

This page
intentionally left

blank

Copyright © 2010, New Age International (P) Ltd., Publishers
Published by New Age International (P) Ltd., Publishers

All rights reserved.
No part of this ebook may be reproduced in any form, by photostat, microfilm,
xerography, or any other means, or incorporated into any information retrieval
system, electronic or mechanical, without the written permission of the publisher.
All inquiries should be emailed to rights@newagepublishers.com

PUBLISHING FOR ONE WORLD

NEW AGE INTERNATIONAL (P) LIMITED, PUBLISHERS
4835/24, Ansari Road, Daryaganj, New Delhi - 110002
Visit us at www.newagepublishers.com

ISBN (13) : 978-81-224-2920-6

To
Lord Sri Venkateswara

(v)

a
Rectangle

This page
intentionally left

blank

The main objective of this book is to provide the students with the opportunity to improve their
programming skills using the MATLAB environment to implement algorithms and to teach the use of
MATLAB as a tool in solving problems in engineering. This book includes the coverage of basics of
MATLAB and application of MATLAB software to solve problems in electrical circuits, control systems,
numerical methods, optimization, direct numerical integration methods in engineering. With this
foundation of basic MATLAB applications in engineering problem solving, the book provides
opportunities to explore advanced topics in application of MATLAB as a tool.

An introduction to MATLAB basics is presented in Chapter 1. Chapter 1 also presents MATLAB
commands. MATLAB is considered as the software of choice. MATLAB can be used interactively and
has an inventory of routines, called as functions, which minimize the task of programming even more.
Further information on MATLAB can be obtained from: The MathWorks, Inc., 3 Apple Hill Drive, Natick,
MA 01760. In the computational aspects, MATLAB has emerged as a very powerful tool for numerical
computations involved in engineering problems. The idea of computer-aided design and analysis using
MATLAB with the Symbolic Math Tool box, and the Control System Tool box has been incorporated.
Chapter 2,3,4,5 and 6 consists of many solved problems that demonstrate the application of MATLAB to
the analysis of electrical circuits, control systems, numerical methods, optimization and direct numerical
integration methods. In chapter 6, we have briefly reviewed the direct numerical integration methods for
the solution of a single or system of differential equations. Many numerical methods are available for the
solutions of the response of dynamic systems. We have discussed several widely used step-by-step
numerical integration methods for linear dynamic response analysis. A brief description of these
integration methods is presented and their application is illustrated. The integration schemes considered
were three explicit and four implicit methods. They are the explicit schemes (the central difference method,
two-cycle interaction with trapezoidal rule and fourth order Runge-Kutta method) and the implicit schemes
(Houbolt method, Wilson Theta method, Newmark Beta method and the Park Stiffly stable method).
Application of these direct numerical integration methods is illustrated with a case study of a linear
dynamic system.

Presentations are limited to very basic topics to serve as an introduction to advanced topics in
those areas of discipline. Chapters 2, 3, 4, 5 and 6 include a great number of worked examples and
unsolved exercise problems to guide the student to understand the basic principles, concepts and use of
MATLAB in solving a variety of engineering problems.

Preface

(vii)

a
Rectangle

An extensive references to guide the student to further sources of information on electrical circuits,
control systems, numerical methods, optimization and direct numerical integration methods is provided at
the end of each chapter. All end-of-chapter problems are fully solved in the Solution Manual available
only to Instructors.

I sincerely hope that the final outcome of this book will help the students in developing an
appreciation for the topic of solving engineering problems with MATLAB.

 Rao V. Dukkipati

viii ——— Preface

I am grateful to all those who have had a direct impact on this work. Many people working in the general
areas of engineering have influenced the format of this book. I would also like to thank and recognize all
the undergraduate and graduate students in mechanical and electrical engineering programs at Fairfield
University over the years with whom I had the good fortune to teach and work and who contributed in
some ways and provide feedback to the development of the material of this book. In addition, I greatly owe
my indebtedness to all the authors of the articles listed in the bibliography of this book. Finally, I would
very much like to acknowledge the encouragement, patience and support provided by my family members:
Sudha, Ravi, Madhavi, Anand, Ashwin, Raghav, and Vishwa; who have also shared in all the pain, frustration,
and fun of producing a manuscript.

I would appreciate being informed of errors, or receiving other comments about the book. Please write
to the authors’ address or send e-mail to Professordukkipati@yahoo.com.

 Rao V. Dukkipati

Acknowledgement

(ix)

a
Rectangle

This page
intentionally left

blank

Preface vii

Acknowledgement ix

1. MATLAB BASICS 1–95

1.1 Introduction 1
1.2 Arithmetic Operations 3
1.3 Display Formats 3
1.4 Elementary Math Built-in Functions 4
1.5 Variable Names 6
1.6 Predefined Variables 6
1.7 Commands for Managing Variables 7
1.8 General Commands 7
1.9 Arrays 9

1.10 Operations with Arrays 11
1.11 Element-by-Element Operations 14
1.12 Random Numbers Generation 16
1.13 Polynomials 17
1.14 System of Linear Equations 18
1.15 Script Files 23
1.16 Programming in MATLAB 24
1.17 Graphics 29
1.18 Input/Output in MATLAB 38
1.19 Symbolic Mathematics 39
1.20 The Laplace Transforms 43
1.21 Control Systems 44
1.22 Summary 83

References 84
Problems 85

CONTENTS

(xi)

a
Rectangle

xii ——— Contents

2. ELECTRICAL CIRCUITS 97–120
2.1 Introduction 97
2.2 Electrical Circuits 100
2.3 Kirchhoff’s Laws 102
2.4 Example Problems and Solutions 103

References 118
Problems 118

3. CONTROL SYSTEMS 121–199
3.1 Introduction 121
3.2 Control Systems 121
3.3 Examples of Control Systems 122
3.4 Control System Configurations 123
3.5 Control System Terminology 124
3.6 Control System Classes 126
3.7 Feedback Systems 127
3.8 Analysis of Feedback 128
3.9 Control System Analysis and Design Objectives 129

3.10 MATLAB Application 129
3.11 Second-order Systems 131
3.12 Root Locus Plots 132
3.13 Bode Diagrams 132
3.14 Nyquist Plots 133
3.15 Nichols Chart 134
3.16 Gain Margin, Phase Margin, Phase Crossover Frequency

and Gain Crossover Frequency 134
3.17 Transformation of System Models 135
3.18 Bode Diagrams of Systems Defined in State Space 136
3.19 Nyquist Plots of a System Defined in State Space 136
3.20 Transient-Response Analysis in State Space 137
3.21 Response to Initial Condition in State Space 139
3.22 Example Problems and Solutions 139

References 188
Problems 190

4. NUMERICAL METHODS 201–260
4.1 Introduction 201
4.2 System of Linear Algebraic Equations 201
4.3 Gauss Elimination Method 201
4.4 LU Decomposition Methods 202
4.5 Choleski’s Decomposition 203
4.6 Gauss-Seidel Method 203

Contents ——— xiii

4.7 Gauss-Jordan Method 204
4.8 Jacobi Method 205
4.9 The Householder Factorization 207

4.10 Symmetric Matrix Eigenvalue Problems 208
4.11 Jacobi Method 208
4.12 Householder Reduction to Tridiagonal Form 210
4.13 Sturn Sequence 211
4.14 QR Method 211
4.15 Example Problems and Solutions 214

References 254
Problems 259

5. OPTIMIZATION 261–318
5.1 Introduction 261
5.2 Conjugate Gradient Methods 261
5.3 Newton’s Method 262
5.4 The Concept of Quadratic Convergence 263
5.5 Powell’s Method 266
5.6 Fletcher-Reeves Method 267
5.7 Hooke and Jeeves Method 267
5.8 Interior Penalty Function Method 268
5.9 Example Problems and Solutions 270

References 316
Problems 316

6. DIRECT NUMERICAL INTEGRATION METHODS 319–387
6.1 Introduction 319
6.2 Single-degree of Freedom System 319
6.3 Multi-degree of Freedom System 322
6.4 Explicit Schemes 323
6.5 Implicit Schemes 328
6.6 Example Problems and Solutions 337

References 381
Problems 386

7. ENGINEERING MECHANICS 389–548
 7.1 Introduction 389
7.2 Newtonian Mechanics 389
7.3 Newton’s Laws of Motion 389
7.4 Resultants of Coplanar Force Systems 390
7.5 Resultants of Non-coplanar Force Systems 391
7.6 Equilibrium of Coplanar Force Systems 392
7.7 Equilibrium of Non-coplanar Force System 394
7.8 Trusses 394

xiv ——— Contents

7.9 Analysis of Beams 395
7.10 Friction 395
7.11 First Moments and Centroids 396
7.12 Virtual Work 397
7.13 Kinematics of a Particle 398
7.14 D’Alembert’s Principle 402
7.15 Kinematics of a Rigid Body in Plane Motion 402
7.16 Moments of Inertia 404
7.17 Dynamics of a Rigid Body in Plane Motion 406
7.18 Work and Energy 408
7.19 Impulse and Momentum 409
7.20 Three-dimensional Mechanics 411
7.21 Example Problems and Solutions 413

References 526
Problems 527

8. MECHANICAL VIBRATIONS 549–645
8.1 Introduction 549
8.2 Classification of Vibrations 549
8.3 Elementary Parts of Vibrating Systems 550
8.4 Discrete and Continuous Systems 552
8.5 Vibration Analysis 552
8.6 Components of Vibrating Systems 554
8.7 Free Vibration of Single Degree of Freedom Systems 556
8.8 Forced Vibration of Single-degree of Freedom Systems 563
8.9 Harmonic Functions 571

8.10 Two-degrees of Freedom Systems 573
8.11 Multi-degree of Freedom Systems 577
8.12 Free Vibration of Damped Systems 581
8.13 Proportional Damping 581
8.14 General Viscous Damping 582
8.15 Harmonic Excitations 582
8.16 Modal Analysis for Undamped Systems 583
8.17 Lagrange’s Equation 583
8.18 Principle of Virtual Work 584
8.19 D’Alembert’s Principle 585
8.20 Lagrange’s Equations of Motion 585
8.21 Variational Principles 585
8.22 Hamilton’s Principle 585
8.23 Example Problems and Solutions 586

References 634
Problems 638

Bibliography 647–648
Index 649–665

1.1 INTRODUCTION

This chapter is a brief introduction to MATLAB (an abbreviation of MATrix LABoratory) basics, registered
trademark of computer software, version 4.0 or later developed by the Math Works Inc. The software is widely
used in many of science and engineering fields. MATLAB is an interactive program for numerical computation
and data visualization. MATLAB is supported on Unix, Macintosh and Windows environments. For more
information on MATLAB, contact The MathWorks.Com. A Windows version of MATLAB is assumed here.
The syntax is very similar for the DOS version.
MATLAB integrates mathematical computing, visualization, and a powerful language to provide a flexible
environment for technical computing. The open architecture makes it easy to use MATLAB and its companion
products to explore data, create algorithms and create custom tools, that provide early insights and competitive
advantages.
Known for its highly optimized matrix and vector calculations, MATLAB offers an intuitive language for
expressing problems and their solutions both mathematically and visually. Typical uses include:

• Numeric computation and algorithm development.
• Symbolic computation (with the built-in Symbolic Math functions).
• Modeling, simulation and prototyping.
• Data analysis and signal processing.
• Engineering graphics and scientific visualization.

In this chapter, we will introduce the MATLAB environment. We will learn how to create, edit, save, run and
debug M-files (ASCII files with series of MATLAB statements). We will see how to create arrays (matrices
and vectors), and explore the built-in MATLAB linear algebra functions for matrix and vector multiplication,
dot and cross products, transpose, determinants and inverses, and for the solution of linear equations.
MATLAB is based on the language C, but is generally much easier to use. We will also see how to program
logic constructs and loops in MATLAB, how to use subprograms and functions, how to use comments (%)
for explaining the programs and tabs for easy readability, and how to print and plot graphics both two and
three dimensional. MATLAB’s functions for symbolic mathematics are presented. Use of these functions to
perform symbolic operations, to develop closed form expressions for solutions to algebraic equations, ordinary

Matlab Basics

111CHAP
T

E
R

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

2 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

differential equations, and system of equations was presented. Symbolic mathematics can also be used to
determine analytical expressions for the derivative and integral of an expression.

1.1.1 Starting and Quitting MATLAB

To start MATLAB click on the MATLAB icon or type in MATLAB, followed by pressing the enter or return
key at the system prompt. The screen will produce the MATLAB prompt >> (or EDU >>), which indicates that
MATLAB is waiting for a command to be entered.
In order to quit MATLAB, type quit or exit after the prompt, followed by pressing the enter or return key.

1.1.2 Display Windows
MATLAB has three display windows. They are

1. A Command Window which is used to enter commands and data to display plots and graphs.
2. A Graphics Window which is used to display plots and graphs.
3. An Edit Window which is used to create and modify M-files. M-files are files that contain a

program or script of MATLAB commands.

1.1.3 Entering Commands
Every command has to be followed by a carriage return <cr> (enter key) in order that the command can be
executed. MATLAB commands are case sensitive and lower case letters are used throughout.
To execute an M-file (such as Project_1.m), simply enter the name of the file without its extension (as in
Project_1).

1.1.4 MATLAB Expo
In order to see some of the MATLAB capabilities, enter the demo command. This will initiate the MATLAB
EXPO. MATLAB EXPO is a graphical demonstration environment that shows some of the different types of
operations which can be conducted with MATLAB.

1.1.5 Abort
In order to abort a command in MATLAB, hold down the control key and press c to generate a local abort with
MATLAB.

1.1.6 The Semicolon (;)
If a semicolon (;) is typed at the end of a command, the output of the command is not displayed.

1.1.7 Typing %
When per cent symbol (%) is typed in the beginning of a line, the line is designated as a comment. When the
enter key is pressed, the line is not executed.

1.1.8 The clc Command
Typing clc command and pressing enter cleans the command window. Once the clc command is executed, a
clear window is displayed.

1.1.9 Help
MATLAB has a host of built-in functions. For a complete list, refer to MATLAB user’s guide or refer to the
on-line Help. To obtain help on a particular topic in the list, e.g., inverse, type help inv.

MATLAB Basics ——— 3

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

1.1.10 Statements and Variables
Statements have the form

>> variable = expression
The equals (“=”) sign implies the assignment of the expression to the variable. For instance, to enter a 2 × 2
matrix with a variable name A, we write

>> A == [1 2 ; 3 4] 〈ret〉
The statement is executed after the carriage return (or enter) key is pressed to display

A =
1 2
3 4

1.2 ARITHMETIC OPERATIONS

The symbols for arithmetic operations with scalars are summarized below in Table 1.1.

Table 1.1

Arithmetic operation Symbol Example
Addition + 6 + 3 = 9
Subtraction – 6 – 3 = 3
Multiplication * 6 * 3 = 18
Right division / 6/3 = 2
Left division \ 6\3 = 3/6 = 1/2
Exponentiation ^ 6 ̂ 3 = 63 = 216

1.3 DISPLAY FORMATS

MATLAB has several different screen output formats for displaying numbers. These formats can be found by
typing the help command: help format in the Command Window. A few of these formats are shown in Table 1.2
for 2π.

Table 1.2 Display formats

Command Description Example
format short Fixed-point with 4

decimal digits
 >> 351/7

ans = 50.1429
format long Fixed-point with 14

decimal digits
>> 351/7
ans = 50.14285714285715

format short e Scientific notation with 4
decimal digits

>> 351/7
ans = 5.0143e + 001

format long e Scientific notation with 15
decimal digits

>> 351/7
ans = 5.014285714285715e001

format short g Best of 5 digit fixed or
floating point

>> 351/7
ans = 50.143

Contd...

4 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

format long g Best of 15 digit fixed or
floating point

>> 351/7
ans = 50.1428571428571

format bank Two decimal digits >> 351/7
ans = 50.14

format compact Eliminates empty lines to allow more lines with information
displayed on the screen

format loose Adds empty lines (opposite of compact)

1.4 ELEMENTARY MATH BUILT-IN FUNCTIONS

MATLAB contains a number of functions for performing computations which require the use of logarithms,
elementary math functions and trigonometric math functions. List of these commonly used elementary
MATLAB mathematical built-in functions are given in Tables 1.3 to 1.8.

Table 1.3 Common math functions

Function Description
abs(x)
sqrt(x)
round(x)
fix(x)
floor(x)
ceil(x)
sign(x)

rem(x,y)

exp(x)

log(x)
log10(x)

Computes the absolute value of x.
Computes the square root of x.
Rounds x to the nearest integer.
Rounds (or truncates) x to the nearest integer toward 0.

Rounds x to the nearest integer toward –∞.

Rounds x to the nearest integer toward ∞.
Returns a value of –1 if x is less than 0, a value of 0 if x equals 0,
and a value of 1 otherwise.
Returns the remainder of x/y. for example, rem(25, 4) is 1, and
rem(100, 21) is 16. This function is also called a modulus function.
Computes ex, where e is the base for natural logarithms, or
approximately 2.718282.
Computes ln x, the natural logarithm of x to the base e.
Computes log10 x, the common logarithm of x to the base 10.

Table 1.4 Exponential functions

Function Description

exp(x)
log(x)
log10(x)
sqrt(x)

Exponential (ex)
Natural logarithm
Base 10 logarithm
Square root

MATLAB Basics ——— 5

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

Table 1.5 Trigonometric and hyperbolic functions

Function Description
sin(x) Computes the sine of x, where x is in radians.
cos(x) Computes the cosine of x, where x is in radians.
tan(x) Computes the tangent of x, where x is in radians.
asin(x) Computes the arcsine or inverse sine of x, where x must be between –1 and 1.

The function returns an angle in radians between –π/2 and π/2.
acos(x) Computes the arccosine or inverse cosine of x, where x must be between

–1 and 1. The function returns an angle in radians between 0 and π.
atan(x) Computes the arctangent or inverse tangent of x. The function returns an

angle in radians between –π/2 and π/2.
atan2(y,x) Computes the arctangent or inverse tangent of the value y/x. The function

returns an angle in radians that will be between –π and π, depending on the
signs of x and y.

sinh(x) Computes the hyperbolic sine of x, which is equal to
2

e e−−x x
.

cosh(x) Computes the hyperbolic cosine of x, which is equal to
2

e e−+x x
.

tanh(x) Computes the hyperbolic tangent of x, which is equal to sinh
cosh

x
x

.

asinh(x) Computes the inverse hyperbolic sine of x, which is equal to
2ln 1 + +  

x x .
acosh(x) Computes the inverse hyperbolic cosine of x, which is equal to

2ln 1 + −  
x x .

atanh(x) Computes the inverse hyperbolic tangent of x, which is equal to
1ln
1

+
−

x
x

for |x| ≤ 1.

Table 1.6 Round-off functions

Function Description Example
round(x) Round to the nearest integer >> round(20/6)

ans = 3
fix()x Round towards zero >> fix(13/6)

ans = 2
ceil()x Round towards infinity >> ceil(13/5)

ans = 3
floor()x Round towards minus infinity >> floor(–10/4)

ans = –3
rem(x,y) Returns the remainder after x is divided by y >> rem(14,3)

ans = 2
sign(x,y) Signum function. Returns 1 if x > 0, –1 if x < 0,

and 0 if x = 0.
>> sign(7)
ans = 1

6 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

Table 1.7 Complex number functions

Table 1.8 Arithmetic operations with complex numbers

Operation Result
c1 + c2 (a1 + a2) + i(b1 + b2)
c1 + c2 (a1 – a2) + i(b1 – b2)
c1 c2 (a1a2 – b1b2) + i(a1b2 – a2b1)

1

2

c
c

 1 2 1 2 2 1 2 1
2 2 2 2
2 2 2 2

a a b b a b b ai
a b a b

|c1| 2 2
1 1a b (magnitude or absolute value of c1)

c1* a1 – ib1 (conjugate of c1)
(Assume that c1 = a1 + ib1 and c2 = a2 + ib2.)

1.5 VARIABLE NAMES

A variable is a name made of a letter or a combination of several letters and digits. Variable names can be up to
63 (in MATLAB 7) characters long (31 characters on MATLAB 6.0). MATLAB is case sensitive. For instance,
XX, Xx, xX and xx are the names of four different variables. It should be noted here that not to use the names of
a built-in functions for a variable. For instance, avoid using: sin, cos, exp, sqrt, ..., etc. Once a function name is
used to define a variable, the function cannot be used.

1.6 PREDEFINED VARIABLES

MATLAB includes a number of predefined variables. Some of the predefined variables that are available to use
in MATLAB programs are summarized in Table 1.9.

Function Description

conj(x) Computes the complex conjugate of the complex number x. Thus, if
x is equal to a + ib, then conj(x) will be equal to a – ib.

angle(x) Computes the real portion of the complex number x.
real(x) Computes the imaginary portion of the complex number x.
imag(x) Computes the absolute value of magnitude of the complex number x.
abs(x) Computes the angle using the value of atan2(imag(x), real(x)); thus,

the angle value is between –π and π.

MATLAB Basics ——— 7

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

Table 1.9 Predefined variables

Predefined variable
in MATLAB

Description

ans

pi
eps

inf

i
j
NaN

clock

date

Represents a value computed by an expression but not
stored in variable name.
Represents the number π.
Represents the floating-point precision for the computer
being used. This is the smallest difference between two
numbers.
Represents infinity which for instance occurs as a result of
a division by zero. A warning message will be displayed or
the value will be printed as ∞.
Defined as 1− , which is: 0 + 1.0000 .i
Same as .i
Stands for Not a Number. Typically occurs as a result of an
expression being undefined, as in the case of division of
zero by zero.
Represents the current time in a six-element row vector
containing year, month, day, hour, minute, and seconds.
Represents the current date in a character string format.

1.7 COMMANDS FOR MANAGING VARIABLES

Table 1.10 lists commands that can be used to eliminate variables or to obtain information about variables that
have been created. The procedure is to enter the command in the Command Window and the Enter key is to be
pressed.

Table 1.10 Commands for managing variables

Command Description
clear
clear x, y, z
 who

 whos

Removes all variables from the memory.
Clears/removes only variables x, y and z from the memory.
Lists the variables currently in the workspace.
Displays a list of the variables currently in the memory and their
size together with information about their bytes and class.

1.8 GENERAL COMMANDS

In Tables 1.11 to 1.15 the useful general commands on on-line help, workspace information, directory information
and general information are given.

8 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

Table 1.11 On-line help
Function Description

help
helpwin
helpdesk
help topic
lookfor string
demo

Lists topics on which help is available.
Opens the interactive help window.
Opens the web browser based help facility.
Provides help on topic.
Lists help topics containing string.
Runs the demo program.

Table 1.12 Workspace information

Function Description
who
whos
what
clear
clear x y z
clear all
mlock fun
munlock fun
clc
home
clf

Lists variables currently in the workspace.
Lists variables currently in the workspace with their size.
Lists m-, mat- and mex-files on the disk.
Clears the workspace, all variables are removed.
Clears only variables x, y, and z.
Clears all variables and functions from workspace.
Locks function fun so that clear cannot remove it.
Unlocks function fun so that clear can remove it.
Clears command window, command history is lost.
Same as clc.
Clears figure window.

Table 1.13 Directory information

Function Description
pwd
cd
dir
ls
path
editpath
copyfile
mkdir

Shows the current working directory.
Changes the current working directory.
Lists contents of the current directory.
Lists contents of the current directory, same as dir.
Gets or sets MATLAB search path.
Modifies MATLAB search path.
Copies a file.
Creates a directory.

Table 1.14 General information

Function Description
computer
clock
date
more
ver
 bench

Tells you the computer type you are using.
Gives you wall clock time and date as a vector.
Tells you the date as a string.
Controls the paged output according to the screen size.
Gives the license and the version information about MATLAB installed on your computer.
Benchmarks your computer on running MATLAB compared to other computers.

MATLAB Basics ——— 9

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

Table 1.15 Termination

Function Description

c (Control-c)
quit
exit

Local abort, kills the current command execution.
Quits MATLAB.
Same as quit.

1.9 ARRAYS

An array is a list of numbers arranged in rows and/or columns. A one-dimensional array is a row or a column
of numbers and a two-dimensional array has a set of numbers arranged in rows and columns. An array
operation is performed element-by-element.

1.9.1 Row Vector
A vector is a row or column of elements.
In a row vector, the elements are entered with a space or a comma between the elements inside the square
brackets. For example, x = [7 –1 2 –5 8].

1.9.2 Column Vector
In a column vector, the elements are entered with a semicolon between the elements inside the square
brackets. For example, x = [7; –1; 2; –5; 8].

1.9.3 Matrix
A matrix is a two-dimensional array which has numbers in rows and columns. A matrix is entered row-wise with
consecutive elements of a row separated by a space or a comma, and the rows separated by semicolons or
carriage returns. The entire matrix is enclosed within square brackets. The elements of the matrix may be real
numbers or complex numbers. For example, to enter the matrix,

1 3 4
0 2 8

A
− 

=  − 

The MATLAB input command is
A = [1 3 –4 ; 0 –2 8]

Similarly, for complex number elements of a matrix B

5 ln 2 7sin 3
3 5 13

x x y
B

i i
− + 

=  − 

The MATLAB input command is
B = [–5*x log(2*x) + 7*sin(3*y); 3i 5 – 13i]

10 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

1.9.4 Addressing Arrays
A colon can be used in MATLAB to address a range of elements in a vector or a matrix.

1.9.4.1 Colon for a vector
Va(:) – refers to all the elements of the vector Va (either a row or a column vector).
Va(m:n) – refers to elements m through n of the vector Va.
For instance,

>> V = [2 5 –1 11 8 4 7 –3 11]
>> u = V (2:8)

u = 5 –1 11 8 4 7 –3 11

1.9.4.2 Colon for a matrix
Table 1.16 gives the use of a colon in addressing arrays in a matrix.

Table 1.16 Colon use for a matrix

Command Description
A(:, n)
A(n, :)
A(:, m:n)

A(m:n, :)

A(m:n, p:q)

Refers to the elements in all the rows of a column n of the matrix A.
Refers to the elements in all the columns of row n of the matrix A.
Refers to the elements in all the rows between columns m and n of
the matrix A.
Refers to the elements in all the columns between rows m and n of
the matrix A.
Refers to the elements in rows m through n and columns p through
q of the matrix A.

1.9.5 Adding Elements to a Vector or a Matrix

A variable that exists as a vector or a matrix can be changed by adding elements to it. Addition of elements is
done by assigning values of the additional elements, or by appending existing variables. Rows and/or columns
can be added to an existing matrix by assigning values to the new rows or columns.

1.9.6 Deleting Elements

An element or a range of elements of an existing variable can be deleted by reassigning blanks to these
elements. This is done simply by the use of square brackets with nothing typed in between them.

1.9.7 Built-in Functions

Some of the built-in functions available in MATLAB for managing and handling arrays as listed in
Table 1.17.

MATLAB Basics ——— 11

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

Table 1.17 Built-in functions for handling arrays

Function Description Example
length(A) Returns the number of

elements in the vector A.
>> = [5 9 2 4];A
>> length()A
ans = 4

size()A Returns a row vector [], m, n
where andm are the size n
m × n of the array A.

>> = [2 3 0 8 11 ; 6 17 5 7 1]A
A =

2 3 0 8 11
6 17 5 7 1

>> size()A
ans = 2 5

reshape(A, m, n) Rearrange a matrix that A
has rows and columns to r s
have rows and columns. m n
r s m times must be equal to
times .n

>> = [3 1 4 ; 9 0 7]A
A =

3 1 4
9 0 7

>> = reshape(, 3, 2)B A
B =

3 0
9 4
1 7

diag(v) When is a vector, creates a v
square matrix with the
elements of in the v
diagonal

>> = [3 2 1];v
>> = diag()A v
A =

3 0 0
0 2 0
0 0 1

diag(A) When is a matrix, creates A
a vector from the diagonal
elements of .A

>> = [1 8 3 ; 4 2 6 ; 7 8 3]A
A =

1 8 3
4 2 6
7 8 3

>> vec = diag()A
vec =

1
2
3

1.10 OPERATIONS WITH ARRAYS

We consider here matrices that have more than one row and more than one column.

1.10.1 Addition and Subtraction of Matrices

The addition (the sum) or the subtraction (the difference) of the two arrays is obtained by adding or subtracting
their corresponding elements. These operations are performed with arrays of identical size (same number of
rows and columns).

12 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

For example, if A and B are two arrays (2 × 3 matrices).

11 12 13 11 12 13

21 22 23 21 22 23
and

a a a b b b
A B

a a a b b b
   

= =   
   

Then, the matrix addition (A + B) is obtained by adding A and B is

11 11 12 12 13 13

21 21 22 22 23 23

a b a b a b
a b a b a b

+ + + 
 + + + 

1.10.2 Dot Product
The dot product is a scalar computed from two vectors of the same size. The scalar is the sum of the products
of the values in corresponding positions in the vectors.
For n elements in the vectors A and B:

 dot product = A * B =
1

n

i i
i

a b
=
∑

dot(A, B): Computes the dot product of A and B. If A and B are matrices, the dot product is a row vector
containing the dot products for the corresponding columns of A and B.

1.10.3 Array Multiplication
The value in position ci,j of the product C of two matrices, A and B, is the dot product of row i of the first matrix
and column of the second matrix.

, , ,
1

n

i j i k k j
k

c a b
=

= ∑
1.10.4 Array Division
The division operation can be explained by means of the identity matrix and the inverse matrix operation.

1.10.5 Identity Matrix
An identity matrix is a square matrix in which all the diagonal elements are 1’s, and the remaining elements are
0’s. If a matrix A is square, then it can be multiplied by the identity matrix, I, from the left or from the right:

AI = IA = A

1.10.6 Inverse of a Matrix
The matrix B is the inverse of the matrix A when the two matrices are multiplied and the product is an identity
matrix. Both matrices A and B must be square and the order of multiplication can be AB or BA.

AB = BA = I

1.10.7 Transpose
The transpose of a matrix is a new matrix in which the rows of the original matrix are the columns of the new
matrix. The transpose of a given matrix A is denoted by AT. In MATLAB, the transpose of the matrix A is
denoted by A′.

MATLAB Basics ——— 13

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

1.10.8 Determinant
A determinant is a scalar computed from the entries in a square matrix. For a 2 × 2 matrix A, the determinant is

|A| = a11 a22 – a21 a12

MATLAB will compute the determinant of a matrix using the det function:
det(A): Computes the determinant of a square matrix A.

1.10.9 Array Division
MATLAB has two types of array division, which are the left division and the right division.

1.10.10 Left Division
The left division is used to solve the matrix equation Ax = B where x and B are column vectors. Multiplying
both sides of this equation by the inverse of A, A–1, we have

A–1Ax = A–1 B
or Ix = x = A–1 B
Hence x = A–1 B
In MATLAB, the above equation is written by using the left division character:

 x = A \ B

1.10.11 Right Division
The right division is used to solve the matrix equation xA = B where x and B are row vectors. Multiplying both
sides of this equation by the inverse of A, A–1, we have
 x * AA–1 = B * A–1

or x = B * A–1

In MATLAB, this equation is written by using the right division character:
 x = B/ A

1.10.12 Eigenvalues and Eigenvectors
Consider the following equation:

AX = λX ...(1.1)
where A is an n × n square matrix, X is a column vector with n rows and λ is a scalar.

The values of λ for which X are non-zero are called the eigenvalues of the matrix A, and the corresponding
values of X are called the eigenvectors of the matrix A.

Equation (1.1) can also be used to find the following equation:
(A – λI)X = 0 ...(1.2)

where I is an n × n identity matrix. Equation (1.2) corresponding to a set of homogeneous equations and has
non-trivial solutions only if the determinant is equal to zero, or

|A – λI | = 0 ...(1.3)
Equation (1.3) is known as the characteristic equation of the matrix A. The solution to Eq.(1.3) gives the
eigenvalues of the matrix A.

14 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

MATLAB determines both the eigenvalues and eigenvectors for a matrix A.

eig(A): Computes a column vector containing the eigenvalues of A.
[Q, d] = eig(A): Computes a square matrix Q containing the eigenvectors of A as columns and a square matrix
d containing the eigenvlaues (λ) of A on the diagonal. The values of Q and d are such that Q * Q is the identity
matrix and A*X equals λ times X.
Triangular factorization or lower-upper factorization: Triangular or lower-upper factorization expresses a
square matrix as the product of two triangular matrices—a lower triangular matrix and an upper triangular
matrix. The lu function in MATLAB computes the LU factorization.
[L, U] = lu(A): Computes a permuted lower triangular factor in L and an upper triangular factor in U such that
the product of L and U is equal to A.
QR factorization: The QR factorization method factors a matrix A into the product of an orthonormal matrix
and an upper-triangular matrix. The qr function is used to perform the QR factorization in MATLAB.
[Q, R] = qr(A): Computes the values of Q and R such that A = QR. Q will be an orthonormal matrix, and R will
be an upper triangular matrix..

For a matrix A of size m × n, the size of Q is m × m, and the size of R is m × n.
Singular Value Decomposition (SVD): Singular value decomposition decomposes a matrix A (size m × n) into
a product of three matrix factors.

 A = USV
where U and V are orthogonal matrices and S is a diagonal matrix. The size of U is m × m, the size of V is n × n,
and the size of S is m × n. The values on the diagonal matrix S are called singular values. The number of non-
zero singular values is equal to the rank of the matrix.
The SVD factorization can be obtained using the svd function.
[U, S, V] = svd(A): Computes the factorization of A into the product of three matrices, USV, where U and V are
orthogonal matrices and S is a diagonal matrix.
svd(A): Returns the diagonal elements of S, which are the singular values of A.

1.11 ELEMENT-BY-ELEMENT OPERATIONS

Element-by-element operations can only be done with arrays of the same size. Element-by-element multiplication,
division and exponentiation of two vectors or matrices is entered in MATLAB by typing a period in front of
the arithmetic operator. Table 1.18 lists these operations.

Table 1.18 Element-by-element operations

Arithmetic operators

Matrix operators Array operators

+ Addition

– Subtraction

* Multiplication

^ Exponentiation

/ Right division
Left division\

+ Addition

– Subtraction

* Array multiplication

^ Array exponentiation

/ Array right division
Array left division\

MATLAB Basics ——— 15

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

1.11.1 Built-in Functions for Arrays
Table 1.19 lists some of the many built-in functions available in MATLAB for analysing arrays.

Table 1.19 MATLAB built-in array functions

min(A)

[d, n] = min()A

The same as max(A), but for the
smallest element.

The same as [d, n] = max(A),
but for the smallest element.

>> = [3 7 2 16];A
>> min()A
ans = 2

sum()A If A is a vector, returns the sum
of the elements of the vector.

>> = [3 7 2 16];A
>> sum()A
ans = 28

sort()A If A is a vector, arranges the
elements of the vector in
ascending order.

>> = [3 7 2 A 16];
>> sort()A
ans = 2 3 7 16

median()A If A is a vector, returns the
median value of the elements of
the vector.

>> = [3 7 2 16];A
>> median()A
ans = 5

std()A If A is a vector, returns the
standard deviation of the
elements of the vector.

>> = [3 7 2 16];A
>> std()A
ans = 6.3770

det()A Returns the determinant of a
square matrix A.

>> = [1 2 ; 3 4];A
>> det()A

– 2
dot(a, b) Calculates the scalar (dot)

product of two vectors a and b.
The vector can each be row or
column vectors.

>> = [5 6 7];a
>> = [4 3 2];b
>> dot()a,b
ans = 52

cross(a, b) Calculates the cross product of
two vectors a and b, (a × b). The
two vectors must have 3 elements.

>> = [5 6 7];a
>> = [4 3 2];b
>> cross(,)a b
ans = –9 18 –9

Function Description Example
mean(A) If A is a vector, returns the mean

value of the elements
>> = [3 7 2 16];A
>> mean()A
ans = 7

C = max(A)

[d, n] = max(A)

If A is a vector, C is the largest
element in A. If A is a matrix, C
is a row vector containing the
largest element of each column
of A.

If A is a vector, d is the largest
element in A, n is the position of
the element (the first if several
have the max value).

>> = [3 7 2 16 9 5 18 13 0 4];A
>> = max()C A

C = 18

>> [, d n A] = max()
d = 18

 n =

7

ans =

Contd...

16 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

inv(A) Returns the inverse of a square
matrix A.

>> = [1 2 3; 4 6 8; a –1 2 3];
>> inv()A
ans =

–0.5000 0.0000 –0.5000
 –5.0000 1.5000
 3.5000 –1.0000

1.0000
–0.5000

1.12 RANDOM NUMBERS GENERATION

There are many physical processes and engineering applications that require the use of random numbers in
the development of a solution.
MATLAB has two commands rand and rand n that can be used to assign random numbers to variables.
The rand command: The rand command generates uniformly distributed over the interval [0, 1]. A seed value
is used to initiate a random sequence of values. The seed value is initially set to zero. However, it can be
changed with the seed function.
The command can be used to assign these numbers to a scalar, a vector or a matrix as shown in Table 1.20.

Table 1.20 The rand command

Command Description Example
rand Generates a single random

number between 0 and 1.
>> rand
ans = 0.9501

rand(1, n) Generates an n elements row
vector of random numbers
between 0 and 1.

>> a = rand(1, 3)
a = 0.4565 0.0185 0.8214

rand()n Generates an n × n matrix
with random numbers
between 0 and 1.

>> = rand(3)b
b =

0.7382 0.9355 0.8936
 0.1763 0.9165 0.0579

0.4057 0.4103 0.3529

rand(m, n) Generates an m × n matrix
with random numbers
between 0 and 1.

>> = rand(2, 3)c
c =

0.2028 0.6038 0.1988
 0.1987 0.2722 0.0153

randperm (n) Generates a row vector with
n elements that are random
permutation of integers 1
through n.

>> randperm(7)
ans =

5 2 4 7 1 6 3

1.12.1 The Random Command
MATLAB will generate Gaussian values with a mean of zero and a variance of 1.0 if a normal distribution is
specified. The MATLAB functions for generating Gaussian values are as follows:
randn(n): Generates an n × n matrix containing Gaussian (or normal) random numbers with a mean of 0 and a
variance of 1.
randn(m, n): Generates an m × n matrix containing Gaussian (or normal) random numbers with a mean of 0 and
a variance of 1.

MATLAB Basics ——— 17

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

1.13 POLYNOMIALS

A polynomial is a function of a single variable that can be expressed in the following form:

 f (x) = a0xn + a1xn–1 + a2xn–2 + … + an–1x1 + an

where the variable is x and the coefficients of the polynomial are represented by the values a0, a1, … and so
on. The degree of a polynomial is equal to the largest value used as an exponent.
A vector represents a polynomial in MATLAB. When entering the data in MATLAB, simply enter each
coefficient of the polynomial into the vector in descending order. For example, consider the polynomial

 5s5 + 7s4 + 2s2 – 6s + 10
To enter this into MATLAB, we enter this as a vector as

 >>x = [5 7 0 2 –6 10]
 x =

 5 7 0 2 –6 10

It is necessary to enter the coefficients of all the terms.
MATLAB contains functions that perform polynomial multiplication and division, which are listed below:
conv(a, b): Computes a coefficient vector that contains the coefficients of the product of polynomials
represented by the coefficients in a and b. The vectors a and b do not have to be the same size.
[q, r] = deconv(n, d): Returns two vectors. The first vector contains the coefficients of the quotient and the
second vector contains the coefficients of the remainder polynomial.
The MATLAB function for determining the roots of a polynomial is the roots function:
root(a): Determines the roots of the polynomial represented by the coefficient vector a.
The roots function returns a column vector containing the roots of the polynomial; the number of roots is
equal to the degree of the polynomial. When the roots of a polynomial are known, the coefficients of the
polynomial are determined. When all the linear terms are multiplied, we can use the poly function:
poly(r): Determines the coefficients of the polynomial whose roots are contained in the vector r.
The output of the function is a row vector containing the polynomial coefficients.
The value of a polynomial can be computed using the polyval function, polyval (a, x). It evaluates a polynomial
with coefficients a for the values in x. The result is a matrix the same size as x. For instance, to find the value
of the above polynomial at s = 2,

 >>x = polyval([5 7 0 2 –6 10], 2)
 x =

 278
To find the roots of the above polynomial, we enter the command roots (a) which determines the roots of the
polynomial represented by the coefficient vector a.

 >>roots([5 7 0 2 –6 10])
 ans =
–1.8652
–0.4641 + 1.0832i
–0.4641 – 1.0832i
 0.6967 + 0.5355i
 0.6967 – 0.5355i

18 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

% or
>> x = [5 7 0 2 –6 10]
 x = 5 7 0 2 –6 10
>> r = roots(x)
r =

–1.8652
–0.4641 + 1.0832i
–0.4641 – 1.0832i
0.6967 + 0.5355i
0.6967 – 0.5355i

To multiply two polynomials together, we enter the command conv.
The polynomials are: x = 2x + 5 and y = x2 + 3x + 7

>>x = [2 5];
>>y = [1 3 7];
>>z = conv(x, y)
 z = 2 11 29 35

To divide two polynomials, we use the command deconv.
z = [2 11 29 35]; x = [2 5]
 >> [g, t] = deconv (z, x)
g = 1 3 7
t = 0 0 0 0

1.14 SYSTEM OF LINEAR EQUATIONS

A system of equations is non-singular if the matrix A containing the coefficients of the equations is non-
singular. A system of non-singular simultaneous linear equations (AX = B) can be solved using two methods:

(a) Matrix Division Method.
(b) Matrix Inversion Method.

1.14.1 Matrix Division
The solution to the matrix equation AX = B is obtained using matrix division, or X = A/B. The vector X then
contains the values of x.

1.14.2 Matrix Inverse
For the solution of the matrix equation AX = B, we premultiply both sides of the equation by A–1.
 A–1AX = A–1B
or IX = A–1B
where I is the identity matrix.
Hence X = A–1B
In MATLAB, we use the command x = inv (A)*B. Similarly, for XA = B, we use the command x = B * inv (A).

MATLAB Basics ——— 19

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

The basic computational unit in MATLAB is the matrix. A matrix expression is enclosed in square brackets,
[]. Blanks or commas separate the column elements, and semicolons or carriage returns separate the rows.

>>A = [1 2 3 4 ; 5 6 7 8 ; 9 10 11 12]
A =

1 2 3 4
5 6 7 8
9 10 11 12

The transpose of a simple matrix or a complex matrix is obtained by using the apostrophe key
 >>B = A'
 B =

1 5 9
2 6 10
3 7 11
4 8 12

Matrix multiplication is accomplished as follows:
>>C = A*B
C =

30 70 110
70 174 278
110 278 446

>>C = B*A
C =
107 122 137 152
122 140 158 176
137 158 179 200
152 176 200 224

The inverse of a matrix D is obtained as
>>D = [1 2 ; 3 4]
D =

1 2
3 4

>>E = inv (D)
E =

–2.0000 1.0000
1.5000 –0.5000

Similarly, its eigenvalue is
>>eig (D)
ans =
–0.3723
5.3723

Matrix operations require that the matrix dimensions be compatible. If A is an n × m and B is a p × r, then
A ± B is allowed only if n = p and m = r. Similarly, matrix product A * B is allowed only if m = p.

20 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

Example E1.1: Consider the two matrices:

A =
















− 761
432
101

 and B =
















− 121
653
247

Using MATLAB, determine the following:
(a) A + B
(b) AB
(c) A2

(d) AT

(e) B–1

(f) BTAT

(g) A2 + B2 – AB
(h) determinant of A, determinant of B and determinant of AB.

Solution:
>> A = [1 0 1; 2 3 4; –1 6 7]
A =

1 0 1
2 3 4
–1 6 7

>> B = [7 4 2; 3 5 6; –1 2 1]
B =

 7 4 2
 3 5 6
–1 2 1

(a) >> C = A + B
C =

8 4 3
5 8 10
–2 8 8

(b) >> D = A*B
D =
 6 6 3
19 31 26
4 40 41

(c) >> E = A^2 = A2

E =
0 6 8
4 33 42
4 60 72

MATLAB Basics ——— 21

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

(d) >> % Let F= transpose of A
>> F=A'
 F =

1 2 –1
0 3 6
1 4 7

(e) >> H = inv (B)
H =

0.1111 0.0000 –0.2222
0.1429 –0.1429 0.5714
–0.1746 0.2857 –0.3651

(f) >> J = B'*A'
 J =

6 19 4
6 31 40
3 26 41

(g) >> K = A^2 + B^2 – A*B
 K =

53 52 45
15 51 58
–2 28 42

(h) det (A) = 12
det (B) = –63
det(A*B)= –756

Example E1.2: Determine the eigenvalues and eigenvectors of A and B using MATLAB

A =















−

−

752
311
324

 and B =
















135
678
321

Solution:
% Determine the eigenvalues and eigenvectors
A = [4 2 –3 ; –1 1 3 ; 2 5 7]

A =
4 2 –3
–1 1 3
2 5 7

eig(A)
ans = 0.5949

3.0000
8.4051

22 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

lamda = eig(A)
lamda = 0.5949

3.0000
8.4051

[V, D] = eig (A)
 V =

–0.6713 0.9163 –0.3905
0.6713 –0.3984 0.3905

–0.3144 0.0398 0.8337

 D =
0.5949 0 0
0 3.0000 0
0 0 8.4051

Example E1.3: Determine the values of x, y and z for the following set of linear algebraic equations:
x2 – 3x3 = –5
2x1 + 3x2 – x3 = 7
4x1 + 5x2 – 2x3 = 10

Solution:
Here

A =
















−
−
−

254
132
310

, B =
















10
7
5

 and X =
1

2

3

x
x
x

 
 
 
  

AX = B
A–1AX = A–1B
IX = A–1B

or X = A–1B
>> A = [0 1 –3; 2 3 –1; 4 5 –2];
>> B = [–5; 7; 10]
>> x = inv (A)*B

x =
–1.0000
4.0000
3.0000

>> check = A*x
check =

–5
 7
10

% Alternative method
>> x = A\B

x =
–1
 4
 3

MATLAB Basics ——— 23

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

1.15 SCRIPT FILES

A script is a sequence of ordinary statements and functions used at the command prompt level. A script is
invoked the command prompt level by typing the file-name or by using the pull down menu. Scripts can also
invoke other scripts.

The commands in the Command Window cannot be saved and executed again. Also, the Command
Window is not interactive. To overcome these difficulties, the procedure is first to create a file with a list of
commands, save it and then run the file. In this way, the commands contained are executed in the order they
are listed when the file is run. In addition, as the need arises, one can change or modify the commands in the
file; the file can be saved and run again. The files that are used in this fashion are known as script files. Thus,
a script file is a text file that contains a sequence of MATLAB commands. Script file can be edited (corrected
and/or changed) and executed many times.

1.15.1 Creating and Saving a Script File
Any text editor can be used to create script files. In MATLAB, script files are created and edited in the Editor/
Debugger Window. This window can be opened from the Command Window. From the Command Window,
select File, New and then M-file. Once the window is open, the commands of the script file are typed line by
line. The commands can also be typed in any text editor or word processor program and then copied and
pasted in the Editor/Debugger Window. The second type of M-files is the function file. Function file enables
the user to extend the basic library functions by adding ones own computational procedures. Function
M-files are expected to return one or more results. Script files and function files may include reference to other
MATLAB toolbox routines.

MATLAB function file begins with a header statement of the form:

function (name of result or results) = name (argument list)

Before a script file can be executed it must be saved. All script files must be saved with the extension “.m”.
MATLAB refers to them as M-files. When using MATLAB M-files editor, the files will automatically be saved
with a “.m” extension. If any other text editor is used, the file must be saved with the “.m” extension, or
MATLAB will not be able to find and run the script file. This is done by choosing Save As… from the File
menu, selecting a location, and entering a name for the file. The names of user defined variables, predefined
variables, MATLAB commands or functions should not be used to name script files.

1.15.2 Running a Script File
A script file can be executed either by typing its name in the Command Window and then pressing the Enter
key, directly from the Editor Window by clicking on the Run icon. The file is assumed to be in the current
directory, or in the search path.

1.15.3 Input to a Script File
There are three ways of assigning a value to a variable in a script file.

1. The variable is defined and assigned value in the script file.
2. The variable is defined and assigned value in the Command Window.
3. The variable is defined in the script file, but a specified value is entered in the Command Window

when the script file is executed.

24 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

1.15.4 Output Commands
There are two commands that are commonly used to generate output. They are the disp and fprintf commands.

1. The disp command:
The disp command displays the elements of a variable without displaying the name of the variable and
displays text.

disp(name of a variable) or disp(‘text as string’)
>>A = [1 2 3 ; 4 5 6];
>> disp(A)

1 2 3
4 5 6

>> disp(‘Solution to the problem.’)
Solution to the problem.

2. The fprintf command:
The fprintf command displays output (text and data) on the screen or saves it to a file. The output can be
formatted using this command.

Example E1.4: Write a function file Veccrossprod to compute the cross product of two vectors a and b, where
a = (a1, a2, a3), b = (b1, b2, b3), and a × b = (a2b3 – a3b2, a3b1 – a1b3, a1b2 – a2b1). Verify the function by taking
the cross products of pairs of unit vectors: (i, j), (j, k), etc.

Solution:
function c = Veccrossprod(a, b);

% Veccrossprod : function to compute c = a × b where a and b are 3-D vectors

% call syntax:

% c = Veccrossprod(a, b);

c = [a(2)* b(3)– a(3)* b(2); a(3)* b(1)– a(1)* b(3); a(1)* b(2)– a(2)* b(1)];

1.16 PROGRAMMING IN MATLAB

One most significant feature of MATLAB is its extendibility through user-written programs such as the
M-files. M-files are ordinary ASCII text files written in MATLAB language. A function file is a subprogram.

1.16.1 Relational and Logical Operators
A relational operator compares two numbers by finding whether a comparison statement is true or false.
A logical operator examines true/false statements and produces a result which is true or false according to the
specific operator. Relational and logical operators are used in mathematical expressions and also in combination
with other commands to make decision that control the flow of a computer program.

MATLAB Basics ——— 25

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

MATLAB has six relational operators as shown in Table 1.21.

Table 1.21 Relational operators

Relational operator Interpretation
Less than
Less than or equal
Greater than
Greater than or equal
Equal

~ Not equal

<
<=
>
>=
= =

=

The logical operators in MATLAB are shown in Table 1.22.

Table 1.22 Logical operators

Logical operator Name Description
&

Example: &A B
AND Operates on two operands (and). If both are A B

true, the result is true (1), otherwise the result is
false (0).

|
Example: |A B

OR Operates on two operands (and). If either one, A B
or both are true, the result is true (1), otherwise
(both are false) the result is false (0).

~
Example: ~A

NOT Operates on one operand (). Gives the opposite of A
the operand. True (1) if the operand is false, and
false (0) if the operand is true.

1.16.2 Order of Precedence
The following Table 1.23 shows the order of precedence used by MATLAB.

Table 1.23

Precedence Operation
1 (highest)
2
3
4
5
6
7
8 (lowest)

Parentheses (If nested parentheses exist, inner have precedence).
Exponentiation.
Logical NOT (~).
Multiplication, Division.
Addition, Subtraction.
Relational operators (>, <, >=, <=, = =, ~=).
Logical AND (&).
Logical OR (|).

1.16.3 Built-in Logical Functions
The MATLAB built-in functions which are equivalent to the logical operators are:

and (A, B) Equivalent to A & B
or (A, B) Equivalent to A | B
not (A) Equivalent to ~A

26 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

List the MATLAB logical built-in functions are described in Table 1.24.

Table 1.24 Additional logical built-in functions

Function Description Example

xor(a, b) Exclusive or. Returns true (1) if one
operand is true and the other is false.

>>xor(8, –1)
ans =

0
 >>xor(8, 0)

ans = 1
all(A) Returns 1 (true) if all elements in a

vector are true (non zero). Returns 0 A -
(false) if one or more elements are false
(zero). If is a mA atrix, treats columns
of as vectors, returns a vector with A
1’s and 0’s.

>> = [5 3 11 7 8 15]A
>>all()A
ans =

1
 >> = [3 6 11 4 0 13]B

>>all()B
ans = 0

any(A) Returns 1 (true) if any element in a
vector is true (non zero). Returns 0 A -
(false) if all elements are false (zero).
If is a matrix, treats columns of as A A
vectors, returns a vector with 1’s and
0’s.

>> = [5 0 14 0 0 13]A
>>any()A
ans =

1
 >> = [0 0 0 0 0 0]B

>>any()B
ans = 0

find(A)

If is a vector, returns the indices of A
the non z- ero elements.
If is a vector, returns the address of A
the elements that are larger than (any d
relational operator can be used).

>> = [0 7 4 2 8 0 0 3 9]A
>>find()A
ans =

2 3 4 5 8 9
 >>find(> 4)A

ans = 4 5 6

find(A>d)

The truth table for the operation of the four logical operators, and, or, xor and not are summarized in Table 1.25.

Table 1.25 Truth table

INPUT OUTPUT

A B AND
A B&

OR
A B|

XOR
(,)A B

NOT
~A

NOT
~B

false false false false false true true
false true false true true true false
true false false true true false true
true true true true false false false

1.16.4 Conditional Statements
A conditional statement is a command that allows MATLAB to make a decision on whether to execute a group
of commands that follow the conditional statement or to skip these commands.
if conditional expression consists of relational and/or logical operators

if a < 30
count = count + 1
disp a
end

MATLAB Basics ——— 27

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

The general form of a simple if statement is as follows:
if logical expression

statements
end

If the logical expression is true, the statements between the if statement and the end statement are executed.
If the logical expression is false, then it goes to the statements following the end statement.

1.16.5 Nested if Statements
Following is an example of nested if statements:

if a < 30
count = count + 1;
disp(a);
if b > a

b = 0;
end

end

1.16.6 else AND elseif Clauses
The else clause allows to execute one set of statements if a logical expression is true, and a different set if the
logical expression is false.
% variable name inc

if inc < 1
x_inc = inc/10;
else
x_inc = 0.05;
end

When several levels of if-else statements are nested, it may be difficult to find which logical expressions must
be true (or false) to execute each set of statements. In such cases, the elseif clause is used to clarify the
program logic.

1.16.7 MATLAB while Structures
There is a structure in MATLAB that combines the for loop with the features of the if block. This is called the
while loop and has the form:

while logical expression
This set of statements is executed repeatedly as long as the logical expressions remain true (equals +1) or if the
expression is a matrix rather than a simple scalar variable, as long as, all the elements of the matrix remain non-
zero.
end
In addition to the normal termination of a loop by means of the end statement, there are additional MATLAB
commands available to interrupt the calculations. These commands are listed in Table 1.26.

28 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

Table 1.26

Command Description
break

return

error (‘text’)

Terminates the execution of MATLAB and loops. In
nested loops, will terminate only the innermost loop in which
it is placed.
Primarily used in MATLAB functions, will cause a normal
return from a function from the point at which the statement
is executed.

for while
break

return
return

Terminates execution and displays the message contained in
on the screen. Note, the text must be enclosed in single quotes.

text

The MATLAB functions used are summarized in Table 1.27 below:

Table 1.27

Description
Relational
operators

Combinatorial
operators

all, any

find

if, else, elseif

If x is a vector, i = find(x) returns the indices of those elements
of x that are non zero (, true). Thus, replacing all the negative - i.e.
elements of x by zero could be accomplished by
 i = find(x < 0);
 x(i) = zeros(size(i));
If X is a matrix, [i, j] = find(X) operates similarly and returns
the row-column indices of non-zero elements.

A MATLAB is a comparison between two
variables and of the same size effected by one of the six
operators, <, <=, >, >=, = =, ~ =. The comparison involves
corresponding elements of and , and yields a matrix or scalar
of the same size with values of “true” or “false” for each of its
elements. In MATLAB, the value of “false” is zero, and “true”
has a value of one. Any non-zero quantity is interpreted as
“true”.

The operators (AND) and (OR) may be used to combine two
logical expressions.

logical relation

x y

x y

& |

If is a vector, returns a value of one if of the
elements of are non-zero, and a value of zero otherwise. When

 is a matrix, all() returns a row vector of ones or zeros
obtained by applying all to each of the columns of . The
function operates similarly if of the elements of are
non-zero.

x all(x) ;
x

X X
X

any x

all

any

The several forms of MATLAB blocks are as follows:
 1 1

block of statements block of statements block of statements

if
if if ifvariable variable variable

Function

Contd...

MATLAB Basics ——— 29

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

break

return

error (‘text’)

while

Terminates the execution of a or loop. Only the
innermost loop in which is encountered will be
terminated.

Causes the function to return at that point to the calling routine.
MATLAB M-file functions will return normally without this
statement.

Within a loop or function, if the statement (is
encountered, the loop or function is terminated, and the is
displayed.
The form of the MATLAB loop is

block of statements executed as long as the value of

for while
break

error

while
while

‘ ’)text
text

variable

executed if executed if 1 executed if
1 is “true”, , non zero is “true”, , Non zero is

“true”,
 2

block of statements block of statements
executed if 1 executed if 2 is “false”, ,

zero is “true”,

block of statements executed if neither is “true”

variable variable
variable i.e. - i.e. -

variable

variable variable i.e.

 variable

end else else if

end else end

 variable i.e. -

F
f F

f x
character string

F
F

i.e.

 is “true”; , non zero

Useful when a function itself calls a second “dummy” function
“ ”. For example, the function might find the root of an arbitrary
function identified as a generic (). Then, the name of the actual
M-file function, say , is passed as a to the
function either through its argument list or as a global variable,
and the function is evaluated within by means of The use
of , where is a variable
containing the name of the function as a character string; ,
enclosed in single quotes, and are the variables
needed in the argument list of function .

end

fname

feval
feval(name, x1, x2, ..., xn) fname

x1, x2, ..., xn
fname

.

1.17 GRAPHICS

MATLAB has many commands that can be used to create basic 2-D plots, overlay plots, specialized 2-D plots,
3-D plots, mesh and surface plots.

1.17.1 Basic 2-D Plots
The basic command for producing a simple 2-D plot is

plot(x values, y values, ‘style option’)
where

x values and y values are vectors containing the x- and y-coordinates of points on the graph.
Style option is an optional argument that specifies the color, line-style and the point-marker style.

30 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

The style option in the plot command is a character string that consists of 1, 2 or 3 characters that specify the
color and/or the line style. The different color, line-style and marker-style options are summarized in Table 1.28.

Table 1.28 Color, line-style and marker-style options

Color style-option Line style-option Marker style-option
y yellow
m magenta
c cyan
r red
g green
b blue
w white
k black

– solid
– – dashed
: dotted
– . dash-dot

+ plus sign
o circle
* asterisk
x x-mark
. point
^ up triangle
s square
d diamond, etc.

1.17.2 Specialized 2-D Plots
There are several specialized graphics functions available in MATLAB for 2-D plots. The list of functions
commonly used in MATLAB for plotting x-y data are given in Table 1.29.

Table 1.29 List of functions for plotting x-y data

Function Description
area
bar
barh
comet
compass
contour
contourf
errorbar
feather
fill
fplot
hist
loglog

Creates a filled area plot.
Creates a bar graph.
Creates a horizontal bar graph.
Makes an animated 2-D plot.
Creates arrow graph for complex numbers.
Makes contour plots.
Makes filled contour plots.
Plots a graph and puts error bars.
Makes a feather plot.
Draws filled polygons of specified color.
Plots a function of a single variable.
Makes histograms.
Creates plot with log scale on both x and y axes.

pareto
pcolor
pie
plotyy
plotmatrix
polar
quiver
rose
scatter
semilogx
semilogy
stairs
stem

Makes pareto plots.
Makes pseudo color plot of matrix.
Creates a pie chart.
Makes a double y-axis plot.
Makes a scatter plot of a matrix.
Plots curves in polar coordinates.
Plots vector fields.
Makes angled histograms.
Creates a scatter plot.
Makes semilog plot with log scale on the x-axis.
Makes semilog plot with log scale on the y-axis.
Plots a stair graph.
Plots a stem graph.

MATLAB Basics ——— 31

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

1.17.2.1 Overlay plots
There are three ways of generating overlay plots in MATLAB. They are:

(a) Plot command.
(b) Hold command.
(c) Line command.

(a) Plot command
Example E1.5(a) shows the use of plot command used with matrix argument, each column of the second
argument matrix plotted against the corresponding column of the first argument matrix.
(b) Hold command
Invoking hold on at any point during a session freezes the current plot in the graphics window. All the next
plots generated by the plot command are added to the exiting plot. See Example E1.5(a).
(c) Line command
The line command takes a pair of vectors (or a triplet in 3-D) followed by a parameter name/parameter value
pairs as argument. For instance, the command: line (x data, y data, parameter name, parameter value) adds
lines to the existing axes. See Example E1.5(a).

1.17.3 3-D Plots
MATLAB provides various options for displaying three-dimensional data. They include line and wire, surface,
mesh plots, among many others. More information can be found in the Help Window under Plotting and Data
visualization. Table 1.30 lists commonly used functions.

Table 1.30 Functions used for 3-D graphics

Command Description
plot3

meshgrid

mesh(X,Y,z)

meshc, meshz

surf

Plots three-dimensional graph of the trajectory of a set of three parametric equations x(t),
y(t), and z(t) can be obtained using plot3(x,y,z).
If x and y are two vectors containing a range of points for the evaluation of a function,
[X,Y] = meshgrid(x, y) returns two rectangular matrices containing the x and y values at
each point of a two-dimensional grid.
If X and Y are rectangular arrays containing the values of the x and y coordinates at each
point of a rectangular grid , and if z is the value of a function evaluated at each of these
points, mesh(X,Y,z) will produce a three-dimensional perspective graph of the points.
The same results can be obtained with mesh(x,y,z) can also be used.
If the xy grid is rectangular, these two functions are merely variations of the basic
plotting program mesh, and they operate in an identical fashion. meshc will produce a
corresponding contour plot drawn on the xy plane below the three-dimensional figure,
and meshz will add a vertical wall to the outside features of the figures drawn by mesh.
Produces a three-dimensional perspective drawing. Its use is usually to draw surfaces, as
opposed to plotting functions, although the actual tasks are quite similar. The output of
surf will be a shaded figure. If row vectors of length n are defined by x = r cos θ and y =
r sin θ, with 0 ≤ θ ≤ 2π, they correspond to a circle of radius r. If rG is a column vector
equal to r = [0 1 2]’; then z = r*ones(size(x)) will be a rectangular, 3 × n, arrays of 0’s
and 2’s, and surf(x, y, z) will produce a shaded surface bounded by three circles; i.e., a
cone.

32 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

surfc
Colormap

Shading

view

axis

contour

plot3

grid

slice

This function is related to surf in the same way that meshc is related to mesh.
Used to change the default coloring of a figure. See the MATLAB reference manual or the help
file.
Controls the type of color shading used in drawing figures. See the MATLAB reference manual
or the help file.
view(az,el) controls the perspective view of a three-dimensional plot. The view of the figure is
from angle “el” above the xy plane with the coordinate axes (and the figure) rotated by an angle
“az” in a clockwise direction about the z axis. Both angles are in degrees. The default values
are az = 37½º and el = 30º.
Determines or changes the scaling of a plot. If the coordinate axis limits of a two-dimensional
or three-dimensional graph are contained in the row vector r = [xmin, xmax, ymin, ymax, zmin, zmax],
axis will return the values in this vector, and axis(r) can be used to alter them. The coordinate
axes can be turned on and off with axis(‘on’) and axis(‘off’). A few other string constant
inputs to axis and their effects are given below:
axis(‘equal’) x and y scaling are forced to be the same.
axis(‘square’) The box formed by the axes is square.
axis(‘auto’) Restores the scaling to default settings.
axis(‘normal’) Restoring the scaling to full size, removing any effects of square or equal

settings.
axis(‘image’) Alters the aspect ratio and the scaling so the screen pixels are square shaped

rather than rectangular.
The use is contour(x,y,z). A default value of N = 10 contour lines will be drawn. An optional
fourth argument can be used to control the number of contour lines that are drawn.
contour(x,y,z,N), if N is a positive integer, will draw N contour lines, and contour(x,y,z,V), if
V is a vector containing values in the range of z values, will draw contour lines at each value of
z = V.
Plots lines or curves in three dimensions. If x, y, and z are vectors of equal length, plot3(x,y,z)
will draw, on a three-dimensional coordinate axis system, the lines connecting the points. A
fourth argument, representing the color and symbols to be used at each point, can be added in
exactly the same manner as with plot.
grid on adds grid lines to a two-dimensional or three-dimensional graph; grid off removes
them.
Draws “slices” of a volume at a particular location within the volume.

Example E1.5:
(a) Generate an overlay plot for plotting three lines

y1 = sin t
y2 = t

y3 = t –
3 5 7

3! 5! 7!
+ +t t t

; 0 ≤ t ≤ 2π

MATLAB Basics ——— 33

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

Use (i) the plot command
(ii) the hold command

(iii) the line command
(b) Use the functions for plotting x-y data for plotting the following functions:

 (i) f (t) = t cost
0 ≤ t ≤ 10π

(ii) x = e t

y = 100 + e3 t

0 ≤ t ≤ 2π
Solution:

(a) Overlay plot
 (i) % using the plot command

t = linspace(0, 2*pi, 100);
y1 = sin(t); y2 = t;
y3 = t –(t.^3)/6 + (t.^5)/120–(t.^7)/5040;
plot(t, y1, t, y2, ‘–’, t, y3, ‘o’)
axis([0 5 –1 5])
xlabel(‘t’)
ylabel(‘sin(t) approximation’)
title(‘sin(t) function’)
text(3.5,0, ‘sin(t)’)
gtext(‘Linear approximation’)
gtext(‘4-term approximation’)

Output is shown in Fig. E1.5(a).
sin(t) function

s
in

(
)

a
p
p

ro
x
im

a
ti
o
n

t

5

4

3

2

1

–1

0

0 0.5 1 1.5 2 2.5 3 3.5 4.54 5

sin(t)

Linear approximation

t

4-term approximation

Fig. E1.5 (a)

34 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

(ii) % using the hold command
x = linspace(0, 2*pi, 100); y1=sin(x);
plot(x,y1)
hold on
y2 = x; plot(x, y2, ‘–’)
y3 = x–(x.^3)/6 + (x.^5)/120–(t.^7)/5040;
plot(x, y3, ‘o’)
axis([0 5–1 5])
hold off

Output is shown in Fig. E1.5(b).
5

4

3

2

1

–1

0

0.5 1 1.5 2 2.5 3 3.5 4.54 50

Fig. E1.5 (b)

(iii) % using the line command
t = linspace(0, 2*pi, 100);
y1 = sin(t);
y2 = t;
y3 = t–(t.^3)/6 + (t.^5)/120 – (t.^7)/5040;
plot(t, y1)
line(t, y2, ‘linestyle’, ‘–’)
line(t, y3, ‘marker’, ‘o’)
axis([0 5 –1 5])
xlabel(‘t’)
ylabel(‘sin(t) approximation’)
title(‘sin(t) function’)
legend(‘sin(t)’, ‘linear approx’, ‘7th order approx’)

MATLAB Basics ——— 35

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

Output is shown in Fig. E1.5(c).

5

4

3

2

1

–1

0

0.5 1 1.5 2 2.5 3 3.5 4.54 5

s
in

(t
)

a
p
p

ro
x
im

a
ti
o

n

sin(t) function

sin(t)

linear approx
7th order approx

0
t

Fig. E1.5 (c)

(b) Using Table 1.29, functions
(i) fplot(‘x*cos(x)’, [0 10*pi])

This will give the following figure (Fig. E1.5 (d)).
40

30

20

10

0

–10

–20

–30
0 5 10 15 20 25 30

Fig. E1.5 (d)

(ii) t = linspace(0, 2*pi, 200);
x = exp(t);
y = 100 + exp(3*t);
loglog(x, y), grid

36 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

10
9

10
8

10
7

10
6

10
5

10
4

10
3

10
2

10
0

10
1

10
2

10
3

Fig. E1.5 (e)

Example E1.6:
(a) Plot the parametric space curve of

x (t) = t
y (t) = t2
z (t) = t3 ; 0 ≤ t ≤ 1.0

(b) z = –7 / (1+ x2 + y2); | x | ≤ 5, | y | ≤ 5

Solution:
(a) >> t = linspace(0, 2,100);

>> x =t; y = t. ̂ 2; z = t. ̂ 3;
>> plot 3 (x, y, z), grid

The plot is shown in figure E1.6 (a).

8

6

4

2

0
4

3

2

1

0 0
0.5

1
1.5

2

Fig. E1.6 (a)

MATLAB Basics ——— 37

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

(b) >> t=linspace(0,2,100);
>> x=t; y=t. ^2; z=t.^3;
>> plot3 (x,y,z), grid
>> t=linspace(–5,5,50); y=x;
>> z=–7./(1+x.^2+y.^2);
>> mesh(z)

The plot is shown in figure E1.6(b).

0

–2

–4

–6

–8

50

0 0
20

40
60

80
100

Fig. E1.6(b)

1.17.4 Saving and Printing Graphs
To obtain a hardcopy of a graph, type print in the Command Window after the graph appears in the Figure
Window. The figure can also be saved into a specified file in the PostScripter or Encapsulated PostScript (EPS)
format. The command to save graphics to a file is

print – d devicetype – options filename
where device type for Postscript printers are listed in the following Table 1.31.

Table 1.31 Devicetype for PostScript printers

Devicetype Description Devicetype Description
ps
psc
ps2
psc2

Black and white PostScript
Color PostScript
Level 2 BW PostScript
Level 2 color PostScript

eps
epsc
eps2

epsc2

Black and white EPSF
Color EPSF
Level 2 black and white
EPSF
Level 2 color EPSF

MATLAB can also generate a graphics file in the following popular formats among others:
–dill : Saves file in Adobe Illustrator format.
–djpeg : Saves file as a JPEG image.
–dtiff : Saves file as a compressed TIFF image.
–dmfile : Saves file as an M-file with graphics handles.

100

38 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

1.18 INPUT/OUTPUT IN MATLAB

In this section, we present some of the many available commands in MATLAB for reading data from an
external file into a MATLAB matrix, or writing the numbers computed in MATLAB into such an external file.

1.18.1 The fopen Statement
To have the MATLAB read or write a separate data file of numerical values, we need to connect the file to the
executing MATLAB program. The MATLAB functions used are summarized in Table 1.32.

Table 1.32 MATLAB functions used for input/output

Function Description
fopen

fclose

fscanf

fprintf

Connects an existing file to MATLAB or to create a new file from MATLAB.

 = (‘ ’,);

where, if is successful, will be returned as a positive integer greater than 2. When
unsuccessful, a value of –1 is returned. Both the file name and the permission code are string constants
enclosed in single quotes. The permission code can be a variety of flags that specify whether or not
the file can be written to, read from, appended to, or a combination of these. Some common codes are:

read only
write only
read and write
read and append

The statement positions the file at the beginning.

Disconnects a file from the operating MATLAB program. The use is , where is the
 of the file returned by will close all files.

Reads opened files. The use is

 = ,

where specifies the types of numbers (integers, reals with or without exponent, character
strings) and their arrangement in the data file, and optional determines how many quantities
are to be read and how they are to be arranged into the matrix . If is omitted, the entire file is
read. The field is a string (enclosed in single quotes) specifying the form of the numbers in
the file. The of each number is characterized by a percent sign (%), followed by a letter (or for
integers, or for floating-point numbers with or without exponents). Between the percent sign and
the type code, one can insert an integer specifying the maximum width of the field.

Writes files previously opened.

, ,

where and have the same meaning as for , with the exception that for output
formats the string must end with , designating the end of a line of output.

fid fopen

fopen fid

‘r’
w
r+
a+

fopen

fclose(fid) fid
fopen.fclose(‘all’)

A fscanf(fid)

A

i d
e f

fprintf(fid A)

fid fscanf
\n

Filename permission code

file
identification number

FORMAT, SIZE

FORMAT
SIZE

SIZE
FORMAT

type

FORMAT

FORMAT

Code Meaning

‘ ’
‘ ’
‘ ’

MATLAB Basics ——— 39

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

1.19 SYMBOLIC MATHEMATICS

In Secs. 1.1 to 1.18, the capability of MATLAB for numerical computations have been described. In this
section some of MATLAB’s capabilities for symbolic manipulations will be presented. Specifically, the symbolic
expressions, symbolic algebra, simplification of mathematical expressions, operations on symbolic expressions,
solution of a single equation or a set of linear algebraic equations, solutions to differential equations,
differentiation and integration of functions using MATLAB are presented.

1.19.1 Symbolic Expressions
A symbolic expression is stored in MATLAB as a character string. A single quote marks are used to define
the symbolic expression. For instance:

‘sin(y/x)’; ‘x^4 + 5*x^3 + 7*x^2 – 7’
The independent variable in many functions is specified as an additional function argument. If an independent
variable is not specified, then MATLAB will pick one. When several variables exist, MATLAB will pick the
one that is a single lower case letter (except i and j), which is closest to x alphabetically.
The independent variable is returned by the function symvar,
symvar(s): Returns the independent variable for the symbolic expression s.
For example:

Expression (s) symvar(s)
‘5 * c * d + 34’ d
‘sin(y/x)’ x

In MATLAB, a number of functions are available to simplify mathematical expressions by expanding the
terms, factoring expressions, collecting coefficients, or simplifying the expression. For instance;
expand(s):Performs an expansion of s.
A summary of these expressions is given in Table 1.33. A summary of basic operations is given in Table 1.34.
The standard arithmetic operation (Table 1.35) is applied to symbolic expressions using symbolic functions.
These symbolic expressions are summarized in Table 1.36.

Table 1.33

Simplification
collect Collect common terms
expand Expand polynomials and elementary functions
factor Factorization
horner Nested polynomial representation
numden Numerator and denominator
simple Search for shortest form
simplify Simplification
subexpr Rewrite in terms of subexprssions

40 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

Table 1.34

Basic operations
ccode C code representation of a symbolic expression
conj Complex conjugate
findsym Determine symbolic variables
fortran Fortran representation of a symbolic expression
imag Imaginary part of a complex number
latex LaTeX representation of a symbolic expression
pretty Pretty prints a symbolic expression
real Real part of an imaginary number
sym Create symbolic object
syms Shortcut for creating multiple symbolic objects

Table 1.35

+ Addition
– Subtraction
* Multiplication
.* Array multiplication
/ Right division
./ Array right division
\ Left division
.\ Array left division
^ Matrix or scalar raised to a power
.^ Array raised to a power
‘ Complex conjugate transpose
.‘ Real transpose

Arithmetic operations

Table 1.36

Symbolic expressions
horner(S) Transposes S into its Horner, or nested, representation.
numden(S) Returns two symbolic expressions that represent,

respectively, the numerator expression and the
denominator expression for the rational representation
of S.

numeric(S) Converts to a numeric form (S S must not contain any
symbolic variables).

poly2sym(c) Converts a polynomial coefficient vector c to a
symbolic polynomial.

pretty(S) Prints S in an output form that resembles typeset
mathematics.

sym2poly(S) Converts S to a polynomial coefficient vector. *
symadd(A,B) Performs a symbolic addition, A + B .
symdiv(A,B) Performs a symbolic division, A / B.
symmul(A,B) Performs a symbolic multiplication, A * B.
sympow(S,p) Performs a symbolic power, S^p.
symsub(A,B) Performs a symbolic subtraction, A – B.

MATLAB Basics ——— 41

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

1.19.2 Solution to Differential Equations
Symbolic math functions can be used to solve a single equation, a system of equations and differential
equations. For example:
solve(f) : Solves a symbolic equation f for its symbolic variable. If f is a symbolic expression, this function

solves the equation f = 0 for its symbolic variable.
solve(f 1, …, fn): Solves the system of equations represented by f 1, …, f n.
The symbolic function for solving ordinary differential equation is dsolve as shown below:
dsolve(‘equation’, ‘condition’): Symbolically solves the ordinary differential equation specified by ‘equation’.
The optional argument ‘condition’ specifies a boundary or initial condition.
The symbolic equation uses the letter D to denote differentiation with respect to the independent variable.
D followed by a digit denotes repeated differentiation. Thus, Dy represents dy/dx, and D2y represents
d2y/dx2. For example, given the ordinary second order differential equation;

2

2 5 3 7+ + =d x dx x
dtdt

with the initial conditions x(0) = 0 and (0)�x = 1.
The MATLAB statement that determines the symbolic solution for the above differential equation is the
following:

x = dsolve(‘D2x = –5*Dx – 3*x + 7’, ‘x(0) = 0’, ‘Dx(0) =1’)
The symbolic functions are summarized in Table 1.37.

Table 1.37 Solution of equations

compose Functional composition
dsolve Solution of differential equations
finverse Functional inverse
solve Solution of algebraic equations

1.19.3 Calculus
There are four forms by which the symbolic derivative of a symbolic expression is obtained in MATLAB.
They are:
diff(f) : Returns the derivative of the expression f with respect to the default independent variable.
diff(f, ‘t’) : Returns the derivative of the expression f with respect to the variable t.
diff (f, n) : Returns the nth derivative of the expression f with respect to the default independent variable.
diff(f,‘t’, n) : Returns the nth derivative of the expression f with respect to the variable t.

The various forms that are used in MATLAB to find the integral of a symbolic expression f are given and
summarized in Table 1.38.

int(f) : Returns the integral of the expression f with respect to the default independent variable.
int(f, ‘t’) : Returns the integral of the expression f with respect to the variable t.
int(f, a, b) : Returns the integral of the expression f with respect to the default independent variable

evaluated over the interval [a, b], where a and b are numeric expressions.
int(f,‘t’, a, b): Returns the integral of the expression f with respect to the variable t evaluated over the

interval [a, b], where a and b are numeric expressions.

42 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

int(f, ‘m’, ‘n’): Returns the integral of the expression f with respect to the default independent variable
evaluated over the interval [m, n], where m and n are numeric expressions.

The other symbolic functions for pedagogical and graphical applications, conversions, integral transforms,
and linear algebra are summarized in Tables 1.38 to 1.42.

Table 1.38

Calculus
diff Differentiate
int Integrate
jacobian Jacobian matrix
limit Limit of an expression
symsum Summation of series
taylor Taylor series expansion

Table 1.39
Pedagogical and graphical applications

ezcontour Contour plotter
ezcontourf Filled contour plotter
ezmesh Mesh plotter
ezmeshc Combined mesh and contour plotter
ezplot Function plotter
ezplot Easy-to-use function plotter
ezplot3 Three-dimensional curve plotter
ezpolar Polar coordinate plotter
ezsurf Surface plotter
ezsurfc Combined surface and contour plotter
funtool Function calculator
rsums Riemann sums
taylortool Taylor series calculator

Table 1.40

Conversions
char Convert symbolic object to string
double Convert symbolic matrix to double
poly2sym Function calculator
sym2poly Symbolic polynomial to coefficient vector

Table 1.41

Integral transforms
fourier Fourier transform
ifourier Inverse Fourier transform
ilaplace Inverse Laplace transform
iztrans Inverse Z-transform
laplace Laplace transform
ztrans Z-transform

MATLAB Basics ——— 43

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

Table 1.42

Linear algebra
colspace Basis for column space
det Determinant
diag Create or extract diagonals
eig Eigenvalues and eigenvectors
expm Matrix exponential
inv Matrix inverse
jordan Jordan canonical form
null Basis for null space
poly Characteristic polynomial
rank Matrix rank
rref Reduced row echelon form
svd Singular value decomposition
tril Lower triangle
triu Upper triangle

1.20 THE LAPLACE TRANSFORMS

The Laplace transformation method is an operational method that can be used to find the transforms of time
functions, the inverse Laplace transformation using the partial-fraction expansion of B(s)/A(s), where A(s) and
B(s) are polynomials in s. In this Chapter, we present the computational methods with MATLAB to obtain the
partial-fraction expansion of B(s)/A(s) and the zeros and poles of B(s)/A(s).

MATLAB can be used to obtain the partial-fraction expansion of the ratio of two polynomials, B(s)/A(s)
as follows:

1

1

...() num (1) (2) ()

...() den (1) (2) ()

n n

n n
B s b s b s b n
A s a s a s a n

−

−
+ + +

= =
+ + +

where a(1) ≠ 0 and num and den are row vectors. The coefficients of the numerator and denominator of
B(s)/A(s) are specified by the num and den vectors.
Hence num = [b(1) b(2) … b(n)]

 den = [a(1) a(2) … a(n)]
The MATLAB command

r, p, k = residue(num, den)
is used to determine the residues, poles and direct terms of a partial-fraction expansion of the ratio of two
polynomials B(s) and A(s) is then given by

() (1) (2) ()...()
() (1) (2) ()

B s r r r nk s
A s s p s p s p n

= = + + +
− − −

The MATLAB command [num, den] = residue(r, p, k) where r, p, k are the output from MATLAB converts the
partial fraction expansion back to the polynomial ratio B(s)/A(s).
The command printsys (num, den,‘s’) prints the num/den in terms of the ratio of polynomials in s.
The command ilaplace will find the inverse Laplace transform of a Laplace function.

44 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

1.20.1 Finding Zeros and Poles of B(s)/A(s)
The MATLAB command [z, p, k] = tf 2zp(num, den) is used to find the zeros (z), poles (p), and gain (k) of
B(s)/A(s).

If the zeros (z), poles (p) and gain (k) are given, the following MATLAB command can be used to find the
original num/den:

[num, den] = zp2tf (z,p,k)

1.21 CONTROL SYSTEMS

MATLAB has an extensive set of functions for the analysis and design of control systems. They involve
matrix operati7ons, root determination, model conversions and plotting of complex functions. These functions
are found in MATLAB’s control systems toolbox. The analytical techniques used by MATLAB for the
analysis and design of control systems assume the processes that are linear and time invariant. MATLAB
uses models in the form of transfer-functions or state-space equations.

1.21.1 Transfer Functions
The transfer function of a linear time invariant system is expressed as a ratio of two polynomials. The transfer
function for a single input and a single output (SISO) system is written as

H(s) =
1

0 1 1
1

0 1 1

...

...

−
−

−
−

+ + + +
+ + + +

n n
n n

m m
m m

b s b s b s b
a s a s a s a

when the numerator and denominator of a transfer function are factored into the zero-pole-gain form, it is
given by

H(s) = k 1 2

1 2

()()...()
()()...()

n

m

s z s z s z
s p s p s p

− − −
− − −

The state-space model representation of a linear control system s is written as

 �x = Ax + Bu
 y = Cx + Du

1.21.2 Model Conversion
There are a number of functions in MATLAB that can be used to convert from one model to another. These
conversion functions and their applications are summarized in Table 1.43.

Table 1.43 Model conversion functions

Function Purpose
C2d
residue
ss3tf
ss2zp
tf2ss
tf2zp
zp2ss
zp2tf

Continuous state-space to discrete state-space
Partial-fraction expansion
State-space to transfer function
State-space to zero-pole-gain
Transfer function to state-space
Transfer function to zero-pole-gain
Zero-pole-gain to state-space
Zero-pole-gain to transfer function

MATLAB Basics ——— 45

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

Residue Function: The residue function converts the polynomial transfer function
1

0 1 1
1

0 1 1

...()

...

n n
n n

m m
m m

b s b s b s bH s
a s a s a s a

−
−

−
−

+ + + +=
+ + + +

to the partial fraction transfer function

1 2

1 2

...() ()n

n

rr rH s k s
s p s p s p

= + + + +
− − −

[r, p, k] = residue(B, A) Determine the vectors r, p and k, which contain the residue values, the poles and
the direct terms from the partial-fraction expansion. The inputs are the polynomial
coefficients B and A from the numerator and denominator of the transfer function,
respectively.

ss2tf Function: The ss2tf function converts the continuous-time, state-space equations
 x′ = Ax + Bu
 y = Cx + Du

to the polynomial transfer function

1

0 1 1
1

0 1 1

...()

...

n n
n n

m m
m m

b s b s b s bH s
a s a s a s a

−
−

−
−

+ + + +
=

+ + + +

The function has two output matrices:
[num, den] = ss2tf(A, B, C, D,iu) Computes vectors num and den containing the coefficients, in descending

powers of s, of the numerator and denominator of the polynomial transfer
function for the iuth input. The input arguments A, B, C and D are the
matrices of the state-space equations corresponding to the iuth input, where
iu is the number of the input for a multi-input system. In the case of a single-
input system, iu is 1.

ss2zp Function: The ss2zp function converts the continuous-time, state-space equations
 x′ = Ax + Bu

 y = Cx + Du
to the zero-pole-gain transfer function

1 2

1 2

()()...()()
()()...()

n

m

s z s z s zH s k
s p s p s p

− − −=
− − −

The function has three output matrices:
[z, p, k] = ss2zp(A, B, C, D, iu) Determines the zeros (z) and poles (p) of the zero-pole-gain transfer function

for the iuth input, along with the associated gain (k). The input matrices A,
B, C and D of the state-space equations correspond to the iuth input, where
iu is the number of the input for a multi-input system. In the case of a single-
input system, iu is 1.

tf2ss Function: The ts2ss function converts the polynomial transfer function
1

0 1 1
1

0 1 1

...()

...

n n
n n

m m
m m

b s b s b s bH s
a s a s a s a

−
−

−
−

+ + + +
=

+ + + +

46 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

to the controller-canonical form state-space equations
 x′ = Ax + Bu
 y = Cx + Du

The function has four output matrices:
[A, B, C, D] = tf2ss(num,den) Determines the matrices A, B, C and D of the controller-canonical form state-

space equations. The input arguments num and den contain the coefficients,
in descending powers of s, of the numerator and denominator polynomials of
the transfer function that is to be converted.

tf 2zp Function: The tf 2zp function converts the polynomial transfer function
1

0 1 1
1

0 1 1

...()

...

n n
n n

m m
m m

b s b s b s bH s
a s a s a s a

−
−

−
−

+ + + +
=

+ + + +

to the zero-pole-gain transfer function

1 2

1 2

()()...()()
()()...()

n

m

s z s z s zH s k
s p s p s p

− − −=
− − −

The function has three output matrices:
[z, p, k] = tf2zp(num, den) Determines the zeros (z), poles (p) and associated gain (k) of the zero-pole-

gain transfer function using the coefficients, in descending powers of s, of
the numerator and denominator of the polynomial transfer function that is to
be converted.

zp2tf Function: The zp2tf function converts the zero-pole-gain transfer function

1 2

1 2

()()...()()
()()...()

n

m

s z s z s zH s k
s p s p s p

− − −=
− − −

to the polynomial transfer function
1

0 1 1
1

0 1 1

...()

...

n n
n n

m m
m m

b s b s b s bH s
a s a s a s a

−
−

−
−

+ + + +
=

+ + + +

The function has two output matrices:
[num, den] = zp2tf (z, p, k) Determines the vectors num and den containing the coefficients, in descending

powers of s, of the numerator and denominator of the polynomial transfer
function. p is a column vector of the pole locations of the zero-pole-gain transfer
function, z is a matrix of the corresponding zero locations, having one column
for each output of a multi-output system, k is the gain of the zero-pole-gain
transfer function. In the case of a single-output system, z is a column vector of
the zero locations corresponding to the pole locations of vector p.

zp2ss Function: The zp2ss function converts the zero-pole-gain transfer function

1 2

1 2

()()...()()
()()...()

n

m

s z s z s zH s k
s p s p s p

− − −=
− − −

to the controller-canonical form state-space equations

MATLAB Basics ——— 47

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

 x′ = Ax + Bu
 y = Cx + Du

The function has four output matrices:
[A, B, C, D] = zp2ss(z, p, k) Determines the matrices A, B, C, and D of the control-canonical form state-

space equations. p is a column vector of the pole locations of the zero-pole-
gain transfer function, z is a matrix of the corresponding zero locations, having
one column for each output of a multi-output system, k is the gain of the zero-
pole-gain transfer function. In the case of a single-output system, z is a
column vector of the zero locations corresponding to the pole locations of
vector p.

Example Problems and Solutions
Example E1.7: Consider the function

()()
()

n sH s
d s

=

where n(s) = s4 + 6s3 + 5s2 + 4s + 3
d(s) = s5 + 7s4 + 6s3 + 5s2 + 4s + 7

(a) Find n(–10), n(–5), n(–3) and n(–1)
(b) Find d(–10), d(–5), d(–3) and d(–1)
(c) Find H(–10), H(–5), H(–3) and H(–1)

Solution:
(a) >> n=[1 6 5 4 3]; % n=s^4+6s^3+5s^2+4s+3

>> d=[1 7 6 5 4 7]; % d=s^5+7s^4+6s^3+5s^2+4s+7

>> n2=polyval(n,[–10])

n2=4463

>> nn10=polyval(n,[–10])

nn10=4463

>> nn5=polyval(n,[–5])

nn5=–17

>> nn3=polyval(n,[–3])

nn3=–45

>> nn1=polyval(n,[–1])

nn1=–1

(b) >> dn10=polyval(d,[–10])

dn10=–35533

>> dn5=polyval(d,[–5])

dn5=612

>> dn3=polyval(d,[–3])

48 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

dn3=202

>> dn1=polyval(d,[–1])

dn1=8

(c) >> Hn10=nn10/dn10
Hn10=–0.1256

>> Hn5=nn5/dn5

Hn5=–0.0278

>> Hn3=nn3/dn3

Hn3=–0.2228

>> Hn1=nn1/dn1

Hn1=–0.1250

Example E1.8: Generate a plot of

 y(x) = e–0.7x sin ωx
where ω = 15 rad/s, and 0 ≤ x ≤ 15. Use the colon notation to generate the x vector in increments of 0.1.
Solution:

>> x=[0:0.1:15];
>> w=15;
>> y=exp(–0.7*x)*sin(w*x);
>> plot(x,y)
>> title(‘y(x)=e^–^0^.^7^xsin\omegax’)
>> xlabel(‘x’)
>> ylabel(‘y’)

0.7() e sin−= ωxy x x
1

0.8

0.6

0.4

0.2

0

–0.2

–0.4

–0.6

–0.8
0 5 10 15

x

y

Fig. E1.8

MATLAB Basics ——— 49

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

Example E1.9: Generate a plot of
 y(x) = e–0.6x cos ωx

where ω = 10 rad/s, and 0 ≤ x ≤ 15. Use the colon notation to generate the x vector in increments of 0.05.

Solution:
>> x=[0:0.1:15];
>> w=10;
>> y=exp(–0.6*x)*cos(w*x);
>> plot(x,y)
>> title(‘y(x)=e^–^0^.^6^xcos\omegax’)
>> xlabel(‘x’)
>> ylabel(‘y’)

0.6() cosxy x e x−= ω

1

0.8

0.6

0.4

0.2

0

–0.2

–0.4

–0.6

–0.8

–1
5 10 15

x

y

0

Fig. E1.9

Example E1.10: Using the functions for plotting x-y data given in Table 1.29, plot the following functions:
(a) r2 = 5 cos 3t; 0 ≤ t ≤ 2π
(b) r2 = 5 cos 3t; 0 ≤ t ≤ 2π

 x = r cos t, y = r sin t
(c) y1 = e–2x cos x; 0 ≤ t ≤ 20

y2 = e2x

(d) y =
cos()x

x ; –5 ≤ x ≤ 5π

(e) f = e–3t/5 cos t; 0 ≤ t ≤ 2π

(f) z =
1
3

− –x2 + 2xy + y2 ; |x| ≤ 7, |y| ≤ 7

50 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

Solution:
(a) t = linspace(0,2*pi,200);

r = sqrt(abs(5*cos(3*t)));
 polar(t,r)

90

270

120

150

180

210

240 300

330

0

30

60

0.5

1

1.5

2.5

2

Fig. E1.10(a)

(b) t=linspace(0, 2*pi, 200);
r=sqrt(abs(5*cos(3*t)));
x=r*cos(t);
y=r*sin(t);
fill(x, y, ‘k’),
axis(‘square’)

2

1.5

1

0.5

0

–0.5

–1

–1.5

–2
–3 –2 –1 0 1 32

Fig. E1.10(b)

MATLAB Basics ——— 51

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

(c) x =1:0.1:20;
y1 =exp(–2*x)*cos(x);
y2 =exp(2*x);
Ax =plotyy(x,y1, x,y2);

hy1 =get(Ax(1),‘ylabel’);
hy2 =get(Ax(2),‘ylabel’);
set(hy1,‘string’,‘exp(–2x).cos(x)’)
set(hy2,‘string’,‘exp(–2x)’);

0.08

0.06

0.04

0.02

0

–0.02
0 2 4 6 8 10 12 14 16 18 20

e
x
p
(–

2
x
)c

o
s
(x

)

2.5

2

1.5

1

0.5

0

10
17

x

e
x
p

(–
2

x
)

Fig. E1.10(c)

(d) x = linspace(–5*pi, 5*pi,100);
y = cos(x)./x;
area(x, y);
xlabel(‘x (rad)’), ylabel(‘cos(x)/x’)
hold on

8

6

4

2

0

–2

–4

–6

–8
–15 –10 –5 0 5 1510

x (rad)

c
o
s
(x

)/
x

Fig. 1.10(d)

52 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

(e) t = linspace(0,2*pi,200);
f = exp(–0.6*t)*sin(t);
stem(t, f)

0.6

0.5

0.4

0.3

0.2

0.1

0

–0.1
0 1 2 3 4 5 6 7

Fig. E1.10(e)

(f) r =–7:0.2:7;
[X,Y]=meshgrid(r,r);
Z = –0.333*X.^2+2*X*Y+Y.^2;
cs=contour(X,Y,Z);
label(cs)

6

4

2

0

–2

–4

–6

–6 –4 –2 0 2 4 6

50

0

0+

+

100+

50+

50+

100+
+

Fig. E1.10(f)

a
Rectangle

MATLAB Basics ——— 53

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

Example E1.11: Use the functions listed in Table 1.30 for plotting 3-D data for the following:

(a) z = cos x cos y
2 2

5
x y

e
+

−

|x | ≤ = 7, |y| ≤ 7
(b) Discrete data plots with stems

x = t, y = t cos(t)
z = et/5 – 2; 0 ≤ t ≤ 5π

(c) A cylinder generated by
r = sin(5πz) + 3
0 ≤ z ≤ 1; 0 ≤ θ ≤ 2π

Solution:
(a) u=–7:0.2:7;x

[X,Y]=meshgrid(u,u);

Z=cos(X)*cos(Y)*exp(–sqrt(X^2+Y^2)/5);

surf(X,Y,Z)

1

0.5

0

–0.5

–1
10

5

0

–5

–10 –10

–5

0

5

10

Fig. E1.11(a)

(b) t=linspace(0,5*pi,200);

x=t; y=t*cos(t);

z=exp(t/5)–2;

54 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

stem3(x,y,z,‘filled’);
xlabel(‘t’), ylabel(‘tcos(t)’),zlabel(‘e^t/5–1’)

25

20

15

10

5

0

–5

10

0

–10

–20 0
5

10
15

20

tcos(t)

e
/ 5

-1
t

t

20

Fig. E1.11(b)

(c) z=[0:0.2:1]’;
r=sin(5*pi*z)+3;
cylinder(r)

1

0.8

0.6

0.4

0.2

0
4

2

0

–2

–4
–2

–4

0

2

4

Fig. E1.11(c)

MATLAB Basics ——— 55

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

Example E1.12: Obtain the plot of the points for 0 6≤ ≤ πt when the coordinates x, y, z are given as a function
of the parameter t as follows:

sin(3)

cos(3)
0.8

=

=
=

x t t

y t t
z t

Solution:
% Line plots
>> t=[0:0.1:6*pi];

>> x=sqrt(t)*sin(3*t);

>> y=sqrt(t)*cos(3*t);

>> z=0.8*t;

>> plot3(x,y,z,‘k’,‘linewidth’,1)

>> grid on

>> xlabel(‘x’); ylabel(‘y’); zlabel(‘z’)

20

15

10

5

0

N

y

5

0

–5 –5

0

5

Fig. E1.12

Example E1.13: Obtain the mesh and surface plots for the function
2

2 2

2=
+
xyz

x y
 over the domain 2 6− ≤ ≤x

and 2 8≤ ≤y .

Solution:
% Mesh and surface plots
 x=–2:0.1:6;

56 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

>> y=2:0.1:8;

>> [x,y]=meshgrid(x,y);

>> z=2*x*y^2./(x^2+y^2);

>> mesh(x,y,z)

>> xlabel(‘x’); ylabel(‘y’); zlabel(‘z’)

>> surf(x,y,z)

>> xlabel(‘x’); ylabel(‘y’); zlabel(‘z’)

10

5

0

–5
8

6

4

2 –2
0

2
4

6

Fig. E1.13 (a)

10

5

0

–5
8

6

4

2 –2
0

2
4

6

Z

Fig. E1.13 (b)

Example E1.14: Plot the function
2 21.52 sin()cos(0.5)− += x yz x y over the domain 4 4− ≤ ≤x and 4 4− ≤ ≤y

using Table 1.30.
(a) Mesh plot
(b) Surface plot
(c) Mesh curtain plot
(d) Mesh and contour plot
(e) Surface and contour plot

x

MATLAB Basics ——— 57

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

Solution:
(a) % Mesh Plot

>> x=–4:0.25:4;

>> y=–4:0.25:4;

>> [x,y]=meshgrid(x,y);

>> z=2^(–1.5*sqrt(x^2 + y^2))*cos(0.5*y)*sin(x);

>> mesh(x,y,z)

>> xlabel(‘x’);ylabel(‘y’)

>> zlabel(‘z’)

0.4

0.2

0

–0.2

–0.4
4

2

0

–2

–4 –4

–2

0
2

4

z

y x

Fig. E1.14 (a)

(b) % Surface Plot
>> x=–4:0.25:4;

>> y=–4:0.25:4;

>> [x,y]=meshgrid(x,y);

>> z=2.0^(–1.5*sqrt(x^2+y^2))*cos(0.5*y)*sin(x);

>> surf(x,y,z)

>> xlabel(‘x’); ylabel(‘y’)

>> zlabel(‘z’)

58 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

0.4

0.2

0

–0.2

–0.4
4

2

0

–2

–4 –4

–2

0
2

4

Z

y x

Fig. E1.14 (b)

(c) % Mesh Curtain Plot
>> x=–4.0:0.25:4;
>> y=–4.0:0.25:4;
>> [x,y]=meshgrid(x,y);
>> z=2.0^(–1.5*sqrt(x^2+y^2))*cos(05*y)*sin(x);
>> meshz(x,y,z)
>> xlabel(‘x’);ylabel(‘y’)
>> zlabel(‘z’)

(d) % Mesh and Contour Plot
>> x=–4.0:0.25:4;
>> y=–4.0:0.25:4;
>> [x,y]=meshgrid(x,y);
>> z=2.0^(–1.5*sqrt(x^2+y^2))*cos(0.5*y)*sin(x);
>> meshc(x,y,z)
>> xlabel(‘x’);ylabel(‘y’)
>> zlabel(‘z’)

MATLAB Basics ——— 59

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

0.4

0.2

0

–0.2

–0.4
4

2

0

–2

–4 –4

–2

0
2

4

z

y x

Fig. E1.14 (c)

0.5

0

–0.5
5

0

–5 –5

0

5

y

z

x

Fig. E1.14 (d)

(e) % Surface and Contour Plot
>> x=–4.0:0.25:4;
>> y=–4.0:0.25:4;
>> [x, y] =meshgrid(x, y);
>> z=2.0^(–1.5*sqrt(x^2+y^2))*cos(0.5*y)*sin(x);
>> surfc(x, y, z)
>> xlabel(‘x’);ylabel(‘y’)
>> zlabel(‘z’)

60 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

0.5

0

–0.5
5

0

–5 –5

0

5

y

Fig. E1.14(e)

Example E1.15: Plot the function
2 21.52 sin()cos(0.5)− += x yz x y over the domain 4 4− ≤ ≤x and 4 4− ≤ ≤y

and using Table 1.30.
(a) Surface plot with lighting
(b) Waterfall plot
(c) 3-D contour plot
(d) 2-D contour plot

Solution:
(a) % Surface Plot with lighting

>> x=–4.0:0.25:4;
>> y=–4.0:0.25:4;
>> [x,y]=meshgrid(x,y);
>> z=2.0^(–1.5*sqrt(x^2+y^2))*cos(0.5*y)*sin(x);
>> surfl(x,y,z)
>> xlabel(‘x’);ylabel(‘y’)
>> zlabel(‘z’)

x

MATLAB Basics ——— 61

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

0.5

0

–0.5
5

0

–5 –4

0

4

y

z

2

–2

x

Fig. E1.15 (a)

(b) % Waterfall Plot
>> x=–4.0:0.25:4;
>> y=–4.0:0.25:4;
>> x,y]=meshgrid(x,y);
>> z=2.0^(–1.5*sqrt(x^2+y^2))*cos(0.5*y)*sin(x);
>> waterfall(x,y,z)
>> xlabel(‘x’);ylabel(‘y’)
>> zlabel(‘z’)

0.5

0

–0.5

5

0

–5

0
4

–4
–2

y

z

x

Fig. E1.15 (b)

(c) % 3-D Contour Plot
>> x=–4.0:0.25:4;
>> y=–4.0:0.25:4;

62 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

>> [x,y]=meshgrid(x,y);
>> z=2.0^(–1.5*sqrt(x^2+y^2))*cos(0.5*y)*sin(x);
>> contour3(x,y,z,15)
>> xlabel(‘x’);ylabel(‘y’)
>> zlabel(‘z’)

0.5

0z

0 2
0

y

–0.5
4

–4
–2

2

–2
–4 x

Fig. E1.15 (c)

(d) % 2-D Contour Plot
>> x=–4.0:0.25:4;
>> y=–4.0:0.25:4;
>> [x,y]=meshgrid(x,y);
>> z=2.0^(–1.5*sqrt(x^2+y^2))*cos(0.5*y)*sin(x);

>> contour(x,y,z,15)

>> xlabel(‘x’);ylabel(‘y’)

>> zlabel(‘z’)

4

2

0

–2

–4
–4 –3 –2 –1 0 1 2 3

y

Fig. E1.15 (d)

MATLAB Basics ——— 63

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

Example E1.16: Using the functions given in Table 1.29 for plotting x-y data, plot the following functions:

(a) f (t) = t cost; 0 10≤ ≤ πt

(b) 2e ,−= =tx y t ; 0 2≤ ≤ πt

(c) 2,= = tx t y e ; 0 2≤ ≤ πt
(d) e , 50 e= = +t tx y ; 0 2≤ ≤ πt

(e)
2 3sin 7

sin
r t
y r t

=
= ; 0 2≤ ≤ πt

(f)
2 3sin 4

sin
r t
y r t

=
= ; 0 2≤ ≤ πt

(g) sin=y t t ; 0 5≤ ≤ πt

Solution:
(a) % Use of plot command

>> fplot(‘x*cos(x)’,[0,10*pi])

40

–40
0 5 10 15 20 25 30

20

0

–20

Fig. E1.16 (a)

(b) % Semilog x command
>> t=linspace(0,2*pi,200);

>> x=exp(–2*t); y=t;

>> semilog x(x,y),grid

64 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

8

6

4

2

0
10

–6
10

–4
10

–2
10

–0

Fig. E1.16 (b)

(c) % Semilog y command
t=linspace(0,2*pi,200);

>> semilog y(t, exp(–2*t)),grid

10
0

10
–2

10
–4

10
–6

0 1 2 3 4 5 6 7

Fig. E1.16 (c)

(d) % Use of loglog command
>> t=linspace(0,2*pi,200);
>> x=exp(t);
>> y=50+exp(t);
>> loglog(x,y), grid

MATLAB Basics ——— 65

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

10
3

10
2

10
1

10
0

10
1

10
2

10
3

Fig. E1.16 (d)

(e) %Use of stairs command
>> t=linspace(0,2*pi,200);
>> r=sqrt(abs(3*sin(7*t)));
>> y=r*sin(t);
>> stairs(t, y)
>> axis([0 pi 0 inf]);

1.5

1

0.5

0
0 0.5 1 1.5 2 2.5 3

Fig. E1.16 (e)

(f) % Use of bar command4
>> t=linspace(0,2*pi,200);
>> r=sqrt(abs(3*sin(4*t)));
>> y=r*sin(t);
>> bar(t,y)
>> axis([0 pi 0 inf]);

66 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

1.5

1

0.5

0
0 0.5 1 1.5 2 2.5 3

Fig. E1.16 (f)
(g) % use of comet command

>> q=linspace(0,5*pi,200);
>> y=q*sin(q);
>> comet(q,y)

–15

–10

–5

0

5

10

15

0 5 10 15

Fig. E1.16 (g)

Example E1.17: Consider the two matrices

A =
3 2

5 10 2

π 
 

+ j j and B =
7 15
2 18

− 
 π 

j j

Using MATLAB, determine the following:
(a) A + B
(b) AB

MATLAB Basics ——— 67

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

(c) A2

(d) AT

(e) B–1

(f) BTAT

(g) A2 + B2 – AB

Solution:
>> A = [3 2*pi;5j 10 + sqrt(2)*j];
>> B = [7j –15j;2*pi 18];

(a) A + B
ans =

 3.0000 + 7.0000i 6.2832 –15.0000i
 6.2832 + 5.0000i 28.0000 + 1.4142i

(b) >> A * B
ans =

 1.0e+002 *
 0.3948 + 0.2100i 1.1310 –0.4500i
 0.2783 + 0.0889i 2.5500 + 0.2546i

(c) >> A^2
ans =

 9.0000 + 31.4159i 81.6814 + 8.8858i
 –7.0711 + 65.0000i 98.0000 + 59.7002i

(d) >> inv(A)
ans =

 0.1597 + 0.1917i –0.1150 –0.1042i
 0.0829 – 0.0916i 0.0549 + 0.0498i

(e) >> B^–1
ans =
 0 –0.0817i 0.0681

 0 + 0.0285i 0.0318
(f) >> inv(B) * inv(A)

ans =
 0.0213 – 0.0193i – 0.0048 + 0.0128i
 – 0.0028 + 0.0016i 0.0047 – 0.0017i

(g) >> (A^2 + B^2) – (A * B)
ans =

 1.0e + 002 *
 –0.7948 – 0.8383i 0.7358 – 2.1611i
 0.7819 + 1.0010i 1.6700 – 0.6000i

68 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

Example E1.18: Find the inverse of the following matrices using MATLAB:

 (a)
3 2 0
2 1 7
5 4 9

 
 − 
  

 (b)
4 2 5
7 1 6
2 3 7

− 
 − 
  

 (c)
1 2 5
4 3 7
7 6 1

− − 
 
 
 − 

Solution:
>> clear % Clears the workspace

>> A = [3 2 0; 2 –1 7; 5 4 9]; % Spaces separate matrix columns – semicolons
separate matrix rows

>> B = [–4 2 5; 7 –1 6; 2 3 7]; % Spaces separate matrix columns – semicolons
separate matrix rows

>> C = [–1 2 -5; 4 3 7; 7 –6 1]; % Spaces separate matrix columns – semicolons
separate matrix rows

>> inv(A); % Finds the inverse of the selected matrix

>> inv(B); % Finds the inverse of the selected matrix

>> inv(C) % Finds the inverse of the selected matrix

% Inverse of A

ans =

0.4805 0.2338 –0.1818

–0.2208 –0.3506 0.2727

0.1688 0.0260 0.0909

% Inverse of B

ans =

–0.1773 0.0071 0.1206

–0.2624 –0.2695 0.4184

0.1631 0.1135 0.0709

% Inverse of C

ans =

0.1667 0.1037 0.1074

0.1667 0.1259 –0.0481

–0.1667 0.0296 –0.0407

Example E1.19: Determine the eigenvalues and eigenvectors of matrix A using MATLAB

(a) A =
4 1 5
2 1 3
6 7 9

− 
 
 
 − 

(b) A =
3 5 7
2 4 8
5 6 10

 
 
 
  

MATLAB Basics ——— 69

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

Solution:
(a) A = [4 –1 5; 2 1 3; 6 –7 9]

A =
4 –1 5
2 1 3

6 –7 9

%The eigenvalues of A

format short e

eig(A)

ans =

 1.0000e + 001

 5.8579e – 001

 3.4142e + 000

%The eigenvectors of A

[Q,d]=eig(A)

Q =

 –5.5709e – 001 – 8.2886e – 001 – 7.3925e – 001

 –3.7139e – 001 – 3.9659e – 002 – 6.7174e – 001

 –7.4278e – 001 5.5805e – 001 – 4.7739e – 002

d =

1.0000e + 001 0 0

0 5.8579e–001 0

0 0 3.4142e + 000

(b) A =

3 5 7
2 4 8

5 6 10

%The eigenvalues of A

format short e

eig(A)

ans =

 1.7686e + 001

–3.4295e – 001 +1.0066e + 000i

–3.4295e – 001 –1.0066e + 000i

%The eigenvectors of A

[Q,d]=eig(A)

Q =

Column 1

5.0537e – 001

4.8932e – 001

7.1075e – 001

70 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

Column 2
–2.0715e – 001 – 5.2772e – 001i
 7.1769e – 001
–3.3783e – 001 +2.2223e – 001i

Column 3
– 2.0715e – 001 + 5.2772e – 001i
 7.1769e – 001
– 3.3783e – 001– 2.2223e – 001i

d =
Column 1

1.7686e + 001
0
0

Column 2
0
–3.4295e – 001 +1.0066e + 000i
0

Column 3
0
0
–3.4295e – 001 –1.0066e + 000i

Example E1.20: Determine the eigenvalues and eigenvectors of AB using MATLAB.

A =

3 0 2 1
1 2 5 4
7 1 2 6
1 2 3 4

 
 
 
 −
 −  

 ; B =

1 3 5 7
2 1 2 4
3 2 1 1
4 1 0 6

 
 − − 
 
 
  

Solution:
% MATLAB Program
% The matrix “a” = A*B
>> A = [3 0 2 1; 1 2 5 4; 7 –1 2 6; 1 –2 3 4];
>> B = [1 3 5 7; 2 –1 –2 4; 3 2 1 1; 4 1 0 6];
>> a = A*B

a =
13 14 17 29
36 15 6 44
35 32 39 83
22 15 12 26

>> eig (a)

MATLAB Basics ——— 71

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

ans =
98.5461
2.2964
–1.3095
–6.5329

The eigenvectors are:
>> [Q, d] = eig (a)
Q =

– 0.3263 – 0.2845 0.3908 0.3413
– 0.3619 0.7387 – 0.7816 – 0.9215
– 0.8168 – 0.6026 0.4769 0.0962
– 0.3089 0.1016 – 0.0950 0.1586

d =
98.5461 0 0 0
 0 2.2964 0 0
 0 0 – 1.3095 0
 0 0 0 – 6.5329

Example E1.21: Solve the following set of equations using MATLAB:

(a) x1 + 2x2 + 3x3 + 5x4 = 21
–2x1 + 5x2 + 7x3 – 9x4 = 18
5x1 + 7x2 + 2x3 – 5x4 = 25
–x1 + 3x2 – 7x3 + 7x4 = 30

(b) x1 + 2x2 + 3x3 + 4x4 = 8
2x1 – 2x2 – x3 – x4 = –3
x1 – 3x2 + 4x3 – 4x4 = 8
2x1 + 2x2 – 3x3 + 4x4 = –2

Solution:
(a) >> A = [1 2 3 5;–2 5 7 –9; 5 7 2 –5; –1 –3 –7 7];

>> B = [21; 18; 25; 30];
>> S = A\B
S =

– 8.9896
14.1285
– 5.4438
3.6128

% Therefore x1= – 8.9896, x2=14.1285, x3= – 5.4438, x4=3.6128.

(b) >> A = [1 2 3 4; 2 –2 –1 1; 1 –3 4 –4; 2 2 –3 4];
>> B = [8;–3; 8;–2];
>> S =A\B

72 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

S =
2.0000
2.0000
2.0000

–1.0000

% Therefore x1 = 2.0000, x2 = 2.0000, x3 = 2.0000, x4 = –1.0000.

Example E1.22: Use diff command for symbolic differentiation of the following functions:

(a) S1 =
8

ex

(b) S2 = 3 x3 5

ex

(c) S3 = 5x3 – 7x2 + 3x + 6

Solution:
(a) >> syms x

>> S1= exp (x^8);
>> diff (S1)
ans =

8*x^7*exp(x^8)

(b) >> S2=3*x^3*exp(x^5);
>> diff (S2)
ans =

9*x^2*exp(x^5) +15*x^7*exp(x^5)

(c) >> S3=5*x^3–7*x^2+3*x+6;
>> diff (S3)
ans =

15*x^2–14*x + 3

Example E1.23: Use MATLAB’s symbolic commands to find the values of the following integrals:

(a)
0.7

0.2
| |∫ x dx (b) 2

0
(cos 7)

π
+∫ y y dy

(c) x (d) 5 4 3 27 6 11 4 8 9− + + + +x x x x x

(e) cos a

Solution:
(a) >>syms x, y, a, b

>> S1= abs(x)
>> int (S1, 0.2, 0.7)
ans =

9/40
(b) >> S2=cos (y) +7*y^2

>> int (S2, 0, pi)
ans =

7/3*pi^3

MATLAB Basics ——— 73

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

(c) >> S3=sqrt (x)
>> int (S3)
ans =

2/3*x^ (3/2)
>> int (S3,‘a’, ‘b’)

ans =
2/3*b^ (3/2)–2/3*a^ (3/2)
>> int (S3, 0.4, 0.7)

ans =
7/150*70^ (1/2)–4/75*10^ (1/2)

(d) >> S4 = 7*x^5–6*x^4+11*x^3+4*x^2+8*x–9
>> int (S4)
ans =

7/6*x^6–6/5*x^5+11/4*x^4+4/3*x^3+4*x^2–9*x

(e) >> S5=cos (a)
>> int (S5)
ans =

sin (a)

Example E1.24: Obtain the general solution of the following first order differential equations:

(a) 5 6= −
dy t y
dt

(b)
2

2 3 0+ + =d y dy y
dtdt

(c) 3=
ds Ax
dt

(d) 3=
ds Ax
dA

Solution:
(a) >> solve (‘Dy=5*t–6*y’)

ans =
5/6*t–5/36+exp (–6*t)*C1

(b) >> dsolve (‘D2y +3*Dy + y = 0’)
ans =

C1*exp (1/2*(5^ (1/2)–3)*t) + C2*exp (–1/2*(5^ (1/2) +3)*t)

(c) >> dsolve (‘Ds =A*x^3’,‘x’)
ans =

1/4*A*x^4 + C1

(d) >> dsolve (‘Ds=A*x^3’, ‘A’)
ans =

1/2*A^2*x^3 + C1

74 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

Example E1.25: Determine the solution of the following differential equations that satisfies the given initial
conditions.

(a) 27= −
dy x
dx

; (1) 0.7=y

(b) 25 cos=
dy x y
dx

; y(0) = π/4

(c) 3e= − + xdy y
dx

; y(0) = 2

(d) 5 35
dy y
dt

+ = ; y(0) = 4

Solution:
(a) >> dsolve (‘Dy = –7*x^2’,‘y (1) =0.7’)

ans =
–7*x^2*t + 7*x^2 + 7/10

(b) >> dsolve (‘Dy=5*x*cos (y) ̂ 2’,‘y (0) =pi/4’)
ans =

atan (5*t*x + 1)

(c) >> dsolve (‘Dy = –y + exp (3*x)’, ‘y (0) =2’)
ans =

 exp (3*x) + exp (– t)*(–exp (3*x) +2)

(d) >> dsolve (‘Dy + 5*y =35’, ‘y (0) =4’)
ans =

7 – 3*exp (–5*t)

Example E1.26: Given the differential equation

2

2 7 5 8 ()+ + =d x dx x u t
dtdt

; t ≥ 0

Using MATLAB program, find
(a) x (t) when all the initial conditions are zero.
(b) x(t) when x (0) = 1 and �x = 2.

Solution:
(a) x (t) when all the initial conditions are zero

>> x = dsolve (‘D2x = –7*Dx – 5*x +8’, ‘x (0) = 0’)
x =

8/5+ (–8/5–C2)*exp (1/2*(–7+29^ (1/2))*t) + C2*exp (–1/2*(7+29^
 (1/2))*t)

(b) x (t) when x (0) = 1 and �x = 2
>> x = dsolve (‘D2x = –7*Dx – 5*x +8’, ‘x (0) = 1’, ‘Dx (0) = 2’)

MATLAB Basics ——— 75

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

x =

8/5+ (–3/10–1/290*29^ (1/2))*exp (1/2*(–7+29^ (1/2))*t)–1/290*

 (–1+3*29^ (1/2))*29^ (1/2)*exp(–1/2*(7+29^ (1/2))*t)

Example E1.27: Given the differential equation

2

2 12 15 35+ + =d x dx x
dtdt

; t ≥ 0

Using MATLAB program, find
(a) x(t) when all the initial conditions are zero.
(b) x(t) when x (0) = 0 and �x (0) = 1.

Solution:
(a) x (t) when all the initial conditions are zero

>> x = dsolve (‘D2x = –12*Dx – 15*x +35’, ‘x (0) = 0’)
x =
 7/3+ (–7/3–C2)*exp ((–6+21^ (1/2))*t) +C2*exp (–(6+21^ (1/2))*t)

(b) x (t) when x (0) = 0 and �x (0)= 1.
>> x = dsolve (‘D2x = –12*Dx – 15*x + 35’, ‘x (0) = 0’, ‘Dx (0) = 1’)
x =
 7/3+ (–7/6–13/42*21^ (1/2))*exp ((–6+21^ (1/2))*t)–1/126*(39+7*21^

 (1/2))*21^ (1/2)*exp (–(6+21^ (1/2))*t)

Example E1.28: Find the inverse of the following matrix using MATLAB.

 A =
2 0

2 –3
3 0 1

 
 
 
  

s
s

Solution:
>> A = [s 2 0; 2 s –3; 3 0 1];
>> inv (A)
ans =

[s/(s^2–22), –2/(s^2–22), –6/(s^2–22)]

[–11/(s^2–22), s/(s^2–22), 3*s/(s^2–22)]

[–3*s/(s^2–22), 6/(s^2–22), (s^2–4)/(s^2–22)]

Example E1.29: Expand the following function F(s) into partial fractions using MATLAB. Determine the

inverse Laplace transform of F(s) = 4 3 2

1
+5 +7s s s .

76 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

Solution:
The MATLAB program for determining the partial fraction expansion is given below:

>> b = [0 0 0 0 1];
>> a = [1 5 7 0 0];
>> [r, p, k] = residue (b, a)
r =

0.0510 –0.0648i

0.0510 +0.0648i

–0.1020

0.1429

p =

 –2.5000 + 0.8660i

 –2.5000 – 0.8660i

 0

 0

k = []

% From the above MATLAB output, we have the following expression:

31 2 4

1 2 3 4

() = + + +
− − − −

rr r rF s
s p s p s p s p

0.0510 0.0648 0.0510 0.0648 –0.1020 0.1429()
(2.5000 0.8660) (2.5000 0.8660) 0 0

i iF s
s i s i s s

− +
= + + +

− − + − − − − −

% Note that the row vector k is zero implies that there is no constant term in this example problem.
% The MATLAB program for determining the inverse Laplace transform of F(s) is given below:

>> syms s

>> f = 1/(s^4 + 5*s^3 + 7*s^2);

>> ilaplace (f)
ans =
1/7*t–5/49+5/49*exp (–)*cos (1/2*3^ (1/2)*t) +11/147*exp (–5/2*t)*3^
(1/2)*sin(1/2*3^(1/2)*t)

Example E1.30: Expand the following function F(s) into partial fractions using MATLAB. Determine the
inverse Laplace transform of F(s).

F(s) =
2

4 3 2

5 3 6
3 7 9 12

+ +
+ + + +

s s
s s s s

Solution:
The MATLAB program for determining the partial fraction expansion is given below:

>> b = [0 0 5 3 6];

>> a = [1 3 7 9 12];

>> [r, p, k] = residue(b, a)

MATLAB Basics ——— 77

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

r =

 –0.5357 – 1.0394i

 –0.5357 + 1.0394i

0.5357 – 0.1856i

0.5357 + 0.1856i
p =

 –1.5000 + 1.3229i
 –1.5000 – 1.3229i
 –0.0000 + 1.7321i
 –0.0000 – 1.7321i

k = []
% From the above MATLAB output, we have the following expression:

F(s) = 31 2 4

1 2 3 4

+ + +
− − − −

rr r r
s p s p s p s p

F(s) =
0.5357 1.0394 (0.5357 1.0394)
(1.500 1.3229) (1.5000 1.3229)

− − − +
+

− − + − − −
i i

s i s i

 +
0.5357 0.1856 0.5357 0.1856

(0 1.7321) (0 1.7321)
− − ++

− − + − − −
i i

s i s i

% Note that the row vector k is zero implies that there is no constant term in this example problem.
% The MATLAB program for determining the inverse Laplace transform of F(s) is given below:

>> syms s
>> f = (5*s^2 + 3*s +6)/(s^4 + 3*s^3 + 7*s^2 + 9*s +12);
>> ilaplace(f)
ans =

11/14*exp(–3/2*t)*7^(1/2)*sin(1/2*7^(1/2)*t) –15/14*exp(–3/
2*t)*cos(1/2*7^(1/2)*t) +3/14*3^ (1/2)*sin(3^(1/2)*t)+15/
14*cos(3^(1/2)*t)

Example E1.31: For the following function F(s):

F(s) =
4 3 2

4 3 2

3 5 7 25
5 20 40 45
+ + + +

+ + + +
s s s s

s s s s

Using MATLAB, find the partial fraction expansion of F(s). Also, find the inverse Laplace transformation of
F(s).

Solution:

F(s) =
4 3 2

4 3 2

3 5 7 25
5 20 40 45
+ + + +

+ + + +
s s s s

s s s s

The partial fraction expansion of F(s) using MATLAB program is given as follows:
num = [1 3 5 7 25];
den = [1 5 20 40 45];
[r, p, k] = residue(num, den)

78 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

r =
–1.3849 + 1.2313i
–1.3849 – 1.2313i
0.3849 – 0.4702i
 0.3849 + 0.4702i

p =
–0.8554 + 3.0054i
–0.8554 – 3.0054i
–1.6446 + 1.3799i
–1.6446 – 1.3799i

k =
1

From the MATLAB output, the partial fraction expansion of F(s) can be written as follows:

31 2 4

1 2 3 4

() =
() () () ()

+ + + +
− − − −

rr r r
F s k

s p s p s p s p

F(s) =
(1.3849 1.2313) (1.3849 1.2313)
(0.8554 3.005 (0.8554 3.005)

j j
s j s j
− + − −

+
+ − + +

(0.3849 0.4702) (0.3849 0.4702) 1

(1.6446 1.3799 (1.6446 1.3779)
j j

s j s j
− +

+ + +
+ − + +

Example E1.32: Obtain the partial fraction expansion of the following function using MATLAB:

F(s) = 2

8(1)(3)
(2)(4)(6)

s s
s s s

+ +
+ + +

Solution:

F(s) = 2 2 2

8(1)(3) (8 8)(3)
(2)(4)(6) (6 8)(12 36)

s s s s
s s s s s s s

+ + + +
=

+ + + + + + +
The partial fraction expansion of F(s) using MATLAB program is given as follows:

EDU>> num=conv([8 8], [1 3]);
EDU>> den=conv([1 6 8], [1 12 36]);
EDU>> [r, p, k]= residue(num, den)
r =

3.2500
15.0000
–3.0000
–0.2500

 p =
–6.0000
–6.0000
–4.0000

 –2.0000

 k = []

MATLAB Basics ——— 79

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

From the above MATLAB result, we have the following expansion:

F(s) 31 2 4

1 2 3 4() () () ()
rr r r

k
s p s p s p s p

= + + + +
− − − −

3.25 15 3 0.25() 0
(6) (15) (3) (0.25)

− −= + + + +
+ − + +

F s
s s s s

It should be noted here that the row vector k is zero, because the degree of the numerator is lower than that
of the denominator.

6 15 3 0.25() 3.25e 15e 3e 0.25e− − −= + − −t t t tF s

Example E1.33: Find the Laplace transform of the following function using MATLAB.
(a) f (t) = 7t3cos(5t + 60°)
(b) f (t) = –7t e–5t

(c) f (t) = –3 cos 5t
(d) f (t) = t sin 7t
(e) f (t) = 5 e–2t cos 5t
(f) f (t) = 3 sin(5t + 45º)
(g) f (t) = 5 e–3t cos(t – 45º)

Solution:
% MATLAB Program

(a) >> syms t % tell MATLAB that “t” is a symbol.
>> f = 7 * t^3*cos(5*t + (pi/3)); % define the function.
>> laplace(f)

ans =
–84/(s^2+25)^3*s^2+21/(s^2+25)^2+336*(1/2*s–5/2*3^(1/2))/
 (s^2+25)^4*s^3–168*(1/2*s–5/2*3^(1/2))/(s^2+25)^3*s

>> pretty(laplace(f)) % the pretty function prints symbolic output
% in a format that resembles typeset mathematics.

1/ 2 1/ 2

2

2 3 2 2 2 4 2 3

1 5 1 5336 (3) 3 168 (3)
84 21 2 2 2 2

(25) (25) (25) (25)

s s s s
s

s s s s

∧   − −      −
+ + −

+ + + +

(b) >> syms t x
>> f = –7*t*exp(–5*t);
>> laplace(f, x)
ans =

–7/(x + 5)^2

(c) >> syms t x
>> f = –3*cos(5*t);
>> laplace(f,x)
ans =

–3*x/(x^2 + 25)

80 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

(d) >>syms t x
>>f = t*sin(7*t);
>> laplace(f, x)
ans =

1/(x^2+49)*sin(2*atan(7/x))

(e) >>syms t x
>>f = 5*exp(–2*t)*cos(5*t);
>> laplace(f, x)
ans =

5*(x+2)/((x+2)^2+25)

(f) >>syms t x
>>f = 3*sin(5*t+(pi/4));
>> laplace(f, x)
ans =

3*(1/2*x*2^(1/2)+5/2*2^(1/2))/(x^2 + 25)
(g) >>syms t x

>>f = 5*exp(–3*t)*cos(t–(pi/4));
>> laplace(f, x)
ans =

5*(1/2*(x + 3)*2^(1/2)+1/2*2^(1/2))/((x + 3)^2 + 1)

Example E1.34: Generate partial-fraction expansion of the following function:

5

2 2

10 (7)(13)()
(25)(55)(7 75)(7 45)

+ +
=

+ + + + + +
s sF s

s s s s s s s
Solution:

Generate the partial fraction expansion of the following function:
numg=poly[–7 –13];
numg=poly([–7 –13]);
deng=poly([0 –25 –55 roots([1 7 75])' roots([1 7 45])']);
[numg,deng]=zp2tf (numg',deng',1e5);
Gtf=(numg,deng);
Gtf=tf(numg,deng);
G=zpk(Gtf);
[r,p,k]=residue(numg,deng)
r =

1.0e – 017*
0.0000

–0.0014
0.0254

–0.1871
0.1621

–0.0001
0.0000
0.0011

MATLAB Basics ——— 81

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

 p =
1.0e + 006*
4.6406
1.4250
0.3029
0.0336
0.0027
 0.0001
 0.0000

 0
k = []

Example E1.35: Determine the inverse Laplace transform of the following functions using MATLAB.

(a) ()
(2)(6)

sF s
s s s

=
+ +

(b)
2

1()
(5)

F s
s s

=
+

(c)
2

3 1()
(2 9)

sF s
s s

+
=

+ +
(d) 2

25()
(3 20)

sF s
s s s

−
=

+ +
Solution:
(a) >> syms s

>> f = s/(s*((s + 2)*(s + 6)));
>> ilaplace(f)
ans =

1/2*exp(–4*t)*sinh(2*t)

(b) >> syms s
>> f = 1/((s^2)*(s + 5));
>> ilaplace(f)
ans =

1/3*t – 2/9*exp(–3/2*t)*sinh(3/2*t)

(c) >>syms s
>> f = (3*s + 1)/(s^2 + 2*s + 9);
>> ilaplace(f)
ans =

3*exp(–t)*cos(2*2^(1/2)*t)–1/2*2^(1/2)*exp(–t)*sin(2*2^(1/2)*t)

(d) >>syms s
>> f = (s –25)/(s*(s^2 + 3*s +25));
>> ilaplace(f)
ans =

5/4*exp(–3/2*t)*cos(1/2*71^(1/2)*t)+23/284*71^(1/2)*exp
(–3/2*t)*sin(1/2*71^(1/2)*t)–5/4

Example E1.36: Find the inverse Laplace transform of the following function using MATLAB.
2

2

(9 7)(7)()
(2)(3)(12 150)

+ + +=
+ + + +

s s sG s
s s s s

82 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

Solution:
% MATLAB Program
>> syms s % tell MATLAB that “s” is a symbol.
>>G = (s^2 + 9*s +7)*(s + 7)/[(s + 2)*(s + 3)*(s^2 + 12*s + 150)]; % define
the function.
>>pretty(G) % the pretty function prints symbolic output
% in a format that resembles typeset mathematics.

(9 7)(7)
(2)(3)(12 150)

+ + +
+ + + +

s s s
s s s s

>> g = ilaplace(G); % inverse Laplace transform
>>pretty(g)

½44 29157 / 26exp(2) exp(3) exp(6)cos(114)
123 3198

− − + − + −t t t t

1/ 2 1/ 2889
exp(6)114 sin(114)

20254
t t+ −

Example E1.37: Generate the transfer function using MATLAB.

2 2

3(9)(21)(57)
()

(30)(5 35)(28 42)
s s sG s

s s s s s s
+ + +

=
+ + + + +

using
(a) the ratio of factors
(b) the ratio of polynomials

Solution:
% MATLAB Program
‘a. The ratio of factors’
>>Gzpk = zpk([–9 –21 –57] , [0 –30 roots([1 5 35]) 'roots([1 28 42])'],3)
% zpk is used to create zero-pole-gain models or to convert TF or
% SS models to zero-pole-gain form.
‘b. The ratio of polynomials’
>> Gp = tf(Gzpk) % generate the transfer function
% Computer response:
ans =
(a) The ratio of factors

Zero/pole/gain:
3 (+9) (+21) (+57)

(+30) (+26.41) (+1.59) (^2 + 5 + 35)
s s s

s s s s s s
ans =
(b) The ratio of polynomials

Transfer function:

3 ^3 + 261 ^2 + 5697 + 32319

^6 + 63 ^5 + 1207 ^4 + 7700 ^3 + 37170 ^2 + 44100
s s s

s s s s s s

MATLAB Basics ——— 83

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

Example E1.38: Generate the transfer function using MATLAB.

4 2

5 4 3 2

320 27 17 35()
8 9 20 29 32

s s s sG s
s s s s s

+ + + +=
+ + + + +

using
(a) the ratio of factors
(b) the ratio of polynomials

Solution:
% MATLAB Program
% a. the ratio of factors
>>Gtf = tf([1 20 27 17 35] , [1 8 9 20 29 32]) % generate the

% transfer function

% Computer response:

Transfer function:

^4 + 20 ^3 + 27 ^2 + 17 + 35
 ^4 + 8 ^3 + 9 ^2 + 20 + 29

s s s s
s s s s

% b. the ratio of polynomials
>> Gzpk = zpk(Gtf) % zpk is used to create zero-pole-gain models
% or to convert TF or SS models to zero-pole-gain form.
% Computer response:

 Zero/pole/gain:

 (+18.59) (+1.623) (^2 – 0.214 + 1.16)

(+7.042) (+1.417) (^2 – 0.4593 + 2.906)
s s s s

s s s s

1.22 SUMMARY

In this chapter, the MATLAB environment which is an interactive environment for numeric computation,
data analysis and graphics was presented. Arithmetic operations, display formats, elementary built-in
functions, arrays, scalars, vectors or matrices, operations with arrays including dot product, array
multiplication, array division, inverse and transpose of a matrix, determinants, element by element operations,
eigenvalues and eigenvectors, random number generating functions, polynomials, system of linear equation,
script files, programming in MATLAB, the commands used for printing information and generating 2-D and
3-D plots, input/output in MATLAB was presented with illustrative examples. MATLAB’s functions for
symbolic mathematics were introduced. These functions are useful in performing symbolic operations and
developing closed-form expressions for solutions to linear algebraic equations, ordinary differential equations
and systems of equations. Symbolic mathematics for determining analytical expressions for the derivative
and integral of an expression was also presented.

84 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

REFERENCES

Chapman, S.J., MATLAB Programming for Engineers, 2nd ed., Brooks/Cole, Thomson Learning, Pacific
Grove, CA, 2002.
Dukkipati, R.V., Analysis and Design of Control Systems using MATLAB, New Age International Publishers,
New Delhi, India, 2006.
Dukkipati, R.V. and Shivakumar, M. R., MATLAB for Electrical Engineers, New Age International Publishers,
New Delhi, India, 2007.
Dukkipati, R.V. and Srinivas, J., Solving Engineering Mechanics Problems with MATLAB, New Age
International Publishers, New Delhi, India, 2007.
Dukkipati, R.V., MATLAB for Engineers, New Age International Publishers, New Delhi, India, 2006.
Dukkipati, R.V., Solving Engineering System Dynamics Problems with MATLAB, New Age International
Publishers, New Delhi, India, 2006.
Dukkipati, R.V., Solving Vibration Analysis Problems with MATLAB, New Age International Publishers,
New Delhi, India, 2006.
Etter, D.M., Engineering Problem Solving with MATLAB, Prentice-Hall, Englewood Cliffs, NJ, 1993.
Gilat, Amos., MATLAB–An Introduction with Applications, 2nd ed., Wiley, New York, 2005.
Hanselman, D. and Littlefield, B.R., Mastering MATLAB 6, Prentice-Hall, Upper Saddle River, New Jersey, NJ,
2001.
Herniter, M.E., Programming in MATLAB, Brooks/Cole, Pacific Grove, CA, 2001.
Magrab, E.B., An Engineers Guide to MATLAB, Prentice-Hall, Upper Saddle River, New Jersey, NJ, 2001.
Marchand, P. and Holland, O.T., Graphics and GUIs with MATLAB, 3rd ed., CRC Press, Boca Raton, FL, 2003.
Moler, C., The Student Edition of MATLAB for MS-DOS Personal Computers with 3-1/2" Disks, MATLAB
Curriculum Series, The MathWorks, Inc., 2002.
Palm, W.J. III., Introduction to MATLAB 7 for Engineers, McGraw-Hill, New York, NY, 2005.
Pratap, Rudra, Getting Started with MATLAB—A Quick Introduction for Scientists and Engineers, Oxford
University Press, New York, NY, 2002.
Sigman, K. and Davis, T.A., MATLAB Primer, 6th ed., Chapman & Hall/CRC Press, Boca Raton, FL, 2002.
The MathWorks, Inc., MATLAB: Application Program Interface Reference Version 6, The MathWorks, Inc.,
Natick, 2000.
The MathWorks, Inc., MATLAB: Creating Graphical User Interfaces, Version 1, The MathWorks, Inc., Natick,
2000.
The MathWorks, Inc., MATLAB: Function Reference, The MathWorks, Inc., Natick, 2000.
The MathWorks, Inc., MATLAB: Release Notes for Release 12, The MathWorks, Inc., Natick, 2000.
The MathWorks, Inc., MATLAB: Symbolic Math Toolbox User’s Guide, Version 2, The MathWorks, Inc.,
Natick, 1993–1997.
The MathWorks, Inc., MATLAB: Using MATLAB Graphics, Version 6, The MathWorks, Inc., Natick, 2000.

MATLAB Basics ——— 85

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

PROBLEMS

P1.1: Compute the following quantity using MATLAB in the Command Window:

7 3
410

2 2

17 5 –1 5 log (e)+ + ln(e) + 11
π 12115 –13

� �
� �� �

� �
� �� �

P1.2: Compute the following quantity using MATLAB in the Command Window:

5 2tan sin 2
log cosh 2 tanh

cos
x xB x x x x

x
+

= + − + − ; for x = 5π/6.

P1.3: Compute the following quantity using MATLAB in the Command Window:

x = 10
3 10

14 log() ln(2) 2sinh 3 tanh
log ()| | e

a
c
b cab a ba c a b

c a b cab
�

� � � � � � �
� �

 for a = 1, b = 2 and c = 1.8.

P1.4: Use MATLAB to create
(a) a row and column vectors that has the elements: 11, –3, e7.8, ln(59), tan(p/3), 5 log10(26).
(b) a row vector with 20 equally spaced elements in which the first element is 5.
(c) a column vector with 15 equally spaced elements in which the first element is –1.

P1.5: Enter the following matrix A in MATLAB and create:

1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40

A

� �
� �
� �
� �
� �	 � �
� �
� �
� �
� �� �

(a) a 4 × 5 matrix B from the 1st, 3rd and the 5th rows, and the 1st, 2nd, 4th and 8th columns of the matrix A.
(b) a 16 element-row vector C from the elements of the 5th row, and the 4th and 6th columns of the matrix A.

P1.6: Given the function � �
1.8

2 0.02 e lnxy x x�	 � . Determine the value of y for the following values of
x : 2, 3, 8, 10, –1, –3, –5, –6.2. Solve the problem using MATLAB by first creating a vector x, and creating
a vector y, using element-by-element calculations.

P1.7: Define a and b as scalars, a = 0.75, and b = 11.3, and x, y and z as the vectors, x = 2, 5, 1, 9,
y = 0.2, 1.1, 1.8, 2 and z = –3, 2, 5, 4. Use these variables to calculate A given below using element-by-element
computations for the vectors with MATLAB.

86 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

A=
1.1 2 5

/ 3

+
2+

(+)b a

z y
x y z xa
a b z

�

 ��
 �
 ��
� �

P1.8: Enter the following three matrices in MATLAB

1 2 3 12 5 4 7 13 4
8 5 7 , 7 11 6 , 2 8 5
8 4 6 1 8 13 9 6 11

A B C
� � � � � ��� � � � � �
� � � � � �	 � 	 	 � �� � � � � �
� � � � � �� �� � � � � �� � � � � �

and show that
(a) A + B = B + A
(b) A + (B + C) = (A + B) + C
(c) 7(A + C) = 7(A) + 7(C)
(d) A * (B + C) = A * B + A * C

P1.9: Consider the polynomials
p1(s) = s3 + 5s2 + 3s + 10
p2(s) = s4 + 7s3 + 5s2 + 8s + 15
p3(s) = s5 + 15s4 + 10s3 + 6s2 + 3s + 9

Determine p1(2), p2(2) and p3(3).

P1.10: The following polynomials are given:

p1(x) = x5 + 2x4 – 3x3 + 7x2 – 8x + 7
p2(x) = x4 + 3x3 – 5x2 + 9x + 11
p3(x) = x3 – 2x2 – 3x + 9
p4(x) = x2 – 5x + 13
p5(x) = x + 5

Use MATLAB functions with polynomial coefficient vectors to evaluate the expressions at x = 2.

P1.11: Determine the roots of the following polynomials:

(a) p1(x) = x7 + 8x6 + 5x5 + 4x4 + 3x3 + 2x2 + x + 1
(b) p2(x) = x6 – 7x6 + 7x5 + 15x4 – 10x3 – 8x2 + 7x + 15
(c) p3(x) = x5 – 13x4 + 10x3 + 12x2 + 8x – 15
(d) p4(x) = x4 + 7x3 + 12x2 – 25x + 8
(e) p5(x) = x3 + 15x2 – 23x + 105
(f) p6(x) = x2 – 18x + 23
(g) p7(x) = x + 7

P1.12: An aluminium thin-walled sphere is used as a marker buoy. The sphere has a radius of 65cm and
a wall thickness of 10 mm. The density of aluminium is 2700 kg/m3. The buoy is placed in the ocean where
the density of the water is 1050 kg/m3. Determine the height H between the top of the buoy and the surface
of the water.

MATLAB Basics ——— 87

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

r
H

Fig. P1.12

P1.13: Determine the values of x, y and z for the following set of linear algebraic equations:
 x2 – 3x3 = –7

 2x1 + 3x2 – x3 = 9
4x1 + 5x2 – 2x3 = 15

P1.14: Write a simple script file to find (a) dot product, (b) cross-product of 2 vectors:
 a = ˆĵ k� and b = ˆ ˆ3i j�
P1.15: Write a function to find gradient of f (x, y) = x2 + y2 – 2xy + 4 at (a) (1,1), (b) (1,– 2) and (c) (0,– 3).
Use the function name from command prompt.

P1.16: Write MATLAB functions f = x2 – 3x + 1 and g = ex – 4x + 6 and find the result f (127)/g(5) from
a script file.
P1.17: Plot the function y = |x| cos (x) for –200 ≤ x ≤ 200.
P1.18: Plot the following functions on the same plot for 0 ≤ x ≤ 2π using the plot function:

(a) sin2(x)
(b) cos2x
(c) cos(x)

P1.19: Plot a graph of the function y = 45 sin(0.4t) for t ∈[0, 3].
P1.20: Consider the function z = 0.56 cos(xy). Draw a surface plot showing variation of z with x and y.
Given x∈[0, 10] and y∈[0,100].
P1.21: Figure P1.21 shows two boats: boat A travels south at a speed of 10 mph, and boat B travels east
at a speed of 19 mph. The ships are positioned at 8 a.m. are also shown in figure. Write a MATLAB program
to plot the distance between the ships as a function of time for the next 5 hours.

Boat B

Boat A

30 miles

16 miles

x

y

Fig. P1.21

88 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

P1.22: Consider the given symbolic expressions defined below:
S1 = ‘2/(x – 5)’; S2 = ‘x ̂ 5 + 9 * x – 15’; S3 = ‘(x ̂ 3 + 2 * x +9) * (x * x – 5)’;

Perform the following symbolic operations using MATLAB.
(a) S1S2/S3 (b) S1/S2S3 (c) S1/(S2)2 (d) S1S3/S2 (e) (S2)2/(S1S3)

P1.23: Solve the following equations using symbolic mathematics:
(a) x2 + 9 = 0
(b) x2 + 5x – 8 = 0
(c) x3 + 11x2 – 7 x + 8 = 0
(d) x4 + 11x3 + 7x2 – 19x + 28 = 0
(e) x7 – 8x5 + 7x4 + 5x3 – 8x + 9 = 0

P1.24: Determine the values of x, y and z for the following set of linear algebraic equations:
 2x + y – 3z = 11

 4x – 2y + 3z = 8
 –2x + 2y – z = –6

P1.25: Figure P1.25 shows a scale with two springs.

k

W

k

kk

a

b

x

Fig. P1.25

The two springs are unstretched initially and will stretch when a mass is attached to the ring and the ring will
displace downwards a distance of x. The weight W of the object is given by

W = 0
2 ()()k b x� �A A
A

where A0 = initial length of a spring = 2 2a b�

and A = the stretched length of the spring = 2 2()a b x� � .

If k = spring constant,

 Write a MATLAB program to determine the distance x when W = 350 N. Given a = 0.16 m, b = 0.045 m,

and the spring constant k = 3000 N/m.

P1.26: Determine the solutions of the following first-order ordinary differential equations using MATLAB’s
symbolic mathematics.

(a) y′ = 8x2 + 5 with initial condition y(2) = 0.5.

MATLAB Basics ——— 89

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

(b) y′ = 5x sin2(y) with initial condition y(0) = π/5.
(c) y′ = 7x cos2(y) with initial condition y(0) = 2.
(d) y′ = –5x + y with initial condition y(0) = 3.
(e) y′ = 3y + e–5x with initial condition y(0) = 2.

P1.27: For the following differential equations, use MATLAB to find x(t) when (a) all the initial conditions
are zero, (b) x(t) when x (0) = 1 and x� (0)= –1.

(a)
2

2 +10 + 5d x dx x
dtdt

 = 11 (b)
2

2 – 7 3d x dx x
dt dt

� = 5

(c)
2

2 + 3 + 7d x dx x
dtdt

 = –15 (d)
2

2 + + 7d x dx x
dtdt

 = 26

P1.28: Figure P1.28 shows a water tank (shaped as an inverted frustum cone with a circular hole at the
bottom on the side).

R = 2 m

R=0.5m

3 m

y

rh=0.025m

Fig. P1.28 Water tank

The velocity of water discharged through the hole is given by v = 2gy where h = height of the water and

 g = acceleration due to gravity (9.81 m/s2). The rate of discharge of water in the tank as the water drains out

through the hole is given by:
2

2

2
(2 0.5)

hgyrdy
dt y

	�
�

 where y = height of water and rh = radius of the hole. Write a

MATLAB program to solve and plot the differential equation. Assume, that the initial height of the water is 2.5 m.

P1.29: An airplane uses a parachute (see Fig. P1.29) and other means of braking as it slow down on the
runway after landing. The acceleration of the airplane is given by a = – 0.005 v2 – 4 m/s2

v

x

Fig. P1.29

90 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

Considering the airplane with a velocity of 500 km/h opens its parachute and starts decelerating at
t = 0 second, write a MATLAB program to solve the differential equation and plot the velocity from
t = 0 second until the airplane stops.

P1.30: Obtain the first and second derivatives of the following functions using MATLAB’s symbolic
mathematics.

(a) F(x) = x5 – 8x4 + 5x3 – 7x2 + 11x – 9
(b) F(x) = (x3 + 3x – 8)(x2 + 21)
(c) F(x) = (3x3 – 8x2 + 5x + 9)/(x + 2)
(d) F(x) = (x5 – 3x4 + 5x3 + 8x2 – 13)2

(e) F(x) = (x2 + 8x –11)/(x7 – 7x6 + 5x3 + 9x – 17)
P1.31: Determine the values of the following integrals using MATLAB’s symbolic functions.

(a) � � �7 5 3 25 3 8 7x x x x dx� � � �

(b) cosx x�
(c) 2 / 3 2sin 2x x�

(d)
1.8 2

0.2
sinx x dx�

(e)
0.2

1
x dx

�

��

P1.32: Use MATLAB to calculate the following integral:
5

2
0

1
0.8 0.5 2

dx
x x� ��

P1.33: Use MATLAB to calculate the following integral:
10

2 4

0

cos (0.5)sin (0.5)x x dx∫

P1.34: The variation of gravitational acceleration g with altitude y is given by:

g =
2

o2()
R g

R y�
,

where R = 6371 km is radius of the earth and go= 9.81 m/s2 is gravitational acceleration at sea level.
The change in the gravitational potential energy ∆U of an object that is raised up from the earth is given by:

∆U =
0

y

mgdy∫

MATLAB Basics ——— 91

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

Determine the change in the potential energy of a satellite with a mass of 500 kg that is raised from the surface
of the earth to a height of 800 km.
P1.35: Find the Laplace transform of the following function using MATLAB:

 f (t) = 7t3cos(5t + 60°)
P1.36: Use MATLAB program to find the transforms of the following functions.

(a) f (t) = –7t e–5 t

(b) f (t) = –3 cos 5t
(c) f (t) = t sin 7t
(d) f (t) = 5 e–2 t cos 5t
(e) f (t) = 3 sin(5t + 45º)
(f) f (t) = 5 e–3 t cos(t – 45º)

P1.37: Consider the two matrices

1 0 2 7 8 2
2 5 4 and 3 5 9
1 8 7 1 3 1

A B
   
   = =   
   − −   

Using MATLAB, determine the following:
(a) A + B
(b) AB
(c) A2

(d) AT

(e) B–1

(f) BTAT

(g) A2 + B 2 – AB
(h) determinant of A, determinant of B and determinant of AB.

P1.38: Use MATLAB to define the following matrices:

2 1 2 3
5 3

0 5 , , 5 2 ,
2 4

7 4 0 3
A B C

   
    = = = − −    − −       

 D = [1 2]

Compute matrices and determinants if they exist.
(a) (ACT)–1

(b) |B|
(c) |ACT|
(d) (CTA)–1

P1.39: Consider the two matrices
1 0 1 7 4 2
2 3 4 and 3 5 6
1 6 7 1 2 1

A B
   
   = =   
   − −   

92 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

Using MATLAB, determine the following:
(a) A + B
(b) AB
(c) A2

(d) AT

(e) B–1

(f) BTAT

(g) A2 + B2 – AB
(h) det A, det B and det AB.

P1.40: Find the inverse of the following Matrices:

(a)
3 2 1
1 5 4

5 7 9
A

 
 = − 
 − 

(b)
1 6 3
4 5 7

8 4 2
B

 
 = − − 
  

(c)
1 2 5
4 7 2

7 8 1
C

− − 
 = − 
 − − 

P1.41: Determine the eigenvalues and eigenvectors of the following matrices using MATLAB.

1 2 1 5
,

1 5 2 7
A B

−   
= =   −   

P1.42: If
4 6 2
5 6 7

10 5 8
A

 
 =  
  

Use MATLAB to determine the following:
(a) the three eigenvalues of A
(b) the eigenvectors of A
(c) Show that AQ = Qd where Q is the matrix containing the eigenvectors as columns and d is the

matrix containing the corresponding eigenvalues on the main diagonal and zeros elsewhere.

P1.43: Determine eigenvalues and eigenvector of A using MATLAB.

(a)
0.5 0.8

0.75 1.0
A

− 
=  

 

(b)
8 3
3 4

A
 

=  − 

MATLAB Basics ——— 93

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

P1.44: Determine the eigenvalues and eigenvectors of the following matrices using MATLAB.

(a) 1 2
1 3

A
− 

=  
 

(b)
1 5
2 4

A  
=  − 

P1.45: Determine the eigenvalues and eigenvectors of A * B using MATLAB.

3 1 2 1 1 2 5 7
1 2 7 4 2 1 2 4

,
7 1 8 6 3 2 5 1
1 2 3 4 4 1 3 6

A B

−   
   − −   = =
   −
   − −      

P1.46: Determine the eigenvalues and eigenvectors of A and B using MATLAB.

4 5 3 1 2 3
1 2 3 , 8 9 6

2 5 7 5 3 1
A B

−   
   = − =   
   −   

P1.47: Determine the eigenvalues and eigenvectors of A = a * b using MATLAB.

a =

6 3 4 1
0 4 2 6
1 3 8 5
2 2 1 4

− 
 
 
 
 
  

b =

0 1 2 3
4 5 6 1
1 5 4 2
2 3 6 7

 
 − 
 
 −  

P1.48: Determine the values of x, y and z for the following set of linear algebraic equations:
x2 – 3x3 = –7

2x1 + 3x2 – x3 = 9
4x1 + 5x2 – 2x3 = 15

P1.49: Determine the values of x, y and z for the following set of linear algebraic equations:
2x – y = 10

–x + 2y – z = 0
–y + z = –50

P1.50: Solve the following set of equations using MATLAB.
(a) 2x1 + x2 + x3 – x4 = 12

x1 + 5x2 – 5x3 + 6x4 = 35
– 7x1 + 3x2 – 7x3 – 5x4 = 7

x1 – 5x2 + 2x3 + 7x4 = 21

94 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

(b) x1 – x2 + 3x3 + 5x4 = 7
2x1 + x2 – x3 + x4 = 6

–x1 – x2 – 2x3 + 2x4 = 5
x1 + x2 – x3 + 5x4 = 4

P1.51: Solve the following set of equations using MATLAB.
(a) 2x1 + x2 + x3 – x4 = 10

x1 + 5x2 – 5x3 + 6x4 = 25
–7x1 + 3x2 – 7x3 – 5x4 = 5

x1 – 5x2 + 2x3 + 7x4 = 11

(b) x1 – x2 + 3x3 + 5x4 = 5
2x1 + x2 – x3 + x4 = 4

–x1 – x2 + 2x3 + 2x4 = 3
x1 + x2 – x3 + 5x4 = 1

P1.52: Solve the following set of equations using MATLAB.

(a) x1 + 2x2 + 3x3 + 5x4 =21
–2x1 + 5x2 + 7x3 – 9x4 =17

5x1 + 7x2 + 2x3 – 5x4 =23
–x1 – 3x2 – 7x3 + 7x4 =26

(b) x1 + 2x2 + 3x3 + 4x4 =9
2x1 – 2x2 – x3 + x4 =–5

x1 – 3x2 + 4x3 – 4x4 =7
2x1 + 2x2 – 3x3 + 4x4 =–6

P1.53: Determine the inverse of the following matrix using MATLAB.

3 2 0
7 5
3 0 3

s
A s s

s

 
 = − − 
 − 

P1.54: Expand the following function F(s) into partial fractions with MATLAB:
3 2

4 3 2
()

5 7 8 30
15 62 85 25

F s
s s s

s s s s
=

+ + +
+ + + +

P1.55: Determine the Laplace transform of the following time functions using MATLAB.
(a) f (t) = u (t + 9)
(b) f (t) = e5t

(c) f (t) = (5t + 7)
(d) f (t) = 5u (t) + 8e7t – 12e–8t

(e) f (t) = e–t + 9t3 – 7t–2 + 8
(f) f (t) = 7t4 + 5t2 – e–7t

(g) f (t) = 9 u t + 5e–3t

MATLAB Basics ——— 95

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

P1.56: Determine the inverse Laplace transform of the following rotational function using MATLAB:

2

7 7
()

(2) (3)5 6
F s

s ss s
= =

+ ++ +
P1.57: Determine the inverse transform of the following function having complex poles

3 2

15
()

(5 11 10)
F s

s s s
=

+ + +
P1.58: Determine the inverse Laplace transform of the following functions using MATLAB:

(a) ()
(2)(3)(5)

sF s
s s s s

=
+ + +

(b)
2

1
()

(7)
F s

s s
=

+

(c)
3

5 9
()

(8 5)
sF s

s s
+

=
+ +

(d)
2

28
()

(9 33)
sF s

s s s
−

=
+ +

.

❍ ❍ ❍

This page
intentionally left

blank

2.1 INTRODUCTION

In this chapter, we briefly review the three types of basic passive electrical elements: resistor, inductor and
capacitor.
Resistance Elements: Ohm’s Law: The voltage drop VR across a linear resistor is proportional to the current
iR flowing through the resistor, where the constant of proportionality is the resistance R as shown in Fig. 2.1.

–

R

+

iR

VR

Fig. 2.1

VR = R iR
Resistors do not store electrical energy in any form but dissipate it as heat. The rate of energy dissipated
(power consumed) by a resistor is given by

 P = 2
Ri R =

2
RV
R

 (W or J/s)

Resistors in Series: The current i passes through each element as shown in Fig. 2.2(a). The total voltage
drop is given by the sum of the voltage drops across each element, or

 V = V1 + V2

Applying Ohm’s law, we obtain

iReq = iR1 + iR2

or Req = R1 + R2

The voltage drop across each resistor is then given by

 1
1

1 2

R
V V

R R
 

=  + 

222C
H

A
P

T
E

R

Electrical Circuits

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

98 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

and
2

2
1 2

R
V V

R R
 

=  + 

R1i R2i i

V1 V2

V

R1

i

R2

i 1

i 2

V

i

 (a) Resistors in series (b) Resistors in parallel

Fig. 2.2

Resistors in Parallel: All the elements in the case have the same voltage applied across them as shown in
Fig. 2.2 (b).

 i = i1 + i2
Applying Ohm’s law, we get

eq 1 2

V V V
R R R

= +

or
1 2

eq
1 2

R R
R

R R
=

+ ...(2.1)

If there are n resistors, we can write

eq 1 1

1 1 1 1...
nR R R R

= + + +

Solving eq. (2.1) for the currents i1 and i2, we obtain

 2
1

1 2

R
i i

R R
 

=  + 

 1
2

1 2

R
i i

R R
 

=  + 

Inductance Elements: The voltage VL across the inductor L is given by (see Fig. 2.3)

 VL = LdiL
dt

–

L

+

i L

VL

Fig. 2.3

where iL is the current through the inductor.

Electrical Circuits ——— 99

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

The energy stored in an inductance is

 E = 2
1

Li2 = 2
1

L (q) 2

where q is the electrical charge.
The voltage drop in an inductance is

Vi = Li = L q

Inductances in Series: Since the voltage drop through an inductor is proportional to the inductance L, we
have (Fig. 2.4 (a))

Leq= L1 + L2

L1 L2

L1

L2

(a) Inductances in series (b) Inductances in parallel

Fig. 2.4 Inductances

Inductances in Parallel: Referring to Fig. 2.4 (b), we have

Leq = 1 2

1 2

L L
L L+

Similarly, for n inductors

eq 1 2

1 1 1 1...
nL L L L

= + + +

Capacitance Elements: Capacitance C is a measure of the quantity of charge that can be stored for a given
voltage across the plates. The capacitance C of a capacitor is given by

c

qC
V

=

where q is the quantity of charge stored and Vc is the voltage across the capacitor.

Since i =
dq
dt

 and Vc = q/C, we have

 cdV
i C

dt
=

or dVc =
1
C

i dt

Hence Vc =
1
C

∫ic dt

100 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

This is shown in Fig. 2.5.

–+

iC

Vc

Fig. 2.5 Capacitor

The energy stored in a capacitor is given by

 E =
1
2

CV 2

The voltage drop across capacitor is given by

Vc =
q i dt
C C

⌠


⌡

=

Capacitors in Series:
Referring to Fig. 2.6 (a) we have

1 2
eq

1 2
=

+
C CC

C C
For n capacitors

eq 1 2

1 1 1 1...= + + +
nC C C C

Capacitors in Parallel:
For capacitors in parallel (see Fig. 2.6 (b))

Ceq = C1 + C2

C1

C2

C1

(a) Capacitors in series (b) Capacitors in parallel

Fig. 2.6 Capacitor

2.2 ELECTRICAL CIRCUITS

In this section, we apply Ohm’s law to series and parallel circuits to determine the combined resistance of
the given circuit.
Series Circuits: The combined resistance of series-connected resistors of a simple series circuit is given
by the sum of the individual resistances. The voltage between points A and B of the simple series circuit
shown in Fig. 2.7 is given by

Electrical Circuits ——— 101

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

R1 R2

V2

R3

V3

i
A B

V1

V

Fig. 2.7 Series circuit

 V = V1 + V2 + V3

where V1 = iR1

V2 = iR2

and V3 = iR3

Hence
V
i

 = R1 + R2 + R3

Therefore, the combined resistance R of the series circuit is given by

 R = R1 + R2 + R3

Parallel Circuits: For the parallel electrical circuit shown in Fig. 2.8, we can write

 i1 =
1

V
R

 i2 =
2

V
R

and i3 =
3

V
R

R1 R2 R3V

i 1 i 2

i3

i

Fig. 2.8 Parallel circuit

Now i = i1 + i2 + i3
Therefore,

1 2 3

V V V Vi
R R R R

= + + =

where R is the combined resistance. Hence

1 2 3

1 1 1 1= + +
R R R R

102 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

Therefore, 1 2 3

1 2 2 3 3 1

1 2 3

1
1 1 1

R R R
R

R R R R R R
R R R

= =
+ ++ +

.

2.3 KIRCHHOFF’S LAWS

Kirchhoff’s laws are the two most useful physical laws for modeling electrical systems. It is necessary to
apply Kirchhoff’s laws in solving electric circuit problems as they involve many electromotive forces such
as resistance, capacitance and inductance.
The Kirchhoff’s laws are stated as follows:
1. Kirchhoff’s current law (node law): The algebraic sum of all the currents flowing into a junction (or
node) is zero (node analysis).
In other words, the sum of currents entering a node is equal to the sum of the currents leaving the same
node. A node is an electrical circuit is a point where three or more wires are joined together. Currents going
toward a node are considered positive while currents leaving a node are treated as negative.
The algebraic sum of all currents (in) a circuit node is zero. That is,

in() 0n
n

i =∑

Referring to Fig. 2.9, Kirchhoff’s current law states that

i1 i3

i2

i1 i3

i2

i1 i3

i2

i3

i2

i1

i4

i6 i5

(a) (b) (c) (d)

Fig. 2.9

Fig. 2.9 (a) i1 + i2 + i3 = 0
Fig. 2.9 (b) – (i1 + i2 + i3) = 0
Fig. 2.9 (c) i1 + i2 – i3 = 0
Fig. 2.9 (d) i1 – i2 – i3 + i4 + i5 – i6 = 0

2. Kirchhoff’s voltage law (loop law): The algebraic sum of all the potential drops around a closed loop
(or closed circuit) is zero (loop analysis).
In other words, the sum of the voltage drops is equal to the sum of the voltage rises around a loop. That
is, the sum of all voltage drops around a circuit loop is zero. Hence

ΣVdrop = 0

or ΣVgain = 0

Electrical Circuits ——— 103

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

The voltage drops or voltage gains should be appropriately indicated for loop analysis. Figure 2.10 shows
examples with useful sign convention.

A

R

B
i

A

E

B

eAB = + E eAB = + Ri
(a) (b)

A

R

B
i

A

E

B

L

R VR

+

–

+

–

Va
Vc

– +

–+

eAB = –E eAB = –Ri

(c) (d) (e)

Fig. 2.10

The application of MATLAB to the analysis and design of control systems, engineering mechanics (statics
and dynamics), mechanical vibration analysis, electrical circuits and numerical methods is presented in this
chapter with a number of illustrative examples. The MATLAB computational approach to the transient
response analysis, steps response, impulse response, ramp response and response to the simple inputs are
presented. Plotting root loci, Bode diagrams, polar plots, Nyquist plot, Nichols plot and state space method
are obtained using MATLAB. Extensive worked examples are included with a significant number of exercise
problems to guide the student to understand and as an aid for learning about the analysis and design of
control systems, engineering mechanics, vibration analysis of mechanical systems, electrical circuits, and
numerical methods using MATLAB.

2.4 EXAMPLE PROBLEMS AND SOLUTIONS

Example E2.1: Figure E2.1 shows an electrical circuit with resistors and voltage sources. Write a MATLAB
program to determine the current in each resistor using the mesh current method based on Kirchhoff’s
voltage law.
Given: V1 = 22 V, V2 = 12 V, V3 = 44 V, R1 = 20Ω, R2 = 12Ω, R3 = 15 Ω, R4 = 7 Ω, R5 = 16 Ω, R6 = 10 Ω,
 R7 = 10 Ω, R8 = 15 Ω

104 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

V2

V3

V1

R3
R2

R4

R7

R6

R8

R5

i1

i2

+

+

-i4

i3

R1

Fig. E2.1

Solution: Let i1, i2, i3 and i4 be the loop currents as shown in Fig. E2.1.
According to Kirchhoff’s voltage law: sum of voltage around closed circuit is zero.
Thus, the loop equations can be written by taking in each loop clockwise direction as reference.

V1 – R1 i1 – R3(i1 – i3) – R2(i1 – i2) = 0

–R2(i2 – i1) – R4(i2 – i3) – R7(i2 – i4) – R5i2 = 0

–R3(i3 – i1) – V2 – R6(i3 – i4) – R4(i3 – i2) = 0

V3 – R8i4 – R7(i4 – i2) – R6(i4 – i3) = 0

The equations can be written in matrix form as follows:

7

1 2 3 2 3

5 7 72 2 4 4

3 4 3 4 6 6

76 6 8

() 0

()

()

0 ()

R R R R R

R R R R R R R

R R R R R R

R R R R R

− + + 
 

− + + + 
 − + + 
 − + + 

1

2

3

4

i

i

i

i

 
 
 
 
 
 
 

1

2

3

0

V

V

V

− 
 
 =  
 
 − 

MATLAB solution of this system of equations is given below:

MATLAB Program
%INITIALIZING THE VARIABLES

V1=22;
V2=12;

V3=44;

V=[–V1;0;V2;–V3]%CREATE THE VOLTAGE VECTOR

R1=20;

R2=12;

R3=15;

R4=7;

Electrical Circuits ——— 105

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

R5=16;

R6=10;

R7=10;

R8=15;

% CREATE THE RESISTANCE MATRIX

R=[–(R1+R2+R3) R2 R3 0;

R2 –(R2+R4+R5+R7) R4 R7;

R3 R4 –(R3+R4+R6)R6;

0 R7 R6 –(R6+R7+R8)];

% GET THE CURRENT VECTOR AS SOLUTION

I=inv(R)*V;

% ALLOT VALUES TO FOUR CURRENTS

i1=I(1)

i2=I(2)

i3=I(3)

i4=I(4)

The output obtained is as follows:
V =

–22
 0
 12
–44

i1 =
0.8785

i2 =
0.7154

i3 =
0.7138

i4 =
1.6655

The current in resistor R2 = i1 –i2 = 0.1631 A
The current in resistor R3 = i1 –i3 = 0.1647 A
The current in resistor R4 = i2 –i3 = 0.0016 A
The current in resistor R6 = i4 –i3 = 0.9517 A
The current in resistor R7 = i4 –i2 = 0.9501 A

106 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

Example E2.2: Write a MATLAB program that computes the voltage across each resistor and the power
dissipated in each resistor for the circuit shown in Figure E2.2 that has resistors connected in series.

vS

R3
R1

+
–

R2

R5R7 R6

R4

Fig. E2.2

The voltage across each of the several resistors connected in series is given by the voltage divider rule

vs vs vs vn vn =
eq

n
s

R v
R

where
vn, Rn = the voltage across resistor n and its resistance,

 Req = ∑Rn = the equivalent resistance,

 vs = the source voltage.

The power dissipated in each resistor is given by Pn = 2

eq

n
s

R v
R

Solution:
MATLAB program is given for the following data:
Vs = 12 V, R1 = 10 Ω, R2 = 7 Ω, R3 = 6 Ω, R4 = 9 Ω, R5 = 4 Ω, R6 = 7.5 Ω, R7 = 10 Ω

% THIS PROGRAM CALCULATES THE VOLTAGE ACROSS EACH RESISTOR

% IN A CIRCUIT THAT HAS RESISTORS CONNECTED IN SERIES

vs=input(‘Enter the source voltage’);

rn=input(‘Enter values of resistors as elements in a row vector\n’);

req=sum(rn); % CALCULATING EQUIVALENT RESISTANCE

vn=rn*vs/req; % APPLY VOLTAGE DIVIDE RULE

pn=rn*vs^2/req/2; % CALCULATING POWER IN EACH CIRCUIT

i=vs/req; % CALCULATE CURRENT IN THE CIRCUIT

ptotal=vs*i; % CALCULATE POWER IN THE CIRCUIT

table=[rn’,vn’,pn’];% CREATE TABLE

disp(‘ Resistance Voltage Power’) %DISPLAY HEADINGS FOR COLUMNS

disp(‘(ohms) (volts) (watts)’)

disp(table) % DISPLAY THE VARIABLE ‘TABLE’

Electrical Circuits ——— 107

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

fprintf(‘The curent in the circuit is %f amp’,i)

fprintf(‘\nThe total power dissipated in the circuit is %f watts\n’,ptotal)

MATLAB Output:
Enter the source voltage
Enter values of resistors as elements in a row vector
[10 7 6 9 4 7.5 5]

Resistance Voltage Power
(ohm) (volt) (watt)

10.0000 2.4742 14.8454
7.0000 1.7320 10.3918
6.0000 1.4845 8.9072
9.0000 2.2268 13.3608
4.0000 0.9897 5.9381
7.5000 1.8557 11.1340
5.0000 1.2371 7.4227

The current in the circuit is 0.247423 amp.
The total power dissipated in the circuit is 2.969072 watt.

Example E2.3: Figure E2.3 shows a semiconductor diode and the current flowing through the diode is
given by:

iD = i0[exp 1dq v
kT

  −  ]

where vd = the voltage across the diode (volt)
i0 = the leakeage current of the diode (amp)
k = Boltzmann’s constant (1.38 ×10–23 joule/K)
q = the charge of an electorn (1.6 × 10–19 coulombs)
T = temperature (in K)

iD = the current flow through the diode (amp)

(a) Write a MATLAB program to calculate the current flowing through this diode for all
voltages from – 0.2 V to + 0.25 V in 0.01 V steps.

(b) Repeat the procedure in (a) for 70oF, 200oF and 400oF.
(c) Plot the current as a function of applied voltage.

108 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

+

–

i D

vD

Fig. E2.3

Solution:
MATLAB program for calculation of current flow in diode is given below:
% INITIAL VALUES

i0=2e–4; % leakage current in amp

k=1.38e–23; % Boltzmann constant (J/K)

q=1.602e–19; % charge of electron in C

vd=–0.2:0.01:0.25;% diode voltage (V)

t_f=[75 200 400]; % temperature in F

for ii=1:length(t_f)

 t_k=(5/9)*(t_f(ii)–32)+273.15; %convert temperature to kelvin

 id=i0.*(exp((q*vd)/(k*t_k))–1); %calculate diode current

 if ii ==1

 plot(vd,id,‘–o’); % plot lines in various ways

 hold on;

 elseif ii ==2

 plot(vd,id,‘--’);

 elseif ii==3

 plot(vd,id,‘:o’);

 hold off;

 end

end

legend(‘75 deg F’,‘200 deg F’, ‘400 deg F’)

grid on;

title(‘\bf plot of diode voltage Vs diode current’);

xlabel(‘v_{D}’);

ylabel(‘i_{D}’);

Electrical Circuits ——— 109

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

The output is shown in Fig. E2.3(a)

–0.2 –0.15 –0.1 –0.05 0 0.05 0.1 0.15 0.2 0.25
–0.5

0

0.5

1

1.5

2

2.5

3

3.5

4
Plot of diode voltage diode currentvs

75 deg F

200 deg F

400 deg F

i D

vD

Fig. E2.3(a) MATLAB output

Example E2.4: Figure E2.4(a) shows the electric field at a point due to a charge which is a vector E. The

magnitude of E is given by Coulomb’s law E = 2
04

q
r

 
 πε 

, where q is magnitude of the charge, r is the

distance between the charge and the point, and ε0 is the permittivity constant (8.8542 × 10–12 C2/Nm2). The
electric field E at any point is obtained by superposition of the electric field of each charge. An electric
dipole with q = 12 × 10–19 C is created as shown in Fig. E2.4 (b).
Write a MATLAB program to determine and plot the magnitude of the electric field along the x-axis from
x = – 8 cm to x = 8 cm.

+

r

E

q

+

x

q q

E+

E–

–

(–0.03,–0.03) (0.03,–0.03)

y

(a) (b)
Fig. E2.4

110 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

Solution:
Electric field at any point (x, 0) along the x-axis is obtained by adding the electric field vectors due to each
of the charges. E = E– + E+ . The magnitude of the electric field is the length of the vector E. The problem
is solved by following steps:
1. Create a vector x for points along the x-axis.

2. Calculate the distance from each charge to points on x-axis according to the equations

rms = 2 2(0.03–) 0.03x + and rps = 2 2(0.03) 0.03+ +x

3. Write unit vectors in the directions from each charge to the points on the x-axis as emuv = [(0.03 – x)/
rms, – 0.03/rms] and epuv = [(x + 0.03)/rps, 0.02/rps]

4. Calculate the magnitude of electric field due to positive and negative charges according to Coulomb’s

law: E = emmag = 2
04 rms
q 

 πε 
 and E+= epmag = 2

04 rps
q 

 πε 

5. Calculate em and ep by multiplying the unit vectors by emmag and epmag.
6. Calculate E as e = em + ep,
7. Find the magnitude of e.
8. Plot e as a function of x.

MATLAB program for this is given below:
q = 12e–9;

ep = 8.8542e–12;

x =[–0.08:0.001:0.08]; %COLUMN VECTOR OF x

rms =(0.03–x)^2+0.03^2;rm = sqrt(rms);

rps =(0.03+x)^2+0.03^2;rp = sqrt(rps);

emuv =[((0.03–x)./rm),(–0.03./rm)]; % Unit vector of em

epuv =[((0.03+x)./rp),(0.03./rp)]; % Unit vector of ep

emmag =(q/(4*pi*ep))./rms;

epmag =(q/(4*pi*ep))./rps;

em =[emmag*emuv(:,1),emmag*emuv(:,2)]; % Multiplication of magnitude and uv

ep =[epmag*epuv(:,1),epmag*epuv(:,2)];

e = em+ep;

emag = sqrt(e(:,1)^2+e(:,2)^2);

plot(x,emag,‘k’);

xlabel(‘Position along the x–axis(m)’)

ylabel(‘Magnitude of electric field (N/C)’)

title(‘Electric field due to an electric dipole’)

Electrical Circuits ——— 111

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

The output of the program is shown in Fig. E2.4(c).

–0.08 –0.06 –0.04 –0.02 0 0.02 0.04 0.06 0.08
2

3

4

5

6

7

8

9

10

11

12
x 10

4
Electric field due to an electric dipole

M
a

g
n

it
u

d
e

o
f

e
le

c
tr

ic
fi
e

ld
(N

/C
)

Position along the x-axis(m)

Fig. E2.4(c) MATLAB output

Example E2.5: Figure E2.5 shows a circuit to determine the electrical capacitance of an electrical capacitor.

R = 2000 Ω

CV0 V

B

A

Fig. E2.5

The process involves the following steps: first the switch is connected to B and the capacitor is charged,
then the switch is switched to A and the capacitor discharges through the resistor. The voltage across the
capacitor is measured as the capacitor discharges. The measurements obtained are given below in a table:
(a) Write a MATLAB program to plot the voltage as a function of time, (b) determine the capacitance of the
capacitor by fitting an experimental curve to the data points.

Table E2.5

t(s) 1 2 3 4 5 6 7 8 9 10
V(volt) 9.5 7.35 5.25 3.65 2.85 2.05 1.25 0.95 0.75 0.61

112 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

Solution:
When a capacitor discharges through a resistor, the voltage of the capacitor as a function of time is given
by: V = V0 exp(–t/RC), where V0 is the initial voltage, R is the resistance of the resistor and C is the
capacitance of the capacitor.
By taking logarithms on both sides

ln(V) =
1

RC
− t + ln(V0)

This equation which has the form y = mx + c can be fitted to the data points by using the MATLAB function
polyfit (x, y, 1) with t as the independent variable x and ln(V) as the dependent variable y. The coefficients
m and c are determined by the polyfit function then used to determine C and V0.

MATLAB Program:
r=2000; % RESISTANCE VALUE

t=1:10; % time in seconds
v=[9.5 7.35 5.25 3.65 2.85 2.05 1.25 0.95 0.75 0.61]; % OBSERVED VALUES of voltage

p=polyfit(t,log(v),1); % one dimensional polynomial fit
c=–1/(r*p(1)); % finding C

v0=exp(p(2)); % finding V0
tplot=0:0.1:10; % choosing plotting coordinates
vplot=v0*exp(–tplot./(r*c));

disp(‘Capacitance’);c
plot(t,v, ‘o’,tplot,vplot)

xlabel(‘t(s)’)
ylabel(‘voltage’);

MATLAB Output:
Capacitance
c =
 0.0016

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

V
o

lt
a

g
e

t(s)

Fig. E2.5(a) MATLAB output

Electrical Circuits ——— 113

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

Example E2.6: A series RLC circuit driven by a sinusoidal AC voltage source (120 ∠0o volts) is shown in
Fig. E2.6. The impedance of the inductor is given by ZL = j2πfL, where j = 1− , f is frequency of the voltage

source (Hz) and L is the inductance (Henries). The impedance of the capacitor is given by
2

j
fC

−
π

, where C

is the capacitance (farads). The current I flowing is given by Kirchhoff’s voltage law that is

i =
120 0

2 /(2)

°∠
+ π − πR j f L j fC

. Write a MATLAB program to calculate and plot (a) the magnitude of the current

as function of frequency for the range 100 kHz to 10 MHz. (b) the phase angle as a function of frequency
for the range 100 kHz to 10 MHz. (c) the magnitude and phase angle of the current as a function of frequency
on two subplots of a single figure.

Given R = 120 Ω, L = 0.15 mH and C = 0.26 nF

LR

i C

+

–

120 ∠0°V

Fig. E2.6

Solution:
This can be attempted as a complex number option in MATLAB.

(a) Magnitude of current:

f=100000:50000:10000000;

%INITIALIZE RANGE OF FREQUENCY

vs=120;

c=0.265e–9;

L=0.15e–3;

r=120;

i0=vs./(r+j*2*pi*f*L–j./(2*pi*f*c)); %CALCULATE OUTPUT CURRENT

semilogx(f,abs(i0));

%PLOT ON LOG–LINEAR SCALE

title(‘\bfPlot of magnitude of current flow vs frequency’);

xlabel(‘\bfFrequency (Hz)’);

ylabel(‘\bfCurrent (A)’);

grid on;

114 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

The output obtained is shown in Fig. E2.6(a).

10
5

10
6

10
7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Plot of magnitude of current flow frequencyvs

C
u
rr

e
n
t
(A

)

Frequency (Hz)

Fig. E2.6(a) MATLAB output

(b) Phase angle
f=100000:50000:10000000;

%INITIALIZE RANGE OF FREQUENCY

vs = 120;

c=0.265e–9;

L=0.15e–3;

r=120;

i0=vs./(r+j*2*pi*f*L–j./(2*pi*f*c)); %CALCULATE OUTPUT CURRENT

phase = angle(i0)*180/pi;

figure(1);

semilogx(f,phase,‘LineWidth’,2);

%PLOT ON LOG–LINEAR SCALE

title(‘\bfPlot of phase of current flow Vs frequency’);

xlabel(‘\bfFrequency (Hz)’);

ylabel(‘\bfCurrent (A)’);

grid on;

Electrical Circuits ——— 115

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

10
5

10
6

10
7

–100

–80

–60

–40

–20

0

20

40

60

80

100
Plot of phase of current flow frequencyvs

C
u
rr

e
n
t
(A

)

Frequency (Hz)

Fig. E2.6(b) MATLAB output

(c) Both phase angle and magnitude on single plot
f=100000:50000:10000000;

%INITIALIZE RANGE OF FREQUENCY
vs=120;
c=0.265e–9;
L=0.15e–3;
r=120;
w=2*pi*f; %CALCULATE W
i0=vs./(r+j*2*pi*f*L–j./(2*pi*f*c)); %CALCULATE OUTPUT CURRENT
phase=angle(i0)*180/pi;

%PHASE ANGLE IN DEGREES
figure(1);
subplot(2,1,1);

%SUB–PLOT–1
semilogx(f,abs(i0),‘Linewidth’,2);

%MAGNITUDE
title(‘\bfPlot of amplitude of current flow Vs frequency’);
ylabel(‘\bfAmplitude (A)’);
grid on;
subplot(2,1,2); % SUB–PLOT–2

116 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

semilogx(f,phase,‘Linewidth’,2);
%PHASE

title(‘\bfPlot of phase of current flow vs frequency’);
xlabel(‘\bfFrequency (Hz)’);
ylabel(‘\bfPhase (Deg)’);
grid on;

The output is shown in Fig. E2.6(c)

10
5

10
6

10
7

0

0.5

1
Plot of amplitude of current flow frequencyvs

10
5

10
6

10
7

–100

–50

0

50

100
Plot of phase of current flow frequencyvs

A
m

p
lit

u
d

e
(A

)
P

h
a

s
e

(D
e

g
)

Frequency (Hz)

Fig. E2.6(c) MATLAB output

Example E2.7: The Table below gives the viscosity µ of an oil at different temperatures. Write a MATLAB
program to determine an equation that can be fitted to the data.

T(°C) –20 0 20 40 60 80 100 120
 10 –5

(N-S/m2) 4.2 0.4 0.092 0.034 0.016 0.0077 0.0046 0.0033

Solution:
Usually viscosity varies with absolute temperature exponentially. To have a best fit of the given points, a
curved exponential figure is suitable, whose equations can be written as:

 µ = exp(aT2 + bT + c)
Taking logarithms and simplifying

logµ = aT2 + bT + c.

Electrical Circuits ——— 117

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

here the constants can be obtained from the polyfit function polyfit(T, logµ, 2), then finally µ is obtained
from the exponential relation and ploted as a function of temperature in Kelvin.

MATLAB program for this application is shown below:

TC=–20:20:120;

%TEMPERATURE RANGE IN DEGREE CENTRIGRADE

mu=[4.2 0.4 0.092 0.034 0.016 0.0077 0.0046 0.0033]; %GIVEN VISCOSITIES

TK=TC + 273; % TEMPERATURE IN KELVIN

p=polyfit(TK,log(mu),2) % POLYNOMIAL FITTING WITH LOG(MU) AND TK, SECOND ORDER

Tplot=273+[–20:120];% DEFINING TK AS AN ARRAY

muplot=exp(p(1)*Tplot^2+p(2)*Tplot+p(3));%CORRESPONDING MU ARRAY

semilogy(TK,mu,‘o’,Tplot,muplot,‘–’)%PLOTTING ON SEMI–LOG SCALE

xlabel(‘\bfTemperature K’);

ylabel(‘\bfViscosity in N–S/meter square’);

Figure E2.7 (a) shows the MATLAB output.

250 300 350 400
10

–3

10
–2

10
–1

10
0

10
1

V
is

c
o
s
it
y

in
N

-s
/m

e
tr

e
s
q
u
a
re

Temperature (K)

Fig. E2.7 (a) MATLAB output

118 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

REFERENCES

Cogdell, J.R., Foundations of Electrical Circuits, Prentice-Hall, Englewood Cliffs, NJ, 1999.
Dorf, R.C., and Svoboda, J.A., Introduction to Electric Circuits, Wiley, New York, NY, 2006.
Fogiel, M., and Ogden, J.R., The Electric Circuits Problem Solver: A Complete Solution Guide to Any
Textbook, Research & Education Association, 1998.
Hayt, W.H., and Kemmerly, J.E., Engineering Circuit Analysis, 5th ed., McGraw-Hill, New York, NY, 1993.
Johnson, D.E., Johnson, J.R. Hilburn, J.L., and Scott, P.D., Electric Circuit Analysis, 3rd ed., Wiley, New
York, 1997.
Johnson, D.E., Basic Electric Circuit Analysis, 5th ed., Wiley, New York, 2006.
Johnson, D.E., Hilburn, J.L., Johnson, J.R., and Scott, P.D., Electric Circuit Analysis, 3rd ed., Prentice-
Hall, Englewood Cliffs, NJ, 1990.
Nahvi, M., Schaums Outline of Electrical Circuits, 4th ed., McGraw-Hill, New York, NY, 2002.
Nilsson, J.W., Electrical Circuits, 7th ed., Prentice-Hall, Englewood Cliffs, NJ, 2004.
Paul, C.R., Fundamentals of Electric Circuit Analysis, Wiley, New York, 2000.
Singh Guru, B., and Warrier, R., Electric Circuits—Analysis and Design, Oxford University Press, Oxford,
2005.
Smith, R.J., and Dorf, R.C., Circuits, Systems, and Devices, 5th ed., Wiley, New York, 1992.
Starr, A.T., Electrical Circuits and Wave Filters, Pitman Publishing, New York, 1938.

PROBLEMS

P2.1: Figure P2.1 shows an electrical circuit with resistors and voltage sources. Write a MATLAB program
to determine the current in each resistor, using the mesh current method based on Kirchhoff’s second voltage
law. Given V1 = 37 V, V2 = 19 V, V3 = 25 V, R1 = 16 Ω, R2 = 19 Ω, R3 = 11 Ω, R4 = 10 Ω, R5 = 6 Ω, R6 = 15 Ω,
R7 = 9 Ω, R8 = 14 Ω, R9 = 6 Ω and R10 = 3 Ω.

V1

V2

V3

R1

R2 R3

R4

R5 R6

R7

R8

R9 R10

Fig. P2.1

P2.2: Write a MATLAB program in a script file that computes the current through each resistor and the
power dissipated in each in a circuit that has resistors connected in parallel as shown in Fig. P2.2. Use the
script file for the circuit shown in Fig. P2.2.
Note that when several resistors are connected in a circuit in parallel, the current through each of them is given
by

Electrical Circuits ——— 119

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

s

n
n

vi
R

=

where in and Rn are the current through resistors n and its resistance, respectively, and vs is the source
voltage. The equivalent resistance, Req, is given by

eq 1 2

1 1 1 1....
nR R R R

= + + +

The source current is given by: is = vs /Req, and the power Pn, dissipated in each resistor is given by: Pn = vsin.

1
8

Ω
Vs = 48 V

3
5

Ω

2
5

Ω

4
7

Ω

6
1

Ω

1
2

Ω

Fig. P2.2

P2.3: Figure P2.3 shows an electrical circuit with a voltage source, vs with an internal resistance, rs and a
load resistance, RL. The power P dissipated in the load is given by

2

2()
s L

L s

v R
P

R r
=

+

Write a MATLAB program to plot the power P as a function of RL for 1 ≤ RL ≤ 12 Ω
given that vs = 12 V, and rs = 3 Ω.

P2.4: Figure P2.4(a) shows a resistor of R = 5 Ω and an inductor L = 1.4 H connected
in a circuit to a voltage source (RL circuit). When the voltage source applies a rectangular voltage pulse
with an amplitude of V = 12V and a duration of 0.5s as shown in Fig.P2.4 (b), the current i(t) in the circuit
as a function of time is given by

() /() (1 e)Rt LVi t
R

−= − for 0 ≤ t ≤ 0.5s

() / (0.5) /() e (e /1)Rt L R LVi t
R

−= for 0.5 ≤ t

Write a MATLAB program to plot the current as a function of time for 0 ≤ t ≤ 3s.

R

LV(t)

i (t)

0 0.5 t(s)

V(V)

12

(a) (b)

Fig. P2.4

vs rs

RL

Battery

Fig. P2.3

120 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

P2.5: The ratio of the magnitude of the voltage in a low-pass RC filter shown in Fig. P2.5 is given by

0

2

1
1 ()i

V
RV

V RC
= =

+ ω
where ω is the frequency of the input signal.
Write a user-defined MATLAB function that calculates the magnitude ratio.
Write a program in script file that uses the lowpass function to generate a plot
of RV as a function of ω for 10–2 ≤ ω ≤ 106 rad/s. Run the script file with
R = 1300 Ω, and C = 9 µF.

P2.6: Figure P2.6 shows an RLC with an alternating voltage source. The source voltage vs is given by
vs = vmsin(ωdt) where ωd = 2π fd in which fd is the driving frequency. The amplitude of the current, I, is
given by

2 2(1/())
m

d d

v
I

R L C
=

+ ω − ω

where R and C are the resistance of the resistor and capacitance of the capacitor, respectively. For the
circuit in the figure C = 16 × 10–6 F, L = 250 × 10–3 H, vm = 25V. Write
a MATLAB program to make

(a) a 3-D plot of I (z axis) as a function of ωd (x axis) for
60 ≤ f ≤ 110 Hz, and a function of R (y axis) for
10 ≤ R ≤ 40 Ω

(b) a plot that is a projection on the x-z plane. Estimate from this
plot the natural frequency of the circuit. Compare the estimate
with the calculated value of 1/(2 ())LCπ .

P2.7: Figure P2.7 shows an RC circuit includes a voltage source vs, a resistor R = 50 Ω and a capacitor
C = 0.001 F. The differential equation that describes the response of the circuit
given by

1 1c
c s

dv
v v

dt RC RC
+ =

where vc is the voltage of the capacitor. Initially, vs = 0, and then at t = 0 the
voltage source is changed. Find the response of the circuit for the following
three cases:

(a) vs = 12 V for t ≥ 0.
(b) vs = 12 sin (2.60πt) V for t ≥ 0.
(c) vs = 12 V for 0 ≤ t ≤ 0.01s, and then vs = 0 for t ≥ 0.01s.

Solve each case for 0 ≤ t ≤ 0.2 s. For each case plot vs and vc vs. time using a MATLAB program.

❍ ❍ ❍

Fig. P2.7

Fig. P2.5

Fig. P2.6

R

L

vs = v sin(t)m d" C

R

Cvs vc (t)

Vi C

R

Vo

3.1 INTRODUCTION

In this chapter, we present a brief introduction and overview of control systems. Some of the terms commonly
used to describe the operation, analysis and design of control systems are presented.

3.2 CONTROL SYSTEMS

Control systems in an interdisciplinary field covering many areas of engineering and sciences. Control
systems exist in many systems of engineering, sciences and in human body. Control means to regulate,
direct, command or govern. A system is a collection, set, or arrangement of elements (subsystems). A control
system is an interconnection of components forming a system configuration that will provide a desired
system response. Hence, a control system is an arrangement of physical components connected or related
in such a manner as to command, regulate, direct or govern itself or another system.
In order to identify, delineate or define a control system, we introduce two terms: input and output here.
The input is the stimulus, excitation or command applied to a control system, and the output is the actual
response resulting from a control system. The output may or may not be equal to the specified response
implied by the input. Inputs could be physical variables or abstract ones such as reference, set point or
desired values for the output of the control system. Control systems can have more than one input or
output. The input and the output represent the desired response and the actual response respectively. A
control system provides an output or response for a given input or stimulus, as shown in Fig. 3.1.

Control system
Input: stimulus

Desired response

Output: response

Actual response

Fig. 3.1 Description of a control system

The output may not be equal to the specified response implied by the input. If the output and input are
given, it is possible to identify or define the nature of the system’s components. Broadly speaking, there
are three basic types of control systems:

333C
H

A
P

T
E

R

Control Systems

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

122 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

(a) Man-made control systems
(b) Natural, including biological-control systems
(c) Control systems whose components are both man-made and natural.

An electric switch is a man-made control system controlling the electricity-flow. The simple act of pointing
at an object with a finger requires a biological control system consisting chiefly of eyes, the arm, hand and
finger and the brain of a person, where the input is precise-direction of the object with respect to some
reference and the output is the actual pointed direction with respect to the same reference. The control
system consisting of a person driving an automobile has components, which are clearly both man-made
and biological. The driver wants to keep the automobile in the appropriate lane of the roadway. The driver
accomplishes this by constantly watching the direction of the automobile with respect to the direction of
road. Figure 3.2 is an alternate way of showing the basic entities in a general control system.

Control system
Objectives Results

Fig. 3.2 Components of a control system

In the steering control of an automobile for example, the direction of two front wheels can be regarded as
the result or controlled output variable and the direction of the steering wheel as the actuating signal or
objective. The control-system in this case is composed of the steering mechanism and the dynamics of the
entire automobile. As another example, consider the idle-speed control of an automobile engine, where it is
necessary to maintain the engine idle speed at a relatively low-value (for fuel economy) regardless of the
applied engine loads (like airconditioning, power steering, etc.). Without the idle-speed control, any sudden
engine-load application would cause a drop in engine speed that might cause the engine to stall. In this
case, throttle angle and load-torque are the inputs (objectives) and the engine-speed is the output. The
engine is the controlled process of the system. A few more applications of control-systems can be found
in the print wheel control of an electronic type writer, the thermostatically controlled heater or furnace which
automatically regulates the temperature of a room or enclosure, and the sun tracking control of solar collector
dish.
Control system applications are found in robotics, space-vehicle systems, aircraft autopilots and controls,
ship and marine control systems, intercontinental missile guidance systems, automatic control systems for
hydrofoils, surface-effect ships, and high-speed rail systems including the magnetic levitation systems.

3.3 EXAMPLES OF CONTROL SYSTEMS

Control systems find numerous and widespread applications from everyday to extraordinary in science,
industry and home. Here are a few examples:

(a) Home heating and air-conditioning systems controlled by a thermostat
(b) The cruise (speed) control of an automobile
(c) Manual control:

(i) Opening or closing of a window for regulating air temperature or air quality
(ii) Activation of a light switch to regulate the illumination in a room

(iii) Human controlling the speed of an automobile by regulating the gas supply to the engine

Control Systems ——— 123

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

(d) Automatic traffic control (signal) system at roadway intersections
(e) Control system which automatically turns on a room lamp at dusk, and turns it off in daylight
(f) Automatic hot water heater
(g) Environmental test-chamber temperature control system
(h) An automatic positioning system for a missile launcher
(i) An automatic speed control for a field-controlled DC motor
(j) The attitude control system of a typical space vehicle
(k) Automatic position-control system of a high speed automated train system
(l) Human heart using a pacemaker
(m) An elevator-position control system used in high-rise multilevel buildings.

3.4 CONTROL SYSTEM CONFIGURATIONS

There are two control system configurations: open-loop control system and closed-loop control system.
(a) Block: A block is a set of elements that can be grouped together, with overall characteristics described

by an input/output relationship as shown in Fig. 3.3. A block diagram is a simplified pictorial
representation of the cause and effect relationship between the input(s) and output(s) of a physical
system.

Physical componentsInputs Outputs

Block

within the block

Fig. 3.3 Block diagram

The simplest form of the block diagram is the single block as shown in Fig. 3.3. The input and output
characteristics of entire groups of elements within the block can be described by an appropriate mathematical
expressions as shown in Fig. 3.4.

Inputs OutputsMathematical
expression

Fig. 3.4 Block representation

(b) Transfer function: The transfer function of a system (or a block) is defined as the ratio of output to
input as shown in Fig. 3.5.

Inputs Outputs
Transfer function

Fig. 3.5 Transfer function

124 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

Transfer function =
Output

Input
Transfer functions are generally used to represent a mathematical model of each block in the block diagram
representation. All the signals are transfer functions on the block diagrams. For instance, the time function
reference input is r(t), and its transfer function is R(s) where t is time and s is the Laplace transform variable
or complex frequency.
(c) Open-loop control system: A general block diagram of open-loop system is shown in Fig. 3.6.

Input

transducer
Gc (s) Gp(s)Reference

Input

R(s)

Output

Controlled

variable

Ea (s) U(s) +

Controller Plant or
Process

Disturbance
input 1
D (s)1

+

Disturbance
input 2
D (s)2

Fig. 3.6 General block diagram of open-loop control system

(d) Closed-loop (feedback control) System: The general architecture of a closed-loop control system is
shown in Fig. 3.7.

Input
transducer

Gc(s) Gp(s)
Output

Controlled
variable

C(s)

Ea(s)
+

Controller Plant or
process

H(s)

+
+

+
+

– Summing
junction

Forward
path

Feedback

path

Output
transducer or

sensor

Summing
junction

Disturbance
input 1
D (s)1

Disturbance
input 2
D (s)2

Reference
Input

R(s)

Fig. 3.7 General block diagram of closed-loop control system

3.5 CONTROL SYSTEM TERMINOLOGY

The variables in Figs. 3.6 and 3.7 are defined as follows:
C(s) controlled output, transfer function of c(t)
D(s) disturbance input, transfer function of d(t)
Ea(s) actuating error, transfer function of ea(t)
Ga(s) transfer function of the actuator

Control Systems ——— 125

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

Gc (s) transfer function of the controller
Gp(s) transfer function of the plant or process
H (s) transfer function of the sensor or output transducer = Gs(s)
R (s) reference input, transfer function of r(t).

Summing Point: As shown in Fig. 3.8, the block is a small circle called a summing point with the appropriate
plus or minus sign associated with the arrows entering the circle. The output is the algebraic sum of the
inputs. There is no limit on the number of inputs entering a summing point.

R – B + AR

B

A

+

–

+
R

B

+

+

R

B

+

–

R + B R – B

(a) Two inputs (b) Two inputs (c) Three inputs

Fig. 3.8 Summing point

Take-off Point: A take-off point allows the same signal or variable as input to more than one block or
summing point, thus permitting the signal to proceed unaltered along several different paths to several
destinations as shown in Fig. 3.9.

A

A

A

A
Take-off point

A

A

A

A

Take-off point

Fig. 3.9 Take-off point

Input Transducer: Input transducer converts the form of input to that used by the controller.
Controller: The controller drives a process or plant.
Plant, Process or Controlled System Gp(s): The plant, process or controlled system is the system, subsystem,
process or object controlled by the feedback control system. For example, the plant can be a furnace system
where the output variable is temperature.
Controlled Output C(s): The controlled output C(s) is the output variable of the plant under the control of
the control system.
Forward Path: The forward path is the transmission path from the summing point to the controlled output.
Feedback Path: The feedback path is the transmission path from the controlled output back to the summing
point.
Feed Forward (Control) Elements: The feed forward (control) elements are the components of the forward
path that generate the control signal applied to the plant or process. The feed forward (control) elements
include controller(s), compensator(s) or equalization elements and amplifiers.
Feedback Elements: The feedback elements establish the fundamental relationship between the controlled
output C(s) and the primary feedback signal B(s). They include sensors of the controlled output,
compensators and controller elements.

126 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

Reference Input R(s): The reference input is an external signal applied to the control system generally at
the first summing input, so as to command a specified action of the process or plant. It typically represents
ideal or desired process or plant output response.
Primary Feedback Signal: The primary feedback signal is a function of the controlled output summed
algebraically with the reference input to establish the actuating or error signal. An open-loop system has
no primary feedback signal.
Actuating or Error Signal: The actuating or error signal is the reference input signal plus or minus the
primary feedback signal.
Positive Feedback: Position feedback implies that the summing point is an adder.
Negative Feedback: Negative feedback implies that the summing point is a subtractor.
Transducer: A transducer is a device that converts one energy form into another.
Disturbance or Noise Input: A disturbance or noise input is an undesired stimulus or input signal affecting
the value of the controlled output.
Time Response: The time response of a system subsystem, or element is the output as a function of time,
generally following the application of a prescribed input under specified operating conditions.

3.6 CONTROL SYSTEM CLASSES

Control systems are sometimes divided into two classes: (a) Servomechanisms and (b) Regulators.
(a) Servomechanisms: A servomechanism is a power-amplifying feedback control system in which the

controlled variable is a mechanical position or a time derivative of position such as velocity or
acceleration. An automatic aircraft landing system is an example of servomechanism. The aircraft follows
a ramp to the desired touchdown point. Another example is the control system of an industrial robot
in which the robot arm is forced to follow some desired path in space.

(b) Regulators: A regulator or regulating system is a feedback control system in which the reference input
or command is constant for long periods of time, generally for the entire time interval during which the
system is operational. Such an input is known as set point. An example of a regulator control system
is the human biological system that maintains the body temperature at approximately 98.6ºF in an
environment that usually has a different temperature.

3.6.1 Supplementary Terminology
(a) Linear System: A linear system is a system where input/output relationships may be represented by

a linear differential equation. The plant is linear if it can be accurately described using a set of linear
differential equations. This attribute indicates that system parameters do not vary as a function of
signal level.
Similarly, the plant is a lumped-parameter (rather than distributed parameter) system if it can be described
using ordinary (rather than partial) differential equations. This condition is generally accomplished if
the physical size of the system is very small in comparison to the wavelength of the highest frequency
of interest.

(b) Time-Variant System: A time-variant is a system if the parameters vary as a function of time. Thus, a
time-variant system is a system described by a differential equation with variable coefficients. A linear
time variant system is described by linear differential equations with variable coefficients. A rocket-
burning fuel system is an example of time variant system since the rocket mass varies during the flight
as the fuel is burned.

Control Systems ——— 127

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

(c) Time-Invariant System: A time-invariant system is a system described by a differential equation with
constant coefficients. Thus, the plant is time invariant if the parameters do not change as a function
of time. A linear time invariant system is described by linear differential equations with constant
coefficients. A single degree of freedom spring mass viscous damper system is an example of a time-
invariant system provided the characteristics of all the three components do not vary with time.

(d) Multivariable Feedback System: The block diagram representing a multivariable feedback system where
the interrelationships of many controlled variables are considered is shown in Fig. 3.10.

Controller Process

Measurement

Desired
output response

Fig. 3.10 Multivariable control system

3.7 FEEDBACK SYSTEMS

Feedback is the property of a closed-loop system, which allows the output to be compared with the input
to the system such that the appropriate control action may be formed as some function of the input and
output.
For more accurate and more adaptive control, a link or feedback must be provided from output to the input
of an open-loop control system. So, the controlled signal should be fed back and compared with the reference
input, and an actuating signal proportional to the difference of input and output must be sent through the
system to correct the error. In general, feedback is said to exist in a system when a closed sequence of
cause and effect relations exists between system variables. A closed-loop idle-speed control system is shown
in Fig. 3.11. The reference input Nr sets the desired idle-speed. The engine idle speed N should agree with
the reference value Nr and any difference such as the load-torque T is sensed by the speed-transducer and
the error detector. The controller will operate on the difference and provide a signal to adjust the throttle
angle to correct the error.

Control Engine

Speed

Nr

Error

N+ +

T

N

Fig. 3.11 Closed-loop idle-speed control system

128 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

3.8 ANALYSIS OF FEEDBACK

The most important features, the presence of feedback impacts to a system are the following:
(a) Increased accuracy: its ability to reproduce the input accurately
(b) Reduced sensitivity of the ratio of output to input for variations in system characteristics and

other parameters
(c) Reduced effects of non-linearities and distortion
(d) Increased bandwidth (bandwidth of a system that ranges frequencies (input) over which the

system will respond satisfactorily)
(e) Tendency towards oscillation or instability
(f) Reduced effects of external disturbances or noise.

A system is said to be unstable, if its output is out of control. Feedback control systems may be classified
in a number of ways, depending upon the purpose of classification. For instance, according to the method
of analysis and design, control systems are classified as linear or non-linear, time-varying or time-variant
systems. According to the types of signals used in the system, they may be: continuous data and discrete-
data system or modulated and unmodulated systems.
Consider the simple feedback configuration shown in Fig. 3.12, where R is the input signal, C is the output
signal, E is error and B is feedback signal.
The parameters G and H are constant-gains. By simple algebraic manipulations, it can be shown that the
input-output relation of the system is given by

1
C

M
R

G
GH

= =
+

The general effect of feedback is that it may increase or decrease the gain G. In practical control systems,
G and H are functions of frequency, so the magnitude of (1 + GH) is greater than 1 in one frequency range,
but less than 1 in another. Thus, feedback affects the gain G of a non-feedback system by a factor (1 + GH).

G

H

+

–
C

+

–
R

+

+

–
B

E

Fig. 3.12 Feedback system

If GH = –1, the output of the system is infinite for any finite input, such a state is called unstable system-
state. Alternatively, feedback stabilizes an unstable system and the sensitivity of a gain of the overall system
M to the variation in G is defined as:

Control Systems ——— 129

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

/ Percentage change in

/ Percentage change in
M
GS

M M M

G G G
= =

∂

∂
where ∂M denotes incremental change in M due to incremental change in G (∂G). One can write sensitivity-
function as:

/ 1
/ 1 +

M
GS

M M
G G GH

= =
∂
∂

By increasing GH, the magnitude of the sensitivity-function is made arbitrarily small.

3.9 CONTROL SYSTEM ANALYSIS AND DESIGN OBJECTIVES

Control systems engineering consists of analysis and design of control systems configurations. Control
systems are dynamic, in that they respond to an input by first undergoing a transient response before
attaining a steady-state response which corresponds to the input. There are three main objectives of control
systems analysis and design. They are:

1. Producing the response to a transient disturbance which is acceptable
2. Minimizing the steady-state errors: Here, the concern is about the accuracy of the steady-state

response
3. Achieving stability: Control systems must be designed to be stable. Their natural response should

decay to a zero values as time approaches infinity, or oscillate.
Analysis is investigation of the properties and performance of an existing control system. Design is the
selection and arrangement of the control system components to perform a prescribed task. The design of
control systems is accomplished in two ways: design by analysis in which the characteristics of an existing
or standard system configuration are modified, and design by synthesis in which the form of the control
system is obtained directly from its specifications.

3.10 MATLAB APPLICATION

The application of MATLAB to the analysis and design of control systems, engineering mechanics (statics
and dynamics), mechanical vibration analysis, electrical circuits and numerical methods is presented in this
chapter with a number of illustrative examples. The MATLAB computational approach to the transient
response analysis, steps response, impulse response, ramp response and response to the simple inputs are
presented. Plotting root loci, Bode diagrams, polar plots, Nyquist plot, Nichols plot and state space method
are obtained using MATLAB. Extensive worked examples are included with a significant number of exercise
problems to guide the student to understand and as an aid for learning about the analysis a nd design of
control systems, engineering mechanics, vibration analysis of mechanical systems, electrical circuits and
numerical methods using MATLAB.

3.10.1 Transient Response Analysis
When the numerator and denominator of a closed-loop transfer function are known, the commands step
(num, den), step (num, den, t) in MATLAB can be used to generate plots of unit-step responses. Here, t is
the user specified time.

130 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

3.10.2 Response to Initial Condition
Case 1: State Space Approach
Consider a system defined in state space given by

 x = Ax ...(3.1)
x (0) = xo

Assuming that there is no external input acting on the system, the response x(t) knowing the initial condition
x (0) and that x is an n-vector, is obtained as follows:
Taking Laplace transform of both sides of Eq. (3.1), we obtain
 s x (s) – x(0) = AX(s) ...(3.2)
Equation (3.2) can be rearranged as
 s x(s) = AX(s) + x(0) ...(3.3)
Taking inverse Laplace transform of Eq. (3.3), we get
 x = Ax + x(0) ä(t) ...(3.4)
Defining z = x, Eq. (3.4) can be written as

 z = A z + x(0) ä(t) ...(3.5)
Integrating Eq. (3.5), we obtain
 z = A z + x(0) 1(t) = Az + B u ...(3.6)
where B = x(0) and u = 1(t)
Noting that z = x and x(t) = z (t), we have
 x = z = A z + B u ...(3.7)
The response to initial condition is obtained by solving Eqs. (3.6) and (3.7).
The corresponding MATLAB command used to obtain the response curves are given as follows:
 [x, z, t] = step (A, B, A, B);

 x1 = [1 0 0 …0] * x’;

 x2 = [1 0 0 …0] * x’;

 . .

 . .

 . .

 xn = [0 0 0 …1] * x’;

 plot (t, x1, x2,…, t, xn

Case 2: State Space Approach
Consider the system defined in state space is by

x = Ax x(0) = x0 ...(3.8)
y = Cx ...(3.9)

where x is an n vector and y is an m vector.
By defining z = x ...(3.10)

Control Systems ——— 131

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

we obtain
z = Az + x(0) 1(t) = Az + B u ...(3.11)

where
B = x(0) and u = 1(t) ...(3.12)

Since x = z , Eq. (3.9) becomes
y = C z ...(3.13)

From Eqs. (3.11) and (3.13), we obtain
y = C (Az + Bu) = CAz + CBu ...(3.14)

The response of the system is obtained from the Eqs. (3.11) and (3.14) to a given initial condition
The following MATLAB commands may be used to obtain the response curves:

[y, z, t] = step (A, B, C*A, C*B);

y1 = [1 0 0 …0] * y’ ;

y2 = [0 1 0 …0] * y’ ; ...(3.15)
 . .

 . .

ym = [0 0 0 …1] * y’ ;

plot (t, y1, t, y2,........, t, ym).

3.11 SECOND-ORDER SYSTEMS

The standard form of a second-order system is defined by

G(s) =
2

2 22
n

n ns s
ω

+ ξω + ω
...(3.16)

where
ξ is the damping ratio of the system and ωn is the undamped natural frequency of the system.

The dynamic behaviour of the second order system is then described in terms of two parameters ξ and ùn.
If 0 < ξ < 1, the closed loop poles are complex conjugates and lie in the left-half plane. The system is
called underdamped, and the transient response is oscillatory. If ξ = 0, the transient response does not die
out. If ξ = 1, the system is called critically damped. Overdamped system corresponds to ξ = 1.

Given ωn and ξ , then the MATLAB command
printsys (num, den)

or
printsys(num, den, s)

prints the num/den as a ratio of polynomials in s.
The unit-step response of the transfer-function system using MATLAB is obtained with the use of step-
response commands with left-hand arguments.

c = step (num, den, t)
or

[y, x, t] = step (num, den, t).

132 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

3.12 ROOT LOCUS PLOTS

Consider the system equation

1 2

1 2

...()() ()1 0...()() ()
n

n

K s z s z s z
s p s p s p

+ + ++ =
+ + + ...(3.17)

Equation (3.17) can be written as

1 0numK
den

+ = ...(3.18)

where num is the numerator of the polynomial and den is the denominator polynomial, and K is the gain
(K > 0). The vector K contains all the gain values for which the closed loop poles are to be computed.
The root loci is plotted by using the MATLAB command
 rlocus (num, den)
The gain vector K is supplied by the user.
The matrix r and gain vector K are obtained by the following MATLAB commands:

[r, k] = rlocus (num, den)
[r, k] = rlocus (num, den, k)
[r, k] = rlocus (A, B, C, D)
[r, k] = rlocus (A, B, C, D, K) ...(3.19)
[r, k] = rlocus (sys)

In Eqs. (3.19), r has length K rows and length [den –1] columns containing the complex root locations.
For plotting the root loci, the MATLAB command plot (r, ‘ ’) is used.
The following MATLAB command are used for plotting the root loci with mark ‘0’ or ‘x’:

r = rlocus (num, den)

plot (r, ‘0’) or plot (r, ‘x’)

MATLAB provides its own set of gain values used to compute a root locus plot. It also uses the automatic
axis scaling features of the plot command.

3.13 BODE DIAGRAMS

Bode diagrams are rectangular plots. Bode diagram are also known as logarithmic plot and consist of two
graphs: the first one is a plot of the logarithmic of the magnitude of a sinusoidal transfer function, the
second one is a plot of the phase angle. Both these graphs are plotted against the frequency on a logarithmic
scale.
The MATLAB command “bode” obtains the magnitudes and phase angles of the frequency response of
continuous time, linear, time invariant systems.
The MATLAB bode commands commonly used are:

Bode(num, den)
bode(num, den, w)
bode(A, B, C, D) ...(3.20)
bode(A, B, C, D, w)
bode(sys)

Control Systems ——— 133

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

where w is the frequency vector.
MATLAB bode commands with left hand arguments commonly used are:

[mag, phase, w] = bode (num, den)

[mag, phase, w] = bode (num, den, w)

[mag, phase, w] = bode (A, B, C, D)

[mag, phase, w] = bode (A, B, C, D, w) ...(3.21)
[mag, phase, w] = bode (A, B, C, D, iu, w)

[mag, phase, w] = bode (sys)

The MATLAB commands given in Eq. (3.21) returns the frequency response of the system in matrices mag,
phase and w. The plot is not drawn on the screen. The matrices mag, phase provide the magnitudes and
phase angles of frequency response of the system, computed at the specified frequency points.
The magnitude may be converted into decibels using the MATLAB statement

magdB = 20 * log 10 (mag) ...(3.22)
In MATLAB, the following command

logspace (d1, d2) ...(3.23)
or

logspace(d1, d2, n). logspace(d1, d2) ...(3.24)
are used to specify the frequency range that will generate a vector of 50 points logarithmically equally

speed between decades 10d1 and 10d2.
The MATLAB command

w = logspace (–1, 2) ...(3.25)
may be used to generate 50 points between 0.1 and 100 rad/sec.
Similarly, the MATLAB command

logspace (d1, d2, n) ...(3.26)
generates n points logarthimatically equally spaced between 10d1 and 10d2 where by the n points include
both the endpoints.

3.14 NYQUIST PLOTS

Nyquist plots are also used in the frequency-response representation of linear, time invariant, continuous
time feedback control systems. Nyquist plots are polar plots.
The MATLAB command

nyquist (num, den) ...(3.27)
Draw the Nyquist plot of the transfer function

()()
()

=
num sG s
den s ...(3.28)

where num and den contain the polynomial coefficients in descending powers of s. The other MATLAB
command uses for drawing Nyquist plots are:

134 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

nyquist (num, den, w)
nyquist (A, B, C, D)
nyquist (A, B, C, D, w)
nyquist (A, B, C, D, iu, w) ...(3.29)
nyquist (sys)

where w is the frequency vector.
The MATLAB command involving the user-specified vector w in Eq. (3.29) computes the frequency response
at the specified frequency points.
The following MATLAB commands

[re, im,w] = nyquist (num, den)

[re, im,w] = nyquist (num, den, w)

[re, im,w] = nyquist (A, B, C, D)

[re, im,w] = nyquist (A, B, C, D, w) ...(3.30)
[re, im,w] = nyquist (A, B, C, D, iu, w)

[re, im,w] = nyquist (sys)

are used to obtain the frequency response of the system in the matrices re, im and w. The plot is not drawn
on the screen. The matrices re and im contain the real and imaginary parts of the frequency response of the
system, computed at the frequency points specificated in the vector w.

3.15 NICHOLS CHART

The chart consisting of the M and N loci in the log magnitude versus phase diagram is called the Nichols
chart. The G (jw) locus drawn on the Nichols chart gives both the gain characteristics and phase
characteristics of the closed loop transfer function at the same time. The Nichols chart contains curves of
constant closed loop magnitude and phase angle. The Nichols chart is symmetric about the 180° axis. The
M loci are centered about the critical point (0 dB, –180). The Nichols chart is useful in determining the
frequency response of the closed loop from that of the open loop. The Nichols chart is produced by using
the MATLAB command nichols(num, den). The command n grid creates the dotted lines that allow reading
closed-loop gain and phase from the Nichols chart. In order to customize the axes of the Nichols chart, the
MATLAB command axis is used.

3.16 GAIN MARGIN, PHASE MARGIN, PHASE CROSSOVER
 FREQUENCY AND GAIN CROSSOVER FREQUENCY

The MATLAB command
[Gm, pm, wcp, wcg] = margin (sys) ...(3.31)

can be used to obtain the gain margin, phase margin, phase crossover frequency and gain crossover
frequency.
In Equation (3.31), Gm is the gain margin, pm is the phase margin, wcp is the phase crossover frequency,
and wcg is the gain crossover frequency.

Control Systems ——— 135

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

The following MATLAB command is commonly used for obtaining the resonant peak and resonant
frequency:

[mag, phase, w] = bode (num, den, w)

or
[mag, phase, w] = bode (sys, w)

[Mp, k] = max (mag) ...(3.32)
resonant peak = 20 * log 10 (Mp)

resonant frequency = w (k)

The following lines are used in MATLAB program to obtain bandwidth:
n = 1

while 20 * log 10 (mag (n)) > –3

n = n + 1

end ...(3.33)
bandwidth = w (n)

3.17 TRANSFORMATION OF SYSTEM MODELS

In this section, we consider two cases of transformation of system models:
1. Transformation of system model from transfer function to state space
2. Transformation of system model from state space to transfer function

3.17.1 Transformation of System Model from Transfer Function to State Space
The closed-loops transfer function can be written as

()
()

Y s numerator of polynomial in s num
U s denominator of polynomial in s den

= = ...(3.34)

The state space representation is obtained by the MATLAB command
[A, B, C, D] = tf 2ss (num, den) ...(3.35)

3.17.2 Transformation of System Model from State Space to Transfer Function
The transfer function from state space equations is obtained by using
the MATLAB command:

[num, den] = ss2tf (A, B, C, D, iu) (3.36)
where iu corresponds to the system with more than one input. iu is either 1, 2 or 3, where 1 implies input
u1, 2 implies input u2 and 3 implies input u3 .

For system with only one input, the MATLAB command
[num, den] = ss2tf (A, B, C, D) ...(3.37)

or
[num, den] = ss2tf (A, B, C, D, 1) ...(3.38)

may be used

136 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

3.18 BODE DIAGRAMS OF SYSTEMS DEFINED IN STATE SPACE

Let the control system defined in state space be
x = Ax + Bu
y = Cx + Du ...(3.39)

where
A = state matrix (nxn matrix)
B = control matrix (nxr matrix)
C = output matrix (mxn matrix)
D = output matrix (mxn matrix)
u = control vector (r – vector)
x = state vector (n – vector)
y = output vector (m – vector)

The MATLAB command bode[A, B, C, D] may be used to obtain the Bode diagram of this system. In fact,
the command bode[A, B, C, D] gives a series of Bode plots, one for each input of the system, with the
frequency range automatically determined.
If we use the scalar iu as an index into the inputs of the control system that specifies which input is to be
used for the Bode plot, then the MATLAB command Bode[A, B, C, D iu] produces the Bode plots from the
input iu to all the outputs (y1, y2,, ym) of the system with the frequency range automatically determined.

If the system has three inputs, then u =
1

2

3

u
u
u

 
 
 
  

For a system with only one input u, then the MATLAB command
Bode[A, B, C, D] ...(3.40)

or
Bode [A, B, C, D, 1] can be used. ...(3.41)

3.19 NYQUIST PLOTS OF A SYSTEM DEFINED IN STATE SPACE

Consider the system defined in state space given by Equation (3.39). Nyquist plots of the system defined
in Eq. (3.39) may be obtained by using the MATLAB command

nyquist (A, B, C, D) ...(3.42)

The MATLAB command given by Eq. (3.42) produces a series of Nyquist plots one corresponding to each
input and output combination of the system, with the frequency range automatically determined.
If we used the scalar iu as an index to the inputs of the control system that specifies which input is to be
used for the Nyquist plot, then the MATLAB command nyquist (A,B,C,D,iu,w) produces Nyquist plots
from the input to all the outputs (y1, y2,, ym) of the system with the frequency range automatically
determined.

Control Systems ——— 137

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

The MATLAB command
nyquist (A, B, C, D, iu, w) ...(3.43)

considers the user-supplied frequency vector w. The vector w specifies the frequency at which the frequency
response should be determined.

3.20 TRANSIENT -RESPONSE ANALYSIS IN STATE SPACE

In this section, we present the transient-response analysis of systems in state space using MATLAB.
Specifically, we present the step response, impulse, ramp response and responses to other forms of simple
inputs.

3.20.1 Unit Step Response
For a control system defined in a state space form as in Eq. (3.39), the MATLAB command

step (A, B, C, D) ...(3.44)
will generate plots of unit step responses, with the time vector automatically determined provided t is not
explicitly provided in the step commands.
The MATLAB command step (sys) may also be used to obtain the unit-step response of a system.
The command

step (sys) ...(3.45)
can be used where the system is defined by

sys = tf (num, den) ...(3.46)
or

sys = ss (A, B, C, D) ...(3.47)
The following MATLAB step commands with left hand arguments are used then no plot is shown on the
screen:

[y, x, t] = step [num, den, t]

[y, x, t] = step (A, B, C, D, iu) ...(3.48)
[y, x, t] = step (A, B, C, D, iu, t)

Hence, in order to obtain the response curves, plot commands should be used. The matrices x and y contain
the state response of the system and the output respectively, computed at the time points t. In Eq. (3.48),
iu is a scalar index of the inputs of the system, which specifies the input to be used for the response, and
t is the user specified time. The step command in Eq. (3.48) can be used to obtain a series of step response
plots, one for each input and output combination of

x = Ax + Bu
y = Cx + Du ...(3.49)

when the system involves multiple inputs and multiple outputs.

3.20.2 Impulse Response
The following MATLAB commands may be used to obtain the unit impulse response of a control system:

impulse (num, den) ...(3.50)
impulse(A, B, C, D) ...(3.51)

138 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

[y, x, t] = impulse (num, den) ...(3.52)
[y, x, t] = impulse (num, den, t) ...(3.53)
[y, x, t] = impulse (A, B, C, D) ...(3.54)
[y, x, t] = impulse (A, B, C, D, iu) ...(3.55)
[y, x, t] = impulse (A, B, C, D, iu, t) ...(3.56)

The command in Eq. (3.50) impulse (num, den) shows the plots of the unit impulse response on the monitor
(screen). The command in Eq. (3.51), impulse (A, B, C, D) produces a series of unit impulse-response plots
one for each input and output combination of the system defined in Eq. (3.39) with the time vector
automatically obtained. The vector t in Eqs. (3.53) and (3.56) is the user supplied time vector, which specifies
the times at which the impulse response is to be obtained. The scalar iu in Eqs. (3.55) and (3.56) is an index
into the inputs of the system and specifies which input is to be used for the impulse response. The matrices
x and y in Eqs. (3.52) to (3.56) contain the state responses of the system and the output respectively, evaluated
at the time points t.

3.20.3 Unit Ramp Response
Consider the system described in state space as

x = Ax + Bu
y = Cx + Du ...(3.57)

where u is the unit ramp function.
When all the initial conditions are zeros, the unit ramp response is the integral of the unit step response.
Therefore, the unit ramp response is given by

0

t

z ydt= ∫ ...(3.58)

or
z = y = x1 ...(3.59)

Defining
z = x3 ...(3.60)

Equation (3.59) can be written as
x 3 = x1 ...(3.61)

Combining Eqs. (3.57) and (3.61), we can write
x = AAx + BBu
 z = CCx + DDu ...(3.62)

The MATLAB command
[z, x, t] = step (AA, BB, CC, DD) ...(3.63)

can be used to obtain the unit-ramp response curve z (t).

3.20.4 Response to Arbitrary Input
The response to an arbitrary input can be obtained by using the following MATLAB commands:

lsim (num, den, t) ...(3.64)
lsim (A, B, C, D, u, t) ...(3.65)

Control Systems ——— 139

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

y = lsim (num, den, r, t) ...(3.66)
y = lsim (A, B, C, D, u, t) ...(3.67)

The MATLAB commands in Eqs. (3.64) to (3.67) will generate the response to input time function r or u

3.21 RESPONSE TO INITIAL CONDITION IN STATE SPACE

Consider the system defined in state space by
x = Ax + Bu, x (0) = x0 ...(3.68)
y = Cx + Du ...(3.69)

The MATLAB command
initial (A, B, C, D, [initial condition], t) ...(3.70)
may be used to provide the response to the initial condition.

3.22 EXAMPLE PROBLEMS AND SOLUTIONS

Example E3.1: Reduce the system shown in Fig. E3.1 to a single transfer function, T(s) = C(s)/R(s) using
MATLAB. The transfer functions are given as

G1(s) =
1

(7)s +

G2(s) = 2

1
(6 5)s s+ +

G3(s) =
1

(8)s +

G4(s) =
1
s

G5(s) =
7

(3)s +

G6(s) = 2

1
(7 5)s s+ +

G7(s) =
5

(5)s +

G8(s) =
1

(9)s +

140 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

G1(s) G3(s)

G8(s)

G4(s)

G6(s)

G7(s)

G5(s)

G2(s)
C(s)

+

+

+
+

+

+

+
R(s)

Fig. E3.1

The transfer functions are given as:
G1 (s) = 1/(s + 7)
G2 (s) = 1/(s2 + 6s + 5)
G3 (s) = 1/(s + 8)
G4 (s) = 1/s
G5 (s) = 7/(s + 3)
G6 (s) = 1/(s2 + 7s + 5)
G7 (s) = 5/(s + 5)
G8 (s) = 1/(s + 9)

Solution:
% MATLAB Program
G1 = tf ([0 0 1], [0 1 7]);

G2 = tf ([0 0 1], [1 6 5]);

G3 = tf ([0 0 1], [0 1 8]);

G4 = tf ([0 0 1], [0 1 0]);

G5 = tf ([0 0 7], [0 1 3]);

G6 = tf ([0 0 1], [1 7 5]);

G7 = tf ([0 0 5], [0 1 5]);

G8 = tf ([0 0 1], [0 1 9]);

G9 = tf ([0 0 1], [0 0 1]);

T1 = append (G1, G2, G3, G4, G5, G6, G7, G8, G9);

Q = [1 –2 –5 9]

2 1 8 0

3 1 8 0

4 1 8 0

5 3 4 –6

6 7 0 0

7 3 4 –6

8 7 0 0];

Control Systems ——— 141

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

Inputs = 9;

Outputs = 7;

Ts = connect (T1, Q, Inputs, Outputs);

T = Tf (Ts) computer response

Transfer function:

10 s^7 + 290 s^6 + 3350 s^5 + 1.98e004 s^4 + 6.369e004 s^3 + 1.089e005 s^2
+ 8.895e004 s + 2.7e004 s^10 + 45 s^9 + 866 s^8 + 9305 s^7 + 6.116e004 s^6 +
2.533e005 s^5 + 6.57e005 s^4 + 1.027e006 s^3 + 8.909e005 s^2 + 3.626e005 s
+ 4.2e004

Example E3.2: For each of the second order systems below, find ξ, ωn, Ts, Tp, Tr, % overshoot and plot the
step response using MATLAB.

(a) T(s) = 2

130
15 130s s+ +

(b) T(s) = 2

0.045
0.025 0.045s s+ +

(c) T(s) = 2 3

8

8
10

1.325 10 10s s+ × +
Solution:
(a) >> clf

>> numa=130;

>> dena=[1 15 130];

>> Ta=tf(numa, dena)

Transfer function:

∧ + +
130

2 15 130s s
>> omegana=sqrt (dena(3))

omegana = 11.4018

>> zetaa=dena(2)/(2*omegana)

zetaa = 0.6578

>> Tsa=4/ (zetaa*omegana)

Tsa = 0.5333

>> Tpa=pi/ (omegana*sqrt(1–zetaa^2))

Tpa = 0.3658

>> Tra=(1.76*zetaa^3–.417*zetaa^2 + 1.039*zetaa + 1)/ omegana

Tra = 0.1758

>> percenta=exp(–zetaa*pi/ sqrt(1–zetaa^2))*100

percenta = 6.4335

>> subplot(221)

142 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

>> step(Ta)

>> title(‘(a)’)

>> ‘(b)’

ans =

(b)
>> numb=.045;

>> denb=[1 .025 .045];

>> Tb=tf(numb,denb)

Transfer function:

∧ + +
0.045

2 0.025 0.045s s

>> omeganb=sqrt(denb(3))

omeganb=0.2121

>> zetab=denb(2)/(2*omeganb)

zetab=0.0589

>> Tsb=4/ (zetab*omeganb)

Tsb = 320

>> Tpb=pi/ (omeganb*sqrt(1–zetab^2))

Tpb = 14.8354

>> Trb=(1.76*zetab^3 –.417*zetab^2 + 1.039*zetab + 1)/ omeganb

Trb = 4.9975

>> percentb=exp(–zetab*pi/ sqrt(1–zetab^2))*100

percentb = 83.0737

>> subplot(222)

>> step(Tb)

>> title(‘(b)’)

>> ‘(c)’

ans =

(c)
>> numc=10E8;

>> denc=[1 1.325*10E3 10E8];

>> Tc=tf(numc, denc)

Transfer function:

∧ + +
1e009

s 2 13250s 1e009

Control Systems ——— 143

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

>> omeganc=sqrt(denc(3))

omeganc = 3.1623e+004

>> zetac=denc (2)/(2*omeganc)

zetac = 0.2095

>> Tsc = 4/ (zetac*omeganc)

Tsc = 6.0377e-004

>> Tpc =pi/ (omeganc*sqrt (1–zetac^2))

Tpc = 1.0160e-004

>> Trc = (1.76*zetac^3 –.417*zetac^2 + 1.039*zetac + 1)/ omeganc

Trc = 3.8439e-005

>> percentc =exp (–zetac*pi/ sqrt (1–zetac^2))*100

percentc = 51.0123

>> subplot (223)

>> step (Tc)

>> title (‘(c)’)

Step Response Step ResponseStep Response

Time (sec) Time (sec) Time (sec)

1.5

1

0.5

0
0 0.2 0.4 0.6 0.8

2.0

1

0.5

0
0

1.5

1

0.5

0
0 2 4 6 8

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

1.5

100 200 300 400

2.0

× 104

Fig. E3.2

Example E3.3: Determine the pole locations for the system shown below using MATLAB.
3

5 4 3 2

2() 6 7 15
() 5 9 11 12

C s s s s
R s s s s s s

− + +=
+ − − + −

Solution:
>> %MATLAB Program
>> den= [1 1 –5 –9 11 –12];

>> A=roots (den)

A =

–2.1586 + 1.2396i
–2.1586 – 1.2396i
 2.3339
 0.4917 + 0.7669i
 0.4917 – 0.7669i

144 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

Example E3.4: Determine the pole locations for the unity feedback system shown below using MATLAB.

150()
(5)(7)(9)(11)

G s
s s s s

=
+ + + +

Solution:
>> %MATLAB Program
>> numg =150

numg = 150

>> deng =poly ([–5 –7 –9 –11]);

>> ‘G(s)’

ans =

G(s)

>> G=tf (numg, deng)

Transfer function:

∧ ∧ ∧+ + + +
150

s 4 32 s 3 374 s 2 1888 s 3465

>> ‘Poles of G(s)’

ans =

Poles of G(s)

>> pole (G)

ans =

 –11.0000

–9.0000

 –7.0000

 –5.0000

>> ‘T(s)’

ans =

T(s)

>> T=feedback (G, 1)

Transfer function:

∧ ∧ ∧+ + + +
150

s 4 32 s 3 374 s 2 1888 s 3615

>> pole (T)

ans =

 –10.9673+1.9506i

 –10.9673–1.9506i

 –5.0327+1.9506i

 –5.0327–1.9506i

Control Systems ——— 145

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

Example E3.5: A plant to be controlled is described by a transfer function

2

7()
9 30

sG s
s s

+=
+ +

Obtain the root locus plot using MATLAB.
Solution:

>> %MATLAB Program
>> clf

>> num = [1 7];

>> den = [1 9 30];

>> rlocus (num, den);

Computer response is shown in Fig. E3.5.

–20

–2

0

1

2

3

4
Root Locus

Real Axis

Im
a
g
in

a
ry

A
x
is

–1

–3

–4
–18 –16 –14 –12 –10 –8 –6 –4 –2 0

Fig. E3.5

Example E3.6: For the unity feedback system shown in Fig. E3.6, G(s) is given as

G(s)

C(s) R(s)

Fig. E3.6

230(5 3)()
(1) (2) (4) (5)

s sG s
s s s s

− +=
+ + + +

Determine the closed-loop step response using MATLAB.

146 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

Solution:
>> %MATLAB Program
>>numg=40*[1 –5 7];

>> deng =poly ([–1 –2 –4 –5]);

>> G=tf (numg, deng);

>> T=feedback (G, 1)

Transfer function:

40s 2 – 200s 280

s 4 12s 3 89s 2 – 122s 320

∧

∧ ∧ ∧
+

+ + +
>> step (T)

Computer response:
Figure E3.6 (a) shows the response.

0 0.5 1 1.5 2 2.5 3 3.5
-–1

0

1

2

3

4

5

6

7

8
Step Response

Time (sec)

A
m

p
lit

u
d

e

Fig. E3.6(a)

Simulation shows over 30% overshoot and non minimum-phase behaviour. Hence, the second-order
approximation is not valid.

Example E3.7: Determine the accuracy of the second-order approximation using MATLAB to simulate the
unity feedback system shown in Fig. E3.7 where

2

2

12(3 9)()
(3 9)(1)(5)

s sG s
s s s s

+ +
=

+ + + +

Control Systems ——— 147

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

G(s)
C(s)R(s)

Fig. E3.7

Solution:
>> %MATLAB Program
>> numg=12*[1 3 9];

>> deng =conv ([1 3 9], poly ([-1 -5]));

>> G=tf (numg, deng);

>> T=feedback (G, 1);

>> step (T)

Computer response [see Fig. E3.7 (a)].

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Step Response

Time (sec)

A
m

p
lit

u
d

e

Fig. E3.7 (a)

Example E3.8: For the unity feedback system shown in Fig. E3.8 with

(1) ,()
(1)(5)(6)

+=
+ + +

K sG s
s s s s

determine the range of K for stability using MATLAB.

G(s)
R(s)

 Fig. E3.8

148 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

Solution:
>> %MATLAB Program
>> K= [0:0.2:200];
>> for i =1: length (K);
>> deng=poly ([0 –1 –5 –6]);
>> dent=deng+ [0 0 0 K (i) K (i)];
>> R=roots (dent);
>> A=real(R);
>> B=max (A);
>> if B>0
>> R
>> K=K (i)
>> break
>> end
>> end

Computer response:
R =

–10.0000
–0.5000 + 4.4441i
–0.5000 – 4.4441i
–1.0000

A =
–10.0000
–0.5000
–0.5000
–1.0000

B =
–0.5000

Example E3.9: Write a program in MATLAB to obtain the Nyquist and Nichols plots for the following
transfer function for k=30.

(1)(3 7)(3 7)()
(1)(3)(5)(3 7)(3 7)

k s s i s iG s
s s s s i s i

+ + + + −
=

+ + + + + + −
Solution:

>> %MATLAB Program
>> %Simple Nyquist and Nichols plots
>> clf

>> z= [–1 –3+7*i –3–7*i];

>> p= [–1 –3 –5 –3+7*i –3–7*i];

>> k=30;

>> [num, den] =zp2tf (z’, p’, k);

Control Systems ——— 149

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

>> subplot (211), nyquist (num, den)
>> subplot (212), Nichols (num, den)
>> ngrid
>> axis ([50 360 –40 30])

Computer response:

The Nyquist and Nichols plots are shown in Fig. E3.9.

Real Axis

Nichols ChartNichols Chart

Open-Loop Phase (deg.)Open-Loop Phase (deg.)

O
p
e
n
-L

o
o
p

G
a
in

(d
B

)
O

p
e
n
-L

o
o
p

G
a
in

(d
B

)
Im

a
g
in

a
ry

A
x
is

Im
a
g
in

a
ry

A
x
is

Nyquist DiagramNyquist DiagramReal Axis

1

0.5

0

–0.5

–1

–1 –0.5 0 0.5 1 1.5 2

Im
a
g
in

a
ry

A
ix

s

Nyquist DiagramNyquist Diagram

–270 –225 –180 –90 –45

40

20

0

–20

–40
–135

–1

Fig. E3.9

150 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

Example E3.10: A PID controller is given by
2(0.57)() 29.125c

sG s
s

+
=

Draw a Bode diagram of the controller using MATLAB.

Solution:
229.125(1.14 0.3249)()c

s sG s
s

+ +
=

229.125 33.2025 9.4627s s

s
+ +

=

The following MATLAB program produces the Bode diagram

>> % MATLAB Program
>> % Bode diagram
>> num= [29.125 33.2025 9.4627];

>> den= [0 1 0];

>> bode (num, den)

>> title (‘Bode diagram of G(s)’)

Bode Diagram

50

45

40

35

30

M
a

g
n

it
u

d
e

(d
B

)

90

45

0

–45

–90

P
h

a
s
e

(d
e

g
)

10
–1

10
0

10
1

Frequency (rad/sec)

Fig. E3.10 Bode diagram of G(s)

Control Systems ——— 151

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

Example E3.11: For the closed-loop system defined by

2
() 1
() 2 1

C s
R s s s

=
+ ζ +

(a) plot the unit-step response curves c(t) for æ =0, 0.1, 0.2, 0.4, 0.5, 0.6, 0.8, and 1.0. ùn is normalized to 1.
(b) plot a three-dimensional plot of (a).

Solution:
>> % Two-dimensional plot and three-dimensional plot of unit-step
>> %response curves for the standard second-order system with wn =1

>> %and zeta = 0, 0.1, 0.2, 0.4, 0.5, 0.6, 0.8, and 1.0

>> t=0:0.2:10;

>> zeta= [0 0.1 0.2 0.4 0.5 0.6 0.8 1.0];

>> for n=1:8;

>> num= [0 0 1];

>> den= [1 2*zeta (n) 1];

>> [y (1:51, n), x, t] = step (num, den, t);

>> end

>> %Two-dimensional diagram with the command plot (t, y)

>> plot (t, y)

>> grid

>> title (‘Plot of unit-step response curves’)

>> xlabel (‘t Sec’)

>> ylabel (‘Response’)

>> text (4.1, 1.86, ‘\zeta=0’)

>> text (3.0, 1.7,‘0.1')

>> text (3.0, 1.5,‘0.2’)

>> text (3.0, 1.22,‘0.4')

>> text (2.9, 1.1,‘0.5’)

>> text (4.0, 1.08,‘0.6')

>> text (3.0, 0.9, ‘0.8’)

>> text (4.0, 0.9,‘1.0')

>> %For three-dimensional plot, we use the command mesh (t, eta, y’)

>> mesh (t, eta, y’)

>> title (‘Three-dimensional plot of unit-step response curves’)

>> xlabel (‘t Sec’)

>> ylabel (‘\zeta’)

>> zlabel (‘Response’)

152 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

R
e

s
p

o
n

s
e

Plot of unit-step response curves

Fig. E3.11 (a) Plot of unit-step response curves

R
e
s
p
o
n
s
e

Three-dimensional plot of unit-step response curves

Fig. E3.11 (b) Three-dimensional plot of unit-step response curves

Control Systems ——— 153

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

Example E3.12: A closed-loop control system is defined by

2
() 2
() 2 1

C s s
R s s s

ζ
=

+ ζ +
where æ is the damping ratio. For æ = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0 using MATLAB. Plot.
(a) a two-dimensional diagram of unit-impulse response curves
(b) a three-dimensional plot of the response curves.

Solution: A MATLAB program that produces a two-dimensional diagram of unit-impulse response curves
and a three-dimensional plot of the response curves is given below:

>> % To plot a two-dimensional diagram
>> t = 0:0.2:10;

>> zeta = [0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0];

>> for n=1:10;

>> num = [0 2*zeta (n) 1];

>> den = [1 2*zeta (n) 1];

>> [y (1:51, n), x, t]=impulse (num,den,t);

>> end

>> plot (t, y)

>> grid

>> title (‘Plot of unit–impulse response curves’)

>> xlabel (‘t Sec’)

>> ylabel (‘Response’)

>> text (2.0,0.85,‘0.1’)

>> text (1.5,0.75,‘0.2’)

>> text (1.5,0.6,‘0.3’)

>> text (1.5,0.5,‘0.4’)

>> text (1.5,0.38,‘0.5’)

>> text (1.5,0.25,‘0.6’)

>> text (1.7,0.12,‘0.7’)

>> text (2.0,–0.1, ‘0.8’)

>> text (1.5, 0.0, ‘0.9’)

>> text (.5, 1.5,’1.0’)

>> % Three–dimensional plot
>> mesh (t, eta, ‘y’)

>> title (‘Three–dimensional plot’)

>> xlabel (‘t Sec’)

>> ylabel (‘\zeta’)

>> zlabel (‘Response’)

154 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

The two-dimensional diagram and three-dimensional diagram produced by this MATLAB program are shown
in Figs. E3.12 (a) and (b) respectively.

R
e
s
p
o
n
s
e

Plot of unit-impulse response curves

2

1.5

1

0.5

0

– 0.5

–1

Fig. E3.12 (a) Two-dimensional plot

R
e
s
p
o
n
s
e

Three-dimensional plot

2

1.5

1

0.5

0

–0.5

–1
1

0.5

0 0
2

4
6

8
10

t Secζ

Fig. E3.12 (b) Three-dimensional plot

Control Systems ——— 155

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

Example E3.13: For the system shown in Fig. E3.13, write a program in MATLAB that will use an open-
loop transfer function G(s):

50(1)()
(3)(5)

sG s
s s s

+=
+ +

25(1)(7)()
(2)(4)(8)

s sG s
s s s s

+ +
=

+ + +
(a) Obtain a Bode plot
(b) Estimate the percent overshoot, settling time and peak time
(c) Obtain the closed-loop step response.

Solution:
(a) >> %MATLAB Program

>> G=zpk ([–1], [0 –3 –5], 50)
>> G=tf (G)
>> bode (G)
>> title (‘System 1’)
>> %title (‘System 1’)
>> pause
>> %Find phase margin
>> [Gm, Pm, Wcg, Wcp] =margin (G);
>> w=1:.01:20;
>> [M, P, w] =bode (G, w);
>> % Find bandwidth
>> for k=1:1: length (M);
>> if 20*log10 (M (k)) +7<=0;
>> ‘Mag’
>> 20*log10 (M (k))
>> ‘BW’
>> wBW =w (k)
>> break
>> end
>> end
>> %Find damping ratio, percent overshoot, settling time and peak time
>> for z=0:.01:10
>> Pt=atan (2*z/ (sqrt (–2*z^2+sqrt (1+4*z^4))))*(180/pi);
>> if (Pm–Pt) <=0
>> z;
>> Po=exp (–z*pi/sqrt (1–z^2));
>> Ts= (4/ (wBW*z))*sqrt ((1–2*z^2) +sqrt (4*z^4–4*z^2+2));
>> Tp = (pi/ (wBW*sqrt (1–z^2)))*sqrt ((1–2*z^2) +sqrt (4*z^4–4*z^2+2));
>> fprintf(‘Bandwidth=%g’, wBW)
>> fprintf(‘Phase margin=%g’, Pm)

156 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

>> fprintf(‘, Damping ratio=%g’, z)
>> fprintf(‘, Percent overshoot=%g’, Po*100)
>> fprintf(‘, Settling time=%g’, Ts)
>> fprintf(‘, Peak time=%g’, Tp)
>> break
>> end
>> end
>> T=feedback (G, 1);
>> step (T)
>> title (‘Step response system 1’)
>> %title (‘Step response system 1’)

Computer response:
Zero/pole/gain:

50 (1)
(3)(5)

s
s s s

+
+ +

Transfer function:

50 50
3 8 2 15∧ ∧

+
+ +

s
s s s

The Bode plot is shown in Fig. E3.13 (a)

Bode Diagram

Frequency (rad/sec)

40

20

0

–20

–40

– 60

– 45

–90

–135

–180
10

0
10

2
10

1
10

–1

P
h
a
s
e

(d
e
g
)

M
a
g
n
it
u
d
e

(d
B

)

Fig. E3.13 (a)

Control Systems ——— 157

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

ans =
Mag
ans =

–3.0032
ans =
BW
wBW =

 9.7900
Bandwidth = 9.79, Phase margin = 53.892, Damping ratio = 0.59, Percent overshoot = 10.0693, Settling
time = 0.804303, Peak time = 0.461606
The step response is shown in Fig. E3.13(b)

Step Response

A
m

p
lit

u
d

e

Time (sec)

1.4

1.2

1

0.8

0.6

0.4

0.2

0
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Fig. E3.13 (b)

(b) Likewise, for this problem
>> G = zpk ([–1 –7], [0 –2 –4 –8], 25)
>> G = tf (G)

The following Bode plot and step response are obtained [see Figs. E3.13(c) and (d)].
Zero/pole/gain:

25(1)(7)
(2)(4)(8)

s s
s s s s

+ +
+ + +

158 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

Transfer function:

25 2 200 175
4 14 3 56 2 64

s s
s s s s

∧

∧ ∧ ∧
+ +

+ + +

Bode Diagram

Frequency (rad/sec)

P
h
a
s
e

(d
e
g
)

M
a
g
n
it
u
d
e

(d
B

)

40

20

0

–20

–40

–60

–45

–90

–135

–180
10

0
10

2
10

1
10

–1

Fig. E3.13(c)

ans =
Mag
ans =

 –7.0110
ans =
BW
wBW =

 6.5500
Bandwidth = 6.55, Phase margin = 63.1105, Damping ratio = 0.67, Per cent overshoot = 5.86969, Settling
time = 0.959175, Peak time = 0.679904

Control Systems ——— 159

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

Step Response
A

m
p
lit

u
d
e

Time (sec)

1.4

1.2

1

0.8

0.6

0.4

0.2

0
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Fig. E3.13 (d)

Example E3.14: Write a program in MATLAB for a unity-feedback system with

2 2
(7)

()
(3 52)(2 35)

K sG s
s s s s

+
=

+ + + +
(a) plot the Nyquist diagram
(b) display the real-axis crossing value and frequency.

Solution:
>> %MATLAB Program
>> numg= [1 7]

>> deng=conv ([1 3 52], [1 2 35]);

>> G=tf (numg, deng)

>> ‘G(s)’

>> Gap=zpk (G)

>> inquest (G)

>> axis ([–3e–3, 4e–3,–5e–3, 5e–3])

160 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

>> w=0:0.1:100;

>> [re, im] =nyquis t (G, w);

>> for i=1:1: length (w)

>> M (i) =abs (re (i) +j*im (i));

>> A (i) =atan2 (im (i), re (i))*(180/pi);

>> if 180–abs (A (i)) <=1;

>> re (i);

>> im (i);

>> K=1/abs (re (i));

>> fprintf (‘\nw =%g’, w (i))

>> fprintf (‘, Re=%g’, re (i))

>> fprintf (‘, Im =%g’, im (i))

>> fprintf (‘, M=%g’, M (i))

>> fprintf (‘, K=%g’, K)

>> Gm=20*log10 (1/M (i));

>> fprintf (‘, Gm=&G’, Gm)

>> break

>> end

>> end

Computer response:
numg =

 1 7
Transfer function:

7
4 5 3 93 2 209 1820∧ ∧ ∧

+
+ + + +

s
s s s s

ans =
G(s)
Zero/pole/gain:

(7)
(2 2 35)(2 3 52)∧ ∧

+
+ + + +

s
s s s s

The Nyquist plot is shown in Fig. E3.14.

Control Systems ——— 161

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

Nyquist Diagram

Real Axis

Im
a
g
in

a
ry

A
x
is

–3 –2 –1 0 1 2 3 4

×10
–3

×10
–3

5

4

3

2

1

0

–1

–2

–3

–4

–5

Fig. E3.14

Example E3.15: Determine the unit-ramp response of the following system using MATLAB and lsim
command.

2
() 1
() 3 2 1

C s
R s s s

=
+ +

Solution:
>> % MATLAB Program

>> % Unit-ramp response
>> num =[0 0 1];

>> den =[3 2 1];

>> t=0:0.1:10;

>> r=t;

>> y =lsim(num,den,r,t);

>> plot(t, r,‘–’, t,y, ‘o’)

>> grid

>> title(‘Unit-ramp response’)

>> xlabel(‘t Sec’)

>> ylabel(‘Unit-ramp input and output’)

>> text(1.0, 4.0, ‘Unit-ramp input’)

>> text(5.0,2.0, ‘Output’)

162 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

Unit-ramp response

U
n
it
-r

a
m

p
in

p
u
t
a
n
d

o
u
tp

u
t

10

8

6

4

2

0
0 2 4 6 8 10

t Sec

Unit-ramp input

Output

Fig. E3.15 Unit-ramp response

Example E3.16: A higher-order system is defined by
2

4 3 2
() 7 16 10
() 5 11 16 10

C s s s
R s s s s s

+ +=
+ + + +

(a) plot the unit-step response curve of the system using MATLAB
(b) obtain the rise time, peak time, maximum overshoot and settling time using MATLAB.

Solution:
>> %Unit-step response curve
>> num=[0 0 7 16 10];

>> den=[1 5 11 16 10];

>> t=0:0.02:20;

>> [y,x,t]=step(num,den,t);

>> plot(t, y)

>> grid

Control Systems ——— 163

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

>> title(‘Unit-step response’)

>> xlabel(‘t Sec’)

>> ylabel(‘Output y(t)’)

Unit-step response

t Sec

O
u
tp

u
t
y
(t

)

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0
0 5 10 15 20

Fig. E3.16 Unit-step response

>> %Response to rise from 10% to 90% of its final value

>> r1=1;while y(r1)<0.1,r1= r1+1;end

>> r2=1;while y(r2)<0.9,r2=r2+1;end

>> rise_time=(r2–r1)*0.02

rise_time =

0.5400

>> [ymax,tp]=max(y);

>> peak_time=(tp–1)*0.02

164 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

peak_time =

 1.5200

>> max_overshoot = ymax–1

max_overshoot =

 0.5397

>> s=1001;while y(s)>0.98 & y(s)<1.02;s=s–1;end

>> settling_time=(s–1)*0.02

settling_time =

 6.0200

Example E3.17: Obtain the unit-ramp response of the following closed-loop control system whose closed-
loop transfer function is given by

3 2
() 12
() 5 8 12

C s s
R s s s s

+=
+ + +

Determine also the response of the system when the input is given by

 r = e–0.7t

Solution:
>> % Unit-ramp response – lsim command
>> num=[0 0 1 12];

>> den=[1 5 8 12];

>> t=0:0.1:10;

>> r=t;

>> y =lsim(num,den,r,t);

>> plot(t,r, ‘–’, t,y, ‘o’)

>> grid

>> title(‘Unit-ramp response’)

>> xlabel(‘t Sec’)

>> ylabel(‘Output’)

>> text(3.0,6.5, ‘Unit-ramp input’)

>> text(6.2,4.5, ‘Output’)

Control Systems ——— 165

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

t Sec
2 4 6 8 10

Unit-ramp response

Unit-ramp input

Output

0

O
u
tp

u
t

10

8

6

4

2

0

Fig. E3.17(a) Unit-ramp response curve

>> %Input r1=exp(–0.7t)

>> num=[0 0 1 12];

>> den=[1 5 8 12];

>> t=0:0.1:12;

>> r1=exp(–0.7*t);

>> y1=lsim(num,den,r1,t);

>> plot(t,r1, ‘–’, t,y1, ‘o’)

>> grid

>> title(‘Response to input r1=exp(–0.7t)’)

>> xlabel(‘t Sec’)

>> ylabel(‘Input and output’)

>> text(0.5,0.9, ‘Input r1=exp(–0.7t)’)

>> text(6.3,0.1, ‘Output’)

166 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

Response to input r1=exp (–0.7t)

t Sec

2 4 6 8 100 12

In
p
u
t
a
n
d

o
u
tp

u
t

1.2

1

0.8

0.6

0.4

0.2

0

–0.2

Input r = exp (–0.7t)

Output

Fig. E3.17(b) Response curve for input r= e–0.7t

Example E3.18: A unity-feedback control system is defined by the following feedforward transfer function

2
()

(7 9)
KG s

s s s
=

+ +
(a) determine the location of the closed-loop poles, if the value of gain is equal to 3
(b) plot the root loci for the system using MATLAB.

Solution:
>> % MATLAB Program to find the closed-loop poles
>> p=[1 7 9 3];

>> roots(p)

ans =

 –5.4495

 –1.0000

 –0.5505

Control Systems ——— 167

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

>> % MATLAB Program to plot the root-loci
>> num=[0 0 0 1];

>> den=[1 5 9 0];

>> rlocus(num,den);

>> axis(‘square’)

>> grid

>> title(‘Root-locus plot of G(s)’)

–16 –14 –12 –10 – 8 – 6 – 4 – 2 0 2 4
–15

–10

– 5

0

5

10

15
0.120.240.360.480.62

0.76

0.88

0.97

0.120.240.360.480.62
0.76

0.88

0.97

2468101214

Im
a

g
in

a
ry

A
x
is

Fig. E3.18 Root-locus plot of G(s)

Example E3.19: The open-loop transfer function of a unity-feedback control system is given by

3 2

1()
0.4 7 1

G s
s s s

=
+ + +

(a) draw a Nyquist plot of G(s) using MATLAB
(b) determine the stability of the system.

Solution:
>> % Open-loop poles
>> p =[1 0.4 7 1];

>> roots(p)

168 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

ans =

–0.1282 + 2.6357i

–0.1282 – 2.6357i

–0.1436

>> % Nyquist plot
>> num =[0 0 0 1];

>> den =[1 0.4 7 1];

>> nyquist(num,den)

>> v=[–3 3 –2 2];axis(v);axis(‘square’)

>> grid

>> title(‘Nyquist plot of G(s)’)

1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1
1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1
Nyquist Diagram

Im
a
g
in

a
ry

A
x
is

Fig. E3.19 Nyquist plot of G(s)

There are two open-loop poles in the right half s plane and no encirclement of the critical point, the closed-
loop system is unstable.

Example E3.20: For the closed-loop control system shown in Fig. E3.20, obtain the range of gain K for
stability and plot a root-locus diagram for the system.

Control Systems ——— 169

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

)1s5.1s)(5s)(3s(s

)5s2s(K
2

2

++++

++

–

+
R(s) C(s)

Fig. E3.20

Solution:
The range of gain K for stability is obtained by first plotting the root loci and then finding critical points
(for stability) on the root loci. The open-loop transfer function G(s) is

G(s) =
2

2

(2 5)
(3)(5)(1.5 1)

K s s
s s s s s

+ +
+ + + +

 =
2

5 4 3 2

(2 5)
9.5 28 20 15

K s s
s s s s s

+ +
+ + + +

A MATLAB program to generate a plot of the root loci for the system is given below. The resulting root-
locus plot is shown in Fig. E3.20(a).

% MATLAB Program
num = [0 0 0 1 2 5];

den = [1 9.5 28 20 15 0];

rlocus(num,den)

v = [–8 2 –5 5]; axis(v); axis(‘square’)

grid

title(‘Root-Locus Plot’)
Root Locus

Real Axis

Im
a
g

A
x
is

5

4

3

2

1

0

–1

–2

–3

– 4

–5
– 8 – 6 – 4 – 2 0 2

x

x

x

x

x

Fig. E3.20 (a)

170 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

From Fig. E3.20(a), we notice that the system is conditionally stable. All critical points for stability lie on the
jω axis.

To obtain the crossing points of the root loci with the jω axis, we substitute s = jω into the
characteristic equation

5 4 3 29.5 28 20 15s s s s s+ + + + + K(s2 + 2s + 5) = 0
or (jω)5 + 9.5(jω)4 + 28(jω)3 + (20 + K)(jω)2 + (15 + 2K)(jω) + 5K = 0
or

[9.5ω4 – (20 + K) ω2 + 5K] + j[ω5 – 28ω3 + (15 + 2K) ω] = 0
Equating the real part and imaginary part equal to zero, respectively, we get

9.5ω4 – (20 + K) ω2 + 5K = 0 ...(1)
ω5 – 28ω3 + (15 + 2K) ω = 0 ...(2)

Equation (2) can be written as
ω = 0

or ω4 – 28ω2 + 15 + 2K = 0 ...(3)

K =
4 228 15

2
−ω + ω −

...(4)

Substituting Eq.(4) into Eq.(1), we obtain
9.5ω4 – [20 + ½(–ω4 + 28ω2 –15)] ω2 – 2.5ω4 + 70ω2 – 37.5 = 0

or
0.5ω6 – 2ω4 + 57.5ω2 – 37.5 = 0

The roots of the above equation can be obtained by MATLAB program given below.

% MATLAB Program
a = [0.5 0 – 2 0 57.5 0 –37.5];

roots(a)

MATLAB Output:
ans =

 –2.4786 + 2.1157i
 –2.4786 – 2.1157i

 2.4786 + 2.1157i
2.4786 – 2.1157i
0.8155

–0.8155

The root-locus branch in the upper half plane that goes to infinity crosses the jω axis at ω = 0.8155. The
gain values at these crossing points are given by

K =
4 2– 0.8155 28 0.8155 –15 1.5894 for 0.8155

2
+ ×

= ω =

Control Systems ——— 171

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

For this K value, we obtain the range of gain K for stability as
1.5894 > K > 0

Example E3.21: For the control system shown in Fig. E3.21:
(a) plot the root loci for the system
(b) find the value of K such that the damping ratio ζ of the dominant closed-loop poles is 0.6
(c) obtain all closed-loop poles
(d) plot the unit-step respond curve using MATLAB.

K

)5s)(3s(s ++

+

–

Fig. E3.21

Solution:
(a) The MATLAB program given below generates a root-locus plot for the given system. The resulting

plot is shown in Fig. E3.21(a).

% MATLAB Program
num = [0 0 0 1];

den = [1 8 15 0];

rlocus(num,den)

v = [–6 4 –5 5]; axis(v); axis(‘square’)

grid

title(‘Root-Locus Plot’)

x x x

5

4

3

2

1

0

–1

–2

–3

– 4

–5
–6 – 4 –2 0 2 4

Im
a

g
.
A

x
is

Root Locus

Real Axis

Fig. E3.21(a)

172 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

(b) We note that the constant ζ points (0 < ζ < 1) lie on a straight line having angle θ from the jω axis as
shown in Fig. E3.21(b).

jω

θ

ω n

– ζ ω
σ

Constant ζ line

n

Fig. E3.21(b)

From Fig. E3.21(b), we obtain

sin n

n

ζω
θ = = ζ

ω
Also that ζ = 0.6 line can be defined by

 s = – 0.75a + ja
where a is a variable (0 < a < ∞). To obtain the value of K such that the damping ratio ζ of the dominant
closed-loop poles is 0.6, we determine the intersection of the line s = –0.75a + ja and the root locus. The
intersection point can be obtained by solving the following simultaneous equations for a.

 s = – 0.75a + ja ...(1)
s(s + 3)(s + 5) + K = 0 ...(2)

From Eqs. (1) and (2), we obtain
(– 0.75a + ja)(–0.75a + ja + 3)(– 0.75a + ja +5) + K = 0

or
(1.8281a3 – 2.1875a2 – 3a + K) + j(0.6875a3 – 7.5a2 + 15a)= 0

Equating the real part and imaginary part of the above equation to zero, respectively, we obtain
1.8281a3 – 2.1875a2 – 3a + K = 0 ...(3)
0.6875a3 – 7.5a2 + 4a = 0 ...(4)

Equation (4) can be rewritten as
a = 0

or 0.6875a2 – 7.5a + 4 = 0
or

 a2 – 10.90991a + 5.8182 = 0
or (a – 0.5623)(a – 10.3468) = 0
Therefore, a = 0.5323 or a = 10.3468
From Eq.(3), we obtain

K = –1.8281a3 + 2.1875a2 + 3a = 2.0535 for a = 0.5626
K = –1.8281a3 + 2.1875a2 + 3a = –1759.74 for a = 10.3468

Since the K value is positive for a = 0.5623 and negative for a = –10.3468, we select a = 0.5623. The required
gain K is 2.0535.

Control Systems ——— 173

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

The characteristic equation with K = 2.0535 is then
s(s + 3)(s + 5) + 2.0535 = 0

or s3 + 8s2 + 15s + 2.0535 = 0

(c) The closed-loop poles can be obtained by the following MATLAB program.

% MATLAB Program
p = [1 8 15 2.0535];
roots(p)
ans =

–5.1817
–2.6699
–0.1484

Hence, the closed-loop poles are located at
s = –5.1817, s =–2.6699, s = –4.1565.

(d) The unit-step response of the system for K = 2.0535 can be obtained from the following MATLAB
program. The resulting unit-step response curve is shown in Fig. E3.21(c).

% MATLAB Program
num = [0 0 0 2.0535];
den = [1 8 15 2.0535];
step(num,den)
grid
title(‘Unit-Step Response’)
xlabel(‘t Sec’)
ylabel(‘Output’).

Step Response

Time (sec)

A
m

p
lit

u
d

e

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 5 10 15 20 25 30 35 40

Fig. E3.21 (c)

174 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

Example E3.22: The open-loop transfer function of a unity-feedback control system is given by

G(s) = 2(5)
K

s s s+ +

(a) determine the value of gain K such that the phase margin is 50º
(b) find the gain margin for the gain K obtained in (a).

Solution:

G(s) = 2(5)
K

s s s+ +

The undamped natural frequency is 5 rad/s and the damping ratio of 0.1. 5 from the denominator.
Let the frequency corresponding to the angle of –130º (Phase Margin of 50°) be ω1 and therefore

∠G(jω1) = –130º
The Bode diagram is shown in Fig. E3.22 from MATLAB program.

Bode Diagram

Frequency (rad/sec)

20

0

–20

– 40

– 60

–90

–135

–180

–225

–270
10

–1
10

0
10

1

P
h

a
se

(d
e

g
)

M
a

g
n

itu
d

e
(d

B
)

Fig. E3.22

From Fig. E3.22, the required phase margin of 50º and occurs at the frequency ω =1.06 rad/s. The magnitude
of G(jω) at this frequency is then –7 dB. The gain K must then satisfy

Control Systems ——— 175

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

20log K = 7 dB
or K = 2.23
Example E3.23: Obtain the state-space representation of the following system using MATLAB.

3 2

() 35 7
() 5 36 7

C s s
R s s s s

+=
+ + +

.

Solution:
A MATLAB program to obtain a state-space representation of this system is given below.
% MATLAB Program

>> num=[0 0 35 7];

>> den=[1 5 36 7];

>> g=tf(num,den)

Transfer function:

35s 7

s 3 5s 2 36s 7∧ ∧
+

+ + +

>> [A,B,C,D]=tf2ss(num,den)

A =

 –5 –36 –7

1 0 0

0 1 0

B =

1

0

0

C =

0 35 7

D =

0

From the MATLAB output, we obtain the following state space equations:

1 1

2 2

3 3

5 36 7 1
1 0 0 0
0 1 0 0

x x
x x u
x x

− − −      
      = +      
            

 y = [0
1

2

3

7] [0]
x
x u
x

 
  + 
  

176 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

Example E3.24: Find the transfer function for the following system using MATLAB.

1 1

2 2

3 3

0 1 0 0 0
5 2 0 3 1

0 2 6 5 0

x x
x x u
x x

      
      = − − + −      
      −      

1

2

3

1 0 0
0 0 1

x
y x

x

 
   =        

Solution:
The transfer function matrix is given by

 1() []G s C sI A B−= −

where

0 1 0 0 0
1 0 0

5 2 0 3 1
0 0 1

0 2 6 5 0

   
    = − − = − =          −   

A B C

Hence
1 0 0 0

1 0 0
() 5 2 0 3 1

0 0 1
0 2 6 5 0

s
G s s

s

−   
     = + −          − +   

>> % MATLAB Program
>> syms s

>> C=[1 0 0;0 0 1];

>> M=[s –1 0;5 s +2 0; 0 –2 s+6];

>> B=[0 0;3 –1;5 0];

>> C*inv(M)*B

ans =

[3/(s^2+2*s+5), –1/(s^2+2*s+5)]

[6*s/(s^3+8*s^2+17*s+30)+5/(s+6), –2*s/(s^3+8*s^2+17*s+30)]

Example E3.25: Determine the transfer function G(s) = Y(s)/R(s), for the following system representation in
state space form.

x =

0 3 7 0
0 0 1 0
0 0 0 1
5 6 9 5

 
 
 
 
 − −  

0
5
7
2

x

 
 
 +
 
 
  

r

y = [1 3 6 5] x

Control Systems ——— 177

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

Solution:
A=[0 3 5 0;0 0 1 0;0 0 0 1;–5 –6 8 5];

B=[0;5;7;2];

C=[1 3 7 5];

D=0;

statespace=ss(A,B,C,D)

a =

x1 x2 x3 x4

x1 0 3 5 0

x2 0 0 1 0

x3 0 0 0 1

x4 –5 –6 8 5

b =

u1

x1 0

x2 5

x3 7

x4 2

c =

x1 x2 x3 x4

y1 1 3 7 5

d =
u1

y1 0

Continuous-time model.

[A,B,C,D]=tf 2ss(num,den);

G=tf(num,den)

Transfer function:

s 4 3s 3 10s 2 5s 6
s 5 7s 4 8s 3 6s 2

∧ ∧ ∧

∧ ∧ ∧ ∧
+ + + +
+ + +

.

Example E3.26: Determine the transfer function and poles of the system represented in state space as
follows using MATLAB.

9 3 1 1
3 2 0 2 ()

6 8 2 3
x u t

− −   
   = − +   
   −   

178 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

y = [2 9 –12] x ; x(0) =
0
0
0

 
 
 
  

Solution:
% MATLAB Program
>> A = [8 –3 4;–7 1 0;3 4 –7]
A =

8 –3 4
–7 1 0
3 4 –7

>> B=[1;3;8]
B =

1
3
8

>> C=[1 7 –2]
C =

1 7 –2

>> D=0
D =

0

>> [numg,deng]=ss2tf(A,B,C,D,1)
numg =

1.0e + 003 *
0 0.0060 0.0730 –2.8770

deng =
 1.0000 –2.0000 –88.0000 33.0000

>> G=tf(numg,deng)

Transfer function:
∧

∧ ∧
+

− +
6s 2 73s – 2877

s 3 – 2s 2 88s 33

>> poles=roots(deng)

poles =
10.2620
–8.6344
0.3724

Example E3.27: A control system is defined by

1 1 1

2 2 2

0 1 1 1
25 9 0 1

x x u
x x u

        
= +        − −        

Control Systems ——— 179

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

1 1

2 2

1 0
0 1

y x
y x

    
=    

    
Plot the four sets of Bode diagrams f or the system [two for input1, and two for input 2] using MATLAB.

Solution: There are 4 sets of Bode diagrams (2 for input1 and 2 for input 2)
>> % Bode Diagrams
>> A=[0 1;-25 -9];

>> B=[1 1;0 1];

>> C=[1 0;0 1];

>> D=[0 0;0 0];

>> bode(A,B,C,D)

–100

– 50

0
From: In(1)

–135

– 90

– 45

0

–100

0

100

10
0

10
2

–180

0

180

From: In(2)

10
0

10
2

Bode Diagram

Frequency (rad/sec)

T
o
:
O

u
t(

1
)

T
o
:
O

u
t(

1
)

T
o
:
O

u
t(

2
)

T
o
:
O

u
t(

2
)

M
a
g
n
it
u
d
e

(d
B

);
P

h
a
s
e

(d
e
g
)

Fig. E3.27 Bode diagrams

Example E3.28: Draw a Nyquist plot for a system defined by

0 1 01 1
25 5 202 2

x x
u

x x
      

= +      −         

180 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

 [] 1

2
1 0 [0]

x
y u

x
 

= + 
 

using MATLAB.

Solution: Since the system has a single input u and a single output y, a Nyquist plot can be obtained by
using the command nyquist (A, B, C, D) or nyquist (A, B, C, D, 1).
>> % MATLAB Program
>> A=[0 1;–25 5];

>> B=[0;20];

>> C=[1 0];

>> D=[0];

>> nyquist(A,B,C,D)

>> grid

>> title(‘Nyquist plot’)

The Nyquist plot is shown in Figure E3.28.

–1 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8
–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

0 dB

–20 dB

–10 dB

–6 dB

–4 dB–2 dB

20 dB

10 dB

6 dB

4 dB
2 dB

Nyquist Plot

Real Axis

Im
a

g
in

a
ry

A
x
is

Fig. E3.28 Nyquist plot

Example E3.29: Obtain the unit-step response, unit-ramp response, and unit-impulse response of the
following system using MATLAB.

Control Systems ——— 181

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

1 1

2 2

1 1.5 1.5
2 0 0

x x
u

x x
− −      

= +      
      

 [] 1

2
1 0

x
y

x
 

=  
 

where u is the input and y is the output.

Solution:
>> % Unit-step response
>> A=[–1 –1.5;2 0];

>> B=[1.5;0];

>> C=[1 0];

>> D=[0];

>> y,x,t]=step(A,B,C,D);

>> plot(t,y)

>> grid

>> title(‘Unit–step response’)

>> xlabel(‘t Sec’)

>> ylabel(‘Output’)

Unit-step response

t Sec

O
u

tp
u

t

0.6

0.5

0.4

0.3

0.2

0.1

0

– 0.1

0.2

0.3

–

–
0 2 4 6 8 10 12

Fig. E3.29 (a) Unit-step response

>> % Unit-ramp response
>> A=[–1 –1.5; 2 0];

>> B=[1.5; 0];

182 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

>> C=[1 0];

>> D=[0];

>> % New enlarged state and output equations
>> AA=[A zeros (2, 1); C 0];

>> BB=[B; 0];

>> CC=[0 1];

>> DD=[0];

>> [z, x, t] =step (AA, BB, CC, DD);

>> x3= [0 0 1]*x’; plot (t, x3, t, t,‘–’)

>> grid

>> title (‘Unit–ramp response’)

>> xlabel (‘t Sec’)

>> ylabel (‘Output and unit-ramp input’)

>> text (12, 1.2,‘Output’)

Unit-ramp response

O
u

tp
u

t
a

n
d

u
n

it
-r

a
m

p
in

p
u

t

t Sec

20

18

16

14

12

10

8

6

4

2

0
0 5 10 15 20

Output

Fig. E3.29 (b) Unit-ramp response

>> % Unit-impulse response
>> A= [–1 –1.5; 2 0];

>> B= [1.5; 0];

Control Systems ——— 183

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

>> C= [1 0];

>> D= [0];

>> impulse (A, B, C, D)

Impulse Response

1.5

1

0.5

0

– 0.5

–1

A
m

p
lit

u
d

e

Time (sec)

0 2 4 6 8 10 12

Fig. E3.29(c) Unit-impulse response

Example E3.30: Obtain the unit-step response and unit-ramp response of the following system using
MATLAB.

1 1

2 2

3 3

5 30 5 1
1 0 0 0
0 1 0 0

x x
x x u
x x

− − −      
      = +      
            

 []
1

2

3

0 20 5 [0]
x

y x u
x

 
 = + 
  

Solution:
>> % MATLAB Program
>> A=[–5 –30 –5; 1 0 0; 0 1 0];

184 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

>> B=[1; 0; 0];

>> C=[0 20 5];

>> D=[0];

>> [y, x, t]= step (A, B, C, D);

>> plot(t, y)

>> grid

>> title(‘Unit–response’)

>> xlabel(‘t Sec’)

>> ylabel(‘Output y (t)’)

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Unit Response

O
u

tp
u

t
y
(t

)

t Sec

Fig. E3.30(a) Unit-step response

Unit-ramp response:

5 30 5 0 0
1 0 0 0 0
0 1 0 0 0
0 25 5 0 0 25 5 0

A
AA

− − −   
   
   = =
   
   
      

 = A [zeros (2, 1); C 0]

Control Systems ——— 185

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

1
0
0
0 0

B
BB

   
   
   = =
   
   
      

 [] []0 25 5 0 0CC C= =
>> % MATLAB Program
>> A =[–5 –30 –5; 1 0 0; 0 1 0];

>> B =[1; 0; 0];

>> C =[0 25 5];

>> D =[0];

>> AA =[A zeros (3, 1); C 0];

>> BB =[B; 0];

>> CC =[C 0];

>> DD =[0];

>> t=0:0.01:5;

>> [z, x, t] =step (AA, BB, CC, DD, 1, t);

>> P =[0 0 0 1]*x’;

>> plot (t, P, t, t)

>> grid

>> title (‘Unit-ramp response’)

>> xlabel (‘t Sec’)

>> ylabel (‘Input and output’)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

In
p
u
t
a
n
d

O
u
tp

u
t

Unit-ramp Response

t Sec

Fig. E3.30 (b) Unit-ramp response

186 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

Example E3.31: Consider the system

1

2

3

3 0 01
0 1 02
0 3 23

x x
x x

xx

        =             

 The output is given by

 []
1

2

3

1 1 1
x

y x
x

 
 =  
  

(a) determine the observability of the system using MATLAB
(b) show that the system is completely observable if the output is given by

1
1

2
2

3

1 1 1
1 3 2

x
y

x
y

x

 
     =          

using MATLAB.

Solution:
>> % MATLAB Program
>> A =[3 0 0; 0 1 0; 0 3 2];

>> C =[1 1 1];

>> rank ([C’ A’*C’ A’^2*C’])

ans=

3

>> A=[3 0 0; 0 1 0; 0 3 2];

>> C=[1 1 1; 1 3 2];

>> rank ([C’ A’*C’ A’^2*C’])

ans=

3

From the above, we observe that the system is observable and controllable.

Example E3.32: Consider the following state equation and output equation

1 1

2 2

3 3

1 3 2 3
0 2 1 0
1 0 1 1

x x
x x u
x x

− − −      
      = − +      
      −      

 []
1

2

3

1 1 0
x

y x
x

 
 =  
  

Control Systems ——— 187

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

Determine if the system is completely state controllable and completely observable using MATLAB.
Solution:
The controllability and observability of the system can be obtained by examining the rank condition of

[B AB A2B] and [C' A' C' (A') 2 C']

>> % MATLAB Program
>> A =[–1 –3 –2; 0 –2 1; 1 0 –1];

>> B =[3; 0; 1];

>> C =[1 1 0];

>> D =[0];

>> rank ([B A*B A^2*B])

ans=

3

>> rank ([C’ A’*C’ A’^2*C’])

ans=

3

We observe the rank of [B AB A2B] is 3 and the rank of [C' A'*C' (A') 2*C'] is 3, the system is completely
state controllable and observable.

Example E3.33: Determine the eigenvalues of the following system using MATLAB.

0 2 0 0
0 2 9 0
2 2 5 2

x x r
   
   = − +   
   −   

y = [0 0 1] x

Solution:
>> A = [0 2 0; 0 2 –7; –2 2 5]; %Define the matrix above

>> eig (A) %Calculate the eigenvalues of matrix A.

ans =

 2.0000

 2.5000 + 3.4278i

 2.5000 – 3.4278i

188 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

REFERENCES

Anand, D.K., Introduction to Control Systems, 2nd ed., Pergamon Press, New York, NY, 1984.
Atkinson, P., Feedback Control Theory for Engineers, 2nd ed., Heinemann, 1977.
Bateson, R.N., Introduction to Control System Technology, Prentice-Hall, Upper Saddle River, NJ, 2002.
Bayliss, L.E., Living Control Systems, English Universities Press Limited, London, UK, 1966.
Beards, C.F., Vibrations and Control System, Ellis Horwood, 1988.
Benaroya, H., Mechanical Vibration—Analysis, Uncertainties, and Control, Prentice-Hall, Upper Saddle
River, NJ, 1998.
Bode, H.W., Network Analysis and Feedback Design, Van Nostrand Reinhold, New York, NY, 1945.
Bolton, W., Control Engineering, 2nd ed., Addison Wesley Longman Ltd., Reading, MA, 1998.
Brogan, W.L., Modern Control Theory, Prentice-Hall, Upper Saddle River, NJ, 1985.
Buckley, R.V., Control Engineering, Macmillan, New York, NY, 1976.
Burghes, D., and Graham, A., Introduction to Control Theory Including Optimal Control, Ellis Horwood,
1980.
Cannon, R.H., Dynamics of Physical Systems, McGraw-Hill, New York, NY, 1967.
Chesmond, C.J., Basic Control System Technology, Edward Arnold, 1990.
Clark, R.N., Introduction to Automatic Control Systems, Wiley, New York, NY, 1962.
D’Azzo, J.J. and Houpis, C.H., Linear Control System Analysis and Design: Conventional and Modern,
4th ed., McGraw-Hill, New York, NY, 1995.
Dorf, R.C. and Bishop, R.H., Modern Control Systems, 9th ed., Prentice-Hall, Upper Saddle River, NJ, 2001.
Dorsey, John, Continuous and Discrete Control Systems, McGraw-Hill, New York, NY, 2002.
Douglas, J., Process Dynamics and Control, Volumes I and II, Prentice-Hall, Englewood Cliffs, NJ, 1972.
Doyle, J.C., Francis, B.A. and Tannenbaum, A., Feedback Control Theory, Macmillan, New York, NY, 1992.
Dransfield, P., and Habner, D.F., Introducing Root Locus, Cambridge University Press, Cambridge, 1973.
Dukkipati, R.V., Control Systems, Narosa Publishing House, New Delhi, India, 2005.
Dukkipati, R.V., Engineering System Dynamics, Narosa Publishing House, New Delhi, India, 2004.
Dukkipati, R.V., Vibration Analysis, Narosa Publishing House, New Delhi, India, 2004.
Evans, W.R., Control System Dynamics, McGraw-Hill, New York, NY, 1954.
Eveleigh, V.W., Control System Design, McGraw-Hill, New York, NY, 1972.
Franklin, G.F., David Powell, J. and Abbas Emami-Naeini, Feedback Control of Dynamic Systems, 3rd ed.,
Addison Wesley, Reading, MA, 1994.
Friedland, B., Control System Design, McGraw-Hill, New York, NY, 1986.
Godwin, Graham E., Graebe, Stefan F. and Salgado, Maria E., Control System Design, Prentice-Hall, Upper
Saddle River, NJ, 2001.
Grimble, Michael J., Industrial Control Systems Design, Wiley, New York, NY, 2001.
Gupta, S., Elements of Control Systems, Prentice-Hall, Upper Saddle River, NJ, 2002.
Guy, J.J., Solution of Problems in Automatic Control, Pitman, 1966.

Control Systems ——— 189

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

Healey, M., Principles of Automatic Control, Hodder and Stoughton, 1975.

Jacobs, O.L.R., Introduction to Control Theory, Oxford University Press, 1974.

Johnson, C. and Malki, H., Control Systems Technology, Prentice-Hall, Upper Saddle River, NJ, 2002.

Kailath, T., Linear Systems, Prentice-Hall, Upper Saddle River, NJ, 1980.

Kuo, B.C., Automatic Control Systems, 6th ed., Prentice-Hall, Englewood Cliffs, NJ, 1991.

Leff, P.E.E., Introduction to Feedback Control Systems, McGraw-Hill, New York, NY, 1979.

Levin, W.S., Control System Fundamentals, CRC Press, Boca Raton, FL, 2000.

Levin, W.S., The Control Handbook, CRC Press, Boca Raton, FL, 1996.

Lewis, P. and Yang, C., Basic Control Systems Engineering, Prentice-Hall, Upper Saddle River, NJ, 1997.

Marshall, S.A., Introduction to Control Theory, Macmillan, 1978.

Mayr, O., The Origins of Feedback Control, MIT Press, Cambridge, MA, 1970.

Mees, A.J., Dynamics of Feedback Systems, Wiley, New York, NY, 1981.

Nise, Norman, S., Control Systems Engineering, 3rd ed., Wiley, New York, NY, 2000.

Ogata, K., Modern Control Engineering, 3rd ed., Prentice-Hall, Englewood Cliffs, NJ, 1997.

Ogata, K., State Space Analysis of Control Systems, Prentice-Hall, Upper Saddle River, NJ, 1967.

Ogata, K., System Dynamics, 3rd ed., Prentice-Hall, Upper Saddle River, NJ, 1998.

Palm III, W.J., Control Systems Engineering, Wiley, New York, NY, 1986.

Paraskevopoulos, P.N., Modern Control Engineering, Marcel Dekker, Inc., New York, NY, 2003.

Phillips, C.L. and Harbour, R.D., Feedback Control Systems, 4th ed., Prentice-Hall, Upper Saddle River, NJ,
2000.

Power, H.M. and Simpson, R.J., Introduction to Dynamics and Control, McGraw-Hill, New York, NY, 1978.

Raven, F.H., Automatic Control Engineering, 4th ed., McGraw-Hill, New York, NY, 1987.

Richards, R.J., An Introduction to Dynamics and Control, Longman, 1979.

Richards, R.J., Solving Problems in Control, Longman Scientific & Technical, Wiley, New York, NY, 1993.

Rohrs, C.E., Melsa, J.L. and Schultz, D.G., Linear Control Systems, McGraw-Hill, New York, NJ, 1993.

Rowell, G. and Wormley, D., System Dynamics, Prentice-Hall, Upper Saddle River, NJ, 1999.

Schwarzenbach, J. and Jill, K.F., System Modeling and Control, 2nd ed., Arnold, 1984.

Shearer, J.L., Kulakowski, B.T. and Gardner, J.F., Dynamic Modeling and Control of Engineering Systems,
2nd ed., Prentice-Hall, Upper Saddle River, NJ, 1997.

Shinners, S. M., Modern Control System Theory and Design, 2nd ed., Wiley Interscience, New York, NY,
1998.

Sinha, N.K., Control Systems, Holt Rinehart and Winston, New York, NY, 1986.

Smith, O.J.M., Feedback Control Systems, McGraw-Hill, New York, NY, 1958.

Stefano,D.III., Stubberud, A.R. and Williams, I.J., Schaum’s Outline Series Theory and Problems of
Feedback and Control Systems, McGraw-Hill, New York, NY, 1967.

Thompson, S., Control Systems: Engineering and Design, Longman, 1989.

Truxal, J.G., Control System Synthesis, McGraw-Hill, New York, NY, 1955.

190 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

Umez-Eronini, E., System Dynamics and Control, Brooks/Cole Publishing Company, Pacific Grove, CA,
1999.
Vu, H.V., Control Systems, McGraw-Hill Primis Custom Publishing, New York, NY, 2002.
Vukic, Z., Kuljaca, L., Donlagic, D. and Tesnjak, S., Nonlinear Control Systems, Marcel Dekker, Inc., New
York, NY, 2003.
Welbourn, D.B., Essentials of Control Theory, Edward Arnold, 1963.
Weyrick, R.C., Fundamentals of Automatic Control, McGraw-Hill, New York, NY, 1975.

PROBLEMS

P3.1: [Reduction of multiple subsystems]: Reduce the system shown in Fig. P3.1 to a single transfer function,
T(s) = C(s)/R(s) using MATLAB.

R(s)

C(s)

+

–

+

–

G1(s) G3(s)

G8(s)

G2(s) G4(s)

G6(s)

G7(s)

G5(s)

+

+

+
+

+

Fig. P3.1

The transfer functions are given as
G1(s) = 1/(s + 3)
G2(s) = 1/(s2 + 3s + 5)
G3(s) = 1/(s + 7)
G4(s) = 1/s
G5(s) = 7/(s + 5)
G6(s) = 1/(s2 + 3s + 5)
G7(s) = 5/(s + 6)
G8(s) = 1/(s + 8)

P3.2: Obtain the unit-step response plot for the unity-feedback control system whose open loop transfer
function is

()
8

(1)(3)
G s

s s s
=

+ +

Control Systems ——— 191

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

using MATLAB. Determine also the rise time, peak time, maximum overshoot and settling time in the unit-
step response plot.

P3.3: Obtain the unit-acceleration response curve of the unity-feedback control system whose open loop
transfer function is given by

2
()

8(1)

(3)
G s

s

s s
=

+

+
using MATLAB. The unit-acceleration input is defined by

 21() (0)
2

= ≥r t t t

P3.4: The feed forward transfer function G(s) of a unity-feedback system is given by
2

2 2
()

(3)

(5)(4)
G s

k s

s s
=

+

+ +
Plot the root loci for the system using MATLAB.

P3.5: For the unity feedback shown in Fig. P3.5, where

()
(3)(4)(5)

KG s
s s s s

=
+ + +

Obtain the following:
(a) display a root locus and pause
(b) draw a close-up of the root locus where the axes go from –2 to 0 on the real axis and –2 to 2 on

the imaginary axis
(c) overlay the 15% overshoot line on the close-up root locus
(d) allow you to select interactively the point where the root locus crosses the 15% overshoot line,

and respond with the gain at that point as well as all of the closed-loop poles at that gain
(e) find the step response at the gain for 15% overshoot.

R(s) +

–

G(s)
C(s)

Fig. P3.5

P3.6: For the system shown in Fig. P3.6, determine the following using MATLAB
(a) display a root locus and phase
(b) display a close-up of the root locus where the axes go from –2 to 2 on the real axis and –2 to 2

on the imaginary axis
(c) overlay the 0.707 damping ratio line on the close-up root locus
(d) obtain the step response at the gain for 0.707 damping ratio.

192 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

C(s)

)100s10s(

)25s(

2 ++

+

R(s) + K

s(s+3)(s+5)(s+7)

–

Fig. P3.6

P3.7: Write a program in MATLAB to obtain a Bode plot for the transfer function

3 2

4 3 2
(5 51 20 400)()

(12 60 300 250)
s s sG s

s s s s
+ + +

=
+ + + +

P3.8: Write a program in MATLAB for the unity feedback system with G(s) = K/[s(s + 7) (s + 15)] so that
the value of gain K can be input. Display the Bode plots of t, a system for the input value of K. Determine
and display the gain and phase margin for the input value of K.

P3.9: Write a program in MATLAB for the system shown in Fig. P3.9 so that the value of K can be input
(K = 40).

R(s) +

–

)20s4s(s
2

++

)3s(K + C(s)E(s)

Fig. P3.9

(a) Display the closed-loop magnitude and phase frequency response for unity feedback system
with an open-loop transfer function, KG(s).

(b) Determine and display the peak magnitude, frequency of the peak magnitude and bandwidth for
the closed-loop frequency response for the input value of K.

P3.10: Write a program in MATLAB for a unity feedback system with the forward-path transfer function
given by

2
7(3)

()
(4 12)

sG s
s s s

+
=

+ +

(a) Draw a Nichols plot of an open-loop transfer function
(b) The user can read the Nichols plot display and enter the value of Mp

(c) Obtain the closed-loop magnitude and phase plots.
(d) Display the expected values of percent overshoot, settling time and peak time
(e) Plot the closed-loop step response.

Control Systems ——— 193

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

P3.11: For the system shown in Fig. P3.11, write a program in MATLAB that will use an open-loop transfer
function G(s).

R(s) +

–

)3s()1s(s ++

)2s(80 + C(s)

R(s) +

–

40(s+3)(s+5)E(s)

s(s+2)(s+4)(s+6)

System 1

System 2

Fig. P3.11

(a) Obtain a Bode plot
(b) Estimate the percent overshoot, settling time and peak time
(c) Obtain the closed-loop step response.

P3.12: Write a program in MATLAB for a unity-feedback system with

2 2
()

(3)

(5 80)(4 20)
G s

K s

s s s s
=

+

+ + + +

(a) Plot the Nyquist diagram
(b) Display the real-axis crossing value and frequency.

P3.13: Write a program in MATLAB to obtain the Nyquist and Nichols plots for the following transfer
function for k = 30.

()
(1)(2 5)(2 5)

(2)(5)(7)(2 7)(2 7)
G s

k s s i s i

s s s s i s i
=

+ + + + −

+ + + + + + −

P3.14: Write a program in MATLAB for a unity feedback system with the forward-path transfer function
given by

2
7(3)

()
(4 12)

sG s
s s s

+
=

+ +

(a) Draw a Nichols plot of an open-loop transfer function
(b) The user can read the Nichols plot display and enter the value of Mp

(c) Obtain the closed-loop magnitude and phase plots.
(d) Display the expected values of percent overshoot, settling time and peak time
(e) Plot the closed-loop step response.

194 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

P3.15: For a unit feedback system with the forward-path transfer function

()
(3)(10)

KG s
s s s

=
+ +

and a delay of 0.5 second, estimate the percent overshoot for K = 40 using a second-order approximation.
Model the delay using MATLAB function pade(T, n). Determine the unit step response and check the
second-order approximation assumption made.

P3.16: For the control system shown in Fig. P3.16:
(a) plot the root loci of the system
(b) find the value of gain K such that the damping ratio ξ of the dominant closed-loop poles is 0.5
(c) obtain all the closed-loop poles using MATLAB
(d) plot the unit-step response curve using MATLAB.

Input Output
s(s + 5s+ 7)2

K

Fig. P3.16

P3.17: Figure P3.17 shows a position control system with velocity feedback. What is the response c(t) to
the unit step input?

s(s + 3)

80
1/s

0.15

–

+

–

+R(s) C(s)

Fig. P3.17

P3.18: The open-loop transfer function G(s)H(s) of a control system is

4 3 22() ()
8.25 4(0.5)(0.5 8)

K KG s H s
s s s ss s s s

= =
+ + ++ + +

Plot the root loci for the system using MATLAB.

P3.19: Design a compensator for the system shown in Fig. P3.19 such that the dominant closed-loop poles
are located at s = –1 ± j 3 .

Gc (s) 2s

1+

–

Fig. P3.19

Control Systems ——— 195

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

P3.20: For the control system shown in Fig. P3.20:
(a) design a PID control Gc(s) such that the dominant closed-loop poles located at s = –1 ± j1.
(b) select a = 0.6 for the PID controller and find the values of K and b.
(c) root-locus plot using MATLAB.

K s
)bs)(as(++ 1

)8.0s2+
C(s)

+

–
Gc(s)

Plant G(s)PID controller

R(s)

Fig. P3.20

P3.21: Draw a Bode diagram of the open-loop transfer function G(s) of the closed-loop system shown in
Fig. P3.21 and obtain the phase margin and gain margin.

R(s) 18(s + 1)

s(s +3)(s + 2s + 9)2

C(s)

Fig. P3.21

P3.22: A block diagram of a process control system is shown in Fig. P3.22. Find the range of gain for
stability.

1s +

sKe

Fig. P3.22

P3.23: For the control system shown in Fig. P3.23:
(a) draw a Bode diagram of the open-loop transfer function
(b) find the value of the gain K such that the phase margin is 50º
(c) find the gain margin of the system with the gain obtained in (b).

)2s(s

12

+7.0s

3.0s
K

+

++

–

Fig. P3.23

P3.24: Obtain the unit-step response and unit-ramp response of the following system using MATLAB.

1 1

2 2

3 3

5 25 5 1
1 0 0 0
0 1 0 0

x x
x x u
x x

− − −      
      = +      
            

196 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

 y = [0
1

2

3

25 5] [0]
x
x u
x

 
  + 
  

P3.25: For the mechanical system shown in Fig. P3.25, the input and output are the displacement x and y
respectively. The input is a step displacement of 0.4 m. Assuming the system remains linear throughout the
transient period and m = 3 kg, c = 3 N-s/m, and k = 1 N/m, determine the response of the system using
MATLAB.

k c

m

y

x

Fig. P3.25

P3.26: Using MATLAB, write the state equations and the output equation for the phase-variable
representation for the following systems in Fig. P3.26.

7s3 +

s + s + 2s +7s +54 3 2

(a)

R(s) C(s)

s + 7s + 8s + 6s5 4 3 2

s + 3s + 10s + 5s + 64 3 2

(b)

C(s)R(s)

Fig. P3.26

P3.27: Determine the transfer function and poles of the system represented in state space as following
using MATLAB.

9 5 2 2
4 1 0 5 ()

3 5 7 7
x x u t

−   
   = − +   
   −   

 y = [1 7 –2] x; x(0)
0
0
0

 
 =  
  

P3.28: Obtain the root locus diagram of a system defined in state space using MATLAB. The system
equations are

and andx Ax Bu y Cx Du u r y= + = + = −
where r is the input and y is the output.

Control Systems ——— 197

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

The matrices A, B, C, and D are:

0 1 0 0
0 0 1 1

150 50 15 15
A B

   
   = =   
   − − − −   

 []1 0 0C =

 []0D =

P3.29: Obtain the Bode diagram of the following system using MATLAB.

1 1

2 2

0 1 0
30 7 30

x x
u

x x
      

= +      −      

 [] 1

2

1 0
x

y
x

 
=  

 
The input of the system is u and the output is y.

P3.30: A control system is defined by

1 1 1

2 2 2

1 2 1 1
7.5 0 1 0

x x u
x x u

− −        
= +        

        

1 1 1

2 2 2

1 0 0 0
0 1 0 0

y x u
y x u

        
= +        

        
Write a MATLAB program to obtain the following plots:

(a) two Nyquist plots for the input u1 in one diagram
(b) two Nyquist plots for the input u2 in one diagram.

P3.31: Obtain the unit-ramp response of the system defined by

1 1

2 2

0 2 0
3 1 2

x x
u

x x
      

= +      − −      

 [] 1

2
1 0

x
y

x
 

=  
 

where u is the unit-ramp input. Use lsim command to obtain the response.

P3.32: Obtain the response curves y(t) using MATLAB for the following system.

1 1

2 2

1 1 0
1 0 2

x x
u

x x
−      

= +      −      

1

2
[1 0]

x
y

x
 

=  
 

198 ——— MATLAB: An Introduction with Applications

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

The input u is given by:
(a) u = unit-step input
(b) u = e–t

The initial state x(0) = 0.

P3.33: Plot the step response using MATLAB for the following system represented in state space, where
u(t) is the unit step.

3 2 0 0
0 7 1 1 ()
0 0 4 1

x x u t
−   

   = − +   
   −   

 []0 1 1 ;y x=

 x (0) =
0
0
0

 
 
 
  

P3.34: Diagonalize the following system using MATLAB.

10 5 7 1
15 4 12 2

8 3 6 3
x x r

− −   
   = − +   
   − −   

[]1 – 2 3y x=

P3.35: Determine to unit-ramp response of the system defined by

1 1

2 2

0 2 0
3 3 2

x x
u

x x
      

= +      − −      

[] 1

2
1 0

x
y

x
=  

  
using MATLAB where u is the unit-ramp input. Use lsim command in MATLAB.

P3.36: Obtain the unit-impulse response of the following system using MATLAB

1 1

2 2

0 1 0
1 2 1

x x
u

x x
      

= +      − −      

[] []1

2

1 1 0
x

y u
x

 
= + 

 
.

P3.37: A control system is defined by

1

2

3 3

1

2

1 3 3 3
0 2 1 0
2 0 1 1

x x
x x u
x x

− − −      
      = − +      
      −      

Control Systems ——— 199

F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09

 []
1

2

3

1 2 0
x

y x
x

 
 =  
  

Determine the controllability and observability of the system using MATLAB.

P3.38: Determine the eigenvalues of the following system using MATLAB.

0 1 0 0
0 1 5 0
2 1 3 1

x x u
   
   = − +   
   −   

 y = [0 0 1]x

P3.39: For the following path of a unity feedback system in state space representation, determine if the
closed-loop system is stable using the Routh-Hurwitz criterion and MATLAB.

0 1 0 0
0 1 5 0
3 4 5 1

x x u
   
   = +   
   − − −   

 y = [0 1 1]x

P3.40: Consider the differential equation system given by

4 3 0, (0) 0.2 and (0) 0.1y y y y y+ + = = =

Find the state space equation for the system. Also, obtain the response y(t) of the system subject to the
given initial conditions using MATLAB.

❍ ❍ ❍

This page
intentionally left

blank

4.1 INTRODUCTION

In this chapter, we introduce the solution of system of linear algebraic equations using such methods as
the Gauss elimination method, LU decomposition method, Choleski’s decomposition, Gauss-Seidel method,
Gauss-Jordan method and Jacobi method. A procedure based on Jacobi rotations, the Householder
factorization, symmetric matrix eigenvalue problems, Jacobi method, Householder reduction to tridiagonal
form, Sturn sequence and QR method are presented for the treatment of algebraic eigenvalue problems.
Numerical examples using MATLAB are provided to illustrate the procedures.

4.2 SYSTEM OF LINEAR ALGEBRAIC EQUATIONS

Here, we consider the solution of n linear, algebraic equations in n unknowns. A system of algebraic equations
has the form

11 12 1 1 1

21 22 2 2 2

1 2

n

n

n n nn n n

A A A x b
A A A x b

A A A x b

     
     
     =
     
     
          

...(4.1)

where the coefficients Aij and the constants bj are known, and xi represents the unknowns.
Equation (4.1) is simply written as

Ax = b

4.3 GAUSS ELIMINATION METHOD

Consider the equations at some instant during the elimination phase.

444C
H

A
P

T
E

R

Numerical Methods

202 ——— MATLAB: An Introduction with Applications

11 12 13 1 1 1 1

22 23 2 2 2 2

33 3 3 3 3

0
0 0

0 0 0

0 0 0

0 0 0

k j n

k j n

k j n

kk kj kn k

ik ij in i

nk nj nn n

A A A A A A b
A A A A A b

A A A A b

A A A b

A A A b

A A A b

   
   
   
   
   
   
   
   
   
   
  
  
      

pivot row

row being transformed

←

←



...(4.2)

In the above Eq.(4.2), the first k rows of A have already been transformed to upper triangular form. Hence,
the current pivot equation is the k th equation and all the equations below it are still to be transformed.
Let the ith row be a typical row below the pivot equation that is to be transformed. We obtain this by
multiplying the pivot row by λ = Aik/Akk and subtracting it from the i-th row. Then

ij ij kjA A A← − λ j = k, k + 1, …, n ...(4.3)

i i kb b b← − λ
In order to transform the entire coefficient matrix to upper triangular form, k and i in Eqs. (4.3) and (4.4)
should have the ranges k = 1, 2, …, n–1 (choose the pivot row), i = k + 1, k + 2, …, n (selects the row to
be transformed).
The augmented coefficient matrix after Gauss elimination has the form

[]

11 12 13 1 1

22 23 2 2

33 3 3

0
0 0/

0 0 0

n

n

n

nn n

A A A A b
A A A b

A A bA b

A b

   
   
   
   =
   
   
      

The last equation, Ann xn = bn, is solved first, giving
 /n n nnx b A=

Now conducting the back substitution, we have the solution as

1

1n

k k kj j
kkj k

x b A x
A= +

 
= − 
 

∑ k = n – 1, n – 2, … ...(4.4)

4.4 LU DECOMPOSITION METHODS

Any square matrix A can be written as a product of a lower triangular matrix L and an upper triangular matrix
U.

A = LU

Numerical Methods ——— 203

The process of computing L and U for a given A is known as LU decomposition or LU factorization.
The given equations can be rewritten as LUx = b and using the notation Ux = y, then

Ly = b
which can be solved for y by forward substitution.
Hence, Ux = y which gives x by the back substitution process.

4.5 CHOLESKI’S DECOMPOSITION

Choleski’s decomposition A = LLT requires that A to be symmetric. The decomposition process involves
taking square roots of certain combinations of the elements of A.
A typical element in the lower triangular portion of LLT is of the form,

 () 1 1 2 2
1

...
j

T
i j i j ij jj ik jkij

k
LL L L L L L L L L i j

=
= + + + = ≥∑

Equating this term to the corresponding element of A gives

1

j

ij ik jk
k

A L L
=

= ∑ i = j, j + 1, …, n j = 1, 2, …, n ...(4.5)

Taking the term containing Lij outside the summation in Eq.(4.5), we obtain

1

1

j

ij ik jk ij jj
k

A L L L L
−

=
= +∑

If i = j, then the solution is

1

2

1

j

ij ij jk
k

L A L
−

=
= −∑ j = 2, 3, …, n

or a non-diagonal term, we get

1

1

j

ij ij ik jk jj
k

L A L L L
−

=

 
= −  

∑ j = 2, 3, …, n–1 i = j + 1, j + 2, …, n

4.6 GAUSS-SEIDEL METHOD

The equations Ax = b can be written in scalar form as

1

n

ij j i
j

A x b
=

=∑ i = 1, 2, …, n

Extracting the term containing xi from the summation sign gives

1

n

ii i ij j i
j
j i

A x A x b
=
≠

+ =∑ i = 1, 2, …, n

Solving for xi, we obtain

204 ——— MATLAB: An Introduction with Applications

1

1 n

i i ij j
ii j

j i

x b A x
A =

≠

 
 = − 
  

∑ i = 1, 2, …, n

Hence, the iterative scheme is

1

1 n

i i ij j
ii j

j i

x b A x
A =

≠

 
 ← − 
  

∑ i = 1, 2, …, n

We start by choosing the starting vector x. The procedure for Gauss-Seidel algorithm is summarized here
with relaxation:

(a) conducting k iterations with ω = 1 (or k = 10). After the kth iteration record ∆x(k).
(b) carryout additional p iterations (p ≥ 1) and record ∆x(k + p) after the last iteration.
(c) perform all subsequent iterations with ω = ωopt, where

()1/() ()

2

1 1 /
opt pk p kx x+

ω =
+ − ∆ ∆

4.7 GAUSS-JORDAN METHOD

Let us consider a system of linear algebraic equations, in the matrix form

[A]{x} = {b}
where, for simplification, [A] is of order 3 × 3. The augmented matrix is

11 12 13 1

21 22 23 2

31 32 33 3

a a a b
a a a b
a a a b

 
 
 
  

...(4.6)

The solution of equation (4.6) is

 [I]{x} = [A]–1{b}
where [I] is the identity matrix. The augmented matrix is

1

2

3

1 0 0
0 1 0
0 0 1

α 
 α 
 α 

...(4.7)

In the Gauss-Jordan method the augmented matrix (4.6) is converted to the augmented matrix (4.7) by a
series of operations similar to the Gaussian elimination method. In the Gaussian elimination method an
upper triangular matrix is derived while in the Gauss-Jordan method an identity matrix is derived.

Numerical Methods ——— 205

4.8 JACOBI METHOD

This is an iterative technique solving with an assumed solution vector and successive refinement by iteration.
The system of equations for consideration is

a11x1 + a12x2 + a13x3 … + a1nxn = b1

a21x1 + a22x2 + a23x3 … + a2nxn = b2

… … … …
… … … …
ai1x1 + ai2x2 + ai3x3 … + ainxn = bi

… … … …
an1x1 + an2x2 + an3x3 … + annxn = bn ...(4.8)

Rewriting the above equations
x1 = (b1 – a12x2 – a13x3 – … – a1nxn)/a11

x2 = (b2 – a21x1 – a23x3 – … – a2nxn)/a22

… … … …
xi = (bi – ai1xi – ai2x2 … aii–1ni–1 – aii+1xi+1… ainxn)/aii

… … … …
xn = (bn – an1x1 – an2x2 … ann–1xn–1)/ann ...(4.9)

This procedure is valid only if all the diagonal elements are non zero. The equations are to be rearranged
suitably to avoid the non zero elements in the main diagonal.

Substituting the values of r
ix any stage in the iterative process on the right hand side of equations

(4.9) gives the values to the next stage, i.e., 1r
ix + . In other words, the scheme is given by the system of

equations (4.10) with a superscript r on the right side and a superscript r + 1 on the left hand side. Rewriting
the equations,

1
1 1 12 2 13 3 1 11...() /r r r r

n nx b a x a x a x a+ = − − − −
1

2 2 21 1 23 3 2 22...() /r r r r
n nx b a x a x a x a+ = − − − −

… … … …
1

1 2 2 1 1 1 1...(...) /r r r r r r
i i i i i ii i ii i in n iix b a x a x a x a n a x a+

− − + += − − − −
… … … …
… … … …

1
1 1 2 2 , 1 1...() /r r r r

n n n n n n n nnx b a x a x a x a+
− −= − − − ...(4.10)

The sequence x0, x1, x2, ... generated by the equations of (4.10) gives a sequence which converges to the
solutions vector x which satisfies the set of equations given in Eq.(4.8), i.e., [A]{x} = {b}.
Equation (4.10) in the matrix form is as follows

xr + 1 = {V} + [B]{x}r ...(4.11)

206 ——— MATLAB: An Introduction with Applications

where

1

11

2

22

{ }
i

ii

n
nn

b
a

b
a

V
b
a

b
a

 
 
 
 
 
 
  =  
 
 
 
 
 
 
  

and

12 11 13 11 1 11

21 22 23 22 2 22

1 2 1

1 , 1

0 / / /
/ 0 / /

[]
/ / 0 / /

/ / 0

n

n

i ii i ii ii ii ii nn

n nn n n nn

a a a a a a
a a a a a a

B
a a a a a a a a

a a a a

+

−

 
 
 
 

=  
 
 
 
  

The system of equations given in Eq. (4.8) can be written in the form

{x} = {v} + [B]{x} ...(4.12)

Now we can construct expressions for x(1)... x(2)... in terms of x(0)

{x}1 = {v} + [B]x0

{x}2 = {v} + [B]xl

= {v} + [B]({v} + [B]x(0))
= {v} + [B]({v} + [B]2x0)

{x}3 = {v} + [B]{x}(2)

= {v} + [B]({v} + [B]{v} + [B]2x(0))
= {v} + [B]{v} + [B]2{v} + [B]3x0

Generalizing
 x(r) = {v} + [B]{v} + [B]2{v} + ... + [B]r–1{v} + [B]rx(0)

Finally
 x(r) = ([I] + [B] + [B]2 + [B]3 ... + [B]r–1){v} + [B](r)x(0) ...(4.13)

Here, we notice that ([I] + [B] + [B]2 + [B]3 ... [B]r–1) is a matrix geometric progression. It is possible to
obtain the sum of r terms of the above expressions. Let us denote

 sr = [I] + [B] + [B]2 + [B]3 ... + [B]r–1

 = ([I] – [B]r)([I] – [B])–1

Numerical Methods ——— 207

provided ([I] – [B]) is non-singular. Here we see that as r → ∞ the limit of the sum exists if [B]r → 0, in this
case sr → s = ([I] – [B])–1.

Hence in Eq.(4.13) xr will converge to the vector {x} provided [B]r → 0 as r → ∞. Then the vector {x}
can be written as

{x} = ([I] – [B]–1{v})
This means that ([I] – [B]) {x} = (v) and hence {x} = [B]{x} + {v}. This is just the equation (4.12).

4.9 THE HOUSEHOLDER FACTORIZATION

This method transforms the matrix into an upper triangular form by making use of reflection matrices; we
have

[PH]T[A]
where

[PH]T = [Pn–1]T … [P2]T[P1]T

The [SH] is an upper triangular matrix. The matrices [Pi]T, i = 1, ..., n – 1 are reflection matrices computed in
such a way that [Pi]T reduce the subdiagonal elements in column i of the coefficient matrix.
Then we have

1[] 0
[]

0 []
i

i
i

I
P T

P
− 

=  
 

here [Ii–1] is the identity matrix of size i – 1

and []iP = 1 – θ{w} {w}T;

where 2
{ } { }T

i iw w
θ =

Here []iP is a symmetric matrix and {wi} is a vector of size n – i + 1. The vector {wi} will be chosen as
explained later.

Because []iP is symmetric, [Pi]T = [Pi].

Now solution of the equation [A]{x} = {b} can be obtained by the following equation
 [A] = [PH][SH]

where {v} = [SH] {x}.
The vector {v} is obtained as {v}= [PH]T{b}.
To explain the transformation, as a first step let us compute the [P1],

i.e., []A = [P1][A] ...(4.14)

and [A] = [a1 ; A1]
where a1 is the first column of [A]. Then, we have

 [P1] = I – θ{w1}{w1}T

208 ——— MATLAB: An Introduction with Applications

Here we have the first element of the vector [P1][a1] to be non zero since the sub-diagonal elements of the
column 1 of matrix []A is required to be zero.

Now choose the vector {w1} such that it must fulfill the condition
(I – θ{w1}{w1}T)[a1] = ± ||a1||2 e1 ...(4.15)

where e1 is a non-dimensional unit vector from Eq. (4.15).
 [a1] – θ{w1} = ± ||a1||2 e1

where θ is a constant and equal to e{w1}T{w1}.
Let us set θ = 1.0, then we obtain

{w1} = [a1] + sign (a11) ||a1||2 e1

From equation (4.14) we can get
{v1}T = {w1}T[A]

hence, []A = [A] – θ({w1}{v1}T)

The factorization is explained in the example.

4.10 SYMMETRIC MATRIX EIGENVALUE PROBLEMS

The standard matrix eigenvalue problem is
 Ax = λx ...(4.16)

where A is a given n × n matrix. The objective here is to find the scalar λ and the vector x.
Equation (4.16) can be rewritten as

() 0A I x− λ =

A non-trivial solution exists only if

 0A I− λ = ...(4.17)
Expansion of Eq.(4.17) gives the polynomial equation called the characteristic equation.

1
1 2 1... 0n n

n na a a a−
+λ + λ + + λ + =

which has the roots λi, i = 1, 2, …, n, called the eigenvalues of the matrix A. The solutions of xi of (A – λiI)
x = 0 are known as eigenvectors.

4.11 JACOBI METHOD

Applying the transformation x = Px* in Eq.(4.16) where P is a non-singular matrix, we can write
1 1* *P APx P Px− −= λ

or * * *A x x= λ ...(4.18)
where A* = P–1AP.
Matrices that have the same eigenvalues are deemed to be similar and the transformation between them is
called a similarity transformation. Diagonalizing A*, Eq.(4.18) can be written as

Numerical Methods ——— 209

* *
11 1

* *
22 2

* *

0 0 0
00 0

00 0 nn n

A x

A x

A x

   − λ       − λ     =                − λ   

...(4.19)

Solving Eq.(4.19), we obtain

 * * *
1 11 2 22, , ... n nnA A Aλ = λ = λ =

* * *
1 2

1 0 0
0 1 0

0 0 1

nx x x

     
     
     = = =
     
     
          

or * * * *
1 2 nx x x x I = = 

Therefore, the eigenvector matrix of A is
 *X Px PI P= = =

The transformation matrix P is the eigenvector matrix of A and the eigenvalues of A are the diagonal terms
of A*.

Jacobi Rotation Matrix:
Consider the special transformation in the plane rotation

 *x Rx=

where

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

k

k
c s

R

s c

 
 
 
 
 
 
 =
 
 
 − 
 
   

R is called the Jacobi rotation matrix and R–1 = RT.

Also 1* TA R AR R AR−= =
The matrix A* has the same eigenvalues as the original matrix A and it is also symmetric.

Jacobi Diagonalization:
The Jacobi diagonalization procedure uses only the upper half of the matrix and is summarized below:
(a) Obtain the largest absolute value off-diagonal element Ak in the upper half of A.
(b) Compute φ, t, c and s

210 ——— MATLAB: An Introduction with Applications

2
kk

k

A A
A
−

φ =

1

2
t =

φ

 2

1

1
c

t
=

+
 s t c=

(c) Compute τ from
1

s
c

τ =
+

(d) Modify the elements in the upper half of A:
*
kk kk kA A t A= −
*

kA A t A= −
* * 0k kA A= =

()* * , ,ki ik ki i kiA A A s A A i k i= = − + τ ≠ ≠

()* * , ,i i i ki iA A A s A A i k i= = + − τ ≠ ≠

where
1

s
c

τ =
+

(e) Update the matrix P

()*
ik ik i ikP P s P P= − + τ

()*
i i ik iP P s P P= + − τ

Repeat the procedure until the Ak < ∈, where ∈ is the error tolerance.

4.12 HOUSEHOLDER REDUCTION TO TRIDIAGONAL FORM

The computational procedure is carried out with i = 1, 2, …, n – 2 as described below:
(a) Define A′ as the (n – i) × (n – i) lower-right hand portion of A

(b) Let 1, 2,[... ,]T
i i i i n ix A A A+ +=

(c) Compute |x|. Let k = |x| if x1 > 0 and k = –|x| if x1 < 0

(d) Let u = 1 2 3[...]Tn ik x x x x −+

(e) Compute 2| | / 2H u=
(f) Compute /V A u H= ′
(g) Compute / 2Tg u v H=
(h) Compute = −w V gu
(i) Compute the transformation A ←A′ – wTu – uTw
(j) Set Ai,i +1 = Ai +1, i = –k

Numerical Methods ——— 211

4.13 STURN SEQUENCE

Consider a symmetric tridiagonal matrix. Its characteristic polynomial can be computed with 3(n – 1)
multiplications as described below:

()

1 1

1 2 2

2 3 3

3 4

1

0 0 0
0 0

0 0
0 0 0

0 0 0

n

n n

d c
c d c

c d c
P A I

c d

c d−

− λ 
 − λ 
 − λ

λ = − λ =  − λ 
 
 

− λ  

0 () 1P λ =

1 1()P dλ = − λ
2

1 1 2() = () () (), 2,3,...,i i i i iP d P c P i n− − −λ − λ λ − λ =

The polynomials P0(λ), P1(λ), …, Pn(λ) form a sturn sequence. The number of sign changes in the sequence
P0(a), P1(a), …, Pn(a) is equal to the number of roots of Pn(λ) that are smaller than a. If a member Pi(a) of
the sequence is zero, its sign is to be taken opposite to that of Pi–1(a).

4.14 QR METHOD

In the preceding section, we have described the Jacob’s method which is a reliable method but it requires
a large computation time and is valid only for real symmetric matrices. The QR method on the other hand
is numerically extremely stable and is applicable to a general matrix. This method also provides a basis for
developing a general purpose procedure for determining the eigenvalues and eigenvectors.

The method utilizes the fundamental property that a real matrix can be written as

 [] [][]A Q U=
where [Q] is orthogonal and [U] is upper triangular. This is contrary to the decomposition in the form [L][U]
where [L] is the unit lower matrix and [U] is the upper triangular matrix. The property can be proved as
follows.
As in Jacobi’s method we introduce here the rotations matrix and denote it by [R.(p, q, θ)] to indicate the
rows that contain the non-zero, off-diagonal elements. Note that [R] is orthogonal.

()

1
1

cos sin
1

, ,
1

sin cos
1

1

p

R p q

q

p q

 
 
 
 θ θ
 
  θ  =   
 

− θ θ 
 
 
  

212 ——— MATLAB: An Introduction with Applications

If any vector {x} is multiplied by [R.(p, q, θ)] such that y = [R]{x}, then
cos sinp pp p pq q p qy r x r x x x= + = θ + θ

and sin cosq qp p qq q p qY r x r x x x= + = − θ + θ

i.e., yi = xi if i ≠ p or q. Therefore it is necessary to select θ such that yp or yq is equal to zero. It should also
be noted that if xp = xq = 0 then yp = yq = 0. If we write

[] ()(1) (2) ()... nA x x x=

then () [] ()(1) (2) (), , ... nR p q A y y y θ  = 
An element in either pth row or qth row is reduced by a proper choice of θ. Thus, all the elements in the
first column except the first element can be made zero by suitable values of θ, and they remain zero even
after multiplying with [R]. Similarly for all other columns elements are made zero for the elements below the
diagonal elements by proper choice of θ values. Thus, we obtain an upper triangular matrix by forming the
product

 [] () () () ()[], 1 , 2 3,1 2,1, 1, , 2, ... 3,1, 2,1,n n n nu R n n R n n R R A− −= − θ − θ θ θ

 () []
1

1 1
, ,

n n

ij
j i j

R i j A
−

= = +

 
= θ 
 
∏ ∏

Since [R] is an orthogonal matrix, the products of [R] are also orthogonal. Hence, we have [U] = [S][A]
where [S] is orthogonal an d[U] is upper triangular. Since [S] is orthogonal, we have [A] = [S]–1[U] = [S]T[U].
If [Q] = [S]T, then [A] = [Q][U].
We can construct a sequence of matrices [A0], [A1][A2]… where

 [] [] [][] [][] [][]0 0 0 1 1, k k k kA A Q A Q A Q A− −= = =

for all values of k ≥ 1. That is, we start with [A0] = [A] and put it in the form [Q0][U0] to obtain [Q0] and [U0]
and then obtain [A1] which is equal to the product of [U0][Q0] in reverse order. Repeating this procedure,
we can obtain any number of sequence.

[A] = [A0] = [Q0][U0] determines [Q0] and [U0]
[A1] = [U0][Q0] determines [A1]

= [Q1][U1] determines [Q1] and [U1]
[A2] = [U1][Q1] determines [A2]

= [Q2][U2] determines [Q2] and [U2]
[Ak] = [Uk–1][Qk–1] determines [Ak]

= [Qk][Uk] determines [Qk] and [Uk]

From the above sequence, we can show that the product Q0Q1Q2…Qk converges as k → ∞. Then [Ak]
converges to an upper triangular matrix with the eigenvalues of [A] as its diagonal elements. This can be
proved as follows. We have

[] [][] [][]1 1k k k k kA Q U U Q− −= = ...(4.20)

 [] [][]1 1 1k k kA Q U− − −= ...(4.21)

Numerical Methods ——— 213

From which

[] [] []1
1 1 1k k kU Q A−

− − −= ...(4.22)

Substituting Eq. (4.22) in Eq.(4.20), we get

 [] [] [][]1
1 1 1k k k kA Q A Q−

− − −=

Hence [Ak] is similar to [Ak–1]. This implies that [Ak] is similar to [A0] = [A]. Therefore, it has the same
eigenvalues as [A]. Also

[] [] [][]1
1 2 2 2k k k kA Q A Q−

− − − −=

Thus [] [] [] [] [][][] []1 1 1
1 1 0 0 1 ...k k k kA Q Q Q A Q Q Q− − −

+ −= [] [][]1
k kP A P−=

where [] [][] []0 1 ...k kP Q Q Q=

If k → ∞[Pk] exists and we denote it by [P].

Then [] []() []() []() [] [] []1 1 1
1 1lim lim lim limk k k k kk k k k

Q P P P P P P I− − −
− −→∞ →∞ →∞ →∞

= = = =

Here, we have two limiting conditions

1. [] [] [][]1
1 1k k kA P A P−

− −=

which means

 [] []()[] []() [] [][]1 1
1 1lim lim limk k kk k k

A P A P P A P− −
− −→∞ →∞ →∞

= =

Therefore, the limit [Ak] is similar to [A] and hence has the same eigenvalues as [A].

2. [] [][]k k kA Q U=

that is [] []() []()lim lim limk k kk k k
A Q U

→∞ →∞ →∞
=

here we have

 [] []lim kk
Q I

→∞
=

which results in

 [] []lim limk kk k
A U

→∞ →∞
=

Since every [Uk] is an upper triangular matrix, the limit of [Ak] is also an upper triangular matrix.
The accuracy of this method mainly depends on the effectiveness of the algorithm used for decompositions
of [Ak] into [Qk][Uk]. The limit k → ∞ can exist for large size problems.

214 ——— MATLAB: An Introduction with Applications

4.15 EXAMPLE PROBLEMS AND SOLUTIONS

Example E4.1: Use Gaussian elimination scheme to solve the set of equations.
 2x1 + x2 – 3x3 = 11
4x1 – 2x2 + 3x3 = 8
–2x1 + 2x2 – x3 = –6

Solution:
>> A = [2 1 –3;4 –2 3; –2 2 –1];

>> b = [11;8; –6];

>> format long

>> [x,det] = gauss(A,b)

x =

3

–1

–2

det = –22

function [x, det] = gauss(A, b)

% Solves A*x = b by Gauss elimination and finds det(A)

% USAGE: [x, det] = gauss(A,b)

if size(b, 2) > 1; b = b’; end % b column vector

n = length(b);

for k = 1:n – 1 % Elimination

for i = k + 1:n

if A (i, k) ~ = 0

lambda = A(i, k)/A(k, k);

A(i, k +1:n) = A(i, k +1:n) – lambda * A(k, k + 1:n);

b(i) = b(i) – lambda*b(k);

end

end

end

if nargout == 2; det = prod(diag(A)); end

for k = n: – 1:1 % Back substitution

b(k) = (b(k) – A(k, k + 1:n)*b(k + 1:n))/A(k, k);

end

x = b;

Numerical Methods ——— 215

MATLAB Solution [Using built-in function]:
>> A = [2 1 –3; 4 –2 3; –2 2 –1];

>> B = [11; 8; –6];

>> x = inv(A)*B

>> x = A\B

x =
3
–1
–2

>> x = inv(A)*B
x =
3.0000
–1.0000
–2.0000

Example E4.2: Using Gaussian elimination method, solve the system of linear equations:
2x1 + x2 + x3 – x4 = 10

x1 + 5x2 – 5x3 + 6x4 = 25
–7x1 + 3x2 – 7x3 – 5x4 = 5

x1 – 5x2 + 2x3 + 7x4 = 11
Solution:
EDU >> Run_pr_E4.2
A =

2 1 1 –1
1 5 –5 6

 –7 3 –7 –5
1 –5 2 7

B =
10
25
5
11

x =
25.3587

–19.6143
–28.9058
–7.8027

det =
–223.0000
x =

25.3587
–19.6143
–28.9058
–7.8027

216 ——— MATLAB: An Introduction with Applications

Run_pr_E4.2.m
A = [2 1 1 –1;1 5 –5 6; –7 3 –7 –5; 1 –5 2 7];

b = [10;25;5;11];

[x, det] = gauss(A,b)

x = A\b

gauss.m
function [x,det] = gauss(A,b)
% Solves A*x = b

if size(b,2) > 1; b = b’; end

n = length(b);

for k = 1:n–1

for i= k+1:n

if A(i,k) ~ = 0

lambda = A(i,k)/A(k,k);

A(i,k+1:n) = A(i,k+1:n) – lambda*A(k,k+1:n);

b(i)= b(i) – lambda*b(k);

end

end

end

if nargout == 2; det = prod(diag(A)); end

for k = n:–1:1

b(k) = (b(k) – A(k,k+1:n)*b(k+1:n))/A(k,k);

end

x = b;

MATLAB Solution [Using built-in function]:

>> A = [2 1 1 –1;1 5 –5 6;–7 3 –7 –5;1 –5 2 7];

>> B = [10;25;5;11];

>> x = A\B

x =

25.3587

–19.6143

–28.9058

–7.8027

>> x = inv(A)*B

x =

25.3587

Numerical Methods ——— 217

–19.6143

–28.9058

–7.8027

Example E4.3: Tridiagonalize the given matrix [A] =

4 3 2 1
3 8 6 12
2 6 8 3
1 2 3 4

 
 
 
 
 
  

by Householder’s method.

Solution:
The following program is used
%Input – A is an nxn symmetric matrix

A = [4 3 2 1; 3 8 6 12;2 6 8 3; 1 2 3 4];

%Output – T is a tridiagonal matrix

[n,n] = size(A);

for k = 1:n – 2

 s = norm(A(k +1:n, k));

 if (A(k + 1, k)<0)

 s = –s;

 end

 r = sqrt(2*s*(A(k +1, k) + s));

 W(1:k) = zeros(1,k);

 W(k + 1) = (A(k + 1,k) + s)/r;

 W(k + 2:n) = A(k + 2:n, k)’/r;

 V(1:k) = zeros(1, k);

 V(k+1:n) = A(k + 1:n, k + 1:n)*W(k + 1:n)’;

 c = W(k + 1:n)*V(k + 1:n)’;

 Q(1:k) = zeros(1, k);

 Q(k + 1:n) = V(k+1:n) – c*W(k + 1:n);

 A (k + 2: n, k) = zeros(n – k – 1,1);

 A (k, k + 2: n) = zeros (1, n – k – 1);

 A(k +1, k) = –s;

 A(k, k + 1) = –s;

 A(k + 1:n, k + 1:n) =A(k + 1:n, k + 1:n) – 2*W(k + 1:n)’*Q(k + 1:n) –2*Q(k +
1:n)’*W(k + 1:n);

end

T=A;

fprintf(‘Matrix in tridiagonal form is\n’);

disp(T)

218 ——— MATLAB: An Introduction with Applications

Matrix in tridiagonal form is
4.0000 –3.7417 0 0
–3.7417 14.5714 2.6245 0
0 2.6245 2.6878 –0.7622
0 0 –0.7622 2.7407

Example E4.4: Use the QR factorization method with Householder transformation to calculate the eigen-
values and the corresponding eigenvectors of the matrix [K], where

5 4 1 0
4 6 4 1

[]
1 4 6 4
0 1 4 5

K

− 
 − − =
 − −
 −  

Solution:
MATLAB Solution [Using built-in function]:
>> A = [5 – 4 1 0; – 4 6 – 4 1; 1– 4 6 – 4; 0 1 –4 5];

>> kmax = 200;

>> [eigs,A] = eig_QR(A, kmax)

eigs =

13.0902

6.8541

1.9098

0.1459

A =

13.0902 0.0000 0.0000 –0.0000

–0.0000 6.8541 0.0000 0.0000

0.0000 –0.0000 1.9098 0.0000

0 0 –0.0000 0.1459

>> A = [5 – 4 1 0; – 4 6 – 4 1;1 – 4 6 – 4;0 1 – 4 5];

>> [Q,d] = eig(A)

Q =

– 0.3717 – 0.6015 0.6015 – 0.3717

– 0.6015 – 0.3717 – 0.3717 0.6015

– 0.6015 0.3717 – 0.3717 – 0.6015

– 0.3717 0.6015 0.6015 0.3717

d =

0.1459 0 0 0

0 1.9098 0 0

0 0 6.8541 0

0 0 0 13.0902

Numerical Methods ——— 219

function [eigs,A] = eig_QR(A,kmax)

%Find eigenvalues by using QR factorization

if nargin<2, kmax = 200; end

for k = 1:kmax

[Q,R] = qr(A); %A = Q*R; R=Q’*A=Q^–1*A

A = R*Q; %A = Q^–1*A*Q

end

eigs = diag(A);

function [Q,R] = qr_my(A)

%QR factorization

N = size(A,1); R=A; Q = eye(N);

for k =1:N – 1

H = Householder(R(:,k), k);

R = H*R;

Q = Q*H;

end

function H = Householder(x,k)

%Householder transform to zero out tail part starting from k+1

H = eye(N) – 2*w*w’; %Householder matrix

N = length(x);

w = zeros(N,1);

w(k) = (x(k) + g)/c; w(k + 1:N) = x(k + 1:N)/c;

tmp = sum(x (k+1: N). ̂ 2);

c =sqrt((x(k) + g)^2 + tmp);

g = sqrt(x(k)^2 + tmp);

Example E4.5: Using Choleski’s method of solution, solve the following linear equations.
 x1 + x2 + x3 = 7
3x1 + 3x2 + 4x3 = 23
 2x1 + x2 + x3 = 10

Solution:
MATLAB Solution [Using built-in function]:

Choleski’s method:
>> A = [1 1 1;3 3 4;2 1 1];

>> B = [7;23;10];

>> [L,U] = lu(A)

220 ——— MATLAB: An Introduction with Applications

L =

0.3333 –0.0000 1.0000

1.0000 0 0

0.6667 1.0000 0

U =

3.0000 3.0000 4.0000

0 –1.0000 –1.6667

0 0 –0.3333

>> L*U

ans =

1.0000 1.0000 1.0000

3.0000 3.0000 4.0000

2.0000 1.0000 1.0000

>> d = L\B

d =

23.0000

– 5.3333

– 0.6667

>> x = U\d

x =

3.0000

2.0000

2.0000

Check with MATLAB [Using built-in function]:
>> A = [1 1 1;3 3 4;2 1 1];

>> B = [7;23;10];

>> x = A\B

x =

3.0000

2.0000

2.0000

>> x = inv(A)*B

x =

3.0000

2.0000

2.0000

Numerical Methods ——— 221

Example E4.6: Solve the system of equations by Choleski’s factorization method.
12x1 – 6x2 – 6x3 – 1.5x4 = 1
–6x1 + 4x2 + 3x3 + 0.5x4 = 2
–6x1 + 3x2 + 6x3 + 1.5x4 = 3

–1.5x1 + 0.5x2 + 1.5x3 + x4 = 4

Solution:
MATLAB Solution [Using built-in function]:
Choleski’s method:
>> A = [12 – 6 – 6 – 1.5; – 6 4 3 0.5; – 6 3 6 1.5; – 1.5 0.5 1.5 1];

>> B = [1; 2; 3; 4];

>> [L,U] = lu(A)

L =

1.0000 0 0 0

–0.5000 1.0000 0 0

–0.5000 0 1.0000 0

–0.1250 –0.2500 –0.2500 1.0000

U =

12.0000 –6.0000 –6.0000 –1.5000

0 1.0000 0 –0.2500

0 0 3.0000 0.7500

0 0 0 0.5625

>> L*U

ans =

12.0000 –6.0000 –6.0000 –1.5000
–6.0000 4.0000 3.0000 0.5000
–6.0000 3.0000 6.0000 1.5000
–1.5000 0.5000 1.5000 1.0000

>> d = L\B

d =

1.0000
2.5000
3.5000
3.8750

>> x=U\d

x =

2.7778
4.2222

–0.5556
6.8889

222 ——— MATLAB: An Introduction with Applications

MATLAB Solution [Using built-in function]:

>> A = [12 –6 –6 –1.5; –6 4 3 0.5; –6 3 6 1.5; –1.5 0.5 1.5 1];

>> B = [1;2;3;4];

>> x = A\B

x =
2.7778

4.2222

–0.5556

6.8889

>> x = inv(A)*B

x =

2.7778

4.2222

–0.5556

6.8889

Example E4.7: Solve the set of equations given in Example E4.3. Use Jacobi method.
Solution:
>> A = [3 1 –1; 4 –10 1; 2 1 5]; >> b = [–2 3 4]’;

>> [x,k] = jacobi(A,b,[0 0 0]’,1.e –10)

Jacobi iteration has converged in 38 iterations.

x =

–0.2462

–0.3026

0.9590

k =

38

function [x, k, diff] = jacobi(A,b,x0,tol,kmax)

% Jacobi iteration on the system Ax = b.

if nargin<3, x0 = zeros(size(b));, end

if nargin<4, tol = 1e –10;, end

if nargin<5, kmax = 100;, end

if min(abs(diag(A)))<eps

error(‘Coefficient matrix has zero diagonal entries, iteration cannot be
performed.\r’)

end

[n m] = size(A);

xold = x0;

Numerical Methods ——— 223

k = 1;, diff = [];

while k< = kmax

 xnew = b;

 for i = 1:n

 for j = 1:n

 if j~ = i

 xnew(i) = xnew(i) – A(i,j)*xold(j);

 end

 end

 xnew(i) = xnew(i)/A(i,i);

 end

 diff(k) = norm(xnew-xold,2);

 if diff(k)<tol

 fprintf(‘Jacobi iteration has converged in %d iterations.\r’, k)

 x = xnew;

 return

 end

 k = k+1;, xold = xnew;

end

fprintf(‘Jacobi iteration failed to converge.\r’)

x = xnew;

Example E4.8: Find the solution to the equations using Jacobi method with initial values [0 0 0 0].

1

2

3

4

4 2 0 0 4
2 8 2 0 0
0 2 8 2 0
0 0 2 4 0

x
x
x
x

    
         =                  

Solution:
>> A = [4 2 0 0;2 8 2 0;0 2 8 2;0 0 2 4];

>> b = [4;0;0;0];

>> x0 = [0 0 0 0]’;

>> [x,k] = jacobi(A,b,x0,1.e – 10)

Jacobi iteration has converged in 34 iterations.

x =

1.1556

–0.3111

0.0889

–0.0444

224 ——— MATLAB: An Introduction with Applications

k =

34

function [x, k, diff] = jacobi(A,b,x0,tol,kmax)

% Jacobi iteration on the system Ax = b.

if nargin<3, x0 = zeros(size(b));, end

if nargin<4, tol = 1e – 10;, end

if nargin<5, kmax = 100;, end

if min(abs(diag(A)))<eps

error(‘Coefficient matrix has zero diagonal entries, iteration cannot be
performed.\r’)

end

[n m] = size(A);

xold = x0;

k = 1;, diff = [];

while k< = kmax

 xnew = b;

 for i = 1:n

 for j = 1:n

 if j~ = i

 xnew(i) = xnew(i) – A(i,j)*xold(j);

 end

 end

 xnew(i) = xnew(i)/A(i,i);

 end

 diff(k) = norm(xnew – xold,2);

 if diff(k)<tol

 fprintf(‘Jacobi iteration has converged in %d iterations.\r’, k)

 x = xnew;

 return

 end

 k = k+1;, xold = xnew;

end

fprintf(‘Jacobi iteration failed to converge.\r’)

x = xnew;

Numerical Methods ——— 225

Example E4.9: Find the solution to the equations using Gauss-Seidel method.

1

2

3

4

4 2 0 0 4
2 8 2 0 0
0 2 8 2 0
0 0 2 4 0

x
x
x
x

    
         =                  

Solution:
MATLAB Solution Using built-in function]:
>> A = [4 2 0 0;2 8 2 0;0 2 8 2;0 0 2 4];

>> B = [4;0;0;0];

>> x = A\B

x =

1.1556

–0.3111

0.0889

–0.0444

>> x=inv(A)*B

x =

1.1556

–0.3111

0.0889

–0.0444

>> A = [4 2 0 0;2 8 2 0;0 2 8 2;0 0 2 4];

>> b = [4;0;0;0];

>> tol = 1.0e – 9;

>> format long;

>> xguess = [1– 0.5 0.1 – 0.2];

>> [x,iter] = GAUSSD(A,b,xguess,tol)

x =

 1.15555555568491 –0.31111111117579 0.08888888892123 –0.04444444446061

iter =

 16

function [Y,iter] = GAUSSD(A,r,yguess,tol)

% GAUSSD will iteratively solve Ay = r

n = length(r); Y = yguess; dy = ones(n,1); iter = 0;

while norm(dy)/norm(Y) > tol

for i = 1:n

if abs(A(i,i))<100*eps;error(‘zero pivot found’);end

dy(i) = r(i)/A(i,i);

226 ——— MATLAB: An Introduction with Applications

for j = 1:n

dy(i) = dy(i) – A(i,j)*Y(j)/A(i,i);

end

Y(i) = Y(i) + dy(i);

end

iter = iter + 1;

if iter>1000; error(‘not converging in 1000 steps’);end

end

Example E4.10: Solve the system of equations given by [A]{x} = {b} using Gauss-Seidel method. The
matrices [A] and {b} are given below.

4 2 0 0 4
2 8 2 0 0

[] , { }
0 2 8 2 0
0 0 2 4 14

A b

   
     = =            

Solution:
MATLAB Solution [Using built-in function]:
>> A = [4 2 0 0;2 8 2 0;0 2 8 2;0 0 2 4];
>> b = [4;0;0;14];
>> x = A\b
x =

1.0000
0
–1.0000
4.0000

>> x = inv(A)*b
x =

1.0000
–0.0000
–1.0000
4.0000

>> A= [4 2 0 0;2 8 2 0;0 2 8 2;0 0 2 4];
>> b = [4;0;0;14];
>> xguess = [1 –0.5 0.1 –0.2];
>> tol = 1.0e–9;
>> format long;
>> [x,iter] = GAUSSD(A,b,xguess,tol)
x =
 1.00000000075670 –0.00000000037835 –0.99999999981083 3.99999999990541
iter =
 17

Numerical Methods ——— 227

function [Y,iter] = GAUSSD(A,r,yguess,tol)

% GAUSSD will iteratively solve Ay = r

n = length(r); Y = yguess; dy = ones(n,1); iter = 0;

while norm(dy)/norm(Y) > tol

for i = 1:n

if abs(A(i,i))<100*eps;error(‘zero pivot found’);end

dy(i) = r(i)/A(i,i);

for j = 1:n

dy(i) = dy(i) - A(i,j)*Y(j)/A(i,i);

end

Y(i) = Y(i) + dy(i);

end

iter = iter + 1;

if iter>1000; error(‘not converging in 1000 steps’);end

end

Example E4.11: Solve the system of equations given below by Householder’s factorization method:

1

2

3

4

4 1 0 0 1
1 4 1 0 0

0 1 4 1 0
0 0 1 4 0

x
x
x
x

−     
    − −      =    − −         −     

Solution:
>> A = [4 –1 0 0;–1 4 –1 0;0 –1 4 –1;0 0 –1 4];

>> b = [1;0;0;0];

>> householder(A)

ans =

4 1 0 0
–2 4 –1 0
0 2 4 1
0 0 1 4

>> [L,U] = lu(A)

L =

1.0000 0 0 0

–0.2500 1.0000 0 0

0 –0.2667 1.0000 0

0 0 –0.2679 1.0000

U =

4.0000 –1.0000 0 0

0 3.7500 –1.0000 0

0 0 3.7333 –1.0000

0 0 0 3.7321

228 ——— MATLAB: An Introduction with Applications

>> L*U

ans =

4 –1 0 0

–1 4 –1 0

0 –1 4 –1

0 0 –1 4

>> A = [4 –1 0 0;–1 4 –1 0;0 –1 4 –1;0 0 –1 4];

>> d = L\b

d =

1.0000

0.2500

0.0667

0.0179

>> x = U\d

x =

0.2679

0.0718

0.0191

0.0048

MATLAB Solution [Using built-in function]:
>> A = [4 –1 0 0;–1 4 –1 0;0 –1 4 –1;0 0 –1 4];

>> B = [1;0;0;0];

>> x = A\B

x =
0.2679

0.0718

0.0191

0.0048

>> x = inv(A)*B

x =

0.2679

0.0718

0.0191

0.0048

function A = householder(A)

% Householder reduction of A to tridiagonal form A = [c\d\c]

%Extract c and d by d = diag(A), c = diag(A,1)

%Usage: A = householder(A)

Numerical Methods ——— 229

n = size(A,1);

for k = 1:n–2

u = A(k+1:n,k);

uMag = sqrt(dot(u,u));

if u(1)<0;uMag = –uMag; end

u(1) = u(1)+uMag;

A(k+1:n,k) = u;

H = dot(u,u)/2;

v = A(k+1:n,k+1:n)*u/H;

g = dot(u,v)/(2*H);

v = v–g*u;

A(k+1:n,k+1:n) = A(k+1:n,k+1:n)–v*u’–u*v’;

A(k,k+1) = –uMag;

d = diag(A);

c = diag(A,1);

end

Example E4.12: Solve the system of equations given below by Householder’s factorization method:

1

2

3

4

4 2 1 1 10
2 10 2 1 20
1 2 4 2 30
1 2 4 8 40

x
x
x
x

    
         =                  

Solution:
>> A = [4 2 1 1;2 10 2 1;1 2 4 2;1 2 4 8];

% Householder reduction of A to tridiagonal form A = [c\d\c]

% Extract c and by d = diag(A) andc = diag(A,1)

>> householder(A)

ans =

4.0000 –2.4495 1.0000 1.0000

4.4495 12.4082 –1.8257 –2.6330

1.0000 2.6422 2.4400 0.3427

1.0000 –1.6330 2.3427 7.1517

>> b = [10;20;30;40];

>> A = [4 2 1 1;2 10 2 1;1 2 4 2;1 2 4 8];

>> [L,U] = lu(A)

L =

1.0000 0 0 0

0.5000 1.0000 0 0

0.2500 0.1667 1.0000 0

0.2500 0.1667 1.0000 1.0000

230 ——— MATLAB: An Introduction with Applications

U =

4.0000 2.0000 1.0000 1.0000

0 9.0000 1.5000 0.5000

0 0 3.5000 1.6667

0 0 0 6.0000

>> L*U

ans =

4 2 1 1

2 10 2 1

1 2 4 2

1 2 4 8

>> d = L\b

d =

10

15

25

10

>> x = U\d

x =

0.2381

0.5159

6.3492

1.6667

function A = householder(A)

% Householder reduction of A to tridiagonal form A = [c\d\c]

% Extract c and d by d = diag(A), c = diag(A,1)

% Usage: A = householder(A)

n = size(A,1);

for k = 1:n – 2

u = A(k+1:n,k);

uMag = sqrt(dot(u,u));

if u(1)<0;uMag = –uMag; end

u(1) = u(1)+uMag;

A(k+1:n,k) = u;

H = dot(u,u)/2;

v = A(k+1:n,k+1:n)*u/H;

g = dot(u,v)/(2*H);

v = v–g*u;

A(k+1:n,k+1:n) = A(k+1:n,k+1:n)–v*u’–u*v’;

A(k,k+1) = –uMag;

d = diag(A);

Numerical Methods ——— 231

c = diag(A,1);

end

MATLAB Solution [Using built-in function]:
>> A = [4 2 1 1;2 10 2 1;1 2 4 2;1 2 4 8];

>> B = [10;20;30;40];

>> x = A\B

x =

0.2381

0.5159

6.3492

1.6667

>> x = inv(A)*B

x =

0.2381

0.5159

6.3492

1.6667

Example E4.13: Use the method of Gaussian elimination to solve the following system of linear equations:
x1 + x2 + x3 – x4 = 2

4x1 + 3x2 + x3 + x4 = 11
x1 – x2 – x3 + 2x4 = 0

2x1 + x2 + 2x3– 2x4 = 2
Solution:
Gaussian elimination method eliminates (makes zero) all coefficients below the main diagonal of the two-
dimensional array. It does so by adding multiples of some equations to others in a symmetric way. Elimination
makes the array of new coefficients have an upper triangular form since the lower triangular coefficients are
all zero. Upper triangular equations can be solved by back substitution. Back substitution first solves last
equation which has only one unknown x(N) = b(N)/A(N, N).
Thus, it is a two phase procedure.

(1) Forward elimination (Upper triangularization): First reduce the coefficients of first column of A
below main diagonal to zero using first row. Then do same for the second column using second
row.

(2) Back substitution: In this step, starting from the last equation, each of the unknowns is found.
Pitfalls of the method:
There are two pitfalls of Gauss elimination method:
Division by zero: It is possible that division by zero may occur during forward elimination steps.
Round-off error: Gauss Elimination Method is prone to round-off errors.

232 ——— MATLAB: An Introduction with Applications

The following MATLAB code is written for this problem

% This will perform Gaussian elmination

% on the matrix that you pass to it.

% i.e., given A and b it can be used to find x,

% Ax = b

%

% A - matrix for the left hand side.

% b - vector for the right hand side

% This performs Gaussian elminiation to find x.

% MATRIX DEFINITION

A = [1 1 1 –1;4 3 1 1;1 –1 –1 2;2 1 2 –2];

b = [2;11;0;2];

% Perform Gaussian Elimination

 for j = 2:N,

 for i = j:N,

 m = A(i,j–1)/A(j–1, j–1);

 A(i,:) = A(i,:) – A(j–1,:)*m;

 b(i) = b(i) – m*b(j–1);

 end

 end

disp(‘Upper triangular form of given matrix is=’)

disp(A)

disp(‘b=’)

disp(b)

% BACK-SUBSTITUTION

% Perform back substitution

 x = zeros(N,1);

 x(N) = b(N)/A(N,N);

 for j = N–1:–1:1,

 x(j) = (b(j)–A(j,j+1:N)*x(j+1:N))/A(j,j);

 end

disp(‘final solution is’);

disp(x);

Output appears like this:

N

= 4

Numerical Methods ——— 233

Upper triangular form of given matrix is=

1.0000 1.0000 1.0000 –1.0000

0 –1.0000 –3.0000 5.0000

0 0 4.0000 –7.0000

0 0 0 0.2500

b =

2

3

–8

1

final solution is

–1

 2

 5

 4

Check with MATLAB built-in function:
>> A = [1 1 1 –1;4 3 1 1;1 –1 –1 2;2 1 2 –2];

>> b = [2;11;0;2];

>> x = A\b

x =

–1.0000

 2.0000

 5.0000

 4.0000

Example E4.14: Solve the following system of equations using Choleski’s factorization.
x1 + x2 + x3 – x4 = 2

x1 – x2 – x3 + 2x4 = 0
4x1 + 4x2 + x3 + x4 = 11

2x1 + x2 + 2x3 – 2x4 = 2
Solution:
Choleski’s factorization is basically applicable to only symmetric positive definite matrices.
Here original matrix [A] is decomposed as follows:

1. Form [A] = L.LT where L is lower triangular matrix
2. Forward substitution to solve Ly = b for y
3. Back substitution to solve LTx = y for x

For non-symmetric matrix a LU decomposition scheme can be employed using MATLAB function ‘lu(A)’.
Complete MATLAB program is given below to solve the problem.
A = [1 1 1 –1;1 –1 –1 2;4 4 1 1;2 1 2 –2];

b = [2;0;11;2];

234 ——— MATLAB: An Introduction with Applications

[L,U] = lu(A);

% solution of y

y = L\b;

%final solution x

x = U\y;

fprintf(‘Solution of the equations is\n’);

disp(x)

Output is as follows:

Solution of the equations is

1.0000

2.0000

–1.0000

 0.0000

Check with MATLAB built-in function:
>> A=[1 1 1 –1;1 –1 –1 2;4 4 1 1;2 1 2 –2];

b = [2;0;11;2];

>> x = A\b

x =

1.0000

 2.0000

 –1.0000

 0.0000

Example E4.15: Using the Gauss-Seidel method, solve the system of equations given below:
x + 2y + z = 0
3x + y –z = 0
x – y + 4z =3

Solution:
The Gauss-Seidel method is a technique used to solve a linear system of equations. In solving equations
AX = b, first the matrix A is written as: A = D + L + U where the matrices D, L, and U represent the diagonal,
negative strictly lower triangular, and negative strictly upper triangular parts of the coefficient matrix A.
Then the solution is given for every iteration counter k as:

X(k + 1) = (D + L)–1(–U X(k) + b) Gauss-Seidel Method
X(k + 1) = D–1(–(L + U) X(k) + b) Jacobi Method

Disadvantages:
1. The matrix (D + L) is not always invertible. One must check that the values on the diagonal are non-

zero before starting the iteration because it can lead to unpredictable results.

Numerical Methods ——— 235

2. The spectral radius of the matrix (D + L)–1 * U must have a modulus < 1 for the iteration to work
correctly. Think of the spectral radius (the largest value of the set of eigenvalue modules) as being the
greatest scalar factor that can be applied to a vector. If it is greater than 1, iteration on the corresponding
eigenvector will result in an infinite limit.

Complete MATLAB program for solving given system of equations is given below:
% The display consists of a table of x-values with iterates of x1, x2, ..., xn

% in each column.

A = [1 2 1;3 1 –1;1 –1 4];b = [0;0;3];

X0 = zeros(size(b)); % starting vector

tole = 1e–6;kstop = 30;% error tolerance and max. iterations

[n,n] = size(A);

P = tril(A);% lower triangular form

k = 0;r = b–A*X0;

r0 = norm(r);er = norm(r);

X = X0;

[L,U] = lu(P);

fprintf(‘iter#\tX(1)\t\tX(2)\n’);

while er>tole & k<kstop

 fprintf(‘%d\t%f\t%f\n’,k,X(1),X(2));

 k = k+1;

 dx = L\r;

 dx = U\dx;

 X = X+dx;

 r = b–A*X;

 er = norm(r)/r0;

 erp(k) = norm(r)/r0;

end

X

plot(erp, ‘–p’);

grid on;

xlabel(‘Iteration #’);

ylabel(‘normalized error’);

Output of the program is as follows:
Final solution is X =

1.0e + 024 *
–1.7510
 5.5007
 1.8129

236 ——— MATLAB: An Introduction with Applications

0 5 10 15 20 25 30
0

1

2

3

4
x 10

24

Iteration #

N
o
rm

a
liz

e
d

e
rr

o
r

Fig. E4.15

Here the method fails due to reason (2) given above.

Check with MATLAB built-in function:
>> A = [1 2 1;3 1 –1;1 –1 4];b = [0;0;3];
>> x = A\b
x =

0.3333
–0.4444
0.5556

Example E4.16: Using the Gauss-Seidel method, solve the system of equations given below:
4x – y + z = 10

–x + 4y – 2z = –2
x – 2y + 4z = 5

Solution:
MATLAB program for this problem is given below.
A = [4 –1 1;–1 4 –2;1 –2 4];

b = [10;–2;5];

X0 = zeros(size(b)); % starting vector

tole = 1e–6;kstop = 30;% error tolerance and max. iterations

[n,n] = size(A);

P = tril(A);% lower triangular form

k = 0;r = b–A*X0;

r0 = norm(r);er = norm(r);

Numerical Methods ——— 237

X = X0;

[L,U] = lu(P);

fprintf(‘iter#\tX(1)\t\tX(2)\n’);

while er>tole & k<kstop

 fprintf(‘%d\t%f\t%f\n’,k,X(1),X(2));

 k = k+1;

 dx = L\r;

 dx = U\dx;

 X = X+dx;

 r = b–A*X;

 er = norm(r)/r0;

 erp(k) = norm(r)/r0;

end

X

plot(erp, ‘–p’);

grid on;

xlabel(‘Iteration #’);

ylabel(‘normalized error’);

Output of the program is as follows:
iter# X(1) X(2)

0 0.000000 0.000000
1 2.500000 0.125000
2 2.359375 0.433594
3 2.389160 0.535767
4 2.403793 0.561245
5 2.407893 0.566810
6 2.408845 0.567927
7 2.409044 0.568137
8 2.409082 0.568174

The final solution is
 X =

2.4091
0.5682
0.9318

The variation of error in each cycle is shown in Fig. E4.16.

238 ——— MATLAB: An Introduction with Applications

1 2 3 4 5 6 7 8 9
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Iteration #

N
o

rm
a

liz
e

d
e

rr
o

r

Fig. E4.16 MATLAB output

Check with MATLAB built-in function:
>> A = [4 –1 1;–1 4 –2;1 –2 4];b=[10; –2;5];

>> x = A\b

x =

2.4091

 0.5682

0.9318

Example E4.17: Use the Jacobi method to determine the eigenvalues and eigenvectors of the following
matrix

A =
11 2 8
2 2 –10
9 –10 5

 
 
 
  

Solution:
A solution is guaranteed for all real symmetric matrices when Jacobi’s method is used. This limitation is not
severe since many practical problems of applied mathematics and engineering involve symmetric matrices.
From a theoretical viewpoint, the method embodies techniques that are found in more sophisticated
algorithms. For instructive purposes, it is worthwhile to investigate the details of Jacobi’s method.

Start with the real symmetric matrix A. Then construct the sequence of orthogonal matrices R1, R2, R3,…,Rn as
follows:

 0D A=

and Dj = Rj
T DjRj for j = 1,2,... .

Numerical Methods ——— 239

It is possible to construct the sequence {Rj} so that

1 2
lim diag(, ,.....,)

j nj D D→ = = λ λ λ

In practice, we will stop when the off-diagonal elements are close to zero. Then we will have Dm ≈ D.

The complete program is shown below:
A = [11 2 8;2 2 –10;9 –10 5];

%Output – V is the nxn matrix of eigenvectors

% – D is the diagonal nxn matrix of eigenvalues

D = A;

[n,n] = size(A);

V = eye(n);

%Calculate row p and column q of the off-diagonal element

%of greatest magnitude in A

[m1 p] = max(abs(D–diag(diag(D))));

[m2 q] = max(m1);

p = p(q);

i = 1;

while(i<10)

 % Zero out Dpq and Dqp

 t = D(p,q)/(D(q,q)–D(p,p));

 c = 1/sqrt(t^2+1);

 s = c*t;

 R = [c s;–s c];
 D([p q],:) = R’*D([p q],:);
 D(:,[p q]) = D(:,[p q])*R;
 V(:,[p q]) = V(:,[p q])*R;
 [m1 p] = max(abs(D–diag(diag(D))));
 [m2 q] = max(m1);
 p = p(q);
 i = i+1;

end

D = diag(diag(D))

fprintf(‘final eigenvalues are %f\t%f\t%f\n’,D(1,1),D(2,2),D(3,3));

The output of the program is as follows:

D =

18.4278 0 0
0 –9.2213 0
0 0 8.7934

final eigenvalues are 18.427839 –9.221279 8.793440

240 ——— MATLAB: An Introduction with Applications

Check with MATLAB built-in function:
>> A = [11 2 8;2 2 –10;9 –10 5];

>> [Q,D] = eig(A)

Q =

0.3319 –0.6460 –0.6277
–0.6599 0.3380 –0.6966
–0.6741 –0.6845 0.3475

D =

–9.2213 0 0
0 18.4308 0
0 0 8.7905

Example E4.18: Transform the matrix A =

4 3 2 1
3 4 1 2

2 1 4 3
1 2 3 4

 
 
 
 
 
  

into tridiagonal form using Householder reduction.

Also determine the transformation matrix.
Solution:
Suppose that A is a symmetric n × n matrix.
Start with A0 = A
Construct the sequence P1, P2, ..., Pn–1 of Householder matrices, so that Ak = PkAk–1 Pk for k = 1, 2, ..., n – 2,
where Ak has zeros below the subdiagonal in columns 1, 2, …, k. Then An–2 is a symmetric tridiagonal
matrix that is similar to A. This process is called Householder’s method.

%Input - A is an nxn symmetric matrix

A=[4 3 2 1;3 4 1 2;2 1 4 3;1 2 3 4];

%Output-T is a tridiagonal matrix

[n,n] = size(A);

for k = 1:n–2

 s = norm(A(k+1:n,k));

 if (A(k+1,k)<0)

 s = –s;

 end

 r = sqrt(2*s*(A(k+1,k)+s));

 W(1:k) = zeros(1,k);

 W(k+1) = (A(k+1,k)+s)/r;

 W(k+2:n) = A(k+2:n,k)’/r;

 V(1:k) = zeros(1,k);

 V(k+1:n) = A(k+1:n,k+1:n)*W(k+1:n)’;

 c = W(k+1:n)*V(k+1:n)’;

Numerical Methods ——— 241

 Q(1:k) = zeros(1,k);

 Q(k+1:n) = V(k+1:n)–c*W(k+1:n);

 A(k+2:n,k) = zeros(n–k–1,1);

 A(k,k+2:n) = zeros(1,n–k–1);

 A(k+1,k) = –s;

 A(k,k+1) = –s;

 A(k+1:n,k+1:n) = A(k+1:n,k+1:n) ...

 –2*W(k+1:n)’*Q(k+1:n)–2*Q(k+1:n)’*W(k+1:n);

end

T = A;

fprintf(‘Matrix in tridiagonal form is\n’);

 disp(T);

The output of the program is given below:
Matrix in tridiagonal form is

4.0000 –3.7417 0 0
–3.7417 6.5714 2.7180 0

0 2.7180 3.0529 1.2403
0 0 1.2403 2.3757

Example E4.19: Use the Sturn sequence property to find the interval of the smallest eigenvalue of

2 1 0 0
1 2 2 0

0 2 2 1
0 0 1 2

A

− 
 − − =
 − −
 −  

Solution: The sequence {fk(a)} and {fk(b) can be used to determine the number of roots of fn(λ), which are
contained in [a, b].

The sequence {f0, f1,..., fn} forms a Sturn sequence of polynomials; and such sequences have special
properties. Given a point b, calculate

 0 1{ (), (),..., ()}nf b f b f b

and observe the signs of these quantities. If some () 0jf λ = , then choose the sign of ()jf λ to be opposite
to that of 1()jf − λ . It can be shown that

 1() 0 () 0j jf f −λ = ⇒ λ ≠

Having obtain a sequence of signs from flet ()s λ denote the number of agreements of sign between
consecutive members of the sign sequence.

242 ——— MATLAB: An Introduction with Applications

The MATLAB program for this presented below:
%Given the diagonals c and d of A = [c\d\c] and the value of l, this function returns
the sturn sequence P0(l),P1(l),P2(l),……..Pn(l). Note that Pn(l) = 1| |A − λ
A = [2 –1 0 0;–1 2 –2 0;0 –2 2 –1;0 0 –1 2];

d = diag(A)’;

c = [–1 –2 –1];

lam = input(‘Enter guess value lambda\n’);

n = length(d)+1;

p = ones(n,1);

p(2) = d(1)–lam;

for i = 2:n–1

 p(i+1) = (d(i)–lam)*p(i)–(c(i–1)^2)*p1(i–1);

end

fprintf(‘sturn sequence p(%f) is\n’,lam);

disp(p);

%%% number of sign changes in the sturn sequence p is

%%% number eigenvalues of matrix A that are smaller than

%%% lam_min

n = length(p);

oldsign = 1;

num_eval = 0;

for i = 2:n

 psign = sign(p(i));

 if psign = 0 psign = –oldsign;

 end

 if psign*oldsign <0

 num_eval = num_eval+1;

 end

 oldsign = psign;

end

fprintf(‘Number of eigenvalues less than lamda = %f are %d\n’,lam,num_eval);

Output of the program is as follows (in two runs)

>>Enter guess value lambda

0

sturn sequence p(0.000000) is

1

2

4

0

–4

Numerical Methods ——— 243

Number of eigenvalues less than lamda = 0.000000 are 1
» sturn
Enter guess value lambda

–1
sturn sequence p(–1.000000) is

1
3

 9
19
53

Number of eigenvalues less than lamda = – 1.000000 are 0
Hence, lowest eigen value lies between 0 and –1.

Example E4.20: Use Gaussian elimination scheme to solve the set of equations:
 2x1 + x2 – 3x3 = 11
 4x1 – 2x2 + 3x3 = 8
 –2x1+ 2x2 – x3 = –6

Solution:
Writing the equation in the form of [A]X = B and applying forward elimination and back-substitution, we obtain

U =
2 1 –3
0 – 4 9
0 0 2.75

 
 
 
  

 and right hand side =
 11
–14
–5

 
 
 
  

Finally, the solution from back substitution becomes X =
 3
–1
–2

 
 
 
  

The complete MATLAB program is given below:
% Ax = b

% A - matrix for the left hand side.

% b - vector for the right hand side

% This performs Gaussian elminiation to find x.

% MATRIX DEFINITION

A = [2 1 –3;4 –2 3; –2 2 –1];

b = [11;8;–6];

N = max(size(A));

% Perform Gaussian (FORWARD) elimination

 for j = 2:N,

 for i = j:N,

 m = A(i,j–1)/A(j–1,j–1);

 A(i,:) = A(i,:) –A(j–1,:)*m;

244 ——— MATLAB: An Introduction with Applications

 b(i) = b(i) – m*b(j–1);

 end

 end

disp(‘Upper triangular form of given matrix is =’)

disp(A);

disp(‘b = ’);

disp(b);

% BACK-SUBSTITUTION

% Perform back substitution

 x = zeros(N,1);

 x(N) = b(N)/A(N,N);

 for j = N–1:–1:1,

 x(j) = (b(j)–A(j,j+1:N)*x(j+1:N))/A(j,j);

 end

disp(‘final solution is’);disp(x);

Output is as follows:
The final solution is

3
–1
–2

Check with MATLAB built-in function:
>> A = [2 1 –3;4 –2 3;–2 2 –1];

b = [11;8;–6];

>> x = A\b

x =
3

–1

–2

Example E4.21: Solve the system of linear equations by Gaussian elimination method:
6x1 + 3x2 + 6x3 = 30
2x1 + 3x2 + 3x3 = 17
 x1 + 2x2 + 2x3 = 11

Solution:
Writing the equation in the form of [A]X =B and apply forward elimination and back-substitution

The complete MATLAB program and output are given below:
% A – matrix for the left hand side.
% b – vector for the right hand side.
% This performs Gaussian elminiation to find x.

% MATRIX DEFINITION

Numerical Methods ——— 245

A = [6 3 6;2 3 3;1 2 2];

b = [30;17;11];

N = max(size(A))

% Perform Gaussian Elimination

 for j = 2:N,

 for i = j:N,

 m = A(i, j–1)/A(j–1, j–1);

 A(i,:) = A(i,:) – A(j–1,:)*m;

 b(i) = b(i) –m*b(j–1);

 end

 end

disp(‘Upper triangular form of given matrix is =’)

disp(A)

disp(‘b =’)

disp(b)

% BACK-SUBSTITUTION

% Perform back substitution

 x = zeros(N,1);

 x(N) = b(N)/A(N,N);

 for j = N–1:–1:1,

 x(j) = (b(j)–A(j,j+1:N)*x(j+1:N))/A(j,j);

 end

disp(‘final solution is’);

disp(x);

disp(‘matlab solution is’);

x = inv(A)*b

OUTPUT is given below:
N =

3
Upper triangular form of given matrix is =

6.0000 3.0000 6.0000
0 2.0000 1.0000
0 0 0.2500

b =
30.0000
7.0000
0.7500

246 ——— MATLAB: An Introduction with Applications

The final solution is
1
2
3

MATLAB solution is
x =

1

2

3

Check with MATLAB built-in function:

>> A = [6 3 6;2 3 3;1 2 2];
b = [30;17;11];
>>
>> x=A\b

x =
1
2
3

Example E4.22: Using Choleski’s method, solve the following linear equations:
x1 + x2 + x3 = 7

3x1 + 3x2 + 4x3 = 23
 2x1 + x2 + x3 = 10

Solution: The complete program and output are given below:
A = [1 1 1;3 3 4;2 1 1];

b = [7;23;10];

[L,U] = lu(A);

% solution of y

y = L\b;

%final solution x

x = U\y;

fprintf(‘Solution of the equations is\n’);

disp(x)

Solution of the equations is

3.0000

2.0000

2.0000

Numerical Methods ——— 247

Check with MATLAB built-in function:
>> A = [1 1 1;3 3 4;2 1 1];
b = [7;23;10];
>> x = A\b
x =

3.0000
2.0000
2.0000

Example E4.23: Solve the system of equations by Choleski’s factorization method:
12x1 – 6x2 – 6x3 – 1.5x4 = 1
–6x1 + 4x2 + 3x3 + 0.5x4 = 2
–6x1 + 3x2+ 6x3 + 1.5x4 = 3

–1.5x1 + 0.5x2 + 1.5x3 + x4 = 4
Solution:
Here the matrix [A] is symmetric.
Program and the output are given below:
A = [12 –6 –6 –1.5;–6 4 3 0.5;–6 3 6 1.5; –1.5 0.5 1.5 1];
b = [1;2;3;4];
[L,U] = lu(A);
% solution of y
y = L\b;
%final solution x
x = U\y;
fprintf(‘Solution of the equations is\n’);
disp(x)
The solution of the equations is

2.7778
4.2222

–0.5556
6.8889

Check with MATLAB built-in function:
>> A = [12 –6 –6 –1.5; –6 4 3 0.5; –6 3 6 1.5; –1.5 0.5 1.5 1];

b = [1;2;3;4];

>> x = A\b

x =
2.7778

4.2222

–0.5556

6.8889

248 ——— MATLAB: An Introduction with Applications

Example E4.24: Find the solution to the equations using Gauss-Seidel method

1

2

3

4

4 2 0 0 4
2 8 2 0 0

0 2 8 2 0
0 0 2 4 0

x
x
x
x

    
          =                  

Solution:
The complete MATLAB program is given below with outputs of the program
A = [4 2 0 0; 2 8 2 0; 0 2 8 2; 0 0 2 4];b = [4;0;0;0];

X0 = zeros(size(b)); % starting vector

tole = 1e-6;kstop = 30;% error tolerance and max. iterations

[n,n] = size(A);

P = tril(A);% lower triangular form

k = 0;r = b–A*X0;

r0 = norm(r);er = norm(r);

X = X0;

[L,U] = lu(P);

fprintf(‘iter#\tX(1)\t\tX(2)\t\tX(3)\t\tX(4)\n’);

while er>tole & k<kstop

 fprintf(‘%d\t%f\t%f\t%f\t%f\n’,k,X(1),X(2),X(3),X(4));

 k = k+1;

 dx = L\r;

 dx = U\dx;

 X = X+dx;

 r = b – A*X;

 er = norm(r)/r0;

 erp(k) = norm(r)/r0;

end

X

The output is as follows:
X =

1.1556
– 0.3111

0.0889
– 0.0444

Check with MATLAB built-in function:
>> A = [4 2 0 0;2 8 2 0;0 2 8 2;0 0 2 4];b = [4;0;0;0];

>> x = A\b

Numerical Methods ——— 249

x =

1.1556

–0.3111

0.0889

–0.0444

Example E4.25: Solve the system of equations given by [A]{X}={b} using Gauss-Seidel method. The
matrices [A] and {b} are given below:

4 2 0 0
2 8 2 0

[]
0 2 8 2
0 0 2 4

A

 
 
 =
 
 
  

 and {b}=

4
0
0

14

 
  
 
 
  

Solution:
The following program and output are presented:
A = [4 2 0 0; 2 8 2 0; 0 2 8 2; 0 0 2 4];b = [4;0;0;14];

X0 = zeros(size(b)); % starting vector

tole = 1e–6;kstop = 30;% error tolerance and max.iterations

[n,n] = size(A);

P = tril(A);% lower triangular form

k = 0;r = b–A*X0;

r0 = norm(r);er = norm(r);

X = X0;

[L,U] = lu(P);

fprintf(‘iter#\tX(1)\t\tX(2)\t\tX(3)\t\tX(4)\n’);

while er>tole & k<kstop

 fprintf(‘%d\t%f\t%f\t%f\t%f\n’,k,X(1),X(2),X(3),X(4));

 k = k+1;

 dx = L\r;

 dx = U\dx;

 X = X+dx;

 r = b–A*X;

 er = norm(r)/r0;

 erp(k) = norm(r)/r0;

end

X

The output is as follows:
X =

1.0000
– 0.0000
– 1.0000

4.0000

250 ——— MATLAB: An Introduction with Applications

Check with MATLAB built-in function:
>> A = [4 2 0 0; 2 8 2 0; 0 2 8 2; 0 0 2 4]; b = [4;0;0;14];
>> x = A\b
x =

1.0000
0

–1.0000
4.0000

Example E4.26: Use the Jacobi’s method to determine the eigenvalues and eigenvectors of matrix

 [A] =

 4 –1 –2
–1 3 3
–2 3 1

 
 
 
  

Solution:
The complete computer program is given below:
A = [4 –1 –2;–1 3 3;–2 3 1];
%Output - V is the nxn matrix of eigenvectors
% - D is the diagonal nxn matrix of eigenvalues
D = A;
[n,n] = size(A);
V = eye(n);
%Calculate row p and column q of the off-diagonal element
%of greatest magnitude in A
[m1 p] = max(abs(D-diag(diag(D))));
[m2 q] = max(m1);
p = p(q);
i = 1;
while(i<20)
 %Zero out Dpq and Dqp

t = D(p,q)/(D(q,q)–D(p,p));
c = 1/sqrt(t^2+1);
s = c*t;
R = [c s;–s c];

 D([p q],:) = R'*D([p q],:);
 D(:,[p q]) = D(:,[p q])*R;
 V(:,[p q]) = V(:,[p q])*R;
 [m1 p] = max(abs(D–diag(diag(D))));
 [m2 q] = max(m1);
 p = p(q);
 i = i+1;
end
D = diag(diag(D))

fprintf(‘Final eigenvalues are %f\t%f\t%f\n’,D(1,1),D(2,2),D(3,3));

Numerical Methods ——— 251

The output is as follows:
D =

2.6916 0 0
0 6.6956 0
0 0 –1.3872

The final eigenvalues are 2.691611, 6.695589 and –1.387200

Check with MATLAB built-in function:

>> A = [4 –1 –2;–1 3 3;–2 3 1];
>> [Q,D] = eig(A)
Q =

0.2114 0.7636 –0.6102
–0.5184 0.6168 0.5923
0.8286 0.1911 0.5262

D =
–1.3872 0 0
0 2.6916 0
0 0 6.6956

Example E4.27: Find the eigenvalues and eigenvectors of [A] =

 6 –2 1 –1
–2 4 –2 1
 1 –2 4 –2

–1 1 –2 4

 
 
 
 
 
  

 with the Jacobi’s method.

Solution:
The following MALTAB program is used for this:
A = [6 –2 1 –1;–2 4 –2 1;1 –2 4 –2;–1 1 –2 4];

%Output - V is the nxn matrix of eigenvectors

% - D is the diagonal nxn matrix of eigenvalues

D = A;

[n,n] = size(A);

V = eye(n);

%Calculate row p and column q of the off-diagonal element

%of greatest magnitude in A

[m1 p] = max(abs(D-diag(diag(D))));

[m2 q] = max(m1);

p = p(q);

i = 1;

while(i<100)

 %Zero out Dpq and Dqp

 t = D(p,q)/(D(q,q)–D(p,p));

252 ——— MATLAB: An Introduction with Applications

 c = 1/sqrt(t^2+1);

 s = c*t;

 R = [c s;– s c];

 D([p q],:) = R’*D([p q],:);

 D(:,[p q]) = D(:,[p q])*R;

 V(:,[p q]) = V(:,[p q])*R;

 [m1 p] = max(abs(D-diag(diag(D))));

 [m2 q] = max(m1);

 p = p(q);

 i = i+1;

end

D = diag(diag(D))

fprintf(‘Eigenvectors are\n’)

disp(V)

The output is as follows:
D =

9.1025 0 0 0
0 1.5186 0 0
0 0 4.5880 0
0 0 0 2.7910

The eigenvectors are
V =

0.6043 0.1788 – 0.7250 – 0.2778
– 0.5006 0.5421 – 0.0252 – 0.6744

0.4721 0.7046 0.4915 0.1976
– 0.4016 0.4215 – 0.4818 0.6550

Check with MATLAB built-in function:
>> A = [6 –2 1 –1;–2 4 –2 1;1 –2 4 –2;–1 1 –2 4];

>> [Q,D] = eig(A)

Q =

–0.1788 –0.2778 0.7250 –0.6043

–0.5421 –0.6744 0.0252 0.5006

–0.7046 0.1976 –0.4915 –0.4721

–0.4215 0.6550 0.4818 0.4016

D =

1.5186 0 0 0

0 2.7910 0 0

0 0 4.5880 0

0 0 0 9.1025

Numerical Methods ——— 253

Example E4.28: Transform the matrix [A] =

 7 2 3 –1
 2 8 5 1
 3 5 12 9
–1 1 9 7

 
 
 
 
 
  

 into tridiagonal form using Householder

reduction.
Solution:
The following program is used.
%Input – A is an nxn symmetric matrix

A = [7 2 3 –1;2 8 5 1;3 5 12 9;–1 1 9 7];

%Output – T is a tridiagonal matrix
[n,n] = size(A);
for k = 1:n–2
 s = norm(A(k+1:n,k));
 if (A(k+1,k)<0)
 s = –s;
 end
 r = sqrt(2*s*(A(k+1,k)+s));
 W(1:k) = zeros(1,k);
 W(k+1) = (A(k+1,k)+s)/r;
 W(k+2:n) = A(k+2:n,k)’/r;
 V(1:k) = zeros(1,k);
 V(k+1:n) = A(k+1:n,k+1:n)*W(k+1:n)’;
 c = W(k+1:n)*V(k+1:n)’;
 Q(1:k) = zeros(1,k);
 Q(k+1:n) = V(k+1:n)–c*W(k+1:n);
 A(k+2:n,k) = zeros(n–k–1,1);
 A(k,k+2:n) = zeros(1,n–k–1);
 A(k+1,k) = –s;
 A(k,k+1) = –s;
 A(k+1:n,k+1:n) = A(k+1:n,k+1:n)–2*W(k+1:n)’*Q(k+1:n)–2*Q(k+1:n)’*W(k+1:n);
end
T = A;
fprintf(‘Matrix in tridiagonal form is\n’);
disp(T)

The output is as follows:
The matrix in tridiagonal form is

7.0000 –3.7417 0 0
–3.7417 10.6429 9.1309 0

0 9.1309 10.5942 4.7716
0 0 4.7716 5.7629

254 ——— MATLAB: An Introduction with Applications

REFERENCES

Abramowitz, M. and Stegun, I., Handbook of Mathematical Functions, Dover Press, New York, 1964.
Akai, T.J., Applied Numerical Methods for Engineers, Wiley, New York, NY, 1993.
Al-Khafaji, A.W. and Tooley, J.R., Numerical Methods in Engineering Practice, Holt, Rinehart and Winston,
New York, 1986.
Allen, M. and Issaaccson, E., Numerical Analysis for Applied Science, Wiley, New York, 1998.
Ames, W.F., Numerical Methods for Partial Differential Equations, 3rd ed., Academic Press, New York,
1992.
Ascher,U., Mattheij, R. and Russell, R., Numerical Solution of Boundary Value Problems for Ordinary
Differential Equations, Prentice-Hall, Englewood Cliffs, NJ, 1988.
Atkinson, K. and Han, W., Elementary Numerical Analysis, 3rd ed, Wiley, New York, 2004.
Atkinson, K.E., An Introduction to Numerical Analysis, 2nd ed., Wiley, New York, NY, 1993.
Atkinson, L.V. and Harley, P.J., Introduction to Numerical Methods with PASCAL, Addison-Wesley,
Reading, MA, 1984.
Atkinson, L.V., Harley, P.J. and Hudson, J.D., Numerical Methods with FORTRAN 77, Addison-Wesley,
Reading, MA, 1989.
Axelsson, K., Iterative Solution Methods, Cambridge University Press, Cambridge, UK, 1994.
Ayyub, B.M. and McCuen, R.H., Numerical Methods for Engineers, Prentice-Hall, Upper Saddle River, New
Jersey, NJ, 1996.
Baker, A.J., Finite Element Computational Fluid Mechanics, McGraw-Hill, New York, 1983.
Balagurusamy, E., Numerical Methods, Tata McGraw-Hill, New Delhi, India, 2002.
Bathe, K.J. and Wilson, E.L., Numerical Methods in Finite Element Analysis, Prentice-Hall, Englewood
Cliffs, NJ, 1976.
Bhat, R.B. and Chakraverty, S., Numerical Analysis in Engineering, Narosa Publishing House, New Delhi,
India, 2004.
Bhat, R.B. and Gouw, G .J., Numerical Methods in Engineering, Simon and Schuster Custom Publishing,
Needham Heights, MA, 1996.
Bjorck, A., Numerical Methods for Least Squares Problems, Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA, 1996.
Booth, A.D., Numerical Methods, Academic Press, New York, 1958.
Brice, C., Luther, H.A., and Wilkes, J.O., Applied Numerical Methods, New York, NY, 1969.
Buchanan, J.L. and Turner, P.R., Numerical Methods and Analysis, McGraw-Hill, New York, 1992.
Burden, R.L. and Faires, J.D., Numerical Analysis, 6th ed., Brooks/Cole, Pacific Grove, 1997.
Carnahan, B., Luther, A. and Wilkes, J.O., Applied Numerical Methods, Wiley, New York, 1969.
Chapra, S.C. and Canale, R.P., Introduction to Computing for Engineers, 2nd ed., McGraw-Hill,
New York, 1994.
Chapra, S.C., and Canale, R.P., Numerical Methods for Engineers with Personal Computers, McGraw-Hill,
New York, 1985.
Chapra, S.C., Applied Numerical Methods with MATLAB for Engineers and Scientists, McGraw-Hill,
New York, 2005.

Numerical Methods ——— 255

Chapra, S.C., Numerical Methods for Engineers with Software and Programming Applications, 4th ed.,
McGraw-Hill, New York, NY, 2002.
Cheney, W. and Kincaid, D., Numerical Mathematics and Computing, 2nd ed., Brooks/Cole, Monterey, CA,
1994.
Chui, C., An Introduction to Wavelets, Academic Press, Burlington, MA, 1992.
Consatantinides, A., Applied Numerical Methods with Personal Computers, McGraw-Hill, New York, 1987.
Conte, S.D. and DeBoor, C.W., Elementary Numerical Analysis: An Algorithm Approach, 2nd ed., McGraw-
Hill, New York, NY, 1972.
Dahlquist, G. and Bjorck, A., Numerical Methods, Prentice-Hall, Englewood Cliffs, NJ, 1974.
Davis, P. and Rabinowitz, P., Methods of Numerical Integration, Academic Press, 2nd ed., New York, 1998.
Demmel, J.W., Applied Numerical Linear Algebra, Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 1997.
Dennis, J.E. and Schnabel, R.B., Numerical Methods for Unconstrained Optimization and Non-linear
Equations, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996.
Epperson, J.F., An Introduction to Numerical Methods and Analysis, Wiley, New York, NY, 2001.
Fadeev, D.K., and Fadeeva, V.N., Computational Methods of Linear Algebra, Freeman, San Francisco, 1963.
Fadeeva, V.N., (Trans. Curtis D. Benster), Computational Methods of Linear Algebra, Dover, New York,
1959.
Fatunla, S.O., Numerical Methods for Initial Value Problems in Ordinary Differential Equations, Academic
Press, San Diego, 1988.
Ferziger, J.H., Numerical Methods for Engineering Applications, 2nd ed., Wiley, New York, NY, 1998.
Forbear, C.E., Introduction to Numerical Analysis, Addison-Wesley, Reading, MA, 1969.
Forsythe, G .E. and Wasow, W.R., Finite-Difference Methods for Partial Differential Equations, Wiley,
New York, 1960.
Forsythe, G .E. Malcolm, M.A. and Moler, C.B., Computer Methods for Mathematical Computation, Prentice-
Hall, Englewood Cliffs, NJ, 1977.
Froberg, C.E., Introduction to Numerical Analysis, Addison-Wesley, Reading, MA, 1965.
Gautschi, W., Numerical Analysis: An Introduction, Birkhauser, Boston, MA, 1997.
Gear, C.W., Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall, Englewood
Cliffs, NJ, 1971.
Gerald, C.F. and Wheatley, P.O., Applied Numerical Analysis, 5th ed., Addison-Wesley, Reading, MA, 1994.
Gladwell, J. and Wait, R., A Survey of Numerical Methods of Partial Differential Equations, Oxford
University Press, New York, 1979.
Goldberg, D.E., Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley,
Reading, MA, 1989.
Golub, G .H. and Van Loan, C.F., Matrix Computations, 3rd ed., Johns Hopkins University Press, Baltimore,
MD, 1996.
Greenbaum, A., Iterative Methods for Solving Linear Systems, Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, 1997.
Griffiths, D.V. and Smith, I.M., Numerical Methods for Engineers, Oxford University Press, 1991.
Guest, P.G ., Numerical Methods of Curve Fitting, Cambridge University Press, New York, 1961.

256 ——— MATLAB: An Introduction with Applications

Hager, W.W., Applied Numerical Algebra, Prentice-Hall, Upper Saddle River, NJ, 1998.
Hamming, R.W., Numerical Methods for Scientists and Engineers, 2nd ed., McGraw-Hill, New York, 1973.
Henrici, P.H., Elements of Numerical Analysis, Wiley, New York, 1964.
Higham, N.J., Accuracy and Stability of Numerical Algorithms, Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, 1996.
Hildebrand, F.B., Introduction to Numerical Analysis, 2nd ed., McGraw-Hill, New York, NY, 1974.
Hoffman, J., Numerical Methods for Engineers and Scientists, McGraw-Hill, New York, 1992.
Hornbeck, R.W., Numerical Methods, Quantum, New York, 1975.
Householder, A.S., Principles of Numerical Analysis, McGraw-Hill, New York, 1953.
Householder, A.S., The Theory of Matrices in Numerical Analysis, Blaisdell, New York, 1964.
Iserles, A., A First Course in the Numerical Analysis of Differential Equations, Cambridge University Press,
New York, 1996.
Issaccson, E. and Keller, H.B. and Bishop, H., Analysis of Numerical Methods, Wiley, New York, 1966.
Jacobs, D. (ed.), The State of the Art in Numerical Analysis, Academic Press, London, 1977.
Jacques, I. and Colin, J., Numerical Analysis, Chapman and Hall, New York, 1987.
Jain, M.K., Numerical Analysis for Scientists and Engineers, S.B.W. Publishers, New Delhi, India, 1971.
James, M.L., Smith, G .M. and Wolford, J.C., Applied Numerical Methods for Digital Computations with
FORTRAN and CSMP, 3rd ed., Harper & Row, New York, 1985.
Johnson, L.W., Riess, R.D., Numerical Analysis, 2nd ed., Addison-Wesley, Reading, MA, 1982.
Johnston, R.L., Numerical Methods: A Software Approach, Wiley, New York, 1982.
Kahaneer, D., Moher, C. and Nash, S., Numerical Methods and Software, Prentice-Hall, Englewood Cliffs,
NJ, 1989.
Keller, H.B., Numerical Methods for Two-Point Boundary Value Problems, Wiley, New York, 1968.
Kelley, C.T., Iterative Methods of Optimization, Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 1999.
Kharab, A. and Guenther, R.B., An Introduction to Numerical Methods—A MATLAB Approach, CRC Press,
Boca Raton, FL, 2001.
Kincaid, D. and Cheney, W., Numerical Analysis: Mathematics of Scientific Computing, Brooks/Cole, Pacific
Grove, CA, 1996.
Kress, R., Numerical Analysis, Springer-Verlag, New York, 1998.
Krishnamurthy, E.V. and Sen, S.K., Numerical Algorithms, East-West Publishers, New Delhi, India, 1986.
Krommer, A. R. and Ueberhuber, C.W., Computational Integration, Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, 1998.
Lambert, J.D., Numerical Methods for Ordinary Differential Equations—The Initial Value Problems, Wiley,
New York, NY, 1991.
Lapidus, L. and Pinder, G.F., Numerical Solution of Ordinary Differential Equations in Science and
Engineering, Wiley, New York, 1981.
Lapidus, L., and Seinfield, J.H., Numerical Solution of Partial Differential Equations, Academic Press,
New York, 1971.
Lastman, G .J. and Sinha, N.K., Microcomputer Based Numerical Methods for Science and Engineering,
Saunders College Publishing, New York, NY, 1989.

Numerical Methods ——— 257

Levy, H. and Baggott, E.A., Numerical Solutions of Differential Equations, Dover, New York, 1950.
Maron, M.J., Numerical Analysis, A Practical Approach, Macmillan, New York, 1982.
Mathews, J.H., Numerical Methods for Mathematics, Science and Engineering, 2nd ed., Prentice-Hall of
India, New Delhi, India, 1994.
Milne, W.E., Numerical Solution of Differential Equations, Wiley, New York, 1953.
Moin, P., Fundamentals of Engineering Numerical Analysis, Cambridge University Press, New York, 2001.
Morton, K.W. and Mayers, D.F., Numerical Solution of Partial differential Equations: An Introduction,
Cambridge University Press, Cambridge, UK, 1994.
Myron, A. and Issacson, E.L., Numerical Analysis for Applied Science, Wiley, Hoboken, NJ, 1998.
Na, T.Y., Computational Methods in Engineering Boundary Value Problems, Academic Press, New York,
1979.
Nakamura, S., Computational Methods in Engineering and Science, Wiley, New York, NY, 1977.
Nielson, K.L., Methods in Numerical Analysis, Macmillan Company, New York, 1964.
Noble, B., Numerical Methods, Vol. 2, Oliver and Boyd, Edinburgh, 1964.
Nocedal, J. and Wright, S.J., Numerical Optimization, Springer-Verlag, New York, 1999.
Ortega, J.M., Numerical Analysis—A Second Course, Academic Press, New York, NY, 1972.
Powell, M., Approximation Theory and Methods, Cambridge University Press, Cambridge, UK, 1981.
Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P., Numerical Recipes: The Art of Scientific
Computing, 2nd ed., Cambridge University Press, New York, 1992.
Quarteroni, A., Sacco, R. and Saleri, F., Numerical Mathematics, Springer-Verlag, New York, 2000.
Ralston, A., and Rabinowitz, P., A First Course in Numerical Analysis, 2nd ed., McGraw-Hill, New York,
1978.
Ralston, A. and Wilf, H.S., eds., Mathematical Methods for Digital Computers, Vol. 1 and 2, Wiley, New
York, 1967.
Rao, K.S., Numerical Methods for Scientists and Engineers, Prentice-Hall, New Delhi, India, 2001.
Rao, S.S., Applied Numerical Methods for Engineers and Scientists, Prentice-Hall, Upper Saddle River,
New Jersey, NJ, 2002.
Ratschek, H. and Rokne, J., Computer Methods for the Range of Functions, Ellis Horwood, Chichester,
1984.
Rice, J.R., Numerical Methods, Software and Analysis, McGraw-Hill, New York, 1983.
Sastry, S.S., Introductory Methods of Numerical Analysis, Prentice-Hall of India, New Delhi, India, 2001.
Scarborough, J.B., Numerical Mathematical Analysis, 6th ed., John Hopkins Press, Baltimore, MD, 1966.
Scheid, F., Schaum’s Outline of Theory and Problems in Numerical Analysis, 2nd ed., Schaum’s Outline
Series, McGraw-Hill, New York, 1988.
Schiesser, W.E., Computational Mathematics in Engineering and Applied Science, CRC Press, Boca Raton,
FL, 1994.
Shampine, L.F., Numerical Solution of Ordinary Differential Equations, Chapman and Hall, New York,
1994.
Sharma, J.N., Numerical Methods for Engineers and Scientists, Narosa Publishing House, New Delhi, India,
2004.

258 ——— MATLAB: An Introduction with Applications

Smith, G.D., Numerical Solution of Partial Differential Equations: Finite Difference Methods, 3rd ed., Oxford
University Press, Oxford, 1985.
Smith, W.A., Elementary Numerical Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1986.
Snyder, M.A., Chebyshev Methods in Numerical Approximation, Prentice-Hall, Englewood Cliffs, NJ, 1966.
Stanton, R.G., Numerical Methods for Science and Engineering, Prentice-Hall of India, New Delhi, India,
1967.
Stark, P.A., Introduction to Numerical Methods, Macmillan, New York, 1970.
Stewart, G.W., Matrix Algorithms, Vol. 1, Basic Decompositions, Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, 1998.
Stoer, J. and Bulirsch, R., Introduction to Numerical Analysis, Springer-Verlag, New York, 1980.
Stroud, A., and Secrets, D., Gaussian Quadrature Formulas, Prentice-Hall, Englewood Cliffs, 1966.
Stroud, A.H., Numerical Quadrature and Solution of Ordinary Differential Equations, Springer-Verlag,
New York, 1974.
Taylor, J.R., An Introduction to Error Analysis, University Science Books, Mill Valley, CA, 1982.
Traub, J.F., Iterative Methods for the Solution of Equations, Prentice-Hall, Englewood Cliffs, NJ, 1964.
Trefethen, L.N. and Bau, D., Numerical Linear Algebra, Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA, 1997.
Tyrtyshnikov, E.E., A Brief Introduction to Numerical Analysis, Birkhauser, Boston, 1997.
Ueberhuber, C.W., Numerical Computation 1: Methods, Software, and Analysis, Springer-Verlag, New York,
1997.
Ueberhuber, C.W., Numerical Computation 2: Methods, Software, and Analysis, Springer-Verlag, New York,
1997.
Vemuri, V. and Karplus, W.J., Digital Computer Treatment of Partial Differential Equations, Prentice-
Hall, Englewood Cliffs, NJ, 1981.
Vichnevetsky, R., Computer Methods for Partial Differential Equations, Vol. 1: Elliptic Equations and
the Finite Element Method, Prentice-Hall, Englewood Cliffs, NJ, 1981.
Vichnevetsky, R., Computer Methods for Partial Differential Equations, Vol. 2: Initial Value Problems,
Prentice-Hall, Englewood Cliffs, NJ, 1982.
Wendroff, B., Theoretical Numerical Analysis, Academic Press, New York, 1966.
Wilkinson, J.H., Rounding Errors in Algebraic Processes, Dover, New York, 1994.
Yokowitz, S. and Szidarovsky, F., An Introduction to Numerical Computation, Macmillan, New York, 1986.
Yong, D.M. and Gregory, R.T., A Survey of Numerical Mathematics, Vol. 1 and 2, Addison-Wesley, Reading,
MA, 1972.
Young, D., Iterative Solution for Large Linear Systems, Academic Press, New York, 1971.

Numerical Methods ——— 259

PROBLEMS

P4.1: Use the method of Gaussian elimination to solve the following system of linear equations:
x1 + x2 + x3 – x4 = 2

4x1 + 4x2 + x3 – x4 = 11
x1 – x2 – x3 + 2x4 = 0

2x1 + x2 + 2x3 – 2x4 = 2

P4.2: Use Gaussian elimination method to solve the system of equations [A]{x} = {b} where

1 1 1 1
2 1 3 0

,
0 2 0 3
1 0 2 1

A

 
 − =
 
 −  

3
3
1
0

b

 
  =  
 
  

P4.3: Solve the following set of equations by Gauss-Jordan method.
2x1 + x2 – 3x3 = 11

4x1 – 2x2 + 3x3 = 8
–2x1 + 2x2 – x3 = –6

P4.4: Use Gauss-Jordan method to solve the following set of equations.

1

2

3

4

5 4 1 0 0 1
4 6 4 1 0 2

1 4 6 4 1 3
0 1 4 6 4 2
0 0 1 4 5 1

x
x
x
x

−   
    − −         − − =   

     − −       −     

P4.5: Solve the following system of equations using Choleski’s factorizations.
x1 + x2 + x3 – x4 = 2

x1 – x2 – x3 + 2x4 = 0
4x1 + 4x2 + x3 + x4 = 11

2x1 + x2 + 2x3 – 2x4 = 2

P4.6: Use Choleski’s method of solution for Problem P4.2.

P4.7: Use Jacobi iterative scheme to obtain the solutions of the following system of equations.
x + 2y + z = 0
3x + y – z = 0
x – y + 4z = 3

P4.8: Use Jacobi iterative scheme to obtain the solution for Problem P4.1.

P4.9: Use Gauss-Seidel method to solve the following system of equations in Problem P4.7.

260 ——— MATLAB: An Introduction with Applications

P4.10: Solve the system of equations in Problem P4.2 using Gauss-Seidel method.
P4.11: Solve the following set of equations in Problem P4.5 using Householder’s factorization method.
P4.12: Use the Householder reduction to transfer the following matrix A into tridiagonal form and solve the
set of equations Ax = b, where

7 2 3 1
2 8 5 1
3 5 12 9
1 1 9 7

A

− 
 
 =
 
 −  

2
3

5
7

b

 
 − =
 
 
  

P4.13: Determine the eigenvalues and eigenvectors of the following matrix using Jacobi method.

11 2 8
[] 2 2 10

9 10 5
A

 
 = − 
 − 

P4.14: Use Jacobi method to compute the eigenvalues and the corresponding eigenvectors of the following
matrix A:

4 3 2 1
3 4 1 2

[]
2 1 4 3
1 2 3 4

A

 
 
 =
 
 
  

❍ ❍ ❍

5.1 INTRODUCTION

Optimization is minimizing or maximizing a function. The function F(x) is called the merit function or objective
function. The components of x are known as the design variables.

The minimum point must be bracketed before a minimization algorithm can be used. The bracketing
procedure consists of starting with an initial value of x0 and moving downhill computing the functions at
x1, x2, x3, … until the point xn is reached where f (x) increases for the first time. The minimum point is now
bracketed in the interval (xn–2, xn). The increasing in step size follows as hi + 1 = c hi where c > 1.

Suppose the minimum of f (x) has been bracketed in the interval (a, b) of length h. To telescope the
interval, the function at x1 = b – Rh and x2 = a + Rh is evaluated. If f1 > f2, then the minimum lies in (x1, b);
otherwise it is located in (a, x2).

Next, we evaluate the function at x2 = a + Rh′ and repeat the process. We noted that x2 – x1 = 2 Rh – h
and x1 – a = h′ – Rh′ or 2Rh – h = h′ – Rh′ and substituting h′ = Rh, we obtain R = 0.618033989. The number
of telescopings required to reduce h from |b – a| to an error tolerance ∈ is given by

()ln / | |
2.078087 ln

ln | |
b a

n
R b a

∈ − ∈= = −
−

.

5.2 CONJUGATE GRADIENT METHODS

The objective here is to minimize F(x), where the components of x are the n independent design variables.
Consider the quadratic function

1()
2i i ij i j

i i j
F x c b x A x x= − +∑ ∑∑

1
2

T Tc b x x Ax= − + ...(5.1)

555CHAP
T

E
R

Optimization

262 ——— MATLAB: An Introduction with Applications

Differentiating Eq.(5.1) w.r.t. xi gives

i ij j
i j

F b A x
x

∂ = − +
∂ ∑

or in vector notation

F b Ax∇ = − + ...(5.2)
where ∇F is the gradient of F.
The gradient along u when the motion takes place along the line x = x0 + su, where s is the distance moved
is given by

 ()
0 0

0x su xF b A x su F s Au+∇ = − + + = ∇ +

If the change in the gradient sAu is perpendicular to a vector V, then

 0TV Au = ...(5.2A)

The directions of u and V are said to be mutually conjugate.

5.3 NEWTON’S METHOD

Newton’s method is a gradient method and can be conveniently used to optimize functions with several
parameters. Let the function to be optimized be ()U x , where x is the vector of parameters x1, x2, …, xn.
The function ()U x can be expanded in the Taylor’s series about a point *x as

*
* *

1

()() () ()
n

i i
ii

U xU x U x x x
X=

∂
= + −

∂∑
Newton’s method uses only two terms in the series. Expressing in concise form, the above series can be
written as

* * *() () ()()TU x U x g x x x−= + − ...(5.3)

where *()g x is the vector of first derivatives given by

* *
*

1 2

() ()() , ,....
T

U x U xg x
x x

 ∂ ∂=  ∂ ∂ 

The minimum *()U x obtained by setting

0
i

U
x

∂
=

∂

In Eq.(5.3) which yields the set of equations
* * *() ()() 0g x J x x x+ − = ...(5.4)

Optimization ——— 263

where *()J x is the Jacobian matrix of second derivatives given by

2 * 2 * 2 *

2
1 2 11*

2 * 2 *

2
1

() () ()
.....

()
() ()

.....

n

n n

U x U x U x
x x x xx

J x
U x U x
x x x

∂ ∂ ∂
∂ ∂ ∂ ∂∂

=
∂ ∂
∂ ∂ ∂

A set of linear algebraic equations in the unknown xi’s are given by Eq.(5.4). If *x is taken as kx , the kth
point in the step by step search for the minimum, then solution of Eq. (5.4) given (k + 1)st approximation.
Writing Eq.(5.4) in the form

1() ()() 0k k k kg x J x x x+= − = ...(5.5)

It is possible to obtain an iterative form for the solution as

 1
1 [()] ()k k k kx x J x g x−

+ = −

It is not actually necessary to obtain the inverse of the matrix []kJ x to solve for the new approximation

kx . It is possible to write Eq.(5.5) in the form

 () ()k k kJ x g xδ = −

where 1k k kx x+δ = − .

5.4 THE CONCEPT OF QUADRATIC CONVERGENCE

Conjugate Directions for a Quadratic Function
The gradient method is expressed as

 1 ()k k k kx x g x+ = − λ ...(5.6)

or in the form

 ()k k kg xδ = −λ

During each iteration λk is selected to minimize 1()kU x + in the gradient direction. A gradient search tends
to zig-zig quite badly a particularly for quadratic functions. If it is possible to establish the best direction
to take for a quadratic function, it would likely also be better for most other non-linear functions. This is
called quadratic convergence and the approach is rather surprisingly successful. Equation (5.6) has the
general form, in this case, given by

 1 ()k k k kx x C x+ = + λ ...(5.7)

where ()kC x defines the conjugate direction vector at each step. The general quadratic form is

1

()
2

T TU x x Ax B x d= + + ...(5.8)

where A is a matrix and B is a vector.

264 ——— MATLAB: An Introduction with Applications

It is required to determine a means of establishing conjugate directions for an optimization function of this
form and show that they give convergence to the minimum. For this we require A to be a positive-define
matrix, which means it must be such that all quadratic terms of Eq.(5.8) are positive. This is equivalent to

requiring Eq.(5.8) to be convex so that it has a minimum. A will also be symmetric since
2 2

ij ji
i j j i

U UA A
x x x x
∂ ∂= = =

∂ ∂ ∂ ∂

and consequently 1A− is also symmetric. For convenience, let

 () ; () ; ()k k k kg x g g x g C x C= = =

Note that the gradient vector of the quadratic (5.8) is

 g Ax B= + ...(5.9)

Equation (5.7) is iterated for successive steps from i to (n – 1), to obtain

1

1

n

n i k k
k

x x C
−

=
= + λ∑

Premultiplying both sides by A and adding B , we get

1n

n i k k
k i

Ax B Ax B AC
−

=
= = + + λ∑ ...(5.10)

Using Eq.(5.9) this becomes

1n

n i k k
k i

g g AC
−

=
= + λ∑

Finally, premultiplying by 1
T
iC − ,

1

1 1 1 1
1

n
T T T
i n i k i k

k
C g C g C AC

−

− − −
=

= + λ∑ ...(5.11)

It can be demonstrated intuitively that 1
T
i iC g− is zero by the following reasoning. In the i – 1 step, 1iC − is

followed to a minimum for U, with takes us to 1x and therefore the gradient ig is normal to 1iC − . Consequently,

 1 0T
i iC g− =

This can be demonstrated more rigorously as follows. Consider λi–1 as a variable that is being adjusted to
minimize U and bring the search to ix . Consequently,

1 2

1 1 1 2 1 1

... n

j i i n i

dxdx dxdU U U U
d x d x d x d− − − −

∂ ∂ ∂= + + +
λ ∂ λ ∂ λ ∂ λ ...(5.12)

Referring to Fig. 5.1, the search vector 1iC − at the origin has components C1, i–1, …, Cn, i–1, and the search
moves along vector λi–1Ci–1 from xi–1 to x1. In general, then, for any value of λi–1,

Optimization ——— 265

 1 1 1i i ix x C− − −= + λ

C1,i

C2,i

x

x

C

x
i–1 Cλ

i

i–1

i–1

Fig. 5.1 The (i – 1)th search step

Taking the derivative with respect to λi–1, results in

1
1

1 1

i
i

i i

dxdx C
d d

−
−

− −
= +

λ λ

Since 1ix − is constant at this state in the search, we have

 1
1

i
i

dxC
d−

−
=

λ
Thus, Eq.(5.12) can be written for any value of λi–1 as

1
1

T
i

i

dU C g
d −

−
=

λ

Now at 1x , dU/dλi–1 must be zero for a minimum U. Thus, we have

1
T
iC g− = 0

Consequently, Eq.(5.11) reduces to

1

1 1

n
T T
i n k i k

k i
C g C AC

−

− −
=

= λ∑ ...(5.13)

The conjugate vectors are defined as those satisfying

 0T
i jC AC = ...(5.14)

For i ≠ j. Since A must be a positive-define matrix as defined above, the summation term of Eq.(5.13) is zero
so that

 1 0T
i nC g− = ...(5.15)

The theory of n-dimensional vectors states that if we construct a set of n-vectors all orthogonal or conjugate
to each other, then any other vector can be written as a linear combination of these vectors. Therefore, no
other vector can be orthogonal to all of the original n-vectors other than the zero vector. Since Eq.(5.15) is
an expression of orthogonally of the nth gradient vector with all n conjugate vectors, then ng must be
zero, which is the condition for the minimum of the quadratic. Thus, the minimum of the quadratic can be
found in the n steps if the search directions are conjugate.

266 ——— MATLAB: An Introduction with Applications

The conjugate directions in two dimensions are shown in Fig. 5.2. The first search direction is the
gradient vector, which is chosen arbitrarily. The second direction is conjugate to the first one. Several
methods have been proposed for generating the first search direction and these methods are applied to
non-quadratic functions also. It should be noted that Newton’s method would go to the minimum in one
step if the function to be minimized is quadratic.

Conjugate vector

Gradient
vectors

x2

1x

0C

0x

2x

1x

Fig. 5.2 Conjugate directions

5.5 POWELL’S METHOD

For an optimization problem involving n design variables, the basic algorithm is described below:
(a) select a point x0 in the design space
(b) select the starting vectors Vi, i = 1, 2, …, n
(c) do with i = 1, 2, …, n

minimize F(x) along the line thro xi–1 in the direction of Vi.
assume the minimum point as xi

end do
(d) Vn +1 ← x0 – xn

minimize F(x) along the line thro x0 in the direction of Vn + 1

assume the minimum point as xn + 1

if |xn + 1 – x0| < ∈ exit loop
do with i = 1, 2, …, n
Vi ← Vi + 1

end do
end cycle

The minimum point of a quadratic surface is reached in n cycles.

Optimization ——— 267

5.6 FLETCHER-REEVES METHOD

The algorithm is described below:
(a) select a starting point x0

(b) g0 ← – ∇F(x0)
(c) V0 ← g0

(d) loop with i = 0, 1, 2, …
minimize F(x) along Vi; xi + 1 is the minimum point assumed
gi + 1 ← –∇F(xi + 1)
if |gi + 1| < ∈ or |F(xi + 1) – F(xi)| < ∈ exit loop
r ← (gi + 1 . gi + 1)/(gi . gi)
Vi + 1 ← gi + 1 + rVi

end loop
The method will find the minimum of a quadratic function in n iterations. Also, Vi and Vi + 1 are mutually
conjugate. In other words,

1 0T
i iV AV + = and 1 0i ig g + =i .

5.7 HOOKE AND JEEVES METHOD

Hooke and Jeeves method is a sequential technique each step of which consists of two kinds of moves,
the exploratory move and the pattern move.
General procedure:

1. Start with an arbitrarily chosen point

1

2
1

n

x
x

X

x

 
  =  
 
  

#
, called the starting base point and prescribed step

lengths ∆xi in each of the coordinate directions ui, i = 1, 2, …, n. Set k = 1.
2. Compute fk = f (Xk). Set i = 1, Yk0 = Xk, and start the exploratory move as stated in step 3.
3. The variable xi is perturbed about the current temporary base point Yk, i–1 to obtain the new temporary

base point as

, 1 , 1

, 1

, 1 , 1
,

, 1

, 1

, 1 , 1

if ()
()

if ()
()

()

if () min(,)

k i i i k i i i

k i

k i i i k i i i
k i

k i

k i i i

k i k i

x f f x
f f

x f f x
f f

f f x

f f f f

+
− −

−

−
− −

−

+
−

+ −
− −

 + ∆ = + ∆


< =


− ∆ = − ∆=  < =
 < = + ∆
 = <

Y u Y u
Y

Y u Y u
Y

Y

Y u

Y Y

268 ——— MATLAB: An Introduction with Applications

This process is continued for i = 1, 2, …, until xn is perturbed to find Yk, n.
4. If the point Yk, n remains same as Xk, reduce the step lengths ∆xi (say, by a factor of 2), set i = 1 and

go to step 3. If Yk, n is different from Xk, obtain the new base point as

Xk +1 = Yk, n

and go to step 5.
5. With the help of the base points Xk and Xk + 1, establish a pattern direction S as

S = Xk + 1 – Xk

and find a point Yk + 1, 0 as

Yk + 1,0 = Xk + 1 + λS ...(5.16)

where λ is the step-length, which can be taken as 1 for simplicity. Alternatively, we can solve a one-
dimensional minimization problem in the direction S and use the optimum step length λ* in place of λ
in Eq.(5.16).

6. Set k = k + 1, fk = f (Yk0), i = 1, and repeat step 3. If at the end of step 3, f (Yk,n) < f(Xk), we take the new
base point as Xk +1 = Yk,n and go to step 5. On the other hand, if f (Yk,n) ≥ f (Xk), set Xk+1 ≡ Yk, reduce
the step lengths ∆xi, set k = k + 1, and go to step 2.

7. The process is assumed to have converged whenever the step lengths fall below a small quantity ε.
Thus, the process is terminated if

max(∆xi) < ε.

5.8 INTERIOR PENALTY FUNCTION METHOD

In the interior penalty function methods, a new function (φ function) is constructed by augmenting a penalty
term to the objective function. The penalty term is chosen such that its value will be small at points away
from the constraint boundaries and will tend to infinity as the constraint boundaries are approached. Thus,
once the unconstrained minimization of φ(X, rk) is started from any feasible point X1, the subsequent points
generated will always lie within the feasible domain since the constraint boundaries act as barriers during
the minimization process. The φ function defined as

1

1(,) ()
()

m

k k
jj

r f r
g=

φ = − ∑X X
X

Since the above equation does not allow any constraint to be violated, it requires a feasible starting point
for the search toward the optimum point. The iteration procedure of this method can be summarized as
follows:
Iterative process:
1. Start with an initial feasible point X1 satisfying all the constraints with strict inequality sign, that is,

gj(X1) < 0 for j = 1, 2, …, m and an initial value for r1 > 0. Set k = 1.
2. Minimize φ(X, rk) by using any of the unconstrained minimization methods and obtain the solution

X*k.
3. Test whether X*k is the optimum solution of the original problem. If X*k is found to be optimum, terminate

the process or else, go to the next step.

Optimization ——— 269

4. Find the value of the next penalty parameter, rk + 1, as
rk+1 = crk

where c < 1.
5. Set the new value of k = k + 1, take the new starting point as X1 = X*k, and go to step 2.

All these aspects are discussed in the following paragraphs.
Starting Feasible Point X1:
1. Select an arbitrary point X1 and evaluate the constraints g j(X) at the point X1. Since the point X1 is

arbitrary, it may not satisfy all the constraints with strict inequality sign. If r out of a total of m constraints
are violated, renumber the constraints such that the last r constraints will become the violated ones,
that is,

gj(X1) < 0, j = 1, 2, …, m – r
gj(X1) ≥ 0, j = m – r + 1, m – r + 2, …, m

2. Identify the constraint that is violated most at the point X1, that is, obtain the integer k such that
gk(X1) = max[gj(X1)] for j = m – r + 1, m – r + 2, …, m

3. Formulate a new optimization problem as:
Find X which minimizes gk(X)
subject to
gj(X) ≤ 0, j = 1, 2, …, m – r
gj(X) – gk(X1) ≤ 0, j = m – r + 1, m – r + 2, …, k – 1, k + 1, …, m

4. Solve the optimization problem formulated in step 3 by taking the point X1 as a feasible starting point
using the interior penalty function method. Note that this optimization method can be terminated
whenever the value of the objective function gk(X) drops below zero. The solution obtained XM will
satisfy at least one more constraint than did the original point X1.

5. If all the constraints are not satisfied at the point XM, set the new starting point as X1 = XM, and
renumber the constraints such that the last r constraints will be the unsatisfied ones (this value of r
will be different from the previous value), and go to step 2.
This procedure is repeated until all the constraints are satisfied and a point X1 = XM is obtained for
which gj(X1) < 0, j = 1, 2, …, m.

Initial Value of the Penalty Parameter (r1):
Since the unconstrained minimization of φ(X, rk) is to be carried out for a decreasing sequence of rk, it
might appear that by choosing a very small value of r1, we can avoid an excessive number of minimizations
of the function φ. But from a computational point of view, it will be easier to minimize the unconstrained
function φ(X, rk) if rk is large. A moderate value has to be choosen for the initial penalty parameter (r1). In
practice, a value of r1 that gives the value of φ(X1, r1) approximately equal to 1.1 to 2.0 times the value of
f (X1) has been found to be quite satisfactory in achieving quick convergence of the process. Hence, for
any initial feasible starting point X1, the value of r1 can be taken as

1
1

1 1

()0.1 to 1.0
1/ ()m

j j

fr
g=−Σ

X
X

� ...(5.17)

270 ——— MATLAB: An Introduction with Applications

Subsequent Values of the Penalty Parameter:
Once the initial value of rk is chosen, the subsequent values of rk is selected so that

rk +1 < rk (5.18)
The values of rk are chosen such that

rk + 1 < crk (5.19)
where c < 1. The value of c can be taken as 0.1, 0.2 or 0.5.

Convergence Criteria:
The process will be terminated whenever the following conditions are satisfied.
The relative difference between the values of the objective function obtained at the end of any two
consecutive unconstrained minimizations falls below a small number ε1, that is,

* *
1

1*
() ()

()
k k

k

f f
f

−−
≤ ε

X X
X

The difference between the optimum points *
kX and *

1k −X becomes very small. This can be judged in several
ways. Some of them are given below:

|(∆X)i| ≤ ε2

where ∆X = *
kX – *

1,k−X and (∆X)i is the ith component of the vector ∆X.

max|(∆X)i| ≤ ε3
2 2 2 1/ 2
1 2 4...| | [() () ()]n∆ = ∆ + ∆ + + ∆ ≤ εX X X X

It is advisable to normalize the constraints so that they vary between –1 and 0 as far as possible.
If the constraints are not normalized, the problem can still be solved effectively by defining different

penalty parameters for different constraints as

1

(,) ()
()

m
j

k k
jj

R
r f r

g=
φ = − ∑X X

X

where R1, R2, …, Rm are selected such that the contributions of different gj (X) to the φ function will be
approximately the same at the initial point X1.

5.9 EXAMPLE PROBLEMS AND SOLUTIONS

Example E5.1: Minimize the following function using Newton’s method.
f (x, y) = x1

2 – x1x2 – 5x1 + x2
2 – x2

Use initial guesses, x = 0 and y = 0.
Solution:
>> fn=inline(‘x(1)^2–x(1)*x(2)–5*x(1)+x(2)^2–x(2)’,‘x’);

>> gn=inline(‘[2*x(1)–x(2)–5 –x(1)+2*x(2)–1]’,’x’);

Optimization ——— 271

>> x0=[0 0];TolX=1e–4;TolFun=1e–6;MaxIter=100;

>> [x0,g0, xx]=newtons(gn,x0,TolX,MaxIter)

x0 =

3.6667 2.3333

g0 =

1.0e–015 *

0 –0.4441

xx =

3.6667 2.3333

3.6667 2.3333

function g= jacob(f,x,h,varargin)
%Jacobian of f(x)

if nargin<3, h=.0001; end

N= length(x); h2= 2*h; %h12=12*h;

x=x(:).’; I= eye(N);

for n=1:N

f1=feval(f,x+I(n,:)*h,varargin{:});

f2=feval(f,x–I(n,:)*h,varargin{:});

f3=feval(f,x+I(n,:)*h2,varargin{:});

f4=feval(f,x–I(n,:)*h2,varargin{:});

f12=(f1–f2)/h2;

f12=(8*(f1–f2)–f3+f4)/h12;

g(:,n)=f12(:);

end

if sum(sum(isnan(g)))==0&rank(g)<N

format short e

fprintf(‘At x=%12.6e, Jacobian singular with J=’,x);

disp(g); format short;

end

function [x,fx,xx]=newtons(f,x0,TolX,MaxIter,varargin)
% newtons.m to solve a set of nonlinear eqs

% input:f=a 1st-order vector ftn equivalent to a set of equations

% x0=the initial guess of the solution

% TolX=the upper limit of |x(k)–x(k–1)|

% MaxIter=the maximum # of iteration

% Output: x=the point which the algorithm has reached

% fx=f(x(last))

% xx=the history of x

272 ——— MATLAB: An Introduction with Applications

h=1e–5; TolFun=eps; EPS=1e–6;

fx=feval(f,x0,varargin{:});

Nf=length(fx); Nx=length(x0);

if Nf~=Nx, error(‘Incompatible dimensions of f and x0!’); end

if nargin<4, MaxIter=100; end

if nargin<3, TolX=EPS; end

xx(1,:)=x0(:).’;

%fx0= norm(fx);

for k=1: MaxIter

J=jacob(f,xx(k,:),h,varargin{:});

if rank(J)<Nx

k=k–1; fprintf(‘Warning: Jacobian singular! with det(J)=%12.6e\n’,det(J));
break;

else

dx= –J\fx(:); %–[dfdx]^–1*fx;

end

xx(k+1,:)= xx(k,:)+dx.’;
fx= feval(f,xx(k+1,:),varargin{:}); fxn=norm(fx);
% if fxn<fx0, break; end
%end
if fxn<TolFun|norm(dx)<TolX, break; end
%fx0= fxn;
end
x= xx(k+1,:);
if k==MaxIter
fprintf(‘Do not depend on this, though the best in %d iterations\n’,MaxIter)
end

Example E5.2: Minimize the two-variable objective function
f (x1, x2) = x1

2 – 2x1x2 – 4x1 + x2
2 – x2

Use initial values: (0,0).

Solution:
>> fn=inline(’10*x(1)^2–10*x(1)*x(2)+3*x(2)^2+2*x(1)’,‘x’);

>> gn=inline(‘[20*x(1)–10*x(2)+2 –10*x(1)+6*x(2)]’,‘x’);

>> x0=[0 0];TolX=1e–4;TolFun=1e–6;MaxIter=50;

>> [x0,g0,xx]=newtons(gn,x0,TolX,MaxIter)

x0=

–0.6000 –1.0000

g0=

0 0

Optimization ——— 273

xx =

0 0

–0.6000 –1.0000

–0.6000 –1.0000

function g= jacob(f,x,h,varargin)
%Jacobian of f(x)

if nargin<3, h=.0001; end

N= length(x); h2= 2*h; %h12=12*h;

x=x(:).’; I= eye(N);

for n=1:N

f1=feval(f,x+I(n,:)*h,varargin{:});

f2=feval(f,x–I(n,:)*h,varargin{:});

f3=feval(f,x+I(n,:)*h2,varargin{:});

f4=feval(f,x–I(n,:)*h2,varargin{:});

f12=(f1–f2)/h2;

f12=(8*(f1–f2)–f3+f4)/h12;

g(:,n)=f12(:);

end

if sum(sum(isnan(g)))==0&rank(g)<N

format short e

fprintf(‘At x=%12.6e, Jacobian singular with J=’,x);

disp(g); format short;

end

function [x,fx,xx]= newtons(f,x0,TolX,MaxIter,varargin)
% newtons.m to solve a set of nonlinear eqs

% input: f = a 1st–order vector ftn equivalent to a set of equations

% x0 = the initial guess of the solution

% TolX = the upper limit of |x(k)–x(k–1)|

% MaxIter= the maximum # of iteration

% Output: x=the point which the algorithm has reached

% fx=f(x(last))

% xx=the history of x

h=1e–5; TolFun=eps; EPS=1e–6;

fx=feval(f,x0,varargin{:});

Nf=length(fx); Nx=length(x0);

if Nf~=Nx, error(‘Incompatible dimensions of f and x0!’); end

if nargin<4, MaxIter=100; end

if nargin<3, TolX=EPS; end

xx(1,:)=x0(:).’;

274 ——— MATLAB: An Introduction with Applications

%fx0= norm(fx);

for k=1: MaxIter

J=jacob(f,xx(k,:),h,varargin{:});

if rank(J)<Nx

k=k–1; fprintf(‘Warning: Jacobian singular! with det(J)=%12.6e\n’,det(J));
break;

else

dx= –J\fx(:); %–[dfdx]^–1*fx;

end

xx(k+1,:)= xx(k,:)+dx.’;

fx= feval(f,xx(k+1,:),varargin{:}); fxn=norm(fx);

% if fxn<fx0, break; end

%end

if fxn<TolFun|norm(dx)<TolX, break; end

%fx0= fxn;

end

x= xx(k+1,:);

if k==MaxIter

fprintf(‘Do not depend on this, though the best in %d iterations\n’,MaxIter)

end

Example E5.3: Fit a polynomial by quadratic approximation and determine the values of X at which F(X) is
minimum.

X F(X)
1 8
2 3
3 17

Solution:

X F (X)
1 8
2 3
3 17

Let F(X) = a0 + a1X + a2X2 . From the given data, we have
 a0 + a1 + a2

 = 8
a0 + 2a1 + 4a2

 = 3
 a0 + 3a1 + 9a2

 = 17
solving above equations using MATLAB give
>> A=[1 1 1;1 2 4;1 3 9];

>> b=[8;3;17];

Optimization ——— 275

>> x=A\b

x =

32.0000

–33.5000

9.5000

>> x=inv(A)*b

x =

32.0000

–33.5000

9.5000

a0 = 32

a1 = –33.5

a2 = 9.5

>> x=[1 2 3];y=[8 3 17]; a2a1a0=polyfit(x,y,2)

a2a1a0 =

9.50000000000001 –33.50000000000002 32.00000000000003
and the function is

F(X) = 32 – 33.5X + 9.5X2

For finding minimum of the function, we find the first derivative of the function

() 33.5 19 0dF X X
dX

= − + = ; for a minima or maxima

Thus, X = 1.763

To check for minima or maxima, we find second derivative of the function
2

2

()
19 0

d F X

dX
= > ; thus it’s a

minimum.
The minimum value of F(X) at X is
F(X = 1.763) = 2.462

Example E5.4: Fit a polynomial by quadratic approximation and determine the values of X at which F(X) is
minimum.

X F(X)
1 –7
2 5
3 14

Solution:

X F (X)
1 –7
2 5
3 14

276 ——— MATLAB: An Introduction with Applications

Let F(X) = a0 + a1X + a2X2 . From the given data, we have
 a0 + a1 + a 2

 = –7
a0 + 2a1 + 4a2

 = 5
a0 + 3a1 + 9a2

 = 14
Solving above equations give

a0 = –22
a1 = 16.5
a2 = –1.5

>> x=[1 2 3];y=[–7 5 14];a2a1a0=polyfit(x,y,2)

a2a1a0 =

–1.50000000000000 16.50000000000002 –22.00000000000003
and the function is

F(X) = –22 + 16.5X – 1.5X2

For finding minimum of the function, we find the first derivative of the function ()
16.5 3 0

dF X X
dX

= − = ;

for a minimum or maximum
thus, X = 5.5

To check for minima or maxima, we find second derivative of the function
2

2
() 3 0d F X

dX
= − < ; thus it’s a

maximum.

Thus, for the given function there is no absolute minimum. The function attains its minimum values at ± ∞ .

MATLAB Solution:
% Problem 3.2

clc

clear

disp(‘Fit a Polynomial by Quadratic Aproximation’)

x1=1;

x2=2;

x3=3;

f1=–7;

f2=5;

f3=14;

fx1=[1 x1 (x1)];

fx2=[1 x2 2*x2];

fx3=[1 x3 3*x3];

a=[fx1;fx2;fx3]

b=[f1 ;f2; f3]

poly_values=inv(a)*b

Optimization ——— 277

%solve for min

disp(‘(derivative) d(f(x))/dx= -3*x+16.5’)

disp(‘Thus minimum is x=–16.5/3 ~ 5.5’)

disp(‘Second derivative d2(f(x))/d2x=–3<0’)

disp(‘Thus no absolute minimum’)

Example E5.5: Use Powell’s method to find the minimum of the function

f = 120(y – x 2)2 + (1 – x)2

Start with (–1, 1).

Solution:
function y = fex3_17(X)

y = 120*(X(2)–X(1)^2)^2+(1–X(1))^2;

>> global X FUNC

>> FUNC = @fex3_17;
>> X=[–1.0,1.0];

>> [xMin,fMin,numCycles]=powell

xMin =

1.0000

1.0000

fMin =

4.8369e–021

numCycles =

12

function [xMin,fMin,nCyc] = powell(h,tol)
% Powell’s method

% h=initial search increment=0.1

% tol=error tolerance=1.0e–6

% X=starting point

% FUNC=function that returns f

% xMin=minimum point

% fMin=miminum value of f

% nCyc=number of cycles to convergence

global X FUNC V

if nargin <2; tol=1.0e–6; end

if nargin <1; h=0.1; end

if size(X,2)>1; X=X’; end

n = length(X);

df = zeros(n,1);

278 ——— MATLAB: An Introduction with Applications

u = eye(n);

for j = 1:40 % 40 cycles

xOld = X;

fOld = feval(FUNC,xOld);

for i = 1:n

V = u(1:n,i);

[a,b] = goldBracket(@fLine,0.0,h);

[s,fMin] = goldSearch(@fLine,a,b);

df(i) = fOld – fMin;

fOld = fMin;

X = X + s*V;

end

V = X – xOld;

[a,b] = goldBracket(@fLine,0.0,h);

[s,fMin] = goldSearch(@fLine,a,b);

X = X + s*V;

% convergence criterion

if sqrt(dot(X–xOld,X–xOld)/n) < tol

xMin = X; nCyc = j; return

end

iMax = 1; dfMax = df(1);

for i = 2:n

if df(i) > dfMax

iMax = i; dfMax = df(i);

end

end

for i = iMax:n–1

u(1:n,i) = u(1:n,i+1);

end

u(1:n,n) = V;

end

error(‘No converge’)

function z = fLine(s)

global X FUNC V

z = feval(FUNC,X+s*V);

Example E5.6: Use Powell’s method to find the minimum of the function

f (x) = 2 2
1 2 1 2 19 4 8 3x x x x x+ − +

Start with x0 = [0 0]T.

Optimization ——— 279

Solution:
function y = fex3_18(X)

y = 9*X(1)^2+4*X(2)^2–8*X(1)*X(2)+3*X(1);

>> global X FUNC

>> FUNC = @fex3_18;

>> X=[–1.0,1.0];

>> [xMin,fMin,numCycles]=powell

xMin =

–0.3000

–0.3000

fMin =

–0.4500

numCycles =

2

function [xMin,fMin,nCyc]=powell(h,tol)
% Powell’s method

% h = initial search increment = 0.1

% tol = error tolerance = 1.0e–6

% X = starting point

% FUNC = function that returns f

% xMin = minimum point

% fMin = miminum value of f

% nCyc = number of cycles to convergence

global X FUNC V

if nargin < 2; tol = 1.0e–6; end

if nargin < 1; h = 0.1; end

if size(X,2) > 1; X = X’; end

n = length(X);

df = zeros(n,1);

u = eye(n);

for j = 1:40 % 40 cycles

xOld = X;

fOld = feval(FUNC,xOld);

for i = 1:n

V = u(1:n,i);

[a,b] = goldBracket(@fLine,0.0,h);

[s,fMin] = goldSearch(@fLine,a,b);

df(i) = fOld – fMin;

fOld = fMin;

X = X + s*V;

280 ——— MATLAB: An Introduction with Applications

end

V = X – xOld;

[a,b] = goldBracket(@fLine,0.0,h);

[s,fMin] = goldSearch(@fLine,a,b);

X = X + s*V;

% convergence criterion

if sqrt(dot(X–xOld,X–xOld)/n) < tol

xMin = X; nCyc = j; return

end

iMax = 1; dfMax = df(1);

for i = 2:n

if df(i) > dfMax

iMax = i; dfMax = df(i);

end

end

for i = iMax:n–1

u(1:n,i) = u(1:n,i+1);

end

u(1:n,n) = V;

end

error(‘No converge’)

function z = fLine(s)

global X FUNC V

z = feval(FUNC,X+s*V);

Example E5.7: Use Fletcher-Reeves method to locate the minimum of function

F(x) = 2 2
1 2 1 2 110 3 10 , 2x x x x+ − + .

Start with [0 0.05]T.

Solution:
Global X FUNC DFUNC V

>> FUNC=@fex3_19;DFUNC=@dfex3_19;X=[0,0.5];

>> [xMin,fMin,nCyc]=fletcherReeves

xMin =

–0.6000

–1.0000

fMin =

–0.6000

nCyc =

3

Optimization ——— 281

function [xMin,fMin,nCyc] = FletcherReeves(h,tol)
% Fletcher–Reeves method

% h = initial search increment = 0.1

% tol = error tolerance = 1.0e–6

% X = starting point

% FUNC = handle of function that returns f

% DFUNC = handle of function that returns grad(f)

% xMin = minimum point

% fMin = miminum value of f

% nCyc = # of cycles to convergence

global X FUNC DFUNC V

if nargin < 2; tol = 1.0e–6; end

if nargin < 1; h = 0.1; end

if size(X,2) > 1; X = X’; end

n = length(X);

g0 = –feval(DFUNC,X);

V = g0;

for i = 1:50

[a,b] = goldBracket(@fLine,0.0,h);

[s,fMin] = goldSearch(@fLine,a,b);

X = X + s*V;

g1 = –feval(DFUNC,X);

if sqrt(dot(g1,g1)) <= tol

xMin = X; nCyc = i; return

end

gamma = dot((g1 – g0),g1)/dot(g0,g0);

V = g1 + gamma*V;

g0 = g1;

end

error(‘Method did not converge’)

function z = fLine(s)

global X FUNC V

z = feval(FUNC,X+s*V);

function [a,b] = goldBracket(func,x1,h)
% Brackets the minimum point of f(x)

% func = returns f(x)

% x1= starting value of x

% h = initial step size

% a, b = limits on x

c = 1.618033989;

f1 = feval(func,x1);

282 ——— MATLAB: An Introduction with Applications

x2 = x1 + h; f2 = feval(func,x2);

if f2 > f1

h = –h;

x2 = x1 + h; f2 = feval(func,x2);

if f2 > f1

a = x2; b = x1 – h; return

end

end

% Search loop

for i = 1:100

h = c*h;

x3 = x2 + h; f3 = feval(func,x3);

if f3 > f2

a = x1; b = x3; return

end

x1 = x2; f1 = f2; x2 = x3; f2 = f3;

end

error(‘Failed to find minimum’)

function [xMin,fMin] = goldSearch(func,a,b,tol)
% Golden section search method

% func = function that returns f(x)

% a, b = limits of the interval for the minimum

% tol = error tol = 1.0e–6

% fMin = min of f(x)

% xMin = x at min point

if nargin < 4; tol = 1.0e–6; end

nIter = ceil(–2.078087*log(tol/abs(b–a)));

R = 0.618033989;

C = 1.0 – R;

x1 = R*a + C*b;

x2 = C*a + R*b;

f1 = feval(func,x1);

f2 = feval(func,x2);

for i =1:nIter

if f1 > f2

a = x1; x1 = x2; f1 = f2;

x2 = C*a + R*b;

f2 = feval(func,x2);

else

b = x2; x2 = x1; f2 = f1;

x1 = R*a + C*b;

Optimization ——— 283

f1 = feval(func,x1);

end

end

if f1 < f2; fMin = f1; xMin = x1;

else; fMin = f2; xMin = x2;

end

Example E5.8: Use Fletcher-Reeves method to find the minimum of function in Problem EN3.18.
Start with [0 0.05]T.

Solution:
Global X FUNC DFUNC V

X=[0,0];

>> FUNC=@fex3_20;DFUNC=@dfex3_20;X=[0,0];

>> [xMin,fMin,nCyc]=FletcherReeves

xMin =

–0.3000

–0.3000

fMin =

–0.4500

nCyc =

3

function [xMin,fMin,nCyc] = FletcherReeves(h,tol)
% Fletcher-Reeves method

% h = initial search increment = 0.1

% tol= error tolerance = 1.0e-6

% X = starting point

% FUNC = handle of function that returns f

% DFUNC = handle of function that returns grad(f)

% xMin = minimum point

% fMin = miminum value of f

% nCyc = # of cycles to convergence

global X FUNC DFUNC V

if nargin < 2; tol = 1.0e–6; end

if nargin < 1; h = 0.1; end

if size(X,2) > 1; X = X’; end

n = length(X);

g0 = –feval(DFUNC,X);

V = g0;

for i = 1:50

284 ——— MATLAB: An Introduction with Applications

[a,b] = goldBracket(@fLine,0.0,h);

[s,fMin] = goldSearch(@fLine,a,b);

X = X + s*V;

g1 = –feval(DFUNC,X);

if sqrt(dot(g1,g1)) <= tol

xMin = X; nCyc = i; return

end

gamma = dot((g1 – g0),g1)/dot(g0,g0);

V = g1 + gamma*V;

g0 = g1;

end

error(‘Method did not converge’)

function z = fLine(s)

global X FUNC V

z = feval(FUNC,X+s*V);

function [a,b] = goldBracket(func,x1,h)
% Brackets the minimum point of f(x)

% func = returns f(x)

% x1= starting value of x

% h = initial step size

% a, b = limits on x

c = 1.618033989;

f1 = feval(func,x1);

x2 = x1 + h; f2 = feval(func,x2);

if f2 > f1

h = –h;

x2 = x1 + h; f2 = feval(func,x2);

if f2 > f1

a = x2; b = x1 – h; return

end

end

% Search loop

for i = 1:100

h = c*h;

x3 = x2 + h; f3 = feval(func,x3);

if f3 > f2

a = x1; b = x3; return

end

x1 = x2; f1 = f2; x2 = x3; f2 = f3;

end

error(‘Failed to find minimum’)

Optimization ——— 285

function [xMin,fMin] = goldSearch(func,a,b,tol)
% Golden section search method

% func = function that returns f(x)

% a, b = limits of the interval for the minimum

% tol = error tol = 1.0e–6

% fMin = min of f(x)

% xMin = x at min point

if nargin < 4; tol = 1.0e–6; end

nIter = ceil(–2.078087*log(tol/abs(b–a)));

R = 0.618033989;

C = 1.0 – R;

x1 = R*a + C*b;

x2 = C*a + R*b;

f1 = feval(func,x1);

f2 = feval(func,x2);

for i =1:nIter

if f1 > f2

a = x1; x1 = x2; f1 = f2;

x2 = C*a + R*b;

f2 = feval(func,x2);

else

b = x2; x2 = x1; f2 = f1;

x1 = R*a + C*b;

f1 = feval(func,x1);

end

end

if f1 < f2; fMin = f1; xMin = x1;

else; fMin = f2; xMin = x2;

end

Example E5.9: Minimize the following function f (x) by the penalty function method:

f (x) = [(x1 + 2)2 + 5(x2 – 2)2] [(x1 – 1.5)2 + 0.5(x2 – 0.5)2]

subject to

1

2

1 1 2 2

1 2
2

1 2 2

0
0

3 4 6 0
02 5
03 4 4 .

 −  
   −   
   − + − ≤   + −   
   − −    

x
x

x x x x
x x

x x x

286 ——— MATLAB: An Introduction with Applications

Solution:
>> % Penalty function method

>> clear,clf

>> f=’f321p’;

>> x0=[0.4 0.5];

>> TolX=1e–5;TolFun=1e–9;alpha0=1;

>> TolX=1e–5;

>> MaxIter=100;

>> [x0_Nelder,f0_Nelder]=opt_Nelder(f,x0,TolX,TolFun,MaxIter) % Nelder
method

x0_Nelder =

1.4423 0.6540

f0_Nelder =

0.3176

>> [fc_Nelder,f0_Nelder,c0_Nelder]=f321p(x0_Nelder) % Its results

fc_Nelder =

0.3176

f0_Nelder =

0.3176

c0_Nelder =

–1.4423

–0.6540

–0.0002

–1.4613

–0.0002

>> [x0_s,f0_s]=fminsearch(f,x0) %MATLAB built-in fminsearch()

x0_s =

1.4421 0.6540

f0_s =

0.3178

>> [fc_s,f0_s,c0_s]=f321p(x0_s) % its results

fc_s =

0.3178

f0_s =

0.3178

c0_s =

–1.4421

–0.6540

–0.0009

–1.4618

–0.0001

Optimization ——— 287

>> [x0_u,f0_u]=fminunc(f,x0) % MATLAB built-in fminunc

Warning: Gradient must be provided for trust-region method;

 using line-search method instead.

> In fminunc at 243

Maximum number of function evaluations exceeded;

 increase options.MaxFunEvals

x0_u =

1.4311 0.6599

f0_u =

0.3637

>> [fc_u,f0_u,c0_u]=f321p(x0_u) % its results

fc_u =

0.3637

f0_u =

0.3637

c0_u =

–1.4311

–0.6599

–0.0114

–1.4778

–0.0880

function [fc,f,c]=f321p(x)
f=((x(1)+2)^2+5*(x(2)–2)^2)*((x(1)–1.5)^2+0.5*(x(2)–0.5)^2);

c=[–x(1); –x(2); 3*x(1)–x(1)*x(2)+4*x(2)–6;2*x(1)+x(2)–5;

 3*x(1)–4*x(2)^2–4*x(2)]; % Constraint vector

v=[1 1 1 1 1];e=[1 1 1 1 1]’;% Weighting coefficient vector

fc=f+v*((c>0).*exp(e.*c)); % New objective function

function [xo,fo]=opt_Nelder(f,x0,TolX,TolFun,MaxIter)
N=length(x0);

if N==1 %for 1-dimensional case

[xo,fo]=opt_quad(f,x0,TolX,TolFun); return

end

S= eye(N);

for i=1:N %repeat the procedure for each subplane

i1=i+1; if i1>N, i1=1; end

abc=[x0; x0+S(i,:); x0+S(i1,:)]; %each directional subplane

fabc=[feval(f,abc(1,:)); feval(f,abc(2,:)); feval(f,abc(3,:))];

[x0,fo]=Nelder0(f,abc,fabc,TolX,TolFun,MaxIter);

if N<3, break; end %No repetition needed for a 2-dimensional case

end

xo=x0;

288 ——— MATLAB: An Introduction with Applications

function [xo,fo]=opt_quad(f,x0,TolX,TolFun,MaxIter)
%search for the minimum of f(x) by quadratic approximation method

if length(x0)>2, x012=x0(1:3);

else

if length(x0)==2, a=x0(1); b=x0(2);

else a=x0–10; b=x0+10;

end

x012= [a (a+b)/2 b];

end

f012= f(x012);

[xo,fo]=opt_quad0(f,x012,f012,TolX,TolFun,MaxIter);

function [xo,fo]=opt_quad0(f,x012,f012,TolX,TolFun,k)
x0= x012(1); x1= x012(2); x2= x012(3);

f0= f012(1); f1= f012(2); f2= f012(3);

nd= [f0–f2 f1–f0 f2–f1]*[x1*x1 x2*x2 x0*x0; x1 x2 x0]’;

x3= nd(1)/2/nd(2); f3=feval(f,x3); %Eq.(7.1–4)

if k<=0|abs(x3–x1)<TolX|abs(f3–f1)<TolFun

xo=x3; fo=f3;

if k==0, fprintf(‘Just the best in given # of iterations’), end

else

if x3<x1

if f3<f1, x012=[x0 x3 x1]; f012= [f0 f3 f1];

else x012=[x3 x1 x2]; f012= [f3 f1 f2];

end

else

if f3<=f1, x012=[x1 x3 x2]; f012= [f1 f3 f2];

else x012=[x0 x1 x3]; f012= [f0 f1 f3];

end

end

[xo,fo]=opt_quad0(f,x012,f012,TolX,TolFun,k–1);

end

Example E5.10: Minimize 2 2
1 2 1 2() 6 8 10f x x x x x= + − − +

subject to 2 2
1 24 0x x+ ≤

3x1 + 5x2 ≤ 0
Using penalty function method.

Solution:
% Penalty function method

clear,clf

Optimization ——— 289

f=’f322p’;

x0=[0.4 0.5];

TolX=1e–5;TolFun=1e–9;alpha0=1;

TolX=1e–5; MaxIter=100;

[x0_Nelder,f0_Nelder]=opt_Nelder(f,x0,TolX,TolFun,MaxIter) % Nelder method

[fc_Nelder,f0_Nelder,c0_Nelder]=f322p(x0_Nelder) % Its results

[x0_s,f0_s]=fminsearch(f,x0) %MATLAB built-in fminsearch()

[fc_s,f0_s,c0_s]=f322p(x0_s) % its results

[x0_u,f0_u]=fminunc(f,x0) % MATLAB built-in fminunc

[fc_u,f0_u,c0_u]=f322p(x0_u) % its results

>> [x0_Nelder,f0_Nelder]=opt_Nelder(f,x0,TolX,TolFun,MaxIter) % Nelder
method

x0_Nelder =

0.4412 –0.2647

f0_Nelder =

9.7353

>> [fc_Nelder,f0_Nelder,c0_Nelder]=f322p(x0_Nelder) % Its results

fc_Nelder =

9.7353

f0_Nelder =

9.7353

c0_Nelder =

–0.7085

–0.0000

>> [x0_s,f0_s]=fminsearch(f,x0) %MATLAB built-in fminsearch()

x0_s =

0.4412 –0.2647

f0_s =

9.7353

>> [fc_s,f0_s,c0_s]=f322p(x0_s) % its results

fc_s =

9.7353

f0_s =

9.7353

c0_s =

 –0.7085

–0.0000

290 ——— MATLAB: An Introduction with Applications

>> [x0_u,f0_u]=fminunc(f,x0) % MATLAB built-in fminunc

Warning: Gradient must be provided for trust-region method;

 using line-search method instead.

> In fminunc at 243

Optimization terminated: relative infinity-norm of gradient less than
options.TolFun.

x0_u =

0.4867 –0.1888

f0_u =

10.5382

>> [fc_u,f0_u,c0_u]=f322p(x0_u) % its results

fc_u =

10.5382

f0_u =

8.8627

c0_u =

–0.9119

0.5161

function [fc,f,c]=f322p(x)
f=(x(1)^2+x(2)^2–6*x(1)–8*x(2)+10);

c=[–4*x(1)^2+x(2)^2; 3*x(1)+5*x(2)]; % Constraint vector

v=[1 1];e=[1 1]’;% Weighting coefficient vector

fc=f+v*((c>0).*exp(e.*c)); % New objective function

function [xo,fo]=opt_quad(f,x0,TolX,TolFun,MaxIter)
%search for the minimum of f(x) by quadratic approximation method

if length(x0)>2, x012=x0(1:3);

else

if length(x0)==2, a=x0(1); b=x0(2);

else a=x0–10; b=x0+10;

end

x012= [a (a+b)/2 b];

end

f012= f(x012);

[xo,fo]=opt_quad0(f,x012,f012,TolX,TolFun,MaxIter);

function [xo,fo]=opt_quad0(f,x012,f012,TolX,TolFun,k)
x0= x012(1); x1= x012(2); x2= x012(3);

f0= f012(1); f1= f012(2); f2= f012(3);

nd= [f0–f2 f1–f0 f2–f1]*[x1*x1 x2*x2 x0*x0; x1 x2 x0]’;

x3= nd(1)/2/nd(2); f3=feval(f,x3); 78ikol

Optimization ——— 291

if k<=0|abs(x3–x1)<TolX|abs(f3–f1)<TolFun

xo=x3; fo=f3;

if k==0, fprintf(‘Just the best in given # of iterations’), end

else

if x3<x1

if f3<f1, x012=[x0 x3 x1]; f012= [f0 f3 f1];

else x012=[x3 x1 x2]; f012= [f3 f1 f2];

end

else

if f3<=f1, x012=[x1 x3 x2]; f012= [f1 f3 f2];

else x012=[x0 x1 x3]; f012= [f0 f1 f3];

end

end

[xo,fo]=opt_quad0(f,x012,f012,TolX,TolFun,k–1);

end

Example E5.11: Find the minimum point of the following objective function f (x) using quadratic approximation
method.

2
2(5)() 1
8

xf x −= −

Solution:
>> clear,clf

>> f323=inline(‘(x.*x–5).^2/8–1’, ‘x’);

>> a=0;b=3;TolX=1e–6;TolFun=1e–9;MaxIter=100;

>> [x0q,f0q]=opt_quad(f323,[a,b],TolX,TolFun,MaxIter)

x0q =

2.2361

f0q =

–1.0000

>> % x0q= minimum point and f0q = its function value in above

>> [x0q,f0q]=fminbnd(f323,a,b) % MATLAB built-in function

x0q =

2.2361

f0q =

–1.0000

function [xo,fo]=opt_quad(f,x0,TolX,TolFun,MaxIter)
%search for the minimum of f(x) by quadratic approximation method

if length(x0)>2, x012=x0(1:3);

else

if length(x0)==2, a=x0(1); b=x0(2);

292 ——— MATLAB: An Introduction with Applications

else a=x0–10; b=x0+10;

end

x012= [a (a+b)/2 b];

end

f012= f(x012);

[xo,fo]=opt_quad0(f,x012,f012,TolX,TolFun,MaxIter);

function [xo,fo]=opt_quad0(f,x012,f012,TolX,TolFun,k)
x0= x012(1); x1= x012(2); x2= x012(3);

f0= f012(1); f1= f012(2); f2= f012(3);

nd= [f0–f2 f1–f0 f2–f1]*[x1*x1 x2*x2 x0*x0; x1 x2 x0]’;

x3= nd(1)/2/nd(2); f3=feval(f,x3); %Eq.(7.1–4)

if k<=0|abs(x3–x1)<TolX|abs(f3–f1)<TolFun

xo=x3; fo=f3;

if k==0, fprintf(‘Just the best in given # of iterations’), end

else

if x3<x1

if f3<f1, x012=[x0 x3 x1]; f012= [f0 f3 f1];

else x012=[x3 x1 x2]; f012= [f3 f1 f2];

end

else

if f3<=f1, x012=[x1 x3 x2]; f012= [f1 f3 f2];

else x012=[x0 x1 x3]; f012= [f0 f1 f3];

end

end

[xo,fo]=opt_quad0(f,x012,f012,TolX,TolFun,k–1);

end

Example E5.12: Find the minimum point of the following objective function f (x) using quadratic approxi-
mation method.
Solution:
>> clear,clf

>> f324=inline(‘(x.*x+3).^2/10+exp(x)–7’,’x’);

>> a=0;b=3;TolX=1e–6;TolFun=1e–9;MaxIter=100;

>> [x0q,f0q]=opt_quad(f324,[a,b],TolX,TolFun,MaxIter)

x0q =

–0.4793

f0q =

–5.3377

>> % x0q= minimum point and f0q = its function value

>> [x0q,f0q]=fminbnd(f324,a,b) % MATLAB built-in function

Optimization ——— 293

x0q =

5.6302e–005

f0q =

–5.0999

function [xo,fo]=opt_quad(f,x0,TolX,TolFun,MaxIter)
%search for the minimum of f(x) by quadratic approximation method

if length(x0)>2, x012=x0(1:3);

else

if length(x0)==2, a=x0(1); b=x0(2);

else a=x0–10; b=x0+10;

end

x012= [a (a+b)/2 b];

end

f012= f(x012);

[xo,fo]=opt_quad0(f,x012,f012,TolX,TolFun,MaxIter);

function [xo,fo]=opt_quad0(f,x012,f012,TolX,TolFun,k)
x0= x012(1); x1= x012(2); x2= x012(3);

f0= f012(1); f1= f012(2); f2= f012(3);

nd= [f0–f2 f1–f0 f2–f1]*[x1*x1 x2*x2 x0*x0; x1 x2 x0]’;

x3= nd(1)/2/nd(2); f3=feval(f,x3); %Eq.(7.1–4)

if k<=0|abs(x3–x1)<TolX|abs(f3–f1)<TolFun

xo=x3; fo=f3;

if k==0, fprintf(‘Just the best in given # of iterations’), end

else

if x3<x1

if f3<f1, x012=[x0 x3 x1]; f012= [f0 f3 f1];

else x012=[x3 x1 x2]; f012= [f3 f1 f2];

end

else

if f3<=f1, x012=[x1 x3 x2]; f012= [f1 f3 f2];

else x012=[x0 x1 x3]; f012= [f0 f1 f3];

end

end

[xo,fo]=opt_quad0(f,x012,f012,TolX,TolFun,k–1);

end

Example E5.13: Use the MATLAB fminbnd function to find the maximum of f (x) = 8 sin x –
2

14
x

 with the

interval xA = 0 and xu = 7.

294 ——— MATLAB: An Introduction with Applications

Solution:
First we create an .m file to hold the function
function f=fx(x)

f=–(8*sin(x)–x^2/14)

The negative sign is for minimization.
>> x=fminbnd(‘fx’, 0,7)

The result from MATLAB program is
f =

–7.8268

x =

1.5432

Example E5.14: Use the MATLAB fminsearch function to find the maximum of f (x, y) = 3xy + 8x – x2 – 9y2,
using initial guesses, x = –1 and y = 1.

Solution:
Create an m file to hold the function
function f=fxy(x)

f=–(3*x(1)*x(2)+8*x(1)–x(1)^2–9*x(2)^2)

Invoke the fminsearch function with

>> x=fminsearch(‘fxy’,[–1,1])

f =

–21.3333

x =

5.3334 0.8889

Examples E5.15 to E5.20 are based on Tutorials and Demos from MATLAB (The Mathworks, Inc.)
Example E5.15: This is an unconstrained minimization example. Find the set of values [x1, x2] that solve

1 2 2
1 2 1 2 2min () (4 2 4 2 0.9)x

x
f x e x x x x x= + + + +

Starting guess: x0 = [–1, 1].

Solution:
MATLAB Solution [Using built-in function]:
Write an m-file objfun.m

function f=objfun(x)

f=exp(x(1))*(4*x(1)^2+2*x(2)^2+4*x(1)*x(2)+2*x(2)+0.9);

Write one of the unconstrained optimization routines:

>> x0=[–1,1]; % Starting guess at the solution

>> options=optimset(‘LargeScale’, ‘off’);

>> [x,fval,exitflag,output]=fminunc(@objfun,x0,options)

Optimization ——— 295

Optimization terminated: relative infinity-norm of gradient less than
options.TolFun.

x =

0.5000 –1.0000

fval =

3.6609e–016

exitflag =

 1

output =

 iterations: 8

 funcCount: 66

 stepsize: 1

firstorderopt: 7.3704e–008

 algorithm: ‘medium-scale: Quasi-Newton line search’

 message: ‘Optimization terminated: relative infinity-norm of gradient
less than options.TolFun.’

Example E5.16: This is a non-linear inequality constrained example. Find x that solves
1 2 2

1 2 1 2 2min () (4 2 4 2 0.9)x

x
f x e x x x x x= + + + +

subject to the constraints
x1x2 – x1 – x2 ≤ –2.0
x1x2 ≥ –10

Starting guess: x0 = [–1, 1].

Solution: The constraints are written in the form c(x) ≤ 0.
x1x2 – x1 – x2 + 2 ≤ 0
–x1x2 – 10 ≤ 0

MATLAB Solution [Using built-in function]:
Write an m-file objfun.m

function f=objfun(x)

f=exp(x(1))*(4*x(1)^2+2*x(2)^2+4*x(1)*x(2)+2*x(2)+0.9);

Write an m-file confun.m for the constraints:

function [c,ceq]=confun(x)

%Nonlinear inequality constraints

c=[2+x(1)*x(2)–x(1)–x(2);–x(1)*x(2)–10];

%Nonlinear inequality constraints

ceq=[];

296 ——— MATLAB: An Introduction with Applications

Invoke constrained optimization routine:
>> x0=[–1,1]; % Initial guess at the solution

>> options=optimset(‘LargeScale’, ‘off’);

>> [x,fval]=fmincon(@objfun,x0,[],[],[],[],[],[],@confun,options)

Optimization terminated: first-order optimality measure less

 than options.TolFun and maximum constraint violation is less

 than options.TolCon.

Active inequalities (to within options.TolCon = 1e–006):

 lower upper ineqlin ineqnonlin

1

2

x =

–9.5474 1.0474

fval =

0.0236

>> [c,ceq]=confun(x)

c =

1.0e–007 *

–0.9035

0.9035

ceq =

[]

Example E5.17: This is a constrained optimization example: inequalities and bounds.

Minimize 1 2 2
1 2 1 2 2() (4 2 4 2 0.9)xf x e x x x x x= + + + +

subject to 2 + x1x2 – x1 – x2 ≤ 0
–x1x2 ≤ 0
x1 ≥ 0
x2 ≥ 0

Initial values: x0 = [–1, 1].

Solution:
MATLAB Solution [Using built-in function]:
function f=objfun(x)
f=exp(x(1))*(4*x(1)^2+2*x(2)^2+4*x(1)*x(2)+2*x(2)+0.9);

function [c,ceq]=confun(x)
%Nonlinear inequality constraints

c=[2+x(1)*x(2)–x(1)–x(2);–x(1)*x(2)–10];

%Nonlinear inequality constraints

ceq=[];

Optimization ——— 297

>> x0=[–1,1]; % Initial guess at the solution

>> lb=[0,0]; % Lower bounds

>> ub=[]; % Upper bounds

>> options=optimset(‘LargeScale’, ‘off’);

>> [x,fval]=fmincon(@objfun,x0,[],[],[],[],lb,ub,@confun,options)

Optimization terminated: first-order optimality measure less

than options.TolFun and maximum constraint violation is less

than options.TolCon.

Active inequalities (to within options.TolCon = 1e–006):

 lower upper ineqlin ineqnonlin

 1 1

x =

0 1.5000

fval =

8.5000

>> [c,ceq]=confun(x)

c =

0

–10

ceq =

[]

Example E5.18: This is a constrained example with gradients.

Minimize 1 2 2
1 2 1 2 2() (4 2 4 2 0.9)xf x e x x x x x= + + + +

subject to 2 + x1x2 – x1 – x2 ≤ 0
–x1x2 ≤ 0

Initial values: x0 = [–1, 1].

Solution:
MATLAB Solution [Using built-in function]:
Write an m-file for the objective function and gradient:
The objective function and its gradient are defined in the m-file objgrad.m as follows:
function [f,G]=objfungrad(x)

f=exp (x(1))*(4*x(1)^2+2*x(2)^2+4*x(1)*x(2)+2*x(2)+0.9);

t=exp(x(1))*(4*x(1)^2+2*x(2)^2+4*x(1)*x(2)+2*x(2)+0.9);

G=[t+exp(x(1))*(8*x(1)+4*x(2)),

 exp(x(1))*(4*x(1)+4*x(2)+2)];

Write an m-file for the nonlinear constraints and the gradients of the nonlinear constraints:
The constraints and their partial derivatives are contained in the m-file confungrad.m:

298 ——— MATLAB: An Introduction with Applications

function[c,ceq,dc,dceq]=confungrad(x)
c=[2+x(1)*x(2)–x(1)–x(2);

 –x(1)*x(2)–10];

dc=[x(2)–1,–x(2);

 x(1)–1,–x(1)];

ceq=[];

dceq=[];

7
Invoke constrained optimization routine:
Define a guess at the solution:
>> x0=[–1,1];

>> options=optimset(‘LargeScale’, ‘off’);

>> options=optimset(options, ‘GradObj’, ‘on’,’GradConstr’, ‘on’);

>> lb=[],ub=[], % no lower or upper bounds

>> [x,fval]=fmincon(@objfungrad,x0,[],[],[],[],lb,ub,@confungrad,options)

Optimization terminated: first-order optimality measure less

 than options.TolFun and maximum constraint violation is less

 than options.TolCon.

Active inequalities (to within options.TolCon = 1e–006):

 lower upper ineqlin ineqnonlin

1

2

x =

–9.5474 1.0474

fval =

0.0236

>> [c,ceq]=confungrad(x) % check the constraint values at x

c =

1.0e–007 *

–0.9032

0.9032

ceq =

[]

Example E5.19:

Minimize 1 2 2
1 2 1 2 2() (4 2 4 2 0.9)xf x e x x x x x= + + + +

subject to 2 2
1 2 1x x+ =

–x1x2 ≥ –10

Initial values: x0 = [–1, 1].

Optimization ——— 299

Solution:
MATLAB Solution [Using built-in function]:
The objective function nd its gradient re-defined in the m-file objfun.m as follows:

function f= objfun(x)
f=exp(x(1))*(4*x(1)^2+2*x(2)^2+4*x(1)*x(2)+2*x(2)+0.9);

The m-file confuneq.m contains the equality and inequality constraints:

function [c,ceq]=confuneq(x)

c=–x(1)*x(2)–10;

ceq=x(1)^2+x(2)–1;

Define a guess at the solution:

>> x0=[–1,1];

We will use the option as below:

>> options=optimset(‘LargeScale’, ‘off’);

Call the optimization algorithm:

>> [x,fval,exitflag,output]=fmincon(@objfun,x0,[],[],[],[],[],[],@confuneq,
options);

Optimization terminated: first-order optimality measure less than options.
TolFun

 and maximum constraint violation is less than options.TolCon.

No active inequalities.

>> x

x =

–0.7488 0.4393

The function value at the solution is

>> fval

fval =

1.4621

The constraint values at the solution are

>> [c,ceq]=confuneq(x)

c =

–9.6710

ceq =

6.4376e–009

The total number of function evaluations was

>> output.funcCount

ans =

21

Changing the default termination tolerances

300 ——— MATLAB: An Introduction with Applications

Consider the original unconstrained problem solved first

Minimize f(x)= exp(x(1))*(4*x(1)^2+2*x(2)^2+4*x(1)*x(2)+2*x(2)+0.9

This time we will solve it more accurately by overriding the default
termination criteria (options.TolX and options.TolFun).

Create an anonymous function of the objective to be minimized:

>> fun=@(x) exp(x(1))*(4*x(1)^2+2*x(2)^2+4*x(1)*x(2)+2*x(2)+0.9);

>> fun

fun =

 @(x) exp(x(1))*(4*x(1)^2+2*x(2)^2+4*x(1)*x(2)+2*x(2)+0.9)

Make a guess at the solution as

>> x0=[–1,1];

Set the optimization options: turn off the large-scale algorithms (the
default):

>> options=optimset(‘LargeScale’, ‘off’);

Override the default termination criteria:

% Termination tolerances on X and f.

>> options=optimset(options, ‘TolX’,1e–3, ‘TolFun’,1e–3);

Call the optimization algorithm:

>> [x,fval,exitflag,output]=fminunc(fun,x0,options);

Optimization terminated: relative infinity-norm of gradient less than
options.TolFun.

The optimizer has found a solution at

>> x

x =

0.5246 –1.0248

The function value at the solution is

>> fval

fval =

–0.1669

The total number of function evaluations was

>> output.funcCount

ans =

48

Set optimization options: turn off the large scale algorithms (the default):

>> options=optimset(options,‘Display’,‘iter’);

>> [x,fval,exitflag,output]=fminunc(fun,x0,options);

Optimization ——— 301

 First-order
Iteration Func-count f(x) Step-size optimality

0 3 1.80261 0.736
1 9 1.68824 0.377066 0.295
2 30 –0.124807 21.3836 0.964
3 36 –0.160866 0.239618 0.158
4 45 –0.166915 0.0531349 0.0219
5 48 –0.166933 1 0.00114

Optimization terminated: relative infinity-norm of gradient less than options.TolFun.

Example E5.20: Optimal Fit of a Non-linear Function
This is a demonstration of the optimal fitting of a non-linear function to a set of data. It uses FMINSEARCH,
an implementation of the Nelder-Mead simplex (direct search) algorithm, to minimize a non-linear function
of several variables.

Solution:
MATLAB Solution [Using built-in function]:
First, create some sample data and plot it.
>> t = (0:.1:2)’;
y = [6 4 3 2 1.8990 1.5 1.2 1.1 1.03 0.8 0.68 0.61 0.59 0.39 0.39 0.54 0.34
0.13 0.2 0.17 0.26]’;
plot(t,y,’ro’); hold on; h = plot(t,y,‘b’); hold off;
title(‘Input data’); ylim([0 6])
The goal is to fit the following function with two linear parameters and two non-linear parameters to the
data:
y = C(1)*exp(-lambda(1)*t) + C(2)*exp(–lambda(2)*t)

To fit this function, we’ve create a function FITFUN. Given the non-linear parameter (lambda) and the data
(t and y), FITFUN calculates the error in the fit for this equation and updates the line (h).
type fitfun
function err = fitfun(lambda,t,y)
% FITFUN Used by FITDEMO.
% FITFUN(lambda,t,y) returns the error between the data and the values
% computed by the current function of lambda.
% FITFUN assumes a function of the form
% y = c(1)*exp(–lambda(1)*t) + ... + c(n)*exp(–lambda(n)*t)
% with n linear parameters and n non-linear parameters.
A = zeros(length(t),length(lambda));
for j = 1:length(lambda)
 A(:,j) = exp(-lambda(j)*t);
end
c = A\y;

z = A*c;

err = norm(z–y);

302 ——— MATLAB: An Introduction with Applications

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

5

6
input data

Fig. E5.20 (a)

Make a guess for initial estimate of lambda (start) and invoke FMINSEARCH. It minimizes the error returned
from FITFUN by adjusting lambda. It returns the final value of lambda. Use an output function to plot
intermediate fits.
start = [1;0];
% We use an anonymous function to pass additional parameters t, y, h to the
% output function.
>> start = [1;0];
>> outputFcn = @(x,optimvalues,state)
 fitoutputfun(x,optimvalues,state,t,y,h);
options = optimset(‘OutputFcn’,outputFcn,‘TolX’,0.1);
estimated_lambda = fminsearch(@(x)fitfun(x,t,y),start,options)
estimated_lambda =

7.0269
1.3427

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

5

6 Input data and fitted function

Fig. E5.20(b)

Optimization ——— 303

Example E5.21: Minimize f (x1, x2) = 90 (x2 –x1
2) 2 + (1 – x1) 2 using the starting point

 x1 = –1.1, x2 = 1.0
Solution:
The minimum = 0 at x = 1, y = 1

EDU>> Run_EN_5_21

x =

1.0000 1.0000

fval =

7.2476e–010

Run_EN_5_21

y=@(x)90*(x(2)–x(1)^2)^2+(1–x(1))^2;

x,fval]=fminsearch(y,[–1.1,1.0])

Example E5.22: Minimize f = 0.60 – 0.70/(1. + x2) – 0.5*tan–1(1/x)
Solution:
The minimum value of the function is f = – 0.8286 at x = 0.1001

EDU>> Run_EN_5_22

f =
 @(x)0.60–0.70/(1. + x.^2)–0.5*atan(1/x)
x =

0.1001
f =z

–0.8286

Run_EN_5_22

f = @(x)0.60 – 0.70/(1. + x.^2)– 0.5*atan(1/x)

x = fminbnd(f, .1,1.0)

f = 0.60 – 0.70/(1. + x.^2) – 0.5*atan(1/x)

Example E5.23: Use the MATLAB fminbnd function to find the maximum of

 y = (3*(sin(x)) – (x 2/12)
Solution:
The graph of this function is given below. By inspection, the maximum value of the function is close to 2.8
and occurs at approximately x = 1.5.

304 ——— MATLAB: An Introduction with Applications

3

2

1

0

–1

–2

–3

– 4

– 5

y

0 0.5 1 1.5 2.5 3.5 4.52 3 4

x

5

Fig. E5.23

To compute the exact value of the maximum of the function, calculate the negative of the function (y). Use
fminbnd on this new function (fun) to calculate the minimum value. The maximum of the original function
occurs at the same x as the minimum of the new function. The maximum value of the original function is the
negative of the new function.

EDU>> Run_EN_5_23

fun =

 @(x)(–1.0)* (3*(sin(x))–(x.^2)/12)

x =

1.4880

fun =

–2.8052

Therefore, the maximum of the original function, f, is
 y = 2.8052 at
 x = 1.4880

Run_EN_5_23

fun = @(x)(–1.0)* (3*(sin(x)) – (x.^2)/12)

x = fminbnd(fun, 0,5.0)

fun = –1.0 * (3*(sin(x)) – (x.^2)/12)

y = 3*(sin(x) – (x.2)/12)

Optimization ——— 305

Example E5.24: Using the MATLAB function fminsearch,
Maximize the function
 f (x1, x2) = 3*x1*x2 + 5*x1 –x1

2 – 3*x2
 2 with initial guess

 x1 = –1.0, x2 = 1.0

Solution:
The minimum of – f occurs at x = 10.0 y = 5.0 and the minimum has a value of –25.0.
The maximum of the original function, f, occurs at x = 10.0 y = 5.0 and has a value of 25.0.

EDU>> Run_EN_5_24
x =

10.0000 5.0000
fval =

–25.0000

Run_EN_5_24
y=@(x)–1.0 * (3.*x(1).*x(2)+5.*x(1) –x(1).^2 – 3.*(x(2).^2));
[x,fval] = fminsearch(y,[–1.0,1.0])

Example E5.25: Use Powell’s method to find the minimum of the function:
 f = 120(y – x2) 2 + (1 – x) 2 starting with (–1, 1)
Solution:
The minimum = 0 at x = 1, y = 1
EDU>> Run_EN_5_25
y =

4.8369e–021
xMin =

1.0000
1.0000

fMin =
4.8369e–021 (which is 0)

nCyc =
12

Run_EN_5_25
global X FUNC
FUNC = @fpr3_15;
X=[–1.0;1.0];
[xMin,fMin,nCyc]=Powell

fpr5_25
function y = fpr3_15(X)
y=120*(X(2)–X(1)^2)^2 + (1.–X(1))^2

306 ——— MATLAB: An Introduction with Applications

Example E5.26: Find the minimum of the function f = 90(y – x2)2 + (1 – x)2 with Powell’s method starting at
the point (–1, 1).

Solution:

Let 0X
JJK

be an initial guess at the location of the minimum of the function 1 2 ...() (, , ,)nz f X f x x x= =
JJK

. Assume
that the partial derivatives of the function are not available. An intuitively appealing approach to
approximating a minimum of the function f is to generate the next approximation 1X

JJK
 by proceeding

successively to a minimum of f along each of the n standard base vectors. This process can be called
the taxi-cab method and generates the sequence of points

0 0 1 2 1, , ..., nX P P P P X= =
JJK JK JK JK JK JJK

Along each standard base vector (0,...0,1 ,0,...,0)kkE =
JK

 the function f is a function of one variable, and
the minimization of f might be accomplished by the application of either the golden ratio or Fibonacci
searches if f is unimodal in this search direction. The iteration is then repeated to generate a sequence of
points 0{ }k kX =

JJK
. Unfortunately, the method is, in general, inefficient due to the geometry of multivariable

functions.

Choose N =2 and select two direction vectors U1=
1
0

 
 
 

and U2 =
0
1

 
 
 

.

Start with point P0 = X =
1
1

− 
 
 

 and construct P1 = P0 + λ1U1= 11
1

− + λ 
 
 

by moving

in the directions U1 by optimal length λ1. Substituting P1 in f, a one-dimensional

objective function is formed in λ1, which is solved for minimum. Then λ1 is

substituted in P1 and new point P2 is evaluated as P2 = P1 +λ2U2 by moving in

the directions U2 by optimal length λ2 in the similar manner.

Then change the new search directions as U1= 0
1   and U2 = P2 – P0 . The process is repeated for

several iterations to get the best unconstrained optimum point Xn. For obtaining the optimum lengths λi an
unconstrained one-dimensional problem is to be solved. The method is illustrated in Fig. E5.26(a).

The solution by other method (Nedler and Meed’ Simplex) is as follows with MATLAB readymade function:

Outputs with the function ‘obj.m’ given below is as follows:
function f =obj(x)

f=90*(x(2)–x(1)^2)^2+(1–x(1))^2;

>> [x fval]=fminsearch(‘obj’,[–1,1]);

>> x

x=1.0000 1.0000

>> fval

fval=0.000

Fig. E5.26 (a)

P0=X P1

X2 = P2

P1

U

U

Optimization ——— 307

The complete flow chart of the method is shown in Fig. E5.26(b).

.

start

Select N=2,

U vector as eye(N) i.e., U and U1 2

Set start X 1

Maximum iterations n

i=1

Set P0=Xi

k=1

Find λk that minimizes f(Pk–1)

Update Pk=Pk –1+λkUk

Is k≤N

k=k+1

yes

Uj=Uj+1, for j=1,2,…N–1

UN =PN–P0

Find λ that minimizes f(P0+λUN)

Xi=Po+λUN

Is i≤n
yes

No

i=i+1

No

Print Xi, f(Po+λUN)

stop

Fig. E5.26 (b)

308 ——— MATLAB: An Introduction with Applications

The program is as follows:
global X V

X=[–1;1]; %STARTING POINT

N=length(X);% number of design variables

df=zeros(N,1);% decreases of f stored here

u=eye(N); % columns of u store search directions V

n=30; % Number of cycles

for j=1:n

 xold=X;

 fold=90*(xold(2)–xold(1)^2)^2+(1–xold(1))^2;

 % FIRST N line searches record the decrease of f

 for i=1:N

 V=u(1:N,i);

 [s fmin]=fminbnd(‘fline’,0,10);

 %Golden section search built in function

 df(i)=fold–fmin;

 fold=fmin;

 X=X+s*V;

 end

 % LAST LINE SEARCH IN THE CYCLE

 V=X–xold;

 [s fmin]=fminbnd(‘fline’,0,10);

 X=X+s*V;

 % IDENTIFY BIGGEST DECREASE OF F

 % AND UPDATE SEARCH DIRECTIONS

 imax=1; dfmax=df(1);

 for i=2:N

 if df(i)>dfmax imax=i; dfmax=df(i); end

 end

 for i=imax:N–1

 u(1:N,i)=u(1:N,i+1);

 end

 u(1:N,N)=V;

end

fprintf(‘Optimum point after %d cycles is\n’,n);

fprintf(‘%f\n%f\n’,X(1),X(2));

The function with file name ‘fline.m’ used is as follows:

function z=fline(s)

global X V

b1=V(1);

b2=V(2);

a1=X(1);a2=X(2);

Optimization ——— 309

p1=a1+s*b1;p2=a2+s*b2;

z=90*(p2–p1^2)^2+(1–p1)^2;

The output is as follows:
Optimum point after 30 cycles is
1.003135
1.000263

Example E5.27: Use the Fletcher-Reeves method to locate the minimum of f (x) = 9x1
2+ 3x2

2 – 8x1x2 + 2x1.
Start with Xo=[0 0]T.
Solution:
This method is also called conjugate gradient method. It is modification of Cauchy’s method of gradient
decent algorithm. The complete algorithm is given below:
Given x0 perform the following steps:

1. Compute 0 1 0() and set – ().f x u f x∇ = ∇
2. For i = 1, 2, ..., n do:

2.1 Set 1i i i
ix x u−= + λ where iλ such that

1 –1min() ()i i i i
if x u f x u−

λ
+ λ = + λ (line search)

2.2 Compute (),if x∇

2.3 If convergence criteria satisfied, then STOP and * ,ix x≅ else go to Step 2.4

2.4 If 11 1, ()i i i
ii n u f x u+≤ ≤ − = −∇ + β

3. Set x0 = xn and go to Step 2 (restart).

Here
2

2
1

.i
i

i

f

f −

∇
β =

∇

In this problem ∇f =
1 2

2 1

18 8 2
6 8
x x
x x
− + 

 − 
and X0 =

0
0

 
 
 

Iteration 1:

Thus U1 = –∇f (X0) =
2
0

 
 
 

.

For i = 1, find X1= X0 + λ1U1=
12

0
λ 

 
 

 and substituting in function f and find the minimum value of f and

corresponding λ1 and X1.

Compute ∇f (X1)

310 ——— MATLAB: An Introduction with Applications

Iteration 2:

U2 = –∇f1 +
2

1
2

0

f

f

∇

∇
 U1

X2 = X1 + λ2U 2 and perform line search to find the minimum of f (X 2) = f (λ2)
Again compute ∇f (X 2). Stop if it is equal to zero otherwise continue.

Complete program is given below:
% CONJUGATE GRADIENT METHOD
global X V
X=[0;0];
N=length(X);
g0=–feval(‘df’,X);
V=g0;
n=50;
for i=1:n
 [s fmin]=fminbnd(‘fline’,–10,10);
 X=X+s*V
 g1=–feval(‘df’,X);
 gamma=(norm(g1)/norm(g0))^2;
 V=g1+gamma*V;
 g0=g1;
end
fprintf(‘Minimum point for this function is \n’);
fprintf(‘%f\n%f\n’,X(1),X(2));
This requires the following function files
%LINEAR FUNCTION OF s
function z=fline(s)
global V X
p1=X(1)+s*V(1);
p2=X(2)+s*V(2);
z=9*p1^2+3*p2^2–8*p1*p2+2*p1;
%GRADIENT FUNCTION
function y=df(X)
y=[18*X(1)–8*X(2)+2;6*X(2)–8*X(1)];

The output is as follows:

Minimum point for this function is
–0.272727
–0.363636

Exact output obtained from the function fminsearch(‘fxy’,[–1,1]) is
–0.2727
–0.3637

Optimization ——— 311

Example E5.28: Find the minimum of the function f(X) = 4x1
2 + 3x2

2 – 5x1x2 – 8x1 starting from (0, 0) using
Powell’s method

Solution: The process is shown in Fig. E5.28.

1

0

2

3

5

4

h4

h2

h2

h2

h1

h3 h3

y

x

Fig. E5.28

Complete Program is as follows:
global X V

X=[–1;1]; %STARTING POINT

N=length(X);% number of design variables

df=zeros(N,1);% decreases of f stored here

u=eye(N); % columns of u store search directions V

n=30; % Number of cycles

for j=1:n

 xold=X;

 fold=4*xold(1)^2+3*xold(2)^2–5*xold(1)*xold(2)–8*xold(1);

 % FIRST N line searches record the decrease of f

 for i=1:N

 V=u(1:N,i);

 [s fmin]=fminbnd(‘fline’,0,10);

 %Golden section search built in function

 df(i)=fold–fmin;

 fold=fmin;

 X=X+s*V;

 end

 % LAST LINE SEARCH IN THE CYCLE

 V=X–xold;

 [s fmin]=fminbnd(‘fline’,0,10);

312 ——— MATLAB: An Introduction with Applications

 X=X+s*V;

 % IDENTIFY BIGGEST DECREASE OF F

 % AND UPDATE SEARCH DIRECTIONS

 imax=1; dfmax=df(1);

 for i=2:N

 if df(i)>dfmax imax=i; dfmax=df(i); end

 end

 for i=imax:N–1

 u(1:N,i)=u(1:N,i+1);

 end

 u(1:N,N)=V;

end

fprintf(‘Optimum point after %d cycles is\n’,n);

fprintf(‘%f\n%f\n’,X(1),X(2));

Function is

function z=fline(s)

global X V

b1=V(1);

b2=V(2);

a1=X(1);a2=X(2);

p1=a1+s*b1;p2=a2+s*b2;

z=4*p1^2+3*p2^2–5*p1*p2–8*p1;

Optimum point after 30 cycles is

2.091345

1.739733

Actual output from MATLAB function fminsearch(‘fxy’, [0 0]) is

2.0870

1.7392

Example E5.29: Find the minimum value of the function f (X) = 7x1
2 + 5x2

2 – 8x1x2–5x1 starting from (0, 0)
using Powell’s method.

Solution: The following program is used
global X V

X=[0;0]; %STARTING POINT

N=length(X);% number of design variables

df=zeros(N,1);% decreases of f stored here

u=eye(N); % columns of u store search directions V

n=30; % Number of cycles

for j=1:n

 xold=X;

Optimization ——— 313

 fold=7*xold(1)^2+5*xold(2)^2–8*xold(1)*xold(2)–5*xold(1);

 % FIRST N line searches record the decrease of f

 for i=1:N

 V=u(1:N,i);

 [s fmin]=fminbnd(‘fline’,0,10);

 %Golden section search built in function

 df(i)=fold–fmin;

 fold=fmin;

 X=X+s*V;

 end

 % LAST LINE SEARCH IN THE CYCLE

 V=X–xold;

 [s fmin]=fminbnd(‘fline’,0,10);

 X=X+s*V;

 % IDENTIFY BIGGEST DECREASE OF F

 % AND UPDATE SEARCH DIRECTIONS

 imax=1; dfmax=df(1);

 for i=2:N

 if df(i)>dfmax imax=i; dfmax=df(i); end

 end

 for i=imax:N–1

 u(1:N,i)=u(1:N,i+1);

 end

 u(1:N,N)=V;

end

fprintf(‘Optimum point after %d cycles is\n’,n);

fprintf(‘%f\n%f\n’,X(1),X(2));

Function used is as follows:

function z=fline(s)

global X V

a1=X(1);a2=X(2);

b1=V(1);

b2=V(2);

p1=a1+s*b1;p2=a2+s*b2;

z=7*p1^2+5*p2^2–8*p1*p2–5*p1;

Optimum point after 30 cycles is

0.657916

0.528062

The actual output from MATLAB fminsearch function is
0.6579
0.5263

314 ——— MATLAB: An Introduction with Applications

Example E5.30: Repeat problem E5.30 using Fletcher-Reeves method.

Solution:

Given f (x1, x2) = 4x1
2 + 3x2

2 – 5x1x2 – 8x1

Here gradient df = [8x1 – 5x2 – 8; 6x2 – 5x1]
T

Complete program is given below:
% CONJUGATE GRADIENT METHOD

global X V

X=[0;0];

N=length(X);

g0=–feval(‘df’,X);

V=g0;

n=50;

for i=1:n

 [s fmin]=fminbnd(‘fline’,–10,10);

 X=X+s*V

 g1=–feval(‘df’,X);

 gamma=(norm(g1)/norm(g0))^2;

 V=g1+gamma*V;

 g0=g1;

end

fprintf(‘Minimum point for this function is \n’);

fprintf(‘%f\n%f\n’,X(1),X(2));

This requires the following function files
%LINEAR FUNCTION OF s

function z=fline(s)

global V X

p1=X(1)+s*V(1);

p2=X(2)+s*V(2);

z=4*p1^2+3*p2^2–5*p1*p2–8*p1;

%GRADIENT FUNCTION

function y=df(X)

y=[8*X(1)–5*X(2)–8;6*X(2)–5*X(1)];

The output is as follows:

Minimum point for this function is

2.086957

1.739130

The actual output is [2.087 1.7392]T

Optimization ——— 315

Example E5.31: Repeat problem E5.31 using Fletcher-Reeves method.
Solution:
Given f (x1, x2) = 7x1

2 + 5x2
2 – 8x1x2 – 5x1

Here gradient df = [14x1 – 8x2 – 5; 10x2 – 8x1]T

Complete program is as follows:
global X V

X=[0;0];

N=length(X);

g0=–feval(‘df’,X);

V=g0;

n=50;

for i=1:n

 [s fmin]=fminbnd(‘fline’,–10,10);

 X=X+s*V

 g1=–feval(‘df’,X);

 gamma=(norm(g1)/norm(g0))^2;

 V=g1+gamma*V;

 g0=g1;

end

fprintf(‘Minimum point for this function is \n’);

fprintf(‘%f\n%f\n’,X(1),X(2));

Functions are

function z=fline(s)

global V X

p1=X(1)+s*V(1);

p2=X(2)+s*V(2);

z=7*p1^2+5*p2^2–8*p1*p2–5*p1;

%GRADIENT FUNCTION

function y=df(X)

y=[14*X(1)–8*X(2)–5; 10*X(2)–8*X(1)];

The output is as follows:
Minimum point for this function is

0.657895
0.526316

The actual output from MATLAB function is [0.6579 0.5263]T.

316 ——— MATLAB: An Introduction with Applications

REFERENCES

1. Arora, J.S., Introduction to Optimum Design, McGraw-Hill, New York, 1989.
2. Papalambros, P.Y. and Wilde, D.J., Principles of Optimal Design, Cambridge University Press,

Cambridge, 1988.
3. Siddall, J.N., Optimal Engineering Design: Principles and Applications, Marcel Dekker, New York,

1982.
4. Rao, S.S., Optimization: Theory and Applications, 2nd ed., Wiley, New York, 1984.
5. Vanderplatts, G .N., Numerical Optimization Techniques for Engineering Design with Applications,

McGraw-Hill, New York, 1984.
6. Fox, R.L., Optimization Methods for Engineering Design, Addison-Wesley, Reading, MA, 1972.
7. Recklaitis, G .V., Ravindran, A. and Ragsdell, K.M., Engineering Optimization: Methods and

Applications, Wiley, New York, 1983.
8. Shoup, T.E. and Mistree, F., Optimization Methods with Applications for Personal Computers, Prentice-

Hall, Englewood Cliffs, NJ, 1987.

PROBLEMS

P5.1: Minimize f (x1, x2) = x1 – 0.5x2 + 2x1
2 + 2x1x2 + x2

2 using Newton’s method. Starting point: (0, 0).

P5.2: Use Newton’s method to find the maximum of f (x) = 5 sin x –
8

19
x2 with the initial guess of x0 = 1, 8.

P5.3: Fit a polynomial by quadratic approximation and find the value of x at which F(x) is minimum.

()
1 12
2 7
3 20

x F x

P5.4: Fit a polynomial by quadratic approximation and find the value of x at which F(x) is minimum.

()
1 20
2 –17
3 15

x F x

P5.5: Find the minimum of the following function using Powell’s method:
2 2
1 2 1 2 1() 4 3 5 8F x x x x x x= + − −

Starting from (0, 0).

Optimization ——— 317

P5.6: Find the minimum of the following function using Powell’s method:
2 2
1 2 1 2 1() 7 5 8 5F x x x x x x= + − −

Starting from (0, 0).
P5.7: Repeat Problem P5.5 using Fletcher-Reeves method.

P5.8: Repeat Problem P5.6 using Fletcher-Reeves method.

P5.9: Minimize f(x1, x2) = x1 – x2 + 2x1
2 + 2x1x2 + x2

2 starting from the point (0, 0) using Hook and Jeeves
method.

P5.10: Repeat Problem P5.1 using Hooke and Jeeves method.

P5.11: Minimize f (x1, x2) = (x1 – 1)2 + (x2 – 1)2

subject to g1(x1, x2) = –x1 ≤ 0
g2(x1, x2) = –x2 ≤ 0

g3(x1, x2) = 2 2
1 2x x+ – 1 ≤ 0

P5.12: Minimize f (x1, x2) = (x1 – 1)2 + 2
2x

subject to g2(x1, x2) = –x2 ≤ 0
g3(x1, x2) = x2 – (1 – x1)2 ≤ 0

P5.13: Use the MATLAB fminbnd function to find the minimum of the function in Problem P5.9.

P5.14: Minimize f(x1, x2) = 90(x2 – x1)2 + (1 – x1)2 using the starting point (x1 = –1.1, x2 = 1.0). Use MATLAB
built-in function fminsearch.

P5.15:
(a) Minimize (x1 – x2)2 + (x2 – x3)4.

Initial guess: (–2.5, 2, 2)
(b) Minimize x1x4(x1 + x2 + x3) + x3

Initial guess: (1, 4, 5, 1).
P5.16:

Minimize x1 + 2x2 + 3x3 + exp(x1x4)
Initial guess: (1, 2, 1, 2).

P5.17:
Minimize f(x) = x1 + 54x2 + 3x3

subject to x1 + 5x2 – x3 ≥ 4
–x1 + x2 + 2x3 ≥ 1
–x1 + 3x2 + 3x3 ≥ 5
–3x1 + 8x2 – 5x3 ≥ 3

Initial guess: x0 = (0, 1, 1).
P5.18:
Minimize f (x) = x1 + 5x2

318 ——— MATLAB: An Introduction with Applications

subject to x1 + x2 ≤ 3
–x1 + x2 ≤ 1.5

Initial guess: x0 = (–1, 1).

P5.19: Solve Problem P5.17 with x1, x2, x3 ≥ 0.

P5.20: Solve Problem P5.18 with x1, x2 ≥ 0.

P5.21:
Minimize f (x) = 100(x2 – x1

2)2 + (1 – x1)2

subject to x1 + 1 ≥ 0
1 – x2 ≥ 0
5x2 – x1 – 1 ≥ 0
2 – x1 – 2x2 ≥ 0

Initial guess: [–1, 1].

P5.22:

Minimize f (x) = 2 2 2
1 2 3x x x+ +

subject to 1 – x2x3 ≥ 0
x1 – x3 ≥ 0
x1 – 2

2x + x2x3 – 5 = 0
0 ≤ x1 ≤ 5
0 ≤ x2 ≤ 3
0 ≤ x3 ≤ 4

Initial guess: [–1, 1].

P5.23:
Minimize f(x) = 2x1 – 3(x2 – 4)2

subject to 2 2
1 2 –10x x+ ≤ 0

2 4
1 2(– 4)x x+ ≤ 0

Initial guess: [–1, 1].

P5.24:
Minimize f (x) = (x1 – x2)2 + x2

subject to 1 – x1 + x2 ≤ 1
x1 + 2x2 ≤ 4
x1 ≥ 0
x2 ≥ 0

Initial guess: [2, 0].

❍ ❍ ❍

6.1 INTRODUCTION

The behaviour of many dynamic systems undergoing time-dependant changes (transients) can be described
by ordinary differential equations. When the solution to the differential equation(s) of motion of a dynamic
system cannot be obtained in closed form, a numerical procedure is warranted. Many numerical integration
methods are available for the approximate solution of such equation(s) of motion. All the numerical integration
methods have two basic characteristics. First, they do not satisfy the differential equation(s) at all time t,
but only at discrete time intervals, say ∆ t apart. Secondly, within each time interval ∆ t, a specific type of
variation of the displacement X, velocity X , and acceleration X is assumed. Thus, several numerical
integration schemes are available depending on the type of variation assumed for X, X and X within each
time interval ∆ t.
In this chapter, we discuss several widely used step-by-step numerical integration schemes for solutions of
both single and multi degree of freedom systems. A brief description of these methods is presented for
linear dynamic response analysis and their application is illustrated by several examples.

6.2 SINGLE-DEGREE OF FREEDOM SYSTEM

The general equation of a viscously damped single degree of freedom dynamical system, which is linear,
can be expressed in the following general form:

()+ + =MX CX KX F t ...(6.1)
where M, C and K are the mass, damping and stiffness of the system; F(t) is the applied force; and X, X
and X are the displacement, velocity and acceleration of the system.

6.2.1 Finite Difference Method
If the equilibrium relation (6.1) is regarded as an ordinary differential equation with constant coefficients, it
follows that any convenient finite difference expressions to approximate the velocities and accelerations in
terms of displacements can be used. The central idea in the finite difference method is to use approximations

666CHAP
T

E
R

Direct Numerical

Integration Methods

320 ——— MATLAB: An Introduction with Applications

to derivatives. Hence, the general differential equation such as (6.1) and the associated boundary conditions,
if any, are replaced by the corresponding finite difference equations. The continuous variable t is replaced
by the discrete variable ti and the differential equation is solved progressively in time increments h = ∆ t
starting from known initial conditions. The solution obtained is approximate but by suitably selecting the
time increment the accuracy of the solution can be improved.

In this method, we replace the solution domain with a finite number of points, known as mesh or grid
points, and obtain the solution at these points. The mesh or grid points are generally equally spaced along
the independent coordinate as shown in Fig. 6.1. Central difference method is based on the Taylor’s series
expansion of Xi+1 and Xi–1 about the grid point i.

h h h h
∆t=h

ti–2 t i –1 t i

i – 1 i – 2 i i + 1 i + 2 i + 3
t

x(t)

0

xi–2
xi–1

xi

xi+1

xi+2

xi+3

x(t)

t i+1 t i+2 t i+3

Fig. 6.1

2 3

1 ...
2 6+ = + + + +i i i i i
h hX X hX X X ...(6.2)

2 3

1 ...
2 6− = − + − +.

ii i i i
h hX X hX X X ... (6.3)

where ()= =i iX X t t and the interval 1 ∆+= − =i ih t t t. By taking the first two terms only and subtracting
Eq. (6.3) from (6.2), we obtain

 1 1
1

()
2 + −= −i i iX X X

h
 ...(6.4)

Adding Eqs. (6.3) and (6.2), we get

 1 12
1 (2)i i i iX X X X
h − += − + ...(6.5)

Although there exist a number of finite difference schemes, here we consider only two methods selected
for their simplicity. They are the Central Difference Method and the Runge-Kutta method.

Direct Numerical Integration Methods ——— 321

6.2.2 Central Difference Method
Let the duration over which the numerical solution of Eq. (6.1) is required be divided into n equal parts of
interval = ∆h t each. The initial conditions are assumed to be given by 0(0)= =X t X and 0(0)X t X= = .

The accuracy of the solution always depends on the size of the time step. The critical time step is given by

cri∆ τ /π= nt , where τn is the natural period of the system. If ∆ t is selected to be larger than ∆ tcri, the
method becomes unstable, that is the truncation of higher order terms or rounding-off in the computer
causes errors to grow and makes the dynamic response calculations meaningless. Numerical methods, which
require the use of time, step ∆t smaller than the critical time step ∆ tcri are said to be conditionally stable.
A safe rule to use is to choose /10≤ τnh . Substituting Eqs. (6.5) and (6.4) for iX and iX respectively in
Eq. (6.1) at mesh or grid point i give

()
1 1 1 1

2
2

2
i i i i i

i i
X X X X X

M C KX F
tt

+ − + −
 − + −   + + =   ∆ ∆  

...(6.6)

where () and ()i i i iX X t F F t= = . Solving Eq. (6.6) for 1iX + gives

{ }1 12 2

2

1 2
2() ()

2()

i i i i
M C MX K X X FM C tt t

tt

+ −

 
       = − + − +      ∆∆ ∆       +

∆ ∆ 

...(6.7)

which is known as the recurrence formula.
Thus, the displacement of the mass, Xi +1 , can be calculated using Eq. (6.7) if we know the previous
displacements, Xi, Xi +1 and the present external force Fi. Repeated application of Eq. (6.7) gives us the
response time history of the behaviour of the system. Since the solution of Xi +1 given in Eq.(6.7) is based
on the previous displacement Xi given in Eq. (6.6), the integration procedure is known as an explicit
integration method. Note that in order to compute X1, both X0 and X–1 are required but the initial conditions
provide only the values of X0 and 0X . Therefore, the central difference method is not self-starting. However,
the value of X–1 can be obtained from Eqs. (6.4) and (6.5) as follows. First calculate the value of 0 X by
substituting the given values of 0 0 and X X in Eq. (6.1) as follows,

0 0 0
1

 (0) – – X F t CX KX
M

 = =  ...(6.8)

The value of X–1 is then obtained by the application of Eqs. (6.4) and (6.5) at i = 0.

2

–1 0 0 0
()

2
tX X t X X∆

= − ∆ + ...(6.9)

6.2.3 Runge-Kutta Method
In the Runge-Kutta method, an approximation to t tX +∆ is obtained from Xt in such a way that the power
series expansion of the approximation coincides, up to terms of a certain order ()Nt∆ in the time interval t∆ ,
with the actual Taylor series expansion of ()t t+ ∆ in powers of t∆ . The method is based on the assumption
that the higher derivatives exist at points required.

322 ——— MATLAB: An Introduction with Applications

The Runge-Kutta method is self-starting and has the advantage that no initial values are needed beyond
the prescribed values. A brief discussion of its basis is represented here. In the Runge-Kutta method, the
second-order differential equation is first reduced to two first-order equations. Consider the differential
equation for the single degree of freedom system given in Eq. (6.1). Equation (6.1) can be rewritten as

1 () – – (, ,)X F t CX KX f X X t
M

 = =  ...(6.10)

By letting 1 2 and ,X X X X= = Eq. (6.10) can be reduced to the following two first-order equations;

 1 2X X=

 2 1 2(, ,)X f X X t= ...(6.11)
By defining

1

2

()
()

()
X t

X t
X t

 
=  

 

and
2

1 2
()

(, ,)
x

F t
f x x t

 
=  

 

the following recurrence formula is obtained to find the values of ()X t at mesh or grids points ti according
to the fourth order Runge-Kutta method. We omit the details of the derivation of the method.

1 1 2 3 4
1 2 2
6i iX X K K K K+  = + + + + 

where 1 (,)i iK hF X t=

 2 1
1 1(,)
2 2i iK hF X K t h= + +

 3 2
1 1

(,)
2 2i iK hF X K t h= + + ...(6.12)

and 4 3 1
1(,)
2i iK hF X K t += +

Although the Runge-Kutta method does not require the computation of derivatives beyond the first, its
higher accuracy is obtained by four evaluations of the first derivatives to obtain agreement with the Taylor
series solution through terms of order h4. Since the fourth-order Runge-Kutta method is an explicit method,
the maximum time step is usually governed by stability considerations. The change in time step can be
easily implemented between iterations and hence the method can be considered as an inherently stable
method. The main drawback of the method is that each forward step requires several computations of the
functions thus increasing the computational cost. The Runge-Kutta method is applicable and extendable to
a system of differential equations.

6.3 MULTI-DEGREE OF FREEDOM SYSTEM

The general form of the equations of motion for a multi-degree of freedom system are written as

[]{ } []{ } []{ } { }()M X C X K X F t+ + = ...(6.13)

Direct Numerical Integration Methods ——— 323

where [M], [C] and [K] are the mass, damping and stiffness matrices for the system and { } { } { }, and XX X
refer to the acceleration, velocity and displacement vectors, respectively. {F(t)} is the force vector. Several
numerical direct integrating schemes are available to determine the approximate solution of a system of
equations of motion. For a linear dynamic system, matrices [M], [C] and [K] are independent of time and
therefore remain unchanged during the integration procedure. These matrices vary with time for a non-
linear dynamic system and must be modified during the integration of equations of motion. For the solution
of equations of motion for a linear dynamic system, either the normal mode superposition method of dynamic
analysis or direct numerical integration methods can be used. However, for the solution of non-linear
equations of motion, direct numerical integration methods are generally recommended.

In a direct integration method, the system of equations of motion is integrated successively by using
a step by step numerical procedure. No transformation of the equations of motion is needed prior to
integration and using difference formulas that involve one or more increments of time usually approximates
time derivatives. Basically there are two principal approaches used in the direct integration method: explicit
and implicit schemes. In an explicit scheme, the response quantities are expressed in terms of previously
determined values of displacement, velocity and acceleration. In an implicit scheme, the difference equations
are combined with the equations of motion, and the displacements are calculated directly by solving the
equations.

In this section, only selected numerical integration schemes widely used for linear and non-linear
dynamic analyses are considered. Three explicit and four implicit direct integration schemes are examined.
A brief description of these schemes is presented and their application is illustrated. The explicit schemes
presented are the central difference method, two-cycle iteration with trapezoidal rule and fourth-order Runge-
Kutta. The implicit schemes include the Houbolt, Wilson-Theta, Newark-Beta and Park Stiffly stable methods.
The accuracy, stability and efficiency of these schemes are examined by comparing the results for sample
problems.

6.4 EXPLICIT SCHEMES

As mentioned earlier, in an explicit formulation, the response quantities are expressed in terms of previously
determined values of displacement, velocity and acceleration.

6.4.1 Central Difference Method
The procedure indicated for the case of a single degree of freedom system can be directly extended to this
case. Consider a displacement time history curve as shown in Fig. 6.2. At the middle of the time interval t∆ ,
the velocity is given by

1
1
2 ∆

i i
i

X XX
t

+
+

−= ...(6.14)

and 1
1
2 ∆

i i
i

X XX
t

−
−

−= ...(6.15)

324 ——— MATLAB: An Introduction with Applications

∆t ∆t

Xi–1 Xi Xi+1

Fig. 6.2

The acceleration is

1 1
2 2

∆

i i

i

X X
X

t
+ −

−
= ...(6.16)

Substituting 1 1
2 2

 and
i i

X X
+ −

 from the Eqs. (6.14) and (6.15) into Eq. (6.16), we get

1 12
1 (2)
∆i i i iX X X X

t + −= − + ...(6.17)

The difference formulas in the central difference method for velocity and acceleration are written in terms
of displacement as

{ } { } { }∆ ∆
1

2t t t t tX X X
t + − = − ∆

 ...(6.18)

 { } { } { } { }∆ ∆2 2
∆t t t t t t

tX X X X
t + − = − +  ...(6.19)

Substituting { } { } and t tX X from Eqs. (6.18) and (6.19), respectively into Eq. (6.13), we get

 { } { }∆ t t tM X F+  =  ...(6.20)

where M   , the effective mass matrix, and { }tF , the effective force vector, is given by

[] []2
1 1

2∆
M M C

tt
  =  ∆ ...(6.21)

 { } { } [] [] { } [] [] { }∆2 2
2 1 1() ()

2∆ ∆t t t t tF F K M X M C X
tt t −= − − − −

∆ ...(6.22)

At time ,t t+ ∆ the displacements { }t tX +∆ can be computed by solving Eq. (6.20), and the velocities and
accelerations at time t are determined by substituting these values of { }t tX +∆ into Eqs. (6.18) and (6.19).
Note that the calculation of { }t tX +∆ involves {Xt} and –{ }t tX ∆ . Hence, in order to obtain the solution at time

,t∆ a special starting procedure is needed. Table 6.1 summarizes the time integration schedule as suitable
for integration in the computer.

Direct Numerical Integration Methods ——— 325

Table 6.1 Algorithms based on the central difference method

(a) Initial Computations:
1. Form stiffness [K], mass [M] and damping [C] matrices.

2. Initialize {X0}, 0{ }X and { 0{ }X .
3. Select time step ∆t and calculate integration constants ai:

 0 1 2 0 32
2

1 1 1 .; ; 2 ;
2∆

a a a a a
t at

= = = =
∆

4. Calculate { } { } { } { }∆ 0 0 3 0∆tX X t X a X− = − + .

5. Form effective mass matrix [] []0 1M a M a C  = +  .

6. Triangularize [] [] []: TM M L D L    =    .

(b) For each time step:
1. Calculate effective force vector at time t:

{ } { } [] [] { } [] [] { }2 0 1 ∆() () t t t t tF F K a M X a M a C X −= − − − −

2. Solve for displacements at time t t+ ∆ :

{ }∆ t t tM X F+   =   
3. Calculate { } { }, and X X at time t:

{ } { } { }
{ } { } { } { }

1 ∆ ∆

0 ∆ ∆

()

(2)

t t t t t

t t t t t t

X a X X

X a X X X
− +

− +

= − −

= − +

The local truncation error of this method is of the order of 2t∆ . An important consideration in the use of
the central difference method is that the integration method requires that the time step t∆ smaller than a
critical value, ,crt∆ which is limited by the highest frequency of the discrete system max ,ω where

max

2∆ ∆
ωcrt t≤ ≤ ...(6.23)

If the time step is longer than ∆ crt , the integration is unstable, meaning that any errors resulting from the
numerical integration of round off in the computer grow and make the dynamic response calculations
questionable.

6.4.2 Two-Cycle Iteration with Trapezoidal Rule
The equations of motion at any time t are expressed in the incremental
form as

[]{ } { } []{ } []{ }∆ ∆ ∆ ∆t t t tM X F K X C X= − − ...(6.24)

326 ——— MATLAB: An Introduction with Applications

The increments in the velocities and displacements are estimated by the use of the following relationships
in the first iteration cycle:
For the first time step:

{ } { }∆∆ ∆t t tX t X −= ...(6.25)

For other time steps:

{ } { } { }∆ ∆∆ 2∆ ∆t t t t tX t X X− −= − ...(6.26)

 { } { } { }∆ ∆t t t tX X X−= + ...(6.27)

{ } { } { }∆
1∆ ∆
2t t t tX t X X− = +  ...(6.28)

By substituting the relations { } { }∆ and ∆t tX X from Eqs. (6.26) and (6.28) into Eq. (6.24), we obtain the
increments in the accelerations as

{ } [] { } []{ } []{ }1∆ (∆)t t t tX M F K X C X−= − ∆ − ∆ ...(6.29)

These are then employed to obtain the estimate of the acceleration at time t as

 { } { } { }∆t t t tX X X−= + ∆ ...(6.30)

In the second iteration cycle, the increments in the velocities and the accelerations are refined as

{ } { } { }∆
1∆ ∆ ()
2t t t tX t X X−= + ...(6.31)

 { } { } { }∆t t t tX X X−= + ∆ ...(6.32)

{ } { } { }∆
1∆ ∆ ()
2t t t tX t X X−= + ...(6.33)

Finally, the relations for { } { }∆ and ∆t tX X in Eqs. (6.31) and (6.33) are substituted into Eq. (6.29) to compute
the new increments in the accelerations. These are then used in Eq. (6.30) to calculate the accelerations at
time t. The computational algorithm based on this method is summarized in Table 6.2.

Table 6.2 Algorithm based on two-cycle iteration with trapezoidal rule

1. Form stiffness [K], mass [M] and damping [C] matrices

2. Initialize 0 0 0{ },{ } and { }X X X
3. Select time step t∆ and calculate for the first time step in the first iteration

cycle: { } { }∆∆ ∆t t tX t X −=

4. For other time steps:

{ } { } { }
{ } { } { }

{ } { } { }()

∆ ∆

∆

∆

∆ 2 ∆

∆

∆∆
2

t t t t t

t t t t

t t t t

X t X X

X X X

tX X X

− −

−

−

= ∆ −

= +

= −

Contd...

Direct Numerical Integration Methods ——— 327

5. Compute{ } { }∆ and t tX X at time t:

{ } [] { } [] { } [] { }
{ } { } { }

–1

∆

(∆ ∆ ∆)

 ∆

t t t t

t t t t

X M F K X C X

X X X−

∆ = − −

= +

6. Second iteration cycle:

{ } { } { }()
{ } { } { }
{ } { } { }()

–∆

∆

–∆

∆∆
2

∆

∆∆
2

t t t t

t t t t

t t t t

tX X X

X X X

tX X X

−

= +

= +

= +

7. Compute { }∆ tX in step 5 using { } { } { }∆ , and ∆t t tX X X from step 6.

8. Finally, compute { }tX from step 5, using { } { } and ∆t tX X from step 7.

6.4.3 Fourth-Order Runge-Kutta Method
In the fourth-order Runge-Kutta method, the system of second-order differential Eq. (6.13) is converted
into state variable form. That is, both the displacements and velocities are treated as unknowns {y} defined
by

 { } { }
{ }

X
y

X

  =  
  

...(6.34)

Using Eq. (6.34), Eq.(6.13) can be rewritten as

{ } [] []{ } [] []{ } [] { }1 1 1 ()X M K X M C X m F t− − −= − − + ...(6.35)

Using the identity

 { } { }y y= ...(6.36)

we obtain from Eqs. (6.35) and (6.36)

 { } { }
{ }

[]
[] []

[]
[] []

{ }
{ } [] { }1 1 1

0 0
()

X I X
y

X XM K M C M F t− − −

            = = +     
 − −           

...(6.37)

or { } []{ } { }*()y E y F t= + ...(6.38)

That is { } { }(,)y f t y= ...(6.39)

In the Runge-Kutta method, an approximation to { }∆t ty + is obtained from { }ty in such a way that the
power series expansion of the approximation coincides, up to the terms of a certain order ()∆ Nt in the time
interval ,t∆ with the actual Taylor series expansion of (∆)t t+ in powers of t∆ . This method has the
advantage that no initial values are required beyond the prescribed ones. The general fourth-order algorithms
are based on formulas of the form

328 ——— MATLAB: An Introduction with Applications

{ } { }∆ 1 2 3 4∆ ()t t ty y t aK bK cK dK+ = + + + + ...(6.40)
where a, b, c and d are constants and K1, K2, K3 and K4 are the approximate derivative values computed in
the interval ∆< <K K tt t t + . Several fourth order algorithms have been proposed. The following is due to
Runge-Kutta and we omit presenting the details of its derivation.

{ } { } []∆ 1 2 3 4
∆ 2 2
6t t t
ty y K K K K+ = + + + + ...(6.41)

in which

1

2 1

3 2

4 3

(,)
∆ ∆

,
2 2
∆ ∆

,
2 2

(∆ , ∆)

t

t

t

t

K f t y
t tK f t y K

t tK f t y K

K f t t y K t

=

 = + +  

 = + +  
= + +

...(6.42)

The Runge-Kutta algorithm does not require the calculation of higher derivatives. This method is completely
self-starting and the step size can be changed easily between iterations and hence the method can be
considered inherently stable. The truncation error et for the fourth-order Runge-Kutta scheme is of the form

 5e ()t c t= ∆ ...(6.43)
where c is constant, which depends on f (t , y) and its higher-order partial derivatives. Runge-Kutta method
generates an artificial damping that unduly suppresses the amplitude of the response of a dynamic system
to some extent.

6.5 IMPLICIT SCHEMES

In an implicit scheme, the difference equations are combined with the equations of motion, and the
displacements are calculated directly by solving the equations.

6.5.1 Houbolt Method
The Houbolt method is based on third-order interpolation of displacements Xt, and the multi-step implicit
formulas for tX are tX obtained in terms of Xt by using backward differences.
The difference formulas are summarized in the following with reference to Fig. 6.3. By considering a cubic
curve that passes through the four successive ordinates, the following equations can be obtained:

∆t ∆t ∆t

xt – 2 t∆ xt – t∆ xt xt + t∆

Fig. 6.3

Direct Numerical Integration Methods ——— 329

2 3

.
∆ ∆ ∆ ∆

∆ ∆∆ –
2 6t t t t t t t t t
t tX X tX X X+ + + += − + ...(6.44)

2 3

∆ ∆ ∆ ∆ ∆
(2) (2)(2) –

2 6t t t t t t t t t t
t tX X t X X X− + + + +

∆ ∆
= − ∆ + ...(6.45)

2 3
.

2 ∆ ∆ ∆ ∆
(3) (3)(3) –

2 6t t t t t t t t t t
t tX X t X X X− ∆ + + + +

∆ ∆
= − ∆ + ...(6.46)

Solving Eqs. (6.44) to (6.46) for ∆ and t t t tX X+ +∆ , we get

∆ ∆ –22
1 (2 5 4 –)
∆t t t t t t t t tX X X X X

t+ + −∆ ∆= − + ...(6.47)

∆ ∆ ∆ 2
1 (11 18 9 2)

6t t t t t t t t tX X X X X
t+ + − − ∆= − + −

∆
...(6.48)

The difference formulas in the Houbolt algorithm are, therefore, given by

{ } { } { } { } { }∆ ∆ ∆ 22
1 2 5 4
∆t t t t t t t t tX X X X X

t+ + − − ∆ = − + −  ...(6.49)

{ } { } { } { } { }∆ ∆ ∆ 2
1 11 18 9 2

6t t t t t t t t tX X X X X
t+ + − − ∆ = − + − ∆

...(6.50)

By substituting the expressions for { } { }∆ ∆ and t t t tX X+ + from (6.49) and (6.50), respectively, into (6.13), we
get

 { } { }∆∆ t tt tM X F ++  =  ...(6.51)

where M   is the effective mass matrix and { }∆t tF + is the effective force vector.

 [] [] []2
2 11

6∆
M M C K

tt
  = + +  ∆ ...(6.52)

{ } { } [] [] { }

[] [] { } [] [] { }

∆ 2

∆ 22 2

5 3
∆∆

4 3 1 1 –
2 3∆ ∆

t t t t t

t t t t

F F XM C
tt

X XM C M C
t tt t

+∆ +

− − ∆

 = + +  

   ++ +      ∆ ∆ ...(6.53)

Note that the equilibrium equation at time ∆ ,t t+ Eq. (6.51) is used in finding the solution for { }∆t tX + . For
this reason, this method is called an implicit integration method. It can be seen that the velocities and
accelerations at time ∆t t+ are obtained by substituting for { }∆t tX + in (6.50) and (6.49) respectively. Also

that a knowledge of ∆ –2, and t t t t tX X X− ∆ is needed to find solution for { }∆t tX + . Since there is no direct

method available to find { } { }– t –2 and t t tX X∆ ∆ , initially we use the central difference method to find solution
at time ∆t and 2∆t . This makes the method non-self starting. The method also requires large computer
storage to store displacements for the previous time steps. The step by step procedure to be used in the
Houbolt method is summarized in Table 6.3. A basic difference between the Houbolt method in Table 6.3
and the central difference method in Table 6.2 is the appearance of the stiffness matrix K as a factor to the

330 ——— MATLAB: An Introduction with Applications

required displacements ∆t tX + . The term ∆t tKX + appears because the equilibrium is considered at time t + t∆
and not at time t as in the central difference method. There is no critical time-step limit, and t∆ can in
general be selected much larger than that given for the central difference method.

Table 6.3 Algorithm based on Houbolt method

(a) Initial Computations:
1. Form stiffness [K], mass [M] and damping [C] matrices

2. Initialize { } { } { }0 0 0, and X X X .

3. Select time step t∆ and calculate integration constants:

3
0 1 2 3 4 0 52 2

0 3
6 7

2 11 5 3; ; ; ; 2 ; ;
6 ∆ 2∆ ∆

; .
2 9

aa a a a a a a
t tt t

a aa a

−= = = = = − =
∆

= =

4. Use special starting procedure, such as central-difference method to calculate.

{ } { }∆ 2 and t tX X ∆ .
5. Calculate effective stiffness matrix:

[] [] []0 1K K a M a C  = + + 

6. Triangularize [] [] []: TK K L D L    =   
(b) For each time step:

1. Calculate effective force vector at time t + t∆ :

{ } { } [] { } { } { }
[] { } { } { }

∆ ∆ 2 4 ∆ 6 2

3 5 ∆ 7 2

 ()

 ()
t t t t t t t t t

t t t t t

F F M a X a X a X

C a X a X a X
+ + − − ∆

− − ∆

= + + +

+ + +

2. Solve for displacements at time t + t∆

{ } { }∆ ∆ t t t tK X F+ +  = 

3. Calculate { } { } and X X at time t + t∆ :

{ } { } { } { } { }
{ } { } { } { } { }

∆ 1 ∆ 3 5 ∆ 7 2

∆ 0 ∆ 2 4 ∆ 6 2

t t t t t t t t t

t t t t t t t t t

X a X a X a X a X

X a X a X a X a X
+ + − − ∆

+ + − − ∆

= − − −

= − − −

6.5.2 Wilson Theta Method
The Wilson Theta Method assumes that the acceleration of the system varies linearly between two instants
of time. Referring to Fig. 6.4, the acceleration is assumed to be linear from time t between , ti = i t∆ to time

i it t t+θ = + θ∆ , where 1.0θ ≥ . Because of this reason, the method is known as the Wilson Theta method.
If τ is the increase in time t between t and t + tθ∆ (0 t≤ τ ≤ θ∆), then for time interval t to t + tθ∆ , it can
be assumed that

Direct Numerical Integration Methods ——— 331

τ θ∆
τ

()
θ∆t t t t tX X X X

t+ += + − ...(6.54)

t + t∆ t + t∆θ
t τ

Xt

Xt + t∆ Xt + tθ∆

Fig. 6.4

Successive integration for Eq. (6.54) gives the following expressions for τ τ and t tX X+ + :
2

τ θ∆
ττ ()

2 ∆t t t t t tX X X X X
t+ += + + −

θ ...(6.55)

3
2

τ θ∆
1 ττ τ ()
2 6t t t t t t tX X X X X X

t+ += + + + −
θ∆

 ...(6.56)

Substituting τ θ∆t= into the above Eqs. (6.55) and (6.56), we obtain the following expressions for X and
X at time θ∆t t+ :

θ∆ θ∆
θ∆ ()
2t t t t t t

tX X X X+ += + + ...(6.57)

2 2

θ∆ θ∆
θ ∆θ∆ (2)

6t t t t t t t
tX X t X X X+ += + + + ...(6.58)

Solving Eqs. (6.57) and (6.58) for θ∆ θ∆ and t t t tX X+ + in terms of θ∆t tX + , we get

θ∆ θ∆2 2

θ∆ θ∆

6 6 () () 2
θ∆θ ∆

3 () 2
θ∆ 2

t t t t t t t

t t t t t t t

X X X X X
tt

tX X X X X
t

+ +

+ +

= − − −

θ∆= − − − ...(6.59)

The difference formulas in the Wilson Theta algorithm are then given by

{ } { } { } { } { }θ∆ θ∆2 2
6 6 () 2

θ∆θ ∆t t t t t t tX X X X X
tt+ += − − − ...(6.60)

{ } { } { } { } { }3 () 2
2t t t t t t t

tX X X X X
t+ θ∆ + θ∆

θ∆= − − −
θ∆

...(6.61)

332 ——— MATLAB: An Introduction with Applications

We employ Eq. (6.13) at time t + t∆ to obtain a solution for displacement, velocity and acceleration at time
t + t∆ . Since accelerations vary linearly, a linear projected force vector is used such that

[]{ } []{ } []{ } { }θ∆ θ∆ θ∆ θ∆t t t t t t t tM X C X K X F+ + + ++ + = ...(6.62)

where { } { } { } { }θ∆ θ∆θ ()t t t t t tF F t F F+ += + ∆ − .

By substituting the expressions for { } { }θ∆ θ∆ and t t t tX X+ + from Eqs. (6.60) and (6.61), respectively, into
Eq.(6.62), we get

{ } { }θ∆t t t tM X F+ +∆  =  ...(6.63)

where the effective mass matrix M   and the effective force vector { }t tF +∆ are given by

 [] [] []2 2
6 3

θ∆θ ∆
M M C K

tt
  = + +  (6.64)

{ } { } [] [] { }

[] [] { } [] [] { }

θ∆ θ∆ 2 2
6 3()

θ∆θ ∆
6 θ∆ (2) (2)
θ∆ 2

t t t t t

t t

F F M C X
tt

tM C X M C X
t

+ += + +

+ + + +
 (6.65)

The solution of Eq. (6.63) gives { }θ∆t tX + which is then substituted into the following relationships to
obtain the displacements, velocities and accelerations at time t + t∆ .

 { } { } { } { } { }∆ θ∆2 2 2
6 6 3() 1

θθ ∆ θ ∆t t t t t t tX X X X X
t t+ +

 = − − + −   ...(6.66)

 { } { } { } { }∆ ∆
∆ ()
2t t t t t t
tX X X X+ += + − ...(6.67)

 { } { } { } { } { }
2

∆ ∆
∆∆ (2)
6t t t t t t t
tX X t X X X+ += + + − ...(6.68)

When θ = 1.0, the method reduces to the linear acceleration scheme. The method is unconditionally stable
for linear dynamic systems when θ ≥ 1.37, and a value of θ =1.4 is often used for non-linear dynamic systems.
It may also be noted that no special starting procedures are needed, since X, X and X are expressed at time
t + t∆ in terms of the same quantities at time t only. The complete algorithm used in the Wilson Theta
method is given in Table 6.4.

Direct Numerical Integration Methods ——— 333

Table 6.4 Algorithm based on Wilson Theta method

(a) Initial Computations:
1. Form stiffness [K], mass [M] and damping [C] matrices

2. Initialize { } { } { }0 0 0, and X X X .

3. Select time step t∆ and calculate integration constants,
θ =1.4(say):

0 2
0 1 2 1 3 4 52

2

6 7 8

6 3 θ∆; ; 2 ; ; ; ;
θ∆ 2 θ θ(∆)

3 ∆ ∆1 ; ; .
θ 2 6

at aa a a a a a a
tt

t ta a a

−= = = = = =
θ

= − = =

4. Form effective stiffness matrix:

[] [] []0 1K K a M a C  = + + 

5. Triangularize [][][]T : K K L D L    =   
(b) For each time step:

1. Calculate effective force vector at time t + t∆ :

{ } { } { } { } [] { } { } { }
[] { } { } { }

θ∆ ∆ 0 2

1 1 3

θ () (2)

 (2)

t t t t t t t t t

t t

F F F F M a X a X X

C a X X a X

+ += + − + + +

+ + +

2. Solve for displacements at time t t+ θ∆ :

{ } { }∆ ∆ t t t tK X F+θ +θ  = 

3. Calculate { } { } { }, and X X X at time t + t∆ :

{ } { } { } { } { }
{ } { } { } { }
{ } { } { } { } { }

∆ 4 θ∆ 5 6

∆ 7 ∆

∆ 8 ∆

()

()

∆ (2)

t t t t t t t

t t t t t t

t t t t t t t

X a X X a X a X

X X a X X

X X t X a X X

+ +

+ +

+ +

= − + +

= + +

= + + +

6.5.3 Newmark Beta Method
The Newmark Beta integration method is also based on the assumption that the acceleration varies linearly
between two instants of time. Two parameters α and β are used in this method, which can be changed to
suit the requirements of a particular problem. The expressions for velocity and displacements are given by

∆ ∆(1) ∆t t t t t tX X X X t+ + = + − α + α  ...(6.69)

2
∆ ∆

1∆ ∆
2t t t t t t tX X X t X X t+ +

  = + + + β− β    
...(6.70)

334 ——— MATLAB: An Introduction with Applications

The parameters α and β indicate how much the acceleration enters into the velocity and displacement
equations at the end of the interval ∆t. Therefore, α and β are chosen to obtain the desired integration
accuracy and stability. When α =1/6 and β =1/2, Eqs. (6.69) and (6.70) correspond to the linear acceleration
method (which can also be obtained using θ =1 in Wilson method). When α =1/2 and β = 0, the acceleration
is constant and equal to tX during each time interval ∆t. If α = 1/2 and β = 1/8, the acceleration is constant
from the beginning as tX and then changes to t tX +∆ in the middle of the time interval ∆t. When α = 1/2 and
β = 1/4, this corresponds to the assumption that the acceleration remains constant at an average value of

∆()/2t t tX X ++ . The finite difference formulas for the Newmark Beta scheme are

{ } { } { } { } { }∆ ∆2
11 1 1()
2ββ∆β∆t t t t t t tX X X X X

tt+ +
 −= − − −    ...(6.71)

{ } { } { } { } { }∆ ∆ 1 1() ∆
2∆t t t t t t tX X X X t X

t+ +
α αα    − −= − − −    β   β β ...(6.72)

Equation (6.13) can be employed to obtain a solution for displacements, velocity and accelerations at time

t + ∆t. Therefore, by substituting the expressions for { } { }∆ ∆ and t t t tX X+ + from Eqs. (6.71) and (6.72),
respectively, into Eq. (6.13), we get

 { } { }∆ ∆t t t tM X F+ +  =  ...(6.73)

where the effective mass matrix M   and the effective force vector { }∆t tF + are given by

 [] [] []2
1

∆∆
M M C K

tt
α  = + +  ββ ...(6.74)

{ } { } [] [] { }

[] [] { }

∆ ∆
1 1 1 ∆

2 2

1 1
∆

t t t t t

t

F F M t C X

M C X
t

+ +
 α   − −= + +     β   β  

 α −+ +   β β 

[] [] { }2
1

∆β∆ tM C X
tt

 α+ + β 
...(6.75)

Solution of Eq. (6.73) gives { }∆t tX + , which is then substituted into Eqs. (6.71) and (6.72) in order to obtain
the accelerations and velocities at time t + t∆ . One of the features of Newmark Beta method is that for linear
systems the amplitude is conserved and the response is unconditionally stable, provided that

21 1 1and
2 4 2

 α ≥ β ≥ α +   . For values of 1
2

α = and
1
4

β = , the largest truncation errors occur in the

frequency of the response as opposed to other β values. It is also important to note that unless 1
2

β = ,

there is a spurious damping introduced, proportional to 1
2

β − . If β = 0, a negative damping results; this

Direct Numerical Integration Methods ——— 335

involves a self-excited vibration arising solely from the numerical procedure. In a likewise manner, if β is

greater than
1
2

, a positive damping is introduced which reduces the magnitude of the response even without

real damping in the problem. For a multi-degree of freedom system in which a number of modes constitute
the total response, the peak amplitude may not be correct. The complete algorithm using the Newmark Beta
integration method is given in Table 6.5.

Table 6.5 Algorithm based on Newmark Beta method

(a) Initial Computations:
1. Form stiffness [K], mass [M] and damping [C] matrices

2. Initialize { } { } { }0 0 0, and X X X .

3. Select time step t∆ , parameters α and β, and calculate integration constants,
20.5; 0.25 (0.5)β ≥ α ≥ + β

()

0 1 2 3 42

5 6 7

1 1 1; ; ; 1; 1;
2()

2 ; 1 ;
2

a a a a a
t tt

ta a t a t

α α= = = = − = −
β∆ β∆ β ββ ∆

 ∆ α= − = ∆ − β = β∆  β 
4. Form effective stiffness matrix:

[] [] []0 1K K a M a C  = + + 

5. Triangularize [] [] [] : TK K L D L    =   

(b) For each time step:
1. Calculate effective force vector at time t + t∆ :

{ } { } [] { } { } { }
[] { } { } { }

∆ ∆ 0 2 3

1 4 5

 ()

 ()

t t t t t t t

t t t

F F M a X a X a X

C a X a X a X

+ += + + +

+ + +

2. Solve for displacements at time t + t∆

{ } { }∆∆ t tt tK X F ++  = 

3. Calculate { } { } and X X at time t + t∆ :

{ } { } { } { } { }
{ } { } { }() { } { }

∆ 0 ∆ 2 3

∆ 1 4 5

()t t t t t t t

t t t t t t t

X a X X a X a X

X a X X a X a X
+ +

+ +∆

= − − −

= − − −

336 ——— MATLAB: An Introduction with Applications

6.5.4 Park Stiffly Stable Method
The Park Stiffly Stable method is an accurate method for low frequency ranges and stable for all higher-
frequency components. Using a linear combination of the following two difference formulas derives the
velocity in the Park Stiffly Stable method:

[]∆ ∆ ∆ 2
1 11 18 9 2

6t t t t t t t t tX X X X X
t+ + − − ∆= − + −

∆
...(6.76)

∆ ∆ ∆
1 (2 4)

2t t t t t t tX X X X
t+ + −= − +

∆
...(6.77)

The linear combination of (6.76) and (6.77) gives

∆ ∆ ∆
1 (3 4)

4t t t t t t tX X X X
t+ + −= − +

∆

∆ ∆ 2
1 (11 18 9 2)

12 t t t t t t tX X X X
t + − − ∆+ − + −

∆
...(6.78)

or ∆ ∆ ∆ 2
1 (10 15 6)

6t t t t t t t t tX X X X X
t+ + − − ∆= − + −

∆
...(6.79)

Similarly, for the acceleration, we obtain

∆ ∆ –2
1 (10 15 6 –)

6t t t t t t t t tX X X X X
t+ + −∆ ∆= − +

∆ ...(6.80)

The difference formulas in the Park Stiffly method are given by

{ } { } { } { } { }∆ ∆ ∆ 2
1 10 15 6

6t t t t t t t t tX X X X X
t+ + − − ∆ = − + − ∆

...(6.81)

{ } { } { } { } { }∆ ∆ ∆ 2
1 10 15 6

6t t t t t t t t tX X X X X
t+ + − − ∆ = − + − ∆

...(6.82)

We consider Eq. (6.13) to obtain solution for the displacements, velocities and accelerations at time t + t∆ .

By substituting the expressions for { } { }∆ ∆ and t t t tX X+ + from (6.81) and (6.82), respectively, into (6.13), we get

 { } { }| | t t t tXM F+∆ +∆= ...(6.83)

where the effective mass matrix M   and the effective force vector { }t tF +∆ are given by

 [] [] []2
100 10

636
M M C K

tt
  = − +  ∆∆ ...(6.84)

{ } []{ } []{ } []{ }

[] [] { } [] [] { }

[] [] { }

∆ 2

∆2 2

22

15 1 1
6 ∆ 6

150 15 10 1
6 ∆36 6

1 1
636

t t t t t t t

t t t

t t

F M X M X M X
t t t

X XM C M C
t tt t

XM C
tt

+∆ − − ∆

−

− ∆

= − +
∆ ∆

   + −+ +      ∆∆ ∆
 + +  ∆∆

...(6.85)

The solution of Eq.(6.83) gives { }∆t tX + , which is then substituted in Eq.(6.82) to obtain velocities. The

values of { }∆t tX + are then obtained by the use of Eq.(6.81). Note that in the Park Stiffly stable method, the

Direct Numerical Integration Methods ——— 337

calculation of { }∆t tX + requires the displacements and velocities at t, t – t∆ and t –2 t∆ . Therefore, in order
to obtain the solution at time t∆ and 2 t∆ , a special starting procedure is needed, which makes the method
non-self starting. The complete algorithm based on Park Stiffly stable method used in the integration is
given in Table 6.6. The method requires a large computer memory in order to store the displacements and
velocities for the two previous time steps.

Table 6.6 Algorithm based on Park Stiffly stable method

(a) Initial Computations:
1. Form stiffness [K], mass [M] and damping [C] matrices

2. Initialize { } { } { }0 0 0, and X X X .

3. Select time step ∆t and calculate integration constants:

0 1 2 3
10 –15 1 –1

; ; ; ;
6 6 ∆ 6

a a a a
t t t t

= = = =
∆ ∆ ∆

4. Form effective stiffness matrix:

[] [] []2
0 0K a M a C K  = − + 

5. Triangularize [] [] [] : TK K L D L    =   

(b) For each time step:
1. Calculate effective force vector at time t + t∆ :

{ } { } { } { } { } { }
{ } [] { } { } { } []

∆ 1 2 ∆ 3 2 0 1 0 2 ∆

2
3 2 1 2 ∆ 3 2

(

) ()

t t t t t t t t t t

t t t t t t t

F a X a X a X a a X a a X

a X M a X a X a X C

+ − − ∆ −

− ∆ − − ∆

= − − − − −

+ − + +
2. Solve for displacements at time t + t∆

{ } { }| | t t t tXM F+∆ +∆=

3. Calculate { } { } and X X at time t + t∆ :

{ } { } { } { } { }
{ } { } { } { } { }

∆ 0 ∆ 1 2 ∆ 3 2

∆ 0 ∆ 1 2 ∆ 3 2

t t t t t t t t t

t t t t t t t t t

X a X a X a X a X

X a X a X a X a X
+ + − − ∆

+ + − − ∆

= + + +

= + + +

6.6 EXAMPLE PROBLEMS AND SOLUTIONS

Example E6.1: Find the response of a viscously damped single degree of freedom system subjected to a
force

F(t) = F0
0

1 sin
2

t
t

π −  
with the following data: F0 = 2 N, t0 = π seconds, m = 2 kg, c = 0.3 Ns/m and k = 1 N/m. The values of

the displacement and velocity of the mass at t = 0 are zero. Use the central difference method. Choose
∆ t = 1, 0.1 and 0.5 seconds and compare the results.

338 ——— MATLAB: An Introduction with Applications

Solution: This is a single-degree of freedom system problem with all initial conditions zero. The following
MATLAB program is executed to obtain the results.
% INITIAL VALUES

m=2;k=1;c=0.3;dt=0.1;

x0=0;x0d=0;

F0=2;

T=5;

x0dd=inv(m)*(F0-c*x0d-k*x0);

xprev=x0-(dt*x0d)+((dt^2)*x0dd/2);

a0=1/dt^2;a1=1/(2*dt);a2=2*a0;

mbar=a0*m+a1*c;

 t=0;

 v(1)=x0d;a(1)=x0dd;

 i=1;

 for t=0:dt:T+dt

 X(i)=x0;

 f=F0*(1-sin(0.5*t));

fbar=f+(a2*m-k)*x0+(a1*c-a0*m)*xprev;

 x=inv(mbar)*fbar;

 xprev=x0;

 x0=x;

 i=i+1;

 p=i;

 end

 for i=2:p-1

 if i<p-1

 v(i)=(X(i+1)-X(i-1))/(2*dt);

 a(i)=(X(i+1)-2*X(i)+X(i-1))/dt^2;

 end

 end

 fprintf(‘\ntime\t\tdisplacement\tvelocity\tacceleration\n’);

 i=1;

 for t=0:dt:T

 fprintf(‘%f\t%f\t%f\t%f\n’,t,X(i),v(i),a(i));

 i=i+1;

 end

 t=[0:dt:T+dt];

 plot(t,X,‘-p’);

xlabel(‘time(s)’);

Direct Numerical Integration Methods ——— 339

The output of the program is shown below for various values of ∆t.
when ∆t =1 sec, the following results are obtained

time displacement velocity acceleration
0.000000 0.000000 0.000000 1.000000
1.000000 0.500000 0.590965 0.181930
2.000000 1.181930 0.433220 –0.497419
3.000000 1.366441 –0.144974 –0.658969
4.000000 0.891982 –0.606607 –0.264297
5.000000 0.153226 –0.536092 0.405328

When ∆t = 0.5 sec, the following results are obtained
time displacement velocity acceleration

0.000000 0.000000 0.000000 1.000000
0.500000 0.125000 0.407252 0.629008
1.000000 0.407252 0.620473 0.223877
1.500000 0.745473 0.638891 –0.150209
2.000000 1.046143 0.491762 –0.438307
2.500000 1.237235 0.231599 –0.602342
3.000000 1.277742 –0.075255 –0.625078
3.500000 1.161980 –0.359295 –0.511081
4.000000 0.918447 –0.558261 –0.284782
4.500000 0.603719 –0.625966 0.013962
5.000000 0.292481 –0.538461 0.336057

When ∆t = 0.1 sec, the following results are obtained
time displacement velocity acceleration

0.000000 0.000000 0.000000 1.000000
0.100000 0.005000 0.096651 0.933023
0.200000 0.019330 0.186429 0.862537
0.300000 0.042286 0.269009 0.789068
0.400000 0.073132 0.344120 0.713147
0.500000 0.111110 0.411543 0.635310
0.600000 0.155441 0.471113 0.556092
0.700000 0.205332 0.522719 0.476028
0.800000 0.259985 0.566303 0.395644
0.900000 0.318593 0.601858 0.315459
1.000000 0.380356 0.629430 0.235982
1.100000 0.444479 0.649114 0.157706
1.200000 0.510179 0.661055 0.081110
1.300000 0.576690 0.665443 0.006652
1.400000 0.643268 0.662514 –0.065229
1.500000 0.709193 0.652547 –0.134117
1.600000 0.773777 0.635860 –0.199624
1.700000 0.836365 0.612810 –0.261384
1.800000 0.896339 0.583787 –0.319064
1.900000 0.953122 0.549216 –0.372359

340 ——— MATLAB: An Introduction with Applications

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time(s)

D
is

p
la

c
e
m

e
n
t(

m
)

Fig. E6.1 Displacement response plot for ∆∆∆∆∆t = 0.1 sec.

Example E6.2: Find the solution of the equation 5 2.5X X+ + 4000X = F(t), where F(t) is as shown in
Fig. E6.2 for the duration 0 1.t≤ ≤ Assume that X0 = 0 0 and ∆ 0.05X t= = . Use the central difference method.

F(t)

200

0 0.2 0.6
t

Fig. E6.2

Solution: MATLAB program for this is given below:
% INITIAL VALUES
m=5;k=4000;c=2.5;dt=0.05;

x0=0;x0d=0;

F0=200;

T=1;

x0dd=inv(m)*(F0-c*x0d-k*x0);

xprev=x0-(dt*x0d)+((dt^2)*x0dd/2);

a0=1/dt^2;a1=1/(2*dt);a2=2*a0;

mbar=a0*m+a1*c;

 t=0;

Direct Numerical Integration Methods ——— 341

 v(1)=x0d;a(1)=x0dd;

 i=1;

 for t=0:dt:T+dt

 X(i)=x0;

 if t<=0.2 f=F0;

 else if (t>0.2 & t<=0.6) f=-(F0/0.4)*(t-0.6);

 else if t>0.6 f=0;

 end

 end

 end

fbar=f+(a2*m-k)*x0+(a1*c-a0*m)*xprev;

 x=inv(mbar)*fbar;

 xprev=x0;

 x0=x;

 i=i+1;

 p=i;

 end

 for i=2:p-1

 if i<p-1

 v(i)=(X(i+1)-X(i-1))/(2*dt);

 a(i)=(X(i+1)-2*X(i)+X(i-1))/dt^2;

 end

 end

 fprintf(‘\ntime\t\tdisplacement\tvelocity\tacceleration\n’);

 i=1;

 for t=0:dt:T

 fprintf(‘%f\t%f\t%f\t%f\n’,t,X(i),v(i),a(i));

 i=i+1;

 end

 t=[0:dt:T+dt];

 plot(t,X,‘-p’);

xlabel(‘time(s)’);

ylabel(‘displacement(m)’);

grid on;

The output is as follows:
time displacement velocity acceleration

0.000000 0.000000 0.000000 40.000000
0.050000 0.050000 0.987654 –0.493827
0.100000 0.098765 –0.000000 –39.012346
0.150000 0.050000 –0.963268 0.481634
0.200000 0.002439 0.000000 38.049078

342 ——— MATLAB: An Introduction with Applications

0.250000 0.050000 0.816027 –5.408013
0.300000 0.084041 –0.246914 –37.109594
0.350000 0.025309 –1.042791 5.274482
0.400000 –0.020238 –0.006097 36.193308
0.450000 0.024699 0.770130 –5.144248
0.500000 0.056775 –0.240967 –35.299646
0.550000 0.000602 –0.998028 5.017230
0.600000 –0.043028 –0.011896 34.428050
0.650000 –0.000587 0.849928 0.044924
0.700000 0.041965 0.011602 –33.577975
0.750000 0.000573 –0.828943 –0.043815
0.800000 –0.040929 –0.011316 32.748889
0.850000 –0.000559 0.808475 0.042733
0.900000 0.039918 0.011036 –31.940274
0.950000 0.000545 –0.788513 –0.041678
1.000000 –0.038933 –0.010764 31.151626

Figure E6.2(a) shows the response history.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
–0.06

–0.04

–0.02

0

0.02

0.04

0.06

0.08

0.1

Time(s)

D
is

p
la

c
e
m

e
n
t(

m
)

Fig. E6.2 (a) MATLAB output for ∆∆∆∆∆t = 0.05s

Direct Numerical Integration Methods ——— 343

Example E6.3: Solve numerically the differential equation 4 2000 ()X X F t+ = with the initial conditions
X0 = 0X = 0 and forcing function F(t) as shown in Fig. E6.3. Use central difference method with ∆t = 0.02
sec.

F(t)

150

0 0.10 0.20
t0

Fig. E6.3

Solution: Here the complete MATLAB program is shown below:
% INITIAL VALUES

m=4;k=2000;c=0;dt=0.02;

x0=0;x0d=0;

F0=150;

T=1;

x0dd=inv(m)*(F0-c*x0d-k*x0);

xprev=x0-(dt*x0d)+((dt^2)*x0dd/2);

a0=1/dt^2;a1=1/(2*dt);a2=2*a0;

mbar=a0*m+a1*c;

 t=0;

 v(1)=x0d;a(1)=x0dd;

 i=1;

 for t=0:dt:T+dt

 X(i)=x0;

 if t<=0.1 f=F0;

 else if (t>0.1 & t<=0.2) f=-(F0/0.1)*(t-0.2);

 else if t>0.2 f=0;

 end

 end

 end

fbar=f+(a2*m-k)*x0+(a1*c-a0*m)*xprev;

 x=inv(mbar)*fbar;

 xprev=x0;

 x0=x;

 i=i+1;

 p=i;

344 ——— MATLAB: An Introduction with Applications

 end

 for i=2:p-1

 if i<p-1

 v(i)=(X(i+1)-X(i-1))/(2*dt);

 a(i)=(X(i+1)-2*X(i)+X(i-1))/dt^2;

 end

 end

 fprintf(‘\ntime\t\tdisplacement\tvelocity\tacceleration\n’);

 i=1;

 for t=0:dt:T

 fprintf(‘%f\t%f\t%f\t%f\n’,t,X(i),v(i),a(i));

 i=i+1;

 end

 t=[0:dt:T+dt];

 plot(t,X,‘-p’);

xlabel(‘time(s)’);

ylabel(‘displacement(m)’);

grid on;

The output is given below:
time displacement velocity acceleration

0.000000 0.000000 0.000000 37.500000
0.020000 0.007500 0.712500 33.750000
0.040000 0.028500 1.282500 23.250000
0.060000 0.058800 1.596000 8.100000
0.080000 0.092340 1.590300 –8.670000
0.100000 0.122412 1.266540 –23.706000
0.120000 0.143002 0.614472 –41.500800
0.140000 0.146991 –0.310490 –50.995440
0.160000 0.130582 –1.323355 –50.290992
0.180000 0.094057 –2.221548 –39.528346
0.200000 0.041720 –2.825432 –20.860030
0.220000 –0.018961 –2.939229 9.480291
0.240000 –0.075849 –2.465181 37.924555
0.260000 –0.117568 –1.498096 58.783907
0.280000 –0.135773 –0.231392 67.886478
0.300000 –0.126824 1.081590 63.411753
0.320000 –0.092509 2.178254 46.254678
0.340000 –0.039693 2.839268 19.846667

Direct Numerical Integration Methods ——— 345

0.360000 0.021061 2.932428 –10.530677

0.380000 0.077604 2.439102 –38.801886

0.400000 0.118625 1.457956 –59.312718

0.420000 0.135922 0.185219 –67.961006

0.440000 0.126034 –1.124562 –63.017093

0.460000 0.090940 –2.209431 –45.469761

0.480000 0.037657 –2.852413 –18.828477

0.500000 –0.023157 –2.924913 11.578502

0.520000 –0.079340 –2.412430 39.669781

0.540000 –0.119654 –1.417461 59.827104

0.560000 –0.136038 –0.139000 68.019006

0.580000 –0.125214 1.167261 62.607106

0.600000 –0.089348 2.240070 44.673786

0.620000 –0.035611 2.864865 17.805708

0.640000 0.025247 2.916687 –12.623511

0.660000 0.081056 2.385171 –40.528028

0.680000 0.120654 1.376622 –60.326940

0.700000 0.136121 0.092748 –68.060463

0.720000 0.124364 –1.209676 –62.181894

0.740000 0.087734 –2.270164 –43.866946

0.760000 0.033557 –2.876620 –16.778609

0.780000 –0.027331 –2.907751 13.665450

0.800000 –0.082753 –2.357333 41.376419

0.820000 –0.121624 –1.335447 60.812104

0.840000 –0.136171 –0.046473 68.085368

0.860000 –0.123483 1.251797 61.741559

0.880000 –0.086099 2.299706 43.049438

0.900000 –0.031495 2.887675 15.747429

0.920000 0.029408 2.898109 –14.704065

0.940000 0.084429 2.328921 –42.214747

0.960000 0.122565 1.293948 –61.282479

0.980000 0.136187 0.000186 –68.093715

1.000000 0.122572 –1.293613 –61.286209

346 ——— MATLAB: An Introduction with Applications

Figure E6.3(a) shows the response history.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
–0.2

–0.15

–0.1

–0.05

0

0.05

0.1

0.15

Time(s)

D
is

p
la

c
e
m

e
n
t(

m
)

Fig. E6.3(a) Response history

Example E6.4: Solve numerically the solution to the problem of a spring mass system excited by a triangular
impulse. The differential equation of motion and the initial conditions are given as

20.5 8π ()X X F t+ =

with 1 1 0X X= =
The triangular force is defined in Fig. E6.4. Use central difference method with ∆t = 0.05 sec.

F(t)

0 0.20 0.40
t0

50

150

Fig. E6.4

Solution: The following MATLAB program is developed:
% INITIAL VALUES
m=0.5;k=8*pi^2;c=0;dt=0.05;

x0=0;x0d=0;

Direct Numerical Integration Methods ——— 347

F0=0;F=150;

T=1;

x0dd=inv(m)*(F0-c*x0d-k*x0);

xprev=x0-(dt*x0d)+((dt^2)*x0dd/2);

a0=1/dt^2;a1=1/(2*dt);a2=2*a0;

mbar=a0*m+a1*c;

t=0;

v(1)=x0d;a(1)=x0dd;

i=1;

for t=0:dt:T+dt

X(i)=x0;

if t<=0.2 f=(F*t/0.2);

else if (t>0.2 & t<=0.4) f=-(F/0.2).*(t-0.4);

 else if t>0.4 f=0;

 end

 end

 end

fbar=f+(a2*m-k)*x0+(a1*c-a0*m)*xprev;

 x=inv(mbar)*fbar;

 xprev=x0;

 x0=x;

 i=i+1;

 p=i;

 end

 for i=2:p-1

 if i<p-1

 v(i)=(X(i+1)-X(i-1))/(2*dt);

 a(i)=(X(i+1)-2*X(i)+X(i-1))/dt^2;

 end

 end

 fprintf(‘\ntime\t\tdisplacement\tvelocity\tacceleration\n’);

 i=1;

 for t=0:dt:T

 fprintf(‘%f\t%f\t%f\t%f\n’,t,X(i),v(i),a(i));

 i=i+1;

 end

 t=[0:dt:T+dt];

 plot(t,X,’-p’);

xlabel(‘time(s)’);

ylabel(‘displacement(m)’);

grid on;

348 ——— MATLAB: An Introduction with Applications

The output is given below:
time displacement velocity acceleration

0.000000 0.000000 0.000000 0.000000
0.050000 0.000000 1.875000 75.000000
0.100000 0.187500 6.759780 120.391187
0.150000 0.675978 12.725905 118.253838
0.200000 1.460091 17.418045 69.431745
0.250000 2.417782 15.233816 –156.800902
0.300000 2.983472 3.285518 –321.131034
0.350000 2.746334 –13.709851 –358.683716
0.400000 1.612487 –29.042788 –254.633742
0.450000 –0.157945 –34.785091 24.941603
0.500000 –1.866022 –26.794791 294.670399
0.550000 –2.837424 –8.226331 448.067983
0.600000 –2.688655 13.589754 424.575418
0.650000 –1.478448 30.040819 233.467197
0.700000 0.315427 34.632244 –49.810180
0.750000 1.984776 25.551408 –313.423286
0.800000 2.870567 6.383280 –453.301838
0.850000 2.623104 –15.304866 –414.223998
0.900000 1.340081 –30.950893 –211.617078
0.950000 –0.471985 –34.377997 74.532916
1.000000 –2.097719 –24.233212 331.258494

Figure E6.4(a) shows the plot of the response versus time.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
–3

–2

–1

0

1

2

3

D
is

pl
ac

em
en

t(m
)

Time(s)

Fig. E6.4 (a) MATLAB output for ∆∆∆∆∆t = 0.05s

Direct Numerical Integration Methods ——— 349

0 0.2 0.4 0.6 0.8 1 1.2 1.4
–3

–2

–1

0

1

2

3

Time(s)

D
is

pl
ac

em
en

t(m
)

Fig. E6.4(b) MATLAB output for ∆∆∆∆∆t = 0.005s

Example E6.5: Solve the following nonlinear vibration problem, using the central difference method.
3 cosωMX CX KX K X F t∗+ + + =

with M = 1.0, C = 0.5, K = 1.0, = K* = 0.5, ∆t = 0.05, tmax = 5.0, and the initial conditions 0 0X X= = 0. Plot
the variation of X with t. Take ω = 1 and F = 10.
Solution: Here in Xi+1 an additional term with –K*Xi

3 will come and other things will remain same. Assuming
F = 10N, the following MATLAB program is developed.
 % INITIAL VALUES

m=1;k=1;c=0.5;ks=0.5;dt=0.05;

x0=0;x0d=0;omega=1;

F0=10;

T=5;

x0dd=inv(m)*(F0-c*x0d-k*x0);

xprev=x0-(dt*x0d)+((dt^2)*x0dd/2);

a0=1/dt^2;a1=1/(2*dt);a2=2*a0;

mbar=a0*m+a1*c;

 t=0;

 v(1)=x0d;a(1)=x0dd;

 i=1;

 for t=0:dt:T+dt

 X(i)=x0;

 f=F0*cos(omega*t);

 % NON-LINEAR TERM
 fbar=f+(a2*m-k)*x0+(a1*c-a0*m)*xprev-ks*(x0^3);

 x=inv(mbar)*fbar;

350 ——— MATLAB: An Introduction with Applications

 xprev=x0;

 x0=x;

 i=i+1;

 p=i;

 end

 for i=2:p-1

 if i<p-1

 v(i)=(X(i+1)-X(i-1))/(2*dt);

 a(i)=(X(i+1)-2*X(i)+X(i-1))/dt^2;

 end

 end

 fprintf(‘\ntime\t\tdisplacement\tvelocity\tacceleration\n’);

 i=1;

 for t=0:dt:T

 fprintf(‘%f\t%f\t%f\t%f\n’,t,X(i),v(i),a(i));

 i=i+1;

 end

 t=[0:dt:T+dt];

 plot(t,X,’-p’);

xlabel(‘time(s)’);

The output of the program is given below:
time displacement velocity acceleration

0.000000 0.000000 0.000000 10.000000
0.050000 0.012500 0.493210 9.728397
0.100000 0.049321 0.971789 9.414766
0.150000 0.109679 1.433672 9.060536
0.200000 0.192688 1.876835 8.665983
0.250000 0.297362 2.299209 8.229010
0.300000 0.422609 2.698528 7.743753
0.350000 0.567215 3.072103 7.199215
0.400000 0.729819 3.416537 6.578158
0.450000 0.908869 3.727404 5.856518
0.500000 1.102560 3.998908 5.003655
0.550000 1.308760 4.223595 3.983832
0.600000 1.524919 4.392175 2.759342
0.650000 1.747977 4.493550 1.295680
0.700000 1.974274 4.515166 –0.431058
0.750000 2.199494 4.443769 –2.424815
0.800000 2.418651 4.266666 –4.659319
0.850000 2.626160 3.973458 –7.069001

Direct Numerical Integration Methods ——— 351

0.900000 2.815997 3.558129 –9.544163
0.950000 2.981973 3.021179 –11.933829
1.000000 3.118115 2.371360 –14.058926
1.050000 3.219109 1.626489 –15.735916
1.100000 3.280764 0.812907 –16.807359
1.150000 3.300400 –0.036584 –17.172266
1.200000 3.277105 –0.886080 –16.807592
1.250000 3.211792 –1.700621 –15.774049
1.300000 3.107043 –2.450079 –14.204274
1.350000 2.966784 –3.112116 –12.277189
1.400000 2.795832 –3.673705 –10.186361
1.450000 2.599413 –4.131135 –8.110872
1.500000 2.382718 –4.488775 –6.194716
1.550000 2.150536 –4.757067 –4.536959
1.600000 1.907011 –4.950278 –3.191475
1.650000 1.655508 –5.084393 –2.173152
1.700000 1.398572 –5.175400 –1.467123
1.750000 1.137968 –5.238034 –1.038230
1.800000 0.874769 –5.284965 –0.839002
1.850000 0.609472 –5.326325 –0.815407
1.900000 0.342136 –5.369468 –0.910322
1.950000 0.072525 –5.418854 –1.065097
2.000000 –0.199749 –5.475975 –1.219747

etc.

Figure E6.5 shows the MATLAB response.

0 1 2 3 4 5 6
–4

–3

–2

–1

0

1

2

3

4

D
is

p
la

c
e
m

e
n
t(

m
)

Time(s)

Fig. E6.5 MATLAB output for ∆∆∆∆∆t = 0.05s

352 ——— MATLAB: An Introduction with Applications

Example E6.6: Solve Example 6.1 using the fourth-order Runge-Kutta method.

Solution: Here 1 2(, ,)Y f x x t= is a vector of functions
For single degree of freedom system, it contains

()
2

1 2
1 2

(, ,) 1 ()

xx
Y f x x t

x F t kx cx
m

    = = =   − −    
Final solution takes the form

Yi+1 = Yi + []1 2 3 42 2
6
t K K K K∆ + + + , where

K1= f (x1, x2, t) =
p
q

 
 
 

K2= f (x1+ p/2, x2+ q/2, t + ∆t/2) =
r
s

 
 
 

K3= f (x1+ r/2, x2+ q/2, t + ∆t/2) =
u
v

 
 
 

K4= f (x1+ u, x2+ v, t + ∆t) =
m
n

 
 
 

Complete MATLAB program for computing the response and its derivative in every time step is given
below:
dt=0.5;T=10;

h=dt;

x1=0;

x2=0;

i=1;

for t=0:h:T

f1=h*f(t,x1,x2); g1=h*g(t,x1,x2);

f2=h*f((t+h/2),(x1+f1/2),(x2+g1/2));g2=h*g((t+h/2),(x1+f1/2),(x2+g1/2));

f3=h*f((t+h/2),(x1+f2/2),(x2+g2/2));g3=h*g((t+h/2),(x1+f2/2),(x2+g2/2));

f4=h*f((t+h),(x1+f3),(x2+g3)); g4=h*g((t+h),(x1+f3),(x2+g3));

x1=x1+((f1+f4)+2*(f2+f3))/6.0;

x2=x2+((g1+g4)+2*(g2+g3))/6.0;

X(i)=x1;

Y(i)=x2;

i=i+1;

end

t=[0:h:T];

plot(t,X,‘-p’,t,Y,‘-*’);

grid on;

xlabel(‘time(s)’);

legend(‘displacement(m)’,‘velocity(m/s)’,2)

Direct Numerical Integration Methods ——— 353

This program is executed with two other separate programs f.m and g.m given below:
% file f.m

function v1=f(t,x1,x2)

v1=x2;

% file g.m

function v2=g(t,x1,x2)

k=1; m=1; c=0;

F=100*(1-cos(t));

v2=(F-k*x1-c*x2)/m;

The output values of the data are presented below:
time displacement velocity

0.000000 0.000000 0.000000
0.500000 0.110437 0.411687
1.000000 0.379029 0.629789
1.500000 0.707386 0.653171
2.000000 1.004189 0.510442
2.500000 1.198540 0.253323
3.000000 1.249282 –0.052604
3.500000 1.149336 –0.338363
4.000000 0.924789 –0.541854
4.500000 0.629191 –0.616591
5.000000 0.334076 –0.537864

The output of the program is shown in Fig. E6.6.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
–1

–0.5

0

0.5

1

1.5

displacement(m)

velocity(m/s)

Time(s)

Fig. E6.6 MATLAB output

354 ——— MATLAB: An Introduction with Applications

Example E6.7: Solve Example E6.2 using the fourth-order Runge-Kutta method.
Solution: MATLAB program for this problem is given below. Only change occurs in defining the function
g. Here dt = 0.05s and T = 1s.

dt=0.05;T=1;

h=dt;

x1=0;% displacement

x2=0;% velocity

i=1;

fprintf(‘time\t\tdisplacement\tvelocity\n’);

for t=0:h:T

fprintf(‘%f\t%f\t%f\n’,t,x1,x2);

X(i)=x1;

Y(i)=x2;

f1=h*f(t,x1,x2); g1=h*g(t,x1,x2);

f2=h*f((t+h/2),(x1+f1/2),(x2+g1/2));g2=h*g((t+h/2),(x1+f1/2),(x2+g1/2));

f3=h*f((t+h/2),(x1+f2/2),(x2+g2/2));g3=h*g((t+h/2),(x1+f2/2),(x2+g2/2));

f4=h*f((t+h),(x1+f3),(x2+g3)); g4=h*g((t+h),(x1+f3),(x2+g3));

x1=x1+((f1+f4)+2*(f2+f3))/6.0;

x2=x2+((g1+g4)+2*(g2+g3))/6.0;

i=i+1;

end

time=[0:h:T];

plot(time,X,‘–p’);

grid on;

xlabel(‘time(s)’);

ylabel(‘displacement(m)’)

function g.m is given below:
function v2=g(t,x1,x2)

k=4000; m=5; c=2.5;

 if t<=0.2 F=200;

 else if (t>0.2 & t<=0.6) F=–(200/0.4)*(t–0.6);

 else if t>0.6 F=0;

 end

 end

 end

v2=(F–k*x1–c*x2)/m;

Direct Numerical Integration Methods ——— 355

The output is as follows:
time displacement velocity

0.000000 0.000000 0.000000
0.050000 0.041253 1.316874
0.100000 0.091824 0.439092
0.150000 0.071773 –1.031937
0.200000 0.019836 –0.736985
0.250000 0.018390 0.574514
0.300000 0.056157 0.655850
0.350000 0.060285 –0.490566
0.400000 0.018109 –0.945601
0.450000 –0.009407 –0.071506
0.500000 0.009400 0.627115
0.550000 0.030533 0.077915
0.600000 0.010993 –0.730337
0.650000 –0.022121 –0.405278
0.700000 –0.017213 0.518375
0.750000 0.014055 0.535490
0.800000 0.020088 –0.285294
0.850000 –0.005878 –0.574286
0.900000 –0.019935 0.063796
0.950000 –0.001387 0.535146
1.000000 0.017375 0.121352

The displacement response is shown in Fig. E6.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
–0.04

–0.02

0

0.02

0.04

0.06

0.08

0.1

Time(s)

D
is

p
la

c
e
m

e
n
t(

m
)

Fig. E6.7 MATLAB output

356 ——— MATLAB: An Introduction with Applications

Example E6.8: Solve Example 6.3 by the Runge-Kutta method.
Solution: MATLAB program for this problem is given below. Only change occurs in defining the function g.
Here dt = 0.05s and T = 1s.
t=0.02;T=1;

h=dt;

x1=0;% displacement

x2=0;% velocity

i=1;

fprintf(‘time\t\tdisplacement\tvelocity\n’);

for t=0:h:T

fprintf(‘%f\t%f\t%f\n’,t,x1,x2);

X(i)=x1;

Y(i)=x2;

f1=h*f(t,x1,x2); g1=h*g(t,x1,x2);

f2=h*f((t+h/2),(x1+f1/2),(x2+g1/2));g2=h*g((t+h/2),(x1+f1/2),(x2+g1/2));

f3=h*f((t+h/2),(x1+f2/2),(x2+g2/2));g3=h*g((t+h/2),(x1+f2/2),(x2+g2/2));

f4=h*f((t+h),(x1+f3),(x2+g3)); g4=h*g((t+h),(x1+f3),(x2+g3));

x1=x1+((f1+f4)+2*(f2+f3))/6.0;

x2=x2+((g1+g4)+2*(g2+g3))/6.0;

i=i+1;

end

time=[0:h:T];

plot(time,X,’–p’);

grid on;

xlabel(‘time(s)’);

ylabel(‘displacement(m)’)

The function g.m defining the force signal is given below:

function v2=g(t,x1,x2)

k=2000; m=4; c=0;

 if t<=0.1 F=150;

 else if (t>0.1 & t<=0.2) F=–(150/0.1)*(t–0.2);

 else if t>0.2 F=0;

 end

 end

 end

v2=(F–k*x1–c*x2)/m;

Direct Numerical Integration Methods ——— 357

The output of the program is as follows:
time displacement velocity

0.000000 0.000000 0.000000
0.020000 0.007375 0.725000
0.040000 0.028041 1.307417
0.060000 0.057936 1.632787
0.080000 0.091181 1.637183
0.100000 0.121242 1.319778
0.120000 0.141711 0.669243
0.140000 0.146114 –0.260185
0.160000 0.130641 –1.285790
0.180000 0.095386 –2.205969
0.200000 0.044333 –2.839867
0.220000 –0.014931 –2.989164
0.240000 –0.071253 –2.550901
0.260000 –0.113564 –1.611284
0.280000 –0.133548 –0.355057
0.300000 –0.127280 0.970822
0.320000 –0.095995 2.105735
0.340000 –0.045845 2.826625
0.360000 0.013311 2.991841
0.380000 0.069845 2.568967
0.400000 0.112643 1.641187
0.420000 0.133296 0.390919
0.440000 0.127747 –0.936053
0.460000 0.097088 –2.078891
0.480000 0.047349 –2.812982
0.500000 –0.011691 –2.994079
0.520000 –0.068427 –2.586645
0.540000 –0.111707 –1.670828
0.560000 –0.133025 –0.426696
0.580000 –0.128194 0.901173
0.600000 –0.098165 2.051764
0.620000 –0.048845 2.798940
0.640000 0.010071 2.995880

358 ——— MATLAB: An Introduction with Applications

0.660000 0.067001 2.603933
0.680000 0.110755 1.700204
0.700000 0.132735 0.462383
0.720000 0.128622 –0.866188
0.740000 0.099228 –2.024359
0.760000 0.050333 –2.784500
0.780000 –0.008450 –2.997242
0.800000 –0.065566 –2.620828
0.820000 –0.109788 –1.729309
0.840000 –0.132425 –0.497977
0.860000 –0.129031 0.831104
0.880000 –0.100275 1.996680
0.900000 –0.051812 2.769666
0.920000 0.006829 2.998167
0.940000 0.064122 2.637329
0.960000 0.108805 1.758141
0.980000 0.132097 0.533471
1.000000 0.129421 –0.795925

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
–0.2

–0.15

–0.1

–0.05

0

0.05

0.1

0.15

Time(s)

D
is

p
la

c
e

m
e

n
t(

m
)

Fig. E6.8 MATLAB output

Direct Numerical Integration Methods ——— 359

Example E6.9: Solve Example E6.4 by the Runge-Kutta method.
Solution: Triangular pulse is defined with the following MATLAB m function
function v2=g(t,x1,x2)

k=8*pi^2;m=0.5; c=0;

if t<=0.2 F=(150*t/0.2);

else if (t>0.2 & t<=0.4) F=–(150/0.2)*(t–0.4);

else if t>0.4 F=0;

end

end

end

v2=(F–k*x1–c*x2)/m;

Here dt = 0.05s and T = 1s. The output is shown below:

time displacement velocity
0.000000 0.000000 0.000000
0.050000 0.031250 1.813315
0.100000 0.231900 6.553226
0.150000 0.706315 12.411526
0.200000 1.454472 17.155388
0.250000 2.309559 15.351753
0.300000 2.826498 4.081899
0.350000 2.627673 –12.352850
0.400000 1.608467 –27.686924
0.450000 0.008154 –34.265866
0.500000 –1.593966 –27.784720
0.550000 –2.587509 –10.723309
0.600000 –2.594445 10.409650
0.650000 –1.612934 27.559532
0.700000 –0.017719 34.195743
0.750000 1.582951 27.798535
0.800000 2.579242 10.815730
0.850000 2.592074 –10.273897
0.900000 1.617357 –27.432202
0.950000 0.027244 –34.125340
1.000000 –1.571956 –27.811835

360 ——— MATLAB: An Introduction with Applications

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
–3

–2

–1

0

1

2

3

Time(s)

D
is

pl
ac

em
en

t(m
)

Fig. E6.9 MATLAB output

Example E6.10: Solve Example E6.5 by the Runga-Kutta method.
Solution: Here, the function defining the system g.m is given below:
function v2=g(t,x1,x2)

k=1;m=1; c=0.5;omega=1;

ks=0.5 % CUBIC STIFFNESS

F=10*cos(omega*t);

v2=(F–k*x1–c*x2–ks*x1^3)/m;

The output is given below for dt = 0.05s and T = 5s
time displacement velocity

0.000000 0.000000 0.000000
0.050000 0.012391 0.493389
0.100000 0.049095 0.972141
0.150000 0.109327 1.434195
0.200000 0.192202 1.877534
0.250000 0.296734 2.300105
0.300000 0.421830 2.699660
0.350000 0.566273 3.073539
0.400000 0.728700 3.418380
0.450000 0.907555 3.729795
0.500000 1.101028 4.002029
0.550000 1.306982 4.227665
0.600000 1.522864 4.397443
0.650000 1.745611 4.500284

Direct Numerical Integration Methods ——— 361

0.700000 1.971567 4.523624
0.750000 2.196426 4.454170
0.800000 2.415222 4.279150
0.850000 2.622401 3.988046
0.900000 2.811982 3.574682
0.950000 2.977828 3.039377
1.000000 3.114021 2.390700
1.050000 3.215294 1.646314
1.100000 3.277487 0.832466
1.150000 3.297926 –0.018051
1.200000 3.275671 –0.869257
1.250000 3.211578 –1.686035
1.300000 3.108154 –2.438054
1.350000 2.969237 –3.102755
1.400000 2.799563 –3.666911
1.450000 2.604294 –4.126654
1.500000 2.388573 –4.486248
1.550000 2.157169 –4.756089
1.600000 1.914225 –4.950445
1.650000 1.663116 –5.085340
1.700000 1.406414 –5.176825
1.750000 1.145909 –5.239713
1.800000 0.882705 –5.286762
1.850000 0.617325 –5.328190
1.900000 0.349853 –5.371441

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
–4

–3

–2

–1

0

1

2

3

4

Time(s)

D
is

p
la

c
e

m
e

n
t(

m
)

Fig. E6.10 MATLAB output

362 ——— MATLAB: An Introduction with Applications

Example E6.11: Find the response of the two degree of freedom system when F1(t) = 0 and F2(t) = 10, using
the central difference method. The mass, stiffness and damping matrices for this system are given as

 [] [] []1 0 11 –1 0.5 –0.1
, ,

0 10 –1 1 –0.1 0.1
M K C

     
= = =     

     

All the initial conditions are given as zero. Use ∆ 0.05t =

Solution: The procedure is modified for matrices instead of scalars. Complete program is given below:

% INITIAL VALUES
M=[1 0;0 10];

K=[21 –1;–1 1];

 C=[0.5 –0.1;–0.1 0.1];

dt=0.05;

x0=[0;0];x0d=[0;0];

F0=[0;10];

T=2;

x0dd=inv(M)*(F0–C*x0d–K*x0);

xprev=x0–(dt.*x0d)+((dt^2).*(x0dd/2));

a0=1/dt^2;a1=1/(2*dt);a2=2*a0;

mbar=(a0.*M)+(a1.*C);

 t=0;

 v(:,1)=x0d;a(:,1)=x0dd;

 i=1;

 fprintf(‘time\t\tX(1)\t\tX(2)\n’);

 for t=0:dt:T+dt

 X(:,i)=x0;

 F=F0;

 Fbar=F+(a2.*M–K)*x0+(a1.*C–a0.*M)*xprev;

 x=inv(mbar)*Fbar;

 xprev=x0;

 x0=x;

 fprintf(‘%f\t%f\t%f\n’,t,X(1,i),X(2,i));

 i=i+1;

 p=i;

 end

 for i=2:p–1

 if i<p–1

Direct Numerical Integration Methods ——— 363

 v(:,i)=(X(:,i+1)–X(:,i–1)).*(1/(2*dt));

 a(:,i)=(X(:,i+1)–2*X(:,i)+X(:,i–1)).*(1/dt^2);

 end

 end

 t=[0:dt:T+dt];

 plot(t,X(1,:),’–p’,t,X(2,:),’–*’);

 xlabel(‘time(s)’);

 ylabel(‘displacement(m)’);

 legend(‘DOF-1’,’DOF-2',2);

 grid on;

The output of the program is as follows:
time X(1) X(2)

0.000000 0.000000 0.000000
0.050000 -0.000000 0.001250
0.100000 0.000015 0.004998
0.150000 0.000067 0.011243
0.200000 0.000178 0.019981
0.250000 0.000376 0.031210
0.300000 0.000688 0.044924
0.350000 0.001142 0.061120
0.400000 0.001762 0.079793
0.450000 0.002571 0.100937
0.500000 0.003586 0.124545
0.550000 0.004821 0.150611
0.600000 0.006281 0.179128
0.650000 0.007969 0.210088
0.700000 0.009880 0.243481
0.750000 0.012004 0.279301
0.800000 0.014325 0.317535
0.850000 0.016824 0.358176
0.900000 0.019481 0.401212
0.950000 0.022271 0.446631
1.000000 0.025170 0.494422

364 ——— MATLAB: An Introduction with Applications

 0 0.5 1 1.5 2 2.5
– 0.5

0

0.5

1

1.5

2

2.5

Time(s)

DOF-1
DOF-1

D
is

pl
ac

em
en

t(m
)

Fig. E6.11 MATLAB output response

Example E6.12: Solve Example E6.11 using the two-cycle iteration with trapezoidal rule.
Solution: For an undamped system the following equations are applicable.

We now have: 1 12 2
4 4 4[][] [] n n n n nU R MM K U U U

tt t− +
   = ++ + +      ∆∆ ∆

The initial conditions are: 1
0 0 0 0 00, 0, [] ([]).U U U M R K U−= = = −

1 1 1 1 12
4 4 2[] , [] [] –

2n n n n n n n n n n n n
tU U U U U U U U U U U U

t tt+ + + + +
∆= − − − = + + = −

∆ ∆∆
Complete program for damped vibrating system is given below:
% INITIAL VALUES
 M=[1 0;0 10];
 K=[21 –1;–1 1];
 C=[0.5 –0.1;–0.1 0.1];
 dt=0.05;
 T=2;dt=0.05;
 t=[0:dt:T];
 i=1;
 x(:,i)=[0;0];xd(:,i)=[0;0];
 f(:,i)=[0;10];
 xdd(:,i)=inv(M)*(f(:,i)–C*xd(:,i)–K*x(:,i));
 % FIRST time step
 dxd(:,2)=dt*xdd(:,1);

Direct Numerical Integration Methods ——— 365

 for i=2:length(t)

 f(:,i)=[0;10];
 df(:,i)=f(:,i)–f(:,i–1);
 xd(:,i)=xd(:,i–1)+dxd(:,i);
 dx(:,i)=(dt/2)*(xd(:,i–1)+xd(:,i));
 dxdd(:,i)=inv(M)*(df(:,i)–K*dx(:,i)–C*dxd(:,i));
 xdd(:,i)=xdd(:,i–1)+dxdd(:,i);
 % UPDATING VALUES OF VELOCITY AND DISPLACMENT IN CURRENT CYCLE
 dxd(:,i)=(dt/2)*(xdd(:,i–1)+xdd(:,i));
 xd(:,i)=xd(:,i–1)+dxd(:,i);
 dx(:,i)=(1/2)*(xd(:,i–1)+xd(:,i));
 % REVISED DISPLACMENT IN CURRENT CYCLE
 x(:,i)=x(:,i–1)+dx(:,i);
 % DELTA x DOT FOR NEXT CYCLE
 dxd(:,i+1)=2*dt*xdd(:,i)–dxd(:,i);
 end
 fprintf(‘time\t\tX(1)\t\tX(2)\n’);
 p=1
 for time=0:dt:T
 fprintf(‘%f\t%f\t%f\n’,time,x(1,p),x(2,p));
 p=p+1;
 end
 plot(t,x(1,:),‘–p’,t,x(2,:),‘–*’);

xlabel(‘time(s)’);
 ylabel(‘displacement(m)’);
 legend(‘DOF–1’,‘DOF–2’,2);

grid on;

The output is as follows:
time X(1) X(2)

0.000000 0.000000 0.000000
0.050000 0.000078 0.024992
0.100000 0.000492 0.099950
0.150000 0.001642 0.224830
0.200000 0.004000 0.399578
0.250000 0.008087 0.624125
0.300000 0.014442 0.898392
0.350000 0.023594 1.222290
0.400000 0.036037 1.595716
0.450000 0.052204 2.018558
0.500000 0.072446 2.490690
0.550000 0.097016 3.011977
0.600000 0.126057 3.582274
0.650000 0.159599 4.201422
0.700000 0.197561 4.869252

366 ——— MATLAB: An Introduction with Applications

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
 0

5

10

15

20

25

30

35

40

Time(s)

DOF–1
DOF–2

D
is

pl
ac

em
en

t(m
)

Fig. E6.12 MATLAB output

Example E6.13: Solve Example E6.11 using the fourth-order Runge-Kutta method.
Solution:

Here 1 2 3 4(, , , ,)Y f x x x x t= , where Y =

1

2

3

4

x
x
x
x

 
  
 
 
  

 and = 1 2 3 4(, , , ,)f x x x x t =

3

4

3

4

x
x
x
x

 
  
 
 
  

where 3 1 31 1 1

4 2 4
[] [] [] [] [] ()

x x x
M K M C M F t

x x x
− − −     

= − − +     
     

In total it can be written as

1

2
1 1

3

4

[0] []

[] [] [] []

x
Ix

x M K M C
x

− −

 
     =   

− −  
  

1

2

3

4

x
x
x
x

 
  
 
 
  

+ 1

[0]

[] ()M F t−

 
 
 

 or []Y E Y F= +
Thus instead of defining functions as in SDOF system, here entire thing will come in one program. The
following program is developed based on the above equations.
dt=0.05;T=1;

h=dt;

x1=0;x2=0; % displacements

x3=0;x4=0; % velocity

Direct Numerical Integration Methods ——— 367

M=[1 0;0 10];K=[21 –1;–1 1];C=[0.5 –0.1;–0.1 0.1];f=[0;10];

E=[zeros(size(M)) eye(size(M));–inv(M)*K –inv(M)*C];

F=[0;0;inv(M)*f];

i=1;

Y=[x1;x2;x3;x4];

fprintf(‘time\t\tX(1)\t\tX(2)\n’);

for t=0:h:T

 X(:,i)=Y;

 fprintf(‘%f\t%f\t%f\n’,t,Y(1),Y(2));

 K1=h*(E*Y+F);

 K2=h*(Y+(0.5*K1))+F);

 K3=h*(Y+(0.5*K2))+F)

 K4=h*(Y+K3+F)

 Y=Y+(K1+2*K2+2*K3+K4)/6;

 i=i+1;

end

time=[0:h:T];

plot(time,X(1,:),‘–p’,time,X(2,:),‘–*’);

grid on;

xlabel(‘time(s)’);

ylabel(‘displacement(m)’)

legend(‘DOF–1’, ‘DOF–2’);

The output is shown below:
time X(1) X(2)

0.000000 0.000000 0.000000
0.050000 0.000002 0.001250
0.100000 0.000020 0.004998
0.150000 0.000074 0.011242
0.200000 0.000188 0.019980
0.250000 0.000388 0.031208
0.300000 0.000702 0.044922
0.350000 0.001156 0.061118
0.400000 0.001776 0.079790
0.450000 0.002584 0.100933
0.500000 0.003597 0.124541
0.550000 0.004828 0.150606
0.600000 0.006285 0.179122
0.650000 0.007969 0.210081
0.700000 0.009874 0.243474
0.750000 0.011993 0.279292
0.800000 0.014309 0.317526

368 ——— MATLAB: An Introduction with Applications

0.850000 0.016805 0.358166
0.900000 0.019458 0.401200
0.950000 0.022246 0.446618
1.000000 0.025144 0.494409

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
DOF-1
DOF-2

Time(s)

D
is

pl
ac

em
en

t(m
)

Fig. E6.13 MATLAB output

Example E6.14: Solve Example E6.11 using the Houbolt method.
Solution: In Houbolt’s method for obtaining first two displacements X∆t and X2t, central difference method
is employed. Then three step Houbolt’s algorithm is used. Velocities and accelerations are likewise defined.
Complete MATLAB program is given below:
K=[21 –1;–1 1];

M=[1 0;0 10];

C=[0.5 –0.1;–0.1 0.1];

dt=0.05;T=2;

X0=[0;0];X0d=[0;0];F=[0;10];

t=[0:dt:T];

X(:,2)=X0;

X0dd=inv(M)*(F–C*X0d–K*X0);

% USING CENTRAL DIFFERENCE METHOD TO OBTAIN PREVIOUS 3 VALUES

Xprev=X0–(dt*X0d)+((dt^2)*(X0dd/2));

a0=1/dt^2;a1=1/(2*dt);a2=2*a0;

mbar=(a0*M)+(a1*C);

kbar=(K–a2*M);

cbar=(a0*M–a1*C);

Direct Numerical Integration Methods ——— 369

X(:,1)=X0;

Fbar=F–kbar*X0–cbar*Xprev;

X(:,2)=inv(mbar)*Fbar;

Fbar=F–kbar*X(:,2)–cbar*X0;

X(:,3)=inv(mbar)*Fbar;

% HOUBOLT METHOD BEGINS
a0=2/(dt^2);a1=11/(6*dt);a2=5/(dt^2);a3=3/dt;a4=–2*a0;

a5=–a3/2;a6=a0/2;a7=a3/9;

Kb=K+a0*M+a1*C;

p=3;

for i=3:length(t)

 F=[0;10];% F(t+2dt)

 Fb=F+M*(a2*X(:,i)+a4*X(:,i–1)+a6*X(:,i–2))+ C*(a3*X(:,i)+a5*X(:,i–
1)+a7*X(:,i–2));

 X(:,i+1)=inv(Kb)*Fb;

 Xdd(:,i+1)=a0*X(:,i+1)–a2*X(:,i)–a4*X(:,i–1)–a6*X(:,i–2);

 Xd(:,i+1)=a1*X(:,i+1)–a3*X(:,i)–a5*X(:,i–1)–a7*X(:,i–2);

 p=p+1;

end

fprintf(‘\ntime\t\tX1\t\tX2\n’);

for i=1:p

 time(i)=(i–1)*dt;

 fprintf(‘%f\t%f\t%f\n’,time(i),X(1,i),X(2,i))

end

plot(time,X(1,:), ‘–p’,time,X(2,:),‘–*’);

grid on;

xlabel(‘time(s)’);

ylabel(‘displacement (m)’);

legend(‘DOF-1’,’DOF-2');

The output of the program is given below:
time X(1) X(2)

0.000000 0.000000 0.000000
0.050000 –0.000000 0.001250
0.100000 0.000015 0.004998
0.150000 0.000069 0.011243
0.200000 0.000184 0.019980
0.250000 0.000387 0.031207
0.300000 0.000704 0.044920

370 ——— MATLAB: An Introduction with Applications

0.350000 0.001161 0.061114
0.400000 0.001782 0.079784
0.450000 0.002588 0.100924
0.500000 0.003595 0.124528
0.550000 0.004817 0.150590
0.600000 0.006260 0.179102
0.650000 0.007927 0.210055
0.700000 0.009814 0.243443
0.750000 0.011912 0.279255
0.800000 0.014208 0.317483
0.850000 0.016686 0.358115
0.900000 0.019325 0.401142
0.950000 0.022104 0.446553
1.000000 0.025000 0.494334

Figure E6.14 shows the plot of histories of two degrees of freedom.

0 0.5 1 1.5 2 2.5
–0.5

0

0.5

1

1.5

2

2.5

D
is

pl
ac

em
en

t(m
)

Time(s)

DOF-1
DOF-2

Fig. E6.14 MATLAB output (Houbolt’s method)

Example E6.15: Solve Example E6.11 by the Wilson Theta method.
Solution: Here, theta is chosen as 1.4 and followed the algorithm. The complete MATLAB program is given
below:
K=[21 –1;–1 1];

Direct Numerical Integration Methods ——— 371

M=[1 0;0 10];

C=[0.5 –0.1;–0.1 0.1];

dt=0.05;T=2;

X0=[0;0];X0d=[0;0];F0=[0;10];

X0dd=inv(M)*(F0–C*X0d–K*X0);

theta=1.4;

a0=6/(theta*dt)^2;a1=3/(theta*dt);a2=2*a1;

a3=2;a4=(1/2*theta*dt);a5=–a2/theta;

a6=1–3/theta;

a7=dt/2;a8=dt^2/6;

Kb=K+a0*M+a1*C;

i=1;

X(:,1)=X0;Xd(:,1)=X0d;Xdd(:,1)=X0dd;t=0;

fprintf(‘time(s)\t\tX1\t\tX2\n’);

fprintf(‘%f\t%f\t%f\n’,t,X(1,1),X(2,1));

for t=dt:dt:T

 i=i+1;

 F=[0;10];

 Ftb=F0+M*(a0*X(:,i–1)+a2*Xd(:,i–1)+a3*Xdd(:,i–1))+C*(a1*X(:,i–1)

+ a3*Xd(:,i–1)+a4*Xdd(:,i–1))+theta*(F–F0);

 Xt(:,i)=inv(Kb)*Ftb;

 Xdd(:,i)=(a0/theta)*(Xt(:,i)–X(:,i–1))+a5*Xd(:,i–1)+a6*Xdd(:,i–1);

 Xd(:,i)=Xd(:,i–1)+a7*(Xdd(:,i)+Xdd(:,i–1));

 X(:,i)=X(:,i–1)+dt*Xd(:,i–1)+a8*(Xdd(:,i)+2*Xdd(:,i–1));

 F0=F;

 fprintf(‘%f\t%f\t%f\n’,t,X(1,i),X(2,i));

end

t=[0:dt:T];

plot(t,X(1,:),’–p’,t,X(2,:),’–*’)

xlabel(‘time(s)’);

ylabel(‘displacement(m)’);

legend(‘DOF–1’,’DOF–2');

grid on;

The output is shown below:
time X(1) X(2)

0.000000 0.000000 0.000000
0.050000 0.000003 0.001250

0.100000 0.000022 0.004998

372 ——— MATLAB: An Introduction with Applications

0.150000 0.000079 0.011242

0.200000 0.000197 0.019979

0.250000 0.000400 0.031206

0.300000 0.000717 0.044919

0.350000 0.001173 0.061113

0.400000 0.001793 0.079784

0.450000 0.002598 0.100926

0.500000 0.003607 0.124531

0.550000 0.004831 0.150595

0.600000 0.006279 0.179109

0.650000 0.007952 0.210065

0.700000 0.009847 0.243455

0.750000 0.011954 0.279271

0.800000 0.014259 0.317502

0.850000 0.016745 0.358138

0.900000 0.019392 0.401169

0.950000 0.022176 0.446584

1.000000 0.025074 0.494370

1.050000 0.028063 0.544516

1.100000 0.031122 0.597008

1.150000 0.034233 0.651833

1.200000 0.037379 0.708978

1.250000 0.040549 0.768426

1.300000 0.043738 0.830164

1.350000 0.046942 0.894174

1.400000 0.050165 0.960442

1.450000 0.053413 1.028950

1.500000 0.056697 1.099681

Direct Numerical Integration Methods ——— 373

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

DOF-1

DOF-2

Time(s)

D
is

p
la

c
e
m

e
n
t(

m
)

Fig. E6.15 MATLAB response (Wilson theta)

Example E6.16: Solve Example E6.11 by the Newmark Beta method.
Solution:

Table E6.11 The Newmark Scheme

2 2
1 1

1 1

1 1 1 1

(1/ 2)
(1)

n n n n n

n n n n

n n n n

u u hv h a h a
v v h a h a
Ma Cv Ku F

+ +

+ +

+ + + +

• = + + − β + β
• = + − γ + γ
• + + =

Here for β = 0.5 and γ = 1/6, the following values are obtained. The MATLAB program is shown below:
K= [21 –1;–1 1];

M= [1 0; 0 10];

C= [0.5 –0.1;–0.1 0.1];

dt=0.05;T=2;

X0=[0;0];X0d=[0;0];F=[0;10];

X0dd=inv(M)*(F–C*X0d–K*X0);

beta=0.5;gamma=1/6;%0.25*(0.5+beta);

a0=1/(beta*dt^2);a1=gamma/(beta*dt);a2=1/(beta*dt);

a3=(1/2*beta)–1;a4=(gamma/beta–1);a5=0.5*(gamma/beta–2)*dt;

a6=dt*(1–beta);a7=beta*dt;

Kb=K+a0*M+a1*C;

i=1;

X(:,1)=X0;Xd(:,1)=X0d;Xdd(:,1)=X0dd;t=0;

fprintf(‘time(s)\t\tX1\t\tX2\n’);

374 ——— MATLAB: An Introduction with Applications

fprintf(‘%f\t%f\t%f\n’,t,X(1,1),X(2,1));

for t=dt:dt:T

 i=i+1;

 F=[0;10];

 Fb=F+M*(a0*X(:,i–1)+a2*Xd(:,i–1)+a3*Xdd(:,i–1))+C*(a1*X(:,i–1)+a4*Xd
 (:,i–1)+a5*Xdd(:,i–1));

 X(:,i)=inv(Kb)*Fb;

 Xdd(:,i)=a0*(X(:,i)–X(:,i–1))–a2*Xd(:,i–1)–a3*Xdd(:,i–1);

 Xd(:,i)=a1*(X(:,i)–X(:,i–1))–a4*Xd(:,i–1)–a5*Xdd(:,i–1);

 fprintf(‘%f\t%f\t%f\n’,t,X(1,i),X(2,i));

end

t=[0:dt:T];

plot(t,X(1,:),’–p’,t,X(2,:),’–*’)

xlabel(‘time(s)’);

ylabel(‘displacement(m)’);

legend(‘DOF–1’,’DOF–2');

grid on;

The output is as follows:
time X(1) X(2)

0.000000 0.000000 0.000000
0.050000 0.000005 0.000312
0.100000 0.000017 0.002654
0.150000 0.000045 0.007027
0.200000 0.000102 0.013427
0.250000 0.000205 0.021853
0.300000 0.000372 0.032303
0.350000 0.000622 0.044774
0.400000 0.000976 0.059264
0.450000 0.001454 0.075768
0.500000 0.002075 0.094284
0.550000 0.002854 0.114806
0.600000 0.003808 0.137330
0.650000 0.004947 0.161851
0.700000 0.006278 0.188365
0.750000 0.007804 0.216864
0.800000 0.009526 0.247345
0.850000 0.011437 0.279799
0.900000 0.013529 0.314220
0.950000 0.015790 0.350601

 1.000000 0.018203 0.388935

Direct Numerical Integration Methods ——— 375

Figure E6.16 shows the plot of histories of two-degree of freedom.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

D
is

pl
ac

em
en

t(m
)

Time(s)

DOF-1
DOF-2

Fig. E6.16 MATLAB output Newmark method

Example E6.17: The numerical values of the mass, damping and stiffness are chosen as M1 = 1, M2 = 10,
C1 = 0, C2 = 0.15, K1 = 19 and K2 = 1. The initial conditions are selected as zero and the forcing vector is

1

2

() 0
() 5

F t
F t

   
=   

  
 for t > 0

 and 1

2

() 0
() 0

F t
F t

   
=   

  
 for t < 0

In matrix motion, these equations may be written as

1 1 1 2 2 1

2 2 22 2

 0 –

0
M X C C C X

M C CX X

   +   
+      −         

3
1 2 2 1 2 2 1 1

3
2 2 2 22 2 1

0.5 ()

0.5 ()

K K K X K X X F
K K X FK X X

 + − − −      + + =      − −       
Take ∆t = 0.05 sec. Use the central difference method and compute the response of the system.

Solution: Substituting the given values the following matrices is obtained:

1 0 0.15 0.15 20 1 0
, ,

0 10 0.15 0.15 1 1 5
M C K F

− −       
= = = =       − −       

So, the non-linear spring force is added to the external force equation without confusion.

Complete MATLAB program is given below:
% INITIAL VALUES
 M=[1 0;0 10];

376 ——— MATLAB: An Introduction with Applications

 K=[20 –1;–1 1];

 C=[0.15 –0.15;–0.15 0.15];

 dt=0.05;

 x0=[0;0];x0d=[0;0];

 F0=[0;5];

 T=2;

 x0dd=inv(M)*(F0–C*x0d–K*x0);

xprev=x0–(dt*x0d)+((dt^2)*(x0dd/2));

a0=1/dt^2;a1=1/(2*dt);a2=2*a0;

mbar=(a0*M)+(a1*C);

 t=0;

 v(:,1)=x0d;a(:,1)=x0dd;

 i=1;

 fprintf(‘time\t\tX(1)\t\tX(2)\n’);

 for t=0:dt:T+dt

 X(:,i)=x0;

 % NON-LINEAR SPRING

 Fr=[–0.5*1*(X(2,i)–X(1,i))^3;0.5*1*(X(2,i)–X(1,i))^3];

 F=F0+Fr;

 Fbar=F+(a2*M–K)*x0+(a1*C–a0*M)*xprev;

 x=inv(mbar)*Fbar;

 xprev=x0;

 x0=x;

 fprintf(‘%f\t%f\t%f\n’,t,X(1,i),X(2,i));

 i=i+1;

 p=i;

 end

 for i=2:p-1

 if i<p-1

 v(:,i)=(X(:,i+1)-X(:,i-1))*(1/(2*dt));

 a(:,i)=(X(:,i+1)-2*X(:,i)+X(:,i-1))*(1/dt^2);

 end

 end

 t=[0:dt:T+dt];

 plot(t,X(1,:),’-p’,t,X(2,:),’-*’);

xlabel(‘time(s)’);

 ylabel(‘displacement(m)’);

 legend(‘DOF-1’,’DOF-2',2);

grid on;

Direct Numerical Integration Methods ——— 377

The output is as follows:
time X(1) X(2)

0.000000 0.000000 0.000000
0.050000 –0.000000 0.000625
0.100000 0.000011 0.002499
0.150000 0.000046 0.005620
0.200000 0.000121 0.009988
0.250000 0.000251 0.015599
0.300000 0.000453 0.022452
0.350000 0.000743 0.030543
0.400000 0.001134 0.039871
0.450000 0.001640 0.050433
0.500000 0.002270 0.062224

0 0.5 1 1.5 2 2.5
– 0.2

0

0.4

0.6

0.8

1

1.2

Time(s)

DOF-1

DOF-2

D
is

p
la

c
e
m

e
n
t(

m
)

Fig. E6.17 MATLAB output

Example E6.18: Consider a simple system for which the governing equilibrium equations are

[]

[]

[]

2 0
0 1

4 –1
–1 3

 0 0
 0 0

M

K

C

 
=  

 
 

=  
 
 

=  
 

and 1 2() 0, () 10F t F t= =

378 ——— MATLAB: An Introduction with Applications

(a) calculate the transformation matrix for this system and thus establish the decoupled equations of
equilibrium on the basis of mode shape vectors.

(b) compute the exact response by integrating each of the two decoupled equilibrium equations.

Solution:
(a) Transformation matrix of the system is obtained from eigenvalue problem.

Solving the undamped eigenvalue equation, we obtain eigenvector as

–0.8069 0.3437
–0.5907 –0.9391

X
 

=  
 

 corresponding to eigenvalues 1.634
3.366

 
λ =  

 
Find modal masses m1= sqrt(X1’MX1) = 1.2850

 m2= sqrt(X2’MX2) = 1.0574

Now the transformation matrix is

–0.8069/1.2850 0.3437/1.0574
–0.5907/1.2850 –0.9391/1.0574

 
φ =  

 
= –0.628 0.325

–0.4597 –0.8881
 
 
 

–0.628 0.325 0
'

–0.4597 –0.8881 10
F

′   
φ =    

   
 =

4.597
8.8808

− 
 − 

Thus the decoupled equations are
[φ’Mφ] + [φ’Kφ] U = φ’F
That is modal equations are:

1u + 1.634 u1 = –4.597

2u + 3.366 u2 = –8.8808
(b) Each of these equations is solved independently by integration as follows:

Solution is u = C.F + P.I.,
where C.F. = complementary function = e nt−ξω (A cos dtω + B sin dtω) and

P.I. = Particular integral = 2/ nf ω

The constants A and B are obtained with initial condition u(0) and (0)u

u(t) = ξωn(A cos ωdt + B sin ωdt) + f/ 2
nω

u =e(Bωd – ξωnA) cos ωdt – (Aωd + ξωnB)sin ωdt)

Hence u(0) = A + f / 2
nω or A = u (0) – f / 2

nω
and u (0) = (Bωd – ξωnA) or B = [u (0)+ ξωnA] /ωd

If there is no damping ξ = 0, thus B = u(0)/ωn

Also with zero initial conditions we can write the solutions as follows:

Direct Numerical Integration Methods ——— 379

 u1= f1/ 2
2nω (1 – cos ωn1t) and u2 = f2/ 2

2nω (1 – cos ωn2t)

or u1 = [–4.597/1.634] (1 – cos 1.2783t) and u2 = [– 8.8808/3.366] (1 – cos 1.8347t)

 = – 2.8133 (1 – cos 1.2783t) = – 2.6384 (1 – cos 1.8347t)

Finally the response in original coordinates is obtained as follows:

–0.628 0.325 2.8133(1 cos1.2783)
–0.4597 –0.8881 2.6384(1 cos1.8347)

t
X U

t
− −   

= φ =    − −   

0.9091(1 cos1.2783)
3.6364(1 cos1.8347)

t
t

− 
=  − 

The following program is used to obtain the transformation matrix:
M=[2 0;0 1];

K=[4 –1;–1 3];

F=[0;10];

[u,W]=eig(K,M);

for i=1:2

 wn(i)=sqrt(W(i,i));

end

[w,I]=sort(wn);

for j=1:2

U(:,j)=u(:,I(j)); % ARRANGE MODAL VECTORS IN ASCENDING ORDER

end

% MODAL MASSES

m1=sqrt(U(:,1)’*M*U(:,1));

m2=sqrt(U(:,2)’*M*U(:,2));

phi=[U(:,1)/m1;U(:,2)/m2]; % transformation matrix

% PLOT RESPONSES

t=[0:0.1:5];

u1=–2.8133*(1–cos(1.2783*t)); u2=–2.6384* (1–cos (1.8347*t));

x1=0.9091*(1– cos(1.2783*t)); x2=3.6364* (1–cos (1.8347*t));

subplot(2,1,1); %SUB–PLOT–1

plot(t,u1,’–p’,t,u2,’–*’);

380 ——— MATLAB: An Introduction with Applications

title(‘\bfPlot of Modal amplitudes’);

xlabel(‘\bfTime(s)’);

legend(‘At frequency–1=1.2783 rad/s’,’At frequency–2=1.8347 rad/s’);

grid on;

subplot(2,1,2); % SUB–PLOT–2

plot(t,x1,’–p’,t,x2,’–*’);

title(‘\bfPlot of Original amplitudes’);

xlabel(‘\bfTime(s)’);

legend(‘At DOF–1’, ‘At DOF–2’);

grid on;

The output of the program is shown in Fig. E6.18.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
–6

–4

–2

0

Plot of modal amplitudes

Time(s)

At frequency–1=1.2783 rad/s

At frequency–2=1.8347 rad/s

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

2

4

6

8
Plot of original amplitudes

Time(s)

At DOF–1

At DOF–2

Fig. E6.18 Output of the MATLAB program

Direct Numerical Integration Methods ——— 381

REFERENCES

Abramowitz, M. and Stegun, I., Handbook of Mathematical Functions, Dover Press, New York, 1964.

Akai, T.J., Applied Numerical Methods for Engineers, Wiley, New York, NY, 1993.
Al-Khafaji, A.W. and Tooley, J.R., Numerical Methods in Engineering Practice, Holt, Rinehart and Winston,
New York, 1986.
Allen, M. and Iaacson, E., Numerical Analysis for Applied Science, Wiley, New York, 1998.

Ames, W.F., Numerical Methods for Partial Differential Equations, 3rd ed., Academic Press, New York,
1992.
Ascher,U., Mattheij, R. and Russell, R., Numerical Solution of Boundary Value Problems for Ordinary
Differential Equations, Prentice-Hall, Englewood Cliffs, NJ, 1988.
Atkinson, K. and Han, W., Elementary Numerical Analysis, 3rd ed., Wiley, New York, 2004.

Atkinson, K.E., An Introduction to Numerical Analysis, 2nd ed., Wiley, New York, NY, 1993.
Atkinson, L.V. and Harley, P.J., Introduction to Numerical Methods with PASCAL, Addison-Wesley,
Reading, MA, 1984.
Atkinson, L.V., Harley, P.J. and Hudson, J.D., Numerical Methods with FORTRAN 77, Addison-Wesley,
Reading, MA, 1989.

Axelsson, K., Iterative Solution Methods, Cambridge University Press, Cambridge, UK, 1994.
Ayyub, B.M. and McCuen, R.H., Numerical Methods for Engineers, Prentice-Hall, Upper Saddle River, New
Jersey, NJ, 1996.
Baker, A.J., Finite Element Computational Fluid Mechanics, McGraw-Hill, New York, 1983.

Balagurusamy, E., Numerical Methods, Tata McGraw-Hill, New Delhi, India, 2002.
Bathe, K.J. and Wilson, E.L., Numerical Methods in Finite Element Analysis, Prentice-Hall, Englewood
Cliffs, NJ, 1976.
Bhat, R.B. and Chakraverty, S., Numerical Analysis in Engineering, Narosa Publishing House, New Delhi,
India, 2004.

Bhat, R.B. and Gouw, G.J., Numerical Methods in Engineering, Simon and Schuster Custom Publishing,
Needham Heights, MA, 1996.
Bjorck, A., Numerical Methods for Least Squares Problems, Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA, 1996.
Booth, A.D., Numerical Methods, Academic Press, New York, 1958.

Brice, C., Luther, H.A and Wilkes, J.O., Applied Numerical Methods, New York, NY, 1969.
Buchanan, J.L. and Turner, P.R., Numerical Methods and Analysis, McGraw-Hill, New York, 1992.
Burden, R.L. and Faires, J.D., Numerical Analysis, 6th ed., Brooks/Cole, Pacific Grove, 1997.
Carnahan, B., Luther, A. and Wilkes, J.O., Applied Numerical Methods, Wiley, New York, 1969.

Chapra, S.C. and Canale, R.P., Introduction to Computing for Engineers, 2nd ed., McGraw-Hill, New York,
1994.
Chapra, S.C., and Canale, R.P., Numerical Methods for Engineers with Personal Computers, McGraw-Hill,
New York, 1985.

Chapra, S.C., Applied Numerical Methods with MATLAB for Engineers and Scientists, McGraw-Hill, New
York, 2005.

382 ——— MATLAB: An Introduction with Applications

Chapra, S.C., Numerical Methods for Engineers with Software and Programming Applications, 4th ed.,
McGraw-Hill, New York, NY, 2002.
Cheney, W. and Kincaid, D., Numerical Mathematics and Computing, 2nd ed., Brooks/Cole, Monterey, CA,
1994.
Chui, C., An Introduction to Wavelets, Academic Press, Burlington, MA, 1992.

Consatantinides, A., Applied Numerical Methods with Personal Computers, McGraw-Hill, New York, 1987.
Conte, S.D., and DeBoor, C.W., Elementary Numerical Analysis: An Algorithm Approach, 2nd ed., McGraw-
Hill, New York, NY, 1972.
Dahlquist, G. and Bjorck, A., Numerical Methods, Prentice-Hall, Englewood Cliffs, NJ, 1974.

Davis, P. and Rabinowitz, P., Methods of Numerical Integration, Academic Press, 2nd ed., New York, 1998.
Demmel, J.W., Applied Numerical Linear Algebra, Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 1997.
Dennis, J.E. and Schnabel, R.B., Numerical Methods for Unconstrained Optimization and Non-linear
Equations, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996.

Epperson, J.F., An Introduction to Numerical Methods and Analysis, Wiley, New York, NY, 2001.
Fadeev, D.K., and Fadeeva, V.N., Computational Methods of Linear Algebra, Freeman, San Francisco, 1963.
Fadeeva, V.N., (Trans. Curtis D. Benster), Computational Methods of Linear Algebra, Dover, New York,
1959.

Fatunla, S.O., Numerical Methods for Initial Value Problems in Ordinary Differential Equations, Academic
Press, San Diego, 1988.
Ferziger, J.H., Numerical Methods for Engineering Applications, 2nd ed., Wiley, New York, NY, 1998.
Forbear, C. E., Introduction to Numerical Analysis, Addison-Wesley, Reading, MA, 1969.
Forsythe, G.E., and Wasow, W.R., Finite-Difference Methods for Partial Differential Equations, Wiley, New
York, 1960.
Forsythe, G.E., Malcolm, M.A. and Moler, C.B., Computer methods for Mathematical Computation, Prentice-
Hall, Englewood Cliffs, NJ, 1977.
Froberg, C.E., Introduction to Numerical Analysis, Addison-Wesley, Reading, MA, 1965.

Gautschi, W., Numerical Analysis: An Introduction, Birkhauser, Boston, MA, 1997.
Gear, C.W., Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall, Englewood
Cliffs, NJ, 1971.
Gerald, C.F. and Wheatley, P.O., Applied Numerical Analysis, 5th ed., Addison-Wesley, Reading, MA, 1994.
Gladwell, J. and Wait, R., A Survey of Numerical Methods of Partial Differential Equations, Oxford
University Press, New York, 1979.
Goldberg, D.E., Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley,
Reading, MA, 1989.
Golub, G.H. and Van Loan, C.F., Matrix Computations, 3rd ed., John Hopkins University Press, Baltimore,
MD, 1996.

Greenbaum, A., Iterative Methods for Solving Linear Systems, Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, 1997.
Griffiths, D.V. and Smith, I.M., Numerical Methods for Engineers, Oxford University Press, 1991.
Guest, P.G., Numerical Methods of Curve Fitting, Cambridge University Press, New York, 1961.

Direct Numerical Integration Methods ——— 383

Hager, W.W., Applied Numerical Algebra, Prentice-Hall, Upper Saddle River, NJ, 1998.
Hamming, R.W., Numerical Methods for Scientists and Engineers, 2nd ed., McGraw-Hill, New York, 1973.
Henrici, P.H., Elements of Numerical Analysis, Wiley, New York, 1964.
Higham, N.J., Accuracy and Stability of Numerical Algorithms, Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, 1996.
Hildebrand, F.B., Introduction to Numerical Analysis, 2nd ed., McGraw-Hill, New York, NY, 1974.
Hoffman, J., Numerical Methods for Engineers and Scientists, McGraw-Hill, New York, 1992.
Hornbeck, R.W., Numerical Methods, Quantum, New York, 1975.

Householder, A.S., Principles of Numerical Analysis, McGraw-Hill, New York, 1953.
Householder, A.S., The Theory of Matrices in Numerical Analysis, Blaisdell, New York, 1964.
Iserles, A., A First Course in the Numerical Analysis of Differential Equations, Cambridge University Press,
New York, 1996.
Issaccson, E. and Keller, H.B. and Bishop, H., Analysis of Numerical Methods, Wiley, New York, 1966.

Jacobs, D. (ed.), The State of the Art in Numerical Analysis, Academic Press, London, 1977.
Jacques, I. and Colin, J., Numerical Analysis, Chapman and Hall, New York, 1987.
Jain, M.K., Numerical Analysis for Scientists and Engineers, S.B.W. Publishers, New Delhi, India, 1971.
James, M.L., Smith, G.M. and Wolford, J.C., Applied Numerical Methods for Digital Computations with
FORTRAN and CSMP, 3rd ed., Harper & Row, New York, 1985.
Johnson, L.W., Riess, R.D., Numerical Analysis, 2nd ed., Addison-Wesley, Reading, MA, 1982.
Johnston, R.L., Numerical Methods: A Software Approach, Wiley, New York, 1982.
Kahaneer, D., Moher, C. and Nash, S., Numerical Methods and Software, Prentice-Hall, Englewood Cliffs,
NJ, 1989.

Keller, H.B., Numerical Methods for Two-Point Boundary Value Problems, Wiley, New York, 1968.
Kelley, C.T., Iterative Methods of Optimization, Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 1999.
Kharab, A. and Guenther, R.B., An Introduction to Numerical Methods—A MATLAB Approach, CRC Press,
Boca Raton, FL, 2001.
Kincaid, D. and Cheney, W., Numerical Analysis: Mathematics of Scientific Computing, Brooks/Cole, Pacific
Grove, CA, 1996.
Kress, R., Numerical Analysis, Springer-Verlag, New York, 1998.
Krishnamurthy, E.V. and Sen, S.K., Numerical Algorithms, East-West Publishers, New Delhi, India, 1986.

Krommer, A.R. and Ueberhuber, C.W., Computational Integration, Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, 1998.
Lambert, J.D., Numerical Methods for Ordinary Differential Equations—The Initial Value Problems, Wiley,
New York, NY, 1991.

Lapidus, L. and Pinder, G.F., Numerical Solution of Ordinary Differential Equations in Science and
Engineering, Wiley, New York, 1981.
Lapidus, L. and Seinfield, J.H., Numerical Solution of Partial Differential Equations, Academic Press,
New York, 1971.
Lastman, G.J. and Sinha, N.K., Microcomputer Based Numerical Methods for Science and Engineering,
Saunders College Publishing, New York, NY, 1989.

384 ——— MATLAB: An Introduction with Applications

Levy, H. and Baggott, E.A., Numerical Solutions of Differential Equations, Dover, New York, 1950.
Maron, M.J., Numerical Analysis, A Practical Approach, Macmillan, New York, 1982.
Mathews, J.H., Numerical Methods for Mathematics, Science and Engineering, 2nd ed., Prentice-Hall of
India, New Delhi, India, 1994.

Milne, W.E., Numerical Solution of Differential Equations, Wiley, New York, 1953.
Moin, P., Fundamentals of Engineering Numerical Analysis, Cambridge University Press, New York, 2001.
Morton, K.W. and Mayers, D.F., Numerical Solution of Partial Differential Equations: An Introduction,
Cambridge University Press, Cambridge, UK, 1994.
Myron, A. and Issacson, E.L., Numerical Analysis for Applied Science, Wiley, Hoboken, NJ, 1998.

Na, T.Y., Computational Methods in Engineering Boundary Value Problems, Academic Press, New York,
1979.
Nakamura, S., Computational Methods in Engineering and Science, Wiley, New York, NY, 1977.
Nielson, K.L., Methods in Numerical Analysis, Macmillan Company, New York, 1964.

Noble, B., Numerical Methods, Vol. 2, Oliver and Boyd, Edinburgh, 1964.
Nocedal, J. and Wright, S.J., Numerical Optimization, Springer-Verlag, New York, 1999.
Ortega, J.M., Numerical Analysis—A Second Course, Academic Press, New York, NY, 1972.
Powell, M., Approximation Theory and Methods, Cambridge University Press, Cambridge, UK, 1981.

Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P., Numerical Recipes: The Art of Scientific
Computing, 2nd ed., Cambridge University Press, New York, 1992.
Quarteroni, A., Sacco, R., and Saleri, F., Numerical Mathematics, Springer-Verlag, New York, 2000.
Ralston, A. and Rabinowitz, P., A First Course in Numerical Analysis, 2nd ed., McGraw-Hill, New York,
1978.

Ralston, A. and Wilf, H.S., eds., Mathematical Methods for Digital Computers, Vol. 1 and 2, Wiley, New
York, 1967.
Rao, K.S., Numerical Methods for Scientists and Engineers, Prentice-Hall, New Delhi, India, 2001.
Rao, S.S., Applied Numerical Methods for Engineers and Scientists, Prentice-Hall, Upper Saddle River,
New Jersey, NJ, 2002.

Ratschek, H., and Rokne, J., Computer Methods for the Range of Functions, Ellis Horwood, Chichester,
1984.
Rice, J.R., Numerical Methods, Software and Analysis, McGraw-Hill, New York, 1983.
Sastry, S.S., Introductory Methods of Numerical Analysis, Prentice-Hall of India, New Delhi, India, 2001.

Scarborough, J.B., Numerical Mathematical Analysis, 6th ed., John Hopkins Press, Baltimore, MD, 1966.
Scheid, F., Schaum’s Outline of Theory and Problems in Numerical Analysis, 2nd ed., Schaum’s Outline
Series, McGraw-Hill, New York, 1988.
Schiesser, W.E., Computational Mathematics in Engineering and Applied Science, CRC Press, Boca Raton,
FL, 1994.

Shampine, L.F., Numerical Solution of Ordinary Differential Equations, Chapman and Hall, New York,
1994.
Sharma, J.N., Numerical Methods for Engineers and Scientists, Narosa Publishing House, New Delhi, India,
2004.

Direct Numerical Integration Methods ——— 385

Smith, G.D., Numerical Solution of Partial Differential Equations: Finite Difference Methods, 3rd ed., Oxford
University Press, Oxford, 1985.
Smith, W.A., Elementary Numerical Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1986.
Snyder, M.A., Chebyshev Methods in Numerical Approximation, Prentice-Hall, Englewood Cliffs, NJ, 1966.

Stanton, R.G., Numerical Methods for Science and Engineering, Prentice-Hall of India, New Delhi, India,
1967.
Stark, P.A., Introduction to Numerical Methods, Macmillan, New York, 1970.
Stewart, G.W., Matrix Algorithms, Vol. 1, Basic Decompositions, Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, 1998.

Stoer, J., and Bulirsch, R., Introduction to Numerical Analysis, Springer-Verlag, New York, 1980.
Stroud, A., and Secrets, D., Gaussian Quadrature Formulas, Prentice-Hall, Englewood Cliffs, 1966.
Stroud, A.H., Numerical Quadrature and Solution of Ordinary Differential Equations, Springer-Verlag,
New York, 1974.

Taylor, J.R., An Introduction to Error Analysis, University Science Books, Mill Valley, CA, 1982.
Traub, J.F., Iterative Methods for the Solution of Equations, Prentice-Hall, Englewood Cliffs, NJ, 1964.
Trefethen, L.N. and Bau, D., Numerical Linear Algebra, Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA, 1997.
Tyrtyshnikov, E.E., A Brief Introduction to Numerical Analysis, Birkhauser, Boston, 1997.

Ueberhuber, C.W., Numerical Computation 1: Methods, Software, and Analysis, Springer-Verlag, New York,
1997.
Ueberhuber, C.W., Numerical Computation 2: Methods, Software, and Analysis, Springer-Verlag, New York,
1997.
Vemuri, V. and Karplus, W.J., Digital Computer Treatment of Partial Differential Equations, Prentice-
Hall, Englewood Cliffs, NJ, 1981.
Vichnevetsky, R., Computer Methods for Partial Differential Equations, Vol. 1: Elliptic Equations and the
Finite Element Method, Prentice-Hall, Englewood Cliffs, NJ, 1981.
Vichnevetsky, R., Computer Methods for Partial Differential Equations, Vol. 2: Initial Value Problems,
Prentice-Hall, Englewood Cliffs, NJ, 1982.

Wendroff, B., Theoretical Numerical Analysis, Academic Press, New York, 1966.
Wilkinson, J.H., Rounding Errors in Algebraic Processes, Dover, New York, 1994.
Yokowitz, S. and Szidarovsky, F., An Introduction to Numerical Computation, Macmillan, New York, 1986.
Yong, D.M., and Gregory, R.T., A Survey of Numerical Mathematics, Vol. 1 and 2, Addison-Wesley, Reading,
MA, 1972.
Young, D., Iterative Solution for Large Linear Systems, Academic Press, New York, 1971.

386 ——— MATLAB: An Introduction with Applications

PROBLEMS

P6.1: Determine the vibratory response of an undamped single degree of freedom system with M = 2, and
K = 2. Assume the initial conditions for the velocity and displacement at t = 0 to be equal to 1. Use the
Runge-Kutta method with a time step of 0.5 seconds.

P6.2: Determine the free vibratory response of a viscously damped single degree of freedom system with
M = C = K = 2. Assume the initial conditions for the velocity and displacement at t = 0 to be equal to 1. Use
the fourth-order Runge-Kutta method with time step of 0.5 seconds.

P6.3: Solve Problem P6.2 with C = 3 using the fourth-order Runge-Kutta method.

P6.4: Find the solution of the differential equation for an undamped single degree of freedom system with
M = 5, C = 2 and K = 300 and the forcing function is defined as

F(t) = 200 for 0 < t < 0.2

and F(t) = (1000 – 2000t)/3 for 0.2 < t < 0.5

with the initial conditions of displacement and velocity as zero. Use the fourth-order Runge-Kutta method.

P6.5: Find the vibratory response of a single degree of freedom system with M = 1, C = 0.2, K = 1, and
F(t) = 5 with the initial conditions for velocity and displacement as zero. Take time step of 0.5 seconds. Use
the fourth order Runge-Kutta method.

P6.6: Find the response of the two degree of freedom system when F1(t) = 0 and F2 (t) = 10, using the
central difference method. The mass, stiffness and damping matrices for this system as shown in Fig. P6.5
are given as

[] [] []1 0 21 –1 0.5 –0.1
, ,

0 10 –1 1 –0.1 0.1
M K C     

= = =     
     

All the initial conditions are given as zero and use the central difference method with t∆ = 0.001 seconds.

P6.7: Solve Problem P6.6 using the fourth-order Runge-Kutta method

P6.8: Solve Problem P6.6 using the Houbolt method.

P6.9: Solve Problem P6.6 by the Park Stiffly Stable method.

P6.10: Solve Problem P6.6 by the Wilson Theta method with theta = 1.5.

P6.11: Solve Problem P6.6 by the Newmark Beta method with alpha = 0.5 and beta = 1/6.

P6.12: Solve Problem P6.6 using the two-cycle iteration with trapezoidal rule.

P6.13: Find the response of the two degree of freedom system when F1(t) = 0 and F2 (t) = 10, using the
central difference method. The mass, stiffness and damping matrices for this system are given as

[] [] []1 0 6 –2 0 0
, ,

0 2 –2 8 0 0
M K C

     
= = =     

     

All the initial conditions are given as zero and t∆ = 0.2421 seconds.

Direct Numerical Integration Methods ——— 387

P6.14: Find the response of the two degree of freedom system when F1(t) = 0 and F2(t) = 0, using the
Wilson-theta method. The mass, stiffness and damping matrices for this system are given as

[] [] []1 0 2 2 0 0
, ,

0 1 2 5 0 0
M K C

     
= = =     

     

Assuming initial conditions to be

0 0
1 0

, and 0.25
0 0

x x t   
= = ∆ =   

   
seconds.

P6.15: Solve Problem P6.14 using Newmark’s beta method, alpha = 0.25 and beta = 0.5.

P6.16: Find the response of the two degree of freedom system when F1(t) = sin 2t and F2(t) = sin 2t, using
the fourth-order Runge-Kutta method. The differential equations of this system are given as

11 1

2 2 2

2 0 3 0.5 3 1 1
sin 2

0 1 0.5 0.5 1 1 1
xx x

t
x x x

− −            
+ + =            − −            

with the initial conditions 0 0
0 1

,
0.1 0

x x   
= =   

   
 m/s.

❍ ❍ ❍

This page
intentionally left

blank

 7.1 INTRODUCTION

Engineering mechanics is a science that considers the motion of bodies under the action of forces and the
effects of forces on that motion. Mechanics includes statics and dynamics. Statics deals with the special
case of a body at rest or a body that moves with constant velocity. A body at rest or moving with constant
velocity is said to be in equilibrium. This is sometimes also called as static equilibrium. When the body
moves with finite velocity or acceleration, the principles of statics are no longer applicable. The mechanics
of such a system is called dynamics. When the body has no rotational motion, it is called as particle. Each
point on a rigid body is always at a constant distance from any other point in the body. Dynamics is further
divided into kinematics and kinetics. Kinematics defines the relationships among displacement, velocity
and acceleration of a moving body. Kinetics defines the relationship between the forces that act on a body
and the motion of the body. Analysis of the bodies can either be conducted in plane or in three-dimensions.
A rigid body in space has six degree of freedom. This chapter provides a brief review of various topics in
mechanics.

7.2 NEWTONIAN MECHANICS

Collectively, the study of statics and dynamics is called classical mechanics. Classical mechanics treats the
motion of bodies of ordinary size that move at speeds that are small compared to the speed of light. Newton
(1642–1727) formulated the law of universal gravitation and introduced the concepts of force and mass.
Newton formulated the three laws of motion that are the basis of applications in mechanics. The classical
mechanics is often called Newtonian mechanics.

7.3 NEWTON’S LAWS OF MOTION

Newton’s laws are fundamentally applicable directly to a particle that is a body which may be treated as
having point mass. Newton’s laws may be stated in terms of a particle parameters as follows:
First Law: In the absence of applied forces, a particle originally at rest or moving with constant speed in a
straight line will remain at rest or continue to move with constant speed in a straight line.

777CHAP
T

E
R

Engineering Mechanics

390 ——— MATLAB: An Introduction with Applications

Sanjay\F:\Final\Chapter-7A\10\10\08\IIIrd Proof

Second Law: If a particle is subjected to a force, the particle will accelerate. The acceleration of the particle
will be in the direction of the force, and the magnitude of the acceleration will be proportional to the force
and inversely proportional to the mass of the particle.
Newton’s second law can be expressed in the form

=
Fa
m

 ...(7.1)

where F = force
m = mass
a = acceleration

Newton’s second law is the basis for the study of kinetics of a particle.
Third Law: For every action, there is an equal and opposite reaction, or the mutual forces exerted by two
particles on each other are always equal and oppositely directed.

7.4 RESULTANTS OF COPLANAR FORCE SYSTEMS

In statics, it is often necessary to find the state of equilibrium or the resultant of several forces acting in
plane. In coplanar system, the resultant R for a concurrent forces is given by

 2 2() ()x yR F F= Σ + Σ

and 1tan y
x

x

F
F

− Σ 
θ =  Σ 

 ...(7.2)

where ΣFx, ΣFy = algebraic sums of the x and y components of the forces of the system respectively.
 θx = the angle that the resultant R makes with the x-axis.

For a parallel system, the resultant R is given by
 = ΣR F

and = Σ ORa M ...(7.3)

where ΣF = algebraic sum of the forces of the system
O = any moment center in the plane

a = perpendicular distance from the moment center O to the resultant R

Ra = moment of R with respect to O

ΣMO = algebraic sum of the moments of the forces of the system with respect to O
The resultant R for a non-concurrent and non-parallel system is given by

 () ()22
x yR F F= Σ + Σ

Engineering Mechanics ——— 391

Sanjay\F:\Final\Chapter-7A\10\10\08\IIIrd Proof

and θx = tan–1 ∑ 
 ∑ 

y

x

F
F

 ...(7.4)

where ΣFx, ΣFy = algebraic sums of the x and y components of the forces of the system respectively

θx = the angle that the resultant R makes with the x-axis.

The action of the line of the resultant force is given by

 = Σ oRa M ...(7.5)

where O = any moment center in the plane

a = perpendicular distance from the moment center O to the resultant R

Ra = moment of R with respect to O

ΣMO = algebraic sum of the moments of the forces of the system with respect to O.

7.5 RESULTANTS OF NON-COPLANAR FORCE SYSTEMS

In non-coplanar force systems, the forces are neither all concurrent nor in parallel. The resultant R for a
concurrent system is given by

() () ()22 2= Σ + Σ + Σx y zR F F F ...(7.6)

with the direction cosines

cos , cos and cos
ΣΣ Σθ = θ = θ =yx z

x y z
FF F

R R R

where ΣFx, ΣFy, ΣFz = algebraic sums of the x, y and z components of the forces of the system respectively.

For a parallel system, the resultant R is given by

R = ΣF

Rx = ΣMz ...(7.7)

Rz = ΣMx

where ΣF = algebraic sum of the forces of the system

x = perpendicular distance from the yz plane to the resultant

z = perpendicular distance from the xy plane to the resultant

ΣMx, ΣMz = algebraic sum of the moments of the forces of the system about the x and z axes respectively.

If ΣF = 0, the resultant couple C when exists is given by

C = 2 2() ()x zM M∑ ∑+

392 ——— MATLAB: An Introduction with Applications

Sanjay\F:\Final\Chapter-7A\10\10\08\IIIrd Proof

and φ = tan–1 z

x

M
M

∑

∑

 
 
 

 ...(7.8)

where φ is the angle that the vector representing the resultant couple makes with the x-axis.
The magnitude of the resultant R of the non-concurrent system at the origin (x, y and z axes is placed with
their origin at the base point) is given by

R = 2 2 2() () ()x y zF F F∑ ∑ ∑+ + ...(7.9)

with the direction cosines

 cosθx = , cos and cosyx z
y z

FF F
R R R

ΣΣ Σθ = θ = ...(7.10)

The magnitude of the resulting couple C is given by

 C = 2 2 2() () ()Σ + Σ + Σx y zM M M ...(7.11)

with the direction cosines

 cosφx = ,cos and cosyx z
y z

MM M
C C C

ΣΣ Σφ = φ = ...(7.12)

where ΣMx, ΣMy, ΣMz = algebraic sums of the moments of the forces of the system about x, y and z axes
respectively.

φx, φy, φz = angles which the vector representing the couple C makes with the x, y and
z axes respectively.

7.6 EQUILIBRIUM OF COPLANAR FORCE SYSTEMS

The necessary and sufficient conditions for the equilibrium of a coplanar force system are:

 R = ΣF = 0

and C = ΣM = 0 ...(7.13)

where ΣF = vector sum of all forces of the system

 ΣM = vector sum of the moments of all the forces of the system.

For concurrent system, any of the following sets of equations ensures equilibrium (the resultant is zero).
The concurrency is assumed at the origin.

Set 1: ΣFx = 0

ΣFy = 0

Set 2: ΣFx = 0
ΣMA = 0 ...(7.14)

(A may be chosen any place in the plane except on the y-axis)

Engineering Mechanics ——— 393

Sanjay\F:\Final\Chapter-7A\10\10\08\IIIrd Proof

Set 3: ΣMA = 0

ΣMB = 0

(A and B may be chosen any place in the plane except A, B and the origin do not lie on the same straight
line)

where ΣFx, ΣFy = algebraic sum of the x and y components of the forces of the system respectively.

 ΣMA, ΣMB = algebraic sum of the moments of the forces of the system about A and B respectively.

For parallel system, any of the following sets of equations ensures equilibrium (the resultant is neither a
force nor a couple).

Set 1: ΣF = 0

ΣMA = 0 ...(7.15)

Set 2: ΣMA = 0

ΣMB = 0

(A and B may be chosen any place in the plane provided in the line joining A and B is not parallel to the
forces of the system)

where ΣF = algebraic sum of the forces of the system parallel to the action lines of the forces

 ΣMA, ΣMB = algebraic sum of the moments of the forces of the system about A and B respectively.

For non-concurrent and non-parallel system, any of the following sets of equations ensures equilibrium
(the resultant is neither a force nor a couple).

Set 1: ΣFx = 0

 ΣFy = 0

 ΣMA = 0 ...(7.16)

Set 2: ΣFx = 0

 ΣMA = 0

 ΣMB = 0 ...(7.17)

(Provided that the line joining A and B is not perpendicular to the x-axis)

Set 3: ΣMA = 0

 ΣMB = 0

 ΣMC = 0 ...(7.18)

(Provided that A, B and C do not lie on the same straight line)

where ΣFx, ΣFy, ΣFz = algebraic sum of the x, y and z components of the forces respectively

 ΣMA, ΣMB, ΣMC = algebraic sum of the moments of the forces of the system about any three points
A, B and C in the plane respectively.

394 ——— MATLAB: An Introduction with Applications

Sanjay\F:\Final\Chapter-7A\10\10\08\IIIrd Proof

7.7 EQUILIBRIUM OF NON-COPLANAR FORCE SYSTEM

The necessary and sufficient conditions that R and C be zero vectors are given by
 R = ΣF = 0

and C = ΣM = 0 ...(7.19)
where ΣF = vector sum of all the forces of the system

ΣM = vector sum of the moments of all the forces of the system relative to any point.
For a concurrent and non-coplanar system, the following set of equations must be satisfied:

ΣFx = 0
ΣFy = 0 ...(7.20)
ΣFz = 0

where ΣFx, ΣFy, ΣFz = algebraic sums of the x, y and z components of the forces of the system
 respectively.

For a parallel non-coplanar system, the set of equations to be satisfied for equilibrium are:
ΣFy = 0
ΣMx = 0 ...(7.21)
ΣMz = 0

where ΣFy = algebraic sum of the forces of the system along the y-axis which is selected parallel to
the system.

 ΣMx, ΣMz = algebraic sums of the moments of the forces of the system about the x and z axes respec-
tively.

The necessary and sufficient conditions required for equilibrium for a non-concurrent non-coplanar system
are given by

 ΣFx = 0
 ΣFy = 0
 ΣFz = 0
ΣMx = 0
ΣMy = 0
ΣMz = 0 ...(7.22)

where ΣFx, ΣFy, ΣFz = algebraic sums of the x, y and z components of the forces of the system respectively.
 ΣMx, ΣMy, ΣMz = algebraic sums of the components of the forces of the system about the x, y and

z axes respectively.

7.8 TRUSSES

A truss is a system of slender members that are pinned together. The members are free to rotate at the
pinned joints and carry forces only. All the external forces act at the joints.

Trusses are examples of coplanar force systems in equilibrium. Trusses are assumed to be rigid
members all located in one plane. The weights of the truss members are neglected. Forces are transmitted

Engineering Mechanics ——— 395

Sanjay\F:\Final\Chapter-7A\10\10\08\IIIrd Proof

from one member to another through pin joints. These members are called two-force members. A two-force
member is in equilibrium under the effect of two resultant forces one at each end. The two-force members
will be either in tension or compression. There are two methods available for the analysis of trusses.
For a stable planar truss, the following condition applies:

2n = m + p ...(7.23)
where n = number of joints

m = number of members
p = number of unknown external forces

In a stable three-dimensional truss, the condition that holds is
3n = m + p ...(7.24)

Method of Joints:
In this method, a free-body diagram of any pin in the truss is drawn. Maximum of two unknown forces act
on that pin. Proceed from one pin to another until all unknowns have been obtained.
Method of Sections:
A free-body diagram of a section of the truss is drawn. The forces in the members can act as external
forces. The system is a non-concurrent and non-parallel one. In any one section, not more than three
unknown forces are to be found.

7.9 ANALYSIS OF BEAMS

A beam is a long member that is subjected to external lateral forces, F and external lateral moments, T. These
cause internal lateral forces V called shear forces and internal lateral moments M known as bending moments.
The shear forces and the bending moments induce lateral deformations, also called bending.
Shear and Moment Diagrams:
Shear and moment diagrams show the variation of V and M across a beam. Summation of the forces and
moments of forces are used to plot V and M directly for the beams.

The slope of the shear diagram at any section along the beam is the negative of the load per unit
length at that point. The change in shear between two sections of a beam carrying a distributed load equals
the negative area of the load diagram between the two sections. The slope of the moment diagram at any
section along the beam is the value of the shear at that section. The change in the moment between two
sections of a beam equals the area of the shear diagram between the two sections.

7.10 FRICTION

The tangential force that opposes the sliding of one body relative to the other is the static friction between
the two bodies. Kinetic friction is the tangential force between two bodies after motion begins. The body
begins to slide only when the applied force exceeds the static frictional force at the floor. Referring to Fig. 7.1,
the following terms are defined:

Limiting friction F ′ is the maximum value of static friction that occurs when motion is impending.

396 ——— MATLAB: An Introduction with Applications

Sanjay\F:\Final\Chapter-7A\10\10\08\IIIrd Proof

Coefficient of static friction is the ratio of the limiting friction F ′ to the normal force N, or µ= F'
N

 
   .

Coefficient of kinetic friction is the ratio of the kinetic friction to the normal force. Angle of repose, α is the
angle to which an inclined plane may be raised before an object resting on it will move under the action of
the force of gravity and the reaction of the plane. In Fig. 7.1, R is the resultant of F ′ and N and α = φ.

N

R

W

F′
φ

Fig. 7.1 Sliding friction

Belt Friction: When a belt passes over a pulley, the tensions in the belt on the two sides of the pulley will
differ. When slip is about to occur, the tensions T1 and T2 are given by

T1 = T2eµβ ...(7.25)

where T1 = larger tension

T2 = smaller tension

µ = coefficient of friction

β = angle of wrap (radians)

e = 2.718 (base of natural logarithms)

Screw frictional force occurs when a nut is screwed over a bolt.

7.11 FIRST MOMENTS AND CENTROIDS

The centroidal position vector r of a geometry composed of n areas d1, d2, d3, .., dn located at points P1, P2,
P3, …, Pn represented by position vectors r1, r2, r3, …, rn respectively is defined as

r =
1

1

n

i i
i

n

i
i

d

d

=

=

∑

∑

r

where di = area of ith element
ri = position vector of the ith element

1=
∑

n

i
i

d = total area of all n elements

=1

n

i i
i

d∑r = first moment of area of all elements relative to selected point O.

Engineering Mechanics ——— 397

Sanjay\F:\Final\Chapter-7A\10\10\08\IIIrd Proof

The centroid can be written in terms of x, y and z coordinates as

x = 1

1

n

i i
i

n

i
i

x d

d

=

=

∑

∑

y = 1

1

=

=

∑

∑

n

i i
i

n

i
i

y d

d

z = 1

1

=

=

∑

∑

n

i i
i

n

i
i

z d

d

where di = magnitude of area of the i th element
 , ,x y z = coordinates of centroid of the assemblage

, ,i i ix y z = coordinates of Pi at which di is concentrated.
The centroid of a continuous quantity of mass m is given by

dm
dm

∫
=

∫
rr

or
∫

= =
∫

yzQxdmx
mdm

∫
= =

∫
xzQydmy

mdm

∫
= =

∫
xyQzdmz

mdm

where Qxy, Qyz, Qxz = first moments with respect to xy, yz and xz planes respectively.

7.12 VIRTUAL WORK

A virtual displacement δs of a particle is defined as any infinitesimal change in the position of the particle
consistent with the constraints imposed on the particle. Virtual work δU done by a force, Ft is defined as
Ft δs, where Ft is the magnitude of the component of the force along the virtual displacement δs. Similarly,
virtual work δU done by a couple of moment M is defined as Mδθ, where δθ is the virtual angular
displacement.

398 ——— MATLAB: An Introduction with Applications

Sanjay\F:\Final\Chapter-7A\10\10\08\IIIrd Proof

Equilibrium: The necessary and sufficient condition for the equilibrium of a particle is zero i.e., virtual
work done by all the forces acting on the particle during any virtual displacement δs. The necessary and
sufficient condition for the equilibrium of a rigid body is zero i.e., virtual work done by all the external
forces acting on the body during any virtual displacement consistent with the constraints imposed on the
body. The equilibrium of a system of rigid bodies exists if the potential energy V has a stationary value.
Stable equilibrium occurs if the potential energy V is a minimum. Unstable equilibrium occurs if the potential
energy V is a maximum. Neutral equilibrium exists if a system remains in any position in which it is placed.
If x is the variable and V the potential energy of the system, then we have

2

2 0>d V
dx

(stable equilibrium)

2

2 0<d V
dx

(unstable equilibrium)

2

2 0=d V
dx

(neutral equilibrium)

7.13 KINEMATICS OF A PARTICLE

Kinematics is the study of motion without considering the forces or other factors that influence the motion.
Rectilinear motion: The general expression for displacement(s), velocity(v) and acceleration(a) are derived
from the following three differential relations:

 a = dv/dt
 v = ds/dt
ads = vdv

For motion of a point along a straight line, the following formulas are valid for constant acceleration a = k:

v = v0 + kt

v2 = 2
0 2+v ks

s = v0t +
21

2
kt ...(7.25a)

s = 0
1

()
2

+v v t

where v0 = initial velocity
v = final velocity
k = constant acceleration
t = time
s = displacement.

Curvilinear motion: In a plane, curvilinear motion is motion along a plane curve (path). The velocity and
acceleration of a point on such a curve can be expressed either as:

Engineering Mechanics ——— 399

Sanjay\F:\Final\Chapter-7A\10\10\08\IIIrd Proof

(a) Rectangular components
(b) Tangential and normal components
(c) Radial and transverse components

(a) Rectangular components
The position vector r(t), the velocity vector v(t) and the acceleration vector a(t) are given by

r(t) = () () ()x t y t z t+ +i j k

v(t) = () () () () () ()x y zv t v t z t x t y t z t+ + = + +i j k i j k� � �

a(t) = () () () () () ()x y za t a t a t x t y t z t+ + = + +i j k i j k�� �� �� ...(7.26)

where the over-dot represents time differentiation.

The rectangular components of velocity and acceleration are given by

v (t) = () () () () (), ,y zx t t y t t z t= =v v� � �

a (t) = ()��x t , () ()y t y t=a �� , () ()z t z t=a �� ...(7.27)

The components of position are given by

x (t) = () ()
1

1

t

x
t

x t v s ds+ ∫

y (t) = () ()
1

1

t

y
t

y t v s ds+ ∫

z (t) = () ()
1

1 + ∫
t

z
t

z t v s ds ...(7.28)

The components of velocity are given by

vx (t) = () ()
1

1

t

x x
t

v t a s ds+ ∫

vy (t) = () ()
1

1 + ∫
t

y y
t

v t a s ds

vz (t) = () ()
1

1 + ∫
t

z z
t

v t a s ds ...(7.29)

Also 2
xv x = () ()

1

2
1 2+ ∫

x

x x
x

v x a x dx ...(7.30)

(b) Tangential and normal components
Referring to Fig. 7.2, the velocity vector v can be written as

v = unt ...(7.31)

400 ——— MATLAB: An Introduction with Applications

Sanjay\F:\Final\Chapter-7A\10\10\08\IIIrd Proof

where v = magnitude of the velocity vector
nt = tangential unit vector directed along the velocity vector.

Also t n= θn n�� ...(7.32)

and n t= − θn n��

 y(x)

n t(t)

nn(t)

x

y
v

Fig. 7.2 Velocity vectors

where nn = the normal unit vector defined to be perpendicular to the tangential unit vector.

In Fig. 7.3, the radius of curvature ρ of the path at time t is shown which is obtained by the intersection of
the lines extending from nt(t) and nt(t + ∆t) where ∆t is time increment. The angle θ changes an incremental
amount ∆θ and the point moves an incremental amount ∆s.

nn(t+∆t) nt(t +∆t)

θ(t+∆t)

nt(t)
θ(t)

∆θ

ρ

∆θ

nn(t)

y

x

y(x)

Fig. 7.3 Radius of curvature of path

Now ρ∆θ =∆s

or ρθ� =v ...(7.33)

where θ� =
d
dt
θ

v =
ds
dt

Differentiating Eq. (7.31) with respect to time gives
a = atnt + annn ...(7.34)

Engineering Mechanics ——— 401

Sanjay\F:\Final\Chapter-7A\10\10\08\IIIrd Proof

where at = v�

 an =
2

ρ
v ...(7.35)

(c) Radial and transverse components
 The polar form of a position vector is

r = rnr ...(7.36)
where r = |r| is the magnitude of r

nr = unit vector in the direction of r
nr = the radial unit vector
nθ = the circumferential unit vector

The circumferential unit vector is perpendicular to nr. Hence, nr and nθ are related to i and j in Fig. 7.4 as
nr(t) = cos θ(t)i + sin θ(t)j
nθ(t) = –sin θ(t)i + cos θ(t)j ...(7.37)

r

xθ

y
nθ

nr

Fig. 7.4 Radial and transverse components

Differentiating Eq. (7.37) with respect to time gives

 rn� = sin cos (sin cos) θ−θ θ + θ θ = θ − θ + θ = θi j i j n� � � � ...(7.38)

and () rtθ = −θn n�� ...(7.39)
Hence, the derivatives of the unit vectors are given by

 r θ= θn n��

 rθ = −θn n�� ...(7.40)

Similarly, from Eqs. (7.36) and (7.40), we get

 v = r rv vθ θ+n n ...(7.41)

where vr = r�

vθ = rθ�

Differentiating Eq. (7.41) with respect to time gives

 a = r ra aθ θ+n n ...(7.42)

402 ——— MATLAB: An Introduction with Applications

Sanjay\F:\Final\Chapter-7A\10\10\08\IIIrd Proof

where ar = 2.
–..r rθ

 aθ =
.. .2r rθ + θ� ...(7.43)

7.14 D’ALEMBERT’S PRINCIPLE

Kinetics of particles begins with Newton’s second law, which relates forces, accelerations and time. The
second form of writing Newton’s law is called d’ Alembert’s principle which gives the condition for dynamic
equilibrium. It states that

ΣF – ma = 0 ...(7.44)
where ΣF = vector sum of all the forces acting on the particle

 m = mass of the particle
 a = acceleration of the particle.
Hence, an imaginary force (also known as inertia force) which is collinear with ΣF but opposite in

sense and of magnitude ma would cause it to be in equilibrium if applied to the particle. All the equations
of equilibrium are then applicable. Kinetics of particles can also be attempted with work-energy principle
and impulse-momentum principle, just as a rigid body. When velocities and displacements are given instead
of acceleration as in spring problems, the problem should be attempted with work-energy principle. On the
other hand when velocity and time are given as in recoil or impact problems, the equations of motion are
formulated from impulse-momentum relations.

7.15 KINEMATICS OF A RIGID BODY IN PLANE MOTION

A rigid-body is configured by specified dimensions and rotational motion should be considered in addition
to translation. In plane motion of a rigid body, every point in the body remains at a constant distance from
a fixed plane. As shown in Fig. 7.5, B is an arbitrary point in the body and x-y-z is a non-rotating reference
frame.

X

Y

Z

z

y

x

A

B

rA

rB

ρ
φ

Fig. 7.5 Representation of plane motion of rigid-body

The position vector rA of any point A (fixed or moving) in the lamina is given by

Engineering Mechanics ——— 403

Sanjay\F:\Final\Chapter-7A\10\10\08\IIIrd Proof

rA = rB + ρ ...(7.45)
where rB = position vector of B
 ρ = vector BA
Differentiating Eq. (7.45) gives

vA = A B B φ= + ρ = + ρωr r r e�� � � ...(7.46)

where Br� = linear velocity of B relative to the fixed axes X, Y and Z
 ω = angular velocity (magnitude) of ρ about any line parallel to Z-axis
eφ = unit vector perpendicular to ρ (in the direction of increasing φ)

The acceleration aA is given by

aA =
A A Bv r r= = 2– e eρ φρω + ρα ...(7.47)

where Br�� = acceleration of B relative to fixed axes X, Y and Z
eρ = unit vector along ρ directed from B towards A
eφ = unit vector perpendicular to ρ (in the direction of increasing φ)
α = angular acceleration (magnitude) of ρ about any line parallel to the Z-axis.

Equations (7.46) and (7.47) can also be written in vector form as follows:
vA = vB + ω× ρ

or vA = vB + vA/B ...(7.48)
and aA = ()ω ω×ρ α ρB + +× ×a

aA = aB + aA/B ...(7.49)

Here × is a vector (cross) product.
Also ω = kφ� = ωk

α = k k kφ = ω = α�� � ...(7.50)
ραeρ = ω × ρ
ραeφ = α × ρ

2−ρω eρ = ω × (ω ×ρ)

in which vA/B = relative velocity of A as it rotates around B.
 aA/B = relative acceleration of A as it rotates around B.

Thus in plane motion the term ‘ω×(ω×ρ)’ becomes –ρω2.
Another method of computing velocities and accelerations in rigid bodies is to draw the vector

diagrams. These are drawn based on the concept that relative velocity is always perpendicular to the line
joining the two points and the two components of relative acceleration are perpendicular to each other.
Sometimes a rotating frame of reference is used to represent the motion of a body translating with velocity
v and acceleration a on another rotating body as in case of a crank and slotted lever linkage. Here, the
acceleration expression becomes

vA = vB + (ω×ρ) + v
and aA = aB + ω×(ω×ρ) + α×ρ+ 2ω ×vAB + a
Here, the term ‘2ω×vAB’ is called Coriolis component of acceleration.

404 ——— MATLAB: An Introduction with Applications

Sanjay\F:\Final\Chapter-7A\10\10\08\IIIrd Proof

7.16 MOMENTS OF INERTIA

The axial moment of inertia or the second moment of inertia I, of an element of area about an axis in its
plane (Fig. 7.6) is given by

dIx = y2dA
dIy = x2dA ...(7.51)

The polar moment of inertia J, of an element about an axis perpendicular to its plane is the product of the
area of the element and square of its distance from the axis. Referring to Fig. 7.6, the polar moment of inertia
is

 dJ = ρ2dA = (x2 + y2)dA = dIy + dIx ...(7.52)
The product of inertia of an element of area in Fig. 7.6 is given by

dIxy = xydA ...(7.53)

x

y

y

x

dA

ρ

Fig. 7.6 Definition of product of inertia

The axial moment of inertia of an area is the sum of the axial moments of inertia of its elements

Ix = 2∫ y dA

Iy = 2∫ x dA ...(7.54)

The radius of gyration of an area with respect to an axis is given by

k = I/A ...(7.55)
The polar moment of inertia of an area is the sum of the polar moments of inertia of its elements

J = 2ρ dA∫ ...(7.56)

The product of inertia of an area is the sum of the products of inertia of its elements

Ixy = xydA∫ ...(7.57)
The parallel-axis theorem states that the axial or polar moment of inertia of an area about any axis equals the
axial or polar moment of inertia of the area about a parallel axis through the centroid of the area plus the

Engineering Mechanics ——— 405

Sanjay\F:\Final\Chapter-7A\10\10\08\IIIrd Proof

product of the area and the square of the distance between the two parallel axes. Referring to Fig. 7.7, we
have

Ix = Ix′ + Αm2

Iy = Iy′ + Αn2

Iz = J + Ar2

Ixy = Ixy + Amn ...(7.58)

where A = area

Ixy = product of inertia of the area with respect to x and y axes
Ix′y′ = product of inertia about two parallel centroid axes x′ and y′

m, n = coordinates of G relative to the (x, y) axes through O or the coordinates of O relative
to the (x′, y′) axes through G.

x, y = any axes through O
x′, y′ = coplanar parallel axes through the centroid G.

y y'

x'

x
O

G

r
m

n

Fig. 7.7 Parallel-axis theorem

The axial or polar moment of inertia or product of inertia of a composite area is the sum of the axial
or polar moments of inertia, or products of inertia, of the component areas of the whole area.

Mass moment of inertia of a rigid body is defined as: I = ∫r2 dm, where r is perpendicular distance
from the z-axis to the arbitrary element dm. Thus, the value of I differs for each axis about which it is computed.
Usually in planar kinetics, the axis which is generally chosen for analysis passes through body’s mass
center G and is always perpendicular to the plane of motion. Its units are kgm2. Sometimes, I is given as
radius of gyration about center G. The radius of gyration k of a body with respect to an axis is given by

 k = /I m ...(7.59)

Consider Fig. 7.8, the axial moment of inertia of a mass dm is given by

()
()

2 2

2 2

and

and

= = + = =

= = + = =

∫ ∫
∫ ∫

xx x xy yx

yy y yz zy

I I y z dm I I xy dm

I I x z dm I I yz dm

()2 2 andzz z zx xzI I x y dm I I xz dm= = + = =∫ ∫ ...(7.60)

where dm = mass of element

406 ——— MATLAB: An Introduction with Applications

Sanjay\F:\Final\Chapter-7A\10\10\08\IIIrd Proof

 Ix, Iy, Iz = axial moments of inertia with respect to the x, y and z axes respectively.

x

z

y

dm

y

x

z

x + y22

x + z22

z + y22

Fig. 7.8 Polar moment of inertia of composite area

In three dimensions, a body has six components of inertia for any specified x, y, z axes. Three of these are
moments of inertia about each of the axes Ix, Iy, Iz and three are products of inertia each defined from two
orthogonal planes Ixy, Iyz, Ixz. If either one or both of the planes are planes of symmetry, then the product of
inertia with respect to these planes will be zero. Such axes are principal axes of inertia.
The product of inertia of a mass is given by

 Ixy = ∫xydm

The parallel axis theorem states that the moment of inertia of a body about an axis is equal to the
moment of inertia I about a parallel axis through the center of gravity of the body plus the product of the
mass of the body and the square of the distance between the two parallel axes. For example, moment of
inertia of slender rod about one end can be computed in terms of moment of inertia about mass center G

according to the following relation: IC =
2

2
 +   
A

GI m .

7.17 DYNAMICS OF A RIGID BODY IN PLANE MOTION

When the motion is specified in terms of acceleration and forces, Newton’s second law or d’ Alembert’s
principle can be directly used. For a rigid body in plane motion, there are three equations describing dynamic
equilibrium: Two force relations for translation along x and y direction and one moment equation about a
point usually the center of mass G. In vector form, the equations of plane motion are given by

 ΣF = m a ...(7.61)

 ()/ ×O O G O O O Oy OxI m I mxa myaΣ = α + = α + −M k r a k ...(7.62)

Engineering Mechanics ——— 407

Sanjay\F:\Final\Chapter-7A\10\10\08\IIIrd Proof

where ΣF = resultant of the external forces acting on the body
ΣMO = resultant of the external moments acting on the body

m = mass of the body

a = acceleration of the mass center of the body
aO = acceleration of reference point O
α = angular acceleration of the body
IO = moment of inertia of the body relative to the reference point O

,x y = coordinates of the mass center relative to the reference point O
rG/O = position vector of the mass center relative to the reference point O

aOx, aOy = magnitude of the components of the acceleration of the reference point O along the x and y axes.
The scalar equations of the plane motion are given by

ΣFx = xma

ΣFy = yma

Σ = αM I ...(7.62a)

where ΣFx, ΣFy = algebraic sums of the magnitudes of the components of the external forces along
the x and y axes respectively.

m = mass of the body

,x ya a = components of the linear acceleration of the mass center in x and y directions respectively.

ΣM = algebraic sum of the moments of the external forces about the mass center.

I = moment of inertia of the body about the mass center.
α = magnitude of the angular acceleration of the body.

The scalar equations for translation of a rigid body are given by

ΣFx = max

ΣFy = may ...(7.63)
and ΣM = 0

where ΣFx, ΣFy = algebraic sums of the components of the external forces in the x and y
 directions respectively.

m = mass of the body.
ax, ay = acceleration components in the x and y directions respectively.

ΣM = sum of the moments of the external forces about the mass center of the body.
The scalar equations of motion of a rigid body under the action of an unbalanced force system for a body
with a plane of symmetry and rotates about a fixed axis perpendicular to the plane are given by

ΣFn = 2ωmr
ΣFt = αmr ...(7.64)

Σ OM = αOI

408 ——— MATLAB: An Introduction with Applications

Sanjay\F:\Final\Chapter-7A\10\10\08\IIIrd Proof

where ΣFn = algebraic sum of the components of all external forces (which are the applied forces F1, F2,
F3, etc., the gravitational force on the body, and the reaction R of the axis on the body) along
the n axis, which is the line drawn between the center of rotation O and the mass center G;
note that the positive sense is from G towards O because 2= ωna r has that sense

ΣFt = algebraic sum of the components of the external forces along the t axis, which is perpendicular
to the n axis at O; note that the positive sense along this axis agrees with that of = αta r

ΣMO = algebraic sum of the moments of the external forces about the axis of rotation through O;
note that positive sense agrees with the assumed sense of the angular acceleration α

m = mass of the body
G = center of mass of the body

r = distance from the center of rotation O to the mass center G
IO = moment of inertia of the body about the axis of rotation
ω = angular speed of the body
α = magnitude of the angular acceleration of the body

This type of rotation is called non-centroidal rotation. Example: A lever oscillating about a point of
suspension.

When G and O coincide (rotation about a fixed axis through G) and F = 0, the equations of motion are given
by

 ΣFx = 0, ΣFy = 0, Σ = αM I ...(7.65)
where ΣFx = algebraic sum of the components of the external forces along any axis chosen as the

x-axis.
ΣFy = algebraic sum of the components of the external forces along the y-axis

ΣM = algebraic sum of the moments of the external forces about the axis of rotation through the
mass center G (axis of symmetry)

I = moment of inertia of the body about the axis of rotation through the mass center G
α = magnitude of the angular acceleration of the body

This type of rotation is called centroidal rotation.

7.18 WORK AND ENERGY

The work done to move particle or a body from point 1 to point 2 by the resultant force F acting on the
particle is given by

U1–2 =
2

1

dr•∫F ...(7.66)

The kinetic energy T of a particle with mass m and moving with speed v is defined as 21
2

mv .

In connected rigid bodies the total kinetic energy of all the bodies at a configuration is computed.

Engineering Mechanics ——— 409

Sanjay\F:\Final\Chapter-7A\10\10\08\IIIrd Proof

The work done on a particle by the resultant force as it moves from point 1 to point 2 is equal to the change
in kinetic energy.

U1–2 = T2 – T1 ...(7.67)
where T1, T2 = initial and final kinetic energy respectively at points 1 and 2.
The kinetic energy T of a rigid-body in translation is

T = 21
2

mv .

The kinetic energy T of a rigid body in rotation is

T = 21
ω

2 oI ...(7.68)

where IO = mass moment of inertia of the body about the axis of rotation
ω = angular speed

The kinetic energy T of a body in plane motion is given by

 T = 21
ω

2
I ...(7.69)

where ω = angular speed

I = moment of inertia about an axis through the mass center parallel to the z-axis.
The change in potential energy may be defined as the negative of the work done by the conservative force
acting on the body in bringing it from the datum to a final position. The selection of the datum is arbitrary.
The principle of work and energy states that ‘the work done by the external forces acting on a rigid zbody
during a displacement is equal to the change in kinetic energy of the body during the same displacement’.
The sum of the work done by the non-conservative external forces such as friction and the work done by
the internal forces acting on a system of particles is equal to the change in the total (kinetic and potential)
energy of the system of the particles over the time interval of the action

or E = T + V ...(7.70)
where E = total energy (kinetic and potential) of conservative system

T = kinetic energy
V = potential energy

The law of conservation of energy states that if a particle (or body) is acted upon by a conservation force
system, the sum of the kinetic energy and potential energy is a constant. Thus for non-conservative system,
principle of work and energy is used and for conservative system, principle of conservation of energy can
be employed.

7.19 IMPULSE AND MOMENTUM

In particles, there is only linear momentum since it has no angular motion.
The linear momentum of the ith particle is defined as

Li = mivi ...(7.71)

410 ——— MATLAB: An Introduction with Applications

Sanjay\F:\Final\Chapter-7A\10\10\08\IIIrd Proof

where mi = mass of the i th particle
 vi = ith particle’s velocity.

The linear momentum of the system of particles is the sum of the linear momenta of the particles.

or L =
1

n

i
i=
∑L ...(7.72)

The linear impulse acting on the system imparted over a time interval is given by

G1–2 =
2

1

t

t

dt∫ F ...(7.73)

Then the principle of impulse and momentum can be written as:
G1–2 = L2 – L1 ...(7.74)

where Lp = linear momentum of the system at a state p.

Equation (7.74) states that the linear impulse acting on the system is equal to the change in the system’s
linear momentum over the time interval.

For a rigid body, there is angular momentum and angular impulse in addition to linear counterparts. Angular
impulse is created by a moment of a force while the angular momentum is due to inertia of the body and
angular velocity of rotation. Angular momentum sometimes called as the moment of the linear momentum is
defined as:

Ho = r × L ...(7.75)
where HO is the angular momentum about the point O.
The angular momentum of a system of n rigid bodies about a point A is given by

/ /
1 1 1

× ×
n n n

A Ai i A i i A i i
i i i

m
= = =

= = =∑ ∑ ∑H H r L r v ...(7.76)

where A is any point.
The resultant external moment about the point A is given by

MA = / A
1 1

×
n n

Ai i i
i i

M
= =

=∑ ∑r F ...(7.77)

Differentiating Eq. (7.76) with respect to time yields

A

•

H = –vA × L + MA ...(7.78)

If the point A is fixed then vA = 0 and if the point A is the mass center C then vA × L = vC × mvC = 0. Thus, whether
the point A represents a fixed point O or the mass center C:

A

•

H = MA ...(7.79)

Equation (7.79) states that the time derivative of the angular momentum about a fixed point O (or the mass
center O) is equal to the resultant external moment about the fixed point O (or the mass center C). Integrating
Eq. (7.79) yields

Engineering Mechanics ——— 411

Sanjay\F:\Final\Chapter-7A\10\10\08\IIIrd Proof

 NA1–2 = () ()
2 2

1 1

2 1 2 1

t t

A A A A A A
t t

dt dt t t= = − = −∫ ∫M H H H H H� ...(7.80)

where NA1–2 =
2

1

t

A
t

dt∫ M angular impulse imparted over the time interval

Hence NA1–2 = HA2 – HA1 ...(7.81)

Equation (7.81) states that the angular impulse acting on the system about the fixed point O (or the mass
center G) is equal to the change in the system’s angular momentum about the point O (or the mass center
G) over the time interval. This is illustrated in Fig. 7.9, where initial and final velocities are taken at mass
center G.

+ =G

IG ω1

m(vG)1

G

IGω2
m(vG)2

1dtF

G

mg(t2 – t1)

∫ 1dtM

∫
2

1

t

t 2dtF

1t

2t

∫
2

1

t

t

Fig. 7.9 Principle of impulse-momentum of rigid body

Conservation of linear momentum in a given direction occurs if the sum of the external forces in that
direction is zero. For examples in case of two balls (particles) colliding head-on with each other either centrally
or obliquely, the linear momentum is conserved along the line of collision. Mathematically, it is written as
ΣLp = 0. Conservation of angular momentum about an axis occurs if the sum of the moments of the external
forces about that axis is zero. Mathematically, it is written as: ΣHp = 0. This occurs in cases where the
rotating or oscillating body suffers different speeds when the point of suspension changes. As an example,
a diver jumping from a height into water maintains the constant angular momentum during his motion.

7.20 THREE-DIMENSIONAL MECHANICS

In three-dimensional motion, the angular velocity and acceleration vector has components in more than
one axis, unlike in plane motion where for example ω= k̂aω a single component parallel to z-axis. Similar to
two-dimensional motion the motion of two points A and B on a body, or a series of connected bodies can
be related using relative motion analysis with rotating and translating axes at B. If a body undergoes general
motion, then the motion of a point A in the body can be related to the motion of another point B using a
relative motion analysis along with translating axes at B:

vA = vB + ω×××××rAB

aA = aB + α×××××rAB + ω×××××(ω×××××rAB)
There are three scalar equations of translational motion for a rigid body that moves in three dimensions.

ΣFx = m(aGx)
ΣFy = m(aGy)
ΣFz = m(aGz)

412 ——— MATLAB: An Introduction with Applications

Sanjay\F:\Final\Chapter-7A\10\10\08\IIIrd Proof

The three scalar equations of rotational motion depend upon the location of the x, y, z reference.

– (–)x x x y z y zM I I IΣ = ω ω ω�

– (–)y y y z x z xM I I IΣ = ω ω ω�

– (–)z z z x y x yM I I IΣ = ω ω ω�
Most often, these axes are oriented so that they are the principal axes of inertia. If the axes are fixed

in and move with the rotation ω of the body, then the equations are referred to as Euler equations of motion.

The angular motion of a gyroscope is best described using the changes in motion of the three Euler
angles. These angular velocity components are the precision φ� , nutation θ� and spin ψ� . If ψ = 0 and φ and
θ are constant then the motion is referred to as steady precision. The angular velocity of the body is specified
only in terms of Euler angle θ as:

ω = ωxi + ωy j +ωzk = θ� i + θφ sin� j + ()ψ+θφ �� cos k

The spin velocity is given by Ω = Ωxi + Ωy j + Ωzk = θ� i + θφ sin� j + θφ cos� k

It is spin of a gyro rotor that is responsible for holding the rotor from falling downward and instead
causing it to precess about a vertical axis. This phenomenon is called the ‘gyroscopic effect’.

MATLAB has an excellent collection of commands and functions that are useful for solving engineering
mechanics problems. The problems presented in this chapter are basic and are normally presented in
introductory mechanics courses. The application of MATLAB to the problems in the analysis and design of
engineering mechanics is presented in this chapter with a number of illustrative examples. These examples
cover different topics of Mechanics. Each solution begins with a problem formulation followed by a
corresponding MATLAB code with simple explanations wherever possible. The background required for
solving mechanics problems is the knowledge of differentiation, integration, trigonometry along with basic
physical laws. Table 7.1 summarizes some of the important mathematical relations often used for computations
in statics and dynamics.

Table 7.1 Some mathematical expressions

 S.No. Mathematical entity

1. If ax2 + bx + c = 0, then
2 – 4

2
− ±= b b acx

a
is root.

2. If sin θ =A and cos θ = B then (i) A2 + B2 = 1, (ii) sin 2θ = 2AB, (iii) cos 2θ = B2– A2

(iv) tan θ =
A
B , (v) sin(θ ± φ) = sin θ cos φ ± cos θ sin φ

In a triangle: (a) Sine rule a/sin(θ) = b/sin(φ), where a is side opposite to angle φ and
b is side opposite to angle θ.
(b) Cosine rule: c2 = a2 + b2 – 2ab cos(θ), where θ is angle opposite to side c.

3. Important derivatives:

(i) 1() −=n nd duu nu
dx dx (ii) ()d dv duuv u v

dx dx dx
= + (iii)

2
 
  

du dvv – ud u dx dx =
dx v v

Contd...

Engineering Mechanics ——— 413

Sanjay\F:\Final\Chapter-7A\10\10\08\IIIrd Proof

(iv) (sin) cos θθ = θd d
dx dx (v) (cos) sin θθ = − θd d

dx dx (vi) 2 θ(tanθ) = sec θd d
dx dx

4. Important integrals (here c is a constant)

(i)
1

1
1

p+
p xx dx= +c, p –

p+
≠∫ (ii)

1 log () e
dx p qx c

p qx q
= + +

+∫

(iii) 2
1 log , where 0

2 e
p x pqdx c pq

p qx pq p x pq
+ −

= + <
+ − − −∫

(iv) sin cos ,= − +∫ x dx x c (v) cos sin ,= +∫ x dx x c (vi) 1 eax axe dx = +c a∫

7.21 EXAMPLE PROBLEMS AND SOLUTIONS

In all the examples solved in this chapter, a script is written in the form of ‘m’ files and the program is
executed by typing the m file name with extension at the command prompt. It is emphasized to develop
each program with different commands to learn MATLAB with perfection.

7.21.1 Statics
Problems in statics are presented on the following common topics: forces on a particle, rigid bodies and
equivalent forces, equilibrium of rigid bodies, truss analysis, beams, friction and distributed forces (centroids).

Example ES7.1: Write a MATLAB program to determine the magnitude and direction of the resultant of 3-
coplanar forces applied at point A in Fig. ES7.1. Use the following values:

 F1 = 20 kN, F2 = 40 kN, F3 = 200 kN, α1 = 40º, α2 = 25º and α3 = 58º.

F1

F2

F3

α1
α3

A

α2

Fig. ES7.1

Solution: We know that for a coplanar force system

1 1

cos , sin
= =

= α = α∑ ∑
n n

x i i y i i
i i

R F R F ...(1)

Therefore 2 2= +x yR R R ...(2)

414 ——— MATLAB: An Introduction with Applications

Sanjay\F:\Final\Chapter-7A\10\10\08\IIIrd Proof

and 1tan−α = y
R

x

R
R

...(3)

Let *αR be the value defined by Eq. (3) and such that –90º ≤ *αR ≤ 90º. Then, we have

If *0 and 0 :x y R RR R≥ ≥ α = α ...(4)

If *0 and 0 : 360ºx y R RR R≥ < α = +α ...(5)

If *0 : 180ºx R RR < α = +α ...(6)

MATLAB Solution:
n=3; % Number of forces
alpha= [40 25 58];
alpha1=alpha*pi/180;
force= [20 40 200];
sumx=0;
sumy=0;
for i=1: n
 sumx=sumx + force (i)*cos (alpha1 (i));
 sumy=sumy + force (i)*sin (alpha1(i));
end
 r=sqrt (sumx^2+sumy^2);
 alphar = atan2 (sumy, sumx);
 alphar=alphar*180/pi;
 if alphar < 0
 alphar = alphar + 360;
end
fprintf (‘The resultant R is %4.2f kN\n’, r);
fprintf (‘The angle between the resultant and x axis is % 4.2f degrees\n’, alphar);

Output is given below:
The resultant R is 254.11kN.
The angle between the resultant and x axis is 51.68 degrees.

Example ES7.2: Figure ES7.2 shows two forces, one 500 N and the other P applied by cables on each side
of the obstruction A in order to remove the spike. Write a MATLAB program to determine:

(a) the magnitude of P necessary to such that the resultant T is directed along the spike
(b) the magnitude of T
(c) plot P and T as a function of d. (Range of d between 1 and 20 mm).

Engineering Mechanics ——— 415

Sanjay\F:\Final\Chapter-7A\10\10\08\IIIrd Proof

P

5 mm

7 mm

500

d

A

N

Fig. ES7.2

Solution: Free-body diagram of the system is shown in Fig. ES7.2 (a).

From equilibrium equations, resolving the forces along positive x and y directions:

cos 500cos= Σ = α + βxT F P
 0 = ΣFy = P sin α – 500 sin β

Solving the above two equations, we obtain

500sin
sin

β=
α

P

and T = 500 (sin β cotα + cos β)

From the geometry
α = tan–1 (5/d) and β = tan–1(7/d)

Complete MATLAB program is given below:
% Range of d
d = 1:1:20;
% Define alpha
alpha = atan (5./d);
%Define beta
beta = atan(7./d);
% Compute force P
P = 500*sin(beta)./sin(alpha);
% Define force T
T=500*(sin (beta).*cot (alpha) +cos (beta));
plot (d, P,‘–*’, d, T,‘–p’)
xlabel (‘d (mm)’);
ylabel (‘Force (N)’);
legend(‘Force P’, ‘Net force T’);
grid on;

 P

500 N

x

y
α
β

 Fig. ES7.2 (a)

416 ——— MATLAB: An Introduction with Applications

Sanjay\F:\Final\Chapter-7A\10\10\08\IIIrd Proof

Figure ES7.2 (b) shows the plot of P and T as a function of d.

0 2 4 6 8 10 12 14 16 18 20
0

200

400

600

800

1000

1200

Force P
Net force T

F
o

rc
e

(N
)

d(mm)

Fig. ES7.2(b)

Example ES7.3: Figure ES7.3 shows the two cables MO and NO tied together at O and the loadings are also
shown. The magnitude of F is 150 N.

(a) Derive the expressions relating the tension in each cable as a function of α.
(b) Write a MATLAB program to plot the tension in each cable for 0° ≤ α ≤ 90º.
(c) Determine the smallest value of α for which both cables are in tension.

M N

F O

30°

30°

200 N

α

Fig. ES7.3

Engineering Mechanics ——— 417

Sanjay\F:\Final\Chapter-7A\10\10\08\IIIrd Proof

Solution: Free-body diagram is shown in Fig. ES7.3 (a).
Applying the equations of equilibrium:

(a) ΣFx = 0 ⇒ (FON – FOM) sin 30° – F + 200 cos α = 0

or (FON – FOM) = 2F – 400 cos α

Substituting F = 150 N

(FON – FOM) = 300 – 400 cos α (1)

ΣFy = 0 ⇒ (FOM + FON) cos 30° – 200 sin α = 0

or (FOM + FON) = 200 ×
2
3

.sin α = 230.94 sin α (2)

Solving eqn. (1) and (2),

FON = 150 – 200 cos α + 115.47 sin α

FOM = 115.47 sin α + 200 cos α – 150

For finding range of α, at which tensions are positive equate FON= 0 and FOM= 0 and find α.

(b) MATLAB Program:
Alpha= [0:2:90];

alpha=Alpha*pi/180;

fon =150–200*cos (alpha) +115.47*sin (alpha);

fom=–150+115.47*sin (alpha) +200*cos (alpha);

ton=abs (fon);

tom=abs (fom);

[ton_min, i]=min (ton);

[tom_min, j]=min (tom);

Ang1_min=Alpha (i);

Ang2_min=Alpha (j);

plot (Alpha, fon, Alpha, fom);

legend (‘Fon’, ‘Fom’, 2)

xlabel (‘Alpha (degree)’)

ylabel (‘Cable tension (N)’)

grid on

fprintf (‘(c)\n’)

fprintf (‘Smallest value of Alpha for which the tensions are positive is from

%g to %g degrees\n’, Ang1_min, Ang2_min)

Fig. ES 7.3 (a)

y

F

F

30°

α

200 N

FOM

x

30°

ON

O

418 ——— MATLAB: An Introduction with Applications

Sanjay\F:\Final\Chapter-7A\10\10\08\IIIrd Proof

The output is shown in Fig. ES7.3 (b).

–50

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70 80 90

Alpha (degrees)

Fon
C

a
b
le

te
n
si

o
n

(N
)

Fom

Fig. ES7.3 (b)

(c) Smallest value of alpha for which the tensions are positive is from 20 to 80 degrees.

Example ES7.4: Figure ES7.4 shows a weight W hung from the end of a horizontal pole of negligible weight.

W

Cable

T

c

p

d

Fig. ES7.4

The pole is attached to the wall by a pivot and is supported by a cable attached to the wall at a higher
point. The tension T, in the cable is given by

T =
22

p

pc

dd

W

−A

AA

where T = tension in the cable, W = weight of the object, Ac = length of the cable, Ap = length of the pole and
d = distance along the pole at which the cable is attached.

Engineering Mechanics ——— 419

Sanjay\F:\Final\Chapter-7A\10\10\08\IIIrd Proof

Write a MATLAB program to (a) determine the distance (d) at which the cable can be attached to the pole
in order to minimize the tension in the cable, (b) plot the tension in the cable as a function of d.
Given: W = 250 N, Ap = 50 cm, Ac = 40 cm.
Solution: The free-body diagram of the system is shown in Fig. ES7.4 (a).

MATLAB program is given below:
lc=0.40;

lp=0.50;

W=250;

d=0.05:0.05:lp;

% Calculate tension

T=W *lc *lp./(d.*sqrt(lp^2–d.^2));

plot(d*100,T,‘-p’);

xlabel(‘Distance d in cm);

ylabel(‘Tension in string in N’);

grid on;

[Tmin, I]=min(T);

fprintf(‘Minimum tension is %g N at %g cm’,Tmin,d(I)*100)

The output is given in Fig. ES7.4(b).

5 10 15 20 25 30 35 40 45 50
400

600

800

1000

1200

1400

1600

1800

2000

2200

T
e

n
s
io

n
in

s
tr

in
g

in
(N

)

Distance d in cm

Fig. ES7.4 (b)

O

T

W

θ

 Fig. ES7.4 (a)

420 ——— MATLAB: An Introduction with Applications

Sanjay\F:\Final\Chapter-7A\10\10\08\IIIrd Proof

At the command prompt following output is obtained:

>> Minimum tension is 400.08 N at 35 cm.

Example ES7.5: Figure ES7.5 shows the location of the center of gravity of a 5000 N truck for the unloaded
condition. The location of the added load WL is at a distance of x inches behind the rear axle. Write a
MATLAB program and plot WL as a function of x for x ranging from 0 to 60 mm.

F R

W

L

x
70mm50mm

L

Fig. ES7.5

Solution: Free-body diagram of the system is shown in Fig. ES7.5(a).
The equilibrium equations can be written as
Moment about rear wheel axle:

() ()0 5000 70 120 0Σ = = − − =R LM N W x

0 5000 0Σ = = + − − =y LF N N W
Solving the above equations for WL, we obtain

()
5000
60

=
+LW

x

The plot of WL as a function of x is shown in
Fig. ES7.5 (b) from the following program.

MATLAB Solution:
% Define the range of x for the plot
x = 0:0.05:60;
% Define Wl
Wl=5000/(60 + x);
plot(x, Wl)
% Labels
xlabel (‘x (mm)’)
ylabel (‘Load weight (N)’)
grid on;

F R

WL

5000 N

N N

 Fig. ES7.5 (a)

Engineering Mechanics ——— 421

Sanjay\F:\Final\Chapter-7A\10\10\08\IIIrd Proof

0 10 20 30 40 50 60
400

450

500

550

600

650

700

750

800

850

x (mm)

Lo
ad

 w
ei

gh
t (

N
)

Fig. ES7.5 (b)

Example ES7.6: Figure ES7.6 shows a container of weight W suspended from ring C to which cable CB of
length 6 m and spring AC are attached. Write a MATLAB program to determine the tension in the cable
when W = 150 N. Given: The spring constant as 120 N/m, and its unstreched length as 4 m.

A B

6m

C Ring

W

Spring

7m

Fig. ES7.6

Solution: Free-body diagram of the system is shown in Fig. ES7.6 (a).

ΣFx = 0 ⇒ TBC
. cos φ – TAC cos θ = 0 ...(1)

ΣFy = 0 ⇒ TBC
. sin φ + TAC sin θ – W = 0 ...(2)

Geometry: u2 = 62 + 72 – 2(6) (7) cos φ = 78 – 84 cos φ ...(3)
6

sin sin
=

φ θ
u

...(4)

Stiffness: TAC = k (u – u0) = 120(u – 4) ...(5)

Replacing TAC in terms of u, the problem reduces to find four unknowns, TBC, u, θ and φ.
Calling them respectively as x1, x2, x3, x4 following MATLAB program is developed to solve the equations.

 Fig. ES7.6 (a)

422 ——— MATLAB: An Introduction with Applications

Sanjay\F:\Final\Chapter-7A\10\10\08\IIIrd Proof

MATLAB Program:
eq1=‘x1*cos(x4)–120*(x2-4)*cos(x3)=0’
eq2=‘x1*sin(x4)+120*(x2-4)*sin(x3)–150=0’
eq3=‘x2^2–78+84*cos(x4)=0’
eq4=‘x2–6*sin(x4)/sin(x3)=0’;
[x1,x2,x3,x4]=solve(eq1,eq2,eq3,eq4)

This gives output as set of solutions. Choose by proper reasoning following values are obtained.
Output is x1= TBC = 60.509 N and x2 = u = 4.921 m, x3 = tan–1 (0.9365) and x4 = tan–1(0.7681).

Example ES7.7: Figure ES7.7 shows the members CJ and CF of
the loaded truss cross which are not connected to members BI
and DG. Determine the values of α for which the truss cannot
be in equilibrium. Write a MATLAB program to plot the forces
in members BC, JC, IC and IG as a function of α.

Solution: Free-body diagram is shown in Fig. ES7.7 (a).
First we determine the reaction force at J from a free-body diagram
for the entire truss.

ΣMF = 0 = 6 sin θ(12) – 6 cos θ(4) + 4(9) + 10(6) + 8(3) – Jy (12)

 Jy = 10 + 6 sin θ – 2 cos θ

Note that the rocker can only exert an upward force at A. Thus,
to be in equilibrium, Jy must be positive. Since sin θ and cos θ
vary between plus and minus one, the above equation
indicates that Jy will be positive for all θ. Thus, the truss will
be in equilibrium for all values of θ.

To obtain the required forces we now consider free-body
diagrams for joints A, J and I. Note that each member is assumed
to be in tension. Thus, positive answers will imply tension and
negative answers compression. Also note the order in which the
joints are analysed. In each case there are only two unknown forces.

Joint A:
ΣFx = 0 = AB + 6 cos θ, ΣFy = 0 = – 6 sin θ – AJ
AJ = – 6 sin θ, AB = – 6 cos θ

Note that AB = BC since BI is a zero-force member.

Joint J:

ΣFx = 0 = IJ +
3
13

JC, ΣFy = 0 = AJ + Jy +
2
13

JC

JC = –
13
2

(AJ + Jy) = –
13
2

(10 – 2 cosθ)

 6 kN

Joint A

AB

AJ

θ

Joint J
IJ

AJ

3

2
JC

Jy

3m3m3m3m

6 kN

4 kN 10 kN 8 kN

4m

θ

Fx

FyJy

 Fig. ES7.7 (a)

C 3m3m3m3m

A B D E

F

GHI

J

6 kN

5 kN 12 kN 10 kN

4m

θ

Fig. ES7.7

Engineering Mechanics ——— 423

Sanjay\F:\Final\Chapter-7A\10\10\08\IIIrd Proof

IJ = – 3
13

JC = 15 – 3 cos θ

Joint I:

ΣFx = 0 = GI – IJ +
3
5

IC, ΣFy = 0 =
4
5

IC – 4

IC = 5 kN, IG = IJ – 3
5

5 = 12 – 3 cos θ

Note in the above that substitutions have been made in order to express each force explicitly in terms of θ.
This has been done primarily for completeness. The program below shows that the explicit substitution is
not necessary. The computer will substitute automatically provided each force is expressed in terms of
functions that have been previously defined.

MATLAB Program:
th=0:0.05:2*pi;
Jy=10+6*sin (th)–2*cos (th);
AJ=–6*sin (th);
BC=–6*cos (th);
JC=sqrt (13)/2*(AJ + Jy);
IJ=–3/sqrt (13)*JC;
IC=5;
IG=IJ–3;
plot(th,BC,th,JC,th,IC,th,IG)
legend (‘BC’,‘JC’,‘IC’,‘IG’)
xlabel (‘Theta (rads)’)
ylabel (‘Force (kN)’)

Output is shown in Fig. ES7.7(b).

0
–25

–20

–15

–10

–5

0

5

10

15

20

25

1 2 3 4 5 6 7

Theta (rads)

F
o

rc
e

(k
N

)

BC
JC
IC
IG

Fig. ES7.7 (b)

Joint I
IG

0

3
4

IJ

4 kN

IC

424 ——— MATLAB: An Introduction with Applications

Sanjay\F:\Final\Chapter-7A\10\10\08\IIIrd Proof

Example ES7.8: In Fig. ES7.8 rod CB is held by a cord AC which has a tension T.

A B

C

320mm

600mm

d

Fig. ES7.8

Write a MATLAB program to determine,
(a) the moment about B of the force exerted by the cord at point C as a function of the tension T and

the distance d.
(b) plot the moment about B for 300 mm ≤ d ≤ 1000 mm when (i) T = 60 N, (ii) T = 80 N,

(iii) T = 110 N.

Solution: Free-body diagram is shown in Fig. ES7.8 (a).

The length of AC is from the figure,

AC = 2 2(600) (320)+ + c
For the angle α we have

320cos +α = c
AC

600sin α =
AC

The tension T is given by
T = –T cos αi – T sin j

and the position vector from point B as
r = 320i + 600j

The moment about point B is
MB = r × T = (320i + 600j) × (– cos αi – sin αj) T
= T (600 cos α – 320 sin α) k

The magnitude of the moment is

2

600
640 462400

=
+ +

B
TcM

c c

[600(320) 320(600)]= + −B
TM c

AC

2 2

600
(600) (320)

=
+ +

B
TcM

c

A B

C

d

320mm

600mm

!

Fig. ES7.8 (a)

Engineering Mechanics ——— 425

Sanjay\F:\Final\Chapter-7A\10\10\08\IIIrd Proof

or 2

600
640 4624000

=
+ +

B
TcM

c c

MATLAB Program:
c=[320:1:960];

Mb1=600*60*c./(sqrt(c.^2+640*c+462400));

Mb2=600*80*c./(sqrt(c.^2+640*c+462400));

Mb3=600*110*c./(sqrt(c.^2+640*c+462400));

plot(c,Mb1,c,Mb2,c,Mb3)

legend(‘T=60 N’,‘T=80 N’,‘T=110 N’,2)

xlabel(‘c(mm)’)

ylabel(‘Moment(N mm)’)

grid on

Output is shown in Fig. ES7.8(b).

300 400 500 600 700 800 900 1000
1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

c(mm)

M
o

m
e

n
t

(N
. m

m
)

T = 60N

T = 80N

T = 110N

Fig. ES7.8 (b)

Example ES7.9: Figure ES7.9 shows a frame in which the structural members support the 5 kN load. The
load may be applied at any angle α (–90º to + 90º). The pins at A and B need to be designed to support the
maximum force transmitted to them. Write a MATLAB program to plot the forces at A and B as a function
of α and find their maximum values and corresponding angles α.

426 ——— MATLAB: An Introduction with Applications

Sanjay\F:\Final\Chapter-7A\10\10\08\IIIrd Proof

!

A B
C

D

3 kN

400mm

300mm

700mm700mm

Fig. ES7.9

Solution: Free-body diagram of ABC is shown in Fig. ES7.9(a).
Note that member BD is a two-force member, thus the direction of the force B is from B to D. The equilibrium
equations are,

ΣMA =
4
5

B (0.6) – 5 cos α(1.4) = 0

 ΣFx = Ax –
3
5

B + 5 sin α = 0

 ΣFy = Ay +
4
5

B – 5 cos α = 0

Solving these equations yields,

 B = 12.5 cosα, Ax= 0.6 B –5 cosα and Ay=5 cosα – 0.8B

 2 2= +x yA A A

Substitution and simplification yields

 2 281.25cos 25sin 75cos sinA = α + α − α α

Maximum value of A is obtained from MATLAB program while maximum value of B is 12.5 N at α = 0.

The maximum value of A and the corresponding angle α will be found in the MATLAB program.

MATLAB Program:
al=–pi/2:0.01:pi/2;
B=12.5*cos(al);
Ax=0.6*B–5*sin(al);
Ay=5*cos(al)–0.8*B;
A=sqrt(Ax.^2+Ay.^2);
[Amax,K]=max(A);
plot(al,B,al,A)
legend(‘A’,‘B’)
xlabel(‘Alpha (rad)’)
ylabel(‘Force (kN)’)
fprintf(‘Maximum value of A=%f and corresponding angle =%f\n’,Amax,al(K)*180/
pi);

B

!0.7m 0.7m

4
3

Ay

 Fig. ES7.9 (a)

Engineering Mechanics ——— 427

Sanjay\F:\Final\Chapter-7A\10\10\08\IIIrd Proof

Output is shown in Fig. ES7.9 (b).

–2 –1.5 –1 –0.5 0 0.5 1 1.5 2
0

2

4

6

8

10

12

14
F

o
rc

e
(k

N
)

Alpha (rad)

A
B

Fig. ES7.9 (b)

Example ES7.10: Figure ES7.10 shows a uniform quarter-circular member of mass m lying in the vertical
plane and hinged at A and supported against the vertical wall by a small roller at B.

S

A

B

R

α

Fig. ES7.10

(a) Derive expressions for the shear force V, the compressive force C, and the bending moment M
due to the weight of the member.

(b) Write a MATLAB program to plot the non-dimensional forces and moment (V/mg, C/mg and
M/mgR) as a function of the section orientation angle α.

 (c) Determine the maximum bending moment and its location angle α.

428 ——— MATLAB: An Introduction with Applications

Sanjay\F:\Final\Chapter-7A\10\10\08\IIIrd Proof

Solution: First consider the free-body diagram for the entire member. The centroid for a quarter-circular arc
is 2r/π. (see the Fig. ES7.10(a)). All we need from this free-body diagram is the force B, which we can find
by summing moments about A.

ΣMA = 0 = Br – mg
2 

  π
r

;
2= mgB

k

r G

B

x

mg

ry

2r/$

Ax

Ay

Br

W

V

S

M

C

" /2

/2
r

r

"

r sin "

cos (/2) – r cos" "

Fig. ES7.10(a)

Now we construct another free-body diagram by cutting through at an arbitrary angle θ as shown to the
figure above. From Table D/3, the centroid r is,

sin(/2) 2 sin(/2)
/2
θ θ

= =
θ θ

r rr

The weight W of the section in the diagram will be mg (the total weight of the member) times the ratio of the
length of the section (rθ) to the total length of the member (rπ/2). Thus,

2
/ 2
θ θ= =

π π
rW mg mg

r
Now we sum moment about S. For sake of clarity, the moment arms for W and B are shown in the diagram.

ΣMS = 0 = M + W(r cos (θ/2) – r cos θ) – Br sin θ

Substitution and simplification yields,

2 2
(cos sin 2sin(/2)) cos= θ θ + θ − θ = θ θ

π π
mgr mgrM

Summing forces in the x and y directions gives the following two equations,

ΣFx = 0 = C sin θ + V cos θ – B, ΣFy = 0 = C cos θ – V sin θ – W

Solving these two equations followed by substitution and simplification yields,

2 (cos sin)= θ θ + θ
π
mgC ;

2 (cos sin)= θ − θ θ
π
mgV

In non-dimensional form we have,

2 cos= θ θ
π

M
mgr

; 2 (cos sin)= θ θ + θ
π

C
mg

; 2 (cos sin)= θ − θ θ
π

V
mg

Engineering Mechanics ——— 429

Sanjay\F:\Final\Chapter-7A\10\10\08\IIIrd Proof

The maximum moment and where it occurs will be found in the worksheet below. The results are,
Mmax = 0.357 mgr at θ = 0.860 radians (49.3º).

Complete MATLAB program is given below:

MATLAB Program:
%%%%%%%%%%%%%%%%%%Script #1%%%%%%%%%%%%%%%%%%%%
%This script plots the non-dimensional forces C and V as % functions of theta.
theta=0:0.01:pi/2;
C=2/pi.*(theta.*cos(theta)+sin(theta));
V=2/pi.*(cos(theta)–theta.*sin(theta));
plot(theta*180/pi,C,theta*180/pi,V)
legend(‘C’,‘V’)
xlabel(‘Theta(deg)’)
title(‘Non-dimensional Forces’)
%%%
Output is shown in Fig. ES7.10(b).

0 10 20 30 40 50 60 70 80 90
–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

Theta (deg)

Non-dimensional forces

C
V

Fig. ES7.10 (b)

% This script plots the non-dimensional bending moment
% as a function of theta
theta = 0:0.01:pi/2;
M = 2/pi*theta.*cos (theta);
plot (theta*180/pi, M)
xlabel (‘Theta (deg)’)
Title(‘Non-dimensional bending moment’)

430 ——— MATLAB: An Introduction with Applications

Sanjay\F:\Final\Chapter-7A\10\10\08\IIIrd Proof

0 10 20 30 40 50 60 70 80 90
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Theta (deg)

Non-dimensional bending moment

Fig. ES7.10(c)

% This program finds the maximum moment
% using MATLAB’s max function
theta=0:0.01:pi/2;
M=2/pi*theta.*cos(theta);
[M_max, i]=max (M)
theta_max=theta (i)

Output is shown below:
M_max =
 0.3572
i =
 87
theta_max =
 0.8600

%This script plots y versus x using the values of T0
%found in the previous script

y = inline(‘T0./0.1177.*(cosh (0.1177.*x./T0)–1)’);
x = –150:1:150;
y10 = 132.61./0.1177.*(cosh(0.1177.*x./132.61) –1);
y30 = 44.71./0.1177.*(cosh(0.1177.*x./44.71) –1);
y60 = 23.16./0.1177.*(cosh(0.1177.*x./23.16) –1);
plot (x, y10, x, y30, x, y60)
xlabel (‘x (m)’)
ylabel (‘y (m)’)

Engineering Mechanics ——— 431

Sanjay\F:\Final\Chapter-7A\10\10\08\IIIrd Proof

The output is shown in Fig. ES7.10 (d).

–150 –100 –50 0 50 100 150
0

10

20

30

40

50

60

x(m)

y
(m

)

Fig. ES7.10(d)

Example ES7.11: Figure ES7.11 shows a slender rod AB of weight W attached to blocks at A and B which
move freely in the guides.

(a) Derive a relationship between α, W, L and k that need to be satisfied for the rod to be in
equilibrium. The spring constant is k, W = 20 N and L = 50 mm.

(b) Write a MATLAB program to compute and plot k as a function of α for 15º ≤ α ≤ 40º.
(c) Determine the two values of α corresponding to equilibrium when k = 0.8 N/mm.

A

C

B

W

L

α

Fig. ES7.11

Solution: Refer to the free-body diagram shown in Fig. ES7.11(a).

If x is equal to the elongation of the spring, then
x = AC + BC – L
 = L (sin α + cos α – 1)

432 ——— MATLAB: An Introduction with Applications

Sanjay\F:\Final\Chapter-7A\10\10\08\IIIrd Proof

The tension in the spring is given by
T = kx = kL (sin α + cos α – 1)

The moment about point D gives

 ΣMD = 0: T (L sin α) – T(L cos α) + W
1 cos
2

 α  
L = 0

or, T (sin α – cos α) +
2

W
cos α = 0

Substituting for T gives

kL (sin α + cos α – 1) (sin α – cos α) +
2

W
cos α = 0

(sin α + cos α – 1) (tan α – 1) +
2

W
cos α = 0

and 2kL
W

= (sin α + cos α – 1) (1 – tan α)

For W = 20 N and L = 50 mm.

20

=
100(sin + cos –1)(1 – tan)α α α

k

1

5(sin cos 1)(1 tan)
=

α + α − − α

MATLAB Program:
syms pt real % DEFINING pt and real as symbolic quantities

W=20;

L=50;

K=0.8;

rhs=W/(2*K*L);

Tha=[15:0.1:40];

t=Tha*pi/180;

k=1./(5*(sin(t)+cos(t)–1).*(1–tan(t)));

plot(Tha,k)

xlabel(‘Theta(deg)’)

ylabel(‘Spring constant k (N/mm)’)

grid on

eq1=(sin(pt)+cos(pt)–1)*(1–tan(pt))–rhs;

[pt]= solve(eq1);

Ang = real(double(pt));

Theta = Ang*180/pi;

fprintf(‘The calculated angles for Theta are:%8.2fdegrees\n’,Theta)

A

A

B

B

T

C

T
W

Lsin

L cos
!

D

!

!

!

½ L cos

Fig. ES7.11(a)

Engineering Mechanics ——— 433

Sanjay\F:\Final\Chapter-7A\10\10\08\IIIrd Proof

Output is shown in Fig. ES7.11 (b).

15 20 25 30 35 40
1

1.5

2

2.5

3

3.5

Theta (deg)

S
p
ri
n
g

c
o
n
s
ta

n
t
k

(N
/m

m
)

Fig. ES7.11(b)

The calculated angles for Theta are: –132.18 degrees
The calculated angles for Theta are: 21.09 degrees
The calculated angles for Theta are: 21.09 degrees.

Example ES7.12: Figure ES7.12 shows the loading on a semicircular member. The radius of the semicircular
member is 25 mm. Write a MATLAB program to plot the internal forces, namely, the axial forces, shearing
force and bending moment as functions of α for 0 < α < 90º.

A B!

25mm

200N

300N

x

y

Fig. ES7.12

Solution: Figure ES7.12 (a) shows free-body diagram of the system.

434 ——— MATLAB: An Introduction with Applications

Sanjay\F:\Final\Chapter-7A\10\10\08\IIIrd Proof

For 0 ≤ α ≤ 90º:
Axial force 200sin 150cos= α + αC
Shear force 200cos 150sin= α − αV
Moment M = – 200r sin α + 150 r (1 – cos α)

Plot these values as a function of θ for 0° ≤ θ ≤ 90º with r = 25 mm
using following MATLAB function.

MATLAB Program:
r=25;
alpha = 0:5:90;
alprad = alpha*pi/180;
C=200.*sin(alprad)+150.*cos(alprad);
V=200.*cos(alprad)–150.*sin(alprad);
M=–200*r.*sin(alprad)+150*r*(1–cos(alprad));
subplot(3,1,1);
plot(alpha,C,‘–p’);
ylabel(‘Axial force (N)’);grid on;
subplot(3,1,2);
plot(alpha,V, ‘–p’);
ylabel(‘Shear force (N)’);
grid on;
subplot(3,1,3);
plot(alpha,M,‘–p’);
ylabel(‘Moment(Nm)’);
xlabel(‘Angle (degree)’);
grid on;

Output is shown in Fig. ES7.12 (b).

0 10 20 30 40 50 60 70 80 90
150

200

250

–200

0

200

0 10 20 30 40 50 60 70 80 90

A
x
ia

l
fo

rc
e

(N
)

S
h
e
a
r

fo
rc

e
(N

)

C
V

!

M

200 N

150 N

 Fig. ES7.12(a)

Engineering Mechanics ——— 435

Sanjay\F:\Final\Chapter-7A\10\10\08\IIIrd Proof

Angle (degree)

–3000

–2000

–1000

0

0 10 20 30 40 50 60 70 80 90

M
o
m

e
n
t
(N

m
)

Fig. ES7.12(b)

Example ES7.13: In figure ES7.13, the spring is unstretched when α = 0 and k is the spring constant. Write
a MATLAB program to compute and plot the mass m corresponding to equilibrium as a function of α for
values of α from 0° to 90º. Find the value of α corresponding to equilibrium m = 2.5kg. Given R = 210 mm,
d = 50 mm and k = 1.2 kN/m.

m

C

R
!k

A

B

d

Fig. ES7.13

Solution: The free-body diagram is shown in Fig. ES7.13 (a).

C

R

!A

B

T

Tx

Ty

W = mg

R sin

Rcos!

!

d

Fig. ES7.13 (a)

The length of spring AB is
ABx = d – R cos α
ABy = R sin α

2 2= +x yAB AB AB

436 ——— MATLAB: An Introduction with Applications

Sanjay\F:\Final\Chapter-7A\10\10\08\IIIrd Proof

The tension in the spring is
T = k[AB – (d – R)]

The vertical component Ty

= y
y

AB
T T

AB
Summing moments about point C gives

 ΣMC = 0:

 Tyd – mgR = 0; = y
dm T

Rg

For this MATLAB program is as follows:
% Input Data
syms d R al g k real
ABx=d–R*cos(al);
ABy=R*sin(al);
AB=sqrt(ABx^2+ABy^2);
T=k*(AB–(d–R));
Ty=T*ABy/AB;
m=Ty*d/(R*g);
u=Ty*d–2*R*g;
u=subs(u,{R,g,d,k},{0.21,9.81,0.5,1200});
m=subs(m,{R,g,d,k},{0.21,9.81,0.5,1200});
th=solve(u,al);
Angle=th*180/pi;
Alpha=double(Angle)
td=[0:5:90];
ang=td*pi/180;
yd=subs(m,al,ang);
%
plot(td,yd)
xlabel(‘Alpha(deg)’)
ylabel(‘Mass m,(kg)’)
grid on
Output is as follows along with Fig. ES7.13 (b).

Alpha =
 1.0e+002*
–0.0957+0.1850i
 1.7683
–0.0957–0.1850i
 0.2271

Engineering Mechanics ——— 437

Sanjay\F:\Final\Chapter-7A\10\10\08\IIIrd Proof

Alpha (deg.)

0 10 20 30 40 50 60 70 80 90
0

5

10

15

20

25

30

M
a
s
s

m
(k

g
)

Fig. ES7.13 (b)

Example ES7.14: Figure ES7.14 shows a cable loaded uniformly along the horizontal, which has a mass of
15 kg per metre of its own length and supports its own weight only.

(a) Determine the tension at mid length, the maximum tension and the total length of the cable for
H = 10, 20, 30, 40, 50, 60, 70 and 80 metres.

(b) Write a MATLAB program to plot y as a function of x for the above values of H.

500m

80my

x

Fig. ES7.14
Solution: For a uniformly distributed load, we have a catenary shape for the cable. The curve assumed by
the cable y(x) is given by

0

0

cos 1T xy h
T

 µ= − µ  

where µ = weight per unit length= (15)(9.81)(10–3) = 0.1472 kN/m. To find the tension at mid length (T0) we
substitute x = 250 m and y = h, giving

0

0

250cos 1Th h
T

 µ= − µ  

To use the solve function in MATLAB, we first need to re-write the above in terms of a function f whose
root (zero) provides the solution to the original equation.

438 ——— MATLAB: An Introduction with Applications

Sanjay\F:\Final\Chapter-7A\10\10\08\IIIrd Proof

0

0

250 0.1472cosh 1
0.1472

 ×= − −  
Tf h

T

The roots of this equation will be obtained for the three specified values of h. With T0 known we can easily
find the maximum cable tension Tmax (with y = h) and the total length of the cable (Lc = 2s) (with x = 250 m).

max 0T T h= + µ

0

0

2 2502 sinh
 µ= =  µ  c

TL s
T

MATLAB Program:
% This script finds the roots (T0) of function f
%(see problem formulation) for h= 10,30,and
% 60 meters. the maximum tension and total cable
%length is then found for the same values of h.

f=’h–T0/0.1472*(cosh(0.1472*250/T0)–1)’
f10=subs(f,‘h’,10);
T0_10=solve(f10,‘T0’)
f30=subs(f,‘h’,30);
T0_30=solve(f30,‘T0’)
f60=subs(f,‘h’,60);
T0_60=solve(f60, ‘T0’)
% Now we find the maximum cable tension.
Tm=inline(‘T0+0.1472*h’)
Tmax_10=Tm(T0_10,10)
Tmax_30=Tm(T0_30,30)
Tmax_60=Tm(T0_60,60)
% Next we determine the total length of the cable.
Lc=inline(‘2*T0/0.1472*(sinh(0.1472*250/T0))’)
Lc_10=Lc(T0_10)
Lc_30=Lc(T0_30)
Lc_60=Lc(T0_60)

Output is:
f =
h–T0/0.1472*(cosh(0.1472*250/T0)–1)
T0_10 =
460.24512430858055194348798961110
T0_30 =
154.06375896035471416316009559463

Engineering Mechanics ——— 439

Sanjay\F:\Final\Chapter-7A\10\10\08\IIIrd Proof

T0_60 =
78.095825828643598721536606035324
Tm =
 Inline function:
 Tm(T0,h) = T0+0.1472*h
Tmax_10 =
461.71712430858055194348798961110
Tmax_30 =
158.47975896035471416316009559463
Tmax_60 =
86.927825828643598721536606035324
Lc =
 Inline function:
 Lc(T0) = 2*T0/0.1472*(sinh(0.1472*250/T0))
Lc_10 =
500.53293571245060777586927743822
Lc_30 =
504.76817584749182092133632282053
Lc_60 =
518.71022894786080143160489959183
The results are summarized as follows:

h(m) T0 (kN) Tmax (kN) Lc (m)
10 132.6 133.8 300.9
30 44.7 48.2 307.9
60 23.2 30.2 329.9

Example ES7.15: For the system shown in Fig. ES7.15, obtain the force in each member of the truss as a
function of d. Write a MATLAB program to plot the force in each member for 30 mm ≤ d ≤ 250 mm.

B

C

A

60 mm

170 mm

d

35 kN

Fig. ES7.15

440 ——— MATLAB: An Introduction with Applications

Sanjay\F:\Final\Chapter-7A\10\10\08\IIIrd Proof

Solution: Free-body diagram is given in Fig. ES7.15(a).

The length of AB and BC is given by
2 2(60)= +AB d

2 2(172)= +BC d

and the angles θ and β by

60sin θ =
AB , cosθ = d

AB

sinβ = d
BC ,

170cosβ =
BC

Reactions:
ΣFx = 0: Ax – Cx = 0
ΣFy = 0: Ay – 35000 = 0, Ay = 35000
ΣMC = 0: d(35000) – 230 Ax = 0

Thus
35000

230
=xA d = 152.17d = Cx

Joint A and C: (Fig. ES7.15 (b))

35000

119.05d

FAB

FAC

A

"

119.05d

%

FBC

C

Fig. ES7.15 (b)

For A:
ΣFx = 0: 152.17d – FAB cos θ = 0

or (152.17)=AB
ABF d
d

FAB = 152.17AB N(Tension)

ΣFy = 0: 35000 – FAC – FAB sin θ = 0

or
6035000 152.17ACF AB
AB

 = −   

 Fig. ES 7.15(a)

B

C

A60mm

170 mm

d

35 kN

Cx

A

Ay

"

%

x

Engineering Mechanics ——— 441

Sanjay\F:\Final\Chapter-7A\10\10\08\IIIrd Proof

FAC = 25868.9 N(Tension)
For C:
ΣFy = 0: 25869 – FBC cos β = 0

or
170

=BC
BCF 25868.9

FBC = 152.17BC N(Compression)

MATLAB Program:
d=30:10:250;
AB=sqrt(d.^2+60^2);
BC=sqrt(d.^2+170^2);
Fab=152.17*AB;
Fac=25868.9+0*d;
Fbc=–152.17*BC;
plot(d,Fab,‘-p’,d,Fac,‘-*’,d,Fbc,‘–o’)
xlabel(‘d(mm)’)
ylabel(‘Member force(N)’)
legend(‘FAB’,‘FAC’,‘FBC’)
grid on

Output is shown in Fig. ES7.15 (c).

0 50 100 150 200 250
–5

–4

–3

–2

–1

0

1

2

3

4
x 10

4

d(mm)

M
e
m

b
e
r

fo
rc

e
(N

)

FAB

FAC

FBC

Fig. ES7.15 (c)

442 ——— MATLAB: An Introduction with Applications

Sanjay\F:\Final\Chapter-7A\10\10\08\IIIrd Proof

Example ES7.16: Figure ES7.16 shows a curved beam member AB which is a parabola and the vertex is at
A and A = nH. Write a MATLAB program to determine,

(a) the internal forces and bending moment at an arbitrary point C.
(b) plot the internal forces and bending moment as a function of x for 0.1A ≤ x ≤ 0.9A.

Given: The magnitude of the vertical load F = 1.5 kN, A = 500 mm and n = 2, 3, 4.

C

B

A

H

x

F

Fig. ES7.16

Solution: Free-body diagram is given in Fig. ES7.16(a).

!

A
x

y

Bx

By

x

y

H

1.5 kN

=nH

!

y

1.5 kN

1.5 kN
x

V

M

C

N

Fig. ES7.16 (a)

Summing forces and moments yields

ΣFy = 0: By – 1.5 = 0

or By = 1.5 kN

ΣMB = 0: 1.5(L) – A(H) = 0

or A = 1.2
A
H = 1.5n kN

For a parabola y = kx2, then we have

 h = kA2 = k(nH)2

and 2

1=k
Hn

Engineering Mechanics ——— 443

Sanjay\F:\Final\Chapter-7A\10\10\08\IIIrd Proof

Arbitrary section AJ:
At an arbitrary point C, we have

slope = 2

2=dy x
dx Hn

and 2

2tan α = x
Hn or, 1

2

2tan x
Hn

−  α =   

At an arbitrary section AC:
ΣMJ = 0: 1.5(x) – 1.5n(y) – M = 0
or M = 1.5(x – ny)

2

21.5
 

= −  
nxx
Hn

1.5 1 xM x
Hn

 = −  

Summing forces gives:
ΣFN = 0: N – 1.5(sin α) – 1.5n(cos α) = 0
or N = 1.5(sin α – n cos α)
ΣFV = 0: –V – 1.5(cos α) + 1.5n(sin α) = 0
or V = 1.5(n sin α – cos α)
With A = 0.5 m = Hn

1.5 1
0.5

 = −  
xM x

where 1 12tan tan
0.25

− −   α = =      A
x x
n n

MATLAB program for this problem is given below:
syms n t real

L=0.5;

x1=0.1*L;

xf=0.9*L;

N= inline(‘1.5*(sin(atan(5*x/n))+n*cos(atan(5*x/n)))’,‘x’,‘n’);

V= inline(‘1.5*(n*sin(atan(5*x/n))–cos(atan(5*x/n)))’, ‘x’,‘n’);

x=[x1:0.01:xf];

M=1.5*x.*(1-x./0.5);

figure(1)

plot(x,N(x,2),x,N(x,3),x,N(x,4));

444 ——— MATLAB: An Introduction with Applications

Sanjay\F:\Final\Chapter-7A\10\10\08\IIIrd Proof

xlabel(‘x(m)’)

ylabel(‘Normal force(kN)’)

legend(‘n=2’,‘n=3’,‘n=4’,4)

grid on

figure(2)

plot(x,V(x,2),x,V(x,3),x,V(x,4));

xlabel(‘x(m)’)

ylabel(‘Shear force(kN)’)

legend(‘n=2’,‘n=3’,‘n=4’,2)

grid on

figure(3)

plot(x,M)

xlabel(‘x(m)’)

ylabel(‘Moment(kN.m)’)

grid on

Output of the program is shown in Figures ES7.16 (b), (c) and (d).

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
3

3.5

4

4.5

5

5.5

6

6.5

x(m)

N
o
rm

a
l
fo

rc
e

(k
N

)

n = 2

n = 3

n = 4

Fig. ES7.16(b)

Engineering Mechanics ——— 445

Sanjay\F:\Final\Chapter-7A\10\10\08\IIIrd Proof

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
–1.5

–1

– 0.5

0

0.5

1

1.5

2

n = 2

n = 3

n = 4
S

h
e
a
r

fo
rc

e
(k

N
)

x(m)

Fig. ES7.16(c)

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

M
o

m
e

n
t

(k
N

.
m

)

x(m)

Fig. ES7.16(d)

Example ES7.17: Write a MATLAB program to plot the shear and bending moment diagrams for the beam
shown in Fig. ES7.17. The length of the beam A = 4 m and w0 = 20 kN/m.

446 ——— MATLAB: An Introduction with Applications

Sanjay\F:\Final\Chapter-7A\10\10\08\IIIrd Proof

w = w0

Fig. ES7.17

Solution: It is known that

= −dV w
dx ...(1)

=dM V
dx ...(2)

Integrating equations (1) and (2), we get

0 0 1sin cosπ π= − = = +
π∫ ∫ A A

x L xV wdx w dx w C

2

0 1 0 1 2cos sinπ π   = = + = + +      π π∫ ∫ A A
A A
x xM Vdx w C dx w C x C

The boundary conditions are written as

At x = 0:
2

0 1 2
(0)0 sin (0)π = = + +  π

A
A

M w C C , which implies that C2 = 0.

At x = A:
2

0 10 sin π = = +  π
A A A

A
M w C , which implies that C1 = 0.

Hence, 0 cos π=
π
A

A
xV w ,

2

0 sin π =   π
A

A
xM w .

MATLAB Solution:
% Input w0 and l
w0=20;
l = 4;
x = [0:0.1:4];
v1 = w0*(l/pi)*cos(pi*x/l);
m1= w0*(l/pi)^2*sin(pi*x/l);
plot(x,v1)
xlabel(‘x(m)’)
ylabel(‘Shear force (kN)’)
grid on
plot(x,m1)
xlabel(‘x,(m)’)
ylabel(‘Bending moment kN-m)’)

Engineering Mechanics ——— 447

Sanjay\F:\Final\Chapter-7A\10\10\08\IIIrd Proof

Output for this program is shown in Figs. ES7.17 (a) and (b).

0 0.5 1 1.5 2 2.5 3 3.5 4
–30

–20

–10

0

10

20

30

x(m)

S
h
e
a
r

fo
rc

e
(k

N
)

Fig. ES7.17(a)

B
e
n
d
in

g
m

o
m

e
n
t
(K

N
-m

)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

5

10

15

20

25

30

35

x(m)

Fig. ES7.17(b)

Example ES7.18: Figure ES7.18 shows a crank shaft mechanism where a couple M is applied to the crank
AB to maintain the equilibrium of the system. The force applied to the system is F.

A
C

B

F

M
!

a

�

Fig. ES7.18

448 ——— MATLAB: An Introduction with Applications

Sanjay\F:\Final\Chapter-7A\10\10\08\IIIrd Proof

Write a MATLAB program to plot the ratio of M/F as a function of crank angle α from 0 to 180 degrees.
Given a = 50 mm and A = 150 mm. Determine the value of crank angle α for which the ratio M/F is maximum
and the corresponding value of M/F.

Solution: Free-body diagram of the system is shown in Fig. ES7.18 (a).

Applying the law of cosines, we get

() ()()22 2 2 cos= + − αA CA a CA a

or () ()()2 2 22 cos =CA CA a a− α −A

Solving the above quadratic equation, we get

() () 1/ 22 2 22 cos 2 cos 4

2

 α + α + − =
Aa a a

CA

Differentiating gives

()
() ()

2

2 2 2

4 cos sinsin
2 cos 4

aCA a
a a

α α δα
δ = − α δα −

 α + − A

Applying the principle of virtual work, we get

() 0δ = − δ − δα =U P CA M

or ()
() ()

2

2 2 2

4 cos sinsin
2 cos 4

M aCA a
P a a

α α
= − δ = α +

 α + − A

MATLAB Solution:
% Program inputs: a and
a = 0.050;
l = 0.150;
alpha = Ho:1:180;
alpha=alpha*pi/180;
den=sqrt(4*(l^2–a^2)+4*a^2.*(cos(alpha)).^2);
mbf=a.*sin(alpha)–2*a^2.*cos(alpha).*sin(alpha)./den;
[mbfmax,i]=max(mbf);
vt=alpha(i);
mbfMax=mbfmax
plot(alpha,mbf)
grid on
xlabel(‘Angle alpha (degree)’)
ylabel(‘M/F (meter)’)
fprintf(‘a) Alpha when M/F is a maximum is = %3.0f degrees and M/F =
%6.4f(m)\n’,vt,mbfmax)

 Fig. ES7.18(a)

F
C A M

B

!

a�

Engineering Mechanics ——— 449

Sanjay\F:\Final\Chapter-7A\10\10\08\IIIrd Proof

Output comes like this including Figure ES 7.18 (b).
(a) Alpha when M/F is a maximum is = 93 degrees and M/F = 0.0501(m)>> vt = alpha(i);

0 20 40 60 80 100 120 140 160 180
0

0.01

0.02

0.03

0.04

0.05

0.06

Angle alpha (degrees)

M
/F

(m
e
te

rs
)

Fig. ES7.18(b)

Example ES7.19: The coefficient of friction µ, can be determined by µ = F/mg where F is the measured
force (N), m is the mass (kg) and g = acceleration due to gravity (9.81 m/s2). The following table gives the
experimental data. Determine

(a) the coefficient of friction in each test
(b) the average from all tests.

Test # 1 2 3 4 5 6 7
Mass m (kg) 2 4 5 10 20 50 100
Force F (N) 12.4 23.2 30.5 60.8 116.5 293.8 597.3

Solution: System under equilibrium is shown in Fig. ES7.19.

m F

Coefficient of friction, &

Fig. ES7.19

This is simple application of mathematics.

450 ——— MATLAB: An Introduction with Applications

Sanjay\F:\Final\Chapter-7A\10\10\08\IIIrd Proof

Program is given below:
% Force and mass values in vector form
F=[12.4 23.2 30.5 60.8 116.5 293.8 597.3];
m=[2 4 5 10 20 50 100];
%Coefficient of friction, mu
mu=F./(m*9.81)

Output is given below:
mu=0.6320 0.5912 0.6218 0.6198 0.5938 0.5990 0.6089

Average is obtained as follows:

averagemu=mean(mu)

This gives output as

averagemu = 0.6095

Example ES7.20: Figure ES7.20 shows three flat blocks positioned on an inclined oriented at angle α. Write
a MATLAB program to plot the maximum value of P (if no slipping occurs) versus α. Assume only positive
values of P and indicate the regions over which

(i) the 40 kg block slides alone,
(ii) the 40 kg and 30 kg blocks slide together.

25 kg
40 kg

50 kg

kg

=0.40
0

&
s=0.30

0

P
s= 0.40

30º
s

&

&

Fig. ES7.20

Solution: The free-body diagrams for the three blocks are shown in Fig. ES7.20 (a). To obtain the required
plot it will be convenient to use a slightly different approach than that used in the sample problem in
your text. We start by writing down the equilibrium equations without making any assumptions about
where sliding occurs.

Engineering Mechanics ——— 451

Sanjay\F:\Final\Chapter-7A\10\10\08\IIIrd Proof

25(9.81)N

y
"

x
N1

F1

1

P

y
40(9.81)N

x

N

F2

F1

N

1

x
N

y
30(9.81)N

F3

" "

F2 3

2

1

Fig. ES7.20 (a)

[ΣFy = 0]: 25 kg ; N1 – 25(9.81) cos θ = 0
40 kg ; N2 – N1 – 40(9.81) cos θ = 0
30 kg ; N3 – N2 – 30(9.81) cos θ = 0

These equations can be readily solved for the normal forces.

N1 = 25(9.81) cos θ ; N2 = 65(9.81) cos θ ; N3 = 95(9.81) cos θ
[ΣFx = 0]: 40 kg ; P – F1 – F2 + 40(9.81) sin θ = 0

30 kg ; F2 – F3 + 30(9.81) sin θ = 0

Now we have two equations with four unknowns P, F1, F2 and F3. Note that we have not written the equation
for the summation of forces in the x-direction for the 25 kg block. The reason is that this equation introduces
an additional unknown (T) that we are not interested in determining.

The next step is to make assumptions about which block(s) slide. As will be seen, either of the two
possible assumptions about impending motion will reduce two of the friction forces to functions of θ only.
This will result in two equations that may be solved for P and the remaining friction force. The forces
calculated will be designated P1 or P2 to distinguish the two cases for impending slip.

Case 1: Only the 40 kg block slips.

Impending slippage at both surface of the 40 kg block gives F1 = 0.3N1 = 73.575 cos θ and F2 = 0.4N2 =
255.06 cos θ. Substituting these results into the equilibrium equations yields

 P1 = 328.635 cos θ – 392.4 sin θ

Case 2: The 30 and 40 kg blocks slide together.

Impending slippage at the upper surface of the 30 kg block and lower surface of the 40 kg block gives
F1=0.3N1=73.575 cos θ and F3 = 0.4N3 = 372.78 cos θ. Substitution of these results into the equilibrium
equations gives,

 P2 = 446.355 cos θ – 686.7 sin θ

which of these two values of P represents the maximum load that can be applied without slippage on any
surface is best illustrated by plotting the two expressions as a function of θ. This plot will be generated in
the script below. The basic idea is that at any specified angle θ, the critical or maximum value of P will be
the smaller of two values calculated.

452 ——— MATLAB: An Introduction with Applications

Sanjay\F:\Final\Chapter-7A\10\10\08\IIIrd Proof

MATLAB Program:
theta=0:0.01:pi/4;

P1=328.635*cos(theta)–392.4*sin(theta);

P2=446.335*cos(theta)–686.7*sin(theta);

plot(theta*180/pi, P1, theta*180/pi , P2)

Legend(‘P1’, ‘P2’)

xlabel(‘Theta (degree)’)

ylabel(‘P (N)’)

Figure 3.20(b) shows P1 and P2 plotted as a function of θ. For each θ, the critical or maximum value of P will
be the smaller of two values calculated. By setting P1 = P2 we find that the two curves intersect at θ = 0.503
radian (28.8º). Thus, for θ ≤ 28.8º P controls and the 50 kg block slides by itself while for θ ≤ 28.8º, P2

controls and the 40 and 50 kg blocks slide together.

0 5 10 15 20 25 30 35 40 45
–200

–100

0

100

200

300

400

500

P

P

1

2

Theta (degree)

P
(N

)

Fig. ES7.20 (b)

Example ES7.21: In Fig. ES7.21, the horizontal position of the rectangular block is adjusted by the wedge
under the action of the force P. The wedge angle is α, µ1 and µ2 are the coefficient of the static friction at
the two wedge surfaces and between the block and the horizontal surfaces respectively.

(a) Obtain a general expression for P (the least force required to move the block) in terms of α, µ1

and µ2.
(b) Write a MATLAB program to plot P as a function of µ1 for α = 15°, 20° and 25º; µ2 = 0.5.
(c) For α = 10º, plot P as a function of µ1 for µ2 = 0.2, 0.4, 0.6 and 0.8.

Engineering Mechanics ——— 453

Sanjay\F:\Final\Chapter-7A\10\10\08\IIIrd Proof

600 kg

P

!

Fig. ES7.21

Solution: Free-body diagram of wedge and block is shown in Fig. ES7.21 (a).
P

y

x

α

1Nµ1N

y

x

W

α

2

N2

N1

N2

µ2N3

N3
1

µ

1N2µ

Fig. ES7.21(a)

(a) First we write the equilibrium equations from the free-body diagrams for the wedge and for the
block.

For the Block:
ΣFx = 0 = N2 – µ2N3, ΣFy = 0 = N3 – mg – µ1N2

These two equations are readily solved for N2 and N3.

2
2

1 2

,
1
µ

=
− µ µ

mg
N 3

1 21
=

− µ µ
mgN

For the Wedge:
ΣFx = 0 = N1 cos α – µ1N1 sin α – N2

ΣFy = 0 = N1 sin α + µ1N1 cos α + µ1N2 – P

After substituting for N2 we solve the first equation for N1. Substituting this result into the second yields
an expression for P.

2
2 1 1

1 1 2

(2 (1) tan)
(1 tan)(1)

µ µ + − µ α=
− µ α − µ µ

mgP

This result is used to generate the plots for parts (b) and (c) in the worksheet below.

MATLAB Program:
% This script produces the plot for part(b)
% Note the conversion factor on theta in the following
% function. This allows us to use degrees rather than
% radians when we use P. Also note the division by 1000,

454 ——— MATLAB: An Introduction with Applications

Sanjay\F:\Final\Chapter-7A\10\10\08\IIIrd Proof

% converting to kN.
P=inline(‘.5*600*9.81*(tan(th*pi/180)*(1–mu1^2)+2*mu1)/(1–mu1*tan(th*pi/
180))/(1–mu1*.6)/1000’);
P=vectorize(P);
mu1=0:0.01:0.8;
plot(mu1,P(mu1,15),mu1,P(mu1,20),mu1,P(mu1,25))
legend(‘mu_1=15’,‘mu_1=20’,‘mu_1=25’)
xlabel(‘mu_1’)
ylabel(‘P(kN)’)

Output is shown in Fig. ES7.21(b).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

2

4

6

8

10

12

14

16

µ1

P
(k

N
)

Alfa=15

Alfa=20

Alfa=25

Fig. ES7.21(b)

% This script produces the plot for part(c).

% Note that P is a function of mu1 and mu2 in this case.

% Also note that the division by 1000, converting to kN.

P=inline(‘mu2*600*9.81*(tan(10*pi/180)*(1–mu1^2)+2*mu1)/(1–mu1*tan(10*pi/

180))/ 1–mu1*mu2)/1000’);

P=vectorize(P);

mu1=0:0.01:0.8;

plot(mu1,P(mu1,.2),mu1,P(mu1,.4),mu1,P(mu1,.6),mu1,P(mu1,.8))

legend(‘mu_2=0.2’,‘mu_2=0.4’,‘mu_2=0.6’,‘mu_2=0.8’)

xlabel(‘mu_1’)

ylabel(‘P(kN)’)

Engineering Mechanics ——— 455

The output is shown in Fig. ES7.21 (c).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

5

10

15

20

25

30

µ1

P
(k

N
)

µ
µ
µ
µ

2

2

2

2

= 0.2

= 0.4

= 0.6

= 0.8

Fig. ES7.21 (c)

Example ES7.22: Figure ES7.22 shows a large turnbuckle which supports a cable tension of 12,000 N. The
mean diameter of the two 1.0 mm screws is 1.15 mm and has five square threads per mm. Both screws have
single start threads.

(a) Determine the moments MT and ML that must be applied to the body of the turnbuckle in order
to tighten and loosen it respectively.

(b) Write a MATLAB program to plot the moments MT and ML as functions of µ for 0 ≤ µ ≤ 1, where
µ is the coefficient of friction for the threads.

T T

Fig. ES7.22

Solution: MT and ML can be obtained as

()2 tan= φ + αTM T r ...(1)

and ()2 tan= φ − αLM T r ...(2)

where T = 12,000 N and the lead L = 1/5 mm/rev.
The mean radius is given by r = 1.15/2 = 0.575 mm
We also have

1tan
2

−  
α =  π 

L
r

 and ()1tan−φ = µ ...(3)

From Eqs. (1), (2) and (3), we can compute ML and MT explicitly.

456 ——— MATLAB: An Introduction with Applications

MATLAB Program:
% Input T,L, and r

T=12000;

L=1/5;

r=1.15/2;

alpha = atan(L/2/pi/r);

mu = 0:0.01:1;

phi = atan(mu);

MT = 2*T*r*tan(alpha + phi);

ML=2*T*r*tan(phi–alpha);

% Place a horizontal line at x = 0

M=0*mu;

plot(mu,MT,mu,ML,mu,M)

xlabel(‘Coefficient of friction’)

ylabel(‘Moment (lb–in)’)

text(0.5,5000,’To loosen’)

text(0.3,8000,’To tighten’)

The plot of moments MT and ML as functions of µ for 0 ≤ µ ≤ 1 is shown in Fig. ES7.22(a).

M
o
m

e
n
t
(N

-m
m

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
–2000

0

2000

4000

6000

8000

10000

12000

14000

16000

To tighten

To loosen

Coefficient of friction

Fig. ES7.22 (a)

Example ES7.23: Figure ES7.23 shows a flexible cable which supports the 100 kg load and passes over a
circular drum and is subjected to a force P to maintain equilibrium.

Engineering Mechanics ——— 457

100kg

P
R

O

�

Fig. ES7.23

(a) For θ = 0, determine the maximum and minimum values of P may have in order to raise or lower
the load.

(b) Write a MATLAB program to plot Pmax and Pmin versus µ for 0 ≤ µ ≤ 1, where µ is the coefficient
of static friction between the cable and the fixed drum.

(c) For P = 550 N, determine the minimum value for which the angle θ may have before the load
begins to slip.

(d) Plot θmin versus µ for 0 ≤ µ ≤ 1.

Limit the variation of θ between –60º and 360º.

Solution: Free-body diagram of the circular drum is shown in Figures ES7.23 (a) and (b).

P

O

981 N

O

�

P

981 N

Fig. ES7.23(a) θ= 0, β = π/2 Fig. ES7.23(b) P = 550 N, β= θ+π/2

Here we have 2 1e
µβ=T T (belt friction)

Recall that in deriving this formula it was assumed that T2 > T1.
(a) With θ = 0 the contact angle is β = π/2 rad. For impending upward motion of the load we have

T2 = Tmax and T1 = 981 N. Hence
/ 2

max 981eµπ=P
 For impending downward motion of the load we have T2 = 981 N and T1 = Pmin.

/ 2
min981 eµπ= P or / 2

min 981e−µπ=P

(b) With P = 550 N we have β = π/2 +θ, T2 = 981 N and T1 = P = 550 N. Therefore,
 981/550= eµ(θ+π/2)

458 ——— MATLAB: An Introduction with Applications

The plots are shown in Fig. ES7.23(c) as output of following MATLAB program.

MATLAB Solution:
% Plots of Pmax and Pmin versus coefficient of friction
mu=0:0.005:1;
pmax=981*exp(mu*pi/2)/1000;
pmin=981*exp(–mu*pi/2)/1000;
plot(mu,pmax,mu,pmin)
grid on
xlabel(‘Coefficient of friction’)
ylabel(‘Force P (kN)’)
text(0.7,2.5,’Pmax’)
text(0.6,0.5,’Pmin’)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Pmax

Pmin

F
o

rc
e

P
(k

N
)

Fig. ES7.23 (c)

(c) Taking the natural logarithms on both sides of the above equation and solving for θ gives,

n(981/550)
2
πθ = −

µ

(d) Following program plots minimum value of θ versus µ.
% Plot of minimum angle theta versus mu
mu=0:0.005:1;
thet=log(981/550)./mu–pi/2
plot(mu,thet*180/pi)

Engineering Mechanics ——— 459

axis([1 1 –60 360])
xlabel(‘Coefficient of friction’)
ylabel(‘Theta (degree)’)

Figure ES7.23 (d) shows the output.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

–50

0

50

100

150

200

250

300

350

T
h

e
ta

(d
e

g
re

e
)

Coefficient of friction

Fig. ES7.23(d)

Example ES7.24: Figure ES7.24 shows axle pulley system where the coefficient of friction between cable
ABCD and the pulley varies between 0 and 0.60. Write a MATLAB program to determine,

(a) the values of α for the system to remain in equilibrium
(b) the reactions at A and D
(c) Plot α as a function of the coefficient of friction.

A D

B C

E
F�

80 N

60°60°

Fig. ES7.24

460 ——— MATLAB: An Introduction with Applications

Solution: Free-body diagram and force triangle are given in Figs. ES7.24 (a) and (b).

CB

TCDTAB

60° 60°

α P = 80 N

β

60º

αγ

P

TAB

TCD

 Fig. ES7.24(a) Fig. ES7.24(b)

Since the 80 N force tends to rotate the pulley counterclockwise, the cable tends to slip relative to the
pulley clockwise and we have

 T1 = TCD, T2 = TAB, µs = static friction

2120º
3
πβ = = radians.

From the ratio of belt-tension relations:

2

1

eµ β= s
T
T

 ⇒
2
3e
π µ

= sAB

CD

T
T

or
2
3e s

ABT
π µ

= TCD ...(1)

From the force triangle, we have using the law of cosines
2 2 2 2 cos= + − βAB CD AB CDP T T T T

2 2

23 3 1e 2 e
2

π πµ µ     = + − −         
s s

CD CD CD CDT T T T

22 2
23 3e 1 e

π πµ µ  
 = + +    

s s

CDT

 2 2= CDP FT

where
22 2

3 3e 1 e
π πµ µ  

 = + +    

s sF

Hence, we have that

1=CDT P
F ...(2)

Engineering Mechanics ——— 461

(a) The corresponding values of α for the system to remain in equilibrium. Using the law of sines we
have

sin sinγ β=
CDT P , sin sinγ = βCDT

P
1sin sinγ = β
F , 1 1sin sin−  γ = β  F

 α = 90º – (60° + γ)

(b) The reactions at A and D are as follows:
Substituting P = 80 N in Eq.(2), then

1 (80)= =CDD T
F

N

and from Eq.(1),
2
3 1e (50)
π µ  = =   

s

ABA T
F

N

MATLAB program for this problem is given below:
mu=0;
%Output Headings
fprintf(‘Friction Angle\n’)
fprintf(‘\n’)
ang=120.*pi/180.;
N=1;
while mu<0.60
 Y(N)=mu;
 a=exp(pi*ang*mu);
 E=sqrt(a^2+1.+a);
 ooe=1./E;
 sgamma=ooe*sin(ang);
 Gamma=asin(sgamma);
 alpha(N)=pi/2.–(1.0472+Gamma);
 X(N)=alpha(N)*180/pi;
 D(N)=ooe*80.;
 A(N)=a*D(N);
 fprintf(‘%5.3f %5.3f\n’,Y(N),X(N))
 mu=mu+.05;
 N=N+1;
end%while
fprintf(‘\n’)
fprintf(‘\n’)
fprintf(‘Friction Reac.A Reac.D\n’)
fprintf(‘\n’)
for I=1:N–1
fprintf(‘%5.3f %5.3f %5.3f\n’,Y(I),A(I),D(I))

462 ——— MATLAB: An Introduction with Applications

end
figure(1)
plot(Y,X)
xlabel(‘Coefficient of friction’)
ylabel(‘Angle alpha’)
grid on
figure(2)
plot(Y,D,Y,A)
xlabel(‘Coefficient of friction’)
ylabel(‘Reactions’)
legend(‘Reaction at A’,‘Reaction at D’,2)
grid on

Output is as follows:
Friction Angle
0.000 0.000
0.050 5.377
0.100 10.391
0.150 14.780
0.200 18.425
0.250 21.332
0.300 23.582
0.350 25.286
0.400 26.558
0.450 27.497
0.500 28.186
0.550 28.687

Friction Reac.A Reac.D
0.000 46.188 46.188
0.050 53.481 38.488
0.100 59.860 31.001
0.150 65.068 24.251
0.200 69.105 18.535
0.250 72.125 13.922
0.300 74.336 10.326
0.350 75.934 7.591
0.400 77.083 5.546
0.450 77.907 4.033
0.500 78.498 2.925
0.550 78.921 2.116

Engineering Mechanics ——— 463

Also following Figs. ES7.24(c) and (d) are obtained.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
–5

0

5

10

15

20

25

30

Coefficient of friction

A
n
g
le

a
lp

h
a

Fig. ES7.24(c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

10

20

30

40

50

60

70

80

Coefficient of friction

R
e
a
c
ti
o
n
s

Reaction at A

Reaction at D

Fig. ES7.24(d)

464 ——— MATLAB: An Introduction with Applications

r

Rθ

h

Example ES7.25: Figure ES7.25 shows a cylindrical silo where H = height of the cylindrical portion,
r = radius of the cylindrical silo, R = radius of the spherical cap roof and V = volume of the silo.

R

r

H

Fig. ES7.25

Write a MATLAB program to compute
(a) the height for given values of r, R and V
(b) the surface area of the silo, S

Use the program to determine the height and surface area of a silo,
given r = 32 cm, R = 50 cm and V = 125,000 cm3.

Solution: The total volume of the silo is the sum of the volumes of the cylindrical part and the spherical cap.
 total cyl cap= +V V V

 ()2 21 3
3

= π + π −r H h R h

where,

()cos 1 cos= − θ = − θh R R R (see Fig. ES7.25(a))

and sin= θr R or ()1sin−θ = r R

The height H, of the cylindrical part is given by

cap
2

−
=

π
V V

H
r

The surface area of the silo is the sum of the surface areas of the
cylindrical part and the spherical cap.

cyl cap 2 2= + = π + πS S S rH RH .

%MATLAB Solution:
r=32;
R=50;
V=125000;

 Fig. ES7.25 (a)

Engineering Mechanics ——— 465

Theta=asin(r/R);

h = R*(1–cos(Theta));

Vcap=pi*h^2*(3*R–h)/3;

H=(V–Vcap)/(pi*r^2);

S=2*pi*(r*H+R*h);

fprintf(‘The height H = %f cm’,H);

fprintf(‘The surface area of the silo S = %f square cm.’,S);

Output comes as follows:
The height H = 32.812738 cm. The surface area of the silo S = 10235.750764 square cm.
Example ES7.26: Figure ES7.26 shows a trapezoid.

(a) Obtain the x and y coordinates of the centroid when H1 = a/n2 and H2 = a/n.
(b) Write a MATLAB program to plot the values of x and y for 1 ≤ n ≤ 5 and a = 9 mm.

y

x
a

H1

H2

Fig. ES7.26

Solution: Entire trapezoid is divided into two triangles 1 and 2 as shown in Fig. ES7.26 (a).

Following table gives the area, centroid information of each area and total area.

()

()

2 2
1 1 1 1

1 2 1
2 2 2

2 1 2 1 2 1 2 1

1 2

2
2 2

1 2 1 2 2 1 2 1

Area x Ax y Ay
1 1 11.

2 2 2 2
1+ (–)1 2 1 32. (–) (–) + –2

12 3 3 6= (2 +)
3

(+) (+ 2) + – 2
2 6 6

aaH a H H aH

H H H aa H H a a H H H H H H
H H

a a aH H H H H H H HΣ

Hence, 1 2

1 2

2
3

 +
=  + 

H Hax
H H

;
2 2
2 1 2 1

1 2

1
3

 + +=  + 
H H H Hy

H H

Substituting 2
1H a n= , 2H a n= and a = 9 mm yields

466 ——— MATLAB: An Introduction with Applications

1 2 1 23
3 1 1
a n nx

n n
+ +   = =      + +

2

2 2
2

1 3 .
13 1

1

a n ny
nn n nn

n

 + +
= = +   + +

 + 

MATLAB Solution:
n=[1:.5:5];
xbar=3*(1+2*n)./(1+n);
ybar=(3./n.^2).*(n.^2+n+1)./(n+1);
plot(n,xbar,‘–p’,n,ybar,‘–*’)
text(3,5,‘xbar’)
text(3,1.4,‘ybar’)
xlabel(‘n’)
ylabel(‘Centroid (mm)’)
grid on

Output is shown in Fig. ES7.26(b).

1 1.5 2 2.5 3 3.5 4 4.5 5
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

x bar

y bar

C
e

n
tr

o
id

(m
m

)

n

Fig. ES7.26(b)

Example ES7.27: Determine the y coordinate of the centroid of the body shown in Fig. ES7.27 when
h = nb and h = n2b.

y

x
A

a
H2 n=

1

2

a
H1 2n

=

 Fig. ES7.26 (a)

Engineering Mechanics ——— 467

a
a

b
h

z

y

x

Fig. ES7.27

Write a MATLAB program to plot y as a function of n for both cases using 1 ≤ n ≤ 12 and
(i) b = 5 mm, (ii) b = 7 mm and (iii) b = 9 mm.

Solution: This contains two parts as shown in Figures ES7.27 (a), (b) and (c).

a

b
h

y

x

I

a y

x

h

a

b

h– b/4

y

II

Fig. ES7.27(a) Fig. ES7.27(b) Fig. ES7.27(c)

Based on the Fig. ES7.27(a), the following table is constructed.

2 2 2

2 2 2 2

V y yV
1 1

I π π
2 2

1 1 π πII – π – – +
3 4 3 12

a h h a h

a b h b a bh a b

y V yVΣ = Σ gives

2 2 2 2 2 2 2

3 12 2 3
y a h a b a b a h a bhπ π π π π − = + −  

and ()
2 26 4
4 3

h hb by
h b

− +=
−

For h = nb

()
()
26 4 1

4 3 1
b n n

y
n
− +

=
−

For h = n2b

()
()
2 2

2

6 4 1

4 3 1

b n n
y

n

− +
=

−

The plot of y as a function of n for 1 ≤ n ≤ 12 for the cases is shown in Figs. ES7.27(d) and (e).

468 ——— MATLAB: An Introduction with Applications

MATLAB Solution:
% Use symbolic notation in MATLAB
syms b n
 ybarn=inline(‘b*(6*n^2–4*n+1)/(4*(3*n–1))’) ;
 ybarn2=inline(‘b*(6*n^4–4*n^2+1)/(4*(3*n^2–1))’);
 ybarn=vectorize(ybarn)
 ybarn2=vectorize(ybarn2)
 n=[1:1:12];
 subplot(2,1,1)
 plot(n,ybarn(5,n),‘–p’,n,ybarn(7,n),‘–*’,n,ybarn(9,n),‘–o’)
 xlabel(‘n’)
 ylabel(‘Centroid (mm)’)
 grid on
 title(‘\bfwhen h=nb’)
 legend(‘b=5mm’,‘b=7mm’,‘b=9mm’,2);
 subplot(2,1,2)
 plot(n,ybarn2(5,n),‘–p’,n,ybarn2(7,n),‘–*’,n,ybarn2(9,n),‘–o’)
 xlabel(‘n’)
 ylabel(‘Centroid (mm)’)
 grid on
 title(‘\bfwhen h=n^2b’)

Output of the program is shown in Fig. ES7.27(d).

0 2 4 6 8 10 12
0

20

40

60

n

C
e

n
tr

o
id

(m
m

)

when h = nb

b = 5mm

b = 7mm

b = 9mm

0 2 4 6 8 10 12
0

200

400

600

800

C
e

n
tr

o
id

(m
m

)

when h=n b
2

n

Fig. ES7.27(d) MATLAB output

Engineering Mechanics ——— 469

Example ES7.28: For the area shown in Fig. ES7.28, write a MATLAB program to plot Ixy as a function of
N for values of N from 1 to 12 knowing that A = 100 mm and B = 80 mm.

A

B

x

y

y = kx
N

Fig. ES7.28

Solution: Consider an elemental length dx as shown in Fig. ES7.28(a).
When x = A, B = kaN

Therefore,
Bk
A

=
′′

and N
N

By x
A

=

Also x yxy el eldI dI x y dA′ ′= +

But due to symmetry

 0x ydI ′ ′ =

Since elx x= , 1/ 2ely y= and dA ydx= , we have
2

0 0

1 1
2 2

a A
N

xy xy N

BI dI x y ydx x x dx
A

   = = =      ∫ ∫ ∫
2 2

2 1
2 2

0

1 1
2 2 2 2

AN N N
n

xy N N

B B AI x dx
NA A

+
+= =

+∫

()
2 2

4 1xy
A BI
N

=
+

MATLAB Solution:
% Input A and B [in mm]
A=100;
B=80;
fprintf(‘Enter A and B\n’);
fprintf(‘A=%g mm, and B=%gmm\n’,A,B);
fprintf(‘I(xy) N\n’)
for N=1:15
 Ixy(N)=A^2*B^2/(4.*(N+1));
 NN(N)=N;
 fprintf(‘%5.2e %5.2f\n’,Ixy(N),NN(N))
end

 Fig. ES7.28(a)
A

B

x

y

y = kx
N

x

y

dx

y
x′

y'

e�

470 ——— MATLAB: An Introduction with Applications

plot(NN, Ixy)
xlabel(‘N’)
ylabel(‘Computed moment of inertia I(xy)(mm^4)’)
grid on
Output comes like this:
Enter A and B
A = 100 mm, and B = 80 mm

 I(xy) N
8.00e + 006 1.00
5.33e + 006 2.00
4.00e + 006 3.00
3.20e + 006 4.00
2.67e + 006 5.00
2.29e + 006 6.00
2.00e + 006 7.00
1.78e + 006 8.00
1.60e + 006 9.00
1.45e + 006 10.00
1.33e + 006 11.00
1.23e + 006 12.00
1.14e + 006 13.00
1.07e + 006 14.00
1.00e + 006 15.00

Plot is shown in Fig. ES7.28(b).

0 5 10 15
1

2

3

4

5

6

7

8
x10

6

C
o

m
p

u
te

d
m

o
m

e
n

t
o

f
in

e
rt

ia
I x

y
,

(m
m

)
4

N

Fig. ES7.28(b)

Engineering Mechanics ——— 471

7.21.2 Dynamics

Particle Kinematics

Example ED7.1: The motion of a particle is defined by the equation
x = 35t2 – 110t

and y = 115t2 – 42t3

where x and y = displacement of the particle (mm)
t = time (sec.) for the time interval 0 ≤ t ≤ 25s

Write a MATLAB program to plot:
(a) the path of the particle in the x-y plane,
(b) the components of the velocity vx and vy and the magnitude of the velocity v,
(c) the components of the acceleration ax and ay and the magnitude of the acceleration a.

Solution:
Given x = 35t2 – 110t; y = 115t2 – 42t3 as the position vector of the particle.
Hence, vx = x = 70t – 110; vy = y = 230t – 126t2 are component of velocities and

ax = x = 70; ay = y = 230 – 252t are components of accelerations.
Here particle path refers to the plot of x and y positions at various instants of time.
So first x and y are found by varying t from 0 to 25 seconds.

MATLAB Program is given below:
t=[0:0.5:25];% Vary the time from 0 to 25 in steps of 0.5

x=35*t.^2–110*t; % compute x

y=115*t.^2–42*t.^3; % compute y

v_x=70*t–110; % compute vx

v_y=230*t–126*t.^2; % compute vy

v=sqrt(v_x.^2+v_y.^2); % compute v

a_x=70;% compute ax

a_y=230–252*t; % compute ay

a=sqrt(a_x.^2+a_y.^2); % compute a

PLOTING THE CALCULATED DATA%%%%%%%%%%%%%%%

figure(1)

plot(x,y);

xlabel(‘x(mm)’)

ylabel(‘y(mm)’)

legend(‘Trajectory’)

grid on

axis([0 10000 –2.5e5 0])

figure(2)

plot(t,v_x,t,v_y,t,v)

472 ——— MATLAB: An Introduction with Applications

xlabel(‘t(sec)’)

ylabel(‘v_x,v_y,v(mmps)’)

legend(‘v_x’,‘v_y’,‘v’,2)

grid on

figure(3)

plot(t,a_x,t,a_y,t,a)

xlabel(‘t(sec)’)

ylabel(‘a_x,a_y,a(mmps^2)’)

legend(‘a_x’,‘a_y’,‘a’,2)

grid on

The plots are shown in Figs. ED7.1(a), (b) and (c) respectively.

0 1000 2000 3000 4000 5000 6000 7000
0

200

400

600

800

1000

1200

1400

Projectile’s trajectory

Distance (m)

H
e

ig
h

t
(m

)

Fig. ED7.1 (a) Position

Engineering Mechanics ——— 473

0 5 10 15 20 25
– 8

– 6

– 4

–2

0

2

4

6

8
x 10

4

vx

vy

v

v
,v

,
v
(m

m
p

s
)

x
y

t(sec)

Fig. ED7.1 (b) Velocities

0 5 10 15 20 25
–8000

–6000

–4000

–2000

0

2000

4000

6000

8000

t(sec)

ax

ay

a

a
,a

,
a
(m

m
p
s

)
x

y
2

Fig. ED7.1 (c) Accelerations

474 ——— MATLAB: An Introduction with Applications

Example ED 7.2: A particle is fired vertically downwards with a velocity 30 m/s in a fluid. Due to resistance
of the fluid the particle experiences a deceleration equal to a = –(0.7v3) m/s2, where v is velocity in m/s. Plot
a graph of velocity versus time and distance versus time using MATLAB.

Solution: Given a = f (v), so the velocity is determined as a function of time using a = dv/dt, since this

equation relates v, a and t. Thus 30.7 .
dva v
dt

= = −

Integrating both sides

0.5

3 2 2 2
30 0

1 1 1 1or or 1.4
1.40.7 30 30

v tdv dt t v t
v v

−   − = = − = +     ∫ ∫

Position s is given by

0.5

2
11.4

30
ds v t
dt

− = = +   or integrating
0.5

2
0 0

11.4
30

s t

ds t dt
− = +  ∫ ∫

or
0.5

2
1 11.4

1.4 3030
s t

 2  = + −     

Using MATLAB, the graphical representation of velocity and displacement as a function of time t is given
with following simple program.

MATLAB Program:
t=0:0.05:1.5;

v0=30; %INITIAL VELOCITY

v=(1.4*t+1/v0^2).^–0.5;

s=2/1.4*(sqrt(1.4*t+1/v0^2)–1/30);

figure(1)

plot(t,v);

xlabel(‘t(sec)’)

ylabel(‘v(mps)’)

grid on

figure(2)

plot(t,s)

xlabel(‘t(sec)’)

ylabel(‘s(m)’)

grid on

Engineering Mechanics ——— 475

The output of the program is shown in Figs. ED7.2 (a) and (b).

0 0.5 1 1.5
0

5

10

15

20

25

30
v
(m

p
s
)

t(sec)

Fig. ED7.2 (a) Velocity variation

0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

t(sec)

s
(m

)

Fig. ED7.2 (b) Displacement variation

476 ——— MATLAB: An Introduction with Applications

Example ED 7.3: If position of a car is defined as s = (5t –3t2), construct s – t, v – t and a – t graphs over the
interval 0 < t < 10 sec.

Solution: As the given function is a simple one, derivatives can be obtained easily. However, initially the
derivatives are obtained with following commands in MATLAB.
s=sym(‘5*t–3*t^2’);
v= diff(s, ‘t’)
a=diff(v,‘t’)
The ‘inline’ function is used to generalize the variables in terms of time coordinate t.

The entire script is given below:
% The script plots s-t, v-t and a-t curves for specified values of t
s=inline(‘5*t–3*t.^2’);
v=inline(‘5–6*t’);
a=inline(‘–6’);
t=0:0.5:10;
figure(1);
subplot(3,1,1); %SUB-PLOT-1
plot(t,s(t));
title(‘\bfDisplacement Plot’);
ylabel(‘\bfDisplacement (m)’);
grid on;
subplot(3,1,2); % SUB-PLOT-2
plot(t,v(t));
title(‘\bfVelocity Plot’);
ylabel(‘\bfVelocity (mps)’);
grid on;
subplot(3,1,3); % SUB-PLOT-3
plot(t,a(t),‘*’);
title(‘\bfAcceleration Plot’);
ylabel(‘\bfAcceleration (mps^2)’);
grid on;

The output of the program is shown in Fig. ED7.3.

0 1 2 3 4 5 6 7 8 9 10

–200

0

200
Displacement plot

0 1 2 3 4 5 6 7 8 9 10
100

50

0

50
Velocity plot

D
is

p
la

c
e
m

e
n
t
(m

)
V

e
lo

c
it
y

(m
p
s
)

– 400

–

–

Engineering Mechanics ——— 477

0 1 2 3 4 5 6 7 8 9

Acceleration plot
–5

–6

–7A
c
c
e
le

ra
ti
o
n

(m
p
s

)
2

10

Fig. ED7.3 MATLAB output

Example ED 7.4: Figure ED7.4 shows the motion of a particle. The initial velocity and the angle at which
the projectile is fired are known. Write a MATLAB program to calcualte and plot the maximum height and
distance. Use the program to calculate and plot the trajectory of a projectile that is fired at a velocity of 250
m/s at an angle of 40º.

y

x
θ

vo

hmax

dmax

O

Fig. ED7.4

Solution: Components of velocity vox = vo. cos θ and voy = vo.sin θ.

Height
2

max 2
= oyv

h
g

and corresponding time

max
oyv

t g=

But to draw trajectory as a function of distance(x), use

 y = voyt – 1
2

gt2 and x = voxt

MATLAB script is shown below:
Open the file “trajectory.m” and type the following
function[hmax,dmax]=trajectory(v0,theta)
% Trajectory calculates the max height and distance of a projectile,
% makes a plot of the trajectory.
% Input arguments are:
%v0=initial velocity in(m/s).
%theta=angle in degrees.
%Output arguments are:

478 ——— MATLAB: An Introduction with Applications

%hmax=maximum height in (m).
%dmax=maximum distance in(m).
%The function creates also a plot of the trajectory.
g=9.81;
v0x=v0*cos(theta*pi/180);
v0y=v0*sin(theta*pi/180);
thmax=v0y/g;
hmax=v0y^2/(2*g);
ttot=2*thmax;
dmax=v0x*ttot;

%Creating a trajectory plot
tplot=linspace(0,ttot,200);
x=v0x*tplot;
y=v0y*tplot–0.5*g*tplot.^2;
plot(x,y)
xlabel(‘Distance(m)’)
ylabel(‘Height(m)’)
title(‘Projectile’s Trajectory’)

To execute it type the following at the MATLAB command prompt
>> [h d] = trajectory(250,40)

Then the output comes as:

h =
 1.3162e + 003

d =
 6.2743e + 003

Followed by the Fig. ED7.4 (a).

0 1000 2000 3000 4000 5000 6000 7000
0

200

400

600

800

1000

1200

1400

Distance (m)

Projectile’s trajectory

H
e
ig

h
t
(m

)

Fig. ED 7.4(a) MATLAB output

Engineering Mechanics ——— 479

Example ED7.5: A jet plane is going in a parabolic path described by y=0.05x2. At a point in the path, it has
a velocity of 200 m/s, which is increasing at the rate of 0.8 m/s2 . Find the resultant acceleration and plot
the variation of acceleration as a function of its horizontal position x.
Solution: The motion of the plane is described in Fig. ED7.5.

x

y

t

n

θ

Fig. ED7.5

The components of acceleration along n and t directions are as follows:

at= dv/dt = 0.8 m/s2, an= v2/(ρg)= 2002/(ρg), with ρ =

3/22

2

2

1
  +     

dy
dx

d y
dx

So, it requires computation of differentials as a function of x. Then using these differentials, the resultant

acceleration 2 2
r na a a= + is plotted as a function of x in MATLAB.

As usual first define
y = sym(‘0.05*x^2’);

yd = diff(y, ‘x’); %% first derivative
ydd = diff (yd, ‘x’);%% second derivative

They give yd=0.10*x and ydd=0.10
Now use the following program to plot variation of acceleration with x.

MATLAB Program:
ac=0.8;
v=200;vs=v*v;
y=inline(‘0.05*x.^2’);
yd=inline(‘0.1*x’);

480 ——— MATLAB: An Introduction with Applications

ydd=inline(‘0.1’);
x=0.1:0.1:20;
rho=((1+yd(x).*yd(x)).^1.5)/abs(ydd(x));
an=vs./rho;
at=ac./x.*x;
a=sqrt(at.^2+an.^2);
plot(x,an,x,at,‘*’)
xlabel(‘x-position’);
ylabel(‘Acceleration in m per s^2’);
legend(‘Normal acceleration’,‘tangential acceleration’)

The output is shown in Fig. ED7.5 (a).

0 2 4 6 8 10 12 14 16 18 20
0

500

1000

1500

2000

2500

3000

3500

4000
Normal acceleration
Tangential acceleration

A
cc

el
er

at
io

n
in

 m
 p

er
 s

2

x-position

Fig. ED7.5 (a) MATLAB output

Example ED7.6: Path of a particle P is ellipse defines with r =1.75/(1– 0.75cosπt) and θ = πt . Derive expressions
for velocity and acceleration. Plot the components of velocities and accelerations as a function of time.

Solution: This problem should be solved in cylindrical coordinate system. Thus
Radial velocity vr= r and transverse velocity vθ = r θ ,
where θ = π and r =1.75 × 0.75 × π sinπt/(1– 0.75cosπt)2

Radial acceleration ar=
2r r− θ and transverse acceleration aθ= 2r rθ + θ . Here θ = 0, but r should be found

from the MATLAB’s diff command. This is done as follows:
y=sym(‘1.75/(1–0.75*cos(3.14*t))’)
yd= diff(y, ‘t’);
ydd=diff(yd,‘t’);

Engineering Mechanics ——— 481

Output:
y =1.75/(1–0.75*cos(3.14*t))
 yd=–4.121250/(1–.75*cos(3.14*t))^2*sin(3.14*t)
 ydd=
19.4110875000/(1–.75*cos(3.14*t))^3*sin(3.14*t)^2–12.94072500/
(1–.75*cos(3.14*t))^2*cos(3.14*t)

This defines the differentials r and r as follows:

 r = – 4.121 sinπt /(1– 0.75cosπt)2 and
2

3 2
19.4sin 12.94cos=

(1 0.75cos) (1 0.75cos)
t tr
t t

π π
−

− π − π

The complete MATLAB program for plotting the velocities and acceleration is given below:
pi=3.14;

r =inline(‘1.75./(1–0.75*cos(3.14*t))’);

rd=inline(‘–4.121*sin(3.14*t)./(1–0.75*cos(3.14*t)).^2’);

rdd=inline(‘19.4*sin(3.14*t).^2/(1–0.75*cos(3.14*t)).^3–12.94*cos(3.14*t)./

(1–.75*cos(3.14*t)).^2');

theta=inline(‘3.14*t’);

thetad=inline(‘3.14*t./t’);

t=0.5:0.1:2;

vr=rd(t);vt=r(t).*theta(t);

ar=(rdd(t)–r(t).*thetad(t).^2);

at=2*rd(t).*thetad(t);

figure(1);

subplot(2,1,1); %SUB-PLOT-1

plot(t,vr,t,vt,‘-p’);

title(‘\bfVelocity Plot’);

ylabel(‘Velocity (m per s)’);

legend(‘radial velocity’,‘transverse velocity’);

grid on;

subplot(2,1,2); % SUB-PLOT-2

plot(t,ar,t,at,‘-p’);

title(‘\bfAcceleration Plot’);

ylabel(‘Acceleration (mps^2)’);

xlabel(‘Time in s’);

legend(‘radial acceleration’,‘transverse acceleration’);

grid on;

482 ——— MATLAB: An Introduction with Applications

The output plot is shown in Fig. ED7.6.

0.5 1 1.5 2
–20

0

20

40

60
Velocity plot

V
e
lo

c
it
y

(m
p
e
r

s
)

0.5 1 1.5 2
–300

–200

–100

0

100
Acceleration plot

Time in s

A
c
c
e
le

ra
ti
o
n

(m
p
s

)
2

Radial acceleration
Transverse acceleration

Radial velocity

Transverse velocity

Fig. ED7.6 Velocity and acceleration of particle in ellipse

Example ED7.7: Two planes A and B are flying at a speed of 600 km/h with A in a straight line path while
B is along a circular path of radius ρ. If A is accelerating at 50 km/h2, while B decelerates at 100 km/h2, plot
the resultant acceleration of B with respect to A as a function of radius of curvature ρ.
Solution: The motion of two planes A and B are given in Fig. ED7.7.
Acceleration of B is

 aB = aBt ˆtu + aBn ˆnu ,

where aBt = –100 km/h2, aBn = 6002/ρ
Likewise for A aAt= 50 km/h2 and aAn= 0

600 km/h

50 km/h2
600 km/h

100 km/h2

ρ

A
B

Fig. ED7.7

The relative velocity is then given by aBA = aB – aA= (aBt – aAt) ˆtu + (aBn– aAn) ˆnu

= (aBt – aAt) ˆtu + (aBn) ˆnu

Its magnitude is given by 2 2()Bt At Bna – a +a

Engineering Mechanics ——— 483

Following MATLAB code can be readily employed for this problem:

v0=600;

aA=50;

aBt=–100;

r=100:20:600;

aB=sqrt((aBt–aA).^2+(v0*v0./r).^2);

plot(r,aB);

xlabel(‘Radius of curvature’);

ylabel(‘Relative acceleration of plane B’);

grid on;

The output of the program is presented in Fig. ED7.7 (a).

100 150 200 250 300 350 400 450 500 550 600
500

1000

1500

2000

2500

3000

3500

4000

Radius of curvature

R
e
la

ti
v
e

a
c
c
e
le

ra
ti
o
n

o
f
p
la

n
e

B

Fig. ED7.7 (a)

Particle Kinetics

Example ED7.8: A particle of mass 10 kg is projected vertically from the ground with a velocity of 50 m/s.
Find the maximum height reached by the particle when air resistance is 0.01v2 newton, where v is speed at
any instant. Plot a graph of height as a function of velocity using MATLAB.
Solution: Here the particle is under the influence of forces shown in Fig. ED7.8.

484 ——— MATLAB: An Introduction with Applications

Applying Newton’s second law along y-direction: ΣFy= may,
where ΣFy = – F – mg = (– 0.01v2 – mg)
Thus may = (– 0.01v2 – mg) or ay = (– 0.01v2 – mg)/m
As the distance Vs velocity plot is required use the relation vdv = ads

i.e., ds = 20.01
mvdv
v mg

−
+

 or 20.01
ds mv
dv v mg

= −
+

This differential equation is solved with initial conditions at s = 0, v = 50 m/s with the following program.
s0=0;
v0=50;
vspan=[v0:–1:0];% a vector that specifies the interval of the solution
[v s]=ode45(‘resist’,vspan,s0);% Solving the ODE
plot(s,v)
xlabel(‘x(m)’);ylabel(‘Velocity(m/s)’)
grid on;

The function file with the differential equation named ‘resist.m’ is listed below:
function dsdv=resist(v,s)
m=10; g=9.81;
dsdv=–m*v/(0.01*v^2+m*g);

The output of the program is shown in Fig. ED7.8(a).

0 20 40 60 80 100
0

5

10

15

20

25

30

35

40

45

50

x(m)

V
e
lo

c
it
y

(m
/s

)

120

Fig. ED7.8 (a)

mg

F

Fig. ED7.8

Engineering Mechanics ——— 485

Example ED7.9: Figure ED7.9 shows a safety bumper placed at the end of a racetrack to stop out-of-control
vehicles. The force that the bumper applies to the vehicle is given by

F = Kv3(x + 1)3

where K = 32 kg-s/m5 (a constant)
x = displacement of the front edge of the bumper
v = velocity of the front edge of the bumper.

A vehicle of mass 2000 kg hits the bumper at a speed of 100 km/h. Write a MATLAB program to determine
and plot the velocity of the vehicle as a function of x for 0 ≤ x ≤ 5m.

v
x

Fig. ED7.9

Solution: The deceleration of the car once it hits the bumper can be calculated from Newton’s second law
of motion.

ma = – Kv3(x + 1)3

which can be solved for the acceleration a as a function of v and x:
33(1)Kv xa

m
− +=

The velocity as a function of x can be calculated by substituting the acceleration in the equation:
vdv = adx

which gives:
32(1)dv Kv x

dx m
− +=

The last equation is a first order ODE that needs to be solved for the interval 0 ≤ x ≤ 3 with the initial
condition:

v = 90 km/h at x = 0.
Numerical solution of differential equation is shown in the following program written in a script file (m-file),
which should be executed by typing the file name in command prompt.

MATLAB Program:
global k m
k=32;m=2000;v0=100;
xspan=[0:0.2:5];% a vector that specifies the interval of the solution
v0mps=v0*1000/3600; % changing velocity in m/s
[x v]=ode45(‘bumper’,xspan,v0mps);% Solving the ODE
table=[x,v];
disp(‘disp velocity’)
disp(table);

486 ——— MATLAB: An Introduction with Applications

plot(x,v)
xlabel(‘x(m)’);
ylabel(‘velocity(m/s)’)
grid on;

The function file with the differential equation named bumper.m is listed below:

function dvdx=bumper(x,v)
global k m
dvdx=–(k*v^2*(x+1)^3)/m;

The output of the above program is the vectors x and v as follows along with plot.

 disp velocity
0 27.7778
0.2000 24.8173

0.4000 21.1176
0.6000 17.1814
0.8000 13.5109
1.0000 10.4127
1.2000 7.9665
1.4000 6.0685
1.6000 4.6826
1.8000 3.6212
2.0000 2.8257
2.2000 2.2268
2.4000 1.7734
2.6000 1.4268
2.8000 1.1588
3.0000 0.9505
3.2000 0.7855
3.4000 0.6552
3.6000 0.5501
3.8000 0.4651
4.0000 0.3959
4.2000 0.3389
4.4000 0.2919
4.6000 0.2526
4.8000 0.2197
5.0000 0.1920

Engineering Mechanics ——— 487

Output is given in Fig. ED7.9(a).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

25

30

x(m)

V
e

lo
c
it
y

(m
/s

)

Fig. ED7.9(a)

Example ED7.10: Figure ED7.10 shows a block of mass m which is at rest on the top of a cylindrical surface.
When an initial velocity v0 is given to the block towards right, it starts to slide on the cylindrical surface.
Write a MATLAB program to plot the variation of velocity of block and α as a function of time at a friction
coefficient µk = 0.2. Also find the angle at which the block leaves the surface. Assume mass of the
block = 0.60 kg and initial velocity of the block, v0 = 4 m/s.

m
v0

α

2m

Fig. ED7.10

Solution: The free-body diagram of block when moved at an angle α is given in Fig. ED7.10(a).

W = mg
α

N

F
man

mat

=

Fig. ED7.10(a) Free-body diagram

488 ——— MATLAB: An Introduction with Applications

Summing forces in the normal direction gives ΣFn = man:

i.e.,
2

cos vW N mα − =
ρ

or
2

cos vN m g
 

= α − ρ 

Hence frictional force (F) = µk N =
2

cosk
vm g

 
µ α − ρ 

Summing forces in the tangential direction gives
 ΣFt = mat:

or W sin α – F = mat

or
1

sinta g F
m

= α −

Substituting for F in the above expression yields

21sin cost k

va g m g
m

 
= α − µ α − ρ 

2

sin cos k
k

v
g g µ

= α − µ α +
ρ

Now at =
dv
dt

,

Thus
dv
dt

= g(sin α – µk cos α) + µk

2v
ρ

...(1)

Also, we have that
 v r= α

where r =ρ, (in polar coordinates)

or
1d v

dt
α

=
ρ

...(2)

Thus, differential equations (1) and (2) define the motion of the block.

As the block leaves the surface, N = 0. Hence
2

cos 0vg
 

α − = ρ 
, which defines the value of α at which

the block leaves the surface.

The MATLAB program for this problem is given as follows:
global g rho mk
vo=4; % initial velocity
g=9.81; % acceleration due to gravity
rho=2.0;% radius of curvature

Engineering Mechanics ——— 489

mk=0.2;% coefficient of kinetic friction

tspan=[0:0.01:0.35]; % initial and final times

x0=[vo,0]’; % Initial velocity and angle

[t,x]=ode45(‘f3’,tspan,x0); % solving two differential eqs.

figure(1);

subplot(2,1,1)

plot(t,x(:,1),‘–o’);

xlabel(‘time (sec’);ylabel(‘velocity (m/s)’);

title(‘Coefficient friction between surface and block is 0.2’)

grid on;

subplot(2,1,2)

plot(t,x(:,2)*180/pi,‘–p’);

xlabel(‘time (sec)’);ylabel(‘angle (degree)’;

grid on;

eq1=g*cos(x(:,2))–x(:,1).^2/rho; % Expression for Normal reaction

[y,k]=min(abs(eq1)); % Minimum value and corresponding index of this function

theta=x(k,2)*180/pi; % Finding theta

fprintf(‘Minimum angle in degrees it leaves the surface at friction mu=%3.2f

is %4.2f\n’,mk, theta);

Here the subfunction f 3() is defined in separate m file as follows:

function vdot = f3(t,x)

global g rho mk;

vdot=[g*(sin(x(2))–mk*cos(x(2)))+mk*x(1)^2/rho;x(1)/rho];

Ouput is shown in Fig. ED7.10 (b).

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
3.5

4

4.5

5

5.5

Time (sec)

Coefficient friction between surface and block is 0.2

V
e
lo

c
it
y

(m
/s

)

490 ——— MATLAB: An Introduction with Applications

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

10

20

30

40

50

Time (sec)

Fig. ED7.10 (b)

>> Minimum angle in degrees it leaves the surface at friction mu = 0.2 is 21.03.

Example ED7.11: The acceleration due to gravity due to earth at any height h above the surface of the earth is
given by

2()
GMg

R h
−=

+ m/s2

where G = the gravitational constant (6.67 × 10–11 Nm2/kg2)
M = mass of the earth (5.99 × 1024 kg)
R = mean radius of the earth (6372 km)
h = height above the surface of the earth (m).

Write a MATLAB program to calculate and plot the acceleration due to earth’s gravity for 0 ≤ h ≤ 45,000 km
in 5000 km increments.
Solution: This problem is an application of central force motion and space mechanics. MATLAB code
presented with explanations is given as follows:

G=6.67E–11; % Gravitational constant
m_earth=5.99e24; % Mass of earth (kg)
r_earth=6372.e3; % Radius of the earth(m)

disp(‘This program displays the acceleration due to gravity’);
disp(‘as a function of height above the Earth’s surface:’);
fprintf(‘\n\n Height Acceleration\n’);
fprintf(‘ (km) (m/sec**2) \n’);
fprintf(‘ ======= ============\n’);

% Now calculate values
jj=0;
for ii=0:5000000:45000000
 % Increment counter
 jj=jj+1;
 %Get height
 height(jj)=ii;
 % Calculate acceleration

A
ng

le
 i

n
de

gr
ee

s

Engineering Mechanics ——— 491

 grav(jj)=–G*m_earth/(r_earth+height(jj))^2;
 % Write out results
 fprintf(‘%7d %8.3f\n’,height(jj)/1000,grav(jj));
 end
% Now plot the acceleration due to gravity vs height
figure(1);
plot(height/1000,grav,‘LineWidth’,2);
title(‘\bfAcceleration due to gravity vs height’);
xlabel(‘\bfHeight above Earth’s surface (km)’);
ylabel(‘\bfAcceleration (m/s^{2})’);

Program output:
This program displays the acceleration due to gravity
as a function of height above the Earth’s surface:

 Height Acceleration
 (km) (m/sec**2)
======= ============

0 – 9.840
 5000 – 3.089
 10000 – 1.491
 15000 – 0.875
 20000 – 0.574
 25000 – 0.406
 30000 – 0.302
 35000 – 0.233
 40000 – 0.186
 45000 – 0.151

Figure ED7.11 shows the plot of acceleration due to gravity as a function of height.
Acceleration due to gravity vs height

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
x 10

4
–10

–9

–8

–7

–6

–5

– 4

–3

–2

–1

0

Height above earth's surface (km)

A
c
c
e
le

ra
ti
o
n

(m
/s

)
2

Fig. ED7.11

492 ——— MATLAB: An Introduction with Applications

Example ED7.12: A 3 kg block is subjected to two forces as shown in Fig. ED7.12. If block starts from rest,
determine the distance it has moved when it attains a velocity of 10 m/s. Plot its distance as a function of
coefficient of kinetic-friction between the block and floor.

3 kg

100 N

10 N

20°

Fig. ED7.12

Solution: This is an application of work-energy principle on the motion of a particle.
The work-energy principle is

T1 + ΣU = T2,

where T1 = Initial kinetic energy and

T2 = Final kinetic energy of the particle.

Here, T1 = 0 and T2 = 21
2

mv .

The forces doing the work on the particle are horizontal component of external force 100 N and friction
acting on the floor. Work-done by the forces are

ΣU = (100 cos20° – µ N) × s,
where N = (10 + W – 100 sin10°) ,
 W = 3g, the weight of block.

Thus 21
2

mv = ΣU, relates velocity and kinetic friction µ.

The program for this problem is written as follows:
% DEFINE ALL VARIABLES
m=3;
v=10;
g=9.81;
F1=100;
F2=10;
T=0.5*m*v^2;
mu=0:0.05:0.5;
s=150./(F1*cos(20*pi/180)–mu*(F2+m*g–F1*sin(20*pi/180)));
plot(mu,s,‘–p’)
xlabel(‘Kinetic friction’);
ylabel(‘Distance (m)’);
grid on;

Engineering Mechanics ——— 493

Output is given in Fig. ED7.12 (a).

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
1.59

1.6

1.61

1.62

1.63

1.64

1.65

Kinetic friction

D
is

ta
n

c
e

(m
)

Fig. ED7.12 (a)

Example ED7.13: A 5 kg block is attached to a cable and to a spring as shown in Fig. ED7.13.

m

k

T

Fig. ED7.13

The constant of the spring is k = 3 kN/m and the tension in the cable is 30 N. When the cable is cut,
(a) derive an expression for the velocity of the block as a function of its displacement x, (b) determine
the maximum displacement xm and the maximum speed vm, (c) plot the speed of the block as a function of
x for 0 ≤ x ≤ xm.
Solution: Free-body diagram of the block before and after the cable is cut is shown in Fig. ED7.13 (a).
For the static case we have entire forces are in equilibrium.
∴ T + R – W = 0 with T = 30 N, W = mg = 50 N from which R = 20 N

494 ——— MATLAB: An Introduction with Applications

But,

R = kδst or δ =st
R
k

 which is initial tension in spring.

20

δ =
3000st = 0.006667 m

T

W

R

x

W

F = k(δst+ x)

Static Dynamic

 Fig. ED7.13 (a)

Using the principle of work and energy we have

T1 + U1→2 = T2

or
2

0

1[– (δ +)] =
2st

x
W k x dx mv∫

Substituting yields

2

0

[50 – 3000(0.006667 +)] = 2.5
x

x dx v∫
⇒ 50x – 20x – 1500x2 = 2.5v2

v2 = 12x – 600x2

At maximum displacement, the velocity is zero.

∴ 12x – 600x2 = 0 or x = 0.02 m.

The MATLAB program for plotting can be written as follows:
xmax=0.02;
x=[0:.001:xmax];
v=sqrt(12.*x–600.*x.^2);% Expression for velocity for given values
[vmax,i]=max(v); % finding minimum value of velocity and corresponding
index
fprintf(‘The maximum velocity is %5.4fm/s and the maximum displacement is
%5.4fm\n’,vmax,xmax);
figure(1)
plot(x,v,‘-o’)
xlabel(‘x,(m)’)
ylabel(‘Velocity(m/s)’)
grid on

Engineering Mechanics ——— 495

Output is shown in Fig. ED7.13(b).

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0

0.05

0.1

0.15

0.2

0.25

V
e

lo
c
it
y

(m
/s

)

Fig. ED7.13(b)

>> The maximum velocity is 0.2449m/s and the maximum displacement is 0.0200m.

Example ED7.14: A block of 0.8 kg mass moves within the smooth vertical slot as shown in Fig. ED7.14. If
it starts from rest when the attached spring is in unstretched position at A, plot a graph of velocity of block
as a function of distanced moved by the block. Assume F =100 N, k = 100 N/m, 0 ≤ s ≤ 0.4.

0.3m

0.4m

F
s

k

P

B

A

Fig. ED7.14

496 ——— MATLAB: An Introduction with Applications

Solution: This is an application of work-energy principle. As surfaces are smooth, no frictional force is
possible. Thus, there are no non-conservative forces in the system. So work-energy principle reduces to
principle of conservation of energy, mathematically

T1 + V1 = T2 + V2

where initial state is rest. Thus, T1 = V1 = 0. Here, initially if spring is compressed then potential energy

 V1 = 21
2 inik∂

where ∂ini is initial compression of spring.
Final energies are written as

T2 =
21

2
mv ,

where v is velocity of block
and V2 = elastic energy + gravitational energy + work due to external force F.

Thus V2 =
0x

kxdx
∂

=
∫ + mg × s – F × ∆f

where ∆f = AP– BP= stretch in string length, which can be expressed in terms of s.
From geometry,

 AP = 22 3.04.0 + = 0.5 m

and BP = ()2 20.4 0.3s− + .

Now the principle of conservation of energy can be applied to relate velocity v and distance s.

i.e., V2 + T2= 0

MATLAB program for this problem is generalized as follows:
% Set of default values
g=9.81;
m=0.8;
k=100;
F=100;
W=m*g;% weight of block
s=0:0.05:0.4;
df= 0.5-sqrt((0.4-s).^2+0.3^2); % distance moved by string
V2= (W.*s+0.5*k*s.^2–F.*df); % potential energy of block
v=sqrt((2/m).*(–V2)); % Velocity of block
plot(s,v);
xlabel(‘Distance moved along slot (m)’);
ylabel(‘Velocity of block (m/s)’)
grid on;

Engineering Mechanics ——— 497

The output is shown in Fig. ED7.14(a).

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

1

2

3

4

5

6

Distance moved along slot (m)

V
e

lo
c
it
y

o
f

b
lo

c
k

(m
/s

)

Fig. ED7.14(a) Output

Example ED7.15: Figure ED7.15 shows a block B of mass mB starts from rest and slides down an inclined
plane of a wedge of mass mA which is supported by a horizontal surface. (a) Obtain an expression for the
speed of block B relative to wedge A. (b) The speed of wedge A, (c) Write a MATLAB program to plot the
speed of B relative to A and the speed of A as function of s, where ‘s’ is the distance traveled by the block
B down the surface of the wedge for 0 ≤ s ≤ 1.0 m. Neglect friction between all the surfaces. Given: mB = 10 kg
and mA = 16 kg.

B

A

45°

Fig. ED7.15

Solution: Drawing velocity triangle as shown in Fig. ED7.15 (a).

Applying principle of conservation of momentum to the particles A and B
 mB vBA cos θ – (mA + mB)vA = 0

Therefore, speed of block B relative to wedge A:

vBA=
()

cos
A B A

B

m m v
m

+
θ

Fig. ED7.15(a)

θ

v

v

v
BA

B

A

498 ——— MATLAB: An Introduction with Applications

Applying conservation of energy rule (as there is no friction)

 mBgh = 2 21 1
2 2A A B Bm v m v+

where 2 2 2
B A BAv v v= + – 2vA vBA cos θ (cosine rule from triangle Fig. ED7.15(a))

⇒ 10 9.81 s× × cos θ = 2 21 1
2 2A A B Bm v m v+

Here vB and vBA can be replaced in terms of vA and plot of vA and s can be drawn.

i.e., mBg.s cos θ =
() ()2

2 2
2 2

1 1 1 2
2 2 cos

A B A B
A A B A

BB

m m m m
m v m v

mm

 + +
+ + −  θ 

 =
2

20.5 1 2 cos
cos cos

A B A B
A B A

B B

m m m mm m v
m m

     + + × + + − θ     θ θ      
Now speed of wedge vA and relative velocity vBA are plotted as a function of s. Complete MATLAB program
is given below:

MATLAB Program:
% DEFAULT DATA GIVEN
g=9.81;
ma=16;
mb=10;
theta=45*pi/180; % ANGLE OF WEDGE
mul=(ma+mb)/(mb*cos(theta)); % MULTIPLICATION FACTOR
den=0.5*ma+0.5*mb*(1+mul^2–2*mul*cos(theta)));
s=[0:0.02:1];
pe=mb*s*cos(theta)*g; % POTENTIAL ENERGY
va=sqrt(pe./den); % EXPRESSION FOR VELOCITY OF A
vba=mul*va; % RELATIVE VELOCITY
plot(s,va,‘-*’,s,vba,‘–p’)
xlabel(‘s(m)’)
ylabel(‘Velocity (m/s)’)
legend(‘Velocity of A’,‘Velocity of B relative to A’,2);
grid on

Engineering Mechanics ——— 499

Output is shown in Fig. ED7.15(b).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Velocity of A
Velocity of B relative to A

s(m)

V
e
lo

c
it
y

(m
/s

)

Fig. ED7.15 (b)

Example ED7.16: A 10 kg block is held at rest on the smooth inclined plane by the stop block at A (see
Fig. ED7.16). If a 10 gm bullet traveling at velocity v strikes and embedded in the block, plot the distance
moved-up by the block along the plane as a function of velocity before it comes to momentary stop.

θ

A

CCB

Fig. ED7.16

Solution: If block (C) and bullet (B) are considered as a system, the impulsive force F, caused by impact is
internal to the system. Therefore, it will cancel out. Also weight of block and bullet are non-impulsive forces.
Hence the principle of conservation of linear momentum can be applicable.

mB × vBx = (mB+ mC) × v2

where x is in upward direction parallel to the inclined plane.
Here vBx= v cos θ, the component of bullet velocity along the positive
x-direction. Here the datum is set as block’s initial position as shown in
Fig. ED7.16 (a).
To find the distance moved by the block, apply the work-energy principle.

i.e., ΣU = – s × (mB + mC)g sin α = T2 – T1 = – 2
2

1
()

2 B Cm m v+ .

θ

CB

x

vBx

Fig. ED7.16(a)

500 ——— MATLAB: An Introduction with Applications

Thus s can be plotted as a function of velocity.

MATLAB program for this problem is given below:
mB=10e–3; % Mass of bmullet

mC=10; % Mass of block

angle=[30*pi/180;45*pi/180;60*pi/180];

g=9.81;

v=50:50:500; % Bullet velocity variation

for k=1:length(angle)

 v2=mB.*v*cos(angle(k))/(mB+mC);

 dT=0.5*(mB+mC)*v2.^2;

 s(k,:)=dT./((mB+mC)*g*sin(angle(k)));

end

plot(v,s(1,:),‘–o’,v,s(2,:),‘–p’,v,s(3,:),‘–*’);

xlabel(‘Velocity of bullet (m/s)’);

ylabel(‘Distance moved over the plane (m)’);

grid on;

legend(‘angle=30deg’,‘angle=45deg’,‘angle=60deg’)

The output of this program is shown in Fig. ED7.16 (b).

50 100 150 200 250 300 350 400 450 500
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Velocity of bullet (m/s)

Angle = 30 deg

Angle = 45 deg

Angle = 60 deg

D
is

ta
n
c
e

m
o
v
e
d

o
v
e
r

th
e

p
la

n
e

(m
)

Fig. ED7.16 (b) Output of MATLAB

Engineering Mechanics ——— 501

Example ED7.17: A system consists of n particles Ai of mass mi and coordinates xi, yi and zi having velocity
components (vx)i, (vy)i and (vz)i. Derive expression for components of angular momentum about origin O of
coordinates. Use MATLAB to solve the following system:

1

2

3

() () (/)
ˆˆ ˆ ˆ3 3 4 2 2

ˆˆ ˆ ˆ ˆ2 1.2 2.4 3 4 3
ˆˆ ˆ ˆ4 3.6 2 4 2

Particle Mass kg Position m Velocity m s

A j i j k

A i j k i j

A i i j k

+ +

+ + +

− + +

Solution: Angular momentum (HO) about O of system of n-particles is defined as:

HO =
1

n

i i i
i

r m v
=

×∑ . This is a vector cross-product.

= 1 1 1 2 2 2 3 3 3× + × + ×r m v r m v r m v

=
1 1 2 2 1 1 2 2

1 2 1 2
1 1 2 2 1 1 2 2

.........ˆ ˆ.........   
+ + − + +   

    

y z y z x z x z

y z y z x z x z

r r r r r r r r
m m i m m j

v v v v v v v v

1 1 2 2

1 2
1 1 2 2

ˆ......... 
+ + + 

  

x y x y

x y x y

r r r r
m m k

v v v v

MATLAB program for this problem is written as follows:
n=3; % NUMBER OF PARTICLES

m=[3 2 4]; % MASSES OF THREE PARTICLES

Hx=0;Hy=0;Hz=0; % INITIAL ANGULAR MOMENTA

r=[0 3 0;1.2 2.4 3;3.6 0 0]; % POSITION VECTORS OF PARTICLES

% HERE COLUMNS SHOW THE X, Y AND Z coordinate & rows the points

v=[4 2 2;4 3 0;–2 4 2]; % VELOCITY VECTORS

for k=1:n

 P=[r(k,2) r(k,3);v(k,2) v(k,3)];

 Q=[r(k,1) r(k,3);v(k,1) v(k,3)];

 R=[r(k,1) r(k,2);v(k,1) v(k,2)];

 Hx=Hx+m(k)*det(P);

 Hy=Hy–m(k)*det(Q);

 Hz=Hz+m(k)*det(R);

end

disp(‘Total angular momentum is’);

fprintf(‘%5.2f i+%5.2f j+%5.2f k\n’ ,Hx,Hy,Hz);

502 ——— MATLAB: An Introduction with Applications

Output of the program:
Total angular momentum is

 0.00 i + – 4.80 j + 9.60 k

Example ED7.18: A rocket has a mass 960 kg including 800 kg of fuel, which is consumed at the rate of
10 kg/s and ejected with a relative velocity of 3600 m/s. Plot the magnitude of velocity of rocket as a function
of time, neglect air resistance.

Solution: This is an example of systems of particles with variable mass flow. Rocket is an example of a
system loosing the mass. Only external force acting on the system is its weight W = mg, but here m reduces
as a function of time.
Figure ED7.18 shows the initial and final states of the rocket in a short time ‘dt’.

m vee

mv

(me+ dm)Ve e

(m – dm)e (v + dv)

Wdt

+ =

Fig. ED7.18 Initial momentum + Impulse = Final momentum

Applying principle of impulse and momentum to this system gives:
mv – meve – mg dt = (m – dme)(v + dv) – (me+ dme)ve

or – mg = m (dv/dt) – u (dme /dt) ...(1)
where u = v + ve is relative velocity of exhaust.
Substituting the given values:

– mg = m (dv/dt) – 3600 (10)
Here m = mass of rocket at an instant of time t during flight

= mo– (dm/dt)t = 960 – 10 t ...(2)
Substituting (2) in (1) we obtain

– (960 – 10t)g = (960 – 10t)(dv/dt) – 36000
At t = 0, v = 0. This gives initial conditions for the problem.

Engineering Mechanics ——— 503

So it requires to solve the differential equation:

(dv/dt) =
36000

960 10
g

t
−

−

Time required to consume all the fuel is given by (960 – 10t) = 0 or t = 96 seconds.

MATLAB program for plotting the variation of velocity of rocket as a function of time is given below:
v0=0;

tspan=[0:5:95];% a vector that specifies the interval of the solution
[t v]=ode45(‘rock’,tspan,v0);% Solving the ODE
plot(t,v,‘–p’)
xlabel(‘t(sec)’);
ylabel(‘velocity(m/s)’)
grid on;

The function file with the differential equation named rock.m is listed below:
function dvdt=rock(t,v)
m0=960;g=9.81;mr=10; u=3600;
dvdt=–g+mr*u/(m0–mr*t);

The output is shown in Fig. ED7.18(a), below:

0 10 20 30 40 50 60 70 80 90 100
0

2000

4000

6000

8000

10000

12000

14000

16000

V
e
lo

c
it
y

(m
/s

)

t (sec)

Fig. ED7.18(a) MATLAB output

504 ——— MATLAB: An Introduction with Applications

Plane Kinematics of Rigid Bodies

Example ED7.19: Motion of an oscillating flywheel is defined by the relation θ = θ0 e–3πt cos4πt with θ0= 0.5
radians. Plot the angular velocity and acceleration of flywheel as a function of time. Take 0 ≤ t ≤ 0.5s.
Solution: As θ is defined explicitly as a function of time it is easy to find ω and α from their definitions.
The derivatives are evaluated in the worksheet below.
syms t
theta=0.5*exp(–3*pi*t)*cos(4*pi*t);
omega=diff(theta,t);
alpha=diff(omega,t);
th=vectorize(theta)
om=vectorize(omega)
al=vectorize(alpha)

Output of this program will be as follows:
th =
1./2.*exp(-3.*pi.*t).*cos(4.*pi.*t)

om =
–3./2.*pi.*exp(-3.*pi.*t).*cos(4.*pi.*t)-2.*exp(-3.*pi.*t).*sin(4.*pi.*t)
.*pi
al =
–7./2.*pi.^2.*exp(–3.*pi.*t).*cos(4.*pi.*t)+12.*pi.^2.*exp(–3.*pi.*t).*sin
(4.*pi.*t)
These results are used further for plotting. They can be pasted in the final program.

MATLAB code of plotting is written as follows:
t=0:0.05:0.5;
th =1./2.*exp(–3.*pi.*t).*cos(4.*pi.*t);
om=–3./2.*pi.*exp(–3.*pi.*t).*cos(4.*pi.*t)–2.*exp(–3.*pi.*t).*sin
(4.*pi. *t).*pi;
al =–7./2.*pi.^2.*exp(–3.*pi.*t).*cos(4.*pi.*t)+12.*pi.^2.*exp(–3.*pi.*t).
*sin(4.*pi.*t);
subplot(3,1,1);
plot(t,th,‘–p’);
ylabel(‘Theta (rad)’);
grid on;
subplot(3,1,2);
plot(t,om,‘–*’);
ylabel(‘Omega (rad/s)’);
grid on;
subplot(3,1,3);

Engineering Mechanics ——— 505

plot(t,al,‘–o’);
ylabel(‘Alpha (rad/s^2)’);
grid on;
xlabel(‘Time (s)’);

Output is shown in Fig. ED7.19.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
–0.5

0

0.5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-–5

0

5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
–50

0

50

Time (s)

T
h
e
ta

(r
a
d
)

O
m

e
g
a

(r
a
d
/s

)
A

lp
h
a

(r
a
d
/s

)
2

Fig. ED7.19 MATLAB output

Example ED7.20: Figure ED7.20 shows the slider crank mechanism. Write a MATLAB program that calculates
and plots the position, velocity and acceleration of the piston for one full revolution of the crank. Assume
that the crank is rotating at a constant speed of 550 rpm. Given radius of crank = 125 mm and radius of crank
shaft = 250 mm.

θ
A

B

P

Fig. ED7.20

Solution: This problem can be done with either absolute motion analysis or relative motion analysis. Let us
do it with absolute motion analysis, where the coordinates of points B and P are defined first with common
origin A and then differentiated with respect to time to obtain velocities.
Figure ED7.20 (a) shows the line diagram of the mechanism.

506 ——— MATLAB: An Introduction with Applications

θ
r h

d1 d2

ω

P

B

A D

c

Fig. ED7.20(a)

The crank is rotating with a constant angular velocity ω = θ .
When t = 0, θ = 0º.
At time t, the angle θ is given by

θ = ωt = tθ , and
that θ = 0 at all times.
The distances d1 and h are given by

1 cosd r= θ and sinh r= θ
Knowing h, the distance d2 is obtained as:

() ()1/ 2 1/ 22 2 2 2 2
2 sind c h c r= − = − θ

The position x of the piston P with respect to A (common origin) is given by

()1/ 22 2 2
1 2 cos sinx d d r c r= + = θ + − θ

The velocity of the piston is given by

()
2

1/ 22 2 2
sin

2 sin

rx r
c r

= − θ θ −
− θ

The acceleration of the piston is given by

() ()
()

22 2 2 2 2 2
2

3/ 22 2

4 cos2 sin sin 2
cos

4 sin

r c r r
x r

c r

θ θ − θ + θ θ
= − θ θ −

− θ

Complete MATLAB program for this problem is given below:
% MATLAB Solution:
% Define TD, r, and c
N=550; % Speed in rpm
TD=N*2*pi/60; % Speed in radians/sec
tf=2*pi/TD;
r=0.125; % radius of crank in meters
c=0.250; % length of connecting rod in meters
t=linspace(0,tf,200); % Create a vector with 200 elements
TH=TD*t; % Compute Theta for each t
d2s=c^2-r^2*sin(TH).^2; % d2 squared
x=r*cos(TH)+sqrt(d2s); % Calculate x for each Theta
xd=-r*TD*sin(TH)-(r^2*TD*sin(2*TH))./(2*sqrt(d2s)); % Velocity

Engineering Mechanics ——— 507

% Acceleration
xdd=-r*TD^2*cos(TH)–(4*r^2*TD^2*cos(2*TH).*d2s+(r^2*sin(2*TH)*TD).^2)./
(4*d2s.^(3/2));
subplot(3,1,1)
plot(t, x)% Plot x versus t
grid
xlabel(‘Time (s)’)
ylabel(‘ Position (m)’)
subplot(3,1,2)
plot(t, xd) % Plot Velocity vs. t
grid
xlabel(‘ Time (s)’)
ylabel(‘Velocity (m/s)’)
subplot(3,1,3)
plot(t, xdd) % Plot Acceleration Vs. t
grid
xlabel(‘Time (s)’)
ylabel(‘Acceleration (m/s^2)’)

Output of the program is shown in Fig. ED7.20(b).

0 0.02 0.04 0.06 0.08 0.1 0.12
0

0.2

0.4

Time (s)

0 0.02 0.04 0.06 0.08 0.1 0.12
–10

0

10

V
e

lo
c
it
y

(m
/s

)

0 0.02 0.04 0.06 0.08 0.1 0.12
–1000

0

1000

A
c
c
e

le
ra

ti
o

n
(m

/s
)

2
P

o
s
it
io

n
(m

)

Time (s)

Time (s)

Fig. ED7.20(b) MATLAB output

508 ——— MATLAB: An Introduction with Applications

Example ED7.21: Figure ED7.21 shows an engine system where the crank AB rotates with a constant angular
velocity ωAB clockwise. Write a MATLAB program to determine the plot for values of θ from 0 to 180º (a)
the angular velocity and angular acceleration of connecting rod BD, (b) the velocity and acceleration of
piston P. The length of the connecting rod, = 10 cm, crank length, AB = 3.5 cm and ωAB = 1000 rpm.

P

B
A

D

θ

b

β

�

Fig. ED7.21

Solution: This problem is attempted with relative motion analysis method.

Motion of Crank:
Kinematic diagram showing the motion of crank is illustrated in Fig. ED7.21(a).

The velocity for the rod AB: vB = bωAB

Motion of connecting rod BD:

From the law of sines, we have
sin sin

b
β θ

=

sin β =
b

sin θ =
sin

n
θ

 where, n = /b.

The velocity vD of the point D where the rod is attached to the piston must be vertical, while the velocity
of point B is equal to the velocity vB obtained above. Resolving the motion of BD into a translation with B
and a rotation about B, we obtain the relation:

vD = vB + vDB

Figure ED7.21(b), shows this motion.

D

B

vB

β

vD

� =

D

B

+

B

D

Fixed

BD

Plane motion = Translation Rotation+

θ

vDB =

B

ωDB�

θ
θ

ω

vB

vB

�

Fig. ED7.21(b)

B

A

vBb

θ

ω
AB

θ

 Fig. ED7.21(a)

Engineering Mechanics ——— 509

The vector diagram corresponding to this equation is presented in Fig. ED7.21(c).

β

θ + β

θ

v
D

vDB BD

v
B

B

A

aB

b

θ

ωAB

θ

Fig. ED7.21(c) Fig. ED7.21(d)

Using the law of sines in this triangle:

sin() sin(90) sin(90)
ω

= =
θ +β ° −β ° −θ

D B BDv v

sin() sin()

sin(90) cos
θ + β θ + β= =

° − β βD B Bv v v

sin(90) cos
sin(90) cos

° − θ θ
ω = =

° −β β
B B

BD
v v

For the acceleration we have for rod AB
 aB = bω2

AB (parallel to AB towards A) (see Fig. ED7.21 (d))
For rod BD:

 (aD/B)t = αBD

(aD/B)n = 2
BDω

For the acceleration we again look at plane motion with the translation of B plus a rotation about B. For B we
have

 aD = aB + aDB

 aD = aB + (aDB)t + (aDB)n

Figure ED7.21(e) shows the plane motion comprising of translation and rotation.

D

B

aB θ

β

aD

�
=

D

B

+

β

B

D

Fixed

ω

(a)D/B t

)

αBD

(aDB)n

Plane motion = Translation Rotation+

aB

aB

BD

�

Fig. ED7.21(e)

510 ——— MATLAB: An Introduction with Applications

Using the acceleration vector diagram (Fig. ED7.21(f)) :

aB

aD

β

β

θ

cosβ

�α βBD sin

2

BD
�ω

�α βBD cos a sinB θ

a cosB θ

sinβ

2

BD

2

BD
�ω

�αBD

�ω

Fig. ED7.21(f)

We obtain 2sin sin cosB BD BDa θ = ω β − α β

2 sin sin

cos
BD B

BD
aω β − θ

α =
β

 2cos cos – sinB D BD BDa aθ = − ω β α β

 2cos cos sinD B BD BDa a= θ + ω β + α β

Based on this formulation, following MATLAB script is used to obtain variation of velocities and
accelerations as a function of angle θ.

MATLAB Program :
L=10; % Length of connecting rod in cm
b=3.5; % crank radius in cm
N=1000; % speed in rpm
%Velocity
omega_AB=N*2*pi/60; % angular velocity in rad/s
v_B=b*omega_AB; % linear velocity of crank pin in cm/s
Theta=[0:20:180];
t=Theta*pi/180;
beta=asin((b/L)*sin(t));% inclination of connecting rod with axis of piston
v_D=v_B*sin(t+beta)./cos(beta);% velocity of piston in cm/sec
omega_BD=v_B*cos(t)./(L*cos(beta));% angular velocity of connecting rod
% acceleration
a_B=b*omega_AB^2; % acceleration of point B

Engineering Mechanics ——— 511

alpha_BD=(L.*omega_BD.^2.*sin(beta)-a_B.*cos(t))./(L.*cos(beta));
a_D=a_B.*cos(t)+L.*omega_BD.^2.*cos(beta)+L.*alpha_BD.*sin(beta);
% Determine and plot values
z=[Theta;omega_BD;alpha_BD;v_D;a_D];
fprintf(‘Theta Angular Angular Piston Piston\n’)
fprintf(‘ velocity acceleration velocity acceleration\n’)
fprintf(‘(deg) (rad/s) (rad/s^2) (cm/s) (cm/s^2)\n’)
fprintf(‘\n’);
fprintf(‘%5.3f %6.3f %6.3f %6.3f %6.3f\n’,z);
fprintf(‘\n’);
%fprintf(‘The two values of theta for zero collar speed are %5.3f and %5.3f
degrees\n’,al,a2)
figure(1)
plot(Theta,omega_BD,‘–p’)
xlabel(‘Theta(degree)’)
ylabel(‘Angular Velocity Rod BD (rad/s)’)
grid on
figure(2)
plot(Theta,alpha_BD, ‘–*’)
xlabel(‘Theta (degree)’)
ylabel(‘Angular acceleration rod BD(rad/s^2)’)
grid on
figure(3)
plot(Theta,v_D, ‘–p’)
xlabel(‘Theta(degree)’)
ylabel(‘Piston Velocity (cm/s)’)
grid on
figure(4)
plot(Theta,a_D,‘-*’)
xlabel(‘Theta(degree)’)
ylabel(‘Piston Acceleration D (cm/s^2)’)
grid on

Output is as follows:

Theta Angular Angular Piston Piston
(deg) velocity acceleration velocity acceleration

(rad/s) (rad/s^2) (cm/s) (cm/s^2)
0.000 36.652 –3838.179 0.000 51815.423

20.000 34.691 –3487.725 166.884 43840.145
40.000 28.816 –2825.851 300.422 31135.267
60.000 19.231 –1896.200 375.705 16967.547
80.000 6.780 – 693.123 384.320 4707.369

100.000 –6.780 726.881 337.581 –3727.977
120.000 –19.231 2131.457 259.125 –9206.061
140.000 –28.816 3209.296 170.766 –14091.443
160.000 –34.691 3777.938 83.829 –19596.523
180.000 –36.652 3838.179 0.000 –24948.167

512 ——— MATLAB: An Introduction with Applications

 Figure ED7.21(g)–(j) shows the variations of angular and linear velocities.

0 20 40 60 80 100 120 140 160 180
–40

–30

–20

–10

0

10

20

30

40

Theta (degree)

A
n

g
u

la
r

v
e

lo
c
it
y

ro
d

B
D

(r
a

d
/s

)
2

Fig. ED7.21(g) Angular velocity of connecting rod

0 20 40 60 80 100 120 140 160 180
–4000

–3000

–2000

–1000

0

1000

2000

3000

4000

A
n
g
u
la

r
a
c
c
e
le

ra
ti
o
n

ro
d

B
D

(r
a
d
/s

)
2

Theta (degree)

Fig. ED7.21(h) Angular acceleration of connecting rod

Engineering Mechanics ——— 513

0 20 40 60 80 100 120 140 160 180
0

50

100

150

200

250

300

350

400

P
is

to
n

v
e

lo
c
it
y

(c
m

/s
)

Theta (degree)

Fig. ED7.21(i) Piston velocity

0 20 40 60 80 100 120 140 160 180
–3

–2

–1

0

1

2

3

4

5

6
x 10

4

Theta (degree)

P
is

to
n

a
c
c
e
le

ra
ti
o
n

D
(c

m
/s

)
2

Fig. ED7.21(j) Piston acceleration

514 ——— MATLAB: An Introduction with Applications

Example ED7.22: A disk shown in Fig. ED7.22 has a constant angular velocity 400 rpm counterclockwise.
Knowing that rod BD is 300 mm long, use MATLAB to determine and plot the velocity of collar D and
angular velocity of rod BD as a function of angle θ. Consider 0 ≤ θ ≤ 360°.

75 mm

A

B

D

200 mm

Fig. ED7.22

Solution: This problem is attempted with vector notation. Fix the origin of coordinate system at A and
define the position vectors accordingly.
Motion of BA:

 vB= (+ ω k̂) × AB = ω k̂ × (r cosθ ĵ – r sin θ î) = (– ωr cos θ î – ωr sin θ ĵ) ...(1)

Motion of BD: Consider motion of D with respect to B.
 vD = vB + vDB

i.e., – vD ĵ = vB + (+ ωDB k̂) × BD
...(2)

Here BD = – BDx î – BDy ĵ , where BDx is horizontal distance from B to D and BDy is vertical distance.
From geometry,

 BDx= (200 – r sin θ) and BDy = 2 2()xBD− , where = BD = 300 mm and r =75 mm

Substituting vB, BDx and BDy in equation (2)

 – vD ĵ = (– ωr cos θ î – ωr sin θ ĵ) + (+ ωDB k̂) × (– BDx î – BDy ĵ)

 = (– ωr cos θ î – ωr sin θ ĵ) + (ωDB BDy î – ωDB BDx ĵ)

Equating î and ĵ terms independently on both sides:
– ωr cos θ + ωDB BDy = 0

⇒ ωDB = ωr cos θ / (BDy) ...(3)
and vD = ωr sin θ + ωDB BDx ...(4)

Based on the eqs.(3) and (4), complete MATLAB program is written as follows:
% Initialization of constants
L=300; %Length of BD in mm
r=75; % radius AB
N=400; % Speed in rpm

Engineering Mechanics ——— 515

w =2*pi*N/60; % angular velocity of BA
% variation of theta in steps of 20 degrees
th=0:20:360;
thr=th.*pi/180; % theta in radians
BDx=200–r.*sin(thr);
BDy=sqrt(L^2–BDx.^2);
wDB= w*r*cos(thr)./BDy;
vD=w*r.*sin(thr)+wDB.*BDx
subplot(2,1,1);
plot(th,wDB,‘-p’);
ylabel(‘Angular velocity of rod BD in rad/s)’);
grid on;
subplot(2,1,2);
plot(th,vD,‘–*’);
ylabel(‘Linear velocity of D in (mm/s)’);
xlabel(‘Angle theta (degree)’);
grid on;

The output of the program is shown below in Fig. ED7.22 (a).

0 50 100 150 200 250 300 350 400
–20

–10

0

10

20

A
n
g
u
la

r
v
e
lo

c
it
y

o
f
ro

d
B

D
(r

a
d
/s

)

0 50 100 150 200 250 300 350 400
–6000

–4000

–2000

0

2000

4000

L
in

e
a
r

v
e
lo

c
it
y

o
f
D

(m
m

/s
)

Angle theta (degree)

Fig. ED7.22 (a) MATLAB output

516 ——— MATLAB: An Introduction with Applications

Example ED7.23: Figure ED7.23 shows an engine system where the connecting rod BD is attached to the
piston P. The crank AB rotates with a constant angular velocity of ωAB rpm clockwise with no force applied
to the face of the piston. Write a MATLAB program to plot the horizontal and vertical components of the
dynamic reactions exerted on the connecting rod at B and D for 0 ≤ θ ≤ 180º. Weight of the connecting rod
BD = 5.5 N. Weight of the piston, WP = 6.3 N. Length of connecting rod = 10 cm and crank radius = 3.5 cm.
Speed of rotation = 1000 rpm.

B
A

D

θ

b

P

β ��

Fig. ED7.23

Solution: We have sin sinβ = θ
b

or β = 1 sinsin b− θ 
   ...(1)

vB = bωAB ...(2)

ωBD =
cos
cos

Bv θ
β

...(3)

aB = 2
ABbω ...(4)

BDα =
2 sin sin

cos
BD Baω β − θ

β ...(5)

 2cos cos sinD B BD BDa a= θ + ω β + α β ...(6)

Directions of velocity and accelerations is shown in Fig. ED7.23 (a).

B

A

vBb

θ

ω
AB

D

G

B

aB

aD

ωBD

αBD

β

θ

a

�

Velocity Acceleration

Fig. ED7.23(a)

Engineering Mechanics ——— 517

From the figure, we have
 () sinB x Ba a+ = − θ
+↓(aB)y = aB cos θ

Since the position of center of gravity G is at the middle of BD, we have

1

()
2

+ =x B xa a ...(7)

1
[()]

2
+ ↓ = +y B x Da a a ...(8)

For the piston (see free-body diagram Fig. ED7.23 (b), we find

 eff()+ ↓ =∑ ∑y yF F :
 Dy = – mPaD

...(9)
Since we are after the dynamic reactions, we shall omit the weight of the piston and connecting rod. For the
connecting rod, we have

 21
12

= BDI m ...(10)

Dx

Dy

mP Da

=

B

D
Dy

Dx

G

Bx

By

β

B

D

G β
Iα

m aBD y

�/2�/2

�/2sinβ�/2sinβ

m aBD x

�/2 cosβ�/2 cosβ

�/2�/2

Piston Connecting rod

Fig. ED7.23 (b) Free-body diagrams

Summing moments about B yields

()B B effM M=∑ ∑
1 1cos sin cos sin
2 2

   − β − β = − α + β − β      x y BD x BD yD D I m a m a

Dividing by and solving for Dx gives

sin sin
cos cos 2 2 cos

BD BD
x y x y

I m mD D a aβ α β= − + − +
β β β

tan tan
cos 2 2

BD BD
x y x y

I m mD D a aα= − β + − + β
β ...(11)

518 ——— MATLAB: An Introduction with Applications

 eff() :+ =∑ ∑x xF F

x x BD xB D m a− =

 x BD x xB m a D= + ...(12)

 eff() :+ ↓ =∑ ∑x xF F

 y y BD yB D m a+ =

 y BD y yB m a D= − ...(13)

Complete MATLAB program to find these reactions as a function of angle θθθθθ is given below:

MATLAB Program:
g=9.81; % Acceleration due to gravity
Wbd=5.5; % Weight of the connecting rod in N
Wp=6.3; % Weight of the piston in N
mp=Wp/g; % Mass of the piston
mbd=Wbd/g;
Lcm=10; % Length of connecting rod in cm
L=0.1; % Length of connecting rod in m
b=3.5/100; % crank radius in m
I_bar=(1/12)*mbd*L^2; % mass moment of inertia in kg-m^2
omega_AB=1000*(2*pi)/60;
v_B=b*omega_AB;
Theta=[0:10:180];
t=Theta*pi/180;
beta=asin(b*sin(t)/L);
omega_BD=v_B*cos(t)./(L*cos(beta));
%acceleration
a_B=b*omega_AB^2;
alpha_BD=(L.*omega_BD.^2.*sin(beta)–a_B.*sin(t))./(L.*cos(beta));
a_D=a_B.*cos(t)+L.*omega_BD.^2.*cos(beta)+L.*alpha_BD.*sin(beta);
%
ax_bar=–0.5*a_B*sin(t);
ay_bar=0.5*a_B*cos(t)+0.5*a_D;
Dy=-mp*a_D;
Dx=–Dy.*tan(beta)+(I_bar*alpha_BD)./(L*cos(beta))–mbd*ax_bar./
2+mbd*ay_bar.*tan(beta)./2;
Bx=mbd*ax_bar+Dx;
By=mbd*ay_bar—Dy;
%Determine and plot values
z=[Theta;Bx;By;Dx;Dy];
fprintf(‘Theta Bx By Dx Dy\n’)
fprintf(‘(deg) (N) (N) (N) N)\n’)

Engineering Mechanics ——— 519

fprintf(‘\n’);
fprintf(‘%5.0f %8.3f %8.3f %7.3f %8.3f\n’,z);
fprintf(‘\n’);
figure(1)
plot(Theta,Bx,‘–+’,Theta,By,‘–p’)
xlabel(‘Theta(degree)’)
ylabel(‘Dynamic Reactions(N)’)
legend(‘Bx’,‘By’)
grid on
figure(2)
plot(Theta,Dx,‘–+’,Theta,Dy,‘–p’)
xlabel(‘Theta(degrees)’)
ylabel(‘Dynamic Reactions(N)’)
legend(‘Dx’,‘Dy’,2)
grid on

The output of the program is given below:

Theta Bx By Dx Dy
(deg) (N) (N) (N) (N)

0 0.000 – 79.913 0.000 – 332.760
10 15.186 – 76.766 33.869 – 324.273
20 26.121 – 67.551 62.920 – 299.305
30 29.169 – 52.964 82.966 – 259.353
40 21.931 – 34.202 91.091 – 206.966
50 3.837 – 12.972 86.259 – 145.755
60 – 23.455 8.566 69.725 – 80.269
70 – 56.109 27.998 44.997 – 15.620
80 – 88.824 43.018 17.136 43.185
90 – 116.153 51.895 – 8.559 92.096

100 – 133.977 53.888 – 28.018 128.789
110 – 140.462 49.408 – 39.356 152.989
120 – 136.079 39.866 – 42.899 166.220
130 – 122.848 27.267 – 40.426 171.124
140 – 103.327 13.753 – 34.166 170.676
150 – 79.839 1.249 – 26.042 167.578
160 – 54.116 – 8.726 – 17.317 163.942
170 – 27.279 – 15.116 – 8.596 161.215
180 – 0.000 – 17.313 – 0.000 160.218

520 ——— MATLAB: An Introduction with Applications

Figure ED7.23 (c) shows the output plots.

0 20 40 60 80 100 120 140 160 180
–150

–100

–50

0

50

100

B
B

x

y

Theta (degree)

D
y
n
a
m

ic
re

a
c
ti
o
n
s

(N
)

(i)

0 20 40 60 80 100 120 140 160 180
–400

–300

–200

–100

0

100

200

D
D

x

y

Theta (degree)

D
y
n
a
m

ic
re

a
c
ti
o
n
s

(N
)

(ii)

Fig. ED7.23 MATLAB outputs

Engineering Mechanics ——— 521

Example ED7.24: A 30 kg disk is pin-supported at its center. It is acted upon by a constant force F =10 N
which is applied to a cord wrapped around its periphery and a constant couple 5 Nm. Plot the variation of
angular speed with the number of revolutions it makes. Assume the system started from rest.
Solution: Figure ED7.24 shows the configuration of the system.

r = 0.02m

M

F

Fig. ED7.24 Configuration of the system

Here as angular speed and displacement are involved, one can apply work-energy principle. But remember
that it is rigid-body motion.

i.e., T1 + Σ U1-2 = T2

Here T1 = initial kinetic energy of the system =0

T2 = final kinetic energy = 21
2

Iω , where I = 21
2

mr

 ΣU1-2 = work done by force and moment = Mθ +Fs = (M +Fr)θ

Hence (M +Fr) θ = 21
2

Iω = 2 21 1
2 2

mr  ω   = 2 21
4

mr ω

A simple program that relates ωωωωω and θθθθθ is given below:
% Initialize values
F=10;
M=5;
m=30;
r=0.02;
theta=0:10;
omega=2*sqrt((M+F*r).*theta/(m*r^2));
plot (theta,omega,‘–p’);
xlabel(‘Number of revolutions’);
ylabel(‘Angular speed (rad/s)’);
grid on;

522 ——— MATLAB: An Introduction with Applications

Output is shown in Fig. ED7.24 (a)

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

Number of revolutions

A
n

g
u

la
r

s
p

e
e

d
(r

a
d

/s
)

Fig. ED7.24(a) MATLAB output

Example ED7.25: Two identical slender rods are pin connected as shown in Fig. ED7.25 have lengths
L = 600 mm. If the system is released from rest when β= 60o. Use MATLAB to plot angular velocity of rod
AB and velocity of point D for various values of β ranging from 0° to 60o.

A β

B

D

LL

Fig. ED7.25

Solution: Here as there is no friction given, principle of conservation of energy can be applied.
Thus T1 + V1= T2 + V2

where T1 = initial kinetic energy = 0

 T2 = final kinetic energy = 21
2 ABmv + 21

2 AB ABI ω + 21
2 BDmv + 21

2 BD BDI ω

 V1= initial potential energy = 2mg y1 = 2mg (Lsin 60°) = 3 mg L

 V2= final potential energy = 2mg y2 = 2mg (Lsin β)

Engineering Mechanics ——— 523

The angular velocity ωBD is obtained in terms of ωAB= ω from the kinematics of the linkage at any angle β.
Taking A as the fixed frame of reference, the velocity of B is

 vB= (– ω k̂) × AB = – ω k̂ × (L sin β ĵ + L cos β î) = (ωL sin β î – ωL cos β ĵ)

Velocity of center of mass of AB is

 vAB= (ω(L/2) sin β î – ω(L/2) cos β ĵ). ...(1)

It has magnitude = ω(L/2)

Consider motion of D with respect to B.

 vD = vB + vDB

i.e., vD î = vB + (ωDB k̂) × BD

Here BD = Lcosβ î – L sinβ ĵ

∴ vD î = vB + (ωDB k̂) × (L cosβ î – L sinβ ĵ)

 = vB + ωDB (L cosβ ĵ + L sinβ î)

So equating î and ĵ terms independently

 vD= ωL sin β + L ωDB sin β,

and ωDB = ωLcos β /L cos β = ω

Velocity of center of gravity of BD is

 vBD= vB + ωDB ((L/2)cosβ ĵ + (L/2) sinβ î)

= (ωL sin β î – ωL cos β ĵ) + ωDB (L/2)cosβ ĵ + ωDB (L/2) sinβ î

= (ωL + ωDB(L/2)) sin β î + (– ωL + ωDB(L/2)) cos β ĵ ...(2)

= (3ωL/2) sin β î + (– ωL/2) cos β ĵ

It has magnitude =
2 23 sin cos

2 2
L Lω β −ω β   +      

2 2/2 9sin cosL= ω β + β

Substituting all the terms in T2,

 ()
2 2 2

2 2 2 2 2 2
2

1 ω 1 1 1 ω 1 1= + ω + 9sin β+cos β + ω
2 2 2 12 2 4 2 12

L LT m mL m mL     
          

 ()2 2 2 2 2 25 1= ω + ω 9sin β + cos β
24 8

mL mL

Thus ()2 2 2 2 2 2
2 1 2

5 1 = – ω + ω 9sin β+cos β = 3 – 2 (sinβ)
24 8

T V V mL mL mgL mg L⇒

or
()2 2

g 3 – 2 sinβ and = 2 ω sinβ
5 1+ 9sin β + cos β
24 8

D
g v L

L L
ω =

 
  

524 ——— MATLAB: An Introduction with Applications

Complete MATLAB program for computing ωωωωω and vD is presented below:
% Initial values
 g=9.81; % Acceleration due to gravity
 L=0.600 % Length of rod in m
 beta=60:–5:0; % angle beta decrement
 betar=beta*pi/180;
 num=g*(3^0.5)–2*g*sin(betar);
 den=(5/24)*L+((1/8)*L*(9*sin(betar).^2+cos(betar).^2))
 omega=sqrt(num./den);
 vD=2*L*omega.*sin(betar);
 subplot(2,1,1);
 plot(beta,omega,‘-p’);
 ylabel(‘Angular velocity (rad/s)’);
 grid on;
 subplot(2,1,2);
 plot(beta,vD, ‘–*’);
 ylabel(‘Linear velocity of D (m/s)’);
 xlabel(‘Angle beta degree’);
 grid on;

Output of the program is shown in Fig. ED7.25 (a).

0 10 20 30 40 50 60
0

2

4

6

8

10

0 10 20 30 40 50 60
0

1

2

3

Angle beta (degree)

A
n
g
u
la

r
v
e
lo

c
it
y

(r
a
d
/s

)
L
in

e
a
r

v
e
lo

c
it
y

o
f
D

(m
/s

)

Fig. ED7.25 (a) MATLAB output

Engineering Mechanics ——— 525

Example ED7.26: Figure ED7.26 shows the 3-D projectile trajectory where a projectile is fired with an initial
velocity of v0 at an angle of θ relative to the ground.

y

z

xθ

v

(North) (East)
3500 m

0

Fig. ED7.26

The projectile is aimed directly north. The projectile also moves in the western direction at a constant speed
of 25 m/s. Write a MATLAB program to (a) determine and plot the trajectory of the projectile until it hits
the ground, (b) plot the trajectory that the projectile would have had if the projectile does not move in the
western direction. Given v0 = 300 m/s and θ = 60º.
Solution: x and y axes represent East and North directions. Consider vertical direction as z. As projectile is
fired in north, the initial velocity v0 can be resolved into y and z direction as:

 v0y = v0
.cos θ and v0z = v0

.sin θ

Time taken by projectile to reach highest point (vz = 0) is

0z
h

v
t

g
=

Total flying time, tt= 2.th

Due to wind, projectile has a constant velocity in the negative x direction, vx = –25.
∴ Position of projectile is given by

x = x0 + vxt and y = y0 + voyt

z = z0 + v0zt – 1
2

gt2

Start with initial point (x0, y0, z0) = (3000, 0, 0). Complete MATLAB program is given below:

MATLAB Program:
v0=300;g=9.81;theta=60;
x0=3000;vx=–25;
v0z=v0*sin(theta*pi/180);
v0y=v0*cos(theta*pi/180);
t=2*v0z/g;
tplot=linspace(0,t,100); % CREATING A TIME VECTOR WITH 100 ELEMENTS
z=v0z*tplot–0.5*g*tplot.^2;
y=v0y*tplot;
x=x0+vx*tplot;
 % CALCULATING X,Y,Z COORDINATES OF THE PROJECTILE AT EACH TIME
xnowind(1:length(y))=x0; % CONSTANT X-COORDINATE WHEN NO WIND
plot3(x,y,z,‘k-’,xnowind,y,z,‘k—’) % TWO 3-D LINE PLOTS
grid on

526 ——— MATLAB: An Introduction with Applications

xlabel(‘x(m)’);
ylabel(‘y(m)’);
zlabel(‘z(m)’)

Output is shown in Fig. ED7.26 (a).

1500

2000

2500

3000

0

2000

4000

6000

8000
0

1000

2000

3000

4000

y(m) x(m)

z
(m

)

Fig. ED7.26(a) MATLAB output

REFERENCES

Bedford, A. and Fowler, W., Engineering Mechanics: Statics & Dynamics, 4th ed., Prentice-Hall, New Jersey,
2005.
Beer, F.B., Russell Johnston, E. and Eisenberg, E.R., Vector Mechanics for Engineers—Statics and Dynamics,
8th ed., McGraw-Hill, New York, 2007.
Beer, F.B., Russell Johnston, E. and DeWolf, J.T., Mechanics of Materials, 3rd ed., McGraw-Hill, New York,
2001.
Boresi, A. and Schmidt, R.J., Engineering Mechanics: Statics, 2nd ed., Brooks/Cole Publishing Company,
New York, 2001.
Cernica, J.N., Strength of Materials, Holt, Rinehart and Winston, Inc., New York, 1966.
Hibbler, R.C., Engineering Mechanics: Statics & Dynamics, Prentice-Hall, Englewood Cliffs, NJ, 1995.
Meriam, J.L. and Kraige, L.G., Engineering Mechanics: Dynamics, 5th ed., Wiley, New York, 2002.
Nash, W., Schaum’s Outlines: Statics and Mechanics of Materials, McGraw-Hill, New York, 1992.
Nash, W., Schaum’s Outlines: Strength of Materials, 4th ed., McGraw-Hill, New York, 1998.
Nelson, E.W., Best, C.L. and McLean, W.G., Schaum’s Outlines: Engineering Mechanics-—Statics and
Dynamics, 5th ed., McGraw-Hill, New York, 1998.
Pytel, A. and Kiusalaas, J., Engineering Mechanics: Statics, 2nd ed., Brooks/Cole Publishing Company,
New York, 1999.
Riley, W., Sturges, L. and Morris, D., Mechanics of Materials, Wiley, New York, 2007.
Shelley, J.F., Vector Mechanics for Engineers (Vol. I): Statics, Schaum’s Solved Problems Series, McGraw-
Hill, New York, 1990.

Engineering Mechanics ——— 527

PROBLEMS

ES7.1: Determine the resultant or equivalent force applied to the bracket for the system shown in Fig. ES7.1

25º

27º

152º

F3 = 800 N F2 =600 N

F1 = 400 N

x

y

Fig. ES7.1

ES7.2: Figure ES7.2 shows a load W supported by two cables AC and BC.

Use the following three sets of values:

(i) α = 30º, β = 80º, W = 1.5 kN

(ii) α = 60º, β = 40º, W = 2.5 kN

(iii) α = 35º, β = 65º, W = 1.2 kN

A B

C

W

α β

γ

Fig. ES7.2

(a) Determine the tension in AC and BC as a function of W and γ.

(b) Write a MATLAB program to plot the tensions TAC and TBC for values of γ ranging from

(β – 90º) to (90º – α).

(c) Determine from the plots the value of γ for which the tension in the cables TAC and TBC is as

small as possible and the respective values of TAC and TBC.

ES7.3: A collar P sliding freely on the horizontal frictionless rod as shown in Fig. ES7.3, is attached with
a spring (spring constant k).

528 ——— MATLAB: An Introduction with Applications

P

Q

200 mm

c

F

Fig. ES7.3

The spring is undeformed when the collar is directly below the support Q. Express the force F required to
maintain the equilibrium of the system in terms of k and the distance c. Plot F as a function of c for values of c
from 0 to 400 mm when (i) k =1 N/mm, (ii) k = 2 N/mm and (iii) k = 3 N/mm
ES7.4: Figure ES7.4 shows an acrobat walking on a tight rope attached to support at A and B. The friction
between his shoes and the rope is high enough to prevent him from slipping. The weight of the rope and
elastic deformation may be neglected. Write a MATLAB program to determine the deflection y and the
tension in AC and BC of the rope for values of x ranging from 0.2 m to 50 m using 0.5 m increments.
Determine also

(a) the maximum deflection of the rope
(b) the maximum tension in the rope
(c) the minimum values of the tension in portions AC and BC of the rope.

The length of the tight rope = 90.6 m
The combined mass of the acrobat and his balancing pole is 80 kg.

A B

C

t

y

x

90 m

Fig. ES7.4

ES7.5: A barge is pulled by two tug boats as shown in Fig. ES7.5. To move the barge along the water
properly, the tug-boats must exert a resultant force of 3 kN along the direction of motion of the barge.
Supposing that tug-2 can move anywhere such that 0 ≤β ≤ 90o, determine angle β at which a minimum
tension in the rope connected to tug-2 is obtained.

Engineering Mechanics ——— 529

Barge

1

2

45°

β

Fig. ES7.5

ES7.6: A 50 kg crate is held in equilibrium as it rests on a frictionless inclined plane making an angle θ with
the horizontal as shown in Fig. ES7.6. Compute the tension in the cable T and the normal force at the surface
for θ at 2o increments, increments increasing from 0 to 90o. Is there some value of θ for which T = N? If cable
is replaced by a spring of stiffness 100 N/m, plot the deflection of the cable as a function of θ.

θ

Fig. ES7.6

ES7.7: Write a generalized MATLAB script to find the perpendicular distance between the line of a force
ˆˆ ˆ6 10 18F i j k= + + acting at point A(1, 2, 3) and the line OB shown in Fig. ES7.7 having direction angles

(60o, 100o and acute angle).

B

F

O

A

z

x

y

Fig. ES7.7

ES7.8: A tension T is applied to the cable attached to the top A of the rigid mast and secured to the ground
at B as shown in Fig. ES7.8.

(a) Obtain a general expression for the moment of T about the base O (i.e., MO) as a function of xB and zB.
(b) Write a MATLAB program to plot the magnitude of MO and its components about the x and z

axes as a function of xB for zB=12 m.

530 ——— MATLAB: An Introduction with Applications

A

y

O

z

x

B

20 m

T=15 kN

12 m
15 m

Fig. ES7.8 Tension applied to mast

ES7.9: Write a MATLAB program to determine the single equivalent force R and the point where the line

of action of R intersects the yz plane for the system shown in Fig. ES7.9. Take F1 = ˆ ˆ,i j�

 1
ˆˆ ˆ ,r i j k= + − 1 2 2

ˆ ˆ ˆˆ ˆ ˆ ˆ2 , , 2 ,M j k F i k r i j k= − = − + = − + 2 3
ˆˆ ˆ ˆand 4 ,M j F i j k= = + −

r3 = ˆ ˆ2i j�
ˆ,k� M3 = ˆˆ .i k�

F1

F2

F3

M3

M2

M1

r1

r2

r3

Fig. ES7.9

ES7.10: A beam AB is subjected to several vertical forces as shown in Fig. ES7.10. Using MATLAB,
determine the magnitude of the resultant of the forces and the distance xC, where the line of action of
resultant intersects AB.

F1 F2

F4F3

x1

x2

x3

x4

A B

xc
C

Fig. ES7.10

Take F1= 10 N, F2 = 20 N, F3 = 30 N, F4 = 40 N and X1 = 0.3 m, X2 = 1.2 m, X3 = 2 m, X4 = 2.2 m.

Engineering Mechanics ——— 531

ES7.11: Figure ES7.11 shows a uniform circular plate supported by three vertical wires that are equally
spaced around its edge.

D

x

y

d
z

A

B

C

E

Fig. ES7.11

A small block E is placed on the plate at D and is then slowly moved along the diameter CD until it reaches C.
Write a MATLAB program to plot the tension in the wires A and C as a function of d, where d is the distance of
the block from D. Find the value of d for which the tension in wires A and C is minimum. Take radius of the
circular plate = 310 mm, mass of the plate = 30 kg and mass of the block E = 3.5 kg.
ES7.12: Figure ES7.12 shows a slender rod AB attached to blocks A and B.

A

C

B

W

L

α

Fig. ES7.12

The weight of the rod AB is W and the blocks A and B move freely in the guides. The spring constant is k and
the spring is unstretched when AB is horizontal. Write a MATLAB program to determine the three values of the
angle α corresponding to equilibrium for values of W from 1 to 10 N in 2 N increments and = 25 cm, and
k = 1.5 N/cm.
ES7.13: Figure ES7.13 shows a two-rod mechanism where the rods AC and BD are connected by a slider
block D. Write a MATLAB program to compute and plot the couple MA required to hold the rods in
equilibrium for values of α from 0 to 120º. Also plot the magnitude of the force F exerted by rod AC on
the slider-block for values of α ranging from 0 to 120º. Neglect the effect of friction.

8 m

12 m

26 NmMA

D

B

C

A α

Fig. ES7.13

532 ——— MATLAB: An Introduction with Applications

ES7.14: The magnitude of the force P applied to the piston of an engine system during one revolution of
crank AB is shown in Fig. ES7.14. Plot the magnitude of the couple M required to hold the system in equilibrium
as a function of θ for 0 ≤ θ ≤ 2π.

θ A

B

C P

10 cm 30 cm
10 N

π/2

20 N
P

θ π 3π/2 2π

(i) Engine mechanism (ii) Variation of P

Fig. ES7.14 (i) and (ii)

ES7.15: Figure ES7.15 shows a rod CD attached to collar D and passes through another collar welded to the
end B of lever AB. As an initial step in the design of lever AB, use MATLAB to plot the magnitude of couple
M required to hold the system in equilibrium as a function of θ for 10o ≤ θ ≤ 90o. Also determine the value of
θ at which M becomes minimum and corresponding value of M.

D

B

C

A

M

30 cm 20 cm

50 N

Fig. ES7.15

ES7.16: A 100 N force is pushing a 50 kg block as shown in Fig. ES7.16. The angle of inclination of the plane
is α which varies from 0 to 45o in increments of 5o. The coefficient of static friction between the block and
the incline is μs = 0.75 and the coefficient of kinetic friction is μk = 0.65. Will the block slide on the plane? If
it does, will it slide up or down the plane? What is the friction force between the block and the plane?

100 N

α

Fig. ES7.16

Engineering Mechanics ——— 533

ES7.17: Figure ES7.17 shows the position of the rod AB controlled by the block which is slowly moved
to the left by the force P. The weight of the rod AB is 30 N and that of the block is 5N. The coefficient
of kinetic friction between all surfaces contact is 0.3. Write a MATLAB program to plot the magnitude P
of the force as a function of x for values of x from 55 into 5 cm. Find the maximum value of P and the
corresponding values of x.

A

D

B

P

x

1 m

40cm

Fig. ES7.17

ES7.18: Figure ES7.18 shows a truss supporting a ramp (shown as a dashed line).

W/2
W

W

W
W/2

I

H
G

F

d

α

A d
B

d
C

d
D d

E

d
J

Fig. ES7.18

The ramp extends from a fixed approach level at joint F to a fixed exit level at joint J. The loads shown
in figure represent the weight of the ramp.

(a) Determine the forces in members CD, BH and IH as a function of α and W.
(b) Write a MATLAB program to plot the non-dimensional forces in CD, BH and IH as a function of α for

the values of α ranging between 0º and 45º. Take W = 1 Newton.
ES7.19: For the truss shown in Fig. ES7.19, determine the forces in the members F1 to F7 by writing the
equilibrium equations and solve them using MATLAB.

A

B

C

D

30º 30º

3000 N 4000 N

1

3

5

4

7

62

E

Fig. ES7.19

534 ——— MATLAB: An Introduction with Applications

ES7.20: Consider the cantilever truss shown in Fig. ES7.20. Calculate the forces in each member if a wind
load of 3000 N is added at the joint D. Vary the length of CE from 2 to 10 m and plot the corresponding
forces in member CD.

B

A

D

C
E

1000 N 2000 N

1
2

32

3000 N

(All dimensions are in m)

Fig. ES7.20

ES7.21: Figure ES7.21 shows the Fink truss. A single point load of 4 kN is to be applied to the top chord
of the truss at one of the joints 1, 2, …, 9. Write a MATLAB program to calculate the force in member MN
as the load is successively applied at joints 1, 2, …, 9.

M
Q

N R

P

2
1

3

4

5

6

7

8
9

8 panels each 8 m = 64 m

12 m

Fig. ES7.21

ES7.22: Figure ES7.22 shows the loading on a beam. At x = 0, the load is increasing at the rate of 80 N/m
per m.

w

x

0

BA

w

w = k x – k x1 2
2

15 m

Fig. ES7.22

Write a MATLAB program to plot
(a) the distributed load w(x) for w0 = 0, 100, 200, 300 and 400 N/m.
(b) the reactions at the two supports as a function of w0 for 0 ≤ w0 ≤ 400 N/m.

ES7.23: Figure ES7.23 shows a beam subjected to distributed and varying loads. Write a MATLAB program
to plot the magnitude of the vertical reactions at supports A and B as functions of distance d over
0 ≤ d ≤ 4m.

Engineering Mechanics ——— 535

A B

d

8 m
3 m

2 kN-m
1 kN/m

Fig. ES7.23

ES7.24: Figure ES7.24 shows a cantilever loaded with uniformly distributed load.
y

x

w

�

Fig. ES7.24

The deflection y at any point located at a distance x with a uniformly distributed load w is given by:

()
2

2 26 424
wxy x xEI

= − − +� �

where, E is the Young’s modulus of elasticity, I is the area moment of inertia and l is the length of the beam. Write
a MATLAB program to plot the deflection y of the beam as a function of x. Take l = 10 m, E = 70 × 109 Pa, I = 10
× 10–6 m4, and w = 1000 N/m. Also plot the deflection of a simply supported beam under same conditions by

considering the deflection relation as: 2 3 3(2)
24
wxy x x

EI
= − −

ES7.25: Figure ES7.25 shows a simply supported beam with a constant distributed load w over half of its
length.

y

x

w
/2� /2�

Fig. ES7.25

The deflection y as a function of x is given by

3 2 3(16 24 9)
384

wxy x x
EI

−= − + for 0
2

x≤ ≤

3 2 2 3(8 24 17)
384

wxy x x x
EI

−= − + − for
2

x≤ ≤

where E = Young’s modulus of elasticity, I = moment of inertia and = length of the beam.
Write a MATLAB program to plot the deflection of the beam y as a function of x.
Given = 25 m, E = 200 × 109 Pa, I = 350 × 10–6 m4 and w = 6 × 103 N/m.

536 ——— MATLAB: An Introduction with Applications

ES7.26: Derive the equations for the shear and bending moment curves for the beam shown in Fig. ES7.26.
Write a MATLAB program to plot the shear and bending moment diagrams for the beam with
w0 = 20 kN/m and = 4 m.

A

B

y

x

�

w = w x/0 �

Fig. ES7.26

ES7.27: Figure ES7.27 shows a typical transmission-time installation suspended between two points lying
at the same elevation. The length of the cable is AB and mass per unit length is m'. Write a MATLAB
program to plot the dimensionless quantities: H/ , AB/ , T0/m'g and Tmax/m'g for values of c/ from
0.1 to 0.6 using 0.01 increments and from 0.6 to 5 using 0.2 increments. Here c is deflection of cable.

A B

H

�

Fig. ES7.27

ES7.28: Figure ES7.28 shows a planar mechanism with two uniform links OQ and OP each of mass m are
connected and constrained as shown. When a horizontal force F is applied, the angle α between the links
increases, the light rod connected at M and passing through a pivoted collar at N compresses the spring.
The stiffness of the spring is k N/m.

(a) Determine the force F which will produce equilibrium at the angle α if the spring is uncompressed
in the position when α = 0

(b) Write a MATLAB program for determine the equilibrium value of α corresponding to a given force F.

M

O

P
Q

k

N

Vg = 0 F

� �

��
α

Fig. ES7.28

Engineering Mechanics ——— 537

ES7.29:A mechanism is shown in Fig. ES7.29. Use MATLAB to plot the force in member BD as a function
of θ for values of θ ranging from 20 to 120°.

30 cm

P = 20N

40 cm

θ

10 cm

CD

A

B

Fig. ES7.29

ES7.30: An 10 kg block is hung from the midpoint C of the cable AB which is attached to two springs
as shown in Fig. ES7.30. Knowing that the springs are unstretched when y = 0, plot the distance y
corresponding to equilibrium, as a function of the spring constant k1 ranging from 500 N/m to 800 N/m.
Take k2 = 1000 N/m.

k2
=1000 N/m

W

500 mm

y

k1

B
A

C

Fig. ES7.30

ES7.31: Determine the distance H for which the centroid of the shaded area in Fig. ES7.31 is as high above
BB′ as possible. Write a MATLAB program to plot the ratio H/B as a function of k for 0.1 ≤ k ≤ 0.9.

B B'

B

H

A

kA

Fig. ES7.31

538 ——— MATLAB: An Introduction with Applications

ES7.32: Figure ES7.32 shows an approximating the general spandrel using a series of n rectangles, each
of width ∆ A and of the form bcc′b′. Write MATLAB program to calculate the coordinates of the centroid
of the area. Determine the centroid when A = 5 cm, H = 5 cm for m = 2 to 4.

b b′ x

y

A
∆A

H
y=kx

m c
d d′

1/2 A∆

c′

Fig. ES7.32

ES7.33: Write a MATLAB program to determine the volume and the surface area of the solid obtained by
rotating the area shown in Fig. ES7.33 about the y-axis when A = 100 mm and n = 1.

AA
x

y

sin kx
y = c

n
x

A

P

QR

Fig. ES7.33

ES7.34: Calculate the centroid of the area found by deducting the quadrant of an ellipse from the rectangle
of dimensions 10 cm × 5 cm as shown in Fig. ES7.34.

x

a

b

y

0

Fig. ES7.34

ES7.35: A 3-dimensional structure is fabricated during a project work from four steel-rods of equal diameter
as shown in Fig. ES7.35. Using MATLAB, study the variation of center of gravity of the structure as a
function of h and R.

Engineering Mechanics ——— 539

R

x

y

z

h

1

2(circle)

3

4

Fig. ES7.35 Three-dimensional structure

ES7.36: Many cross-sections can be approximated by a series of rectangles as shown in Fig. ES7.36. Using
MATLAB, calculate the moment of inertia and the radii of gyration of the cross-section with respect to
horizontal and vertical centroidal axes. Take b1 = 3 cm, h1 =1 cm, b2 = 1 cm, h2 = 4 cm, b3 = 5 cm and
h3 = 1 cm. The centroids are: (0, –2.5), (0,0), (2.5,0)

C1

C2

C3

h1

h2

h3

b2

b1

b3

x

y

Fig. ES7.36

ES7.37: Figure ES7.37 shows an area with known moments of inertia Ix, Iy and product of inertia Ixy .

50 mm

80 mm

10 mm

10 mm

x

y

C

x'

y'

θ

Fig. ES7.37

540 ——— MATLAB: An Introduction with Applications

Calculate the moment and product of inertia of the area with respect to axes x' and y' obtained by rotating
the original axes counterclockwise through an angle θ. Use MATLAB to plot Ix', Iy' and IxIy' as a function
of θ for 0≤ θ ≤90o.

ES7.38: Obtain the mass moment of inertia with respect to x-axis of the homogeneous wire with mass per
unit length as 0.1 kg/m by approximating using 12 straight line segments as shown in Fig. ES7.38. Write a
MATLAB program to determine Ix of the wire with respect to the x-axis when p = 25 mm, l = 250 mm, and
H = 100 mm.

H

�
p

x

y

y = H(1–p/x)

(�–p)/10

Fig. ES7.38

DYNAMICS

ED7.1: The total acceleration y of the nose cone of a small experimental rocket as it moves up and down
is given by

2

2

0.00016 up

= – g + 0.00016 down

y g v

v

= − −
 in m/s2

where v = velocity in m/s.
(a) Derive an expression for the speed of the cone as a function of height as the cone moves up

to its maximum height and as it returns to the ground. The nose cone is projected vertically from
the ground with an initial velocity of 400 m/s.

(b) Write a MATLAB program to plot the speed of the cone as a function of the height for the upward
motion and for the downward motion.

ED7.2: The position x as a function of time of a particle that moves along a straight line is given by

x(t) = 0.5t3 – 2.5t2 – 6t +15
(a) Derive expressions for the velocity and acceleration of the particle.
(b) Write a MATLAB program to plot the position, velocity and acceleration as a function of time for

0 ≤ t ≤ 10 seconds.

Engineering Mechanics ——— 541

ED7.3: The height of the ball at any time t after it is thrown is given by 2
0 0

1
()

2yy t y v t gt= + −

 where y0 = the initial height of the object above the ground
vy0

= the initial vertical velocity of the object
g = acceleration due to gravity

 The horizontal distance traveled by the ball after it is thrown is given by
 x(t) = x0 + vx0 t

where x0 = the initial horizontal position of the ball on the ground and vx0 = the initial horizontal velocity of
the ball.
In the above, air friction and earth’s curvature are neglected. Assume that the ball is initially thrown from
(x0, y0) = (0,0) with 25 m/s at an initial angle of θ degrees.

(a) Write a MATLAB program to plot the trajectory of the ball and obtain the horizontal distance
traveled before it touches the ground, by taking the range of θ as: 0 ≤ θ ≤ 90º.

(b) Determine the angle θ that maximizes the range of the ball and plot the trajectory.

ED7.4: A motorcycle is moving along a circular path having a radius of 6 m such that its position as a
function of time is given by θ = sin 3t, find the acceleration of particle as a function of time t and plot the
components of acceleration.
ED7.5: The height, h, horizontal distance, x and speed of a projectile, v, launched with a speed, v at an
angle θ to the horizontal axis are given by

21() sin
2

h t vt gt= θ −

() cosx t vt= θ
2 2 2() 2 sinv t v vgt g t= − θ +

The projectile will strike the ground when h(t) = 0, and the time of the hit is given by

2 sinhit
vt
g

= θ

Assuming θ = 35º, v = 50 m/s, and g = 9.81 m/s2, write a MATLAB program using logical operators
to find (a) the height is no less than 16 m, (b) the height is no less than 16 m and the speed is
no greater than 45 m/sec.

ED7.6: The gravitational force F between two bodies of masses m1 and m2 is given by

1 2
2

G m mF
r

=

where,
G = gravitational constant (6.67 × 10–11 Nm2/kg2)

m1, m2 = masses of the bodies (kg)
 r = distance between the two bodies (m).

542 ——— MATLAB: An Introduction with Applications

Write a MATLAB program to calculate the gravitational force between two bodies given their masses
and distance between them. Determine the force on an 1,000 kg satellite in orbit 40,000 km above the earth’s
surface. The mass of the earth is 5.98 × 1024 kg.

ED7.7: A cameraman standing at A (see Fig. ED7.7) is following the movement of a race car B which is
traveling along a straight track at a constant speed v. Plot the variation of angular velocity (with which he
must turn in order to keep the camera directed on the car) as a function of angle θ shown in the figure.
Given: v = 24 m/s and a = 30m.

θ

rAa

A

B

Fig. ED7.7

ED7.8: The satellite’s orbit in polar coordinates is given by

1 cos

pr =
− ε θ

where r = distance of the satellite from the center of the earth
θ = angle of the satellite from the center of the earth
p = a parameter specifying the size of the orbit
ε = a parameter specifying the eccentricity of the orbit

Note that when a satellite orbits the earth, the satellite’s orbit will form an ellipse with the earth located at
one of the focal points of the ellipse. Write a MATLAB program to plot the orbit of a satellite for (a) ε = 0,
(b) ε = 0.25 and (c) ε = 0.5. The size parameter, p = 1100 km.

ED7.9: Figure ED7.9 shows a block of mass attached to a spring of spring constant k. The block is released
from rest when the spring is in a horizontal and undeformed position. Write (a) MATLAB program to determine
and plot the length of the spring, the magnitude and direction of velocity of the block as the block passes
directly under the point of suspension of the spring for k/m = 14s–2, 22s–2 and 25s–2 (b) the value of k/m
for which that velocity is horizontal. Assume r0 = 2 m.

m

r0

Fig. ED7.9

ED7.10: Figure ED7.10 shows a block of mass m initially at rest acted upon by a force P which varies in
magnitude with time as shown in Fig. ED7.10(a). Write a MATLAB program to determine and plot the speed
of the block as a function of time t for 0 ≤ t ≤ 20 s. Determine the maximum velocity of the block and the

Engineering Mechanics ——— 543

corresponding value of t. The coefficient of static and kinetic friction between the block and the horizontal
surface are µs = 0.45 and µk = 0.25. The mass of the block m = 30 kg.

m P

P(N)

500

t(s)
20100

Fig. ED7.10 Fig. ED7.10 (a)

ED7.11: Figure ED7.11 shows two hemispheres held together by a cord only which maintain the spring
under compression. Write a MATLAB program to calculate and plot the magnitude of the resulting velocity
of each hemisphere as a function of θ for 10º ≤ θ ≤ 150º knowing that the cord is severed causing the
hemispheres to fly apart. The potential energy of the compressed spring is 120 J and the assembly has an
initial velocity of magnitude v0 = 8m/s.

A

B

2.5 kg

1.5 kg

vo

θ

Fig. ED7.11

ED7.12: A freely rolling base (B) has 60 kg mass. A box (A) of 40 kg is sliding over it from rest, 5 m down
the base as shown in Fig. ED7.12. Determine base speed, when the box reaches bottom of the crate
assuming it as smooth surface.

Base

B

AA

3

4

5 m

Fig. ED7.12

544 ——— MATLAB: An Introduction with Applications

ED7.13: A chain has a mass per unit length 0.2 kg/m. If it is raised with a constant speed 5cm/s starting
from rest, plot the force required to raise it as a function of height.
ED7.14: The angular velocities of links 3 and 4 of the four-bar mechanism at an instant shown in
Fig. ED7.14 are given by

3 3 4 4 3 2 2 2

3 3 4 4 4 2 2 2

sin sin sin
cos cos cos

r r r
r r r

− θ θ ω ω θ     
=     θ − θ ω − ω θ    

Fixed link

Link 2

Link 3

Link 4

r1

r2

4

θ4

θ3

θ2

r3

r

Fig. ED7.14 Four-bar mechanism

The link lengths and angles are given below:

Link Length, r(cm) Angle, θ (degree)
1
2
3
4

13.0
5.0

11.0
8.0

0
45
25
89

The angular velocity of the input link, 2ω is given as + 110 rad/s. Write a MATLAB program to solve for the
angular velocities of links 3 and 4.
ED7.15: Figure ED7.15 shows two rotating rods connected by a slider P. Write a MATLAB program to
determine and plot for values of θ from 0 to 180º,

(a) the angular velocity and angular acceleration of rod AE
(b) determine the value of θ for which the angular acceleration αAE of rod AE is maximum and the

corresponding value of αAE.
Assume that the rod BP rotates counterclockwise with a constant angular velocity of 10 rad/s.

E

P

A

B

800 mm

400 mm

θ

Fig. ED7.15

Engineering Mechanics ——— 545

ED7.16: A mechanism used to convert the constant circular motion ω of the rod AB into translating motion
of the rod CD is shown in Fig. ED7.16. Plot the velocity and acceleration of CD as a function of angle θ
of AB. Take AB = 100 mm and ω = 10 rad/s.

A

B

C

D

x

θ

ω

Fig. ED7.16

ED7.17: A rod AB shown in Fig. ED7.17 is confined to move along the inclined paths. If point A has an
acceleration 3 m/s2 and velocity of 2 m/s at any instant θ, study the variation of angular acceleration of
rod as function of angle θ, using MATLAB. Take AB = 10 m.

A

B
aA= 3 m/s

2

aB

�

�

Fig. ED7.17

ED7.18: Figure ED7.18 shows that the end A of the rod AB moved to the left with a constant speed vA.
Write a MATLAB program to calculate and plot the normal reactions at ends A and B of the rod for values
of θ from 0° to 50º. Determine the value of θ at which end B of the rod loses contact with the wall.

The mass of the rod AB = 12 kg.
The constant speed of end A = 70 cm/s.

Wall

Rod

= 20 cm

A

B

vA

θ

�

Fig. ED7.18

546 ——— MATLAB: An Introduction with Applications

ED7.19: Figure ED7.19 shows a uniform slender bar AB of
weight W suspended from springs AC and BD. Write a
MATLAB program to calculate and plot the accelerations
of ends A and B immediately after spring AC has broken
for values of θ from 0° to 90º.

Fig. ED7.19

ED7.20: A bicycle and rider of total mass 80 kg with center of mass located G. If coefficient of kinetic friction
at rear tire is 0.8, plot the deceleration of rider when brakes are applied as a function of height of G from
ground. Also show the variation of normal reaction at the rear wheel. Assume G lies between two wheels
separated by a distance 150 cm. Choose 0.9 ≤ h ≤ 1.3 metres.

mg

N2 N1

Nµ 2

h

G

q p

x

y

Fig. ED7.20 Free-body diagram of the cycle

ED7.21: A spool has a mass of 75 kg and a radius of gyration kG = 0.38 m. It rests on the inclined surface
(Fig. ED7.21) for which coefficient of kinetic friction is µk = 0.15. If the spool is released from rest and
slips at A, plot the initial tension in the cord and angular acceleration of the spool as a function of angle
of incline θ.

A

G

B

θ

0.3

0.6

Fig. ED7.21

A B

C D

θ θ

Engineering Mechanics ——— 547

ED7.22: A 25 kg slender rod AB of 0.4 m long is attached to a spring BC (Fig. ED7.22) having unstretched
length 0.05 m. If the rod is released from rest at θ = 40o, plot the variation of angular velocity of the rod
as a function of angle θ. Consider CA=AB and spring stiffness as 500 N/m. Also find the angle at which
the spring becomes unstretched.

AC
θ

B

k,∂o

Fig. ED7.22

ED7.23: A 100 kg spool has a radius of gyration kG = 0.35 m. A
cable is wrapped around hub of the spool (see Fig. ED7.23) and
horizontal force P = (2 + e–3t) is applied. Determine its angular
velocity as a function of time 0 ≤ t ≤10s, if spool starts from rest
initially. Assume that there is no slipping at the floor during
rolling.

Fig. ED7.23

ED7.24: Figure ED7.24 shows a box of mass m pulled by a rope. The force required to move the box is

given by
cos sin

mgF µ=
θ + µ θ

where µ = coefficient of friction
m = mass of the box
g = acceleration due to gravity (9.81 m/s2)
θ = angle with horizontal.

If mass of box, m = 25 kg and coefficient of friction, µ = 0.40, write a MATLAB program to determine the
angle θ when the pulling force F is 100 N. Also write a MATLAB program to determine (a) the angle θ at
which the force required to pull the box is the smallest, (b) the magnitude of the force in (a).

ED7.25: In Fig. ED7.25 shown, the rod BD is rotating about vertical axis
with an angular velocity of 7 rad/s and acceleration 4 rad/s2. If the limb AC is
rotating downwards, such that its angular speed θ = 2 rad/s and acceleration
θ = 3 rad/s2 in clockwise sense. Plot the variation of velocity and
acceleration of point A on the limb as a function of angle θ. Given length of
AC = 0.8 m.

Fig. ED7.25

P

0.75 m

0.4 m

m
θ

F

Fig. ED7.24

A

B

D

C

α

x

y

z

ω

θ

A
A
..

548 ——— MATLAB: An Introduction with Applications

ED7.26: Figure ED7.26 shows a thin homogeneous disk of mass 10 kg and radius 0.3 m mounted centrally
on the horizontal axle AB. The constant angular velocity of the axle is 30 rad/s. The disk is laid at an angle
θ with the plane normal to the rotating axle. If the axle has negligible mass, write a MATLAB program (for
0° ≤ θ ≤ 90º) to (a) determine and plot θ formed by the axle as a function of angular momentum of the disk
about C, (b) the kinetic energy of the disk, (c) the magnitude of the rate of change of the angular momentum
of the disk about C.

C
B

A

θ

ω

Fig. ED7.26

ED7.27: The top of mass 0.5 kg shown in Fig. ED7.27 precessing about the vertical axis at a constant angle θ.
If it spins with an angular velocity ωs = 100 rad/s, plot the precessional velocity ωp as a function of angle θ.
Take the axial and transverse moments of inertia of the top as 0.45 mg-m2 and 1.2 mg-m2 respectively measured
with respect to the fixed point O. Take OG = 5 cm.

Y

Z

X

z

O

W

G

x

y
ωs

θ

φ

ωp

Fig. ED7.27

❍ ❍ ❍

8.1 INTRODUCTION

Vibration is the motion of a particle or a body or system of connected bodies displaced from a position of
equilibrium. Most vibrations are undesirable in machines and structures because they produce increased
stresses, energy losses, cause added wear, increase bearing loads, induce fatigue, create passenger discomfort
in vehicles, and absorb energy from the system. Rotating machine parts need careful balancing in order to
prevent damage from vibrations.

Vibration occurs when a system is displaced from position of stable equilibrium. The system tends to
return to this equilibrium position under the action of restoring forces (such as the elastic forces, as for a
mass attached to a spring, or gravitational forces, as for a simple pendulum). The system keeps moving
back and forth across its position of equilibrium. A system is a combination of elements intended to act
together to accomplish an objective. For example, an automobile is a system whose elements are the wheels,
suspension, car body and so forth. A static element is one whose output at any given time depends only
on the input at that time while a dynamic element is one whose present output depends on past inputs. In
the same way, we also speak of static and dynamic systems. A static system contains all elements while a
dynamic system contains at least one dynamic element.

A physical system undergoing a time-varying interchange or dissipation of energy among or within its
elementary storage or dissipative devices is said to be in a dynamic state. All of the elements in general are
called passive, i.e., they are incapable of generating net energy. A dynamic system composed of a finite
number of storage elements is said to be lumped or discrete, while a system containing elements, which are
dense in physical space, is called continuous. The analytical description of the dynamics of the discrete
case is a set of ordinary differential equations, while for the continuous case it is a set of partial differential
equations. The analytical formation of a dynamic system depends upon the kinematic or geometric
constraints and the physical laws governing the behaviour of the system.

8.2 CLASSIFICATION OF VIBRATIONS

Vibrations can be classified into three categories: free, forced and self-excited. Free vibration of a system
is vibration that occurs in the absence of external force. An external force that acts on the system causes

888CHAP
T

E
R

Mechanical Vibrations

550 ——— MATLAB: An Introduction with Applications

forced vibrations. In this case, the exciting force continuously supplies energy to the system. Forced
vibrations may be either deterministic or random (see Fig. 8.1a). Self-excited vibrations are periodic and
deterministic oscillations. Under certain conditions, the equilibrium state in such a vibration system becomes
unstable, and any disturbance causes the perturbations to grow until some effect limits any further growth.
In contrast to forced vibrations, the exciting force is independent of the vibrations and can still persist
even when the system is prevented from vibrating.

ττ

x

t

x = x(t)

Fig. 8.1(a) A deterministic (periodic) excitation

x

t

Fig. 8.1(b) Random excitation

8.3 ELEMENTARY PARTS OF VIBRATING SYSTEMS

In general, a vibrating system consists of a spring (a means for storing potential energy), a mass or inertia
(a means for storing kinetic energy), and a damper (a means by which energy is gradually lost) as shown
in Fig. 8.2. An undamped vibrating system involves the transfer of its potential energy to kinetic energy
and kinetic energy to potential energy, alternatively. In a damped vibrating system, some energy is dissipated
in each cycle of vibration and should be replaced by an external source if a steady state of vibration is to
be maintained.

Mechanical Vibrations ——— 551

Mass
m

Spring
k

Damper
c

Excitation
Force F(t)

0

Displacement x

Static
equilibrium

position

 Fig. 8.2 Elementary parts of vibrating systems

PERIODIC MOTION
When the motion is repeated in equal intervals of time, it is known as periodic motion. Simple harmonic
motion is the simplest form of periodic motion. If x(t) represents the displacement of a mass in a vibratory
system, the motion can be expressed by the equation

x = A cos ωt = A cos 2 tπ
τ

where A is the amplitude of oscillation measured from the equilibrium position of the mass. The repetition

time τ is called the period of the oscillation, and its reciprocal,
1f =
τ

, is called the frequency. Any periodic

motion satisfies the relationship

 x(t) = x (t + τ)

i.e., Period
2πτ =
ω

s/cycle

 Frequency 1
2

f
t

ω= =
π

 cycles/s or Hz

ω is called the circular frequency measured in rad/sec.
The velocity and acceleration of a harmonic displacement are also harmonic of the same frequency, but
lead the displacement by π/2 and π radians, respectively. When the acceleration x�� of a particle with rectilinear
motion is always proportional to its displacement from a fixed point on the path and is directed towards the
fixed point, the particle is said to have simple harmonic motion.

The motion of many vibrating systems in general is not harmonic. In many cases the vibrations are
periodic as in the impact force generated by a forging hammer. If x(t) is a periodic function with period τ,
its Fourier series representation is given by

x(t) = 0

1
(cos sin)

2 n n
n

a a n t b n t
∞

=
+ ω + ω∑

where ω = 2π/τ is the fundamental frequency and a0, a1, a2, …, b1, b2, … are constant coefficients, which
are given by:

 0 0

2 ()a x t dt
τ

=
τ ∫

552 ——— MATLAB: An Introduction with Applications

0

2 ()cosna x t n t dt
τ

= ω
τ ∫

0

2 ()sinnb x t n t dt
τ

= ω
τ ∫

The exponential form of x(t) is given by:

x(t) =
in t

n
n

c e
∞

ω

=−∞
∑

The Fourier coefficients cn can be determined, using

–

0

1 () in t
nc x t e dt

τ
ω=

τ ∫
The harmonic functions an cos nωt or bn sin nωt are known as the harmonics of order n of the periodic
function x(t). The harmonic of order n has a period τ/n. These harmonics can be plotted as vertical lines in
a diagram of amplitude (an and bn) versus frequency (nω) and is called frequency spectrum.

8.4 DISCRETE AND CONTINUOUS SYSTEMS

Most of the mechanical and structural systems can be described using a finite number of degrees of freedom.
However, there are some systems, especially those include continuous elastic members, have an infinite
number of degree of freedom. Most mechanical and structural systems have elastic (deformable) elements
or components as members and hence have an infinite number of degrees of freedom. Systems which have
a finite number of degrees of freedom are known as discrete or lumped parameter systems, and those systems
with an infinite number of degrees of freedom are called continuous or distributed systems.

8.5 VIBRATION ANALYSIS

The outputs of a vibrating system, in general, depend upon the initial conditions and external excitations.
The vibration analysis of a physical system may be summarized by the following steps:

1. Mathematical Modeling of a Physical System
2. Formulation of Governing Equations
3. Mathematical Solution of the Governing Equations
4. Physical Interpretation of the Results

1. Mathematical Modeling of a Physical System
The purpose of the mathematical modeling is to determine the existence and nature of the system, its features
and aspects, and the physical elements or components involved in the physical system. Necessary
assumptions are made to simplify the modeling. Implicit assumptions are used that include:

(a) A physical system can be treated as a continuous piece of matter
(b) Newton’s laws of motion can be applied by assuming that the earth is an internal frame
(c) Ignore or neglect the relativistic effects

Mechanical Vibrations ——— 553

All components or elements of the physical system are linear. The resulting mathematical model may be
linear or non-linear, depending on the given physical system. Generally speaking, all physical systems exhibit
non-linear behaviour. Accurate mathematical modeling of any physical system will lead to non-linear differential
equations governing the behaviour of the system. Often, these non-linear differential equations have either
no solution or difficult to find a solution. Assumptions are made to linearise a system, which permits quick
solutions for practical purposes. The advantages of linear models are the following:

(1) their response is proportional to input
(2) superposition is applicable
(3) they closely approximate the behaviour of many dynamic systems
(4) their response characteristics can be obtained from the form of system equations without a detailed

solution
(5) a closed-form solution is often possible
(6) numerical analysis techniques are well developed, and
(7) they serve as a basis for understanding more complex non-linear system behaviours.

It should, however, be noted that in most non-linear problems it is not possible to obtain closed-form
analytic solutions for the equations of motion. Therefore, a computer simulation is often used for the
response analysis.

When analysing the results obtained from the mathematical model, one should realize that the
mathematical model is only an approximation to the true or real physical system and therefore the actual
behaviour of the system may be different.

2. Formulation of Governing Equations
Once the mathematical model is developed, we can apply the basic laws of nature and the principles of
dynamics and obtain the differential equations that govern the behaviour of the system. A basic law of
nature is a physical law that is applicable to all physical systems irrespective of the material from which the
system is constructed. Different materials behave differently under different operating conditions.
Constitutive equations provide information about the materials of which a system is made. Application of
geometric constraints such as the kinematic relationship between displacement, velocity and acceleration
is often necessary to complete the mathematical modeling of the physical system. The application of
geometric constraints is necessary in order to formulate the required boundary and/or initial conditions.
The resulting mathematical model may be linear or non-linear, depending upon the behaviour of the elements or
components of the dynamic system.

3. Mathematical Solution of the Governing Equations
The mathematical modeling of a physical vibrating system results in the formulation of the governing
equations of motion. Mathematical modeling of typical systems leads to a system of differential equations
of motion. The governing equations of motion of a system are solved to find the response of the system.
There are many techniques available for finding the solution, namely, the standard methods for the solution
of ordinary differential equations, Laplace transformation methods, matrix methods and numerical methods.
In general, exact analytical solutions are available for many linear dynamic systems, but for only a few non-
linear systems. Of course, exact analytical solutions are always preferable to numerical or approximate
solutions.

554 ——— MATLAB: An Introduction with Applications

4. Physical Interpretation of the Results
The solution of the governing equations of motion for the physical system generally gives the performance.
To verify the validity of the model, the predicted performance is compared with the experimental results.
The model may have to be refined or a new model is developed and a new prediction compared with the
experimental results. Physical interpretation of the results is an important and final step in the analysis
procedure. In some situations, this may involve (a) drawing general inferences from the mathematical solution,
(b) development of design curves, (c) arrive at a simple arithmetic to arrive at a conclusion (for a typical or
specific problem), and (d) recommendations regarding the significance of the results and any changes (if
any) required or desirable in the system involved.

8.6 COMPONENTS OF VIBRATING SYSTEMS

(a) Stiffness elements
Sometimes, it requires finding out the equivalent spring stiffness values when a continuous system is
attached to a discrete system or when there are a number of spring elements in the system. Stiffness of
continuous elastic elements such as rods, beams and shafts, which produce restoring elastic forces, is
obtained from deflection considerations.

The stiffness coefficient of the rod (Fig. 8.3) is given by k =
EA
l

The cantilever beam (Fig. 8.4) stiffness is k = 3
3EI
l

The torsional stiffness of the shaft (Fig.8.5) is K =
GJ
l

m

k =
l

EA

m

F

E, A, l

u

Fig. 8.3 Longitudinal vibration of rods

E, I, l

F

υ

m

k = 3

3EI

l

Fig. 8.4 Transverse vibration of cantilever beams

Mechanical Vibrations ——— 555

G, J, l T

θ

k =
l

GJ

Fig. 8.5 Torsional system

When there are several springs arranged in parallel as shown in Fig. 8.6, the equivalent spring constant is
given by algebraic sum of the stiffness of individual springs. Mathematically,

eq
1

n

i
i

k k
=

= ∑

m

k1

k2

kn

Fig. 8.6 Springs in parallel

When the springs are arranged in series as shown in Fig. 8.7, the same force is developed in each
spring and is equal to the force acting on the mass.

k1 k2 k3

m

kn

Fig. 8.7 Springs in series

The equivalent stiffness keq is given by:

eq

1

1
1/

1n

ii

k

k=

=

∑

Hence, when elastic elements are in series, the reciprocal of the equivalent elastic constant is equal to the
reciprocals of the elastic constants of the elements in the original system.
(b) Mass or Inertia elements
The mass or inertia element is assumed to be a rigid body. Once the mathematical model of the physical
vibrating system is developed, the mass or inertia elements of the system can be easily identified.
(c) Damping elements
In real mechanical systems, there is always energy dissipation in one form or another. The process of energy
dissipation is referred to in the study of vibration as damping. A damper is considered to have neither
mass nor elasticity. The three main forms of damping are viscous damping,Coulomb or dry-friction damping

556 ——— MATLAB: An Introduction with Applications

and hysteresis damping. The most common type of energy-dissipating element used in vibrations study is
the viscous damper, which is also referred to as a dashpot. In viscous damping, the damping force is
proportional to the velocity of the body. Coulomb or dry-friction damping occurs when sliding contact
exists between surfaces in contact are dry or have insufficient lubrication. In this case, the damping force
is constant in magnitude but opposite in direction to that of the motion. In dry-friction damping energy is
dissipated as heat.
Solid materials are not perfectly elastic and when they are deformed, energy is absorbed and dissipated by the
material. The effect is due to the internal friction due to the relative motion between the internal planes of the
material during the deformation process. Such materials are known as viscoelastic solids and the type of
damping which they exhibit is called as structural or hysteretic damping, or material or solid damping.
In many practical applications, several dashpots are used in combination. It is quite possible to replace these
combinations of dashpots by a single dashpot of an equivalent damping coefficient so that the behaviour of the
system with the equivalent dashpot is considered identical to the behaviour of the actual system.

8.7 FREE VIBRATION OF SINGLE DEGREE OF FREEDOM SYSTEMS

The most basic mechanical system is the single-degree of freedom system, which is characterized by the
fact that its motion is described by a single variable or coordinates. Such a model is often used as an
approximation for a generally more complex system. Excitations can be broadly divided into two types,
initial excitations and externally applied forces. The behaviour of a system characterized by the motion
caused by these excitations is called as the system response. The motion is generally described by
displacements.

8.7.1 Free Vibration of An Undamped Translational System
The simplest model of a vibrating mechanical system consists of a single mass element which is connected
to a rigid support through a linearly elastic massless spring as shown in Fig. 8.8. The mass is constrained
to move only in the vertical direction. The motion of the system is described by a single coordinate x(t) and
hence it has one degree of freedom (DOF).

m

k L

Fig. 8.8 Spring mass system

The equation of motion for the free vibration of an undamped single degree of freedom system can be
rewritten as

m x�� (t) + k x(t) = 0
Dividing through by m, the equation can be written in the form

 2() () 0nx t x t+ ω =��

Mechanical Vibrations ——— 557

in which /n k mω = is a real constant. The solution of this equation is obtained from the initial conditions

0 0(0) , (0)x x x= = υ�

where x0 and υ0 are the initial displacement and initial velocity, respectively.
The general solution can be written as

x(t) = A1
ni te ω + A2

ni te− ω

in which A1 and A2 are constants of integration, both complex quantities. It can be finally simplified as:

x(t) =
2
X ()() i tni tne e

ω − φω − φ −+ 
   = X cos (ωnt – φ)

so that now the constants of integration are X and φ.
This equation represents harmonic oscillation, for which reason such a system is called a harmonic oscillator.
There are three quantities defining the response, the amplitude X, the phase angle φ and the frequency
ωn, the first two depending on external factors, namely, the initial excitations, and the third depending on
internal factors, namely, the system parameters. On the other hand, for a given system, the frequency of the
response is a characteristic of the system that stays always the same, independently of the initial excitations.
For this reason, ωn is called the natural frequency of the harmonic oscillator.
The constants X and φ are obtained from the initial conditions of the system as follows:

2
2 0
0

n
X x

 υ= +  ω 

and
–1 0

0
tan

nx
 υφ =  ω 

The time period τ, is defined as the time necessary for the system to complete one vibration cycle, or as
the time between two consecutive peaks. It is related to the natural frequency by

2 2
n

m
k

πτ = = π
ω

Note that the natural frequency can also be defined as the reciprocal of the period, or

1 1
2n

kf
m

= =
τ π

in which case it has units of cycles per second (cps), where one cycle per second is known as one
Hertz (Hz).

8.7.2 Free Vibration of An Undamped Torsional System
A mass attached to the end of the shaft is a simple torsional system (Fig. 8.9). The mass of the shaft is
considered to be small in comparison to the mass of the disk and is therefore neglected.

558 ——— MATLAB: An Introduction with Applications

IG

�

kt

Fig. 8.9 Torsional system

The torque that produces the twist Mt is given by

t
GJM =
A

where J = the polar mass moment of inertia of the shaft
4

(
32
dJ π

= for a circular shaft of diameter d)

G = shear modulus of the material of the shaft.
A = length of the shaft.

The torsional spring constant kt is defined as

t
T GJk = =
θ A

The equation of motion of the system can be written as:

0G tI kθ + θ =��

The natural circular frequency of such a torsional system is
1/ 2

t
n

G

k
I

 
ω =   

The general solution of equation of motion is given by

0
0() cos sinn n

n
t t tθθ = θ ω + ω

ω

�
.

8.7.3 Energy Method
Free vibration of systems involves the cyclic interchange of kinetic and potential energy. In undamped free
vibrating systems, no energy is dissipated or removed from the system. The kinetic energy T is stored in
the mass by virtue of its velocity and the potential energy U is stored in the form of strain energy in elastic
deformation. Since the total energy in the system is constant, the principle of conservation of mechanical
energy applies. Since the mechanical energy is conserved, the sum of the kinetic energy and potential
energy is constant and its rate of change is zero. This principle can be expressed as

T + U = constant

or () 0d T U
dt

+ =

Mechanical Vibrations ——— 559

where T and U denote the kinetic and potential energy, respectively. The principle of conservation of energy
can be restated by

T1 + U1 = T2 + U2

where the subscripts 1 and 2 denote two different instances of time when the mass is passing through its
static equilibrium position and select U1 = 0 as reference for the potential energy. Subscript 2 indicates the
time corresponding to the maximum displacement of the mass at this position, we have then

 T2 = 0
and T1 + 0 = 0 + U2

If the system is undergoing harmonic motion, then T1 and U2 denote the maximum values of T and U,
respectively and therefore last equation becomes

 Tmax = Umax

It is quite useful in calculating the natural frequency directly.

8.7.4 Stability of Undamped Linear Systems
The mass/inertia and stiffness parameters have an affect on the stability of an undamped single degree of
freedom vibratory system. The mass and stiffness coefficients enter into the characteristic equation which
defines the response of the system. Hence, any changes in these coefficients will lead to changes in the
system behaviour or response. In this section, the effects of the system inertia and stiffness parameters on
the stability of the motion of an undamped single degree of freedom system are examined. It can be shown
that by a proper selection of the inertia and stiffness coefficients, the instability of the motion of the system
can be avoided. A stable system is one which executes bounded oscillations about the equilibrium position.

8.7.5 Free Vibration with Viscous Damping
Viscous damping force is proportional to the velocity x� of the mass and acting in the direction opposite to
the velocity of the mass and can be expressed as

F = c x�
where c is the damping constant or coefficient of viscous damping. The differential equation of motion for
free vibration of a damped spring-mass system (Fig. 8.10) is written as:

0c kx x x
m m

+ + =�� �

m

ck

x

cx

mg

k (+ x)∆

(a) (b)

Fig. 8.10 Damped spring-mass system

k (∆ + x)

560 ——— MATLAB: An Introduction with Applications

By assuming x(t) = Cest as the solution, the auxiliary equation obtained is

2 0c ks s
m m

+ + =

which has the roots
2

1,2 2 2
c c ks
m m m

 = − ± −  

The solution takes one of three forms, depending on whether the quantity (c/2m)2 – k/m is zero, positive or
negative. If this quantity is zero,

 c = 2mωn

This results in repeated roots s1 = s2 = –c/2m, and the solution is

x(t) = (A + Bt)e–(c/2m)t

As the case in which repeated roots occur has special significance, we shall refer to the corresponding
value of the damping constant as the critical damping constant, denoted by Cc = 2mωn. The roots can be
written as:

s1, 2 = (–ζ ± 12 −ζ)ωn

where ωn = (k/m)1/2 is the circular frequency of the corresponding undamped system, and

 ζ =
2c n

c c
C m

=
ω

is known as the damping factor.
If ζ < 1, the roots are both imaginary and the solution for the motion is

() sin()nt
dx t Xe t−ζω= ω + φ

where 21d nω = − ζ ω
is called the damped circular frequency which is always less than ω, and φ is the phase angle of the damped
oscillations. The general form of the motion is shown in Fig. 8.11. For motion of this type, the system is
said to be underdamped.

t

x (t)

ζ < 1

Xe–ζ ωt

Fig. 8.11 The general form of motion

Mechanical Vibrations ——— 561

If ζ = 1, the damping constant is equal to the critical damping constant, and the system is said to be critically
damped. The displacement is given by

x(t) = (A + Bt) nte−ω

The solution is the product of a linear function of time and a decaying exponential. Depending on the
values of A and B, many forms of motion are possible, but each form is characterized by amplitude which
decays without oscillations, such as is shown in Fig. 8.12.

x (t)

ζ = 1
t

Fig. 8.12 Amplitude decaying without oscillations

In this case ζ > 1, and the system is said to be overdamped. The solution is given by:

x(t) = C1
2(1) nte −ζ+ ζ − ω + C2

2(1) nte −ζ− ζ − ω

The motion will be non-oscillatory and will be similar to that shown in Fig. 8.13.

t

x (t)

ζ > 1

Fig. 8.13 Non-oscillatory motion

8.7.6 Logarithmic Decrement
The logarithmic decrement represents the rate at which the amplitude of a free damped vibration decreases.
It is defined as the natural logarithm of the ratio of any two successive amplitudes.
The ratio of successive amplitudes is

()
1

n i
n d

n i d

t
i

t
i

x Xe e
x Xe

−ζω
ζω τ

−ζω +τ
+

= = = constant

The logarithmic decrement

1

ln ln n di
n d

i

x
e

x
ζω τ

τ
+

δ = = = ζω

Substituting 22 / 2 / 1d d nτ = π ω = π ω − ζ gives

562 ——— MATLAB: An Introduction with Applications

2

2

1

πζδ =
− ζ

8.7.7 Torsional System with Viscous Damping
The equation of motion for such a system can be written as

I θ�� + ct θ� + ktθ = 0
where I is the mass moment of inertia of the disc, kt is the torsional spring constant (restoring torque for
unit angular displacement), and θ is the angular displacement of the disc.

8.7.8 Free Vibration with Coulomb Damping
Coulomb or dry-friction damping results when sliding contact exists between two dry surfaces. The damping
force is equal to the product of the normal force and the coefficient of dry friction. The damping force is
quite independent of the velocity of the motion. Consider a spring-mass system in which the mass slides
on a horizontal surface having coefficient of friction f, as in Fig. 8.14.

k
m f

Fig. 8.14 Free vibration with coulomb damping

The corresponding differential equations of motion of such system are
mx�� = –kx – Fd if x� > 0
mx�� = –kx + Fd if x� < 0

These differential equations and their solutions are discontinuous at the end points of their motion.
The general solution is then

x = A sinωt + B cosω t + dF
k (x� < 0)

for motion toward the left. For the initial conditions of x = x0 and x� = 0 at t = 0 for the extreme position
at the right, the solution becomes

x = 0
dFx

k
 −   cos ωt + dF

k (x� < 0)

This holds for motion toward the left, or until x� again becomes zero.
Hence, the displacement is negative, or to the left of the neutral position, and has a magnitude 2Fd /k less
than the initial displacement x0.
A constant amplitude loss of 4Fd /k occurs for each cycle of motion as shown in Fig. 8.15. The motion is
a linearly decaying harmonic function of time, consisting of one-half sine wave parts which are offset
successively up or down by Fd /k depending on whether the motion is to the left or to the right.

Mechanical Vibrations ——— 563

x

x0 4

τ = 2 π /ωn

Fd /k

t

Fd/k

Fd /k

Fig. 8.15 Response of system subjected to Coulomb damping

8.7.9 Free Vibration with Hysteretic Damping
In general, solid materials are not perfectly elastic solid materials, in particular, metals exhibit what is
commonly referred to as hysteretic or structural damping. The hysteresis effect is due to the friction between
internal planes which slip or slide as the deformations takes place. The enclosed area in the hysteresis loop
is the energy loss per loading cycle. The energy loss ∆U can then be written as

∆U = πβ kX 2

where β is a dimensionless structural damping coefficient, k is the equivalent spring constant, X is the
displacement amplitude, and the factor π is included for convenience. The energy loss is a non-linear function
of the displacement.
The equivalent viscous damping constant is given by

.e
kc mkβ= = β

ω

8.8 FORCED VIBRATION OF SINGLE-DEGREE OF FREEDOM SYSTEMS

A mechanical or structural system is often subjected to an external forces or external excitations. The external
forces may be harmonic, non-harmonic but periodic, non-periodic but having a defined form or random.
The response of the system to such excitations or forces is called forced response. The response of a
system to a harmonic excitation is called harmonic response. The non-periodic excitations may have a long
or short duration. The response of a system to suddenly applied non-periodic excitations is called transient
response. The sources of harmonic excitations are unbalanced in rotating machines, forces generated by
reciprocating machines, and the motion of the machine itself in certain cases.

8.8.1 Forced Vibrations of Damped System
Consider a viscously damped single degree of freedom spring mass system shown in Fig. 8.16, subjected
to a harmonic function F(t) = F0 sin ωt, where F0 is the force amplitude and ω is the circular frequency of
the forcing function.

564 ——— MATLAB: An Introduction with Applications

k

F (t) = F0
sin ω t

c

x

Fig. 8.16 Forced vibration of single degree of freedom system

The equations of motion of the system is 0 sinFc kx x x t
m m m

 + + = ω  
�� �

The solution of the equation contains two components, complimentary function xh and particular solution
xp. That is

x = xh + xp

The particular solution represents the response of the system to the forcing function. The complementary
function xh is called the transient response since in the presence of damping the solution dies out. The
particular integral xp is known as the steady state solution. The steady-state vibration exists long after the
transient vibration disappears.
The particular solution or the steady state solution xp can be assumed in the form

xp = A1 sin ωt + A2 cos ωt

By defining 0 0, , /
2n c

c cr and X F k
C m

ω= ζ = = =
ω ω

the amplitudes A1 and A2 are obtained as follows:

A1 =
2

0
2 2 2

(1)
(1) (2)

r X
r r

−
− + ζ

and A2 = 0
2 2 2
(2)

(1) (2)
r X

r r
− ζ

− + ζ

The steady state solution xp can be written as

xp = 0
2 2 2(1) (2)

X
r r− + ζ

 [(1 – r2) sin ωt – (2rζ) cos ωt]

which can also be written as

xp = 0
2 2 2(1) (2)

X

r r− + ζ
sin (ωt – φ)

Mechanical Vibrations ——— 565

where X0 is the forced amplitude and φ is the phase angle defined by

 φ = tan–1
2

2
1

r
r
ζ 

  −

It can be written in a more compact form as
xp = X0β sin (ωt – φ)

where β is known as magnification factor. For damped systems β is defined as

 β = 2 2 2
1

(1) (2)r r− + ζ
This forced response is called steady state solution, which is shown in Figs. 8.17 and 8.18.

0 1 2 3 4

1

2

3
= 0

0.2

0.4

0.707

2

ζ

M
a
g
n
if
ic

a
ti
o
n

fa
c
to

r,
β

Frequency ratio, r

Fig. 8.17 Non-dimensional amplitude versus frequency-ratio

0.0 1.0 2.0 4.03.0

0.0

2

ξ= 1

ξ= 0.75

= 0.2

= 0.07

= 0

π

ξ

φ

ξ
ξ

π

P
h

a
s
e

a
n

g
le

,

Frequency ratio, r

Fig. 8.18 Phase angle versus frequency-ratio

The magnification factor β is found to be maximum when

 r = 21 2− ζ
The maximum magnification factor is given by:

 βmax =
2

1

2 1ζ − ζ

566 ——— MATLAB: An Introduction with Applications

In the undamped systems, the particular solution is reduced to

xp(t) =
0

2

1
n

F
k

  ω −  ω   

 sin ωt

The maximum amplitude can also be expressed as

2

1

1
st

n

X =
δ  ω−  ω 

where δst = F0/k denotes the static deflection of the mass under a force F0 and is sometimes known as
static deflection since F0 is a constant static force. The quantity X/δst represents the ratio of the dynamic
to the static amplitude of motion and is called the magnification factor, amplification factor, or amplitude
ratio.

8.8.2 Resonance

The case r =
n

ω
ω

= 1, that is when the circular frequency of the forcing function is equal to the circular

frequency of the spring-mass system is referred to as resonance. In this case, the displacement x(t) goes
to infinity for any value of time t.
The amplitude of the forced response grows with time as in Fig. 8.19 and will eventually become infinite at
which point the spring in the mass-spring system fails in an undesirable manner.

xp(t)

0
t

r =1

τ =
n

2
ω

π

Fig. 8.19 Resonance response

8.8.3 Beats
The phenomenon of beating occurs for an undamped forced single degree of freedom spring-mass system
when the forcing frequency ω is close, but not equal, to the system circular frequency ωn. In this case, the
amplitude builds up and then diminishes in a regular pattern. The phenomenon of beating can be noticed
in cases of audio or sound vibration and in electric power generation when a generator is started.

Mechanical Vibrations ——— 567

8.8.4 Transmissibility
The forces associated with the vibrations of a machine or a structure will be transmitted to its support
structure. These transmitted forces in most instances produce undesirable effects such as noise. Machines
and structures are generally mounted on designed flexible supports known as vibration isolators or isolators.
In general, the amplitude of vibration reduces with the increasing values of the spring stiffness k and the
damping coefficient c. In order to reduce the force transmitted to the support structure, a proper selection of the
stiffness and damping coefficients must be made.
From regular spring-mass-damper model, force transmitted to the support can be written as

FT = k xp + c px� = X0β 2 2()k c+ ω sin (ωt – φ)

where φ = φ – φt

and φt is the phase angle defined as

 φt = tan–1
c
k
ω 

   = tan–1(2rζ)

Transmitted force can also be written as:

FT = F0βt sin (ωt – φ)

where βt =
2

2 2 2

1 (2)

(1) (2)

r

r r

+ ζ

− + ζ
The transmissibility βt is defined as the ratio of the maximum transmitted force to the amplitude of the
applied force. Figure 8.20 shows a plot of βt versus the frequency ratio r for different values of the damping
factor ζ.

ξ = 0

= 0.2

= 2.0

0.0 1.0 2.0 4.03.0

0.0

1.0

2.0

3.0

4.0

5.0

β t

ξ

ξ

ξ

T
ra

n
s
m

is
s
ib

ili
ty

,

Frequency ratio, r

= 0.75= 0.75

Fig. 8.20 Non-dimensional force transmitted vs frequency ratio

568 ——— MATLAB: An Introduction with Applications

It can be observed from Fig. 8.20, that β > 1 for r < 2 which means that in this region the amplitude of
the transmitted force is greater than the amplitude of the applied force. Also, the r < 2 , the transmitted
force to the support can be reduced by increasing the damping factor ζ. For r = 2 , every curve passes
through the point βt = 1 and becomes asymptotic to zero as the frequency ratio is increased. Similarly, for

2>r , βt < 1, hence, in this region the amplitude of the transmitted force is less than the amplitude of the
applied force. Therefore, the amplitude of the transmitted force increases by increasing the damping factor
ζ. Thus, vibration isolation is best accomplished by an isolator composed only of spring-elements for which
r > 2 with no damping element used in the system.

8.8.5 Quality Factor and Bandwidth
The value of the amplitude ratio at resonance is also known as the Q-factor or Quality factor of the system
in analogy with the term used in electrical engineering applications. That is,

 Q =
1
2ζ

The points R1 and R2, whereby the amplification factor falls to Q/ 2 , are known as half power points,
since the power absorbed by the damper responding harmonically at a given forcing frequency is given by

∆W = πcωX2

The bandwidth of the system is defined as the difference between the frequencies associated with the half
power points R1 and R2 as depicted in Fig. 8.21.

R1 R22.0

β

Bandwidth

Q =
ζ2

1

2

Q

n

ω
ω

Harmonic power points

Fig. 8.21 Harmonic response curve showing half power points and bandwidth

It can be shown that Q-factor can be written as:

Q =
2 1

1
2

nω=
ζ ω − ω

The quality factor Q can be used for estimating the equivalent viscous damping in a vibrating system.

Mechanical Vibrations ——— 569

8.8.6 Rotating Unbalance
Unbalance in many rotating mechanical systems is a common source of vibration excitation which may
often lead to unbalance forces. If M is the total mass of the machine including an eccentric mass m rotating
with an angular velocity ω at an eccentricity e, it can be shown that the particular solution takes the form:

xp(t) =
me
M

 
   βr sin (ωt – φ)

where βr is the magnification factor which is given by

βr =
2

2 2 2(1) (2)

r

r r− + ζ
The steady state vibration due to unbalance in rotating component is proportional to the amount of
unbalance m and its distance e from the center of the rotation and increases as the square of the rotating
speed. The maximum displacement of the system lags the maximum value of the forcing function by the
phase angle φ.

8.8.7 Base Excitation
In many mechanical systems such as vehicles mounted on a moving support or base, the forced vibration
of the system is due to the moving support or base. The motion of the support or base causes the forces
being transmitted to the mounted equipment. Figure 8.22 shows a damped single degree of freedom mass-
spring system with a moving support or base.

m

c

x

k

y = Y0sinω t

Fig. 8.22 Harmonically excited base

The steady state solution can be written as:
xp(t) = Y0βb sin(ωt – φ + φb),

where phase angle φ is given by φ = tan–1
2

2
1

r
r
ζ 

  −
 and βb is known as the displacement transmissibility

given by: βb =
2

2 2 2

1 (2)

(1) (2)

r

r r

+ ζ

− + ζ
The motion of the mass relative to the support denoted by z can be written as

 z = x – y

 =
2

0
2 2 2(1) (2)

Y r

r r− + ζ
sin (ωt – φ)

8.8.8 Response under Coulomb Damping
When a single degree of freedom with Coulomb damping subjected to a harmonic forcing conditions, the
amplitude relationship is written as:

570 ——— MATLAB: An Introduction with Applications

0
2 2 2(1) (4 /)

XX
r F Xk

=
− + π

which gives
2

0
0 2

1 (4 /)
1

F F
X X

r
− π

=
−

This expression for X has a real value, provided that

4F < πF0 or F <
4
π

F0

8.8.9 Response under Hysteresis Damping
The steady-state motion of a single degree of freedom forced harmonically with hysteresis damping is also
harmonic. The steady-state amplitude can then be determined by defining an equivalent viscous damping
constant based on equating the energies.
The amplitude is given in terms of hysteresis damping coefficient β as follows

0

2 2 2(1)

XX
r

=
− + β

8.8.10 General Forcing Conditions and Response
A general forcing function may be periodic or non-periodic. The ground vibrations of a building structure
during an earthquake, the vehicle motion when it hits a pothole, are some examples of general forcing
functions. Non-periodic excitations are referred to as transient. The term transient is used in the sense
that non-periodic excitations are not steady state.

8.8.11 Fourier Series and Harmonic Analysis
The Fourier series expression of a given periodic function F(t) with period T can be expressed in terms of
harmonic functions as

 0

1 1
() cos sin

2 n n
n n

aF t a n t b n t
∞ ∞

= =
= + ω + ω∑ ∑

where ω =
2
T
π

 and a0, an and bn are constants.

F(t) can also be written as follows:

F(t) = F0 +
1

n
n

F
∞

=
∑ sin (ωnt + φn)

where F0 = a0/2, Fn = 2 2
n na b+ , with ωn = nω and φn = tan–1 .n

n

a
b

 
  

Mechanical Vibrations ——— 571

8.9 HARMONIC FUNCTIONS

Harmonic functions are periodic functions in which all the Fourier coefficients are zeros except one coefficient.

8.9.1 Even Functions
A periodic function F(t) is said to be even if F(t) = F(–t). A cosine function is an even function since
cos θ = cos(–θ). If the function F(t) is an even function, then the coefficients bm are all zeros.

8.9.2 Odd Functions
A periodic function F(t) is said to be odd if F(t) = –F(–t). The sine function is an odd function since
sin θ = –sin(–θ). For an odd function, the Fourier coefficients a0 and an are identically zero.

8.9.3 Response under A Periodic Force of Irregular Form
Usually, the values of periodic functions at discrete points in time are available in graphical form or tabulated
form. In such cases, no analytical expression can be found or the direct integration of the periodic functions
in a closed analytical form may not be practical. In such cases, one can find the Fourier coefficients by
using a numerical integration procedure. If one divides the period of the function T into N equal intervals,
then length of each such interval is ∆t = T/N.
The coefficients are given by

a0 =
1

2 ()
N

i
i

F t
N =

∑

an =
1

2 ()
N

i
i

F t
N =

∑ cos nωti

bn =
1

2 ()
N

i
i

F t
N =

∑ sin nωti

8.9.4 Response under A General Periodic Force
To find the response of a system under general periodic force consider, a single degree of freedom system
shown in Fig. 8.23.

m

ck

F (t)

x

Fig. 8.23 Single degree of freedom system

572 ——— MATLAB: An Introduction with Applications

Let the periodic force F(t) can be expressed in terms of harmonic functions by the use of Fourier series as
follows.

F(t) = 0

1

(
2 n

n

a a
∞

=

+ ∑ +cos nωt + bn sin nωt)

Then steady-state solution can be written as

xp(t) = 0
2 2 2

1

/
2 (1) (2)

n

n n n

a a k
k r r

∞

=

+
− + ξ

∑ cos(nωt – ψn)

+
2 2 2

1

/
(1) (2)

n

n n n

b k
r r

∞

= − + ξ
∑ sin(nωt – ψn)

In most cases, the first two or three terms of this series are sufficient to describe the response of the system.
If one of the harmonic frequencies nω is close to or equal to ω, then r ≈1, and the corresponding amplitude
ratio can become large and resonance can occur.

8.9.5 Transient Vibration
When a mechanical or structural system is excited by a suddenly applied non-periodic excitation F(t), the
response to such excitation is called transient response, as the steady-state oscillations are generally not
produced.

8.9.6 Unit Impulse
Impulse is time integral of the force which is finite and is written as

 F̂ = ∫F(t) dt

where F̂ is the linear impulse (in pound seconds or newton seconds) of the force.

Figure 8.24 shows an impulsive force of magnitude ˆF F= ∈ acting at t = a over the time interval ∈. As ∈

approaches zero, the magnitude of the force becomes infinite but the linear impulse F̂ is well defined.

t

F

F (t)

O
a a + ∈

Fig. 8.24 Impulsive force

When F̂ is equal to unity, such a force in the limiting case (∈ → 0) is called the unit impulse, or the Direct
delta function δ (t – a), which has the following properties:

 δ(t – a) = 0 for t ≠ a

0

() 1t a dt
∞

δ − =∫

Mechanical Vibrations ——— 573

0

()t a
∞

δ −∫ F(t) dt = F(a)

where 0 < a < ∞. By using these properties, an impulsive force F(t) acting at t = a to produce a linear
impulsive F̂ of arbitrary magnitude can be expressed as

 F(t) = F̂ δ(t – a).

8.9.7 Impulsive Response of a System
The response of a damped spring-mass system to an impulsive force is given by

x(t) = F̂ H(t)
where H(t) is called the impulse response function can be written as

H(t) =
1

dmω
nte−ζω sin ωdt, where ωd is damped natural frequency

If the force applied at a time t = τ, this can be written as:

H(t–τ) =
1

dmω
()n te−ζω −τ sin ωd(t – τ)

8.9.8 Response to an Arbitrary Input
The total response is obtained by finding the integration

x(t) =
0

()
t
F τ∫ H(t – τ) dτ

This is called the Convolution integral or Duhamel’s integral and is sometimes referred as the superposition
integral.

8.9.9 Laplace Transformation Method
The Laplace transformation method can be used for calculating the response of a system to a variety of
force excitations, including periodic and non-periodic. The Laplace transformation method can treat
discontinuous functions with no difficulty and it automatically takes into account the initial conditions.
The usefulness of the method lies in the availability of tabulated Laplace transform pairs. From the equations
of motion of a single degree of freedom system subjected to a general forcing function F(t), the Laplace
transform of the solution x(t) is given by:

x (s) = 2

() () (0) (0)F s ms c x mx
ms cs k

+ + +
+ +

�

The method of determining x(t) given x (s) can be considered as an inverse transformation which can be
expressed as

x(t) = L–1{ x (s)}

8.10 TWO-DEGREE OF FREEDOM SYSTEMS

Systems that require two independent coordinates to describe their motion are called two degree of freedom
systems. Some examples of two-degree of freedom models of vibrating systems are shown in Fig. 8.25(a)
and (b).

574 ——— MATLAB: An Introduction with Applications

m1

m2

k1

k2

x1

x2

m

m2

x1

x2

�2
θ2

y1

y
21

θ1

1

(a) (b)

�

Fig. 8.25 Two-degree of freedom systems

8.10.1 Equations of Motion
Consider the viscously damped two-degree of freedom spring mass system shown in Fig. 8.26.

m1 m2

F1 (t)

x1 (t)

F2 (t)

x2 (t)k2 k3k1

c1 c2 c3

Fig. 8.26 Two-degree of freedom damped spring-mass damper

The system is completely described by the two coordinates x1(t) and x2(t), which define the positions of
the two masses m1 and m2, respectively, for any arbitrary time t, from the respective equilibrium positions.
The external forces acting on the masses m1 and m2 of the system are F1(t) and F2(t) respectively.
Applying Newton’s second law of motion to each of the masses m1 and m2, we can write the two equations
of motion as:

m1 1x�� (t) + (c1 + c2) 1x� (t) – c2 2x� (t) + (k1 + k2)x1(t) – k2x2(t) = F1(t)

m2 2x�� (t) – c2 1x� (t) + (c2 + c3) 2x� (t) – k2x1(t) + (k2 + k3)x2(t) = F2(t)

These equations reveal that the motion of m1 will influence the motion of mass, m2 and vice versa.

8.10.2 Free Vibration Analysis
Let the free vibration solution of the equations of motion be

x1(t) = X1 cos (ωt + φ)
x2(t) = X2 cos (ωt + φ)

Mechanical Vibrations ——— 575

where X1 and X2 are constants, which denote the maximum amplitudes of x1(t) and x2(t), and φ is the phase
angle. Substituting these expressions in equations of motion leads to a characteristic determinant

det
2

1 1 2 2
2

2 2 2 3

{ ()}

{ ()}

m k k k

k m k k

 − ω + + −
 

− ω + +  
which should be zero for consistency.

or (m1m2)ω4 – {(k1 + k2) m2 + (k2 + k3) m1}ω2 + {(k1 + k2) (k2 + k3) – 2
2k) = 0

This equation is known as the frequency or characteristic equation. The solution of this equation yields
the frequencies or the characteristic values of the system.

2 2 1 2 2 2 3 1
1 2

1 2

() ()1,
2

k k m k k m
m m

 + + +
ω ω =  

 

2

1 2 2 2 3 1

1 2

() ()1
2

k k m k k m
m m

 + + +  
  
  

∓

1/ 22

1 2 2 3 2

1 2

()() –4 k k k k k
m m

 + +−  
 

ω1 and ω2 are called the natural frequencies of the system.
The values of X1 and X2 depend on the natural frequencies ω1 and ω1.3. By denoting the values of X1 and

X2 corresponding to ω1 as (1)
1X and (1)

2X and those corresponding to ω2 as (2)
1X and (2)

2X :

 r1 =
(1) 2
2 1 1 1 2 2
(1) 2

2 2 1 2 31

()
()

X m k k k
k m k kX

− ω + += =
− ω + +

 r2 =
(2) 2
2 1 2 1 2 2
(2) 2

2 2 2 2 31

()
()

X m k k k
k m k kX

− ω + += =
− ω + +

The normal modes of vibration corresponding to 2
1ω and 2

2ω can be expressed, respectively, as

{X(1)} =
(1) (1)
1 1
(1) (1)
2 1 1

X X

X r X

      =   
      

and {X(2)} =
(2) (2)
1 1
(2) (2)
2 2 1

X X

X r X

      =   
      

The vectors {X (1)} and {X (2)}, which denote the normal modes of vibration, are known as the modal vectors
of the system.

8.10.3 Torsional System
Consider the torsional system shown in Fig. 8.27, consisting of two disks on a shaft supported in frictionless
bearings at the ends.

576 ——— MATLAB: An Introduction with Applications

I1

I2

k1

k2

k3

Fig. 8.27 Torsional system

The differential equations of motion as

I1 1θ�� + (k1 + k2)θ1 – k2θ2 = 0

I2 2θ�� + (k2 + k3)θ2 – k2θ1 = 0

where ki is the torsional stiffness of shaft i, i = 1, 2, 3, defined as

ki = i i

i

G J
A

where Gi is the modulus of rigidity, Ji is the polar moment of inertia, and Ai is the length of the shaft. By
using the matrix notation, the differential equations of motion can be written in matrix form as

1 2 21 11

2 2 32 22

0 0
0 0

k k kI
k k kI
+ − θ θ       

+ =        − + θθ       

��
��

8.10.4 Coordinate Coupling and Principal Coordinates
The term coupling is used in vibration analysis to indicate a connection between equations of motion. In
general an n degree of freedom vibration system requires n independent coordinates to describe completely
its configuration. Often, it is quite possible to find some other set of n coordinates to describe the same
configuration of the system completely. Each of these sets of n coordinates is called the generalized
coordinates.

In the dynamic equations of motion, if the mass matrix [M] is non-diagonal, then mass or dynamic
coupling exists and if the stiffness matrix [K] is non-diagonal then static or stiffness or static coupling
exists. In general, it is possible to find a coordinate system that has neither mass or dynamic coupling
nor stiffness or static coupling. Then the equations are decoupled into two independent equations and
can be solved independently of the other. Such coordinates are called principal coordinates or normal
coordinates.

Mechanical Vibrations ——— 577

8.10.5 Forced Vibrations
When a two degree of freedom undamped system is subjected to the harmonic forces, F1(t) = F1 sinωt and
F2(t) = F2sin ωt, then the amplitudes of displacement of masses is given by

X1 = 22 1 12 2

11 22 12 21

a F a F
a a a a

−
−

and X2 = 11 2 21 1

11 22 12 21

a F a F
a a a a

−
−

The denominator defines the natural frequencies of the system ω1 and ω3. The motions of the system are
coupled and hence each mass will exhibit resonance even if the resonant force acts on only one mass of
the system.
For a damped two-degree of spring-mass system under external forces the solution is obtained from
mechanical impedance concept.
The mechanical impedance Zrs (iω) is defined as

 Zrs (iω) = –ω2mrs + iωcrs + krs, (r, s =1, 2)

8.10.6 Orthogonality Principle
If ω1 and ω2 are two eigenvalues (natural frequencies) and X (1) and X (2) are the corresponding eigenvectors
(natural modes) they must satisfy

 ω1
2 [M] X (1) = [K] X (1)

 ω2
2 [M] X (2) = [K] X (2)

Then it can be shown that
For ω1 ≠ ω2, [X (2)]T [M] X (1) = 0
This property is very useful, as for example to check the accuracy of computation of normal modes by its
application.

8.11 MULTI-DEGREE OF FREEDOM SYSTEMS

A multi-degree of freedom system is defined as a system whose motion is described by more than one
generalized coordinate. In general, n coordinates are needed in order to describe the motion of an n-degree
of freedom system. Figure 8.28 shows some examples of multi-degree of freedom systems.

L L L

θ1 θ2 θ3

m1, I1 m2, I2 m3, I3

(a) Three-degree of freedom torsional system

m1 m2 m3

k1 k2 k3 k4

x1 x2 x3

m4

x4

(b) Four-degree of freedom spring mass system

Fig. 8.28 Multi-degree of freedom systems

578 ——— MATLAB: An Introduction with Applications

An n degree of freedom system is governed by n coupled differential equations and has n natural frequencies.
The solution of coupled differential equations can be written as the sum of a homogeneous solution and
a particular solution. The free-vibration properties of the system are represented by the homogeneous
solution while the particular solution represents the forced response.

8.11.1 Equations of Motion
Consider the motion of an n-degree of freedom system whose motion is described by the generalized
coordinates, x1, x2, …, xn as shown in Fig. 8.29.

m1 m2

k i

c
i

k1

c1
cn+1

kn+1

mn

k i+1

c i+1

Fig. 8.29 Multi-degree of freedom system

Applying the Newton’s second law to mass mi (i = 1, 2, …, n), one can write the differential equation of
motion as:

mi ()ix t�� – ci+1 1ix +� + (ci + ci+1) ix� – ci –1ix� – ki +1xi +1 + (ki + ki +1) xi – kixi –1 = 0

For general use, it is convenient to write this equation as in the following matrix form
[M] x�� (t) + [C] x� (t) + [K]x (t) = 0

with [M], [C] and [K] being square matrices containing the coefficients mij, cij and kij respectively.
In this particular case, the mass-matrix is diagonal. For a different set of coordinates, [M] is not necessarily
diagonal.

8.11.2 Stiffness Influence Coefficients
For a linear system, inertial, damping and stiffness properties enter explicitly in the differential equations
through the mass-coefficients mij, damping-coefficients cij and stiffness coefficients kij (i, j = 1, 2,…, n)
respectively. Of the three, stiffness coefficients are the elastic properties causing a dynamic system to vibrate,
e.g., restoring-forces. Stiffness coefficients are also known as stiffness influence coefficients. Stiffness
influence coefficients kij is defined as the force required at x = xi to produce a unit displacement uj = 1 at
point x = xj and also the displacements at all other points for which x ≠ xj are zero. In other words, they
define a relation between the displacement at a point and the forces acting at various other points of system.
Invoking the superposition principle, the force at x = xi producing displacements uj at x = xj (j =1, 2,…, n) is

Fi =
1

n

ij j
j

k u
=

∑

8.11.3 Flexibility Influence Coefficients
Let the system be acted upon by a single-force Fj at x = xj and consider the displacement of any arbitrary
point x = xi (i = 1, 2, …, n) due to force Fj. Flexibility influence coefficient is defined as the displacement
of the point x = xi due to unit force Fj = 1 applied at the point x = xj. Invoking the principle of superposition
and obtaining displacement ui at x = xi resulting from all forces Fj (j = 1, 2, …, n) by simply summing up the
individual contributions.

Mechanical Vibrations ——— 579

Ui =
1

n

ij j
j

a F
=

∑
Note that the units of aij are m/N.
For a single degree of freedom system with only one spring, the stiffness influence coefficient is merely the
spring-constant, where as the flexibility influence coefficient is its reciprocal.

8.11.4 Matrix Formulation
For multi-degree of freedom systems, a more general formulation is employed. Arranging the flexibility and
stiffness influence coefficients in the square matrices as

[aij] = [A], and [kij] = [K]

where [A] is the flexibility matrix and [K] is the stiffness matrix.
The flexibility and stiffness matrices are the inverse of one another. Often the stiffness coefficients are
easier to evaluate than the flexibility coefficients. When the stiffness matrix is singular, the flexibility matrix
does not exist. This implies that the system admits rigid-body motions, in which the system undergoes no
elastic deformations. This can happen when supports do not fully restrain the system from moving. Thus
in the absence of adequate supports, the definition of flexibility coefficients cannot be applied, so that the
coefficients are not defined.

8.11.5 Inertia Influence Coefficients
The mass-matrix is associated with the kinetic energy. For a multi-degree of freedom system with ix� as the
velocity of mass mi (i = 1, 2, …, n.), the kinetic energy is given by

1 []
2

TT x M x= � �

where [M] is the mass-matrix or inertia matrix.
The elements of the mass-matrix mij are known as the inertia influence coefficients. The coefficients mij can
be obtained using the impulse-momentum relations. The inertia influence coefficients m1j, m2j, …, mnj are
defined as the set of impulses applied at points 1, 2, …, n respectively, to produce a unit velocity at points
1, 2, …, n respectively to produce a unit velocity at point j and zero velocity at every other point. Thus, for
a multi degree of freedom system, the total impulse at point i, can be found by summing up the impulses
causing the velocities jx� (j = 1, 2, …, n) as

F� = [M] X�

where [M] is the mass matrix, X� and F� are the velocity and impulse vectors of size n × 1 respectively.

8.11.6 Normal Mode Solution
The general formulation of the differential equations governing the free-vibrations of a linear-undamped
n-degree of freedom system can be written as

[M] x�� + [K] x = 0
where [M] and [K] are symmetric n × n mass and stiffness matrices respectively and x is the n-dimensional
column-vector of generalized coordinates.

580 ——— MATLAB: An Introduction with Applications

Free vibrations of a multi-degree of freedom system are initiated by the presence of an initial potential or
kinetic energy.
The normal-mode solution in the form of

x(t) = Xeiωt

where ω is the frequency of vibration and X is an n-dimensional vector called a mode shape. Each natural
frequency has at least one corresponding mode shape. The general solution is a linear superposition over
all possible modes.
The frequency or eigenvalue equation is defined as

–ω2 [M]X + [K]X = 0
The trivial solution (X = 0) is obtained unless

 det[[M]–1 [K] – ω2I] = 0
Thus ω2 must be an eigenvalue of [M]–1[K]. This form is called characteristic equation. The square of a real
positive eigenvalue has two possible values, one positive and one negative. While, both are used to develop
the general solution, the positive square root is identified as a natural frequency. The mode shape is the
corresponding eigenvector.

8.11.7 Natural Frequencies and Mode Shapes
Generally in vibration problems, the characteristic equation has only real-roots since the matrices under
consideration are symmetric. Assuming that all the eigenvalues of [M]–1[K] corresponding to the symmetric
mass and stiffness matrices are non-negative. Then there exist n-real natural frequencies that can be arranged
by ω1 ≤ ω2 ≤ …, ωn. Each distinct eigenvalue 2

iω , i = 1, 2, …, n, has a corresponding non-trivial eigenvector
Xi, which satisfies

[M]–1[K]Xi = 2
iω Xi

This mode shape Xi is an n-dimensional column vector of the form

1

2

i

i
i

in

X
X

X

X

 
 
 =
 
 
  

#

This mode shape is not unique. The eigenvector is unique only to arbitrary multiplicative constant.
Normalization schemes exist such that the constant is chosen so the eigenvector satisfies an externally
imposed condition. The algebraic complexity of the solution grows exponentially with the number of degrees
of freedom. Hence, numerically methods, which do not require the evaluation of the characteristic equation,
are used for systems with a large number of degrees of freedom.

8.11.8 Mode Shape Orthogonality
In the solution of problems involving multi-degree of freedom vibration, one useful fundamental relation
exists between the principal modes. Consider any two principal modes of oscillation of a system of several
degrees of freedom. Let these be rth and sth modes and the corresponding eigenvalues be 2

rω and 2
sω ,

then it can be shown that

{ }T
rX [M]{X}s = 0, r ≠ s

{ }T
rX [K]{X}s = 0, r ≠ s

Mechanical Vibrations ——— 581

These define the matrix form of the orthogonal relationships between principal modes of vibration. Since
[M] is often a diagonal matrix and [K] is not, it is usually simpler to write the orthogonality matrix with
respect to [M]. The orthogonality relation with respect to [M] is written in expanded form as

1 1
0,

n n
r r s

ij i i j
i j

m x x x r s
= =

= ≠∑∑
Thus the orthogonality relation for the principal modes of vibration is essentially a relation between the
amplitudes of two principal modes. These are not necessarily successive modes but any two modes. It is
convenient to normalize mode shapes by requiring that the kinetic energy scalar product of a mode shape
with itself is equal to one.

8.11.9 Response of A System to Initial Conditions
Response of multi-degree of freedom system subjected to initial excitations x(0) and x� (0) in the general
form can be written as

()
1

(0) cos (0) sin
1

x t Ur
n T TU Mx t U Mx tr r r rr r

= ω + ω∑
= ω

 
 
 

�

Here each of the natural modes can be excited independently of the other.

8.12 FREE VIBRATION OF DAMPED SYSTEMS

In the equations of free motion including viscous damping, we can assume a harmonic form for the response.
Due to the presence of damping, the characteristic equation will be a polynomial that has complex conjugate
roots. For a given complex conjugate eigenvalues, there are conjugate eigenvectors. The normal mode method
or modal analysis applies only to undamped systems or systems where the damping can be made
mathematically equivalent to the mass or stiffness matrix. Sometimes damping can be ignored in the forced
response of a vibrating system.

8.13 PROPORTIONAL DAMPING

For some special systems, where the damping matrix is linearly related to the mass and stiffness matrices,
the simultaneous diagonalization of the stiffness and mass matrices, can be accomplished along with that
of the damping matrix. Such systems are called proportional damping systems.
Here [C] = α[K] + β[M]
where α and β are constants.
Differential equations governing the free vibrations of a linear system with proportional damping can be
written as

[] ([] [] [] 0M X K M X K X+ α + β + =�� �

If ω1 ≤ ω2 ≤ …, ωn are the natural frequencies of an undamped system whose mass-matrix is [M] and stiffness
matrix [K] and U1, U2, …, Un are the corresponding normalized mode shapes. The expansion-theorem implies
that X can be written as a linear combination of the mode shape vector.

X = Σpi Ui

582 ——— MATLAB: An Introduction with Applications

The matrix triple products possessing orthogonality properties, is written as

[U]T[M][U]{ }P� + [U]T(α[K] + β[M]) [U]{ }P� + [U]T[K][U]{P} = 0
The orthogonality of modes with respect to mass and stiffness permits the following substitutions:

[U]T [M] [U] = [I]
and [U]T [K] [U] = [diag ω2] = [Ω]
The equations can now be decoupled into governing equations for each degree of freedom. Mathematically,

ip�� + (α 2
iω + β) ip� + 2

iω pi = 0

In this connection, modal damping ratio is defined as ξ i = 2
1

i
i

 βαω + ω 
The general solution for free vibration problem under ξ i < 1 is given by

pi(t) = Ai i ite−ξ ω sin (ωi 21 i− ξ t – φi)

where Ai and φi are constants determined from the initial conditions. Finally, the solution is obtained in
terms of generalized coordinates.

8.14 GENERAL VISCOUS DAMPING

The differential equations governing the free-vibrations of a multi-degree of freedom system with viscous
damping are given by

[] [] [] 0M X C X K X+ + =�� �

If the damping is arbitrary, then the principal coordinates of the undamped system do not uncouple the
above equation. The equation can be reformulated as 2n first-order differential equations by writing

[] [] 0M y K y+ =� ��

where
[] []

[] ,[] ,
[] [] []
O M M O X

M K y
M C O K X

−     
= = =     

     

�
� �

If the values of γ are complex-conjugate eigenvalues of –1[] []M K� � and φ is a corresponding eigenvector,
then solution takes the form as

y = φ e–γt

8.15 HARMONIC EXCITATIONS

Differential equations governing the motion of an n-degree of freedom undamped system subject to a single-
frequency excitation with all excitation terms at the same phase can be written as:

[]M x��+ [K]x = F sin ωt
where F is an n-dimensional vector of constant forces. A particular solution of the form is assumed as
follows:

x(t) = U sin ωt
where U is an n-dimensional vector of undetermined coefficients.

Mechanical Vibrations ——— 583

It results in by usual method as a solution
U = (–ω2[M] + iω[C] + [K])–1F

Alternative to this method of undetermined coefficients, Laplace transform method can also be employed.

8.16 MODAL ANALYSIS FOR UNDAMPED SYSTEMS

The differential equations governing the forced vibration motion of an undamped linear n-degree of freedom
system are

MX KX F+ =��

The method of modal analysis uses the principal coordinates of the system to uncouple this equation as
follows:

.() ()
1 1i j i

n n
p X MX p X KX X Fi j i ji i

+ =∑ ∑
= =
��

Application of mode shape orthogonality leads to only one non-zero term in each summation, i.e., the term
corresponding to i = j. Since the mode shapes are normalized, following set of equations are obtained

2 ()j j j jp p g t+ω =��

where gj(t) = Xj F
If the initial conditions for pi are both zero, then the convolution integral solution is given by

0

1() ()sin[()]
t

i i i
i

p t g t d= τ ω − τ τ
ω ∫

Once the solution for each pi is obtained, the original generalized coordinates can be determined.
The same methodology can be applied to systems having proportional damping.
Here it leads to the differential equations for the principal coordinates as

22 ()i i i i i i ip p p g t+ ξ ω + ω =�� �

where ξi is modal damping-ratio
In this case, the convolution-integral solution is given by

()

0

1() () sin ()i i

i

i

t
t

i i d
d

p t g e t d−ξ ω −τ= τ ω −τ τ
ω ∫

where 21
id i iω = ω − ξ .

8.17 LAGRANGE’S EQUATION

There are two general approaches to classical dynamics: vectorial dynamics and analytical dynamics.
Vectorial dynamics is based directly on the application of Newton’s second law of motion, concentrating
on forces and motions. Analytical dynamics treats the system as a whole dealing with scalar quantities
such as the kinetic and potential energies of the system. Lagrange proposed an approach, which provides

584 ——— MATLAB: An Introduction with Applications

a powerful and versatile method for the formulation of the equations of motion for any dynamical system.
Lagrange’s equation obtains the equation of motion in generalized coordinates approaching the system
from the analytical dynamics point of view. Lagrange’s equations are differential equations in which one
considers the energies of the system and the work done instantaneously in time.

8.17.1 Generalized Coordinates
The coordinates used to describe the motion in each degree of freedom of a system are termed as
generalized coordinates. They may be Cartesian, polar, cylindrical or spherical coordinates provided any
one of them can be used to describe the configuration of the system where the motion along any one
coordinate direction is independent of others. But, sometimes they may not have such simple physical or
geometrical meaning. For example, the deflections of a string, stretched between two points, can be expressed
in the form of trigonometric Fourier series, and the coefficients of all the terms in the series can be considered
as a generalized coordinate set. This is because each trigonometric function in the series may be considered
as a unique degree of freedom and the coefficients describe the extent of deflection in each degree of
freedom.

It is possible to transform the coordinates from any one system to the generalized coordinate system
or vice versa, through coordinate transformation. Consider a mechanical system consisting of N particles
whose positions are (xi, yi, zi), i = 1, 2,…, N, in a Cartesian coordinate system. The motion of the mechanical
system is completely defined if the variation with time of these positions i.e., xi = xi(t), yi = yi(t), zi = zi(t), are
known. These 3N coordinates completely define a representative space. If it is possible to find another set
of generalized coordinates, qi, i = 1, 2,….n, where n = 3N, then these two coordinate systems are related by
the following:

xi(t) = xi(q1, q2, …, qn, t)
yi(t) = yi(q1, q2, …, qn, t)
zi(t) = zi(q1, q2, …, qn, t)

8.18 PRINCIPLE OF VIRTUAL WORK

The principle of virtual work is essentially a statement of the static or dynamic equilibrium of a mechanical
system. A virtual displacement, denoted by δr, is an imaginary displacement and it occurs without the
passage of time. The virtual displacement being infinitesimal obeys the rules of differential calculus.

Consider a mechanical system with N particles in a three-dimensional space whose Cartesian coordinates
are (x1, y1, z1,…, zn). Suppose the system is subjected to k constraints jφ (x1 , y1, z1,…, zn, t) = 0, j = 1, 2,…,
k. The virtual displacements 1 1 1, ,x y zδ δ δ , etc., are said to be consistent with the system constraints if the
constraint equations are still satisfied.

The virtual work performed by the resultant force vector iF over the virtual displacement vector irδ of particle
i is

1

N

i i
i

W F r
=

δ = ⋅δ∑
When the system is in equilibrium, the resultant force acting on each particle is zero. The resultant force is
the sum of the applied force and the reaction force or the constraint force. The virtual work done by all the
forces in moving through an arbitrary virtual displacement consistent with the constraints is zero.

Mechanical Vibrations ——— 585

8.19 D’ALEMBERT’S PRINCIPLE

The principle of virtual work is extended to dynamics, in which form it is known as d’Alembert’s principle.
The principle of virtual work is extended to the dynamic case by considering the inertia forces and
considering the systems to be in dynamic equilibrium.
The generalized principle of d’Alembert states that the virtual work performed by the effective forces through
infinitesimal virtual displacements compatible with the system constraints is zero.

8.20 LAGRANGE’S EQUATIONS OF MOTION

If Qi is called the generalized force in the direction of the ith generalized coordinate, T is the kinetic energy
and V is potential energy, then Lagrange’s equation is given by

i
i i i

d T T V Q
dt q q q

 ∂ ∂ ∂− + = ∂ ∂ ∂ �
Expressing T – V = L, called the Lagrangian, the equation can be written as

 i
i i

Ld L Q
qdt q
∂  ∂− = ∂ ∂ �

8.21 VARIATIONAL PRINCIPLES

An alternative approach to the study of motion is the use of variational principle, which views the motion
as a whole from the beginning to the end. This involves a search for the path in the configuration space,
which yields a stationary value for a certain integral. Unlike as in the case of differential equations, the
initial and final points in the configuration space are fixed in this approach. The most celebrated variational
principle in dynamics is the Hamilton’s principle.

8.22 HAMILTON’S PRINCIPLE

Hamilton’s principle is the most important and powerful variational principle in dynamics. It is derived from
the generalized d’Alembert’s principle. The generalized version of Hamilton’s principle can be written as

() ()
1 1 1

0 0 0

0 or 0, 0
t t t

t t t
T W dt T V dt Ldtδ + δ = δ − = δ =∫ ∫ ∫

where L = T – V.
The usual form of Hamilton’s principle applies to a more restricted class of systems, which are called
conservative systems. In these systems, all the applied forces are derivable from a potential function V(q, t).
The usual form of Hamilton’s principle states that: The actual path in the configuration space followed by
a holonomic system from t0 and t1 is such that the integral

1

0

t

t

I Ldt= ∫
is stationary with respect to any path variations, which vanish at the end points.

586 ——— MATLAB: An Introduction with Applications

8.23 EXAMPLE PROBLEMS AND SOLUTIONS

Example E8.1: Write a MATLAB script for plotting
(a) the non-dimensional response magnitude for a system with harmonically moving base shown in

Fig. E8.1.
(b) the response phase angle for system with harmonically moving base.

m

k c

x(t)

y(t)

Fig. E8.1 Single degree of freedom system with moving base

Solution: The magnitude of the frequency response is given as

1/ 222 2

1| () |

1 2
n n

G iω =
     ω ω  − + ζ    ω ω       

The magnitude of X (iω) is given as

1/ 22
2| () | 1 | () |

n
X i G i A

  ζω ω = + ω ω   
where y (t) = Re Aiωt

 x (t) = X (iω) eiωt

The phase angle φ is given as

3

–1
2 2

2
() tan

21

n

n n

  ω ζ ω  φ ω =     ω ζω − +    ω ω    
The frequency ratio

n

r ω=
ω

The non-dimensional response magnitude is given as the transmissibility
2

2 2

21
()

21

n

n n

X i
A

  ζω +  ωω   =     ω ζω − +    ω ω    

Mechanical Vibrations ——— 587

Based on these equations MATLAB script is written as follows:

zeta= [0.05; 0.1; 0.15; 0.25; 0.5; 1.25; 1.5]; % damping factors
r= [0:0.01:3]; %frequency ratio
for k=1: length (zeta)
 G(k,:)=sqrt((1+(2*zeta(k)*r).^2)./((1–r.^2).^2+(2*zeta(k)*r).^2));
 phi(k,:)=atan2(2*zeta(k)*r.^3,1–r.^2+(2*zeta(k)*r).^2);
end
figure (1)
plot(r, G)
xlabel (‘\omega/\omega_n’)
ylabel (‘|x (i\omega)|/A’)
grid
legend(‘\zeta_1=0.05’,‘\zeta_2=0.1’,‘\zeta_3=0.15’,‘\zeta_4=0.25’,‘\zeta_5=0.5’,
‘\zeta_6=1.25’,‘\zeta_7=1.5’)

figure (2)
plot(r, phi)
xlabel (‘\omega/\omega_n’)
ylabel (‘\phi (\omega)’)
grid
ha=gca;
set (ha,’ytick’,[0:pi/2:pi])
set(ha,’yticklabel’,{[];’pi/2';‘p’})
legend(‘\zeta_1=0.05’,‘\zeta_2=0.1’,‘\zeta_3=0.15’,‘\zeta_4=0.25’,‘\zeta_5=0.5’,
‘\zeta_6=1.25’, ‘\zeta_7=1.5’)

The output of this program is shown in Fig. E8.1(a) and (b).
12

10

8

6

4

2

0
0 0.5 1 1.5 2 2.5 3

ζ
1
= 0.05

ζ
ζ
ζ
ζ
ζ
ζ

2

3

5

6

7

= 0.1

= 0.15

= 0.25

= 0.5

= 1.25

= 1.5

4

|x
(

)|
/a

ω

ω/ωn

(a)

588 ——— MATLAB: An Introduction with Applications

0 0.5 1 1.5 2 2.5 3

ζ
1
= 0.05

ζ
ζ
ζ
ζ
ζ
ζ

2

3

5

6

7

= 0.1

= 0.15

= 0.25

= 0.5

= 1.25

= 1.5

4

φ(
)|

ω

ω/ωn

pi/2

(b)

Fig. E8.1

Example E8.2: An analytical expression for the response of a damped single degree of freedom system
(Fig. E8.2) to given initial displacement and velocity is given by

() cos()nt
dx t Ce t−ζω= ω − φ

where C and φ represent the amplitude and phase angle of the response, respectively having the values
2

2 10 0 0 0
0

0
, tann n

d d

x v x vC x
x

−   ζω + ζω += + φ =   ω ω   

and 21d nω = − ζ ω

m

k c

x(t)

Fig. E8.2

Plot the response of the system using MATLAB for ωn=5rad/s, ζ = 0.05, 0.1, 0.2 subjected to the initial
conditions x(0) = 0, (0)x� = v0 = 60 cm/s.

|

Mechanical Vibrations ——— 589

Solution:
clear

clf

wn=5; % Natural frequency

zeta=[0.05;0.1;0.2]; % Damping ratio

x0=0; % Initial displacement

v0=60; % Initial velocity

t0=0; % Initial time

deltat=0.01; % Time step

tf=6; % Final time

t=[t0:deltat:tf];

for i=1:length(zeta),

 wd=sqrt(1-zeta(i)^2)*wn; % Damped frequency

 x=exp(-zeta(i)*wn*t).*(((zeta(i)*wn*x0+v0)/wd)*sin(wd*t)

+ x0*cos(wd*t));

 plot(t,x)

 hold on

end

title(‘Response to initial excitations’)

xlabel(‘t[s]’)

ylabel(‘x(t)’)

grid

The output of this program is as follows:

ζ = 0.05

ζ = 0.1

ζ = 0.2

Response to initial excitations
15

10

5

0

–5

–10

x
(t

)

520 3 4 651
t[s]

Fig. E8.2(a)

590 ——— MATLAB: An Introduction with Applications

Example E8.3: Plot the response of the system in Example E8.2 using MATLAB for ωn = 5 rad/sec, ζ = 1.3,
1.5, 2.0 subjected to the initial conditions x(0) = 0, (0)x� = v0 = 60 cm/s.

Solution: Changing the program slightly, with zeta = [1.3, 1.5, 2.0] in E8.2, we obtain Fig. E8.3.

ζ=1.3

ζ=1.5

ζ=2.0

4

3.5

3

2.5

2

1.5

1

0.5

0
0 0.5 1 1.5 2 2.5 3

t(s)

Response to initial excitations

Fig. E8.3

Example E8.4: Plot the response of the system in Example E8.2 using MATLAB for ωn = 5 rad/sec and
ζ = 1.0 subjected to the initial conditions x(0) = 0, (0)x� = v0 = 60 cm/s.

Solution: The solution obtained is shown in Fig. E8.4.

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0
0 1 2 3 4 5 6

t(s)

Response to initial excitations

x
(t

)

Fig. E8.4

Mechanical Vibrations ——— 591

Example E8.5: Write MATLAB script for plotting the magnitude of the frequency response of a system
with rotating unbalanced masses as shown in Fig. E8.5.

M.m

k c

m
e

ω

Fig. E8.5 Single degree of freedom system with rotating eccentric mass

Hint: The magnitude of the frequency response is given as

1/ 222 2

1| () |

1 2
n n

G iω =
     ω ω − + ζ      ω ω      

Solution: The magnitude of the frequency response is given as

1/ 222 2

1| () |

1 2
n n

G iω =
     ω ω − + ζ      ω ω      

for ξ = 0.05, 0.01, 0.15, 0.20, 0.20, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5.
r = ω/ωn = 0 to 3 in steps of 0.01.

MATLAB Program:

zeta=[0.05;0.1;0.15;0.25;0.5;1;1.25;1.5]; % Damping factors

r=[0:0.01:3]; % Frequency ratios

for k=1:length(zeta),

 G=(r.^2)./sqrt((1-r.^2).^2+(2*zeta(k)*r).^2);

 plot(r,G)

 hold on

end

xlabel(‘\omega/\omega_n’)

ylabel(‘({\omega/\omega_n})^2|G(I\omega)|’)

grid

592 ——— MATLAB: An Introduction with Applications

Figure E8.5 (a) shows the output of the program

(
/

)
|G

(|
)|

ω
n

2
ω

ω

ω/ nω

Fig. E8.5(a)

For showing legends on the curves, gtext command can be employed.

Example E8.6: A single degree of freedom spring-mass system subjected to coulomb damping is shown in
Fig. E8.6.

m

k

W

x(t)

F = Wd kµ

Fig. E8.6

The parameters of the system have the values m = 600 kg, k = 20×104 N/m, µs = 0.15 and µk = 0.10. The
initial conditions are x(0) = x0 =1.5 cm, (0)x� = 0. Plot the response x(t) versus t using MATLAB.
The magnitude of the average response value fd is given as

d k
d

F mgf
k k

µ= =

If n denotes the half-cycle just prior to the cessation of motion, then n is the smallest integer satisfying the
inequality

0 (2 1) 1 s
d d

f
x n f f

 µ− − < + µ 
where µs = static coefficient of friction

 µk = kinetic coefficient of friction

Mechanical Vibrations ——— 593

Solution: The following MATLAB program can be developed:
m=600; % Mass
k=200000; % Stiffness
mus=0.15; % Static friction coefficient
muk=0.10; % Kinetic friction coefficient
x0=1.5; % Initial displacement
t0=0;
deltat=0.005; % Time increment
wn=sqrt(k/m); % Natural frequency
fd=100*muk*m*9.81/k;
N=ceil(0.5*((x0-(1+mus/muk)*fd)/fd+1)); % Half cycles
t=[];
x=[];
if N>0
 for n=1:N,
 t1=[t0:deltat:t0+pi/wn];
 x1=(x0-(2*n-1)*fd)*cos(wn*t1)+fd*(-1)^(n+1);
 t=[t t1];
 x=[x x1];
 t0=t0+pi/wn;
 end
end
plot(t,x,t,fd*ones(length(t)),’--’,t,-fd*ones(length(t)),’--’)
title(‘Response to initial excitations’)
xlabel(‘t[s]’)
ylabel(‘x(t)[cm]’)
grid
The output is shown in Fig. E8.6(a).

Response to initial exitations
1.5

1

0.5

0

–0.5

–1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

x
(t

)[
c
m

]

t(s)

Fig. E8.6(a)

594 ——— MATLAB: An Introduction with Applications

Example E8.7: Write a MATLAB script for obtaining the response of a viscosity damped single degree of
freedom system to the force F(t) = F0 e–αt u(t) by means of the convolution integral. The pulse is rectangular
as shown in Fig. E8.7 with T = 0.1 seconds.

t
TO

F0

F(t)

Fig. E8.7 Rectangular pulse

Use the sampling period of T = 0.001 s and the number of sampling times n = 300. The parameters of the
system are given as m = 25 kg, c = 30 Ns/m, k = 6000 N/m, F0 = 300 N, and α = 1. The impulse response of
a mass-damper spring system is given by

1
() sin ()nt

d
d

g t e t u t
m

−ζω= ω
ω

Solution:
m=25; % mass

c=30;% damping

k=6000; % stiffness

F0=300; % Force amplitude

T=0.1;

wn=sqrt(k/m);% Natural frequency

zeta=c/(2*sqrt(m*k));%damping factor

Ts=0.001;% sampling period

N=301;% sampling times

wd=wn*sqrt(1–zeta^2);% damped frequency

for n=1:N,

 if n<=T/Ts+1; F(n)=F0; else F(n)=0; end %force

end

n=[1:N];

g=Ts*exp(–(n–1)*zeta*wn*Ts).*sin((n–1)*wd*Ts)/(m*wd);

% discrete–time impulse response

c0=conv(F,g);%convolution sum

c=c0(1:N); % plot to N samples

n=[0:N–1];

axes(‘position’,[0.1 0.2 0.8 0.7])

plot(n,c,‘.’)

title(‘Response to Rectangular pulse’)

xlabel(‘n’)

ylabel(‘x(n) m’);

grid

Mechanical Vibrations ——— 595

The output is shown in Fig. E8.7(a)

Response to rectangular pulse
0.08

0.06

0.04

0.02

–0.02

–0.04

0

x
(n

)m

0 50 100 150 200 300250

Fig. E8.7(a)

Example E8.8: A simplified single degree of freedom model of an automobile suspension system is shown
in Fig. E8.8. The automobile is travelling over a rough road at a constant horizontal speed when it encounters
a bump in the road of the shape shown in Fig. E8.8(a), (b). The velocity of the automobile is 20 m/s,
m = 1500 kg, k = 150,000 N/m, and ζ = 0.10. Determine the response of the automobile.

h 











 πξ−

d
cos1

2

h

d

ξ

m

c

v

k

Fig. E8.8 Simplified single Fig. E8.8(a) Versed sine freedom
degree of pulse model for bump automobile model

12 mm

0

1.0 2.0 3.0

� = 2 m

ξ (m)

y(mm)

Fig. E8.8(b) Road contour

2() 1 cos [1 ()]y h u d
d

 πξ  ζ = − − ξ −    

596 ——— MATLAB: An Introduction with Applications

Here h = 0.012 m, d = 1.0 m and for constants automobile speed, ξ = vt. The vertical displacement of the
automobile wheels is given by

2() 1 cos 1v dy t h t u t
d v

 π      = − − −            

The system response as per convolution integral is

2

0

() [2 () ()] ()
t

eq n nx t m y y h t d= − ζω τ + ω τ − τ τ∫ �

The wheel velocity becomes

2() 2 sin 1v v dy t t u t
d d v
π π       = − −            

�

Solution: MATLAB program for this is given below:
% Simplified one-degree-of-freedom model of vehicle suspension system
% Vehicle encounters bump in road modeled as a versed sinusoidal pulse
% y(t)=h(1–(cos(pi*v*t/ t0))^2)*(u(t)–u(t–d/v))
%convolution integral is used to evaluate system response
syms t tau
% input parameters
digits(10)
format short e
m=1500;
k=150000;
zeta=0.10;
hb=0.012;
d=1.0;
v=20;
% system parameters and constants
omega_n=sqrt(k/m); % Natural frequency
omega_d=omega_n*sqrt(1–zeta^2); % damped natural frequency
c1=pi/d;
% wheel displacement and velocity
% MATLAB ‘Heaviside’ for the unit step function
y=hb*(1–cos(c1*v*t)^2)*(1–sym(‘Heaviside(t–0.04)’));
ydot=hb*c1*sin(2*c1*v*tau)*(1–sym(‘Heaviside(tau–0.04)’))
%convolution integral evaluation
h=exp(–zeta*omega_n*(t–tau)).*sin(omega_d*(t–tau))/(m*omega_d);
g1=–2*zeta*m*omega_n*ydot*h;
g2=–omega_n^2*m*y*h;
g1a=vpa(g1,5);
g2a=vpa(g2,5);
I1=int(g1a,tau,0,t);

Mechanical Vibrations ——— 597

I1a=vpa(I1,5);

I2=int(g2a,tau,0,t);

I2a=vpa(I2,5);

x1=I1a+I2a;

x=vpa(x1,5);

vel=diff(x);

acc=diff(vel);

time=linspace(0,0.3,50);

for i=1:50

 x1=subs(x,t,time(i));

 xa(i)=vpa(x1);

end

xp=double(xa);

plot(time,xp,‘–’);

grid;

xlabel(‘time(sec)’)

ylabel(‘x(t) [m]’)

The output of this MATLAB program is given in Fig. E8.8(c)

0.05 0.1 0.15 0.2 0.25 0.3 0.35

1

0

–1

–2

–3

–4

–5

–6

×10
–3

Time(sec)

x
(t

)[
m

]

0

Fig. E8.8(c)

Example E8.9: Figure E8.9 shows two disks of mass polar moments of inertia I1 and I2 mounted on a circular
shaft with torsional stiffnesses GJ1 and GJ2. Neglect the mass of the shaft.

GJ1 GJ1

�1 �2

M1(t)
M2(t)

θ2(t)

θ1(t)

Fig. E8.9

598 ——— MATLAB: An Introduction with Applications

(a) Obtain the differential equations of motion for the angular displacements of the disks
(b) Determine the natural frequencies and natural modes of the system if I1 = I2 = I, GJ1 = GJ2 = GJ, and

A1 = A2 = A
(c) Obtain the response of the system to the torques M1(t) = 0, and M2(t) = M2e–αt in discrete time
(d) Obtain the response of the system to the torques M1(t) = 0, and M2(t) = M2e–αt

(e) Obtain in discrete time the response of the system to the torques M1(t) = 0, and M2(t) = M2e–αt using
MATLAB.

Solution:

I1
I2

M1(t)
M2(t)

θ1(t) θ2(t)

k2[θ1(t)– θ2(t)]k1θ1(t)

Fig. E8.9(a)

(a) The equations of motion are given by

 I1 1θ�� = M1 – k1θ1 + k2(θ2 – θ1)
 I2 2θ�� = M2 – k2(θ2 – θ1) ...(1)

where ki =
i

i

GJ
L

, i = 1, 2

Rearranging Eq.(1), we get

 1 2 2
1 1 2 1

1 2 2
i

GJ GJ GJI M
L L L

 
θ + + θ − θ =  
��

2 2

2 2 1 2 2
2 2

GJ GJI M
L L

θ − θ + θ =�� ...(2)

In matrix form, we can write

1 2 2

1 1 2 2 1 11

2 2 2 2 22

2 2

0
0

GJ GJ GJ
L L L MI

I GJ GJ M
L L

 + −  θ θ      + =       θ θ        − 
 

��
�� ...(3)

(b) Denoting
GJ1 = GJ2 = GJ, I1 = I2 = I, L1 = L2 = L ...(4)
The equations of motion of the system [Eq.(3)] can be written as

θ() + () = 0M t K tθ�� ...(5)

where 1

2

()1 0 2 1
1 , , ()

0 1 1 1 ()
tGJM K t
tL

θ−     
= = θ =     − θ     

...(6)

Mechanical Vibrations ——— 599

are the mass matrix, stiffness matrix and configuration vector, respectively. The free vibration solution can
be written as

θi(t) = Θieiωt, i = 1, 2 ...(7)

where ω is the frequency of oscillation and Θ = [Θ1 Θ2]T is a vector of constants, we have

1 1 2

2 2

2 1
,

1 1
IL
GJ

Θ Θ−     
= λ λ = ω    − Θ Θ     

...(8)

The characteristic equation can be written as

22 1
3 1 0

1 1
− λ −

= λ − λ + =
− − λ ...(9)

The eigenvalues are given by

1

2

3 5
2 2

=λ
λ ∓ ...(10)

The natural frequencies are given by

ω1 = 0.6180 /GJ IL , ω2 = 1.6180 /GJ IL ...(11)

Denote the modal vector corresponding to λ1 by Θ1 = [Θ11 Θ21]T, the modal vector is from the matrix
equation as

11 11 11
1

21 21 21

2 1 3 5
1 1 2

Θ Θ Θ−        −= λ =      − Θ Θ Θ       
...(12)

or Θ1 = Θ11
1

1.6180
 
 
 

...(13)

In a similar way by letting Θ2 = [Θ12 Θ22]T, we have

12 12 12
2

22 22 22

2 1 3 5
1 1 2

Θ Θ Θ−        += λ =      − Θ Θ Θ       
...(14)

or Θ2 = Θ12
1

1.6180
 
 
 

...(15)

The modal vectors are shown below

ω1 = 0.6180 √ (GJ/IL)Θ1

1

0
L 2L

x

ω2 = 1.6180 √ (GJ/IL)Θ 2

1

0
L 2L

x

–1

Fig. E8.9(b) Fig. E8.9(c)

600 ——— MATLAB: An Introduction with Applications

(c) The equations of motion are

M θ�� (t) + Kθ(t) = M(t) ...(16)

where 1 1

2 2

() ()1 0 2 1
, , () ()

0 1 1 1 () ()
t M tGJM I K t M t
t M tL

θ−       
= = θ = =      − θ       

...(17)

The solution θ(t) is given by

θ(t) = η1(t) Θ1 + η2(t) Θ2 ...(18)
where η1(t) and η2(t) are modal coordinates and Θ1 and Θ2 are modal vectors. The modal equations can be
written as

2 2
11 1 11 1 1 1 22 2 22 2 2 2' () ' () (), ' () ' () ()η + ω η = η + ω η =�� ��m t m t N t m t m t N t ...(19)

where 1 2
3 5 3 5,

2 2
GJ GJ
IL IL

− +ω = ω = ...(20)

The natural frequencies are given by Eq.(20).

 1 2

1 1
,1 5 1 5

2 2

   
   Θ = Θ =+ −   
      

...(21)

The modal vectors are given by Eq.(21).

 11 1 1

1 1
0 5 5' 1 5 1 50 2

2 2

T

T I
m M I

I

   
  +   = Θ Θ = =+ +           

22 2 2

1 1
0 5 5' 1 5 1 50 2

2 2

T

T I
m M I

I

   
  −   = Θ Θ = =+ −           

...(22)

The modal mass coefficients are given by Eq. (22).

1 1 2
2

1 0 1 5() () 1 5 2
2

T

T t
tN t M t M e

M e
−α

−α

    + = Θ = = +     

 2 2 2
2

1 0 1 5() () 1 5 2
2

T

T t
tN t M t M e

M e
−α

−α

    + = Θ = = −     
...(23)

The modal forces are given by Eq.(23). The solutions η1(t) and η2(t) of the modal equations are written in
the form of the convolution integrals

 1 1 1011 1

1() ()sin
t

t N t d
m

η = − τ ω τ τ
ω′ ∫

Mechanical Vibrations ——— 601

2
1 12 2

11

1 5 cos sin
(5 5)()

tM
e t t

I
−α  + α

= − ω − ω  ω + α + ω  

2
2 2 22 2

22

1 5() cos sin
(5 5)()

tM
t e t t

I
−α  − α

η = − ω − ω  ω − α + ω  
...(24)

where ω1 and ω2 are given above. Hence, the response can be written as

1 1 2 2 1 2
1 5 1 5() () (), () () ()

2 2
t t t t t t+ −θ = η + η θ = η + η ...(25)

(d) The equations of motion are

() () ()M t K t M tθ + θ =�� ...(26)

where 1

2 2

0()1 0 2 1
, , () , ()

0 1 1 1 () t

tGJM I K t M t
tL M e−α

 θ−     
= = θ = =      − θ       

...(27)

Assuming a solution of the form
 1 1 2 2() () ()t t tθ = η Θ + η Θ ...(28)

in which η1(t) and η2(t) are modal coordinates and

 1 2

1 1
,1 5 1 5

2 2

   
   Θ = Θ =+ −   
      

...(29)

are the modal vectors. The modal equations are given by

 2
11 1 11 1 1 1' () () ()m t m' t N tη + ω η =��

2
22 2 22 2 2 2' () () ()m t m' t N tη + ω η =�� ...(30)

in which 1 2
3 5 3 5,

2 2
GJ GJ
IL IL

− +ω = ω = ...(31)

are the natural frequencies

11 22
5 5 5 5,

2 2
m' I m' I+ −

= = ...(32)

are modal mass coefficients.
The modal forces are given by

 1 2 2 2
1 5 1 5() , ()

2 2
t tN t M e N t M e−α −α+ −

= = ...(33)

The response is given by
 1 1 2 2() () () , 1, 2,...n n n nθ = η Θ + η Θ = ...(34)

602 ——— MATLAB: An Introduction with Applications

where 1 1 1
0

() () (),
n

k
n N k g n k

=
η = −∑

 2 2 2
0

() (), (), 1,2,...
n

k
n N k g n k n

=
η = − =∑ ...(35)

are the discrete-time modal coordinates given in the form of convolution sums, in which the discrete time
impulse responses are given by

 1() sin , 1,2i
ii i

Tg n n T i
m

= ω =
ω′ ...(36)

where T is the sampling period. The discrete-time response is given by

1

1 1
11 10

()() sin()
n

k

N kn T n k T
m=

 θ = − ω Θ + ω′ 
∑

2
2 2

22 2

()
sin()

N k
n k T

m
  − ω Θ  ω′   

 = 2

0

0.723607
sin()0.618034

1.170821 /

n
kT

k

TM GJe n k T
ILGJ IL

−α

=

   −    
∑

– 0.276393

sin()1.618034 /
0.17082

kte n k GJ IL Tα −  
+ −  

 
...(37)

Denoting /GJ IL = 1, M2/I = 1, α = 1 and T = 0.01 s, the response is given by

0.01

0

0.723607
() 0.01 sin 0.618034()

1.170820

n
k

k
n e n k−

=

  
θ = −  

 
∑

0.276393

+ sin 1.618034(–)
0.170820

n k T
−  

 
 

...(38)

The discrete-time response sequence is given by

0
(0)

0
 

θ =  
 

0.723607

(1) 0.01 sin 0.00618034
1.170820

  
θ =   

 

9

5

0.276393 1.82291 10
sin 0.0161803

0.170820 9.999 10

−

−

 −  × 
+ =   

×     

0.01 0.723607
(2) 0.01 [sin(0.00618034 2) sin 0.00618034]

1.170820
e−  

θ = × +  
 

–0.01 0.276393
+ [sin(0.0161803 × 2) + sin 0.0161803]

0.170820
e

−  
 

 

 =
8

4

1.54497 10

2.990 10

−

−

 ×
 

×  
...(39)

Mechanical Vibrations ——— 603

(e) The response θ i(n) (i = 1, 2) is plotted in Fig. E8.9(d) obtained from the following MATLAB program.

% Response of 2–degree of freedom system

clear

clf

I=1; % mass

k=1;%=GJ/L torsional stiffness

M=I*[1 0;0 1];% mass matrix

K=k*[2 –1;–1 1];% stiffness matrix

[u,W]=eig(K,M);% eigenvalue problem

% W= eigenvalues

u(:,1)=u(:,1)/max(u(:,1)); % normalization

u(:,2)=u(:,2)/max(u(:,2));

[w(1),I1]=min(max(W)); % relabeling of the eigenvalues

[w(2),I2]=max(max(W));

w(1)=sqrt(w(1)); % lowest natural frequency

w(2)=sqrt(w(2)); % highest natural frequency

U(:,1)=u(:,I1); % relabeling of the eigenvectors
U(:,2)=u(:,I2);
m1=U(:,1)’*M*U(:,1); % mass quantities
m2=U(:,2)’*M*U(:,2);
T=0.01; % sampling period
N=2000; % sampling times
M2=1; % second disk torque amplitude
alpha=1;
n=[1:N];
N1=U(:,1)’*[zeros(1,N);M2*exp(–alpha*n*T)]; % modal forces
N2=U(:,2)’*[zeros(1,N);M2*exp(–alpha*n*T)];
g1=T*sin((n–1)*w(1)*T)/(m1*w(1)); %discrete time impulse responses
g2=T*sin((n–1)*w(2)*T)/(m2*w(2));
c1=conv(N1,g1); %convolution sum
c2=conv(N2,g2);
theta=U(:,1)*c1(1:N)+U(:,2)*c2(1:N); % N samples for plotting
n=[0:N–1];
axes(‘position’,[0.1 0.2 0.8 0.7])
plot(n,theta(1,:),‘.’,n,theta(2,:),‘.’)
h=title(‘Response by the convolution sum’);
set(h,‘FontName’, ‘Times’,‘FontSize’,12)
h=xlabel(‘n’)
set(h,‘FontName’,‘Times’,‘FontSize’,12)
h=ylabel(‘\theta_1(n),\theta_2(n)’);
set(h,‘FontName’,‘Times’,‘FontSize’,12)
grid

604 ——— MATLAB: An Introduction with Applications

Its output is shown in Fig. E8.9(d).
Response by the convolution sum

θ
θ

1
2

(n
),

(n
)

1.5

1

0.5

0

–0.5

–1

–1.5
0 200 400 600 800 1000 1200 1400 1600 1800 2000

n

Fig. E8.9(d)

Example E8.10: Obtain the response of the system of Problem E8.9 to the initial excitation θ1(0) = 0,
θ2(0) = 1.5, 1θ� (0) = 1.8 /GJ I � , and 2θ� (0) = 0. Plot the response of the system using MATLAB.

Solution: The initial conditions are given as

 θ1(0) = 0, θ2(0) = 1.5, 1θ� (0) = 1.8
GJ
IL

, 2θ� (0) = 0 ...(1)

From Problem E8.9, we have

11
1 1 11

21

1
0.6180 ,

1.6180
GJ
IL

Θ   
ω = Θ = = Θ   Θ   

12
2 2 12

22

1
0.6180 ,

1.6180
GJ
IL

Θ   
ω = Θ = = Θ   Θ   

...(2)

The response to the initial excitation is a superposition of the natural modes. Hence

 θ(t) = C1 cos(ω1t – φ1)Θ1 + C2 cos(ω2t – φ2)Θ2

or θ(t) = C1(cos ω1t cos φ1 + sin ω1t sin φ1)Θ1

 + C2(cos ω2t cos φ2 + sin ω2t sin φ2)Θ2 ...(3)
and θ(t) = C1ω1(sin ω1t cos φ1 – cos ω1t sin φ1)Θ1

 – C2ω2(sin ω2t cos φ2 – cos ω2t sin φ2)Θ2

If t = 0, then Eq.(3) become

1 11 12
1 1 2 2

2 21 22

(0)
(0) cos cos

(0)
C C

θ Θ Θ     
θ = = φ + φ     θ Θ Θ     

Mechanical Vibrations ——— 605

1 11 12
1 1 1 2 2 2

21 222

(0)
(0) sin sin

(0)
C C

 θ Θ Θ   
θ = = ω φ + ω φ     Θ Θθ      

�
�

� ...(4)

From Eq.(4), we have

22 10 12 20 11 20 21 10
1 1 2 2cos , cos

| | | |
C CΘ θ − Θ θ Θ θ − Θ θφ = φ =

Θ Θ

22 10 12 20 11 20 21 10
1 1 2 2

1 2
sin , sin

| | | |
C CΘ θ − Θ θ Θ θ − Θ θφ = φ =

ω Θ ω Θ

� � � �
...(5)

where θ10 = θ1(0), θ20 = θ2(0), 10θ� = 1θ� (0), 20θ� = 2θ� (0) and |Θ| is the determinant of the matrix

11 12

21 22

Θ Θ 
Θ =  Θ Θ 

...(6)

Letting Θ11 = Θ12 = 1,

1 1 2 2
1.5 1.5cos , cos
| | | |

C Cφ = φ =
Θ Θ

1 1 2 2
1.8 1.8sin , sin
| | | |

C Cφ = φ =
Θ Θ

1 1
| | 2.2360

1.6180 0.6180
Θ = = −

− ...(7)

The response to the given initial excitation is given by

1
1 1

2

() 11() (1.5cos 1.8cos)
() 1.61802.2360
t

t t t
t

θ    
θ = = ω + ω   θ    

 2 2
1

+ (–1.5 cos + 1.8 sin)
0.6180

t t
 

ω ω  − 
or by components

 1() 0.6708 cos 0.6180 cos1.6180GJ GJt t t
IL IL

 
θ = −  

 0.8060 sin 0.6180 sin1.6180GJ GJt t
IL IL

 
+ +  

2 () = 1.0854 cos 0.6180 + 1.3025 sin 0.6180GJ GJt t t
IL IL

θ

 + 0.4146 cos1.6180 – 0.4975 sin106180GJ GJt t
IL IL ...(8)

606 ——— MATLAB: An Introduction with Applications

The MATLAB program listed as follows:

% response of a two–degree of freedom system to initial excitations

clear

clf

I=1; % inertia

k=1;%=GJ/L stiffness

M=I*[1 0;0 1];% mass

K=k*[2 –1;–1 1];%stiffness

[u,W]=eig(K,M);% eigenvalue problem

% W=matrix of eigenvalues

u(:,1)=u(:,1)/max(u(:,1)); % normalization

u(:,2)=u(:,2)/max(u(:,2));

[w(1),I1]=min(max(W)); % relabeling

[w(2),I2]=max(max(W));

w(1)=sqrt(w(1)); % lowest natural frequency

w(2)=sqrt(w(2)); % highest natural frequency

U(:,1)=u(:,I1); % relabeling

U(:,2)=u(:,I2);

x0=[0;2];% Initial displacement

v0=[2*sqrt(k/I);0]; % initial velocity

t=[0:0.1:20]; % initial time, time increment, final time

% displacement

x1=(((U(2,2)*x0(1)–U(1,2)*x0(2))*cos(w(1)*t)+(U(2,2)*v0(1)

– U (1 , 2) * v 0 (2)) * s i n (w (1) * t) / w (1)) * U (1 , 1) + ((U (1 , 1) * x 0 (2)

– U(2,1)*x0(1))*cos(w(2)*t)+(U(1,1)*v0(2)–U(2,1)*v0(1))*sin(w(2)*t)/

w(2))*U(1,2))/det(U);

x2=(((U(2,2)*x0(1)–U(1,2)*x0(2))*cos(w(1)*t)+(U(2,2)*v0(1)–

U (1 , 2) * v 0 (2)) * s i n (w (1) * t) / w (1)) * U (2 , 1) + ((U (1 , 1) * x 0 (2) –

U(2,1)*x0(1))*cos(w(2)*t)+(U(1,1)*v0(2)–U(2,1)*v0(1))*sin(w(2)*t)/

w(2))*U(2,2))/det(U);

axes(‘position’,[0.2 0.3 0.6 0.5])

plot(t,x1,t,x2)

title(‘Response to initial excitation’)

ylabel(‘\theta_1(t),\theta_2(t)’)

xlabel(‘t[s]’)

legend(‘\theta_1(t)‘,’\theta_2(t)’,1)

grid

Mechanical Vibrations ——— 607

The corresponding output obtained is shown in Fig. E8.10(a).
Response to initial excitation

θ
θ

1
2

(t
),

(t
)

θ

θ
1

2

(t)

(t)

3

2

1

0

–1

–2

–3
0 5 10 15 20t[5]

Fig. E8.10(a)

Example E8.11: A simplified model of an automobile suspension system is shown in Fig. E8.11 as a two
degree of freedom system. Write a MATLAB script to determine the natural frequencies of this model.

G

k k
x

�2�1

Fig. E8.11 Simplified model of an automobile

The differential equations governing the motion of the system are given as

2 1
2 2

2 1 2 1

2 ()0 0
0 0() ()

k kxm x
I k k

−       
+ =       θθ − −        

�� A A
�� A A A A

where x is the displacement of the mass center and θ is the angular rotation of the body from its horizontal
position.
The parameters are given as

Automobile weight, W = 5000 lb
Centroidal moment of inertia, I = 400 slug-ft2

Spring stiffness, k = 2500 lb/ft
A1 = 3.4 ft
A2 = 4.6 ft

608 ——— MATLAB: An Introduction with Applications

Solution: The MATLAB program is given as follows:
% Two-degree-of-freedom system
W=input(‘Vehicle weight in lb’);

I=input(‘Mass moment of inertia in slugs-ft^2’)

k=input(‘Stiffness in lb/ft’)

a=input(‘Distance from rear springs to cg in ft’)

b=input(‘Distance from front springs to cg’)

% mass matrix

g=32.2;

m=W/g;

M=[m,0;0,I];

% stiffness matrix

K=[2*k,(b–a)*k;(b–a)*k,(b^2+a^2)*k];

% eigenvalues and eigenvectors calculation

C=inv(M)*K;

[V,D]=eig(C);

om_1=sqrt(D(1,1));

om_2=sqrt(D(2,2));

X1=[V(1,1);V(2,1)];

X2=[V(1,2);V(2,2)];

% Output

disp(‘Vehicle weight in lb=’); disp(W)

disp(‘moment of inertia in slugs-ft^2’);disp(I)

disp(‘Stiffness in lb/ft=’); disp(k)

disp(‘Distance from rear springs to cg in ft=’); disp(a)

disp(‘Distance from front springs to cg in ft=’);disp(b)

disp(‘Mass-matrix’);disp(M)

disp(‘Stiffness-matrix’);disp(K)

disp(‘Natural frequencies in rad/s=’);

disp(om_1)

disp(om_2)

disp(‘Mode shape vectors’); disp(X1)

disp(X2)

The output of this program is as follows:

Vehicle weight in lb 5000
W = 5000

Mass moment of inertia in slugs-ft^2 400
I = 400

Stiffness in lb/ft 2500
k = 2500

Mechanical Vibrations ——— 609

Distance from rear springs to cg gravity in ft 3.4
a = 3.4000

Distance from front springs to cg 4.6
b = 4.6000

Vehicle weight in lb = 5000
Moment of inertia in slugs-ft^2 400
Stiffness in lb/ft = 2500
Distance from rear springs to cg in ft = 3.4000
Distance from front springs to cg in ft = 4.6000
Mass-matrix

155.2795 0
0 400.0000

Stiffness-matrix
1.0e + 004 *
0.5000 0.3000
0.3000 8.1800

Natural frequencies in rad/s=
5.6003

14.3296
Mode shape vectors

–0.9991
0.0433

–0.1109
–0.9938

Example E8.12: Determine the free-vibration response of a two-degree of freedom system shown in Fig. E8.12
with the initial conditions x1(0) = 0, x2(0) = 0.005 m, 1x� (0) = 0, 2x� (0) = 0. The parameters of the system are
given as m = 30 kg, k = 20,000 N/m, and c = 150 N.s/m.

x1

m

2k c

2m

k

x2

Fig. E8.12 Two-degree of freedom system

The differential equations governing the motion of the system are:

1 1 1

2 2 2

0 0 0 3 2 0
0 2 0 2 2 0

x x xm k k
m x c x k k x

−            
+ + =            −            

�� �
�� �

or 0My Ky+ =�

where
0 0

; ;
0

M M x
M K Y

M c K x
−     

= = =     
     

�

610 ——— MATLAB: An Introduction with Applications

The solution is assumed as

y = φe–γt

where γ are the eigenvalues of M –1K and φ are the eigenvectors. The general solution is a linear combination
over all solutions, that is,

4

1

jt
j j

j
y c e−γ

=
= φ∑

and application of initial conditions gives
4

0
1

j j
j

y c VC
=

= φ =∑
and C = V–1 y0

Solution: The MATLAB program is given as follows:

m=30; % Mass
k=20000; % Stiffness
c=150; % Damping
% 4 x 4 matrices
disp(‘4 x 4 Mass matrix’);
mt=[0,0,m,0;0,0,0,2*m;m,0,0,0;0,2*m,0,c];
disp(‘4 x 4 stiffness matrix’);
kt=[–m,0,0,0;0,–2*m,0,0;0,0,3*k,–2*k;0,0,–2*k,2*k];
Z=inv(mt)*kt;
[V,D]=eig(Z);
disp(‘Eigenvalues’);
V
disp(‘Initial conditions’);
x0=[0;0;0.005;0]
disp(‘Integration constants’);
S=inv(V)*x0
tk=linspace(0,2,101);
% Evaluation of time dependent response
% Recall that x1=y3 and x2=y4
for k=1:101
 t=tk(k);
 for i=3:4
 x(k,i–2)=0;
 for j=1:4

x(k,i–2)=x(k,i–2)+(real(S(j))*real(V(i,j))–imag(S(j))*imag(V(i,j)))
*cos(imag(D(j,j))*t);

x(k,i–2)=x(k,i–2)+(imag(S(j))*real(V(i,j))–real(S(j))*imag(V(i,j)))
*sin(imag(V(i,j))*t);

 x(k,i–2)=x(k,i–2)*exp(–real(D(j,j))*t);

Mechanical Vibrations ——— 611

 end
 end
end
plot(tk,x(:,1),‘–’,tk,x(:,2),‘:’)
title(‘Solution of problem E8.12’)
xlabel(‘t[sec]’)
ylabel(‘x(m)’)
legend(‘x1(t)‘,’x2(t)’)

The output of this program is given below. See also Fig. E8.12(a).

V =
 –0.9390 –0.9390 0.5886 – 0.0085i 0.5886 + 0.0085i
 0.3428 – 0.0185i 0.3428 + 0.0185i 0.8050 0.8050
 0.0001 – 0.0188i 0.0001 + 0.0188i –0.0026 + 0.0440i –0.0026 – 0.0440i
 0.0003 + 0.0069i 0.0003 – 0.0069i –0.0044 + 0.0601i –0.0044 – 0.0601i
Initial conditions
x0 =

0
0
0.0050
0

Integration constants
S =

–0.0013 + 0.1048i
–0.0013 – 0.1048i
–0.0019 – 0.0119i
–0.0019 + 0.0119i

5

4

3

2

1

0

1

2

–3

–

–

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

t (sec)

Solution of problem E8.12× 10
–3

x1(t)
x2(t)

x
(m

)

Fig. E8.12(a)

612 ——— MATLAB: An Introduction with Applications

Example E8.13: For systems with arbitrary viscous-damping, the response must be obtained in the state-
space, which implies the use of the transition-matrix. If the response is to be evaluated on a computer, then
the state-equations must be transformed to discrete time. Determine the free-vibration response of a
2-degree of freedom damped system with initial conditions X(0) = {0, 0.01} and X� (0) = {0, 0}. Given

0 0 30 0
0 0 0 50

30 0 0 0
0 50 0 80

M

 
 
 =
 
 
  

40 0 0 0
0 50 0 0

[]
0 0 35000 25000
0 0 25000 4000

K

− 
 − =
 −
 −  

Solution: The solution is similar to the problem E8.12, and the MATLAB program is written as follows:

mt=[0 0 30 0;0,0,0,50;30,0,0,0;0,50,0,80];

kt=[–40,0,0,0;0,–50,0,0;0,0,35000,–25000;0,0,–25000, 4000];

Z=inv(mt)*kt;

[V,D]=eig(Z);

disp(‘Eigenvalues’)

DS=[D(1,1),D(2,2),D(3,3),D(4,4)]

disp(‘Eigenvectors’)

V

x0=[0;0;0.01;0];

S=inv(V)*x0;

tk=linspace(0,2,101);

for k=1:101

 t=tk(k);

 for i=3:4

 x(k,i–2)=0;

 for j=1:4

 x(k,i–2)=x(k,i–2)+(real(S(j))*real(V(i,j))–imag(S(j))*imag(V(i,j)))*cos
(imag(D(j,j))*t);

 x(k,i–2)=x(k,i–2)+(imag(S(j))*real(V(i,j))–imag(S(j))*imag(V(i,j)))
*sin(imag(V(i,j))*t);

 x(k,i–2)=x(k,i–2)*exp(–real(D(j,j))*t);

 end

 end

end

plot(tk,x(:,1),‘–’,tk,x(:,2),‘:’)

title(‘Free Vibration response of damped system’)

Mechanical Vibrations ——— 613

xlabel(‘t (sec)’)

ylabel(‘x (m)’)

legend(‘x1(t)‘,’x2(t)’)

The output obtained is given as follows:

Eigenvalues
DS =

Columns 1 through 2
 1.1082e – 001 + 4.4615e + 001i 1.1082e – 001 – 4.4615e + 001i
Columns 3 through 4
–1.5162e + 001 1.6541e + 001

Eigenvectors
V =

Columns 1 through 2
 9.5465e – 001 9.5465e – 001
 – 2.9638e – 001 + 9.4404e – 003i – 2.9638e – 001 – 9.4404e – 003i
 – 6.3783e – 005 + 2.5677e – 002i – 6.3783e – 005 – 2.5677e – 002i
 – 1.9510e – 004 – 6.6437e – 003i – 1.9510e – 004 + 6.6437e – 003i
Columns 3 through 4
 4.6275e – 001 – 4.5475e – 001
 8.8381e – 001 – 8.8839e – 001
 3.6624e – 002 3.2991e – 002
 5.8290e – 002 5.3710e – 002

Figure E8.13 shows the response in time-domain obtained from the output of the MATLAB program.

Note: Here
25 0 0 0

, and
0 50 0 80

M C
   

= =   
   
35000 25000
25000 3000

K
− 

=  − 
and state matrices are respectively

0 0 25 0
0 0 0 50
25 0 0 0
0 50 0 80

TM

 
 
 =
 
 
  

and

30 0 0 0
0 50 0 0
0 0 35000 25000
0 0 25000 3000

TK

− 
 − =
 −
 −  

614 ——— MATLAB: An Introduction with Applications

10

8

6

4

2

0

– 2

–4

– 6

–8

×10
–3 Free vibration response of damped system

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

t(sec)

x
(m

)

x1(t)
x2(t)

Fig. E8.13

Example E8.14: In the Example E8.13, if a force F0exp(–αt) acts on the system, find the forced vibration
response using the MATLAB program. Given F0 = 60.

Solution: Here first few steps are common as in free-vibration response problem.

syms t tau
m=25;
k=12500;
c=80;
F0=60;
alpha=1.5;
mt=[0,0,m,0;0,0,0,2*m;m,0,0,0;0,2*m,0,c];
kt=[–m,0,0,0;0,–2*m,0,0;0,0,3*k,–2*k;0,0,–2*k,2*k];
z=inv(mt)*kt;
[V,D]=eig(z);
L=conj(V)’*mt*V;
for j=1:4
 ss=1/sqrt(L(j,j));
 for i=1:4
 P(i,j)=V(i,j)*ss;
 end
end
F=[0;0;0;F0*exp(–alpha*tau)];
G=P’*F;

Mechanical Vibrations ——— 615

G=vpa(G);
%Convolution integral solution
for i=1:4
 f(i)=G(i)*exp(–D(i,i)*(t–tau));
 p(i)=int(f(i),tau,0,t);
end
disp(‘solution for modal coordinates’)
p=[p(1);p(2);p(3);p(4)]; disp(p)
y=P*p;
disp(‘response’)
disp(‘x1=y3, x2=y4’)
y=vpa(y);
% Plotting the system response
time=linspace(0,1.5,101);
for k=1:101
 x1a=subs(y(3),t,time(k));
 x2a=subs(y(4),t,time(k));
 x1b(k)=vpa(real(x1a));
 x2b(k)=vpa(real(x2a));
end
x1=double(x1b);
x2=double(x2b);
plot(time,x1,‘-’,time,x2,‘:’)
xlabel(‘t(seconds)’)
ylabel(‘response(m)’)
legend(‘x1(t)’, ‘x2(t)’)

The output of the program is shown as the forced vibration response in Fig. E8.14.

6

4

2

0

– 2

– 4

– 6

– 8
0 0.5 1 1.5

R
e
s
p
o
n
s
e
(m

)

×10
–3

x1(t)
x2(t)

t(seconds)

Fig. E8.14

616 ——— MATLAB: An Introduction with Applications

Example E8.15: Two gears A and B in mesh are mounted on two uniform circular shafts of equal stiffness

GJ
L

. If the gear A is subjected to a torque M0cosωt, derive an expression for angular motion of B. Assume

the radius ratio as: A

B

R
R = n. Here L is length of each shaft. Write a MATLAB script to plot the response.

Solution: Here the equation of motion is given by

eq eq 0
. cosA A AI k M M tθ + θ = = ω�� ...(1)

where the equivalent stiffness of the gears 2
eq (1)

GJk n
L

= + and equivalent moment of inertia of gears

Ieq = IA+ n2IB.

Simplifying the above equation of motion we get:

2 0
2 cos , andA n A

A B

M t
I n I

θ + ω θ = ω
+

��
2

2
2

(1)
()n

A B

GJ n
L I n I

+ω =
+ ...(2)

Since θB = n θA, the solution is given by

0
2 2 cos

(1)[1 (/)]B
n

M Ln t
GJ n

θ = ω
+ − ω ω

The MATLAB program to plot the values of amplitude of θθθθθB for various values of ωωωωω is given as follows:

M0=1;% amplitude of the moment

L=1; % length of shaft

GJ=1;% torsional stiffness

n=3;% gear ratio

r=[0:0.01:3];% frequency ratio

thetab=(M0*L*n)./(GJ*(1+(n.^n))*(1–r.^2)); % amplitude

plot(r,thetab)

title(‘Response to torque’)

ylabel(‘\theta_b’)

xlabel(‘\omega/\omega_n’)

grid

Mechanical Vibrations ——— 617

The output is shown in Fig. E8.15 (a).

6

4

2

0

–2

– 4

– 6
0 0.5 1 1.5 2 2.5 3

Response to torque

ω ω/ n

θ0

Fig. E8.15(a)

Example E8.16: Derive the response of a viscously damped single-degree of freedom system to the
trapezoidal pulse shown in Fig. E8.16. Plot response for system parameters, m = 15 kg, c = 25 Ns/m and
k = 5000 N/m. Use convolution sum

220 N

0.15

F(t)

T(sec)
0.05 0.20

Fig. E8.16

Solution: The system is described by:

2 ()2 n n
F tx x x
m

+ ξω + ω =�� �

0

0

0

2 , 0
2

3,
() 2 2

32 (2), 2
2

0, 2

F Tt t
T

T TF t
F t

t TF t T
T

t T

 < <

 < <= 


− < <


>

where T = 0.2 sec in Fig. E8.16

618 ——— MATLAB: An Introduction with Applications

The discrete time response by convolution sum is:

0
() () ()

n

k
x n F k g n k

=
= −∑

The MATLAB script for this problem is given below:

m=15; % mass

c=25; % damping

k=5000; % stiffness

F0=220;

T=0.2;

wn=sqrt(k/m); % Natural frequency

zeta=c/(2*sqrt(m*k));

Ts=0.003; % Sampling period

N=201; % sampling times

wd=wn*sqrt(1–zeta^2); % frequency

% force

for n=1:N,

if n<=(T/2)/Ts+1;F(n)=2*F0*(n–1)*Ts/T; else;F(n)=F0;end

if n>(3*T/2)/Ts+1;F(n)=2*F0*(2–(n–1)*Ts/T);end

if n>2*T/Ts+1;F(n)=0;end

end

n=[1:N];

g=Ts*exp(–(n–1)*zeta*wn*Ts).*sin((n–1)*wd*Ts)/(m*wd);

% discrete–time impulse response

c0=conv(F,g); % Convolution sum

c=c0(1:N); % plot to N samples

n=[0:N–1];

axes(‘position’,[0.1 0.2 0.8 0.7])

plot(n,c,’.’);

title(‘Response to the Trapezodial pulse’);

xlabel(‘n’)

ylabel(‘x(n) [m]’)

grid

Mechanical Vibrations ——— 619

Output of this program is the Fig. E8.16(a).

Response to the trapezodial pulse
0.08

0.06

0.04

0.02

0

–0.02

–0.04
0 20 40 60 80 100 120 140 160 180 200

n

x
(n

)[
m

]

Fig. E8.16(a)

Example E8.17: A two storey building is undergoing a horizontal motion y(t) = Y0 . sinωt. Derive expression
for displacement of second floor. Write MATLAB script to plot the response. Assume appropriate values
of stiffness and mass of the system.
Equations of motion for building can be written as:

1 1 0

2 22 2

2 0 4 2 sin
0 2 2 2 0

x x Y t
x x+α =α

− ω        
        −        

��
��

where 2
3

12 12 6α = = =EI
mmH

Solving for steady-state response we get:
2 2 2

1 02)2 2 2
1 2

()
()(

X Yα − ω α=
ω − ω ω − ω

4

2 02)2 2 2
1 2()(

X Yα=
ω − ω ω − ω

These values are to be plotted against various values of ω.

Solution: The MATLAB script for this problem is given as follows:

m=20;% mass

k=200; % k=12EI/H3 stiffness

w0=k/m;

M=[m 0;0 m]; %mass matrix

K=[2*k –k;–k k]; % stiffness matrix

%eigenvalues

620 ——— MATLAB: An Introduction with Applications

[u,W]=eig(K,M);

u(:,1)=u(:,1)/max(u(:,1));

u(:,2)=u(:,2)/max(u(:,2));

[wn(1),I1]=min(max(W));

[wn(2),I2]=max(max(W));

wn(1)=sqrt(wn(1)); % Nat. frequency 1

wn(2)=sqrt(wn(2)); % Nat. frequency 2

U(:,1)=u(:,I1);

U(:,2)=u(:,I2);

w=[0:0.002:6];

T2=(w0^2)./((w.^2–wn(1)^2).*(w.^2–wn(2)^2));

plot(w,T2)

title(‘Frequency Response’)

ylabel(‘{\it{X}}_2(\omega)/{\it{Y}}_0’)

xlabel(‘\omega’)

axis([0 8 –5 5])

grid

The MATLAB output is shown in Fig. E8.17(a).

Frequency response

0 1 2 3 4 5 6 7 8

5

4

3

2

1

0

–1

–2

–3

–4

–5

ω

X
(

)/
Y

2
0

ω

Fig. E8.17(a)

Example E8.18: A 3-degree of freedom system shown in Fig. E8.18. Obtain the natural frequencies and
mode shapes using MATLAB script. Assume k = m = 1.

m 2m

kk 2k

2m

2k

Fig. E8.18

Mechanical Vibrations ——— 621

The equations of motion can be written as:
 M ()x t�� + Kx(t) = 0

with x(t) =[x1(t) x2(t) x3(t)]; T as the displacement vector

0 0 2 0
0 2 0 and 3 2
0 0 2 0 2 4

m k k
M m K k k k

m k k

−   
   = = − −   
   −   

as the mass and stiffness matrices.

Solution:
The MATLAB script for finding the natural frequencies and mode shapes is given as follows:
k=1; % stiffness
m=1; % mass
M=m*[1 0 0;0 2 0;0 0 2]; % mass matrix
K=k*[2 –1 0;–1 3 –2;0 –2 4]; % stiffness matrix
N=3;
R=chol(M); % Cholesky decomposition technique
L=R’;
A=inv(L)*K*inv(L’);
[x,W]=eig(A);
v=inv(L’)*x;
for i=1:N,
 w1(i)=sqrt(W(i,i));
end
[w,I]=sort(w1);
disp(‘The first three natural frequencies are’)
disp(w(1))
disp(w(2))
disp(w(3))
n=[1:N];
disp(‘The corresponding mass-orthonormalized mode shapes are’)
for j=1:N,
 U(:,j)=v(:,I(j));
 U(:,j)=U(:,j)/(U(:,j)’*M*U(:,j));
 disp(‘mode–’)
 disp(j)
 disp(U(:,j))
end

The outputs are as follows:
The first three natural frequencies are

0.7071
1.4142
1.7321

622 ——— MATLAB: An Introduction with Applications

The corresponding mass-orthonormalized mode shapes are
mode–

1
–0.3651
–0.5477
–0.3651

mode–
2
0.8165

–0.0000
–0.4082

mode–
3

–0.4472
0.4472

–0.4472

Example E8.19: In Fig. E8.18, if mass m is subjected to unit step function u(t), determine the response using
modal analysis. Write a MATLAB script to plot the displacement response of all the masses.

Solution: The MATLAB program is given as follows:
M=[1 0 0;0 2 0;0 0 2]; % mass matrix
C=[0 0 0;0 0 0;0 0 0]; % damping matrix
K=[2 –1 0;–1 3 –2;0 –2 4]; % stiffness
A=[zeros(size(M)) eye(size(M));–inv(M)*K –inv(M)*C];
B=[zeros(size(M)); inv(M)];
TO=10; %RISE TIME OF FORCE
N=200;
T=0.1; % SAMPLING PERIOD
NO=TO/T;
phi=eye(size(A))+T*A+T^2*A^2/2+T^3*A^3/6;
gamma=inv(A)*(phi–eye(size(A)))*B;
x(:,1)=zeros(2*length(M),1);
for k=1:N,
 f(k)=1;
F(:,k)=[1;0;0]*f(k); % Force is only applied to mass m
x(:,k+1)=phi*x(:,k)+gamma*F(:,k);
end
k=[0:N];
plot(k,x(1,:),’o’,k,x(2,:),’s’,k,x(3,:),’.’)
title(‘system response for unit step at first mass E8.19’)
ylabel(‘x_1(k),x_2(k),x_3(k)’)
xlabel(‘k’)
legend(‘x_1(k)’,’x_2(k)’,’x_3(k)’)
grid

Mechanical Vibrations ——— 623

The output obtained is shown in Fig. E8.19(a).

System response for unit step at first
1.2

1

0.8

0.6

0.4

0.2

0

–0.2

x
(k

),
x

(k
),

x
(k

)
1

2
3

0 20 40 60 80 100 120 140 160 180 200

x (k)1

x (k)

x (k)

2

3

k

Fig. E8.19(a)

Example E8.20: (a) A two-degree of freedom torsional system shown in Fig. E8.20 and is subjected to a
torque of unit pulse nature [u(t) – u (t – 4)] at the disc B.

A B

Fig. E8.20

The mass, stiffness and damping matrices are

3 0 5 4 1.6 0.8
, and

0 5 4 4 0.8 0.8
M K C

− −     
= = =     − −     

(b) Plot the response of disc A using MATLAB.

Solution: The MATLAB script is given as follows:
M=[1 0;0 2]; % mass matrix
C=[1.6 –0.8; –0.8 0.8]; % damping matrix
K=[5 –4;–4 4]; % stiffness matrix
A=[zeros(size(M)) eye(size(M));–inv(M)*K –inv(M)*C];
B=[zeros(size(M)); inv(M)];
TO=4; %RISE TIME OF FORCE
N=600;

624 ——— MATLAB: An Introduction with Applications

T=0.1; % SAMPLING PERIOD

NO=TO/T;

phi=eye(size(A))+T*A+T^2*A^2/2+T^3*A^3/6;

gamma=inv(A)*(phi–eye(size(A)))*B;

x(:,1)=zeros(2*length(M),1);

for k=1:N,

 if k<=NO +1; f(k)=1;

 else;f(k)=0;end

 F(:,k)=[0;1]*f(k); % Force is only applied to mass m

 x(:,k+1)=phi*x(:,k)+gamma*F(:,k);

end

k=[0:N];

plot(k,x(1,:),‘.’)

title(‘system response for unit step at first disc E8.20’)

ylabel(‘x_1(k)’)

xlabel(‘k’)

grid

The output of this program is given in Fig. E8.20(a).

1.2

1

0.8

0.6

0.4

0.2

0

– 0.2

0.4

0.6

0.8

–

–

–

System response for unit step at first disc E8.20

0 100 200 300 400 500 600

x
(k

)
1

k

Fig. E8.20(a)

Mechanical Vibrations ——— 625

Example E8.21: For the single degree of freedom vibrating system shown in Fig. E8.21, determine the motion
of the mass subjected to the initial conditions x(0) = 0.15 m and (0)x� = 0.04 m/s. (Given: m = 1 kg, c = 5 N-s/m,
and k = 5 N/m.)

m

k

c

x

Fig. E8.21

Solution:
The system equation is

0m x c x kx+ + =�� ��

with the initial conditions x(0) = 0.15 m and (0)x� = 0.04 m/s. The Laplace transform of the system equation
gives

m[s2X(s) – sx(0) – (0)x�] + c[sX(s) – x(0)] + kX(s) = 0

or (ms2 + cs + k)X(s) = mx(0)s + m (0)x� + cx(0)
Solving this last equation for X(s) and substituting the given numerical values, we obtain

2 2
(0) (0) (0) 0.15 0.79()

5 5
mx s mx cx sX s

ms cs k s s
+ + += =

+ + + +
�

This equation can be written as

2

2
0.15 0.79 1()

5 5
s sX s

ss s
+=

+ +
Hence, the motion of the mass m may be obtained as the unit-step response of the following system:

2
0.15 0.79()

5 5
sG s

s s
+=

+ +

MATLAB program will give a plot of the motion of the mass. The plot is shown in Fig. E8.21(a).

num = [0.15 0.79 0];

den = [1 5 5];

step(num,den)

grid

title(‘Response of spring mass-damper system to initial condition’)

626 ——— MATLAB: An Introduction with Applications

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0

–0.02
0 0.5 1 1.5 2 2.5 3 3.5 4

Step response

A
m

p
lit

u
d

e

Time(sec)

Fig. E8.21(a)

Example E8.22: For the vibrating single degree of freedom shown in Fig. E8.22, determine the response of
the system when 12 N of free (step input) is applied to the mass m and plot the response using MATLAB.
Given that the system is at rest initially and the displacement x is measured from the equilibrium position.
Assume that m = 2 kg, c = 10 N-s/m, and k = 80 N/m.

m

k

c

x

12 N

Fig. E8.22

Solution: The equation of motion for the system is
m x� + c x� + kx = P

By substituting the numerical values into this last equation, we get
2 x�� + 10 x� + 80x = 12

By taking the Laplace transform of this last equation and substituting the initial conditions [x(0) = 0 and
x� (0) = 0], the result is

2
6(+ 5 + 40) () = s s X s s

Mechanical Vibrations ——— 627

Solving for X(s), we obtain

2
6()

(5 40)
X s

s s s
=

+ +
The response exhibits damped vibrations.

MATLAB program is used to a plot of the response curve, which is shown in Fig. E8.22(a).
num = [0 0 6];

den = [1 5 40];

step(num,den)

grid

0.2

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0

A
m

p
lit

u
d

e

Step response

0 0.5 1 1.5 2 2.5

Time (sec)

Fig. E8.22(a)

Example E8.23: For the mechanical system shown in Fig. E8.23, obtain the response x0(t) when xi(t) is a
unit step displacement input. Assume that k1 = 2 N/m, k2 = 4 N/m, c1 = 1 N-s/m, and c2 = 2 N-s/m.

k1

c2

x

c1

k2

x0

Fig. E8.23

628 ——— MATLAB: An Introduction with Applications

Solution:
The transfer function X0(s)/Xi(s) is given by

1 2

1 20

1 2 2

1 2

1 1
()
()

1 1i

l

c cs s
k kX s

X s c c cs s s
k k k

   
+ +      

=
   

+ + +      
Substitution of the given numerical values yields

2 2
0

2 2
() (0.5 1)(0.5 1) 0.25 1 4 4
() (0.5 1)(0.5 1) 0.25 2 1 8 4i

X s s s s s s s
X s s s s s s s s

+ + + + + += = =
+ + + + + + +

The MATLAB program is used to obtain the unit-step response is given below:
num = [1 4 4];

den = [1 8 4];

step(num,den)

grid

The output is shown as in Fig. E8.23(a).

1

0.95

0.9

0.85

0.8

0.75

0.7

0.65

0.6

0.55

A
m

p
lit

u
d
e

Step response

Time(sec)

0 2 4 6 8 10 12

Fig. E8.23(a)

Example E8.24: The impulse response of a second-order system is given as
2

2 2
()
() 2

n

n n

C s
R s s s

ω=
+ ξω + ω

Mechanical Vibrations ——— 629

For a unit-impulse input R(s) = 1, and ωn = 1 rad/sec, C(s) is given by

2
1()
2 1

C s
s s

=
+ ξ +

Plot the ten unit-impulse response curves in one diagram using MATLAB for ξ = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9 and 1.0.

Solution: The MATLAB program:
num = [0 0 1];

den1 = [1 0.2 1];

t = 0:0.1:10;

impulse(num,den1,t);

text(2.2, 0.88, ‘Zeta = 0.1’)

hold

current plot held

den2 = [1 0.4 1]; den3 = [1 0.6 1]; den4 = [1 0.8 1];

den5 = [1 1 1]; den6 = [1 1.2 1]; den7=[1 1.4 1];

den8 = [1 1.6 1]; den9 = [1 1.8 1]; den10 = [1 2.0 1];

impulse(num,den2,t)

text(1.3,0.7,‘0.3’)

impulse(num,den3,t)

text(1.15,0.58,‘0.5’)

impulse(num,den4,t)

text(1.1,0.46,‘0.7’)

impulse(num,den5,t)

text(0.8,0.38,‘1.0’)

impulse(num,den6,t)

text(0.7,0.28,‘1.0’)

impulse(num,den7,t)

text(0.6,0.24,‘1.0’)

impulse(num,den8,t)

text(0.5,0.21,‘1.0’)

impulse(num,den9,t)

text(0.4,0.18,‘1.0’)

impulse(num,den10,t)

text(0.3,0.15,‘1.0’)

grid

title(‘Impulse–response curve for G(s) = 1/[s^2+2(zeta)s+1]’)

hold

current plot released

630 ——— MATLAB: An Introduction with Applications

The output is shown in Fig. E8.24 (a).

1

0.8

0.6

0.4

0.2

0

–0.2

–0.4

–0.6

– 0.8
0 1 2 3 4 5 6 7 8 9 10

Impulse response

A
m

p
lit

u
d
e

Time (sec)

0.20.2

0.30.3

0.40.4

1.01.0

Zeta = 0.1

Fig. E8.24(a) Unit-impulse response curves

Example E8.25: For the mechanical system shown in Fig. E8.25, assume that m = 1 kg, m1 = 2kg, k1 = 15 N/m, and
k2 = 60 N/m. Determine the vibration when the initial conditions are given as: x(0) = 0.23 m, (0)x� = 0 m/s,
y(0) = 1 m, (0)y� = 0 m/s. Write a MATLAB program to plot curves x(t) versus t and y(t) versus t for the
initial conditions.

m1

k1

y

m2

k2

x

Fig. E8.25

Solution:
The equations for the system are

(2s2 + 75)X(s) = 2sx(0) + 15Y(s) ...(1)
(s2 + 15)Y(s) = sy(0) + 15X(s) ...(2)

Solving we obtain
2

4 2
2(15) (0) 15 (0)()

2 105 900
s sx syX s

s s
+ +=

+ +
...(3)

Mechanical Vibrations ——— 631

For the initial conditions
x(0) = 0.23 m, (0)x� = 0 m/s, y(0) = 1 m, (0)y� = 0 m/s

Equation (3) becomes as follows:
3

4 2
0.46 21.9()

2 105 900
s sX s

s s
+=

+ +
4 2

4 2
0.46 21.9 1

2 105 900
s s

ss s
+=

+ +
...(4)

By substituting Eq.(4) into Eq.(2) and solving for Y(s), we obtain

2
1() (0) 15 ()

15
Y s sy X s

s
= +

+
Substituting y(0) = 1 into the last equation and simplifying, we get

5 3 3

2 4 2
1 24 105 900 6.9 328.5()

15 2 105 900
s s s s sY s

s s s
+ + + +=

+ + +
To obtain plot of x(t) versus t, we may enter the following MATLAB program into the computer. The resulting
plots are shown in Fig. E8.25(a). Likewise y(t) versus t can be also plotted.
num1 = [0.46 0 21.9 0 0];
den = [2 0 105 0 900]; % see equation (4)
t=0:0.01:20;
x=step(num1,den,t)
plot(t,x)
title(‘Responses mass m1- x(t) due to initial conditions’)
xlabel(‘t sec’)
ylabel(‘x(t)’)
grid

0.4

0.3

0.2

0.1

0

–0.1

0.2

0.3

0.4

–

–

–
0 2 4 6 8 10 12 14 16 18 20

Responses mass m1–x(t) due to initial conditions

x
(t

)

t (sec)

Fig. E8.25(a)

632 ——— MATLAB: An Introduction with Applications

Example E8.26: For the mechanical system shown in Fig. E8.25, assume that m = 1 kg, m1 = 2 kg, k1 = 15 N/m,
and k2 = 60 N/m. Determine the vibration when the initial conditions are given as: x(0) = 1.75 m, (0)x� = 0 m/s,
y(0) = –1 m, (0)y� = 0 m/s. Write a MATLAB program to plot curves x(t) versus t and y(t) versus t for the
initial conditions.

Solution:
2

4 2
2(15) (0) 15 (0)()

2 105 900
s sx syX s

s s
+ +=

+ +

2
1() (0) 15 ()

15
Y s sy X s

s
= +

+

For the initial conditions
x(0) = 1.75 m, (0)x� = 0 m/s, y(0) = –1 m, (0)y� = 0 m/s

we obtain the following expressions for X(s) and Y(s):
3 4 2

4 2 4 2
3.5 37.5 3.5 37.5()

2 105 900 2 105 900
s s s sX s

s s s s
+ += =

+ + + +
1
s

2
1() – 15 ()

15
Y s s X s

s
= +

+

A MATLAB program for obtaining plots of x(t) versus t given below. The resulting plot is shown in
Fig. E8.26.
num1 = [3.5 0 37.5 0 0];

den = [2 0 105 0 900];

step(num1,den)

2

1.5

1

0.5

0

– 0.5

1

1.5

2

–

–

–
0 2 4 6 8 10 12

Step response

A
m

p
lit

u
d

e

Time (sec.)

Fig. E8.26 Plot of motion of mass m1

Mechanical Vibrations ——— 633

Example E8.27: For the mechanical system shown in Fig. E8.25, assume that m = 1 kg, m1 = 2 kg, k1 = 15 N/m,
and k2 = 60 N/m. Determine the vibration when the initial conditions are given as: x(0) = 0.5 m, (0)x� = 0 m/s,
y(0) = – 0.5 m, (0)y� = 0 m/s. Write a MATLAB program to plot curves x(t) versus t and y(t) versus t for the
initial conditions.

Solution:
2

4 2
2(15) (0) 15 (0)()

2 105 900
s sx syX s

s s
+ +=

+ +

2
1() (0) 15 ()

15
Y s sy X s

s
= +

+

For the initial conditions
x(0) = 0.5 m, (0)x� = 0 m/s, y(0) = – 0.5 m, (0)y� = 0 m/s

we obtain the following expressions for X(s) and Y(s):
4 2

4 2
7.5 1()

2 105 900
s sX s

ss s
+=

+ +

2 2
0.5 15 ()()

15 15
s X sY s

s s
−= +

+ +
A MATLAB program for obtaining plots of x(t) versus t given below. The resulting plots are shown in
Fig. E8.27. Likewise y(t) can also be plotted.
num1 = [1 0 7.5 0 0];
den = [2 0 105 0 900];
t = 0:0.02:5;
x = step(num1,den,t)
plot(t, x, ‘o’)
title(‘Responses x(t) due to initial conditions ’)
xlabel(‘t sec’)
ylabel(‘x(t)’)
grid

Responses x(t) due to initial conditions

t sec

x
(t

)

0.8

0.6

0.4

0.2

0

–0.2

–0.4

–0.6
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Fig. E8.27

634 ——— MATLAB: An Introduction with Applications

REFERENCES

Adams, M.L., Rotating Machinery Vibration, Marcel Dekker, New York, NY, 2002.

Anderson, J.F. and Anderson, M.B., Solution of Problems in Vibrations, Longman Scientific and Technical,
Essex, UK, 1987.

Anderson, R.A., Fundamentals of Vibrations, Macmillan, New York, NY, 1967.

Balachandran, B. and Magrab, E.B., Vibrations, Brooks/Cole, Pacific Grove, CA, 2004.

Barker, J.R., Mechanical and Electrical Vibrations, Wiley, New York, NY, 1964.

Beards, C.F., Structural Vibration Analysis, Ellis Harwood, U.K., 1983.

Beards, G.F., Vibrations and Control System, Ellis Horwood, UK, 1988.

Benaroya, H., Mechanical Vibrations, Prentice-Hall, Upper Saddle River, NJ, 1998.

Bendat, J.S. and Piersol, A.G., Engineering Applications of Correlation and Spectral Analysis, Wiley,
New York, 1980.

Bendat, J.S. and Piersol, A.G., Measurement and Analysis of Random Vibration Data, Wiley, New York,
NY, 1965.

Bendat, J.S. and Piersol, A.G., Random Data, Wiley, New York, NY, 1986.

Bendat, J.S. and Piersol, A.G., Random Data: Analysis and Measurement Procedures, Wiley, New York,
NY, 1971.

Beranek, L.L., Noise and Vibration Control, McGraw-Hill, New York, NY, 1971.

Beranek, L.L. and Ver, I.L., Noise and Vibration Control Engineering: Principles and Applications, Wiley,
New York, NY, 1992.

Berg, G.V., Elements of Structural Dynamics, Prentice-Hall, Englewood Cliffs, NJ, 1989.

Bernhard, R.K., Mechanical Vibrations, Pitman Publishing, 1943.

Bhat, R.B. and Dukkipati, R.V., Advanced Dynamics, Narosa Publishing House, New Delhi, India, 2001.

Bickley, W.G., and Talbot, A., Vibrating Systems, Oxford University Press, Oxford, 1961.

Bishop, R.E.D., Vibration, Cambridge University Press, Cambridge, England, 1979.

Bishop, R.E.D. and Gladwell, G.M.L., The Matrix Analysis of Vibration, Cambridge University Press,
Cambridge, England, 1965.

Bishop, R.E.D. and Johnson, D.C., Vibration Analysis Tables, Cambridge University Press, Cambridge,
England, 1956.

Bishop, R.E.D. and Johnson, D.C., The Mechanics of Vibration, Cambridge University Press, New York,
NY, 1960.

Blevins, R.D., Formulas for Natural Frequencies and Mode Shapes, R.E. Krieger, Melbourne, FL, 1987.

Broch, J.F., Mechanical Vibrations and Shock Measurements, Larson & Sons, Copenhagen, Denmark, 1980.

Brommundt, E., Vibration of Continuous Systems, CISM, Udine, Italy, 1969.

Burton, R., Vibration and Impact, Dover Publications, New York, NY, 1958.

Bykhovsky, I., Fundamentals of Vibration Engineering, MIR Publications, 1972.

Centa, G., Vibration of Structures and Machines, Springer-Verlag, New York NY, 1993.

Chen, Y., Vibrations: Theoretical Methods, Addison-Wesley, Reading, MA, 1966.

Mechanical Vibrations ——— 635

Church, A.H., Mechanical Vibrations, 2nd ed., Wiley, New York, NY, 1963.

Cole, E.B., The Theory of Vibrations for Engineers, Crosby Lockwood, 1950.

Crafton, P.A., Shock and Vibration in Linear Systems, Harper & Row, New York, NY, 1961.

Crandall, S.H., Random Vibration, MIT Press, Cambridge, MA, 1963.

Crandall, S.H. and Mark, W.D., Random Vibration in Mechanical Systems, Academic Press, New York,
NY, 1963.

De Silva, C.W., Vibration: Fundamentals and Practice, CRC Press, Boca Raton, FL, 2000.

Del Pedro, M. and Pahud, P., Vibration Mechanics, Kluwer Academic Publishers, Dordrecht, Netherlands,
1989.

Den Hartog. J.P., Mechanical Vibrations, 4th ed., McGraw-Hill, New York, NY, 1956.

Dimarogonas, A.D., Vibration for Engineers, 2nd ed., Prentice-Hall, Englewood Cliffs, NJ, 1996.

Dimarogonas, A.D. and Haddad, S.D., Vibration for Engineers, Prentice-Hall, Englewood Cliffs, NJ, 1992.

Dukkipati, R.V., Vehicle Dynamics, Narosa Publishing House, New Delhi, India, 2000.

Dukkipati, R.V. and Amyot, J.R., Computer Aided Simulation in Railway Vehicle Dynamics, Marcel-Dekker,
New York, NY, 1988.

Fertis, D.G., Mechanical and Structural Vibrations, Wiley, New York, NY, 1995.

Garg, V.K. and Dukkipati, R.V., Dynamics of Railway Vehicle Systems, Academic Press, New York, NY, 1984.

Genta, G., Vibration of Structures and Machines, Springer-Verlag, New York, NY, 1992.

Ginsberg, J.H., Mechanical and Structural Vibrations, Wiley, New York, NY, 2001.

Gorman, D.J., Free Vibration Analysis of Beams and Shafts, Wiley, New York, NY, 1975.

Gorman, D.J., Free Vibration Analysis of Rectangular Plates, Elsevier, 1982.

Gough, W., Richards, J.P.G., and Williams, R.P., Vibrations and Waves, Wiley, New York, NY, 1983.

Gross, E.E., Measurement of Vibration, General Radio, 1955.

Grover, G.K., Mechanical Vibration, Nem Chand and Bros, Roorkee, 1972.

Haberman, C.M., Vibration Analysis, Merril, Columbus, OH, 1968.

Hansen, H.M. and Chenea, P.F., Mechanics of Vibration, Wiley, New York, NY, 1952.

Harris, C.M. and Crede, C.E., Shock and Vibration Handbook, 4th ed., McGraw-Hill, New York, NY, 1996.

Hatter, D.H., Matrix Computer Methods of Vibration Analysis, Wiley, New York, NY, 1973.

Hayashi, C., Nonlinear Oscillations in Physical Systems, McGraw-Hill, New York, NY, 1964.

Hurty, W.C. and Rubenstein, M.F., Dynamics of Structures, Prentice-Hall, NJ, 1964.

Huston, R. and Joseph, H., Dynamics of Mechanical Systems, CRC Press, Boca Raton, FL, 2002.

Inman, D.J., Vibration with Control Measurement and Stability, Prentice-Hall, Englewood Cliffs, NJ, 1989.

Jackson, C., The Practical Vibration Primer, Gulf Publishing, Houston, TX, 1979.

Jacobsen, L.S. and Ayre, R.S., Engineering Vibrations, McGraw-Hill, New York, 1958.

James, M.L. Smith, G.M., Wolford, J.C. and Whaley, P.W., Vibration of Mechanical and Structural Systems,
Harper and Row, 1989.

Jones, D.S., Electrical and Mechanical Oscillations, Routledge and Kegan, London, 1961.

Karnopp, D.C., Margolis, D.L. and Rosenberg, R.C., System Dynamics, 3rd ed., Wiley Interscience, New
York, NY, 2000.

636 ——— MATLAB: An Introduction with Applications

Kelly, S.G., Fundamentals of Mechanical Vibration, McGraw-Hill, New York, NY, 1993.

Kelly, S.G., Theory and Problems of Mechanical Vibrations, Schaum’s Outline Series, McGraw-Hill, New
York, NY, 1996.

Kimball, A.L., Vibration Prevention in Engineering, Wiley, New York, NY, 1932.

Lalanne, M., Berthier, P. and Der Hagopian, J., Mechanical Vibrations for Engineers, Wiley, New York,
NY, 1983.

Lancaster, P., Lambda-Matrices and Vibrating Systems, Pergamon, 1966.

Loewy, R.G. and Piarulli, V.J., Dynamics of Rotating Shafts, Naval Publication, 1969.

Manley, R.G., Fundamentals of Vibration Study, Wiley, New York, NY, 1942.

Marguerre, K. and Wolfel, H., Mechanics of Vibration, Sitjthoff and Noordhoff, 1979.

Mclachlan, N.W., Theory of Vibration, Dover Publications, 1951.

Meirovitch, L., Analytical Methods in Vibrations, Macmillan, New York, NY, 1967.

Meirovitch, L., Elements of Vibration Analysis, 2nd ed., McGraw-Hill, New York, NY, 1986.

Meirovitch, L., Introduction to Dynamics and Control, Wiley, New York, NY, 1985.

Meirovitch, L., Methods of Analytical Dynamics, McGraw-Hill, New York, NY, 1970.

Meirovitch, L., Principles and Techniques of Vibrations, Prentice-Hall, Upper Saddle River, NJ, 1997.

Minorosky, M., Nonlinear Oscillations, Van Nostrand, Princeton, NJ, 1962.

Moretti, P.M., Modern Vibrations Primer, CRC Press, Boca Raton, FL, 2002.

Morrill, B., Mechanical Vibration, The Ronald Press, 1937.

Morrow, C.T., Shock and Vibration Engineering, Wiley, New York, NY, 1963.

Morse, P.M., Vibration and Sound, McGraw-Hill, New York, NY, 1948.

Muller, P.C. and Schiehlen, W.O., Linear Vibrations, Martinus Nighoff, 1985.

Myklestad, N.O., Fundamentals of Vibration Analysis, McGraw-Hill, New York, NY, 1956.

Nakra, B.C., Yadava, G.S. and Thurestadt, L., Vibration Measurement and Analysis, NPC, New Delhi, India,
1989.

Nashif, A.D., Jones, D.I.G. and Henderson, J.P., Vibration Damping, Wiley, New York, NY, 1985.

Nayfeh, A.H. and Mook, D.T., Nonlinear Oscillations, Wiley, New York, NY, 1979.

Newland, D.E., An Introduction to Random Vibrations and Spectral Analysis, 2nd ed., Longman, 1984.

Newland, D.E., Mechanical Vibration Analysis and Computation, Longman, 1989.

Newland, D.E., Random Vibrations and Spectral Analysis, 2nd ed., Longman, London, 1984.

Nigam, N.C., Introduction to Random Vibrations, MIT Press, 1983.

Norton, M.P., Fundamentals of Noise and Vibration Analysis for Engineers, Cambridge University Press,
Cambridge, 1989.

Pain, H.J., The Physics of Vibrations and Waves, Wiley, New York, NY, 1983.

Pippard, A.B., The Physics of Vibration, Cambridge University Press, Cambridge, 1978.

Piszek, K. and Niziol, J., Random Vibrations of Mechanical Systems, Ellis Horwood, 1986.

Prentis, J.M. and Leckie, F.A., Mechanical Vibrations: An Introduction to Matrix Methods, Longman, 1963.

Ramamurti, V., Mechanical Vibration Practice with Basic Theory, CRC Press, Boca Raton, FL, 2000.

Rao, J.S., Advanced Theory of Vibration, Wiley, New York, NY, 1991.

Mechanical Vibrations ——— 637

Rao, J.S., and Dukkipati, R.V., Mechanism and Machine Theory, 2nd ed., Wiley Eastern, New Delhi, India,
1992.

Rao, J.S., and Gupta, K., Introductory Course on Theory and Practice of Mechanical Vibrations, Wiley
Eastern, New Delhi, India, 1984.

Rao, S.S., Mechanical Vibrations, 3rd ed., Addison-Wesley, Reading, MA, 1995.

Rocard, V., General Dynamics of Vibrations, Unger, New York, NY, 1960.

Seto, W.W., Theory and Problems of Mechanical Vibrations, Schaum’s Outline Series, McGraw-Hill, New
York, NY, 1964.

Shabana, A.A., Theory of Vibration: An Introduction, Springer-Verlag, New York, NY, 1991.

Shabana, A.A., Theory of Vibration: Discrete and Continuous Systems, Springer, New York, NY, 1991.

Smith, J.D., Vibration Measurement and Analysis, Butterworths, 1989.

Snowdon, J.C., Vibration and Shock in Damped Mechanical Systems, Wiley, New York, NY, 1968.

Srinivasan, P., Mechanical Vibration Analysis, Tata-McGraw-Hill, New Delhi, India, 1982.

Steidel, R.F., An Introduction to Mechanical Vibrations, 3rd ed., Wiley, New York, NY, 1981.

Stoker, J.J., Nonlinear Vibrations, Interscience, New York, NY, 1950.

Thompson, J.M.T. and Stewart, H.B., Nonlinear Dynamics and Chaos, Wiley, New York NY, 1986.

Thomson, W.T. and Dahleh, M.D., Theory of Vibrations with Applications, 5th ed., Prentice-Hall, Englewood
Cliffs, NJ.

Thornson, D.L., Mechanics Applied to Vibrations and Balancing, Wiley, New York, NY, 1940.

Timoshenko, S., Young, D.H. and Weaver, W., Vibration Problems in Engineering, 5th ed., Wiley, New
York, NY 1990.

Timoshenko, S.P. and Young, D.H., Advanced Dynamics, McGraw-Hill New York, NY, 1948.

Timoshenko, S.P., Vibrations in Engineering, D. Van Nostrand, New York, NY, 1955.

Tong, K.N., Theory of Mechanical Vibration, Wiley, New York, NY, 1960.

Tse, F.S., Morse, I.E. and Hinkle, R.T., Mechanical Vibrations, Allyn and Bacon, Boston, MA, 1963.

Tuplin, W.A., Torsional Vibration, Wiley, New York, NY, 1934.

Van Santen, G.W., Mechanical Vibration, Macmillan, New York, NY, 1998.

Vernon, J.B., Linear Vibration Theory, Wiley, New York, NY, 1967.

Vierck, R.K., Vibration Analysis, 2nd ed., Harper & Row, New York, NY, 1979.

Volterra, E. and Zachmanoglon, E.C., Dynamics of Vibrations, Merrill, 1965.

Wallace, R.H., Understanding and Measuring Vibrations, Springer, New York, NY, 1970.

Walshaw, A.C., Mechanical Vibrations with Applications, Ellis Hardwood, 1984.

Weaver, W., Timoshenko, S.P. and Young, D.H., Vibration Problems in Engineering, 5th ed., Wiley, New
York, NY, 1990.

Wilson, W.K., Practical Solution of Torsional Vibration Problems, Vol.1, Wiley, New York, NY, 1949.

Wilson, W.K., Practical Solution of Torsional Vibration Problems, Vol.2, Wiley, New York, NY, 1949.

Wowk, V., Machinery Vibration: Measurement and Analysis, McGraw-Hill, New York, NY, 1991.

638 ——— MATLAB: An Introduction with Applications

PROBLEMS

P8.1: A safety bumper placed at the end of a race track to stop out-of-control cars as shown in Fig. P8.1. The
bumper is designed such that the force that the bumper applies to the car is a function of the velocity v and the
displacement x of the front end of the bumper given by the equation:

F = Kv3(x + 1)3

where K = 35 kg-s/m5 (a constant).
A car with a mass of 2000 kg hits the bumper at a speed of 100 km/h. Determine and plot the velocity of the car
as a function of its position for 0 ≤ x ≤ 5 m.

v
x

Fig. P8.1

P8.2: The 10 kg body is moved 0.25 m to the right of the equilibrium position and released from rest at
t = 0 as shown in Fig. P8.2. Plot the displacement as a function of time for four cases: c = 10, 40, 50 and
60 N.s/m. The stiffness of the spring is 40 N/m.

10 kg

k

c x

Fig. P8.2

P8.3: An airplane uses a parachute (see Fig. P8.3) and other means of braking as it slow down on the
runway after landing. The acceleration of the airplane is given by a = – 0.005v2 – 4m/s2

Consider an airplane with a velocity of 500 km/h that opens its parachute and starts decelerating at t = 0 s.
v

x

Fig. P8.3

P8.4: The piston of 150 lb is supported by a spring of modulus k = 250 lb/in. A dashpot of damping coefficient
c = 100 lb.sec/ft acts in parallel with the spring. A fluctuating pressure p = 0.75 sin 30t (psi) acts on the
piston, whose top surface area is 100 in2. Plot the response of the system for initial conditions x0 = 0.06 ft
and 0x� = 6, 0, and – 6 ft./sec.

Mechanical Vibrations ——— 639

150 lb

piston

k
c

p = 0.75 sin 30t

Fig. P8.4

P8.5: The 15 kg oscillator contains an unbalanced motor whose speed is N rpm as shown in Fig. P8.5. The
stiffness of the spring k = 1100 N/m. The oscillator is also restrained by a viscous damper whose piston is
resisted by a force of 50 N when moving at a speed of 0.6 m/s. Determine:

(a) the viscous damping factor
(b) plot the magnification factor for motor speeds from 0 to 350 rpm
(c) the maximum value of the magnification factor and the corresponding motor speed.

15 kg

kc

Fig. P8.5

P8.6: Write a MATLAB script file that computes the response of a single degree of freedom under damped
system shown in Fig. P8.6 to initial excitations. Use the program to determine and plot the response for the
following data:

Initial conditions:

x(0) = 0, (0)x� = v0 = 30 cm/sec,

 ωn = 6 rad/s, and ξ = 0.05, 0.1, 0.2, 0.30.

m

k

c

x(t)

Fig. P8.6 Damped single degree of freedom system

The response of the under damped single degree of freedom system is given by

x(t) = A tne−ξω cos(d
tω – φ)

where A and φ represent the amplitude and phase angle of the response respectively. These are
2

2 0 0
0

n

d

x vA x
 ζω += +  ω 

640 ——— MATLAB: An Introduction with Applications

21d nω = −ζ ω

and 1 0 0

0

tan n

d

x v
x

−  ζω +φ =  ω 

P8.7: Write a MATLAB script for plotting the frequency response magnitude and phase angle using complex
notation for a single degree of freedom system given by

2

2 2

1 i 2
()

1 2

n n

n n

G i

   ω ω− − ζ   ω ω   
ω =

    ω ω− + ζ    ω ω     

and
1 –1()() tan tan

()
I mG i
ReG i

−  − ω
φ ω = = ω 

2

2

1

n

n

 ω ζ
ω 

  ω −   ω  

P8.8: Consider the force-free, viscously damped single degree of freedom system shown in Fig. P8.8.

m

k c

x(t)

Fig. P8.8

Plot the response of the system using MATLAB over the interval 0 ≤ t ≤ 10s to the initial conditions
x(0) = 3 cm, (0)x� = 0 for the values of the damping factor ζ = 0.05, 0.1, 0.5. The frequency of the undamped
oscillation have the values ωn = 15 rad/s. The expression for the response of a damped single degree of
freedom system in Fig. P8.3 to initial displacement and velocity is given by

x(t) = C tne−ζω cos(ωdt – φ)
where C and φ represent the amplitude and phase angle of the response, respectively having the values

2

2 0 0
0

n

d

x vC x
 ζω += + ω 

1 0 0

0

tan n

d

x v
x

−  ζω +φ =  ω 

and 21d nω = − ζ ω

Mechanical Vibrations ——— 641

P8.9: Write a MATLAB script to obtain the motion of the mass subjected to the initial condition. There is
no external forcing function acting on the system. The single degree of freedom system is shown in
Fig. P8.9 and the parameters are given as m = 3 kg, k = 6 N/m, and C = 5 N-s/m. The displacement of the
mass is measured from the equilibrium position and at t = 0, x(0) = 0.04m and (0)x� = 0.10 m/s.

m

kc

x

Fig. P8.9 Single degree of freedom system

P8.10: Determine and plot the response of the single degree of freedom system shown in Fig. P8.10 using
MATLAB when 25 N of force (step input) is applied to the mass m. The system is at rest initially and the
displacement of the mass m is measured from equilibrium position. The parameters of the system are given
as m = 3 kg, c = 25 N-s/m, and k = 200 N/m. The initial conditions are x(0) = (0)x� = 0.

m

kc

x

F

Fig. P8.10 Single degree of freedom system

P8.11: Write a MATLAB script for determining the response of a single degree of freedom system with
viscous damping to an exponential excitation F(t) = e–αt.

P8.12: A single degree of freedom spring-mass-damper model has following properties: m = 15 kg, c = 25
Ns/m and k = 3500 N/m. If it is subjected a triangular pulse of amplitude 1000 N for 0.1 seconds, compute
the time-domain response and plot the same in MATLAB. The excitation function is shown in Fig. P8.12.

1000 N

0.1

F(t)

T(sec)

Fig. P8.12

P8.13: Determine and plot the response of the system shown in Fig. P8.13 using MATLAB. The response
is x0(t) when the input xi(t) is a unit step displacement input. The parameters of the system are k1 = 15 N/m,
k2 = 25 N/m, c1 = 7 N-s/m, c2 = 15 N-s/m.

642 ——— MATLAB: An Introduction with Applications

k1 c1

xi(t)

k2

c2 x0(t)

y(t)

Fig. P8.13

P8.14: A two-degree of freedom torsional system shown in Fig. P8.14 is subjected to initial excitation

θ1(0) = 0, θ2(0) = 2, 1θ� (0) = 2
GJ
IL and 2θ� (0) = 0. Write MATLAB program and plot the response of the

system. Assume I = 1 and GJ = l = 1.

I
GJ GJ

L L

I

Fig. P8.14

P8.15: The mass m2 in a 2-degree of freedom system shown in Fig. P8.15 is subjected to a force in the form
of saw-tooth pulse of amplitude 1.5 N for duration of 1.5 second. Obtain the response in terms of two
coordinates x1(t) and x2(t). Assume k1 = k2 = 15 N/m and m1= m2 = 2 kg.

m1

k1

x1(t)

m2

k2

x2(t)

F(t)

Fig. P8.15

The mass and stiffness matrices of the system for given system are given as

1 1 2 2

2 2 2

0
and

0
m k k k

M K
m k k

+ −   
= =   −   

Mechanical Vibrations ——— 643

Force vector is:

()
0

F t
F

 
=  

 

The saw-tooth pulse takes the form as shown in Fig. P8.15(a).

1 N

1

F(t)

T(sec)

Fig. P8.15(a)

P8.16: A two-storey building (Fig. P8.16) is undergoing a horizontal motion y(t)=Y0sinωt.

E /2IH1

H2 m2

m1

y

E /2I

E /2I

E /2I

Fig. P8.16

Derive expression for the displacement of the first floor having mass m1. Assume m1= m2= 4, EI = 2
and H = 1m.

The equations of motion for building can be written as:

1 1 02 2

2 2

4 0 2 1 sin
0 4 1 1 0

x x Y t
x x

− ω        
+ α = α        −        

��
��

where 2
3

12 12 2 6EI
mH m

×α = = =

Solving for steady-state response we get:

2 2 2

1 02 2 2 2)
1 2

()
()(

X Yα − ω α=
ω − ω ω − ω

4

2 02 2 2 2)
1 2()(

X Yα=
ω − ω ω − ω

These values are to be plotted against various values of ω.

644 ——— MATLAB: An Introduction with Applications

P8.17: Derive the response of the system shown in Fig. P8.17 in discrete time and plot the response. Given
F(t) = e–αt.

m1

k1

x1(t)

m2

k2

x2(t)

F(t)

Fig. P8.17

P8.18: Consider the system with
3 0 6 4

,
0 2 4 5

M K
−   

= =   −   
with arbitrary viscous damping. Find the

eigenvalues and normalized eigenvectors.

P8.19: For the vibrating system shown in Fig. P8.19, a mass of 5 kg is placed on mass m at t = 0 and the
system is at rest initially (at t = 0). Given that m = 20 kg, k = 600 N/m, and c = 60 Ns/m. Plot the response
curve x(t) versus t using MATLAB.

m

3 kg

k c

x

Fig. P8.19

P8.20: For the mechanical vibrating system shown in Fig. P8.20, using MATLAB assume that m = 3 kg,
k1 = 15 N/m, k = 25 N/m, and c = 10 N-s/m. Plot the response curve x(t) versus t when the mass m is pulled
slightly downward and the initial conditions are x(0) = 0.05 m and (0)x� = 0.8 m/s.

m

k c

x

k2

1

Fig. P8.20

Mechanical Vibrations ——— 645

P8.21: For the mechanical vibrating system shown in Fig. P8.21, k1 = 10 N/m, k2 = 30 N/m, c1 = 3 N-s/m,

and c2 = 25 N-s/m.

(a) Determine the displacement x2(t) when F is a step force input of 4 N.
(b) Plot the response curve x2(t) versus t using MATLAB.

k1

x1

k2
c2

x2

F

Fig. P8.21

P8.22: For the electrical system shown in Fig. E8.22, assume that R1 = 2Ω, R2 = 1 MΩ, C1 = 0.75 µF, and
C2 = 0.25 µF and the capacitors are not charged initially and e0 (0) = 0 and 0e� (0) = 0.

(a) Find the response e0(t) where et(t) = 5V (stop input) is applied to the system.
(b) Plot the response curve e0(t) versus t using MATLAB.

e0

R1

C1

R2

C2
ei

Fig. P8.22

P8.23: For the mechanical system shown in Fig. P8.23, assume m = 3 kg, M = 25 kg,
k1= 25 N/m, and k2 = 300 N/m. Determine

(a) the natural frequencies and modes of vibration

(b) the vibration when the initial conditions are: x(0) = 0.05 m, (0)x� = 0 m/s,

y(0) = 0 m/s, and (0)y� = 0 m/s.

Use MATLAB program to plot curves x(t) versus t and y(t) versus t.

❍ ❍ ❍

m

k1

y

M

x

k2

Fig. P8.23

This page
intentionally left

blank

There are several outstanding text and reference books on MATLAB that merit consultation for those readers
who wish to pursue these topics further. The following list is but a representative sample of the many
excellent references.

Chapman, S.J., MATLAB Programming for Engineers, 2nd ed., Brooks/Cole, Thomson Learning, Pacific
Grove, CA, 2002.
Chapra, S.C., Applied Numerical Methods with MATLAB, 2nd ed., McGraw-Hill, New York, 2008.
Dabney, J.B. and Harman, T.L., Mastering SIMULINK 4, Prentice-Hall, Upper Saddle River, NJ, 2001.
Daku, B.L.F., MATLAB Tutor CD-Learning MATLAB Superfast, Wiley, New York, 2006.
Djaferis, T.E., Automatic Control—The Power of Feedback using MATLAB, Brooks/Cole, Thomson
Learning, Pacific Grove, CA, 2000.
Dukkipati, R.V., Analysis and Design of Control Systems using MATLAB, New Age International Publishers,
New Delhi, India, 2006.
Dukkipati, R.V. and Srinivas, J., Solving Engineering Mechanics Problems with MATLAB, New Age
International Publishers, New Delhi, India, 2007.
Dukkipati, R.V., Solving Engineering System Dynamics Problems with MATLAB, New Age International
Publishers, New Delhi, India, 2006.
Dukkipati, R.V., Solving Vibration Analysis Problems with MATLAB, New Age International Publishers,
New Delhi, India, 2006.
Dukkipati, R.V., MATLAB for Mechanical Engineers, New Age International Publishers, New Delhi, India,
2008.
Dukkipati, R.V., MATLAB for Electrical Engineers, New Age International Publishers, New Delhi, India,
2008.
Etter, D.M., Engineering Problem Solving with MATLAB, Prentice-Hall, Englewood Cliffs, NJ, 1993.
Gardner, J.F., Simulation of Machines using MATLAB and SIMULINK, Brooks/Cole, Thomson Learning,
Pacific Grove, CA, 2001.

Bibliography

❖ 648 ❖ ❖ Bibliography ❖

Hahn, B.D. and Valentine, D.T., Essential MATLAB for Engineers and Scientists, 3rd ed., Elsevier, Burlington,
MA, 2007.
Hanselman, D. and Littlefield, B., Mastering MATLAB 7, Prentice-Hall, Upper Saddle River, NJ, 2005.
Harper, B. D., Solving Dynamics Problems in MATLAB, 5th ed., Wiley, New York, 2002.
Herniter, M.E., Programming in MATLAB, Brooks/Cole, Pacific Grove, CA, 2001.
Hunt, B.R., Lipsman, R.L. and Rosenberg, J.M., A Guide to MATLAB—for Beginners and Experienced
Users, 2nd ed., Cambridge University Press, Cambridge, UK, 2006.
Karris, S.T., Signals and Systems with MATLAB Applications, Orchard Publications, Fremont, CA, 2001.
Kiusalaas, J., Numerical Methods in Engineering with MATLAB, Cambridge University Press, Cambridge,
UK, 2005.
Leonard, N.E. and Levine, W.S., Using MATLAB to Analyze and Design Control Systems, Addison-Wesley,
Redwood City, CA, 1995.
Lyshevski, S.E., Engineering and Scientific Computations using MATLAB, Wiley, New York, 2003.
Moore, H., MATLAB for Engineers, Prentice-Hall, Upper Saddle River, NJ, 2007.
Ogata, K., Designing Linear Control Systems with MATLAB, Prentice-Hall, Upper Saddle River, NJ, 1994.
Ogata, K., Solving Control Engineering Problems with MATLAB, Prentice-Hall, Upper Saddle River, NJ,
1994.
Palm, W.J. III., Introduction to MATLAB 7 for Engineers, McGraw-Hill, New York, 2005.
Pratap, Rudra, Getting started with MATLAB—A Quick Introduction for Scientists and Engineers, Oxford
University Press, New York, NY, 2002.
Recktenwald, G ., Numerical Methods with MATLAB, Prentice-Hall, Upper Saddle River, NJ, 2000.
Saadat, Hadi, Computational Aids in Control Systems using MATLAB, McGraw-Hill, New York, NY, 1993.
Sigman, K. and Davis, T.A., MATLAB Primer, 6th ed., Chapman & Hall/CRC Press, Boca Raton, FL, 2002.
The MathWorks, Inc., SIMULINK, Version 3, The MathWorks, Inc., Natick, MA, 1999.
The MathWorks, Inc., MATLAB: Application Program Interface Reference Version 6, The MathWorks,
Inc., Natick, 2000.
The MathWorks, Inc., MATLAB: Control System Toolbox User’s Guide, Version 4, The MathWorks, Inc.,
Natick, 1992–1998.
The MathWorks, Inc., MATLAB: Function Reference, The MathWorks, Inc., Natick, 2000.
The MathWorks, Inc., MATLAB: Symbolic Math Toolbox User’s Guide, Version 2, The MathWorks, Inc.,
Natick, 1993–1997.
The MathWorks, Inc., MATLAB: Using MATLAB Graphics, Version 6, The MathWorks, Inc., Natick, 2000.
The MathWorks, Inc., MATLAB: Using MATLAB, Version 6, The MathWorks, Inc., Natick, 2000.

2-D contour plot 60, 62
2-degree of freedom system 644
3-dimentional structure 538
3-D contour plot 60, 61
3-D data 53

plots 31
projectile trajectory 525

A
Absorb energy 551
Acceleration 319, 330, 332

due to gravity 449, 490
of flywheel 504
of particle 541
of the piston 506
vector diagram 510

Accuracy 323
Achieving stability 129
Acrobat 528
Action of forces 389
Actuating error 124
Actuator 124
Air

conditioning systems 122
friction 541
quality 122
resistance 483, 502
temperature 122

Aircraft autopilots 122
Airplane 89, 640
Alembert’s principle 402
Algebraic

eigenvalue problems 201
equations 1, 87, 204
sum 390, 393, 408

Algorithm 370
Amplification factor 568
Amplitude 559, 570, 572

of oscillation 553
of the applied force 569
of vibration 569
ratio 568

Angular 542, 571
acceleration 407, 508, 544

of connecting rod 512
displacements 600
impulse 411
momentum 410, 501

of the disk 548
motion 409, 618
speed 409, 521

of the body 408
velocity 504, 523, 544, 547

of connecting rod 512
of rod 522, 547

Analytical dynamics 585
expression 573

Angle
of the response 590
of inclination 532
of the satellite 542
of wrap 396

Analysis 129, 413
of beams 395

Applied
forces 389
voltage 107

Approximate solution 319
Arbitrary input 575

magnitude 575
viscous damping 646

Index

Sanjay\F\FinalBook\Matlab: An Introduction\Index\IInd Proof\14\3\09

650 ——— MATLAB: An Introduction with Applications

Sanjay\F\FinalBook\Matlab: An Introduction\Index\IInd Proof\14\3\09

Arithmetic operations 83
Array

division 12, 13, 83
multiplication 12, 83

Augmented
coefficient matrix 202
matrix 204

Automated train system 123
Automatic

control systems 122
hot water heater 123
position-control system 123

Automobile 122, 551, 597
model 597
suspension system 597, 609
weight 609

Auxiliary equation 562
Axial moment of inertia 404, 406
Axle pulley system 459

B

Back substitution 231, 233, 245
process 203

Balancing 551
pole 528

Ball 541
Bandwidth 158, 192, 570
Barge 528
Base excitation 571

speed 543
Basic 2-D plots 29
Beam 534
Bearing loads 551
Beating 568
Belt 396

friction 396, 457
Behaviour of the

actual system 558
system 551

Bending moment 427, 433, 442
diagrams 445

Bicycle 546
Biological-control systems 122
Block 123, 452, 492, 499

and the plane 532
diagram 123
of mass 542
representation 123
slide 532

Boats 528
Bode diagram 103, 150, 174, 195

plot 136, 155, 192
Boltzmann’s constant 107
Boundary conditions 320, 446

Box 547
Braking 640
Building 621

structure 572
Built-in

functions 2, 10, 15, 2, 26, 83
logical functions 25

Bullet 499
Bumper 485
Bumper.m 486

C

Cable 418, 459, 460, 529, 547
Calculus 41
Cameraman 542
Cantilever 535

beam 556
truss 534

Capacitance 99, 111, 120
elements 99

Capacitor 97, 100, 111, 120
Capacitors in

parallel 100
series 100

Car 476
body 551

Cartesian coordinate system 586
Center of

gravity 420, 517
mass 408
the earth 542

Central difference method 320, 325
Centroid 397, 466, 538

of the area 538
of the shaded area 537

Centroidal
position vector 396
moment of inertia 609

Chain 544
Characteristic equation 13
Charge of an electron 107
Choleski’s

decomposition 201, 203
factorization 233, 259

method 221
method 221, 247, 259
method of solution 219

Circuit 106, 111, 120
in parallel 118
loop 102
path 541

Circular
frequency 553, 565

Index ——— 651

Sanjay\F\FinalBook\Matlab: An Introduction\Index\IInd Proof\14\3\09

path 541
shaft 599

Classical mechanics 389
Classification of vibrations 551
Closed loop 102, 166

(feedback control) system 124
control system 153, 164, 168
frequency response 192
magnitude 192
poles 166, 171, 194
step response 145, 155, 192
system 151, 168, 195
transfer function 164

Close-up of the root locus 191
root locus 191

Coefficient
of static friction 396
of viscous damping 561
of friction 449, 459, 547
kinetic friction 396
matrix 202, 207, 234
vectors 86

Column vector 9
Combined resistance 101
Comet command 66
Command 121

window 2, 3, 85
Compensator 194
Complete algorithm 332
Complex

conjugate roots 583
conjugate eigenvalues 584
notation 642
system 558

Complimentary function 566
Composite area 406
Concurrency 392
Concurrent

forces 390
system 392

Conditional statements 26
Conditionally stable 170
Cone 540
Configuration 408, 587
Conjugate 262, 265, 266

directions 263, 266
gradient method 261, 310, 314
eigenvalues 583
eigenvectors 583

Connecting 508, 517
Conservation of

energy rule 498
linear momentum 411

Conservative systems 587
Constant

acceleration 398
amplitude 564
angular velocity 508, 544
circular motion 545
coefficients 319
couple 521
distributed load 535
of integration 559
of the spring 493
speed 389, 545
velocity 525

Constraints 269, 586
Continuous 551

or distributed systems 554
systems 554
variable 320

Constrained
example 295, 297
optimization 298
optimization example 296

Contour plot 58, 62
Control 121, 127

matrix 136
system 44, 121, 171, 194
system analysis 129

Controllability 187
Controllable 187
Controlled

heater 122
output 124, 125
variables 127

Controller 125
Convex 264
Convolution integral 596, 617

sum 620
Coplanar force system 390, 394, 413
Cord 543
Coriolis component of acceleration 403
Coordinate coupling 578

systems 586
Coulomb’s law 109
Coulomb damping 564, 571

or dry-friction damping 557
Coupling 578
Couple of moment 397
Crank 447, 506, 508

angle 448
shaft mechanism 447

Critical time-step limit 330
damping constant 562, 563

Critically damped 563
Crossing value and frequency 193
Crossover frequency 134

652 ——— MATLAB: An Introduction with Applications

Sanjay\F\FinalBook\Matlab: An Introduction\Index\IInd Proof\14\3\09

Cruise (speed) control 122
Current 98, 118

flow 107, 108
in resistor 105

Curtain plot 58
Curvilinear motion 398
Cylindrical

coordinate system 480
part 464
portion 464
surface 487

D

D’Alembert’s Principle 402, 587
Damped

circular frequency 562
single degree 596

of freedom system 619
spring-mass system 561, 575
system 565
two-degree of spring-mass system 579
vibrating system 364, 552

Damper 552
Damping 335, 557, 558

and stiffness 375
matrices 323
properties 580

coefficient 569
constant 561
elements 557
energy 558
factor 562, 570
force 558
matrices 387
ratio 158, 171, 191

Dashpot 558
of damping coefficient 640

Data
analysis 83
visualization 1

DC motor 123
Decaying exponential 563
Deceleration of the car 485
Decomposition 211

process 203
Decoupled

equations 378
equilibrium equations 378

Deflection 535
of cable 529, 536,
of the rope 528

Degree of freedom 554
system 387

Derivative 352

Design
by analysis 129
by synthesis 129
curves 556
objectives 129
of control systems 103, 121, 129
variables 261

Desired values 121
Determinant 13, 83, 91

of the matrix 607
Deterministic oscillations 552
Diagonal 234

elements 212
Difference

equations 323
formulas 329, 336

Differential
calculus 586
equation 74, 120, 199, 319, 583

of motion 346, 564, 578
governing 584

Dimensional structure 538
Dimensionless quantities 536
Diode 107, 108
Direct

delta function 574
integration of the periodic functions 573
integration method 323
numerical integration methods 323

Direction cosines 391, 392
of motion 528

Discrete 551
or lumped parameter systems 554
points 573
time 604, 614, 646

impulse responses 604
intervals 319
modal coordinates 604
response 604

Disk 514
Displacement 319, 321, 332, 339

amplitude 565
of the mass center 609
of the point 580
response 340, 355
time history curve 323
transmissibility 571
variation 475

Display formats 83
Dissipation of energy 551
Dissipative devices 551
Distributed forces 413
Disturbance input 124

or noise input 126
Dominant closed-loop poles 171, 194, 195

Index ——— 653

Sanjay\F\FinalBook\Matlab: An Introduction\Index\IInd Proof\14\3\09

Dot product 12, 83
Dynamic 389

analyses 323
analysis 323
coupling 578
element 551
equilibrium 402, 586
reactions 517
response 321
state 551
system 551

E

Earth’s curvature 541
Earthquake 572
Eccentricity of the orbit 542
Edit window 2
Effect of friction 531
Effective

force vector 332, 335, 336
mass matrix 332, 336

Efficiency 323
Eigenvalue 582, 601, 612, 646

equation 582
problems 201, 208

Eigenvector 13, 209
Elastic deformations 581

forces 551
Electric field 109, 110

switch 122
power generation 568

Electrical
capacitance 111
capacitor 111
circuit 101, 103, 118, 119
elements 97
energy 97
system 647

Electronic type writer 122
Element-by-element operations 14, 83

computations 85
Elementary parts 552
Elimination phase 201
Ellipse 542
else and elseif clauses 27
Encirclement of the critical point 168
Energy 100

method 560
Engine

speed 122
system 508, 516, 532
load application 122

Engineering
graphics 1

mechanics 103
optimization 316

Environment 1
Equation of motion 323, 325, 558, 564

of the system 560, 600
Equations 621

for the system 632
of free motion 583

Equilibrium 389, 392, 394, 435, 456
equation 329, 415
of a particle 398
of a rigid body 398
of a system 398
of coplanar force systems 392
of non-coplanar force system 394
position 561, 628, 640, 643

Equivalent
force 527
dashpot 558
resistance 106, 119
spring constant 565
stiffness 557
viscous damping 5

Error tolerance 249
Even functions 573
Exact

analytical solutions 555
response 378

Expected value of per cent overshoot 193
Excitations 558

function 643
Experimental 111, 540

curve 111
Explicit

and implicit schemes 323
method 322
scheme 323

Experimental results 556
Exponential

excitation 643
functions 4
relation 117

External
equation 375
excitations 554, 565
force 502, 551
forcing function 643
source 552

F

Fatigue 551
Feed forward (control) elements 125

654 ——— MATLAB: An Introduction with Applications

Sanjay\F\FinalBook\Matlab: An Introduction\Index\IInd Proof\14\3\09

transfer function 166, 191
Feedback 127, 128

control system 126, 133
elements 125
path 125
system 127, 144

Finite
difference 319
equations 320
formulas 334
method 319
number of degrees of freedom 554
schemes 320

First floor 645
Final states of the rocket 502
Fink truss 534
First

law 389
moment of area 396
moments and centroids 396
order equations 322

Fletcher Reeves 281
method 267, 280, 309, 317

Flexibility
coefficients 581
influence coefficients 580
matrix 581

Flexible cable 456
Flow chart 307
Fminbnd 317

function 293, 303
Fminsearch 305, 317

function 294, 313
Fopen statement 38
Force

amplitude 565
triangle 460
vector 333

Forced 552
amplitude 567
function 565
response 565, 567
vibration 565
vibration response 616

Forces
of the system 390, 394
on a particle 413

Forcing vector 375
Formulas 328
Forging hammer 553
Fourier coefficients 554
Forward

elimination 231, 244
path 125
substitution 203, 233
transfer function 194

Four
bar mechanism 544
implicit direct integration schemes 323

Fourth order
algorithms 328
Runge-Kutta method 322, 387

Frame of reference 523
Free

damped vibration 563
vibrations 583

analysis 576
of a multi-degree of freedom system 584
properties 580
response 611, 614, 616
solution 601

Free-body diagram 415, 416, 420
Freedom system 596
Freely rolling base 543
Frequency 553

of oscillation 601
of the undamped oscillation 642
of vibration 582
of the peak magnitude 192
or characteristic equation 577
ratio 588
response 593

magnitude 642
Friction 395, 413, 497

force 532
Frictional force occurs 396
Frictionless inclined plane 529
Function of velocity 483, 500
Fundamental frequency 553
Furnace 122

G

Gain 174
crossover frequency 134
margin 134, 174, 195
of the system 195

Gauss 214, 216
elimination 202, 214
elimination method 201

GAUSSD 225, 227
Gaussian elimination method 204, 231, 259

scheme 214
Gauss-Jordan method 201, 204
Gauss-Seidel

algorithm 204
method 201, 225, 234

General
forcing conditions 572
forcing function 572
periodic force 573

Index ——— 655

Sanjay\F\FinalBook\Matlab: An Introduction\Index\IInd Proof\14\3\09

solution 584, 612
solution of equation 560
viscous damping 584

Generalized
coordinates 586
force 587
principle 587

General
fourth-order algorithms 327
matrix 211

Generator 568
Geometric

constraints 551
progression 206

GoldBracket 281, 284
GoldSearch 282, 285
Govern 121
Governing

equations 554, 555
equilibrium equations 377

Gradient 262, 264, 297
direction 263
search 263
vector 265

Graphics 1, 29, 83
window 2

Gravitational 551
acceleration 90
constant 490, 541
force 541
potential energy 90

Grid points 320
Ground vibrations 572

H

Half
cycle 594
power points 570

Hamilton’s principle 587
Harmonic

analysis 572
excitations 584
forcing conditions 571
frequencies 574
function 565
function of time 564
oscillator 559
response 565

Harmonically excited base 571
Heat 558
Hemispheres 543
Higher

derivatives 321
order system 162

High-speed rail systems 122
Holonomic system 587
Homogeneous

solution 580
wire 540

Hold command 31
Home heating 122
Hooke and Jeeves method 267, 317
Horizontal

frictionless 527
motion 645
pole 418
surfaces 452

Houbolt 323
algorithm 329
method 328, 330

Householder 219, 228, 230
factorization 201, 207
factorization method 227, 229, 260
method 217, 240
reduction 201, 210, 240, 253
transformation 218

Hyperbolic functions 5
Hysteresis damping 558, 572

coefficient 572
Hysteretic 565

I

Identity matrix 12, 204
Idle-speed control 122
Illumination 122
Impedance 113
Impending slippage 451
Implicit scheme 323
Impulse 574

response 596
response function 575
response of a second-order system 630
vectors 581

Impulse
and momentum 409
response 129, 138
response plots 138

Impulsive
force 574
response 575

Inclined paths 545
surface 546

Increased accuracy 128
Inductance 99, 113

elements 98
in parallel 99
in series 99

Inductor 97, 98, 113, 119

656 ——— MATLAB: An Introduction with Applications

Sanjay\F\FinalBook\Matlab: An Introduction\Index\IInd Proof\14\3\09

Inertia 552
and stiffness parameters 561
elements 557
influence coefficients 581
matrix 581

Influence
coefficient 581
of forces 483

Initial conditions 199, 320
displacement 590
excitation 606, 644
position 499
tension 546
values 322, 327
velocity 477, 487

Input
and output 121
link 544
of the system 197
transducer 125

Instability of the motion 561
Integration

constants 333
methods 319
procedure 323
schedule 324

Interactive environment 83
Intercontinental missile guidance systems 122
Interior penalty function method 268
Internal forces 433, 442

resistance 119
Irregular form 573
Inverse 68, 75, 92, 94

and transpose of a matrix 83
Laplace transform 75, 81, 95
of a matrix 12
transform 95

Iteration procedure 268
Iterative technique 205
Isolators 569

J

Jacob 271, 273
Jacobi 222, 224

diagonalization 209
iteration 223, 224
iterative scheme 259
method 201, 208, 222, 238, 250, 260
rotation matrix 209
rotations 200
singular 272

Jet plane 479

K

Kelvin 117
Kinematics 389, 398

of a particle 398
of a rigid body 402

Kinematic relationship 555
Kinetic energy 408, 409, 521, 522

energy of the disk 548
friction 395
of a particle 390

Kirchhoff’s
current law 102
laws 102
second voltage law 118
voltage law 103, 104, 113
voltage law (loop law) 102

L

Lagrange 585
Lagrange’s equation 585
Landing 640
Laplace

transform 43, 79, 91, 94, 95
transform pairs 575
transformation method 43, 575

Law of conservation of energy 409
Leakeage current 107
Leaves the surface 487
Left division 13
Left-half plane 131
Length

of the beam 535
of the cable 437
of the connecting 508

Limiting friction 395
Line

command 31
diagram of the mechanism 505
of action 530
of the resultant force 391

Linear
acceleration scheme 332
algebra 1
algebraic equations 22, 83, 93, 201
combination 612
dynamic systems 332
equations 246
impulse 410
momentum 409
n-degree of freedom system 585
superposition 582
system 126

Index ——— 657

Sanjay\F\FinalBook\Matlab: An Introduction\Index\IInd Proof\14\3\09

system of equations 234
undamped n-degree of freedom system 581

Link lengths 544
Linkage 523
Logarithmic decrement 563
Logarithms 4
Logical operators 25
Loop analysis 103
Losses 551
Lower

matrix 211
triangular 234
triangular matrix 202, 233

Low-pass RC filter 120
Lubrication 558
Lumped 551
LU decomposition 203

decomposition method 201
decomposition scheme 233
factorization 203

M

Machine 569, 571
Magnetic levitation systems 122
Magnification factor 567, 568, 641
Magnitude 115, 390

of area 397
of the angular acceleration of the body 408
of the frequency response 593
of the resultant 392
of the resulting couple 392
of velocity of rocket 502

Managing variables 7
Man-made control systems 122
Mass

center 410
coefficients 603
damper spring system 596
matrices 583
matrix 581, 601
moment of inertia 540

of the body 409
of block 500
of bullet 500
of element 405
of the body 407, 408
of the box 547
of the earth 490
of the particle 390
or dynamic coupling 578
or stiffness matrix 583
orthonormalized 624

mode shapes 624
polar moments of inertia 599

Material or solid damping 558
Mathematical

expressions 123, 412
model 555
modeling 554
solution 555

Math functions 4
MATLAB

functions 28
while structures 27

Matrices 83
Matrix 9

division 18
form 104
formulation 581
in tridiagonal form 253
inverse 18
methods 555
notation 578
triple products 584

Maximizing a function 261
Maximum 483

bending moment 427
displacement 493, 494
iterations 249
magnification factor 567
of f (x) 293
of f (x, y) 294
of the function 304
overshoot 162
speed 493
transmitted 569
tension 437
value of the magnification factor 641
value 304
velocity 494
velocity of the block 542

Mean radius of the earth 490
Mechanical

energy 560
impedance 579
system 103, 196, 558, 586, 629
vibrating system 646, 647
vibration 103
vibration analysis 129

Mechanics 389
Mechanism 537, 545
Merit function 261
Method of joints 395

of sections 395
m-file objfun.m 299
Minimizations 269
Minimizing the steady-state errors 129
Minimum 310

of f(x) 309
of function 278, 280, 283

658 ——— MATLAB: An Introduction with Applications

Sanjay\F\FinalBook\Matlab: An Introduction\Index\IInd Proof\14\3\09

of the quadratic 265
point 266, 291, 292, 314
tension 420
value 304

Missile launcher 123
Mode

superposition method 323
shape orthogonality 582
shape vector 583
shapes 582

Modal
analysis 585
coordinates 603
equations 603
forces 603
vector 601

Model conversion 44
Modeling of a physical system 554
Modes of vibration 647
Modulus of rigidity 578
Moment

and product of inertia 540
diagram 395
of inertia 408, 409, 470, 535

Motion 553
of the mass 627, 643
of the system 609, 611
of a particle 471, 477, 492
of crank 508
of the body 389
of the plane 479

Motorcycle 541
Motor speed 641
Moving base 588
Multi degree of freedom systems 319, 322, 579
Multiplicative constant 582
Multilevel buildings 123
Multiple subsystems 190, 194
Multi-step implicit formulas 328
Multivariable

feedback system 127
functions 306

Mutual forces exerted 390

N

N-coupled differential equations 580
N-degree of freedom

system 579, 580
undamped system 584

N-dimensional vector 265, 584
of undetermined coefficients 584

Natural
circular frequency 560
frequencies 577, 579, 583

modes 600, 606
Necessary and sufficient conditions 394
Negative damping 334

feedback 126
Nested if statements 27
Neutral equilibrium 398
Newark-Beta

and Park Stiffly stable methods 323
integration method 333
method 333
scheme 334

Newton 389, 483
laws of motion 389, 552
method 262, 266, 270, 316

Newton’s
laws of motion 389, 554
second law 390, 402, 574
second law of motion 574, 583

Newtonian mechanics 389
Nichols 148

chart 134
plot 103

Non-concurrent 390
Non-dimensional

bending moment 429
forces and moment 427
unit vector 208
response magnitude 588

Non-feedback system 128
Non-harmonic but periodic 565
Non-impulsive forces 499
Non-linear 323

differential equations 555
equations of motion 323
function 301
system behaviours 555
vibration problem 349

Non-minimum-phase behaviour 146
Non-oscillatory motion 563
Non-parallel system 390, 393
Non-periodic excitations 572
Non-self starting 329
Non-singular matrix 208
Normal direction 488

force 529
mode 582
method 583
solution 581

Normal reactions 545
Normalization schemes 582
Normalized

eigenvectors 646
mode shapes 583

Nose cone 540
Number of

Index ——— 659

Sanjay\F\FinalBook\Matlab: An Introduction\Index\IInd Proof\14\3\09

joints 395
members 395

Numerical
analysis 555
integration procedure 573
methods 103, 129, 201, 321, 555

Numerical computation 1, 83
direct integrating schemes 323
integration methods 319

schemes 319, 323
procedure 319

Nyquist 148, 180
and nichols plots 103, 129, 149
diagram 159
plot 103, 129, 136, 160, 167, 197

O

Objective function 261, 272, 291
Observability 186, 187
Observable 186
Odd functions 573
Off-diagonal elements 211, 239
Ohm’s law 97, 98
One degree of freedom 558
One-dimensional objective function 306
Open loop

transfer function 155, 167, 179, 195
control system 124
poles 168
transfer function 155, 167, 169

Operations 83
with arrays 11

Optimal 301
fitting 301

Optimization 261
problem 266

Optimized matrix 1
Optimum 268

points 270
Ordinary differential equations 83, 88
Original coordinates 379

function 304
Orthogonal 211, 212, 265

matrix 212
Orgthogonality properties 584
Original generalized coordinates 585
Orthogonal relationships 583
Orthogonality 583

of modes 584
principle 579
relation 583

Oscillator 641
Oscillating flywheel 504
Output 121

equation 196
vector 136

Out-of-control cars 640
Overdamped system 131
Overlay plots 31
Overshoot 141, 155

line 191

P

Pacemaker 123
Parachute 89, 640
Parallel

axis theorem 404, 405, 406
circuits 101
non-coplanar system 394
system 391

Park Stiffly
method 336
stable method 336, 337, 386

Partial fractions 75, 76, 94
expansion 76, 77, 78, 80

Particle 474, 483
kinematics 471

Particular solution 566, 571, 580
Passive 551
Path of a particle 480
Path variations 587
Pattern direction 268
Peak magnitude 192
Peak time 155, 162, 192
Performance 556
Period 553

of the oscillation 553
Periodic

force 573
function 553, 572
motion 553

Penalty
function method 285
parameter 269, 270

Per cent overshoot 158, 192
Permittivity constant 109
Phase 191

angle 115, 132
crossover frequency 134
frequency response 192
margin 134, 158, 174, 195
plots 192
variable representation 196

Phase angle 559, 562, 567
Physical 551

elements 554
interpretation 554, 556
law 551

660 ——— MATLAB: An Introduction with Applications

Sanjay\F\FinalBook\Matlab: An Introduction\Index\IInd Proof\14\3\09

system 551, 554, 556
PID control 195
Pin 522

supported 521
Piston 517, 640

acceleration 511, 513
velocity 511, 513

Pivot row 202
Pivoted collar 536
Planar mechanism 536
Plane

kinematics of rigid bodies 504
motion 402, 509
motion of rigid-body 402

Plant, process or controlled system 125
Plot

command 31
function 87

Polar
coordinates 488
moment of inertia 406
plots 103, 129, 133
mass moment of inertia 560
moment of inertia 404, 578

Pole 419
locations 143, 144
of the system 178, 196

Polyfit function 112, 117
Polynomial 17, 316

coefficients 133
Position 505, 540

control system 194
of equilibrium 551

Positive feedback 126
Potential energy 409, 522
Powell’s 277, 279

method 266
Power dissipated 106, 118
Predefined variables 6, 7
Primary feedback signal 126
Principal

axes of inertia 406
modes 583

of oscillation 582
of vibration 583

of conservation of energy 496, 561
of mechanical energy 560
of momentum 497

of impulse and momentum 410, 502
momentum of rigid body 411

of virtual work 448
of superposition 580
of work 409

and energy 494
of statics 389
coordinates 578

or normal coordinates 578
Printing graphs 37
Process control system 195
Product of inertia 404, 405, 406
Programming in MATLAB 24
Projectile 525, 541
Proportional damping 583

systems 583
Pulley 396, 460

Q

QR
factorization 14
method 201, 211, 218

Quadrant of an ellipse 538
Quadratic 266

approximation 274, 292
approximation method 291
convergence 263
equation 448
form 263
function 261, 263
surface 266

Quality 122
Quality factor 570

R

Racetrack 485, 540
Radial acceleration 480

and transverse components 401
velocity 480

Radii of gyration 539
Radius of

crank 505
crank shaft 505
curvature 400, 482

of path 400
gyration 404, 405
the cylindrical 464
the spherical cap roof 464

Ramp 533
response 129

Random
command 16
numbers generation 16

Readability 1
Rear axle 420
Reciprocating machines 565
Rectangle 538
Rectangular

block 452
components 399
pulse 596

Rectilinear motion 398

Index ——— 661

Sanjay\F\FinalBook\Matlab: An Introduction\Index\IInd Proof\14\3\09

Reduced effects 128
Reference 121

input 126
Reflection matrices 207
Regulators 126
Relate velocity 496
Relates forces 402
Relative motion analysis 411

velocity 482
Relativistic effects 554
Resistance 97, 106, 119, 120

elements 97
Resistors 97, 106, 111, 118

in parallel 98
in series 97

Resonance 558
Response 351

characteristics 555
curve 166
history 342, 346
of the system 196, 640
to arbitrary input 138
to initial condition 130, 139
versus time 348

Restoring
forces 551
torque 564

Resultant 530
acceleration 482
couple 392
forces 395
intersects 530
of the forces 530

Rider 546
Right division 13
Rigid

bodies 413
body in plane motion 406
mast 529
body 389, 402
body motion 521

Rise time 162
RLC circuit 113
Rlocus 132
Roadway 122

intersections 123
Robotics 122
Rocker 422
Rocket 502
Rods 556
Rod loses contact 545
Root

branch 170
diagram 168, 196
loci 103, 129, 166
locus 191

plots 132, 171
Rope 528, 547
Rotating 571

machines 565
speed 571
unbalance 571
unbalanced masses 593

Rough road 597
Round-off functions 5
Routh-Hurwitz criterion 199
Row vector 9
Runge-Kutta 328

method 320, 322, 327, 387
Runway 640

S

Safety bumper 485, 640
Satellite orbits 542
Sampling period 604, 626
Saw-tooth pulse 645

of amplitude 644
Scalar product 583

equations of motion 407
equations of translational motion 411

Scalars 83
Script files 23
SDOF system 366
Second law 390
Second-order

approximation 146
differential 327
systems, 131

Self-excited 551
vibrations 552

Semicircular member 433
Semiconductor diode 107
Sensitivity

function 129
of a gain 128

Series
circuit 100
of rectangles 539

Servomechanisms 126
Set

of equations 260
point 121, 126

Settling time 155, 162
Several variables 301
Shaft 577
Shear 395, 445

and bending moment curves 536
and bending moment diagrams 536
and moment diagrams 395
diagram 395

662 ——— MATLAB: An Introduction with Applications

Sanjay\F\FinalBook\Matlab: An Introduction\Index\IInd Proof\14\3\09

Ship and marine control systems 122
Similarity transformation 208
Simple

harmonic motion 553
inputs 129
pendulum 551
series circuit 100
system 377

Simply supported beam 535
Simulation 555
Simultaneous equations 172
Single

coordinate 558
dashpot 558
degree of freedom 571, 572, 628, 641

model 597
spring-mass system 568, 594
system 319, 558, 588, 643
vibrating system 627
dynamical system 319
system 319, 338, 643

equivalent force 530
frequency excitation 584
transfer function 139

Singular value decomposition (SVD) 14
Sinusoidal transfer function 132
Six degree of freedom 389
Size of the orbit 542
Slender rod 431
Slider 544

crank mechanism 505
Slipping 547
Slope of the shear diagram 395
Smooth

surface 543
vertical slot 495

Solid 538
materials 565

Solution domain 320
Source

current 119
voltage 106, 119

Space-vehicle systems 122
Spandrel 538
Specialized 2-D plots 30
Speed 641

of a projectile 541
of block 497
of the cone 540
of wedge 498

Spherical cap 464
Spool 546
Spring 435, 536

constant 421, 435
elements 570

in parallel 557
in series 557
mass system 561, 564, 558
mass-damper model 569, 643
of modulus 640
stiffness 569

Square
matrix 202
threads 455

Stability 169, 323
of the system 167

Stable
equilibrium 398
planar truss 395
system 561

Standard matrix eigenvalue problem 208
Starting base point 267
State

equations 196, 614
matrix 136
of equilibrium 390
of vibration 552
space 135, 136, 178

approach 130
equation 175, 199
form 176
method 103, 129
representation 175, 199

variable form 327
vector 136

Static
deflection 568
element 551
equilibrium 389
system 551
friction 395

Statics 389, 413
and dynamics 103, 129

Steady-state 645
solution 566, 567, 571
vibration 571
motion 572
oscillations 574
response 621, 645
stiffness 556

Steel-rods of equal diameter 538
Step

commands 131
force input 647
response 129, 141, 147, 157, 191

Stiffness
and damping matrices 387
coefficient 556
elements 556
influence 580

Index ——— 663

Sanjay\F\FinalBook\Matlab: An Introduction\Index\IInd Proof\14\3\09

influence coefficients 580
matrix 329, 581, 601
matrices of the system 644
parameters 561
of the spring 536, 640
or static coupling 578

Stresses 551
Straight

line 389
line path 482
track 542

Structural
damping 565
damping coefficient 565
members 425
or hysteretic damping 558
system 565, 574

Structure 538
Sturn

sequence 201, 211, 241
sequence property 241

Subdiagonal elements 207
Summing point 125
Surface

and contour plot 59
area 538, 640
area of a silo 464
effect ships 122
of the earth 490
plot 57, 87
plot with lighting 60

Superposition 555, 606
Surface 640
Surfaces contact 533
Suspension 551
Switch 111
Symbolic

commands 72
expressions 39
functions 90
mathematics 2, 83
operations 1, 83, 88

Symmetric 247
matrices 211
matrix 201, 207, 217
matrix eigenvalue problems 201
n × n matrix 240
positive definite matrices 233
tridiagonal matrix 240

System 121, 522, 527
equation 627
model 135
of equations 2, 104, 234, 236, 259
of linear equations 215, 259
of equations 83, 227

of particles 502
response 558

T

Take-off Point 125
Tangential and normal components 399
Tangential direction 488
Taylor’s series 320
Tension 421

in the cable 529
in the rope 528
in the spring 432, 436

Thin homogeneous disk of mass 548
Third law 390
Three

vertical wires 531
dimensional diagram 154

mechanics 411
motion 411
plot 151, 153

dimensions 389
Tight rope 528
Time

dependant changes 319
domain response 643
interval 321
invariant system 127
period 559
response 126
variant system 126

Top of mass 549
Total

acceleration 540
energy 409

Torques 600
Torsional

spring constant 560
stiffness 556
stiffness of shaft 578
stiffnesses 599
system 557, 564, 577

Trajectory 525
of a projectile 477

Transducer 126
Transfer function 44, 123, 135, 176

matrix 176
Transformation 207, 208, 210

matrix 209, 240
Transient 572

response analysis 129, 137
response 131, 565
vibration 574

Translating motion 545
Translation 509

664 ——— MATLAB: An Introduction with Applications

Sanjay\F\FinalBook\Matlab: An Introduction\Index\IInd Proof\14\3\09

and rotation 509
Transmissibility 569, 588
Transmission-time installation 536
Transmitted force 569, 570
Transpose 12
Transverse

acceleration 480
moments of inertia of the top 549
velocity 480
vibration 556

Trapezoid 465
pulse 619

Triangular force 346
Triangular pulse 359
Tridiagonal

form 210
matrix 217

Tridiagonalize 217
Truss 394

analysis 413
supporting a ramp 533

Truth table 26
Turnbuckle 455
Two

cycle iteration with trapezoidal rule
323, 326, 364, 387
cycle iteration with trapezoidal rule 325
dimensional diagram 153, 154
hemispheres 543
rotating rods 544
rod mechanism 531
storey building 621, 645

Two degree
freedom models 575
freedom torsional system 625, 644
of freedom system 573, 574
of undamped system 579

U

Unbalance 571
motor 641

Unconditionally stable 332, 334
Unconstrained minimization 269
Undamped

free vibrating systems 560
linear systems 561
natural frequency 174
single degree of freedom system 387

vibratory system 561
system 364
torsional system 559
translational system 558

Undeformed position 542

Underdamped 131
single degree of freedom systems 641

Uniform
circular plate 531
circular shafts 618
quarter-circular member 427
slender bar 546

Unit
angular displacement 564
feedback system 194
impulse 574

input 631
response 181, 198
response curves 153, 631, 632
response plots 138

ramp response 138
step response 129, 137, 173, 195

curve 162, 171, 194
ramp response curve 165
acceleration input 191
acceleration response curve 191
pulse nature 625
ramp input 197
step input 198

displacement 629
displacement input 629, 643
respond curve 171
response plot 190

Unity feedback 191
control system 166, 167, 174, 195
system 145, 146, 147, 159, 191, 199

Unique degree of freedom 586
Unstable 128

equilibrium 398
system 128
system-state 128

Unstreched length 421
Upper

form 202, 244
half plane 170
matrix 202, 204, 207, 211, 212, 213
triangular 207, 211, 212

Use Fletcher-Reeves method 280

V

Variable mass flow 502
Variation

of velocity 548
of velocity of rocket 503
of angular and linear velocities 512

Variational principles 587
Vector 83

Index ——— 665

Sanjay\F\FinalBook\Matlab: An Introduction\Index\IInd Proof\14\3\09

diagram 509
multiplication 1
of first derivatives 262

Vectorial dynamics 585
Vehicles 571

motion 572
weight 610

Velocity 324, 326, 540, 545
and displacement 474
feedback 194
of block 487
of center of gravity 523
center of mass 523
of the piston 506
triangle 497
variation 475
vectors 400

Vertical
displacement 598
forces 530
reactions 534

Vibrating 552
system 552, 554, 570, 646

Vibration 551, 583, 632, 634, 635
analysis 103, 129, 554
excitation 571
isolation 570
isolators 569
motion 585
of systems 560
of a linear system 583
problems 582
system 552

Vibration arising solely 335
Vibratory response 386, 387
Virtual

angular displacement 397
displacement 397, 586
work 397, 586

Viscous
damper 558, 641
damping constant 565

factor 557, 641
force 561

Viscously
damped single degree of freedom 565

two degree of freedom mass system 576
system 386, 642
spring mass 576

Viscosity 117
Visualization 1
Voltage 98, 99, 106, 107, 113

across 106
across the diode 107
drop 97, 99, 100
gains 103
rises 102
source 113, 119, 120

Volume 538
of the silo 464

W

Waterfall plot 60, 61
Wear 551
Wedge of mass 497
Weight of the piston 517
Wheels 551
Wilson-Theta 323

method 330, 387
Wind 525
Wire 540
Work 408

and energy 408
done 409
done by force and moment 521
energy principle 492, 521
space 8
space information 8

Y

Young’s modulus of elasticity 535

Z

Zero diagonal entries 222
Zero vector 265

	Cover
	Preface
	Acknowledgement
	Contents
	Chapter 1. MATLAB Basics
	1.1 Introduction
	1.2 Arithmetic Operations
	1.3 Display Formats
	1.4 Elementary Math Built-in Functions
	1.5 Variable Names
	1.6 Predefined Variables
	1.7 Commands for Managing Variables
	1.8 General Commands
	1.9 Arrays
	1.10 Operations with Arrays
	1.11 Element-by-Element Operations
	1.12 Random Numbers Generation
	1.13 Polynomials
	1.14 System of Linear Equations
	1.15 Script Files
	1.16 Programming in MATLAB
	1.17 Graphics
	1.18 Input/Output in MATLAB
	1.19 Symbolic Mathematics
	1.20 The Laplace Transforms
	1.21 Control Systems
	Summary
	References
	Problems

	Chapter 2. Electrical Circuits
	2.1 Introduction
	2.2 Electrical Circuits
	2.3 Kirchhoff's Laws
	2.4 Example Problems and Solutions

	References
	Problems

	Chapter 3.. Control Systems
	3.1 Introduction
	3.2 Control Systems
	3.3 Examples of Control Systems
	3.4 Control System Configurations
	3.5 Control System Terminology
	3.6 Control System Classes
	3.7 Feedback Systems
	3.8 Analysis of Feedback
	3.9 Control System Analysis and Design Objectives
	3.10 MATLAB Application

	3.11 Second-Order Systems
	3.12 Root Locus Plots
	3.13 Bode Diagrams
	3.14 Nyquist Plots
	3.15 Nichols Chart
	3.16 Gain Margin, Phase Margin, Phase Crossover, Frequency and Gain Crossover Frequency
	3.17 Transformation of System Models
	3.18 Bode Diagrams of Systems Defined in State Space
	3.19 Nyquist Plots of a System Defined in State Space
	3.20 Transient-Response Analysis in State Space
	3.21 Response to Initial Condition in State Space
	3.22 Example Problems and Solutions
	References
	Problems

	Chapter 4. Numerical Methods
	4.1 Introduction
	4.2 System of Linear Algebraic Equations

	4.3 Gauss Elimination Method
	4.4 LU Decomposition Methods
	4.5 Choleski's Decomposition
	4.6 Gauss-Seidel Method
	4..7 Gauss-Jordan Method

	4.8 Jacobi Method
	4.9 The Householder Factorization
	4.10 Symmetric Matrix Eigenvalue Problems
	4.11 Jacobi Method
	4.12 Householder Reduction to Tridiagonal Form
	4.13 Sturn Sequence
	4.14 QR Method
	4.15 Example Problems and Solutions
	References
	Problems

	Chapter 5. Optimization
	5.1 Introduction
	5.2 Conjugate Gradient Methods
	5.3 Newton's Method
	5.4 The Concept of Quadratic Convergence
	5.5 Powell's Method
	5.6 Fletcher-Reeves Method
	5.7 Hooke and Jeeves Method
	5.8 Interior Penalty Function Method

	5.9 Example Problems and Solutions
	References
	Problems

	Chapter 6. Direct Numerical Integration Methods
	6.1 Introduction
	6.2 Single-Degree of Freedom System
	6.3 Multi-Degree of Freedom System
	6.4 Explicit Schemes
	6.5 Implicit Schemes
	6.6 Example Problems and Solutions
	References
	Problems

	Chapter 7. Engineering Mechanics
	7.1 Introduction
	7.2 Newtonian Mechanics
	7.3 Newton's Laws of Motion
	7.4 Resultants of Coplanar Force Systems
	7.5 Resultants of Non-Coplanar Force Systems

	7.6 Equilibrium of Coplanar Force Systems
	7.7 Equilibrium of Non-Coplanar Force System
	7.8 Trusses
	7.9 Analysis of Beams
	7.10 Friction
	7.11 First Moments and Centroids
	7.12 Virtual Work
	7.13 Kinematics of a Particle
	7.14 D'Alembert's Principle
	7.15 Kinematics of a Rigid Body in Plane Motion
	7.16 Moments of Inertia
	7.17 Dynamics of a Rigid Body in Plane Motion
	7.18 Work and Energy

	7.19 Impulse and Momentum
	7.20 Three-Dimensional Mechanics
	7.21 Example Problems and Solutions
	References
	Problems

	Chapter 8. Mechanical Vibrations
	8.1 Introduction
	8.2 Classification of Vibrations
	8.3 Elementary Parts of Vibrating Systems
	8.4 Discrete and Continuous Systems
	8.5 Vibration Analysis
	8.6 Components of Vibrating Systems
	8.7 Free Vibration of Single Degree of Freedom Systems
	8.8 Forced Vibration of Single-Degree of Freedom Systems
	8.9 Harmonic Functions
	8.10 Two-Degree of Freedom Systems
	8.11 Multi-Degree of Freedom Systems
	8.12 Free Vibration of Damped Systems
	8.13 Proportional Damping
	8.14 General Viscous Damping
	8.15 Harmonic Excitations
	8.16 Modal Analysis for Undamped Systems
	8.17 Lagrange's Equation
	8.18 Principle of Virtual Work
	8.19 D' Alembert's Principle
	8.20 Lagrange's Equations of Motion
	8.21 Variational Principles
	8.22 Hamilton's Principle
	8.23 Example Problems and Solutions
	References
	Problems

	Bibliography
	Index

