

MATLABW

FOR NEUROSCIENTISTS

“This is an excellent book that should be on the desk of any neuroscientist or psychologist
who wants to analyze and understand his or her own data by using Matlab. The authors provide
a much needed resource by packing together analysis routines and real experimental data
from their own laboratories. The book includes Matlab tools for stimulus generation, as well as
for data collection and analysis in the research fields of experimental psychology and systems
neuroscience. An excellent selection of routines is offered that can be used for analyzing data
in the temporal or frequency domain, for dimensionality reduction, application of information
theory, and data modeling. Several books with Matlab toolboxes exist; I find this one special
both for its clarity and its focus on problems related to neuroscience and cognitive psychology.”
Nikos Logothetis, Director Max Planck Institute for Biological Cybernetics, Tübingen, Germany.

“Not so long ago, behavioral and cognitive scientists used simple computer programs to conduct
experiments and to analyze data. Those days are now behind us. Today, sophisticated neuroimaging
techniques have reached every corner of psychology, and are rapidly spreading into related disciplines.
But the spread of such techniques has outstripped the resources to help students learn how to use them
effectively. This marvellous book fills a glaring gap in the available offerings. It is a systematic discus-
sion of how to use powerful programming techniques (within a widely available programming
environment) for a wide variety of applications, and how to use these techniques to analyze data in
many domains, not just for neuroimaging. The book is clear, cogent, and systematic. It provides much
more than the essential nuts-and-bolts — it also leads the reader to learn to think about the empiri-
cal enterprise writ large. The authors have done a great service for generations of students, and even
for accomplished scientists. This book should be given a privileged spot on the bookshelf of every
teacher, student, and researcher in the behavioral and cognitive sciences.”
Stephen M. Kosslyn, John Lindsley Professor of Psychology, Dean of Social Science, Harvard
University.

“As many cellular and system neurophysiology laboratories turn to Matlab for stimulus con-
trol, acquisition and analysis, it has become imperative for student to have access to a complete,
coherent textbook. The introductory material is clear and concise, permitting novices to take full
advantage of the advanced concepts, each of which is fully illustrated with data from neuroscience
experiments.”
Dan H. Sanes, Professor of Neural Science and Biology, New York University.

“Matlab for Neuroscientists provides a unique and relatively comprehensive introduction to the
Matlab programming language in the context of brain sciences, with a clear emphasis on the visual sys-
tem. The book is organized in an extensive sequence of “Labs”, each focused on either a particular tool
from mathematics (e.g., convolution, Fourier analysis, Principle Components Analysis, information
theory, phase plane analysis), an experimental design or data analysis problem from perceptual psy-
chology or neuroscience (e.g., measuring detection thresholds or reaction times, fitting models to
responses of spiking neurons, decoding data neural populations), or simulation and analysis of models
for perception or neural populations (e.g., modeling human subject choices with signal detection the-
ory, modeling spiking neurons, neural network learning models). Each topic is explained briefly, but
at a level that should be accessible to students in psychology or neurobiology, assuming they have a
basic knowledge of mathematics (algebra and calculus). The book would work well as a supplemen-
tary source for an introductory course in computational analysis and modeling in visual neuroscience,
for graduate students or advanced undergraduates.”
Eero P. Simoncelli, Investigator, Howard Hughes Medical Institute; Professor, Neural Science,
Mathematics, and Psychology. New York University.

To adopt this book for course use, visit http://textbooks.elsevier.com

 Companion Web Site:

http://www.elsevierdirect.com/companions/9780123745514

ELSEVIERscience &
technology books

MATLAB for Neuroscientists: An Introduction to Scientific Computing in MATLAB
by Wallisch, Lusignan, Benayoun, Baker, Dickey, and Hatsopoulos

ACADEMIC
PRESS

TOOLS ALL TEACHINGFOR YOUR NEEDS
textbooks.elsevier.com

• All figures from the book available as PowerPoint slides
• A database of executable code as .m-files
• Exercises and solutions
• All necessary materials to work through the chapters, e.g. data, stimuli

MATLABW FOR
NEUROSCIENTISTS

AN INTRODUCTION TO
SCIENTIFIC COMPUTING IN

MATLABW

PASCAL WALLISCH

MICHAEL LUSIGNAN

MARC BENAYOUN

TANYA I. BAKER

ADAM S. DICKEY

NICHOLAS G. HATSOPOULOS

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO
Academic Press is an imprint of Elsevier

Academic Press. is an imprint of Elsevier

30 Corporate Drive, Suite 400, Burlington, MA 01803, USA
525 B Street, Suite 1900, San Diego, California 92101–4495, USA
84 Theobald’s Road, London WC1X 8RR, UK

This book is printed on acid-free paper.

Copyright # 2009, Elsevier Inc. All rights reserved

No part of this publication may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopy, recording, or any information
storage and retrieval system, without permission in writing from the publisher.

MATLABW is a trademark of The MathWorks, Inc. and is used with permission. The
MathWorks does not warrant the accuracy of the text or exercises in this book. This book’s
use or discussion of MATLABW software or related products does not constitute endorsement
or sponsorship by The MathWorks of a particular pedagogical approach or particular use of
the MATLABW software.

Permissions may be sought directly from Elsevier’s Science & Technology Rights
Department in Oxford, UK: phone (þ44) 1865 843830, fax: (þ44) 1865 853333,
E-mail: permissions@elsevier.com. You may also complete your request online
via the Elsevier homepage (http://elsevier.com/), by selecting “Support&Contact” then “Copyright
and Permission” and then “Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data

MATLAB for neuroscientists : an introduction to scientific computing in
MATLAB / Pascal Wallisch . . . [et al.].

p. ; cm.
Includes bibliographical references and index.
ISBN 978-0-12-374551-4 (hardcover : alk. paper)

1. Neuroscience–Data processing. 2. MATLAB. I. Wallisch, Pascal,
1978-

[DNLM: 1. Computing Methodologies. 2. Neurosciences. WL 26.5 M433 2009]
QP357.5.M38 2009
612.80285–dc22

2008028494

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

IBSN: 978-0-12-374551-4

For information on all Academic Press publications
visit our Web site at www.elsevierdirect.com

Printed in China
08 09 10 9 8 7 6 5 4 3 2 1

Contents

Preface vii
About the Authors xi
How to Use this Book xiii

Part I
FUNDAMENTALS

1. Introduction 3
2. MATLAB Tutorial 7

Part II
DATA COLLECTION WITH

MATLAB

3. Visual Search and Pop Out 59
4. Attention 71
5. Psychophysics 79
6. Signal Detection Theory 97

Part III
DATA ANALYSIS WITH

MATLAB

7. Frequency Analysis Part I: Fourier
Decomposition 117

8. Frequency Analysis Part II: Nonstationary Signals
and Spectrograms 125

9. Wavelets 133
10. Convolution 141
11. Introduction to Phase Plane Analysis 153

12. Exploring the Fitzhugh-Nagumo Model 163
13. Neural Data Analysis: Encoding 173
14. Principal Components Analysis 183
15. Information Theory 193
16. Neural Decoding Part I: Discrete Variables 203
17. Neural Decoding Part II: Continuous

Variables 211
18. Functional Magnetic Imaging 219

Part IV
DATA MODELING WITH

MATLAB

19. Voltage-Gated Ion Channels 229
20. Models of a Single Neuron 239
21. Models of the Retina 247
22. Simplified Model of Spiking Neurons 255
23. Fitzhugh-Nagumo Model: Traveling Waves 261
24. Decision Theory 275
25. Markov Models 283
26. Modeling Spike Trains as a Poisson Process 291
27. Synaptic Transmission 299
28. Neural Networks Part I: Unsupervised

Learning 307
29. Neural Network Part II: Supervised

Learning 319

Appendix A: Thinking inMATLAB 339
Appendix B: Linear Algebra Review 345
Appendix C: Master Equation List 355
References 371

Index 379

v

This page intentionally left blank

Preface

I hear and I forget.

I see and I remember.

I do and I understand.

Confucius

The creation of this book stems from a set
of courses offered over the past several years
in quantitative neuroscience, particularly
within the graduate program in compu-
tational neuroscience at the University of
Chicago. This program started in 2001 and
is one of the few programs focused on
computational neuroscience with a com-
plete curriculum including courses in
cellular, systems, behavioral, and cognitive
neuroscience; neuronal modeling; and
mathematical foundations in computational
neuroscience. Many of these courses in-
clude not only lectures but also lab sessions
in which students get hands-on experience
using the MATLABW software to solve
various neuroscientific problems.

The content of our book is oriented along
the philosophy of using MATLAB as a com-
prehensive platform that spans the entire
cycle of experimental neuroscience: stimu-
lus generation, data collection and experi-
mental control, data analysis, and finally
data modeling. We realize that this
approach is not universally followed. Quite
a number of labs use different—and

specialized—software for stimulus genera-
tion, data collection, data analysis, and data
modeling, respectively. Although this alter-
native is a feasible strategy, it does intro-
duce a number of problems: namely, the
need to convert data between different plat-
forms and formats and to keep up with a
wide range of software packages as well
as the need to learn ever-new specialized
home-cooked “local” software when enter-
ing a new lab. As we have realized in our
own professional life as scientists, these
obstacles can be far from trivial and a
significant detriment to productivity.

We also believe that our comprehensive
MATLAB “strategy” makes particular sense
for educational purposes, as it empowers
users to progressively solve a wide variety
of computational problems and challenges
within a single programming environment.
It has the added advantage of an elegant
progression within the problem space. Our
experience in teaching has led us to this
approach that does not focus on the inher-
ent structure of MATLAB as a computer
programming language but rather as a tool

vii

for solving problems within neuroscience.
In addition, it is well founded in our current
understanding of the learning process.
Constant use of the information forces the
repeated retrieval of the introduced con-
cepts, which—in turn—facilitates learning
(Karpicke & Roediger, 2008).

The book is structured in four parts, each
with several chapters. The first part serves
as a brief introduction to some of the most
commonly used functions of the MATLAB
software, as well as to basic programming
in MATLAB. Users who are already famil-
iar with MATLAB may skip it. It serves the
important purpose of a friendly invitation
to the power of the MATLAB environment.
It is elementary insofar as it is necessary to
have mastered the content within before
progressing any further. Later parts focus
on the use of MATLAB to solve computa-
tional problems in neuroscience. The sec-
ond part focuses on MATLAB as a tool for
the collection of data. For the sake of gener-
ality, we focus on the collection of data from
human subjects in these chapters, although
the user can easily adapt them for the collec-
tion of animal data as well. The third part
focuses on MATLAB as a tool for data anal-
ysis and graphing. This part forms the core
of the book, as this is also how MATLAB is
most commonly used. In particular, we
explore the analysis of a variety of datasets,
including “real” data from electrophysiol-
ogy as well as neuroimaging. The fourth
part focuses on data modeling with
MATLAB, and appendices address the phi-
losophy of MATLAB as well as the underly-
ing mathematics. Each chapter begins with
the goals of the chapter and a brief
background of the problem of interest (neu-
roscientific or psychological), followed by
an introduction to the MATLAB concepts
necessary to address the problem by break-
ing it down into smaller parts and
providing sample code. You are invited to
modify, expand, and improvise on these

examples in a set of exercises. Finally, a
project is assigned at the end of the chapter
which requires integrating the parts into
a coherent whole. Based on our experience,
we believe that these chapters can serve as
self-contained “lab” components of a course
if this book is used in the context of
teaching.

In essence, we strived to write the book
that we wished to have had when first
learning MATLAB ourselves, as well as the
book that we would have liked to have
had when teaching MATLAB to our stu-
dents in the past. Our hope is that this is
the very book you are holding in your
hands right now.

We could have not written this book with-
out the continuous support of a large number
of friends. First and foremost, we would like
to thank our families for their kind support,
their endless patience, as well as their untiring
encouragement. We also would like to extend
thanks to our students who provided the ini-
tial impetus for this undertaking as well as
for providing constant feedback on previous
versions of our manuscript. Steve Shevell
deserves thanks for suggesting that the project
isworthpursuing in the first place. In addition,
we would like to thank everyone at Elsevier
who was involved in the production and
development of this book—in particular our
various editors, Johannes Menzel, Sarah Haj-
duk, Clare Caruana, Christie Jozwiak, Chuck
Hutchinson, Megan Wickline, and Meg
Day—their resourcefulness, professionalism
and patience really did make a big difference.
Curiously, there was another Meg involved
with this project, specificallyMegVulliez from
TheMathWorks™ book program. In addition,
we would like to thank Kori Lusignan and
Amber Martell for help with illustrations and
Wim van Drongelen for advice and guidance
in the early stages of this project. Moreover,
we thank Armen Kherlopian and Gopathy
Purushothaman who were kind enough to
provide us with valuable insights throughout

viii PREFACE

our undertaking. We also would like to thank
Kristine Mosier for providing the finger-
tapping functionalmagnetic imaging data that
we used in the fMRI lab and would like to
thank Aaron Suminski for his help in the
post-processing of that data. Importantly, we
thank everyone whom we neglected to name

explicitly but deserves our praise. Finally, we
would like to thank you, the reader, for your
willingness to join us on this exciting journey.
We sincerely hope that we can help you reach
your desired destination.

The authors

ixPREFACE

This page intentionally left blank

About the Authors

Pascal Wallisch, PhD, Center for Neural
Science, New York University
Pascal received his PhD from the University
of Chicago and is now a postdoctoral fellow
at New York University. He is currently
studying the processing of visual motion.
Pascal is passionate about teaching, as well
as the communication of scientific concepts
to a wider audience. He was recognized for
his distinguished teaching record by the
University of Chicago Booth Prize.

Michael Lusignan, Committee on Compu-
tational Neuroscience, University of
Chicago
Michael is an advanced graduate student
who has enjoyed teaching several courses
involving MATLAB to graduate, as well as
undergraduate students.He infuses his teach-
ing with eight years of experience in active
software development. His current interests
include sensory encoding in neuroethological
model systems.

Marc Benayoun, Committee on Computa-
tional Neuroscience, University of Chicago
Marc is an MD/PhD student currently
interested in applying statistical field the-
ory to study neural networks with applica-
tions to epilepsy. He has an extensive
teaching record and was also awarded the
University of Chicago Booth Prize.

Tanya I. Baker, PhD, Junior Research Fel-
low, Crick-Jacobs Center for Theoretical
Neurobiology, The Salk Institute for
Biological Studies, La Jolla, California
Tanya is a junior research fellow modelling
large-scale neuronal population dynamics
using modern statistical methods. Previ-
ously, she was a post-doctoral lecturer at
the University of Chicago where she devel-
oped and taught Mathematical Methods for
the Biological Sciences, a new year-long
course with a computer lab component.
She received her PhD in Physics at the Uni-
versity of Chicago and her BS in Physics
and Applied Mathematics at UCLA.

Adam Dickey, Committee on Computa-
tional Neuroscience, University of Chicago
Adam is an MD/PhD candidate at the Uni-
versity of Chicago. He is currently a gradu-
ate student in the laboratory of Dr. Nicholas
Hatsopoulos. Adam is interested in improv-
ing decoding techniques used for neural
prosthetic control.

Nicholas G. Hatsopoulos, PhD, Depart-
ment of Organismal Biology and Anatomy
& Department of Neurology, University of
Chicago
Nicholas is Associate Professor and Chair-
man of the graduate program on Computa-
tional Neuroscience. He teaches a course in

xi

Cognitive Neuroscience which formed the
basis for some of the chapters in the book.
His research focuses on how ensembles of
cortical neurons work together to control,
coordinate, and learn complex movements

of the arm and hand. He is also developing
brain-machine interfaces by which patients
with severe motor disabilities could activate
large groups of neurons to control external
devices.

xii ABOUT THE AUTHORS

How to Use This Book

A text of a technical nature tends to be
more readily understood if its design princi-
ples are clear from the very outset. This is
also the case with this book. Hence, we will
use this space to briefly discuss what we
had in mind when writing the chapters.
Hopefully, this will improve usability and
allows you to get most out of the book.

STRUCTURAL AND
CONCEPTUAL

CONSIDERATIONS

A chapter typically begins with a concise
overview of what material will be covered.
Moreover, we usually put the chapter in the
broader context of practical applications.
This brief introduction is followed by a dis-
cussion of the conceptual and theoretical
background of the topic in question. The
heart of each chapter is a larger section in
which we introduce relevant MATLABW

functions that allow you to implement meth-
ods or solve problems that tend to come up
in the context of the chapter topic. This part
of the chapter is enriched by small exercises
and suggestions for exploration. We believe
that doing the exercises is imperative to
attain a sufficiently deep understanding of
the function in question, while the sugges-
tions for exploration are aimed at readers
who are particularly interested in broadening
their understanding of a given function. In
this spirit, the exercises are usually rather

specific, while the suggestions for exploration
tend to be of a rather sweeping nature. This
process of successive introduction and rein-
forcement of functions and concepts culmi-
nates in a “project”, a large programming
task that ties all the material covered in the
book together. This will allow you to put
the learned materials to immediate use in a
larger goal, often utilizing “real” experimen-
tal data. Finally, we list the MATLAB func-
tions introduced in the chapter at the very
end. It almost goes without saying that
you will get the most out of this book if you
have a version of MATLAB open and run-
ning while going through the chapters. That
way, you can just try out the functions we
introduce, try out new code, etc.

Hence, we implicitly assumed this to be
the case when writing the book.

Moreover, we made sure that all the code
works when running the latest version of
MATLAB (currently 7.7). Don’t let this con-
cern you too much, though. The vast major-
ity of code should work if you use anything
above version 6.0. We did highlight some
important changes where appropriate.

LAYOUT AND STYLE

The reader can utilize not only the concep-
tual structure of each chapter as outlined
above, but also profit from the fact that we sys-
tematically encoded information about the
function of different text parts in the layout
and style of the book.

xiii

The main text is set in 10/12 Palatino-
Roman. In contrast, executable code is
bolded and offset by >>, such as this:

>> figure
>> subplot(2,2,1)
>> image(test_disp)

The idea is to type this text (without the
>>) directly into MATLAB. Moreover, func-
tions that are first introduced at this point
are bolded in the text. Exercises and Sugges-
tions for exploration are set in italics and
separated from the main text by boxes.

Equations are set in 10/12 Palatino-
Roman. Sample solutions in 10/12 Palatino-
Bold.

COMPANION WEBSITE

The successful completion of many chap-
ters of this book depends on additional
material (experimental data, sample solu-
tions and other supplementary information)
which is accessible from the website that
accompanies this book. For example, a data-
base of executable code will be maintained
as long as the book is in print. For informa-
tion on how to access this online repository,
please see page ii.

xiv HOW TO USE THIS BOOK

P A R T I

FUNDAMENTALS

This page intentionally left blank

C H A P T E R

1

Introduction

Neuroscience is at a critical juncture. In the past few decades, the essentially biological
nature of the field has been infused by the tools provided by mathematics. At first, the
use of mathematics was mostly methodological in nature—primarily aiding the analysis
of data. Soon, this influence turned conceptual, framing the very issues that characterize
modern neuroscience today. Naturally, this development has not remained uncontroversial.
Some neurobiologists of yore resent what they perceive to be a hostile takeover of the field,
as many quantitative methods applied to neurobiology were pioneered by nonbiologists
with a background in physics, engineering, mathematics, statistics, and computer science.
Their concerns are not entirely without merit. For example, Hubel and Wiesel (2004) warn
of the faddish nature that the idol of “computation” has taken on, even likening it to a dan-
gerous disease that has befallen the field and that we should overcome quickly in order to
restore its health.

While these concerns are valid to some degree and while excesses do happen, we
strongly believe that—all in all—the effect of mathematics in the neurosciences has been
very positive. Moreover, we believe that our science is and will continue to be one that is
computational at its very core. Historically, this notion stems in part from the influence that
cognitive psychology has had in the study of the mind. Cognitive psychology and cognitive
science, more generally, posited that the mind and, by extension, the brain should be
viewed as an information processing device that receives inputs and transforms these
inputs into intermediate representations which ultimately generate observable outputs. At
the same time that cognitive science was taking hold in psychology in the 1950s and
1960s, computer science was developing beyond mere number crunching and considering
the possibility that intelligence could be modeled computationally, leading to the birth of
artificial intelligence. The information processing perspective, in turn, ultimately influenced
the study of the brain and is best exemplified by an influential book by David Marr titled
Vision, published in 1982. In that book, Marr proposed that vision and, more generally,
the brain should be studied at three levels of analysis: the computational, algorithmic,
and implementational levels. The challenge at the computational level is to determine what
computational problem a neuron, neural circuit, or part of the brain is solving. The

3

algorithmic level identifies the inputs, the outputs, their representational format, and the
algorithm that takes the input representation and transforms it into an output representa-
tion. Finally, the implementational level identifies the neural “hardware” and biophysical
mechanisms that underlie the algorithm which solves the problem. Today, this perspective
has permeated not only cognitive neuroscience but also systems, cellular, and even molec-
ular neuroscience.

Importantly, such a conceptualization of our field places chief importance on the issues
surrounding scientific computing. For someone to participate in or even appreciate state
of the art debates in modern neuroscience, that person has to be well versed in the language
of computation. Of course, it is the task of education—if it is to be truly liberal—to enable
students to do so. Yet, this poses a quite formidable challenge.

For most students interested in neuroscience, mathematics amounts to what is essentially
a foreign language. Similarly, the language of scientific computing is typically as foreign to
students as it is powerful. The prospects of learning both at the same time can be daunting
and—at times—overwhelming. So what is a student or educator to do?

Immersion has been shown to be a powerful way to learn foreign languages (Genesee,
1985). Hence, it is imperative that students are using these languages as often as possible
when facing a problem in the field. For immersion to work, the learning experience has
to be positive, yielding useful results that solve some real or perceived problem. Unfortu-
nately, the inherent complexity as well as the seemingly arcane formalisms that characterize
both are usually very off-putting to students, requiring much effort with little tangible
yield, reducing the likelihood of further voluntary immersion.

To break this catch-22, the utility of learning these languages has to be drastically
increased while making the learning process more accessible and manageable at the same
time, even during the learning process itself. As we alluded to previously, this is a tall
order. Fortunately, there is a way out of this conundrum. Recent advances in software, as
well as hardware, have instantiated scientific computing within the framework of a unified
computational environment. One of these environments is provided by the MATLABW

software. For reasons that will become readily apparent in this book, MATLAB fulfills the
requirements that are necessary to meet and overcome the challenges outlined earlier.
In addition—and partly for these reasons—MATLAB has become the de facto standard of
scientific computing in our field. More strongly, MATLAB really has become the lingua
franca that all serious students of neuroscience are expected to understand in the very near
future, if not already today.

This, in turn, introduces a new—albeit more tractable—problem. How does one teach
MATLAB to a useful level of proficiency without making the study of MATLAB itself an
additional problem and simply another chore for students? Overcoming this problem as a
key to reaching the deeper goals of fluency in mathematics and scientific computing is
a crucial goal of this book. We reason that a gentle introduction to MATLAB with a special
emphasis on immediate results will computationally empower you to such a degree that the
practice of MATLAB becomes self-sustaining by the end of the book. We carefully picked
the content such that the result constitutes a confluence of ease (gradually increasing
sophistication and complexity) and relevance. We are confident that at the end of the book
you will be at a level where you will be able to venture out on your own, convinced of the
utility of MATLAB as a tool as well as your abilities to harness this power henceforth. We

4 1. INTRODUCTION

have tested the various parts of the contents of this book on our students and believe that
our approach has been successful. It is our sincere wish and hope that the material
contained will be as beneficial to you as it was to those students.

With this in mind, we would like to outline two additional specific goals of this book.
First, the material covered in the chapters to follow gives a MATLAB perspective on many
topics within computational neuroscience across multiple levels of neuroscientific inquiry
from decision-making and attentional mechanisms to retinal circuits and ion channels. It
is well known that an active engagement with new material facilitates both understanding
and long-time retention of said material. The secondary aim of this book is to acquire pro-
ficiency in programming using MATLAB while going through the chapters. If you are
already proficient in MATLAB, you can go right to the chapters following the tutorial.
For the rest, the tutorial chapter will provide a gentle introduction to the empowering qua-
lities that the mastery of a language of scientific computing affords.

We take a project-based approach in each chapter so that you will be encouraged to write
a MATLAB program that implements the ideas introduced in the chapter. Each chapter
begins with background information related to a particular neuroscientific or psychological
problem, followed by an introduction to the MATLAB concepts necessary to address that
problem with sample code and output included in the text. You are invited to modify,
expand, and improvise on these examples in a set of exercises. Finally, the project assign-
ment introduced at the end of the chapter requires integrating the exercises. Most of the
projects will involve genuine experimental data that are either collected as part of the project
or were collected through experiments in research labs. In some rare cases, we use published
data from classical papers to illustrate important concepts, giving you a computational
understanding of critically important research.

In addition, solutions to exercises as well as executable code can be found in the online
repository accompanying this book.

Finally, we would like to point out that we are well aware that there is more than one
way to teach—and learn—MATLAB in a reasonably successful and efficient manner. This
book represents a manifestation of our approach; it is the path we chose, for the reasons
we outlined here.

51. INTRODUCTION

This page intentionally left blank

C H A P T E R

2

MATLAB Tutorial

2.1. GOAL OF THIS CHAPTER

The primary goal of this chapter is to help you to become familiar with the MATLABW
software, a powerful tool. It is particularly important to familiarize yourself with the user
interface and some basic functionality of MATLAB. To this end, it is worthwhile to at least
work through the examples in this chapter (actually type them in and see what happens).
Of course, it is even more useful to experiment with the principles discussed in this chapter
instead of just sticking to the examples. The chapter is set up in such a way that it affords
you time to do this.

If desired, you can work with a partner, although it is advisable to select a partner of similar
skill to avoid frustrations and maximize your learning. Advanced MATLAB users can skip this
tutorial altogether, while the rest are encouraged to start at a point where they feel comfortable.

The basic structure of this tutorial is as follows: each new concept is introduced through
an example, an exercise, and some suggestions on how to explore the principles that guide
the implementation of the concept in MATLAB. While working through the examples and
exercises is indispensable, taking the suggestions for exploration seriously is also highly
recommended. It has been shown that negative examples are very conducive to learning;
in other words, it is very important to find out what does not work, in addition to what
does work (the examples and exercises will—we hope—work). Since there are infinite ways
in which something might not work, we can’t spell out exceptions explicitly here. That’s
why the suggestions are formulated very broadly.

2.2. BASIC CONCEPTS

2.2.1. Purpose and Philosophy of MATLAB

MATLAB is a high-performance programming environment for numerical and technical
applications. The first version was written at the University of New Mexico in the 1970s.
The “MATrix LABoratory” program was invented by Cleve Moler to provide a simple

7

and interactive way to write programs using the Linpack and Eispack libraries of FOR-
TRAN subroutines for matrix manipulation. MATLAB has since evolved to become an
effective and powerful tool for programming, data visualization and analysis, education,
engineering and research.

The strengths of MATLAB include extensive data handling and graphics capabilities,
powerful programming tools and highly advanced algorithms. Although it specializes in
numerical computation, MATLAB is also capable of performing symbolic computation by
having an interface with Maple (a leading symbolic mathematics computing environment).
Besides fast numerics for linear algebra and the availability of a large number of domain-
specific built-in functions and libraries (e.g., for statistics, optimization, image processing,
neural networks), another useful feature of MATLAB is its capability to easily generate var-
ious kinds of visualizations of your data and/or simulation results.

For every MATLAB feature in general, and for graphics in particular, the usefulness of
MATLAB is mainly based on the large number of built-in functions and libraries. The inten-
tion of this tutorial is not to provide a comprehensive coverage of all MATLAB features but
rather to prepare you for your own exploration of its functionality. The online help system is
an immensely powerful tool in explaining the vast collection of functions and libraries
available to you, and should be the most frequently used tool when programming in
MATLAB. Note that this tutorial will not cover any of the functions provided in any of
the hundreds of toolboxes, since each toolbox is licensed separately and their availability
to you can vary. We will indicate in each section if a particular toolbox is required. If you
have additional toolboxes available to you, we recommend using the online help system
to familiarize yourself with the additional functions provided. Another tool for help is the
Internet. A quick online search will usually bring up numerous useful web pages designed
by other MATLAB users trying to help out each other.

As stated previously, MATLAB is essentially a tool—a sophisticated one, but a tool nev-
ertheless. Used properly, it enables you to express and solve computational and analytic
problems from a wide variety of domains. The MATLAB environment combines computa-
tion, visualization, and programming around the central concept of the matrix. Almost
everything in MATLAB is represented in terms of matrices and matrix-manipulations. If
you would like a refresher on matrix-manipulations, a brief overview of the main linear
algebra concepts needed is given in Appendix B, “Linear Algebra Review.” We will start
to explore this concept and its power in detail later in this tutorial. For now, it is important
to note that, properly learned, MATLAB will help you get your job done in a very efficient
way. Giving it a serious shot is worth the effort.

2.2.2. Getting Started

You can start MATLAB by simply clicking on the MATLAB icon on your desktop or
taskbar. The command window will pop up, awaiting your commands and instructions.

In the context of this tutorial, all commands that are supposed to be typed into the
MATLAB command window, as well as expected MATLAB responses, are typeset in bold.
The beginnings of these commands are indicated by the >> prompt. You press Enter at the
end of this line, after typing the instructions for MATLAB. All instructions discussed in this

8 2. MATLAB TUTORIAL

tutorial will be in MATLAB notation, to enhance your familiarity with the MATLAB
environment.

Don’t be afraid as you delve into this new programming world. Help is readily at hand.
Using the command help followed by the name of the command (for example, help save)
in the command window gives you a brief overview on how to use the corresponding com-
mand (i.e., the command save). You can also easily access these help files for functions or
commands by highlighting the command for which you need assistance in either the com-
mand window or in an M-file and right-clicking to select the Help on Selection option.
Entering the commands helpwin, helpdesk, or helpbrowser will also open the MATLAB
help browser. Besides these resources provided directly by the MATLAB program, do
not forget the usefulness of the Internet. Not only is additional online help available within
MATLAB, but numerous tutorials and advice can be found posted online by other
programmers in the MATLAB community.

2.2.3. MATLAB as a Calculator

MATLAB implements and affords all the functionality that you have come to expect from
a fine scientific calculator. While MATLAB can, of course, do much more than that, this is
probably a good place to start. This functionality also demonstrates the basic philosophy
behind this tutorial—discussing the principles behind MATLAB by showing how MATLAB
can make your life easier, in this case by replicating the functionality of a scientific calculator.

Elementary mathematical operations: Addition, subtraction, multiplication, division.
These operations are straightforward:
Addition:

>> 2 + 3

ans =

5

Subtraction:

>> 7 - 5

ans = 2

Multiplication:

>> 17 * 4

ans =

68

Division:

>> 24 / 7

ans =

3.4286

92.2. BASIC CONCEPTS

Following are some points to note:

1. It doesn’t matter how many spaces are between the numbers and
operators, if only numbers and operators are involved (this does not hold
for characters):

>> 5 + 12

ans =

17

2. Of course, operators can be concatenated, making a statement arbitrarily
complex:

>> 2 + 3 + 4 - 7 * 5 + 8 / 9 + 1 - 5 * 6 / 3

ans =

-34.1111

3. Parentheses disambiguate statements in the usual way:

>> 5 + 3 * 8

ans =

29

>> (5 +; 3) * 8

ans =

64

“Advanced” mathematical operators: Powers, log, exponentials, trigonometry.
Power: x ∧ p is x to the power p:

>> 2 ^ 3

ans =

8

Natural logarithm: log:

>> log (2.7183)

ans =

1.0000

>> log(1)

ans =

0

10 2. MATLAB TUTORIAL

Exponential: exp(x) is ex

>> exp(1)

ans =

2.7183

Trigonometric functions; for example, sine:

>> sin(0)

ans =

0

>> sin(pi/2)

ans =

1

>> sin(3/2 * pi)

ans =

-1

Note: Many of these operations are dependent on the desired accuracy. Internally,
MATLAB works with 16 significant decimal digits (for floating point numbers—see
Appendix A), but you can determine how many should be displayed. You do this
by using the format command. The format short command displays 4 digits after the
decimal point; format long displays 14 or 15 (depending on the version of Matlab).
Example:

>> log(2.7183)

ans =

1.0000

>> format long
>> log(2.7183)

ans =

1.000006684913988

>> format short
>> log(2.7183)

ans =

1.0000

112.2. BASIC CONCEPTS

As an exercise, try to “verify” numerically that x * y ¼ exp(log(x) þ log(y)). A possible
example follows:

>> 5*7

ans =

35

>> exp(log(5)+log(7))

ans =

35.0000

Hint: Keep track of the number of your parentheses. This practice will come in handy
later.

One of the reasons MATLAB is a good calculator is that—on modern machines—it is
very fast and has a remarkable numeric range.

For example:

>>2^500

ans =

3.2734e + 150

Note: e is scientific notation for the number of digits of a number.
x e + y means x * 10 ∧ y.
Example:

>> 2e3

ans =

2000

>> 2*10∧3

ans =

2000

Note that in the preceding exercises MATLAB has responded to a command entered by
defining a new variable ans and assigning to it the value of the result of the command. The
variable ans can then be used again:

>> ans + ans

ans =

4000

The variable ans has now been reassigned to the value 4000. We will explore this idea of
variable assignments in more detail in the next section.

12 2. MATLAB TUTORIAL

Exercise 2.1: Try to find the numeric range of MATLAB. For which values of x in 2 ∧ x does

MATLAB return a numeric value? For which values does it return infinity or negative infinity,

Inf or -Inf, respectively?

2.2.4. Defining Matrices

Of course, MATLAB can do much more than described in the preceding section. A cen-
tral concept in this regard is that of vectors and matrices—arrays of vectors. Vectors and
matrices are designated by square brackets: []. Everything between the brackets is part of
the vector or matrix.

A simple row vector is as follows:

>> [1 2 3]

ans =

1 2 3

It contains the elements 1, 2, and 3.
A simple matrix is as follows:

>> [2 2 2; 3 3 3]

ans =

2 2 2
3 3 3

This matrix contains two rows and three columns. When you are entering the elements
of the matrix, a semicolon separates rows, whereas spaces separate the columns.

Make sure that all rows have the same number of column elements:

>> [2 2 2; 3 3]
??? Error using ==> vertcat
CAT arguments dimensions are not consistent.

In MATLAB, the concept of a variable is closely associated with the concept of matrices.
MATLAB stores matrices in variables, and variables typically manifest themselves as matri-
ces. Caution: This variable is not the same as a mathematical variable, just a place in
memory.

Assigning a particular matrix to a specific variable is straightforward. In practice, you do
this with the equal operator (¼). Following are some examples:

>> a = [1 2 3 4 5]

a =

1 2 3 4 5

132.2. BASIC CONCEPTS

>> b = [6 7 8 9]

b =

6 7 8 9

Once in memory, the matrix can be manipulated, recalled, or deleted.
The process of recalling and displaying the contents of the variable is simple. Just type its

name:

>> a

a =

1 2 3 4 5

>> b

b ¼
6 7 8 9

Note:

1. Variable names are case-sensitive. Watch out what you assign and recall:

>> A
??? Undefined function or variable 'A'.

In this case, MATLAB—rightfully—complains that there is no such variable, since you
haven’t assigned A yet.

2. Variable names can be of almost arbitrary length. Try to assign meaningful variable
names for matrices:

>> uno = [1 1 1; 1 1 1; 1 1 1]

uno =

1 1 1
1 1 1
1 1 1

>> thismatrixisreallyempty = []

thismatrixisreallyempty =

[]

You can easily create some commonly used matrices by using the functions eye, ones,
zeros, rand, and randn. The function eye(n) will create an nxn identity matrix. The function
ones(n,m) will generate an n by m matrix whose elements are all equal to 1, and the function
zeros(n,m) will generate an n by m matrix whose elements are all equal to 0. When you
leave out the second entry, m, in calling those functions, they will generate square matrices
of either zeros or ones. So, for example, the matrix uno could have been more easily created
using the command uno = ones(3).

14 2. MATLAB TUTORIAL

In a similar way, MATLAB will generate matrices of random numbers pulled from a
uniform distribution between 0 and 1 through the rand function, and matrices of random
numbers pulled from a normal distribution with 0 mean and variance 1 through the randn
function.

MATLAB uses so-called workspaces to store variables. The command who will allow
you to see which variables are in your workspace, and the command whos will return addi-
tional information regarding the size, class, and bytes of the variables stored in the active
workspace.

Now create two variables, x and y, and assign to them the values 23 and 57,
respectively:

>> x=23; y=57;

Note that when you add a semicolon to the end of your statement, MATLAB suppresses
the display of the result of that statement. Next, create a third variable, z, and assign to it the
value of x + y.

>> z = x + y

z=80

Let’s see what’s in the working memory, i.e., the workspace:

>> who

Your variables are:

a ans b thismatrixisreallyempty uno x y z

>> whos

Name Size Bytes Class

a

ans

b

thismatrixisreallyempty

uno

x

y

z

1�5

2�3

1�4

0�0

3�3

1�1

1�1

1�1

40

48

32

0

72

8

8

8

double

double

double

double

double

double

double

double

When you use the command save, all the variables in your workspace can be saved into
a file. MATLAB data files have the .mat ending. The command save is followed by the file-
name and a list of the variables to be saved in the file. If no variables are listed after the file-
name, then the entire workspace is saved. For example,

save my_workspace x y z

152.2. BASIC CONCEPTS

will create a file named my_workspace.mat that contains the variables x, y, and z. Now
rewrite that file with one that includes all the variables in the workspace. Again, you do this
by omitting a list of the variables to be saved:

>> save my_workspace

You can now clear the workspace using the command clear all:

>> clear all
>> who
>> x
??? Undefined function or variable 'x'.

Note that nothing is returned by the command who, as is expected because all the vari-
ables and their corresponding values have been removed from memory. For the same reason,
MATLAB complains that there is no variable named x because it has been cleared from
the workspace. You can now reload the workspace with the variables using the command
load:

>> load my_workspace
>> who

Your variables are:

a ans b thismatrixisreallyempty uno x y z

If they are no longer needed, specific variables and their corresponding values can be
removed from memory. The command clear followed by specific variable names will delete
only those variables:

>> clear x y z
>> who

Your variables are:

a ans b thismatrixisreallyempty uno

Try using the command help (i.e., via help save, help load, and help clear) in the com-
mand window to learn about some of the additional options these functions provide.

The size of the matrix assigned to a given variable can be obtained by using the function
size. The function length is also useful when only the size of the largest dimension of a
matrix is desired:

>> size(a)

ans =

1 5

>> length(a)

ans =

5

16 2. MATLAB TUTORIAL

The content of matrices and variables in your workspace can be reassigned and changed
on the fly, as follows:

>> thismatrixisreallyempty = [5]

thismatrixisreallyempty =

5

It is very common to have MATLAB create long vectors of incremental elements just by
specifying a start and end element:

>> thisiscool = 4:18

thisiscool =

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

The size of the increment of the vector can be changed by specifying the step size in
between the start and end element:

>> thisiscool = 4:2:18

thisiscool =

4 6 8 10 12 14 16 18

Two convenient functions that MATLAB has for creating vectors are linspace and
logspace. The command linspace(a,b,n) will create a vector of n evenly spaced elements
whose first value is a and whose last value is b. Similarly, logspace(a,b,n) will generate
a vector of n equally spaced elements between decades 10a and 10b:

>> v= logspace(1,5,5)

v =

10 100 1000 10000 100000

Transposing a matrix or a vector is quite simple: It’s done with the ’ (apostrophe)
command:

>> a

a =

1 2 3 4 5

>> a'

ans =

1
2
3
4
5

172.2. BASIC CONCEPTS

Variables can be copied into each other, using the ¼ command. In this case, the right side
is assigned to the left side. What was on the left side before is overwritten and lost, as
shown here:

>> b

b =

6 7 8 9

>> b = a

b =

1 2 3 4 5

Note: Don’t confuse the ¼ (equal) sign with its mathematical meaning. In MATLAB,
this symbol does not denote the equality of terms, but is an assignment instruction.
Again, the right side of the ¼ will be assigned to the left side, while the left side will
be lost. This is the source of many errors and misunderstandings and is emphasized
again here. The conceptual difference is nowhere clearer than in the case of
“self-assignment”:

>> a

a =

1 2 3 4 5

>> a = a'

a =

1
2
3
4
5

>> a

a =

1
2
3
4
5

The assignment of the transpose eliminates the original row vector and renders a as a col-
umn vector.

This reassignment also works for elements of matrices and vectors:

>> a(2,1) = 9

18 2. MATLAB TUTORIAL

a =

1
9
3
4
5

Generally, you can access a particular element of a two-dimensional matrix with the
indices i and j, where i denotes the row and j denotes the column. Specifying a single index
i accesses the ith element of the array counted column-wise:

>> a(2)

ans =

9

We will explore indexing more in Section 2.2.6.

Exercise 2.2: Clear the workspace. Create a variable A and assign to it the following matrix

value:

A ¼
7 5
2 3
1 8

0
@

1
A:

Access the element i ¼ 2, j ¼ 1, and change it to a number twice its original value. Create a

variable B and assign to it the transpose of A. Verify that the fifth element of the matrix B

counted column-wise is the same as the i ¼ 1, j ¼ 3 element.

Exercise 2.3: Using the function linspace generates a row vector v1 with seven elements

which uniformly cover the interval between 0 and 1. Now generate a vector v2 which also cov-

ers the interval between 0 and 1, but with a fixed discretization of 0.1. Use either the function

length or size to determine how many elements the vector v2 has. What is the value of the third

element of the vector v2?

Suggestions for solutions to many exercises are available on the companion website.

2.2.5. Basic Matrix Algebra

Almost everything that you learned in the previous section on mathematical operators
in MATLAB can now be applied to what you just learned about matrices and variables.
In this section we explore how this synthesis is accomplished—with the necessary
modifications.

192.2. BASIC CONCEPTS

First, define a simple matrix and then add 2 to all elements of the matrix, like this:

>> p = [1 2; 3 4]

p =

1 2

3 4

>> p = p + 2

p =

3 4

5 6

As a quick exercise, check whether this principle extends to the other basic arithmetic
operations such as subtraction, division, or multiplication.

What if you want to add a different number to each element in the matrix? It is not incon-
ceivable that this operation could be very useful in practice. Of course, you could do it ele-
ment by element, as in the end of the preceding section. But doing this would be very
tedious and time-consuming. One of the strengths of MATLAB is its matrix operations,
allowing you to do many things at once.

Here, you will define a new matrix with the elements that will be added to the old matrix
and assign the result to a new matrix to preserve the original matrices:

>> q = [2 1; 1 1]

q =

2 1

1 1

>> m = p + q

m =

5 5

6 7

Note: The number of elements has to be the same for this element-wise addition to work.
Specifically, the matrices that are added to each other must have the same number of rows
and columns. Otherwise, nothing is added, and the new matrix is not created. Instead,
MATLAB reports an error and gives a brief hint what went wrong:

>> r = [2 1; 1 1; 1 1]

r =

2 1

1 1

1 1

>> n = p + r

??? Error using ==> plus

Matrix dimensions must agree.

20 2. MATLAB TUTORIAL

As a quick exercise, see whether this method of simultaneous, element-wise addi-
tion generalizes to other basic operations such as subtraction, multiplication, and
division.

Note: It is advisable to assign a variable to the result of a computation, if the result is
needed later. If this is not done, the result will be assigned to the MATLAB default variable
ans, which is overwritten every time a new calculation without explicit assignment of a var-
iable is performed. Hence, ans is at best a temporary storage.

Note that in the preceding exercise, you get consistent results for addition and
subtraction, but not for multiplication and division. The reason is that * and / really
symbolize a different level of operations than þ or -. Specifically, they refer to
matrix multiplication and division, respectively, which can be used to calculate outer
products, etc. Refer to Appendix B, “Linear Algebra Review,” for a refresher if neces-
sary. If you want an analogous operation to þ and -, you have to preface the * or / with
a dot (.). This is known as element-wise operations:

>> p

p =

3 4
5 6

>> q

q =

2 1
1 1

>> p*q

ans =

10 7
16 11

>> p.*q

ans =

6 4
5 6

Due to the nature of outer products, this effect is even more dramatic if you want to mul-
tiply or divide a vector by another vector:

>> a = [1 2 3 4 5]

a =

1 2 3 4 5

>> b = [5 4 5 4 5]

b =

5 4 5 4 5

212.2. BASIC CONCEPTS

>> c = a.*b

c =

5 8 15 16 25

>> c = a*b
??? Error using ==> mtimes
Inner matrix dimensions must agree.

Raising a matrix to a power is similar to matrix multiplication; thus, if you wish to raise
each element of a matrix to a given power, the dot (.) must be included in the command.
Therefore, to generate a vector c having the same length as the vector a, but for each element
i in c, it holds that c(i) ¼ [a(i)]∧2 you use the following command:

>> c = a.^2

c =

1 4 9 16 25

As you might expect, there exists a function sqrt that will raise every element of its input
to the power 0.5. Note that the omission of the dot (.) to indicate element-wise operations
when it is intended is one of the most common errors when beginning to program in
MATLAB. Keep this point in mind when troubleshooting your code.

Of course, you do not have to use matrix algebra to manipulate the content of a matrix.
Instead, you can “manually” manipulate individual elements of the matrix. For example, if
A is a matrix with four rows and three columns, you can permanently add 5 to the element
in the third row and second column of this matrix by using the following command:

>> A(3,2) = 5 + A(3,2);

We will explore indexing further in the next section.
Earlier, we rather casually introduced matrix operations like outer products versus

element-wise operations. Now, we will briefly take the liberty to rectify this state of affairs
in a systematic way. MATLAB is built around the concept of the matrix. As such, it is ide-
ally suited to implement mathematical operations from linear algebra. MATLAB distin-
guishes between matrix operations and array operations. Basically, the former are the subject
of linear algebra and denoted in MATLAB with symbols such as þ, -, *, /, or ∧. These opera-
tors typically involve the entire matrix. Array operations, on the other hand, are indicated
by the same symbols prefaced by a dot, such as .*, ./, or .∧. Array operators operate ele-
ment-wise, or one by one. The rest of the sections will mostly deal with array operations.
Hence, we will give the more arcane matrix operations—and the linear algebra that is tied
to it—a brief introduction. Linear algebra has many useful applications, most of which are
beyond the scope of this tutorial. One of its uses is the elegant and painless (particularly
with MATLAB) solution of systems of equations. Consider, for example, the system

xþ yþ 2z ¼ 9

2xþ 4y� 3z ¼ 1

3xþ 6y� 5z ¼ 0

22 2. MATLAB TUTORIAL

You can solve this system with the operations you learned in middle school, or you can
represent the preceding system with a matrix and use a MATLAB function that produces
the reduced row echelon form of A to solve it, as follows:

>> A = [1 1 2 9; 2 4 -3 1; 3 6 -5 0]

A =

1 1 2 9
2 4 -3 1
3 6 -5 0

>> rref(A)

ans =

1 0 0 1
0 1 0 2
0 0 1 3

From the preceding, it is now obvious that x ¼ 1, y ¼ 2, z ¼ 3. As you can see, tackling
algebraic problems with MATLAB is quick and painless—at least for you.

Similarly, matrix multiplication can be used for quick calculations. Suppose you sell five
items, with five different prices, and you sell them in five different quantities. This can be
represented in terms of matrices. The revenue can be calculated using a matrix operation:

>> Prices = [10 20 30 40 50];
>> Sales = [50; 30; 20; 10; 1];
>> Revenue = Prices*Sales

Revenue =
2150

Note: Due to the way in which matrix multiplication is defined, one of the vectors
(Prices) has to be a row vector, while the other (Sales) is a column vector.

Exercise 2.4: Double-check whether the matrix multiplication accurately determined revenue.

Exercise 2.5: Which set of array operations achieves the same effect as this simple matrix

multiplication?

Exploration: As opposed to array multiplication (.*), matrix multiplication i NOT commu-
tative. In other words, Prices * Sales 6¼ Sales * Prices. Try it by typing the latter. What does
the result represent?

232.2. BASIC CONCEPTS

Exercise 2.6: Create a variable C and assign to it a 5�5 identity matrix using the function eye.

Create a variable D and assign to it a 5�5 matrix of ones using the function ones. Create a third

variable E and assign to it the square of the sum of C and D.

Exercise 2.7: Clear your workspace. Create the following variables and assign to them the

given matrix values (superscript T indicates transpose):

(a) x ¼ 2
1

� �
(b) y ¼ xT�17 1 0

0 1

� �
(c) A ¼ 3 7

2 1

� �

(d) b ¼ yA (e) c ¼ xTA�1bT (f) E ¼ cAT

Exercise 2.8: Create a time vector t that goes from 0 to 100 in increments of 5. Now create a

vector q whose length is that of t and each element of q is equal to 2 þ 5 times the corresponding

element of t raised to the 1.7 power.

2.2.6. Indexing

Individual elements of a matrix can be identified and manipulated by the explicit
use of their index values. When indexing a matrix, A, you may identify an element
with two numbers using the format A(row, column). You could also identify an element
with a single number, A(num), where the elements of the matrix are counted column-
wise. Let’s explore this a bit through a series of exercises. First, remove all variables
from the workspace (use the command clear all) and create a variable A:

A ¼
1 2 3 4
5 6 7 8

10 20 30 40
50 60 70 80

0
BB@

1
CCA:

>> clear all
>> A=[1 2 3 4; 5 6 7 8; 10 20 30 40; 50 60 70 80];

Now assign the value 23 to each entry in the first row:

>> A(1,:)=23

24 2. MATLAB TUTORIAL

A =

23 23 23 23
5 6 7 8
10 20 30 40
50 60 70 80

The colon (:) in the col position indicates all column values. Similarly, you can assign the
value 23 to each entry in the first column:

>> A(:,1)=23

A =

23 23 23 23
23 6 7 8
23 20 30 40
23 60 70 80

Suppose you didn’t know the index values for the elements that you wanted to change.
For example, suppose you wanted to assign the value 57 to each entry of A that is equal or
larger than 7 in the second row. What are the column indices for the elements of the second
row of the matrix A [i.e., A(2,:)] which satisfy the criteria to change? For this task, the find
function comes in handy:

>> find(A(2,:)>=7)

ans =

1 3 4

Thus, the following command will produce the desired result:

>> A(2,find(A(2,:)>=7))=57

A =

23 23 23 23

57 6 57 57

23 20 30 40

23 60 70 80

To further illustrate the use of the function find and indexing, consider the following task.
Assign the value 7 to each entry in the fourth column of the matrix A that is equal or larger
than 40 and lower than 60. For this example, it is clearer to split this operation into two lines:

>> i=find((A(:,4)>=40)&(A(:,4)<60))

i =

2
3

252.2. BASIC CONCEPTS

>> A(i,4) = 7

A =

23 23 23 23
57 6 57 7
23 20 30 7
23 60 70 80

Back to a nice and simple task, assign the value 15 to the entry in the third row, second column:

>> A(3,2)=15

A =

23 23 23 23
57 6 57 7
23 15 30 7
23 60 70 80

Similarly, you could have used the command A(7) = 15. If you try entering the command
find(A==15), you will get the answer 7. The reason is that MATLAB stores the elements of a
matrix column after column, so 15 is stored in the seventh element of the matrix when
counted this way. Had you entered the command [r,c]=find(A==15); you would see that
r is now assigned the row index value and c the column index value of the element whose
value is 15; that is, r = 3, c = 2.

>> [r,c]=find(A==15)

r =

3

c =

2

The find function is often used with relational and logical operators. We used a few of
these in the preceding examples and will summarize them all here. The relational operators
are as follows:

== (equal to)
�= (not equal to)
< (less than)
> (greater than)
<= (less than or equal to)
>= (greater than or equal to)

MATLAB also used the following syntax for logical operators:

& (AND)
j (OR)

26 2. MATLAB TUTORIAL

� (NOT)
xor (EXCLUSIVE OR)
any (true if any element is nonzero)
all (true if all elements are nonzero.)

Exercise 2.9: Find the row and column indices of the matrix elements of A whose values are

less than 20. Set all elements of the third row equal to the value 17. Assign the value 2 to each of

the last three entries in the second column.

2.3. GRAPHICS AND VISUALIZATION

2.3.1. Basic Visualization

Whereas we re-created the functionality of a scientific calculator in the previous
sections, here we will explore MATLAB as a graphing calculator. As you will
see, visualization of data and data structures is one of the great strengths of MATLAB.
In this section, it will be particularly valuable to experiment with possibilities
other than the ones suggested in the examples, since the examples can cover only a
very small number of possibilities that will have a profound impact on the graphs
produced.

For aesthetic purposes, start with a trigonometric function, which was introduced
before—sine. First, generate a vector x, take the sine of that vector, and then plot the
result:

>> x = 0:10

x =

0 1 2 3 4 5 6 7 8 9 10

>> y = sin(x)

y =

0 0.8415 0.9093 0.1411 -0.7568 -0.9589 -0.2794 0.6570 0.9894
0.4121 -0.5440

>> plot(x,y)

The result of this series of commands will look something like Figure 2.1.
A quick result was reached, but the graphic produced is admittedly rather crude,

albeit sinusoidal in nature. Note the values on the x-axis (0 to 10), as desired, and the
values on the y-axis, between –1 and 1, as it’s supposed to be, for a sine function. The
problem seems to be with sampling. So let’s redraw the sine wave with a finer mesh.

272.3. GRAPHICS AND VISUALIZATION

Recall that a third parameter in the quick generation of vectors indicates the step size. If
nothing is indicated, MATLAB assumes 1 by default. This time, you will make the mesh 10
times finer, with a step size of 0.1.

Exercise 2.10: Use >>x = 0:0.1:10 to create the finer mesh.

Notice that MATLAB displays a long series of incremental elements in a vector that
is 101 elements long. MATLAB did exactly what you told it to do, but you don’t necessarily
want to see all that. Recall that the ; (semicolon) command at the end of a command sup-
presses the “echo,” the display of all elements of the vector, while the vector is still created
in memory. You can operate on it and display it later, like any other vector.

So try this:

>> x = 0:0.1:10;
>> y = sin(x);
>> plot(x,y)

This yields something like that shown in Figure 2.2, which is arguably much smoother.

Exercise 2.11: Plot the sine wave on the interval from 0 to 20, in 0.1 steps.

Upon completing Exercise 2.11 enter the following commands:

>> hold on
>> z = cos(x);
>> plot(x,z,'color','k')

0 2 4 6 8 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

FIGURE 2.1 Crude sinusoid.

28 2. MATLAB TUTORIAL

The result should look something like that shown in Figure 2.3.
Now you have two plots on the canvas, the sine and cosine from 0 to 20, in different col-

ors. The command hold on is responsible for the fact that the drawing of the sine wave
didn’t just vanish when you drew the cosine function. If you want to erase your drawing
board, type hold off and start from scratch. Alternatively, you can draw to a new figure,
by typing figure, but be careful. Only a limited number of figures can be opened, since
every single one will draw from the resources of your computer. Under normal

0 2 4 6 8 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

FIGURE 2.2 Smooth sinusoid.

0 2 4 6 8 10 12 14 16 18 20
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

FIGURE 2.3 Sine vs. cosine.

292.3. GRAPHICS AND VISUALIZATION

circumstances, you should not have more than about 20 figures open—if that. The com-
mand close all closes all the figures.

Exercise 2.12: Draw different functions with different colors into the same figure. Things will

start to look interesting very soon. MATLAB can draw lines in a large number of colors, eight of

which are predefined: r for red, k for black, w for white, g for green, b for blue, y for yellow, c for

cyan, and m for magenta.

Give your drawing an appropriate name. Type something like the following:

>> title('My trigonometric functions')

Now watch the title appear in the top of the figure.
Of course, you don’t just want to draw lines. Say there is an election and you want to

quickly visualize the results. You could create a quick matrix with the hypothetical results
for the respective candidates and then make a bar graph, like this:

>> results = [55 30 10 5]

results =
55 30 10 5

>> bar(results)

The result should look something like that shown in Figure 2.4.

1 2 3 4
0

10

20

30

40

50

60

FIGURE 2.4 Lowering the bar.

30 2. MATLAB TUTORIAL

Exercise 2.13: To get control over the properties of your graph, you will have to assign a han-

dle to the drawing object. This can be an arbitrary variable, for example, h:

>> h = bar(results)
h =

298.0027

>> set(h,'linewidth', 3)
>> set(h,'FaceColor', [1 1 1])

The result should be white bars with thick lines. Try get(h) to see more properties of the bar

graph. Then try manipulating them with set(h, ‘Propertyname’, Propertyvalue).

Finally, let’s consider histograms. Say you have a suspicion that the random number gen-
erator of MATLAB is not working that well. You can test this hunch by visual inspection.

First, you generate a large number of random numbers from a normal distribution, say
100,000. Don’t forget the ; (semicolon). Then you draw a histogram with 100 bins, and
you’re done. Try this, for example:

>> suspicious = randn(100000,1);
>> figure
>> hist(suspicious, 100)

The result should look something like that shown in Figure 2.5. No systematic deviations
from the normal distribution are readily apparent. Of course, statistical tests could yield a
more conclusive evaluation of your hypothesis.

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

500

1000

1500

2000

2500

3000

3500

4000

FIGURE 2.5 Gaussian normal distribution.

312.3. GRAPHICS AND VISUALIZATION

Exercise 2.14: You might want to run this test a couple of times to convince yourself that the

deviations from a normal distribution are truly random and inconsistent from trial to trial.

A final remark on the display outputs: most of the commands that affect the display of
the output are permanent. In other words, the output stays like that until another command
down the road changes it again. Examples are the hold command and format command.
Typing hold will hold plot and allow something else to be plotted on it. Typing hold again
toggles hold and releases the plot. This is similarly true for the format commands, which
keep the format of the output in a certain way.

We have thus far introduced you to only a small number of the many visualization tools
that give MATLAB its strength. In addition to the functions plot, bar, and hist, you can
explore other plotting commands and get a feel for more display options by viewing the
help files for the following plotting commands that you might find useful: loglog, semilogx,
semilogy, stairs, and pie.

Want to know how your functions sound? MATLAB can send your data to the compu-
ter’s speakers, allowing you to visually manipulate your data and listen to it at the same
time. To hear an example, load the built-in chirp.mat data file by typing load chirp. Use
plot(y) to see these data and sound(y) to listen to the data.

We will cover more advanced plotting methods in the following section as well as in
future chapters.

2.4. FUNCTION AND SCRIPTS

Until now, we have driven MATLAB by typing commands directly in the command win-
dow. This is fine for simple tasks, but for more complex ones you can store the typed input
commands into a file and tell MATLAB to get its input commands from the file. Such files
must have the extension .m and are thus called M-files. If an M-file contains statements just
as you would type them into the MATLAB command window, they are called scripts. If,
however, they accept input arguments and produce output arguments, they are called
functions.

The primary goal of this section is to help you become familiar with M-files within
MATLAB. M-files are the primary vehicle to implement programming in MATLAB. So
while the previous sections showed how MATLAB can double as a scientific calculator
and as a calculator with graphing functions, this section will introduce you to a high-level
programming language that should be able to satisfy most of your programming needs if
you are a casual user. It will become apparent in this section of the tutorial how MATLAB
can aid the researcher in all stages of an experiment or study. By no means is this tutorial
the last word on M-files and programming. Later we will elaborate on all concepts intro-
duced in this section—particularly in terms of improving efficiency and performance of
the programs you are writing. One final goal of this tutorial is to demonstrate the

32 2. MATLAB TUTORIAL

remarkable versatility of MATLAB—and don’t worry, we’ll move on to neuroscience-heavy
topics soon enough.

2.4.1. Scripts

Scripts typically contain a sequence of commands to be executed by MATLAB when the
filename of the M-file is typed into the command window.

M-files are at the heart of programming in MATLAB. Hence, most of our future exam-
ples will take place in the context of M-files. You can work on M-files with the M-file editor,
which comes with MATLAB. To go to the editor, open the File menu (top left), select New,
and then select M-File (see Figure 2.6).

The first thing to do after a new M-file is created is to name it. For this purpose,
you have to save it to the hard disk. There are several ways of doing this. The most com-
mon is to click the editor’s File menu and then click Save As. You can then save the file
with a certain name. Using myfirstmfile.m would probably be appropriate for the
occasion.

As a script, an M-file is just a repository for a sequence of commands that you
want to execute repeatedly. Putting them in an M-file can save you the effort of typing
the commands anew every time. This is the first purpose for which you will use M-files.

Type the commands into your M-file editor as they appear in Figure 2.7. Make sure to
save your work after you are done (by pressing CtrlþS), if you already named it. If you
now type myfirstmfile into the MATLAB command window (not the editor), this sequence
will be executed by MATLAB. You can do this repeatedly, tweaking things as you go along
(don’t forget to save).

FIGURE 2.6 Creating a new M-File.

FIGURE 2.7 The editor.

332.4. FUNCTION AND SCRIPTS

2.4.2. Functions

We have already been using many of the functions built into MATLAB, such as sin and
plot. You can extend the MATLAB language by writing your own functions as well.
MATLAB has a very specific syntax for declaring and defining a function. Function M-files
must start with the word function, followed by the output variable(s), and equal sign, the
name of the function, and the input variable(s). Functions do not have to have input or out-
put arguments. The following is a valid function definition line for a function named flower
that has three inputs, a, b, and c, and two outputs, out_1 and out_2:

function [out_1, out_2] =flower(a,b,c)

To demonstrate this further, you will write a function named triple that computes and
returns three times the input, i.e., triple(2)=6, triple(3)=9, etc. First, type the following two
lines into an M-file and save it as triple.m:

function r = triple(i)

r=3*i;

If you want to avoid confusion, it is strongly advised to match the name of the M-file
with the name of the function. The input to the function is i and the output is r. You can
now test this function:

>> a=triple(7)

a =

21

>> b=triple([10 20 30])

b =

30 60 90

Note: Of course, the implementation of this function is trivial. Here, however, you should
learn to apply the syntax only for defining and calling functions. Also note that function
variables do not appear in the main workspace; rather they are local to themselves.

2.4.3. Control Structures

Of course, what you just saw is only the most primitive form to use M-files. M-files will
allow you to harness the full power of MATLAB as a programming language. For this to
happen, you need to familiarize yourself with loops and conditionals—in other words, with
statements that allow you to control the flow of your program.

Loops: The two most common statements to implement loops in MATLAB are for andwhile.
The structure of all loops is as follows (in terms of a while loop):

while certain-conditions-are-true

34 2. MATLAB TUTORIAL

Statements
. . .
Statements

end

All statements between while and end are executed repeatedly until the conditions that
are checked in while are no longer the case. This is best demonstrated with a simple exam-
ple: open a new M-file in the editor and give it a name. Then type the following code
and save. Finally, type the name of the M-file in the command window (not the editor) to
execute the loop.

This is a good place to introduce comments. As your programs become more com-
plex, it is highly recommended that you add comments. After a week or two, you
will not necessarily remember what a particular variable represents or how a particular
computation was done. Comments can help, and MATLAB affords functionality
for it. Specifically, it ignores everything that is written after the percent sign (%) in
a line. In the editor itself, comments are represented in green. So here is the program
that you should write now, implementing a simple while loop. If you want to, you
can save yourself the comments (everything after % in each line). We placed them here
to explain the program flow (what the program will do) to you:

%A simple counter
i = 1 %Initializing our counter as 1
while i < 6 %While i is smaller than 6, statements are executed

i = i + 1 %Incrementing the counter and displaying new value
end %Ending the loop, it contains only one statement

What happened after you executed the program? Did it count from 1 to 6?

Exercise 2.15: Let your program count from 50 to 1050.

If you execute this program on a slow machine, chances are that this operation will take

a while.

Exercise 2.16: Let your program count from 1 to 1,000,000.

If you did everything right, you will be sitting for at least a minute, watching the numbers go

by. While we set up this exercise deliberately, chances are that you will underestimate the time

it takes to execute a given loop sometime in the future. Instead of just biding your time, you

have several options at your disposal to terminate runaway computations. The most benign

of these options is pressing CtrlþC in the MATLAB command window. That key press should

stop a process that hasn’t yet completely taken over the resources of your machine. Try it.

352.4. FUNCTION AND SCRIPTS

Note: The display takes most of the time. The computation itself is relatively quick. Make
the following modifications to your program; then save and run it:

%A silent counter
i = 1 %Initializing our counter as 1
while i < 1000000

i = i + 1; %Incrementing the counter without displaying new value
end %Ending the loop, it contains only one statement
i %Displaying the final value of i

Note: One of the most typical ways to get logical errors in complex programs is to
forget to initialize the counter (after doing something else with the variable). This
is particularly likely if you reuse the same few variable names (i, j, etc.) throughout
the program. In this case, it would not execute the loop, since the conditions are not
met. Hence, you should make sure to always initialize the variables that you use
in the loop before the loop. As a cautionary exercise, reduce your program to the following:

%A simple counter, without initialization
while i < 1000000 %While i is smaller than 1 M, statements are executed
i = i þ 1 %Incrementing the counter and displaying new value

end %Ending the loop, it contains only one statement

Save and run this new program. If you ran one of the previous versions, nothing will
happen. The reason is that the loop won’t be entered because the condition is not met;
i is already larger than 1,000,000.

Of course, the most common way to get runaway computations is to create infinite
loops—in other words, loops with conditions that are always true after they are entered.
If that is the case, they will never be exited. A simple case of such an infinite loop is a mod-
ified version of the initial loop program—one without an increment of the counter; hence,
i will always be smaller than the conditional value and never exit.

Try this, save, and run:

%An infinite loop
i = 1 %Initializing our counter as 1
while i < 6 %While i is smaller than 6, statements are executed
i = i %NOT incrementing the counter, yet displaying its value

end %Ending the loop, it contains only one statement

If you’re lucky, you can also exit this process by pressing CtrlþC. If you’re not quick
enough or if the process already consumed too many resources—this is particularly likely
for loops with many statements, not necessarily this one—your best bet is to summon the
Task Manager by pressing CtrlþAltþDelete simultaneously in Windows (for a Mac, the
corresponding key press is CommandþOptionþEscape to call the Force Quit menu).
There, you can kill your running version of MATLAB. The drawbacks of this method
are that you have to restart MATLAB and your unsaved work will be lost. So beware
the infinite loop.

36 2. MATLAB TUTORIAL

If statements: In a way, if statements are pure conditionals. Statements within if state-
ments are either executed once (if the conditions are met) or not (if they are not met). Their
syntax is similar to loops:

if these-conditions-are-met

Execute-these-Statements

else

Execute-these-Statements

end

It is hard to create a good example consisting solely of if statements. They are typically
used in conjunction with loops: the program loops through several cases, and when it hits
a special case, the if statement kicks in and does something special. We will see instances of
this in later examples. For now, it is enough to note the syntax.

Fun with loops—How to make an American quilt

This is a rather baroque but nevertheless valid exercise on how to simply save time
writing all the statements explicitly by using nested loops. If you want to, you can try repli-
cating all the effects without the use of loops. It’s definitely possible—just very tedious.

Open a new window in the editor, name it, type the following statements (without com-
ments if you prefer), save it, and see what happens when you run it:

figure %Open a new figure
x = 0:0.1:20; %Have an x-vector with 201 elements
y = sin(x); %Take the sine of x, put it in y
k = 1; %Initialize our counter variable k with 1
while k < 3; %For k = 1 and 2
QUILT1(1,:) = x; %Put x into row 1 of the matrix QUILT1
QUILT2(1,:) = y; %Put y into row 1 of the matrix QUILT2
QUILT1(2,:) = x; %Put x into row 2 of the matrix QUILT1
QUILT2(2,:) = -y; %Put –y into row 2 of the matrix QUILT2
QUILT1(3,:) = -x; %Put –x into row 3 of the matrix QUILT1
QUILT2(3,:) = y; %Put y into row 3 of the matrix QUILT2
QUILT1(4,:) = -x; %Put -x into row 4 of the matrix QUILT1
QUILT2(4,:) = -y; %Put –y into row 4 of the matrix QUILT2

hold on %Always plot into the same figure
for i = 1:4 %A nested loop, with i as counter, from 1 to 4

plot(QUILT1(i,:),QUILT2(i,:)) %Plot the ith row of QUILT1 vs. QUILT2
pause %Waiting for user input (key press)

end %End of i-loop

for i = 1:4 %Another nested loop, with i as counter, from 1 to 4
plot(QUILT2(i,:),QUILT1(i,:)) %Plot the ith row of QUILT2 vs. QUILT1

372.4. FUNCTION AND SCRIPTS

pause %Waiting for user input (key press)
end %End of i-loop

y = y + 19; %Incrementing y by 19 (for every increment of k)
k ¼ k + 1; %Incrementing k by 1
end %End of k-loop

Note: This program is the first time we use the pause function. If the program pauses
after encountering a pause statement, press a key to continue until the program is done.
This is also the first time that we wrote a program that depends on user input—albeit a very
small and limited form—to execute its flow. We will expand on this later.

Note: This program used both for andwhile loops. The for loops increment their counter
automatically, whereas the while loops must have their counter incremented explicitly.

Now that you know what the program does and how it operates, you might want to take
out the two pause functions to complete the following exercises more smoothly.

Exercise 2.17: What happens if you allow the conditional for k to assume values larger than

1 or 2?

Exercise 2.18: Do you know why the program increments y by 19 at the end of the k loop?

What happens if you make that increment smaller or larger than 19?

Exercise 2.19: Do you remember how to color your quilt? Try it.

2.4.4. Advanced Plotting

We introduced basic plotting of two-dimensional figures previously. This time, our plot-
ting section will deal with subplots and three-dimensional figures. Subplots are an efficient
way to present data. You probably have seen the use of the subplot function in published
papers. The syntax of the subplot command is simply subplot(a,b,c), where a is the number
of rows the subplots are arranged in, b is the number of columns, and c is the particular sub-
plot you are drawing to. It’s probably best to illustrate this command in terms of an exam-
ple. This requires you to open a new program, name it, etc.

Then type the following:

figure %Open a new figure
for i = 1:9 %Start loop, have counter i run from 1 to 9

subplot(3,3,i) %Draw into the subplot i, arranged in 3 rows, 3 columns
h = bar(1,1); %This is just going to fill the plot with a uniform color
set(h,'FaceColor',[0 0 i/9]); %Draw each in a slightly different color

end %End loop

38 2. MATLAB TUTORIAL

This programwill draw nine colored squares in subplots in a single figure, specifically, dif-
ferent shades of blue (from dark blue to light blue) and should look something like Figure 2.8.

Note: The three numbers within the square brackets in the set(h,‘FaceColor’,[0 0 i/9]); state-
ment represent the red, green, and blue color components of the bar that is plotted. Each color
component can take on a value between 0 and 1. A bar whose color components are [0 0 0] is
displayed black and [1 1 1] is white. By setting the color components of the pixels of your
image to different combinations of values, you can create virtually any color you desire.

Exercise 2.20: Make the blocks go from black to red instead of black to blue.

Exercise 2.21: Make the blocks go from black to white (via gray).

Suggestion for Exploration: Can you create more complex gradations? It is possible, given this

simple programandyour recently established knowledge about RGBvalues inMATLABas a basis.

Three-dimensional plotting is a simple extension of two-dimensional plotting. To appre-
ciate this, we will introduce a classic example: drawing a two-dimensional exponential
function. The two most common three-dimensional plotting functions in MATLAB are
probably surf and mesh. They operate on a grid. Magnitudes of values are represented

1
0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

1 1

1 1 1

1 1 1

FIGURE 2.8 Color gradient subplots.

392.4. FUNCTION AND SCRIPTS

by different heights and colors. These concepts are probably best understood through an
example.

Open a new program in the MATLAB editor, name it, and type the following; then save
and run the program:

a = -2:0.2:2; %Creating a vector a with 21 elements
[x, y] = meshgrid(a, a); %Creating x and y as a meshgrid of a
z = exp (-x.^2 - y.^2); %Take the 2-dimensional exponential of x and y
figure %Open a new figure
subplot(1,2,1) %Create a left subplot
mesh(z) %Draw a wire mesh plot of the data in z
subplot(1,2,2) %Create a right subplot
surf(z) %Draw a surface plot of the data in z

After running this program, you probably need to maximize the figure to be able to
see it properly. To do this, click the maximize icon in the upper right of your figure (see
Figure 2.9; or if using a Mac, click on the green button in the upper left corner). Both the left
and right figures illustrate the same data, but in different manners. On the left is a wire
mesh; on the right, a surface plot.

If you did everything right, you should see something like that shown in Figure 2.10.

Exercise 2.22: Improve the resolution of the meshgrid. Then redraw.

Exercise 2.23: Can you improve the look of your figure? Try shading it in different ways by

using the following:

shading interp

Now try the following:

colormap hot

FIGURE 2.9 Maximizing a figure.

40 2. MATLAB TUTORIAL

Suggestion for Exploration: As you can see, meshgrid is extremely powerful. With its help,

you can visualize any quantity as a function of several independent variables. This capability is

at the very heart of what makes MATLAB so powerful and appealing. Some say that one is not

using MATLAB unless one is using meshgrid. While this statement is certainly rather strong,

it does capture the central importance of the meshgrid function. We recommend trying to

visualize a large number of functions to try and get a good handle on it. Start with something

simple, such as a variable that is the result of the addition of a sine wave and a quadratic func-

tion. Use meshgrid, then surf to visualize it. This makes for a lot of very appealing graphs.

2.4.5. Interactive Programs

Many programs that are actually useful crucially depend on user input. This input comes
mostly in one of two forms: from the mouse or from the keyboard. We will explore both
forms in this section.

0

5

10

15

20

25

0

10

20

30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

5

10

15

20

25

0

20

30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10

FIGURE 2.10 Three dimensional plotting of a Gaussian.

412.4. FUNCTION AND SCRIPTS

First, create a program that allows you to draw lines. Open a new program in the editor,
write the following code, then save and run the program:

figure %Opens a new figure
hold on; %Make sure to draw all lines in same figure
xlim([0 1]) %Establish x-limits
ylim([0 1]) %Establish y-limits

for i = 1:5 %Start for-loop. Allow to draw 5 lines
a = ginput(2); %Get user input for 2 points
plot(a(:,1),a(:,2)); %Draw the line
end %End the loop

The program will open a new figure and then allow you to draw five lines. When the cross-
hairs appear, click the start point of your line and then on the end point of your line. Repeat
until you’re done. The result should look something like that shown in Figure 2.11.

Exercise 2.24: Allow the program’s user to draw 10 lines, instead of five.

Exercise 2.25: Allow the user to draw “lines” that are defined by three points instead of two.

Remember to use close all if you opened too many figures.
Of course, most user input will come from the keyboard, not the mouse. So let’s create a lit-
tle program that exemplifies user input very well. In effect, we are striving to re-create the
“sugar factory” experiment by Berry and Broadbent (1984). In this experiment, subjects
were told that they are the manager of a sugar factory and instructed to keep sugar output

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FIGURE 2.11 The luck of the draw.

42 2. MATLAB TUTORIAL

at 12,000 tons per month. They were also told that their main instrument of steering the out-
put is to determine the number of workers per month. The experiment showed that subjects
are particularly bad at controlling recursive systems. Try this exercise on a friend or class-
mate (after you’re done programming it). Each month, you ask the subject to indicate the
number of workers, and each month, you give feedback on the production so far.

Here is the code:

P = []; %Assigning an empty matrix. Making P empty.
a0 = 6000; %a0 is 6000;
m0 = 0; %m0 is 0;
w0 = 300; %w0 is 300;
P(1,:) = [m0, w0, a0]; %First production values
figure %Open a new figure
plot(0,a0,'.', 'markersize', 24); %Plot the first value
hold on; %Make sure that the plot is held
xlim([0 25]) %Indicate the right x-limits
i = 1; %Initialize our counter
while i < 25 %The subject is in charge for 24 months = 2 years.
P %Show the subject the production values thus far
a = input('How many workers this month?') %Get the user input
b = 20 * a - a0 %This is the engine. Determines how much sugar is produced
a0 = b; %Assign a new a0
plot (i,a0,'.', 'markersize', 24); %Plot it in the big figure
P(i+1,:) = [i, a, b]; %Assign a new row in the P(roduction) matrix
plot (P(:,1),P(:,3),'color','k'); %Connect the dots
i = i + 1; %Increment counter
end %End loop

The result (of a successful subject!) should look something like that shown in Figure 2.12.

0 5 10 15 20 25
0

2000

4000

6000

8000

10000

12000

14000

FIGURE 2.12 Game over.

432.4. FUNCTION AND SCRIPTS

Exercise 2.26: Add more components to the production term, like a trend that tends to

increase production over time (efficiency) or decrease production over time (attrition).

Exercise 2.27: Add another plot (a subplot) that tracks the development of the workforce (in

addition to the development of production; refer to Figure 2.12).

2.5. DATA ANALYSIS

2.5.1. Importing and Storing Data

Section 2.4.5 described a good way to get data in MATLAB: via user input. Conversely,
this section is concerned with data analysis after you have data. One of the primary uses of
MATLAB in experimental neuroscience is the analysis of data.

Of course, data analysis is fun only if you already have large amounts of data. Cases in
which you will have to manually enter the data before analyzing them will (we hope) be
rare. For this scenario, suppose that you are in the marketing department of a major motion
picture studio. You just produced a series of movies and asked people how they like these
movies.

Specifically, the movies areMatrix I,Matrix II: Matrix Reloaded, andMatrix III: Matrix Revo-
lutions. You asked 1603 subjects how much they liked any of these movies. Subjects were
instructed to use a nine-point scale (0 for awful, 4 for great and everything in between, in
0.5 steps). Also, subjects were instructed to abstain from giving a rating if they hadn’t seen
themovie. Now youwill construct a program that analyzes these data, piece by piece. So open
a new program in the editor and then add commands as we add them in our discussion here.

Data import: Download the data from the companion website to a suitable directory in
your hard disk. Try using a directory that MATLAB will read without additional specifica-
tions of a path (file location) in the following code. First, import the data into MATLAB. To
do this, add the following pieces of code to your new analysis program:

%Data import
M1 = xlsread('Matrix1.xls') %Importing data for Matrix I
M2 = xlsread('Matrix2.xls') %Importing data for Matrix II

These commands will create two matrices, M1 and M2, containing the ratings of the sub-
jects for the respective movies. Type M1 and M2 to inspect the matrices. You can also click
on them in the workspace to get a spreadsheet view. One of the things that you will notice
quickly is cells that contain “NaN.” These are subjects that didn’t see the movie or didn’t
submit a rating for this movie for other reasons. In any case, you don’t have ratings for
these subjects, and MATLAB indicates “NaN,” which means “not a number”—or empty,
in our case. The problem is that retaining this entry will defeat all attempts at data analysis
if you don’t get rid of these missing values. For example, try a correlation:

44 2. MATLAB TUTORIAL

>> corrcoef(M1,M2)
ans =

NaN NaN
NaN NaN

You want to know how much an average person likes Matrix II if he or she saw Matrix I
and vice versa. Correlating the two matrices is a good start to answering this question.
However, the correlation function (corrcoef) in MATLAB assumes two vectors that
consist only of numbers, not NaNs. A single NaN somewhere in the two vectors will render
the entire answer NaN. This result is not very useful. So the first thing you need to do is to
prune the data and retain only those subjects that submitted ratings for both movies.

Data Pruning: There are many ways of pruning data, and the way that we’re suggesting
here is certainly not the most efficient one. It does, however, require the least amount of intro-
duction of new concepts and is basedmost onwhat you already know, namely loops.As a side
note, loops are generally slow (compared to matrix operations); therefore, it is almost always
more efficient to substitute the loop with such an operation, particularly when calculating
things that take too long with loops. We’ll discuss this issue more later. For now, you should
be fine if you add the following code to the program you already started:

%Data pruning
Movies = []; %New Movies variable. Initializing it as empty.
temp = [M1 M2]; %Create a joint temporary Matrix, consisting of two long vectors
k = 1; %Initializing index k as 1
for i = 1:length(temp) %Could have said 1603, this is flexible. Start i loop
if isnan(temp(i,1)) == 0 & isnan(temp(i,2)) == 0 %If both are numbers (=valid)

Movies(k,:) = temp(i,:); %Fill with valid entries only
k = k + 1; %Update k index only in this case

end %End if clause
end %End for loop

The isnan function tests the elements of its input. It returns 1 if the element is not a num-
ber and returns 0 if the element is a number. By inspecting M1, you can verify visually that
M1(2,1) is a number but that M1(3,1) is not. So you can test the function by typing the fol-
lowing in the command window:

>> isnan(M1(2,1))

ans =
0

>> isnan(M1(3,1))

ans =
1

Recall that the & is the MATLAB symbol for logical AND. The symbol for logical OR is j.
So you are effectively telling MATLAB in the if statement that you want to execute
the statements it contains only if both vectors contain numbers at that row using isnan in
combination with &.

452.5. DATA ANALYSIS

Exercise 2.28: What would have happened if you had made everything contingent on the

index i, instead of declaring another specialized and independent index k? Would the program

have worked?

It’s time to look at the result. In fact, it seems to have worked: There is a new matrix,
“Movies,” which is 805 entries long. In other words, about half the subjects have seen both
movies.

After these preliminaries (data import and data pruning), you’re ready to move to data
analysis and the presentation of the results. The next step is to calculate the correlation
you were looking for before, so add that to the code:

corrcoef(Movies(:,1),Movies(:,2)) %Correlation between Matrix I and Matrix II

The correlation is 0.503. That’s not substantial, but not bad, either. The good news is
that it’s positive (if you like one, you tend to like the other) and that it’s moderately large
(definitely not 0). To get a better idea of what the correlation means, use a scatterplot to
visualize it:

figure %Create a new figure
plot(Movies(:,1), Movies(:,2),'.', 'markersize', 24) %Plot ratings vs. each other

The result looks something like that shown in Figure 2.13.
The problem is that the space is very coarse. You have only nine steps per dimension—or

81 cells overall. Since you have 805 subjects, it is not surprising that almost every cell is
taken by at least one rating. This plot is clearly not satisfactory. We will improve on it later.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

FIGURE 2.13 Low resolution.

46 2. MATLAB TUTORIAL

The white space on the top left of the figure is, however, significant. It means that there was
no one in the sample who disliked the first Matrix movie but liked the second one. The
opposite seems to be very common.

Let’s look at this in more detail and add the following line to the code:

averages = mean(Movies) %Take the average of the Movie matrix

mean is a MATLAB function that takes the average of a vector. The averages variable
contains both means.

As it turns out, the average rating for Matrix I is 3.26 (out of 4), while the average rating
for Matrix II is only about 2.28. Figure 2.13 makes sense in light of these data. This can be
further impressively illustrated in a bar graph, as shown in Figure 2.14.

However, this graph doesn’t tell about the variance among the means. Let’s rectify this in
a quick histogram. Now add the following code:

figure %Open new figure
subplot(1,2,1) %Open new subplot
hold on; %Hold the plot
hist(Movies(:,1),9) %Matrix I data. 9 bins is enough, since we only have 9 ratings
histfit(Movies(:,1),9) %Let’s fit a gaussian
xlim([0 4]) ; %Let’s make sure that plotting range is fine
title('Matrix I') %Add a title
subplot(1,2,2) %Open new subplot
hold on; %Hold the plot
hist(Movies(:,2),9) %Matrix II data. 9 bins is enough, since we only have 9 ratings
histfit(Movies(:,2),9) %Let’s fit a gaussian
xlim([0 4]) ; %Let’s make sure that plotting range is fine
title('Matrix II: reloaded') %Add a title

1 2
0

0.5

1

1.5

2

2.5

3

3.5

FIGURE 2.14 Means.

472.5. DATA ANALYSIS

As you can see in Figure 2.15, it looks as though almost everyone really liked the first
Matrix movie, but the second one was just okay (with a wide spread of opinion). Plus, a
fewer people actually report having seen the second movie.

The last thing to do—for now—is to fix the scatterplot that you obtained in Figure 2.13.
You will do that by using what you learned about surface plots, keeping in mind that you
will have only a very coarse plot (9�9 cells).

Nevertheless, add the following code to the program:

MT1 = (Movies(:,1)*2)+1; % Assign a temporary matrix, multiplying ratings by 2 to get
MT2 = (Movies(:,2)*2)+1; %integral steps and adding 1 matrix indices start w/ 1, not 0.
c = zeros(9,9); %Creates a matrix "c" filled with zeros with the indicated dimensions
i = 1; %Initialize index
for i = 1:length(Movies) %Start i loop. This loop fills c matrix with movie rating counts

c(10-MT1(i,1),MT2(i,1)) = c(10-MT1(i,1),MT2(i,1)) + 1; %Adding one in the cell count
end %End loop
figure %New figure
surf(c) %Create a surface
shading interp %Interpolate the shading
xlabel('Ratings for matrix I') %Label for the x-axis
ylabel('Ratings for matrix II: reloaded') %Label for the y-axis
zlabel('Frequency') %Get in the habit of labeling your axes.

0 1 2 3 4
0

50

100

150

200

250

300
Matrix I

0 1 2 3 4
0

50

100

150
Matrix II: reloaded

FIGURE 2.15 Variance.

48 2. MATLAB TUTORIAL

The result looks rather appealing—something like that shown in Figure 2.16. It gives
much more information than the simple scatterplot shown previously—namely, how often
a given cell was filled and how often a given combination of ratings was given.

Exercise 2.29: Import the data for the third Matrix movie, prune it, and include it in the anal-

ysis. In particular, explore the relations between Matrix I and Matrix III and between Matrix II

and Matrix III. The plots between Matrix II and Matrix III are particularly nice.

Can you now predict how much someone will like Matrix II, given how much he or she
liked Matrix I? It looks as though you can. But the relationship is much stronger for Matrix
II!III.

1

2

3

4

5

6

7

8

9

1
2

3
4

5
6

7
8

9

0

10

20

30

40

50

60

Ratings for matrix II: reloadedRatings for matrix I

F
re

qu
en

cy

FIGURE 2.16 The real deal.

492.5. DATA ANALYSIS

2.6. A WORD ON FUNCTION HANDLES

Before we conclude, it is worthwhile to mention function handles, as you will likely need
them—either in your own code or when interpreting the code of others.

In this tutorial, we talked a lot about functions. Mostly, we did so in the context of the
arguments they take. Up to this point, the arguments have been numbers—sometimes indi-
vidual numbers, sometimes sequences of numbers—but they were always numbers.

However, there are quite a few functions in MATLAB that expect other functions as part
of their input arguments. This concept will take awhile to get used to if it is unfamiliar from
your previous programming experience, but once you have used it a couple of times, the
power and flexibility of this hierarchical nestedness will be obvious.

There are several ways to pass a function as an argument to another function.
A straightforward and commonly used approach is to declare a function handle. Let’s
explore this concept in the light of specific examples. Say youwould like to evaluate the sine
function at different points. As you saw previously, you could do this by just typing

sin(x)

where x is the value of interest.
For example, type

sin([0 pi/2 pi 3/2*pi 2*pi])

to evaluate the sine function at some significant points of interest.
Predictably, the result is

ans =

0 1.0000 0.0000 -1.0000 -0.0000

Now, you can do this with function handles. To do so, type

h = @sin

You now have a function handle h in your workspace. It represents the sine function. As
you can see in your workspace, it takes memory and should be considered analogous to
other handles that you have already encountered, namely figure handles.

The function feval evaluates a function at certain values. It expects a function as its first
input and the values to-be-evaluated as the second. For example, typing

feval(h,[0 pi/2 pi 3/2*pi 2*pi])

yields

ans =
0 1.0000 0.0000 -1.0000 -0.0000

Comparing this with the previous result illustrates that passing the function handle worked
as expected.

You might wonder what the big deal is. It is arguably as easy—if not easier—to just type
the values directly into the sin function than to formally declare a function handle.

50 2. MATLAB TUTORIAL

Of course, you would be right to be skeptical. However—at the very least—you will
save time typing when you use the same function over and over again—given that you
use function handles that are shorter than the function itself. Moreover, you can create more
succinct code, which is always a concern as your programs get longer and more intricate.

More importantly, there are functions that actually do useful stuff with function handles.
For example, fplot plots a given function over a specified range. Typing

fplot(h,[0 2*pi])

should give you a result that looks something like that shown in Figure 2.17.
Now let’s consider another function that expects a function as input. The function quad

performs numeric integration of a given function over a certain interval. You need a way to
tell quad which function you want to integrate. This makes quad very powerful because
it can integrate any number of functions (as opposed to your writing a whole library of
specific integrated functions).

Now integrate the sine function numerically. Conveniently, you already have the func-
tion handle h in memory. Then type

>> quad(h,0,pi)

ans =

2.0000

>> quad(h,0,2*pi)

ans =

0

0 1 2 3 4 5 6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

FIGURE 2.17 fplot in action.

512.6. A WORD ON FUNCTION HANDLES

>> quad(h,0,pi/2)

ans =

1.0000

After visually inspecting the graph in Figure 2.17 and recalling high school calculus, you
can appreciate that the quad function works on the function handle as intended.

In addition, you can not only tag pre-existing MATLAB functions, but also declare your
own functions and tag them with a function handle, as follows:

>> q = @(x) x.^5 - 9.* x^4 + 8 .* x^3 - 2.* x.^2 + x + 500;

Now you have a rather imposing polynomial all wrapped up and neatly tucked away in
the function handle q. You can do whatever you want with it. For example, you could plot
it, as follows:

>> fplot(q,[0 10])

The result is shown in Figure 2.18.

Exercise 2.30: Try integrating a value of the polynomial. Does the result make sense?

Exercise 2.31: Do everything you just did, but using your own functions and function han-

dles. Try declaring your own functions and evaluating them.

0 1 2 3 4 5 6 7 8 9 10
−5000

0

5000

10000

15000

20000

FIGURE 2.18 A polynomial in q, plotted from 0 to 10.

52 2. MATLAB TUTORIAL

Suggestion for Exploration: Find another function that takes a function handle as input by

using the MATLAB help function. See what it does.

Finally, you can save your function handles as a workspace. This way, you can build
your own library of functions for specific purposes.

As usual, there are many ways to do the same thing in MATLAB. As should be clear by
now, function handles are a convenient and robust way to pass functions to other functions
that expect functions as an input.

2.7. THE FUNCTION BROWSER

Since release 2008b (7.7), MATLAB contains a function browser. This helps the user to
quickly find—and appropriately use—MATLAB functions. The introduction of this feature
is very timely. MATLAB now contains thousands of functions, most of which are rarely used.
Moreover, the number of functions is still growing at a rapid pace, particularly with the intro-
duction of new toolboxes. Finally, the syntax and usage of any given function may change in
subtle ways from one version to the next.

In other words—and to summarize—even experts can’t be expected to be aware of all
available MATLAB functions as well as their current usage and correct syntax. A crude
but workable solution up to this date has been to constantly keep the MATLAB “Help Nav-
igator” open at all times. This approach has several tangible drawbacks. First, it takes up
valuable screen real estate. Second, it necessitates switching back and forth between what
are essentially different programs, breaking up the workflow. Finally, the Help Navigator
window requires lots of clicking, copy-and pasting and the like. It is not as well integrated
in the MATLAB software as one would otherwise like.

The new “Function Browser” is designed to do away with these drawbacks. It is directly
integrated into MATLAB. You can now see this in the form of a little fx that is hovering just
left of the command prompt, at the far left edge of the command window. Clicking on it (or
pressing Shift and F1 at the same time) opens up the Browser. Importantly, the functions
are grouped in hierarchical categories, allowing you to find particular functions even if
you are not aware of their name (such as plotting functions). The hierarchical trees can be
rather deep, first distinguishing between MATLAB and its Toolboxes, then between differ-
ent function types (e.g. Mathematics vs. Graphics) and then particular subfields thereof. Of
course, the function browser also allows to search for functions by name. Type something in
the search function field provides a quick list of functions that match the string that was
inputted in the field. The list of functions also gives a very succinct but appropriate short
description of what the function does. Hovering over a given entry with the cursor brings
up a popup window with a more elaborate description of the function and its usage.

Finally, the function browser allows to drag and drop a given function from the browser
into the command window.

To summarize, we expect the function browser to have a dramatic impact on the way
people use MATLAB, essentially replacing the use of the Help Navigator for all but the

532.7. THE FUNCTION BROWSER

most severe problems. It should allow for a quick integration of unknown or unfamiliar
function in your code. We recommend to use it whenever necessary.

Figure 2.19. illustrates the use of the function browser for a function introduced in this
chapter, isnan.

2.8. SUMMARY

This tutorial introduced you to the functionality and power of MATLAB. MATLAB con-
tains a large number of diverse operators and functions, covering virtually all applied
mathematics, with particularly powerful functions in calculus and linear algebra. If you
would like to explore these functions, the MATLAB help function provides an excellent
starting point. You can summon the help with the help command. Of course, you will
encounter many useful functions in the sections to follow.

Try not to get too frustrated with MATLAB while learning the program and working on
the exercises. If things get rough and the commands you entered don’t produce the
expected results, know that MATLAB is able to provide much needed humor and a succinct
answer to why that is. Just type in the command why.

FIGURE 2.19 The function browser.

54 2. MATLAB TUTORIAL

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS
COVERED IN THIS CHAPTER

help

helpwin

helpdesk

helpbrowser

+

-

*

/

()

^

log

exp

sin

pi

format

e

[]

:

;

=

eye

ones

zeros

rand

randn

who

whos

save

load

clear

length

size

linspace

logspace

’

. /

. *

.^

find

==

~=

<

>

<=

>=

&

|

~

xor

any

all

plot

bar

hist

figure

hold

cos

close

title

set

FaceColor

linewidth

rref

loglog

semilogx

semilogy

stairs

pie

sound

function

for

while

end

%

if

else

pause

subplot

surf

mesh

meshgrid

shading

colormap

xlim

55MATLAB FUNCTIONS, COMMANDS, AND OPERATORS COVERED IN THIS CHAPTER

ylim

ginput

markersize

corrcoef

xlsread

isnan

histfit

xlabel

feval

fplot

@

quad

why

56 2. MATLAB TUTORIAL

P A R T II

DATA COLLECTION WITH
MATLAB

This page intentionally left blank

C H A P T E R

3

Visual Search and Pop Out

3.1. GOALS OF THIS CHAPTER

The primary goal of this chapter is to collect and analyze reaction time data using the
MATLABW software. Reaction time measures to probe the mind have been the backbone
of experimental psychology at least since the time of Donders (1868). The basic premise
underlying the use of reaction times in cognitive psychology is the assumption that cogni-
tive operations take a certain and measurable amount of time. In addition, it is assumed
that additional mental processes add (more or less) linearly. If this is the case, increased
reaction times reflect additional mental processes. Let us assume for the time being that
this is a reasonable framework. Then, it is highly useful to have a program that allows
you to quickly collect reaction time data.

3.2. BACKGROUND

Understanding how the mind/brain decomposes a sensory scene into features is one of
the fundamental problems in experimental psychology and systems neuroscience. We take
it for granted that the visual system, for example, appears to decompose objects into differ-
ent edges, colors, textures, shapes, and motion features. However, it is not obvious a priori
which features actually represent primitives that are encoded in the visual system. Many
neurophysiological experiments have searched for neurons that are tuned to features that
were chosen somewhat arbitrarily based on the intuitions of the experimentalists.

Psychologists, however, have developed behavioral experiments by which feature primi-
tives can be revealed. In particular, a study by Treisman and Gelade (1980) has been partic-
ularly influential. This is probably due to the fact that it is extremely simple to grasp, yet the
pattern of results suggests provocative hypotheses about the nature of perception (e.g., fea-
ture primitives, serial search, etc.).

So what is the visual search and pop-out paradigm that was used in the Treisman study?
Subjects are asked to report the presence or absence of a target stimulus (in this case, a

colored lowercase letter “o”) among various numbers of distracter stimuli. If the distracter

59

stimuli are just of a different color—that is, if they differ by a single feature—you usually
find the “pop-out” effect: the reaction time to detect the target is independent of the number
of distracters. Conversely, if more than one stimulus dimension has to be considered to dis-
tinguish targets and distracters (conjunction search), you typically find a linear relationship
between reaction time and the number of distracters. See Figure 3.1.

As pointed out previously, this pattern of results immediately suggests the existence
of “feature primitives,” fundamental dimensions that organize and govern human per-
ception as well as a serial scanner in the case of conjunction search, where one element
of the stimulus set after the other is considered as a target (and confirmed or discarded).
Often, the ratio of the slopes between conditions where the target is present versus
where the target is absent suggests a search process that self-terminates once the target
is found.

There are many, many potential confounds in this study (luminance, eye movements,
spatial frequency, orientation, etc.). However, the results are extremely robust. Moreover,
the study was rather influential. Hence, we will briefly replicate it here.

3.3. EXERCISES

In this section, we introduce and review some code that will help you to complete the
project assignment in section 3.4. The first thing you need to be able to gather reaction time
measures is a way to measure time. There are different ways to measure time in MATLAB.
One of the most convenient (and, for our purposes, sufficient ones) comes in the form of the
functions tic and toc. They work in conjunction and effectively implement a stopwatch. Try
the following on the command line:

>> tic
>> toc

What is your elapsed time?
The time reported by MATLAB is the time between pressing Enter after the first state-

ment and pressing Enter after the second statement.
Of course, operating in the real physical world, MATLAB also takes some time to execute

the code itself. In most cases, this delay will be negligible. However, you should not take

Conjunction

Pop-out

Set size

R
ea

ct
io

n
tim

e

FIGURE 3.1 The pop-out task.

60 3. VISUAL SEARCH AND POP OUT

this delay for granted. Try it. In other words, write a program (M-file) that contains only the
following lines and execute it:

tic
toc

In my case, toc reported 0.000004 seconds.
You can now create some code to test ifMATLAB takes equal amounts of time to increment an

indexor if it dependson themagnitudeof the index. SoopenanewM-file andenter the following:

format long; %We want to be able to see short differences in time
i = 1; %Initializing the index, i
t = []; %Initializing the matrix in which we will store the times
while i < 11 %Starting loop
tic %Starting stop-watch
i = i + 1; %Incrementing index
t(i,1) = toc ; %Ending stop-watch and putting respective time into the matrix
end % End the loop

Try to run the program. It should execute rather quickly.
Now create a little plot by typing the following on the command line:

>> figure
>> plot (t)

The result should be fairly reproducible but the exact shape of the curve as well as the abso-
lute magnitude of the values depends on the computer and its speed.

The result should look something like that shown in Figure 3.2.

2

2.5

3
� 10–5

1.5

1

0.5

0
21 3 4 5 6 7 8 9 10 11

FIGURE 3.2 Task timing.

613.3. EXERCISES

As you can see, after an initial transient, the time does not depend on the actual value of
the index, unlike most human mental processes (e.g., Shepard and Metzler, 1971). This
could be taken as evidence for a different kind of information processing in man versus
machine.

If you want to know the average time it took for the index to increment, type

>> mean(t)

If you want to know the maximum and minimum times, you can type max(t) or min(t),
respectively.

This example also illustrates several important points. First, when making an inductive
claim about all cases all the time, you should sample a substantial range of the problem
space (complete would be best). In this case, incrementing an index 10 times is not very
impressive. What about incrementing it 100,000 times?

Exercise 3.1: Increment your index 100,000 times. What does the resulting graph look like?

It should look something like the result shown in Figure 3.3.

0.06

0.07

0.05

0.04

0.03

0.02

0.01

0
0 1 2 3 4 5 6 7 8 9 10

�104

0.06

0.05

0.04

0.03

0.02

0.01

0
0 1 2 3 4 5 6 7 8 9 10

�104

FIGURE 3.3 Task timing revisited.

62 3. VISUAL SEARCH AND POP OUT

Hence, we discourage premature conclusions on a scant database. Second, it shows that
while MATLAB inherently takes care of “plumbing issues” such as memory management
or the representation of variables, it cannot avoid the consequences of physical processes.
In other words, they might very well impact the execution of your program. Therefore,
you should always check that the program is doing what you think it is doing. The struc-
ture of the peaks and their robust nature (the subplots are different runs of the program)
indicate that they are reliable and not just random fluctuations, probably induced by
MATLAB having to change the internal representation of the variable t, which takes
longer and longer as it gets larger. This makes sense because MATLAB is shuffling an
increasingly large array around in memory, looking for larger and larger chunks thereof.
Some of the observed spikes in time taken appear to be distributed largely at random,
mostly due to other things going on with the operating system.

Finally, it is a lesson on how to avoid problems like this—namely by preallocating the
size and representation of t in memory, if the final size is known in advance.

Exercise 3.2: Replace the line t ¼ []; with t ¼ zeros(100000,1); to preallocate the size of the

variable in memory. Then run it.

The result should look something like that shown in Figure 3.4.

There are still some issues left, but nowhere near as many as there were before. As you
can see, the problem largely goes away (you should also close all programs other than
MATLAB when running time-sensitive code). Note also the dramatic difference in the time
needed to execute the program. The reason for this is the same—namely memory manage-
ment. Therefore, if you can, always preallocate your variables, particularly when you know
their size in advance and if their size is substantial.

If you’d like to, you can save this data (stored in the t variable) by clicking on the File
menu from the MATLAB command window and then clicking on the Save workspace as
entry. You can give your file any name you like. Later, you can import the data by clicking
on Open in the File menu from the MATLAB command window (not the editor). Try this
now. Save your workspace, clear it with clear all, and then open it again.

0.06

0.04

0.02

0
0 1 2 3 4 5 6 7 8 9 10

�104

FIGURE 3.4 Problem solved. Mostly.

633.3. EXERCISES

You can also use the tic-toc stopwatch to check on MATLAB. For example, the following
code is supposed to check (use anotherM-file) whetherMATLAB really takes a 0.5 second break:

tic %Start stopwatch
pause (0.5) %Take a 0.5(?) second break
toc %End stop-watch

By running this program several times, you can get a sense of accuracy and variance
(precision) within internal timers in MATLAB. So much for time and timing.

What is still missing at this point is a way to handle random events. In the design of
experiments, randomness is your friend. Ideally, you want everything that you don’t vary
systematically to behave randomly (effectively controlling all other variables, including
unknown variables and unknown relations between them).

You encountered the random number generator earlier. Now you can utilize it more sys-
tematically. This time, it will be enough to generate random numbers with a uniform distri-
bution. This is achieved by using the function rand(). Remember that the function randn()
will generate random numbers drawn from a normal distribution. Conversely, rand()
draws from a uniform distribution between 0 and 1. This distinction is important to know,
since you can use this knowledge to create two events that are equally likely. Now start a
new M-file and add the following code:

a = rand(1,1) %Creates a random number and assigns it to the variable a
if a > 0.5 %Check if a is larger than "0.5"
b = 1 %We assign the value "1" to the variable b
else %If not,
b = 0 % We assign the value "0" to the variable b
end %End the condition check

Run this code a couple of times and see whether different random values are created
every time. Note that this is a rather awkward—but viable—way to create integral random
numbers. Recent versions of MATLAB include a new function randi, which draws from a
uniform discrete distribution. For example, the command randi(2,30,1) yields a single col-
umn vector with 30 elements randomly drawn to be 1 or 2. This new function is a good
example of how innovation in MATLAB versions makes previously accepted ways of doing
things (such as generating discrete random numbers) obsolete. The old way still works, but
the new one is much more elegant.

Next, we will introduce several functions and concepts that will come in handy when
you are creating your program for the project in Section 3.4. The first is the concept of
handles. A handle typically pertains to an object or a figure, for our purposes.

It is simply declared as follows:

h = figure

This creates a figure with the handle h. Of course, the name can be anything. Just be sure to
remember which handle refers to which figure:

thiscanbeanything = figure

This creates the handles as variables in the workspace. You can check this by typing whos
or simply by looking in the workspace window.

64 3. VISUAL SEARCH AND POP OUT

Handles are extremely useful. They literally give you a handle on things. They are the
embodiment of empowerment.

Of course, you probably don’t see that yet because handles are relatively useless without
two functions that go hand in hand with the use handles. These functions are get and set.

The get function gives you information about the properties that the handle currently
controls as well as the values of these properties. Try it. Type get(h).

You should get a long list of figure properties because you linked the handle h to a par-
ticular figure earlier. These are the properties of the figure that you can control. This capa-
bility is extremely helpful and implemented via the set function.

Let’s say you don’t like the fact that the pointer in your figure is an arrow. For whatever
reasons you have, you would like it to be a cross-hair. Can you guess which figure property
[revealed by get(h)] controls this? Try this:

set(h, 'Pointer', 'crosshair')

How do you know which property takes which values? That is something that you can
find in the MATLAB help, under Figure properties. Don’t be discouraged about this. It is
always better to check. For example, Mathworks recently eliminated the former figure
property “fullcrosshairs” and renamed it “fullcross”.

Of course, some of the values can be guessed, such as the values taken by the property
visible—namely on and off. This also illustrates that the control over a figure with pointers
is tremendous.

Try set (h,'visible','off') and see what happens. Make sure to put character but not num-
ber values between ‘ ’.

Of course, handles don’t just pertain to figures; they also pertain to objects. Make the fig-
ure visible again and put some objects into it.

An object that you will need later is text. So try this:

g = text (0.5, 0.5, 'This is pretty cool')

If you did everything correct, text should have appeared in the middle of your figure. Text
takes at least three properties: x-position, y-position, and the actual text.

But those are not all the properties of text. Try get(g) to figure out what you can do.
It turns out, you can do a lot. For example, you can change color and size of the text:

set(g,'color','r', 'fontsize', 20)

Also, note that this object now appears as a “child” of the figure h, which you can check
with the usual method.

Now you should have enough control over your figures and objects to complete the proj-
ect in Section 3.4.

Finally, you need a way for the user (i.e., the subject or participant of the experiment) to
interact with the program. You can use the pause function, which waits for the user to press
a key before continuing execution of the program. In addition, the program needs to iden-
tify the key press.

So type this:

pause %Waiting for single key press
h725 = get(h,'CurrentCharacter')

653.3. EXERCISES

The variable h725 should contain the character with which you overcame pause. Interest-
ingly enough, it is a figure property that allows to retrieve the typed character in this case,
but that is one of the idiosyncrasies of MATLAB. Be sure to do this within an m-file.

Another function you will need (to be able to analyze the collected data) is corrcoef. It
returns the Pearson correlation between two variables, e.g.,

a = rand(100,2); %Creates 2 columns of 100 random values each, puts it in variable a
b = corrcoef(a(:,1),a(:,2)); %Calculates the Pearson correlation between the two columns

In my case, MATLAB returns a value close to 0, which is good because it shows
that the random number calculator is doing a reasonable job only if we already assume
that we know what the random generator is doing.

b =
1.0000 0.0061
0.0061 1.0000

Corrcoef as a function can also take several parameters:

[magnitude, p] = corrcoef(a(:,1),a(:,2)) %Same as before, but asking for significance

magnitude =

1.0000 0.0061
0.0061 1.0000

p =

1.0000 0.9522
0.9522 1.0000

According to MATLAB, there is a probability of 0.95 that the observed values were
obtained by chance alone (which is, of course, the case). Hence, you can conclude that the
correlation is not significant.

By convention, correlations with p values below 0.05 are called “significant.”
The final function concerns checking of the equality of variables. You can check the

equality of numbers simply by typing == (two equal signs in a row):

>> 5 == 6
ans =

0

>> 5 == 5
ans =

1

Since MATLAB 7, this technique is also valid for checking the equality of characters; Try
this:

>> var1 = 'a'; var2 = 'b'; var1 == var2
>> var1 == var1

66 3. VISUAL SEARCH AND POP OUT

The more conventional way to check the equality of characters is to use the strcmp
function:

>>strcmp(var1,var2)
>>strcmp(var2,var2)

Together with your knowledge from Chapter 2, "MATLAB Tutorial," you now have all
the necessary tools to create a useful experimental program for data collection.

3.4. PROJECT

Your project is to implement the visual search paradigm described in the preceding sec-
tions in MATLAB. Specifically, you should perform the following:

• Show two conditions (pop-out search versus conjunction search) with four levels each
(set size ¼ 4, 8, 12, 16). These conditions can be blocked (first all pop-out searches, then
all conjunction searches or something like that).

• It is imperative to randomly interleave trials with and without target. There should be an
equal number of trials with and without targets.

• Make sure that the number of green and red stimuli (if you are red/green blind, use blue
and red) is balanced in the conjunction search (it should be 50%/50%). Also, make sure
that there is an equal number of x and o elements, if possible.

• Use only correct trials (subject indicated no target present when no target was presented
or indicated target present when it was present) for the analysis.

• Try to be as quick as possible while making sure to be right. It would be suboptimal if
you had a speed/accuracy trade-off in your data.

• The analysis should contain at least 20 correct trials per level and condition for a total of
160 trials. They should go quickly (about 1 second each).

• Pick two keys on the keyboard to indicate responses (one for target present, one for
target absent).

• Report and graph the mean reaction times for correct trials as a function of pop-out
search versus conjunction search and for trials where the target is present versus where
the target is absent. Hence, you need between two and four figures. You can combine
graphs for comparison (see below).

• Report the Pearson correlation coefficients between reaction time and set size and
indicate whether it is significant or not (for each condition).

• Make a qualitative assessment of the slopes in the different conditions (we will talk about
curve fitting in a later chapter.

Hints:

• Start writing one trial and make sure it works properly.
• Be aware that you effectively have an experimental design with three factors [Set size:

4 levels (4, 8, 12, 16), conjunction versus feature search: 2 levels, target present versus
absent: 2 levels). It might make sense to block the first two factors and randomize the
last one.

673.4. PROJECT

• Be sure to place the targets and distracters randomly.
• Start by creating a figure.
• Each trial will essentially consist of newly presented, randomly placed text.
• Be sure to make the figure big enough to see it clearly.
• Make sure to make the text vanish before the beginning of the next trial.
• Your display should look something like Figure 3.5.
• Determine reaction time by measuring time from appearance of target to user

reaction.
• Elicit the key press and compare with the expected (correct) press to obtain a value for

right and wrong answers.
• Put it into a matrix, depending on condition. It’s probably best to have as many matrices

as conditions.
• Plot it.
• Write a big loop that goes through trials. Do this at the very end, if individual trials work.
• You might want to have a start screen before the first trial, so as not to bias the times of

the first few trials.
• If you can’t do everything at once, focus on subgoals. Implement one function after the

other. Start with two conditions.
• Figure 3.6 shows one of the exemplary result plots from a subject. Depicted is the

relationship between mean reaction time and set size for trials where a target is present
(only correct trials). Red: Conjunction search. Blue: Pop-out search. Pearson r for
conjunction search in the data above: 0.97.

0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FIGURE 3.5 The display.

68 3. VISUAL SEARCH AND POP OUT

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS
COVERED IN THIS CHAPTER

clear all
tic
toc
mean
min
max
pause
rand
randi
==
strcmp
whos
get
set
text
corrcoef
pointer
fullcrosshair
visible
fontsize
CurrentCharacter

4
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

8 12
Set size

R
T

16

FIGURE 3.6 Typical results.

69MATLAB FUNCTIONS, COMMANDS, AND OPERATORS COVERED IN THIS CHAPTER

This page intentionally left blank

C H A P T E R

4

Attention

4.1. GOALS OF THIS CHAPTER

The primary goals of this chapter are to consolidate and generalize what you learned in
Chapter 3, “Visual Search and Pop Out,” about data collection in the MATLABW software.
Moreover, wewill elaborate on data analysis inMATLAB beyond simple correlations. Youwill
also learn how reaction time data can be used to infer the mental process of spatial attention.

4.2. BACKGROUND

As the famous American psychologist James pointed out over 100 year ago, we all have a
strong intuition what attention is:

Everyone knowswhat attention is. It is the taking possession by the mind, in clear and vivid form, of one out
of what seem several simultaneously possible objects or trains of thought. Focalization, concentration of con-
sciousness are of its essence. It implies withdrawal from some things in order to deal effectively with others,
and is a condition which has a real opposite in the confused, dazed, scatterbrained state. . . . (James, 1890, p. 403)

The idea of attention as a process by which mental resources can be concentrated or
focused continues to pervade thinking in the scientific study of attention. Psychologists
and neuroscientists have divided the concept into three different forms: space-based,
object-based, and feature-based attention. In this chapter, we will focus on spatial attention.
Helmholtz (1867) was one of the first experimentalists to demonstrate that one could covertly
(i.e., by holding the eyes fixed) shift one’s attention to one part of space prior to presentation
of a long list of characters. He found that one could more effectively recollect the characters
within the region of space to which the “attentional search light” was shifted.

In themodern study of attention, the Posner paradigm (Posner, 1980) has been particularly
influential. This is likely owed to the fact that it is extremely simple to grasp, yet the pattern of
results has potentially far-reaching implications for our understanding of spatial attention
in mind and brain. In particular, this paradigm has been used to quantify the attentional

71

deficits in patients with parietal-lobe damage (i.e., parietal hemi-neglect syndrome), leading
to the theory that spatial attentional mechanisms may be localized in the parietal cortex.

4.2.1. So What Is the Posner Paradigm?

In the study of the Posner paradigm, subjects are asked to fixate in the center of the screen
and not to break fixation for the duration of the trial. Then, a location on the screen is cued in
some way (usually by highlighting or flashing something). After the cue, a target appears in
either the cued location or in another location. Subjects are instructed to press a key as soon
as they see the target. Figure 4.1 provides a schematic illustration of the paradigm:

Posner (1984) found that if the cue is valid, reaction time was substantially lower than if
it was invalid. He interpreted this in terms of an “attentional spotlight” that is focused on a
certain region in space and permanently shifting at a finite and measurable speed.

4.3. EXERCISES

Most of the functions needed to write software that allows you to gather reaction time
data were already introduced in Chapter 3, “Visual Search and Pop Out.” This time, we will
introduce some functions that allow you to generalize the kinds of conditions in which such
data are collected. To this end, we introduce another drawing function, rectangle, that will
come in handy when creating your program in Section 4.4.

Try this code:

figure %Create a new figure
xlim([0 1]) %Set the range of values on the x-axis to (0 to 1)
ylim([0 1]) %Set the range of values on the y-axis to (0 to 1)
rectangle('Position', [0.2 0.6 0.5 0.2]) %Create a rectangle at the x-position 0.2, y-position

%0.6 with an x-width of 0.5 and a y-height of 0.2

If you declare rectangle with a handle, you can change all properties of the rectangle. Try
it. Rectangles have some interesting properties that can be changed.

Space

T
im

e

Valid trial Invalid trial

FIGURE 4.1 The Posner paradigm.

72 4. ATTENTION

Regardingdata analysis, themost important functionwecan introduceat this point is the t-test.
MATLAB uses ttest2 to test the hypothesis that there is a difference in the mean of two indepen-
dent samples.

Consider this:

A = rand(100,1); %Create a matrix A with 100 random elements in one column
B = rand(100,1); %Create a matrix B with 100 random elements in one column
[significant,p] = ttest2(A,B)

MATLAB should have returned:

significant = 0
p = 0.6689

This means that the null hypothesis was kept because you failed to reject it. You failed to
reject it because the observed difference in means (given the null hypothesis is true) had a
probability of about 0.67, which is far too high to reject the null hypothesis. This is what you
should expect if the random number generator works. Now try this test:

B = B .* 2;
[significant,p] = ttest2(A,B)

significant = 1
p = 3.3467e-013

Now, the null hypothesis is rejected. As a matter of fact, the p-value is miniscule.
Note on seeding the random number generator: If you use the rand() function just as is,

the SAME sequence of pseudorandom numbers will be generated each session. You can
avoid this by seeding it first like this: rand(‘state’,number). It is important to note that
the “random number generator” does no such thing. As a matter of fact, all numbers gen-
erated are perfectly deterministic, given the same seed number. We don’t want to go on a
tangent why this has to be the case or how to avoid this by relying on a genuinely random
(at least as far as we can tell) natural process (such as radioactive decay). As long as you
pick a different number as a seed each time, you should be fine, for all common intents
and purposes. Hence, it is popular to make the number after the state argument dependent
on the cpu-clock. In old versions of MATLAB (e.g. 7.04), this could be done as follows:

rand('state', sum(100*clock))

New versions of MATLAB (e.g. 7.7) rely on a very different system. Namely the notion of a
random number stream that underlies rand, randn and randi. This random number stream is
implemented as randstream.

To seed the generator in new versions of MATLAB, things are more complicated but also
more versatile.

First type
RandStream.list
to get a list of available pseudorandom number generation methods. Mersenne twister
with Mersenne prime 2^19937-1 sounds appealing.
Now type

s = Randstream('mt19937ar', 'seed', sum(100*clock))

734.3. EXERCISES

Note the value of “Seed”
Now type

RandStream.setDefaultStream(s);

These changes are due to the fact thatMATLAB is becoming increasingly object oriented.We
are now handling Randstream “objects”. Expect to see more of this in the future. For the project
in Section 4.4, it might be useful to know at least one other comman data analysis function,
namelyANOVA (analysis of variance). ANOVA generalizes the case of a two-sample t-test
to many samples. For the purposes of this chapter, a one-way ANOVA will be sufficient:

A = rand(100,5); %Generating 5 levels with 100 repetitions each.
anova1(A); %Do a one-way balanced ANOVA.

In this case, there were no significant differences, as revealed by Table 4.1 and Figure 4.2.
Now try this:

B = meshgrid(1:100); %Generate a large meshgrid
B = B(:,1:5); %We only need the first five columns

TABLE 4.1 ANOVA Table 1

Source SS df MS F Prob>F

Columns 0.288 4 0.072 0.81 0.5221

Error 44.2525 495 0.0894

Total 44.5405 499

1

0

0.1

0.2

0.3

0.4

0.5

V
al

ue
s

0.6

0.7

0.8

0.9

1

2 3
Column number

4 5

FIGURE 4.2 N.S.

74 4. ATTENTION

A = A .* B; %Multiply!
anova1(A); %Doing the one-way balanced ANOVA again

This time, there can be no doubt that there is a positive trend, as you can see in Table 4.2
and Figure 4.3.

The anova1 function assumes that different samples are stored in different columns and
that different rows represent different observations in the same sample.

Note that anova1 assumes that there is an equal number of observations in each sample.
For more generalized ANOVAs or unequal samples, see anova2 or anovan. Their syntax is
very similar. This, however, should not be necessary for the following project.

4.4. PROJECT

For this project, your task is to replicate a generalized version of the Posner paradigm. In
essence, you will measure the speed of the “attentional spotlight” in the vertical versus

1

0

0.5

1

1.5

2

2.5

V
al

ue
s

3

3.5

4

4.5

5

2 3
Column number

4 5

FIGURE 4.3 An effect.

TABLE 4.2 ANOVA Table 2

Source SS df MS F Prob>F

Columns 207.519 4 51.8797 50.39 0

Error 509.66 495 1.0296

Total 717.179 499

754.4. PROJECT

horizontal directions. You need to create a program that allows you to gather data on reac-
tion times in the Posner paradigm as described in the preceding sections. Most of the par-
ticular implementation is up to you (the nature of the cue, specific distances, etc.). However,
be sure to implement the following:

• Cue and target must appear in one of 16 possible positions. See, for example,
Figure 4.4.

• Make sure you have an equal number of valid and invalid trials. [If the trial is valid, the
target should appear in the position of the cue. If the trial is invalid, the target position
should be picked randomly (minus 1, the position of the cue).]

• Choose two temporal delays between cue and target: 100 ms and 300 ms. Make the delay
an experimental condition.

• Collect data from 80 trials per spatial location of the cue (so that you have 20 for each
combination of conditions: Valid/invalid, delay1/delay2). This makes for a total of 1280
trials. But they will go very, very quickly in this paradigm.

• Make sure that the picking of condition (valid/invalid, delay1/delay2, spatial location of
cue) is random.

After collecting the data, answer the following questions:

1. Is there a difference in reaction times for valid versus invalid trials? (t-test)
2. Is there a difference in reaction times for different delays? (t-test)
3. Does the distance between target and cue matter? For this, use only invalid trials and

plot reaction time as a function of
a. Total distance of cue and target
b. Horizontal distance of cue and target
c. Vertical distance of cue and target

4. Related to this: Is there a qualitative difference in the slope of these lines? Is the scanner
faster in one dimension than the other?

5. What is the speed of the attentional scanner? How many (unit of your choice, could be
inches) does it shift per millisecond?

Cue phase

Valid trial

Target phase

Cue phase

Invalid trial

Target phase

FIGURE 4.4 Valid and invalid trials.

76 4. ATTENTION

Implement the project in MATLAB and answer the preceding questions. Illustrate with
figures where appropriate.

*If you are adventurous: Use anova2 or anovan to look for interaction effects between
type of trial (valid/invalid, delay and spatial location of cue).

Hints:

• Start writing one trial and make sure it works properly.
• Be aware that you effectively have an experimental design with three factors: Cue

position (16 levels), trial type (2 levels), and temporal delay (2 levels). However, you can
break it up into four factors: Horizontal cue position (4 levels), Vertical cue position
(4 levels), trial type (2 levels), and temporal delay (2 levels), which will make it easier to
assess the x- versus y-speed of the scanner.

• If you can’t produce a proper cue, try reviewing object handles (in figures).
• Write a big loop that goes through trials. Do this at the very end, if individual trials

work.
• If you can’t do everything, focus on subgoals. Implement one function after the other.

Start with two conditions. If you are not able to implement all eight conditions, try to get
as far as you can.

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS
COVERED IN THIS CHAPTER

randstream
rectangle
ttest2
state
clock
anova1

77MATLAB FUNCTIONS, COMMANDS, AND OPERATORS COVERED IN THIS CHAPTER

This page intentionally left blank

C H A P T E R

5

Psychophysics

5.1. GOALS OF THIS CHAPTER

In this chapter, you will learn how to use the MATLABW software to do psychophysics.
Once you master these fundamentals, you can use MATLAB to address any psychophysical
question that might come to mind. While—in principle—all sensory modalities are open to
psychophysical investigation, we will focus on visual psychophysics in this chapter.

5.2. BACKGROUND

Psychophysics deals with the nature of the quantitative relationship between physical
and mental qualities. Today, the practice of psychophysics is ubiquitous in all fields of neu-
roscience that involve the study of behaving organisms, be they man or beast. Curiously
enough, the origins of systematic psychophysics can be traced to a single individual: Gustav
Theodor Fechner (1801–1887). Fechner’s biography exhibits many telling idiosyncrasies.
Born as the son of a pastor, he studied medicine at the University of Leipzig, but never
practiced it after receiving his degree. Mostly by virtue of translating chemistry and physics
textbooks from French into German, he was appointed professor of physics at the Univer-
sity of Leipzig. In the course of studying afterimages by gazing into the sun for extended
periods of time—himself being the primary and sole subject—he almost lost his eyesight
and went into deep depression in the early 1840s. This episode lasted for nearly a decade,
a time which Fechner spent mostly within a darkened room. Emerging from this secluded
state, he was overwhelmed by the sheer brilliant radiance of his surroundings, giving rise to
his panpsychist worldview: he was now utterly certain that all things have souls, including
inanimate objects such as plants and stones. Determined to share his insights with the rest
of humanity, he soon started publishing on the topic, formulating an “identity theory”
stating that the physical world and the spiritual world are not separate entities, but actually
the same—the apparent differences resulting from different perspectives (first versus third
person) onto the same object. In his view, this reconciles the incompatible dominant

79

philosophical worldviews of the 19th century: idealism and materialism. However, his phil-
osophical treatises on subjects such as the soul-life of plants or the transcendence of mate-
rialism were poorly received by the scientific community of the day. In order to convince
his colleagues of the validity of his philosophical notions, he set out to devise methods that
would allow him to empirically link physical and spiritual realms. His rationale being that
if it can be shown that mental and physical qualities are in a clear functional relationship,
this would lead credence to the notion that they are actually metaphysically identical.

Publishing the results of empirical studies on the topic in his Foundations of Psychophysics
in 1860, he showed that this is the case for several mental domains, such as the relationship
between physical mass and the perception of heaviness or weight. Fechner formulated sev-
eral methods to arrive at these results that are still in use today. Importantly, he expressed
the results of his investigations in mathematical, functional terms. This allowed the theoret-
ical interpretation of his findings. Doing so, he introduced notions such as sensory thresh-
olds quantitatively.

Ironically, inventing psychophysics did not help Fechner in convincing his philosophical
adversaries of the merits of his identity theory. Few philosophers of the day renounced their
idealistic or materialistic positions in favor of identity theory. Most of them simply chose to
ignore Fechner, while the others mainly attacked him. Consequently, Fechner spent much of
the remainder of his life fighting these real or imaginary adversaries, publishing two follow-
up volumes in 1877 and 1882, chiefly focusing on the increasingly bitter struggle against the
philosophical establishment of Imperial Germany. Ultimately, these efforts had little tangi-
ble or lasting impact. Meanwhile, the first experimental psychologists, particularly the group
around Wundt, pragmatically used these very same methods to create a psychology that
was both experimental and empirical. It is not to bold to claim that they never stopped
and that contemporary psychophysics derives in an unbroken line from these very roots.

FIGURE 5.1 Gustav Theodor Fechner (1801–1887).

80 5. PSYCHOPHYSICS

The key to visual psychophysics (and psychophysics more generally) is to elicit relatively
simple mental phenomena that lend themselves to quantification by presenting physical
stimuli that are easily described by just a few parameters such as luminance, contrast, or
spatial frequency.

It is imperative that the experimenter has complete control over these parameters. In
other words, the visual stimuli that he or she is presenting have to be precise. One way
to create these stimuli is to use commercially available graphics editors, most prominently
PhotoshopW. While this practice is very common, it comes at a cost. For example, the images
created by Photoshop have to be imported by the experimental control software. It is more
elegant to create the stimuli in the same environment in which they are used. More impor-
tantly, the experimenter surrenders some degree of control over the created stimuli, when
using commercial graphics editors, because the proprietary algorithms to perform certain
image functions are not always completely documented or disclosed. This problem is
equally avoided by creating the stimuli in a controlled way within MATLAB.

5.3. EXERCISES

We need to introduce methods by which to create and present visual stimuli of any kind
on the screen. Fortunately, MATLAB includes a large library of adequate functions. We will
introduce the most important ones here.

By default, MATLAB visualizes images by assuming triples in a 256-element RGB space.
Each element of the triplet has to be an integral value between 0 and 255. This corresponds
to a range of 8 bit. Hence, these elements can be represented by variables of the type uint8.
These values correspond to the intensity of red, green, and blue at a particular location in
the image. Depending on the physical output device (typically cathode ray tube or LCD dis-
plays), these values effectively regulate the voltage of individual ray guns or pixels. Of
course, MATLAB also supports much higher bit-depths. For the purposes of our discussion,
8 bit will suffice.

One important caveat is that the relationship between the assigned voltage values of the
three individual ray guns in the cathode ray tube (0 to 255) and the perceived luminance of
the screen is not necessarily linear. Visual scientists generally calibrate their monitors by
“gamma correcting” them. This linearizes the relationship between assigned voltage or
intensity values and the perceived luminance.

To be able to linearize the relationship, you need a photometer. Because we assume that
those are—due to their generally high price—not readily available, we will forgo this step
for the purposes of this book. However, we urge budding visual scientists to properly cali-
brate their monitors before doing an experiment in which the veracity of the data is cru-
cial—as is the case if they are intended for publication. For more information on the issue
of monitor calibration, see for example Carpenter & Robson (1999).

To begin, create a simple matrix with the following command:

>> test_disp = uint8(zeros(3,3,3))

This command creates the matrix test_disp, which is a three-dimensional matrix with three
elements in each dimension. Importantly, it is of the data type uint8, which MATLAB

815.3. EXERCISES

assumes by default for its imaging routines. Of course, the function image can also image
other matrices, but this would require to specify additional parameters. Imaging only matri-
ces of the type uint8 is the most straightforward thing to do for the purposes of this chapter.

Now type the following:

>> figure
>> subplot(2,2,1)
>> image(test_disp)

The function image compels MATLAB to interpret the values in the matrix as commands
for the ray guns of the monitor and to display them on the screen. You should now be
looking at a completely and uniformly dark (black) subplot 1.

Now, type the following:

>> test_disp(2,2,:) = 255
>> subplot(2,2,2)
>> image(test_disp)

The structure of the matrix and the function of the image command now become apparent.
The 0 values are interpreted as turning off all ray guns. The 255 values are interpreted as

full power. As you maximally engage all three guns (represented by the third dimension of
the matrix), the result is an additive mix of spectral information that is interpreted by the
visual system as white. This need not be the case. Now, try this:

>> subplot(2,2,3)
>> test_disp(2,2,1) = 0
>> image(test_disp)

The picture in subplot 2 is devoid of color from the red gun. It should appear cyan. Now
try the following:

>> test_disp(2,2,:) = 0
>> test_disp(2,2,1) = 255
>> subplot(2,2,4)
>> image(test_disp)

This code has the opposite effect, yielding a red inner pixel. The result should look some-
thing like Figure 5.2.

Suggestion for Exploration: Can you create arbitrary other colors? Can you create arbitrary

shapes?

While it is hard to surpass this example of using just 9 pixels in clarity, it is also some-
what pedestrian. The true power of this approach becomes clear when considering natural
stimuli, which are also increasingly used in visual psychophysics. To do this, you need to
import an image into MATLAB. For this example, use the imread function:

>> temp = imread('UofC.jpg')

82 5. PSYCHOPHYSICS

This command creates a large three-dimensional matrix of the uint8 type (positive integral
values from 0 to 255, as can be addressed by 8 bits).

Next, type the following to get a magnificent view of the Harper Library at the Univer-
sity of Chicago:

>> figure
>> subplot(2,2,1)
>> image(temp)

Now, you can manipulate this image in any way, shape, or form. Importantly, you will know
exactly what you are doing, since you are the one doing it, which cannot be said for most
of the opaque algorithms of image processing software. For example, you can separate the
information in different color channels by typing the following:

>> for i = 1:3
>> bigmatrix(:,:,:,i) = zeros(size(temp,1),size(temp,2),3);
>> bigmatrix(:,:,i,i) = temp(:,:,i);
>> subplot(2,2,i+1)
>> upazila = uint8(bigmatrix(:,:,:,i));
>> image(upazila)
>> end

You get the picture shown in Figure 5.3 as a result.

0.5

1

1.5

2

2.5

3

3.5

0.5

1

1.5

2

2.5

3

3.5

0.5

1

1.5

2

2.5

3

3.5

0.5

1

1.5

2

2.5

3

3.5

1 2 3

1 2 3

1 2 3

1 2 3

FIGURE 5.2 Testing the ray guns with matrices interpreted as images.

835.3. EXERCISES

Suggestion for Exploration: Can you find the MATLAB “Easter eggs”? MATLAB once had a

large number of those. Most of them have been removed by now. Some of them remain. One of

them concerns the image function. If you type image without any arguments, the creepy

“MATLAB Ghost” appears in your figure. Another remaining easter egg concerns the spy func-

tion, a function to visualize the structure of sparse matrices. Try it without arguments as well.

Note the use of theupazila helper variable. Youhave to use this becauseMATLAB interprets
non-3D-uint8matrices differently when presenting images. Later you will learn how to make
do without the upazila step. The different subplots illustrate the brightness values assigned
to an individual ray gun (Upper left: all of them together. Upper right: red. Lower left: green.
Lower right: blue). For technical reasons, we reproduce all images in grayscale in this chapter.
For full color, see the insertwith color panels. This allows you to assess the contribution of every
single channel (red/green/blue) to the image.Anotherwayof judging the impact of a particular
channel is to leave it out. To do this, you add the other channels together, as follows:

>> bigmatrix2(:,:,:,1) = bigmatrix(:,:,:,1)+bigmatrix(:,:,:,2)+bigmatrix(:,:,:,3);
>> bigmatrix2(:,:,:,2) = bigmatrix(:,:,:,1)+bigmatrix(:,:,:,2);
>> bigmatrix2(:,:,:,3) = bigmatrix(:,:,:,1)+bigmatrix(:,:,:,3);
>> bigmatrix2(:,:,:,4) = bigmatrix(:,:,:,2)+bigmatrix(:,:,:,3);

>> figure
>> for i = 1:4

200 400 600 800 1000

200 400 600 800 1000 200 400 600 800 1000

200 400 600 800 1000

200

400

600

800

200

400

600

800

200

400

600

800

200

400

600

800

FIGURE 5.3 The University of Chicago Harper Library in red, green, and blue.

84 5. PSYCHOPHYSICS

>> subplot(2,2,i)
>> image(uint8(bigmatrix2(:,:,:,i)))
>> end

Doing so should yield the picture shown in Figure 5.4.
In this figure, the upper left is all channels. In the upper right, the blue channel is miss-

ing. In the lower left, the green channel is missing. In the lower right, the red channel is
missing. Belaboring this point enhances an understanding of the relationship between the
brightness values in the three-dimensional matrix and the appearance of the image.

Suggestion for Exploration: Find out what the Matlab upazila actually is.

You are now in a position to implement arbitrary changes to the image. For example, you
can brighten it, increase the contrast, or selectively change the color balance. To explore this,
start by changing the overall brightness by typing the following:

>> figure
>> subplot(2,2,1)
>> image(uint8(bigmatrix2(:,:,:,1)))
>> subplot(2,2,2)
>> image(uint8(bigmatrix2(:,:,:,1)+50))
>> subplot(2,2,3)

200 400 600 800 1000

200 400 600 800 1000 200 400 600 800 1000

200 400 600 800 1000

200

400

600

800

200

400

600

800

200

400

600

800

200

400

600

800

FIGURE 5.4 The University of Chicago Harper Library without red, green, and blue information.

855.3. EXERCISES

>> image(uint8(bigmatrix2(:,:,:,1)-50))
>> subplot(2,2,4)
>> bigmatrix2(:,:,1,1) = bigmatrix2(:,:,1,1) + 100;
>> image(uint8(bigmatrix2(:,:,:,1)))

The result, shown in Figure 5.5, is a picture that has been somewhat brightened (upper right),
darkened (lower left), and where the red channel has been turned (way) up in the lower right.

Suggestion for Exploration: Increase the contrast of the image. Also try to image matrices

that are not of the type uint8.

One of the most common image manipulations using image editors is the smoothing or
sharpening of the image. The former is often performed to get rid of random noise or gran-
ularities in the image. Scientists might do this to simulate and understand the output of the
visual system of another species. Importantly, these ends are typically achieved by low- or
high-pass filtering of the original image. Unfortunately, most users don’t really understand
what is happening behind the scenes when using a commercially available image editor.
Of course, this is unacceptable for doing psychophysics in particular or science in general.

Hence, we will now discuss how to perform these operations in MATLAB. First, import
another image by typing the following. This image is more suited to making the effects of
your manipulations more readily apparent.

200 400 600 800 1000

200 400 600 800 1000 200 400 600 800 1000

200 400 600 800 1000

200

400

600

800

200

400

600

800

200

400

600

800

200

400

600

800

FIGURE 5.5 Brightening and darkening any or all ray guns has a profound effect.

86 5. PSYCHOPHYSICS

>> pic = imread('filtering.jpg')
>> figure
>> subplot(2,2,1)

Look at the image. So far, so good. Now, slightly blur the image. To do so, you will con-
volve the image with a filter. Refer to Chapter 10, "Convolution," to understand precisely
the underlying mathematics of the operation. For purposes of this example, it is enough
to understand that the convolution operation will allow you to blur the image by blending
brightness values of adjacent pixels. To create a small 3�3 filter, you type

>> filter = ones(3,3)

then

>> lp3 = convn(pic,filter)

to perform the convolution of the image with the 3�3 filter. You might have noted that the
values are no longer in the range between 0 and 255. This is due to themultiplying and adding
brought about by the convolution. Next, divide by the block size (9) to rectify this situation:

>> lp3 = lp3./9;

This operation creates floating-point values, so you have to be careful when imaging this:

>> subplot(2,2,2)
>> image(uint8(lp3))

This code creates a very slightly low-pass filtered version of the image. This result is most
readily apparent when you look at the texture of the hat or hair in the image. Now, try a
more radical low-pass filtering:

>> filter = ones(25,25)
>> lp25 = convn(pic,filter)
>> lp25 = lp25./625;
>> subplot(2,2,3)
>> image(uint8(lp25))

Looking at the image reveals a significant blurring. This is the low-frequency component
of the image. It is similar to what a typical nocturnal animal with a relatively poor spatial
acuity might see (sans the color). You arrive at the image by blurring a substantial number
of pixels together.

Suggestion for Exploration: What happens if you use ever larger filters?

Note that the matrices you created with the convolution operation are slightly larger than
the one that represents the initial picture (which had a format of 600�800). This is due to the
nature of the convolution operation. It creates an artificial black rim not present in the original
picture. You will understand why this happens and why this is a hard problem when reading
chapter 10. For now, and to (mostly) get rid of it and cut the image back to size, try the following:

875.3. EXERCISES

>> lp25cor = lp25(13:612,13:812,:);

You might also have noted that the execution of the convolution operation took a signifi-
cant amount of time. This might be important if you want to create your stimuli on the fly,
as the subject does the experiment. To assess how your system stacks up against certain
known benchmarks, type this command:

>> bench

Doing so makes MATLAB perform various typical operations and compare the speed
of their execution to other benchmark systems. This is particularly crucial when you’re
running a time-sensitive program. Don’t be surprised when receiving rather low bench-
mark values, particularly when running MATLAB over a network, despite basically fast
hardware. To evaluate the reliability of the benchmark values, try running bench more
than once.

Let’s get back to the filtering problem. The image in the lower left corresponds to what
psychophysicists would call the “low spatial frequency” channel. It contains the low spatial
frequency information in the image. Notably, it is mostly devoid of sharp edges. This infor-
mation about edges in the image is contained in the “high spatial frequency” channel. How
do you get there? By subtracting the low spatial frequency information from the original
image. Try this:

>> subplot(2,2,4)
>> hp = pic-uint8(lp25cor);
>> image(hp)

The image in the lower right now contains the high spatial frequency information. It repre-
sents most of the textures and sharp edges in the original image.

Unfortunately, it is rather dark (due to the subtraction). To appreciate the full high spa-
tial frequency information, add a neutral brightness level back in:

>> hp = hp+127;
>> image(hp)

Much better. The final result should look something like that shown in Figure 5.6.

Exercise 5.1: Use the information in the high spatial frequency channel to sharpen (enhance

the edges) of the original image.

We have discussed a variety of image manipulations with MATLAB, namely the manip-
ulation of form, color, and spatial frequency. One remaining major issue is the creation of
moving stimuli. There are many ways to do this in MATLAB. One of the most straightfor-
ward is to use the circshift function in combination with a frame capture function.

To use this function, type the following:

>> figure
>> pic3 = circshift(pic,[100 0 0]);
>> image(pic3)

88 5. PSYCHOPHYSICS

The circshift function shifts all matrix values by the stated amount in the second argu-
ment—in this case, 100 in the direction of the first dimension, nothing in the others.

You can use this to create a movie:

>> figure
>> pic4 = pic;
>> for i = 1:size(pic4,1)/10+1
>> image(pic4)
>> pic4 = circshift(pic4,[10 0 0]);
>> M(i) = getframe;
>> end

There are other ways to create movie frames, for example, using the im2frame function.
However, this version lets you preview the movie as you create it. You can play it by typing

>> movie(M,3,24)

This commandplays themovie inmatrixM three times, at 24 frames per second, in the existing
figure.One caveat formovies is size inmemory. These frames take upa considerable amount of
space. Youmight get an errormessage indicating that the frames could not be created if you go
beyond the availablememory. The available memory depends on the computer and operating
system. To assess the memory situation on the machine you are using, type

memory

100 200 300 400 500 600 700 800

100

200

300

400

500

600
100 200 300 400 500 600 700 800

100

200

300

400

500

600

100 200 300 400 500 600 700 800

100

200

300

400

500

600
100 200 300 400 500 600 700 800

100

200

300

400

500

600

FIGURE 5.6 Information about texture is carried in different spatial frequency channels.

895.3. EXERCISES

There are many caveats when making movies with MATLAB. For example, the choppi-
ness will depend on many factors, including machine speed, available memory, step size of
the circshift, as well as frame rate. On most systems, it will be hard to avoid trade-offs to
create movies that are reasonably smooth.

Exercise 5.2: Use this knowledge to create a movie of a single white dot (pixel) that moves

from the far left of the screen to the far right.

Suggestion for Exploration: Import two pictures with the same size. Create a movie in

which one morphs into the other. Hint: Over time, the numerical values in the matrix that

represents the image should gradually shift from one to the next while you capture this

process in frames.

As the color information is represented in the third dimension of the matrix, you can also
use circshift to elegantly swap colors, as in this example:

>> figure
>> for i = 1:3
>> subplot(1,3,i)
>> image(pic)
>> axis equal
>> axis off
>> pic = circshift(pic,[0 0 1]);
>> end

The result should look something like Figure 5.7.
Often, when creating large numbers of stimuli, you might want to save them on the hard

disk to free up some space in available memory. You can easily do this by using the
imwrite function. For example, you can save the image in which the RGB values were
swapped for BRG by typing imwrite(pic,'BRG.jpg','jpg'). This should have created the
file BRG.jpg as a .jpg file in your working directory. You can now open it with other
image editing software, put it online, etc. Similarly, you can save the movie by typing

FIGURE 5.7 You can use circshift to shift colors.

90 5. PSYCHOPHYSICS

movie2avi(M,'upazila.avi','quality',100,'fps',24)

which creates an .avi file named thismoves at a frame rate of 24 and a quality of 100 in your
working directory. From now on, this file will behave like any other movie file you might
have on your hard disk.

At this point, we have explored several important image manipulation routines that
should really give you a deep appreciation of the way MATLAB represents and displays
images. Of course, many more image manipulations are possible in MATLAB. We will
leave those for you to discover and return to the task of collecting psychophysical data,
using this newfound knowledge. Because MATLAB represents images as brightness values
in a three-dimensional matrix, you can manipulate them at will with any number of matrix
operations. In principle, you could write your own Photoshop toolbox in MATLAB.

Exercise 5. 3: Can you rotate an image by 90�? Can you rotate by an arbitrary number of degrees?

Exercise 5.4: Try adding different images together. For example, you can transmit secret

information by embedding one image in another. Or create artificial stimuli. For example, in

the attention community, it is popular to superimpose pictures of houses and faces.

Suggestion for Exploration: Implement your favorite Photoshop routine in MATLAB.

Let’s get back to psychophysics. Fechner formalized three fundamental methods to elicit
the relationship between mental and physical qualities and introduced them to a wider
audience. These methods are still in use today. You should recognize the method of limits
from visits to the ophthalmologist investigating your vision or the otologist investigating
your hearing. Basically, the subject is presented with a series of stimuli in increasing (or
decreasing) intensity and asked to judge whether or not the stimulus is present. This
method is extremely efficient because only a few stimuli are necessary to establish fairly
reliable thresholds. Unfortunately, the method suffers from hysteresis; the threshold is path
dependent, as subjects exhibit a certain inertia (e.g., stating that the stimulus is still present
even if they can’t detect it, if coming from the direction of a stimulus being present). This
problem can be overcome by counterbalancing (starting from different states). However, a
better correction is the method of constant stimuli. In this method, the experimenter presents
stimuli to be judged by the subject in random order, from a predetermined set of values.
The advantage of this method is that it yields very reliable and mostly unbiased threshold
measurements. The drawback is that one needs to sample a relatively large range of stimuli
(as one doesn’t a priori know where the threshold will lie) and a large number of repetitions
per conditions to reduce error. Hence, this method is usually not used where time is at a
premium (such as in a doctor’s office), but rather in research, where the time of undergrad
or grad student subjects is routinely sacrificed for increases in accuracy.

915.3. EXERCISES

Finally, the method of adjustment lets the subject manipulate a test stimulus that is sup-
posed to match a given control. This method is particularly popular in color psychophysics.
It is relatively efficient, but suffers from its own set of biases.

5.4. PROJECT

In this project, you will use the method of constant stimuli to determine the absolute
threshold of vision, a classic experiment in visual psychophysics (Hecht, Shlaer, and
Pirenne, 1942). Obviously, you will be able to do only a crude mock-up of this experiment
in the scope of this chapter. The actual experiment was extremely well controlled and
took a long time to carry out (not to mention specialized equipment).

Since you are unconcerned with publishing the results (these are extremely well estab-
lished), you can pull off a “naı̈ve” version in order to highlight certain features and princi-
ples of the psychophysical method. If you want to increase experimental control, perform
the experiment in a dark room and wait 15 minutes (or better 30 minutes) before data col-
lection. Also, try to keep a fixed distance from the monitor (e.g., 50 cm) throughout the data
collection phase of the experiment.

However, before you can collect data, you need to write a stimulus control program uti-
lizing the skills from the previous two chapters and the image manipulation skills intro-
duced in this chapter. Here is a simple program that will do what is needed (make this
an M-file). Note the somewhat obsolete use of the modulus function to order the stimuli.
We could also do this with randi in the latest versions of MATLAB. On the other hand,
the use of the modulus function allows to have exactly the same number of trials per con-
dition (as opposed to them having random frequencies).

clear all; %Emptying workspace
close all; %Closing all figures

temp = uint8(zeros(400,400,3)); %Create a dark stimulus matrix
temp1 = cell(10,1); %Create a cell that can hold 10 matrices

for i = 1:10 %Filling temp1
temp(200,200,:) = 255; %Inserting a fixation point
temp(200,240,:) = (i-1)*10; %Inserting a test point 40 pixels right

%of it. Brightness range 0 to 90.
temp1{i} = temp; %Putting the respective modified matrix in cell

end %Done doing that

h = figure %Creating a figure with a handle h

stimulusorder = randperm(200); %Creating a random order from 1 to 200.
%For the 200 trials. Allows to have
%a precisely equal number per condition.

stimulusorder = mod(stimulusorder,10); %Using the modulus function to
%create a range from 0 to 9. 20 each.

92 5. PSYCHOPHYSICS

stimulusorder = stimulusorder + 1; %Now, the range is from 1 to 10, as
%desired.

score = zeros(10,1); %Keeping score. How many stimuli were reported seen

for i = 1:200 %200 trials, 20 per condition
image(temp1{stimulusorder(1,i)}) %Image the respective matrix. As

%designated by stimulusorder
i %Give subject feedback about which trial we are in. No other feedback.
pause; %Get the keypress
temp2 = get(h,'CurrentCharacter'); %Get the keypress. "." for present,

%"," for absent.
temp3 = strcmp('.', temp2); %Compare strings. If . (present), temp3 = 1,

%otherwise 0.
score(stimulusorder(1,i)) = score(stimulusorder(1,i)) + temp3; %Add up.

% In the respective score sheet.
end %End the presentation of trials, after 200 have lapsed.

Note that these are relatively crude steps. In a real experiment, you might want to probe
every luminance value and collect more samples per condition (50 or 100 instead of 20). Also,
a time limit of exposure and decision time is usually used. But for now, this will do. When
running this program yourself, make sure to focus on the central fixation dot. Don’t get frus-
trated or bored. Psychophysical experiments are extremely intricate affairs, usually operating
at the limits of the human sensory apparatus. Hence, they are rarely pleasant. So try to focus
the firepower of your cortex on the task at hand. Also note that you will make plenty of errors.
Don’t get frustrated. That is the point of psychophysics. In a way, psychophysics amounts to a
very sophisticated form of producing and analyzing errors. If you don’t make any errors, there
is no variance, and without variance, most of the psychophysical analysis methods fail—hence
the large number of trials. Given enough trials, you can count on the statistical notion that truly
random errors will average out, while retaining and strengthening the systematic trends in the
data, revealing the properties of the system that produced it. As amatter of fact, youmightwant
to throw in a couple of practice runs before deciding to analyze your data for real.

Given that you are likely to be what is technically called an untrained observer there will
be various dynamics going on during the experiment. At first, practice effects will enhance
the quality of your judgments; then fatigue will diminish it again. Also note that you are
technically not a “naive” subject, as you are aware of the purpose of the experiment. Don’t
let this discourage you for now.

Doing so, we obtained the curve shown in Figure 5.8.
This figure shows a fairly decent psychometric curve. It is obvious thatwedid not see the dot

on the left tail of the curve (the observed variation represents errors in judgment). Similarly, it is
obvious that we did always see the dot on the right of the curve, yet there is some variation in
the reported seen instances. In other words, the points on the left are below threshold, whereas
the points on the right are already saturated. In a real experiment, wewould resample the range
between the brightness values 20 and 70 much more densely, as it is clear that the date points
outside this range add no information. However, this neatly illustrates one problem of the
method of constant stimuli. We didn’t know where the threshold would lie. Hence, we had to

935.4. PROJECT

sample a broad range—undersampling the crucial range and oversampling regions of no
interest. Even limiting the range from 0 to 90 was an educated guess. Strictly speaking and
without any previous knowledge, we would have had to sample the entire range of 0 to 255.

Psychophysicists like to boil down this entire dataset into one number: the absolute thresh-
old. In this case, you can derive this value by interpolation. It is the x-value that corresponds
to the intersection between the curve and the y-value of probability reported seen of 0.5, as
shown in Figure 5.9.

In other words, this analysis indicates an absolute threshold of a brightness value of 43.
If you want to get a precise threshold, you would have to resample the range between
30 and 60 (or even between 40 and 50) very densely.

Also note that this value of 43 is not inherently meaningful. Without having the monitor
calibrated with a photometer, we don’t know to how much physical light energy this corre-
sponds. Hence, we can’t relate it to the minimum number of light quanta that can be
detected or such. However, this threshold is meaningful in the context of the behavioral
task: a shifted threshold under different conditions can give rise to conjectures about the
structure and function of the physiological system producing these thresholds, as you will
see when doing the exercises. Moreover, the absolute threshold is a stochastic concept. It is
not true that lights below it are never seen.

Of course, psychophysicists have very elaborate ways to analyze data like these. Most
straightforwardly, they like to fit sigmoidal logistic curves to such data. We will go into
the intricacies of psychophysical data analysis in the next chapter.

Finally, we chose luminance values that worked on our monitor, yielding a decent
psychometric curve, allowing us to determine the threshold. You might have to use a
different range when working within your setup.

0
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 30 40 50
Brightness

P
ro

ba
bi

lit
y

re
po

rt
ed

 s
ee

n

60 70 80 90

FIGURE 5.8 The psychometric curve reveals below-threshold regions, saturation regions, and a linear range.

94 5. PSYCHOPHYSICS

For more background on psychophysical methods, read the classic Elements of Psychophysics
by Fechner (1860) or, for amodern treatment of the use of thesemethods in visual neuroscience,
The Psychophysical Measurement of Visual Function by Norton, Corliss, and Bailey (2002).

In this project, you should specifically address the following issues:

• Compare thresholds in the periphery and center. You just did a parafoveal stimulus
presentation (if you were honest and fixated the fixation point) or even a foveal
presentation (if you looked at the stimulus directly). How does the threshold change in the
periphery (putting the stimulus several hundred pixels away from the fixation point)?

• Determine the thresholds for brightness values of the red, green, and blue guns
individually. Which gun has the lowest threshold (is perceived as brightest)? Which gun
has the highest threshold (is perceived as dimmest)? Can you account for the white
threshold (as we did above) by adding the individual thresholds?

• You just determined absolute thresholds. Another important concept in psychophysics is
the relative threshold. To determine the relative threshold, put another test dot to the left
of the fixation point. The task is now to indicate if the brightness of the right dot is higher
(.) or lower (,). Does the relative threshold depend on the absolute brightness values
of the dots? If so, can you characterize the relationship between relative threshold
(difference in stimulus brightness values that gives a probability of 0.5) and absolute
value of the stimuli?

• When determining the relative threshold, can you reason why it makes sense to ask
which of the two is brighter, instead of asking if they are the same or different (which
might be more intuitive)?

0
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 30 40 50
Brightness

P
ro

ba
bi

lit
y

re
po

rt
ed

 s
ee

n

60 70 80 90

FIGURE 5.9 The psychometric curve allows you to establish the absolute detection threshold.

955.4. PROJECT

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS
COVERED IN THIS CHAPTER

uint8
double
convn
circshift
image
bench
imread
imwrite
memory
movie
getframe
movie2avi
randperm
modspy

96 5. PSYCHOPHYSICS

C H A P T E R

6

Signal Detection Theory

6.1. GOALS OF THIS CHAPTER

This chapter will mostly concern the use of signal detection theory to analyze data
generated in psychophysical—and hypothetical neurophysiological—experiments. As
usual, we will do this in MATLAB.

6.2. BACKGROUND

At its core, signal detection theory (SDT) represents a way to optimally detect a signal in
purely statistical terms without and explicit link to decision processes in particular or
cognitive processes in general. However, in the context of our discussion, SDT provides a
rich view of the problem of how to detect a given signal. In particular, it reframes the task
as a decision process, adding a cognitive dimension to our understanding of this matter.

To illustrate the application of SDT in psychophysics, let us again consider the problem of
reporting the presence or absence of a faint, barely visible dot of light, as in Chapter 5, "Psy-
chophysics." In addition to the threshold, which is determined by the physical properties of
the stimuli and the physiological properties of the biological substrate, there are cognitive
considerations. In particular, observers have a criterion by which they judge (and report)
whether or not a signal was present. Many factors can influence the criterion level and—
hence—this report. You likely encountered some of those in the preceding chapter. For exam-
ple, your criterion levels might have been influenced by doing a couple hundred trials, giving
you an appreciation of what “present” and “absent” mean in the context of the given stim-
ulus range (which is very dim overall). Moreover, motivational concerns might play a role
when setting a criterion level. If subjects have an incentive to over- or under-report the
presence of a signal—e.g., if they think that the experimenter expects this, they will in fact
do so (Rosenthal, 1976). Interestingly, neuroeconomists utilize this effect by literally paying
their subjects to prefer one alternative, in order to study the mechanisms of how the criterion
level is set by their subjects.

97

Of course, one could question the real-world relevance of these considerations, given that
they arose in very particular and arguably often rather contrived experimental settings. It is
worth emphasizing that this first impression is extremely misleading. Today, signal detection
theory constitutes a formal, stochasticway to estimate the probability bywhich some things are
the case and others are not; by which some effects are real and others are not, and so on. As
such, it has the broadest possible implications. Signal detection theory is used by pharmaceu-
tical companies as well as oil prospectors, and it has even made its mark in public policy
considerations. Of course, experimenters—psychophysicists in particular—also still use it.

The astonishing versatility and base utility of signal detection theory are likely owed to
the fact that it goes to the very heart of what it means to be a cognitive organism or system,
as we will now describe.

Consider the following situation. Let us assume you work for a company that builds and
installs fire alarm systems. As these systems are ubiquitous in modern cities, business is
good. However, you are confronted with a rather confounding problem: How sensitive
should you make these alarms? The four possible cases are tabulated in a classical matrix,
as shown in Table 6.1.

Let’s peruse thismatrix in detail as it is the foundation of the entire discussion to follow. The
cell in the upper left represents the “desired” (as desired as it can be, given that there is a real
fire in the building) case: there actually is a fire and the alarmdoes go off, urging the occupants
of the building to leave and alerting the fire department to the situation. Ideally, youwould like
the probability of this event to be 1. In other words, you always want the alarm to go off when
there is a fire present. This part should be fairly uncontroversial. The problem is that in order to
reach a probability of 1 for this case, you need to set the criterion level for indicating “fire” by
some parameters (usually smoke or heat or both) incredibly low. In fact, you need to set it so
low that it will likely go off by levels of smoke or heat that can be reached without a fire being
present. This puts you into the cell in the upper right. If this happens, you have a false alarm.
From personal experience, you can probably confirm that the criterion levels of fire alarms
are typically set in a hair-trigger fashion. Almost anything will set them off, and almost all
alarms are therefore false alarms, given that the a priori probability of a real fire is very, very
low. As is the case in modern cities. While this situation is better than having a real fire, false
alarms are not trivial. Having them frequently is disruptive, can potentially have deleterious
effects in case of a real fire (as the occupants of the building learn to stop taking action when
the alarm goes off), and strains the resources of the firefighters (as a matter of fact, firefighters
have been killed in traffic accidents on their way to false alarms). In other words, setting the
sensitivity too high comes at a considerable cost. Hence, you want to lower the sensitivity
enough to always be in a state that corresponds to one of the cells on the main diagonal of
thematrix, either having a hit (if there is actually a fire present) or a “correct rejection,” arriving
in the lower right. The latter should be the most common case, indicating that there is no

TABLE 6.1 The Signal Detection Theory Payoff Matrix

Real fire

No fire (but possibly

some smoke or heat)

Alarm goes off Hit False alarm

Alarm does not go off Miss Correct rejection

98 6. SIGNAL DETECTION THEORY

fire and the fire alarm does not go off. Unfortunately, if you drop the sensitivity too low, you
arrive in the worst cell of all in terms of potential for damage and fatalities: having a real fire,
but the fire alarm does not alert you to this situation. This is called a “miss,” in the lower left.

In a way, this matrix illustrates what signal detection theory is all about: figuring out a
way to set the criterion in a mathematically optimal fashion (in the applied version) and
figuring out how and why people, organisms, and systems actually do set criteria when
performing and solving cognitive tasks (in the pure research version).

If this description sounds familiar, it should. As contemporary science has largely adopted
a stochastic view on epistemology, this fundamental situation of signal detection theory
appears in many if not most experiments, disguised as the “p-value” problem.

You are probably well aware of this issue, so let us just briefly retrace it in terms of signal
detection theory.

When performing an experiment, you observe a certain pattern of results. The basic question
is always: How likely is this pattern, given there is no effect of experimental manipulation? In
otherwords: How likely are the observed data to occur purely by chance? If they are too unlikely
given chance alone, you reject the “null hypothesis” that the data came about by chance alone.
That is—in a nutshell—the fundamental logic of testing for the statistical significance of most
experimentaldata sinceFisher introducedandpopularized the concept in the1920s (Fisher, 1925).

But how unlikely is too unlikely? Again, we face the fundamental signal detection
dilemma, as illustrated in Table 6.2.

In science, the criterion level is conventionally set at 5%. This is called the significance level. If a
certain pattern of data is less likely than 0.05 to have come about by chance, then you reject the
null hypothesis and accept that the effect exists. Implicitly, you also accept that—at this level—
5%of thepublished resultswill not holdup to replication (as theydon’t actually exist). It is debat-
able howconservative this standard is or should be. For extraordinary claims, a significance level
of 1% or even less is typically required. What should be apparent is that the significance level is
a social convention. It can be set according to the perceived consequences of thinking there is an
effect when there is none (alpha error) or failing to discover a genuine effect (beta error), particu-
larly in the medical community. The failure to find the (side-) effect of certain medications
has cost certain companies (and patients) dearly. For a dissenting view on why the business of
significance testing is a bad idea in the first place, see for example Ziliak & McCloskey (2008).

Regardless of this controversy, one can argue that any organism is—curiously—in a quite
similar position. You will learn more about this in Chapters 16, "Neural Decoding: Discrete
Variables," and 17, "Neural Decoding: Continuous Variables." For now, let us discuss the fun-
damental situation as it pertains to the nervous system (particularly the brain) of the origanism.
Interestingly, based on everything we currently assume to be true, the brain has no direct
access to the status of the environment around it—as manifested in the values of physical
parameters such as energy or matter. It learns about them solely by the pattern of activity

TABLE 6.2 Alpha and Beta Errors in Experimental Judgment

Effect exists (H0 false) Effect does not exist (H0 true)

We conclude it exists Discovery of effect Alpha error (false rejection of H0)

We conclude it doesn’t
exist

Beta error (false retention
of H0)

Failure to reject the null
hypothesis

996.2. BACKGROUND

within the sensory apparatus itself. In otherwords, the brain deduces the structure of the exter-
nal world by observing the structural regularities of its own activity in response to the condi-
tions in the outside world. For example, the firing of a certain group of neurons might be
associated with the presence of a specific object in the environment. This has profound philo-
sophical implications. Among them is the notion that the brain decodes its own activity in
meaningfulways, as theywere established by interactionswith the environment and represent
meaningful associations between firing patterns and states in the environment. In otherwords,
the brain makes actionable inferences about the state of the external world by cues that are
provided by activity levels of its own neurons. Of course, these cues are rarely perfectly reli-
able. In addition, there is also a certain level of “internal noise”, as the brain computes with
components that are not perfectly reliable either. This discussion should make it clear how
the considerations about stochastic decision making introduced previously directly apply to
the epistemological situation in which the brain finds itself. We will elaborate on this theme
in several subsequent chapters. It should already be readily apparent that this is not trivial
for the organism, as it has to identify predators and prey, alongwith other biologically relevant
hazards and opportunities in the environment. In this sense, errors can be quite costly.

Suggestion for Exploration: The basic signal detection situation seems to reappear in differ-

ent guises over and over again. What we call the two fundamental errors varies from situation to

situation. Try framing the results of a diagnostic test for an arbitrary disease in these terms

(that here appear as false positive and false negative). Also, try to model a case in the criminal

justice system in this way.

6.3. EXERCISES

With this background, it is now time to go back to the MATLABW software. Let us
discuss how you can use MATLAB to apply signal detection theory to the data generated
in behavioral experiments.

Consider this situation. You run an experiment with 2000 trials. While running these
trials, you record the firing rate from a single neuron in the visual cortex. In 1000 of the
trials, you present a very faint dot. In the other 1000, you just present the dark background,
without added visual stimulus.

Let’s plot the (hypothetical) firing rates in this experiment. To do so, you use the
normpdf function. It creates a normal distribution. Normal distributions occur in nature
when a large number of independent factors combine to yield a certain parameter. A
normal distribution is completely characterized by just two parameters: its mean and
variance.

Now, let us create a plausible distribution of firing rates. There is evidence that the
baseline firing rate of many neurons in visual cortex in the absence of visual stimulation
hovers around 5 impulses/second (Adrians). Moreover, firing rates cannot be negative.
This makes our choice of a normal distribution somewhat artificial, as it does—of
course—yield negative values.

Hence, the following code will produce a plausible distribution of firing rates for
background firing in the absence of a visual stimulus:

100 6. SIGNAL DETECTION THEORY

x = 0:0.01:10;
y = normpdf(x,5,1.5)
plot(x,y)

The third parameter of normpdf specifies the variance. In this case, we just pick an arbi-
trary, yet reasonable value—for neurons in many visual areas, the variance of the neural
firing rate scales with and is close to the mean. Other values would also have been possible.
Note that strictly speaking, it would make more sense to consider only integral firing
rates, but for didactic reasons, we will illustrate the continuous case. This will not make a
difference for the sake of our argument, and it is the more general case.

Now consider the distribution where the stimulus is, in fact, present. However, it is very
faint. It is sensible to assume that this will change the firing rate of an individual neuron
only very modestly (as the neuron needs the rest of the firing range to represent the remain-
ing luminance range). A plausible distribution will be created by:

z = (normpdf(x,6,1.5));
plot(x,z)

In other words, we assume that adding the stimulus to the background adds only—on
average—one spikeper stimulus in this hypothetical example. For the sake of simplicity,wekeep
the variance of the distribution the same, in reality it would likely scale with the increasedmean.

Suggestion for Exploration: MATLAB has a large library of probability density functions.

Try another one to model neural responses. A plausible starting point would be the poisson dis-

tribution, as it yields only discrete and positive values, as is the case with integral neural firing

rates. Matlab offers the Poisson probability density function under the command poisspdf.

On a side note, this is a good point to introduce another class of Matlab functions,
namely cumulative distribution functions. They integrate the probability density of a given
distribution function (e.g., the normal distribution).

These are used for many calculations, as they provide an easy way to determine the
integrated probability density of a given distribution at a certain cutoff point.

For example, normcdf is often used to determine IQ-percentiles.
As IQ in the general population is distributed with a mean of 100 and a standard deviation

of 15, we can type:

normcdf(100,100,15)

to get the unsurprising answer:

ans =

0.5000

If we want to find out the percentile of someone with an IQ of 127, we simply type:

>> normcdf(127,100,15)

ans =

0.9641

1016.3. EXERCISES

In other words, the person has an IQ higher than 96.41% of the population.
Back to SDT. If you did everything right, you can now cast the problem in terms of signal

detection theory. It should look something like Figure 6.1.
The plot in Figure 6.1 contrasts the case of stimulus absence versus stimulus presence;

firing rate in impulses per second is plotted on the x-axis, whereas probability or frequency
is plotted on the y-axis. The thick vertical black line represents the criterion level we chose.

The upper panel represents the case of an absent stimulus. For the cases to the right of
the black line, the neuron concluded “stimulus present,” even in the absence of a stimulus.
Hence, they are false alarms. Cases to the left of the black line are correct rejections. As you
can see, at a criterion level of 7.5 impulses per second, the majority of the cases are correct
rejections.

The lower panel represents the case of a present stimulus. For the cases to the left of the
black line, the neuron concluded “stimulus absent,” even in the presence of a stimulus.
Hence, they are misses. Cases to the right of the black line represent hits. At a criterion level
of 7.5 impulses per second, the majority of the cases are misses.

We are now in a position to discuss and calculate the receiver operating characteristic
(ROC) curve for this situation, defined by the difference in mean firing rate, variance, and

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0
0 1 2 3 4 5 6 7 8 9 10

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0
0 1 2 3 4 5 6 7 8 9 10

FIGURE 6.1 Signal absent versus signal present. Two different distributions.

102 6. SIGNAL DETECTION THEORY

shape of the distribution. The exotic-sounding term receiver operating characteristic originated
in engineering, in particular the study of radar signals and their interpretation.

Generally speaking, an ROC curve is a plot of the false alarms (undesirable) against hits
(desirable), for a range of criterion levels. “Area under the ROC curve” is a metric of how
sensitive an observer is, as will be discussed later. Given the conditions that you can gener-
ally assume, ROC curves are always monotonically non-decreasing curves. In the context of
tests, you plot the hit rate (or true positive rate or sensitivity) versus the false positive rate
(or 1-specificity) to construct the ROC curve. Keep this in mind for future reference. It will
be important.

First, try to plot the ROC curve:

figure
for i = 1:1:length(y) %Going through all elements of y
FA(i) = sum(y(1,i:length(y))); %Summing from ith element to rest ! FA(i)
HIT(i) = sum(z(1,i:length(y))); %Summing from ith element to rest ! Hit(i)
end
FA = FA./100; %Converting it to a rate
HIT = HIT./100; %Converting it to a rate
plot(FA,HIT) %Plot it
hold on
reference = 0:0.01:1; %reference needed to visualize
plot(reference,reference,'color','k') %Plot the reference

Note: This code could have been written in much more concise and elegant ways, but it is
easier to figure out what is going on in this form.

To get the ROC curve, see Figure 6.2.
Note that the false alarms and hits are divided by 100 to get a false alarm and hit rate. The

black line represents a situation in which hits and false alarms rise at the same rate – no sen-
sitivity is gained at any point. As you can see, this neuron is slightly more sensitive than that,
as evidenced by the deviation of its ROC curve from the black identity line. However, it rises
rather gently. There is no obvious point where one should set the criterion to get substantially
more hits than false alarms. This is largely due to the small difference in means between the
distributions, which is smaller than the variance of the individual distribution. By experi-
menting with different mean differences, you can explore their effect on the ROC curves.

Exercise 6.1: Experiment with mean differences by yourself. The result should look some-

thing like Figure 6.3.

It becomes readily apparent that the ability to choose a criterion level that allows you
to give a high hit rate without also getting a high false alarm rate is dependent on the dif-
ference between the means of the distributions. The larger the difference (relative to the var-
iance) between the means, the easier it is to set a reasonable criterion level. For example,
a mean difference of 5 allows you to get a hit rate of 0.9 virtually without any false alarms.
This also gives a normative prescription to reduce false alarms: If you want to reduce false

1036.3. EXERCISES

alarms, you should increase the difference in the means of the measured parameter
between conditions of signal present (e.g., a fire) and signal not present (e.g., no fire). The
clearer the parameters you choose differentiate between these two cases, the better off
you will be. A similar case can be made for the variance of the signals. The less variance
(often noise) there is in the signals, the better off you will be, when you are trying to distin-
guish between them. Hence, in order to create highly sensitive tests that discriminate
between two situations, one needs to measure parameters that can be measured reliably
without much noise but which exhibit a large difference in the mean parameter value, given
the different situations in question.

Suggestion for Exploration: How are the ROC curves affected by increasing the variance of

the distribution, while keeping the absolute mean difference the same?

The concept of difference (or distance) between means relative to the variance is of cen-
tral importance to signal detection theory. Hence, it received its own name: Discriminability
index (d0 or d prime). d0 is defined as the distance between the means of the two distributions
normalized (divided) by the standard deviation common to the two distributions. It can be
interpreted as a representation of signal strength relative to noise.

Importantly, d’ determines where an optimal criterion level should be set. For example,
if d0 is very high, you can get 100% hits without any false alarms, by setting the criterion
level properly. The situation is slightly more complicated when d’ is small, but there is a
prescriptive solution for this case as well—it is discussed below.

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FIGURE 6.2 The ROC curve.

104 6. SIGNAL DETECTION THEORY

This point makes intuitive sense. The errors derive from the fact that the “signal-present”
and “signal-absent” distributions overlap. The more they overlap, the higher the potential
for confusion. If the distributions don’t overlap at all, you can easily draw a boundary with-
out incurring errors or making mistakes.

Exercise 6.2: Consider Figure 6.4. It represents two distributions: one for “stimulus absent”

on the left and one for “stimulus present” on the right. At which x-value would you put the cri-

terion level? Can you plot the corresponding ROC curve (mean difference ¼ 5, variance ¼ 0.5)?

Suggestion for Exploration: Create a movie that shows the evolution of the ROC curve as a

function of increasing d0 (for added insight, try various degrees of variance in the distribution).

You can also download this movie from the website.

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.1 0.2 0.3 0.4

Mean difference = 0 Mean difference = 1

Mean difference = 5Mean difference = 3

0.5 0.6 0.7 0.8 0.9 1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FIGURE 6.3 The shape of the ROC curve is dependent on the mean difference of the distributions..

1056.3. EXERCISES

So far, so good. One central concept of signal detection theory that we are still missing is
the notion of a likelihood ratio, or rather the use of likelihood ratios in signal detection
theory.

While they sound rather intimidating, likelihood ratios are extremely useful because they
are abstract enough to be powerful and flexible, yet specific enough to be of practical use.
Hence, they are used in many fields, particularly diagnostics, but more generally in almost
all of science. If you want to grasp the core of the concept, it is important to first strip off all
these uses—some of which you might be already familiar with—and understand that it
originally comes from statistics, or rather probability theory.

If you happen to appreciate analytical statistics, you might be appalled by the purely
intuitive treatment of the likelihood ratio in this chapter. However, we deem this treatment
appropriate for the purposes of our discussion.

Consider a situation in which you throw a fair and unbiased six-sided die. Each side has
a probability of 1/6, which is about 0.1667. In other words, you expect the long-term fre-
quency of a particular side to be 1 in 6. If you now want to know the probability that the
die is showing one of the three lower numbers, you add the three individual probabilities
and arrive at 0.5. Similarly, the probability that the die will show one of the three higher
numbers is equally 0.5.

In other words, the ratio of the probabilities is 0.5/0.5 ¼ 1.
If you ask what the probability ratio of the upper 4 versus the lower 2 numbers is, you

arrive at (4*0.1667)/(2*0.1667) ¼ 0.666/0.333 ¼ 2/1 ¼ 2. In other words, the ratio of the
probabilities is 2 and—in principle—you could call this a likelihood ratio.

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 5 10 15

FIGURE 6.4 A case of high d0.

106 6. SIGNAL DETECTION THEORY

In practice, however, the term likelihood ratio has a specific meaning, which we will
briefly develop here.

To do so, we have to do some card counting. Let’s say a deck of cards contains eight
cards valued 2 to 9. In each round, the dealer draws two cards from this deck (without
showing them to you). There is an additional, special deck that contains only two cards:
one that is valued 1 and one that is valued 10. In the same round, the dealer draws one card
from this special deck—again without showing it to you. However, the dealer does inform
you of the total point value of all three cards on the table. Your task is to guess whether the
card from the special deck is a 1 or a 10.

While this may sound like a rather complicated affair, the odds are actually hugely in
favor of the player once you do an analysis of the likelihood ratios. So don’t expect to see
this game offered in Vegas any time soon.

Instead, let us analyze this game—we happen to call it Chittagong—for educational
purposes. The highest possible point value in the game is 27, and it can happen only if
you get the 10 in the special deck and the 8 and 9 in the normal deck. So there is only
one way to arrive at this value. Similarly, the lowest possible point value is 6—by getting
1 in the special deck as well as 2 and 3 in the normal deck. This case is also unique. Every-
thing else falls somewhere in between. So let us construct a table where we explore these
possibilities (see Table 6.3).

Suggestion for Exploration: Can you re-create Table 6.3 with MATLAB using the permuta-

tion functions?

You can immediately see that vast regions of the table are not even in play. If the total
value is below 15, you know that the special card had to be a 1. Moreover, if the total value
is above 18, you know that the special card had to be a 10. Only four values are up to guess-
ing, and even here, the odds are very good: As the player, you should guess 1 for 15 and 16,
but 10 for 17 and 18. This state of affairs is due to the large difference between 1 and 10,
relative to the possible range of normal values (5 to 17). In other words, d0 is very high in
this game. This becomes immediately obvious when you plot the frequency distribution
as histograms (10 ¼ blue, 1 ¼ black), as shown in Figure 6.5. This figure should look
vaguely familiar (compare it to Figure 6.4).

Reducing the mean difference by 4 does change the distance between the distribution as
well as the overall range. Suppose the cards in the special deck are replaced with two cards
worth 0 and 5 points, respectively. What does the histogram of the frequency distributions
look like now? (See Figure 6.6.)

The table of likelihood ratios, shown in Table 6.4, reflects this change.
As you can see, there is an intuitive and clear connection between likelihood ratio and d0.

Of course, this relationship has been worked out formally. We will forgo the derivation here
in the interest of getting back to neuroscience.

In this simple case, you can just set the criterion at the ratio between the probabilities. If
this ratio is smaller than 1, guess 0. If it is larger, guess 5.

1076.3. EXERCISES

In the technical literature, the likelihood ratio takes more factors into account: the prior
probability as well as payoff consequences. Let us illustrate this case. Suppose there are
not 2, but 10 cards in the special deck: You know that 9 have a value of 5, 1 has a value
of 0. Hence, there is an a priori chance of 9/10 that the card will have a value of 5, and this
does influence the likelihood ratio, as it should. Taking payoff consequences into account
makes good sense because not all outcomes are equally good or bad (see the discussion
at the beginning of the chapter). A casino could still make money off this game by adjusting
the payoff matrix. For example, it could make the wins very small (as they are expected to
happen often in a game like this), but the rare losses could be adjusted such that they are
rather costly. A player has to take these considerations into account when playing the game
and setting an optimal criterion value.

TABLE 6.3 Exploring the Likelihood Ratios in the Chittagong Game

Total points

(TP)

Possible cases (¼Probability) in

which special deck card is 10

Possible cases (¼Probability) in

which special deck card is 1

Likelihood ratio

(LR)

6 0 1 0

7 0 1 0

8 0 2 0

9 0 2 0

10 0 3 0

11 0 3 0

12 0 4 0

13 0 3 0

14 0 3 0

15 1 2 1/2 ¼ 0.5

16 1 2 1/2 ¼ 0.5

17 2 1 2/1 ¼ 2

18 2 1 2/1 ¼ 2

19 3 0 inf

20 3 0 inf

21 4 0 inf

22 3 0 inf

23 3 0 inf

24 2 0 inf

25 2 0 inf

26 1 0 inf

27 1 0 inf

108 6. SIGNAL DETECTION THEORY

4

3.5

3

2.5

2

1.5

1

0.5

0
6 8 10 12 14 16 18 20 2822 24 26

FIGURE 6.5 Histogram of frequency distributions.

4

3.5

3

2.5

2

1.5

1

0.5

0
6 8 10 12 14 16 18 20 22

FIGURE 6.6 Histogram of frequency distributions with a smaller mean differences between the special cards
(0 ¼ black, 5 ¼ blue).

1096.3. EXERCISES

To make this point more explicit, the likelihood ratio can be defined as follows:

lijðeÞ ¼ pðejsiÞ
pðejsjÞ ð6:1Þ

So the likelihood ratio of an event e is the ratio of two conditional probabilities. One is the
probability of the event given state si; the other, the probability of the event given state sj. lij
is always a single real number.

Moreover, we already discussed a more general situation where the likelihood ratio takes
prior probabilities and payoffs into account:

lijðeÞ ¼ stim�frequency
1� stim�frequency

� value�of�correct�rejection� value�of�false�alarm
value�of�hit� value�of�miss

ð6:2Þ

This is particularly important for real life situations, where not all outcomes are equally
valuable or costly.

As we alluded to before, the likelihood ratio is closely linked to ROC curves. Specifically,
it is very important to characterize optimal behavior.

These considerations influence the likelihood ratio at which you should set your decision
criterion. Importantly, there is a direct relationship between likelihood ratio and ROC

TABLE 6.4 Revisiting Likelihood Ratios

Total points (TP)

Possible cases (=Probability)

in which special deck card is 5

Possible cases (=Probability)

in which special deck card is 0

Likelihood ratio

(LR)

5 0 1 0

6 0 1 0

7 0 2 0

8 0 2 0

9 0 3 0

10 1 3 1/3 ¼ 0.33

11 1 4 1/4 ¼ 0.25

12 2 3 2/3 ¼ 0.66

13 2 3 2/3 ¼ 0.66

14 3 2 3/2 ¼ 1.33

15 3 2 3/2 ¼ 1.33

16 4 1 4/1 ¼ 4

17 3 1 3/1 ¼ 3

18 3 0 inf

19 2 0 inf

20 2 0 inf

21 1 0 inf

22 1 0 inf

110 6. SIGNAL DETECTION THEORY

curve: The slope of the ROC curve at a given point corresponds to the likelihood ratio
criterion which generated the point (Green & Swets, 1966). In other words, an inspection
of the slope can reveal where the criterion should optimally be set.

Let us illustrate these claims by revisiting the distributions introduced at the beginning
of the chapter.

Use this code to plot the slope of the curves, analogous to Figure 6.2.

figure
x = 0:0.01:10;
%Note that x is ordered. If you start with empirical data, you will have to sort them first.
y = normpdf(x,5,1.5)
z = (normpdf(x,6.5,1.5));
subplot(2,1,1)
for i = 1:1:length(x)
FA(i) = sum(y(1,i:length(y)));
HIT(i) = sum(z(1,i:length(y)));
end
FA = FA./100;
HIT = HIT./100;
plot(FA,HIT)
hold on
baseline = 0:0.01:1;
plot(baseline,baseline,'color','k')

subplot(2,1,2)
for i = 1:length(x)-1

m1(i) = FA(i)-FA(iþ1); %This recalls the
m2(i) = HIT(i)-HIT(iþ1); %equation of a slope

end
m3 = m1./m2; %Dividing them
plot(m3)

The slope of the ROC curve is plotted in the lower panel, see Figure 6.7.
The philosophical implications of signal detection theory are deep. The message is that—

due to the stochastic structure of the real world—infallibility is, in principle, impossible in
most cases. In essence, in the presence of uncertainty (read: in all real life situations), errors
are to be expected and cannot be avoided entirely. However, signal detection theory pro-
vides a precise analytical framework for optimal decision making in the face of uncertainty,
while also being able to take into account subjective value judgments (such as preferring
one kind of error over another).

As youmight have noticed, we are really only scratching the surface here. Because situations
inwhich a signal detection theory perspective is useful are truly ubiquitous—think of any kind
of selection andquality control process, such ashiringdecisions, admissiondecisions,marriage,
dating, to say nothing of the myriad applications in materials science—signal detection theory
has become a bottomless well. This should not be surprising, as it is arguably at the very heart
of cognition itself. Yet, this led to a situation in which even specialists can be overwhelmed by

1116.3. EXERCISES

the intricacies in the field. Hence, the point of this brief treatment was to cover the conceptual
essentials and their application. We are confident that it is enough to get you started in apply-
ing signal detection theory with MATLAB to problems in neuroscience.

For further reading, we highly recommend the classical and elaborate Signal Detection
Theory and Psychophysics by Green and Swets (1966); the latest edition is still available in
print. This book nicely highlights the role of signal detection theory in modern cognitive
science in many colorful examples.

6.4. PROJECT

The project for this chapter is very straightforward. Many uses of signal detection in neu-
roscience involve the measurement of some “internal response” in addition to measuring
a behavioral response (e.g., deciding whether a stimulus under the control of the experi-
menter is present or not). We assume that you do not currently have access to measure
a “deep” internal response, such as firing rate of certain neurons that are presumably

0
0

10

20

30

40

50

0.2 0.4 0.80.6 1

0
0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.80.6 1

FIGURE 6.7 ROC curve with slope.

112 6. SIGNAL DETECTION THEORY

involved in the task. Instead, we ask you to redo the experiment in Chapter 5, but with a
twist. Instead of just asking whether a faint stimulus is present or not, now elicit 2 judg-
ments per trial: One whether the stimulus is present or not, the other how confident the
subject is that it was present or not, on a scale from 1 (not certain at all) to 9 (very certain).
Replot the data in terms of certainty. Get two distributions of certainty (one for situations
where the stimulus was present, the other where it was not present) Doing so, please
answer and explore the following questions:

• Where does the internal criterion of the subject lie?
• What is the d’ of the certainty distributions?
• Construct the ROC curve for the data (including slope).
• How sensitive is the subject as an observer? (Compare the area under the ROC curve

with the area under the diagonal reference curve.)
• Can you increase the d’ by showing a different kind of stimulus?
• Can you shift the position of the criterion by biasing the payoff-matrix for your subject

(e.g., rewarding the subject for hits)?

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS
COVERED IN THIS CHAPTER

normpdf
normcdf
sum

113MATLAB FUNCTIONS, COMMANDS, AND OPERATORS COVERED IN THIS CHAPTER

This page intentionally left blank

P A R T III

DATA ANALYSIS WITH
MATLAB

This page intentionally left blank

C H A P T E R

7

Frequency Analysis Part I:
Fourier Decomposition

7.1. GOALS OF THIS CHAPTER

This chapter introduces the most common method of decomposing a time series into
frequency components, Fourier analysis. You will learn about the Fourier transform and
the associated amplitude and phase spectra. The MATLAB implementation of the Fast
Fourier Transform (FFT), an efficient algorithm for calculating Fourier transformations, will
be introduced and applied to the analysis of human speech sounds.

7.2. BACKGROUND

Figure 7.1 shows typical recordings of two human vowel sounds. How can you charac-
terize these different sounds? Frequency analysis provides a way to examine the relative
contributions of various frequencies to an overall signal. In the case of an auditory signal,
a given frequency component would be termed pitch.

7.2.1. Real Fourier Series

Take some continuous function f. We can approximate such a function with a weighted
series of sinusoids. Such a series is termed the real Fourier series:

f ðtÞ ¼ a0
2
þ
X1
n¼1

ancosðntÞ þ
X1
n¼1

bn sinðntÞ ð7:1Þ

Here, the coefficients an and bn represent the relative strength of each frequency compo-
nent. [a0 represents whatever nonoscillatory component of f(t).]

117

So, given f(t), determining the coefficients an and bn allows for the representation of f(t) as
a series sum of sinusoids. Over the interval �p to p, cosine and sine functions with differing
frequencies have the special property of orthogonality. The integral of the product of two
mutually orthogonal functions evaluates to zero. So, the integral of the product of cosine
or sine functions with differing frequencies results in zero over this interval. Another inter-
esting property of sine and cosine is that the integral of the square of a cosine or sine func-
tion over this integral is p. Both of these properties will be exploited to determine the
Fourier series coefficients.

To find the strength, am, of a cosine component m, multiply by the corresponding cosine
function and integrate:

Zp

�p

f ðtÞ cosðmtÞdt ¼
Zp

�p

a0
2

cosðmtÞdtþ
X1
n¼1

Zp

�p

cosðmtÞ an cosðntÞdt

þ
X1
n¼1

Zp

�p

cosðmtÞbn sinðntÞdt
ð7:2Þ

0 0.5 1 1.5 2 2.5 3 3.5
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Time, in secs

0 0.5 1 1.5 2 2.5 3 3.5

Time, in secs

A
m

pl
itu

de

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

A
m

pl
itu

de

FIGURE 7.1 Acoustic time series representing two different human vowel sounds.

118 7. FREQUENCY ANALYSIS PART I: FOURIER DECOMPOSITION

All terms on the right side except the cosine term where m¼n yield zero:

Zp

�p

f ðtÞ cosðmtÞdt ¼ am

Zp

�p

cos2ðmtÞdt ð7:3Þ

The right side integral evaluates to one over the integration range, yielding an expression
for the Fourier series term coefficient:

Zp

�p

f ðtÞ cosðmtÞdt ¼ pam ð7:4Þ

am ¼ 1

p

Zp

�p

f ðtÞcosðmtÞdt ð7:5Þ

In general, the interval of f(t) will not be �p to p. For an interval centered on x with
length 2L, the expression becomes

am ¼ 1

L

ZxþL

x�L

f ðtÞcos p
L
mt

� �
dt ð7:6Þ

A similar procedure using sine functions yields the coefficients for the sine terms of the
Fourier series.

7.3. EXERCISES

Exercise 7.1: Write a MATLAB function to calculate coefficients for a real Fourier transform.

Hint: The function will need to shift the interval so that the interval encompasses the entire time

series. In other words, x ¼ 0 and L ¼ half the range of t.

7.3.1. Complex Fourier Transform

Euler’s identity,

eiot ¼ cosotþ i sinot ð7:7Þ
provides a straightforward way to formulate complex Fourier series representation for a
given function, f(t):

f ðtÞ ¼
X1

n¼�1
cne

int ð7:8Þ

1197.3. EXERCISES

Similar to the real transform, coefficients for the complex Fourier transform can be
found by

cm ¼ 1

2p

Zp

�p

f ðtÞe�imtdt ð7:9Þ

for a given coefficient m over the interval �p to p. Over the interval x�L to xþL, this
becomes

Cm ¼ 1

2L

ZxþL

x�L

f ðtÞe�ðipmt=LÞdt ð7:10Þ

Exercise 7.2: Write a MATLAB function to calculate coefficients for a complex Fourier trans-

form. This is essentially the discrete Fourier transform (DFT):

Fk ¼ 1

N

XN�1

n¼0

fne
�i 2pnN k ð7:11Þ

where k ranges from 0 to N�1, N is the number of points, and fn is the value of the function at

point n.

Let’s look at how this method of the Fourier transform scales with N. Given a time
series with N values, this method requires a multiplication of the series and the
corresponding Fourier component and subsequent sum for each coefficient. Assuming
a number of coefficients equivalent to N, then you have a process that scales with N2.
In other words, as N increases, the time required to compute the Fourier transform
increases as N2.

7.3.2. Fast Fourier Transform

With a few special tricks, a faster algorithm, the Fast Fourier transform (FFT), that scales in
N logN time can be formulated. One of these tricks involves taking advantage of datasets exactly
2N elements long. The increase in processing speed hasmade the FFTubiquitous in signal proces-
sing.While a complete derivation of the algorithm is beyond the scope of this book, invoking the
MATLAB implementation of the FFT will be discussed.

MATLAB provides an FFT function fft(X), where X is a vector in time space. fft returns
the frequency space representation of X.

To visualize the importance of the difference in scaling, execute the following code:

figure
hold on
N = 1:10 * 100;
plot(N, N.^2, 'b')
plot(N, N.*log(N), 'r')

120 7. FREQUENCY ANALYSIS PART I: FOURIER DECOMPOSITION

Exercise 7.3: If N represents sample size, what can you observe about the benefits of scaling as

N grows? Where does the efficiency of the FFT algorithm benefit most, for large N or small N?

7.3.3. The Inverse DFT

As you might imagine, there is an inverse to the DFT:

fn ¼
XN�1

k¼0

Fke
i 2pnN k ð7:12Þ

MATLAB provides ifft() to perform the inverse discrete Fourier transform.

Exercise 7.4: Generate a single sine wave. Use fft() to generate the discrete Fourier transform.

Use ifft() to retrieve the original sine wave from the DFT.

7.3.4. Amplitude Spectrum

Often when you are using Fourier analysis, the amplitude spectrum is one of the first
analyses performed. The amplitude spectrum graphs amplitude against frequency. In terms
of the Fourier series representation, the amplitude spectrum depicts the magnitude of the
coefficients at various frequencies. As such, it depicts the relative strengths of the various
frequency components.

The following code generates a time series composed of 10 sine waves whose frequencies
and amplitudes vary systematically.

L = 1000;
X = zeros(1,L);
sampling_interval=0.1;
t = (1:L) * sampling_interval;
for N = 1:10

X = X + N * sin (N*pi*t);
end
plot(t, X);
Y = fft(X)/L;

Now, the variableY contains the normalized FFT ofX. Note the normalization factor L. Dis-
playing the amplitude spectrum of X requires plotting the amplitudes at various frequencies.
Note that fft returns only a single value, the transform coefficients. Now, how do you deter-
mine the frequency scale?

The return value of the FFT assumes that frequency is evenly spaced, from 0 to a theoretical
result called theNyquist limit. Nyquist demonstrated that a discrete sampling of a continuous
process can capture frequencies no higher than half the sampling frequency. Since the code
above has the sampling interval, thisNyquist limit is half the inverse of the sampling interval.

1217.3. EXERCISES

The following code calculates the Nyquist limit for the time series:

NyLimit = (1 / sampling_interval)/ 2;

When viewing the FFT, it is important to remember that the result is the complex trans-
form. Thus, simply using the result of the FFT as a set of real coefficients can cause a number
of problems. To display the amplitude spectrum, the absolute value of the complex coeffi-
cientswill be used. The values returned by fft are the coefficients for frequencies from the neg-
ativeNyquist limit to the positiveNyquist limit. If the time series data are purely real, then the
resultant transform will have even symmetry. That is, the transform will be symmetrical
across the abscissa. So, in this very frequent case, only the first half of the result of fft is used.
The following code employs linspace to generate frequency values and plots the amplitude
spectrum. linspace generates a linearly spaced sequence of values given initial and final
values. Here, the initial and final values are 0 and 1, with a value count of L/2. The resultant
vector is scaled by the Nyquist limit to generate the frequency vector.

F = linspace(0,1,L/2)*NyLimit;
plot(F, abs(Y(1:L/2)));

7.3.5. Power

Power at a given frequency is defined as

FðoÞ ¼ jFðoÞj2 ¼ FðoÞF�ðoÞ ð7:13Þ
where F* is the complex conjugate of F. To do this in MATLAB, use the function conj to
return the complex conjugate of a series of complex values.

Here is a plot of the power spectrumof the time series generated for the amplitude spectrum:

plot(F, (Y(1:L/2).*conj(Y(1:L/2)));

7.3.6. Phase Analysis and Coherence

A power spectrum alone is not a complete representation of the information in the origi-
nal signal. The various Fourier components can have various phases relative to one another,
as illustrated in Figure 7.2

You can plot relative phase by frequency by plotting the inverse tangent of the ratio
between the imaginary component and the real component. Why is this the case? Imagine
the complex plane, with pure real values along the abscissa (x-axis) and pure imaginary
values along the ordinate (y-axis). Any complex value in your 1D Fourier transform can
be represented with a coordinate pair. The magnitude of the value is simply the distance
from the origin to the coordinates, or the complex modulus. The phase is the angle formed
by the abscissa and the line passing through the origin and the complex point. Thus,

using basic trigonometry, the phase angle is tan�1 imag
real

� �
:

How can you represent this in MATLAB?

L = 1000;
X = zeros(1,L);

122 7. FREQUENCY ANALYSIS PART I: FOURIER DECOMPOSITION

sampling_interval=0.1;
t = (1:L) * sampling_interval;
for N = 1:10

X = X + N * sin (N*pi*t);
end
plot(t, X);
Y = fft(X)/L;
phi = atan(imag(Y)./real(Y));
F = linspace(0,1,L/2)*NyLimit;
plot(F, phi(1:L/2));

Exercise 7.5: Compare the phase spectrum generated in the preceding exercises with the

phase spectrum of the corresponding cosine function. Compare their power spectra.

7.4. PROJECT

In this project, you will be asked to use Fourier decomposition to analyze vowel sounds pro-
duced by human speakers. On the companion website, you will find five examples of vowel
sounds as produced by male American English speakers. Each sound corresponds to one
of the vowel sounds in Table 7.1, below. The formant frequencies in Table 7.1 note the average
formant frequencies as spoken by a male speaker of American English. You will use power
spectra of these sounds to classify the recordings as one of these vowel sounds in the table.

To complete this project, you need to understand how formants relate to frequency analysis.
The human vocal tract has multiple cavities in which speech sounds resonate. As such, most

0 1 2 3 4 5 6 7 8 9 10
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

sin(x)
sin(x+1)

FIGURE 7.2 Phase difference be-
tween two sinusoids with the same
frequency.

1237.4. PROJECT

sounds have multiple strong frequency components. In classifying speech sounds, the lowest
strong frequency band is termed the first formant. The next highest is termed the second formant,
and so on.

Vowels lend themselves to a particularly simple characterization through their formants.
Typically, vowel sounds have distinguishable first and second formants. Table 7.1 shows
first and second formants for four vowel sounds in American English. Thus, the short ‘i’
sound would have strong frequency representation at 342 Hz and at 2322 Hz.

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS
COVERED IN THIS CHAPTER

fft
ifft
conj

TABLE 7.1 Average First and Second Formant Frequencies for Selected
American English Vowels

Vowel Sound First Formant Second Formant

bit 342 2322

but 623 1200

bat 588 1952

boot 378 997

(Data from Hillenbrand et al., 1995.)

124 7. FREQUENCY ANALYSIS PART I: FOURIER DECOMPOSITION

C H A P T E R

8

Frequency Analysis Part II:
Nonstationary Signals
and Spectrograms

8.1. GOAL OF THIS CHAPTER

The goal of this chapter is to extend Fourier analysis as covered in the previous chapter to
nonstationary signals. The short-time Fourier transform will be introduced. Nonstationary
examples will include applications to time-varying auditory signals and the EEG during sleep.

8.2. BACKGROUND

Figure 8.1 depicts the vocalizations of a zebra finch. How is this dissimilar from the
sound signals you have examined thus far?

Note that different portions of the song have different envelopes with clearly defined
breaks. If they are taken separately, you might imagine these subsections to have different
Fourier spectra. In fact, they do. Figure 8.2 shows the Fourier spectrum for two subsections
of song. The two subsections have very different distributions of power over frequency.

A Fourier transform of the full song returns the power distribution over the entire song.
Any localization of frequency information to a time point or an interval is lost. Using the
example of the bird song here, a Fourier transform of the entire song would eliminate
any ability to associate frequency components with a given syllable. How, then, can you
extend the techniques discussed earlier to such complex signals?

8.2.1. The Fourier Transform: Stationary and Ergodic

When applied to a signal, the term stationary indicates that certain statistical properties of
the signal are uniform throughout. In other words, a subset of the signal is sufficient for

125

analysis of the entire signal. The distribution of power over frequency remains the same
over the whole signal.

A similar idea is the concept of ergodicity. Imagine an ensemble of related signals. Going
with the example of zebra finch vocalizations, an appropriate ensemble would be the set of
vocalizations from a set of birds. An ergodic ensemble is one in which each sample and the
ensemble approach the same mean. In other words, analyzing one sample or a subset of the
signals from the group can approximate the analysis of the ensemble. Ergodicity and statio-
narity are independent qualities. Neither implies the other.

The Fourier transform assumes a stationary signal. Unfortunately, many biological sig-
nals, including the birdsong in Figure 8.1, are nonstationary.

8.2.2. Windows

How can you employ the Fourier transform to a nonstationary signal? If you assume
that the Fourier spectrum will change relatively little over a small interval of the signal,
you could divide the overall signal into windows and calculate the Fourier transform
for each window separately. If a signal is relatively stationary over short intervals, or
quasistationary, this approach will often produce fruitful results. While many biological
signals are not truly stationary, many are quasistationary and amenable to this
approach.

0 0.5 1 1.5 2 2.5 3
−6000

−4000

−2000

0

2000

4000

6000

Time, in seconds

A
m

pl
itu

de

FIGURE 8.1 The sound amplitude of a zebra finch vocalization as a function of time.

126 8. FREQUENCY ANALYSIS PART II: NONSTATIONARY SIGNALS AND SPECTROGRAMS

However, this approach breaks down somewhat at the interval boundaries, due to the
stationary assumptions of the Fourier transform. Choosing overlapping intervals mitigates
this somewhat. This is the basis for the short-time Fourier transform (STFT).

While a simple flat subset of the original time series might be the most straightforward
window, an appropriate choice of window shape can amplify or minimize characteristics
of the time series. For example, windows with tapered ends are used to minimize artifacts
from the edges of the window. You can introduce the idea of a generalized window func-
tion, w(t), which returns the value of the window at a given value of t. For values outside
the window, w(t) should return values equal to or close to 0.

Mathematically, the STFT is represented as:

Xðt;oÞ ¼
Z 1

�1
xðtÞwðt� tÞe�jotdt ð8:1Þ

for a continuous signal. In this case, we are more interested in the discrete STFT,

Xðm;oÞ ¼
X1

n¼�1
xðnÞwðn�mÞe�jon ð8:2Þ

0

200

400

600

800

P
ow

er

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

5000

10000

15000

Frequency

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Frequency

P
ow

er

FIGURE 8.2 The power spectra of two portions of the zebra finch vocalizations depicted in Figure 8.1.

1278.2. BACKGROUND

As mentioned previously, there are many alternatives to the simple squared off window
for calculating an STFT. We will briefly discuss three. The Hamming window function is
commonly used:

wðnÞ ¼ 0:53836� 0:46164 cos
2pn
N � 1

� �
ð8:3Þ

where N is the number of points and n varies over the interval.
Signal Processing Toolbox of the MATLABW software provides the function hamming,

which returns a Hamming window of the desired length:

L = 100;
w = hamming(L);
plot(1:L, w)

Note that the Hamming window has a high amplitude at the center and low amplitude
at the ends. This attenuation reduces the artifacts from the edge of the window interval.
Another window function is the Hann window, whose functional form is similar to the
Hamming window:

wðnÞ ¼ 0:5� 0:5 cos
2pn
N � 1

� �
ð8:4Þ

Like the Hamming window, the shape of the Hann window is used to reduce artifacts
introduced at the edges of the finite windows from the signal. Gaussian window functions
are often used as well:

wðnÞ ¼ e�n2 ð8:5Þ
A short-time Fourier transform using a Gaussian window function is sometimes denoted

as a Gabor transform. A Gabor function is the product of a sinusoid and a Gaussian function.
The Gaussian function causes the amplitude of the sinusoid to diminish away from the ori-
gin, but near the origin, the properties of the sinusoid dominate. By applying a Gaussian
window and a Fourier transform to the time series, you are, in effect, applying a Gabor
function filter to the data.

8.3. EXERCISES

As a part of Signal Processing Toolbox, MATLAB provides the function spectrogram,
which calculates a short-time Fourier transform using a Hamming window. The data for
Figure 8.1 is available on the companion website. Download the file song1.wav and load
the file with wavread, as follows:

[amp, fs, nbits] ¼ wavread('song1.wav');

The function wavread loads a sound file in WAVE format and returns the data as ampli-
tude information ranging from –1 to þ1. Here, you store the amplitude information in the
variable amp. The sampling rate is returned in fs, and the number of bits per sample (reso-
lution) is stored in nbits.

128 8. FREQUENCY ANALYSIS PART II: NONSTATIONARY SIGNALS AND SPECTROGRAMS

Now type

spectrogram(amp, 256, 'yaxis')

You should see something like Figure 8.3. The default operation of spectrogram calcu-
lates power of the signal by dividing the whole signal into eight portions with overlap
and windowing the portion with a Hamming window. Here, the specified window size
was 256. The optional parameter ‘yaxis’ specifies that frequency should be on the y-axis
rather than x-axis. If no return values are specified, the default operation renders the power
spectral density over time using "hotter" colors (red, yellow, etc.) to designate frequency
bands of greater energy.

If a sampling frequency is not specified, the time scale will not be correct. To show the
correct time space for the loaded song, type

>> spectrogram(amp, 256, [], [], fs, 'yaxis')

Here, the empty brackets signify that the default settings for the window overlap, and
FFT size should remain.

Also, spectrogram can return the power spectral density:

>> [S, F, T, P] = spectrogram(X);
>> mesh(P)

The preceding code generates a 3D plot of the spectrogram, where z magnitude, rather than
color, represents power.

2

2.5

3

1.5

N
or

m
al

iz
ed

 fr
eq

ue
nc

y
(>

π
ra

d/
sa

m
pl

e)

1

0.5

0
20001000 3000 4000 5000

Time
6000 7000 8000 9000

FIGURE 8.3 The spectrogram of the bird vocalization using the spectrogram function.

1298.3. EXERCISES

Exercise 8.1: In the bird song sample, try to determine where the sound changes using the

time series data alone. Do the same with the STFT. Do your results agree?

Exercise 8.2: Examine the result of spectrogram with varying window sizes for the following

time series:

>> t = 0:0.05:1;
>> X = [sin(5*t) sin(50*t) sin(100*t)];

Try values ranging from 16 to 1024 for the Hamming window width. How does the repre-

sentation change with different Hamming window widths? Why might this occur?

8.3.1. Limitations of the STFT

The STFT is a fine resolution to the problem of determining the frequency spectrum of
signals with time-varying frequency spectra. There are some limitations. Small frequency
fluctuations are difficult to detect with the STFT because each subset of the signal is
assumed to be stationary. Since the reported frequency distribution at a time point results
from the analysis of a the entire window, choosing a smaller window does allow for better
localization in time. However, a smaller window allows for fewer samples in each Fourier
transform, which ultimately reduces frequency resolution, especially for lower frequencies.
In other words, a trade-off exists between frequency and time localization.

The STFT is best employed when the fluctuations in frequency occur over a fairly
uniform time scale. This allows selecting a single window size without substantial loss of
information.

8.4. PROJECT

Typical sleep in human adults includes the well-known REM sleep as well as four well-
characterized stages of non-REM sleep, or NREM sleep. During wakefulness, alpha waves
dominate the EEG, in the frequency range 8 to 13 Hz. As the subject enters the first stage of
non-REM sleep, the dominant wave type transitions from alpha waves to theta waves, in
the range of 4 to 7 Hz. This is the first stage of non-REM sleep.

The second and third stages of non-REM sleep are characterized by sleep spindles, at 12
to 16 Hz, and the appearance of delta waves, ranging in frequency from 0.5 to 4 Hz. The
fourth stage of sleep is characterized by a majority power distribution in the delta wave
band. The third and fourth stages of NREM sleep are also termed slow wave sleep, to
denote the prevalence of the low frequency delta waves in these two stages.

On the companion website, you can find three EEGs from patients falling asleep. Using
spectrogram and any other frequency analysis tools learned thus far, try to determine when
the subjects enter each of the NREM stages of sleep.

130 8. FREQUENCY ANALYSIS PART II: NONSTATIONARY SIGNALS AND SPECTROGRAMS

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS
COVERED IN THIS CHAPTER

hamming
spectrogram
wavread

131MATLAB FUNCTIONS, COMMANDS, AND OPERATORS COVERED IN THIS CHAPTER

This page intentionally left blank

C H A P T E R

9

Wavelets

9.1. GOALS OF THIS CHAPTER

In this chapter, you will be introduced to the use of wavelets and wavelet transforms as
an alternative method of spectral analysis. We will discuss a number of common wavelets
and introduce Wavelet Toolbox of the MATLABW software.

9.2. BACKGROUND

In Chapter 8, "Frequency Analysis Part II: Nonstationary Signals and Spectrograms,"
you used the short-time Fourier transform (STFT) to decompose the frequency composi-
tion of nonstationary signals. Under certain situations, though, the STFT results in a
less-than optimal breakdown of frequency as a function of time. With increased preci-
sion in frequency distribution, localization in time becomes less precise. In other words,
there is a time – frequency precision tradeoff. The reverse is also true: better temporal
localization reduces the precision of the frequency distribution. This may bring to mind
the well-known relationship of position and momentum of the Heisenberg uncertainty
principle.

When using the STFT, you can adjust the transform window to enhance the desired char-
acteristic. A larger window allows for better frequency resolution, and a smaller window
allows for better temporal resolution. However, for the STFT, the window size is constant
throughout the algorithm. This can pose a problem for some nonstationary signals. The
wavelet transform provides an alternative to the STFT that often provides a better fre-
quency/time representation of the signal.

133

9.2.1. What Is a Wavelet?

A wavelet is a function that satisfies at least the following two criteria:

1. The integral of the function cðxÞ over all x is 0.

Z1

�1
cðxÞdx ¼ 0 ð9:1Þ

2. The square of c(x) has integral 1. A function adhering to this property is called square-
integrable.

Z1

�1
c2ðxÞdx ¼ 1 ð9:2Þ

Fulfilling the first criterion mandates that the wavelet function have an equal area
above and below zero. Fulfilling the second criterion mandates that the function
approach zero at positive and negative infinity. Because of this second criterion, the
function decays away from the origin, unlike sinusoidal or other infinite waves (thus,
wavelet).

9.2.2. The Continuous Wavelet Transform

The continuous wavelet transform (CWT) is analogous to the continuous Fourier
transform:

Wðs; tÞ �
Z1

�1
xðuÞcs;tðuÞdu ð9:3Þ

Here, the parameter t is the typical t in the time series x(t). The parameter s is called scale
and is analogous to frequency for Fourier transforms. The wavelet function itself varies
with both s and t:

cs;tðxÞ �
1ffiffi
s

p c� x� t

s

� �
ð9:4Þ

The inclusion of t and s allows the function to be scaled and translated (shifted) for dif-
ferent values of s and t. The original wavelet function (untranslated and unscaled) is often
termed the mother wavelet, since the set of wavelet functions is generated from that initial
function.

The scaling provides a significant benefit over the short-time Fourier transform. The mul-
tiple scales of the wavelet transform permit the equivalent of large- or small-scale transform
windows in the same time series. The preceding transform can be approximated for a dis-
crete time series.

134 9. WAVELETS

9.2.3. Choosing a Wavelet

A number of wavelet functions are commonly used in data analysis. Here are two used
primarily for spectral analysis.

Morlet wavelet (for large o0):

cðtÞ ¼ p�
1
4 e�

1
2 t

2

e�io0t ð9:5Þ
The Morlet wavelet was originally developed to analyze signals with short, high-

frequency transients and long, low-frequency transients (see Figure 9.1).
Mexican hat wavelet:

cðtÞ ¼ 1ffiffiffiffiffiffi
2p

p
s3

1� t2

s2

� �
e
�t2

2s2 ð9:6Þ

The Mexican hat wavelet has poorer frequency resolution than the Morlet wavelet, but
often better temporal resolution.

−20 −15 −10 −5 0 5 10 15 20

−20 −15 −10 −5 0 5 10 15 20

−20 −15 −10 −5 0 5 10 15 20

−1

−0.5

0

0.5

1
Scale = 1

−1

−0.5

0

0.5

1
Scale = 5

−1

−0.5

0

0.5

1
Scale = 10

FIGURE 9.1 Morlet wavelet at various scales.

1359.2. BACKGROUND

9.2.4. Scalograms

The scalogram depicts the strength of a particular wavelet transform coefficient at a point
in time. As such, it is the wavelet analog of the spectrogram.

The scalogram in Figure 9.2 shows the continuous wavelet transform of the following signal
with a Morlet wavelet (sigma ¼ 10). This code generates a time series with three long blocks of
time at 100, 500, and 1000 Hz. At every half second, a 0.05 transient at 1000 Hz is inserted.

Fs ¼ 5000;
total_time ¼ 5;
t ¼ (1/Fs):(1/Fs):(total_time/3);
f ¼ [100 500 1000];
x ¼ [cos(f(1)*2*pi*t) cos(f(2)*2*pi*t) cos(f(3)*2*pi*t)];
t ¼ (1/Fs):(1/Fs):total_time;

%add short transients
trans_time ¼ 0:(1/Fs):0.05;
trans_f ¼ 1000;
for secs ¼ 0.5:0.5:4

trans ¼ cos(trans_f*2*pi*trans_time);
x((secs*Fs):(secs*Fsþlength(trans)-1)) ¼ trans;

end

Be aware that the relationship between scale and frequency is an inverse one and that
frequency increases with decreasing scale. Also, note how the frequency resolution improves
for the higher frequency band in the later third of the series. This corresponds to the
1000 Hz section of the time series.

The code to generate and plot the CWT follows.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

20

40

60

80

100

120

140

160

180

200 FIGURE 9.2 Scalogram for sinu-
soid þ transient signal in text.

136 9. WAVELETS

In my_cwt.m:

function coefs ¼ simple_cwt(t, x, mother_wavelet, max_wavelet, scales, params)
% Generates coefs for a continuous wavelet transform
% t, x are time and data points for time series data
% mother_wavelet is a function, taking parameters (t, params),
% where the value of params depends on the specific function used
% max_wavelet is the maximum range of the wavelet function (beyond which
% the wavelet is essentially zero)
% scales is a vector of desired scales
% params is the parameter for the mother wavelet function

max_t ¼ max(t);
dt ¼ t(2)-t(1);
full_t ¼ -(max_t/2):dt:(max_t/2);
coefs ¼ zeros(length(scales), length(x));
points ¼ length(x);
t_scale ¼ linspace(-max_wavelet, max_wavelet, points);
dt ¼ (max_wavelet*2)/(points-1);

mom_wavelet ¼ feval(mother_wavelet, t_scale, params);
row ¼ 1;

for scale ¼ scales
time_scale ¼ [1þfloor([0:scale*max_wavelet*2]/(scale*dt))];
wavelet ¼ mom_wavelet(time_scale);
w ¼ conv(x,wavelet)/sqrt(scale);
mid_w ¼ floor(length(w)/2);
mid_x ¼ floor(length(x)/2);
w ¼ w(((-mid_x:mid_x)þmid_w));
scale % print scale to show progress
coefs(row,:) ¼ abs(w);
row ¼ row þ 1;

end

In my_morlet.m:

function m¼morlet(t, params)
sigma ¼ params(1);
m ¼ pi∧-0.25*exp(-i*sigma.*t-0.5*t.∧2);

In plot_cwt.m:

function plot_cwt(t, coefs, scales)
imagesc(t, scales, coefs);
colormap(hot);
axis xy;

end

1379.2. BACKGROUND

Here, imagesc generates an imagemap from two vectors of data. Given parameters x, y,
and c, imagesc generates a colored area of color(n,m) centered at x(n) and y(m). So, here in
plot_cwt, at values of t and coefs, the corresponding scales value is used to assign a color.

To generate the scalogram, type:

scales ¼ 1:200;
coefs ¼ my_cwt(t, x, @my_morlet, 10, scales, [10]);
plot_cwt(t, coefs, scales);

9.2.5. The Discrete Wavelet Transform

In addition to the continuous wavelet transform, there is a transformation termed the dis-
crete wavelet transform (DWT). However, the DWT is not merely a discretized continuous
wavelet transform. Instead, the discrete wavelet transform calculates only a subset of the
possible scales, usually dyadic values (successive values in 2n, i.e., 1, 2, 4, 8, 16, 32, etc.).
Moreover, the DWT is usually calculated using an algorithm called the pyramid algorithm,
in which the data series is recursively split in two and reprocessed.

An exploration of the pyramid algorithm is beyond the scope of this chapter. For a thor-
ough discussion, see Percival and Walden (2000). The DWT has been used to denoise sig-
nals and to cluster neural spikes for sorting (Quiroga, Nadasdy, and Ben-Shaul, 2004).

9.2.6. Wavelet Toolbox

Wavelet Toolbox provides an implementation of the DWT and a number of appropriate
wavelets. Analyses using the discrete wavelet transform use different wavelets than anal-
yses with the continuous transform. The Haar wavelet and the Daubechies wavelet are
among the most widely used.

In the following commands, ‘wname’ corresponds to the name of a specific wavelet included
inWavelet Toolbox. Possible choices are ‘dbN’ for Daubechies N, ‘haar’ for Haar, ‘morl’ forMor-
let, and ‘mexh’ for the Mexican hat. To view all supported wavelets, use help waveform.

coefs = cwt(S, SCALES, 'wname')

The function cwt performs a continuous wavelet transform on the dataset S. The scales
given as SCALES are used, and the wavelet is given by ‘wname’. The function cwt will also
automatically plot the scalogram if given the parameter ‘plot’ at the end:

coefs = cwt(x, 1:200, 'morl', 'plot')

[cA. cD] = dwt(X, 'wname')
X = idwt(cA, cD, 'wname')

The functions dwt and idwt perform a single level decomposition and synthesis given the
wavelet name.

[C, L] = wavedec(X, N, 'wname')
X = waverec(C, L, 'wname')

The functions wavedec and waverec perform multilevel decomposition and synthesis given
wavelet name and level N. Note that N cannot be greater than the exponent of the largest
power of 2 less than the size of X. The C vector contains the transform, and the L vector

138 9. WAVELETS

contains bookkeeping information used by wavedec and waverec to find the position of the
parts of the transform in C.

Here is an example plotting scales 2 through 7 for a Debauches 4 wavelet:

% here size(s) = 128
[C, L] = wavedec(s, 7, 'db4');
for scale = 2:7

subplot(7,1,scale)
c_sub = (2∧(scale-1)):(2∧scale);
t_sub = linspace(1, time, time/size(c_sub));
plot(t_sub, C(c_sub))

end

wavedemo

The wavedemo function opens an automated tour of Wavelet Toolbox, showing various
transforms and functions provided by the toolbox.

9.3. EXERCISES

Exercise 9.1: Which of the following MATLAB functions can be wavelet functions? Why or

why not?

function x = f_one(t)
x = cos(t);

end

function x = f_two(t)
if (x < 0 or x > pi/2)

x = 0;
else

x = cos(t);
end

end

function x = f_three(t)
x = sqrt(2) * t * exp(-t^2/2) / pi^4;

end

function x = f_four(t)
x = sqrt(2) * t^2 * exp(-t^2/2) / pi^4;

end

function x = f_five(t)
x = (x > -1 && x < 0) * -1 + (x > 0 && x < 1);

end

1399.3. EXERCISES

Exercise 9.2: Generate the scalogram in Figure 9.2. Generate a spectrogram and compare.

How clearly does each render the transients? The primary frequencies?

Exercise 9.3: Write a Mexican hat mother wavelet function compatible with the previous con-

tinuous wavelet transform code. Generate a scalogram of the sinusoidþtransient signal used in

Figure 9.2. Compare Mexican hat transform to the Morlet transform.

Exercise 9.4: Download the EEG signal wavelet, eeg, from the companion website. Generate

scalograms using the Mexican hat and Morlet wavelet transforms. Compare to a spectrogram

generated with spectrogram().

9.4. PROJECT

In Chapter 8, “Frequency Analysis Part II: Nonstationary Signals and Spectrograms,”
you used the short-time Fourier transform to look for sleep state transitions. Here, you will
be asked to examine the same data files using the continuous wavelet transform and Morlet
and Mexican hat wavelets. Compare and contrast your findings with what you found using
only the STFT.

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS
COVERED IN THIS CHAPTER

cwt
dwt
idwt
wavedec
waverec

140 9. WAVELETS

C H A P T E R

10

Convolution

10.1. GOALS OF THIS CHAPTER

The purpose of this chapter is to familiarize you with the convolution operation. You will
use this operation in the context of receptive fields in the early visual system as input
response filters whose convolution with an input image approximates certain aspects of
your perception. Specifically, you will reproduce the Mach band illusion and explore the
Gabor filter as a model for the receptive field of a simple cell in the primary visual cortex.

10.2. BACKGROUND

A convolution is the mathematical operation used to find the output y(t) of a linear time-
invariant system from some input x(t) using the impulse response function of the system
h(t), where h(t) is defined as the output of a system to a unit impulse input. It is defined
as the following integral:

yðtÞ ¼ hðtÞ � xðtÞ ¼
Z1

�1
hðtÞxðt� tÞdt ð10:1Þ

This can be graphically interpreted as follows. The function h(t) is plotted on the t-axis,
as is the flipped and shifted function x(t-t), where the shift t is fixed. These two signals are
multiplied, and the signed area under the curve of the resulting function is found to obtain
y(t). This operation is then repeated for every value of t in the domain of y. It turns out that
it doesn’t matter which function is flipped and shifted since h * x ¼ x * h.

You can also define a convolution for data in two dimensions:

yðk; tÞ ¼ hðk; tÞ � xðk; tÞ ¼
Z1

�1

Z1

�1
hðt;KÞxðk� K; t� tÞdKdt ð10:2Þ

141

Basically, you take a convolution in one dimension to establish the k dependence of the
result y and then use that output (which is a function of k, t and t) to perform another con-
volution in the second dimension. This second convolution provides the t dependence of
the result, y. It is important that you understand how to apply this to a two-dimensional
data function because in this chapter you will be working with two-dimensional images.
In the MATLABW software, since you are working with discrete datasets, the integral
becomes a summation, so the definition for convolution in 2D at every point becomes

yðn1; n2Þ ¼
X1

k1¼�1

X1
k2¼�1

hðk1; k2Þxðn1 � k1; n2 � k2Þ ð10:3Þ

Again, this is easier to understand pictorially. What you are doing in this algorithm is
taking the dataset x, which is a matrix; rotating it by 180 degrees; overlaying it at each point
in the matrix h that describes the response filter; multiplying each point with the underlying
point; and summing these points to produce a new point at that position. You do this for
every position to get a new matrix that will represent the convolution of h and x.

10.2.1. The Visual System and Receptive Fields

In this section we discuss in general the anatomy of the visual system and the input
response functions that explain how different areas of the brain involved in this system
might “perceive” a visual stimulus.

Light information from the outside world is carried by photons that enter the eyes and
cause a series of biochemical cascades to occur in rods and cones of the retina. This bio-
chemical cascade causes channels to close which leads to a decrease in the release of neuro-
transmitter onto bipolar cells. In general, there are two fundamental varieties of bipolar
cells. On-bipolar cells become depolarized in response to light and off-bipolar cells become
hyperpolarized in response to light. The bipolar cells then project to the ganglion cells
which are the output cells of the retina. The response to light in this main pathway is also
influenced by both the horizontal and amacrine cells in the retina. There are many types of
retinal ganglion cells that respond to different visual stimuli.

A stimulus in the visual field will elicit a cell’s response (above the background firing
rate) only if it lies within a localized region of visual space, denoted by the cell’s classical
receptive field. In general, the ganglion cells have a center-surround receptive field due to
the types of cells that interact to send information to these neurons. That is, the receptive
field is essentially two concentric circles, with the center having an excitatory increase (þ)
in neuronal activity in response to light stimulus and the surround having an inhibitory
decrease (�) in neuronal activity in response to light stimulus, or vice versa. The response
function of the ganglion cells can then be modeled using a Mexican hat function, also some-
times called a difference of Gaussians function.

In the main visual pathway, the ganglion cells send their axons to the lateral geniculate
nucleus (LGN) in the thalamus, which is in charge of regulating information flow to the cor-
tex. These cells also are thought to have receptive fields with a center-surround architec-
ture. LGN cells project to the primary visual cortex (V1). In V1, simple cells are thought
to receive information from LGN neurons in such a way that they respond to bars of light

142 10. CONVOLUTION

at certain orientations and spatial frequencies. This can similarly be described as a Gabor
function—a two-dimensional Gaussian filter whose amplitude is modulated by a sinusoidal
function along an axis at a given orientation. Thus, different simple cells in V1 respond to
bars of light at specific orientations with specific widths (this represents spatial frequency;
see Dayan and Abbott, 2001). These and other cells from V1 project to many other areas in
the cortex thought to represent motion, depth, face recognition, and other fascinating visual
features and perceptions.

10.2.2. The Mach Band Illusion

Using your knowledge of the receptive fields or the response functions of the visual
areas can help you understand why certain optical illusions work. The Mach band illusion
is a perceptual illusion seen when viewing an image that ramps from black to white. Dark
and light bands appear on the image where the brightness ramp meets the black and white
plateau, respectively. These bands are named after Ernst Mach, a German physicist who
first studied them in the 1860s. They can be explained with the center-surround receptive
fields of the ganglion or LGN cells (Ratliff, 1965; Sekuler and Blake, 2002); we will use this
model in this chapter although alternative explanations exist (for example, see Lotto,
Williams, and Purves, 1999.)

The illusion is demonstrated in Figure 10.1. At the initiation of the stimulus brightness
ramp, a dark band, darker than the dark plateau to the left, is usually perceived. At the
termination of the brightness ramp, a light band is perceived brighter than the light plateau

Distance

B
rig

ht
ne

ss

+

- -
+

-
+

-
+

-
+

FIGURE 10.1 The Mach band illu-
sion. Top of figure: the visual stimulus
with various center-surround recep-
tive fields superimposed. Bottom of
figure: the actual brightness of the
visual stimulus (black solid line) and
the perceived brightness of the optical
illusion (blue dotted line).

14310.2. BACKGROUND

to its right. Figure 10.1 shows the center-surround receptive fields of sample neurons, repre-
sented by concentric circles, superimposed on the stimulus image. The center disk is excit-
atory, and the surrounding annulus is inhibitory, as indicated by the plus and minus signs.
When the receptive field of a neuron is positioned completely within the areas of uniform
brightness, the center receives nearly the same stimulation as the surround; thus, the exci-
tation and inhibition are in balance. A receptive field aligned with the dark Mach band
has more of its surround in a brighter area than the center, and the increased inhibition
to the neuron results in the perception of that area as darker. Conversely, the excitation
to a neuron whose receptive field is aligned with the bright Mach band is increased, since
more of its center is in a brighter area than the surround. The decreased inhibition to such a
neuron results in a stronger response than that of the neuron whose receptive field lies in
the uniformly bright regime and thus the perception of the area as brighter.

10.3. EXERCISES

The goal for this chapter is to reproduce the Mach band optical illusion. First, you will
create the visual stimulus. Then you will create a center-surround Mexican hat receptive
field. Finally, you will convolve the stimulus with the receptive field filter to produce an
approximation of the perceived brightness.

You begin by creating the M-file named ramp.m that will generate the visual input (see
Figure 10.2). The input will be a 64�128 matrix whose values represent the intensity or
brightness of the image. You want the brightness to begin dark, at a value of 10, for the first
32 columns. In the next 65 columns, the value will increase at a rate of one per column, and

10

20

30

40

50

60

20 40 60 80 100 120

FIGURE 10.2 The brightness ramp stimulus used as visual input.

144 10. CONVOLUTION

the brightness will stay at the constant value of 75 for the rest of the matrix. Open a new
blank file and save it under the name ramp.m. In that file enter the following commands:

%ramp.m
% This script generates the image that creates the Mach band visual illusion.
In=10*ones(64,128); %initiates the visual stimulus with a constant value of 10
for i=1:65

In(:,32+i)=10+i;
%ramps up the value for the middle matrix elements (column 33 to column 97)

end
In(:,98:end)=75; %sets the last columns of the matrix to the final brightness value of 75
figure
imagesc(In); colormap(bone); set(gca, 'fontsize',20) %view the visual stimulus

Notice how the function imagesc creates an image whose pixel colors correspond to the
values of the input matrix In. You can play with the color representation of the input data
by changing the colormap. Here, you use the colormap bone, since it is the most appropriate
one for creating the optical illusion, but there are many more interesting options available
that you can explore by reading the help file for the function colormap.

You’ve just created an M-file titled ramp that will generate the visual stimulus. Note,
however, that you use a for loop in ramping up the brightness values. Although it doesn’t
make much of a difference in this script, it is good practice to avoid using for loops when
programming in MATLAB if possible, and to take advantage of its efficient matrix manipu-
lation capabilities for faster run times (see Appendix A, “Thinking in MATLAB”). How
might you eliminate the for loop in this case? One solution is to use the function cumsum.
Let’s see what it can do:

>> z=ones(3,4)

z =

1 1 1 1
1 1 1 1
1 1 1 1

>> cumsum(z)

ans =

1 1 1 1
2 2 2 2
3 3 3 3

The function will cumulatively add the elements of the matrix by row, unless you specify
that dimension along which to sum should be the second dimension, or by column:

>> cumsum(z,2)

ans =

1 2 3 4
1 2 3 4
1 2 3 4

14510.3. EXERCISES

You will want this cumulative sum by columns for this ramp function. Now rewrite the
code in proper style for MATLAB without the for loop:

%ramp.m
% This script generates the image that creates the Mach band visual illusion.
In=10*ones(64,128); %initiates the visual stimulus with a constant value of 10
% now ramp up the value for the middle matrix elements using cumsum
In(:,33:97)=10+cumsum(ones(64,65),2);
In(:,98:end)=75; %sets the last columns of the matrix to the end value of 75
figure; imagesc(In); colormap(bone); set(gca, 'fontsize',20) %view the visual stimulus

You can look at how the values of the brightness increase from left to right by taking a slice
of the matrix and plotting it, as shown in Figure 10.3. Look at the 32nd row in particular.

>> plot(In(32,:),'k','LineWidth',3); axis([0 128 0 85]); set(gca,'fontsize',20)

Next, you will create a script titled mexican_hat.m that will generate a matrix whose
values are a difference of Gaussians. For this exercise, you will make this a 5�5 filter, as
shown in Figure 10.4.

80

70

60

50

40

30

20

10

0
0 20 40 60 80 100 120

FIGURE 10.3 The brightness values in a slice through the ramp stimulus shown in Figure 10.2.

1

Mexicam hat “filter”

2

3

4

5

1 2 3 4 5

6

4

2

0

−2

−4

FIGURE 10.4 A 5�5 Mexican hat spatial filter.

146 10. CONVOLUTION

% mexican_hat.m
% this script produces an N by N matrix whose values are
% a 2 dimensional mexican hat or difference of Gaussians
%
N = 5; %matrix size is NXN
IE=6; %ratio of inhibition to excitation
Se=2; %variance of the excitation Gaussian
Si=6; %variance of the inhibition Gaussian
S = 500; %overall strength of mexican hat connectivity
%
[X,Y]=meshgrid((1:N)-round(N/2));
% -floor(N/2) to floor(N/2) in the row or column positions (for N odd)
% -N/2+1 to N/2 in the row or column positions (for N even)
%
[THETA,R] = cart2pol(X,Y);
% Switch from Cartesian to polar coordinates
% R is an N*N grid of lattice distances from the center pixel
% i.e. R=sqrt((X).^2 + (Y).^2)+eps;
EGauss = 1/(2*pi*Se^2)*exp(-R.^2/(2*Se^2)); % create the excitatory Gaussian
IGauss = 1/(2*pi*Si^2)*exp(-R.^2/(2*Si^2)); % create the inhibitory Gaussian
%
MH = S*(EGauss-IE*IGauss); %create the Mexican hat filter

figure; imagesc(MH) %visualize the filter
title('mexican hat "filter"','fontsize',22)
colormap(bone); colorbar
axis square; set(gca,'fontsize',20)

Now take a second look at some of the components of this script. The function meshgrid
is used to generate the X and Y matrices whose values contained the x and y Cartesian coor-
dinate values for the Gaussians:

>> X

X =

-2 -1 0 1 2
-2 -1 0 1 2
-2 -1 0 1 2
-2 -1 0 1 2
-2 -1 0 1 2

>> Y

Y =

-2 -2 -2 -2 -2
-1 -1 -1 -1 -1
0 0 0 0 0

14710.3. EXERCISES

1 1 1 1 1
2 2 2 2 2

The function cart2pol converts the Cartesian coordinates X and Y into the polar coordi-
nates R and THETA. You use this function to create the 5�5 matrix R whose values are the
radial distance from the center pixel:

>> R

R =

2.8284 2.2361 2.0000 2.2361 2.8284
2.2361 1.4142 1.0000 1.4142 2.2361
2.0000 1.0000 0 1.0000 2.0000
2.2361 1.4142 1.0000 1.4142 2.2361
2.8284 2.2361 2.0000 2.2361 2.8284

The THETA variable is never used; however, it gives the polar angle in radians:

>> THETA

THETA =

-2.3562 -2.0344 -1.5708 -1.1071 -0.7854
-2.6779 -2.3562 -1.5708 -0.7854 -0.4636
3.1416 3.1416 0 0 0
2.6779 2.3562 1.5708 0.7854 0.4636
2.3562 2.0344 1.5708 1.1071 0.7854

Finally, you’re ready to generate the main script called mach_illusion.m to visualize how
the Mexican hat function/center-surround receptive field of the neurons in the early visual
system could affect your perception. In this simple model, the two-dimensional convolution
of the input image matrix (generated by the ramp.m M-file) with the receptive field filter
(generated by the mexican_hat.m M-file) gives an approximation to how the brightness of
the image is perceived when filtered through the early visual system. This operation should
result in a dip in the brightness perceived at the point where the brightness of the input just
begins to increase and a peak in the brightness perceived at the point where the brightness
of the input just stops increasing and returns to a steady value, consistent with the percep-
tion of Mach bands (see Figure 10.5). For a first pass, use the two-dimensional convolution
function, conv2, that is built into MATLAB. As described in detail in the help section, this
function will output a matrix whose size in each dimension is equal to the sum of the
corresponding dimensions of the input matrices minus one. The edges of the output matrix
are usually not considered valid because the value of those points have some terms contrib-
uting to the convolution sum which involved zeros padded to the edges of the input matrix.
One way to deal with the problem of such edge effects is to reduce the size of the output
image by trimming the invalid pixels off the border. You accomplish this by including
the option 'valid' when calling the conv2 function:

%mach_illusion.m
clear all; close all
mexican_hat %creates the mexican hat matrix, MH, & plots

148 10. CONVOLUTION

ramp %creates image with ramp from dark to light, In, & plots
A=conv2(In,MH,'valid'); %convolve image and mexican hat
figure; imagesc(A); colormap(bone) %visualize the "perceived" brightness
%create plot showing the profile of both the input and the perceived brightness
figure; plot(In(32,:),'k','LineWidth',5); axis([0 128 -10 95])
hold on; plot(A(32,:),'b-.','LineWidth',2); set(gca,'fontsize',20)
lh=legend('input brightness','perceived brightness',2); set(lh,'fontsize',20)

Make sure that the mexican_hat.m and ramp.m M-files are in the same directory as the
mach_illusion.m M-file. Note that the size of the output is indeed smaller than the input:

>> size(A)

ans =

60 124

For fun, you can learn more about how the convolution works by changing the 'valid'
option in the conv2 function call to either 'full' or 'same' and see how the output matrix
A changes. One way to minimize the edge effects of convolution is to pad the input matrix
with values that mirror the edges of the input matrix before performing the two-dimen-
sional convolution and returning only the valid part of the output, which will now be the
size of the original input matrix. The function conv2mirrored.m will do just this trick.
It has been written in a generic form to accept matrices of any size:

%conv2_mirrored.m
function sp = conv2_mirrored(s,c)
% 2D convolution with mirrored edges to reduce edge effects
% output of convolution is same size as leading input matrix
[N,M]=size(s);
[n,m]=size(c); %% both n & m should be odd
%
% enlarge matrix s in preparation for convolution with matrix c

0

80
Input brightness
Perceived brightness

60

40

20

0

20 40 60 80 100 120

FIGURE 10.5 The Mach band illusion generated using the Mexican hat filter on the ramp input.

14910.3. EXERCISES

%via mirroring edges to reduce edge effects.
padn = round(n/2) - 1;
padm = round(m/2) - 1;
sp=[zeros(padn,M+(2*padm)); zeros(N,padm) s zeros(N,padm); zeros(padn,M+(2*padm))];
sp(1:padn,:)=flipud(sp(padn+1:2*padn,:));
sp(padn+N+1:N+2*padn,:)=flipud(sp(N+1:N+padn,:));
sp(:,1:padm)=fliplr(sp(:,padm+1:2*padm));
sp(:,padm+M+1:M+2*padm)=fliplr(sp(:,M+1:M+padm));
%
% perform 2D convolution
sp = conv2(sp,c,'valid');

Exercise 10.1: Put the figures generated by the mach_illusion.m script into a document,

explain each figure, and give a short summary of the Mach band illusion as you understand it.

Exercise 10.2: Rather than cumsum, you could have also used the function meshgrid to effi-

ciently ramp up the brightness values from dark to light when creating the matrix In. Read the

help file for meshgrid and rewrite the ramp.m script using meshgrid rather than cumsum.

Exercise 10.3: Create the function conv2_mirrored.m using the code provided previously and

place it in the same directory as your other files. Learn how the mirroring of the edges of the

input matrix is accomplished by reviewing the help files on the functions flipud and fliplr.

What determines the size of the mirrored-edge padding necessary and why? Rewrite your main

script mach_illusion.m to use this convolution function rather than the conv2 function. Check

that your output matrix A is now the same size as the input matrix In.

Exercise 10.4: Change the slope of the ramp without changing the beginning or ending

values of the input image. [Hint: The command linspace can be useful to find values of the

ramp that will go from 10 to 75 in, say, 30 steps rather than 65: linspace(10,75,30).] How does

increasing or decreasing the slope affect the strength of the illusion?

Exercise 10.5: Convert the M-file named mexican_hat.m into a function where the inputs are

the size of the matrix, the ratio of excitation to inhibition, the variance of excitatory and inhibi-

tory Gaussians, and the overall strength of the filter. Also make the appropriate changes to the

main script that calls this function, mach_illusion.m.

150 10. CONVOLUTION

10.4. PROJECT

The receptive fields of simple cells in V1 reflect the orientation and spatial frequency
preference of the neurons. One way to model this is to use the Gabor function, which is
basically a two-dimensional Gaussian modulated by a sinusoid, as shown in Figure 10.6.

1. Observe how the receptive fields of simple cells in V1 modeled as Gabor functions with
various spatial frequency and orientation preferences filter an image of a rose, which can
be downloaded from the companion website. Create two files, the gabor_filter.m function
and the gabor_conv.m script (using the following code), in the same directory as the
conv2_mirrored.m file. Also, place the rose.jpg image file in the same directory. Now, run
the gabor_conv.m script. It will take a convolution between the rose image with a Gabor
function of a given orientation (OR) and spatial frequency (SF). The input parametersORand
SFwill determine the orientation and spatial frequencyof the filter. Thus, youwill essentially
“see” how simple cells in V1 with a given orientation and spatial frequency preference
perceive an image. Try values of SF¼ 0.01, 0.05, and 0.1, andOR¼ 0, pi/4, and pi/2. Put the
resulting figures into a document and explain the results. Try changing the Gabor filter from
an odd filter to an even filter by using cos instead of sin. How does this affect the output?

% gabor_filter.m
function f = gabor_filter(OR, SF)
% Creates a Gabor filter for orientation and spatial frequency
% selectivity of orientation OR (in radians) and spatial frequency SF.
%
% set parameters
sigma_x=7;% standard deviation of 2D Gaussian along x-dir
sigma_y=17;% standard deviation of 2D Gaussian along y-dir
%
% create filter

FIGURE 10.6 A Gabor function modeling the oriented receptive field of a V1 neuron.

15110.4. PROJECT

[x,y]=meshgrid(-20:20);
X=x*cos(OR)+y*sin(OR); %rotate axes
Y=-x*sin(OR)+y*cos(OR);
f=(1/(2*pi*sigma_x*sigma_y)).*exp(-(1/2)*(((X/sigma_x).^2)+ . . .

((Y/sigma_y).^2))).*sin(2*pi*SF*X);

%gabor_conv.m
clear all; close all
I=imread('rose.jpg');
OR=0; SF=.01;
G=gabor_filter(OR,SF);
figure
subplot(1,3,1); imagesc(G); axis square; colorbar; title ('Gabor function')
subplot(1,3,2); imagesc(I); title('original image')
subplot(1,3,3); imagesc(conv2_mirrored(double(I),G));
colormap(bone); title(['Convolved image OR=',num2str(OR),' SF=', num2str(SF)])

2. Now you can have some fun times with image processing and convolutions. Choose any
image and convolve it with a function or filter of your choosing. To avoid edge
problems, you can use the conv2_mirrored function provided, the conv2 function with
the 'valid' option (as in the exercises), or you can use the function imfilter from the
Image Processing Toolbox built into MATLAB, which does an operation similar to
convolution. You can create your own filter or choose a predesigned filter in MATLAB
using the fspecial function, also from Image Processing Toolbox. You can learn more
about these functions through the online help. Hand in your code and picture of before
and after the filtering, along with an image of the filter used in the convolution.

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS
COVERED IN THIS CHAPTER

imagesc
colormap
cumsum
meshgrid
cart2pol
conv2
flipud
fliplr

152 10. CONVOLUTION

C H A P T E R

11

Introduction to Phase Plane
Analysis

11.1. GOAL OF THIS CHAPTER

The goal of this chapter is to examine the cone and horizontal cell system using a quali-
tative visualization technique called phase plane analysis; this system will be discussed fur-
ther in Chapter 21, “Models of the Retina.” The techniques presented here will be used
again in Chapter 12, “Exploring the Fitzhugh-Nagumo Model.”

11.2. BACKGROUND

In this chapter you will be studying a retinal feedback model; this model is described fur-
ther in Chapter 21, “Models of the Retina.” The system is represented as follows:

d~C

dt
¼ 1

tC
ð�~C� k ~HÞ ð11:1Þ

d~H

dt
¼ 1

tH
ð� ~H þ ~C) ð11:2Þ

Typical values for these parameters are tC ¼ 0:025 sec , tH ¼ 0:08 sec; and k ¼ 4: Now
assume that the light intensity is L ¼ 10 (i.e., daylight). For your initial conditions, choose
that C(0) ¼ H(0) ¼ 0. Finally, be aware that:

~C ¼ C� L

kþ 1
and ~H ¼ H � L

kþ 1
ð11:3Þ

For further details of the basic biology of this system, see Chapter 21, “Models of the
Retina.” In that chapter, we will examine in more detail the model of retinal feedback
between cone cells and horizontal cells of the retina, shown in Equations 11.1 and 11.2.
Although the explicit solutions determined in that chapter are more informative, many more

153

complicated systems (such as the Fitzhugh-Nagumo system presented in Chapter 12,
“Exploring the Fitzhugh-Nagumo Model”) can only be qualitatively described. When we
describe a system qualitatively, we look for steady-state values of the solutions (often called
fixed points) and try to classify the dynamics of the solution that led to these steady-state
values. In Chapter 21, “Models of the Retina,” we will consider the following system in more
detail:

dx

dt
¼ xþ y ð11:4Þ

dy

dt
¼ 4xþ y ð11:5Þ

which has eigenvalues �1 and 3 and has the solution:

xðtÞ ¼ C1e
3t þ C2e

�t ð11:6Þ
yðtÞ ¼ 2C1e

3t � 2C2e
�t ð11:7Þ

This solution can be described qualitatively. If you wait long enough, then this system will
approach one of two states. If C1 ¼ 0, then:

limt!1xðtÞ ¼ limt!1yðtÞ ¼ 0 ð11:8Þ
Therefore, one says that (x, y) ¼ (0, 0) is a steady-state or fixed point of the system. For
C1 6¼ 0, then:

limt!1xðtÞ ¼ limt!1yðtÞ ¼ 1 ð11:9Þ
Therefore, the only finite steady-state solution to this system is (x, y) ¼ (0, 0). Regardless of
how you choose C1 and C2, there are no other steady-state values for this system. Since the
initial conditions determine C1 and C2, then those initial conditions that lead to C1 ¼ 0 will
have solutions that steadily tend toward the fixed point (0, 0), while all others will steadily
tend toward infinity (i.e., away from the fixed point at the origin). A fixed point with this
property—that is, with some initial conditions leading to the fixed point and others leading
away from it—is called a saddle point. This simple qualitative description of identifying the
steady state(s) of the solution, the dynamics of what initial conditions lead to the steady
state(s), and how it is reached steadily or in an oscillatory fashion can all be determined
from a phase plane analysis of the system.

The first step in phase plane analysis is to set up a phase plane. The axes for the plane rep-
resent the state variables characterizing the system. In the preceding example, the phase
plane is constructed with y as the ordinate and x as the abscissa. Next, the -x- and y-nullclines
are plotted. The x-nullcline is the curve in the x-y plane, where:

dx

dt
¼ 0

A similar definition applies for the y-nullcline. Intersections of these nullclines represent
points where:

dx

dt
¼ dy

dt
¼ 0

154 11. INTRODUCTION TO PHASE PLANE ANALYSIS

so x and y are no longer changing with time. In other words, these intersections represent
steady-state values or fixed points of the system. Next, a vector field is constructed by
assigning the following vector to every point on the x-y plane:

dx

dt

dy

dt

" #T

Notice that this vector field can be determined without knowing the solution to the system.
Since the slope of these vectors is:

m ¼ dy

dt

dx

dt
¼ dy

dx

�
ð11:10Þ

by the chain rule, the vector field must be tangent to any solution (x, y) of the system. This
allows you to use the vector field to calculate the solution of the system for any initial con-
dition (xo, yo). Such a solution when plotted on the phase plane is called a trajectory. The
phase plane, nullclines, vector field, and several trajectories are shown in Figure 11.1 for
the system in Equations 11.4 and 11.5.

In the figure, the nullclines are plotted as dashed lines. Notice that these nullclines intersect
at the point (x, y) ¼ (0, 0) indicating that this is the steady-state of the system in agreement with
what was predicted by considering the explicit solutions (Equations 11.6 and 11.7). Any linear
system of ordinary differential equations described by amatrixwith real eigenvalues of opposite
sign (recall that the eigenvalues for this system are –1 and 3) will have a saddle point at the
intersection of its nullclines.

If thematrix describing the linear systemhas real eigenvalues that are both negative, then the
fixedpoint is called a nodal sink. The classic phase portrait of a nodal sink is shown inFigure 11.2.

If the matrix describing the linear system has real eigenvalues that are both positive, then
the fixed point is called a nodal source. The classic phase portrait of a nodal source is shown
in Figure 11.3. Notice the difference in the direction of the arrows in the vector field in this
figure.

If the matrix describing the linear system has imaginary eigenvalues that have negative
real parts, then the fixed point is called a spiral sink. The classic phase portrait of a spiral
sink is shown in Figure 11.4.

If the matrix describing the linear system has imaginary eigenvalues that have positive
real parts, then the fixed point is called a spiral source. The classic phase portrait of a spiral
source is shown in Figure 11.5.

These five types of equilibria are collectively known as the generic equilibria. There are
also five nongeneric equilibria. The most important nongeneric equilibrium is called a
center. It occurs when the eigenvalues of the matrix are purely imaginary. The classic phase
portrait of a center is shown in Figure 11.6.

11.3. EXERCISES

The phase portraits in the preceding section were drawn using a downloadable M-file
called pplane7.m. The phase plane consists of three basic features: the nullclines intersect-
ing at the fixed point of the system, the vector field showing how the solutions change over

15511.3. EXERCISES

time, and trajectories showing how the solution approaches its steady-state from a given
initial condition. The first exercise of this chapter will involve writing a simple version of
pplane7. Several functions built into MATLAB will aid in coding each of the basic features
of the phase plane mentioned previously.

Plotting the nullclines of the system requires no more than the basic plotting commands
used throughout previous chapters. Plotting the vector fields can be greatly aided by the
functions meshgrid() and quiver(). The function meshgrid takes two vector arguments
x and y, and returns two square matrices X and Y such that each row of X is a copy of
the vector x, and each column of Y is a copy of the vector y. This function is useful for
evaluating functions of two variables. For example, suppose you wanted to evaluate the
function f(x,y) ¼ xþy. You could do this using for loops; for example, you could type

x ’ = x + y
y ’ = 4 x + y

−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

x

y

Cursor position: (1.79, –15.8)

The backward orbit from (–2.7, –4.8) left the computation window.
Ready.
The forward orbit from (1.9, –5.4) left the computation window.
The backward orbit from (1.9, –5.4) left the computation window.
Ready.

FIGURE 11.1 Phase plane of a linear system showing saddle node stability.

156 11. INTRODUCTION TO PHASE PLANE ANALYSIS

>> x=[0:0.1:10];
>> y=x;
>> for i=1:length(x)
>> for j=1:length(y)
>> f(i,j)=x(i)+y(j);
>> end;
>>end;

which produces the same results as the commands

>> x=-10:10;
>> y=x;
>> [X, Y]=meshgrid(x,y);
>> f=X+Y;

x’ = −x
y’ = −3y

−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

x

y

Cursor position: (−9.75, 12)

The forward orbit from (−2.9, −3.8) a possible eq. pt. near (−5.6e-014, −5.1e-020).
The backward orbit from (−2.9, −3.8) left the computation window.
The forward orbit from (−6.1, −4.1) a possible eq. pt. near (−8.4e-014, −2e-020).
The backward orbit from (−6.1, −4.1) left the computation window.
Ready.

FIGURE 11.2 Phase plane of a linear system showing nodal sink stability.

15711.3. EXERCISES

Evaluating functions of two variables is important in this chapter because the model you
wish to study (Equations 11.1 and 11.2) expresses the derivatives as functions of the two
variables: ~C and ~H. By comparing the matrix f as defined in the preceding code to
Equation 11.1, you see that f holds the values of the derivative dx

dt for several values of x
and y. You could define a matrix g that holds the y-derivative by using the following
command:

>>g=4X+Y;

Once you have evaluated these derivatives using meshgrid, we can plot a vector field
using the quiver command. If you have the matrices X, Y, f, and g defined as shown here,
then type this command:

Cursor position: (−9.58, 12.1)

The backward orbit from (−2.5, −5.1) a possible eq. pt. near (−6e-014, 8.1e-019).
Ready.
The forward orbit from (−4.3, −4.9) left the computation window.
The backward orbit from (−4.3, −4.9) a possible eq. pt. near (−7e-014, −3.7e-020).
Ready.

x’ = −x
y’ = 3y

−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

x

y

FIGURE 11.3 Phase plane of a linear system showing nodal source stability.

158 11. INTRODUCTION TO PHASE PLANE ANALYSIS

>>quiver(X,Y,f,g);

You should get the result shown in Figure 11.7.
The function quiver works by plotting a vector on the plane at points (x, y) with compo-

nents (f, g).
You can plot the trajectory of a system given an initial condition in several ways. One

method is to use a numerical solver such as the ode_euler() or RK4() functions you will write
in Chapter 19, “Voltage-Gated Ion Channels,” to solve for x and y given some initial condition
and then plot x versus y. Another method would be to calculate the derivatives of x and y at
the initial condition, move the system a short distance in the direction indicated by the deriv-
ative, and then repeat over many time steps. Either method will work, and both can be done
with no more than the basic functions introduced in Chapter 2, “MATLAB Tutorial.”

Cursor position: (−11.3, 12.2)

The backward orbit from (−0.82, −3.2) left the computation window.
Ready.
The forward orbit from (4.2, −4.6) a possible eq. pt. near (1.5e-014, −1e-014).
The backward orbit from (4.2, −4.6) left the computation window.
Ready.

x’ = 4x − 3y
y’ = 15x − 8y

−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

x

y

FIGURE 11.4 Phase plane of a linear system showing spiral sink stability.

15911.3. EXERCISES

Exercise 11.3.1: Write a function phase_plane(A, init) that takes a matrix and performs a

phase plane analysis for the linear system, u’ ¼ Au. The function should plot a phase plane

with axes x and y, plot the nullclines, create the vector field, and plot the phase plane trajectory

that passes through the initial condition. Finally, the program should output the type of equi-

librium point, saddle point, spiral sink, etc. If the equilibrium point is nongeneric, then the pro-

gram can just output nongeneric as the class type. This is quite a complicated program, so you

may want to write several smaller functions that can be called within phase_plane—for exam-

ple, a separate function that will simply classify the fixed point and then another that will create

a vector field, etc. Hint: The Boolean function isreal() will return 0 if the argument is not a real

number and 1 if it is. This function might be useful for deciding whether or not the eigenvalues

of A are real, so that the fixed point of the system can be classified.

Cursor position: (−9.28, 12.2)

The backward orbit from (−1.5, 6.1) a possible eq. pt. near (−6.6e-016, −1.7e-014).
Ready.
The forward orbit from (4.7, 4.5) left the computation window.
The backward orbit from (4.7, 4.5) a possible eq. pt. near (−6.9e-015, −7.1e-015).
Ready.

−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

x

y

x’ = 2x − y
y’ = 2x

FIGURE 11.5 Phase plane of a linear system showing spiral source stability.

160 11. INTRODUCTION TO PHASE PLANE ANALYSIS

11.4. PROJECT

Use your phase_plane program to analyze the retinal model described at the beginning
of this chapter. The matrix describing this linear system is:

�1

tC

�k

tC
1

tH

�1

tH

2
6664

3
7775

Cursor position: (−11.1, 12.2)

The backward orbit from (3, −4.7) a nearly closed orbit.
Ready.
The forward orbit from (4.1, −8.6) a nearly closed orbit.
The backward orbit from (4.1, −8.6) a nearly closed orbit.
Ready.

x’ = − y
y’ = x

−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

x

y

FIGURE 11.6 Phase plane of a linear system showing center stability.

16111.4. PROJECT

Identify what kind of behavior the fixed point exhibits. Repeat using the parameters for dim
light:

tC ¼ 0:1 sec, tH ¼ 0:5 sec, and k ¼ 0:5:

What is the behavior of the fixed point now?

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS
COVERED IN THIS CHAPTER

isreal
quiver
eig

-10 -8 -6 -4 -2 0 2 4 6 8 10
-10

-8

-6

-4

-2

0

2

4

6

8

10

FIGURE 11.7 Vector field created by the quiver() command.

162 11. INTRODUCTION TO PHASE PLANE ANALYSIS

C H A P T E R

12

Exploring
the Fitzhugh-Nagumo Model

12.1. THE GOAL OF THIS CHAPTER

In this chapter we will use the techniques of phase plane analysis to analyze a simplified
model of action potential generation in neurons known as the Fitzhugh-Nagumo (FN) model.
Unlike the Hodgkin-Huxley model, which has four dynamical variables, the FN model has
only two, so the full dynamics of the FN model can be explored using phase plane methods.

12.2. BACKGROUND

The FNmodel can be created from the Hodgkin-Huxley model by combining the variables V
andm into a single variable v and combining the variables n and h into a single variable r. The four
equations of the Hodgkin-Huxley model then become the two-equation system (Fitzhugh, 1961)

dv

dt
¼ cðv� 1

3
v3 þ rþ IÞ ð12:1Þ

dr

dt
¼ � 1

c
ðv� aþ brÞ ð12:2Þ

where a, b, c, and I are parameters of the model.
In Chapter 11, “Introduction to Phase Plane Analysis,” we analyzed a system of linear

differential equations that had the following general form:

dx

dt
¼ axþ by ð12:3Þ

dy

dt
¼ cxþ dy ð12:4Þ

163

In the current chapter we would like you to consider more complicated differential equa-
tions (such as those of the FN model). Suppose that you have a system of differential
equations of the form:

dx

dt
¼ f ðx, yÞ ð12:5Þ

dy

dt
¼ gðx, yÞ, ð12:6Þ

where f and g are more complicated functions of x and y. You begin by plotting the x- and
y-nullclines, which are given by f(x, y) ¼ 0 and g(x, y) ¼ 0, respectively. These nullclines
may intersect never, once, or more than once. If the nullclines never intersect, then the
system has no finite steady-state solutions. If there is one point of intersection, then there
is only one steady-state solution. Linear systems have at most one steady-state solution
(unless they are degenerate). Nonlinear systems, however, can have any number of
steady-state values. This will be important in your understanding the trajectories, which
may be seen in nonlinear systems. A vector field and trajectories given initial conditions
can be calculated for nonlinear systems in the exact same manner as calculated for linear
systems. Lastly, you can classify the fixed points (steady-state values) as you did in
Chapter 11, “Introduction to Phase Plane Analysis.” You perform this by linearizing the
functions f and g about each fixed point. You assume that the functions f and g have
Taylor expansions, so:

f ðx, yÞ ¼ f ðxss, yssÞ þ @f ðxss, yssÞ
@x

ðx� xssÞ þ @f ðxss, yssÞ
@y

ðy� yssÞ þ higher order terms,

and

ð12:7Þ

gðx, yÞ ¼ gðxss, yssÞ þ @gðxss, yssÞ
@x

ðx� xssÞ þ @gðxss, yssÞ
@y

ðy� yssÞ þ higher order terms: ð12:8Þ

As you approach the fixed points, the higher order terms tend to zero since x� xss, y� yss
<< 1. Additionally, f(xss, yss) ¼ g(xss, yss) ¼ 0, so:

f ðx, yÞ � @f ðxss, yssÞ
@x

ðx� xssÞ þ @f ðxss, yssÞ
@y

ðy� yssÞ and ð12:9Þ

gðx, yÞ � @gðxss, yssÞ
@x

ðx� xssÞ þ @gðxss, yssÞ
@y

ðy� yssÞ: ð12:10Þ

Substituting these equations into Equations 12.1 and 12.2 yields:

dx

dt
¼ dðx� xssÞ

dt
¼ @f ðxss, yssÞ

@x
ðx� xssÞ þ @f ðxss, yssÞ

@y
ðy� yssÞ ð12:11Þ

dy

dt
¼ dðy� yssÞ

dt
¼ @gðxss, yssÞ

@x
ðx� xssÞ þ @gðxss, yssÞ

@y
ðy� yssÞ: ð12:12Þ

164 12. EXPLORING THE FITZHUGH-NAGUMO MODEL

Expressing this system as a matrix equation gives:

ðx� xssÞ
0

ðy� yssÞ
0

" #
¼

@f ðxss, yssÞ
@x

@f ðxss, yssÞ
@y

@gðxss, yssÞ
@x

@gðxss, yssÞ
@x

2
66664

3
77775 � ðx� xssÞ

ðy� yssÞ
� �

: ð12:13Þ

If you let:

u ¼ ðx� xssÞ
ðy� yssÞ

� �
and J ¼

@f

@x

@f

@y

@g

@x

@g

@y

2
6664

3
7775 ð12:14Þ

then you can write Equation 12.13 as:

u
0 ¼ Jjðxss, yssÞ � u: ð12:15Þ

The matrix J is called the Jacobian matrix. It is a very important matrix in the mathematics
of multivariable calculus. Equation 12.15 tells you that to a first-order approximation the
nonlinear system in Equations 12.5 and 12.6 can be approximated by the linear system of
Equation 12.15. The eigenvalues of the Jacobian matrix (evaluated at the fixed point) allow
you to classify the fixed point as a saddle point, spiral sink, etc. Equation 12.15 is an
approximation to the nonlinear system. You might wonder at what point the approxima-
tion breaks down. There is a theorem that we will state without proof which says that
when the dynamics of the fixed point of the linear system in Equation 12.12 is a generic
fixed point, then the fixed point of the nonlinear system in Equations 12.1 and 12.2 has
the same dynamics. If the linear system has a nongeneric fixed point such as a center, then
no conclusion can be drawn about the dynamics of the fixed point of the nonlinear sys-
tem. See Chapter 11, “Introduction to Phase Plane Analysis,” for a review of generic
and nongeneric equilibria.

Note that information about the dynamics of the fixed point applies only to a limited
neighborhood centered about the fixed point. A spiral source, for example, can spiral out
to infinity or spiral out and approach a circular orbit. The latter case is called a limit cycle.
Nonlinear systems in higher dimensions (three or more) can have even more complicated
dynamics, not all of which have currently been discovered. The best studied dynamics of
higher order nonlinear systems include Lorenz attractors and chaos.

12.3. EXERCISES

In this chapter we will explore the pplane7 program written by Dr. John C. Polking of
Rice University. This program was used to make the figures in the Background section of
Chapter 11, “Introduction to Phase Plane Analysis,” and can be downloaded free at

16512.3. EXERCISES

http://math.rice.edu/~dfield/. After downloading the script, you can run it by
typing the following:

>> pplane7;

Entering this command will open the pplane7 Setup window shown in Figure 12.1.
Set up the FN model by changing the variables x and y to v and r according to Equations

12.1 and 12.2. The parameter values you can use for now are a ¼ 0.7, b ¼ 0.8, c ¼ 3, and
I ¼ 0. Set the display window such that v ranges from –3 to 3 and r ranges from –2 to 4.
Leave the other settings the same. If you have done this correctly, the Setup Window will
look like the one in Figure 12.2.

Now click the Proceed button, and a pplane7 Display window will come up, as shown
in Figure 12.3.

Next, open the Solutions menu and click Show nullclines. This will display the v-null-
cline in magenta and the r-nullcline in red. The phase plane will now look like the one
shown in Figure 12.4.

Next, open the Option menu, select Solution Direction, and then select Forward. This
will ensure that when an initial condition is provided to the system, the trajectory will

FIGURE 12.1 pplane7 Setup window.

166 12. EXPLORING THE FITZHUGH-NAGUMO MODEL

be plotted only as time moves forward. Finally, open the Solutions menu and select
Find an Equilibrium Point. This will turn the mouse pointer into a crosshair. Place the
crosshair near the intersection of the nullclines and click. An Equilibrium point data win-
dow will open, revealing that the equilibrium is located at (v, r) ¼ (1.1994, –0.62426). If
you would like to enter in an initial condition to see a trajectory in the phase plane, you
have two options. First, you can open the Solutions menu and then click Keyboard Input.
This will allow you to enter the initial conditions. After you click Compute, a trajectory in
blue is depicted on the phase plane in the pplane7 Display window. Alternatively, you
can click Solutions and then select Plot several solutions. Again, the mouse pointer is con-
verted to a crosshair. You can now click on the phase plane at the point representing the
initial condition and press Enter. Several trajectories are shown in the phase plane in
Figure 12.5.

Finally, you can obtain the voltage trace from the phase plane by opening the Graph
menu and selecting v vs t. This will again convert the mouse pointer into a crosshair. Use
the crosshair to select any trajectory on the phase plane. A pplane7 t-plot such as the one
in Figure 12.6 will appear.

FIGURE 12.2 pplane7 Setup window with FN model.

16712.3. EXERCISES

The plot in Figure 12.6 shows that if you change the membrane potential of the neuron to
2.4, it decays back down to the equilibrium value 1.1994 as previously determined. This is
analogous to giving a neuron a subthreshold depolarizing stimulus. After the brief depolar-
izing stimulus, the neuron’s membrane potential will exponentially relax back down to its
equilibrium resting potential.

Exercise 12.1: Is the equilibrium point in the preceding model system stable (i.e., are trajec-

tories attracted to this point or repelled from it)?

FIGURE 12.3 pplane7 Display window.

168 12. EXPLORING THE FITZHUGH-NAGUMO MODEL

12.4. PROJECT

In this project, you will explore the Fitzhugh-Nagumo model that you set-up with
pplane7 by injecting different levels of current and examining how the behavior of the
model neuron mimics that of a real neuron. Specifically, you should do the following:

• Change the injected current value to I ¼ –0.2 in the Setup window and click Proceed.
Follow the previous instructions to display the nullclines. Calculate a trajectory in the
Forward direction with the initial condition (v, r) ¼ (1.1994, –0.62426). Is this point still
stable?

FIGURE 12.4 Phase plane with v- and r-nullclines depicted.

16912.4. PROJECT

• Determine what v versus t looks like for a trajectory on this phase plane. Would you
classify the injected input of �0.2 as a superthreshold or subthreshold stimulus? Does
this neuron exhibit subthreshold oscillations for this value of injected current?

• Change the injected current value to I ¼ �0.4 in the Setup window and click Proceed.
Follow the previous instructions to display the nullclines. Calculate a trajectory in the
Forward direction with the initial condition (v, r) ¼ (1.1994, �0.62426). Is this point still
stable? Plot several trajectories on this phase plane. Since the nullclines intersect at only a
single point, there are no other equilibrium points for this system, but trajectories may be

FIGURE 12.5 Phase plane with sample trajectories.

170 12. EXPLORING THE FITZHUGH-NAGUMO MODEL

attracted to some other closed orbit—for example, a circular orbit. Are these trajectories
attracted to a closed orbit?

• Determine what v versus t looks like for a trajectory that is attracted to a closed orbit, also
called a limit cycle? Would you classify this injected stimulus as a superthreshold or
subthreshold stimulus?

• Finally, repeat the analysis for I ¼ �1.6 and examine v versus t. Does this neuron spike
continuously as it did before? Neurons are known to exhibit a phenomenon called
excitation block, whereby increasing the current injection can often repress repetitive firing
behavior.

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS
COVERED IN THIS CHAPTER

pplane7 (free script by John C. Polking available at http://math.rice.edu/
~dfield/)

FIGURE 12.6 pplane7 t-plot showing voltage over time.

171MATLAB FUNCTIONS, COMMANDS, AND OPERATORS COVERED IN THIS CHAPTER

This page intentionally left blank

C H A P T E R

13

Neural Data Analysis:
Encoding

13.1. GOALS OF THIS CHAPTER

The primary goal of this chapter is to introduce you to fundamental methods of analyz-
ing spike trains of single neurons used to characterize their encoding properties: raster
plots, peri-stimulus time histograms, and tuning curves. While there are prepackaged tools
available for these methods, in this chapter you will program these tools yourself and use
them to analyze behavioral data recorded from motor areas of a macaque monkey.

13.2. BACKGROUND

In general, neuroscientists are interesting in knowing what neurons are doing. More
specifically, neuroscientists are often interested in neural encoding—how neurons repre-
sent stimuli from the outside world with changes in their firing properties. Let’s say
you are studying a neuron from a visual area. You would first present a subject with con-
trolled visual stimuli with a number of known properties—orientation, luminance, con-
trast, etc. If you are studying a neuron from a motor area, your stimuli might be a set of
stereotyped movements which the subject performs. Using standard electrophysiological
techniques, you then record the response of the neuron to each stimulus. You can repeat
the presentation of a given stimulus and then see how similar (or different) the neuronal
responses are. A raster plot is a simple method to visually examine the trial-by-trial vari-
ability of these responses. You can examine what features these responses have in com-
mon by averaging over all responses to create a peri-stimulus time histogram. Finally, to
capture how the average response of the neuron varies with some sensory or motor fea-
ture, you can generate a tuning curve that maps the feature value onto the average
response of the neuron.

173

13.3. EXERCISES

13.3.1. Raster Plot

Because action potentials are stereotyped events, the most important information they
carry is in their timing. A raster plot replaces each action potential with a tick mark that cor-
responds to the point where the raw voltage trace crosses some threshold.

Load the dataset for this chapter from the companion website. Contained within that
dataset is a variable spike, which contains the firing times (in seconds) of a single neuron
for 47 trials of the same behavioral task. Here, you are recording from a cell in the motor
cortex, and the task involves moving the hand from the same starting position to the same
ending position. For each trial, the spike times are centered so that the start of movement
coincides with a timestamp of 0 seconds. Because the neuron did not fire the same number
of times for each trial, the data are stored in a struct, which is a data structure that can bun-
dle vectors (or matrices) of different lengths. To access the spike times for the first and sec-
ond trials, type:

t1 = spike(1).times;
t2 = spike(2).times;

If you look at the workspace, you can verify that that the vectors t1 and t2 are not the
same length. Now plot the first trial as a raster:

figure %Create a new figure
hold on %Allow multiple plots on the same graph
for i = 1:length(t1) %Loop through each spike time

line([t1(i) t1(i)], [0 1]) %Create a tick mark at x = t1(i) with a height of 1
end
ylim([0 5]) %Reformat y-axis for legibility
xlabel(‘Time (sec)’) %Label x-axis

Even when you’re looking at one trial, it appears that the neuron fires sparsely at first but
then ramps up its firing rate a few hundred milliseconds before the start of movement.
Now plot the next trial:

for i = 1:length(t2)
line([t2(i) t2(i)], [1 2])

end

Your result should look like those in Figure 13.1.
The relationship between the firing rate and start of movement is not nearly as clear in

the second trial as in the first trial. To resolve this discrepancy, you can write a loop to plot
rasters for all trials. You will do this as part of this chapter’s project. However, it would also
be nice to know what the response of the “average trial” looks like.

174 13. NEURAL DATA ANALYSIS: ENCODING

13.3.2. Peri-Stimulus Time Histogram

The average neural response is captured by the peri-stimulus time histogram, which is abbre-
viated PSTH and sometimes referred to as the peri-event time histogram. Peri-stimulusmeans that
all the trials are centered relative to some relevant stimulus or event—in this case, the start of
movement. Time histogram means you divide the time period into a series of bins (0 to 100 ms,
100 to 200 ms, etc.) and count how many spikes fall in each bin for all trials. Luckily, the
MATLABW software has a function thatmakes this task easy:histc. To look at all trials, youwill
initialize the PSTH with zeros and then sequentially add each trial’s results. Try the following:

edges = [–1:0.1:1]; %Define the edges of the histogram
psth = zeros(21,1); %Initialize the PSTH with zeros
for j=1:47 %Loop over all trials

%Add current trial’s spike times
psth = psth+histc(spike(j).times,edges);

end
bar(edges,psth); %Plot PSTH as a bar graph
xlim([-1.1 1]) %Set limits of X-axis
xlabel('Time (sec)') %Label x-axis
ylabel('# of spikes') %Label y-axis

Your results should look like those in Figure 13.2.
Now the pattern in neuronal activity is clear: the firing rate begins to increase about half

a second before movement start and returns to baseline by half a second after movement
start. Of course, for the y-axis to indicate firing rate in spikes per second, you need to divide
each bin’s spike count by both the bin width and the number of trials.

−1 −0.5 0 0.5 1
0

1

2

3

4

5

Time (sec)

Tr
ia

l #

FIGURE 13.1 A raster plot of spike times of the sample neuron for the first two trials.

17513.3. EXERCISES

13.3.3. Tuning Curves

Many neurons respond preferentially to particular values of the stimulus. Typically, this
activity gradually falls off from a maximum (corresponding to the preferred stimulus)
along some stimulus dimension (e.g., orientation, direction). By plotting the stimulus
dimension on the x-axis and the neural activity (typically a firing rate) on the y-axis, you
can determine the preferred stimulus of a neuron. Figure 13.3 shows a tuning curve of a

−1 −0.5 0 0.5 1
0

50

100

150

200

250

Time (sec)

of

 s
pi

ke
s

FIGURE 13.2 A peri-stimulus time histogram centered on the start of movement.

0 50 100 150 200 250 300
0

20

40

60

80

100

120

140

160

180

200

Direction of motion (degrees)

F
iri

ng
 r

at
e

(H
z)

FIGURE 13.3 A tuning curve for a neuron from area MT.

176 13. NEURAL DATA ANALYSIS: ENCODING

neuron from area MT, which is a part of the visual cortex that aids in the perception of
motion. As you can tell, the neuron prefers upward motion (motion toward 90�).

13.3.4. Curve Fitting

Typically, tuning curves like this are fit to a function such as a Gaussian curve or a cosine
function. Because all measurements made in the real world come with errors, it is usually
impossible to describe empirical data with a perfect functional relationship. Instead, you
fit data with a curve that represents a model of the proposed relationship. If this curve fits
the data well, then you conclude that your model is a good one.

The simplest relationship you will typically look for is a linear one. Many neurons are
thought to encode stimuli linearly. For example, ganglion cells in the limulus (horseshoe
crab) increase their firing rate linearly with luminance of a visual stimulus (Hartline,
1940). You can simulate this relationship as follows:

x = 1:20; %Create a vector with 20 elements
y = x; %Make y the same as x
z = randn(1,20); %Create a vector of random numbers with same dimensions as x
y = y + z ; %Add z to y, introducing random variation
plot(x,y, '.') %Plot the data as a scatter plot
xlabel('Luminance')
ylabel('Firing rate')

MATLAB contains prepackaged tools for fitting linear relationships. Just click on the figure,
select Tools, and then select Basic Fitting. Check the boxes for Linear and Show equations, and
youwill see the line and equation that best fit your data. However, youmight also like to be able
to do this yourself. The command inMATLAB to fit data to a polynomial is polyfit. For example:

p=polyfit(x,y,1) %fits data to a linear, 1st degree polynomial

The first value in p is the slope and the second value is the y-intercept. If you plot this fitted
line, your result should be similar to Figure 13.4.

0 5 10 15 20
0

5

10

15

20

Luminance

F
iri

ng
 r

at
e

Raw data
Linear fit

FIGURE 13.4 A linear fit of the relationship between the firing rate of a simulated ganglion cell and the lumi-
nance of the stimulus.

17713.3. EXERCISES

hold on %Allow 2 plots of the same graph
yFit = x*p(1)+p(2); %Calculate fitted regression line
plot(x,yFit) %Plot regression

Now you will fit data to a more complicated function—a cosine. First, generate some
new simulated data:

x = 0 : 0.1 : 30; %Create a vector from 0 to 10 in steps of 0.1
y = cos (x); %Take the cosine of x, put it into y
z = randn(1,301); %Create random numbers, put it into 301 columns
y = y + z; %Add the noise in z to y
figure %Create a new figure
plot (x,y) %Plot it

MATLAB does not have a built-in function for fitting this to a cosine, but it does have a
nonlinear curve-fitting function: nlinfit. You will need to specify the details of the fit. Here,
you will use a cosine function with the y-offset, amplitude, and phase as free parameters.
You can define this function “inline,” which means it can be used by other functions in
MATLAB in the same session or M-file.

Type this command to define a generic cosine function:

mystring = 'p(1) + p(2) * cos (theta - p(3))'; %Cosine function in string form

Here, p(1) represents the y-offset; p(2), the amplitude; and p(3), the phase. You can
assume the frequency is 1. Now enter the following:

myfun = inline (mystring, 'p', 'theta'); %Converts string to a function

This function accepts angles theta and parameter vector p and transforms them using the
relationship stored in mystring.

p = nlinfit(x, y, myfun, [1 1 0]); %Least squares curve fit to inline function "myfun"

The first parameter of nlinfit is a vector of the x-values (the angle theta in radians). The sec-
ond parameter is the observed y-values. The third parameter is the name of the function to
fit, and the last parameter is a vector with initial guesses for the three free parameters of the
cosine function. If the function doesn’t converge, use a different initial guess. The nlinfit
function returns the optimal values of the free parameters (stored in p) that fit the data with
the cosine function, as determined by a least squares algorithm.

Optionally, instead of defining a function inline, you can also save a function in an
M-file. In that case, you will need to include an @ (at) symbol before the function name,
which will allow MATLAB to access the function as if it were defined inline:

p = nlinfit(x, y, @myfun, [1 1 0]); %Least squares curve fit to function "myfun.m"

You can use the inline function to convert the optimized parameters into the fitted curve.
After plotting this, your result should look similar to Figure 13.5.

178 13. NEURAL DATA ANALYSIS: ENCODING

hold on %allows 2 plots of the same graph
yFit = myfun(p,x); %calculates fitted regression line
plot(x,yFit,'k') %plots regression

13.4. PROJECT

The data that you will use for your project were recorded from the primary motor cortex
(abbreviated MI) of a macaque monkey (data courtesy of the Hatsopoulos laboratory).
MI is so named because movements can be elicited by stimulating this area with a small
amount of electricity. It has also been shown that MI has direct connections to the spinal cord.
MI plays an important role in the control of voluntary movement (as opposed to reflexive
movements). This doesn’t mean that MI directly controls movement, because other areas in
the basal ganglia and the brainstem are important as well. Animals with a lesioned MI can
still make voluntary movements, albeit less dexterously than before. However, it is clear that
MI contains information about voluntary movement, usually a few hundred milliseconds
before it actually happens. Thus, the usual terminology of “stimulus” and “response” is awk-
ward here because the neural “response” usually precedes the experimental “stimulus.”
There is also a somatotopic map in MI, meaning that there are separate areas corresponding
to face, arm, leg, or hand movements. These data are recorded from the arm area.

The behavioral data were collected using a manipulandum, which is an exoskeleton that
fits over the arm and constrains movement to a 2-D plane. Think of the manipulandum as a
joystick controlled with the whole arm. The behavioral task was the center-out paradigm
pioneered by Georgopoulos and colleagues (1982). The subject first holds the cursor over
the center target for 500 ms. Then a peripheral target appears at one of eight locations
arranged in a circle around the center target. In this task there is an instructed delay, which
means that after the peripheral target appears, the subject must wait 1000–1500 ms for a go
cue. After the go cue, the subject moves to and holds on the peripheral target for 500 ms,
and the trial is completed.

0 5 10 15 20 25 30
−3

−2

−1

0

1

2

3

4

Raw data
Cosine fit

FIGURE 13.5 A nonlinear fit of a simulated, noisy cosine relationship.

17913.4. PROJECT

There are two interesting time windows here. Obviously, MI neurons should respond
during a time window centered around the go cue, since this is when voluntary movement
begins. However, MI neurons also respond during the instructed delay. This result is some-
what surprising because the subject is holding still during this time. The usual interpreta-
tion is that the subject is imagining or preparing for movement to the upcoming target.
This means that MI is involved in planning as well as executing movement.

If you treat thedirection to theperipheral target as the stimulus, you can arrange the neuronal
responses in a tuning curve. These can be described with the same cosine curve used before,
where the phase of the fitted cosine corresponds to the preferred direction of the neuron.

In this dataset, the neuronal spiking is stored in a struct called unit. Information for unit
#1 is accessed with unit(1). Spike times are stored in unit(1).times. There are three more
important variables: the instruction cue times are stored in instruction, the go cue times
are stored in go, and the direction of peripheral target is stored in direction (1 corresponds
to 0 degrees, 2 corresponds to 45 degrees, etc.).

In this project, you are asked to do the following:

1. Make raster plots and PSTHs for all the neurons for both time periods: instruction cue to
1 second afterward, and 500 ms before the movement onset to 500 ms afterward. Which
neurons are the most responsive? Print out a few examples. Do you think the PSTHs are
a good summary of the raster plots? How does the time course of the responses differ
between the two time periods?

2. Create tuning curves and fit a cosine tuning curve to the firing rates of all neurons for each
time period. Report the parameters of the fit for each neuron and save this information
for later chapters. How good of a description do you think the cosine curve is? Do the
tuning curves differ between the two time periods? If so, why do you think this is?

Figures 13.6 and 13.7 show examples of what your results might look like. The locations
of the smaller plots correspond to the locations of their associated peripheral targets. Here,

−1 0 1
0

10

20

−1 0 1
0

20

−1 0 1
0

20

40

−1 0 1
0

20

40

−1 0 1
0

20

40

−1 0 1
0

20

40

−1 0 1
0

20

40

−1 0 1
0

10

20

Chan 117−1

FIGURE 13.6 An example of a full raster plot for the first neuronal unit recorded from electrode #117.

180 13. NEURAL DATA ANALYSIS: ENCODING

a timestamp of 0 seconds corresponds to the start of movement. You can use the command
subplot to subdivide the plotting area. For example, the command subplot(3,3,i) makes the
ith square in a 3�3 grid the active plotting area.

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS
COVERED IN THIS CHAPTER

histc
randn
bar
polyfit
nlinfit
subplot

−1 0 1
0

50

−1 0 1
0

50

−1 0 1
0

50

−1 0 1
0

50

−1 0 1
0

50

−1 0 1
0

50

Chan 117−1

−1 0 1
0

50

−1 0 1
0

50

FIGURE 13.7 An example of a full peri-stimulus time histogram for the first neuronal unit recorded from elec-
trode #117.

181MATLAB FUNCTIONS, COMMANDS, AND OPERATORS COVERED IN THIS CHAPTER

This page intentionally left blank

C H A P T E R

14

Principal Components Analysis

14.1. GOALS OF THIS CHAPTER

Previously, we explored how the MATLABW software can be used to visualize neural
data. This is a powerful tool. For example, a simple 2D tuning curve can demonstrate
how a single neuron encodes a stimulus parameter in terms of a firing rate. However, it
is not clear how this applies to multidimensional data. How do you represent stimulus
encoding of a population of neurons or of a time-varying firing rate?

One solution is to try to compress data to make them easier to work with. If you can reduce
the dimensionality to two or three dimensions, you can then use your visualization tools. In
this chapter you will see how principal components analysis can be used to perform
dimensionality reduction. You will also explore an application of this technique to spike sort
neuronal waveforms. This will prepare you for the next chapter, where you will use principal
components to capture the temporal aspects of a peri-stimulus time histogram.

14.2. BACKGROUND

Principal components analysis (PCA) performs a linear transformation on data and can be
used to reduce multidimensional data down to a few dimensions for easier analysis. The
idea is that many large datasets contain correlations between the dimensions, so that a por-
tion of the data is redundant. PCA will transform the data so that as much variation as
possible will be crammed into the fewest possible dimensions. This allows you to compress
your data by ignoring other dimensions. To apply PCA, you first need to understand how
the correlations between dimensions can be described by a covariance matrix.

14.2.1. Covariance Matrices

You will start by analyzing some simulated data. You will look at zero-mean, Gaussian
noise (“white noise”) in two dimensions. You can generate this in MATLAB using the

183

function normrnd. In the first variable (a), the two dimensions will be uncorrelated, but in
the second (b) there will be a significant correlation between the two dimensions. Use the
following code to generate a and b:

n=500; %n = number of datapoints
a(:,1)=normrnd(0,1,n,1); %n random Gaussian values with mean 0, std.

%deviation 1
a(:,2)=normrnd(0,1,n,1); %Repeat for the 2nd dimension.
b(:,1)=normrnd(0,1,n,1); %n random Gaussian values with mean 0, std.

%deviation 1
b(:,2)=b(:,1)*0.5+0.5*normrnd(0,1,n,1); %For b, the 2nd dimension is correlated with the 1st

If you plot the columns of these variables against one another, the data should look
something like Figure 14.1.

You should alreadybe familiarwith the concepts ofmean, variance, and standard deviation. If the
sample data consist of n observations stored in a vector x, the samplemean is defined as follows:

�x ¼ 1

n

Xn
i¼1

xi ð14:1Þ

The variance (s2) of the sample is simply the expected value (mean) of the squared devia-
tions from the sample mean:

s2 ¼ 1

n

Xn
i¼1

ðxi � �xÞ2 ð14:2Þ

The standard deviation (s) is just the square root of the variance. Unfortunately, using the
preceding expression as an estimate of the sample variance is a bad idea because this esti-
mate is biased: it systematically underestimates the variance. However, it can be shown that
the unbiased estimator is formed by replacing n by n � 1 in the first term. Thus, the sample
variance (s2) is usually defined as follows:

s2 ¼ 1

n� 1

Xn
i¼1

ðxi � �xÞ2 ð14:3Þ

−4 −2 0 2 4
−4

−2

0

2

4
A − Uncorrelated noise

−4 −2 0 2 4
−4

−2

0

2

4
B − Correlated noise

FIGURE 14.1 Samples from a two-dimensional Gaussian distribution where the dimensions are uncorrelated
(A) and correlated (B).

184 14. PRINCIPAL COMPONENTS ANALYSIS

This is how the function var in MATLAB is defined. If you subtract the mean from your
data, then you can more compactly express the sample variance as follows:

s2 ¼ 1

n� 1
ðx� �xÞTðx� �xÞ ð14:4Þ

The superscript T signifies a transpose, whereby matrix columns are changed to rows and
vice versa: an m by n matrix becomes an n by m matrix. In MATLAB, a transpose is desig-
nated with an apostrophe placed after the variable.

Let’s compare the preceding formula with the function var. In the following code, do the
two expressions give the same result?

var(a(:,1)) %Compute sample variance of 1st dim of "a"
c=a(:,1)-mean(a(:,1)); %Subtract mean from 1st dim of "a"
c'*c/(n-1) %Compute sample variance of 1st dim of "a"

%Note the apostrophe denoting transpose(c)

The covariance is analogous to the variance, except that it is computed between two vec-
tors, not a vector and itself. If you have a second data vector y with n independent values,
then the sample covariance is expressed as follows:

covðx; yÞ ¼ 1

n� 1

Xn
i¼1

ðxi � �xÞðyi � �yÞ ð14:5Þ

You can see that if x and y are the same, the sample covariance is the same as the sample
variance. Also, if x and y are uncorrelated, the covariance should be zero. A positive covari-
ance means that when x is large, so is y; while a negative covariance means that when x is
large, y is small. The last thing you need to define is the covariance matrix. If the data have m
dimensions, then the covariance matrix is an m by m matrix where the diagonal terms are
the variance of each dimension and the off-diagonal terms are the covariances between
dimensions. If the additional dimensions are stored as extra columns in variable x (so x
becomes an n by m matrix), then the sample covariance can be computed the same way
as the sample variance:

covðxÞ ¼ 1

n� 1
ðx� �xÞTðx� �xÞ ð14:6Þ

This is computed by the function cov in MATLAB. Compare the two methods by using the
following code (the function repmat is used to create multiple copies of a vector):

cov(a) %Compute the covariance matrix for "a"
c=a-repmat(mean(a),n,1); %Subtract the mean from "a"
c'*c/(n-1) %Compute the covariance matrix for "a"

The covariance of the correlated noise should have large off-diagonal terms. One reason
to compute the covariance is that it plays the same role in the multivariate Gaussian distri-
bution as the variance plays in the univariate Gaussian. You can use the covariance and the
function mvnrand (mvn stands for multivariate normal) in MATLAB to generate new multi-
variate correlated noise (b2). Plot b2 on top of the correlated noise generated earlier (b). Did
the covariance matrix adequately capture the structure of the data?

18514.2. BACKGROUND

sigma = cov(b) %Compute the covariance matrix of b
b2=mvnrnd([0 0],sigma,n); %Generatenewzero-meannoisewith the samecovariancematrix

14.2.2. Principal Components

Principal components analysis is essentially just a coordinate transformation. The origi-
nal data are plotted on an X-axis and a Y-axis. PCA seeks to rotate these two axes so that
the new axis X’ lies along the direction of maximum variation in the data. PCA requires that
the axes be perpendicular, so in two dimensions the choice of X’ will determine Y’. You
obtain the transformed data by reading the x and y values off this new set of axes, X’ and
Y’. For more than two dimensions, the first axis is in the direction of most variation; the sec-
ond, in direction of the next-most variation; and so on.

How do you get your new set of axes? It turns out they are related to the eigenvalues
and eigenvectors of the covariance matrix you just calculated. We previously used
eigenvalues and eigenvectors to describe the behavior of a linear system of equations.
In PCA, each eigenvector is a unit vector pointing in the direction of a new coordinate
axis, and the axis with the highest eigenvalue is the axis that explains the most
variation.

This concept may seem confusing, so start by looking at the correlated noise data (b). You
could make a decent guess at the principal components just by looking at the data: the first
principal component line should fall on the long axis of the ellipse-shaped cluster. You can
use the function eig in MATLAB to compute the eigenvectors and eigenvalues of the covari-
ance matrix sigma you computed previously:

[V, D] = eig(sigma) %V = eigenvectors, D = eigenvalues for covariance matrix sigma

This will output something like the following (because the noise was generated randomly,
the exact values will vary):

V =
0.5387 -0.8425
-0.8425 -0.5387

D =
0.2048 0
0 1.3341

The eigenvalues are stored on the diagonal of D, while the corresponding eigenvectors
are the rows stored in V. Because the second eigenvalue is bigger, the second eigenvector
is the first principal component. This means that a vector pointing from the origin to
(–0.8445, –0.5387) lies along the axis of maximum variation in the data. Type the following
to plot the new coordinate axes on the original data:

plot(b(:,1),b(:,2),'b.'); %Plot correlated noise
hold on
plot(3*[-V(1,1) V(1,1)],3*[-V(1,2) V(1,2)],'k') %Plot axis in direction of 1st eigenvector
plot(3*[-V(2,1) V(2,1)],3*[-V(2,2) V(2,2)],'k') %Plot axis in direction of 2nd eigenvector

This will produce a graph like the one in Figure 14.2.

186 14. PRINCIPAL COMPONENTS ANALYSIS

Now you use these new coordinate axes to reassign the (X,Y) values to all your data-
points. First, you want to reorder the eigenvectors so that the first principal component is
in the first row. Then you can simply multiply the data by this reordered matrix to obtain
the new, transformed data. For example:

V2(:,1) = V(:,2); %Place the 1st principal component in the 1st row
V2(:,2) = V(:,1); %Place the 2nd principal component in the 2nd row
newB = b*V2; %Project data on PC coordinates

If you plot these transformed data, it is clear that you just rotated the data so that most of
the variation lies along the X-axis, as shown in Figure 14.3.

If you stop here, you haven’t gained much, since the transformed data have just as many
dimensions as the original data. However, if you wanted to compress the data, you can now

−4 −2 0 2 4
−3

−2

−1

0

1

2

3

Principal component (PC) axes

FIGURE 14.2 The first two principal component axes plotted with the original correlated data b.

−4 −2 0 2 4
−3

−2

−1

0

1

2

3

Data projected on PC axes

FIGURE 14.3 The correlated data b projected on the first two principal components.

18714.2. BACKGROUND

just throw away the second column (the data plotted on the Y-axis in Figure 14.3). The
whole point of PCA is that if you force as much of the variation as possible into a few
dimensions, you can throw away the rest without losing much information.

Howmuch variation can you capture by doing this? It turns out that the fraction of variation
captured by each principal component is the ratio of its eigenvalue to the sumof all the eigenva-
lues. For example, the first principal component has an eigenvalue of around 1.33, and the sec-
ond principal component has an eigenvalue of around 0.20. Thatmeans if you keep just the first
column of the transformed data, you still keep 87% of the data (0.87¼1.33/[1.33þ0.20]). That is,
you can compress the size of the data by 50% but lose only 13% of the variation.

Conveniently, MATLAB already has a function that performs all these calculations in
one fell swoop: princomp. Type the following to compute principal components for the
correlated data:

[coeff,score,latent]=princomp(b); %Compute principal components of data in b

The eigenvectors are stored in the variable coeff, the eigenvalues are stored in latent, and
the transformed data (the old data projected onto the new PC axes) are stored in score.
MATLAB even orders the eigenvectors so that the one with highest eigenvalue is first.

14.2.3. Spike Sorting

One common application of PCA is the spike sorting of neural data. Typically, a data
acquisition system monitors a raw voltage trace. Every time the voltage crosses some
threshold, the raw voltage is sampled during a time window surrounding this crossing to
produce the recorded spike waveform. For example, in one commercially available data
acquisition system (Cerebus system, Cyberkinetics Neurotechnology Systems, Inc.), each
spike waveform consists of a 1600 ms section of the voltage trace sampled 30 times per mil-
lisecond for a total of 48 data points.

Because any experimental system contains noise, the threshold crossing is often trig-
gered by a chance deviation from the mean and not an action potential. Thus, after these
recordings are made, the noise must be differentiated from the real spikes. You must also
determine if the real spikes came from one or many neurons and then sort them accord-
ingly. How do you compare waveforms? You can start by plotting them all on the same
graph. For example, Figure 14.4 contains the first 200 waveforms from one electrode of a
multielectrode array recording from the primary motor cortex in a macaque monkey.

First, remember that since this is an extracellular recording, the sign of the voltage trace
of the action potential is reversed, and the amplitude is much smaller than for intracellular
recordings (microvolts instead of millivolts). You can immediately see that there is a large
amplitude unit on the electrode. There may also be a smaller amplitude unit with a larger
trough-peak spike width. There is also some noise. It is not immediately clear how to sepa-
rate these categories, and you are looking at only 200 spikes. How do you deal with all
80,000 spikes that were recorded during an hour-long session? You could represent each
waveform as a single point, but then each point would be in a 48-dimensional space.
How do you make this analysis easier?

The solution (as you may have guessed) is to compress the data using principal compo-
nents. Then you can plot the first versus the second principal component and see whether

188 14. PRINCIPAL COMPONENTS ANALYSIS

the data fall into clusters. When you visualize all the spikes in a graph like the one in
Figure 14.5, it becomes clear that there are two major clusters.

Unfortunately, with so many spikes, it’s not clear how densely packed the clusters are.
You can create a 3D histogram using the function hist3 and then visualize the histogram
using the function surface. After loading the data from the companion website, use the fol-
lowing code to reproduce Figure 14.6:

wf=session(1).wf; %Load waveforms
[coeff,score]=princomp(wf); %Compute principal components
edges{1}=[-300:25:300]; %Bin for the X-axis
edges{2}=[-250:25:250]; %Bin for the Y-axis
h=hist3(score(:,1:2),edges); %Compute a 2-D histogram
s=surface(h'); %Visualize the histogram as a surface (note the apostrophe)
set(s,'XData',edges{1}) %Label the X-axis
set(s,'YData',edges{2}) %Label the Y-axis

−300 −200 −100 0 100 200 300
−250

−200

−150

−100

−50

0

50

100

150

200

250

PC1

P
C

2

FIGURE 14.5 A scatterplot of the motor cortical spike waveforms projected on the first and second principal
components.

0 0.5 1 1.5
−150

−100

−50

0

50

100

150

Time (ms)

M
ic

ro
vo

lts

FIGURE 14.4 A plot of 200 extracellular action potential waveforms recorded from a microelectrode array
implanted in the primary motor cortex of a macaque monkey.

18914.2. BACKGROUND

The default view is looking straight down on the surface. To make the figure prettier,
click the Rotate 3D button (its icon is a counterclockwise arrow encircling a cube). Then
click and drag on the figure to rotate it. Play with the function colormap to change the color
scheme and type help graph3D for the list of color maps. Figure 14.6 uses colormap(white).

Unfortunately, it is difficult to quickly spike sort these waveforms without a good graphical
user interface. For example, you would like to be able to select a point in PC space and see what
the corresponding waveform looks like. Youwant to be able to circle a group of points and then
see both the averagewaveformand the interspike-interval histogram. This is the sort of function-
ality provided by commercial spike sorting packages, such as Offline Sorter by Plexon, Inc. You
can implement something similar in MATLAB, but doing so is beyond the scope of this book.

In the project youwill perform in this chapter, instead of using a graphical selection tool, you
will selectwaveforms by looking at distances in PC space. Pick a point in PC 1 versus PC 2 space
that you think is at the center of a cluster. Then calculate the Euclidean distance of every other
point from this template point and pick all those that fall below a certain threshold. This is
equivalent to drawing a circle on the PC graph and picking all the points that fall within the cir-
cle. Now you can calculate any statistic you want of the sorted waveforms, such as the average
waveformor the interspike interval histogram. The function findmay be useful. For example, if
you store your Euclidean distances in dist and your distance threshold in threshold, you can find
the indices of all the waveforms meeting this threshold with ind=find(dist<threshold);.

You can use this average waveform as the basis of a template sort, a common strategy in
spike sorting. The average waveform is a template to which you compare all other wave-
forms. Calculate the mean-squared error for each waveform from this template waveform.
Then keep all waveforms whose mean squared error falls below a certain threshold.

While this procedure would be easier with a commercial spike sorter, sometimes custom
procedures in MATLAB can be useful. In the project for this chapter, you will also consider
the problem of comparing waveforms from one day to the next. Because the principal com-
ponents change depending on the data, instead of calculating the PCs of the second day,
you will project the second day’s data onto the first day’s PCs. This isn’t something that
is usually possible with spike sorting software, so understanding how to implement this
in MATLAB expands your analytical possibilities.

−200

0

200
−300

−200
−100

0
100

200
300

0

1000

2000

3000

PC2
PC1

C
ou

nt

FIGURE 14.6 A three-dimensional histogram showing the frequency of motor cortical spike waveforms
projected on the first (PC1) and second (PC2) principal components.

190 14. PRINCIPAL COMPONENTS ANALYSIS

14.3. EXERCISES

Exercise 14.1: When you computed the covariance matrix of the uncorrelated data a, why are

the off-diagonal terms nonzero? Generate several new examples of uncorrelated noise. What do

you think the average covariance matrix should be?

Exercise 14.2: Use princomp to compute the principal components of the correlated noise

you generated in b. Are they different from what you computed using the covariance matrix

method? If they are, how would this affect the transformed data?

Exercise 14.3: Use princomp to compute the principal components of uncorrelated noise.

What are the PCs? What would you expect them to be?

14.4. PROJECT

In this project, you will build your own primitive spike sorter using principal compo-
nents analysis to analyze extracellular data from recordings in the primary motor cortex
of a nonhuman primate (data courtesy of the Hatsopoulos laboratory). The spike waveform
and spike times data for this project are stored in a struct called session. You can access the
data using the following code:

wf1 = session(1).wf; %waveforms from the 1st day
wf2 = session(2).wf; %waveforms from the 2nd day
stamps1 = session(1).stamps; %time stamps from the 1st day
stamps2 = session(2).stamps; %time stamps from the 2nd day

Specifically, you are asked to do the following:

1. Apply PCA to the first day’s waveforms. What percent of variation is captured by the
first two dimensions?

2. Spike sort the first day’s waveforms using a template sort. First, select a region of
interest in 2D PC space (a circle at the heart of a cluster) by finding all points in PC
space within a certain Euclidean distance from a given point. Calculate the average
waveform of the waveforms in this region. Use this average waveform as the template

19114.4. PROJECT

in a template sort. Plot the template and all the sorted waveforms for each neuron
you think is present. Also plot the interspike interval histograms, which are just
histograms of the times between sorted spikes. The function diff may be useful for
this task.

3. Project the second day’s data onto the first day’s principal component’s axes. How is this
different from the second day’s data projected on its own principal components? Repeat
the sort you used for the first day’s data. How do the neurons compare? Do you think
they are the same neurons?

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS
COVERED IN THIS CHAPTER

cov
eig
hist3
mvnrand
normrnd
princomp
surface
transpose
repmat
find
diff

192 14. PRINCIPAL COMPONENTS ANALYSIS

C H A P T E R

15

Information Theory

15.1. GOALS OF THIS CHAPTER

Thus far, we have assumed that a neuron encodes any relevant stimulus parameters by
modifying its firing rate. We used this assumption to construct tuning curves describing
this stimulus encoding. But a neuron could also encode a stimulus by changing the relative
timing of its spikes. In this chapter we will introduce the methodology used in a series of
papers by Richmond and Optican exploring temporal encoding in a primate visual area.
They used principal components analysis and information theory to argue that a temporal
code provided more information about the stimulus than a rate code did. You will apply
similar methodology to data recorded from the primate motor cortex. Note that this chapter
assumes familiarity with principal components analysis introduced in Chapter 14.

15.2. BACKGROUND

Richmond andOptican studied pattern discrimination in a primate visual area, the inferior
temporal (IT) cortex. They addressed the question of temporal coding in IT in a well-known
series of papers in the Journal of Neurophysiology (Optican and Richmond, 1987; Richmond
andOptican, 1987; Richmond et al., 1987). They found that the firing rate of IT neuronsmodu-
lated in response to the presentation of one of 64 two-dimensional visual stimuli. They also
saw evidence of temporal modulation that was not captured by the firing rate.

To quantify the relevance of this temporal modulation, Richmond and Optican converted
the raster plot for each trial into a spike density function (defined later in Section 15.2.2).
They then computed principal components (PCs) of these functions. They computed the
mutual information between the stimulus and either the firing rates (rate code) or the first
three PCs (temporal code). Their results indicated that the temporal code carried on average
twice the information as the rate code.

193

15.2.1. Motor Cortical Data

In this chapter you will use a similar approach to examine encoding of movement direc-
tion in the primate motor cortex. You have already seen that motor neurons modulate their
firing rate systematically depending on the direction of motion during a center-out task and
that this modulation can be fit to a cosine-tuning curve. However, this analysis computed
the firing rate over a coarse time bin (1 second). A tuning curve might predict a firing rate
of 30 Hz for a preferred stimulus, but there are a lot of ways to arrange 30 spikes (each last-
ing 1–2 ms) over a 1-second time period.

When you use a rate code, you are implicitly assuming that there is no additional infor-
mation contained in the relative timing of the spikes. This does not mean you assume there
is no temporal variation. Instead, a rate code assumes this temporal variation is uninforma-
tive about the stimulus. For example, when you calculated a peri-stimulus time histogram
(PSTH) centered on movement time in the preceding chapter, you saw the firing rate ramp
up slowly 500 ms before movement initiation and ramp back down to baseline by 500 ms
later. If each direction elicits this same temporal response scaled up or down, then the
coarse rate code is appropriate. However, if the temporal response varies systematically
across movement directions, then the rate code will ignore potentially useful information.

Figure 15.1 contains the raster plots (left) and PSTHs (right) for a unit from electrode #19
of the motor cortical dataset. The spike times are relative to the beginning of the instructed
delay, where the peripheral target is visible but the subject is still holding on the center tar-
get. The responses to a preferred stimulus (135� or 180�) are similar; both show an increase
in the firing rate about 500 ms after the target appears. However, the responses to an anti-
preferred stimulus (0� or 315�) are different; both show a transient increase in the firing rate

135
50

0
–1 0 1

90
50

0
–1 0 1

45
40

20

0
–1 0 1

225
50

0
–1 0 1

270
50

0
–1 0 1

315
40

20

0
–1 0 1

180
50

0
–1 0

Chan 19-1
instruction

1

0
40

20

0
–1 0 1

135
50

0
–1 0 1

90
50

0
–1 0 1

45
40

20

0
–1 0 1

225
50

0
–1 0 1

270
50

0
–1 0 1

315
40

20

0
–1 0 1

180
50

0
–1 0

Chan 19-1
instruction

1

0
40

20

0
–1 0 1

FIGURE 15.1 Left: A raster plot of the sample neuron. The x-axis is time in seconds, the y-axis is the trial num-
ber, and the title reflects the movement direction in degrees. Right: A peri-stimulus time histogram for the same
neuron. Here, the y-axis reflects the number of spikes in a 10 ms bin across all trials.

194 15. INFORMATION THEORY

in the first 100 ms followed by a marked depression for the following 900 ms. A rate code is
unlikely to capture all the information in these responses.

How do you quantify such temporal information? Principal components analysis might
work. However, you first need to think about how to format the spike times. Binning the
data seems natural, but choosing the proper bin size can be tricky. If the bin is too small
(1 ms), then you may make your potential response space huge (21000 possible responses)
compared to the number of trials. If the bin is too large (1 second), then you lose potentially
useful temporal variations within the time bin. The best bin size is close to the order of the
temporal dynamics you are interested in. If you observed consistent variations on a
50–100 ms time scale, a 50–100 ms time bin would probably work.

15.2.2. Spike Density Functions

Another problem with binning spike times is that binning can introduce artifacts into the
data. Suppose a response to a stimulus always consists of a single spike around time t, and
the variability from trial to trial follows a Gaussian distribution around t. If t sits right on an
edge between two bins, then sometimes it will be counted in the first bin, and other times it
will be counted in the second bin. This produces the illusion of a bimodal response when, in
fact, there is only a single response.

An elegant solution to this problem is to convert each raster plot into a continuous spike
density function. You first bin the spike times at a fine time resolution (1 ms) so that each
bin has a 0 or 1. You then convolve this data with another function, called the kernel. The
kernel captures how precise you think the spike times are: a wide kernel implies high varia-
bility, whereas a narrow kernel implies high precision.

You explored 2D convolution in Chapter 10; the 1D convolution function in the
MATLABW software is conv. Pay attention to the length of the resulting vector because
conv(a,b) results in a function whose length is length(a)+length(b)-1. Suppose the kernel
is a Gaussian function with a standard deviation of 15 ms. This is equivalent to putting a
confidence interval on the spike times. This kernel means you believe that a neuron that
wants to fire at 0 ms will actually fire at between –30 and 30 ms 95% of the time. To use this
kernel in MATLAB, you need to evaluate the Gaussian over a range of time values (every
1 ms from –45 ms to 45 ms). If you convolve this function with 1 second of spike data
(binned every 1 ms), the resulting vector will contain 1090 values. The corresponding time
axis is –45 ms to 1045 ms. If you don’t want values outside the 1-second time period of
interest, you just select the middle section. This is shown in the following code, where
the vector binned contains the binned spike data and the spike density function is stored
in vector s:

sigma = .015; %Standard deviation of the kernel = 15 ms
edges=[-3*sigma:.001:3*sigma]; %Time ranges form -3*st. dev. to 3*st. dev.
kernel = normpdf(edges,0,sigma); %Evaluate the Gaussian kernel
kernel = kernel*.001; %Multiply by bin width so the probabilities sum to 1
s=conv(binned,kernel); %Convolve spike data with the kernel
center = ceil(length(edges)/2); %Find the index of the kernel center
s=s(center:1000+center-1); %Trim out the relevant portion of the spike density

19515.2. BACKGROUND

An example of a spike density function is shown in Figure 15.2, along with the original
raster plot.

Once you compute spike density functions for each neuron, you can compute the princi-
pal components of the spike density functions. However, to avoid computing a 1000 � 1000
dimensional covariance matrix, you should first sample the spike density functions every
10 or 20 ms and then apply principal component analysis.

15.2.3. Joint, Marginal, and Conditional Distributions

The goal here is to compute the amount of information contained in a firing rate code
compared to a temporal code (as captured by principal components). However, before
defining “information” precisely, we need to review the concept of joint, marginal, and con-
ditional probability distributions. For a discrete variable (which is all we will consider here),
a probability distribution is simply a function that assigns a probability between 0 and 1 to all
possible outcomes such that all the probabilities sum to 1. A joint probability distribution is
the same, except it involves more than one variable and thus assigns probabilities to com-
binations of variables.

In this case, you have a stimulus S, which can take on one of eight discrete values. Sup-
pose you divide the firing rates R of the sample unit into three bins (low, medium, and high
firing rate). If you count how many times each of 24 possible combinations shows up in the
data, you end up with something like Table 15.1.

From Table 15.1, it is clear that there is a relationship between the firing rate and stimu-
lus direction. A high firing rate corresponds to a stimulus of 3, 4, or 5, while a low firing
rate corresponds to a stimulus of 7, 8, 1, or 2. Remember that S ¼ 1 corresponds to a move-
ment direction of 0�, S ¼ 2 to 45�, and so on. You can determine the observed joint

0.08

0.06

0.04

0.02

0

–0.02

0 0.2 0.4 0.6

Spike density function for trial #1

Time (s)
0.8 1

FIGURE 15.2 Top: An example of a spike density function using a Gaussian kernel with a standard deviation of
15 ms. Bottom: the original raster plot.

196 15. INFORMATION THEORY

probability distribution P(S,R) simply by dividing each count by the total number of counts
(here, this is 315). In addition, you can compute the marginal probability distributions,
which are the probability distributions of one variable computed by summing the joint
probability distribution over the other variable:

PðSÞ ¼
X
R

Pðs; rÞ and PðRÞ ¼
X
S

Pðs; rÞ ð15:1Þ

Note that in these equations, S and R refer to all possible stimuli or responses, respectively,
and that s and r refer to a particular stimulus or response.

Table 15.2 shows the values of P(S,R). The marginal distributions are listed in the last
row and far right column because they are the sum taken across rows and across columns
of the joint distribution.

The last concept we need to address is the conditional distribution. The distribution of the
response R given knowledge of the stimulus S is written P(R|S) and is defined as P(R|S) ¼
P(S,R)/P(S). Likewise, the conditional distribution of S given R is P(S|R) ¼ P(S,R)/P(R). As
an example, what is the probability distribution of firing rates given a movement direction
of 0� (S¼ 1)? To find the answer, simply take the first column of values in Table 15.2, P(S¼ 1,
R), and divide by P(S ¼ 1) to get P(R|S ¼ 1). Hence, the probably of a low firing rate given
S ¼ 1 is 0.067/0.092 ¼ 0.73 and so on.

15.2.4. Information Theory

The foundation of information theory was laid in a 1948 paper by Shannon titled,
“A Mathematical Theory of Communication.” Shannon was interested in how much

TABLE 15.1 Observed Counts of Stimulus-Response Pairs for the Sample Neuron

S = 1 S = 2 S = 3 S = 4 S = 5 S = 6 S = 7 S = 8

R<20 21 28 2 1 1 8 33 17

20�R<30 7 5 23 20 17 29 9 6

R�30 1 0 21 26 27 7 1 5

TABLE 15.2 The Joint Probability Distribution P(S,R) and the Marginal Distributions
P(R) and P(S) for the Sample Neuron

P(S,R) S = 1 S = 2 S = 3 S = 4 S = 5 S = 6 S = 7 S = 8 P(R)

R<20 0.067 0.089 0.006 0.003 0.003 0.025 0.105 0.054 0.352

20�R<30 0.022 0.016 0.073 0.063 0.054 0.092 0.029 0.019 0.368

R�30 0.003 0.000 0.067 0.083 0.086 0.022 0.003 0.016 0.279

P(S) 0.092 0.105 0.146 0.149 0.143 0.140 0.137 0.089

19715.2. BACKGROUND

information a given communication channel could transmit. In neuroscience, you are inter-
ested in how much information the neuron’s response can communicate about the experi-
mental stimulus.

Information theory is based on a measure of uncertainty known as entropy (designated
“H”). For example, the entropy of the stimulus S is written H(S) and is defined as follows:

HðSÞ ¼ �
X
S

PðsÞ log 2PðsÞ: ð15:2Þ

The subscript S underneath the summation simply means to sum over all possible stimuli
S ¼ [1, 2 . . . 8]. This expression is called “entropy” because it is similar to the definition
of entropy in thermodynamics. Thus, the preceding expression is sometimes referred to
as “Shannon entropy.” The entropy of the stimulus can be intuitively understood as
“how long of a message (in bits) do I need to convey the value of the stimulus?” For exam-
ple, suppose the center-out task had only two peripheral targets (“left” and “right”), which
appeared with an equal probability. It would take only one bit (a 0 or a 1) to convey which
target appeared; hence, you would expect the entropy of this stimulus to be 1 bit. That is
what the preceding expression gives you, as P(S) ¼ 0.5 and log2(0.5) ¼ –1. The center-out
stimulus in the dataset can take on eight possible values with equal probability, so you
expect its entropy to be 3 bits. However, the entropy of the observed stimuli will actually
be slightly less than 3 bits because the observed probabilities are not exactly the same.

Next, you want to measure the entropy of the stimulus given the response, H(S|R). For
one particular stimulus, the entropy is defined similarly to the previous equation:

HðSjrÞ ¼ �
X
S

PðsjrÞ log 2PðsjrÞ ð15:3Þ

To get the entropy H(S|R), you just average over all possible responses:

HðSjRÞ ¼ �
X
R

X
S

PðrÞPðsjrÞlog 2PðsjrÞ ð15:4Þ

Now you can define the information that the response contains about the stimulus. This
is known as mutual information (designated I), and it is the difference between the two
entropy values just defined:

IðR; SÞ ¼ HðSÞ �HðSjRÞ ¼
X
R

X
S

PðrÞPðsjrÞ log2 PðsjrÞ
PðsÞ

� �
ð15:5Þ

Why does this make sense? Imagine you divide the response into eight bins and that each
stimulus is perfectly pairedwith one response. In this case, the entropyH(S|R) would be 0 bits,
because given the response, there is no uncertainty about what the stimulus was. You already
decided the H(S) was theoretically 3 bits, so the mutual information I(R;S) would be 3 bits –
0 bits ¼ 3 bits. This confirms that the response has perfect information about the stimulus.

Suppose instead that you divide the response into two bins, and that one bin corre-
sponds to stimuli 1–4 and the other bin corresponds to stimuli 5–8. Each bin has four
equally likely choices, so the entropy H(R|S) will be 2 bits. Now the mutual information
is I(R;S) ¼ 3 bits – 2 bits ¼ 1 bit. This means that response allows you to reduce the uncer-
tainty about the stimulus by a factor of 2, which makes sense because the response divides

198 15. INFORMATION THEORY

the stimuli into two equally likely groups. This also emphasizes that the choice of bins
affects the value of the mutual information.

Note that you can use the definition of conditional probability to rearrange the expression
for mutual information. The following version is easier to use with the table of joint and mar-
ginal probabilities computed earlier. Mutual information can also be defined as follows:

IðR; SÞ ¼
X
R

X
S

Pðs; rÞ log 2
Pðs; rÞ
PðsÞPðrÞ

� �
ð15:6Þ

Applying this equation to the joint distribution of the sample neuron gives a mutual infor-
mation of 0.50 bits for a rate code.

15.2.5. Understanding Bias

Now try estimating the mutual information of an uninformative neuron. “Uninforma-
tive” means that the firing rate probabilities are independent of the stimulus probabilities.
By the definition of independence, the joint probability distribution of two independent
variables is the product of their marginal distributions P(R,S) ¼ P(S)P(R). If you substitute
this into the previous expression for mutual information, you will see the quantity inside
the logarithm is always 1. Since log2(1)¼0, this means the mutual information of two inde-
pendent variables is also 0.

To make things easy, assume that each of the three responses is equally likely and that
each of the eight stimuli is equally likely. Thus, P(R) ¼ 1/3 and P(S) ¼ 1/8, and each value
of the joint probability distribution is the same: P(S,R) ¼ 1/24. The mutual information of
this distribution is still 0 bits.

However, even if this is the true probability distribution, the observed probabilities would
likely be different. You can simulate the values of observed probabilities with the following
code. Here, you will simulate 24 random trials, so the expected count for each cell is 1:

edges=[0:24]/24; %Bin edges for each table entry
data=rand(24,1); %Generate 24 random values between 0 and 1
count = histc(data,edges); %Count how many fall in the bin edges
count=count(1:24); %Ignore the last value (counts values equal to 1).
count=reshape(count,3,8); %Reformat the table.

This might lead to the counts shown in Table 15.3.

TABLE 15.3 The Observed Counts of the Stimulus-Response Pairs for 24 Random
Trials of an Uninformative Neuron

S = 1 S = 2 S = 3 S = 4 S = 5 S = 6 S = 7 S = 8

R<20 0 2 1 1 1 2 1 0

20�R<30 1 0 1 0 0 1 0 2

R�30 1 2 1 2 0 2 3 0

19915.2. BACKGROUND

If you calculate the mutual information of the associated joint distribution (divide each
count by 24 for the joint distribution), you get 0.50 bits, which is much higher than the
0.00 bits you expect. In fact, this is the same information as the sample neuron found previ-
ously. How can you now trust this earlier calculation?

Calculating mutual information directly from the observed probability distribution (as
done here) leads to a biased estimate. A biased estimate is one thatwill not equal the true value,
even if the estimate is averaged over many repetitions. The estimate of mutual information
becomes unbiased only when you have infinite data. Such datasets are hard to come by.

However, all hope is not lost, because you can reduce the size of this bias. To start with,
note that the number of trials is the same as the number of bins in the joint distribution. The
sample data had 315 trials, which should reduce the chance of spurious counts. Repeating
the previous exercise with 315 random trials might give the counts shown in Table 15.4.

The mutual information calculating from this table’s joint distribution is now just 0.03
bits, which is much closer to the expectation (0 bits). This gives you more confidence in
the 0.50 bits you estimated for the sample neuron. However, these numbers are each gener-
ated from a single random experiment. In the exercises you will see that repeated experi-
ments confirm this trend: increasing the number of trials does decrease of the bias of the
estimate of mutual information.

Note that the relevant parameter is actually the number of trials per bin. This means that
if you have 315 trials but you also have 315 bins, you will still have a significant bias. There-
fore, you must choose the number of bins carefully. It seems that large bins throw away
information (shouldn’t a spike count of 4 be treated differently than 16?), but smaller bins
introduce a larger bias.

15.2.6. Shuffle Correction

These simulations are similar to a simple method (called shuffle correction) that corrects for
the bias in themutual information estimate. Suppose you store the stimulus values in a vector
dir. You are interested in determining what the estimatedmutual information would be if the
firing rates were independent of the stimulus values. To do this, you randomly rearrange (or
“shuffle”) the stimulus vector and then compute a new joint distribution and estimate mutual
information from that. If you repeat this operation many times, you can derive a “null distri-
bution” of mutual information estimates of a firing rate which carries no information. Thus,
you can conclude that any neuronwhosemutual information value that is significantly differ-
ent from this null distribution is informative. You can also calculate a “shuffle corrected”

TABLE 15.4 The Observed Counts of the Stimulus-Response Pairs for 315 Random
Trials of an Uninformative Neuron

S = 1 S = 2 S = 3 S = 4 S = 5 S = 6 S = 7 S = 8

R<20 14 25 11 16 15 21 15 14

20�R<30 12 11 11 16 12 14 9 12

R�30 11 11 16 6 8 14 7 14

200 15. INFORMATION THEORY

mutual information estimate by subtracting the mean of this null distribution. The following
code shows how you can shuffle the stimulus values in MATLAB:

ind=randperm(315); %Randomly arrange numbers 1 to 315 in vector "ind"
dirSh=dir(ind); %Use "ind" to randomly shuffle the vector of stimuli "dir"

Now you can compute a table counting combinations of the original firing rate and the
shuffled stimulus. One example might be the one shown in Table 15.5.

The mutual information of the associated joint distribution is 0.03 bits. Repeating the
shuffling 30 times gives a mean information of 0.03 bits and a standard deviation of 0.01 bits
for the null distribution. Hence, the “shuffle corrected” mutual information of the original
neuron is 0.50 bits – 0.03 bits ¼ 0.47 bits. Thus, you can be confident that a rate code con-
tains significant information about the stimulus direction.

Bias correction is particularly important when you are comparing mutual information of
joint distributions that have different numbers of bins. In the project for this chapter, you
will compare a rate code to a temporal code. Comparing a rate code to the first principal
component is straightforward because you could use the same number of bins for each var-
iable. However, if you use the n bins to look at the first principal components, you would
have to use n2 bins to look at the first two principal components together using the same
bin widths. As you know, increasing the number of bins increases the bias. If you compared
uncorrected estimates, it would be easy to assume the second principal component pro-
vides additional information when it actually doesn’t.

It should also be noted that accurate estimation of information measures is an active
research field and that shuffle correction is perhaps the simplest of available techniques.
Refer to Panzeri et al. (2007) for a review of current bias correction techniques and to
Hatsopoulos et al. (1998) for another example of the use of shuffle correction.

15.3. EXERCISES

Exercise 15.1: Compute the entropy of the observed values of the stimulus.

TABLE 15.5 The Observed Counts of the Stimulus-Response Pairs for
the “Shuffled” Version of the Sample Neuron

S = 1 S = 2 S = 3 S = 4 S = 5 S = 6 S = 7 S = 8

R<20 8 10 12 20 18 16 16 11

20�R<30 13 12 22 14 17 15 11 12

R�30 8 11 12 13 10 13 16 5

20115.3. EXERCISES

Exercise 15.2: Run 30 simulations each of the observed joint distribution of the uninformative

neuron (8 stimuli, 3 responses) with n trials, where n ¼ 25, 50, 100, 200, 400, 800. Plot the mean

and standard deviation of the bias as a function of the number of trials.

Exercise 15.3: Repeat Exercise 15.2 but with 6 and 12 response bins. Plot the mean and stan-

dard deviation of the bias as a function of the number of trials.

Exercise 15.4: Combine data from Exercises 15.2 and 15.3 and plot the mean bias as a func-

tion of the number of trials per bin.

15.4. PROJECT

Choose at least five active neurons from the dataset (including the unit from electrode #19)
available at the companionwebsite to analyze.Convert each raster plot into a spikedensity func-
tion. Report thedetails of the kernel youused. Calculate principal components (PCs) of the spike
density functions. Calculate the shuffle-correctionmutual information between the stimuli and,
in turn, the firing rate, first PC score, and first and second PC score considered together.

In addition, answer the following questions:

1. Is there evidence for a temporal code?
2. How similar are the first few PCs (not the scores) calculated for the different neurons?

What do you think they represent?
3. How does a temporal code that depends only on the first PC differ from one which

depends on two or more PCs?

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS
COVERED IN THIS CHAPTER

conv
reshape

202 15. INFORMATION THEORY

C H A P T E R

16

Neural Decoding Part I:
Discrete Variables

16.1. GOALS OF THIS CHAPTER

Thus far, you have seen how the MATLABW software can be used to solve frequently
encountered problems in neuroscience. However, many other software packages also
address these problems. The advantage of learning MATLAB (and computer programming
in general) is flexibility. MATLAB allows you to attack new problems that do not have pre-
packaged solutions. With that in mind, this chapter will introduce an open-ended approach
toward solving the problem of neural decoding. Specifically, this chapter will address how
to predict the upcoming direction of movement from a population of neuronal signals
recorded from motor areas of a macaque monkey.

Note that this chapter assumes completion of Chapter 13, “Neural Data Analysis:
Encoding,” as it makes use of the preferred directions calculated in the exercises.

16.2. BACKGROUND

What is neural decoding? Simply put, it is a mathematical mapping from the brain activity
to the outside world. In the sensory domain, the outside world consists of the received
visual, auditory, or other sensory information. In the motor domain, the outside world con-
sists of the state of the skeletomuscular system. This is the inverse of neural encoding, which
maps the outside world to brain activity. For example, in Chapter 13, you looked at how a
cosine tuning curve specifies how a neuron modulates its firing rate depending on the
upcoming direction of movement. In contrast, estimating this movement direction from
one (or many) observed firing rate(s) is an example of neural decoding. Because signals
about motor intention precede movement, decoding can be thought of as “mind reading.”
Neuroscientists seek to predict an action as soon as it is intended, before it ever takes place.

203

Neural decoding can also be thought of as pattern recognition. A set of neuronal spike
times represents a pattern, and the goal of the decoder is to figure out which stimuli or
movements are associated with which patterns. This is a common problem in science. Doc-
tors perform pattern recognition when they produce a diagnosis from a collection of physi-
cal and physiological findings. For example, an electrocardiogram (EKG) trace contains a
repeated, stereotypical pattern that corresponds to a single heart beat. Each part of the trace
corresponds to de- and repolarization of a different part of the heart. Therefore, doctors can
use deviations from the normal EKG as clues about underlying abnormalities. An elevation
in one part of the trace (ST elevation) is used to help diagnose heart attacks. This is pattern
recognition.

Interpreting a raster plot is not quite that straightforward (neither is interpreting EKGs,
but that’s another matter). Figure 16.1 shows 10 raster plots and a peri-stimulus time histo-
gram for a motor neuron. Each neuron’s spike times is centered on the start time of
repeated movements in the same direction. There is a clear pattern. On every trial, there
is a transient increase in the neuron firing rate starting a few hundred milliseconds before
the movement starts. However, this is only an approximate relationship. If you look at each
raster individually, it is not clear exactly when the movement begins. In addition, each ras-
ter plot is different. This means you can’t simply perform pattern recognition by using a
“look-up table” because it is unlikely that a neuron’s response will ever exactly repeat itself.

In this chapter we will implement different strategies for predicting the direction of an
upcoming movement based on the firing rates of a population of neurons. This is relevant
to two distinct goals of neuroscience. First, neuroscientists would like to understand the
brain on a functional level. Neuroscientists ask, “What is the brain doing and how is it
doing that?” Second, neuroscientists are interested in using neuronal signals to do some-
thing useful. Neural prosthetics seek to do this. For example, cochlear implants convert

−1 −0.5 0 0.5 1
0

2

4

6

8

10

Time (sec)

T
ria

l #

−1 −0.5 0 0.5 1
−20

0

20

40

Time (sec)

S
pi

ke
s/

se
c

(d
ev

. f
ro

m
 m

ea
n)

FIGURE 16.1 Top: A raster plot of
10 trials of a center-out task. Bottom:
A peri-stimulus time histogram of the
samedata.Thestartofmovementoccurs
at time¼ 0 seconds.

204 16. NEURAL DECODING PART I: DISCRETE VARIABLES

sound into digital signals used to stimulate the auditory nerve, thus restoring speech per-
ception in the deaf (Papsin and Gordon, 2007). A decoding strategy introduced in the next
chapter (the linear filter) was used in a neuroprosthetic that allowed a human with tetraple-
gia to control a computer cursor and other devices (Hochberg et al., 2006).

It is important to note, however, that decoding to understand how the brain works is
different from decoding for control. You have seen that neuronal activity in the motor cor-
tex is directionally tuned, but that is not the same as saying these neurons encode direc-
tion. Properly interpreting what is being encoded requires more experiments than what
we have described thus far. In the canonical center-out experiment, the posture is the
same for all eight directions. Thus, instead of encoding direction, the neuron might be
encoding the specific sequence of muscle activations, the desired end posture, or
the spatial location of the target. The adage “correlation does not imply causation” applies
here.

One area of debate in neuroscience is, “At what time scale should we look for informa-
tion?” Rate encoding holds that the firing rate calculated over some broad time span (usually
100s of milliseconds) contains all the necessary information. Temporal coding holds that
additional information is available at smaller time scales. At the extreme, you could use a
1 ms time bin where each bin either has a 0 (no spike) or a 1 (spike). This approach likely
contains more information about the stimulus than a coarse firing rate. However, it also
greatly increases the dimensionality of the potential responses. Instead of one discrete vari-
able (the firing rate over 1 second), which might reasonably take a few dozen values, a 1 ms
time bin gives a 1000�1 vector of binary variables with as many as 21000 possible values,
which is a number larger than the estimated number of atoms in the universe. Thus, for
computational simplicity, you can start by assuming a coarse rate code.

16.2.1. Population Vector

In Chapter 13, “Neural Data Analysis: Encoding,” we introduced the concept of direc-
tional tuning of motor cortical neurons. This is an encoding model that translates an
upcoming direction of movement into a neuronal firing rate. If you now want to decode
direction from a firing rate, you are faced with two problems. First, since a cosine-tuning
curve is symmetric, most firing rates are ambiguous because they could be associated with
two movement directions. Second, the firing rate signal is very noisy. This is due to both
intrinsic neuronal noise as well as measurement noise introduced by the equipment.
How, then, can you decode movement direction?

The solution is averaging over a population of neurons, which decreases the effects of noise
and allows disambiguation of the movement direction. The “population vector” algorithm
introduced by Georgopoulos and colleagues is an intuitive way to use cosine-tuning informa-
tion from a population of neurons to decode movement direction (1986). In Chapter 13,
you determined the preferred direction of each neuron using information from all trials.

Having done this, proceed as follows:

1. Assume that each neuron “votes” for its preferred movement direction. Specifically, each
neuron is going to contribute a “response vector” that is aligned with its preferred
direction.

20516.2. BACKGROUND

2. The magnitude (or length) of each neuron’s response vector is determined by the
neural activity of the neuron during each trial. This is the weight given to each
neuron’s vote. For now, assume the weight is simply the firing rate during the
hold period.

3. Sum all the response vectors from all neurons to arrive at the population vector
for this trial. The direction of this population vector corresponds to the predicted
direction.

This can be expressed as a formula,

P
! ¼

Xn
i¼1

wi Ci

!
ð16:1Þ

where for n neurons, P is the population vector, wi is the weight given to each vote, and Ci

is a unit vector pointing in the ith neuron’s preferred direction. The arrows above P and
Ci indicate that these quantities are vectors. Recall that if you represent vectors with
Cartesian coordinates, you can sum the X and Y components separately. Thus, if yi is
the ith neuron’s preferred direction in radians, then the population vector can be broken
down into its X and Y components:

PX ¼
Xn
i¼1

wi cosðyiÞ PY ¼
Xn
i¼1

wi sinðyiÞ ð16:2Þ

The perspective has changed. Previously, you considered all trials to determine the pre-
ferred direction of a given neuron. Now, you consider the neural activity of all cells in a given
trial to determine the combined response of the population of neurons: the population vector.
The population vector points toward the upcoming movement direction.

The population vector is useful because it is easy to implement and intuitive to under-
stand. It is based on the theory that motor cortex neurons fire to produce muscle forces,
which, given a certain posture, act in the neuron’s preferred direction. However, the popu-
lation vector is limited because a number of conditions must be met for the method to per-
form well (Georgopoulos, 1986). For example, the neuron’s tuning curves must actually
follow a cosine or at least be radially symmetric around the preferred direction. Also, the
preferred directions must be uniformly distributed.

16.2.2. Maximum Likelihood

You can develop a more general decoding algorithm by relaxing some of the assump-
tions made by the population vector. One way to do this is to use statistical methods.
You assume that a neuron modulates its firing rate in response to the upcoming movement
direction. However, you do not assume exactly how (which a cosine tuning curve does).
You assume that the neuron’s target firing rate will be corrupted by noise, so that for a
given direction you will observe a distribution of firing rates rather than a single firing rate.
If you assume the form of this distribution, you can use standard statistical methods to esti-
mate its parameters. For example, if you thought the distribution of firing rates was

206 16. NEURAL DECODING PART I: DISCRETE VARIABLES

Gaussian, you could characterize it fully by computing the mean and standard deviation of
all the firing rates for trials moving in one direction.

Once you have estimated the parameters, you can calculate the probability of any firing rate
giving a certain direction. This is a conditional probability. We reviewed this in Chapter 15,
“Information Theory.” Briefly, the conditional probability of eventA given event B is denoted
as P(A|B). It is defined as the joint probability A and B divided by the probability of B:

PðAjBÞ ¼ PðA;BÞ
PðBÞ ð16:3Þ

Intuitively, this can be thought of as the probability of A taking into account some
piece of information (that B has happened). Here, you are interested in the conditional
probability of a firing rate R given the direction d: P(R|d). For one neuron, the maximum
likelihood approach is to look at the firing rate and select the direction for which this firing
rate is most likely. As an example, consider a simplified center-out experiment in which tar-
gets are presented at equal probabilities to the left or right, and you are recording from a
neuron that prefers movement to the right. Say this neuron fires at 25 Hz (þ/– 5 Hz) before
right targets and fires at 10 Hz (þ/– 3 Hz) before left targets. If you assume these firing
rates follow Gaussian distributions, then the maximum likelihood algorithm would predict
a right target for a firing rate � 17 Hz and a left target for firing rates � 16 Hz (see
Figure 16.2).

If there is more than one neuron, the situation is more complicated. You make the sim-
plifying assumption that the neuron’s firing rates are independent. At first, this seems at
odds with our understanding of the brain: aren’t connections between neurons the whole
point? However, most neurons in the sample are separated by large distances (for neurons),
and you may attempt to relax this assumption in the exercises. Independence means you
can express the probability of a set of firing rates as the product of the probabilities for
each individual firing rate. This calculation is performed when you say the chance of

0 10 20 30 40
0

2

4

6

8

10

12

14

Firing rate (Hz)

P
ro

ba
bi

lit
y

(%
)

Right
Left

FIGURE 16.2 Firing rate distributions of a hypothetical, rightward-preferring neuron.

20716.2. BACKGROUND

flipping four heads in a row is 1/16 ¼ (1/2)4. The probability of a set of firing rates R ¼
[r1, r2, . . . ,rn] for a given direction d can be expressed as follows:

PðRjdÞ ¼
Yn
i¼1

PðrijdÞ ð16:4Þ

The maximum likelihood approach predicts the direction associated with the highest
likelihood P(R|d). However, when you’re implementing this in MATLAB, it is more conve-
nient to pick the direction that maximizes the log-likelihood: log[P(R|d)]. Because the nat-
ural logarithm is a monotonically increasing function, the choice of direction that
maximizes the log-likelihood will also maximize the likelihood. This approach avoids calcu-
lating the product of very small numbers in MATLAB, which, due to numerical precision
constraints, quickly becomes inaccurate. Instead, you sum negative numbers (since the
probabilities are less than 1). The log-likelihood can be expressed as follows:

log½PðRjdÞ� ¼
Xn
i¼1

log½PðRijdÞ� ð16:5Þ

One point to note is that the maximum likelihood approach relies on an experimental trick:
you set the prior probabilities of all directions to be equal. This is important, because if you are
decoding direction, you want to maximize the conditional probability of the direction given
the firing rates, P(d|r). This algorithm is maximizing the reverse: the conditional probability
of the firing rates given the direction, P(r|d). This simplification is valid only if all directions
are equally probable. If they are not, you will need to calculate P(d|r) using Bayes’ rule (refer
to any statistics textbook for information on Bayes’ rule).

16.2.3. Data

Here, you will use the dataset from Chapter 13, “Neural Data Analysis: Encoding.” How-
ever, there is a second dataset for this chapter, available on the companion website. The first
dataset will be used to train the decoding algorithms, meaning these data are used to esti-
mate the parameters of the model (such as preferred direction). The second dataset will be
used to test the algorithm built using the first dataset. It is important not to test a prediction
algorithm using the same data you trained with. Otherwise, the optimal prediction would
be “the exact same thing is going to happen.” Testing on novel data helps ensures that
the model does not overfit the data.

To compare the population vector method to the maximum likelihood method, you will
need to bin the population vector to force to assume one of the eight discrete directions.
You can use the function histc in MATLAB to do this, though you should remember that
the 0-degree direction will correspond to two bins: 0 to 22.5 degrees and 337.5 to 360
degrees.

You also need to define an accuracy metric for the predictions made. The percentage cor-
rect is the easiest to compute. However, the mean squared error may be more appropriate,
as it penalizes large errors more than small errors.

208 16. NEURAL DECODING PART I: DISCRETE VARIABLES

16.3. EXERCISES

Exercise 16.1: Implementation

1. Implement a population vector decoder. Use the preferred directions determined for
the training dataset. Predict the movement direction of the test dataset by using the
firing rates during the hold period as weights. The hold period start times are stored
in the variable instruction. The hold period ends 1 second after the start time. Bin the
predicted direction to convert it to one of the eight discrete movement directions.

2. Implement a maximum likelihood decoder. Assume a Poisson firing rate model
and independent firing rates. Determine the mean firing rate for each neuron and
each direction for the training dataset. Use the function poisspdf to determine the
likelihood of each direction. Pick the direction that maximizes the log-likelihood of
all firing rates for a given trial.

3. Compare the accuracy of these two decoding methods, using a percent accuracy or
mean squared error.

Exercise 16.2: Variations

1. The population vector methods make assumptions about the data: that neurons
were cosine tuned and that preferred directions are uniformly distributed. Are
these assumptions valid? Provide evidence for your answer.

2. Instead of weighting the response vectors using the firing rate, weight using the
change in firing rate from baseline. Use the mean firing rate across all directions to
determine the baseline firing rate. Does this affect the decoding accuracy? Why
might this be?

3. Use a Gaussian firing rate model for the maximum likelihood decoder. The
likelihood can be determined with the function normpdf and the mean and
standard deviation for each neuron and each direction. Does this affect the
decoding accuracy? Why might this be?

16.4. PROJECT

Create a new decoder by either modifying the algorithms introduced here or by develop-
ing your own ideas. Report the accuracy of the new decoder as compared to population
vector or maximum likelihood methods. Here are some suggested approaches:

• Easy: Change the specific implementation of one of the decoders. For the population
vector, create a new function to determine the weights from the firing rates. For

20916.4. PROJECT

maximum likelihood, use a different probability distribution as a firing rate model.
Alternatively, try to include temporal coding by using principal component analysis or
using smaller time bins.

• Medium: Transform the data to make it conform to the assumptions made by decoders.
For the population vector, change the weighting scheme of the population vector
algorithm to compensate for a nonuniform distribution of preferred directions. For
maximum likelihood, try to compensate for correlations between neurons, or between
a neuron’s current firing rate and its past firing rates.

• Hard: Create a new decoding technique. For example, the algorithms introduced treat
firing rates as independent. More information might be available if firing rates are
pooled across neurons. You could then use a distance metric to classify a novel vector of
firing rates that falls into one of eight clusters (for each direction of movement).

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS
COVERED IN THIS CHAPTER

poisspdf
normpdf

210 16. NEURAL DECODING PART I: DISCRETE VARIABLES

C H A P T E R

17

Neural Decoding Part II:
Continuous Variables

17.1. GOALS OF THIS CHAPTER

The preceding chapter explored methods of decoding movement direction from neuro-
nal signals. The movement direction was a discrete stimulus, taking on one of eight possible
values. In this chapter you will look at how to decode a continuous, time-varying stimulus
from neuronal signals. Specifically, this chapter will address how to decode the instanta-
neous hand position from a population of motor cortical neurons recorded from a macaque
monkey. You will also see how information about how the hand position changes over time
can be used to improve your decoding.

Note that this chapter assumes familiarity with Chapter 13, “Neural Data Analysis:
Encoding,” as well as Chapter 16, “Neural Decoding Part I: Discrete Variables.”

17.2. BACKGROUND

In the preceding chapter, we discussed how neurons in the motor cortex carry informa-
tion about upcoming movements. You were able to use this information to decode the
direction of a movement made to one of eight targets. But what do you do if movement isn’t
so constrained as it is in the center-out task? Another common experimental paradigm in
motor control literature can be described as the “pinball” task: a target appears somewhere
in a 2D playing field, and as soon as the subject moves the cursor within this target, a new
target appears at a different, randomly selected position. There are no hold times in this
task, unlike the center-out task, so the hand is constantly moving. You are interested in
decoding the trajectory of the hand, meaning you want to know X- and Y-positions of the
hand at each time point. X- and Y-positions are examples of kinematic variables, meaning
they describe the motion of the object (the hand), but not with the forces that generated

211

the motion. Considering just the limb kinematics is easier than considering the full limb
dynamics, which requires a model of how muscle forces and the physical properties of
the limb interact to produce this motion.

What method can you use to decode these kinematic variables? You could just modify
the algorithms you have already seen. Recall that the population vector has a magnitude
as well as direction. If you assume this magnitude is proportional to the instantaneous
speed, you could simply compute a population vector for each time bin and then add them
tail to tip to create an estimate of the trajectory. This was, in fact, an early approach to the
problem (Georgopoulos et al., 1988). Or you could divide the X- and Y-axes into bins and
then use the maximum likelihood method to determine which grid square the hand is
located in.

In this chapter we will take a different approach. We mentioned previously that a simple
neuronal encoding model assumes the firing rate varies linearly with stimulus intensity.
You can apply this to motor cortical neurons and assume they fire linearly with the instan-
taneous hand position. Since you know there is a time lag between motor cortical activation
and hand movement at the periphery, you will assume that the relationship between firing
rate is a function of the movement at some fixed time in the future.

Load the dataset for this chapter, available on the companion website (data courtesy
of the Hatsopoulos laboratory). There are two main variables: kin stores the X- and
Y-positions (sampled every 70 ms), and rate stores the number of spikes in each 70 ms
bin. Now look at the relationship between just one kinematic variable (Y-position) and
one neuron’s firing rate. Notice how the indices are offset to create a vector of spike counts
that lead the kinematics by two time bins:

>> y=kin(3:1002,2); %except of y-position
>> x=rate(1:1000,27); %neuron #27’s spike count, lagged 140 ms

Plot the spike count of the X-axis and the kinematics on the Y-axis. Fit the data using
polyfit. You should end up with something like Figure 17.1.

0 1 2 3 4 5 6
0

2

4

6

8

10

12

14

16

Y
-p

os
iti

on
 (

cm
)

Spike count

FIGURE 17.1 A linear fit of the relationship between Y-position and the lagged spike count.

212 17. NEURAL DECODING PART II: CONTINUOUS VARIABLES

17.2.1 Linear Filter

You now have a decoder relating Neuron #27’s spike counts X to the instantaneous
y-position Y, which takes the familiar linear form, Y=mXþb, where m and b are the coeffi-
cients returned by polyfit. But what exactly is the MATLABW software doing when you
run polyfit? It is determining the optimal linear regression that minimizes the squared re-
siduals (which are the differences between the fitted data and the actual data). The optimal
linear regression can be expressed analytically. If you express the linear relationship in
matrix form as Y = Xf, where Y is the kinematics, X is the spike counts, and f is the decoding
filter (the y-intercept b has disappeared, but you will add a column of 1s to X to account
for this), then minimizing the squared residuals is the same as solving the following
equation:

ðXTXÞf ¼ XTY: ð17:1Þ
You can use this to solve for the desired decoder:

f ¼ ðXTXÞ�1XTY ð17:2Þ
A matrix inverse can be computed in MATLAB with the function inv, and a transpose
is denoted with an apostrophe. Compare this solution to the values you derived with
polyfit:

p=polyfit(x,y,1) %MATLAB linear regression
x=[x ones(length(s),1)]; %Add a row of 1's to allow y-intercept
f=inv(x'*x)*x'*y %Analytical linear regression

The advantage of this approach is that you can easily addmore neurons ormore kinematics
to themodel: you just addmore columns toX and Y. The following code shows an example of
decoding using all of kinematics and all the neuronal firing rates lagged two time bins
(140 ms):

yTrain=kin(3:3002,:); %Kinematic training data
yTest=kin(3003:3102,:); %Kinematic test data
xTrain=[rate(1:3000,:) ones(3000,1)]; %Training firing rates
xTest =[rate(3001:3100,:) ones(100,1)]; %Test firing rates
f=inv(xTrain'*xTrain)*xTrain'*yTrain; %Create linear filter
yFit = xTest*f; %Reconstruct the test kinematics

The results, shown in Figure 17.2, look pretty good, especially for instantaneous
Y-position.

This approach is known as the linear filter. The linear filter was used in 2002 to show
that a macaque monkey could successfully control a computer cursor with neuronal
signals (Serruya et al., 2002) and again in 2006 to show that a human with tetraplegia
could control a variety of neural prosthetics with neuronal signals (Hochberg et al.,
2006). Of course, the linear filter can be used on data recorded outside the motor cortex.
For example, it has been used to decode visual information from retinal ganglion cells
(Warland et al., 1997).

21317.2. BACKGROUND

17.2.2 Particle Filter

The main advantages of the linear filter are that it is very fast and it is easy to calculate.
However, it does have some limitations. For one, a linear encoding model can predict a neg-
ative spike count, which is impossible. We won’t address that issue here. Another is that the
linear filter treats each kinematic datapoint as independent. That is, it says that the hand
position now is uncorrelated with its position 70 ms ago. This is not true. The hand is a
physical object whose acceleration is a result of the forces acting on it. Building a realistic
musculoskeletal model to capture these dynamics is difficult and computationally inten-
sive. However, you can approximate such a model by adding a continuity constraint to
your kinematics. This means that you assume the hand position at the next time point will
be close to the position at the current time point. This prevents the position estimate from
taking impossible values, such as predicting the hand can traverse the whole playing field
in 70 ms.

You will formalize this continuity constraint in a state equation. Here, the “state” is simply
the set of kinematic variables you are interested in, Y. The state equation contains a model
of how you think the state evolves over time. One model would be a simple Gaussian
random walk, meaning that the next position is equal to the current position plus some
Gaussian noise. You write this as follows:

Ykþ1 ¼ Yk þ w;w eNð0;WÞ ð17:3Þ
The � (tilde) just indicates that the w is a zero-mean, normally distributed random variable
with covariance matrix W. A better model would be a linear model with Gaussian noise,
expressed as

Ykþ1 ¼ Ykaþ w;w eNð0;WÞ ð17:4Þ
where a is amatrix describing the linear transformation. Suppose the state containsY-position
and its derivative,Y-velocity. The linear transformationmight predict that the next position is

0 2 4 6
5

10

15

20

25

0

5

10

15

20

Time (s)

X
-p

os
iti

on
 (

cm
)

0 2 4 6
Time (s)

Y
-p

os
iti

on
 (

cm
)

Actual
Decoded

FIGURE 17.2 The actual raw and reconstructed (decoded) X- and Y-positions. Decoding was performed using
a linear filter.

214 17. NEURAL DECODING PART II: CONTINUOUS VARIABLES

the sum of the previous position and the previous velocity. The following code provides an
illustration:

y1=[1 0.1] %State vector: position = 1, velocity = 0.1
a=[1 0;1 1] %Next position = prev. position + prev. velocity

%Next velocity = prev. velocity
y2=y1*a %Apply linear transform to prev. state

In addition to the state equation, you also need an observation equation. This is the same
as an encoding model: it tells you what spike counts you are likely to observe given the
current state. You can start by assuming linear encoding with zero-mean, Gaussian noise,
such as

Xk ¼ Ykhþ qk; q eNð0;QÞ ð17:5Þ
where X is the spike counts, Y is the kinematics, h is the linear encoding model, and q is a
random noise term. Because these are linear relationships, you can solve for a and h just as
you solved for the linear filter. However, X and Y will be interchanged because you are
going in the opposite direction (encoding rather than decoding). The encoding matrix
h can be expressed as

h ¼ ðYTYÞ�1YTX ð17:6Þ
The residuals of this fit are defined as the difference between the actual values and the

fitted values: X-Yh. The covariance matrix is just the expected value (mean) of the squared
residuals. Thus, the covariance matrix Q can be expressed as

Q ¼ E½ðX � YhÞTðX � YhÞ� ð17:7Þ
As shown in the following code sample, these expressions are easy to code in MATLAB.

You can use the same approach to derive the state transformation matrix a and the state
noise covariance W, though here you will be working with the kinematics (Ykþ1) and the
kinematics lagged one time step (Yk):

h=inv(yTrain'*yTrain)*yTrain'*xTrain; %h = linear encoding matrix
Q=(xTrain-yTrain*h)'*(xTrain-yTrain*h)/length(xTrain); %Q = noise covariance

The idea is that when you estimate the position of the next time point, you have two
sources of information. First, you have an observation equation that specifies how the posi-
tion is encoded in the neuronal spike counts. This is all the information you used in the lin-
ear filter. Second, you also have a state equation, which explains how likely a position is
given the previous position. You want to combine these two sources of information in a
principled way. If you are familiar with Bayesian statistics, the state equation is providing
the prior distribution for the state, and the observation equation is used to refine this to give
a posterior distribution of the state given neuronal spike counts. For the assumptions made
previously (linear observation and state equations with Gaussian noise), there exists an ana-
lytical solution for the optimal decoder. This is the well-known Kalman filter, which has
been shown to be more accurate than the linear filter for online control of a neural

21517.2. BACKGROUND

prosthetic (Wu et al., 2004). A similar filter has also been derived using a Poisson encoding
model instead of Gaussian encoding (Brown et al., 1998).

Because Bayesian statistics are not particularly intuitive and the focus here is on program-
ming in MATLAB, you will numerically approximate this optimal decoder rather than use
the analytical solution. The disadvantage of numerical methods is they take much longer to
compute than analytical solutions like the Kalman or linear filter. Thismeans that the numerical
approachmight not be practical for online control. However, since you areworking offline, time
is not as much of an issue. The advantage of numerical methods is that they are more flexible
than the Kalman filter. The Kalman filter is optimal only for a certain set of assumptions.
If youwant tomodify the state or observation equation, an analytical solution is unlikely to exist.
But you can numerically approximate the solution for any arbitrary state and observation
equation (given enough time).

This method of approximation is known as the particle filter, which has been applied to the
problem of decoding position from motor cortical signals (Brockwell et al., 2004). The idea is
that you create a collection of “particles” that are guesses about the current position. This is
simulating the prior distribution, the distribution of positions ignoring the spike counts.
You then assign weights to each particle based on how likely it is given the lagged spike
counts. You then draw a new set of particles from the old set according to these weights. This
new set is simulating the posterior distribution of positions given the spike counts. The esti-
mate of the position is just the mean of this new set of particles. Last, you move each particle
forward one time step in the state model and start the process over for the next time step.

Let’s look at the steps in more detail. First, you need to fit the state and observation equa-
tions to the training data. This means computing a and h as well as the noise covariance
matrices W and Q. You will also need to specify an initial distribution. Use the function
cov to calculate the covariance matrix of the kinematics training data. For the test data, just
follow these steps (as suggested in Brockwell et al., 2004):

Step 1: For the first time step (t = 1), create a population of particles, y
ðjÞ
t ; j = 1, . . . , M from the

initial distribution of your state model. M is just the number of particles; start by setting
M = 1000. Use the function mvnrnd and the mean and covariance of your training data
to create a set of random particles.

Step 2: Compute weights for each particle, where the weight is the probability of the particle
given the lagged firing rates:

w
ð jÞ
t ¼ p xtjyt ¼ y

ð jÞ
t

� �
ð17:8Þ

In MATLAB, use your encoding model to create a vector of predicted firing rates given
the particle location: xHat = x*h;. Then compute the probability of each predicted
firing rate given the actual firing rate and the covariance matrix Q computed earlier:
p=mvnpdf(xHat,x,Q);.

Step 3: Normalize all the weights w to sum to 1 and draw a new set of particles where each
particle is chosen with a probability equal to its weight. To figure out how many times
each particle should be picked, try using the following code:

n=rand(M,1); %pick M random values from 0 to 1
edges = [0; cumsum(w)]; %create edges where each bin corresponds to one particle
numPicked = histc(y,edges); %number of times each particle is picked

216 17. NEURAL DECODING PART II: CONTINUOUS VARIABLES

Create a new vector of particles corresponding to the number of picks stored in
numPicked. Your position estimate is simply the mean of this new set of particles.

Step 4: Move each particle one time step forward in the state equation. That is, apply the
linear transformation matrix a and add zero-mean Gaussian noise using the function
normrnd and the covariance matrix W. Set t = t þ 1 and then return to step 2.

17.3. EXERCISES

Exercise 17.1: Linear Filter

1. Train a linear filter on the first dataset for this chapter using a two-time-bin
(140 ms) lag and test it on the second dataset. Report both the mean-squared error
and the correlation coefficients of your fit to the test data.

2. Test a variety of lags. Is two time bins the optimal lag?
3. You can use more than one lag by appending the lagged rates as extra columns of

X. For example, if you used lags of one and two time bins, you would have 84
columns instead of 42 (not including the column of 1s). This corresponds to a filter
length (which is the total number of lags) of 2. Test a variety of filter lengths. What
do you think the best filter length is?

4. Try adding higher-order derivatives to the kinematics variable. You can
approximate the derivative using the function diff in MATLAB. The resulting
vector will have one value less than the original, so pad this result with zeros to
make the lengths match. Does this improve decoding of the X- and Y-positions?

Exercise 17.2: Particle Filter Implement a particle filter. Train on the first dataset using
a two-time-bin (140 ms) lag and test it on the second dataset. Add at leastX andY veloc-
ity to the state variable. Report both the mean-squared error and the correlation coeffi-
cients of your fit for the X- and Y-positions. How does this compare to the linear filter
with a lag of two time bins?

17.4. PROJECT

Improve upon one of the two filters introduced in this chapter or develop your own
decoder. For the linear filter approach, try using a nonlinear decoding model, though you
would need to use different techniques to fit the decoding model (the function nlinfit might
be useful). For the particle filter, try using something other than the linear plus Gaussian
noise used in the state and observation equations. Comment on the assumptions that you
are changing and why you think this is an improvement. Report both the mean-squared
error and the correlation coefficients of your fit for the X- and Y-positions of the test data.

21717.4. PROJECT

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS
COVERED IN THIS CHAPTER

inv

218 17. NEURAL DECODING PART II: CONTINUOUS VARIABLES

C H A P T E R

18

Functional Magnetic Imaging

18.1. GOALS OF THIS CHAPTER

This chapter will introduce you to functional magnetic imaging (fMRI) as a fundamental
noninvasive tool in understanding brain functioning in humans. We will describe the basic
physics behind structural and functional magnetic resonance imaging. We will then
describe the major experimental paradigms used in fMRI research and the kinds of data
that are collected in an fMRI experiment. Finally, using existing fMRI data from a simple
finger-tapping task, we will show you how to analyze and visualize the data to come up
with a statistical parametric map of activation in the brain. After completing this project,
you should expect to understand how researchers take fMRI data to infer activation asso-
ciated with a behavioral task in different parts of the brain.

18.2. BACKGROUND

Functional magnetic resonance imaging has emerged as the dominant form of noninva-
sive functional imaging in humans. Although it is a relatively young technology that began
in the early 1990s, it now plays a major role in many subfields of psychology, cognitive sci-
ence, and neuroscience. It is even creeping up in other disciplines such as sociology and
economics. As of the beginning of 2008, a quick online search of articles on PubMed
revealed over 180,000 papers that reference the use of fMRI. Some have criticized fMRI as
a scientific tool, claiming that it is little more than modern phrenology. However, we
believe that it is extremely useful in localizing parts of the brain that may be involved in
a particular sensory, cognitive, or motor behavior. Therefore, fMRI can be used together
with psychophysical and other physiological measures to understand information process-
ing in the brain.

219

18.2.1 Basic Physics of the MRI Signal

We will describe the basic physical principles that create the MRI signal. Although the
physics behind MRI is inherently quantum mechanical, most of the ideas can be expressed
in classical terms that you would learn in a high school physics course. There are two phe-
nomena that must be understood: precession and relaxation. Atoms with an odd number of
protons (or neutrons) in their nucleus such as hydrogen act like tiny magnetic dipoles
because they possess a quantum mechanical spin. As you may remember from your high
school physics, an electrical charge that is rotating will generate a magnetic field perpendic-
ular to its rotational plane according to the right-hand rule. In the presence of an external
magnetic field, Bo, these proton magnetic dipoles will tend to align with it by precessing
around the Bo axis like a top precesses about the gravitational field. The precession frequency,
Fo, of the protons in the nucleus is proportional to the strength of Bo with a proportionality
constant that depends on the type of atomic nucleus:

Fo ¼ gBo ð18:1Þ
This is called the Lamour frequency and characterizes the resonant frequency of the atomic
material that is being imaged. In the presence of the static magnetic field, Bo, the spinning
protons will eventually settle and align their spins with the external magnetic field and
by doing so will create their own internal magnetization, Mo. The time constant that charac-
terizes this settling or relaxation time is called the T1 time.

To create an MRI signal, an external oscillating magnetic pulse, B1, is applied in the trans-
verse direction perpendicular to Bo. This pulse is called an RF pulse because themagnetic field
frequency is in the radio frequency range (i.e., megahertz range) and typically lasts for a mil-
lisecond or so. This pulse is generated by a wire coil that lies in a plane parallel to Bo. If the
oscillating frequency of B1 is close to the resonant frequency (i.e., the precession frequency
of the protons), the internal magnetization will be perturbed and shift its orientation toward
the transverse direction. This is very much like a forced harmonic oscillator that will begin
to oscillate with a very large amplitude if a forcing frequencymatches the resonant frequency.
The shifted internal magnetization of the protons will precess at its resonant frequency and
will inductively generate an electrical signal in the same coil that generated the RF pulse. Again
from high school physics, you know that a changingmagnetic field generates an electrical field
and will create an electric current if a wire is nearby. This inductive current will decay in time
with a relaxation time constantT2 after the RFpulse is turned off because the precessing protons
that initially were in phase with each other will no longer be phase locked with each other. The
time between pulses is referred to as the repetition time, TR.

To create an image from the MRI signal, additional gradient coils create a gradient in the
static magnetic field, Bo, such that the strength of the static field varies linearly along different
spatial axes. According to the Lamour frequency equation, the resonant frequency is propor-
tional to the magnitude of the static field. In one dimension, a gradient will linearly shift the
resonant frequency of the atomic material along that dimension. If an RF pulse is applied at
a particular frequency, this will predominantly excite only one point along the spatial dimen-
sion. Imagine a set of harmonic oscillators with linearly varying resonant frequencies placed
along one axis. A forcing oscillation at a particular frequency (the RF pulse inMRI) will excite
those harmonic oscillators whose resonant frequencies are close to the forcing frequency.

220 18. FUNCTIONAL MAGNETIC IMAGING

More importantly, the relative phase between the oscillator and the forcing oscillation will
vary linearly along the axis. This is the essence of MRI imaging.

18.2.2. BOLD Signal (fMRI)

The oxygenation concentration of blood was discovered to alter the MRI signal (Ogawa
et al., 1992). In particular, as the ratio of oxygenated to deoxygenated hemoglobin increased,
the MRI signal increased. It was soon found that brain activation in the human also affected
theMRI signal, presumably due to changes in blood oxygenation levels surrounding the brain
tissue (Kwong et al., 1992). The time course of this blood oxygenation level dependent (BOLD)
signal initially shows aweak decrease followed by amuch stronger increase that peaks several
seconds (�5 seconds) after a stimulus is presented to the subject. Vascular physiology sug-
gests that the source of this BOLD signal is primarily the veinous and capillary blood as
opposed to arterial blood. The early weak decrease in BOLD is due to increased metabolism,
resulting in an increase in relative deoxyhemoglobin concentration followed by an increase in
BOLD due to an increase in blood flow, resulting in a relative decrease in deoxyhemoglobin
concentration. Most studies have focused on the later, robust increase in the MRI signal.
You should keep the relatively slow dynamics of the signal in mind when interpreting fMRI
data because this places a limit to the temporal resolution of tracking neural activity.

18.2.3 Preprocessing of Signal

The data that are acquired in an fMRI experiment require a number of preprocessing
steps before formal data analysis is performed. The data we will give you, available on
the companion website, have already been preprocessed. However, it is helpful to under-
stand what has been done to the data before you work with it (Smith, 2004). The signal from
each voxel is initially represented in the Fourier domain as a set of complex numbers
(k-space representation). This needs to be transformed into a set of real numbers in the time
domain. Because each image is acquired in two-dimensional slices, each slice is acquired at
a slightly different time. Therefore, slice-timing correction is performed. Motion correction
is then performed such that each brain image is spatially adjusted so that they are all
co-localized. Finally, the data are usually spatially and temporally filtered.

18.2.4 Experimental Designs

There are two major types of experimental design used in fMRI: (1) the block design and
(2) the event-related design. The block design was the first approach used in early fMRI
experiments and is quite easy to implement. Blocks of time (typically tens of seconds long)
are defined in which subjects are either presented with multiple stimuli or perform a task
repeatedly (experimental block) or are presented with nothing or asked to rest (control
block). These blocks are typically presented in an alternating fashion. The BOLD signal is
then compared between the experimental and control blocks. The event-related design is
used when you want to examine the relationship between a behavioral event and the
dynamics of the BOLD signal. In the exercises and project, you will use fMRI data that were
collected using the block design, so we won’t discuss the event-related design any further.

22118.2. BACKGROUND

18.3. EXERCISES

These exercises are presented to introduce some of the techniques used to analyze fMRI
data. Download the file P05120.7-MC.mat from the companion website. Type load
P05120.7-MC.mat to load the data from an fMRI experiment involving a simple finger-
tapping task from one human subject (data courtesy of Kristine Mosier). The experiment
follows a simple block design alternating between finger-tapping (active block) and rest
(control block). Each block lasts for 30 seconds. A complete image of the brain was acquired
every 3 s (i.e., TR = 3 seconds), and there are 90 time samples for the whole experiment. The
data are stored in the variable Vfunc, which is a four-dimensional matrix corresponding to
the x (medial-lateral), y (anterior-posterior), z (inferior-superior) spatial dimensions and
time. Each element of the variable Vfunc represents the time course of the MR signal from
one voxel or volume element from the brain. One way researchers examine activation at a
particular voxel is to cross-correlate the signal with the expected hemodynamic response.
Begin with a simple box car hemodynamic response that is on (i.e., 1) during the active
block and off (i.e., 0) during the control blocks (i.e., when the subject is at rest). The experi-
ment begins with a rest (control) block of 10 images:

>> hemo=[repmat(0,10,1);repmat(1,10,1);repmat(0,10,1);repmat(1,10,1);repmat(0,10,1);. . .
repmat(1,10,1);repmat(0,10,1);repmat(1,10,1);repmat(0,10,1);];

Begin by looking at one voxel. Plot Vfunc(27,37,9,:) along with the expected hemody-
namic response in two subplots in the same figure. You will first need to use the reshape
function to convert Vfunc(27,37,9,:) into a column vector. The result should look like
Figure 18.1.

0.9

0.95

1

1.05

1.1
� 104

Time (s)

B
O

LD
 s

ig
na

l

0 50 100 150 200 250

0 50 100 150 200 250

0

0.5

1

1.5

2

Time (s)

E
xp

ec
te

d
he

m
od

yn
am

ic
re

sp
on

se

FIGURE 18.1 The BOLD signal from one sample voxel along with the expected hemodynamic response.

222 18. FUNCTIONAL MAGNETIC IMAGING

Notice how the BOLD signal oscillates at the same frequency as the expected hemody-
namic response.

Exercise 18.1:

Compute a power spectrum of that voxel using pwelch.

Exercise 18.2:

Compute the cross-covariance between the voxel activation and the expected hemodynamic

response using xcov:

>> [b a]=xcov(voxel,hemo,‘coeff’);

The result is shown in Figure 18.2.

The xcov function generates the cross-covariance instead of the cross-correlation because

you want to examine how the two signals co-vary with respect to their respective means. The

function xcorr would consider their co-variation ignoring their mean values despite the fact

the two signals have completely different units and magnitudes. The ‘coeff’ flag makes sure

that the output represents the normalized correlation coefficient ranging from –1 to 1. If you

zoom in the figure, you will notice that the peak in the cross-covariance occurs at a lag time.

This is the biophysical delay between the performance-based neural activation and the

hemodynamic response.

Continued

−300 −200 −100 0 100 200 300
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Lead/lag (s)

C
or

re
la

tio
n

co
ef

fic
ie

nt

FIGURE 18.2 The cross-covariance between the sample voxel and the expected hemodynamic response.

22318.3. EXERCISES

Exercise 18.2: (continued)

To quantitatively determine which voxels are significantly activated, you will apply a regres-

sion model or general linear model (glm) to find a linear relationship between the expected

hemodynamic response and the actual BOLD signals. You will use the biophysical delay, com-

puted with the cross-covariance function, in the model. Specifically, you will find the optimal

(in the least-squares sense) offset and gain parameters that relate the expected hemodynamic

response and the voxel’s BOLD signal such that

voxel ¼ offsetþ gain� hemoþ e ð18:2Þ
where e is normally distributed noise. You will use the function glmfit in the MATLABW soft-

ware to do this. This function allows you to apply a whole variety of general linear models,

including a simple linear regression model, by using the identity link function and normally

distributed noise. However, before using this function, you need to introduce the biophysical

delay into the expected hemodynamic response.

Exercise 18.3:

Run glmfit on the sample voxel using the delayed hemodynamic response. What are the offset

and gain parameters that are computed and their p-values:

>> [param, dev, stats] = glmfit(hemo_delay, voxel,‘normal’, ‘identity’);

param stores the offset and gain parameters, dev represents the deviance, and stats stores other

statistical values including p-values for the parameter (i.e., stats.p).

18.4. PROJECT

This project involves analyzing the entire fMRI dataset using the general linear model
and then plotting a grayscale figure showing significant activation across the brain. Specifi-
cally, you should do the following:

• Apply the glmfit function on each voxel separately to determine significant activation
due to the task. Use the expected hemodynamic response as your covariate in the model
with a delay determined from the cross-correlation peak you found in Exercise 18.2.

• Use a p-value of .001 for the gain parameter as a threshold for activation.
• Generate a grayscale surface plot for each x-y slice of the brain using white to represent

significant activation and black to represent nonsignificant activation. Your result should
look something like Figure 18.3.

224 18. FUNCTIONAL MAGNETIC IMAGING

18.4.1 Methods Used to Collect fMRI Data

Subject and Paradigm: One female subject, age 39, was used. A block design was used,
alternating 30 seconds "ACTIVE," 30 seconds "REST" for 135 seconds. The active block
required the subject to touch the thumb to the four fingers bilaterally and repeat this in a
self-paced manner.

BOLDparameters:Reverse spiral pulse sequence, single echo, TR/TE= 3000/50 ms, flip angle
= 90, 64�64matrix, FOV=24 cm, slice thickness = 7.0 mm/skip 1.0, 10 axial slices, bandwidth=
100 kHz. The first 12 acquired brain images were eliminated to account for equilibration.

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS
COVERED IN THIS CHAPTER

pwelch
repmat
reshape
xcorr
xcov
glmfit

60

40

20

20 40 60 20 40 60 20 40 60 20 40 60 20 40 60

60

40

20

60

40

20

60

40

20

60

40

20

60

40

20

20 40 60 20 40 60 20 40 60 20 40 60 20 40 60

60

40

20

60

40

20

60

40

20

60

40

20

FIGURE 18.3 Statistical parametric maps of activation (p < .001) across all horizontal brain slices.

225MATLAB FUNCTIONS, COMMANDS, AND OPERATORS COVERED IN THIS CHAPTER

This page intentionally left blank

P A R T IV

DATA MODELING WITH
MATLAB

This page intentionally left blank

C H A P T E R

19

Voltage-Gated Ion Channels

19.1. GOAL OF THIS CHAPTER

This chapter will explore the dynamics of ion channels using methods similar to those
introduced by Hodgkin and Huxley in 1952. You will derive ordinary differential equations
that approximate real ion channel behavior and solve these equations using a numerical
integrator written in the MATLABW software. Finally, you will visualize the dynamics by
predicting current responses to single channel voltage-clamp experiments.

19.2. BACKGROUND

Ion channels are a class of multimeric transmembrane proteins with a hydrophilic pore
that facilitates transport of ions across the cell membrane. The size of the ion channel
pore and the charge of amino acids near the opening of the pore help exclude entry
of some ions while promoting the entry of others. This confers upon the ion channel
a selective permeability to different ions. Several factors can induce conformational
changes in the ion channel, altering its quaternary structure and therefore its perme-
ability. These factors are referred to as gating variables because they function as a gate
between the ion channels’ different conformational states.

Most ion channels are classified according to the nature of their gating and their selectiv-
ity of ions. The largest subclasses of ion channels classified by gating are the ligand-gated and
voltage-gated ion channels. Ligand-gated ion channels change conformation when a ligand
binds to them. The most common ligand-gated ion channels found at the post-synaptic
membrane of neurons include NMDA, kainate, AMPA, and GABAA receptors.

The second class of ion channels, voltage-gated ion channels, undergo conformational
changes corresponding to alterations in membrane potential. Voltage-gated ion channels
can show selectivity for sodium, potassium, or calcium. In this chapter you will model
voltage-gated potassium channels (Kv channels) and voltage-gated sodium channels (Nav
channels). Kv channels generally gate between two conformations—an open conformation

229

permeable to potassium and a closed conformation impermeable to potassium—while Nav
channels often gate between three stable conformations—an open conformation permeable
to sodium, a closed conformation impermeable to sodium, and an inactive conformation
also impermeable to sodium. Although both the inactive and closed states of Nav channels
are impermeable to sodium, they represent different conformational states of the channel
and have different kinetics.

19.2.1. The Model

Suppose you are interested in building a model to predict the current response to a
single ion channel voltage-clamp experiment. Since ionic currents pass through the ion
channel to enter the cell, you can consider the ion channel as an electrical resistor whose
resistance depends on the conformational state of the ion channel. The equation that relates
the resistance of a resistor, R, to the current it passes, I, and the voltage drop across the
resistor, V, is Ohm’s law:

V ¼ IR ð19:1Þ
If you divide this equation through by the resistance, then you can write this equation as

I ¼ gV ð19:2Þ
where g is the conductance of the resistor (note g = 1/R). Finally, if you suppose that the
conductance is directly proportional to the probability that the channel is in the open
conformation, then Equation 19.1 becomes

I ¼ gmax � Po � V; ð19:3Þ
where gmax is the maximum conductance of the channel, and Po is the probability that the
channel is in the open conformation. Therefore, determining the conductance of the channel
is equivalent to determining the probability that the channel is open.

19.2.2. Kv Channel

Let’s begin with the simplest case, the Kv channel. For the Kv channel, Equation 19.3 will
take the form

IK ¼ gK � n � V ð19:4Þ
where gK ¼ 36 mS=cm2 is the maximum conductance of the Kv channel, and n is the proba-
bility that the channel is in the open conformation. Next, suppose that the ion channel can
exist only in an open or closed conformation as depicted by the reversible reaction in the
equation

ðKvÞclosed $
k1

k�1

ðKvÞopen ð19:5Þ

where k1 is the rate the channel goes from closed to open, and k�1 is the rate the channel
goes from open to closed. Next, assume that the change in the probability of open channels

230 19. VOLTAGE-GATED ION CHANNELS

over time is equal to the probability of the channel being closed, and then going from closed
to open (at rate k1), minus the probability of its being open, and then closing (at rate k�1).
This can be represented by the equation

dn

dt
¼ ð1� nÞk1 � nk�1 ¼ k1 � ðk1 þ k�1Þn; ð19:6Þ

since all channels are either open or closed. Now further assume that at time t = 0 all the
channels are closed so that n(0)= 0. Finally, recall that for a voltage-gated ion channel
the gating between conformational states depends on the membrane potential, so the rates
k1 and k�1 are both functions of voltage. If you were modeling ligand-gated ion channels,
then these rates would depend on the concentration of the ligand. Hodgkin and Huxley
used voltage clamp experiments to help determine these rates. In this chapter assume the
following functional forms (see Hodgkin and Huxley, 1952) for the transition rates between
conformational states of the Kv channel:

k1 ¼ 0:01 � ðV þ 10Þ

exp
V þ 10

10

0
@

1
A� 1

k�1 ¼ 0:125 � exp V

80

0
@

1
A:

ð19:7Þ

19.2.3. The Nav Channel

The Nav channel is slightly more complicated, since it has three stable confirmations
and therefore a greater number of possible transitions between conformational states. For
simplicity, we will ignore transitions between inactive and closed conformational states,
and assume that the channel is governed by the following reversible reactions that act
independently of each other:

Navð Þclosed$
k1

k�1

Navð Þopen

Navð Þinactive$
k1

k�1

Navð Þopen:
ð19:8Þ

If you let m represent the probability of the channel being open given that it was closed
previously, and you let h represent the probability of the channel being open given that it
was inactive previously, then Equation 19.3 takes on the form:

INa ¼ gNa �m � h � V; ð19:9Þ
where gNa ¼ 120 mS=cm2: The previous reversible reactions lead to the following differential
equations:

23119.2. BACKGROUND

dm

dt
¼ ð1�mÞk1 �mk�1 ¼ k1 � ðk1 þ k�1Þm

dh

dt
¼ ð1� hÞk1 � hk�1 ¼ k1 � ðk1 þ k�1Þh:

ð19:10Þ

For the Nav open-close kinetics, assume:

k1 ¼ 0:1 � ðV þ 25Þ

exp
V þ 25

10

0
@

1
A� 1

k�1 ¼ 4 � exp
V

18

0
@

1
A;

ð19:11Þ

and for Nav inactivation kinetics, assume:

k1 ¼ 0:07 � exp
V

20

0
@

1
A

k�1 ¼ 1

exp
V þ 30

10

0
@

1
Aþ 1

:
ð19:12Þ

Simple intuition has led naturally to a model that expresses the current you expect to
flow through a channel in terms of a differential equation for the probability of the channel
being open.

Next, we will discuss a simple algorithm to numerically solve differential equations such
as Equation 19.6.

19.2.4. Solving Differential Equations Numerically

To understand the current-voltage properties of an ion channel, you can solve an
ordinary differential equation describing the probability of the channel being open given
the initial condition that Po(0) = 0. In general, solving differential equations can be very
tricky (if not impossible), but some simple techniques for approximating solutions do exist.
Perhaps the simplest method for approximating the solution to a differential equation is
Euler’s method. It is based on the definition of the derivative:

df

dx
¼ limDx!0

f ðxþ DxÞ � f ðxÞ
Dx

; ð19:13Þ

232 19. VOLTAGE-GATED ION CHANNELS

which for small nonzero values of Dx implies that:

df

dx
� f ðxþ DxÞ � f ðxÞ

Dx
) f ðxþ DxÞ � f ðxÞ þ Dx � df

dx
: ð19:14Þ

Equation 19.14 lets you determine an approximation for the value of a function f at a
point (xþDx) given information about the value of the function of f at x and the derivative
of f. You can examine Euler’s method by choosing a differential equation whose solution is
known and compare it to the approximation obtained from Equation 19.14. Now try to
apply Equation 19.14 to a simple differential equation:

df

dx
¼ 2x; where f ð0Þ ¼ 1: ð19:15Þ

This differential equation has the obvious solution f ðxÞ ¼ x2 þ 1, since it satisfies Equation
19.15 with the condition that f ð0Þ ¼ 1. To approximate the solution to this equation using
Euler’s method, you proceed by first plugging Equation 19.15 into Equation 19.14 to get:

f ðxþ DxÞ � f ðxÞ þ Dx � 2x: ð19:16Þ
Next, you choose Dx = 0.1 (i.e., something small, since the approximation is most valid

for small Dx) and x = 0 and plug into Equation 19.16 to obtain:

f ð0þ 0:1Þ � f ð0Þ þ 0:1 � 2 � 0) f ð0:1Þ � 1: ð19:17Þ
This equation can be repeated to give an estimate of f(0.2) such that:

f ð0:1þ 0:1Þ � f ð0:1Þ þ 0:1 � 2 � 0:1) f ð0:2Þ � 1:02; ð19:18Þ
where the previous value f(0.1) has been substituted into Equation 19.16 instead of the
initial condition. Although you might be tempted to approximate f(0.2) directly from
the initial condition by letting Dx = 0.2, recall that the approximation is best when Dx is
as close to 0 as possible. This procedure can be repeated to approximate f(x) over any range
of x desired. Of course, without the help of modern computers, this method would be
too laborious to be practical for any moderately large range of x.

Another method for numerically solving differential equations is known as the Runge-
Kutta method (RK method). We shall derive the second-order RK method for the general
differential equation:

dy

dx
¼ f ðx; yÞ; ð19:19Þ

with the initial condition y(xo) = yo. Note that the ion-channel gating Equations 19.6 and
19.10 are of this general form. Our first step in deriving the formulae for the RK method
is to assume that the numerical solution y(x) that we are looking for has a Taylor series
expansion that converges on the interval I for which we want to find the numerical solution.
If it does, then:

yðxÞ ¼ yðxoÞ þ y0ðxoÞ
1!

� ðx� xoÞ þ y00ðxoÞ
2!

� ðx� xoÞ2 þ . . .þ yðnÞðxoÞ
n!

ðx� xoÞn ð19:20Þ

23319.2. BACKGROUND

is the Taylor series expansion. Let us define Dx = (x � xo), and substitute this into Eq. 9.20,
which gives:

yðxo þ DxÞ ¼ yðxoÞ þ y0ðxoÞ
1!

� ðDxÞ þ y00ðxoÞ
2!

� ðDxÞ2 þ . . .þ yðnÞðxoÞ
n!

ðDxÞn: ð19:21Þ

We can make a polynomial approximation to the series in Eq. 19.21. If we make a 2nd-order
approximation, then:

yðxo þ DxÞ � yðxoÞ þ y0ðxoÞ
1!

� ðDxÞ þ y00ðxoÞ
2!

� ðDxÞ2: ð19:22Þ

Notice that the first-order approximation reduces to the key equation in iterating Euler’s
method (see Equation 19.14). Next, we realize that Eq. 19.19 gives us a substitution for
y0(xo) = f(xo, yo). We can take the derivative of Eq. 19.19 to obtain a substitution for y00(xo)
as follows:

y00ðxoÞ ¼ @f ðxo; yoÞ
@x

þ @f ðxo; yoÞ
@y

y0ðxoÞ ¼ @f ðxo; yoÞ
@x

þ @f ðxo; yoÞ
@y

f ðxo; yoÞ: ð19:23Þ

Making these two substitutions into Equation 19.22 gives:

yðxo þ DxÞ � yðxoÞ þ f ðxo; yoÞ � ðDxÞ þ @f ðxo; yoÞ
@x

þ @f ðxo; yoÞ
@y

� f ðxo; yoÞ
� �

� ðDxÞ
2

2
: ð19:24Þ

If f were a function whose derivatives could easily be calculated, then we could simply end
here and use Equation 19.24 in much the same way as we used Eq. 19.14 to iterate Euler’s
method. This does not happen often, however, so we will try to find a simplification
for Eq. 19.24 that does not involve partial derivatives of f. Since y was assumed to have a
Taylor series expansion, then its derivative does too, so by Equation 19.19 f must also
have a Taylor series expansion. The Taylor series expansion of f is slightly complicated,
however, since f is a multivariable function. The Taylor expansion is as follows:

f ðxo þ a; yo þ bÞ ¼ f ðxo; yoÞ þ @f ðxo; yoÞ
@x

� aþ @f ðxo; yoÞ
@y

� bþ . . . ð19:25Þ

The terms shown in Equation 19.25 are through first order. If we let a = Dx and b = Dx * f(xo, yo),
andwe substitute these into Equation 19.25 keeping only up to the first order terms of the series,
then we get:

f ½xo þ Dx; yo þ Dx � f ðxo; yoÞ� ¼ f ðxo; yoÞ þ @f ðxo; yoÞ
@x

þ @f ðxo; yoÞ
@y

� f ðxo; yoÞ
� �

� Dx: ð19:26Þ

If we subtract f(xo, yo) from the right hand side of Eq. 13 and multiply through by Dx/2 we
obtain:

Dx
2

ff ½xo þ Dx; yo þ Dx � f ðxo; yoÞ� � f ðxo; yoÞg ¼ @f ðxo; yoÞ
@x

þ @f ðxo; yoÞ
@y

� f ðxo; yoÞ
� �

� ðDxÞ2
2

:

ð19:27Þ

234 19. VOLTAGE-GATED ION CHANNELS

The right-hand side of Equation 19.27 is the last term of Eq. 19.24. If we now substitute
Eq. 19.27 into Eq. 19.24, then we will have removed the partial derivatives of f. After slight
simplification we achieve:

yðxo þ DxÞ � yðxoÞ þ ff ðxo; yoÞ þ f ½xo þ Dx; yo þ Dx � f ðxo; yoÞ�g � ðDxÞ
2

: ð19:28Þ

We now have an equation to give us the next y value given the previous value that requires
only the initial condition y(xo) = yo, the step size Dx, and the differential equation, which
gives us f. Since Equation 19.28 is quite cumbersome looking, it is often presented as a set
of equations in the following way:

yðxo þ DxÞ ¼ yðxoÞ þ 1

2
ðu1 þ u2Þ where

u1 ¼ Dx � f ðxo; yoÞ and

u2 ¼ Dx � f ðxo þ Dx; yo þ u1Þ

ð19:29Þ

Make the substitutions and convince yourself that this system is equivalent to Equation
19.28. In Equation 19.22 above we truncated the Taylor expansion of y to second-order.
For that reason, the set of equations shown above are called the second-order RK equations.
We can build higher order RK equations by keeping higher-orders of the series expansion
of y and using higher-order expansions of the function f to remove partial derivatives.
The following set of equations is the result of truncating y to fourth order.

yðxo þ DxÞ ¼ yðxoÞ þ 1

6
ðv1 þ 2v2 þ 2v3 þ v4Þ where

v1 ¼ Dx � f ðxo; yoÞ

v2 ¼ Dx � f xo þ Dx
2

; yo þ v1
2

0
@

1
A

v3 ¼ Dx � f xo þ Dx
2

; yo þ v2
2

0
@

1
A

v4 ¼ Dx � f ðxo þ Dx; yo þ v3Þ

ð19:30Þ

The fourth-order RK equations are the most popular numerical method for solving differen-
tial equations used today. Although a higher-order expansion in y would give a more
accurate solution, the increased processing time required by a computer to achieve the
solution is often not worth the minor improvement.

23519.2. BACKGROUND

19.3. EXERCISES

For these exercises, begin by writing a function called ode_euler, which will implement
Euler’s method to solve the sample differential equation of Equation 19.14 for x = 0:0.1:10:

function f = ode_euler(x, f_o)
%This function takes two arguments, x and f_o.
%x is a vector that specifies the time points that the function f should be
%approximated for.
%f_o is the initial condition.
%The function returns a vector, f, representing the approximate solution to the
%differential equation, df/dx=2x with f(0)=f_o.

%Set delta_x as the difference between successive x values.
delta_x=x(2)-x(1);

%Determine how many points we need to approximate by finding the length of
%vector x.
l_x=length(x);

%Initialize f by creating a vector of the right length. We will reset the elements to
%the correct values in the for loop below.
f=zeros(1, l_x);

%Set the initial value of f to f_o.
f(1)=f_o;

%Use a for-loop to implement Eq. 19.14
for i=1:(l_x-1)

f(iþ1)=f(i) þ delta_x*2*x(i); % line 24
end;

Now visualize the solution by plotting this approximation for f alongside the exact
solution, f ðxÞ ¼ x2 þ 1. See whether your solution looks like the one shown in Figure 19.1.
Before proceeding, you should explore the relationship between the value of Dx and the
validity of the approximation of Euler’s method. For example, if you plot the exact solu-
tion alongside several approximations, each with a different Dx, how quickly does the
approximation cease to be reasonable? Similarly, at what point does decreasing Dx fail
to provide significant improvement in the approximation despite increased run time?
Basic questions such as these are important to consider whenever a numerical method
is employed to approximate the solution to a differential equation.

The function ode_euler can solve only the sample differential equation of Equation 19.14
because the derivative was plugged into Euler’s method explicitly in line 24. You can gen-
eralize this function to solve any differential equation by introducing the feval() function.
The feval() function evaluates functions by taking a functional handle that references the
function to be evaluated and a variable number of arguments depending on the number
of input arguments required by the function referenced by the function handle. As an
example, consider the following command:

236 19. VOLTAGE-GATED ION CHANNELS

>>f=feval(@ode_euler, 0:0.1:10, 1);

This line is equivalent to typing

>>f=ode_euler(0:0.1:10, 1);

except with the feval() function the name of the function is a variable argument, so it can
be changed. To see how this can be applied to generalize the code for Euler’s method, first
create another function called f_prime():

function df = f_prime(x)
%This function takes a point x and calculates the derivative of f at the point x.

df=2*x;

Now modify the first line of ode_euler so that it takes an additional argument, a function
handle to a differential equation, and modify line 24 to use feval() to determine the value
of the derivative according to the function referred to by the function handle. If everything
is done correctly, then the command

>>f=ode_euler(@f_prime, 0:0.1:10, 1);

should produce the same results as before feval() was introduced into the code, but now
ode_euler makes no explicit reference to any particular differential equation.

Exercise 19.1: Write a function n_prime(t, V) that calculates the derivative of n at the point

t given that the membrane potential is V. Hint: You will need to use Equations 19.6 and 19.7.

0 2 4 6 8 10
0

20

40

60

80

100

120

x

f(
x)

Solution to differential equation df/dx=2x with f(0)=1

Exact solution
Approximation

FIGURE 19.1 Exact and approxi-
mate solution to differential equation.

23719.3. EXERCISES

Exercise 19.2: Modify the first line of ode_euler() so that it takes an additional input argu-

ment, V, and line 24, so that feval() takes three arguments, a function handle such as @n_prime

and two additional input arguments, t and V, to the function referred to by the function handle.

Exercise 19.3: Write a function RK4(fhandle, x, f_o) that uses the fourth order Runge-Kutta

method to numerically solve the differential equation referenced by the function handle fhan-

dle. Use RK4 to solve the differential equation 19.14 for Dx = 0.1. Compare this to the exact

solution and the solution using Euler’s method (see Figure 19.1).

19.4. PROJECT

In this project, you will use the Euler method to derive the current kinetics for the
voltage-gated potassium and sodium channels:

1. Write a function called K_v(t, V) that takes a time interval t and a holding potential
V and returns the current response of a Kv channel over the time range specified by t.
Hint: K_v should call ode_euler or RK4 with the inputs @n_prime, t, n_o, and V, and use
the result along with Equation 19.4 to determine IK.

2. Use K_v to plot the current response of a Kv channel when the membrane potential is
clamped to –30 mV. Repeat this for holding potentials from –30 mV to 50 mV in 10 mV
increments, and plot the solutions on the same graph. Hint: See hold on command.

3. Write functions m_prime(t, V) and h_prime(t, V) that calculate the derivative of m
and h at the point t given that the membrane potential is V. This will be completely
analogous to the code for n_prime.

4. Write a function called Na_v(t, V) that takes a time interval t and a holding potential V,
and returns the current response of a Nav channel over the time range specified by t.
Hint: Na_v should call ode_euler or RK4 twice, once with the inputs @m_prime, t, m_o,
and V and another with the inputs @h_prime, t, h_o, and V and use these results along
with Equation 19.9 to determine INa.

5. Use Na_v to plot the current response of an Nav channel when the membrane potential
is clamped to –30 mV. Repeat this for holding potentials from –30 mV to 50 mV in 10 mV
increments, and plot the solutions on the same graph.

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS
COVERED IN THIS CHAPTER

feval
hold on

238 19. VOLTAGE-GATED ION CHANNELS

C H A P T E R

20

Models of a Single Neuron

20.1. GOAL OF THIS CHAPTER

The goal of this chapter is to incorporate previous models of voltage-gated ion channels
into a model of single neuron dynamics. This chapter will continue to follow work done by
Hodgkin and Huxley (1952) resulting in a system of four ordinary differential equations
that model action potential generation in neurons.

20.2. BACKGROUND

Neurons communicate with each other by transmitting and receiving electrochemical sig-
nals called action potentials. These action potentials are transient fluctuations in the cell’s mem-
brane potential, which propagate down a cell’s axon without attenuation. In the central
nervous system, action potentials have a duration on the order of milliseconds (1–2 msec usu-
ally) and can often be divided into three phases. The first phase of the action potential is a
rapid depolarization of themembrane called the rising phase or upstroke of the action potential.
This is followed by a repolarization of the membrane called the falling phase or downstroke of
the action potential. The last phase follows a hyperpolarization of themembrane and is called
the undershoot. A depiction of the action potential is shown in Figure 20.1.

Some of the earliest experiments to elucidate the mechanism underlying action potentials
were performed by Hodgkin and Katz (1949), who showed that reducing the extracellular con-
centration of sodium led to a shorter upstroke phase of the action potential in giant squid axon.
They inferred from this that the upstroke of the action potential depends on the cell increasing
its permeability to sodium. They also suggested that the falling phase was due to an increase in
potassium permeability. Therefore, they concluded that the action potential was generated by
selective changes in membrane permeability to sodium and potassium. We now know that
ion channels are responsible for this selective permeability. These experiments were later fol-
lowed up by Hodgkin and Huxley (1952), who performed voltage-clamp experiments to char-
acterize the dynamics of these changes in permeability and then proposed the mathematical
model of action potential generation outlined in the following section.

239

20.2.1. The Model

Neurons are incredibly complex. Like all eukaryotic cells, they are composed ofmany orga-
nelles, including a nucleus, mitochondria, an endoplasmic reticulum, etc. Each of these
organelles has a role that enables the cell as a whole to perform its functions, including gener-
ating action potentials. Trying to capture all the complexity of a real neuron in a single model
is impossible. Fortunately, it is also unnecessary, since, for purposes of this chapter, you are
interested only in understanding action potential generation in neurons, and not any of the
other complex processes that neurons undergo. Therefore, you should restrict your neuron
model to include only those elements that contributemost directly to generating action poten-
tials and ignore elements of a neuron that contribute less to action potential generation. In gen-
eral, it is often not clearwhat elements of a complex biological system aremost directly related
to a behavior of interest, and the choices you make in constructing a model are often not vali-
dated until the results of the model can be compared to experiments.

In this model, assume that action potential generation in neurons is mainly carried out by
the electrical properties of the cell membrane. Several factors contribute to the electrical
properties of the cell membrane. For instance, ion channels such as Nav, Kv, and leak chan-
nels span the membrane and selectively pass ions across it. The voltage-gated channels are
represented in Figure 20.2 as variable resistors (the resistors with an arrow going through

60

40

20

0

–20C
C

 IN
 0

 (
m

V
)

–40

–60

–80

0.2 0.4 0.6

Time (s)

0.8 1

FIGURE 20.1 Intracellular action potential spike train from a deep pyramidal neuron recorded from the frontal
cortex of a mouse. (Courtesy of Amber Martell)

240 20. MODELS OF A SINGLE NEURON

them) because the amount of resistance to flow depends on the membrane potential,
whereas the leak channel, which has a constant resistance to ion flow, is represented by
an ordinary resistor. The phospholipids that comprise the membrane, which do not conduct
electric charges, allow for most of the cell membrane to function as a dielectric, an insula-
tive material that separates ions in the cytoplasm from those in the extracellular milieu.
Although ions cannot flow through the phospholipid bilayer of the cell directly, charge
can accumulate on one side of the cell membrane, inducing an opposed charge buildup
on the opposite side of the membrane just as a capacitor does. This charge buildup involves
charges moving toward the membrane and represents a capacitive current. Finally, the cell
membrane contains many other transmembrane proteins such as the Naþ/Kþ-ATPase that
helps maintain ion concentration gradients across the cell membrane. The presence of a
sodium concentration gradient, for example, ensures that when sodium ions have equili-
brated across the Nav channels of the neuron, there will be a nonzero potential across the
membrane. This potential is called the sodium reversal potential. Similarly, there will be a
reversal potential for the Kv channel. The electrical properties mentioned so far can be sum-
marized by creating an electric circuit equivalent to the neuronal model. The circuit is
shown in Figure 20.2. Notice that current flows from the inside of the cell (at the top of
the electrical circuit) to the outside of the cell by either inducing a charge buildup at the
membrane (represented by the capacitor) or by flowing through one of the three ion chan-
nels present in the membrane. From simple electrical circuit theory, you can represent the
following circuit using a set of equations. In the next section, we will review the important
concepts of electrical circuits needed to understand the circuit in Figure 20.2.

To express the circuit as a set of equations, you need to know four fundamental laws of
electronics. The first is Ohm’s law, which states that for some resistors (called Ohmic resis-
tors) the voltage drop across the resistor, VR, is related to the current flowing through the
resistor, I, and the resistance of the resistor, R, by the equation:

VR ¼ IR ð20:1Þ

IL

GL

EL

IK

GK

EK

Outside

INa

Vm Inside

GNa

ENa

Cm

FIGURE 20.2 An electrical circuit diagram of a single axonal compartment of a neuron. (Bower JM, Beeman D.
The Book of Genesis: Exploring Realistic Neural Models with the GEneral NEural SImulation System, 2003)

24120.2. BACKGROUND

which can also be written as:

I ¼ gVR ð20:2Þ
where g is the conductance of the resistor (note g ¼ 1/R). The second law you will need
states that the voltage drop across a capacitor, VC, is related to the current induced by the
capacitor, I, and the capacitance of the capacitor, C, by the equation

VC ¼ 1

C

Z
IðtÞdt ð20:3Þ

The last two laws that you will need are collectively known as Kirchhoff’s Loop Rules.
The first rule, Kirchhoff’s Current Rule, states that the sum of current entering a circuit
junction equals the sum of current exiting it, and a circuit junction is any intersection of
wire where current has more than one path to flow down. The equation for this rule is
given by: X

Iin ¼
X

Iout ð20:4Þ
The second rule, Kirchoff’s Voltage Rule, states that the potential drop between any two

points on a circuit is independent of what path was taken to arrive there. If you assume that
the start and end point are the same, then this rule implies that the voltage drop across any
closed loop is zero, and can be written as:X

loop

V ¼ 0 ð20:5Þ

Now you can use these simple rules to calculate the membrane potential of the circuit in
Figure 20.2. The membrane potential is defined as the potential difference between the
inside and the outside of the cell. Therefore, in Figure 20.2 the membrane potential is the
potential drop across any path from the inside of the cell to the outside. Beginning with
the path that includes the capacitor, you see that the voltage drop across the capacitor is just
the membrane potential, so Equation 20.3 becomes:

VM ¼ 1

CM

Z
IðtÞdt ð20:6Þ

which can be rearranged to give:

I ¼ CM
dVM

dt
ð20:7Þ

Now examine the potential drop across the second path (the sodium channel), which
consists of two elements, a resistor and a battery. The total drop across both these elements
is just the potential difference between the inside and outside of the cell, VM, so:

VM ¼ VR þ ENa) VR ¼ VM � ENa ð20:8Þ
Upon substitution into Equation 20.2, you have:

INa ¼ gNa � ðVM � ENaÞ ð20:9Þ

242 20. MODELS OF A SINGLE NEURON

Following the same process across the last two paths produces equations nearly identical
to Equation 20.9 for IK and IL,

IK ¼ gK � ðVM � EKÞ ð20:10Þ
IL ¼ gL � ðVM � ELÞ ð20:11Þ

Finally, use Kirchhoff’s Current Rule to see that if you inject a current into the cell of
Iinj, then:

Iinj ¼ I þ INa þ IK þ IL ð20:12Þ
Rearranging Equation 20.12 and substituting in Equations 20.7 and 20.9 through 20.11 gives:

CM
dVM

dt
¼ �gNa � ðVM � ENaÞ � gK � ðVM � EKÞ � gL � ðVM � ELÞ þ Iinj ð20:13Þ

Recall that the sodium and potassium channels are voltage-gated, so their conductances
are functions of voltage. In Chapter 19, "Voltage-Gated Ion Channels," you modeled the
potassium conductance as:

gK ¼ �gK � n ð20:14Þ
where

dn

dt
¼ k1n � ðk1n þ k�1nÞn ð20:15Þ

and the sodium conductance by:

gNa ¼ �gNa �m � h ð20:16Þ
where

dm

dt
¼ k1m � ðk1m þ k�1mÞm

dh

dt
¼ k1h � ðk1h þ k�1hÞh

ð20:17Þ

If you substitute Equation 20.14 and 20.16 into Equation 20.13 and collect Equations 20.15
and 20.17, you get the following system of equations:

Cm
dVM

dt
¼ ��gNamhðVM � ENaÞ � �gKnðVM � EKÞ � gLðVM � ELÞ þ Iinj

dn

dt
¼ k1n � ðk1n þ k�1nÞn

dm

dt
¼ k1m � ðk1m þ k�1mÞm

dh

dt
¼ k1h � ðk1h þ k�1hÞh

ð20:18Þ

24320.2. BACKGROUND

In the original Hodgkin-Huxley model, the final equations proposed were as follows:

Cm
dVM

dt
¼ ��gNam

3hðVM � ENaÞ � �gKn
4ðVM � EKÞ � gLðVM � ELÞ þ Iinj

dn

dt
¼ k1n � ðk1n þ k�1nÞn

dm

dt
¼ k1m � ðk1m þ k�1mÞm

dh

dt
¼ k1h � ðk1h þ k�1hÞh

ð20:19Þ

The changes to the first equation were made so that the model would better fit with the
experimental data, although some explanation of the addition of these exponents has since
been made from first principles.

Many of the parameter values needed to evaluate the system of Equation 20.19 are mentioned
in Chapter 19, “Voltage-Gated Ion Channels.” Table 20.1 identifies these parameter values along
with some additional parameter values for the leak channel and capacitance of the membrane.

The functional forms for the transition rates between conformational states of the sodium
and potassium channels are given in Equations 20.20–20.22. These rates were discussed in
more detail in Chapter 19, “Voltage-Gated Ion Channels”.

k1n ¼ 0:01 � ð10� VMÞ

exp
10� VM

10

0
@

1
A� 1

k�1n ¼ 0:125 � exp �VM

80

0
@

1
A

ð20:20Þ

TABLE 20.1 Parameter Values for Hodgkin-
Huxley Model

Parameter Value

CM 1 mF/cm2

�gK
36 mS/cm2

�gNa
120 mS/cm2

gL 0.3 mS/cm2

EK –12 mV

ENa 115 mV

EL 10.613 mV

244 20. MODELS OF A SINGLE NEURON

k1m ¼ 0:1 � ð25� VMÞ

exp
25� VM

10

0
@

1
A� 1

k�1m ¼ 4 � exp
�VM

18

0
@

1
A

ð20:21Þ

k1h ¼ 0:07 � exp
�VM

20

0
@

1
A

k�1h ¼ 1

exp
30� VM

10

0
@

1
Aþ 1

ð20:22Þ

20.3. EXERCISES

Trying to write code to implement a set of equations such as Equation 20.19 while keeping track
of all the rate functions and necessary parameters can seem daunting. The key to keeping larger
codingprojectsmanageable is towritemany smaller functions first and thenput them together to
create larger functions until eventually the project is complete. For example, the following code is
for a function n_prime that takes the current value of n and the currentmembrane potentialV_m
and returns the derivative of n according to the second equation of the Hodgkin-Huxley model:

function dn¼n_prime(V_m, n)
%This function takes two arguments the membrane potential and the current
%value of the state variable n, and returns the value of the derivative of n for
%these values.
%First calculate the values of the forward and backward rate constants, k_1n and k_2n.

k_1n+0.01*(10-V_m)/(exp((10-V_m)/10)-1);
k_2n+0.125*exp(-V_m/80);

%Next calculate the value of the derivative.
dn+k_1n – (k_1n+k_2n)*n;

Exercise 20.1: Write a function m_prime(V_m, m) similar to the one in the preceding example

that calculates the derivative of m given its current value and membrane potential.

24520.3. EXERCISES

Exercise 20.2: Write a function h_prime(V_m, h) similar to the one in Exercise 20.1 that

calculates the derivative of h given its current value and membrane potential.

Exercise 20.3: Write a function V_prime(V_m, n, m, h, I_inj) that calculates the derivative of

V_m given its current value, the values of the other state variables, and the injected current.

Hint: Just repeat what you’ve done so far using the first equation of the Hodgkin-Huxley

model.

20.4. PROJECT

In this project, you will model the voltage dynamics of a Hodgkin-Huxley neuron. You
should perform the following:

1. Write a function hodgkin_huxley(t, I_inj) that takes a time series t and a constant
representing injected current and returns the value of V at every point in t. Assume that
the initial value for V is 10 mV. Hint: See Chapter 19, "Voltage-Gated Ion Channels," for a
similar example.

2. Plot V versus t for injected currents of 5, 10, and 15 A/cm2.
3. Determine what happens to the frequency of firing as the injected current increases.
4. Indicate how the action potential generated by this model compares to the result in

Figure 20.1.

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS
COVERED IN THIS CHAPTER

length
for-loop
plot
hold on

246 20. MODELS OF A SINGLE NEURON

C H A P T E R

21

Models of the Retina

21.1. GOAL OF THIS CHAPTER

The goal of this chapter is to understand the basic structure of the retina and to see how
to create simple models of neuronal interactions. In this chapter you will build a simple
model describing the interaction between cone cells and horizontal cells of the retina and
solve it exactly by taking advantage of the capability of the MATLABW software to easily
manipulate matrices.

21.2. BACKGROUND

21.2.1. Neurobiological Background

The retina is the part of the eye that transforms light into an electrochemical message
sent to the brain for processing. The mechanism is quite complicated, but we will give a
brief overview. Light first contacts the cornea, a transparent tissue covering the pupil and
the iris. The cornea helps converge light through the pupil. Next, light passes through the
lens, where it is further focused onto the retina in the back of the eye. The retina has five
distinct classes of neurons arranged into cell layers. Light first contacts the innermost layers
of the retina, but it is the outermost layer that first processes the incoming light signal. The
layer responsible for processing the incoming light is composed mainly of two different cell
types: cones and rods. Rods are mainly responsible for sensing brightness, and cones are
responsible for detecting color.

This chapter pertains to cones, which we will discuss exclusively from now on.
Mammals such as humans have three types of cones. Each type is adept at “seeing” a
certain color: red, green, or blue. Cones have a G-protein coupled receptor on their cell
surface called rhodopsin. This receptor is closely associated with a chromophore called
11-cis-retinal. When a photon of light hits the chromophore, it isomerizes to 11-trans-
retinal. This conformational change is detected by the rhodopsin molecule, and a

247

G-protein is activated, which eventually closes ion channels on the cell membrane. The
result is that ions (i.e., current) can no longer enter the cell, and the cell hyperpolarizes.
Hyperpolarization decreases the cone’s release of glutamate, a neurotransmitter that
often has excitatory postsynaptic effects, which in turn decreases activity in postsynaptic
cells in the next retinal layer. These postsynaptic cells are called horizontal cells (H-cells).
H-cells normally maintain reciprocal synaptic connections with the cones that synapse
onto them. H-cells release GABA, a neurotransmitter that has inhibitory postsynaptic
effects. When the cones hyperpolarize in response to light and the H-cells decrease
activity, the cones become disinhibited and begin to depolarize. This process is referred
to as negative feedback because the initial light that induced hyperpolarization causes
H-cells to feed back upon the cones in a way that counteracts the initial hyperpolariza-
tion. It is believed that this negative feedback is a regulatory mechanism to control color
contrast. When the level of negative feedback of horizontal cells to cones is changed,
the cones’ response can be altered. Slight changes in feedback might be responsible for
helping to determine changes in color. After all, although we have only three types of
cones, humans can distinguish between millions of different colors! In addition to feeding
back onto cones, horizontal cells also send signals to bipolar cells, which signal to ama-
crine cells, which finally signal to ganglion cells. The axons of these ganglion cells make
up what anatomists call the optic nerve, the large nerve that connects the eye to the brain.
The brain is then responsible for decoding the information sent from the retina to
create what you “see” when you look at an object.

21.2.2. The Model

The model used in this chapter will be a system of two linear differential equations. The
first will describe changes in the current leaving the cone of the retina, C(t), and the second
will describe the current leaving the horizontal cell, H(t). We could build a larger system to
account for the bipolar cells, amacrine cells, and ganglion cells, but we will keep it simple
for now. The system is represented as follows:

dC

dt
¼ 1

tC
ð�C� kH þ LÞ ð21:1Þ

dH

dt
¼ 1

tH
ð�H þ CÞ: ð21:2Þ

The first equation has three terms. The first indicates that the change in current is neg-
atively proportional to the amount of current inside the cone, C. The second term repre-
sents the fact that the change in current is proportional to the current inside the
horizontal cell, H, which negatively feeds back on the cell, and the third term indicates
that the change in current into the cone is dependent on the light level, L. If the light level
is high, then many photons will pass through the pupil, land on the retina, and activate
the cones, resulting in a large change in current. The second equation states that the
change in current in the horizontal cells depends negatively on the amount of current
in the horizontal cells and the current of the cone cell that synapses onto the horizontal
cell. Recall that the horizontal cells do not respond directly to light stimuli, so there is

248 21. MODELS OF THE RETINA

no term for the light intensity in the second equation. All other symbols in the preceding
equations represent parameters (i.e., constants). Typical values for these parameters
are tC ¼ 0:025 sec; tH ¼ 0:08 sec; and k ¼ 4. Now also assume that the light intensity,
L, is a constant, particularly L ¼ 10. Finally, for the initial conditions, choose that
C(0) ¼ H(0) ¼ 0. There is no current moving through either cell at t ¼ 0.

The model equations as they are currently written can be simplified by a clever substitu-
tion. If you let:

~C ¼ C� L

kþ 1
and ~H ¼ H � L

kþ 1
; ð21:3Þ

and substitute these equations into the previous equations, then you get:

d~C

dt
¼ 1

tC
ð�~C� k ~HÞ ð21:4Þ

d ~H

dt
¼ 1

tH
ð� ~H þ ~CÞ: ð21:5Þ

This is the model that you will study in its final form in this chapter. Note that the initial
conditions now give:

~Cð0Þ ¼ ~Hð0Þ ¼ L

kþ 1
ð21:6Þ

21.2.3. Mathematical Background

Systems like the one in Equations 21.4 and 21.5 are especially suitable for study in
MATLAB because they can be readily solved using simple matrix manipulations, as illus-
trated in the following simple example. Suppose you wanted to solve the system shown
in Equations 21.7 and 21.8:

dx

dt
¼ xþ y ð21:7Þ

dy

dt
¼ 4xþ y ð21:8Þ

You begin by writing this system in matrix form to get:

dx

dt

dy

dt

2
6664

3
7775 ¼ 1 1

4 1

� �
x
y

� �
: ð21:9Þ

If you let the vector

x
y

� �
¼~v and A ¼ 1 1

4 1

� �
; ð21:10Þ

24921.2. BACKGROUND

then the system in Equations 21.7 and 21.8 becomes:

d~v

dt
¼ A �~v: ð21:11Þ

Based on the Eigendecomposition Theorem (see Appendix B, “Linear Algebra Review”),
you can substitute in for A to get the following equation:

d~v

dt
¼ VDV�1 �~v: ð21:12Þ

Next, you multiply across the left by V�1 to get:

V�1 d~v

dt
¼ V�1VDV�1 �~v ¼ DV�1 �~v: ð21:13Þ

If you let V�1 �~v ¼~u, then Equation 21.11 becomes:

d~u

dt
¼ D �~u ð21:14Þ

This equation is similar to Equation 21.11 except for one very important exception: D is
diagonal. The eigendecomposition of:

A ¼ 1 1
4 1

� �

gives the eigenvalue matrix

D ¼ 3 0
0 �1

� �

and the eigenvector matrix

V ¼ 1 1
2 �2

� �
:

If you substitute in for D and convert Equation 21.14 into a system of equations, you get:

d~u

dt
¼

du1
dt

du2
dt

2
6664

3
7775 ¼ 3 0

0 �1

� �
� u1

u2

� �
¼ 3u1

�u2

� �
) ð21:15Þ

du1
dt

¼ 3u1

du2
dt

¼ �u2:

250 21. MODELS OF THE RETINA

This system is also a system of differential equations. However, each equation can be solved
independently of one another to yield the solution:

~u ¼ u1
u2

� �
¼ C1e

3t

C2e
�t

� �
: ð21:16Þ

Finally, recall that you let V�1~v ¼~u, so that V~u ¼~v, and:

~v ¼ x
y

� �
¼ 1 1

2 �2

� �
� C1e

3t

C2e
�t

� �
¼ C1e

3t þ C2e
�t

2C1e
3t � 2C2e

�t

� �
¼ C1

1
2

� �
e3t þ C2

1
�2

� �
e�t) ð21:17Þ

xðtÞ ¼ C1e
3t þ C2e

�t

yðtÞ ¼ 2C1e
3t � 2C2e

�t:

Notice where the eigenvalues and eigenvectors appear in the preceding solution. The
eigenvalues, –1 and 3, appear in the exponents, and the eigenvectors appear as constant
vectors multiplying the exponential with the corresponding eigenvalue. In general, the
solution to any system of the form given in Equation 21.11 is:

~v ¼ x
y

� �
¼ C1 � EV1 � el1t þ C2 � EV2 � el2t ð21:18Þ

where l1and l2 are distinct (not equal) eigenvalues of the matrix A, and EV1 and EV2 are the
corresponding eigenvectors. If A has eigenvalues that are the same, then Equation 21.18
does not apply.

21.3. EXERCISES

You can see from Equation 21.18 that any set of equations that can be made into the form
of Equation 21.11 can be solved by finding the eigenvalues and eigenvectors of the matrix
A, as long as A has distinct eigenvalues. You can do this easily in MATLAB with the follow-
ing command:

>>[V, D] = eig(A);

For example, typing the command

>>[V, D] = eig([1 1;4 1])

produces the response:

V =

0.4472 -0.4472
0.8944 0.8944

D =

3.0000 0
0 -1.0000.

25121.3. EXERCISES

The matrix D is a diagonal matrix with diagonal elements given by the eigenvalues of A.
The columns of the matrix V correspond to the eigenvectors of A. The matrix D is the same
as the one given earlier used to derive Equation 21.15, but the matrix V produced by
MATLAB is different from the one used to derive Equation 21.17. Nonetheless, you still
have the relationship that A = VDV�1. You can check this by typing the command

>> V*D*inv(V)

ans =

1.0000 1.0000
4.0000 1.0000.

The inv() function determines the inverse of a matrix.
Reexamining Equation 21.18 reveals that in order to find x(t) and y(t), you still need to

solve for C1 and C2. It can be shown that if you have the initial conditions that x(0) = xo
and y(0) = yo, then:

C1

C2

� �
¼ V�1 xo

yo

� �
ð21:19Þ

Therefore, you can find these constants in MATLAB by typing the command

>>[c_1; c_2] = inv(V)*[x_o; y_o];

Finally, you can create v according to Equation 21.18 by typing:

>>v = c_1*V(:, 1)*exp(D(1,1)*t)þc_2*V(:, 2)*exp(D(2,2)*t);

for some previously defined vector t. You can access the separate solutions x and y with
v(1, :) and v(2, :), respectively.

Exercise 21.1: Use MATLAB to check that if you let A = [1 1; 4 1], V = [1 1; 2 �2], and

D = [3 0; 0 �1], then A = VDV�1 also holds.

Exercise 21.2: Put the system of equations in Equations 21.4 and 21.5 into matrix form. What

is the matrix A?

252 21. MODELS OF THE RETINA

21.4. PROJECT

In this project, you will solve the retinal feedback system described previously. Specifi-
cally, you should do the following:

1. Write a function solution(A, init) that takes a matrix with distinct eigenvalues and a set
of initial conditions, and plots the solutions x(t) and y(t) on the same graph. The function
should return an output message if the input matrix does not have distinct eigenvalues.
Hint: See the error() function help for producing output messages for functions that you
want to throw an error message under certain conditions.

2. Use the function solution(A, init) to plot the solution of the retinal feedback system. In
low light levels (L = 3), it takes longer for cells to respond. The measured parameters
under low light level conditions are tC ¼ 0.1 sec, tH ¼ 0.5 sec, and k ¼ 0.5. Plot the
solution to the system with these parameters and compare with the previous plots.
Under which conditions do the cones respond more strongly? Does this make sense?

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS
COVERED IN THIS CHAPTER

eig
inv
error

253MATLAB FUNCTIONS, COMMANDS, AND OPERATORS COVERED IN THIS CHAPTER

This page intentionally left blank

C H A P T E R

22

Simplified Model of
Spiking Neurons

22.1. GOAL OF THIS CHAPTER

The goal of this chapter is to study a computationally efficient spiking cortical neuron
model first introduced by Izhikevich (2003), and to generalize this model to a network
of neurons. Ultimately, you will obtain and examine a raster plot of modeled network
activity.

22.2. BACKGROUND

The task of understanding how different areas of the brain interact with each other to
perform higher level functions such as motor coordination and speech is a major interest
of modern neuroscience but also an extremely difficult one. Many factors contribute to
the global dynamics of neural networks. First, neurons isolated from a network exhibit a
variety of patterns and behaviors. Some examples include regular spiking neurons, fast
spiking neurons, intrinsic bursting neurons, and subthreshold membrane oscillations, as
shown in Figure 22.1. Some of these behaviors are more common than others. For example,
under normal conditions there are more regular spiking neurons in the cortex than intrinsic
bursting ones. How these different dynamics are manifested at the network level remains
an open area of current research. Second, the synaptic coupling between neurons can have
a large impact on the network’s dynamics leading to synchronization among the neurons
and network oscillations.

Network oscillations in the brain are often categorized by their frequency. Oscillations
with a frequency less than 4 Hz are called delta rhythms. Oscillations between 4 and 8 Hz
are called theta rhythms. Rhythms from 8 to 12 Hz are called alpha rhythms, and rhythms from
12 to 30 Hz are called beta rhythms. Rhythms above 30 Hz are called gamma rhythms.

255

22.2.1. The Model

The model for this chapter is a two-dimensional system of ordinary differential equa-
tions with a reset condition, as shown in Equations 22.1–22.3:

dv

dt
¼ 0:04v2 þ 5vþ 140� uþ I ð22:1Þ

du

dt
¼ aðbv� uÞ ð22:2Þ

The reset condition is:

if : v � 30 then:
v c

u uþ d:

�
ð22:3Þ

The variable v represents the membrane potential of the neuron while u represents
a generic recovery variable that feeds back negatively onto v. There are five additional pa-
rameters in the model: I, a, b, c, and d. The parameter I represents external input to the neu-
ron. This input could be thought of as external input to the neuron from outside the
network or even synaptic input from a neuron within the network. The parameter
a controls the rate of recovery of u, and b controls the sensitivity of recovery to subthreshold
fluctuations of the membrane potential. The parameters c and d control the after-spike reset
values for v and u, respectively. If you choose certain parameter combinations, this simple
model can exhibit all the firing patterns and behaviors shown in Figure 22.1.

Intrinsically bursting (IB)

Fast spiking (FS) Resonator (RZ)

Regular spiking (RS)

v(t)

i(t)

FIGURE 22.1 Known types of neurons. (An electronic version of the figure and reproduction permissions are
freely available at www.izhikevich.com.)

256 22. SIMPLIFIED MODEL OF SPIKING NEURONS

To model a whole network of neurons, you will have to couple many neurons together
where each neuron behaves according to Equations 22.1–22.3. This means that you will
have to select a value for each parameter for every neuron you model. Additionally, since
the network is coupled (i.e., the neurons are connected to each other), the input I to a
particular neuron will depend on other neurons in the network that synapse onto it.
Therefore, you will need to model the connectivity of the network. You could choose to
make every neuron in the network be connected to every other neuron in the network,
or possibly make neurons connect only to neurons that are close. Additionally, you need
to choose whether a connection between neurons will be excitatory or inhibitory and how
strong the connection will be.

22.3. EXERCISES

The code for implementing Equations 22.1–22.3 are not very complicated. You can solve
them using Euler’s method, as introduced in Chapter 19, “Voltage-Gated Ion Channels.”
The script for implementing a single neuron is as follows (adapted from Izhikevich, 2003):

%These are some default parameter values
I=10;
a=0.02;
b=0.2;
c=-65;
d=8;
%The initial values for v and u
v=-65;
u=b*v;
%Initialize the vector that will contain the membrane potential time series.
v_tot=zeros(1000, 1);

for t=1:1000
%set v_tot at this time point to the current value of v
v_tot(t)=v;
%Reset v and u if v has crossed threshold. See Eq. 3 above.
if (v>= 30)
v=c;
u=u+d;

end;
%Use Euler’s method to integrate Eqs. 1 and 2 from above. Here v is
%calculated in 2 steps in order to keep the time step small (0.5 ms step in the
%line below).
v=v+0.5*(0.04*v^2+5*v+140-u+I);
v=v+0.5*(0.04*v^2+5*vþ140-u+I);
u=u+a*(b*v-u);

end;

25722.3. EXERCISES

%This line uses the function find to locate the indices of v_tot that hold elements
%with values greater than or equal to 30 and then sets these elements to 30.
%This normalizes to heights of the action potential peaks to 30.
v_tot(find(v_tot >= 30))=30;
%Plot the neuron’s membrane potential.
plot(v_tot);

Exercise 22.1: Before going on to generalize this model to a network of neurons, you should

explore this model thoroughly. See if you can discover what parameter sets lead to regular spik-

ing, fast spiking, or intrinsically bursting behavior. What kinds of behaviors do the following

parameter sets produce?

a. [a, b, c, d] = [0.02, 0.2, –65, 8]
b. [a, b, c, d] = [0.02, 0.2, –55, 4]
c. [a, b, c, d] = [0.1, 0.2, –65, 2]
d. [a, b, c, d] = [0.1, 0.25, –65, 2]

Now consider how to modify this script to model a network of neurons where each neu-
ron is described by the dynamics of Equations 22.1–22.3. First, convert the parameters from
numbers to vectors. The vectors will hold the value of each parameter for each neuron in
the network. Since you want some neurons in the network to be regular spiking and others
to be intrinsically bursting, you will need to have different values for the elements of the
vectors. The modified code should begin as follows:

% The number of excitatory neurons in the network. The mammalian cortex has
% about 4 times as many excitatory neurons as inhibitory ones.
Ne=800;
%The number of inhibitory neurons in the network.
Ni=200;
%Random numbers
re=rand(Ne, 1);
ri=rand(Ni, 1);
%This will set the value of a for all excitatory neurons to 0.02 and the value of a
%for inhibitory neurons to a random number between 0.02 and 0.1
a=[0.02*ones(Ne, 1); 0.02þ0.08*ri];
%This will allow b to range from 0.2–0.25
b=[0.2*ones(Ne, 1); 0.25–0.05*ri];
%This will allow the spike reset membrane potential to range between -65 and -%50
c=[-65+15*re.^2; -65*ones(Ni,1)];
%This will allow the recovery reset value to range between 2 and 8
d=[8–6*re.^2; 2*ones(Ni, 1)];
⋮

258 22. SIMPLIFIED MODEL OF SPIKING NEURONS

Before you continue with the code, it is worthwhile to consider how these definitions of
the parameters impact the composition of the network.

Exercise 22.2: What parameter sets are most neurons likely to possess? Is there any correla-

tion between excitatory neurons as represented in this model and regular spiking neurons, for

example?

The next line of code should create a weight matrix that holds the strength of the connec-
tivity between every pair of neurons in the network. Since the network has Ne þ Ni neu-
rons, then the weight matrix will be a square matrix with these dimensions. The code to
implement this is:

S=[0.5*rand(Ne+Ni, Ne), -rand(Ne+Ni, Ni)];

Notice that this definition allows the strength of connections of excitatory neurons onto
other neurons to range from 0 to 0.5, whereas inhibitory neurons have a synaptic strength
between 0 and –1. According to this definition, a single inhibitory neuron can have, in gen-
eral, a stronger effect on the neurons it contacts than a single excitatory neuron, which is
supported by current experimental research. Also notice that very few elements of S will
be exactly 0, so in this model almost every neuron has synaptic contacts with all other neu-
rons in the network. The rest of the code for the network model is:

%The initial values for v and u
v=-65*ones(Ne+Ni,1);
u=b.*v;
%Firings will be a two-column matrix. The first column will indicate the time that a
%neuron’s membrane potential crossed 30, and the second column will be a number
%between 1 and Ne+Ni that identifies which neuron fired at that time.
%firings=[];

for t=1:1000
%Create some random input external to the network
I=[5*randn(Ne, 1); 2*randn(Ni,1)];
%Determine which neurons crossed threshold at the current time step t.
fired=find(v>=30);
%Add the times of firing and the neuron number to firings.
firings=[firings; t*ones(1, length(fired)), fired];
%Reset the neurons that fired to the spike reset membrane potential and
%recovery variable.
v(fired)=c(fired);
u(fired)=u(fired)+d(fired);
%Add to the input, I, for each neuron a value equal to the sum of the synaptic
%strengths of all other neurons that fired in the last time step connected to that
%neuron.
I=I+;sum(S(:,fired), 2);

25922.3. EXERCISES

%Move the simulation forward using Euler’s method.
v=v+0.5*(0.04*v^2+5*v+140-u+I);
v=v+0.5*(0.04*v^2+5*v+140-u+I);
u=u+a*(b*v-u);

end;
%Plot the raster plot of the network activity.
plot(firings(:,1), firings(:,2),'.');

22.4. PROJECT

In this project, you will examine the behavior of a cortical network of spiking neurons.
Specifically, you are asked to do the following:

• According to the definition of the parameter values for c in the network model,
determine whether an inhibitory neuron can be an intrinsically bursting neuron. Will
there be more regular spiking neurons in the network or intrinsically bursting neurons?

• Examine the raster plot produced by the preceding code. Are there any oscillations
present in the network? If so, are they delta rhythms, theta rhythms, alpha rhythms, etc.?

• Modify the code by redefining c and d to allow for more bursting neurons to be present
in the network. What effect, if any, does this have on the presence of network
oscillations?

• Alter the weight matrix so that there are fewer connections between neurons of the
network. What effect does this have on the network dynamics?

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS
COVERED IN THIS CHAPTER

rand
randn
plot
find

260 22. SIMPLIFIED MODEL OF SPIKING NEURONS

C H A P T E R

23

Fitzhugh-Nagumo Model:
Traveling Waves

23.1. GOALS OF THIS CHAPTER

The purpose of this chapter is to learn how to model traveling waves in an excitable
media. This entails the solution of a partial differential equation involving a first derivative
in time coordinates and a second derivative in spatial coordinates. Youwill learn how to com-
pute a second derivative in the MATLABW software and use a modification of the Fitzhugh-
Nagumo model introduced in Chapter 12, “Exploring the Fitzhugh-Nagumo Model,” to
generate traveling waves in both one and two dimensions.

23.2. BACKGROUND

The Fitzhugh-Nagumo model is often used as a generic model for excitable media
because it is analytically tractable. You will use it as a simple model to generate traveling
waves by the addition of a diffusion term: a second derivative in spatial coordinates. In this
chapter you will modify the Fitzhugh-Nagumo model introduced in Chapter 12 in this way
and study its behavior in one and two dimensions. In this way you can simulate action
potential wave propagation along the axon of a single neuron or the spreading of electrical
potential waves in a network of cortical neurons.

There are many forms of the equations for the voltage, v, and recovery, r, variables in the
Fitzhugh-Nagumo model. In general they are given by:

@v

@t
¼ f ðvÞ � rþ I þ @2v

@x2
ð23:1Þ

@r

@t
¼ av� br ð23:2Þ

261

The function f(v) is a third order polynomial that provides positive feedback, whereas the
slower recovery variable r provides negative feedback. By making the voltage and recovery
variables functions of spatial coordinates as well as time, you can model dynamics in a spa-
tially extended regime. The final term in the first equation introduces diffusion into the
system, and thus the first equation is known as a reaction-diffusion equation.

A note of caution: As with ordinary differential equations, whenever you attempt to solve
partial differential equations computationally, you must be careful that the various errors
that can be introduced, such as truncation errors and roundoff errors, are not significant
and that the necessary conditions for stability are met. See Strauss (1992) for a more in-
depth discussion of such matters. If you are not careful, then the solutions produced by
your code may stray quite significantly from the true solutions you seek.

23.3. EXERCISES

23.3.1. Second Derivative Operator

How do you model a second derivative computationally in MATLAB? There are a few
approaches to this, but the one you will use here is the simplest computational approxima-
tion known as the centered second difference:

d2vðxÞ
dx2

� vðxþ DxÞ � 2vðxÞ þ vðx� DxÞ
ðDxÞ2 ð23:3Þ

This approach can be justified by combining the Taylor expansions for v(xþDx) and v(x�Dx)
(Strauss, 1992). If themesh size of the spatial variable is represented byDx, then the jth element
of the array v, vj, is the value of v for x ¼ j Dx, so you have:

d2vj

dx2
� vjþ1 � 2vj þ vj�1

ðDxÞ2 ð23:4Þ

The second derivative can thus be computed by convolving the array v with the second
derivative operator filter F ¼ [1 �2 1]/(Dx)2. This can be extended to two dimensions as
well. Assuming equal mesh spacing along both directions (Dx ¼ Dy), then the two-dimen-
sional second derivative operator filter is given by F ¼ [0 1 0; 1 �4 1; 0 1 0]/(Dx)2.

Now create a function in MATLAB for the second derivative operator in one dimension
and name it secDer.m. Its input will be the one-dimensional array v(x), the spatial mesh
size, dx, and the output will be the second derivative, v’’(x). This function will use the con-
volution function conv, which, by default, introduces undesirable edge effects. Also you
will then include an option to improve the edge effects by making the boundary conditions
periodic. You’ll do this by adding a third input to the function, BC, which, if set to 1, will
return the default conv output found by padding the input matrix with zeros, also known
as free boundary conditions, and if set to 2, then you will have periodic boundary conditions.
Periodic boundary conditions means that the boundaries of the input array (i.e., the first
and last elements) are considered neighboring points. You could use the if, elseif control
structure to carry out the options for the boundary conditions, but instead we will introduce
you to another useful control structure that MATLAB offers: switch.

262 23. FITZHUGH-NAGUMO MODEL: TRAVELING WAVES

function V=secDer(v,dx,BC)
%
%F is the discrete 2nd derivative filter in 1D
F = [1 -2 1]/dx^2;
%
%BC determines your boundary conditions
switch BC

case 1 %free bc's
Vconv(v,F);
V=V(2:end-1); %return an array the same size as the input array

case 2 %periodic bc's
%since the convolution filter is of length 3 then we only have to
%pad the input array v by 1 element on either side
pv=zeros(1,length(v)+2); %extend the input array by 2
pv(2:end-1) = v;
%now we fill in these two padded points with the values that the extended
%input array would have if the first element of v and the last element of v
%were neighbors
pv(1)=v(end);
pv(end)=v(1);
V=conv(pv,F);
V=V(3:end-2); %return the valid portion of the convolution

end

Give this a try and see how it works by testing it on a function whose second derivative
is well known: cosine. If f(x) ¼ cos(x), then f ’’(x) ¼ -cos(x). You can compare the output of
the second derivative function, secDer, with the analytic solution by running the following
script, whose output is shown in Figure 23.1.

0.5

0

–0.5

–1
–3 –2 –1 0 1 2 3

1

FIGURE 23.1 Testing the second derivative function secDer.m. The solid black line is the input, cos(x), and the
blue line is the output of the secDer function with periodic boundary conditions. This matches exactly with the
analytic solution to the second derivative, -cos(x), shown as the dotted black line.

26323.3. EXERCISES

x=linspace(-pi,pi,100); %forces even spacing in array of 100 pts from –pi to pi
dx=x(2)-x(1); %determines this spacing, the spatial mesh size
x=x(2:end); % for periodicity knock of 1st term in x array so that we don’t have repeat

% value of cos(x) at the endpoints of x (since cos(-pi)=cos(pi))
f=cos(x); %input array
d2f=secDer(f,dx,2); %computational solution to the second derivative of f with
periodic BC
d2fA=-cos(x); %analytic solution to the second derivative of f
plot(x,f,'k','LineWidth',3) %plot input f
hold on
plot(x,d2f,'b','LineWidth',5) %plot computational result of f"
plot(x,d2fA,'k:','LineWidth',3) %plot analytic result of f"
axis([-pi pi -1 1]); set(gca,'fontsize',20)

Exercise 23.1: Compare this with the result you get if you use free boundary conditions. You

can do this by setting BC to 1 when calling the secDer function. Remove or comment out the

last line of the script above, which sets the limits for the axes in the plot, so that you can see

the effect of changing the boundary conditions.

Exercise 23.2: Rewrite the secDer.m function using the if, elseif control structure rather than

the switch control structure. Test your function by using f = sin(x) and compare your result

with the known solution f ”= -sin(x).

With this second derivative operator, you can now model a traveling wave in 1D. For the
one-dimensional problem, you will use the following form of the Fitzhugh-Nagumo equa-
tions (Wilson, 1999):

@v

@t
¼ 10 v� 1

3
v3 � rþD

@2v

@x2

� �
þ I ð23:5Þ

@r

@t
¼ p½aþ 1:25v� br� ð23:6Þ

The variables v(x,t) and r(x,t) are the voltage and the recovery variables at position x at time
t. If modeling a pulse traveling along a nerve fiber, you can think of x as the position along
the nerve fiber. Similarly, if you want to model a traveling wave of activity across a
one-dimensional network of neurons, then x indicates the neuron location in the one-
dimensional population. Now consider the latter case. You will use the following parameter
values: D ¼ 1, a ¼ 1.5, b ¼ 1, and p ¼ 0.8. For this set of parameters, the steady state values
are v0 ¼ –1.5 and r0 ¼ –3/8, which you will use as your initial conditions for these vari-
ables. The driving stimulus is given by I. To solve this system, you are going to need an
ODE solver.

264 23. FITZHUGH-NAGUMO MODEL: TRAVELING WAVES

23.3.2. Built-in ODE Solvers

In previous chapters you solved differential equations through manually written ODE
solvers using the Euler method and the Runge-Kutta method, which had the advantage
of complete transparency in the mechanisms behind the operations. In this chapter we will
introduce you to the most practical and commonly used of the built-in ODE solvers in
MATLAB: the function ode45. This solver is based on an explicit Runge-Kutta formula
and has been optimized to adaptively find the most efficient time steps to produce a solu-
tion within a certain allowed relative error tolerance (10�3 by default) and absolute error
tolerance (10�6 by default). Look at the help section for ode45 for more information on
how to adjust these options as well as to learn about the other built-in ODE solvers offered
by MATLAB and the conditions under which to use them.

To familiarize yourself with the proper syntax for using the ode45ODE solver, first consider
the simpler case of solving this system of equations for one point in space (i.e., for one neuron.)
First, youmust code the systemof first-orderODEs as a function that the solver canuse. Youwill
represent the Fitzhugh-Nagumo system in a function called F_N1. The F_N1 function assumes
that v and r become elements V(1) and V(2) of the two-element input vector V. Although t and
Vmust be the function’s first two arguments, the function does not need to use them. The output
vdot, the derivative of V,must be a column vector, as shown in the following code:

function vdot = F_N1(t,V)
%
%set parameters of the model
a=1.5; b=1; p=.08; I=1.5;
%dv/dt:
vdot(1) = 10*(V(1) - (V(1).^3)/3 - V(2) + I);
%dr/dt
vdot(2) = p*(1.25*V(1) + a - b*V(2));
vdot=vdot'; %make correct dimensions for ODE solver: must be a column vector

Note that the diffusion term is left out, since there is only one point in space and a spatial
derivative makes no sense in this case. For this one neuron system, you set the input to 1.5
so that the model will initiate a series of action potentials. You can then generate and plot
the solution as follows:

v0=[-1.5;-3/8]; %initial conditions for V variable
tspan=[0 100]; %beginning and end values of time
[t,v] = ode45('F_N1', tspan, v0);
plot(t,v(:,1),'k*','LineWidth',5);

Now look at what was produced by running the preceding script:

>> whos
Name Size Bytes Class

t 2597x1 20776 double
tspan 1x2 16 double
v 2597x2 41552 double
v0 2x1 16 double

26523.3. EXERCISES

Note that the time, which goes from 0 to 100, is a column vector of 2597 points. These
time points are not evenly distributed between 0 and 100; rather, the mesh size varies
and has been selected by the solver to most efficiently compute the differential equation
within the tolerated error. For example, consider how the spacing between time points var-
ies in just the first 10 time points:

>> t(1:10)

ans =

0
0.0015
0.0031
0.0046
0.0061
0.0138
0.0214
0.0291
0.0367
0.0451

>> diff(t(1:10))

ans =

0.0015
0.0015
0.0015
0.0015
0.0077
0.0077
0.0077
0.0077
0.0084

The first column of the output vector, v(:,1), represents the voltage values at the
corresponding times starting with v0(1) at the first time point. Similarly, the second column
vector of the output, v(:,2), represents the recovery variable values for the corresponding
times, starting with v0(2).

When you specify specific time points in tspan, the ODE solver will still use its most effi-
cient time mesh to solve the differential equation; however, it will now return the values of
the outputs at the specific times indicated in tspan. Compare the previous result with that
found by specifying the time to be from 0 to 100 at intervals of 4:

hold on
tspan=[0:4:100];
[t,v] = ode45('F_N1',tspan,v0);
plot(t,v(:,1),'b*','LineWidth',5)

This result is shown in Figure 23.2.

266 23. FITZHUGH-NAGUMO MODEL: TRAVELING WAVES

23.3.3. Fitzhugh-Nagumo Traveling Wave

You are now ready to tackle the full problem of simulating a propagating wave along a
line of neurons. Let the number of neurons be given by N. A naı̈ve approach might be to
allow the initial conditions to be a 2�N matrix with the first row representing the N initial
voltages and the second row the N values of the initial recovery variables. However, recall
that the ode45 solver will accept only a single column array for the initial conditions. What
you will do to satisfy this requirement is let the initial value column vector be of length 2N
and let the first N elements represent the initial voltages of the N neurons and the last N
elements represent the initial recovery values. The ODE solver will produce as its output
a t�1 time vector, and a t�2N matrix, whose first N columns represent the evolution of
the voltage of the population of neurons as time progresses and whose second N columns
represent the evolution of the recovery variables.

The stimulus to initiate the wave that you will use is I ¼ 6 for the first 0.5s; then the stim-
ulus will be off, I ¼ 0, for the rest of the time. You can choose where along the line of
neurons to initiate the wave. In the following example, you stimulate the center cells.
The following script, FNmain.m, will produce a traveling wave of activity along a one-
dimensional population of N neurons whose dynamics are governed by the Fitzhugh-
Nagumo equations, as shown in Figure 23.3.

%FNmain.m
clear all; close all
%
global N I BC %by making these variables global they can exist within
%the workspace of functions without explicitly being input to the functions
N=128; %number of neurons
v0(1:N)=-1.5; %initial conditions for V variable
v0(N+1:2*N)=-3/8; %initial conditions for R variable

2

0V
ol

ta
ge

,v

Time, t

–1

1

–2
0 20 40 60 80 100

3

FIGURE 23.2 Voltage, v, versus time, t, output of Fitzhugh-Nagumo system of equations for one point in space
found using the ode45 solver with tspan¼[1 100] (black dots) and with tspan¼[1:4:100] (blue dots.)

26723.3. EXERCISES

I=6; %the input stimulus value
BC = 2; %set to 1 (free) or 2 (periodic boundary conditions)
%
tspan=[0:.1:.5]; %time with stimulus
[t1,v1] = ode45('F_N',tspan,v0);
tspan=[.5:.1:25]; % time without stimulus
I=0;%turn off stimulus
[t2,v2] = ode45('F_N',tspan,v1(end,:)'); %note: initial cond are final v1 values
%piece together (concatenate) time (t1 and t2) and solution (v1 and v2)
%variables without double counting the seam values
t=[t1; t2(2:end)]; v=[v1; v2(2:end,:)];
%spacetime plot of v variable w/ neurons along y axis, time along x-axis
figure(1); imagesc(v(:,1:N)') ; colorbar
%spacetime plot of r variable w/ neurons along y axis, time along x-axis
figure(2); imagesc(v(:,N+1:end)'); colorbar
%create a movie of the traveling wave
figure(3)
for i=1:length(t)

plot(v(i,1:N))
axis([0 N -2.1 2.2])
pause(.05)

end

When you run the preceding FNmain.m script, make sure that this M-file is in the same
directory as the secDer function previously created as well as the following function F_N,
since the main script calls these functions. The function F_N describes the coupled system
of differential equations used to model the dynamics.

function vdot = F_N(t,v)
global N I BC
%
%set parameters of the model

2

1

0

–1

–2
0 20 40 60

Time, t

V
ol

ta
ge

, V

80 100 120

1

2

0

–1

–2
200 40 60

Time, t

80 100 120

1

2

0

–1

–2
0 20 40 60

Time, t

80 100 120

FIGURE 23.3 Traveling Fitzhugh-Nagumo wave in one dimension for t ¼ 1 (left), t ¼ 5 (center), and t ¼ 10
(right).

268 23. FITZHUGH-NAGUMO MODEL: TRAVELING WAVES

D=10; a=1.5; b=1; p=.08;
%dv/dt:
vdot(1:N) = 10*(v(1:N) - (v(1:N).^3)/3 - v(N+1:end)) + D*secDer(v(1:N),1,BC)';
%add input I to the center five cells
vdot(round(N/2)-2:round(N/2)+2) = vdot(round(N/2)-2:round(N/2)+2) + I;
%dr/dt:
vdot(N+1:2*N) = p*(1.25*v(1:N) + a - b*v(N+1:end));
%
vdot=vdot'; %make correct dimensions for ODE solver

Exercise 23.3: Use periodic boundary conditions, as in the preceding example, but change

the location of the wave initiation to some point off center. For example, rather than stimulate

the center cells, stimulate cells a fourth of the way from the edge. Watch the two waves initiated

annihilate each other.

Exercise 23.4: Change the boundary conditions to make them free boundary conditions and

start the wave at the left end of the array to create a traveling wave that goes from left to right.

Play with the parameters to see how they affect the dynamics.

23.4. PROJECT

In this project, you will simulate a traveling wave of activity in a two-dimensional N�N
array of cortical neurons. This time you will use these versions of the Fitzhugh-Nagumo
equations (Murray, 2002):

@v

@t
¼ �vða� vÞð1� vÞ � rþD

@2v

@x2
ð23:7Þ

@r

@t
¼ bv� gr ð23:8Þ

with the parameters taking on the values a ¼ 0.25, b ¼ 0.001, g ¼ 0.003, and D ¼ 0.05. You
will compute the solution using a similar method as that used for the one-dimensional
problem. This time the initial value column vector will be of length 2N2, where the first
N2 elements will represent the initial voltages of the N�N neuron array and the last N2 ele-
ments will represent the initial recovery values. The ODE solver will produce as its output a
t�1 time vector, and a t�2N2 matrix, whose first N2 columns represent the evolution of the
voltage of the population of neurons as time progresses and whose second N2 columns rep-
resent the evolution of the recovery variables. For a given row of this output matrix, i.e., a
particular time point, you can reconstruct the N�N array of voltage variables from the
1�N2 array using the reshape function, whose input is the matrix to be reshaped as well
as the number of rows and columns desired in the output.

26923.4. PROJECT

>> A=[1 2 3 4 5 6 7 8 9]

A =

1 2 3 4 5 6 7 8 9

>> a=reshape(A,3,3)

a =

1 4 7
2 5 8
3 6 9

You will need to do this when you call the two-dimensional second derivative function as
well as when you wish to visualize the results. There are more elegant and efficient ways to
handle the issue of programming the two-dimensional partial differential equation, but here
we will present a way to solve the problem in MATLAB that is conceptually simple, allowing
you to use the tools previously usedwhile not introducing anymore complicated commands.

In the following script, FN2main.m, you will create an .avi file of the simulation and
name it TravelingWave.avi:

%FN2main.m
clear all; close all
% next 4 lines are necessary to create the movie file of the wave
fig=figure;
set(fig,'DoubleBuffer','on');
set(gca,'NextPlot','replace','Visible','off')
mov = avifile('TravelingWave.avi')
%
tspan=[0:5:800]; %simulation time
global N BC
BC=1; %boundary conditions: 1 free, 2 periodic
N=32; %number of neurons
v0(1:N^2)=0; %initial conditions for V variable
v0(N^2+1:2*N^2)=0; %initial conditions for R variable
v0(1:N) =.6; %initially stimulate all cells along left edge of population
[t,v] = ode45('F_N2',tspan,v0);
%obtain min and max values of output
clims = [min(min(v(:,1:N^2))) max(max(v(:,1:N^2)))];
%generate the movie of the voltage
for i=1:size(v,1)

figure(1)
im = imagesc(reshape(v(i,1:N^2),N,N), clims);
axis square
set(im,'EraseMode','none');
Frame=getframe(gca);
mov = addframe(mov,Frame);

270 23. FITZHUGH-NAGUMO MODEL: TRAVELING WAVES

end
mov = close(mov);

Specifying the same clims in the imagesc option for each time frame of the imaged volt-
age array ensures that the same colormap is used throughout the movie, which is analogous
to using consistent z-axis limits. The preceding main script calls on a number of functions
that need to be created and stored in the same directory as the main script. These functions,
F_N2, SecDer2, and conv2periodic, follow. Note that you will need to complete the F_N2
function. The SecDer2 function is just an extension of the SecDer function to two dimen-
sions and employs the reshape function to carry out the 2D convolutions. The conv2_
periodic function has been written in a generic form so that it can handle input matrices
of various sizes for future applications.

function vdot = F_N2(t,v)
global N BC
%
D=.05; a=0.25; b=.001; g=.003; %set the parameters
%
%dV/dt
vdot(1:N^2)=-(v(1:N^2)).*(a-(v(1:N^2))).*(1-(v(1:N^2)))-...

v(N^2+1:end)+D.*secDer2(v(1:N^2),1,BC);
%dR/dt
vdot(N^2+1:2*N^2)=???
%
vdot=vdot';

function V=secDer2(v,dx,BC)
global N
%
F = [0 1 0; 1 -41; 0 1 0]/dx^2;
%determines your boundary conditions
switch BC

case 1 %free bc's
V=conv2(reshape(v,N,N)',F,'same');
V=reshape(V',N*N,1);

case 2 %periodic bc’s
V=conv2_periodic(reshape(v,N,N)',F);
V=reshape(V',N*N,1);

end

function sp = conv2_periodic(s,c)
% 2D convolution for periodic boundary conditions.
% Output of convolution is same size as leading input matrix
[NN,M]=size(s);
[n,m]=size(c); %% both n & m should be odd
%enlarge matrix s in preparation convolution with matrix c via periodic edges
padn = round(n/2) - 1;

27123.4. PROJECT

padm = round(m/2) - 1;
sp=[zeros(padn,M+(2*padm)); . . .

zeros(NN,padm) s zeros(NN,padm); zeros(padn,M+(2*padm))];
%fill in zero padding with the periodic values
sp(1:padn,padm+1:padm+M)=s(NN+1-padn:NN,:);
sp(padn+1+NN:2*padn+NN, padm+1:padm+M)= s(1:padn,:);
sp(padn+1:padn+NN,1:padm)= s(:,M+1-padm:M);
sp(padn+1:padn+NN,padm+M+1:2*padm+M)= s(:,1:padm);
sp(1:padn,1:padm)= s(NN+1-padn:NN,M+1-padm:M);
sp(padn+NN+1:2*padn+NN,1:padm)= s(1:padn,M+1-padm:M);
sp(1:padn,padm+M+1:2*padm+M)=s(NN+1-padn:NN,1:padm);
sp(padn+NN+1:2*padn+NN,padm+M+1:2*padm+M)=s(1:padn,1:padm);
%
%perform 2D convolution
sp = conv2(sp,c,'same');
% reduce matrix back to its original size
sp = sp(padn+1:padn+NN,padm+1:padm+M);

In this project, you should do the following:

• Create the main script and the functions given here in the same working directory.
Complete the F_N2 function by replacing the symbols ??? with the proper quantities so
that FN_2 implements the Fitzhugh-Nagumo model equations as given in this section.
Run the main script to generate a plane wave from the left, as shown in Figure 23.4.

• Alter the code so that thewave is initiated fromone of the corners or in the center of the array
and forms a propagating ring. Also try running the simulation with periodic boundary
conditions. Play with the various parameters to see how they affect the wave dynamics.

• Now use the model to generate a spiral by resetting the upper half of the voltage and
recovery variables to 0 when the traveling plane wave is approximately halfway across
the neural network. Start with the original code, as in the first part of the project so that a
plane wave is initiated along the entire left edge of the array. In the main script, change
the name of the .avi file that will be created to SpiralWave.avi. Let N = 60 and

5

10

15

20

25

30

5

10

15

20

25

30

5

10

15

20

30

35

5 10 15 2520 305 10 15 2520 30 5 10 15 2520 30

FIGURE 23.4 Two-dimensional traveling wave produced by the Fitzhugh-Nagumo equations for t ¼ 0 (left),
t ¼ 300 (center), and t ¼ 600 (right).

272 23. FITZHUGH-NAGUMO MODEL: TRAVELING WAVES

tspan ¼[0:5:1800]. This will cause the simulation to take more time to run but will allow
you to view the spiral well.

• In the main script, create a variable Reset that can take on the value 0 or 1. Use the switch
control structure so that when Reset is equal to 0, it runs the original script, and when it is
equal to 1, the line
[t,v] ¼ ode45('F_N2',tspan,v0);
will not be executed, and in its place the following lines will be executed:
[t1,v1] ¼ ode45('F_N2',tspan(1:round(length(tspan)/3)),v0);
vR¼Vreset(v1(end,:));
[t2,v2] ¼ ode45('F_N2',tspan(round(length(tspan)/3):end),vR);
v¼[v1; v2(2:end,:)];
t¼[t1; t2(2:end,:)];
Create the following Vreset function in the same directory as the main file:
function vR¼Vreset(v)
global N
%
%reset half of voltage variables to zero
VR ¼ reshape(v(1:N^2),N,N)';
VR(:,1:round(N/2))¼0;
%reset half of recovery variables to zero
RR ¼ reshape(v(N^2+1:end),N,N)';
RR(:,1:round(N/2))¼0;
%
vR¼[reshape(VR',N*N,1);reshape(RR',N*N,1)];
Explain how the Vreset function works. Submit the main script and set of functions that
give the option to generate spiral waves. Plot screenshots of the spiral wave generated at
various timesteps t(i) by using the command:
imagesc(reshape(v(i,1:N^2),N,N), clims); axis square
for various values of i, as shown in Figure 23.5. Again, you can play with the various
parameters to see how they affect the wave dynamics.

10

20

30

40

50

60
10 20 30 5040 60

10

20

30

40

50

60
10 20 30 5040 60

10

20

30

40

50

60
10 20 30 5040 60

FIGURE 23.5 Spiral wave produced by the Fitzhugh-Nagumo equations for t ¼ 500 (left), t ¼ 1000 (center), and
t ¼ 1500 (right).

27323.4. PROJECT

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS
COVERED IN THIS CHAPTER

switch
ode45
global
imagesc
reshape

274 23. FITZHUGH-NAGUMO MODEL: TRAVELING WAVES

C H A P T E R

24

Decision Theory

24.1. GOALS OF THIS CHAPTER

In this chapter you will learn how to implement certain basic mathematical models of deci-
sion making using the MATLABW software. The exploration of decision models will intro-
duce finite difference equations in the context of the diffusion equation, as well as simple
3D visualization. A simple model accounting for perceptual decisions and corresponding
activity in cortical areas LIP and MIT will be discussed.

24.2. BACKGROUND

Explorations of reaction time have demonstrated a trade-off between accuracy and speed
(e.g. Swensson 1972). That is, subjects asked to make decisions in shorter time make more
errors. Any serious model for reaction time must account for this phenomenon.

However, given larger and larger time windows, subjects still occasionally err. In other
words, a model must also allow for the possibility of error. A fully deterministic account
of the decision would not allow occasional incorrect responses.

These two points provide some guidance on how to treat incoming stimuli with respect
to time. With increasing exposure to a stimulus, a subject gains more and more evidence of
a particular perception. Thus, one can speak of evidence accumulation.

At some point, the subject must make a decision. An evidence threshold to denote the
evidence necessary for a choice is a fairly straightforward way to incorporate the decision
process.

275

24.3. EXERCISES

To begin, write a naive model in which evidence is accumulated at a constant rate:

function evid = model1(rate, threshold)
blocksize=100;
evid = [0];
last = 1;
while evid(last) < threshold

evid = [evid; evid(last)+rate];
last = last + 1;

end
end

Exercise 24.1: Simulate 500 choice experiments. What is the distribution of results?

However, this approach does not account for the possibility of error for longer presenta-
tions. The model must be altered to account for occasional failure. To allow for reported
variability, the accumulation of evidence can be made probabilistic.

Now revise the original model to incorporate a probabilistic evidence accumulation:

function evid = model2(prob, threshold)
blocksize=100;
evid = [0];
last = 1;
while evid(last) < threshold

evid = [evid; evid(last)þ(rand() < prob)];
last = last + 1;

end
end

Exercise 24.2: Choose a threshold and rate and graph five simulations of evidence

accumulation.

24.3.1. The Race Model

A classical psychological testing paradigm is the alternative forced choice test, usually
with two choices (2 AFC). The race model provides a simple way to account for evidence
accumulation for two (or more) choices in an alternative forced choice experiment. The race
model consists of a stochastic evidence accumulation process, much like you have already

276 24. DECISION THEORY

explored, and a decision threshold. Once the evidence accumulation process for a given
choice achieves its corresponding threshold, that choice is selected.

Exercise 24.3: Write code to simulate the race model and to graph evidence accumulation for

each choice on the same figure. Simulate a two-choice experiment with probabilities (0.4, 0.6) of

success and failure, respectively, and generate three trials.

Hint: Use model2() twice—once to accumulate evidence for each choice.

Exercise 24.4: Modify your code to generate experiments given a fixed time interval. In other

words, write a function:

function c = forced_choice(probs, thresholds, t)

where probs is a vector of probabilities for evidence of a given outcome over a period of time,

thresholds is a vector of thresholds for each option, and t is a set number of time intervals for

the choice experiment. Here, c returns the choice made, which would be the process closest

to its threshold.

Exercise 24.5: How does this model address the two-model criteria outlined in the introduc-

tion (i.e., a higher error with less time and occasional error even with long intervals)? Demon-

strate this with forced_choice().

24.3.2. Problems with the Race Model

The race model does meet some of the original criteria for a decision model, but it fails to
account for interactions between choices. For example, if the two choices are mutually
exclusive, evidence for one alternative may be counterevidence for the other.

24.3.3. Alternatives to the Race Model

One way to model this scenario is to compare the difference between the evidence counts
against a threshold instead of having separate evidence counts and thresholds for each choice.

Exercise 24.6: Create a function model3(), which returns the accumulation over time of

evidence for the difference between two choices.

Exercise 24.7: How well does this model correspond to actual performance?

27724.3. EXERCISES

24.3.4. Random Walks

Instead of a single threshold for the difference in evidence between the two choices, the
decision model could employ two opposed thresholds, one for each choice option. In this
scenario, the decision process would track evidence accumulated for each option as a total.
Evidence for one choice would accumulate positively, and evidence for the opposing choice
would accumulate negatively. The current total would represent the decision process over
time, and a total between the two thresholds would represent the undecided state.

As described here, the future behavior of the system depends only on the current state
in the decision process. This criterion, as applied to a discrete system here, is called the
Markov property for a Markov process of order 1. Formally, for a system given states X1,
X2, X3,. . . Xt, and a number of steps t,

pðXtjX1;X2;X3; . . . Xt�1Þ ¼ pðXtjXt�1Þ
In other words, the probability of a given state depends only on the immediately previous
state. The scenario here is a special type of Markovian process, called a random walk. At any
time step t, there is some probability, p, for accumulating evidence of one alternative or the
other (1 – p). In essence, the total evidence value walks randomly along the set of values of
total evidence as time progresses.

24.3.5. Diffusion

Currently, the model assumes a discrete evidence count. The analogous process for con-
tinuous evidence is the diffusion equation

@f
@t

¼ D▽2f ð24:1Þ

or in one dimension

@f
@t

¼ D
@2f
@x2

ð24:2Þ

where D is the constant of diffusion and phi is the density of the diffusing material. Here,
phi represents the probability of evidence over time.

To explore the diffusion equation, you will use a finite difference approach to estimate
the change in the probability distribution over time. The finite difference method estimates
the infinitely small derivatives by finite differences. As such, finite difference methods can
be unstable for large time steps.

To approximate phi over time and space, assume both are discrete, yet partitioned into
very small steps. Use the following notation to denote an element of phi in space and
time:

ftime
space ð24:3Þ

Thus, a superscript denotes a time index, and a subscript denotes a space index. Naturally,
this lends itself to representation in MATLAB as a two-dimensional array.

278 24. DECISION THEORY

Next, replace the derivatives with differences:

ftþ1
x � ft

x

Dt
¼ D

�
ðft

xþ1 � ft
xÞ � ðft

x � ft
x�1Þ

�
ðDxÞ2 ð24:4Þ

The derivative of phi over time becomes the difference over one time step at the same loca-
tion in space, divided by the size of time step. The second partial derivative of phi with
respect to space becomes the difference between approximations of the first derivative over
space, with time held constant, all divided by the space step squared. When you combine
terms, this can be simplified to yield an expression that calculates a value for phi at a given
time step using only values from the previous time step:

ftþ1
x ¼ ft

x þD
Dt

ðDxÞ2 ðf
t
xþ1 � 2ft

x þ ft
x�1Þ ð24:5Þ

The following code implements a finite difference approximation of a scenario governed
by the diffusion equation. Here, an initial pulse occurs at x = 20. Since phi is initialized to all
zeros, the iteration bounds of x in the inner loop implicitly enforce boundary conditions
of 0 on either end of the 1D space:

phi = zeros(1000, 1000);
dt = 0.001; % time from 0 to 1 sec
dx = 0.05; % space from 0 to 50
D=0.5;
phi(1,400) = 1; % initial condition
for t = 1:999

for x = 2:999
phi(t+1,x)=phi(t,x) + D*dt/dx^2* . . .

(phi(t,x+1)-2*phi(t,x)+phi(t,x-1));
end

end

Agraph of this in three dimensions usingmesh() showshow the probability flowswith time:

mesh(phi)

Exercise 24.8: Modify the preceding code for initial conditions of phi = 0.5 at 15 and 35 and

graph using mesh().

The diffusion equation as presented here is the continuous limit of an unbiased random
walk, one for which the transition probabilities are equivalent. In this case, this does not
hold. To account for bias, you need an additional term:

@f
@t

¼ B
@f
@x

þD
@2f
@x2

ð24:6Þ

Here, B is a bias constant, roughly equal to the difference in transition probabilities.

27924.3. EXERCISES

Exercise 24.9: Transform the biased diffusion equation into a finite difference equation and

calculate a numerical solution. Choose constant values B = 0.05, D = 0.5, and initial conditions

of a single impulse at the midpoint in space.

Exercise 24.10: Add code to vary the time interval and to determine the time course of the

mean value. (Hint: Sum all values at a fixed time.) Finally, add code to implement rendering

a choice by comparing the mean value to thresholds. Run 10 trials and compare trial perfor-

mance to the results of model3() in Exercise 24.6.

24.3.6. Cortical Models

Any neurobiological model should account for the perceived successes of the diffusion
model in describing the characteristics of reaction time in decision processes under psycho-
metric testing. One such model was proposed by Shadlen and Newsome (2001) to account
for interactions between visual areas MT and LIP. Area MT is a cortical area sensitive to
visual motion, and area LIP is a cortical area implicated in decision processes. Under this
model, neurons in area LIP function as integrators, accumulating rate information from
neurons in area MT over time. Neurons in area MT, whose preferred directions oppose each
other, inhibit the corresponding LIP neuron of the opposing neuron. In other words, LIP
neurons integrate the difference between sensory cells with opposing preferred direction
sensitivities.

For this simulation, you will draw firing rates from a normal distribution of typical rates
for an MT neuron, varying with orientation:

function rate = mtneurons(preferred, stimulus, neurons)
% assuming index 1 is preferred
typical_rate_mean = [30 20 15 10 5 5 5 5 5 5 5 5 5 10 15 20];
typical_rate_stdev = sqrt(typical_rate_mean);
mean = typical_rate_mean(1+mod(stimulus-preferred));
stdev = typical_rate_stdev(1+mod(stimulus-preferred));
rate = normpdf(mean*ones(1,neurons), stdev*ones(1,neurons));

end

The preceding function returns a vector of rates for a pool of MT neurons with a common
direction preference and common stimulus.

280 24. DECISION THEORY

24.4. PROJECT

In this project, you will write a simulation of MT and LIP neurons using the Shadlen-
Newsome model. Specifically, you are asked to do the following:

• Write code to generate rate values over time for two pools of MT neurons with
opposing direction preferences. (Hint: The code will need to iterate over time,
invoking mtneurons() once for each pool at every time step.)

• Under the Shadlen-Newsome model, the firing rate of LIP reflects the running total
of the difference in firing rates over time. Write code to sum the rates in each of the
pools and integrate the difference over time. Add code to generate a firing rate for
an LIP neuron at each time step that varies with the integral of the MT firing rate
difference.

• Compare the MT-LIP model to the psychological model. Add code that determines a
choice after a time interval by comparing the LIP rate to thresholds. Add code to run
multiple trials varying time. Compare performance.

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS
COVERED IN THIS CHAPTER

mesh

281MATLAB FUNCTIONS, COMMANDS, AND OPERATORS COVERED IN THIS CHAPTER

This page intentionally left blank

C H A P T E R

25

Markov Models

25.1. GOAL OF THIS CHAPTER

In this chapter you will learn about Markov processes and how you can use them to
model many phenomena, including human behavior. You will also learn how to build a
hidden Markov model to characterize the spiking behavior of a neuron.

25.2. BACKGROUND

Note the neural signal in Figure 25.1. There are periods of increased and depressed firing
against a steady, tonic rate of firing. If the different firing rates are caused by different states
in the system, is there a straightforward way to model this?

AMarkov model describes a system as a set of discrete states and transition probabilities of
moving from any one state to any other state of the model. Beyond a set of states and probabi-
listic transitions, a Markov model also adheres to the Markov property, which states that the
transition probability from any state in the network depends only on some finite set of prior
states. Thus, given a current state, knowing the probabilities for the next state of the system
is merely a question of knowing some n previous states and not the entire state trajectory of
the system. Formally, the Markov property states for a system given states X1, X2, X3, Xt,
and a number of steps t denoting the time progression of the model,

PðXtjX1;X2;X3; . . .Xt�1Þ ¼ PðXtjXt�1�n; : : Xt�1Þ
In other words, the states at time steps n before the current state are irrelevant to the prob-
ability of the next state.

Given some finite number n of prior state history for determining state transitions, a
Markov model with an n prior state history is termed an nth order Markov model. The most
common Markov models are first order Markov models, in which transition probabilities
depend only on the current state. We will focus on first order models in this chapter.

Formally, a first order model consists of {S, T, s, O, E}, where

283

S is a set of states;
T is a matrix of probabilities for transition between pairs of states;
s is the initial state;
O is a set of outputs;
E is a matrix of probabilities to emit each of the possible outputs, given a state.

In many simpler first order models, states are assigned outputs with probability 1.0.
Thus, a certain output denotes the model having been in the corresponding state.

As a first example, let’s examine syllable order in birdsong. The vocalizations of song birds
(passerine birds) have many parallels to human language, including a hierarchically
organized vocal structure and finite acquisition periods for the learning of song during devel-
opment. A sample song from a zebra finch is shown in Figure 25.2. The lower graph shows
amplitude variation over time. The upper graph shows a spectrogram of the data, which
shows the frequency content of the amplitude signal over time.

Within the structure of the song, there is a clear substructure of elements separated by
relatively quiet intervals. These larger groupings are termed motifs. Within the motifs are
smaller discrete elements, termed syllables. The division of the song into these parts might
be clearer in the spectrogram. Note that the syllable order within a motif is fairly regular
from motif to motif.

During the analysis of song, noting the sequence of syllables is often of interest. A possi-
ble annotation is shown in Figure 25.3. Note that syllable 2 repeats and syllables 1 and 8 do
not always occur. From this marking, you can attempt to generate a Markov model for a
single motif. Figure 25.4 illustrates the state transitions for such a model.

0 5 10 15 20 25 30 35 40 45 50
 −2

−1.5

−1

−0.5

 0

0.5

1

1.5
x 104

Time, in seconds

FIGURE 25.1 An extracellularly recorded spike train.

284 25. MARKOV MODELS

0 1 2 3 4 5 6
−0.15

−0.1

−0.05

 0

0.05

0.1
1 2 5 63 4 72 2 5 63 42782 5 63 42

FIGURE 25.3 Annotated song.

Start

1

2 2

8

76543 End

FIGURE 25.4 State transitions for the annotated song.

0 1 2 3 4 5 6
−0.15

−0.1

−0.05

 0

0.05

0.1

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
 0

2000

4000

6000

8000

10000

FIGURE 25.2 Sonogram (frequency components over time) and sound amplitude of three motifs from a zebra
finch adult.

28525.2. BACKGROUND

In Figure 25.4, each circle represents a separate state of the model. The number within
the circle denotes the syllable number output by the state. Note the two separate states that
output syllable 2. This accounts for the repetition in the natural sequence within the song.
Also note the absence of transition probabilities. Ideally, estimating transition probabilities
accurately would require examining transitions throughout a large sampling of song. Lim-
iting the sample set to the three motifs in the annotated song in Figure 25.2, the transition
probabilities all evaluate to 1.0, excepting the transitions from start to 1 (0.33), start to the
first 2 (0.66), 6 to 8 (0.33), and 6 to 7 (0.66).

The state transition diagram in Figure 25.4 has 11 separate states, including the start and
end states for the beginning and end of song. With the set of states and the transition prob-
abilities estimated from the song sample, a transition matrix can be generated.

T = [. . .
zeros(1, 11); . . .
0.33 zeros(1, 10); . . .
0.66 1.0 zeros(1, 9); . . .
0.0 0.0 1.0 zeros(1, 8); . . . % to second two
zeros(1,3) 1.0 zeros(1, 7); . . . % to three
zeros(1,4) 1.0 zeros(1, 6); . . .
zeros(1,5) 1.0 zeros(1, 5); . . . % to five
zeros(1,6) 1.0 zeros(1, 4); . . . % to six
zeros(1,7) 0.66 zeros(1, 3); . . . % to seven
zeros(1,7) 0.33 zeros(1, 3); . . . % to eight
zeros(1,8) 1.0 1.0 zeros(1, 1); . . . % to end
];

s = 1;
f = 11;

Now, generate the output vector and emission matrix. Each state produces a single output
with 100% certainty. Values of�1 are produced by the start and end states. Now assume that
each state emits an output representative of the state with 100% certainty:

O = [1 2 3 4 5 6 7 8 �1] ;

E = zeros(11, 9);
E(4:11,2:9)= eye(8);
E(2:3,1:2)= eye(2);
E(1,9) = 1;

You can then generate a possible sequence of states and outputs with the following code:

function [seq, emit]= markov_sequence(T, s, E, O, f, max_seq)
% T is M by M matrix containing probability of moving
% from row state to column state. T(2, 3)= probability
% of state 2 to state 3 transition.
% s is a scalar specifying the start state
% E is M by N matrix containing probability of emitting

286 25. MARKOV MODELS

% output N at state M.
% O is a vector of output values
% f is a scalar representing a termination state.
% max_seq is a scalar representing the maximum sequence size.

seq = [s];

% initial emission
emission = min(find(rand < cumsum(E(s,:))));
emit = [O(emission)];

while s �= f && length(seq) < max_seq
% transition to new state
state_vector = T(:,s)';
p = rand;
s = min(find(p < cumsum(state_vector)));

seq = [seq; s];

% find emission
emission = min(find(rand < cumsum(E(s,:))));
emit = [emit; O(emission)];

end

25.3. EXERCISES

Exercise 25.1: Generate a number of sequences for the preceding Markov model. Do the out-

put syllables match what you expect? How about the state sequence?

Exercise 25.2: Load a larger recording of the same bird and create a Markov model for

multiple motifs. You can find a longer recording in file zf_y89.wav on the companion website.

Load the file using wavread().

25.3.1. Hidden Markov Models

AMarkov model works quite well if the states and transitions are easily measured. Often,
however, only the outputs are observable, and there is not necessarily a one-to-one correspon-
dence between output and internal state. Such a scenario is termed aHidden Markov Model, or
HMM, because the current state of the system generating the output is unknown.

28725.3. EXERCISES

The brain of songbirds (specifically oscine passerine birds) has discrete nuclei involved
in the learning and production of song. Closely related birds lack these nuclei. In the song
system, efferent connections from auditory nuclei connect to a nucleus termed HVC, which
has been implicated in generating as well as perceiving song. HVC neurons make two pri-
mary efferent connections: one to the nucleus RA and one to a large forebrain nucleus
termed Area X. Area X is part of a three-nucleus thalamic loop that also connects to RA.
The forebrain nucleus loop containing Area X has been compared with similar circuits in
mammals that involve the basal ganglia.

Here, however, the focus is on nucleus RA. The primary efferent projection of RA is to a
brain stem area nXII, which innervates the muscles of the syrinx, the sound production
organ of songbirds. RA has distinctive neural activity patterns, particularly during sleep.
Activity is strongly tonic, punctuated by strong bursts of activity. The bursts of activity
are believed to originate afferently from HVC. Following bursts of activity, firing rate is
attenuated. It is these three states — tonic, driven, and post-burst — that will constitute
the hidden states of our Hidden Markov Model.

25.3.2. Modeling Tonic Firing

Here, you will model the tonic firing state fairly simply. The tonic firing model will have
only one state, with a fixed probability of firing (see Figure 25.5). The primary transition will
be from the tonic firing state back to itself, to model the consistent tonic firing observed in RA.

25.3.3. Modeling Bursting

You will model the drive from HVC as a two-state network, with the drive-generated
increase in firing and the post-burst depression as separate, recursive states (see
Figure 25.6).

Tonic
state

FIGURE 25.5 The tonic firing state.

Post-
burst

Driven
state

FIGURE 25.6 The two-state network.

288 25. MARKOV MODELS

25.3.4. Full Model

Now you will connect the two models, as shown in Figure 25.7.
The model in this figure shows the three states interconnected. Note that the drive and

post-burst depression states are in sequence.

25.3.5. Classical Questions with Hidden Markov Models

Work with Hidden Markov Models has provided well-tested algorithmic means of
exploring the following three questions.

1. Given a sequence of observations and a model, what is the most probable sequence of
internal states that produced the observation?

2. Given a series of observations, what is the most probable HMM?
3. Given a model, what is the most probable output?

The statistics toolbox in the MATLABW software provides a number of routines that
implement the algorithms that solve these questions.

Hmmgenerate generates an example sequence given emission and state transition matrices:

seq = hmmgenerate(sequence_length, trans, emissions)

Hmmestimate estimates transition and emission probabilities given a sequence and the
corresponding states. In other words, hmmestimate is appropriate if the set of hidden states
for a given sequence of outputs is known.

[est_trans, est_emis] = hmmestimate(seqs, states)

Hmmtrain uses the Baum-Welch algorithm to estimate transition and emission probabil-
ities using maximum likelihood. Note that hmmtrain expects initial guesses for transition
and emission probability matrices.

[esttr, estemit] = hmmtrain(seqs, trguess, emitguess)

Tonic
state

Post-
burst

Driven
state

FIGURE 25.7 The full model.

28925.3. EXERCISES

Hmmdecode calculates probabilities for a sequence or for a set of sequences given tran-
sition and emission probabilities:

pstates = hmmdecode(seqs, tr, emit)

Hmmviterbi calculates the most probable sequence of states given the series of
observations:

states = hmmviterbi(seqs, tr, emit)

25.4. PROJECT

For this project, you will create a Markov model to approximate spiking in an electro-
physiological recording. We will estimate the sequence of internal states and use this to
estimate the transition and emission matrices. On the companion website, find the file
RA-spike-times.mat. This file contains a series of spike times for an electrophysiological
recording of area RA. Transform the spike times into an instantaneous rate (as the recipro-
cal of interspike interval) and determine appropriate thresholds for the three states (driven,
tonic, and post-burst).

Using the thresholds for the three states, you can determine the state for each moment
in time. In other words, at each 1 ms slice of time, you can estimate the state of the system
by comparing the instantaneous rate with the rate thresholds set for each state. After
calculating the state at each point in time, you will have a sequence of states, states.

Transform the spike data into point process data. This will form the sequence of outputs.
Take the raw recording and find the time location of spikes. Next, divide the entire interval
into an array of 1 ms time slices. Whenever a time slice contains a slice, set the value
corresponding to that time slice to 1. This array is the sequence of outputs, outputs.

Use hmmestimate(outputs+1, states) to calculate transition and emission matrices.
(Regarding the addition of 1 to outputs, note that hmmestimate expects not the actual out-
puts but the index in the set of output values. Thus, since the outputs are 0 and 1, 1 and
2 can be used for hmmestimate.)

Use either markov_sequence or hmmgenerate (use the help function in MATLAB!) to
generate sample outputs from the HMM. Do these resemble the sparse time data? Generate
a transition diagram from the transition matrices. How well does the diagram adhere to the
original model?

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS
COVERED IN THIS CHAPTER

hmmestimate
hmmgenerate
hmmtrain
hmmdecode
hmmviterbi

290 25. MARKOV MODELS

C H A P T E R

26

Modeling Spike Trains
as a Poisson Process

26.1. GOALS OF THIS CHAPTER

This chapter introduces the Poisson random process as a model to characterize trains of
action potentials generated by neurons. You will learn how to generate a homogeneous and
inhomogeneous Poisson process using the MATLABW software and determine how well it
captures the statistical properties of real neuronal spike trains. In the project at the end of
this chapter, you will learn how to modify a Poisson model to account for history effects
such as refractoriness and burstiness.

26.2. BACKGROUND

What is an appropriate model for simulating spike trains?
Consider the spike train shown in Figure 26.1. Some spike train statistics can be calcu-

lated easily. For example, the mean spike rate is simply the number of spikes divided by
the time interval. The inverse of the interval between adjacent spikes approximates the
instantaneous rate.

The refractory period for firing neurons limits activity to one per refractory period. Tak-
ing a 1 ms refractory period, the time interval can be divided into a sequence of 1 ms per-
iods. Each 1 ms period can be examined as a potential firing event for the neuron. This
characterizes the larger measurement interval as a series of event opportunities or trials,
some of which result in an actual event. When they are viewed as a series of trials, it
becomes clear that the number of opportunities greatly outweighs the number of actual
events. As such, whatever probabilistic model used should effectively simulate low
success rates over many trials.

291

26.2.1. Poisson Processes

A Poisson process is a random process in which events occur independently with low
probability over continuous time. While the Poisson process does meet most criteria for a
neural spike train, the refractory period and other features prevent statistical independence.
However, as a first approximation, a Poisson process provides a good tool for exploring
neural spike trains.

26.2.2. The Poisson Distribution

One of the most important properties of the Poisson process is that the distribution of
events within an interval follows a Poisson distribution. A Poisson distribution is parameter-
ized by a single value, lambda. Lambda is often interpreted as the rate of success. The reason
is that the expectation value (or mean) of a Poisson random variable is lambda. In other
words, for a random variable describing the number of events per interval, the mean value
is lambda.

The following equation shows the probability mass function for a Poisson distribution for a
value of lambda:

Pðx ¼ kÞ � lk

k!
e�l ð26:1Þ

A probability mass function maps success rates to probabilities.
A Poisson random variable with parameter lambda has expectation value lambda. This

means that over many trials, the mean number of successes will approach lambda. A Poisson
process has the unusual property that the variance is also equal to lambda. One last

0 5 10 15 20 25 30 35 40 45 50
−2

−1.5

−1

−0.5

0

0.5

1

1.5
�104

Time, in seconds

FIGURE 26.1 An extracellularly recorded spike train.

292 26. MODELING SPIKE TRAINS AS A POISSON PROCESS

interesting property of the Poisson distribution is that the sum of two Poisson processes dis-
tributes as a Poisson process with lambda equal to the sum of the lambda values of the indi-
vidual processes.

26.2.3. Intervals between Poisson-Distributed Events

The intervals between Poisson-distributed events have a distinct distribution as well.
Spacing between subsequent events follows an exponential distribution:

Pðx � kÞ � 1� e�lk ð26:2Þ
Note that the exponential distribution is a continuous probability distribution. As such,
there is no explicit expression for the probability of a discrete value. Instead, the preceding
cumulative probability distribution yields a probability that a random value exponentially
distributed will fall within the range 0 . . . k. It is important to note that the refractory period
of real neurons causes the inter-spike interval distribution to diverge from an exponential
distribution for small intervals.

26.3. EXERCISES

26.3.1. Generating a Poisson Random Variable

Normally, the easiest way to sample from a Poisson distribution is to use the Statistics
Toolbox for MATLAB. The Statistics Toolbox provides the function poissrnd(lambda),
which returns a random number that varies according to a Poisson distribution with
parameter lambda. poissrnd can also return a vector or a matrix of random Poisson values:

>> x = poissrnd(5);

>> y = poissrnd(5, 3, 1); % a vector

>> z = poissrnd(5, 5); % a 5 x 5 matrix

Exercise 26.1: Generate a probability mass function for the Poisson distribution for lambda = 5.

Calculate the expectation value

E½x� ¼
X1
x¼0

x
lx

x!
e�l

 !
ð26:3Þ

and the variance

Var½x� ¼ E½x2� � ðE½x�Þ2 where E½x2� ¼
X1
x¼0

x2
lx

x
e�l

 !
: ð26:4Þ

Do the same for lambda = 7. Generate histograms for many trials drawn from the same Poisson

distributions. Calculate estimated means and variances for the random data. Do the histograms

make sense? How do the means and variances compare to lambda?

29326.3. EXERCISES

You can approximate a probability mass function by calculating a large number of Pois-
son variables and generating a histogram of the results, as follows:

>> hist(poissrnd(4, 500, 1))

To generate a true estimate of a probability mass function, you would need to capture the
counts in each bin and normalize by the total trial count (see Figure 26.2):

>> h = hist(poissrnd(4, 500, 1));
>> bins = 0:(length(h)–1); % zero is the first bin
>> count = sum(h);
>> bar(bins, h/count)

26.3.2. Generating Poisson Variables without the Statistics Toolkit

As mentioned previously, the easiest method for a Poisson variate is the function in the
Statistics Toolbox. However, if the Statistics Toolbox is not available, you can use the PDF to
calculate probabilities for each successive outcome and use a flat random distribution to
determine the outcome.

The algorithm would look something like this:

set the initial outcome to 0
pick a uniformly distributed probability from 0 to 1, p
iterate over outcomes

0 1 2 3 4 5 6 7 8 9
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

FIGURE 26.2 An estimate of a probability mass function generated with the poissrnd function in MATLAB.

294 26. MODELING SPIKE TRAINS AS A POISSON PROCESS

calculate the probability of the current outcome
if p < the calculated probability, then this is the outcome
otherwise

subtract the calculated probability from p
increment the current outcome

The preceding algorithm works for any discrete probability distribution.

Exercise 26.2: Turn the preceding algorithm into a function my_poisson() that accepts a sin-

gle parameter lambda and returns a Poisson random variable. Can you explain the previous

steps? Why is the probability of the current outcome subtracted from the uniformly distributed

value?

Knuth proposes an alternative algorithm:

set T to exp(–lambda), k to 0, and p to 1
increment k
choose a random number u between 0 and 1, uniformly distributed
multiply p by u
continue until p is less than T

k – 1, the number of iterations such that p is just above the threshold T, represents the number of
successes in a Poisson trial with parameter lambda

Exercise 26.3: Implement the preceding algorithm as my_poisson2(). Does this return results

similar to the algorithm shown earlier in this section? This algorithm has the efficiency advan-

tage of calculating only a single exponential per random number.

26.3.3. Generating Interspike Intervals

Much as you can do with the Poisson distribution, you can generate random numbers
that are exponentially distributed by using a command from the Statistics Toolbox in
MATLAB: exprnd(lambda).

However, exponentially distributed random numbers can easily be simulated with a
uniform random number generator. Given a uniform random variable U, then –ln(U)
divided by lambda yields a number exponentially distributed, with mean lambda.

26.3.4. Generating a Spike Train

As a first attempt, you can generate a spike train from an average spike rate per small
time slice.

29526.3. EXERCISES

Exercise 26.4: Given an average rate of 25 spikes per second, estimate the distribution of

spikes over 10 seconds two distinct ways. First, generate a histogram of samples from a Poisson

distribution representing the spike count over the 10 second interval. Second, divide the 10 sec-

ond interval into 1 ms pieces and calculate an appropriate probability of the single event for

each 1 ms interval (hint: lambda * dT). Sum the overall event count for a spike count. How does

this compare with the original data on the companion website (sample-RA.mat)?

Exercise 26.5: You can also use the exponential distribution of the interspike intervals to gen-

erate a simulated spike train. To do so, continue to draw intervals from an exponential distribu-

tion with the desired lambda while the total of the intervals remains below the overall spike

train duration. The intervals represent the interspike intervals between consecutive events.

Generate a 10-second spike train using the exponential distribution of interspike intervals with

an average rate of 25 spikes per second. How does the spike train compare to that generated

with an explicit Poisson variable?

26.3.5. Nonhomogeneous Poisson Processes

In the formulation of the Poisson process, we have discussed only a constant lambda.
Such Poisson processes are termed homogeneous. An important generalization of the Poisson
process is the addition of a time-dependent lambda. Processes in which lambda varies with
time are called nonhomogeneous. Nonhomogeneous Poisson processes are often used to sim-
ulate spike trains in the presence of an external stimulus with known characteristics, such
as experimental conditions testing a neuron sensitive to sensory stimuli.

Given a function lðtÞ, you can calculate the mean lambda for the interval over which you
are selecting Poisson values. If you use a time interval t, t þ Dt, then you can calculate the
mean over the interval:

1

Dt

Z tþDt

t

lðtÞdt ð26:5Þ

By doing this, you can generate spike trains as before, by dividing the overall spike train
duration into 1 ms subintervals and calculating the probability of an event in each
subinterval.

Exercise 26.6: On the companion website, you can find the file MT.mat, which represents the

responses of a neuron in visual area MT. Cells were exposed to a stimulus paradigm that

incorporated 4 seconds of idle activity, after which a visually relevant stimulus was presented

for 500 ms. Formulate a plausible lambda function and simulate additional spike trains.

Compare to the spike train in MT.mat.

296 26. MODELING SPIKE TRAINS AS A POISSON PROCESS

26.4. PROJECT

In reality, spike trains can rarely be treated as a pure Poisson process or even as a non-
homogeneous Poisson process because of history effects such as the absolute and relative
refractory period and burstiness. The neural refractory period eliminates extremely low
duration intervals, whereas burstiness increases the likelihood of low duration interspike
intervals. In either case, the shape of the interspike interval distribution is altered from a
simple exponential function.

However, Brown, et al. propose an application of the time-rescaling theorem to generate
point process data from a probability density that varies with the positions of previous
spikes. To employ this method, a conditional intensity function is needed. A conditional
intensity function relates time to spike rate given times for some set of prior spikes. As such,
details such as the refractory period and burstiness can be accounted for.

First, a conditional intensity function must be defined. A conditional intensity function
yields instantaneous firing rate given the spiking history of the cell. In other words, the con-
ditional intensity function is a conditional probability. Formally, it is written as:

lðtjHÞ ð26:6Þ

where H is the spiking history and t is the lag time from the last spike.
Brown et al. provide a means for calculating the conditional intensity function:

l tjHð Þ ¼ f ðtjHÞ
1� R tu0 f ðujHÞdu

ð26:7Þ

where f() is the conditional ISI distribution, given spiking history and u’ is the time of the
spike immediately preceding the time t.

To estimate a conditional intensity function for a neuron from measured spike data,
choose some fixed number of spikes, n, of history to track. At every event, determine the
spike time history for the previous n spikes. For each spike time history, capture a histo-
gram of times until the next spike. This histogram, after normalization, estimates f().

To estimate the conditional intensity function at time t, determine the spiking history for
the n spikes previous to t. Given this history, determine the firing probability for interval
t from the most recent spike (this is f()). Divide this firing probability by 1 minus the sum
of the probabilities for all lag times up to t.

To generate a spike train consistent with the conditional intensity function, use 1 ms inter-
vals and calculate the conditional intensity function at each 1 ms interval (each value t)
in sequence. To determine whether a spike occurs in a given 1 ms interval, multiply the con-
ditional intensity function at t by the interval size. Use this product as the probability of an
event occurring in the given interval. In other words, pick a uniformly distributed number
from 0 to 1. If the number exceeds the event probability, no event occurs.

On the companion website are a number of sample spike trains. Pick one train and use
the above algorithm to generate a similar event train.

29726.4. PROJECT

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS
COVERED IN THIS CHAPTER

poissrnd
exprnd

298 26. MODELING SPIKE TRAINS AS A POISSON PROCESS

C H A P T E R

27

Synaptic Transmission

27.1. GOALS OF THIS CHAPTER

This chapter will use a number of methods to characterize the processes surrounding
synaptic transmission, in particular the release and diffusion of neurotransmitters. This
chapter will also introduce handles for graphic objects to update images dynamically. By
the end of this chapter, you should have an understanding of different random variables,
discrete distributions, finite difference approximations to partial differential equations,
and the use of graphic handles for rudimentary animation.

27.2. BACKGROUND

Chemical synapses use the release of chemical neurotransmitters to propagate signals
from one neuron (presynaptic) to another (postsynaptic). The two cells are separated by
the synaptic cleft, a gap of approximately 40 nm between the presynaptic and postsynaptic
membranes.

On the presynaptic side of the cleft, depolarization from the arrival of the action potential
triggers the opening of voltage-sensitive Caþ2 channels. The subsequent influx of calcium
ions causes the fusion of neurotransmitter-containing vesicles with the presynaptic cell
membrane, releasing neurotransmitters into the synaptic cleft.

On the postsynaptic side, neurotransmitters diffuse across the cleft and bind to neuro-
transmitter-specific sites on channels on the postsynaptic terminal. These receptors selec-
tively allow ions to enter the postsynaptic terminal. The influx of positive or negative
charge changes the voltage across the postsynaptic membrane, creating a small hyperpolar-
ization or depolarization. Over time, the concentration of the neurotransmitters decreases to
a level insufficient to activate the postsynaptic receptors.

Specifically, in this chapter we will focus on the neuromuscular junction, the site of
innervation of skeletal muscle. We will also focus on the steps of neurotransmitter release
and neurotransmitter diffusion.

299

27.3. EXERCISES

27.3.1. Modeling Neurotransmitter Release

In a classic experiment, Fatt and Katz demonstrated at the neuromuscular junction that
spontaneous postsynaptic potentials occurred at voltages of 0.5 mV in the absence of pre-
synaptic stimulation. Later work (del Castillo and Katz) further demonstrated that single
acetylcholine channels produced much smaller responses than the 0.5 mV measured by Fatt
and Katz. This result implied that the spontaneous results observed by Fatt and Katz not
only recruited multiple acetylcholine channels, but also recruited roughly the same number
of channels during each spontaneous postsynaptic potential del Castillo and Katz posited
that synaptic transmission occurred in discrete units, termed quanta. Additional work
(del Castillo and Katz) established that increasing Caþ2 at the postsynaptic terminal pro-
duced postsynaptic responses in increments of the original spontaneous postsynaptic
responses. The step-like response implicated neurotransmitter release as a quantized pro-
cess. In other words, neurotransmitter release occurs in discrete steps rather than a contin-
uous concentration in response to increasing calcium concentration. Synaptic vesicles
contain a relatively constant number of neurotransmitter molecules. This fixed number of
molecules per vesicle provides for the observed quantization of postsynaptic responses.
At the neuromuscular junction, each vesicle contains approximately 5000 acetylcholine
(ACh) molecules.

For purposes of this chapter, assume that the release of individual vesicles occurs inde-
pendently with some probability p. In the presence of low calcium concentration, p is
low. After an action potential and subsequent calcium influx, p increases. You can model
the release of a single vesicle as a Bernoulli random variable.

27.3.2. Modeling Random Variables

A Bernoulli random variable X takes on a value of 1 with probability p or a value of
0 with probability 1 – p. A coin toss is an excellent example of a Bernoulli process. Take a
coin that lands on heads with probability 1/2. A Bernoulli random variable models a single
coin flip, or a single trial.

Thus, in the case of the release of a single vesicle, the vesicle is released with probability
p or not with probability 1 – p.

Exercise 27.1: Using the rand function in the MATLABW software, write a function titled

my_bernoulli_rnd() to return the result of a Bernoulli trial, given p. You should be able to

invoke the function like this:

>> p = 0.5;
>> my_bernoulli_rnd(p)
ans =

1

300 27. SYNAPTIC TRANSMISSION

You can model the process of multiple vesicles as the sum of multiple Bernoulli variables
with probability p. The sum of n Bernoulli trials with probability p of success is termed
a binomial random variable with parameters n and p. Such a variable is called binomial because
the probability of a certain number of successes in a trial can be calculated with the
binomial coefficient:

f k; n; pð Þ ¼ C n; kð Þpk 1� pð Þk ð27:1Þ

where C n; kð Þ ¼ n
k

� �
¼ n!

k! n� kð Þ! ð27:2Þ

The function f(), called a probability mass function, yields the probability of a certain number
of successes, k, in a single binomial trial with parameters n and p. A single binomial trial
with parameters n and p would model the number of successes for an experiment in which
each trial has n coin tosses with probability p of success.

Exercise 27.2: Generate a graph of the probability mass function for a binomial random vari-

able with parameters n ¼ 10 and p ¼ 0.5.

Under conditions of calcium influx, approximately 150 quanta can be released at the neu-
romuscular junction in 1–2 milliseconds. In the absence of action potentials, only 1 quantum
per second is released by the presynaptic terminal. For this chapter, model the release of
multiple vesicles as a binomial random variable in which p is either 0.001 or 150, depending
on the state of calcium concentration. Then, the number of successes will be the number of
vesicles released into the synaptic cleft.

The following code calculates p for 1 second of time, choosing 10 random 1 ms intervals
during which p is high, representing the calcium influx following an action potential:

>> t=0:999;
>> t_slices=length(t);
>> p=ones(t_slices,1)*0.001;
>> x=rand(10,1)*t_slices;
>> p(floor(x)+1)=150;

Note that x holds the set of random intervals. When you evaluate p(floor(x)+1) = 150,
each element of x corresponding to one of the random intervals is set to 150. The use of
floor() forces the values of x to integer values, the proper type for indices. (The floor() func-
tion truncates the decimal portion of a value.) You can see which indices contain large
p values with the following command:

>> find(p>1)

30127.3. EXERCISES

Exercise 27.3: Evaluate the preceding code and graph p(t) against time. Write code to gener-

ate a binomial random variable at each time slice (use binornd). Graph the number of suc-

cesses, or released vesicles, as a function of time.

27.3.3. Modeling the Motion of a Single Molecule

Upon release, the neurotransmitter molecules enter the synaptic cleft and diffuse across
fairly quickly. On a microscopic level, diffusion is the aggregate effect of many particles
moving randomly. As a first step, examine the motion of a single molecule:

xbounds = [0 10];
ybounds = [0 4];
xdata = [mean(xbounds)];
ydata = [0];
xgrid = 0.01;
ygrid = 0.01;
figure
handle = scatter(xdata, ydata, 'filled');
xlim(xbounds);
ylim(ybounds);

for t = 1:10000
p = 0.5;
dx = ((rand > p) - 0.5) * 2;
dy = ((rand > p) - 0.5) * 2;
xdata = xdata + dx*xgrid;
% these two lines assure the molecule stays in x bounds
xdata(find(xdata < xbounds(1))) = xbounds(1);
xdata(find(xdata > xbounds(2))) = xbounds(2);
ydata = ydata + dy*ygrid;
% these two lines assure the molecule stays within y bounds
ydata(find(ydata < ybounds(1))) = ybounds(1);
ydata(find(ydata > ybounds(2))) = ybounds(2);
set(handle, 'xdata', xdata, 'ydata', ydata);
drawnow;

end

Some sample screenshots of the resulting animation are shown in Figure 27.1. In the pre-
ceding code, the handle of the scatterplot is stored in a variable. Much like matrices or sca-
lar numbers, variables can store other types of information. In this case, you are storing a
handle. Most of the graphics functions in MATLAB return a handle when invoked. You
can use the handle to modify properties at a later time, as done previously with set.

302 27. SYNAPTIC TRANSMISSION

The function set allows specifying properties of a graphics object. The first argument
should be the handle. Following this should be a series of property, value pairs, consist-
ing of the name of a property in single quotation marks and the desired value of the
property. Here, the x and y data for the scatterplot are changed. Each time the variables
xdata and ydata are modified, set is invoked to update the coordinates of the point in the
scatterplot.

After set comes the function drawnow. Even though set updates the coordinates of the
point in the scatterplot, MATLAB will not redraw the figure without notification. drawnow
provides notification that the figure has changed and forces a redraw. Try running the pre-
ceding code with drawnow commented out.

Exercise 27.4: Modify the preceding code to model multiple particles (try 100).

As the number of particles increases, modeling the motion of individual particles
becomes computationally limiting. Instead, you can model concentrations rather than par-
ticle counts.

27.3.4. Modeling Diffusion

To model the process as a concentration, you need to use the diffusion equation:

@f
@t

¼ D▽2f ð27:3Þ

Or in two dimensions, you can use:

@f
@t

¼ D
@2f
@x2

þD
@2f
@y2

ð27:4Þ

where D is the constant of diffusion and f is the concentration of acetylcholine, ACh.

2 4 6 8 100
0

0.5

1

1.5

2

2.5

3

3.5

4

2 4 6 8 100
0

0.5

1

1.5

2

2.5

3

3.5

4

2 4 6 8 100
0

0.5

1

1.5

2

2.5

3

3.5

4

FIGURE 27.1 Screenshots of the animation for the diffusion of a single neurotransmitter molecule across the
synaptic cleft for t ¼ 1 (left), t ¼ 500 (middle), and t ¼ 10000 (right).

30327.3. EXERCISES

In this chapter you will use a finite difference approach to estimate the change in the prob-
ability distribution over time. The finite difference method estimates the infinitely small
derivatives by finite differences. Because this approximates the continuous equation with
discrete differences, we should mention that large time steps can produce unstable results.

To approximate f over time and space, assume both are discrete yet partitioned into very
small steps. Use the following notation to denote an element of phi in space and time:

ftime
space ð27:5Þ

Thus, a superscript denotes a time index, and a subscript denotes a space index.
To generate the finite difference equation, replace the derivatives with differences:

ftþ1
x;y � ft

x;y

Dt
¼ D

ft
xþ1;y � ft

x;y

� �
� ft

x;y � ft
x�1;y

� �� �
Dxð Þ2 þ

ft
x;yþ1 � ft

x;y

� �
� ft

x;y � ft
x;y�1

� �� �
Dyð Þ2

2
4

3
5

ð27:6Þ
With some rearrangement, you get:

ftþ1
x;y ¼ ft

x;y þDDt
ft
xþ1;y � 2ft

x;y þ ft
x�1;y

� �
Dxð Þ2 þ

ft
x;yþ1 � 2ft

x;y þ ft
x;y�1

� �
Dyð Þ2

2
4

3
5 ð27:7Þ

which provides an expression for a concentration at a given spatial location and time in
terms only of concentrations at previous time steps. If you use the same grid spacing for
x and y, you can simplify even further:

ftþ1
x;y ¼ ft

x;y þDDt
ft
xþ1;y þ ft

x;yþ1 þ ft
x�1;y þ ft

x;y�1 � 4ft
x;y

� �
Dxð Þ2

2
4

3
5 ð27:8Þ

You already saw an efficient way to compute this spatial second derivative in MATLAB.
As discussed in Chapter 23, “Fitzhugh-Nagumo Model: Traveling Waves,” this is found via
a two-dimensional convolution of f with the filter [0 1 0; 1 4 1; 0 1 0]/dx^2. To encode the
dynamics of the ACh concentration diffusion in MATLAB, use a three-dimensional array:
two spatial dimensions and one temporal dimension.

The following code implements iterations of the previous equation, using a three-dimen-
sional array to track change in concentration. The time steps are in 10 ns increments, and
the spatial steps are in 1 nm increments. The diffusion constant here is 4 � 10�6 cm2/sec,
and free boundary conditions are used:

% phi : 100 x steps (100 nm), 40 y steps (40 nm)
% 100 t steps (1 t = 10 us)
clear all
close all
phi = zeros(100, 40, 100);

304 27. SYNAPTIC TRANSMISSION

dt = 1e-10; % time in steps of 10 ns
dx = 1e-9; % space from 0 to 50
D=4e-6 * (1/100)^2;
phi0=5000/(dx^2);
phi(50,1,1) = phi0; % initial condition
F = [0 1 0; 1 -4 1; 0 1 0]/dx^2;
for t = 1:99

phi(:,:,tþ1) = phi(:,:,t) + . . .
D*dt*conv2(phi(:,:,t),F,'same');

t
end

You can plot a time-slice of the concentration using surf(phi(:, :, t)). Sample screenshots of the
concentration diffusing in the synaptic cleft using the surf function are shown in Figure 27.2.
Similarly, you can visualize this using the command imagesc(phi(:,:,t), [0 phi0]), where the
[0 phi0] input to the function ensures that the color scale is the same for all t.

Exercise 27.5: Generate an animated display to show the evolution of the ACh concentration

diffusion using surf(). Capture the handle and use set() with the property 'zdata'.

Exercise 27.6: The algorithm could be changed to save only the current and previous time

steps, allowing an unlimited number of time steps to be calculated if so desired without

exceeding the memory of MATLAB. Obviously, this approach is less than optimal if all the

time step calculations are needed, but, for an animation, only the current time step is neces-

sary. Modify the algorithm to store only the current and previous time step and animate

the diffusion.

10000

5000

0
100

50

0 0
10

20
30

40

800

600

400

200

0
100

50

0 0
10

20
30

40

100

50

0
100

50

0 0
10

20
30

40

FIGURE 27.2 Screenshots of the animation for the diffusion of the concentration of acetylcholine, ACh, in the
synaptic cleft for t ¼ 10 ms (left), t ¼ 250 ms (middle), and t ¼ 1000 ms (right).

30527.3. EXERCISES

27.4. PROJECT: COMBINING VESICULAR
RELEASE WITH DIFFUSION

At this point you need to combine the release of neurotransmitters with the diffusion of
the neurotransmitters across the synaptic cleft. Combine the neurotransmitter release code
with the code for diffusion.

To do so, use a single time loop for both the vesicular release and the diffusion code. At
any given time slice, the code will need to determine the number of vesicles released. If
vesicles are released during a given time slice, then (1) a location along the presynaptic edge
of the diffusion grid needs to be selected, and (2) the concentration of ACh in that square of
the finite difference grid needs to be increased.

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS
COVERED IN THIS CHAPTER

set
drawnow
surf
poissrnd

306 27. SYNAPTIC TRANSMISSION

C H A P T E R

28

Neural Networks Part I:
Unsupervised Learning

28.1. GOALS OF THIS CHAPTER

This chapter has two goals that are of equal importance. The first goal is to become famil-
iar with the general concept of unsupervised neural networks and how they may relate to
certain forms of synaptic plasticity in the nervous system. The second goal is to learn
how to apply neural networks using Neural Networks Toolbox built into the MATLABW
software to address a particular problem.

28.2. BACKGROUND

Neural networks have assumed a central role in a variety of fields. The nature of this role
is fundamentally dualistic. On the one hand, neural networks can provide powerful models
of elementary processes in the brain, including processes of plasticity and learning. On the
other hand, they provide solutions to a broad range of specific problems in applied engi-
neering, such as speech recognition, financial forecasting, or object classification.

28.2.1. But What Is a Neural Network?

Despite the “biological” sounding name, neural networks are actually quite abstract com-
puting structures. In fact, they are sometimes referred to as artificial neural networks. Essen-
tially, they consist of rather simple computational elements that are connected to each other
in various ways to serve a certain function. The architecture of these networks was inspired
by mid- to late-20th century notion of brain function, hence, the term neural.

At its conceptual core, a unit in a neural network consists of three things (see
Figure 28.1):

307

• A set of inputs that can vary in magnitude and sign coming from the outside world or
from other neurons in the network.

• A set of weights operating on these inputs that can vary in magnitude and sign
(implementing synaptic efficiency and type of synapse on a neuron). There is also a bias
weight, b, that operates on an input that is fixed to a value of 1.

• A transfer function that converts the net input to an output (e.g., summation—or
whatever it is that the neuron is doing).

The output of a unit can then become the input to another unit. Individual units are typ-
ically not very functional or powerful. Neural networks derive their power from connecting
large numbers of neurons in certain configurations (typically called layers) and from
learning (i.e., setting the weights of these connections).

Neural networks are extremely good at learning a particular function (such as classifying
objects). There are several different ways to train a neural network, and you will become
acquainted with the most common ones in this and the next chapter.

Such trained multilayer networks are extremely powerful. It has been shown that a suit-
able two-layer network can approximate any computable function arbitrarily well. In other
words, neural networks that are set up properly can do anything that can be done compu-
tationally. This is what makes them so appealing for applied engineering problems because
the problem solver might not always be able to explicitly formulate a solution to a problem,
but one might be able to create and train a neural network that can solve the problem, even
if one doesn’t understand how. For example, a neural network would be particularly useful
to control the output of a sugar factory, given known inputs—a task at which humans have
been shown not to be particularly good.

28.2.2. Unsupervised Learning and the Hebbian Learning Rule

Despite the fact that neural networks are very far from real biological neural networks,
the learning rules that have been developed to modify the connections between computing
elements in neural networks resemble properties of synaptic plasticity in the nervous sys-
tem. In this chapter we will focus on unsupervised learning rules (in contrast to supervised
or error-correcting learning rules), which turn out to be very similar to Hebbian plasticity
rules that have been discovered in the nervous system. Unsupervised learning tries to cap-
ture the statistical structure of patterned inputs to the network without an explicit teaching
signal. As will be clear in a moment, these learning rules are sensitive to correlations
between components of patterned inputs and strengthen connections between components

Inputs

iR

i2

i1

WR

W1

b

Σ
n o

ƒ

Weights Transfer function Output

FIGURE 28.1 The concept of a neural network.

308 28. NEURAL NETWORKS PART I: UNSUPERVISED LEARNING

that are correlated and weaken connections that are uncorrelated. These learning rules
serve at least three computational functions: (1) to form associations between two sets of
patterns, (2) to group patterned inputs that are similar into particular categories, and
(3) to form content-addressable memories such that partial patterns that are fed to the
network can be completed.

Donald Hebb was one of the first to propose that the substrate for learning in the nervous
system was synaptic plasticity. In his book The Organization of Behavior, Hebb stated, “When
an axon of cell A is near enough to excite a cell B and repeatedly or persistently takes part in
firing it, some growth process or metabolic change takes place in one or both cells such that
A’s efficiency, as one of the cells firing B, is increased” (1949, p. 62). In fact, William James,
the father of American psychology, formulated the same idea almost 60 years earlier in his
book The Principles of Psychology when he stated, “When two elementary brain-processes
have been active together or in immediate succession, one of the them, tends to propa-
gate its excitement into the other” (1890, p. 566). Nevertheless, the concept of synaptic plas-
ticity between two neurons that are co-active is usually attributed to Donald Hebb.
Mathematically, Hebbian plasticity can be described as:

Dwij ¼ e � prei � postj ð28:1Þ
where Dwij denotes the change in synaptic weight between a presynaptic neuron i and a
postsynaptic neuron j, e is a learning constant that determines the rate of plasticity, prei
is the activity of the presynaptic neuron i, and postj is the activity of the postsynaptic
neuron j. The Hebbian learning rule states that a synapse will be strengthened when the
presynaptic and postsynaptic neurons are active. Neurophysiologically, this means that
the synapse will be potentiated when the presynaptic neuron is firing and the
postsynaptic neuron is depolarized. Bliss and Lomo (1973) first showed that the synapses
between the perforant pathway and the granule cells in the dentate gyrus of the
hippocampus could be artificially potentiated using a stimulation protocol that followed
the Hebbian learning rule. The effects of the stimulation protocol they used has been
termed Long-Term Potentiation because the synapses appear to be potentiated indefinitely.
Since that time, many other experiments have shown that Long-Term Potentiation could
be implemented in many parts of the brain, including the neocortex. Long-Term
Potentiation with initial capital letters, which refers to an artificial stimulation protocol,
should be distinguished from the lowercase term long-term potentiation, which refers to
the concept that synapses may be potentiated naturally when some form of associative
learning takes place.

From a computational perspective, the simple Hebbian rule can be used to form associa-
tions between two sets of activation patterns (Anderson et al., 1977). Imagine a feedforward
network consisting of an input (presynaptic) and output (postsynaptic) set of neurons, f and
g, respectively, that are fully connected as shown in Figure 28.2. The transfer function of the
f neurons is assumed to be linear, and thus, this network is referred to as a linear associator
(Anderson et al., 1977). The activation of each set of neurons can be viewed as column
vectors, f

*
and g

*
. Assume you want to associate a green traffic light with “go,” a red

traffic light with “stop,” and a yellow traffic light with “slow.” Furthermore, assume that
the green, red, and yellow traffic lights are coded as mutually orthogonal and normal
(i.e., unit length) f

*
vectors.

30928.2. BACKGROUND

The Hebbian learning rule can be used to form these associations. Mathematically, the
learning rule generates a weight matrix as an outer-product between the f and g vectors:

W ¼ g
!

f T
!

ð28:2Þ
W ¼ g!go f

T!
green þ g!stop f

T!
red þ g

!
slow f T!

yellow þ . . . ð28:3Þ
Now, if you probe the network with the green presynaptic pattern, you get the following:

Wf
!
green ¼ g!go f

T!
green f

!
green þ g!stop f

T!
red f

!
green þ g

!
slow f T!

yellow f
!
green þ . . . ð28:4Þ

Given that the input patterns are orthogonal to each other and normal, the output of the
network is “go”:

Wf
!
green ¼ g

!
go � 1þ 0þ 0þ . . . ð28:5Þ

28.2.3. Competitive Learning and Long-Term Depression

Despite its elegant simplicity, the Hebbian learning rule as formulated in Equation 28.1 is
problematic because it only allows for potentiation, which means that the synapse will only
grow stronger and eventually saturate. Neurophysiologically, it is known that synapses can
also depress using a slightly different stimulation protocol. Fortunately, there is a neural
network learning rule that can either potentiate or depress. It was proposed by Rumelhart
and Zipser (1985) and is referred to as the competitive learning rule:

Dwij ¼ e � prei � postj � e � postj �wij ð28:6Þ
The first term on the right side of Equation 28.6 is exactly the Hebbian learning rule. The
second term, however, will depress the synapse when the postsynaptic neuron is active,
regardless of the state of the presynaptic neuron. Therefore, if the presynaptic neuron is
not active, the first term goes to 0 and the synapse will depress. Also, notice that depression

→
W

ƒ
→
g

FIGURE 28.2 A simple linear associator network composed of an input and output set of neurons that are fully
connected.

310 28. NEURAL NETWORKS PART I: UNSUPERVISED LEARNING

is proportional to the magnitude of the synaptic weight. This means that if the weight is
very large (and positive), depression will be stronger. Conversely, if the weight is small,
depression will be weaker. The competitive learning rule can be described equivalently
as follows:

Dwij ¼ e � postj � prei � wij

� � ð28:7Þ
The formulation in Equation 28.7 makes it clear what the learning rule is trying to do:
learning will equilibrate (i.e., terminate), when the synaptic weight matches the activity of
the presynaptic neuron. On a global scale, this means that the learning rule is trying to
develop a matched filter to the input and can be used to group or categorize inputs. To
make this clearer, consider two kinds of patterned inputs corresponding to apples and
oranges. Each example of an apple or orange is described by a vector of three numbers that
describes features of the object such as its color, shape, and size. Consider the problem of
developing a neural network to categorize the apples and oranges (see Figure 28.3).

Imagine the apple and orange vectors clustered in a three-dimensional space. The
weights feeding into either the apple unit or orange unit can also be viewed as vectors with
the same dimensionality as the input vectors. Before learning, the apple and orange weight
vectors are pointing in random directions (see Figure 28.4). However, after learning, the
weight vectors will be pointing toward the center of the apple and orange input vector clus-
ters because the competitive learning rule will try to move the weight vectors to match the
inputs (see Figure 28.5). Finally, notice how the two category units are mutually inhibiting
each other (the black circles indicate fixed inhibitory synapses that do not undergo plastic-
ity). This mutual inhibition allows only one unit to be active at one time so that only one
weight vector is adjusted for a given input vector.

28.2.4. Neural Network Architectures: Feedforward Versus Recurrent

As with real neural circuits in the brain, artificial neural network architectures are often
described as being feedforward or recurrent. Feedforward neural networks process signals in
a one-way direction and have no inherent temporal dynamics. Thus, they are often
described as being static. In contrast, recurrent networks have loops and can be viewed as

Apple Orange

Category units

Input units

Posti

Prei

®
wapple

®
worange

FIGURE 28.3 A two-layer neural network that takes input vectors corresponding to apples and oranges and
categorizes them by activating one of the two category units.

31128.2. BACKGROUND

a dynamic system whose state traverses a state space and possesses stable and unstable
equilibria. The linear associator described previously is an example of a feedforward net-
work. The competitive learning network is a sort of hybrid network because it has a feed-
forward component leading from the inputs to the outputs. However, the output neurons
are mutually connected and, thus, are recurrently connected.

An example of purely recurrent neural network is the Hopfield network. A Hopfield net-
work uses a Hebbian-like learning rule to generate stable equilibria corresponding to

Pre3

Pre1

Pre2

worange
®®

wapple

FIGURE 28.5 The weight vectors in a competitive learning neural network that has been trained.

Pre3

Pre1

Pre2

®
worange

®
wapple

Apple

Oranges

FIGURE 28.4 The weight vectors in an untrained competitive learning neural network.

312 28. NEURAL NETWORKS PART I: UNSUPERVISED LEARNING

patterns that are desired to be stored. When partial patterns of stored patterns are provided
to a Hopfield network, the network’s state will tend to progress toward its stable equi-
librium corresponding to the stored pattern and, thus, complete the pattern. This is an
example of a content-addressable memory.

28.3. TRYING OUT A NEURAL NETWORK

28.3.1. Neural Network Toolbox in MATLAB

MATLAB itself does not ship with specialized functions to make neural network applica-
tions easier. Of course, this is not strictly necessary. Everything that constitutes a neural net-
work (inputs, weights, transfer function, and outputs) can be implemented using matrices
and matrix operations, which do ship with MATLAB. Of course, implementing them would
be extremely time-consuming. You probably wouldn’t want to do that. Particularly the
functions for training the network can be rather intricate. Fortunately, The MathWorks
has developed a specialized toolbox for neural networks: Neural Network Toolbox.

28.3.2. Competitive Learning and Multilayer Networks

You can create a competitive learning neural network using Neural Network Toolbox
with the function newc. Suppose you want to categorize the following six two-dimensional
vectors into two classes:

>> inp = [0.1 0.8 0.1 0.9 0.3 0.7; 0.2 0.9 0.1 0.8 0.2 0.9];

Each column of this matrix represents one two-dimensional input vector.
There are three vectors near the origin and three vectors near (1,1). What now?
First, create a two-neuron layer (the minimum for a competitive network) with two input

elements ranging from 0 to 1 by typing:

>> mynet = newc([0 1; 0 1], 2);

Your two-neuron competitive learning neural network is then created. The preceding syntax
means that you created a new neural network mynet as a competitive learning network with
the limits for the two inputs of 0 and 1, and your network consists of two output neurons.

Typing mynet again shows you the properties of your neural network. You could have
given it any other name. If you look in your workspace, you will see that a “network” struc-
ture of this name has been created. A structure has many properties. For example, you can
see that the input weights are set to 0.5 by typing mynet.IW{1,1}. The weights are initialized
to the centers of the input ranges with the function midpoint. This is automatically called
by newc and applied to the weights. You will notice that mynet.IW is a cell array with
one element. That element contains a 2�2 matrix where each row corresponds to all the
weights feeding one of the two neurons. Typing mynet.b{1,1} will show the initial biases
of the two neurons. The biases are fairly set by initcon, which is also automatically called
by newc and yields the biases 5.4366 and 5.4366.

31328.3. TRYING OUT A NEURAL NETWORK

As mentioned previously, weights of biases connect inputs that are always set to 1.
Therefore, the bias on each neuron can be viewed as the baseline activity of that neuron
without any modulatory inputs. Most of the property values in the network structure are
contained in “cells.” In general, you can access properties of structures by using the syntax
structurename.propertyname (do not include spaces between the names). This is very
important because all networks are structures.

This network needs to be trained to classify properly. In this network, the neurons com-
pete to respond to the input. You can train for 1000 epochs by setting:

>> net.trainParam.epochs = 1000

Then start the training by typing:

>> mynet = train(mynet,inp);

Look at your final weights and biases: mynet.IW{1,1} ; mynet.b{1,1}
Use this net to classify your original input:

>> output = sim(mynet,inp)

The response will be in terms of sparse vectors, so you want to convert that to indices:

>> outputindex = vec2ind(output)

It should produce something like this:

>> outputindex = 1 2 1 2 1 2

This result indicates that the first, third, and fifth input vectors activated neuron 1 and the
second, fourth, and sixth input vectors activated neuron 2.

28.3.3. Recurrent Network

For this example, use the Hopfield neural network command newhop to store two four-
dimensional patterns. The command newhop is actually an adapted version of the original
Hopfield network and stores patterns at the corners of a hypercube with values of 1 or –1 at
the corners. The two column vectors you will store are:
[1 1 �1 �1]’ and [�1 �1 1 1]’

Create a matrix, T, composed of these two column vectors and train the network as
follows:

>> net = newhop(T)

Now test to see whether those two patterns were stored in the network:

>> [Y,Pf,Af] = sim(net,2,[],T);

The variable Y gives you the states to which the network equilibrated using the inputs T.
Now create partial input patterns, T2, and see where the network equilibrates:

>> T2=[1 1 0 0; 0 0 �1 �1]';

314 28. NEURAL NETWORKS PART I: UNSUPERVISED LEARNING

28.4. PROJECT

Greebles live in dangerous times (Gauthier and Tarr, 1997). Recent events led to the cre-
ation of the “Department for Greeble Security.” For this project, you are a programmer for
this recently established ministry and your job is to write software that distinguishes the
“good” Greebles from the “bad” Greebles (see Figure 28.6). Researchers in another section
of the department have shown that three parameters correlate with the tendency that a
Greeble is good or bad. These parameters, identified in Figure 28.7, are “boges” length,
“quiff” width, and “dunth” height (Gauthier, Behrmann, and Tarr, 2004). Specifically, it
has been shown that good Greebles have long boges, thin quiffs, and high dunths, whereas
the bad Greebles tend to have short boges, thick quiffs, and low dunths. Of course, this rela-
tionship is far from perfect.

A given individual Greeble might have any number of variations of these parameters. In
other words, this classification is not as clearcut and easy as your superiors might want it to
be. That’s where you come in. You decide to solve this problem with a neural network,
since you know that neural networks are well suited for this kind of problem.

In this project you will be asked to create two neural networks.

1. The first neural network will be a competitive learning network that distinguishes good
from bad Greebles. Specifically, you should do the following:
a. Train the network with the training set on the companion website (it contains data on

Greebles who have been shown to be good or evil in the past, along with their
parameters for boges length, quaff width, and dunth height).

FIGURE 28.6 Meet the Greebles. Image courtesy of Michael J. Tarr, Brown University, http://www.tarrlab.org/

31528.4. PROJECT

b. Test the network with the test set on the companion website (it contains parameters on
Greebles that were recently captured by the department and suspected of being bad).
Use your network to determine if they are (more likely to be) good or bad.

c. Document these steps, but make sure to include a final report on the test set. Which
Greebles do you (your network) recognize as being bad, and which do you recognize
as being good?

d. Qualitatively evaluate the confidence that you have in this classification. Include
graphs and figures to this end.
Good luck! The future and welfare of the Greebles rest in your hands.

Hints:

• Load the two training populations from the companion website using the command
xlsread(‘filename’). Each file contains measurements of three parameters (in inches):
boges length, quaff width, and dunth height. Each row represents an individual
Greeble.

• Before you do anything else, you might want to plot your populations in a three-
dimensional space (you have three parameters per individual). You can do this by using
plot3(param1,param2,param3). In other respects, plot3 works just like plot.

• Merge the data into a big training vector.
• Create the competitive network.
• Train the competitive network.
• Download the test files and test the population with your trained network.
• Your program should produce a final list indicating which Greebles in the test

population are good and which are bad. Also, graph input weights before and after
training.

• Disclaimer: No actual Greebles were hurt when preparing this project.
2. The second neural network that you will create is a Hopfield network that will store the

prototypical good and bad Greebles. Specifically, you should do the following:
a. Create the prototypical good and bad Greebles by taking the average features of the

good and bad Greebles.
b. Normalize the prototypical features so that the largest feature value is 1 and the

lowest feature value is –1.

FIGURE 28.7 The anatomy of a Greeble. Image courtesy of Michael J. Tarr, Brown University, http://www.
tarrlab.org/

316 28. NEURAL NETWORKS PART I: UNSUPERVISED LEARNING

c. Build a Hopfield network to store the good and bad prototypes (i.e., two feature
vectors).

d. Use the test set from the companion website to see whether the Hopfield network can
categorize the suspected Greebles as prototypical good or bad Greebles. Compare
these results with the results using the competitive learning network.

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS
COVERED IN THIS CHAPTER

rand ('state', number)
.
{ }
sim
newc
train
cat
midpoint
initcon
vec2ind
plot3
xlsread
newhop

317MATLAB FUNCTIONS, COMMANDS, AND OPERATORS COVERED IN THIS CHAPTER

This page intentionally left blank

C H A P T E R

29

Neural Network Part II:
Supervised Learning

29.1. GOALS OF THIS CHAPTER

This chapter has two primary goals. The first goal is to introduce to you the concept
of supervised learning and how it may relate to synaptic plasticity in the nervous system,
particularly in the cerebellum. The second goal is for you to learn to implement single-
layer and multilayer neural network architectures using supervised learning rules to solve
particular problems.

29.2. BACKGROUND

29.2.1. Single-Layer Supervised Networks

Historically, perceptrons were the first neural networks to be developed and happened
to employ a supervised learning rule. Inspired by the latest neuroscience research of the
day, McCulloch and Pitts (1943) suggested that neurons might be able to implement logical
operations. Specifically, they proposed a neuron with two binary inputs (0 or 1), a threshold
that can be met or not, and a binary output (0 or 1). In this way, logical operators like AND
or OR can be implemented by such a neuron (by either firing or not firing if the threshold
is met or not). See Table 29.1 for an example of implementing the logical AND operator
with a threshold value of 2.

Later, Frank Rosenblatt (1958) used the McCulloch and Pitts Model and recent theoretical
developments by Hebb to create the first perceptron. It is a modified McCulloch and Pitts
neuron, with an arbitrary number of weighted inputs. Moreover, the inputs can have
any magnitude (not just binary), but the output of the neuron is 1 or 0. The weight can
be different for each input. Setting the weights differently allows for more powerful
computations.

319

Perceptrons are good at separating an input space into two parts (the output). Training a
perceptron amounts to adjusting the weights and biases such that it rotates and shifts a line
until the input space is properly partitioned. If the input space is higher than two dimen-
sions, the perceptron implements a hyperplane (with one dimension less than the input
space) to partition it into two regions. If the network consists of multiple perceptrons, each
can achieve one partition. The weights and biases are adjusted according to the perceptron
learning rule:

1. If the output is correct, the weight vector associated with the neuron is not changed.
2. If the output is 0 and should have been 1, the input vector is added to the weight vector.
3. If the output is 1 and should have been 0, the input vector is subtracted from the weight

vector.

It works by changing the weight vector to point more toward input vectors categorized as 1
and away from vectors categorized as 0.

Although a real neuron either fires an action potential or not (i.e., generates a 1 or 0), the
response of a neuron is often described by its firing rate (i.e., the number of spikes per unit
time), resulting in a graded response (Adrian and Matthews, 1927). To model these
responses, you will use a different neural network model, called a linear network. The main
difference between linear networks and perceptrons lies in the nature of the transfer func-
tion. Where the perceptron had a step function to map inputs to (binary) outputs, a linear
network has a linear transfer function. The learning rule for the linear network, called the
Widrow-Hoff learning rule, is essentially the same as that for the perceptron (Widrow and
Hoff, 1960). This rule compares targets and outputs (specifically, it subtracts them) and
squares the difference. It then sums all these differences and takes the mean to arrive at
the mean squared error [MSE ¼ mean (targets – outputs) ∧ 2]. It then sets the weights
and biases such that the mean square error decreases from epoch to epoch. It does this
by taking the derivative of the MSE with respect to each weight, thereby following the gra-
dient of the MSE in weight space. Since the preceding MSE equation is quadratic, this error
function will have one global minimum (if it has any). Hence, you can be assured that the
Widrow-Hoff rule will find this minimum by gradually descending into it from the starting
point (given by the initial input weights). In other words, you are moving into the mini-
mum of an error surface. The MATLABW software includes a visual demonstration of that:
demolin1. The Widrow-Hoff learning rule is expressed mathematically as:

Dwij ¼ E tj � postj
� �

prei ð29:1Þ

TABLE 29.1 Perceptron Implementing AND with a Threshold of 2

Input 1 Input 2 Sum Comparing with Threshold Output

0 0 0 <2 0

0 1 1 <2 0

1 0 1 <2 0

1 1 2 ¼2 1

320 29. NEURAL NETWORK PART II: SUPERVISED LEARNING

where Dwij is the weight change between input i and neuron j, e is the learning rate con-
stant, tj is the target on neuron j, postj is the output of postsynaptic neuron j, and prei is
the presynaptic input i.

29.2.2. Multilayer Supervised Networks

Since perceptrons are vaunted for their ability to implement and solve logical functions,
it came as quite a shock when Minsky and Papert (1959) showed that a single layer percep-
tron can’t solve a rather elementary logical function: XOR (exclusive or) (see Figure 29.1).
This finding also implies that all similar networks (linear networks, etc.) can solve only lin-
early separable problems. These events caused a sharp decrease in the interest in neural
networks until it resurged in the 1980s.

The creation of non-linear multilayer networks with hidden units and learning rules to
train them such as the backpropagation network was one important reason for the resur-
gence of neural networks. These networks can implement nonlinear (yet differentiable)
transfer functions. As a matter of fact, properly set up, these networks can approximate
any function.

29.2.3. Supervised Learning in Neurobiology

Although there is no definitive evidence for neural plasticity that is guided by a
“teaching” signal as supervised learning requires, there are some intriguing experimental
findings which suggest the possibility that the physiology of the cerebellum may support
a form of supervised plasticity. David Marr and James Albus independently proposed
that the unique and regular anatomical architecture of the cerebellum could instantiate
error-based plasticity that might underlie motor learning. In particular, they proposed

FIGURE 29.1 The XOR problem that a single layer network cannot solve. The XOR problem requires that the
neuron respond (i.e., white circles) when only one of the inputs is on but not both. This is not solvable by a single-
layer perceptron or linear network because it is not linearly separable.

32129.2. BACKGROUND

that the climbing fibers acting on Purkinje cells from the inferior olive could provide an
error signal to modify the synapses between the parallel fibers and the Purkinje cells.
Experimental support for this theory first came from Ito and Kano (1982), who discovered
that long-term depression could be induced in the synapse between the parallel fibers
and the Purkinje cells. Through electrical stimulation of the parallel fibers and at the
same time stimulation of the climbing fibers, each of which forms strong synaptic con-
tacts with a particular Purkinje cell, the parallel fiber synapse could be depressed.
Because the Purkinje cells are inhibitory on the deep cerebellar nuclei, this synaptic
depression would disinhibit the deep cerebellar nuclei.

A number of motor learning experiments have provided additional support for the
idea that the cerebellum supports supervised learning via the climbing fibers. Sensory-
motor adaptation experiments in which the gain between the movement and its sensory
consequences are altered have shown transient increases in climbing fiber input (as
measured by the complex spike rate) during learning (Ojakangas and Ebner, 1992,
1994). In addition, classical conditional experiments have suggested that the cerebellum
plays a role in learning associations between unconditioned stimuli (US) and conditioned
stimuli (CS) (Medina et al., 2000). For example, learning the association between an air
puff (US) generating an eye-blink response and a tone (CS) is disrupted by reversible
inactivation to parts of the cerebellum (Krupa, Thompson, and Thompson, 1993). More-
over, it has been shown that the tone enters the cerebellar cortex via the parallel fiber
pathway, whereas the air puff, acting like a teacher, enters through the climbing fiber
input. In fact, a mathematical formulation of classical conditioning proposed by Rescorla
and Wagner (1972) quite closely resembles the Widrow-Hoff error correction learning
rule used in supervised neural networks.

29.3. EXERCISES

29.3.1. Perceptrons

For this example, start by creating a single perceptron using the following command:

>> mynet = newp([-5 +5] , 1)

Your one neuron perceptron neural net is then created. The preceding syntax means that
you create a new neural network named mynet as a perceptron with the limits for the single
input of –5 and þ5, and your network consists of only one neuron. Typingmynet again shows
you the properties of your neural network. You could give it any other name. If you look in
your workspace, you will see that a “network” structure of this name has been created. A
structure has many properties. For example, you can see that the input weight is set to 0 by
typing mynet.IW. Typing mynet.b will show the initial bias, and it will also be 0. Of course,
you can change the bias and the initial weights. We already discussed the significance of
weights. Biases basically add a threshold to the neuron. If the net sum of a perceptron is larger
than 0, the output will be 1; otherwise, it will be 0. Adding a bias changes the point where this
decision is made. For example, if the bias is –5, the net sum has to exceed 5 for the output to
yield 1 (the bias of –5 is subtracted from the net sum; if it is less than 5, it will fall below 0).

322 29. NEURAL NETWORK PART II: SUPERVISED LEARNING

An important point to note is that most of the property values in this network structure
are contained in “cells.” A cell is basically a meta-matrix—in other words, a variable that
contains matrices. The syntax for accessing cells is different than that for accessing matrices
themselves.

You access a cell by using wavy or curly brackets: { }. For example, set the initial weight
to 1 by typing:

>> mynet.IW{1,1} = 1

You can make sure that this change took effect by typing mynet.IW.

Exercise 29.1: Change the bias to 5.

So far, you haven’t done very much with neural networks. The network is just kind of
sitting there. You can change that now.

Create a new network with an arbitrary name. In this case, call it Hans. It will have two
inputs that can range from –5 to 5. But it will be a single neuron.

>> Hans = newp([-5 5; -5 5],1)

Now you need to set the input weights. Currently, they are set to 0. Hence, every input
will yield 0. Set the input weights to 1 and –1, respectively:

>> Hans.IW{1,1} = [1 -1]

If the sum of the input times the weights meets or exceeds 0, the network should return
1; otherwise, it will return 0. Try it by feeding it some input:

inp1 = [1; 0.5] %Note: The first, positive weighted input larger than the second
inp2 = [0.5; 1] %Note: The second, negative weighted input is larger than the first

Type the following command to see what the output of your network is:

>> sim(Hans,inp1)

ans =
1

>> sim(Hans,inp2)

ans =
0

And, yes, the network classified these inputs correctly. You can now feed the network a
large number of random numbers. Look to see if they are classified correctly, like this:

>> a = rand(2,10) %Create 20 random numbers, arranged as 2 rows, 10 columns
>>
>> output = sim(Hans,a)

Compare the logical values in output with the values in the input. If the value in the first
input row is larger than the value in the second input row (for a given column), the output
value (for that column) should be 1; otherwise, it should be 0.

32329.3. EXERCISES

Exercise 29.2: Adjust the bias to some arbitrary value and see how the input/output

mapping changes.

When you adjust the weights and the bias, it can be shown that any linearly separable
problem (a problem space that can be separated by a line—or more generally by a hyper-
plane) can be solved by a perceptron. To verify whether this is the case, play around with
the interactive perceptron, where you can arbitrarily set the decision boundary yourself.
Type nnd4db (see Figure 29.2). Try to separate the white and black circles; they represent
the inputs. The output is represented by the black line, creating two regions, one region
corresponding to the number 0 and the other region corresponding to the number 1.

Exercise 29.3: Re-create this perceptron (its weights and biases) on the command line and see

whether the demo is accurate.

What if you don’t know the weights or don’t want to find the weights? What if you only
know the problem? Luckily, one of the strongest functions of neural networks is their ability
to learn—to solve problems like this on their own. You will do this now. The first thing you
need is a learning rule, a rule that tells you how to update the weights (and biases), given a
certain existing relationship between input and output. The perceptron learning rule
(learnp) inherent to Neural Network Toolbox in MATLAB is an instance of supervised
learning, giving the network pairs of inputs and desired (correct) output. To test this, set
the input weights of your neuron to a different level, one that will produce “wrong out-
puts,” given how the inputs were classified previously. Use those known input/output

FIGURE 29.2 An interactive dis-
play of the decision boundary of a
perceptron provided in Neural Net-
work Toolbox in MATLAB. The dis-
play shows how a perceptron creates
a linear decision boundary whose
slope and intercept can be modified
by adjusting the weight vector and
bias.

324 29. NEURAL NETWORK PART II: SUPERVISED LEARNING

mappings as a training set. Make sure to reset the bias of the “Hans” network back to 0, so
as not to complicate things (technically, a bias is a weight with an input that is always 1).

For example:

>> w = [0.6 -0.9] %New weights. Before: [1 -1]
>> Hans.IW{1,1} = w; %Setting the input weights function to w
>> inp1 = [0.846; 0.723]; %This was my first random number pair
>> Output = 1; %The output was positive, as it should be

Typing something like Newoutput = sim(Hans,inp1) will now yield 0.

>> Error = Output – Newoutput;

Change in weights:

>> dw = learnp(w,inp1,[], [], [], [], Error, [], [], []) %learnp takes many arguments.
%Don’t worry about most of them now.

New weights:

>> w = w + dw

You can try this dynamically, in an interactive demo, by typing nnd4pr (see Figure 29.3).

29.3.2. Linear Networks

Now create a linear network. The syntax is analogous to the syntax that created the per-
ceptron network:

>> newnet = newlin([-10 10; -10 10],1);

FIGURE 29.3 An interactive
display of the perceptron learning
rule provided in Neural Network
Toolbox.

32529.3. EXERCISES

The first argument is a matrix that specifies the range of the two inputs. The second argu-
ment is the number of neurons in the network. More precisely, it is the number of outputs
of the network. For now, set both input weights to 1:

>> newnet.IW{1,1} = [1 1];

See if the thing works properly. It should take the dot product of the inputs:

>> inp = [5; 7];
>> output = sim(newnet,inp)

output =
12

Since the weights were both 1, the dot product amounts to simple addition in this case.
Change the weights to 3 and 4 and see what happens:

>> newnet.IW{1,1} = [3 4];
>> output = sim(newnet,inp)

output =
43

The same can be gained by typing:

>> [3 4] * [5;7]

In other words, this neural network implements an inner product (dot product).

Exercise 29.4: See if this example generalizes. Try negative numbers. What if the input goes

beyond the range with which the network was initialized?

Exercise 29.5: Change the bias. How does that influence the calculation of the dot product?

Of course, you want a more useful neural net than just one that can take the dot product;
you can take the dot product without neural nets. A classical function of linear neural net-
works is the automatic classification of input objects into different categories. To achieve
that, you need to train the network. To do this, you use an automated version of the percep-
tron training rule learnp; it’s called train. It goes through all the inputs, updates the weights
and biases according to learnp, and then goes through all the inputs again. It then calcu-
lates a mean square error by comparing the outputs of the weight-adjusted net with the tar-
get outputs (i.e., the Widrow-Hoff learning rule). It uses a least mean square algorithm to
minimize the mean square error (by changing the weights) until either:

a. A given target mean square value is reached
b. The maximum number of training runs (epochs) is reached

Why don’t you give it a try? Say you have six target outputs from two sets, set1 and
set2:

326 29. NEURAL NETWORK PART II: SUPERVISED LEARNING

>> set1 = [2, 2; -2, 2 ; 0.5, 1.5];
>> set2 = [1, -2; -1, 1; -0.5 -0.5];

Now plot them to see what is going on:

>> figure %Opening a new figure
>> plot(set1(:,1),set1(:,2),'*') %Plotting the first set
>> hold on; %Holding on
>> plot(set2(:,1),set2(:,2),'*', 'color', 'k') %Plotting the second set in black

Looking at the graph in Figure 29.4, you can see what is going on. You can also see
that the problem is, in principle, solvable: you can draw a line that separates the blue and
black stars. Now create a network that will find this solution. Starting at 0 inputs weights
and 0 bias.

First, put these sets in the proper input form. Remember that for neural networks, rows
are different input dimensions, and columns are different examples in those dimensions
(your points). To achieve this, you have to concatenate and transpose the matrices. You con-
catenate them along the column dimension by using cat:

>> inputset = cat(2, set1', set2')

Then you assign the corresponding targets. Arbitrarily assign 1 to the blue set and 0 to
the black set:

>> targets = [1 1 1 0 0 0]

Now create a new network that you will train; call it netz. Set the proper range (nothing
in the input set goes beyond that):

>> netz = newlin([-2 2; -2 2],1);

Finally, you have to set a training goal. Say you’re happy if the mean squares error falls
below 0.08:

>> netz.trainParam.goal= 0.08; %That’s low. Let’s be picky.

2

1.5

1

0.5

0

−0.5

−1.5

−2
−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1

FIGURE 29.4 A plot of six target outputs (blue and black stars) that are to be classified.

32729.3. EXERCISES

A final train command gets you going:

>> [netz, training] = train(netz,inputset,targets); %Specifying two outputs on the left hand

What happens? If you did everything right, something like this should happen: the sam-
ple net achieved the goal in 18 training epochs (see Figure 29.5).

These training data are stored in the training matrix. You also have a new netz. Chal-
lenge the new netz with some input and see whether it correctly classifies the input. Pick
something in the middle of the black range, like –1, 0:

>> inp4 = [-1; 0]
>> sim(netz,inp4)
ans =

0.1453

Close but not quite. Of course, the result should be 0, but this might be the best you can do,
given the sparse input.

Exercises 29.6: Explore some points in the space and see what their output is. Is it about what

you expect? Does the network make gross errors? What about the initial input vector?

Exercise 29.7: Run with more ambitious training goals, like 0.01. Can you reach it, given the

sparse input (six input data points)?

010−2

10−1

100
Performance is 0.079263, Goal is 0.08

T
ra

in
in

g-
bl

ue
 G

oa
l-b

la
ck

2 4 6 8 10

18 Epochs

12 14 16 18

Stop training

FIGURE 29.5 The mean square error as a function of training epochs.

328 29. NEURAL NETWORK PART II: SUPERVISED LEARNING

Exercise 29.8: Netz.trainParam stores the training parameters. Type netz.trainParam and see

how many epochs it runs. Then change it to a higher value and see if it converges later. What

about 1000 epochs? What about 10000?

A linear classifier allows you to roughly categorize and classify inputs if they are linearly
separable. Adjusting the weights and biases amounts to creating a linear transfer function
that separates the desired outputs maximally and optimally. Of course, there is only so
much that a linear function can do. But it’s not too bad.

A supervised linear network can be applied to the Greeble problem used in Chapter 28,
“Neural Networks Part I: Unsupervised Learning”. Note that there is some initial classifi-
cation just by setting all the initial weights to 1 (see Figure 29.6A). But it is not very good,
and the absolute output values are all over the place (4000?). The final classification by
the linear network is pretty good (see Figure 29.6B). Values cluster around 1 and 0,
although there is quite a bit of variance. The linear network couldn’t separate the clusters
any better than this, given the variance in the input and the amount of training. You should
always check your network by visualizing the outputs of trained and untrained networks
with simple plots like this.

There is one major caveat regarding this kind of learning: The default learning method
learnb (batch learning) updates all the weights and inputs at once, taking all the inputs into
account at once. Hence, the network might not learn at all if there are too many inputs.
Here, you never come close to the minimum of the mean square error. This is characterized
by a runaway mean square error (see Figure 29.7). This behavior is largely due to the trainb
learning rule that is used by default. For more challenging problems like the one here, you
can change that to trainr (incremental learning):

>> net.trainFcn ¼ 'trainr'

−2500

−3000

−3500

−4000

−4500

−5000

−5500

−6000

−6500 −0.4

−0.2

0.2

0.4

0.6

0.8

1

1.2

1.4

0

0A B50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400

FIGURE 29.6 The problem of categorizing “good” from “bad” Greebles using a supervised linear network.
A. Classification when all the weights are set to 1 (Before training). B. Classification after application of the super-
vised learning rule (After training).

32929.3. EXERCISES

This command changes the actual training function of the network (named net here) to
incremental training. The effect of this incremental learning on the mean square error is
shown in Figure 29.8.

Problem solved.

29.3.3. Backpropagation

Most of the principles of backpropagation are the same as in the other networks, but you
now have to specify the number of layers and transfer functions between the layers. For

0
100

1050

10100

10150

10200

10250

10300
Performance is Inf, Goal is 0.01

Tr
ai

ni
ng

-b
lu

e
G

oa
l-b

la
ck

10 20 30 40 50 60 70 80 90 100

100 EpochsStop training

FIGURE 29.7 The potential problem of
runaway mean square error when using
batch learning.

010−3

100

10−1

10−2

103

102

101

Performance is 0.0439363, Goal is 0.01

Tr
ai

ni
ng

-b
lu

e
G

oa
l-b

la
ck

5 10 15

30 Epochs

20 25 30

Stop training

FIGURE 29.8 The use of incremental
learning can sometimes solve the problem of
runaway mean square error.

330 29. NEURAL NETWORK PART II: SUPERVISED LEARNING

example, create a two-layer, feedforward network (one layer feeds into the next). This is
achieved by using the function newff:

>> net = newff([0 1; 0 1], [4,2], {'tansig','purelin'}, 'traingd');

This command specifies a network with two layers and two inputs. The arguments, in
order, are as follows:

1. Input range (both inputs range from 0 to 1).
2. Number of neurons in each layer. Here, 4 is in the first, 2 in the second.
3. Transfer functions between inputs and outputs in the respective layer. First,

you have a sigmoidal transfer function for the first layer (actually, Tan-sigmoid,
abbreviated tansig, which creates outputs from –1 to 1; alternatively, logsig
creates outputs from 0 to 1) and linear transfer function (purelin) for the second
layer.

4. The training function, traingd. Backpropagation shifts the weights along a negative
gradient. You are descending along the steepest gradient, hence gd.

Exercise 29.9: Create another network with different transfer functions, neurons, and inputs.

Exercise 29.10: Create another network with a larger number of layers—say three layers.

You should initialize your input weights by typing:

>> net = init(net)

This command will randomize the input weights. As in the other networks, you can sim-
ulate input-output mapping with these initial weights with the function sim (net, inputs).
Now you can train your network to do whatever you want. All you need is input matrices
with appropriate inputs and outputs—for example, [net, perf] = train (net, inputs,
targets);.

Note: Make sure to set the right training goals, e.g., a certain MSE or a certain number of
epochs. Also, traindg is batch training, analogous to trainb. If things don’t work as
expected, use net.trainFcn and set it to traingdm (analogous to trainr).

Exercise 29.11: Solve the Greeble problem with a multilayer feedforward network, using the

backpropagation learning rule. What are the results?

Suggestion for Exploration: Try this exercise using different transfer functions between the

layers. See what can be done. Or wait for the final project to do this.

33129.3. EXERCISES

29.3.4. Sound Manipulation in MATLAB

As you saw in earlier chapters, MATLAB is useful not just for analyzing data, but also
for experimental control and data gathering. Here, you will see that you can use MATLAB
to design the stimulus material itself. Before you start, check the volume control to make
sure that the loudspeaker of your PC is not muted and that the volume is turned up. There
are many MATLAB functions dealing with auditory information; as a matter of fact, a
whole toolbox is devoted to it. Here, we will handle sound only in very fundamental ways.

The first thing you might want to do is create your sound stimuli. To do so, try this:

>> x = 0:0.1:100;
>> y = sin(x);
>> sound(y);

Did you hear anything? What about this:

>> y = sin(2 .* x);
>> sound(y);
>> y = sin(4 .* x);
>> sound(y);

You know that your code created sine functions of increasing frequency. What you are
listening to is the auditory representation of these sine functions, pure sine waves. Of
course, most acoustic signals are not that pure. Try this example to listen to the sound of
randomness—white noise:

>> x = randn(1,10001);
>> sound(x)

The sound function interprets the entries in an array (here the array x) as amplitude values
and plays them as sound via your speakers. That means you can manipulate psychological
qualities of the sound by performing operations in MATLAB. You already saw how to
manipulate pitch (by manipulating the frequency). You can manipulate loudness by chang-
ing the magnitude of the values in the array. The sound function expects values in the
range 1 to –1. So how does this example sound?

>> x = x ./ 5;
>> sound(x)

This should sound much less violent.
Of course, you can manipulate the sound in any way you want; for example, you can mix

two signals:

>> z = x + y;
>> sound(z)

This example should sound like the sine wave from before, plus noise.

Exercise 29.12: What happens if you add two different frequencies of sine waves and play it?

332 29. NEURAL NETWORK PART II: SUPERVISED LEARNING

In short, the sound you hear should be more complex, and rightfully so. Any arbitrarily
complex sound pattern (or any signal, really) can be constructed by appropriately adding
sine waves. You will use this property later. Speaking of complex sounds, most practical
applications will require you to deal with sounds that are much more complex than pure
sine waves. So let’s look at one. Luckily, MATLAB comes with a complex sound bite:

>> load handel
>> sound(y, Fs);

Youmight be confused by the second parameter, Fs. It is the sampling rate at which the signal
was sampled. It specifies howmany amplitude values are played per second. If your array has
10,000 elements and the sampling rate is 10,000, it takes 1 second to play it as sound.

Exercise 29.13: Play your new sound again at a higher/lower sampling rate.What is happening?

Now look at the structure of the amplitude values in the y matrix to help you understand
how sound works:

>> figure
>> plot(y)

The result should look something like Figure 29.9.

0.8

0.6

0.4

0.2

0

–0.2

–0.4

–0.6

–0.8
0 1 2 3 4 5 6 7 8

FIGURE 29.9 The raw acoustic pressure amplitude of the handel sound bite.

33329.3. EXERCISES

If you already listened to the sound bite, this result will probably not surprise you. As a
matter of fact, this information about sound amplitudes alone is not very powerful in itself.
It is much better andmore useful to look at the spectral power of a signal over time. To do this,
use a function called spectrogram. It comes with Signal Processing Toolbox in MATLAB.

The operation of the spectrogram function is rather complex and beyond the scope of
this chapter. In principle, say that it decomposes the signal into sine waves and plots the
power (how much of that frequency if it were composed out of sine waves is in the signal)
over time:

>> spectrogram (y)

A spectrogram of the handel sounds looks like Figure 29.10.
Of course, you probably will want to import your own sounds into MATLAB. You can

do this by using the wavread function. Download the file speech_sample.wav from the
companion website and then type:

>> y = wavread('speech_sample.wav');

Exercise 29.14:What is theperson in the sample file saying?Hint:The signalwas sampled at 22050

Hz. You might want to take that fact into account when playing it. Look at the spectrogram, too.

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.5 1 1.5 2 2.5 3 3.5
0

Fr
eq

ue
nc

y

Time �104

FIGURE 29.10 The spectrogram representation of the handel sound bite.

334 29. NEURAL NETWORK PART II: SUPERVISED LEARNING

Suggestion for Exploration: Listen to your data, literally. Listen to some of the stuff you did

in previous chapters. How does it sound?

In this section, you saw how MATLAB lets you create, manipulate, and analyze acoustic
stimuli. You can use it to design sound stimuli that are precisely timed and have very
specific properties. Obviously, this is extremely useful for acoustic experiments.

29.4. PROJECT

In this project, you will create a network that correctly classifies the gender of two target
speech bites. To do this, train the network with a total of six speech bites of both genders. Load
these files (called Female_Training1 to 3 and Male_Training1 to 3) from the companion
website. Of course, the two speakers differ in all kinds ofways other than just gender (age, race,
English as a first/second language, idiosyncratic speech characteristics, life style, etc.). If you
were to face this problem in real life, you would have to train the network with a large number
of speakers from both genders so that the network can extract gender features from all these
irrelevant dimensions. But for purposes of this chapter, this approach will be fine.

Specifically, you should create a network that reliably distinguishes the gender of the two
target speech bites. Provide some evidence that this is the case and submit the source code.

Hints:

• You might have to implement a network using the backpropagation learning rule.
• Take the spectrogram of the sound files. Use those as the inputs to your neural network.

Figure 29.11 shows the amplitude and spectrogram of this sentence: “The dog jumped over
the fence.” The left subplot is a female speaker, and the right subplot is a male speaker.

• Using the command a¼ spectrogram(b)will return an array of complex numbers in a. They
have an imaginary and a real part. For purposes of this chapter, the real partwill do. For this,
type c ¼ real(a). In this case, cwill now contain the real part of the imaginary numbers in a.

• This project is deliberately underconstrained. Basically, you can try whatever you want
to solve the problem. As a matter of fact, we encourage this, since it will help you
understand neural networks that much better. Don’t be frustrated and don’t panic if you
can’t figure out the solution right away.

• Neural networks expect inputs. These inputs come in the form of rows. Match the
number of inputs to a neural network (say two) to the number of rows in the input
matrix that you feed it (has to have two rows). The repetitions of the input go in the
columns (say 10 columns).

• If you take a spectrogram of the speech patterns with which you are supposed to train
the network, it will return 129 rows and several thousand columns. A neural network
that takes the entire information from this matrix has to have 129 inputs.

• This result is obviously rather excessive. If you closely observe the spectrogram (see
Figure 29.11B), you might be able to get away with fewer rows and columns. The rows
tessellate the frequency spectrum (y-axis below). Power in a particular frequency band is

33529.4. PROJECT

1

0.8

0.6

0.4

0.2

0

–0.2

–0.4

–0.6

–0.8

–1

1

0.8

0.6

0.4

0.2

0

–0.2

–0.4

–0.6

–0.8

–1
0 2 4 6 0 2 4 6

� 104 � 104A

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0.5

B
1 1.5 2 2.5 0.5 1 1.5 2 2.5

Fr
eq

ue
nc

y

Fr
eq

ue
nc

y

Time � 104Time � 104

FIGURE 29.11 The amplitudes and spectrograms of a female and male speaker uttering “The dog jumped over
the fence”.

336 29. NEURAL NETWORK PART II: SUPERVISED LEARNING

at a particular row. Power in a particular frequency band at a particular time is in a
particular combination of row and column.

• The point is that the left spectrogram has much more power in the upper frequencies
than the one on the right. If you properly combine frequency bands (or sample them),
you might be able to get away with a neural network that has only 5 or 10 inputs.

• The same applies for time. Your spectrogram will have several thousand columns. This
kind of resolution is not necessary to get the job done. Try combining (averaging) the
values in 100 or so columns into one. Then feed that to the neural network for training.

• It is highly recommended to use a backprop network.
• Try using at least three layers.
• Try using nonlinear transfer functions between the layers.
• Try having a large number of hidden units (definitely more than 1).
• You will probably be using a supervised learning rule. The target is defined by which file

the data came from (Pascal or Kira). Create an artificial index, assigning 1 and 0 (natural)
or 1 and 2 (politically correct) to each.

• Always remember what the rows and columns of the variables you are using represent.
Be aware of transformations in dimensions.

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS
COVERED IN THIS CHAPTER

cat
demolin1
init
learnp
logsig
newff
newlin
newp
nnd4db
purelin
real
sim
sound
spectrogram
tansig
train
trainb
traingd
traingdm
trainr
wavread

337MATLAB FUNCTIONS, COMMANDS, AND OPERATORS COVERED IN THIS CHAPTER

This page intentionally left blank

A P P E N D I X

A

Thinking in MATLAB

A.1. ALTERNATIVES TO MATLAB

For a multitude of reasons, this book uses the MATLAB software package as its compu-
tational language. Primary among these reasons is the ubiquity of the software in
the field of neuroscience. Even those who use an alternative are likely to have some famil-
iarity with MATLAB and many neuroscience-specific packages are only available for
MATLAB.

That said, many alternative computation suites exist. No package can meet every need,
and you may decide that an alternative suits your needs better than MATLAB. In this
appendix, alternatives to MATLAB are briefly discussed. Hopefully, this discussion will
provide some understanding why these alternatives are chosen.

A.1.1. Octave

Of all alternatives available for the MATLABW software, Octave is probably the one
most similar to MATLAB. Octave is an open source numerical package designed to be
highly syntactically compatible with MATLAB. There are minor syntactical differences
between Octave and MATLAB, but the most significant differences involve portions of
MATLAB outside the language core. For example, equivalent code for most MATLAB
toolboxes does not exist for Octave. Also, Octave lacks a profiler and compiler.
An example follows:

function x ¼ eulerdfn, dt, steps, x0)
t ¼ 0:dt:(steps*dt);
x ¼ zeros(1, steps);
x(1) ¼ x0;
for index ¼ 2:steps

x(index) ¼ feval(dfn, x(index-1)) * dt þ x(index-1);
end

end

339

A huge advantage of Octave over MATLAB is cost. As open source software, Octave is
entirely free. Moreover, the source code for Octave is freely available, allowing examination
of the algorithms behind the software. However, Octave is not MATLAB, and it is impor-
tant to note that the same level of support, commercial and otherwise, is not present for
Octave.

A.1.2. Python

Python is a popular programming language for which substantial quantitative tools
exist. Syntax differs quite substantially from MATLAB. As a general-purpose programming
language, Python does not have inherent visualization and quantitative capabilities. The
most actively developed quantitative package for Python is NumPy, which provides fast
array-handling primitives:

import numpy;

def euler(dfn, dt, steps, x0):
x ¼ array()
for index in xrange(steps):

x[index] ¼ dfn(x[index-1]) * dt þ x[index –1]
return x

One of the most popular 2D visualization packages for Python is matplotlib. For users
familiar with MATLAB, matplotlib includes an interactive interface that syntactically
resembles the plotting commands of MATLAB, as shown in this example:

import pylib

t ¼ arange(0, 10, 0.01)
plot(t, euler(lambda x: x*0.1, dt¼0.01, steps¼1000, 1))

As a general-purpose programming language, Python excels in solving problems often
ill-suited to MATLAB. MATLAB has poor support for most varieties of nonquantitative
data, especially character strings or highly structured data. Moreover, many problems lend
themselves to programmatic abstractions that are often more difficult to encode in
MATLAB.

Like other open source software, Python (and associated packages) is freely available.
Together, NumPy and matplotlib are included in SciPy, a comprehensive scientific comput-
ing package for Python. With the choice of adjunct packages comes some installation and
configuration effort on the part of the user beyond what is required for MATLAB.

A.1.3. Mathematica

Mathematica is commercial software published by Wolfram Research. While Mathema-
tica does have extensive support for quantitative processing, it also has extensive support
for symbolic processing.

340 A. THINKING IN MATLAB

A.1.4. C

The primary advantages of C or Cþþ are speed and flexibility. The interactive explora-
tion often inherent in data analysis in MATLAB has no counterpart in the C compile-run-
debug cycle. There is no standard graphical library for C. Additionally, the standard C
and Cþþ libraries do not include quantitative functions equivalent to those in MATLAB.
However, where access to the underlying operating system is necessary or speed is extraor-
dinarily important, C is often the best tool.

For programmers coming from C, it is important to note that multidimensional arrays in
MATLAB are stored in column-major order, belying the original FORTRAN parentage of
MATLAB. Column-major order indicates that members of the same column are stored
sequentially in memory. Most programming languages use row-major order, in which ele-
ments sharing a row are stored sequentially in memory. This becomes important when
using a single index to dereference a multidimensional array. The following snippet of
MATLAB code demonstrates this:

>> A = [1 2 3; 4 5 6; 7 8 9]

A =

1 2 3
4 5 6
7 8 9

>> A(3)

ans =

7

The alternative code in C evaluates to 3:

#include <stdio.h>

int main() {
int A[3][3]¼ {{1,2,3}, {4,5,6}, {7,8,9}};
int *B ¼(int*)A;
printf("%d\n", B[2]);

}

A.1.5. FORTRAN

Like C, FORTRAN is a general-purpose programming language, without any default
graphics package. The original goal of FORTRAN was the simplification of mathematical
programming, and the language standard has always focused on a fairly simple core suit-
able for quantitative expressions.

The primary advantage of FORTRAN over MATLAB is speed. Not only is FORTRAN
compiled, but the simplicity of the language allows for compiler optimizations not usually
possible with many other compiled languages, such as C. Even though FORTRAN is fairly
straightforward for a general-purpose programming language, it requires more effort to
learn than MATLAB and has no provision for interactivity.

341A.1. ALTERNATIVES TO MATLAB

A.2. A FEW WORDS ABOUT PRECISION

Like most quantitative software, MATLAB does not represent most floating-point num-
bers exactly. When looking at the workspace, you may have noticed that nearly all variables
have the label double. This label refers to the internal representation of the floating-point
number. This representation is the default representation of values in MATLAB.

The double representation corresponds to a standard floating-point representation used
throughout most quantitative software (see Figure A.1). (Double here is in deference to sin-
gle-precision floating-point, a lesser used floating-point representation that consumes half
the memory.) Since the Institute of Electrical and Electronics Engineers (IEEE) standards
body oversees the specification of this format, it is commonly known as IEEE 754 or
64-bit IEEE floating-point.

The sign bit denotes whether the number as a whole is positive or negative. The expo-
nent is a base 2 number biased by 210 – 1, or 1023. The representation of exponents is 1023
plus the exponent’s value. This system allows for exponents in the range –1023 to 1023.

The representation of the mantissa is the most complex portion of this standard. The
digits in the mantissa represent a binary fraction, where each successive digit represents
a successive fractional power of 2. Additionally, the mantissa is the fractional part of the
number; there is a 1 implicit in the number not represented in the format.

The following example illustrates how a decimal floating-point number is represented
internally by MATLAB.

Consider 15.1875.
In base 2, 15 is 11112. As a binary fraction, 0.1875 is 0.00112. (0.1875 is 3/16, or 1/8 þ 1/16,

or 0 * 1/2 þ 0 * 1/4 þ 1 * 1/8 þ 1 * 1/16.) In total, 15.1875 is 1111.00112. To use exponential
notation, this is 1.11100112 � 23. To store this as in double-precision format, you need to dis-
card the initial 1 from the mantissa and bias the exponent, as shown in Figure A.2.

Why is this important? Double precision floating point and, by extension, MATLAB, can
represent only a small subset of floating-point numbers with absolute precision. These
numbers are those whose fractional part is a sum of fractional powers of 2. For example,
7/16 can be perfectly represented (1/4 þ 1/8 þ 1/16), but 7/17 cannot.

Precision issues are particularly significant when testing for 0. When you are dealing with
floating-point numbers, operations that you might expect to produce 0 often result in very
small fractional numbers. A more viable test is a range around 0. For example, instead of

if x == 0

use

if abs(x) < 1.0e-6

Sign Exponent (11 bits) Base 2 mantissa (52 bits)

FIGURE A.1 Representation of floating-point numbers.

Exponent (11 bits) Base 2 mantissa (52 bits)
0 0 0 0 1 1 1 1 1 0 0 1 1 0 0 0 0

FIGURE A.2 Representation of the number 15.1875.

342 A. THINKING IN MATLAB

A.2.1. Taking Advantage of Matrix Operations

When you are writing code that processes large datasets, efficiency begins to become an
important consideration. Serious optimization of an algorithm may require significant
thought and effort. However, taking advantage of matrix operations whenever possible
can often speed up code immensely without retooling algorithms. For example, consider
the following two code snippets. Both add two matrices together:

A = ones(4, 4); * 3; % matrix of threes
B = ones(4, 4); * 6; % matrix of sixes
C = zeros(4, 4);
for i = 1:4

for j = 1:4
C(i, j) = A(i, j) + B(i, j);

end
end

or

A = ones(4, 4); * 3; % matrix of threes
B = ones(4, 4); * 6; % matrix of sixes
C = zeros(4, 4);
C = A + B;

While both pieces of code accomplish the same task, the second executes measurably faster.
Note that the second snippet avoids the nested for loops.

Understanding why these two bits of code execute so differently requires a brief expla-
nation of how MATLAB evaluates code. Individual operations in MATLAB execute as com-
piled machine code, at high speed. For example, the matrix addition in the second code
section executes in this manner. Each invocation, however, requires processing within
MATLAB’s interpreter before the operation’s underlying code can execute.

So, in the case of the first example, evaluation of the inner statement alone requires eval-
uating each of the two index variables, three matrix lookups, and a scalar addition, and
then storing the scalar result. In between operations, the interpreter must be constantly con-
sulted to determine the next step. In the second case, all of these sub operations run within
the internal MATLAB code for a matrix add, avoiding the overhead of the interpreter
between each step.

A.2.2. Conditional Expressions

Relational operations can often function as an alternative to an if statement nested within
a for loop. A relational operator acting on a matrix returns a matrix of the same shape with
values of 1 for true and 0 for false:

A = ones(4, 4);
B = rand(4, 4);
for i = 1:4

for j = 1:4

343A.2. A FEW WORDS ABOUT PRECISION

if (B(i, j) > 0.5)
A(i, j) = A(i, j) + B(i, j);

end
end

end

Compare the preceding example with the following:

A = ones(4, 4);
B = rand(4, 4);
A = A + (B .* (B > 0.5));

In the latter example, the single expression takes the place of the nested for loops and if
statement. The inner relational expression evaluates to a 4�4 matrix whose elements are 1 if
the corresponding element of B is greater than 0.5. Thus, the element-wise multiplication of
this matrix with B generates a matrix whose elements are either the corresponding element
of B, if B is greater than 0.5, or 0, if that element of B is less than or equal to 0.5.

A.2.3. Extracting Subsets from Arrays

Many times, an if statement nested within a for loop is used to extract some subset of
values from a matrix. The use of matrix relational operations and find can eliminate the
need for the iteration. The function find returns all the indices of the input for which the
input is nonzero. For example:

>> A = [1 2 3 4];
>> find(A < 3)

ans =

1 2

Specifying a set of values for the index of a matrix will return a subset of the matrix
values. This can apply to the results of find:

>> A = [8 9 10 11];
>> find(mod(A,2) == 0)

ans =

1 3

>> A(find(mod(A,2) == 0))

ans =

8 10

344 A. THINKING IN MATLAB

A P P E N D I X

B

Linear Algebra Review

Informally, the terms matrix and array are often used interchangeably. More precisely, a
matrix is a two-dimensional numeric array that represents a linear transformation. The
mathematical operations defined on matrices are the subject of linear algebra. This appen-
dix will describe some of the basic concepts of linear algebra that you’ll need to get started.

B.1. MATRIX DIMENSIONS

An m�n matrix has m rows and n columns. Here is an example of a 2�3 matrix, A:

A ¼ 2 4 8
1 7 3

� �
:

You can refer to a particular element in the matrix by its row and column placement. So,
for the matrix A, the element in the first row and third column is the number 8. The syntax
to identify this element in the MATLABW software is A(1,3).

B.2. MULTIPLICATION

When a matrix is multiplied by a number, every element of the matrix is multiplied by
the number. Here is an example of a matrix, F, that is equal to 5 times the matrix A:

F ¼ 5 � A ¼ 5 � 2 4 8
1 7 3

� �
¼ 10 20 40

5 35 15

� �

When youmultiply twomatrices together,A *B, each of the elements of the resultingmatrix,
C, is the sumof the corresponding row elements ofA times the corresponding column elements
of B. In other words, all elements of Cmay be obtained by using the following simple rule:

The element in row i and column j of the product matrix A * B is equal to row i of A times
column j of B.

345

Note that if A is m�n, and B is n�l (the number of columns in A and the number of rows
in B MUST match; otherwise, the product is undefined), then the dimensions of C are m�l.
For example:

A � B ¼ 2 4 8
1 7 3

� � 5
6
3

0
@

1
A ¼ 2 � 5þ 4 � 6þ 8 � 3

1 � 5þ 7 � 6þ 3 � 3
� �

¼ 58
56

� �
¼ C

Observe that A * B is not the same as B * A. In this case, matrix multiplication is not com-
mutative, or in general, matrices do not commute under multiplication. We will return to
matrix multiplication and present its geometric interpretation in Section B.5.

B.3. ADDITION

When you add matrices algebraically, you add them component by component, adding
corresponding elements. For example,

Aþ F ¼ 2 4 8
1 7 3

� �
þ 10 20 40

5 35 15

� �
¼ 12 24 48

6 42 18

� �

Note that if you add A þ A, you would get 2A in accord with the definition of scalar-
matrix multiplication presented in the preceding section. For the sum to exist, the dimen-
sions of the matrices being added must be exactly the same. So, for example, you cannot
add together the matrices A and B as defined previously; instead, you say that the sum is
undefined or meaningless.

B.4. TRANSPOSE

To transpose a matrix, you simply write the rows as columns; that is, you interchange
rows and columns. So

AT ¼
2 1
4 7
8 3

0
@

1
A:

You carry out this operation in MATLAB by entering the command A'.

B.5. GEOMETRICAL INTERPRETATION
OF MATRIX MULTIPLICATION

There is also a geometrical interpretation of matrix-vector multiplication that can be
extremely useful. First, see what happens when a vector is multiplied by a scalar. Suppose
that

346 B. LINEAR ALGEBRA REVIEW

B ¼ 3
4

� �
:

You can plot the vector B on the Cartesian plane if you assume that the x-component of the
vector is the element in the first row and the y-component of the vector is the element in
the second row. Therefore, the vector B written as:

3
4

� �

is equivalent to the vector B ¼ ð3x̂þ 4ŷÞ; you may be more familiar with this notation from
physics. This results in the graph shown in Figure B.1.

Next, you multiply the vector B by a scalar, 2, to get:

2 � B ¼ 6
8

� �

If you plot this new vector alongside B, then you get the graph shown in Figure B.2.
Notice that multiplying a vector by a scalar changes only its length. It does not change

the direction of the vector. Now see what happens when a vector is multiplied by a matrix.
Let:

A ¼ 1 1
4 1

� �
;

so that

A � B ¼ 1 1
4 1

� �
� 3

4

� �
¼ 7

16

� �
:

10

8

6

4

2

0
1086420

FIGURE B.1 The vector B graphed.

347B.5. GEOMETRICAL INTERPRETATION OF MATRIX MULTIPLICATION

Since the matrix A is square, the product of A and B has the same dimensions as the vector
B (in this case both are 2 � 1). Therefore, you can plot the vectors A * B and B on the same
graph to obtain the result shown in Figure B.3.

Here, you can see that multiplication of vector B by the matrix A has resulted in rotating B
counterclockwise and stretching it out. Now try another example, where A is the same, but:

B ¼ 1
2

� �

so

A � B ¼ 1 1
4 1

� �
� 1

2

� �
¼ 3

6

� �
¼ 3 � 1

2

� �
¼ 3B:

10

8

6

4

2

0
1086420

FIGURE B.2 The vector B multiplied by a scalar (in this case 2).

20

15

10

5

0
0 5 10 15 20

FIGURE B.3 The vector B as well as the vector A * B.

348 B. LINEAR ALGEBRA REVIEW

If you plot B and A * B together, then you get the result shown in Figure B.4.
In this case, multiplication of the vector B by the matrix A is equivalent to multiplication

of B by a scalar, in this case 3. It is possible, then, that for a square matrix A, there may exist
a vector B and a lambda such that:

A � B ¼ lB

for some scalar l. Geometrically, this means that for a given matrix A, there is a vector B
that does not rotate when multiplied by A. The scalar l is called an eigenvalue of the
matrix A, and B is called an eigenvector of the matrix A corresponding to the eigenvalue
l. Before we have the necessary tools to determine the eigenvalues and eigenvectors of
a matrix systematically, we must first discuss the determinant and inverse of a square
matrix.

B.6. DETERMINANT

The determinant exists only for square matrices. For a 2� 2 matrix:

A ¼ a b
c d

� �
;

the determinant of A is written as follows: det(A) ¼ ad� bc.
For larger square matrices, the determinant is still defined and can be calculated using

the command det(A) in MATLAB. From now on, however, we will focus on 2 � 2 square
matrices, so the preceding definition of the determinant will suffice.

10

8

6

4

2

0
1086420

FIGURE B.4 The vector A * B (long) with eigenvector B (short).

349B.6. DETERMINANT

B.7. INVERSE

The inverse of a matrix D, D�1, is the matrix that, when multiplied with the original
matrix, equals the identity matrix. Note that to take the inverse of a matrix, the matrix must
be square (m�m). If:

D ¼ 2 3
5 7

� �
;

then its inverse is:

D�1 ¼ �7 3
5 �2

� �
:

So you have:

D �D�1 ¼ 1 0
0 1

� �
:

The function in MATLAB for the identity matrix is eye(n), where the value n determines
the dimension of the identity matrix. MATLAB will solve for the inverse of a matrix, if it
exists, with the function inv(A), where A is the matrix to be inverted.

For a 2 � 2 square matrix:

A ¼ a b
c d

� �
;

the inverse is given by:

A�1 ¼ 1

ad� bc

d �b
�c a

� �
¼ 1

det ðAÞ
d �b

�c a

� �
;

if det(A) 6¼ 0.

Note that:

A � A�1 ¼ a b
c d

� �
� 1

ad� bc

d �b
�c a

� �

¼ 1

ad� bc

a b
c d

� �
� d �b

�c a

� �

¼ 1

ad� bc

ad� bc 0
0 ad� bc

� �
¼ 1 0

0 1

� �
¼ I:

Note also from this example, then, if det(A) ¼ 0, then A�1 is undefined, since the inverse
is proportional to:

1

det ðAÞ :

350 B. LINEAR ALGEBRA REVIEW

In general, a square matrix A has an inverse if and only if det(A) 6¼ 0.

B.8. EIGENVALUES AND EIGENVECTORS

Recall that finding the eigenvalues and corresponding eigenvectors of a square matrix A
is equivalent to solving for l and B such that:

A � B ¼ lB (B.1Þ
Note that:

B ¼ 0
0

� �
;

the zero-vector, is a solution of Equation B.1 regardless of the matrix A, as long as A is 2 � 2.
This solution is called the trivial-solution, and will not be of interest here, so you will also
require that B is not the zero-vector when solving Equation B.1. Equation B.1 is equivalent to:

A � B ¼ lI � B; (B.2Þ
where I is the identity matrix. Moving the right side to the left gives:

A � B� lI � B ¼ ðA� lIÞ � B ¼ 0 (B.3Þ
If the matrix (A � lI) has an inverse, then multiplying through Equation B.3 by the inverse
gives:

ðA� lIÞ�1ðA� lIÞ � B ¼ ðA� lIÞ�1 � 0 ¼ 0 (B.4Þ
but a matrix multiplied by its inverse equals the identity matrix so:

I � B ¼ B ¼ 0: (B.5Þ
This is exactly the solution that you do NOTwant, which means that the only way for B 6¼ 0 is
if (A�lI) does not have an inverse. Recall that the matrix (A�lI) does not have an inverse if
and only if:

det ðA� lIÞ ¼ 0: (B.6Þ
Equation B.6 is called the characteristic equation of the matrix A. It is the only equation you
need to calculate the eigenvalues and eigenvectors of a matrix. Now, use it in an example
to solve for the eigenvalues and eigenvectors of the matrix

A ¼ 1 1
4 1

� �

shown inChapter 11, "Introduction to PhasePlaneAnalysis." PluggingA into EquationB.6 gives:

det
1 1
4 1

� �
� l

1 0
0 1

� �� �
¼ 0)

det
1� l 1
4 1� l

� �� �
¼ ð1� lÞ2 � 4 ¼ l2 � 2l� 3 ¼ 0:

351B.8. EIGENVALUES AND EIGENVECTORS

You can solve the quadratic equation for l to get l ¼ {�1, 3}. These are the eigenvalues of
the matrix A. You can solve for the corresponding eigenvectors as follows:
For l ¼ 3, Equation B.1 becomes:

A � B ¼ 3B:

Substitute A into the preceding equation and let:

B ¼ x
y

� �
:

The preceding equation becomes:

1 1
4 1

� �
x
y

� �
¼ 3

x
y

� �
) x þ y

4x þ y

� �
¼ 3x

3y

� �

Solving the system of equations gives y ¼ 2x. If you choose x ¼ 1, then y ¼ 2, and

B ¼ 1
2

� �

is a corresponding eigenvector to l ¼ 3. Notice how this agrees with what was discovered
earlier. Feel free to prove that the eigenvector for l ¼ –1 is:

B ¼ 1
�2

� �
:

Knowing the eigenvalues and eigenvectors of a given matrix is useful for many reasons.
For one thing, if l is an eigenvalue of the matrix A and v is an associated eigenvector, then
x ¼ eltv is a solution to the system of differential equations described by dx/dt ¼ Ax and
satisfies the initial condition x(t ¼ 0) ¼ v.

In MATLAB, the command [V,D] ¼ eig(A) will return two matrices: D and V. The ele-
ments of the diagonal matrix D are the eigenvalues of the square matrix A. The columns
of the matrix V are the corresponding eigenvectors. Therefore, A * V ¼ V * D.

B.9. EIGENDECOMPOSITION OF A MATRIX

Next, we will describe a powerful theorem called the Eigendecomposition Theorem. This
theorem follows:

For an n�n matrix A with distinct eigenvalues you can write:

A ¼ V �D � V�1;

where V is the square matrix whose columns are the eigenvectors of A and D is the square diagonal
matrix formed by placing the eigenvalues of A along the primary diagonal of D and letting all other
elements of D equal 0.

You can apply this theorem to the matrix

A ¼ 1 1
4 1

� �
:

352 B. LINEAR ALGEBRA REVIEW

First, you form the matrix V from the eigenvectors of A:

V ¼ 1 1
2 �2

� �
:

Using Equation B.4 gives you the inverse of V:

V�1 ¼ 1

�4

�2 �1
�2 1

� �
:

Next, you define D. Note that it is important to put the eigenvalues in the right order. Since
the first column of V is the eigenvector corresponding to l ¼ 3, this is the eigenvalue that
must appear in the first row of D. As long as you are consistent, it does not matter where
the eigenvalues or eigenvectors are placed within their respective matrices. Placing the
eigenvalues gives:

D ¼ 3 0
0 �1

� �
:

Finally, you can test the theorem by calculating V * D * V�1:

VDV�1 ¼ 1 1
2 �2

� �
3 0
0 �1

� �
1

�4

0
@

1
A � �2 �1

�2 1

� �

¼ 1

�4

0
@

1
A � 1 1

2 �2

� �
� 3 0

0 �1

� �� �
� �2 �1

�2 1

� �

¼ 1

�4
� 3 �1

6 2

� �
� �2 �1

�2 1

� �
¼ 1

�4
� �4 �4

�16 �4

� �
¼ 1 1

4 1

� �
¼ A:

Note that you can rearrange the Eigendecomposition Theorem to arrive at the equation
D ¼ V�1 * A * V, which is sometimes also useful.

353B.9. EIGENDECOMPOSITION OF A MATRIX

This page intentionally left blank

A P P E N D I X

C

Master Equation List

CHAPTER 6

lijðeÞ ¼ pðejsiÞ
pðejsjÞ ð6:1Þ

lijðeÞ ¼ stim�frequency
1� stim�frequency

� value�of�correct�rejection � value�of�false�alarm
value�of�hit� value�of�miss

ð6:2Þ

CHAPTER 7

f ðtÞ ¼ a0
2
þ
X1
n¼1

an cos ðntÞ þ
X1
n¼1

bn sin ðntÞ ð7:1Þ

Zp

�p
f ðtÞ cos ðmtÞdt ¼

Zp

�p

a0
2

cos ðmtÞdtþ
X1
n¼1

Zp

�p
cos ðmtÞan cos ðntÞdtþ

X1
n¼1

Zp

�p
cos ðmtÞbn sin ðntÞdt

ð7:2Þ
Zp

�p
f ðtÞ cos ðmtÞdt ¼ am

Zp

�p
cos 2ðmtÞdt ð7:3Þ

Zp

�p
f ðtÞ cos ðmtÞdt ¼ pam ð7:4Þ

am ¼ 1

p

Zp

�p
f ðtÞ cos ðmtÞdt ð7:5Þ

355

am ¼ 1

L

ZxþL

x�L
f ðtÞ cos p

L
mt

� �
dt ð7:6Þ

eiot ¼ cos otþ i sin ot ð7:7Þ

f ðtÞ ¼
X1

n¼�1
cne

int ð7:8Þ

cm ¼ 1

2p

Zp

�p
f ðtÞe�imtdt ð7:9Þ

cm ¼ 1

2L

ZxþL

x�L
f ðtÞe�ðipmt=LÞdt ð7:10Þ

Fk ¼ 1

N

XN�1
n¼0

fne
�i2pnN k ð7:11Þ

fn ¼
XN�1
k¼0

Fke
i2pnN k ð7:12Þ

FðoÞ ¼ jFðoÞj2 ¼ FðoÞF�ðoÞ ð7:13Þ

CHAPTER 8

Xðt;oÞ ¼
Z 1

�1
xðtÞwðt� tÞe�jotdt ð8:1Þ

Xðm;oÞ ¼
X1

n¼�1
xðnÞwðn�mÞe�jon ð8:2Þ

wðnÞ ¼ 0:53836� 0:46164 cos
2pn
N � 1

� �
ð8:3Þ

wðnÞ ¼ 0:5� 0:5 cos
2pn
N � 1

� �
ð8:4Þ

wðnÞ ¼ e�n
2 ð8:5Þ

CHAPTER 9

Z1

�1
cðxÞdx ¼ 0 ð9:1Þ

356 C. MASTER EQUATION LIST

Z1

�1
c2ðxÞdx ¼ 1 ð9:2Þ

Wðs; tÞ �
Z1

�1
xðuÞcs;tðuÞdu ð9:3Þ

cs;tðxÞ �
1ffiffi
s
p c

x� t

s

� �
ð9:4Þ

cðtÞ ¼ p�
1
4e�

1
2t
2

e�io0t ð9:5Þ

cðtÞ ¼ 1ffiffiffiffiffiffi
2p
p

s3
1� t2

s2

� �
e
�t2
2s2 ð9:6Þ

CHAPTER 10

yðtÞ ¼ hðtÞ � xðtÞ ¼
Z1

�1
hðtÞxðt� tÞdt ð10:1Þ

yðk; tÞ ¼ hðk; tÞ � xðk; tÞ ¼
Z1

�1

Z1

�1
hðt;KÞxðk� K; t� tÞdKdt ð10:2Þ

yðn1; n2Þ ¼
X1

k1¼�1

X1
k2¼�1

hðk1; k2Þxðn1 � k1; n2 � k2Þ ð10:3Þ

CHAPTER 11

d~C

dt
¼ 1

tC
ð�~C� k ~HÞ ð11:1Þ

d ~H

dt
¼ 1

tH
ð� ~H þ ~CÞ ð11:2Þ

~C ¼ C� L

kþ 1
; and ~H ¼ H � L

kþ 1
ð11:3Þ

dx

dt
¼ xþ y ð11:4Þ

dy

dt
¼ 4xþ y ð11:5Þ

357CHAPTER 11

xðtÞ ¼ C1e
3t þ C2e

�t ð11:6Þ
yðtÞ ¼ 2C1e

3t � 2C2e
�t ð11:7Þ

limt!1xðtÞ ¼ limt!1yðtÞ ¼ 0 ð11:8Þ
limt!1xðtÞ ¼ limt!1yðtÞ ¼ 1 ð11:9Þ

m ¼ dy

dt
=
dx

dt
¼ dy

dx
ð11:10Þ

CHAPTER 12

dv

dt
¼ cðv� 1

3
v3 þ rþ IÞ ð12:1Þ

dr

dt
¼ � 1

c
ðv� aþ brÞ ð12:2Þ

dx

dt
¼ axþ by ð12:3Þ

dy

dt
¼ cxþ dy ð12:4Þ

dx

dt
¼ f ðx; yÞ ð12:5Þ

dy

dt
¼ gðx; yÞ ð12:6Þ

f ðx; yÞ ¼ f ðxss; yssÞ þ @f ðxss; yssÞ
@x

ðx� xssÞ þ @f ðxss; yssÞ
@y

ðy� yssÞ þ ::: ð12:7Þ

gðx; yÞ ¼ gðxss; yssÞ þ @gðxss; yssÞ
@x

ðx� xssÞ þ @gðxss; yssÞ
@y

ðy� yssÞ þ ::: ð12:8Þ

f ðx; yÞ � @f ðxss; yssÞ
@x

ðx� xssÞ þ @f ðxss; yssÞ
@y

ðy� yssÞ ð12:9Þ

gðx; yÞ � @gðxss; yssÞ
@x

ðx� xssÞ þ @gðxss; yssÞ
@y

ðy� yssÞ ð12:10Þ

dx

dt
¼ dðx� xssÞ

dt
¼ @f ðxss; yssÞ

@x
ðx� xssÞ þ @f ðxss; yssÞ

@y
ðy� yssÞ ð12:11Þ

dy

dt
¼ dðy� yssÞ

dt
¼ @gðxss; yssÞ

@x
ðx� xssÞ þ @gðxss; yssÞ

@y
ðy� yssÞ ð12:12Þ

358 C. MASTER EQUATION LIST

ðx� xssÞ
0

ðy� yssÞ
0

" #
¼

@f ðxss; yssÞ
@x

@f ðxss; yssÞ
@y

@gðxss; yssÞ
@x

@gðxss; yssÞ
@x

2
66664

3
77775 �

ðx� xssÞ
ðy� yssÞ

� �
ð12:13Þ

u ¼ ðx� xssÞ
ðy� yssÞ

� �
and J ¼

@f

@x

@f

@y

@g

@x

@g

@y

2
6664

3
7775 ð12:14Þ

u
0 ¼ Jjðxss; yssÞ � u ð12:15Þ

CHAPTER 14

x ¼ 1

n

Xn
i¼1

xi ð14:1Þ

s2 ¼ 1

n

Xn
i¼1
ðxi � xÞ2 ð14:2Þ

s2 ¼ 1

n� 1

Xn
i¼1
ðxi � xÞ2 ð14:3Þ

s2 ¼ 1

n� 1
ðx� xÞTðx� xÞ ð14:4Þ

covðx; yÞ ¼ 1

n� 1

Xn
i¼1
ðxi � xÞðyi � yÞ ð14:5Þ

covðxÞ ¼ 1

n� 1
ðx� xÞTðx� xÞ ð14:6Þ

CHAPTER 15

PðSÞ ¼
X
R

Pðs; rÞ and PðRÞ ¼
X
S

Pðs; rÞ ð15:1Þ

HðSÞ ¼ �
X
S

PðsÞlog2 PðsÞ ð15:2Þ

HðSjrÞ ¼ �
X
S

PðsjrÞlog2 PðsjrÞ ð15:3Þ

359CHAPTER 15

HðSjRÞ ¼ �
X
R

X
S

PðrÞPðsjrÞlog2 PðsjrÞ ð15:4Þ

IðR; SÞ ¼ HðSÞ �HðSjRÞ ¼
X
R

X
S

PðrÞPðsjrÞlog2
PðsjrÞ
PðsÞ

� �
ð15:5Þ

IðR; SÞ ¼
X
R

X
S

Pðs; rÞlog2
Pðs; rÞ
PðsÞPðrÞ

� �
ð15:6Þ

CHAPTER 16

P
! ¼

Xn
i¼1

wi Ci

!
ð16:1Þ

PX ¼
Xn
i¼1

wi cos ðyiÞ and PY ¼
Xn
i¼1

wi sinðyiÞ ð16:2Þ

PðAjBÞ ¼ PðA;BÞ
PðBÞ ð16:3Þ

PðRjdÞ ¼
Yn
i¼1

PðrijdÞ ð16:4Þ

log½PðRjdÞ� ¼
Xn
i¼1

log½PðRijdÞ� ð16:5Þ

CHAPTER 17

ðXTXÞf ¼ XTY ð17:1Þ
f ¼ ðXTXÞ�1XTY ð17:2Þ

Ykþ1 ¼ Yk þ w;w � Nð0;WÞ ð17:3Þ
Ykþ1 ¼ Ykaþ w;w � Nð0;WÞ ð17:4Þ
Xk ¼ Ykhþ qk; q � Nð0;QÞ ð17:5Þ

h ¼ ðYTYÞ�1YTX ð17:6Þ
Q ¼ E½ðX � YhÞTðX � YhÞ� ð17:7Þ

w
ð jÞ
t ¼ pðxtjyt ¼ y

ð jÞ
t Þ ð17:8Þ

360 C. MASTER EQUATION LIST

CHAPTER 18

Fo ¼ gBo ð18:1Þ
voxel ¼ offsetþ gain� hemoþ e ð18:2Þ

CHAPTER 19

V ¼ IR ð19:1Þ
I ¼ gV ð19:2Þ

I ¼ gmax � Po � V ð19:3Þ
IK ¼ gK � n � V ð19:4Þ

ðKvÞclosed !
k1

k�1
ðKvÞopen ð19:5Þ

dn

dt
¼ ð1� nÞk1 � nk�1 ¼ k1 � ðk1 þ k�1Þn ð19:6Þ

k1 ¼ 0:01 � ðV þ 10Þ

exp
V þ 10

10

0
@

1
A� 1

k�1 ¼ 0:125 � exp V

80

0
@

1
A

ð19:7Þ

ðNavÞclosed !
k1

k�1
ðNavÞopen

ðNavÞinactive !
k1

k�1
ðNavÞopen

ð19:8Þ

INa ¼ gNa �m � h � V ð19:9Þ
dm

dt
¼ ð1�mÞk1 �mk�1 ¼ k1 � ðk1 þ k�1Þm

dh

dt
¼ ð1� hÞk1 � hk�1 ¼ k1 � ðk1 þ k�1Þh

ð19:10Þ

k1 ¼ 0:1 � ðV þ 25Þ

exp
V þ 25

10

0
@

1
A� 1

k�1 ¼ 4 � exp V

18

0
@

1
A

ð19:11Þ

361CHAPTER 19

k1 ¼ 0:07 � exp V

20

0
@

1
A

k�1 ¼ 1

exp
V þ 30

10

0
@

1
Aþ 1

ð19:12Þ

df

dx
¼ limDx!0

f ðxþ DxÞ � f ðxÞ
Dx

ð19:13Þ

df

dx
� f ðxþ DxÞ � f ðxÞ

Dx
) f ðxþ DxÞ � f ðxÞ þ Dx � df

dx
ð19:14Þ

df

dx
¼ 2x; where f ð0Þ ¼ 1 ð19:15Þ

f ðxþ DxÞ � f ðxÞ þ Dx � 2x ð19:16Þ
f ð0þ 0:1Þ � f ð0Þ þ 0:1 � 2 � 0) f ð0:1Þ � 1 ð19:17Þ

f ð0:1þ 0:1Þ � f ð0:1Þ þ 0:1 � 2 � 0:1) f ð0:2Þ � 1:02 ð19:18Þ
dy

dx
¼ f ðx; yÞ ð19:19Þ

yðxÞ ¼ yðxoÞ þ y0ðxoÞ
1!
� ðx� xoÞ þ y00ðxoÞ

2!
� ðx� xoÞ2 þ . . .þ yðnÞðxoÞ

n!
ðx� xoÞn ð19:20Þ

yðxo þ DxÞ ¼ yðxoÞ þ y0ðxoÞ
1!
� ðDxÞ þ y00ðxoÞ

2!
� ðDxÞ2 þ . . .þ yðnÞðxoÞ

n!
ðDxÞn ð19:21Þ

yðxo þ DxÞ � yðxoÞ þ y0ðxoÞ
1!
� ðDxÞ þ y00ðxoÞ

2!
� ðDxÞ2 ð19:22Þ

y00ðxoÞ ¼ @f ðxo; yoÞ
@x

þ @f ðxo; yoÞ
@y

y0ðxoÞ ¼ @f ðxo; yoÞ
@x

þ @f ðxo; yoÞ
@y

f ðxo; yoÞ ð19:23Þ

yðxo þ DxÞ � yðxoÞ þ f ðxo; yoÞ � ðDxÞ þ @f ðxo; yoÞ
@x

þ @f ðxo; yoÞ
@y

� f ðxo; yoÞ
� �

� ðDxÞ
2

2
ð19:24Þ

f ðxo þ a; yo þ bÞ ¼ f ðxo; yoÞ þ @f ðxo; yoÞ
@x

� aþ @f ðxo; yoÞ
@y

� bþ . . . ð19:25Þ

f ½xo þ Dx; yo þ Dx � f ðxo; yoÞ� ¼ f ðxo; yoÞ þ @f ðxo; yoÞ
@x

þ @f ðxo; yoÞ
@y

� f ðxo; yoÞ
� �

� Dx ð19:26Þ

Dx
2
f f ½xo þ Dx; yo þ Dx � f ðxo; yoÞ� � f ðxo; yoÞg ¼ @f ðxo; yoÞ

@x
þ @f ðxo; yoÞ

@y
� f ðxo; yoÞ

� �
� ðDxÞ

2

2

ð19:27Þ

362 C. MASTER EQUATION LIST

yðxo þ DxÞ � yðxoÞ þ f f ðxo; yoÞ þ f ½xo þ Dx; yo þ Dx � f ðxo; yoÞ�g � ðDxÞ
2

ð19:28Þ

yðxo þ DxÞ ¼ yðxoÞ þ 1

2
ðu1 þ u2Þ where

u1 ¼ Dx � f ðxo; yoÞ and

u2 ¼ Dx � f ðxo þ Dx; yo þ u1Þ

ð19:29Þ

yðxo þ DxÞ ¼ yðxoÞ þ 1

6
ðv1 þ 2v2 þ 2v3 þ v4Þ where

v1 ¼ Dx � f ðxo; yoÞ

v2 ¼ Dx � f xo þ Dx
2

; yo þ v1
2

0
@

1
A

v3 ¼ Dx � f xo þ Dx
2

; yo þ v2
2

0
@

1
A

v4 ¼ Dx � f ðxo þ Dx; yo þ v3Þ

ð19:30Þ

CHAPTER 20

VR ¼ IR ð20:1Þ
I ¼ gVR ð20:2Þ

VC ¼ 1

C

Z
IðtÞdt ð20:3Þ

X
Iin ¼

X
Iout ð20:4Þ

X
loop

V ¼ 0 ð20:5Þ

VM ¼ 1

CM

Z
IðtÞdt ð20:6Þ

I ¼ CM
dVM

dt
ð20:7Þ

VM ¼ VR þ ENa) VR ¼ VM � ENa ð20:8Þ
INa ¼ gNa � ðVM � ENaÞ ð20:9Þ
IK ¼ gK � ðVM � EKÞ ð20:10Þ

363CHAPTER 20

IL ¼ gL � ðVM � ELÞ ð20:11Þ
Iinj ¼ I þ INa þ IK þ IL ð20:12Þ

CM
dVM

dt
¼ �gNa � ðVM � ENaÞ � gK � ðVM � EKÞ � gL � ðVM � ELÞ þ Iinj ð20:13Þ

gK ¼ gK � n ð20:14Þ
dn

dt
¼ k1n � ðk1n þ k�1nÞn ð20:15Þ

gNa ¼ gNa �m � h ð20:16Þ
dm

dt
¼ k1m � ðk1m þ k�1mÞm

dh

dt
¼ k1h � ðk1h þ k�1hÞh

ð20:17Þ

Cm
dVM

dt
¼ �gNamhðVM � ENaÞ � gKnðVM � EKÞ � gLðVM � ELÞ þ Iinj

dn

dt
¼ k1n � ðk1n þ k�1nÞn

dm

dt
¼ k1m � ðk1m þ k�1mÞm

dh

dt
¼ k1h � ðk1h þ k�1hÞh:

ð20:18Þ

Cm
dVM

dt
¼ �gNam

3hðVM � ENaÞ � gKn
4ðVM � EKÞ � gLðVM � ELÞ þ Iinj

dn

dt
¼ k1n � ðk1n þ k�1nÞn

dm

dt
¼ k1m � ðk1m þ k�1mÞm

dh

dt
¼ k1h � ðk1h þ k�1hÞh:

ð20:19Þ

k1n ¼ 0:01 � ð10� VMÞ

exp
10� VM

10

0
@

1
A� 1

k�1n ¼ 0:125 � exp �VM

80

0
@

1
A

ð20:20Þ

364 C. MASTER EQUATION LIST

k1m ¼ 0:1 � ð25� VMÞ

exp
25� VM

10

0
@

1
A� 1

k�1m ¼ 4 � exp �VM

18

0
@

1
A

ð20:21Þ

k1h ¼ 0:07 � exp �VM

20

0
@

1
A

k�1h ¼ 1

exp
30� VM

10

0
@

1
Aþ 1

ð20:22Þ

CHAPTER 21

dC

dt
¼ 1

tc
ð�C� kH þ LÞ ð21:1Þ

dH

dt
¼ 1

tH
ð�H þ CÞ ð21:2Þ

~C ¼ C� L

kþ 1
and ~H ¼ H � L

kþ 1
ð21:3Þ

d~C

dt
¼ 1

tC
ð�~C� k ~HÞ ð21:4Þ

d ~H

dt
¼ 1

tH
ð� ~H þ ~CÞ ð21:5Þ

~Cð0Þ ¼ ~Hð0Þ ¼ L

kþ 1
ð21:6Þ

dx

dt
¼ xþ y ð21:7Þ

dx

dt
¼ 4xþ y ð21:8Þ

dx

dt

dy

dt

2
6664

3
7775 ¼

1 1
4 1

� �
x
y

� �
ð21:9Þ

365CHAPTER 21

x
y

� �
¼~v and A ¼ 1 1

4 1

� �
ð21:10Þ

d~v

dt
¼ A �~v ð21:11Þ

d~v

dt
¼ VDV�1 �~v ð21:12Þ

V�1
d~v

dt
¼ V�1VDV�1 �~v ¼ DV�1 �~v ð21:13Þ

d~u

dt
¼ D �~u ð21:14Þ

d~u

dt
¼

du1
dt

du2
dt

2
6664

3
7775 ¼

3 0
0 �1

� �
� u1

u2

� �
¼ 3u1
�u2

� �
) ð21:15Þ

du1
dt
¼ 3u1

du2
dt
¼ �u2

~u ¼ u1
u2

� �
¼ C1e

3t

C2e
�t

� �
ð21:16Þ

~v ¼ x
y

� �
¼ 1 1

2 �2
� �

� C1e
3t

C2e
�t

� �
¼ C1e

3t þ C2e
�t

2C1e
3t � 2C2e

�t

� �
¼ C1

1
2

� �
e3t þ C2

1
�2

� �
e�t) ð21:17Þ

xðtÞ ¼ C1e
3t þ C2e

�t

yðtÞ ¼ 2C1e
3t � 2C2e

�t

~v ¼ x
y

� �
¼ C1 � EV1 � el1t þ C2 � EV2 � el2t ð21:18Þ

C1

C2

� �
¼ V�1

xo
yo

� �
ð21:19Þ

CHAPTER 22

dv

dt
¼ 0:04v2 þ 5vþ 140� uþ I ð22:1Þ

du

dt
¼ aðbv� uÞ ð22:2Þ

366 C. MASTER EQUATION LIST

if v 	 30; then
v c

u uþ d

	
ð22:3Þ

CHAPTER 23

@v

@t
¼ f ðvÞ � rþ I þ @2v

@x2
ð23:1Þ

@r

@t
¼ av� br ð23:2Þ

d2vðxÞ
dx2

� vðxþ DxÞ � 2vðxÞ þ vðx� DxÞ
ðDxÞ2 ð23:3Þ

d2vj

dx2
� vjþ1 � 2vj þ vj�1

ðDxÞ2 ð23:4Þ

@v

@t
¼ 10 v� 1

3
v3 � rþD

@2v

@x2

� �
þ I ð23:5Þ

@r

@t
¼ p½aþ 1:25v� br� ð23:6Þ

@v

@t
¼ �vða� vÞð1� vÞ � rþD

@2v

@x2
ð23:7Þ

@r

@t
¼ bv� gr ð23:8Þ

CHAPTER 24

@f
@t
¼ Dr2f ð24:1Þ

@f
@t
¼ D

@2f
@x2

ð24:2Þ

ftime
space ð24:3Þ

ftþ1
x � ft

x

Dt
¼ D

�
ðft

xþ1 � ft
xÞ � ðft

x � ft
x�1Þ

�
ðDxÞ2 ð24:4Þ

ftþ1
x ¼ ft

x þD
Dt

ðDxÞ2 ðf
t
xþ1 � 2ft

x þ ft
x�1Þ ð24:5Þ

367CHAPTER 24

@f
@t
¼ B

@f
@x
þD

@2f
@x2

ð24:6Þ

CHAPTER 26

Pðx ¼ kÞ � lk

k!
e�l ð26:1Þ

Pðx
 kÞ � 1� e�lk ð26:2Þ

E½x� ¼
X1
x¼0

x
lx

x!
e�l ð26:3Þ

Var½x� ¼ E½x2� � ðE½x�Þ2; where E½x2� ¼
X1
x¼0

x2
lx

x!
e�l ð26:4Þ

1

Dt

Z tþDt

t

lðtÞdt ð26:5Þ

lðtjHÞ ð26:6Þ

l tjHð Þ ¼ f ðtjHÞ
1� R t

u0 f ðujHÞdu
ð26:7Þ

CHAPTER 27

f ðk; n; pÞ ¼ Cðn; kÞpkð1� pÞk ð27:1Þ

where Cðn; kÞ ¼ n
k

� �
¼ n!

k!ðn� kÞ! ð27:2Þ

@f
@t
¼ Dr2f ð27:3Þ

@f
@t
¼ D

@2f
@x2
þD

@2f
@y2

ð27:4Þ

ftime
space ð27:5Þ

ftþ1
x;y � ft

x;y

Dt
¼ D

�
ðft

xþ1;y � ft
x;yÞ � ðft

x;y � ft
x�1;yÞ

�
ðDxÞ2 þ

�
ðft

x;yþ1 � ft
x;yÞ � ðft

x;y � ft
x;y�1Þ

�
ðDyÞ2

2
4

3
5
ð27:6Þ

368 C. MASTER EQUATION LIST

ftþ1
x;y ¼ ft

x;y þDDt
ðft

xþ1;y � 2ft
x;y þ ft

x�1;yÞ
ðDxÞ2 þ ðf

t
x;yþ1 � 2ft

x;y þ ft
x;y�1Þ

ðDyÞ2
" #

ð27:7Þ

ftþ1
x;y ¼ ft

x;y þDDt
ðft

xþ1;y þ ft
x;yþ1 þ ft

x�1;y þ ft
x;y�1 � 4ft

x;yÞ
ðDxÞ2

" #
ð27:8Þ

CHAPTER 28

Dwij ¼ e � prei � postj ð28:1Þ

W ¼~g~f
T ð28:2Þ

W ¼~ggo
~f
T

green þ~gstop
~f
T

red þ~gslow
~f
T

yellow þ ::: ð28:3Þ

W~f green ¼~ggo
~f
T

green
~f green þ~gstop

~f
T

red
~f green þ~gslow

~f
T

yellow
~f green þ ::: ð28:4Þ

W~f green ¼ ! ggo � 1þ 0þ 0þ ::: ð28:5Þ
Dwij ¼ e � prei � postj � e � postj �wij ð28:6Þ

Dwij ¼ e � postj � ðprei � wijÞ ð28:7Þ

CHAPTER 29

Dwij ¼ eðtj � postjÞprei ð29:1Þ

369CHAPTER 29

This page intentionally left blank

References

PREFACE REFERENCES

Karpicke, J.D. and Roediger, H.L. (2008). The critical importance of retrieval for learning. Science, 319, 966–968.

CHAPTER 1 REFERENCES

Genesee, F. (1985). Second language learning through immersion: A review of U.S. programs. Review of Educational

Research, 55(4, Winter), 541–561.
Hubel, D.H. and Wiesel, T.N. (2004). Brain and visual perception: The story of a 25-year collaboration. New York: Oxford

University Press, 707.
Marr, D. (1982).Vision: A Computational Investigation into the Human Representation and Processing of Visual Information.

New York: W.H. Freeman and Company.

CHAPTER 2 REFERENCES

Berry, D.C. and Broadbent, D.E. (1984). On the relationship between task performance and associated verbalized
knowledge. The Quarterly Journal of Experimental Psychology, 36A, 209–231.

CHAPTER 3 REFERENCES

Donders, F.C. (1868). Over de snelheid van psychische processen. Onderzoekingen gedaan in het Physiolo-
gisch Laboratorium der Utrechtsche Hoogeschool, Tweede reeks, II, 92–120. Reprinted in and translated as
Donders, F.C. (1969). On the speed ofmental processes.Acta Psychologica, 30, Attention and Performance II, 412–431.

Shepard, R. and Metzler., J. (1971). Mental rotation of three dimensional objects. Science, 171(972), 701–703.
Treisman, A. and Gelade, G. (1980). A feature integration theory of attention. Cognitive Psychology, 12, 97–136.

CHAPTER 4 REFERENCES

Helmholtz, H. (1867). Handbuch der Physiologischen Optik. Hamburg: Voss.
James, W. (1890). The principles of psychology. Vol. 1. New York: Henry Holt.
Posner, M.I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32, 3–25.

371

CHAPTER 5 REFERENCES

Carpenter, R. and Robson, J. (1999). Vision Research: A Practical Guide to Laboratory Methods. New York: Oxford
University Press.

Fechner, G.T. (1860). Elemente der Psychophysik. Leipzig: Breitkopf und Härtel.
Hecht, Shlaer and Pirenne (1942). Energy, quanta, and vision. J. Gen. Physiol. 25, 819–840.
Norton, T.T., Corliss, D.A., and Bailey, J.E. (2002). The Psychophysical Measurement of Visual Function. Woburn, MA:

Butterworth-Heinemann.

CHAPTER 6 REFERENCES

Green, D.M. and Swets, J.A. (1966). Signal Detection Theory and Psychophysics. New York: John Wiley & Sons, Inc.
Fisher, R.A. (1925). Statistical Methods for Research Workers. Edinburgh: Oliver and Boyd.
Rosenthal, R. (1976). Experimenter Effects in Behavioral Research. New York: Irvington.
Ziliak, S.T. and McCloskey, D.N. (2008). The Cult of Statistical Significance. How the Standard Error Costs Us Jobs, Jus-

tice, and Lives. University of Michigan Press.

CHAPTER 7 REFERENCES

Van Drongelen, W. (2006). Signal Processing for Neuroscientists: An Introduction to the Analysis of Physiological Signals.

Hillenbrand, J., Getty, L.A., Clark, M.J., and Wheeler, K. (1995). Acoustic characteristics of American English
vowels. J. Acoust. Soc. Am., 97, 3099–3111.

Peterson, G.E. and Barney, H.L. (1952). Control methods used in a study of the vowels, J. Acoust. Soc. Am. 24,

175–184.

CHAPTER 8 REFERENCES

Van Drongelen, W. (2006). Signal Processing for Neuroscientists: An Introduction to the Analysis of Physiological Signals.
Burlington, MA: Academic Press.

CHAPTER 9 REFERENCES

Percival, D. andWalden, A. (2000).Wavelet Methods for Time Series Analysis. Cambridge: Cambridge University Press.
Quiroga, R., Nadasdy, Z., and Ben-Shaul, Y. (2004). Unsupervised spike detection and sorting with wavelets and

superparamagnetic clustering. Neural Computation, 16, 1661–1687.

CHAPTER 10 REFERENCES

Dayan, P. and Abbott, L.F. (2001). Theoretical neuroscience. Cambridge, MA: MIT Press.
Lotto, R.B., Williams, S.M., and Purves, D. (1999). An empirical basis for Mach bands. Proceedings of the National

Academy of Sciences USA, 96, 5239–5244.
Ratliff, F. (1965). Mach bands: Quantitative studies on neural networks in the retina. San Francisco, CA: Holden-Day.
Sekular, R. and Blake, R. (2002). Perception 4th Ed. New York: McGraw-Hill.

372 REFERENCES

CHAPTER 11 REFERENCES

(no references)

CHAPTER 12 REFERENCES

Fitzhugh, R. (1961). Impulses and physiological states in theoretical models of nerve membrane. Biophysical Journal,
1, 445–466.

CHAPTER 13 REFERENCES

Georgopoulos, A.P., Kalaska, J.F., Caminiti, R., and Massey, J.T. (1982). On the relations between the direction of
two-dimensional arm movements and cell discharge in primate motor cortex. The Journal of Neuroscience,
2(11), 1527–1537.

Hartline, H.K. (1940). The receptive fields of optic nerve fibers. American Journal of Physiology, 130, 690–699.

CHAPTER 14 REFERENCES

(no references)

CHAPTER 15 REFERENCES

Hatsopoulos, N.G., Ojakangas, C.L., Paninski, L., and Donoghue, J.P. (1998). Information about movement direction
obtained from synchronous activity of motor cortical neurons. Proceedings of the National Academy of Sciences
USA, 95(26), 15706–15711.

Optican, L.M. and Richmond, B.J. (1987). Temporal encoding of two-dimensional patterns by single units in
primate inferior temporal cortex. III. Information theoretic analysis. Journal of Neurophysiology, 57(1), 162–178.

Panzeri, S., Senatore, R., Montemurro, M.A., and Petersen, R.S. (2007). Correcting for the sampling bias problem in
spike train information measures. Journal of Neurophysiology, 98(3), 1064–1072.

Richmond, B.J. and Optican, L.M. (1987). Temporal encoding of two-dimensional patterns by single units in primate
inferior temporal cortex. II. Quantification of response waveform. Journal of Neurophysiology, 57(1), 147–161.

Richmond, B.J., Optican, L.M., Podell, M., and Spitzer, H. (1987). Temporal encoding of two-dimensional patterns
by single units in primate inferior temporal cortex. I. Response characteristics. Journal of Neurophysiology, 57(1),
132–146.

Shannon, C.E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27, 379–423, 623–656.

373REFERENCES

CHAPTER 16 REFERENCES

Georgopoulos, A.P., Schwartz, A.B., and Kettner, R.E. (1986). Neuronal population coding of movement direction.
Science, 233(4771), 1416–1419.

Hochberg, L.R., Serruya, M.D., Friehs, G.M., Mukand, J.A., Saleh, M., Caplan, A.H., et al. (2006). Neuronal ensem-
ble control of prosthetic devices by a human with tetraplegia. Nature, 442(7099), 164–171.

Papsin, B.C. and Gordon, K.A. (2007). Cochlear implants for children with severe-to-profound hearing loss. New

England Journal of Medicine, 357(23), 2380–2387.

CHAPTER 17 REFERENCES

Brockwell, A.E., Rojas, A.L., and Kass, R.E. (2004). Recursive Bayesian decoding of motor cortical signals by particle
filtering. Journal of Neurophysiology, 91(4), 1899–1907.

Brown, E.N., Frank, L.M., Tang, D., Quirk, M.C., and Wilson, M.A. (1998). A statistical paradigm for neural spike
train decoding applied to position prediction from ensemble firing patterns of rat hippocampal place cells.
The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 18(18), 7411–7425.

Georgopoulos, A.P., Kettner, R.E., and Schwartz, A.B. (1988). Primate motor cortex and free arm movements to
visual targets in three-dimensional space. II. Coding of the direction of movement by a neuronal population.
The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 8(8), 2928–2937.

Hochberg, L.R., Serruya, M.D., Friehs, G.M., Mukand, J.A., Saleh, M., Caplan, A.H., et al. (2006). Neuronal ensem-
ble control of prosthetic devices by a human with tetraplegia. Nature, 442(7099), 164–171.

Serruya, M.D., Hatsopoulos, N.G., Paninski, L., Fellows, M.R., and Donoghue, J.P. (2002). Instant neural control of
a movement signal. Nature, 416(6877), 141–142.

Warland, D.K., Reinagel, P., and Meister, M. (1997). Decoding visual information from a population of retinal gan-
glion cells. Journal of Neurophysiology, 78(5), 2336–2350.

Wu, W., Shaikhouni, A., Donoghue, J.P., and Black, M.J. (2004). Closed-loop neural control of cursor motion using
a Kalman filter. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and

Biology Society, 6, 4126–4129.

CHAPTER 18 REFERENCES

Kwong, K.K., et al. (1992). Dynamic magnetic resonance imaging of human brain activity during primary sensory
stimulation. Proceedings of the National Academy of Science USA, 89(12), 5675–5679.

Ogawa, S., et al. (1992). Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with
magnetic resonance imaging. Proceedings of the National Academy of Science USA, 89(13), 5951–5955.

Smith, S.M. (2004). Overview of fMRI analysis. British Journal of Radiology, 77(Spec. No. 2), S167–175.

CHAPTER 19 REFERENCES

Hodgkin, A.L. and Huxley A.F. (1952). A quantitative description of membrane current and its application to con-
duction and excitation in nerve. Journal of Physiology, 116, 500–544.

374 REFERENCES

CHAPTER 20 REFERENCES

Hodgkin, A.L. and Huxley, A.F. (1952). A quantitative description of membrane current and its application to
conduction and excitation in nerve. Journal of Physiology, 117, 500–544.

Hodgkin, A.L. and Katz, B. (1949). The effect of sodium ions on the electrical activity of the gaint axon of the squid.
Journal of Physiology, 108(1), 37–77.

CHAPTER 21 REFERENCES

(no references)

CHAPTER 22 REFERENCES

Izhikevich, E.M. (2003). Simple model of spiking neurons. IEEE Transactions on Neural Networks, 14(6), 1569–1572.

CHAPTER 23 REFERENCES

Murray, J.D. (2002). Mathematical biology I: An introduction. New York: Springer-Verlag.
Strauss, W.A. (1992). Partial differential equations: An introduction. New York: John Wiley & Sons, Inc.
Wilson, H.R. (1999). Spikes, decisions, and actions: Dynamical foundations of neuroscience. Oxford: Oxford University Press.

CHAPTER 24 REFERENCES

Shadlen, M.N. and Newsome, W.T. (2001). Neural basis of a perceptual decision in the parietal cortex (area LIP) of
the rhesus monkey. Journal of Neurophysiology, 86(4), 1916–1936.

Swensson, R. (1972). The elusive tradeoff: Speed vs accuracy in visual discrimination tasks.Perception&Psychophysics.

Jul Vol 12(1-A), 16–32.

CHAPTER 25 REFERENCES

(no references)

CHAPTER 26 REFERENCES

Brown, E.N., Barbieri, R., Ventura, V., Kass, R.E., and Frank, L.M. (2002). The time-rescaling theorem and its
application to neural spike train data analysis. Neural. Comput. 14, 325–346.

Donald E. Knuth (1969). Seminumerical Algorithms. The Art of Computer Programming, Volume 2. Addison
Wesley.

375REFERENCES

CHAPTER 27 REFERENCES

del Castillo, J. and Katz, B. (1954). The effect of magnesium on the activity of motor nerve endings. J. Physiol (Lond),
124, 553–559.

del Castillo, J. and Katz, B. (1954). Quantal components of the end-plate potential. J Physiol, 124, 560–573.
Fatt, P. and Katz. B. (1952). Spontaneous sunthershold activity at motor nerve endings. J Physiol (Lond), 117, 109–128.

CHAPTER 28 REFERENCES

Anderson, J.A., et al. (1977). Distinctive features, categorical perception, and probability learning: Some applica-
tions of a neural model. Psychological Review, 84, 413–451.

Bliss, T.V. and Lomo, T. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the anaes-
thetized rabbit following stimulation of the perforant path. Journal of Physiology, 232(2), 331–356.

Gauthier, I., Behrmann, M., and Tarr, M.J. (2004). Are Greebles like faces? Using the neuropsychological exception
to test the rule. Neuropsychologia, 42(14), 1961–1970.

Gauthier, I. and Tarr, M.J. (1997). Becoming a “Greeble” expert: Exploring mechanisms for face recognition. Vision
Research, 37(12), 1673–1682.

Hebb, D.O. (1949). Organization of behavior. New York: John Wiley & Sons.
James, W. (1890). The principles of psychology. New York: Henry Holt & Sons, Inc.
Rumelhart, D.E. and Zipser, D. (1985). Feature discovery by competitive learning. Cognitive Science, 9, 75–112.

CHAPTER 29 REFERENCES

Adrian, E.D. and Matthews, R. (1927). The action of light on the eye: Part I. The discharge of impulses in the optic
nerve and its relation to the electric changes in the retina. Journal of Physiology, 63(4), 378–414.

Albus, J.S. (1971). A theory of cerebellar function. Math. Biosci. 10, 25–61.
Hebb, D.O. (1949). Organization of behavior. New York: John Wiley & Sons.
Ito, M. and Kano, M. (1982). Long-lasting depression of parallel fiber-Purkinje cell transmission induced by con-

junctive stimulation of parallel fibers and climbing fibers in the cerebellar cortex. Neuroscience Letters, 33(3),
253–258.

Krupa, D.J., Thompson, J.K., and Thompson, R.F. (1993). Localization of a memory trace in the mammalian brain.
Science, 260(5110), 989–991.

Marr, D. (1969). A theory of cerebellar cortex. J Physiol. Jun:202(2), 437–470.
McCulloch, W.S. and Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. Bulletin of Math-

ematical Biophysics, 5, 115–133.
Medina, J.F., et al. (2000). Mechanisms of cerebellar learning suggested by eyelid conditioning. Current Opinions

in Neurobiology, 10(6), 717–724.
Minsky, M. and Papert, S. (1969). Perceptrons: An introduction to computational geometry. Cambridge, MA: MIT

Press.
Ojakangas, C.L. and Ebner, T.J. (1992). Purkinje cell complex and simple spike changes during a voluntary arm

movement learning task in the monkey. Journal of Neurophysiology, 68(6), 2222–2236.
Ojakangas, C.L. and Ebner, T.J. (1994). Purkinje cell complex spike activity during voluntary motor learning:

Relationship to kinematics. Journal of Neurophysiology, 72(6), 2617–2630.

376 REFERENCES

Rescorla, R.A. andWagner, A.R. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforce-
ment and nonreinforcement. In Black, A. and Prokasy, W.F. (Eds.), Classical conditioning II (64–69). New York:
Appleton-Century-Crofts.

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain.
Psychological Review, 65, 386–408.

Widrow, B. and Hoff, M.E. (1960). Adaptive switching circuits. In IRE WESCON Convention Record. New York:
IRE, 96–104.

377REFERENCES

This page intentionally left blank

Index

Note: Page numbers in bold denote chapter ranges. The letters ‘f ’ and ‘t’ denote Figures or Tables.

A
Action potential, see Fitzhugh-

Nagumo model; Neuron
action potential modeling

Addition, 9
Alpha error, 99, 99t
Alpha rhythm, 255
Amplitude spectrum, analysis,

121–122
Analysis of variance,

73, 75, 75t
anova1, 73, 75
anova2, 77
anovan, 77
ans =, 9–13
Array

operations versus matrix
operations, 22

subset extraction, 344
Artificial neural network, see Neural

network
Attention, see Posner paradigm

B
Backpropagation, neural networks,

330–331
bar, 30, 31, 32
bench, 88
Bernoulli random variables, 300
Beta error, 99, 99t
Beta rhythm, 255
Bias, information theory, 199–200
Binomial random variable, 301
Birdsong

Markov model, 285f, 286, 287
sonogram structure,

284, 285f
BOLD signal, 221

C
C, features and MATLAB

comparison, 341
cart2pol, 148
cat, 327
Center, nongeneric equilibrium,

155, 161f
Centered second difference, 262
Characteristic equation, matrix,

351–352
circshift, 88, 89, 90
clear all, 24
close all, 29, 42
colormap, 145, 190
Competitive learning rule, 310–311,

311f, 312f
Complex Fourier transform,

119–120
Conditional distribution, 197,

197t
Cone, see Retina models
Continuous wavelet transform

(CWT), 134
Control structures, 34–38
conv, 195
conv2, 148, 149
Convolution, 141–152

equation list, 357
Mach band illusion

overview,
143–144, 143f

reproduction with MATLAB
exercises, 144–150
project, 151–152

overview, 141–144
visual system and receptive

fields, 142–143
corrcoef, 45, 46, 64
cumsum, 145, 150

Curve fitting, neural encoding data,
177–179

cwt, 138
(CWT), see Continuous wavelet

transform

D
Data import, 44
Data pruning, 45
Decision theory, 275–282

equation list, 367–368
MATLAB exercises

cortical models, 280
diffusion, 278–280
model formulation,

276–280
project, 281
race model

alternatives, 277
overview,

276–277
problems, 277

random walks, 278
overview, 275

Decoding, see Neural decoding
Delta rhythm, 255
demolin1, 320
det, 349
Determinant, matrix, 349
DFT, see Discrete Fourier transform
diff, 192
Difference of Gaussians function,

see Mexican hat function
Differential equations

MATLAB built-in ordinary
differential equation
solvers, 265–266

solution methods, 232

379

Diffusion
decision theory, 278–280
neurotransmitter modeling,

303–305, 305f
Discrete Fourier transform (DFT),

120
Discrete wavelet transform (DWT),

138
Division, 9
double, 342
Downstroke, action potential, 239
drawnow, 303
DWT, see Discrete wavelet

transform
dwt, 138

E
EEG, see Electroencephalogram
eig, 186, 251, 352
Eigendecomposition, matrix,

352–353
Eigenvalue, matrix, 349, 351–352
Eigenvector, matrix, 349, 349f,

351–352
Electroencephalogram (EEG),

MATLAB analysis, 130,
140

else, 37
Encoding, see Neural encoding
end, 34–38
Entropy, information theory, 198
=, 18
Ergodicity, 126
error, 253
Euler’s method, differential

equation solution, 232,
257

Evidence accumulation, decision
theory, 275

Exponentials, 10, 11
exprnd, 295

F
Falling phase, action potential, 239
Fast Fourier transform, 120–121
Fechner, Gustav Theodor,

79–81, 80f
feval, 236, 237, 238
fft, 120–121
figure, 29, 42, 46, 61
filter, 87
find, 25, 26, 190, 259, 344

Fitzhugh-Nagumo model
phase plane analysis of action

potential generation,
163–172

equation list, 358–359
MATLAB

pplane7 program, 165–168,
166f, 167f, 168f, 171f

project, 169–171
overview, 163–165

travelingwavemodeling, 261–274
equation list, 367
MATLAB

built-in ordinary differential
equation solvers, 265–266

exercises, 267–269
project, 269–273

overview, 261–262
second derivative operator,

262–269, 263f
fliplr, 150
flipud, 150
Floating-point numbers,

representation, 342–344,
342f

floor, 301
fMRI, see Functional magnetic

resonance imaging
for, 38, 145, 146, 156, 343, 344
Formants

speech sounds, 123–124
vowels, 124t

format, 11, 32
FORTRAN, features and MATLAB

comparison, 341
Fourier decomposition, 115–124,

125–132

amplitude spectrum analysis,
121–122

complex Fourier transform,
119–120

equation lists, 355–356
fast Fourier transform, 120–121
inverse discrete Fourier

transform, 121
MATLAB project, 123–124
nonstationary signal analysis

Gaussian window, 128
Hamming window, 128
Hann window, 128
MATLAB

electroencephalogram
analysis, 130

exercises, 128–130
overview, 125–128
short-time Fourier transform,

127, 130, 133
phase analysis, 122–123, 123f
power spectrum analysis, 122
real Fourier series, 117–119

fplot, 51, 52
Frequency analysis, see Fourier

decomposition; Wavelet
fspecial, 152
Function

function, 34
handles, 50–53
overview, 32

Functional magnetic resonance
imaging (fMRI), 219–226

applications, 219–221
BOLD signal, 221
equation list, 361
experimental design, 221
MATLAB analysis

data collection, 225
exercises, 222–224
project, 224–225

physics, 220–221
preprocessing of signal, 221

Fundamental error, 100

G
Gabor transform, 128
Gamma rhythm, 255
Gating variable, 229
Gaussian window, 128
Generic equilibria, 155
get, 65
glmfit, 224
Graphics

advanced plotting, 38
basic visualization, 27–32

H
hamming, 128
Hamming window, 128
Hann window, 128
Hebbian learning rule, 308–310
help, 9, 16, 54
help waveform, 138
Hidden Markov model (HMM),

287–288, 289
hist3, 189

380 INDEX

histc, 175, 208
hit, 32
HMM, see Hidden

Markov model
hmmdecode, 289
hmmgenerate, 290
hmmtrain, 289, 290
hmmviterbi, 289
Hodgkin-Huxley model, see Neuron

action potential modeling
hold, 32
hold off, 29
hold on, 29, 42, 238
Hopfield network, 312, 314
Horizontal cell, see Retina models

I
idwt, 138
if, 37
if, elseif, 261, 264
ifft, 121
im2frame, 89
image, 82, 88
imagesc, 138, 145
imfilter, 152
imread, 82
imwrite, 90
Information theory, 193–202

bias, 199–200
equation list, 359–360
MATLAB

exercises, 201–202
project, 202

motor cortical data, 194–195
principal components of

functions, 193, 202
probability distributions, 196–197
raster plot, 194f
Shannon theory, 197–199
shuffle correction, 200–201, 201t
spike density functions, 195–196,

196f
initcon, 313
Interactiveprograms,user input, 41–44
inv, 252, 350–351
Inverse discrete Fourier transform,

121
Ion channels, see Voltage-gated ion

channels
isnan, 45
isreal, 160

J
Jacobian matrix, 165
Joint probability distribution, 196

K
Kalman filter, 215
Kirchoff’s Loop Rules, 242, 243

L
Lambda, Poisson distribution

parameterization,
292–293

Lamour frequency, 220
learnb, 329
learnp, 324, 326
learnr, 329
length, 16
Likelihood ratios, 107, 108, 108t,

110, 110t
Limit cycle, 165
Linear algebra, see Matrices
Linear filter approach, neural

decoding, 213, 217
linspace, 17, 150
load, 16
Logical operators, syntax, 26
logspace, 17
Long-term depression, 310–311

M
Mach band illusion

overview, 143–144, 143f
reproduction with MATLAB

exercises, 144–150
project, 151–152

Magnetic resonance imaging,
see Functional magnetic
resonance imaging

Marginal distribution, 197, 197t
Markov model, 283–290

birdsong, 285f, 286, 287
MATLAB

exercises
bursting modeling, 288
hidden Markov model,

287–288, 289
tonic firing modeling, 288

project, 290
overview, 283–287

markov_sequence, 290
Master equation list, 355–370

Mathematica, features and
MATLAB comparison,
340

MATLAB
calculator functions, 9–13
launching, 8–9
learning approaches, 1–6
purpose and philosophy, 7–8

Matrices
addition, 346
algebra, 19–24, 345–354
characteristic equation, 351–352
defining, 13–19
determinant, 349
dimensions, 345
eigendecomposition, 352–353
eigenvalue, 349, 351–352
eigenvector, 349, 349f, 351–352
indexing, 24–27
inverse, 350–351
multiplication

geometric interpretation,
346–349, 347f, 348f

overview, 345–346
operations

taking advantage of, 343
versus array operations, 22

transposition, 346
max, 62
Maximum likelihood algorithm,

neural decoding, 206–208
Mean, 184
mean, 47, 62
memory, 89
mesh, 39, 279
meshgrid, 147, 150,

156, 158
Mexican hat function, 142,

146f, 148
Mexican hat wavelet, 135
M-files, 32
min, 62
Morlet wavelet, 135, 135f
Mother wavelet, 134
Motif, birdsong, 284
movie, 89
movie2avi, 90
Multiplication, 9
Mutual information, information

theory, 198
mvnpdf, 216
mvnrand, 185
mvnrnd, 216

381INDEX

N
Natural logarithm, 10
Neural decoding

continuous variables, 211–218
equation list, 360
linear filter, 213, 217
MATLAB project, 217
overview, 211–217
particle filter, 214–217

discrete variables, 203–210
equation list, 360
MATLAB analysis

data features, 208
exercises, 209

maximum likelihood
algorithm, 206–208

overview, 203–208
peri-stimulus time histogram,

204f
population vector algorithm,

205–206
raster plot, 204f

Neural encoding, 173–182
MATLAB analysis

curve fitting, 177–179
peri-stimulus time histogram,

175, 176f
project, 179–181
Raster plot, 174–175,

175f, 180f
tuning curves, 176–179, 176f

overview, 173
rate encoding, 205
temporal encoding, 205

Neural network
feedforward versus recurrent

architecture, 311–313
Hopfield network, 312, 314
overview, 307–313
supervised learning, 319–338

backpropagation, 330–331
equation list, 369
linear network creation,

325–330, 327f, 328f
MATLAB

project, 335–337
soundmanipulation, 332–335

multi-layer supervised
networks, 321, 321f

neurobiology, 321–322
perceptron creation, 322–325,

325f
perceptron learning rule, 319

single-layer supervised
networks, 319–321, 320t

Widrow-Hoff learning rule,
320

unsupervised learning, 307–318

competitive learning rule,
310–311, 311f, 312f

equation list, 369

Hebbian learning rule, 308–310

MATLAB
competitive learning and

multilayer networks,
313–314

Neural Network Toolbox,
313

project, 315–317

recurrent network, 314
Neuron action potential modeling,

239–246

action potential phases, 239
equation list, 363–365

Hodgkin-Huxley model, 240–245,
244t

MATLAB
exercises, 245–246

project, 246

spike train modeling with
Poisson process, 291–298

equation list, 368

interspike interval generation,
295–296

MATLAB project, 297

nonhomogeneous processes,
296

overview, 291–293

Poisson distribution

intervals between events, 293
properties, 292–293

Poisson variable generation
without statistics toolkit,
294–295

random variable generation,
293–294

Neuron spikes, see Spiking neurons
Neurotransmitter release,

see Synaptic transmission

newc, 313
newff, 330

newhop, 314

nlinfit, 177–179, 217

Nodal sink, 155, 157f
Nodal source, 155, 158f

normcdf, 101

normpdf, 100, 101, 209
normrnd, 183, 217
Nyquist limit, 121

O
Observation equation, particle

filter, 215
Octave, features and MATLAB

comparison, 339–340
ode45, 265, 267
Ohm’s law, 230, 241
Optic nerve, 247

P
Particle filter approach, neural

decoding, 214–217
pause, 38, 64
PCA, see Principal components

analysis
Perceptron learning rule, 319
Peri-stimulus time histogram

(PSTH), neural encoding
data, 175, 176f

Peri-stimulus time histogram, 204f
Phase analysis, 122–123, 123f
Phase plane analysis, 153–162

equation list, 357–358
Fitzhugh-Nagumomodel, 163–172

MATLAB
pplane7 program, 165–168,

166f, 167f, 168f, 171f
project, 169–171

overview, 163–165
retinal feedback model

MATLAB
exercises, 155–160
project, 161–162

overview, 153–155
Pitch, auditory signals, 117
plot, 27, 32, 260
plot3, 316
plot_cwt, 138
Poisson process, spike train

modeling, 291–298
interspike interval generation,

295–296
MATLAB project, 297
nonhmogeneous processes, 296
overview, 291–293
Poisson distribution

intervals between events, 293
properties, 292–293

382 INDEX

Poisson process, spike train
modeling (Continued)

Poisson variable generation
without statistics toolkit,
294–295

random variable generation,
293–294

poisspdf, 209

poissrnd, 293–294, 306

polyfit, 177–179

Population vector algorithm, neural
decoding, 205–206

Posner paradigm, 71–78

overview, 72, 72f

replication in MATLAB

exercises, 72–75

project, 75–77

Potassium channels, see Neuron
action potential
modeling; Voltage-gated
ion channels

Power spectrum, analysis, 122

pplane7 program, 165–168, 166f,
167f, 168f, 171f

Principal components analysis
(PCA), 183–192

equation list, 359

information theory and principal
components of functions,
193, 202

MATLAB

exercises, 191

spike sorting of neural data,
188–190, 191–192

principles

covariance matrices, 183–186

principal components,
186–188

princom, 188, 191

Probability distribution function,
library, 82

Probability mass function,
292, 301

PSTH, see Peri-stimulus time
histogram

Psychophysics, 79–96

absolute threshold of vision
determination, 92–95

overview, 79–81

visual stimuli creation and
presentation on screen,
81–91

pwelch, 223

Python, features and MATLAB
comparison, 340

Q
quad, 51, 52
quiver, 156, 158, 159, 162f

R
Race model

alternatives, 277
overview, 276–277
problems, 277

rand, 64, 259
randn, 64, 177–179
Raster plot, 174–175, 175f, 180f, 194f,

204f
Rate encoding, 205
Reaction diffusion equation, 261
Real Fourier series, 117–119
real, 335
Receiver operating characteristic

(ROC) curve, 103, 104,
104f, 105, 105f, 112f

Receptive field, vision, 142–143
rectangle, 72
Relational operators, 26
repmat, 185
reshape, 222, 270, 273
Retina models, 247–254

cone cell-horizontal cell
interactions

equations, 248–249
mathematical background,

249–251
MATLAB

exercises, 251–252
project, 252–253

equation list, 365–366
neurobiology, 247–248
retinal feedback model, 153–162

MATLAB
exercises, 155–160
project, 161–162

overview, 153–155
RF pulse, 220
Rhodopsin, 247
Rising phase, action potential, 239
ROC curve, see Receiver operating

characteristic curve
Runge-Kutta method, differential

equation solution,
233, 235

S
Saddle point, 154, 156f
Sample covariance, 185
Sample variance, 184
save, 15
Scalogram, 136–138, 136f
Scripts, 32, 33
set, 39, 65, 303
Short-time Fourier transform

(STFT), 127, 130, 133
Shuffle correction, information

theory, 200–201, 201t
Signal detection theory, 97–114

equation list, 355
MATLAB application

distributions of signal absent
versus signal present,
102f

exercises, 100–112
frequency distribution

histograms,
107, 109f

likelihood ratios, 107, 108,
108t, 110, 110t

project, 112–113
receiver operating

characteristic curve, 103,
104, 104f, 105, 105f, 112f

overview, 97–100
payoff matrix, 98t

Significance level, 99
sim, 314
size, 16
Sodium channels, see Neuron action

potential modeling;
Voltage-gated ion
channels

Sodium reversal potential, 240
sound, 332, 333
spectrogram, 128, 129, 129f, 140,

321f, 334, 335, 336f
Spiking neurons

neural encoding, 174–175
principal components analysis

for spike sorting, 188–190,
191–192

simplified model, 255–260
equation list, 366–367
MATLAB exercises, 257–260
overview, 255–257

spike train, 284f
spike train modeling, see Neuron

action potential modeling

383INDEX

Spiral sink, 155
Spiral source, 155
sqrt, 22
Square-integrable function, 133
Standard deviation, 184
State equation, particle filter, 214
STFT, see Short-time Fourier

transform
strcomp, 67
subplot, 38, 179–181
Subset, extraction from array, 344
Subtraction, 9
Supervised learning, see Neural

network
surf, 39, 305
surface, 189
switch, 261, 264, 273
Syllable, birdsong, 284
Synaptic transmission, 299–306

neurotransmitter release
modeling

Bernoulli random variables,
300

combination with diffusion
modeling, 330–331

diffusion modeling, 303–305,
305f

equation list, 368–369
Poisson random variables,

101
principles, 300
single molecule motion

modeling, 302–303, 303f
overview, 299
synaptic cleft, 299

T
Taylor series expansion, 234, 235
Temporal encoding, 205
text, 65
Theta rhythm, 255
Threshold of vision,

see Psychophysics

tic, 60
Time histogram, 175
toc, 60
train, 326, 328
trainb, 329, 331
traingd, 331
traingdm, 331
Trajectory, solution on phase plane,

155, 170f
Transposition, matrix, 346
Trigonometric functions, 11
ttest2, 73
Tuning curves, neural encoding

data, 176–179, 176f

U
uint8, 81, 83, 86
Undershoot, action potential, 239
Unsupervised learning, see Neural

network
upazila, 83, 84, 85
Upstroke, action potential, 239

V
var, 185
Variance, 184
vec2ind, 314
Visual psychophysics,

see Psychophysics
Visual search and pop-out

paradigm, 57–70
overview, 59–60
replication in MATLAB

exercises, 60–67
project, 67–68

Voltage-gated ion channels,
227–238

equation list, 361–363
modeling

action potentials in single
neuron, see Neuron action
potential modeling

differential equation solution
methods, 232–235

Kv channel, 230–231
MATLAB

exercises,
236–238

project, 238
Nav channel, 231–232
Ohm’s law, 230

overview, 229–235

W
wavedec, 138
wavedemo, 139
Wavelet, 133–140

continuous wavelet transform,
134

definition, 133–134
discrete wavelet transform, 138
equation list, 356–357
MATLAB

electroencephalogram
analysis, 140

exercises, 139–140
Wavelet Toolbox,

138–139
Mexican hat wavelet, 135
Morlet wavelet,

135, 135f
mother wavelet, 134
scalogram, 136–138, 136f

waverec, 138
wavread, 128, 334
while, 34–38
who, 16, 33
Widrow-Hoff learning rule, 320
why, 54

X
xcorr, 223
xcov, 223, 223f
xlsread, 316

384 INDEX

0.5

1

1.5

2

2.5

3

3.5

0.5

1

1.5

2

2.5

3

3.5

0.5

1

1.5

2

2.5

3

3.5

0.5

1

1.5

2

2.5

3

3.5

1 2 3

1 2 3

1 2 3

1 2 3

FIGURE 5.2 Testing the ray guns with matrices interpreted as images.

200 400 600 800 1000

200 400 600 800 1000 200 400 600 800 1000

200 400 600 800 1000

200

400

600

800

200

400

600

800

200

400

600

800

200

400

600

800

FIGURE 5.3 The University of Chicago Harper Library in red, green, and blue.

200 400 600 800 1000

200 400 600 800 1000 200 400 600 800 1000

200 400 600 800 1000

200

400

600

800

200

400

600

800

200

400

600

800

200

400

600

800

FIGURE 5.4 The University of Chicago Harper Library without red, green, and blue information.

200 400 600 800 1000

200 400 600 800 1000 200 400 600 800 1000

200 400 600 800 1000

200

400

600

800

200

400

600

800

200

400

600

800

200

400

600

800

FIGURE 5.5 Brightening and darkening any or all ray guns has a profound effect.

100 200 300 400 500 600 700 800

100

200

300

400

500

600
100 200 300 400 500 600 700 800

100

200

300

400

500

600

100 200 300 400 500 600 700 800

100

200

300

400

500

600
100 200 300 400 500 600 700 800

100

200

300

400

500

600

FIGURE 5.6 Information about texture is carried in different spatial frequency channels.

FIGURE 5.7 You can use circshift to shift colors.

2

2.5

3

1.5

N
or

m
al

iz
ed

 fr
eq

ue
nc

y
(>

π
ra

d/
sa

m
pl

e)

1

0.5

0
20001000 3000 4000 5000

Time
6000 7000 8000 9000

FIGURE 8.3 The spectrogram of the bird vocalization using the spectrogram function.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

20

40

60

80

100

120

140

160

180

200

FIGURE 9.2 Scalogram for sinusoid þ transient signal in text.

FIGURE 28.6 Meet the Greebles. Image courtesy of Michael J. Tarr, Brown University, http://www.tarrlab.org/

FIGURE 28.7 The anatomy of a Greeble. Image courtesy of Michael J. Tarr, Brown University, http://www.
tarrlab.org/

	Front Cover
	MATLAB for Neuroscientists
	Copyright Page
	Contents
	Preface
	About the Authors
	How to Use This Book
	Part I: Fundamentals
	Chapter 1: Introduction
	Chapter 2: MATLAB Tutorial
	Goal of This Chapter
	Basic Concepts
	Graphics and Visualization
	Function and Scripts
	Data Analysis
	A Word on Function Handles
	The Function Browser
	Summary
	MATLAB Functions, Commands, and Operators Covered in This Chapter

	Part II: Data collection with matlab
	Chapter 3: Visual Search and Pop Out
	Goals of This Chapter
	Background
	Exercises
	Project
	MATLAB Functions, Commands, and Operators Covered in This Chapter

	Chapter 4: Attention
	Goals of This Chapter
	Background
	Exercises
	Project
	MATLAB Functions, Commands, and Operators Covered in This Chapter

	Chapter 5: Psychophysics
	Goals of This Chapter
	Background
	Exercises
	Project
	MATLAB Functions, Commands, and Operators Covered in This Chapter

	Chapter 6: Signal Detection Theory
	Goals of This Chapter
	Background
	Exercises
	Project
	MATLAB Functions, Commands, and Operators Covered in This Chapter

	Part III: Data Analysis with MATLAB
	Chapter 7: Frequency Analysis Part I: Fourier Decomposition
	Goals of This Chapter
	Background
	Exercises
	Project
	MATLAB Functions, Commands, and Operators Covered in This Chapter

	Chapter 8: Frequency Analysis Part II: Nonstationary Signals and Spectrograms
	Goal of This Chapter
	Background
	Exercises
	Project
	MATLAB Functions, Commands, and Operators Covered in This Chapter

	Chapter 9: Wavelets
	Goals of This Chapter
	Background
	Exercises
	Project
	MATLAB Functions, Commands, and Operators Covered in This Chapter

	Chapter 10: Convolution
	Goals of This Chapter
	Background
	Exercises
	Project
	MATLAB Functions, Commands, and Operators Covered in This Chapter

	Chapter 11: Introduction to Phase Plane Analysis
	Goal of This Chapter
	Background
	Exercises
	Project
	MATLAB Functions, Commands, and Operators Covered in This Chapter

	Chapter 12: Exploring the Fitzhugh-Nagumo Model
	The Goal of This Chapter
	Background
	Exercises
	Project
	MATLAB Functions, Commands, and Operators Covered in This Chapter

	Chapter 13: Neural Data Analysis: Encoding
	Goals of This Chapter
	Background
	Exercises
	Project
	MATLAB Functions, Commands, and Operators Covered in This Chapter

	Chapter 14: Principal Components Analysis
	Goals of This Chapter
	Background
	Exercises
	Project
	MATLAB Functions, Commands, and Operators Covered in This Chapter

	Chapter 15: Information Theory
	Goals of This Chapter
	Background
	Exercises
	Project
	MATLAB Functions, Commands, and Operators Covered in This Chapter

	Chapter 16: Neural Decoding Part I: Discrete Variables
	Goals of This Chapter
	Background
	Exercises
	Project
	MATLAB Functions, Commands, and Operators Covered in This Chapter

	Chapter 17: Neural Decoding Part II: Continuous Variables
	Goals of This Chapter
	Background
	Exercises
	Project
	MATLAB Functions, Commands, and Operators Covered in This Chapter

	Chapter 18: Functional Magnetic Imaging
	Goals of This Chapter
	Background
	Exercises
	Project
	MATLAB Functions, Commands, and Operators Covered in This Chapter

	Part IV: Data modeling with matlab
	Chapter 19: Voltage-Gated Ion Channels
	Goal of This Chapter
	Background
	Exercises
	Project
	MATLAB Functions, Commands, and Operators Covered in This Chapter

	Chapter 20: Models of a Single Neuron
	Goal of This Chapter
	Background
	Exercises
	Project
	MATLAB Functions, Commands, and Operators Covered in This Chapter

	Chapter 21: Models of the Retina
	Goal of This Chapter
	Background
	Exercises
	Project
	MATLAB Functions, Commands, and Operators Covered in This Chapter

	Chapter 22: Simplified Model of Spiking Neurons
	Goal of This Chapter
	Background
	Exercises
	Project
	MATLAB Functions, Commands, and Operators Covered in This Chapter

	Chapter 23: Fitzhugh-Nagumo Model: Traveling Waves
	Goals of This Chapter
	Background
	Exercises
	Project
	MATLAB Functions, Commands, and Operators Covered in This Chapter

	Chapter 24: Decision Theory
	Goals of This Chapter
	Background
	Exercises
	Project
	MATLAB Functions, Commands, and Operators Covered in This Chapter

	Chapter 25: Markov Models
	Goal of This Chapter
	Background
	Exercises
	Project
	MATLAB Functions, Commands, and Operators Covered in This Chapter

	Chapter 26: Modeling Spike Trains as a Poisson Process
	Goals of This Chapter
	Background
	Exercises
	Project
	MATLAB Functions, Commands, and Operators Covered in This Chapter

	Chapter 27: Synaptic Transmission
	Goals of This Chapter
	Background
	Exercises
	Project: Combining Vesicular Release with Diffusion
	MATLAB Functions, Commands, and Operators Covered in This Chapter

	Chapter 28: Neural Networks Part I: Unsupervised Learning
	Goals of This Chapter
	Background
	Trying out a neural network
	Project
	MATLAB Functions, Commands, and Operators Covered in This Chapter

	Chapter 29: Neural Network Part II: Supervised Learning
	Goals of this Chapter
	Background
	Exercises
	Project
	MATLAB Functions, Commands, and Operators Covered in this Chapter

	Appendix A: Thinking in MATLAB
	Alternatives to MATLAB
	A Few Words about Precision

	Appendix B: Linear Algebra Review
	Matrix Dimensions
	Multiplication
	Addition
	Transpose
	Geometrical Interpretation of Matrix Multiplication
	Determinant
	Inverse
	Eigenvalues and Eigenvectors
	Eigendecomposition of a Matrix

	Appendix C: Master Equation List
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 14
	Chapter 15
	Chapter 16
	Chapter 17
	Chapter 18
	Chapter 19
	Chapter 20
	Chapter 21
	Chapter 22
	Chapter 23
	Chapter 24
	Chapter 26
	Chapter 27
	Chapter 28
	Chapter 29

	References
	Index
	Color Plates

