of	

		%	overlapping	region

		sx	=	min(max(tf(1),	min(t)),	max(t));		

		sx_a	=	[sx	sx];

		set(s_l,'EraseMode','xor',	'XData',	sx_a);

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

		%	Show	a	second	vertical	line	for	the	right	

		%	boundary	of	overlapping	region

		ex	=	min(tf(end),	max(t));		

		ex_a	=	[ex	ex];

		set(e_l,'EraseMode','xor',	'XData',	ex_a);

	

		%	Update	shading	on	overlapped	region

		rpos	=	[sx	u_ym(1)	max(0.0001,	ex-sx)	u_ym(2)-

u_ym(1)];		

		set(sg,	'Position',	rpos);

	

		%	Update	the	plot	of	convolution	product	'c',	

		%	its	handle	is	r

		

set(r,'EraseMode','xor','XData',tc(1:i),'YData',c(1:i)	

);

	

end

The	output	is	as	follows:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

How	it	works...
The	main	idea	is	to	extract	handles	for	those	items	that	need	to	be	changed	at	every
step	of	the	animation.	This	includes	the	two	boundary	lines	(handles	s_l	and	e_l
respectively)	and	the	shaded	yellow	rectangle	(with	handle	sg)	demarking	the
overlapped	region	between	the	two	functions;	the	sliding	function	g	(with	handle	q)
and	the	convolution	product	c	(with	handle	r).	For	each	of	these	objects,	the	new
data	to	be	displayed	is	calculated	at	each	step	and	the	XData	and	YData	properties	of
these	objects	are	set	to	the	new	values	to	be	displayed	(except	for	the	rectangle,
whose	position	coordinates	are	updated).

At	each	step,	data	is	updated	and	a	redraw	effort	is	necessary.	If	you	updated	the
data	by	means	of	using	the	xdatasource	or	ydatasource	object	property,	you	would
need	to	explicitly	make	a	call	to	the	refreshdata	function	to	actually	update	the	data

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

being	graphed.	Here,	the	data	properties	are	directly	manipulated	and	therefore	you
are	not	making	explicit	calls	to	refreshdata.	Also,	you	are	not	making	explicit	calls	to
the	function	drawnow	to	reflect	the	changes.	The	reason	drawnow	need	not	be	called	is
because	pause	is	called	at	each	iteration.	It	implicitly	causes	all	changed	handles	to
be	re-drawn.

For	all	handles,	the	EraseMode	property	is	set	to	xor.	xor	enables	the	draw	and	erase
of	these	elements	by	performing	an	exclusive	OR	(XOR)	with	the	color	of	the	screen
beneath	it.	This	mode	does	not	damage	the	color	of	the	objects	beneath	the	line.

Note
Takeaways	from	this	recipe:

Use	the	erase	and	redraw	strategy	making	incremental	changes	at	each	step
for	creating	animations.

See	also
Look	up	MATLAB	help	on	the	EraseMode,	XData,	YData,	refreshdata,	and	drawnow
properties.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Chapter	8.	Finalizing	Graphics	for
Publication	and	Presentations
In	this	chapter,	we	will	cover:

Export	formats	and	resolution
Vector	graphics	for	inclusion	into	documents
Preserving	onscreen	font	size	and	aspect	ratios
Publishing	code	and	graphics	to	a	webpage

Introduction
Graphics	may	be	presented	either	in	an	electronic	format	or	printed	to	hard	copies	for
the	consumption	of	your	target	audience.	Image	quality	and	formatting	requirements
vary	depending	upon	your	final	presentation	goal.	In	this	chapter,	recipes	illustrate
MATLAB's	capabilities	to	appropriately	finish	your	graphics.

Some	general	considerations	to	keep	in	mind	while	designing	graphics	for
presentation	or	publication	are	as	follows	(reference:	Society	for	Imaging	Sciences
and	Technology).

Note
Time	available	for	viewing	should	be	proportional	to	the	amount	of	information
you	pack	in	a	display.
Use	patterns	as	well	as	color	where	possible	in	your	graphs	because	color
may	not	be	available	in	the	printed	format.
Use	a	horizontal	format	for	images	to	be	projected,	to	ensure	that	it	will	be
visible	to	the	entire	audience.	Avoid	placing	critical	data	on	the	edges.
Use	an	aspect	ratio	of	4:3	for	CRT	and	3:2	for	slides,	where	possible.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Export	formats	and	resolution
When	it	comes	to	exporting	your	graphics,	there	is	a	range	of	available	choices	for
formats	and	resolutions.	Different	formats	serve	different	needs	such	as	onscreen
viewing	or	online	publishing	to	print	publishing	with	specific	strengths	and	limitations.
This	recipe	demonstrates	options	in	MATLAB	for	export	formats	and	resolutions.

Getting	ready
Create	a	graphic	in	MATLAB:

peaks;	view(2);	shading	interp;

How	to	do	it…
Perform	the	following	steps:

1.	 Use	the	print	command	to	export	current	graphic	to	a	JPEG	image	file	at	a
desired	compression	level	and	resolution:

print(gcf,'-djpeg100','-r200','3165_08_01_1.jpeg');

Compression	level	determines	the	extent	of	compression	for	the	JPEG	file
format.	The	output	is	as	follows:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

How	it	works…
The	print	command	was	used	to	write	your	graphics	to	an	image	file	in	a	specific
format.	You	printed	a	sample	graph	using	the	MATLAB	handle	to	the	figure	as	a
JPEG	file.

You	also	used	the	-rX	option	to	set	a	resolution	for	your	output	figure.	The	resolution
determines	how	accurately	your	figure	is	printed.	A	higher	resolution	produces	higher
quality	output.	A	higher	resolution	also	means	slower	rendering	and	higher	memory
consumption.	X	is	the	DPI	or	dots	per	inch	value.	The	DPI	value	is	an	instruction	on
how	large	an	image	is	to	be	printed	because	a	digitally	stored	image	has	no	inherent
physical	dimensions.	DPI	may	be	interpreted	as	the	physical	density	of	ink	dots	for	a
printer,	or	more	commonly,	for	a	digital	image	it	is	equivalent	to	the	PPI	(pixels	per
inch)	specification.	The	larger	the	PPI,	the	more	clearly	defined	the	image	looks
when	printed.

The	specific	definition	of	resolution	also	depends	on	whether	your	figure	is	output	as	a
bitmap	or	as	a	vector	graphic.	Bitmap	stores	graphics	as	2D	arrays	of	pixels.
Vector	formats	store	graphics	as	geometric	objects	and	render	them	using	drawing
commands.	Bitmaps	are	preferable	for	high-complexity	plots.	An	example	of	a	high-
complexity	plot	is	a	surface	plot	that	uses	interpolated	shading.	Vector	formats	are
preferable	for	most	2D	plots	and	for	some	low-complexity	surface	plots.	Vector
formats	create	better	lines	and	text	than	bitmap	formats.	Note	that	lighting	and
transparency	are	only	supported	by	bitmap	formats.	One	advantage	with	vector
graphics	is	that	you	can	resize	it	after	importing	it	into	most	software	applications
without	losing	quality.	Resizing	after	import	is	a	problem	with	bitmap	formats	as	it
causes	round-off	errors	that	result	in	degradation	of	picture	quality.

The	format	is	also	connected	to	the	chosen	rendering	mechanism.	For	example,
vector	graphics	can	only	be	created	by	the	Painters	renderer.

Each	format	also	has	a	supported	bit	depth	which	is	the	number	of	bits	a	format
uses	to	store	each	pixel.	This	determines	the	number	of	colors	the	exported	figure
can	contain.	Bit	depth	applies	mostly	to	bitmap	graphics.	An	8-bit	image	uses	eight
bits	per	pixel,	enabling	it	to	define	28	or	256	unique	colors.	In	vector	files	that	don't
normally	have	a	bit	depth,	the	color	of	objects	is	specified	by	drawing	commands
stored	in	the	file.

Ghostscript	formats	support	a	limited	number	of	fonts.	If	you	use	an	unsupported
font,	Courier	is	substituted.	You	cannot	change	the	resolution	of	a	Ghostscript	format.
The	resolution	is	low	(72	DPI)	and	might	not	be	appropriate	for	publications.

Note	that	you	can	calculate	the	size	of	a	figure	exported	to	an	uncompressed	bitmap
Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

by	multiplying	the	figure	size	by	its	resolution	and	the	bit	depth	of	the	chosen	format.

Note
Takeaways	from	this	recipe:

Use	the	following	guidelines	for	choosing	your	image	resolution:

For	printing,	the	default	resolution	of	150	DPI	could	be	sufficient	for	typical
laser-printer	output
For	higher	quality,	you	might	want	to	use	200	or	300	DPI
For	exporting,	base	your	decision	on	the	resolution	supported	by	the	final
output	device

Use	the	following	guidelines	for	choosing	your	image	export	format:

BMP:	Screen	display	under	Windows
EPS:	Printing	to	PostScript	printers	/	Image	setters
GIF:	Screen	display,	especially	the	Web
JPEG,	JPG:	Screen	display,	especially	the	Web,	particularly	photographs
PNG:	Replacement	for	GIF	and	to	a	lesser	extent,	JPG	and	TIF
TIFF,	TIF:	Printing	to	PostScript	printers

See	also
Look	up	MATLAB	help	on	the	print	command.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Vector	graphics	for	inclusion	into
documents
Vector	graphics	formats	create	high	fidelity	publication-quality	graphics.	MATLAB
supports	the	Enhanced	Metafiles	(EMF),	which	are	vector	files,	capable	of
producing	near	publication-quality	graphics.	EMF	is	an	excellent	format	to	use	if	you
plan	to	import	your	image	into	a	Microsoft	application	and	want	the	flexibility	to	edit
and	resize	your	image	once	it	has	been	imported.	It	is	the	only	supported	MATLAB
vector	format	you	can	edit	from	within	a	Microsoft	application.	The	other	alternatives
are	the	EPS,	SVG,	ILL,	and	PDF	formats,	which	work	on	both	Windows	and	UNIX
systems.

Getting	ready
For	this	recipe,	you	will	take	a	cross	section	of	the	flow	data	that	comes	with	the
MATLAB	installation	and	that	you	used	in	Chapter	4,	Customizing	Elements	of
MATLAB	Graphics—Advanced	and	Chapter	5,	Playing	in	the	Big	Leagues	with
Three-dimensional	Data	Displays.

A	=	flow;	surf(A(:,:,14));	shading	interp;

How	to	do	it…
Perform	the	following	steps:

1.	 Print	the	file	as	a	meta	file	that	now	becomes	available	in	your	clip	board:

print(gcf,'-dmeta');

Now	if	you	execute	a	paste	in	a	Microsoft	Word	or	PowerPoint	file,	you	will
see	the	following	output:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

How	it	works…
The	EMF	is	a	vector	format	and	this	affords	the	increased	editability	within	your	Word
processing	or	PowerPoint	environment.	EMF	is	only	applicable	to	Windows	systems.
The	print	command	as	used	here	copies	the	figure	to	the	memory	of	your	clipboard.
Other	vector	formats	supported	by	MATLAB	include	EPS,	SVG,	ILL,	and	PDF,	which
work	on	both	Windows	and	UNIX	systems.

There's	more…
For	other	vector	formats	such	as	the	EPS,	you	can	choose	to	include	a	low	resolution
TIFF	preview	for	viewing	electronically.	The	following	command	allows	you	to	save
your	figure	as	a	colored	Encapsulated	Postscript	file	at	300	DPI	and	preview	it	in
most	word	processors	at	72	DPI	using	a	TIFF:

print('-depsc','-tiff','-r300','filename');

Drag-and-drop	the	EPF	file	just	created	into	this	Word	document	to	see	the	TIFF
preview	(which	is	of	degraded	quality	due	to	the	poor	resolution	of	the	preview).
When	you	print	this	document	it	is	printed	at	the	improved	resolution:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Note
Takeaways	from	this	recipe:

Use	vector	export	formats	to	obtain	high	quality	images	for	use	with	printers
Use	the	EMF	format	for	figures	to	be	included	into	Microsoft	applications
Use	the	TIFF	preview	options	when	using	export	in	the	other	vector	formats

See	also
Look	up	MATLAB	help	on	the	print	command.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Preserving	onscreen	font	size	and
aspect	ratios
Font	sizes	often	need	adjustment	before	export	because	they	may	appear	too	small
in	the	figure	when	it	is	exported	and	resized	afterward.	Another	problem	is	that	the
aspect	ratio	of	your	onscreen	figures	may	not	get	reflected	into	your	exported
graphic.	This	recipe	addresses	how	to	manage	these	requirements.

Getting	ready
For	this	recipe,	you	will	use	the	function	peaks	again	to	generate	the	data:

peaks;view(2);shading	interp;

How	to	do	it…
Perform	the	following	steps:

1.	 Resizethe	image	to	render	at	a	desired	aspect	ratio:

set(gcf,'units','normalized','position',...

		[0.0547				0.5000				0.5906				0.4046]);

2.	 Print	with	a	landscape	orientation	(orients	the	longest	page	dimension
horizontally):

set(gcf,'PaperOrientation','landscape');

3.	 Set	where	to	print	on	paper	in	inches	using	the	paperposition	property:

set(gcf,'paperposition',	[.25	2.5	8	6],...

		'Papernunits','inches');

4.	 Make	sure	MATLAB	exports	using	onscreen	settings	by	setting
PaperPositionMode	to	auto:

set(gcf,'PaperPositionMode','auto');

5.	 Add	the	source	equation	to	the	data	as	the	title	to	your	graphic	using	LaTeX
syntax	to	format	the	string	definition.	Reformat	the	equation	to	meet	minimum
font	size	requirements	(set	at	20	for	this	case):

title({'$z	=		3(1-x)^2e^{-(x^2)	-	(y+1)^2}	$	',...

		'$-	10(\frac{x}{5}	-	x^3	-	y^5)e^{-x^2-y^2}	$',...	

		'$-	\frac{1}{3}e^{-(x+1)^2	-	y^2}$'},...

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

		'interpreter','latex','Fontsize',20);

The	output	is	as	follows:

6.	 Use	the	exportfig	function	submitted	by	Ben	Hinkle	on	File	Exchange	to
output	to	EPS	with	customized	font	size,	dimensions,	orientation,	and	preview
options:

exportfig(gcf,...	

		'3165_08_03_2','format','eps',	'preview',...

		'tiff','height',4,'width',7,'color','cmyk',...

		'Fontmode','fixed','fontsize',15);

The	output	is	as	follows:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

How	it	works…
This	recipe	demonstrates	strategies	to	control	font	size,	aspect	ratio,	figure

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

orientation,	and	position	of	final	graphic	on	paper.

See	also
Look	up	MATLAB	help	on	the	PaperOrientation,	PaperPosition,	PaperUnit,	and
PaperPositionMode	axes	properties.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Publishing	code	and	graphics	to	a
webpage
MATLAB	makes	it	really	easy	to	share	code	with	the	document	generation	feature.
You	will	have	to	break	up	your	code	into	sections	called	as	Code	Cells	which	are
evaluated	in	sequence.	Using	text	markup	features	you	can	add	commentary	to	these
code	blocks.	Commentary	can	be	stylized	including	bulleted	and	numbered	items,	and
bold	and	monospace	fonts	and	it	also	includes	LaTeX	equations.	You	could	direct
some	of	the	code	to	be	included	with	the	results	it	generates.	Finally,	you	can	directly
publish	to	various	formats,	including	HTML,	XML,	and	LaTeX.	If	Microsoft	Word	or
Microsoft	PowerPoint	applications	are	on	your	system,	you	can	publish	to	their
formats	as	well.

Getting	ready
You	will	markup	the	following	code	snippet	to	make	it	ready	to	publish	using
MATLAB's	publish	feature:

figure;

[x	y	z]	=	peaks;

surf(z);view(2);shading	interp;

set(gcf,'Color',[1	1	1]);axis	tight;

print(gcf,'-djpeg','-r400','3165_08_02_1.jpeg');

zN{1}	=		3*(1-x).^2.*exp(-(x.^2)	-	(y+1).^2);

zN{2}	=	-	10*(x/5	-	x.^3	-	y.^5).*exp(-x.^2-y.^2);	

zN{3}	=		-	1/3*exp(-(x+1).^2	-	y.^2);

for	i	=	1:3

		figure;

		surf(zN{i});view(2);shading	interp;

		set(gcf,'Color',[1	1	1]);axis	tight;

		print(gcf,'-djpeg','-r400',...

				['3165_08_05_'	num2str(i+1)	'.jpeg']);

end	

How	to	do	it…
Make	a	.m	file	with	the	following	steps:

1.	 Partition	the	code	into	code	cell	blocks.	Each	block	presumably	performs
some	logical	steps	that	belong	together.	Insert	the	%%	sign	to	define	code
cells:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

%%	Declare	Code	Cells

2.	 Make	a	cell	with	no	code	to	turn	it	into	a	heading.	Note	that	the	single	line
comments	turn	into	body	text:

%%	DEMONSTRATE	HOW	TO	MARKUP	CODE	TO	PUBLISH	TO	A	

WEBPAGE		

%

%			Recipe:	3165_08_02:	Publish	Demo

%			Copyright	2012	Packt	Publishing

%			Revision:	1

%			Date:	2012-07-16	24:00:00

%

%%	

3.	 Add	cell	names	to	translate	into	section	headings:

%%	Add	Sections

%	Cell	Names	Become	Section	Headings

If	you	execute	the	publish	command	at	this	stage,	it	translates	the	previous
set	of	statements	to	the	following	output	in	a	browser.	Do	this	by	clicking	on
the	icon	in	the	toolbar:

A	snapshot	of	the	browser	output	is	shown	as	follows:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Further,	continue	to	add	the	following	commands	to	your	.m	script	and	execute
publish	when	you	are	done.	The	result	is	included	as	part	of	the	code	bundle
with	this	book	in	the	folder	named	html.

4.	 Direct	some	code	and	resultant	figure	for	inclusion:

%%	Add	Code	and	Results	

figure;

[x	y	z]	=	peaks;

surf(z);view(2);shading	interp;

set(gcf,'Color',[1	1	1]);axis	tight;

print(gcf,'-djpeg',...

		'-r400',['3165_08_02_1.jpeg']);

5.	 Add	LaTeX	equations:

%%	Add	source	Equation	in	LaTeX	format

%	Enclose	LaTeX	expression	using	$	symbols:

%

%	$$z	=	3(1-x)^2e^{-(x^2)	-	(y+1)^2}	-	10(\frac{x}{5}	–		

%			x^3	-	y^5)e^{-x^2-y^2}	-	\frac{1}{3}e^{-(x+1)^2	-	

y^2}$

6.	 Add	some	limited	formatting	to	the	textual	output:

%%	Add	Basic	Text	Formatting

%	Enclose	text	using	the:

%

%	*	_underscore_	sign	makes	it	appear	in	italics

%	*	*asterisk*	sign	makes	it	appear	in	bold

%	*	|pipe|	sign	makes	it	appear	in	mono	face

7.	 Output	code	and	graphics	from	inside	a	loop:

%%	Add	Code	and	Results	from	Inside	a	Loop

zN{1}	=		3*(1-x).^2.*exp(-(x.^2)	-	(y+1).^2);

zN{2}	=	-	10*(x/5	-	x.^3	-	y.^5).*exp(-x.^2-y.^2);	

zN{3}	=		-	1/3*exp(-(x+1).^2	-	y.^2);

for	i	=	1:3

		%%

		%

		figure;

		surf(zN{i});view(2);shading	interp;

		set(gcf,'Color',[1	1	1]);axis	tight;

		print(gcf,'-djpeg','-r400',...

				['3165_08_02_'	num2str(i+1)	'.jpeg']);

end

How	it	works…
Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

The	publish	command	makes	it	easy	to	generate	annotated	code	with	equations	and
textual	formatting	including	output	figures.	You	organized	your	code	into	cells	that	can
be	separately	evaluated	and	the	outputs	from	each	is	directed	to	a	format	of	your
choice	(here,	the	default,	which	is	HTML,	was	used).	You	learned	how	to	markup	the
text	to	add	headings,	body	text,	equations,	and	textual	formatting.	An	alternate	way
to	do	this	is	to	right-click	with	your	mouse	on	the	text	area	of	the	code	editor	window,
select	the	Insert	Text	Markup	option,	and	select	appropriately	from	the	submenu
items.	Note	that	without	any	explicit	action	from	you,	all	the	section	headings	are
brought	together	to	make	a	contents	item.

There's	more…
It	is	possible	to	configure	the	publish	parameters	for	a	file,	or	even	a	function,	and
save	it	for	future	use.	Click	on	the	drop-down	arrow	next	to	the	publish	icon	on	the
toolbar	to	access	the	Edit	Publish	Configurations	for...	option.	It	brings	up	the
following	window:

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

In	the	middle-right	panel,	where	it	says	MATLAB	expression,	you	can	see	that	the
name	of	the	script	or	function	whose	parameters	are	being	modified	is	mentioned.	If
the	file	is	a	function	that	takes	certain	parameters,	they	can	be	specified	here,	just	as
you	would	call	it	from	the	MATLAB	prompt.	Other	settings	can	also	be	specified	as
shown	in	the	lower	right	panel.	You	can	save	these	settings	with	the	Publish
configuration	name	of	your	choice	that	you	can	specify	in	the	upper-right	textbox.
You	can	save	more	than	one	setting	for	the	same	file	and	run	the	file	with	either.

Note
Takeaways	from	this	recipe:

Use	the	publish	option	to	share	documented	code	and	graphics	with	your
audience

See	also
Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Look	up	MATLAB	help	on	the	publish	command.

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Appendix	A.	References
Beautiful	Evidence,	Edward	Tufte
The	Visual	Display	of	Quantitative	Information,	Edward	Tufte
Envisioning	Information,	Edward	Tufte
Visual	Explanations:	Images	and	Quantities,	Evidence	and	Narrative,
Edward	Tufte
Graphical	Perception:	Theory,	Experimentation,	and	Application	to	the
Development	of	Graphical	Methods,	William	S.	Cleveland	and	Robert	McGill
The	Structure	of	the	Information	Visualization	Design	Space,	Stuart	K.	Card
and	Jock	Mackinlay
Visual	Information	Seeking:	Tight	Coupling	of	Dynamic	Query	Filters	with
Starfield	Displays,	Christopher	Ahlberg	and	Ben	Shneiderman
High-Speed	Visual	Estimation	Using	Preattentive	Processing,	C.	G.	Healey,
K.	S.	Booth,	and	J.	T.	Enns
Automating	the	Design	of	Graphical	Presentations	of	Relational	Information,
Jock	Mackinlay
How	NOT	to	Lie	with	Visualization,	Bernice	E.	Rogowitz	and	Lloyd	A.
Treinish
The	Eyes	Have	It:	A	Task	by	Data	Type	Taxonomy	for	Information
Visualizations,	Ben	Shneiderman
A	Tour	Through	the	Visualization	Zoo,	Jeffrey	Heer,	Michael	Bostock,	and
Vadim	Ogievetsky
3D	Grand	Tour	for	Multidimensional	Data	and	Clusters,	Li	Yang.
Trends	in	Interactive	Visualization,	Elena	Zudilova-Seinstra,	Tony
Adriaansen,	and	Robert	van	Liere.
Course	materials	from	Scientific	and	Statistical	Visualization,	George	Mason
University,	Fairfax,	VA.	Daniel	B	Carr
Course	materials	from	Statistical	Graphics	and	Data	Exploration,	George
Mason	University,	Fairfax,	VA.	Daniel	B	Carr

Data	repositories	on	the	Web:

University	of	California	Irvine	Machine	Learning	data	depository
(http://archive.ics.uci.edu/ml/)
Datasets	for	The	Elements	of	Statistical	Learning	maintained	by	Stanford
University	(http://www-stat.stanford.edu/~tibs/ElemStatLearn/data.html)
KD	Nuggets	database	(http://www.kdnuggets.com/datasets/)
The	Stanford	3D	Scanning	Repository
(http://graphics.stanford.edu/data/3Dscanrep/)

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

http://archive.ics.uci.edu/ml/
http://www-stat.stanford.edu/~tibs/ElemStatLearn/data.html
http://www.kdnuggets.com/datasets/
http://graphics.stanford.edu/data/3Dscanrep/

Index
A

adjacency	matrix

about	/	How	it	works...

algorithm	test	results

comparing	/	A	visualization	to	compare	algorithm	test	results,	Getting
ready,	How	to	do	it...,	How	it	works...

alpha	values	/	How	it	works...
ambient	light	/	Lighting
Andrews	curves

about	/	Andrews'	curves,	How	it	works…,	See	also

animation

creating	/	Introduction
about	/	Animation	with	playback	of	frame	captures
with	playback	of	frame	captures	/	Animation	with	playback	of	frame
captures,	How	it	works...,	There's	more...
creating,	erase	and	redraw	strategy	/	Animation	by	incremental
changes	to	chart	elements,	Getting	ready,	How	to	do	it...,	How	it
works...

annotation	command

about	/	Using	annotations	pinned	to	the	axes
using	/	Getting	ready
working	/	How	it	works...

annotations	command

working	/	There's	more...

aspect	ratio	/	How	it	works…

issue	/	Preserving	onscreen	font	size	and	aspect	ratios
preserving	/	Preserving	onscreen	font	size	and	aspect	ratios,	How	to

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

do	it…,	How	it	works…

auto	correlation	function

about	/	How	to	do	it...

AVI	(Audio	Video	Interleave)	object	/	How	to	do	it...
Axes	Properties	/	Altering	graphics	object	properties	via	the	Property	Editor
azimuth	/	How	it	works…

B
backface	lighting	option

about	/	Use	of	the	back	face	lighting	option

bar	plots

about	/	Introduction

bidirectional	error	bars

about	/	Bidirectional	error	bars
working	/	How	it	works…,	See	also

bin	size	/	How	to	do	it...
bit	depth	/	How	it	works…
bitmap	/	How	it	works…
box	plots

about	/	Box	plots
building,	steps	/	How	to	do	it...

C
.csv	files	/	Getting	ready
calendar	heat	map

about	/	Calendar	heat	map
working	/	How	to	do	it...,	How	it	works...

callback	function	/	There's	more...,	There's	more...

about	/	How	it	works...
Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

callback	functions

about	/	Callback	functions,	Getting	started,	How	it	works...
data,	passing	/	There's	more...

camera	motion

exploring	/	Explore	with	camera	motion,	How	to	do	it...
working	/	How	it	works...,	There's	more...

child	object	/	Programmatic	manipulation	of	graphics	object	properties
Choropleth	maps

about	/	Choropleth	maps,	How	to	do	it...
working	/	How	it	works…,	See	also

clustergram

about	/	Dendrograms	and	clustergrams,	Getting	ready,	How	to	do	it...
working	/	How	it	works…

Code	Cells

about	/	Publishing	code	and	graphics	to	a	webpage

color	/	Transparency
compression	/	How	it	works...
cone	plots	/	Introduction
contour	plots

about	/	Contour	plots,	How	to	do	it...
working	/	How	it	works…,	There's	more...

contour	slices	/	How	to	do	it...
correlogram

about	/	How	to	do	it...

Current	Object	Properties	/	Altering	graphics	object	properties	via	the
Property	Editor
curse	of	dimensionality

about	/	Introduction

customized	multigraph	layout	/	How	it	works...
Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

D
2D	node	link	plots

about	/	2D	node	link	plots,	How	to	do	it...
working	/	How	it	works…

2D	scatter	plots	/	Two-dimensional	scatter	plots
3D	scatter	plots

about	/	3D	scatter	plots
steps	/	How	to	do	it...
working	/	How	it	works...

data	brushing

about	/	Linked	axes	and	data	brushing,	How	to	do	it...
working	/	How	it	works...

data	transformations

details,	visualizing	/	Visualizing	details	with	data	transformations,	How
to	do	it...,	How	it	works...,	See	also…

dendrogram

about	/	Dendrograms	and	clustergrams,	Getting	ready,	How	to	do	it...
working	/	How	it	works…

density	plots

about	/	Scatter	plot	smoothing
creating	/	How	it	works…

detrend	/	How	to	do	it...
distributional	data

analyzing	/	How	to	do	it...,	How	it	works...

distributional	data	analysis

about	/	Distributional	data	analysis
working	/	How	it	works...

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

downsampling

for	fast	graphs	/	Downsampling	for	fast	graphs,	How	to	do	it…,	How	it
works…

drawnow	property	/	How	it	works...

E
elevation	/	How	it	works…
EMF	/	Vector	graphics	for	inclusion	into	documents
envelope	/	How	to	do	it...
erase	and	redraw	strategy

used,	for	creating	animation	/	Animation	by	incremental	changes	to
chart	elements,	How	to	do	it...,	How	it	works...

error	bars	/	How	it	works...,	Bidirectional	error	bars
excel	/	Making	your	first	MATLAB	plot
exploratory	data	analysis	/	Introduction
export	formats

options	/	How	to	do	it…,	How	it	works…,	See	also

F
false	color	/	How	it	works...
fast	graphs

downsampling	/	Downsampling	for	fast	graphs,	How	to	do	it…,	How	it
works…

fft	/	How	to	do	it...
figure	dimensions	/	How	it	works...
figure	legends

about	/	Bringing	order	to	chaos	with	legends

Figure	Properties	/	Altering	graphics	object	properties	via	the	Property	Editor
flow	maps

about	/	Flow	maps,	How	to	do	it…
working	/	How	it	works...

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Fourier	transform

about	/	How	to	do	it...

frame	rate	/	How	it	works...
frequency	/	How	to	do	it...

G
Ghostscript	formats	/	How	it	works…
global	smoothing

about	/	How	to	do	it...

glyph

about	/	Glyphs,	How	to	do	it…
working	/	How	it	works...,	There's	more...

grand	tour	/	Introduction
graphics

about	/	Introduction
exporting	/	Export	formats	and	resolution

graphics	object	properties

programmatic	manipulation	/	Programmatic	manipulation	of	graphics
object	properties

grid	command

about	/	Tufte	style	gridding	for	readability

H
handle	/	Introduction
Handle	Graphics	Objects	/	Introduction
heat	maps

about	/	Introduction

histogram

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

about	/	How	to	do	it...

human	heart	rate	data

analyzing	/	How	to	do	it...,	How	it	works...

Hyperspectral	data

about	/	Fusing	hyperspectral	data
fusing	/	Getting	ready,	How	to	do	it…
ENVI	data,	working	/	How	it	works…

I
interactive	graphics

creating	/	Introduction

isocaps

about	/	How	to	do	it...
working	/	How	it	works...,	There's	more...

isonormal

about	/	How	to	do	it...
working	/	How	it	works...,	There's	more...

isosurface

about	/	Isosurface,	isonormals,	isocaps
working	/	How	it	works...,	There's	more...

J
JPEG	/	How	it	works…

L
LaTeX	syntax	/	How	to	do	it…
legend

about	/	Bringing	order	to	chaos	with	legends
Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

/	Bringing	order	to	chaos	with	legends
legend	command

using	/	Getting	ready,	How	to	do	it...
line	specs,	working	/	How	it	works...,	There's	more...,	See	also

lighting

about	/	Lighting,	How	to	do	it...
working	/	How	it	works...
vertex	normals	/	Effect	of	vertex	normals
back	face	lighting	option	/	Use	of	the	back	face	lighting	option
interacting,	with	transparency	/	Interaction	between	light,	transparency,
and	view,	How	to	do	it...,	How	it	works...,	See	also
interacting,	with	view	command	/	Interaction	between	light,
transparency,	and	view,	How	to	do	it...,	How	it	works...,	See	also

lighting	parameters	/	Scalar	and	vector	data	with	a	combination	of	techniques
line	plots

about	/	Introduction

line	specification	/	How	to	do	it...
Line	specs	/	How	it	works...
linked	axes

about	/	Linked	axes	and	data	brushing,	How	to	do	it...

M
magnifying	glass	demo

about	/	The	magnifying	glass	demo,	How	to	do	it...
working	/	How	it	works...

magnifying	glass	function

about	/	The	magnifying	glass	demo

MATLAB

stream	plots	/	Stream	lines,	ribbons,	tubes

MATLAB	command
Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

findobj	/	How	to	do	it...,	How	it	works...,	See	also
plot	/	See	also,	See	also
polyfit	/	See	also
polyval	/	See	also
legend	/	See	also,	See	also,	See	also
sort	/	See	also
xlsread	/	See	also
set	/	See	also
get	/	See	also
scatter	/	See	also,	See	also,	See	also
errorbar	/	How	it	works...,	See	also,	See	also
linspace	/	See	also
annotation	/	See	also
dsxy2figxy	/	See	also
line	/	See	also,	See	also,	See	also,	See	also
bar	/	See	also,	See	also
grid	/	See	also,	See	also
flexlegend	/	See	also
plotyy	/	See	also…
semilogx	/	See	also…
semilogy	/	See	also…
loglog	/	See	also…
datestr	/	See	also
subplot	/	See	also
axis	/	See	also,	See	also,	See	also
pie	/	See	also
stems	/	See	also
stairs	/	See	also
boxplot	/	See	also
datenum	/	See	also
area	/	Stacked	line	graphs,	See	also
cumsum	/	See	also
gplot	/	See	also
treeplot	/	See	also
colorbar	/	See	also,	See	also
alpha	/	See	also,	See	also,	See	also,	See	also,	See	also
imagesc	/	See	also
calendar	/	See	also
hist	/	See	also
qqplot	/	See	also
interpl	/	See	also
acf	/	See	also
fft	/	See	also

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

ifft	/	See	also
scatterhist	/	See	also
plotmatrix	/	See	also
surf	/	See	also,	See	also,	See	also,	See	also,	See	also,	How	to	do	it...
interp2	/	See	also
intersect	/	See	also
cat	/	See	also
meshgrid	/	See	also,	See	also
dendrogram	/	See	also
linkage	/	See	also
cluster	/	See	also
pdist	/	See	also
contour	/	See	also,	See	also
clabel	/	See	also
peaks	/	See	also
contourc	/	See	also
contourf	/	See	also
griddata	/	See	also
mesh	/	See	also
pcolor	/	See	also
delaunay	/	See	also
DelaunayTri	/	See	also
triplot	/	See	also
trisurf	/	See	also
fill	/	See	also
clim	/	See	also
shading	/	See	also
quiver	/	See	also
alphamap	/	See	also
alim	/	See	also
isonormals	/	Use	of	the	back	face	lighting	option,	See	also,	See	also
material	/	See	also
light	/	See	also
patch	/	See	also,	See	also,	See	also
camlight	/	See	also
view	/	See	also,	See	also
daspect	/	See	also,	See	also
campos	/	See	also,	See	also,	See	also,	See	also,	How	it	works...,
See	also
cameraupvector	/	See	also,	See	also
zoom	/	See	also
bubbleplot3	/	See	also
smooth3	/	See	also

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

slice	/	See	also,	See	also
contourslice	/	See	also,	See	also
squeeze	/	See	also
isosurface	/	See	also
isocap	/	See	also
streamslice	/	See	also
streamlines	/	See	also
streamline	/	See	also,	See	also
stream3	/	See	also,	See	also
streamtube	/	See	also,	See	also
volumebounds	/	See	also,	See	also
camdolly	/	See	also
camlookat	/	See	also
camorbit	/	See	also
campan	/	See	also
camproj	/	See	also
camroll	/	See	also
camtarget	/	See	also
camup	/	See	also
camva	/	See	also
camzoom	/	See	also
camera	/	See	also
multibandread.m	/	See	also
glyphplot	/	See	also
hggroup	/	See	also
parallelcoord	/	See	also
treemap	/	See	also
plotrectangles	/	See	also
andrewsplot.m	/	See	also
princomp	/	See	also
biplot	/	See	also
setappdata	/	See	also
getappdata	/	See	also
uimenu	/	See	also
imlineimpoly	/	See	also
imfreehandimrect	/	See	also
imellipseginput	/	See	also
linkdata	/	See	also
linkaxes	/	See	also
brush	/	See	also
image	/	See	also
WindowButtonMotionFcn	/	See	also
getframe	/	How	to	do	it...,	How	it	works...

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

imwrite	/	How	it	works...
interpstreamspeed	/	See	also
streamlineparticles	/	See	also
print	/	See	also,	See	also
publish	/	See	also

MATLAB	graphics	object	property

MarkerFaceColor	/	How	it	works...
MarkerEdgeColor	/	How	it	works...

MATLAB	graphics	objects	/	Introduction
MATLAB	plot

creating	/	Making	your	first	MATLAB	plot,	How	to	do	it...
working	/	How	it	works...

MATLAB	property

AlphaData	/	How	it	works...,	See	also
AlphaDataMapping	/	How	it	works...,	See	also
FaceVertexAlphaData	/	How	it	works...,	See	also
FaceAlpha,	EdgeAlpha	/	See	also
ALim	/	See	also
ALimMode	/	See	also
Alphamap	/	See	also
userdata	/	See	also
callback	/	See	also
XDataSource	/	How	it	works...
YDataSource	/	How	it	works...
ParticleAlignment	/	How	it	works...
XData	/	How	it	works...,	See	also
YData	/	How	it	works...,	See	also
EraseMode	/	See	also
refreshdata	/	See	also
drawnow	/	See	also
PaperOrientation	/	See	also
PaperPosition	/	See	also
PaperUnit	/	See	also
PaperPositionMode	/	See	also

MATLAB	Property	Editor	/	Altering	graphics	object	properties	via	the	Property
Editor
mesh

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

about	/	Surface,	patch,	and	shading

multi-tiered	tick	labels

about	/	How	it	works...
working	with	/	How	it	works...

multigraph	layouts

about	/	Designing	multigraph	layouts
designing	/	Getting	ready,	How	to	do	it...
working	/	How	it	works...

N
namevoyager.com

about	/	Stacked	line	graphs

Natural	Neighbor	/	How	it	works...
node	link	plots

about	/	Node	link	plots
working	/	How	it	works...
example	/	There's	more...

Normalized	Figure	Units	/	How	it	works...
Nyquist	Sampling	Theory	/	See	also

P
Parallel	coordinate	plots

about	/	Parallel	coordinates,	How	to	do	it…
working	/	How	it	works…

parent	object	/	Programmatic	manipulation	of	graphics	object	properties
patch	elements

about	/	Surface,	patch,	and	shading

PCA

about	/	Principal	Component	Analysis,	How	to	do	it…
Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

working	/	How	it	works…,	There's	more...

perception	/	How	it	works…
pie	charts

about	/	How	to	do	it...,	How	it	works...
plotting	/	How	to	do	it...

pin	annotation	to	axes	/	There's	more...
Plot	Edit	button	/	Programmatic	manipulation	of	graphics	object	properties
positional	coordinates

about	/	Introduction

power	spectrum

about	/	How	to	do	it...

PPI	/	How	it	works…
Principal	Component	Analysis	/	Introduction
projection	pursuit	algorithm	/	Introduction
Property	/	Introduction
Property	Editor

graphics	object	properties,	altering	/	Altering	graphics	object
properties	via	the	Property	Editor

property	editor	/	Introduction
Property	Inspector	Table	/	Altering	graphics	object	properties	via	the	Property
Editor
property	settings	/	Introduction
publish	icon	/	There's	more…

Q
quality	/	How	it	works...
quantile-quantile	plots

about	/	There's	more...

quiver	lines	/	How	it	works…

R
Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Radial	Coordinate	Visualization

about	/	Introduction,	Radial	Coordinate	Visualization,	How	to	do	it…
working	/	How	it	works…

refreshdata	property	/	How	it	works...
residuals

about	/	There's	more...

resolution

options	/	How	to	do	it…,	How	it	works…,	See	also

S
scatter3	/	How	it	works...
scattered	data

gridding	/	Gridding	scattered	data,	How	to	do	it…
working	/	How	it	works...,	There's	more…

scatter	plot	matrix	/	How	to	do	it...
scatter	plots

about	/	Introduction,	Introduction

scatter	plot	smoothing

about	/	Scatter	plot	smoothing,	How	to	do	it…
working	/	How	it	works…,	There's	more...,	See	also

screen	font	size

preserving	/	Preserving	onscreen	font	size	and	aspect	ratios,	How	to
do	it…

setappdata	functions

setappdata	function	/	How	it	works...

shading	algorithm

about	/	Surface,	patch,	and	shading

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

Show	Property	Editor	/	Altering	graphics	object	properties	via	the	Property
Editor
slice

visualizing	/	Slice	(cross-sectional	views),	How	to	do	it...
working	/	How	it	works...,	There's	more...

smooth	playback	/	There's	more...
sparkline

creating,	steps	/	How	to	do	it...
working	/	How	it	works...

stacked	line	graphs

about	/	Stacked	line	graphs
creating,	steps	/	How	to	do	it...
working	/	How	it	works...

stairs	plots

about	/	How	to	do	it...,	How	it	works...
creating	/	How	to	do	it...

static	graphic

about	/	Introduction

stem	plots

about	/	How	to	do	it...,	How	it	works...
creating	/	How	to	do	it...

stream	particle	animation

about	/	Stream	particle	animation
creating	/	Getting	ready
working	/	How	it	works...

stream	plots

about	/	Getting	started,	How	to	do	it...
working	/	How	it	works...

stream	ribbons	/	Stream	lines,	ribbons,	tubes
Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

stream	slice

about	/	Stream	slice
steps	/	How	to	do	it...
working	/	How	it	works...,	See	also

streamtubes	/	Scalar	and	vector	data	with	a	combination	of	techniques
string	concatenation	operator	[]	/	How	it	works...
surface	elements

about	/	Surface,	patch,	and	shading

survey	plots

about	/	Survey	plots,	Getting	ready,	How	to	do	it…
working	/	How	it	works…

T
task

string	concatenation	/	How	it	works...
break	title	into	multiple	lines	/	How	it	works...
linear	least	squares	fit	/	How	it	works...
rotate	labels	/	How	to	do	it...
turn	off	scientific	notation	of	tick	label	/	How	it	works...,	There's	more...
custom	layout	/	How	to	do	it...
multi-tiered	tick	label	/	How	it	works...
map	data	value	to	a	color	value	/	There's	more...
using	non-uniform	colors	in	contour	plot	/	There's	more...
natural	neighbor	interpolation	/	How	it	works...
alternative	ways	to	pass	data	to	callback	/	There's	more...
define	custom	response	to	user	interaction	/	There's	more...

thematic	maps	with	symbolstechnique

about	/	Thematic	maps	with	symbols,	How	to	do	it…
working	/	How	it	works…

tick	labels

about	/	Laying	out	long	tick	labels	without	overwriting
rotating	/	Getting	ready,	How	to	do	it...
working	/	How	it	works...

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

time	series

about	/	Time	series	analysis
analyzing	/	How	to	do	it...,	How	it	works...

transparency

about	/	Transparency,	Getting	ready,	How	to	do	it...
working	/	How	it	works...
interacting,	with	lighting	/	Interaction	between	light,	transparency,	and
view,	How	to	do	it...,	How	it	works...,	See	also
interacting,	with	view	command	/	Interaction	between	light,
transparency,	and	view,	How	to	do	it...,	How	it	works...,	See	also

/	Scalar	and	vector	data	with	a	combination	of	techniques
Tree	maps

about	/	Tree	maps
working	/	How	it	works...,	See	also

tree	plot

about	/	See	also

Tufte	style	gridding

about	/	Tufte	style	gridding	for	readability,	How	to	do	it...
working	/	How	it	works...

two-dimensionalscatter	plots

about	/	Two-dimensional	scatter	plots
using	/	How	to	do	it...
working	/	How	it	works…

U
user	input

obtaining,	from	graph	/	Obtaining	user	input	from	the	graph,	How	to	do
it...,	How	it	works...

V
Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

vector	graphics

about	/	How	it	works…,	Vector	graphics	for	inclusion	into	documents,
How	it	works…,	There's	more…
documents,	including	/	Vector	graphics	for	inclusion	into	documents,
How	it	works…,	There's	more…

VertexNormals

effects	/	Effect	of	vertex	normals

view	command	/	How	it	works…

interacting,	with	transparency	/	Interaction	between	light,	transparency,
and	view,	How	to	do	it...,	How	it	works...,	See	also
interacting,	with	lighting	/	Interaction	between	light,	transparency,	and
view,	How	to	do	it...,	How	it	works...,	See	also

view	control

about	/	View	control,	How	to	do	it...
aspect	ratio	/	How	it	works…
working	/	How	it	works…

volumetric	data

about	/	Introduction
scalar	/	Introduction
vector	/	Introduction

W
webpage

graphics,	publishing	/	Publishing	code	and	graphics	to	a	webpage,
How	to	do	it…,	How	it	works…,	There's	more…
code,	publishing	/	Publishing	code	and	graphics	to	a	webpage,	How	to
do	it…,	How	it	works…,	There's	more…

Majumdar, Nivedita, and Swapnonil Banerjee. MATLAB Graphics and Data Visualization Cookbook, Packt Publishing, Limited, 2012. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/anglia/detail.action?docID=1085226.
Created from anglia on 2020-05-05 23:53:06.

C
op

yr
ig

ht
 ©

 2
01

2.
 P

ac
kt

 P
ub

lis
hi

ng
, L

im
ite

d.
 A

ll
rig

ht
s

re
se

rv
ed

.

