

Exploratory Data Analysis
with MATLAB®

Third Edition

Chapman & Hall/CRC

Computer Science and Data Analysis Series

The interface between the computer and statistical sciences is increasing, as each
discipline seeks to harness the power and resources of the other. This series aims to
foster the integration between the computer sciences and statistical, numerical, and
probabilistic methods by publishing a broad range of reference works, textbooks, and
handbooks.

SERIES EDITORS
David Blei, Princeton University
David Madigan, Rutgers University
Marina Meila, University of Washington
Fionn Murtagh, Royal Holloway, University of London

Proposals for the series should be sent directly to one of the series editors above, or submitted to:

Chapman & Hall/CRC
Taylor and Francis Group
3 Park Square, Milton Park
Abingdon, OX14 4RN, UK

Published Titles

Semisupervised Learning for Computational Linguistics
Steven Abney

Visualization and Verbalization of Data
Jörg Blasius and Michael Greenacre

Design and Modeling for Computer Experiments
Kai-Tai Fang, Runze Li, and Agus Sudjianto

Microarray Image Analysis: An Algorithmic Approach
Karl Fraser, Zidong Wang, and Xiaohui Liu

R Programming for Bioinformatics
Robert Gentleman

Exploratory Multivariate Analysis by Example Using R
François Husson, Sébastien Lê, and Jérôme Pagès

Bayesian Artificial Intelligence, Second Edition
Kevin B. Korb and Ann E. Nicholson

Computational Statistics Handbook with MATLAB®, Third Edition
Wendy L. Martinez and Angel R. Martinez

Exploratory Data Analysis with MATLAB
®, Third Edition

Wendy L. Martinez, Angel R. Martinez, and Jeffrey L. Solka

Statistics in MATLAB®: A Primer
Wendy L. Martinez and MoonJung Cho

Clustering for Data Mining: A Data Recovery Approach, Second Edition
Boris Mirkin

Introduction to Machine Learning and Bioinformatics
Sushmita Mitra, Sujay Datta, Theodore Perkins, and George Michailidis

Introduction to Data Technologies
Paul Murrell

R Graphics
Paul Murrell

Correspondence Analysis and Data Coding with Java and R
Fionn Murtagh

Pattern Recognition Algorithms for Data Mining
Sankar K. Pal and Pabitra Mitra

Statistical Computing with R
Maria L. Rizzo

Statistical Learning and Data Science
Mireille Gettler Summa, Léon Bottou, Bernard Goldfarb, Fionn Murtagh,
Catherine Pardoux, and Myriam Touati

Music Data Analysis: Foundations and Applications
Claus Weihs, Dietmar Jannach, Igor Vatolkin, and Günter Rudolph

Foundations of Statistical Algorithms: With References to R Packages
Claus Weihs, Olaf Mersmann, and Uwe Ligges

Published Titles cont.

http://taylorandfrancis.com

Chapman & Hall/CRC
Computer Science and Data Analysis Series

Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

A C H A P M A N & H A L L B O O K

Exploratory Data Analysis
with MATLAB®

Wendy L. Martinez
Angel R. Martinez
Jeffrey L. Solka

Third Edition

CRC Press

Taylor & Francis Group

6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2017 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper

International Standard Book Number-13: 978-1-4987-7606-6 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume

responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize

to copyright holders if permission to publish in this form has not been obtained. If any copyright material

has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,

transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or

hereafter invented, including photocopying, microfilming, and recording, or in any information storage

or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access

www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc.

(CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization
that provides licenses and registration for a variety of users. For organizations that have been granted a

photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are

used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at

http://www.taylorandfrancis.com

and the CRC Press Web site at

http://www.crcpress.com

www.copyright.com
http://www.copyright.com/
http://www.taylorandfrancis.com
http://www.crcpress.com

Angel and Wendy dedicate this book to their children:

Deborah,

Jeffrey,

Robbi (the middle child),

and Lisa (Principessa)

Jeffrey dedicates this book to his wife Beth,

and sons Stephen and Rob

http://taylorandfrancis.com

ix

Table of Contents

Preface to the Third Edition...xvii
Preface to the Second Edition...xix
Preface to the First Edition..xxiii

Part I
Introduction to Exploratory Data Analysis

Chapter 1
Introduction to Exploratory Data Analysis
1.1 What is Exploratory Data Analysis ... 3
1.2 Overview of the Text ... 6
1.3 A Few Words about Notation .. 8
1.4 Data Sets Used in the Book ... 9

1.4.1 Unstructured Text Documents .. 9
1.4.2 Gene Expression Data ... 12
1.4.3 Oronsay Data Set ... 18
1.4.4 Software Inspection ... 19

1.5 Transforming Data ... 20
1.5.1 Power Transformations .. 21
1.5.2 Standardization .. 22
1.5.3 Sphering the Data .. 24

1.6 Further Reading ... 25
Exercises .. 27

Part II
EDA as Pattern Discovery

Chapter 2
Dimensionality Reduction — Linear Methods
2.1 Introduction .. 31
2.2 Principal Component Analysis — PCA .. 33

2.2.1 PCA Using the Sample Covariance Matrix 34
2.2.2 PCA Using the Sample Correlation Matrix 37
2.2.3 How Many Dimensions Should We Keep? 38

2.3 Singular Value Decomposition — SVD .. 42

x Exploratory Data Analysis with MATLAB®, Third Edition

2.4 Nonnegative Matrix Factorization .. 47
2.5 Factor Analysis ... 51
2.6 Fisher’s Linear Discriminant .. 56
2.7 Random Projections ... 61
2.8 Intrinsic Dimensionality .. 65

2.8.1 Nearest Neighbor Approach ... 67
2.8.2 Correlation Dimension ... 71
2.8.3 Maximum Likelihood Approach .. 72
2.8.4 Estimation Using Packing Numbers .. 74
2.8.5 Estimation of Local Dimension ... 76

2.9 Summary and Further Reading ... 79
Exercises .. 81

Chapter 3
Dimensionality Reduction — Nonlinear Methods
3.1 Multidimensional Scaling — MDS .. 85

3.1.1 Metric MDS .. 87
3.1.2 Nonmetric MDS ... 97

3.2 Manifold Learning ... 105
3.2.1 Locally Linear Embedding ... 105
3.2.2 Isometric Feature Mapping — ISOMAP 107
3.2.3 Hessian Eigenmaps ... 109

3.3 Artificial Neural Network Approaches .. 114
3.3.1 Self-Organizing Maps ... 114
3.3.2 Generative Topographic Maps .. 117
3.3.3 Curvilinear Component Analysis ... 122
3.3.4 Autoencoders ... 127

3.4 Stochastic Neighbor Embedding ... 131
3.5 Summary and Further Reading ... 135
Exercises .. 136

Chapter 4
Data Tours
4.1 Grand Tour ... 140

4.1.1 Torus Winding Method .. 141
4.1.2 Pseudo Grand Tour ... 143

4.2 Interpolation Tours .. 146
4.3 Projection Pursuit ... 148
4.4 Projection Pursuit Indexes .. 156

4.4.1 Posse Chi-Square Index .. 156
4.4.2 Moment Index .. 159

4.5 Independent Component Analysis ... 161
4.6 Summary and Further Reading ... 165
Exercises .. 166

Table of Contents xi

Chapter 5
Finding Clusters
5.1 Introduction .. 169
5.2 Hierarchical Methods .. 171
5.3 Optimization Methods — k-Means ... 177
5.4 Spectral Clustering ... 181
5.5 Document Clustering .. 185

5.5.1 Nonnegative Matrix Factorization — Revisited 187
5.5.2 Probabilistic Latent Semantic Analysis 191

5.6 Minimum Spanning Trees and Clustering ... 196
5.6.1 Definitions .. 196
5.6.2 Minimum Spanning Tree Clustering .. 199

5.7 Evaluating the Clusters ... 204
5.7.1 Rand Index ... 205
5.7.2 Cophenetic Correlation .. 207
5.7.3 Upper Tail Rule .. 208
5.7.4 Silhouette Plot .. 211
5.7.5 Gap Statistic .. 213
5.7.6 Cluster Validity Indices .. 219

5.8 Summary and Further Reading ... 230
Exercises .. 232

Chapter 6
Model-Based Clustering
6.1 Overview of Model-Based Clustering .. 237
6.2 Finite Mixtures ... 240

6.2.1 Multivariate Finite Mixtures .. 242
6.2.2 Component Models — Constraining the Covariances 243

6.3 Expectation-Maximization Algorithm .. 249
6.4 Hierarchical Agglomerative Model-Based Clustering 254
6.5 Model-Based Clustering .. 256
6.6 MBC for Density Estimation and Discriminant Analysis 263

6.6.1 Introduction to Pattern Recognition ... 263
6.6.2 Bayes Decision Theory .. 264
6.6.3 Estimating Probability Densities with MBC 267

6.7 Generating Random Variables from a Mixture Model 271
6.8 Summary and Further Reading ... 273
Exercises .. 276

Chapter 7
Smoothing Scatterplots
7.1 Introduction .. 279
7.2 Loess ... 280
7.3 Robust Loess ... 291
7.4 Residuals and Diagnostics with Loess .. 293

xii Exploratory Data Analysis with MATLAB®, Third Edition

7.4.1 Residual Plots ... 293
7.4.2 Spread Smooth ... 297
7.4.3 Loess Envelopes — Upper and Lower Smooths 300

7.5 Smoothing Splines ... 301
7.5.1 Regression with Splines .. 302
7.5.2 Smoothing Splines ... 304
7.5.3 Smoothing Splines for Uniformly Spaced Data 310

7.6 Choosing the Smoothing Parameter ... 313
7.7 Bivariate Distribution Smooths .. 317

7.7.1 Pairs of Middle Smoothings ... 317
7.7.2 Polar Smoothing .. 319

7.8 Curve Fitting Toolbox ... 323
7.9 Summary and Further Reading ... 325
Exercises .. 326

Part III
Graphical Methods for EDA

Chapter 8
Visualizing Clusters
8.1 Dendrogram .. 333
8.2 Treemaps ... 335
8.3 Rectangle Plots ... 338
8.4 ReClus Plots .. 344
8.5 Data Image .. 349
8.6 Summary and Further Reading ... 355
Exercises .. 356

Chapter 9
Distribution Shapes
9.1 Histograms .. 359

9.1.1 Univariate Histograms ... 359
9.1.2 Bivariate Histograms .. 366

9.2 Kernel Density .. 368
9.2.1 Univariate Kernel Density Estimation 369
9.2.2 Multivariate Kernel Density Estimation 371

9.3 Boxplots ... 374
9.3.1 The Basic Boxplot .. 374
9.3.2 Variations of the Basic Boxplot .. 380
9.3.3 Violin Plots ... 383
9.3.4 Beeswarm Plot ... 385
9.3.5 Beanplot .. 388

9.4 Quantile Plots ... 390
9.4.1 Probability Plots .. 392

Table of Contents xiii

9.4.2 Quantile-Quantile Plot .. 393
9.4.3 Quantile Plot .. 397

9.5 Bagplots ... 399
9.6 Rangefinder Boxplot .. 400
9.7 Summary and Further Reading ... 405
Exercises .. 405

Chapter 10
Multivariate Visualization
10.1 Glyph Plots .. 409
10.2 Scatterplots .. 410

10.2.1 2–D and 3–D Scatterplots ... 412
10.2.2 Scatterplot Matrices ... 415
10.2.3 Scatterplots with Hexagonal Binning 416

10.3 Dynamic Graphics ... 418
10.3.1 Identification of Data .. 420
10.3.2 Linking ... 422
10.3.3 Brushing .. 425

10.4 Coplots ... 428
10.5 Dot Charts ... 431

10.5.1 Basic Dot Chart .. 431
10.5.2 Multiway Dot Chart .. 432

10.6 Plotting Points as Curves .. 436
10.6.1 Parallel Coordinate Plots .. 437
10.6.2 Andrews’ Curves ... 439
10.6.3 Andrews’ Images ... 443
10.6.4 More Plot Matrices .. 444

10.7 Data Tours Revisited ... 447
10.7.1 Grand Tour ... 448
10.7.2 Permutation Tour .. 449

10.8 Biplots .. 452
10.9 Summary and Further Reading ... 455
Exercises .. 457

Chapter 11
Visualizing Categorical Data
11.1 Discrete Distributions .. 462

11.1.1 Binomial Distribution ... 462
11.1.2 Poisson Distribution .. 464

11.2 Exploring Distribution Shapes ... 467
11.2.1 Poissonness Plot ... 467
11.2.2 Binomialness Plot .. 469
11.2.3 Extensions of the Poissonness Plot ... 471
11.2.4 Hanging Rootogram ... 476

11.3 Contingency Tables ... 479

xiv Exploratory Data Analysis with MATLAB®, Third Edition

11.3.1 Background .. 481
11.3.2 Bar Plots .. 483
11.3.3 Spine Plots .. 486
11.3.4 Mosaic Plots .. 489
11.3.5 Sieve Plots ... 490
11.3.6 Log Odds Plot .. 493

11.4 Summary and Further Reading ... 498
Exercises .. 500

Appendix A
Proximity Measures
A.1 Definitions .. 503

A.1.1 Dissimilarities ... 504
A.1.2 Similarity Measures ... 506
A.1.3 Similarity Measures for Binary Data ... 506
A.1.4 Dissimilarities for Probability Density Functions 507

A.2 Transformations .. 508
A.3 Further Reading .. 509

Appendix B
Software Resources for EDA
B.1 MATLAB Programs .. 511
B.2 Other Programs for EDA .. 515
B.3 EDA Toolbox .. 516

Appendix C
Description of Data Sets ... 517

Appendix D
MATLAB® Basics
D.1 Desktop Environment .. 523
D.2 Getting Help and Other Documentation ... 525
D.3 Data Import and Export ... 526

D.3.1 Data Import and Export in Base MATLAB® 526
D.3.2 Data Import and Export with the Statistics Toolbox 528

D.4 Data in MATLAB® .. 529
D.4.1 Data Objects in Base MATLAB® ... 529
D.4.2 Accessing Data Elements .. 532
D.4.3 Object-Oriented Programming ... 535

D.5 Workspace and Syntax ... 535
D.5.1 File and Workspace Management ... 536
D.5.2 Syntax in MATLAB® .. 537
D.5.3 Functions in MATLAB® ... 539

D.6 Basic Plot Functions .. 540

Table of Contents xv

D.6.1 Plotting 2D Data ... 540
D.6.2 Plotting 3D Data ... 543
D.6.3 Scatterplots .. 544
D.6.4 Scatterplot Matrix ... 545
D.6.5 GUIs for Graphics .. 545

D.7 Summary and Further Reading .. 547

References ... 551
Author Index .. 575
Subject Index ... 583

http://taylorandfrancis.com

xvii

Preface to the Third Edition

As usual, we did not have enough time to describe all of the techniques we
wanted to include in our previous two editions. Furthermore, statisticians
and data scientists continue to advance the state-of-the-art in visualization
and exploratory data analysis. So, we are grateful to have this chance to
update this book with recent advancements and missing topics.

We list below some of the major changes and additions in the third edition.

• Chapter 2 has new content on random projections and estimating
the local intrinsic dimensionality.

• Chapter 3 includes a description of deep learning, autoencoders,
and stochastic neighbor embedding (t–SNE).

• Chapter 5 contains a clustering approach that has been around for
many years and is based on the minimum spanning tree. It also
has a discussion of several cluster validity indices that have been
added to the MATLAB® Statistics and Machine Learning Toolbox.

• Chapter 9 now has a section on kernel density estimation, which
is useful for understanding how are data distributed. We also
added violin plots, beanplots, and new variants of boxplots.

• Chapter 11 on visualizing categorical data is a new addition to the
book. We think this is an important area, which is often neglected
in exploratory data analysis. This chapter includes methods to
visualize the distribution shapes of univariate categorical data and
tabular data.

The makers of MATLAB have extended the capabilities of their product,
especially in the area of statistics and data analysis. In fact, their relevant
toolbox is now called the MATLAB Statistics and Machine Learning Toolbox.
For ease of exposition, we will continue to use the previous name of the
Statistics Toolbox in this text. However, readers should understand that we
are referring to the latest MATLAB toolbox.

The MATLAB code for the examples, the EDA Toolbox, and the data sets
used in the book are available for download. They can be downloaded from
the CRC Press website for this book found at

https://www.crcpress.com/9781498776066

https://www.crcpress.com/9781498776066

xviii Exploratory Data Analysis with MATLAB®, Third Edition

As we mentioned previously, there seems never to be enough time to
accomplish all we wanted to do when writing this book. In fact, we had
hoped to write an R Shiny app implementing many of the methods we
describe. This is our next task after this book gets published. So, please keep
an eye out for the R Shiny app; we will post it to the CRC Press website for
this book. Our hope is that this will make the techniques in the book available
to a wider audience. For more on the R statistical computing environment,
see

https://cran.r-project.org/

For MATLAB product information, please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA, 01760-2098 USA
Tel: 508-647-7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com

We would like to acknowledge the invaluable help of those researchers
who wrote MATLAB code for methods described in this book and made it
available for free of charge. We are grateful to MoonJung Cho and Eungchun
Cho for reviewing portions of the book. We greatly appreciate the help and
patience of those at CRC press, especially David Grubbs. As always, we are
indebted to The MathWorks, Inc. for their special assistance with MATLAB.

Disclaimers

1. Any MATLAB programs and data sets that are included with the
book are provided in good faith. The authors, publishers, or dis-
tributors do not guarantee their accuracy and are not responsible
for the consequences of their use.

2. Some of the MATLAB functions provided with the EDA Toolbox
were written by other researchers, and they retain the copyright.
References are given in Appendix B and in the help section of
each function. Unless otherwise specified, the EDA Toolbox is pro-
vided under the GNU license specifications:

http://www.gnu.org/copyleft/gpl.html

3. The views expressed in this book are those of the authors and do
not represent the views of the U.S. Government or its components.

Wendy L. Martinez, Angel R. Martinez, and Jeffrey L. Solka
February 2017

mailto:info@mathworks.com
https://cran.r-project.org/
www.mathworks.com
http://www.gnu.org/copyleft/gpl.html

xix

Preface to the Second Edition

In the past several years, many advancements have been made in the area of
exploratory data analysis, and it soon became apparent that it was time to
update this text. In particular, many innovative approaches have been
developed for dimensionality reduction, clustering, and visualization.

We list below some of the major changes and additions in the second
edition.

� We added significant content to the chapter on linear dimension-
ality reduction. The new methods we discuss are nonnegative
matrix factorization and linear discriminant analysis. We also
expanded the set of methods that are available for estimating the
intrinsic dimensionality of a data set.

� Curvilinear component analysis is a nonlinear dimensionality
reduction method that is now described in Chapter 3. Curvilinear
component analysis was developed as an improvement to self-
organizing maps.

� A description of independent component analysis has been added
to the chapter on data tours.

� Several new clustering methods are now included in the text. These
include nonnegative matrix factorization, probabilistic latent
semantic analysis, and spectral-based clustering.

� We included a discussion of smoothing splines, along with a fast
spline method that works with uniformly spaced data.

� Several visualization methods have been added to the text. These
are a rangefinder boxplot for bivariate data, scatterplots with mar-
ginal histograms, biplots, and a new method called Andrews’
images.

In a spirit similar to the first edition, this text is not focused on the
theoretical aspects of the methods. Rather, the main focus of this book is on
the use of the EDA methods. So, we do not dwell so much on implementation
and algorithmic details. Instead, we show students and practitioners how the
methods can be used for exploratory data analysis by providing examples
and applications.

xx Exploratory Data Analysis with MATLAB®, Third Edition

The MATLAB® code for the examples, the toolboxes, the data sets, and
color versions of all figures are available for download. They can be
downloaded from the Carnegie Mellon StatLib site found here:

http://lib.stat.cmu.edu

or from the book’s website:

http://pi-sigma.info

Please review the readme file for installation instructions and information
on any changes.

For MATLAB product information, please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA, 01760-2098 USA
Tel: 508-647-7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com

We would like to acknowledge the invaluable help of those researchers
who wrote MATLAB code for methods described in this book and also made
it available for free. In particular, the authors would like to thank Michael
Berry for helpful discussions regarding nonnegative matrix factorization and
Ata Kaban for allowing us to use her PLSI code. We are also very grateful to
Mia Hubert and Sabine Verboven for granting us permission to use their
bagplot function and for their patience with our emails.

We thank the editors of the book series in Computer Science and Data
Analysis for including this text. We greatly appreciate the help and patience
of those at CRC press: David Grubbs, Bob Stern, and Michele Dimont. As
always, we are indebted to Naomi Fernandes and Tom Lane at The
MathWorks, Inc. for their special assistance with MATLAB.

Disclaimers

1. Any MATLAB programs and data sets that are included with the
book are provided in good faith. The authors, publishers, or dis-
tributors do not guarantee their accuracy and are not responsible
for the consequences of their use.

2. Some of the MATLAB functions provided with the EDA Toolboxes
were written by other researchers, and they retain the copyright.
References are given in Appendix B and in the help section of

mailto:info@mathworks.com
http://lib.stat.cmu.edu
http://pi-sigma.info
www.mathworks.com

Preface to the Second Edition xxi

each function. Unless otherwise specified, the EDA Toolboxes are
provided under the GNU license specifications:

http://www.gnu.org/copyleft/gpl.html

3. The views expressed in this book are those of the authors and do
not necessarily represent the views of the United States Department
of Defense or its components.

Wendy L. Martinez, Angel R. Martinez, and Jeffrey L. Solka
October 2010

http://www.gnu.org/copyleft/gpl.html

http://taylorandfrancis.com

xxiii

Preface to the First Edition

One of the goals of our first book, Computational Statistics Handbook with
MATLAB® [2002], was to show some of the key concepts and methods of
computational statistics and how they can be implemented in MATLAB.1 A
core component of computational statistics is the discipline known as
exploratory data analysis or EDA. Thus, we see this book as a complement to
the first one with similar goals: to make exploratory data analysis techniques
available to a wide range of users.

Exploratory data analysis is an area of statistics and data analysis, where
the idea is to first explore the data set, often using methods from descriptive
statistics, scientific visualization, data tours, dimensionality reduction, and
others. This exploration is done without any (hopefully!) pre-conceived
notions or hypotheses. Indeed, the idea is to use the results of the exploration
to guide and to develop the subsequent hypothesis tests, models, etc. It is
closely related to the field of data mining, and many of the EDA tools
discussed in this book are part of the toolkit for knowledge discovery and
data mining.

This book is intended for a wide audience that includes scientists,
statisticians, data miners, engineers, computer scientists, biostatisticians,
social scientists, and any other discipline that must deal with the analysis of
raw data. We also hope this book can be useful in a classroom setting at the
senior undergraduate or graduate level. Exercises are included with each
chapter, making it suitable as a textbook or supplemental text for a course in
exploratory data analysis, data mining, computational statistics, machine
learning, and others. Readers are encouraged to look over the exercises
because new concepts are sometimes introduced in them. Exercises are
computational and exploratory in nature, so there is often no unique answer!

As for the background required for this book, we assume that the reader
has an understanding of basic linear algebra. For example, one should have
a familiarity with the notation of linear algebra, array multiplication, a matrix
inverse, determinants, an array transpose, etc. We also assume that the
reader has had introductory probability and statistics courses. Here one
should know about random variables, probability distributions and density
functions, basic descriptive measures, regression, etc.

In a spirit similar to the first book, this text is not focused on the theoretical
aspects of the methods. Rather, the main focus of this book is on the use of the

1 MATLAB® and Handle Graphics® are registered trademarks of The MathWorks, Inc.

xxiv Exploratory Data Analysis with MATLAB®, Third Edition

EDA methods. Implementation of the methods is secondary, but where
feasible, we show students and practitioners the implementation through
algorithms, procedures, and MATLAB code. Many of the methods are
complicated, and the details of the MATLAB implementation are not
important. In these instances, we show how to use the functions and
techniques. The interested reader (or programmer) can consult the M-files for
more information. Thus, readers who prefer to use some other programming
language should be able to implement the algorithms on their own.

While we do not delve into the theory, we would like to emphasize that the
methods described in the book have a theoretical basis. Therefore, at the end
of each chapter, we provide additional references and resources; so those
readers who would like to know more about the underlying theory will
know where to find the information.

MATLAB code in the form of an Exploratory Data Analysis Toolbox is
provided with the text. This includes the functions, GUIs, and data sets that
are described in the book. This is available for download at

http://lib.stat.cmu.edu

Please review the readme file for installation instructions and information
on any changes. M-files that contain the MATLAB commands for the
exercises are also available for download.

We also make the disclaimer that our MATLAB code is not necessarily the
most efficient way to accomplish the task. In many cases, we sacrificed
efficiency for clarity. Please refer to the example M-files for alternative
MATLAB code, courtesy of Tom Lane of The MathWorks, Inc.

We describe the EDA Toolbox in greater detail in Appendix B. We also
provide website information for other tools that are available for download
(at no cost). Some of these toolboxes and functions are used in the book and
others are provided for informational purposes. Where possible and
appropriate, we include some of this free MATLAB code with the EDA
Toolbox to make it easier for the reader to follow along with the examples
and exercises.

We assume that the reader has the Statistics Toolbox (Version 4 or higher)
from The MathWorks, Inc. Where appropriate, we specify whether the
function we are using is in the main MATLAB software package, Statistics
Toolbox, or the EDA Toolbox. The development of the EDA Toolbox was
mostly accomplished with MATLAB Version 6.5 (Statistics Toolbox, Version
4); so the code should work if this is what you have. However, a new release
of MATLAB and the Statistics Toolbox was introduced in the middle of
writing this book; so we also incorporate information about new
functionality provided in these versions.

We would like to acknowledge the invaluable help of the reviewers: Chris
Fraley, David Johannsen, Catherine Loader, Tom Lane, David Marchette,
and Jeffrey Solka. Their many helpful comments and suggestions resulted in
a better book. Any shortcomings are the sole responsibility of the authors. We

http://lib.stat.cmu.edu

Preface to the First Edition xxv

owe a special thanks to Jeffrey Solka for programming assistance with finite
mixtures and to Richard Johnson for allowing us to use his Data
Visualization Toolbox and updating his functions. We would also like to
acknowledge all of those researchers who wrote MATLAB code for methods
described in this book and also made it available for free. We thank the
editors of the book series in Computer Science and Data Analysis for
including this text. We greatly appreciate the help and patience of those at
CRC Press: Bob Stern, Rob Calver, Jessica Vakili, and Andrea Demby. Finally,
we are indebted to Naomi Fernandes and Tom Lane at The MathWorks, Inc.
for their special assistance with MATLAB.

Disclaimers

1. Any MATLAB programs and data sets that are included with the book are
provided in good faith. The authors, publishers, or distributors do not
guarantee their accuracy and are not responsible for the consequences of
their use.

2. Some of the MATLAB functions provided with the EDA Toolbox were
written by other researchers, and they retain the copyright. References are
given in Appendix B and in the help section of each function. Unless
otherwise specified, the EDA Toolbox is provided under the GNU license
specifications:

http://www.gnu.org/copyleft/gpl.html

3. The views expressed in this book are those of the authors and do not
necessarily represent the views of the United States Department of Defense
or its components.

Wendy L. and Angel R. Martinez
October 2004

http://www.gnu.org/copyleft/gpl.html

http://taylorandfrancis.com

Part I
Introduction to Exploratory Data Analysis

http://taylorandfrancis.com

3

Chapter 1
Introduction to Exploratory Data Analysis

We shall not cease from exploration
And the end of all our exploring
Will be to arrive where we started
And know the place for the first time.

T. S. Eliot, “Little Gidding” (the last of his Four Quartets)

The purpose of this chapter is to provide some introductory and background
information. First, we cover the philosophy of exploratory data analysis and
discuss how this fits in with other data analysis techniques and objectives.
This is followed by an overview of the text, which includes the software that
will be used and the background necessary to understand the methods. We
then present several data sets that will be employed throughout the book to
illustrate the concepts and ideas. Finally, we conclude the chapter with some
information on data transforms, which will be important in some of the
methods presented in the text.

1.1 What is Exploratory Data Analysis

John W. Tukey [1977] was one of the first statisticians to provide a detailed
description of exploratory data analysis (EDA). He defined it as “detective
work – numerical detective work – or counting detective work – or graphical
detective work” [Tukey, 1977, page 1]. It is mostly a philosophy of data
analysis where the researcher examines the data without any pre-conceived
ideas in order to discover what the data can tell him or her about the
phenomena being studied. Tukey contrasts this with confirmatory data
analysis (CDA), an area of data analysis that is mostly concerned with
statistical hypothesis testing, confidence intervals, estimation, etc. Tukey
[1977] states that “Confirmatory data analysis is judicial or quasi-judicial in
character.” CDA methods typically involve the process of making inferences
about or estimates of some population characteristic and then trying to

4 Exploratory Data Analysis with MATLAB®, Third Edition

evaluate the precision associated with the results. EDA and CDA should not
be used separately from each other, but rather they should be used in a
complementary way. The analyst explores the data looking for patterns and
structure that leads to hypotheses and models.

Tukey’s book on EDA was written at a time when computers were not
widely available and the data sets tended to be somewhat small, especially
by today’s standards. So, Tukey developed methods that could be
accomplished using pencil and paper, such as the familiar box-and-whisker
plots (also known as boxplots) and the stem-and-leaf. He also included
discussions of data transformation, smoothing, slicing, and others. Since our
book is written at a time when computers are widely available, we go beyond
what Tukey used in EDA and present computationally intensive methods for
pattern discovery and statistical visualization. However, our philosophy of
EDA is the same – that those engaged in it are data detectives.

Tukey [1980], expanding on his ideas of how exploratory and confirmatory
data analysis fit together, presents a typical straight-line methodology for
CDA; its steps follow:

1. State the question(s) to be investigated.

2. Design an experiment to address the questions.

3. Collect data according to the designed experiment.

4. Perform a statistical analysis of the data.

5. Produce an answer.

This procedure is the heart of the usual confirmatory process. To incorporate
EDA, Tukey revises the first two steps as follows:

1. Start with some idea.

2. Iterate between asking a question and creating a design.

Forming the question involves issues such as: What can or should be asked?
What designs are possible? How likely is it that a design will give a useful
answer? The ideas and methods of EDA play a role in this process. In
conclusion, Tukey states that EDA is an attitude, a flexibility, and some graph
paper.

A small, easily read book on EDA written from a social science perspective
is the one by Hartwig and Dearing [1979]. They describe the CDA mode as
one that answers questions such as “Do the data confirm hypothesis XYZ?”

Whereas, EDA tends to ask “What can the data tell me about relationship
XYZ?” Hartwig and Dearing specify two principles for EDA: skepticism and
openness. This might involve visualization of the data to look for anomalies
or patterns, the use of resistant (or robust) statistics to summarize the data,
openness to the transformation of the data to gain better insights, and the
generation of models.

Introduction to Exploratory Data Analysis 5

Some of the ideas of EDA and their importance to teaching statistics were
discussed by Chatfield [1985]. He called the topic initial data analysis or
IDA. While Chatfield agrees with the EDA emphasis on starting with the
noninferential approach in data analysis, he also stresses the need for looking
at how the data were collected, what are the objectives of the analysis, and
the use of EDA/IDA as part of an integrated approach to statistical inference.

Hoaglin [1982] provides a summary of EDA in the Encyclopedia of Statistical
Sciences. He describes EDA as the “flexible searching for clues and evidence”

and confirmatory data analysis as “evaluating the available evidence.” In his
summary, he states that EDA encompasses four themes: resistance, residuals,
re-expression, and display.

Resistant data analysis pertains to those methods where an arbitrary
change in a data point or small subset of the data yields a small change in the
result. A related idea is robustness, which has to do with how sensitive an
analysis is to departures from the assumptions of an underlying probabilistic
model.

Residuals are what we have left over after a summary or fitted model has
been subtracted out. We can write this as

residual = data – fit.

The idea of examining residuals is common practice today. Residuals should
be looked at carefully for lack of fit, heteroscedasticity (nonconstant
variance), nonadditivity, and other interesting characteristics of the data.

Re-expression has to do with the transformation of the data to some other
scale that might make the variance constant, might yield symmetric
residuals, could linearize the data, or add some other effect. The goal of re-
expression for EDA is to facilitate the search for structure, patterns, or other
information.

Finally, we have the importance of displays or visualization techniques for
EDA. As we described previously, the displays used most often by early
practitioners of EDA included the stem-and-leaf plots and boxplots. The use
of scientific and statistical visualization is fundamental to EDA, because
often the only way to discover patterns, structure, or to generate hypotheses
is by visual transformations of the data.

Given the increased capabilities of computing and data storage, where
massive amounts of data are collected and stored simply because we can do
so and not because of some designed experiment, questions are often
generated after the data have been collected [Hand, Mannila, and Smyth,
2001; Wegman, 1988]. Perhaps there is an evolution of the concept of EDA in
the making and the need for a new philosophy of data analysis.

6 Exploratory Data Analysis with MATLAB®, Third Edition

1.2 Overview of the Text

This book is divided into two main sections: pattern discovery and graphical
EDA. We first cover linear and nonlinear dimensionality reduction because
sometimes structure is discovered or can only be discovered with fewer
dimensions or features. We include some classical techniques such as
principal component analysis, factor analysis, and multidimensional scaling,
as well as some computationally intensive methods. For example, we discuss
self-organizing maps, locally linear embedding, isometric feature mapping,
generative topographic maps, curvilinear component analysis, and more.

Searching the data for insights and information is fundamental to EDA. So,
we describe several methods that ‘tour’ the data looking for interesting
structure (holes, outliers, clusters, etc.). These are variants of the grand tour
and projection pursuit that try to look at the data set in many 2–D or 3–D
views in the hope of discovering something interesting and informative.

Clustering or unsupervised learning is a standard tool in EDA and data
mining. These methods look for groups or clusters, and some of the issues
that must be addressed involve determining the number of clusters and the
validity or strength of the clusters. Here we cover some classical methods
such as hierarchical clustering and k-means, as well as nonnegative matrix
factorization and minimum spanning trees. We also devote an entire chapter
to a density-based technique called model-based clustering that includes a
way to determine the number of clusters and to assess the resulting clusters.

Evaluating the relationship between variables is an important subject in
data analysis. We do not cover the standard regression methodology; it is
assumed that the reader already understands that subject. Instead, we
include a chapter on scatterplot smoothing techniques such as loess and
smoothing splines.

The second section of the book discusses many of the standard techniques
of visualization for EDA. The reader will note, however, that graphical
techniques, by necessity, are used throughout the book to illustrate ideas and
concepts.

In this section, we provide some classic, as well as some novel ways of
visualizing the results of the cluster process, such as dendrograms, silhouette
plots, treemaps, rectangle plots, and ReClus. These visualization techniques
can be used to assess the output from the various clustering algorithms that
were covered in the first section of the book. Distribution shapes can tell us
important things about the underlying phenomena that produced the data.
We will look at ways to determine the shape of the distribution by using
boxplots, bagplots, q-q plots, histograms, and others.

Finally, we present ways to visualize multivariate data, and a new chapter
on visualizing categorical data is now included. We discuss parallel
coordinate plots, scatterplot matrices, glyph plots, coplots, dot charts,

Introduction to Exploratory Data Analysis 7

Andrews’ curves, scatterplots, sieve plots, and mosaic plots. The ability to
interact with the plot to uncover structure or patterns is important, and we
present some of the standard methods such as linking and brushing. We also
connect both sections by revisiting the idea of the grand tour and show how
that can be implemented with Andrews’ curves and parallel coordinate plots.

We realize that other topics can be considered part of EDA, such as
descriptive statistics, outlier detection, robust data analysis, probability
density estimation, and residual analysis. However, these topics are beyond
the scope of this book. Descriptive statistics are covered in introductory
statistics texts, and since we assume that readers are familiar with this subject
matter, there is no need to provide explanations here. Similarly, we do not
emphasize residual analysis as a stand-alone subject, mostly because this is
widely discussed in other books on regression and multivariate analysis.

We do cover some density estimation, such as model-based clustering
(Chapter 6) and histograms (Chapter 9). The reader is referred to Scott [2015]
for an excellent treatment of the theory and methods of multivariate density
estimation in general or Silverman [1986] for kernel density estimation. For
more information on MATLAB implementations of density estimation the
reader can refer to Martinez and Martinez [2015] and Martinez and Cho
[2014]. Finally, we will likely encounter outlier detection as we go along in
the text, but this topic, along with robust statistics, will not be covered as a
stand-alone subject. There are several books on outlier detection and robust
statistics. These include Hoaglin, Mosteller, and Tukey [1983], Huber [1981],
and Rousseeuw and Leroy [1987]. A rather dated paper on the topic is Hogg
[1974].

We use MATLAB® throughout the book to illustrate the ideas and to show
how they can be implemented in software. Much of the code used in the
examples and to create the figures is freely available, either as part of the
downloadable toolbox included with the book or on other internet sites. This
information will be discussed in more detail in Appendix B. For MATLAB
product information, please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA, 01760-2098 USA
Tel: 508-647-7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com

It is important for the reader to understand what versions of the software or
what toolboxes are used with this text. The book was updated using
MATLAB Version 9.0 (R2016a), and we made some use of the MATLAB
Statistics Toolbox. Note that this toolbox is now called the Statistics and
Machine Learning Toolbox. We continue to refer to it in this text with the
shorter name for easier reading. We will refer to the Curve Fitting Toolbox in

mailto:info@mathworks.com
www.mathworks.com

8 Exploratory Data Analysis with MATLAB®, Third Edition

Chapter 7, where we discuss smoothing. However, this particular toolbox is
not needed to use the examples in the book.

To get the most out of this book, readers should have a basic understanding
of matrix algebra. For example, one should be familiar with determinants, a
matrix transpose, the trace of a matrix, etc. We recommend Strang [1988,
1993] for those who need to refresh their memories on the topic. We do not
use any calculus in this book, but a solid understanding of algebra is always
useful in any situation. We expect readers to have knowledge of the basic
concepts in probability and statistics, such as random samples, probability
distributions, hypothesis testing, and regression.

1.3 A Few Words about Notation

In this section, we explain our notation and font conventions. MATLAB code
will be in Courier New bold font such as this: function. To make the book
more readable, we will indent MATLAB code when we have several lines of
code, and this can always be typed in as you see it in the book.

For the most part, we follow the convention that a vector is arranged as a
column, so it has dimensions 1 In most situations, our data sets will be
arranged in a matrix of dimension , which is denoted as X. Here n
represents the number of observations we have in our sample, and p is the
number of variables or dimensions. Thus, each row corresponds to a p-
dimensional observation or data point. The ij-th element of X will be
represented by xij. For the most part, the subscript i refers to a row in a matrix
or an observation, and a subscript j references a column in a matrix or a
variable. What is meant by this will be clear from the text.

In many cases, we might need to center our observations before we analyze
them. To make the notation somewhat simpler later on, we will use the
matrix Xc to represent our centered data matrix, where each row is now
centered at the origin. We calculate this matrix by first finding the mean of
each column of X and then subtracting it from each row. The following code
will calculate this in MATLAB:

% Find the mean of each column.
[n,p] = size(X);
xbar = mean(X);
% Create a matrix where each row is the mean
% and subtract from X to center at origin.
Xc = X - repmat(xbar,n,1);

1 The notation is read “m by n,” and it means that we have m rows and n columns in an
array. It will be clear from the context whether this indicates matrix dimensions or
multiplication.

p 1.×

m n×

n p×

Introduction to Exploratory Data Analysis 9

1.4 Data Sets Used in the Book

In this section, we describe the main data sets that will be used throughout
the text. Other data sets will be used in the exercises and in some of the
examples. This section can be set aside and read as needed without any loss
of continuity. Please see Appendix C for detailed information on all data sets
included with the text.

1.4.1 Unstructured Text Documents

The ability to analyze free-form text documents (e.g., Internet documents,
intelligence reports, news stories, etc.) is an important application in
computational statistics. We must first encode the documents in some
numeric form in order to apply computational methods. The usual way this
is accomplished is via a term-document matrix, where each row of the matrix
corresponds to a word in the lexicon, and each column represents a
document. The elements of the term-document matrix contain the number of
times the i-th word appears in j-th document [Manning and Schütze, 2000;
Charniak, 1996]. One of the drawbacks to this type of encoding is that the
order of the words is lost, resulting in a loss of information [Hand, Mannila,
and Smyth, 2001].

We now present a novel method for encoding unstructured text documents
where the order of the words is accounted for. The resulting structure is
called the bigram proximity matrix (BPM).

Bigram Proximity Matrices

The bigram proximity matrix (BPM) is a nonsymmetric matrix that captures
the number of times word pairs occur in a section of text [Martinez and
Wegman, 2002a; 2002b]. The BPM is a square matrix whose column and row
headings are the alphabetically ordered entries of the lexicon. Each element
of the BPM is the number of times word i appears immediately before word
j in the unit of text. The size of the BPM is determined by the size of the
lexicon created by alphabetically listing the unique occurrences of the words
in the corpus. In order to assess the usefulness of the BPM encoding we had
to determine whether or not the representation preserves enough of the
semantic content to make them separable from BPMs of other thematically
unrelated collections of documents.

We must make some comments about the lexicon and the pre-processing
of the documents before proceeding with more information on the BPM and
the data provided with this book. All punctuation within a sentence, such as
commas, semi-colons, colons, etc., were removed. All end-of-sentence

10 Exploratory Data Analysis with MATLAB®, Third Edition

punctuation, other than a period, such as question marks and exclamation
points, were converted to a period. The period is used in the lexicon as a
word, and it is placed at the beginning of the alphabetized lexicon.

Other pre-processing issues involve the removal of noise words and
stemming. Many natural language processing applications use a shorter
version of the lexicon by excluding words often used in the language
[Kimbrell, 1988; Salton, Buckley, and Smith, 1990; Frakes and Baeza-Yates,
1992; Berry and Browne, 2005]. These words, usually called stop words, are
said to have low informational content and are deleted from the document.
However, not all researchers agree with this approach [Witten, Moffat, and
Bell, 1994].

Taking the denoising idea one step further, one could also stem the words
in the denoised text. The idea is to reduce words to their stem or root to
increase the frequency of key words and thus enhance the discriminatory
capability of the features. Stemming is routinely applied in the area of
information retrieval (IR). In this application of text processing, stemming is
used to enhance the performance of the IR system, as well as to reduce the
total number of unique words and save on computational resources. The
stemmer we used to pre-process the text documents is the Porter stemmer
[Baeza-Yates and Ribero-Neto, 1999; Porter, 1980]. The Porter stemmer is
simple; however, its performance is comparable with older established
stemmers. Please see the following websites for different software
implementations of the Porter stemmer:

http://snowball.tartarus.org/

and

http://tartarus.org/~martin/PorterStemmer/

We are now ready to give an example of the BPM. The BPM for the
sentence or text stream,

“The wise young man sought his father in the crowd.”

is shown in Table 1.1. We see that the matrix element located in the third row
(his) and the fifth column (father) has a value of one. This means that the pair
of words his father occurs once in this unit of text. It should be noted that in
most cases, depending on the size of the lexicon and the size of the text
stream, the BPM will be very sparse and very large.

By preserving the word ordering of the discourse stream, the BPM captures
a substantial amount of information about meaning. Also, by obtaining the
individual counts of word co-occurrences, the BPM captures the ‘intensity’

of the discourse’s theme. Both features make the BPM a suitable tool for
capturing meaning and performing computations to identify semantic
similarities among text units of discourse (e.g., sentences, paragraphs,
documents). Note that a BPM is created for each text unit.

http://snowball.tartarus.org/
http://tartarus.org/~martin/PorterStemmer/

Introduction to Exploratory Data Analysis 11

One of the data sets included in this book, which was obtained from text
documents, came from the Topic Detection and Tracking (TDT) Pilot Corpus
(Linguistic Data Consortium, Philadelphia, PA):

https://catalog.ldc.upenn.edu/LDC98T25.

The TDT corpus is comprised of close to 16,000 stories collected from July 1,
1994 to June 30, 1995 from the Reuters newswire service and CNN broadcast
news transcripts. A set of 25 events are discussed in the complete TDT Pilot
Corpus. These 25 topics were determined first, and then the stories were
classified as either belonging to the topic, not belonging, or somewhat
belonging (Yes, No, or Brief, respectively).

TABLE 1.1

Example of a BPM
. crowd his in father man sought the wise young

.

crowd 1
his 1
in 1
father 1
man 1
sought 1
the 1 1
wise 1
young 1
Note that the zeros are left out for ease of reading.

TABLE 1.2

List of 16 Topics

Topic Number Topic Description

Number of

Documents Used

4 Cessna on the White House 14

5 Clinic Murders (Salvi) 41

6 Comet into Jupiter 44

8 Death of N. Korean Leader 35

9 DNA in OJ Trial 29

11 Hall’s Copter in N. Korea 74

12 Humble, TX Flooding 16

13 Justice-to-be Breyer 8

15 Kobe, Japan Quake 49

16 Lost in Iraq 30

17 NYC Subway Bombing 24

18 Oklahoma City Bombing 76

21 Serbians Down F-16 16

22 Serbs Violate Bihac 19

24 US Air 427 Crash 16

25 WTC Bombing Trial 12

https://catalog.ldc.upenn.edu/LDC98T25

12 Exploratory Data Analysis with MATLAB®, Third Edition

In order to meet the computational requirements of available computing
resources, a subset of the TDT corpus was used. A total of 503 stories were
chosen that includes 16 of the 25 events. See Table 1.2 for a list of topics. The
503 stories chosen contain only the Yes or No classifications. This choice stems
from the need to demonstrate that the BPM captures enough meaning to
make a correct or incorrect topic classification choice.

There were 7,146 words in the lexicon after denoising and stemming. So
each BPM has elements, and each document (or
observation) resides in a very high dimensional space. We can apply several
EDA methods that require the interpoint distance matrix only and not the
original data (i.e., BPMs). Thus, we only include the interpoint distance
matrices for different measures of semantic distance: IRad, Ochiai, simple
matching, and L1. It should be noted that the match and Ochiai measures
started out as similarities (large values mean the observations are similar),
and were converted to distances for use in the text. See Appendix A for more
information on these distances and Martinez [2002] for other choices, not
included here. Table 1.3 gives a summary of the BPM data we will be using
in subsequent chapters.

One of the EDA techniques we might want to apply to these data is
dimensionality reduction so further processing can be accomplished, such as
clustering or supervised learning. We could also be interested in visualizing
the data in some manner to determine whether or not the observations
exhibit some interesting structure. Finally, we might use these data with a
clustering algorithm to see how many groups are found in the data or to find
latent topics or subgroups.

1.4.2 Gene Expression Data

The Human Genome Project completed a map (in draft form) of the human
genetic blueprint in 2001 (www.nature.com/omics/index.html), but
much work remains to be done in understanding the functions of the genes
and the role of proteins in a living system. The area of study called functional
genomics addresses this problem, and one of its main tools is DNA
microarray technology [Sebastiani et al., 2003]. This technology allows data

TABLE 1.3

Summary of the BPM Data

Distance Name of File

IRad iradbpm

Ochiai ochiaibpm

Match matchbpm

L1 Norm L1bpm

7,146 7,146× 51,065,316=

www.nature.com/omics/index.html)

Introduction to Exploratory Data Analysis 13

to be collected on multiple experiments and provides a view of the genetic
activity (for thousands of genes) for an organism.

We now provide a brief introduction to the terminology used in this area.
The reader is referred to Sebastiani et al. [2003] or Griffiths et al. [2000] for
more detail on the unique statistical challenges and the underlying biological
and technical foundation of genetic analysis. As most of us are aware from
introductory biology, organisms are made up of cells, and the nucleus of each
cell contains DNA (deoxyribonucleic acid). DNA instructs the cells to
produce proteins and how much protein to produce. Proteins participate in
most of the functions living things perform. Segments of DNA are called
genes. The genome is the complete DNA for an organism, and it contains the
genetic code needed to create a unique life. The process of gene activation is
called gene expression, and the expression level provides a value indicating
the number of intermediary molecules (messenger ribonucleic acid and
transfer ribonucleic acid) created in this process.

Microarray technology can simultaneously measure the relative gene
expression level of thousands of genes in tissue or cell samples. There are two
main types of microarray technology: cDNA microarrays and synthetic
oligonucleotide microarrays. In both of these methods, a target (extracted
from tissue or cell) is hybridized to a probe (genes of known identity or small
sequences of DNA). The target is tagged with fluorescent dye before being
hybridized to the probe, and a digital image is formed of the chemical
reaction. The intensity of the signal then has to be converted to a quantitative
value from the image. As one might expect, this involves various image
processing techniques, and it could be a major source of error.

A data set containing gene expression levels has information on genes
(rows of the matrix) from several experiments (columns of the matrix).
Typically, the columns correspond to patients, tumors, time steps, etc. We
note that with the analysis of gene expression data, either the rows (genes) or
columns (experiments/samples) could correspond to the dimensionality (or
sample size), depending on the goal of the analysis. Some of the questions
that might be addressed through this technology include:

� What genes are expressed (or not expressed) in a tumor cell versus
a normal cell?

� Can we predict the best treatment for a cancer?

� Are there genes that characterize a specific tumor?

� Are we able to cluster cells based on their gene expression level?

� Can we discover subclasses of cancer or tumors?

For more background information on gene expression data, we refer the
reader to Schena et al. [1995], Chee et al. [1996], and Lander [1999]. Many
gene expression data sets are freely available on the internet, and there are
also many articles on the statistical analysis of this type of data. We refer the
interested reader to a recent issue of Statistical Science (Volume 18, Number 1,

14 Exploratory Data Analysis with MATLAB®, Third Edition

February 2003) for a special section on microarray analysis. One can also look
at the National Academy of Science website (http://www.pnas.org) for
articles, many of which have the data available for download. We include
three gene expression data sets with this book, and we describe them below.

Yeast Data Set

This data set was originally described in Cho et al. [1998], and it showed the
gene expression levels of around 6000 genes over two cell cycles and five
phases. The two cell cycles provide 17 time points (columns of the matrix).
The subset of the data we provide was obtained by Yeung and Ruzzo [2001]
and is available at

http://www.cs.washington.edu/homes/kayee/model.

A full description of the process they used to get the subset can also be found
there. First, they extracted all genes that were found to peak in only one of
the five phases; those that peaked in multiple phases were not used. Then
they removed any rows with negative entries, yielding a total of 384 genes.

The data set is called yeast.mat, and it contains two variables: data and
classlabs. The data matrix has 384 rows and 17 columns. The variable
classlabs is a vector containing 384 class labels for the genes indicating
whether the gene peaks in phase 1 through phase 5.

Leukemia Data Set

The leukemia data set was first discussed in Golub et al., [1999], where the
authors measured the gene expressions of human acute leukemia. Their
study included prediction of the type of leukemia using supervised learning
and the discovery of new classes of leukemia via unsupervised learning. The
motivation for this work was to improve cancer treatment by distinguishing
between sub-classes of cancer or tumors.

They first classified the leukemias into two groups: (1) those that arise from
lymphoid precursors or (2) from myeloid precursors. The first one is called
acute lymphoblastic leukemia (ALL), and the second is called acute myeloid
leukemia (AML). The distinction between these two classes of leukemia is
well known, but a single test to sufficiently establish a diagnosis does not
exist [Golub et al., 1999]. As one might imagine, a proper diagnosis is critical
to successful treatment and to avoid unnecessary toxicities. The authors
turned to microarray technology and statistical pattern recognition to
address this problem.

Their initial data set had 38 bone marrow samples taken at the time of
diagnosis; 27 came from patients with ALL, and 11 patients had AML. They
used oligonucleotide microarrays containing probes for 6,817 human genes
to obtain the gene expression information. Their first goal was to construct a
classifier using the gene expression values that would predict the type of
leukemia. So, one could consider this as building a classifier where the

http://www.pnas.org
http://www.cs.washington.edu/homes/kayee/model

Introduction to Exploratory Data Analysis 15

observations have 6,817 dimensions, and the sample size is 38. They had to
reduce the dimensionality, so they chose the 50 genes that have the highest
correlation with the class of leukemia. They used an independent test set of
leukemia samples to evaluate the classifier. This set of data consists of 34
samples, where 24 of them came from bone marrow and 10 came from
peripheral blood samples. It also included samples from children and from
different laboratories using different protocols.

They also looked at class discovery or unsupervised learning, where they
wanted to determine if the patients could be clustered into two groups
corresponding to the types of leukemia. They used the method called self-
organizing maps (Chapter 3), employing the full set of 6,817 genes. Another
aspect of class discovery is to look for subgroups within known classes. For
example, the patients with ALL can be further subdivided into patients with
B-cell or T-cell lineage.

We decided to include only the 50 genes, rather than the full set. The
leukemia.mat file has four variables. The variable leukemia has 50 genes
(rows) and 72 patients (columns). The first 38 columns correspond to the
initial training set of patients, and the rest of the columns contain data for the
independent testing set. The variables btcell and cancertype are cell
arrays of strings containing the label for B-cell, T-cell, or NA and ALL or
AML, respectively. Finally, the variable geneinfo is a cell array where the
first column provides the gene description, and the second column contains
the gene number.

Example 1.1
We show a plot of the 50 genes in Figure 1.1, but only the first 38 samples (i.e.,
columns) are shown. This is similar to Figure 3B in Golub et al., [1999]. We
standardized each gene, so the mean across each row is 0 and the standard
deviation is 1. The first 27 columns of the picture correspond to ALL
leukemia, and the last 11 columns pertain to the AML leukemia. We can see
by the color that the first 25 genes tend to be more highly expressed in ALL,
while the last 25 genes are highly expressed in AML. The MATLAB code to
construct this plot is given below.

% First standardize the data such that each row
% has mean 0 and standard deviation 1.
load leukemia
x = leukemia(:,1:38);
[n,p] = size(x);
y = zeros(n,p);
for i = 1:n
 sig = std(x(i,:));
 mu = mean(x(i,:));
 y(i,:)= (x(i,:)-mu)/sig;
end
% Now do the image of the data.

16 Exploratory Data Analysis with MATLAB®, Third Edition

pcolor(y)
colormap(gray(256))
colorbar
title('Gene Expression for Leukemia')
xlabel('ALL (1-27) or AML (28-38)')
ylabel('Gene')

The results shown in Figure 1.1 indicate that we might be able to distinguish between

AML and ALL leukemia using these data.

❑

Lung Data Set

Traditionally, the classification of lung cancer is based on clinicopathological
features. An understanding of the molecular basis and a possible molecular
classification of lung carcinomas could yield better therapies targeted to the
type of cancer, superior prediction of patient treatment, and the identification
of new targets for chemotherapy. We provide two data sets that were
originally downloaded from http://www.genome.mit.edu/MPR/lung
and described in Bhattacharjee et al. [2001]. The authors applied hierarchical

FIGURE 1.1
This shows the gene expression for the leukemia data set. Each row corresponds to a gene,
and each column corresponds to a cancer sample. The rows have been standardized such
that the mean is 0 and the standard deviation is 1. We can see that the ALL leukemia is
highly expressed in the first set of 25 genes, and the AML leukemia is highly expressed in
the second set of 25 genes.

5 10 15 20 25 30 35

5

10

15

20

25

30

35

40

45

50

ALL (1−27) or AML (28−38)

G
e
n
e

Gene Expression for Leukemia

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

http://www.genome.mit.edu/MPR/lung

Introduction to Exploratory Data Analysis 17

and probabilistic clustering to find subclasses of lung adenocarcinoma, and
they showed the diagnostic potential of analyzing gene expression data by
demonstrating the ability to separate primary lung adenocarcinomas from
metastases of extra-pulmonary origin.

A preliminary classification of lung carcinomas comprises two groups:
small-cell lung carcinomas (SCLC) or nonsmall-cell lung carcinomas
(NSCLC). The NSCLC category can be further subdivided into 3 groups:
adenocarcinomas (AD), squamous cell carcinomas (SQ), and large-cell
carcinomas (COID). The most common type is adenocarcinomas. The data
were obtained from 203 specimens, where 186 were cancerous and 17 were
normal lung. The cancer samples contained 139 lung adenocarcinomas, 21
squamous cell lung carcinomas, 20 pulmonary carcinoids, and 6 small-cell
lung carcinomas. This is called Dataset A in Bhattacharjee et al. [2001]; the full
data set included 12,600 genes. The authors reduced this to 3,312 by selecting
the most variable genes, using a standard deviation threshold of 50
expression units. We provide these data in lungA.mat. This file includes
two variables: lungA and labA. The variable lungA is a matrix,
and labA is a vector containing the 203 class labels.

The authors also looked at adenocarcinomas separately trying to discover
subclasses. To this end, they separated the 139 adenocarcinomas and the 17
normal samples and called it Dataset B. They took fewer gene transcript
sequences for this data set by selecting only 675 genes according to other
statistical pre-processing steps. These data are provided in lungB.mat,
which contains two variables: lungB () and labB (156 class labels).
We summarize these data sets in Table 1.4.

For those who need to analyze gene expression data, we recommend the
Bioinformatics Toolbox from The MathWorks. The toolbox provides an
integrated environment for solving problems in genomics and proteomics,
genetic engineering, and biological research. Some capabilities include the
ability to calculate the statistical characteristics of the data, to manipulate

TABLE 1.4

Description of Lung Cancer Data Set

Cancer Type Label Number of Data Points

Dataset A (lungA.mat): 3,312 rows, 203 columns

Nonsmall cell lung carcinomas
Adenocarcinomas AD 139
Pulmonary carcinoids COID 20
Squamous cell SQ 21

Normal NL 17
Small-cell lung carcinomas SCLC 6

Dataset B (lungB.mat): 675 rows, 156 columns

Adenocarcinomas AD 139
Normal NL 17

3312 203×

675 156×

18 Exploratory Data Analysis with MATLAB®, Third Edition

sequences, to construct models of biological sequences using Hidden
Markov Models, and to visualize microarray data.

1.4.3 Oronsay Data Set

This data set consists of particle size measurements originally presented in
Timmins [1981] and analyzed by Olbricht [1982], Fieller, Gilbertson, and
Olbricht [1984], and Fieller, Flenley, and Olbricht [1992]. An extensive
analysis from a graphical EDA point of view was conducted by Wilhelm,
Wegman, and Symanzik [1999]. The measurement and analysis of particle
sizes is often used in archaeology, fuel technology (droplets of propellant),
medicine (blood cells), and geology (grains of sand). The usual objective is to
determine the distribution of particle sizes because this characterizes the
environment where the measurements were taken or the process of interest.

The Oronsay particle size data were gathered for a geological application,
where the goal was to discover different characteristics between dune sands
and beach sands. This characterization would be used to determine whether
or not midden sands were dune or beach. The middens were near places
where prehistoric man lived, and geologists are interested in whether these
middens were beach or dune because that would be an indication of how the
coastline has shifted.

There are 226 samples of sand, with 77 belonging to an unknown type of
sand (from the middens) and 149 samples of known type (beach or dune).
The known samples were taken from Cnoc Coig (CC - 119 observations, 90
beach and 29 dune) and Caisteal nan Gillean (CG - 30 observations, 20 beach
and 10 dune). See Wilhelm, Wegman, and Symanzik [1999] for a map
showing these sites on Oronsay island. This reference also shows a more
detailed classification of the sands based on transects and levels of sand.

Each observation is obtained in the following manner. Approximately 60g
or 70g of sand is put through a stack of 11 sieves of sizes 0.063mm, 0.09mm,
0.125mm, 0.18mm, 0.25mm, 0.355mm, 0.5mm, 0.71mm, 1.0mm, 1.4mm, and
2.0mm. The sand that remains on each of the sieves is weighed, along with
the sand that went through completely. This yields 12 weight measurements,
and each corresponds to a class of particle size. Note that there are two
extreme classes: particle sizes less than 0.063mm (what went through the
smallest sieve) and particle sizes larger than 2.0mm (what is in the largest
sieve).

Flenley and Olbricht [1993] consider the classes as outlined above, and they
apply various multivariate and exploratory data analysis techniques such as
principal component analysis and projection pursuit. The oronsay data set
was downloaded from:

http://www.math.usu.edu/
symanzik/papers/1998_computstat/oronsay.html.

http://www.math.usu.edu/symanzik/papers/1998_computstat/oronsay.html.
http://www.math.usu.edu/symanzik/papers/1998_computstat/oronsay.html.

Introduction to Exploratory Data Analysis 19

More information on the original data set can be found at this website. We
chose to label observations first with respect to midden, beach, or dune (in
variable beachdune):

� Class 0: midden (77 observations)

� Class 1: beach (110 observations)

� Class 2: dune (39 observations)

We then classify observations according to the sampling site (in variable
midden), as follows

� Class 0: midden (77 observations)

� Class 1: Cnoc Coig - CC (119 observations)

� Class 2: Caisteal nan Gillean - CG (30 observations)

The data set is in the oronsay.mat file. The data are in a matrix
called oronsay, and the data are in raw format; i.e., untransformed and
unstandardized. Also included is a cell array of strings called labcol that
contains the names (i.e., sieve sizes) of the columns.

1.4.4 Software Inspection

The data described in this section were collected in response to efforts for
process improvement in software testing. Many systems today rely on
complex software that might consist of several modules programmed by
different programmers; so ensuring that the software works correctly and as
expected is important.

One way to test the software is by inspection, where software engineers
inspect the code in a formal way. First they look for inconsistencies, logical
errors, etc., and then they all meet with the programmer to discuss what they
perceive as defects. The programmer is familiar with the code and can help
determine whether or not it is a defect in the software.

The data are saved in a file called software. The variables are normalized
by the size of the inspection (the number of pages or SLOC – single lines of
code). The file software.mat contains the preparation time in minutes
(prepage, prepsloc), the total work hours in minutes for the meeting
(mtgsloc), and the number of defects found (defpage, defsloc). Software
engineers and managers would be interested in understanding the
relationship between the inspection time and the number of defects found.
One of the goals might be to find an optimal time for inspection, where one
gets the most payoff (number of defects found) for the amount of time spent
reviewing the code. We show an example of these data in Figure 1.2. The
defect types include compatibility, design, human-factors, standards, and
others.

226 12×

20 Exploratory Data Analysis with MATLAB®, Third Edition

1.5 Transforming Data

In many real-world applications, the data analyst will have to deal with raw
data that are not in the most convenient form. The data might need to be re-
expressed to produce effective visualization or an easier, more informative
analysis. Some of the types of problems that can arise include data that
exhibit nonlinearity or asymmetry, contain outliers, change spread with
different levels, etc. We can transform the data by applying a single
mathematical function to all of the observations.

In the first subsection below, we discuss the general power transformations
that can be used to change the shape of the data distribution. This arises in
situations when we are concerned with formal inference methods where the
shape of the distribution is important (e.g., statistical hypothesis testing or
confidence intervals). In EDA, we might want to change the shape to
facilitate visualization, smoothing, and other analyses. Next we cover linear
transformations of the data that leave the shape alone. These are typically
changes in scale and origin and can be important in dimensionality
reduction, clustering, and visualization.

FIGURE 1.2
This is a scatterplot of the software inspection data. The relationship between the variables
is difficult to see.

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

PrepTime(min)/SLOC

D
e
fe

ct
s/

S
L
O

C

Introduction to Exploratory Data Analysis 21

1.5.1 Power Transformations

A transformation of a set of data points x1, x2, ..., xn is a function T that
substitutes each observation xi with a new value T(xi) [Emerson and Stoto,
1983]. Transformations should have the following desirable properties:

1. The order of the data is preserved by the transformation. Because
of this, statistics based on order, such as medians are preserved;
i.e., medians are transformed to medians.

2. They are continuous functions guaranteeing that points that are
close together in raw form are also close together using their trans-
formed values, relative to the scale used.

3. They are smooth functions that have derivatives of all orders, and
they are specified by elementary functions.

Some common transformations include taking roots (square root, cube
root, etc.), finding reciprocals, calculating logarithms, and raising variables to
positive integral powers. These transformations provide adequate flexibility
for most situations in data analysis.

Example 1.2
This example uses the software inspection data shown in Figure 1.2. We see
that the data are skewed, and the relationship between the variables is
difficult to understand. We apply a log transform to both variables using the
following MATLAB code, and show the results in Figure 1.3.

load software
% First transform the data.
X = log(prepsloc);
Y = log(defsloc);
% Plot the transformed data.
plot(X,Y,'.')
xlabel('Log PrepTime/SLOC')
ylabel('Log Defects/SLOC')

We now have a better idea of the relationship between these two variables,
which will be examined further in Chapter 7.
❑

Some transformations of the data may lead to insights or discovery of
structures that we might not otherwise see. However, as with any analysis,
we should be careful about creating something that is not really there, but is
just an artifact of the processing. Thus, in any application of EDA, the analyst
should go back to the subject area and consult domain experts to verify and
help interpret the results.

22 Exploratory Data Analysis with MATLAB®, Third Edition

1.5.2 Standardization

If the variables are measurements along a different scale or if the standard
deviations for the variables are different from one another, then one variable
might dominate the distance (or some other similar calculation) used in the
analysis. We will make extensive use of interpoint distances throughout the
text in applications such as clustering, multidimensional scaling, and
nonlinear dimensionality reduction. We discuss several 1–D standardization
methods below. However, we note that in some multivariate contexts, the
1–D transformations may be applied to each variable (i.e., on the column of
X) separately.

Transformation Using the Standard Deviation

The first standardization we discuss is called the sample z-score, and it
should be familiar to most readers who have taken an introductory statistics
class. The transformed variates are found using

, (1.1)

FIGURE 1.3
Each variate was transformed using the logarithm. The relationship between preparation
time per SLOC and number of defects found per SLOC is now easier to see.

−4 −3 −2 −1 0 1 2 3 4
−12

−10

−8

−6

−4

−2

0

Log PrepTime/SLOC

L
o
g
 D

e
fe

ct
s/

S
L
O

C

z
x x–()

s
----------------=

Introduction to Exploratory Data Analysis 23

where x is the original observed data value, is the sample mean, and s is
the sample standard deviation. In this standardization, the new variate z will
have a mean of zero and a variance of one.

When the z-score transformation is used in a clustering context, it is
important that it be applied in a global manner across all observations. If
standardization is done within clusters, then false and misleading clustering
solutions can result [Milligan and Cooper, 1988].

If we do not center the data at zero by removing the sample mean, then we
have the following

. (1.2)

This transformed variable will have a variance of one and a transformed
mean equal to . The standardizations in Equations 1.1 and 1.2 are linear
functions of each other; so Euclidean distances (see Appendix A) calculated
on data that have been transformed using the two formulas result in identical
dissimilarity values.

For robust versions of Equations 1.1 and 1.2, we can substitute the median
and the interquartile range for the sample mean and sample standard
deviation respectively. This will be explored in the exercises.

Transformation Using the Range

Instead of dividing by the standard deviation, as above, we can use the range
of the variable as the divisor. This yields the following two forms of
standardization

, (1.3)

and

. (1.4)

The standardization in Equation 1.4 is bounded by zero and one, with at
least one observed value at each of the end points. The transformed variate
given by Equation 1.3 is a linear function of the one determined by Equation
1.4; so data standardized using these transformations will result in identical
Euclidean distances.

x

z
x
s
---=

x s⁄

z
x

max x() min x()–
--=

z
x min x()–

max x() min x()–
--=

24 Exploratory Data Analysis with MATLAB®, Third Edition

1.5.3 Sphering the Data

This type of standardization called sphering pertains to multivariate data,
and it serves a similar purpose as the 1–D standardization methods given
above. The transformed variables will have a p-dimensional mean of 0 and a
covariance matrix given by the identity matrix.

We start off with the p-dimensional sample mean given by

.

We then find the sample covariance matrix given by the following

,

where we see that the covariance matrix can be written as the sum of n
matrices. Each of these rank one matrices is the outer product of the centered
observations [Duda and Hart, 1973].

We sphere the data using the following transformation

,

where the columns of Q are the eigenvectors obtained from S, is a diagonal
matrix of corresponding eigenvalues, and is the i-th observation.

Example 1.3
We now provide the MATLAB code to obtain sphered data. First, we
generate 2–D multivariate normal random variables that have the following
parameters:

,

and

,

x 1
n
--- xi

i 1=

n=

S 1
n 1–
------------ xi x–() xi x–()T

i 1=

n=

Zi Λ 1 2⁄– QT xi x–()= i 1 … n, ,=

Λ
xi

µ 2–

2
=

Σ 1 0.5
0.5 1

=

Introduction to Exploratory Data Analysis 25

where Σ is the covariance matrix. A scatterplot of these data is shown in
Figure 1.4 (top).

% First generate some 2-D multivariate normal
% random variables, with mean MU and
% covariance SIGMA. This uses a Statistics
% Toolbox function, but similar functionality
% is available in the EDA Toolbox.
n = 100;
mu = [-2, 2];
sigma = [1,.5;.5,1];
X = mvnrnd(mu,sigma,n);
plot(X(:,1),X(:,2),'.')

We now apply the steps to sphere the data, and show the transformed data
in Figure 1.4 (bottom).

% Now sphere the data.
xbar = mean(X);
% Get the eigenvectors and eigenvalues of the
% covariance matrix.
[V,D] = eig(cov(X));
% Center the data.
Xc = X - ones(n,1)*xbar;
% Sphere the data.
Z = ((D)^(-1/2)*V'*Xc')';
plot(Z(:,1),Z(:,2),'.')

By comparing these two plots, we see that the transformed data are sphered
and are now centered at the origin.
❑

1.6 Further Reading

There are several books that will provide the reader with more information
and other perspectives on EDA. Most of these books do not offer software
and algorithms, but they are excellent resources for the student or
practitioner of exploratory data analysis.

As we stated in the beginning of this chapter, the seminal book on EDA is
Tukey [1977], but the text does not include the more up-to-date view based
on current computational resources and methodology. Similarly, the short
book on EDA by Hartwig and Dearing [1979] is an excellent introduction to
the topic and a quick read, but it is somewhat dated. For the graphical
approach, the reader is referred to du Toit, Steyn, and Stumpf [1986], where
the authors use SAS to illustrate the ideas. They include other EDA methods

26 Exploratory Data Analysis with MATLAB®, Third Edition

FIGURE 1.4
The top figure shows a scatterplot of the 2–D multivariate normal random variables. Note
that these are not centered at the origin, and the cloud is not spherical. The sphered data
are shown in the bottom panel. We see that they are now centered at the origin with a
spherical spread. This is similar to the z-score standardization in 1–D.

−5 −4 −3 −2 −1 0 1
−1

0

1

2

3

4

5

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Introduction to Exploratory Data Analysis 27

such as multidimensional scaling and cluster analysis. Hoaglin, Mosteller,
and Tukey [1983] edited an excellent book on robust and exploratory data
analysis. It includes several chapters on transforming data, and we
recommend the one by Emerson and Stoto [1983]. The chapter includes a
discussion of power transformations, as well as plots to assist the data
analyst in choosing an appropriate one.

For a more contemporary resource that explains data mining approaches,
of which EDA is a part, Hand, Mannila, and Smyth [2001] is highly
recommended. It does not include computer code, but it is very readable. The
authors cover the major parts of data mining: EDA, descriptive modeling,
classification and regression, discovering patterns and rules, and retrieval by
content. Finally, the reader could also investigate the book by Hastie,
Tibshirani, and Friedman [2009]. These authors cover a wide variety of topics
of interest to exploratory data analysts, such as clustering, nonparametric
probability density estimation, multidimensional scaling, and projection
pursuit.

As was stated previously, EDA is sometimes defined as an attitude of
flexibility and discovery in the data analysis process. There is an excellent
article by Good [1983] outlining the philosophy of EDA, where he states that
“EDA is more an art, or even a bag of tricks, than a science.” While we do not
think there is anything “tricky” about the EDA techniques, it is somewhat of
an art in that the analyst must try various methods in the discovery process,
keeping an open mind and being prepared for surprises! Finally, other
summaries of EDA were written by Diaconis [1985] and Weihs [1993]. Weihs
describes EDA mostly from a graphical viewpoint and includes descriptions
of dimensionality reduction, grand tours, prediction models, and variable
selection. Diaconis discusses the difference between exploratory methods
and the techniques of classical mathematical statistics. In his discussion of
EDA, he considers Monte Carlo techniques such as the bootstrap [Efron and
Tibshirani, 1993].

Exercises

1.1 What is exploratory data analysis? What is confirmatory data
analysis? How do these analyses fit together?

1.2 Repeat Example 1.1 using the remaining columns (39 – 72) of the
leukemia data set. Does this follow the same pattern as the others?

1.3 Repeat Example 1.1 using the lungB gene expression data set. Is there
a pattern?

1.4 Generate some 1–D normally distributed random variables with µ = 5
and σ = 2 using normrnd or randn (must transform the results to
have the required mean and standard deviation if you use this
function). Apply the various standardization procedures described in

28 Exploratory Data Analysis with MATLAB®, Third Edition

this chapter and verify the comments regarding the location and
spread of the transformed variables.

1.5 Write MATLAB functions that implement the standardizations
mentioned in this chapter.

1.6 Using the mvnrnd function (see Example 1.3), generate some
nonstandard bivariate normal random variables. Sphere the data and
verify that the resulting sphered data have mean 0 and identity
covariance matrix using the MATLAB functions mean and cov.

1.7 We will discuss the quartiles and the interquartile range in Chapter 9,
but for now look at the MATLAB help files on the iqr and median
functions. We can use these robust measures of location and spread to
transform our variables. Using Equations 1.1 and 1.2, substitute the
median for the sample mean and the interquartile range for the
sample standard deviation s. Write a MATLAB function that does this
and try it out on the same data you generated in Problem 1.4.

1.8 Generate n = 2 normally distributed random variables. Find the
Euclidean distance between the points after they have been
transformed first using Equation 1.1 and then Equation 1.2. Are the
distances the same? Hint: Use the pdist function from the Statistics
Toolbox.

1.9 Repeat Problem 1.8 using the standardizations given by Equations 1.3
and 1.4.

1.10 Generate n = 100 uniform 1–D random variables using the rand
function. Construct a histogram using the hist function. Now
transform the data by taking the logarithm (use the log function).
Construct a histogram of these transformed values. Did the shape of
the distribution change? Comment on the results.

1.11 Try the following transformations on the software data:

Construct a scatterplot and compare with the results in Example 1.2.

x

T x() 1 x+()log=

T x() x()log=

Part II
EDA as Pattern Discovery

http://taylorandfrancis.com

31

Chapter 2
Dimensionality Reduction — Linear Methods

In this chapter we describe several linear methods for dimensionality
reduction. We first discuss some classical approaches such as principal
component analysis (PCA), singular value decomposition (SVD), non-
negative matrix factorization, factor analysis, linear discriminant analysis,
and random projections. We conclude this chapter with a discussion of
several methods for determining the intrinsic dimensionality of a data set.

2.1 Introduction

Dimensionality reduction is the process of finding a suitable lower-
dimensional space in which to represent the original data. Our hope is that
the alternative representation of the data will help us:

� Explore high-dimensional data with the goal of discovering
structure or patterns that lead to the formation of statistical
hypotheses.

� Visualize the data using scatterplots when dimensionality is
reduced to 2–D or 3–D.

� Analyze the data using statistical methods, such as clustering,
smoothing, probability density estimation, or classification.

One possible method for dimensionality reduction would be to just select
subsets of the variables for processing and analyze them in groups. However,
in some cases, that would mean throwing out a lot of useful information. An
alternative would be to create new variables that are functions (e.g., linear
combinations) of the original variables. The methods we describe in this book
are of the second type, where we seek a mapping from the higher-
dimensional space to a lower-dimensional one, while keeping information
on all of the available variables. In general, this mapping can be linear or
nonlinear.

32 Exploratory Data Analysis with MATLAB®, Third Edition

Since some of the methods in this chapter transform the data using
projections, we take a moment to describe this concept before going on to
explain how they work. A projection will be in the form of a matrix that takes
the data from the original space to a lower-dimensional one. We illustrate
this concept in Example 2.1.

Example 2.1
In this example, we show how projection works when our data set consists of
the two bivariate points

,

and we are projecting onto a line that is θ radians from the horizontal or x-
axis. For this example, the projection matrix is given by

.

The following MATLAB code is used to enter this information.

% Enter the data as rows of our matrix X.
X = [4 3; -4 5];
% Provide a value for theta.
theta = pi/3;
% Now obtain the projection matrix.
c2 = cos(theta)^2;
cs = cos(theta)*sin(theta);
s2 = sin(theta)^2;
P = [c2 cs; cs s2];

The coordinates of the projected observations are a weighted sum of the
original variables, where the columns of P provide the weights. We project a
single observation (represented as a column vector) as follows

,

where the superscript T indicates the matrix transpose. Expanding this out
shows the new y coordinates as a weighted sum of the x variables:

.

x1
4
3

= x2
4–

5
=

P = θcos()2 θ θsincos
θ θsincos θsin()2

yi PTxi= i 1 … n, ,=

yi1 P11xi1 P21xi2+=

yi2 P12xi1 P22xi2+=
i 1 … n, ,=

Dimensionality Reduction — Linear Methods 33

We have to use some linear algebra to project the data matrix X because the
observations are rows of this matrix. Taking the transpose of both sides of our
projection equation above, we have

Thus, we can project the data using this MATLAB code:

% Now project the data onto the theta-line.
% Since the data are arranged as rows in the
% matrix X, we have to use the following to
% project the data.
Xp = X*P;
plot(Xp(:,1),Xp(:,2),'o') % Plot the data.

This projects the data onto a 1–D subspace that is at an angle θ with the
original coordinate axes. As an example of a projection onto the horizontal
coordinate axis, we can use these commands:

% We can project onto the 1-D space given by the
% horizontal axis using the projection:
Px = [1;0];
Xpx = X*Px;

One could also use the projection matrix P with . These data now have
only one coordinate value representing the number of units along the x-axis.
The projections are shown in Figure 2.1, where the o’s represent the
projection of the data onto the θ line and the asterisks denote the projections
onto the x-axis.
❑

2.2 Principal Component Analysis — PCA

The main purpose of principal component analysis (PCA) is to reduce the
dimensionality from p to d, where d < p, while at the same time accounting
for as much of the variation in the original data set as possible. With PCA, we
transform the data to a new set of coordinates or variables that are a linear
combination of the original variables. In addition, the observations in the
new principal component space are uncorrelated. The hope is that we can
gain information and better understand the data set by looking at the
observations in the new space.

yi
T PTxi()

T
=

xi
TP . =

θ 0=

34 Exploratory Data Analysis with MATLAB®, Third Edition

2.2.1 PCA Using the Sample Covariance Matrix

We start with our centered data matrix Xc that has dimension . Recall
that this matrix contains observations that are centered about the mean; i.e.,
the sample mean has been subtracted from each row. We then form the
sample covariance matrix S as

,

where the superscript T denotes the matrix transpose. The jk-th element of S
is given by

with

FIGURE 2.1

This figure shows the orthogonal projection of the data points to both the θ line (o’s) and the
x-axis (asterisks).

−8 −6 −4 −2 0 2 4 6 8

−8

−6

−4

−2

0

2

4

6

8

n p×

S 1
n 1–
------------Xc

TXc=

s
n

x x x x j k pjk ij j

i

n

ik k=
−

−() −() =
=
∑1

1
1

1
, , , , ,

x
n

xj ij

i

n

=
=
∑1

1
.

Dimensionality Reduction — Linear Methods 35

The next step is to calculate the eigenvectors and eigenvalues of the matrix
S. The eigenvalues are found by solving the following equation for each lj ,

, (2.1)

where I is a identity matrix and |�| denotes the determinant.
Equation 2.1 produces a polynomial equation of degree p.

The eigenvectors are obtained by solving the following set of equations for
aj

,

subject to the condition that the set of eigenvectors is orthonormal. This
means that the magnitude of each eigenvector is one, and they are orthogonal
to each other:

for and .
A major result in matrix algebra shows that any square, symmetric,

nonsingular matrix can be transformed to a diagonal matrix using

,

where the columns of A contain the eigenvectors of S, and L is a diagonal
matrix with the eigenvalues along the diagonal. By convention, the
eigenvalues are ordered in descending order , with the same
order imposed on the corresponding eigenvectors.

We use the eigenvectors of S to obtain new variables called principal
components (PCs). The j-th PC is given by

, (2.2)

and the elements of a provide the weights or coefficients of the old variables
in the new PC coordinate space. It can be shown that the PCA procedure
defines a principal axis rotation of the original variables about their means
[Jackson, 1991; Strang, 1988], and the elements of the eigenvector a are the
direction cosines that relate the two coordinate systems. Equation 2.2 shows
that the PCs are linear combinations of the original variables.

j 1, … , p=

S lI– 0=

p p×

S ljI–()aj 0= j 1, … , p=

aiai
T 1=

ajai
T 0,=

i j, 1, … , p= i j≠

L ATSA=

l1 l2 … lp≥ ≥ ≥

zj aj
T x x–()= j 1, … , p=

36 Exploratory Data Analysis with MATLAB®, Third Edition

Scaling the eigenvectors to have unit length produces PCs that are
uncorrelated and whose variances are equal to the corresponding
eigenvalue. Other scalings are possible [Jackson, 1991], such as

,

and

.

The three eigenvectors aj , vj , and wj differ only by a scale factor. The aj are
typically needed for hypothesis testing and other diagnostic methods. Since
they are scaled to unity, their components will always be between . The
vectors vj and their PCs have the same units as the original variables, making
the vectors vj useful in other applications. Using wj in the transformation
yields PCs that are uncorrelated with unit variance.

We transform the observations to the PC coordinate system via the
following equation

. (2.3)

The matrix Z contains the principal component scores. Note that these PC
scores have zero mean (because we are using the data centered about the
mean) and are uncorrelated. We could also transform the original
observations in X by a similar transformation, but the PC scores in this case
will have mean . We can invert this transformation to get an expression
relating the original variables as a function of the PCs, which is given by

.

To summarize: the transformed variables are the PCs and the individual
transformed data values are the PC scores.

The dimensionality of the principal component scores in Equation 2.3 is
still p; so no dimensionality reduction has taken place. We know from results
in linear algebra that the sum of the variances of the original variables is
equal to the sum of the eigenvalues. The idea of dimensionality reduction
with PCA is that one could include in the analysis only those PCs that have
the highest eigenvalues, thus accounting for the highest amount of variation
with fewer dimensions or PC variables. We can reduce the dimensionality to
d with the following

, (2.4)

vj lj aj=

wj

aj

lj

-------=

1±

Z XcA=

z

x x Az+=

Zd XcAd=

Dimensionality Reduction — Linear Methods 37

where Ad contains the first d eigenvectors or columns of A. We see that Zd is
an matrix (each observation now has only d elements), and Ad is a
matrix.

2.2.2 PCA Using the Sample Correlation Matrix

We can scale the data first to have standard units, as described in Chapter 1.
This means we have the j-th element of x* given by

,

where sjj is the variance of xj (i.e., the jj-th element of the sample covariance
matrix S). The standardized data x* are then treated as observations in the
PCA process.

The covariance of this standardized data set is the same as the correlation
matrix. The ij-th element of the sample correlation matrix R is given by

,

where sij is the ij-th element of S, and sii is the i-th diagonal element of S. The
rest of the results from PCA hold for the x*. For example, we can transform
the standardized data using Equation 2.3 or reduce the dimensionality using
Equation 2.4, where now the matrices A and Ad contain the eigenvectors of
the correlation matrix.

The correlation matrix should be used for PCA when the variances along
the original dimensions are very different; i.e., if some variables have
variances that are much greater than the others. In this case, the first few PCs
will be dominated by those same variables and will not be very informative.
This is often the case when the variables are of different units. Another
benefit of using the correlation matrix rather than the covariance matrix
arises when one wants to compare the results of PCA among different
analyses.

PCA based on covariance matrices does have certain advantages, too.
Methods for statistical inference based on the sample PCs from covariance
matrices are easier and are available in the literature. It is important to note
that the PCs obtained from the correlation and covariance matrices do not
provide equivalent information. Additionally, the eigenvectors and
eigenvalues from one process do not have simple relationships or
correspondence with those from the other one [Jolliffe, 1986]. Since this text
is primarily concerned with exploratory data analysis, not inferential
methods, we do not discuss this further. In any event, in the spirit of EDA,

n d× p d×

xj
* xj xj–()

sjj

-------------------;= j 1 … p, ,=

rij

sij

sii sjj

------------------=

38 Exploratory Data Analysis with MATLAB®, Third Edition

the analyst should take advantage of both methods to describe and explore
different aspects of the data.

2.2.3 How Many Dimensions Should We Keep?

One of the key questions that needs to be answered at this point is how many
PCs to keep. We offer the following possible ways to address this question.
More details and other options, such as hypothesis tests for equality of
eigenvalues, cross-validation, and correlation procedures, can be found in
Jackson [1991]. All of the following techniques will be explored in Example
2.2.

Cumulative Percentage of Variance Explained

This is a popular method of determining the number of PCs to use in PCA
dimensionality reduction and seems to be implemented in many computer
packages. The idea is to select those d PCs that contribute a specified
cumulative percentage of total variation in the data, which is calculated using

If the correlation matrix is used for PCA, then this is simplified to

Choosing a value for td can be problematic, but typical values range between
70% and 95%. We note that Jackson [1991] does not recommend using this
method.

Scree Plot

A graphical way of determining the number of PCs to retain is called the
scree plot. The original name and idea is from Cattell [1966], and it is a plot
of lk (the eigenvalue) versus k (the index of the eigenvalue). In some cases, we
might plot the log of the eigenvalues when the first eigenvalues are very
large. This type of plot is called a log-eigenvalue or LEV plot. To use the scree
plot, one looks for the ‘elbow’ in the curve or the place where the curve levels
off and becomes almost flat. The value of k at this elbow is an estimate for
how many PCs to retain. Another way to look at this is by the slopes of the

t
l

l
d

ii

d

jj

p
= =

=

∑
∑

100 1

1

.

t
p

ld i

i

d

=
=
∑100

1
.

Dimensionality Reduction — Linear Methods 39

lines connecting the points. When the slopes start to level off and become less
steep, that is the number of PCs one should keep.

The Broken Stick

In this method, we choose the number of PCs based on the size of the
eigenvalue or the proportion of the variance explained by the individual PC.
If we take a line segment and randomly divide it into p segments, then the
expected length of the k-th longest segment is

If the proportion of the variance explained by the k-th PC is greater than gk,
then that PC is kept. We can say that these PCs account for more variance
than would be expected by chance alone.

Size of Variance

One rule that can be used for correlation-based PCA is due to Kaiser [1960],
although it is more commonly used in factor analysis. Using this rule, we
would retain PCs whose variances are greater than 1 (). Some suggest
that this is too high [Jolliffe, 1972]; so a better rule would be to keep PCs
whose variances are greater than 0.7 (). We can use something similar
for covariance-based PCA, where we use the average of the eigenvalues
rather than 1. In this case, we would keep PCs if

 or ,

where

Example 2.2
We show how to perform PCA using the yeast cell cycle data set. Recall
from Chapter 1 that these contain 384 genes corresponding to five phases,
measured at 17 time points. We first load the data and center each row.

load yeast
[n,p] = size(data);
% Center the data.
datac = data - repmat(sum(data)/n,n,1);

g
p i

k

i k

p

=
=
∑1 1.

lk 1≥

lk 0.7≥

lk 0.7l ≥ lk l ≥

l
p

l j
j

p

=
=

∑1
1

.

40 Exploratory Data Analysis with MATLAB®, Third Edition

% Find the covariance matrix.
covm = cov(datac);

We are going to use the covariance matrix in PCA since the variables have
common units. The reader is asked to explore the correlation matrix
approach in the exercises. The eig function in the main MATLAB package is
used to calculate the eigenvalues and eigenvectors. MATLAB returns the
eigenvalues in a diagonal matrix, and they are in ascending order; so they
must be flipped to get the scree plot.

[eigvec,eigval] = eig(covm);
eigval = diag(eigval); % Extract the diagonal elements
% Order in descending order
eigval = flipud(eigval);
eigvec = eigvec(:,p:-1:1);
% Do a scree plot.
figure, plot(1:length(eigval),eigval,'ko-')
title('Scree Plot')
xlabel('Eigenvalue Index - k')
ylabel('Eigenvalue')

We see from the scree plot in Figure 2.2 that keeping four PCs seems
reasonable. Next we calculate the cumulative percentage of variance
explained.

FIGURE 2.2
This is the scree plot for the yeast data. The elbow in the curve seems to occur at k = 4.

0 2 4 6 8 10 12 14 16 18
0

2

4

6

8

10

12

14
Scree Plot

Eigenvalue Index − k

E
ig

e
n

va
lu

e

Dimensionality Reduction — Linear Methods 41

% Now for the percentage of variance explained.
pervar = 100*cumsum(eigval)/sum(eigval);

The first several values are:

73.5923 85.0875 91.9656 94.3217 95.5616

Depending on the cutoff value, we would keep four to five PCs (if we are
using the higher end of the range of td). Now we show how to do the broken
stick test.

% First get the expected sizes of the eigenvalues.
g = zeros(1,p);
for k = 1:p
 for i = k:p
 g(k) = g(k) + 1/i;
end
end
g = g/p;

The next step is to find the proportion of the variance explained.

propvar = eigval/sum(eigval);

Looking only at the first several values, we get the following for gk and the
proportion of variance explained by each PC:

g(1:4) = 0.2023 0.1435 0.1141 0.0945
propvar(1:4) = 0.7359 0.1150 0.0688 0.0236

Thus, we see that only the first PC would be retained using this method.
Finally, we look at the size of the variance.

% Now for the size of the variance.
avgeig = mean(eigval);
% Find the length of ind:
ind = find(eigval > avgeig);
length(ind)

According to this test, the first three PCs would be retained. So, we see that
different values of d are obtained using the various procedures. Because we
want to easily visualize the data, we will use the first three PCs to reduce the
dimensionality of the data, as follows.

% Using d = 3, we will reduce the dimensionality.
P = eigvec(:,1:3);
Xp = datac*P;
figure,plot3(Xp(:,1),Xp(:,2),Xp(:,3),'k*')
xlabel('PC 1'),ylabel('PC 2'),zlabel('PC 3')

The results are shown in Figure 2.3.
❑

42 Exploratory Data Analysis with MATLAB®, Third Edition

We illustrated the use of the eig function that comes in the main MATLAB
package. There is another useful function called eigs that can be used to find
the PCs and eigenvalues of sparse matrices. For those who have the Statistics
Toolbox, there is a function called princomp. It returns the PCs, the PC
scores, and other useful information for making inferences regarding the
eigenvalues. For PCA using the covariance matrix, the pcacov function is
provided.

Before moving on to the next topic, we recall that the PCA methodology
described in this book is based on the sample covariance or sample
correlation matrix. The procedure is similar if the population version of these
matrices is used. Many interesting and useful properties are known about
principal components and the associated data transformations, but these are
beyond the scope and purpose of this book. We provide references for further
reading in the last section.

2.3 Singular Value Decomposition — SVD

Singular value decomposition (SVD) is an important method from linear
algebra and is related to PCA. In fact, it provides a way to find the PCs
without explicitly calculating the covariance matrix [Gentle, 2002]. It also
enjoys widespread use in the analysis of gene expression data [Alter, Brown,
and Botstein, 2000; Wall, Dyck, and Brettin, 2001; Wall, Rechtsteiner, and

FIGURE 2.3
This shows the results of projecting the yeast data onto the first three PCs.

0

2000

4000

6000

−2000

0

2000

−2000

−1000

0

1000

2000

PC 1PC 2

P
C

 3

Dimensionality Reduction — Linear Methods 43

Rocha, 2003] and in information retrieval applications [Deerwester et al.,
1990; Berry, Dumais, and O’Brien, 1995; Berry, Drmac, and Jessup, 1999]; so
it is an important technique in its own right.

As before, we start with our data matrix X, where in some cases, we will
center the data about their mean to get Xc. We use the noncentered form in
the explanation that follows, but the technique is valid for an arbitrary
matrix; i.e., the matrix does not have to be square. The SVD of X is given by

, (2.5)

where U is an matrix, D is a diagonal matrix with n rows and p
columns, and V has dimensions . The columns of U and V are
orthonormal. D is a matrix containing the singular values along its diagonal,
which are the square roots of the eigenvalues of , and zeros everywhere
else.

The columns of U are called the left singular vectors and are calculated as
the eigenvectors of (this is an matrix). Similarly, the columns of V
are called the right singular vectors, and these are the eigenvectors of
(this is a matrix). An additional point of interest is that the singular
values are the square roots of the eigenvalues of and .

Let the rank of the matrix X be given by r, where

.

Then the first r columns of V form an orthonormal basis for the column space
of X, and the first r columns of U form a basis for the row space of X [Strang,
1993]. As with PCA, we order the singular values largest to smallest and
impose the same order on the columns of U and V. A lower rank
approximation to the original matrix X is obtained via

, (2.6)

where Uk is an matrix containing the first k columns of U, Vk is the
matrix whose columns are the first k columns of V, and Dk is a diagonal
matrix whose diagonal elements are the k largest singular values of X. It can
be shown that the approximation given in Equation 2.6 is the best one in a
least squares sense.

To illustrate the SVD approach, we look at an example from information
retrieval called latent semantic indexing or LSI [Deerwester et al., 1990].
Many applications of information retrieval (IR) rely on lexical matching,
where words are matched between a user’s query and those words assigned
to documents in a corpus or database. However, the words people use to
describe documents can be diverse and imprecise; so the results of the

X UDVT
=

n n×
p p×

XTX

XXT
n n×

XTX
p p×

XTX XXT

r min n p,()≤

Xk UkDkVk
T

=

n k× p k×
k k×

44 Exploratory Data Analysis with MATLAB®, Third Edition

queries are often less than perfect. LSI uses SVD to derive vectors that are
more robust at representing the meaning of words and documents.

Example 2.3
This illustrative example of SVD applied to information retrieval (IR) is taken
from Berry, Drmac, and Jessup [1999]. The documents in the corpus comprise
a small set of book titles, and a subset of words have been used in the
analysis, where some have been replaced by their root words (e.g., bake and
baking are both bake). The documents and terms are shown in Table 2.1. We
start with a data matrix, where each row corresponds to a term, and each
column corresponds to a document in the corpus. The elements of the term-
document matrix X denote the number of times the word appears in the
document. In this application, we are not going to center the observations,
but we do pre-process the matrix by normalizing each column such that the
magnitude of the column is 1. This is done to ensure that relevance between
the document and the query is not measured by the absolute count of the
terms.1 The following MATLAB code starts the process:

load lsiex
% Loads up variables: X, termdoc, docs and words.
% Convert the matrix to one that has columns
% with a magnitude of 1.
[n,p] = size(termdoc);
for i = 1:p
 termdoc(:,i) = X(:,i)/norm(X(:,i));
end

Say we want to find books about baking bread. Then the vector that represents
this query is given by a column vector with a 1 in the first and third positions:

TABLE 2.1

Document Information for Example 2.3

 Number Title

Doc 1 How to Bake Bread Without Recipes
Doc 2 The Classic Art of Viennese Pastry
Doc 3 Numerical Recipes: The Art of Scientific Computing
Doc 4 Breads, Pastries, Pies and Cakes: Quantity Baking Recipes
Doc 5 Pastry: A Book of Best French Recipes

Term 1 bak (e, ing)
Term 2 recipes
Term 3 bread
Term 4 cake
Term 5 pastr (y, ies)
Term 6 pie

1 Other term weights can be found in the literature [Berry and Browne, 2005].

Dimensionality Reduction — Linear Methods 45

q1 = [1 0 1 0 0 0]';

If we are seeking books that pertain only to baking, then the query vector is:

q2 = [1 0 0 0 0 0]';

We can find the most relevant documents using the original term-document
matrix by finding the cosine of the angle between the query vectors and the
columns (i.e., the vectors representing documents or books); the higher
cosine values indicate greater similarity between the query and the
document. This would be a straightforward application of lexical matching.
Recall from matrix algebra that the cosine of the angle between two vectors x
and y is given by

.

The MATLAB code to find the cosines for the query vectors in our example is:

% Find the cosine of the angle between
% columns of termdoc and a query vector.
% Note that the magnitude of q1 is not 1.
m1 = norm(q1);
cosq1a = q1'*termdoc/m1;
% The magnitude of q2 happens to be 1.
cosq2a = q2'*termdoc;

The resulting cosine values are:

cosq1a = 0.8165, 0, 0, 0.5774, 0
cosq2a = 0.5774, 0, 0, 0.4082, 0

If we use a cutoff value of 0.5, then the relevant books for our first query are
the first and the fourth ones, which are those that describe baking bread. On
the other hand, the second query matches with the first book, but misses the
fourth one, which would be relevant. Researchers in the area of IR have
applied several techniques to alleviate this problem, one of which is LSI. One
of the powerful uses of LSI is in matching a user’s query with existing
documents in the corpus whose representations have been reduced to lower
rank approximations via the SVD. The idea is that some of the dimensions
represented by the full term-document matrix are noise and that documents
will have closer semantic structure after dimensionality reduction using
SVD. So, we now find the singular value decomposition using the function
svd, which is part of the main MATLAB software.

% Find the singular value decomposition.
[u,d,v] = svd(termdoc);

θx,ycos xTy
xTx yTy

--------------------------=

46 Exploratory Data Analysis with MATLAB®, Third Edition

We then find the representation of the query vector in the reduced space
given by the first k columns of U in the following manner

,

which is a vector with k elements. We note that in some applications of LSI,
the following is used as the reduced query

.

This is simply a scaling by the singular values, since D is diagonal. The
following code projects the query into the reduced space and also finds the
cosine of the angle between the query vector and the columns. Berry, Drmac
and Jessup show that we do not have to form the full reduced matrix Xk.
Instead, we can use the columns of Vk, saving storage space.

% Project the query vectors.
q1t = u(:,1:3)'*q1;
q2t = u(:,1:3)'*q2;
% Now find the cosine of the angle between the query
% vector and the columns of the reduced rank matrix,
% scaled by D.
for i = 1:5
 sj = d(1:3,1:3)*v(i,1:3)';
 m3 = norm(sj);
 cosq1b(i) = sj'*q1t/(m3*m1);
 cosq2b(i) = sj'*q2t/(m3);
end

From this we have

cosq1b = 0.7327, -0.0469, 0.0330, 0.7161, -0.0097
cosq2b = 0.5181, -0.0332, 0.0233, 0.5064, -0.0069

Using a cutoff value of 0.5, we now correctly have documents 1 and 4 as being
relevant to our queries on baking bread and baking.
❑

Note that in the above loop, we are using the magnitudes of the original
query vectors as in Berry, Drmac, and Jessup [Equation 6.1, 1999]. This saves
on computations and also improves precision (disregarding irrelevant
information). We could divide by the magnitudes of the reduced query
vectors (q1t and q2t) in the loop to improve recall (retrieving relevant
information) at the expense of precision.

Before going on to the next topic, we point out that much of the literature
describing SVD as it is applied to LSI and gene expression data defines the
matrices of Equation 2.5 in a different way. The decomposition is the same,

qk Uk
Tq=

qk Dk
1– Uk

Tq=

Dimensionality Reduction — Linear Methods 47

but the difference is in the size of the matrices U and D. Some definitions have
the dimensions of U as and D with dimensions [Golub and Van
Loan, 1996]. We follow the definition in Strang [1988, 1993], which is also
used in MATLAB.

2.4 Nonnegative Matrix Factorization

One of the issues with the application of SVD within a text processing
framework and other similar applications is that the entries within the
original data matrix are all zero or greater. For instance, the elements of the
term-document matrix will always be nonnegative, since they represent
counts.2 It would be desirable in these situations to have a method for
reducing the dimensionality that is guaranteed to produce nonnegative
features. This is not always the case with more classical methods, such as
principal component analysis or singular value decomposition. For example,
negative entries in the SVD factor matrices and cause them to not be
as easily interpreted as the entries in the original matrix.

An alternative to SVD is called nonnegative matrix factorization (NMF)
[Berry et al., 2007]. NMF casts matrix factorization as a constrained
optimization problem that seeks to factor the original matrix into the product
of two nonnegative matrices. A nonnegative matrix is one whose entries are
all constrained to be nonnegative. Besides being easier to interpret, this type
of matrix factorization has been shown to provide better results in
information retrieval, clustering, and other applications [Xu, Liu, and Gong,
2003; Berry and Browne, 2005].

We follow Berry et al. [2007] in our development of the mathematical
formalism of NMF for dimensionality reduction. Let’s say we have our data
matrix X, which is an matrix. We seek a rank k approximation to X
given by the product , where W is a nonnegative matrix, and H is
a nonnegative matrix. We find these factor matrices by minimizing the
following mean squared error objective function:

. (2.7)

The product of the matrices W and H is called a factorization, but it is
important to note that X is not necessarily equal to this product. Rather, it is
an approximate factorization with rank less than or equal to k.

It turns out that we get some interesting outputs from this factorization.
The columns of W represent a transformation of the observations in a k-
dimensional space, without the need for any further matrix manipulations.

2 This includes counts that might be normalized.

n p× p p×

U V
T

n p×
WH n k×

k p×

f W H,() 1
2--- X WH–

2
=

48 Exploratory Data Analysis with MATLAB®, Third Edition

Also, the k rows of H contain the coefficients in the linear combination of the
original variables in X.

Some of the issues that arise in solving the NMF optimization problem are
the existence of local minima in the solution space, the choice of an effective
initialization for the algorithms, and the lack of a unique solution. These
issues have not stopped the development of methods for finding matrices W
and H nor the use of NMF in many data mining and EDA applications.

Berry et al. describe three general classes of algorithms for constructing a
nonnegative matrix factorization. These are called the multiplicative update,
alternating least squares, and gradient descent algorithms. They note that
this taxonomy is somewhat fuzzy, since some approaches can belong to more
than one of these categories. In what follows, we will describe the first two
algorithms, since they are the ones that are implemented in the MATLAB
Statistics Toolbox. However, Cichocki and Zdunek [2006] have a toolbox
called NMFLAB that provides functions for all of these approaches.

Most of the standard NMF algorithms start off with matrices W and H that
are initialized with nonnegative entries. This is the case with the original
multiplicative update algorithm with the mean squared error objective
function from Lee and Seung [2001]. Their procedure is outlined below.

Procedure – Multiplicative Update Algorithm

1. Initialize W as an matrix with nonnegative entries that are
randomly generated between zero and one.

2. Initialize H as a random matrix with nonnegative entries
between zero and one.

3. Update H using

H = H .* (W T X) ./ (W T WH + 10 –9).

4. Update W using

W = W .* (X H T) ./ (WHH T + 10 –9).

5. Repeat steps 3 and 4 until convergence or up to some maximum
number of iterations.

The procedure outlined above uses the MATLAB operator notation, where
‘.* ’ indicates multiplication of matrices element-by-element and ‘./ ’ denotes
element-by-element division. The term 10 –9 is included to prevent a division
by zero.

We can see from this algorithm that the results will be dependent on the
initial random matrices; so the analyst should obtain the factorization for
different starting values and explore the results. The multiplicative update

n k×

k p×

Dimensionality Reduction — Linear Methods 49

algorithm tends to be more sensitive to initialization than the alternating
least squares approach, which is covered next. It has also been shown that the
multiplicative update procedure is slow to converge [Berry et al., 2007].

Procedure – Alternating Least Squares

1. Initialize W as an matrix with nonnegative entries that are
randomly generated between zero and one.

2. Solve for H in the equation

.

3. Set all negative elements in H to 0.

4. Solve for W in the equation

.

5. Set all negative elements in W to 0.

6. Repeat steps 2 through 5 until convergence or up to some maxi-
mum number of iterations.

We can see from the steps above that we have a least squares step, where
we solve for one of the factor matrices, followed by another least squares step
to solve for the other one. In between, we ensure nonnegativity by setting any
negative elements to zero.

The first step in the multiplicative update procedure and the alternating
least squares procedure is to initialize the matrices with random values.
Other methods for initializing matrix W can be used, and a good reference for
these is Langville et al., 2006. We explore the use of NMF in the next example.

Example 2.4
We return to the data set used in the previous example to illustrate the use of
nonnegative matrix factorization for information retrieval. First, we load the
data and normalize the columns.

% Loads up variable: X, termdoc, docs, and words
load lsiex
[n,p] = size(termdoc);
% Normalize columns to be unit norm
for i = 1:p
 termdoc(:,i) = X(:,i)/norm(X(:,i));
end

n k×

W
T
WH W

T
X=

HH
T
W

T
HX

T
=

50 Exploratory Data Analysis with MATLAB®, Third Edition

Next, we are going to factor the termdoc matrix into a nonnegative product
of two matrices W and H, where W is and H is . The following
code utilizes the multiplicative update option of the NMF function included
in the Statistics Toolbox.

[W,H] = nnmf(termdoc,3,'algorithm','mult');

Recall that we had the following queries and are looking for documents that
match them.

q1 = [1 0 1 0 0 0]';
q2 = [1 0 0 0 0 0]';

Now we compute the rank k approximation to our term-document matrix
that we obtained using nonnegative matrix factorization.

termdocnmfk = W * H;

We use the cosine measure and the columns of our approximated term-
document matrix to find the closest matches to our queries.

for i = 1:5
 m1 = norm(q1);
 m2 = norm(termdocnmfk(:,i));
 cosq1c(i) = (q1' * termdocnmfk(:,i))/(m1*m2);
 m1 = norm(q2);
 m2 = norm(termdocnmfk(:,i));
 cosq2c(i) = (q2' * termdocnmfk(:,i))/(m1*m2);
end

For this run, our results are

cosq1c = 0.7449 0.0000 0.0100 0.7185 0.0056
cosq2c = 0.5268 0.0000 0.0075 0.5080 0.0043

If we use a threshold of 0.5, then we see that the first and fourth documents
match our queries.
❑

We used the multiplicative update algorithm with only one replicate in the
previous example. The reader is asked to explore this further by running the
MATLAB nnmf function with several replicates and to also try the
alternating least squares algorithm. This has been shown to converge faster
and to better solutions. We will return to the topic of nonnegative matrix
factorization in Chapter 5, where we show how it can be used for clustering.

6 3× 3 5×

Dimensionality Reduction — Linear Methods 51

2.5 Factor Analysis

There is much confusion in the literature as to the exact definition of the
technique called factor analysis [Jackson, 1981], but we follow the commonly
used definition given in Jolliffe [1986]. In the past, this method has also been
confused with PCA, mostly because PCA is sometimes provided in software
packages as a special case of factor analysis. Both of these techniques attempt
to reduce the dimensionality of a data set, but they are different from one
another in many ways. We describe these differences at the end of the
discussion of factor analysis.

The idea underlying factor analysis is that the p observed random variables
can be written as linear functions of d < p unobserved latent variables or
common factors fj , as follows:

(2.8)

The λij (and) in the above model are called the factor
loadings, and the error terms εi are called the specific factors. Note that the
error terms εi are specific to each of the original variables, while the fj are
common to all of the variables. The sum of the squared factor loadings for the
i-th variable

is called the communality of xi.
We see from the model in Equation 2.8 that the original variables are

written as a linear function of a smaller number of variables or factors, thus
reducing the dimensionality. It is hoped that the factors provide a summary
or clustering of the original variables (not the observations), such that
insights are provided about the underlying structure of the data. While this
model is fairly standard, it can be extended to include more error terms, such
as measurement error. It can also be made nonlinear [Jolliffe, 1986].

The matrix form of the factor analysis model is

. (2.9)

Some assumptions are made regarding this model, which are

,

x1 λ11 f1 … λ1d fd ε1+ + +=

…
xp λp1 f1 … λpd fd εp.+ + +=

i 1 … p, ,= j 1 … d, ,=

λi1
2 … λid

2
+ +

x Λf e+=

E e[] 0= E f[] 0= E x[] 0=

52 Exploratory Data Analysis with MATLAB®, Third Edition

where E[�] denotes the expected value. If the last of these assumptions is
violated, the model can be adjusted to accommodate this, yielding

, (2.10)

where E[x] = µ. We also assume that the error terms εi are uncorrelated with
each other, and that the common factors are uncorrelated with the specific
factors fj. Given these assumptions, the sample covariance (or correlation)
matrix is of the form

,

where Ψ is a diagonal matrix representing E[eeT]. The variance of εi is called
the specificity of xi; so the matrix Ψ is also called the specificity matrix. Factor
analysis obtains a reduction in dimensionality by postulating a model that
relates the original variables xi to the d hypothetical variables or factors.

The matrix form of the factor analysis model is reminiscent of a regression
problem, but here both Λ and f are unknown and must be estimated. This
leads to one problem with factor analysis: the estimates are not unique.
Estimation of the parameters in the factor analysis model is usually
accomplished via the matrices Λ and Ψ. The estimation proceeds in stages,
where an initial estimate is found by placing conditions on Λ. Once this initial
estimate is obtained, other solutions can be found by rotating Λ. The goal of
some rotations is to make the structure of Λ more interpretable, by making
the λij close to one or zero. Several methods that find rotations such that a
desired criterion is optimized are described in the literature. Some of the
commonly used methods are varimax, equimax, orthomax, quartimax,
promax, and procrustes.

These factor rotation methods can either be orthogonal or oblique. In the
case of orthogonal rotations, the axes are kept at 90 degrees. If this constraint
is relaxed, then we have oblique rotations. The orthogonal rotation methods
include quartimax, varimax, orthomax, and equimax. The promax and
procrustes rotations are oblique.

The goal of the quartimax rotation is to simplify the rows of the factor
matrix by getting a variable with a high loading on one factor and small
loadings on all other factors. The varimax rotation focuses on simplifying the
columns of the factor matrix. For the varimax approach, perfect simplification
is obtained if there are only ones and zeros in a single column. The output
from this method tends to have high loadings close to and some near zero
in each column. The equimax rotation is a compromise between these two
methods, where both the rows and the columns of the factor matrix are
simplified as much as possible.

Just as we did in PCA, we might want to transform the observations using
the estimated factor analysis model either for plotting purposes or for further
analysis methods, such as clustering or classification. We could think of these

x Λf e+= µ+

S ΛTΛ Ψ+=

1±

Dimensionality Reduction — Linear Methods 53

observations as being transformed to the ‘factor space.’ These are called
factor scores, similarly to PCA. However, unlike PCA, there is no single
method for finding the factor scores, and the analyst must keep in mind that
the factor scores are really estimates and depend on the method that is used.

An in-depth discussion of the many methods for estimating the factor
loadings, the variances Ψ, and the factor scores, as well as the rotations, is
beyond the scope of this book. For more information on the details of the
methods for estimation and rotation in factor analysis, see Jackson [1991],
Lawley and Maxwell [1971], or Cattell [1978]. Before we go on to an example
of factor analysis, we note that the MATLAB Statistics Toolbox uses the
maximum likelihood method to obtain the factor loadings, and it also
implements some of the various rotation methods mentioned earlier.

Example 2.5
In this example, we examine some data provided with the Statistics Toolbox,
called stockreturns. An alternative analysis of these data is provided in
the Statistics Toolbox User’s Guide. The data set consists of 100 observations,
representing the percent change in stock prices for 10 companies. Thus, the
data set has n = 100 observations and p = 10 variables. It turns out that the first
four companies can be classified as technology, the next three as financial,
and the last three as retail. We can use factor analysis to see if there is any
structure in the data that supports this grouping. We first load up the data set
and perform factor analysis using the function factoran.

load stockreturns
% Loads up a variable called stocks.
% Perform factor analysis:3 factors,default rotation.
[LamVrot,PsiVrot] = factoran(stocks,3);

This is the basic syntax for factoran, where the user must specify the
number of factors (3 in this case), and the default is to use the varimax
rotation, which optimizes a criterion based on the variance of the loadings.
See the MATLAB help on factoran for more details on the rotations. Next,
we specify no rotation, and we plot the matrix Lam (the factor loadings) in
Figure 2.4.

[Lam,Psi] = factoran(stocks,3,'rotate','none');

These plots show the pairwise factor loadings, and we can see that the factor
loadings are not close to one of the factor axes, making it more difficult to
interpret the factors. We can try rotating the matrix next using one of the
oblique (nonorthogonal) rotations called promax, and we plot these results
in Figure 2.5.

% Now try the promax rotation.
[LProt,PProt]=factoran(stocks,3,'rotate','promax');

54 Exploratory Data Analysis with MATLAB®, Third Edition

FIGURE 2.4
These show the factor loadings in their unrotated form. We see that the loadings
are not grouped around the factor axes, although it is interesting to note that we
have the three financial companies (points 5, 6, & 7) grouped together in the upper
plot (factors 1 and 2), while the three retail companies (points 8, 9, & 10) are
grouped together in the lower plot (factors 1 and 3).

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 1

 2

 3

 4

 5 6

 7

 8

 9

10

Factor 1

F
a
ct

o
r

2

No rotation

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 1

 2 3

 4

 5

 6 7

 8
 910

Factor 1

F
a
ct

o
r

3

No rotation

Dimensionality Reduction — Linear Methods 55

FIGURE 2.5
These plots show the factor loadings after the promax rotation. We see that the stocks can
be grouped as technology companies {1, 2, 3, 4}, financial {5, 6, 7}, and retail {8, 9, 10}. The
rotation makes the factors somewhat easier to interpret.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 1

 2
 3
 4

 5

 6

 7

 8

 9

10

Factor 1

F
a
ct

o
r

2

Promax rotation

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 1

 2

 3

 4

 5

 6 7

 8

 9

10

Factor 1

F
a
ct

o
r

3

Promax rotation

56 Exploratory Data Analysis with MATLAB®, Third Edition

Note that we now have a more interpretable structure with the factor
loadings, and we are able to group the stocks. We might also be interested in
estimating the factor scores. The user is asked to explore this aspect of it in
the exercises.
❑

It can be very confusing trying to decide whether to use PCA or factor
analysis. Since the objective of this book is to describe exploratory data
analysis techniques, we suggest that both methods be used to explore the
data, because they take different approaches to the problem and can uncover
different facets of the data. We now outline the differences between PCA and
factor analysis; a more detailed discussion of which method to use can be
found in Velicer and Jackson [1990].

� Both factor analysis and PCA try to represent the structure of the
data set based on the covariance or correlation matrix. Factor anal-
ysis tries to explain the off-diagonal elements, while PCA explains
the variance or diagonal elements of the matrix.

� Factor analysis is typically performed using the correlation matrix,
and PCA can be used with either the correlation or the covariance
matrix.

� Factor analysis has a model, as given in Equation 2.9 and 2.10, but
PCA does not have an explicit model associated with it (unless one
is interested in inferential methods associated with the eigenvalues
and PCs, in which case, distributional assumptions are made).

� If one changes the number of PCs to keep, then the existing PCs
do not change. If we change the number of factors, then the entire
solution changes; i.e., existing factors must be re-estimated.

� PCA has a unique solution, while factor analysis does not.

� The PC scores are found in an exact manner, and the factor scores
are estimates.

2.6 Fisher’s Linear Discriminant

Linear discriminant analysis (LDA) has been used in the statistics
community since the time of Fisher [1936]. Thus, similar to PCA, it can be
classified as one of the traditional approaches for dimensionality reduction.
It is also known as Fisher’s linear discriminant or mapping (FLD) [Duda and
Hart, 1973] and is one of the tools used for pattern recognition and
supervised learning. Thus, linear discriminant analysis is a supervised
method, unlike PCA and most other dimensionality reduction techniques.

Dimensionality Reduction — Linear Methods 57

LDA differs from PCA in other aspects, too. The goal of LDA is to reduce
the dimensionality to 1–D, so we will be projecting onto a line (see Figure 2.1).
In PCA, we can project to a lower dimension d, such that . Also, the
goal of PCA is to find a d-dimensional representation that explains as much
of the variance in the data as possible. In contrast, the objective of LDA is to
find a linear projection where the projected observations are well separated.

When we say that LDA is a supervised method, we mean that we have class
or group labels attached to each of our observations. The classical LDA
approach deals with the simplest case, where we have two classes (e.g.,
diseased and healthy, fraud and not fraud, etc.).

Given a set of two such groups of data in a high-dimensional space, it
remains an open problem as to the best way to build a classifier that will
distinguish between these observations and that will correctly classify future
data. This problem is complicated in the case of high dimensions by
Bellman’s curse of dimensionality [1961]. A discussion of the many ways that
have been developed over the years to build classifiers (regardless of how
many dimensions there are in the data) is beyond the scope of this text, and
the reader is referred to Duda, Hart, and Stork [2001] for a comprehensive
treatment of this topic.

One approach to building a classifier with high-dimensional data is to
project the observations onto a line in such a way that the observations are
well-separated in this lower-dimensional space. The linear separability (and
thus the classification) of the observations is greatly affected by the position
or orientation of this line. This is illustrated in Figure 2.6, where we have two
possible projections of the data. It is clear that the projection to the horizontal
axis will produce a representation of the data where the points overlap,
which will make building a classifier difficult. The other projection is much
better, because it yields a representation with widely separated classes.

In LDA we seek a linear mapping that maximizes the linear class
separability in the new representation of the data. We follow Duda and Hart
[1973] in our discussion of LDA (or FLD in Duda and Hart). We consider a
set of n p-dimensional observations , with samples labeled as
belonging to class 1 () and samples as belonging to class 2 (). We will
denote the set of observations in the i-th class as .

Given a vector w with unit norm, we may form a projection of the onto
a line in the direction of w using

. (2.11)

We want to choose w in order provide a linear mapping that yields maximal
separation of the two classes.

One natural measure of separation between the projected points is the
difference between their means. We may calculate the p-dimensional sample
mean for each class using

1 d p<≤

x1 … xn, , n1
λ1 n2 λ2

Λi

xi

y w
T
x=

yi

58 Exploratory Data Analysis with MATLAB®, Third Edition

(2.12)

The sample mean for the projected points is given by

(2.13)

Combining Equations 2.12 and 2.13 yields

. (2.14)

We can use Equation 2.14 to measure the separation of the means for the
two classes:

FIGURE 2.6
This shows how different projections of two-class data can produce results that either allow
us to linearly separate the classes or not. Here we have two classes represented by x’s and
o’s. We could project to the horizontal axis, but that produces a representation of the data
where there is significant overlap for values a little greater than one. On the other hand, we
could project the data onto a line such as the one shown here where we see clear separation
between the classes.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

m x
x

i

in i

=
∈
∑1

Λ

.

m
n

y

n

i

i y

i

T

i

i

=

=

∈

∈

∑

∑

1

1
Λ

Λ

w x
x

.

m̃i w
T
mi=

Dimensionality Reduction — Linear Methods 59

. (2.15)

It is possible to make the difference in Equation 2.15 as large as possible just
by scaling w. However, the magnitude of w is not really important for our
desired mapping; it just scales the y. As we saw in Figure 2.6, it is the
orientation or direction of the projection line that is significant.

To obtain good class separation, and hence good classification
performance, we want the separation of the means to be as large as possible
relative to some measure of standard deviation for the observations in each
class. We will use the scatter as our measure of the standard deviations.

The scatter for the i-th class of projected data points is given by

We define the total within-class scatter to be . The LDA is defined as
the vector w that maximizes the function

. (2.16)

A little bit of linear algebra manipulation (see Duda and Hart [1973] for
details) allows us to write the solution to the maximization of Equation 2.16
as

, (2.17)

where is the within-class scatter matrix defined by

,

and

Note that the matrix is proportional to the sample covariance matrix for
the pooled p-dimensional data. Interestingly, it turns out that the LDA is the
linear mapping with the maximum ratio of between-class scatter to
within-class scatter, where

m̃1 m̃2– w
T

m1 m2–()=

 s y mi i

y i

2 2= −()
∈
∑

Λ

.

s̃1
2

s̃2
2

+

J w() m̃1 m̃2–
2

s̃1
2

s̃2
2

+
------------------------=

w SW
1–

m1 m2–()=

SW

SW S1 S2+=

S x m x m
x

i i i

T

i

= −() −()
∈
∑

Λ

.

SW

SB

60 Exploratory Data Analysis with MATLAB®, Third Edition

.

Example 2.6
We will implement the LDA approach in this example. First we generate
some observations that are multivariate normal using the mvnrnd function
and plot them as points in the top panel of Figure 2.7.

n1 = 100;
n2 = 100;
cov1 = eye(2);
cov2 = [1 .9; .9 1];
% The mvnrnd function is in the Statistics Toolbox.3

dat1 = mvnrnd([-2 2],cov1,n1);
dat2 = mvnrnd([2 -2],cov2,n2);
plot(dat1(:,1),dat1(:,2),'x',...
 dat2(:,1),dat2(:,2),'o')

Now, we estimate the optimal linear mapping according to LDA. The first
step is to get the within-class scatter matrix.

% Calculate the scatter matrices, using the fact that
% they are proportional
% to the sample covariance matrices.
scat1 = (n1-1)*cov(dat1);
scat2 = (n2-1)*cov(dat2);
% Now we compute the within-class scatter matrix.
Sw = scat1 + scat2;

Next, we have to get the sample means for each class. Note that these means
are for the data represented in the original space.

% Next, we need the means for each class in the
% original space.
mu1 = mean(dat1);
mu2 = mean(dat2);

Now we can calculate the LDA vector w in Equation 2.17.

% The next steps calculate the LDA vector w.
% Note that we need to take the transpose of
% the means, since they need to be column vectors.
w = inv(Sw)*(mu1' - mu2');
% Normalize the vector w.
w = w/norm(w);

3 The mvnrnd and ksdensity functions used in this example are from the Statistics Toolbox,
but similar functionality is available in the free Computational Statistics Toolbox. See Appendix
B for more information.

SB m1 m2–() m1 m2–()T
=

Dimensionality Reduction — Linear Methods 61

We use the w vector to project the data into a 1–D space (Equation 2.11).

% We can now calculate the projected data.
pdat1 = w'*dat1';
pdat2 = w'*dat2';

The data now reside in one dimension. So, we will construct a kernel density
estimate using the ksdensity function to help us visualize them.

[ksd1,x1] = ksdensity(pdat1);
[ksd2,x2] = ksdensity(pdat2);
plot(pdat1,zeros(1,100),'x',pdat2,zeros(1,100),'o')
hold on
plot(x1,ksd1,x2,ksd2)
hold off

The results are shown in Figure 2.7 (bottom), where we can see that the data
are well separated in 1–D when we use the linear mapping obtained from
LDA. See Chapter 6 for more information on discriminant analysis.
❑

Duda and Hart [1973] also describe a similar approach for the c-class
problem, where . In that case, LDA involves discriminant
functions; so the projection reduces the dimensionality from p dimensions to

. The assumption here, of course, is that .

2.7 Random Projections

In many modern data analysis situations, the dimensionality of the data is so
large that the use of standard linear dimensionality reduction methods based
on singular value decomposition or principal component analysis is either
infeasible or intractable. However, we might want to explore and render our
data in a lower dimensional space, such that the mapping is linear. We
usually want to have this rendering or projection to be performed in such a
manner as to preserve the interpoint distance structures between the data
points. This is especially critical if subsequent analysis involves the
interpoint distances (e.g., clustering). It turns out, in a rather counterintuitive
manner, that one can actually preserve the interpoint distances via random
projections.

We follow the treatment of random projections given in Vempala [2004].
Let be a column vector in . Consider an integer as
the size of our smaller dimensional subspace. A d-dimensional subspace can
be represented by a matrix, where the columns are orthonormal. This
means they are orthogonal to each other and have a norm equal to one. We
will denote this matrix as R. From earlier in the chapter (Section 2.1), we see

c 2> c 1–

c 1– p c≥

u u1 … up, ,()T
= Rp

d p<

p d×

62 Exploratory Data Analysis with MATLAB®, Third Edition

FIGURE 2.7
The top panel shows the scatterplot of the data in the original 2–D space (see Example 2.6).
Class one observations are shown as x’s, and class two data are shown as o’s. The bottom
panel shows the data as points on the horizontal axis after they have been mapped to a 1–D
space that was found using LDA. We also construct and plot a kernel density estimate of
each class and show them on the plot. It is clear that, in this case, the data can be easily
separated in 1–D.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

−4 −2 0 2 4 6 8
0

0.5

1

1.5

Dimensionality Reduction — Linear Methods 63

that this matrix is similar to the one containing the eigenvectors obtained
through PCA.

One approach to obtain such a subspace is to choose the elements of R as a
random sample from a continuous uniform distribution bounded by zero
and one, so . Given this formulation, we may write a vector
projected to this subspace as

, (2.18)

where the scalar coefficient in Equation 2.18 ensures that the squared length
of matches that of u.

It might seem that requiring orthonormality of the columns of R would be
burdensome, but this can be relaxed. Johnson and Lindenstrauss [1984] show
that the entries of R can be chosen from a standard normal distribution. They
also show that this type of projection ensures (with high probability) that the
interpoint distance in the d-dimensional subspace matches approximately
those in the original p-dimensional space. If the random entries of R are from
a standard normal distribution, then we write

. (2.19)

Text data mining is one of the areas where the large size of the data matrix
(i.e., the term–document matrix) makes random projections a viable option
to reduce the dimensionality of the data [Bingham and Mannila, 2001;
Boutsidis, et al., 2010; Ding, et al., 2013].

A famous data set for text analysis is the 20 Newsgroup data. This data set
was first formulated by Lang [1995]. The 20 Newsgroup data has around
20,000 documents, chosen from twenty categories. This data set is available
at the UCI Machine Learning Repository:

archive.ics.uci.edu/ml/datasets/Twenty+Newsgroups

and

http://qwone.com/~jason/20Newsgroups/

The second web site has a useful link to a compressed file containing a format
that is easily read into MATLAB. We will use this data set in the next example
to illustrate random projections.

Example 2.7
There are several data sets included with the 20 Newsgroup data. We will use
the one called test.data in this example. Once it is extracted, you can load
it, as follows.

rij U 0 1,()∼

xk
p
k
---RTu=

xk

xk
1
k
---RTu=

http://qwone.com/~jason/20Newsgroups/

64 Exploratory Data Analysis with MATLAB®, Third Edition

% This has been downloaded from
% http://qwone.com/~jason/20Newsgroups/
% Choose the MATLAB/Octave link and
% extract to your current directory.
load('test.data')

We can easily convert this to a sparse matrix object, as shown here.

% We convert this to a sparse version.
testsp = sparse(test(:,1),...
 test(:,2),test(:,3));

% Determine the size of the data matrix.
[n,p] = size(testsp);

The size function returns documents and words. Thus,
we are in a very high-dimensional space. The cosine of the angle between two
document vectors is typically used to determine how similar they are. Recall
that the cosine between two (column) vectors x and y is given by

,

where the numerator is the dot product, and is the magnitude of a vector.
This is a similarity measure. We can convert to a distance by taking

.

The following code finds the cosine distance between all pairs of documents.

% Here we calculate the cosine similarity:
% cosine(theta) = (x * y)/(||x||*||y||)
% First, the x*y part of the cosine.
tmp1 = testsp * testsp';

% Here is the ||x||*||y|| part.
tmp2 = sqrt(diag(tmp1))*sqrt((diag(tmp1))');

% This is the cosine similarity.
costheta = tmp1./tmp2;

% We convert to a distance matrix.
% This has the distances in the full space.
Df = 1 - costheta;

n 7505= p 61188=

θx y,()cos xTy
x y---------------=

*

D θx y,()cos 1 θx y,()cos–=

http://qwone.com/~jason/20Newsgroups/

Dimensionality Reduction — Linear Methods 65

The matrix Df is an matrix of pairwise cosine distances. The diagonal
elements of this matrix have to be zero. Some might not be exactly zero due
to numerical errors. Thus, we first set those diagonal elements to zero.

Df(logical(eye(size(Df)))) = 0;

Next, we create the random projection matrix R and project to that subspace.

% We choose the dimensionality we are projecting to.
d = 300;
% Create the random projection matrix.
R = sparse(randn(p,d));

% We produce a matrix which is 7505 by 300.
testspproj = ((1/sqrt(d))*R'*testsp')';

We now calculate the pairwise cosine distances in the subspace.

% Calculate the cosine distance for the projected data.
tmp1proj = testspproj * testspproj';
tmp2proj = ...
 sqrt(diag(tmp1proj))*sqrt((diag(tmp1proj))');
costhetaproj = tmp1proj./tmp2proj;
Dproj = 1 - costhetaproj;

There are several ways one might compare the distances before and after the
dimensionality has been reduced. We use the difference between the distance
before and after the reduction.

% Compare using the difference in the distances.
D = Df - Dproj;

We repeated the same projection steps using a value of . We show
the distribution of the differences in the distances for both values of d in
Figure 2.8. As expected, the average distance is close to zero, and we also get
less variation when d is larger.
❑

2.8 Intrinsic Dimensionality

Knowing the intrinsic dimensionality (sometimes called the effective
dimensionality) of a data set is useful information in exploratory data
analysis. This is defined as the smallest number of dimensions or variables
needed to model the data without loss [Kirby, 2001]. Fukunaga [1990]
provides a similar definition of intrinsic dimensionality as “the minimum
number of parameters needed to account for the observed properties of the
data.”

n n×

d 1000=

66 Exploratory Data Analysis with MATLAB®, Third Edition

FIGURE 2.8
These plots show the distribution of the distances before and after projecting to a lower-
dimensional space. The first one projects to 300 dimensions and the second to 1,000. Both
show that the average difference is close to zero. We also see that the distances tend to be
closer (less variance) when we use more dimensions.

Dimensionality Reduction — Linear Methods 67

Several approaches to estimating the intrinsic dimensionality of a data set
have been proposed in the literature. Trunk [1968, 1976] describes a statistical
approach using hypothesis testing regarding the most likely local
dimensionality. Fukunaga and Olsen [1971] present an algorithm where the
data are divided into small subregions, and the eigenvalues of the local
covariance matrix are computed for each region. The intrinsic dimensionality
is then obtained using the size of the eigenvalues.

More methods for estimating the intrinsic dimensionality have been
developed in the recent literature, largely due to the increased interest in
dimensionality reduction and manifold learning in the machine learning
community. These newer approaches are now often categorized as being
local or global [Camastra, 2003]. Local approaches estimate the dimensionality
using information in neighborhoods of the observations, while global
methods analyze the global properties of the data, making use of the whole
data set. We have already discussed one global method for estimating the
dimensionality when we looked at the amount of variance explained by the
eigenvalues in principal component analysis.

In what follows, we describe several local estimators: nearest neighbor,
correlation dimension, and maximum likelihood. These are followed by a
global method based on packing numbers.

2.8.1 Nearest Neighbor Approach

Pettis et al. [1979] developed an algorithm for estimating intrinsic
dimensionality that is based on nearest neighbor information and a density
estimator. We choose to implement the original Pettis algorithm as outlined
below; details of the derivation can be found in the original paper. We first
set some notation, using 1–D representation for the observations as in the
original paper. However, this method works with the distance between
observations, and it easily extends to the multi-dimensional case. Let rk,x

represent the distance from x to the k-th nearest neighbor of x. The average k-
th nearest neighbor distance is given by

(2.20)

Pettis et al. [1979] show that the expected value of the average distance in
Equation 2.20 is

, (2.21)

where

r
n

rk k x

i

n

i
=

=
∑1

1
, .

E rk() 1
Gk d,
---------k

1 d⁄
Cn=

68 Exploratory Data Analysis with MATLAB®, Third Edition

,

and Cn is independent of k. If we take logarithms of Equation 2.21 and do
some rearranging, then we obtain the following

. (2.22)

We can get an estimate for by taking the observed value of based on
the data in our sample, yielding the following estimator for the intrinsic
dimensionality d

. (2.23)

This is similar to a regression problem, where the slope is given by .
The term log(Cn) affects the intercept, not the slope; so we can disregard this
in the estimation process.

The estimation procedure must be iterative since also appears on the
response (left) side of Equation 2.23. To get started, we set the term
equal to zero and find the slope using least squares. Here the predictor values
are given by log(k), and the responses are , . Once we
have this initial value for , we then find using Equation 2.23.
Using this value, we find the slope where the responses are now

. The algorithm continues in this manner until the
estimates of intrinsic dimensionality converge.

We outline the algorithm shortly, but we need to discuss the effect of
outliers first. Pettis et al. [1979] found that their algorithm works better if
potential outliers are removed before estimating the intrinsic dimensionality.
To define outliers in this context, we first define a measure of the maximum
average distance given by

where represents the i-th K nearest neighbor distance. A measure of the
spread is found by

The data points xi for which

Gk d,
k

1 d⁄ Γ k()
Γ k 1 d÷+()
------------------------------=

Gk d,()log E rk()log+ 1 d⁄() k()log Cn()log+=

E rk() rk

d̂

G
k d̂,

()log rk()log+ 1 d̂⁄() k()log Cn()log+=

1 d̂⁄()

d̂
G

k d̂,
()log

rk()log k 1 … K, ,=

d̂ G
k d̂,

()log

G
k d̂,

()log rk()log+

m
n

rK x
i

n

imax , ,=
=
∑1

1

rK xi,

s
n

r mK x

i

n

imax , max .2 2

1

1
1

=
−

−()
=
∑

Dimensionality Reduction — Linear Methods 69

(2.24)

are used in the nearest neighbor estimate of intrinsic dimensionality. We are
now ready to describe the method.

Procedure – Intrinsic Dimensionality

1. Set a value for the maximum number of nearest neighbors K.

2. Determine all of the distances .

3. Remove outliers by keeping the points that satisfy Equation 2.24.

4. Calculate .

5. Get the initial estimate by fitting a line to

,

and taking the inverse of the slope.

6. Calculate using Equation 2.23.

7. Update the estimate of intrinsic dimensionality by fitting a line to

.

8. Repeat steps 6 and 7 until the estimates converge.

Example 2.8
The following MATLAB code implements the Pettis algorithm for estimating
intrinsic dimensionality, which is part of the EDA Toolbox function called
idpettis. We first generate some data to illustrate the functionality of the
algorithm. The helix is described by the following equations, and points are
randomly chosen along this path:

for . For this data set, the dimensionality is 3, but the intrinsic
dimensionality is 1. We show a picture of the helix in Figure 2.9. We obtain
the data by generating uniform random numbers in the interval .

% Generate the random numbers
% unifrnd is from the Statistics Toolbox.
n = 500;

rK xi, mmax smax+≤

rk xi,

rk()log
d̂0

rk()log 1 d̂⁄() k()log=

G
k dˆ j,

()log

G
k dˆ j,

()log rk()log+ 1 d̂⁄() k()log=

x θcos=

y θsin=

z 0.1θ=

0 θ 4π≤ ≤

0 θ 4π≤ ≤

70 Exploratory Data Analysis with MATLAB®, Third Edition

theta = unifrnd(0,4*pi,1,n);
% Use in the equations for a helix.
x = cos(theta);y = sin(theta);z = 0.1*(theta);
% Put into a data matrix.
X = [x(:),y(:),z(:)];

We note that the function unifrnd is from the Statistics Toolbox, but users
can also employ the rand function and scale to the correct interval [Martinez
and Martinez, 2015]. In the interest of space and clarity, we show only the
code for the algorithm after the outliers have been removed. Thus, you
cannot run the code given below as it stands. We refer curious readers to the
MATLAB function idpettis for the implementation of the rest of the
procedure.

% Get initial value for d. Values n, k, & logrk
% are defined in the idpettis function. This is
% an extract from that function.
logk = log(k);
[p,s] = polyfit(logk,logrk,1);
dhat = 1/p(1);
dhatold = realmax;
maxiter = 100;
epstol = 0.01;
i = 0;

FIGURE 2.9
This shows the helix used in Example 2.8. This is a 1–D structure embedded in 3–D.

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Dimensionality Reduction — Linear Methods 71

while abs(dhatold - dhat) >= epstol & i < maxiter
 % Adjust the y values by adding logGRk
 logGRk = (1/dhat)*log(k)+...

gammaln(k)-gammaln(k+1/dhat);
 [p,s] = polyfit(logk,logrk + logGRk,1);
 dhatold = dhat;
 dhat = 1/p(1);
 i = i+1;
end
idhat = dhat;

As an example of using the idpettis function, we offer the following:

% Get the distances using the pdist function.
% This returns the interpoint distances.
ydist = pdist(X);
idhat = idpettis(ydist,n);

where the input variable X is the helix data. The resulting estimate of the
intrinsic dimensionality is 1.14. We see from this result that in most cases the
estimate will need to be rounded to the nearest integer. Thus, the estimate in
this case is the correct one: 1–D.
❑

2.8.2 Correlation Dimension

The correlation dimension estimator of intrinsic dimensionality is based on
the assumption that the number of observations in a hypersphere with radius
r is proportional to [Grassberger and Procaccia, 1983; Camastra and
Vinciarelli, 2002]. Given a set of observations in a metric
space, we can calculate the relative number of observations that are
contained within a hypersphere of radius r by

(2.25)

where

r
d

Sn x1 … xn, ,{ }=

C r
n n

c
j i

n

i

n

() =
−() = +=

∑∑2
1 11

,

c
x x r

x x r

i j

i j

=
− ≤

− >

⎧
⎨
⎪

⎩⎪

1

0

,

, .

if

if

72 Exploratory Data Analysis with MATLAB®, Third Edition

The value of in Equation 2.25 is proportional to ; so we can use this
to estimate the intrinsic dimensionality d. Thus, the correlation dimension is
given by

. (2.26)

Since we have a finite sample, arriving at the limit of zero in Equation 2.26
is not possible. So, we plot against and then estimate the slope
of the linear part. Van der Maaten [2007] shows that this slope, and thus the
intrinsic dimensionality, can be estimated by calculating for two values
of r and then finding the ratio:

.

Fortunately, several local and global estimators of intrinsic dimensionality
have been implemented in the Dimensionality Reduction Toolbox by L. J. P.
van der Maaten.4 The toolbox has a function that produces estimates based
on the approaches described in this section and the following ones. So, we
will wait until a later section to illustrate the use of the correlation dimension
approach and other methods.

2.8.3 Maximum Likelihood Approach

As we have seen from the description of the previous two methods, local
intrinsic dimensionality estimators are often based on the idea that the
number of observations that are covered by a hypersphere of radius r around
a given data point grows in proportion to , where d is the intrinsic
dimensionality of the manifold around that point. Levina and Bickel [2004]
also use this idea to derive the maximum likelihood estimator, but instead
they model the number of data points inside the hypersphere as a Poisson
process [van der Maaten, 2007].

Consider a set of independent and identically distributed observations
denoted by residing in a p-dimensional space, . We assume that
the observations come from an embedding in a d-dimensional space, where

. Thus, the , where the are sampled from an unknown
smooth density f with support on . We also make the necessary
mathematical assumptions to ensure that observations that are close together
in the higher dimensional space are close together in the lower-dimensional
embedding space.

4 See Appendix B for the website address.

C r() r
d

d C r()log
rlog-------------------

r 0→
lim=

C r()log rlog

C r()

d̂corr r1 r2,()
C r2() Clog r1()–log

r2 r1log–log---=

r
d

x1 … xn, , R
p

d p≤ xi g yi()= yi

R
d

Dimensionality Reduction — Linear Methods 73

We choose a point x and assume that is approximately constant within
a small hypersphere of radius r around x. We can treat these
observations as a homogeneous Poisson process within .

Next, we consider the inhomogeneous process ,

(2.27)

Equation 2.27 counts the observations that are within distance t from x. This
can be approximated by a Poisson process, and we can write the rate of
the process at dimensionality d as

,

where is the gamma function.
Levina and Bickel provide the relevant log-likelihood function and show

that one obtains the following maximum likelihood estimator of the intrinsic
dimensionality

(2.28)

where is the Euclidean distance from the point x to the j-th nearest
neighbor within the hypersphere centered at x. Alternatively, one could view

 as the radius of the smallest hypersphere centered at x that contains j
observations.

The authors provide a more convenient way to arrive at the estimate by
fixing the number of neighbors k instead of the radius r. The maximum
likelihood estimate given in Equation 2.26 then becomes

(2.29)

It is clear from Equation 2.29 that the estimate depends on the parameter k
(or the radius r of the hypersphere), and it also depends on the point x.
Sometimes, the intrinsic dimensionality varies as a function of the location (x)
in the data set, as well as the scale (k or r). Thus, it is a good idea to have
estimates at different locations and scales. Levina and Bickel note that the
hypersphere should be small and at the same time contain enough points for
the estimator to work well.

f x()
Sx r()

Sx r()
Nx t() 0 t r≤ ≤,{ }

N t x S tx i x

i

n

() = ∈ (){ }
=
∑1

1
.

λ t()
Nx t()

λx t() f x()πd 2⁄
dt

d 1–

Γ d 2⁄ 1+()
---------------------------------=

Γ •()

d x
N r x

r

T x
r

jj

N r x

 () =
() ()

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥=

() −()

∑1
1

1

,
log ,

,

Tj x()

Tj x()

d x
k

T x

T x
k

k

jj

k () =
−

()
()

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥=

−
−()

∑1
1 1

1
1

log .

74 Exploratory Data Analysis with MATLAB®, Third Edition

They recommend that one obtain estimates of the intrinsic dimensionality
at each observation and over different scales k of small to moderate values.
The final estimate is obtained by averaging these results, as shown here:

(2.30)

where

Levina and Bickel recommend values of and .
MacKay and Ghahramani [2005] noticed the tendency for the maximum

likelihood estimator in Equation 2.30 to exhibit strong bias in the estimate for
small k, even when n is large. They advocate averaging the inverses of the
estimators to alleviate this problem.

2.8.4 Estimation Using Packing Numbers

Kegl [2003] developed a method for estimating the intrinsic dimensionality
that is based on the geometric properties of the data, so it does not use a data
generating model. Another nice aspect of this approach is that it does not
have parameters to set, as we saw with some of the previous methods. Kegl’s
estimate is called the packing number estimator.

Given a metric space, the r-covering number of a set
in this space is the smallest number of hyperspheres with radius r that is
needed to cover all observations in the data set S. The r-covering number

 of a d-dimensional data set is proportional to , and we can define the
capacity dimension as

. (2.31)

It is not possible to find the r-covering number for most data sets. So,
Kegl uses the r-packing number instead. This is defined as the
maximum number of observations in the data set S that can be covered by
a single hypersphere of radius r [van der Maaten, 2007].

Using the following inequality between packing and covering numbers:

,

xi

d
k k

dMLE k

k k

k

 =
− + =

∑1
12 1 1

2

,

d
n

d xk k i

i

n

= ()
=
∑1

1

 .

k1 10= k2 20=

N r() S x1 … xn, ,{ }=

xi

N r() r
d–

d
N r()log

rlog--------------------
r 0→
lim–=

N r()
M r()

xi

N r() M r() N r 2⁄()≤ ≤

Dimensionality Reduction — Linear Methods 75

we can find the intrinsic dimensionality of our data set by using the packing
number in Equation 2.31:

. (2.32)

Since we have a finite sample, we cannot achieve the limit in Equation 2.32;
so the packing estimate for intrinsic dimensionality is found using

.

Example 2.9
We are now ready to examine the outputs of the intrinsic dimensionality
estimators we have just described. To do this, we will use the function from
the Dimensionality Reduction Toolbox5 called intrinsic_dim. The
interested reader should download the toolbox and follow the installation
instructions in the readme.txt file. We will also use another function from
this same toolbox called generate_data that will allow us to generate data
based on a helix, which will be different from our previous example.

% First, generate a helix data set and plot it.
% The first argument specifies the type of data set.
% The second argument is the number of points, and
% the third governs the amount of noise.
[X] = generate_data('helix',2000,0.05);
plot3(X(:,1),X(:,2),X(:,3),'.')
grid on

The data are plotted in Figure 2.10, where we see that the data fall on a 1–D
manifold along a helix. Next, we estimate the intrinsic dimensionality using
the correlation dimension, the maximum likelihood estimator, and the
packing number.

% Now find the estimates of intrinsic dimensionality
% that were described in the last three sections.
d_corr = intrinsic_dim(X,'CorrDim');
d_mle = intrinsic_dim(X,'MLE');
d_pack = intrinsic_dim(X,'PackingNumbers');

The results are given here:

d_corr = 1.6706
d_mle = 1.6951
d_pack = 1.2320

5 See Appendix B for information on downloading the toolbox.

d M r()log
rlog---------------------

r 0→
lim–=

d̂pack r1 r2,()
M r2()log M r1()log–

r2log r1log–
---–=

76 Exploratory Data Analysis with MATLAB®, Third Edition

We see some differences in the results, with the packing number estimator
providing the best answer with this artificial data set.
❑

2.8.5 Estimation of Local Dimension

What we presented previously are examples of estimating the global intrinsic
dimension. However, there are applications where the data might lie on
several manifolds with different dimensions. Some examples include
assessing the complexity of a similarity search, detecting outliers, and
estimating the local densities in classification [Amsaleg et al. 2015; Carter et
al. 2010].

A natural approach to this problem is to find the intrinsic dimensionality
in the neighborhood of each observation [Costa et al. 2005]. The process is
simple and intuitive. First, we find the k–nearest neighbors for each
observation. We then find the intrinsic dimensionality of this neighborhood
using one of the methods discussed already. This will give us a distribution
of the n local dimensions. We explore this idea in the next example.

Example 2.10
We generated a data set consisting of a cube (3–D), a spherical surface (2–D),
and two lines (1–D). The data can be generated using a function we include
in the toolbox called genLDdata. It will generate a data set similar to the one
shown in Figure 2.11. Note that the Dimensionality Reduction Toolbox has to

FIGURE 2.10
This is a scatterplot of the helix data generated in Example 2.9.

−4

−2

0

2

4

−4

−2

0

2

4

−1.5

−1

−0.5

0

0.5

1

1.5

Dimensionality Reduction — Linear Methods 77

be downloaded and installed in an appropriate MATLAB directory [van der
Maaten, 2007] to run the code in this example

% Generate the data set.
A = genLDdata;
% Estimate the global intrinsic dimensionality.
% The default is the MLE.
ID = intrinsic_dim(A);

We estimate the global intrinsic dimensionality using the intrinsic_dim
function, and we get a value of 1.5229. We can estimate the intrinsic
dimensionality at each observation with the following steps using a
neighborhood size of .

% Get the pairwise interpoint distances.
% We use the default Euclidean distance.
Ad = squareform(pdist(A));
% Get the dimensions of the data.
[nr,nc] = size(A);
Ldim = zeros(nr,1);
Ldim2 = Ldim;
[Ads,J] = sort(Ad,2);
% Set the neighborhood size.

FIGURE 2.11
This data set has three sub-manifolds. We have lines (1–D), a spherical surface (2–D), and
a cube (3–D). The global intrinsic dimension is 1.5229.

-3
4

-2

-1

2 3

0

1

20

2

3

1
-2

0
-4 -1

k 100=

78 Exploratory Data Analysis with MATLAB®, Third Edition

k = 100;
for m = 1 : nr
 Ldim(m,1) = ...
 intrinsic_dim(A(J(m,1:k),:));
end

The default method in intrinsic_dim is the MLE, which is used here. The
maximum local intrinsic dimension is very large (). The smallest has
a value of 0.876. We know the local dimension has to be an integer, so we do
a little conversion. This includes converting local dimension values more
than three to four, which will indicate an error.

% We map all local dimensions greater
% than 3 to 4 and convert to integers.
Ldim(Ldim > 3) = 4;
Ldim = ceil(Ldim);

It is interesting to get a frequency distribution of the local dimension values.

% Tabulate them.
tabulate(Ldim)

 Value Count Percent
 1 3119 51.98%
 2 1586 26.43%
 3 1089 18.15%
 4 206 3.43%

This table indicates at least 206 observations have incorrect estimates of the
local dimension. We can visualize our results by coloring observations with
their estimated local dimension in a scatterplot. This is shown in Figure 2.12,
and the code used to construct the plot is given here.

% The following code constructs a
% scatterplot with colors mapped to
% the estimated local dimension.
ind1 = find(Ldim == 1);
ind2 = find(Ldim == 2);
ind3 = find(Ldim == 3);
ind4 = find(Ldim == 4);
scatter3(A(ind1,1),A(ind1,2),A(ind1,3),'r.')
hold on
scatter3(A(ind2,1),A(ind2,2),A(ind2,3),'g.')
scatter3(A(ind3,1),A(ind3,2),A(ind3,3),'b.')
scatter3(A(ind4,1),A(ind4,2),A(ind4,3),'k.')
hold off

❑

5.3 105×

Dimensionality Reduction — Linear Methods 79

2.9 Summary and Further Reading

In this chapter, we introduced the concept of dimensionality reduction by
presenting several methods that find a linear mapping from a high-
dimensional space to a lower one. These methods include principal
component analysis, singular value decomposition, and factor analysis. We
also addressed the issue of determining the intrinsic dimensionality of a data
set.

For a general treatment of linear and matrix algebra, we recommend Strang
[1988, 1993] or Golub and van Loan [1996]. Discussions of PCA and factor
analysis can be found in most multivariate analysis books; some examples
are Manly [1994] or Seber [1984]. Readers who would like a more detailed
treatment of these subjects are referred to Jackson [1991] and Jolliffe [1986].
These texts provide extensive discussions (including many extensions and
applications) of PCA, SVD, and factor analysis. There are many applications
of PCA and SVD to microarray analysis; some examples include gene
shaving [Hastie et al., 2000], predicting the clinical status of human breast
cancer [West et al., 2001], obtaining a global picture of the dynamics of gene

FIGURE 2.12
This is a scatterplot of the data in Figure 2.11 where we colored the points based on their
estimated local dimension. We see that some points on the sphere and line are assigned an
incorrect intrinsic dimension. (SEE COLOR INSERT.)

-3
4

-2

-1

2 3

0

1

20

2

3

1
-2

0
-4 -1

80 Exploratory Data Analysis with MATLAB®, Third Edition

expression [Alter, Brown, and Botstein, 2000], and clustering [Yeung and
Ruzzo, 2001].

There have been many applications of nonnegative matrix factorization
described in the literature. Some of these include blind source separation
[Cichocki et al., 2006], face recognition [Guillamet and Vitria, 2002], music
transcription [Smaragdis and Brown, 2003], and the analysis of microarray
data [Fogel et al., 2007]. Bucak and Gunsel [2009] introduce an incremental
framework for nonnegative matrix factorization that is suitable for online
processing of large data sets.

The Fukunaga-Olsen method of estimating intrinsic dimensionality is
further explored in Verveer and Duin [1995] and Bruske and Sommer [1998].
The Pettis algorithm is also described in Fukunaga [1990] and is expanded in
Verveer and Duin [1995]. Verveer and Duin [1995] revise both the Pettis and
the Fukunaga-Olsen algorithms and provide an evaluation of their
performance. Costa and Hero [2004] propose a geometric approach based on
entropic graph methods. Their method is called the geodesic minimal
spanning tree (GMST), and it yields estimates of the manifold dimension and
the α-entropy of the sample density on the manifold.

Raginsky and Lazebnik [2006] propose a way to estimate the intrinsic
dimensionality using the notion of the quantization dimension and high-rate
vector quantization. Costa et al. [2005] devise a global method based on the
k-nearest neighbor graphs. Li et al. [2007] develop a new method that also
uses a nearest neighbor graph, but it is based on the convex hull. Fan et al.
[2008] derive an estimator by finding the exponential relationship between
the radius of an incising ball and the number of observations within the ball.
Little et al. [2009] describe a global estimate of the intrinsic dimensionality
that uses a multiscale version of the SVD. Camastra [2003] provides a survey
of some dimensionality estimation methods, where his focus is on fractal-
based approaches. A good paper that describes local intrinsic dimensionality
estimation methods and provides some interesting applications (network
anomaly detection, clustering, image segmentation) is Carter et al. [2010].

In this chapter, we discussed ways to use random matrices to reduce the
dimensionality of our data. Randomization can also play an important role
in classification or supervised learning. To learn more about this, the reader
is referred to several papers by Rahimi and Recht [2007, 2008, 2009] detailing
their work on the random kitchen sinks (RKS) algorithm. Their claim is that
RKS can perform fast approximate Gaussian process regression. Le et al.
[2013] used randomization based methods to develop a procedure called
Fastfood, which they claim can compute n non-linear basis functions in

 time, where p is the number of dimensions. Finally, we refer the
mathematically inclined reader to the recent work of Wang [2015] who
provides in-depth discussions on random matrix calculations within
MATLAB.

O n plog()

Dimensionality Reduction — Linear Methods 81

Exercises

2.1 Generate n = 50, p = 3 normally distributed random variables that
have high variance in one dimension. For example, you might use the
following MATLAB code to do this:

x1 = randn(50,1)*100;
x2 = randn(50,2);
X = [x1,x2];

Try PCA using both correlation and covariance matrices. Is the one
with the covariance matrix very informative? Which one would be
better to use in this case?

2.2 Do a scree plot of the data set used in Example 2.2. Generate
multivariate, uncorrelated normal random variables for the same n
and p. (Hint: use randn(n,p).) Perform PCA for this data set, and
construct its scree plot. It should look approximately like a straight
line. Plot both scree plots together; where they intersect is an estimate
of the number of PCs to keep. How does this compare with previous
results? [Jackson, 1991, p. 46].

2.3 Generate a set of n = 30 trivariate normal random variables using
randn(30,3).
a. Subtract the mean from the observations and find the covariance

matrix, using cov. Get the eigenvectors and eigenvalues based on
the covariance matrix of the centered observations. Is the total
variance of the original data equal to the sum of the eigenvalues?
Verify that the eigenvectors are orthonormal. Find the PC scores
and their mean.

b. Impose a mean of [2, 2, 2]T on the original variables. Perform PCA
using the covariance of these noncentered data. Find the PC scores
and their mean.

c. Center and scale the original variables, so that each one has zero
mean and a standard deviation of one. Find the covariance of these
transformed data. Find the correlation matrix of the original, non-
transformed data. Are these two matrices the same?

d. Verify that the PC scores produce data that are uncorrelated by
finding the correlation matrix of the PC scores.

2.4 Repeat Example 2.2 using the correlation matrix. Compare with the
previous results.

2.5 Generate multivariate normal random variables, centered at the
origin (i.e., centered about 0). Construct the matrix XTX and find the
eigenvectors. Next, construct the matrix XXT and find the
eigenvectors. Now use the SVD on X. Compare the columns of U and
V with the eigenvectors. Are they the same? Note that the columns of

82 Exploratory Data Analysis with MATLAB®, Third Edition

U and V are unique up to a sign change. What can you say about the
eigenvalues and singular values?

2.6 Generate a set of multivariate normal random variables, centered at
the origin. Obtain the eigenvalue decomposition of the covariance
matrix. Multiply them to get the original matrix back, and also
perform the multiplication to get the diagonal matrix L.

2.7 Construct a plot based on the slopes of the lines connecting the points
in the scree plot. Apply to the yeast data. Does this help in the
analysis? Hint: use the diff function.

2.8 Apply PCA to the following data sets. What value of d would you get
using the various methods for choosing the number of dimensions?
a. Other gene expression data sets.

b. oronsay data.

c. sparrow data.

2.9 Repeat Example 2.3 for the SVD - LSI using k = 2. Comment on the
results and compare to the document retrieval using k = 3.

2.10 Using the term-document matrix in Example 2.3, find the cosine of the
angle between the reduced query vectors and the reduced document
vectors. However, this time use the magnitude of the reduced query
vectors in the loop, not the magnitudes of the original queries. Discuss
how this affects your results in terms of precision and recall.

2.11 Generate a bivariate data set using either rand or randn. Verify that
the singular values are the square roots of the eigenvalues of XTX and
XXT.

2.12 Repeat Example 2.5, using other rotations and methods implemented
in MATLAB for estimating the factor loadings. Do they change the
results?

2.13 Plot factors 2 and 3 in Example 2.5 for no rotation and promax
rotation. Discuss any groupings that might be evident.

2.14 Try Example 2.5 with different values for the number of factors—say
two and four. How do the results change?

2.15 The MATLAB function factoran includes the option of obtaining
estimates of the factor scores. Using the data in Example 2.5, try the
following code

[lam,psi,T,stats,F]=...
 factoran(stocks,3,'rotate','promax');

The factor scores are contained in the variable F. These can be viewed
using plotmatrix.

2.16 Try factor analysis on some of the gene expression data sets to cluster
the patients or experiments.

2.17 Generate 2–D standard bivariate random variables using randn for
increasing values of n. Use the idpettis function to estimate the
intrinsic dimensionality, repeating for several Monte Carlo trials for

Dimensionality Reduction — Linear Methods 83

each value of n. The true intrinsic dimensionality of these data is 2.
How does the algorithm perform on these data sets?

2.18 This data set is taken from Fukunaga [1990], where he describes a
Gaussian pulse characterized by three parameters a, m, and . The
waveform is given by

.

These parameters are generated randomly in the following ranges:

The signals are generated at 8 time steps in the range ; so
each of the signals is an 8–D random vector. The intrinsic
dimensionality of these data is 3. Generate random vectors for various
values of n , and apply idpettis to estimate the intrinsic
dimensionality and assess the results.

2.19 Estimate the intrinsic dimensionality of the yeast data. Does this
agree with the results in Example 2.2?

2.20 Estimate the intrinsic dimensionality of the following data sets.
Where possible, compare with the results from PCA.
a. All BPM data sets.

b. oronsay data.

c. sparrow data

d. Other gene expression data.

2.21 The Statistics Toolbox has a function called rotatefactors that can
be used with either factor analysis or principal component analysis
loadings. Do a help on this function. Apply it to the factor loadings
from the stockreturns data. Apply it to the PCA results of the
yeast data in Example 2.2.

2.22 Consider a set of data that contains two groups, where each group is
drawn from different multivariate normal distributions. Use the
following code to generate 100 points from each group.

sigma = eye(3);
r0 = mvnrnd([7,7,7],sigma,100);
r1 = mvnrnd([5,5,5],sigma,100);
% Put the two groups into a data matrix.
X = [r0;r1];

Note that the mvnrnd function is from the Statistics Toolbox, but one
could also use the genmix GUI that is included in the EDA Toolbox.

σ

x t() a t m–()2 2σ2()÷–[]exp=

0.7 a 1.3≤ ≤
0.3 m 0.7≤ ≤
0.2 σ 0.4.≤ ≤

0 t 1.05≤ ≤

84 Exploratory Data Analysis with MATLAB®, Third Edition

Use SVD and nonnegative matrix factorization to reduce the data to
two dimensions. Visualize the results using the plot function, where
the first group (i.e., the first 100 rows of the data matrix) is displayed
using one color and the second group is displayed with another color.
Compare the results from two dimensionality reduction approaches.
Is one better for clustering?

2.23 Apply the LDA projection to the Fisher’s iris data, taking two classes
at a time. Repeat the example in the book and show the data in 1–D,
along with the kernel density estimate. Discuss how good the
mappings are for each case.

2.24 Repeat Example 2.4 using different replicates and compare the
results. Also, try the same example using the alternating least squares
approach and compare the results.

2.25 Use some of the alternative ways, such as the correlation dimension,
the maximum likelihood approach, and the packing number to
estimate the intrinsic dimensionality of the helix data of Example 2.8,
and compare the results.

2.26 Apply the nearest neighbor estimator (idpettis) to the helix data in
Example 2.9 and discuss the results.

2.27 The intrinsic_dim function in the Dimensionality Reduction
Toolbox will also return the geodesic minimum spanning tree
estimator (GMST) of Costa and Hero [2004]. The GMST is based on the
idea that the length function of a geodesic minimum spanning tree is
dependent on the intrinsic dimensionality. Find the GMST estimator
of the helix data sets in Examples 2.8 and 2.9. Discuss your results.

2.28 Estimate the local dimensionalities of the helix data sets in Examples
2.8 and 2.9.

85

Chapter 3
Dimensionality Reduction — Nonlinear
Methods

This chapter covers various methods for nonlinear dimensionality reduction,
where the nonlinear aspect refers to the mapping between the high-
dimensional space and the low-dimensional space. We start off by discussing
a method that has been around for many years called multidimensional
scaling. We follow this with several more recently developed nonlinear
dimensionality reduction techniques called locally linear embedding,
isometric feature mapping, and Hessian eigenmaps. We conclude this
chapter by discussing some methods from the machine learning and neural
network communities, such as self-organizing maps, generative topographic
maps, curvilinear component analysis, autoencoders, and stochastic
neighbor embedding.

3.1 Multidimensional Scaling — MDS

In general, multidimensional scaling (MDS) is a set of techniques for the
analysis of proximity data measured on a set of objects in order to reveal
hidden structure. The purpose of MDS is to find a configuration of the data
points in a low-dimensional space such that the proximity between objects in
the full-dimensional space is represented with some degree of fidelity by the
distances between points in the low-dimensional space. This means that
observations that are close together in a high-dimensional space should be
close in the low-dimensional space. Many aspects of MDS were originally
developed by researchers in the social science community, and the method is
now widely available in most statistical packages, including the MATLAB
Statistics Toolbox.

We first provide some definitions and notation before we go on to describe
the various categories of MDS [Cox and Cox, 2001]. As before, we assume
that we have a data set with n observations. In general, MDS starts with
measures of proximity that quantify how close objects are to one another or
how similar they are. They can be of two types: those that indicate similarity

86 Exploratory Data Analysis with MATLAB®, Third Edition

or dissimilarity. A measure of dissimilarity between objects r and s is denoted
by δrs, and the similarity is denoted by srs. For most definitions of these
proximity measures, we have

and

.

Thus, we see that for a dissimilarity measure δrs, small values correspond to
observations that are close together, while the opposite is true for similarity
measures srs. These two main types of proximity measures are easily
converted into the other one when necessary (see Appendix A for more
information on this issue). Thus, for the rest of this chapter, we will assume
that proximity measures dissimilarity between objects. We also assume that the
dissimilarities are arranged in matrix form, which will be denoted by Δ. In
many cases, this will be a symmetric matrix (sometimes given in either
lower or upper triangular form).

We denote the distance between observation r and s in the lower-
dimensional space by drs. It should also be noted that in the MDS literature
the matrix of coordinate values in the lower-dimensional space is denoted by X.
We follow that convention here, knowing that it might be rather confusing
with our prior use of X as representing the original set of n p-dimensional
observations.

In MDS, one often starts with or might only have the dissimilarities Δ, not
the original observations. In fact, in the initial formulations of MDS, the
experiments typically involved qualitative judgements about differences
between subjects, and p-dimensional observations do not make sense in that
context. So, to summarize, with MDS we start with dissimilarities Δ and end
up with d-dimensional1 transformed observations X. Usually, d = 2 or d = 3 is
chosen to allow the analyst to view and explore the results for interesting
structure, but any d < p is also appropriate.

There are many different techniques and flavors of MDS, most of which fall
into two main categories: metric MDS and nonmetric MDS. The main
characteristic that divides them arises from the different assumptions of how
the dissimilarities δrs are transformed into the configuration of distances drs

[Cox and Cox, 2001]. Metric MDS assumes that the dissimilarities δrs based
on the p-dimensional data and the distances drs in a lower-dimensional space
are related as follows

1 We realize that the use of the notation d as both the lower dimensionality of the data (d < p) and
the distance drs between points in the configuration space might be confusing. However, the
meaning should be clear from the context.

δrs 0≥ δrr 0=

0 srs 1≤ ≤ srr 1=

n n×

Dimensionality Reduction — Nonlinear Methods 87

, (3.1)

where f is a continuous monotonic function. The form of f(�) specifies the
MDS model. For example, we might use the formula

. (3.2)

Mappings that follow Equation 3.2 are called ratio MDS [Borg and Groenen,
1997]. Another common choice is interval MDS, with f(�) given by

,

where a and b are free parameters. Other possibilities include higher degree
polynomials, logarithmic, and exponential functions.

Nonmetric MDS relaxes the metric properties of f(�) and stipulates only
that the rank order of the dissimilarities be preserved. The transformation or
scaling function must obey the monotonicity constraint:

for all objects. Because of this constraint, nonmetric MDS is also known as
ordinal MDS.

3.1.1 Metric MDS

Most of the methods in metric MDS start with the fact that we seek a
transformation that satisfies Equation 3.1. We can tackle this problem by
defining an objective function and then using a method that will optimize it.
One way to define the objective function is to use the squared discrepancies
between drs and as follows

. (3.3)

In general, Equation 3.3 is called the stress, and different forms for the scale
factor give rise to different forms of stress and types of MDS. The scale factor
in the denominator of Equation 3.3 that is used most often is

In this case, we have an expression called Stress-1 [Kruskal, 1964a].

drs f δrs()≈

f δrs() bδrs=

f δrs() a bδrs+=

 rs ab rs abf f< ⇒ () ≤ ()

f δrs()

S d
f d

rs

rs rssr() =
() −⎡⎣ ⎤⎦∑∑ 2

scale factor

drssr
()∑∑ 2 .

88 Exploratory Data Analysis with MATLAB®, Third Edition

Thus, in MDS, we would scale the dissimilarities using f(�) and then find a
configuration of points in a d-dimensional space such that when we calculate
the distances between them the stress is minimized. This can now be solved
using numerical methods and operations research techniques (e.g., gradient
or steepest descent). These methods are usually iterative and are not
guaranteed to find a global solution to the optimization problem. We will
expand on some of the details later, but first we describe a case where a
closed form solution is possible.

The phrase metric multidimensional scaling is often used in the literature
to refer to a specific technique called classical MDS. However, metric MDS
includes more than this one technique, such as least squares scaling and
others [Cox and Cox, 2001]. For metric MDS approaches, we first describe
classical MDS followed by a method that optimizes a loss function using a
majorization technique.

Classical MDS

If the proximity measure in the original space and the distance are taken to
be Euclidean, then a closed form solution exists to find the configuration of
points in a d-dimensional space. This is the classical MDS approach. The
function f(�) relating dissimilarities and distances is the identity function; so
we seek a mapping such that

.

This technique originated with Young and Householder [1938], Torgerson
[1952], and Gower [1966]. Gower was the one that showed the importance of
classical scaling, and he gave it the name principal coordinates analysis,
because it uses ideas similar to those in PCA. Principal coordinate analysis
and classical scaling are the same thing, and they have become synonymous
with metric scaling.

We now describe the steps of the method only, without going into the
derivation. Please see any of the following for the derivation of classical
MDS: Cox and Cox [2001], Borg and Groenen [1997], or Seber [1984].

Procedure – Classical MDS

1. Using the matrix of dissimilarities, Δ, find matrix Q, where each
element of Q is given by

.

2. Find the centering matrix H using

drs δrs=

qrs 12---δrs
2

–=

Dimensionality Reduction — Nonlinear Methods 89

,

where I is the identity matrix, and 1 is a vector of n ones.

3. Find the matrix B, as follows

.

4. Determine the eigenvectors and eigenvalues of B:

.

5. The coordinates in the lower-dimensional space are given by

,

where Ad contains the eigenvectors corresponding to the d largest
eigenvalues, and contains the square root of the d largest
eigenvalues along the diagonal.

We use similar ideas from PCA to determine the dimensionality d to use in
Step 5 of the algorithm though d = 2 is often used in MDS, since the data can
then be represented in a scatterplot.

For some data sets, the matrix B might not be positive semi-definite, in
which case some of the eigenvalues will be negative. One could ignore the
negative eigenvalues and proceed to step 5 or add an appropriate constant to
the dissimilarities to make B positive semi-definite. We do not address this
second option here, but the reader is referred to Cox and Cox [2001] for more
details. If the dissimilarities are in fact Euclidean distances, then this problem
does not arise.

Since this uses the decomposition of a square matrix, some of the properties
and issues discussed about PCA are applicable here. For example, the lower-
dimensional representations are nested. The first two dimensions of the 3–D
coordinate representation are the same as the 2–D solution. It is also
interesting to note that PCA and classical MDS provide equivalent results
when the dissimilarities are Euclidean distances [Cox and Cox, 2001].

Example 3.1
For this example, we use the BPM data described in Chapter 1. Recall that one
of the applications for these data is to discover different topics or subtopics.
For ease of discussion and presentation, we will look at only two of the topics
in this example: the comet falling into Jupiter (topic 6) and DNA in the O. J.
Simpson trial (topic 9). First, using the match distances, we extract the
required observations from the full interpoint distance matrix.

H I n
1– 11T

–=

n n×

B HQH=

B ALAT
=

X AdLd
1 2⁄

=

Ld
1 2⁄

90 Exploratory Data Analysis with MATLAB®, Third Edition

% First load the data - use the 'match' interpoint
% distance matrix.
load matchbpm
% Now get the data for topics 9 and 6.
% Find the indices where they are not equal to 6 or 9.
indlab = find(classlab ~= 6 & classlab ~=9);
% Now get rid of these from the distance matrix.
matchbpm(indlab,:) = [];
matchbpm(:,indlab) = [];
classlab(indlab) = [];

The following piece of code shows how to implement the steps for classical
MDS in MATLAB.

% Now implement the steps for classical MDS
% Find the matrix Q:
Q = -0.5*matchbpm.^2;
% Find the centering matrix H:
n = 73;
H = eye(n) - ones(n)/n;
% Find the matrix B:
B = H*Q*H;
% Get the eigenvalues of B.
[A,L] = eig(B);
% Find the ordering largest to smallest.
[vals, inds] = sort(diag(L));
inds = flipud(inds);
vals = flipud(vals);
% Re-sort based on these.
A = A(:,inds);
L = diag(vals);

We are going to plot these results using d = 2 for ease of visualization, but we
can also construct a scree-type plot to look for the ‘elbow’ in the curve. As in
PCA, this can help us determine a good value to use for d. The code for
constructing this plot and finding the coordinates in a 2–D space is given
next.

% First plot a scree-type plot to look for the elbow.
% The following uses a log scale on the y-axis.
semilogy(vals(1:10),'o')
% Using 2-D for visualization purposes,
% find the coordinates in the lower-dimensional space.
X = A(:,1:2)*diag(sqrt(vals(1:2)));
% Now plot in a 2-D scatterplot
ind6 = find(classlab == 6);
ind9 = find(classlab == 9);
plot(X(ind6,1),X(ind6,2),'x',X(ind9,1),X(ind9,2),'o')

Dimensionality Reduction — Nonlinear Methods 91

FIGURE 3.1
The top plot shows the logarithm of the eigenvalues. It appears that d = 3 might be a good
value to use, since there is an elbow there. The bottom plot is a scatterplot of the 2–D
coordinates after classical MDS. Note the good separation between the two topics, as well
as the appearance of subtopics for topic 6.

0 1 2 3 4 5 6 7 8 9 10 11

10
5.098

10
5.099

10
5.1

Log−Scree Plot

d

lo
g
 E

ig
e
n
va

lu
e
s

−80 −60 −40 −20 0 20 40 60 80 100 120
−100

−50

0

50

100

150

MDS Dimension 1

M
D

S
 D

im
e
n
si

o
n
 2

Topic 6
Topic 9

92 Exploratory Data Analysis with MATLAB®, Third Edition

legend({'Topic 6';'Topic 9'})

The scree plot is shown in Figure 3.1 (top), where we see that the elbow looks
to be around d = 3. The scatterplot of the 2–D coordinates is given in Figure
3.1 (bottom). We see clear separation between topics 6 and 9. However, it is
also interesting to note that there seem to be several subtopics in topic 6.
❑

MATLAB provides a function called cmdscale for constructing lower-
dimensional coordinates using classical MDS. This is available in the
Statistics Toolbox.

Metric MDS - SMACOF

The general idea of the majorization method for optimizing a function is as
follows. Looking only at the one-dimensional case, we want to minimize a
complicated function f(x) by using a function g(x , y) that is easily minimized.
The function g has to satisfy the following inequality

,

for a given y such that

.

Looking at graphs of these function one would see that the function g is
always above f, and they coincide at the point x = y. The method of
minimizing f is iterative. We start with an initial value x0, and we minimize
g(x , x0) to get x1. We then minimize g(x , x1) to get the next value, continuing
in this manner until convergence. Upon convergence of the algorithm, we
will also have minimized f(x).

The SMACOF (Scaling by Majorizing a Complicated Function) method
goes back to de Leeuw [1977], and others have refined it since then, including
Groenen [1993]. The method is simple, and it can be used for both metric and
nonmetric applications. We now follow the notation of Borg and Groenen
[1997] to describe the algorithm for the metric case. They show that the
SMACOF algorithm satisfies the requirements for minimizing a function
using majorization, as described above. We leave out the derivation, but
those who are interested in this and in the nonmetric case can refer to the
above references as well as Cox and Cox [2001].

The raw stress is written as

f x() g x y,()≤

f y() g y y,()=

X X

X

() = () −⎡⎣ ⎤⎦

= + () −
<

< <

∑

∑ ∑

w d

w w d w

rs rs rs

r s

rs rs

r s

rs rs

r s

r

2

2 2 2 ss rs rs

r s

d X()
<
∑ ,

Dimensionality Reduction — Nonlinear Methods 93

for all available dissimilarities . The inequality r < s in the summation
means that we only sum over half of the data, since we are assuming that the
dissimilarities and distances are symmetric. We might have some missing
values; so we define a weight wrs with a value of 1 if the dissimilarity is
present and a value of 0 if it is missing. The notation drs(X) makes it explicit
that the distances are a function of X (the d-dimensional observations), and
that we are looking for a configuration X that minimizes stress, .

Before we describe the algorithm, we need to present some relationships
and notation. Let Z be a possible configuration of points. The matrix V has
elements given by the following

and

.

This matrix is not of full rank, and we will need the inverse in one of the steps.
So we turn to the Moore-Penrose inverse, which will be denoted by V+. 2

We next define matrix B(Z) with elements

for and

.

We are now ready to define the Guttman transform. The general form of
the transform is given by

,

where the k represents the iteration number in the algorithm. If all of the
weights are one (none of the dissimilarities are missing), then the transform
is much simpler:

2 The Moore-Penrose inverse is also called the pseudoinverse and can be computed using the
singular value decomposition. MATLAB has a function called pinv that provides this inverse.

δrs

σ X()

v w i jij ij= − ≠,

v wij ij

j i j

n

=
= ≠
∑
1,

b

w

d
d

d

ij

ij ij

ij

ij

ij

=
−

() () ≠

() =

⎧

⎨
⎪

⎩
⎪

Z

Z

Z

;

; ,

0

0 0

i j≠

b bii ij

j i j

n

=
= ≠
∑
1,

Xk V+B(Z)Z=

94 Exploratory Data Analysis with MATLAB®, Third Edition

.

Now that we have these definitions, we can describe the SMACOF algorithm
below.

SMACOF Algorithm

1. Find an initial configuration of points in Rd. This can either be
random or nonrandom (i.e., some regular grid). Call this X0.

2. Set Z = X0 and the counter to k = 0.

3. Compute the raw stress σ ().

4. Increase the counter by 1: k = k + 1.

5. Obtain the Guttman transform .

6. Compute the stress for this iteration, σ ().

7. Find the difference in the stress values between the two iterations.
If this is less than some pre-specified tolerance or if the maximum
number of iterations has been reached, then stop.

8. Set , and go to step 4.

We illustrate this algorithm in the next example.

Example 3.2
We turn to a different data set for this example and look at the leukemia
data. Recall that we can look at either genes or patients as our observations;
in this example we will be looking at the genes. To make things easier, we
only implement the case where all the weights are 1, but the more general
situation is easily implemented using the above description. First we load the
data and get the distances.

% Use the Leukemia data, using the genes (columns)
% as the observations.
load leukemia
y = leukemia';
% Get the interpoint distance matrix.
% pdist gets the interpoint distances.
% squareform converts them to a square matrix.
D = squareform(pdist(y,'seuclidean'));
[n,p] = size(D);
% Turn off this warning... :
warning off MATLAB:divideByZero

Next we get the required initial configuration and the stress associated with
it.

Xk
n

1– B Z()Z=

X0

Xk

Xk

Z Xk
=

Dimensionality Reduction — Nonlinear Methods 95

% Get the first term of stress.
% This is fixed - does not depend on the configuration.
stress1 = sum(sum(D.^2))/2;
% Now find an initial random configuration.
d = 2;
% This function is part of Statistics Toolbox,
% but one can use the function rand and scale them.
Z = unifrnd(-2,2,n,d);
% Find the stress for this.
DZ = squareform(pdist(Z));
stress2 = sum(sum(DZ.^2))/2;
stress3 = sum(sum(D.*DZ));
oldstress = stress1 + stress2 - stress3;

Now we iteratively adjust the configuration until the stress converges.

% Iterate until stress converges.
tol = 10^(-6);
dstress = realmax;
numiter = 1;
dstress = oldstress;
while dstress > tol & numiter <= 100000
 numiter = numiter + 1;
 % Now get the update.
 BZ = -D./DZ;
 for i = 1:n
 BZ(i,i) = 0;
 BZ(i,i) = -sum(BZ(:,i));
 end
 X = n^(-1)*BZ*Z;
 Z = X;
 % Now get the distances.
 % Find the stress.
 DZ = squareform(pdist(Z));
 stress2 = sum(sum(DZ.^2))/2;
 stress3 = sum(sum(D.*DZ));
 newstress = stress1 + stress2 - stress3;
 dstress = oldstress - newstress;
 oldstress = newstress;
end

A scatterplot of the resulting configuration is shown in Figure 3.2.
❑

96 Exploratory Data Analysis with MATLAB®, Third Edition

FIGURE 3.2
Here we show the results of using the SMACOF algorithm on the leukemia data set. The
top panel shows the data transformed to 2–D and labeled by B-cell and T-cell. The lower
panel illustrates the same data using different symbols based on the ALL or AML labels.
There is some indication of being able to group the genes in a reasonable fashion.

−20 −15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

B−cell
T−cell
NA

−20 −15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

ALL
AML

Dimensionality Reduction — Nonlinear Methods 97

3.1.2 Nonmetric MDS

An algorithm for solving the nonmetric MDS problem was first discussed by
Shepard [1962a, 1962b]. However, he did not introduce the idea of using a
loss function. That came with Kruskal [1964a, 1964b] who expanded the ideas
of Shepard and gave us the concept of minimizing a loss function called
stress.

Not surprisingly, we first introduce some more notation and terminology
for nonmetric MDS. The disparity is a measure of how well the distance drs

matches the dissimilarity . We represent the disparity as . The r-th
point in our configuration X will have coordinates

.

We will use the Minkowski dissimilarity to measure the distance between
points in our d-dimensional space. It is defined as

,

where λ > 0. See Appendix A for more information on this distance and the
parameter λ.

We can view the disparities as a function of the distance, such as

,

where

.

Thus, the order of the original dissimilarities is preserved by the disparities.
Note that this condition allows for possible ties in the disparities.

We define a loss function L, which is really stress, as follows

.

It could be the case that we have missing dissimilarities or the values might
be meaningless for some reason. If the analyst is faced with this situation,
then the summations in the definition of stress are restricted to those pairs
(r,s) for which the dissimilarity is available.

δrs d̂rs

xr xr1 … xrd, ,()T
=

d x xrs ri si

i

d

= −
⎧
⎨
⎩

⎫
⎬
⎭=

∑
1

1

d̂rs f drs()=

 rs ab rs abd d< ⇒ ≤

L S
d d

d

S

T

rs rs
r s

rsr s

= =
−()

=<

<

∑
∑

 2

2

*

*

98 Exploratory Data Analysis with MATLAB®, Third Edition

As with other forms of MDS, we seek a configuration of points X, such that
the stress is minimized. Note that the coordinates of the configuration enter
into the loss function through the distances drs. The original dissimilarities
enter into the stress by imposing an ordering on the disparities. Thus, the
stress is minimized subject to the constraint on the disparities. This constraint
is satisfied by using isotonic regression (also known as monotone
regression)3 to obtain the disparities.

We now pause to describe the isotonic regression procedure. This was first
described in Kruskal [1964b], where he developed an up-and-down-blocks
algorithm. A nice explanation of this is given in Borg and Groenen [1997], as
well as in the original paper by Kruskal. We choose to describe and
implement the method for isotonic regression outlined in Cox and Cox
[2001]. Isotonic regression of the drs on the δrs partitions the dissimilarities into
blocks over which the are constant. The estimated disparities are
given by the mean of the drs values within the block.

Example 3.3
The easiest way to explain (and hopefully to understand) isotonic regression
is through an example. We use a simple one given in Cox and Cox [2001].
There are four objects with the following dissimilarities

.

A configuration of points yields the following distances

.

We now order the dissimilarities from smallest to largest and use a single
subscript to denote the rank. We also impose the same order (and subscript)
on the corresponding distances. This yields

The constraint on the disparities requires these distances to be ordered such
that di < di+1. If this is what we have from the start, then we need not adjust
things further. Since that is not true here, we must use isotonic regression to
get . To do this, we first get the cumulative sums of the distances di defined
as

3 This is also known as monotonic least squares regression.

d̂rs d̂rs

δ12 2.1 δ13, 3.0 δ14, 2.4 δ23, 1.7 δ24, 3.9 δ34, 3.2= = = = = =

d12 1.6 d13, 4.5 d14, 5.7 d23, 3.3 d24, 4.3 d34, 1.3= = = = = =

δ1 1.7 δ2, 2.1 δ3, 2.4 δ4, 3.0 δ5, 3.2 δ6, 3.9= = = = = =

d1 3.3 d2, 1.6 d3, 5.7 d4, 4.5 d5, 1.3 d6, 4.3.= = = = = =

d̂rs

Dimensionality Reduction — Nonlinear Methods 99

,

where N is the total number of dissimilarities available. In essence, the
algorithm finds the greatest convex minorant of the graph of Di, going
through the origin. See Figure 3.3 for an illustration of this. We can think of
this procedure as taking a string, attaching it to the origin on one end and the
last point on the other end. The points on the greatest convex minorant are
those where the string touches the points Di. These points partition the
distances di into blocks, over which we will have disparities of constant value.
These disparities are the average of the distances that fall into the block. Cox
and Cox [2001] give a proof that this method yields the required isotonic
regression. We now provide some MATLAB code that illustrates these ideas.

% Enter the original data.
dissim = [2.1 3 2.4 1.7 3.9 3.2];
dists = [1.6 4.5 5.7 3.3 4.3 1.3];
N = length(dissim);
% Now re-order the dissimilarities.
[dissim,ind] = sort(dissim);
% Now impose the same order on the distances.
dists = dists(ind);
% Now find the cumulative sums of the distances.
D = cumsum(dists);
% Add the origin as the first point.
D = [0 D];

It turns out that we can find the greatest convex minorant by finding the
slope of each Di with respect to the origin. We first find the smallest slope,
which defines the first partition (i.e., it is on the greatest convex minorant).
We then find the next smallest slope, after removing the first partition from
further consideration. We continue in this manner until we reach the end of
the points. The following code implements this process.

% Now find the slope of these.
slope = D(2:end)./(1:N);
% Find the points on the convex minorant by looking
% for smallest slopes.
i = 1;
k = 1;
while i <= N
 val = min(slope(i:N));
 minpt(k) = find(slope == val);
 i = minpt(k) + 1;
 k = k + 1;
end

D d i Ni j

j

i

= =
=

∑
1

1, , ,

100 Exploratory Data Analysis with MATLAB®, Third Edition

It turns out that this procedure yields extra points, ones that are not on the
convex minorant. MATLAB has a function called convhull that finds all of
the points that are on the convex hull4 of a set of points. This also yields extra
points because we only want those points that are on the “bottom” of the
convex hull. To get the desired points, we take the intersection of the two
sets.5

K = convhull(D, 0:N);
minpt = intersect(minpt+1,K) - 1;

Now that we have the points that divide the distances into blocks, we find the
disparities, which are given by the average distance in that block.

% Now that we have all of the minorant points
% that divide into blocks, the disparities are
% the averages of the distances over those blocks.
j = 1;
for i = 1:length(minpt)
 dispars(j:minpt(i)) = mean(dists(j:minpt(i)));
 j = minpt(i) + 1;
end

The disparities are given by

.

The graphs that illustrate these concepts are shown in Figure 3.3, where we
see that the disparities fall into three groups, as given above.
❑

Now that we know how to do isotonic regression, we can describe
Kruskal’s algorithm for nonmetric MDS. This is outlined below.

Procedure – Kruskal’s Algorithm

1. Choose an initial configuration X0 for a given dimensionality d. Set
the iteration counter k equal to 0. Set the step size α to some desired
starting value.

2. Normalize the configuration to have mean of zero (i.e., the centroid
is at the origin) and a mean square distance from the origin equal
to 1.

3. Compute the interpoint distances for this configuration.

4 The convex hull of a data set is the smallest convex region that contains the data set.
5 Please see the M-file for an alternative approach, courtesy of Tom Lane of The MathWorks.

d̂1 2.45 d̂2 2.45 d̂3 3.83 d̂4 3.83 d̂5 3.83 d̂6 4.3=,=,=,=,=,=

Dimensionality Reduction — Nonlinear Methods 101

4. Check for equal dissimilarities. If some are equal, then order those
such that the corresponding distances form an increasing sequence
within that block.

5. Find the disparities using the current configuration of points
and isotonic regression.

6. Append all of the coordinate points into one vector such that

.

7. Compute the gradient for the k-th iteration given by

,

where represents the Kronecker delta function, not dissimilar-
ities. This function is defined as follows

FIGURE 3.3
This shows the idea behind isotonic regression using the greatest convex minorant. The
greatest convex minorant is given by the dashed line. The places where it touches the graph
of the cumulative sums of the distances partition the distances into blocks. Each of the
disparities in the blocks are given by the average of the distances falling in that partition.

0 1 2 3 4 5 6
0

5

10

15

20

25

i

D
i

Cumulative Sum
Greatest Convex Minorant

d̂rs

x x11 … x1d … xn1 … xnd, , , , , ,()T
=

∂
∂

= = −() −
−

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

−

<
∑S

x
g S

d d

S

d

T

x x

dui

ui
ur us rs rs rs

r s

ri si

r

* *

ss

ri six x
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ −()

− 1

sgn

δur

102 Exploratory Data Analysis with MATLAB®, Third Edition

The value of the sgn(�) function is +1 if the argument is positive
and –1 if it is negative.

8. Check for convergence. Determine the magnitude of the gradient
vector for the current configuration using

.

If this magnitude is less than some small value ε or if some
maximum allowed number of iterations has been reached, then the
process stops.

9. Find the step size α

,

where k represents the iteration number. The ,
with

.

The relaxation factor is given by

,

and the good luck factor is

.

10. The new configuration is given by

.

δur 1= if u r=

δur 0= if u r≠

mag gk ui

u in
g() = ∑1 2

,

α k α k 1– angle factor relaxation factor good luck factor×××=

angle factor 4 θcos()3

=

cos = −<

< −<

∑
∑ ∑

g g

g g

k kr s

kr s kr s

rs rs

rs rs

1

2
1

2

1 3
1

15
5

. , min ,
+

=
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪− S

S

k

k

min ,1
1

S

S

k

k−

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

xk 1+ xk α k
gk

mag gk()
--------------------–=

Dimensionality Reduction — Nonlinear Methods 103

11. Increment the counter: k = k + 1. Go to step 2.

A couple of programming issues should be noted. When we are in the
beginning of the iterative algorithm, we will not have values of the stress for
k – 5 or k – 1 (needed in Step 9). In these cases, we will simply use the value
at the first iteration until we have enough. We can use a similar idea for the
gradient. Kruskal [1964b] states that this step size provides large steps during
the initial iterations and small steps at the end. There is no claim of optimality
with this procedure, and the reader should be aware that the final
configuration is not guaranteed to be a global solution. It is likely that the
configuration will be a local minimum for stress, which is typically the case
for greedy iterative algorithms. It is recommended that several different
starting configurations be used, and the one with the minimum stress be
accepted as the final answer.

This leads to another programming point. How do we find an initial
configuration to start the process? We could start with a grid of points that is
evenly laid out over a d-dimensional space. Another possibility is to start
from the configuration given by classical MDS. Finally, one could also
generate random numbers according to a Poisson process in Rd.

Another issue that must be addressed with nonmetric MDS is how to
handle ties in the dissimilarities. There are two approaches to this. The
primary approach states that if δrs = δtu, then is not required to be equal to

. The secondary and more restrictive approach requires the disparities to
be equal when dissimilarities are tied. We used the primary approach in the
above procedure and in our MATLAB implementation.

Example 3.4
The nmmds function (that we include in the EDA Toolbox) that implements
Kruskal’s nonmetric MDS is quite long, and it involves several helper
functions. So, we just show how it would be used rather than repeating all of
the code here. We return to our BPM data, but this time we will look at two
different topics: topic 8 (the death of the North Korean leader) and topic 11
(Hall’s helicopter crash in North Korea). Since these are both about North
Korea, we would expect to see some similarity between them. Previous
experiments showed that the documents from these two topics were always
grouped together, but in several different subgroups [Martinez, 2002]. We
apply the nonmetric MDS method to these data using the Ochiai measure of
semantic dissimilarity.

load ochiaibpm
% First get out the data for topics 8 and 11.
% Find the indices where they are not equal to 8 or 11.
indlab = find(classlab ~= 8 & classlab ~= 11);
% Now get rid of these from the distance matrix.
ochiaibpm(indlab,:) = [];
ochiaibpm(:,indlab)=[];

d̂rs

d̂tu

104 Exploratory Data Analysis with MATLAB®, Third Edition

classlab(indlab) = [];
% We only need the upper part.
n = length(classlab);
dissim = [];
for i = 1:n
 dissim = [dissim, ochiaibpm(i,(i+1):n)];
end
% Find configuration for R^2.
d = 2;
r = 1;
% The nmmds function is in the EDA Toolbox.
[Xd,stress,dhats] = nmmds(dissim,d,r);
ind8 = find(classlab == 8);
ind11 = find(classlab == 11);
% Plot with symbols mapped to class (topic).
plot(Xd(ind8,1),Xd(ind8,2),'.',...
 Xd(ind11,1),Xd(ind11,2),'o')
legend({'Class 8';'Class 11'})

The resulting plot is shown in Figure 3.4. We see that there is no clear
separation between the two topics, but we do have some interesting structure
in this scatterplot indicating the possible presence of subtopics.
❑

FIGURE 3.4
This shows the results of applying Kruskal’s nonmetric MDS to topics 8 and 11, both of
which concern North Korea. We see some interesting structure in this configuration and the
possible presence of subtopics.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Topic 8
Topic 11

Dimensionality Reduction — Nonlinear Methods 105

What should the dimensionality be when we are applying MDS to a set of
data? This is a rather difficult question to answer for most MDS methods. In
the spirit of EDA, one could apply the procedure for several values of d and
record the value for stress. We could then construct a plot similar to the scree
plot in PCA, where we have the dimension d on the horizontal axis and the
stress on the vertical axis. Stress always decreases with the addition of more
dimensions, so we would be looking for the point at which the payoff from
adding more dimensions decreases (i.e., the value of d where we see an elbow
in the curve).

The Statistics Toolbox includes a function for multi-dimensional scaling
called mdscale. It does both metric and nonmetric MDS, and it includes
several choices for the stress. With this function, one can use weights, specify
the type of starting configuration, and request replicates for different random
initial configurations.

3.2 Manifold Learning

Some recently developed approaches tackle the problem of nonlinear
dimensionality reduction by assuming that the data lie on a submanifold of
Euclidean space M. The common goal of these methods is to produce
coordinates in a lower dimensional space, such that the neighborhood
structure of the submanifold is preserved. In other words, points that are
neighbors along the submanifold are also neighbors in the reduced
parameterization of the data. (See Figure 3.5 and Example 3.5 for an
illustration of these concepts.)

These methods are discussed in this section. We will first present locally
linear embedding, which is an unsupervised learning algorithm that exploits
the local symmetries of linear reconstructions. Next, we cover isometric
feature mapping, which is an extension to classical MDS. Finally, we present
a novel method called Hessian eigenmaps, which addresses one of the
limitations of isometric feature mapping.

All of these methods are implemented in MATLAB, and the code is freely
available for download. (We provide the URLs in Appendix B.) Because of
this, we will not be including all of the code in the examples, but will only
show how to use the existing implementations of the techniques.

3.2.1 Locally Linear Embedding

Locally linear embedding (LLE) was developed by Roweis and Saul [2000].
The method is an eigenvector-based method, and its optimizations do not
involve local minima or iterative algorithms. The technique is based on
simple geometric concepts. First, we assume that the data are sampled in

106 Exploratory Data Analysis with MATLAB®, Third Edition

sufficient quantity from a smooth submanifold. We also assume that each
data point and its neighbors lie on or close to a locally linear patch of the
manifold M.

The LLE algorithm starts by characterizing the local geometry of the
patches by finding linear coefficients that reconstruct each data point by
using only its k nearest neighbors, with respect to Euclidean distance. There
will be errors in the reconstruction, and these are measured by

, (3.4)

where the subscript j ranges over those points that are in the neighborhood
of xi. The weights are found by optimizing Equation 3.4 subject to the
following constraint:

.

The optimal weights are found using least squares, the details of which are
omitted here.

Once the weights Wij are found, we fix these and find a representation yi of
the original points in a low-dimensional space. This is also done by
optimizing a cost function, which in this case is given by

FIGURE 3.5
This shows the submanifold for the Swiss roll data set. We see that this is really a 2–D
manifold (or surface) embedded in a 3–D space.

−10
−5

0
5

10
15

0

10

20

30

−15

−10

−5

0

5

10

15

 W Wi ij jji
() = − ∑∑ x x

2

Wijj∑ = 1

Dimensionality Reduction — Nonlinear Methods 107

. (3.5)

This defines a quadratic form in yi, and it can be minimized by solving a
sparse eigenvector problem. The d eigenvectors corresponding to the smallest
nonzero eigenvalues provide a set of orthogonal coordinates centered at the
origin. The method is summarized below.

Locally Linear Embedding

1. Determine a value for k and d.

2. For each data point xi, find the k nearest neighbors.

3. Compute the weights Wij that optimally reconstruct each data point
xi from its neighbors (Equation 3.4).

4. Find the d-dimensional points yi that are optimally reconstructed
using the same weights found in step 3 (Equation 3.5).

Note that the algorithm requires a value for k, which governs the size of the
neighborhood, and a value for d. Of course, different results can be obtained
when we vary these values. We illustrate the use of LLE in Example 3.5.

3.2.2 Isometric Feature Mapping — ISOMAP

Isometric feature mapping (ISOMAP) was developed by Tenenbaum, de
Silva, and Langford [2000] as a way of enhancing classical MDS. The basic
idea is to use distances along a geodesic path (presumably measured along
the manifold M) as measures of dissimilarity. As with LLE, ISOMAP assumes
that the data lie on an unknown submanifold M that is embedded in a p-
dimensional space. It seeks a mapping that preserves the intrinsic
metric structure of the observations. That is, the mapping preserves the
distances between observations, where the distance is measured along the
geodesic path of M. It also assumes that the manifold M is globally isometric
to a convex subset of a low-dimensional Euclidean space.

In Figure 3.6, we show an example that illustrates this idea. The Euclidean
distance between two points on the manifold is shown by the straight line
connecting them. If our goal is to recover the manifold, then a truer indication
of the distance between these two points is given by their distance on the
manifold, i.e., the geodesic distance along the manifold between the points.

The ISOMAP algorithm has three main steps. The first step is to find the
neighboring points based on the interpoint distances dij. This can be done by
either specifying a value of k to define the number of nearest neighbors or a
radius ε. The distances are typically taken to be Euclidean, but they can be
any valid metric. The neighborhood relations are then represented as a

Φ y y y() = − ∑∑ i ij jji
W

2

f: X Y→

108 Exploratory Data Analysis with MATLAB®, Third Edition

weighted graph, where the edges of the graph are given weights equal to the
distance dij. The second step of ISOMAP provides estimates of the geodesic
distances between all pairs of points i and j by computing their shortest path
distance using the graph obtained in step one. In the third step, classical MDS
is applied to the geodesic distances and an embedding is found in d-
dimensional space as described in the first section of this chapter.

Procedure – ISOMAP

1. Construct the neighborhood graph over all observations by con-
necting the ij-th point if point i is one of the k nearest neighbors of
j (or if the distance between them is less than ε). Set the lengths of
the edges equal to dij.

2. Calculate the shortest paths between points in the graph.

3. Obtain the d-dimensional embedding by applying classical MDS
to the geodesic paths found in step 2.

FIGURE 3.6
This is a data set that was randomly generated according to the Swiss roll parametrization
[Tenenbaum, de Silva, and Langford, 2000]. The Euclidean distance between two points
indicated by the circles is given by the straight line shown here. If we are seeking the
neighborhood structure as given by the submanifold M, then it would be better to use the
geodesic distance (the distance along the manifold or the roll) between the points. One can
think of this as the distance a bug would travel if it took the shortest path between these
two points, while walking on the manifold.

−10 −5 0 5 10 150

20

40

−15

−10

−5

0

5

10

15

Dimensionality Reduction — Nonlinear Methods 109

The input to this algorithm is a value for k or ε and the interpoint distance
matrix. It should be noted that different results are obtained when the value
for k (or ε) is varied. In fact, it could be the case that ISOMAP will return
fewer than n lower-dimensional points. If this happens, then the value of k
(or ε) should be increased.

3.2.3 Hessian Eigenmaps

We stated in the description of ISOMAP that the manifold M is assumed to
be convex. Donoho and Grimes [2003] developed a method called Hessian
eigenmaps that will recover a low-dimensional parametrization for data
lying on a manifold that is locally isometric to an open, connected subset of
Euclidean space. This significantly expands the class of data sets where
manifold learning can be accomplished using isometry principles. This
method can be viewed as a modification of the LLE method. Thus, it is also
called Hessian locally linear embedding (HLLE).

We start with a parameter space and a smooth mapping
, where is the embedding space and d < p. Further, we assume

that Θ is an open, connected subset of , and is a locally isometric
embedding of Θ into . The manifold can be written as a function of the
parameter space, as follows

.

One can think of the manifold as the enumeration of all possible
measurements as one varies the parameters θ for a given process.

Let us assume that we have some observations m i that represent
measurements over many different choices of control parameters θi (i =
1,...,n). These measurements are the same as our observations xi.6 The HLLE
description given in Donoho and Grimes [2003] considers the case where all
data points lie exactly on the manifold M. The goal is to recover the
underlying parameterization and the parameter settings θi, up to a rigid
motion.

We now describe the main steps of the HLLE algorithm. We leave out the
derivation and proofs because we just want to provide the general ideas
underlying the algorithm. The reader is referred to the original paper and the
MATLAB code for more information and implementation details.

The two main assumptions of the HLLE algorithm are:

1. In a small enough neighborhood of each point m, geodesic distanc-
es to nearby points m’ (both on the manifold M) are identical to
Euclidean distances between associated parameter points θ and θ’.

6 We use different notation here to be consistent with the original paper.

Θ Rd⊂
ψ : Θ Rp→ Rp

Rd ψ
Rp

M ψ Θ()=

m ψ θ()=

ψ

110 Exploratory Data Analysis with MATLAB®, Third Edition

This is called local isometry. (ISOMAP deals with the case where
M assumes a globally isometric parameterization.)

2. The parameter space Θ is an open, connected subset of , which
is a weaker condition than the convexity assumption of ISOMAP.

In general, the idea behind HLLE is to define a neighborhood around some
m in M and obtain local tangent coordinates. These local coordinates are used
to define the Hessian of a smooth function . The function f is
differentiated in the tangent coordinate system to produce the tangent
Hessian. A quadratic form (f) is obtained using the tangent Hessian, and the
isometric coordinates θ can be recovered by identifying a suitable basis for
the null space of (f).

The inputs required for the algorithm are a set of n p-dimensional data
points, a value for d, and the number of nearest neighbors k to determine the
neighborhood. The only constraint on these values is that min(k,p) > d. The
algorithm estimates the tangent coordinates by using the SVD on the
neighborhood of each point, and it uses the empirical version of the operator
(f). The output of HLLE is a set of n d-dimensional embedding coordinates.

Example 3.5
We generated some data from an S-curve manifold to be used with LLE and
ISOMAP and saved it in a file called scurve.mat.7 We show both the true
manifold and the data randomly generated from this manifold in Figure 3.7.

load scurve
% The scurve.mat file contains our data matrix X.
% First set up some parameters for LLE.
K = 12;
d = 2;
% Run LLE - note that LLE takes the input data
% as rows corresponding to dimensions and
% columns corresponding to observations. This is
% the transpose of our usual data matrix.
Y = lle(X,K,d);
% Plot results in scatterplot.
scatter(Y(1,:),Y(2,:),12,X(3,:),'+');

We show the results of LLE in Figure 3.8. Note by the colors that neighboring
points on the manifold are mapped into neighboring points in the 2–D
embedding. Now we use ISOMAP on the same data.

% Now run the ISOMAP - we need the distances for input.
% We need the data matrix as n x p.
X = X';
dists = squareform(pdist(X));

7 Look at the file called example35.m for more details on how to generate the data.

Rd

f: M R→

Dimensionality Reduction — Nonlinear Methods 111

FIGURE 3.7
The top panel shows the true S-curve manifold, which is a 2–D manifold embedded in 3–D.
The bottom panel is the data set randomly generated from the manifold. The gray scale
values are an indication of the neighborhood. (SEE COLOR INSERT.)

−1 −0.5 0 0.5 1 0
2

4
6−1

−0.5

0

0.5

1

1.5

2

2.5

3

6
4

-1

-0.5

-1

0

0.5

1

1.5

2

2.5

3

-0.5 20 0.5 10

112 Exploratory Data Analysis with MATLAB®, Third Edition

options.dims = 1:10; % These are for ISOMAP.
options.display = 0;
[Yiso, Riso, Eiso] = isomap(dists, 'k', 7, options);

Constructing a scatterplot of this embedding to compare with LLE is left as
an exercise to the reader. As stated in the text, LLE and ISOMAP have some
problems with data sets that are not convex. We show an example here using
both ISOMAP and HLLE to discover such an embedding. These data were
generated according to the code provided by Donoho and Grimes [2003].
Essentially, we have the Swiss roll manifold with observations removed that
fall within a rectangular area along the surface.

% Now run the example from Grimes and Donoho.
load swissroll
options.dims = 1:10;
options.display = 0;
dists = squareform(pdist(X'));
[Yiso, Riso, Eiso] = isomap(dists, 'k', 7, options);
% Now for the Hessian LLE.
Y2 = hlle(X,K,d);
scatter(Y2(1,:),Y2(2,:),12,tt,'+');

FIGURE 3.8
This is the embedding recovered from LLE. Note that the neighborhood structure is pre-
served. (SEE COLOR INSERT.)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Dimensionality Reduction — Nonlinear Methods 113

FIGURE 3.9
The top panel contains the 2–D coordinates from ISOMAP. We do see the hole in the
embedding, but it looks like an oval rather than a rectangle. The bottom panel shows the
2–D coordinates from HLLE. HLLE was able to recover the correct embedding.

−60 −50 −40 −30 −20 −10 0 10 20 30 40
−20

−15

−10

−5

0

5

10

15

20

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

114 Exploratory Data Analysis with MATLAB®, Third Edition

We see in Figure 3.9 that ISOMAP was unable to recover the correct
embedding. We did find the hole, but it is distorted. HLLE was able to find
the correct embedding with no distortion.
❑

We note a few algorithmic complexity issues. The two locally linear
embedding methods, LLE and HLLE, can be used on problems with many
data points (large n), because the initial computations are performed on small
neighborhoods and they can exploit sparse matrix techniques. On the other
hand, ISOMAP requires the calculation of a full matrix of geodesic distances
for its initial step. LLE and HLLE are affected by the dimensionality p,
because they must estimate a local tangent space at each data point. Also, in
the HLLE algorithm, we must estimate second derivatives, which can be
difficult with high-dimensional data.

3.3 Artificial Neural Network Approaches

We now discuss two other methods that we categorize as ones based on
artificial neural network (ANN) ideas: the self-organizing map, the
generative topographic mapping, and curvilinear component analysis. These
ANN approaches also look for intrinsically low-dimensional structures that
are embedded nonlinearly in a high-dimensional space. As in MDS and the
manifold learning approaches, these seek a single global low-dimensional
nonlinear model of the observations. In general, these methodologies try to
fit a grid or predefined topology (usually 2–D) to the data, using greedy
algorithms that first fit the large-scale linear structure of the data and then
make small-scale nonlinear refinements.

There are MATLAB toolboxes available for both self-organizing maps and
generative topographic maps. They are free, and they come with extensive
documentation and examples. Because the code for these methods can be
very extensive and would not add to the understanding of the reader, we will
not be showing the code in the book. Instead, we will show how to use some
of the functions in the examples.

3.3.1 Self-Organizing Maps

The self-organizing map (SOM) is a tool for the exploration and visualization
of high-dimensional data [Kohonen, 1998]. It derives an orderly mapping of
data onto a regular, low-dimensional grid. The dimensionality of the grid is
usually d = 2 for ease of visualization. It converts complex, nonlinear
relationships in the high-dimensional space into simpler geometric
relationships such that the important topological and metric relationships are

Dimensionality Reduction — Nonlinear Methods 115

conveyed. The data are organized on the grid in such a way that observations
that are close together in the high-dimensional space are also closer to each
other on the grid. Thus, this is very similar to the ideas of MDS, except that
the positions in the low-dimensional space are restricted to the grid. The grid
locations are denoted by ri.

There are two methods used in SOM: incremental learning and batch
mapping. We will describe both of them, and then illustrate some of the
functions in the SOM Toolbox8 in Example 3.6. We will also present a brief
discussion of the various methods for visualizing and exploring the results of
SOM.

The incremental or sequential learning method for SOM is an iterative
process. We start with the set of observations xi and a set of p-dimensional
model vectors mi. These model vectors are also called neurons, prototypes, or
codebooks. Each model vector is associated with a vertex (ri) on a 2–D lattice
that can be either hexagonal or rectangular and starts out with some initial
value (mi(t = 0)). This could be done by setting them to random values, by
setting them equal to a random subset of the original data points or by using
PCA to provide an initial ordering.

At each training step, a vector xi is selected and the distance between it and
all the model vectors is calculated, where the distance is typically Euclidean.
The SOM Toolbox handles missing values by excluding them from the
calculation, and variable weights can also be used. The best-matching unit
(BMU) or model vector is found and is denoted by mc. Once the closest model
vector mc is found, the model vectors are updated so that mc is moved closer
to the data vector xi. The neighbors of the BMU mc are also updated, in a
weighted fashion. The update rule for the model vector mi is

,

where t denotes time or iteration number. The learning rate is given by α (t)
and 0 < α (t) < 1, which decreases monotonically as the iteration proceeds.

The neighborhood is governed by the function hci(t), and a Gaussian
centered at the best-matching unit is often used. The SOM Toolbox has other
neighborhood functions available, as well as different learning rates α (t). If
the Gaussian is used, then we have

,

where the symbol denotes the distance, and the ri are the coordinates on
the grid. The size or width of the neighborhood is governed by σ (t), and this
value decreases monotonically.

8 See Appendix B for the website where one can download the SOM Toolbox.

mi t 1+() mi t() α t()hci t() x t() mi t()–[]+=

hci t()
ri rc–

2

2σ 2
t()

---------------------–exp=

•

116 Exploratory Data Analysis with MATLAB®, Third Edition

The training is usually done in two phases. The first phase corresponds to
a large learning rate and neighborhood radius σ (t), which provides a large-
scale approximation to the data. The map is fine tuned in the second phase,
where the learning rate and neighborhood radius are small. Once the process
finishes, we have the set of prototype vectors over the 2–D coordinates on the
map grid.

The batch training method or Batch Map is also iterative, but it uses the
whole data set before adjustments are made rather than a single vector. At
each step of the algorithm, the data set is partitioned such that each
observation is associated with its nearest model vector. The updated model
vectors are found as a weighted average of the data, where the weight of each
observation is the value of the neighborhood function hic(t) at its BMU c.

Several methods exist for visualizing the resulting map and prototype
vectors. These methods can have any of the following goals. The first is to get
an idea of the overall shape of the data and whether clusters are present. The
second goal is to analyze the prototype vectors for characteristics of the
clusters and correlations among components or variables. The third task is to
see how new observations fit with the map or to discover anomalies. We will
focus on one visualization method called the U-matrix that is often used to
locate clusters in the data [Ultsch and Siemon, 1990].

The U-matrix is based on distances. First, the distance of each model vector
to each of its immediate neighbors is calculated. This distance is then
visualized using a color scale. Clusters are seen as those map units that have
smaller distances, surrounded by borders indicating larger distances.
Another approach is to use the size of the symbol to represent the average
distance to its neighbors; so cluster borders would be shown as larger
symbols. We illustrate the SOM and the U-matrix visualization method in
Example 3.6.

Example 3.6
We turn to the oronsay data set to illustrate some of the basic commands in
the SOM Toolbox. First we have to load the data and put it into a MATLAB
data structure that is recognized by the functions. This toolbox comes with
several normalization methods, and it is recommended that they be used
before building a map.

% Use the oronsay data set.
load oronsay
% Convert labels to cell array of strings.
for i = 1:length(beachdune)
 mid{i} = int2str(midden(i));
 % Use next one in exercises.
 bd{i} = int2str(beachdune(i));
end
% Normalize each variable to have unit variance.
D = som_normalize(oronsay,'var');

Dimensionality Reduction — Nonlinear Methods 117

% Convert to a data structure.
sD = som_data_struct(D);
% Add the labels - must be transposed.
sD = som_set(sD,'labels',mid');

We can visualize the results in many ways, most of which will be left as an
exercise. We show the U-matrix in Figure 3.10 and include labels for the
codebook vectors.

% Make the SOM
sM = som_make(sD);
sM = som_autolabel(sM,sD,'vote');
% Plot U matrix.
som_show(sM,'umat','all');
% Add labels to an existing plot.
som_show_add('label',sM,'subplot',1);

Note that the larger values indicate cluster borders, and low values indicate
clusters. By looking at the colors, we see a couple of clusters - one in the lower
left corner and one in the top. The labels indicate some separation into
groups.
❑

3.3.2 Generative Topographic Maps

The SOM has several limitations [Bishop, Svensén, and Williams, 1996]. First,
the SOM is based on heuristics, and the method is not derived from the
optimization of an objective function. Preservation of the neighborhood
structure is not guaranteed by the SOM method, and there could be problems
with convergence of the prototype vectors. The SOM does not define a
density model, and the use of the codebook vectors as a model of the
distribution of the original data is limited. Finally, the choice of how the
neighborhood function should shrink during training is somewhat of an art,
so it is difficult to compare different runs of the SOM procedure on the same
data set. The generative topographic mapping (GTM) was inspired by the
SOM and attempts to overcome its limitations.

The GTM is described in terms of a latent variable model (or space) with
dimensionality d [Bishop, Svensén, and Williams, 1996, 1998a]. The goal is to
find a representation for the distribution p(x) of p-dimensional data, in terms
of a smaller number of d latent variables m = (m1, ... , md). As usual, we want
d < p, and often take d = 2 for ease of visualization. We can achieve this goal
by finding a mapping y(m; W), where W is a matrix containing weights, that
takes a point m in the latent space and maps it to a point x in the data space.
This might seem somewhat backward from what we considered previously,
but we will see later how we can use the inverse of this mapping to view
summaries of the observations in the reduced latent space.

118 Exploratory Data Analysis with MATLAB®, Third Edition

We start with a probability distribution p(m) defined on the latent variable
space (with d dimensions), which in turn induces a distribution p(y|W) in the
data space (with p dimensions). For a given m and W, we choose a Gaussian
centered at y(m;W) as follows:

,

where the variance is β-1 and denotes the inner product. Other models can
be used, as discussed in Bishop, Svensén, and Williams [1998b]. The matrix
W contains the parameters or weights that govern the mapping. To derive
the desired mapping, we must estimate β and the matrix W.

The next step is to assume some form for p(m) defined in the latent space.
To make this similar to the SOM, the distribution is taken as a sum of delta
functions centered on the nodes of a regular grid in latent space:

FIGURE 3.10
This is the SOM for the oronsay data set. We can see some cluster structure here by the
colors. One is in the upper part of the map, and the other is in the lower left corner. The
labels on the map elements also indicate some clustering. Recall that the classes are midden
(0), Cnoc Coig (1), and Caisteal nan Gillean (2). (SEE COLOR INSERT.)

0.123

1.96

3.8

U−matrix

1

1

1

0

0

0

0

2

2

2

1

1

0

0

0

0

0

2

2

1

1

0

0

0

0

1

1

1

0

0

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

1

0

0

0

1

1

1

1

1

1

1

0

0

SOM 26−Jun−2004

p x m,W,β() β
2π

p 2⁄ β–

2------ y m;W() x–
2exp=

•

Dimensionality Reduction — Nonlinear Methods 119

,

where K is the total number of grid points or delta functions. Each point mk

in the latent space is mapped to a corresponding point y(mk;W) in the data
space, where it becomes the center of a Gaussian density function. This is
illustrated in Figure 3.11.

We can use maximum likelihood and the Expectation-Maximization (EM)
algorithm (see Chapter 6) to get estimates for β and W. Bishop, Svensén, and
Williams [1998a] show that the log-likelihood function for the distribution
described here is given by

. (3.6)

They next choose a model for y(m;W), which is given by

,

where the elements of φ (m) have M fixed basis functions φj (m), and W is of
size . For basis functions, they choose Gaussians whose centers are
distributed on a uniform grid in latent space. Note that the centers for these
basis functions are not the same as the grid points mi. Each of these Gaussian
basis functions φ has a common width parameter σ. The smoothness of the
manifold is determined by the value of σ, the number of basis functions M,
and their spacing.

FIGURE 3.11
This illustrates the mapping used in GTM. Our latent space is on the left, and the data space
is on the right. A Gaussian is centered at each of the data points, represented by the spheres.

p
K

k

k

K

m m m() = −()
=

∑1
1

L
K

p i k

k

K

i

n

W x m W, ln | , , () = ()⎧
⎨
⎩

⎫
⎬
⎭==

∑∑ 1
11

y x;W() Wφ x()=

p M×

120 Exploratory Data Analysis with MATLAB®, Third Edition

Looking at Equation 3.6, we can view this as a missing-data problem,
where we do not know which component k generated each data point xi. The
EM algorithm for estimating β and W consists of two steps that are done
iteratively until the value of the log-likelihood function converges. In the E-
step, we use the current values of the parameters to evaluate the posterior
probabilities of each component k for every data point. This is calculated
according to the following

, (3.7)

where the subscript ‘old’ indicates the current values.
In the M-step, we use the posterior probabilities to find weighted updates

for the parameters. First, we calculate a new version of the weight matrix
from the following equation

, (3.8)

where Φ is a matrix with elements Φ kj = φj (mk), X is the data matrix, T
is a matrix with elements τki , and G is a diagonal matrix where
the elements are given by

.

Equation 3.8 is solved for Wnew using standard linear algebra techniques. A
time-saving issue related to this update equation is that Φ is constant; so it
only needs to be evaluated once.

We now need to determine an update for β that maximizes the log-
likelihood. This is given by

. (3.9)

To summarize, the algorithm requires starting points for the matrix W and
the inverse variance β. We must also specify a set of points mi, as well as a set
of basis functions φj (m). The parameters W and β define a mixture of
Gaussians with centers Wφ(mk) and equal covariance matrices given by β-1I.
Given initial values, the EM algorithm is used to estimate these parameters.
The E-step finds the posterior probabilities using Equation 3.7, and the M-
step updates the estimates for W and β using Equations 3.8 and 3.9. These
steps are repeated until convergence.

ki

i k

i cc

K
W

p

p
old old

old old

old old

,
| , ,

| , ,
() =

()
()=∑

x m W

x m W1

ΦTGold Φ Wnew
T ΦTToldX=

K M×
K n× K K×

Gkk ki

i

n

= ()
=
∑ W,

1

1 1 2

11
new

old old old= () −()
==

∑∑
np

kn k i

k

K

i

n

W W m x,

Dimensionality Reduction — Nonlinear Methods 121

So, the GTM gives us a mapping from this latent space to the original p-
dimensional data space. For EDA purposes, we are really interested in going
the other way—mapping our p-dimensional data into some lower-
dimensional space. As we see from the development of the GTM, each datum
xi provides a posterior distribution in our latent space. Thus, this posterior
distribution in latent space provides information about a single observation.
Visualizing all observations in this manner would be too difficult; so each
distribution should be summarized in some way. Two summaries that come
to mind are the mean and the mode, which are then visualized as individual
points in our latent space. The mean for observation xi is calculated from

.

The mode for the i-th observation (or posterior distribution) is given by the
maximum value τki over all values of k. The values or modes are shown as
symbols in a scatterplot or some other visualization scheme.

Example 3.7
We again turn to the oronsay data to show the basic functionality of the
GTM Toolbox.9 The parameters were set according to the example in their
documentation.

load oronsay
% Initialize parameters for GTM.
noLatPts = 400;
noBasisFn = 81;
sigma = 1.5;
% Initialize required variables for GTM.
[X,MU,FI,W,beta] = gtm_stp2(oronsay,noLatPts,...
 noBasisFn,sigma);
lambda = 0.001;
cycles = 40;
[trndW,trndBeta,llhLog] = gtm_trn(oronsay,FI,W,...
 lambda,cycles,beta,'quiet');

The function gtm_stp2 initializes the required variables, and gtm_trn does
the training. Each observation gets mapped into a probability distribution in
the 2–D map; so we need to find either the mean or mode of each one to show
as a point. We can do this as follows:

% Get the means in latent space.
mus = gtm_pmn(oronsay,X,FI,trndW,trndBeta);
% Get the modes in latent space.

9 This is included with the EDA Toolbox.

m mi ki k

k

K

=
=

∑
1

mi

122 Exploratory Data Analysis with MATLAB®, Third Edition

modes = gtm_pmd(oronsay,X,FI,trndW);

We now plot the values in the lower-dimensional space using symbols
corresponding to their class.

ind0 = find(midden == 0);
ind1 = find(midden == 1);
ind2 = find(midden == 2);
plot(mus(ind0,1),mus(ind0,2),'k.',mus(ind1,1),...
 mus(ind1,2),'kx',mus(ind2,1),mus(ind2,2),'ko')

The resulting plot is shown in Figure 3.12, where we can see some separation
into the three groups.
❑

3.3.3 Curvilinear Component Analysis

Curvilinear component analysis (CCA) was developed by Demartines and
Herault [1997] as an improvement on self-organizing maps (SOMs) and
Sammon’s nonlinear mapping [1969]. The CCA approach is a neural network
strategy that produces a nonlinear mapping from the original space (where

FIGURE 3.12
This shows the map obtained from GTM, where the distribution for each point is summa-
rized by the mean. Each class is displayed using a different symbol: Class 0 is ‘.’, Class 1 is
‘x’, and Class 2 is ‘o.’ We can see some separation into groups in this plot.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Dimensionality Reduction — Nonlinear Methods 123

the data reside) to a lower-dimensional continuous space that can provide
the correct shape of the submanifold when other methods such as SOM,
MDS, and ISOMAP fail. We provide a comparison of these approaches at the
end of this section.

Curvilinear component analysis is a self-organized neural network that
encompasses two main steps. First, there is a vector quantization step [Ahalt
et al., 1990] where input vectors become prototypes of the distribution. Some
examples of vector quantization include a type of k-means clustering10 and
SOM. The next step is to find a nonlinear projection of the quantizing (or
codebook) vectors by minimizing a cost function based on interpoint
distances in the input and output spaces. As we will see in the following
discussion, CCA combines aspects of MDS and SOM to unfold the data and
reveal interesting structure.

As before, we are given n p-dimensional observations , and we seek a
mapping to a reduced d-dimensional space () with the observations
denoted as in that space. The final output of CCA depends on a nonlinear
mapping of the inputs or observations after they have been converted to
prototypes of the distribution using vector quantization. The position of the
output points is governed by the Euclidean distances between the
observations in the original space and also in the output space. As in MDS,
the goal is to find a mapping that preserves the interpoint distances from the
original high-dimensional space.

Here, the distance between the i-th and j-th observations will be denoted as

;

the corresponding distance in the d-dimensional output space is

,

where is usually the Euclidean distance.
While we would like to have , this is not always possible at all

scales. So, a weighting function is introduced, and the following quadratic
cost function is used:

, (3.10)

where is a neighborhood parameter that governs the scale. The goal is to
find values for the such that Equation 3.10 is minimized.

The weight function in Equation 3.10 is chosen as a bounded and
monotonically decreasing function. The reason for this is to preserve the local

10 This is discussed in Chapter 4.

xi

d p<
yi

Xij d xi xj,()=

Yij d yi yj,()=

d •()
Xij Yij=

E X Y F Yij ij ij y

j ii

= −() ()
≠

∑∑1
2

2
,

λy

yi

F Yij λy,()

124 Exploratory Data Analysis with MATLAB®, Third Edition

topology in the new space. Demartines and Herault [1997] used the following
in their simulations:

However, other functions can be used, such as a decreasing exponential or a
sigmoid.

The parameter is similar to the neighborhood radius in SOM, and it
generally changes as the minimization of Equation 3.10 proceeds. This is
typically driven by an automatic schedule, but the original paper describes
how this might also be chosen interactively.

The minimization of the cost function is achieved using a novel variant of
gradient descent methods. We do not provide details here, but there are a
couple aspects of the optimization approach that should be mentioned. First,
their method yields a significant savings in computation time, making it
suitable for large data sets. One of the ways this is achieved is with the vector
quantization step where the original data are represented by a smaller set of
prototype vectors. The other benefit of the optimization method used for
CCA is that the cost function can temporarily increase, which allows the
algorithm to escape from local minima of E. We will explore the use of CCA
in the next example.

Example 3.8
We use a function for CCA that is provided with the SOM Toolbox and is
included with the EDA Toolbox for convenience. We are going to generate
some points that fall on the unit sphere (), and we are not adding noise
so the submanifold is easier to see.

% Generate the data using the sphere function
% in the main MATLAB package.
[x,y,z] = sphere;
% Visualize the points in a scatterplot.
colormap(cmap)
scatter3(x(:),y(:),z(:),3,z(:),'filled')
axis equal
view([-34, 16])

The scatterplot of the original data is shown in the top panel of Figure 3.13.
We now apply CCA to find a nonlinear mapping to 2–D. Note that we have
to specify the number of iterations for the optimization algorithm. This is the
epochs argument in the cca function. Demartins and Herault state that a
data set of and a linear manifold usually requires around 50
iterations. When the submanifold is not linear, then many more steps (in the

F Y
Y

Y
ij y

ij y

ij y

,
.

() =

≤

>

⎧
⎨
⎪

⎩⎪

1
0

if
if

λy

p 3=

n 1000=

Dimensionality Reduction — Nonlinear Methods 125

thousands) might be needed. Our data set is small (), and we will use
30 iterations.

% Apply CCA where we reduce to 2-D.
Pcca = cca([x(:),y(:),z(:)],2,30);

A scatterplot of the data in 2–D is shown in the bottom of Figure 3.13. We see
that CCA was able to unfold the sphere and find the correct mapping.
❑

Another related method to CCA is called curvilinear distance analysis
(CDA) [Lee et al., 2000 and Lee, Lendasse, and Verleysen, 2002]. CDA is
similar to ISOMAP in that it uses the same geodesic distance to find
neighbors, but instead the developers of CDA call it a curvilinear distance.
The rest of the CDA strategy (e.g., the cost function E and its minimization)
is the same as in CCA. Thus, one can view CDA as being the same as CCA,
but with the input interpoint distances being determined using a geodesic
distance.

We mentioned at the beginning of this section that CCA was developed as
an improvement to Sammon’s nonlinear mapping. The cost function E in
Sammon’s algorithm is given by

,

where c is a normalization constant

.

Demartines and Herault [1997] note that this mapping is biased in favor of
preserving small distances of the input space; so a correct unfolding can be
difficult to obtain in applications.

Classical MDS and PCA are both linear approaches to dimensionality
reduction; so they will produce a linear approximation to the nonlinear
submanifold represented by the data. Nonmetric MDS can handle nonlinear
data structures, but recall that the rank orders of the interpoint distances are
preserved instead of the actual distances. This could result in quantization
errors and a poor mapping.

We also stated that CCA is an improvement to self-organizing maps, which
makes sense, since SOM or some other vector quantization is used as a first
step in CCA. The SOM achieves vector quantization with a predefined
neighborhood between neurons, so it can miss the actual shape. In CCA, the
neurons find an appropriate position in the output space that preserves the
local topology in addition to the shape of the submanifold.

n 21=

E
c

X Y
X

ij ij

ijj ii

= −()
<

∑∑1 12

c X ij
j ii

=
<

∑∑

126 Exploratory Data Analysis with MATLAB®, Third Edition

FIGURE 3.13
The plot given in the top panel displays a scatterplot of some observations that fall on the
unit sphere. No noise was added to the data so the shape of the sphere would be easier to
see. The scatterplot in the lower panel shows the points on the sphere after they have been
mapped to 2–D using curvilinear component analysis. Note that the CCA approach was
able to unfold the sphere in such a way that we can readily see the correct topology.

−1
−0.5

0
0.5

1

−1

0

1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1 1.5 2 2.5 3
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

Dimensionality Reduction — Nonlinear Methods 127

3.3.4 Autoencoders

There has been a resurgence of interest in artificial neural networks (ANN)
under the guise of deep learning. Deep learning involves supervised or
unsupervised learning tasks using multiple layered models from machine
learning. Besides neural networks, this approach uses concepts from artificial
intelligence, stochastic optimization, graphical modeling, statistical pattern
recognition, and more [Lewis, 2016].

This renewed interest has been driven by many things, including
algorithmic breakthroughs, improved network architectures, and increased
computing capacity and speed. This renaissance has allowed these networks
to best humans in chess [Lai, 2015], the game go [Zastrow, 2016], and to learn
to play Atari games based on visual input [Minh et al. 2013]. The interested
reader is referred to the recent paper by LeCun, Bengio, and Hinton [2015] for
a very high level introduction to the deep learning field.

In keeping with the focus of this chapter on nonlinear dimensionality
reduction, we will limit our discussions to the autoencoder deep learning
architecture [Hinton and Salakhutdinov, 2006]. In this article, Hinton states

“It has been obvious since the 1980s that backpropagation through deep
autoencoders would be very effective for nonlinear dimensionality reduc-
tion, provided that computers were fast enough, data sets were big enough,
and the initial weights were close enough to a good solution. All three
conditions are now satisfied.”

We follow Lewis [2016] in our description of autoencoders.
Autoencoders seek to learn the identity mapping on a data set. In other

words, they are learning their input values. Autoencoders are usually
feedforward neural networks with at least one hidden layer. The inputs and
the outputs are the same, so it is just reconstructing the inputs.

Suppose we have a data set X residing in (i.e., a ten-dimensional space).
We wish to learn the following two mappings

The function is an encoder, and the mapping is a decoder function. The
encoder is a mapping that takes the data from a higher dimensional space to
only two dimensions in this example. Thus, it is a mapping that reduces the
dimensionality of our data.

The encoder and decoders are chosen to minimize the reconstruction error

(3.11)

R
10

α: R10
R

2→

β: R2
R

10→

α β

X β°α()X–
2

128 Exploratory Data Analysis with MATLAB®, Third Edition

over all possible encoders and decoders . Note that reconstruction errors
other than the squared error in Equation 3.11 can be used.

If we could learn a network architecture that mapped the data to a lower
dimensional space and back to the higher dimensionality space with minimal
error, then the mapping (or encoding) has done a good job at capturing our
data. We illustrate a single autoencoder network in Figure 3.14.

Because the input values are the same as the outputs, an autoencoder is
essentially learning or modeling the identity function . It first
maps the inputs to the hidden representation (or layer) using the encoder
function given by

, (3.12)

where f is a nonlinear function (e.g., sigmoid) [Weisstein, 2016], is the
matrix of weights connecting the input and hidden layers, and is a vector
of biases or offsets for the hidden nodes.

The reconstruction part of the process is achieved using a decoder function

,

where the and are analogous to the entities in Equation 3.12. We have
the option to constrain the decoder to use tied weights .

In the case of an autoencoder network with a single hidden layer, one can
initialize the weights randomly and use error backpropagation [Rumelhart et

FIGURE 3.14
This is an example of a single hidden layer autoencoder network. The input are equal
to the output , and the network estimates a mapping or encoder function that best matches
these two layers. The hidden layer nodes are usually nonlinear sigmoid functions.

α β

xi

yi

h x() y x̂≈=

h f W1x b1+()=

W1
b1

y f W2x b2+()=

W2 b2
W2 W1

T
=

Dimensionality Reduction — Nonlinear Methods 129

al., 1986] to adjust these weights to minimize the squared reconstruction
error (Equation 3.11). The real power of the autoencoder comes when one
includes multiple layers as shown in Figure 3.15.

Referring to Figure 3.15, we ultimately end up with an encoding of the data
X in a space with greatly reduced dimensionality in the E2 layer. These deep
encoding architectures can contain many hidden encoding and decoding
layers that can fail under simple forward and backward based propagation
training. Fortunately, Hinton and Salakhutdinov [2006] formulated a method
to train these networks by using Boltzmann machines [Smolensky, 1986] to
pre-train the sublayers in the network architecture.

Example 3.9
We return to the S–curve manifold from Example 3.5. This data set consists
of 2,000 data points that lie along a 2–D manifold in three dimensions. The
data can be uploaded from the scurve file.

% Load the scurve data
% Contains 3-D data in X and
% height along z-axis in 'height'.
load scurve

This loads the data matrix X and the height variable. We use the height to
color code the symbols, which gives us a sense of the neighborhood structure.
To better illustrate our description of autoencoders, we will add some noisy
dimensions to the data.

% Add 7 columns of noise.
Y = [X',randn(2000,7)];

The Dimensionality Reduction Toolbox [van der Maaten, 2007] has a
function for constructing an autoencoder. The following function call uses

FIGURE 3.15
Here we show a schematic of a multilayer autoencoder.

130 Exploratory Data Analysis with MATLAB®, Third Edition

two nodes in the hidden layer. Thus, we are reducing the dimensionality to
2–D.

% Reduce the dimensionality to 2-D.
hn = 2;
[network, encode2d, decode10d] = ...
 train_autoencoder(Y,hn,0,5000);

The output variable encode2d contains the 2,000 points in 2–D. We show
them in Figure 3.16. We can compare the results to Figures 3.7 and 3.8, where
we see that the dimensionality reduction from the autoencoder approach is
superior in some aspects.
❑

FIGURE 3.16
Here is a scatterplot of the 2–D autoencoder embedding for the S–curve data. The color of
the symbols is matched to the height in 3–D, and we see that most of the neighborhood
structure has been preserved. Furthermore, this appears to have a better embedding than
the one from LLE (see Figure 3.8) in that it reflects the true rectangular boundary of the
data in 2–D. (SEE COLOR INSERT.)

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Dimensionality Reduction — Nonlinear Methods 131

3.4 Stochastic Neighbor Embedding

The stochastic neighbor embedding (SNE) approach for reducing the
dimensionality of a data set was developed by Hinton and Roweis [2002].
The goal is to allow us to visualize high-dimensional data in either two or
three dimensions. In some ways, SNE has the same goal as MDS, in that it
obtains a mapping to a lower-dimensional space such that the interpoint
distance relationships in the higher-dimensional space are preserved.

The input to SNE is the interpoint distance matrix, usually obtained using
Euclidean distances. The distances are converted to similarities using
conditional probabilities. The similarity of an observation to is the
conditional probability that would have as a neighbor. This choice
is proportional to their probability under a Gaussian density centered at
[van der Maaten and Hinton, 2008], as given here

, (3.13)

where is the variance of the Gaussian centered at .
Recall, that the goal is to find an embedding of the high-dimensional data

in a lower-dimensional space. The corresponding observations in this space
are denoted by and . We use a similar form of conditional probability to
represent the similarities between the observations in this space. It is given by

, (3.14)

where the variance has been set to . Note that .
We can measure how well these neighborhood probabilities match in the

two spaces using the summation of the Kullback-Liebler divergences given
by

. (3.15)

Equation 3.15 is our cost function, and it is minimized using gradient descent.
The Kullback-Liebler divergence is not symmetric, so the errors in pairwise

distances in the lower-dimensional space are not weighted equally [van der

xi xj

pi j xi xj

xi

pj i

xi xj–
2

– 2σi
2()⁄()exp

xi xk–
2

– 2σi
2()⁄()exp

k i≠
--=

σi
2 xi

yi yj

qj i

yi yj–
2

–()exp

yi yk–
2

–()exp
k i≠
--=

1 2⁄ pi i qi i 0= =

C pj i

pj i

qj i

------log
j

i

=

132 Exploratory Data Analysis with MATLAB®, Third Edition

Maaten and Hinton, 2008]. The result is that the cost function (Equation 3.15)
emphasizes the retention of the local structure in the smaller space.

We have to specify the variance of the Gaussian used in Equation 3.13.
In most applications, there is likely no optimal value for all . The
SNE approach conducts a search for a good value of the variance at a data
point with a fixed perplexity, which is specified by the user. One can think
of the perplexity as defining the number of neighbors. van der Maaten and
Hinton [2008] define it as a “smooth measure of the effective number of
neighbors.” Values might range from 5 to 50.

The SNE method has some drawbacks. First, it is often difficult and costly
to solve the objective function in Equation 3.15. Secondly, it tends to map
data points to the same place or near each other in the lower dimensional
space. This is sometimes called the “crowding problem.” Other nonlinear
dimensionality reduction methods suffer from the same issue.

The t-SNE or t–Distributed Stochastic Neighbor Embedding method was
developed to address these problems [van der Maaten and Hinton, 2008]. It
uses a symmetrized version of the cost function, and it employs a Student’s t
distribution to find the similarity between points in the lower-dimensional
space. The t distribution has heavier tails, which reduces crowding.

To symmetrize the cost function, we minimize a single divergence between
a joint probability distribution in the high-dimensional space and a joint
probability distribution in the lower-dimensional space. The cost function is

. (3.16)

As before, we have . This is symmetric since and
, for all i and j.

The joint probabilities are obtained from the symmetrized conditional
probabilities

. (3.17)

We first determine the conditional probabilities using Equation 3.13, and
then symmetrize using Equation 3.17. Besides having an easier gradient to
use in the optimization, this way of calculating the joint probabilities
ensures that each makes a significant contribution to the objective function
[van der Maaten and Hinton, 2008].

The second adjustment that t-SNE makes is to use a Student’s t-distribution
with one degree of freedom to determine the joint probabilities . These are

σi
2

i 1 … n, ,=

xi

C pij

pij

qij

-----log
j

i

=

pii qjj 0= = pij pji=

qij qji=

pij

pij

pj i pi j+

2n
--------------------=

pij

xi

qij

Dimensionality Reduction — Nonlinear Methods 133

. (3.18)

This is faster to compute because it does not have the exponential function. It
also means that the lower-dimensional map is optimized similarly at most
scales.

The t-SNE method is implemented in the Dimensionality Reduction
Toolbox [van der Maaten, 2007] and in other computing languages at

http://lvdmaaten.github.io/tsne/

This website also provides a fast implementation of the algorithm and visual
examples of its application to famous data sets.

Example 3.10
The Dimensionality Reduction Toolbox has a function that will generate 3–D
data, and we use that to generate some clusters. Besides the data, the function
returns a set of cluster labels that can be used to aid visualization. We show
these data in the top panel of Figure 3.17.

% First, we generate some 3-D data.
[X,labels] = generate_data('3d_clusters');
scatter3(X(:,1),X(:,2),X(:,3),5,labels)
box on

We now apply t-SNE, specifying an embedding dimension of 2–D, an initial
dimension of 3–D, and perplexity of 30 (the default). The tsne function starts
off with a preprocessing step that uses PCA to reduce to a smaller dimension
before starting t-SNE. We specified 3–D for this value because our initial
dimensionality is small.

d = 2;
dpca = 3;
perp = 30;
ydata = tsne(X, labels, d, dpca, perp);
scatter(ydata(:,1),ydata(:,2),5,labels)

The scatterplot of the data is shown in the lower part of Figure 3.17. We see
that the interpoint distances seem to be preserved, as is the distance between
the clusters. Thus, there is little crowding.
❑

qij

1 yi yj–
2

+()
1–

1 yk yl–
2

+()
1–

k l≠
---=

http://lvdmaaten.github.io/tsne/

134 Exploratory Data Analysis with MATLAB®, Third Edition

FIGURE 3.17
The top panel shows a scatterplot of the 3–D cluster data generated in Example 3.10. We
see that the clusters are rather separated. The lower plot shows the 2–D mapping using t-
SNE. We see that the clusters are not crowded, and the distance between clusters seems to
be reasonably preserved, as is the individual interpoint distances.

-2
8

0

2

6

4

15

6

4

8

10

10

2

12

5
0 0

-2 -5

-80 -60 -40 -20 0 20 40 60 80
-80

-60

-40

-20

0

20

40

60

80

Dimensionality Reduction — Nonlinear Methods 135

3.5 Summary and Further Reading

In this chapter, we discussed several methods for finding a nonlinear
mapping from a high-dimensional space to one with lower dimensionality.
The first set of methods was grouped under the name multidimensional
scaling, and we presented both metric and nonmetric MDS. We note that in
some cases, depending on how it is set up, MDS finds a linear mapping. We
also presented several methods for learning manifolds, where the emphasis
is on nonlinear manifolds. These techniques are locally linear embedding,
ISOMAP, and Hessian locally linear embedding. ISOMAP is really an
enhanced version of classical MDS, where geodesic distances are used as
input to classical MDS. HLLE is similar in spirit to LLE, and its main
advantage is that it can handle data sets that are not convex. Finally, we
presented two artificial neural network approaches called self-organizing
maps and generative topographic maps.

We have already mentioned some of the major MDS references, but we also
include them here with more information on their content. Our primary
reference for terminology and methods was Cox and Cox [2001]. This is a
highly readable book, suitable for students and practitioners with a
background in basic statistics. The methods are clearly stated for both
classical MDS and nonmetric MDS. Also, the authors provide a CD-ROM
with programs (running under DOS) and data sets so the reader can use these
tools.

Another book by Borg and Groenen [1997] brings many of the algorithms
and techniques of MDS together in a way that can be understood by those
with a two-semester course in statistics for social sciences or business. The
authors provide the derivation of the methods, along with ways to interpret
the results. They do not provide computer software or show how this can be
done using existing software packages, but their algorithms are very clear
and understandable.

A brief introduction to MDS can be obtained from Kruskal and Wish
[1978]. This book is primarily focused on applications in the social sciences,
but it would be useful for those who need to come to a quick understanding
of the basics of MDS. Computational and algorithmic considerations are not
stressed in this book. There are many overview papers on MDS in the various
journals and encyclopedias; these include Mead [1992], Siedlecki, Siedlecka,
and Sklansky [1988], Steyvers [2002], and Young [1985].

Some of the initial work in MDS was done by Shepard in 1962. The first
paper in the series [Shepard, 1962a] describes a computer program to
reconstruct a configuration of points in Euclidean space, when the only
information that is known about the distance between the points is some
unknown monotonic function of the distance. The second paper in the series
[Shepard, 1962b] presents two applications of this method to artificial data.

136 Exploratory Data Analysis with MATLAB®, Third Edition

Kruskal continued the development of MDS by introducing an objective
function and developing a method for optimizing it [Kruskal, 1964a, 1964b].
We highly recommend reading the original Kruskal papers; they are easily
understood and should provide the reader with a nice understanding of the
origins of MDS.

A nice overview of manifold learning is given in Saul and Roweis [2002],
with an emphasis on LLE. Further issues with ISOMAP are explored in
Balasubramanian and Schwartz [2002]. More detailed information regarding
HLLE can be found in a technical report written by Donoho and Grimes
[2002]. An edited book by Gorban et al. [2008] contains many excellent
articles on manifold learning for dimensionality reduction, as well as
visualization. There is a text called Nonlinear Dimensionality Reduction by Lee
and Verleysen [2007] that describes the details of manifold learning and is for
the mathematically inclined reader.

There is one book dedicated to SOM written by Kohonen [2001]. Many
papers on SOM have appeared in the literature. A 1998 technical report lists
3,043 works based on the SOM [Kangas and Kaski, 1998]. A nice, short
overview of SOM can be found in Kohonen [1998]. Some recent applications
of SOM have been in the area of document clustering [Kaski et al., 1998;
Kohonen et al., 2000] and the analysis of gene microarrays [Tamayo et al.,
1999]. Theoretical aspects of the SOM are discussed in Cottrell, Fort, and
Pages [1998]. The use of the SOM for clustering is described in Kiang [2001]
and Vesanto and Alhoniemi [2000]. Visualization and EDA methods for SOM
are discussed in Mao and Jain [1995], Ultsch and Siemon [1990], Deboeck and
Kohonen [1998], and Vesanto [1997; 1999]. For those who want to learn more
about GTM, we recommend Bishop, Svensén, and Williams [1996, 1997a,
1997b, 1998a, and 1998b], Bishop, Hinton, and Strachan [1997], and Bishop
and Tipping [1998].

Additional resources on deep learning and t-SNE continue to grow. Those
who want to learn more about deep learning are referred to the extensive
article by Bengio [2009]. A book on deep learning in draft form is available
online at [Goodfellow et al., 2016]

http://www.deeplearningbook.org/

The book by Lewis [2016] is a hands–on guide to deep learning using the R
computing environment.

Exercises

3.1 Try the classical MDS approach using the skull data set. Plot the
results in a scatterplot using the text labels as plotting symbols (see the
text function). Do you see any separation between the categories of

http://www.deeplearningbook.org/

Dimensionality Reduction — Nonlinear Methods 137

gender [Cox and Cox, 2001]? Try PCA on the skull data. How does
this compare with the classical MDS results?

3.2 Apply the SMACOF and nonmetric MDS methods to the skull data
set. Compare your results with the configuration obtained through
classical MDS.

3.3 Use plot3 (similar to plot, but in three dimensions) to construct a
3–D scatterplot of the data in Example 3.1. Describe your results.

3.4 Apply the SMACOF method to the oronsay data set and comment
on the results.

3.5 Repeat Examples 3.2, 3.4, and Problem 3.4 for several values of d. See
the help on gplotmatrix and use it to display the results for d > 2.
Do a scree-like plot of stress versus d to see which d is best.

3.6 The Shepard diagram for nonmetric MDS is a plot where the ordered
dissimilarities are on the horizontal axis. The distances (shown as
points) and the disparities (shown as a line) are on the vertical. With
large data sets, this is not too useful. However, with small data sets, it
can be used to see the shape of the regression curve. Implement this
in MATLAB and test it on one of the smaller data sets.

3.7 Try using som_show(sM) in Example 3.6. This shows a U-matrix for
each variable. Look at each one individually and add the labels to the
elements: som_show(sM,'comp',1), etc. See the SOM Toolbox
documentation for more information on how these functions work.

3.8 Repeat Example 3.6 and Problem 3.7 using the other labels for the
oronsay data set. Discuss your results.

3.9 Repeat the plot in Example 3.7 (GTM) using the modes instead of the
means. Do you see any difference between them?

3.10 Do a help on the Statistics Toolbox function mdscale. Apply the
methods (metric and nonmetric MDS) to the skulls and oronsay
data sets.

3.11 Apply the ISOMAP method to the scurve data from Example 3.5.
Construct a scatterplot of the data and compare to the results from
LLE.

3.12 Apply the LLE method to the swissroll data of Example 3.5.
Construct a scatterplot and compare with HLLE and ISOMAP.

3.13 What is the intrinsic dimensionality of the swissroll and scurve
data sets?

3.14 Where possible, apply MDS, ISOMAP, LLE, HLLE, SOM, CCA, and
GTM to the following data sets. Discuss and compare the results.
a. BPM data sets

b. gene expression data sets

c. iris

d. pollen

e. posse

f. oronsay

138 Exploratory Data Analysis with MATLAB®, Third Edition

g. skulls

3.15 Repeat Example 3.2 with different starting values to search for
different structures. Analyze your results.

3.16 Use PCA and ISOMAP to the sphere data in Example 3.8. Compare
your results with the output from CCA.

3.17 Lewis [2016] has an example of an autoencoder where the input is an
image. He then compares the input and output images to assess the
performance of the autoencoder. The following runs a similar test
using the autoencoder function from the Dimensionality Reduction
Toolbox. Try it out on the small MATLAB logo image using different
autoencoder configurations.

% Read file and convert it to grayscale.
imdata = imread('matlogo.png','png');
imgray = rgb2gray(imdata);
% Display image.
image(imgray)
colormap(gray(256));

% We convert it to double and scale between
% 0 and 1 for additional processing
matlogo = double(imgray/255);

% We process the transpose so we have
% n = 462 and p = 416.
% We use 100 nodes in a single hidden layer
% and 500 iterations.
[network100, encode100, decode100] = ...

 train_autoencoder(matlogo', 100,0,1000);

% Map the data to gray scale.
mat_gs = 255*decode100';
% Plot the image and compare.
figure
image(mat_gs)
colormap(gray(256))

3.18 Use ISOMAP to reduce the data generated in Example 3.10 to 2–D. A
value of is needed. Compare your results with the t-SNE.

3.19 Find the distances between all pairs of groups in the 3–D data
generated in Example 3.10. Compare these with the intergroup
distances in the 2–D embedding. How well are they preserved?

k 200=

139

Chapter 4
Data Tours

In previous chapters we searched for lower-dimensional representations of
our data that might show interesting structure. However, there are an infinite
number of possibilities; so we might try touring through space, looking at
many of these representations. This chapter includes a description of several
tour methods that can be roughly categorized into the following groups:

1. Grand Tours: If the goal is to look at the data from all possible
viewpoints to get an idea of the overall distribution of the p-
dimensional data, then we might want to look at a random
sequence of lower-dimensional projections. Typically, there is little
user interaction with these methods other than to set the step size
for the sequence and maybe to stop the tour when an interesting
structure is found. This was the idea behind the original torus
grand tour of Asimov [1985].

2. Interpolated Tours: In this type of tour, the user chooses a starting
plane and an ending plane. The data are projected onto the first
plane. The tour then proceeds from one plane to the other by
interpolation. At each step of the sequence, the user is presented
with a different view of the data, usually in the form of a scatterplot
[Hurley and Buja, 1990].

3. Guided Tours: These tours can be either partly or completely
guided by the data. An example of this type of tour is the EDA
projection pursuit method. While this is not usually an interactive
or visual tour in the sense of the others, it does look at many
projections of the data searching for interesting structure such as
holes, clusters, etc.

Each of these methods is described in more detail in the following sections.

140 Exploratory Data Analysis with MATLAB®, Third Edition

4.1 Grand Tour

In the grand tour methods, we want to view the data from ‘all’ possible
perspectives. This is done by projecting the data onto a 2–D subspace and
then viewing it as a scatterplot. We do this repeatedly and rapidly, so the user
ends up seeing an animated sequence (or movie) of scatterplots. We could
also project to spaces with dimensionality greater than 2, but the
visualization would have to be done differently (see Chapter 10 for more on
this subject). Projections to 1–D (a line) are also possible, where we could
show the individual points on the line or as a distribution (e.g., histogram or
other estimate of data density). We describe two grand tour methods in this
section: the torus winding method and the pseudo grand tour.

In general, grand tours should have the following desirable characteristics:

1. The sequence of planes (or projections) should be dense in the space
of all planes, so the tour eventually comes close to any given 2–D
projection.

2. The sequence should become dense rapidly; so we need an efficient
algorithm to compute the sequence, project the data, and present
it to the user.

3. We want our sequence of planes to be uniformly distributed,
because we do not want to spend a lot of time in one area.

4. The sequence of planes should be ‘continuous’ to aid user
understanding and to be visually appealing. However, a trade-off
between continuity and speed of the tour must be made.

5. The user should be able to reconstruct the sequence of planes after
the tour is over. If the user stops the tour at a point where
interesting structure is found, then that projection should be
recovered easily.

To achieve these, the grand tour algorithm requires a continuous, space-
filling path through the set of 2–D subspaces in p-dimensional space.

To summarize, the grand tour provides an overview or tour of a high-
dimensional space by visualizing a sequence of 2–D scatterplots, in such a
way that the tour is representative of all projections of the data. The tour
continues until the analyst sees some interesting structure, at which time it is
halted. The output of the grand tour method is a movie or animation with
information encoded in the smooth motion of the 2–D scatterplots. A benefit
from looking at a moving sequence of scatterplots is that two additional
dimensions of information are available in the speed vectors of the data
points [Buja and Asimov, 1986]. For example, the further away a point is from
the computer screen, the faster the point rotates.

Data Tours 141

4.1.1 Torus Winding Method

The torus winding method was originally proposed by Asimov [1985] and
Buja and Asimov [1986] as a way of implementing the grand tour. We let
{λ1,...,λN} be a set of real numbers that are linearly independent over the
integers. We also define a function a(t) as

, (4.1)

where the coordinates λit are interpreted modulo 2π. It is known that the
mapping in Equation 4.1 defines a space-filling path [Asimov, 1985; Wegman
and Solka, 2002] that winds around a torus.

We let the vector ei represent the canonical basis vector. It contains zeros
everywhere except in the i-th position where it has a one. Next we let Rij(θ)
denote a matrix that rotates the eiej plane through an angle of size θ.
This is given by the identity matrix, but with the following changes:

rii = rjj = cos(θ); rij = – sin(θ); rji = sin(θ).

We then define a function f as follows

. (4.2)

Note that we have N arguments (or angles) in the function f, and it is subject
to the restrictions that and . We use a reduced form of
this function with fewer terms [Asimov, 1985] in our procedure outlined
below.

Procedure – Torus Method

1. The number of factors in Equation 4.2 is given by N = 2p – 3.1 We
use only Rij(θij) with i = 1 or i = 2. If i = 1, then . If i = 2,
then .

2. Choose real numbers {λ1, ... , λN} and a stepsize t such that the
numbers {2π, λ1t, ... , λNt} are linearly independent. The stepsize t
should be chosen to yield a continuous sequence of planes.

3. The values λ1Kt, ... , λNKt, K = 1, 2, ... are used as the arguments to
the function . K is the iteration number.

4. Form the product QK of all the rotations (Equation 4.2).

5. Rotate the first two basis vectors using

1 We are using the reduced form described in the appendix of Asimov [1985]. The complete form
of this rotation consists of (p2 – p)/2 possible plane rotations, corresponding to the distinct
2–planes formed by the canonical basis vectors.

a t() λ1t,…, λNt()=

p p×

f θ1 2, … θp 1 p,–, ,() Q R12 θ12() R13 θ13()× … Rp 1 p,– θp 1 p,–()××= =

0 θij 2π≤ ≤ 1 i j p≤<≤

2 j p≤ ≤
3 j p≤ ≤

f •()

142 Exploratory Data Analysis with MATLAB®, Third Edition

,

where the columns of E12 contain the first two basis vectors, e1 and
e2.

6. Project the data onto the rotated coordinate system for the K-th
step:

.

7. Display the points as a scatterplot.

8. Repeat from step 3 for the next value of K.

We need to choose λi and λj such that the ratio λi/λj is irrational for every i
and j. Additionally, we must choose these such that no λi/λj is a rational
multiple of any other ratio. It is also recommended that the time step t be a
small positive irrational number. Two possible ways to obtain irrational
values are the following [Asimov, 1985]:

1. Let , where is the i-th prime number.

2. Let .

We show how to implement the torus grand tour in Example 4.1.

Example 4.1
We use the yeast data in this example of a torus grand tour. First we load
the data and set some constants.

load yeast
[n,p] = size(data);
% Set up vector of frequencies.
N = 2*p - 3;
% Use second option from above.
lam = mod(exp(1:N),1);
% This is a small irrational number:
delt = exp(-5);
% Get the indices to build the rotations.
% As in step 1 of the torus method.
J = 2:p;
I = ones(1,length(J));
I = [I, 2*ones(1,length(J)-1)];
J = [J, 3:p];
E = eye(p,2); % Basis vectors
% Just do the tour for some number of iterations.
maxit = 2150;

AK QKE12=

XK XAK=

λi Pi= Pi

λi e
i mod 1=

Data Tours 143

Next we implement the tour itself.

% Get an initial plot.
z = zeros(n,2);
ph = plot(z(:,1),z(:,2),'o','erasemode','normal');
axis equal, axis off
% Use some Handle Graphics to remove flicker.
set(gcf,'backingstore','off','renderer',...

'painters','DoubleBuffer','on')
% Start the tour.
for k = 1:maxit
 % Find the rotation matrix.
 Q = eye(p);
 for j = 1:N
 dum = eye(p);

dum([I(j),J(j)],[I(j),J(j)]) = ...
cos(lam(j)*k*delt);

 dum(I(j),J(j)) = -sin(lam(j)*k*delt);
 dum(J(j),I(j)) = sin(lam(j)*k*delt);
 Q = Q*dum;
 end
 % Rotate basis vectors.
 A = Q*E;
 % Project onto the new basis vectors.
 z = data*A;

% Plot the transformed data.
 set(ph,'xdata',z(:,1),'ydata',z(:,2))

% Forces Matlab to plot the data.
 pause(0.02)
end

We provide a function called torustour that implements this code. The
configuration obtained at the end of this tour is shown in Figure 4.1.
❑

4.1.2 Pseudo Grand Tour

Asimov [1985] and Buja and Asimov [1986] described other ways of
implementing a grand tour called the at-random method and the random-
walk method. These methods, along with the torus grand tour, have some
limitations. With the torus method we may end up spending too much time
in certain regions, and it can be computationally intensive. Other techniques
are better computationally, but cannot be reversed easily (to recover the
projection) unless the set of random numbers used to generate the tour is
retained.

144 Exploratory Data Analysis with MATLAB®, Third Edition

We now discuss the pseudo grand tour first described in Wegman and Shen
[1993] and later implemented in MATLAB by Martinez and Martinez [2015].
One of the important aspects of the torus grand tour is that it provides a
continuous space-filling path through the manifold of planes. The following
method does not employ a space-filling curve; thus it is called a pseudo
grand tour. Another limitation is that the pseudo grand tour does not
generalize to higher dimensional tours like the torus method. In spite of this,
the pseudo grand tour has many benefits, such as speed, ease of calculation,
uniformity of the tour, and a recoverable projection.

For the tour we need unit vectors that comprise the desired projection. Our
first unit vector is denoted as , such that

,

for every t, where t represents the stepsize as before. We need a second unit
vector that is orthonormal to , so

.

FIGURE 4.1
This shows the end of the torus grand tour using the yeast data.

α t()

αT
t()α t() αi

2
t()

i 1=

p 1= =

β t() α t()

βT
t()β t() βi

2
t()

i 1=

p 1,= = αT
t()β t() 0=

Data Tours 145

For the pseudo grand tour, and must be continuous functions of t
and should produce ‘all’ possible orientations of a unit vector.

Before we continue in our development, we consider an observation x. If p
is odd, then we augment each data point with a zero, to get an even number
of elements. In this case,

This will not affect the projection. So, without loss of generality, we present
the method with the understanding that p is even. We take the vector to
be

, (4.3)

for K = 1, 2, ... and the vector as

. (4.4)

We choose ω i and ω j in a similar manner to the λ i and λ j in the torus grand
tour. The steps for implementing the 2–D pseudo grand tour are given here,
and the details on how to implement this in MATLAB are given in Example
4.2.

Procedure- Pseudo Grand Tour

1. Set each ω i to an irrational number. Determine a small positive
irrational number for the stepsize t.

2. Find vectors and using Equations 4.3 and 4.4.

3. Project the data onto the plane spanned by these vectors.

4. Display the projected points in a 2–D scatterplot.

5. Repeat from step 2 for the next value of K.

Example 4.2
We will use the oronsay data set for this example that illustrates the pseudo
grand tour. We provide a function in the EDA Toolbox called pseudotour
that implements the pseudo grand tour, however details are given below.
Since the oronsay data set has an even number of variables, we do not have
to augment the observations with a zero.

load oronsay

α t() β t()

x x1 … xp 0, , ,[]T ,= for p odd.

α t()

α Kt() 2
p
--- ω1Kt ω1Kt … ωp 2⁄ Kt ωp 2⁄ Ktcos,sin, ,cos,sin[]T×=

β t()

βK t() 2
p
--- ω1Kt ω1Kt …,sin– ωp 2⁄ Kt ωp 2⁄ Ktsin–,cos, ,cos[]T×=

α Kt() β Kt()

146 Exploratory Data Analysis with MATLAB®, Third Edition

x = oronsay;
maxit = 10000;
[n,p] = size(x);
% Set up vector of frequencies as in grand tour.
th = mod(exp(1:p),1);
% This is a small irrational number:
delt = exp(-5);
cof = sqrt(2/p);
% Set up storage space for projection vectors.
a = zeros(p,1); b = zeros(p,1);
z = zeros(n,2);
% Get an initial plot.
ph = plot(z(:,1),z(:,2),'o','erasemode','normal');
axis equal, axis off
set(gcf,'backingstore','off','renderer',...

'painters','DoubleBuffer','on')
for t = 0:delt:(delt*maxit)
% Find the transformation vectors.
for j = 1:p/2

a(2*(j-1)+1) = cof*sin(th(j)*t);
a(2*j) = cof*cos(th(j)*t);
b(2*(j-1)+1) = cof*cos(th(j)*t);
b(2*j) = cof*(-sin(th(j)*t));

end
% Project onto the vectors.
z(:,1) = x*a;
z(:,2) = x*b;
set(ph,'xdata',z(:,1),'ydata',z(:,2))

 drawnow
end

A scatterplot showing an interesting configuration of points is shown in
Figure 4.2. The reader is encouraged to view this tour as it shows some
interesting structure along the way.
❑

4.2 Interpolation Tours

We present a version of the interpolation tour described in Young and
Rheingans [1991] and Young, Faldowski, and McFarlane [1993]. The
mathematics underlying this type of tour were presented in Hurley and Buja
[1990] and Asimov and Buja [1994]. The idea behind interpolation tours is
that it starts with two subspaces: an initial one and a target subspace. The

Data Tours 147

tour proceeds by traveling from one to the other via geodesic interpolation
paths between the two spaces. Of course, we also display the projected data
in a scatterplot at each step in the path for a movie view, and one can continue
to tour the data by going from one target space to another.

We assume that the data matrix X is column centered; i.e., the centroid of
the data space is at the origin. As with the other tours, we must have a visual
space to present the data to the user. The visual space will be denoted by Vt,
which is an matrix of coordinates in 2–D.

One of the difficulties of the interpolation tour is getting the target spaces.
Some suggested spaces include those spanned by subsets of the eigenvectors
in PCA, which is what we choose to implement here. So, assuming that we
have the principal component scores (see Chapter 2), the initial visible space
and target space will be matrices, whose columns contain different
principal components.

The interpolation path is obtained through the following rotation:

, (4.5)

where Vt is the visible space at the t-th step in the path, Tk indicates the k-th
target in the sequence, and Ut is a diagonal matrix with values θk

between 0 and π/2. At each value of t, we increment the value of θk for some

FIGURE 4.2
This shows the scatterplot of points for an interesting projection of the oronsay data found
during the pseudo grand tour in Example 4.2.

n 2×

n 2×

Vt Tk Utcos[] Tk 1+ Utsin[]+=

2 2×

148 Exploratory Data Analysis with MATLAB®, Third Edition

small stepsize. Note that the subscript k indicates the k-th plane in the target
sequence, since we can go from one target plane to another.

Example 4.3
We use the oronsay data set to illustrate our function that implements the
interpolation tour. The function takes the data matrix as its first argument.
The next two inputs to the function contain column indices to the matrix of
principal components. The first vector designates the starting plane and the
second one corresponds to the target plane.

load oronsay
% Set up the vector of indices to the columns spanning
% the starting and target planes.
T1 = [3 4];
T2 = [5 6];
intour(oronsay, T1, T2);

We show the scatterplots corresponding to the starting plane and the target
plane in Figure 4.3. This function actually completes a full rotation back to the
starting plane after pausing at the target. Those readers who are interested in
the details of the tour can refer to the M-file intour for more information.
❑

4.3 Projection Pursuit

In contrast to the grand tour, the projection pursuit method performs a
directed search based on some index that indicates a type of structure one is
looking for. In this sense, the tour is guided by the data, because it keeps
touring until a possible structure is found. Like the grand tour method,
projection pursuit seeks to find projections of the data that are interesting;
i.e., show departures from normality, such as clusters, linear structures,
holes, outliers, etc. The objective is to find a projection plane that provides a
2–D view of our data such that the structure (or departure from normality) is
maximized over all possible 2–D projections.

Friedman and Tukey [1974] describe projection pursuit as a way of
searching for and exploring nonlinear structure in multi-dimensional data by
examining many 2–D projections. The idea is that 2–D orthogonal projections
of the data should reveal structure in the original data. The projection pursuit
technique can also be used to obtain 1–D projections, but we look only at the
2–D case. Extensions to this method are also described in the literature by
Friedman [1987], Posse [1995a, 1995b], Huber [1985], and Jones and Sibson
[1987]. In our presentation of projection pursuit exploratory data analysis, we
follow the method of Posse [1995a, 1995b].

Data Tours 149

FIGURE 4.3
This shows the start plane (top) and the target plane (bottom) for an interpolation tour using
the oronsay data set.

Start Axes: 3 4; Target Axes: 5 6

Start Axes: 3 4; Target Axes: 5 6

150 Exploratory Data Analysis with MATLAB®, Third Edition

Projection pursuit exploratory data analysis (PPEDA) is accomplished by
visiting many projections in search of something interesting, where
interesting is measured by an index. In most cases, the projection pursuit
index measures the departure from normality. We use two indexes in our
implementation. One is the chi-square index developed in Posse [1995a,
1995b], and the other is the moment index of Jones and Sibson [1987].

PPEDA consists of two parts:

1. A projection pursuit index that measures the degree of departure
from normality, and

2. A method for finding the projection that yields the highest value
for the index.

Posse [1995a, 1995b] uses a random search to locate a plane with an optimal
value of the projection index and combines it with the structure removal of
Friedman [1987] to get a sequence of interesting 2–D projections. Each
projection found in this manner shows a structure that is less important (in
terms of the projection index) than the previous one. Before we describe this
method for PPEDA, we give a summary of the notation that we use to present
the method.

Notation

Z is the matrix of sphered data.

α, β are orthonormal p-dimensional vectors that span the projection
plane.

 is the projection plane spanned by α and β.

 are the sphered observations projected onto the vectors α and β.

 denotes the plane where the index is at a current maximum.

 denotes the chi-square projection index evaluated using
the data projected onto the plane spanned by and .

 denotes the moment projection index.

c is a scalar that determines the size of the neighborhood around
 that is visited in the search for planes that provide better

values for the projection pursuit index.

v is a vector uniformly distributed on the unit p-dimensional sphere.

half specifies the number of steps without an increase in the projection
index, at which time the value of the neighborhood is halved.

m represents the number of searches or random starts to find the best
plane.

α β,()
zi

α
zi

β,
α* β*,()

PIχ2 α β,()
α β

PIM α β,()

α* β*,()

Data Tours 151

Finding the Structure

How we calculate the projection pursuit indexes and
for each candidate plane is discussed at the end of this chapter. So, we first
turn our attention to the second part of PPEDA, where we must optimize the
projection index over all possible projections onto 2–D planes. Posse [1995a]
shows that his random search optimization method performs better than the
steepest-ascent techniques [Friedman and Tukey, 1974] typically used in
optimization problems of this type.

The Posse algorithm starts by randomly selecting a starting plane, which
becomes the current best plane . The method seeks to improve the
current best solution by considering two candidate solutions within its
neighborhood. These candidate planes are given by

(4.6)

We start a global search by looking in large neighborhoods of the current
best solution plane . We gradually focus in on a plane that yields a
maximum index value by decreasing the neighborhood after a specified
number of steps with no improvement in the value of the projection pursuit
index. The optimization process is terminated when the neighborhood
becomes small.

Because this method is a random search, the result could be a locally
optimal solution. So, one typically goes through this procedure several times
for different starting planes, choosing the final configuration as the one
corresponding to the largest value of the projection pursuit index.

A summary of the steps for the exploratory projection pursuit procedure is
given here. The complete search for the best plane involves repeating steps 2
through 9 of the procedure m times, using different random starting planes.
The best plane chosen is the plane where the projected data exhibit
the greatest departure from normality as measured by the projection pursuit
index.

Procedure – PPEDA

1. Sphere the data to obtain Z. See Chapter 1 for details on sphering
data.

2. Generate a random starting plane, . This is the current best
plane, .

PIχ2 α β,() PIM α β,()

α* β*,()

a1
α*

cv1+

α*
cv1+

------------------------= b1
β*

a1
Tβ*()a1–

β*
a1

Tβ*()a1–
------------------------------------=

a2
α*

cv2–

α*
cv2–

------------------------= b2
β*

a2
Tβ*()a2–

β*
a2

Tβ*()a2–
------------------------------------ .=

α* β*,()

α* β*,()

α0 β0,()
α* β*,()

152 Exploratory Data Analysis with MATLAB®, Third Edition

3. Evaluate the projection index or for the
starting plane.

4. Generate two candidate planes and according to
Equation 4.6.

5. Calculate the projection index for these candidate planes.

6. Choose the candidate plane with a higher value of the projection
pursuit index as the current best plane .

7. Repeat steps 4 through 6 while there are improvements in the
projection pursuit index.

8. If the index does not improve for half times, then decrease the value
of c by half.

9. Repeat steps 4 through 8 until c is some small number.

Structure Removal

We have no reason to assume that there is only one interesting projection,
and there might be other views that reveal insights about our data. To locate
other views, Friedman [1987] devised a method called structure removal. The
overall procedure is to perform projection pursuit as outlined above, remove
the structure found at that projection, and repeat the projection pursuit
process to find a projection that yields another maximum value of the
projection pursuit index. Proceeding in this manner will provide a sequence
of projections providing informative views of the data.

Structure removal in two dimensions is an iterative process. The procedure
repeatedly transforms the projected data to standard normal until they stop
becoming more normal as measured by the projection pursuit index. We start
with a matrix , where the first two rows of the matrix are the vectors
of the projection obtained from PPEDA. The rest of the rows of have ones
on the diagonal and zero elsewhere. For example, if p = 4, then

We use the Gram-Schmidt process [Strang, 1988] to make the rows of
orthonormal. We denote the orthonormal version as . The next step in the
structure removal process is to transform the Z matrix using the following

. (4.7)

PIχ2 α0 β0,() PIM α0 β0,()

a1 b1,() a2 b2,()

α* β*,()

p p× U*

U*

U*

α1
* α2

* α3
* α4

*

β1
* β2

* β3
* β4

*

0 0 1 0
0 0 0 1

.=

U*

U

T UZT
=

Data Tours 153

In Equation 4.7, T is ; so each column of the matrix corresponds to a p-
dimensional observation. With this transformation, the first two dimensions
(the first two rows of T) of every transformed observation are the projection
onto the plane given by .

We now remove the structure that is represented by the first two
dimensions. We let be a transformation that transforms the first two rows
of T to a standard normal and the rest remain unchanged. This is where we
actually remove the structure, making the data normal in that projection (the
first two rows). Letting and represent the first two rows of T, we
define the transformation as follows

(4.8)

where is the inverse of the standard normal cumulative distribution
function, and is a function defined below (see Equations 4.9 and 4.10). We
see from Equation 4.8 that we will be changing only the first two rows of T.

We now describe the transformation of Equation 4.8 in more detail,
working only with and . First, we note that can be written as

,

and as

.

Recall that and would be coordinates of the j-th observation projected
onto the plane spanned by .

Next, we define a rotation about the origin through the angle as follows

(4.9)

where and represents the j-th element of
at the t-th iteration of the process. We next apply the following
transformation to the rotated points,

, (4.10)

p n×

α* β*,()

Θ

T1 T2

Θ T1() Φ 1–
F T1()[]=

Θ T2() Φ 1–
F T2()[]=

Θ Ti() Ti= ; i 3 … p ,, ,=

Φ 1–

F

T1 T2 T1

T1 z1
α*

 … zj
α*

 … zn
α*

, , , ,()=

T2

T2 z1
β*

 … zj
β*

 … zn
β*

, , , ,()=

zj
α*

zj
β*

α* β*,()
γ

z̃j
1 t()

zj
1 t() γcos zj

2 t() γsin+=

z̃j
2 t()

zj
2 t() γcos zj

1 t() γ,sin–=

γ 0 π 4÷ π 8÷ 3π 8÷ ,, , ,= zj
1 t() T1

zj
1 t 1+() Φ 1– r z̃j

1 t()
() 0.5–

n

= zj
2 t 1+() Φ 1– r z̃j

2 t()
() 0.5–

n

=

154 Exploratory Data Analysis with MATLAB®, Third Edition

where represents the rank (position in the ordered list) of .
This transformation replaces each rotated observation by its normal score

in the projection. With this procedure, we are deflating the projection index
by making the data more normal. It is evident in the procedure given below,
that this is an iterative process. Friedman [1987] states that the projection
index should decrease rapidly in the first few iterations. After approximate
normality is obtained, the index might oscillate with small changes. Usually,
the process takes between 5 to 15 complete iterations to remove the structure.

Once the structure is removed using this process, we must transform the
data back using

. (4.11)

From matrix theory [Strang, 1988], we know that all directions orthogonal to
the structure (i.e., all rows of T other than the first two) have not been
changed, whereas the structure has been Gaussianized and then transformed
back.

Procedure – Structure Removal

1. Create the orthonormal matrix U, where the first two rows of U
contain the vectors .

2. Transform the data Z using Equation 4.7 to get T.

3. Using only the first two rows of T, rotate the observations using
Equation 4.9.

4. Normalize each rotated point according to Equation 4.10.

5. For angles of rotation , repeat steps 3
through 4.

6. Evaluate the projection index using and , after going
through an entire cycle of rotation (Equation 4.9) and normalization
(Equation 4.10).

7. Repeat steps 3 through 6 until the projection pursuit index stops
changing.

8. Transform the data back using Equation 4.11.

Example 4.4
We use the oronsay data to illustrate the projection pursuit procedure,
which is implemented in the ppeda function provided with this text. First we
do some preliminaries, such as loading the data and setting the parameter
values.

load oronsay
X = oronsay;

r z̃j
1 t()

() z̃j
1 t()

Z′ UTΘ UZT()=

α* β*,

γ 0 π 4÷ π 8÷ 3π 8÷, , ,=

zj
1 t 1+()

zj
2 t 1+()

Data Tours 155

[n,p] = size(X);
% For m = 5 random starts, find the N = 2
% best projection planes.
N = 2;
m = 5;
% Set values for other constants.
c = tan(80*pi/180);
half = 30;
% These will store the results for the
% 2 structures.
astar = zeros(p,N);
bstar = zeros(p,N);
ppmax = zeros(1,N);

Next we sphere the data to obtain matrix Z.

% Sphere the data.
muhat = mean(X);
[V,D] = eig(cov(X));
Xc = X - ones(n,1)*muhat;
Z = ((D)^(-1/2)*V'*Xc')';

Now we find each of the desired number of structures using the ppeda
function with the index argument set to the Posse chi-square index.

% Now do the PPEDA: Find a structure, remove it,
% and look for another one.
Zt = Z;
for i = 1:N
 % Find one structure
 [astar(:,i),bstar(:,i),ppmax(i)] = ...
 ppeda(Zt,c,half,m,'chi');
 % Now remove the structure.
 % Function comes with text.
 Zt = csppstrtrem(Zt,astar(:,i),bstar(:,i));
end

The following MATLAB code shows how to project the data to each of these
projection planes and then plot them. The plots are shown in Figure 4.4. The
first projection has an index of 9.97, and the second has an index of 5.54.

% Now project and see the structure.
proj1 = [astar(:,1), bstar(:,1)];
proj2 = [astar(:,2), bstar(:,2)];
Zp1 = Z*proj1;
Zp2 = Z*proj2;
figure
plot(Zp1(:,1),Zp1(:,2),'k.'),title('Structure 1')
xlabel('\alpha*'),ylabel('\beta*')

156 Exploratory Data Analysis with MATLAB®, Third Edition

figure
plot(Zp2(:,1),Zp2(:,2),'k.'),title('Structure 2')
xlabel('\alpha*'),ylabel('\beta*')

We repeat this for loop, but this time use the moment index to the ppeda
function by replacing chi with mom in the argument to ppeda. The first
projection from this procedure has a moment index of 425.71, and the second
one yields an index of 424.51. Scatterplots of the projected data onto these
two planes are given in Figure 4.5. We see from these plots that the moment
index tends to locate projections with outliers.
❑

4.4 Projection Pursuit Indexes

We briefly describe the two projection pursuit indexes (PPIs) that are
implemented in the accompanying MATLAB code. Other projection indexes
for PPEDA are given in the literature (see some of the articles mentioned in
the last section). A summary of these indexes, along with a simulation
analysis of their performance, can be found in Posse [1995b].

4.4.1 Posse Chi-Square Index

Posse [1995a, 1995b] developed an index for projection pursuit that is based
on the chi-square. We present only the empirical version here, but we first
provide some notation.

Notation

 is the standard bivariate normal density.

 is the probability evaluated over the k-th region using the standard
bivariate normal,

.

 is a box in the projection plane.

 is the indicator function for region .

 λ j = πj/36, is the angle by which the data are rotated in
the plane before being assigned to regions .

 and are given by

φ2

ck

ck φ2 zd 1 z2d

Bk

=

Bk

IBk
Bk

j 0 … 8, ,=

Bk

α λj() β λj()

Data Tours 157

FIGURE 4.4
Here we show the results from applying PPEDA to the oronsay data set. The top configu-
ration has a chi-square index of 9.97, and the second one has a chi-square index of 5.54.

−6 −4 −2 0 2 4 6 8
−7

−6

−5

−4

−3

−2

−1

0

1

2
Structure 1

α*

β*

−4 −2 0 2 4 6 8
−7

−6

−5

−4

−3

−2

−1

0

1

2

3
Structure 2

α*

β*

158 Exploratory Data Analysis with MATLAB®, Third Edition

FIGURE 4.5
Here we see scatterplots from two planes found using the moment projection pursuit index.
This index tends to locate projections with outliers. In the first structure, there is an outlying
point in the upper right corner. In the second one, there is an outlying point in the lower left
corner.

−4 −2 0 2 4 6 8 10 12 14
−6

−4

−2

0

2

4

6
Structure 1

α*

β*

Outlier

−12 −10 −8 −6 −4 −2 0 2 4
−8

−6

−4

−2

0

2

4
Structure 2

α*

β*

Outlier

Data Tours 159

The plane is first divided into 48 regions or boxes that are distributed in
rings. See Figure 4.6 for an illustration of how the plane is partitioned. All
regions have the same angular width of 45 degrees and the inner regions
have the same radial width of . This choice for the radial width
provides regions with approximately the same probability for the standard
bivariate normal distribution. The regions in the outer ring have probability
1/48. The regions are constructed in this way to account for the radial
symmetry of the bivariate normal distribution. The projection index is given
by

.

The chi-square projection index is not affected by the presence of outliers.
It is sensitive to distributions that have a hole in the core, and it will also yield
projections that contain clusters. The chi-square projection pursuit index is
fast and easy to compute, making it appropriate for large sample sizes. Posse
[1995a] provides a formula to approximate the percentiles of the chi-square
index so the analyst can assess the significance of the observed value of the
projection index.

4.4.2 Moment Index

This index was developed in Jones and Sibson [1987] and is based on
bivariate third and fourth moments. This is very fast to compute; so it is
useful for large data sets. However, a problem with this index is that it tends
to locate structure in the tails of the distribution. It is given by

,

where

α λj() α λjcos β λjsin–=

β λj() α λjsin β λj .cos+=

Bk

2 6log()1 2⁄ 5÷

PI
χ2 α β,() 1

9---
1
ck

1
n
--- IBk

zi

α λj()
zi

β λj()
,()

i 1=

n ck–

2

k 1=

48
j 0=

8=

PIM α β,() 1
12------ κ30

2 3κ21
2 3κ12

2 κ03
2 1

4---
κ40

2 4κ31
2 6κ22

2 4κ13
2 κ04

2
+ + + +()+ + + +

=

κ21
n

n 1–() n 2–()
---------------------------------- zi

α()
2
zi

β

i 1=

n= κ12
n

n 1–() n 2–()
---------------------------------- zi

β()
2
zi

α

i 1=

n=

160 Exploratory Data Analysis with MATLAB®, Third Edition

FIGURE 4.6
This shows the layout of the regions for the chi-square projection index [Posse, 1995a].

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Bk

κ22
n n 1+()

n 1–() n 2–() n 3–()
-- zi

α()
2

zi
β()

2 n 1–()3

n n 1+()
---------------------–

i 1=

n
=

κ30
n

n 1–() n 2–()
---------------------------------- zi

α()
3

i 1=

n= κ03
n

n 1–() n 2–()
---------------------------------- zi

β()
3

i 1=

n=

κ31
n n 1+()

n 1–() n 2–() n 3–()
-- zi

α()
3
zi

β

i 1=

n=

κ13
n n 1+()

n 1–() n 2–() n 3–()
-- zi

β()
3
zi

α

i 1=

n=

Data Tours 161

4.5 Independent Component Analysis

Independent component analysis (ICA) is a method that extracts the hidden
components or underlying factors from multivariate data [Hyvärinen,
Karhunen, and Oja, 2001]. Aspects of ICA are similar to some of the
approaches we described in Chapter 2, such as PCA and factor analysis.
However, ICA is different from these in that it looks for factors or
components that are statistically independent and non-Gaussian. We include
ICA in this chapter because it can be shown [Stone, 2004] that it is closely
related to projection pursuit, where the search index being optimized
measures independence and nonnormality.

Historically, the development of ICA came from what is called the blind
source separation problem in signal processing. In these applications, one
would like to separate an observed noisy mixture of signals into separate
source signals. For example, say we have several signals that are emitted by
some physical objects or sources. These sources could be people talking in the
same room, two radio stations broadcasting at the same frequency, or
different brain areas emitting electric signals. We further assume that there
are several sensors located in different positions that receive these signals as
a mixture of the original ones, but with slightly different weights. ICA can be
used to recover those original signals.

We will use the example of two radio signals from different sources to
explain the general idea of ICA [Martinez and Martinez, 2015]. If the two
signals are broadcast by two different stations and using a fine time scale,
then we can assume that the amplitude of one signal at a particular point in
time is unrelated to the amplitude of the other signal at the same point. So, to
separate the signals from the mixture, we might look for time-varying signals
that are unrelated. The final assumption being that if we find such signals,
then they probably arise from different physical processes. Stone [2004]
points out that this last assumption, that goes in the reverse direction, is not
necessarily correct in all cases.

The fact that two or more signals are unrelated can be expressed in terms
of statistical independence. As we know from basic probability and statistics,
if random variables (or signals) are statistically independent, then the value
of one of the variables would not give us any information about the value of

κ04
n n 1+()

n 1–() n 2–() n 3–()
-- zi

β()
4 3 n 1–()3

n n 1+()
----------------------–

i 1=

n
=

κ40
n n 1+()

n 1–() n 2–() n 3–()
-- zi

α()
4 3 n 1–()3

n n 1+()
----------------------–

i 1=

n
 .=

162 Exploratory Data Analysis with MATLAB®, Third Edition

the other variables (or source signals) in the mixture. It is important to note
that statistical independence is a much stronger requirement than lack of
correlation. Two variables that are statistically independent will also be
uncorrelated, but the fact that two variables are uncorrelated does not imply
that they are independent. An exception to this is with Gaussian data,
because in this case uncorrelated variables are also independent. ICA seeks
to separate the data into a set of statistically independent or unrelated
component signals or variables, which are then assumed to be from some
meaningful sources or factors.

In general, we have a set of p-dimensional observations, and we are seeking
a representation or transformation of the variables that reveals information
that is not otherwise known. The assumption is that the transformed
variables correspond to the underlying hidden components that describe the
fundamental structure of the observed data. Only linear transformations are
considered for independent component analysis to make it simpler to
interpret the results and to make the computations faster.

Say we are given a set of observations ,2 where the index
is attached to the variable and . We assume that they are
generated as a linear mixture of components as given here:

. (4.12)

The matrix A is an unknown matrix containing the mixing coefficients; so
it is often called the mixing matrix. The independent components are
also unknown. Thus, independent component analysis consists of estimating
A and the using only the that we observed.

An alternative model to Equation 4.12 and one that is more commonly seen
in the ICA literature is the following

. (4.13)

Here we can view the goal of ICA as one of finding the linear transformation
given by the matrix W so the components are as independent as
possible. The matrix W is known as the separating matrix in the literature.

2 The index t is used because of the historical connection between ICA and signal processing.

xj t() j 1 … p, ,=

t 1 … n, ,=

x1 t()

x2 t()

:
xp t()

A

s1 t()

s2 t()

:
sp t()

=

sj t()

sj t() xj t()

s1 t()

s2 t()

:
sp t()

W

x1 t()

x2 t()

:
xp t()

=

sj t()

Data Tours 163

There are many methods for finding a set of independent components, but
most of them are similar to projection pursuit in the two major pieces or
steps. First, one has to have an objective function that measures the quantity
one is trying to optimize, which in this case is statistical independence and
nonnormality. Next, one requires a procedure or algorithm to find matrix W
(or A) that optimizes the objective function.

In practice, many ICA algorithms adjust the matrix W until the entropy of
a fixed function g of the variables recovered by W is maximized [Stone, 2002],
where the function g is assumed to be the cumulative distribution function of
the source variables. Another popular option for the objective function is
based on mutual information and the Kullback-Leibler divergence. The
interested reader should look at the review paper by Hyvärinen [1999a] for
more options. Optimization algorithms include many of the classical ones,
such as stochastic gradient approaches or Newton-like methods.

Hyvärinen [1999b] developed a computationally efficient algorithm for
ICA based on the model in Equation 4.13. Hyvärinen starts from an
information-theoretic viewpoint to derive a new type of objective function
that minimizes mutual information and then uses projection pursuit to find
the independent components. We do not go into details here because this
algorithm has been implemented in the FastICA Toolbox. We demonstrate its
use in the next example.

Example 4.5
We return to the oronsay data set to illustrate the results of ICA. We are
using a function called fastica, which is part of the FastICA Toolbox, as
well as the EDA Toolbox.

% Load oronsay data
load oronsay
% Perform the ICA.
% Note that the matrix must be transposed.
X = oronsay';
icasig = fastica(X);

The fastica function requires the input matrix to be in the form of variables
(as rows) by observations (as columns); so we must transpose the input and
output to match our convention. We will look at a scatterplot of the data in
the space given by two of the independent components.

% Transpose the results to match
% observations as rows.
Xica = icasig';
% Look at the last two components in scatterplot.
ind0 = find(midden == 0);
ind1 = find(midden == 1);
ind2 = find(midden == 2);
plot(Xica(ind0,11),Xica(ind0,12),'.')

164 Exploratory Data Analysis with MATLAB®, Third Edition

hold on
plot(Xica(ind1,11),Xica(ind1,12),'+')
plot(Xica(ind2,11),Xica(ind2,12),'*')
hold off

The scatterplot is shown in Figure 4.7, where some interesting non-Gaussian
structure is visible.
❑

As we stated earlier, ICA is somewhat related to the linear methods of
dimensionality reduction (e.g., PCA and factor analysis) we presented in
Chapter 2. We provide a brief discussion here comparing them. However, we
note that ICA is not really meant to be used for dimensionality reduction, but
there is nothing stopping one from extracting a smaller number of
independent components on the left-hand side of Equation 4.13. For
instance, the fastica function we used in the previous example has options
for accomplishing dimensionality reduction using ICA. We also note that
there are over-complete versions of ICA that provide more than p
independent components [Hyvärinen, 1999a].

FIGURE 4.7
This is a scatterplot showing the results of applying ICA to the oronsay data. We have the
three sampling sites displayed using different symbols.

−8 −7 −6 −5 −4 −3 −2 −1
−2

−1

0

1

2

3

4
Independent Components

Component 11

C
o
m

p
o
n
e
n
t
1
2

sj t()

Data Tours 165

Like independent component analysis, PCA looks for a set of components
that are a linear transformation of the observed variables and will produce
transformed variables or (principal components) that are uncorrelated with
each other. One difference between the two approaches has to do with their
goals. PCA seeks components that explain the maximum amount of variance,
while independence and nonnormality are maximized in ICA. Thus, both of
these methods have an objective that defines the interestingness of the linear
transformation and then find components that optimize that function. We
also know that uncorrelatedness does not imply statistical independence. So,
the principal components are not guaranteed to be independent, while those
in ICA are optimized for independence.

ICA is closely related to factor analysis. Hyvärinen [1999a] states that ICA
can be thought of as a non-Gaussian factor analysis. One of the main
differences is that dimensionality reduction is not the main objective, as it
usually is with factor analysis. Another important difference relates to the
rotations that are often used with factor analysis. Recall that extracted factors
can be rotated to aid interpretation without changing the lack of correlation
between the factors. Thus, the transformation from factor analysis is not
unique. This is not so with ICA, since any rotation of the independent
components would yield dependent components.

4.6 Summary and Further Reading

In this chapter, we discussed several methods for data tours that can be used
to search for interesting features or structures in high-dimensional data.
These include the torus winding method for the grand tour, the pseudo
grand tour, the interpolation tour, and projection pursuit for EDA. The grand
tour methods are dynamic, but are not typically interactive. The interpolation
tour is interactive in the sense that the user can specify starting and target
planes to guide the tour. Projection pursuit is not a visual tour (although it
could be implemented that way); this tour seeks planes that have maximal
structure as defined by some measure. Finally, independent component
analysis was presented as a method that is somewhat similar to projection
pursuit in the EDA context.

Some excellent papers describing the underlying mathematical foundation
for tour methods and motion graphics include Wegman and Solka [2002],
Hurley and Buja [1990], Buja and Asimov [1986], and Asimov and Buja
[1994]. Another method for implementing a tour based on a fractal space-
filling curve is described in Wegman and Solka [2002]. The grand tour
combined with projection pursuit is described in Cook et al. [1995].

Many articles have been written on projection pursuit and its use in EDA
and other applications. Jones and Sibson [1987] describe a steepest-ascent
algorithm that starts from either principal components or random starts.

166 Exploratory Data Analysis with MATLAB®, Third Edition

Friedman [1987] combines steepest-ascent with a stepping search to look for
a region of interest. Crawford [1991] uses genetic algorithms to optimize the
projection index. An approach for projection pursuit in three dimensions is
developed by Nason [1995]. A description of other projection pursuit indexes
can also be found in Cook, Buja, and Cabrera [1993].

Other uses for projection pursuit have been proposed. These include
projection pursuit probability density estimation [Friedman, Stuetzle, and
Schroeder, 1984], projection pursuit regression [Friedman and Stuetzle,
1981], robust estimation [Li and Chen, 1985], and projection pursuit for
pattern recognition [Flick et al., 1990]. For a theoretical and comprehensive
description of projection pursuit, the reader is directed to Huber [1985],
where he discusses the important matter of sphering the data before
exploring the data with projection pursuit. This invited paper with
discussion also presents applications of projection pursuit to computer
tomography and to the deconvolution of time series. Another paper that
provides applications of projection pursuit is Jones and Sibson [1987].
Montanari and Lizzani [2001] apply projection pursuit to the variable
selection problem. Bolton and Krzanowski [1999] describe the connection
between projection pursuit and principal component analysis.

There are two excellent books on independent component analysis. One is
a book by Stone [2004]. This is a tutorial introduction to the topic, and it
includes many examples, as well as MATLAB code. Another excellent
resource is a book by Hyvärinen, Karhunen, and Oja [2001]. The text is very
readable and serves as a good resource for the theory and applications of
ICA. Several review and tutorial articles have been published on ICA. These
include Hyvärinen [1999a], Hyvärinen and Oja [2000], and Fodor [2002].
Finally, for a more statistical view of ICA, the reader can check out Hastie,
Tibshirani, and Friedman [2009].

Exercises

4.1 Run the tour as in Example 4.1 and vary the number of iterations. Do
you see any interesting structure along the way?

4.2 Apply the torus grand tour to the following data sets and comment on
the results.
a. environmental

b. oronsay

c. iris

d. posse data sets

e. skulls

f. spam

Data Tours 167

g. pollen

h. gene expression data sets.

4.3 Run the pseudo grand tour in Example 4.2. Comment on the struc-
tures found, if any.

4.4 Apply the pseudo grand tour to the following data sets and comment
on the results. Compare with the results you got with the grand tour.
a. environmental

b. yeast

c. iris

d. posse data sets

e. skulls

f. spam

g. pollen

h. gene expression data sets

4.5 Apply the interpolation tour of Example 4.3 to the data sets in Prob-
lem 4.4.

4.6 Repeat the interpolation tour in Example 4.3 using other target planes
(Hint: 9 and 10 make an interesting one). Do you see any structure?

4.7 Apply projection pursuit EDA to the data sets in Problem 4.4. Search
for several structures. Use both projection pursuit indexes. Show your
results in a scatterplot and discuss them.

4.8 Repeat Example 4.4 and look for more than two best projection
planes. Describe your results. Do you find planes using the moment
index where the planes exhibit structure other than outliers?

4.9 Apply ICA to the data sets in Problem 4.4. Display any interesting
structures in a scatterplot.

http://taylorandfrancis.com

169

Chapter 5
Finding Clusters

We now turn our attention to the problem of finding groups or clusters in our
data, which is an important objective in EDA and data mining. We present
two of the basic methods in this chapter: agglomerative clustering and k-
means clustering. Another method, fuzzy clustering based on estimating a
finite mixture probability density function, is described in the following
chapter. In addition, we discuss how nonnegative matrix factorization (first
presented in Chapter 2) and probabilistic latent semantic analysis can be used
to cluster document collections. We also describe an innovative method
called spectral clustering based on the graph Laplacian and an approach
using the minimum spanning tree. Finally, we address the important issue of
assessing the quality of the resulting clusters at the end of the chapter, where
we describe several statistics and plots that will aid in the analysis.

5.1 Introduction

Clustering is the process of organizing a set of data into groups in such a way
that observations within a group are more similar to each other than they are
to observations belonging to a different cluster. It is assumed that the data
represent features that would allow one to distinguish one group from
another. An important starting point in the process is choosing a way to
represent the objects to be clustered. Many methods for grouping or
clustering data and representation schemes can be found in various
communities, such as statistics, machine learning, data mining, and
computer science. We note, though, that no clustering technique is
universally appropriate for finding all varieties of groupings that can be
represented by multidimensional data [Jain, Murty, and Flynn, 1999]. So in
the spirit of EDA, the user should try different clustering methods on a given
data set to see what patterns emerge.

Clustering is also known as unsupervised learning in the literature. To
understand clustering a little better, we will compare it to discriminant
analysis or supervised learning. In supervised learning, the collection of

170 Exploratory Data Analysis with MATLAB®, Third Edition

observations has a class label associated with it. Thus, we know the true
number of groups in the data, as well as the actual group membership of each
data point. We use the data, along with the class labels, to create a classifier.
Then, when we encounter a new, unlabeled observation, we can use the
classifier to attach a label to it [Hastie, Tibshirani, and Friedman, 2009; Duda,
Hart, and Stork, 2001; Webb, 2002].

However, with clustering (or unsupervised learning), we usually do not
have class labels for the observations. Thus, we do not know how many
groups are represented by the data, what the group membership or structure
is, or even if there are any groups in the first place. As we said earlier, most
clustering methods will find some desired number of groups, but what we
really want is some meaningful clusters that represent the true phenomena.
So, the analyst must look at the resulting groups and determine whether or
not they aid in understanding the problem. Of course, nothing prevents us
from using clustering methods on data that have class labels associated with
the observations. As we will see in some of the examples, knowing the true
clustering helps us assess the performance of the methods.

One can group the usual steps of clustering into the following [Jain and
Dubes, 1988]:

1. Pattern representation: This includes much of the preparation and
initial work, such as choosing the number of clusters to look for,
picking what measurements to use (feature selection), determining
how many observations to process, and choosing the scaling or
other transformations of the data (feature extraction). Some of this
might be beyond the control of analysts.

2. Pattern proximity measure: Many clustering methods require a
measure of distance or proximity between observations and maybe
between clusters. As one might suspect, different distances give
rise to different partitions of the data. We discuss various distances
and measures of proximity in Appendix A.

3. Grouping: This is the process of partitioning the data into clusters.
The grouping can be hard, which means that an observation either
belongs to a group or not. In contrast, it can be fuzzy, where each
data point has a degree of membership in each of the clusters. It
can also be hierarchical, where we have a nested sequence of
partitions.

4. Data abstraction: This is the optional process of obtaining a simple
and compact representation of the partitions. It could be a descrip-
tion of each cluster in words (e.g., one cluster represents lung
cancer, while another one corresponds to breast cancer). It might
be something quantitative such as a representative pattern, e.g.,
the centroid of the cluster.

5. Cluster assessment: This could involve an assessment of the data
to see if it contains any clusters. However, more often, it means an

Finding Clusters 171

examination of the output of the algorithm to determine whether
or not the clusters are meaningful.

In our discussion so far, we have assumed that we know what a cluster is.
However, several authors have pointed out the difficulty of formally
defining such a term [Everitt, Landau, and Leese, 2001; Estivill-Castro, 2002].
Most clustering methods assume some sort of structure or model for the
clusters (e.g., spherical, elliptical). Thus, they find clusters of that type,
regardless of whether they are really present in the data or not.

Humans are quite adept at locating clusters in 2–D scatterplots, as we show
in Figure 5.1. Bonner [1964] argued that the meaning of terms like cluster and
group is in the ‘eye of the beholder.’ We caution the reader that it is usually
easy to assign some structure or meaning to the clusters that are found just
because we think there should be something there. However, we should keep
in mind that the groups might be a result of the clustering method and that
we could be imposing a pattern rather than discovering one.

5.2 Hierarchical Methods

One of the most common approaches to clustering is to use a hierarchical
method. This seems to be popular in the areas of data mining and gene

FIGURE 5.1
Here we show an example of some clusters. Keep in mind that what constitutes a cluster is
based on one’s definition and application.

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

+
+

+
+

+

+

++
+

172 Exploratory Data Analysis with MATLAB®, Third Edition

expression analysis [Hand, Mannila, and Smyth, 2001; Hastie, Tibshirani,
and Friedman, 2009]. In hierarchical clustering, one does not have to know
the number of groups ahead of time; i.e., the data are not divided into a pre-
determined number of partitions. Rather, the result consists of a hierarchy or
set of nested partitions. As we point out below, there are several types of
hierarchical clustering, and each one can give very different results on a
given data set. Thus, there is not one recommended method, and the analyst
should use several in exploring the data.

The process consists of a sequence of steps, where two groups are either
merged (agglomerative) or divided (divisive) according to some optimality
criterion. In their simplest and most commonly used form, each of these
hierarchical methods have n observations in their own group (i.e., n total
groups) at one end of the process and one group with all n data points at the
other end. The difference between them is where we start the grouping
process. With agglomerative clustering, we have n singleton clusters and end
up with all points belonging to one group. Divisive methods are just the
opposite; we start with everything in one group and keep splitting them until
we have n singleton clusters.

One of the issues with hierarchical clustering is that once points are
grouped together or split apart, the step cannot be undone. Another issue, of
course, is how many clusters are appropriate.

We will not cover the divisive methods in this book, because they are less
common and they can be computationally intensive (except in the case of
binary variables, see Everitt, Landau, and Leese [2001]). However, Kaufman
and Rousseeuw [1990] point out that an advantage with divisive methods is
that most data sets have a small number of clusters and that structure would
be revealed in the beginning of a divisive approach, whereas, with
agglomerative methods, this does not happen until the end of the process.

Agglomerative clustering requires the analyst to make several choices,
such as how to measure the proximity (distance) between data points and
how to define the distance between two clusters. Determining what distance
to use is largely driven by the type of data one has: continuous, categorical or
a mixture of the two, as well as what aspect of the features one wants to
emphasize. Please see Appendix A for a description of various distances,
including those that are implemented in the MATLAB Statistics Toolbox.

The input required for most agglomerative clustering methods is the
interpoint distance matrix (as was used before in multidimensional scaling);
some also require the full data set. The next step is to specify how we will
determine what clusters to link at each stage of the method. The usual way is
to link the two closest clusters at each stage of the process, where closest is
defined by one of the linkage methods described below. It should be noted
that using different definitions of distance and linkage can give rise to very
different cluster structures. We now describe each of the linkage methods
that are available in the MATLAB Statistics Toolbox.

We set up some notation before we continue with a description of the
various approaches. Given a cluster r and a cluster s, the number of objects in

n n×

Finding Clusters 173

each cluster is given by nr and ns. The distance between cluster r and s is
denoted by dc(r,s).

Single Linkage

Single linkage is perhaps the method used most often in agglomerative
clustering, and it is the default method in the MATLAB linkage function,
which produces the hierarchical clustering. Single linkage is also called
nearest neighbor, because the distance between two clusters is given by the
smallest distance between objects, where each one is taken from one of the
two groups. Thus, we have the following distance between clusters

,

where is the distance between observation i from group r and
observation j from group s. Recall that this is the interpoint distance (e.g.,
Euclidean, etc.), which is the input to the clustering procedure.

Single linkage clustering suffers from a problem called chaining. This
comes about when clusters are not well separated, and snake-like chains can
form. Observations at opposite ends of the chain can be very dissimilar, but
yet they end up in the same cluster. Another issue with single linkage is that
it does not take the cluster structure into account [Everitt, Landau, and Leese,
2001].

Complete Linkage

Complete linkage is also called the furthest neighbor method, since it uses the
largest distance between observations, one in each group, as the distance
between the clusters. The distance between clusters is given by

.

Complete linkage is not susceptible to chaining. Additionally, the resulting
clusters tend to be spherical, and it has difficulty recovering nonspherical
groups. Like single linkage, complete linkage does not account for cluster
structure.

Average (Unweighted and Weighted) Linkage

The average linkage method defines the distance between clusters as the
average distance from all observations in one cluster to all points in another
cluster. In other words, it is the average distance between pairs of
observations, where one is from one cluster and one is from the other. Thus,
we have the following distance

dc r s,() min d xri xsj,(){ }= i 1 … nr ; j, , 1 … ns, ,= =

d xri xsj,()

dc r s,() max d xri xsj,(){ }= i 1 … nr ; j, , 1 … ns, ,= =

174 Exploratory Data Analysis with MATLAB®, Third Edition

.

This method tends to combine clusters that have small variances, and it
also tends to produce clusters with approximately equal variance. It is
relatively robust and does take the cluster structure into account. Like single
and complete linkage, this method takes the interpoint distances as input.

Version 5 of the Statistics Toolbox has another related type of linkage called
weighted average distance or WPGMA. The average linkage mentioned
above is unweighted and is also known as UPGMA.

Centroid Linkage

Another type, called centroid linkage, requires the raw data, as well as the
distances. It measures the distance between clusters as the distance between
their centroids. Their centroids are usually the mean, and these change with
each cluster merge. We can write the distance between clusters, as follows

,

where is the average of the observations in the r-th cluster, and is
defined similarly.

The distance between the centroids is usually taken to be Euclidean. The
MATLAB linkage function for centroid linkage works only when the
interpoint distances are Euclidean, and it does not require the raw data as
input. A somewhat related method called median linkage computes the
distance between clusters using weighted centroids. A problem with both
centroid and median linkage is the possibility of reversals [Morgan and Ray,
1995]. This can happen when the distance between one pair of cluster
centroids is less than the distance between the centroid of another pair that
was merged earlier. In other words, the fusion values (distances between
clusters) are not monotonically increasing. This makes the results confusing
and difficult to interpret.

Ward’s Method

Ward [1963] devised a method for agglomerative hierarchical clustering
where the merging of two clusters is determined by the size of the
incremental sum of squares. It looks at the increase in the total within-group
sum of squares when clusters r and s are joined. The distance between two
clusters using Ward’s method is given by

,

dc r s,() 1
nrns

---------- d xri xsj,()
j 1=

ns
i 1=

nr=

dc r s,() d xr xs,()=

xr xs

d r s,() nrnsdrs
2

nr ns+()÷=

Finding Clusters 175

where is the distance between the r-th and s-th cluster as defined in the
centroid linkage definition. In other words, to get each merge in the
procedure, the within-cluster sum of squares is minimized over all possible
partitions that can be obtained by combining two clusters from the current
set of groups.

Ward’s method tends to combine clusters that have a small number of
observations. It also has a tendency to locate clusters that are of the same size
and spherical. Due to the sum of squares criterion, it is sensitive to the
presence of outliers in the data set.

Visualizing Hierarchical Clustering Using the Dendrogram

We discuss the dendrogram in more detail in Chapter 8, where we present
several ways to visualize the output from cluster analysis. We briefly
introduce it here, so we can use the dendrograms to present the results of this
chapter to the reader.

A dendrogram is a tree diagram that shows the nested structure of the
partitions and how the various groups are linked at each stage. The
dendrogram can be shown horizontally or vertically. However, we will
concentrate on the vertical version for now. There is a numerical value
associated with each stage of the method where the branches (i.e., clusters)
join, which usually represents the distance between the two clusters. The
scale for this numerical value is shown on the vertical axis.

We show an example of a dendrogram in Figure 5.2 for a very small data
set. Notice that the tree is made up of inverted U-shaped links, where the top
of the U represents a fusion between two clusters. In most cases, the fusion
levels will be monotonically increasing, yielding an easy to understand
dendrogram.

We already discussed the problem of reversals with the centroid and
median linkage methods. With reversals, these merge points can decrease,
which can make the results confusing. Another problem with some of these
methods is the possibility of nonuniqueness of the hierarchical clustering or
dendrogram. This can happen when there are ties in the distances between
its clusters. How these are handled depends on the software. Sadly, this
information is often left out of the documentation. Morgan and Ray [1995]
provide a detailed explanation of the inversion and nonuniqueness problems
in hierarchical clustering. This will be explored further in the exercises.

Example 5.1
In this example, we use the yeast data to illustrate the procedure in
MATLAB for obtaining agglomerative hierarchical clustering. The first step
is to load the data and get all of the interpoint distances.

load yeast
% Get the distances. The output from this function
% is a vector of the n(n-1)/2 interpoint distances.

drs
2

176 Exploratory Data Analysis with MATLAB®, Third Edition

% The default is Euclidean distance.
Y = pdist(data);

The output from the pdist function is just the upper triangular portion of
the complete interpoint distance matrix. It can be converted to a full
matrix using the function squareform. However, this is not necessary for
the next step, which is to get the hierarchy of partitions. See the help on
pdist for more information on the other distances that are available in
MATLAB.

% Single linkage (the default) shows chaining.
Z = linkage(Y);
dendrogram(Z);

The default for the linkage function is single linkage. The output is a matrix
Z, where the first two columns indicate what groups were linked and the
third column contains the corresponding distance or fusion level. The
dendrogram for this is shown in Figure 5.3 (top), where we can see the
chaining that can happen with single linkage. Now, we show how to do the
same thing using complete linkage.

% Complete linkage does not have the chaining.
Z = linkage(Y,'complete');
dendrogram(Z);

FIGURE 5.2
This is an example of a dendrogram for the two spherical clusters in Figure 5.1 (shown with
x’s and o’s), where average linkage has been used to generate the hierarchy. Note that we are
showing only 20 leaf nodes. See Chapter 8 for more information on what this means.

 5 9 1 2 8 3 7 6 4 14 10 17 11 16 18 12 13 20 15 19

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

n n×

Finding Clusters 177

This dendrogram is given in Figure 5.3 (bottom), and we see no chaining
here. Since the dendrogram shows the entire set of nested partitions, one
could say the dendrogram is the actual clustering. However, it is useful to
know how to get the grouping for any desired number of groups. MATLAB
provides the cluster function for this purpose. One can specify the number
of clusters, as we do below, among other options. See the help on cluster
for other uses.

% To get the actual clusters - say based
% on two partitions, use the following
% syntax.
cind = cluster(Z,'maxclust',2);

The output argument cind is an n-dimensional vector of group labels.
❑

5.3 Optimization Methods — k-Means

The methods discussed in the previous section were all hierarchical, where
the output consists of a complete set of nested partitions. Another category
of clustering methods consists of techniques that optimize some criterion in
order to partition the observations into a specified or predetermined number of
groups. These partition or optimization methods differ in the nature of the
objective function, as well as the optimization algorithm used to come up
with the final clustering. One of the issues that must be addressed when
employing these methods (as is also the case with the hierarchical methods)
is determining the number of clusters in the data set. We will discuss ways to
tackle this problem in a later section. However, one of the major advantages
of the optimization-based methods is that they require only the data as input
(along with some other parameters), not the interpoint distances, as in
hierarchical methods. Thus, these are usually more suitable when working
with large data sets.

One of the most commonly used optimization-based methods is k-means
clustering, which is the only one we will discuss in this book. The reader is
referred to Everitt, Landau, and Leese [2001] or other books mentioned at the
end of the chapter for more information on the other types of partition
methods. The MATLAB Statistics Toolbox has a function that implements the
k-means algorithm.

The goal of k-means clustering is to partition the data into k groups such
that the within-group sum-of-squares is minimized. We start by defining the
within-class scatter matrix given by

178 Exploratory Data Analysis with MATLAB®, Third Edition

FIGURE 5.3
The first dendrogram shows the results of using Euclidean distance and single linkage on
the yeast data, and we can see what chaining looks like in the partitions. The second
dendrogram is what we obtain using complete linkage.

 1 20 14 21 16 15 12 3 25 26 9 17 18 23 6 4 28 29 8 10 11 30 7 2 27 22 24 19 5 13

1000

1500

2000

2500

3000

3500

 1 12 3 7 2 21 11 19 4 5 10 16 20 13 17 18 6 27 26 30 9 14 15 28 29 24 25 23 8 22

2000

3000

4000

5000

6000

7000

8000

9000

Finding Clusters 179

,

where Iij is one if xi belongs to group j and zero otherwise, and g is the number
of groups. The criterion that is minimized in k-means is given by the sum of
the diagonal elements of SW, (the trace of the matrix), as follows

.

If we minimize the trace, then we are also minimizing the total within-group
sum of squares about the group means. Everitt, Landau, and Leese [2001]
show that minimizing the trace of SW is equivalent to minimizing the sum of
the squared Euclidean distances between individuals and their group mean.
Clustering methods that minimize this criterion tend to produce clusters that
have a hyperellipsoidal shape. This criterion can be affected by the scale of
the variables; so standardization should be done first.

We briefly describe two procedures for obtaining clusters via k-means. The
basic algorithm for k-means clustering is a two step procedure. First, we
assign each observation to its closest group, usually using the Euclidean
distance between the observation and the cluster centroid. The second step of
the procedure is to find the new centroids using the assigned observations.
These steps are alternated until there are no changes in cluster membership
or until the centroids do not change. This algorithm is sometimes referred to
as HMEANS [Späth, 1980] or the basic ISODATA method.

Procedure – k-Means

1. Specify the number of clusters k.

2. Determine initial cluster centroids. These can be randomly chosen
or the user can specify them.

3. Calculate the distance between each observation and each cluster
centroid.

4. Assign every observation to the closest cluster.

5. Calculate the centroid (i.e., the d-dimensional mean) of every clus-
ter using the observations that were just grouped there.

6. Repeat steps 3 through 5 until no more changes result.

The k-means algorithm could lead to empty clusters; so users should be
aware of this possibility. Another issue concerns the optimality of the
partitions. With k-means, we are searching for partitions where the within-
group sum-of-squares is a minimum. It can be shown [Webb, 2002] that in

SW
1
n
--- Iij xi xj–() xi xj–()T

i 1=

n
j 1=

g=

Tr SW() SWii=

180 Exploratory Data Analysis with MATLAB®, Third Edition

some cases the final k-means cluster assignment is not optimal, in the sense
that moving a single point from one cluster to another may reduce the sum
of squared errors. The following procedure called the enhanced k-means
helps address the second problem.

Procedure – Enhanced k-means

1. Obtain a partition of k groups via k-means as described previously.

2. Take each data point and calculate the Euclidean distance be-
tween it and every cluster centroid.

3. Here is in the r-th cluster, is the number of points in the r-
th cluster, and is the Euclidean distance between and the
centroid of cluster r. If there is a group s such that

,

then move to cluster s.

4. If there are several clusters that satisfy the above inequality, then
move the to the group that has the smallest value for

.

5. Repeat steps 2 through 4 until no more changes are made.

We note that there are many algorithms for k-means clustering described in
the literature that improve the efficiency, allow clusters to be created and
deleted during the process, and other improvements. See Webb [2002] and
the other references at the end of the chapter for more information.

Example 5.2
For this example, we turn to a data set that is familiar to most statisticians: the
iris data. These data consist of three classes of iris: Iris setosa, Iris versicolor,
and Iris virginica. They were originally analyzed by Fisher [1936]. He was
interested in developing a method for discriminating the species of iris based
on their sepal length, sepal width, petal length, and petal width. The kmeans
function in MATLAB requires the data as input, along with the desired
number of groups. MATLAB also allows the user to specify a distance
measure used in the minimization process. In other words, kmeans
computes the centroid clusters differently for the different distance
measures. We will use the default squared Euclidean distance.

xi

xi nr

dir
2 xi

nr

nr 1–
--------------dir

2 ns

ns 1+
--------------dis

2>

xi

xi

ns

ns 1+
--------------dis

2

Finding Clusters 181

load iris
% First load up the data and put into one data
% matrix.
data = [setosa; versicolor; virginica];
vars = ['Sepal Length';
 'Sepal Width ';
 'Petal Length';
 'Petal Width '];
 kmus = kmeans(data,3);

We illustrate the results in a scatterplot matrix shown in Figure 5.4.1 The first
plot shows the results from k-means, and the second shows the true groups
in the data. Different symbols correspond to the different groups, and we see
that k-means produced reasonable clusters that are not too far off from the
truth. We will explore this more in a later example.
❑

The k-means method is dependent on the chosen initial cluster centers.
MATLAB allows the user to specify different starting options, such as
randomly selecting k data points as centers (the default), uniformly
generated p-dimensional vectors over the range of X, or user-defined centers.
As in many optimization problems that rely on a designated starting point,
k-means can get stuck in a locally optimal solution. Thus, k-means should be
performed several times with different starting points. MATLAB provides
this option also as an input argument to the kmeans function. For another
implementation of k-means in MATLAB, see Martinez and Martinez [2015].

5.4 Spectral Clustering

Spectral clustering has grown very popular in recent years. It can be easily
implemented with linear algebra software packages such as MATLAB, and it
often performs better than standard algorithms such as k-means and
agglomerative clustering [Verma and Meila, 2003]. Many spectral clustering
algorithms have been developed [von Luxburg, 2007] and applied in many
fields such as image analysis, data mining, and document clustering. Most
spectral clustering algorithms use the top k eigenvectors of a matrix that is
based on the distance between the observations. We will present one of the
most popular approaches by Ng, Jordan, and Weiss [2002].

As usual, we are given a set of p-dimensional observations , and
we want to divide them into k groups, where data points in each group are
similar to each other and different to points in other groups. We then
calculate the affinity or similarity (see Appendix A) between each pair of

1 See the file Example54.m for the MATLAB code used to construct the plots.

x1 … xn, ,

182 Exploratory Data Analysis with MATLAB®, Third Edition

FIGURE 5.4
The first scatterplot matrix shows the results from k-means, while the second one shows the
true groups in the data. We see that for the most part, k-means did a reasonable job finding
the groups. (SEE COLOR INSERT.)

Results from K Means

0 1 2

Petal Width

2 4 6

Petal Length

2 3 4

Sepal Width

6 8
0

1

2

Sepal Length

P
e
ta

l W
id

th

2

4

6

P
e
ta

l L
e
n
g
th

2

3

4

S
e
p
a
l W

id
th

5

6

7

8

S
e
p
a
l L

e
n
g
th

Actual Groups

0 1 22 4 62 3 46 8
0

1

2

P
e
ta

l W
id

th

2

4

6

P
e
ta

l L
e

n
g
th

2

3

4

S
e
p
a
l W

id
th

5

6

7

8

S
e
p
a
l L

e
n
g
th

Finding Clusters 183

points and , and we enter these values into the affinity matrix A. The
elements of A are given by

(5.1)

The scaling parameter determines how fast the affinity decreases with the
distance between and . Ng, Jordan, and Weiss [2002] describe a method
to choose the scaling parameter automatically.

We define the matrix D as the diagonal matrix whose ii-th element is the
sum of the elements in the i-th row of A:

. (5.2)

We then construct the following matrix:

.

The matrix L is similar to a graph Laplacian, which is the main tool used in
spectral clustering. However, von Luxburg [2007] notes that there is no
unique convention or definition of a graph Laplacian; so care should be taken
when implementing spectral clustering algorithms.

The next step is to find the eigenvectors and eigenvalues of L. We denote
the k largest eigenvalues of L as and their corresponding
eigenvectors as . We use the eigenvectors to form the matrix U as
follows

. (5.3)

Equation 5.3 just means that the columns of U correspond to the eigenvectors
of L. As usual, all eigenvectors have unit length and are chosen to be
orthogonal in the case of repeated eigenvalues.

Now, we form the matrix Y by normalizing each row of U to have unit
length. Thus, the elements of Y are given by

. (5.4)

xi xj

Aij

xi xj–
2

2σ2---------------------– for i j≠exp=

Aii 0 .=

σ2

xi xj

Dii Aij

j 1=

n=

L D
1 2⁄–

AD
1 2⁄–

=

λ1 λ2 … λk≥ ≥ ≥
u1 u2 … uk, , ,

U u1 u2 … uk
=

Yij

Uij

Uij
2

j

------------------=

184 Exploratory Data Analysis with MATLAB®, Third Edition

We are now ready to do some clustering. We can think of the n rows of Y
as an observation in a k-dimensional space and group them using k-means
clustering to get the final grouping. We assign an observation to the m-th
cluster if the i-th row of Y was assigned to the m-th cluster. The steps in the
Ng, Jordan, and Weiss (NJW) algorithm that we just described are listed
below.

Procedure – NJW Algorithm

1. We first form the affinity matrix A according to Equation 5.1.

2. Construct the matrix D using elements of A (Equation 5.2).

3. Obtain the matrix .

4. Find the eigenvectors and eigenvalues of L.

5. Put the eigenvectors that correspond to the k largest eigenvalues
into a matrix U, as shown in Equation 5.3.

6. Normalize the rows of U to have unit length (Equation 5.4) and
call it matrix Y.

7. Apply k-means clustering to the rows of Y.

8. An observation is assigned to the m-th cluster if the i-th row of
Y was assigned to the m-th cluster.

As Ng, Jordan, and Weiss [2002] note, this approach does not make a lot of
sense initially, since we could apply k-means to the data directly without
going through all of the matrix calculations and manipulations. However,
some analyses show [von Luxburg, 2007; Verma and Meila, 2003] that
mapping the points to this k-dimensional space can produce tight clusters
that are easily found using k-means.

Example 5.3
In the following example, we will explore the spectral clustering algorithm
applied to bivariate data with two groups. We use the Spectral Clustering
Toolbox written by Verma and Meila [2003]. The code is also included with
the EDA Toolbox.

% We first generate some bivariate normal data.
mu1 = [2 2];
cov1 = eye(2);
mu2 = [-1 -1];
cov2 = [1 .9; .9 1];
X1 = mvnrnd(mu1,cov1,100);
X2 = mvnrnd(mu2,cov2,100);
% Plot the data showing the known clusters.
plot(X1(:,1),X1(:,2),'.',...

xi

L D
1 2⁄–

AD
1 2⁄–

=

xi

Finding Clusters 185

 X2(:,1),X2(:,2),'+');

The resulting plot is shown in Figure 5.5 (top), where we see two clusters that
overlap slightly. The different symbols in the plot correspond to the known
groups, so we can compare those with the output from spectral clustering.
We now create our data matrix X and then cluster the data.

% Put the data into one matrix.
X = [X1; X2];
% Get the affinity matrix using a sigma of 1.
A = AffinitySimilarityMatrix(X',1);
% Get the cluster ID's according to the spectral
% clustering according to Ng, Jordan and Weiss and
% also using k-means.
cids = cluster_spectral_general(A,2,...
 'njw_gen','njw_kmeans');

Next we plot the observations in Figure 5.5 (bottom) with observations
belonging to group one shown as x’s and those belonging to the second
group as stars.

% Plot the data according to the cluster IDs.
% First plot group 1 as x's.
figure
ind1 = find(cids == 1);
plot(X(ind1,1),X(ind1,2),'x');
hold on
% Now plot group 2 as stars.
ind2 = find(cids == 2);
plot(X(ind2,1),X(ind2,2),'*')

We see that spectral clustering provided a reasonable grouping of the data.
However, as one would expect, it did make some mistakes in the area where
they overlap.
❑

5.5 Document Clustering

In this section, we present two methods that are often used for clustering
documents. These are called nonnegative matrix factorization and
probabilistic latent semantic indexing (PLSI). These methods are described in
the context of clustering collections of documents based on the term-
document matrix, but they can be applied in many other situations.

186 Exploratory Data Analysis with MATLAB®, Third Edition

FIGURE 5.5
The top panel shows a scatterplot of the clusters that were generated for Example 5.3. The
two groups are displayed using different symbols. One of the groups is plotted as points,
and the other is displayed using crosses. Note that there is some overlap between the
clusters.The scatterplot in the bottom panel shows the groups obtained using the spectral
clustering algorithm of Ng, Jordan, and Weiss [2002]. One of the groups is shown as x’s,
and the other group is plotted with stars. The spectral clustering did a good job, but was
incorrect in the region that overlaps.

−4 −3 −2 −1 0 1 2 3 4 5
−4

−3

−2

−1

0

1

2

3

4

5

−4 −3 −2 −1 0 1 2 3 4 5
−4

−3

−2

−1

0

1

2

3

4

5

Finding Clusters 187

5.5.1 Nonnegative Matrix Factorization — Revisited

Let us revisit our discussions of nonnegative matrix factorization (NMF) with
an eye towards clustering. Recall that the application of NMF in Chapter 2
was to data transformation. We follow Xu et al. [2003] in our development of
the mathematical formalism of NMF; so the notation given below is slightly
different than what we saw previously.

Let X be an term-document matrix, where n represents the number
of words in the lexicon, and p denotes the number of documents in the
corpus. Recall that the ij-th element of the term-document matrix is equal to
the number of times the i-th word appears in the j-th document. We could
convert this to a weighted term-document matrix, where the entries are
multiplied by factors that improve tasks in text analysis such as information
retrieval or text data mining [Berry and Browne, 2005]. However, this step is
not required to use nonnegative matrix factorization. Next, each column in
the matrix X is normalized to have a magnitude of one.

Assuming that our document collection has k clusters, we want to factorize
X as , where U is a nonnegative matrix and is a nonnegative

 matrix that minimize

, (5.5)

where the notation represents the squared sum of the elements in the
matrix argument. Constrained optimization via Lagrange multipliers leads
to the following update equations

(5.6)

The equations given above are just a slightly different version of the
multiplicative update equations that were discussed in Chapter 2. In the final
step of the NMF clustering procedure, these are normalized using

(5.7)

n p×

UV
T

n k× V
T

k p×

J
1
2--- X UV

T
–=

•

uij uij

XV()ij

UV
T
V()ij

-----------------------←

vij vij
X

T
U()ij

VU
T
U()ij

----------------------- .←

vij vij uij
2

i

←

uij

uij

uij
2

i

------------ .←

188 Exploratory Data Analysis with MATLAB®, Third Edition

We may interpret the meaning of the U and V matrices within an SVD type
framework. The ij-th element of the matrix U () represents the degree that
the i-th term belongs to the j-th cluster. Similarly, the ij-th element of the V
matrix encodes the degree that the i-th document belongs to the j-th cluster.
So, if the i-th document belongs to cluster m, then the value in V will be
large while the rest of the elements in the i-th row of the matrix will be small.
The procedure of NMF clustering as applied to documents is summarized
below and is illustrated in the next example, where we apply it to a small
document data set.

Procedure – NMF Clustering

1. Construct the (possibly weighted) term-document matrix X from
a set of documents.

2. Normalize each column of X to have unit norm.

3. Apply the update equations in Equation 5.6 to solve for U and V.

4. Normalize U and V as given in Equation 5.7.

5. Use the V matrix to cluster each document. Document is as-
signed to cluster m if

.

Example 5.4
We will use a data set discussed in Deerwester et al. [1990] in order to
illustrate NMF-based clustering. The documents used in this example are
provided in Table 5.1. Following Deerwester, we have italicized those terms
that will ultimately be used to form our term counts. In Table 5.2, we list the
term counts where each column constitutes a document. Recall that this table
is the term-document matrix X. We notice through an examination of the
original document collection or by looking at the columns of the term-
document matrix, that these documents should cluster into two groups. One
of the groups could consist of , which are about computer

TABLE 5.1

List of Documents Used in Example 5.4

d1 Human machine interface for Lab ABC computer applications
d2 A survey of user opinion of computer system response time
d3 The EPS user interface management system
d4 System and human system engineering testing of EPS
d5 Relation of user-perceived response time to error measurement
d6 The generation of random, binary, unordered trees
d7 The intersection graph of paths in trees
d8 Graph minors IV: Widths of trees and well-quasi-ordering
d9 Graph minors: A survey

uij

vim

di

m maxarg j vij{ }=

d1 d2 d3 d4 d5, , , ,{ }

Finding Clusters 189

systems and interfaces. The other group of documents, , is
about graphs and trees. We will use nonnegative matrix factorization to solve
for these clusters, as shown in the following MATLAB steps.

% First, we load the data set with the
% term-document matrix in it.
load nmfclustex
% Next, normalize each column.
[n,p] = size(nmfclustex);
for i = 1:p
 termdoc(:,i) = nmfclustex(:,i)/...
 (norm(nmfclustex(:,i)));
end

We now perform nonnegative matrix factorization with to extract the
cluster structure. Notice that NMF is formulated as ; so we use VT to
denote to make the following notation a little easier to connect with the
procedure presented in the text.

[U,VT] = nnmf(termdoc,2,'algorithm','mult');
% It is easier to proceed forward with our
% calculations if we have V.
V = VT';

The next step is to normalize U and V, as described in Equation 5.7.

[nu,pu] = size(U);
[nv,pv] = size(V);
% Normalize the V entries as discussed above
for i = 1:nv
 for j = 1:pv
 V(i,j) = V(i,j) * norm(U(:,j));
 end
end

TABLE 5.2

Term-document Matrix Corresponding to Table 5.1

d1 d2 d3 d4 d5 d6 d7 d8 d9
human 1 0 0 1 0 0 0 0 0
interface 1 0 1 0 0 0 0 0 0
computer 1 1 0 0 0 0 0 0 0
user 0 1 1 0 1 0 0 0 0
system 0 1 1 2 0 0 0 0 0
response 0 1 0 0 1 0 0 0 0
time 0 1 0 0 1 0 0 0 0
EPS 0 0 1 1 0 0 0 0 0
survey 0 1 0 0 0 0 0 0 1
trees 0 0 0 0 0 1 1 1 0
graph 0 0 0 0 0 0 1 1 1
minors 0 0 0 0 0 0 0 1 1

d6 d7 d8 d9, , ,{ }

k 2=

X UV
T

–

V
T

190 Exploratory Data Analysis with MATLAB®, Third Edition

% Normalize the U entries as discussed above
for j = 1:pu
 U(:,j) = U(:,j)/(norm(U(:,j)));
end

We plot the rows of V to illustrate that the document cluster structure is easily
discernible in the NMF space, as shown in Figure 5.6. One cluster is shown as
asterisks, and they follow the vertical axis. The other cluster is seen by the
circles that are aligned along the horizontal axis.

% First we set up a cell array of labels, so
% we can use these in the plot.
lab = {'d1','d2','d3','d4','d5','d6','d7','d8','d9'};
plot(V(1:5,1), V(1:5,2),'k*')
text(V(1:5,1)+.05, V(1:5,2),lab(1:5))
hold on
plot(V(6:9,1), V(6:9,2),'ko')
text(V(6:9,1), V(6:9,2)+.05,lab(6:9))
xlabel('V1')
ylabel('V2')
hold off

FIGURE 5.6
This scatterplot shows the cluster structure in the document collection of Table 5.1, once we
have applied nonnegative matrix factorization. The first five documents are shown as as-
terisks along the vertical axis, and the second set of documents cluster along the horizontal
axis.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

d1

d2
d3

d4
d5

d6 d7 d8

d9

V1

V
2

Finding Clusters 191

Now, we extract the cluster (or axis) to which each document belongs.

% Here we extract the axes corresponding to
% each document.
[Y,I] = max(V,[],2);
% View the contents of I, which is the column where
% the maximum value occurred.
I'
ans = 2 2 2 2 2 1 1 1 1

As expected, we find that the first five documents have maximum values in
column 2 (the vertical axis), while the last four documents have maximum
values in column 1 (the horizontal axis).
❑

One of the interesting aspects of using nonnegative matrix factorization for
clustering is that the clustering falls naturally out of the transformation. No
other type of clustering methodology, such as k-means, needs to be applied
to the transformed data. We simply see which axis is most relevant to each
document.

This leads to another important characteristic of using nonnegative matrix
factorization for document clustering. We saw in Chapter 2 how latent
semantic indexing is often used to transform the term-document matrix, but
the resulting space is not so easily interpreted. In the case of nonnegative
matrix factorization, we can think of each axis or dimension as corresponding
to a cluster of documents or topic.

It is important to note that NMF can be used in many applications besides
document clustering. It can be used whenever the data are comprised of
nonnegative values. Examples of some applications where the approach has
proved successful are provided at the end of this chapter.

5.5.2 Probabilistic Latent Semantic Analysis

Probabilistic latent semantic analysis (PLSA or PLSI) is one approach to cast
the identification of latent structure of a document collection within a
statistical framework. We follow Hofmann [1999a, 1999b], the originator of
PLSA, in our discussions.

The PLSA technique uses an approach known as the aspect (or factor) model,
where we associate an unobserved class variable for each
occurrence of a word in a document collection

. We can use this approach to generate our document
collection within a probabilistic framework.

We first select a document d with probability and then pick a latent
class z with probability . The next step of the model is to generate a
word with probability . As a result of this process, one obtains an

Z z1 … zk, ,{ }=

W w1 … wM,,{ }=

D d1 … dN, ,{ }=

P d()
P z d()
P w |z()

192 Exploratory Data Analysis with MATLAB®, Third Edition

observed document–word pair , where the latent class variable z is no
longer needed.

We can calculate joint probabilities via the following equations

, (5.8)

where

. (5.9)

The aspect (or factor) model given in Equations 5.8 and 5.9 is a statistical
mixture model based on two assumptions. The first assumption is that the
pairs are generated independently, which corresponds to the usual
bag-of-words approaches, such as latent semantic analysis. The second is
that, conditional on the latent class z, words are generated independently of
the specific document d. This means that we have to solve the inverse
problem, where we have the documents with their word content, and we
have to infer the latent variables Z and any applicable parameters.

We apply the maximum likelihood estimation principle to determine the
quantities , , and for our aspect model. Thus, we seek to
maximize the log-likelihood function given here

, (5.10)

where denotes the number of times word w occurred in document d.
The typical way to solve the likelihood equation when we have latent

variables is to use the expectation maximization (EM) approach [Hofmann,
1999a, 1999b; Dempster et al., 1977]. This is a general framework and can be
applied in many problems where the variables to be estimated depend on
hidden or missing information. We already saw it being used with generative
topographic maps (Chapter 3), and we will see it again in the context of
model-based clustering (Chapter 6).

The EM algorithm has two steps. First is the expectation or E-step, where
we calculate posterior probabilities for the latent variable z, using current
values of any parameters. Next is the maximization step or M-step, where the
other estimates are updated using the posterior probabilities calculated in the
previous E-step. These two steps are repeated until the algorithm converges;
i.e., there are no more changes in the estimated parameters.

In the case of PLSI, the E-Step of the EM algorithm is given by

d w,()

P d w,() P d()P w d()=

P w d() P w z()P z d()
z Z∈
=

d w,()

P d() P z d() P w z()

L n d w,() P d w,()[]log
w W∈

d D∈
=

n d w,()

Finding Clusters 193

, (5.11)

which is the probability that the word w in the given document d is explained
by the factor z.

The M-step equations are given by the following

, (5.12)

, (5.13)

, (5.14)

where

.

By iteratively repeating the E-step (Equation 5.11) and the M-step (Equations
5.12 through 5.14) until convergence, we arrive at a local maximum of the
log-likelihood function.

One of the outcomes from this solution is the probability of a word w for
each of the factors or aspects z, as given by . Thus, the factors can be
represented by the ten most probable words for each z and can be ordered by
their associated probability .

Hofmann [1999a] provides an example of this where he constructed the
PLSA factor solution using the TDT pilot study corpus from the Linguistic
Data Consortium.2 He removed stop words using a standard word list, but
he did not do any further processing. He provides some examples of factors
and the words that characterize them. The top four words of one factor are
plane, airport, crash, and flight. Another factor that is also somewhat related to

2 Their website is http://www.ldc.upenn.edu/, and the collection Hofmann used was cata-
log number LDC98T25, 1998.

P z d w,()
P z()P d z()P w z()

P zk()P d zk()P w zk()
zk

--=

P w z()

n d w,()P z d w,()
d

n d wk,()P z d wk,()

d wk,
---=

P d z()

n d w,()P z d w,()
w

n dk w,()P z dk w,()

dk w,
---=

P z() 1
R
---- n d w,()P z d w,()

d w,
=

R n d w,()
d w,
≡

P w z()

P w z()

http://www.ldc.upenn.edu/

194 Exploratory Data Analysis with MATLAB®, Third Edition

this factor has words space, shuttle, mission, and astronauts. So, we see that
both of these factors or aspects are related to flight with one pertaining to
planes and the other to space ships.

The reader may still be a little confused as to how we relate PLSA to LSA.
One way to help understand this is to recast our aspect generative model
within a matrix framework. An equivalent version of the aspect model
(Equation 5.8) can be found by applying Bayes’ rule to invert the .
Thus, our generative model can be defined as follows

. (5.15)

Rewriting this in matrix notation we obtain the following joint probability
model

,

where the elements of the matrices are defined as

Using the above definitions, we provide the joint probability model as the
matrix product

.

Several things might be noted about this joint probability model. First, we
see that aspects z are discarded via the multiplication. In fact, the serve
as mixing proportions or weights. When we compare this to LSA (Chapter 2),
we see that these are similar to the singular values of the SVD approach. Also,
the left and right eigenvectors in SVD correspond to the factors and

. We have to be careful making these connections, because there is a
fundamental difference between the objective function used to obtain the
best decomposition or factorization. LSA (or SVD) is based on the norm
under the assumption of Gaussian noise, while the PLSA solution is found by
maximizing the log-likelihood and the predictive power of the resulting
model. Finally, we note that the SVD can be computed exactly, while the EM

P z d()

P d w,() P z()P w z()P d z()
z Z∈
=

P UΣV
T

=

uik P di zk()=

Σkk P zk()=

vjk P wj zk().=

P

P d1 z1() … P d1 zK()

… … …
P dN z1() … P dN zK()

P z1() … 0
… … …
0 … P zK()

P w1 z1() … P w1 zK()

… … …
P wM z1() … P wM zK()

T

××=

P zk()

P w z()
P d z()

L2

Finding Clusters 195

algorithm is an iterative method and is only guaranteed to find a locally-
optimal solution to the log-likelihood function.

Example 5.5
PLSA has a natural role in clustering. We return to the previous example,
where we used nonnegative matrix factorization to cluster a small document
collection (Tables 5.1 and 5.2). We will use the PLSA methodology to solve
for a cluster solution of this document collection. To do this, we utilize a very
simple implementation of the PLSA algorithm as provide by Ata Kaban.3 Her
implementation of PLSA is in terms of rather than , as in our
discussions above. This allows her formulation to be very compact. The
function is included in the EDA Toolbox, and the interested reader can look
at her function for the details on her approach. We now load the data and
then call the PLSA function requesting two factors or classes.

load nmfclustex
% Next we call the PLSA function with 2 topics and
% 100 iterations of the algorithm.
[V,S] = PLSA(nmfclustex,2,100);

The elements of the matrix V contain the probability of each word for the
given factor, . Therefore, in this example the V matrix has dimensions

. Because of this slightly different formulation, the elements of the
matrix S correspond to the probability of the latent class z given each
document. So, S has two rows and nine columns. We provide the elements of
matrix V in Table 5.3. We note that the top five words for latent class (or topic)

 are system, EPS, trees, graph, and minors. The top five terms for
are computer, user, response, time, and survey. Now, we examine the S matrix,
which is given in Table 5.4. The entries in the S matrix reflect the probability

3 http://www.cs.bham.ac.uk/~axk/ML_new.htm

TABLE 5.3

Elements of Matrix V

Words

human 0.0625 0.0768
interface 0.0623 0.0771
computer 0.0000 0.1537
user 0.0621 0.1543
system 0.1876 0.0769
response 0.0000 0.1537
time 0.0000 0.1537
EPS 0.1251 0.0000
survey 0.0000 0.1537
trees 0.1876 0.0000
graph 0.1876 0.0000
minors 0.1251 0.0000

P z d() P d z()

P w z1() P w z2()

P w z()
12 2×

z 1= z 2=

http://www.cs.bham.ac.uk/~axk/ML_new.htm

196 Exploratory Data Analysis with MATLAB®, Third Edition

of the class z given the document, and we see that the first class or topic
includes documents d3, d4, d6, d7, d8, and d9, while the second one has
documents d1, d2, and d5. The first group of documents includes the EPS and
the graph tree articles, and the second one has the remaining articles on
system response time. The reader will be asked in the exercises to repeat this
for a three class solution.
❑

5.6 Minimum Spanning Trees and Clustering

In this section, we describe a clustering method that first converts a data set
to a weighted graph and then finds a minimum spanning tree (MST). We can
divide the data into groups based on the longest edges in this spanning tree.
We first provide some definitions used in graph theory and then describe the
steps in minimum spanning tree clustering.

5.6.1 Definitions

The usual definition of a graph consists of two sets denoted by V
and E. The set V is a collection of objects known as vertices or nodes. For
example, these can be such things as cities, networked computers, and even
observations in a general data set, as we will see later. The set E contains the
edges (or links) of the graph, which are pairs of vertices specifying a link.

These edges can be directed or undirected. The vertex pairs are unordered,
if we have an undirected graph. If the edges have a direction associated with
them, then we traverse the graph (or edges) in the given direction. Using u
and v to represent nodes in the graph, we denote an edge in an undirected
graph as an unordered pair For a directed graph, we can write them
as or an ordered pair specifying a direction from vertex u to
vertex v. We are concerned only with undirected graphs in this text.

An edge with the same endpoints (or nodes) is called a one-node loop. By
definition, a graph has no one-node loops in the set of edges E.

As an example, the graph in the top panel of Figure 5.7 can be represented
by the following sets V and E:

TABLE 5.4

Elements of Matrix S

Class d1 d2 d3 d4 d5 d6 d7 d8 d9

0 0 0.997 1 0 1 1 1 0.776
1 1 0.003 0 1 0 0 0 0.333

z 1=

z 2=

G V E,()=

u v,{ }.
u v→ u v,(),

G V E,()=

Finding Clusters 197

�

�

It is the usual practice to also denote the number of vertices in the graph as
V and the number of edges as E. However, the meaning (set or cardinality)
should be clear from the context. The number of edges in an undirected
graph satisfy

.

A graph is a subgraph of G, if and .
A path is a sequence of edges in a graph specifying a way to travel from an

origin node to a destination node. Each successive pair of edges in the
sequence shares one vertex. The origin and destination vertices are called the
endpoints of the path. We usually specify a path as an ordered list of directed
edges, even in an undirected graph. In this case, the direction specifies the
order in which vertices and edges are traversed for the path. If the origin and
destination nodes are the same, then we have a closed path or a cycle. In a
closed path, the only vertices that can be repeated are the endpoints. An
undirected graph is said to be acyclic, if no subgraph has a cycle.

A walk is also a sequence of edges traversing a graph from one node to
another. However, a walk allows for the possibility of revisiting vertices in
the graph. There is no requirement that a walk has to repeat nodes, so any
path is also a walk, by definition.

If there is a walk between any two vertices, then the undirected graph is
connected. A disconnected graph consists of components. This is the set of
maximal connected subgraphs. Two vertices will belong to the same
component if and only if there is a path connecting them.

A tree is a connected acyclic graph. Another name for acyclic graphs is a
forest. Alternatively, a tree is one component of a forest. A spanning tree of a
graph G is a subgraph that (1) is a tree and (2) contains every vertex in V. Note
that a graph G will have a spanning tree if and only if it is connected. A
spanning forest of G is the set of spanning trees, one for each connected
component. Figure 5.7 contains two graphs. The top one is a tree, and the
lower one is not a tree.

In addition to the sets of vertices V and edges E, our graph might also have
a function that assigns a weight to each edge. A minimum
spanning tree of a graph G is the spanning tree T that minimizes

.

V A B C D E F G H, , , , , , ,{ }=

E A B,{ } B C,{ } B E,{ } E G,{ } E F,{ } F H,{ } F D,{ }, , , , , ,{ }=

0 E
V
2 ≤ ≤

G' V' E',()= V' V⊆ E' E⊆

w: E R
+→ w e()

w T() w e()
e T∈
=

198 Exploratory Data Analysis with MATLAB®, Third Edition

FIGURE 5.7
The graph at the top is a tree. The one shown in the bottom plot is not a tree because vertices
D, F, and H form a cycle (also sometimes called a loop).

Finding Clusters 199

If the weights are distinct for all edges, then there will be a unique minimum
spanning tree [Erickson, 2015]. If a graph has no weights, then any spanning
tree is a minimum spanning tree.

5.6.2 Minimum Spanning Tree Clustering

Gower and Ross [1969] and Zahn [1971] were among the first to illustrate the
relationship between hierarchical clustering and minimum spanning trees.
We do not go into any details on algorithms for finding a minimum spanning
tree because we are more interested in how they can be used for clustering.
Two popular approaches were developed by Kruskal [1956] who made the
connection between minimum spanning trees and the traveling salesman
problem in operations research. The second algorithm was proposed by Prim
[1957]. These are the algorithms implemented in the function minspantree,
which is part of the base MATLAB software.

This approach to clustering proceeds by first forming the graph using our
n data points as vertices. The edge weights are obtained using the interpoint
distances. As we will see in the next example, one way to specify a graph in
MATLAB is to use an adjacency matrix. An adjacency matrix is a square
symmetric matrix where the rows and columns correspond to nodes in the
graph. A nonzero entry of one represents an edge between node i and j in an
unweighted graph. In MATLAB, an adjacency matrix can have a nonzero
entry greater than one, indicating the edge weight. Once we have a graph, we
can find a minimum spanning tree. Next, we remove the k largest edges from
this tree. This will divide the graph into components or subgraphs. Each of
these subgraphs will constitute a cluster.

Procedure – Minimum Spanning Tree Clustering

1. Designate the nodes (set V) as the n observations in the data set.

2. Find the edge weights by forming the interpoint distance matrix
using an appropriate measure. This is the weight matrix (or adja-
cency matrix in MATLAB).

3. Form the minimum spanning tree.

4. Remove the k edges with the largest weights (or longest edges)
from the tree.

5. This will produce subgraphs, each of which is considered to
be a group or cluster.

6. Assign cluster IDs according to the subgraph membership.

Cutting the minimum spanning tree based on the longest edges is similar
to hierarchical clustering [Zahn 1971]. Recall from a previous discussion that

k 1+

200 Exploratory Data Analysis with MATLAB®, Third Edition

we get a dendrogram as a result of this approach. We cut the dendrogram to
get the clusters, and a reasonable choice is where the links are large.

Example 5.6
We generate a data set with a known cluster structure to illustrate minimum
spanning tree clustering.

% First, we generate some data with some clusters.
x = randn(100,2);
x(26:50,:) = x(26:50,:) + 4;
x(51:75,:) = x(51:75,:) - 4;
x(76:100,1) = x(76:100,1) + 4;
x(76:100,2) = x(76:100,2) - 4;
labs = [zeros(1,25), ...
 ones(1,25), ...
 2*ones(1,25), ...
 3*ones(1,25)];

We show the data in a scatterplot in Figure 5.8.

% Construct a grouped scatterplot.
gscatter(x(:,1),x(:,2),labs,...
 ['r','g','b','k'],...

FIGURE 5.8
These are the data we generated in Example 5.6. There are four groups or clusters.

-6 -4 -2 0 2 4 6 8
-8

-6

-4

-2

0

2

4

6
0
1
2
3

Finding Clusters 201

 ['*','o','+','d'])

The next step is to construct a graph using the data points as nodes. The edge
weights are obtained using the distance between the observations.

% Next, we have to get the distances between
% the observations. This will be the edge weights.
% Use Euclidean distance and put it in matrix form.
D = pdist(x,'euclidean');
DS = squareform(D);

The base MATLAB software includes a function called graph that has
several options for creating graphs. For instance, one could specify the edges
using node pairs or an adjacency matrix. See the documentation on graph
for more options. We use the interpoint distance matrix D found above as the
adjacency matrix and build a graph.

% We get a graph object here.
Gx = graph(DS);

We can easily view the graph using the plot function. See Figure 5.9 (top).

% Let’s take a look at the graph.
plot(Gx,'XData',x(:,1),'YData',...
 x(:,2),'EdgeAlpha',.01)

The next step is to obtain a minimum spanning tree, and we do that using the
following code.

% We are now ready to get a
% minimum spanning tree.
Gxtree = minspantree(Gx);
% Plot the tree using this code.
plot(Gxtree,'XData',x(:,1),'YData',x(:,2))

The minimum spanning tree is shown in Figure 5.9 (bottom). We can also
look at the spanning tree in the command window by typing Gxtree at the
prompt. This is what we have for the tree:

Gxtree =

graph with properties:

Edges: [99x2 table]
Nodes: [100x0 table]

Our clustering approach with minimum spanning trees is based on removing
the largest edges from the tree. So, we first have to sort the edges.

% Extract the edges from the tree and sort.
junk = Gxtree.Edges;
[sortwt,index] = sort(junk.Weight,'descend');

202 Exploratory Data Analysis with MATLAB®, Third Edition

FIGURE 5.9
The top plot shows the graph we obtained using the interpoint distance matrix as our edge
weights. The plot in the lower panel is a minimum spanning tree.

Finding Clusters 203

% Display the 8 largest edges.
junk(index(1:8),:)

ans =

 EndNodes Weight
 _________ ______

 18 100 1.5847
 6 11 1.5386
 21 23 1.5297
 21 35 1.4267
 35 40 1.3628
 3 22 1.2772
 63 72 1.2254
 58 65 1.2116

We want to remove weights with the highest values, and we should look for
a natural break in them. Given that the largest three weights are all
approximately 1.5, it seems reasonable to delete the first three edges.
Deleting more will produce different cluster solutions. The function rmedge
deletes edges from the tree.

% Remove the edges of the tree with
% the highest weights.
Gxtree = rmedge(Gxtree,index(1:3));

Now, we get the observations belonging to each of the connected subgraphs.
These are the clusters.

% Get the connected components.
binx = conncomp(Gxtree);
% Show in a scatterplot.
gscatter(x(:,1),x(:,2),binx,...
 ['r','g','b','k'],...
 ['*','o','+','d'])
legend off

The clusters (or subgraphs) we found are shown in Figure 5.10. The clusters
we get are good ones, except for a few incorrect points near the boundaries.
❑

204 Exploratory Data Analysis with MATLAB®, Third Edition

5.7 Evaluating the Clusters

In this section, we turn our attention to understanding more about the quality
of our cluster results and to estimating the ‘correct’ number of groups in our
data. We present the following measures that can be used to address both of
these issues. The first is the Rand index that can be used to compare two
different groupings of the same data set. Next, we discuss the cophenetic
correlation coefficient that provides a way to compare a set of nested
partitions from hierarchical clustering with a distance matrix or with another
set of nested partitions. We also cover a method due to Mojena [1977] for
determining the number of groups in hierarchical clustering based on the
fusion levels. We illustrate the silhouette plot and silhouette statistic that can
be used to help decide how many groups are present. We discuss a novel
method called the gap statistic [Tibshirani, Walther, and Hastie, 2001] that
seems to be successful at estimating the number of clusters. An added benefit
of the gap statistic approach is that it addresses the issue of whether or not
there are any clusters at all. We conclude the section with descriptions of

FIGURE 5.10
We removed the edges in the minimum spanning tree with the largest weights. This created
disconnected components in the graph, each of which corresponds to a cluster. The clusters
found with this approach are shown in the lower panel. We see that there are some mistakes
when we compare these groups with the true ones in Figure 5.8.

-6 -4 -2 0 2 4 6 8
-8

-6

-4

-2

0

2

4

6

Incorrect

Incorrect

Finding Clusters 205

several cluster validity indices that are provided with the MATLAB Statistics
Toolbox.

5.7.1 Rand Index

Say we have two partitions of the same data set called G1 and G2, with g1

groups and g2 groups, respectively. This can be represented in a
matching matrix N with elements nij, where nij is the number of observations
in group i of partition G1 that are also in group j of partition G2. Note that the
number of groups in each partition do not have to be equal, and that the
classifications can be obtained through any method.

The Rand index [Rand, 1971] was developed to help analysts answer four
questions about their cluster results. These are:

� How well does a method retrieve natural clusters?

� How sensitive is a method to perturbation of the data?

� How sensitive is a method to missing data?

� Given two methods, do they produce different results when
applied to the same data?

In this book, we are more interested in the last question.
The motivation for the Rand index follows three assumptions. First,

clustering is considered to be discrete in that every point is assigned to a
specific cluster. Second, it is important to define clusters with respect to the
observations they do not contain, as well as by the points that they do contain.
Finally, all data points are equally important in determining the cluster
structure.

Since the cluster labels are arbitrary, the Rand index looks at pairs of points
and how they are partitioned in groupings G1 and G2. There are two ways that
data points xi and xj can be grouped similarly (i.e., the groupings agree):

� xi and xj are put in the same cluster in G1 and G2.

� xi and xj are in different clusters in G1 and in different clusters in G2.

There are also two ways that xi and xj can be grouped differently:

� xi and xj are in the same cluster in G1 and different clusters in G2.

� xi and xj are in different clusters in G1 and the same cluster in G2.

The Rand index calculates the proportion of the total n choose 2 objects that
agree between the two groupings. It is given by the following

g1 g2×

206 Exploratory Data Analysis with MATLAB®, Third Edition

,

where denotes the binomial coefficient or the number of ways to choose
k objects from a set of n objects. The Rand index is a measure of similarity
between the groupings, and it ranges from zero when the two groupings are
not similar to a value of one when the groupings are exactly the same.

Fowlkes and Mallows [1983] developed their own index for the case g1 = g2,
which will be presented in the exercises. They point out that the Rand index
increases as the number of clusters increase, and the possible range of values
is very narrow. Hubert and Arabie [1985] developed an adjusted Rand index
that addresses these issues. This is given by RIA = N/D, where

,

,

and

.

The binomial coefficient is defined as 0 when m = 0 or m = 1. The
adjusted Rand index provides a standardized measure such that its expected
value is zero when the partitions are selected at random and one when the
partitions match completely.

Example 5.7
We return to the iris data of the previous example to illustrate the Rand
index, by comparing the k-means results with the true class labels. First we
get some of the needed information to construct the matching matrix.

% Get some of the preliminary information.
% You can load the data using: load example52
ukmus = unique(kmus); ulabs = unique(labs);
n1 = length(ukmus); n2 = length(ulabs);
n = length(kmus);

RI

nC2 nij
2

j 1=

g2
i 1=

g1 1
2--- nij

j 1=

g2
2

1
2--- nij

i 1=

g1
2

j 1=

g2–

i 1=

g1–+

nC2
--=

nCk

N nijC2
j 1=

g2
i 1=

g1 ni•C2
i 1=

g1 n• jC2 nC2÷
j 1=

g2–=

D ni•C2
i 1=

g1 n• jC2
j 1=

g2+ 2÷ ni•C2
i 1=

g1 n• jC2
j 1=

g2 nC2÷–=

n• j nij

i 1=

g1= ni • nij

j 1=

g2=

mC2

Finding Clusters 207

Now we find the matrix N, noting that it is not necessarily square (the
number of partitions do not have to be equal), and it is usually not symmetric.

% Now find the matching matrix N
N = zeros(n1,n2);
I = 0;
for i = ukmus(:)'
 I = I + 1;
 J = 0;
 for j = ulabs(:)'
 J = J + 1;
 indI = find(kmus == i);
 indJ = find(labs == j);
 N(I,J) = length(intersect(indI,indJ));
 end
end
nc2 = nchoosek(n,2);
nidot = sum(N);
njdot = sum(N');
ntot = sum(sum(N.^2));
num = nc2+ntot-0.5*sum(nidot.^2)-0.5*sum(njdot.^2);
ri = num/nc2;

The resulting Rand index has a value of 0.8797, which indicates good
agreement between the classifications. We provide a function called
randind that implements this code for any two partitions P1 and P2. We
also implement the adjusted Rand index in the function adjrand. It is used
in the following manner.

% Now use the adjusted Rand index function.
ari = adjrand(kmus,labs);

This yields 0.7302, indicating an agreement above what is expected by chance
alone.
❑

5.7.2 Cophenetic Correlation

In some applications, we might be interested in comparing the output from
two hierarchical partitions. We can use the cophenetic correlation coefficient
for this purpose. Perhaps the most common use of this measure is in
comparing hierarchical clustering results with the proximity data (e.g.,
interpoint distances) that were used to obtain the partitions. For example, as
discussed before, the various hierarchical methods impose a certain structure
on the data, and we might want to know if this is distorting the original
relationships between the points as specified by their proximities.

208 Exploratory Data Analysis with MATLAB®, Third Edition

We start with the cophenetic matrix, H. The ij-th element of H contains the
fusion value where object i and j were first clustered together. We only need
the upper triangular entries of this matrix (i.e., those elements above the
diagonal). Say we want to compare this partition to the interpoint distances.
Then, the cophenetic correlation is given by the product moment correlation
between the values (upper triangular only) in H and their corresponding
entries in the interpoint distance matrix. This has the same properties as the
product moment correlation coefficient. Values close to one indicate a higher
degree of correlation between the fusion levels and the distances. To compare
two hierarchical clusters, one would compare the upper triangular elements
of the cophenetic matrix for each one.

Example 5.8
The cophenetic correlation coefficient is primarily used to assess the results
of a hierarchical clustering method by comparing the fusion level of
observations with their distance. MATLAB provides a function called
cophenet that calculates the desired measure. We return to the yeast data
in Example 5.1 to determine the cophenetic coefficient for single linkage and
complete linkage.

load yeast
% Get the Euclidean distances.
Y = pdist(data);
% Single linkage output.
Zs = linkage(Y);
% Now get the cophenetic coefficient.
scoph = cophenet(Zs,Y);

The cophenetic coefficient is 0.9243, indicating good agreement between the
distances and the hierarchical clustering. Now we apply the same procedure
to the complete linkage.

% Now do the same thing for the complete linkage.
Zc = linkage(Y,'complete');
ccoph = cophenet(Zc,Y);

The coefficient in this case is 0.8592, showing less correlation. The cophenet
function only does the comparison between the clustering and the distances
and not the comparison between two hierarchical structures.
❑

5.7.3 Upper Tail Rule

The upper tail rule was developed by Mojena [1977] as a way of determining
the number of groups in hierarchical clustering. It uses the relative sizes of
the fusion levels in the hierarchy. Let the fusion levels α0 α1 … αn 1–, , ,

Finding Clusters 209

correspond to the stages in the hierarchy with clusters. We also
denote the average and standard deviation of the j previous fusion levels by

 and sα. To apply this rule, we estimate the number of groups as the first
level at which we have

, (5.16)

where c is a constant. Mojena suggests a value of c between 2.75 and 3.50, but
Milligan and Cooper [1985] offer a value of 1.25 based on their study of
simulated data sets. One could also look at a plot of the values

(5.17)

against the number of clusters j. A break in the plot is an indication of the
number of clusters. Given the dependence on the value of c in Equation 5.16,
we recommend the graphical approach of Equation 5.17.

Example 5.9
We now show how to implement the graphical Mojena procedure in a way
that makes it similar to the elbow plots of previous applications. We turn to
the lungB data set for this example, and we use the standardized Euclidean
distance, where each coordinate in the sum of squares is inversely weighted
by its sample variance.

load lungB
% Get the distances and the linkage.
% Use the standardized Euclidean distance.
Y = pdist(lungB','seuclidean');
Z = linkage(Y,'complete');
% Plot dendrogram with fewer leaf nodes.
dendrogram(Z,15);

The dendrogram is shown in Figure 5.11 (top). We are going to flip the Z
matrix to make it easier to work with, and we will find the values in Equation
5.17 for a maximum of 10 clusters.

nc = 10;
% Flip the Z matrix - makes it easier.
Zf = flipud(Z);
% Now get the vectors of means
% and standard deviations
for i = 1:nc
 abar(i) = mean(Zf(i:end,3));
 astd(i) = std(Zf(i:end,3));
end

n n 1– … 1, , ,

α

αj 1+ α csα+>

αj 1+ α–()
sα

210 Exploratory Data Analysis with MATLAB®, Third Edition

FIGURE 5.11
In the top panel, we show the dendrogram (with 15 leaf nodes) for the lungB data set,
where standardized Euclidean distance is used with complete linkage. The second panel is
the plot of the standardized fusion levels. The elbow in the curve indicates that three clusters
is reasonable. However, some other elbows at 5 and 7 might provide interesting clusters, too.

 5 14 8 9 1 11 2 4 12 3 13 10 7 15 6

44

46

48

50

52

54

56

58

1 2 3 4 5 6 7 8 9 10
2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

Number of Clusters

S
ta

n
d
a
rd

iz
e
d
 F

u
st

io
n
 L

e
ve

ls

Finding Clusters 211

% Get the y values for plotting.
yv = (Zf(1:nc,3) - abar(:))./astd(:);
xv = 1:nc;
plot(xv,yv,'-o')

This plot is shown in Figure 5.11 (bottom), where the elbow in the curve
seems to indicate that three clusters could be chosen for this application. We
could also plot the raw fusion values in a similar plot, as follows.

% We can also plot just the fusion levels
% and look for the elbow.
plot(1:nc,Zf(1:nc,3),'o-')

This plot is given in Figure 5.12, and we see again that three seems to be a
reasonable estimate for the number of clusters. We provide a function called
mojenaplot to construct the plot, given the output from linkage.
❑

5.7.4 Silhouette Plot

Kaufman and Rousseeuw [1990] present the silhouette statistic as a way of
estimating the number of groups in a data set. Given observation i, we denote
the average dissimilarity to all other points in its own cluster as ai. For any
other cluster c, we let represent the average dissimilarity of i to all

FIGURE 5.12
This is a plot of the raw fusion levels for Example 5.8. Again, we see an elbow at three
clusters.

1 2 3 4 5 6 7 8 9 10
46

48

50

52

54

56

58

60

Number of Clusters

R
a
w

 F
u
si

o
n
 L

e
ve

ls

d i c,()

212 Exploratory Data Analysis with MATLAB®, Third Edition

objects in cluster c. Finally, we let bi denote the minimum of these average
dissimilarities . The silhouette width for the i-th observation is

. (5.18)

We can find the average silhouette width by averaging the swi over all
observations:

.

Observations with a large silhouette width are well clustered, but those
with small values tend to be those that are scattered between clusters. The
silhouette width swi in Equation 5.18 ranges from –1 to 1. If an observation
has a value close to 1, then the data point is closer to its own cluster than a
neighboring one. If it has a silhouette width close to –1, then it is not very
well-clustered. A silhouette width close to zero indicates that the observation
could just as well belong to its current cluster or one that is near to it.

Kaufman and Rousseeuw use the average silhouette width to estimate the
number of clusters in the data set by using the partition with two or more
clusters that yields the largest average silhouette width. They state that an
average silhouette width greater than 0.5 indicates a reasonable partition of
the data, and a value of less than 0.2 would indicate that the data do not
exhibit cluster structure.

There is also a nice graphical display called a silhouette plot, which is
illustrated in the next example. This type of plot displays the silhouette
values for each cluster, ranking them in decreasing order. This allows the
analyst to rapidly visualize and assess the cluster structure.

Example 5.10
MATLAB provides a function in the Statistics Toolbox called silhouette
that will construct the silhouette plot and also returns the silhouette values,
if desired. We illustrate its functionality using the iris data and k-means,
where we choose both k = 3 and k = 4. In this example, we will use
replicates (i.e., repeating the k-means procedure five times) and the
display option that summarizes information about the replicates.

load iris
data = [setosa; versicolor; virginica];
% Get a k-means clustering using 3 clusters,
% and 5 replicates. We also ask MATLAB to
% display the final results for each replicate.
kmus3 = kmeans(data,3,...

d i c,()

swi

bi ai–()
max ai bi,()
--------------------------=

sw
1
n
--- swi

i 1=

n=

Finding Clusters 213

 'replicates',5,'display','final');

When we run this code, the following is echoed to the command window.
Since this procedure uses a random selection of starting points, you might see
different results when implementing this code.

5 iterations, total sum of distances = 78.8514
4 iterations, total sum of distances = 78.8514
7 iterations, total sum of distances = 78.8514
6 iterations, total sum of distances = 78.8514
8 iterations, total sum of distances = 142.754

From this, we see that local solutions do exist, but the final result from
MATLAB will be the one corresponding to the lowest value of our objective
function, which is 78.8514. Now we repeat this for four clusters and get the
corresponding silhouette plots.

% Get a k-means clustering using 4 clusters.
kmus4 = kmeans(data,4,...
 'replicates',5,'display','final');
% Get the silhouette plots and the values.
[sil3, h3] = silhouette(data, kmus3);
[sil4, h4] = silhouette(data, kmus4);

The silhouette plots for both k = 3 and k = 4 are shown in Figure 5.13. We see
that we have mostly large silhouette values in the case of three clusters, and
all are positive. On the other hand, four clusters yield some with negative
values and some with small (but positive) silhouette indexes. To get a one-
number summary describing each clustering, we find the average of the
silhouette values.

mean(sil3)
mean(sil4)

The three cluster solution has an average silhouette value of 0.7357, and the
four cluster solution has an average of 0.6714. This indicates that the
grouping into three clusters using k-means is better than the one with four
groups.
❑

5.7.5 Gap Statistic

Tibshirani et al. [2001] define a technique called the gap statistic method for
estimating the number of clusters in a data set. This methodology applies to
any technique used for grouping data. The clustering method could be k-
means, hierarchical, etc. This technique compares the within-cluster
dispersion with what one might expect given a reference null distribution
(i.e., no clusters). Fridlyand and Dudoit [2001] note a type of gap test used by

214 Exploratory Data Analysis with MATLAB®, Third Edition

FIGURE 5.13
Here we have the silhouette plots for k = 3 and k = 4 clusters using the iris data. The top
one indicates large values for cluster 2 and a few large values for clusters 1 and 3. In the
second plot with 4 clusters, we see that there are some negative values in cluster 4, and
clusters 1, 3, and 4 have many low silhouette values. These plots indicate that 3 clusters are
a better fit to the data.

0 0.2 0.4 0.6 0.8 1

1

2

3

Silhouette Value

C
lu

st
e
r

0 0.2 0.4 0.6 0.8 1

1

2

3

4

Silhouette Value

C
lu

st
e
r

Finding Clusters 215

Bock [1985] in cluster analysis to test the null hypothesis of a homogeneous
population versus a heterogeneous one. However, they are defined
somewhat differently.

We start with a set of k clusters from some clustering method,
where the r-th group has nr observations. We denote the sum of the pairwise
distances for all points in cluster r as

.

We now define Wk as

. (5.19)

Tibshirani et al. [2001] note that the factor 2 in Equation 5.19 makes this the
same as the pooled within-cluster sum of squares around the cluster means,
if the distance used is squared Euclidean distance.

The gap statistic method compares the standardized graph of the within-
dispersion index log(Wk), k = 1,...,K with its expectation under a reference null
distribution. The null hypothesis of a single cluster is rejected in favor of a
model with k groups if there is strong evidence for this based on the gap
statistic (see Equation 5.20). Their estimate for the number of groups is the
value of k where log(Wk) is the furthest below this reference curve. The
reference curve shows the expected values of log(Wk) and is found using
random sampling.

Tibshirani et al. [2001] show that there are two possible choices for the
reference distribution. These are the uniform distribution over the range of
observed values for a given variable or a uniform distribution over a box
aligned with the principal components of the data set. The second method is
preferred when one wants to ensure that the shape of the distribution is
accounted for. We first discuss how to generate data from these distributions,
then we go on to describe the entire gap statistic procedure.

Generating Data from Reference Distributions

1. Gap-Uniform: For each of the i dimensions (or variables), we gen-
erate n one-dimensional variates uniformly distributed over the
range of to , where xi represents the i-th variable or the
i-th column of X.

2. Gap-PC: We assume that the data matrix X has been column-
centered. We then compute the singular value decomposition

C1 … Ck, ,

Dr dij

i j Cr∈,
=

Wk
1

2nr

--------Dr

r 1=

k=

xi
min

xi
max

216 Exploratory Data Analysis with MATLAB®, Third Edition

.

Next we transform X using

X’ = XV.

We generate a matrix of random variates Z’ as in the gap-uniform
case, using the range of the columns of X’ instead. We transpose
back using

Z = Z’ VT.

The basic gap statistic procedure is to simulate B data sets according to
either of the null distributions and then apply the clustering method to each
of them. We can calculate the same index log(Wk*) for each simulated data
set. The estimated expected value would be their average, and the estimated
gap statistic is given by

.

Tibshirani et al. [2001] did not offer insights as to what value of B to use, but
Fridlyand and Dudoit [2001] use B = 10 in their work. We use the gap statistic
to decide on the number of clusters as outlined in the following procedure.

Procedure – Gap Statistic Method

1. Cluster the given data set to obtain partitions k = 1, 2, ... , K, using
any desired clustering method.

2. For each partition with k clusters, calculate the observed log(Wk).

3. Generate a random sample of size n using either the gap-uniform
or the gap-PC procedure. Call this sample X*.

4. Cluster the random sample X* using the same clustering method
as in step 1.

5. Find the within-dispersion measures for this sample, call them
.

6. Repeat steps 3 through 5 for a total of B times. This yields a set of
measures , and .

7. Find the average of these values, using

,

X UDVT
=

gap k() 1
B
--- Wk b,

*()log
b

 Wk()log–=

Wk b,
*()log

Wk b,
*()log k 1 … K, ,= b 1 … B, ,=

Wk
1
B
--- Wk b,

*()log
b

=

Finding Clusters 217

and their standard deviation

.

8. Calculate the estimated gap statistic

. (5.20)

9. Define

,

and choose the number of clusters as the smallest k such that

.

Example 5.11
We show how to implement the gap statistic method for a uniform null
reference distribution using the lungB data set. We use agglomerative
clustering (with complete linkage) in this application rather than k-means,
mostly because we can get up to K clusters without performing the clustering
again for a different k. Note also that we standardized the columns of the data
matrix.

load lungB
% Take the transpose, because the
% columns are the observations.
X = lungB';
[n,p] = size(X);
% Standardize the columns.
for i = 1:p
 X(:,i) = X(:,i)/std(X(:,i));
end

We now find the observed log(Wk) for a maximum of K = 10 clusters.

% Test for a maximum of 10 clusters.
K = 10;
Y = pdist(X,'euclidean');
Z = linkage(Y,'complete');
% First get the observed log(W_k).
% We will use the squared Euclidean distance
% for the gap statistic.

sdk
1
B
--- Wk b,

*()log W–[]
2

b

=

gap k() Wk Wk()log–=

sk sdk 1 1 B⁄+=

gap k() gap k 1+() sk 1+–≥

218 Exploratory Data Analysis with MATLAB®, Third Edition

% Get the one for 1 cluster first.
W(1) = sum(pdist(X).^2)/(2*n);
for k = 2:K
 % Find the index for k.
 inds = cluster(Z,k);
 for r = 1:k
 indr = find(inds==r);
 nr = length(indr);
 % Find squared Euclidean distances.
 ynr = pdist(X(indr,:)).^2;
 D(r) = sum(ynr)/(2*nr);
 end
 W(k) = sum(D);
end

We now repeat the same procedure B times, except that we use the uniform
reference distribution as our data.

% Now find the estimated expected
% values.
B = 10;
% Find the range of columns of X for gap-uniform
minX = min(X);
maxX = max(X);
Wb = zeros(B,K);
% Now do this for the bootstrap.
Xb = zeros(n,p);
for b = 1:B
 % Generate according to the gap-uniform method.
 % Find the min values and max values.
 for j = 1:p
 Xb(:,j) = unifrnd(minX(j),maxX(j),n,1);
 end
 Yb = pdist(Xb,'euclidean');
 Zb = linkage(Yb,'complete');
 % First get the observed log(W_k)
 % We will use the squared Euclidean distance.
 % Get the one for 1 cluster first.
 Wb(b,1) = sum(pdist(Xb).^2)/(2*n);
 for k = 2:K
 % Find the index for k.
 inds = cluster(Zb,k);
 for r = 1:k
 indr = find(inds==r);
 nr = length(indr);
 % Find squared Euclidean distances.
 ynr = pdist(Xb(indr,:)).^2;

Finding Clusters 219

 D(r) = sum(ynr)/(2*nr);
 end
 Wb(b,k) = sum(D);
 end
end

The matrix Wb contains our log(Wk*) values, one set for each row. The
following code gets the gap statistics, as well as the observed and expected
log(Wk).

% Find the mean and standard deviation
Wobs = log(W);
muWb = mean(log(Wb));
sdk = (B-1)*std(log(Wb))/B;
gap = muWb - Wobs;
% Find the weighted version.
sk = sdk*sqrt(1 + 1/B);
gapsk = gap - sk;
% Find the lowest one that is larger:
ineq = gap(1:9) - gapsk(2:10);
ind = find(ineq > 0);
khat = ind(1);

The estimated number of clusters is two, which corresponds to the correct
number of cancer types. This can be compared to the results of Example 5.9,
where the Mojena graphical rule indicated three clusters. In any event, the
results of the gap statistic method seem to indicate that there is evidence to
reject the hypothesis that there is only one group. We plot the gap curve in
Figure 5.14, where we can see the strong maximum at k = 2.
❑

The gap statistic method relies on B random samples from the reference
null distribution to estimate the expected value of log(Wk), each of which is
clustered using the same procedure that was used to get the observed ones.
The data analyst should keep in mind that this can be computationally
intensive if the sample size is large and a clustering method such as
agglomerative clustering is used.

5.7.6 Cluster Validity Indices

The silhouette and gap statistics are examples of approaches we might use to
validate our clusters. These are known as cluster validity indices. We can use
these to explore how well the cluster solution fits the data and to provide
estimates of the number of groups. These indices are used when we do not
have the correct classifications available for external validation; i.e., when the
data are unlabeled.

220 Exploratory Data Analysis with MATLAB®, Third Edition

FIGURE 5.14
The upper panel shows the estimated expected and observed values of the . The
lower plot is the gap statistic curve, where we see a clear maximum at k = 2 clusters.

1 2 3 4 5 6 7 8 9 10
10.5

11

11.5

12

12.5

13

Number of Clusters k

O
b
se

rv
e
d
 a

n
d
 E

xp
e
ct

e
d
 lo

g
(W

k)

Observed
Expected

1 2 3 4 5 6 7 8 9 10
1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9
Gap

Number of Clusters k

G
a
p

Wk()log

Finding Clusters 221

Most of the cluster validity indices measure two aspects of the partition:
compactness and separation of the clusters. We could think of compactness
as cluster cohesion or how similar data points are within each of the clusters.
Separation is related to the distance between clusters. The measures are then
combined using ratios or summations.

Arbelaitz et al. [2013] published an extensive study of thirty cluster validity
indices that include the silhouette statistic and others. They found that the
silhouette was among those that performed the best. In the remainder of this
section, we describe additional superior cluster validity indices, as found by
Arbelaitz et al. These include the Dunn and its variants, the Calinski-
Harabasz (CH), and the Davies-Bouldin (DB). We follow the notation of
Halkidi et al. [2001] in our discussion.

Dunn Index

The Dunn index was developed by Dunn [1973], and several variations of the
index have been proposed in the literature [Pal and Biswas, 1997; Arbelaitz
et al., 2013]. It measures the compactness or cohesion of a cluster as the
maximum distance between all points within the cluster. The separation
between two clusters is measured as the minimum distance between two
data points, where one is from each of the clusters.

The Dunn index for a given partition of K clusters is defined below.

, (5.21)

for , , and . The numerator is
the distance between the i-th and j-th clusters

.

The denominator is the diameter of the k-th cluster given by

.

One can view as a measure of the variation or dispersion of the
observations in the k-th group.

If we have compact clusters that are separated well, then the Dunn index
should be large. Cohesive clusters result in small diameters (denominator),
and well-separated ones yield a large minimum distance between clusters
(numerator). Thus, we seek cluster solutions corresponding to large values of
the Dunn index.

Dunn K() mini minj

d ci cj,()
maxk diam ck(){ }
--

=

i 1 … K, ,= j i 1 … K, ,+= k 1 … K, ,= d ci cj,()

d ci cj,() minx ci y cj∈,∈ d x y,(){ }=

diam ck()

diam ck() maxx y ck∈,=

diam ck()

222 Exploratory Data Analysis with MATLAB®, Third Edition

Looking at Equation 5.21, we can see that quantifying the compactness of a
cluster in this manner is sensitive to the presence of noisy data because it is
based on the maximum interpoint distance in a given cluster (denominator).
Pal and Biswas [1997] developed modifications to the Dunn index using
different graph-based methods to quantify the cohesion or diameter of the
clusters. These are known as the generalized Dunn index.

We illustrate the Dunn index based on the minimum spanning tree (MST).
We first create a connected graph from the data in the i-th cluster using
their interpoint distances as the edge weights. Next, we find an MST for
graph . The largest edge weight in the MST is used as the diameter of the
cluster, which is in Equation 5.21. Other variations of the
generalized Dunn index find the neighborhood graphs in different ways,
such as a relative neighborhood graph (RNG) and a Gabriel graph. Other
neighborhood graphs can also be used [Ilc, 2012].

A relative neighborhood graph was defined by Toussaint [1980]. Two data
points are relative neighbors if they are “at least as close to each other as they
are to any other point.” Mathematically, we say that two points are relatively
close if the distance between the i-th and j-th observations satisfy

,

for , . We then construct the relative neighborhood graph
by putting an edge between points if and only if they are relative neighbors.

Two data points and are connected in a Gabriel graph if the squared
distance between them is less than the sum of the squared distance between
each of them and any other observation . Mathematically, we can state this
as the following

,

for all .
A Gabriel graph is easiest to understand and visualize in 2–D. We first

connect the i-th and j-th data points with a straight line, and a circle is
constructed with this line as a diameter. Thus, the two data points lie on the
circle. If no other observations lie within the circle, then we construct an edge
between and in the Gabriel graph.

We can use the silhouette statistic, the gap statistic, the Dunn index, and
other cluster validity indices we cover later to estimate the number of clusters
in the data set by following this general process.

Procedure – Number of Clusters using a Cluster Validity Index

1. Establish a maximum number of clusters .

Gi

Gi

diam ck()
Gi

d xi xj,() max d xi xk,() d xj xk,(),[]≤

k 1 … n, ,= k i j,≠

xi xj

xk

d
2 xi xj,() d

2 xi xk,() d
2 xj xk,()+<

k i j,≠

xi xj

Kmax

Finding Clusters 223

2. Determine the type of clustering (e.g., hierarchical, k-means, etc.),
the associated parameters (e.g., distance, linkage, etc.), and a cluster
validity index (e.g., silhouette, gap, Dunn, etc.).

3. Set K = 2, .

4. Cluster the data and obtain the cluster IDs.

5. Calculate the validity index or statistic using the data and the cluster
IDs.

6. Increment K and repeat from Step 4 until .

7. The estimated number of groups in the data set corresponds to the
number of clusters yielding either the maximum or minimum in-
dex from Step 5. Whether one uses the maximum or minimum
value depends on the validity index.

We illustrate this procedure in the next example.

Example 5.12
We use a data set from Jain and Law [2005] to illustrate the above procedure
with the Dunn index and its variants.

% First, load the data.
load jain
% Get the data from the matrix.
X = jain(:,1:2);
% View in scatterplot
gscatter(X(:,1),X(:,2),...
 jain(:,3),...
 'rg','o*')

The scatterplot of the data is shown in Figure 5.15, where we easily see two
clusters. However, it might be difficult for a cluster method like k-means to
find the right number of clusters. There is a package for calculating both the
original and generalized Dunn index on MATLAB Central [Ilc, 2013]. We
include it with the EDA Toolbox and use it below. We use k-means as our
clustering method, and partition the data into groups. We
evaluate each clustering using the original Dunn index and the one based on
RNG.

% Loop over values of k - number of clusters.
for k = 2:10
 idx = kmeans(X,k,...
 'replicates',5);
 % Save the cluster IDs.
 IDX(:,k) = idx(:);
 DunnI(k) = indexDN(X,idx(:),'euclidean');
 DunnIrng(k) = indexDNg(X,idx(:),'rng');

K 2 … Kmax, ,=

K Kmax=

K 2 … 10, ,=

224 Exploratory Data Analysis with MATLAB®, Third Edition

end

The best estimate of the number of clusters corresponds to the maximum
value of the Dunn index. We plot the values in Figure 5.16.

% Plot the values of the indices.
subplot(2,1,1),plot(DunnI,'o-')
ylabel('Dunn Index')
subplot(2,1,2),plot(DunnIrng,'o-')
ylabel('Dunn Index - RNG')

We see that the original Dunn index has higher variation than the index using
the RNG. This is likely due to the sensitivity the original Dunn index has to
the estimated cluster diameters. There is a clear maximum at three clusters
with the generalized Dunn index, and we use that partition in the scatterplot
shown in the bottom of Figure 5.15.
❑

Calinski-Harabasz Index

Milligan and Cooper [1985] conducted one of the first comparison studies of
cluster validation indices, and they found that one of the best is the Calinski-
Harabasz [1974], at least for the data sets they used. As it turns out, Arbelaitz
et al. [2013] came to the same conclusion. This index is a ratio-type estimator
and is also known as the variance ratio criterion. The Calinski-Harabasz
(CH) measures the compactness of a cluster as the average distance from
points in the cluster to its centroid. Cluster separation is based on the distance
from the cluster centers to the overall center of the data.

We can define the CH index for K groups as follows

, (5.22)

where is the number of observations in the k-th cluster, and is its
centroid. The overall mean of the data is denoted by , and is the
norm between two vectors x and y.

The numerator of the second factor in Equation 5.22 is related to the overall
between-cluster variance, and the denominator corresponds to the within-
cluster variance. This index is similar in form to the Dunn index, with
compactness and separation measured differently. Well-separated clusters
would have large between-cluster variance (numerator), and clusters with
good cohesion would have small values for the within-cluster variance

CH K() n K–

K 1–

nk xk X–
2

k 1=

K
x xk–

2

x Ck∈

k 1=

K
--×=

nk xk

X x y–
2

L
2

Finding Clusters 225

FIGURE 5.15
The top plot is a scatterplot of the jain data. This is a synthetic data set with two clusters.
These clusters are easily seen by the human eye, but not so easily found with unsupervised
learning methods. We applied two versions of the Dunn index to k-means partitions and
found that the partition with three groups was the best fit. This grouping is shown in the
bottom panel. See Figure 5.16 for the values of the Dunn index.

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30
1
2

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30
1
2
3

226 Exploratory Data Analysis with MATLAB®, Third Edition

(denominator). Thus, we look for cluster solutions that produce high values
of the CH index.

Davies-Bouldin Index

The Davies-Bouldin (DB) index [1979] is also based on a ratio of quantities
that measure cohesion and separation. Like the CH index, it estimates
cohesion as the distance from the points in the cluster to its centroid. The
separation of the clusters is measured using the distance between cluster
centroids. The DB index can be thought of as the average similarity of each
cluster and the one it is closest or most similar to.

The Davies-Bouldin index is defined as

, (5.23)

where is the average distance of points in the i-th cluster to its centroid,
and is the Euclidean distance between the i-th and j-th cluster centroids.

FIGURE 5.16
The top line plot shows the values for the original Dunn index as a function of the number
of clusters used in k-means clustering (Euclidean distance). We see that there is considerable
variation in the index, which is likely due to the way cluster diameters are estimated. The
bottom plot is the generalized Dunn index using a relative neighborhood graph (RNG).
There is a clear maximum at three clusters.

1 2 3 4 5 6 7 8 9 10
0

0.01

0.02

0.03

0.04

0.05

D
u
n
n
 I

n
d
e
x

1 2 3 4 5 6 7 8 9 10
Number of Clusters

0

5

10

15

D
u

n
n

 I
n

d
e

x
-

R
N

G

DB K() 1
K
---- maxi j≠

di dj+

di j,

i 1=

K=

di

di j,

Finding Clusters 227

Because we take the maximum in Equation 5.23, we can think of this as the
worst case for a cluster solution. Thus, a good cluster solution for a data set
would correspond to the smallest value of the Davies-Bouldin index.

Example 5.13
We return to the data set from the previous example to illustrate the CH and
DB cluster validity indices. First, make sure the data set is loaded.

% First, load the data.
load jain
% Get the data from the matrix.
X = jain(:,1:2);

The MATLAB Statistics Toolbox has a function for estimating and evaluating
cluster solutions called evalclusters. There are several options for this
function. For instance, we could have the evalclusters function partition
the data using some values of K, a given cluster method, and validity index.
It then returns the criterion values and the optimal K. Alternatively, we could
find cluster solutions and obtain the desired validity index for each one using
the evalclusters function. This is what we do next. We first get the cluster
solutions using k-means.

% Loop over values of k - number of clusters.
for k = 1:10
 idx = kmeans(X,k,...
 'replicate',5);
 % Save the cluster IDs.
 IDX(:,k) = idx(:);
end

This produces an matrix of cluster solutions. This is a convenient way
to apply different cluster validity indices to the same groupings of the data,
which is the approach we use below.

% Get the Calinski-Harabasz index for each solution.
CHcvi = evalclusters(X,IDX,'CalinskiHarabasz');
% Get the Davies-Bouldin index for each solution.
DBcvi = evalclusters(X,IDX,'DaviesBouldin');

We plot the cluster indices in Figure 5.17. The optimal number of clusters for
the CH index is 9, and the DB index indicates 8 groups. We can find this by
entering the output from evalclusters at the command line. This is what
we get.

% Optimal K is at the maximum of the CH index.
CHcvi =

 CalinskiHarabaszEvaluation with properties:

n K×

228 Exploratory Data Analysis with MATLAB®, Third Edition

 NumObservations: 373
 InspectedK: [1 2 3 4 5 6 7 8 9 10]
 CriterionValues: [1x10 double]
 OptimalK: 9
% Optimal K is at the minimum of the DB index.
DBcvi =

 DaviesBouldinEvaluation with properties:

 NumObservations: 373
 InspectedK: [1 2 3 4 5 6 7 8 9 10]
 CriterionValues: [1x10 double]
 OptimalK: 8

We plot the indices in Figure 5.17. It is also interesting to see the clusters we
get from the optimal solutions. These are shown in Figure 5.18.
❑

FIGURE 5.17
Here are line plots for the Calinski-Harabasz and Davies-Bouldin cluster validity indices.
The optimal number of clusters of the CH index is the maximum, and the optimal number
from the DB index corresponds to the number of groups with the minimum value. Thus,
the CH indicates 9 groups is optimal, and the DB index suggests 8 groups. See Figure 5.18
for scatterplots showing these groupings.

2 3 4 5 6 7 8 9 10
500

600

700

800

900

1000

C
a

lin
sk

i-
H

a
ra

b
a

sz

2 3 4 5 6 7 8 9 10
Number of Clusters

0.6

0.65

0.7

0.75

0.8

D
a

vi
e

s-
B

o
u

ld
in

Finding Clusters 229

FIGURE 5.18
K-means clustering used to cluster the jain data. The top panel shows 9 groups (optimal
K from CH index), and the bottom panel shows 8 groups (optimal K from the DB index).

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

1
2
3
4
5
6
7
8
9

CH Index

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

1
2
3
4
5
6
7
8

DB Index

230 Exploratory Data Analysis with MATLAB®, Third Edition

5.8 Summary and Further Reading

Clustering is a technique that has been used in many diverse areas, such as
biology, psychiatry, archaeology, geology, marketing, and others [Everitt,
Landau, and Leese, 2001]. Because of this, clustering has come to be called
different things, such as unsupervised learning [Duda and Hart, 1973; Jain,
Murty, and Flynn, 1999], numerical taxonomy [Sneath and Sokal, 1973], and
vector quantization [Hastie, Tibshirani, and Friedman, 2009].

In this chapter, we presented examples of the two most commonly used
types of clustering: hierarchical methods and optimization-based methods.
Hierarchical methods yield an entire sequence of nested partitions. On the
other hand, optimization or partition methods, like k-means, group the data
into k nonoverlapping data sets. Hierarchical methods use the n(n-1)/2
interpoint distances as inputs (note that some also require the data), while
optimization methods just require the data, making them suitable for large
data sets. In addition, we touched upon modern spectral-based methods, as
well as nonnegative matrix factorization and probabilistic latent semantic
analysis, which are suitable for document clustering.

In the next chapter, we describe another grouping technique called model-
based clustering based on estimating finite mixture probability density
functions. Note that some of the methods discussed in Chapter 3, such as self-
organizing maps, generative topographic maps, and multidimensional
scaling, can be considered a type of clustering, where the clusters are
sometimes assessed visually. Since clustering methods (in most cases) will
yield a grouping of the data, it is important to perform some validation or
assessment of the cluster output. To that end, we presented several of these
methods in this chapter.

We feel we should mention that, for the most part, we discussed clustering
methods in this chapter. This can be contrasted with clustering algorithms,
which are the underlying computational steps to achieve each of the
clustering structures. For example, for any given hierarchical or optimization
based method, many different algorithms are available that will achieve the
desired result.

This is not meant to be an exhaustive treatment of the subject and much is
left out; so we offer pointers to some additional resources. An excellent book
to consult is Everitt, Landau, and Leese [2001], which has been updated to
include some of the latest developments in clustering based on the
classification likelihood and also on neural networks. It is relatively
nonmathematical, and it includes many examples for the student or
practitioner. For a good summary and discussion of methods for estimating
the number of clusters, as well as for other clustering information, we
recommend Gordon [1999]. Most books that focus strictly on clustering are
Kaufman and Rousseeuw [1990], Jain and Dubes [1988], Späth [1980],

Finding Clusters 231

Hartigan [1975], and Anderberg [1973]. Other books on statistical pattern
recognition usually include coverage of unsupervised learning or clustering.
An excellent book like this is Webb [2002]. It is very readable and the author
includes many applications and step-by-step algorithms. Of course, one of
the seminal books in pattern recognition is Duda and Hart [1973], which has
recently been updated to a newer edition [Duda, Hart, and Stork, 2001]. For
more of the neural network point of view, one could consult Ripley [1996] or
Hastie, Tibshirani, and Friedman [2009].

Some survey papers on clustering are available. For an overview from the
machine learning point of view see Jain, Murty, and Flynn [1999]. The goal in
their paper is to provide useful advice on clustering to a broad community of
users. Another summary paper written by a Panel on Discriminant Analysis,
Classification, and Clustering [1989] describes methodological and theoretical
aspects of these topics. A presentation of clustering from an EDA point of
view is Dubes and Jain [1980]. An early review paper on grouping is by
Cormack [1971], where he provides a summary of distances, clustering
techniques, and their various limitations. An interesting position paper on
clustering algorithms from a data mining point of view is Estivill-Castro
[2002].

Many books and survey papers have been written on text data mining and
document clustering in recent years. Two excellent survey books on these
methods were edited by Berry [2003] and Berry and Castellanos [2007].

For a survey and analysis of procedures for estimating the number of
clusters, see Milligan and Cooper [1985]. One of the successful ones in their
study uses a criterion based on the within-group sum-of-squares objective
function, which was developed by Krzanowski and Lai [1988]. Roeder [1994]
proposes a graphical technique for this purpose. Arbelaitz et al. [2013]
describe a cluster validity index called COP. It is a ratio index with cohesion
measured using the distance of points within a cluster to its centroid. The
cluster separation is measured as the furthest neighbor distance. Tibshirani
et al. [2001] develop an innovative method called prediction strength for
validating clusters and assessing the number of groups, based on cross-
validation. Bailey and Dubes [1982] develop something called cluster validity
profiles that quantify the interaction between a cluster and its environment
in terms of its compactness and isolation, thus providing more information
than a single index would. One should apply several cluster methods, along
with the appropriate cluster assessment and validation methods with each
data set, to search for interesting and informative groups.

In his paper on PLSI, Hofmann [1999b] provides a generalization of the EM
algorithm and calls it tempered EM (TEM). The basic idea behind TEM is to
introduce a parameter that corresponds to a pseudo-temperature. This can be
adjusted to control the optimization process and avoids overfitting in PLSI.
This in turn leads to a method that will generalize and will work better with
new data.

232 Exploratory Data Analysis with MATLAB®, Third Edition

Exercises

5.1 Get the Euclidean distances for the iris data. Apply centroid linkage
and construct the dendrogram. Do you get inversions? Do the same
thing with Mahalanobis distance. Do you get similar results? Try
some of the other distances and linkages. Do you still get inversions?

5.2 Apply single linkage hierarchical clustering to the following data sets.
Do you get chaining? Explore some of the other types of
distance/linkage combinations and compare results.
a. geyser

b. singer

c. skulls

d. spam

e. sparrow

f. oronsay

g. gene expression data sets

5.3 Construct the dendrogram for the partitions found in Problem 5.2. Is
there evidence of groups or clusters in each of the data sets?

5.4 The inconsistency coefficient can be used to determine the number of
clusters in hierarchical clustering. This compares the length of a link
in the hierarchy with the average length of neighboring links. If the
merge is consistent with those around it, then it will have a low
inconsistency coefficient. A higher inconsistency coefficient indicates
the merge is inconsistent and thus indicative of clusters. One of the
arguments to the cluster function can be a threshold for the
inconsistency coefficient corresponding to the cutoff argument. The
cutoff point of the dendrogram occurs where links are greater than
this value. The MATLAB Statistics Toolbox has a separate function
called inconsistent that returns information in a matrix, where the
last column contains the inconsistency coefficients. Generate some
bivariate data containing two well-separated clusters. Apply a
suitable hierarchical clustering method and construct the
dendrogram. Obtain the output from the inconsistent function
and use these values to get a threshold for the cutoff argument in
cluster. Knowing that there are only two clusters, does the
inconsistency coefficient give the correct result?

5.5 Apply the inconsistent threshold to get partitions for the hierarchical
clustering in Problem 5.2. Where possible, construct scatterplots or a
scatterplot matrix (using plotmatrix or gplotmatrix) of the
resulting groups. Use different colors and/or symbols for the groups.
Discuss your results.

Finding Clusters 233

5.6 Do a help on the cophenet function. Write your own MATLAB
function to calculate the cophenetic coefficient comparing two
dendrograms.

5.7 Generate 2–D uniform random variables. Apply the gap statistic
procedure and plot the expected gap statistic and observed value for
each k. Compare the curves. What is the estimated number of clusters?

5.8 Now generate bivariate normal random variables with two well-
separated clusters. Apply the gap statistic procedure and plot the
expected gap statistic and observed value for each k. What is the
estimated number of clusters?

5.9 Write a MATLAB function to implement the gap-PC approach.
5.10 Apply the gap statistic procedure to the cluster results from Problem

5.2. Is there evidence for more than one group? How many clusters
are present according to the gap statistic? Compare with your results
in Problem 5.5.

5.11 Apply the upper tail rule and mojenaplot to the data and groupings
found in Problem 5.2. How many clusters are present?

5.12 In what situation would the Rand index be zero? Use adjrand and
randind functions to verify your answer.

5.13 Using the cluster results from one of the data sets in Problem 5.2, use
the adjrand function with the input arguments the same. The value
should be one. Do the same thing using randind.

5.14 Apply k-means and the agglomerative clustering method of your
choice to the oronsay data set (both classifications), using the correct
number of known groups. Use the silhouette plot and average
silhouette values. Repeat this process varying the value for k. Discuss
your results.

5.15 Using the same data and partitions in Problem 5.14, use the Rand
index and adjusted Rand index to compare the estimated partitions
with the true ones.

5.16 Repeat Example 5.8 using different distances and linkages. Discuss
your results.

5.17 Repeat Example 5.11 using gap-PC method. Are the results different?
5.18 Hartigan [1985] also developed an index to estimate the number of

clusters. This is given by

.

The estimated number of clusters is the smallest value of k, where

.

Implement this in MATLAB, apply it to the data used in Example 5.11,
and compare with previous results.

hartk

tr SWk
()

tr SWk 1+
()

----------------------- 1– n k– 1–()=

1 k 10≤ ≤

234 Exploratory Data Analysis with MATLAB®, Third Edition

5.19 The Fowlkes-Mallows [1983] index can be calculated using the
matching matrix N (which in this case must be , where g = g1 =
g2) as

,

where

Implement this in a MATLAB function. Use the Fowlkes-Mallows
index with the oronsay data, as in Problem 5.14 and compare with
previous results.

5.20 In this chapter, we used the simple implementation of PLSA. The
reader will now explore a more traditional implementation. First,
download the PLSA code from this website

http://www.robots.ox.ac.uk/~vgg/software/

Unzip the Sivic [2010] PLSA code to a directory and apply it to the
same data set nmfclustex from this chapter. Use the function
pLSA_EM in the package. Compare the answers produced by this code
with what was produced in the previous example.

5.21 Repeat Example 5.5 using three classes and assess the results.
5.22 Apply nonnegative matrix factorization clustering to the following

data sets and evaluate your results.
a. iris

b. oronsay (both classifications)

5.23 Apply spectral clustering to the following data sets and evaluate your
results using suitable clustering indexes.
a. iris

b. leukemia

c. oronsay (both classifications)

5.24 Apply MST clustering to the following data sets and evaluate your
results using suitable clustering indexes.
a. iris

g g×

Bg Tg PgQg÷=

Tg nij
2

n–

j 1=

g
i 1=

g=

Pg ni •
2

n–

i 1=

g=

Qg n• j
2

n–

j 1=

g=

http://www.robots.ox.ac.uk/~vgg/software/

Finding Clusters 235

b. leukemia

c. oronsay (both classifications)

5.25 Generate a data set as we did in Example 5.6. Create a MST for your
data. Explore various cluster solutions by removing different sets of
edges from the tree.

http://taylorandfrancis.com

237

Chapter 6
Model-Based Clustering

In this chapter, we present a method for clustering that is based on a finite
mixture probability model. We first provide an overview of a comprehensive
procedure for model-based clustering, so the reader has a framework for the
methodology. We then describe the constituent techniques used in model-
based clustering, such as finite mixtures, the EM algorithm, and model-based
agglomerative clustering. We then put it all together and include more
discussion on its use in EDA, clustering, probability density estimation, and
discriminant analysis. Finally, we show how to use a GUI tool to generate
random samples based on the finite mixture models presented in the chapter.

6.1 Overview of Model-Based Clustering

In Chapter 5, we discussed two main types of clustering—hierarchical and
partition-based (k-means). The hierarchical method we discussed in detail
was agglomerative clustering, where two groups are merged at each step,
such that some criterion is optimized. We will also use agglomerative
clustering in this chapter, where the objective function is now based on
optimizing the classification likelihood function.

We mentioned several issues with the methods in Chapter 5. One problem
is that the number of clusters must be specified in k-means or chosen later in
agglomerative hierarchical clustering. We presented several ways to handle
this problem (e.g., the gap statistic, Mojena’s upper tail rule). The model-
based clustering framework is another approach to address the issue of
choosing the number of groups represented by the data. Another problem we
mentioned is that many clustering methods are heuristic and impose a
certain structure on the clusters. In other words, using Ward’s method tends
to produce same size, spherical clusters (as does k-means clustering).
Additionally, some of the techniques are sensitive to outliers (e.g., Ward’s
method), and the statistical properties are generally unknown.

The model-based clustering methodology is based on probability models,
such as the finite mixture model for probability densities. The idea of using

238 Exploratory Data Analysis with MATLAB®, Third Edition

probability models for clustering has been around for many years. See Bock
[1996] for a survey of cluster analysis in a probabilistic and inferential
framework. In particular, finite mixture models have been proposed for
cluster analysis by Edwards and Cavalli-Sforza [1965], Day [1969], Wolfe
[1970], Scott and Symons [1971], and Binder [1978]. Later researchers
recognized that this approach can be used to address some of the issues in
cluster analysis we just discussed [Fraley and Raftery, 2002; Everitt, Landau,
and Leese, 2001; McLachlan and Peel, 2000; McLachlan and Basford, 1988;
Banfield and Raftery, 1993].

The finite mixture approach assumes that the probability density function
can be modeled as the sum of weighted component densities. As we will see
shortly, when we use finite mixtures for cluster analysis, the clustering
problem becomes one of estimating the parameters of the assumed mixture
model, i.e., probability density estimation. Each component density
corresponds to a cluster and posterior probabilities are used to determine
cluster membership.

The most commonly used method for estimating the parameters of a finite
mixture probability density is the Expectation-Maximization (EM)
algorithm, which is based on maximum likelihood estimation [Dempster,
Laird, and Rubin, 1977]. In order to apply the finite mixture–EM
methodology, several issues must be addressed:

1. We must specify the number of component densities (or groups).1

2. The EM algorithm is iterative; so we need initial values of the
parameters to get started.

3. We have to assume some form (e.g., multivariate normal, t-distri-
bution, etc.) for the component densities.

The model-based clustering framework provides a principled way to tackle
all of these problems.

Let’s start with the second problem: initializing the EM algorithm. We use
model-based agglomerative clustering for this purpose. Model-based
agglomerative clustering [Murtagh and Raftery, 1984; Banfield and Raftery,
1993] uses the same general ideas of hierarchical agglomerative clustering,
where all observations start out in a single group, and two clusters are
merged at each step. However, in the model-based case, two clusters are
merged such that the classification likelihood is maximized.2 Recall that we
get a complete set of nested partitions with hierarchical clustering. From this,
we can obtain initial estimates of our component parameters based on a
given partition from the hierarchical clustering.

This brings us to issue three, which is the form of the component densities.
Banfield and Raftery [1993] devise a general framework for multivariate

1 This would be similar to specifying the k in k-means clustering.
2 The classification likelihood is similar to the mixture likelihood, except that each observation is
allowed to belong to only one component density. See Section 6.4 for a discussion.

Model-Based Clustering 239

normal mixtures based on constraining the component covariance matrices.
Imposing these constraints governs certain geometric properties of the
clusters, such as orientation, volume, and shape. In model-based clustering,
we assume that the finite mixture is composed of multivariate normal
densities, where constraints on the component covariance matrices yield
different models.

So, why is this called model-based clustering? This really pertains to issues
(1) and (2), together, which are specifying the number of components and
initializing the EM algorithm. We can consider the number of groups,
combined with the form of the component densities, as producing different
statistical models for the data. Determining the final model is accomplished
by using the Bayesian Information Criterion (BIC), which is an
approximation to Bayes factors [Schwarz, 1978; Kass and Raftery, 1995]. The
model with the optimal BIC value is chosen as the ‘best’ model. The reader
should be aware that we also use the word model to represent the type of
constraints and geometric properties of the covariance matrices. Hopefully,
the meaning of the word model will be clear from the context.

The steps of the model-based clustering framework are illustrated in
Figure 6.1. First, we choose our constraints on the component covariance
matrices (i.e., the model), and then we apply agglomerative model-based
clustering. This provides an initial partition of our data for any given number
of groups and any desired model. We use this partition to get initial estimates
of our component density parameters for use in the EM algorithm. Once we
converge to an estimate using the EM, we calculate the BIC, which will be
defined later in the chapter. We continue to do this for various models (i.e.,
number of groups and forms of the covariance matrices). The final model that
we choose is the one that produces the highest BIC. We now present more
information and detail on the constituent parts of model-based clustering.

FIGURE 6.1
This shows the flow of the steps in the model-based clustering procedure.

Agglomerative
Model-Based
Clustering

Chosen
Model

Data

Initialization for EM:
1. Number of components
2. Initial values for parameters

dendrogram

EM Algorithm

Calculate
the BIC

Find the
Highest BIC

Result - estimated model:
1. Number of components
2. Best form for densities
3. Parameter estimates

240 Exploratory Data Analysis with MATLAB®, Third Edition

6.2 Finite Mixtures

In this section, we provide more in-depth information regarding finite
mixtures, as well as the different forms of the constrained covariance
matrices used in model-based clustering. However, first we investigate an
example of a univariate finite mixture probability density function to facilitate
understanding of the multivariate approach.

Example 6.1
In this example, we show how to construct a probability density function that
is the weighted sum of two univariate normal densities. First, we set up the
various component parameters. We have equal mixing proportions or
weights. The means are given by –2 and 2, and the corresponding variances
are 0.25 and 1.44. Mathematically, we have

,

where denotes a univariate normal probability density function
with mean and variance . The following MATLAB code assigns the
component density parameters.

% First the mixing coefficients will be equal.
pie1 = 0.5;
pie2 = 0.5;
% Let the means be -2 and 2.
mu1 = -2;
mu2 = 2;

The MATLAB function normpdf that we use below requires the standard
deviation instead of the variance.

% The standard deviation of the first term is 0.5
% and the second one is 1.2.
sigma1 = 0.5;
sigma2 = 1.2;

Now we need to get a domain over which to evaluate the density, making
sure that we have enough points to encompass the interesting parts of this
density.

% Now generate a domain over which to evaluate the
% function.

f x πk µk σk
2, ,;() πkN x µk σk

2,;()
k 1=

2=

0.5 N x 2 0.25,–;()× 0.5 N x 2 1.44,;()×+=

N x µ σ2,;()
µ σ2

Model-Based Clustering 241

x = linspace(-6, 6);

We use the Statistics Toolbox function normpdf to evaluate the component
probability density functions. To get the finite mixture density, we need to
weight these according to their mixing proportions and then add them
together.

% The following is a Statistics Toolbox function.
y1 = normpdf(x,mu1,sigma1);
y2 = normpdf(x,mu2,sigma2);
% Now weight and add to get the final curve.
y = pie1*y1 + pie2*y2;
% Plot the final function.
plot(x,y)
xlabel('x'), ylabel('Probability Density Function')
title('Univariate Finite Mixture - Two Terms')

The plot is shown in Figure 6.2. The two terms are clearly visible, but this is
not always the case. In the cluster analysis context, we would speculate that
one group is located at –2 and another at 2.
❑

FIGURE 6.2
This shows the univariate probability density function as described in Example 6.1.

−6 −4 −2 0 2 4 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

P
ro

b
a
b
ili

ty
 D

e
n
si

ty
 F

u
n
ct

io
n

Univariate Finite Mixture − Two Terms

242 Exploratory Data Analysis with MATLAB®, Third Edition

6.2.1 Multivariate Finite Mixtures

The finite mixture approach to probability density estimation (and cluster
analysis) can be used for both univariate and multivariate data. In what
follows, we will concern ourselves with the multivariate case only.

Finite mixtures encompass a family of probability density functions that
are a weighted sum of component densities. The form of the density is given
by

. (6.1)

The component density is denoted by gk(x; θk) with associated parameters
represented by θk. Note that θk is used to denote any type and number of
parameters. The weights are given by πk, with the constraint that they are
nonnegative and sum to one. These weights are also called the mixing
proportions or mixing coefficients.

Say we want to use the finite mixture in Equation 6.1 as a model for the
distribution that generated our data. Then, to estimate the density, we must
know the number of components c, and we need to have a form for the
function gk.

The component densities can be any bona fide probability density, but one
of the most commonly used ones is the multivariate normal. This yields the
following equation for a multivariate Gaussian finite mixture

, (6.2)

where represents a multivariate normal probability density
function given by

,

where represents the determinant of a matrix. It is apparent from
Equation 6.2 that this model has parameters , µk (each one is a p-
dimensional vector of means), and Σk (each is a covariance matrix).

Now that we have a form for the component densities, we know what we
have to estimate using our data. We need to estimate the weights πk, the p-
dimensional means for each term, and the covariance matrices. Before we

f x πk θk,;() πk gk x θ; k()
k 1=

c=

f x πk µk Σk, ,;() πk N x; µk Σk,()
k 1=

c=

N x; µk Σk,()

N x; µk Σk,()

1
2--- xi µk–()TΣk

1– xi µk–()–
exp

2π()p 2⁄ Σk

---=

•
πk

p p×

Model-Based Clustering 243

describe how to do this using the EM algorithm, we first look at the form of
the multivariate normal densities in a little more detail.

6.2.2 Component Models — Constraining the Covariances

Banfield and Raftery [1993] and Celeux and Govaert [1995] provide the
following eigenvalue decomposition of the k-th covariance matrix

. (6.3)

The factors in Equation 6.3 are given by the following:

� The volume of the k-th cluster or component density is governed
by the λk , which is proportional to the volume of the standard
deviation ellipsoid. We note that the volume is different from the
size of a cluster. The size is the number of observations falling into
the cluster, while the volume is the amount of space encompassed
by the cluster.

� Dk is a matrix with columns corresponding to the eigenvectors of
Σk. It determines the orientation of the cluster.

� Ak is a diagonal matrix. Ak contains the normalized eigenvalues of
Σk along the diagonal. By convention, they are arranged in
decreasing order. This matrix is associated with the shape of the
distribution.

We now describe the various models in more detail, using the notation and
classification of Celeux and Govaert. The eigenvalue decomposition given in
Equation 6.3 produces a total of 14 models, by keeping factors λk, Ak, and Dk

constant across terms and/or restricting the form of the covariance matrices
(e.g., restrict it to a diagonal matrix). There are three main families of models:
the spherical family, the diagonal family, and the general family.

Celeux and Govaert provide covariance matrix update equations based on
these models for use in the EM algorithm. Some of these have a closed form,
and others must be solved in an iterative manner. We concern ourselves only
with the nine models that have a closed form update for the covariance
matrix. Thus, what we present in this text is a subset of the available models.
These are summarized in Table 6.1.

Spherical Family

The models in this family are characterized by diagonal matrices, where each
diagonal element of the covariance matrix Σk has the same value. Thus, the
distribution is spherical; i.e., each variable of the component density has the

Σk λkDkAkDk
T

=

244 Exploratory Data Analysis with MATLAB®, Third Edition

TABLE 6.1

Description of Multivariate Normal Mixture Models with Closed Form Solution
to Covariance Matrix Update Equation in EM Algorithm

Model

Covariance Distribution Description

1
Family: Spherical
Volume: Fixed
Shape: Fixed
Orientation: NA

�Diagonal covariance matrices
�Diagonal elements are equal
�Covariance matrices are equal
�I is a identity matrix

2
Family: Spherical
Volume: Variable
Shape: Fixed
Orientation: NA

�Diagonal covariance matrices
�Diagonal elements are equal
�Covariance matrices may vary
�I is a identity matrix

3
Family: Diagonal
Volume: Fixed
Shape: Fixed
Orientation: Axes

�Diagonal covariance matrices
�Diagonal elements may be unequal
�Covariance matrices are equal
�B is a diagonal matrix

4
Family: Diagonal
Volume: Fixed
Shape: Variable
Orientation: Axes

�Diagonal covariance matrices
�Diagonal elements may be unequal
�Covariance matrices may vary

among components
�B is a diagonal matrix

5
Family: Diagonal
Volume: Variable
Shape: Variable
Orientation: Axes

�Diagonal covariance matrices
�Diagonal elements may be unequal
�Covariance matrices may vary

among components
�B is a diagonal matrix

6
Family: General
Volume: Fixed
Shape: Fixed
Orientation: Fixed

�Covariance matrices can have
nonzero off-diagonal elements

�Covariance matrices are equal

7
Family: General
Volume: Fixed
Shape: Fixed
Orientation: Variable

�Covariance matrices can have
nonzero off-diagonal elements

�Covariance matrices may vary
among components

8
Family: General
Volume: Fixed
Shape: Variable
Orientation: Variable

�Covariance matrices can have
nonzero off-diagonal elements

�Covariance matrices may vary
among components

9
Family: General
Volume: Variable
Shape: Variable
Orientation: Variable

�Covariance matrices can have
nonzero off-diagonal elements

�Covariance matrices may vary
among components

Σk λI=

p p×

Σk λkI=

p p×

Σk λB=

Σk λBk=

Σk λkBk=

Σk λDADT
=

Σk λDkADk
T

=

Σk λDkAkDk
T

=

Σk λkDkAkDk
T

=

Model-Based Clustering 245

same variance. We have two closed-form cases in this family, each
corresponding to a fixed spherical shape.

The first has equal volume across all components, so the covariance is of
the form

,

where I is the identity matrix. The other model allows the volumes to
vary. In this case, Equation 6.3 becomes

.

Celeux and Govaert note that these models are invariant under any isometric
transformation.

Example 6.2
We will generate a data set according to model 2 in Table 6.1. Here we have
the spherical model, where the covariance matrices are allowed to vary
among the component densities. The data set has n = 250 data points in 3–D,
and we choose to have c = 2 component densities. The parameters for the
multivariate normal components are given by

We use the genmix GUI to generate the sample. See the last section of this
chapter for information on how to use this tool. Once we generate the data,
we can display it in a scatterplot matrix, as in Figure 6.3. Note that the second
component centered at [–2, –2, –2]T has fewer points, but seems to have a
larger volume.
❑

Diagonal Family

The models in this family are also diagonal, but now the elements along the
diagonal of the covariance matrix are allowed to be different. The covariances
are of the form

,

Σk λDADT λI= =

p p×

Σk λkDADT λkI= =

µ1 2 2 2, ,[]T
=

Σ1 I=

π1 0.7=

λ1 1=

µ2 2– 2– 2–, ,[]T
=

Σ2 2I=

π2 0.3=

λ2 2=

Σ λB λDADT
= =

246 Exploratory Data Analysis with MATLAB®, Third Edition

where

,

and |B| = 1. The matrix B determines the shape of the cluster.
The cluster shapes arising in this family of models are elliptical, because the

variance in each of the dimensions is allowed to be different. Celeux and
Govaert mention that the models in the diagonal family are invariant under
any scaling of the variables. However, invariance does not hold for these
models under all linear transformations.

We include three of the models in this family. The first is where each
component covariance matrix is equal, with the same volume and shape:

.

Next we have one where the covariance matrices are allowed to vary in
shape, but not in volume:

FIGURE 6.3
This shows a scatterplot matrix of the data set randomly generated according to model 2,
which is a member of the spherical family.

−5 0 5−10 −5 0 5−10 −5 0 5

−5

0

5

−10

−5

0

5

−10

−5

0

5

B diag b1 … bp, ,()=

Σk λB=

Model-Based Clustering 247

.

Finally, we allow both volume and shape to vary between the components or
clusters:

.

Example 6.3
To illustrate an example from the diagonal family, we again use genmix to
generate random variables according to the following model. We will use

, p = 2, and c = 2. The means, weights, and covariance are given by

This is model 4, which is equal volume, but different shapes. A scatterplot
matrix of a random sample generated according to this distribution is shown
in Figure 6.4.
❑

General Family

This family includes the more general cases for each cluster or component
density. The covariances are no longer constrained to be diagonal. In other
words, the off-diagonal terms of the matrices can be nonzero. The models in
the general family are invariant under any linear transformation of the data.

We include four models from this family. As usual, the first one has all
covariances constrained to be equal. This means that the clusters have fixed
shape, volume, and orientation:

.

Next we allow the orientation to change, but keep the volume and shape
fixed:

.

Σk λBk=

Σk λkBk=

n 250=

µ1 2 2,[]T
=

B1

3 0

0 1
3---

=

π1 0.7=

λ1 1=

µ2 2– 2–,[]T
=

B2

1
2--- 0

0 2
=

π2 0.3=

λ2 1=

Σk λDADT
=

Σk λDkADk
T

=

248 Exploratory Data Analysis with MATLAB®, Third Edition

Then we allow both shape and orientation to vary, while keeping the volume
fixed:

.

Finally, we have the unconstrained version, where nothing is fixed, so shape,
volume and orientation are allowed to vary:

.

The unconstrained version is the one typically used in finite mixture models
with multivariate normal components.

Example 6.4
The general family of models requires a full covariance matrix for each
component density. We illustrate this using the following model (n = 250,
p = 2, and c = 2):

FIGURE 6.4
These data were generated according to a distribution that corresponds to model 4 of the
diagonal family.

−6 −4 −2 0 2 4−5 0 5 10

−6

−4

−2

0

2

4

−4

−2

0

2

4

6

8

Σk λDkAkDk
T

=

Σk λkDkAkDk
T

=

Model-Based Clustering 249

Note that this is model 8 that corresponds to fixed volume, variable shape,
and orientation. We have to multiply these together as in Equation 6.3 to get
the covariance matrices for use in the genmix tool. These are given below,
rounded to the fourth decimal place.

.

A scatterplot matrix showing a data set generated from this model is shown
in Figure 6.5.
❑

Now that we know more about the different models we might have for
multivariate normal finite mixtures, we need to look at how we can use our
data to get estimates of the parameters. The EM algorithm is used for this
purpose.

6.3 Expectation-Maximization Algorithm

The problem of estimating the parameters in a finite mixture has been
studied for many years. The approach we present here is called the
Expectation-Maximization (EM) method. This is a general method for
optimizing likelihood functions and is useful in situations where data might
be missing or simpler optimization methods fail. The seminal paper on this
method is by Dempster, Laird, and Rubin [1977], where they formalize the
EM algorithm and establish its properties. Redner and Walker [1984] apply it
to finite mixture probability density estimation. The EM methodology is now

µ1 2 2,[]T
= µ2 2– 2–,[]T

=

A1

3 0

0 1
3---

= A2

1
2--- 0

0 2
=

D1
π 8÷()cos π 8÷()sin–

π 8÷()sin π 8÷()cos
=

π1 0.7=

λ1 1=

D2
6π 8÷()cos 6π 8÷()sin–

6π 8÷()sin– 6π 8÷()cos
=

π2 0.3=

λ2 1=

Σ1
2.6095 0.9428
0.9428 0.7239

= Σ2
1.6667 1.3333–

1.3333– 1.6667
=

250 Exploratory Data Analysis with MATLAB®, Third Edition

a standard tool for statisticians and is used in many applications besides
finite mixture estimation.

We wish to estimate the parameters:

.

Using the maximum likelihood approach, we maximize the log-likelihood
given by

. (6.4)

We assume that the components exist in a fixed proportion in the mixture,
given by the πk. Thus, it makes sense to calculate the probability that a
particular point xi belongs to one of the component densities. It is this
component membership (or cluster membership) that is unknown, and the
reason why we need to use something like the EM algorithm to maximize

FIGURE 6.5
This shows a data set generated according to model 8 of the general family. These two
components have equal volumes, but different shapes and orientations.

−10 −5 0 5−5 0 5 10

−6

−4

−2

0

2

4

6

−5

0

5

10

θ π1 … πc 1– µ1 … µc Σ1 … Σc, , , , , , , ,=

L θ x1 … xn, ,() πk N xi µk Σk,;()
k 1=

cln
i 1=

n=

Model-Based Clustering 251

Equation 6.4. We can write the posterior probability that an observation xi

belongs to component k as

, (6.5)

where

.

For those readers not familiar with the notation, the hat or caret above the
parameters denotes an estimate. So, the posterior probability in Equation 6.5
is really an estimate based on estimates of the parameters.

Recall from calculus, that to maximize the function given in Equation 6.4,
we must find the first partial derivatives with respect to the parameters in θ
and then set them equal to zero. These are called the likelihood equations,
and they are not provided here. Instead, we provide the solution [Everitt and
Hand, 1981] to the likelihood equations as follows

(6.6)

(6.7)

. (6.8)

The update for the covariance matrix given in Equation 6.8 is for the
unconstrained case described in the previous section. This is model 9 in
Table 6.1. We do not provide the update equations for the other models in
this text. However, they are implemented in the model-based clustering
function that comes with the EDA Toolbox. Please see Celeux and Govaert
[1995] for a complete description of the update equations for all models.

Because the posterior probability (Equation 6.5) is unknown, we need to
solve these equations in an iterative manner. It is a two step process,
consisting of an E-Step and an M-Step, as outlined below. These two steps are
repeated until the estimated values converge.

τ̂ik xi()
πk
ˆ N xi µ̂k Σˆ k,;()

f̂ xi π̂k µ̂k Σˆ k, ,;()
----------------------------------- ;= k 1 … c i;, , 1 … n, ,= =

f̂ xi π̂k µ̂k Σˆ k, ,;() π̂kN xi µ̂k Σˆ k,;()
k 1=

c=

π̂k
1
n
--- τ̂ik

i 1=

n=

µ̂k
1
n

τ̂ikxi

π̂k

i 1=

n=

Σˆ k
1
n

τ̂ik xi µ̂k–() xi µ̂k–()
T

π̂k

i 1=

n=

252 Exploratory Data Analysis with MATLAB®, Third Edition

E-Step

We calculate the posterior probability that the i-th observation belongs
to the k-th component, given the current values of the parameters.
This is given by Equation 6.5.

M-Step

Update the parameter estimates using the estimated posterior
probability and Equations 6.6 through 6.8 (or use the covariance
update equation for the specified model).

Note that the E-Step allows us to weight the component parameter updates
in the M-Step according to the probability that the observation belongs to that
component density.

Hopefully, it is obvious to the reader now why we need to have a way to
initialize the EM algorithm, in addition to knowing how many terms or
components are in our finite mixture. It is known that the likelihood surface
typically has many modes, and the EM algorithm may even diverge,
depending on the starting point. However, the EM can provide improved
estimates of our parameters if the starting point is a good one [Fraley and
Raftery, 2002]. The discovery that partitions based on model-based
agglomerative clustering provide a good starting point for the EM algorithm
was first discussed in Dasgupta and Raftery [1998].

Procedure – Estimating Finite Mixtures

1. Determine the number of terms or component densities c in the
mixture.

2. Determine an initial guess at the component parameters. These are
the mixing coefficients, means, and covariance matrices for each
multivariate normal density.

3. For each data point xi, calculate the posterior probability using
Equation 6.5 and the current values of the parameters. This is the
E-Step.

4. Update the mixing coefficients, the means, and the covariance
matrices for the individual components using Equations 6.6
through 6.8. This is the M-Step. Note that in the model-based
clustering approach, we use the appropriate covariance update for
the desired model (replacing Equation 6.8).

5. Repeat steps 3 through 4 until the estimates converge.

Typically, step 5 is implemented by continuing the iteration until the changes
in the estimates at each iteration are less than some pre-set tolerance.
Alternatively, one could keep iterating until the likelihood function

Model-Based Clustering 253

converges. Note that with the EM algorithm, we use the entire data set to
simultaneously update the parameter estimates at each step.

Example 6.5
Since the MATLAB code can be rather complicated for the EM algorithm, we
do not provide the code in this example. Instead, we show how to use a
function called mbcfinmix that returns the weights, means, and covariances
given initial starting values. The general syntax for this is

[pies,mus,vars]=...
 mbcfinmix(X,muin,varin,wtsin,model);

The input argument model is the number from Table 6.1. We will use the
data generated in Example 6.4. We saved the data to the workspace as
variable X. The following commands set up some starting values for the EM
algorithm.

% Need to get initial values of the parameters.
piesin = [0.5, 0.5];
% The musin argument is a matrix of means,
% where each column is a p-D mean.
musin = [ones(2,1), -1*ones(2,1)];
% The varin argument is a 3-D array, where
% each page corresponds to one of the
% covariance matrices.
varin(:,:,1) = 2*eye(2);
varin(:,:,2) = eye(2);

Note that our initial values are sensible, but they do need adjusting. We call
the EM algorithm with the following:

% Now call the function.
[pie,mu,vars]=mbcfinmix(X,musin,varin,piesin,8);

The final estimates (rounded to four decimal places) are shown below.

pie = 0.7188 0.2812
mu =
 2.1528 -1.7680
 2.1680 -2.2400
vars(:,:,1) =
 2.9582 1.1405
 1.1405 0.7920
vars(:,:,2) =
 1.9860 -1.3329
 -1.3329 1.4193

254 Exploratory Data Analysis with MATLAB®, Third Edition

We see that the estimates are reasonable ones. We now show how to
construct a surface based on the estimated finite mixture. The resulting plot
is shown in Figure 6.6.

% Now create a surface for the density.
% Get a domain over which to evaluate the function.
x1 = linspace(-7,7,50);
x2 = linspace(-7,5,50);
[X1,X2] = meshgrid(x1,x2);
% The X1 and X2 are matrices. We need to
% put them as columns into another one.
dom = [X1(:), X2(:)];
% Now get the multivariate normal pdf at
% the domain values - for each component.
% The following function is from the
% Statistics Toolbox.
Y1 = mvnpdf(dom,mu(:,1)',vars(:,:,1));
Y2 = mvnpdf(dom,mu(:,2)',vars(:,:,2));
% Weight them and add to get the final function.
y = pie(1)*Y1 + pie(2)*Y2;
% Need to reshape the Y vector to get a matrix
% for plotting as a surface plot.
[m,n] = size(X1);
Y = reshape(y,m,n);
surf(X1,X2,Y)
axis([-7 7 -7 5 0 0.12])
xlabel('X_1'),ylabel('X_2')
zlabel('PDF')

We compare this to the scatterplot of the random sample shown in Figure 6.5.
We see that the surface matches the density of the data.
❑

6.4 Hierarchical Agglomerative Model-Based Clustering

We now describe another major component of the model-based clustering
process, one that enables us to find initial values of our parameters for any
given number of groups. Agglomerative model-based clustering works in a
similar manner to the hierarchical methods discussed in the previous
chapter, except that we do not have any notion of distance. Instead, we work
with the classification likelihood as our objective function. This is given by

Model-Based Clustering 255

, (6.9)

where γi is a label indicating a classification for the i-th observation. We have
γi = k, if xi belongs to the k-th component. In the mixture approach, the
number of observations in each component has a multinomial distribution
with sample size of n, and probability parameters given by .

Model-based agglomerative clustering is a way to approximately
maximize the classification likelihood. We start with singleton clusters
consisting of one point. The two clusters producing the largest increase in the
classification likelihood are merged at each step. This process continues until
all observations are in one group. Note that the form of the objective function
is adjusted as in Fraley [1998] to handle singleton clusters.

In theory, we could use any of the nine models in Table 6.1, but previous
research indicates that the unconstrained model (number 9) with
agglomerative model-based clustering yields reasonable initial partitions for

FIGURE 6.6
In Example 6.5, we estimated the density using the data from Figure 6.5 and the EM
algorithm. This surface plot represents the estimated function. Compare to the scatterplot
of the data in Figure 6.5.

−6
−4

−2
0

2
4

6

−5

0

5

0

0.02

0.04

0.06

0.08

0.1

0.12

X
1

X
2

P
D

F

lCL θk γi xi;,() fγi
xi θγi

;()
i 1=

n

∏=

π1 … πc, ,

256 Exploratory Data Analysis with MATLAB®, Third Edition

the EM algorithm and any model in Table 6.1. Thus, our MATLAB
implementation of agglomerative model-based clustering includes just the
unconstrained model. Fraley [1998] provides efficient algorithms for the four
basic models (1, 2, 6, 9) and shows how the techniques developed for these
can be extended to the other models.

Example 6.6
The function for agglomerative model-based clustering is called agmbclust.
It takes the data matrix X and returns the linkage matrix Z, which is in the
same form as the output from MATLAB’s linkage function. Thus, the
output from agmbclust can be used with other MATLAB functions that
expect this matrix. We will use the familiar iris data set for this example.

% Load up the data and put into a data matrix.
load iris
X = [setosa; versicolor; virginica];
% Then call the function for agglomerative MBC.
Z = agmbclust(X);

We can show the results in a dendrogram, as in Figure 6.7 (top). Two groups
are obvious, but three groups might also be reasonable. We use the silhouette
function from the previous chapter to assess the partition for three groups.

% We can apply the silhouette procedure for this
% after we find a partition. Use 3 groups.
cind = cluster(Z,3);
[S,H] = silhouette(X,cind);

The silhouette plot is shown in Figure 6.7 (bottom). We see one really good
cluster (number three). The others have small values and even negative ones.
The average silhouette value is 0.7349.
❑

6.5 Model-Based Clustering

The model-based clustering framework consists of three major pieces:

1. Initialization of the EM algorithm using partitions from model-
based agglomerative clustering.

2. Maximum likelihood estimation of the parameters via the EM al-
gorithm.

3. Choosing the model and number of clusters according to the BIC
approximation of Bayes factors.

Model-Based Clustering 257

FIGURE 6.7
The top figure is the dendrogram derived from agglomerative model-based clustering of
the iris data. We partition into three groups and then get their silhouette values. The
corresponding silhouette plot is shown in the bottom panel.

 9 23 3 2 1 20 6 15 4 5 16 11 13 14 17 21 7 12 8 26 10 18 24 30 19 29 22 25 27 28

50

100

150

200

250

Results for Iris Data − Agglomerative MBC

0 0.2 0.4 0.6 0.8 1

1

2

3

Silhouette Value

C
lu

st
e
r

Silhouette Plot − Agglomerative MBC

258 Exploratory Data Analysis with MATLAB®, Third Edition

We have already discussed the first two of these in detail; so we now turn our
attention to Bayes factors and the BIC.

The Bayesian approach to model selection started with Jeffreys [1935,
1961]. Jeffreys developed a framework for calculating the evidence in favor
of a null hypothesis (or model) using the Bayes factor, which is the posterior
odds of one hypothesis when the prior probabilities of the two hypotheses
are equal [Kass and Raftery, 1995].

Let’s start with a simple two model case. We have our data X, which we
assume to have arisen according to either model M1 or M2. Thus, we have
probability densities p(X|M1) or p(X|M2) and prior probabilities p(M1) and
p(M2). From Bayes Theorem, we obtain the posterior probability of
hypothesis Mg given data X,

, (6.10)

for g = 1, 2. If we take the ratio of the two probabilities in Equation 6.10 for
each of the models, then we get

. (6.11)

The Bayes factor is the first factor in Equation 6.11:

.

If any of the models contain unknown parameters, then the densities
p(X|Mg) are obtained by integrating over the parameters. In this case, the
resulting quantity p(X|Mg) is called the integrated likelihood of model Mg.
This is given by

, (6.12)

for .
The natural thing to do would be to choose the model that is most likely,

given the data. If the prior probabilities are equal, then this simply means that
we choose the model with the highest integrated likelihood p(X|Mg). This
procedure is relevant for model-based clustering, because it can be applied
when there are more than two models, as well as being a Bayesian solution
[Fraley and Raftery, 1998, 2002; Dasgupta and Raftery, 1998].

One of the problems with using Equation 6.12 is the need for the prior
probabilities p(θg|Mg). For models that satisfy certain regularity conditions,

p Mg X()
p Mg()p X | Mg()

p M1()p X | M1() p M2()p X | M2()+
---=

p M1 X()
p M2 X()

p X | M1()
p X | M2()

p M1()
p M2()
---------------×=

B12
p X | M1()
p X | M2()
------------------------=

p X | Mg() p X | θg Mg,()p θg Mg() θgd=

g 1 … G, ,=

Model-Based Clustering 259

the logarithm of the integrated likelihood can be approximated by the
Bayesian Information Criterion (BIC), given by

, (6.13)

where mg is the number of independent parameters that must be estimated
for model Mg. It is well known that finite mixture models fail to satisfy the
regularity conditions to make Equation 6.13 valid. However, previous
applications and studies show that the use of the BIC in model-based
clustering produces reasonable results [Fraley and Raftery, 1998; Dasgupta
and Raftery, 1998].

Now that we have all of the pieces of model-based clustering, we offer the
following procedure that puts it all together.

Procedure – Model-Based Clustering

1. Using the unconstrained model, apply the agglomerative model-
based clustering procedure to the data. This provides a partition
of the data for any given number of clusters.

2. Choose a model, M (see Table 6.1).

3. Choose a number of clusters or component densities, c.

4. Find a partition with c groups using the results of the agglomera-
tive model-based clustering (step 1).

5. Using this partition, find the mixing coefficients, means, and
covariances for each cluster. The covariances are constrained
according to the model chosen in step 2.

6. Using the chosen c (step 3) and the initial values (step 5), apply the
EM algorithm to obtain the final estimates.

7. Calculate the value of the BIC for this value of c and M:

,

where LM is the log likelihood, given the data, the model M, and the
estimated parameters (Equation 6.13).

 8. Go to step 3 to choose another value of c.

 9. Go to step 2 to choose another model M.

10. Choose the best configuration (number of clusters c and form of
the covariance matrices) that corresponds to the highest BIC.

We see from this procedure that model-based clustering assumes various
models for the covariance matrices and numbers of clusters, performs the
cluster analysis, and then chooses the most likely clustering. So, it is an

p X | Mg() BICg 2 p X | θ̂g Mg,()log mg n()log–=≈

BICg 2LM X θ̂,() mg n()log–=

θ̂

260 Exploratory Data Analysis with MATLAB®, Third Edition

exhaustive search over the space of models that are both interesting and
available. If we were interested in looking for 1 to C groups using all nine of
the models, then we would have to perform the procedure times. As
one might expect, this can be computationally intensive.

Example 6.7
We are going to use the iris data for this example, as well. The function
called mbclust invokes the entire model-based clustering procedure:
agglomerative model-based clustering, finite mixture estimation via the EM
algorithm, and evaluating the BIC. The outputs from this function are: (1) a
matrix of BIC values, where each row corresponds to a model, (2) a structure
that has fields representing the parameters (pies, mus, and vars) for the
best model, (3) a structure that contains information about all of the models
(see the next example), (4) the matrix Z representing the agglomerative
model-based clustering, and (5) a vector of group labels assigned using the
best model.

load iris
data = [setosa;versicolor;virginica];
% Call the model-based clustering procedure with a
% maximum of 6 clusters.
[bics,bestmodel,allmodel,Z,clabs] = ...

FIGURE 6.8
This shows the BIC curves for the model-based clustering of the iris data. We see that the
highest BIC corresponds to model 9 and 2 groups.

C 9×

0 1 2 3 4 5 6 7
−2000

−1500

−1000

−500

Number of clusters

B
IC

Model 9, 2 clusters is optimal.

1: Σ
k
 = λ I

2: Σ
k
 = λ

k
 I

3: Σ
k
 = λ B

4: Σ
k
 = λ B

k
5: Σ

k
 = λ

k
 B

k
6: Σ

k
 = λ DAD’

7: Σ
k
 = λ D

k
 A D

k
’

8: Σ
k
 = λ D

k
 A

k
 D

k
’

9: Σ
k
 = Σ

k

Model-Based Clustering 261

 mbclust(data,6);

We can plot the BIC curves using plotbic, as follows

% Display the BIC curves.
plotbic(bics)

This is given in Figure 6.8. We see that the best model yielding the highest
BIC value is for two clusters. We know that there are three groups in this data
set, but two of the clusters tend to overlap and are hard to distinguish. So, it
is not surprising that two groups were found using model-based clustering.
As stated earlier, the EM algorithm can diverge so the covariance matrix can
become singular. In these cases, the EM algorithm is stopped for that model;
so you might see some incomplete BIC curves.
❑

The model-based clustering procedure we just outlined takes us as far as
the estimation of a finite mixture probability density. Recall, that in this
framework for cluster analysis, each component of the density provides a
template for a cluster. Once we have the best model (number of clusters and
form of the covariance matrices), we use it to group data based on their
posterior probability. It makes sense to cluster an observation based on its
highest posterior probability:

.

In other words, we find the posterior probability that the i-th observation
belongs to each of the component densities. We then say that it belongs to the
cluster with the highest posterior probability. One benefit of using this
approach is that we can use the quantity as a measure of the
uncertainty in the classification [Bensmail et al., 1997].

Example 6.8
Returning to the results of the previous example, we show how to use some
of the other outputs from mbclust. We know that the iris data has three
groups. First, let’s see how we can extract the model for three groups and
model 9. We can do this using the following syntax to reference it:

allmodel(9).clus(3)

The variable allmodel is a structure with one field called clus. It
(allmodel) has nine records, one for each model. The field clus is another
structure. It has maxclus records and three fields: pies, mus, and vars. To
obtain the group labels according to this model, we use the mixclass
function. This requires the data and the finite mixture parameters for the
model.

cluster j τ̂ij
* maxkτ̂ik={ }

1 τ̂ij
*

–

262 Exploratory Data Analysis with MATLAB®, Third Edition

% Extract the parameter information:
pies = allmodel(9).clus(3).pies;
mus = allmodel(9).clus(3).mus;
vars = allmodel(9).clus(3).vars;

Now we can group the observations.

% The mixclass function returns group labels
% as well as a measure of the uncertainty in the
% classification.
[clabs3,unc] = mixclass(data,pies,mus,vars);

We can assess the results, as before, using the silhouette function.

% As before, we can use the silhouette procedure
% to assess the cluster results.
[S, H] = silhouette(data,clabs3);
title('Iris Data - Model-Based Clustering')

The average silhouette value is 0.6503, and the silhouette plot is shown in
Figure 6.9. The reader is asked in the exercises to explore the results of the
two cluster case with the best model in a similar manner.
❑

FIGURE 6.9
This is the silhouette plot showing the results of the model-based clustering, model 9, three
clusters.

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

1

2

3

Silhouette Value

C
lu

st
e
r

Iris Data − Model−Based Clustering

Model-Based Clustering 263

6.6 MBC for Density Estimation and Discriminant Analysis

6.6.1 Introduction to Pattern Recognition

Our previous discussions in this chapter focused on the application of model-
based clustering to unsupervised learning or clustering. Within this section,
we are going to extend these discussions and show how model-based
clustering can be used to estimate probability density functions as finite
mixtures and their applications within a supervised learning framework.
First, we provide some background information on this topic, which is also
known as discriminant analysis or pattern recognition.

Examples where pattern recognition techniques can be used are numerous
and arise in disciplines such as medicine, computer vision, robotics,
manufacturing, finance, and many others. Some of these include the
following [Martinez and Martinez, 2015]:

� A doctor diagnoses a patient’s illness based on the symptoms and
test results.

� A geologist determines whether a seismic signal may represent an
impending earthquake.

� A loan manager at a bank must decide whether a customer is a
good credit risk based on their income, past credit history, and
other variables.

In all of these applications, the human can be assisted by computational
pattern recognition methods that analyze the data and recommend answers.

Pattern recognition methods for supervised learning situations are covered
in this section. With supervised learning, we have a data set where we know
the classification of each observation. Thus, each case or data point has a class
label associated with it. We construct a classifier based on this data set, which
is then used to classify future observations. Many of the data sets that we
discussed in Chapter 1 fall into this category (e.g., the oronsay, yeast, and
leukemia data sets).

Figure 6.10 illustrates the major steps of statistical pattern recognition. The
first step in pattern recognition is to select features that will be used to distin-
guish between the classes. As the reader might expect, the choice of features
is perhaps the most important part of the process. Building accurate classifi-
ers is much easier with features that allow one to readily distinguish between
classes.

Once our features are selected, we obtain a sample of these features for the
different classes. This means that we find objects that belong to the classes of

264 Exploratory Data Analysis with MATLAB®, Third Edition

interest and then measure the features. Thus, each observation has a class
label attached to it. Now that we have data that are known to belong to the
different classes, we can use this information to create a classifier. This clas-
sifier will take a new set of feature measurements as inputs and then output
the estimated class membership. Using model-based clustering as a way to
create such a classifier is the topic of this section.

6.6.2 Bayes Decision Theory

The Bayes approach to pattern classification is a fundamental technique, and
we recommend it as the starting point for most pattern recognition
applications. If this method proves to be inadequate, then more complicated
techniques may be used (e.g., neural networks, classification trees, support
vector machines). Bayes decision theory poses the classification problem in
terms of probabilities. Therefore, all of the probabilities must be known or
estimated from the data.

We start off by fixing some notation. Let the class membership be denoted
by , for a total of J classes. For example, with the oronsay
data, we have classes:

The features we are using for classification are denoted by the p-dimensional
vector x. With the oronsay data, we have twelve measurements represent-
ing the size of the sand particles; so . In the supervised learning situ-

FIGURE 6.10
This shows a schematic diagram of the major steps for statistical pattern recognition [Duda
and Hart, 1973; Martinez and Martinez, 2015]. Here, a sensor represents the measuring
device.

Object Sensor Feature
Extractor Classification

Class
Membership

w 1

w J

w 2.
.
.

ωj j 1 … J, ,=

J 3=

ω1 midden=

ω2 beach=

ω3 dune.=

p 12=

Model-Based Clustering 265

ation, each of the observed feature vectors will also have a class label attached
to it.

Our goal is to use the data to create a decision rule or classifier that will take
a feature vector x whose class membership is unknown and return the class
it most likely belongs to. A logical way to achieve this is to assign a class label
to this feature vector using the class corresponding to the highest posterior
probability. This probability is given by

. (6.14)

Equation 6.14 represents the probability that the case belongs to the j-th class
given the observed feature vector x. To use this rule, we would evaluate all
of the J posterior probabilities, and the class corresponding to the highest
probability would be the one chosen.

We find the posterior probabilities using Bayes theorem:

, (6.15)

where

. (6.16)

We see from equation 6.15 that we must know the prior probability that it
would be in class j given by

, (6.17)

and the class-conditional probability

. (6.18)

The class-conditional probability in Equation 6.18 represents the
probability distribution of the features for each class. The prior probability in
Equation 6.17 represents our initial degree of belief that an observed set of
features is a case from the j-th class. The process of estimating these
probabilities is how we build the classifier.

The prior probabilities can either be inferred from prior knowledge of the
application, estimated from the data, or assumed to be equal. Using our
oronsay data as an example, we could estimate the prior probabilities using
the proportion of each class in our sample. We had 226 observed feature
vectors (samples of sand), with 77 from the midden, 110 from the beach, and

P ωj x(); j 1 … J, ,=

P ωj x()
P ωj()P x ωj()

P x()
----------------------------------=

P x() P ωj()P x ωj()
j 1=

J=

P ωj(); j 1 … J, ,=

P x ωj(); j 1 … J, ,=

266 Exploratory Data Analysis with MATLAB®, Third Edition

39 from the dunes. Thus, we have , , , and
, and our estimated prior probabilities would be

In some applications, we might use equal priors when we believe each class
is equally likely.

Now that we have our prior probabilities, , we turn our attention to
the class-conditional probabilities . We can use various density
estimation techniques to obtain these probabilities. In essence, we take all of
the observed feature vectors that are known to come from class and
estimate the density using only those cases. We will eventually use model-
based clustering to obtain a probability density estimate for each class. The
reader is referred to Martinez and Martinez [2015] and Scott [2015] for details
and options on other approaches.

Once we have estimates of the prior probabilities (Equation 6.17) and the
class-conditional probabilities (Equation 6.18), we can use Bayes theorem
(Equation 6.15) to obtain the posterior probabilities. Bayes decision rule is
based on these posterior probabilities. Bayes decision rule says the following:

BAYES DECISION RULE:

Given a feature vector x, assign it to class if

. (6.19)

In essence, this rule means that we will classify an observation x as belonging
to the class that has the highest posterior probability.

We can use an equivalent rule by recognizing that the denominator of the
posterior probability (see Equation 6.15) is simply a normalization factor and
is the same for all classes. So, we can use the following alternative decision
rule:

. (6.20)

Note that if we have equal priors for each class, then our decision rule of
Equation 6.20 is based only on the class-conditional probabilities. The deci-
sion rule partitions the feature space into J decision regions . If
x is in region , then we will say it belongs to class .

n 226= n1 77= n2 110=

n3 39=

P̂ ω1()
n1

n

77
226--------- 0.34≈= =

P̂ ω2()
n2

n

110
226--------- 0.49≈= =

P̂ ω3()
n3

n

39
226--------- 0.17.≈= =

P̂ ωj()
P x ωj()

ωj

ωj

P ωj x() P ωi x();> i 1 … J i j≠;, ,=

P x ωj()P ωj() P x ωi()P ωi();> i 1 … J i j≠;, ,=

Ω1 Ω2 … ΩJ, , ,
Ωj ωj

Model-Based Clustering 267

6.6.3 Estimating Probability Densities with MBC

Let us explore the use of model-based clustering to obtain an estimate of the
class-conditional probability density function (Equation 6.18) for each class.
The idea is to estimate these probability densities using the mixture models
obtained via the model-based clustering procedure. We can evaluate the
efficacy of these estimates using maximum likelihood or the BIC, as was done
within our model-based clustering discussions.

From the development of model-based clustering, we know that it clusters
observations using an approach where we first estimate a probability density
function using a finite mixture model and then use each of the components
in the mixture as a template for a cluster. However, in a supervised learning
context, we could obtain a probability density estimate from model-based
clustering for each class and then use Bayes decision rule. We will explore
this procedure in the next example.

Example 6.9
In this example, we use two-class data that are generated using a function
called gmdistribution from the Statistics Toolbox. This allows us to
generate data for each class known to come from a finite mixture and also to
illustrate the use of this relatively new capability in the MATLAB toolbox.
One can also use the genmix GUI that is in the EDA Toolbox for this purpose.
(The genmix GUI is discussed in the next section.) First, we are going to
generate the observations for class one.

% Set up a matrix of means.
MU1 = [3 3;-3 -3];
% Now we set the covariance matrices and put
% them into a 3-D array
SIGMA1 = cat(3,[1,0;0,1],[.3,0;0,.3]);
% Here we set the mixing proportions with the
% same number of observations in each class.
p1 = ones(1,2)/2;
% This Statistics Toolbox function
% creates a mixture object.
obj1 = gmdistribution(MU1,SIGMA1,p1);
% Here we draw a random sample of size 1000 from
% this mixture model
X1 = random(obj1, 1000);

Now, we do the same thing to generate the data that belong to the second
class.

MU2 = [3 -3;-3 3];
SIGMA2 = cat(3,[1,.75;.75,1],[1,0;0,1]);
p2 = ones(1,2)/2;
obj2 = gmdistribution(MU2,SIGMA2,p2);

268 Exploratory Data Analysis with MATLAB®, Third Edition

X2 = random(obj2, 1000);

A scatterplot of these data is shown in Figure 6.11 (top), where we have the
data from class one shown as crosses and class two data shown as points. The
next step in building our classifier is to estimate the class-conditional
probabilities for each of our classes using the MBC procedure.

% Now we are going to estimate the class
% conditional probability densities for class 1
% using our model-based clustering function.
[bics1,modelout1,model1,Z1,clabs1] = mbclust(X1,5);

We get the following results from the function:

Maximum BIC is -5803.689.
Model number 2. Number of clusters is 2.

Recall that the number of clusters is the same as the number of terms in the
mixture model, which was correctly determined by MBC. The estimated
means for each term in the mixture are

-3.0086 3.0406
-2.9877 2.9692

Each column represents one of the 2–D means, and we see that our estimates
are close to the true values. The covariances of each term are given here.

0.27 0
0 0.27

0.97 0
0 0.97

These estimated covariance matrices seem reasonable also. We now do the
same thing for the second group of observations.

% We repeat this process for the second class.
[bics2,modelout2,model2,Z2,clabs2] = mbclust(X2,5);

We do not show them here, but the finite mixture estimate returned for the
second class matches the known parameters (i.e., 2–D means, covariances,
and mixing coefficients). We use the gmdistribution function to create a
finite mixture object to use in Bayes decision rule. This object will return
values of the density based on the finite mixtures.

% The following creates MATLAB objects that
% represent the actual density function, so we can
% use them in Bayes decision rule.
obj1fit = gmdistribution(modelout1.mus',...
 modelout1.vars,modelout1.pies);
obj2fit = gmdistribution(modelout2.mus',...
 modelout2.vars,modelout2.pies);

Model-Based Clustering 269

The following MATLAB code will create decision boundaries that we get
from applying the Bayes decision rule using our estimated densities.

% Here is the code to plot the discriminant region.
% First get the grid to evaluate it.
[xx,yy] = meshgrid(-6:.1:6,-6:.1:6);
dom = [xx(:),yy(:)];
% Evaluate each class conditional probability
% at the grid locations, using the pdf function
% in the Statistics Toolbox.
ccp1 = pdf(obj1fit,dom);
ccp2 = pdf(obj2fit,dom);
% Reshape into the grid.
ccp1 = reshape(ccp1,size(xx));
ccp2 = reshape(ccp2,size(xx));

Since we have equal prior probabilities for each class, our decision rule is
very simple. We only have to compare the two estimated class-conditional
probabilities just obtained. Areas where the value of ccp1 is greater than
ccp2 will be classified as class one, and all other areas will be classified as
class two.

% Our decision rule is very simple.
% We just compare the two class-conditional
% probabilities.
ind = ccp1 > ccp2;
figure
surf(xx,yy,+ind)
colormap([.55 .55 .55; .85 .85 .85])
view([0 90])
axis tight
shading interp

The discriminant boundaries are shown in the bottom panel of Figure 6.11.
❑

We illustrated the use of the gmdistribution function in the previous
example. This function can also be used to find clusters using the finite
mixture model, but the user must specify the number of clusters to look for.
It does not implement the model-based clustering approach we presented in
this chapter. The general syntax for finding k clusters using this function is

fmfit = gmdistribution.fit(X,k);

270 Exploratory Data Analysis with MATLAB®, Third Edition

FIGURE 6.11
The top panel displays a scatterplot showing the two-class data set we generated in Example
6.9. Class one data are shown as crosses, and the class two data are shown as points. The
data for each class were generated according to a two-component mixture model. The bottom
panel shows the decision region for our classifier that we get using Bayes decision rule and
our estimated densities from model-based clustering.

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

Model-Based Clustering 271

6.7 Generating Random Variables from a Mixture Model

One might often be interested in generating data from one of the finite
mixture models discussed in this chapter. Of course, we could always do this
manually using a multivariate normal random number generator (e.g.,
mvnrnd in the MATLAB Statistics Toolbox), but this can be tedious to use in
the case of mixtures. So, we include a useful GUI tool called genmix that
generates data according to a finite mixture.

The GUI is invoked by typing genmix at the command line. A screen shot
is shown in Figure 6.12. The steps for entering the required information are
listed on the left-side of the GUI window. We outline them below and briefly
describe how they work.

FIGURE 6.12
This shows the genmix GUI. The steps that must be taken to enter the parameter information
and generate the data are shown on the left side of the window.

272 Exploratory Data Analysis with MATLAB®, Third Edition

Step 1: Choose the number of dimensions.

This is a pop-up menu. Simply select the number of dimensions
for the data.

Step 2: Enter the number of observations.

Type the total number of points in the data set. This is the value
for n in Equation 6.4.

Step 3: Choose the number of components.

This is the number of terms or component densities in the mixture.
This is the value for c in Equations 6.2 and 6.4. Note that one can
use this GUI to generate a finite mixture with only one component,
which can be useful in other applications.

Step 4: Choose the model.

Select the model for the data. The model numbers correspond to
those described in Table 6.1. The type of covariance information
you are required to enter depends on the model you have selected
here.

Step 5: Enter the component weights, separated by
commas or blanks.

Enter the corresponding weights (πk) for each term. These must be
separated by commas or spaces, and they must sum to 1.

Step 6: Enter the means for each component-push
button.

Click on the button Enter means... to bring up a window to
enter the p-dimensional means, as shown in Figure 6.13. There will
be a different number of text boxes in the window, depending on
the number of components selected in Step 3. Note that you must

FIGURE 6.13
This shows the pop-up window for entering 2–D means and for the two components or
terms in the finite mixture.

Model-Based Clustering 273

have the right number of values in each text box. In other words,
if you have dimensionality p = 3 (Step 1), then each mean requires
3 values. If you need to check on the means that were used, then
you can click on the View Current Means button. The means
will be displayed in the MATLAB command window.

Step 7: Enter the covariance matrices for each
component - push button.

Click on the button Enter covariance matrices... to activate
a pop-up window. You will get a different window, depending on
the chosen model (Step 4). See Figure 6.14 for examples of the
three types of covariance matrix input windows. As with the
means, you can push the View Current Covariances button to
view the covariance matrices in the MATLAB command window.

Step 8: Push the button to generate random variables.

After all of the variables have been entered, push the button labeled
Generate RVs... to generate the data set.

Once the variables have been generated, you have several options. The
data can be saved to the workspace using the button Save to Workspace.
When this is activated, a pop-up window appears, and you can enter a
variable name in the text box. The data can also be saved to a text file for use
in other software applications by clicking on the button Save to File. This
brings up the usual window for saving files. An added feature to verify the
output is the Plot Data button. The generated data are displayed in a
scatterplot matrix (using the plotmatrix function) when this is pushed.

6.8 Summary and Further Reading

In this chapter, we have described another approach to clustering that is
based on estimating a finite mixture probability density function. Each
component of the density function represents one of the groups, and we can
use the posterior probability that an observation belongs to the component
density to assign group labels. The model-based clustering methodology
consists of three main parts: (1) model-based agglomerative clustering to
obtain initial partitions of the data, (2) the EM algorithm for maximum
likelihood estimation of the finite mixture parameters, and (3) the BIC for
choosing the best model.

Several excellent books are available on finite mixtures. Everitt and Hand
[1981] is a short monograph that includes many applications for researchers.
McLachlan and Basford [1988] is more theoretical, as is Titterington, Smith,
and Makov [1985]. McLachlan and Peel [2000] contains a more up-to-date

274 Exploratory Data Analysis with MATLAB®, Third Edition

treatment of the subject. They also discuss the application of mixture models
to large databases, which is of interest to practitioners in EDA and data
mining. Most books on finite mixtures also include information on the EM
algorithm, but they also offer other ways to estimate the density parameters.
McLachlan and Krishnan [1997] is one book that provides a complete account
of the EM, including theory, methodology, and applications. Martinez and
Martinez [2015] includes a description of the univariate and multivariate EM
algorithm for finite mixtures, as well as a way to visualize the estimation
process.

The EM algorithm described in this chapter is sometimes called the iterative
EM. This is because it operates in batch mode; all data must be available for
use in the EM update equations at each step. This imposes a high
computational burden and storage load when dealing with massive data

(a) This shows the pop-up window(s) for the spherical family of models. The only value that
must be entered for each covariance matrix is the volume λ.

(b) This shows the pop-up window(s) for the diagonal family of models. One needs to enter
the volume λ (first text box) and the diagonal elements of the matrix B (second text box).

(c) When the general family is selected, one of these pop-up windows will appear for each
unique covariance matrix. Each text box corresponds to a row of the covariance matrix.

FIGURE 6.14
Here we have examples of the covariance matrix inputs for the three families of models.

Model-Based Clustering 275

sets. A recursive form of the EM algorithm exists and can be used in an online
manner. See Martinez and Martinez [2015] for more information on this
algorithm and its use in MATLAB.

Celeux and Govaert [1995] present the complete set of models and
associated procedures for obtaining the parameters in the EM algorithm
when the covariances are constrained (multivariate normal mixtures). They
also address the restricted case, where mixing coefficients are equal. We
looked only at the unrestricted case, where these are allowed to vary.

There are many papers on the model-based clustering methodology,
including interesting applications. Some examples include minefield
detection [Dasgupta and Raftery, 1998], detecting faults in textiles [Campbell
et al., 1997, 1999], classification of gamma rays in astronomy [Mukherjee et.
al, 1998], and analyzing gene expression data [Yeung et al., 2001]. One of the
issues with agglomerative model-based clustering is the computational load
with massive data sets. Posse [2001] proposes a starting partition based on
minimal spanning trees, and Solka and Martinez [2004] describe a method
for initializing the agglomerative model-based clustering using adaptive
mixtures. Further extensions of model-based clustering for large data sets can
be found in Wehrens et al. [2004] and Fraley, Raftery, and Wehrens [2005].
Two review papers on model-based clustering are Fraley and Raftery [1998,
2002].

Other methods for choosing the number of terms in finite mixtures have
been offered. We provide just a few references here. Banfield and Raftery
[1993] use an approximation to the integrated likelihood that is based on the
classification likelihood. This is called the AWE, but the BIC seems to
perform better. An entropy criterion called the NEC (normalized entropy
criterion) has been described by Biernacki and Govaert [1997] and Biernacki
et al. [1999]. Bensmail et al. [1997] provide an approach that uses exact
Bayesian inference via Gibbs sampling. Chapter 6 of McLachlan and Peel
[2000] provides a comprehensive treatment of this issue.

Additional software is available for model-based clustering. One such
package is MCLUST, which can be downloaded at

http://www.stat.washington.edu/mclust/

MCLUST is compatible with S-Plus and R.3 Fraley and Raftery [1998, 2002,
2003] provide an overview of the MCLUST software. McLachlan et al. [1999]
wrote a software package called EMMIX that fits mixtures of normals and t-
distributions. The website for EMMIX is

http://www.maths.uq.edu.au/~gjm/emmix/emmix.html

3 See Appendix B for information on the R language.

http://www.stat.washington.edu/mclust/
http://www.maths.uq.edu.au/~gjm/emmix/emmix.html

276 Exploratory Data Analysis with MATLAB®, Third Edition

Exercises

6.1 Apply model-based agglomerative clustering to the oronsay data
set. Use the gap statistic to choose the number of clusters. Evaluate the
partition using the silhouette plot and the Rand index.

6.2 Use the model-based clustering on the oronsay data. Apply the gap
method to find the number of clusters for one of the models. Compare
the gap estimate of the number of clusters to what one gets from the
BIC.

6.3 Repeat the procedure in Example 6.1 for component densities that
have closer means. How does this affect the resulting density
function?

6.4 Construct another univariate finite mixture density, as in Example 6.1,
using a mixture of univariate exponentials.

6.5 Cluster size and volume are not directly related. Explain how they are
different. In the finite mixture model, what parameter is related to
cluster size?

6.6 Write a MATLAB function that will return the normal probability
density function for the univariate case:

.

Use this in place of normpdf and repeat Example 6.1.
6.7 Apply model-based agglomerative clustering to the following data

sets. Display in a dendrogram. If necessary, first reduce the
dimensionality using a procedure from Chapters 2 and 3.
a. skulls

b. sparrow

c. oronsay (both classifications)

d. BPM data sets

e. gene expression data sets

6.8 Generate data according to the remaining six models of Table 6.1 that
are not demonstrated in this text. Display the results using
plotmatrix.

6.9 Return to the iris data in Example 6.6. Try two and four clusters
from the agglomerative model-based clustering. Assess the results
using the silhouette procedure.

6.10 The NEC is given below. Implement this in MATLAB and apply it to
the models in Example 6.7. This means that instead of a matrix of BIC
values, you will have a matrix of NEC values (i.e., one value for each

f x µ σ,;() 1
σ 2π

x µ–()2

2σ2-------------------–
exp=

Model-Based Clustering 277

model and number of clusters). Are the results different with respect
to the number of clusters chosen for each model? For we
have

This is a decomposition of the log-likelihood L(K) into a classification
log-likelihood term C(K) and the entropy E(K) of the classification
matrix with terms given by . The NEC is given by

One chooses the K that corresponds to the minimum value of the NEC.
6.11 Apply the NEC to the clustering found in Problem 6.2. How does the

NEC estimate of the number of clusters compare with the gap
estimate?

6.12 Apply other types of agglomerative clustering (e.g., different
distances and linkage) to the iris data. Assess the results using three
clusters and the silhouette function. Compare with the model-
based agglomerative clustering results in Example 6.6. Also visually
compare your results via the dendrogram.

6.13 Generate random variables according to the different models in
Table 6.1. Use n = 300, p = 2, c = 2. Apply the model-based clustering
procedure. Is the correct model (number of terms and form of
covariance matrix) recovered?

6.14 Repeat Example 6.5 for a larger sample size. Are the parameter
estimates closer to the true ones?

6.15 Repeat Example 6.8 using the best model, but the two cluster case.
Compare and discuss your results.

6.16 Generate bivariate random samples according to the nine models.
Apply model-based clustering and analyze your results.

6.17 Apply the full model-based clustering procedure to the following
data sets. If necessary, first reduce the dimensionality using one of the
procedures from Chapters 2 and 3. Assess your results using methods
from Chapter 5.
a. skulls

1 k K≤ ≤

L K() C K() E K()+=

C K() τ̂ik π̂kf xi θ̂k;()[]ln
i 1=

n
k 1=

K=

E K() τ̂ik τ̂ikln
i 1=

n
k 1=

K 0≥–=

τ̂ik

NEC K() E K()
L K() L 1()–
------------------------------= K 1>

NEC 1() 1=

278 Exploratory Data Analysis with MATLAB®, Third Edition

b. sparrow

c. oronsay (both classifications)

d. BPM data sets

e. gene expression data sets

6.18 Use an appropriate method to reduce the dimensionality of the data
sets listed below to 2–D. Next, use the model-based clustering method
to estimate class-conditional probabilities and build classifiers. Create
and display the discriminant regions as shown in Example 6.9.
Finally, construct 2-D scatterplots with different colors and symbols
for each class. Compare the scatterplot with the discriminant regions
and comment on the results.
a. iris

b. leukemia

c. oronsay (both classifications)

d. BPM data sets (pick two topics)

279

Chapter 7
Smoothing Scatterplots

In many applications, we might make distributional and model assumptions
about the underlying process that generated the data, so we can use a
parametric approach in our analysis. The parametric approach offers many
benefits (known sampling distributions, lower computational burden, etc.),
but it can be dangerous if the assumed model is incorrect. At the other end of
the data-analytic spectrum, we have the nonparametric approach, where one
does not make any formal assumptions about the underlying structure or
process. When our goal is to summarize the relationship between variables,
then smoothing methods are a bridge between these two approaches.
Smoothing methods make the weak assumption that the relationship
between variables can be represented by a smooth curve or surface. In this
chapter, we cover several methods for scatterplot smoothing, as well as some
ways to assess the results.

7.1 Introduction

In most, if not all, scientific experiments and analyses, the researcher must
summarize, interpret and/or visualize the data to gain insights, to search for
patterns, and to make inferences. For example, with some gene expression
data, we might be interested in the distribution of the gene expression values
for a particular patient or experimental condition, as this might indicate what
genes are most active. We could use a probability density estimation
procedure for this purpose. Another situation that often arises is one in which
we have a response y and a predictor x, and we want to understand and
model the relationship between the y and x variables.

The main goal of smoothing from an EDA point of view is to obtain some
insights into how data are related to one another and to search for patterns or
structure. This idea has been around for many years, especially in the area of
smoothing time series data, where data are measured at equally spaced
points in time. Readers might be familiar with some of these methods, such

280 Exploratory Data Analysis with MATLAB®, Third Edition

as moving averages, exponential smoothing, and other specialized filtering
techniques using polynomials.

In general, the procedures described in this chapter obtain the smooths by
constructing fits in a local manner. In the case of loess, we perform local
regression in a moving neighborhood around the target values. With splines,
the curves are constructed using piecewise polynomials over disjoint
regions.

The main loess procedures for 2–D and multivariate data are presented
first, followed by a robust version to use when outliers are present in the
data. We then proceed to a discussion of residuals and diagnostic plots that
can be used to assess the results of the smoothing. This is followed by a
description of smoothing splines, which is another commonly used method.
The next section includes a discussion of some ways to choose the parameter
that controls the degree of smoothing.

Cleveland and McGill [1984] developed some extensions of the loess
scatterplot smoothing to look for relationships in the bivariate distribution of
x and y called pairs of middle smoothings and polar smoothings, and these
are covered next. Smoothing via loess and other techniques is available in the
MATLAB Curve Fitting toolbox; so we finish the chapter with a brief section
that describes the functions provided in this optional toolbox.

7.2 Loess

Loess (also called lowess in earlier works) is a locally weighted regression
procedure for fitting a regression curve (or surface) by smoothing the
dependent variable as a function of the independent variable. The
framework for loess is similar to what is commonly used in regression. We
have n measurements of the dependent variable yi, and associated with each
yi is a corresponding value of the independent variable xi. For now, we
assume that our dimensionality is p = 1; the case of multivariate predictor
variables x is covered next.

We assume that the data are generated by

,

where the εi are independent normal random variables with mean zero and
variance σ 2. In the classical regression (or parametric) framework, we would
assume that the function f belongs to a class of parametric functions, such as
polynomials. With loess or local fitting, we assume that f is a smooth function
of the independent variables, and our goal is to estimate this function f. The
estimate is denoted as , a plot of which can be added to our scattterplot for
EDA purposes or it can be used to make predictions of our response variable.

yi f xi() εi+=

ŷ

Smoothing Scatterplots 281

The point denoted by the ordered pair is called the smoothed point
at a point in our domain x0, and is the corresponding fitted value.

The curve obtained from a loess model is governed by two parameters: α
and λ. The parameter α is a smoothing parameter that governs the size of the
neighborhood; it represents the proportion of points that are included in the
local fit. We restrict our attention to values of α between zero and one, where
high values for α yield smoother curves. Cleveland [1993] addresses the case
where α is greater than one. The second parameter λ determines the degree
of the local regression. Usually, a first or second degree polynomial is used,
so λ = 1 or λ = 2, but higher degree polynomials can be used. Some of the
earlier work in local regression used λ = 0, so a constant function was fit in
each neighborhood [Cleveland and Loader, 1996].

The general idea behind loess is the following. To get a value of the curve
 at a given point x0, we first determine a local neighborhood of x0 based on

α. All points in this neighborhood are weighted according to their distance
from x0, with points closer to x0 receiving larger weight. The estimate at
x0 is obtained by fitting a linear or quadratic polynomial using the weighted
points in the neighborhood. This is repeated for a uniform grid of points x in
the domain to get the desired curve.

The reason for using a weight function is that only points close to x0 will
contribute to the regression, since they should provide a better indication of
the relationship between the variables in the neighborhood of x0. The weight
function W should have the following properties:

1. W(x) > 0 for |x| < 1

2. W(–x) = W(x)

3. W(x) is a nonincreasing function for

4. W(x) = 0 for .

The basic idea is, for each point x0 where we want to get a smoothed value
, we define weights using the weight function W. We center the function

W at x0 and scale it so that W first becomes zero at the k-th nearest neighbor
of x0. As we will see shortly, the value for k is governed by the parameter α.

We use the tri-cube weight function in our implementation of loess. Thus,
the weight wi (x0) at x0 for the i-th data point xi is given by the following

, (7.1)

with

x0 ŷ0,()
ŷ0

ŷ0

ŷ0

x 0≥
x 1≥

ŷ0

w x W
x x

x
i

i

k

0
0

0
() =

−

()
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟Δ

282 Exploratory Data Analysis with MATLAB®, Third Edition

(7.2)

The denominator Δk (x0) is defined as the distance from x0 to the k-th nearest
neighbor of x0, where k is the greatest integer less than or equal to . We
denote the neighborhood of x0 as N(x0). The tri-cube weight function is
illustrated in Figure 7.1.

In step 6 of the loess procedure outlined below, one can fit either a straight
line to the weighted points (xi , yi), for xi in the neighborhood N(x0), or a
quadratic polynomial can be used (in our implementation). If a line is used as
the local model, then λ = 1. The values of β0 and β1 are found such that the
following is minimized

, (7.3)

for (xi , yi), with xi in N(x0). Letting and be the values that minimize
Equation 7.3, the loess fit at x0 is given by

FIGURE 7.1
This is the tri-cube weight function.

W u
u u() =

−() ≤ <⎧
⎨
⎪

⎩⎪

1 0 1

0

3 3
;

; otherwise.

α n×

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u

T
ri
−

C
u
b
e
 W

e
ig

h
t
F

u
n
ct

io
n

w x y xi i i

i

k

0 0 1
2

1
() − −()

=
∑

β̂0 β̂1

Smoothing Scatterplots 283

. (7.4)

When λ = 2, then we fit a quadratic polynomial using weighted least-squares,
again using only those points in N(x0). In this case, we find the values for the
βi that minimize

. (7.5)

Similar to the linear case, if , , and minimize Equation 7.5, then the
loess fit at x0 is

. (7.6)

For more information on weighted least squares see Draper and Smith [1981].
We describe below the steps for obtaining a loess curve, which is illustrated

in Figure 7.2. Using a set of generated data, we show the loess fit for a given
point x0. The top panel shows the linear fit in the neighborhood of x0, and the
bottom panel shows the quadratic fit. The open circle on the respective
curves is the smoothed value at that point.

Procedure – Loess Curve Construction

1. Let xi denote a set of n values for a predictor variable and let yi

represent the corresponding response.

2. Choose a value for α such that 0 < α < 1. Let , where
k is the greatest integer less than or equal to .

3. For each x0 where we want to obtain an estimate of the smooth ,
find the k points xi in the data set that are closest to x0. These xi

comprise a neighborhood of x0, and this set is denoted by N(x0).

4. Compute the distance of the xi in N(x0) that is furthest away from
x0 using

.

5. Assign a weight to each point (xi , yi), xi in N(x0), using the tri-cube
weight function (Equations 7.1 and 7.2).

6. Obtain the value of the curve at the point x0 for the given λ
using a weighted least squares fit of the points xi in the neighbor-
hood N(x0). (See Equations 7.3 through 7.6.)

ŷ x0() β̂0 β̂1x0+=

w x y x xi i i i

i

k

0 0 1 2
2 2

1
() − − −()

=
∑

β̂0 β̂1 β̂2

ŷ x0() β̂0 β̂1x0 β̂2x0
2

+ +=

k α n×=

α n×
ŷ0

Δk x0() maxxi N0∈ x0 xi–=

ŷ0

284 Exploratory Data Analysis with MATLAB®, Third Edition

FIGURE 7.2
The top panel shows the local fit at a point x0 = 25, with λ = 1 and α = 0.5. The vertical lines
indicate the limits of the neighborhood. The second panel shows the local fit at x0, where
λ = 2 and α = 0.7. The point is the open circle on the curves.

0 5 10 15 20 25 30 35 40 45 50
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25 30 35 40 45 50
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x0 ŷ0,()

Smoothing Scatterplots 285

7. Repeat steps 3 through 6 for all x0 of interest.

We illustrate the loess procedure for univariate data in Example 7.1 using
a well-known data set discussed in the loess literature [Cleveland and
Devlin, 1988; Cleveland and McGill, 1984; Cleveland, 1993]. This data set
contains 111 measurements of four variables, representing ozone and other
meteorological data. They were collected during May 1 and September 30,
1973 at various sites in the New York City region. The goal is to describe the
relationship between ozone (PPB) and the meteorological variables (solar
radiation measured in Langleys, temperature in degrees Fahrenheit, and
wind speed in MPH) so one might predict ozone concentrations.

Example 7.1
We illustrate the univariate loess procedure using the ozone concentration as
our response variable (y) and the temperature as our predictor variable (x).
The next few lines of MATLAB code load the data set and display the
scatterplot shown in Figure 7.3.

load environmental
% This has all four variables. We will
% use the ozone as the response and
% temperature as the predictor.

FIGURE 7.3
This is the scatterplot for ozone as it depends on temperature. We see that, in general, the
ozone increases as temperature increases.

55 60 65 70 75 80 85 90 95 100
0

20

40

60

80

100

120

140

160

180

Temperature (Fahrenheit)

O
zo

n
e
 (

P
P

B
)

286 Exploratory Data Analysis with MATLAB®, Third Edition

% First do a scatterplot
plot(Temperature,Ozone,'.')
xlabel('Temperature (Fahrenheit)')
ylabel('Ozone (PPB)')

We see in the scatterplot that the ozone tends to increase when the
temperature increases, but the appropriate type of relationship for these data
is not clear. We show how to use the loess procedure to find the estimate of
the ozone level for a given temperature of 78 degrees Fahrenheit. First, we
find some of the parameters.

n = length(Temperature); % Number of points
% Find the estimate at this point:
x0 = 78;
% Set up the other constants:
alpha = 2/3;
lambda = 1;
k = floor(alpha*n);

Next, we find the neighborhood at x0 = 78.

% First step is to get the neighborhood.
dist = abs(x0 - Temperature);
% Find the closest distances.
[sdist,ind] = sort(dist);
% Get the points in the neighborhood.
Nx = Temperature(ind(1:k));
Ny = Ozone(ind(1:k));
% Maximum distance of neighborhood:
delxo = sdist(k);

We now (temporarily) delete all of the points outside the neighborhood and
use the remaining points as input to the tri-cube weight function.

% Delete the ones outside the neighborhood.
sdist((k+1):n) = [];
% These are the arguments to the weight function.
u = sdist/delxo;
% Get the weights for all points in the neighborhood.
w = (1 - u.^3).^3;

The next section of code prepares the matrix for use in the weighted least
squares regression (see Draper and Smith [1981]). In other words, we have
the values for the xi, but we need a matrix where the first column contains
ones, the second contains the xi, and the third contains (in the case of λ =
2).

% Now using only those points in the neighborhood,
% do a weighted least squares fit of degree lambda.
% We will follow the procedure in 'polyfit'.

xi
2

Smoothing Scatterplots 287

x = Nx(:); y = Ny(:); w = w(:);
% Get the weight matrix
W = diag(w);
% Get the right matrix form: 1, x, x^2.
A = vander(x);
A(:,1:length(x)-lambda-1) = [];
V = A'*W*A;
Y = A'*W*y;
[Q,R] = qr(V,0);
p = R\(Q'*Y);
% The following is to fit MATLAB's convention
% for polynomials
p = p';

Now that we have the polynomial for the fit, we can use the MATLAB
function polyval to get the value of the loess smooth at 78 degrees.

% This is the polynomial model for the local fit.
% To get the value at that point, use polyval.
yhat0 = polyval(p,x0);

We obtain a value of 33.76 PPB at 78 degrees. The following lines of code
produce a loess smooth over the range of temperatures and superimposes the
curve on the scatterplot. The loess function is included with the EDA
Toolbox.

% Now call the loess function and plot the result.
% Get a domain over which to evaluate the curve.
X0 = linspace(min(Temperature),max(Temperature),50);
yhat = loess(Temperature,Ozone,X0,alpha,lambda);
% Plot the results.
plot(Temperature,Ozone,'.',X0,yhat)
xlabel('Temp (Fahrenheit)'),ylabel('Ozone (PPB)')

The resulting scatterplot with loess smooth is shown in Figure 7.4. It should
be noted that we could use the loess function to get the estimated value of
ozone at 78 degrees only, using

yhat0 = loess(Temperature,Ozone,78,alpha,lambda);

❑

Some readers might wonder where the word loess comes from. In geology,
loess is defined as a deposit of fine clay or silt in river valleys. If one takes a
vertical cross-section of the earth in such a place, then a loess would appear
as curved strata running through the cross-section. This is similar to what
one sees in the plot of the loess smooth in a scatterplot.

We now turn our attention to the multivariate case, where our predictor
variables x have p > 1 dimensions. The procedure is essentially the same, but
the weight function is defined in a slightly different way. We require a

288 Exploratory Data Analysis with MATLAB®, Third Edition

distance function in the space of independent variables, which in most cases
is taken to be Euclidean distance. As discussed in Chapter 1, it might make
sense to divide each of the independent variables by an estimate of its scale
before calculating the distance.

Now that we have the distance, we define the weight function for a p-
dimensional point x0 as

,

where d(�) represents our distance function and is the distance
between the k-th nearest neighbor to x0 using the same definition of distance.
W is the tri-cube function, as before. Once we have the weights, we construct
either a multivariate linear or multivariate quadratic fit in the neighborhood
of x0. Linear fits are less of a computational burden, but quadratic fits perform
better in applications where the regression surface has a lot of curvature. The
Visualizing Data Toolbox (may be downloaded for free) described in
Appendix B contains a function for producing loess smooths for bivariate
predictors. We illustrate its use in the next example.

FIGURE 7.4
This shows the scatterplot of ozone and temperature along with the accompanying loess
smooth.

55 60 65 70 75 80 85 90 95 100
0

20

40

60

80

100

120

140

160

180

Temperature (Fahrenheit)

O
zo

n
e
 (

P
P

B
)

w W
d

i

i

k

x
x x
x0

0

0
() =

()
()

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

,
Δ

Δk x0()

Smoothing Scatterplots 289

Example 7.2
For this example, we use the galaxy data set that was analyzed in Cleveland
and Devlin [1988]. Buta [1987] measured the velocity of the NGC 7531 spiral
galaxy in the Southern Hemisphere at a set of points in the celestial sphere
that covered approximately 200 arc sec in the north/south direction and
around 135 arc sec in the east/west direction. As usual, we first load the data
and set some parameters.

% First load the data and set some parameters.
load galaxy
% The following is for the contour plot.
contvals = 1420:30:1780;
% These are the parameters needed for loess.
alpha = 0.25;
lambda = 2;

Next we get some points in the domain. We will get the estimated
surface using loess at these points. Then we call the loess2 function, which
was downloaded as part of the Data Visualization Toolbox.

% Now we get the points in the domain.
% The loess surface will be evaluated
% at these points.
XI = -25:2:25;
YI = -45:2:45;
[newx,newy] = meshgrid(XI,YI);
newz = loess2(EastWest,NorthSouth,...
 Velocity,newx,newy,alpha,lambda,1);

To plot this in a contour plot, we use the following. The plot is shown in
Figure 7.5.

% Now do the contour plot and add labels.
[cs,h] = contour(newx,newy,newz,contvals);
clabel(cs,h)
xlabel('East-West Coordinate (arcsec)')
ylabel('North-South Coordinate (arcsec)')

❑

We now discuss some of the issues for choosing the parameters for loess.
These include the order λ of the polynomial that is estimated at each point of
the smooth, the weight function W, and the smoothing parameter α. We have
already touched on some of the issues with the degree of the polynomial.
Any degree polynomial can be used. λ = 0 provides a constant
fit, but this seems too restrictive and the resulting curves/surfaces could be
too rough. λ = 1 is adequate in most cases and is better computationally, but
λ = 2 should be used in situations where there is a lot of curvature or many
local maxima and minima.

x y,()

λ 0 1 2 …, , ,=

290 Exploratory Data Analysis with MATLAB®, Third Edition

As for the function W, we return to the four conditions specified
previously. The first condition states that the weights must be positive,
because negative weights do not make sense. The second requirement says
that the weight function must be symmetric and that points to any side of x0

should be treated the same way. The third property provides greater weight
for those that are closer to x0. The last property is not required, although it
makes things simpler computationally. We save on computations if the
weights outside the neighborhood are zero, because those observations do
not have to be included in the least squares (see the indices on the
summations in Equations 7.3 and 7.5—they only go up to k, not n). We could
use a weight function that violates condition four, such as the normal
probability density function, but then we would have to include all n
observations in the least squares fit at every point of the smooth.

Perhaps the hardest parameter to come up with is the smoothing
parameter α. If α is small, then the loess smooth tends to be wiggly and to
overfit the data (i.e., the bias is less). On the other hand, if α is large, then the
curve is smoother (i.e., the variance is less). In EDA, where the main purpose
of the smooth is to enhance the scatterplot and to look for patterns, the choice
of α is not so critical. In these situations, Cleveland [1979] suggests that one
choose α in the range 0.2 to 0.8. Different values for α (and λ) could be used
to obtain various loess curves. Then the scatterplot with superimposed loess
curve and residuals plots (discussed in Section 7.4) can be examined to
determine whether or not the model adequately describes the relationship.
We will also return to this topic in Section 7.6 where we present a more

FIGURE 7.5
This is the contour plot showing the loess surface for the galaxy data.

−25 −20 −15 −10 −5 0 5 10 15 20 25

−40

−30

−20

−10

0

10

20

30

40
1450

1
4
8
0

1480

1480

15
10

1510

1510
1540

1540

1540

1540

1570

1570
1570

1570

1
6
0
0

1600

1600

1600

1
6
3
0

1630

1630
1630

1
6
6
0

1660

1660

1690

1690

1690

1720

1720

1720

1750

1750

Smoothing Scatterplots 291

analytical approach to choosing the smoothing parameter that is based on
cross-validation.

7.3 Robust Loess

The loess procedure we described in the previous section is not robust,
because it relies on the method of least squares for the local fits. A method is
called robust if it performs well when the associated underlying assumptions
(e.g., normality) are not satisfied [Kotz and Johnson, Vol. 8, 1986]. There are
many ways in which assumptions can be violated. A common one is the
presence of outliers or extreme values in the response data. These are points
in the sample that deviate from the pattern of the other observations. Least
squares regression is vulnerable to outliers, and it takes only one extreme
value to unduly influence the result. The nonrobustness of least squares will
be illustrated and explored in the exercises.

Cleveland [1993, 1979] and Cleveland and McGill [1984] present a method
for smoothing a scatterplot using a robust version of loess. This technique
uses the bisquare method [Hoaglin, Mosteller, and Tukey, 1983; Mosteller
and Tukey, 1977; Huber, 1973; Andrews, 1974] to add robustness to the
weighted least squares step in loess. The idea behind the bisquare is to re-
weight points based on their residuals. If the residual for a given point in the
neighborhood is large (i.e., it has a large deviation from the model), then the
weight for that point should be decreased, since large residuals tend to
indicate outlying observations. Alternatively, if the point has a small
residual, then it should be weighted more heavily.

Before showing how the bisquare method can be incorporated into loess,
we first describe the general bisquare least squares procedure. First a linear
regression is used to fit the data, and the residuals are calculated from

. (7.7)

The residuals are used to determine the weights from the bisquare function
given by

 (7.8)

The robustness weights are obtained from

ε̂i

ε̂i yi ŷi–=

B u
u u() =

−() <⎧
⎨
⎪

⎩⎪

1 1

0

2 2
;

; otherwise.

292 Exploratory Data Analysis with MATLAB®, Third Edition

, (7.9)

where is the median of . A weighted least squares regression is
performed using weights adjusted by .

To add bisquare to loess, we first fit the loess smooth, using the same
procedure as before. We then calculate the residuals using Equation 7.7 and
determine the robust weights from Equation 7.9. The loess procedure is
repeated using weighted least squares, but the weights are now .
Note that the points used in the fit are the ones in the neighborhood of , as
before. This is an iterative process and is repeated until the loess curve
converges or stops changing. Cleveland and McGill [1984] suggest that two
or three iterations are sufficient to get a reasonable model.

Procedure – Robust Loess

1. Fit the data using the loess procedure with weights .

2. Calculate the residuals, , for each observation.

3. Determine the median of the absolute value of the residuals, .

4. Find the robustness weights from

,

using the bisquare function in Equation 7.8.

5. Repeat the loess procedure using weights of .

6. Repeat steps 2 through 5 until the loess curve converges.

In essence, the robust loess iteratively adjusts the weights based on the
residuals. We illustrate the robust loess procedure in the next example,
noting that while our example for robust loess involves only one predictor
variable, we can easily apply it to the multivariate case.

Example 7.3
We now illustrate the robust loess using an example from Simonoff [1996].
The data represent the size of the annual spawning stock (x values) and the
corresponding production of new fish of catchable size, called recruits (y
values). The observations (in thousands of fish) were taken for the Skeena
River sockeye salmon from 1940 to 1967. We provide a function called

r B
q

i

i=
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

6 0 5.

q̂0.5 ε̂i

ri

riwi x0()
x0

wi

ε̂i yi ŷi–=

q̂0.5

r B
q

i

i=
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

6 0 5.

riwi

Smoothing Scatterplots 293

loessr that implements the procedure outlined above, and its use is shown
below.

% Load the data and set the values
% for x and y.
load salmon
x = salmon(:,1);
y = salmon(:,2);
% Obtain a domain over which to get
% the loess curve.
xo = linspace(min(x),max(x));
% Get both the regular loess.
yhat = loess(x,y,xo,0.6,2);
% Get the robust loess curve.
yhatr = loessr(x,y,xo,0.6,2);
% Plot both curves.
plot(xo,yhat,'-',xo,yhatr,':',x,y,'o')
legend({'Loess';'Robust Loess'})
xlabel('Spawners')
ylabel('Recruits')

The curves are shown in Figure 7.6, where we see a potential outlier in the
upper right area of the plot. The robust loess curve is different in the area
influenced by this observation.
❑

7.4 Residuals and Diagnostics with Loess

In this section, we address several ways to assess the output from the loess
scatterplot smooth (and other types of smoothing), which can also be used to
guide the analyst in choosing the values for α and λ. Since we are concerned
with EDA methods in this text, we will cover only the graphical methods,
such as residual plots, spread smooths, and upper/lower loess smooths.
Cleveland and Devlin [1988] describe several statistics that are defined
analogously with those used in fitting parametric functions by least squares;
so some of the familiar techniques for making inferences in that setting can
also be used in loess. Among other things, Cleveland and Devlin describe
distributions of residuals, fitted values, and residual sum of squares.

7.4.1 Residual Plots

It is well known in regression analysis that checking the assumptions made
about the residuals is important [Draper and Smith, 1981]. This is equally

294 Exploratory Data Analysis with MATLAB®, Third Edition

true when applying any smoothing technique, and we can use similar
diagnostic plots. Recall that the true error εi is assumed to be normally
distributed with mean zero and equal variance, and that the estimated
residuals (or errors) are given by

.

We can construct a normal probability plot to determine whether the
normality assumption is reasonable. We describe normal probability plots in
more detail in Chapter 9 and just mention them here in the context of loess.
The normal probability plot can be used when we have just one predictor or
many predictors. One could also construct a histogram of the residuals to
visually assess the distribution.

To check the assumption of constant variance, we can plot the absolute
value of the residuals against the fitted values or . Here we expect to see a
horizontal band of points with no patterns or trends.

Finally, to see if there is bias in our estimated curve, we can graph the
residuals against the independent variables, where we would also expect to
see a horizontal band of points. This is called a residual dependence plot
[Cleveland, 1993]. If we have multiple predictors, then we can construct one

FIGURE 7.6
This shows the regular and robust loess curves for the salmon data. We fit a locally quadratic
polynomial with α = 0.6. Note the potential outlier in the upper right corner. The robust
loess fit downweights the effect of this observation.

0 200 400 600 800 1000 1200
0

500

1000

1500

2000

2500

3000

3500

Spawners

R
e
cr

u
its

Loess
Robust Loess

ε̂i yi ŷi–=

ŷi

Smoothing Scatterplots 295

of these plots for each variable. As the next example shows, we can enhance
the diagnostic power of these scatterplots by superimposing a loess smooth.

Example 7.4
We turn to the software inspection data that was described in Chapter 1 to
illustrate the various residual plots. Here we are interested in determining
the relationship between the number of defects found as a function of the
time spent inspecting the code or document. We have data that consists of
491 observations, with the x value representing the preparation or inspection
time per page, and the response y is the number of defects found per page.
After loading the data, we transform it because both variables are skewed.
The initial scatterplot of the transformed data is shown in Figure 7.7, where
we see that the relationship between the variables seems to be roughly linear.

load software
% Transform the data.
X = log(prepage);
Y = log(defpage);
% Get an initial plot.
plot(X,Y,'.')
xlabel('Log [PrepTime (mins) / Page]')
ylabel('Log [Defects / Page]')

FIGURE 7.7
This is the scatterplot of observations showing the number of defects found per page versus
the time spent inspecting each page. We see that the relationship is approximately linear.

−2 −1 0 1 2 3 4
−7

−6

−5

−4

−3

−2

−1

0

1

Log [PrepTime (mins) / Page]

L
o
g
 [
 D

e
fe

ct
s

/
P

a
g
e
]

296 Exploratory Data Analysis with MATLAB®, Third Edition

Next we set up the parameters (α = 0.5, λ = 2) for a loess smooth and show
the smoothed scatterplot in Figure 7.8.

% Set up the parameters.
alpha = 0.5;
lambda = 2;
% Do the loess on this.
x0 = linspace(min(X),max(X));
y0 = loess(X,Y,x0,alpha,lambda);
% Plot the curve and scatterplot.
plot(X,Y,'.',x0,y0)
xlabel('Log[PrepTime (mins)/Page]')
ylabel('Log[Defects/Page]')

We can assess our results by looking at the residual plots. First we find the
residuals and plot them in Figure 7.9 (top), where we see that they are
roughly symmetric about zero. Then we plot the absolute value of the
residuals against the fitted values (Figure 7.9 (bottom)). A loess smooth of
these observations shows that the variance does not seem to be dependent on
the fitted values.

% Get the residuals.
% First find the loess values at the observed X values.
yhat = loess(X,Y,X,alpha,lambda);

FIGURE 7.8
After we add the loess curve (α = 0.5, λ = 2), we see that the relationship is not completely
linear.

−2 −1 0 1 2 3 4
−7

−6

−5

−4

−3

−2

−1

0

1

Log [PrepTime (mins) / Page]

L
o
g
 [
 D

e
fe

ct
s

/
P

a
g
e
]

Smoothing Scatterplots 297

resid = Y - yhat;
% Now plot the residuals.
plot(1:length(resid),resid,'.')
ax = axis;
axis([ax(1), ax(2), -4 4])
xlabel('Index')
ylabel('Residuals')
% Plot the absolute value of the residuals
% against the fitted values.
r0 = linspace(min(yhat),max(yhat),30);
rhat = loess(yhat,abs(resid),r0,0.5,1);
plot(yhat,abs(resid),'.',r0,rhat)
xlabel('Fitted Values')
ylabel('| Residuals |')

The following code constructs a residual dependence plot for this loess
smooth. We include a loess smooth for this scatterplot to better understand
the results. This is shown in Figure 7.10; we do not see any indication of bias.

% Now plot the residuals on the vertical
% and the independent values on the
% horizontal. This is the residual
% dependence plot. Include a loess curve.
rhat = loess(X,resid,x0,.5,1)
plot(X,resid,'.',x0,rhat)
xlabel('Log[PrepTime (mins)/Page]')
ylabel('Residuals')

We continue our analysis of these results in the next example.
❑

7.4.2 Spread Smooth

It might be important in certain applications to understand the spread of y
given x. We can try to ascertain this just by looking at the scatterplot of the
variables, but as we have seen, it is sometimes hard to judge these
relationships just from a scatterplot. Cleveland and McGill [1984] describe
spread smoothing as a way of graphically addressing this issue.

Procedure – Spread Smooths

1. Compute the fitted values , using loess or some other appropriate
estimation procedure.

2. Calculate the residuals using Equation 7.7.

3. Plot against xi in a scatterplot.

ŷi

ε̂i

ε̂i

298 Exploratory Data Analysis with MATLAB®, Third Edition

FIGURE 7.9
The upper plot shows the residuals based on the loess curve from Figure 7.8, and we see a
nice horizontal band of points. In the lower panel, we have the absolute value of the residuals
versus the fitted values. While not perfect, these indicate that the variance is approximately
constant.

0 50 100 150 200 250 300 350 400 450 500
−4

−3

−2

−1

0

1

2

3

4

Index

R
e
si

d
u
a
ls

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1
0

0.5

1

1.5

2

2.5

3

3.5

Fitted Values

|
R

e
si

d
u
a
ls

 |

Smoothing Scatterplots 299

4. Smooth the scatterplot using loess and add the curve to the plot.

The smoothed values found in step 4 comprise the spread smoothing. We
illustrate its use in Example 7.5.

Example 7.5
We show the spread smooth using the same data and residuals as in the
previous example. Note that this is similar to the plot we have in Figure 7.9
(bottom), but this time we fit the absolute value of the residuals to the
observed predictor values. The scatterplot with loess curve given in Figure 7.11
shows that the variance is fairly constant for the observed values of x.

% The y values in this plot will be
% the absolute value of the residuals.
% Superimpose a loess curve to better
% assess results.
r0 = linspace(min(X),max(X),30);
rhat = loess(X,abs(resid),r0,0.5,1);
plot(X,abs(resid),'.',r0,rhat)
xlabel('Log [PrepTime (mins) / Page]')
ylabel('| Residuals |')

❑

FIGURE 7.10
This shows the residual dependence plot with a superimposed loess curve. We do not see
any indication of bias in the estimated curve.

−2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

Log [PrepTime (mins) / Page]

R
e
si

d
u
a
ls

300 Exploratory Data Analysis with MATLAB®, Third Edition

7.4.3 Loess Envelopes — Upper and Lower Smooths

The loess smoothing method provides a model of the middle of the
distribution of y given x. This can be extended to give us upper and lower
smooths [Cleveland and McGill, 1984], where the distance between the upper
and lower smooths indicates the spread. This shows similar information to
the spread smooth, but in a way that is more in keeping with the typical error
bar plots. The procedure for obtaining the upper and lower smooths follows.

Procedure – Upper and Lower Smooths (Loess)

1. Compute the fitted values using loess or robust loess.

2. Calculate the residuals .

3. Find the positive residuals and the corresponding and
values. Denote these pairs as .

4. Find the negative residuals and the corresponding and
values. Denote these pairs as .

5. Smooth the and add the fitted values from that smooth to
. This is the upper smoothing.

FIGURE 7.11
Here we have the spread smooth plot for the residuals found in Example 7.4. We see that
the variance is fairly constant.

−2 −1 0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

Log [PrepTime (mins) / Page]

|
R

e
si

d
u
a
ls

 |

ŷi

ε̂i yi ŷi–=

ε̂i
+

xi ŷi

xi
+

ŷi
+

,()

ε̂i
—

xi ŷi

xi
—

ŷi
—,()

xi
+ ε̂i

+
,()

ŷi
+

Smoothing Scatterplots 301

6. Smooth the and add the fitted values from this smooth to
. This is the lower smoothing.

Example 7.6
We do not show all of the MATLAB code to implement the upper and lower
envelopes. Instead, we include a function that will provide them and just
show how to use it in this example. We return to the same software
inspection data used in the previous examples. The following code invokes
the loessenv function and plots the curves.

% Get the envelopes and plot.
[yhat,ylo,xlo,yup,xup] = loessenv(X,Y,x0,0.5,2,1);
plot(X,Y,'.',x0,y0,xlo,ylo,xup,yup)
xlabel('Log [PrepTime (mins) / Page]')
ylabel('Log [Defects / Page]')

The loess curve with envelopes is given in Figure 7.12. The lower, middle,
and upper smooths indicate that the distribution of y given x is symmetric at
most values of x and that the variance is fairly constant.
❑

It is important to note that the methods described in this section for
assessing the output of loess can also be used when other smoothing
techniques are used. This includes the smoothing spline, which is the topic of
the next section.

7.5 Smoothing Splines

We now turn our attention to another method called smoothing splines. The
word spline comes from the engineering community, where draftsmen used
long thin strips of wood called splines. They used these splines to draw a
smooth curve between points; different global curves are produced when the
positions of the points are changed. As we will see, a smoothing spline is a
solution to a constrained optimization problem, where we optimally trade off
fidelity of the fit to the data with smoothness of the estimate. To set the stage,
we will first briefly describe parametric spline regression models, where a
piecewise polynomial model is used to find the fit between the predictor
variable and the response. This will be followed by a discussion of how these
ideas can be extended to provide scatterplot smooths based on splines.

xi
— ε̂i

—
,()

ŷi
—

302 Exploratory Data Analysis with MATLAB®, Third Edition

7.5.1 Regression with Splines

Regression splines use a piecewise polynomial fit to model the relationship
between a predictor (or independent) variable and a response (or dependent)
variable. These spline models can provide a way to adequately model the
relationship between the variables, while avoiding negative consequences
such as collinearity and high complexity. Some good references for the
following discussion on splines are Marsh and Cormier [2002], Wahba [1990],
Hastie and Tibshirani [1990], de Boor [2001], and Martinez and Martinez
[2015].

Since we use pieces of different polynomials to construct the fit, we have to
define the regions for each of the polynomials. These regions are determined
by a sequence of points called knots. The set of interior knots will be denoted
by , where , and the boundary knots will be represented by
and . Depending on the model, different conditions are satisfied at the
knot points. For example, in the piecewise linear case, the function is
continuous at the knot points, but the first (and higher) derivative is
discontinuous.

In what follows, we assume that the number of knots and their locations
are known. If the number and the location of knots have to be estimated, then
one has to use more advanced methods, such as nonlinear least squares or

FIGURE 7.12
The lower, middle, and upper smooths indicate that the variance is constant and that the
distribution of y given x is symmetric.

−2 −1 0 1 2 3 4
−7

−6

−5

−4

−3

−2

−1

0

1

Log [PrepTime (mins) / Page]

L
o
g
 [

 D
e
fe

ct
s

/
P

a
g
e
]

ti t1 … tK< < t0
tK 1+

Smoothing Scatterplots 303

stepwise regression. We refer the interested reader to Marsh and Cormier
[2002] or Lee [2002] for details on these approaches and others.

The spline model is given by

, (7.10)

where

The quantity is sometimes known as a dummy variable often used in
regression analysis to distinguish different groups. They allow us to turn off
the parameters in our model, yielding the desired piecewise polynomial. It
should be clear from equation 7.10 that our function is a linear combi-
nation of monomials.

Another way to represent this model is to use a truncated power basis of
degree D:

, (7.11)

where is the positive part of a, which has the same effect as our dummy
variable in equation 7.10 [Lee, 2002]. Other basis functions such as B-splines
or radial basis functions can also be used [Green and Silverman, 1994].

Martinez and Martinez [2015] provide an example of using a regression
spline model to estimate the fit from simulated data that uses the following
true piecewise linear function [Marsh and Cormier, 2002]:

(7.12)

We can see from these equations that we would have three internal knots and
two boundary knots. The scatterplot and regression fit for the simulated data
are shown in Figure 7.13.

The polynomials in Equation 7.12 were linear (). We can see from
Figure 7.13 that the function is continuous at the knot points, but the first
derivative is not continuous. If we use splines with higher degree (e.g.,

f X X t X tj
j

j

D

j D j j

D

j

K

() = + + () −()
=

+
=

∑ ∑ 0
1 1

 t
X t

X t
j

j

j

() =
≤

>

⎧
⎨
⎪

⎩⎪

0
1

;
; .

δ tj()

f X()

f X X X X tD
D

j D j

D

j

K

() = + + + + −()+ +
=

∑ 0 1
1

a()+

f X

x x

x x

x x
() =

− ≤ ≤
+ ≤ ≤
− ≤ ≤

− +

55 1 4 0 12
15 1 8 13 24
101 1 7 25 36

24 1

. ;

. ;
. ;
.

77x x; 37 48.≤ ≤

⎧

⎨
⎪
⎪

⎩
⎪
⎪

D 1=

304 Exploratory Data Analysis with MATLAB®, Third Edition

quadratic or cubic), then we will have smoother functions because additional
constraints are placed on the higher derivatives at the knot points. If we use
piecewise cubic polynomials, then we will have a continuous function with
continuous first and second derivatives. In general, spline regression of
degree will provide continuous functions that have continuous
derivatives up to order at the knots.

7.5.2 Smoothing Splines

We now explain the idea of modeling relationships using piecewise polyno-
mials to form the basis of a method called smoothing splines. We use the
treatment found in Green and Silverman [1994] and Martinez and Martinez
[2015] for the description of smoothing splines given below. We are going to
switch the notation slightly in what follows to match these references. So, our
estimate will now be denoted by instead of .

Smoothing splines take a roughness penalty approach. This means that we
find our estimate by optimizing an objective function that includes a pen-
alty for the roughness of . Given any twice-differentiable function f defined
on the interval , we define the penalized sum of squares by

FIGURE 7.13
This is the spline regression fit and scatterplot for the simulated data based on the true
relationship given by Equation 7.12 [Martinez and Martinez, 2015].

0 5 10 15 20 25 30 35 40 45 50
35

40

45

50

55

60

65

X

Y

D 1≥
D 1–

f̂ ŷ

f̂
f̂

a b,[]

Smoothing Scatterplots 305

, (7.13)

where is the smoothing parameter. The estimate is defined to be the
minimizer of over the class of all twice-differentiable functions f. The
only constraint we have on the interval is that it must contain all of the
observed [Green and Silverman, 1994].

The term on the left in equation 7.13 is the familiar residual sum of squares
that determines the goodness-of-fit to the data. The term on right is a mea-
sure of variability in the fit, and it represents the roughness penalty term. The
smoothing parameter governs the trade-off between smoothness and
goodness-of-fit. For large values of , we will have a very smooth curve.
When approaches infinity, the curve approaches the fit we get from lin-
ear regression. As approaches zero, we get closer to a fit that interpolates
the data.

A function f defined on some interval is a cubic spline with knots
given by if both of the following are true:

1. The function f is a cubic polynomial on each of the intervals ,
, ..., .

2. The polynomials connect at the knots such that f and its first two
derivatives are continuous at each .

The second condition implies that the entire function f is continuous over the
interval [Green and Silverman, 1994].

A natural cubic spline is a cubic spline with additional conditions at the
boundary that must be satisfied. A cubic spline over the interval is a
natural cubic spline if its second and third derivatives are zero at the end
points a and b. This means that the function f is linear on the two boundary
intervals and .

In what follows, we will assume that and we also assume that the
observed predictor values are ordered. Green and Silverman [1994] show
that a natural cubic spline can be represented by the value of f and the second
derivative at each of the knots . If f is a natural cubic spline with knots

, then we define the value at the knot as

,

and the second derivative at the knot as

,

for . We know from the definition of a natural cubic spline that
the second derivatives of the end points are zero, so we have

S f Y f x f t dti i

i

n

a

b

() = − ()⎡⎣ ⎤⎦ + ()⎡⎣ ⎤⎦
=
∑ ∫

2

1

2 "

α 0> f̂
S f()

a b,[]
xi

α
α

α f̂
α

a b,[]
a t1 … tn b< < < <

a t1,()
t1 t2,() tn b,()

ti

a b,[]

a b,[]

a t1,[] tn b,[]
n 3,≥

xi

ti

t1 … tn< <

fi f ti()=

γi f '' ti()=

i 1 … n, ,=

γ1 γn 0.= =

306 Exploratory Data Analysis with MATLAB®, Third Edition

We put the values of the function and the second derivative into vectors f and
, where and . It is important to note that

the vector is defined and indexed in a nonstandard way.
We now define two band matrices Q and R that will be used in the algo-

rithm for smoothing splines. A band matrix is one whose nonzero entries are
contained in a band along the main diagonal. The matrix entries outside this
band are zero. First, we let , for Then Q is the
matrix with nonzero entries , given by

, (7.14)

for . Since this is a band matrix, the elements are zero for
index values where . From this definition, we see that the columns
of the matrix Q are indexed in a nonstandard way with the top left element
given by and that the size of Q is .

The matrix R is an symmetric matrix with nonzero ele-
ments given by

, (7.15)

and

. (7.16)

The elements are zero for .
It turns out that not all vectors f and (as defined above) will represent

natural cubic splines. Green and Silverman [1994] show that the vectors f and
 specify a natural cubic spline if and only if

. (7.17)

We will use these matrices and relationships to help us find the estimated
curve that minimizes the penalized sum of squares in equation 7.13.

Reinsch [1967] proved a remarkable result that the function that uniquely
minimizes the penalized sum of squares is a natural cubic spline with knots
given by the observed values [Hastie and Tibshirani, 1990; Green and
Silverman, 1994]. So, we will use the (ordered) observations in place of our
knot notation in the following discussion.

Reinsch also developed an algorithm to construct the smoothing spline.
This is done by forming a system of linear equations for the at the knot
locations. We can then obtain the values of the smoothing spline in terms of

γ f f1 … fn, ,()T
= γ γ2 … γn 1–, ,()T

=

γ

hi ti 1+ ti–= i 1 … n 1.–, ,=

qij

qj 1– j,
1

hj 1–

---------= qjj
1

hj 1–

---------–
1
hj

----–= qj 1+ j,
1
hj

----=

j 2 … n 1–, ,= qij

i j– 2≥

q12 n n 2–()×
n 2–() n 2–()×

rii

hi 1– hi+

3-------------------- ;= i 2 … n 1–, ,=

ri i 1+, ri 1+ i,
hi

6---- ;= = i 2 … n 2–, ,=

rij i j– 2≥
γ

γ

QTg Rγ=

f̂
f̂

xi

xi

γi

Smoothing Scatterplots 307

the and the observed . See Green and Silverman [1994] for details on the
derivation of the algorithm.

Reinsch procedure for smoothing splines

1. Given the observations , where and
, we collect them into vectors

 and .

2. Find the matrices Q and R, using equations 7.14 through 7.16.

3. Form the vector and the matrix .

4. Solve the following equation for :

. (7.18)

5. Find our estimate from

. (7.19)

Example 7.7
We will use the ozone data set to illustrate the Reinsch method. The data set
represents the daily maximum ozone concentrations (ppb) during the sum-
mer of 1974. There are two vectors in the file—one for Yonkers, New York
and one for Stamford, Connecticut. We will use the Yonkers data in this
example. First we load the data and set the smoothing parameter. Note that
in many cases, we will have to sort the values, so they can be knots. In this
example, our are an index and are already sorted.

load ozone
% Assign an index value for X
X = 1:length(Yonkers);
Y = Yonkers;
% In other cases, you might need to sort X
% so they can be knots.
% Make them column vectors-just in case.
x = x(:); y = y(:);
n = length(x);
alpha = 30;

γi yi

xi yi,{ } a x1 … xn b< < <<
n 3≥

x x1 … xn, ,()T
= yi y1 … yn, ,()T

=

QTy R αQTQ+

γ

R αQTQγ+ QTy=

f̂

f̂ y αQγ–=

xi

xi

308 Exploratory Data Analysis with MATLAB®, Third Edition

The next step is to find the Q and R matrices using equations. Note that we
keep the matrices at a full size of n by n to keep the indices correct. We then
remove the columns or rows that are not needed.

% Next we get the Q and R matrices.
h = diff(x);
% Find 1/h_i;
hinv = 1./h;
% Keep the Q matrix as n by n originally,
% so the subscripts match the book.
% Then remove the first and last column.
qDs = -hinv(1:n-2) - hinv(2:n-1);
I = [1:n-2, 2:n-1, 3:n];
J = [2:n-1,2:n-1,2:n-1];
S = [hinv(1:n-2), qDs, hinv(2:n-1)];
% Create a sparse matrix.
Q = sparse(I,J,S,n,n);
% Delete the first and last columns.
Q(:,n) = []; Q(:,1) = [];
% Now find the R matrix.
I = 2:n-2;
J = I + 1;
tmp = sparse(I,J,h(I),n,n);
t = (h(1:n-2) + h(2:n-1))/3;
R = tmp'+tmp+sparse(2:n-1,2:n-1,t,n,n);
% Get rid of the rows/cols that are not needed.
R(n,:) = []; R(1,:) = [];
R(:,n) = []; R(:,1) = [];

The final step is to find the smoothing spline using steps 3 through 5 of the
Reinsch method.

% Get the smoothing spline.
S1 = Q'*y;
S2 = R + alpha*Q'*Q;
% Solve for gamma;
gam = S2\S1;
% Find fhat.
fhat = y - alpha*Q*gam;

The smoothing spline is shown in Figure 7.14. We can see some interesting
fluctuations in the smooth that are not apparent in the scatterplot alone.
There is a function (splinesmth) included in the EDA Toolbox that con-
structs a fit based on the smoothing spline.
❑

The previous example showed how to get a smoothing spline at the knot
locations. However, we might also want to get values of the spline at

Smoothing Scatterplots 309

arbitrary target values so we can make predictions or plot the curve. Green
and Silverman [1994] show how one can plot a full cubic spline using the
vectors f and and knots .

First, we give the expression for finding the value of the cubic spline for
any value of x in intervals with endpoints given by the knots:

(7.20)

for , . So, we see that equation 7.20 is valid over the
intervals between each of the knots.

To find the value of the cubic spline outside of the interval , we first
need the first derivative at the outside knots:

FIGURE 7.14
This shows the scatterplot with the smoothing spline for the ozone levels in Yonkers, New
York from May to September 1974. It is interesting to note that the smooth shows some
interesting structure and fluctuations that are not apparent in the scatterplot alone.

0 20 40 60 80 100 120 140
0

20

40

60

80

100

120

140

Day

O
zo

n
e
 (

P
P

B
)

γ t1 … tn< <

f x
x t f t x f

h

x t t x
x t

h

i i i i

i

i i
i

i

() =
−() + −()

−

−() −() +
−⎛

⎝
⎜

⎞

⎠

+ +

+

1 1

1
1
6

1 ⎟⎟ + +
−⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+
+ i
i

i

ii

t x

h
1

11

ti x ti 1+≤ ≤ i 1 … n 1–, ,=

t1 tn,[]

310 Exploratory Data Analysis with MATLAB®, Third Edition

(7.21)

Since f is linear outside , we have

(7.22)

We used the more general notation in the derivation given above, but these
can also be used to plot the estimated function in equation 7.19.

7.5.3 Smoothing Splines for Uniformly Spaced Data

Several approaches exist for smoothing when one has data that are evenly
sampled over the domain, (e.g., time series). Some examples of these
approaches are the moving average and exponential smoothing. Garcia
[2010] recently developed a fast smoothing spline methodology for these
type of data. His method is based on the discrete cosine transform and is
suitable for equally spaced data in one dimension and higher. His
methodology also includes steps to produce a robust estimate, to
automatically choose the smoothing parameter, and to handle missing
values.

We first present the case for one-dimensional data and then discuss how it
can be extended to multi-dimensions. Assume one has an observed noisy
one-dimensional signal , where is Gaussian noise with mean zero
and unknown variance. We also assume that is smooth. Garcia takes the
penalized least squares regression approach to smoothing which minimizes
an objective function that balances fitting the data well and a term that
penalizes the roughness of the fit. Thus, we seek to minimize

, (7.23)

where denotes the Euclidean norm, is our smoothing parameter, and
P is the penalty term for roughness. We can see the connection with
smoothing splines when we compare Equation 7.23 with Equation 7.13.

Another way to model the roughness is to use a second-order divided
difference, so

, (7.24)

f ' t1()
f2 f1–

t2 t1–

1
6--- t2 t1–()γ2–=

f ' tn()
fn fn 1––

tn tn 1––

1
6--- tn tn 1––()γn 1– .+=

t1 tn,[]

f x() f1 t1 x–()f ' t1(); for a x t1≤ ≤–=

f x() fn x tn–()f ' tn(); for tn x b.≤ ≤+=

f̂

y ŷ ε+= ε
ŷ

F ŷ() ŷ y–
2

αP ŷ()+=

• α

P ŷ() Dŷ
2

=

Smoothing Scatterplots 311

where D is a tridiagonal square matrix that has a simplified form when the
data are observed on a uniform grid. Using Equations 7.23 and 7.24 and
minimizing yields

, (7.25)

where is the identity matrix.
Since the data are evenly spaced, then the matrix D can be written as

.

We can perform an eigen decomposition of D to obtain

,

where is a diagonal matrix. The diagonal elements contain the eigenvalues
of D that are in the following form [Yueh, 2005]

. (7.26)

The matrix U is a unitary matrix, which means that

This allows us to write Equation 7.25 as

, (7.27)

where, given Equation 7.26, the elements of the diagonal matrix are given
by

.

Garcia notes that U is an inverse discrete cosine transform (IDCT)
matrix, and is a discrete cosine transform matrix (DCT).

F ŷ()

In αD
T
D+()ŷ y=

In n n×

1– 1
1 2– 1
 … … …
 1 2– 1
 1 1–

D UΛU
1–

=

Λ

λii 2– 2 i 1–()π n⁄()cos+=

U
1–

U
T

=

UU
T

In .=

ŷ U In αΛ2
+()

1–
U

T
y UΓU

T
y≡=

Γ

Γii 1 α 2 2 i 1–()π n⁄()cos–()2
+[]

1–
=

n n×
U

T

312 Exploratory Data Analysis with MATLAB®, Third Edition

. (7.28)

This idea of using the discrete cosine transform in smoothing has also been
introduced by Buckley [1994].

In his paper, Garcia [2010] describes a procedure for automatically
selecting a good value of the smoothing parameter using generalized
cross-validation (GCV). The GCV was developed by Craven and Wahba
[1979] in the context of smoothing splines. A full discussion of this approach
is not provided here, but some references are provided at the end of this
chapter.

Missing data can occur in many applications, or we might want to weight
observations based on their quality (e.g., outliers). Garcia addresses these
issues in his methodology by incorporating weights into the smoothing
process. If there are missing values, then the weight is given by zero, and an
arbitrary finite value is assigned to the corresponding value of y. In this case,
Garcia’s algorithm will interpolate and smooth, and the values assigned to
the missing data are estimated using the whole data set.

Garcia also uses this weighted smoothing to deal with outliers, resulting in
a robust smooth. These are similar to what we discussed with loess, where
the residuals are calculated, followed by the calculation of the bisquare
weights. The smooth is recalculated using these weighted residual values.
The following example uses an illustration and function provided by Garcia
[2009].

Example 7.8
We downloaded the function called smoothn from Garcia [2009], as well as
the two functions for performing the DCT and IDCT (dctn and idctn).
These have been included with the EDA Toolbox for convenience. Garcia
provides MATLAB code and figures for several examples, which can also be
seen by typing help smoothn at the command line. We will use a data set
from Simonoff [1996] to illustrate this approach. The data represents the
grape yields in number of lugs for harvests from 1989 through 1991. The
independent variable is the row number, which is uniformly spaced; so we
can use this smoothing approach. The following code loads the data and
performs the smooth.

% Load the data. There are two variables.
% The x is the row number, and y is the number of lugs.
load vineyard
yhat = smoothn(totlugcount);
plot(row, totlugcount,'o',row,yhat)

A scatterplot of the data, along with the superimposed smooth, is provided
in Figure 7.15, where we see that the procedure did a good job of smoothing
the data.
❑

ŷ UΓU
T
y IDCT ΓDCT y()()= =

α

Smoothing Scatterplots 313

Garcia’s approach generalizes easily to higher-dimensional evenly
sampled data. This comes about because a multidimensional discrete cosine
transform is a composition of one-dimensional DCTs along each of the
dimensions [Strang, 1999; Garcia, 2010]. The smoothn function that we used
in the previous example will provide smooths for multidimensional data.

7.6 Choosing the Smoothing Parameter

Most smoothing methods have some parameter that determines the smooth-
ness of the estimate, e.g., . For example, this might be the number of regions
used in the bin smoother method, the size of the neighborhood in the running
line smoother,1 or the smoothing parameter in loess and smoothing splines
[Martinez and Martinez, 2015]. In what follows, we will use the term smooth-
ing parameter denoted by s to represent all of these quantities that drive the
smoothness of our estimated curve.

In general, the smoothing parameter s can take on a range of values that
depends on the method that is used. When s takes on values at one end of the
range, then the curve will more closely follow the data, yielding a rougher or

FIGURE 7.15
This shows a scatterplot of the vineyard data. A smooth based on Garcia’s approach for
uniformly spaced data is superimposed on the plot. The function smoothn was used to
obtain the smooth, and it automatically chooses an appropriate smoothing parameter.

1 See the exercises for a description of the bin smoother and the running line smoother.

0 10 20 30 40 50 60
5

10

15

20

25

30

35

40

45

Row Number

T
o
ta

l N
u
m

b
e
r

o
f

L
u
g
s

f̂

α

314 Exploratory Data Analysis with MATLAB®, Third Edition

wiggly curve. As the value of the parameter moves to the other end of the
range of parameter values, the curve becomes smoother. The choice of the
smoothing parameter is an important one, because we might get estimates
that show different types of structures (e.g., modes, trends, etc.) as we change
the value of the smoothing parameter.

We could try an exploratory approach to choose s, where we construct esti-
mates for different values of the smoothing parameter and plot the curve
on the scatterplot. This yields a set of curves and plots that are then examined
by the analyst. It is possible that these estimates with different degrees of
smoothing will yield different structures or features. It is also possible that if
one sees the same structure in many of the curves (i.e., the structure has per-
sistence), then it is likely that the structure is not an artifact of the smoothing
parameter that is used and might be meaningful.

We could also use a way that is more data-driven. This second approach
uses cross-validation based on the prediction error, which is defined as the
average squared error between the predicted response and the observed
response [Martinez and Martinez, 2015].

Cross-validation is a general technique that can be used to estimate the
accuracy of a model. The basic idea is to partition the data into K subsets of
approximately equal size. One partition is reserved for testing, and the rest
of the data are used to get the estimated fit . Each of the observations in the
test set is then used to calculate the squared error of the estimate . This is
repeated K times, yielding n errors.

Perhaps the most accurate form of cross-validation is when . In this
case, we leave only one data point out at a time and use the remaining
observations in our smoothing. We will denote the estimated function at
with smoothing parameter s and leaving out the i-th observation as .
Then, the cross-validation sum of squares (sometimes called the cross-
validation score function) as a function of the smoothing parameter can be
written as

. (7.29)

We then minimize the cross-validation function to estimate the smoothing
parameter. The procedure is to first select a range of suitable values for s.
Then, we find for each value of s and select the value of s that mini-
mizes .

Keep in mind that this procedure produces an estimate of the smoothing
parameter s that optimizes the prediction error. Thus, it is subject to sampling
variability, just like any estimate. Fox [2000b] points out that using the
to choose a value for s can produce estimates that are too small when the sam-
ple size n is small. Also, it is important to keep in mind that the value for s
from cross-validation might be a starting point for an exploratory procedure
as we described earlier.

f̂

f̂

f̂

f̂k

f̂k

K n=

n 1–

xi

f̂s

i–()
xi()

CV s
n

y f xi s

i

i

i

n

() = − ()⎛
⎝
⎜

⎞
⎠
⎟

−()

=
∑1 2

1

CV s()
CV s()

CV s()

Smoothing Scatterplots 315

We can always use the cross-validation procedure and the expression in
Equation 7.29, but a faster way to find the value of is available [Hastie
and Tibshirani, 1990; Green and Silverman, 1994]. This alternative expression
for the cross-validation function is valid when the smoothers are linear. A
linear smoother is one that can be written in terms of a smoother matrix S, as
follows

,

where we have the fit at the observations . S is called the smoother matrix
with n rows and n columns, where the notation indicates its dependence on
the smoothing parameter s.

The following smoothers are linear: running-mean, running-line, cubic
smoothing spline, kernel methods, and loess. The robust version of loess is
nonlinear. Another example of a nonlinear smoother would be the running-
median, where the median is used in each neighborhood instead of the mean.
In the case of smoothing splines, the smoother matrix is

,

where we have .
The cross-validation score for smoothing parameter s can be written as

, (7.30)

where is the diagonal elements of the smoother matrix, and is the
value of the fit with smoothing parameter s at using the full data set. This
saves a lot of computations, because we do not have to find n regression fits
for each value of the smoothing parameter s. We will illustrate the cross-
validation function for smoothing splines in the next example.

Example 7.9
In this example, we show how to calculate the cross-validation function from
Equation 7.30 for smoothing splines. The steps given below use the function
splinesmth that is included with the EDA Toolbox. This function returns
the smoother matrix in addition to the values for . We return to the ozone
data of the previous example, so we can see whether or not our choice for
was a good one.

load ozone
% Assign an index value for X
x = 1:length(Yonkers);

CV s()

f̂ S s()y=

f̂ xi

S α() I αQR 1– QT
+()

1–
=

s α=

CV s
n

y f x

S s

i i

iii

n

() =
− ()

− ()
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟=

∑1
1

2

1

Sii s() f̂ xi()
xi

f̂
α

316 Exploratory Data Analysis with MATLAB®, Third Edition

y = Yonkers;
% Set some possible values for alpha.
alpha = 1:0.5:50;
CV = zeros(1,length(alpha));
for i = 1:length(CV)
 i
 [x0,fhat,S] = splinesmth(x,y,alpha(i));
 num = y - fhat;
 den = 1 - diag(S);
 CV(i) = mean((num./den).^2);
end
% Find the minimum value of CV(alpha).
[m,ind] = min(CV);
% Find the corresponding alpha.
cvalpha = alpha(ind);

The value of the smoothing parameter that corresponds to the minimum of
the cross-validation function is . Our choice of in the previous
example was not a very good one, according to this approach. The reader is
asked in the exercises to construct the smoothing spline for and to
compare the smooths. A plot of the cross-validation function is shown in
Figure 7.16.
❑

FIGURE 7.16
This shows the cross-validation function for a smoothing spline fit to the ozone data of
Example 7.9. According to this, the optimal value for the smoothing parameter is 8.

α 8= α 30=

α 8=

0 5 10 15 20 25 30 35 40 45 50
625

630

635

640

645

650

Smoothing Parameter α

C
V

(α
)

Smoothing Scatterplots 317

7.7 Bivariate Distribution Smooths

We now discuss some smoothings that can be used to graphically explore
and summarize the distribution of two variables. Here we are not only
looking to see how y depends on x, but also how x depends on y. Plotting
pairs of loess smoothings on a scatterplot is one way of understanding this
relationship.2 Polar smoothing can also be used to understand the bivariate
distribution between x and y by smoothing the edges of the point cloud.

7.7.1 Pairs of Middle Smoothings

In our previous examples of loess, we were in a situation where y was our
response variable and x was the predictor variable, and we wanted to model
or explore how y depends on the predictor. However, there are many
situations where none of the variables is a factor or a response, and the goal
is simply to understand the bivariate distribution of x and y.

We can use pairs of loess curves to address this situation. The idea is to
smooth y given x, as before, and also smooth x given y [Cleveland and
McGill, 1984; Tukey, 1977]. Both of these smooths are plotted simultaneously
on the scatterplot. We illustrate this in Example 7.10, where it is applied to the
software data.

Example 7.10
We now look at the bivariate relationships between three variables: number
of defects per SLOC, preparation time per SLOC, and meeting time per SLOC
(single line of code). First we get some of the parameters needed for obtaining
the loess smooths and for constructing the scatterplot matrix. Notice also that
we are transforming the data first using the natural logarithm, because the
data are skewed.

% Get some things needed for plotting.
vars = ['log Prep/SLOC';...

' log Mtg/SLOC';' log Def/SLOC'];
% Transform the data using logs.
X = log(prepsloc);
Y = log(mtgsloc);
Z = log(defsloc);
% Set up the parameters.
alpha = 0.5;

2 There are other ways to convey and understand a bivariate distribution, such as probability
density estimation. The finite mixture method is one way (Chapter 6), and histograms is another
(Chapter 9).

318 Exploratory Data Analysis with MATLAB®, Third Edition

lambda = 2;
n = length(X);

Next we obtain all pairs of smooths; there are six of them.

% Get the pairs of middle smoothings.
% There should be 6 unique cases of these.
% First get domains.
x0 = linspace(min(X),max(X),50);
y0 = linspace(min(Y),max(Y),50);
z0 = linspace(min(Z),max(Z),50);
% Now get the curves.
xhatvy = loess(Y,X,y0,alpha,lambda);
yhatvx = loess(X,Y,x0,alpha,lambda);
xhatvz = loess(Z,X,z0,alpha,lambda);
zhatvx = loess(X,Z,x0,alpha,lambda);
yhatvz = loess(Z,Y,z0,alpha,lambda);
zhatvy = loess(Y,Z,y0,alpha,lambda);

Finally, we construct the scatterplot matrix. We use MATLAB’s Handle
Graphics to add the lines to each plot.

% Now do the plotmatrix.
data = [X(:),Y(:),Z(:)];
% gplotmatrix is in the Statistics Toolbox.
[H,AX,BigAx] = gplotmatrix(data,[],[],'k','.',...
 0.75,[],'none',vars,vars);
% Use Handle Graphics to construct the lines.
axes(AX(1,2));
line(y0,xhatvy);line(yhatvx,x0,'LineStyle','--');
axes(AX(1,3));
line(z0,xhatvz);line(zhatvx,x0,'LineStyle','--');
axes(AX(2,1));
line(x0,yhatvx);line(xhatvy,y0,'LineStyle','--');
axes(AX(2,3));
line(z0,yhatvz);line(zhatvy,y0,'LineStyle','--');
axes(AX(3,1));
line(x0,zhatvx);line(xhatvz,z0,'LineStyle','--');
axes(AX(3,2));
line(y0,zhatvy);line(yhatvz,z0,'LineStyle','--');

The results are shown in Figure 7.17. Note that we have the smooths of y
given x shown as solid lines, and the smooths of x given y plotted using
dashed lines. In the lower left plot, we see an interesting relationship between
the preparation time and number of defects found, where we see a local
maximum, possibly indicating a higher rate of defects found.
❑

Smoothing Scatterplots 319

7.7.2 Polar Smoothing

The goal of polar smoothing is to convey where the central portion of the
bivariate point cloud lies. This summarizes the position, shape, and
orientation of the cloud of points. Another way to achieve this is to find the
convex hull of the points, which is defined as the smallest convex polygon
that completely encompasses the data. However, the convex hull is sensitive
to outliers because it must include them, so it can overstate the area covered
by the data cloud. Polar smoothing by loess does not suffer from this
problem.

We now describe the procedure for polar smoothing. The first three steps
implement one of the many ways to center and scale x and y. The smooth is
done using polar coordinates based on a form of these pseudovariates. At the
end, we transform the results back to the original scale for plotting.

Procedure – Polar Smoothing

1. Normalize xi and yi using

FIGURE 7.17
This shows the scatterplot matrix with superimposed loess curves for the software data,
where we look at inspection information per SLOC. The solid lines indicate the smooths for
y given x, and the dashed lines are the smooths for x given y.

−10 −8 −6 −4 −2

 log Def/SLOC

−4

−2

0

2

lo
g
 P

re
p
/S

L
O

C

−6

−4

−2

0

2

 lo
g
 M

tg
/S

L
O

C

−4 −2 0 2

−10

−8

−6

−4

−2

log Prep/SLOC

 lo
g
 D

e
f/
S

L
O

C

−6 −4 −2 0 2

 log Mtg/SLOC

320 Exploratory Data Analysis with MATLAB®, Third Edition

where MAD is the median absolute deviation.

2. Calculate the following values:

3. Normalize the si and di as follows:

4. Convert the to polar coordinates .

5. Transform the mi as follows

.

6. Smooth zi as a function of θi. This produces the fitted values .

7. Find the fitted values for mi by transforming the using

.

8. Convert the coordinates to Cartesian coordinates .

9. Transform these coordinates back to the original x and y scales by
the following:

10. Plot the coordinates on the scatterplot by connecting each
point by a straight line and then closing the polygon by connecting
the first point to the n-th point.

xi
*

xi median x()–() MAD x()÷=

yi
*

yi median y()–() MAD y()÷() ,=

si yi
*

xi
*

+=

di yi
*

xi
* .–=

si
*

si MAD s()÷=

di
*

di MAD d()÷() .=

si
*

di
*,() θi mi,()

zi mi
2 3⁄

=

ẑi

ẑi

m̂i ẑi
3 2⁄

=

θi m̂i,() ŝi
*

d̂i
*

,()

ŝi ŝi
* MAD s()×=

d̂i d̂i
* MAD d()×=

x̂i ŝi d̂i–() 2÷[] MAD x()× median x()+=

ŷi ŝi d̂i+() 2÷[] MAD y()× median y() .+=

x̂i ŷi,()

Smoothing Scatterplots 321

More information on the smooth called for in Step 6 is in order. Cleveland
and McGill [1984] suggest the following way to use the regular loess
procedure to get a circular smooth. Recall that θi is an angle for i = 1, ..., n. We
order the θi in ascending order, and we let j = n/2 be rounded up to an integer.
We then give the following points to loess

The actual smoothed values that we need are those in the second row.

Example 7.11
We use the BPM data to illustrate polar smoothing. Results from Martinez
[2002] show that there is some overlap between topics 8 (death of North
Korean leader) and topic 11 (helicopter crash in North Korea). We apply the
polar smoothing to these two topics to explore this issue. We use ISOMAP
nonlinear dimensionality reduction with the IRad dissimilarity matrix to
produce bivariate data. The scatterplot for the data after dimensionality
reduction is shown in Figure 7.18.

FIGURE 7.18
This is the scatterplot of topics 8 and 11 after we use ISOMAP to reduce the data to 2–D.
We see some overlap between the two topics.

2π– θn j– 1+ zn j– 1+,+() … 2π– θn zn,+(),, ,

θ1 z1,() … θn zn,(),, ,

2π θ1 z1,+() … 2π θj zj,+()., ,

−1 0 1 2 3 4 5
−4

−3

−2

−1

0

1

2
Scatterplot of Topic 8 and Topic 11

Topic 8
Topic 11

322 Exploratory Data Analysis with MATLAB®, Third Edition

load L1bpm
% Pick the topics we will look at.
t1 = 8;
t2 = 11;
% Reduce the dimensionality using Isomap.
options.dims = 1:10; % These are for ISOMAP.
options.display = 0;
[Yiso, Riso, Eiso] = isomap(L1bpm, 'k', 7, options);
% Get the data out.
X = Yiso.coords{2}';
% Get the data for each one and plot
ind1 = find(classlab == t1);
ind2 = find(classlab == t2);
plot(X(ind1,1),X(ind1,2),'.',X(ind2,1),X(ind2,2),'o')
title('Scatterplot of Topic 8 and Topic 11')

Now we do the polar smoothing for the first topic.

% First let’s do the polar smoothing just for
% the first topic. Get the x and y values.
x = X(ind1,1);
y = X(ind1,2);
% Step 1.
% Normalize using the median absolute deviation.
% We will use the Matlab 'inline' functionality.
md = inline('median(abs(x - median(x)))');
xstar = (x - median(x))/md(x);
ystar = (y - median(y))/md(y);
% Step 2.
s = ystar + xstar;
d = ystar - xstar;
% Step 3. Normalize these values.
sstar = s/md(s);
dstar = d/md(d);
% Step 4. Convert to polar coordinates.
[th,m] = cart2pol(sstar,dstar);
% Step 5. Transform radius m.
z = m.^(2/3);
% Step 6. Smooth z given theta.
n = length(x);
J = ceil(n/2);
% Get the temporary data for loess.
tx = -2*pi + th((n-J+1):n);
% So we can get the values back, find this.
ntx = length(tx);
tx = [tx; th];
tx = [tx; th(1:J)];

Smoothing Scatterplots 323

ty = z((n-J+1):n);
ty = [ty; z];
ty = [ty; z(1:J)];
tyhat = loess(tx,ty,tx,0.5,1);
% Step 7. Transform the values back.
% Note that we only need the middle values.
tyhat(1:ntx) = [];
mhat = tyhat(1:n).^(3/2);
% Step 8. Convert back to Cartesian.
[shatstar,dhatstar] = pol2cart(th,mhat);
% Step 9. Transform to original scales.
shat = shatstar*md(s);
dhat = dhatstar*md(d);
xhat = ((shat-dhat)/2)*md(x) + median(x);
yhat = ((shat+dhat)/2)*md(y) + median(y);
% Step 10. Plot the smooth.
% We use the convex hull to make it easier
% for plotting.
K = convhull(xhat,yhat);
plot(X(ind1,1),X(ind1,2),'.',X(ind2,1),X(ind2,2),'o')
hold on
plot(xhat(K),yhat(K))

We wrote a function called polarloess that includes these steps. We use it
to find the polar smooth for the second topic and add that smooth to the plot.

% Now use the polarloess function to get the
% other one.
[xhat2,yhat2] = ...
 polarloess(X(ind2,1),X(ind2,2),0.5,1);
plot(xhat2,yhat2)
hold off

The scatterplot with polar smooths is shown in Figure 7.19, where we get a
better idea of the overlap between the groups.
❑

7.8 Curve Fitting Toolbox

We now briefly describe the Curve Fitting Toolbox3 in this section. The
reader is not required to have this toolbox for MATLAB functionality
described outside this section. The Curve Fitting Toolbox is a collection of

3 This toolbox is available from The MathWorks, Inc.

324 Exploratory Data Analysis with MATLAB®, Third Edition

graphical user interfaces (GUIs) and M–file functions that are written for the
MATLAB environment, just like other toolboxes.

The toolbox has the following major features for curve fitting:

� One can perform data preprocessing, such as sectioning, smooth-
ing, and removing outliers.

� The analyst can fit curves to points using parametric and
nonparametric methods. The parametric approaches include
polynomials, exponential, rationals, sums of Gaussians, and
custom equations. Nonparametric fits include spline smoothing
and other interpolation methods.

� It does standard least squares, weighted least squares, and robust
fitting procedures.

� Statistics indicating the goodness-of-fit are also available.

The toolbox can only handle fits between y and x; multivariate predictors are
not supported.

The Curve Fitting Toolbox also has a stand-alone function for getting
various smooths called smooth. The general syntax for this function is

x = smooth(x,y,span,method);

where span governs the size of the neighborhood. There are six methods
available, as outlined below:

FIGURE 7.19
This is the scatterplot of the two topics with the polar smooths superimposed.

−1 0 1 2 3 4 5
−4

−3

−2

−1

0

1

2
Scatterplot of Topic 8 and Topic 11

Topic 8
Topic 11

Smoothing Scatterplots 325

'moving' - Moving average (default)
'lowess' - Lowess (linear fit)
'loess' - Loess (quadratic fit)
'sgolay' - Savitzky-Golay
'rlowess' - Robust Lowess (linear fit)
'rloess' - Robust Loess (quadratic fit)

One possible inconvenience with the smooth function (as well as the GUI) is
that it provides values of the smooth only at the observed x values.

7.9 Summary and Further Reading

Several excellent books on smoothing and nonparametric regression (a
related approach) are available. Perhaps the most comprehensive one on
loess is called Visualizing Data by Cleveland [1993]. This book also includes
extensive information on visualization tools such as contour plots, wire
frames for surfaces, coplots, multiway dot plots, and many others. For
smoothing methods in general, we recommend Simonoff [1996]. It surveys
the use of smoothing methods in statistics. The book has an applied focus,
and it includes univariate and multivariate density estimation,
nonparametric regression, and categorical data smoothing. A compendium
of contributions in the area of smoothing and regression can be found in
Schimek [2000]. A monograph on nonparametric smoothing in statistics was
written by Green and Silverman [1994]; it emphasizes methods rather than
the theory.

Loader [1999] provides an overview of local regression and likelihood,
including theory, methods, and applications. It is easy to read, and it uses
S–Plus code to illustrate the concepts. Efromovich [1999] provides a
comprehensive account of smoothing and nonparametric regression, and he
also includes time series analysis. Companion software in S–Plus for the text
is available over the internet, but he does not include any code in the book
itself. Another smoothing book with S–Plus is Bowman and Azzalini [1997].
For the kernel smoothing approach, see Wand and Jones [1995].

Generalized additive models is a way to handle multivariate predictors in
a nonparametric fashion. In classical (or parametric) regression, one assumes
a linear or some other parametric form for the predictors. In generalized
additive models, these are replaced by smooth functions that are estimated
by a scatterplot smoother, such as loess. The smooths are found in an iterative
procedure. A monograph by Hastie and Tibshirani [1990] that describes this
approach is available, and it includes several chapters on scatterplot
smoothing, such as loess, splines, and others. There is also a survey paper on
this same topic for those who want a more concise discussion [Hastie and

326 Exploratory Data Analysis with MATLAB®, Third Edition

Tibshirani, 1986]. Another recent book that introduces generalized additive
models using R is by Wood [2006].

For an early review of smoothing methods, see Stone [1977]. The paper by
Cleveland [1979] describes the robust form of loess, and includes some
information on the sampling distributions associated with locally weighted
regression. Next we have Cleveland and McGill [1984], which is a wonderful
paper that includes descriptions of many tools for scatterplot enhancements.
Cleveland, Devlin, and Grosse [1988] discuss methods and computational
algorithms for local regression. Titterington [1985] provides an overview of
various smoothing techniques used in statistical practice and provides a
common unifying structure. We also have Cleveland and Devlin [1988] that
shows how loess can be used for exploratory data analysis, diagnostic
checking of parametric models, and multivariate nonparametric regression.
For an excellent summary and history of smoothing methods, see Cleveland
and Loader [1996]. As for other smoothing methods, including ones based on
kernel functions, the reader can refer to Scott [2015] and Hastie and Loader
[1993].

There is a lot of literature on spline methods. For a nice survey article that
synthesizes much of the work on splines in statistics, we refer the reader to
Wegman and Wright [1983]. See Green and Silverman [1994] and Martinez
and Martinez [2015] for a procedure to construct weighted smoothing splines
and the generalized cross-validation for choosing the smoothing parameter.
These are useful in situations where assumptions are violated, such as ties in
predictor values or dependent errors. Hastie and Tibshirani [1990] have a
good discussion of this topic, also.

Exercises

7.1 First consult the help files on the MATLAB functions polyfit and
polyval, if you are unfamiliar with them. Next, for some given
domain of points x, find the y values using polyval and degree 3.
Add some normally distributed random noise (use normrnd with 0
mean and some small σ) to the y values. Fit the data using polynomi-
als of degrees 1, 2, and 3 and plot these curves along with the data.
Construct and plot a loess curve. Discuss the results.

7.2 Generate some data using polyval and degree 1. Add some small
random noise to the points using randn. Use polyfit to fit a poly-
nomial of degree 1. Add one outlying point at either end of the range
of the x values. Fit these data to a straight line. Plot both of these lines,
along with a scatterplot of the data, and comment on the differences.

7.3 Do a scatterplot of the data generated in Problem 7.1. Activate the
Tools menu in the Figure window and click on the Basic Fit-

Smoothing Scatterplots 327

ting option. This brings up a GUI that has some options for fitting
data. Explore the capabilities of this GUI.

7.4 Load the abrasion data set. Construct loess curves for abrasion loss
as a function of tensile strength and abrasion loss as a function of
hardness. Comment on the results. Repeat the process of Example
7.10 using this data set and assess the results.

7.5 Repeat the process outlined in Example 7.10 using the environmen-
tal data. Comment on your results.

7.6 Construct a sequence of loess curves for the votfraud data set. Each
curve should have a different value of α = 0.2, 0.5, 0.8. First do this for
λ = 1 and then repeat for λ = 2. Discuss the differences in the curves.
Just by looking at the curves, what α and λ would you choose?

7.7 Repeat Problem 7.6, but this time use the residual plots to help you
choose the values for α and λ.

7.8 Repeat Problems 7.6 and 7.7 for the calibrat data.
7.9 Verify that the tri-cube weight satisfies the four properties of a weight

function.
7.10 Using the data in Example 7.11, plot the convex hulls (use the function

convhull) of each of the topics. Compare these with the polar
smooth.

7.11 Choose some other topics from the BPM and repeat the polar smooths
of Example 7.11.

7.12 Using one of the gene expression data sets, select an experiment
(tumor, patient, etc.), and apply some of the smoothing techniques
from this chapter to see how the genes are related to that experiment.
Choose one of the genes and smooth as a function of the experiments.
Construct the loess upper and lower smooths to assess the variation.
Comment on the results.

7.13 Construct a normal probability plot of the residuals in the software
data analysis. See Chapter 9 for information or the MATLAB Statistics
Toolbox function normplot. Construct a histogram (use the hist
function). Comment on the distributional assumptions for the errors.

7.14 Repeat Problem 7.13 for the analyses in Problems 7.6 and 7.8.
7.15 Choose two of the dimensions of the oronsay data. Apply polar

smoothing to summarize the point cloud for each class. Do this for
both classifications of the oronsay data. Comment on your results.

7.16 Do a 3–D scatterplot (see scatter3) and a scatterplot matrix (see
plotmatrix) of the galaxy data of Example 7.2. Does the contour
plot in Figure 7.5 match the scatterplots?

7.17 Describe what type of function you would get when fitting a spline
model with

7.18 The bin smoother [Hastie and Tibshirani, 1990; Martinez and Mar-
tinez, 2015] is a simple approach to smoothing. We divide the
observed predictor variables into disjoint and exhaustive regions
represented by cut points . We define the indi-
ces of the data points belonging to the regions as

D 0.=

xi

∞– c0 … cK< < ∞= =

Rk

328 Exploratory Data Analysis with MATLAB®, Third Edition

,

for . Then, we have the value of the estimated smooth
for in given by the average of the responses in that region:

.

Write a MATLAB function that implements the bin smoother and
apply it to the salmon data. Compare your results to Figure 7.6.

7.19 The running mean smooth [Martinez and Martinez, 2015] expands on
the idea of the bin smoother by taking overlapping regions or bins

, making the estimate smoother. Note that the following defini-
tion of a running mean smoother is for target values that are equal to
one of our observed :

.

This smooth is also known as the moving average and is used quite
often in time series analysis where the observed predictor values are
evenly spaced. Write a MATLAB function that implements the run-
ning mean smoother and apply it to the salmon data. Compare your
results to previous methods.

7.20 The running line smoother [Martinez and Martinez, 2015] is a gener-
alization of the running mean, where the estimate of f is found by fit-
ting a local line using the observations in the neighborhood. The
definition is given by the following

,

where and are estimated via ordinary least squares using the
data in the neighborhood of . Write a MATALB function that will
compute the running line smoother and apply it to the salmon data.
Compare the resulting smooth to the previous methods.

7.21 Repeat Example 7.7 using different values of the smoothing parame-
ter. What happens as approaches zero? What happens as gets
larger?

7.22 Construct residual plots for each of the smoothing spline fits obtained
in the previous problem. Explain what you observe when analyzing
the residual plots. (See Example 7.4.)

7.23 Apply the spread smooth techniques to some of the smooths of prob-
lem 7.21.

7.24 Repeat Example 7.7 using Compare the smooths.

Rk i; ck xi ck 1+<≤(){ }=

k 0 … K 1–, ,=

x0 Rk

f̂ x0() averagei in Rk
yi()=

N
S

xi()

xi

f̂ xi() average
j in NS

xi()
yj()=

f̂ xi() β̂0
i

β̂1
i
xi+=

β̂0
i

β̂1
i

xi

α α

α 8.=

Smoothing Scatterplots 329

7.25 The following example and code was taken from Garcia [2009]. This
provides a demonstration of the discrete cosine smooth for uniformly
spaced data. In the case outlined below demonstrate how the method-
ology works in the robust case. Run the code and produce plots of z
(regular smoothing) and zr (robust smoothing).

x = linspace(0,100,2^8);
y = cos(x/10)+(x/50).^2 + randn(size(x))/5;
y([70 75 80]) = [5.5 5 6];
[z,s] = smoothn(y); % Regular smoothing
zr = smoothn(y,'robust'); % Robust smoothing

Call the function smoothn with your own smoothing parameter val-
ues, where you under-smooth and over-smooth (see the help for the
function).

7.26 The following example and code was taken from Garcia [2009]. This
provides a demonstration of how the discrete cosine transform
smoothing methodology will work on 2–D data with missing values.
This will generate noisy 2–D data based on the MATLAB peaks func-
tion. This is done by adding Gaussian noise, randomly removing half
of the data, and making one area of it empty. Run this code and plot
the original data (y0), the corrupted data (y), and the smooth (z). Use
the function imagesc to plot them.

n = 256;
y0 = peaks(n);
y = y0 + rand(size(y0))*2;
I = randperm(n^2);
y(I(1:n^2*0.5)) = NaN; % Lose half of the data
y(40:90,140:190) = NaN; % Create a hole
z = smoothn(y,'MaxIter',250); % Smooth the data

Try moving the hole around to different places and compare the
results.

http://taylorandfrancis.com

Part III
Graphical Methods for EDA

http://taylorandfrancis.com

333

Chapter 8
Visualizing Clusters

In Chapters 5 and 6, we presented various methods for clustering, including
agglomerative clustering, k-means clustering, and model-based clustering. In
the process of doing that, we showed some visualization techniques such as
dendrograms for visualizing hierarchical structures and scatterplots. We
now turn our attention to other methods that can be used for visualizing the
results of clustering. These include a space-filling version of dendrograms
called treemaps, an extension of treemaps called rectangle plots, a novel
rectangle-based method for visualizing nonhierarchical clustering called
ReClus, and data images that can be used for viewing clusters, as well as
outlier detection. We begin by providing more information on dendrograms.

8.1 Dendrogram

The dendrogram (also called the tree diagram) is a mathematical, as well as a
visual representation of a hierarchical procedure that can be divisive or
agglomerative. Thus, we often refer to the results of the hierarchical
clustering as the dendrogram itself.

We start off by providing some terminology for a dendrogram; the reader
can refer to Figure 8.1 for an illustration. The tree starts at the root, which can
either be at the top for a vertical tree or on the left side for a horizontal tree.
The nodes of the dendrogram represent clusters, and they can be internal or
terminal. The internal nodes contain or represent all observations that are
grouped together based on the type of linkage and distance used. In most
dendrograms, terminal nodes contain a single observation. We will see
shortly that this is not always the case in MATLAB’s implementation of the
dendrogram. Additionally, terminal nodes usually have labels attached to
them. These can be names, letters, numbers, etc. The MATLAB dendrogram
function labels the terminal nodes with numbers.

The stem or edge shows children of internal nodes and the connection with
the clusters below it. The length of the edge represents the distances at which
clusters are joined. The dendrograms for hierarchical clustering are binary

334 Exploratory Data Analysis with MATLAB®, Third Edition

trees; so they have two edges emanating from each internal node. The
topology of the tree refers to the arrangement of stems and nodes.

The dendrogram illustrates the process of constructing the hierarchy, and
the internal nodes describe particular partitions, once the dendrogram has
been cut at a given level. Data analysts should be aware that the same data
and clustering procedure can yield 2n-1 dendrograms, each with a different
appearance depending on the order used to display the nodes. Software
packages choose the algorithm for drawing this automatically, and they
usually do not specify how they do this. Some algorithms have been
developed for optimizing the appearance of dendrograms based on various
objective functions [Everitt, Landau, and Leese, 2001]. We will see in the last
section where we discuss the data image that this can be an important
consideration.

Example 8.1
We first show how to construct the dendrogram in Figure 8.1 using the
leukemia data set. The default for the dendrogram function is to display a
maximum of 30 nodes. This is to prevent the displayed leaf nodes from being
too cluttered. The user can specify the number to display, as we do below, or
one can display all nodes by using dendrogram(Z,0).

% First load the data.

FIGURE 8.1
We applied agglomerative clustering to the leukemia data using Euclidean distance and
complete linkage. The dendrogram with 15 leaf nodes is shown here. If we cut this dendro-
gram at level 10.5 (on the vertical axis), then we would obtain 5 clusters or groups.

 3 7 5 1 2 10 4 6 11 9 15 14 12 8 13

9

10

11

12

13

14

15

Leukemia Data

Internal node Edge or stem

Root

Terminal node or leaf

Visualizing Clusters 335

load leukemia
[n,p] = size(leukemia);
x = zeros(n,p);
% Standardize each row (gene) to be mean
% zero and standard deviation 1.
for i = 1:n
 sig = std(leukemia(i,:));
 mu = mean(leukemia(i,:));
 x(i,:) = (leukemia(i,:) - mu)/sig;
end
% Do hierarchical clustering.
Y = pdist(x);
Z = linkage(Y,'complete');
% Display with only 15 nodes.
% Output arguments are optional.
[H,T] = dendrogram(Z,15);
title('Leukemia Data')

Note that the leaf nodes in this example of a MATLAB dendrogram do not
necessarily represent one of the original observations; they likely contain
several observations. We can (optionally) request some output variables
from the dendrogram function to help us determine what observations are
in the individual nodes. The output vector T contains the leaf node number
for each object in the data set and can be used to find out what is in node 6 as
follows:

ind = find(T==6)
ind =

 26
 28
 29
 30
 46

Thus, we see that terminal node 6 on the dendrogram in Figure 8.1 contains
the original observations 26, 28, 29, 30, and 46.
❑

8.2 Treemaps

Dendrograms are very familiar to data analysts working in hierarchical
clustering applications, and they are easy to understand because they match
our concept of how trees are laid out in a physical sense with branches and

336 Exploratory Data Analysis with MATLAB®, Third Edition

leaves (except that the tree root is sometimes in the wrong place!). Johnson
and Shneiderman [1991] point out that the dendrogram does not efficiently
use the existing display space, since most of the display consists of white
space with very little ink. They proposed a space-filling (i.e., the entire
display space is used) display of hierarchical information called treemaps,
where each node is a rectangle whose area is proportional to some
characteristic of interest [Shneiderman, 1992].

The original application and motivation for treemaps was to show the
directory and file structure on hard drives. It was also applied to the
visualization of organizations such as the departmental structure at a
university. Thus, the treemap visualization can be used for an arbitrary
number of splits or branches at internal nodes, including the binary tree
structure that one gets from hierarchical clustering.

Johnson and Shneiderman [1991] note that hierarchical structures contain
two types of information. First, they contain structural or organizational
information that is associated with the hierarchy. Second, they have content
information associated with each node. Dendrograms can present the
structural information, but do not convey much about the leaf nodes other
than a text label. Treemaps can depict both the structure and content of the
hierarchy.

The treemap displays hierarchical information and relationships by a series
of nested rectangles. The parent rectangle (or root of the tree) is given by the
entire display area. The treemap is obtained by recursively subdividing this
parent rectangle, where the size of each sub-rectangle is proportional to the
size of the node. The size could be representative of the size in bytes of the
file or the number of employees in an organizational unit. In the case of
clustering, the size would correspond to the number of observations in the
cluster. We continue to subdivide the rectangles horizontally, vertically,
horizontally, etc., until a given leaf configuration (e.g., number of groups in
the case of clustering) is obtained.

We show an example of the treemap in Figure 8.2, along with its associated
tree diagram. Note that the tree diagram is not the dendrogram that we
talked about previously, because it has an arbitrary number of splits at each
node. The root node has four children: a leaf node of size 12, a leaf node of
size 8, an interior node with four children, and an interior node with three
children. These are represented by the first vertical splits of the parent
rectangle. We now split horizontally at the second level. The interior node
with four children is split into four sub-rectangles proportional to their size.
Each one of these is a terminal node, so no further subdivisions are needed.
The next interior node has two children that are leaf nodes and one child that
is an interior node. Note that this interior node is further subdivided into two
leaf nodes of size 6 and 11 using a vertical split.

When we apply the treemap visualization technique to hierarchical
clustering output, we must specify the number of clusters. Note also that
there is no measure of distance or other objective function associated with the
clusters, as there is with the dendrogram. Another issue with the treemap (as

Visualizing Clusters 337

well as the dendrogram) is the lack of information about the original data,
because the rectangles are just given labels. We implemented the treemap
technique in MATLAB; its use is illustrated in the next example.

Example 8.2
In this example, we show how to use the treemap provided with the EDA
Toolbox. We return to the hierarchical clustering of the leukemia data
displayed as a dendrogram in Figure 8.1. The function we provide
implements the treemap display for binary hierarchical information only and
requires the output from the MATLAB linkage function. The inputs to the
function treemap include the Z matrix (output from linkage) and the
desired number of clusters. The default display is to show the leaf nodes with
the same labels as in the dendrogram. There is an optional third argument
that causes the treemap to display without any labels. The following syntax
constructs the treemap that corresponds to the dendrogram in Figure 8.1.

% The matrix Z was calculated in

FIGURE 8.2
At the top of this figure, we show a tree diagram with nodes and links. Each leaf node has
a number that represents the size of the nodes. An alternative labeling might be just the
node number or some text label. The corresponding treemap diagram is shown below. Note
that the divisions from the root node are shown as vertical splits of the parent rectangle,
where the size of each sub-rectangle is proportional to the total size of all children. The next
split is horizontal, and we continue alternating the splits until all leaf nodes are displayed
[Shneiderman, 1992].

12 8

2

2
3

1 5 40

6 11

12 8

2

2

3

1

40

5

6 11

338 Exploratory Data Analysis with MATLAB®, Third Edition

% Example 8.1.
treemap(Z,15);

The treemap is given in Figure 8.3. Notice that we get an idea of the size of
the nodes with the treemap, whereas this is not evident in the dendrogram
(Figure 8.1). However, as noted before, we lose the concept of distance with
treemaps; thus it is perhaps easier to see the number of groups one should
have in a dendrogram instead of a treemap.
❑

8.3 Rectangle Plots

Recall that in the dendrogram, the user can specify a value along the axis, and
different clusters or partitions are obtained depending on what value is
specified. Of course, we do not visualize this change with the dendrogram;
i.e., the display of the dendrogram is not dependent on the chosen number of
clusters or cutoff distance. However, it is dependent on the number of leaf
nodes chosen (in the MATLAB implementation). If one specifies a different
number of leaf nodes, then the dendrogram must be completely redrawn,
and node labels change. This can significantly change the layout of the
dendrogram, as well as the understanding that is gained from it.

FIGURE 8.3
Here we have the treemap that corresponds to the dendrogram in Figure 8.1.

Number of Clusters = 15

12

14

5

6

11

10

4

9

15

8 13

1

2

3

7

Visualizing Clusters 339

To display the hierarchical information as a treemap, the user must specify
the number of clusters (or one can think of this as number of leaf nodes)
rather than the cutoff point for the distance. If the user wants to explore other
cluster configurations by specifying a different number of clusters, then the
display is redrawn, as it is with the dendrogram. As stated previously, there
is no measure of distance associated with the treemap display, and there is a
lack of information about the original data. It would be useful to know what
cases are clustered where. The next cluster visualization method attempts to
address these issues.

Recall from Chapters 5 and 6 that one of the benefits of hierarchical
clustering is that the output can provide a partition of the data for any given
number of clusters or, alternatively, for any given level of dissimilarity. This
property is an advantage in EDA, because we can run the algorithm once on
a large set of data and then explore and visualize the results in a reasonably
fast manner. To address some of the issues with treemaps and to take
advantage of the strengths of hierarchical clustering, Wills [1998] developed
the rectangle visualization method. This method is similar to the treemap,
but displays the points as glyphs and determines the splits in a different way.

To construct a rectangle plot, we split the rectangles along the longest side,
rather than alternating vertical and horizontal splits as in the treemap
method. The alternating splits in treemaps are good at showing the depth of
the tree, but it has a tendency to create long skinny rectangles, if the trees are
unbalanced [Wills, 1998]. The splits in the rectangle plot provide rectangles
that are more square.

We keep splitting rectangles until we reach a leaf node or until the cutoff
distance is reached. If a rectangle does not have to be split because it reaches
this cutoff point, but there is more than one observation in the rectangle, the
algorithm continues to split rectangles until it reaches a leaf node. However,
it does not draw the rectangles. It uses this leaf-node information to
determine the layout of the points or glyphs, where each point is now in its
own rectangle. The advantage to this method is that other configurations (i.e.,
number of clusters or a given distance) can be shown without redisplaying
the glyphs. Only the rectangle boundaries are redrawn.

We illustrate the rectangle plot for a simulated data set in Figures 8.4 and
8.5. The data set contains randomly generated bivariate data (n = 30)
comprising two clusters, one centered at (–2 , 2)T and the other at (2 , 2)T. In
the top part of Figure 8.4, we have the dendrogram with all 30 nodes
displayed. We see that the node labels are difficult to distinguish. The
corresponding rectangle plot for 30 clusters is shown in the bottom of Figure
8.4, where we see each observation in its own rectangle or cluster.

We show another dendrogram and rectangle plot in Figure 8.5 using the
same data set and hierarchical clustering information. We plot a dendrogram
requesting 10 leaf nodes and show the results in the top of the figure. The leaf
nodes are now easier to read, but they no longer represent the observation
numbers. The rectangle plot for 10 clusters is given in the lower half of the

340 Exploratory Data Analysis with MATLAB®, Third Edition

FIGURE 8.4
The top portion of this figure shows the dendrogram (Euclidean distance and complete
linkage) for a randomly generated bivariate data set containing two clusters. All n = 30 leaf
nodes are shown, so we see over plotting of the text labels. The rectangle plot that corre-
sponds to this is shown in the bottom half, where we plot each observation number in its
own rectangle or cluster. The original implementation in Wills [1998] plots the observations
as dots or circles.

1222271928141720131821252923241115162630 1 2 3 9 6 5 8 4 7 10
0

1

2

3

4

5

6

7

8

9

Dendrogram of 30 Observations

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

Rectangle Plot of 30 Clusters

Visualizing Clusters 341

FIGURE 8.5
Using the same information that produced Figure 8.4, we now show the dendrogram when
only 10 leaf nodes are requested. We see that the dendrogram has been completely redrawn
when we compare it with the one in Figure 8.4. The rectangle plot for 10 clusters is given
below the dendrogram. When the rectangle plots in Figures 8.4 and 8.5 are compared, we
see that the positions of the glyphs have not changed; only the bounding boxes for the
rectangles are different. We also see information about the original data via the observation
numbers.

 4 7 1 2 5 3 9 6 8 10

2

3

4

5

6

7

8

9

Dendrogram with 10 Leaves, 30 Observations

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

Rectangle Plot of 10 Clusters, 30 Observations

342 Exploratory Data Analysis with MATLAB®, Third Edition

figure. When we compare Figures 8.4 and 8.5, we see that the dendrogram
changed a lot, whereas only the bounding boxes change in the rectangle plot.

Example 8.3
We continue with the same leukemia data set for this example. First we
show how to use the rectplot function to get a rectangle plot showing
observation numbers. For comparison with previous results, we plot 15
clusters.

% Use same leukemia data set and matrix Z
% from Example 8.1. The second argument is the
% number of clusters. The third argument is a string
% specifying what information the second
% argument provides.
rectplot(Z,15,'nclus')

The plot is shown in the top of Figure 8.6. Next we show how to use the
optional input argument to use the true class labels as the glyphs. First we
have to convert the class labels to numbers, since the input vector must be
numeric.

% We now show how to use the optional
% class labels, using the cancer type.
% The argument must be numeric, so we
% convert strings to numbers.
% First set all indices to 0 - this will
% be class ALL.
labs = zeros(length(cancertype),1);
% Now find all of the AML cancers.
% Set them equal to 1.
inds = strmatch('AML',cancertype);
labs(inds) = 1;
% Now do the rectangle plot.
rectplot(Z,15,'nclus',labs)

This plot is shown in the lower half of Figure 8.6. The observations labeled 0
are the ALL cancers, and those plotted with a 1 correspond to the AML
cancer type.
❑

In our MATLAB implementation of this technique, we plot each point with
its observation number or its true class label. This can cause some over
plotting with large data sets. A future implementation will include other plot
symbols, thus saving on display space. The user can also specify the number
of clusters by providing a cutoff dissimilarity based on the dendrogram for
the second input to the function. In this case, the third argument to
rectplot is 'dis'.

Visualizing Clusters 343

FIGURE 8.6
A rectangle plot for the leukemia data is shown in the top of this figure. Here we plot the
observation numbers for a specified number of clusters or partitions. The rectangle plot
shown in the bottom of the figure plots the observations using the true cancer labels. Class 0
corresponds to ALL and Class 1 is AML.

1

2

3

45

6

7

8

9

10

11

12

13 14

15

16

17

18

19 20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37 38

39

40

41

42

43

44

45

46

47

48

49

50

1

2

3

45

6

7

8

9

10

11

12

13 14

15

16

17

18

19 20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37 38

39

40

41

42

43

44

45

46

47

48

49

50

1

2

3

45

6

7

8

9

10

11

12

13 14

15

16

17

18

19 20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37 38

39

40

41

42

43

44

45

46

47

48

49

50

1

2

3

45

6

7

8

9

10

11

12

13 14

15

16

17

18

19 20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37 38

39

40

41

42

43

44

45

46

47

48

49

50

1

2

3

45

6

7

8

9

10

11

12

13 14

15

16

17

18

19 20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37 38

39

40

41

42

43

44

45

46

47

48

49

50

1

2

3

45

6

7

8

9

10

11

12

13 14

15

16

17

18

19 20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37 38

39

40

41

42

43

44

45

46

47

48

49

50

1

2

3

45

6

7

8

9

10

11

12

13 14

15

16

17

18

19 20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37 38

39

40

41

42

43

44

45

46

47

48

49

50

1

2

3

45

6

7

8

9

10

11

12

13 14

15

16

17

18

19 20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37 38

39

40

41

42

43

44

45

46

47

48

49

50

1

2

3

45

6

7

8

9

10

11

12

13 14

15

16

17

18

19 20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37 38

39

40

41

42

43

44

45

46

47

48

49

50

1

2

3

45

6

7

8

9

10

11

12

13 14

15

16

17

18

19 20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37 38

39

40

41

42

43

44

45

46

47

48

49

50

1

2

3

45

6

7

8

9

10

11

12

13 14

15

16

17

18

19 20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37 38

39

40

41

42

43

44

45

46

47

48

49

50

1

2

3

45

6

7

8

9

10

11

12

13 14

15

16

17

18

19 20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37 38

39

40

41

42

43

44

45

46

47

48

49

50

1

2

3

45

6

7

8

9

10

11

12

13 14

15

16

17

18

19 20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37 38

39

40

41

42

43

44

45

46

47

48

49

50

1

2

3

45

6

7

8

9

10

11

12

13 14

15

16

17

18

19 20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37 38

39

40

41

42

43

44

45

46

47

48

49

50

1

2

3

45

6

7

8

9

10

11

12

13 14

15

16

17

18

19 20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37 38

39

40

41

42

43

44

45

46

47

48

49

50

1

2

3

45

6

7

8

9

10

11

12

13 14

15

16

17

18

19 20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37 38

39

40

41

42

43

44

45

46

47

48

49

50

1

2

3

45

6

7

8

9

10

11

12

13 14

15

16

17

18

19 20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37 38

39

40

41

42

43

44

45

46

47

48

49

50

1

2

3

45

6

7

8

9

10

11

12

13 14

15

16

17

18

19 20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37 38

39

40

41

42

43

44

45

46

47

48

49

50

1

2

3

45

6

7

8

9

10

11

12

13 14

15

16

17

18

19 20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37 38

39

40

41

42

43

44

45

46

47

48

49

50

1

2

3

45

6

7

8

9

10

11

12

13 14

15

16

17

18

19 20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37 38

39

40

41

42

43

44

45

46

47

48

49

50

1

2

3

45

6

7

8

9

10

11

12

13 14

15

16

17

18

19 20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37 38

39

40

41

42

43

44

45

46

47

48

49

50

1

2

3

45

6

7

8

9

10

11

12

13 14

15

16

17

18

19 20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37 38

39

40

41

42

43

44

45

46

47

48

49

50

1

2

3

45

6

7

8

9

10

11

12

13 14

15

16

17

18

19 20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37 38

39

40

41

42

43

44

45

46

47

48

49

50

1

2

3

45

6

7

8

9

10

11

12

13 14

15

16

17

18

19 20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37 38

39

40

41

42

43

44

45

46

47

48

49

50

1

2

3

45

6

7

8

9

10

11

12

13 14

15

16

17

18

19 20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37 38

39

40

41

42

43

44

45

46

47

48

49

50

1

2

3

45

6

7

8

9

10

11

12

13 14

15

16

17

18

19 20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37 38

39

40

41

42

43

44

45

46

47

48

49

50

1

2

3

45

6

7

8

9

10

11

12

13 14

15

16

17

18

19 20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37 38

39

40

41

42

43

44

45

46

47

48

49

50

1

2

3

45

6

7

8

9

10

11

12

13 14

15

16

17

18

19 20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37 38

39

40

41

42

43

44

45

46

47

48

49

50

1

2

3

45

6

7

8

9

10

11

12

13 14

15

16

17

18

19 20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37 38

39

40

41

42

43

44

45

46

47

48

49

50

Number of Clusters = 15

0

0

0

00

0

0

0

0

0

0

0

0 0

0

0

0

0

0 0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1 1

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

00

0

0

0

0

0

0

0

0 0

0

0

0

0

0 0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1 1

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

00

0

0

0

0

0

0

0

0 0

0

0

0

0

0 0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1 1

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

00

0

0

0

0

0

0

0

0 0

0

0

0

0

0 0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1 1

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

00

0

0

0

0

0

0

0

0 0

0

0

0

0

0 0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1 1

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

00

0

0

0

0

0

0

0

0 0

0

0

0

0

0 0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1 1

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

00

0

0

0

0

0

0

0

0 0

0

0

0

0

0 0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1 1

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

00

0

0

0

0

0

0

0

0 0

0

0

0

0

0 0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1 1

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

00

0

0

0

0

0

0

0

0 0

0

0

0

0

0 0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1 1

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

00

0

0

0

0

0

0

0

0 0

0

0

0

0

0 0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1 1

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

00

0

0

0

0

0

0

0

0 0

0

0

0

0

0 0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1 1

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

00

0

0

0

0

0

0

0

0 0

0

0

0

0

0 0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1 1

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

00

0

0

0

0

0

0

0

0 0

0

0

0

0

0 0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1 1

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

00

0

0

0

0

0

0

0

0 0

0

0

0

0

0 0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1 1

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

00

0

0

0

0

0

0

0

0 0

0

0

0

0

0 0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1 1

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

00

0

0

0

0

0

0

0

0 0

0

0

0

0

0 0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1 1

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

00

0

0

0

0

0

0

0

0 0

0

0

0

0

0 0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1 1

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

00

0

0

0

0

0

0

0

0 0

0

0

0

0

0 0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1 1

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

00

0

0

0

0

0

0

0

0 0

0

0

0

0

0 0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1 1

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

00

0

0

0

0

0

0

0

0 0

0

0

0

0

0 0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1 1

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

00

0

0

0

0

0

0

0

0 0

0

0

0

0

0 0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1 1

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

00

0

0

0

0

0

0

0

0 0

0

0

0

0

0 0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1 1

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

00

0

0

0

0

0

0

0

0 0

0

0

0

0

0 0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1 1

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

00

0

0

0

0

0

0

0

0 0

0

0

0

0

0 0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1 1

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

00

0

0

0

0

0

0

0

0 0

0

0

0

0

0 0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1 1

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

00

0

0

0

0

0

0

0

0 0

0

0

0

0

0 0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1 1

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

00

0

0

0

0

0

0

0

0 0

0

0

0

0

0 0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1 1

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

00

0

0

0

0

0

0

0

0 0

0

0

0

0

0 0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1 1

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

00

0

0

0

0

0

0

0

0 0

0

0

0

0

0 0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1 1

0

0

0

0

0

0

0

0

0

0

0

1

Number of Clusters = 15

344 Exploratory Data Analysis with MATLAB®, Third Edition

Wills’ original motivation for the rectangle plot was to include the notion
of distance in a treemap-like display. He did this by providing a
supplemental line graph showing the number of clusters on the horizontal
axis, and the dissimilarity needed to do the next split on the vertical axis. The
user can interact with the display by dragging the mouse over the line graph
and seeing the corresponding change in the number of clusters shown in the
rectangle plot.

The rectangle method is also suitable for linking and brushing applications
(see Chapter 10), where one can highlight an observation in one plot (e.g., a
scatterplot) and see the same observation highlighted in another (e.g., a
rectangle plot). A disadvantage with the rectangle plot is that some of the
nesting structure seen in treemaps might be lost in the rectangle display.
Another problem with the plots discussed so far is their applicability to the
display of hierarchical information only. The plot we show next can be
applied to nonhierarchical clustering procedures.

8.4 ReClus Plots

The ReClus method was developed by Martinez [2002] as a way to view the
output of nonhierarchical clustering methods, such as k-means, model-based
clustering, etc., that is reminiscent of the treemap and rectangle displays. We
note that ReClus (standing for RectangleClusters) can also be used to convey
the results of any hierarchical clustering method once we have a given
partition.

As in the previous methods, ReClus uses the entire display area as the
parent rectangle. This is then partitioned into sub-rectangles, where the area
of each one is proportional to the number of observations that belong to that
cluster. The observations are plotted using either the observation number or
the true class label, if known. The glyphs are plotted in a systematic way,
either by order of the observation number or the class label.

There are some additional options. If the output is from model-based
clustering, then we can obtain the probability that an observation belongs to
the cluster. This additional information is displayed via the font color. For
faster and easier comprehension of the cluster results, we can set a threshold
so that the higher probabilities are shown in bold black type. We provide a
similar capability for other cluster methods, such as k-means, using the
silhouette values. We now outline the procedure for constructing a ReClus
plot.

Visualizing Clusters 345

Procedure – ReClus Plot

1. Set up the parent rectangle. We will subdivide the rectangle along
the longer side of the parent rectangle according to the proportion
of observations that are in each group.

2. Find all of the points in each cluster and the corresponding pro-
portion.

3. Order the proportions in ascending order.

4. Partition the proportions into two groups. If there is an odd number
of clusters, then put more of the clusters into the ‘left/lower’ group.

5. Based on the total proportion in each group, split the longer side
of the parent rectangle. We now have two children. Note that we
have to re-normalize the proportions based on the current parent
rectangle.

6. Repeat steps 4 through 5 until all rectangles represent only one
cluster.

7. Find the observations in each cluster and plot, either as the case
label or the true class label.

We illustrate the use of ReClus in the next example.

Example 8.4
For this example, we use the L1bpm interpoint distance matrix derived from
the BPMS of the 503 documents discussed in Chapter 1. We first use ISOMAP
to reduce the dimensionality and get our derived observations. We are going
to use only five of the sixteen topics, so we also set up the indices to extract
them.

load L1bpm
% Get just those topics on 5 through 11
ind = find(classlab == 5);
ind = [ind; find(classlab == 6)];
ind = [ind; find(classlab == 8)];
ind = [ind; find(classlab == 9)];
ind = [ind; find(classlab == 11)];
% Change the class labels for class 11
% for better plotting.
clabs = classlab(ind);
clabs(find(clabs == 11)) = 1;
% First do dimensionality reduction - ISOMAP
[Y, R, E] = isomap(L1bpm,'k',10);
% Choose 3 dimensions, based on residual variance.
XX = Y.coords{3}';
% Only need those observations in classes of interest.

346 Exploratory Data Analysis with MATLAB®, Third Edition

X = XX(ind,:);

Next we do model-based clustering specifying a maximum of 10 clusters.

% Now do model-based clustering.
[bics,bestm,allm,Z,clabsmbc] = mbclust(X,10);

We see that model-based clustering found the correct number of groups
(five), and model seven is the best fit (according to the BIC). Now that we
have the cluster information, we need to find the probability that an
observation belongs to the cluster or the silhouette values if using some other
clustering procedure. In the case of model-based clustering, we use the
function mixclass to get the probability that an observation does not belong
to the cluster, based on the model.

% Must get the probability that an observation does
% not belong to the cluster.
[clabsB,uncB] = mixclass(X,bestm.pies,...
 bestm.mus,bestm.vars);
% Plot with true class labels.
% The function requires the posterior probability
% that it belongs to the cluster.
reclus(clabsB,clabs,1 - uncB)

Note that mixclass returns the uncertainty in the classification, so we must
subtract this from one in the argument to reclus. The resulting plot is
shown in the top of Figure 8.7. Note that topics 8 and 1 (formerly topic 11) are
both about North Korea, and we see some mistakes in how these topics are
grouped. However, topics 5, 6, and 9 are clustered together nicely, except for
one document from topic 1 that is grouped with topic 5. The color coding of
the posterior probabilities makes it easier to see the level of uncertainty. In
some applications, we might gain more insights regarding the clusters by
looking at a more binary application of color. In other words, we want to see
those observations that have a high posterior probability separated from
those with a lower one. An optional argument to reclus specifies a
threshold, where we plot posterior probabilities above this value in a bold
black font. This makes it easier to get a quick overall view of the quality of the
clusters.

% Look at the other option in reclus.
% Plot points with posterior probability above
% 0.9 in bold, black font.
reclus(clabsB,clabs,1 - uncB,.9)

This ReClus plot is given in the bottom of Figure 8.7, where we see that
documents in topics 5, 6, and 9 have posterior probabilities above the
threshold. The one exception is the topic 1 document that was grouped with
topic 5. We see that this document has a lower posterior probability that was
not readily apparent in Figure 8.7 (top). We also see that the documents in the

Visualizing Clusters 347

two groups with topics 1 and 8 mixed together have a large number of
members with posterior probabilities below the threshold. It would be
interesting to explore these two clusters further to see if this grouping is an
indication of sub-topics.
❑

The next example shows how to use ReClus with the information from
hierarchical clustering, in addition to some of the other options that are
available with the reclus function. One of the advantages of ReClus is the
ability to rapidly visualize the strength of the clustering for the observations
when the true class membership is known. It would be useful to be able to
find out which observations correspond to interesting ones in the ReClus
plot. For instance, in Figure 8.7 (top), we might want to locate those stories
that were in the two mixed-up groups to see if the way they were grouped
makes sense. Or, we might want to find the topic 1 document that was mis-
grouped with topic 5.

Example 8.5
We use the same data from the previous example, but now we only look at
two topics: 8 and 11. These are the two that concern North Korea, and there
was some confusion in the clustering of these topics using model-based
clustering. We will use the ReClus plot to help us assess how hierarchical
clustering works on these two topics. First we extract the observations that
we need and get the labels.

% Continuing with same data used in
% Example 8.4.
ind = find(classlab == 8);
ind = [ind; find(classlab == 11)];
clabs = classlab(ind);
% Change the class labels for class 11
% for better plotting.
clabs = classlab(ind);
clabs(find(clabs == 11)) = 1;
% Only need those observations in classes of interest.
X = XX(ind,:);

Next we perform hierarchical clustering using Euclidean distance and
complete linkage. We use the cluster function to request two groups, and
then get the silhouette values. Note that this syntax for the silhouette
function suppresses the plot and only returns the silhouette values.

% Get the hierarchical clustering.
Y = pdist(X);
Z = linkage(Y,'complete');
dendrogram(Z);
cids = cluster(Z,'maxclust',2);

348 Exploratory Data Analysis with MATLAB®, Third Edition

FIGURE 8.7
The ReClus plot at the top shows the cluster configuration based on the best model chosen
from model-based clustering. Here we plot the true class label with the color indicating the
probability that the observation belongs to that cluster. The next ReClus plot is for the same
data and model-based clustering output, but this time we request that probabilities above
0.9 be shown in bold black font. (SEE COLOR INSERT.)

True Class Label

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

5

8

8

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

1

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

0.1

0.3

0.4

0.6

0.7

0.9

True Class Label − Thresh is 0.9

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

5

8

8

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

1

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

0.1

0.3

0.4

0.6

0.7

0.9

Visualizing Clusters 349

% Now get the silhouette values.
S = silhouette(X,cids);

Our initial ReClus plot uses the observation number as the plotting symbol.
We have to include the true class labels as an argument, so they can be
mapped into the same position in the second ReClus plot. The plots are
shown in Figure 8.8, and the code to construct these plots is given below.

% The following plots the observation
% numbers, with 'pointers' to the
% true class labels plotted next.
reclus(cids, clabs)
% Now plot same thing, but with true class labels.
reclus(cids,clabs,S)

We see from the plots that this hierarchical clustering does not provide a
good clustering, as measured by the silhouette values, since we have several
negative values in the right-hand cluster.
❑

8.5 Data Image

The data image is a technique for visualizing high-dimensional data as if
they comprised an image. We have seen an example of this already in
Chapter 1, Figure 1.1, where we have the gene expression data displayed as
a gray-scale image. The basic idea is to map the data into an image
framework, using the gray-scale values or colors (if some other color map is
desired) to indicate the magnitude of each variable for each observation.
Thus, the data image for a data set of size n with p variables will be .

An early version of the data image can be found in Ling [1973], where the
data are plotted as a matrix of characters with different amounts of ink
indicating the gray scale value of the observation. However, Ling first plots
the interpoint dissimilarity (or similarity) matrix in its raw form. He then
reorders rows and columns of the dissimilarity matrix using the cluster labels
after some clustering method has been applied. In other words, the original
sequence of observations has been arranged such that the members of every
cluster lie in consecutive rows and columns of the permuted dissimilarity
matrix. Clearly defined dark (or light, depending on the gray scale) squares
along the diagonal indicate compact clusters that are well separated from
neighboring points. If the data do not contain significant clusters, then this is
readily seen in the image.

Wegman [1990] also describes a version of the data image, but he calls it a
color histogram. He suggests coloring pixels using a binned color gradient
and presenting this as an image. Sorting the data based on one variable

n p×

350 Exploratory Data Analysis with MATLAB®, Third Edition

FIGURE 8.8
In Figure 8.8 (top), we show the ReClus plot for topics 8 and 1 (topic 11) based on hierarchical
clustering. The positions of these symbols correspond to the glyphs in Figure 8.8 (bottom).
This makes it easy to see what case belongs to observations of interest. The scale in the
lower ReClus plot corresponds to the silhouette values. (SEE COLOR INSERT.)

 36

 44

 46

 47

 50

 51

 52

 53

 54

 55

 58

 59

 60

 64

 65

 67

 68

 70

 71

 72

 73

 74

 75

 78

 80

 81

 82

 83

 84

 85

 87

 89

 90

 91

 92

 94

 95

 96

 97

 98

 99

101

102

103

104

105

107

109

 3

 11

 37

 38

 39

 40

 41

 42

 43

 45

 48

 49

 56

 57

 61

 62

 63

 66

 69

 76

 77

 79

 86

 88

 93

100

106

108

 1

 2

 4

 5

 6

 7

 8

 9

 10

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

 24

 25

 26

 27

 28

 29

 30

 31

 32

 33

 34

 35

Case Numbers

True Class Label

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

8

8

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

−0.7

−0.4

−0.1

0.1

0.4

0.7

Case 25

Visualizing Clusters 351

enables one to observe positive and negative associations. One could explore
the data in a tour-like manner by performing this sort for each variable.

Minnotte and West [1998] use binning on a fine scale, so they coined the
term data image to be more descriptive of the output. Rather than sorting on
only one variable, they suggest finding an ordering such that points that are
close in high-dimensional space are close to one another in the image. They
suggest that this will help the analyst better visualize high-dimensional
structure. We note that this is reminiscent of multidimensional scaling. In
particular, they apply this method to understand the cluster structure in
high-dimensional data, which should appear as vertical bands within the
image.

Minnotte and West propose two methods for ordering the data. One
approach searches for the shortest path through the cloud of high-
dimensional points using traveling salesman type algorithms [Cook et al.,
1998]. Another option is to use an ordering obtained from hierarchical
clustering, which is what we do in the next example.

Example 8.6
We use the familiar iris data set for this example. We put the three classes
of iris into one matrix and randomly reorder the rows. The data image for this
arrangement is shown in Figure 8.9 (top). We see the four variables as
columns or vertical bands in the image, but we do not see any horizontal
bands indicating groups of observations.

load iris
% Put into one matrix.
data = [setosa;versicolor;virginica];
% Randomly reorder the data.
data = data(randperm(150),:);
% Construct the data image.
imagesc(-1*data)
colormap(gray(256))

We now cluster the data using agglomerative clustering with complete
linkage. To get our ordering, we plot the dendrogram with n leaf nodes. The
output argument perm from the function dendrogram provides the order of
the observations left to right or bottom to top, depending on the orientation
of the tree. We use this to rearrange the data points.

% Now get the ordering using hierarchical
% clustering and the dendrogram.
Y = pdist(data);
Z = linkage(Y,'complete');
% Plot both the dendrogram and the data
% image together.
figure
subplot(1,2,1)

352 Exploratory Data Analysis with MATLAB®, Third Edition

[H, T, perm] = dendrogram(Z,0,'orientation','left');
axis off
subplot(1,2,2)
% Need to flip the matrix to show as an image.
imagesc(flipud(-1*data(perm,:)))
colormap(gray(256))

The data image for the reordered data and the associated dendrogram are
given in Figure 8.9 (bottom). We can now see three horizontal bands that
would indicate the presence of three groups. However, we know that each
class of iris has 50 observations and that some are likely to be incorrectly
clustered together.
❑

The data image displayed along with the dendrogram, as we saw in
Example 8.6, is used extensively in the gene expression analysis literature.
However, it is not generally known by that name. We now show how to
apply the data image concept to locate clusters in a data set using Ling’s
method.

Example 8.7
We use the data (topics 6 and 9) from Example 8.4 to illustrate how the data
image idea can be applied to the interpoint dissimilarity matrix. After
extracting the topics we want to work with, we then find the distance matrix
using pdist and squareform. The image of this is shown in Figure 8.10
(top). We randomly reordered the data; thus it is difficult to see any cluster
structure or clusters. The code to do this follows.

% Continuing with same data used in Example 8.4.
% Use just Topics 6 and 9.
ind = find(classlab == 6);
ind = [ind; find(classlab == 9)];
n = length(ind);
clabs = classlab(ind);
data = XX(ind,:);
% Randomly reorder the data and view the
% interpoint distance matrix as an image.
data = data(randperm(n),:);
Y = pdist(data);
Ys = squareform(Y);
imagesc(Ys);
colormap(gray(256))
title('Interpoint Distance Matrix - Random Order')
axis off

We now have to obtain some clusters. We will use hierarchical clustering and
request cluster labels based on a partition into two groups. Then we order the

Visualizing Clusters 353

FIGURE 8.9
The data image at the top is for the iris data, where the observations have been randomly
ordered. Clusters or horizontal bands are not obvious. We apply the data image concept by
reordering the data according to the results of hierarchical clustering. The data image of the
rearranged data and the corresponding dendrogram are shown at the bottom. Three hori-
zontal bands or clusters are now readily visible. (SEE COLOR INSERT.)

1 2 3 4

20

40

60

80

100

120

140

1 2 3 4

20

40

60

80

100

120

140

354 Exploratory Data Analysis with MATLAB®, Third Edition

FIGURE 8.10
The top image shows the interpoint distance matrix for topic 6 and topic 9 when the data
are in random order. The presence of any groups or clusters is difficult to discern. Next we
cluster the data according to our desired method and rearrange the points such that those
observations in the same group are adjacent in the distance matrix. We show this re-ordered
matrix in the bottom half of the figure, and the two groups can be clearly seen.

Interpoint Distance Matrix − Random Order

Interpoint Distance Matrix − Cluster Order

Visualizing Clusters 355

distances such that observations in the same group are adjacent and replot
the distance matrix as an image.

% Now apply Ling's method. First need to
% get a partition or clustering.
Z = linkage(Y,'complete');
% Now get the ordering based on the cluster scheme.
T = cluster(Z,'maxclust',2);
% Sort these, so points in the same cluster
% are adjacent.
[Ts,inds] = sort(T);
% Sort the distance matrix using this and replot.
figure
imagesc(Ys(inds,inds))
title('Interpoint Distance Matrix - Cluster Order')
colormap(gray(256))
axis off

This image is shown in Figure 8.10 (bottom). We can now clearly see the two
clusters along the diagonal.
❑

8.6 Summary and Further Reading

One of the main purposes of clustering is to organize the data; so graphical
tools to display the results of these methods are important. These displays
should enable the analyst to see whether or not the grouping of the data
illustrates some latent structure. Equally important, if real structure is not
present in the data, then the cluster display should convey this fact. The
cluster visualization techniques presented in this chapter should enable the
analyst to better explore, assess, and understand the results from hierarchical
clustering, model-based clustering, k-means, etc.

Some enhancements to the dendrogram have been proposed. One is a
generalization of dendrograms called espaliers [Hansen, Jaumard, and
Simeone, 1996]. In the case of a vertical diagram, espaliers use the length of
the horizontal lines to encode another characteristic of the cluster, such as the
diameter. Other graphical aids for assessing and interpreting the clusters can
be found in Cohen et al. [1977].

Johnson and Shneiderman [1991] provide examples of other types of
treemaps. One is a nested treemap, where some space is provided around
each sub-rectangle. The nested nature is easier to see, but some display space
is wasted in visualizing the borders. They also show a Venn diagram
treemap, where the groups are shown as nested ovals.

356 Exploratory Data Analysis with MATLAB®, Third Edition

The treemap display is popular in the computer science community as a
tool for visualizing directory structures on disk drives. Several extensions to
the treemap have been developed. These include cushion treemaps [Wijk and
Wetering, 1999] and squarified treemaps [Bruls, Huizing, and Wijk, 2000].
Cushion treemaps keep the same basic structure of the space-filling
treemaps, but they add surface height and shading to provide additional
insight into the hierarchical structure. The squarified treemap methodology
attempts to construct squares instead of rectangles (as much as possible) to
prevent long, skinny rectangles, but this sacrifices the visual understanding
of the nested structure to some extent.

Marchette and Solka [2003] use the data image to find outliers in a data set.
They apply this concept to the interpoint distance matrix by treating the
columns (or alternatively the rows) of the matrix as observations. These
observations are clustered using some hierarchical clustering scheme, and
the rows and columns are permuted accordingly. Outliers show up as a dark
v or cross (depending on the color scale).

Others in the literature have discussed the importance of ordering the data
to facilitate exploration and understanding. A recent discussion of this can be
found in Friendly and Kwan [2003]. They outline a general framework for
ordering information in visual displays, including tables and graphs. They
show how these effect-ordered data displays can be used to discover
patterns, trends, and anomalies in the data.

Exercises

8.1 Do a help on dendrogram and read about the optional input
argument 'colorthreshold'. Repeat Example 8.1 using this
option.

8.2 Compare and contrast the dendrogram, treemap, rectangle plots, and
ReClus cluster visualization techniques. What are the advantages and
disadvantages of each? Comment on the usefulness of these methods
for large data sets.

8.3 Find the ReClus plot (without class labels and with class labels) for the
leukemia partition with 15 clusters obtained in Example 8.1.
Compare to the previous results using the hierarchical visualization
techniques.

8.4 Repeat Example 8.3 using the distance input argument to specify the
number of clusters displayed in the rectangle plot.

8.5 For the following data sets, use an appropriate hierarchical clustering
method and visualize using the methods described in the chapter.
Analyze the results.
a. geyser

Visualizing Clusters 357

b. singer

c. skulls

d. sparrow

e. oronsay

f. gene expression data sets

8.6 Repeat Example 8.7 using all of the data in the matrix XX (reduced
from ISOMAP) from Examples 8.4, and 8.5. Use hierarchical cluster-
ing or k-means and ask for 16 groups. Is there any evidence of clus-
ters?

8.7 Apply the methodology of Example 8.7 to the iris data.
8.8 Repeat Examples 8.4, 8.5 and 8.7 using other BPM data sets and report

on your results.
8.9 Repeat Example 8.4 using the silhouette values for the model-based

clustering classification.
8.10 Repeat Example 8.5 using other types of hierarchical clustering.

Compare your results.
8.11 For the following data sets, use k-means or model-based clustering.

Use the ReClus method for visualization. Analyze your results.
a. skulls

b. sparrow

c. oronsay (both classifications)

d. BPM data sets

e. gene expression data sets

8.12 Looking at the data image in Figure 8.9, comment on what variables
seem most useful for classifying the species of iris.

http://taylorandfrancis.com

359

Chapter 9
Distribution Shapes

In this chapter, we show various methods for visualizing the shapes of
distributions. The ability to visualize the distribution shape in exploratory
data analysis is important for several reasons. First, we can use it to
summarize a data set to better understand general characteristics such as
shape, spread, or location. In turn, this information can be used to suggest
transformations or probabilistic models for the data. Second, we can use
these methods to check model assumptions, such as symmetry, normality,
etc. We present several techniques for visualizing univariate and bivariate
distributions. These include 1–D and 2–D histograms and kernel densities,
boxplots and variants, violin plots, beanplots, quantile-based plots, bagplots,
and rangefinder boxplots.

9.1 Histograms

A histogram is a way to graphically summarize or describe a data set by
visually conveying its distribution using vertical bars. They are easy to create
and are computationally feasible, so they can be applied to massive data sets.
In this section, we describe several varieties of histograms. These include the
frequency and relative frequency histogram, and what we are calling the
density histogram.

9.1.1 Univariate Histograms

A frequency histogram is obtained by first creating a set of bins or intervals
that cover the range of the data set. It is important that these bins do not
overlap and that they have equal width. We then count the number of
observations that fall into each bin. To visualize this information, we place a
bar at each bin, where the height of the bar corresponds to the frequency.
Relative frequency histograms are obtained by mapping the height of the bin
to the relative frequency of the observations that fall into the bin.

360 Exploratory Data Analysis with MATLAB®, Third Edition

The basic MATLAB package has a function for calculating and plotting a
univariate frequency histogram called hist. This function is illustrated in
the example given below, where we show how to construct both types of
histograms.

Example 9.1
In this example, we look at the two univariate histograms showing relative
frequency and frequency. We can obtain a simple histogram in MATLAB
using these commands:

load galaxy
% The 'hist' function can return the
% bin centers and frequencies.
% Use the default number of bins - 10.
[n, x] = hist(EastWest);
% Plot and use the argument of width = 1
% to get bars that touch.
bar(x,n,1,'w');
title('Frequency Histogram - Galaxy Data')
xlabel('Velocity')
ylabel('Frequency')

Note that calling the hist function with no output arguments will find the
pieces necessary to construct the histogram based on a given number of bins
(default is 10 bins) and will also produce the plot. We chose to use the option
of first extracting the bin locations and bin frequencies so we could get the
relative frequency histogram using the following code:

% Now create a relative frequency histogram.
% Divide each box by the total number of points.
% We use bar to plot.
bar (x,n/140,1,'w')
title('Relative Frequency Histogram - Galaxy Data')
xlabel('Velocity')
ylabel('Relative Frequency')

These plots are shown in Figure 9.1. Notice that the shapes of the histograms
are the same in both types of histograms, but the vertical axes are different.
From the shape of the histograms, it seems reasonable to assume that the data
are normally distributed (for this bin configuration).
❑

One problem with using a frequency or relative frequency histogram is
that they do not represent meaningful probability densities, because the total
area represented by the bars does not equal one. This can be seen by
superimposing a corresponding normal distribution over the relative
frequency histogram as shown in Figure 9.2. However, they are very useful
for gaining a quick picture of the distribution of the data.

Distribution Shapes 361

FIGURE 9.1
The bars in the top histogram show the number of observations that fall into each bin, while
the bar heights in the bottom histogram correspond to the relative frequency. Note that the
shape of the histogram is the same, even though the vertical axes represent different quan-
tities.

−30 −20 −10 0 10 20 30
0

10

20

30

40

50

60

70

80
Frequency Histogram − Galaxy Data

Velocity

F
re

q
u
e
n
cy

−30 −20 −10 0 10 20 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Relative Frequency Histogram − Galaxy Data

Velocity

R
e
la

tiv
e
 F

re
q
u
e
n
cy

362 Exploratory Data Analysis with MATLAB®, Third Edition

A density histogram is a histogram that has been normalized so the area
under the curve (where the curve is represented by the heights of the bars) is
one. A density histogram is given by the following equation

, (9.1)

where Bk denotes the k-th bin, νk represents the number of data points that fall
into the k-th bin, and h represents the width of the bins.

Since our goal is to estimate a bona fide probability density, we want to have
an estimate that is nonnegative and satisfies the constraint that

.

It is left as an exercise to the reader to show that Equation 9.1 satisfies this
condition.

The density histogram depends on two parameters: 1) an origin t0 for the
bins and 2) a bin width h. These two parameters define the mesh over which
the histogram is constructed. The bin width h is sometimes referred to as the
smoothing parameter, and it fulfills a similar purpose as that found in the
chapter on smoothing scatterplots. The bin width determines the smoothness
of the histogram. Small values of h produce histograms with a lot of variation

FIGURE 9.2
This shows a relative frequency histogram for some data generated from a standard normal
distribution. Note that the curve is higher than the histogram, indicating that the histogram
is not a valid probability density function.

−3 −2 −1 0 1 2 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

f̂ x()
νk

nh
------= x in Bk

f̂ x() xd
∞–

∞ 1=

Distribution Shapes 363

in the heights of the bins, while larger bin widths yield smoother histograms.
This phenomenon is illustrated in Figure 9.3, where we show histograms of
the same data, but with different bin widths.

We now look at how we can choose the bin width h, in an attempt to
minimize our estimation error. It can be shown that setting h small to reduce
the bias increases the variance in our estimate. On the other hand, creating a
smoother histogram reduces the variance, at the expense of worsening the
bias. This is the familiar trade-off between variance and bias discussed
previously. We now present some of the common methods for choosing the
bin width, most of which are obtained by trying to minimize the squared
error [Scott, 2015] between the true density and the estimate.

FIGURE 9.3
These are histograms for the galaxy data used in Example 9.1. Notice that for the larger
bin widths, we have only one peak. As the smoothing parameter gets smaller, the histogram
displays more variation and spurious peaks appear in the histogram estimate.

−40 −20 0 20 40
0

50

100

150
h = 11.83

−40 −20 0 20 40
0

10

20

30

40

50
h = 2.96

−40 −20 0 20 40
0

5

10

15

20

25
h = 1.18

−40 −20 0 20 40
0

5

10

15
h = 0.59

364 Exploratory Data Analysis with MATLAB®, Third Edition

Histogram Bin Widths

1. Sturges’ Rule

, (9.2)

where k is the number of bins. The bin width h is obtained by taking
the range of the sample data and dividing it into the requisite
number of bins, k [Sturges, 1926].

2. Normal Reference Rule - 1–D Histogram

. (9.3)

Scott [1979, 2015] proposed the sample standard deviation as an
estimate of σ in Equation 9.3 to get the following bin width rule.

3. Scott’s Rule

.

4. Freedman–Diaconis Rule

.

This robust rule developed by Freedman and Diaconis [1981] uses
the interquartile range (IQR) instead of the sample standard devi-
ation.

It turns out that when the data are skewed or heavy-tailed, the bin widths
are too large using the Normal Reference Rule. Scott [1979, 2015] derived the
following correction factor for skewed data:

. (9.4)

If one suspects the data come from a skewed distribution, then the Normal
Reference Rule bin widths should be multiplied by the factor given in
Equation 9.4.

So far, we have discussed histograms from a visualization standpoint only.
We might also need an estimate of the density at a given point x, as we will

k 1 log2+ n=

ĥ
* 24σ3 π

n
------------------- 1

3---

= 3.5 σ n

1
3---–

××≈

ĥ
*

3.5 s n

1
3---–

××=

ĥ
*

2 IQR n

1
3---–

××=

skewness factor 21 3⁄ σ

e
5σ2 4⁄ σ2 2+()

1 3⁄
e

σ2

1–()
1 2⁄--=

Distribution Shapes 365

see in the next section on boxplots. We can find a value for our density
estimate for a given x, using Equation 9.1. We obtain the value by taking
the number of observations in the data set that fall into the same bin as x and
multiplying by 1/(nh).

Example 9.2
In this example, we provide MATLAB code that calculates the estimated
value for a given x. We use the same data from the previous example
and Sturges’ Rule for estimating the number of bins.

load galaxy
n = length(EastWest);
% Use Sturges' Rule to get the number of bins.
k = round(1 + log2(n));
% Bin the data.
[nuk,xk] = hist(EastWest,k);
% Get the width of the bins.
h = xk(2) - xk(1);
% Plot as a density histogram.
bar(xk, nuk/(n*h), 1, 'w')
title('Density Histogram - Galaxy Data')
xlabel('Velocity')

FIGURE 9.4
This shows the density histogram for the galaxy data.

f̂ x()

f̂ x()

−30 −20 −10 0 10 20 30
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045
Density Histogram − Galaxy Data

Velocity

366 Exploratory Data Analysis with MATLAB®, Third Edition

The histogram produced by this code is shown in Figure 9.4. Note that we
had to adjust the output from hist to ensure that our estimate is a bona fide
density. Let’s get the estimate of our function at a point

% Now return an estimate at a point xo.
xo = 0;
% Find all of the bin centers less than xo.
ind = find(xk < xo);
% xo should be between these two bin centers:
b1 = xk(ind(end));
b2 = xk(ind(end)+1);
% Put it in the closer bin.
if (xo-b1) < (b2-xo) % then put it in the 1st bin
 fhat = nuk(ind(end))/(n*h);
else
 fhat = nuk(ind(end)+1)/(n*h);
end

Our result is fhat = 0.0433. Looking at Figure 9.4, we see that this is the
correct estimate. The main MATLAB software now has a enhanced function
for creating histograms called histogram. This is in addition to the hist
function. The histogram function has options for creating different types of
histograms. The 'Normalization' argument can be set to 'count' to get
a frequency histogram, 'probability' to create the relative frequency
histogram, and 'pdf' to get the density version.
❑

9.1.2 Bivariate Histograms

We can easily extend the univariate density histogram to multivariate data,
but we restrict our attention in this text to the bivariate case. The bivariate
histogram is defined as

, (9.5)

where νk denotes the number of observations falling into the bivariate bin Bk ,
and hi is the width of the bin along the i-th coordinate axis. Thus, the estimate
of the probability density would be given by the number of observations
falling into that same bin divided by the sample size and the bin widths.

As before, we must determine what bin widths to use. Scott [2015] provides
the following multivariate Normal Reference Rule.

x0 0.=

f̂ x()
νk

nh1h2
--------------;= x in Bk

Distribution Shapes 367

Normal Reference Rule - Multivariate Histograms

. (9.6)

Notice that this reduces to the same univariate Normal Reference Rule
(Equation 9.3) when p = 1. As before, we can use a suitable estimate for σi ,
based on our data.

Example 9.3
We return to the data used in Example 7.11 to illustrate the bivariate
histogram. Recall that we first reduced the BPM data to 2–D using ISOMAP
and the L1 proximity measure. The code to do this is repeated below.

load L1bpm
% Reduce the dimensionality using Isomap.
options.dims = 1:10; % These are for ISOMAP.
options.display = 0;
[Yiso, Riso, Eiso] = isomap(L1bpm, 'k', 7, options);
% Get the data out.
XX = Yiso.coords{2}';
inds = find(classlab==8 | classlab==11);
x = [XX(inds,:)];
[n,p] = size(x);

We use the normal reference rule to find the density histogram of the data.

% Need bin origins.
bin0 = floor(min(x));
% The bin width h, for p = 2:
h = 3.5*std(x)*n^(-0.25);
% Find the number of bins
nb1 = ceil((max(x(:,1))-bin0(1))/h(1));
nb2 = ceil((max(x(:,2))-bin0(2))/h(2));
% Find the bin edges.
t1 = bin0(1):h(1):(nb1*h(1)+bin0(1));
t2 = bin0(2):h(2):(nb2*h(2)+bin0(2));
[X,Y] = meshgrid(t1,t2);
% Find bin frequencies.
[nr,nc] = size(X);
vu = zeros(nr-1,nc-1);
for i = 1:(nr-1)
 for j = 1:(nc-1)
 xv = [X(i,j) X(i,j+1) X(i+1,j+1) X(i+1,j)];
 yv = [Y(i,j) Y(i,j+1) Y(i+1,j+1) Y(i+1,j)];
 in = inpolygon(x(:,1),x(:,2),xv,yv);

hi
* 3.5 σ i n

1–

2 p+

××≈ ; i 1 … p, ,=

368 Exploratory Data Analysis with MATLAB®, Third Edition

 vu(i,j) = sum(in(:));
 end
end
% Find the proper height of the bins.
Z = vu/(n*h(1)*h(2));
% Plot using bars.
bar3(Z,1,'w')

The plot for histogram is shown in Figure 9.5. We used some additional
MATLAB code to get axes labels that make sense. Please refer to the M-file
for this example to see the code to do that. The Statistics Toolbox has a
function called hist3 for constructing histograms of bivariate data.
❑

9.2 Kernel Density

We mentioned kernel density estimation in Chapter 2, where we used it to
visualize the density of univariate data (see Example 2.6). We now provide
some details on the approach and explore how it can be used to understand
how our data are distributed. Our treatment of the topic follows that found
in Silverman [1986], Scott [2015], Martinez and Martinez [2015], and Martinez
and Cho [2014].

FIGURE 9.5
This is the histogram for the data representing topics 8 and 11. The normal reference rule
was used for the bin widths. Please see Figure 7.18 for the corresponding scatterplot.

−0.6
0.2

1.1
1.9

2.7
3.5

4.4
5.2

1.4
0.5

−0.3
−1.1

−1.9
−2.8

−3.6

0

0.02

0.04

0.06

0.08

Distribution Shapes 369

9.2.1 Univariate Kernel Density Estimation

The univariate kernel estimator is given by

, (9.7)

where the function is called a kernel. This must satisfy the condition that
 to ensure that our estimate in Equation 9.7 is a bona fide density

estimate. Usually, the kernel is a symmetric probability density function, and
often a standard normal density is used. Other common choices include the
triangle and the Epanechnikov [Scott, 2015]. All of these kernels and more are
available in the MATLAB function ksdensity, which we illustrate in the
next example.

From Equation 9.7, the estimated probability density function is obtained
by placing a weighted kernel function, centered at each data point and then
taking the average. See Figure 9.6 for an illustration of this procedure. Notice
that the places where there are more kernels yield higher density regions in
the final estimate.

As in the histogram, the parameter h determines the amount of smoothing
we have in the estimate In kernel density estimation, the h is usually

FIGURE 9.6
We obtain the above kernel density estimate for n = 10 random variables. A weighted kernel
is centered at each data point, and the curves are averaged together to obtain the estimate.
[Martinez and Martinez, 2015]

f̂Ker x() 1
nh
------ K

x Xi–

h

i 1=

n=

K t()
K t() td 1=

−4 −3 −2 −1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

f̂Ker x().

370 Exploratory Data Analysis with MATLAB®, Third Edition

called the window width or the bandwidth. A small value of h yields a rough
curve, while a large value of h produces a smoother curve. In practice, it is
recommended that the analyst examine kernel density estimates for different
window widths to search for structures such as modes or bumps.

Scott [2015] has an extensive discussion of ways to choose an appropriate
value for h. One approach is to choose a value that minimizes the asymptotic
mean integrated standard error (AMISE). Scott shows that, under certain
conditions, the AMISE for a nonnegative univariate kernel density estimator
is

, (9.8)

where the kernel K is a continuous probability density function with
and The bandwidth h that minimizes this is given by

. (9.9)

Parzen [1962] and Scott [2015] provide the conditions under which this holds.
For a kernel that is equal to the normal density , we

have the following normal reference rule for the window width h.

.

We can use some suitable estimate for such as the standard deviation, or
 The latter yields a bandwidth of

.

Silverman [1986] recommends that one use whichever is smaller, the sample
standard deviation or as an estimate for

It is known [Scott, 2015] that the choice of smoothing parameter h is more
important than choosing the kernel because any effects from the type of
kernel are reduced by the averaging process. What determines the choice of
kernel are computational considerations or the amount of differentiability
required in the estimate. The reader is asked to explore the effect of the kernel
choice and bandwidth in the exercises.

AMISEKer h() R K()
nh

1
4---σk

4
h

4
R f ″()+=

µK 0=

0 σK
2 ∞.< <

hKer
*

R K()
nσk

4
R f ″()

 1 5⁄

=

R f ″() 3 8 πσ5()⁄=

hKer
* 4

3--- 1 5⁄

σn
1 5⁄–

= 1.06σn
1 5⁄–≈

σ,
σ̂ IQR 1.348⁄ .=

h
ˆ

Ker
*

0.786 IQR n
1 5⁄–××=

IQR 1.348⁄ σ.

Distribution Shapes 371

Example 9.4
The MATLAB Statistics Toolbox has a function called ksdensiy that will
create kernel density estimates for both univariate and bivariate data. This
function will return the estimate or just create the plot. We are going to use
the Buffalo snowfall data. These data [Scott, 2015] contain the annual
snowfall (inches) in Buffalo, New York from 1910 to 1972. First, we load the
data.

% Load the snowfall data.
load snowfall

Next, we specify the bandwidth. We could use the default bandwidth given
by the normal reference rule, but this turns out to be too large for these data.
It over smooths and obscures additional bumps. So, we will use a bandwidth
that is approximately one-half the one given by the normal reference rule.

% Get the bandwidth.
n = length(snowfall);
% Approximately one-half the bandwidth for
% a normal distribution.
b = 0.5*std(snowfall)*n^(-1/5);

We are now ready to estimate the probability density and plot it using the
following code.

% Estimate and plot the density.
ksdensity(snowfall,'Bandwidth',b);

We can add a 1–D scatterplot or rug plot with these steps. The rug plot
displays the data along the horizontal axis as tick marks.

% Add a rug plot.
ax = axis;
xr = snowfall;
yr = ax(4)/25;
hold on
h = stem(xr,yr*ones(n,1));
set(h,'markersize',0.01,'MarkerEdgeColor','white')
set(gca,'TickDir','out')
hold off

We provide a function in the EDA Toolbox called rug that will add this type
of 1–D scatterplot. The resulting plot is shown in Figure 9.7.
❑

9.2.2 Multivariate Kernel Density Estimation

In the multivariate case, each observation is a p-dimensional vector. The
simplest case for the multivariate kernel estimator is the product kernel.

xi

372 Exploratory Data Analysis with MATLAB®, Third Edition

Descriptions of the general kernel density estimate can be found in Scott
[2015] and in Silverman [1986]. The product kernel is

, (9.10)

where is the j-th component of the i-th observation. Note that this is the
product of the same univariate kernel, with possibly a different window
width in each dimension.

Scott [2015] gives expressions for the asymptotic integrated squared bias
and asymptotic integrated variance for the multivariate product kernel. If the
normal kernel is used, then minimizing these yields a normal reference rule
for the multivariate case, as follows

, (9.11)

FIGURE 9.7
Here is a plot of the estimated probability density function for the Buffalo snowfall data.
We used a smaller bandwidth than the one given by the normal reference rule in order to
explore other structure or intervals of higher density. We added a rug plot or 1–D scatterplot
to provide additional information about the data.

0 50 100 150
Snowfall (inches)

0

0.005

0.01

0.015

0.02

0.025

P
ro

b
a
b
ili

ty
 D

e
n
si

ty
 F

u
n
ct

io
n

f
ˆ

Ker x() 1
nh1…hp
-------------------- K

xj Xij–

hj

j 1=

p

∏

i 1=

n=

Xij

hjKer

* 4
n p 2+()

1
p 4+

σj;= j 1 … p, ,=

Distribution Shapes 373

A suitable estimate for can be used in Equation 9.11. If there is any
skewness or kurtosis evident in the data, then the window widths should be
narrower.

Example 9.5
We will use the MATLAB ksdensity function to estimate the probability
density function of the faithful data. This data set is one version of the Old
Faithful geyser data [Härdle, 1991]. Each data point includes the eruption
and waiting time in minutes.

% We use the Old Faithful data.
load faithful

% Use the default bandwidth and kernel.
ksdensity(faithful)
axis tight
xlabel('Eruption Time (mins)')
ylabel('Waiting Time (mins)')

A surface plot of the estimated probability density function is given in Figure
9.8.
❑

FIGURE 9.8
This is the estimated bivariate probability density function for the Old Faithful data. We see
two high density regions or bumps.

σj

0

0.005

100

0.01

6

0.015

80 5

Old Faithful Data

Waiting Time (mins)

0.02

4

Eruption Time (mins)

60

0.025

3
240

1

374 Exploratory Data Analysis with MATLAB®, Third Edition

9.3 Boxplots

Boxplots (sometimes called box-and-whisker diagrams) have been in use for
many years [Tukey, 1977]. They are an excellent way to visualize summary
statistics such as the median, to study the distribution of the data, and to
supplement multivariate displays with univariate information. Benjamini
[1988] outlines the following characteristics of the boxplot that make them
useful:

1. Statistics describing the data are visualized in a way that readily
conveys information about the location, spread, skewness, and
longtailedness of the sample.

2. The boxplot displays information about the observations in the
tails, such as potential outliers.

3. Boxplots can be displayed side-by-side to compare the distribution
of several data sets.

4. The boxplot is easy to construct.

5. The boxplot is easily explained to and understood by users of
statistics.

In this section, we first describe the basic boxplot. This is followed by several
enhancements and variations of the boxplot. These include variable-width
boxplots, the histplot, box-percentile plots, violin plots, beeswarm plots, and
the beanplot.

9.3.1 The Basic Boxplot

Before we describe the boxplot, we need to define some terms. In essence,
three statistics from a data set are needed to construct all of the pieces of the
boxplot. These are the sample quartiles: q(0.25), q(0.5), q(0.75). The sample
quartiles are based on sample quantiles, which are defined next [Kotz and
Johnson, 1986].

Given a data set x1, ... , xn , we order the data from smallest to largest. These
are called the order statistics, and we denote them as

.

The u (0 < u < 1) quantile q(u) of a random sample is a value belonging to the
range of the data such that a fraction u (approximately) of the data are less
than or equal to u.

x 1() … x n(), ,

Distribution Shapes 375

The quantile denoted by q(0.25) is also called the lower quartile, where
approximately 25% of the data are less than or equal to this number. The
quantile q(0.5) is the median, and q(0.75) is the upper quartile. We need to
define a form for the u in quantile q(u). For a random sample of size n, we let

. (9.12)

The form for ui given in Equation 9.12 is somewhat arbitrary [Cleveland,
1993] and is defined for ui , . This definition can be extended for
all values of u, 0 < u < 1 by interpolation or extrapolation, given the values of
ui and q(ui). We will study the quantiles in more detail in the next section.

Definitions of quartiles can vary from one software package to another.
Frigge, Hoaglin, and Iglewicz [1989] describe a study on how quartiles are
implemented in some popular statistics programs such as Minitab, S, SAS,
SPSS, and others. They provide eight definitions for quartiles and show how
this can affect the appearance of the boxplots. We will use the one defined in
Tukey [1977] called standard fourths or hinges.

Procedure – Finding Quartiles

1. Order the data from smallest to largest.

2. Find the median q(0.5), which is in position (n+1)/2 in the list of
ordered data:

a. If n is odd, then the median is the middle data point.

b. If n is even, then the median is the average of the two middle
points.

3. Find the lower quartile, which is the median of the data that lie at
or below the median:

a. If n is odd, then q(0.25) is the median of the ordered data in
positions 1 through (n+1)/2.

b. If n is even, then q(0.25) is the median of the ordered data in
positions 1 through n/2.

4. Find the upper quartile, which is the median of the data that lie at
or above the median:

a. If n is odd, then q(0.75) is the median of the ordered data in
positions (n+1)/2 through n.

b. If n is even, then q(0.75) is the median of the ordered data in
positions n/2 + 1 through n.

ui
i 0.5–

n
---------------=

i 1 … n, ,=

376 Exploratory Data Analysis with MATLAB®, Third Edition

Thus, we see that the lower quartile is the median of the lower half of the data
set, and the upper quartile is the median of the upper half of the sample. We
show how to find these using MATLAB in the next example.

Example 9.6
We will use the geyser data to illustrate the MATLAB code for finding the
quartiles. These data represent the time (in minutes) between eruptions of the
Old Faithful geyser at Yellowstone National Park.

load geyser
% First sort the data.
geyser = sort(geyser);
% Get the median.
q2 = median(geyser);
% First find out if n is even or odd.
n = length(geyser);
if rem(n,2) == 1
 odd = 1;
else
 odd = 0;
end
if odd
 q1 = median(geyser(1:(n+1)/2));
 q3 = median(geyser((n+1)/2:end));
else
 q1 = median(geyser(1:n/2));
 q3 = median(geyser(n/2:end));
end

The sample quartiles are: 59, 76, 83. The reader is asked in the exercises to
verify that these make sense by looking at a histogram and other plots. We
provide a function called quartiles that implements this code for general
use.
❑

Recall from introductory statistics that the sample interquartile range
(IQR) is the difference between the first and the third sample quartiles. This
gives the range of the middle 50% of the data. It is found from the following:

.

We need to define two more quantities to determine what observations
qualify as potential outliers. These limits are the lower limit (LL) and the
upper limit (UL). They are calculated from the IQR as follows

IQR q 0.75() q 0.25()–=

Distribution Shapes 377

(9.13)

Observations outside these limits are potential outliers. In other words,
observations smaller than the LL and larger than the UL are flagged as
interesting points because they are outlying with respect to the bulk of the
data. Adjacent values are the most extreme observations in the data set that
are within the lower and the upper limits. If there are no potential outliers,
then the adjacent values are simply the maximum and the minimum data
points.

Just as the definition of quartiles varies with different software packages,
so can the definition of outliers. In some cases multipliers other than 1.5 are
used in Equation 9.13, again leading to different boxplots. Hoaglin, Iglewicz,
and Tukey [1986] examine this problem and show how it affects the number
of outliers displayed in a boxplot.

The original boxplot, as defined by Tukey, did not include the display of
outliers, as it does today. He called the boxplot with outliers the schematic
plot. It is the default now in most statistics packages (and text books) to
construct the boxplot with outliers as we outline below.

To construct a boxplot, we place horizontal lines at each of the three
quartiles and draw vertical lines at the edges to create a box. We then extend
a line from the first quartile to the smallest adjacent value and do the same
for the third quartile and largest adjacent value. These lines are sometimes
called the whiskers. Finally, any possible outliers are shown as an asterisk or
some other plotting symbol. An example of a boxplot with labels showing the
various pieces is shown in Figure 9.9.

Boxplots for different univariate samples can be plotted together for
visually comparing the corresponding distributions, and they can also be
plotted horizontally rather than vertically.

Example 9.7
We now show how to do a boxplot by hand using the defsloc variable in
the software data because it has some potential outliers. First we load the
data and transform it using the logarithm.

load software
% Take the log of the data.
x = log(sort(defsloc));
n = length(x);

The next step is to find the quartiles, the interquartile range, and the upper
and lower limits.

% First get the quartiles.
q = quartiles(x);
% Find the interquartile range.

LL q 0.25() 1.5 IQR×–=

UL q 0.75() 1.5 IQR.×+=

378 Exploratory Data Analysis with MATLAB®, Third Edition

iq = q(3) - q(1);
% Find the outer limits.
UL = q(3) + 1.5*iq;
LL = q(1) - 1.5*iq;

We can find observations that are outside these limits using the following
code:

% Find any outliers.
ind = [find(x > UL); find(x < LL)];
outs = x(ind);
% Get the adjacent values. Find the
% points that are NOT outliers.
inds = setdiff(1:n,ind);
% Get their min and max.
adv = [x(inds(1)) x(inds(end))];

Now we have all of the quantities necessary to draw the plot.

% Now draw the necessary pieces.
% Draw the quartiles.

FIGURE 9.9
This is an example of a boxplot with possible outliers.

1

−3

−2

−1

0

1

2

3

V
a

lu
e

s

Column Number

Quartiles

Possible Outliers

Adjacent
Values

Distribution Shapes 379

plot([1 3],[q(1),q(1)])
hold on
plot([1 3],[q(2),q(2)])
plot([1 3],[q(3),q(3)])
% Draw the sides of the box
plot([1 1],[q(1),q(3)])
plot([3 3],[q(1),q(3)])
% Draw the whiskers.
plot([2 2],[q(1),adv(1)],[1.75 2.25],[adv(1) adv(1)])
plot([2 2],[q(3),adv(2)],[1.75 2.25],[adv(2) adv(2)])
% Now draw the outliers with symbols.
plot(2*ones(size(outs)), outs,'o')
hold off
axs = axis;
axis([-1 5 axs(3:4)])
set(gca,'XTickLabel',' ')
ylabel('Defects per SLOC (log)')

The boxplot is shown in Figure 9.10, where we see that the distribution is not
exactly symmetric.
❑

FIGURE 9.10
This shows the boxplot for the number of defects per SLOC (log) from the software data
set.

−12

−10

−8

−6

−4

−2

0

D
e
fe

ct
s

p
e
r

S
L
O

C
 (

lo
g
)

380 Exploratory Data Analysis with MATLAB®, Third Edition

We provide a function called boxp that will construct boxplots, including
some of the variations discussed below. The MATLAB Statistics Toolbox also
has a boxplot function that the reader is asked to explore in the exercises.

9.3.2 Variations of the Basic Boxplot

We now describe some enhancements and variations of the basic boxplot
described above. When we want to understand the significance of the
differences between the medians, we can display boxplots with notches
[McGill, Tukey, and Larsen, 1978]. The notches in the sides of the boxplots
represent the uncertainty in the locations of central tendency and provide a
rough measure of the significance of the differences between the values. If the
intervals represented by the notches do not overlap, then there is evidence
that the medians are significantly different. The MATLAB Statistics Toolbox
function boxplot will produce boxplots with notches, as explained in the
exercises.

Vandervieren and Hubert [2004] present a robust version of the boxplot for
skewed distributions. In this type of distribution, too many observations can
be classified as outliers. Their generalization to the boxplot has a robust
measure of skewness that is used to find the whiskers. They show that their
adjusted boxplot provides a more accurate representation of the data
distribution than the basic boxplot. See Appendix B for information on where
to download functions for this and other robust analysis methods.

Another enhancement of the boxplot also comes from McGill, Tukey, and
Larsen [1978]. This is called the variable-width boxplot, and it incorporates
a measure of the sample size. Instead of having boxplots with equal widths,
we could make the widths proportional to some function of n. McGill, Tukey,
and Larsen recommend using widths proportional to the square root of n and
offer it as the standard. They suggest others, such as making the widths
directly proportional to sample size or using a logit scale.

Benjamini [1988] uses the width of the boxplot to convey information about
the density of the data rather than the sample size. He offers two types of
boxplots that incorporate this idea: the histplot and the vaseplot. In a
histplot, the lines at the three quartiles are drawn with a width that is
proportional to an estimate of the associated density at these positions. His
implementation uses the density histogram, but any other density estimation
method can also be used. He then extends this idea by drawing the width of
the box at each point proportional to the estimated density at that point. This
is called the vaseplot, because it produces a vase-like shape. One can no
longer use the notches to show the confidence intervals for the medians in
these plots, so Benjamini uses shaded bars instead. All of these extensions
adjust the width of the boxes only; the whiskers stay the same.

The box-percentile plot [Esty and Banfield, 2003] also uses the sides of the
boxplot to convey information about the distribution of the data over the

Distribution Shapes 381

range of data values. They no longer draw the whiskers or the outliers, so
there is no ambiguity about how to define these characteristics of the boxplot.

To construct a box-percentile plot, we do the following. From the minimum
value up to the 50th percentile, the width of the ‘box’ is proportional to the
percentile of that height. Above the 50th percentile, the width is proportional
to 100 minus the percentile. The box-percentile plots are wide in the middle,
like boxplots, but narrowing as they get further away from the middle.

We now describe the procedure in more detail. Let w indicate the
maximum width of the box-percentile plot, which will be the width at the
median. We obtain the order statistics of our observed random sample, x(1),
..., x(n). Then the sides of the box-percentile plot are obtained as follows:

1. For x(k) less than or equal to the median, we plot the observation at
height x(k) at a distance kw/(n + 1) on either side of a vertical axis
of symmetry.

2. For x(k) greater than the median, we plot the point at height x(k) at
a distance (n + 1 – k)w/(n + 1) on either side of the axis of symmetry.

We illustrate the box-percentile plot and the histplot in the next example.
Constructing a variable-width boxplot is left as an exercise to the reader.

Example 9.8
We use some simulated data sets similar to those in Esty and Banfield [2003]
to illustrate the histplot and the box-percentile plots. We did not have their
exact distributional models, but we tried to reproduce them as much as
possible. The first data set is a standard normal distribution. The second one
is uniform in the range with some outliers close to –3 and 3. The
third random sample is trimodal. These three data sets have similar quartiles
and ranges, as illustrated in the boxplots in Figure 9.11. The code used to
generate the samples follows; we saved the data in a MAT-file for your use.

% Generate some standard normal data.
X(:,1) = randn(400,1);
% Generate some uniform data.
tmp = 2.4*rand(398,1) - 1.2;
% Add some outliers to it.
X(:,2) = [tmp; [-2.9 2.9]'];
tmp1 = randn(300,1)*.5;
tmp2 = randn(50,1)*.4-2;
tmp3 = randn(50,1)*.4+2;
X(:,3) = [tmp1; tmp2; tmp3];
save example96 X

We show the side-by-side boxplots in Figure 9.11, where we used the
MATLAB Statistics Toolbox boxplot function with long whiskers so no
outliers will be shown.

1.2 1.2,–[],

382 Exploratory Data Analysis with MATLAB®, Third Edition

% This is from the Statistics Toolbox:
figure,boxplot(X,0,[],1,10)

We can gain more insights into the distributions by looking at the histplots.
The same function called boxp mentioned earlier includes this capability; its
other functionality will be explored in the exercises.

% We can get the histplot. This function is
% included with the text.
boxp(X,'hp')

This plot is shown in Figure 9.12, where differences are now apparent. The
histplot functionality provided with this text uses a kernel probability
density estimate [Scott, 2015; Martinez and Martinez, 2015] for the density at
the quartiles. Now, we show the box-percentile plot, which we have coded in
the function boxprct. This function will construct both constant width
boxes, as well as ones with variable width. See the help on the function for
more information on its capabilities. The plain box-percentile plots are
created with this syntax:

% Let's see what these look like using the
% box-percentile plot.
boxprct(X)

FIGURE 9.11
This shows the boxplots for the generated data in Example 9.6. The first one is for a standard
normal distribution. The second is uniform with outliers at the extremes of –3 and 3. The
third is from a trimodal distribution. Notice that these distributions do not seem very
different based on these boxplots.

1 2 3

−3

−2

−1

0

1

2

3

V
a
lu

e
s

Column Number

Distribution Shapes 383

This plot is shown in Figure 9.13. Note that the sides of the plots now give us
more information and insights into the distributions, and that the differences
between them are more apparent. In a box-percentile plot, outliers like we
have in the second distribution will appear as long, skinny lines. To get a
variable width box-percentile plot (the maximum width is proportional to
the square root of n), use the syntax

boxprct(X,'vw')

❑

In our opinion, one of the problems with the histplot is its dependence on
the estimated density. This density estimate is highly dependent on the bin
width (or window width in the case of kernel estimation), so the histplots
might be very different as these change. The nice thing about the box-
percentile plot is that we gain a better understanding of the distribution, and
we do not have to arbitrarily set parameters such as the limits to determine
outliers or the bin widths to find the density.

9.3.3 Violin Plots

Violin plots were developed by Hintze and Nelson [1998] in an attempt to
add information to the summary statistics displayed in a boxplot. It merges
two graphical approaches—the boxplot and a plot of the estimated

FIGURE 9.12
This is the histplot version of the data in Example 9.6. We now see some of the differences
in the distributions.

−4

−3

−2

−1

0

1

2

3

4

384 Exploratory Data Analysis with MATLAB®, Third Edition

probability density function. He calls the later the density trace. These are
called violin plots because they often have the shape of a violin.

The first component of a violin plot is a compact boxplot without any
potential outliers being displayed as points. This is at the center of the violin.
The lengths of the boxplot whiskers extend from the quartiles to the adjacent
values. An estimate of the probability density is displayed symmetrically on
both sides of the boxplot. This marks the edges of the violin shape. The
density traces surround the boxplot and convey a better idea of the
magnitude of the density over the range of the data.

The probability density function can be estimated using any approach one
would like to use. For instance, we could use the kernel density estimation
method or histograms. Based on this, we see that there is some similarity
between violin plots and the variations of the boxplot described previously.

Example 9.9
We return to the snowfall data from our previous example showing how
to do kernel density estimation for univariate data. First, we load the data,
and we set the bandwidth to one-half the normal reference rule.

% Load the data.

FIGURE 9.13
This is the box-percentile plot of the simulated data in Example 9.6. The plot for the normal
distribution shows a single mode at the median, symmetry about the median, and concave
sides. The uniform distribution has outliers at both ends, which are shown as long, thin
lines. The center part of the plot is a diamond shape, since the percentile plot of a uniform
distribution is linear. Although somewhat hard to see, we have several modes in the last
one, indicated by valleys (with few observations) and peaks on the sides.

−4

−3

−2

−1

0

1

2

3

4

Distribution Shapes 385

load snowfall

% Let's use the same bandwidth we had previously.
% Get the bandwidth.
n = length(snowfall);
% Approximately one-half the bandwidth for
% a normal distribution.
b = 0.5*std(snowfall)*n^(-1/5);

We found a function on MATLAB Central that produces part of a violin plot
[Hoffmann, 2015]. It does not include the boxplot at the center, so we have to
add it as shown below.

% This function was downloaded from MATLAB Central.
violin(snowfall','bw',b);

% Hold the plot to add the boxplot.
% Get the axis limits to reset.
ax = axis;
hold on
boxplot(snowfall,'PlotStyle','compact');
hold off
axis(ax)
ylabel('Snowfall (inches)')
xlabel('Buffalow Snowfall, 1910 - 1972')
set(gca,'Xticklabel',' ')

❑

The violin plot is shown in Figure 9.14. We can see additional details that
are not visible in the boxplot, such as the two additional high density areas
on the sides of the violin. Peaks and valleys in the probability density are not
seen in boxplots, but they can be seen in violin plots [Hintze and Nelson,
1998]. Of course, the visibility of such structures also depends on the amount
of smoothing one uses (e.g., histograms bin widths, kernel bandwidths, etc.),
as discussed elsewhere.

9.3.4 Beeswarm Plot

We showed previously how to add a 1–D scatterplot or rug superimposed on
an existing line plot, such as a probability density function. There is another
type of 1–D scatterplot called a beeswarm plot. This is also called a column
scatterplot or stripchart. It is similar to a jittered or textured dot plot that is
available in GGobi, which is open-source software for dynamic data
visualization [Cook and Swayne, 2007]. See Appendix B for details.

The beeswarm plot has a vertical orientation like most boxplots rather than
the horizontal display of a rug plot. Usually, the beeswarm plot is displayed

386 Exploratory Data Analysis with MATLAB®, Third Edition

as a stand-alone plot, but it can also be added to other distribution plots, as
we discuss in the next section. Each observation is represented by a point in
the plot. They are jittered where a small amount of noise is added to the data
value to allow overlapping data points to be seen. A wide spread of the data
indicates more observations are located in the region.

Example 9.10
We obtained a function called plotSpread from MATLAB Central that will
create a beeswarm plot [Jonas, 2012]. We use the following code to construct
a beeswarm plot for the geyser data. Recall that these data correspond to the
waiting times between eruptions of the Old Faithful geyser.

% Load the geyser data.
load geyser

subplot(1,2,1)
% The beeswarm plot function requires the data
% in column format, so we convert it.
plotSpread(geyser(:))
ax1 = axis;

FIGURE 9.14
Here we show a violin plot of the Buffalo snowfall data. The bumps reflecting high and
low snowfall amounts can be seen via the symmetric density traces marking the sides of
the violin. Compare the density on both sides of the violin to Figure 9.7. The boxplot in the
middle shows additional summary statistics.

Distribution Shapes 387

box on
ylabel('Waiting Time Between Eruptions (mins)')
set(gca,'XTickLabel','Geyser')

We see that there is some evidence of two areas of higher density—for shorter
and longer waiting times. We can also construct a boxplot for comparison.
The plots are shown in Figure 9.15.

% Next, we display a boxplot for comparison.
subplot(1,2,2)
boxplot(geyser)
ax2 = axis;
axis([ax2(1:2),ax1(3:4)])
set(gca,'XTickLabel','Geyser')

❑

We can see that the beeswarm plot and the boxplot each provide useful
information about our data. Thus, it is a good idea to visualize these together.
Next, we show how a beeswarm plot can be combined with boxplots and its
variations.

FIGURE 9.15
This is a beeswarm plot for the geyser data. These are waiting times in minutes between
eruptions of the Old Faithful geyser. We included a boxplot for comparison purposes. The
boxplot provides some descriptive statistics, while the beeswarm plot gives us a better idea
of the data density.

Geyser
40

50

60

70

80

90

100

110
W

a
iti

n
g

 T
im

e
 B

e
tw

e
e
n
 E

ru
p
tio

n
s

(m
in

s)

Geyser
40

50

60

70

80

90

100

110

388 Exploratory Data Analysis with MATLAB®, Third Edition

9.3.5 Beanplot

Beanplots developed by Kampstra [2008] are a combination of the rug plot
with the violin plot. He calls them a beanplot because the density shape can
look like the pod of a green bean, and the rug plot looks like the seeds inside
the pod.

Kampstra [2008] describes several enhancements of the beanplot, but we
describe only the basic version here. This plot has symmetric estimated
probability density traces with a rug-like plot added to the center of the violin
shape. The code used to create this plot is illustrated in the next example.

Example 9.11
We use the geyser data again for this example. First, we load it, and we then
create a violin plot.

% First load the data.
load geyser
n = length(geyser);

% Do a violin plot first.
subplot(1,2,1)
violin(geyser(:));
hold on

Next, we create a 1–D scatterplot as lines and add that to the center of the
violin plot.

% Add a rug-like plot where we show the points as
% ticks in the center of the density traces.
x = [0.95, 1.05];
y = [geyser(:),geyser(:)];
for i = 1:n
 plot(x,y(i,:))
end
ax = axis;
hold off

Instead of showing the observations as lines, we could use a beeswarm plot.
the MATLAB code is given here.

% Alternatively, we could superimpose a
% beeswarm over the violin plot.
subplot(1,2,2)
violin(geyser(:));
hold on
plotSpread(geyser(:));
axis(ax)
hold off

Distribution Shapes 389

These two versions of the beanplot are shown in Figure 9.16.
❑

There is a function called distributionPlot on the MATLAB Central
file exchange [Jonas, 2009]. This allows comparison of multiple distributions
and also creates variations of violin plots and beanplots. We illustrate some
of its uses in the next example.

Example 9.12
The distributionPlot function on MATLAB Central has several options
for comparing the distributions of multiple data sets using variations of the
violin plot. These include using the histogram instead of the density for the
trace, adding a 1–D scatterplot, showing density regions using the color map,
and more. We demonstrate two of the options using the petal length variable
of Versicolor and Virgnica species in the Fisher’s iris data.

% Load the iris data.
load iris

% Extract the petal length from two species.
X1 = versicolor(:,3);

FIGURE 9.16
These are two beanplots for the geyser data. On the left is a version of the beanplot where
observations are shown as ticks. A beanplot with jittered observations is on the right. The
jittering is done via the plotSpread function.

390 Exploratory Data Analysis with MATLAB®, Third Edition

X2 = virginica(:,3);

The basic syntax distributionPlot(X) shows side-by-side violin plots of
the columns in X with the mean shown as a cross and the median as a square.
We can construct side-by-side beanplots with the following code.

% This displays multiple beanplots, where
% the observations are shown as points.
distributionPlot([X1,X2],'addSpread',...
 true,'showMM',false)
set(gca,'XTickLabel',{'Versicolor','Virginica'})
ylabel('Petal Length')
title('Fisher''s Iris Data')

The plot is shown in Figure 9.17. We can directly compare two distributions
by plotting one density trace on the right and the other on the left. Here is the
code.

% Plot Versicolor on the right.
distributionPlot(X1,'histOri','right',...
 'color','r','widthDiv',[2 2],...
 'showMM',0)
% Plot Virginica on the left.
distributionPlot(X2,'histOri','left',...
 'color','b','widthDiv',[2 1],...
 'showMM',0)
box on
title('Fisher''s Iris Data')
ylabel('Petal Length')

This is shown in Figure 9.18. We can see the multi-modal shapes and the
overlap in the two distributions.
❑

9.4 Quantile Plots

As an alternative to the boxplots, we can use quantile-based plots to visually
compare the distributions of two samples. These are also appropriate when
we want to compare a known theoretical distribution and a sample. In
making the comparisons, we might be interested in knowing how they are
shifted relative to each other or to check model assumptions, such as
normality.

In this section, we discuss several versions of quantile-based plots. These
include probability plots, quantile-quantile plots (sometimes called q-q
plots), and quantile plots. The probability plot has historically been used to

Distribution Shapes 391

FIGURE 9.17
This shows side-by-side beanplots for the petal length of Fisher’s iris Versicolor and Virginica
species. The beanplot is a violin plot providing information about the density, along with
a 1–D scatterplot showing the jittered data.

FIGURE 9.18
This is a comparison of petal length for Fisher’s iris species Virginica and Versicolor. These
are violin plots where the left trace corresponds to one group (Virginica), and the right trace
corresponds to the another group (Versicolor). We see that each of the densities are multi-
modal, and they overlap.

Virginica Versicolor

392 Exploratory Data Analysis with MATLAB®, Third Edition

compare sample quantiles with the quantiles from a known theoretical
distribution, such as normal, exponential, etc. Typically, a q-q plot is used to
determine whether two random samples were generated by the same
distribution. The q-q plot can also be used to compare a random sample with
a theoretical distribution by generating a sample from the theoretical
distribution as the second sample. Finally, we have the quantile plot that
conveys information about the sample quantiles.

9.4.1 Probability Plots

A probability plot is one where the theoretical quantiles are plotted against
the ordered data, i.e., the sample quantiles. The main purpose is to visually
determine whether or not the data could have been generated from the given
theoretical distribution. If the sample distribution is similar to the theoretical
one, then we would expect the relationship to follow an approximate straight
line. Departures from a linear relationship are an indication that the
distributions are different.

To get this display, we plot the x(i) on the vertical axis, and on the other axis
we plot

, (9.14)

where denotes the inverse of the cumulative distribution function for
the hypothesized distribution. If the sample arises from the same distribution
represented by Equation 9.14, then the theoretical quantiles and the sample
quantiles should fall approximately on a straight line. As we discussed
before, the 0.5 in the above argument can be different [Cleveland, 1993]. For
example, we could use . See Kimball [1960] for other options. A
well-known example of a probability plot is the normal probability plot,
where the theoretical quantiles from the normal distribution are used.

The MATLAB Statistics Toolbox has several functions for obtaining
probability plots. One is called normplot to assess the assumption that a
data set comes from a normal distribution. There is also a function for
constructing a probability plot that compares a data set to the Weibull
distribution. This is called weibplot. Probability plots for other theoretical
distributions can be obtained using the MATLAB code given below,
substituting the appropriate function to get the theoretical quantiles.

The Statistics Toolbox also has several functions that can be used to explore
distribution shapes. One is the probplot function. The default for this
function is to construct a normal probability plot with a reference line.
However, this can be changed via an input argument for 'distname' that
specifies the desired distribution. Additionally, there is a GUI tool for fitting
distributions. To start the tool, type dfittool at the command line. This tool

F
1– i 0.5–

n

F
1– •()

i n 1+()⁄

Distribution Shapes 393

allows you to load data from the workspace, fit distributions to the data, plot
the distributions, and manage/evaluate different fits.

Example 9.13
This example illustrates how you can display a probability plot in MATLAB,
where we return to the galaxy data. From previous plots, these data look
approximately normally distributed, so we will check that assumption using
the probability plot. First, we get the sorted sample, and then we obtain the
corresponding theoretical quantiles for the normal distribution. The
resulting quantile plot is shown in Figure 9.19.

load galaxy
% We will use the EastWest data again.
x = sort(EastWest);
n = length(x);
% Get the probabilities.
prob = ((1:n)-0.5)/n;
% Now get the theoretical quantiles for
% a normal distribution.
qp = norminv(prob,0,1);
% Now plot theoretical quantiles versus
% the sorted data.
plot(qp,x,'.')
ylabel('Sorted Data')
xlabel('Standard Normal Quantiles')

We see in the plot that there is slight curvature at the ends, indicating some
departure from normality. However, these plots are exploratory only, and
the results are subjective. Data analysts should use statistical inference
methods (e.g., goodness-of-fit tests) to assess the significance of any
departure from the theoretical distribution.
❑

9.4.2 Quantile-Quantile Plot

The q-q plot was originally proposed by Wilk and Gnanadesikan [1968] to
visually compare two distributions by graphing the quantiles of one versus
the quantiles of the other. Either or both of these distributions may be
empirical or theoretical. Thus, the probability plot is a special case of the q-q
plot.

Say we have two data sets consisting of univariate measurements. We
denote the order statistics for the first data set by

.x 1() x 2() … x n(), , ,

394 Exploratory Data Analysis with MATLAB®, Third Edition

Let the order statistics for the second data set be

,

where without loss of generality, .
In the next example, we show how to construct a q-q plot where the sizes of

the data sets are equal, so m = n. In this case, we simply plot the sample
quantiles of one data set versus the other data set as points.

Example 9.14
We will generate two sets of normal random variables and construct a q-q
plot. Constructing a q-q plot for random samples from different distributions
and different sample sizes will be covered in the next example. The first
simulated data set is standard normal; the second one has a mean of 1 and a
standard deviation of 0.75.

% Generate the samples - same size.
x = randn(1,300);
% Make the next one a different mean
% and standard deviation.
y = randn(1,300)*.75 + 1;
% Find the order statistics - sort them.

FIGURE 9.19
This is a probability plot for the EastWest variable in the galaxy data set. The curvature
indicates that the data are not exactly normally distributed.

−3 −2 −1 0 1 2 3
−30

−20

−10

0

10

20

30

S
o
rt

e
d
 D

a
ta

Standard Normal Quantiles

y 1() y 2() … y m(), , ,

m n≤

Distribution Shapes 395

xs = sort(x);
ys = sort(y);
% Construct the q-q plot - do a scatterplot.
plot(xs, ys, '.')
xlabel('Standard Normal - Sorted Data')
ylabel('Normal - Sorted Data')
title('Q-Q Plot')

The q-q plot is shown in Figure 9.20. The data appear to be from the same
family of distributions, since the relationship between them is approximately
linear.
❑

We now look at the case where the sample sizes are not equal and m < n.
To obtain the q-q plot, we graph the y(i), against the
quantile of the other data set. The quantiles of the x data are
usually obtained via interpolation.

Users should be aware that q-q plots provide only a rough idea of how
similar the distribution is between two random samples. If the sample sizes
are small, then a lot of variation is expected; so comparisons might be
suspect. To help aid the visual comparison, some q-q plots include a reference
line. These are lines that are estimated using the first and third quartiles of
each data set and extending the line to cover the range of the data. The

FIGURE 9.20
This is a q-q plot of two generated random samples, each one from a normal distribution.
We see that the relationship between them is approximately linear, as expected.

−4 −3 −2 −1 0 1 2 3
−1

−0.5

0

0.5

1

1.5

2

2.5

3

Standard Normal − Sorted Data

N
o
rm

a
l −

 S
o
rt

e
d
 D

a
ta

Q−Q Plot

i 1 … m, ,= i 0.5–() m⁄
i 0.5–() m⁄

396 Exploratory Data Analysis with MATLAB®, Third Edition

MATLAB Statistics Toolbox provides a function called qqplot that displays
this type of plot. We show below how to add the reference line.

Example 9.15
This example shows how to do a q-q plot when the samples do not have the
same number of points. We use the function provided with this book called
quantileseda1 to get the required sample quantiles from the data set that
has the larger sample size. We then plot these versus the order statistics of the
other sample. Note that we add a reference line based on the first and third
quartiles of each data set, using the function polyfit. We first generate the
data sets, both from different distributions.

% We will generate some samples - one will be
% from the normal distribution, the other will
% be uniform.
n = 100;
m = 75;
x = randn(1,n);
y = rand(1,m);

Next we get the order statistics from the y values and the corresponding
quantiles from the x data set.

% Sort y; these are the order statistics.
ys = sort(y);
% Now find the associated quantiles using the x.
% Probabilities for quantiles:
p = ((1:m) - 0.5)/m;
% The next function comes with this text.
xs = quantileseda(x,p);

Now we can construct the plot, adding a reference line based on the first and
third quartiles to help assess the linearity of the relationship.

% Construct the plot.
plot(xs,ys,'.')
% Get the reference line. Use the 1st and 3rd
% quartiles of each set to get a line.
qy = quartiles(y);
qx = quartiles(x);
[pol, s] = polyfit(qx([1,3]),qy([1,3]),1);
% Add the line to the figure.
yhat = polyval(pol,xs);
hold on
plot(xs,yhat,'k')

1 The Statistics Toolbox has similar functions called quantile and prctile to calculate the
sample quantiles and percentiles.

Distribution Shapes 397

xlabel('Sample Quantiles - X'),
ylabel('Sorted Y Values')
hold off

We see in Figure 9.21 that the data do not come from the same distribution,
since the relationship is not linear.
❑

A major benefit of the quantile-based plots discussed so far is that they do
not require the two samples (or the sample and theoretical distribution) to
have the same location and scale parameter. If the distributions are the same,
but differ in location or scale, then we would still expect them to produce a
straight line. This will be explored in the exercises.

9.4.3 Quantile Plot

Cleveland [1993] describes another version of a quantile-based plot. He calls
this the quantile plot, where we have the ui values (Equation 9.12) along the
horizontal axis and the ordered data x(i) along the vertical. These ordered
pairs are plotted as points, joined by straight lines. Of course, this does not
have the same interpretation or provide the same information as the
probability plot or q-q plot described previously. This quantile plot provides

FIGURE 9.21
This shows the q-q plot for Example 9.9. The x values are normally distributed with n = 100.
The y values are uniformly distributed with m = 75. The plot shows that these data do not
come from the same distribution.

−4 −3 −2 −1 0 1 2 3 4
−1

−0.5

0

0.5

1

1.5

2

Sample Quantiles − X

S
o
rt

e
d
 Y

 V
a
lu

e
s

398 Exploratory Data Analysis with MATLAB®, Third Edition

an initial look at the distribution of the data, so we can search for unusual
structure or behavior. We also obtain some information about the sample
quantiles and their relationship to the rest of the data. This type of display is
discussed in the next example.

Example 9.16
We use a data set from Cleveland [1993] that contains the heights (in inches)
of singers in the New York Choral Society. The following MATLAB code
constructs the quantile plot for the Tenor_2 data.

load singer
n = length(Tenor_2);
% Sort the data for the y-axis.
ys = sort(Tenor_2);
% Get the associated u values.
u = ((1:n)-0.5)/n;
plot(u,ys,'-o')
xlabel('u_i value')
ylabel('Tenor 2 Height (inches)')

We see from the plot shown in Figure 9.22 that the values of the quartiles (and
other quantiles of interest) are easy to see.
❑

FIGURE 9.22
This is the quantile plot for the Tenor_2 data, which is part of the singer data.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
66

67

68

69

70

71

72

73

74

75

76

u
i
 value

T
e
n
o
r

2
 H

e
ig

h
t
(i
n
ch

e
s)

Distribution Shapes 399

A word of caution is in order regarding the quantile-based plots discussed
in this section. Some of the names given to them are not standard throughout
statistics books. For example, the quantile plot is also called the q-q plot in
Kotz and Johnson [Vol. 7, p. 233, 1986].

9.5 Bagplots

The bagplot is a bivariate box-and-whiskers plot developed by Rousseeuw,
Ruts, and Tukey [1999]. This is a generalization of the univariate boxplot
discussed previously. It uses the idea of the location depth of an observation
with respect to a bivariate data set. This extends the idea of ranking or
ordering univariate data to the bivariate case, so we can find quantities
analogous to the univariate quartiles. The bagplot consists of the following
components:

1. A bag that contains the inner 50% of the data, similar to the IQR;

2. A cross (or other symbol) indicating the depth median (described
shortly);

3. A fence to determine potential outliers; and

4. A loop that indicates the points that are between the bag and the
fence.

We need to define several concepts to construct the bagplot. First, we have
the notion of the halfspace location depth introduced by Tukey [1975]. The
halfspace location depth of a point θ relative to a bivariate data set is given
by the smallest number of data points contained in a closed half-plane where
the boundary line passes through θ. Next, we have the depth region Dk, which
is the set of all θ with halfspace location depth greater than or equal to k.
Donoho and Gasko [1992] define the depth median of the bivariate point
cloud, which in most cases is the center of gravity of the deepest region.
Rousseeuw and Ruts [1996] provide a time-efficient algorithm for finding the
location depth and depth regions, as well as an algorithm for calculating the
depth median [1998].

The bag is constructed in the following manner. We let # Dk be the number
of data points in the depth region Dk. First, we find the value k for which

,

where the notation denotes the greatest integer less than or equal to x.
Then, the bag is obtained by linearly interpolating between Dk and Dk–1,
relative to the depth median. The fence is constructed by inflating the bag by

Dk
n
2---

Dk 1–<≤

x

400 Exploratory Data Analysis with MATLAB®, Third Edition

some factor relative to the depth median. Any points that are outside the
fence are flagged as potential outliers. Finally, the loop is the outer boundary
of the bagplot; i.e., it is the convex hull of the bag and the nonoutlying points.

Example 9.17
Rousseuw, Ruts and Tukey provide Fortran and MATLAB code to construct
the bagplot; see Appendix B for download information. However, a more
user-friendly version for MATLAB is now available in the LIBRA Toolbox
[Verboven and Hubert, 2005],2 and we illustrate its use in this example. We
will use the environmental data set, where the two variables of interest are
temperature and ozone.

% First we load up some data to be used in the plot.
load environmental
% Now we put the data set together.
data = [Temperature,Ozone];

There are many options available in the bagplot function; use the help
feature to get more information on them. We will use the default values in
our function call.

% The bagplot function was taken from
% the LIBRA toolbox. It is used here
% with the permission of the authors.
bagplot(data)
title('Bagplot of Environmental Data')
xlabel('Temperature')
ylabel('Ozone')

The resulting plot is shown in Figure 9.23.
❑

9.6 Rangefinder Boxplot

Becketti and Gould [1987] introduced a bivariate extension of the boxplot
called the rangefinder boxplot. These are used in conjunction with 2–D
scatterplots, which are discussed in the next chapter. The rangefinder
boxplot contains the same information for both variables and that one
has with univariate boxplots, along with the additional information seen in a
scatterplot.

A rangefinder boxplot is displayed using six lines that are superimposed
on a scatterplot. Three of these lines are vertical, and three are horizontal. The

2 The bagplot function is included with the EDA Toolbox (with permission) and is governed
by the license found at http://wis.kuleuven.be/stat/robust/LIBRA/LIBRA-home

x1 x2

http://wis.kuleuven.be/stat/robust/LIBRA/LIBRA-home

Distribution Shapes 401

positions and the lengths of the lines indicate the medians, the interquartile
ranges, and the adjacent values for each of the variables. We provide the
details of constructing a rangefinder boxplot below and show how to
construct one in the next example.

Procedure – Rangefinder Boxplot

1. First, construct a scatterplot of the data.

2. Find the quartiles for each variable and :

3. Find the interquartile ranges for each variable:

FIGURE 9.23
This is a bagplot showing two variables in the environmental data set. The depth median
is displayed as a large circle with a cross inside.

55 60 65 70 75 80 85 90 95

0

20

40

60

80

100

120

140

160

Bagplot of Environmental Data

Temperature

O
zo

n
e

x1 x2

qx1
0.25() qx1

0.50() qx1
0.75(), ,

qx2
0.25() qx2

0.50() qx2
0.75()., ,

402 Exploratory Data Analysis with MATLAB®, Third Edition

These values determine the lengths of the lines. All of the horizon-
tal lines have length equal to , and all vertical lines have
length equal to .

4. Find the adjacent values based on the upper limit and the lower
limit for each of the variables (Equation 9.13). These values govern
the placement of the outer lines.

5. Place one of the vertical lines and one of the horizontal lines at
position , forming a cross at the medians.

6. Place a vertical line at each of the adjacent values for variable .

7. Place an horizontal line at each of the adjacent values for variable
.

Example 9.18
We use two variables of the oronsay data to illustrate the process of creating
a rangefinder boxplot. First, we load the data and put the variables of interest
into our data matrix.

% Use 2 variables of the oronsay data for this example.
load oronsay
X = oronsay(:,7:8);

Now, we construct a scatterplot of the variables, which is shown in Figure
9.16.

% Construct a scatterplot.
plot(X(:,1),X(:,2),'.')
xlabel(labcol{7})
ylabel(labcol{8})
title('Oronsay Data')
% Hold the plot, so we can add the lines.
hold on

Next, we find the quartiles and the interquartile range for each variable.

% Find the quartiles for each variable.
qx1 = quartiles(X(:,1));
qx2 = quartiles(X(:,2));
% Find the interquartile ranges.
iqr1 = qx1(3) - qx1(1);
iqr2 = qx2(3) - qx2(1);

We use this information to determine the upper and lower limits for both of
the variables.

IQRx1
qx1

0.75() qx1
0.25()–=

IQRx2
qx2

0.75() qx2
0.25().–=

IQRx1
IQRx2

qx1
0.50() qx2

0.50(),()
x1

x2

Distribution Shapes 403

% Find the upper and lower limits.
LL1 = qx1(1) - 1.5*iqr1;
UL1 = qx1(3) + 1.5*iqr1;
LL2 = qx2(1) - 1.5*iqr2;
UL2 = qx2(3) + 1.5*iqr2;

Recall that the adjacent values are the most extreme (largest and smallest)
observations that are not outliers. The following code will find the adjacent
values.

% Now find the adjacent values.
Xs(:,1) = sort(X(:,1));
Xs(:,2) = sort(X(:,2));
ind1 = find(Xs(:,1) > LL1 & (Xs(:,1) < UL1));
adjv1 = [min(Xs(ind1,1)), max(Xs(ind1,1))];
ind2 = find(Xs(:,2) > LL2 & (Xs(:,2) < UL2));
adjv2 = [min(Xs(ind2,2)), max(Xs(ind2,2))];

We are ready to add the lines of the rangefinder boxplot to the scatterplot.
First, we add the two lines that cross at the medians.

% Place the cross at the medians.
plot([qx1(1),qx1(3)],[qx2(2),qx2(2)])
plot([qx1(2),qx1(2)],[qx2(1),qx2(3)])
% Plot a circle at the medians to check.
plot(qx1(2),qx2(2),'o')

The two vertical lines are placed at the adjacent values for the variable along
the horizontal axis.

% Plot the two vertical lines at the
% adjacent values for x_1.
plot([adjv1(1),adjv1(1)], [qx2(1),qx2(3)])
plot([adjv1(2),adjv1(2)], [qx2(1),qx2(3)])

Finally, the two horizontal lines are shown at the adjacent values for the
variable displayed on the vertical axis.

% Plot the two horizontal lines at the
% adjacent values for x_2.
plot([qx1(1),qx1(3)], [adjv2(1),adjv2(1)])
plot([qx1(1),qx1(3)], [adjv2(2),adjv2(2)])

The resulting rangefinder boxplot is superimposed on the scatterplot shown
in Figure 9.24. We also include a side-by-side boxplot of the two variables, so
the reader can compare the information that is available in both plots. These
boxplots are displayed in Figure 9.25.
❑

404 Exploratory Data Analysis with MATLAB®, Third Edition

FIGURE 9.24
This plot shows the rangefinder boxplot for two variables of the oronsay data set. Note
that this provides the same information one can get from the individual boxplots for each
of the variables (e.g., interquartile range and potential outliers), but with the added benefit
of seeing the actual data shown in a scatterplot.

FIGURE 9.25
This displays the univariate boxplots for each variable in the rangefinder boxplot, so the
reader can compare this with the information contained in Figure 9.16.

0 5 10 15 20 25 30
5

10

15

20

25

30

35

40

45

.25−.355mm

.1
8
−

.2
5
m

m

Oronsay Data

0

5

10

15

20

25

30

35

40

.25−.355mm .18−.25mm

Distribution Shapes 405

9.7 Summary and Further Reading

We presented several methods for visualizing the shapes of distributions for
continuous random variables. The easiest and most intuitive methods to use
are the histograms and boxplots. We discussed several variations of these
plots. For histograms, we presented frequency, relative frequency, density,
and 2–D histograms. Enhancements to the boxplot included histplots, box-
percentile plots, variable-width boxplots, and others. We concluded the
chapter with quantile-based plots and a generalization of the univariate
boxplot to 2–D.

There is an extensive literature on probability density estimation, both
univariate and multivariate. The best comprehensive book in this area is
Scott [2015]. He discusses histograms, frequency polygons, kernel density
estimation, and the average shifted histograms. He covers the theoretical
foundation of these methods, how to choose the smoothing parameters (e.g.,
bin widths), and many practical examples. For a MATLAB perspective on
these methods, please see Martinez and Martinez [2015]. The book called
Visualizing Data by William Cleveland [1993] is an excellent resource on
many aspects of data visualization, including quantile-based plots discussed
in this chapter.

We only covered the quantile-based plots for continuous data in this
chapter. Versions of these are also available for discrete data distributions,
such as binomial or Poisson. MATLAB implementations of quantile-based
plots for discrete distributions can be found in Martinez and Martinez [2015].
Another resource for the visualization of categorical data is Friendly [2000],
where SAS software is used for implementation of the ideas. We recommend
Hoaglin and Tukey [1985] for a nice summary of various methods for
checking the shape of discrete distributions. The third edition of this book has
a new chapter (Chapter 11) on visualizing categorical data, where the
interested reader will discover ways to view and understand these types of
variables.

Exercises

9.1 Repeat Example 9.1 using 5 and 50 bins. Compare these results with
what we had in Figure 9.1.

9.2 Repeat Example 9.1 using the forearm data.
9.3 Apply the various bin width rules to the forearm and to the galaxy

data. Discuss the results.

406 Exploratory Data Analysis with MATLAB®, Third Edition

9.4 The histogram methods presented in the chapter call the hist func-
tion with the desired number of bins. Do a help on hist or histc to
see how to set the bin centers instead. Use this option to construct his-
tograms with a specified bin width and origin.

9.5 Using the code from Problem 9.4, show how changing the bin starting
point affects histograms of the galaxy data.

9.6 Using the data in Example 9.2, construct a normal curve, using the
sample mean and standard deviation. Superimpose this over the his-
togram and analyze your results.

9.7 Plot the histogram in Example 9.3 using the surf plot, using this
code:

% Plot as a surface plot.
% Get some axes that make sense.
[XX,YY]=...
meshgrid(linspace(min(x(:,1)),max(x(:,1)),nb1),...
linspace(min(x(:,2)),max(x(:,2)),nb2));
% Z is the height of the bins in Example 9.3.
surf(XX,YY,Z)

9.8 Use a boxplot and a histogram to verify that the quartiles in
Example 9.6 for the geyser data make sense.

9.9 Generate some standard normal data, with sample sizes n = 30, n = 50,
and n = 100. Use the function boxp to first get a set of plain boxplots
and then use it to get variable width boxplots. The following code
might help:

% Generate some standard normal data with
% different sample sizes. Put into a cell array.
X{1} = randn(30,1);
X{2} = randn(50,1);
X{3} = randn(100,1);
% First construct the plain boxplot.
boxp(X)
% Next we get the boxplot with variable
% widths.
boxp(X,'vw')

9.10 Generate some random data. Investigate the histfit function in the
Statistics Toolbox.

9.11 Show that the area represented by the bars in the density histogram
sums to one.

9.12 Load the data used in Example 9.8 (load example96). Construct his-
tograms (use 12 bins) of the columns of X. Compare with the boxplots
and box-percentiles plots.

9.13 Type help boxplot at the MATLAB command line to learn more
about this Statistics Toolbox Function. Do side-by-side boxplots of the
oronsay data set. The length of the whisker is easily adjusted using

Distribution Shapes 407

optional input arguments to boxplot. Try various values for this
option.

9.14 Explore the 'notches' option of the boxplot function. Generate
bivariate normal data, where the columns have the same means. Con-
struct notched boxplots with this matrix. Now generate bivariate nor-
mal data where the columns have very different means. Construct
notched boxplots with this matrix. Discuss your results.

9.15 Apply the boxplot with notches to the oronsay data and discuss
the results.

9.16 Generate two data sets, each from a normal distribution with different
location and scale parameters. Construct a q-q plot (see Example 9.15)
and discuss your results.

9.17 Reconstruct Figure 9.2 using the density histogram. Superimpose the
normal curve over this one. Discuss the difference between this and
Figure 9.2.

9.18 Construct a bagplot using the BPM data from Example 7.11. Compare
with the polar smoothing.

9.19 A rootogram is a histogram where the heights of the bins correspond
to the square root of the frequency. Write a MATLAB function that
will construct this type of plot. Use it on the galaxy data.

9.20 Generate data as shown in Example 9.8 and examine the distribution
of the two sets of random variables using boxplots, variable width
box-percentile plots, violin plots, and beanplots.

9.21 Use the MATLAB boxplot function to get side-by-side boxplots of
the following data sets and discuss the results. Construct boxplots
with and without notches.
a. skulls

b. sparrow

c. pollen

d. BPM data sets (after using ISOMAP)

e. gene expression data sets

f. spam

g. iris

h. software

9.22 Apply some of the other types of boxplots to the data in Problem 9.21.
9.23 Generate uniform random variables (use the rand function) and

construct a normal probability plot (or a q-q plot with the other data
set generated according to a standard normal). Do the same thing
with random variables generated from an exponential distribution
(see exprnd in the Statistics Toolbox). Discuss your results.

9.24 Construct a rangefinder boxplot using the BPM data from Example
7.11. Compare your results with the polar smoothing and the bagplot.

9.25 Create kernel density estimates of the forearm, galaxy, snowfall,
and geyser data using the default bandwidth. Try smaller (e.g., half

408 Exploratory Data Analysis with MATLAB®, Third Edition

the default) and larger bandwidths (e.g., twice the default). Describe
your results.

9.26 Create kernel density estimates of the forearm, galaxy, snowfall,
and geyser data using different kernels and the bandwidths from
the previous problem. Discuss the differences, if there are any.

9.27 Construct a 2–D scatterplot of the faithful data and compare it to
the estimated density in Figure 9.8.

9.28 Explore some of the options in distributionPlot using the data in
Example 9.12.
a. The default options create side-by-side violin plots.

distributionPlot([X1,X2])

b. This shows the quantiles as lines in the violin plot.

distributionPlot([X1,X2],'showMM',6)

c. This displays the distributions as a heatmap density.

distributionPlot([X1,X2],'colormap',copper,...
 'showMM',6,'variableWidth',false)

9.29 The histogram function has additional options for the 'Normal-
ization' argument. Consult the help file for more information,
and apply them to the galaxy data. You can create a histogram with
bin heights corresponding to the cumulative count and one where the
heights are the count density.

409

Chapter 10
Multivariate Visualization

In this chapter, we present several methods for visualizing and exploring
multivariate data. We have already seen some of these methods in previous
chapters. For example, we had grand tours and projection pursuit in
Chapter 4, where the dimensionality of the data is first reduced to 2–D and
then visualized in scatterplots. The primary focus of this chapter is to look at
ways to visualize and explore all of the dimensions in our data at once.

The first thing we cover is glyph plots. Then we present information about
scatterplots, both 2–D and 3–D, as well as scatterplot matrices. Next, we talk
about some dynamic graphics, such as linking and brushing. These
techniques enable us to find connections between points in linked graphs,
delete and label points, and highlight subsets of points. We then cover
coplots, which convey information about conditional dependency between
variables. This is followed by dot charts that can be used to visualize
summary statistics and other data values. Next, we discuss how to view each
of our observations as curves via Andrews’ plots or as broken line segments
in parallel coordinates. We then show how the concepts of the data image
and Andrews’ curves can be combined to reveal structure in high-
dimensional data. Next, we describe how these methods can be combined
with the plot matrix concept and the grand tour. Finally, we conclude the
chapter with a discussion of biplots, which can be used to visualize the
results of PCA, nonnegative matrix factorization and other similar
dimensionality reduction methods.

10.1 Glyph Plots

We first briefly discuss some of the multivariate visualization methods that
will not be covered in detail in this text. Most of these are suitable for small
data sets only, so we do not think that they are in keeping with the trend
towards analyzing massive, high-dimensional data sets, as seen in most
applications of EDA and data mining.

410 Exploratory Data Analysis with MATLAB®, Third Edition

The first method we present is due to Chernoff [1973]. His idea was to
represent each observation (with dimensionality) by a cartoon face.
Each feature of the face, such as length of nose, mouth curvature, eyebrow
shape, size of eyes, etc., would correspond to a value of the variable. This
technique is useful for understanding the overall regularities and anomalies
in the data, but it has several disadvantages. The main disadvantage is the
lack of quantitative visualization of the variables; we just get a qualitative
understanding of the values and trends. Another problem is the subjective
assignment of features to the variables. In other words, assigning a different
variable to the eyebrows and other facial features can have a significant effect
on the final shape of the face. We show an example of Chernoff faces for the
cereal data (described in Appendix C) in Figure 10.1.

Star diagrams [Fienberg, 1979] are a similar plot, in that we have one glyph
or star for each observation, so they suffer from the same restrictions as the
faces regarding sample size and dimensionality. Each observed data point in
the sample is plotted as a star, with the value of each measurement shown as
a radial line from a common center point. Thus, each measured value for an
observation is plotted as a spoke that is proportional to the size of the
measured variable with the ends of the spokes connected with line segments
to form a star. We show the star plot for the same cereal data in Figure 10.2.

The Statistics Toolbox has a function called glyphplot that will construct
either Chernoff faces or star diagrams for each observation. The use of this
function will be explored in the exercises.

Other glyphs and similar plots have been described in the literature
[Kleiner and Hartigan, 1981; du Toit, Steyn, and Stumpf, 1986], and most of
them suffer from the same drawbacks. These include star-like diagrams,
where the rays emanate from a circle, and the end points are not connected.
We also have profile plots, where each observation is rendered as a bar chart,
with the height of the bar indicating the value of the variable. Another
possibility is to represent each observation by a box, where the height, length,
and width correspond to the variables.

10.2 Scatterplots

We have already introduced the reader to scatterplots and scatterplot
matrices in previous chapters, but we now examine these methods in more
detail, especially how to construct them in MATLAB. We also present an
enhanced scatterplot based on hexagonal binning that is suitable for massive
data sets.

p 18≤

Multivariate Visualization 411

FIGURE 10.1
This shows the Chernoff faces for the cereal data, where we have 8 observations and 11
variables. The shape and size of various facial features (head, eyes, brows, mouth, etc.)
correspond to the values of the variables. The variables represent the percent agreement to
statements about the cereal. The statements are: comes back to, tastes nice, popular with all
the family, very easy to digest, nourishing, natural flavor, reasonably priced, a lot of food
value, stays crispy in milk, helps to keep you fit, fun for children to eat.

FIGURE 10.2
This shows the star plots for the same cereal data. There is one ray for each variable. The
length of the ray indicates the value of the attributed.

corn flakes weet abix rice krispies shreaded wheat

sugar puffs special k frosties all bran

Chernoff Faces for Cereal Data

corn flakes weet abix rice krispies shreaded wheat

sugar puffs special k frosties all bran

Star Plot for Cereal Data

412 Exploratory Data Analysis with MATLAB®, Third Edition

10.2.1 2–D and 3–D Scatterplots

The scatterplot is a visualization technique that enjoys widespread use in
data analysis and is a powerful way to convey information about the
relationship between two variables. To construct one of these plots in 2–D,
we simply plot the individual (xi , yi) pairs as points or some other symbol.
For 3–D scatterplots, we add the third dimension and plot the (xi , yi , zi)
triplets as points.

The main MATLAB package has several ways we can construct 2–D and
3–D scatterplots, as shown in Example 10.1. The Statistics Toolbox also has a
function to create 2–D scatterplots called gscatter that will construct a
scatterplot, where different plotting symbols are used for each cluster or
class. However, as we will see in Example 10.1 and the exercises, similar
results can be obtained using the scatter and plot functions.

Example 10.1
In this example, we illustrate the 2–D and 3–D scatterplot functions called
scatter and scatter3. Equivalent scatterplots can also be constructed
using the basic plot and plot3 functions, which will be explored in the
exercises. Since a scatterplot is generally for 2–D or 3–D, we need to extract a
subset of the variables in the oronsay data. So we’ve chosen variables 8, 9,
and 10: 0.18–0.25mm, 0.125–0.18mm, and 0.09–0.125mm. We first use
variables 8 and 9 to construct a basic 2–D scatterplot.

% First load up the data and get the
% variables of interest.
load oronsay
% Use the oronsay data set. Just plot two
% of the variables. Now for the plot:
scatter(oronsay(:,8),oronsay(:,9))
xlabel(labcol{8})
ylabel(labcol{9})

This plot is shown in Figure 10.3 (top). The basic syntax for the scatter
function is

scatter(X,Y,S,C,M)

where X and Y are the data vectors to be plotted, and the other arguments are
optional. S can be either a scalar or a vector indicating the area (in units of
points-squared) of each marker. M is an alternative marker (default is the
circle), and C is a vector of colors. Next we show how to use the color vector
to plot the observations in different colors, according to their midden group
membership. See color insert Figure 10.3 (top) for the resulting plot.

% If we want to use different colors for the groups,
% we can use the following syntax. Note that this
% is not the only way to do the colors.

Multivariate Visualization 413

FIGURE 10.3
The top figure shows the 2–D scatterplot for two variables (i.e., columns 8 and 9) of the
oronsay data set. The color of the plot symbols indicates the midden class membership for
both plots. The lower plot shows the 3–D scatterplot for columns 8 through 10. (SEE COLOR

INSERT.)

5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

35

40

45

.18−.25mm

.1
2
5
−

.1
8
m

m

0
10

20
30

40
50

0

20

40

60

0

2

4

6

8

10

.18−.25mm.125−.18mm

.0
9
−

.1
2
5
m

m

414 Exploratory Data Analysis with MATLAB®, Third Edition

ind0 = find(midden==0); % Red
ind1 = find(midden==1); % Green
ind2 = find(midden==2); % Blue
% This creates an RGB - 3 column colormap matrix.
C = zeros(length(midden),3);
C(ind0,1) = 1;
C(ind1,2) = 1;
C(ind2,3) = 1;
scatter(oronsay(:,8),oronsay(:,9),5,C)
xlabel(labcol{8})
ylabel(labcol{9})
zlabel(labcol{10})

3–D scatterplots can also be very useful, and they are easily created using the
scatter3 function, as shown below.

% Now show scatter3 function. Syntax is the same;
% just add third vector.
scatter3(oronsay(:,8),oronsay(:,9),oronsay(:,10),5,C)
xlabel(labcol{8})
ylabel(labcol{9})
zlabel(labcol{10})

The 3–D scatterplot is shown in the bottom panel of Figure 10.3 and in the
corresponding color insert. MATLAB has another useful feature in the
Figure Window toolbar buttons. This is the familiar rotate button that,
when selected, allows the user to click on the 3–D axis and rotate the plot. The
user can see the current elevation and azimuth (in degrees) in the lower left
corner of the figure window while the axes are being rotated.
❑

The Statistics Toolbox has a useful function called scatterhist that
creates a 2–D scatterplot and adds univariate histograms to the horizontal
and vertical axes. This provides additional useful information about the
marginal distributions of the data. We illustrate the use of scatterhist in
the next example.

Example 10.2
We return to the oronsay data that was used to produce the scatterplot in
Figure 10.3 to create a 2–D scatterplot with marginal histograms.

% First load up the data and get the
% variables of interest.
load oronsay
% Now create the scatterplot with the
% marginal histograms.
% Note that we can provide an optional argument
% to the function that specifies the number of

Multivariate Visualization 415

% bins for each of the histograms.
scatterhist(oronsay(:,8),oronsay(:,9),[20,20])
xlabel(labcol{8})
ylabel(labcol{9})

The resulting plot is shown in Figure 10.4. The marginal histograms indicate
some interesting structure that is not readily visible in the scatterplot.
❑

10.2.2 Scatterplot Matrices

Scatterplot matrices are suitable for multivariate data, when p > 2. They show
all possible 2–D scatterplots, where the axis of each plot is given by one of the
variables. The scatterplots are then arranged in a matrix-like layout for easy

FIGURE 10.4
Here is the plot we get using scatterhist on two variables in the oronsay data set. The
scatterhist function produces a 2–D scatterplot with univariate histograms along the
horizontal and vertical axes. These histograms can show useful information about the
marginal distributions.

10 15 20 25 30 35 40

0

5

10

15

20

25

30

35

40

.18−.25mm

.1
2
5
−

.1
8
m

m

416 Exploratory Data Analysis with MATLAB®, Third Edition

viewing and comprehension. Some implementations of the scatterplot
matrix show the plots in the lower triangular portion of the matrix layout
only, since showing both is somewhat redundant. However, we feel that
showing all of them makes it easier to understand the relationships between
the variables. As we will see in Example 10.3, the MATLAB functions for
scatterplot matrices show all plots.

One of the benefits of a scatterplot matrix is that one can look across a row
or column and see the scatterplots of a given variable against all other
variables. We can also view the scatterplot matrix as a way of partially
linking points in different views, especially when observations of interest are
shown with different marker styles (symbols and/or colors).

The main MATLAB package has a function called plotmatrix that will
produce a scatterplot matrix for a data matrix X. The diagonal boxes of the
scatterplot matrix contain histograms showing the distribution of each
variable (i.e., the column of X). Please see the help on this function for its
other uses. The Statistics Toolbox includes an enhanced version called
gplotmatrix, where one can provide group labels; so observations
belonging to different groups are shown with different symbols and colors.

Example 10.3
The plotmatrix function will construct a scatterplot matrix when the first
argument is a matrix. An alternative syntax allows the user to plot the
columns of one matrix against the columns of the other. We use the following
commands to construct a scatterplot matrix of the three variables of the
oronsay data used in the previous example.

% Use the same 3 variables from a previous example.
X = [oronsay(:,8),oronsay(:,9),oronsay(:,10)];
plotmatrix(X,'.');
% Let's make the symbols slightly smaller.
Hdots = findobj('type','line');
set(Hdots,'markersize',1)

We chose these from the scatterplot matrix of the full data set, because they
seemed to show some interesting structure. It is also interesting to note the
histograms of the variables that are shown along the diagonals, as they
provide information about their distribution. The scatterplot matrix is shown
in Figure 10.5.
❑

10.2.3 Scatterplots with Hexagonal Binning

Carr et al. [1987] introduced several scatterplot matrix methods for situations
where the size of the data set n is large. In our view, n is large when the
scatterplot can have a lot of overplotting, so that individual points are

Multivariate Visualization 417

difficult to see. When there is significant overplotting, then it is often more
informative to convey an idea of the density of the points, rather than the
observations alone. Thus, Carr et al. suggest displaying bivariate densities
represented by gray scale or symbol area instead of individual observations.

To do this, we first need to estimate the density in our data. We have
already introduced this issue in Chapter 9, where we looked at estimating the
bivariate density using a histogram with bins that are rectangles or squares.
Recall, also, that we used vertical bars to represent the value of the density,
rather than a scatterplot. In this chapter, we are going to use bins that are
hexagons instead of rectangles, and the graphic used to represent data
density will be symbol size, as well as color.

Carr et al. recommended the hexagon as an alternative to using the square
as a symbol, because the square tends to create bins that appear stretched out
in the vertical or horizontal directions. The procedure we use for hexagonal
binning is outlined below.

Procedure – Hexagonal Binning for Scatterplots

1. Find the length r of the side of the hexagon bins based on a given
number of bins.

2. Obtain a set of hexagonal bins over the range of the data.

3. Bin the data.

FIGURE 10.5
This is the scatterplot matrix for columns 8 through 10 of the oronsay data. The first row
of the plots shows us column 8 plotted against column 9 and then against column 10. We
have similar plots for the other two rows.

0 2 4 6 8 100 20 40 600 20 40 60

0

2

4

6

8

10

0
10
20
30
40
50
60

0
10
20
30
40
50
60

418 Exploratory Data Analysis with MATLAB®, Third Edition

4. Scale the hexagons with nonzero bin counts, such that the bin with
maximum frequency has sides with length r and the smallest fre-
quency (nonzero) has length 0.1r.

5. Display a hexagon at the center of each bin, where the sides cor-
respond to the lengths found in step 4.

We provide a MATLAB function called hexplot and show how it is used in
the next example.

Example 10.4
The basic syntax for hexplot is:

hexplot(X,nbin,flag)

The first two arguments must be provided. X is a matrix with n rows and two
columns, and nbin is the approximate number of bins for the dimension
with the larger range. We use the oronsay data from the previous examples
to illustrate the function.

X = [oronsay(:,8),oronsay(:,9)];
% Construct a hexagon scatterplot with
% 15 bins along the longer dimension.
hexplot(X,15);

This plot is shown in Figure 10.6 (top). Since the bins and resulting plot
depend on the number of bins, it is useful to construct other scatterplots with
different nbin values to see if other interesting density structure becomes
apparent. The optional input argument flag (this can be any value)
produces a scatterplot where the color of the hexagon symbols corresponds
to the probability density at that bin. The probability density is found in a
similar manner to a bivariate histogram with rectangular bins, except that we
now normalize using the area of the hexagonal bin. An example of this is
shown in Figure 10.6 (bottom), and it was produced with the following
MATLAB statements:

hexplot(X,15,1)
colormap(gray)

❑

10.3 Dynamic Graphics

We now present some methods for dynamic graphics. These allow us to
interact with our plots to uncover structure, remove outliers, locate groups,
etc. Specifically, we cover labeling observations of interest, deleting points,

Multivariate Visualization 419

FIGURE 10.6
The top plot is a scatterplot with hexagonal bins. This would be an alternative to the plot
shown in Figure 10.3. The bottom plot is for the same data, but the color of the symbols
encodes the value of the probability density at that bin. The density is obtained in a manner
similar to the bivariate histogram. (SEE COLOR INSERT.)

0 5 10 15 20 25 30 35 40 45

5

10

15

20

25

30

35

40

10 20 30 40

5

10

15

20

25

30

35

40

1

2

3

4

5

6

7

8
x 10

−3

420 Exploratory Data Analysis with MATLAB®, Third Edition

finding and displaying subsets of our data, linking and brushing. As with the
tour methods discussed in Chapter 4, it is difficult to convey these ideas via
static graphs on the pages of this book; so the reader is encouraged to try
these methods to understand the techniques.

10.3.1 Identification of Data

One can identify points in a plot in several ways. First, we can add labels to
certain data points of interest or we can highlight observations by using some
other plotting symbol or color [Becker, Cleveland, and Wilks, 1987].

We label points in our plot by adding some text that identifies the
observation. Showing all labels is often not possible because overplotting
occurs, so nothing can be distinguished. Thus, a way to selectively add labels
to our plot is a useful capability. One can look at accomplishing this in two
ways. The user can click on a point (or select several points) on the plot, and
the labels are added. Or, the user can select an observation (or several) from
a list, at which point the observations are labeled. We explore both of these
methods in the next example.

We might also have the need to interactively delete points because they
could be outliers, and they make it difficult to view other observations. For
example, we might have an extreme value that pushes all of the remaining
data into one small region of the plot, making it difficult to resolve the bulk
of the observations.

Instead of labeling individual cases or observations, we might have the
need to highlight the points that belong to some subset of our data. For
example, with the document clustering data, we could view the scatterplot of
each topic separately or highlight the points in one class with different color
and symbol type. These options allow direct comparison on the same scale,
but overlap and overplotting can hinder our understanding. We can also plot
these groups separately in panels, as we do in scatterplot matrices.

A dynamic method for visualizing subsets of the data that is reminiscent of
data tours is called alternagraphics [Tukey, 1973]. This type of tour cycles
through the subsets of the data (e.g., classes), showing each one separately in
its own scatterplot. The cycle pauses at each plot for some fixed time step, so
it is important that all plots be on a common scale for ease of comparison.
Alternatively, one could show all of the data throughout the cycle, and
highlight each subset at each step using different color and/or symbol. We
leave the implementation of this idea as an exercise to the reader.

Example 10.5
The Statistics Toolbox provides a function for labeling data on a plot called
gname. The user can invoke this function using an input argument
containing strings for the case names. This must be in the form of a string
matrix. An alternative syntax is to call gname without any input argument,

Multivariate Visualization 421

in which case observations are labeled with their case number. Once the
function is called, the figure window becomes active, and a set of crosshairs
appears. The user can click near the observation to be labeled, and the label
will appear. This continues until the return key is pressed. Instead of using
the crosshairs on individual points, one can use a bounding box (click on the
plot, hold the left button down and drag), and enclosed points are identified.
We use the animal data to show how to use gname. This data set contains the
brain weights and body weights of several animal types [Crile and Quiring,
1940].

load animal
% Plot BrainWeight against BodyWeight.
scatter(log(BodyWeight),log(BrainWeight))
xlabel('Log Body Weight (log grams)')
ylabel('Log Brain Weight (log grams)')

FIGURE 10.7
We constructed a scatterplot of the animal data. We then call the gname function using
the animal names (converted to a string matrix). When gname is invoked, the figure window
becomes active and a crosshair appears. The user clicks near a point and the observation is
labeled. Instead of using a crosshair, one can use a bounding box to label enclosed points.
See Example 10.5 for the MATLAB commands.

422 Exploratory Data Analysis with MATLAB®, Third Edition

% Change the axis to provide more room.
axis([0 20 -4 11])
% Need to convert animal names to string matrix.
% Input argument must be string matrix.
cases = char(AnimalName);
gname(cases)

The scatterplot with two labeled observations is shown in Figure 10.7. We
provide an alternative function to gname that allows one to perform many of
the identification operations discussed previously. The function is called
scattergui, and it requires two input arguments. The first is the
matrix to be plotted; the default symbol is blue dots. The user can right click
somewhere in the axes (but not on a point) to bring up the shortcut menu.
Several options are available, such as selecting subsets of data or cases for
identification and deleting points. See the help on this function for more
information on its use. The MATLAB code given below shows how to call
this function.

% Now let's look at scattergui using the BPM data.
load L1bpm
% Reduce the dimensionality using Isomap.
options.dims = 1:10; % These are for ISOMAP.
options.display = 0;
[Yiso, Riso, Eiso] = isomap(L1bpm, 'k', 7, options);
% Get the data out.
X = Yiso.coords{2}';
scattergui(X,classlab)
% Right click on the axes, and a list box comes up.
% Select one of the classes to highlight.

When the user clicks on the Select Class menu option, a list box comes up
with the various classes available for highlighting. We chose class 6, and the
result is shown in Figure 10.8, where we see the class 6 data displayed as red
x’s.
❑

While we illustrated and implemented these ideas using a 2–D scatterplot,
they carry over easily into other types of graphs, such as parallel coordinates
or Andrews’ curves (Section 10.6).

10.3.2 Linking

The idea behind linking is to make connections between multiple views of
our data with the goal of providing information about the data as a whole.
An early idea for linking observations was proposed by Diaconis and
Friedman [1980]. They proposed drawing a line connecting the same
observation in two scatterplots. Another idea is one we’ve seen before: use

n 2×

Multivariate Visualization 423

different colors and/or symbols for the same observations in all of the
scatterplot panels. Finally, we could manually select points by drawing a
polygon around the desired subset of points and subsequently highlighting
these in all scatterplots.

We have already seen one way of linking views via the grand tour or a
partial linking of scatterplot graphs in a scatterplot matrix. While we can
apply these ideas to linking observations in all open plots (scatterplots,
histograms, dendrograms, etc.), we restrict our attention to linking
observations in panels of a scatterplot matrix.

Example 10.6
In this example, we show how to do linking in a brute-force way (i.e., non-
interactive) using the plotmatrix function. We return to the oronsay data,
but we use different variables. This creates an initial scatterplot matrix, as
we’ve seen before.

load oronsay
X = [oronsay(:,7),oronsay(:,8),oronsay(:,9),];
% Get the initial plot.
% We need some of the handles to the subplots.
[H,AX,BigAx,P,PAx] = plotmatrix(X,'o');
Hdots = findobj('type','line');
set(Hdots,'markersize',3)

FIGURE 10.8
This shows the BPM data reduced to 2–D using ISOMAP and displayed using scattergui.
We selected class 6 for highlighting as red x’s via the shortcut menu, which is available by
right-clicking inside the axes. (SEE COLOR INSERT.)

−10 −8 −6 −4 −2 0 2 4 6
−5

0

5

10

424 Exploratory Data Analysis with MATLAB®, Third Edition

FIGURE 10.9
We have a default scatterplot matrix for three variables of the oronsay data (columns 7
through 9) in the top figure. We link observation 71 in all panels and display it using the
‘x’ symbol. This is shown in the bottom figure.

0 20 40 600 20 40 600 10 20 30

0

20

40

60

0

20

40

60

0

10

20

30

0 20 40 60

0

10

20

30

0

20

40

60

0 10 20 30

0

20

40

60

0 20 40 60

Multivariate Visualization 425

We called the plotmatrix function with output arguments that contain
some handle information that we can use next to display linked points with
different symbols. The scatterplot matrix is shown in Figure 10.9 (top). The
following code shows how to highlight observation 71 in all scatterplots.

% The matrix AX contains the handles to the axes.
% Loop through these and change observation 71 to a
% different marker.
% Get the point that will be linked.
linkpt = X(71,:);
% Remove it from the other matrix.
X(71,:) = [];
% Now change in all of the plots.
for i = 1:2
 for j = (i+1):3
 % Change that observation to 'x'.
 axes(AX(i,j))
 cla, axis manual
 line('xdata',linkpt(j),'ydata',linkpt(i),...
 'markersize',5,'marker','x')
 line('xdata',X(:,j),'ydata',X(:,i),...
 'markersize',3,'marker','o',...
 'linestyle','none')
 axes(AX(j,i))
 cla, axis manual
 line('xdata',linkpt(i),'ydata',linkpt(j),...
 'markersize',5,'marker','x')
 line('xdata',X(:,i),'ydata',X(:,j),...
 'markersize',3,'marker','o',...
 'linestyle','none')
 end
end

This plot is given in Figure 10.9 (bottom). This plot would be much easier to
do using the gplotmatrix function in the Statistics Toolbox, but we
thought showing it this way would help motivate the need for interactive
graphical techniques. The next example presents a function that allows one
to interactively highlight points in a scatterplot panel and link them to the
rest of the plots by plotting in a different color.
❑

10.3.3 Brushing

Brushing was first described by Becker and Cleveland [1987] in the context of
scatterplots, and it encompassed a set of dynamic graphical methods for
visualizing and understanding multivariate data. One of its main uses is to

426 Exploratory Data Analysis with MATLAB®, Third Edition

interactively link data between scatterplots of the data. A brush consists of a
square or rectangle created in one plot. The brush can be of default size and
shape (rectangle or square), or it can be constructed interactively (e.g.,
creating a bounding box with the mouse). The brush is under the control of
the user; the user can click on the brush and drag it within the plot.

Several brushing operations are described by Becker and Cleveland. These
include highlight, delete, and label. When the user drags the brush over
observations in the plot, then the operation is carried out on corresponding
points in all scatterplots. The outcome of the delete and label operations is
obvious. In the highlight mode, brushed observations are shown with a
different symbol and/or a different color.

Three brushing modes when using the highlighting operation are also
available. The first is the transient paint mode. In this case, only those points
that are in the current brush are highlighted. As observations move outside
the scope of the brush, they are no longer highlighted. The lasting mode is
the opposite; once points are brushed, they stay brushed. Finally, we can use
the undo mode to remove the highlighting.

Example 10.7
We wrote a function called brushscatter that implements the highlighting
operation and the three modes discussed above. The basic syntax is shown
below, where we use the oronsay data as in Example 10.3.

% Use the same oronsay columns as in Example 10.3
load oronsay
X = [oronsay(:,8),oronsay(:,9),oronsay(:,10)];
% Get the labels for these.
clabs = labcol(8:10);
% Call the function - the labels are optional.
brushscatter(X,clabs)

The scatterplot matrix is shown in Figure 10.10, where we see some of the
points have been brushed using the brush in the second panel of row one.
The brush is in the transient mode, so only the points inside the brush are
highlighted in all scatterplots. Note that the axes labels are not used on the
scatterplots to maximize the use of the display space. However, we provide
the range of the variables in the corners of the diagonal boxes. This is how
they were implemented in the early literature. Several options (e.g., three
modes, deleting the brush and resetting the plots to their original form) are
available by right-clicking on one of the diagonal plots – the ones with the
variable names. Brushes can be constructed in any of the scatterplot panels
by creating a bounding box in the usual manner. A default brush is not
implemented in this function.
❑

Multivariate Visualization 427

FIGURE 10.10
This is the scatterplot matrix with brushing and linking. This mode is transient, where only
points inside the brush are highlighted. Corresponding points are highlighted in all scatterplots.
(SEE COLOR INSERT.)

.1
8

−
.2

5
m

m

8
.9

4
0

.4

.1
2

5
−

.1
8

m
m

0
.3

4
0

.1

.0
9

−
.1

2
5

m
m

0
.2

9
.9

428 Exploratory Data Analysis with MATLAB®, Third Edition

The main MATLAB package provides tools for brushing and linking plots.
One can brush data that are displayed in 2–D and 3–D graphs, as well as
surface plots. Not all plots can be brushed; see the help documentation on
the brush function for a list.

One can enable brushing in several ways. One is by calling the brush
function. There is also a button on the Figure or the Variable Editor (see the
Desktop menu) toolbars. Finally, one could select Brush in the Figure
window Tools menu.

The brush option enables the user to interact with the plot, similar to
zooming or plot editing. However, unlike these modes, it allows the user to
manipulate the data by interactively selecting, removing, or replacing
individual data values. Once the data are brushed, one can perform the
following tasks from the Tools menu or short-cut menus (right-clicking any
brushed data point):

� Remove all brushed or unbrushed observations

� Replace the brushed data points with a constant value or NaNs

� Paste the brushed values to the command window

� Create a variable that contains the brushed values

Along with brushing, MATLAB includes the ability to link data in multiple
plots and the workspace. This is enabled by the function linkdata or a
button in the Figure window toolbar. An information bar appears that
identifies data sources for the graphs and includes an editing option. When
linking is enabled, the data displayed in the plot is connected with the
workspace and other graphs that use the data. Any subsequent changes to
the data made in the workspace or a graph (brushing, removing, or changing
observations) are reflected in any linked object that uses the data as a source.
This includes the Variable Editor, plots, and the workspace.

10.4 Coplots

As we have seen in earlier chapters, we sometimes need to understand how
a response variable depends on one or more predictor variables. We could
explore this by estimating a function that represents the relationship and
then visualizing it using lines, surfaces, or contours. We will not delve into
this option any further in this text. Instead, we present coplots for showing
slices of relationships for given values of another variable. We look only at
the three variable cases (one is conditional). The reader is referred to
Cleveland [1993] for an extension to coplots with two conditional variables.

The idea behind coplots is to arrange subplots of one dependent variable
against the independent variable. These subplots can be scatterplots, with or

Multivariate Visualization 429

without smooths, or some other graphic indicating the relationship between
them. Each subplot displays the relationship for a range of data over a given
interval of the second variable.

The subplots are called dependence panels, and they are arranged in a
matrix-like layout. The given panel is at the top, and this shows the interval
of values for each subplot. The usual arrangement of the coplots is left to
right and bottom to top.1 Note that the intervals of the given variable have
two main properties [Becker and Cleveland, 1991]. First, we want to have
approximately the same number of observations in each interval. Second, we
want the overlap to be the same in successive intervals. We require the
dependence intervals to be large enough so there are enough points for
effects to be seen and relationships to be estimated (via smoothing or some
other procedure). On the other hand, if the length of the interval is too big,
then we might get a false view of the relationship. Cleveland [1993] presents
an equal-count algorithm for selecting the intervals, which is used in the
coplot function illustrated in the next example.

Example 10.8
We turn to Cleveland [1993] and the Data Visualization Toolbox function2

called coplot. We updated the function to make it compatible with later
versions of MATLAB. These data contain three variables: abrasion loss,
tensile strength, and hardness. Abrasion loss is a response variable, and the
others are predictors, and we would like to understand how abrasion loss
depends on the factors. The following MATLAB code constructs the coplot in
Figure 10.11. Note that the conditioning variable must be in the first column
of the input matrix.

load abrasion
% Get the data into one matrix.
% We are conditioning on hardness.
X = [hardness(:) tensile(:) abrasion(:)];
labels = {'Hardness'; 'Tensile Strength';...
 'Abrasion Loss'};
% Set up the parameters for the coplot.
% These are the parameters for the intervals.
np = 6; % Number of given intervals.
overlap = 3/4; % Amount of interval overlap.
intervalParams = [np overlap];
% Parameters for loess curve:
alpha = 3/4;
lambda = 1;
robustFlag = 0;
fitParams = [alpha lambda robustFlag];

1 This is backwards from MATLAB’s usual way of numbering subplots: left to right and top to
bottom.
2 Also see the Data Visualization Toolbox M-file book_4_3.m.

430 Exploratory Data Analysis with MATLAB®, Third Edition

% Call the function.
coplot(X,labels,intervalParams,fitParams)

The coplot is shown in Figure 10.11. A loess smooth is fit to each of the
subsets of data, based on the conditioning variable. We see by the curves that
most of them have a similar general shape – decreasing left to right with a
possible slight increase at the end. However, the loess curve in the top row,
third panel shows a different pattern – a slight increase at first, followed by a
downward trend. The reader is asked to explore abrasion loss against
hardness, with the tensile strength serving as the conditioning variable. We
note that other plots could be used in the panels, such as scatterplots alone,
histograms, line plots, etc., but these are not implemented at this time.
❑

FIGURE 10.11
This is a coplot of abrasion loss against tensile strength, with the hardness as the given variable.
The loess curves follow a similar pattern, except for the one in the upper row, third column.

45 50 55 60 65 70 75 80 85 90

1

2

3

4

5

6

Hardness

0

100

200

300

A
b

ra
si

o
n

 L
o

ss

100 150 200 250
100

200

300

400

100 150 200 250

Tensile Strength

100 150 200 250

Multivariate Visualization 431

10.5 Dot Charts

A dot chart is a visualization method that is somewhat different than others
presented in this chapter in that it is typically used with smaller data sets that
have labels. Further, it is not used for multivariate data in the sense that we
have been looking at so far. However, we think it is a useful way to
graphically summarize interesting statistics describing our data, and thus, it
is a part of EDA. We first describe the basic dot chart and several variations,
such as using scale breaks, error bars, and adding labels for the sample
cumulative distribution function. This is followed by a multiway dot chart,
where individual dot charts are laid out in panels according to some
categorical variable.

10.5.1 Basic Dot Chart

A data analyst could use a dot chart as a replacement for bar charts
[Cleveland, 1984]. They are sometimes called dot plots [Cleveland, 1993], but
should not be confused with the other type of dot plot sometimes seen in
introductory statistics books.3 An example of a dot chart is shown in Figure
10.12. The labels are shown along the left vertical axis, and the value of the
datum is given by the placement of a dot (or circle) along the horizontal axis.
Dotted lines connecting the dots with the labels help the viewer connect the
observation with the label. If there are just a few observations, then the lines
can be omitted.

If the data are ordered, then the dots are a visual summary of the sample
cumulative distribution function. Cleveland [1984] suggests that this be
made explicit by specifying the sample cumulative distribution function on
the right vertical axis of the graph. Thus, we can use the following label at the
i-th order statistic:

.

Another useful addition to the dot chart is to convey a sense of the variation
via error bars. This is something that is easily shown on dot charts, but is
difficult to show on bar charts. As described earlier in dynamic graphics, we
might have an outlying observation(s) that makes the remaining values
difficult to understand. Before, we suggested just deleting the point, but in
some cases, we need to keep all points. So, we can use a break in the scale.

3 This type of dot plot has a horizontal line covering the range of the data. A dot is placed above
each observation, in a vertical stack. This dot plot is reminiscent of a histogram or a bar chart in
its final appearance.

i 0.5–()
n

432 Exploratory Data Analysis with MATLAB®, Third Edition

Scale breaks are sometimes highlighted via hash marks along the axis, but
these are not very noticeable and false impressions of the data can result.
Cleveland recommends a full scale break, which is illustrated in the exercises.

Example 10.9
We provide a function for constructing dot charts. In this example, we show
how to use some of the options in the basic dotchart function. First, we load
the oronsay data and find the means and the standard deviations. We will
plot the means as dots in the dot chart.

load oronsay
% Find the means and standard deviations of
% each column.
mus = mean(oronsay);
stds = std(oronsay);
% Construct the dotchart using lines to the dots.
dotchart(mus,labcol)
% Change the axes limits.
axis([-1 25 0 13])

The dot chart is shown in Figure 10.12 (top), where we see the dotted lines
extending only to the solid dot representing the mean for that variable. We
can add error bars using the following code:

% Now try error bar option.
dotchart(mus,labcol,'e',stds)

The resulting dot chart is shown in Figure 10.12 (bottom), where we have the
error bars extending from +/– one standard deviation either side of the
mean. Note that this provides an immediate visual impression of some
summary statistics for the variables.
❑

10.5.2 Multiway Dot Chart

With multiway data, we have observations that have more than one
categorical variable, and for which we have at least one quantitative variable
that we would like to explore. The representation of the data can be laid out
into panels, where each panel contains a dot chart and each row of the dot
chart represents a level. To illustrate this visualization technique, we use an
example from Cleveland [1993].

A census of farm animals in 26 countries was conducted in 1987 to study
air pollution arising from the feces and urine of livestock [Buijsman, Maas,
and Asman, 1987]. These countries include those in Europe and the former
Soviet Union. A log (base 10) transformation was applied to the data to
improve the resolution on the graph.

Multivariate Visualization 433

FIGURE 10.12
A regular dot chart is shown in the top panel. The dots represented the average weight for
each of the sieve sizes. The dot chart at the bottom shows the same information with error
bars added. These bars extend from +/– 1 standard deviation either side of the mean.

0 5 10 15 20 25

>2.0mm

1.4−2.0mm

1.0−1.4mm

.71−1.0mm

.50−.71mm

355−.50mm

25−.355mm

.18−.25mm

125−.18mm

09−.125mm

063−.09mm

<.063mm

−5 0 5 10 15 20 25 30 35

>2.0mm

1.4−2.0mm

1.0−1.4mm

.71−1.0mm

.50−.71mm

355−.50mm

25−.355mm

.18−.25mm

125−.18mm

09−.125mm

063−.09mm

<.063mm

434 Exploratory Data Analysis with MATLAB®, Third Edition

FIGURE 10.13
This is the multiway dot charts for livestock counts for various animals (shown in the panels)
and countries (rows of the dot chart). Note that the dotted lines now indicate the range of the
data rather than connecting values to the label, as before.

4
5

6
7

8
9

A
lb

a
n
ia

N
o
rw

a
y

G
re

e
ce

F
in

la
n
d

S
w

e
d
e
n

S
w

itz
e
rl
a
n
d

P
o
rt

u
g
a
l

A
u
st

ri
a

D
e
n
m

a
rk

H
u
n
g
a
ry

B
e
lg

iu
m

Ir
e
la

n
d

B
u
lg

a
ri
a

C
ze

ch
o
sl

o
va

ki
a

N
e
th

e
rl
a
n
d
s

E
a
st

 G
e
rm

a
n
y

Y
u
g
o
sl

a
vi

a
It
a
ly

S
p
a
in

P
o
la

n
d

R
o
m

a
n
ia

U
n
ite

d
 K

in
g
d
o
m

F
ra

n
ce

W
e
st

 G
e
rm

a
n
y

T
u
rk

e
y

R
u
ss

ia
 e

t
a
l.

H
o
rs

e
s

4
5

6
7

8
9

S
h
e
e
p

4
5

6
7

8
9

C
a

tt
le

A
lb

a
n
ia

N
o
rw

a
y

G
re

e
ce

F
in

la
n
d

S
w

e
d
e
n

S
w

itz
e
rl
a
n
d

P
o
rt

u
g
a
l

A
u
st

ri
a

D
e
n
m

a
rk

H
u
n
g
a
ry

B
e
lg

iu
m

Ir
e
la

n
d

B
u
lg

a
ri
a

C
ze

ch
o
sl

o
va

ki
a

N
e
th

e
rl
a
n
d
s

E
a
st

 G
e
rm

a
n
y

Y
u
g
o
sl

a
vi

a
It
a
ly

S
p
a
in

P
o
la

n
d

R
o
m

a
n
ia

U
n
ite

d
 K

in
g
d
o
m

F
ra

n
ce

W
e
st

 G
e
rm

a
n
y

T
u
rk

e
y

R
u
ss

ia
 e

t
a
l.

P
ig

s
P

o
u
ltr

y

L
o
g

1
0
 L

iv
e
st

o
ck

 C
o
u
n
t

Multivariate Visualization 435

The multiway dot chart is shown in Figure 10.13, where each of the panels
corresponds to livestock type. The quantitative variable associated with these
is the number of livestock, for each of the different levels (categorical variable
for country). We could also plot these using the countries for each panel and
animal type for the levels. This will be explored in the exercises.

Note that the order of the countries (or levels) in Figure 10.13 is not in
alphabetical order. It is sometimes more informative to order the data based
on some summary statistic. In this case, the median of the five counts was
used, and they increase from bottom to top. That is, Albania has the smallest
median and Russia, et al. has the largest median. We can also order the panels
in a similar manner. The median for horses is the smallest over the five
animal types, and the median for poultry is the largest. From these charts, we
can obtain an idea of the differences of these values in the various countries.
For example, Turkey has very few pigs; poultry seems to be the more
numerous type across most of the countries; and the number of cattle seems
to be fairly constant among the levels. On the other hand, there is more
variability in the counts of horses and sheep, with horses being the least
common animal type.

Example 10.10
We provide a function in the toolbox to construct a multiway dot chart called
multiwayplot. We apply it below to the oronsay data, where we use the
beach/dune/midden classification for the categorical variable. Thus, we will
have three panels showing the average particle weight for each classification
and sieve size.

load oronsay
% Get the means according to each midden class.
% The beachdune variable contains class
% labels for midden (0), beach (1), and
% dune (2). Get the means for each group.
ind = find(beachdune==0);
middenmus = mean(oronsay(ind,:));
ind = find(beachdune==1);
beachmus = mean(oronsay(ind,:));
ind = find(beachdune==2);
dunemus = mean(oronsay(ind,:));
X = [middenmus(:), beachmus(:), dunemus(:)];
% Get the labels for the groups and axes.
bdlabs = {'Midden'; 'Beach'; 'Dune'};
labx = 'Average Particle Weight';
% Get the location information for the plots.
sublocs{1} = [1,3];
sublocs{2} = [1 2 3];
multiwayplot(X,labcol,labx,bdlabs,sublocs)

436 Exploratory Data Analysis with MATLAB®, Third Edition

The plot given in Figure 10.14 shows that the larger sieve sizes (and the two
smallest) have approximately the same average weight, while the average
weight in the two sieves from 0.125mm to 0.25mm are different among the
classes. Note that the horizontal axes have the same limits for easier
comparison.
❑

10.6 Plotting Points as Curves

In this section, we present two methods for visualizing high-dimensional
data: parallel coordinate plots and Andrews’ curves. These methods are not
without their problems, as we discuss shortly, but they are an efficient way
of visually representing multi-dimensional relationships.

FIGURE 10.14
This is the multiway plot described in Example 10.10. Here we have the dot charts for the
average particle weight, given that they come from the beach, dune, or midden.

0 10 20

>2.0mm

1.4−2.0mm

1.0−1.4mm

.71−1.0mm

.50−.71mm

.355−.50mm

.25−.355mm

.18−.25mm

.125−.18mm

.09−.125mm

.063−.09mm

<.063mm

Midden

0 10 20

Beach

0 10 20

Dune

Average Particle Weight

Multivariate Visualization 437

10.6.1 Parallel Coordinate Plots

In the Cartesian coordinate system, the axes are orthogonal, so the most we
can view is three dimensions projected onto a computer screen or paper. If
instead we draw the axes parallel to each other, then we can view many axes
on the same 2–D display. This technique was developed by Wegman [1986]
as a way of viewing and analyzing multi-dimensional data and was
introduced by Inselberg [1985] in the context of computational geometry and
computer vision.

A parallel coordinate plot for p-dimensional data is constructed by
drawing p lines parallel to each other. We draw p copies of the real line
representing the coordinate axes for . The lines are the same
distance apart and are perpendicular to the Cartesian y axis. Additionally,
they all have the same positive orientation as the Cartesian x axis, as
illustrated in Figure 10.15. Some versions of parallel coordinates draw the
parallel axes perpendicular to the Cartesian x axis.

Let’s look at the following 4–D point:

This is shown in Figure 10.15, where we see that the point is a polygonal line
with vertices at (ci , i – 1), i = 1,..., p in Cartesian coordinates on the xi parallel
axis. Thus, a point in Cartesian coordinates is represented in parallel
coordinates as a series of connected line segments.

We can plot observations in parallel coordinates with colors designating
what class they belong to or use some other line style to indicate group
membership. The parallel coordinate display can also be used to determine
the following: a) class separation in a given coordinate, b) correlation
between pairs of variables (explored in the exercises), and c) clustering or
groups. We could also include a categorical variable indicating the class or
group label as one of the parallel axes. This helps identify groups, when color
is used for each category and n is large.

Example 10.11
We are going to use a subset of the BPM data from Example 10.5 to show how
to use the parallel coordinate function csparallel. We plot topics 6 and 9
in parallel coordinates, using different colors and linestyles.

load example104
% This loads up the reduced BPM features using ISOMAP.
% Use the 3-D data.

x1 x2 … xp, , ,

c

1
3
7
2

=

438 Exploratory Data Analysis with MATLAB®, Third Edition

X = Yiso.coords{3}';
% Find the observations for the two topics: 6 and 9.
ind6 = find(classlab == 6);
ind9 = find(classlab == 9);
% Put the data into one matrix.
x = [X(ind6,:);X(ind9,:)];
% Use the csparallel function from the Computational
% Statistics Toolbox.4

% Construct the plot.
csparallel(x)

The parallel coordinates plot is illustrated in Figure 10.16. Several features
should be noted regarding this plot. First, there is evidence of two groups in
dimensions one and three. These two variables should be good features to
use in classification and clustering. Second, the topics seem to overlap in
dimension two, so this is not such a useful feature. Finally, although we did
not use different colors or line styles to make this more apparent, it appears
that observations within a topic have similar line shapes, and they are
different from those in the other topic. Example 10.15 should make this point
clearer.
❑

FIGURE 10.15
This shows the parallel coordinate representation for the 4–D point cT = . The
reader should note that the parallel axes in subsequent plots will have the parallel axes
ordered from top to bottom: .

4 This is available for download; see Appendix B for information.

1 2 3 4 5 6 7

0

1 3 7 2, , ,()

x1 x2 … xp, , ,

Multivariate Visualization 439

In parallel coordinate plots, the order of the variables makes a difference.
Adjacent parallel axes provide some insights about the relationship between
consecutive variables. To see other pairwise relationships, we must permute
the order of the parallel axes. Wegman [1990] provides a systematic way of
finding all permutations such that all adjacencies in the parallel coordinate
display will be visited. These tours will be covered at the end of the chapter.

10.6.2 Andrews’ Curves

Andrews’ curves [Andrews, 1972] were developed as a method for
visualizing multi-dimensional data by mapping each observation onto a
function. This is similar to star plots in that each observation or sample point
is represented by a glyph, except that in this case the glyph is a curve. The
Andrews’ function is defined as

, (10.1)

where the range of t is given by . We see by Equation 10.1 that each
observation is projected onto a set of orthogonal basis functions represented
by sines and cosines, and that each sample point is now represented by a
curve. Because of this definition, the Andrews’ functions produce infinitely

FIGURE 10.16
In this figure we have the parallel coordinates plot for the BPM data in Example 10.11. There
is evidence for two groups in dimensions one and three. We see considerable overlap in
dimension two.

x3

x2

x1

fx t() x1 2⁄ x2 tsin x3 tcos x4 2tsin x5 2tcos …+ + + + +=

π– t π≤ ≤

440 Exploratory Data Analysis with MATLAB®, Third Edition

many projections onto the basis vectors over the range of t. We now illustrate
the MATLAB code to obtain Andrews’ curves.

Example 10.12
We use a small data set to show how to get Andrews’ curves. The data we
have are the following observations:

Using Equation 10.1, we construct three curves, one corresponding to each
data point. The Andrews’ curves for the data are:

We can plot these three functions in MATLAB using the following
commands.

% Get the domain.
t = linspace(-pi,pi);
% Evaluate function values for each observation.
f1 = 2/sqrt(2)+6*sin(t)+4*cos(t);
f2 = 5/sqrt(2)+7*sin(t)+3*cos(t);
f3 = 1/sqrt(2)+8*sin(t)+9*cos(t);
plot(t,f1,'-.',t,f2,':',t,f3,'--')
legend('F1','F2','F3')
xlabel('t')

The Andrews’ curves for these data are shown in Figure 10.17.
❑

It has been shown [Andrews, 1972; Embrechts and Herzberg, 1991] that
because of the mathematical properties of the trigonometric functions, the
Andrews’ functions preserve means, distances (up to a constant), and
variances. One consequence of this is that observations that are close together
should produce Andrews’ curves that are also closer together. Thus, one use
of these curves is to look for clustering of the data points.

Embrechts and Herzberg [1991] discuss how other projections could be
constructed and used with Andrews’ curves. One possibility is to set one of
the variables to zero and re-plot the curve. If the resulting plots remain nearly
the same, then that variable has low discriminating power. If the curves are

x1 2 6 4, ,()=

x2 5 7 3, ,()=

x3 1 8 9, ,().=

fx1
t() 2 2÷ 6 tsin 4 tcos+ +=

fx2
t() 5 2÷ 7 tsin 3 tcos+ +=

fx3
t() 1 2÷ 8 tsin 9 t.cos+ +=

Multivariate Visualization 441

greatly affected by setting the variable to zero, then it carries a lot of
information. Of course, other types of projections (such as nonlinear
dimensionality reduction, PCA, SVD, etc.) can be constructed and the results
viewed using Andrews’ curves.

Andrews’ curves are dependent on the order of the variables. Lower
frequency terms exert more influence on the shape of the curves, so re-
ordering the variables and viewing the resulting plot might provide insights
about the data. By lower frequency terms, we mean those that are first in the
sum given in Equation 10.1. Embrechts and Herzberg [1991] also suggest that
the data be rescaled so they are centered at the origin and have covariance
equal to the identity matrix. Andrews’ curves can be extended by using
orthogonal bases other than sines and cosines. For example, Embrechts and
Herzberg illustrate Andrews’ curves using Legendre polynomials and
Chebychev polynomials.

Example 10.13
We now construct the Andrews’ curves for the data from Example 10.11
using a function called csandrews. The following code yields the plot in
Figure 10.18. Not surprisingly, we see features similar to what we saw in
parallel coordinates. The curves for each group have similar shapes,
although topic 6 is less coherent. Also, the curves for topic 6 are quite a bit
different than those for topic 9. One of the disadvantages of the Andrews’

FIGURE 10.17
Andrews’ curves for the three data points in Example 10.12.

−4 −3 −2 −1 0 1 2 3 4
−15

−10

−5

0

5

10

15

t

F1
F2
F3

442 Exploratory Data Analysis with MATLAB®, Third Edition

curves over the parallel coordinates is that we do not see information about
the separate variables as we do in parallel coordinates.

load example104
% This loads up the reduced BPM features using ISOMAP.
% Use the 3-D data.
X = Yiso.coords{3}';
% Find the observations for the two topics: 6 and 9.
ind6 = find(classlab == 6);
ind9 = find(classlab == 9);
% This function is from the Comp Statistics Toolbox.
% Construct the plot for topic 6.
csandrews(X(ind6,:),'-','r')
hold on
% Construct the plot for topic 9.
csandrews(X(ind9,:),':','g')

❑

FIGURE 10.18
This is the Andrews’ curves version of Figure 10.16. Similar curve shapes for each topic and
different overall shapes indicate two groups in the data. The solid line is topic 6, and the dashed
line is topic 9.

−4 −3 −2 −1 0 1 2 3 4
−12

−10

−8

−6

−4

−2

0

2

4

6

8
Andrews Curves

Theta

A
n
d
re

w
s

F
u
n
ct

io
n

Multivariate Visualization 443

The Statistics Toolbox has functions for constructing parallel coordinate
plots and Andrews’ curves plots. The parallelcoords function constructs
horizontal parallel coordinate plots. Options include grouping (plotting lines
using different colors based on class membership), standardizing (PCA or z-
score), and plotting only the median and/or other quantiles. The function to
construct Andrews’ curves is called andrewsplot. It has the same options
found in parallelcoords.

10.6.3 Andrews’ Images

When we have very large data sets, then using Andrews’ curves to visualize
our data is not very useful because of overplotting. An alternative way to
visualize Andrews’ curves is to plot them as an image. This approach
combines the concept of the data image and Andrews’ curves.

We first find the values of the Andrews’ function (Equation 10.1) for each
observation over the domain . These values then become a row of
a matrix A, so that each row of A corresponds to one observation that has
been transformed using the Andrews’ function. Let’s say that we divide our
domain so we have twenty values of t from to . Then the matrix A is a
matrix with dimension .

The next step is to visualize the matrix A as a data image. This means that
the height of the curves (or the values of the entries in A) is indicated by their
color. As with the data image, it sometimes helps to re-order the rows of the
matrix A according to some clustering. We will explore this in the next
example.

Example 10.14
We are going to use the iris data to illustrate the construction of Andrews’
images. As usual, we first load the data and put it into a data matrix.

load iris
data = [setosa;versicolor;virginica];

Recall that in unsupervised learning or clustering applications, we do not
know whether the observations can be grouped in some sensible way or how
many groups might be there. We would like to use a visualization method
like Andrews’ images to help us answer these questions visually. The current
ordering of the rows in the data matrix includes the group information, so
we are going to re-order the rows of the data matrix.

% Let's re-order the rows of the data
% matrix to make it more interesting.
data = data(randperm(150),:);

The csandrews function we used in a previous example plots the Andrews’
curves and does not return the values of the curve for the observations. So,

π t π≤ ≤–

π– π
n 20×

444 Exploratory Data Analysis with MATLAB®, Third Edition

we wrote a function called andrewsvals that returns the matrix A. We call
this function as the next step in our procedure.

% Now get the values of the curves as
% rows of a matrix A.
[A,t] = andrewsvals(data);

We now create the Andrews’ image and show it in the top of Figure 10.19.

% Create the Andrews' image.
imagesc(A)

As expected, we do not see a lot of structure in the Andrews’ image because
we re-order the rows. However, we can now see individual curves instead of
overplotting. As we did with the data images, we will impose an ordering on
the rows of the Andrews’ image that is based on clustering. This can be used
to help us visualize the output of the clustering method. In the example
below, we use agglomerative clustering, but any clustering method can also
be used to order the observations.

% Cluster the raw data and then order the rows
% of A using the dendrogram leaves.
ydist = pdist(data);
Z = linkage(ydist,'complete');
subplot(1,2,1)
[H, T, perm] = dendrogram(Z,0,'orientation','left');
axis off
subplot(1,2,2)
imagesc(flipud(y(perm,:)));

Our clusters are now readily visible in the Andrews’ image shown in the
bottom panel of Figure 10.19, and the clusters obtained from agglomerative
clustering are seen in the values of the Andrews functions.
❑

10.6.4 More Plot Matrices

So far, we have discussed the use of Andrews’ functions and parallel
coordinate plots for locating groups and understanding structure in
multivariate data. When we know the true groups or categories in our data
set, then we can use different line styles and color to visually separate them
on the plots. However, we might have a large sample size and/or many
groups, making it difficult to explore the data set.

We borrow from the scatterplot matrix and panel graphs (e.g., multiway
dot charts, coplots) concepts and apply these to Andrews’ curves and parallel
coordinate plots. We simply plot each group separately in its own subplot,
using either Andrews’ curves or parallel coordinates. Common scales are
used for all plots to allow direct comparison of the groups.

Multivariate Visualization 445

.

FIGURE 10.19
The top panel shows an Andrews’ image of the iris data, where the rows have been
randomly re-ordered. Each transformed observation can be seen, but there is not a lot of
structure visible The bottom panel displays the Andrews’ image after the rows have been
re-ordered based on the leaves of the dendrogram shown to the left. We also added a colorbar
on the right that indicates the true class membership of the observations. (SEE COLOR

INSERT.)

t

O
b
se

rv
a
tio

n
 N

u
m

b
e
r

10 20 30 40 50 60

20

40

60

80

100

120

140

Andrews’ Image

20

40

60

80

100

120

140

Class IDs

446 Exploratory Data Analysis with MATLAB®, Third Edition

Example 10.15
Continuing with the same BPM data, we now add two more topics (17 and
18) and plot each topic separately in its own subplot.

load example104
% This loads up the reduced BPM features using ISOMAP.
% Use the 3-D data.
X = Yiso.coords{3}';
% Find the observations for the topics.
inds = ismember(classlab,[6 9 17 18]);
% This function comes with the text:
plotmatrixpara(X(inds,:),classlab(inds),[],...
 'BPMs ISOMAP(L_1)')

See Figure 10.20 for this plot. Using these three features, we have some
confidence that we would be able to discriminate between the three topics: 6,
9, and 17. Each has differently shaped line segments, and the line segments
are similar within each group. However, topic 18 is a different story. The
lines in this topic indicate that we would have some trouble distinguishing
topics 17 and 18. Also, the topic 18 lines are not coherent; they seem to have

FIGURE 10.20
This shows the plot matrix of parallel coordinate plots for the BPM data in Example 10.15.

Class 6 Class 9

Class 17 Class 18

BPMs ISOMAP(L
1
)

Multivariate Visualization 447

different shapes within the topic. We can do something similar with
Andrews’ curves. The code for this is given below, and the plot is given in
Figure 10.21. Analysis of this plot is left as an exercise to the reader.

plotmatrixandr(X(inds,:),classlab(inds))

The functions plotmatrixandr and plotmatrixpara are provided with
the EDA Toolbox.
❑

10.7 Data Tours Revisited

In Chapter 4, we discussed the basic ideas behind tours and motion graphics,
but we only used 2–D scatterplots for displaying the data. Some of these
ideas are easily extended to higher dimensional representations of the data.
In this section, we discuss how the grand tour can be used with scatterplot

FIGURE 10.21
Here we have the plot matrix with Andrews’ curves for the data in Example 10.15.

−2 0 2
−15

−10

−5

0

5

10
Class 6

−2 0 2
−15

−10

−5

0

5

10
Class 9

−2 0 2
−15

−10

−5

0

5

10
Class 17

−2 0 2
−15

−10

−5

0

5

10
Class 18

448 Exploratory Data Analysis with MATLAB®, Third Edition

matrices and parallel coordinates, as well as a different type of animated
graphics called permutation tours.

10.7.1 Grand Tour

Wegman [1991] and Wegman and Solka [2002] describe the grand tour in k
dimensions, where . The basic procedure outlined in Chapter 4 remains
the same, but we replace the manifold of two-planes with a manifold of k-
planes. Thus, we would use

to project the data, where the columns of contain the first k basis
vectors.

The other change we must make is in how we display the data to the user;
2–D scatterplots can no longer be used. Now that we have some ways to
visualize multivariate data, we can combine these with the grand tour. For
example, we could use a 3–D scatterplot if k = 3. For this or higher values of
k, we might use the scatterplot matrix display, parallel coordinates, or
Andrews’ curves. We illustrate this in the next example.

Example 10.16
To go on a grand tour in k dimensions, use the function called kdimtour.
This implements the torus grand tour, as described in Chapter 4, but now the
display can either be parallel coordinates or Andrews’ curves. The user can
specify the maximum number of iterations, the type of display, and the
number of dimensions . We tour the topic 6 data from the previous
examples and show the tour after a few iterations in Figure 10.22 (top).

% We show the tour at several iterations.
% Parallel coordinates will be used here.
% Andrews' curves are left as an exercise.
% We see that this shows some grouping of
% the lines - all seem to follow the same 'structure'.
ind6 = find(classlab==6);
x = X(ind6,:);
% Default tour is parallel coordinates.
% We have 10 iterations and k = 3.
kdimtour(x,10,3)

If the lines stay as a cohesive group for most of the tour, then that is an
indication of true groups in the data, because the grouping is evident under
various rotations/projections. Let’s see what happens if we go further along
in the tour.

% Now at the 90th iteration.

k p≤

AK QKE1 … k, ,=

E1 … k, ,

k p≤

Multivariate Visualization 449

% We see that the grouping falls apart.
kdimtour(x,90,3)

The lines stay together until the end of this tour (90 iterations), at which time,
they become rather incoherent. This plot is given in Figure 10.22 (bottom).
❑

10.7.2 Permutation Tour

One of the criticisms of the parallel coordinate plots and Andrews’ curves is
the dependency on the order of the variables. In the case of parallel
coordinate displays, the position of the axes is important in that the
relationships between pairwise axes are readily visible. In other words, the
relationship between variables on nonadjacent axes is difficult to understand
and compare. With Andrews’ curves, the variables that are placed first carry
more weight in the resulting curve. Thus, it would be useful to have a type of
tour we call a permutation tour, where we look at replotting the points based
on reordering the variables or axes.

A permutation tour can be one of two types: either a full tour of all possible
permutations or a partial one. In the first case, we have p! permutations or
possible steps in our tour, but this yields many duplicate adjacencies in the
case of parallel coordinates. We describe a much shorter permutation tour
first described in Wegman [1990] and later in Wegman and Solka [2002]. This
could also be used with Andrews’ curves, but a full permutation tour might
be more useful in this case, since knowing what variables (or axes) are
adjacent is not an issue.

To illustrate this procedure, we first draw a graph, where each vertex
corresponds to an axis. We place edges between the vertices to indicate that
the two axes (vertices) are adjacent. We use the zig-zag pattern shown in
Figure 10.23 (for p = 6) to obtain the smallest set of orderings such that every
possible adjacency is present.

We can obtain these sequences in the following manner. We start with the
sequence

, (10.2)

where we have p1 = 1. In this use of the mod function, it is understood that
0 mod p = p mod p = p. To get all of the zig-zag patterns, we apply the
following to the sequence given above

, (10.3)

where is the greatest integer function. To get started, we let .

pk 1+ pk 1–()k 1+
k+() mod p= k 1 2 … p, 1–, ,=

pk
j 1+()

pk
j 1+() mod p= j 1 2 … p 1–

2------------, , ,=

• pk
1

pk=

450 Exploratory Data Analysis with MATLAB®, Third Edition

FIGURE 10.22

The top parallel coordinates plot is the 10-th iteration in our grand tour. The bottom plot is
later on in the tour.

x3

x2

x1

x3

x2

x1

Multivariate Visualization 451

For the case of p even, the definitions given in Equations 10.2 and 10.3 yield
an extra sequence, so some redundant adjacencies are obtained. In the case of
p odd, the extra sequence is needed to generate all adjacencies, but again
some redundant adjacencies will occur. To illustrate these ideas, we show in
the next example how the sequences in Figure 10.23 are obtained using this
formulation.

Example 10.17
We start by getting the first sequence given in Equation 10.2. We must alter
the results from the MATLAB function mod to include the correct result for
the case of 0 mod p and p mod p.

p = 6;
N = ceil((p-1)/2);
% Get the first sequence.
P(1) = 1;
for k = 1:(p-1)
 tmp(k) = (P(k) + (-1)^(k+1)*k);
 P(k+1) = mod(tmp(k),p);
end
% To match our definition of 'mod':
P(find(P==0)) = p;

We find the rest of the permutations by applying Equation 10.3 to the
previous sequence.

FIGURE 10.23
This figure shows the minimal number of permutations needed to obtain all the adjacencies
for p = 6.

1

2

3
4

5

6

1 2 6 3 5 4

1

2

34

5

6

2 3 1 4 6 5

3 4 2 5 1 6

1

2

34

5

6

452 Exploratory Data Analysis with MATLAB®, Third Edition

for j = 1:N;
 P(j+1,:) = mod(P(j,:)+1,p);
 ind = find(P(j+1,:)==0);
 P(j+1,ind) = p;
end

We now apply this idea to parallel coordinates and Andrews’ curves. Use the
function we wrote called permtourparallel for a parallel coordinate
permutation tour, based on Wegman’s minimum permutation scheme. The
syntax is

permtourparallel(X)

Note that this is very different from the grand tour in Example 10.16. Here we
are just swapping adjacent axes; we are not rotating the data as in the grand
tour. The plot freezes at each iteration of the tour; the user must hit any key
to continue. This allows one to examine the plot for structure before moving
on. We also include a function for Andrews’ curves permutation tours. The
user can either do Wegman’s minimal tour or the full permutation tour (i.e.,
all possible permutations). The syntax for this function is

permtourandrews(X)

for a full permutation tour. To run the Wegman minimal permutation tour,
use

permtourandrews(X,flag)

The input argument flag can be anything. As stated before, the full tour
with Andrews’ curves is more informative, because we are not concerned
about adjacencies, as we are with parallel coordinates.
❑

10.8 Biplots

The biplot was originally developed by Gabriel [1971] as a graphic display of
matrices with rank two and showed how it could be applied to convey the
results of principal component analysis. Others have gone on to discuss how
biplots are an enhanced version of scatterplots, since they superimpose a
representation of the variables as vectors in the display, allowing the analyst
to study the relationships between the data set and the original variables. Just
like scatterplots, they can be used to search for patterns and interesting
structure.

The biplot can be used with most of the transformation or dimensionality
reduction methods that were described in Chapter 2. This includes factor
analysis and nonnegative matrix factorization, in addition to principal

Multivariate Visualization 453

component analysis (PCA). We will present the basic 2–D biplot as applied
to PCA in the following discussion. However, it should be noted that the
ideas generalize to 3–D and more [Young, Valero-Mora, and Friendly, 2006].

In the case of PCA, the two axes of a biplot usually represent the principal
components that correspond to the largest eigenvalues. The principal
component scores (i.e., the transformed observations) are displayed as
points, and the variables of the original data are shown in the plot as vectors.
In this way, we are seeing two views of the data – the observations as points
and the variables as vectors.

The points in a biplot are the same as a scatterplot, so they can be
interpreted in a similar way. Points that are close together in a biplot have
similar values with respect to the axes in the display.

Each vector is usually aligned in the direction that is most strongly related
to that variable, and the length of the vector conveys the magnitude of that
relationship. Long vectors contribute more to the interpretation or meaning
(with respect to the original variables) of the displayed component axes.
Additionally, vectors that point in the same direction have similar responses
or meaning, while vectors pointing in the opposite direction indicate a
negative relationship between the two variables [Young, Valero-Mora, and
Friendly, 2006].

The example given below uses the biplot function that is available in the
Statistics Toolbox to illustrate the ideas we have just discussed. We apply it
to the results of nonnegative matrix factorization to show that it can be used
in different types of transformations.

Example 10.18
We use the oronsay data set in this example, where we will reduce the data
to 2–D using nonnegative matrix factorization. This makes sense with these
data, since all elements of the data matrix are nonnegative.

load oronsay
% Do nonnegative matrix factorization to
% reduce to 2-D
[W,H] = nnmf(oronsay,2);

Recall from Chapters 2 and 5 that the W matrix represents the transformed
variables in 2–D (in this example), and the rows of the H matrix contain the
coefficients of the 12 original variables in the oronsay data set. Next, we use
the W matrix to create a scatterplot, where the marker styles and colors
indicate the sampling site.

% Construct a scatterplot with characters given
% by marker style. This uses a function gscatter
% that is in the Statistics Toolbox.
gscatter(W(:,1),W(:,2),midden,'rgb','xo*')
hold on

454 Exploratory Data Analysis with MATLAB®, Third Edition

The first argument to the biplot function is the coefficient matrix that
comes from principal component analysis (princomp, pcacov), factor
analysis (factoran), or nonnegative matrix factorization (nnmf).

biplot(max(W(:))*H','VarLabels',labcol)
hold off
axis([0 45 0 40])

We can see in this plot that one of the long vectors points through the cluster
of observations that correspond to class 1 (Cnoc Coig). This indicates that this
variable (0.125 - 0.18 mm) is important for that cluster of points.
❑

We could have used the transpose of H alone for the biplot shown in the
previous example, but the vectors need to be scaled to have the same
magnitude as the transformed data in W otherwise the vectors would be too
small. Note that the biplot function will also construct 3–D plots, if the
coefficient matrix contains three columns.

The MATLAB biplot function uses a sign convention that forces the
element with the largest magnitude in each column of the coefficient matrix

FIGURE 10.24
This shows the scatterplot (points) and biplot (vectors) of the oronsay data set that was
explored in Example 10.18. The horizontal and vertical axes represent the two dimensions
obtained via nonnegative matrix factorization transformation. The placement of the points
is obtained from this transformation, and the vectors show how their associated variables
contribute to the plane formed by the axes.

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

35

40

NNMF Column 1

N
N

M
F

 C
o
lu

m
n
 2

>2.0mm

.355−.50mm

.25−.355mm

.18−.25mm

.125−.18mm

.09−.125mm

0

1

2

Multivariate Visualization 455

to be positive. This could cause some of the vectors to be displayed in the
opposite direction, but it does not change the interpretation of the plot.

10.9 Summary and Further Reading

We start off by recommending some books that describe scientific and
statistical visualization in general. One of the earliest ones in this area is
Semiology of Graphics: Diagrams, Networks, Maps by Jacques Bertin [1983],
originally published in French in 1967. This book discusses rules and
properties of a graphic system and provides many examples. Edward Tufte
wrote several books on visualization and graphics. His first book, The Visual
Display of Quantitative Information [Tufte, 1983], shows how to depict
numbers. The second in the series is called Envisioning Information [Tufte,
1990], and illustrates how to deal with pictures of nouns (e.g., maps, aerial
photographs, weather data). The third book is entitled Visual Explanations
[Tufte, 1997], and it discusses how to illustrate pictures of verbs (e.g.,
dynamic data, information that changes over time). His latest book is
Beautiful Evidence [2006]. Among other things, these books by Tufte also
provide many examples of good graphics and bad graphics. For more
examples of graphical mistakes, we highly recommend the book by Wainer
[1997]. Wainer discusses this subject in a way that is accessible to the general
reader. Wainer also published a book called Graphic Discovery [2005] that
details some of the history of graphical displays in a very thought provoking
and entertaining way.

We referenced this book several times already in the text, but the reader
should consult Cleveland‘s Visualizing Data [1993] for more information and
examples on univariate and multivariate data. He includes extensive
discussions on visualization tools, the relationship of visualization to
classical statistical methods, and even some of the cognitive aspects of data
visualization and perception. Another excellent resource on graphics for data
analysis is Chambers et al. [1983]. For books on visualizing categorical data,
see Blasius and Greenacre [1998] and Friendly [2000]. We mention
Wilkinson’s The Grammar of Graphics [1999] for those who are interested in
applying statistical and scientific visualization in a distributed computing
environment. This book provides a foundation for quantitative graphics and
is based on a Java graphics library. While we did not cover issues related to
the exploration of spatial data, we think it is worthwhile to point the reader
to a book by Carr and Pickle [2010] that presents many techniques for EDA
by linking statistical information to small maps. Unwin, Theus, and
Hofmann [2006] wrote a book that addresses issues with visualizing massive
data sets, and they offer many techniques to explore them.

Many papers have been written on visualization for the purposes of
exploratory data analysis and data mining. One recent one by Wegman

456 Exploratory Data Analysis with MATLAB®, Third Edition

[2003] discusses techniques and strategies for visual data mining on high-
dimensional and large data sets. Wegman and Carr [1993] present many
visualization techniques, such as stereo plots, mesh plots, parallel
coordinates, and more. Other survey articles include Anscombe [1973],
Weihs and Schmidli [1990], Young et al. [1993], and McLeod and Provost
[2001]. Carr et al. [1987] include other scatterplot methods besides hexagonal
binning, such as sunflower plots. For an entertaining discussion of various
plotting methods, such as scatterplots, pie charts, line charts, etc., and their
inventors, see Friendly and Wainer [2004].

An extensive discussion of brushing scatterplots can be found in the paper
by Becker and Cleveland [1987]. They show several brushing techniques for
linking single points and clusters, conditioning on a single variable (a type of
coplot), conditioning on two variables, and subsetting with categorical
variables. Papers that provide nice reviews of these methods and others for
dynamic graphics are Becker and Cleveland [1991], Buja et al. [1991], Stuetzle
[1987], Swayne, Cook, and Buja [1991], and Becker, Cleveland, and Wilks
[1987]. Theus and Urbanek [2009] wrote a text about interactive graphics and
show how this can be used for analyzing data. It contains many examples
and uses free software called Mondrian (see Appendix B). Another excellent
book on interactive graphics is by Cook and Swayne [2007]. They use R and
GGobi (both are free) to illustrate the concepts.

For more information on dot charts and scaling, see Cleveland [1984]. He
compares dot charts with bar charts, shows why the dot charts are a useful
graphical method in EDA, and presents grouped dot charts. He also has an
excellent discussion of the importance of a meaningful baseline with dot
charts. If there is a zero on the scale or another baseline value, then the dotted
lines should end at the dot. If this is not the case, then the dotted lines should
continue across the graph.

Parallel coordinate techniques were expanded upon and described in a
statistical setting by Wegman [1990]. Wegman [1990] also gave a rigorous
explanation of the properties of parallel coordinates as a projective
transformation and illustrated the duality properties between the parallel
coordinate representation and the Cartesian orthogonal coordinate
representation. Extensions to parallel coordinates that address the problem
of over-plotting include saturation and brushing [Wegman and Luo, 1997;
Wegman, 2003] and conveying aggregated information [Fua et al., 1999].

In the previous pages, we mentioned the papers by Andrews [1972] and
Embrechts and Herzberg [1991] that describe Andrews’ curves plots and
their extensions. Additional information on these plots can be found in
Jackson [1991] and Jolliffe [1986].

An excellent resource for details on the theory of biplots and its many
variations is Gower and Hand [1996]. They describe a geometric approach
that shows how they can be used with components analysis, correspondence
analysis, and canonical variate analysis. There is also a very interesting
discussion of biplots in Young, Valero-Mora, and Friendly [2006], where they
connect them with higher-dimensional versions, as well as spinning and

Multivariate Visualization 457

orbiting plots. A process for constructing interactive biplots is presented in
Udina [2005]. He describes a data structure that is applicable for several types
of biplots, as well as options for implementing it in web-based environments.
He reviews some of the software for creating biplots that is currently
available and presents an implementation in XLISP-STAT. A good resource
for applications of biplots in genetics and agriculture is Yan and Kang [2002].

Exercises

10.1 Write a MATLAB function that will construct a profile plot, where
each observation is a bar chart with the height of the bar
corresponding to the value of the variable for that data point. The
functions subplot and bar might be useful. Try your function on the
cereal data. Compare to the other glyph plots.

10.2 The MATLAB Statistics Toolbox has a function that will create glyph
plots called glyphplot. Do a help on this function and recreate
Figures 10.1 and 10.2.

10.3 Do a help on gscatter and repeat Example 10.1.
10.4 Repeat Example 10.1 using plot and plot3, where you specify the

plot symbol to get a scatterplot.
10.5 Construct a scatterplot matrix using all variables of the oronsay data

set. Analyze the results and compare to Figure 10.5. Construct a
grouped scatterplot matrix using just a subset of the most interesting
variables and both classifications. Do you see evidence of groups?

10.6 Repeat Example 10.4 and vary the number of bins. Compare your
results.

10.7 Write a MATLAB function that will construct a scatterplot matrix
using hexagonal bins.

10.8 Load the hamster data and construct a scatterplot matrix. There is an
unusual observation in the scatterplot of spleen (variable 5) weight
against liver (variable 3) weight. Use linking to find and highlight that
observation in all plots. By looking at the plots, decide whether this is
because the spleen is enlarged or the liver is underdeveloped [Becker
and Cleveland, 1991].

10.9 Construct a dot chart using the brainweight data. Analyze your
results.

10.10 Implement Tukey’s alternagraphics in MATLAB. This function
should cycle through given subsets of data and display them in a
scatterplot. Use it on the oronsay data.

10.11 Randomly generate a set of 2–D (n = 20) data that have a correlation
coefficient of 1, and generate another set of 2–D data that have a
correlation coefficient of . Construct parallel coordinate plots of
each and discuss your results.

1–

458 Exploratory Data Analysis with MATLAB®, Third Edition

10.12 Generate a set of bivariate data (n = 20), with one group in the first
dimension (first column of X) and two clusters in the second
dimension (i.e., second column of X). Construct a parallel coordinates
plot. Now generate a set of bivariate data that has two groups in both
dimensions and graph them in parallel coordinates. Comment on the
results.

10.13 Use the playfair data and construct a dot chart with the cdf
(cumulative distribution) option. Do a help and try some of the other
options in the dotchart function.

10.14 Using the livestock data, construct a multiway dot chart as in
Figure 10.13. Use the countries for the panels and animal type for the
levels. Analyze the results.

10.15 Repeat Example 10.8 for the abrasion loss data using tensile
strength as the conditioning variable. Discuss your results.

10.16 Construct coplots using the ethanol and software data sets.
Analyze your results.

10.17 Embrechts and Herzberg [1991] present the idea of projections with
the Andrews’ curves, as discussed in Section 10.6.2. Implement this in
MATLAB and apply it to the iris data to find any variables that have
low discriminating power.

10.18 Try the scattergui function with the following data sets. Note that
you will have to either reduce the dimensionality or pick two
dimensions to use.
a. skulls

b. sparrow

c. oronsay (both classifications)

d. BPM data sets

e. spam

f. gene expression data sets

10.19 Repeat Example 10.6 using gplotmatrix.
10.20 Use the gplotmatrix function with the following data sets.

a. iris

b. oronsay (both classifications)

c. BPM data sets

10.21 Run the permutation tour with Andrews’ curves and parallel
coordinates. Use the data in Example 10.16.

10.22 Find the adjacencies as outlined in Example 10.17 for a permutation
tour with p = 7. Is the last sequence needed to obtain all adjacencies?
Are some of them redundant?

10.23 Analyze the Andrews’ curves shown in Figure 10.21.
10.24 Apply the permtourandrews, kdimtour and permtourparallel

to the following data sets. Reduce the dimensionality first, if needed.
a. environmental

Multivariate Visualization 459

b. oronsay

c. iris

d. posse data sets

e. skulls

f. BPM data sets

g. pollen

h. gene expression data sets

10.25 The MATLAB Statistics Toolbox has functions for Andrews’ curves
and parallel coordinate plots. Do a help on these for information on
how to use them and the available options. Explore their capabilities
using the oronsay data. The functions are called parallelcoords
and andrewsplot.

10.26 Do a help on the scatter function. Construct a 2–D scatterplot of
the data in Example 10.1, using the argument that controls the symbol
size to make the circles smaller. Compare your plot with Figure 10.3
(top) and discuss the issue of overplotting.

10.27 Apply nonnegative matrix factorization and principal component
analysis to the iris data. Display a biplot and comment on your
results.

10.28 Construct 2–D scatterplots with marginal histograms of the following
data sets. Reduce the dimensionality to 2–D using an appropriate
method from previous chapters. (Hint: use the scatterhist
function for the plot.)
a. environmental

b. oronsay

c. iris

d. skulls

e. BPM data sets

http://taylorandfrancis.com

461

Chapter 11
Visualizing Categorical Data

In this chapter, we discuss methods for exploration and visualization of
categorical data. A categorical variable is one that can take on values from a
discrete set of categories, levels, or factors. Alternatively, the type of data
represented by a categorical variable can be assigned to distinct groups or
categories. The categories could have an order associated with them, in
which case they are called ordinal. Alternatively, they could be unordered
and are known as nominal variables.

Some examples of categorical data are given here:

� Marital status could take on values Married, Divorced, Widowed,
Never Married.

� Gender would have categories Male or Female.

� Race might have groups Caucasian, Black, and Hispanic.

� Numeric ages could be assigned to categories “0 to 19”, “20 to 29”,
“30 to 39”, etc.

Note that there is an inherent order for the age variable, whereas the other
examples have no intrinsic or natural order.

Friendly [2000] points out that categorical data can be in one of two forms:
case form or frequency form. If we have the data for each individual sample
unit, then this is considered to be case data. We often encounter case data
when we have data sets comprised of a mixture of continuous and categorical
variables measured on each sample unit. For example, we might record
Gender, Race, and Blood Pressure, where the first two are considered to be
categorical.

If the categorical data have been tabulated or aggregated, then it is said to
be in frequency form. This type of data is obtained by counting the number of
units that fall into each category. In this case, the data are usually represented
in a tabular format.

Friendly and Meyer [2015] also make a distinction between frequency data
and count data. The number of children in a particular household would be
a count, and the number of independent households with a given number of
children is considered frequency data.

462 Exploratory Data Analysis with MATLAB®, Third Edition

In what follows, we first describe some common discrete distributions and
how to estimate their parameters. We then look at ways to visualize the
distribution shapes of univariate categorical data. We conclude with a
discussion of ways to visualize and explore tabular data.

11.1 Discrete Distributions

Probability distributions can have either continuous or discrete variables. We
covered some aspects of continuous distributions in previous chapters. For
example, we discussed finite mixture probability distributions in Chapter 6
and kernel density estimation in Chapter 9.

A discrete random variable is one that takes on a value in a countable (finite
or infinite) set of numbers. These are typically counts of some characteristic.
For instance, we could be recording the number of laptop computers owned
by a company or the number of typographical errors in a document.

With discrete variables, we have a probability mass function, rather than a
density function. The probability mass function assigns a probability to the
event that the random variable will take on specific discrete values in the
domain. Two of the most common discrete distributions are the binomial and
the Poisson [Martinez and Martinez, 2015].

11.1.1 Binomial Distribution

Let’s say we have an experiment whose outcome can be labeled as one of two
values. We usually refer to these as a ‘success’ or a ‘failure.’ If we let the value
of denote a successful outcome and represent a failure, then
we can write the probability mass function as

(11.1)

where p () represents the probability of a successful outcome. Note
that we are using the words ‘success’ and ‘failure’ to represent one of two
states and not their usual dictionary meaning. A random variable following
this mass function is known as a Bernoulli random variable [Agresti, 2007].

We can repeat the experiment for n trials, where each trial is independent
and results in a success with probability p. If a variable X denotes the number
of successes in the n trials, then we say it follows a binomial distribution with
parameters n and p. The binomial probability mass function is

X 1= X 0=

P X 0=() 1 p–=

P X 1=() p ,=

0 p 1≤ ≤

Visualizing Categorical Data 463

. (11.2)

The mean and variance of a binomial distribution are given by

,

and

.

Say we have a set of data in tabular or frequency form, where each entry
represents the number of observations with a specific outcome x for

. We might be interested in understanding the process that
generated the data. To do this, we have to determine which discrete
probability distribution best fits the data [Friendly, 2000]. This will be the
main focus in this first section.

An example of data in this format is given in Table 11.1. Hoaglin and Tukey
[1985] provide a frequency distribution representing the number of females
in 100 queues of length 10. It is reasonable to assume these data might follow
a binomial distribution. To assess this assumption, we can first estimate the
success probability p, and then see how well the data fit with the binomial.

If we know n (the number of trials), then we can find an estimate of p using

TABLE 11.1

Frequency Distribution for the Number of Females in a Queue of
Size [Hoaglin and Tukey, 1985]

Number of Females
Number of

Queues
Expected Number
Under Binomial

0 1 0.332
1 3 2.552
2 4 8.843
3 23 18.155
4 25 24.461
5 19 22.599
6 18 14.499
7 5 6.379
8 1 1.842
9 1 0.315
10 0 0.024

P X x=()
n
x p

x 1 p–()n x– ; x 0 1 2 … n ; 0 p 1≤ ≤, , , ,= =

E X[] np=

Var X() np 1 p–()=

nx

x 0 1 2 …, , ,=

n 10=

x() nx()

464 Exploratory Data Analysis with MATLAB®, Third Edition

, (11.3)

where

.

So, in Table 11.1, we see that . Using Equation 11.3, we get
an estimated success probability of

.

The expected number of queues (of size) with x women is found by
first estimating the binomial probabilities for each value of x using
in Equation 11.2 and then multiplying these estimated binomial probabilities
by These values are shown in the third column of Table 11.1, where
we see that the binomial distribution seems to be a reasonable fit. The reader
is asked to explore this further in the exercises.

11.1.2 Poisson Distribution

The Poisson distribution is often used to model data representing counts of
something, and it can be used to approximate a binomial distribution under
certain conditions [Ross, 2014]. The probability mass function for the Poisson
is

, (11.4)

where denotes the factorial of x. The factorial of a positive integer x is

.

For instance, The special case of has a value
of .

The mean and variance of a Poisson random variable are the same and are
given by

.

p̂
1

n N×
-------------- xnx

x

=

N nx

x

=

N nx 100= =

p̂
1

10 100×
--------------------- 0 1 1 3 … 9 1 10 0×+×+ +×+×[] 1

1000------------ 435× 0.435= = =

n 10=

p̂ 0.435=

N 100.=

P X x=() e
λ– λx

x!
----- ; = x 0 1 2 …, , ,=

x!

x! x x 1–() … 2 1×××≡

5! 5 4 3 2 1×××× 120.= = 0!

0! 1=

E X[] Var X() λ= =

Visualizing Categorical Data 465

We estimate the value of as the sample mean:

, (11.5)

where N in Equation 11.5 is the sample size or number of observed counts.

Example 11.1
The Statistics Toolbox has functions to generate random variables for several
discrete distributions. We will use the binornd and poissrnd functions to
obtain samples for the binomial and Poisson distributions.

% Generate binomial random variables.
% We will use a success probability of p = 0.3
% and n = 50 trials.
p = 0.3;
n = 50;
% The following generates 100 binomial
% random variables.
rb = binornd(n,p,1,100);

% Generate 100 Poisson random variables.
% We will use lambda = 4.
lambda = 4;
rp = poissrnd(lambda,1,100);

We can view the distribution shapes as histograms using the following steps.

% Construct histograms.
subplot(2,1,1)
hist(rb)
title('Binomial, n = 50, p = 0.3')
subplot(2,1,2)
hist(rp)
title('Poisson, \lambda = 4')

These are both illustrated in Figure 11.1. We now show how to estimate the
parameters of the two distributions. For the binomial random variables, we
first find the mean and then divide by n. We could also use a function
binofit, which is part of the Statistics Toolbox.

% Next, we estimate the probability of success
% for the binomial data.
% We take the mean of the random variables and
% divide by n.
rb_bar = mean(rb)/n;

λ

λ̂ 1
N
---- xi

i 1=

N=

466 Exploratory Data Analysis with MATLAB®, Third Edition

% We can also find this using the binofit function.
rb_bar2 = binofit(sum(rb), n*length(rb));

We obtain the same answer of 0.303 in both cases. Note that the binofit
function works differently than what one would normally expect. It does not
treat the input vector rb as the set of random variables. Therefore, we had to
do some calculations on the input arguments. See the MATLAB
documentation for more information.

% Now for the Poisson random variables.
rp_bar = mean(rp);
% We can also find this using the poissfit function.
rp_bar2 = poissfit(rp);

As shown above, there is a function called poissfit that will estimate the
parameter . The input argument to the poissfit function is interpreted as
a set of random variables, as one would expect. We get the same estimate in
both cases, which is 3.67. Note that our estimates are fairly close to the true
values of and .
❑

FIGURE 11.1
The top plot is a histogram of the binomial random variables we generated in Example 11.1.
These are binomially distributed with parameters and . Each of the random
variables represents the number of successes in n trials with success probability p. The lower
plot shows a histogram of the generated Poisson random variables with .

λ

p 0.3= λ 4.0=

8 10 12 14 16 18 20 22 24 26
0

5

10

15

20

25
Binomial, n = 50, p = 0.3

0 2 4 6 8 10
0

10

20

30
Poisson, λ = 4

n 50= p 0.3=

λ 4=

Visualizing Categorical Data 467

11.2 Exploring Distribution Shapes

In this section, we present approaches for visualizing and understanding
how discrete and categorical data are distributed. First, we look at plots that
are similar to the quantile plots for continuous data, where we compare
graphically the observed distribution of discrete random variables to
theoretical ones, such as the Poisson and the binomial. We then discuss John
Tukey’s [1977] hanging rootogram, which can be used to compare fitted and
observed frequencies.

11.2.1 Poissonness Plot

As we discussed at the beginning of this chapter, discrete or categorical data
are sometimes whole number values representing the number of times
something occurs for individual sample units. For example, these might be
the number of traffic fatalities in an accident, the number of tablets someone
owns, or the number of errors in a computer program. We sometimes have
these in the form of a frequency distribution that lists the possible count
values (e.g.,) and the number of observations that are equal to the
count values. See Table 11.1 for an example.

We denote the counts as x, with Thus, L is the maximum
observed value for our discrete variable or counts in the data set. We are
interested in all counts between 0 and L. Thus, the total number of
observations in the sample is

,

where represents the number of observations that are equal to the count x.
A Poissonness plot [Hoaglin and Tukey, 1985] is constructed by plotting

the count values x on the horizontal axis and

(11.6)

on the vertical axis. These are plotted as symbols, similar to the quantile plot.
If a Poisson distribution is a reasonable model for the data, then this should
follow a straight line. Systematic curvature in the plot would indicate that
these data are not consistent with a Poisson distribution. The values for

 tend to have more variability when is small, so Hoaglin and Tukey
[1985] suggest plotting a special symbol or a “1” to highlight these points
[Martinez and Martinez, 2015].

0 1 2 …, , ,

x 0 1 … L., , ,=

N nx

x 0=

L=

nx

ϕ nx() x!nx N⁄()ln=

ϕ nx() nx

468 Exploratory Data Analysis with MATLAB®, Third Edition

Hoaglin and Tukey [1985] suggest a modified Poissonness plot that is
obtained by adjusting the to account for the variability of the individual
values. They propose the following change:

(11.7)

The main effect of the modified plot is to adjust those data points with
small counts that are in keeping with the other observations. Thus, if a point
displayed as a “1” in a modified Poissonness plot seems different from the rest
of the data, then it should be investigated.

Example 11.2
This example is taken from Hoaglin and Tukey [1985] and Friendly [2000]. In
the late 1700s, Alexander Hamilton, John Jay, and James Madison wrote a
series of 77 essays under the title of The Federalist. These were published in
newspapers under a pseudonym. Most analysts believe that John Jay wrote
5 essays, Alexander Hamilton wrote 43, Madison wrote 14, and 3 were jointly
written by Hamilton and Madison. Hamilton and Madison later claimed that
they each wrote the remaining 12 papers. To verify this claim, Mosteller and
Wallace [1964] used statistical methods based on the frequency of certain
words contained in blocks of text. Table 11.2 gives the frequency distribution
for the word may in papers that were known to be written by Madison.

The following MATLAB code will construct a basic Poissonness plot.

TABLE 11.2

Frequency distribution of the word may in essays known to
be written by James Madison.a

Number of Occurrences of the
Word may Number of Blocks

0 156
1 63
2 29
3 8
4 4
5 1
6 1

a The represent the number of blocks of text that contained x
occurrences of the word may [Hoaglin and Tukey, 1985].

nx

nx
*

nx 0.67– 0.8nx N;⁄– nx 2≥

1 e⁄ ; nx 1=

undefined; nx 0.=

=

x() nx()

nx

Visualizing Categorical Data 469

x = 0:6; % vector of counts
n_x = [156 63 29 8 4 1 1];
N = sum(n_x);
% Get vector of factorials.
fact = factorial(x);

% Get phi(n_x) for plotting.
phix = log(fact.*n_x/N);
% Find the counts that are equal to 1.
% Plot these with the symbol 1.
% Plot rest with a symbol.
ind = find(n_x~=1);
plot(x(ind),phix(ind),'o')
ind = find(n_x==1);
if ~isempty(ind)
 text(x(ind),phix(ind),'1')
end
% Add some white space to see better.
axis([-0.5 max(x)+1 min(phix)-1 max(phix)+1])
title('Basic Poissonness Plot')
xlabel('Number of Occurrences - \it x')
ylabel('\it \phi (n_x)')

This is shown in Figure 11.2. We see some significant curvature in the plot,
indicating the Poisson might not be a good model. We provide a function
called poissplot that will create both versions of the Poissonness
plot—basic and modified.

% Construct a modified plot.
% Put any value for the third argument to
% get a modified Poissonness plot.
poissplot(x,n_x,1)
title('Basic Poissonness Plot')

This is shown at the bottom of Figure 11.2, and we see that the curvature is
slightly less. However, the Poisson still seems to not fit the data well.
❑

11.2.2 Binomialness Plot

A binomialness plot is obtained by plotting x along the horizontal axis and
plotting

470 Exploratory Data Analysis with MATLAB®, Third Edition

FIGURE 11.2
The top plot is the basic Poissonness plot for the frequency of the word may in the disputed
essays. There is some curvature indicating the Poisson might not be a good model. The
lower plot is the modified version that accounts for the variability of the individual values.
The curvature is reduced in this plot, but the Poisson still does not seem to be a good fit.

0 1 2 3 4 5 6 7

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

1

1

Number of Occurrences − x

 φ
 (

n
x
)

Basic Poissonness Plot − Word ’may’ in Federalist Papers

0 1 2 3 4 5 6 7

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1

1

Number of Occurrences − x

 φ
 (

n
* x
)

Modified Poissonness Plot − Word ’may’ in Federalist Papers

Visualizing Categorical Data 471

, (11.8)

along the vertical axis. Recall that n represents the number of trials, and is
given by Equation 11.7. As with the Poissonness plot, we are looking for an
approximate linear relationship between x and .

Example 11.3
We will use the binomial random variables generated in the first example.
First, we have to convert these from case form to frequency form. We can use
the tabulate function in MATLAB to aggregate the data.

% Let's use the data generated in Example 11.1.
% We can get the counts for the binomial random
% variables using the tabulate function in MATLAB.
tbl = tabulate(rb);
x = tbl(:,1);
n_x = tbl(:,2);

We provide a function called binoplot with the EDA Toolbox. This will
create a binomialness plot for a given number of trials n. In Example 11.1, we
generated binomial random variables with and

% We supply a function in the EDA Toolbox to
% construct a binomialness plot.
n = 50;
binoplot(n,x,n_x)
title('Binomialness Plot')

This is shown in Figure 11.3, and we see that it follows a straight line. So, the
binomial distribution seems to be a good fit for these data.
❑

11.2.3 Extensions of the Poissonness Plot

We provide the theoretical motivation for constructing a Poissonness plot in
this section [Hoaglin, 1980; Hoaglin et al., 1985; Friendly, 2000], and we
present an extension of it called a leveled Poissonness plot. We conclude with
a discussion of confidence intervals for observations in a Poissonness plot.

Given a fixed Poisson parameter , we can equate the expected frequency
and the observed frequency , as shown here

ϕ nx
*()

nx
*

N
n

x
×

ln=

nx
*

ϕ nx
*()

n 50= p 0.3.=

λ
nx

472 Exploratory Data Analysis with MATLAB®, Third Edition

.

Taking the log of both sides, we get

. (11.9)

We can rearrange Equation 11.9 to produce the following

. (11.10)

The relationship in Equation 11.10 is a straight line with intercept given by
, and a slope of . It is this linear relationship that we are

visualizing in a Poissonness plot. The quantity on the left is (see
Equation 11.6). It is also known as the count metameter [Hoaglin et al., 1985].

We could fit a straight line to the data using as a function of x. If the
points seem to follow the linear model, then we could use the slope of the
fitted line to estimate

FIGURE 11.3
This is the binomialness plot for the binomial random variables generated in Example 11.1.
The points fall roughly on a straight line, so the binomial is a good model for these data.

8 10 12 14 16 18 20 22

−34

−32

−30

−28

−26

−24

Number of Occurrences − x

 φ
 (

n
* x
)

Binomialness Plot

nx Npx N
e

λ– λx

x!
------------ ;= = x 0 1 2 …, , ,=

nx()log Nlog λ– x λ x!log–log+=

x!nx

N
---------- log λ– λlog()x+=

β0 λ–= β1 λlog=

ϕ nx()

ϕ nx()

λ

Visualizing Categorical Data 473

.

Hoaglin et al. [1985] discuss how to level the Poissonness plot. This results
in a reference curve given by a horizontal line, which makes it easier to judge
the fit. We first find an initial estimate of the parameter , which we will
denote as . Then, we produce a leveled Poissonness plot by displaying

 as a function of x. The line fitted to this relationship
will have

We could get an initial estimate of using Equation 11.5 or the slope of the
fitted line in a Poissonness plot (Equation 11.10). If the Poisson process fits
the data, then the leveled Poissonness plot should be nearly horizontal.

A 95% confidence interval for the modified count metameter can be
used to better understand any deviations from a straight line. Hoaglin et al.
[1985] derived confidence intervals of the form center ± half–length:

. (11.11)

The half-length is given by

,

where .
The approximate half-lengths for are a special case, and we have

two of them—one to get the lower endpoint and one for the upper. The lower
half-interval is 2.677, and the upper half–interval is given by

.

Note that the confidence interval is not symmetric for the case .

Example 11.4
In Table 11.3, we reproduce a data set from Rutherford and Geiger [1910].
They published a data set of polonium decay counts corresponding to the
number of scintillations in –minute intervals. Given that the data are
counts, we could explore whether the data come from a Poisson distribution.

λ̂PP β̂1()exp=

λ
λ0

ϕ nx() λ0 x λ0()log–[]+

β0 λ0 λ–=

β1 λ λ0⁄() .log=

λ

ϕ nx
*()

ϕ nx
*() hx±

hx

hk 1.96 1 p̂–

nx 0.47 0.25p̂+() nx–

--- ;= nx
* 2≥

p̂ nx N⁄=

nx
* 1=

2.717 2.3
N
-------–

nx
* 1=

1 8⁄

474 Exploratory Data Analysis with MATLAB®, Third Edition

We use the modified Poissonness plot with confidence intervals to see if there
is a good fit. We are going to first process the counts where .

% The following is the polonium data for nx > 1.
x = 0:11;
nx = [57 203 383 525 532 408 273 139 45 27 10 4];
N = 2608;
% Convert to the modified counts.
nx_mod = nx - 0.67 - .8*nx/N;
% Get the count metameter.
phix = log(factorial(x).*nx_mod/N);

% Get the half-intervals for nx > 1.
% Note that we use the unmodified n_x.
p_hat = nx/N;
h = 1.96*(sqrt(1-p_hat))./sqrt(nx - ...
 (0.47+0.25*p_hat).*sqrt(nx))

We now obtain the values for counts equal to 1.

% Get the modified counts for nx = 1.
nx_mod1 = 1/2.718268237*ones(1,2);
phix1 = log(factorial([13,14]).*nx_mod1/N);

TABLE 11.3

Scintillations from Radioactive Decay of Polonium.a

Number of Scintillations Number of Intervals

0 57
1 203
2 383
3 525
4 532
5 408
6 273
7 139
8 45
9 27
10 10
11 4
12 0
13 1
14 1

N = 2608

a Hoaglin et al. [1985]

x() nx()

nx
* 2≥

Visualizing Categorical Data 475

% Those counts equal to 1 get different half-intervals.
h1_lo = 2.677*ones(1,2);
h1_hi = (2.717 - 2.3/N)*ones(1,2);

We can put the half–intervals into vectors for use in the MATLAB errorbar
function.

% Now, get the half-intervals of the CIs.
Low = [h, h1_lo];
Up = [h, h1_hi];

% Put into vectors for plotting.
X = [x, 13, 14];
Y = [phix, phix1];
errorbar(X,Y,Low,Up,'.')

We fit a straight line to the data and use the 95% confidence intervals to assess
any significant deviations.

% We can fit a straight line and add to the plot.
pf = polyfit(X,Y,1);
pv = polyval(pf,X);
hold on
plot(X,pv)
hold off

xlabel('Number of Occurrences - \it x')
ylabel('\phi (\itn^*_x)')
title('Modified Poissonness Plot - Polonium Data')

The plot is shown in the top of Figure 11.4. It fits quite well, except for .
We now construct a leveled version of the confidence–interval Poissonness
plot by subtracting

from both endpoints of the intervals. First, we need an estimate . We could
use the logarithm of the slope of the fitted line, which is the first element of
pf. Using this value, we get 3.98. Or, we could use the mean, as shown here.

% Now, construct a leveled confidence-interval plot.
% We need an estimate of the parameter.
% This uses the mean of the data.
lam0 = sum([nx,1,1].*[x,13,14])/N;

This yields a value of 3.87, which we will use to get the leveled version. The
following is the code to get the leveled Poissonness plot.

x 8=

x λ0log λ0–

λ0

476 Exploratory Data Analysis with MATLAB®, Third Edition

% Find adjustment and subtract.
Del = X*log(lam0) - lam0;
errorbar(X,Y-Del,EndL-Del,EndU-Del,'.')
hold on
plot([0 14],[0, 0])
hold off

xlabel('Number of Occurrences - \it x')
ylabel('\phi (\itn^*_x) + \lambda_0 - \itx

\rmlog(\lambda_0)'))
title('Leveled Poissonness Plot - Polonium Data')

The resulting plot is shown in the bottom of Figure 11.4. We again see that the
value at is lower than the horizontal reference line. It is also much
easier to judge the fit using a horizontal reference line.
❑

11.2.4 Hanging Rootogram

Another way to explore the distribution shape of a data set is to fit a
distribution and then plot the observed data, along with the fitted values. We
then look for differences between them to assess the model fit [Friendly,
2000].

When we have discrete data, our plot would show the observed data x as
bars of equal width, and the heights corresponding to the frequency of x. The
fitted values are drawn as asterisks, which are connected by a smooth line.
The deviation between the fitted and observed frequencies gives us a visual
sense of the goodness of fit.

However, Tukey [1977] points out the problems with this approach. First,
the largest frequencies drive the scale, making it difficult to see deviations in
random variables with the smaller frequencies. It also puts a burden on the
viewer to determine the differences between the observed (bar height) and
the fitted values (points on a smooth curve).

Tukey’s solution is the hanging rootogram. This moves the top of the bars
to the fitted value, so it is hanging from the curve. This means we can now
assess the differences between the fitted and observed against a horizontal
line at zero.

To address the issue of large frequencies dominating the plot, the hanging
rootogram shows the square root of the frequencies on the vertical axis. This
causes smaller frequencies to be emphasized and become more apparent. In
the next example, we show how to construct a hanging rootogram for The
Federalist data.

x 8=

Visualizing Categorical Data 477

FIGURE 11.4
The top panel shows the modified Poissonness plot with confidence intervals for the polo-
nium data from Table 11.3. A Poisson distribution seems to fit the data well, except for the
value . The bottom panel illustrates the leveled version of the plot. It is easier to
evaluate the points with respect to a horizontal reference curve.

−2 0 2 4 6 8 10 12 14 16
−5

0

5

10

15

20

Number of Occurrences − x

φ
(n

* x
)

Modified Poissonness Plot − Polonium Data

0 5 10 15
−3

−2

−1

0

1

2

3

4

5

6

Number of Occurrences − x

φ
(n

* x
)

 +
 λ

0
 −

 x
 lo

g
(λ

0
)

Leveled Poissonness Plot − Polonium Data

x 8=

478 Exploratory Data Analysis with MATLAB®, Third Edition

Example 11.5
We will illustrate the hanging rootogram in this example using the frequency
distribution of the word may in The Federalist essays known to be written by
James Madison (see Table 11.2). Previously, we used the Poissonness plot to
determine if the data follow a Poisson distribution, and it did not appear to
be a good fit. Let’s see how the distribution compares with a fitted Poisson.
We first need to fit the data to a Poisson, as shown here.

% Use the Federalist data.
% Fit to a Poisson.
x = 0:6;
n_x = [156 63 29 8 4 1 1];
lambda = sum(x.*n_x)/sum(n_x);

Recall that the Poisson has just one parameter , and the estimate we get for
these data is . Next, we have to get the probability mass function
for the random variables based on the fitted distribution.

% Get the probability mass function for x.
Yfit = poisspdf(x,lambda);
% Get the expected number of occurrences.
Expf = Yfit*sum(n_x);

In Figure 11.5 (top), we plot the observed frequencies as the height of the
bars, and the fitted frequencies as points, which are connected by a smooth
curve. This is the code to create the plot.

% Plot the bar chart and fitted curve.
b = bar(x,n_x,'FaceColor',[.9, .9, .9]);
hold on
vq = min(x):.2:max(x);
I = interp1(x,Expf,vq,'spline');
plot(vq,I,'k-',x,Expf,'k*')
hold off
xlabel('Number of Occurrences')
ylabel('Frequency')

The higher observed frequencies occur at lower values of x, making it hard to
distinguish the deviations in the larger values . It is also difficult
to determine the differences between the observed and fitted value. A
hanging rootogram is shown in the lower part of Figure 11.5. This code will
produce the plot.

% Here is the hanging rootogram.
% Take square root of the frequencies.
ExpfS = sqrt(Expf); % Expected freqs
Is = interp1(x,ExpfS,vq,'spline');
n_xS = sqrt(n_x); % Observed freqs

λ
λ̂ 0.6565=

x 3 4 5 6, , ,=

Visualizing Categorical Data 479

% Start the plot with the fitted curve.
plot(vq,Is,'k-')
hold on
for i = 1:length(x)
 % Display one of the rectangles and
 % hang them from the fitted curve.
 del = 0.15;
 w = 2*del;
 h = n_xS(i);
 rectangle('Position',...
 [x(i)-del, ExpfS(i)-n_xS(i), w, h],...
 'FaceColor',[.9, .9, .9]);
end

% Plot the observed values as points.
h = plot(x,ExpfS,'ko')
set(h,'MarkerFaceColor','k');
% Plot a horizontal line at y = 0;
ax = axis;
plot(ax(1:2),[0 0])
hold off
xlabel('Number of Occurrences')
% This statement produces the square root symbol.
ylabel('\surd{Frequency}')

It is much easier to see the deviations between the fitted and observed values
in the hanging rootogram, especially at the smaller frequencies.
❑

11.3 Contingency Tables

When analyzing a data set, we are interested in exploring any relationships
between our variables. When the variables are categorical, then they are often
aggregated and the frequencies are displayed in the form of a contingency
table. A contingency table contains the number of observations classified by
two or more variables.

As we have discussed throughout this book, one of the objectives of EDA
is to use visualization to find structure and associations that are not apparent
by looking at the raw data, which in this case is a table of counts. We focus on
two-way contingency tables in this section following Friendly [2000] and
Meyer, et al. [2008]. Additional references for visualizing higher-dimensional
tables are given at the end of the chapter. In this section, we first provide
details on analyzing two–way tables. Next, we discuss plots that display tiles

480 Exploratory Data Analysis with MATLAB®, Third Edition

FIGURE 11.5
The upper plot shows observed frequencies as a bar height. A smooth curve shows the data
fit to a Poisson distribution. The lower plot is the hanging rootogram, where the square root
of the frequencies are shown on the vertical axis, and the bars are hanging from the fitted
curve. We can assess the deviations between fitted and observed using the reference line at 0.

0 1 2 3 4 5 6
0

20

40

60

80

100

120

140

160

Number of Occurrences

F
re

q
u
e
n
cy

Bar Chart − Word ’may’ in Federalist Papers

Bar heights = Observed frequencies
Stars = Expected frequencies from Poisson fit

 1 0 1 2 3 4 5 6 7
−2

0

2

4

6

8

10

12

Number of Occurrences

√

F
re
q
u
en
cy

Hanging Rootogram − Word ’may’ in Federalist Papers

Visualizing Categorical Data 481

with sizes proportional to frequencies or some other statistic associated with
the cells in the tables. These include bar, spine, mosaic, and sieve plots. We
conclude the section with a description of log odds plots for tables.

11.3.1 Background

There are two associations we might consider when exploring a two-way
table. These are (1) the independence of the variables and (2) the distribution
of one variable for given levels of the other. We first fix our notation for tables
and provide some definitions.

A two-way contingency table has I rows and J columns. The cell counts or
frequencies are denoted as , for and . The row and
column marginals are simply their summation. These sums are

, (11.12)

where we add all of the cell frequencies across the row, and

, (11.13)

where the counts in the columns are added. The total number of observations
is given by

. (11.14)

The plus sign (+) in the subscript means that we add all the values for that
variable.

TABLE 11.4

Hospital Data – Number of Schizophrenic Patients

Length of Stay (years)

Visit Frequency 2 – 9 10 – 19 20 + Total

Regular 43 16 3 62
Less than monthly 6 11 10 27
Never 9 18 16 43

Total 58 45 29 132

2 2×

nij i 1 … I, ,= j 1 … J, ,=

ni + nij

j 1=

J=

n + j nij

i 1=

I=

n n ++ ni +

i 1=

I n + j

j 1=

J= = =

482 Exploratory Data Analysis with MATLAB®, Third Edition

An example of a two-way contingency table is given in Table 11.4. These
data were originally published in Wing [1962] and are analyzed in Meyer, et
al. [2008]. See Example 11.6 for more details on the data set. We have two
variables—Length of Stay and Visit Frequency. The row totals are

,

and the column totals are

.

Adding up either the row or column totals gives observations.
Assuming an underlying distribution with theoretical cell probabilities ,

we can write the null hypothesis of independence as

.

In other words, the cell probabilities are just the product of the marginals (see
Equations 11.12 and 11.13).

We will need to determine the expected cell frequencies for plots presented
later in this section. Based on the model of independence, the expected cell
frequencies are calculated using the following

.

The table with expected values for the hospital data is shown in Table 11.5.

Later in the text we use sieve plots and mosaic plots to visually compare
the observed and expected frequencies. One way to assess the difference
analytically is to use Pearson residuals. These residuals are given by

. (11.15)

TABLE 11.5

Hospital Data – Expected Number of Schizophrenic Patients (under
independence)

Length of Stay (years)

Visit Frequency 2 – 9 10 – 19 20 + Total

Regular 27.24 21.14 13.62 62
Less than monthly 11.86 9.20 5.93 27
Never 18.89 14.66 9.45 43

Total 58 45 29 132

n1 + 62= n2 + 27= n3 + 43=

n + 1 58= n + 2 45= n + 3 29=

n 132=

πij

H0: πij πi + π + j=

n̂ij ni + n + j n⁄=

rij

nij n̂ij–

n̂ij

-----------------=

Visualizing Categorical Data 483

These are also known as the standardized raw residuals [Meyer, et al., 2008].
These residuals are in units of standard deviations, and they measure the
departure of each cell from independence. If the residual for a cell is greater
than 2 or less than , then the departure from independence is statistically
significant at the 95% level.

The standardized raw residuals for the hospital visitors data are shown in
Table 11.6. We see that some cells have residuals greater than 2 and less than

. For instance, more patients staying in the hospital from 2 to 9 years get
visited regularly than would be expected under the null hypothesis. On the
other hand, too few patients staying 20 years or longer get visited regularly
than would be expected under the null hypothesis of independence.

If we see evidence for a lack of independence in our plots, then we might
perform a statistical hypothesis test. The Chi-square test of independence is
often used for this purpose. The test statistic is given by

, (11.16)

which is just the sum of the squared Pearson residuals. This test statistic has
an asymptotic distribution that is Chi-square with degrees of
freedom when the null hypothesis of independence is true. We mention this
statistic here because each squared Pearson residual is the contribution of the
ij-th cell to the test statistic.

11.3.2 Bar Plots

A common plot used to visualize the frequencies in categorical data is the bar
plot, where we display the observed values as the heights of bars. All of the
bars have the same width, and the bars typically have white space between
them, unlike a histogram. For example, this is what we used in the previous
section to show the observed frequencies. We can also have grouped bar
plots, as we demonstrate in the next example.

TABLE 11.6

Hospital Data – Pearson Residuals for Number of
Schizophrenic Patients (under independence)

Length of Stay (years)

Visit Frequency 2 – 9 10 – 19 20 +

Regular 3.02 –1.12 –2.88
Less than monthly –1.70 0.59 1.67
Never –2.28 0.87 2.13

2–

2–

χ2
rij

2

i j,
=

I 1–() J 1–()

484 Exploratory Data Analysis with MATLAB®, Third Edition

Example 11.6
We are going to use the hospital data from Meyer, et al. [2008] to illustrate
this type of plot. The data originally came from a study on the frequency of
visits to 132 schizophrenic patients in a mental hospital [Wing, 1962]. These
data are given in Table 11.4 and are in the form of a two–way contingency
table. The two variables are Length of Stay (years) and Visit Frequency, and we
have three categories of each variable. Looking at the frequencies in each cell,
we can see that hospital visits tend to decrease in frequency as patients are
hospitalized longer. This relationship is more apparent when we standardize
the table columns, as shown here.

% Enter the data.
Hosp = [43 16 3;6 11 10; 9 18 16];

% Standardize along the columns.
CSum = sum(Hosp);
HospCS = Hosp./repmat(CSum,3,1);

HospCS =
 0.7414 0.3556 0.1034
 0.1034 0.2444 0.3448
 0.1552 0.4000 0.5517

The HospCS matrix contains the hospital data standardized to the column
margin. We can clearly see that Regular Visit Frequency decreases as Length of
Stay increases. A contingency table is often viewed in bar plots. We will
address other ways to visualize this type of data in the next section. We first
create a bar plot for each column, as shown here.

% Create a separate bar plot for each column.
subplot(1,3,1),bar(Hosp(:,1),...
 'Facecolor',[.8,.8,.8])
ax = axis;
XYrotalabel(60, 0, gca,...
 1:3,{'Reg','<Month','Never'},...
 [],[]);
y=ylabel('Number of Patients');
set(y, 'Units', 'Normalized',...
 'Position', [-0.15, 0.5, 0]);
title('2-9 Years')

subplot(1,3,2),bar(Hosp(:,2),...
 'Facecolor',[.8,.8,.8])
axis(ax)
XYrotalabel(60, 0, gca,...
 1:3,{'Reg','<Month','Never'},...
 [],[]);

Visualizing Categorical Data 485

title('10-19 Years')

subplot(1,3,3),bar(Hosp(:,3),...
 'Facecolor',[.8,.8,.8])
axis(ax)
XYrotalabel(60, 0, gca,...
 1:3,{'Reg','<Month','Never'},...
 [],[]);
title('20+ Years')

These plots are shown in Figure 11.6. A grouped bar plot is often used for this
type of data. The following is the code we used to create the plot in the top
half of Figure 11.7.

% We could also do a grouped bar plot.
% If the input to bar is a matrix, then
% MATLAB groups them by rows. So, we input
% the transpose of the hospital data.

hb = bar(Hosp');
set(hb(1),'Facecolor',[.9,.9,.9])
set(hb(2),'Facecolor',[.7,.7,.7])
set(hb(3),'Facecolor',[.5,.5,.5])

FIGURE 11.6
Here we have separate bar plots for each column of the hospital data.

R
eg

<
M

on
th

N
ev

er

0

5

10

15

20

25

30

35

40

45

N
u

m
b

e
r

o
f
P

a
tie

n
ts

2−9 Years

R
eg

<
M

on
th

N
ev

er

0

5

10

15

20

25

30

35

40

45
10−19 Years

R
eg

<
M

on
th

N
ev

er

0

5

10

15

20

25

30

35

40

45
20+ Years

486 Exploratory Data Analysis with MATLAB®, Third Edition

set(gca,'XTickLabel',{'2-9','10-19','20+'})
legend({'Regular','Less than monthly','Never'})
xlabel('Length of Stay')
ylabel('Number of Patients')

Again, we see how Regular Visit Frequency tends to decrease as Length of Stay
increases. We think it is easier to judge differences along a horizontal scale.
So, we can plot the bars horizontally using the barh function. This is given
in the lower half of Figure 11.7.
❑

11.3.3 Spine Plots

Another bar–like plot is called the spine plot [Hummel, 1996]. The counts or
frequencies are represented by the width of the bar rather than the height, as
we have in the bar plot. Each bar in a spine plot has the same height, and the
bars are much closer together than in the usual bar plot. We can also think of
spine plots as a type of mosaic plot for just one variable, as we will see in the
next section.

Example 11.7
We continue with the hospital data to illustrate spine plots. MATLAB does
not have a function for spine plots, but we can use the rectangle function
to create them, as shown here.

% Enter the hospital data.
Hosp = [43 16 3;6 11 10; 9 18 16];

% Each bar width is proportional to the column total.
Sx = sum(Hosp);
W = Sx/sum(Sx);

% Here is the gap between the bars.
gap = 0.01;
c = [0.9 0.9 0.9];

% Create the bars.
rectangle('Position',[0 0 W(1) 1],...
 'Facecolor',c)
rectangle('Position',[W(1)+gap,0,W(2) 1],...
 'FaceColor',c)
rectangle('Position',[W(1)+W(2)+2*gap,0,W(3) 1],...
 'FaceColor',c)

% Clean up the axes and add labels.

Visualizing Categorical Data 487

FIGURE 11.7
These are two versions of a grouped bar chart for different values of Length of Stay for the
hospital data. We can see that regular Visit Frequency decreases the longer a patient stays
in the hospital. In our opinion, it is easier to see this relationship in the horizontal bar chart.

2−9 10−19 20+
0

5

10

15

20

25

30

35

40

45

Length of Stay

N
u
m

b
e
r

o
f

P
a
tie

n
ts

Regular
Less than monthly
Never

0 5 10 15 20 25 30 35 40 45

2−9

10−19

20+

Number of Patients

L
e

n
g

th
 o

f
S

ta
y

Regular
Less than monthly
Never

488 Exploratory Data Analysis with MATLAB®, Third Edition

axis tight
box on
% Remove the ticks.
set(gca,'TickLength',[0 0])
% Get the bar mid-points for the labels.
xm = W(1)/2;
xm(2) = W(1) + gap + W(2)/2;
xm(3) = W(1) + W(2) + 2*gap + W(3)/2;
% Set the labels.
set(gca,'Xtick',xm)
set(gca,'XTickLabel',{'2-9','10-19','20+'})
set(gca,'YTickLabel','')
xlabel('Length of Stay (years)')

The spine plot is displayed in Figure 11.8. From this plot, we see that the visit
frequency for patients with long hospital stays decreases.
❑

The spine plot in Figure 11.8 shows just one variable (Length of Stay), and
we do not see any information about the other (Visit Frequency). The mosaic
plot for contingency tables addresses this problem.

FIGURE 11.8
This shows the spine plot for the hospital data. Here, the width of the bars are proportional
to the counts, while the heights of the bars are equal. This plot shows that the number of
patients decreases as the Length of Stay increases.

2-9 10-19 20+
Length of Stay (years)

Visualizing Categorical Data 489

11.3.4 Mosaic Plots

Mosaic plots were originally developed by Hartigan and Kleiner [1981]. They
have been extended by several authors, but most notably by Friendly [1994;
1999]. Mosaic plots show observed cell frequencies as areas of rectangles,
usually laid out in the same manner as the contingency table.

We can often think of one variable in a contingency table as explaining the
other one. In the case of the hospital data, we might want to use Length of Stay
to explain Visit Frequency. We need to start the mosaic plot by splitting on a
variable, and the one we consider as explanatory is a good choice. As Meyer,
et al. [2008] point out, whichever variable we split on first matters because it
dominates the mosaic plot. We can also think of the mosaic plot as one that
conditions on this first splitting variable.

The plot we get from splitting on this first variable is the same as the spine
plot. However, we do not stop there. We then split each vertical bar into
rectangles using the marginals of the other variable, given the first one. The
result is a mosaic of tiles with areas proportional to the observed cell counts.

Example 11. 8
We return to the hospital data in this example. A function for creating mosaic
plots was downloaded from MATLAB Central and adapted for our purpose
[Cheng, 2014]. The code given below will construct a mosaic plot. While often
not done, we can display the observed cell frequencies in each rectangle to
help explore the data.

% Enter the hospital Data
Hosp = [43 16 3;6 11 10; 9 18 16];

% Use the columns as the conditioning variable.
% We need to re-order the rows.
data = flipud(Hosp);
[xm, ym] = mosaic_plot(data);
hold off
box on
set(gca,'tickLength',[0 0])

% Set some labels. This first function was obtained
% from MATLAB Central.
XYrotalabel(0, 60, gca,...
 xm(1,:),{'2-9','10-19','20+'},...
 ym(:,1),{'Never','< Monthly','Regular'})
y = ylabel('Visit Frequency');
set(y, 'Units', 'Normalized', ...
 'Position', [-0.1, 0.5, 0]);
x = xlabel('Length of Stay (years)')
set(x, 'Units', 'Normalized', ...

490 Exploratory Data Analysis with MATLAB®, Third Edition

 'Position', [0.5, -0.05, 0]);

% This displays the observed frequencies.
L = cellstr(int2str(data(:)))
multi_text(xm,ym,L)

The mosaic plot is shown in the top panel of Figure 11.9. We see the same
splits from the spine plot when we compare this to Figure 11.8. The splits in
the rows and columns will align when the two variables are independent. We
can clearly see that they do not align in this mosaic plot, indicating they are
not independent. We can split on the other variable (Visit Frequency), if we
use the transpose of the matrix as input to the function.

% Split on other variable
data = flipud(Hosp');
[xm, ym] = mosaic_plot(data);
hold off
box on
set(gca,'tickLength',[0 0])
% Set some labels.
set(gca,'Xtick',xm(1,:),...
 'XtickLabel',{'Regular','< Monthly','Never'})
set(gca,'Ytick',ym(:,1),...
 'YtickLabel',{'20+','10-19','2-9'})
xlabel('Visit Frequency')
ylabel('Length of Stay (years)');

This plot is shown in the lower part of Figure 11.9. In this version, we can see
the same decrease in Visit Frequency with Length of Stay. Also, it is clear from
the last two columns that the visitation pattern for the < Monthly and Never
categories are similar. We decided not to show the observed frequencies to
give an example of the more typical mosaic plot.
❑

As we stated before, if we can consider one of the variables in a contingency
table as explanatory, then we should split first on this one. The mosaic plot
then shows the conditional distribution of the second (dependent) variable
given the first (explanatory) one. Friendly [2000] discusses how we can shade
mosaic plots according to the Pearson residuals to gain more insights. We
show next how these residuals can be shown in sieve plots.

11.3.5 Sieve Plots

In Table 11.4, we showed the expected frequencies of the hospital data under
the hypothesis of independence. These can be visualized in a mosaic-type
plot comprised of tiles or rectangles. The heights of the tiles are proportional
to the corresponding row totals (), while the tile widths are proportionalni +

Visualizing Categorical Data 491

FIGURE 11.9
The first mosaic plot shows the hospital data with Length of Stay as the first splitting variable.
We include the observed cell frequencies. The lower mosaic plot is an example of the more
typical version, as it does not have the frequencies. In this case, we split on the Visit Frequency
variable. It is now apparent that the patterns for the categories < Monthly and Never Visit
Frequency and the Length of Stay are not too different from each other.

2-9 10-19 20+

N
ev

er<
 M

on
th

ly

R
eg

ul
ar

 9

 6

43

18

11

16

16

10

 3

Length of Stay (years)

V
is

it
F

re
q
u
e
n
cy

Regular < Monthly Never
Visit Frequency

20+

10-19

2-9

L
e

n
g

th
 o

f
S

ta
y

(y
e

a
rs

)

492 Exploratory Data Analysis with MATLAB®, Third Edition

to the column totals (). Thus, we have tiles whose areas are proportional
to the expected frequencies.

If we fill each of the rectangles with squares (i.e., the number of observed
frequencies), then we have a sieve plot. Sieve plots are also known as parquet
diagrams and were first published in Riedwyl and Schüpbach [1994]. This
allows us to visually assess the difference between the expected frequencies
given by the area of the tile and the observed frequencies given by the
number of squares. The difference between the frequencies is seen as the
density of shading. A tile where the number of observed frequencies exceeds
the expected number will have a denser pattern of smaller squares.

It is also common practice to visualize the sign of the standardized raw
residuals using a different line style and color to plot the small squares in the
tiles. Cells or tiles with positive residuals have squares shown with blue solid
lines. Those cells with negative residuals have squares with red dashed lines.
In this way, we can see the deviations from independence using the density
of the squares, color, and linestyle.

Example 11.9
The data in Table 11.7 is from Snee [1974] and Friendly [2000]. The data were
recorded in an elementary statistics course taught by Professor Snee, where
students gathered the data as part of a class project. The result is 592 students
classified by eye and hair color. In this case, we do not have a variable that
we might consider to be explanatory. Rather, we are interested in visually
determining if an association might exist between hair and eye color.

We wrote a function for the EDA Toolbox called sieve that will produce a
sieve plot. The code given below will create a sieve plot of the data in Table
11.7. First, we enter the data.

% This is the hair-eye color data.
data = [5 29 14 16
 15 54 14 10
 20 84 17 94
 68 119 26 7];

TABLE 11.7

Hair Color and Eye Color Data [Snee, 1974]

Hair Color

Eye Color Black Brown Red Blond Total

Green 5 29 14 16 64
Hazel 15 54 14 10 93
Blue 20 84 17 94 215
Brown 68 119 26 7 220

Total 108 286 71 127 592

n+j

nij

Visualizing Categorical Data 493

% The following does a sieve plot with the
% observed frequencies as labels.
[xm,ym] = sieve(data,1);
set(gca,'tickLength',[0 0])
axis tight

The plot is given in Figure 11.10. Recall that a sieve plot shows rectangles
with areas proportional to the expected frequencies under independence.
Thus, the rectangles for the cells will line up (across rows and columns), as
we see in the sieve plot. The following code adds the axis labels.

% Add some tick labels.
XYrotalabel(0, 60, gca,...
 xm(1,:),{'Black','Brown','Red','Blond'},...
 ym(:,1),{'Brown','Blue','Hazel','Green'})

% Add some axis labels.
y = ylabel('Eye Color');
set(y, 'Units', 'Normalized',...
 'Position', [-0.1, 0.5, 0]);
x = xlabel('Hair Color');
set(x, 'Units', 'Normalized',...
 'Position', [0.5, -0.05, 0]);

From the sieve plot, we see that blond hair and blue eyes seem to have a
strong association, as does brown eyes with black and brown hair.
❑

In summary, a sieve plot has tiles with areas proportional to the expected
frequencies under the model of independence. Therefore, the columns and
rows of the rectangles line up. Each of the rectangles contains squares and
are colored according to the sign of the Pearson residual. Little squares
shown with red dotted lines indicate a negative residual (observed is less
than expected) for the cell, and solid blue lines for the squares correspond to
positive residuals (observed is greater than expected). A pattern of higher
density cells along the diagonal show a linear association. The reader is asked
to explore this idea in the exercises.

11.3.6 Log Odds Plot

We will use a rather well-known data set containing admissions information
to the University of California, Berkeley (UCB) to explain odds ratios and the
log odds plot. These data are admissions to Berkeley graduate programs, and
are classified by Gender (Male or Female) and Admitted (Yes or No). These data
were for admissions in 1973, and they reflect information aggregated over the
six largest departments [Bickel et al., 1975; Friendly, 2000].

nij

494 Exploratory Data Analysis with MATLAB®, Third Edition

This is a special type of contingency table with dimensions . In other
words, we have two categories for each variable. For this type of table, we are
interested in assessing any association between the two variables (i.e., gender
and admission in the Berkeley data). For instance, we might be interested in
determining if males are more likely to be admitted than females. The data
are shown in Table 11.8.

A useful measure of association for a table is the odds ratio. When we
have only two categories for a variable, we can designate one as a success and
denote the probability of success as . The odds for a success is defined as the
probability of success divided by the probability of failure:

FIGURE 11.10
Here we have the sieve plot for the hair and eye color data of Table 11.7. We see a general
association between hair and eye color. Under the hypothesis of independence, cells with
dotted-line squares have smaller than expected frequencies, and those with solid-line
squares have larger than expected cell frequencies.

TABLE 11.8

UC Berkeley Admissions Data [Bickel, et al., 1975]

Admitted

Gender Yes No Total

Male 1198 1493 2691
Female 557 1278 1835

Total 1755 2771 4526

 68

 20

 15

 5

119

 84

 54

 29

 26

 17

 14

 14

 7

 94

 10

 16

Black Brown Red Blond

B
ro

w
n

B
lu

e
H

az
el

G
re

en

Hair Color

E
ye

 C
o
lo

r

2 2×

2 2×

π

Visualizing Categorical Data 495

. (11.17)

If the probabilities are equal , then the ratio in Equation 11.17
is one. If the probability of success is greater than the probability of failure,
then and the odds are greater than one. On the other hand, if the
probability of failure is greater, then the odds are less than one.

Taking the log of the odds in Equation 11.17 yields a measure of association
with better properties, in that it varies additively around zero. This is called
the logit or log odds and is given by

. (11.18)

Letting be the success probability for one group (e.g., row) in a
table, and be the probability of success for the other, then we can write the
odds ratio for the two groups as

. (11.19)

Taking the log of Equation 11.19 yields the log odds ratio.
The sample odds ratio is found using estimates of the necessary quantities,

as shown here

, (11.20)

where is an estimate for . Taking the log of the sample odds ratio results
in a sampling distribution that is closer to the normal distribution with a
mean of , and a standard deviation given by Equation 11.21. This is
called the asymptotic standard error (ASE):

. (11.21)

The confidence interval for can be estimated using

. (11.22)

We can exponentiate the end points in Equation 11.22 to get the confidence
interval for the odds ratio. See Agresti [2007] for more details.

odds π
1 π–
------------=

π 1 π– 0.5= =

π 1 π–>

logit π() odds()log π
1 π–
------------ log= =

π1 2 2×
π2

odds ratio θ
π1 1 π1–()⁄
π2 1 π2–()⁄
----------------------------= =

θ̂
p1 1 p1–()⁄
p2 1 p2–()⁄

n11 n12⁄
n21 n22⁄

n11n22

n12n21
--------------= = =

pi πi

θ()log

ASE(θ̂())log 1
n11

1
n12

1
n21

1
n22
-------+ + + 1 2⁄

=

100 1 α–()% θ()log

θ̂()log z1 α– 2⁄ ASE(θ̂())log±

496 Exploratory Data Analysis with MATLAB®, Third Edition

Let’s calculate the sample odds ratio of the UCB admissions data in Table
11.8. We are interested in comparing the odds of getting admitted for each
gender:

.

This indicates that men are almost twice as likely to be admitted as women.
The confidence interval for the sample log odds ratio is found as follows:

Thus, the 95% confidence interval of the log odds ratio is [0.4851, 0.7356]. We
can get the corresponding interval for the odds ratio by exponentiating the
end points, as shown here

The interval for the log odds ratio does not contain zero. So, there is evidence
of an association between gender and being admitted to the university. We
are going to explore this more in the next example.

Example 11.10
The UCB admissions data are often used to illustrate Simpson’s paradox, and
we will explore this idea using a log odds ratio plot. This paradox refers to
the phenomenon that an association between two variables reverses sign or
disappears when we divide the data into subpopulations. The UCB data in
Table 11.8 are obtained by aggregating over the admissions data for six
departments. Let’s see what happens when we stratify on the departments.
First, load the UCBadmissions data that contains a array.

% Load the data
load UCBadmissions

Just as a check, we find the aggregated UCB data by summing over the third
dimension. This should give us the data shown in Table 11.8. Then, we
calculate the odds ratio.

% We can find the aggregated UCB data
% by summing over the third dimension.

θ̂
odds Yes Males()

odds Yes Females()

n11n22

n12n21

1198 1278×
1493 557×
------------------------------ 1.84= = = =

θ̂()log z1 α– 2⁄ ASE(θ̂())log±

1.84() 1.96 1
1198------------

1
1493------------

1
557---------

1
1278------------+ + + 1 2⁄

×±log

0.6014 1.96 0.0639×±

0.4851()exp 0.7356()exp,[]
1.6244 2.0867,[]

2 2 6××

Visualizing Categorical Data 497

UCBtot = sum(UCB,3);
% Find the odds ratio.
oddsR = UCBtot(1,1)*UCBtot(2,2)/...
 (UCBtot(1,2)*UCBtot(2,1))

This gives us 1.8411, as we had previously. Next, we find the log odds ratio
for each of the six departments.

% Get the odds ratio for each department.
OR = zeros(1,6);
for i = 1:6
 OR(i) = UCB(1,1,i)*UCB(2,2,i)/...
 (UCB(1,2,i)*UCB(2,1,i));
end
% Get the log odds ratio.
Lor = log(OR);

We can use the 95% confidence intervals of the log odds ratios to measure the
associations in each department. The following code calculates the endpoints
of the intervals. Each column is an endpoint, and each row corresponds to
one of the departments.

% Get the 95% confidence intervals.
% Variance is given by sqrt(sum(1/nij));
UCBi = 1./UCB;
for i = 1:6
 UCBse(i) = sqrt(sum(sum(UCBi(:,:,i))));
 % Get 95% CI.
 UCBci(i,:) = [Lor(i)-1.96*UCBse(i),...
 Lor(i)+1.96*UCBse(i)];
end

The confidence intervals are shown here.

UCBci =

 -1.5670 -0.5372
 -1.0777 0.6377
 -0.1572 0.4070
 -0.3764 0.2124
 -0.1923 0.5927
 -0.7870 0.4092

From these, we see that only the first department has a significant association
between the two variables of gender and admittance because it does not
contain zero. It is interesting to note that it is in the opposite direction of what
we expected. It is in favor of women being admitted! The odds ratio for this
department is the first element in the OR vector:

>> OR(1)

498 Exploratory Data Analysis with MATLAB®, Third Edition

ans =

 0.3492

Taking the inverse of this, we find that , which means that
women are almost three times as likely as men to be admitted to this graduate
department. These associations across strata (i.e., departments) are easy to
see in a log odds ratio plot. The MATLAB code to construct one of these is
shown below.

% Construct the odds ratio plot.
E = 1.96*UCBse;
bar(Lor,'FaceColor',[.9, .9, .9])
hold on
h = errorbar(1:length(E),Lor,E,'ro')
set(h,'MarkerFaceColor','r');
set(gca,'XtickLabel',{'A','B','C','D','E','F'})
title('Log Odds Ratio for Admittance by Department')
xlabel('Department')
ylabel('LOR(Admit/Gender)')

The plot is shown in Figure 11.11. The line for the first confidence interval
does not cross the horizontal line at zero, indicating that it is significant. Some
implicit assumptions were made when analyzing the aggregated data. We
falsely assumed that Males and Females applied to the different departments
equally. It turns out that women largely applied to departments that have
low admission rates [Bickel, et al., 1975; Friendly, 2000].
❑

11.4 Summary and Further Reading

In this chapter, we provided a short introduction to categorical data analysis
and some relevant visualization techniques. We started off by describing
how we can assess the distributions of categorical data using the Poissonness
plot, the binomialness plot, and the hanging rootogram. Friendly [2000]
presents ord plots, which can be used to find a likely theoretical probability
distribution for a discrete data set [Ord, 1967]. The ord plot can be used with
the Poisson, binomial, negative binomial, and logarithmic series.

We can get plots similar to the Poissonness and binomialness plots for
other discrete distributions. Each of these plots is obtained by displaying the
appropriate count metameter as a function of x. If the fit is a good one
for that distribution, then the points should fall on a straight line. Friendly

1 0.3492⁄ 2.86=

ϕ nx()

Visualizing Categorical Data 499

[2000] provides count metameters for the negative binomial, geometric, and
logarithmic series distributions.

We then turned our attention to visualizing cell frequencies in contingency
tables. We showed how to visualize univariate cell counts using bar plots and
spine plots. Mosaic plots and sieve plots were used to understand both of the
variables in two-way tables. We concluded the chapter with an illustration of
the log odds ratio plot.

As mentioned in the text, tiles in the mosaic plots are sometimes colored
according to the values of the Pearson residuals. There are also options for
stacking and stratifying the tiles to display n–way contingency tables. For
more information on these plots, see Friendly [2000].

Another way to visualize the Pearson residuals in a mosaic–type plot is the
association plot [Meyer, et al. 2008]. This plot shows the Pearson residuals
for each cell as a rectangle, where the height is proportional to the residual,
and the width is proportional to the square root of the expected counts. The
bar is positioned (positive or negative) from a baseline according to the sign.

Friendly [2000] describes fourfold plots as a way to display the odds ratios.
It is like a pie chart in that it uses wedges to show frequencies. There are four
quarter circles, so one is judging differences based on the radius. We can see
different aspects of the data, depending on how the data are standardized.

FIGURE 11.11
This is the log odds ratio plot for the UC Berkeley admissions data. There is a significant
association between gender and admissions in department A because the vertical line cor-
responding to the 95% confidence interval does not cross zero. It turns out that women are
2.86 times as likely as men to be admitted to this department.

A B C D E F
−2

−1.5

−1

−0.5

0

0.5

1
Log Odds Ratio for Admittance by Department

Department

L
O

R
(A

d
m

it/
G

e
n
d
e
r)

500 Exploratory Data Analysis with MATLAB®, Third Edition

A plot useful for viewing a special type of categorical data is called the
trilinear or ternary plot. This is used for two-way contingency tables with
three columns. This type of data is also known as compositional data. The
data are shown as a point in an equilateral triangle. The location of the point
indicates the relative proportions of the categories [Friendly, 2000].

We recommend Agresti [2007] for an excellent introduction to the analysis
of categorical data. For a more advanced treatment of the subject, the reader
should consult Agresti [2012]. We already mentioned the book by Friendly
[2000] as a resource for learning more about visualizing categorical data, but
the focus is on SAS implementations. Friendly and Meyer [2015] have a book
on discrete data analysis and visualization using R.

Michael Friendly has a wonderful website on visualization. He includes
examples of good and bad graphics, R and SAS software, papers, and online
applications. Readers will probably find his online course materials to be
especially helpful. The website is

http://www.datavis.ca/

Exercises

11.1 Later versions of MATLAB have a function called histogram. This
provides more options and control over the type of histogram it pro-
duces. For example, we can obtain a valid probability density histo-
gram using the following name–value pair in the argument list:
'Normalization','pdf'. For more options, see the help on his-
togram. Generate random variables from the binomial and Poisson
distributions, as we showed in Example 11.1. Construct histograms
using the histogram function and compare to Figure 11.1.

11.2 Use the randtool in the Statistics Toolbox to generate and visualize
random variables from the binomial and Poisson distributions for dif-
ferent parameter values.

11.3 Construct a binomialness plot of the data in Table 11.1 and assess the
fit. Also try the Poissonness plot. Which one seems best?

11.4 Load the data generated in Example 11.1 (example11_1.mat). Cre-
ate a Poissonness plot. Does this seem a reasonable fit for these data?
Discuss why the Poisson distribution might be a good fit.

11.5 Generate a larger set (5,000 or more) of binomial and Poisson random
variables for the distributions in Example 11.1. Estimate p and . Are
your estimates closer to the true values?

11.6 Conduct a chi–square test of independence for the hospital data in
Table 11.4. Discuss your results.

11.7 The saxony data set contains the number of males in
Saxony families of the nineteenth century [Friendly, 2000]. Each of the

λ

N 6115=

http://www.datavis.ca/

Visualizing Categorical Data 501

families has children. Construct Poissonness plots as shown
in this chapter. Construct a hanging rootogram and assess the fit to a
Poisson.

11.8 Create a binomialness plot using the saxony data and describe the fit.
Also, construct a hanging rootogram and discuss your results.

11.9 Standardize the rows of the hospital data. See Example 11.6 for more
help. Comment on the relationship between Length of Stay and Visit
Frequency. How different are the values for Less than Monthly and
Never?

11.10 Construct a grouped bar plot of the hospital data without transposing
the data matrix. What patterns, if any, do you see? By which variable
is it being grouped?

11.11 Create a spine plot for the rows of the hospital data by revising the
code in Example 11.7.

11.12 Generate frequencies for a two-way contingency table, such that the
variables are independent of each other. Use three levels for each of
the variables. Construct mosaic and sieve plots and comment on the
results.

11.13 The file problem11_13 contains two data sets from Friendly [2000].
Construct sieve plots for each of them and comment on the results.
What patterns do you see and what do the indicate? Calculate the row
means and row totals for each data set. Discuss these results and how
they relate to the patterns seen in the sieve plots.

11.14 Kendall and Stuart [1961] and Friendly [2000] have data documenting
distance vision (with no glasses or contacts) for men and women in
the UK from 30 to 39 years of age. The visual acuity for each eye was
measured and grouped into four levels. There are two data objects in
the file vision—one for men and one for women. Construct sieve
plots for each of these data objects. Add labels as shown in Example
11. 9. What type of pattern do you see and what does it indicate? Does
this seem reasonable, given what you might know about vision?

n 12=

http://taylorandfrancis.com

503

Appendix A
Proximity Measures

We provide some information on proximity measures in this appendix.
Proximity measures are important in clustering, multi-dimensional scaling,
and nonlinear dimensionality reduction methods, such as ISOMAP. The
word proximity indicates how close objects or measurements are in space,
time, or in some other way (e.g., taste, character, etc.). How we define the
nearness of objects is important in our data analysis efforts and results can
depend on what measure is used. There are two types of proximity measures:
similarity and dissimilarity. We now describe several examples of these and
include ways to transform from one to the other.

A.1 Definitions

Similarity measures indicate how alike objects are to each other. A high
value means they are similar, while a small value means they are not. We
denote the similarity between objects (or observations) i and j as sij.
Similarities are often scaled so the maximum similarity is one (e.g., the
similarity of an observation with itself is one, sii = 1). Dissimilarity measures
are just the opposite. Small values mean the observations are close together
and thus are alike. We denote the dissimilarity by δij, and we have δii = 0. In
both cases, we have and .

Hartigan [1967] and Cormack [1971] provide a taxonomy of twelve
proximity structures; we list just the top four of these below. As we move
down in the taxonomy, constraints on the measures are relaxed. Let the
observations in our data set be denoted by the set O, then the proximity
measure is a real function defined on . The four structures S that we
consider here are

S1 S defined on is Euclidean distance;

S2 S defined on is a metric;

S3 S defined on is symmetric real-valued;

sij 0≥ δij 0≥

O O×

O O×
O O×
O O×

504 Exploratory Data Analysis with MATLAB®, Third Edition

S4 S defined on is real-valued.

The first structure S1 is very strict with the proximity defined as the
familiar Euclidean distance given by

, (A.1)

where xik is the k-th element of the i-th observation.
If we relax this and require our measure to be a metric only, then we have

structure S2. A dissimilarity is a metric if the following holds:

1. δij = 0, if and only if i = j.

2. δij = δji.

3. .

The second requirement given above means the dissimilarity is symmetric,
and the third one is the triangle inequality. Removing the metric requirement
produces S3, and allowing nonsymmetry yields S4. Some of the later
structures in the taxonomy correspond to similarity measures.

We often represent the interpoint proximity between all objects i and j in
an matrix, where the ij-th element is the proximity between the i-th and
j-th observation. If the proximity measure is symmetric, then we only need to
provide the n(n - 1)/2 unique values (i.e., the upper or lower part of the
interpoint proximity matrix). We now give examples of some commonly
used proximity measures.

A.1.1 Dissimilarities

We have already defined Euclidean distance (Equation A.1), which is
probably used most often. One of the problems with the Euclidean distance
is its sensitivity to the scale of the variables. If one of the variables is more
dispersed than the rest, then it will dominate the calculations. Thus, we
recommend transforming or scaling the data as discussed in Chapter 1.

The Mahalanobis distance (squared) takes the covariance into account and
is given by

,

where Σ is the covariance matrix. Often Σ must be estimated using the data,
so it can be affected by outliers.

O O×

δij xik xjk–()2

k
=

δij δit δtj+≤

n n×

δij
2 xi xj–()TΣ 1– xi xj–()=

Proximity Measures 505

The Minkowski metric defines a whole family of dissimilarities, and it is
used extensively in nonlinear multidimensional scaling (see Chapter 3). It is
defined by

. (A.2)

When the parameter λ = 1, we have the city block metric (sometimes called
Manhattan distance) given by

.

When λ = 2, then Equation A.2 becomes the Euclidean distance (Equation
A.1).

The MATLAB Statistics Toolbox provides a function called pdist that
calculates the interpoint distances between the n data points. It returns the
values in a vector, but they can be converted into a square matrix using the
function squareform. The basic syntax for the pdist function is

Y = pdist(X, distance)

The distance argument can be one of the following choices (check the help
for any updates):

'euclidean' - Euclidean distance
'seuclidean' - Standardized Euclidean distance, each coor-

dinate in the sum of squares is inverse weighted by the
sample variance of that coordinate

'cityblock' - City Block distance
'mahalanobis' - Mahalanobis distance
'minkowski' - Minkowski distance with exponent 2
'chebychev' - Chebychev distance (maximum coordinate dif-

ference)
'cosine' - One minus the cosine of the included angle

between observations (treated as vectors)
'correlation' - One minus the sample correlation between

observations (treated as sequences of values).
'spearman' - One minus the sample Spearman's rank corre-

lation between observations (treated as sequences of val-
ues).

'hamming' - Hamming distance, percentage of coordinates
that differ

'jaccard' - One minus the Jaccard coefficient, the per-
centage of nonzero coordinates that differ

δij xik xjk–
λ

k
 1

λ

= λ 1≥

δij xik xjk–

k
=

506 Exploratory Data Analysis with MATLAB®, Third Edition

The cosine, correlation, and jaccard measures specified above are
originally similarity measures, which have been converted to dissimilarities,
two of which are covered below. It should be noted that the minkowski
option can be used with an additional argument designating other values of
the exponent.

A.1.2 Similarity Measures

A common similarity measure that can be used with real-valued vectors is
the cosine similarity measure. This is the cosine of the angle between the two
vectors and is given by

.

The correlation similarity measure between two real-valued vectors is
similar to the one above, and is given by the expression

.

A.1.3 Similarity Measures for Binary Data

The proximity measures defined in the previous sections can be used with
quantitative data that are continuous or discrete, but not binary. We now
describe some measures for binary data.

When we have binary data, we can calculate the following frequencies:

This table shows the number of elements where the i-th and j-th observations
both have a 1 (a), both have a 0 (d), etc. We use these quantities to define the
following similarity measures for binary data.

First is the Jaccard coefficient, given by

.

Next we have the Ochiai measure:

i-th Observation

j-th Observation
1 0

1 a b a + b
0 c d c + d

a + c b + d a + b + c + d

sij

xi
Txj

xi
Txi xj

Txj

-------------------------------=

sij

xi x–()T xj x–()

xi x–()T xi x–() xj x–()T xj x–()
--=

sij
a

a b c+ +
--------------------=

Proximity Measures 507

.

Finally, we have the simple matching coefficient, that calculates the
proportion of matching elements:

.

A.1.4 Dissimilarities for Probability Density Functions

In some applications, our observations might be in the form of relative
frequencies or probability distributions. For example, this often happens in
the case of measuring semantic similarity between two documents. Or, we
might be interested in calculating a distance between two probability density
functions, where one is estimated and one is the true density function. We
discuss three types of measures here: Kullback-Leibler information, L1 norm,
and information radius.

Say we have two probability density functions f and g (or any function in
the general case). Kullback-Leibler (KL) information measures how well
function g approximates function f. The KL information is defined as

,

for the continuous case. A summation is used in the discrete case, where f and
g are probability mass functions. The KL information measure is sometimes
called the discrimination information, and it measures the divergence
between two functions. The higher the measure, the greater the difference
between the functions.

There are two problems with the KL information measure. First, there
could be cases where we get a value of infinity, which can happen often in
natural language understanding applications [Manning and Schütze, 2000].
The other potential problem is that the measure is not necessarily symmetric.

The second measure we consider is the information radius (IRad) that
overcomes these problems. It is based on the KL information and is given by

.

The IRad measure tries to quantify how much information is lost if we
describe two random variables that are distributed according to f and g with

sij
a

a b+() a c+()
-------------------------------------=

sij
a d+

a b c d+ + +
------------------------------=

KL f g,() f x() f x()
g x()

log xd=

IRad f g,() KL f
f g+

2-----------, KL g
f g+

2-----------,+=

508 Exploratory Data Analysis with MATLAB®, Third Edition

their average distribution. The information radius ranges from 0 for identical
distributions to 2log2 for distributions that are maximally different. Here we
assume that 0log0 = 0. Note that the IRad measure is symmetric and is not
subject to infinite values [Manning and Schütze, 2000].

The third measure of this type that we cover is the L1 norm. It is symmetric
and well defined for arbitrary probability density functions f and g (or any
function in the general case). We can think of it as a measure of the expected
proportion of events that are going to be different between distributions f and
g. This norm is defined as

.

The L1 norm has a nice property. It is bounded below by zero and bounded
above by two:

,

when f and g are valid probability density functions.

A.2 Transformations

In many instances, we start with a similarity measure and then convert to a
dissimilarity measure for further processing. There are several
transformations that one can use, such as

The last one is valid only when the similarity has been scaled such that sii = 1.
For the general case, one can use

.

In some cases, we might want to transform from a dissimilarity to a
similarity. One can use the following to accomplish this:

.

L1 f g,() f x() g x()– xd=

0 L1 f g,() 2≤ ≤

δij 1 sij–=

δij c sij–= for some constant c

δij 2 1 sij–() .=

δij sii 2sij sjj+–=

sij 1 δij+() 1–
=

Proximity Measures 509

A.3 Further Reading

Most books on clustering and multidimensional scaling have extensive
discussions on proximity measures, since the measure used is fundamental
to these methods. We describe a few of these here.

The clustering book by Everitt, Landau, and Leese [2001] has a chapter on
this topic that includes measures for data containing both continuous and
categorical variables, weighting variables, standardization, and the choice of
proximity measure. For additional information from a classification point of
view, we recommend Gordon [1999].

Cox and Cox [2001] has an excellent discussion of proximity measures as
they pertain to multidimensional scaling. Their book also includes the
complete taxonomy for proximity structures mentioned previously. Finally,
Manning and Schütze [2000] provide an excellent discussion of measures of
similarity that can be used when measuring the semantic distance between
documents, words, etc.

There are also several survey papers on dissimilarity measures. Some
useful ones are Gower [1966] and Gower and Legendre [1986]. They review
properties of dissimilarity coefficients, and they emphasize their metric and
Euclidean nature. For a summary of distance measures that can be used
when one wants to measure the distance between two functions or statistical
models, we recommend Basseville [1989]. The work described in Basseville
takes the signal processing point of view. Jones and Furnas [1987] study
proximity measures using a geometric analysis and apply it to several
measures used in information retrieval applications. Their goal is to
demonstrate the relationship between a measure and its performance.

http://taylorandfrancis.com

511

Appendix B
Software Resources for EDA

The purpose of this appendix is to provide information on internet resources
for EDA. Most of these were discussed in the body of the text, but some were
not. Also, most of them are for MATLAB code, but some of them are stand-
alone packages.

B.1 MATLAB Programs

In this section of Appendix B, we provide websites and references to
MATLAB code that can be used for EDA. Some of the code is included with
the EDA Toolbox. However, we recommend that users periodically look for
the most recent versions.

Bagplots

Papers on the bagplot and related topics are available for download from this
same website. We also include a bagplot function with the EDA Toolbox,
courtesy of the authors of the LIBRA Toolbox (described later in this
appendix) [Verboven and Hubert, 2005]. The use of this function is governed
by the license found at

http://wis.kuleuven.be/stat/robust/LIBRA/LIBRA-home

Computational Statistics Toolbox

This toolbox was written for the book Computational Statistics Handbook with
MATLAB, Third Edition. It contains many useful functions, some of which
were used in this book. It is available for download from

https://www.crcpress.com/Computational-Statistics-
Handbook-with-MATLAB-Third-Edition/Martinez-Mar-
tinez/p/book/9781466592735

and

http://wis.kuleuven.be/stat/robust/LIBRA/LIBRA-home
https://www.crcpress.com/Computational-Statistics-Handbook-with-MATLAB-Third-Edition/Martinez-Martinez/p/book/9781466592735
https://www.crcpress.com/Computational-Statistics-Handbook-with-MATLAB-Third-Edition/Martinez-Martinez/p/book/9781466592735
https://www.crcpress.com/Computational-Statistics-Handbook-with-MATLAB-Third-Edition/Martinez-Martinez/p/book/9781466592735

512 Exploratory Data Analysis with MATLAB®, Third Edition

http://pi-sigma.info

Some of the functions from this toolbox are included with the EDA Toolbox.

Data Visualization Toolbox

The authors of this MATLAB toolbox provide functions that implement the
graphical techniques described in Visualizing Data by William Cleveland.
Software, data sets, documentation, and a tutorial are available from

http://www.datatool.com/prod02.htm

Some of these functions are included with the EDA Toolbox.

Dimensionality Reduction Toolbox

This toolbox was developed by L. J. P. van der Maaten from the Universiteit
Maastricht, The Netherlands. The toolbox, papers, and data sets can be
downloaded at

http://homepage.tudelft.nl/19j49/...
Matlab_Toolbox_for_Dimensionality_Reduction.html

This toolbox has methods for linear and nonlinear dimensionality reduction,
as well as functionality for estimating the intrinsic dimension of a data set.

Generative Topographic Mapping

The GTM Toolbox used to be available as separate toolbox. However, it is
now part of the SOM Toolbox available here

http://research.ics.aalto.fi/software/somtoolbox/

This original GTM Toolbox is included under the GNU license with the EDA
Toolbox.

Hessian Eigenmaps

The code for Hessian eigenmaps or HLLE no longer has its own website. It is
included with the Dimensionality Reduction Toolbox, and the EDA Toolbox.

ISOMAP

The main website for ISOMAP is found at

http://web.mit.edu/cocosci/isomap/isomap.html

This also has links to related papers, data sets, convergence proofs, and
supplemental figures. The ISOMAP functions are in the EDA Toolbox.

http://pi-sigma.info
http://www.datatool.com/prod02.htm
http://research.ics.aalto.fi/software/somtoolbox/
http://web.mit.edu/cocosci/isomap/isomap.html
http://homepage.tudelft.nl/19j49/...Matlab_Toolbox_for_Dimensionality_Reduction.html

Software Resources for EDA 513

Locally Linear Embedding – LLE

The main website for LLE is

http://cs.nyu.edu/~roweis/nldr.html

From here you can download the MATLAB code, papers, and data sets. The
LLE function is part of the EDA Toolbox.

MATLAB Central

You can find lots of user-contributed code at this website:

www.mathworks.com/matlabcentral/

Always look here first before you write your own functions. What you need
might be here already.

Microarray Analysis – MatArray Toolbox

The link below takes you to a webpage where you can download software
that implements techniques for the analysis of microarray data. This toolbox
includes functions for k-means, hierarchical clustering, and others.

www.ulb.ac.be/medecine/iribhm/microarray/toolbox/

Model-Based Clustering Toolbox

The code from the Model-Based Clustering Toolbox is included with the
EDA Toolbox. However, for those who are interested in more information on
MBC, please see

www.stat.washington.edu/mclust/

This website also contains links for model-based clustering functions that
will work in S-Plus and R.

Nonnegative Matrix Factorization

A toolbox for nonnegative matrix factorization for signal processing is
available for download at

http://www.bsp.brain.riken.jp/ICALAB/nmflab.html

This collection of MATLAB functions also implements nonnegative tensor
factorization.

Robust Analysis – LIBRA

A toolbox for robust statistical analysis is available for download at

http://wis.kuleuven.be/stat/robust/LIBRA/LIBRA-home

http://cs.nyu.edu/~roweis/nldr.html
www.mathworks.com/matlabcentral/
www.ulb.ac.be/medecine/iribhm/microarray/toolbox/
www.stat.washington.edu/mclust/
http://www.bsp.brain.riken.jp/ICALAB/nmflab.html
http://wis.kuleuven.be/stat/robust/LIBRA/LIBRA-home

514 Exploratory Data Analysis with MATLAB®, Third Edition

The toolbox has functions for univariate location and scale, multivariate
location and covariance, regression, PCA, principal component regression,
partial least squares, and robust classification [Verboven and Hubert, 2005].
Graphical tools are also included for model checking and outlier detection.

Self-Organizing Map – SOM

The website for the SOM Toolbox is

http://research.ics.aalto.fi/software/somtoolbox/

This is a new website for the toolbox, and it includes a link to the previous
version and site. It contains links to documentation, theory, research, and
related information. The software may be used for noncommercial purposes
and is governed by the terms of the GNU General Public License. Some
functions in the SOM Toolbox are contributed by users and might be
governed by their own copyright. Some of the functions in the SOM Toolbox
are included in the EDA Toolbox.

SiZer

This software allows one to explore data through smoothing. It contains
various functions and GUIs for MATLAB. It helps answer questions about
what features are really there or what might be just noise. In particular, it
provides information about smooths at various levels of the smoothing
parameter. For code, see:

http://marron.web.unc.edu/sample-page/marrons-matlab-
software/

For examples and explanations of SiZer and smoothing, go to:

https://www.unc.edu/~marron/marron_data_anal.html

Statistics Toolboxes – No Cost

The following are links to statistics toolboxes:

www.statsci.org/matlab/statbox.html
www.maths.lth.se/matstat/stixbox/

Text to Matrix Generator (TMG) Toolbox

The TMG Toolbox creates new term-document matrices from documents. It
also updates existing term-document matrices. It includes various term-
weighting methods, normalization, and stemming. The website to download
this toolbox is

http://scgroup20.ceid.upatras.gr:8000/tmg/

http://research.ics.aalto.fi/software/somtoolbox/
http://marron.web.unc.edu/sample-page/marrons-matlabsoftware/
http://marron.web.unc.edu/sample-page/marrons-matlabsoftware/
https://www.unc.edu/~marron/marron_data_anal.html
www.statsci.org/matlab/statbox.html
www.maths.lth.se/matstat/stixbox/
http://scgroup20.ceid.upatras.gr:8000/tmg/

Software Resources for EDA 515

Topic Modeling Toolbox

Mark Steyvers wrote a Topic Modeling Toolbox for MATLAB. The following
website includes code, data sets, and example scripts:

psiexp.ss.uci.edu/research/programs_data/toolbox.htm

t–SNE

There is an extensive website for t–SNE tools written by Laurens van der
Maaten. He provides implementations of t–SNE for different software, such
as MATLAB, R, Python, and more. Here is the website

https://lvdmaaten.github.io/tsne/

This site also has links to publications and data sets.

B.2 Other Programs for EDA

The following programs are available for download (at no charge).

Finite Mixtures - EMMIX

A FORTRAN program for fitting finite mixtures with normal and t-
distribution components can be downloaded from

http://www.maths.uq.edu.au/~gjm/emmix/emmix.html

GGobi

GGobi is a data visualization system for viewing high-dimensional data, and
it includes brushing, linking, plot matrices, multi-dimensional scaling, and
many other capabilities. The home page for GGobi is

www.ggobi.org/

Versions are available for Windows and Linux. See the text by Cook and
Swayne [2007] for information on how to use GGobi and to connect it with R.

MANET

For Macintosh users, one can use MANET (missings are now equally treated)
found at:

http://www.rosuda.org/MANET/

MANET provides various graphical tools that are designed for studying
multivariate features.

https://lvdmaaten.github.io/tsne/
http://www.maths.uq.edu.au/~gjm/emmix/emmix.html
www.ggobi.org/
http://www.rosuda.org/MANET/

516 Exploratory Data Analysis with MATLAB®, Third Edition

Model-Based Clustering

Software for model-based clustering can be downloaded at

http://www.stat.washington.edu/mclust/

Versions are available for S-Plus and R. One can also obtain some of the
papers and technical reports at this website, in addition to joining a mailing
list.

Mondrian

This software is a general purpose package for visualization and EDA [Theus
and Urbanek, 2009]. It is well-suited for large data sets, categorical data, and
spatial data. All plots are linked, and many options for plotting and
interacting with the graphics are available. The website for Mondrian is

http://www.theusrus.de/Mondrian/

R for Statistical Computing

R is a language and environment for statistical computing. It is distributed as
free software under the GNU license. It operates under Windows, UNIX
systems (such as Linux), and the Macintosh. One of the benefits of the R
language is the availability of many user-contributed packages. Please see
the following website for more information.

www.r-project.org/

B.3 EDA Toolbox

The Exploratory Data Analysis Toolbox is available for download from two
sites:

https://www.crcpress.com/Exploratory-Data-Analysis-
with-MATLAB-Third-Edition/Martinez-Martinez-
Solka/p/book/9781498776066

and

http://pi-sigma.info

Please review the readme file for installation instructions and information
on any changes. For complete functionality, you must have the MATLAB
Statistics Toolbox, version 4 or higher. Please see the accompanying
documentation for more information on the use of the EDA Toolbox.

http://www.stat.washington.edu/mclust/
http://www.theusrus.de/Mondrian/
www.r-project.org/
https://www.crcpress.com/Exploratory-Data-Analysis-with-MATLAB-Third-Edition/Martinez-Martinez-Solka/p/book/9781498776066
http://pi-sigma.info
https://www.crcpress.com/Exploratory-Data-Analysis-with-MATLAB-Third-Edition/Martinez-Martinez-Solka/p/book/9781498776066
https://www.crcpress.com/Exploratory-Data-Analysis-with-MATLAB-Third-Edition/Martinez-Martinez-Solka/p/book/9781498776066

517

Appendix C
Description of Data Sets

In this appendix, we describe the various data sets used in the book. All data
sets are downloaded with the accompanying software. We provide the data
sets in MATLAB binary format (MAT-files).

abrasion
These data are the results from an experiment measuring three variables for
30 rubber specimens [Davies, 1957; Cleveland and Devlin, 1988]: tensile
strength, hardness, and abrasion loss. The abrasion loss is the amount of
material abraded per unit of energy. Tensile strength measures the force
required to break a specimen (per unit area). Hardness is the rebound height
of an indenter dropped onto the specimen. Abrasion loss is measured in
g/hp-hour; tensile strength is measured in kg/cm2; and the unit for hardness
is Shore. The intent of the experiment was to determine the relationship
between abrasion loss with respect to hardness and tensile strength.

animal
This data set contains the brain weights and body weights of several types of
animals [Crile and Quiring, 1940]. According to biologists, the relationship
between these two variables is interesting, since the ratio of brain weight to
body weight is a measure of intelligence [Becker, Cleveland, and Wilks,
1987]. The MAT-file contains variables: AnimalName, BodyWeight, and
BrainWeight.

BPM data sets
There are several BPM data sets included with the text. We have iradbpm,
ochiaibpm, matchbpm, and L1bpm. Each data file contains the interpoint
distance matrix for 503 documents and an array of class labels, as described
in Chapter 1. These data can be reduced using ISOMAP before applying
other analyses.

calibrat
This data set reflects the relationship between radioactivity counts (counts)
to hormone level for 14 immunoassay calibration values (tsh). The original

°

518 Exploratory Data Analysis with MATLAB®, Third Edition

source of the data is Tiede and Pagano [1979], and we downloaded them
from the website for Simonoff [1996]:

http://pages.stern.nyu.edu/~jsimonof/SmoothMeth/.

cereal
These data were obtained from ratings of eight brands of cereal [Chakrapani
and Ehrenberg, 1981; Venables and Ripley, 1994]. The cereal file contains a
matrix where each row corresponds to an observation and each column
represents one of the variables or the percent agreement to statements about
the cereal. The statements are: comes back to, tastes nice, popular with all the
family, very easy to digest, nourishing, natural flavor, reasonably priced, a
lot of food value, stays crispy in milk, helps to keep you fit, fun for children
to eat. It also contains a cell array of strings (labs) for the type of cereal.

environmental
This file contains data comprising 111 measurements of four variables. These
include Ozone (PPB), SolarRadiation (Langleys), Temperature
(Fahrenheit), and WindSpeed (MPH). These were initially examined in
Bruntz et al. [1974], where the intent was to study the mechanisms that might
lead to air pollution.

ethanol
A single-cylinder engine was run with either ethanol or indolene. This data
set contains 110 measurements of compression ratio (Compression),
equivalence ratio (Equivalence), and N0x in the exhaust (NOx). The goal
was to understand how N0x depends on the compression and equivalence
ratios [Brinkman, 1981; Cleveland and Devlin, 1988].

example96
This is the data used in Example 9.6 to illustrate the box-percentile plots.

example104
This loads the data used in several examples to illustrate methods for plotting
high-dimensional data. It is a subset of the BPM data that was reduced using
ISOMAP as outlined in Example 10.5.1

faithful
This is a different version of the geyser data set, which is also included in
the EDA Toolbox. It has fewer observations, but it has an additional variable.
the first column is the eruption time of the Old Faithful geyser in minutes.
The second column is the waiting time to the next eruption [Härdle, 1991].

1 Note that the example numbers were changed in the second edition, but we did not change the
name of this file.

http://pages.stern.nyu.edu/~jsimonof/SmoothMeth/

Description of Data Sets 519

forearm
These data consist of 140 measurements of the length in inches of the forearm
of adult males [Hand et al., 1994; Pearson and Lee, 1903].

galaxy
The galaxy data set contains measurements of the velocities of the spiral
galaxy NGC 7531. The array EastWest contains the velocities in the east-
west direction, covering around 135 arc sec. The array NorthSouth contains
the velocities in the north-south direction, covering approximately 200 arc
sec. The measurements were taken at the Cerro Tololo Inter-American
Observatory in July and October of 1981 [Buta, 1987].

geyser
These data represent the waiting times (in minutes) between eruptions of the
Old Faithful geyser at Yellowstone National Park [Hand et al., 1994; Scott,
2015].

hamster
This data set contains measurements of organ weights for hamsters with
congenital heart failure [Becker and Cleveland, 1991]. The organs are heart,
kidney, liver, lung, spleen, and testes.

iris
The iris data were collected by Anderson [1935] and were analyzed by
Fisher [1936] (and many statisticians since then!). The data set consists of 150
observations containing four measurements based on the petals and sepals of
three species of iris. The three species are: Iris setosa, Iris virginica, and Iris
versicolor. When the iris data file is loaded, you get three matrices,
one corresponding to each species.

leukemia
The leukemia data set is described in detail in Chapter 1. It measures the
gene expression levels of patients with acute leukemia.

lsiex
This file contains the term-document matrix used in Examples 2.3 and 2.4.

lungA, lungB
The lung data set is another one that measures gene expression levels. Here
the classes correspond to various types of lung cancer.

oronsay
The oronsay data set consists of particle size measurements. It is described
in Chapter 1. The data can be classified according to the sampling site as well
as the type (beach, dune, midden).

50 4×

520 Exploratory Data Analysis with MATLAB®, Third Edition

ozone
The ozone data set [Cleveland, 1993] contains measurements for the daily
maximum ozone (ppb) concentrations at ground level from May 1 to
September 30 in 1974. The measurements were taken at Yonkers, New York
and Stamford, Connecticut.

playfair
This data set is described in Cleveland [1993] and Tufte [1983], and it is based
on William Playfair’s 1801 published displays of demographic and economic
data. The playfair data set consists of the 22 observations representing the
populations (thousands) of cities at the end of the 1700s and the diameters of
the circles Playfair used to encode the population information. This MAT-file
also includes a cell array containing the names of the cities.

pollen
This data set was generated for a data analysis competition at the 1986 Joint
Meetings of the American Statistical Association. It contains 3848
observations, each with five fictitious variables: ridge, nub, crack, weight,
and density. The data contain several interesting features and structures. See
Becker et al. [1986] and Slomka [1986] for information and results on the
analysis of these artificial data.

posse
The posse file contains several data sets generated for simulation studies in
Posse [1995b]. These data sets are called croix (a cross), struct2 (an L-
shape), boite (a donut), groupe (four clusters), curve (two curved
groups), and spiral (a spiral). Each data set has 400 observations in 8-D.
These data can be used in PPEDA and other data tours.

salmon
The salmon data set was downloaded from the website for the book by
Simonoff [1996]: pages.stern.nyu.edu/~jsimonof/SmoothMeth/.
The MAT-file contains 28 observations in a 2–D matrix. The first column
represents the size (in thousands of fish) of the annual spawning stock of
Sockeye salmon along the Skeena River from 1940 to 1967. The second
column represents the number of new catchable-size fish or recruits, again in
thousands of fish.

scurve
This file contains data randomly generated from an S-curve manifold. See
Example 3.5 for more information.

singer
This file contains several variables representing the height in inches of
singers in the New York Choral Society [Cleveland, 1993; Chambers et al.,

Description of Data Sets 521

1983]. There are four voice parts: sopranos, altos, tenors, and basses. The
sopranos and altos are women, and the tenors and basses are men.

skulls
These data were taken from Cox and Cox [2001]. The data originally came
from a paper by Fawcett [1901], where they detailed measurements and
statistics of skulls belonging to the Naqada race in Upper Egypt. The skulls
file contains an array called skullsdata for forty observations, 18 of which
are female and 22 are male. The variables are greatest length, breadth, height,
auricular height, circumference above the superciliary ridges, sagittal
circumference, cross-circumference, upper face height, nasal breadth, nasal
height, cephalic index, and ratio of height to length.

snowfall
This contains the amount of snowfall (inches) that fell in Buffalo, New York
from 1910 to 1972 [Parzen, 1979].

software
This file contains data collected on software inspections. The variables are
normalized by the size of the inspection (the number of pages or SLOC –
single lines of code). The file software.mat contains the preparation time
in minutes (prepage, prepsloc), the total work hours in minutes for the
meeting (mtgsloc), and the number of defects found (defpage, defsloc).
A more detailed description can be found in Chapter 1.

spam
These data were downloaded from the UCI Machine Learning Repository:

http://www.ics.uci.edu/~mlearn/MLRepository/.html

Anyone who uses E-mail understands the problem of spam, which is
unsolicited E-mail, commercial or otherwise. For example, spam can be chain
letters, pornography, advertisements, foreign money-making schemes, etc.
This data set came from Hewlett-Packard Labs and was generated in 1999.
The spam data set consists of 58 variables: 57 continuous and one class label.
If an observation is labeled class 1, then it is considered to be spam. If it is of
class 0, then it is not considered spam. The first 48 attributes represent the
percentage of words in the E-mail that match some specified word
corresponding to spam or not spam. There are an additional six variables that
specify the percentage of characters in the E-mail that match a specified
character. Others refer to attributes relating to uninterrupted sequences of
capital letters. More information on the attributes is available at the above
internet link. One can use these data to build classifiers that will discriminate
between spam and nonspam E-emails. In this application, a low false positive
rate (classifying an E-mail as spam when it is not) is very important.

http://www.ics.uci.edu/~mlearn/MLRepository/.html

522 Exploratory Data Analysis with MATLAB®, Third Edition

sparrow
These data are taken from Manly [1994]. They represent some measurements
taken on sparrows collected after a storm on February 1, 1898. Eight
morphological characteristics and the weight were measured for each bird,
five of which are provided in this data set. These are on female sparrows
only. The variables are total length, alar extent, length of beak and head,
length of humerus, and length of keel of sternum. All lengths are in
millimeters. The first 21 of these birds survived, and the rest died.

swissroll
This data file contains a set of variables randomly generated from the Swiss
roll manifold with a hole in it. It also has the data in the reduced space (from
ISOMAP and HLLE) that was used in Example 3.5.

votfraud
These data represent the Democratic over Republican pluralities of voting
machine and absentee votes for 22 Philadelphia County elections. The
variable machine is the Democratic plurality in machine votes, and the
variable absentee is the Democratic plurality in absentee votes [Simonoff,
1996].

yeast
The yeast data set is described in Chapter 1. It contains the gene expression
levels over two cell cycles and five phases.

523

Appendix D
MATLAB® Basics

The purpose of this appendix is to provide some introductory information to
help you get started using MATLAB. It has been adapted from Statistics in
MATLAB: A Primer [Martinez and Cho, 2014]. We will describe:

� The desktop environment

� How to get help from several sources

� Ways to get your data into and out of MATLAB

� The different data types in MATLAB

� How to work with arrays

� Functions and commands

� Simple plotting functions

D.1 Desktop Environment

This section will provide information on the desktop environment. Figure
D.1 shows the desktop layout for MATLAB, where we chose to view just the
Command Window. We made the window smaller, which causes some of
the sections—CODE, ENVIRONMENT, and RESOURCES, in this case—to be
collapsed. Simply click on the arrow buttons for the sections to see what tools
are available or make the window bigger by resizing with the mouse.

The default desktop layout includes the following panels or windows:
Command Window, Current Folder, Workspace, and Command History.
You can personalize your desktop layout by choosing those panels or sub-
windows that you need for your work, dragging the panels to different
places within the desktop, or re-sizing them.

The Command Window is the main interface to communicate with
MATLAB. The window shows the MATLAB prompt, which is shown as a
double arrow: >>. This is where you enter commands, functions, and other
code. MATLAB will also display information in this spot in response to
certain commands.

524 Exploratory Data Analysis with MATLAB®, Third Edition

MATLAB now uses the typical ribbon interface found in recent Microsoft
Windows® applications. The interface for MATLAB is comprised of tabs and
sections, as highlighted in Figure D.1. The ribbon interface will be different
depending on the selected tab (HOME, PLOTS, or APPS).

We will provide more detail on the Figure window in a later section, but
we mention it here briefly. Plots are displayed in a separate Figure window
with its own user interface, which is comprised of the more familiar menu
options and toolbar buttons. The main menu items include FILE, EDIT, TOOLS,
HELP, and more. See Figure D.6 for an example.

The Workspace sub-window provides a listing of the variables that are in
the current workspace, along with information about the type of variable, the
size, and summary information. You can double-click on the VARIABLE icon to
open it in a spreadsheet-like interface. Using this additional interface, you
can change elements, delete and insert rows, select and plot columns, and
much more.

The Script Editor is a useful tool. This can be opened by clicking the NEW

SCRIPT button on the ribbon interface. This editor has its own ribbon interface
with helpful options for programming in MATLAB. The editor also has some
nice features to make it easier to write error-free MATLAB code, such as

FIGURE D.1
This is a screenshot of the main MATLAB window or desktop, where we have chosen to
view only the Command Window in our layout. The desktop layout can be changed by
clicking on the ENVIRONMENT section and the LAYOUT option. MATLAB now uses the
familiar ribbon interface common to Microsoft® applications.

Tabs: HOME, PLOTS, APPS

Sections: FILE, VARIABLE, CODE, ENVIRONMENT, RESOURCES

Get HELP here

MATLAB® Basics 525

tracking parentheses, suggesting the use of a semi-colon, and warnings about
erroneous expressions or syntax.

D.2 Getting Help and Other Documentation

This appendix is meant to be a brief introduction to MATLAB—just enough
to get you started. So, the reader is encouraged to make use of the many
sources of assistance available via the online documentation, command line
tools, help files, and the user community. A starting point could be to select
the HELP button found on the HOME ribbon and the RESOURCES section; see
Figure D.2.

There are several options to get help at the command line. They are the
easiest and quickest way to get some help, especially once you become
familiar with MATLAB.

You can find a shortened version of the documentation for a function by
typing

help functionname

at the command line. This will provide information on the syntax for the
function, definitions of input/output arguments, and examples. The
command

doc functionname

will open the documentation for functionname in a separate window.
You can access MATLAB documentation in several ways. One is via the

HELP button (see Figure D.2) on the HOME ribbon. This opens a window that
has links to the documentation for your installed toolboxes. There is also a

FIGURE D.2
This shows the options available from the HELP button on the RESOURCES section of the
HOME tab. Click the question mark to open a documentation window or click the arrow
button to access more options.

526 Exploratory Data Analysis with MATLAB®, Third Edition

link to .pdf documentation on all toolboxes (scroll down to the bottom of the
list on the website). Clicking on that link will take you to the Documentation
Center at the MathWorks, Inc. website.

There is a vast MATLAB user community. This is a great resource for
finding answers, obtaining user-written code, and following news groups.
The main portal for this community is MATLAB Central, and it can be found
at this link:

http://www.mathworks.com/matlabcentral/

D.3 Data Import and Export

Getting data into MATLAB is the first step in any analysis. Similarly, we
might need to export data for use in other software (e.g., R) or to save the
objects we created for future analysis in MATLAB. There are two main
approaches: using command line functions (see Table D.1) or the interactive
Import Wizard.

D.3.1 Data Import and Export in Base MATLAB®

The main functions to use for importing and exporting MATLAB specific
data files (.mat files) via the command line are the load function for
importing and the save function for exporting. These functions can also be
used with an ASCII text file.

MATLAB has several options for reading in ASCII text files. If the file has
numerical entries separated by white space, then the load (for exporting use
save -ascii) command can be employed. If the values are separated by a
different character, such as commas or tabs, then dlmread can be used. The
character used to separate the values is inferred from the file or it can be
specified as an argument. A related function called dlmwrite is used for
exporting data in an ASCII file with different delimiters.

Most software packages for data analysis provide an option to import and
export files where the data entries are separated by commas (.csv files).
MATLAB has functions csvread and csvwrite to handle this type of file.
Note that the file must contain only numeric data to use these functions.

You can import and export spreadsheet files with the .xls or .xlsx
extensions using xlsread and xlswrite. The xlsread function will also
read in OpenDocument™ spreadsheets that have the .ods file extension. For
more information on OASIS OpenDocument formats, see

http://www.opendocumentformat.org/.

http://www.mathworks.com/matlabcentral/
http://www.opendocumentformat.org/

MATLAB® Basics 527

Sometimes a file can contain numerical and text data. There are two
command-line options for reading in these types of files. One is the
importdata function. This function can handle headers for ASCII files and
spreadsheets, but the rest of the data should be in tabular form and has to be
numeric. If you have an ASCII file with columns of non-numeric data
(characters or formatted dates/times), then you can use the textscan
function or the Import Wizard described next.

The Import Wizard can also be used to import data. It is started by clicking
on the IMPORT DATA button located on the MATLAB desktop HOME ribbon’s
VARIABLE section; see Figure D.3. You can also start it by typing uiimport at
the command line. The wizard guides you through the process of importing
data from many different recognized file types. It allows you to view the
contents of a file, to select the variables and the observations to import, to
specify a value for unimportable cells, and more.

TABLE D.1

Common Data I/O Functions in Base MATLAB®

load, save Read and write .mat files
Read and write text files using the -ascii
flag

dlmread, dlmwrite Handles text files with specified delimiter

csvread, csvwrite Use for comma delimited or .csv files

xlsread, xlswrite Read and write spreadsheet files

importdata, textscan Use for files that have a mixture of text and
numbers

FIGURE D.3
Select the IMPORT DATA button to start the Import Wizard.

528 Exploratory Data Analysis with MATLAB®, Third Edition

D.3.2 Data Import and Export with the Statistics Toolbox

There are some special functions for importing and exporting data in the
Statistics Toolbox; see Table D.2 for a summary of the functions. These are
particularly useful for statisticians and data analysts, and they include
functions for importing and exporting tabular data, as well as data stored in
the SAS XPORT format.

The functions tblread and tblwrite will import and export data in a
tabular or matrix-like format. The data file must have the variable names on
the first row, and the case names (or record identification variable) are in the
first column. The data entries would start in the cell corresponding to the
second row and second column (position in a matrix).

The basic syntax to interactively select a file to load is:

[data, vnames, cnames] = tblread,

where vnames contains the variable names (first row of the file) and cnames
has the names of the observations (first column of the file). The variable data
is a numeric matrix, where rows correspond to the observations, and the
columns are the variables or characteristics.

Calling tblread with no input argument opens a window interface for
selecting files. You can also specify a file name by using an input argument,
as follows:

[data, vnames, cnames] = tblread(filename).

The following function call

tblwrite(data,vnames,cnames,filename,delim)

will export the data to a file with the delimiter specified by delim. Use help
tblwrite at the command line for delimiter options.

Statisticians and data analysts often have to read in SAS files. The function
xptread can be used to import files in the SAS XPORT transport format. The
file can be selected interactively by leaving out the file name as the input
argument or you can use the following syntax to read in a specific file:

data = xptread(filename).

The documentation for the Statistics Toolbox describes the functions we
identified above and some additional ones for reading and exporting case
names (caseread, casewrite). MATLAB documentation and help pages
can be accessed from the desktop environment by clicking on the HELP button
(on the HOME ribbon), selecting STATISTICS TOOLBOX … EXPLORATORY DATA

ANALYSIS … DATA IMPORT AND EXPORT.

2 2,()

MATLAB® Basics 529

D.4 Data in MATLAB®

We now describe the basic data types in MATLAB and the Statistics Toolbox.
We also discuss how to merge data sets and to create special arrays that
might prove useful in data analysis. We conclude with a short introduction
to object-oriented programming constructs and how they are used in
MATLAB.

D.4.1 Data Objects in Base MATLAB®

One can consider two main aspects of a data object in MATLAB—the object
class and what it contains. We can think of the object class as the type of
container that holds the data. The most common ones are arrays, cell arrays,
and structures. The content of objects in MATLAB can be numeric (e.g.,
double precision floating point or integers) or characters (e.g., text or strings).
We now describe the common types or classes of objects in the base MATLAB
software.

The word array is a general term encompassing scalars, vectors, matrices,
and multi-dimensional arrays. All of these objects have a dimension
associated with them. You can think of the dimension as representing the
number of indexes you need to specify to access elements in the array. We
will represent this dimension with the letter k.

� Scalar: A scalar is just a single number (or character), and it has
dimension You do not need to specify an address because
it is just a single element.

TABLE D.2

Data I/O Functions in the Statistics Toolbox

tblread, tblwrite Data in tabular format with variable names on the
first row and case names in the first column

xptread SAS XPORT (transport) format files

caseread, casewrite Import and export text files with one case name per
line

export Write a dataset array to a tab-delimited file

tdfread Import a tab-delimited file that has text and numeric
data

k 0.=

530 Exploratory Data Analysis with MATLAB®, Third Edition

� Vector: A vector is usually a column of values, but MATLAB also
has row vectors. A vector has dimension because you have
to provide one value to address an element in the column (or row)
vector.

� Matrix: A matrix is an object that has rows and columns—like a
table. To extract or access an element in a matrix, you have to
specify what row it is in and also the column. Thus, the dimension
of a matrix is

� Multi-dimensional array: A multi-dimensional array has dimen-
sion For example, we could think of a three-dimensional
array being organized in pages (the third dimension), where each
page contains a matrix. So, to access an element in such an array,
we need to provide the row, column, and page number.

As a data analyst, you will usually import data using load or some other
method we described previously. However, you will likely also need to type
in or construct arrays for testing code, entering parameters, or getting the
arrays into the right form for calling functions. We now cover some of the
ways to build small arrays.

Commas or spaces concatenate elements (or other arrays) as columns. In
other words, it puts them together as a row. Thus, the following MATLAB
code will produce a row vector:

x = [1, 4, 5]

Or, we can concatenate two column vectors a and b to create one matrix, as
shown here:

Y = [a b]

The semi-colon will stack elements as rows. So, we would obtain a column
vector from this command:

z = [1; 4; 5]

As another example, we could put three row vectors together to get a matrix,
as shown next:

Y = [a; b; c]

It is important to note that the building blocks of your arrays have to be
conformal in terms of the number of elements in the sub-arrays when using
the comma or semi-colon to merge data sets. Otherwise, you will get an error.

We might need to generate a regular sequence of values when working in
MATLAB. We can accomplish this by using the colon. We get a sequence of
values from one to ten with the following syntax:

x = 1:10

k 1=

k 2.=

k 2.>

MATLAB® Basics 531

Other step sizes can be used, too. For instance, this will give us a sequence
from one to ten in steps of 0.5:

x = 1:0.5:10

and this will yield a decreasing sequence:

x = 10:-1:1

We can create an array of all zeros or all ones. Arrays of this type are often
used in data analysis. Here is how we can create a matrix of zeros:

Z = zeros(3,3)

This next function call will produce a multidimensional array with

O = ones(2,4,3)

The array O has three pages (third dimension), and each page has a matrix
with two rows and four columns.

There is a special type of array in MATLAB called the empty array. An
empty array is one that contains no elements. Thus, it does not have any
dimensions associated with it, as we mentioned above with other arrays. The
empty array is designated by closed square brackets, as shown here: []. It
can be used to delete elements of an array at the command line, and it is
sometimes returned in response to function calls and logical expressions.

Here is an example of the first case, where we show how to delete an
element from a vector x.

% Create a vector x.
x = [2, 4, 6];
% Delete the second element.
x(2) = [];
% Display the vector x.
disp(x)
 2 6

A cell array is a useful data object, especially when working with strings.
The elements of a cell array are called cells. Each cell provides a flexible
container for our data because it can hold data of any type—even other cell
arrays. Furthermore, each element of the cell array can have a different size.

The cell array has an overall structure that is similar to basic numeric or
character data arrays covered previously, and as such, they have to be
conformal in their overall arrangement. For example, the cells are arranged
in rows, columns, pages, etc., as with arrays. If we have a cell array with two
rows, then each of its rows has to have the same number of cells. However,
the content of the cells can be different in terms of data type and size.

We can create an empty cell array using the function cell, as shown here,
where we set up a array of cells. Each of the cells in the following
cell array object is empty:

3 3×

k 3:=

2 4 3××

532 Exploratory Data Analysis with MATLAB®, Third Edition

cell_array = cell(2,4,3)

You can also construct a cell array and fill it with data, as shown in the code
given next. Note that curly braces are used to denote a cell array.

% Create a cell array, where one cell contains
% numbers and another cell element is a string.
cell_array2 = {[1,2], 'This is a string'};

Like cell arrays, structures allow one to combine dissimilar data into a
single variable. The basic syntax to create a structure is

S = struct('field1',data1,'field2',data2,...).

Note that the structure can have one or more fields, along with the associated
data values. Let’s use this to create a small structure.

% Create a structure called author with four fields.
author = struct(...
 'name',{{'Wendy','Angel'}},...
 'area',{{'Clustering','Visualization'}},...
 'deg',{{'PhD','PhD'}});

A dot notation is used to extract or access a field. Suppose we want to get
all of the names in our author structure, then we can use

all_names = author.name

to get all of the entries in the name field. We will discuss how to access
individual data elements and records in the next section.

A table is a type of data object in the base MATLAB software. The table
object is like cell arrays and structures. We can combine data of different data
types in one object. However, it has a table-like format that is familiar to
statisticians and data analysts. The rows of a table object would contain the
observations or cases, and the columns correspond to the characteristics or
features.

We can use the table function to create a table object employing variables
that are in the workspace. The basic syntax is

% Create a table using two objects.
mytab = table(var1,var2)

You can import a file as a table object using the readtable function. This
function works with delimited text files (.txt, .dat, or .csv). It will also read
in an Excel spreadsheet file with .xls or .xlsx extensions.

D.4.2 Accessing Data Elements

In this section, we demonstrate how you can identify elements of arrays, cell
objects, and structures. This is useful in data analysis because we often need

MATLAB® Basics 533

to analyze subsets of our data or to create new data sets by combining others.
Table D.3 provides some examples of how to access elements of arrays. These
can be numeric, string, or cell arrays. In the case of cell arrays, the notation is
used to access the cell elements, but not the contents of the cells. Curly braces
{ } are used to get to the data that are inside the cells. For example, A{1,1}
would give us the contents of the cell, which would have a numeric or
character type. Whereas, A(1,1) is the cell, and it has a type (or class) of cell.

These two notations can be combined to access part of the contents of a cell.
To get the first two elements of the vector contents of cell A(1,1), we can use

A{1,1}(1:2)

The curly braces in A{1,1} tells MATLAB to go inside the cell in position
(1,1), and the (1:2) points to elements 1 and 2 inside the cell.

Recall that we can access entire fields in a structure using the dot notation.
We can extract partial content from the fields by using the techniques we
described for numeric and cell arrays, as illustrated next.

% Display Wendy's degree.
author.deg(1)

ans = 'PhD'

TABLE D.3

Examples of Accessing Elements of Arrays

Notation Usage

a(i) Access the ith element (cell) of a row or column
vector array (cell array)

a(3:5) Access elements 3 through 5 of a vector or cell
array

A(:,i) Access the ith column of a matrix or cell array. In
this case, the colon in the row dimension tells
MATLAB to access all rows.

A(i,:) Access the ith row of a matrix or cell array. The
colon tells MATLAB to gather all of the columns.

A(2:4,1:2) Access the elements in the second, third, and
fourth rows and the first two columns

A(1,3,4) Access the element in the first row, third column
on the fourth entry of dimension 3 (sometimes
called the page).

534 Exploratory Data Analysis with MATLAB®, Third Edition

The ans object above is actually a one-cell array. To get the contents of the
cell (as a string object), we use the curly braces, as shown here.

author.deg{1}

ans = PhD

The ans result is now a char array. The dot notation is used to access the
field. We then specify the elements using the notation for arrays (Table D.3).

The techniques for manipulating subsets of data in table objects are similar
to structures and arrays, but they have some additional options because of
the column or variable names. This shows how to create a sub-table with the
first three records and all variables.

% Get a sub-table by extracting the first 3 rows.
newtab = mytab(1:3,:)

We are able to extract a column of the table using the dot notation that we
had with structures.

% Get second variable in the table we
% created in the previous section.
vt = mytab.var2;

A dataset array is a special data object that is included in the Statistics
Toolbox, and it can be used to store variables of different data types. As an
example, you can combine numeric, logical, character, and categorical data
in one array. Each row of the dataset array corresponds to an observation,
and each column corresponds to a variable. Therefore, each column has to
have elements that are of the same data type. However, the individual
columns can be different. For instance, one column can be numeric, and
another can be text.

A dataset array can be created using variables that exist in the workspace
or as a result of importing data. The function dataset is used in either case,
as shown here. The basic syntax for creating a dataset array from various file
types is shown next.

% Create from a tab-delimited text file.
ds = dataset('File','filename.txt')

% Create from a .csv file.
ds = dataset('File','filename.csv','Delimiter',',')

% Create from an Excel file.
ds = dataset('XLSFile','filename.xlsx')

There are several options for creating a dataset array from variables in the
workspace. They are listed here.

MATLAB® Basics 535

% Create by combining three different variables.
ds = dataset(var1, var2, var3);

% Create by converting a numeric matrix called data.
ds = mat2dataset(data);

A dataset array has its own set of defined operations, and you cannot
operate on this type of array in the same manner as a numeric array. We will
discuss this idea in more detail shortly, when we cover object-oriented
programming.

The dataset array might be removed in future versions of MATLAB, but it
was still available in version 2015a. Because of this, it is recommended that
you use the table object in base MATLAB instead of a dataset array.

D.4.3 Object-Oriented Programming

Certain aspects of MATLAB are object-oriented, which is a programming
approach based on three main ideas:

1. Classes and objects: A class is a description or definition of a
programming construct. An object is a specific instance of a class.

2. Properties: These are aspects of the object that can be manipulated
or extracted.

3. Methods: These are behaviors, operations, or functions that are
defined for the class.

The benefit of object-oriented programming is that the computer code for the
class and the methods are defined once, and the same method can be applied
to different instances of the class without worrying about the details.

Every data object has a class associated with it. There is a function called
class that will return the class of an object. This can be very helpful when
trying to understand how to access elements and to perform other data
analytic tasks. You will encounter some special object classes throughout this
book. There are several instances of unique classes that are defined in the
Statistics Toolbox. Some examples of these include probability distributions,
models, and trees.

D.5 Workspace and Syntax

In this section, we cover some additional topics you might find helpful when
using MATLAB. These include command line functions for managing your
workspace and files, punctuation, arithmetic operators, and functions.

536 Exploratory Data Analysis with MATLAB®, Third Edition

D.5.1 File and Workspace Management

You can enter MATLAB expressions interactively at the command line or
save them in an M-file. This special MATLAB file is used for saving scripts or
writing functions. We described the Script Editor in an earlier section, which
is a very handy tool for writing and saving MATLAB code.

As stated previously, we will not be discussing how to write your own
programs or functions, but you might find it helpful to write script M-files.
These script files are just text files with the .m extension, and they contain any
expressions or commands you want to execute. Thus, it is important to know
some commands for file management. There are lots of options for directory
and file management on the desktop. In a previous section, we briefly
mentioned some interactive tools to interface with MATLAB. Table D.4
provides some commands to list, view, and delete files.

Variables created in a session (and not deleted) live in the MATLAB
workspace. You can recall the variable at any time by typing in the variable
name with no punctuation at the end. Note that variable names in MATLAB
are case sensitive, so Temp, temp, and TEMP are different variables.

As with file management, there are several tools on the desktop to help you
manage your workspace. For example, there is a VARIABLE section on the

TABLE D.4

File Management Commands

Command Usage

dir, ls Shows the files in the present directory

delete filename Deletes filename

pwd Shows the present directory

cd dir Changes the directory. There is also a pop-up
menu and button on the desktop that allows the
user to change directory, as we show here.

.
edit filename Brings up filename in the editor

type filename Displays the contents of the file in the command
window

which filename Displays the path to filename. This can help
determine whether a file is part of base MATLAB.

what Lists the .m files and .mat files that are in the
current directory

MATLAB® Basics 537

desktop ribbon interface that allows you to create a variable, open current
variables in a spreadsheet-like interface, save the workspace, and clear it.
Some commands to use for workspace management are given in Table D.5.

D.5.2 Syntax in MATLAB®

Punctuation and syntax are important in any programming language. If you
get this wrong, then you will either get errors or your results will not be what
you expect. Some of the common punctuation characters used in MATLAB
are described in Table D.6.

MATLAB has the usual arithmetic operators for addition, subtraction,
multiplication, division, and exponentiation. These are designated by +, –, *,
/, ̂ , respectively. It is important to remember that MATLAB interprets these
operators in a linear algebra sense and uses the corresponding operation
definition for arrays, also.

For example, if we multiply two matrices A and B, then they must be
dimensionally correct. In other words, the number of columns of A must
equal the number of rows of B. Similarly, adding and subtracting arrays
requires the same number of elements and configuration for the arrays. Thus,
you can add or subtract row vectors with the same number of elements, but
you will get an error of you try to add or subtract a row and column vector,
even if they have the same number of elements. See any linear algebra book
for more information on these concepts and how the operations are defined
with arrays [Strang, 1993].

Addition and subtraction operations are defined element-wise on arrays,
as we have in linear algebra. In some cases, we might find it useful to perform
other element-by-element operations on arrays. For instance, we might want
to square each element of an array or multiply two arrays element-wise. To
do this, we change the notation for the multiplication, division, and
exponentiation operators by adding a period before the operator. As an
example, we could square each element of A, as follows:

TABLE D.5

Commands for Workspace Management

Command Usage

who Lists all variables in the workspace.

whos Lists all variables in the workspace along with the
size in bytes, array dimensions, and object type.

clear Removes all variables from the workspace.

clear x y Removes variables x and y from the workspace.

538 Exploratory Data Analysis with MATLAB®, Third Edition

A.^2

A summary of these element-by-element operators are given in Table D.7.
MATLAB follows the usual order of operations we are familiar with from

mathematics and computer programming. The precedence can be changed
by using parentheses.

TABLE D.6

List of MATLAB® Punctuation

Punctuation Usage

% A percent sign denotes a comment line. Information after
the % is ignored.

,

When used to separate commands on a single line, a
comma tells MATLAB to display the results of the
preceding command. When used to combine elements or
arrays, a comma or a blank space groups elements along
a row. A comma also has other uses, including separating
function arguments and array subscripts.

;

When used after a line of input or between commands
on a single line, a semicolon tells MATLAB not to display
the results of the preceding command. When used to
combine elements or arrays, a semicolon stacks them in
a column.

... Three periods denote the continuation of a statement
onto the next line.

:
The colon specifies a range of numbers. For example,
1:10 means the numbers 1 through 10. A colon in an
array dimension accesses all elements in that dimension.

TABLE D.7

List of Element-by-Element Operators

Operator Usage

.* Multiply element by element

./ Divide element by element

.^ Raise each element to a power

MATLAB® Basics 539

D.5.3 Functions in MATLAB®

MATLAB is a powerful computing environment, but one can also view it as
a programming language. Most computer programming languages have
mini-programs; these are called functions in MATLAB.

In most cases, there are two different ways to call or invoke functions in
MATLAB: function syntax or command syntax, as we describe next. What
type of syntax to use is up to the user and depends on what you need to
accomplish. For example, you would typically use the function syntax option
when the output from the function is needed for other tasks.

Function syntax

The function syntax approach works with input arguments and/or output
variables. The basic syntax includes the function name and is followed by
arguments enclosed in parentheses. Here is an illustration of the syntax:

functionname(arg1, ..., argk)

The statement above does not return any output from the function to the
current workspace. The output of the function can be assigned to one or more
output variables enclosed in square brackets:

[out1,...,outm] = functionname(arg1,...,argk)

You do not need the brackets, if you have only one output variable. The
number of inputs and outputs you use depends on the definition of the
function and what you want to accomplish. Always look at the help pages
for a function to get information on the definitions of the arguments and the
possible outputs. There are many more options for calling functions than
what we describe in this book.

Command Syntax

The main difference between command and function syntax is how you
designate the input arguments. With command syntax, you specify the
function name followed by arguments separated by spaces. There are no
parentheses with command syntax. The basic form of a command syntax is
shown here:

functionname arg1 ... arg2

The other main difference with command syntax pertains to the outputs from
the function. You cannot obtain any output values with commands; you must
use function syntax for that purpose.

540 Exploratory Data Analysis with MATLAB®, Third Edition

D.6 Basic Plot Functions

In this section, we discuss the main functions for plotting in two and three
dimensions. We also describe some useful auxiliary functions to add content
to the graph. Type help graph2d or help graph3d for a list of plotting
functions in the base MATLAB software. Table D.8 contains a list of common
plotting functions in base MATLAB. We will examine several of these
functions starting off with plot for creating 2–D graphics.

D.6.1 Plotting 2D Data

The main function for creating a 2D plot is called plot. When the function
plot is called, it opens a new Figure window. It scales the axes to fit the
limits of the data, and it plots the points, as specified by the arguments to the
function. The default is to plot the points and connect them with straight
lines. If a Figure window is already available, then it produces the plot in the
current Figure window, replacing what is there.

The main syntax for plot is

plot(x,y,'color_linestyle_marker')

where x and y are vectors of the same size. The x values correspond to the
horizontal axis, and the y values are represented on the vertical axis.

Several pairs of vectors (for the horizontal and vertical axes) can be
provided to plot. MATLAB will plot the values given by the pairs of vectors
on the same set of axes in the Figure window. If just one vector is provided
as an argument, then the function plots the values in the vector against the
index , where n is the length of the vector. For example, the following
command plots two curves

TABLE D.8

List of Plotting Functions in Base MATLAB®

area Plot curve and fill in the area
bar, bar3 2–D and 3–D bar plots
contour, contour3 Display isolines of a surface
errorbar Plot error bars with curve
hist Histogram
image Plot an image
pie, pie3 Pie charts
plot, plot3 2–D and 3–D lines
plotmatrix Matrix of scatterplots
scatter, scatter3 2–D and 3–D scatterplots
stem, stem3 Stem plot for discrete data

1…n

MATLAB® Basics 541

plot(x1,y1,x2,y2)

The first curve plots y1 against x1, and the second shows y2 versus the
values in x2.

Many arguments can be used with the plot function giving the user a lot
of control over the appearance of the graph. Most of them require the use of
MATLAB’s Handle Graphics® system, which is beyond the scope of this
introduction. The interested reader is referred to Marchand and Holland
[2003] for more details on Handle Graphics.

Type help plot at the command line to see what can be done with plot.
We present some of the basic options here. The default line style in MATLAB
is a solid line, but there are other options as listed in Table D.9. The first
column in the table contains the notation for the line style that is used in the
plot function. For example, one would use the notation

plot(x,y,':')

to create a dotted line with the default marker style and color. Note that the
specification of the line style is given within single quotes (denoting a string)
and is placed immediately after the vectors containing the observations to be
graphed with the line style.

We can also specify different colors and marker (or point) styles within the
single quotes. The predefined colors are given in Table D.10. There are
thirteen marker styles, and they are listed in Table D.11. They include circles,
asterisks, stars, x-marks, diamonds, squares, triangles, and more.

The following is a brief list of common plotting tasks:

� Solid green line with no markers or plotting with just points:

plot(x,y,'g'), plot(x,y,'.')

� Dashed blue line with points shown as an asterisk:

plot(x,y,'b--*')

� Two lines with different colors and line styles (see Figure D.4):

plot(x,y,'r:',x2,y2,'k.-o')

TABLE D.9

Line Styles for Plots

Notation Line Type

- solid line

: dotted line

-. dash-dot line

-- dashed line

542 Exploratory Data Analysis with MATLAB®, Third Edition

It is always good practice to include labels for all axes and a title for the
plot. You can add these to your plot using the functions xlabel, ylabel,
and title. The basic input argument for these functions is a text string:

xlabel('text'),ylabel('text'),title('text')

In the bulleted list above, we showed how to plot two sets of x and y pairs,
and this can be extended to plot any number of lines on one plot. There is
another mechanism to plot multiple lines that can be useful in loops and
other situations. The command to use is hold on, which tells MATLAB to
apply subsequent graphing commands to the current plot. To unfreeze the
current plot, use the command hold off.

We sometimes want to plot different lines (or any other type of graph) in a
Figure window, but we want each one on their own set of axes. We can do
this through the use of the subplot function, which creates a matrix of plots
in a Figure window. The basic syntax is

TABLE D.10

Line Colors for Plots

Notation Color

b blue
g green
r red
c cyan
m magenta
y yellow
k black
w white

TABLE D.11

Marker Styles for Plots

Notation Marker Style

. point

o circle

x x-mark

+ plus

* star

s square

d diamond

v down triangle

^ up triangle

< left triangle

> right triangle

p pentagram

h hexagram

MATLAB® Basics 543

subplot(m, n, p)

This produces m rows and n columns of plots in one Figure window. The
third argument denotes what plot is active. Any plotting commands after this
function call are applied to the p-th plot. The axes are numbered from top to
bottom and left to right.

D.6.2 Plotting 3D Data

We can plot three variables in MATLAB using the plot3 function, which
works similarly to plot. In this case, we have to specify three arguments that
correspond to the three axes. The basic syntax is

plot3(x,y,z)

where x, y, and z are vectors with the same number of elements. The function
plot3 will graph a line in 3D through the points with coordinates given by
the elements of the vectors. There is a zlabel function to add an axes label
to the third dimension.

Sometimes, one of our variables is a response or dependent variable, and
the other two are predictors or independent variables. Notationally, this
situation is given by the relationship

.

The z values define a surface given by points above the x–y plane.
We can plot this type of relationship in MATLAB using the mesh or surf

functions. Straight lines are used to connect adjacent points on the surface.
The mesh function shows the surface as a wireframe with colored lines,
where the color is proportional to the height of the surface. The surf
function fills in the surface facets with color.

The surf and mesh functions require three matrix arguments, as shown
here

surf(X,Y,Z), mesh(X,Y,Z)

The X and Y matrices contain repeated rows and columns corresponding to
the domain of the function. If you do not have these already, then you can
generate the matrices using a function called meshgrid. This function takes
two vectors x and y that specify the domains, and it creates the matrices for
constructing the surface. The x vector is copied as rows of the X matrix, and
the vector y is copied as columns of the Y matrix.

As stated previously, the color is mapped to the height of the surface using
the default color map. The definition of the color map can be changed using
the function colormap. See the help on graph3d for a list of built-in color
maps. You can also add a bar to your graph that illustrates the scale
associated with the colors by using the command colorbar.

z f x y,()=

544 Exploratory Data Analysis with MATLAB®, Third Edition

MATLAB conveys 3D surfaces on a 2D screen, but this is just one view of
the surface. Sometimes interesting structures are hidden from view. We can
change the view interactively via a toolbar button in the Figure window, as
shown in Figure D.4. We can also use the view function on the command
line, as shown here

view(azimuth, elevation)

The first argument azimuth defines the horizontal rotation. The second
argument elevation corresponds to the vertical rotation. Both of these are
given in degrees. For example, we are looking directly overhead (2D view) if
the azimuth is equal to zero, and the elevation is given by 90 degrees.

Sometimes, it is easier to rotate the surface interactively to find a good
view. We can use the ROTATE 3D button in the Figure window, as shown in
Figure D.4. When the button is pushed, the cursor changes to a curved arrow.
At this point, you can click in the plot area and rotate it while holding the left
mouse button. The current azimuth and elevation is given in the lower left
corner, as you rotate the axes.

D.6.3 Scatterplots

The scatterplot is one of the main tools a statistician should use before doing
any analysis of the data or modeling. A scatterplot is a plot of one variable
against another, where pairs are plotted as points. The points are not
connected by lines. This type of plot can be used to explore the distribution
of multivariate data, to assess the relationship between two variables, or to
look for groups and other structure. These were also discussed in Chapter 5,
but we provide additional information here for completeness.

We can easily use the functions plot and plot3 to create 2D and 3D
scatterplots. We just specify the desired marker or symbol, as shown here:

plot(x,y,'o'), plot3(x,y,z,'*')

The call to plot shows the markers as open circles, and the call to plot3
uses the asterisk as the plotting symbol.

The plot and plot3 functions are best for the case where you are using
only one or two marker styles and/or symbol colors. MATLAB has two

FIGURE D.4
Click on the ROTATE 3D button to rotate 3D plots. The current azimuth and elevation is
indicated in the lower left corner as the axes rotate.

x y,()

MATLAB® Basics 545

special functions for scatterplots that provide more control over the symbols
used in the plot. These are called scatter and scatter3. The syntax is

scatter(x,y,s,c), scatter3(x,y,z,s,c)

The first two (or three for scatter3) arguments represent the coordinates
for the points. The optional arguments s (marker size) and c (marker color)
allow one to control the appearance of the symbols. These inputs can be a
single value, in which case, they are applied to all markers. Alternatively, one
could assign a color and/or size to each point.

The default symbol is an open circle. An additional input argument
specifying the marker (see help on plot for a list) can be used to get a
different plotting symbol. If we assign a different size to each of the open
circles, possibly corresponding to some other variable, then this is known as
a bubble plot.

D.6.4 Scatterplot Matrix

We often have data with many variables or dimensions. In this case, we can
use the scatterplot matrix to look at all 2D scatterplots, which gives us an
idea of the pair-wise relationships or distributions in the data. A scatterplot
matrix is a matrix of plots, where each one is a 2D scatterplot.

MATLAB provides a function called plotmatrix that takes care of the
plotting commands for us, and we do not have to worry about multiple uses
of subplot. The syntax for plotmatrix is:

plotmatrix(X), plotmatrix(X,Y)

The first of these plots the columns of X as scatterplots, with histograms of the
columns on the diagonal. This is the version used most often by statisticians.
The second plots the columns of Y against the columns of X.

D.6.5 GUIs for Graphics

MATLAB has several graphical user interfaces (GUIs) to make plotting data
easier. We describe the main tools in this section, including simple edits
using menu options in the Figure window, the plotting tools interface, and
the PLOTS tab on the desktop ribbon.

We often want to add simple graphics objects to our plot, such as labels,
titles, arrows, rectangles, circles, and more. We can do most of these tasks via
the command line, but it can be frustrating trying to get them to appear just
the way we want them to. We can use the INSERT menu on the Figure
window, as shown in Figure D.5, to help with these tasks. Just select the
desired option, and interactively add the object to the plot.

Perhaps the most comprehensive GUIs for working with graphics are the
plotting tools. This is an interactive set of tools that work similarly to the

546 Exploratory Data Analysis with MATLAB®, Third Edition

main MATLAB desktop environment. In other words, they can be part of an
expanded Figure window, or they can be undocked by clicking the
downward arrow in the upper right corner of the tool. Look at help on
plottools for more information and examples of using these tools.

The plotting tool GUIs consist of three panels or editors, as listed here:

� Property Editor: This provides access to some of the properties of
the graphics objects in a figure. This includes the Figure window,
the axes, line objects, and text. The editor can be started by using
the command propertyeditor. It can also be opened via the
TOOLS > EDIT PLOT menu item in a Figure window. Double-click
on a highlighted graphics object to open the editor.

� Figure Palette: This tool allows the user to add and position axes,
plot variables from the workspace, and annotate the graph. The
command figurepalette will open the editor.

� Plot Browser: The browser is used to add data to the plot and to
control the visibility of existing objects, such as the axes. This can
be opened using the command plotbrowser.

The plotting tools can be opened in different ways, and we specified some
of them in the list given above. One option is to use the command

FIGURE D.5
Select the INSERT menu on the Figure window to add objects to your plot.

MATLAB® Basics 547

plottools. This will add panels to an existing Figure window, or it will
open a new Figure window and the tools, if one is not open already. The most
recently used plotting tools are opened for viewing.

One could also click on the highlighted toolbar button shown in Figure D.6.
The button on the right shows the plotting tools, and the one on the left closes
them. Finally, the tools can be accessed using the VIEW menu on the Figure
window. Clicking on the desired tool will toggle it on or off.

An example of a Figure window with the plotting tools open is given in
Figure D.7. Only the Property Editor is opened because that was the last tool
we used. Select other editors using the VIEW menu.

Another GUI option to create plots is available via the PLOTS tab on the
main MATLAB ribbon interface. The Workspace browser has to be open
because this is used to select variables for plotting. Click on the desired
variables in the browser, while holding the CTRL key. The variables will
appear in the left section of the PLOTS tab.

Next, select the type of plot by clicking the corresponding picture. There is
a downward arrow button that provides access to a complete gallery of plots.
It will show only those plots that are appropriate for the types of variables
selected for plotting. See Figure D.8 for an example.

D.7 Summary and Further Reading

MATLAB has more graphing functions as part of the base software. The main
ones were described in this chapter, and we provide an expanded list in Table
D.8. Use the help functionname at the command line for information on
how to use them and to learn about related functions. Table D.12 has a list of
auxiliary functions for enhancing your plots.

We already recommended the Marchand and Holland book [2003] for
more information on Handle Graphics. This text also has some useful tips
and ideas for creating plots and building GUIs. You should always consult

FIGURE D.6
This shows the toolbar buttons for a Figure window. The buttons on the right will open and
close the interactive plotting tools.

CLOSE PLOT TOOLS OPEN PLOT TOOLS

548 Exploratory Data Analysis with MATLAB®, Third Edition

FIGURE D.7
Here is an example of a Figure window with the potting tools open. Only the Property Edi-
tor is viewed because this is the last one that was used. Select other editors using the VIEW
menu.

FIGURE D.8
This is a portion of the PLOTS ribbon in the main MATLAB desktop environment. Click
the PLOTS tab to access it. Variables for plotting are selected in the Workspace browser, and
they appear in the left section of the ribbon. Click on one of the icons in the right section of
the PLOTS ribbon to create the plot. More options are available using the downward arrow
button in the plots section.

MATLAB® Basics 549

the MATLAB documentation and help files for examples. For example, there
is a section called Graphics in the MATLAB documentation center. Recall
that you get to the documentation by clicking the HELP button in the
RESOURCES section of the HOME ribbon and selecting the MATLAB link.

We now provide some references to books that describe scientific and
statistical visualization, in general. One of the earliest ones in this area is
called the Semiology of Graphics: Diagrams, Networks, Maps [Bertin, 1983]. This
book discusses rules and properties of graphics. For examples of graphical
mistakes, we recommend the book by Wainer [1997]. Wainer also published
a book called Graphic Discovery: A Trout in the Milk and Other Visual
Adventures [2004] detailing some of the history of graphical displays in a very
thought provoking and entertaining way. The book Visualizing Data
[Cleveland, 1993] includes descriptions of visualization tools, the
relationship of visualization to classical statistical methods, and some of the
cognitive aspects of data visualization and perception. Another excellent
resource on graphics for data analysis is Chambers et al. [1983]. Finally, we
highly recommend Naomi Robbins’ [2013] book called Creating More Effective
Graphs. This text provides a wonderful introduction on ways to convey data
correctly and effectively.

There is a Graphics section in the online documentation for base MATLAB.
Recall that you can access this documentation via the HELP button on the
RESOURCES tab. The Statistics Toolbox documentation has a chapter called
Exploratory Data Analysis, under which is a section on Statistical Visualization.
This has details about univariate and multivariate plots.

TABLE D.12

List of Auxiliary Plotting Functions in Base MATLAB®

axis Change axes scales and appearance
box Draw a box around the axes
grid Add grid lines at the tick marks
gtext Add text interactively
hidden Remove hidden lines in mesh plots
hold Hold the current axes
legend Insert a legend
plotedit Tools for annotation and editing
rotate Rotate using given angles
subplot Include multiple axes in figure window
text Insert text at locations
title Put a title on the plot
xlabel, ylabel, zlabel Label the axes
view Specify the view for a 3–D plot
zoom Zoom in and out of the plot

http://taylorandfrancis.com

551

References

Agresti, A. 2007. An Introduction to Categorical Data Analysis, Second Edition, New
York: John Wiley & Sons.

Agresti, A. 2012. Categorical Data Analysis, Third Edition, New York: John Wiley &
Sons.

Ahalt, A., A. K. Krishnamurthy, P. Chen, and D. E. Melton. 1990. “Competitive
learning algorithms for vector quantization,” Neural Networks, 3:277–290.

Alter, O., P. O. Brown, and D. Botstein. 2000. “Singular value decomposition for
genome–wide expression data processing and modeling,” Proceedings of the Na-
tional Academy of Science, 97:10101–10106.

Amsaleg, L., O. Chelly, T. Furon, S. Girard, M. E. Houle, K. Kawarabayashi, M. Nett.
2015. “Estimating local intrinsic dimensionality,” Proceedings KDD 2015, Sydney,
Australia, p. 29–38.

Anderberg, M. R. 1973. Cluster Analysis for Applications, New York: Academic Press.

Anderson, E. 1935. “The irises of the Gaspe Peninsula,” Bulletin of the American Iris
Society, 59:2–5.

Andrews, D. F. 1972. “Plots of high–dimensional data,” Biometrics, 28:125–136.

Andrews, D. F. 1974. “A robust method of multiple linear regression,” Technometrics,
16:523–531.

Andrews, D. F. and A. M. Herzberg. 1985. Data: A Collection of Problems from Many
Fields for the Student and Research Worker, New York: Springer–Verlag.

Anscombe, F. J. 1973. “Graphs in statistical analysis,” The American Statistician, 27:
17–21.

Arbelaitz, O., I. Gurrutxaga, J. Muguerza, J. M. Perez, and I. Perona, 2013. “An
extensive comparative study of cluster validity indices,” Pattern Recognition,
46:243–256.

Asimov, D. 1985. “The grand tour: A tool for viewing multidimensional data,” SIAM
Journal of Scientific and Statistical Computing, 6:128–143.

Asimov, D. and A. Buja. 1994. “The grand tour via geodesic interpolation of
2–frames,” in Visual Data Exploration and Analysis, Symposium on Electronic Imag-
ing Science and Technology, IS&T/SPIE.

Baeza–Yates, R. and B. Ribero–Neto. 1999. Modern Information Retrieval, New York,
NY: ACM Press.

Bailey, T. A. and R. Dubes. 1982. “Cluster validity profiles,” Pattern Recognition,
15:61–83.

Balasubramanian, M. and E. L. Schwartz. 2002. “The isomap algorithm and topolog-
ical stability (with rejoinder),” Science, 295:7.

552 Exploratory Data Analysis with MATLAB®, Third Edition

Banfield, A. D. and A. E. Raftery. 1993. “Model–based Gaussian and non–Gaussian
clustering,” Biometrics, 49:803–821.

Basseville, M. 1989. “Distance measures for signal processing and pattern recogni-
tion,” Signal Processing, 18:349–369.

Becker, R. A. and W. S. Cleveland. 1987. “Brushing scatterplots,” Technometrics,
29:127–142.

Becker, R. A. and W. S. Cleveland. 1991. “Viewing multivariate scattered data,” Pixel,
July/August, 36–41.

Becker, R. A., W. S. Cleveland, and A. R. Wilks. 1987. “Dynamic graphics for data
analysis,” Statistical Science, 2:355–395.

Becker, R. A., L. Denby, R. McGill, and A. Wilks. 1986. “Datacryptanalysis: A case
study,” Proceedings of the Section on Statistical Graphics, 92–91.

Becketti, S. and W. Gould. 1987. “Rangefinder box plots,” The American Statistician,
41:149.

Bellman, R. E. 1961. Adaptive Control Processes, Princeton, NJ: Princeton University
Press.

Bengio, Y. 2009. “Learning deep architectures for AI,” Foundations and Trends in
Machine Learning, 2:1–127.

Benjamini, Y. 1988. “Opening the box of a boxplot,” The American Statistician, 42:
257–262.

Bennett, G. W. 1988. “Determination of anaerobic threshold,” Canadian Journal of
Statistics, 16:307–310.

Bensmail, H., G. Celeux, A. E. Raftery, and C. P. Robert. 1997. “Inference in mod-
el–based cluster analysis,” Statistics and Computing, 7:1–10.

Berry, M. W. (editor) 2003. Survey of Text Mining 1: Clustering, Classification, and
Retrieval, New York: Springer.

Berry, M. W. and M. Browne. 2005. Understanding Search Engines: Mathematical Mod-
eling and Text Retrieval, 2nd Edition, Philadelphia, PA: SIAM.

Berry, M. W. and M. Castellanos (editors). 2007. Survey of Text Mining 2: Clustering,
Classification, and Retrieval, New York: Springer.

Berry, M. W., S. T. Dumais, and G. W. O’Brien. 1995. “Using linear algebra for
intelligent information retrieval,” SIAM Review, 37:573–595.

Berry, M. W., Z. Drmac, and E. R. Jessup. 1999. “Matrices, vector spaces, and infor-
mation retrieval,” SIAM Review, 41:335–362.

Berry, M. W., M. Browne, A. N. Langville, V. P. Pauca, and R. J. Plemmons. 2007.
“Algorithms and applications for approximate nonnegative matrix factoriza-
tion,” Computational Statistics & Data Analysis, 52:155–173.

Bertin, J. 1983. Semiology of Graphics: Diagrams, Networks, Maps. Madison, WI: The
University of Wisconsin Press.

Bhattacharjee, A., W. G. Richards, J. Staunton, C. Li, S. Monti, P. Vasa, C. Ladd, J.
Beheshti, R. Bueno, M. Gillette, M. Loda, G. Weber, E. J. Mark, E. S. Lander, W.
Wong, B. E. Johnson, T. R. Bolub, D. J. Sugarbaker, and M. Meyerson. 2001.
“Classification of human lung carcinomas by mRNA expression profiling reveals
distinct adenocarcinoma subclasses,” Proceedings of the National Academy of Sci-
ence, 98:13790–13795.

References 553

Bickel, P. J., E. A. Hammel, and J. W. O’Connell. 1975. “Sex bias in graduate admis-
sions: Data from Berkeley,” Science, 187:398–403.

Biernacki, C. and G. Govaert. 1997. “Using the classification likelihood to choose the
number of clusters,” Computing Science and Statistics, 29(2):451–457.

Biernacki, C., G. Celeux, and G. Govaert. 1999. “An improvement of the NEC criterion
for assessing the number of clusters in a mixture model,” Pattern Recognition
Letters, 20:267–272.

Binder, D. A. 1978. “Bayesian cluster analysis,” Biometrika, 65:31–38.

Bingham, E. and H. Mannila. 2001. “Random projection in dimensionality reduction:
Applications to image and text data,” in Proceedings of the Seventh ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 245–250.

Bishop, C. M., G. E. Hinton, and I. G. D. Strachan. 1997. “GTM through time,”
Proceedings IEEE 5th International Conference on Artificial Neural Networks, Cam-
bridge, UK, 111–116.

Bishop, C. M., M. Svensén, and C. K. I. Williams. 1996. “GTM: The generative topo-
graphic mapping,” Neural Computing Research Group, Technical Report
NCRG/96/030.

Bishop, C. M., M. Svensén, and C. K. I. Williams. 1997a. “Magnification factors for
the SOM and GTM algorithms,” Proceedings 1997 Workshop on Self–Organizing
Maps, Helsinki University of Technology, 333–338.

Bishop, C. M., M. Svensén, and C. K. I. Williams. 1997b. “Magnification factors for
the GTM algorithm,” Proceedings IEEE 5th International Conference on Artificial
Neural Networks, Cambridge, UK, 64–69.

Bishop, C. M., M. Svensén, and C. K. I. Williams. 1998a. “The generative topographic
mapping,” Neural Computation, 10:215–234.

Bishop, C. M., M. Svensén, and C. K. I. Williams. 1998b. “Developments of the
generative topographic mapping,” Neurocomputing, 21:203–224.

Bishop, C. M. and M. E. Tipping. 1998. “A hierarchical latent variable model for data
visualization,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
20:281–293.

Blasius, J. and M. Greenacre. 1998. Visualizing of Categorical Data, New York: Aca-
demic Press.

Bock, H. 1985. “On some significance tests in cluster analysis,” Journal of Classification,
2:77–108.

Bock, H. 1996. “Probabilistic models in cluster analysis,” Computational Statistics and
Data Analysis, 23:5–28.

Bolton, R. J. and W. J. Krzanowski. 1999. “A characterization of principal components
for projection pursuit,” The American Statistician, 53:108–109.

Bonner, R. 1964. “On some clustering techniques,” IBM Journal of Research and Devel-
opment, 8:22–32.

Borg, I. and P. Groenen. 1997. Modern Multidimensional Scaling: Theory and Applications,
New York: Springer.

Boutsidis, C., A. Zouzias, and P. Drineas. 2010. “Random projections for k–means
clustering,” in Advances in Neural Network Processing Systems, pp. 293–306.

Bowman, A. W. and A. Azzalini. 1997. Applied Smoothing Techniques for Data Analysis:
The Kernel Approach with S–Plus Illustrations, Oxford: Oxford University Press.

554 Exploratory Data Analysis with MATLAB®, Third Edition

Brinkman, N. D. 1981. “Ethanol fuel – a single–cylinder engine study of efficiency
and exhaust emissions,” SAE Transactions, 90:1410–1424.

Bruls, D. M., C. Huizing, J. J. van Wijk. 2000. “Squarified Treemaps,” in: W. de Leeuw,
R. van Liere (eds.), Data Visualization 2000, Proceedings of the Joint Eurographics
and IEEE TCVG Symposium on Visualization, 33–42, New York: Springer.

Bruntz, S. M., W. S. Cleveland, B. Kleiner, and J. L. Warner. 1974. “The dependence
of ambient ozone on solar radiation, wind, temperature and mixing weight,”
Symposium on Atmospheric Diffusion and Air Pollution, Boston: American Meteo-
rological Society, 125–128.

Bruske, J. and G. Sommer. 1998. “Intrinsic dimensionality estimation with optimally
topology preserving maps,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 20:572–575.

Bucak, S. S. and B. Gunsel. 2009. “Incremental subspace learning via non–negative
matrix factorization,” Pattern Recognition, 42:788–797.

Buckley, M. J. 1994. “Fast computation of a discretized thin–plate smoothing spline
for image data,” Biometrika, 81:247–258.

Buijsman, E., H. F. M. Maas, and W. A. H. Asman. 1987. “Anthropogenic NH3

Emissions in Europe,” Atmospheric Environment, 21:1009–1022.

Buja, A. and D. Asimov. 1986. “Grand tour methods: An outline,” Computer Science
and Statistics, 17:63–67.

Buja, A., J. A. McDonald, J. Michalak, and W. Stuetzle. 1991. “Interactive data visu-
alization using focusing and linking,” IEEE Visualization, Proceedings of the 2nd
Conference on Visualization ‘91, 156–163.

Buta, R. 1987. “The structure and dynamics of ringed galaxies, III: Surface photometry
and kinematics of the ringed nonbarred spiral NGC 7531,” The Astrophysical
Journal Supplement Series, 64:1–37.

Calinski, R. and J. Harabasz. 1974. “A dendrite method for cluster analysis,” Com-
munications in Statistics, 3:1–27.

Camastra, F. 2003. “Data dimensionality estimation methods: A survey,” Pattern
Recognition, 36:2945–2954.

Camastra, F. and A. Vinciarelli. 2002. “Estimating the intrinsic dimension of data
with a fractal–based approach,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 24:1404–1407.

Campbell, J. G., C. Fraley, F. Murtagh, and A. E. Raftery. 1997. “Linear flaw detection
in woven textiles using model–based clustering,” Pattern Recognition Letters,
18:1539–1549.

Campbell, J. G., C. Fraley, D. Stanford, F. Murtagh, and A. E. Raftery. 1999. “Mod-
el–based methods for real–time textile fault detection,” International Journal of
Imaging Systems and Technology, 10:339–346.

Carr, D., R. Littlefield, W. Nicholson, and J. Littlefield. 1987. “Scatterplot matrix
techniques for large N,” Journal of the American Statistical Association, 82:424–436.

Carr, D. and L. W. Pickle. 2010. Visualizing Data Patterns with Micromaps, Boca Raton:
CRC Press.

Carter, K. M., R. Raich, and A. P. Hero III. 2010. “On local intrinsic dimension
estimation and its applications,” IEEE Transactions on Signal Processing,
58:650–663.

References 555

Cattell, R. B. 1966. “The scree test for the number of factors,” Journal of Multivariate
Behavioral Research, 1:245–276.

Cattell, R. B. 1978. The Scientific Use of Factor Analysis in Behavioral and Life Sciences,
New York: Plenum Press.

Celeux, G. and G. Govaert. 1995. “Gaussian parsimonious clustering models,” Pattern
Recognition, 28:781–793.

Chakrapani, T. K. and A. S. C. Ehrenberg. 1981. “An alternative to factor analysis in
marketing research – Part 2: Between group analysis,” Professional Marketing
Research Society Journal, 1:32–38.

Chambers, J. 1999. “Computing with data: Concepts and challenges,” The American
Statistician, 53:73–84.

Chambers, J. M., W. S. Cleveland, B. Kleiner, and P. A. Tukey. 1983. Graphical Methods
for Data Analysis, Boca Raton: CRC/Chapman and Hall.

Charniak, E. 1996. Statistical Language Learning, Cambridge, MA: The MIT Press.

Chatfield, C. 1985. “The initial examination of data,” Journal of the Royal Statistical
Society, A, 148:214–253.

Chee, M., R. Yang, E. Hubbell, A. Berno, X. C. Huang, D. Stern, J. Winkler, D. J.
Lockhart, M. S. Morris, and S. P. A. Fodor. 1996. “Accessing genetic information
with high–density DNA arrays,” Science, 274:610–614.

Cheng, S. 2014. “mosic_plot.zip,” https://www.mathworks.com/matlabcen-
tral/fileexchange/47785–mosaic–plot–zip.

Chernoff, H. 1973. “The use of faces to represent points in k–dimensional space
graphically,” Journal of the American Statistical Association, 68:361–368.

Cho, R. J., M. J. Campbell, E. A. Winzeler, L. Steinmetz, A. Conway, L. Wodicka, T.
G. Wolfsberg, A. E. Gabrielian, D. Landsman, D. J. Lockhart, and R. W. Davis.
1998. “A genome–wide transcriptional analysis of the mitotic cell cycle,” Molec-
ular Cell, 2:65–73.

Cichocki, A. and R. Zdunek. 2006. “Multilayer nonnegative matrix factorization,”
Electronics Letters, 42:947–948.

Cichocki, A., R. Zdunek, and S. Amari. 2006. “New algorithms for non–negative
matrix fatorization in applications to blind source separation,” in IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing, Toulouse, France, pp.
621–624.

Cleveland, W. S. 1979. “Robust locally weighted regression and smoothing scatter-
plots,” Journal of the American Statistical Association, 74:829–836.

Cleveland, W. S. 1984. “Graphical methods for data presentation: Full scale breaks,
dot charts, and multibased logging,” The American Statistician, 38:270–280.

Cleveland, W. S. 1993. Visualizing Data, New York: Hobart Press.

Cleveland, W. S. and S. J. Devlin. 1988. “Locally weighted regression: An approach
to regression analysis by local fitting,” Journal of the American Statistical Associa-
tion, 83:596–610.

Cleveland, W. S., S. J. Devlin, and E. Grosse. 1988. “Regression by local fitting:
Methods, properties, and computational algorithms,” Journal of Econometrics,
37:87–114.

https://www.mathworks.com/matlabcentral/
https://www.mathworks.com/matlabcentral/fileexchange/47785%E2%80%93mosaic%E2%80%93plot%E2%80%93zip.

556 Exploratory Data Analysis with MATLAB®, Third Edition

Cleveland, W. S. and C. Loader. 1996. “Smoothing by local regression: Principles and
methods, in Härdle and Schimek (eds.), Statistical Theory and Computational As-
pects of Smoothing, Heidelberg: Phsyica–Verlag, 10–49.

Cleveland, W. S. and R. McGill. 1984. “The many faces of a scatterplot,” Journal of
the American Statistical Association, 79:807–822.

Cohen, A., R. Gnanadesikan, J. R. Kettenring, and J. M. Landwehr. 1977. “Method-
ological developments in some applications of clustering,” in: Applications of
Statistics, P. R. Krishnaiah (ed.), Amsterdam: North–Holland.

Cook, D., A. Buja, and J. Cabrera. 1993. “Projection pursuit indexes based on or-
thonormal function expansions,” Journal of Computational and Graphical Statistics,
2:225–250.

Cook, D., A. Buja, J. Cabrera, and C. Hurley. 1995. “Grand tour and projection
pursuit,” Journal of Computational and Graphical Statistics, 4:155–172.

Cook, D. and D. F. Swayne. 2007. Interactive and Dynamic Graphics for Data Analysis:
With R and GGobi (Use R), New York: Springer–Verlag.

Cook, W. J., W. H. Cunningham, W. R. Pulleyblank, and A. Schrijver. 1998. Combi-
natorial Optimization, New York: John Wiley & Sons.

Cormack, R. M. 1971. “A review of classification,” Journal of the Royal Statistical Society,
Series A, 134:321–367.

Costa, J. A., A. Girotra, and A. O. Hero. 2005. “Estimating local intrinsic dimension
with k–nearest neighbor graphs,” IEEE Workshop on Statistical Signal Processing
(SSP).

Costa, J. A. and A. O. Hero. 2004. “Geodesic entropic graphs for dimension and
entropy estimation in manifold learning,” IEEE Transactions on Signal Processing,
52:2210–2221.

Cottrell, M., J. C. Fort, and G. Pages. 1998. “Theoretical aspects of the SOM algorithm,”
Neurocomputing, 21:119–138.

Cox, T. F. and M. A. A. Cox. 2001. Multidimensional Scaling, 2nd Edition, Boca Raton:
Chapman & Hall/CRC.

Craven, P. and G. Wahba. 1979. “Smoothing noisy data with spline functions,”
Numerische Mathematik, 31:377–403.

Crawford, S. 1991. “Genetic optimization for exploratory projection pursuit,” Pro-
ceedings of the 23rd Symposium on the Interface, 23:318–321.

Crile, G. and D. P. Quiring. 1940. “A record of the body weight and certain organ
and gland weights of 3690 animals,” Ohio Journal of Science, 15:219–259.

Dasgupta, A. and A. E. Raftery. 1998. “Detecting features in spatial point processes
with clutter via model–based clustering,” Journal of the American Statistical Asso-
ciation, 93:294–302.

Davies, O. L. 1957. Statistical Methods in Research and Production, New York: Hafner
Press.

Davies, D. L. and D. W. Bouldin. 1979. “A cluster separation measure,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 1:224–227.

Day, N. E. 1969. “Estimating the components of a mixture of normal distributions,”
Biometrika, 56:463–474.

de Boor, C. 2001. A Practical Guide to Splines, Revised Edition, New York: Springer–Ver-
lag.

References 557

de Leeuw, J. 1977. “Applications of convex analysis to multidimensional scaling,” in
Recent Developments in Statistics, J. R. Barra, R. Brodeau, G. Romier & B. van
Cutsem (ed.), Amsterdam, The Netherlands: North–Holland, 133–145.

Deboeck, G. and T. Kohonen. 1998. Visual Explorations in Finance using Self–Organizing
Maps, London: Springer–Verlag.

Deerwester, S., S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman. 1990.
“Indexing by Latent Semantic Analysis,” Journal of the American Society for Infor-
mation Science, 41:391–407.

Demartines, P. and J. Herault. 1997. “Curvilinear component analysis: A self–orga-
nizing neural network for nonlinear mapping of data sets,” IEEE Transactions on
Neural Networks, 8:148–154.

Dempster, A. P., N. M. Laird, and D. B. Rubin. 1977. “Maximum likelihood from
incomplete data via the EM algorithm (with discussion),” Journal of the Royal
Statistical Society: B, 39:1–38.

Diaconis, P. 1985. “Theories of data analysis: From magical thinking through classical
statistics,” in Exploring Data Tables, Trends, and Shapes, D. Hoaglin, F. Mosteller,
and J. W. Tukey (eds.), New York: John Wiley and Sons.

Diaconis, P. and J. H. Friedman. 1980. “M and N plots,” Technical Report 15, Depart-
ment of Statistics, Stanford University.

Ding, W., M. H. Rohban, P. Ishwar, and V. Saligrama. 2013. “Topic discovery through
data dependent and random projections,” in International Conference on Machine
Learning, 28:471–479.

Donoho, D. L. and M. Gasko. 1992. “Breakdown properties of location estimates
based on halfspace depth and projected outlyingness,” The Annals of Statistics,
20:1803–1827.

Donoho, D. L. and C. Grimes. 2002. Technical Report 2002–27, Department of Statis-
tics, Stanford University.

Donoho, D. L. and C. Grimes. 2003. “Hessian eigenmaps: Locally linear embedding
techniques for high–dimensional data,” Proceedings of the National Academy of
Science, 100:5591–5596.

Draper, N. R. and H. Smith. 1981. Applied Regression Analysis, 2nd Edition, New York:
John Wiley & Sons.

du Toit, S. H. C., A. G. W. Steyn, and R. H. Stumpf. 1986. Graphical Exploratory Data
Analysis, New York: Springer–Verlag.

Dubes, R. and A. K. Jain. 1980. “Clustering methodologies in exploratory data anal-
ysis,” Advances in Computers, Vol. 19, New York: Academic Press.

Duda, R. O. and P. E. Hart. 1973. Pattern Classification and Scene Analysis, New York:
John Wiley & Sons.

Duda, R. O., P. E. Hart, and D. G. Stork. 2001. Pattern Classification, Second Edition,
New York: John Wiley & Sons.

Dunn, J. C. 1973. “A fuzzy relative of the ISODATA process and its use in detecting
compact well–separated clusters,” Journal of Cybernetics, 3:32–57.

Edwards, A. W. F. and L. L. Cavalli–Sforza. 1965. “A method for cluster analysis,”
Biometrics, 21:362–375.

Efromovich, S. 1999. Nonparametric Curve Estimation: Methods, Theory, and Applications,
New York: Springer–Verlag.

558 Exploratory Data Analysis with MATLAB®, Third Edition

Efron, B. and R. J. Tibshirani. 1993. An Introduction to the Bootstrap, London: Chapman
and Hall.

Embrechts, P. and A. Herzberg. 1991. “Variations of Andrews’ plots,” International
Statistical Review, 59:175–194.

Emerson, J. D. and M. A. Stoto. 1983. “Transforming Data,” in Understanding Robust
and Exploratory Data Analysis, Hoaglin, Mosteller, and Tukey (eds.), New York:
John Wiley & Sons.

Erickson, Jeff. 2015. Algorithms, etc. http://jeffe.cs.illinois.edu/teach-
ing/algorithms/

Estivill–Castro, V. 2002. “Why so many clustering algorithms – A position paper,”
SIGKDD Explorations, 4:65–75.

Esty, W. W. and J. D. Banfield. 2003. “The box–percentile plot,” Journal of Statistical
Software, 8, http://www.jstatsoft.org/v08/i17.

Everitt, B. S. 1993. Cluster Analysis, Third Edition, New York: Edward Arnold Pub-
lishing.

Everitt, B. S. and D. J. Hand. 1981. Finite Mixture Distributions, London: Chapman
and Hall.

Everitt, B. S., S. Landau, and M. Leese. 2001. Cluster Analysis, Fourth Edition, New
York: Edward Arnold Publishing.

Fan, M., H. Qiao, and B. Zhang. 2008. “Intrinsic dimension estimation of manifolds
by incising balls,” Pattern Recognition, 42:780–787.

Fawcett, C. D. 1901. “A second study of the variation and correlation of the human
skull, with special reference to the Naqada crania,” Biometrika, 1:408–467.

Fieller, N. R. J., E. C. Flenley, and W. Olbricht. 1992. “Statistics of particle size data,”
Applied Statistics, 41:127–146.

Fieller, N. R. J., D. D. Gilbertson, and W. Olbricht. 1984. “A new method for envi-
ronmental analysis of particle size distribution data from shoreline sediments,”
Nature, 311:648–651.

Fienberg, S. 1979. “Graphical methods in statistics,” The American Statistician,
33:165–178.

Fisher, R. A. 1936. “The use of multiple measurements in taxonomic problems,”
Annals of Eugenics, 7:179–188.

Flenley, E. C., and Olbricht, W. 1993. “Classification of Archaeological Sands by
Particle Size Analysis,” Proceedings of the 16th Annual Conference of the Gesellschaft
für Klassifikation e. V., Springer, Berlin, Heidelberg, pp. 478–489.

Flick, T., L. Jones, R. Priest, and C. Herman. 1990. “Pattern classification using pro-
jection pursuit,” Pattern Recognition, 23:1367–1376.

Flury, B. and H. Riedwyl. 1988. Multivariate Statistics: A Practical Approach, London:
Chapman and Hall.

Fodor, I. K. 2002. “A survey of dimension reduction techniques,” Lawrence Liver-
more National Laboratory Technical Report, UCRL–ID–148494.

Fogel, P., S. S. Young, D. M. Hawkins, and N. Ledirac. 2007. “Inferential robust
non–negative matrix factorization analysis of microarray data,” Bioinformatics,
23:44–49.

http://jeffe.cs.illinois.edu/teaching/algorithms/
http://www.jstatsoft.org/v08/i17
http://jeffe.cs.illinois.edu/teaching/algorithms/

References 559

Fowlkes, E. B. and C. L. Mallows. 1983. “A method for comparing two hierarchical
clusterings,” Journal of the American Statistical Association, 78:553–584.

Fox, J. 2000. Nonparametric Simple Regression, Thousand Oaks, CA: Sage Publications,
Inc.

Frakes, W. B. and R. Baeza–Yates. 1992. Information Retrieval: Data Structures & Algo-
rithms, Prentice Hall, New Jersey.

Fraley, C. 1998. “Algorithms for model–based Gaussian hierarchical clustering,”
SIAM Journal on Scientific Computing, 20:270–281.

Fraley, C. and A. E. Raftery. 1998. “How many clusters? Which clustering method?
Answers via model–based cluster analysis,” The Computer Journal, 41:578–588.

Fraley, C. and A. E. Raftery. 2002. “Model–based clustering, discriminant analysis,
and density estimation: MCLUST,” Journal of the American Statistical Association,
97:611–631.

Fraley, C. and A. E. Raftery. 2003. “Enhanced software for model–based clustering,
discriminant analysis, and density estimation: MCLUST,” Journal of Classification,
20:263–286.

Fraley, C., A. E. Raftery, and R. Wehrens. 2005. “Incremental model–based clustering
for large datasets with small clusters,” Journal of Computational and Graphical
Statistics, 14:529–546.

Freedman, D. and P. Diaconis. 1981. “On the histogram as a density estimator:
theory,” Zeitschrift fur Wahrscheinlichkeitstheorie und verwandte Gebiete, 57:453–476.

Fridlyand, J. and S. Dudoit. 2001. “Applications of resampling methods to estimate
the number of clusters and to improve the accuracy of a clustering method,”
Technical Report #600, Division of Biostatistics, University of California, Berke-
ley.

Friedman, J. 1987. “Exploratory projection pursuit,” Journal of the American Statistical
Association, 82:249–266.

Friedman, J. and W. Stuetzle. 1981. “Projection pursuit regression,” Journal of the
American Statistical Association, 76:817–823.

Friedman, J. and J. Tukey. 1974. “A projection pursuit algorithm for exploratory data
analysis,” IEEE Transactions on Computers, 23:881–889.

Friedman, J., W. Stuetzle, and A. Schroeder. 1984. “Projection pursuit density esti-
mation,” Journal of the American Statistical Association, 79:599–608.

Friendly, M. 1994. “Mosaic displays for multi–way contingency tables,” Journal of the
American Statistical Association, 89:190–200.

Friendly, M. 1999. “Extending mosaic displays: Marginal conditional, and partial
views of categorical data,” Journal of Computational and Graphical Statistics,
8:373–395.

Friendly, M. 2000. Visualizing Categorical Data, Cary, NC: SAS Institute, Inc.

Friendly, M. and E. Kwan. 2003. “Effect ordering for data displays,” Computational
Statistics and Data Analysis, 43:509–539.

Friendly, M. and D. Meyer. 2015. Discrete Data Analysis with R: Visualizing and Mod-
eling Techniques for Categorical and Count Data, Boca Raton: CRC Press.

Friendly, M. and H. Wainer. 2004. “Nobody’s perfect,” Chance, 17:48–51.

L2

560 Exploratory Data Analysis with MATLAB®, Third Edition

Frigge, M., D. C. Hoaglin, and B. Iglewicz. 1989. “Some implementations of the
boxplot,” The American Statistician, 43:50–54.

Fua, Y. H., M. O. Ward, and E. A. Rundensteiner. 1999. “Hierarchical parallel coor-
dinates for exploration of large datasets,” IEEE Visualization, Proceedings of the
Conference on Visualization ‘99, 43 – 50.

Fukunaga, K. 1990. Introduction to Statistical Pattern Recognition, Second Edition, New
York: Academic Press.

Fukunaga, K. and D. R. Olsen. 1971. “An algorithm for finding intrinsic dimension-
ality of data,” IEEE Transactions on Computers, 20:176–183.

Gabriel, K. R. 1971. “The biplot graphic display of matrices with application to
principal component analysis,” Biometrika, 58:453–467.

Garcia, D. 2009. “MATLAB functions in BiomeCardio,” http://www.biomecar-
dio.com/matlab.

Garcia, D. 2010. “Robust smoothing of gridded data in one and higher dimensions
with missing values,” Computational Statistics and Data Analysis, 54:1167–1178.

Gentle, J. E. 2002. Elements of Computational Statistics, New York: Springer–Verlag.

Golub, G. and C. Van Loan. 1996. Matrix Computations, Baltimore: Johns Hopkins
University Press.

Golub, T. R., D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov, H.
Coller, M. L. Loh, J. R. Downing, M. A. Caligiuri, C. D. Bloomfield, and E. S.
Lander. 1999. “Molecular classification of cancer: Class discovery and class pre-
diction by gene expression monitoring,” Science, 286:531–537.

Good, I. J. 1983. “The philosophy of exploratory data analysis, Philosophy of Science,
50:283–295.

Goodfellow, I., Y. Bengio, and A. Courville. 2016. Deep Learning, MIT Press.

Gorban, A. N., B. Kegl, D. C. Wunsch, and A. Zinovyev. 2008. Principal Manifolds for
Data Visualization and Dimension Reduction, New York: Springer.

Gordon, A. D. 1999. Classification, London: Chapman and Hall.

Gower, J. C. 1966. “Some distance properties of latent root and vector methods in
multivariate analysis,” Biometrika, 53:325–338.

Gower, J. C. and D. J. Hand. 1996. Biplots, London: Chapman and Hall.

Gower, J. C. and P. Legendre. 1986. “Metric and Euclidean properties of dissimilarity
coefficients,” Journal of Classification, 3:5–48.

Gower, J. C. and G. J. S. Ross. 1969. “Minimum Spanning Trees and Single Linkage
Cluster Analysis,” Journal of the Royal Statistical Society. Series C (Applied Statistics),
18:54–64.

Grassberger, P. and I. Procaccia. 1983. “Measuring the strangeness of strange attrac-
tors,” Physica, D9:189–208.

Green P. J. and B. W. Silverman. 1994. Nonparametric Regression and Generalized Linear
Models: A Roughness Penalty Approach, London: Chapman and Hall.

Griffiths, A. J. F., J. H. Miller, D. T. Suzuki, R. X. Lewontin, and W. M. Gelbart. 2000.
An Introduction to Genetic Analysis, 7th ed., New York: Freeman.

Groenen, P. 1993. The Majorization Approach to Multidimensional Scaling: Some Problems
and Extensions, Leiden, The Netherlands: DSWO Press.

http://www.biomecardio.com/matlab.
http://www.biomecardio.com/matlab.

References 561

Guillamet, D. and J. Vitria. 2002. “Nonnegative matrix factorization for face recog-
nition,” in Fifth Catalonian Conference on Artificial Intelligence, pp. 336–344.

Guttman, L. 1968. “A general nonmetric technique for finding the smallest coordinate
space for a configuration of points,” Psychometrika, 33:469–506.

Halkidi, M., Y. Batistakis, and M. Vazirgiannis, 2001. “On clustering validation tech-
niques,” Journal of Intelligent Information Systems, 17:107–145.

Hand, D., F. Daly, A. D. Lunn, K. J. McConway, and E. Ostrowski. 1994. A Handbook
of Small Data Sets, London: Chapman and Hall.

Hand, D., H. Mannila, and P. Smyth. 2001. Principles of Data Mining, Cambridge, MA:
The MIT Press.

Hanselman, D. and B. Littlefield. 2004. Mastering MATLAB 7, New Jersey: Prentice Hall.

Hansen, P., B. Jaumard, and B. Simeone. 1996. “Espaliers: A generalization of den-
drograms,” Journal of Classification, 13:107–127.

Härdle, W. 1991. Smoothing Techniques with Implementation in S, New York,
NY: Springer–Verlag.

Hartigan, J. A. 1967. “Representation of similarity measures by trees,” Journal of the
American Statistical Association, 62:1140–1158.

Hartigan, J. A. 1975. Clustering Algorithms, New York: John Wiley & Sons.

Hartigan, J. A. 1985. “Statistical theory in clustering,” Journal of Classification, 2:63–76.

Hartigan, J. A. and B. Kleiner. 1981. “Mosaics for contingency tables,” in W. F. Eddy
(editor), Computer Science and Statistics: Proceedings of the 13th Symposium on the
Interface, pp. 268–273, New York: Springer–Verlag.

Hartwig, F. and B. E. Dearing. 1979. Exploratory Data Analysis, Newbury Park, CA:
Sage University Press.

Hastie, T. J. and C. Loader. 1993. “Local regression: Automatic kernel carpentry (with
discussion),” Statistical Science, 8:120–143.

Hastie, T. J. and R. J. Tibshirani. 1986. “Generalized additive models,” Statistical
Science, 1:297–318.

Hastie, T. J. and R. J.Tibshirani. 1990. Generalized Additive Models, London: Chapman
and Hall.

Hastie, T. J., R. J. Tibshirani, and J. Friedman. 2009. The Elements of Statistical Learning:
Data Mining, Inference and Prediction, 2nd Edition, New York: Springer.

Hastie, T., R. Tibshirani, M. B. Eisen, A. Alizadeh, R. Levy, L. Staudt, W. C. Chan,
D. Botstein and P. Brown. 2000. “Gene shaving as a method for identifying
distinct sets of genes with similar expression patterns,” Genome Biology, 1.

Hinton, G. E. and S. T. Roweis. 2002. “Stochastic neighbor embedding,” in Advances
in Neural Information Processing Systems, p. 833–840.

Hinton, G. E. and R. R. Salakhutdinov. 2006. “Reducing the dimensionality of data
with neural networks,” Science, 313:504–507.

Hintze, J. L. and R. D. Nelson. 1998. “Violin plots: A box plot–density trace syner-
gism,” The American Statistician, 52:181–184.

Hoaglin, D. C. 1980. “A poissonness plot,” The American Statistician, 34:146–149.

Hoaglin, D. C. 1982. “Exploratory data analysis,” in Encyclopedia of Statistical Sciences,
Volume 2, Kotz, S. and N. L. Johnson, eds., New York: John Wiley & Sons.

562 Exploratory Data Analysis with MATLAB®, Third Edition

Hoaglin, D. C., B. Iglewicz, and J. W. Tukey. 1986. “Performance of some resistant
rules for outlier labeling,” Journal of the American Statistical Association,
81:991–999.

Hoaglin, D. C. and J. Tukey. 1985. “Checking the shape of discrete distributions,” in
Exploring Data Tables, Trends and Shapes, D. Hoaglin, F. Mosteller, and J. W. Tukey,
eds., New York: John Wiley & Sons.

Hoaglin, D. C., F. Mosteller, and J. W. Tukey (eds.). 1983. Understanding Robust and
Exploratory Data Analysis, New York: John Wiley & Sons.

Hoaglin, D. C., F. Mosteller, and J. W. Tukey. 1985. Exploring Data Tables, Trends, and
Shapes, New York: John Wiley & Sons.

Hoffmann H. 2015, “violin.m – Simple violin plot using matlab default kernel density
estimation,” http://www.mathworks.com/matlabcentral/fileex-
change/45134–violin–plot.

Hofmann, T. 1999a. “Probabilistic latent semantic indexing,” Proceedings of the 22nd
Annual ACM Conference on Research and Development in Information Retrieval,
Berkeley, CA, 50–57 (www.cs.brown.edu/~th/papers/Hofmann–SIGIR99.pdf).

Hofmann, T. 1999b. “Probabilistic latent semantic analysis,” Proceedings of the Fifteenth
Conference on Uncertainty in Artificial Intelligence, UAI’99, Stockholm,
(www.cs.brown.edu/~th/papers/Hofmann–UAI99.pdf).

Hogg, R. 1974. “Adaptive robust procedures: A partial review and some suggestions
for future applications and theory (with discussion),” Journal of the American
Statistical Association, 69:909–927.

Huber, P. J. 1973. “Robust regression: Asymptotics, conjectures, and Monte Carlo,”
Annals of Statistics, 1:799–821.

Huber, P. J. 1981. Robust Statistics, New York: John Wiley & Sons.

Huber, P. J. 1985. “Projection pursuit (with discussion),” Annals of Statistics,
13:435–525.

Hubert, L. J. and P. Arabie. 1985. “Comparing partitions,” Journal of Classification,
2:193–218.

Hummel, J. 1996. “Linked bar charts: Analyzing categorical data graphically,” Com-
putational Statistics, 11:23–33.

Hurley, C. and A. Buja. 1990. “Analyzing high–dimensional data with motion graph-
ics,” SIAM Journal of Scientific and Statistical Computing, 11:1193–1211.

Hyvärinen, A. 1999a. “Survey on independent component analysis,” Neural Comput-
ing Surveys, 2:94–128.

Hyvärinen, A. 1999b. “Fast and robust fixed–point algorithms for independent com-
ponent analysis,” IEEE Transactions on Neural Networks, 10:626–634.

Hyvärinen, A., J. Karhunen, and E. Oja. 2001. Independent Component Analysis, New
York: John Wiley & Sons.

Hyvärinen, A. and E. Oja. 2000. “Independent component analysis: Algorithms and
applications,” Neural Networks, 13:411–430.

Ilc, N. 2012. “Modified Dunn’s cluster validity index based on graph theory,” Przeglad
Elektrotechniczny (Electrical Review), 2:126–131.

Ilc, N. 2013. “Modified & Generalized Dunn’s Index,” MATLAB Central,

http://www.mathworks.com/matlabcentral/fileexchange/45134%E2%80%93violin%E2%80%93plot.
http://www.mathworks.com/matlabcentral/fileexchange/45134%E2%80%93violin%E2%80%93plot.
www.cs.brown.edu/%7Eth/papers/Hofmann%E2%80%93SIGIR99.pdf
www.cs.brown.edu/%7Eth/papers/Hofmann%E2%80%93UAI99.pdf

References 563

https://www.mathworks.com/matlabcentral/fileex-
change/42199–modified–––generalized–dunn–s–index

Inselberg, A. 1985. “The plane with parallel coordinates,” The Visual Computer,
1:69–91.

Jackson, J. E. 1981. “Principal components and factor analysis: Part III – What is factor
analysis?” Journal of Quality Technology, 13:125–130.

Jackson, J. E. 1991. A User’s Guide to Principal Components, New York: John Wiley &
Sons.

Jain, A. K. and R. C. Dubes. 1988. Algorithms for Clustering Data, New York: Prentice
Hall.

Jain, A. K. and M. Law. 2005. “Data clustering: A user’s dilemma,” Lecture Notes in
Computer Science, 3776:1–10.

Jain, A. K., M. N. Murty, and P. J. Flynn. 1999. “Data clustering: A review,” ACM
Computing Surveys, 31:264–323.

Jeffreys, H. 1935. “Some tests of significance, treated by the theory of probability,”
Proceedings of the Cambridge Philosophy Society, 31:203–222.

Jeffreys, H. 1961. Theory of Probability, Third Edition, Oxford, U. K.: Oxford University
Press.

Johnson, B. and B. Shneiderman. 1991. “Treemaps: A space–filling approach to the
visualization of hierarchical information structures,” Proceedings of the 2nd Inter-
national IEEE Visualization Conference, 284–291.

Johnson, W. B. and J. Lindenstrauss. 1984. “Extensions of Lipschitz mappings into a
Hilbert space,” Contemporary Mathematics, 26:189–206.

Jolliffe, I. T. 1972. “Discarding variables in a principal component analysis I: Artificial
data,” Applied Statistics, 21:160–173.

Jolliffe, I. T. 1986. Principal Component Analysis, New York: Springer–Verlag.

Jonas. 2009. “Violin plots for plotting multiple distributions,” MATLAB Central,
http://www.mathworks.com/matlabcentral/fileex-
change/23661–violin–plots–for–plotting–multiple–distribu-
tions––distributionplot–m–

Jonas. 2012. “Plot spread points (beeswarm plot),” MATLAB Central, ht-
tp://www.mathworks.com/matlabcentral/fileex-
change/37105–plot–spread–points––beeswarm–plot–

Jones, W. P. and G. W. Furnas. 1987. “Pictures of relevance: A geometric analysis of
similarity measures,” Journal of the American Society for Information Science,
38:420–442.

Jones, M. C. and R. Sibson. 1987. “What is projection pursuit” (with discussion),
Journal of the Royal Statistical Society, Series A, 150:1–36.

Kaiser, H. F. 1960. “The application of electronic computers to factor analysis,”
Educational and Psychological Measurement, 20:141–151.

Kampstra, P. 2008. “Beanplot: A boxpot alternative for visual comparison of distri-
butions,” Journal of Statistical Software, Volume 28, DOI: 10.18637/jss.v028.c01.

Kangas, J. and S. Kaski. 1998. “3043 works that have been based on the self–organizing
map (SOM) method developed by Kohonen,” Technical Report A50, Helsinki
University of Technology, Laboratory of Computer and Information Science.

https://www.mathworks.com/matlabcentral/fileexchange/42199%E2%80%93modified%E2%80%93%E2%80%93%E2%80%93generalized%E2%80%93dunn%E2%80%93s%E2%80%93index
http://www.mathworks.com/matlabcentral/fileexchange/23661%E2%80%93violin%E2%80%93plots%E2%80%93for%E2%80%93plotting%E2%80%93multiple%E2%80%93distributions--distributionplot-m-
http://www.mathworks.com/matlabcentral/fileexchange/37105%E2%80%93plot%E2%80%93spread%E2%80%93points%E2%80%93%E2%80%93beeswarm%E2%80%93plot%E2%80%93
https://www.mathworks.com/matlabcentral/fileexchange/42199%E2%80%93modified%E2%80%93%E2%80%93%E2%80%93generalized%E2%80%93dunn%E2%80%93s%E2%80%93index
http://www.mathworks.com/matlabcentral/fileexchange/23661%E2%80%93violin%E2%80%93plots%E2%80%93for%E2%80%93plotting%E2%80%93multiple%E2%80%93distributions--distributionplot-m-
http://www.mathworks.com/matlabcentral/fileexchange/23661%E2%80%93violin%E2%80%93plots%E2%80%93for%E2%80%93plotting%E2%80%93multiple%E2%80%93distributions--distributionplot-m-
http://www.mathworks.com/matlabcentral/fileexchange/37105%E2%80%93plot%E2%80%93spread%E2%80%93points%E2%80%93%E2%80%93beeswarm%E2%80%93plot%E2%80%93
http://www.mathworks.com/matlabcentral/fileexchange/37105%E2%80%93plot%E2%80%93spread%E2%80%93points%E2%80%93%E2%80%93beeswarm%E2%80%93plot%E2%80%93

564 Exploratory Data Analysis with MATLAB®, Third Edition

Kaski, S. 1997. Data Exploration Using Self–Organizing Maps, Ph.D. dissertation, Hel-
sinki University of Technology.

Kaski, S., T. Honkela, K. Lagus, and T. Kohonen. 1998. “WEBSOM – Self–organizing
maps of document collections,” Neurocomputing, 21:101–117.

Kass, R. E. and A. E. Raftery. 1995. “Bayes factors,” Journal of the American Statistical
Association, 90:773–795.

Kaufman, L. and P. J. Rousseeuw. 1990. Finding Groups in Data: An Introduction to
Cluster Analysis, New York: John Wiley & Sons.

Kegl, B. 2003. “Intrinsic dimension estimation based on packing numbers,” in Ad-
vances in Neural Information Processing Systems (NIPS), 15:833–840, Cambridge,
MA: The MIT Press.

Kiang, M. Y. 2001. “Extending the Kohonen self–organizing map networks for clus-
tering analysis,” Computational Statistics and Data Analysis, 38:161–180.

Kimbrell, R. E. 1988. “Searching for text? Send an N–Gram!,” Byte, May, 297 – 312.

Kimball, B. F. 1960. “On the choice of plotting positions on probability paper,” Journal
of the American Statistical Association, 55:546–560.

Kirby, M. 2001. Geometric Data Analysis: An Empirical Approach to Dimensionality Re-
duction and the Study of Patterns, New York: John Wiley & Sons.

Kleiner, B. and J. A. Hartigan. 1981. “Representing points in many dimensions by
trees and castles,” Journal of the American Statistical Association, 76:260–276

Kohonen, T. 1998. “The self–organizing map,” Neurocomputing, 21:1–6.

Kohonen, T. 2001. Self–Organizing Maps, Third Edition, Berlin: Springer.

Kohonen, T., S. Kaski, K. Lagus, J. Salojarvi, T. Honkela, V. Paatero, and A. Saarela.
2000. “Self organization of a massive document collection,” IEEE Transactions on
Neural Networks, 11:574–585.

Kotz, S. and N. L. Johnson (eds.). 1986. Encyclopedia of Statistical Sciences, New York:
John Wiley & Sons.

Kruskal, J. B. 1964a. “Multidimensional scaling by optimizing goodness of fit to a
nonmetric hypothesis,” Psychometrika, 29:1–27.

Kruskal, J. B. 1964b. “Nonmetric multidimensional scaling: A numerical method,”
Psychometrika, 29:115–129.

Kruskal, J. B. and M. Wish. 1978. Multidimensional Scaling, Newbury Park, CA: Sage
Publications, Inc.

Krzanowski, W. J. and Y. T. Lai. 1988. “A criterion for determining the number of
groups in a data set using sum–of–squares clustering,” Biometrics, 44:23–34.

Lai, M. 2015. “Giraffe: Using deep reinforcement learning to play chess,” MSc Dis-
sertation, College of London, http://arxiv.org/abs/1509.01549.

Lander, E. S. 1999. “Array of hope,” Nature Genetics Supplement, 21:3–4.

Lang, K. 1995. “Newsweeder: Learning to filter netnews,” in Proceedings of the 12th
International Conference on Machine Learning, pp. 331–339.

Langville, A., C. Meyer, and R. Albright. 2006. “Initializations for the nonnegative
matrix factorization,” Proceedings of the Twelfth ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining.

Launer, R. and G. Wilkinson (eds.). 1979. Robustness in Statistics, New York: Academic
Press.

http://arxiv.org/abs/1509.01549

References 565

Lawley, D. N. and A. E. Maxwell. 1971. Factor Analysis as a Statistical Method, 2nd
Edition, London: Butterworth.

Le, Q., T. Sarlos, and A. Smola. 2013. “Fastfood–approximating kernel expansions in
loglinear time,” in Proceedings of the International Conference on Machine Learning.

LeCun, Y., Y. Bengio, and G. Hinton. 2015. “Deep Learning,” Nature, 521:436–444.

Lee, D. and H. Seung. 2001. “Algorithms for non–negative matrix factorization,”
Advances in Neural Information Processing Systems, 13:556–562.

Lee, J. A. and M. Verleysen. 2007. Nonlinear Dimensionality Reduction, New York, NY:
Springer–Verlag.

Lee, J. A., A. Lendasse, N. Donckers, and M. Verleysen. 2000. “A robust nonlinear
projection method,” Proceedings of ESANN’2002 European Symposium on Artificial
Neural Networks, Burges, Belgium, pp. 13–20.

Lee, J. A., A. Lendasse, and M. Verleysen. 2002. “Curvilinear distance analysis versus
ISOMAP,” Proceedings of ESANN’2002 European Symposium on Artificial Neural
Networks, Burges, Belgium, pp. 185–192.

Lee, T. C. M. 2002. “On algorithms for ordinary least squares regression spline fitting:
A comparative study,” Journal of Statistical Computation and Simulation,
72:647–663.

Levina, E. and P. Bickel. 2004. “Maximum likelihood estimation of intrinsic dimen-
sion,” in Advances in Neural Information Processing Systems, Cambridge, MA: The
MIT Press.

Lewis, N. D. 2016. Deep Learning Made Easy with R: A Gentle Introduction for Data
Science, CreateSpace Independent Publishing Platform.

Li, C., J. Guo, and X. Nie. 2007. “Intrinsic dimensionality estimation with neighbor-
hood convex hull,” Proceedings of the 2007 International Conference on Compuational
Intelligence and Security, p. 75–79.

Li, G. and Z. Chen. 1985. “Projection–pursuit approach to robust dispersion matrices
and principal components: Primary theory and Monte Carlo,” Journal of the
American Statistical Association, 80:759–766.

Lindsey, J. C., A. M. Herzberg, and D. G. Watts. 1987. “A method for cluster analysis
based on projections and quantile–quantile plots,” Biometrics, 43:327–341.

Ling, R. F. 1973. “A computer generated aid for cluster analysis,” Communications of
the ACM, 16:355–361.

Little, A. V., Y. Jung, and M. Maggioni. 2009. “Multiscale estimation of intrinsic
dimensionality of data sets,” Proceedings Manifold Learning and its Applications:
Papers from the AAAI Fall Symposium, p. 26–33.

Loader, C. 1999. Local Regression and Likelihood, New York: Springer–Verlag.

MacKay, D. J. C. and Z. Ghahramani. 2005. “Comments on ‘Maximum Likelihood
Estimation of Intrinsic Dimension’ by E. Levina and P. Bickel (2004),” ht-
tp://www.inference.phy.cam.ac.uk/mackay/dimension/.

Manly, B. F. J. 1994. Multivariate Statistical Methods – A Primer, Second Edition, London:
Chapman & Hall.

Manning, C. D. and H. Schütze. 2000. Foundations of Statistical Natural Language
Processing, Cambridge, MA: The MIT Press.

Mao, J. and A. K. Jain. 1995. “Artificial neural networks for feature extraction and
multivariate data projection,” IEEE Transaction on Neural Networks, 6:296–317.

http://www.inference.phy.cam.ac.uk/mackay/dimension/
http://www.inference.phy.cam.ac.uk/mackay/dimension/

566 Exploratory Data Analysis with MATLAB®, Third Edition

Marchand, P. and O. T. Holland. 2002. Graphics and GUIs with MATLAB, Third Edition,
Boca Raton: CRC Press.

Marchette, D. J. and J. L. Solka. 2003. “Using data images for outlier detection,”
Computational Statistics and Data Analysis, 43:541–552.

Marsh, L. C. and D. R. Cormier. 2002. Spline Regression Models, Sage University Papers
Series on Quantitative Applications in the Social Sciences, 07–137, Thousand
Oaks, CA: Sage Publications, Inc.

Martinez, A. R. 2002. A Framework for the Representation of Semantics, Ph.D. Disserta-
tion, Fairfax, VA: George Mason University.

Martinez, A. R. and E. J. Wegman. 2002a. “A text stream transformation for seman-
tic–based clustering,” Computing Science and Statistics, 34:184–203.

Martinez, A. R. and E. J. Wegman. 2002b. “Encoding of text to preserve “meaning”,”
Proceedings of the Eighth Annual U. S. Army Conference on Applied Statistics, 27–39.

Martinez, W. L. and M. Cho. 2014. Statistics in MATLAB: A Primer, Boca Raton: CRC
Press.

Martinez, W. L. and A. R. Martinez. 2015. Computational Statistics Handbook with
MATLAB, Third Edition, Boca Raton: CRC Press.

McGill, R., J. Tukey, and W. Larsen. 1978. “Variations of box plots,” The American
Statistician, 32:12–16.

McLachlan, G. J. and K. E. Basford. 1988. Mixture Models: Inference and Applications
to Clustering, New York: Marcel Dekker.

McLachlan, G. J. and T. Krishnan. 1997. The EM Algorithm and Extensions, New York:
John Wiley & Sons.

McLachlan, G. J. and D. Peel. 2000. Finite Mixture Models, New York: John Wiley &
Sons.

McLachlan, G. J., D. Peel, K. E. Basford, and P. Adams. 1999. “The EMMIX software
for the fitting of mixtures of normal and t–components,” Journal of Statistical
Software, 4, http://www.jstatsoft.org/index.php?vol=4.

McLeod, A. I. and S. B. Provost. 2001. “Multivariate Data Visualization,”
www.stats.uwo.ca/faculty/aim/mviz.

Mead, A. 1992. “Review of the development of multidimensional scaling methods,”
The Statistician, 41:27–39.

Meyer, D., A. Zeileis, and K. Hornik. 2008. “Visualizing contingency tables” in C.
Chen, W. Härdle, and A. Unwin (editors), Handbook of Data Visualization, Springer
Handbooks of Computational Statistics, pp. 589–616, New York: Springer–Ver-
lag.

Milligan, G. W. and M. C. Cooper. 1985. “An examination of procedures for deter-
mining the number of clusters in a data set,” Psychometrika, 50:159–179.

Milligan, G. W. and M. C. Cooper. 1988. “A study of standardization of variables in
cluster analysis,” Journal of Classification, 5:181–204.

Minh, V., K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wiersgtra, and M.
Riedmiller. 2013. “Playing Atari with deep reinforcement learning,” NIPS Deep
Learning Workshop, http://arxiv.org/pdf/1312.5602.pdf

Minnotte, M. and R. West. 1998. “The data image: A tool for exploring high dimen-
sional data sets,” Proceedings of the ASA Section on Statistical Graphics, Dallas,
Texas, 25–33.

http://www.jstatsoft.org/index.php?vol=4
www.stats.uwo.ca/faculty/aim/mviz
http://arxiv.org/pdf/1312.5602.pdf

References 567

Mojena, R. 1977. “Hierarchical grouping methods and stopping rules: An evaluation,”
Computer Journal, 20:359–363.

Moler, C. 2004. Numerical Computing with MATLAB, New York: SIAM.

Montanari, A. and L. Lizzani. 2001. “A projection pursuit approach to variable se-
lection,” Computational Statistics and Data Analysis, 35:463–473.

Morgan, B. J. T. and A. P. G. Ray. 1995. “Non–uniqueness and inversions in cluster
analysis,” Applied Statistics, 44:114–134.

Mosteller, F. and J. W. Tukey. 1977. Data Analysis and Regression: A Second Course in
Statistics, New York: Addison–Wesley.

Mosteller, F. and D. L. Wallace. 1964. Inference and Disputed Authorship: The Federalist
Papers, New York: Addison–Wesley.

Mukherjee, S., E. Feigelson, G. Babu, F. Murtagh, C. Fraley, and A. E. Raftery. 1998.
“Three types of gamma ray bursts,” Astrophysical Journal, 508:314–327.

Murtagh, F. and A. E. Raftery. 1984. “Fitting straight lines to point patterns,” Pattern
Recognition, 17:479–483.

Nair, V. and G. E. Hinton. 2010. “Rectified linear units improve restricted Bolzmann
machines,” in Proceedings of the 27th International Conference on Machine Learning,
p. 807–814.

Nason, G. 1995. “Three–dimensional projection pursuit,” Applied Statistics,
44:411–430.

Ng, A. Y., M. I. Jordan, and Y. Weiss. 2002. “On spectral clustering: Analysis and an
algorithm,” Advances in Neural Information Processing Systems (NIPS), 14:849–856.

Olbricht, W. 1982. “Modern statistical analysis of ancient sand,” MSc Thesis, Univer-
sity of Sheffield, Sheffield, UK.

Ord, J. K. 1967. “Graphical methods for a class of discrete distributions,” Journal of
the Royal Statistical Society, Series A, 130:232–238.

Pal, N. R. and J. Biswas. 1997. “Cluster validation using graph theoretic concepts,”
Pattern Recognition, 30:847–857.

Panel on Discriminant Analysis, Classification, and Clustering. 1989. “Discriminant
analysis and clustering,” Statistical Science, 4:34–69.

Parzen, E. 1962. “On estimation of a probability density function and mode.” Annals
of Mathematical Statistics, 33:1065–1076.

Parzen, E. 1979. “Nonparametric statistical data modeling,” Journal of the American
Statistical Association, 74:105–121.

Pearson, K. and A. Lee. 1903. “On the laws of inheritance in man. I. Inheritance of
physical characters,” Biometrika, 2:357–462.

Pettis, K. W., T. A. Bailey, A. K. Jain, and R. C. Dubes. 1979. “An intrinsic dimen-
sionality estimator from near–neighbor information,” IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 1:25–37.

Porter, M. F. 1980. “An algorithm for suffix stripping,” Program, 14:130 – 137.

Posse, C. 1995a. “Projection pursuit exploratory data analysis,” Computational Statis-
tics and Data Analysis, 29:669–687.

Posse, C. 1995b. “Tools for two–dimensional exploratory projection pursuit,” Journal
of Computational and Graphical Statistics, 4:83–100.

568 Exploratory Data Analysis with MATLAB®, Third Edition

Posse, C. 2001. “Hierarchical model–based clustering for large data sets,” Journal of
Computational and Graphical Statistics,” 10:464–486.

Prim, R. C. 1957. “Shortest connection networks and some generalizations,” Bell
System Technical Journal, 36:1389–1401,

Raginsky, M. and S. Lazebnik. 2006. “Estimation of intrinsic dimensionality using
high–rate vector quantization,” in Advances in Neural Information Processing,
18:1105–1112.

Rahimi, A. and B. Recht. 2007. “Random features for large–scale kernel machines,”
in Advances in Neural Information Processing Systems, pp. 1177–1184.

Rahimi, A. and B. Recht. 2008. “Uniform approximation of functions with random
bases,” in IEEE Communication, Control, and Computing Conference, pp. 555–561.

Rahimi, A. and B. Recht. 2009. “Weighted sums of random kitchen sinks: Replacing
minimization with randomization in learning,” in Advances in Neural Information
Processing Systems, pp. 1313–1320.

Rand, W. M. 1971. “Objective criteria for the evaluation of clustering methods,”
Journal of the American Statistical Association, 66:846–850.

Rao, C. R. 1993. Computational Statistics, The Netherlands: Elsevier Science Publishers.

Redner, A. R. and H. F. Walker. 1984. “Mixture densities, maximum likelihood, and
the EM algorithm,” SIAM Review, 26:195–239.

Reinsch, C. 1967. “Smoothing by spline functions,” Numerical Mathematics, 10:
177–183.

Riedwyl, H. and M. Schüpbach. 1994. “Parquet diagram to plot contingency tables,”
in F. Faulbaum (editor), Softstat ‘93: Advances in Statistical Software, pp. 293–299,
New York: Gustav Fischer.

Ripley, B. D. 1996. Pattern Recognition and Neural Networks, Cambridge: Cambridge
University Press.

Robbins, N. B. 2013. Creating More Effective Graphs, Houston, TX: Chart House Press.

Roeder, K. 1994. “A graphical technique for determining the number of components
in a mixture of normals,” Journal of the American Statistical Association, 89:487–495.

Ross, S. M. 2014. Introduction to Probability Models, Eleventh Edition, New York: Aca-
demic Press.

Rousseeuw, P. J. and A. M. Leroy. 1987. Robust Regression and Outlier Detection, New
York: John Wiley & Sons.

Rousseeuw, P. J. and I. Ruts. 1996. “Algorithm AS 307: Bivariate location depth,”
Applied Statistics (JRSS–C), 45:516–526.

Rousseeuw, P. J. and I. Ruts. 1998. “Constructing the bivariate Tukey median,”
Statistica Sinica, 8:827–839.

Rousseeuw, P. J., I. Ruts, and J. W. Tukey. 1999. “The bagplot: A bivariate boxplot,”
The American Statistician, 53:382–387.

Roweis, S. T. and L. K. Saul. 2000. “Nonlinear dimensionality reduction by locally
linear embedding,” Science, 290:2323–2326.

Rumelhart, D. E., G. E. Hinton, and R. J. Williams. 1986. “Learning internal repre-
sentations by error propagation,” in D. E. Rumelhart, J. L. McClelland, and the
PDP Research Group (editors), Parallel Distributed Processing: Explorations in the
Microstructure of Cognition, Volume 1: Foundations, MIT Press.

References 569

Rutherford, E. and H. Geiger. 1910. “The probability variations in the distribution of
alpha particles,” Philosophical Magazine, 20:698–704.

Salton, G., C. Buckley, and M. Smith. 1990. “On the application of syntactic method-
ologies,” Automatic Text Analysis, Information Processing & Management, 26:73–92.

Sammon, J. W. 1969. “A nonlinear mapping for data structure analysis,” IEEE Trans-
actions on Computers, C–18:401–409

Saul, L. K. and S. T. Roweis. 2002. “Think globally, fit locally: Unsupervised learning
of nonlinear manifolds,” Technical Report MS CIS–02–18, University of Penn-
sylvania.

Schena, M., D. Shalon, R. W. Davis, and P. O. Brown. 1995. “Quantitative monitoring
of gene expression patterns with a complementary DNA microarray,” Science,
270:497–470.

Schimek, M. G. (ed.) 2000. Smoothing and Regression: Approaches, Computation, and
Application, New York: John Wiley & Sons.

Schwarz, G. 1978. “Estimating the dimension of a model,” The Annals of Statistics,
6:461–464.

Scott, A. J. and M. J. Symons. 1971. “Clustering methods based on likelihood ratio
criteria,” Biometrics, 27:387–397.

Scott, D. W. 1979. “On optimal and data–based histograms,” Biometrika, 66:605–610.

Scott, D. W. 2015. Multivariate Density Estimation: Theory, Practice, and Visualization,
Second Edition, New York: John Wiley & Sons.

Sebastani, P., E. Gussoni, I. S. Kohane, and M. F. Ramoni. 2003. “Statistical Challenges
in Functional Genomics,” Statistical Science, 18:33–70.

Seber, G. A. F. 1984. Multivariate Observations, New York: John Wiley & Sons.

Shepard, R. N. 1962a. “The analysis of proximities: Multidimensional scaling with
an unknown distance function I,” Psychometrika, 27:125–140.

Shepard, R. N. 1962b. “The analysis of proximities: Multidimensional scaling with
an unknown distance function II,” Psychometrika, 27:219–246.

Shneiderman, B. 1992. “Tree visualization with tree–maps: 2–D space–filling ap-
proach,” ACM Transactions on Graphics, 11:92–99.

Siedlecki, W., K. Siedlecka, and J. Sklansky. 1988. “An overview of mapping tech-
niques for exploratory pattern analysis,” Pattern Recognition, 21:411–429.

Silverman, B. W. 1986. Density Estimation for Statistics and Data Analysis, London:
Chapman and Hall.

Simonoff, J. S. 1996. Smoothing Methods in Statistics, New York: Springer–Verlag.

Sivic, J. 2010. Visual Geometry Group

http://www.robots.ox.ac.uk/~vgg/software/

Slomka, M. 1986. “The analysis of a synthetic data set,” Proceedings of the Section on
Statistical Graphics, 113–116.

Smaragdis, P. and J. C. Brown. 2003. “Nonnegative matrix factorization for poly-
phonic music transcription,” in IEEE Workshop Applications of Signal Processing
to Audio and Acoustics, New York, USA, pp. 177–180.

http://www.robots.ox.ac.uk/~vgg/software/

570 Exploratory Data Analysis with MATLAB®, Third Edition

Smolensky, P. 1986. “Chapter 6: Information processing in dynamical systems: Foun-
dations of Harmony Theory,” in D. E. Rumelhart, J. L. McClelland, and the PDP
Research Group (editors), Parallel Distributed Processing: Explorations in the Mi-
crostructure of Cognition, Volume 1: Foundations, MIT Pres.

Sneath, P. H. A. and R. R. Sokal. 1973. Numerical Taxonomy, San Francisco: W. H.
Freeman.

Snee, R. D. 1974. “Graphical display of two–way contingency tables,” The American
Statistician,” 28:9–12.

Solka, J. and W. L. Martinez. 2004. “Model–based clustering with an adaptive mix-
tures smart start,” in Proceedings of the Interface.

Späth, H. 1980. Cluster Analysis Algorithms for Data Reduction and Classification of
Objects, New York: Halsted Press.

Steyvers, M. 2002. “Multidimensional scaling,” in Encyclopedia of Cognitive Science.

Stone, C. J. 1977. “Consistent nonparametric regression,” The Annals of Statistics,
5:595–645.

Stone, J. V. 2002. “Independent component analysis: An introduction,” TRENDS in
Cognitive Sciences, 6(2):59–64.

Stone, J. V. 2004. Independent Component Analysis: A Tutorial Introduction, Cambridge,
MA: The MIT Press.

Strang, G. 1988. Linear Algebra and its Applications, Third Edition, San Diego: Harcourt
Brace Jovanovich.

Strang, G. 1993. Introduction to Linear Algebra, Wellesley, MA: Wellesley–Cambridge
Press.

Strang, G. 1999. “The discrete cosine transform,” SIAM Review, 41:135–147.

Stuetzle, W. 1987. “Plot windows,” Journal of the American Statistical Association,
82:466–475.

Sturges, H. A. 1926. “The choice of a class interval,” Journal of the American Statistical
Association, 21:65–66.

Swayne, D. F., D. Cook, and A. Buja. 1991. “XGobi: Interactive dynamic graphics in
the X window system with a link to S,” ASA Proceedings of the Section on Statistical
Graphics. 1–8.

Tamayho, P., D. Slonim, J. Mesirov, Q. Zhu, S. Kitareewan, E. Dmitrovsky, E. S.
Lander, and T. R. Golub. 1999. “Interpreting patterns of gene expression with
self–organizing maps: Methods and application to hematopoietic differentia-
tion,” Proceedings of the National Academy of Science, 96:2907–2912.

Tenenbaum, J. B., V. de Silva, and J. C. Langford. 2000. “A global geometric frame-
work for nonlinear dimensionality reduction,” Science, 290:2319–2323.

Theus, M. and S. Urbanek. 2009. Interactive Graphics for Data Analysis: Principles and
Examples, Boca Raton: CRC Press.

Tibshirani, R., G. Walther, D. Botstein, and P. Brown. 2001. “Cluster validation by
prediction strength,” Technical Report, Stanford University.

Tibshirani, R., G. Walther, and T. Hastie. 2001. “Estimating the number of clusters
in a data set via the gap statistic,” Journal of the Royal Statistical Society, B,
63:411–423.

References 571

Tiede, J. J. and M. Pagano. 1979. “The application of robust calibration to radioim-
munoassay,” Biometrics, 35:567–574.

Timmins, D. A. Y. 1981. “Study of sediment in mesolithic middens on Oronsay,” MA
Thesis, University of Sheffield, Sheffield, UK.

Titterington, D. B. 1985. “Common structure of smoothing techniques in statistics,”
International Statistical Review, 53:141–170.

Titterington, D. M., A. F. M. Smith, and U. E. Makov. 1985. Statistical Analysis of Finite
Mixture Distributions, New York: John Wiley & Sons.

Torgerson, W. S. 1952. “Multidimensional scaling: 1. Theory and method,” Psy-
chometrika, 17:401–419.

Toussaint, G. T. 1980. “The relative neighbourhood graph of a finite planar set,”
Pattern Recognition, 12:261–268.

Trunk, G. 1968. “Statistical estimation of the intrinsic dimensionality of data collec-
tions,” Information and Control, 12:508–525.

Trunk, G. 1976. “Statistical estimation of the intrinsic dimensionality of data,” IEEE
Transactions on Computers, 25:165–171.

Tufte, E. 1983. The Visual Display of Quantitative Information, Cheshire, CT: Graphics
Press.

Tufte, E. 1990. Envisioning Information, Cheshire, CT: Graphics Press.

Tufte, E. 1997. Visual Explanations, Cheshire, CT: Graphics Press.

Tufte, E. 2006. Beautiful Evidence, Cheshire, CT: Graphics Press.

Tukey, J. W. 1973. “Some thoughts on alternagraphic displays,” Technical Report 45,
Series 2, Department of Statistics, Princeton University.

Tukey, J. W. 1975. “Mathematics and the picturing of data,” Proceedings of the Inter-
national Congress of Mathematicians, 2:523–531.

Tukey, J. W. 1977. Exploratory Data Analysis, New York: Addison–Wesley.

Tukey, J. W. 1980. “We need both exploratory and confirmatory,” The American
Statistician, 34:23–25.

Udina, F. 2005. “Interactive biplot construction,” Journal of Statistical Software, 13,
http://www.jstatsoft.org/.

Ultsch, A. and H. P. Siemon. 1990. “Kohonen’s self–organizing feature maps for
exploratory data analysis,” Proceedings of the International Neural Network Confer-
ence (INNC’90), Dordrecht, Netherlands, 305–308.

Unwin, A., M. Theus, and H. Hofmann. 2006. Graphics of Large Data Sets: Visualizing
a Million, New York: Springer–Verlag.

Vempala, S. S. 2004. The Random Projection Method, Series in Discrete Mathematics
and Theoretical Computer Science, vol 65, American Mathematical Society.

van der Maaten, L. J. P. 2007. An Introduction to Dimensionality Reduction Using MAT-
LAB, Technical Report MICC 07–07, Maastricht University, Maastricht, The
Netherlands (http://homepage.tudelft.nl/19j49/Publica-
tions.html).

van der Maaten, L. J. P. 2014. “Accelerating t–SNE using tree–based algorithms,” The
Journal of Machine Learning Research, 15:3221–3245.

van der Maaten, L. J. P. and G. E. Hinton. 2008. “Visualizing data using t–SNE,”
Journal of Machine Learning Research, 9:2579–2605.

http://www.jstatsoft.org/
http://homepage.tudelft.nl/19j49/Publications
http://homepage.tudelft.nl/19j49/Publications.html

572 Exploratory Data Analysis with MATLAB®, Third Edition

van der Maaten, L. J. P. and G. E. Hinton. 2012. “Visualizing non–metric similarities
in multiple maps,” Machine Learning, 87:33–55.

van der Maaten, L. J. P., E. O. Postma, and H. J. van den Herik. 2009. Dimensionality
Reduction: A Comparative Review, Tilburg University Technical Report, TiCC–TR
2009–005.

Vandervieren, E. and M. Hubert. 2004. “An adjusted boxplot for skewed distribu-
tions,” COMPSTAT 2004, 1933–1940.

Velicer, W. F. and D. N. Jackson. 1990. “Component analysis versus common factor
analysis: Some issues on selecting an appropriate procedure (with discussion),”
Journal of Multivariate Behavioral Research, 25:1–114.

Venables, W. N. and B. D. Ripley. 1994. Modern Applied Statistics with S–Plus, New
York: Springer–Verlag.

Verboven, S. and M. Hubert. 2005. “LIBRA: A MATLAB library for robust analysis,”
Chemometrics and Intelligent Laboratory Systems, 75:128–136.

Verma, D. and M. Meila. 2003. “A comparison of spectral methods,” Technical Report
UW–CSE–03–05–01, Department of Computer Science and Engineering, Univer-
sity of Washington.

Verveer, P. J. and R. P. W. Duin. 1995. “An evaluation of intrinsic dimensionality
estimators,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
17:81–86.

Vesanto, J. 1997. “Data mining techniques based on the self–organizing map,” Mas-
ter’s Thesis, Helsinki University of Technology.

Vesanto, J. 1999. “SOM–based data visualization methods,” Intelligent Data Analysis,
3:111–126.

Vesanto, J. and E. Alhoniemi. 2000. “Clustering of the self–organizing map,” IEEE
Transactions on Neural Networks, 11:586–6000.

von Luxburg, U. 2007. “A tutorial on spectral clustering,” Technical Report Number
TR–149, Max Planck Institute for Biological Cybernetics.

Wahba, G. 1990. Spline Functions for Observational Data, CBMS–NSF Regional Confer-
ence Series, Philadelphia: SIAM.

Wainer, H. 1997. Visual Revelations: Graphical Tales of Fate and Deception from Napoleon
Bonaparte to Ross Perot, New York: Copernicus/Springer–Verlag.

Wainer, H. 2005. Graphic Discovery: A Trout in the Milk and other Visual Adventures,
Princeton, NJ: Princeton University Press.

Wall, M. E., P. A. Dyck, and T. S. Brettin. 2001. “SVDMAN – singular value decom-
position analysis of microarray data,” Bioinformatics, 17:566–568.

Wall, M. E., A. Rechtsteiner, and L. M. Rocha. 2003. “Chapter 5: Singular value
decomposition and principal component analysis,” in A Practical Approach to
Microarray Data Analysis, D. P. Berar, W. Dubitsky, M. Granzow, eds., Kluwer:
Norwell, MA.

Wand, M. P. and M. C. Jones. 1995. Kernel Smoothing, London: Chapman and Hall.

Wang, S. 2015. A Practical Guide to Randomized Matrix computationsl with MAT-
LAB Implementations, http://arxiv.org/abs/1505.07570.

Ward, J. H. 1963. “Hierarchical groupings to optimize an objective function,” Journal
of the American Statistical Association, 58:236–244.

http://arxiv.org/abs/1505.07570

References 573

Webb, A. 2002. Statistical Pattern Recognition, 2nd Edition, Oxford: Oxford University
Press.

Wegman, E. J. 1986. Hyperdimensional Data Analysis Using Parallel Coordinates, Tech-
nical Report No. 1, George Mason University Center for Computational Statistics.

Wegman, E. 1988. “Computational statistics: A new agenda for statistical theory and
practice,” Journal of the Washington Academy of Sciences, 78:310–322.

Wegman, E. J. 1990. “Hyperdimensional data analysis using parallel coordinates,”
Journal of the American Statistical Association, 85:664–675.

Wegman, E. J. 1991. “The grand tour in k–dimensions,” Computing Science and Statis-
tics: Proceedings of the 22nd Symposium on the Interface, 127–136.

Wegman, E. J. 2003. “Visual data mining,” Statistics in Medicine, 22:1383–1397.

Wegman, E. J. and D. Carr. 1993. “Statistical graphics and visualization,” in Handbook
of Statistics, Vol 9, C. R. Rao, ed., The Netherlands: Elsevier Science Publishers,
857–958.

Wegman, E. J. and Q. Luo. 1997. “High dimensional clustering using parallel coor-
dinates and the grand tour,” Computing Science and Statistics, 28:361–368.

Wegman, E. J. and J. Shen. 1993. “Three–dimensional Andrews plots and the grand
tour,” Proceedings of the 25th Symposium on the Interface, 284–288.

Wegman, E. J. and J. Solka. 2002. “On some mathematics for visualizing high dimen-
sional data,” Sankkya: The Indian Journal of Statistics, 64:429–452.

Wegman, E. J. and I. W. Wright. 1983. “Splines in statistics,” Journal of the American
Statistical Association, 78:351–365.

Wegman, E. J., D. Carr, and Q. Luo. 1993. “Visualizing multivariate data,” in Multi-
variate Analysis: Future Directions, C. R. Rao, ed., The Netherlands: Elsevier Sci-
ence Publishers, 423–466.

Wehrens, R., L. M. C. Buydens, C. Fraley, and A. E. Raftery. 2004. “Model–based
clustering for image segmentation and large datasets via sampling,” Journal of
Classification, 21:231–253.

Weihs, C. 1993. “Multivariate exploratory data analysis and graphics: A tutorial,”
Journal of Chemometrics, 7:305–340.

Weihs, C. and H. Schmidli. 1990. “OMEGA (Online multivariate exploratory graph-
ical analysis): Routine searching for structure,” Statistical Science, 5:175–226.

Weisstein, E. W. 2016.”Sigmoid Function,” from MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/SigmoidFunction.html.

West, M., C. Blanchette, H. Dressman, E. Huang, S. Ishida, R. Spang, H. Zuzan, J. A.
Olson, Jr., J. R. Marks, and J. R. Nevins. 2001. “Predicting the clinical status of
human breast cancer by using gene expression profiles,” Proceedings of the Na-
tional Academy of Science, 98:11462–11467.

Wijk, J. J. van and H. van de Wetering. 1999. “Cushion treemaps: Visualization of
hierarchical information,” in: G. Wills, De. Keim (eds.), Proceedings IEEE Sympo-
sium on Information Visualization (InfoVis’99), 73–78.

Wilhelm, A. F. X., E. J. Wegman, and J. Symanzik. 1999. “Visual clustering and
classification: The Oronsay particle size data set revisited,” Computational Statis-
tics, 14:109–146.

Wilk, M. B. and R. Gnanadesikan. 1968. “Probability plotting methods for the analysis
of data,” Biometrika, 55:1–17.

http://mathworld.wolfram.com/SigmoidFunction.html

574 Exploratory Data Analysis with MATLAB®, Third Edition

Wilkinson, L. 1999. The Grammar of Graphics, New York: Springer–Verlag.

Wills, G. J. 1998. “An interactive view for hierarchical clustering,” Proceedings IEEE
Symposium on Information Visualization, 26–31.

Wing, J. K. 1962. “Institutionalism in mental hospitals,” British Journal of Social Clinical
Psychology, 1:38–51.

Witten, I. H., A. Moffat, and T. C. Bell. 1994. Managing Gigabytes: Compressing and
Indexing Documents and Images, New York, NY: Van Nostrand Reinhold.

Wolfe, J. H. 1970. “Pattern clustering by multivariate mixture analysis,” Multivariate
Behavioral Research, 5:329–350.

Wood, S. 2006. Generalized Additive Models: An Introduction with R, Boca Raton: CRC
Press.

Xu, W., G. Liu, and Y. Gong. 2003. “Document clustering based on non–negative
matrix factorization,” Proceedings of SIGIR’03, 267–273.

Yan, W. and M. S. Kang. 2002. GGE Biplot Analysis: A Graphical Tool for Breeders,
Geneticists, and Agronomists, Boca Raton: CRC Press.

Yeung, K. Y. and W. L. Ruzzo. 2001.”Principal component analysis for clustering
gene expression data,” Bioinformatics, 17:363–774

Yeung, K. Y., C. Fraley, A. Murua, A. E. Raftery, and W. L. Ruzzo. 2001. “Model–based
clustering and data transformation for gene expression data,” Technical Report
396, Department of Statistics, University of Washington.

Young, F. W. 1985. “Multidimensional scaling,” in Encyclopedia of Statistical Sciences,
Kotz, S. and Johnson, N. K. (eds.), 649–659.

Young, F. W., and P. Rheingans. 1991. “Visualizing structure in high–dimensional
multivariate data,” IBM Journal of Research and Development, 35:97–107.

Young, F. W., R. A. Faldowski, and M. M. McFarlane. 1993. “Multivariate statistical
visualization,” in Handbook of Statistics, Vol 9, C. R. Rao, ed., The Netherlands:
Elsevier Science Publishers, 959–998.

Young, G. and A. S. Householder. 1938. “Discussion of a set of points in terms of
their mutual distances,” Psychometrika, 3:19–22.

Young, F. W., P. M. Valero–Mora, and M. Friendly. 2006. Visual Statistics: Seeing Data
with Dynamic Interactive Graphics, Hoboken, NJ: John Wiley & Sons.

Yueh, W. C. 2005. “Eigenvalues of several tridiagonal matrices,” Applied Mathematics
E–Notes, 5:66–74.

Zahn, C. T. 1971. “Graph–theoretical methods for detecting and describing gestalt
clusters,” IEEE Transactions on Computers, 100:68–86.

Zastrow, M. 2016. “Machine outsmarts man in battle of the decade,” New Scientist,
229:21.

575

Author Index

A
Adams, P. 275
Agresti, A. 462, 495
Ahalt, A. 123
Alhoniemi, E. 136
Alter, O. 42, 80
Amsaleg, L. 76
Anderberg, M. R. 231
Andrews, D. F. 291, 440, 456
Anscombe, F. J. 456
Arabie, P. 206
Arbelaitz, O. 221, 224
Asimov, D. 139, 140, 141, 142, 143,

146, 165
Asman, W. A. H. 432
Azzalini, A. 325

B
Babu, G. 275
Baeza-Yates, R. 10
Bailey, T. A. 67, 68
Balasubramanian, M. 136
Banfield, J. D. 238, 243, 380, 381
Basford, K. E. 238, 273, 275
Basseville, M. 509
Becker, R. A. 420, 425, 429, 456, 517,

519, 520
Becketti, S. 400
Bell, T. C. 10
Bengio, Y. 127, 136
Benjamini, Y. 374, 380
Bensmail, H. 261, 275
Berry, M. W. 10, 43, 44, 46, 47, 187,

231
Bertin, J. 455, 549
Bhattacharjee, A. 16, 17

Bickel, P. J. 72, 493, 498
Biernacki, C. 275
Binder, D. A. 238
Bingham, E. 63
Bishop, C. M. 117, 118, 119, 136
Biswas, J. 221, 222
Blasius, J. 455
Bock, H. 215, 238
Bolton, R. J. 166
Bonner, R. 171
Borg, I. 87, 88, 92, 98, 135
Botstein, D. 42, 80, 231
Bouldin, D. W. 226
Boutsidis, C. 63
Bowman, A. W. 325
Brettin, T. S. 42
Brinkman, N. D. 518
Brown, J. C. 80
Brown, P. O. 42, 80, 231
Browne, M. 10, 44, 47, 187
Bruls, D. M. 356
Bruntz, S. M. 518
Bruske, J. 80
Bucak, S. S. 80
Buckley, C. 10
Buckley, M. J. 312
Buijsman, E. 432
Buja, A. 139, 140, 141, 143, 146, 165,

166, 456
Buta, R. 289, 519
Buydens, L. M. C. 275

C
Cabrera, J. 165, 166
Camastra, F. 67, 71, 80
Campbell, J. G. 275
Carr, D. 416, 455, 456
Carter, K. M. 76, 80
Castellanos, M. 231
Cattell, R. B. 38, 53
Cavalli-Sforza, L. L. 238
Celeux, G. 243, 251, 261, 275
Chakrapani, T. K. 518

576 Exploratory Data Analysis with MATLAB®, Third Edition

Chambers, J. M. 455, 520, 549
Charniak, E. 9
Chatfield, C. 5
Chee, M. 13
Chen, Z. 166
Cheng, S. 489
Chernoff, H. 410
Cho, M. 7, 368, 523
Cho, R. J. 14
Cichocki, A. 48, 80
Cleveland, W. S. 280, 281, 285, 289,

291, 292, 293, 294, 297, 300, 317,
321, 326, 375, 392, 397, 398, 405,
420, 425, 428, 429, 431, 432, 455,
456, 517, 518, 519, 520, 549

Cohen, A. 355
Cook, D. 165, 166, 385, 456, 515
Cook, W. J. 351
Cooper, M. C. 23, 209, 224, 231
Cormier, D. R. 302, 303
Costa, J. A. 76, 80, 84
Cottrell, M. 136
Cox, M. A. A. 85, 86, 88, 89, 92, 98, 99,

135, 509, 521
Cox, T. F. 85, 86, 88, 89, 92, 98, 99, 135,

509, 521
Craven, P. 312
Crawford, S. 166
Crile, G. 421, 517
Cunningham, W. H. 351

D
Dasgupta, A. 252, 258, 259, 275
Davies, D. L. 226
Davies, O. L. 517
Day, N. E. 238
de Boor, C. 302
de Leeuw, J. 92
de Silva, V. 107
Dearing, B. E. 4, 25
Deboeck, G. 136
Deerwester, S. 43, 188
Demartines, P. 122, 124, 125
Dempster, A. P. 192, 238, 249
Denby, L. 520

Devlin, S. J. 285, 289, 293, 326, 517, 518
Diaconis, P. 27, 364, 422
Ding, W. 63
Donoho, D. L. 109, 112, 136, 399
Draper, N. R. 283, 286, 293
Drmac, Z. 43, 44, 46
du Toit, S. H. C. 25, 410
Dubes, R. C. 67, 68, 170, 230, 231
Duda, R. O. 24, 56, 57, 59, 61, 170,

230, 231, 264
Dudoit, S. 213, 216
Duin, R. P. W. 80
Dumais, S. T. 43
Dunn, J. C. 221
Dyck, P. A. 42

E
Edwards, A. W. F. 238
Efromovich, S. 325
Efron, B. 27
Ehrenberg, A. S. C. 518
Embrechts, P. 440, 441, 456
Emerson, J. D. 21, 27
Erickson, J. 199
Estivill-Castro, V. 231
Esty, W. W. 380, 381
Everitt, B. S. 171, 172, 173, 174, 177,

179, 230, 238, 251, 273, 334, 509

F
Faldowski, R. A. 146, 456
Fan, M. 80
Fawcett, C. 521
Feigelson, E. 275
Fieller, N. R. J. 18
Fienberg, S. 410
Fisher, R. A. 56, 180
Flenley, E. C. 18
Flick, T. 166
Flynn, P. J. 169, 230, 231
Fodor, I. K. 166
Fogel, P. 80
Fort, J. C. 136
Fowlkes, E. B. 206, 234
Fox, J. 314

Author Index 577

Frakes, W. B. 10
Fraley, C. 238, 252, 256, 258, 259, 275
Freedman, D. 364
Fridlyand, J. 213, 216
Friedman, J. 148, 150, 151, 152, 154,

166, 170, 172, 230, 231, 422
Friendly, M. 356, 405, 453, 455, 456,

461, 463, 468, 471, 476, 479, 489,
490, 492, 493, 498

Frigge, M. 375
Fua, Y. 456
Fukunaga, K. 65, 67, 79, 80, 83
Furnas, G. W. 43, 509

G
Gabriel, K. R. 452
Garcia, D. 310, 312, 329
Gasko, M. 399
Geiger, H. 473
Gelbart, W. M. 13
Gentle, J. E. 42
Ghahramani, Z. 74
Gilbertson, D. D. 18
Gnanadesikan, R. 355, 393
Golub, G. 47, 79
Golub, T. R. 14, 15
Gong, Y. 47
Goodfellow, I. 136
Gorban, A. N. 136
Gordon, A. D. 230, 509
Gould, W. 400
Govaert, G. 243, 251, 275
Gower, J. C. 88, 199, 456, 509
Grassberger, P. 71
Green, P. J. 303, 304, 305, 306, 309,

315, 325
Greenacre, M. 455
Griffiths, A. J. F. 13
Grimes, C. 109, 112, 136
Groenen, P. 87, 88, 92, 98, 135
Grosse, E. 326
Guillamet, D. 80
Gunsel, B. 80
Guo, C. L. 80
Gussoni, E. 12, 13

H
Halkidi, M. 221
Hand, D. J. 5, 9, 27, 172, 251, 273, 456,

519
Hansen, P. 355
Härdle, W. 373
Harshman, R. 43
Hart, P. E. 24, 56, 57, 59, 61, 170, 230,

231, 264
Hartigan, J. A. 231, 233, 410, 489, 503
Hartwig, F. 4, 25
Hastie, T. J. 79, 166, 170, 172, 204, 213,

230, 231, 302, 306, 315, 325, 326, 327
Herault, J. 122, 124, 125
Herman, C. 166
Hero, A. O. 80, 84
Herzberg, A. M. 440, 441, 456
Hinton, G. E. 127, 129, 131, 132, 136
Hintze, J. L. 383, 385
Hoaglin, D. C. 5, 7, 27, 291, 375, 377,

405, 463, 467, 468, 471, 472
Hoffmann, H. 385
Hofmann, H. 455
Hofmann, T. 191, 192, 193, 231
Hogg, R. 7
Holland, O. T. 541
Honkela, T. 136
Householder, A. S. 88
Huber, P. J. 7, 148, 166, 291
Hubert, L. J. 206
Hubert, M. 380, 400, 511, 514
Huizing, C. 356
Hummel, J. 486
Hurley, C. 139, 146, 165
Hyvärinen, A. 161, 163, 164, 165, 166

I
Iglewicz, B. 375, 377
Ilc, N. 223

J
Jackson, D. N. 56
Jackson, J. E. 35, 36, 38, 51, 53, 79, 81,

456
Jain, A. K. 67, 68, 136, 169, 170, 223,

578 Exploratory Data Analysis with MATLAB®, Third Edition

230, 231
Jaumard, B. 355
Jeffreys, H. 258
Jessup, E. R. 43, 44, 46
Johnson, B. 336, 355
Johnson, N. L. 291, 374, 399
Johnson, W. B. 63
Jolliffe, I. T. 37, 38, 39, 51, 79, 456
Jonas 386, 389
Jones, L. 166
Jones, M. C. 148, 150, 165, 325
Jones, W. P. 509
Jordan, M. 181, 183, 184, 186

K
Kaban, A. 195
Kaiser, H. F. 39
Kampstra, P. 388
Kang, M. S. 457
Kangas, J. 136
Karhunen, J. 161, 166
Kaski, S. 136
Kass, R. E. 239, 258
Kaufman, L. 172, 211, 230
Kegl, B. 74
Kettenring, J. R. 355
Kiang, M. Y. 136
Kimball, B. F. 392
Kimbrell, R. E. 10
Kirby, M. 65
Kleiner, B. 410, 489, 520
Kohane, I. S. 12, 13
Kohonen, T. 114, 136
Kotz, S. 291, 374, 399
Krishnan, T. 274
Kruskal, J. B. 87, 97, 98, 103, 135, 136,

199
Krzanowski, W. J. 166, 231
Kwan, E. 356

L
Lagus, K. 136
Lai, M. 127
Lai, Y. T. 231
Laird, N. M. 238, 249

Landau, S. 171, 172, 173, 174, 177, 179,
230, 238, 334, 509

Landauer, T. K. 43
Lander, E. S. 13
Landwehr, J. M. 355
Lang, K. 63
Langford, J. C. 107, 108
Langville, A. 49
Larsen, W. A. 380
Law, M. 223
Lawley, D. N. 53
Lazebnik, S. 80
Le, Q. 80
LeCun, Y. 127
Lee, A. 519
Lee, D. 48
Lee, J. A. 125
Lee, T. C. M. 303
Leese, M. 171, 172, 173, 174, 177, 179,

230, 238, 334, 509
Legendre, P. 509
Lendasse, A. 125
Leroy, A. M. 7
Levina, E. 72
Lewis, N. D. 127, 136
Lewontin, R. C. 13
Li, G. 166
Lindenstrauss, J. 63
Ling, R. F. 349
Littlefield, J. S. 416
Littlefield, W. L. 416
Liu, X. 47
Lizzani, L. 166
Loader, C. 281, 325, 326
Luo, Q. 456

M
Maas, H. F. M. 432
MacKay, D. 74
Makov, U. E. 273
Mallows, C. L. 206, 234
Manly, B. F. J. 79, 522
Mannila, H. 5, 9, 27, 63, 172
Manning, C. D. 9, 507, 508, 509
Mao, J. 136

Author Index 579

Marchand, P. 541
Marsh, L. C. 302, 303
Martinez, A. R. 7, 9, 12, 70, 103, 144,

145, 161, 181, 263, 274, 275, 302,
303, 304, 313, 314, 321, 326, 327,
344, 368, 369, 382, 405, 462, 467

Martinez, W. L. 7, 70, 144, 145, 161,
181, 263, 274, 275, 302, 303, 304,
313, 314, 326, 327, 368, 369, 382,
405, 462, 467, 523

Maxwell, A. E. 53
McDonald, J. A. 456
McFarlane, M. M. 146, 456
McGill, R. 280, 285, 291, 292, 297, 300,

317, 321, 326, 380, 520
McLachlan, G. J. 238, 273, 275
McLeod, A. I. 456
Mead, A. 135
Meila, M. 181, 184
Meyer, D. 461, 479, 482, 484, 489, 499
Michalak, J. 456
Miller, J. H. 13
Milligan, G. W. 23, 209, 224, 231
Minh, V. 127
Minnotte, M. C. 349
Moffat, A. 10
Mojena, R. 204, 208, 209
Montanari, A. 166
Morgan, B. J. T. 174, 175
Mosteller, F. 7, 27, 291, 468
Mukherjee, S. 275
Murtagh, F. 238, 275
Murty, M. N. 169, 230, 231

N
Nason, G. 166
Nelson, R. D. 383, 385
Ng, A. 181, 183, 184, 186
Nicholson, W. L. 416
Nie, X. 80

O
O’Brien, G. W. 43
Oja, E. 161, 166
Olbricht, W. 18

Olsen, D. R. 67
Ord, J. K. 498

P
Paatero, V. 136
Pagano, M. 518
Pages, G. 136
Pal, N. R. 221, 222
Parzen, E. 370
Pearson, K. 519
Peel, D. 238, 273, 275
Pettis, K. W. 67, 68, 80
Pickle, L. W. 455
Porter, M. F. 10
Posse, C. 148, 150, 151, 156, 159, 275
Priest, R. 166
Prim, R. C. 199
Procaccia, I. 71
Provost, S. B. 456
Pulleyblank, W. R. 351

Q
Quiring, D. P. 421, 517

R
Raftery, A. E. 238, 239, 243, 252, 258,

259, 261, 275
Raginsky, M. 80
Rahimi, A. 80
Raich, R. 80
Ramoni, M. F. 12, 13
Rand, W. M. 205
Ray, A. P. G. 174, 175
Recht, B. 80
Rechtsteiner, A. 42
Redner, A. R. 249
Reinsch, C. 306
Rheingans, P. 146
Ribero-Neto, B. 10
Riedwyl, H. 492
Ripley, B. D. 231, 518
Robbins, N. 549
Robert, C. 261, 275
Rocha, L. M. 43
Roeder, K. 231

580 Exploratory Data Analysis with MATLAB®, Third Edition

Ross, G. J. S. 199
Ross, S. M. 464
Rousseeuw, P. J. 7, 172, 211, 230, 399
Roweis, S. T. 105, 131, 136
Rubin, D. B. 238, 249
Rumelhart, D. E. 128
Rundensteiner, E. A. 456
Rutherford, E. 473
Ruts, I. 399
Ruzzo, W. L. 80

S
Saarela, A. 136
Salakhutdinov, R. R. 127, 129
Salojarvi, J. 136
Salton, G. 10
Sammon, J. W. 122
Saul, L. K. 105, 136
Schena, M. 13
Schimek, M. G. 325
Schmidli, H. 456
Schrijver, A. 351
Schroeder, A. 166
Schüpbach, M. 492
Schütze, H. 9, 507, 508, 509
Schwartz, E. L. 136
Schwarz, G. 239
Scott, A. J. 238
Scott, D. W. 7, 266, 326, 363, 364, 366,

368, 369, 370, 371, 372, 382, 405, 519
Sebastiani, P. 12, 13
Seber, G. A. F. 79, 88
Seung, H. 48
Shen, J. 144
Shepard, R. N. 97, 135
Shneiderman, B. 336, 337
Sibson, R. 148, 150, 165
Siedlecka, K. 135
Siedlecki, W. 135
Siemon, H. P. 116, 136
Silva, V. 108
Silverman, B. W. 7, 303, 304, 305, 306,

309, 315, 325, 368, 370, 372
Simeone, B. 355
Simonoff, J. S. 292, 312, 325, 518, 520,

522
Sivic, J. 234
Sklansky, J. 135
Slomka, M. 520
Smaragdis, P. 80
Smith, A. F. M. 273
Smith, H. 283, 286, 293
Smith, M. 10
Smolensky, P. 129
Smyth, P. 5, 9, 27, 172
Sneath, P. H. A. 230
Snee, R. D. 492
Sokal, R. R. 230
Solka, J. L. 141, 165, 275, 356, 448, 449
Sommer, G. 80
Späth, H. 179, 230
Stanford, D. 275
Steutzle, W. 456
Steyn, A. G. W. 25, 410
Steyvers, M. 135
Stone, C. J. 326
Stone, J. V. 161, 163, 166
Stork, D. G. 57, 170, 231
Stoto, M. A. 21, 27
Strachan, I. G. D. 136
Strang, G. 8, 35, 43, 47, 79, 152, 154,

313, 537
Stuetzle, W. 166, 456
Stumpf, R. H. 25, 410
Sturges, H. A. 364
Suzuki, D. T. 13
Svensen, M. 117, 118, 119, 136
Swayne, D. F. 385, 456, 515
Symanzik, J. 18
Symons, M. J. 238

T
Tamayo, P. 136
Tenenbaum, J. B. 107, 108
Theus, M. 455, 456, 516
Tibshirani, R. J. 27, 166, 170, 172, 204,

213, 230, 231, 302, 306, 315, 325,
326, 327

Tiede, J. J. 518
Timmins, D. A. Y. 18

Author Index 581

Tipping, M. E. 136
Titterington, D. M. 273, 326
Torgerson, W. S. 88
Toussaint, G. 222
Trunk, G. 67
Tufte, E. R. 455, 520
Tukey, J. W. 3, 4, 7, 25, 27, 148, 151,

291, 317, 374, 375, 377, 380, 399,
405, 420, 463, 467, 468, 476

Tukey, P. A. 520

U
Udina, F. 457
Ultsch, A. 116, 136
Unwin, A. 455
Urbanek, S. 456, 516

V
Valero-Mora, P. M. 453, 456
van der Maaten, L. J. P. 72, 129, 131,

132, 133
van Loan, C. 47, 79
Vandervieren. E. 380
Velicer, W. F. 56
Vempala, S. S. 61
Venables, W. N. 518
Verboven, S. 400, 511, 514
Verleysen, M. 125
Verma, D. 181, 184
Verveer, P. J. 67, 80
Vesanto, J. 136
Vinciarelli, A. 71
Vitria, J. 80
von Luxburg, U. 183, 184

W
Wahba, G. 302, 312
Wainer, H. 455, 456, 549
Walker, H. F. 249
Wall, M. E. 42
Wallace, D. L. 468
Walther, G. 204, 213, 231

Wand, M. P. 325
Wang, S. 80
Ward, J. H. 174
Ward, M. O. 456
Webb, A. 170, 179, 180, 231
Wegman, E. J. 5, 9, 18, 141, 144, 165,

326, 349, 448, 449, 455, 456
Wehrens, R. 275
Weihs, C. 27, 456
Weiss, Y. 181, 183, 184, 186
Weisstein, E. W. 128
West, M. 79
West, R. W. 351
Wetering, H. 356
Wijk, J. J. van 356
Wilhelm, A. F. X. 18
Wilk, M. B. 393
Wilkinson, L. 455
Wilks, A. R. 420, 456, 517, 520
Williams, C. K. I. 117, 118, 119, 136
Wills, G. 339, 340
Wing, J. K. 482, 484
Wish, M. 135
Witten, I. H. 10
Wolfe, J. H. 238
Wood, S. 326
Wright, I. W. 326

X
Xu, W. 47, 187

Y
Yan, W. 457
Yeung, K. Y. 80, 275
Young, F. W. 135, 146, 453, 456
Young, G. 88
Yueh, W. C. 311

Z
Zahn, C. T. 199
Zastrow, M. 127
Zdunek, R. 48

http://taylorandfrancis.com

583

Subject Index

A
acyclic graph, 197
adjacency matrix, 199
adjacent values, 377, 403
agglomerative model-based

clustering, 254
alternagraphics, 420
AMISE, 370
Andrews’ curves, 439
Andrews’ function, 439
ANN, 114
arithmetic operators, 537
arrays, 529
artificial neural network, 114
at-random method, 143
autoencoders, 127
average linkage, 173
axes, 542

B
bag, 399
bagplot, 399
band matrix, 306
bandwidth, 370
bar plot, 483
Batch Map, SOM, 116
batch training method, SOM, 116
Bayes decision rule, 266
Bayes decision theory, 264
Bayes factors, 258
Bayes theorem, 265
Bayesian Information Criterion, 259
beanplot, 388, 389
beeswarm plot, 385
Bernoulli random variable, 462
best-matching unit, SOM, 115

BIC, 258, 259
bigram proximity matrix, 9, 10
bin smoother, 327
binary tree, 333
binomial coefficient, 206
binomial distribution, 462
binomialness plot, 469
biplot, 452
bisquare, 291
bivariate boxplot, 400
blind source separation, 161
BMU, 115
Boltzmann machines, 129
box-and-whisker, 374
box-percentile plot, 380
boxplot, variable width, 380
boxplots, 374
brushing, 426

modes, 426
operations, 426

bubble plot, 545

C
Calinski-Harabasz index, 224
canonical basis vector, 141
capacity, 74
capacity dimension, 74
Cartesian coordinates, 437
case data, 461
categorical variable, 461
CCA, 122
cell array, 531
cell frequencies, 482
centroid linkage, 174
chaining, 173
Chernoff faces, 410
chi-square, 483
chi-square index, 150
city block metric, 505
class, 535
class-conditional probability, 265
classical scaling, 88
classification likelihood, 254

584 Exploratory Data Analysis with MATLAB®, Third Edition

cluster, 171
cluster assessment, 170
cluster validity indices, 219
cluster, orientation, 243
cluster, shape, 243
cluster,volume, 243
codebooks, 115
color histogram, 349
color map, 543
column scatterplot, 385
command syntax, 539
Command Window, 523
commas, 530
comma-separated files, 526
common factors, 51
communality, 51
compactness, 221
complete linkage, 173
component density, 242
compositional data, 500
confirmatory data analysis, 3
connected graph, 197
contingency table, 479
convex hull, 319
cophenetic coefficient, 207
coplots, 428
correlation dimension, 71
correlation matrix, 37
correlation similarity, 506
cosine distance, 64
cosine measure, 45, 506
cosine transorm, 311
count data, 461
count metameter, 472
covariance matrix, 24, 34, 242, 251,

504
covering number, 74
cross-validation, 314
cubic spline, 305
curse of dimensionality, 57
curvilinear component analysis, 122
curvilinear distance analysis, 125
cycle, 197

D
data abstraction, 170
data image, 349, 443
data sets

abrasion, 429
animal, 421
environmental, 400
example104, 437, 442, 446
faithful, 373
galaxy, 360, 365, 393
geyser, 376, 386, 388
iradbpm, 12
iris, 180, 206, 212, 256, 260,

261, 351, 389, 443
jain, 223, 227
L1bpm, 12, 345, 367
leukemia, 14, 15, 94, 334, 337,

342
lsiex, 49
lungA, 17
lungB, 17, 209, 217
matchbpm, 12, 90
nmfclustex, 189, 195
ochiaibpm, 12, 103
oronsay, 19, 116, 121, 145, 148,

154, 163, 402, 412, 414,
416, 418, 423, 426, 432,
435, 453

scurve, 110
singer, 398
snowfall, 371, 385
software, 19, 21, 377
swissroll, 112
UCBadmissions, 496
yeast, 14, 39, 142, 175, 208

Data Visualization Toolbox, 289,
429

dataset array, 534
Davies-Bouldin index, 226
decoder, 127
deep learning, 127
degree of polynomial, 281
delete, 536
dendrogram, 175, 333
denoising text, 10
density trace, 384
dependence panels, 429
depth median, 399

Subject Index 585

determinant, 242
diagonal family, 245
dimension, 529
dimension estimation, maximumm

likelihood, 72
dimensionality reduction, 31
Dimensionality Reduction

Toolbox, 72, 129, 133, 138
direction cosine, 35
discrete distributions, 462
discriminant analysis, 169, 263
disparity, 97
dissimilarity measure, 86, 503
distance, 86
documentation, 525
dot chart, 431
dummy variable, 303
Dunn index, 221

E
edges, 196
effective dimensionality, 65
eigenvalue decomposition, 243
eigenvalues, 35
eigenvectors, 35
EM, 192
EM algorithm, 249
EMMIX, 275
empty array, 531
encoder, 127
entropy criterion, 275
equimax, 52
errorbar, 540
espaliers, 355
Euclidean distance, 504
expectation maximization, 192
Expectation-Maximization

algorithm, 119, 238
expected value, 52
exponential smoothing, 280
extreme values, 291

F
factor analysis, 51, 161, 165, 454
factor loadings, 51

factor scores, 53
factorization, 47
FastICA Toolbox, 163
feature extraction, 170
feature selection, 170
features, 263
feedforward neural networks, 127
fence, 399
Figure Palette, 546
Figure Window, 524, 540
finite mixtures, 238, 242
Fisher’s linear discriminant, 56
FLD, 56
forest, 197
fourfold plots, 499
fourths, 375
Freedman-Diaconis rule, 364
frequency data, 461
frequency form, 461
frequency, expected, 471
frequency, observed, 471
function syntax, 539
furthest neighbor, 173
fuzzy clustering, 170

G
Gabriel graph, 222
gap statistic, 213
general family, 247
generalized additive models, 325
generalized cross-validation, 312
generative topographic

mapping, 117
genome, 13
geodesic minimal spanning tree, 80
geodesic minimum spanning tree

estimator, 84
GGobi, 385, 456
glyphs, 339, 410
Gram-Schmidt, 152
grand tour, 139, 447
graph, 196
graph, directed, 196
graph, undirected, 196
graphical user interfaces, 545

586 Exploratory Data Analysis with MATLAB®, Third Edition

group, 171
GTM, 117
guided tours, 139
GUIs, 545
Guttman transform, 93

H
halfspace location depth, 399
Handle Graphics, 541
hanging rootogram, 476
help, 525
Hessian locally linear

embedding, 109
hexagonal binning, 417
hierarchical clustering, 172, 237

agglomerative, 172
divisive, 172

hinges, 375
histogram, 359

bin width, 363
bivariate, 366
density histogram, 362
Freedman-Diaconis rule, 364
frequency histogram, 359
normal reference rule, 364, 367
relative frequency histogram, 359
Scott’s rule, 364
skewness factor, 364
Sturges’ Rule, 364

histplot, 380
HLLE, 109
HMEANS, 179
Home ribbon, 525

I
ICA, 161
Import Wizard, 527
inconsistency coefficient, 232
independent component

analysis, 161
index, clustering

Calinski-Harabasz, 224
Davies-Bouldin, 226
Dunn, 221
Fowlkes-Mallows, 234
Hartigan, 233
Rand, 205

information radius, 507
information retrieval, 43
initial data analysis, 5
interpoint proximity matrix, 504
interpolated tours, 139
interquartile range, 376, 401
interval MDS, 87
intrinsic dimensionality, 65
IQR, 376
IR, 43
IRad, 12, 507
ISODATA, 179
ISOMAP, 107, 125
isometric feature mapping, 107
isometry, 110
isotonic regression, 98

J
Jaccard coefficient, 506

K
Kernel, 369
kernel density, 61
Kernel density estimation

asymptotic MISE, univariate, 370
normal reference rule,

multivariate, 372
normal reference rule,

univariate, 370
window width, 369

kernel, univariate, 369
KL, 507
k-means, 177
k-means clustering, 177
k–nearest neighbors, 76
knots, 302
Kronecker delta function, 101
Kruskal’s algorithm, 100
Kullback-Leibler, 507
Kullback-Liebler divergence, 131

L
L1 norm, 508
labeling cases, 420
Laplacian, graph, 183

Subject Index 587

latent semantic analysis, 192
latent semantic indexing, 43, 191
latent space, 117
latent variable model, 117
latent variables, 51
LDA, 56
LEV plot, 38
leveled Poisonness plot, 471
lexical matching, 43
lexicon, 9
likelihood equations, 251
limits, lower and upper, 376
linear discriminant analysis, 56
linking, 422
LLE, 105
locally linear embedding, 105
loess, 280, 287
log odds, 495
log odds ratio, 495
log-eigenvalue plot, 38
logit, 495
loop, 399
lowess, 280
LSI, 43

M
majorization method, 92
Manhattan distance, 505
marginals, 481
match similarity measure, 12
MATLAB Central, 526
matrix transpose, 32
MCLUST, 275
MDS, 85
median, 375, 401
median linkage, 174
methods, object-oriented, 535
metric multi-dimensional

scaling, 86
microarrays, 13
middle smoothings, 317
minimum spanning tree, 197
Minkowski metric, 97, 505
mixing proportions, 242
mixture models, 244

model vectors, 115
model-based clustering, 256
moment index, 159
Mondrian software, 456
monotone regression, 98
Moore-Penrose inverse, 93
mosaic plot, 489
moving average, 328
moving averages, 280
MST, 196
multidimensional scaling, 85
multivariate normal, 242
multiway data, 432

N
natural cubic spline, 305
nearest neighbor, 173
NEC criterion, 275, 276
neighborhood, 281
neural networks, feedforward, 127
neurons, 115
Newsgroup data, 63
NMF, 47, 187
nodes, 196, 333
noise words, 10
nominal variables, 461
nonmetric multidimensional

scaling, 87
nonnegative matrix

factorization, 47, 187, 453
nonparametric, 279
normal probability plot, 294, 392
normal reference rule

multivariate, 367
univariate, 364

Normal reference rule, kernel
densities, 370

Normal reference rule, multivariate
kernel, 372

normalized entropy criterion, 276

O
object class, 529
object-oriented programming, 529
Ochiai measure, 12, 506

588 Exploratory Data Analysis with MATLAB®, Third Edition

odds, 494
odds ratio, 494, 495
operations on arrays, 537
ord plots, 498
order statistics, 374
ordered displays, 356
ordinal, 461
orthogonal, 35
orthomax, 52
orthonormal, 35, 144
outliers, 291, 377

P
packing number estimator, 74
parallel coordinates, 437
parametric, 279
parquet diagrams, 492
pattern recognition, 56, 263
pattern representation, 170
PCA, 33, 56, 89, 161, 165, 441
Pearson residuals, 482
penalized sum of squares, 304
permutation tour, 449
perplexity, 132
Plot Browser, 546
plot labels, 542
plot line style, 541
plot markers, 541
plot rotation, 544
plot title, 542
plot, 2-D, 540
plot, scatter, 544
Plots tab, 547
PLSI, 191
Poisonness plot, leveled, 471
Poisson distribution, 464, 478
Poissonness plot, 467
Poissonness plot, confidence

interval, 473
Poissonness plot, modified, 468
polar smoothing, 319
Porter stemmer, 10
Posse chi-square index, 156
posterior distribution, 121
posterior probability, 251, 261, 265

PPEDA, 150
PPI, 156
precision, 46
principal component analysis, 33,

453
principal component scores, 36
principal components, 35
principal coordinates analysis, 88
prior probability, 265
probabilistic latent semantic

analysis, 191
probability density, 240
probability density function, 263
probability mass function, 462
probability plots, 390
procrustes, 52
Product kernel, 372
profile plots, 410
projection, 32
projection pursuit, 148, 166
projection pursuit indexes, 151
promax, 52
Property Editor, 546
prototypes, 115
proximity, 85
proximity measures, 503
pseudo grand tour, 144
pseudoinverse, 93
punctuation, 537

Q
quantile plots, 390

probability plot, 392
q-q plot, 393

quantile-quantile plots, 390
quartiles, 374
quartimax, 52

R
Rand index, 205

adjusted, 206
random projections, 61
random-walk method, 143
rangefinder boxplot, 400
rank, 43

Subject Index 589

ratio MDS, 87
recall, 46
ReClus, 344
reconstruction error, 129
rectangle plot, 339
re-expression, 5
regression, spline, 301
Reinsch algorithm, 306
relative neighborhood graph, 222
residual dependence plot, 294
residuals, 5, 291, 483
resistant data analysis, 5
ribbon interface, 524
robust, 291
robustness, 5
robustness weights, 291
rootogram, 407
rotate figure, 414
rotation, 35, 52
roughness penalty, 304
rug plot, 371, 388
running line smooth, 328
running mean smooth, 328

S
SAS XPORT files, 528
scatter, 59
scatterplot, 25, 92, 400, 410
scatterplot matrix, 416, 545
Scott’s rule, 364
scree plot, 38, 90
Script Editor, 524
script M-files, 536
self-organizing map, 114, 122
semi-colon, 530
separation, cluster, 221
sequential learning method,

SOM, 115
Shepard diagram, 137
sieve plot, 492
silhouette plot, 212
silhouette statistic, 211
silhouette width, 212
similarity, 85
similarity measures, 64, 503

simple matching, 507
single linkage, 173
singular value decomposition, 42
singular values, 43
singular vectors, 43
SMACOF, 92, 94
smoother matrix, 315
smoothing parameter, 281, 290, 313
smoothing splines, 280, 301, 304
smoothing, bin, 327
smoothing, running line, 328
smoothing, running mean, 328
SNE, 131
SOM, 114
space-filling, 140, 333
spanning forest, 197
spanning tree, 197
spatial data, 455
specific factors, 51
specificity, 52
spectral clustering, 181
spherical family, 243
sphering, 24
spine plot, 486
spline regression, 301
spline, cubic, 305
spline, natural cubic, 305
splines, 301
spread smoothing, 297
spreadsheet files, 526
standardization, 22
star diagrams, 410
stem, 333
stem-and-leaf, 4
stemming, 10
stochastic neighbor embedding, 131
stress, 87
stress, raw, 92
stripchart, 385
structure removal, 152
structures, 532
Sturges’ rule, 364
subgraph, 197
submanifold, 105
subplots, 542
supervised learning, 56, 169, 263

590 Exploratory Data Analysis with MATLAB®, Third Edition

surface plot, 543
SVD, 42, 194, 441

T
table, 532
TDT Pilot Corpus, 11
term-document matrix, 44
ternary plot, 500
text files, 526
topology, 334
torus winding method, 141
transformation, 21
transpose, 32
tree, 197
tree diagram, 333
treemap, 336

cushion, 356
nested, 355
squarified, 356

tri-cube weight, 281
trilinear, 500
t-SNE, 132

U
U-matrix, 116
uniform distribution, 63

unitary matrix, 311
unsupervised learning, 169
upper tail rule, 208

V
variable names, 536
variance ratio criterion, 224
varimax, 52
vaseplot, 380
vector quantization, 123
vertices, 196
violin plots, 383, 389

W
Ward’s method, 174
weight function, p-dimensional, 288
weighted least-squares, 283
window width, 370
within-class scatter, 59
within-class scatter matrix, 177
workspace, 524

Z
z-score, 22

FIGURE 2.12
This is a scatterplot of the data in Figure 2.11 where we colored the points based on their esti-
mated local dimension. We see that some points on the sphere and line are assigned an incor-
rect intrinsic dimension.

FIGURE 3.7
These points represent a random sample from the S-curve manifold. The colors are mapped
to the height of the surface and are an indication of the neighborhood of a point.

-3
4

-2

-1

2 3

0

1

20

2

3

1
-2 0

-4 -1

6
4

-1

-0.5

-1

0

0.5

1

1.5

2

2.5

3

-0.5 20 0.5 10

ColorPlates.fm Page 2 Sunday, February 12, 2017 4:08 PM

FIGURE 3.8
This is the 2-D embedding recovered using LLE. Note by the color that the neighborhood
structure is preserved.

FIGURE 3.10
This is a U-matrix visualization of the SOM for the oronsay data. The distance of a map
unit to each of its neighbors is shown using the color scale.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

1.9

3.8

1

0

0

2

2

1

1

0

0

0

0

0

2

2

1

1

0

0

0

0

1

1

1

0

0

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

1

0

0

0

1

1

1

1

1

1

1

0

0

ColorPlates.fm Page 3 Sunday, February 12, 2017 4:08 PM

FIGURE 3.16
This shows the 2-D embedding of the S-curve manifold data using an autoencoder. Compare
this with Figure 3.8. Some of the neighborhood structure is lost, but the rectangular shape
of the 2–D manifold is captured better.

FIGURE 5.4
This is a scatterplot matrix of groups found in the iris data using k-means (k = 3).

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Results from K Means

0 1 2
Petal Width

2 4 6
Petal Length

2 3 4
Sepal Width

5 6 7 8
0

1

2

Sepal Length

P
et

al
 W

id
th

2

4

6

P
et

al
 L

en
gt

h

2

3

4

S
ep

al
 W

id
th

5

6

7

8

S
ep

al
 L

en
gt

h

ColorPlates.fm Page 4 Sunday, February 12, 2017 4:08 PM

FIGURE 8.7
The ReClus plot at the top shows the cluster configuration based on the best model chosen
from model-based clustering. Here we plot the true class label with the color indicating the
probability that the observation belongs to that cluster. The next ReClus plot is for the same
data and model-based clustering output, but this time we request that probabilities above
0.9 be shown in bold black font.

True Class Label

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

5

8

8

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

1

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

0.1

0.3

0.4

0.6

0.7

0.9

True Class Label Thresh is 0.9

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

5

8

8

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

1

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

0.1

0.3

0.4

0.6

0.7

0.9

ColorPlates.fm Page 5 Sunday, February 12, 2017 4:08 PM

FIGURE 8.8
Here is the ReClus plot when we split the text data into two groups using hierarchical
clustering. In this case, the scale corresponds to the silhouette values.

FIGURE 8.9
The data image for the iris data is shown on the right. The rows have been re-ordered
based on the leaves of the dendrogram at the left.

True Class Label

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

8

8

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

0. 7

0. 4

0. 1

0.1

0.4

0.7

1 2 3 4

20

40

60

80

100

120

140

ColorPlates.fm Page 6 Sunday, February 12, 2017 4:08 PM

FIGURE 10.3
The top figure shows the 2-D scatterplot for two variables (i.e., columns 8 and 9) of the
oronsay data set. The color of the plot symbols indicates the midden class membership for
both plots. The lower plot shows the 3-D scatterplot for columns 8 through 10.

5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

35

40

45

.18.25mm

.1
25

.1
8m

m

0
10

20
30

40
50

0

10

20

30

40

50
0

2

4

6

8

10

.18.25mm.125.18mm

.0
9.

12
5m

m

ColorPlates.fm Page 7 Sunday, February 12, 2017 4:08 PM

FIGURE 10.6
This shows a plot of the oronsay data using hexagonal binning. The color of the hexagons
represents the value of the probability density at that bin.

FIGURE 10.8
The red points in this scatterplot were highlighted using the scattergui function.

5 10 15 20 25 30 35 40 45

5

10

15

20

25

30

35

40

1

2

3

4

5

6

7

8

x 10
3

10 8 6 4 2 0 2 4 6
5

0

5

10

ColorPlates.fm Page 8 Sunday, February 12, 2017 4:08 PM

FIGURE 10.10
This is a scatterplot matrix showing brushing and linking in the transient mode.

FIGURE 10.19
This is the Andrews’ image for the iris data after the rows have been re-ordered based
on the dendrogram. The colorbar indicates the true class membership of the observations.

.18.25mm

8.9

40.4

.125.18mm

0.3

40.1

.09.125mm

0.2

9.9

Andrews’ Image

20

40

60

80

100

120

140

Class IDs

ColorPlates.fm Page 9 Sunday, February 12, 2017 4:08 PM

	Cover
	Half Title
	Series Editor
	Title
	Copyrights
	Dedication
	Table of Contents
	Preface to the Third Edition�����������������������������������
	Preface to the Second Edition������������������������������������
	Preface to the First Edition�����������������������������������
	Part I Introduction to Exploratory Data Analysis
	Chapter 1 Introduction to Exploratory Data Analysis
	1.1 What is Exploratory Data Analysis
	1.2 Overview of the Text�������������������������������
	1.3 A Few Words about Notation�������������������������������������
	1.4 Data Sets Used in the Book�������������������������������������
	1.4.1 Unstructured Text Documents��
	1.4.2 Gene Expression Data���������������������������������
	1.4.3 Oronsay Data Set�����������������������������
	1.4.4 Software Inspection��������������������������������

	1.5 Transforming Data����������������������������
	1.5.1 Power Transformations����������������������������������
	1.5.2 Standardization����������������������������
	1.5.3 Sphering the Data������������������������������

	1.6 Further Reading��������������������������
	Exercises����������������

	Part II EDA as Pattern Discovery
	Chapter 2 Dimensionality Reduction — Linear Methods
	2.1 Introduction
	2.2 Principal Component Analysis — PCA���
	2.2.1 PCA Using the Sample Covariance Matrix���
	2.2.2 PCA Using the Sample Correlation Matrix��
	2.2.3 How Many Dimensions Should We Keep���

	2.3 Singular Value Decomposition — SVD���
	2.4 Nonnegative Matrix Factorization���
	2.5 Factor Analysis��������������������������
	2.6 Fisher’s Linear Discriminant���������������������������������������
	2.7 Random Projections�����������������������������
	2.8 Intrinsic Dimensionality�����������������������������������
	2.8.1 Nearest Neighbor Approach��������������������������������������
	2.8.2 Correlation Dimension����������������������������������
	2.8.3 Maximum Likelihood Approach��
	2.8.4 Estimation Using Packing Numbers���
	2.8.5 Estimation of Local Dimension��

	2.9 Summary and Further Reading��������������������������������������
	Exercises����������������

	Chapter 3 Dimensionality Reduction-Nonlinear Methods
	3.1 Multidimensional Scaling — MDS
	3.1.1 Metric MDS�����������������������
	3.1.2 Nonmetric MDS��������������������������

	3.2 Manifold Learning����������������������������
	3.2.1 Locally Linear Embedding�������������������������������������
	3.2.2 Isometric Feature Mapping — ISOMAP���
	3.2.3 Hessian Eigenmaps������������������������������

	3.3 Artificial Neural Network Approaches���
	3.3.1 Self-Organizing Maps���������������������������������
	3.3.2 Generative Topographic Maps��
	3.3.3 Curvilinear Component Analysis���
	3.3.4 Autoencoders�������������������������

	3.4 Stochastic Neighbor Embedding��
	3.5 Summary and Further Reading��������������������������������������
	Exercises����������������

	Chapter 4 Data Tours
	4.1 Grand Tour
	4.1.1 Torus Winding Method���������������������������������
	4.1.2 Pseudo Grand Tour������������������������������

	4.2 Interpolation Tours������������������������������
	4.3 Projection Pursuit�����������������������������
	4.4 Projection Pursuit Indexes�������������������������������������
	4.4.1 Posse Chi-Square Index�����������������������������������
	4.4.2 Moment Index�������������������������

	4.5 Independent Component Analysis���
	4.6 Summary and Further Reading��������������������������������������
	Exercises����������������

	Chapter 5 Finding Clusters
	5.1 Introduction
	5.2 Hierarchical Methods�������������������������������
	5.3 Optimization Methods- k-Means
	5.4 Spectral Clustering������������������������������
	5.5 Document Clustering������������������������������
	5.5.1 Nonnegative Matrix Factorization — Revisited���
	5.5.2 Probabilistic Latent Semantic Analysis���

	5.6 Minimum Spanning Trees and Clustering��
	5.6.1 Definitions������������������������
	5.6.2 Minimum Spanning Tree Clustering���

	5.7 Evaluating the Clusters����������������������������������
	5.7.1 Rand Index�����������������������
	5.7.2 Cophenetic Correlation�����������������������������������
	5.7.3 Upper Tail Rule����������������������������
	5.7.4 Silhouette Plot����������������������������
	5.7.5 Gap Statistic��������������������������
	5.7.6 Cluster Validity Indices�������������������������������������

	5.8 Summary and Further Reading��������������������������������������
	Exercises����������������

	Chapter 6 Model-Based Clustering
	6.1 Overview of Model-Based Clustering
	6.2 Finite Mixtures��������������������������
	6.2.1 Multivariate Finite Mixtures���
	6.2.2 Component Models — Constraining the Covariances��

	6.3 Expectation-Maximization Algorithm���
	6.4 Hierarchical Agglomerative Model-Based Clustering��
	6.5 Model-Based Clustering���������������������������������
	6.6 MBC for Density Estimation and Discriminant Analysis���
	6.6.1 Introduction to Pattern Recognition��
	6.6.2 Bayes Decision Theory����������������������������������
	6.6.3 Estimating Probability Densities with MBC��

	6.7 Generating Random Variables from a Mixture Model���
	6.8 Summary and Further Reading��������������������������������������
	Exercises����������������

	Chapter 7 Smoothing Scatterplots
	7.1 Introduction
	7.2 Loess����������������
	7.3 Robust Loess�����������������������
	7.4 Residuals and Diagnostics with Loess���
	7.4.1 Residual Plots���������������������������
	7.4.2 Spread Smooth��������������������������
	7.4.3 Loess Envelopes — Upper and Lower Smooths��

	7.5 Smoothing Splines����������������������������
	7.5.1 Regression with Splines������������������������������������
	7.5.2 Smoothing Splines������������������������������
	7.5.3 Smoothing Splines for Uniformly Spaced Data��

	7.6 Choosing the Smoothing Parameter���
	7.7 Bivariate Distribution Smooths���
	7.7.1 Pairs of Middle Smoothings���������������������������������������
	7.7.2 Polar Smoothing����������������������������

	7.8 Curve Fitting Toolbox��������������������������������
	7.9 Summary and Further Reading��������������������������������������
	Exercises����������������

	Part III Graphical Methods for EDA
	Chapter 8 Visualizing Clusters
	8.1 Dendrogram
	8.2 Treemaps�������������������
	8.3 Rectangle Plots��������������������������
	8.4 ReClus Plots�����������������������
	8.5 Data Image���������������������
	8.6 Summary and Further Reading��������������������������������������
	Exercises����������������

	Chapter 9 Distribution Shapes
	9.1 Histograms
	9.1.1 Univariate Histograms����������������������������������
	9.1.2 Bivariate Histograms���������������������������������

	9.2 Kernel Density�������������������������
	9.2.1 Univariate Kernel Density Estimation���
	9.2.2 Multivariate Kernel Density Estimation���

	9.3 Boxplots�������������������
	9.3.1 The Basic Boxplot������������������������������
	9.3.2 Variations of the Basic Boxplot��
	9.3.3 Violin Plots�������������������������
	9.3.4 Beeswarm Plot��������������������������
	9.3.5 Beanplot���������������������

	9.4 Quantile Plots�������������������������
	9.4.1 Probability Plots������������������������������
	9.4.2 Quantile-Quantile Plot�����������������������������������
	9.4.3 Quantile Plot��������������������������

	9.5 Bagplots�������������������
	9.6 Rangefinder Boxplot������������������������������
	9.7 Summary and Further Reading��������������������������������������
	Exercises����������������

	Chapter 10 Multivariate Visualization
	10.1 Glyph Plots
	10.2 Scatterplots������������������������
	10.2.1 2–D and 3–D Scatterplots��������������������������������������
	10.2.2 Scatterplot Matrices����������������������������������
	10.2.3 Scatterplots with Hexagonal Binning���

	10.3 Dynamic Graphics����������������������������
	10.3.1 Identification of Data������������������������������������
	10.3.2 Linking���������������������
	10.3.3 Brushing����������������������

	10.4 Coplots�������������������
	10.5 Dot Charts����������������������
	10.5.1 Basic Dot Chart�����������������������������
	10.5.2 Multiway Dot Chart��������������������������������

	10.6 Plotting Points as Curves�������������������������������������
	10.6.1 Parallel Coordinate Plots���������������������������������������
	10.6.2 Andrews’ Curves�����������������������������
	10.6.3 Andrews’ Images�����������������������������
	10.6.4 More Plot Matrices��������������������������������

	10.7 Data Tours Revisited��������������������������������
	10.7.1 Grand Tour������������������������
	10.7.2 Permutation Tour������������������������������

	10.8 Biplots�������������������
	10.9 Summary and Further Reading���������������������������������������
	Exercises����������������

	Chapter 11 Visualizing Categorical Data
	11.1 Discrete Distributions
	11.1.1 Binomial Distribution�����������������������������������
	11.1.2 Poisson Distribution����������������������������������

	11.2 Exploring Distribution Shapes���
	11.2.1 Poissonness Plot������������������������������
	11.2.2 Binomialness Plot�������������������������������
	11.2.3 Extensions of the Poissonness Plot��
	11.2.4 Hanging Rootogram�������������������������������

	11.3 Contingency Tables������������������������������
	11.3.1 Background������������������������
	11.3.2 Bar Plots�����������������������
	11.3.3 Spine Plots�������������������������
	11.3.4 Mosaic Plots��������������������������
	11.3.5 Sieve Plots�������������������������
	11.3.6 Log Odds Plot���������������������������

	11.4 Summary and Further Reading���������������������������������������
	Exercises����������������

	Appendix A Proximity Measures
	A.1 Definitions
	A.1.1 Dissimilarities����������������������������
	A.1.2 Similarity Measures��������������������������������
	A.1.3 Similarity Measures for Binary Data��
	A.1.4 Dissimilarities for Probability Density Functions��

	A.2 Transformations��������������������������
	A.3 Further Reading��������������������������

	Appendix B Software Resources for EDA
	B.1 MATLAB Programs
	B.2 Other Programs for EDA���������������������������������
	B.3 EDA Toolbox����������������������

	Appendix C Description of Data Sets���
	Appendix D MATLAB® Basics
	D.1 Desktop Environment
	D.2 Getting Help and Other Documentation���
	D.3 Data Import and Export���������������������������������
	D.3.1 Data Import and Export in Base MATLAB��
	D.3.2 Data Import and Export with the Statistics Toolbox���

	D.4 Data in MATLAB�������������������������
	D.4.1 Data Objects in Base MATLAB��
	D.4.2 Accessing Data Elements������������������������������������
	D.4.3 Object-Oriented Programming��

	D.5 Workspace and Syntax�������������������������������
	D.5.1 File and Workspace Management��
	D.5.2 Syntax in MATLAB�����������������������������
	D.5.3 Functions in MATLAB��������������������������������

	D.6 Basic Plot Functions�������������������������������
	D.6.1 Plotting 2D Data�����������������������������
	D.6.2 Plotting 3D Data�����������������������������
	D.6.3 Scatterplots�������������������������
	D.6.4 Scatterplot Matrix�������������������������������
	D.6.5 GUIs for Graphics������������������������������

	D.7 Summary and Further Reading��������������������������������������

	References�����������������
	Author Index�������������������
	Subject Index��������������������

