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Preface

Photonics (also known as optoelectronics) is the technology of creation, transmission,
detection, control and applications of light. It has many applications in various areas of
science and engineering fields. Fibre optic communication is an important part of photonics.
It uses light particles (photons) to carry information over optical fibre.

In the last 20 years we have witnessed the significant (and increasing) presence of photon-
ics in our everyday life. The creation of the Internet and World Wide Web was possible due
to tremendous technical progress created by photonics, development of photonic devices,
improvement of optical fibre, wavelength division multiplexing (WDM) techniques, etc.
The phenomenal growth of the Internet owes a lot to the field of photonics and photonic
devices in particular.

This book serves as an attempt to introduce graduate students and senior undergraduates
to the issues of computational photonics. The main motivation for developing an approach
described in the present book was to establish the foundations needed to understand prin-
ciples and devices behind photonics.

In this book we advocate a simulation-type approach to teach fundamentals of photonics.
We provide a self-contained development which includes theoretical foundations and also
the MATLAB code aimed at detailed simulations of real-life devices.

We emphasize the following characteristics of our very practical book:

• learning through computer simulations
• writing and analysing computer code always gives good sense of the values of all param-

eters
• our aim was to provide complete theoretical background with only basic knowledge

assumed
• the book is self-contained in a sense that it starts from a very basic knowledge and ends

with the discussion of several hot topics.

The author believes that one can learn a lot by studying not only a theory but also by
performing numerical simulations (numerical experiments) using commercial software or
developed in-house. Here, we adopt a view that the best way will be to develop a software
ourselves (as opposed to commercial). Also there is one more component in the learning
process, namely real-life experimentation. That part is outside the scope of the present
book.

The goal was to equip students with solid foundations and underlying principles by
providing a theoretical background and also by applying that theory to create simple
programs in MATLAB which illustrate theoretical concepts and which allow students to
conduct their own numerical experiments in order to get better understanding.

xi



xii Preface

Alternatively, students can also use octave (www.octave.org) to run and to conduct
numerical experiments using programs developed and distributed with this book. At the
end, they can try to develop large computer programs by combining learned ideas. At this
stage, I would like to remind the reader that according to Donald Knuth (cited in Computer
Algebra Handbook, J. Grabmeier, E. Kaltofen and V. Weispfenning, eds., Springer, 2003)
the tasks of increasing difficulty are:

i) publishing a paper
ii) publishing a book

iii) writing a large computer program.

The book has evolved from the lecture notes delivered in the Department of Electrical
Engineering, University of Oulu, Finland, Institute of Physics, Wroclaw University of
Technology and Department of Physics and Computer Science, Wilfrid Laurier University,
Waterloo, Canada.

The book has been designed to serve a 12-week-long term with several extra chapters
which allow the instructor more flexibility in choosing the material. An important part of
the book is the MATLAB code provided to solve problems. Students can modify it and
experiment with different parameters to see for themselves the role played by different
factors. This is a very valuable element of the learning process.

The book also contains a small number of solved problems (labelled as Examples) which
are intended to serve as a practical illustration of discussed topics. At the end of each
chapter there is a number of problems intended to test the student’s understanding of the
material.

The book may serve as a reference for engineers, physicists, practising scientists and
other professionals. It concentrates on operating principles of optical devices, as well as their
models and numerical methods used for description. The covered material includes fibre,
planar waveguides, laser diodes, detectors, optical amplifiers and semiconductor optical
amplifiers, receivers, beam propagation method, some wavelength division devices, finite-
difference time-domain method, linear and nonlinear pulses, solar cells and metamaterials.

The book can also be used as a textbook as it contains questions, problems (both solved
and unsolved), working examples and projects. It can be used as a teaching aid at both under-
graduate and graduate levels as a one-semester course in physics and electrical engineering
departments.

The book contains 17 chapters plus two appendices. The first two chapters summarize
basic topics in optics and electromagnetism. The book also contains a significant number
of software exercises written in MATLAB, designed to enhance and help understanding the
discussed topics. Many proposed projects have been designed with a view to implement
them in MATLAB.

Some numerical methods as well as important practical devices were not considered.
Those developments will be included in the second edition. The author would like to wish
a potential reader the similar joy of reading the book and experimenting with programs as
he had with writing it.

Finally, I welcome all type of comments from readers, especially concerning errors,
inaccuracies and omissions. Please send your comments to mwartak@wlu.ca.
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Requirements I do not assume any particular knowledge since I tried to cover all basic
topics. Some previous exposure to optics and electromagnetic theory will be helpful.
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1 Introduction

In this introductory chapter we will try to define computational photonics and to position it
within a broad field of photonics. We will briefly summarize several subfields of photonics
(with the main emphasis on optical fibre communication) to indicate potential possibilities
where computational photonics can significantly contribute by reducing cost of designing
new devices and speeding up their development.

1.1 What is photonics?

We start our discussion from a broader perspective by articulating what photonics is, what
the current activities are and where one can get the most recent information.

Photonics is the field which involves electromagnetic energy, such as light, where the
fundamental object is a photon. In some sense, photonics is parallel to electronics which
involves electrons. Photonics is often referred to as optoelectronics, or as electro-optics to
indicate that both fields have a lot in common. In fact, there is a lot of interplay of photonics
and electronics. For example, a laser is driven by electricity to produce light or to modulate
that light to transmit data.

Photonics applications use the photon in a similar way to that which electronic applica-
tions use the electron. However, there are several advantages of optical transmission of data
over electrical. Furthermore, photons do not interact between themselves (which is both
good and bad), so electromagnetic beams can pass through each other without interacting
and/or causing interference.

Even with the telecommunication ‘bubble’ which happened some ten years ago, the
subfield of photonics, namely optical fibre communication, is still a very important segment
of photonics activities. As an example, a single optical fibre has the capacity to carry about
3 million telephone calls simultaneously. But, due to a crisis around 2000, many new
applications of photonics have emerged or got noticed. Bio-photonics or medical photonics
are amongst the most important ones.

Before we try to define computational photonics, let us concentrate for a moment on
what photonics is at the time of writing (Winter, 2011). In the following paragraphs, we
cite some information from the relevant conferences.

Some of the well-established conferences which summarize research and applications
in a more traditional approach to photonics, and also dictate new directions are: Photonics
West, held every January in California (here is the 2011 information [1]); Photonics East,
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2 Introduction

taking place in the eastern part of the USA in the Fall; Optical Fibre Conference (OFC)
taking place in March every year [2].

A new conference, the Photonics Global Conference (PGC), is a biennial event held
since 2008 [3]. The aim of this conference is to foster interactions among broad disciplines
in photonics with concentration on emerging directions. Symposia and Special Sessions
for 2011 are summarized below:

• Symposia: 1. Optofluidics and Biophotonics. 2. Fibre-Based Devices and Applications.
3. Green Photonics. 4. High-Power Lasers and Their Industrial Applications. 5. Metama-
terials and Plasmonics. 6. Nanophotonics. 7. Optical Communications and Networks.

• Special Sessions: 1. Quantum Communications. 2. Photonics Crystal Fibres and Their
Applications. 3. Photonics Applications of Carbon Nanotube and Graphene. 4. Terahertz
Technology. 5. Diffuse Optical Imaging.

By looking at the discussed topics, one can get some sense about current activities in
photonics.

1.2 What is computational photonics?

Computational photonics is a branch of physics which uses numerical methods to study
properties and propagation of light in waveguiding structures. (Here, light is used in a broad
sense as a replacement for electromagnetic waves.) Within this field, an important part is
played by studies of the behaviour of light and light-matter interactions using analytical
and computational models. This emerging field of computational science is playing a
critically important role in designing new generations of integrated optics modules, long
haul transmission and telecommunication systems.

Generally, computational photonics is understood as the ‘replacement’ of the experimen-
tal method, where one is performing all the relevant ‘experiments’ on computer. Obviously,
such an approach reduces development cost and speeds-up development of new products.

We will attempt to cover some of those developments. The field is, however, so broad
that it is impossible to review all of its activities. Naturally, selection of the topics reflects
author’s expertise.

As a separate topic in photonics, one selects integrated photonics where the concentration
is on waveguides, simulations of waveguide modes and photonic structures [4]. The central
role is played there by a beam-propagation method which will be discussed later in the
book.

1.2.1 Methods of computational photonics. Computational electromagnetics

According to Joannopoulos et al. [5], in a broad sense there are three categories of problems
in computational photonics: frequency-domain eigensolvers, frequency-domain solvers
and time-domain simulations. Those problems are extensively discussed in many sources
including [5], also [6] and [7].
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A recent general article by Gallagher [8] gives an introduction to the main algorithms
used in photonic computer aided design (CAD) modelling along with discussion of their
strengths and weaknesses. The main algorithms are:

• BPM – Beam Propagation Method
• EME – Eigenmode Expansion Methods
• FDTD – Finite Difference Time Domain.

The above methods are compared against speed, memory usage, numerical aperture, the
refractive index contrasts in the device, polarization, losses, reflections and nonlinearity.
The author’s conclusion is that none of the discussed algorithms are universally perfect for
all applications.

We finish this section by indicating that application of computational electromagnetics
goes well beyond photonics, see the discussion by Jin [6]. In fact it has an extremely wide
range of applications which goes from the analysis of electromagnetic wave scattering
by various objects, antenna analysis and design, modelling and simulation of microwave
devices, to numerical analysis of electromagnetic interference and electromagnetic com-
patibility.

1.2.2 Computational nano-photonics

This subfield has emerged only in recent years. As the dimensions of photonics devices
shrink, it plays an increasingly important role. Nanostructures are generally considered
as having sizes in the order of the wavelength of light. At those wavelengths, multiple
scattering and near-field effects have a profound influence on the propagation of light and
light-matter interaction. In turn, this leads to novel regimes for basic research as well as
novel applications in various disciplines.

For instance, the modified dispersion relation of photonic crystals and photonic crystal
fibres leads to novel nonlinear wave propagation effects such as giant soliton shifts and su-
percontinuum generation with applications in telecommunication, metrology and medical
diagnostics. Owing to the complex nature of wave interference and interaction processes,
experimental studies rely heavily on theoretical guidance both for the design of such sys-
tems as well as for the interpretation of measurements. In almost all cases, a quantitative
theoretical description of such systems has to be based on advanced computational tech-
niques that solve the corresponding numerically very large linear, nonlinear or coupled
partial differential equations.

University research on photonic crystal structures applied to novel components in optical
communication, boomed since it has become possible to create structures on the nanometre
scale. Nanotechnology offers a potential for more efficient integrated optical circuitry at
lower cost – from passive elements like filters and equalizers to active functions such as
optical switching, interconnects and even novel lasers. In addition, the technology can
provide new functionality and reduce overall optical communication cost thanks to smaller
devices, higher bandwidth and low loss device characteristics that eliminate the need for
amplification. The ultimate goal is to create three-dimensional photonic structures that may
lead to progressively optical and one day all-optical computing.
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A very recent overview on modelling in photonics, including discussion of important
computational methods, was written by Obayya [9].

1.2.3 Overview of commercial software for photonics

An outstanding progress in photonics has been to a great extent possible due to the avail-
ability of reliable software. Some of the main commercial players are listed below:

1. At the time of writing, Optiwave (www.optiwave.com) provides comprehensive engi-
neering design tools which benefit photonic, bio-photonic and system design engineers
with a comprehensive design environment. Current Optiwave products include two
groups: system and amplifier design, and component design.

For system and amplifier design they offer two packages:
• OptiSystem – suite for design of amplifier and optical communication systems.
• OptiSPICE – the first optoelectronic circuit design software.

For component design, they have the following products:
• OptiBPM, based on the beam propagation method (BPM), offers design of complex

optical waveguides which perform guiding, coupling, switching, splitting, multiplex-
ing and demultiplexing of optical signals in photonic devices.

• OptiFDTD, which is based on the finite-difference time-domain (FDTD) algorithm
with second-order numerical accuracy and the most advanced boundary condition,
namely uniaxial perfectly matched layer. Solutions for both electric and magnetic
fields in temporal and spatial domain are obtained using the full-vector differential
form of Maxwell’s equations.

• OptiFiber, which uses numerical mode solvers and other models specialized to fibres
for calculating dispersion, losses, birefringence and polarization mode dispersion
(PMD).

• OptiGrating, which uses the coupled mode theory to model the light and enable
analysis and synthesis of gratings.

2. RSoft (www.rsoftdesign.com) product family includes:
• Component Design Suite to analyse complex photonic devices and components

through industry-leading computer-aided design,
• System Simulation to determine the performance of optical telecom and datacom

links through comprehensive simulation techniques and component models, and
• Network Modeling for cost-effective deployment of DWDM and SONET technologies

while designing and optimizing an optical network.
3. Photon Design (www.photond.com)

They offer several products for both passive and active component design, such as
FIMMWAVE and CrystalWave.

FIMMWAVE is a generic full-vectorial mode finder for waveguide structures. It com-
bines methods based on semi-analytical techniques with other more numerical methods
such as finite difference or finite element.

FIMMWAVE comes with a range of user-friendly visual tools for designing
waveguides, each optimized for a different geometry: rectangular geometries often
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encountered in epitaxially grown integrated optics, circular geometries for the design
of fibre waveguides, and more general geometries to cover, e.g. diffused waveguides or
other unusual structures.

CrystalWave is a design environment for the layout and design of integrated optics
components optimized for the design of photonic crystal structures. It is based on both
FDTD and finite-element frequency-domain (FEFD) simulators and includes a mask file
generator optimized for planar photonic crystal structures.

4. CST MICROWAVE STUDIO (www.cst.com/Content/Products/MWS/Overview.aspx)
is a specialist tool for the 3D electromagnetic simulation of high frequency components.
It enables the fast and accurate analysis of high frequency devices such as antennas,
filters, couplers, planar and multi-layer structures.

There are several web resources devoted to photonics software and numerical modelling
in photonics. We mention the following: Optical Waveguides: Numerical Modeling Website
[10], Photonics resources page [11] and Photonics software [12].

1.3 Optical fibre communication

In this section we will outline the important role played by photonics in the communication
over an optical fibre. Other sub-fields will be summarized in due course.

1.3.1 Short story of optical fibre communication

Light was used as a mean for communication probably since the origin of our civilization.
Its modern applications in telecommunication, as developed in the twentieth century, can
be traced to two main facts:

• availability of good optical fibre, and
• compact and reliable light sources.

Later in this section, we will discuss main developments in some detail. We start with
a short history of communication with the emphasis on light communication. A recent
popular history of fibre optics written for a broad audience was published by Hecht [13].
As an introductory work we recommend simple introduction to fundamentals of digital
communications by Bateman [14].

1.3.2 Short history of communication

After discovery of electromagnetic waves due to work by Marconi, Tesla and many others,
the radio was created operating in the 0.5–2 MHz frequency range with a bandwidth of
15 kHz. With the appearance of television which required bandwidth of about 6 MHz,
the carrier frequencies moved to around 100 MHz. During the Second World War the
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Fig. 1.1 Block diagram of a fibre system.

invention of radar pushed the frequencies to the microwave region (around GHz). Those
frequencies (range of 2.4–5 GHz) are now actively used by cell phones as well as wireless
links.

The big step toward higher frequencies was made possible in the 1960s with the invention
of laser. The first one operated at the 694 nm wavelength. This corresponds to carrier
frequency of approximately 5 × 1014 Hz (5 × 105 GHz = 500 THz). Utilization of only
1% of that frequency represents a signal channel of about 5 THz which can accommodate
approximately 106 analogue video channels, each with 6 MHz bandwidth or 109 telephone
calls at 5 kHz per call.

A typical communication channel which links two points, point-to-point link (as an
example, see Fig. 1.1 for a generic fibre optics link), consists of an optical transmitter
which is usually a semiconductor laser diode, an optical fibre intended to carry light beam
and a receiver. A semiconductor laser diode can be directly modulated or an external
modulator is used which produces modulated light beam which propagates in the optical
fibre. Information is imposed into optical pulses. Then the light is input into the optical
fibre where it propagates over some distance, and then it is converted into a signal which a
human can understand.

All of those elements should operate efficiently at the corresponding carrier’s frequencies
(or wavelengths). In the 1960s only one element was in place: a transmitter (laser). The
other two elements were nonexistent.

The next main step was proposed in 1966 by Charles Kao and George Hockham [15] who
demonstrated the first silica-based optical fibre with sufficiently low enough propagation
loss to enable its use as a communication medium. Soon, silica-based optical fibre became
the preferred means of transmission in both long- and short-haul telecommunication net-
works. An all-optical network has the potential for a much higher data rate than combined
electrical and optical networks and allows simultaneous transmission of multiple signals
along one optical fibre link.

Below, we summarize selected developments of the early history of long-distance com-
munication systems (after Hecht [13] and Einarsson [16]):

• TAT-1 (1956) First transatlantic telephone system contained two separate coaxial cables,
one for each direction of transmission. The repeaters (based on vacuum tubes) were
spliced into the cables at spacing of 70 km. Capacity of the transmission was 36 two-way
voices.
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• TAT-6 (1976) Capacity of 4200 two-way telephone channels. Repeaters (based on tran-
sistors) were separated at a distance of 9.4 km.

• TAT-7 (1983) System similar to TAT-6.
• TAT-8 (1988) First intercontinental optical fibre system between USA and Europe.
• HAW-4 (1988) System installed between USA and Hawaii; similar to TAT-8.
• TCP-3 Extension of HAW-4 to Japan and Guam.
• TAT-12 (1996) First transatlantic system in service with optical amplifiers.

A typical optical fibre used in TAT-8 system supported single-mode transmission [16].
It had outer diameter of 125 µm and core diameter of 8.3 µm. It operated at 1.3 µm
wavelength. Digital information was transmitted at 295.6 Mbits. The repeaters which
regenerated optical signals were spaced 46 km apart.

Some of the main developments that took place in relation to development of fibre
communication are summarized below (compiled using information from Ref. [13]):

• October 1956: L. E. Curtiss and C. W. Peters described plastic-clad fibre at Optical
Society of America meeting in Lake Placid, New York.

• Autumn 1965: C. K. Kao concludes that the fundamental limit on glass transparency is
below 20 dB km−1 which would be practical for communication.

• Summer 1970: R. D. Maurer, D. Keck and P. Schultz from Corning Glass Works, USA
make a single-mode fibre with loss of 16 dB km−1 at 633 nm by doping titanium into
fibre core.

• April 22, 1977: General Telephone and Electronics. First live telephone traffic through
fibre optics, at 6 Mbits−1 in Long Beach, CA.

• 1981: British Telecom transmits 140 Mbits s−1 through 49 km of single-mode fibre at
1.3 µm wavelength.

• Late 1981: Canada begins trial of fibre optics to homes in Elie, Manitoba.
• 1988: L. Mollenauer of Bell Labs demonstrates soliton transmission through 4000 km of

single-mode fibre.
• February 1991: M. Nakazawa, NTT Japan sends soliton signals through a million km of

fibre.
• 1994: World Wide Web grows from 500 to 10 000 servers.
• 1996: Introduction of a commercial wavelength-division multiplexing (WDM) system.
• July 2000: Peak of telecom bubble. JDS Uniphase announces plans to merge with SDL

Inc. in stock deal valued at $41 billion.
• 2001: NEC Corporation and Alcatel transmitted 10 terabits per second through a single

fibre [17].
• December 2001: Failure of TAT-8 submarine cable.

The capacity of optical fibre communication systems grew very fast. Comparison with
Moore’s law for computers which states that computer power doubles every 18 months,
indicates that fibre capacity grows faster [18]. In 1980, a typical fibre could carry about
45 Mb s−1; in 2002 a single fibre was able to transmit more than 3.5 Tb s−1 of data. Over
those 22 years the computational power of computers has increased 26 000 times whereas
the fibre capacity increased 110 000 times over the same period of time.
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with permission from S. R. Nagel, IEEE Communications Magazine, 25, 33 (1987).

1.3.3 Development of optical fibre

Glass is the principal material used to fabricate optical fibre. To be useful as a transmission
medium it has to be extremely clean and uniform. In Fig. 1.2 we illustrated the history of
reduction losses in glass as a function of time (after [19]). To make practical use of glass as
a medium used to send light, an important element, and in fact the very first challenge was
to develop glass so pure that 1% of light entering at one end would be retained at the other
end of a 1 km-thick block of glass. In terms of attenuation this 1% corresponds to about 20
decibels per kilometre (20 dB km−1).

In 1966 Kao and Hockhman [15] suggested that the high loss in glass was due to
impurities and was not the intrinsic property of glass. In fact, Kao suggested to use optical
fibre as a transmission medium.

Kao’s ideas were made possible in 1970 with the fabrication of low-loss glass fibre by
the research group from Corning Glass Works [20]. That work established a potential of
optical communications for providing a high bandwidth and long distance data transmission
network. Corning Glass Works were the first to produce an optical glass with a transmission
loss of 20 dB km−1, which was thought to be the threshold value to permit efficient optical
communication.
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Before the Corning work, around 1966, the power loss for the best available glass was
about 1000 dB km−1 which implies a 50% power loss in a distance of about 3 m [21]. Today,
most optical fibres in use are so-called single-mode fibre able to maintain single mode of
operation (see Chapter 5 for the relevant definitions). Commercially available fibres have
losses of about 0.2 dB km−1 at the wavelength of 1550 nm and are capable of transmitting
data at 2–10 Gbit s−1.

The measured spectral loss of a typical low-loss optical fibre is shown in Fig. 1.3 [22].
The measured fibre had 9.4 µm core diameter and a 0.0028 refractive index difference
between the core and cladding. Peaks were found at about 0.94, 1.24 and 1.39 µm. They
were caused by OH vibrational absorption. The rise of the loss from 1.7 µm is mainly
attributed to the intrinsic infrared absorption of the glass.

The locations of the first, second and third communications windows are also shown. The
most common wavelengths used for optical communication span between 0.83–1.55 µm.
Early technologies used the 0.8–0.9 µm wavelength band (referred to as the first window)
mostly because optical sources and photodetectors were available at these wavelengths.
Second telecommunication window, centered at around 1.3 µm, corresponds to zero dis-
persion of fibre. Dispersion is a consequence of the velocity propagation being different for
different wavelengths of light. As a result, when pulse travels through a dispersive media it
tends to spread out in time, the effect which ultimately limits speed of digital transmission.
The third window, centered at around 1.55 µm, corresponds to the lowest loss. At that
wavelength, the glass losses approach minimum of about 0.15 dB km−1.

For the sake of comparison, the loss of about 0.2 dB km−1 corresponds to 50% power
loss after propagation distance of about 15 km.

1.3.4 Comparison with electrical transmission

Historically, copper was a traditional medium used to transmit information by electri-
cal means. Its data handling capacity is, however, limited. Only around 1970, after the
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fabrication of relatively low-loss optical fibre, it started to be used in an increasing scale.
From practical perspective, the choice between copper or glass is based on several factors.

In general, optical fibre is chosen for systems which are used for longer distances and
higher bandwidths, whereas electrical transmission is preferred in short distances and
relatively low bandwidth applications. The main advantages of electrical transmission are
associated with:

• relatively low cost of transmitters and receivers
• ability to carry electrical signals and also electrical power
• for not too large quantities, relatively low cost of materials
• simplicity of connecting electrical wires.

However, it has to be realized that optical fibre is much lighter than copper. For example,
700 km of telecommunication copper cable weighs 20 tonnes, whereas optical fibre cable
of the same length weighs only around 7 kg [23].

The main advantages of optical fibre are:

• fibre cables experience effectively no crosstalk
• they are immune to electromagnetic interference
• lighter weight
• no electromagnetical radiation
• small cable size.

1.3.5 Governing standards

In order for various manufacturers to be able to develop components that function com-
patibly in fibre optic communication systems, a number of standards have been developed
and published by the International Telecommunications Union (ITU) [24]. Other standards,
produced by a variety of standards organizations, specify performance criteria for fibre,
transmitters and receivers to be used together in conforming systems.

These and related standards are covered in a recent publication [25]. It is the work
of over 25 world-renowned contributors and editors. It provides a reference to over a
hundred standards and industry technical specifications for optical networks at all levels:
from components to networking systems through global networks, as well as coverage of
networks management and services.

The ITU has specified six transmission bands for fibre optic transmission [18]:

1. the O-band (original band) – 1260–1310 nm,
2. the E-band (extended band) – 1360–1460 nm,
3. the S-band (short band) – 1460–1530 nm,
4. the C-band (conventional band) – 1530–1565 nm,
5. the L-band (long band) – 1565–1625 nm,
6. the U-band (ultra band) – 1625–1675 nm.

A seventh band, not defined by the ITU, runs around 850 nm and is used in private networks.
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1.3.6 Wavelength division multiplexing (WDM)

Wavelength division multiplexing (WDM) is a technique which allows optical signals with
different wavelengths to propagate in a single optical fibre without affecting one another.
The technique was invented to increase the information-carrying capacity of a fibre. WDM
is not the only possible way to increase fibre capacity. In Fig. 1.4 we illustrate two basic
formats, each allowing an increase of fibre capacity, time-division multiplexing (TDM) and
wavelength-division multiplexing (WDM). In both formats messages from various channels
are combined (multiplexed) onto a single information channel. This can be done in time or
at various frequencies (wavelengths).

There is extensive literature on the principles, concepts and components for WDM,
see [26], [27], [28], [29], [30] to just name a few. The WDM transmission system is
shown in Fig. 1.5. Here, MUX denotes a multiplexer. Its role is to combine light from
several sources, each operating at a particular wavelength carrying one channel, to the
transmission fibre. At the receiving end, the demultiplexer (DMUX) separates different
wavelengths.
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1.3.7 Solitons

In the mid 1980s researchers started experimenting with solitons. The soliton phenomenon
was first described by John Scott Russell, who in 1834 observed a solitary wave in a narrow
water channel (the Union Canal in Scotland).

Solitons are pulses of special shape which travel without changing it. Pulse broadening is
due to the fact that some wavelengths travel faster than other wavelengths, the effect known
as dispersion. In fibre, there also exists nonlinearity. When taken together, dispersion and
nonlinearity, they compensate for each other, thus producing conditions where pulse shape
remains unchanged. To form a soliton, the initial pulse must have a particular peak energy
and pulse shape.

In 1973, Akira Hasegawa of AT&T Bell Labs was the first to suggest that solitons could
exist in optical fibre. In 1988, Linn Mollenauer and his team transmitted soliton pulses over
4000 km [31]. A recent overview of soliton-based optical communications was provided
by Hasegawa [32] and by Mollenauer and Gordon [33].

1.4 Biological andmedical photonics

A special issue of the IEEE Journal of Selected Topics in Quantum Electronics [34]
summarizes hot topics in bio-photonics until circa 2005. Some of them are directly
related to computational bio-photonics, such as elastic light scattering properties of
tissues [35].

Two special issues of IEEE Journal of Selected Topics in Quantum Electronics on bio-
photonics [36], [37] summarize recent progress and trends. Biological applications of
stimulated parametric emission microscopy and stimulated Raman scattering microscopy
are reviewed by Kajiyama et al. [38]. As an introduction to the subject we recommend the
book by Prasad [39].

1.5 Photonic sensors

Photonic sensors have been the subject of intensive research over the last two decades. They
are emerging as an important branch of photonics. Their development is based on analysing
different components of the optical signal, like intensity, polarization, pulse shape or arrival
time and also other phenomena like interference. Utilizing those various possibilities leads
to different types of sensors. There are almost endless possibilities for their use. The best
known applications are in civil and military environments for detection of a wide variety
of biological, chemical and nuclear agents.

An important medium for sensing is the optical fibre and its recent variations which
found their own ways of applications in sensing. These include: photonic band gap
fibres (PBG), microstructure optical fibres (MOF), random hole optical fibres (RHOF)
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and hybrid ordered random hole optical fibres (HORHOF). They offer higher resolu-
tion, lower cost and/or expanded detection range capability for sources and detection
schemes.

In this book we will not explicitly concentrate on analysis and/or simulations of photonic
sensors, although some of the discussed properties of photonic devices can be directly
applied in sensors.

As an example, the use of light emitting diodes (LED) in sensing has been summarized re-
cently by O’Toole and Diamond [40]. The authors described development and advancement
of LED-based chemical sensors and sensing devices.

Another example is device based on a high-finesse, whispering-gallery-mode disk res-
onator that can be used for the detection of biological pathogens [41]. The device operates
by means of monitoring the change in transfer characteristics of the disk resonator when
biological materials fall onto its active area.

The open access journal Sensors (ISSN 1424-8220; CODEN: SENSC9) [42] on science
and technology of sensors and biosensors is published monthly online. A special issue:
Photonic Sensors for Chemical, Biological, and Nuclear Agent Detection was published
recently. It can be considered a good source of current developments and applications of
new physical phenomena in sensing.

1.6 Silicon photonics

The application of silicon in photonics certainly needs a separate discussion. Silicon is a
material of choice in electronics and it is also economical to build photonic devices on
this material [43], see also the contribution by Soref [44] for an overview of optoelectronic
integrated circuits. However, silicon is not a direct-gap material and therefore cannot
efficiently generate light. Intensive work on those issues is taking place in many institutions,
see the recent summary of the Intel-UC Santa Barbara collaboration on the hybrid silicon
laser [45].

On another front, associated with computer technology, the continuation of Moore’s Law
and progress which it reflects is becoming increasingly dependent on ultra-fast data transfer
between and within microprocessor. The existing electrical interconnects are expected to
be replaced by high speed optical interconnects. They are seen as a promising way forward,
and silicon photonics is seen as particularly useful, due to the ability to integrate electronic
and optical components on the same silicon chip.

Particularly significant progress has been seen in the advances of optical modulators
based on silicon, see the recent report by a leading collaboration [46].

In designing and optimizing those devices simulations play a very important role. Re-
cent advances in modelling and simulation of silicon photonic devices are summarized
by Passaro and De Leonardis [47]. They review recently developed simulation methods
for submicrometre innovative Silicon-on-Insulator (SOI) guiding structures and photonic
devices.
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1.7 Photonic quantum information science

A new emerging direction within photonics is related to quantum communications and
quantum information processing. Recent progress in this subfield is summarized by Politi
et al. [48]. Here, we briefly outline recent main developments.

Photons potentially can play the crucial role in the quantum information processing due
to their low-noise properties and ease of manipulation at the single qubit level. In recent
years several quantum gates have been implemented using integrated photonics circuits.

1. A theoretical proposal for the implementation of the quantum Hadamard gate using
photonic crystal structures [49]. An integrated optics Y-junction beam splitter has been
proposed for realization of this gate. Reported numerical simulations support theoretical
concepts.

2. A group from Bristol demonstrated the capability to build photonic quantum circuits
in miniature waveguide devices [50] and optical fibres [51]. They reported recently on high-
fidelity silica-on-silicon integrated optical realizations of key quantum photonic circuits,
including two-photon quantum interference and a controlled-NOT logic gate [52]. They
have also demonstrated controlled manipulation of up to four photons on-chip, including
high-fidelity single qubit operations, using a lithographically patterned resistive phase
shifter [53].
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2 Basic facts about optics

In this chapter, we review basic facts about geometrical optics. Geometrical optics is
based on the concept of rays which represent optical effects geometrically. For an excellent
introduction to this topic consult work by Pedrotti and Pedrotti [1].

2.1 Geometrical optics

2.1.1 Ray theory and applications

We visualize propagation of light by introducing the concept of rays. These rays obey
several rules:

• In a medium they travel with velocity v given by

v = c

n
(2.1)

where c = 3 × 108 m/s is the velocity of light in a vacuum and the quantity n is known
as refractive index. (We introduced here the notation n for refractive index instead of
widely accepted n in the optics literature to avoid confusion with electron density, n
which will be used in later chapters.) Some typical values of refractive indices are shown
in Table 2.1.

• In a uniform medium rays travel in a straight path.
• At the plane of interface between two media, a ray is reflected at the angle equal to the

angle of incidence, see Fig. 2.1. At the plane interface, the direction of transmitted ray is
determined by Snell’s law

n1 sin θ1 = n2 sin θ2 (2.2)

where n1 and n2 are the values of refractive indices in both media and θ1 and θ2 are the
angles of incidence and refraction, respectively.

The general relation between incoming ray A and the reflected ray B is

B = R · A (2.3)

with R reflection coefficient (complex). Reflection coefficients for two main types of waves
which can propagate in planar waveguides are given by Fresnel formulas and will be
determined in the next chapter.
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Table 2.1 Refractive index for some materials.

Material Refractive index

air 1.0
water 1.33
silica glass 1.5
GaAs 3.35
silicon 3.5
germanium 4.0

θ2

A B

C

interface

n2

n1 θ1 θ1

Fig. 2.1 Snell’s law.

n2

n1

Θc

Fig. 2.2 Illustration of critical angle.

2.1.2 Critical angle

From Snell’s law one can deduce the conditions under which light ray will stay in the
same medium (e.g. dense) after reflection, see Fig. 2.2. The situation shown corresponds
to θ2 = π/2. Angle θ1 then becomes known as the critical angle, θc and its value is:

sin θc = n2

n1
(2.4)
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Fig. 2.4 Focusing an off-axis beam.

2.1.3 Lenses

We discuss here only thin lenses, defined when the vertical translation of a ray passing
through lens is negligible. The ray enters and leaves the lens at approximately the same
distance from the lens axis.

An important use of lenses in fibre optics is to focus light onto a fibre, see Fig. 2.3. Here,
a collimated beam of light (parallel to the lens axis) is focused to a point. The point is
known as the focal point and is located at a distance f , known as focal length from the lens.
All the collimated rays converge to the focal point.

Focal distance f is related to the curvatures R1 and R2 of the spheres forming lens as

1

f
= (n − 1)

(
1

R1
+ 1

R2

)
(2.5)

If beam of light travels at some angle relative to the lens axis, Fig. 2.4, the rays will be
focused in the focal plane.
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Fig. 2.5 A cylindrical disk with graded refractive index.

2.1.4 GRIN systems

GRIN systems whose name originates from GRadient in the INdex of refraction play the
role similar to lenses. Here, the refractive index of the material is inhomogeneous. Spatial
dependence of refractive index serves as yet another parameter in the design of an ideal
lens.

The simple analysis of GRIN structure now follows [2], see Fig. 2.5. We have a flat
cylindrical disk where the refractive index n(r) depends on radius r (distance from the
axis), keeps its maximum at the optical axis and decreases outwards. In order to focus
optical rays at the focal point F , the optical paths of all rays must be the same. (Optical path
is defined as a product of geometrical distance in a given region and the value of refractive
index in that region.) Optical path difference of the central ray and the one going through
region with n(r) between planar wave front on the left and spherical wavefront on the right
should be zero

nmax · d ≈ n(r) · d + DE (2.6)

Distance DE is determined as follows: EF = f , where f is the focal length, DF = DE + f
and DF ≈

√
r2 + f 2. Combining those relations, we have

DE =
√

r2 + f 2 − f (2.7)

Use the expansion √
r2 + f 2 = f

√
1 + r2

f 2
≈ f

(
1 + r2

2 f 2

)
(2.8)

Apply the above expansion in (2.7) and obtain

DE ≈ f + r2

2 f 2
− f = r2

2 f 2
(2.9)

Finally, the dependence of refractive index is

n(r) = nmax − r2

2df 2
(2.10)
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The above equation tells us that in order to focus parallel light by the GRIN plate, the index
of refraction should depend parabolically on radius.

2.2 Wave optics

Light is an electromagnetic wave and consists of an electric field vector and a perpendicular
magnetic field vector oscillating at a very high rate (of the order of 1014 Hz) and travelling
in space along direction which is perpendicular to both electric and magnetic field vectors.
(These topics are discussed in more detail in the next chapter.) Here we state that the electric
field vector E(r,t) obeys the following wave equation:

∇2E(r, t) − 1

c2

∂2E(r, t)

∂t2
= 0 (2.11)

The above wave equation is time invariant; that is it does not change under the replacement
t → −t. We will soon utilize that fact in establishing the so-called Stokes relations.

The one-dimensional wave equation in a medium is

1

v2

∂2

∂t2
E(z, t) = ∂2

∂z2
E(z, t)

where v is the velocity of light in the medium. An exact solution can be expressed in terms
of two waves E+ and E− travelling in the positive and negative z-directions

E(z, t) = E+(z − vt) + E−(z + vt)

Dispersion relation for the above wave equation is obtained by substituting E(z, t) =
E0 sin (ωt − kz) into the wave equation, performing differentiation and dividing both sides
by E(z, t). The obtained dispersion relation which relates k and ω is

ω = ±v · k

It shows a linear dependence between angular frequency ω of the propagating wave and
its wavenumber k. Angular frequency ω is related to frequency as ω = 2π f whereas
wavenumber k is determined as

k = ω

v
= 2π

λ

Here λ is the wavelength of the light wave and v is the phase velocity of the wave. The
factor ωt − kz is known as the phase of the wave.

Example When electromagnetic wave propagates in a medium where losses are significant,
the attenuation must be incorporated into an expression for electric field of the wave. The
relevant expression is

E(z, t) = E0e−αz sin(ωt − kz)
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where α is the attenuation coefficient. The intensity of light is proportional to the square
of its electric field. Therefore, the power of the light beam decreases as exp(-2αL) during
the propagation distance L. If we measure the distance in km, the unit of α is km−1. Power
reduction in decibels (dB) is determined as

dB = 10 log10 e−2αL (2.12)

Find the relation between the attenuation coefficient and the power change in dB/km.

Solution
One has

Loss(dB) = 10 log10 e−2αL

= −20 · α · L · log e

= −8.685 · α · L

Therefore

Loss(dB)/L(km) = −8.685 · α

or

dB/km = −8.685 · α (2.13)

where α is in km−1.

2.2.1 Phase velocity

Consider a plane monochromatic wave propagating along the z-axis in an infinite medium,
see Fig. 2.6

E(z, t) = E0cos (kz − ωt) (2.14)

Select one point, say at the amplitude crest, and analyse its movement. If we assume that
this point maintains constant phase as

kz − ωt = const

we can determine velocity of that point. From the above relation

k
dz

dt
− ω = 0

or

vp = dz

dt
= ω

k
(2.15)

The quantity vp is known as phase velocity and it represents the velocity at which a surface
of constant phase moves in the medium. Velocity in Eq. (2.1) should be interpreted as phase
velocity and Eq. (2.1) be replaced by

vp = c

n
(2.16)
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Fig. 2.6 Illustration of phase velocity.

2.2.2 Group velocity

The group velocity describes the speed of propagation of a pulse in a medium. To see
this fact, consider propagation of two plane waves with different parameters but equal
amplitudes

E1(z, t) = E0 cos (k1z − ω1t) , E2(z, t) = E0 cos (k2z − ω2t) (2.17)

Assume that their frequencies and wavenumbers differ by 2�ω and 2�k and write

ω1 = ω + �ω, ω2 = ω − �ω

k1 = k + �k, k2 = k − �k

Superposition of those waves results in a wave E(z, t) which is

E(z, t) = E1(z, t) + E2(z, t)

= E0 {cos [(k + �k) z − (ω + �ω) t] + cos [(k − �k) z − (ω − �ω) t]}
Using trigonometric identity

2 cos α cos β = cos (α + β) + cos (α − β)

allows us to write expression for E(z, t) as

E(z, t) = 2E0 cos (kz − ωt) cos (�kz − �ωt) (2.18)

Eq. (2.18) represents a wave at carrier frequency ω that is modulated by a sinusoidal
envelope at the beat frequency �ω, see Fig. 2.7. Phase velocity of the carrier wave is
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vp = ω/k. The envelope moves with velocity vg which is

vg = �ω

�k
→ dω

dk
(2.19)

In a free space ω = kc which is known as dispersion relation, the group velocity is
vg = dω

dk = c. In a free space (vacuum), the phase and group velocities are identical. In
media, the dispersion relation, i.e. ω = ω(k) dependence is usually a complicated function.

Example Write a MATLAB program to visualize phase and group velocities based on
Eqs. 2.15 and 2.19.

Solution
The MATLAB code for phase velocity is provided in the Listing 2A.1 and in the
Listing 2A.2 for group velocity. The results are shown in Fig. 2.6 and Fig. 2.7.

2.2.3 Stokes relations

Stokes relations relate reflectivities and transmittivities of light at the plane of interface
between two media. Assume that electric field E which is represented by the corresponding
ray interacts with the interface and is partially reflected and partially transmitted, see Fig. 2.8.
Here r, t are reflection and transmission coefficients for fields (not intensities) propagating
from medium 2 to medium 1 (here, from top to bottom). Similarly, r′, t ′ denote the reflection
and transmission coefficients for fields propagating from medium 1 to medium 2.
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Fig. 2.8 Transmission and reflection at the interface used in deriving Stokes relations.
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Fig. 2.9 Transmission and reflection at the interface used in deriving Stokes relations. Time-reversed process.
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Fig. 2.10 Transmission and reflection at the interface used in deriving Stokes relations. Full processes.

At the beginning of this section we have established the property of time invariance of
the wave equation. Time reversal invariance tells us that the above picture (reflection and
transmission) should also work in reverse time, see Fig. 2.9 where we combined rays tE
and rE to form ray E.

However, when one inputs two rays (tE and rE) at the interface between two media 1 and
2, one from above and one from below, there should exist partial reflection and transmission
for both rays, as is illustrated in Fig. 2.10.

A comparison of Fig. 2.9 and Fig. 2.10 reveals physically identical situations, and
therefore the following relations hold:

r2E + t ′tE = E

rtE + r′tE = 0

From the above we obtain Stokes relations

t ′t = 1 − r2

r′ = −r
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Fig. 2.11 Interference in a single film with light incident at arbitrary angle θi.

2.2.4 Interference in dielectric film

Interference in dielectric film is an important phenomenon behind operation of optical
devices, like filters. It is also a fundamental effect for the operation of the Fabry-Perot
interferometer.

To analyse this interference, consider a single layer dielectric film having refractive
index n f which is in contact with the medium having refractive index n0 from above,
see Fig. 2.11. For such a configuration, we will derive conditions for constructive and
destructive interference. We will do this by calculating the optical path difference.

The incident beam 1 creates on reflection and transmission two emerging beams 2 and
3. The phase difference between beams 2 and 3 as measured at points C and D is due to
optical path difference � (optical path is defined as a product of geometrical path times
refractive index) and is

� = n f (AB + BC) − n0AD (2.20)

From Fig. 2.11 one can determine the following trigonometric relations:

AD

AC
= cos(90o − θi) = sin θi (2.21)

h

AB
= cos θt (2.22)

AE

h
= tan θt (2.23)

and also

AC = 2 · AE (2.24)

Combining Eqs. (2.23) and (2.24), one obtains

AC = 2 · t · tan θt (2.25)

Substituting (2.25) into (2.21) we obtain geometrical path for AD part

AD = 2 · h · tan θt · sin θi (2.26)

Geometrical path AB + AC is obtained using Eq. (2.22) as

AB + AC = 2 · AB = 2 · t

cos θt
(2.27)
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Combining Eqs. (2.26) and (2.27) with (2.20) one finds the optical path difference as

� = n f · 2 · t

cos θt
− n0 · 2 · t · sin θt

cos θt
· sin θi (2.28)

= 2hn f

cos θt

{
1 − n0

n f
sin θt sin θi

}
(2.29)

Using Snell’s law

n0 sin θi = n f sin θt

and the following trigonometric identity

cos2 θt + sin2 θt = 1

the curly bracket in Eq. (2.29) gives

1 − n0

n f
sin θt sin θi = 1 − 1

n f
sin θtn f sin θt

= 1 − sin2 θt = cos2 θt

Employing the last result in (2.29), we finally obtain for the optical path difference

� = 2 · h · n f · cos θt (2.30)

Thus, the optical path difference is expressed in terms of the angle of refraction. For normal
incidence θi = θt = 0 and � = 2n f h. The phase difference δ acquired by light ray due to
travel in the film corresponding to optical path difference � is

δ = k · � = 2π

λ0
· � (2.31)

2.2.5 Multiple interference in a parallel plate

Based on discussion from the previous section, we will now consider interference of multiple
beams in a parallel plate, see Fig. 2.12. Here, E0 is the amplitude of the incoming light, r, t
are the coefficients of external reflections and transmissions, and r′, t ′ are coefficients of
internal reflections and transmissions.
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Phase difference between two successive reflected beams which exists due to travel in
the film having refractive index n f is, Eq. (2.31)

δ = k · �

where � is given by Eq. (2.30). Analysing Fig. 2.12, one can write the following relations
for outgoing beams

E0eiωt incident beam
E1 = rE0eiωt first reflected beam
E2 = tt ′r′E0eiωt−iδ second reflected beam
E3 = tt ′r′3E0eiωt−i2δ third reflected beam
E4 = tt ′r′5E0eiωt−i3δ fourth reflected beam

kth reflected beam is

Ek = tt ′r′(2k−1)E0eiωt−i(k−1)δ

Sum of all reflected beams, ER is

ER =
∞∑

k=1

Ek = rE0eiωt +
∞∑

k=2

tt ′r′(2k−3)E0eiωt e−i(k−2)δ

= E0eiωt

{
r + tt ′r′e−iδ

∞∑
k=2

r′(2k−4)e−i(k−2)δ

}

To perform the above infinite sum, use an elementary result for the sum of the geometric
series

S =
∞∑

k=2

xk−2 = 1 + x + x2 + · · ·

For |x| < 1, the sum is S = 1/(1 − x). In our case here, x = r′2e−iδ , and total reflection is
thus

ER = E0eiωt

{
r + tt ′r′e−iδ

1 − r′2e−iδ

}
Using Stokes relations, we obtain

ER = E0eiωt

{
r − (1 − r2)re−iδ

1 − r2e−iδ

}
= E0eiωt r(1 − e−iδ )

1 − r2e−iδ

Light intensity of the reflected beam is proportional to the irradiance IR which is

IR ∼ |ER|2 = E2
0 r2

{
eiωt (1 − e−iδ )

1 − r2e−iδ

}{
e−iωt (1 − eiδ )

1 − r2eiδ

}
= E2

0 r2 2(1 − cos δ)

1 + r4 − 2r2 cos δ
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Introduce Ii as the irradiance of the incident beam and IT as the irradiance of the transmitted
beam. We have

IR

Ii
= |ER|2

|Ei|2

and

IR + IT = Ii

which originates from energy conservation in nonabsorbing films. Using the above relations,
one obtains

IR = 2r2(1 − cos δ)

1 + r4 − 2r2 cos δ
Ii (2.32)

and

IT = (1 − r2)2

1 + r4 − 2r2 cos δ
Ii (2.33)

2.2.6 Fabry-Perot (FP) interferometer

The FP interferometer is formed by two parallel plates with some medium (often air)
between them. Expressions for transmission and reflection in such a system have been
derived in the previous section.

The expression for transmission can be used to determine the transmittance T (or Airy
function) as follows:

T ≡ IT

Ii
= (1 − r2)2

1 + r4 − 2r2 cos δ

= 1 − 2r2 + r4

1 + r4 − 2r2 + 4r2 sin2 δ
2

= 1

1 + 4r2

(1−r2 )2 sin2 δ
2

using trigonometric relation cos δ = 1 − 2 sin2 δ
2 .

Define coefficient of finesse

F ≡ 4r2

(1 − r2)2
(2.34)

Transmittance is thus expressed as

T = 1

1 + F sin2 δ
2

(2.35)
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Fig. 2.13 Fabry-Perot fringe profile.

Example Write a MATLAB program to analyse the transmittance of an FP etalon given by
Eq. (2.35).

Solution
The MATLAB code is shown in Appendix, Listing A 2.3 and the FP fringe profile is shown
in Fig. 2.13. The figure shows plots of transmission as a function of phase difference δ for
various values of external reflection r.

2.3 Problems

1. Use Snell’s law to derive an expression for critical angle θc. Compute the value of θc

for a water-air interface (nwater = 1.33).
2. Isotropic light source located at distance d under water illuminates circular area of a

radius 5 m. Determine d.
3. A tank of water is covered with a 1 cm thick layer of linseed oil (noil = 1.48) above

which is air. What angle must a beam of light, originating in the tank, make at the
water-oil interface if no light is to escape?

4. Analyse the travel of a light ray through a parallel glass plate assuming refractive
index of glass n. Determine displacement of the outgoing ray.

5. A point source S is located on the axis of, and 30 cm from a plane-convex thin lens
which has a radius of 5 cm. The glass lens is immersed in air. Determine the location
of the image (a) when the flat surface is toward S and (b) when the curved surface is
toward S.
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Fig. 2.14 Propagation of light in U-tube.

6. Analyse multiple interference in a parallel plate FP etalon formed by two parallel
plates with an active medium inside with gain g [3]. Derive an expression for a signal
gain.

7. A glass rod of rectangular cross section is bent into U-shape as shown in Fig. 2.14
[4]. A parallel beam of light falls perpendicularly on the flat surface A. Determine
the minimum value of the ratio R/d for which all light entering the glass through
surface A will emerge from the glass through surface B. Assume that the refractive
index of glass is 1.5.

8. The Sellmeier dispersion equation is an empirical expression for the refractive index
of a dielectric (like glass) in terms of the wavelength λ. One of the most popular
models is [5], [6]

n2 = 1 + G1
λ2

λ2 − λ2
1

+ G2
λ2

λ2 − λ2
2

+ G3
λ2

λ2 − λ2
3

(2.36)

Here G1, G2, G3 and λ1, λ2, λ3 are constants (called Sellmeier coefficients) which
are determined by fitting the above expression to the experimental data. Some of the
Sellmeier parameters are given in Table 2.2 (data combined from [5], [7] and [6]).

Table 2.2 Sellmeier parameters for SiO2.

Parameter G1 G2 G3 λ1 (µm) λ2 (µm) λ3 (µm)

SiO2 0.696749 0.408218 0.890815 0.0690660 0.115662 9.900559

Write a MATLAB program to plot refractive index as a function of λ from 0.5 µm
to 1.8 µm for pure silica.

9. Using the Sellmeier relation, plot reciprocal group velocity and group velocity for
SiO2. Assume 1.36 < λ[µm] < 1.65.

Appendix 2A: MATLAB listings

In Table 2.3 we provided a list of MATLAB files created for Chapter 2 and a short description
of each function.
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Table 2.3 List of MATLAB functions for Chapter 2.

Listing Function name Description

2A.1 phase velocity.m Plots phase velocity
2A.2 group velocity.m Plots group velocity
2A.3 FP transmit.m Plots transmittance of Fabry-Perot etalon

Listing 2A.1 Program phase velocity.m. MATLAB program which plots phase velocity.

% File name: phase_velocity.m

% Illustrative plot of phase velocity

clear all

N_max = 101; % number of points for plot

t = linspace(0,30d-15,N_max); % creation of theta arguments

%

c = 3d14; % velocity of light in microns/s

n = 3.4; % refractive index

v_p = c/n; % phase velocity

lambda = 1.0; % microns

k = 2*pi/lambda;

frequency = v_p/lambda;

z = 0.6; % distance in microns

omega = 2*pi*frequency;

A = sin(k*z - omega*t);

plot(t,A,’LineWidth’,1.5)

xlabel(’Time’,’FontSize’,14);

ylabel(’Amplitude’,’FontSize’,14);

set(gca,’FontSize’,14); % size of tick marks on both axes

axis([0 30d-15 -1.5 2])

text(17d-15, 1.3, ’z(t)’,’Fontsize’,16)

line([1.53d-14,2d-14],[1,1],’LineWidth’,3.0) % drawing arrow

line([1.9d-14,2d-14],[1.1,1],’LineWidth’,3.0)

line([1.9d-14,2d-14],[0.9,1],’LineWidth’,3.0)

pause

close all

Listing 2A.2 Function group velocity.m. MATLAB program which plots group velocity.

% File name: group_velocity.m

% Illustrative plot of group velocity by superposition

% of two plane waves

clear all

N_max = 300; % number of points for plot
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t = linspace(0,300d-15,N_max); % creation of theta arguments

%

c = 3d14; % velocity of light in microns/s

n = 3.4; % refractive index

v_p = c/n; % phase velocity

lambda = 1.0; % microns

frequency = v_p/lambda;

z = 0.6; % distance in microns

omega = 2*pi*frequency;

k = 2*pi/lambda;

Delta_omega = omega/15.0;

Delta_k = k/15.0;

%

omega_1 = omega + Delta_omega;

omega_2 = omega - Delta_omega;

k_1 = k + Delta_k;

k_2 = k - Delta_k;

A = 2*cos(k*z - omega*t).*cos(Delta_k*z - Delta_omega*t);

plot(t,A,’LineWidth’,1.3)

xlabel(’Time’,’FontSize’,14)

ylabel(’Amplitude’,’FontSize’,14)

set(gca,’FontSize’,14); % size of tick marks on both axes

pause

close all

Listing 2A.3 Function FP transmit.m. Program plots transmittance of Fabry-Perot etalon.

% FP_transmit.m

% Plot of transmittance of FP etalon

clear all

N_max = 401; % number of points for plot

t = linspace(0,1,N_max); % creation of theta arguments

delta = (5*pi)*t; % angles in radians

%

hold on

for r = [0.2 0.4 0.8] % reflection coefficient

F = 4*r^2/(1-r^2).^2; % coefficient of finesse

T = 1./(1 + F*(sin(delta/2)).^2);

plot(delta,T,’LineWidth’,1.5)

end

%

% Redefine figure properties

ylabel(’Transmittance’,’FontSize’,14)

xlabel(’Phase difference (rad)’,’FontSize’,14)
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set(gca,’FontSize’,14); % size of tick marks on both axes

text(6.1, 0.05, ’2 \pi’,’Fontsize’,14)

text(12.2, 0.05, ’4 \pi’,’Fontsize’,14)

text(8.5, 0.1, ’r = 0.8’,’Fontsize’,14)

text(8.5, 0.5, ’r = 0.4’,’Fontsize’,14)

text(8.5, 0.8, ’r = 0.2’,’Fontsize’,14)

%

pause

close all
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3 Basic facts from electromagnetism

In this chapter we review foundations of electromagnetic theory and basic properties of
light.

3.1 Maxwell’s equations

Our discussion is based on Maxwell’s equations which in differential form are [1], [2]

∇ × E = −∂B

∂t
(3.1)

∇ × H = J + ∂D

∂t
(3.2)

∇ · D = ρv (3.3)

∇ · B = 0 (3.4)

where
E is electric field intensity [V/m]
B is magnetic flux density [T ]
H is magnetic field intensity [A/m]
D is electric flux density [C/m2]
J is electric current density [A/m2]
ρv is volume charge density [C/m3].
The operator ∇ in Cartesian coordinates is

∇ =
[

∂

∂x
,

∂

∂y
,

∂

∂z

]
(3.5)

The above relations are supplemented with constitutive relations

D = εE (3.6)

B = μH (3.7)

J = σE (3.8)

where ε = ε0εr is the dielectric permittivity [F/m], μ = μ0μr is permeability [H/m], σ is
electric conductivity, εr is the relative dielectric constant. For optical problems considered
here, μr = 1.

35
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First, we recall two mathematical theorems, Gauss’s theorem∮
S

F · ds =
∫

V
∇ · Fdv (3.9)

where S is the closed surface area defining volume V , and Stokes’s theorem∮
L

F · dl =
∫

A
∇ × F · ds (3.10)

where contour L defines surface area A. With the help of the above theorems, Maxwell’s
equations in differential form can be transformed into an integral form. Integral forms of
Maxwell’s equations are ∮

S
D · ds =

∫
V

ρvdv (3.11)∮
S

B · ds = 0 (3.12)∮
L

E · dl = −
∫

A

∂B

∂t
(3.13)∮

L
H · dl =

∫
A

∂D

∂t
+ I (3.14)

Properties of the medium are mostly determined by ε, μ and σ . Further, for the dielectric
medium the main role is played by ε. The medium is known as linear if ε is independent
of E; otherwise it is nonlinear. If it does not depend on position in space, the medium is
said to be homogeneous; otherwise it is inhomogeneous. If properties are independent of
direction, the medium is isotropic; otherwise it is anisotropic.

3.2 Boundary conditions

Boundary conditions are derived from an integral form of Maxwell’s equations. For that
purpose we separate all vectors into two components, one parallel to the interface and one
normal to the interface. The derivation of boundary conditions is facilitated by using the
contour and cylindrical shapes as shown in Fig. 3.1. It will be done independently for the
electric and magnetic fields.

3.2.1 Electric boundary conditions

First, analyse transversal components. Integrate Eq. (3.13) over closed loop C, see Fig. 3.1
and then set �h → 0∫

ABCDA

E · dl = −E1 · dl + E2 · dl = −E1t�w + E2t�w = 0
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Fig. 3.1 An interface between two media. Contour and volume used to derive boundary conditions for fields between two
different dielectrics are shown.

Therefore

E1t = E2t (3.15)

The tangential component of the electric field is therefore continuous across the boundary
between any two dielectric media. Using general relation (3.6) one obtains the boundary
condition for tangential component of vector D

D1t

εr1
= D2t

εr2
(3.16)

In order to obtain conditions for normal components, consider the cylinder shown in Fig. 3.1.
Here, n1 and n2 are normal vectors pointing outwards of the top and bottom surfaces into
corresponding dielectrics. Apply Gauss’s law with integration over surface S of the cylinder∫

S

D · ds =
∫

top
D1 · n1ds +

∫
bottom

D2 · n2ds = ρs�s

The contribution from the outer surface of the cylinder vanishes in the limit �h → 0. Use
the fact that n2 = −n1 and have

n1 · (D1 − D2) = ρs (3.17)

or

εr1E2n − εr2E1n = ρs (3.18)

when using general relation (3.6). Normal component of vector D is not continuous across
boundary (unless ρs = 0).

3.2.2 Magnetic boundary conditions

When deriving boundary conditions for magnetic fields, we use approach similar as for
electric fields. We use Eq. (3.12) where integration is over the cylinder∫

S

B · ds = 0
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Table 3.1 Summary of boundary conditions for electric and magnetic fields.

Field components General form Specific form

Tangential E n2 × (E1 − E2) = 0 E1t = E2 t

Normal D n2 · (D1 − D2) = ρs D1t − D2 t = ρs

Tangential H n2 × (H1 − H2) = Js H2 t = H1t

Normal B n2 · (B1 − B2) = 0 B1n = B2n

or

B1n = B2n (3.19)

Using general relation (3.7), one obtains condition for magnetic field H

μr1H1n = μr2H2n (3.20)

The above relations tell us that normal component of B is continuous across the boundary.
To obtain how transversal magnetic components behave across interface, apply Ampere’s

law for contour C and then let �h → 0. One obtains∫
C

H · dl =
∫ B

A
H2 · dl −

∫ D

C
H1 · dl = I

Here I is the net current crossing the surface of the loop. As we let �h approach zero, the
surface of the loop approaches a thin line of length �w. Hence, the total current flowing
through this thin line is I = Js ·�w, where Js is the magnitude of the normal component of
the surface current density traversing the loop. We can therefore express the above equation
as

H2t − H1t = Js (3.21)

Utilizing unit vector n2, the above relation can be written as

n2 × (H1 − H2) = Js (3.22)

where n2 is the normal vector pointing away from medium 2, see Fig. 3.1. Js is the surface
current.

In Table 3.1 we summarize boundary conditions between two dielectrics for the electric
and magnetic fields. The behaviour of various field components is shown schematically in
Fig. 3.2.

3.3 Wave equation

Here, we will derive the wave equation for a source-free medium where �v = 0 and J = 0.
The wave equation is obtained by applying ∇× operation to both sides of Eq. (3.1). One
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obtains

∇ × ∇ × E = − ∂

∂t
(∇ × B) = −μ

∂

∂t
(∇ × H) = −μ

∂

∂t

∂D

∂t
= −με

∂2D

∂t2

where we have used Maxwell Eq. (3.2) and relation (3.6). Next apply the following mathe-
matical formula

∇ × ∇ × E = ∇(∇ · E) − ∇2E (3.23)

With the help of Maxwell Eq. (3.3), one finds finally

∇2E − με
∂2

∂t2
E (3.24)

which is the desired wave equation. The quantity με is related to velocity of light in a
vacuum as (assuming μr = 1)

με = μ0ε0εr = n2

c2
(3.25)

where n is the refractive index of the medium.

3.4 Time-harmonic fields

In many practical situations fields have sinusoidal time dependence and are known as
time-harmonic. This fact is expressed as

E(r, t) = Re
{
E (r) e jωt

}
(3.26)

where E (r) is the phasor form of E (r, t) and is in general complex. Re {...} indicates
‘taking the real part in’ quantity in brackets. Finally, ω is the angular frequency in [rad/s].
In what follows, all fields will be represented in phasor notation.
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Applying the time-harmonic assumption (3.26) to source-free Maxwell’s equations re-
sults in

∇ × E = − jωμH (3.27)

∇ × H = jωεE (3.28)

Applying the time-harmonic assumption again to wave equation (3.24) gives

∇2E + k2E = 0 (3.29)

where k = ω
√

με. Explicitly, the above wave equation is(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
+ k2

)
Ei = 0 (3.30)

with i = x, y, z.

Example As an example, consider propagation of a uniform plane wave characterized by a
uniform electric field with nonzero component Ex. Assume also

∂2Ex

∂x2
= 0,

∂2Ex

∂y2
= 0 (3.31)

The wave equation reduces to

∂2Ex

∂z2
+ k2Ex = 0 (3.32)

and has the following forward propagating solution:

Ex(z) = E0e jkz (3.33)

Magnetic field is determined from the Maxwell’s Equation (3.27)

∇ × E =
∣∣∣∣∣∣

ax ay az

0 0 ∂
∂z

Ex(z) 0 0

∣∣∣∣∣∣ = − jωμ
(
axHx + ayHy + azHz

)
(3.34)

Here ax, ay, az are unit vectors along x, y, z axes, respectively. From the above equation, one
finds

Hx = 0 (3.35)

Hy = 1

jωμ

∂Ex(z)

∂z

Hz = 0
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Using the solution for Ex(z), one finally obtains the expression for magnetic field

H = ayHy(z) (3.36)

= 1

− jωμ
(− jkEx)ay (3.37)

= ay
k

ωμ
Ex(z)

= ay
1

Z
Ex(z)

where the impedance Z of the medium is defined as Z =
√

μ

ε
. The propagating wave is

shown in Fig. 3.3.
We finish this section by providing a useful relation between electric and magnetic fields.

Assuming time-harmonic and plane-wave dependence of both fields as

E ∼ exp(iωt − ik · r)

and using constitutive relation (3.7), Maxwell Eq. (3.1) takes the form

k × E = ωμ0H

Introducing unit vector k̂ along wave vector k and the expression for wave number k =
ωn

√
μ0ε0, one finds

n k̂ × E = Z0H

where Z0 is the impedance of the free-space.
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3.5 Polarized waves

Here we will discuss the concept of polarization of electromagnetic waves. Polarization
characterizes the curve which E vector makes (in the plane orthogonal to the direction
of propagation) at a given point in space as a function of time. In the most general case,
the curve produced is an ellipse and, accordingly, the wave is called elliptically polarized.
Under certain conditions, the ellipse may be reduced to a circle or a segment of a straight
line. In those cases it is said that the wave’s polarization is circular or linear, respectively.
Since the magnetic field vector is related to the electric field vector, it does not need separate
discussion. First, consider a single electromagnetic wave.

3.5.1 Linearly polarized waves

Consider an electromagnetic wave characterized by electric field vector E directed along
the x-axis

E = axE0 cos (ωt − kz + φ) (3.38)

It is known as a linearly polarized plane wave with the electric field vector oscillating in
the x direction. Wave propagates in the +z direction. In Eq. (3.38) ω = 2πν is the angular
frequency and k is the propagation constant defined as

k = ω

v

where v = c/n is the velocity of the electromagnetic wave in the medium having refractive
index n. φ is known as a phase of electromagnetic wave.

The electromagnetic wave can also be written in the complex representation as

E = axE0ei(ωt−kz+φ) (3.39)

The actual field as described by Eq. (3.38) is obtained from (3.39) by taking real part. A
more general expression for the electromagnetic wave is

E = êE0ei(ωt−k·r+φ)

which is known as the plane polarized wave. Here unit vector ê lies in the plane known as
plane of polarization. It is perpendicular to vector k which describes direction of propagation

k · ê = 0

3.5.2 Circularly and elliptically polarized waves

In general, when we have an arbitrary number of plane waves propagating in the same
direction they add up to a complicated wave. In the simplest case, one has only two such
plane waves. To be more specific, consider two plane waves oscillating along orthogonal
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directions. They are linearly polarized having the same frequencies and propagating in the
same direction

E1 = Exax = axE0x cos (ωt − kz) (3.40)

E2 = Eyay = ayE0y cos (ωt − kz + φ) (3.41)

We want to know the type of the resulting wave and the curve traced by the tip of the total
electric vector E = E1 + E2

E = E1 + E2 = E0 {cos (ωt − kz) + cos (ωt − kz + φ)}
First, eliminate cos (ωt − kz) term. From Eq. (3.40)

cos (ωt − kz) = Ex

Eox
(3.42)

Use trigonometric identity

cos (α − β) = cos α cos β + sin α sin β

to express Eq. (3.41) as follows:

Ey = E0y

{
cos (ωt − kz) cos δ + [

1 − cos2 (ωt − kz)
]1/2

sin δ
}

Substitute Eq. (3.42) in the above and have

Ey

E0y
= Ex

E0x
cos φ +

(
1 − E2

x

E2
0x

)1/2

sin φ

Squaring both sides gives(
Ey

E0y
− Ex

E0x
cos φ

)2

=
(

1 − E2
x

E2
0x

)
sin2 φ

or
E2

y

E2
0y

− 2 cos φ
Ey

E0y

Ex

E0x
+ E2

x

E2
0x

cos2 φ + E2
x

E2
0x

sin2 φ = sin2 φ

Finally, the above equation gives(
Ey

E0y

)2

+
(

Ex

E0x

)2

− 2

(
Ey

E0y

)(
Ex

E0x

)
cos φ = sin2 φ (3.43)

This is general equation of an ellipse. Thus the endpoint of E(z, t) will trace an ellipse at a
given point in space. It is said that the wave is elliptically polarized.

When phase φ = π
2 , the resultant total electric field is(

Ey

E0y

)2

+
(

Ex

E0x

)2

= 1

which describes right elliptically polarized wave since as time increases the end of elec-
tric vector E rotates clockwise on the circumference of an ellipse. Typical situations are
illustrated in Fig. 3.4 where we show elliptic, circular and linear polarizations.
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3.6 Fresnel coefficients and phases

In this section we discuss electromagnetic wave undergoing reflection at the boundary
between two dielectrics, see Fig. 3.5. The plane of incidence is defined as the plane formed
by unit vector n normal to the interface between two media and the directions of propagation
of the incident and reflected waves.

We will derive so-called Fresnel coefficients [3] which are reflection and transmission
coefficients expressed in terms of the angle of incidence and material properties (ε dielectric
constants) of the two dielectrics. Further, Fresnel phases are determined from Fresnel
coefficients using the following definition [1]:

r = e−2 jφ (3.44)

Both reflection coefficients r and phases φ will be calculated for both types of modes, TE
and TM.

3.6.1 TE polarization

Referring to Fig. 3.6 the E1i, E1r, E2t are complex values of incident, reflected and transmit-
ted electric fields in medium 1 and 2. The incident electric field in medium 1 (E1i) is parallel
to the interface between both media. Such orientation is known as TE polarization. It is
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Fig. 3.6 Fresnel reflection for TE polarization. Directions of vectors for TE polarized wave.

often said that electric field vector E is normal to the plane of incidence. Such configuration
is also known as s-polarization.

Boundary conditions require that the tangential components of the total field E and the
total field H on both sides of the interface be equal. Those conditions result in the following
equations:

E1i + E1r = E2t (3.45)

−H1i cos θ1 + H1r cos θ1 = −H2t cos θ2

We also have the following relations involving impedances in both media:

E1i

H1i
= Z1,

E1r

H1r
= Z1,

E2t

H2t
= Z2 (3.46)

For a non-magnetic medium (μr = 1) the impedance can be written as Z = Z0
n , with n

being the refractive index of the medium and

Z0 =
√

μ0

ε0

is the impedance of a free space. Replacing magnetic fields in the second equation of
Eq. (3.45) by the electric fields using Eq. (3.46) gives

E1i + E1r = E2t (3.47)

−E1i

Z1
cos θ1 + E1r

Z1
cos θ1 = −E2t

Z2
cos θ2

Reflection coefficient is defined as

rT E = E1r

E1i
(3.48)

From Eqs. (3.47) by eliminating E2t and using definition (3.48) one obtains 5

rT E = Z2 cos θ1 − Z1 cos θ2

Z2 cos θ1 + Z1 cos θ2
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Replacing impedances Z by refractive indices n, we finally have

rT E = n1 cos θ1 − n2 cos θ2

n1 cos θ1 + n2 cos θ2

=
n1 cos θ1 −

√
n2

2 − n2
1 cos θ1

n1 cos θ1 +
√

n2
2 − n2

1 cos θ1

(3.49)

using Snell’s law. For angles θ1 such that n2
2 − n2

1 cos θ1 < 0 the reflection coefficient
becomes complex. For such cases, we write it as

rT E =
n1 cos θ1 − j

√
n2

1 cos θ1 − n2
2

n1 cos θ1 + j
√

n2
1 cos θ1 − n2

2

≡ a − jb

a + jb

Such complex number can be expressed as

rT E = e− jφT E

e jφT E
= e−2 jφT E

where we have defined a + jb = e jφT E . Finally, using the definition of Fresnel phase,
Eq. (3.44) one obtains

tan φT E =
√

n2
1 sin2 θ1 − n2

2

n1 cos θ1
(3.50)

The above equation represents phase shift during reflection for TE polarized electromagnetic
wave. For a more detailed discussion about phase change on reflection consult books by
Pedrotti [4] and Liu [5].

Example (a) Consider normal incidence of light on an air-silica interface. Compute the
fraction of reflected and transmitted power. Also, express the transmitted loss in decibels.
Assume refractive index of silica to be 1.45. (b) Repeat the calculations for Si which has
n = 3.50. (c) Consider coupling of GaAs optical source with a refractive index of 3.6 to a
silica fibre which has refractive index of 1.48. Assume close physical contact of the fibre
end and the source.

Solution
(a) The corresponding coefficient known as reflectance [4] is

R = |r|2 =
(

n1 − n2

n1 + n2

)2

(3.51)

Substituting values for air and silica, one has

R =
(

1.45 − 1.00

1.45 + 1.00

)2

= 0.03

so about 3% of the light is reflected. The remainder, 97%, is transmitted.
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Fig. 3.7 Fresnel reflection for TM polarization. Directions of vectors for a TM polarized wave.

The transmission loss in dB is

−10 log10 0.97 = 0.13[dB]

This result shows that there is about 0.2dB loss when light enters glass from air.
(b) For Si, using the same procedure we obtain

R =
(

1.00 − 3.50

1.00 + 3.50

)2

= 0.309

This means that about 31% of light is reflected.
(c) The Fresnel reflection at the interface is

R =
(

3.60 − 1.48

3.60 + 1.48

)2

= 0.174

Therefore about 17.4% of the created optical power is emitted back into the source. The
power coupled into optical fibre is

Pcoupled = (1 − R) Pemitted

The power loss, α in decibels is

α = −10 log10

Pcoupled

Pemitted
= −10 log10 (1 − R)

= −10 log10 ((1 − 0.174)) − 10 log10 (0.826) = 0.83[dB]

3.6.2 TM polarization

Field configuration used to analyse reflection for TM polarization (magnetic field parallel
to the interface) is shown in Fig. 3.7. Here, electric field vector E is parallel to the plane of
incidence. Such configuration is also known as p-polarization.
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We will derive coefficient of reflection rT M for TM mode. As before the E1i, E1r, E2t are
(complex) values of incident, reflected and transmitted electric fields in medium 1 and 2.
Similar notation holds for magnetic vectors. Boundary conditions require that tangential
components are continuous across interface. The relevant conditions are

E1i cos θ1 − E1r cos θ1 = E2t cos θ2 (3.52)

H1i + H1r = H2t

Using Eqs. (3.46) for impedances to eliminate magnetic fields in the previous equations
results in the following:

E1i cos θ1 − E1r cos θ1 = E2t cos θ2 (3.53)

E1i

Z1
+ E1r

Z1
= E2t

Z2

Reflection coefficient is defined as

rT M = E1r

E1i
(3.54)

From Eqs. (3.53)

rT M = Z1 cos θ1 − Z2 cos θ2

Z1 cos θ1 + Z2 cos θ2

It can be also expressed in terms of refractive index

rT M = n2 cos θ1 − n1 cos θ2

n2 cos θ1 + n1 cos θ2

=
n2 cos θ1 −

√
n2

1 − n2
2 cos θ1

n2 cos θ1 +
√

n2
1 − n2

2 cos θ1

(3.55)

TM phase is obtained in the same way as for TE polarization. Final result is

tan φT M = n2
1

n2
2

×
√

n2
1 sin2 θ1 − n2

2

n1 cos θ1
(3.56)

Again, for more information consult [4] and [5].

3.7 Polarization by reflection from dielectric surfaces

In interpreting the formulas for rT E and rT M we distinguish between two situations:

(1) for n1 <n2 or n = n2
n1

> 1, one defines so-called external reflection,

(2) for n1 >n2 or n = n2
n1

< 1, one defines so-called internal reflection.

Example of (1) is air-to-glass reflection and example of (2) is the glass-to-air reflection.
A plot of coefficients of reflection for n = 1.50 is shown in Fig. 3.8. MATLAB code is
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shown in Appendix, Listing 3A.1. The so-called Brewster’s angle for which rT M = 0 is
also shown. For more information, see the book by Pedrotti and Pedrotti [4].

One can obtain polarization by reflection at Brewster’s angle, see Fig. 3.9. In the figure
we illustrate properties of the reflected and transmitted light incident at the surface at
Brewster’s angle.

Unpolarized light is incident at the interface at Brewster’s angle θB. Upon reflection one
obtains polarized TM light. At the same time, the refracted light is only partially polarized
since rT E is nonzero.

At Brewster’s angle θB of incidence, coefficient of reflection rT M (also known as r‖ since
E is parallel to the plane of incidence) is zero; i.e. r‖ = 0. The above happens when the
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sum of the angles of incidence and refraction is equal to π/2

θ1 + θ2 = π

2

No such angle exists for the s polarization (TE). Thus if an unpolarized light is incident at
Brewster’s angle, the reflected light will be linearly polarized, in fact s-polarized.

3.7.1 Expression for Brewster’s angle

Expression for rT M is

rT M =
n2 cos θ1 − n1

n2

√
n2

2 − n2
1 sin2 θ1

n2 cos θ1 + n1
n2

√
n2

2 − n2
1 sin2 θ1

Vanishing of rT M corresponds to θ1 = θB. We have

n2 cos θB − n1

n2

√
n2

2 − n2
1 sin2 θB = 0

from which we find an expression for Brewster’s angle

tan θB = n2

n1

3.8 Antireflection coating

In Chapter 9 on semiconductor optical amplifiers (SOA) we will discuss why there is a
need to reduce (or completely eliminate) the effect of reflections. Therefore, the practical
question is how to eliminate reflections at the interface between two dielectrics.

As seen before, light passing through a boundary between two dielectrics is lost due to
reflection, see Eq. (3.51). The effect depends on the difference of the values of refractive
indices between neighbouring layers. One can observe that for equal refractive indices there
will be no reflection but also no refraction, which is not a very interesting possibility.

A practical method of reducing reflections is to use several layers with properly selected
values of refractive indices. For a single layer, interference of two reflected waves can lead
to elimination of reflection, but only at a particular wavelength.

Let us analyse this situation in more detail. Consider reflections of two waves R1 and R2,
see Fig. 3.10. One of the conditions for destructive interference is that the amplitudes of
both reflected waves should be equal. From Eq. (3.51), reflection of ray R1 at interface ‘a’
is described by reflection coefficient

R =
(

n0 − n f

n0 + n f

)2
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Fig. 3.10 Illustration of reflection from single dielectric film layer. Case of destructive interference is shown.

whereas reflection of ray R2 at interface ‘b’ is described by coefficient

R =
(

ns − n f

ns + n f

)2

Both coefficients should be equal which gives(
n0 − n f

n0 + n f

)2

=
(

ns − n f

ns + n f

)2

Assuming that the upper medium is air, i.e. n0 = 1, from the above one finds expression
for the value of refractive index for a layer as

n f =
√

ns (3.57)

Therefore, at a particular wavelength there will be no reflection once the refractive index
of coating layer is given by (3.57). If there is a need to design structures producing no
reflection over some frequency band, one must design multilayer structure consisting of
layers with different refractive indices. In order to design such structures a more realistic
description is necessary. Typical calculations are based on transfer matrix approach.

3.8.1 Transfer matrix approach

We now describe the transfer matrix approach, also known as the characteristic matrix
approach [6].

Consider a single dielectric layer with refractive index n deposited on a substrate with
refractive index ns. Above it is a medium with refractive index n0, see Fig. 3.11.

We consider an s-polarized wave where electric field vector E is perpendicular to the
plane of incidence. Boundary conditions dictate that tangential components of E and H
fields are continuous across the interfaces, i.e. at positions z = z1 and z = z2.

We introduce the convention that E+(z) denotes light propagating in the positive z
direction whereas E−(z) denotes light propagating in the negative z direction. Close to
interface described by z = z1, due to continuity of tangential component one writes

E(z1) = E+(z+
1 ) + E−(z+

1 ) = E+(z−
1 ) + E−(z−

1 ) (3.58)
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Fig. 3.11 Illustration of electromagnetic fields at the boundaries used in the derivation of transfer matrix.

where z+
1 signifies value of coordinate z slightly larger than z1, etc. Similarly, close to z = z2

E(z2) = E+(z+
2 ) + E−(z+

2 ) = E+(z−
2 ) + E−(z−

2 ) (3.59)

For future use we introduce d = z2 − z1. When field E(z) propagates in the film over
distance d, it acquires phase δ derived previously (see Eq. 2.31)

δ = 2π

λ0
nd cos α (3.60)

Electric fields that are close to interfaces are therefore related as

E+(z−
2 ) = E+(z+

1 )e−iδ (3.61)

and

E−(z−
2 ) = E−(z+

1 )eiδ (3.62)

To determine the behaviour of a magnetic field, we use the fact that fields E and H are
related as

H = n

Z0
k̂ × E

where k̂ is the unit vector along the wave vector k and Z0 =
√

μ0

ε0
is the impedance of the

free space. The condition of continuity of tangential component of H vector gives:
at z = z1

Z0H(z1) = [
E+(z−

1 ) − E−(z−
1 )
]

n0 cos α0 = [
E+(z+

1 ) − E−(z+
1 )
]

n cos α (3.63)

at z = z2

Z0H(z2) = [
E+(z−

2 ) − E−(z−
2 )
]

n cos α = E+(z+
2 )ns cos α (3.64)

Substitute Eqs. (3.61) and (3.62) involving phase δ into (3.59) and (3.64) to obtain

E(z2) = E+(z+
1 )e−iδ + E−(z+

1 )eiδ

H(z2) = n cos α

Z0

[
E+(z+

1 )e−iδ − E−(z+
1 )eiδ

]
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Solutions of the above equations are

2E−(z+
1 )eiδ = E(z2) − Z0

n cos α
H(z2)

2E+(z+
1 )e−iδ = E(z2) + Z0

n cos α
H(z2)

With the help of the above solutions and using Eqs. (3.58) and (3.63) we can evaluate fields
at z1 and z2

E(z1) = E(z2) cos δ + Z0

n cos α
H(z2)i sin δ

and

Z0H(z1) = E(z2)i sin δn cos α + Z0H(z2) cos δ

The above equations can be written in matrix form[
E(z1)

Z0H(z1)

]
=
[

cos δ i sin δ
n cos α

in sin δ cos α cos δ

] [
E(z2)

Z0H(z2)

]
= ←→

M

[
E(z2)

Z0H(z2)

]
(3.65)

For normal incidence, i.e. α = 0, the transfer matrix is

←→
M =

[
cos δ i sin δ

n
in sin δ cos δ

]
(3.66)

Special cases of importance are:
1. The quarter-wave layer when nd = λ0/4; δ = π/2 and matrix

←→
M is

←→
M λ/4 =

[
0 i

n
in 0

]
(3.67)

2. The half-wave layer when nd = λ0/2; δ = π and matrix
←→
M is

←→
M λ/2 =

[−1 0
0 −1

]
(3.68)

3.9 Braggmirrors

The Bragg mirror, also known as the Bragg reflector, consists of identical layers of dielectrics
with high and low values of refractive indices as shown in Fig. 3.12. The main interest in
fabricating such structures is that they have extremely high reflectivities at optical and
infrared frequencies. They are important elements of VCSELs where high reflectivity and
bandwidth are required. A typical structure forming Bragg mirror consists of N layers of
dielectrics with refractive indices nL (low refractive index) and nH (high refractive index).
The ratio of those values, the so-called contrast ratio, plays an important role.

The structure is known as a quarter-wave dielectric stack, which means that the optical
thicknesses are quarter-wavelength long; that is nH ·aH = nL ·aL = λ0/4 at some wavelength
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Fig. 3.12 Schematic of a seven-layer dielectric (Bragg) mirror; shown areN = 3 periods.
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Fig. 3.13 Notation used in the analysis of Bragg mirrors.

λ0. The structure consists of an odd number of layers with the high index layer being the
first and the last layers [7].

Here, we outline a formalism which is used in the design of Bragg mirrors. We also
illustrate its applications with an example. We restrict our discussion to s-polarization (TE
modes). Electric field vector is directed along y-axis E = E(x) · ây, see Fig. 3.12 where we
showed the orientation of electric fields and analysed structure.

We develop transfer matrix notation which is based on the transfer of fields from cell n
to cell n − 1. The cell is formed by two neighbouring layers which create a basic periodic
structure which is then repeated some number of times. The electric field will now be
expressed in the three layers of interest, see Fig. 3.13 for notation.

In cell n one expresses the electric field as

Ey(x) =
{

An e− jkH (x−xn ) + Bn e jkH (x−xn ), xp < x < xn

Cn e− jkL(x−xp) + Dn e jkL(x−xp), xn < x < xp

(3.69)

where k2
H = (

nH ω
c

)2
and k2

L = (
nLω

c

)2
. One has also the following relations for coordinates

of layers: xn = n · �, xn−1 = (n − 1) · �, xp = n · � − aH . Here � = aH + aL is the period
of the structure.
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The magnetic field vector is determined from the Maxwell equation, Eq. (3.1). For our
geometry, one has the relation between electric and magnetic fields

∂Ey(x)

∂x
= − jωμ0Hz (3.70)

From continuity of electric field at xp and xn−1 one obtains

x = xp Cn + Dn = An e jkH ·aH + Bn e− jkH ·aH

x = xn−1 An−1 + Bn−1 = Cn e jkL·aL + Dn e− jkL·aL
(3.71)

Similarly, continuity of magnetic field produces equations

x = xp −kLCn + kLDn = −kH An e jkH ·aH + kH Bn e− jkH ·aH

x = xn−1 −kH An−1 + kH Bn−1 = −kLCn e jkL·aL + kLDn e− jkL·aL
(3.72)

The previous four equations can be written in matrix forms as follows:[
1 1
kL −kL

] [
Cn

Dn

]
=
[

e− jkH aH e jkH aH

kH e− jkH aH −kH e jkH aH

] [
An

Bn

]
and [

1 1
kH −kH

] [
An−1

Bn−1

]
=
[

e jkLaL e− jkLaL

kLe jkLaL −kLe− jkLaL

] [
An

Bn

]
The above equations transfer fields from cell n to cell n − 1. In the next step amplitudes[

Cn

Dn

]
will be eliminated and the transfer process will be described in terms of amplitudes[

An

Bn

]
. By doing so, one obtains the practical equation

[
An−1

Bn−1

]
= ←→

T

[
An

Bn

]
(3.73)

Matrix
←→
T can be expressed as

←→
T = ←→

X H · ←→
T L · ←→

X L · ←→
T H (3.74)

Matrix
←→
T L describes propagation in a uniform medium having refractive index nL and

thickness aL and has the form

←→
T L =

[
e jkLaL 0

0 e− jkLaL

]
(3.75)

Similarly, matrix
←→
T H describes propagation in a uniform medium having refractive index

nH and thickness aH . Matrices
←→
X H and

←→
X L describe behaviour at interfaces and are

←→
X H =

⎡⎢⎢⎣
kH + kL

2kH

kH − kL

2kH

kH − kL

2kH

kH + kL

2kH

⎤⎥⎥⎦ (3.76)
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Fig. 3.14 Notation used in the definition of reflection from Bragg mirror.

and

←→
X L =

⎡⎢⎣
kL + kH

2kL

kL − kH

2kL
kL − kH

2kL

kL + kH

2kL

⎤⎥⎦ (3.77)

By referring to the Fig. 3.13 propagation (to the left) from an arbitrary point in the struc-
ture, say point xn involves matrix

←→
T H (propagation over a uniform region with nH , then

propagation over an interface from region having nH to nL (described by matrix
←→
X L), prop-

agation over uniform region with nL (described by matrix
←→
T L) and finally, propagation

over an interface from nL to nH (described by matrix
←→
X H ).

Matrix
←→
T can be expressed as

←→
T =

[
a b
c d

]
(3.78)

where the elements are

a = eiaH kH

[
cos aLkL + i

2

(
kH

kL
+ kL

kH

)
sin aLkL

]
(3.79)

b = i

2
e−iaH kH

(
kL

kH
− kH

kL

)
sin aLkL (3.80)

c = i

2
eiaH kH

(
kH

kL
− kL

kH

)
sin aLkL (3.81)

d = e−iaH kH

[
cos aLkL − i

2

(
kH

kL
+ kL

kH

)
sin aLkL

]
(3.82)

Matrix
←→
T is unimodular matrix, i.e. real square matrix with determinant ad − bc = ±1

[8].
Referring to Fig. 3.14, the amplitude reflection coefficient is defined as

r = B0

A0
(3.83)

Choosing a column vector of layer one as the zeroth unit cell and remembering that all cells
are identical, one obtains for N cells[

A0

B0

]
=
[

a b
c d

]N [
An

Bn

]
= ←→

T N

[
An

Bn

]
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Fig. 3.15 Spectrum of reflectivity of a Bragg mirror.

Since matrix
←→
T is a unimodular matrix, one has the following relation [8][
a b
c d

]N

=
[

a · UN−1(x) − UN−2(x) b · UN−1(x)

c · UN−1(x) d · UN−1(x) − UN−2(x)

]

where x = 1
2 (a + d) and UN (x) are Chebyshev polynomials of the second kind

Um(x) = sin
[
(m + 1) cos−1 x

]
√

1 − x2
= sin [(m + 1) θ ]

sin θ

where x = cos θ . Using the above relations, the amplitude reflection coefficient is evaluated
as [

A0

B0

]
=
[

a · UN−1(x) − UN−2(x) b · UN−1(x)

c · UN−1(x) d · UN−1(x) − UN−2(x)

][
AN

0

]
for cell N . From above relation, one finds

r = B0

A0
= c · UN−1(x)

a · UN−1(x) − UN−2(x)

The definition of reflectance is [9] R = |r|2. After a little algebra one finds

R = |c|2
|c|2 + (

sin K�
sin NK�

)2
(3.84)

Spectrum of reflectivity as given by Eq. (3.84) for N = 10 periods of Bragg reflector is
shown in Fig. 3.15. The MATLAB code is shown in Appendix, Listing 3A.2. The following
parameters were adopted: nH = 2.25, nL = 1.45, aH = 167 nm and aL = 259 nm.
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Fig. 3.16 The lateral displacement of a light beam on total reflection at the interface between two dielectric media
(Goos-Hänchen shift).

3.10 Goos-Hänchen shift

Detailed examination of the internal reflection of a light beam on a planar dielectric interface
shows that the reflected beam is shifted laterally from the trajectory predicted by the simple
ray analysis, as shown in Fig. 3.16. The lateral displacement arises because wave energy
actually penetrates beyond the interface into the lower index media before turning around.
Total lateral shift is d = 2zs whereas xs is penetration depth.

To determine lateral shift d, we follow Kogelnik [10]. Consider incident beam A as
consisting of two plane waves incident at two slightly different angles with wave vec-
tors β ± �β. The complex amplitude A(z) of the incident wave packet at the interface
x = 0 is

A(z) = e− j(β+�β)z + e− j(β−�β)z

= e− jβz
(
e− j�βz + e j�βz

)
= 2 cos (�βz) e− jβz (3.85)

Reflected beam B is

B = R · A (3.86)

where R = exp (2 jφ). Phase shift φ that occurs upon reflection is different for both types
of polarization and has been determined before, see Eqs. (3.50) and (3.56). Phase shift φ is
a function of angle θ and propagation constant β. Assume a small value of �β and expand

φ (β + �β) = φ (β) + dφ

dβ
�β ≡ φ (β) + �φ

Using the above expansion and (3.85) allows us to write reflected beam B as

B = R · A = e2 jφ(β±�β)
{
e− j(β+�β)z + e− j(β−�β)z

}
= e− j(βz−2φ)

{
e j(�βz−2�φ) + e− j(�βz−2�φ)

}
= 2e− j(βz−2φ) cos (�β − 2zs) (3.87)
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where zs = dφ

dz . The net effect of the phase shift is to displace the beam along the z axis by
a distance 2zs. Distance zs is different for both types of modes. For TE modes [11]

k0zs = tan θ(
β2 − n2

c

)1/2

whereas for TM modes

k0zs = tan θ(
β2 − n2

c

)1/2

1

β2/n2
f + β2/n2

c − 1

3.11 Poynting theorem

Electromagnetic waves carry with them electromagnetic power. We will now deliver a rela-
tion between the rate of such energy transfer and the electric and magnetic field intensities.
We start with Maxwell’s equations (3.1) and (3.2)

∇ × E = −∂B

∂t
(3.88)

∇ × H = ∂D

∂t
+ J (3.89)

Use the following mathematical identity:

∇ · (E × H) = H · (∇ × E) − E(∇ × H) (3.90)

Substituting Maxwell’s equations into (3.90) and using constitutive relations, one obtains

∇ · (E × H) = −H · μ
∂H

∂t
− E · J − E · μ

∂E

∂t

= −μ
1

2

∂H · H

∂t
− σE2 − ε

1

2

∂E · E

∂t

= − ∂

∂t

(
1

2
εE2 + 1

2
μH 2

)
− σE2 (3.91)

Integrate (3.91) over volume V and apply Gauss’s theorem, and then one finds∫
V

∇ · (E × H)dv = − ∂

∂t

∫
V

(
1

2
εE2 + 1

2
μH 2

)
dv −

∫
V

σE2dv (3.92)

The Poynting vector P is defined as

P = E × H (3.93)

Eq. (3.92) can be written as

−
∮

S
P · ds = ∂

∂t

∫
V

(we + wm) dv +
∫

V
pσ dv (3.94)
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where

we = 1
2εE2 is electric energy density

wm = 1
2μH 2 is magnetic energy density

pσ = σE2 is Ohmic power density

From the above equation, one can interpret vector P as representing the power flow per
unit area.

3.12 Problems

1. Using the expression derived for a transfer matrix, consider an antireflection structure
consisting of two-layer quarter-wave-thickness films made of CeF3 (low index layer
with refractive index n1 = 1.65) and high-index layer of ZrO2 (refractive index
n = 2.1) deposited on glass substrate with refractive index ns = 1.52. Assume that
on top there is air with n0 = 1. Plot the spectral reflectance of such structure.

2. Show that a linearly polarized plane wave can be decomposed into a right-hand and
a left-hand circularly polarized waves of equal amplitudes.

3. Derive an expression for a transfer matrix assuming p-polarization. In this case the
vector of electric field E is parallel to the plane of incidence.

4. Determine the reflectance for normal incidence and plot it versus path differ-
ence/wavelength for various values of refractive index.

5. Write a MATLAB program to illustrate propagation of EM wave elliptically po-
larized. The wave will consist of two perpendicular waves of unequal amplitudes.
Visualize propagation in 3D. Analyse the state of polarization (SOP) by changing
phase difference φ between individual waves.

6. Analyse a Bragg mirror for TM polarization. Derive matrix elements of matrix
←→
T

for this polarization [9].
7. Assume that for some materials refractive index at a particular wavelength is negative.

Discuss the consequences of such an assumption. Consider modification of Snell’s
law.

8. What percentage of the incoming irradiance is reflected at an air-glass (nglass = 1.5)
interface for a beam of natural light incident at 70◦?

9. Write an expression for a right circularly polarized wave propagation in the positive
z-direction such that its E-field points in the negative x-direction at z = 0 and t = 0.

10. Verify that linear light is a special case of elliptical light.

3.13 Project

1. Write a MATLAB program to determine reflectance for a multilayered structure con-
sisting of different dielectric materials of various thicknesses. Analyse the special case
of d = λ/2.
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Table 3.2 List of MATLAB functions for Chapter 3.

Listing Function name Description

3A.1 reflections TE TM .m Plots reflections based on Fresnel equations for TE and
TM modes

3A.2 Bragg an.m Plots reflectivity spectrum of Bragg mirror for TE mode
using an analytical method

2. Develop MATLAB functions to analyse propagation of TM modes for arbitrary mul-
tilayered waveguiding structure. Use a similar approach as described above for TE
modes.

Appendix 3A: MATLAB listings

In Table 3.2 we provide a list of MATLAB files created for Chapter 3 and a short description
of each function.

Listing 3A.1 Program reflections TE TM.m. Program plots reflection coefficients for TE
and TM modes.

% reflections_TE_TM.m

% Plot of reflections based on Fresnel equations

% TE and TM reflections

% cases of external reflection

clear all

n = 1.50; % relative refractive index

N_max = 11; % number of points for plot

t = linspace(0,1,N_max); % creation of theta arguments

theta = (pi/2)*t; % angles in radians

% Plot reflection coefficients

num_TE = cos(theta) - sqrt(n^2-(sin(theta)).^2 );

den_TE = cos(theta) + sqrt(n^2-(sin(theta)).^2 );

r_TE = num_TE./den_TE; % Plot for TE mode

num_TM = n^2*cos(theta) - sqrt(n^2-(sin(theta)).^2 );

den_TM = n^2*cos(theta) + sqrt(n^2-(sin(theta)).^2 );

r_TM = num_TM./den_TM; % Plot for TM mode

%

angle_degrees = (theta./pi)*180;

x_line = [0 max(angle_degrees)]; % needed to draw horizontal line

y_line = [0 0]; % passing through zero

plot(angle_degrees,r_TE,angle_degrees,r_TM, x_line, y_line, ’-’,...

’LineWidth’,1.5)
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xlabel(’Angle of incidence’,’FontSize’,14)

set(gca,’FontSize’,14); % size of tick marks on both axes

text(60, -0.6, ’r_{TE}’,’Fontsize’,14)

text(60, -0.2, ’r_{TM}’,’Fontsize’,14)

text(55, 0.1, ’\theta_{Brewster}’,’Fontsize’,14)

pause

close all

Listing 3A.2 Program Bragg an.m. Determines spectrum of reflectivity of a Bragg mirror
for TE mode using an analytical method.

% File name: bragg_an.m

% Determines reflectivity spectrum of Bragg mirror for TE mode

% using analytical method

clear all

N = 10; % number of periods

n_L = 1.45; % refractive index

n_H = 2.25; % refractive index

a_L = 259; % thickness (nm)

a_H = 167; % thickness (nm)

Lambda = a_L + a_H; % period of the structure

lambda = 1000:10:2200;

k_L = 2*pi*n_L./lambda;

k_H = 2*pi*n_H./lambda;

%

a=exp(1i*a_H*k_H).*(cos(k_L*a_L)+(1i/2)*(k_H./k_L+k_L./k_H).*sin(k_L*a_L));

d=exp(-1i*a_H*k_H).*(cos(k_L*a_L)-(1i/2)*(k_H./k_L+k_L./k_H).*sin(k_L*a_L));

b = exp(-1i*a_H*k_H).*((1i/2)*(k_L./k_H - k_H./k_L).*sin(k_L*a_L));

c = exp(1i*a_H*k_H).*((1i/2)*(k_H./k_L - k_L./k_H).*sin(k_L*a_L));

%

K = (1/Lambda)*acos((a+d)/2);

tt = (sin(K*Lambda)./sin(N*K*Lambda)).^2;

denom = abs(c).^2 + tt;

R = abs(c).^2./denom;

plot(lambda,R,’LineWidth’,1.5)

axis([1000 2200 0 1.2])

xlabel(’Wavelenght (nm)’,’FontSize’,14)

ylabel(’Reflectivity’,’FontSize’,14)

set(gca,’FontSize’,14); % size of tick marks on both axes

pause

close all
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4 Slab waveguides

Slab waveguides are important ingredients of both passive and active devices. Therefore,
discussion and understanding of their properties are critical. The following topics will be
discussed in this chapter:

• ray optics of the slab waveguide
• electromagnetic description
• three-layer problem for symmetric guiding structure
• TE modes in multilayer waveguide.

4.1 Ray optics of the slab waveguide

In this section we discuss applications of ray optics concepts to analyse the propagation
of light in slab waveguides. We start with summarizing the concept of numerical aperture
(NA).

4.1.1 Numerical aperture

Consider light entering a waveguide from air, having the refractive index n0 to waveguiding
structure with refractive indices n1 and n2 (see Fig. 4.1). We represent light within ray optics.
We want to understand the conditions under which light will propagate in the middle layer
with the value of refractive index n1.

Ray 1 (dashed line) which enters waveguide at large incident angle θ1 propagates through
the middle layer and penetrates the upper layer with refractive index n2. Since this ray does
not propagate in the middle layer, it is effectively lost.

As we gradually decrease incident angle θ , we reach the situation where a ray slides across
the interface (case for ray 3). In such a case incident angle θ is known as the acceptance
angle θa. The internal angle of incidence at point D is then φc and it is determined from the
relation

sin φc = n2

n1
(4.1)

For the incident ray (like ray 2) which enters the interface at an angle smaller than the
acceptance angle θ < θa, it will propagate in the middle layer. Let us analyse the existing
situation in more detail.

64
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Fig. 4.1 Light entering slab waveguide.

From triangle ABC, one finds θ2 = π/2 − φ (angle θ2 not shown in Fig. 4.1). From
Snell’s law for ray 3, we obtain

n0 sin θ1 = n1 sin θ2 = n1 sin (π/2 − φ) = n1 cos φ = n1
(
1 − sin2 φ

)1/2

From the above, we have (using Eq. 4.1) for ray 2 (propagating at the acceptance angle, i.e.
for θ1 = θa)

n0 sin θa = n1
(
1 − sin2 φc

)1/2 = (
n2

1 − n2
2

)1/2

Numerical aperture (NA) is defined as

NA ≡ n0 sin θa = (
n2

1 − n2
2

)1/2
(4.2)

We introduce relative refractive index difference � as

� ≡ n2
1 − n2

2

2n2
1

The approximate expression for � is obtained by observing that n1 ≈ n2, which allows us
to write n1 + n2 ≈ 2n1. The approximate formula for � is therefore

� = (n1 + n2) (n1 − n2)

2n2
1

≈ 2n1 (n1 − n2)

2n2
1

= n1 − n2

n1

In terms of �, NA can be approximately expressed as

NA = n1 (2�)1/2

4.1.2 Guidedmodes

We will first discuss the propagation of a light ray in a waveguide formed by the film of
dielectric surrounded from below by substrate and by cover layer from above, see Fig. 4.2. In
such a structure light travels in a zig-zag fashion through the film. Light is monochromatic
and coherent and is characterized by ω angular frequency and λ free-space wavelength.
The following relation holds k = 2π

λ
, where k is known as the wavenumber. Electric field

of the propagating wave is

E ∼ e− jkn f (±x cos φ+z sin φ)
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Fig. 4.2 Light propagation in a slab waveguide in a ray approximation.

Let β be a propagation constant of the guided mode of the slab. One has

β = ω

vp
= kn f sin φ (4.3)

where vp is the phase velocity. Please note that not all angles are allowed (sometimes none).
Referring to Fig. 4.2, rays at φ = 90◦ travel horizontally along the waveguide. Generally,
rays which undergo total internal reflection can travel within the waveguide. That condition
can be fulfilled for rays travelling at angles fulfilling the condition (all angles are determined
with respect to normal)

φc ≤ φ ≤ 90◦

or

n f sinφc ≤ n f sinφ ≤ n f sin90◦ = n f

where we have also multiplied the inequality by n f . Using Eqs. (4.1) and (4.3), one obtains

ns ≤ N ≤ n f (4.4)

Here we introduced ‘effective guide index’ N defined as

N = β

k
= n f sinφ (4.5)

4.1.3 Transverse resonance condition

The condition is expressed as ‘the sum of all phase shifts during propagation must be a
multiple of 2π ’. The following are the contributions to the phase change:

kn f h cos φ phase change during first transverse passage through the film
−2φc phase shift on total reflection from cover
−2φs phase shift on total reflection from substrate

Combining the above contributions, one obtains transverse resonance condition as

2kn f h cos φ − 2φs − 2φc = 2πν, ν= 0, ± 1, ± 2, . . . (4.6)

which is the dispersion equation of the guide. Variable ν identifies mode number.
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Expression for the Fresnel phase for TE polarization was derived in Chapter 3, Eq. (3.50).
Modifying notation slightly (angle θ1 is replaced by φ), the relation reads

tan φ =
√

n2
1 sin2 φ − n2

2

n1 cos φ

Adopting the above expression for our present geometry, one writes for phases on reflec-
tions:

1. for reflection on the film-cover interface

tan φc =
√

n2
f sin2 φ − n2

c

n f cos φ
=
√

n2
f sin2 φ − n2

c√
n2

f − n2
f sin2 φ

(4.7)

2. for reflection on the film-substrate interface

tan φs =
√

n2
f sin2 φ − n2

s

n f cos φ
=
√

n2
f sin2 φ − n2

s√
n2

f − n2
f sin2 φ

(4.8)

4.1.4 Transverse condition: normalized form

The above transverse condition will now be cast in a normalized form which is more suitable
for numerical work. For that, let us introduce the following variables: variable V

V ≡ k · h
√

n2
f − n2

s (4.9)

normalized guide index, b

b ≡ N2 − n2
s

n2
f − n2

s

(4.10)

and asymmetry parameter for TE modes, a

a ≡ n2
s − n2

c

n2
f − n2

s

(4.11)

For TE modes, use transverse resonance condition and Fresnel phases, and obtain

V
√

1 − b = ν · π + tan−1

√
b

1 − b
+ tan−1

√
b + a

1 − b
(4.12)

Example Derive transverse resonance condition in a normalized form, Eq. (4.12).

Solution
Using definitions (4.10) and (4.11), one can prove the following relations:

b

1 − b
= N2 − n2

s

n2
f − N2
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and

b + a

1 − b
= N2 − n2

c

n2
f − N2

and also

1 − b = n2
f − N2

n2
f − n2

s

Using the above relations, the expressions for phases, Eqs. (4.7) and (4.8) can be written as

φc = tan−1

√√√√N2 − n2
c

n2
f − N2

= tan−1

√
b + a

1 − b

and

φs = tan−1

√√√√N2 − n2
s

n2
f − N2

= tan−1

√
b

1 − b

One also has

n f cos φ =
√

n2
f − n2

f sin
2
φ =

√
n2

f − N2

Substituting the above formulas into (4.6), we obtain

V
√

1 − b = ν · π + tan−1

√
b

1 − b
+ tan−1

√
b + a

1 − b

A MATLAB program to analyse the transverse resonance condition (4.12) which plots
normalized guide index b versus variable V , is provided in the Appendix, Listing 4A.1. It
allows us to input different values of the asymmetry parameter a.

A plot of normalized guide index b versus variable V for three values of parameter a
(a = 0, 8, 50) is shown in Fig. 4.3.

We finish this section with a typical simplified expression for effective index N . From a
definition of b one obtains

b(n2
f − n2

s ) + n2
s ≡ N2

Perform the algebraic steps

N2 =
(

1 + b
n2

f − n2
s

n2
s

)
n2

s

N =
√√√√1 + b

n2
f − n2

s

n2
s

ns

N �
(

1 + b
1

2

n2
f − n2

s

n2
s

)
ns

N =
(

1 + b
1

2

(n f − ns)(n f + ns)

n2
s

)
ns
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Fig. 4.3 Normalized b − V diagram of a planar waveguide for various degrees of asymmetry.

Finally, one finds

N ≈ ns + 1

2
b
(
n f − ns

)
(4.13)

4.2 Fundamentals of EM theory of dielectric waveguides

4.2.1 General discussion

Assuming time-harmonic fields and using constitutive relations, the source-free Maxwell
equations are

∇ × E = − jωμH (4.14)

∇ × H = jωεE (4.15)

Boundary conditions were derived in Chapter 3. Separate fields into transversal and longi-
tudinal components as

E = Et + Ez, H = Ht + Hz (4.16)

where

Et = [
Ex, Ey, 0

]
is the transverse part and

Ez = [0, 0, Ez]
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is the longitudinal part. Also

∇ = ∇t + az
∂

∂z
, az = [0, 0, 1] (4.17)

where az is a unit vector along z-direction. Substituting (4.16) and (4.17) into Eqs. (4.14)
and (4.15), one obtains

∇t × Et = − jωμHz (4.18)

∇t × Ht = jωεEz (4.19)

∇t × Ez + az × ∂Et

∂z
= − jωμHt (4.20)

∇t × Hz + az × ∂Ht

∂z
= jωεEt (4.21)

Modes in a waveguide are characterized by a dielectric constant

ε(x, y) = ε0n2 (x, y) (4.22)

where n (x, y) is the refractive index profile in the transversal plane. Write the fields as

E (x, y, z) = Eν (x, y) e− jβνz (4.23)

H (x, y, z) = Hν (x, y) e− jβνz

where we have introduced index ν which label modes and βν is the propagation constant
of the mode ν. After substitution of Eqs. (4.23) into (4.18)–(4.21) one obtains

∇t × Etν (x, y) = − jωμHzν (x, y) (4.24)

∇t × Htν (x, y) = jωεEzν (x, y) (4.25)

∇t × Ezν (x, y) − jβνaz × Etν (x, y) = − jωμHtν (x, y) (4.26)

∇t × Hzν (x, y) − jβνaz × Htν (x, y) = jωεEtν (x, y) (4.27)

From the analysis of the above equations, the existence of several types of modes can be
recognized. Those will be described in more details later on. Generally, the main modes are:

• guided modes (bound states) – discrete spectrum of βν

• radiation modes – belong to continuum
• evanescent modes-βν = − jαν ; they decay as exp (−ανz).

4.2.2 Explicit form of general equations

Using the following general formulas

∇t × Et =

∣∣∣∣∣∣∣
ax ay az
∂
∂x

∂
∂y 0

Ex Ey 0

∣∣∣∣∣∣∣
∇t × Ez =

∣∣∣∣∣∣∣
ax ay az
∂
∂x

∂
∂y 0

0 0 Ez

∣∣∣∣∣∣∣
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Fig. 4.4 Planar wide waveguide.

az × Et =

∣∣∣∣∣∣∣
ax ay az

0 0 1
Ex Ey 0

∣∣∣∣∣∣∣
where ax, ay, az are unit vectors along the corresponding directions, we write general
Eqs. (4.24)–(4.27) in expanded form (dropping mode index)[

0, 0,
∂Ey

∂x
− ∂Ex

∂y

]
= − jωμ [0, 0, Hz] (4.28)[

0, 0,
∂Hy

∂x
− ∂Hx

∂y

]
= jωε [0, 0, Ez] (4.29)[

∂Ez

∂y
,−∂Ez

∂x
, 0

]
− jβ

[−Ey, Ex, 0
] = − jωμ

[
Hx, Hy, 0

]
(4.30)[

∂Hz

∂y
,−∂Hz

∂x
, 0

]
− jβ

[−Hy, Hx, 0
] = jωε

[
Ex, Ey, 0

]
(4.31)

In the following sections the previous general equations will be used to analyse specific
situations.

4.3 Wave equation for a planar wide waveguide

For the wide waveguide where its dimension in the y-direction is much larger than thickness,
the field configuration along that direction remains approximately constant, see Fig. 4.4.
Therefore, we can consider only confinement in the x-direction and set

∂

∂y
= 0

Also, the refractive index assumes only x-dependence

n = n (x)

Such a waveguide supports two modes:

• transverse electric TE, where Ey �= 0 and Ex = Ez = 0
• transverse magnetic TM, where Hy �= 0 and Hx = Hz = 0.
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From general formulas given by Eqs. (4.28)–(4.31), one obtains a set of three equations
describing TE modes and also three equations describing TM modes. Those are written
below for both types of modes separately.

TE modes
To describe TE modes we use only equations which involve Ey and its derivatives. One

observes that when Ex = Ez = 0, from Eq. (4.30) Hy = 0. Equations describing those
modes are

βEy = −ωμHx (4.32)

∂Hz

∂x
+ jβHx = − jωεEy (4.33)

∂Ey

∂x
= − jωμHz (4.34)

The last step will be to eliminate Hx and Hz. We will differentiate the third equation, then
substitute for ∂Hz

∂x using the second equation and finally eliminate Hx using first equation.
We obtain a wave equation for TE modes

∂2Ey

∂x2
= (

β2 − n2k2
)

Ey (4.35)

where k = ω
c = ω

√
ε0μ0.

TM modes
We proceed in a similar way as for the TE modes. From Eq. (4.31) when Hx = Hz = 0,

one obtains that Ey = 0. We keep only equations which involve Hy and its derivatives.
Equations which describe TM modes are

βHy = ωεEx

∂Hy

∂x
= jωεEz

∂Ez

∂x
+ jβEx = jωμHy

We will use the fact that ε = ε0n2 and eliminate Ex and Ez. Here one must be more
careful because n2 can be x dependent. From the first equation we determine Ex and from
the second equation we determine Ez. Substituting the results into the third equation gives
the wave equation for TM mode

n2 ∂

∂x

(
1

n2
∂x

∂Hy

∂x

)
= (

β2 − n2k2
)

Hy (4.36)

4.4 Three-layer symmetrical guiding structure (TE modes)

We will analyse the three-layer symmetrical structure for TE modes. The structure is as
shown in Fig. 4.4. The details are illustrated in Fig. 4.5. A film layer of thickness 2a and
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Fig. 4.5 Planar three-layer symmetric waveguide.

refractive index n f is surrounded by a substrate and cladding layers have refractive indices
equal to n0.

We introduce the following notation:

κ2
f = n2

f k2 − β2 (4.37)

and

γ 2 = β2 − n2
0k2 (4.38)

Here, γ is determined by the value of refractive index around the film. In general, γ assumes
values which are dictated by the values of refractive indices in the cladding and substrate.
Therefore, one deals with more than one value of γ .

The wave equation is

d2Ey(x)

dx2
= (

β2 − n2k2
)

Ey(x)

We discuss two separate solutions: odd and even modes.

Odd modes:
We assume the following guiding solution:

Ey(x) = Ace−γ (x−a), a<x (cladding)

Ey(x) = B sin κ f x, −a < x < a (film)

Ey(x) = Aseγ (x+a), x<-a (substrate)

(4.39)

At the interfaces, i.e. for x = ±a, the field Ey and its derivative dEy

dx must be continuous.
The continuity at x = a gives the following equations:

Ac = B sin κ f a

−γ Ac = κ f B cos κ f a

From above equations, one obtains

−γ = κ f cot κ f a (4.40)

The continuity at x = −a gives an identical equation. By introducing variable

y = κ f a

Eq. (4.40) can be written as

−y cot y = γ a



74 Slab waveguides

y2
3

2
1 Rπ π

g
1 g

2 g
3

h

Fig. 4.6 Graphical solution of the transcendental equation for even modes.

From the definition for γ we obtain

−γ a = a
√

n2k2 − β2 =
√

a2n2k2 − a2β2 (4.41)

Similarly, from the definition for κ f we obtain

a2κ2
f = a2nn2

f k2 − a2β2

Determining a2β2 from the above and substituting into Eq. (4.41), one finds

−y cot y =
√

R2 − y2 (4.42)

where we have defined

R2 = a2k2
(

n2
f − n2

)
(4.43)

Transcendental Eq. (4.42) must be solved numerically.

Even modes:
For even modes we assume the following guiding solution:

Ey(x) = Ace−γ (x−a), a < x (cladding)

Ey(x) = B cos κ f x, −a < x < a (film)

Ey(x) = Aseγ (x+a), x < −a (substrate)

(4.44)

The remaining steps are done in the exactly same way as for odd modes. The resulting
transcendental equation for propagation constant is

y tan y =
√

R2 − y2 (4.45)

The function R is defined by Eq. (4.43). Eq. (4.45) is represented in Fig. 4.6. Intersections
between line h which represents the right hand side of Eq. (4.45) and lines g′s which
represent the left hand side of Eq. (4.45), determine propagation constants. Those must be
found numerically. For numerical searches, the following functions are introduced:

feven(y) = y tan y −
√

R2 − y2 (4.46)

and

fodd(y) = −y cot y −
√

R2 − y2 (4.47)
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The above functions are used in numerical search, since e.g. feven(y1) = 0 corresponds
to the solution y1 from which propagation constant β1 is determined. The algorithm is
described in the next section.

4.4.1 The algorithm

The following main steps constitute the numerical algorithm.
1. Search intervals for even and odd functions are formed as follows:
even functions

yi = nπ, y f = min
(

nπ + π

2
− 10−3, R

)
odd functions

yi = π

2
+ nπ, y f = min

(
(n + 1)π − 10−3, R

)
where yi and y f are initial and final values of the appropriate search interval. The small
constant (10−3) has been introduced to avoid working close to singularity.

2. Search is done for zeros in each interval.
3. Even and odd solutions are obtained independently in separate searches.
4. The solutions are found using MATLAB function fzero() as

ytemp = f zero
(

f unc,
[
yi, y f

])
where the first argument contains search function and the second one contains interval for
search.

4.5 Modes of the arbitrary three-layer asymmetric planar
waveguide in 1D

Consider the modified version of the structure shown in Fig. 4.5. The structure has different
values of refractive indices of substrate and cladding and it is known as asymmetric planar
waveguide. Here, nc signifies refractive index of cladding, n f of film, and ns that of substrate.
For an asymmetric slab, nc �= ns. Define the following quantities:

κ2
c = n2

ck2 − β2 ≡ −γ 2
c

κ2
f = n2

f k2 − β2 (4.48)

κ2
s = n2

s k2 − β2 ≡ −γ 2
s

where γi describes transverse decay and κi contains propagation constants. i takes the
values c, f , s as appropriate. In the next subsection we discuss TE modes for this three-
layer structure.
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4.5.1 TE modes

For guided TE modes the following solutions exist:

Ey(x) = Ace−γc(x−a) a < x (cover)
Ey(x) = A cos κ f x + B sin κ f x −a < x < a (film)
Ey(x) = Aseγs(x+a) x < −a (substrate)

(4.49)

Derivatives are determined as follows:

dEy(x)

dx
= −γcAce−γc(x−a) a < x (cover)

dEy(x)

dx
= −κ f A cos κ f x + κ f B sin κ f x −a < x < a (film)

dEy(x)

dx
= γsAse

γs(x+a) x < −a (substrate)

(4.50)

Boundary conditions dictate that

Ey and
dEy(x)

dx
are continuous for x = a and for x = −a (4.51)

When applying boundary conditions for Ey and dEy(x)

dx , we get the following equations:

for x = −a A cos κ f a − B sin κ f a = As

κ f A sin κ f a + κ f B cos κ f a = γsAs

for x = a Ac = A cos κ f a + B sin κ f a
−γcAc = −κ f A sin κ f a + κ f B cos κ f a

The above equations can be written in a matrix form⎡⎢⎢⎣
cos κ f a −sin κ f a −1 0

κ f sin κ f a κ f cos κ f a −γs 0
cos κ f a sin κ f a 0 −1

−κ f sin κ f a κ f cos κ f a 0 γc

⎤⎥⎥⎦
⎡⎢⎢⎣

A
B
As

Ac

⎤⎥⎥⎦ = 0 (4.52)

For the above homogeneous system to have nontrivial solution, the main determinant should
vanish. ∣∣∣∣∣∣∣∣

cos κ f a −sin κ f a −1 0
κ f sin κ f a κ f cos κ f a −γs 0
cos κ f a sin κ f a 0 −1

−κ f sin κ f a κ f cos κ f a 0 γc

∣∣∣∣∣∣∣∣ = 0 (4.53)

The above determinant is evaluated as follows. Let us expand it over last column and we
get

γc

∣∣∣∣∣∣
cos κ f a −sin κ f a −1

κ f sin κ f a κ f cos κ f a −γs

cos κ f a sin κ f a 0

∣∣∣∣∣∣+
∣∣∣∣∣∣

cos κ f a −sin κ f a −1
κ f sin κ f a κ f cos κ f a −γc

−κ f sin κ f a κ f cos κ f a 0

∣∣∣∣∣∣ = 0

Evaluating both determinants, we obtain

sin2 κ f a − cos2 κ f a + κ f

γc
sin κ f a cos κ f a − γs

κ f
sin κ f a cos κ f a = 0
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which can be expressed as

tan2 κ f a − 1 + κ f

γc
tan κ f a − γs

κ f
tan κ f a = 0 (4.54)

It is the general equation for a three-layer asymmetric waveguide. For a symmetric
waveguide

γs = γc = γ

and one can write Eq. (4.54) as(
tan κ f a − γ

κ f

)(
tan κ f a + κ f

γ

)
= 0 (4.55)

which describes even and odd modes discussed in the previous section (symmetric modes).
Note: The above modes are not normalized for power. Power P carried by a mode per

unit guide width is determined as follows:

P = −2

+∞∫
−∞

dxEyHx

= 2β

ωμ

+∞∫
−∞

dxE2
y

= N

√
ε0

μ0
E2

f · he f f

= E f · Hf · he f f (4.56)

where he f f ≡ 2a + 1
γs

+ 1
γc

is the effective thickness of the waveguide.

4.5.2 Field profiles for TE modes

Analysis of the general determinant given by Eq. (4.54) for the asymmetric waveguide
is complicated. If one wants to obtain formulas suitable for numerical evaluations and
also suitable for obtaining field profiles, a better approach is to eliminate all constants
appearing in Eq. (4.49). Thus, one will have a field profile expressed in terms of one
constant only, say As. One then needs to determine derivatives which should be continuous
across interfaces. From continuity of derivatives, the relevant transcendental equation used
to obtain propagation constants is obtained.

We consider asymmetric structure where the substrate-film discontinuity is at x = 0 and
film-cover interface is located at x = h. From continuity of the T E field at x = 0 and x = h
one finds

Ac = A cos κ f h + B sin κ f h (4.57)

and

As = A (4.58)
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Table 4.1 Asymmetric three-layer waveguide.

Refractive index Thickness

nc = 1.40 —
n f = 1.50 5 µm
ns = 1.45 —

From continuity of derivatives at the above points

−γcAc = −κ f A sin κ f h + κ f B cos κ f h (4.59)

and

γsAs = κ f B (4.60)

From Eqs. (4.58) and (4.60) the constants A and B can be expressed in terms of As.
Substitution of those expressions into Eq. (4.57) gives constant Ac in terms of As. Using
those results, we can replace constants A, B and Ac in Eq. (4.49). The resulting equations
are

Ey(x) = As

(
cos κ f h + γs

κ f
sin κ f h

)
exp [−γc (x − h)] h < x

Ey(x) = As

(
cos κ f x + γs

κ f
sin κ f x

)
0 < x < h

Ey(x) = As exp (γsx) x < 0

(4.61)

From the above, the derivatives with respect to x are

E ′
y(x) = −Asγc

(
cos κ f h + γs

κ f
sin κ f h

)
exp [−γc (x − h)] h < x

E ′
y(x) = As

(−κ f sin κ f x + γs cos κ f x
)

0 < x < h

E ′
y(x) = Asγs exp (γsx) x < 0

(4.62)

Applying continuity of derivatives at x = h, one finds

−γc

(
cos κ f h + γs

κ f
sin κ f h

)
= −κ f sin κ f h + γs cos κ f h

From the above, it follows the following transcendental equation:

tan κ f h = γs + γc

κ f − γcγs/κ f
(4.63)

The above equation is used in numerical search for propagation constants. A typical plot
of Eq. (4.63) is shown in Fig. 4.7. Using those propagation constants, from Eq. (4.61) one
finds field profiles.

Example We consider the three-layer asymmetric planar structure described in Table 4.1
(from [1]) operating with light of wavelength λ = 1 µm.
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Table 4.2 Propagation constants for a three-layer asymmetric structure defined in Table 4.1.

Mode Propagation constant β(µm−1)

TE0 9.40873
TE1 9.36079
TE2 9.28184
TE3 9.17521
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Fig. 4.7 Graphical plot of Eq. (4.63) for the three-layer asymmetric waveguide defined in Table 4.1.

The structure is analysed with MATLAB code from Appendix 4A.2.1. The resulting
propagation constants are summarized in Table 4.2. There is a good agreement with pub-
lished results [1]. Field profiles for two modes are plotted in Fig. 4.8.

4.6 Multilayer slab waveguides: 1D approach

In this section we discuss slab waveguides consisting of more than three layers.
Multilayers require the repeated applications of boundary conditions at the layer
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Fig. 4.8 Field profiles for an asymmetric three-layer structure. Fundamental modeTE0 (left). ModeTE1 (right).
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Fig. 4.9 Multilayer guiding structure. Electric field profile is also shown.

interfaces. Schematically, the structure is as shown in Fig. 4.9. We make the following
assumptions:

• 1D problem
• n = n(x) is the refractive index
• ∂

∂y = 0

Discussion of TE and TM modes is done separately. We start with TE modes.
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4.6.1 TE mode

The initial equations were derived previously, Eqs. (4.32)–(4.34). We write them here for
easy reference:

∂Ey

∂x
= − jωμ0Hz

−βEy = ωμ0Hx (4.64)

∂Hz

∂x
+ jβHx = − jωμ0ε0εrEy

The above system can be combined together to obtain a wave equation, as

∂2Ey

∂x2
= − jωμ0

∂Hz
∂x from first Eq.

= − jωμ0
(− jβHx − jωε0εrEy

)
from third Eq.

= − jωμ0

{
− jβ

(−βEy

ωμ0

)
− jωε0εrEy

}
from second Eq.

= β2Ey−ω2μ0ε0εrEy

Finally, one writes wave equation for ‘i’ layer as

∂2

∂x2
Eyi(x) = (

β2 − k2
0n2

i

)
Eyi(x) (4.65)

where k2
0 = μ0ε0ω

2 and εri = n2
i . Introduce

κ2
i = k2

0n2
i − β2 (4.66)

The solution to the wave equation is

Eyi(x) = Aie
− jκi(x−xi−1) + Bie

jκi(x−xi−1) (4.67)

At the interfaces of layers, the boundary condition of TE mode are

Ei(x)
∣∣
x=xi−1 = Ei−1(x)

∣∣
x=xi−1 (4.68)

∂Ei(x)

∂x

∣∣
x=xi−1 = ∂Ei−1

∂x

∣∣
x=xi−1 (4.69)

It is more convenient to work with another set of variables Ui(x) and Vi(x) defined as

Ui(x) = Eyi(x) (4.70)

Vi(x) = ωμ0Hzi(x) (4.71)

From Eqs. (4.64) one obtains equations for new variables. Directly from the first of
Eqs. (4.64)

dUi(x)

dx
= − jVi(x) (4.72)

Using the second equation to eliminate Hx in the third of Eqs. (4.64), one has

∂Hz

∂x
+ jβ

(−β)

ωμ0
Ey = − jωμ0ε0εrEy
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or

ωμ0
∂Hz

∂x
− jβ2Ey = − jω2μ0ε0εrEy

= − jk2
0n2

i Ey

For layer i − th

dVi(x)

dx
− jβ2Ui(x) = − jk2

0n2
i Ui(x)

or
dVi(x)

dx
= − jκ2

i Ui(x) (4.73)

Eqs. (4.72) and (4.73) can be written in a matrix form as

d

dx

[
Ui(x)

Vi(x)

]
=
[

0 − j
− jκ2

i 0

] [
Ui(x)

Vi(x)

]
(4.74)

From Maxwell’s equations one can verify the following relation:

j
dUi(x)

dx
= j

∂Eyi(x)

∂x
= ωμ0Hzi(x) = Vi(x)

Using the above relation, the solutions of Eqs. (4.74) are

Ui(x) = Aie
− jκi(x−xi ) + Bie

jκi(x−xi )

Vi(x) = j
dUi(x)

dx
= κi

{
Aie

− jκi(x−xi ) − Bie
jκi(x−xi )

}
They can be written in a matrix form as[

Ui(x)

Vi(x)

]
=
[

e− jκi(x−xi ) e jκi(x−xi )

κie− jκi(x−xi ) −κie jκi(x−xi )

] [
Ai

Bi

]
(4.75)

From the above, for xi one finds[
Ui(xi)

Vi(xi)

]
=
[

1 1
κi −κi

] [
Ai

Bi

]
Inverting the last equation gives the expression for coefficients in terms of field and its
derivative [

Ai

Bi

]
= 1

2

[
1 1

jκi

1 − 1
jκi

][
Ui(xi)

Vi(xi)

]
Substituting the last equation into (4.75) gives[

Ui(x)

Vi(x)

]
=
[

e− jκi(x−xi ) e jκi(x−xi )

κie− jκi(x−xi ) −κie jκi(x−xi)

]
1

2

[
1 1

jκi

1 − 1
jκi

][
Ui(xi)

Vi(xi)

]
(4.76)

= ←→
Ti (xi)

[
Ui(xi)

Vi(xi)

]
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Explicitly, propagation matrix
←→
Ti (xi) at point xi is

←→
Ti (xi) =

[
cos κi(x − xi) − j

κi
sin κi(x − xi)

− jκi sin κi(x − xi) cos κi(x − xi)

]
(4.77)

Equation (4.76) ‘propagates’ values of the fields from point xi to an arbitrary point x within
layer i.

4.6.2 Propagation constant

A propagation constant is obtained if we propagate fields across all interfaces. First consider
propagation between two consecutive interfaces, that is propagation from xi location to xi+1.
One finds from Eq. (4.76)[

Ui+1(xi+1)

Vi+1(xi+1)

]
=
[

cos κi(xi+1 − xi) − j
κi

sin κi(xi+1 − xi)

− jκi sin κi(xi+1 − xi) cos κi(xi+1 − xi)

][
Ui(xi)

Vi(xi)

]
Let us define the thickness of layer i as

di = xi+1 − xi

The propagation matrix which propagates fields from xi to xi+1 is called
←→
Mi and has the

form

←→
Mi =

[
cos κidi − j

κi
sin κidi

− jκi sin κidi cos κidi

]
(4.78)

Using the above formalism, we can now propagate fields through the entire structure from
substrate to a cladding region as follows:[

Uc

Vc

]
=

N∏
i=1

←→
Mi

[
Us

Vs

]

= ←→
M

[
Us

Vs

]
≡
[

m11 m12

m21 m22

] [
Us

Vs

]
(4.79)

In the above we have introduced the 2 × 2 matrix
←→
M with elements m11, m12, m21, m22

which plays central role in the numerical process of determining propagation constants.
From the above equation one obtains

Uc = m11Us + m12Vs (4.80)

Vc = m21Us + m22Vs (4.81)

In the substrate and cladding, the fields decay exponentially (Fig. 4.10). Therefore, the
expressions for fields in the cladding and substrate regions are
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substrate waveguide cladding

x i+1xix1 xN

Fig. 4.10 Schematic of the field distribution. Exponential decay in the substrate and cladding regions is shown.

• for x < x1(substrate)

Us(x) = As exp[γs(x − x1)] (4.82)

Vs(x) = jγsAs exp[γs(x − x1)] (4.83)

• for x > xN (cladding)

Uc(x) = Ac exp[−γc(x − xN )] (4.84)

Vc(x) = − jγcAs exp[−γc(x − xN )] (4.85)

In the above expressions we defined

γ 2
i = β2 − k2

0n2
i (4.86)

γi = jκi

From expressions (4.82) and (4.83) one obtains at point x1

Us(x1) = As (4.87)

Vs(x1) = jγsAs (4.88)

In a similar way for point xN one has

Uc(xN ) = Ac (4.89)

Vc(xN ) = − jγcAc (4.90)

Substituting the above results into Eqs. (4.80) and (4.81), one obtains the expressions which
are used to find propagation constants employing numerical procedure

γcγsm12 − m21 = j(γcm11 + γsm22) (4.91)

Values of matrix elements m11, m12, m21, m22 are obtained numerically for a particular
guiding structure.

4.6.3 Electric field

Once propagation constants are found, one can obtain profile of electric field for each mode.
To do this one uses Eq. (4.76), which after multiplication of matrices is[

Ui(x)

Vi(x)

]
=
[

cos κi(x − xi) − j
κi

sin κi(x − xi)

− jκi sin κi(x − xi) cos κi(x − xi)

][
Ui(xi)

Vi(xi)

]
(4.92)
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where for layer i xi ≤ x ≤ xi+1. The above determines electric field at an arbitrary location
within layer i once the values of fields are known at point xi. In practice one assumes some
value of electric field at point x1 and using expression (4.92) determines field within all
layers. The above procedure will be applied to analyse several guiding structures in the next
section. Before this, we will formulate basic equations for TM modes.

4.6.4 TMmodes

The analysis for TM modes follows exactly the same path as for TE modes. Here we outline
basic equations only. For TM modes one has the following relations:

Ey = Hz = Hx = 0 (4.93)

For each layer one has

βHy = ωεEx

∂Hy

∂x
= jωεEz

∂Ez

∂x
+ jβEx = jωμHy (4.94)

Define variables

U = Hy

V = ωε0Ez (4.95)

They fulfill the following equations:

dU

dx
= jn2V

dV

dx
= j

(
k2 − β2

n2

)
U (4.96)

From this point one follows a similar approach as for TE modes. The remaining analysis is
left as a project.

4.7 Examples: 1D approach

In this section we will consider several waveguiding structures described in literature and
apply our formalism to analyse those structures. The tests were performed in searching for
propagation constant β and then determining the profile of electric field. Our tests were
performed for several structures analysed in References [2], [3], [4] and [5].

We attempted to find all modes. Excellent agreement was found as compared with the
published results.
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Table 4.3 Geometry of a four-layer lossless dielectric waveguide [3].

Layer Refractive index Thickness Description

D6 n6 = 1.00 1 µm Cladding
D5 n5 = 1.66 0.50 µm
D4 n4 = 1.53 0.50 µm
D3 n3 = 1.60 0.50 µm
D2 n2 = 1.66 0.50 µm
D1 n1 = 1.50 1 µm Substrate

Table 4.4 Propagation constants for a four-layer lossless dielectric waveguide defined in Table 4.3.

Mode Propagation constant

T E0 1.622728682325434 + 0.000000000000441i
T E1 1.605275698094530 + 0.000000000000014i
T E2 1.557136152293222 + 0.000000000000436i
T E3 1.503587112022723

The list of MATLAB files is provided in Table 4.121. All MATLAB files are listed in
Appendix 4A.3.

4.7.1 Four-layer lossless waveguide

The first tested structure is the one considered by Chilwell and Hodgkinson [3] and also by
Chen et al. [4]. It is a four-layer lossless dielectric structure shown in Table 4.3. Wavelength
is λ = 0.6328 µm. Determined propagation constants for all four modes are summarized
in Table 4.4. They show an excellent agreement with the results published in Ref. [3] and
[4].

Electric field for fundamental TE-mode has been calculated using mesh points generated
by function mesh x.m. The resulting profile of TE fundamental mode is shown in Fig. 4.11.

4.7.2 Six-layer lossy waveguide

The second structure tested by our program is defined in Table 4.5, from [4]. It is a six-
layer lossy waveguide structure operating at the wavelength λ = 1.523 µm. Propagation
constants for this structure are summarized in Table 4.6. Obtained results show an excellent
agreement with the published data.

The TE electric field distribution of the fundamental mode for this structure is shown in
Fig. 4.12.

1 I acknowledge the help of my former student, Mr L. Glowacki, in developing some of those routines.
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Table 4.5 Geometry of a six-layer lossy dielectric waveguide.

Layer Refractive index Thickness (µm) Description

D8 n8 = 1.00 1 Cladding
D7 n7 = 3.38327 0.10
D6 n6 = 3.39614 0.20
D5 n5 = 3.5321– j0.08817 0.60
D4 n4 = 3.39583 0.518
D3 n3 = 3.22534 1.60
D2 n2 = 3.16455 0.60
D1 n1 = 3.172951 1 Substrate

Table 4.6 Results of propagation constants for six-layer lossy dielectric waveguide.

Mode Propagation constant

TE0 3.460829693510364 + 0.072663342917385i
TE1 3.316707802046375 + 0.023275817588121i
TE2 3.208555428734457 + 0.012782067986633i
TE3 3.195490593396514 + 0.012585955654404i
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Fig. 4.11 Field profile of fundamental TE mode for four-layer lossless structure.

4.7.3 Structure by Visser

This structure was described by Visser et al. [5]. It is summarized in Table 4.7.
The results of calculations of propagation constants for TE modes are summarized in

Table 4.8. They are identical to the values published by Visser et al. [5]. The profile of the
electric field for mode T E1 is shown in Fig. 4.13.
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Table 4.7 Geometry of a six-layer lossy dielectric waveguide described by Visser et al. [5].

Layer Thickness (µm) Refractive index

clad 1.0
3 0.6 3.40 − 0.002i
2 0.4 3.60 + 0.010i
1 0.6 3.40 − 0.002i
substrate 1.0

Table 4.8 Propagation constants obtained for the structure shown in Table 4.7.

Layer Propagation constant

T E0 3.503443332950034 − 0.007103000978683i
T E1 3.337286858209064 + 0.000229491103731i
T E2 3.251685206983383 + 0.000530514779912i
T E3 3.104251421414573 − 0.001337986339752i
T E4 2.878636779881233 + 0.000173729890361i
T E5 2.628139320470185 − 0.001548644353782i
T E6 2.243951362601185 − 0.000708377958009i
T E7 1.768190960412424 − 0.001353217183860i
T E8 1.074262026525778 − 0.002457891473570i
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Fig. 4.12 Field profile of fundamental TE mode for a six-layer lossy waveguide.

4.8 Two-dimensional (2D) structures

In the previous sections we have discussed one-dimensional guiding structures, also
known as planar waveguides. However, in practical devices the waveguides are essentially
two-dimensional (2D) In those structures, refractive index n(x, y) depends on transverse
coordinate x and lateral coordinate y. Two examples of popular structures are shown in
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Fig. 4.13 Field profile ofT E1 mode for structure discussed by Visser et al. [5].
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Fig. 4.14 Popular types of 2D waveguides. (a) Buried-channel waveguide. (b) Rib waveguide.

Fig. 4.14. They exhibit distinctive features of their refractive index. The structures shown
are known as the buried channel waveguide and the rib waveguide.

In what follows we will discuss one of the methods of obtaining approximate solution
for propagating mode, known as the effective index method.

4.8.1 Effective index method

To illustrate the effective index method [6], let us start with a scalar wave equation in 2D
which is

∂2φ(x, y)

∂x2
+ ∂2φ(x, y)

∂y2
+ k2

0

[
εr(x, y) − N2

e f f

]
φ(x, y) = 0 (4.97)

Here N2
e f f is the effective index which we want to determine. Assume that there is no

‘interaction’ between variables x and y. This allows us to separate fields as [7]

φ(x, y) = X (x) · Y (y)

Substitute postulated solution into wave equation, evaluate the relevant derivatives and
divide both sides of the resulting equation by X (x) · Y (y). One obtains

1

X (x)
X ′′(x) + 1

Y (y)
Y ′′(y) + k2

0

[
εr(x, y) − N2

e f f

]
= 0 (4.98)
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Fig. 4.15 Illustration of the effective index method.

Introduce separation constant k2
0λ

2 as

1

Y (y)
Y ′′(y) + k2

0εr(x, y) = k2
0λ

2 (4.99)

The remaining terms are

1

X (x)
X ′′(x) − k2

0N2
e f f = −k2

0λ
2 (4.100)

Based on the above theory it is possible to design a method, known as effective index
method to determine effective index N2

e f f . The method (see Fig. 4.15) consists of several
steps:

1. Replace the 2D waveguide with a combination of 1D waveguides along x-axis.
2. Solve each of the 1D problems separately by calculating the effective index along y axis

and obtain Ne f f in each case (for our structure three cases).
3. Construct a new ‘effective’ 1D waveguide (along x-axis) which will model the original

2D waveguide. The new effective waveguide has the values of refractive indices as
indicated.

4. Determine an effective index by solving the 1D waveguide constructed in Step 3 along
the x-axis.
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Table 4.9 Numerical parameters used in an example of the effective index method.

Wavelength Refractive indices Geometry

λ = 0.8 µm nc = 1 h = 1.8 µm
n f = 2.234 d = 1 µm
ns = 2.214 w = 2 µm

h
d

w

nc

ns

nf

x

y

Fig. 4.16 Structure used as an example of the application of the effective index method.

An example
We illustrate the effective index method with an example can be found in [8]. The

structure is shown in Fig. 4.16 and the numerical parameters in Table 4.9.
The method proceeds with the following four steps:

1. Determine normalized thicknesses using the definition of V

Vf = k · h
√

n2
f − n2

s , Vd = k · d
√

n2
f − n2

s

Using the values from Table 4.9, one finds

Vf = 4.2, Vd = 2.3

2. Obtain values of b using b − V diagram. From the diagram, for T E modes we obtain
(for a = ∞)

b f = 0.65, bd = 0.2

Effective indices Nf and Nd are determined using

N2
f ,d = n2

s + b f ,d

(
n2

f − n2
s

)
One obtains

Nf = 2.227, Nd = 2.218

3. The same structure along the y-direction is approximated as the one-dimensional, using
the previous values. The V number is determined using

Veg = k · w

√
N2

f − N2
d = kw

√(
n2

f − n2
s

) (
b f − bd

)
(4.101)
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One obtains

Veg = 3.14, beg = 0.64 (4.102)

4. Finally, the approximate effective index N = Neq of the equivalent guide is determined
using

N ≡ Neg = N2
d + beq

(
N2

f − N2
d

)
(4.103)

For this example, we obtain N = 2.224.
More examples of the applications of effective index method can be found in books by

Coldren and Corzine [9] and Liu [10].

4.9 Problems

1. Find the effective refractive indices and the number of TE modes in an asymmetric
waveguide with an asymmetry parameter a = 10 and thickness h = 1.50 µm. Assume
λ0 = 0.82 µm.

2. Compute the largest thickness that will guarantee single TE mode operation of the
above waveguide.

3. Analyse the three-layer, asymmetric guiding structure. Derive a transcendental equa-
tion for the propagation constant.

4. Conduct analysis of a four-layer waveguiding structure [8]. Derive equations for all
elements of matrix M . Obtain an analytical formula for dispersion relation.

4.10 Projects

1. Based on theoretical results developed for the three-layer symmetrical guiding structure,
write a MATLAB program which will solve transcendental equations using functions
given by (4.46) and (4.47). Select from the literature an appropriate waveguiding struc-
ture. Use your program to determine propagation constants and profiles of electric fields.
Compare your results with those from the literature.

2. Analyse TM modes for the three-layer asymmetric waveguide defined in Table 4.1. Ob-
tain analytical solutions in all regions and derive an appropriate transcendental equation.
Write a MATLAB program to determine propagation constants.

3. Plasmonic waveguide contains a metallic layer. The simplest cases are the three-layer
structures: metal-dielectric-metal (MDM) and dielectric-metal-dielectric (DMD). Derive
a transcendental equation describing plasmonic waveguide (similar to Eq. 4.45 for a
symmetrical dielectric guiding structure). Consult the paper by Kekatpure et al. [11].
With the equation at hand, write a MATLAB program to determine propagation constants
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for TM modes for the MDM structure defined in Table 4.10 [11]. Analyse the obtained
results.

Table 4.10 Plasmonic structure.

Material Thickness (µm) Relative permittivity

gold 3 −95.92 − i10.97
silica 50 2.1025
silver 3 −143.49 − i9.52

4. Conduct analysis of the multilayered structure for TM modes. Derive all necessary
equations. Write a MATLAB program to determine propagation constants and field
profiles.

Appendix 4A: MATLAB listings

In Tables 4.11 and 4.12 we provide a list of MATLAB files created for Chapter 4 and a
short description of each function. In Table 4.12 we summarize a list of files used to analyse
planar waveguides.

Table 4.11 List of MATLAB functions for Chapter 4.

Listing Function name Description

4A.1 b V diagram.m Plots b-V diagram for planar waveguide
4A.2.1 a3L.m Analysis for three-layer planar waveguide
4A.2.2 f unc asym.m Function used by a3L.m

Table 4.12 Functions used to analyse a 1D planar waveguide.

Listing Function name Description

4A.3.1 slab.m driver function (determines prop. constants and field profile)
4A.3.2 lossless.m data for waveguide structure without losses
4A.3.3 lossy.m data for waveguide structure with losses
4A.3.4 visser.m data for structure described by Visser
4A.3.5 muller.m implements Muller’s method
4A.3.6 f TE.m creates transcendental equation for TE field
4A.3.7 mesh x.m generates 1D mesh
4A.3.8 refindex.m assigns the value of ref. index to each mesh point
4A.3.9 TE field.m determines TE field for all mesh points
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Listing 4A.1 Program b V diagram.m. MATLAB program to analyse the transverse
resonance condition (4.12) and to plot a normalized guide index b versus variable V .
Allows to input different values of the asymmetry parameter a.

% File name: b_V_diagram.m

% function which plots b-V diagram of a planar slab waveguide

clear all

N_max = 400; % number of points for plot

b = linspace(0,1.0,N_max);

hold on

for nu = [0, 1, 2]

for a = [0.0, 8.0,50.0]; % asymmetry coefficient

% determine V

V1 = atan(sqrt(b./(1-b)) );

V2 = atan(sqrt((b+a)./(1.0-b)));

V3 = 1./sqrt(1.0-b);

V = (nu*pi + V1 + V2).*V3;

%

plot(V,b,’LineWidth’,1.2)

grid on

axis([0.0 20.0 0.0 1.0]) % change axis limit

end

end

box on % makes frame around plot

xlabel (’V’,’FontSize’,14);

ylabel(’b’,’FontSize’,14);

set(gca,’FontSize’,14); % size of tick marks on both axes

text(10, 0.96, ’\nu=0’,’Fontsize’,14)

text(10, 0.8, ’\nu=1’,’Fontsize’,14)

text(10, 0.55, ’\nu=2’,’Fontsize’,14)

%

text(0.1, 0.3, ’a=0’,’Fontsize’,14)

text(2.5, 0.3, ’a=50’,’Fontsize’,14)

%

text(3.3, 0.2, ’a=0’,’Fontsize’,14)

text(5.8, 0.2, ’a=50’,’Fontsize’,14)

%

text(6, 0.1, ’a=0’,’Fontsize’,14)

text(8.8, 0.1, ’a=50’,’Fontsize’,14)

pause

close all
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Listing 4A.2.1 Program a3L.m. Determines propagation constants and plots field profiles
for an asymmetric three-layer planar waveguide. Uses func asym.m.

% File name: a3L.m

% Analysis for TE modes

% First, we conduct test plots to find ranges of beta where possible

% solutions exists. This is done in several steps:

% 1. Plots are done treating kappa_f as an independent variable

% 2. Ranges of kappa_f are determined where there are zeros of functions

% 3. Corresponding ranges of beta are determined

% 4. Searches are performed to find propagation constants

%

clear all

% Definition of structure

n_f = 1.50; % ref. index of film layer

n_s = 1.45; % ref. index of substrate

n_c = 1.40; % ref. index of cladding

lambda = 1.0; % wavelength in microns

h = 5.0; % thickness of film layer in microns

a_c = 2*h; % thickness of cladding region

a_s = 2*h; % thickness of substrate region

%

k = 2*pi/lambda; % wave number

kappa_f = 0:0.01:3.0; % establish range of kappa_f

beta_temp = sqrt((n_f*k)^2 - kappa_f.^2);

beta_min = min(beta_temp);

beta_max = max(beta_temp);

% Before searches, we plot search function versus beta

beta = beta_min:0.001:beta_max; % establish range of beta

N = beta./k;

ff = func_asym(beta,n_c,n_s,n_f,k,h);

plot(beta,ff)

xlabel(’\beta’,’FontSize’,22);

ylabel(’Search function’,’FontSize’,22);

ylim([-10.0 10.0])

grid on

pause

close all

% From the above plot, one must choose proper search range for each mode.

% Search numbers provided below are only for the waveguide defined above.

% For different waveguide, one must choose different ranges

% for searches.

beta0 = fzero(@(beta) func_asym(beta,n_c,n_s,n_f,k,h),[9.40 9.41])

beta1 = fzero(@(beta) func_asym(beta,n_c,n_s,n_f,k,h),[9.35 9.37])

beta2 = fzero(@(beta) func_asym(beta,n_c,n_s,n_f,k,h),[9.27 9.29])

beta3 = fzero(@(beta) func_asym(beta,n_c,n_s,n_f,k,h),[9.17 9.18])

% Plot of field profiles
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A_s = 1.0;

thickness = h + a_c + a_s;

beta_field = beta0; % Select appropriate propagation constant for plotting

gamma_s = sqrt(beta_field^2 - (n_s*k)^2);

gamma_c = sqrt(beta_field^2 - (n_c*k)^2);

kappa_f = sqrt((n_f*k)^2 - beta_field^2);

%

% In the formulas below for electric field E_y we have shifted

% x-coordinate by a_s

% We also ’reversed’ direction of plot in the substrate region

NN = 100;

delta = thickness/NN;

x = 0.0:delta:thickness; % coordinates of plot points

x_t = 0;

for i=1:NN+1

x_t(i+1)= x_t(i) + delta;

if (x_t(i)<=a_s);

E_y(i) = A_s*exp(gamma_s*(x_t(i)-a_s));

elseif (a_s<=x_t(i)) && (x_t(i)<=a_s+h);

E_y(i) = A_s*(cos(kappa_f*(x_t(i)-a_s))+...

gamma_s*sin(kappa_f*(x_t(i)-a_s))/kappa_f);

else (a_s+h<=x_t(i)) & (x_t(i)<=thickness);

E_y(i) = A_s*(cos(kappa_f*h)+gamma_s*sin(kappa_f*h)/kappa_f)...

*exp(-gamma_c*(x_t(i)-h-a_s));

end

end

%

h=plot(x,E_y);

% add text on x-axix and y-axis and size of x and y labels

xlabel(’x (microns)’,’FontSize’,22);

ylabel(’TE electric field’,’FontSize’,22);

set(h,’LineWidth’,1.5); % new thickness of plotting lines

set(gca,’FontSize’,22); % new size of tick marks on both axes

grid on

pause

close all

Listing 4A.2.2 Function func asym.m. Search function for the asymmetric three-layer
waveguide. Used by program a3L.m.

function f = func_asym(beta,n_c,n_s,n_f,k,h)

% Construction of search function for asymmetric 3-layers waveguide

%

gamma_c = sqrt(beta.^2 - (n_c*k)^2);

gamma_s = sqrt(beta.^2 - (n_s*k)^2);

kappa_f = sqrt((n_f*k)^2 - beta.^2);
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%

denom = kappa_f - (gamma_c.*gamma_s)./kappa_f;

f = tan(kappa_f*h) - (gamma_s+gamma_c)./denom;

Listing 4A.3.1 Program slab.m. Driver function which determines propagation constant
for fundamental TE mode and plots electric field profiles. One-dimensional planar wave-
guide of an arbitrary number of layers is assumed. The list of files is shown in Table 4.12.

% File name: slab.m

% Driver function which determines propagation constants and

% electric field profiles (TE mode) for multilayered slab structure

clear all;

format long

% Input structure for analysis (select appropriate input)

%lossless;

%lossy;

visser

%

epsilon = 1e-6; % numerical parameter

TE_mode = [];

n_max = max(n_layer);

z1 = n_max; % max value of refractive index

n_min = max(n_s,n_c) + 0.001; % min value of refractive index

dz = 0.005; % iteration step

mode_control = 0;

%

while(z1 > n_min)

z0 = z1 - dz; % starting point for Muller method

z2 = 0.5*(z1 + z0); % starting point for Muller method

z_new = muller(@f_TE , z0, z1, z2);

if (z_new ~= 0)

% verifying for mode existence

for u=1 : length(TE_mode)

if(abs(TE_mode(u) - z_new) < epsilon)

mode_control = 1; break; % mode found

end

end

if (mode_control == 1)

mode_control = 0;

else

TE_mode(length(TE_mode) + 1) = z_new;

end

end

z1 = z0;

end

%
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TE_mode = sort(TE_mode, ’descend’);

%TE_mode’ % outputs all calculated modes

beta = TE_mode(2); % selects mode for plotting field profile

x = mesh_x(d_s,d_layer,d_c,NumberMesh);

n_total = [n_s,n_layer,n_c]; % ref index for all layers

n_mesh = refindex(x,NumberMesh,n_total);

TE_mode_field = TE_field(beta,n_mesh,x,k_0);

Listing 4A.3.2 Function lossless.m. Contains data for a lossless waveguide.

% File name: lossless.m

% Contains data for lossless waveguide

% Reference:

% J. Chilwell and I. Hodgkinson,

% "Thin-films field-transfer matrix theory of planar multilayer

% waveguides and reflection from prism-loaded waveguide",

% J. Opt. Soc. Amer.A, vol.1, pp. 742-753 (1984).

% Fig.3

% Global variables to be transferred to function f_TE.m

%

global n_c % ref. index cladding

global n_layer % ref. index of internal layers

global n_s % ref. index substrate

global d_c % thickness of cladding (microns)

global d_layer % thicknesses of internal layers (microns)

global d_s % thickness of substrate (microns)

global k_0 % wavenumber

global NumberMesh % number of mesh points in each layer

% (including substrate and cladding)

n_c = 1.0;

n_layer = [1.66 1.60 1.53 1.66];

n_s = 1.5;

d_c = 0.5;

d_layer = [0.5 0.5 0.5 0.5];

d_s = 1.0;

NumberMesh = [10 10 10 10 10 10];

lambda = 0.6328; % wavelength in microns

k_0 = 2*pi/lambda;

Listing 4A.3.3 Function lossy.m. Contains data for a lossy waveguide.

% File name: lossy.m

% Contains data for lossy waveguide.

% Reference:
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% C. Chen et al, Proc. SPIE, v.3795 (1999)

% Global variables to be transferred to function f_TE.m

global n_c % ref. index cladding

global n_layer % ref. index of internal layers

global n_s % ref. index substrate

global d_c % thickness of cladding (microns)

global d_layer % thicknesses of internal layers (microns)

global d_s % thickness of substrate (microns)

global k_0 % wavenumber

global NumberMesh % number of mesh points in each layer

% (including substrate and cladding)

n_c = 1.0;

n_layer = [3.16455 3.22534 3.39583 3.5321-1j*0.08817 3.39614 3.38327];

n_s = 3.172951;

d_c = 1.0;

d_layer = [0.6 1.6 0.518 0.6 0.2 0.1];

d_s = 1.0;

NumberMesh = [10 10 10 10 10 10 10 10];

lambda = 1.523; % wavelength in microns

k_0 = 2*pi/lambda;

Listing 4A.3.4 Function visser.m. Contains data for a five-layer waveguide described by
Visser et al.

% File name: visser.m

% Contains data for five-layer waveguide with gain and losses

% Reference:

% T.D. Visser et al, JQE v.31, p.1803 (1995)

% Fig.6

% Global variables to be transferred to function f_TE.m

%

global n_c % ref. index cladding

global n_layer % ref. index of internal layers

global n_s % ref. index substrate

global d_c % thickness of cladding (microns)

global d_layer % thicknesses of internal layers (microns)

global d_s % thickness of substrate (microns)

global k_0 % wavenumber

global NumberMesh % number of mesh points in each layer

% (including substrate and cladding)

n_c = 1.0;

n_layer = [3.40-1i*0.002 3.60+1i*0.010 3.40-1i*0.002];

n_s = 1.0;

d_s = 0.4;

d_layer = [0.6 0.4 0.6];
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d_c = 0.5;

NumberMesh = [10 10 10 10 10];

lambda = 1.3; % wavelength in microns

k_0 = 2*pi/lambda;

Listing 4A.3.5 Function muller.m. This function implements Muller’s method. It is good
for finding complex roots.

function f_val = muller (f, x0, x1, x2)

% Function implements Muller’s method

iter_max = 100; % max number of steps in Muller method

f_tol = 1e-6; % numerical parameters

x_tol = 1e-6;

y0 = f(x0);

y1 = f(x1);

y2 = f(x2);

iter = 0;

while(iter <= iter_max)

iter = iter + 1;

a =( (x1 - x2)*(y0 - y2) - (x0 - x2)*(y1 - y2)) / ...

( (x0 - x2)*(x1 - x2)*(x0 - x1) );

%

b = ( ( x0 - x2 )^2 *( y1 - y2 ) - ( x1 - x2 )^2 *( y0 - y2 )) / ...

( (x0 - x2)*(x1 - x2)*(x0 - x1) );

%

c = y2;

%

if (a~=0)

D = sqrt(b*b - 4*a*c);

q1 = b + D;

q2 = b - D;

if (abs(q1) < abs(q2))

dx = - 2*c/q2;

else

dx = - 2*c/q1;

end

elseif (b~=0)

dx = -c/b;

else

warning(’Muller method failed to find a root’)

break;

end

x3 = x2 + dx;

x0 = x1;

x1 = x2;
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x2 = x3;

y0 = y1;

y1 = y2;

y2 = feval(f, x2);

if (abs(dx) < x_tol && abs (y2) < f_tol)

break;

end

end

% Lines below ensure that only proper values are calculated

if (abs(y2) < f_tol)

f_val = x2;

return;

else

f_val = 0;

end

Listing 4A.3.6 Function f TE.m. Using the transfer matrix approach, a transcendental
equation is created which is then used to determine a propagation constant.

function result = f_TE(z)

% Creates function used to determine propagation constant

% Variable description:

% result - expression used in search for propagation constant

% z - actual value of propagation constant

%

% Global variables:

% Global variables are used to transfer values from data functions

global n_s % ref. index substrate

global n_c % ref. index cladding

global n_layer % ref. index of internal layers

global d_layer % thicknesses of internal layers (microns)

global k_0 % wavenumber

%

zz=z*k_0;

NumLayers = length(d_layer);

%

% Creation for substrate and cladding

gamma_sub=sqrt(zz^2-(k_0*n_s)^2);

gamma_clad=sqrt(zz^2-(k_0*n_c)^2);

%

% Creation of kappa for internal layers

kappa=sqrt(k_0^2*n_layer.^2-zz.^2);

temp = kappa.*d_layer;

%
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% Construction of transfer matrix for first layer

cc = cos(temp);

ss = sin(temp);

m(1,1) = cc(1);

m(1,2) = -1j*ss(1)/kappa(1);

m(2,1) = -1j*kappa(1)*ss(1);

m(2,2) = cc(1);

%

% Construction of transfer matrices for remaining layers

% and multiplication of matrices

for i=2:NumLayers

mt(1,1) = cc(i);

mt(1,2) = -1j*ss(i)/kappa(i);

mt(2,1) = -1j*ss(i)*kappa(i);

mt(2,2) = cc(i);

m = mt*m;

end

%

result = 1j*(gamma_clad*m(1,1)+gamma_sub*m(2,2))...

+ m(2,1) - gamma_sub*gamma_clad*m(1,2);

Listing 4A.3.7 Function mesh x.m. Generates a one-dimensional mesh along the
transversal direction (which is taken as the x-axis) of a dielectric waveguide.

function x = mesh_x(d_s,d_layer,d_c,NumberMesh)

% Generates one-dimensional mesh along x-axis

% Variable description:

% Input

% d_layer - thicknesses of each layer

% NumberMesh - number of mesh points in each layer

% Output

% x - mesh point coordinates

%

d_total = [d_s,d_layer,d_c]; % thicknesses of all layers

NumberOfLayers = length(d_total); % determine number of layers

delta = d_total./NumberMesh; % separation of points for all layers

%

x(1) = 0.0; % coordinate of first mesh point

i_mesh = 1;

for k = 1:NumberOfLayers % loop over all layers

for i = 1:NumberMesh(k) % loop within layer

x(i_mesh+1) = x(i_mesh) + delta(k);

i_mesh = i_mesh + 1;

end

end
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Listing 4A.3.8 Function refindex.m. Determines the refractive index at all mesh points.

function n_mesh = refindex(x,interface,index_layer)

% Assigns the values of refractive indices to mesh points

% in all layers

% Input

% x() -- mesh points coordinates

% interface(n) -- number of mesh points in layers

% index_layer() -- refrective index in layers

% Output

% index_mesh -- refractive index for each mesh point

%

% Within a given layer, refractive index is assigned the same value.

% Loop scans over all mesh points.

% For all mesh points selected for a given layer, the same

% value of refractive index is assigned.

%

N_mesh = length(x);

NumberOfLayers = length(index_layer);

%

i_mesh = 1;

for k = 1:NumberOfLayers % loop over all layers

for i = 1:interface(k) % loop within layer

n_mesh(i_mesh+1) = index_layer(k);

i_mesh = i_mesh + 1;

end

end

Listing 4A.3.9 Function TE field.m. Determines TE optical field for all layers.

function TE_mode_field = TE_field(beta,index_mesh,x,k_zero)

% Determines TE optical field for all layers

%

% x - grid created in mesh_x.m

TotalMesh = length(x); % total number of mesh points

%

zz=beta*k_zero;

%

% Creation of constants at each mesh point

kappa = 0;

for n = 1:(TotalMesh)

kappa(n)=sqrt((k_zero*index_mesh(n))^2-zz^2);

end

%

% Establish boundary conditions in first layer (substrate).
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% Values of the fields U and V are numbered by index not by

% location along x-axis.

% For visualization purposes boundary conditions are set at first point.

U(1) = 1.0;

temp = imag(kappa(1));

if(temp<0), kappa(1) = - kappa(1);

end

% The above ensures that we get a field decaying in the substrate

V(1) = kappa(1);

%

for n=2:(TotalMesh)

cc=cos( kappa(n)*(x(n)-x(n-1)) );

ss=sin( kappa(n)*(x(n)-x(n-1)) );

m(1,1)=cc;

m(1,2)=-1i/kappa(n)*ss;

m(2,1)=-1i*kappa(n)*ss;

m(2,2)=cc;

%

U(n)=m(1,1)*U(n-1)+m(1,2)*V(n-1);

V(n)=m(2,1)*U(n-1)+m(2,2)*V(n-1);

end

%

TE_mode_field = abs(U); % Finds Abs(E)

max_value = max(TE_mode_field);

h = plot(x,TE_mode_field/max_value); % plot normalized value of TE field

% adds text on x-axix and size of x label

xlabel(’x (microns)’,’FontSize’,22);

% adds text on y-axix and size of y label

ylabel(’TE electric field’,’FontSize’,22);

set(h,’LineWidth’,1.5); % new thickness of plotting lines

set(gca,’FontSize’,22); % new size of tick marks on both axes

pause

close all
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5 Linear optical fibre and signal degradation

In this chapter we will discuss properties of the linear fibre, where refractive index does not
depend on field intensity. We will concentrate on the following topics:

• geometrical-optics description
• wave propagation
• dispersion in single-mode fibres
• dispersion-induced limitations.

Due to dispersion, the width of propagating pulse will increase. In multimode fibres,
broadening of optical pulses is significant, about 10 ns km−1. In the geometrical-optics
description, such broadening is attributed to different paths followed by different rays. In
a single mode fibre, intermodal dispersion is absent; all energy is transported by a single
mode. However, pulse broadening exists. Different spectral components of the pulse travel at
slightly different group velocities. This effect is known as group velocity dispersion (GVD).

5.1 Geometrical-optics description

Consider an optical fibre whose cross-section is shown in Fig. 5.1. The corresponding
change in refractive index profiles is shown in Fig. 5.2. We illustrate two profiles: step
index and graded index.

In the following discussion we will assume validity of a geometrical optics description
which holds in the limit λ � a, where λ is the light wavelength, and a is the core radius
[1], [2].

5.1.1 Numerical aperture (NA)

To start our discussion, consider the propagation of rays entering a cylindrical fibre at
different angles in the plane passing through the core centre, see Fig. 5.3. Ray B will travel
in the cladding region and it is known as an unguided ray, whereas ray A will stay within
core region, and it will form a guided ray.

There exists an angle θa (known as the acceptance angle) such that all rays incident from
a region with refractive index n0 at angles fulfilling the relation

θ < θa

will stay within a core region (such as ray A). All rays incident at the acceptance angle θa

will travel at the boundary between core and cladding.
106
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The numerical aperture (NA) is defined as

NA ≡ n0 sin θa

It is a dimensionless quantity. Typical values of NA are within the 0.14–0.50 range. Eval-
uation of NA follows exactly the same procedure as described in Chapter 4. The final
expression is

NA = n1 (2�)1/2 (5.1)

In practice n1 ≈ n2 and the relative refractive index difference � is

� = (n1 + n2) (n1 − n2)

2n2
1

� 2n1 (n1 − n2)

2n2
1

= n1−n2

n1
(5.2)

A typical value of parameter � for a single-mode fibre is around 0.01.
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5.1.2 Multipath dispersion

A very important physical effect originates from the fact that different rays travel along
paths of different lengths. The shortest path, for incident angle θ1 = 0 is equal to L, fibre
length; the longest path, for θ1 = θmax (which corresponds to φc) is for rays travelling the
distance L

sin φc
. Time delay between both paths is �T . It can be estimated as follows:

�T = �distance

υ

=
L

sin φc
− L

c
n1

= n1

c

(
L

sin φc
− L

)

= n1

c

(
L
n2
n1

− L

)
= Ln1

c

(
n1

n2
− 1

)
= Ln1

cn2

n1 − n2

n1

= Ln2
1

cn2
� (5.3)

where we have used υ = c
n1

for speed of light in fibre. Time �T is a measure of broadening
of an impulse.

5.1.3 Information-carrying capacity of the fibre

Next, we will estimate the information-carrying capacity of the fibre. If we introduce B as
a bit rate, and L fibre length, then the measure of the information-capacity of the fibre is
determined by a product B · L.

The estimation of this product is as follows. Let TB where TB = 1
B be the time allocated

for each bit slot. We use the condition

�T < TB (5.4)

which requires that pulse broadening is smaller than time slot allocated for each bit. Let us
substitute the previous expression for �T , and we obtain

Ln2
1

cn2
� · B < 1 or

L · B <
n2

n2
1

c

�
(5.5)

Example Assume n1 = 1.5, n2 = 1.0. From the above, one finds L · B < 0.4 Mb
s · km. On

the other hand, for � = 2 × 10−3 ⇒ B · L < 100 Mb
s · km. This means that one can carry

data of 10 Mb s−1 over 10 km.

5.1.4 Loss mechanisms in silica fibre

Attenuation (losses) of optical signal is a major factor in the design of optical communication
systems. Losses can occur at the input coupler, splices and connectors but also within the
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Fig. 5.4 Spectrum of losses in glass. Adapted from [3] with permission from the Institution of Engineering and Technology.

fibre itself. In this section we will concentrate on losses in the fibre. A typical spectrum of
losses in modern fibre is shown in Fig. 5.4. Losses are usually expressed in decibels per
unit of distance (as was mentioned in Chapter 2) according to formula

αloss = 10

L
log10

Pout

Pin
(5.6)

where Pin and Pout are, respectively, the input and output optical powers for a fibre of
length L.

Loss mechanisms are classified as [4]:

• intrinsic which arise from the fundamental material properties of the glass. These can be
reduced, e.g. by appropriate choice of wavelength

• extrinsic which result due to imperfections in the fabrication process. Sources of extrinsic
loss include impurities or structural imperfections.

5.1.5 Intrinsic loss

In pure silica, the three sources of loss important at visible and near-infrared wavelengths
are:

• ultraviolet absorption
• infrared absorption
• Rayleigh scattering.

All of the three mechanisms are wavelength dependent. The first two involve two reso-
nances centred in the ultraviolet and mid-infrared, see Fig. 5.4. They originate due to strong
electronic and molecular transition bands. The ultraviolet resonance is of electronic origin
and is centred near λ = 0.1 µm [4]. The infrared absorption originates from lattice vibra-
tional modes of silica and dopants. The vibrational modes produce absorptive resonances
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centered between 7 µm and 11 µm. The resonances for silica and germania occur at 9 µm
and 11 µm, respectively [4]. Intraband absorption results in a power loss approximately
given by

αir = A exp
(
−air

λ

)
[dB km−1] (5.7)

where λ is in micrometres. For GeO2 − SiO2 glass, the values of A and air are A =
7.81 × 1011 dB km−1 and air = 48.48 µm [4].

Rayleigh scattering in pure fused silica can be approximated by the expression

αR = 1.7

(
0.85

λ

)4

(5.8)

where λ is in micrometres and loss αR is in dB km−1.
Rayleigh scattering appears when a wave travels through a medium having scattering

objects smaller than a wavelength [5]. In a glass those small objects are created as lo-
cal variations in refractive index in otherwise homogeneous material. Local variations of
refractive index in turn can be due to localized variations in a material’s density.

5.1.6 Extrinsic loss

These losses are not associated with the fundamental properties of material. There are
many sources of extrinsic losses, for example presence of additional impurities and surface
irregularities at the core-cladding boundary. Some other related losses are due to bending
and source-fibre coupling.

5.2 Fibre modes in cylindrical coordinates

Fibre exhibits cylindrical symmetry, see Fig. 5.5. In the cylindrical coordinate system we
use the following variables: r, φ, z. Refractive index is expressed as (see Fig. 5.1)

n =
{

n1, r ≤ a
n2, r > a

}
(5.9)

where a is the radius of the central region known as core.
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5.2.1 Maxwell’s equations in cylindrical coordinates

In cylindrical coordinates, one has the following general relation for arbitrary vector A [6]:

∇×A = 1

r

∣∣∣∣∣∣∣
âr r̂aφ âz
∂
∂r

∂
∂φ

∂
∂z

Ar rAφ Az

∣∣∣∣∣∣∣
= âr

(
∂Az

r∂φ
− ∂Aφ

∂z

)
+ âφ

(
∂Ar

∂z
− ∂Az

∂r

)
+ âz

1

r

[
∂

∂r

(
rAφ

)− ∂Ar

∂φ

]
where âr, âφ, âz are unit vectors in the corresponding directions. Vector A is expressed as

A = ârAr + âφAφ + âzAz

Assuming e jωt dependence for fields, the first Maxwell equation in cylindrical coordinates
is

1

r

∂Ez

∂φ
− ∂Eφ

∂z
= − jωμHr

∂Er

∂z
− ∂Ez

∂r
= − jωμHφ

1

r

[
∂

∂r

(
rEφ

)− ∂Er

∂φ

]
= − jωμHz

Assuming additionally e jβz dependence, one finds

1

r

∂Ez

∂φ
+ jβEφ = − jωμHr (5.10)

jβEr + ∂Ez

∂r
= jωμHφ (5.11)

1

r

[
∂

∂r

(
rEφ

)− ∂Er

∂φ

]
= − jωμHz (5.12)

Similarly, from the second Maxwell equation we obtain

1

r

∂Hz

∂φ
+ jβHφ = jωεEr (5.13)

jβHr + ∂Hz

∂r
= − jωεEφ (5.14)

1

r

[
∂

∂r

(
rHφ

)− ∂Hr

∂φ

]
= jωεEz (5.15)

Expressing Hr from (5.10) and (5.14) and comparing both expressions, one obtains for Eφ

Eφ = − j

q2

(
β

r

∂Ez

∂φ
− ωμ

∂Hz

∂r

)
(5.16)

where

q2 = ω2εμ − β2 (5.17)

= n2k2
0 − β2
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Similarly, using the same procedure, from (5.11) and (5.13) one obtains for Er

Er = − j

q2

(
β

∂Ez

∂r
+ ωμ

r

∂Hz

∂φ

)
(5.18)

In an analogous way one finds expressions for Hφ and Hr:

Hφ = − j

q2

(
β

r

∂Hz

∂φ
+ εω

∂Ez

∂r

)
(5.19)

Hr = − j

q2

(
β

∂Hz

∂r
− ε

ω

r

∂Ez

∂φ

)
(5.20)

Equations (5.16), (5.18), (5.19) and (5.20) express relevant components of E and H fields in
terms of Ez and Hz components. In the next step, we derive equations for those components.

5.2.2 Wave equations in cylindrical coordinates

From the analysis above we can observe that the z-component of the electric field Ez (and
same applies also to magnetic z-component Hz) can be considered an independent variable
and that the remaining components can be expressed in terms of Ez. (The same is true for
Hz.) Hence, we only need to work with Ez (or Hz). For that purpose we will derive the
appropriate wave equation from which we can obtain a solution for Ez. Once we have a
solution for Ez we will use it to find Er and Eφ . In this way, all components of the electric
field within a circular waveguide are derived.

To derive the equation for Ez we start with Eq. (5.15). Replacing derivatives on the left
hand side by expressions (5.19) and (5.20) and rearranging terms, one finds

∂2Ez

∂r2
+ 1

r

∂Ez

∂r
+ 1

r2

∂2Ez

∂φ2
+ q2Ez = 0 (5.21)

where q2 is given by Eq. (5.17).
Similarly, we can derive an equation for Hz. For the last step we will use Eq. (5.12). We

replace Eφ and Er and obtain a wave equation for Hz in cylindrical coordinates

∂2Hz

∂r2
+ 1

r

∂Hz

∂r
+ 1

r2

∂2Hz

∂φ2
+ n2k2

0Hz = 0 (5.22)

5.2.3 Solution of the wave equation in cylindrical coordinates

Here, we will analyse the equation for Ez. An equation for Hz can be solved in a similar
way. Assume that the following separation of variables is possible:

Ez (r, φ) = R (r)� (φ) (5.23)

After separation, one obtains two equations

d2�(φ)

dφ2
+ m2�(φ) = 0 (5.24)
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Fig. 5.6 Ordinary Bessel functions. (left) Functions Jm, (right) functionsYm.

and

r2 d2R

dr2
+ r

dR

dr
+ (

r2q2 − m2
)

R = 0 (5.25)

where m2 is a separation constant. Eq. (5.25) is known as the Bessel equation and its
solutions are known as Bessel functions [7]. The solution of Eq. (5.24) is

�(φ) = eimφ (5.26)

Here, m takes integer values because �(φ + 2π) = �(φ).
The Bessel equation will be written and solved separately for core and cladding regions.

In the core region it reads

r2 d2R

dr2
+ r

dR

dr
+ (

r2κ2 − m2
)

R = 0 (5.27)

where

κ2 = n2
1k2

0 − β2 > 0 (5.28)

The solutions of this equation are known as ordinary Bessel functions Jm and Nm of the first
order and are shown in Fig. 5.6.

The Bessel equation for the cladding region is

r2 d2R

dr2
+ r

dR

dr
+ (

r2γ 2 + m2
)

R = 0 (5.29)

where

γ 2 = β2 − n2
2k2

0 > 0 (5.30)

The solutions of this equation are known as modified Bessel functions, Km,Im of the second
kind and of order m. Those functions are plotted in Fig. 5.7.

MATLAB codes for obtaining plots of Bessel functions are provided in Appendix 5C.1.
Using the above results for solutions of Bessel equations, one can obtain the solutions for
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core and cladding regions as [4]

R (r) =
{

AJm (κr) + A′Ym(κr), r ≤ a

CKm (γ r) + C′Im(γ r), r > a
(5.31)

where A, A′,C,C′ are constants.
We expect the following properties of guided modes:

1. the solution in the core will be oscillatory and finite at r = 0
2. the solution in the cladding will decrease monotonically as radius increases, i.e.

field → 0 for r → ∞.

The above properties imply that for core the Jm function should be used and since Ym has
a singularity (see Fig. 5.6), for r = 0 we set A′ = 0. Similarly for cladding the function Im

increases (see Fig. 5.7) and we set C′ = 0. In cladding we use only Km.
In this way one finds the solutions

Ez =
{

AJm (κr) eimφ, r ≤ a

CKm (γ r) eimφ, r > a
(5.32)

In exactly the same way

Hz =
{

BJm (κr) eimφ, r ≤ a

DKm (γ r) eimφ, r > a
(5.33)

Employing Eqs. (5.16), (5.18), (5.19) and (5.20), one can express the other field compo-
nents in terms of Ez and Hz. After a little algebra, the full solutions are:

Case: r < a (core)

Eφ = − j

κ2

(
j
β

r
mAJm (κr) −ωμκBJ ′

m (κr)

)
e jmφ (5.34)

Er = − j

κ2

(
βκAJ ′

m (κr)+ j
ωμ

r
mBJm (κr)

)
e jmφ (5.35)

Hφ = − j

κ2

(
ωε1κAJ ′

m (κr) + j
β

r
mBJm (κr)

)
e jmφ (5.36)
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Hr = − j

κ2

(
βκBJ ′

m (κr) − j
ωε1

r
mAJm (κr)

)
e jmφ (5.37)

Case: r > a (cladding)

Eφ = j

γ 2

(
j
β

r
mCKm (γ r) −ωμγ DK ′

m (γ r)

)
e jmφ (5.38)

Er = j

γ 2

(
βγCK ′

m (γ r) + j
ωμ

r
mDKm (γ r)

)
e jmφ (5.39)

Hφ = j

γ 2

(
ωε2γCK ′

m (γ r) + j
β

r
mDKm (γ r)

)
e jmφ (5.40)

Hr = j

γ 2

(
βγ DK ′

m (γ r) − j
ωε2

r
mCKm (γ r)

)
e jmφ (5.41)

where we have introduced the following definitions

J ′
m (κr) = dJm (κr)

d(κr)

and

K ′
m (γ r) = Km (γ r)

d(γ r)

5.2.4 Boundary conditions andmodal equation

We use boundary conditions derived previously which require that all field components
tangent to the core-cladding boundary at r = a must be continuous across it. We therefore
have [8]

Ez, Hz, Eφ, Hφ are continuous at r = a (5.42)

Applying the above requirement, we obtain the following equations:

1. from continuity of Ez

AJm (κa) = CKm (γ a) (5.43)

2. from continuity of Hz

BJm (κa) = DKm (γ a) (5.44)

3. from continuity of Eφ

βm

κ2a
Jm (κa) A + j

ωμ

κ
J ′

m (κa) B + βm

γ 2a
Km (γ a)C + j

ωμ

γ
K ′

m (γ a) D = 0 (5.45)

4. from continuity of Hφ

− j
ωε1

κ
J ′

m (κa) A + βm

aκ2
Jm (κa) B − j

ωε2

γ
K ′

m (γ a)C + βm

aγ 2
Km (γ a) D = 0 (5.46)
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The above form a set of simultaneous equations for unknown coefficients A, B,C, D. The
nontrivial solution is obtained if the determinant vanishes, i.e.∣∣∣∣∣∣∣∣∣∣∣∣

Jm (κa) 0 −Km (γ a) 0
0 Jm (κa) 0 −Km (γ a)

βm

κ2a
Jm (κa) j

ωμ

κ
J ′

m (κa)
βm

γ 2a
Km (γ a) j

ωμ

γ
K ′

m (γ a)

− j
ωε1

κ
J ′

m (κa)
βm

aκ2
Jm (κa) − j

ωε2

γ
K ′

m (γ a)
βm

aγ 2
Km (γ a)

∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (5.47)

Expansion and evaluation of this determinant is described in Appendix 5B. The resulting
characteristic equation is[

J ′
m(κa)

κJm (κa)
+ K ′

m (γ a)

γ Km (γ a)

][
k2

0n2
1J ′

m (κa)

κJm (κa)
+ k2

0n2
2K ′

m (γ a)

γ Km (γ a)

]
= β2m2

a2

(
1

κ2
+ 1

γ 2

)
(5.48)

This equation forms the basis for obtaining propagation constants for guided modes prop-
agating in cylindrical fibre. Before we start a detailed discussion, let us look at the general
classification of modes.

5.2.5 Mode classification

Variable m is the main parameter used in mode classification. It is known as azimuthal
mode number. Because of the oscillatory behavior of Jm (κa) for a given value of m as
seen in Figs. 5.6, multiple solutions exist for each integer value m. We denote them as βmn,
where n = 1, 2, . . . Index n is called the radial mode number and it represents the number
of radial modes that exist in the field distribution [4].

In general, electromagnetic waves in a step index optical cylindrical fibre can be divided
into three distinct categories [9]:

1. Transverse electric (TE); sometimes designated as magnetic (H) waves. They are char-
acterized by Ez = 0 and Hz �= 0.

2. Transverse magnetic (TM); sometimes designated as electric (E) waves. They are char-
acterized by Ez �= 0 and Hz = 0.

3. Hybrid waves. Characterized by Ez �= 0 and Hz �= 0.

In more detail, the following cases are treated separately [8]:

1. m = 0. Still, solutions are separated into two groups:
a. T M0n (transverse magnetic) because Eφ = Hr = Hz = 0. In this case coefficients

B = D = 0.
b. T E0n (transverse electric) because Hφ = Er = Ez = 0. In this case coefficients

A = C = 0.
2. m �= 0. Hybrid modes.

The modes are called EH or HE modes (terminology has historical roots traced to
microwaves).
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Values of β will correspond to modes which have finite components of both Ez and Hz.
There are neither T E nor T M modes. General classification is [10], [11], [12].

if A = 0 the mode is called T E mode
if B = 0 the mode is called T M mode
if A > B = 0 the mode is called HE mode ( Ez dominates Hz)
if A < B = 0 the mode is called EH mode ( Hz dominates Ez).

Now, we will discuss some of those cases in more detail.

5.2.6 Modes withm = 0

The simplest solutions of characteristic Eq. (5.48) are obtained for m = 0. In this case there
is no angular dependence on φ, and therefore field components Ez and Hz are rotationally
invariant. The characteristic equation is reduced into two equations which describe TE and
TM modes:

TE modes
J ′

0(κa)

κJ0 (κa)
+ K ′

0 (γ a)

γ K0 (γ a)
= 0 (5.49)

TM modes
J ′

0 (κa)

κJ0 (κa)
+n2

2

n2
1

K ′
0 (γ a)

γ K0 (γ a)
= 0 (5.50)

Using the following relations for Bessel functions, (see Appendix 5A)

J ′
0(u)

J0 (u)
= J−1(u)

J0 (u)
and

K ′
0 (w)

wK0 (w)
= − K−1 (w)

wK0 (w)

and J−1 = (−1)1J1, K−1 = K1, one obtains

J1(u)

J0(u)
+ u

w

K1(w)

K0(w)
= 0 (5.51)

and
J1(u)

J0(u)
+ n2

2

n2
1

u

w

K1(w)

K0(w)
= 0 (5.52)

where we used definitions u = aκ and w = aγ .
The interpretation of relations (5.51) and (5.52) as describing TE and TM modes comes

from the following observations.
From continuity equations for Ez and Hz (established in the previous section), one can

express constants C and D in terms of A and B. Substitute these results into the continuity
equation for Eφ and obtain

A
βm

a

(
1

κ2
+ 1

γ 2

)
+ jωμ

[
J ′

m(κa)

κJm (κa)
+ K ′

m (γ a)

γ Km (γ a)

]
B = 0

When the term in the square bracket is zero, then A = 0 and because of Eq. (5.32),
Ez = 0 which means that electric field is transverse, i.e. T E mode. Similarly, substituting
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expressions for constants C and D into continuity equation for Hφ one obtains

− j

[
n2

1

J ′
m(κa)

κJm (κa)
+ n2

2

K ′
m (γ a)

γ Km (γ a)

]
A + βm

a
ωμ

(
1

κ2
+ 1

γ 2

)
B = 0

When the term in the square bracket is zero, then B = 0 and because of Eq. (5.33), Hz = 0
which means that magnetic field is transverse, i.e. T M mode.

Interpretation

Here, we will provide an interpretation of relations (5.51) and (5.52) which describe TE
and TM modes.

1. TM modes
Assuming B = D = 0 (and also m = 0), from Eqs. (5.34)–(5.37) in the core region one

finds

Eφ = 0, Er = − j

κ
βAJ ′

0 (κr)

Hφ = − j

κ
ωε1AJ ′

0 (κr) , Hr = 0

Also, from (5.32) and (5.33) one has

Ez = AJ0 (κr) , Hz = 0

For such modes longitudinal magnetic component Hz is zero and it is therefore called TM
mode (transverse magnetic). Designation of such modes is T M0n.

2. TE modes
In a similar way, taking A = C = 0 (and also m = 0), from Eqs. (5.34)–(5.37) in the

core region one obtains

Eφ = j

κ
ωμBJ ′

0 (κr) , Er = 0

Hφ = 0, Hr = − j

κ
βBJ ′

0 (κr)

and also, from (5.32) and (5.33) one has

Ez = 0, Hz = BJ0 (κr)

For such modes longitudinal electric component Ez is zero and it is therefore called TE
mode (transverse electric). Designation of such modes is T E0n.

A summary of mode properties for m = 0 is provided in Table 5.1.

5.2.7 Weakly guiding approximation (wga)

General solution of the dispersion Eq. (5.48) is very complicated. Gloge [13] developed an
approximation known as the weakly guiding approximation (wga). It is based on the fact
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Table 5.1 Classification of modes form = 0.

Mode Values of Nonzero field Zero field
description Equation coefficients components components

T E0n
J ′

0(u)

uJ0 (u)
+ K ′

0 (w)

γ K0 (w)
= 0 A = C = 0 Hz, Hr, Eφ Ez = Er = Hφ = 0

T M0n
J ′

0(u)

uJ0 (u)
+ n2

2

n2
1

K ′
0 (w)

γ K0 (w)
= 0 B = D = 0 Ez, Er, Hφ Hz, Hr, Eφ = 0

that n1 −n2 � 1. Under such approximation n2
1 ≈ n2

2 = n2 and also β2 ≈ k2
0n2. Introducing

definitions u = κa and w = γ a, general Eq. (5.48) reduces to

J ′
m(u)

uJm (u)
+ K ′

m (w)

wKm (w)
= ±m

(
1

u2
+ 1

w2

)
(5.53)

One can observe that two possible cases exist. We will consider them separately.

Case ‘+’:
Applying properties of Bessel functions (see Appendix 5A) given by Eqs. (5.85) and (5.87),
from Eq. (5.53) one obtains

Jm+1(u)

uJm (u)
+ Km+1 (w)

wKm (w)
= 0 (5.54)

Case ‘−’:
Applying properties of Bessel functions (see Appendix 5A) given by Eqs. (5.84) and (5.86),
from Eq. (5.53) one has

Jm−1(u)

uJm (u)
+ Km−1 (w)

wKm (w)
= 0 (5.55)

Eigenvalue Eq. (5.53) is solved numerically to find propagation constant β. In general,
it has multiple solutions for each m. They are labelled by n (n = 1, 2, . . .). Thus β = βmn.
Each value of βmn corresponds to one possible mode. Fibre modes are referred to as hybrid
modes and denoted by [4]

HEmn (dominatesHz)

EHmn (dominatesEz)

In special case m = 0

HE0n ≡ T E0n

EH0n ≡ T M0n

}
correspond to transverse electric and transverse magnetic

LPmodes

LP modes originate in a weakly guiding approximation. Those approximate solutions are
much simpler than the exact solutions. Solving characteristic equation leads to similar
eigenvalues for both the EHm−1,n modes and HEm+1,n [9]. If the fields of these modes are
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combined, the resulting transversal field will be linearly polarized. The linearly polarized
modes are labelled as LPm,n. They are composed in the following way:

LP0n = HE1n

LP1n = HE2n + E0n + H0n

LPm,n = HEm+1,n + EHm−1,n, m > 2

For each n there are two LP0n modes, polarized perpendicular to each other, while for each
n and each m > 0 there are four LPm,n. Here

LPmn (LP stands for linearly polarized) (5.56)

At the end, let us summarize some important definitions:

N ≡ β

k0

which is known as mode index or effective index, and also

V = k0a
(
nn2

1 − n2
2

)1/2 ≈ 2π

λ
an1

√
2�

where

� = n1 − n2

n1

and finally

b =
β

k0
− n2

n1 − n2
≡ n̄ − n2

n1 − n2

To finish this section, consider an example.

Example Typical values (for multimode fibres) are a = 25 µm, � = 5 × 10−3, V ≈ 18,
at λ = 1.3 µm. Using approximate expression M = V 2/2, where M is the total number of
modes (see Problem 1), one finds out that this particular fibre supports approximately 162
modes.

5.2.8 The unified expression

Equations derived so far for TE, TM, EH and HE modes in the weakly guiding approxi-
mation can be written in the form of a single equation. One should notice that in the wga,
equations describing TE and TM modes degenerate into a single equation. The Eq. (5.55)
for HE modes requires modification. First, write Eq. (5.55) as

uJm (u)

Jm−1(u)
+ wKm (w)

Km−1 (w)
= 0 (5.57)

In order to appropriately modify the above equations, consider general formulas for Bessel
functions provided in the Appendix, Eqs. (5.79) and (5.80). By changing index as m+1 → m
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in those equations, one obtains

uJm(u) = 2(m − 1)Jm−1(u) − uJm−2(u)

wKm(w) = 2(m − 1)Km−1(w) + wKm−2(u)

The above equations can now be substituted into (5.57) and finally obtain

−uJm−2 (u)

Jm(u)
= wKm−2 (w)

Km (w)
(5.58)

Equations (5.54) and (5.58) can now be written as a single equation if we define new index
k as

k =
⎧⎨⎩

1 for both TE and TM modes
m + 1 for EH modes
m − 1 for HE modes

The universal equation reads

uJk−1 (u)

Jk(u)
= −wKk−1 (w)

Kk (w)
(5.59)

5.2.9 Universal relation for fundamental modeHE11

Fundamental mode HE11 (or LP01) has the following dispersion relation (corresponding to
m = 1):

J1(u)

J0(u)
+ u

w

K1(w)

K0(w)
= 0 (5.60)

where u = a
√

n2
1k2

0 − β2 and w = a
√

β2 − n2
2k2

0 . Recall previous relations

b = β2/k2
0 − n2

2

n2
1 − n2

2

= β2 − n2
2k2

0

n2
1k2

0 − n2
2k2

0

and

V = k0a
(
n2

1 − n2
2

)1/2

From these definitions, one finds

b = w2

V 2

After a little algebra

u2 = a2
(
n2

1k2
0 − β2

) = a2n2
1k2

0 − a2n2
2k2

0 + a2n2
2k2

0 − a2β2

= V 2 − w2 = V 2 − V 2b

The arguments in Eq. (5.60) can therefore be expressed as

u = V
√

1 − b

and

w = V
√

b
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Fig. 5.8 Plot of the waveguide parameter b and its derivatives d(bV )/dV andV d2(bV )/dV 2 as a function of theV
number forHE11 mode.

Replacing arguments in Eq. (5.60) with the above relations, we finally obtain

J1(V
√

1 − b)

J0(V
√

1 − b)
+

√
1 − b√

b

K1(V
√

b)

K0(V
√

b)
= 0 (5.61)

The above formula holds for mode HE11. It contains only two variables V and b. It is
therefore called a universal relation. In Appendix 5C.2 we provided MATLAB program
which plots b = b(V ) relation and also two other functions d(bV )

dV and V d2(bV )

dV 2 which are
important in determining dispersion relation for propagating mode. Those relations are
shown in Fig. 5.8.

5.2.10 Single-mode fibres

The single-mode fibre supports only HE11 mode (fundamental mode which corresponds to
m = 0). From Eq. (5.48) we have

κJ0 (κa) K ′
0 (γ a) + γ J ′

0 (γ a) K0 (γ a) = 0

κn2
2J0 (κa) K ′

0 (γ a) + γ n2
1J ′

0 (γ a) K0 (γ a) = 0

At cutoff, b = 0 which gives that β/κ0 = N and that γ = 0. Also, κ2a2 = a2k2
0 (n2

1 − n2
2).

Thus V = κa when γ = 0.
Thus cutoff condition is

J0 (V ) = 0 (5.62)

which gives (for single mode)

V = 2.405 (5.63)
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Fig. 5.9 Plot of Bessel functions form = 0 andm = 1 used to illustrate cutoff conditions.

Example Estimates of a.
Assume λ = 1.2µm, n1 = 1.45 and � = 5×10−3. For those values, the above condition

for V gives a < 3.2 µm.

5.2.11 Cutoff conditions

The condition b = 0, which results in β2 = k2
0n2

2, defines the so-called cutoff of the mode
[14]. A mode is cut off when its field in the cladding becomes evanescent and is detached
from the guide. At cutoff β = k0n2 and also b = 0,V = Vc. The situation is illustrated in
Fig. 5.9 for m = 0 and m = 1. Case m = 0 corresponds to modes T E0n and T M0n. The
cutoff conditions for those modes are obtained from roots of the following equation:

J0(κca) = 0 (5.64)

Cutoff conditions are illustrated in Fig. 5.9. For m = 0 the few lowest roots are shown. They
correspond to κca = 2.405 and κca = 5.52. For m = 1 the lowest cutoffs are: κca = 3.83
and κca = 7.02.

5.3 Dispersion

Dispersion is an effect responsible for spreading of a signal in time when it propagates.
Signal is represented by pulse, so effectively we talk about pulse broadening.

Transmitted pulses broaden when they propagate in dispersive media. After long propa-
gation it might be impossible to distinguish individual pulses, see Fig. 5.10.
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(a) (b)

Fig. 5.10 The effect of dispersion on short temporal pulses. (a) Before entering dispersive medium. (b) After propagation in a
dispersive medium.

The main types of dispersion are [10]:

1. Material dispersion.
It exists when refractive index n(λ) depends on wavelength. As a result, different wave-
lengths travel with different velocities.

2. Modal dispersion.
Exists in waveguides with more than one propagating mode. Each mode propagates with
different velocity.

3. Waveguide dispersion.
Exists because propagation constant β depends on the wavelength, so even for n(λ) =
const different wavelengths will propagate with different speeds. Usually the smallest,
but important close to the wavelength where dispersion is zero.

5.3.1 Group delay-general discussion

In a fibre, different spectral components of the pulse travel at slightly different group
velocities. They produce an effect known as group-velocity dispersion (GVD), also known
as intermodal dispersion or fibre dispersion. The name used depends on what description
is used (geometrical optics or wave optics).

Detailed discussion is based on the following assumptions:

• optical signal excites all modes equally at the input of the fibre
• each mode contains all spectral components
• each spectral component travels independently (in the fibre)
• each spectral component undergoes a time delay or group delay.

Transit time of a pulse travelling through the fibre of length L is

τg

L
= 1

vg
(5.65)

where τg – time delay or group delay, L – distance, vg – group velocity, β – propagation
constant.

Group delay determines the transit time of a pulse travelling through the fibre of length
L. Group velocity is defined as

1

vg
≡ dβ

dω
(5.66)
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Typically, one can expresses τg in terms of derivatives with respect to k or λ or V . For that
purpose we will summarize several relations:

ω = 2πν, ν = c

λ
, k = 2π

λ
, ω = kc, V = (

n2
1 − n2

2

)1/2 · a · k

From the above relations, one finds the following useful formulas:

d

dω
= d

cdk
, dk = dk

dλ
dλ,

dk

dλ
= −2π

λ2
,

d

dk
= − λ2

2π

d

dλ
(5.67)

To evaluate derivative with respect to V , one observes that β = β(k(V )). Therefore

dβ

dk
= dβ

dV

dV

dk
= V

k

dβ

dV

where we applied the following result obtained using expression for V :

dV

dk
= V

k

Using the above relations allows us to express τg in several forms as

τg = L
dβ

dω
= L

c

dβ

dk
= L

c

V

k

dβ

dV
= − Lλ2

2πc

dβ

dλ
(5.68)

Because τg depends on λ, each spectral component of any particular mode travels the same
distance in different time.

At this stage, a typical procedure is to explicitly consider two main physical mechanisms
which contribute to group delay τg. One can therefore write

τg = L

c

dβ

dk

∣∣∣∣
n �=const

+ L

c

dβ

dk

∣∣∣∣
n=const

≡ τmat + τwg (5.69)

where τmat is known as material dispersion whereas τwg is a waveguide dispersion.
Material dispersion accounts for the fact that refractive index depends on wavelength; i.e.

n = n(λ). If we neglect dependence of refractive index on wavelength, i.e. set n = const,
then due to the fact that group velocity depends on λ one obtains the contribution known
as waveguide dispersion. We now consider both contributions separately.

5.3.2 Material dispersion: Sellmeier equation

Material dispersion originates from the fact that refractive index n(λ) is wavelength depen-
dent. Propagation constant β is

β = 2π

λ
n(λ)

Use the above and Eq. (5.68) to obtain

τmat = L

c

(
n − λ

dn

dλ

)
(5.70)
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Fig. 5.11 Wavelength dependence of refractive index based on the Sellmeier equation for SiO2.

Let us concentrate now on material dispersion in silica. In practice, very often an empirical
expression for the refractive index of glass in terms of the wavelength λ is used. It is known
as the Sellmeier equation and it was introduced in Chapter 2. Its form is

n2 = 1 + G1
λ2

λ2 − λ2
1

+ G2
λ2

λ2 − λ2
2

+ G3
λ2

λ2 − λ2
3

(5.71)

Here G1, G2, G3 and λ1, λ2, λ3 are constants (called Sellmeier coefficients) which are
determined by fitting the above expression to the experimental data. Often in literature
more elaborate expressions are used. Using data provided in Table 2.2, we plotted in
Fig. 5.11a refractive index for SiO2 as a function of wavelength. MATLAB code is provided
in Appendix 5C.3.

5.3.3 Waveguide dispersion

Waveguide dispersion exists because group velocity vg depends on the wavelength. The
expression for waveguide dispersion τwg is expressed in terms of quantity b introduced
earlier, so we start with the definition of parameter b

b = β2/k2 − n2
2

n2
1 − n2

2

≈ β/k − n2

n1 − n2

where we used the fact that β/k ≈ n1 ≈ n2. We use the above equation to determine β as

β = kn2(1 + b�) (5.72)

Here � = n1−n2
n2

. Waveguide dispersion is obtained by evaluatind derivative dβ/dk using
Eq. (5.72) and assuming that n2 is k independent. One finds

dβ

dk
= n2 + n2�

d(bV )

dk
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Substitute the above result into general definition (5.69) and have

τwg = L

c

(
n2 + n2�

d(V b)

dV

)
(5.73)

5.4 Pulse dispersion during propagation

Because τg depends on λ, each spectral component of any particular mode travels the same
distance in different time. As a result, optical pulse spreads out with time. Let �λ be a
spectral width of a source. Each wavelength component within �λ will propagate with
different group velocity, resulting in a temporal broadening of a pulse. Pulse broadening
�τ is expressed as

�τ = dτ

dλ
�λ (5.74)

Assuming only material dispersion, i.e. τ = τmat and using previous result (5.70) we have

dτmat

dλ
= L

c

{
dn

dλ
− dn

dλ
− λ

d2n

dλ2

}
= −L

c
λ

d2n

dλ2

Therefore �τmat can be written as

�τmat = −L

c

(
λ2 d2n

dλ2

)(
�λ

λ

)
(5.75)

From the above, one can see that material dispersion can be specified in units of picoseconds
per kilometre (length of fibre) per nanometre (spectral width of the source). One usually
introduces

Dmat = �τmat

L�λ
= 1

L

dτmat

dλ
=

= −1

c
λ

d2n

dλ2
(5.76)

which is known as material dispersion coefficient. In practical units [14]

Dmat = − 1

λ · c

(
λ2 d2n

dλ2

)
× 109 ps

km · nm
(5.77)

where λ is in nm and velocity of light c = 3×105 km s−1. Typical behaviour for SiO2−13.5%
GeO2 is shown in Fig. 5.12. MATLAB code is provided in Appendix 5C.4.

For waveguide dispersion, we can also determine waveguide dispersion coefficient Dwg

which is defined as

Dwg = 1

L

�τwg

�λ

Here �τwg is the pulse broadening due to waveguide. It can be expressed as

�τwg = dτwg

dλ
�λ
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Fig. 5.12 Material dispersion as a function of optical wavelength.

Using Eq. (5.73), one can evaluate dτwg

dλ
. It is, however, typical to express it in terms of

parameter V , which is V = 2π
λ

an2

√
2� ≡ A

λ
. Taking derivative

dV

dλ
= − A

λ2

allows us to express
d

dλ
= − A

λ2

d

dV

Using the above, we have

dτwg

dλ
= − A

λ2

dτwg

dV
= −V

λ

L

c
n2�

d2(V b)

dV 2

Finally

Dwg = −n2�

c · λ
V

d2(V b)

dV 2
(5.78)

Combining the above results for material and waveguide dispersion and using the Sellmeier
equation with parameters for silica, one can determine total dispersion of fibre glass. The
work is left as a project.

5.5 Problems

1. Based on ray theory, estimate the number of modes M in a multimode fibre when M
is large.

2. Determine the cutoff wavelength for single-mode operation of an optical fibre. As-
sume the following parameters: a = 5 µm, n2 = 1.450, � = 0.002.

3. Determine the value of waveguide dispersion for the above parameters.
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4. A fibre of 10 km length has an attenuation coefficient of 0.6 dB km−1 at 1.3 µm and
0.3 dB km−1 at 1.55 µm. Assuming that 10 mW of optical power is launched into the
fibre at each wavelength, determine the output power at each wavelength.

5.6 Projects

1. Write MATLAB code to analyse the combined effects of material and waveguide dis-
persion.

2. Using our results developed so far, establish methodologies of designing a single-mode
fibre with predefined properties.

3. Based on the literature, analyse polarization-maintaining fibres.

Appendix 5A: Some properties of Bessel functions

Here, we will provide several properties of Bessel functions needed in the main text. For
more information on Bessel functions consult books by Arfken [7] and Okoshi [8]. Some
general formulas are

Jm+1(u) + Jm−1(u) = 2
m

u
Jm(u) (5.79)

Km+1(w) + Km−1(w) = 2
m

u
Km(w) (5.80)

2J ′
m = Jm−1 − Jm+1 (5.81)

−2K ′
m = Km−1 + Km+1 (5.82)

also

J−m = (−1)mJm, K−m = Km (5.83)

Start with (5.81) and replace Jm+1 using (5.79). One finds

J ′
m(u)

uJm(u)
= Jm−1(u)

uJm(u)
− m

u2
(5.84)

Similarly, replacing Jm−1 in Eq. (5.79) one finds

J ′
m(u)

uJm(u)
= m

u2
− Jm+1(u)

uJm(u)
(5.85)

Similar expressions can be derived for functions Km. Using (5.82) and eliminating Km+1,
one has

K ′
m(u)

wKm(u)
= −Km−1(u)

wKm(u)
− m

w2
(5.86)

Finally, eliminating Km−1 in (5.82) one has

K ′
m(u)

wKm(u)
= −Km+1(u)

wKm(u)
+ m

w2
(5.87)
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Appendix 5B: Characteristic determinant

In this appendix we provide details of the evaluation of characteristic determinant. The
determinant which describes guided modes has been obtained before and it is given by
Eq. (5.47):∣∣∣∣∣∣∣∣∣∣∣∣

Jm (κa) 0 −Km (γ a) 0
βm

κ2a
Jm (κa) i

ωμ

κ
J ′

m (κa)
βm

κ2a
Km (γ a) i

ωμ

γ
K ′

m (γ a)

0 Jm (κa) 0 −Km (γ a)

−i
ωε1

κ
J ′

m (κa)
βm

aκ2
Jm (κa) −i

ωε2

γ
K ′

m (γ a)
βm

aγ 2
Km (γ a)

∣∣∣∣∣∣∣∣∣∣∣∣
= 0

We will now evaluate it following the method of Cherin [15]. Introduce notation

A = Jm(κa), B = βm

κ2a
, C = i

ω

κ
J ′

m (κa)

D = Km(γ a), E = βm

aγ 2
, F = i

ω

γ
K ′

m (γ a)

The determinant can be written as∣∣∣∣∣∣∣∣
A 0 −D 0
0 A 0 −D

AB μC DE μF
−ε1C AB −ε2F DE

∣∣∣∣∣∣∣∣ = 0

Expand the determinant. In the first step we have

A

∣∣∣∣∣∣
A 0 −D

μC DE μF
AB −ε2F DE

∣∣∣∣∣∣− D

∣∣∣∣∣∣
0 A −D

AB μC μF
−ε1C AB DE

∣∣∣∣∣∣ = 0

and in the second step

A2

∣∣∣∣ DE μF
−ε2F DE

∣∣∣∣− AD

∣∣∣∣μC DE
AB −ε2F

∣∣∣∣+ AD

∣∣∣∣ AB μF
−ε1C DE

∣∣∣∣+ D2

∣∣∣∣ AB μC
−ε1C AB

∣∣∣∣ = 0

Evaluating the above, one has

A2
(
D2E2 + με2F 2

)− AD (−με2CF − ABED) + AD (ABDE + με1CF )

+ D2
(
A2B2 + με1C

2
) = 0

Rearranging terms

με2
(
A2F 2 + ADCF

)+ με1CD (AF + CD) + 2A2D2BE + A2D2
(
E2 + B2

) = 0

and finally (
F

D
+ C

A

)(
με2

F

D
+ με1

C

A

)
+ (E + B)2 = 0
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Table 5.2 List of MATLAB functions for Chapter 5.

Listing Function name Description

5C.1.1 bessel J.m Plots Bessel function Jm

5C.1.2 bessel Y.m Plots Bessel function Ym

5C.1.3 bessel K.m Plots Bessel function Km

5C.1.4 bessel I .m Plots Bessel function Im

5C.2.1 HE11.m Driver function for universal relations
5C.2.2 f unc HE11.m Function used by driverH E11
5C.3 sellmeier.m Plots refractive index using Sellmeier equation
5C.4 disp mat.m Determines and plots material dispersion

Substitute original definitions and extracting common factors[
J ′

m(κa)

κJm (κa)
+ K ′

m (γ a)

γ Km (γ a)

][
k2

0n2
1J ′

m (κa)

κJm (κa)
+ k2

0n2
2K ′

m (γ a)

γ Km (γ a)

]
= β2m2

a2

(
1

κ2
+ 1

γ 2

)
(5.88)

Appendix 5C: MATLAB listings

In Table 5.2 we provide a list of MATLAB files created for Chapter 5 and a short description
of each function.

Listing 5C.1.1 Program bessel J.m. Plots Bessel function Jm.

% File name: bessel_J.m

% Plot of Bessel functions of the first kind J_m(z)

clear all

N_max = 101; % number of points for plot

z = linspace(0,10,N_max); % creation of z arguments

%

hold on

for m = [0 1 2] % m - order of Bessel function

J = BESSELJ(m,z);

h = plot(z,J);

% Redefine figure properties

xlabel(’z’,’FontSize’,22);

ylabel(’J_m(z)’,’FontSize’,22);

text(1.1, 0.85, ’m = 0’,’Fontsize’,18);

text(1.8, 0.65, ’m = 1’,’Fontsize’,18);

text(3, 0.55, ’m = 2’,’Fontsize’,18);
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grid on

box on

%

set(h,’LineWidth’,1.5); % new thickness of plotting lines

set(gca,’FontSize’,22); % new size of tick marks on both axes

end

pause

close all

Listing 5C.1.2 Program bessel Y.m. Plots Bessel function Ym.

% File name: bessel_Y.m

% Plot of Bessel functions of the second kind Y_m(z)

clear all

N_max = 101; % number of points for plot

z = linspace(0.01,10,N_max); % creation of z arguments

%

hold on

for m = [0 1 2] % m - order of Bessel function

Y = BESSELY(m,z);

h = plot(z,Y);

% Redefine figure properties

xlabel(’z’,’FontSize’,22);

ylabel(’Y_m(z)’,’FontSize’,22);

text(2.0, 0.7, ’m = 0’,’Fontsize’,18);

text(3.5, 0.7, ’m = 1’,’Fontsize’,18);

text(5.0, 0.7, ’m = 2’,’Fontsize’,18);

axis([0 10 -5 1.5]);

grid on

box on

%

set(h,’LineWidth’,1.5); % new thickness of plotting lines

set(gca,’FontSize’,22); % new size of tick marks on both axes

end

pause

close all

Listing 5C.1.3 Program bessel K.m. Plots Bessel function Km.

% File name: bessel_K.m

% Plot of modified Bessel functions of the second kind K_m(z)

clear all

N_max = 101; % number of points for plot

z = linspace(0.01,3,N_max); % creation of z arguments



133 Appendix 5C

%

hold on

for m = [0 1 2] % m - order of Bessel function

K = BESSELK(m,z);

h = plot(z,K);

% Redefine figure properties

xlabel(’z’,’FontSize’,22);

ylabel(’K_m(z)’,’FontSize’,22);

text(0.2, 0.8, ’m = 0’,’Fontsize’,18);

text(1.0, 0.8, ’m = 1’,’Fontsize’,18);

text(1.5, 0.8, ’m = 2’,’Fontsize’,18);

axis([0 3 0 5]);

grid on

box on

%

set(h,’LineWidth’,1.5); % new thickness of plotting lines

set(gca,’FontSize’,22); % new size of tick marks on both axes

end

pause

close all

Listing 5C.1.4 Program bessel I.m. Plots Bessel function Im.

% File name: bessel_I.m

% Plot of modified Bessel functions of the first kind I_m(z)

clear all

N_max = 101; % number of points for plot

z = linspace(0,3,N_max); % creation of z arguments

%

hold on

for m = [0 1 2] % m - order of Bessel function

Y = BESSELI(m,z);

h = plot(z,Y);

% Redefine figure properties

xlabel(’z’,’FontSize’,22);

ylabel(’I_m(z)’,’FontSize’,22);

text(1.1, 1.7, ’m = 0’,’Fontsize’,18);

text(1.75, 1.7, ’m = 1’,’Fontsize’,18);

text(2.4, 1.7, ’m = 2’,’Fontsize’,18);

grid on

box on

%

set(h,’LineWidth’,1.5); % new thickness of plotting lines

set(gca,’FontSize’,22); % new size of tick marks on both axes
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end

pause

close all

Listing 5C.2.1 Program HE11.m. MATLAB code for finding a universal relation. The
program determines and plots the following relations: b = b(V ), d(bV )

dV ,V d2(bV )

dV 2 .

% File name: HE11.m

% Function determines and plots universal relation for mode HE_11

clear all

format long

% It works in the range of V = [0.50 2.4]

N_max = 190;

for n = 1:N_max

VV(n) = 0.50 + n*0.01;

V = VV(n);

b_c(n) = fzero(@(b) func_HE11(b,V),[0.0000001 0.8]);

end

%

hold on

h1 = plot(VV,b_c); % plots b =b(V)

%

temp1 = VV.*b_c;

dy1 = diff(temp1)./diff(VV);

Vnew1 = VV(1:length(VV)-1);

h2 = plot(Vnew1,dy1); % plots first derivative

%

temp2 = dy1;

dy2 = diff(temp2)./diff(Vnew1);

Vnew2 = Vnew1(1:length(Vnew1)-1);

h3 = plot(Vnew2,Vnew2.*dy2); % plots second derivative

%

text(2.3, 0.6, ’b’,’Fontsize’,16);

text(1.8, 1.2, ’{d(bV)}/{dV}’,’Fontsize’,16);

text(0.25, 1.3, ’V{d^{2}(bV)}/{dV^{2}}’,’Fontsize’,16);

axis([0 2.5 0 1.5]);

% Redefine figure properties

xlabel(’V’,’FontSize’,22);

grid on

box on

set(h1,’LineWidth’,1.5); % new thickness of plotting lines

set(h2,’LineWidth’,1.5);

set(h3,’LineWidth’,1.5);

set(gca,’FontSize’,22); % new size of tick marks on both axes
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pause

close all

Listing 5C.2.2 Program func HE11.m. MATLAB function for finding a universal rela-
tion.

function result = func_HE11(b,V)

% Function name: func_HE11.m

% Function which defines basic relation

u= V*sqrt(1-b);

J1 = BESSELJ(1,u);

J0 = BESSELJ(0,u);

%

w = V*sqrt(b);

K1 = BESSELK(1,w);

K0 = BESSELK(0,w);

lhs = J1./J0;

rhs = (w./u).*(K1./K0);

result = lhs - rhs;

Listing 5C.3 Program sellmeier.m. Plots refractive index for SiO2 using the Sellmeier
equation.

% File name: sellmeier.m

% Plot of refractive index based on Sellmeier equation

% for Si O_2

clear all

N_max = 101; % number of points for plot

lambda = linspace(0.5,1.8,N_max); % creation of lambda arguments

% between 0.5 and 1.8 microns

%

% Data for SiO_2

G_1 = 0.696749; G_2 = 0.408218; G_3 = 0.890815;

lambda_1=0.0690606; lambda_2=0.115662; lambda_3=9.900559; % in microns

%

term1 = (G_1*lambda.^2)./(lambda.^2 - lambda_1^2);

term2 = (G_2*lambda.^2)./(lambda.^2 - lambda_2^2);

term3 = (G_3*lambda.^2)./(lambda.^2 - lambda_3^2);

ref_index_sq = 1.0 + term1 + term2 + term3;

ref_index = sqrt(ref_index_sq);

%

h = plot(lambda,ref_index,’LineWidth’,1.5);

% Redefine figure properties
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xlabel(’wavelength (\mum)’,’FontSize’,14);

ylabel(’refractive index’,’FontSize’,14);

set(gca,’FontSize’,14); % size of tick marks on both axes

pause

close all

Listing 5C.4 Program disp mat.m. Determines coefficient Dmat material dispersion.
Refractive index is determined using the Sellmeier equation.

% File name: disp_mat.m

% Plots D_mat

% Material dispersion is determined using Sellmeier equation

% describing refractive index for pure and doped silica

% Data from Kasap2001, p.45 for SiO_2 - GeO_2

clear all

c_light = 3d5; % velocity of light, km/s

disp_min = -20; disp_max =20;

N_max = 101; % number of points for plot

lambda_min = 1.200; lambda_max = 1.600; % in microns

% creation of lambda arguments between 1.2 and 1.6 microns

lambda = linspace(lambda_min,lambda_max,N_max);

G_1 = 0.711040; G_2 = 0.451885; G_3 = 0.704048;

lambda_1 = 0.0642700; lambda_2 = 0.129408; lambda_3 = 9.425478;

%

term1 = (G_1*lambda.^2)./(lambda.^2 - lambda_1^2);

term2 = (G_2*lambda.^2)./(lambda.^2 - lambda_2^2);

term3 = (G_3*lambda.^2)./(lambda.^2 - lambda_3^2);

%

ref_index_sq = 1.0 + term1 + term2 + term3;

ref_index = sqrt(ref_index_sq);

%

%---------- Determination of material dispersion D_mat -------------

ttt1 = ref_index;

dy1_lam = diff(ttt1)./diff(lambda); % first derivative

lambda1 = lambda(1:length(lambda)-1);

ttt2 = dy1_lam;

dy2_lam = diff(ttt2)./diff(lambda1);

lambda2 = lambda1(1:length(lambda1)-1);

D_mat = (-lambda2.*dy2_lam/c_light)*1d9;

plot(lambda2,D_mat,’LineWidth’,1.5);

xlabel(’wavelength (\mum)’,’FontSize’,14);

ylabel(’Material dispersion (ps/km nm)’,’FontSize’,14);

set(gca,’FontSize’,14); % size of tick marks on both axes

axis([lambda_min, lambda_max, disp_min, disp_max])
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grid on

pause

close all
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6 Propagation of linear pulses

In this chapter we outline basic issues associated with the description of linear pulses.
Basic principles of two fundamental modulation formats, namely return-to-zero (RZ) and
non-return-to-zero (NRZ) modulations, will also be explained.

Formats of data transmission are one of the critical factors in optical communication
systems. We therefore have implemented several waveforms corresponding to basic mod-
ulation formats and various profiles of individual bits. Later on, some of this information
will be used to analyse performance of communication systems. We start with a summary
of the basic pulses.

6.1 Basic pulses

In this section we will review properties of the basic pulses. Basic approximations and
properties will be described. We start with rectangular pulses.

6.1.1 Rectangular pulses

The simplest pulse, namely the rectangular one, is shown in Fig. 6.1. It is described as

srect (t) =
{

s0, 0 < t < T
0, otherwise

}
(6.1)

where T is the pulse duration and s0 its magnitude. It can be represented as a Fourier series

srect (t) =
∞∑

n=1

sn sin
(nπ

T
t
)

(6.2)

where

sn =
{

0, n even
4s0
πn , n odd

(6.3)

In Fig. 6.1 we plotted three possible approximations to a rectangular pulse for n = 1,

n = 3, n = 5 corresponding to different number of terms in Eq. (6.2). One can observe that
with the increasing number of terms in Fourier expansion more accurate approximation
to a rectangular pulse is possible. MATLAB code used to create Fig. 6.1 is shown in the
Appendix, Listing 6A.1.
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Fig. 6.1 Rectangular pulse of height 1 (a.u.) approximated by varying number of terms in Fourier series expansion.

In practice, one often considers a symmetrical rectangular pulse shown in Fig. 6.3. It is
defined as

srect,symm(t) =
{

1, |t| < τ

0, |t| > τ
(6.4)

Its Fourier transform can be evaluated analytically as follows:

Srect,symm(ω) =
∫ +∞

−∞
x(t) e−iωt dt =

∫ +τ

−τ

e−iωt dt = 1

−iω
e−iωt

∣∣∣∣+τ

−τ

= 1

−iω

(
e−iωτ − eiωτ

) = 2 sin ωτ

ω
(6.5)

where we have used Euler identity. A plot of Eq. (6.5) is shown in Fig. 6.2.
To sum up the discussion of rectangular pulses, we have evaluated Fourier transform of

a rectangular pulse using MATLAB built-in functions. A plot of a symmetric rectangular
pulse and its MATLAB generated absolute value of Fourier transform are shown in Fig. 6.3.
Plots were created by MATLAB code shown in Appendix, Listing 6A.2.

6.1.2 Gaussian pulses

A Gaussian pulse is considered an accurate model of the data waveforms generated in
practical optical communication systems. The Gaussian profile is described as

sG(t) = A

σ
√

2π
e− 1

2 (
t
σ )

2

(6.6)

The pulse has an area A = P0τ0, where τ = σ
√

2π and P0 is its maximum value (at t = 0).
Its spectral function SG(ω) is obtained by Fourier transform and it is also a Gaussian
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Fig. 6.2 Fourier transform of rectangular pulse of duration τ and areaA. Point A corresponds to the frequency ν = 2/τ and
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Fig. 6.3 Rectangular pulse (left) and the absolute value of its Fourier transform determined using MATLAB functions.

function, see Fig. 6.4:

SG(ω) = Ae− 1
2 (ωσ )2

(6.7)

6.1.3 Super-Gaussian pulse

A super-Gaussian pulse is a generalization of the usual Gaussian and is

sSG(t) = A

σ
√

2π
e− 1

2 (
t
σ )

2m

(6.8)
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Fig. 6.4 Schematic illustration of Gaussian pulse in time and its Fourier transform.
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Fig. 6.5 Super-Gaussian pulses for several values ofm = 1, 2, 3, 4.

The parameter m controls the degree of edge sharpness. For m = 1 one recovers the ordinary
Gaussian pulse. For larger values of m the pulse becomes closer to a rectangular pulse, see
Fig. 6.5. (Figure generated by MATLAB code, in Appendix, Listing 6A.3.)

6.1.4 Chirped Gaussian pulse

Chirp refers to a process which changes the frequency of a pulse with time. Chirp pulses are
most commonly created during direct modulation of a semiconductor laser diode (semicon-
ductor lasers are discussed in Chapter 7). Mathematical expression for a chirped Gaussian
pulse at z = 0 is [1], [2]

s(z = 0, t) = Re

{
exp

[
−1 + iC

2

(
t

T0

)2
]

exp (−iω0t)

}

= e
− 1

2

(
t

T0

)2

cos

[
ω0t + 1

2
C

(
t

T0

)2
]

(6.9)
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Fig. 6.6 Comparison of Gaussian pulse (upper plot) and chirped Gaussian pulse (lower plot).

where T0 determines the width of the pulse, C is the chirp factor which determines the
degree of chirp of the pulse and ω0 is the carrier frequency of the pulse. s(0, t) is the
dimensionless function describing pulse.

Phase of such pulses is

φ(ω) = ω0t + 1

2
C

(
t

T0

)2

(6.10)

Change in frequency δω(t) is therefore

δω(t) = −∂φ(ω)

∂t
= ω0 + C

t

T 2
0

(6.11)

Fourier spectrum of a chirped pulse is broader compared to unchirped one. Evaluation of
the Fourier transform of (6.9) gives

s(0, ω) =
(

2πT 2
0

1 + iC

)1/2

exp

[
− ω2T 2

0

2 (1 + iC)

]
(6.12)

The spectral half-width is defined as

|s(0, ωe)|2
|s(0, 0)|2 = e−1 (6.13)

For a symmetric pulse centered at t = 0, one has �ω = ωe. Detailed calculations for
spectral half-width (point where the intensity drops 1/e) give [3] (see Problem 2)

�ω = (
1 + C2

)
T −1

0 (6.14)

Chirped Gaussian pulse is plotted in Fig. 6.6 (lower plot). For comparison, regular
Gaussian pulse for the same parameters is also shown (upper plot). The plots were obtained
using MATLAB code provided in Appendix, Listing 6A.4.
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Fig. 6.7 Schematic illustration of light-current laser characteristics at various temperatures.

6.2 Modulation of a semiconductor laser

In practical applications optical pulses are created by semiconductor laser. Typical light-
current (L-I) characteristics of the semiconductor laser are shown in Fig. 6.7. We show here
an output of power-current characteristics (L-I) for several temperatures. One can observe
a flat region to the left until the so-called threshold and then sudden increase in power.
Threshold current Ith is the forward injection current at which optical gain in the laser
cavity is equal to losses. Above the threshold, stimulated emission is the dominant process
in converting current to light; below the threshold is the light emission which is caused
by spontaneous processes with characteristics (speed, spectrum and efficiency) similar to
those from light emitting diodes (LEDs).

In Fig. 6.8 we illustrate principles of direct modulation of a semiconductor laser. It is a
simple and inexpensive process since no other components are required. The disadvantage
of direct modulation is that the resulting pulses are considerably chirped.

6.2.1 Modulation formats

Various modulation formats are often discussed in literature. For detailed analysis consult
books by Keiser [4], Liu [5], Binh [6], Ramaswami or Sivarajan [7]. Here, we discuss briefly
two important cases only as illustrated in Figs. 6.9 and 6.10.

At a digital format light pulse intensity (say) larger than zero, represents logical ONE and
its absence, logical ZERO. In the return-to-zero (RZ) format, signal drops to zero between
the pulses, see Fig. 6.10. Each bit has allocated time T . In RZ, pulses occupy half of the
time slot reserved for each bit, see Fig. 6.10. Also, power spectrum is shown. Since most of
the signal power is at the lower frequency, the RZ signal is transmitted by a system having
a bandwidth of 2

T Hz.
In the non-return-to-zero (NRZ) format, the pulses occupy entire time slot reserved for

each bit. NRZ pulses are twice as long as the RZ pulses. In NRZ modulation format the
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Fig. 6.8 Illustration of the principle of modulation in a semiconductor laser.
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Fig. 6.9 Comparison of RZ and NRZ modulation formats. Digital bit stream is: 01010.

intensity of light remains at its high value whenever a number of consecutive ONEs are
transmitted. The bandwidth is 1/T , only half of that required for RZ system.

For encoding, practical current pulse driving the semiconductor laser is assumed to be
of the form [8]

I(t) =

⎧⎪⎨⎪⎩
0 t < 0

Im [1 − exp (−t/tr)] 0 ≤ t ≤ T ′

Im exp (−(t − T )/tr) T ′ < t

(6.15)

where Im is the peak modulation, tr determines the pulse rise time, and T ′ = T for NRZ
encoding and T ′ = T/2 for RZ coding. The bias current Ibias is typically 1.1 times the laser
threshold current.
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6.2.2 Creation of waveforms

In practice, to evaluate photonic systems for some modulation formats one needs to generate
waveforms consisting of pulses of various shapes.

The generated sequence of Gaussian pulses (waveform) for some particular logical com-
bination is illustrated in Fig. 6.11. MATLAB code is provided in Appendix, Listings 6A.5
and 6A.5.1.
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Fig. 6.12 Eight-bit pattern generated in NRZ format.

Another wavefront which is used to represent driving current of semiconductor lasers in
NRZ (non-return-to-zero) format can be expressed as [9]

Jmod (t) =

⎧⎪⎪⎨⎪⎪⎩
Ibias + Im

(
1 − e−2.2t/τr

)
current bit 1, previous 0

Ibias + Ime−2.2t/τr current bit 0, previous 1
Ibias current bit 0, previous 0
Ibias + Im current bit 1, previous 1

(6.16)

Implementation of the above modulation format is shown in Appendix, Listing 6A.6 and a
typical result in Fig. 6.12.

6.3 Simple derivation of the pulse propagation equation in the
presence of dispersion

Assume the existence of a propagating electric field E(r, t) at point r and time t. It can be
Fourier decomposed as

E(r, t) = 1

2π

∫ ∞

−∞
E(r, ω) e− jωt dω (6.17)

Therefore electric field can be interpreted as an infinite sum of monochromatic waves, each
having an angular frequency ω. The inverse Fourier transform is

E(r, ω) =
∫ ∞

−∞
E(r, t) e jωt dt (6.18)
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We further assume that Fourier component E(r, ω) can be expressed as

E(r, ω) = x̂ B(0, ω) F (x, y) e jβz (6.19)

where unit vector x̂ represents the state of polarization of propagating field, B(0, ω) is the
initial amplitude of the field propagating along z-direction, F (x, y) describes the transverse
distribution of the field and β is the propagation constant. We made a similar assumption
earlier when we discussed propagation of the EM field in planar waveguides.

For the field propagating in an optical fibre, the transverse distribution F (x, y) is often
assumed to be Gaussian, namely

F (x, y) = exp

(
−π

x2 + y2

Ae f f

)
(6.20)

where Ae f f is the effective area of the fibre.
The effect of dispersion results in the frequency dependence of the propagation constant

β; i.e. β = β(ω). As a result, each frequency component in Eq. (6.17) will propagate with
a different propagation constant.

To derive propagation equation for each frequency component, write Eq. (6.19) as

E(r, ω) = E(x, y, z = 0, ω) e jβz (6.21)

From above, by direct differentiation with respect to z, one finds

∂E(r, ω)

∂z
= jβ(ω)E(r, ω) (6.22)

The above equation describes propagation of EM field with the dispersion induced, broad-
ening included. More rigorous derivation of the above equation, starting from Maxwell’s
equations, will be performed in the next section.

Propagation constant β(ω) in terms of the frequency dependent mode index n(ω) is [3]

β(ω) = n(ω)
ω

c
(6.23)

It is customary to expand β(ω) around the centre frequency of the pulse ω0 in a Taylor
series

β(ω) = β0 + β1 (ω − ω0) + 1

2
β2 (ω − ω0)

2 + 1

6
β3 (ω − ω0)

3 (6.24)

where βi = ∂ iβ

∂ωi

∣∣∣
ω=ω0

. Expansion up to the third order is sufficient to describe typical effects

existing in optical fibre. More practical expressions for expansion coefficients are [3]

β1 = 1

c

[
n(ω) + ω

dn(ω)

dω

]
= ng

c
= 1

vg
(6.25)

where ng is the group index and vg group velocity. For coefficient β2 one finds

β2 =∂2β(ω)

∂ω2
= ∂β1

∂ω
= 1

c

[
2

dn(ω)

dω
+ ω

d2n(ω)

dω2

]
(6.26)
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Coefficient β2 is related to dispersion parameter D as

D = 1

L

dτ

dλ
= −2πc

λ2
β2 (6.27)

Here τ is the group delay through a fibre of length L, and λ is the wavelength. Units of
parameter D are [ ps

nm·km ].
To account for parameter β3 in practice, the so-called dispersion slope S is introduced:

S = dD

dλ
(6.28)

Parameter S describe the variation of D with the wavelength. Units of it are [ ps
nm2·km ].

6.4 Mathematical theory of linear pulses

Here, we will outline a full derivation of the equation describing linear pulses based on
Maxwell equations. This more formal derivation illustrates needed approximations.

Maxwell’s equations were introduced in Chapter 3; for optical fibre where there is no
flow of current and no free charges these are

∇ × E = −∂B

∂t
, ∇ × H = ∂D

∂t
(6.29)

and

∇ · D = 0, ∇ · B = 0 (6.30)

Constitutive relations are expressed as

D = ε0E + P, B = μ0H + M (6.31)

Here P is polarization which is divided into linear and nonlinear parts:

P(r, t) = PL(r, t) + PNL(r, t) (6.32)

For a nonmagnetic medium such as fibre, the magnetization M = 0. In this chapter we
discuss only linear effects.

Linear polarization is related to electric field as

PL(r, t) = ε0

∫ ∞

−∞
χ(1)(t − t ′) E(r, t ′) dt ′ (6.33)

Fourier transform and its inverse are introduced as

E(r, ω) =
∫ ∞

−∞
E(r, t) eiωtdt (6.34)

E(r, t) = 1

2π

∫ ∞

−∞
E(r, ω) eiωt dω (6.35)
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Fourier transformation of linear polarization, Eq. (6.33) gives

PL(r, ω) =
∫ ∞

−∞
PL(r, t) eiωtdt

= ε0

∫ ∞

−∞

∫ ∞

−∞
χ(1)(t − t ′) E(r, t ′) eiωt dt ′dt

= ε0

∫ ∞

−∞

∫ ∞

−∞
χ(1)(t ′′) E(r, t ′) eiωt ′′eiωt ′dt ′dt ′′

= ε0

∫ ∞

−∞
dt ′E(r, t ′) eiωt ′

∫ ∞

−∞
dt ′′χ(1)(t ′′) eiωt ′′

= ε0 χ(1)(ω) E(r, ω) (6.36)

where we have made change of variables t − t ′ = t ′′. χ(1)(ω) is the Fourier transform of
the susceptibility χ(1)(t)

χ (1)(ω) =
∫ ∞

−∞
dtχ(1)(t) eiωt (6.37)

To derive wave equation take ∇ × . . . operation of the first Maxwell’s equation and use the
second Maxwell’s equation and constitutive relations. In a few steps, one obtains

∇ × ∇ × E(r, t) = − ∂

∂t
∇ × B(r, t)

= − ∂

∂t
μ0∇ × H(r, t)

= −μ0
∂2D(r, t)

∂t2

= −μ0ε0
∂2E(r, t)

∂t2
− μ0

∂2P(r, t)

∂t2

In the linear regime

∇ × ∇ × E(r, t) = −μ0ε0
∂2E(r, t)

∂t2
− μ0

∂2PL(r, t)

∂t2

Using mathematical identity

∇ × ∇ × E = ∇ (∇ · E) − ∇2E

and third Maxwell’s equation (∇ · D = ε∇ · E = 0), one finally obtains

∇2E(r, t) + 1

c2

∂2E(r, t)

∂t2
+ μ0

∂2PL(r, t)

∂t2
= 0 (6.38)

The above is a linear equation in field E(r, t). Taking Fourier transform gives

∇2E(r, ω) + ω2

c2
E(r, ω) + μ0ω

2PL(r, ω) = 0 (6.39)

Finally, substituting the result in (6.36) for linear polarization gives the wave equation in
the frequency domain

∇2E(r, ω) + ε(ω)
ω2

c2
E(r, ω) = 0 (6.40)

The above three-dimensional wave equation will be developed in one dimension next.
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6.4.1 One-dimensional approach

A one-dimensional wave equation (in time domain) for a linear medium with zero dispersion
is

∂2E(z, t)

∂z2
− μ0ε0n2

0

∂2E(z, t)

∂t2
= 0 (6.41)

where n0 is refractive index which in the absence of dispersion is frequency independent.
It is related to propagation constant β0 as

β0 = n0k0 (6.42)

The wave equation describes pulses with central frequency ω0. The following relation holds:

k0 = ω0
√

μ0ε0 (6.43)

Solution of the wave equation which describes linear pulse is

E(z, t) = A(z, t) ei(ω0t−β0z) (6.44)

where A(z, t) is the pulse envelope. In the following we will work within slowly varying
envelope approximation (SVEA), which is based on the following approximations:∣∣∣∣∂2A(z, t)

∂z2

∣∣∣∣ �
∣∣∣∣β0

∂A(z, t)

∂z

∣∣∣∣
and ∣∣∣∣∂2A(z, t)

∂t2

∣∣∣∣ �
∣∣∣∣ω0

∂A(z, t)

∂t

∣∣∣∣
One needs to evaluate derivatives appearing in Eq. (6.41) using solution given by Eq. (6.44)
and then apply SVEA. The resulting linear wave equation describes pulses propagating
without dispersion and it is

∂A(z, t)

∂z
+ β0

ω0

∂A(z, t)

∂t
= 0 (6.45)

In the presence of dispersion it is convenient to represent pulse in terms of Fourier compo-
nents. Each such component travels with different velocity.

Taking Fourier transformation of the original pulse described by Eq. (6.44) gives

E(z, t) = 1

2π

∫ ∞

−∞
E(z, ω) eiωtdω (6.46)

E(z, ω) describes propagation of spectral component with angular frequency ω inside the
fibre as follows [1]:

E(z, ω) = E(0, ω) e−iβz (6.47)

Combining Eqs. (6.44), (6.34) and (6.47) gives

A(z, t) ei(ω0t−β0z) = 1

2π

∫ ∞

−∞
E(0, ω) e−iβz eiωtdω
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From the above, the expression for pulse envelope A(z, t) is

A(z, t) = 1

2π

∫ ∞

−∞
E(0, ω) ei(ω−ω0 )t e−i(β−β0 ) zdω (6.48)

Next, let us introduce �ω = ω − ω0 and assume �ω � ω0.
Pulse broadening results from frequency dependence of the propagation constant β; i.e.

β = β(ω). Because of �ω � ω0, it is customary to expand β around frequency ω0 as
follows [the same equation as (6.24)]:

β(ω) = β0 + β1�ω + 1

2
β2(�ω)2 + 1

6
β3(�ω)3 + . . . (6.49)

where higher order terms are neglected. The following notation has been introduced:

β0 = β(ω0), β1 = dβ

dω

∣∣∣
ω=ω0

, β2 = d2β

dω2

∣∣∣
ω=ω0

, β3 = d3β

dω3

∣∣∣
ω=ω0

. Substituting the above

expansion into Eq. (6.48) gives

A(z, t) = 1

2π

∫ ∞

−∞
Ẽ(0, ω) ei�ωt e−i�ωβ1ze−i(�ω)2 1

2 β2ze−i(�ω)3 1
6 β3zdω

The above expression will be used to evaluate derivatives ∂A(z,t)
∂z and ∂A(z,t)

∂t . One finds

∂A(z, t)

∂t
= 1

2π

∫ ∞

−∞
Ẽ(0, ω) i�ω ei�ωt e−i�ωβ1ze−i(�ω)2 1

2 β2ze−i(�ω)3 1
6 β3zdω (6.50)

and

∂A(z, t)

∂z
= 1

2π

∫ ∞

−∞
Ẽ(0, ω)(−i�ωβ1) ei�ωt e−i�ωβ1ze−i(�ω)2 1

2 β2ze−i(�ω)3 1
6 β3zdω

+ 1

2π

∫ ∞

−∞
Ẽ(0, ω)

[
−i

1

2
(�ω)2β2

]
ei�ωt e−i�ωβ1ze−i(�ω)2 1

2 β2ze−i(�ω)3 1
6 β3zdω

+ 1

2π

∫ ∞

−∞
Ẽ(0, ω)

[
−i

1

6
(�ω)3β3

]
× ei�ωt e−i�ωβ1ze−i(�ω)2 1

2 β2ze−i(�ω)3 1
6 β3zdω (6.51)

Terms on the right hand side of the above equation can be expressed in terms of the time
derivatives as follows:
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Ẽ(0, ω)

[
−i

1

2
(�ω)2β2

]
ei�ωt e−i�ωβ1ze−i(�ω)2 1

2 β2ze−i(�ω)3 1
6 β3zdω

= i
1

2
β2

∂2A(z, t)

∂t2

1

2π

∫ ∞

−∞
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Using the above replacements in Eq. (6.51) finally gives

∂A(z, t)

∂z
= −β1

∂A(z, t)

∂t
− i

1

2
β2

∂2A(z, t)

∂t2
+ 1

6
β3

∂3A(z, t)

∂t3
(6.52)

This is the basic equation which describes pulse evolution in the linear regime in the
presence of dispersion. Its generalization to include the nonlinear effect (Kerr effect) which
describes optical solitons will be discussed in Chapter 15.

In the absence of dispersion, i.e. when β2 = β3 = 0, the optical pulse propagates without
changing its shape. In such case pulse envelope changes as A(z, t) = A(0, t − β1z).

The general equation describing pulse propagation can be simplified by going to a
reference frame moving with the pulse. The transformation to the new coordinates is

t ′ = t − β1z) and z′ = z (6.53)

In the reference frame moving with the pulse, Eq. (6.52) takes the form

∂A(z′, t ′)
∂z′ + i

2
β2

∂2A(z′, t ′)
∂t ′2

− 1

6
β3

∂3A(z′, t ′)
∂t ′3

(6.54)

The above equation found many applications which have been discussed extensively, see
[3], [1], [9].

6.5 Propagation of pulses

6.5.1 Analytical description of the propagation of a chirp Gaussian pulse

Pulse behaviour is described by the Eq. (6.54) derived previously. For β3 = 0 the equation
is

∂A

∂z′ + i

2
β2

∂2A

∂t ′2
= 0

and pulse evolution can be determined analytically. The solution is

A(z, t) = 1

2π

∫ +∞

−∞
A(0, ω) e

i
2 β2ω

2z−iωtdω (6.55)

In the solution, the initial Gaussian pulse A(0, ω) is given by Eq. (6.12). Substituting
Eq. (6.12) into (6.55) and evaluating the Gaussian integral gives

A(z, t) = T0[
T 2

0 − iβ2z (1 + iC)
]1/2

exp

{
− (1 + iC) t2

T 2
0 − iβ2z (1 + iC)

}
(6.56)

The above result defines new pulse width T1 for a propagating pulse at position z. Its value
is

T1

T0
=
[(

1 + Cβ2 z

T 2
0

)2

+
(

β2 z

T 2
0

)2
]1/2

(6.57)

Evolution of chirped and unchirped pulses is shown in Fig. 6.13. Consult listing 6A.7
for MATLAB code.
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Fig. 6.13 Evolution of pulse width as a function of normalized distance z/LD for chirped and unchirped pulses. Dispersian
length is defined by Eq. (15.14).

6.5.2 Numerical method using Fourier transform

We finish this chapter by outlining the numerical method of using Eq. (6.54) to describe
propagation of a Gaussian pulse (and also a super-Gaussian pulse) in the presence of
dispersion. The method consists of the following steps.

1. The single pulse p = exp(−t2/T0) is used with sampling period of T = 0.08s in the
time domain. (If needed it can be plotted using plot(t, p) MATLAB function.)

2. The Fourier transform of this single pulse is found using P = f f tshi f t( f f t(p)) code
where p is in time domain and P is in the frequency domain.

3. The frequency domain pulse is sampled using sampling frequency =1/64. The solution
in frequency domain is found by multiplying Fourier transform of single pulse and transfer
function H (ω) where spectral function is

H (ω) = exp
[(

−α

2
− i

2
· β2 · ω2 − i

6
· β3 · ω3

)
· L
]

(6.58)

where α are losses, L is the propagation length and β2 and β3 are previously defined
dispersion parameters.

4. The solution in time domain is obtained by using inverse Fourier transform
i f f t( f f tshi f t(P prop)) and it is plotted. Consult Listings 6A.8 and 6A.8.1 for MAT-
LAB code.

The propagation of Gaussian pulse over a distance of 4000 km is shown in Fig. 6.14 for
the following parameters: α = 0, β2 = 60 ps2/km and β3 = 0.01 ps3/km. MATLAB code
is provided in Appendix, Listings 6A.8.1 and 6A.8.2.
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Fig. 6.14 Dispersion induced broadening of a Gaussian pulse.β2 = 60 ps2/km andβ3 = 0.01 ps3/km.
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Fig. 6.15 Evolution of a super-Gaussian pulse withm = 3.β2 = 0 andβ3 = 0.01 ps3/km.

In Fig. 6.15 we show propagation of a super-Gaussian pulse with m = 3 over the same
distance with β2 = 0. The remaining parameters remain unchanged.

6.5.3 Fourier transform split-step method

This method will be extensively discussed in later Chapter 12 describing beam propagation
method (BPM). Here we use it to illustrate propagation of Gaussian pulse. First, we briefly
describe the method.
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Table 6.1 Values of parameters.

Name Symbol Value

Second-order dispersion β2 60 ps/nm−1 km−1

Third-order dispersion β3 0.01 ps/nm−1 km−1

Losses α 0
Width of Gaussian pulse w0 20 ps

We use the linear Schroedinger equation derived previously, Eq. (6.54). Taking Fourier
transform results in

∂Ã(z, ω)

∂z
= − iβ2

2
(−iω)2 Ã(z, ω) + β3

6
(−iω)3 Ã(z, ω) − α

2
Ã(z, ω) (6.59)

where α describes losses. Fourier transform is defined in a usual way as

Ã(z, ω) =
∫ +∞

−∞
A(z, t) eiωt dt

Eq. (6.59) can be expressed as

∂Ã(z, ω)

∂z
= P · Ã(z, ω) (6.60)

where the propagator operator P is defined as

P = iβ2

2
ω2 + iβ3

6
ω3 − α

2
(6.61)

Eq. (6.60) can be integrated over small distance h along the z-axis with the result

Ã(z + h, ω) = eP·h Ã(z, ω) (6.62)

The above equation is directly implemented in MATLAB. In Table 6.1 we summarized
values used in simulations.

The results are shown in Figs. 6.16 and 6.17. We show evolution of the Gaussian pulse
and also a three-dimensional view of the evolving pulse. MATLAB code is provided in
Appendix, Listing 6A.9.

6.6 Problems

1. Evaluate Fourier series for rectangular pulse represented by Eq. (6.1). Determine
coefficients sn.

2. Evaluate Fourier transform of chirped Gaussian pulse and its spectral half-width �ω

as given by Eq. (6.14).
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Fig. 6.16 Evolution of Gaussian pulse by Fourier transform split-step method.
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Fig. 6.17 Three-dimensional view of the evolution of the Gaussian pulse shown in Fig. 6.16.

Appendix 6A: MATLAB listings

In Table 6.2 we provide a list of MATLAB files created for Chapter 6 and a short description
of each function.
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Table 6.2 List of MATLAB functions for Chapter 6.

Listing Function name Description

6A.1 rp.m Creates approximations to rectangular pulse
6A.2 FT rp.m Evaluates FT of rectangular pulse using analytical expression and

also MATLAB functions
6A.3 super gauss.m Plots super Gaussian pulses
6A.4 gauss chirp.m Plots chirp Gaussian pulses
6A.5.1 ptrain.m Generates sequence of Gaussian pulses
6A.5.2 f gauss.m Function used by ptrain.m
6A.6 bit gen.m Illustrates NRZ modulation format
6A.7 pulse evol.m Evolution of pulses (chirped and unchirped)
6A.8.1 pdisp.m Width of Gaussian pulse with dispersion
6A.8.2 gauss m.m Function used by pdisp.m. Defines Gaussian pulses
6A.9 sslg.m Evolution of Gaussian pulse by Fourier transform split-step method

Listing 6A.1 Function rp.m. Function which draws rectangular pulse and calculates
approximations based on Fourier series for three values of n.

% File name: rp.m (rectangular pulse)

clear all

N_max = 100; % number of points for plot

% Pulse characteristics

s_0 = 1.0; % pulse amplitude

t_min = 2; % start of pulse

t_max = 10.0; % end of pulse

A = 0.5;

dt = 1/N_max;

t = 0:dt:2*t_max;

x = A*(sign(t-t_min)-sign(t-t_max)); % creates rectangular pulse

hold on

h = plot(t,x);

set(h,’LineWidth’,2);

axis([0 1.2*t_max -0.5 1.7]); % plots rectangular pulse

%

s = 0.0;

for n = [1 3 5]

s = s + 4*s_0/(pi*n)*sin(n*pi*(t-t_min)./(t_max-t_min));

h = plot(t,s);

set(h,’LineWidth’,2);

end

axis([0 1.2*t_max -0.5 1.7]);

xlabel(’time (a.u.)’,’FontSize’,14); % size of x label

ylabel(’s (a.u)’,’FontSize’,14); % size of y label

set(gca,’FontSize’,14); % size of tick marks on both axes
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% Add description

text(5.5, 1.4, ’n = 1’,’Fontsize’,13)

text(7.0, 1.4, ’n = 3’,’Fontsize’,13)

text(8.5, 1.4, ’n = 5’,’Fontsize’,13)

pause

close all

Listing 6A.2 Function FT rp.m. Function plots rectangular pulse, its Fourier transform
obtained analytically, and also evaluates its Fourier transform using MATLAB built-in
functions.

% File name: FT_rp.m

% Plots symmetric rectangular pulse of duration tau and its

% Fourier transform

clear all

N_max = 1000; % number of points for plot

% Pulse characteristics

tau = 10.0; % 1/2 pulse width

A = 0.5; % pulse height

% Plotting Fourier transform of rectangular pulse using analytical formula

omega = linspace(-20/tau, 20/tau, N_max); % creation of frequency argument

S = 2*A*sin(tau.*omega)./omega;

h = plot(omega,S);

set(h,’LineWidth’,1.5); % thickness of plotting lines

grid

xlabel(’frequency (a.u.)’,’FontSize’,14);

ylabel(’Fourier transform (S) (a.u.)’,’FontSize’,14);

set(gca,’FontSize’,14); % size of tick marks on both axes

text(0.65, 0, ’A’,’Fontsize’,13);

text(1, 0, ’B’,’Fontsize’,13);

pause

close all

%---- Plotting rectangular pulse -----------------------------------------

dt = 1/N_max;

t = -6*tau:dt:6*tau; % Creation of points for pulse plotting

s = A*(sign(t+tau)-sign(t-tau));

h = plot(t,s);

set(h,’LineWidth’,1.5); % thickness of plotting lines

axis([-2*tau 2*tau 0 2]);

xlabel(’time (a.u.)’,’FontSize’,14); ylabel(’s_r (a.u.)’,’FontSize’,14);

set(gca,’FontSize’,14); % size of tick marks on both axes

pause

close all

%----- Plotting its Fourier transform using Matlab functions ----------

y = fft(s); % discrete Fourier transform

SM = fftshift(y); % shift zero-frequency component to center of spectrum

N = length(SM);
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k = -(N-1)/2:(N-1)/2;

f = abs(SM);

h = plot(k,f);

set(h,’LineWidth’,1.5); % thickness of plotting lines

axis([-4*tau 4*tau -5000 30000]);

ylabel(’Abs FT of rectangular pulse (a.u)’,’FontSize’,14);

grid

set(gca,’FontSize’,14); % size of tick marks on both axes

pause

close all

Listing 6A.3 Function super gauss.m. Plots super-Gaussian pulses for several values of
parameter m.

% File name: super_gauss.m

% Plots super-Gaussian pulses

clear all

A = 1;

sigma = 30;

N = 300.0;

t = linspace(-50,50,N);

hold on

for m = [1 2 3 4]

p = A/(sigma*sqrt(2*pi))*exp(-t.^(2*m)/(sigma^(2*m)));

h = plot(p);

set(h,’LineWidth’,1.5); % thickness of plotting lines

end

xlabel(’time’,’FontSize’,14); ylabel(’amplitude’,’FontSize’,14);

set(gca,’FontSize’,14); % size of tick marks on both axes

pause

close all

Listing 6A.4 Function gauss chirp.m. Generates Gaussian and chirp Gaussian pulses.

% File name: gauss_chirp.m

% Creation of Gaussian pulse and also chirped Gaussian pulse

clear all;

%

t_zero = 20.0; % center of incident pulse

width = 6.0; % width of the incident pulse

C = 15; % chirped parameter

%

N = 300.0;

time = linspace(0,50,N);

pulse = exp(-0.5*((t_zero - time)/width).^2); % Gaussian pulse
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pulse_ch = exp(-(0.5+1i*C)*((t_zero - time)/width).^2); % chirped pulse

%

subplot (2,1,1), h = plot(time,pulse);

set(h,’LineWidth’,1.5); % thickness of plotting lines

title(’Gaussian pulse’,’FontSize’,14)

xlabel(’time’,’FontSize’,14); ylabel(’amplitude’,’FontSize’,14);

set(gca,’FontSize’,14); % size of tick marks on both axes

%

subplot (2,1,2), h = plot(time,pulse_ch);

set(h,’LineWidth’,1.5); % thickness of plotting lines

title(’Chirped Gaussian pulse’,’FontSize’,14)

xlabel(’time’,’FontSize’,14); ylabel(’amplitude’,’FontSize’,14);

set(gca,’FontSize’,14); % size of tick marks on both axes

pause

close all

Listing 6A.5.1 Function ptrain.m. Generates a train of pulses.

% File name: ptrain.m

% Generates train of pulses

% Allows for overlap of pulses

clear all

bits = [0 1 0 1 1 0]; % definition of logical pattern

T = 1d-9; % pulse period [s]

num_pulses = length(bits); % number of pulses

N = 1000; % number of time points

width = 0.3*T; % width of pulse

time=linspace(0,num_pulses*T,N);

signal = zeros(1,N);

pulses = zeros(num_pulses,N);

%

t_0= T/2; %position of peak of first impulse in signal

for i=1:num_pulses

if (bits(i)==1)

pulses(i,:)= fgauss(time,width,t_0);

signal = signal + fgauss(time,width,t_0);

end

t_0 = t_0 + T;

end

%

subplot (2,1,1); h = plot(time,pulses);

set(h,’LineWidth’,1.5); % thickness of plotting lines

xlabel(’time’,’FontSize’,14); % size of x label

title(’Individual pulses’,’FontSize’,14)

set(gca,’FontSize’,14); % size of tick marks on both axes

subplot (2,1,2); h = plot(time,signal);

set(h,’LineWidth’,1.5); % thickness of plotting lines
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xlabel(’time’,’FontSize’,14); % size of x label

set(gca,’FontSize’,14); % size of tick marks on both axes

title(’Total signal’,’FontSize’,14)

pause

close all

Listing 6A.5.2 Function fgauss.m. Function used by program ptrain.m. Function creates
individual Gaussian pulses.

function pulse = fgauss(time,width,t_0)

% function pulse = wave_gauss(t,T_period)

% Generates individual Gaussian pulse used in the creation of

% train of pulses

pulse = exp(-0.5*((t_0 - time)/width).^2);

Listing 6A.6 Function bits gen.m. Function generates an 8-bits long bit pattern.

% File name: bits_gen.m

%-----------------------------------------------------------------

% Purpose:

% Generates 8-bits long pattern

% generates single bit which is then repeated 8 times

% Source

% R.Sabella and P.Lugli

% "High Speed Optical Communications"

% Kluwer Academic Publishers 1999

% p.32

%*********************************

%

clear all

bits = [0 1 0 0 1 1 0 1]; % Definition of logical pattern

%

T_period = 1d-9; % pulse period [s]

I_bias = 2; % mA

I_m = 3; % mA

tau_r = 0.2*T_period; % rise time

%

% Generation of current pattern corresponding to bit pattern

I_p = 0;

N_div = 50; % number of divisions within each bit interval

t = linspace(0, T_period, N_div); % the same time interval is

% generated for each bit

%******** first bit *************************************

if bits(1)==0, I_p_1 = I_bias + 0*t;

elseif bits(1)==1, I_p_1 = I_bias + I_m + 0*t;

end

%------------------------------------------
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% Generates single, arbitrary bit

%t = linspace(0, T_period, N_div);

temp_I = I_p_1;

%

number_of_bits = length(bits);

%

for k = 2:number_of_bits

if bits(k)==1 && bits(k-1)==0

I_p = I_bias + I_m*(1 - exp(-2.2*t./tau_r));

elseif bits(k)==0 && bits(k-1)==1

I_p = I_bias + I_m*exp(-2.2*t./tau_r);

elseif bits(k)==0 && bits(k-1)==0

I_p = I_bias + 0*t;

else bits(k)==1 && bits(k-1)==1

I_p = I_bias + I_m + 0*t;

end

I_p = [temp_I,I_p];

temp_I = I_p;

end

temp_t = t;

for k = 2:number_of_bits

t = linspace(0, T_period, N_div);

t = [temp_t,(k-1)*T_period+t];

temp_t = t;

end

%

x_min = 0;

x_max = max(t);

y_min = I_bias;

y_max = I_bias + 1.2*I_m;

%

h = plot(t,I_p);

grid on

set(h,’LineWidth’,1.5); % thickness of plotting lines

xlabel(’time [s]’,’FontSize’,14); % size of x label

ylabel(’Current [mA]’,’FontSize’,14); % size of y label

set(gca,’FontSize’,14); % size of tick marks on both axes

axis([x_min x_max y_min y_max])

pause

close all

Listing 6A.7 Function pulse evol.m. Function describes evolution width of a chirped
pulse.

% File name: pulse_evol.m

% Describes evolution of pulse width as a function of normalized
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% distance for chirped and unchirped pulses

%

clear all

% Data

beta_2 = -20; % [-20ps^2/km] at 1.55 microns

T_0 = 200; % [ps] = 0.2 ns, bit rate 10Gb/s

L_D = (T_0^2)/abs(beta_2);

N_max = 401; % number of points for plot

x = linspace(0,1.5,N_max); % normalized distance; x = z/L_D

%

hold on

for C = [-1 0 1 2] % chirped coefficient

T = sqrt((1+sign(beta_2)*C*x).^2 + (x).^2);

h = plot(x,T);

set(h,’LineWidth’,1.5); % thickness of plotting lines

end

% Redefine figure properties

ylabel(’T_1/T_0’,’FontSize’,14)

xlabel(’z/L_D’,’FontSize’,14)

text(0.35, 1.65, ’C = -1’,’Fontsize’,14)

text(0.35, 1.2, ’C = 0’,’Fontsize’,14)

text(0.35, 0.8, ’C = 1’,’Fontsize’,14)

text(0.35, 0.55, ’C = 2’,’Fontsize’,14)

set(gca,’FontSize’,14); % size of tick marks on both axes

pause

close all

Listing 6A.8.1 Function pdisp.m. Function describes the evolution of a Gaussian pulse
with dispersion.

% File name: pdisp.m

% Propagation of Gaussian pulse in the presence of dispersion

% using Fourier transform

clear all;

% Creation of input pulse

T_0 = 1.0; % pulse width

T_s = 0.08; % sampling period

t = -4:T_s:4-T_s; % creation of time interval

p = gauss_m(t,T_0);

P=fftshift(fft(p)); % Fourier transform of the original pulse

Fs=1/64; % sampling frequency

N=length(t); % length of time interval

f = -N/2*Fs:Fs:N/2*Fs-Fs; % frequency range

omega = 2*pi*f;

% Parameters of optical fiber
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alpha = 0.0; % losses

beta_2 = 60.0; % coefficient beta_2 [ps^2/km]

%beta_2 = 0.0; % coefficient beta_2 [ps^2/km]

beta_3 = 0.01; % coefficient beta_3 [ps^3/km]

% Transfer function of optical fiber

distance = 4000;

H=exp((alpha/2+1i/2*beta_2*omega.^2+1i/6*beta_3*omega.^3)*distance);

%

P_prop = P.*H; % Fourier transform of final pulse

p_prop = ifft(fftshift(P_prop)); % time dependence of final pulse

p_plot = abs(p_prop).^2;

%

h = plot(t, p, ’.’, t, p_plot);

set(h,’LineWidth’,1.5); % thickness of plotting lines

xlabel(’time’,’FontSize’,14); % size of x label

ylabel(’Arbitrary units’,’FontSize’,14); % size of y label

set(gca,’FontSize’,14); % size of tick marks on both axes

legend(’original pulse’, ’transmited pulse’)

pause

close all

Listing 6A.8.2 Function gauss m.m. Function used by pdisp.m.

function p = gauss_m(t,T_0)

% Definition of Gaussian and super-Gaussian pulses

m = 1; % m=1, usual Gauss; m=3, super-Gauss

%m = 3;

p = exp(-t.^(2*m)/(2*T_0^(2*m)));

Listing 6A.9 Function sslg.m. Function creates a Gaussian pulse in the time domain
which is subsequently Fourier transformed to the frequency domain and then propagated
over a linear system with dispersion characterized by β2 and β3.

% File name: sslg.m

% Calculates and plots the evolution of a Gaussian pulse in optical fiber

% using Fast Fourier Transform split-step method with linear terms only

clear all

% Input parameters

N= 32; % number of points along time axis

T_domain = 100; % total time domain kept [in ps]

beta_2 = 2; % dispersion coefficient [in ps/nm-km]

beta_3 = 1.01;

%

Delta_t = T_domain/N; % node spacing in time

Delta_om = 2*pi/T_domain; % node spacing in radial frequency

t = Delta_t*(-N/2:1:(N/2)-1); % array of time points

omega = Delta_om*(-N/2:1:(N/2)-1); % array of radial frequency points
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t_FWHM_0 = 20; % initial pulse FWHM [in ps]

P_0 = 1; % initial peak power [in mW]

A_0 = sqrt(P_0); % initial amplitude of the Gaussian

T_0 = t_FWHM_0/(2*sqrt(log(2))); % initial pulse standard deviation

gauss = A_0*exp(-t.^2/(2*T_0^2)); % initial Gauss pulse in time

%

L_D = 200;

z_plot = [0 0.25 0.5 0.75 1.0]*L_D; % z-values to plot [in km]

gauss_F = fftshift(abs(fft(gauss)));% initial Gauss in frequency

z = 0; % starting distance

n = 0; % controls stepping

hold on

for z_val = z_plot % for selected z-values

n = n + 1; % creates new step

% P -propagator function

P = exp(((1j/2)*beta_2*(omega.^2)+(1j/6)*beta_3*(omega.^3))*z_val);

u_F_z = gauss_F.*P; % propagation at point z

u_z = ifft(u_F_z,N); % takes inverse Fourier transform

u_abs_z = abs(u_z).^2;

u = fftshift(u_abs_z); % shifts frequency components

u_3D(:,n) = u’; % create array for 3D plot

plot(t,u,’LineWidth’,1.5)

end

grid on

xlabel(’time [ps]’,’FontSize’,14); ylabel(’amplitude’,’FontSize’,14);

set(gca,’FontSize’,14); % size of tick marks on both axes

pause

close all

%

% Make 3D plot

for k = 1:1:length(z_plot) % choosing 3D plots every step

y = z_plot(k)*ones(size(t)); % spread out along y-axis

plot3(t,y,u_3D(:,k),’LineWidth’,1.5)

hold on

end

xlabel(’time [ps]’,’FontSize’,14); ylabel(’distance [km]’,’FontSize’,14);

set(gca,’FontSize’,14); % size of tick marks on both axes

grid on

pause

close all
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7 Optical sources

In this chapter, we will give a basic introduction to optical sources with the main emphasis on
semiconductor lasers. The bulk of our description is based on the rate equations approach.
We start with a general overview of lasers.

7.1 Overview of lasers

Generic laser structure is shown in Fig. 7.1 [1], [2]. It consists of a resonator (cavity),
here formed by two mirrors, and a gain medium where the amplification of electromagnetic
radiation (light) takes place. A laser is an oscillator analogous to an oscillator in electronics.
To form an oscillator, an amplifier (where gain is created) and feedback are needed.
Feedback is provided by two mirrors which also confine light. One of the mirrors is
partially transmitting which allows the light to escape from the device. There must be
an external energy provided into the gain medium (a process known as pumping). Most
popular (practical) pumping mechanisms are by optical or electrical means.

Gain medium can be created in several ways. Conceptually, the simplest one is the
collection of gas molecules. Such systems are known as gas lasers. In a gas laser one can
regard the active medium effectively as an ensemble of absorption or amplification centers
(e.g. like atoms or molecules) with only some electronic energy levels which couple to the
resonant optical field. Other electronic states are used to excite or pump the system. The
pumping process excites these molecules into a higher energy level.

A schematic of a pumping cycle of a typical laser is shown in Fig. 7.2. The system
consists of a ground state level (here labelled as ‘0’), two levels with energies E1 and E2 and
a band labelled as ‘3’. The system is pumped by an external source with the frequency ω30.
Fast decay takes place between band ‘3’ and energy level ‘2’. In this way the population
inversion is achieved (occupancy of level ‘2’ is larger than level ‘1’), and at some point
laser action can take place and light with frequency ω21 can be emitted.

The system consisting of level ‘2’ and ‘1’ can be further isolated. Popular visualization
of such systems is known as a two-level system (TLS), see Fig. 7.3. Only two energies (out
of many in the case of a molecule) are selected and the transitions are considered within
those energies. As illustrated, three basic processes are possible: absorption, stimulated
emission and spontaneous emission.

Such TLS are met often in Nature. Generally, for an atomic system, in the case under
consideration, we can always separate just two energy levels, upper level and ground state,
thereby forming TLS.

167
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Resonator (two mirrors)

Gain
medium

Pump

Fig. 7.1 Generic laser structure: two mirrors with a gain medium in between. The twomirrors form a cavity, which confines the
light and provides the optical feedback. One of the mirrors is partially transmitted and thus allows light to escape. The
resulting laser light is directional, with a small spectral bandwidth.
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Fig. 7.2 Pumping cycle of a typical laser.
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Fig. 7.3 Illustration of possible transitions in two-level system.

As mentioned above, an electron can be excited into the upper level due to external
interactions (for lasers, process known as pumping). Electrons can lose their energies
radiatively (emitting photons) or non-radiatively, say by collisions with phonons.

For laser action to occur, the pumping process must produce population inversion, mean-
ing that there are more molecules in the excited state (here, upper level with energy E2)
than in the ground state. If the population inversion is present in the cavity, incoming light
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Fig. 7.4 Illustration of the notation of electron transitions in a TLS.

can be amplified by the system, see Fig. 7.3b where one incoming photon generates two
photons at the output.

The way how TLS is practically utilized results in various types of lasers; like gaseous,
solid state, semiconductor. Also, different types of resonators are possible which will be
discussed in subsequent sections.

7.1.1 Transitions in a TLS

Assume the existence of two energy levels E1 and E2 (forming TLS) which are occupied
with probabilities N1 and N2. Also introduce:

A21 the probability of spontaneous emission
B21 the probability of stimulated emission
B12 the probability of absorption.

The notation associated with those processes is illustrated in Fig. 7.4.
We introduce ν21 = (E2 − E1)/h and ρ(ν21) is the density of photons with frequency

ν21. Coefficients A21, B21, B12 are known as Einstein coefficients. The density of photons
ρ(ν21) of frequency ν21 can be determined from the Planck’s distribution of the energy
density in the black body radiation as [2]

ρ(ν21) = 8πhν3
21

c3

1

exp hν21
kT − 1

(7.1)

For the laser we require that amplification be greater than absorption. Therefore, the
number of stimulated transitions must be greater than the absorption transitions. Thus the
net amplification can be created. In the following we will determine the condition for
the net amplification in such systems [2].

The change in time of the occupancy of the upper level is

dN2

dt
= −A21N2 − B21N2ρ(ν21) + B12N1ρ(ν21) (7.2)

First term on the right hand side describes spontaneous emission; second term is responsible
for stimulated emission and the last one for absorption. In thermal equilibrium which
requires that dN2

dt = 0, using Eq. (7.1) one obtains

N2

{
B21

8πhν3
21

c3
(
exp hν21

kT − 1
) + A21

}
= N1B12

8πhν3
21

c3
(
exp hν21

kT − 1
) (7.3)
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Fig. 7.5 Schematic illustration of the amplification in a Fabry-Perot (FP) semiconductor laser with homogeneously distributed
gain.

Next, assume that N1 and N2 are given by the Maxwell-Boltzmann statistics; i.e.

N1

N2
= exp

(
−hν21

kT

)
(7.4)

Substitute (7.4) into Eq. (7.3) and have

exp

(
−hν21

kT

){
B21

8πhν3
21

c3
(
exp hν21

kT − 1
) + A21

}
= B12

8πhν3
21

c3
(
exp hν21

kT − 1
)

From the above equation, the density of photons ρ(ν21) can be expressed in terms of
Einstein coefficients as

8πhν3
21

c3
(
exp hν21

kT − 1
) = A21

B12 exp
(

hν21
kT

)− B21

(7.5)

In the above formula, both sides are equal if

B21 = B12 (7.6)

In such case, one finds

A21

B21
= 8πhν3

21

c3
(7.7)

The relations (7.6) and (7.7) are known as Einstein relations [2].

7.1.2 Laser oscillations and resonant modes

Light propagation with amplification is illustrated in Fig. 7.5. Mathematically it is described
by assuming that there is no phase change on reflection at either end (left and right). Left
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end is defined as z = 0 and right end as z = L. At the right facet, the forward optical wave
has a fraction rR reflected (amplitude reflection) and after reflection that fraction travels
back (from right to left).

In order to form a stable resonance, the amplitude and phase of the wave after a single
round trip must match the amplitude and phase of the starting wave. At arbitrary point z
inside the cavity, see Fig. 7.5, the forward wave is

E0egze− jβz (7.8)

where we have dropped eiωt term which is common and defined g = gm − αm, where gm

describes gain (amplification) of the wave and αm its losses. Also rR and rL are, respectively,
right and left reflectivities, L length of the cavity and β propagation constant.

The wave travelling one full round will be{
E0egze− jβz

} {
eg(L−z)e− jβ(L−z)

} {
rRegLe− jβL

} {
rLegze− jβz

}
(7.9)

The above terms are interpreted as follows. In the first bracket there is an original forward
propagating wave which started at z, in the second bracket there is a wave travelling from z
to L, the third bracket describes a wave propagating from z = L to z = 0, and the last one
contains a wave travelling from z = 0 to the starting point z. At that point the wave must
match the original wave as given by Eq. (7.8). From the above, one obtains a condition for
stable oscillations

rRrLe2gLe−2 jβL = 1 (7.10)

That condition can be split into an amplitude condition

rRrLe2(gm−αm )L = 1 (7.11)

and phase condition

e−2 jβL = 1 (7.12)

From the amplitude condition one obtains

gm = αm + 1

2L
ln

1

rRrL
(7.13)

From the phase condition, it follows

2βL = 2πn (7.14)

where n is an integer. The last equation determines wavelengths of oscillations since

β = 2π

λn
= ωn

c
(7.15)

with λn being the wavelength. Typical gain spectrum and location of resonator modes are
shown in Fig. 7.6a. Longitudinal modes with angular frequencies ωn−1, ωn and ωn+1 are
shown. In time, the mode which has the largest gain will survive; the other modes will
diminish, see Fig. 7.6b.
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Fig. 7.6 Gain spectrum of semiconductor laser and location of longitudinal modes.ωn are FP resonances determined from
phase condition.
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Fig. 7.7 VCSEL (left) and in-plane laser (right).

7.2 Semiconductor lasers

A significant percentage of today’s lasers are fabricated using semiconductor technology.
Those devices are known as semiconductor lasers. Over the last 15 years or so, several
excellent books describing different aspects and different types of semiconductor lasers
have been published [3], [4], [5], [6], [7].

The operation of semiconductor lasers as sources of electromagnetic radiation is based
on the interaction between EM radiation and the electrons and holes in semiconductors.
Typical semiconductor laser structures are shown in Fig. 7.7. Those are: vertical cavity
surface emitting laser (VCSEL) [8] where light propagates perpendicularly to the main
plane and in-plane laser where light propagates in the main plane [9]. The largest dimension
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Fig. 7.8 The basic p-n junction laser.

of in-plane structures is typically in the range of 250 µm (longitudinal direction) whereas
the typical diameter of VCSEL cylinder is about 10 µm.

The basic semiconductor laser is just a p-n junction, see Fig. 7.8 where cross-section
along lateral-transversal directions is shown. Current flows (holes on p-side and electrons on
n-side) along the transversal direction, whereas light travels along the longitudinal direction
and leaves device at one or both sides.

In VCSEL, the cavity is formed by the so-called Bragg mirrors and an active region
typically consists of several quantum well layers separated by barrier layers, see Fig. 7.7.
(For a detailed discussion of quantum wells see [1] and [3]. This discussion is beyond the
scope of this book.) Bragg mirrors consist of several layers of different semiconductors
which have different values of refractive index. Due to the Bragg reflection such structure
shows a very large reflectivity (around 99.9%). Such large values are needed because a very
short distance of propagation of light does not allow to build enough amplification when
propagating between distributed mirrors.

A three-dimensional perspective view of some generic semiconductor lasers is shown
in Fig. 7.7. The structures consists of many layers of various materials, each engaged in a
different role. Those layers are responsible for the efficient transport of electrons and holes
from electrodes into an active region and for confinement of carriers and photons so they
can strongly interact. Modern structures contain so-called quantum wells which form an
active region and where conduction-valance band transitions are taking place. It is possible
to have different types of mirrors as they also provide mode selectivity. Two basic types are
illustrated in Fig. 7.9 and Fig. 7.10 [9]. They are known as distributed feedback (DFB) and
distributed Bragg (DBR) structures.

In DFB lasers, grating (corrugation) is produced in one of the cladding layers, thus
creating Bragg reflections at such periodic structure. The structure causes a wavelength
sensitive feedback. It should be emphasized that the grating extends over the entire laser
structure. When one restricts corrugation to the mirror regions only and leaves a flat active
region in the middle, then the so-called DBR structure is created, see Fig. 7.10, which also
provides wavelength sensitive feedback.
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Fig. 7.9 Basic DFB laser structure.
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Fig. 7.10 Basic DBR laser structure.
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Fig. 7.11 Electron transitions between conduction and valence bands.

7.2.1 Electron transitions in semiconductors

Previous discussion of TLS will now be extended to describe transitions between bands in
semiconductors, see Fig. 7.11. For that purpose, we introduce:

• fv the probability of the state of energy Ev in the valence band being filled.
• fc the probability of the state of energy Ec in the conduction band being filled.

Rates of transitions can now be determined, similarly to the TLS description. Here we
use index notation appropriate to semiconductors, i.e. c, v instead of 1, 2. The rates are

Sspon = Scv,sp = A21 fc (1 − fv ) (7.16)

Sstim = Scv,st = B21 fc (1 − fv ) ρ(Ecv ) (7.17)

Sabs = Scv,abs = B12 fv (1 − fc) ρ(Ecv ) (7.18)
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Fig. 7.12 Energy-band diagram of a p-n junction. (a) thermal equilibrium, (b) forward bias.

Fermi-Dirac statistics are assumed for the appropriate probabilities as

fv = 1

exp
(

Ev−EFv

kT + 1
) (7.19)

fc = 1

exp
(Ec−EFc

kT + 1
) (7.20)

Here EFc and EFv are the quasi-Fermi levels for electrons and holes.
The condition for stimulated emission to exceed absorption is

Sstim > Sabs

which gives

B21 fc (1 − fv ) > B12 fv (1 − fc)

Since the coefficients B21 and B12 are equal, after substituting expressions (7.19) and (7.20)
one obtains

exp

(
Ev − EFv

kT

)
> exp

(
Ec − EFc

kT

)
which can be written in the form

EFc − EFv > Ec − Ev = hν (7.21)

The above inequality is known as Bernard-Duraffourg condition [10].

7.2.2 Homogeneous p-n junction

Energy-band diagrams of a p-n junction in thermal equilibrium and under forward bias
conditions are shown in Fig. 7.12.
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Electrons at the n-type side do not have enough energy to climb over the potential barrier
to the left. Similar situation exists for holes in the p-type region, see Fig. 7.12a. One needs
to apply forward voltage to lower the potential barriers for both electrons and holes, see
Fig. 7.12b.

An application of the forward voltage also separates Fermi levels. Thus two different
so-called quasi-Fermi levels EFc and EFv are created which are connected with an external
bias voltage as

EFc − EFv = eVbias (7.22)

With the lowered potential barriers, electrons and holes can penetrate central region where
they can recombine and produce photons. However, the confinement of both electrons and
holes into the central region is very poor (there is no mechanism to confine those carriers).
Also, there is no confinement of photons (light) into the region where electrons and holes
recombine (the region is known as an active region). Therefore, the interaction between
carriers and photons is weak, which makes homojunctions a very poor light source. One
must, therefore, provide some mechanism which will confine both carriers and photons into
the same physical region where they will strongly interact. Such a concept is possible with
the invention of heterostructures, which will be discussed next.

7.2.3 Heterostructures

A heterojunction is formed by joining dissimilar semiconductors. The basic type is formed
by two heterojunctions and it is known as a double-heterojunction (more popular name is
double-heterostructure).

The materials forming double heterostructures have different bandgap energies and
different refractive indices. Therefore, in a natural way potential wells for both electrons
and holes are created. Schematic energy-band diagrams of a double-heterostructure p-n
junction in thermal equilibrium and under forward bias conditions are shown in Fig. 7.13.
The bandgap and refractive index for InGaAsP material will now be summarized.

Bandgap

For the In1−xGaxAsyP1−y system, the relation between compositions x and y which results
in the lattice-match to InP is

y = 0.1894y

0.4184 − 0.013y
(7.23)

In such case the bandgap is [11], [12]

Egap[eV ] = 1.35 − 0.72y + 0.12y2 (7.24)

with the extra relations y ≈ 2.20x and 0 ≤ x ≤ 0.47. The material for such compositions
thus covers bandgaps in the range of wavelengths 0.92 µm ⇔ 1.65 µm. For example, the
material In0.74Ga0.26As0.57P0.43 (i.e. x = 0.26, y = 0.57) has bandgap Eg = 0.97eV, which
corresponds to the wavelength λ = 1.27 µm.
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Table 7.1 Typical values of refractive indices for various compositions.

Wavelength Range of y compositions Refractive index

λ = 1.3 µm 0 ≤ y ≤ 0.6 n(y) = 3.205 + 0.34y + 0.21y2

λ = 1.55 µm 0 ≤ y ≤ 0.9 n(y) = 3.166 + 0.26y + 0.09y2
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Fig. 7.13 Energy-band diagram of a double-heterostructure p-n junction. (a) Thermal equilibrium, (b) forward bias.

Refractive index

As was explained before, the dependence of refractive index as a function of wavelength
is described by Sellmeier equation. For important telecommunication wavelengths, namely
1.3 µm and 1.55 µm, the y dependence of refractive index of In1−xGaxAsyP1−y that is lattice
matched to InP is shown in Table 7.1 [13].

In the wells formed by heterostructures, electrons and holes recombine thus generating
light. Also, differences in the values of refractive indices such that central region has
larger value of refractive index create planar optical waveguide where light propagates and
efficiently interacts with carriers.

Some illustrative values of bandgaps and refractive indices for InGaAsP/InP heterostruc-
ture are shown in Fig. 7.14.

7.2.4 Optical gain

For efficient and reliable numerical simulations, an exact mathematical expression of the
material gain is critical. Such an expression should also be subject to an experimental
verification. This problem has been investigated since the early developments of semicon-
ductor lasers [14], [15], [16]. The first step is usually the determination of gain spectra
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Fig. 7.14 Band structure and refractive index for InGaAsP/InP heterostructure.

and its comparison with experiment. The simplest approach will be provided in the next
section. Typical curves of gain spectra for a four quantum well system and comparison
with experimental measurements are shown in Fig. 7.15, from [17]. Mathematics involved
in determining optical gain of semiconductor quantum-well structures is complex and has
been discussed extensively, for example [18], [19], [20]. As a result, analytic approxima-
tions of the optical gain which can be used in fast calculations were determined, see [21],
[22], [23]. From an extensive discussion it was determined that the peak material gain for
bulk materials varies linearly with carrier density

g(N, λ) = a(λ) min (N, P) − b(λ) (7.25)

The parameter a(λ) is commonly called the differential gain.
On the basis of experimental observations, Westbrook [24], [25] extended the linear gain

peak model to allow for wavelength dependence. In its simplest form it can be written as
[24], [26], [27]

g(N, λ) = a(λp)N − b(λp) − ba

(
λ − λp

)2
(7.26)

where λp is the wavelength of the peak gain and ba governs the base width of the gain
spectrum. Wavelength peak λp can be also carrier density dependent.

Gain (absorption) in a semiconductor is a function of carrier density n [cm−3] (see
Fig. 7.16, which shows gain spectrum for several values of carrier concentration) [28].
When n is below transparency density ntr, the medium absorbs optical signal. For n > ntr,

optical gain in the material exceeds loss. The dependence of the so-called gain peak on the
carrier density for quantum well systems is logarithmic, see Fig. 7.17. It is described by the
expression [4]

g = g0 ln
N

Ntr
(7.27)

For modelling purposes, a linear approximation is often employed. In the above formulas
g0 is the differential gain, Ntr transparency carrier density and Nth is the carrier density at
threshold.
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Fig. 7.17 Illustration of threshold and transparency densities for linear (left) and logarithmic (right) gain models.

7.2.5 Determination of optical gain

The simplest approach to determine optical gain is based on Fermi golden rule. Here we
derive it for T = 0. Transition rate between two levels a and b is [1]

Wab = 2π

�

∣∣H′
ab

∣∣2 δ (Eb − Ea − �ω) (7.28)

where H′
ab is the matrix element describing transitions between levels a and b. Assume

parabolic bands for both electrons and holes with the effective mass m∗ taking the value of
m∗

c for conduction band and m∗
v for a valence band as follows:

E (k) = �
2k2

2m∗ (7.29)

From the above

Eb − Ea = �
2k2

2

(
1

mc
+ 1

mv

)
+ Eg (7.30)

Due to conservation of the crystal momentum in the transition, one has �kin = �k f i [29]. For
a single transition at specific value of k, one therefore has

W (k) = 2π

�

∣∣H ′
vc (k)2

∣∣ δ (�
2k2

2mr
+ Eg − �ω

)
(7.31)

where mr = mvmc

mv+mc
is reduced effective mass. If N is a total number of transitions per second

in crystal volume V and g (k) = k2V
π2 is number of states per unit k in volume V , the total

number of transitions per second is

N =
∞∫

0

W (k) · g (k) dk

= 2V

π�

∞∫
0

∣∣H ′
vc (k)

∣∣2 δ

(
�

2k2

2mr
+ Eg − �ω

)
k2dk (7.32)
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To evaluate integral, let us introduce new variable X ≡ �
2k2

2mr
+ Eg − �ω. Integral takes the

form

N = 2v

π�

∫ ∣∣H ′
vc (k)

∣∣2 mr

�
δ (X )

√
2mv

�2

(
X + �ω − Eg

)
dX

= V

π

∣∣H ′
vc (k)

∣∣2 (2mr)
3/2

�4

(
�ω − Eg

)1/2
(7.33)

where �
2k2

2mr
+ Eg = �ω. We are in a position now to determine absorption coefficient α. It

is defined as

α (ω) ≡ power absorbed per unit volume

power crossing a unit area
= (N ) · (�ω) /V

ε0nE2
0 c/2

(7.34)

where n is refractive index, c is the velocity of light in a vacuum and E0 is the amplitude of
electric field. Use

H ′
vc (k) = eE0χvc

2
, χvc = 〈uvk′ |x| uck〉 (7.35)

Using the above and expression for N , one finds

α0 (ω) = ωe2χ2
vc (2mr)

3/2

2πε0nc�3

(
�ω − Eg

)1/2 = K
(
�ω − Eg

)1/2
(7.36)

Example Estimates of K.
Data for GaAs. �ω = 1.5 eV, mv = 0.46m0, mc = 0.067m0, χvc = 3.2 Ȧ,n = 3.64.

Those data give K ≈ 11 700 cm−1 (eV )−1/2 , and α0 (ω) = 1170 cm−1 [1].
At T = 0 depending on the value of �ω, one has the following possibilities summarized

next:

�ω < Eg α (ω) = 0
Eg < �ω < EFc − EFv α (ω) = −α0 (ω) = −K(�ω − Eg)

1/2 amplification
EFc − EFv < �ω α (ω) = α0 (ω) = K(�ω − Eg)

1/2 absorption
(7.37)

7.3 Rate equations

With all basic elements in place we are now ready to provide the simplest (phenomenolog-
ical) description of semiconductor lasers. It is based on rate equations [4]. The main role
in those devices is played by two subsystems: carriers (electrons and holes) and photons.
They interact in the so-called active region, defined as part of the structure where recom-
bining carriers contribute to useful gain and photon emission. We describe both subsystems
separately, starting with carriers.

In Fig. 7.18 (adapted from [4]), we schematically showed model of a laser operating
below threshold. It resembles a tank partially filled with water continuously flowing in and
at the same time water leaves the tank. The water models carriers which are continuously
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current

Rnr
Rsp

Rloss

leakage
current

Fig. 7.18 Model of a laser operating below threshold. From L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated
Circuits, Wiley (1995). Reprinted with permission of John Wiley & Sons, Inc.

current

Rnr
Rsp

RstNth
leakage
current Rloss

Fig. 7.19 Model of a laser operating above threshold. From L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated
Circuits, Wiley (1995). Reprinted with permission of John Wiley & Sons, Inc.

provided by current flowing in. Not all the current at electrodes actually reaches the device
(tank). Some of it is lost as so-called leakage current. Below threshold, carriers disappear
through losses in the device (Rloss), non-radiative recombination (Rnr) and spontaneous
emission (Rsp). Above threshold (shown schematically in Fig. 7.19), the tank is completely
filled with water (in laser the situation corresponds to the so-called threshold with density
Nth). Its operation is mostly dominated by yet another process, namely stimulated emission
(here characterized by coefficient Rst).

Next, based on the above picture we will formulate equations describing dynamics of
carriers and photons.

7.3.1 Carriers

Inside the laser there exist two types of carriers: electrons and holes. Both are described in
a similar way; however, parameters used will be different for both types.

The rate of change of carrier density is governed by

dN

dt
= Ggener − Rrecom (7.38)

where the terms on right are responsible for generation and recombination of carriers and
are given by

Ggener = ηi
I

q · V

with V being the volume of the active region, q is the electron’s charge and I is the electric
current. The internal efficiency ηi describes the fraction of terminal current that generates
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carriers in the active region. The recombination term consists of several contributions

Rrecom = Rsp + Rnr + Rl + Rst

The meaning of terms is as follows:

Rsp − spontaneous recombination rate
Rnr − nonradiative recombination rate
Rl − carrier leakage rate
Rst − net stimulated recombination rate

Recombination processes are described phenomenologically as [4]

Rrecom = N

τ
+ vgg(N )S (7.39)

7.3.2 Photons

Let S be the photon density. We postulate the following rate of change of photon density:

dS

dt
= �Rst − S

τp
+ �βspRsp

with the following definitions:

τp – photon life-time
βsp – spontaneous emission factor (reciprocal of the number of optical modes)
Rst – stimulated recombination.
� – confinement factor which is the ratio of the active layer volume to the volume of the

optical mode.

Consider growth of a photon’s density over the active region, (assume � = 1)

S + �S = Seg·�z

where g is gain.

if �z � 1 then exp (g · �z) ≈ 1 + g�z

Using the relation �z = vg�t (vg−group velocity), one finds S = Sg · vg · �t.
Thus, the generation term can be written as(

dS

dt

)
gen

= Rst = �S

�t
= vggS

Finally, the rate equations used in this section are

dN

dt
= ηi

I

qV
− N

τ
− vgg(N )S (7.40)

dS

dt
= �vgg(N )S − S

τp
+ �βspRsp (7.41)

We have explicitely indicated that gain g depends on a carrier’s concentration.
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7.3.3 Rate equation parameters

Other important parameters which in the simple model can be taken as constants, in fact
have complicated dependencies. Those parameters are:

1. the carrier’s lifetime τ which strongly depends on carrier’s density. Typical dependence
is shown below:

1

τ
= A + BN + CN2

where coefficient A describes non-radiative processes, B is responsible for spontaneous
recombination and C describes non-radiative Auger recombinations.

2. photon lifetime τp which is

1

vgτp
= αi + αm = �gth

Here αm describes mirror reflectivity

αm = 1

L
ln

1

R

and αi account for all losses.
The meaning of all parameters appearing in rate equations and gain models is summarized

in Table 7.2 along with typical values for those symbols. The parameters were collected
from [30], [31] and [32].

In the following, rate equations will provide a starting point for analysis of dynamical
properties of semiconductor lasers. Before we start detailed analysis based on rate equations,
we will establish a rate equation for electric field.

7.3.4 Derivation of rate equation for electric field

The relevant equation will be derived starting from the wave equation. We concentrate on
Fabry-Perot lasers. The starting wave equation is

∇2E(r, t) − 1

c2

∂2

∂t2
E(r, t) = μ0

∂2

∂t2
P(r, t) (7.42)

Assume the following decomposition:

E(r, t) = aEt (x, y) sin (βzz) E(t)e jωt (7.43)

where a is a unit vector describing polarization, βz propagation constant in the z-direction.
The transversal field Et (x, y) obeys the following equation:(

∂2

∂x2
+ ∂2

∂y2

)
Et (x, y) = −κ2

t Et (x, y) (7.44)

It is further assumed that E(t) is slowly varying compared to e jωt . Substituting solution
(7.43) into (7.42), neglecting fast-varying terms in time and using (7.44), one obtains{

κ2
t − β2

z − 1

c2

[
2 jω

∂E(t)

∂t
− ω2E(t)

]}
aEt (x, y) sin (βzz) e jωt = μ0

∂2

∂t2
P(r, t)
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Table 7.2 Basic parameters appearing in rate equation approach and their typical values.

Symbol Description Value and unit

N carrier density cm−3

S photon density cm−3

I current mA
q elementary charge 1.602 × 10−19C
L cavity length 250 µm
w width of active region 2 µm
d thickness of active region 80Å
ηi fraction of the injected current

I into active region 0.8
Vactive volume of active region L · w · d
τ carrier lifetime 2.71ns
vg group velocity c/nref

nre f refractive index 3.4
τp photon lifetime 2.77 ps
� confinement factor 0.01
βsp spontaneous emission factor 10−4

a differential gain (linear model) 5.34 × 10−16 cm2

Ntr carrier density at transparency 3.77 × 1018 cm−3

Ith current at threshold 1.11 mA
αm facet loss 45 cm−1

λph laser wavelength 1.3 µm

To evaluate terms on the right hand side, we need to account for a nonlocal relation between
polarization and susceptibility:

P(r, t) = ε0

∫
χ(r, t ′)E(r, t − t ′)dt ′ (7.45)

In the above E(r, t −t ′) is given by (7.43). As E(t) is slowly varying in time, we can expand
it into Taylor series around t. The general formula for Taylor expansion of the function
f (x) around a is f (x) = f (a) + df

dx (x − a). In our case, substituting x = t − t ′ and a = t,
we obtain

E(t − t ′) ≈ E(t) + dE(t)

dt
(−t ′)

Full electric field is therefore

E(r, t − t ′) = Et (x, y) sin (βzz) E(t − t ′)e jω(t−t ′ )

Substituting the last result and Taylor expansion for E(t−t ′) into expression for polarization
(7.45), one finally obtains the wave equation for E(t):[

−β2
0 + ω2

c2
εr(ω)

]
E(t) − 2 jω

c2

[
εr(ω) + 1

2
ω

dεr(ω)

dω

]
dE(t)

dt
= 0 (7.46)
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Here εr(r, ω) = 1 + χ(r, ω) and Fourier transform of susceptibility is (we have dropped r
dependence)

χ(ω) =
∫

dt ′χ(t ′)e− jωt ′

Susceptibility is further separated into terms which account for various physical effects as
follows:

χ(ω) = 1 + χb + χp − jχloss

where χb = χ ′
b + jχ ′′

b is due to background, χp = χ ′
p + jχ ′′

p is induced by pump and
χloss accounts for losses. The relative dielectric constant is written as (dropping argument
dependencies) εr = ε′

r + jε′′
r . The real part of εr is approximated in terms of refractive

index ε′
r = (n0 + �np)

2 ≈ n2
0 + 2n0�np, where n0 is the background refractive index and

�np is the change induced by pump. Using the above results, εr takes the form

εr = ε′
r + jε′′

r ≈ n2
0 + 2n0�np + jε′′

r

= 1 + χ ′
b + χ ′

p + j
(
χ ′′

b + χ ′′
p − χloss

)
(7.47)

Explicitly, one has the following identifications:

1 + χ ′
b = n2

0

χ ′
p = 2n0�np

χ ′′
b + χ ′′

p − χloss = ε′′
r

Using the above relations, the term in the equation for slowly varying amplitude E(t),
Eq. (7.46) is

ω2

c2
εr(ω) − β2

0 = ω2 − ω2
0

c2
n2

0 + ω2

c2
χ ′

p + j
ω2

c2

(
χ ′′

b + χ ′′
p − χloss

)
(7.48)

where we have used the approximate relation

β0 ≈ ω0

c
n0

Imaginary parts of background and pump susceptibilities are related to gain via an experi-
mental relation

ω

cn0

(
χ ′′

b + χ ′′
p

)
= �g(N )

where g(N ) is gain. Assume also

χloss = ω

cn0
αloss

With the last two relations, term given by Eq. (7.48) can be expressed as

ω2

c2
εr(ω) − β2

0 = ω2 − ω2
0

c2
n2

0 + ω2

c2
2n0�np + j

ωn0

c
[�g(N ) − αloss]
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Using n2(ω) = εr(ω), the dispersion term in (7.46) is evaluated as

εr(ω) + 1

2
ω

dεr(ω)

dω
= n2(ω) + 1

2
ωn(ω)

dn(ω)

dω
= n(ω) + ωng(ω) (7.49)

where we have defined group index ng(ω) as

ng(ω) = n(ω) + ω
dn(ω)

dω
(7.50)

Using the results (7.48) and (7.49), Eq. (7.46) is

dE(t)

dt
=
{
− j (ω − ω0)

n0

ng
− j

ω

ng
�np + 1

2
vg [�g(N ) − αloss]

}
E(t) (7.51)

where we approximated ω2 − ω2
0 = (ω − ω0) (ω + ω0) � 2ω (ω − ω0) and also n0(ω)

n(ω)
� 1

and used the relation c
ng

= vg. Our Eq. (7.51) is very similar to Eq. (6.2.9) of Agrawal and
Dutta [9].

7.4 Analysis based on rate equations

Rate equations just introduced will now be used to study some dynamical properties of
semiconductor lasers. We start with steady-state.

7.4.1 Steady-state analysis

In this situation one has no change in time; i.e.

dN

dt
= dS

dt
= 0

Rate equations take the form

ηi
I0

qV
− N0

τ
− vgg(N0)S0 = 0 (7.52)

and

�vgg(N0)S0 − S0

τp
+ �βspRsp = 0 (7.53)

If in the last equation we neglect the small spontaneous emission term, we obtain an
expression for a photon life-time

1

τp
= �vgg(N0) (7.54)



188 Optical sources

7.4.2 Small-signal analysis with the linear gain model

When neglecting spontaneous emission and using linear gain model where gain is given by
g = a (N − Ntr), one obtains

dN

dt
= ηi

I

qV
− N

τ
− vga (N − Ntr) S (7.55)

and
dS

dt
= �vga (N − Ntr) S − S

τp
(7.56)

Assume that all time-dependent quantities oscillate as

I = I0 + i(ω)e jωt

N = N0 + n(ω)e jωt

S = S0 + s(ω)e jωt

where ω is the angular frequency of an external (small) perturbation and I0 is the bias value
of current. Here N0 and S0 are the solutions in the steady-state. Substitute into the first rate
equation and after multiplication and neglecting second-order term (n(ω)s(ω)) one obtains

jωn(ω)e jωt = ηi

qV

[
I0 + i(ω)e jωt

]− N0

τ
− 1

τ
n(ω)e jωt

−vga
(
(N0 − Ntr) S0 + (N0 − Ntr) s(ω)e jωt+S0n(ω)e jωt

)+ O(n2)

Using steady-state results, expression (7.54) for photon life-time and dropping e jωt depen-
dence, one finally obtains

jωn(ω) = ηi

qV
i(ω) − n(ω)

τ
− s(ω)

�τp
− vgaS0n(ω) (7.57)

The second equation for photons is obtained in a similar way. Substituting small-signal
expressions, neglecting the second-order term, using the photon life-time expression and
finally dropping e jωt dependence, one obtains

jωs(ω) = �vgaS0n(ω) (7.58)

From the above equations, we want to determine modulation response which is defined as
[33], [34]

M (ω) = s(ω)

i(ω)

Expressing n(ω) from Eq. (7.58) and substituting into (7.57), one obtains

s(ω)

i(ω)
=

ηi

eV �vgaS0

D(ω)

where D(ω) is given by

D(ω) = −ω2 + jω

(
1

τ
+ vgaS0

)
+ vgaS0

τp
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Define response function as

r(ω) =
∣∣∣∣ s(ω)

i(ω)

∣∣∣∣ =
ηi

eV �vgaS0

|D(ω)|
If we write D(ω) = a + jb, we have |D(ω)|2 = a2 + b2. Therefore

|D(ω)|2 =
(

ω2 − vgaS0

τp

)2

+ ω2

(
1

τ
+ vgaS0

)2

We will see soon that the response function has a peak at frequency fR. To find that
frequency, we evaluate first derivative ∂|D(ω)|2

∂ω2 and set it to zero. Explicitly

∂|D(ω)|2
∂ω2

∣∣∣∣
ω=ωR

= −2

(
vgaS0

τp
− ω2

R

)
− 1

2

(
1

τ
+ vgaS0

)
= 0

From the above

ω2
R = vgaS0

τp
− 1

2

(
1

τ
+ vgaS0

)
(7.59)

which is known as a relaxation-oscillation frequency and it describes the rate at which energy
is exchanged between photon system and carriers. The second term in (7.59) is usually very
small and can be neglected. Relaxation-oscillation frequency is thus approximated as

ωR =
√

1

τp

S0vga

1 + εS0
(7.60)

To estimate the typical values of the relaxation-oscillation frequency, let us assume [1]:
L = 300 µm, τph ≈ 10−12s and τ ∼ 4 × 10−9s. One finds AP0 ∼ 109 s−1. So, the
zeroth-order expression is a very good one.

Using MATLAB code and parameters shown in Listings 7A.1.1 and 7A.1.2, one obtains
the results shown in Fig. 7.20.

7.4.3 Small-signal analysis with gain saturation

Let us remind ourselves of the rate equations which were established in the previous section:

dN

dt
= ηi

I

qV
− N

τ
− vgg(N )S (7.61)

dS

dt
= �vgg(N )S − S

τp
+ βspRsp (7.62)

Use small-signal assumptions

I(t) = I0 + i(t)

N (t) = N0 + n(t)

S(t) = S0 + s(t)

Also, generalize the gain model to include saturation as follows:

g(n) = g0 + g′ (N − N0)

1 + εS
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Fig. 7.20 Modulation characteristics of semiconductor lasers from small-signal analysis.

where g′ = ∂g
∂N

∣∣∣
N=N0

is differential gain evaluated at N = N0 and g0 = g(N0). The factor

1 + εS introduces nonlinear gain saturation. The gain compression parameter ε has a small
value and the term εS is small compared with the one even at very high optical power. The
effect of this term on dc properties is small and can be neglected. However, it significantly
affects dynamics of a semiconductor laser. The reason is that the laser’s dynamics depends
on the small difference between gain and cavity loss. This difference is only about a few
percent. Therefore, even small gain compression due to ε produces significant effect.

Evaluate the gain compression term as follows:

1 + εS = 1 + ε (S0 + s(t)) = (1 + εS0)

(
1 + εs(t)

1 + εS0

)
With the above result, gain can be approximated as

g(n) = g0

1 + εS0
+ g′n(t)

1 + εS0
− g0

1 + εS0

εs(t)

1 + εS0
(7.63)

Using the above results, stimulated emission term takes the form

g(n)S = g0S0

1 + εS0
+ g′S0

1 + εS0
n(t) − g0S0

(1 + εS0)
2
εs(t) + g0

1 + εS0
s(t) + O(s2) (7.64)

As usual, the following analysis is separated into two parts: dc and ac analysis.

dc analysis
With the assumption that d

dt = 0 from rate equations, one obtains

ηi
I0

qV
− N0

τ
− vg

g0S0

1 + εS0
= 0
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and

�vg
g0S0

1 + εS0
− S0

τp
+ βspRsp = 0

Neglecting spontaneous emission (βsp = 0), from the second equation one obtains an
expression for the photon life-time τp:

1

τp
= �vg

g0

1 + εS0
(7.65)

ac analysis
Substitute small-signal assumptions into rate equations, use an approximation for stim-

ulated emission (7.64) and eliminate dc terms. The results are

dn(t)

dt
= ηi

i(t)

qV
− n(t)

τ
− vgg′S0

1 + εS0
n(t) + 1

τp�

S0

1 + εS0
εs(t) − 1

τp�
s(t)

ds(t)

dt
= �vgg′S0

1 + εS0
n(t) − 1

τp

S0

1 + εS0
εs(t)

In the above equations we used expression (7.65). Those equations can be written in matrix
form:

d

dt

[
n(t)
s(t)

]
+
[

A B
−C D

] [
n(t)
s(t)

]
=
[
ηi

i(t)
qV

0

]
where

A = 1

τ
+ vgS0g′

1 + εS0
, B = 1

τp�
− 1

τp�

S0

1 + εS0
ε, C = �vgS0g′

1 + εS0
, D = 1

τp

S0

1 + εS0
ε

Assuming harmonic time dependence of the form exp ( jωt), the matrix equation is[
jω + A B
−C jω + D

] [
n(t)
s(t)

]
=
[
ηi

i(t)
qV

0

]
Solving the above system, one obtains modulation response which is expressed as

s(t)

i(t)
= ηi

1

qV

C

H (ω)

where

H (ω) = ( jω + A) ( jω + D) + CB

The function H (ω) can be written as

H (ω) = −ω2 + jωγ + ω2
R

Here ωR is the relaxation-oscillation frequency and γ is the damping factor. One defines
modulation response r(ω) as [30]

r(ω) = H (ω)

H (0)
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Fig. 7.21 The effect of gain compression on modulation response.

The plot of response r(ω) is shown in Fig. 7.21 for three values of ε. The effect of gain
compression parameter ε is clearly visible. MATLAB code used to obtain those results is
provided in Listings 7A.2.1 and 7A.2.2.

7.4.4 Large-signal analysis for QW lasers

Large-signal analysis based on rate equations for semiconductor lasers has been reported
extensively [35], [36], [37]. Main equations without spontaneous emission are

dN

dt
= ηi

I

eV
− N

τ
− vgg (N ) · S (7.66)

dS

dt
= � · vgg (N ) · S − S

τp
(7.67)

All symbols have been explained previously and their values are summarized in Table 7.2.
Typical results for step current are shown in Fig. 7.22. MATLAB code used to obtain

those results is provided in Appendix, Listings 7A.3.1 and 7A.3.2.
One can observe that when we neglect spontaneous emission term in the rate equation

for photons, photon density tends to zero (steady-state value) as t −→ ∞, the result which
is also evident from the steady-state analysis.

7.4.5 Frequency chirping

Frequency chirping arises during direct modulation of semiconductor laser when carrier
density undergoes abrupt change. As a result, material gain also changes. This change
results in a variation of the refractive index, which in turn affects the phase of the electric
field.
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Fig. 7.22 Numerical solutions of large-signal rate equations after applying rectangular current pulse at t = 0. Normalized
values of electron density N(t) and photon density S(t) are shown.

The rate of change of the phase is

dφ

dt
= 1

2
vαH (�g − αloss)

An associated change in frequency is created which is described by

�ν(t) = 1

2π

dφ

dt
= 1

4π
vαenh (�g − αloss)

This change in frequency is called ‘chirp’. During direct modulation it results in a shift in
frequency of the order of 10–20 GHz.

To eliminate chirp effect, an external modulator should be used. In such cases a laser
produces constant output power and a separate modulator provides modulation.

Another way to reduce chirp is to fabricate devices with small values of line-width
enhancement factors αH .

αH ≡ −
dnr
dN
dni

dν

where n = nr + jni (complex refractive index).

7.4.6 Equivalent circuit models

Often in engineering practice there is a need to operate with circuit models, instead of more
complicated physical-based models. Here we outline the method of constructing such a
model for a semiconductor laser.
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7.4.7 Equivalent circuit model for a bulk laser

Equivalent circuit models of semiconductor lasers provide further understanding of the
laser properties. They are derived from rate equations. Development of those models was
initialized a long time ago [38], [39], [40]. More recent works which also include additional
effects like carrier transport or proper representation of optical gain, are [41], [42], [43]. In
the following, we outline the creation of equivalent circuit model for a bulk semiconductor
laser following Kibar et al. [41].

For bulk lasers, rate equations are [41], [9]

dS

dt
= (G − γ ) S + Rsp (7.68)

dN

dt
= I

q
− γeN − G · S (7.69)

Here N, S are the total number of electrons inside the cavity and total number of photons in
the lasing mode. Those are dimensionless quantities. We introduce small deviations from
equilibrium as

S(t) = S0 + δS(t) (7.70)

N (t) = N0 + δN (t) (7.71)

Optical gain is approximated as

G = G0 + ∂G

∂N
δN + ∂G

∂S
δS = G0 + GNδN + GSδS (7.72)

In the steady-state one obtains

0 = (G0 − γ ) S0 + Rsp,0

0 = I0

q
− γeN0 − G0 · S0

Observing that spontaneous emission Rsp = Rsp(N ) depends on N , and performing an
expansion

Rsp = Rsp,0 + ∂Rsp

∂N
δN (7.73)

one can derive small-signal equations

dδS

dt
= −�SδS + σNδN (7.74)

dδN

dt
= −�NδN − σSδS (7.75)

where

�S = Rsp

S0
− S0GS, �N = γe + N0

∂γe

∂N
+ S0GN (7.76)

and

σN = S0GN + ∂Rsp

∂N
, σS = G0 + S0GS (7.77)
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Fig. 7.23 Equivalent circuit model for a bulk laser.

Using these equations, one creates equivalent circuit model. It is based on an observation
that the small-signal rate equations are similar to the voltage and current equations of
the RLC circuit. We therefore assume (following Kibar et al., [41]) that electrons in a
laser cavity can be represented by the charge across a capacitor and the photons are
represented by the magnetic flux of an inductor. Formally one introduces the following
equivalence:

δS(t) = φ(t)

q · unit
, δN (t) = Q(t)

q
(7.78)

where q is an electron’s charge, unit is a parameter in [ H
s ] to ensure proper units for the

components of the electrical circuit and φ(t) is the magnetic flux in [W b]. We also recall
standard relations from electromagnetism:

Q = C · vC (7.79)

iC = dQ

dt
(7.80)

φ(t) = L · iL (7.81)

vL = dφ

dt
(7.82)

Now, we use (7.78) and relations (7.79)–(7.82) to convert small-signal equations (7.74) and
(7.75) into voltage and current relations. After simple algebra, from (7.74) one finds

vL(t) = −�S · L · iL(t) + σN · C · unit · vC (7.83)

This equation can be identified with loop equation for the RLC circuit shown in Fig. 7.23.
A loop equation gives

vC = vL + vRp (7.84)

In order for the above equations to be identical, one makes the following identifications:

RS = �S · L = �S · unit

σS
, C = 1

unit · σN
(7.85)
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Similarly, from (7.75) one obtains

iC(t) = −�N · C · vC(t) − σS

unit
· L · iL(t) (7.86)

That equation can be compared with the node equation from a circuit in Fig. 7.23:

iC = −iR − iL (7.87)

For those equations to be identical, one sets

RN = 1

�N · C
, and L = unit

σS
(7.88)

One also has the following equivalence:

δN = C · vC

q
, and δS = L · iL

q · unit
(7.89)

7.5 Problems

1. Perform large-signal analysis for the log gain model described by Eq. (7.27).
2. Analyse large-signal response to a Gaussian pulse.
3. Based on rate equations for multimode operation, create the small-signal equivalent

circuit model of a semiconductor laser. Draw the corresponding electrical circuit and
derive equations which establish links between circuit parameters and rate equations.
Hint: Consult the paper by Kibar et al. [41].

4. Construct equivalent circuit model for single quantum well laser with carrier transport
(follow Lau’s work in [42]). Introduce carrier density in an SCH region and allow for
its interaction with densities in the quantum well.

7.6 Project

1. Conduct multimode analysis of a semiconductor laser. Formulate multimode rate equa-
tions. Gain spectrum approximate as described by Coldren and Corzine [4].

Appendix 7A: MATLAB listings

In Table 7.3 we provide a list of MATLAB files created for Chapter 7 and a short description
of each function.
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Table 7.3 List of MATLAB functions for Chapter 7.

Listing Function name Description

7A.1.1 small signal.m Small-signal analysis
7A.1.2 param rate eq bulk.m Parameters for bulk active region in rate eqs.
7A.2.1 small epsilon.m Small-signal response with gain compression
7A.2.2 param rate eq QW.m Parameters for QW active region in rate eq.
7A.3.1 large signal.m Large-signal analysis
7A.3.2 eqs large.m Defines rate equations for large-signal analysis

Listing 7A.1.1 Program small signal.m. MATLAB program to perform small-signal anal-
ysis for a quantum well semiconductor laser.

% File name: small_signal.m

% Purpose:

% Determines response function

clear all

param_rate_eq_bulk % input data

%

% loop over frequency in GHz

N_max = 5000; % number of points for plot

f_min = 0.01; f_max = 100;

freq_GHz = linspace(f_min,f_max,N_max); % From 0.1 to 2 GHz

semilogx(freq_GHz,0);

%

freq = freq_GHz*1d9; % convert frequency to 1/s

omega = 2*pi*freq;

%

hold on

for power_out = [1d-4 1d-3 0.01 0.1 1.0] % values of output power [W]

% Determine steady-state photon density from a given output power

S_zero = 2*power_out/(v_g*alpha_m*h_Planck*freq_ph*V_p);

%

% Construct denominator

D = - omega.^2 + 1j*omega*(1/tau +v_g*a*S_zero) + v_g*a*S_zero/tau_p;

%

response = (v_g*a*S_zero/tau_p)./abs(D);

response_dB = 10*log(response);

%

h = semilogx(freq_GHz,response_dB);

end

xlabel(’frequency [GHz]’,’FontSize’,14); % size of x label

ylabel(’Response function [dB]’,’FontSize’,14); % size of y label
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set(gca,’FontSize’,14); % size of tick marks on both axes

axis([f_min f_max -20 35]);

text(0.05, 7, ’10 \muW’,’Fontsize’,14)

text(0.2, 18, ’1 mW’,’Fontsize’,14)

text(0.6, 27, ’10 mW’,’Fontsize’,14)

text(2.5, 33, ’0.1W’,’Fontsize’,14)

text(8, 26, ’1W’,’Fontsize’,14)

pause

close all

Listing 7A.1.2 Function param rate eq bulk.m. Function contains parameters for the rate
equation model for the bulk active region.

% File name: param_rate_eq_bulk.m

% Purpose:

% Contains parameters for rate equation model for bulk

% active region

% Source

% G.P. Agrawal and N.K. Dutta

% Long-wavelength semiconductor lasers

% Van Nostrand 1986

% Table 6.1, p. 227

%

% General constants

c = 3d10; % velocity of light [cm/s]

q = 1.6021892d-19; % elementary charge [C]

h_Planck = 6.626176d-34; % Planck constant [J s]

hbar = h_Planck/(2.0*pi); % Dirac constant [J s]

% Geometrical dimensions bulk active region

length = 250d-3; % cavity length [cm]; 250 microns

width = 2d-3; % active region width [cm]; 2 microns

thickness = 0.2d-3; % thickness of an active region [cm]; 0.2 microns

volume_active = length*width*thickness; % volume of active region

%

conf = 0.3; % confinement factor [dimensionless]

V_p = volume_active/conf; % cavity volume [cm^3]

ref_index = 3.4; % effective mode index

%

v_g = c/ref_index; % group velocity [cm/s]

tau_p = 1.6d-12; % photon life-time [s]

tau = 2.2d-9; % carrier life-time [2.71 ns]

%

a = 2.5d-16; % differential gain (linear model) [cm^2]

% Parameters needed to determine output power

alpha_m = 45; % mirror reflectivity [cm^-1]

lambda_ph = 1.3d-3; % laser wavelength [microns]; 1.3 microns

freq_ph = v_g/lambda_ph; % phonon frequency
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Listing 7A.2.1 Function small epsilon.m. Driver program which determines small-signal
response with gain compression for a single quantum well. For large-signal analysis based
on rate equations.

% File name: small_epsilon.m

% Purpose:

% Determines response function for quantum well with epsilon

clear all

param_rate_eq_QW % input data

%

% loop over frequency in GHz

N_max = 100; % number of points for plot

f_min = 0.1; f_max = 100;

freq_GHz = linspace(f_min,f_max,N_max); % From 0.1 to 2 GHz

semilogx(freq_GHz,0); % make axis and force log scale

%

freq = freq_GHz*1d9; % convert frequency to 1/s

omega = 2*pi*freq;

power_out = 0.001; % output power (10 mW/facet)

%

hold on

for epsilon = [0 1.5d-17 5d-17] % values of epsilon

% Determine steady-state photon density from a given output power

S_zero = 2*power_out/(v_g*alpha_m*h_Planck*freq_ph*V_p);

%

% Construct denominator

A = 1/tau + v_g*S_zero*a/(1+epsilon*S_zero);

B = 1/(conf*tau_p) - (1/(conf*tau_p))*S_zero*epsilon/(1+epsilon*S_zero);

C = conf*v_g*S_zero*a/(1+epsilon*S_zero);

D = (1/tau_p)*S_zero*epsilon/(1+epsilon*S_zero);

damping = A + D;

omega_R2 = A*D + C*B;

H = - omega.^2 + 1j*omega.*damping + omega_R2;

%

response = (A*D+C*B)./abs(H);

response_dB = 10*log(response);

h = plot(freq_GHz,response_dB);

end

xlabel(’frequency [GHz]’,’FontSize’,14); % size of x label

ylabel(’Response function [dB]’,’FontSize’,14); % size of y label

set(gca,’FontSize’,14); % size of tick marks on both axes

axis([f_min f_max -20 20]);

text(2, 13, ’\epsilon = 0’,’Fontsize’,14)

text(2, 10, ’\epsilon = 1.5 \times 10^{-17}’,’Fontsize’,14)

text(2, 7, ’\epsilon = 5 \times 10^{-17}’,’Fontsize’,14)

pause

close all
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Listing 7A.2.2 Function param rate eq QW.m. Function which contains rate equation
parameters for a single quantum well.

% File name: param_rate_eq_QW.m

% Purpose:

% Contains parameters for rate equation model for QW active region

% Source

% L.A. Coldren and S.W. Corzine,

% "Diode Lasers and Photonic Integrated Circuits", Wiley 1995.

% General constants

c = 3d10; % velocity of light [cm/s]

q = 1.6021892d-19; % elementary charge [C]

h_Planck = 6.626176d-34; % Planck constant [J s]

hbar = h_Planck/(2.0*pi); % Dirac constant [J s]

% Geometrical dimensions

% QW active region

L = 250d-4; % cavity length [cm]; 250 microns

w = 2d-4; % active region width [cm]; 2 microns

d = 80d-8; % thickness of an active region [cm]; 80 Angstroms

%

%V = L*w*d;

V = 4d-12; % volume of active region

%

conf = 0.03; % confinement factor [dimensionless]

V_p = V/conf; % cavity volume [cm^3]

ref_index = 4.2; % effective mode index

%

v_g = c/ref_index; % group velocity [cm/s]

tau_p = 2.77d-12; % photon life-time [s]

tau = 2.71d-9; % carrier life-time [s]

beta_sp = 0.8d-4; % spontaneous emission factor

%

a = 5.34d-16; % differential gain (linear model) [cm^2]

N_tr = 1.8d18; % carrier density at transparency [cm^-3]

eta_i = 0.8;

epsilon = 1d-17;

current_th = 1.11d-3; % current at threshold [A]; 1.11 mA

%

% Parameters needed to determine output power

alpha_m = 45; % mirror reflectivity [cm^-1]

lambda_ph = 1.3d-3; % laser wavelength [microns]; 1.3 microns

freq_ph = v_g/lambda_ph; % phonon frequency
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Listing 7A.3.1 Function large signal.m. Driver program for large-signal analysis based
on rate equations.

% File name: large_signal.m

% Purpose:

% Driver which controls computations for large signal rate equations

% function z = large_signal

%

clear all

tspan = [0 2d-9]; % time interval, up to 2 ns

y0 = [0, 0]; % initial values of N and S

%

[t,y] = ode45(’eqs_large’,tspan,y0);

%

size(t);

t=t*1d9;

y_max = max(y);

y1 = y_max(1);

y2 = y_max(2);

h = plot(t,y(:,1)/y1,’-.’, t, y(:,2)/y2); % divided to normalize

set(h,’LineWidth’,1.5); % thickness of plotting lines

xlabel(’time [ns]’,’FontSize’,14); % size of x label

ylabel(’Arbitrary units’,’FontSize’,14); % size of y label

set(gca,’FontSize’,14); % size of tick marks on both axes

legend(’carrier density’, ’photon density’) % legend inside the plot

pause

close all

Listing 7A.3.2 Function eqs large.m. Function defines rate equations equations for large-
signal analysis.

% File name: eqs_large.m

% Purpose:

% Large signal rate equations are established

% N == y(1)

% S == y(2)

% assumed linear gain model

function ydot = eqs_large(t,y)

%

param_rate_eq_QW % input of needed parameters

%

current = 3d-2; % bias current (step function) [A]; 3 mA

A = v_g*a*(y(1) - N_tr)/(1+epsilon*y(2));

ydot(1) = eta_i*current/(q*V) - y(1)/tau - A*y(2);

ydot(2) = conf*A*y(2) - y(2)/tau_p + conf*beta_sp*y(1)/tau;

ydot = ydot’; % must return column vector
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8 Optical amplifiers and EDFA

As signals travel in optical communication systems, they are attenuated by optical fibre.
Eventually, after some distance they can become too weak to be detected. One possible way
to avoid this situation is to use optical amplifiers to increase the amplitude of the signal.
An optical amplifier is an optical device for amplifying signals propagating over several
channels in optical fibre to compensate for their loss during propagation. Signals also get
distorted, say by presence of noise, and the amplification process does not clean them nor
reshape them. The cleaning process is commonly known as regeneration and will not be
discussed here.

In this chapter we will concentrate on optical amplifiers. We review their general prop-
erties and will also discuss erbium doped fibre amplifiers (EDFA). Semiconductor optical
amplifiers (SOA), which are essentially semiconductor lasers without mirrors so they do
not lase, will be discussed in the next chapter.

Possible applications of optical amplifiers are illustrated in Fig. 8.1. Some of the basic
applications are listed below:

a) as in-line amplifiers for power boosting,
b) as pre-amplifiers to increase the received power at the receiver,
c) as power amplifiers to increase transmitted power,
d) as a power booster in a local area network.

The main types of optical amplifiers are:

• doped fibre amplifiers
• Raman and Brillouin amplifiers, and
• semiconductor optical amplifiers.

Issues which will be discussed in relation to those amplifiers are: gain and gain bandwidth,
gain saturation, and noise and noise figure.

In short, the operation and characteristics of all types of amplifiers are:

1. population inversion is created, which means that more systems (atoms, molecules) are
in a high energy state than in a lower one,

2. the incoming pulses of signal induce stimulated emission,
3. amplifiers saturate above a certain signal power,
4. amplifiers add noise to the signal.

In this book we will only describe two types of optical amplifiers: semiconductor optical
amplifiers (SOA) and erbium doped fibre amplifiers (EDFA). Their general characteris-
tics are compared in Table 8.1 where we summarize essential properties of EDFA and
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Table 8.1 Some properties of EDFA and SOA.

Properties of amplifiers EDFA SOA

Active medium Er3+ ion in silica Electron-hole
in semiconductors

Typical length Few metres 500 µm
Pumping Optical Electrical
Gain spectrum 1.5–1.6 µm 1.3–1.5 µm
Gain bandwidth 24–35 nm 100 nm
Relaxation time 0.1–1 ms <10–100 ps
Maximum gain 3–50 dB 25–30 dB
Saturation power >10 dBm 0–10 dBm
Crosstalk – For bit rate 10 GHz
Polarization Insensitive Sensitive
Noise figure 3–4 dB 6–8 dB
Insertion loss <1 dB 4–6 dB
Optics Pump laser diode couplers, Antireflection coatings,

fibre splice fibre-waveguide coupling
Integration No Yes

Optical fibre Optical fibre
In-line
amplifier

TX RX

Optical fibre
TX RX

Fig. 8.1 Possible applications of optical amplifiers: as an in-line amplifier (top) or as a preamplifier (bottom). TX stands for
transmitter, RX for receiver.

SOA, after Yariv and Yeh [1] (reproduced with permission). Next, we will discuss general
characteristics of optical amplifiers.

Some books on the subject are: Desurvire [2], Becker et al. [3] and Bjarklev [4].

8.1 General properties

Amplification in optical amplifiers is through stimulated emission (the same as in lasers).
One can therefore consider similar characteristic parameters, like gain and its spectrum,
bandwidth, etc. We will discuss them in some detail.
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8.1.1 Gain spectrum and bandwidth

To model gain, one typically starts with a homogeneously broadened two-level system.
Local gain coefficient for such system is [5]

g (ν, P) = g0

1+ (ν−ν0)2

�ν2
0

+ P
Psat

(8.1)

where g0 is the peak value of the unsaturated gain, ν0 atomic transition frequency, �ν0 3-dB
local gain bandwidth, Psat saturation power and P and ν are optical power and frequency of
the amplified signal.

Local gain can also be written as

g (ω, P) = g0

1 + (ω − ω0)
2 T 2

2 + P/Psat

(8.2)

where ω = 2πν is the angular frequency and T2 is known as dipole relaxation time [6].
For small signal power one can consider a unsaturated regime defined as P � Psat . In

this limit local gain is

g (ω) = g0

1 + (ω − ω0)
2 T 2

2

(8.3)

The following conclusions can be derived from the above equation:

1. maximum gain corresponds to transitions with angular frequency ω = ω0,
2. for ω �= ω0 gain spectrum is described by Lorentzian profile,
3. local gain bandwidth, which is defined as the full width at half maximum (FWHM), is

�ω0 = 2

T2
(8.4)

Local gain bandwidth �ω0 is defined by points in frequency where local gain takes half the
value at the maximum. In terms of frequency it can be written as

�ν0 = �ω0

2π
= 1

πT2
(8.5)

Let P (z) be the optical power at a distance z from the input end. Its change is described
as

dP(z)

dz
= g(ν, P) · P(z) (8.6)

Assume a linear device (here for power levels P � Psat ) where local gain is independent of
the signal power. Integration of the above equation gives

P (z) = P(0) eg·z (8.7)

where P(0) = Pin is the signal input power. Linear amplifier gain is defined as

G = P(L)

P(0)
(8.8)



207 General properties

where P(L) = Pout is the output power. From the above solution one obtains

G = P (L)

P(0)
= egL = exp

⎡⎣ g0 · L

1 + (ν−ν0)2

�ν2
0

⎤⎦ (8.9)

Amplifier bandwidth B0 is evaluated using the above solution. It is defined by two frequency
points where power drops by 50%, i.e. P3dB = 1

2 Pmax(L), which translates into G3dB =
1
2 Gmax. Here Gmax is the maximum value of gain evaluated at ν = ν0. In detail

exp

⎡⎣ g0 · L

1 + B2
0

�ν2
0

⎤⎦ = 1

2
exp

⎡⎣ g0 · L

1 + 0
�ν2

0

⎤⎦ = 1

2
exp (g0 · L)

where we have introduced 3 − dB bandwidth B0 as B0 = ν − ν0. By the straightforward
algebra, from the above relation one finds

B0 = �ν0

√
ln 2

g0L − ln 2
(8.10)

Macroscopic bandwidth of the amplifier B0 is smaller than the local gain bandwidth �ν0.

8.1.2 Gain saturation

We will now analyse the gain when signal power has large value and saturation effects are
becoming important. Assume that ω = ω0. Substituting Eq. (8.2) into (8.6), one obtains

dP

dz
= g0P

1 + P/Psat
(8.11)

We introduce new variable u = P/Psat and use separation of variables method to integrate
the above equation. One obtains∫ uout

uin

1 + u

u
du =

∫ L

0
g0 dz

where uin = Pin/Psat , uout = Pout/Psat and Pin, Pout are input and output powers, respectively.
L is the length of an amplifier. Gain G is defined as

G = Pout

Pin
(8.12)

One obtains

G = G0 exp

(
−G − 1

G

Pout

PS

)
(8.13)

where G0 = exp (g0 · L).
In Fig. 8.2 we have plotted saturation gain dependence from Eq. (8.13). MATLAB code

and its description are provided in Appendix, Listings 8A.1.1, 8A.1.2 and 8A.1.3.
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Fig. 8.2 Saturated normalized amplifier gainG/G0 as a function of the normalized output power for three values of the
unsaturated amplifier gainG0.

8.1.3 Amplifier noise

Signal-to-noise ratio (SNR) of optical amplifiers is degraded because spontaneous emission
adds to the signal during its amplification. Amplifier noise figure Fn is defined as [7]

Fn = (SNR)in

(SNR)out
(8.14)

SNR refers to the electrical power generated when the signal is converted to electrical
current by using a photodetector. We model Fn by considering an ideal detector limited only
by a shot noise

(SNR)in = 〈I〉2

σ 2
s

(8.15)

where 〈I〉 = RPin is the average photocurrent, R = q
hν

is the responsivity of an ideal detector
with unit quantum efficiency, σ 2

s = 2q (RPin) � f is the variance from shot noise and � f is
the detector bandwidth. At the output, we should add spontaneous emission to the receiver
noise

Ssp (ν) = (G − 1) nsphν (8.16)

Here Ssp is the spectral density of the noise induced by spontaneous emission, ν is optical
frequency and nsp is the spontaneous-emission factor or population inversion factor. The
value of nsp is nsp = 1 for amplifiers with complete population inversion (all atoms in the
upper state) and nsp > 1 for incomplete population inversion.

For a two-level system

nsp = N2

N2 − N1
(8.17)
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Fig. 8.3 Absorption and gain spectra of Ge silicate amplifier fibre. Copyright (1991) IEEE. Reprinted, with permission from C. R.
Giles and E. Desurvire, J. Lightwave Technol., 9, 271 (1991).

where N1 and N2 are the atomic populations in the lower and upper states, respectively.
Total variance of the shot noise plus spontaneous emission noise is thus

σ 2 = 2q (RGPin) � f + 4 (GRPin)
(
RSsp

)
� f (8.18)

All other contributions to the receiver noise are neglected. At the output, the SNR of the
amplified signal is

(SNR)out = 〈I〉2

σ 2
= (RGPin)

2

σ 2
≈ GPin

4Ssp� f
(8.19)

assuming G � 1 and we neglected first term in (8.18).
Using definition of Fn, one finds

Fn = 2nsp
G − 1

G
≈ 2nsp (8.20)

It shows that even for an ideal amplifier (nsp = 1), amplified signal is degraded by a factor
of 2 (3 dB). In practice, Fn is in the range 6–8 dB.

8.2 Erbium-doped fibre amplifiers (EDFA)

Experimental data on absorption and gain of an EDFA whose core was codoped with Ge
to increase the refractive index are shown in Fig. 8.3, after Giles and Desurvire [8].

An optical fibre amplifier consists of an optical fibre where amplification takes place
which is doped with a rare-earth element, and a pumping light supply system for supplying
pumping light to the optical fibre for amplification, see Fig. 8.4. The pumping light supply
system usually includes a semiconductor laser and an optical coupler for guiding the
pumping light into the optical fibre for amplification.
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Erbium-doped amplifiers are made by doping a segment of the fibre with erbium and then
exciting the erbium atoms to a high energy level through the introduction of pumping light.
The energy is transferred gradually to signal light passing through the fibre segment during
excitation, resulting in an amplification of the signal light upon exit from the amplifier.
Fibre optic amplifiers can amplify signal light including one or more wavelengths within a
predetermined wavelength band without converting them into an electrical signal.

Illustration of the amplification process in EDFA based on the three-level model is
shown in Fig. 8.5 for the case of a 980 nm pump. A pump photon at a 980 nm wavelength
is absorbed by an erbium ion in the ground state and jumps into the highest energy level.
Then, through a non-radiative decay the ion loses its energy and arrives into a metastable
state. Once there, a photon having wavelength of 1530 nm can force a stimulated transition
of the ion into its ground state, creating one additional photon and an amplification.

In this section, we will describe EDFA using a three-level model. We follow Becker
[3]. The model is shown in Fig. 8.6. Level 1 is a ground state, level 2 is known as a
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metastable one (it has a long lifetime) and level 3 is an intermediate state. The population
of levels are introduced as N1, N2, N3. The spontaneous transition rates of the ion (transition
probabilities) which include radiative and also non-radiative contributions are denoted as
�32 and �21 and correspond to transitions between levels 3 → 2 and 2 → 1, respectively.
σp is the pump absorption cross section and σs is the signal emission cross section. The
incident light intensity fluxes of pump and signal are denoted by φp and φs, respectively.
They are defined as number of photons per unit time per unit area.

This three-level model represents energy level structure of Er+ which is involved in the
amplification process. To obtain amplification, we need a population inversion between
levels 1 and 2. Here, we only consider a one-dimensional model where we assume that the
pump and signal intensities and also distribution of Er ions are constant in the transverse
direction.

Based on the above observations, the rate equations for the changes of populations for
all levels are postulated as

dN1

dt
= �21N2 − (N1 − N3) σpφp + (N2 − N1) σsφs (8.21)

dN2

dt
= −�21N2 + �32N3 − (N2 − N1) σsφs (8.22)

dN3

dt
= −�32N3 + (N1 − N3) σpφp (8.23)

8.2.1 Steady-state analysis

In the steady-state conditions

dN1

dt
= dN2

dt
= dN3

dt
= 0 (8.24)

Also, total population N is assumed to be constant:

N = N1 + N2 + N3 (8.25)

From Eq. (8.23) one obtains

N3 = N1
1

1 + �32
σpφp

(8.26)

In what follows we will assume fast decay from level 3 to level 2; i.e. decay from level
3 is dominant compared to pump rate. Mathematically, the assumption corresponds to the
following condition �32 � σpφp. Lifetime of level 3, τ32 is related to transition probability
as τ32 = 1/�32. In this limit there is almost no population of level 3, and therefore N3 ≈ 0.
With those assumptions the system can be effectively considered as consisting of two levels
only which are described by the following equations:

σpφp + σsφs

�21 + σsφs
N1 − N2 = 0 (8.27)

N1 + N2 = N (8.28)
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Solutions by standard methods give for population inversion

N2 − N1 = N
σpφp − �21

�21 + 2σsφs + σpφp
(8.29)

8.2.2 Effective two-level approach

Keeping the above assumption, i.e. �32 � σpφp which allows us to neglect level 3, from
Eq. (8.28) one has

dN1

dt
= −dN2

dt

It is therefore enough to consider only one equation, say for N2; the other population N1

can be found from N1 = N − N2. Following Pedersen et al. [9], to describe the system we
postulate the following equations:

dN2

dt
= −�21N2 + [

σ (a)
s N1 − σ (e)

s N2
]
φs −

[
σ (e)

p N2 − σ (a)
p N1

]
φp (8.30)

dN1

dt
= �21N2 + [

σ (e)
s N2 − σ (a)

s N1
]
φs −

[
σ (a)

p N1 − σ (e)
p N2

]
φp (8.31)

where σ (a)
s , σ (e)

s , σ (a)
p , σ (e)

p represent signal and pump cross sections for absorption and
emission, respectively. Assume steady-state and from Eq. (8.30) determine N2:

N2 = N
σ (a)

s φs + σ (a)
p φp

1
τ

+
[
σ

(a)
s + σ

(e)
s

]
φs +

[
σ

(a)
p + σ

(e)
p

]
φp

where we have introduced τ = 1/�21. Further, introduce signal Is and pump Ip intensities
as

φs = Is

hνs
, φp = Ip

hνp

where h is the Planck constant and νs, νp are frequencies of the signal and pump, respectively.
This allows us to write

N2 = N
τ

σ (a)
s

hνs
Is(z) + τ

σ (a)
p

hνp
Ip(z)

τ σ
(a)
s +σ

(e)
s

hνs
Is(z) + τ

σ
(a)
p +σ

(e)
p

hνp
Ip(z) + 1

We further assume that N is independent of distance along fibre z. The variation of signal
and pump intensities is described as

dIs(z)

dz
= [

σ (e)
s N2 − σ (a)

s N1
]

Is(z)

dIp(z)

dz
=
[
σ (e)

p N2 − σ (a)
p N1

]
Ip(z)
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Table 8.2 Typical parameters of a low-noise in-line EDFA.

Parameter Symbol Value Unit

Signal mode area πw2 1.3 × 10−11 m2

Erbium concentration Ntot 5.4 × 1024 m−3

Signal overlapping integral �s 0.4
Pump overlapping integral �p 0.4
Signal emission cross section sse 5.3 × 10−25 m2

Signal absorption cross section ssa 3.5 × 10−25 m2

Pump absorption cross section sp 3.2 × 10−25 m2

Signal local saturation power Pss 1.3 mW
Pump local saturation power Psp 1.6 mW

8.3 Gain characteristics of erbium-doped fibre amplifiers

We outline a basic approach to evaluate the performance of EDFA. Neglecting amplified
spontaneous emission (ASE) and assuming copropagation configuration, the equations
describing steady-state are

dIs(z)

dz
= 2π�s

{
σseNme(z)Is(z) − σsaNgr(z)Is(z)

}
(8.32)

dIp(z)

dz
= 2π�pσsaNgr(z)Ip(z) (8.33)

Nme(z) = Ntot
Is(z)/Iss + Ip(z)/Isp

1 + Ip(z)/Isp + 2Is(z)/Iss
(8.34)

Nme(z) + Ngr(z) = Ntot (8.35)

In the previous equations Ngr(z) is the population of the ground state, Nme(z) is the pop-
ulation of the metastable state, Ip(z) is the intensity of the pump wave propagating at the
wavelength λp and Is(z) is the intensity of the signal wave propagating at the wavelength
λs in the positive z-direction.

Finally, the overall amplifier gain G is obtained using the following relation:

G = Is(L)

Is(0)
(8.36)

where L is the doped fibre length.

8.3.1 Typical EDFA characteristics

The above equations were solved numerically using parameter values from Table 8.2 [8],
[10], [11]. MATLAB codes are provided in Listings 8A.2.1–8A.4.2.

The variation of gain with fibre length was determined first and the results are summarized
in Fig. 8.7 for different values of pump power. MATLAB code is shown in the Appendix,
Listings 8A.2.1–8A.2.4. Constant signal input power of 10µW and constant erbium doping
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density have been assumed. Gain was evaluated for four different pump power levels equal
to 3, 5, 7 and 9 mW. As it is shown, gain increases up to a certain fibre’s length and then
begins to decrease after reaching a maximum point. Similar results were reported in the
literature, compare [10] and [11].

The optimum fibre length (the one which corresponds to a maximum gain) is a few metres
and it increases with the pump power. The reason for the decrease in gain is insufficient
population inversion due to excessive pump depletion.

In Fig. 8.8 we show the variation of gain with pump power for three different values of
fibre lengths of 5, 10 and 15 m and a constant signal input power equal to 1 mW. MATLAB
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code is shown in the Appendix, Listings 8A.3.1 and 8A.3.2. Constant Er doping density
was also assumed. As it is seen, gain of the EDFA increases with the increasing pump
power and then saturates after a certain level of pump power. The pump saturation effect
occurs for input powers in the range 3–6 mW. Consult literature for more discussion of the
obtained results [10] and [11].

8.4 Problems

1. An EDFA has 20 dB of gain. If the power of incident signal is 150 µW, what is the
output power?

2. An optical amplifier amplifies an incident signal of 1 µW to 1 mW. Assuming the
saturation power of 20 mW, what will be the output power of 100 µW incident signal
on the same amplifier?

3. An optical amplifier produces power gain of 1000 over 30 m with a 10 mW pump.
(a) What is the gain exponential coefficient α in nepers per metre? (b) What should
be the length of that amplifier to produce gain of 1500?

4. Using steady-state amplifier equations and appropriate approximations, derive
an analytical expression for an optimum length of fibre which gives maximum
amplification.

8.5 Projects

1. Perform a literature survey on EDFA with noise. Write a MATLAB program to simulate
EDFA with realistic noise.

2. Perform a literature survey on Raman amplifiers. Write MATLAB code to simulate
Raman amplifier. Compare Raman amplifier and EDFA.

3. Formulate transient model of EDFA with the saturation effect of the forward and back-
ward amplified spontaneous emission [12]. Integrate numerically the resulting equations.
Analyse gain saturation and recovery times of an EDFA and the effects on the amplifi-
cation of optical pulses.

Appendix 8A: MATLAB listings

In Table 8.3 we provide a list of MATLAB files created for Chapter 8 and a short description
of each function.
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Table 8.3 List of MATLAB functions for Chapter 8.

Listing Function name Description

8A.1.1 sat gain.m Creates data for saturated gain
8A.1.2 f sat gain.m Function used by sat gain.m
8A.1.3 sat plot.m Function plots saturated gain
8A.2.1 gain variable length.m Generates date for plots gain vs fibre

length for fixed gain
8A.2.2 edf a param.m Parameters for EDFA
8A.2.3 edf a eqs.m Equations for EDFA
8A.2.4 variable length plot.m Plots gain using data generated by

gain variable length.m
8A.3.1 gain variable pump.m Generates data for plots gain vs power

for fixed fibre length
8A.3.2 variable gain plot.m Plots gain using data generated by

gain variable pump.m

Listing 8A.1.1 Function sat gain.m. MATLAB program which generates data for satu-
rated normalized amplifier gain G0. To generate the required data, it must be run three times
for three values of G0. Therefore one should appropriately comment inputs for G0. Each
time a different output file must be specified; i.e. the output file name should be changed.

% File name: sat_gain.m

% Generates data for plots of saturated gain G as a function of

% the output power for three values of the unsaturated amplifier gain G_0

% File must be run three times for three values of G_0

clear all

%

G_0 = 10;

%G_0 = 100;

%G_0 = 1000;

u_init = 1d-2;

Delta_u = 0.5d-1;

u_final = 1d1;

uu = u_init;

yy = fzero(@(y) f_sat_gain(y, u_init, G_0), 0.5);

for u = (u_init + Delta_u):Delta_u:u_final

uu = [uu, u];

y = fzero(@(y) f_sat_gain(y, u, G_0), 0.5);

yy = [yy, y];

end

%

d_u = length(uu);

fid = fopen(’gain_data_10.dat’, ’wt’); % Open the file.

for ii = 1:d_u
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fprintf (fid, ’ %11.4f %11.4f\n’, uu(ii),yy(ii)); % Print the data

end

status = fclose(fid); % Close the file.

Listing 8A.1.2 Function f sat gain.m. MATLAB function used by a program which plots
saturated gain.

% defines function used in plot of saturated gain of optical amplifier

function fun = f_sat_gain(y, u, G_0)

fun = y - exp(-(G_0*y-1)*u/(G_0*y));

Listing 8A.1.3 Function sat plot.m. MATLAB function used to plot saturated gain from
files. It was not possible here to create one MATLAB program which will perform all the
calculations and also to plot all the results. Instead, we had to run sat gain.m three times
for three different values of G0, output the results to data files and then plot final results
using a separate program.

% File_name: sat_plot.m

% Plots graph of saturated gain using data generated by sat_gain.m

clear all

fid = fopen(’gain_data_10.dat’);

a_10 = fscanf(fid,’%f %f’,[2 inf]); % It has two rows

fclose(fid);

%

fid = fopen(’gain_data_100.dat’);

a_100 = fscanf(fid,’%f %f’,[2 inf]); % It has two rows

fclose(fid);

%

fid = fopen(’gain_data_1000.dat’);

a_1000 = fscanf(fid,’%f %f’,[2 inf]); % It has two rows

fclose(fid);

%

semilogx(a_10(1,:),a_10(2,:),’k-’, a_100(1,:),a_100(2,:),’k--’,...

a_1000(1,:),a_1000(2,:),’k-.’,’LineWidth’,1.5)

%

xlabel(’Normalized output power, P_{out}/P_{sat}’,’FontSize’,14);

ylabel(’Normalized amplifier gain, G/G_0’,’FontSize’,14);

legend(’G_0 = 10’,’G_0 = 100’,’G_0 = 1000’)

set(gca,’FontSize’,14); % size of tick marks on both axes

pause

close all
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Listing 8A.2.1 Function gain variable length.m. MATLAB function used to compute
gain versus fibre length for a fixed value of pump power.

% File name: gain_variable_length.m

% Computation of gain vs fibre length for fixed value of pump power

% User selects pump power which is controlled by P_p

% Calculations are repeated for P_p = 3,5,7,9 d-3 Watts

% User should also appropriately rename output file ’gain_P_3.dat’

% based on Iannone-book, p.86

% P_s == y(1) signal power

% P_p == y(2) pump power

%

clear all

gain = 0.0;

gain_temp = 0.0;

P_s = 100d-7; % signal power [Watts]

P_p = 9d-3; % CHANGE % pump power [Watts]

%

for d_L = 0.01:0.01:10

span = [0 d_L];

y0 = [P_s P_p]; % initial values of [P_s P_p]

[z,y] = ode45(’edfa_eqs’,span,y0); % z - distance

len = length(z);

gain_temp = y(len)/y(1);

gain = [gain, gain_temp];

end

gain_log = log(gain);

d_L_plot = 0.01:0.01:10;

d_L_plot = [0, d_L_plot];

% plot(d_L_plot, gain_log) % uncomment if you want to see plot when run

% axis([0 4 0 5])

% pause

% close all

%

d_u = length(d_L_plot);

fid = fopen(’gain_P_9.dat’, ’wt’); % CHANGE % Open the file.

for ii = 1:d_u

fprintf (fid, ’ %11.4f %11.4f\n’, d_L_plot(ii),gain_log(ii));

end

status = fclose(fid); % Close the file
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Listing 8A.2.2 Function edfa param.m. MATLAB function contains parameters for a
model of EDFA.

% File name: edfa_param.m

%-----------------------------------------------------------------

% Purpose:

% Contains parameters for model of EDFA based on Table 3.2

% Iannone-book

N_tot = 5.4d24; % Erbium concentration (m^-3)

Gamma_s = 0.4; % Signal overlapping integral (dimensionless)

Gamma_p = 0.4; % Pump overlapping integral (dimensionless)

s_se = 5.3d-25; % Signal emission cross-section (m^2)

s_sa = 3.5d-25; % Signal absorption cross-section (m^2)

s_p = 3.2d-25; % Pump absorption cross-section

P_ss = 1.3d-3; % Signal local saturation power (W)

P_sp = 1.6d-3; % Pump local saturation power (W)

Listing 8A.2.3 Function edfa eqs.m. MATLAB function contains equations for EDFA.

function y_z = edfa_eqs(z,y)

% Purpose:

% To establish equations for EDFA following Iannone-book, p.86

% P_s == y(1) signal power

% P_p == y(2) pump power

%

edfa_param % input of needed parameters

num = y(1)/P_ss + y(2)/P_sp;

denom = y(2)/P_sp + 2*y(1)/P_ss + 1.0;

N_me = N_tot*num/denom;

N_gr = N_tot - N_me;

%

y_z(1) = 2*pi*Gamma_s*(s_se*N_me*y(1) - s_sa*N_gr*y(1)); % derivative

y_z(2) = -2*pi*Gamma_p*s_p*N_gr*y(2);

y_z = y_z’; % must return column vector

end

Listing 8A.2.4 Function variable length plot.m. MATLAB function used to plot graph
of gain using data generated by gain variable length.m.

% File_name: variable_length_plot.m

% Plots graph of gain using data generated by ’gain_variable_length.m’

clear all

% Open files for 4 values of length of device: 5 m,10 m,15 m

fid = fopen(’gain_P_3.dat’);

a_3 = fscanf(fid,’%f %f’,[2 inf]); % It has two rows
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fclose(fid);

%

fid = fopen(’gain_P_5.dat’);

a_5 = fscanf(fid,’%f %f’,[2 inf]); % It has two rows

fclose(fid);

%

fid = fopen(’gain_P_7.dat’);

a_7 = fscanf(fid,’%f %f’,[2 inf]); % It has two rows

fclose(fid);

%

fid = fopen(’gain_P_9.dat’);

a_9 = fscanf(fid,’%f %f’,[2 inf]); % It has two rows

fclose(fid);

%

plot(a_3(1,:),a_3(2,:),’k-’, a_5(1,:),a_5(2,:),’k--’,...

a_7(1,:),a_7(2,:),’k-.’,a_9(1,:),a_9(2,:),’k-’,’LineWidth’,1.5)

axis([0 4 0 10])

xlabel(’Doped fiber length (m)’,’FontSize’,14);

ylabel(’Gain (a.u)’,’FontSize’,14);

legend(’3 mW’,’5 mW’,’7 mW’,’9 mW’)

set(gca,’FontSize’,14); % size of tick marks on both axes

pause

close all

Listing 8A.3.1 Function gain variable pump.m. MATLAB function used to compute gain
versus pump power for fixed value of fibre length.

% File name: gain_variable_pump.m

% Computation of gain vs power pump for fixed value of fiber length

% User selects fiber length which is controlled by d_L

% Calculations are repeated for d_L = 5,10,15 meters

% User should also appropriately rename output file ’gain_L_5.dat’

% Based on Iannone-book, p.86

% P_s == y(1) signal power

% P_p == y(2) pump power

%

clear all

gain = 0.0;

gain_temp = 0.0;

P_s = 100d-5; % signal power [Watts]

d_L = 5; % CHANGE % fiber length [meters]

span = [0 d_L]; % region of integration [meters]

for P_p = 0.1d-3:0.1d-3:10d-3 % pump power [Watts]

y0 = [P_s P_p]; % initial values of [P_s P_p]

[z,y] = ode45(’edfa_eqs’,span,y0); % z - distance

len = length(z);
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gain_temp = y(len)/y(1);

gain = [gain, gain_temp];

end

gain_log = log(gain);

P_p_plot = 0.1:0.1:10;

P_p_plot = [0, P_p_plot];

% plot(P_p_plot, gain_log) % uncomment if you want to see plot when run

% axis([0 10 0 30])

% pause

% close all

%

d_u = length(P_p_plot);

fid = fopen(’gain_L_5.dat’, ’wt’); % CHANGE % Open the file.

for ii = 1:d_u

fprintf (fid, ’ %11.4f %11.4f\n’, P_p_plot(ii),gain_log(ii));

end

status = fclose(fid); % Close the file

Listing 8A.3.2 Function variable pump plot.m. MATLAB function used to plot graph of
gain using data generated by gain variable pump.m.

% File_name: variable_pump_plot.m

% Plots graph of gain using data generated by ’gain_variable_pump.m’

clear all

% Open files for 4 values of length of device: 5 m,10 m,15 m

fid = fopen(’gain_L_5.dat’);

a_5 = fscanf(fid,’%f %f’,[2 inf]); % It has two rows

fclose(fid);

%

fid = fopen(’gain_L_10.dat’);

a_10 = fscanf(fid,’%f %f’,[2 inf]); % It has two rows

fclose(fid);

%

fid = fopen(’gain_L_15.dat’);

a_15 = fscanf(fid,’%f %f’,[2 inf]); % It has two rows

fclose(fid);

%

plot(a_5(1,:),a_5(2,:),’k-’, a_10(1,:),a_10(2,:),’k--’,...

a_15(1,:),a_15(2,:),’k-.’,’LineWidth’,1.5)

axis([2 8 0 20])

xlabel(’Pump power (mW)’,’FontSize’,14);

ylabel(’Gain (a.u)’,’FontSize’,14);

legend(’5 m’,’10 m’,’15 m’)

set(gca,’FontSize’,14); % size of tick marks on both axes

pause

close all
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9 Semiconductor optical amplifiers (SOA)

The field of semiconductor optical amplifiers (SOA) is one of the fast growing in recent
years. Many new applications of SOA were proposed. For comprehensive summaries, see
books by Connolly [1] and Dutta and Wang [2].

In this chapter we will discuss the following topics:

• general concepts
• amplifier equations
• influence of cavity (FP amplifiers)
• gain dependence on polarization and temperature
• some applications.

Typical use of SOA in an amplifier configuration is shown in Fig. 9.1. Here, a signal
from transmission fibre is imputed on SOA where it is amplified. After amplification it is
redirected again to the fibre. Coupling between fibre and SOA is provided by an appropriate
optical element.

9.1 General discussion

SOA is very similar to a semiconductor laser. There are two categories of SOA (see Fig. 9.2):
(a) Fabry-Perot (FP) amplifier and (b) travelling-wave amplifier (TWA). The FP amplifier
displays high gain but has a non-uniform gain spectrum, whereas TWA has broadband gain
but requires very low facet reflectivities. The FP amplifier has large reflectivities at both
ends which results in resonant amplification, and also has large gain at the wavelength
corresponding to longitudinal modes of the FP cavity.

TWA has very small reflectivities, achieved by AR (anti-reflection) coating; its gain
spectrum is broad but small ripples exist in gain spectrum, resulting from residual facet
reflectivity. It is more suitable for system applications but the gain must be polarization
independent. The phenomenological expression for gain of SOA is written as

gm = a(n − n0) − a2(λ − λp)
2 (9.1)

and the wavelength peak value as

λp = λ0 + a3(n − n0) (9.2)

Typical values of the parameters which appear in the above formulas are given in
Table 9.1, from [3].
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Table 9.1 Basic parameters of SOA.

Description Symbol Value

Differential gain a 2.7 × 10−16 cm2

Gain coefficient a2 0.15 cm−1 nm−2

Gain coefficient a3 2.7 × 10−17 nm · cm−3

Transparency density n0 1.1 × 1018 cm−3

Amplifier length L 350 µm
Density at threshold nth 1.8 × 1018 cm−3

core

cladding

Transmission fibre Transmission fibre

Injection current (pump)

Active region

coupling optics

SOA

Optical
input
signal

Amplified
optical
signal

Fig. 9.1 SOA in an amplifier configuration.
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Fig. 9.2 Types of SOA: Fabry-Perot (left) and travelling-wave (right).

From the previous equations, the 3 dB gain bandwidth is determined as

2�λ = 2

√
a(n − n0)

2n2
(9.3)

Substituting typical values from Table 9.1 gives SOA bandwidth equal to 54 nm.
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Ein EoutE1
E2
E3

R2R1

L

Fig. 9.3 Basic model of a Fabry-Perot amplifier.

9.1.1 Gain formula for SOA with facet reflectivities

Consider a typical Fabry-Perot ethalon with a gain medium in-between, see Fig. 9.3. Total
output electric field Eout consists of all transmitted contributions:

Eout = E1 + E2 + E3 + · · ·
Here R1 and R2 are coefficients of internal reflections for electric field, and 1 − R1 and
1 − R2 corresponding coefficients of transmission. The single-pass gain Gs for field is

Gs = e�(g−α)·L (9.4)

where � is optical confinement factor, g is gain coefficient and α are internal losses. The
longitudinal propagation constant βz is

βz = k0 · ng (9.5)

where k0 = 2π
λ

and ng effective group index

ng = c

vg
(9.6)

Here vg is the group velocity. Applying the standing wave condition to an electromagnetic
wave of wavelength λ in a resonator of length L gives

L = m
λ

2
(9.7)

Expressions for transmitted components are

E1 = E0e− jβzL
√

Gs

√
1 − R1

√
1 − R2

E2 = E0e− jβz·3L
(√

Gs

)3√
1 − R1

√
R2

√
R1

√
1 − R2

E3 = E0e− jβz·5L
(√

Gs

)5√
1 − R1R2R1

√
1 − R2

Total field, which is determined as a sum of all the above components, is therefore

Eout = E0

√
(1 − R1) (1 − R2) Gse

− jβzL{1 + Gs

√
R1R2e− jβz·2L

+ G2
s R1R2e− jβz·4L + · · · }

Summing geometrical series, one finally obtains

Eout =
√

1 − R1
√

1 − R2GsE0e− jβzL

1 − Gs
√

R1R2e−2 jβz·L
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frequency

gain

Gmax

0νν

Fig. 9.4 Gain spectra showing frequency corresponding to gain peak.

Finally, gain of SOA with facet reflectivities R1 and R2 is

G = (1 − R1) (1 − R2) GS(
1 − √

R1R2GS

)2 + 4
√

R1R2GS sin2 φ
(9.8)

Phase shift φ is obtained by assuming that the phase of the incident wave is taken as zero.
The relation for phase change φ at the output is thus

φ = 2π

λ
L (9.9)

Using (9.6), we can write the above relation for frequency as

ν = φ
vg

2πL
(9.10)

The above relation can be interpreted on gain spectrum graph as shown in Fig. 9.4 where
frequency ν0 corresponds to gain peak Gmax, which is obtained when sin φ = 0, or φ = kπ .
Using an expression for phase (9.9), one finds its value corresponding to ν0 (using relation
1/λ0 = ν0/vg)

φ = 2π

λ0
L = 2π

vg
ν0 L

or

ν0 = vg

2L
· k

= vg

2L

assuming k = 1. The difference in frequencies ν − ν0 is determined as

ν − ν0 = vg

2πL
φ − vg

2L
= vg

2L

(
φ

π
− 1

)
or

2π (ν − ν0 ) L

vg
= π

(
φ

π
− 1

)
= φ − π

Finally

φ = 2π (ν − ν0 ) L

vg
(9.11)

where we have neglected π since sin π = 0.
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Fig. 9.5 Typical gain spectra of Fabry-Perot amplifier showing gain ripples.
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Fig. 9.6 Gain ripple as a function of reflectivity for two values of gain.

9.1.2 The effect of facet reflectivities

An uncoated SOA has facet reflectivities (due to FP reflections) determined by taking the
values of refractive indices of a typical semiconductor and the air and is approximately
equal to 0.32. Even with the AR coatings, there are some residual reflectivities which result
in the appearance of the so-called gain ripples, see Fig. 9.5. Ripples are superimposed on
gain spectrum. The peak-to-valley ratio between the resonant and non-resonant gains is
known as the amplifier gain ripple Gr. From Eq. (9.8) one obtains

Gr = 1 + Gs
√

R1R2

1 − Gs
√

R1R2
(9.12)

where Gs is the single-pass amplifier gain.
For an ideal TWA both R1 and R2 are zero. In this case Gr = 1; i.e. no ripple occurs at the

cavity mode frequencies. The quantity Gr is plotted in Fig. 9.6 as a function of reflectivity
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R (assuming that R1 = R2) for two values of gain. One observes that gain ripple increases
with increasing gain and also increasing facet reflectivity. The MATLAB code is provided
in Appendix, Listing 9A.1.

9.2 SOA rate equations for pulse propagation

In this section we concentrate on basic rate equations describing pulse propagation in
SOA [2], [4]. Discussion involves electromagnetic field and carriers. We start with the
development of electromagnetic equation.

Pulse propagation inside SOA is described by the wave equation

∇2E (r, t ) − ε

c2

∂2E (r, t )

∂t2
= 0 (9.13)

where E (r, t ) is the electric field vector, c is the light velocity and ε is the dielectric constant
of the amplifier medium which is expressed as

ε = n2
b + χ (9.14)

Here nb is the background refractive index of the semiconductor and susceptibility χ which
represents the effect of charges inside an active region in the phenomenological model is

χ = − cn

ω0
(αH + i) g(n) (9.15)

where n is the effective mode index, αH is the linewidth enhancement factor (Henry factor)
and g(n) is the optical gain approximated here (for bulk devices) as

g(n) = a (n − n0) (9.16)

where a is defferential gain, n is the injected carrier density and n0 is the carrier density at
transparency.

In the following we assume a travelling wave semiconductor wave amplifier which
supports single mode propagation with a perpendicular electric profile described by F (x, y).
The electric field E (r, t ) which obeys wave equation (9.13) is expressed as

E (r, t ) = n̂
1

2

{
F (x, y) A(z, t) ei(k0z−ω0t)

}
(9.17)

where n̂ is the polarization vector, k0 = nω0/c and A(z, t) is the slowly varying amplitude
of the propagating wave. We introduce the following notation:

∇2 = ∇2
⊥ + ∂2

∂z2
, where ∇2

⊥ = ∂2

∂x2
+ ∂2

∂y2

and evaluate derivatives

∇2E ∼ (∇2
⊥F )Aeik0z + F

∂2A

∂z2
eik0z + 2F

∂A

∂z
ik0eik0z + FA(ik0)

2eik0z (9.18)
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In the slowly varying envelope approximation (SVEA) the term with second derivative with
respect to z and t is neglected. Substituting (9.18) into (9.13), applying SVEA with respect
to z and t and integrating over the transverse direction gives

∇2
⊥F + ω2

0

c2

(
n2

b − n2
)

F = 0 (9.19)

and

∂A

∂z
+ 1

vg

∂A

∂t
= iω0�

2cn
χA − 1

2
αlossA (9.20)

where we have accounted for losses described by αloss. The group velocity is defined as
vg = c/ng and group index ng is

ng = n + ω0
∂n

∂ω
(9.21)

The confinement factor � is

� =
∫ w

0 dx
∫ d

0 dy|F (x, y)|2∫ +∞
−∞ dx

∫ +∞
−∞ dy|F (x, y)|2 (9.22)

where w and d are the width and thickness of the amplifier active region. At this stage, one
simplifies Eq. (9.20) by introducing transformation to a reference frame moving with pulse
as

τ = t − z

vg

z′ = z

In the new reference frame Eq. (9.20) takes the form

∂A

∂z
= iω0�

2cn
χA − 1

2
αlossA (9.23)

Rate equation for carrier density n is in the following form [2], [4]:

dn

dt
= I

qV
− n

τc
− �g(n)

�ω0σm
|A|2 (9.24)

where I is the injection current, V is the active volume, q is the electron charge, τc is the
carrier lifetime and σm is the cross section of the active region. In the new reference frame,
the above equation is

dn

dτ
= I

qV
− n

τc
− �g(n)

�ω0σm
|A|2 (9.25)

Slowly varying amplitude A(z, t) of the propagating wave is expressed as

A =
√

Peiφ (9.26)
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where P(z, τ ) and φ(z, τ ) are the instantaneous power and the phase of the propagating
pulse. Using the above equations, one obtains [2]

∂A

∂z
= 1

2
(1 + iαH ) g · A (9.27)

dg

dτ
= −g − g0

τc
− gP

Esat
(9.28)

∂P

∂z
= (g − αloss) P (9.29)

∂φ

∂z
= −1

2
αH g (9.30)

The quantity Esat is defined as Esat = τcPs, where Ps is the saturation power of the amplifier

Ps = hω0σm

a�τc
(9.31)

In the above g0 is the small signal gain

g0 = �a

(
Iτc

eV
− n0

)
(9.32)

Finally, the cross section σm of the active region is σm = wd.

Pulse amplification

Using previously defined equations, we will now analyse pulse propagation assuming zero
losses, i.e. αloss = 0, and also assuming that τp � τc, where τp is the width of the input pulse.
Under this approximation pulse is so short that gain has no time to recover. Observing that
τc = 0.2–0.3 ns for typical SOA [4], this approximation works for τp equal to about 50 ps.
Under the above approximations, one can obtain the analytical solution of the amplifier
equations. One first integrates Eq. (9.29) to obtain output power as

Pout (τ ) = Pin(τ )eh(τ ) ≡ Pin(τ )G(τ ) (9.33)

where Pin(τ ) is the input power, and

h(τ ) =
∫ L

0
g(z, τ )dz (9.34)

Quantity h(τ ) is known as the total integrated net gain. Replacing the last term in Eq. (9.28)
using (9.29) gives

dg

dτ
= g0 − g

τc
− 1

Esat

dP

dz

Integrating the above over amplifier length and using (9.33) gives

dh(τ )

dτ
= g0L − h(τ )

τc
− 1

Esat
Pin(τ ) [G(τ ) − 1] (9.35)
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The solution of the previous equation is [2], [4]

G(τ ) = eh(τ ) = G0

G0 − (G0 − 1) exp [−E0(τ )/Esat ]
(9.36)

where G0 is the unsaturated gain of the amplifier and the quantity E0(τ ) is given by

E0(τ ) =
∫ τ

−∞
Pin(τ

′)τ ′ (9.37)

E0(τ ) represents the fraction of the pulse energy contained in the leading part of the pulse
up to τ ′ ≤ τ .

The above solution shows that due to time dependence of the gain, different parts of
input pulse experience different amplification which leads to a modification of pulse shape
after being amplified by SOA.

In the following we will restrict our analysis to the Gaussian input pulse

Pin(τ ) = P0 exp
(−τ 2

)
(9.38)

For the Gaussian input pulse, the expression for the quantity E0(τ ) can be found in a closed
form as

E0(τ ) = P0τ0
1

2

√
π [1 + er f (τ )] (9.39)

where er f (τ ) is the error function defined as

er f (τ ) = 2√
π

∫ τ

0
e−x2

dx (9.40)

We have also used the following property of error function [5]:

1 − er f (τ ) = 2√
π

∫ ∞

τ

e−x2
dx (9.41)

In Fig. 9.7 we plotted pulse shape for several values of unsaturated gain G0. One can
observe that the amplified pulse becomes asymmetric; i.e. its leading edge is sharper
compared to its trailing edge.

9.3 Design of SOA

Here, we briefly describe the main effects which must be considered when designing SOA
with proper characteristics. Out of many issues related to the design of SOA, we briefly
concentrate here on two: suppression of cavity resonances and polarization insensitivity.
Consult the literature [1], [2] and [6] for more information.

Suppression of cavity resonance

To fabricate a travelling wave SOA, the Fabry-Perot cavity resonances must be suppressed.
To accomplish this, the reflectivities at both facets must be reduced. Three approaches were
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Fig. 9.7 Output pulse shapes for several values of the unsaturated gainG0 = 10, 100, 1000 (increasing values to the
left).

used to achieve this goal (see Fig. 9.8): (a) to put anti-reflection (AR) coating at both facets,
(b) to tilt the active region and (c) to use transparent window regions.

The principles of AR coating were discussed in Chapter 3. AR coating only works for a
particular wavelength and it is not suitable for a wide bandwidth. The analysis [7] shows
that with appropriate combination of the previously discussed methods it is possible to
obtain an effective facet reflectivity of less than 10−4. Multilayer coatings can broaden
wavelength range where there is low reflectivity.

Polarization insensitive structures

The state of polarization of an electric field during propagation in optical fibre changes
randomly. Therefore, after propagation when signal is ready for amplification (say, in
SOA), its state of polarization is unknown. For amplifications of such signals it is therefore
desirable that SOA has polarization independent amplification. The main factor responsible
for polarization sensitivity is the difference between confinement factors for TE and TM
modes [1]. Proper design of polarization insensitive SOA involves several techniques which
are summarized in [1].

Additionally, in modern SOAs which are based on quantum well (QW) designs instead of
bulk structures, due to their significantly reduced threshold current and increased efficiency
there exist additional polarization related effects associated with QW. QW significantly
suffers from polarization sensitivity, that is, a significant difference in gain between the
transverse-electric (TE) and transverse-magnetic (TM) polarization modes. This is a major
concern as the polarization of a signal cannot be always controlled. Several approaches
were discussed to the design of polarization insensitive SOA [8], [9], [10]. The issue is of
significant importance for SOA built using quantum wells.
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Fig. 9.8 Main ways to make travelling wave SOA.

9.4 Some applications of SOA

9.4.1 Wavelength conversion

One of the important applications of SOA is for wavelength conversion (WC) [11], see
also [1]. Three main methods of WC have been analysed: cross-gain modulation (XGM),
cross-phase modulation (XPM) and four-wave mixing (FWM). XGM will be discussed in
detail in the following section.

Other methods (not discussed here) include those based on the nonlinear optical loop
mirror (NOLM) with the nonlinearity achieved by using fibre or SOA (see recent review
[12]).
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Fig. 9.11 Principle of wavelength conversion in SOA using XGM.

Cross-gain modulation

The reduction of gain, known as gain saturation, typically occurs for input powers of
the order of 100 µW or higher. To understand this effect, one must remember that the
amplification in SOA is the result of stimulated emission. The rate of stimulated emission
in turn depends on the optical input power. At high optical injection, the carrier concentration
in the active region is depleted through stimulated emission to such an extent that the gain
of SOA is reduced.

WC based on XGM can operate in either copropagation or counter-propagation config-
urations. Counter-propagation configuration does not require optical filtering of the target
wavelength. However, counter-propagation suffers from speed limitations [13].

The schematic representation of the XGM used as wavelength conversion is shown in
Fig. 9.9 (copropagation configuration) and in Fig. 9.10 (counter-propagation configuration).
The principle of wavelength conversion employing nonlinear characteristics of SOA is
explained in Fig. 9.11. Two optical signals enter a single SOA. One of the signals (known
as the probe beam) at wavelength λCW is injected continuously (CW); the other (known as
the signal beam) injected at wavelength λS is carrying digital information.
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Fig. 9.12 The MZ interferometric configuration and its equivalent symbol.

If the peak optical power in the modulated signal is near the saturation power of the SOA,
the gain will be modulated synchronously with the power. When the data signal is at high
level (a logical ONE), the gain is depleted and vice versa. This gain modulation is imposed
on the unmodulated (CW) input probe beam. Thus, an inverted replica of the input data is
created at the probe beam wavelength. This form of wavelength conversion is one of the
simplest all-optical wavelength conversion mechanisms available today.

Very fast wavelength conversion can be achieved with speeds in the order of 40 Gb s−1

[14] with a small bit error ratio penalty. Previously, it was thought that the speed of WC is
limited by the intrinsic carrier lifetime, which is around 0.5 ns. This is because the effective
carrier lifetime can be decreased by the use of high optical injection to values as low as
10 ps.

Another effect associated with pulse propagation in long SOA (>1 mm) is that pulse
distortion of the input data due to gain saturation effects can tend to sharpen the leading
edge of the data pulse at the probe wavelength.

9.4.2 All-optical logic based on interferometric principles

For the future high-speed optical networks, several all-optical signal processing functional-
ities will be required to avoid cumbersome and power consuming electro-optic conversion.
The central role in this process is played by all-optical high-speed logic gates.

In recent years several schemes of implementation have been investigated. Some of those
schemes exploit gain saturation of SOA, and the other methods employ the interferometric
configurations.

Optical logic devices are constructed using the Mach-Zehnder (MZI) interferometer, see
Fig. 9.12 for an introduction to the notation and symbols. �φ is the phase difference between
signals propagating in the upper and lower arms of MZI. Each arm of the interferometer
contains SOA where the effect of cross-phase modulation (XPM) is utilized to change phase
of the transmitted light. The XPM effect is based on the physical effect of the dependence
of refractive index on the carrier density in the active region. Depending on operating
conditions which are controlled by driving currents within each SOA and direction and
intensity of external light, this configuration can perform like an all-optical gain. In what
follows, for several logic gates we schematically show operating conditions of MZI, the
resulting phase difference and the equivalent logical table [15].
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A and NOT B

Here, bias conditions are set in such way that, when a second signal B is input in a counter-
propagating scheme, the phase difference is zero. The configuration and logical table are
shown in Fig. 9.13.

A AND B

Here, both SOA are biased such that in the absence of counterpropagating signal B, a phase
difference of π exists at the output X . The relevant configuration and the truth table are
shown in Fig. 9.14.

9.5 Problem

1. Derive an expression for gain ripple Gr.

9.6 Project

1. Use software developed by Connelly [1] to analyse optical logical elements.

Appendix 9A: MATLAB listings

In Table 9.2 we provide a list of MATLAB files created for Chapter 9 and a short description
of each function.
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Table 9.2 List of MATLAB functions for Chapter 9.

Listing Function name Description

9A.1 gain ripple.m Determines gain ripples as a function of reflectivity
9A.1 pulse shape.m Determines output pulse shape for various values of G0

Listing 9A.1 Program gain ripple.m. MATLAB program which determines gain ripples
for SOA.

% File name: gain_ripple.m

% Calculates gain ripple as a function of reflectivity

clear all

N_max = 401; % number of points for plot

R = linspace(1d-4,4d-3,N_max); % creation of theta arguments

%

for G_s = [200 500] % gain coefficient

G_r = (1 + G_s.*R)./(1 - G_s.*R);

loglog(R,G_r,’LineWidth’,1.5)

hold on

end

% Redefine figure properties

ylabel(’Gain ripple’,’FontSize’,14)

xlabel(’Reflectivity (R)’,’FontSize’,14)

set(gca,’FontSize’,14); % size of tick marks on both axes

text(3d-3, 12, ’G_s = 200’,’Fontsize’,14)

text(6d-4, 12, ’G_s = 500’,’Fontsize’,14)

text(8.5, 0.1, ’r = 0.8’,’Fontsize’,14)

pause

close all

Listing 9A.2 Program pulse shape.m. MATLAB program which determines output pulse
shape for three values of the unsaturated gain G0.

% File name: pulse_shape.m

% Determines output pulse shapes in soa

% Basic equations after Agrawal and Olsson, JQE25, 2297 (1989)

clear all

P_0 = 1;

w = 0.1; % defined as P_0*tau_0/E_sat

tau = -3:0.01:3;

hold on

for G_0 = [10 100 1000]

x = (1/2)*sqrt(pi)*w*(1 + erf(tau));



238 Semiconductor optical amplifiers (SOA)

G = G_0./(G_0 -(G_0-1)*exp(-x));

y = exp(-tau.^2).*G;

y_max = max(y);

plot(tau,y/y_max,’LineWidth’,1.5)

end

xlabel(’\tau’,’FontSize’,14);

ylabel(’Normalized output power’,’FontSize’,14);

set(gca,’FontSize’,14); % size of tick marks on both axes

grid on

pause

close all
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10 Optical receivers

In this chapter we summarize the operation of an optical receiver, which is an important
part of an optical communication system. An overview of design principles for receivers
used in optical communication systems is provided by Alexander [1]. The aim of a receiver
is the recovery of the transmitted data. The process involves two steps [2]:

1. the recovery of the bit clock,
2. the recovery of the transmitted bit within each bit interval.

A block diagram of an optical receiver is shown in Fig. 10.1 [3], [4].
The receiver consists of a photodetector which converts the optical signal into electrical

current. A good light detector should generate a large photocurrent at a given incident light
power. They should also respond fast to the input changes and add minimal noise to the
output signal. This last requirement is of crucial importance since the received signal is
typically very weak. In digital optical communication systems the detection process is often
conducted with a PIN photodiode.

There are generally two types of detection [4]: direct detection (also called incoherent
detection) and coherent detection.

Direct detection detects only the intensity of the incident light. It is used mainly for
intensity or amplitude modulation schemes. It can only detect an amplitude modulated
(AM) signal.

Coherent detection can detect both the power and phase of the incident light. It is therefore
used when phase modulation (PM) or frequency modulation (FM) is preferred. Coherent
detection is also important in applications such as WDM.

The coherent detection requires a local oscillator to coherently down-convert the modu-
lated signal from optical frequency to intermediate frequency (IF) [4]. Coherent detection
is not discussed here, see [4] for the extensive discussion. The incoherent detection which
dominates in currently deployed systems is based on square-law envelope detection of the
optical signals.

After detection, the electrical current is often amplified (not shown in Fig. 10.1) and
then passes through an electrical filter which is normally of the Bessel type. At that point,
electrical eye diagrams are typically observed for the assessment of signal quality. Next,
sampling of electrically filtered received signal is performed. The received electrical signal
is corrupted with noise of various origins. The noise sources will be discussed in the
following sections.

Performance evaluation of an optical transmission system is done by evaluating optical
signal-to-noise ratio, eye opening and bit error rate (BER) which is the ultimate indicator
of the system’s performance.

240
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Photodetector

Input
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Output
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hR (t)
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Fig. 10.1 Block diagram of an ideal optical receiver.

10.1 Main characteristics

Before we enter a more specialized discussion of optical receivers, let us summarize their
main characteristics [5], which are: receiver sensitivity, dynamic range, bit-rate transparency
and bit-pattern independency.

10.1.1 Receiver sensitivity

This property is a measure of the minimum level of optical power Psens at the receiver
required for a reliable operation. Specifically, one expects that the BER is smaller than a
specified level. Typically, that level is established to be equal to 10−9.

The receiver sensitivity is a function of both the signal and also the noise parameters
of photodetector and a preamplifier. It is a measure of the operating limit of the optical
receiver, which, however, rarely operates close to that limit. There always exists a possibility
of degradation of the system (temperature, ageing, etc.), so a typical margin (normally 3–
6 dB) is established.

Receiver sensitivity is a fundamental parameter of an optical receiver. It is directly
responsible for the spacing between two points in any optical link, e.g. between transmitter
and receiver or between repeaters.

10.1.2 Dynamic range

Dynamic range (expressed in dB) is the difference between the maximum allowable power
and minimum power determined by receiver sensitivity. The maximum allowable power on
the receiver is determined by nonlinearity and saturation.

Large dynamic range is important because it allows for more flexibility in the design of
an optical network. The design of every network should take into account the wide range
of possible changes of received optical powers due to changes in temperature, ageing or
various types of losses (in the fibre, connectors, etc.).

10.1.3 Bit-rate transparency

It refers to the ability of the optical receiver to operate over a range of bit rates. It describes
the ability of the same receiver to be used for several networks operating at different bit
rates.
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10.1.4 Bit-pattern independency

This is the property of an optical receiver determining its operation for various data formats.
The main constraint is imposed by non-return-to-zero (NRZ) code.

10.2 Photodetectors

At the end of travel through a optical fibre, the optical signal reaches a photodetector (PD)
where it is converted into an electrical signal. In PD photon of energy hν is absorbed and
produces photocurrent iP:

iP = η
P

hν
e (10.1)

where P is the power of the incoming light, η is the quantum efficiency, h is Planck’s constant
and ν = c/λ is the frequency of the absorbed light. PD is similar to a semiconductor diode
polarized in the reverse direction. Therefore, PD can be modelled as a current source.

Another very popular detector is a human eye. It is the most popular natural detector of
light but it has several disadvantages: it is slow, has bad sensitivity for low-level signals,
has no natural connection to electronic amplifiers and its spectral response is limited to the
0.4–0.7 µm range.

Artificial (human made) optical detectors are based on two physical mechanisms: external
photoelectric effect and internal photoelectric effect. In the external photoelectric effect,
electrons are removed from the metal surface of electrode known as a cathode by absorbing
energy from incident light. Then, under an electric field due to the potential difference
between both electrodes, they travel to another electrode known as an anode, thus producing
electrical current. Vacuum photodiodes and photomultiplier tubes operate on that principle.

Main choices for photodetectors are the PIN (P-type Intrinsic N-type) photodiode and
avalanche photodiode (APD). APD provides gain which increases system sensitivity but
introduces more noise.

In this section we will discuss only the internal photoelectric effect and its applications in
light detection. In this effect, physical processes take place inside semiconductor junction
devices. There, free carriers (electrons and holes) are generated by absorption of incoming
photons, and as a result an electrical current is produced. These devices can be viewed as
the inverse of a light emitting diode (LED).

10.2.1 Principles of photo detection

Photodetection using semiconductors is possible because of optical absorption. When light
is incident on the semiconductor surface, it may or may not be absorbed depending on a
wavelength. Absorbed optical power is described as

dP

dx
= α(λ)P (10.2)
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Fig. 10.2 Optical absorption coefficient as a function of wavelength for typical semiconductors. Reprinted from H. Melchior,
Journal of Luminescence, 7, 390 (1973). Copyright (1973), with permission from Elsevier.

where α(λ) is the absorption coefficient which is wavelength dependent. The spectra of
optical absorption for several semiconductors (including compounds) are schematically
shown in Fig. 10.2. As can be seen, the absorption coefficient α(λ) strongly depends on
wavelength.

Integration of Eq. (10.2) gives the absorbed power at the distance x from the surface in
terms of the incident optical power P0:

P(x) = P0
(
1 − e−α(λ)·x) (10.3)

A schematic of a photodetector is illustrated in Fig. 10.3. Incident light penetrates the
semiconductor surface and generates electrical current I . The device structure consists of
p and n regions separated by wide intrinsic (very lightly doped) region of width w under
large reverse bias voltage, see Fig. 10.4.

When a photon is absorbed by the solid (and if it has enough energy, i.e. large enough
frequency), its energy causes an electron to move from valence band (leaving one hole
behind) to the conduction band and to create one extra electron there. The change of energy
of an electron should be (at least) Eg, which is known as the energy gap. Photons with
smaller energies are usually not able to create electron-hole pairs, see Fig. 10.5. Therefore,
photon energy Ep = hν must be

Ep ≥ Eg or hν ≥ Eg or λc = ch

Eg
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Fig. 10.3 Schematic of a photodetector.
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Fig. 10.5 Energy band diagram of a PIN photodiode. Generation of electron-hole pair is shown.
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Table 10.1 Bandgaps and cutoff wavelengths for different semiconductors and their compounds.

Semiconductor �E(eV ) λc(µm)

C 7 0.18
Si 1.1 1.13
Ge 0.72 1.72
Sn 0.08 15.5
GaxIn1−xAs 1.43–0.36 0.87–3.44
GaxIn1−xAsyP1−y 1.36–0.36 0.92–3.44

Rj

ip

Rs
VLRLCj

Fig. 10.6 Equivalent circuit model of a PIN photodetector.

where λc is known as cutoff and it defines a usable spectrum. The practical formula is

λc = 1.24

Eg
, λc is in µm and Eg in eV

The applied high electric field causes electrons and holes to separate. They subsequently
flow to n (electrons) and p (holes) regions and produce flow of current in the external circuit
known as photocurrent.

Different semiconductor materials have different bandgaps and therefore different cutoff
wavelengths. They are used as detectors in different parts of the electromagnetic spectrum.
Bandgaps and cutoff wavelengths for some semiconductors and compounds are summarized
in Table 10.1.

An equivalent circuit of PD is shown in Fig. 10.6 [1]. It consists of a current source,
parallel junction resistance Rj, which is equivalent to the differential resistance of the diode.
Rj is typically large, around 106 �, and usually it is ignored in the analysis. Cj is the junction
capacitance; Rs is the series resistance due to bulk and contact resistance and typically is a
few ohms. RL is the load resistance. In a typical analysis Rj and Rs are neglected.

The spectral function VL(ν) of the output voltage is related to the spectral function of the
photocurrent iP(ν) as

VL(ν) = iP(ν)
RL

1 + j2πνRLCj
(10.4)
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Fig. 10.7 Schematic of a metal-semiconductor-metal (MSM) photodetector. Top view of the structure (a) and its cross-section
view (b).

The previous equation is obtained by solving Kirchoff’s loop equation. Equivalent
impedance is

1

Ze
= 1

RL
+ 1

1
jωCj

= 1

RL
+ jωCj = 1 + jωCjRL

RL

Using VL(ν) = iP(ν) ·Ze, Eq. (10.4) follows. Frequency bandwidth is therefore determined
by the time constant CjRL. One wants to keep this time constant small in order to achieve
a large bandwidth.

We finish this section with a brief discussion of an integrated optical receiver using
a metal-semiconductor-metal (MSM) photodetector, which is shown in Fig. 10.7. The
MSM detector structure consists of an interdigital pattern of metal fingers deposited on a
semiconductor substrate and a typical vertical PIN detector [6]. Electric potential is applied
between alternate fingers creating an electric field which sweeps photogenerated electrons
and holes to the positive and negative electrodes, respectively.

This structure shows several improvements compared to traditional designs, like a signif-
icant improvement in sensitivity. Most of the improvements result from the lateral design.

10.2.2 Performance parameters of photodetectors

Main parameters which determine characteristics of PD are [7]: dark current, spectral
response, quantum efficiency, noise, detectivity, linearity and dynamic range and speed and
frequency response. We will now discuss them in more detail.

Dark current

Dark current is the current flowing in the PD without incoming light. Typical values for
popular semiconductors are shown in Table 10.2.
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Table 10.2 Dark currents for different semiconductors and their compounds.

Semiconductor Dark current (nA)

Si 0.1–1
Ge 100
InGaAsP 1–10

Quantum efficiency

Quantum efficiency is a measure of the efficiency of the generation of the electron-hole
pairs (EHP). It is defined as [8]

η = number of free EHP generated

number of incident photons
= Iph/e

P0/hν
(10.5)

Here Iph is the photocurrent flowing in the external circuit, e is the electron’s charge, P0 is
the incident optical power and hν is the energy of a single photon.

Responsivity

It is also known as spectral responsivity. It is defined as [8]

R = Iph

P0
(10.6)

Responsivity specifies the photocurrent generated per unit optical power. It can be expressed
as

R = η
e

hν
= η

eλ

hc
(10.7)

Ideal responsivity is therefore a linear function of wavelength λ, see Fig. 10.8.

Speed of response

It determines how PD responds to an optical signal. A typical response to a pulse is shown
in Fig. 10.9.

Speed of response is determined by the RC time constant. In terms of parameters of
previously introduced equivalent circuit, the rise time τr is given by

τr = 2.19 · RL · Cj

The evaluation of τr is left as an exercise. Time response is directly related to the frequency
response. The 3-dB bandwidth is [9]

fs−dB = 1

2πRLCj
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Fig. 10.9 Typical response of a photodetector to a square-pulse signal.

10.2.3 Photodetector noise

Typical optical signals arriving at the receiver front end are very weak. They are, therefore,
significantly affected by various noise sources.

There are several physical processes which contribute to noise. For example, the APD
generates noise in the avalanche process and optical amplifiers produce noise due to am-
plified spontaneous emission (ASE). In addition, there is always a quantum noise which
exists in all devices and sets a fundamental lower limit on noise power.

The working parameter characterizing the photodetector is the signal-to-noise ratio
(SNR), which is defined as [10]

S

N
= signal power from photocurrent

photodetector noise power + amplifier noise power
(10.8)
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Noise appears as random fluctuations in a signal. A typical measure of noise is associated
with the variance or the mean square deviation of the signal s, which is defined as [7]

σ 2
s = (s − s)2 = s2 − s2

The mean value (average) s is defined as

s =
∑

s

p(s) s

where p(s) is the probability of the measured signal having a value s and the sum is
evaluated over all possible values obtained from measuring the signal.

Noise in a signal s can be represented by random variable sn:

sn = s − s

If in the device (or system) there are two or more simultaneously present noise sources
sn1, sn2, . . . which are independent, their combined effect is found by adding their mean
square values (or their powers):

s2
n = s2

n1 + s2
n2 + · · ·

In terms of the above quantities, the SNR is expressed as

SNR = s2

s2
n

= s2

σ 2
s

or SNR = 10 log
s2

σ 2
s

[dB]

Main types of noise arising in a photodetector will now be summarized.

Shot noise

Shot noise is due to random distribution of electrons generated in the photodetector. It is
associated with the quantum nature of photons arriving at the photodetector which gener-
ates carriers. Photons arrive at the photodetector randomly in time due to their quantum-
mechanical nature. Their randomness is described by Poisson statistics. The resulting
expression for shot noise of current in the photodetector is [4], [7]

i2s = 2eBis (10.9)

where e is the electron’s charge, B is the bandwidth and is is the average value of signal
current.

Thermal noise

Thermal noise or Johnson noise is due to the random motion of electrons in the resistor R.
It is modelled as a Gaussian random process with zero mean and autocorrelation function
given by [4]

4kBT

R
δ(τ )
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LR

is

Cj

Fig. 10.10 Equivalent circuit model of a PIN photodetector with an amplifier.

where δ(τ ) is the Dirac delta function. Thermal noise power in a bandwidth B is [7]

ps,th = 4kBT B (10.10)

where kB = 1.38×10−23 J/K is the Boltzmann’s constant and T is the absolute temperature.
Thermal noise can be expressed as a current source [4], [7]

i2s,th = 4kBT

R
B ≡ I2

T B (10.11)

Here IT is the parameter used to specify standard deviation in units of pA/
√

Hz. Its typical
value is 1pA/

√
Hz [2].

10.2.4 Detector design

In this section we perform a simple analysis of a PIN photodetector in the presence of noise
[11]. Using results 10.6 and 10.7, the signal current of the detector is

is = η
eλ

hc
P (10.12)

where P is the optical power coming to the detector at wavelength λ. Equivalent circuit of
a PIN photodetector with an amplifier is shown in Fig. 10.10. It is a simple modification of
the circuit shown in Fig. 10.6.

Noise generated in the amplifier is essential for the operation. Amplifier noise is rep-
resented [11] as Johnson noise originating in the load resistor RL. Using Eq. (10.11), the
signal-to-noise ratio is

S

N
= i2s · RL

i2s,yh · RL

= i2s · RL

4kB · T · B
(10.13)

where B is the bandwidth and T is the resistor’s temperature. The S
N ratio cannot increase

indefinitely by increasing value of RL because of the effect of junction capacitance Cj. In

the typical situation, the bandwidth is determined by
(
RL · Cj

)−1
. Using the expression for

the bandwidth B = (
2π · RL · Cj

)−1
(see problem), Eq. (10.13) takes the form

S

N
= i2s

8kB · T · B2 · Cj
(10.14)
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Fig. 10.11 Plot ofPmin versus bandwidth for PIN detector for three values of temperature (1500 K, 1000 K and 500 K).

Minimum detectable signal is,min can be determined from the above by setting S
N = 1. One

finds

is,min = 2 · B · (2π · kB · T · Cj

)1/2
(10.15)

Minimum detectable optical power is determined from Eq. (10.12) as

Pmin = 2hc

ηeλ
· B · (2π · kB · T · Cj

)1/2
(10.16)

The plot of Pmin versus bandwidth B is shown in Fig. 10.11. The following parameters were
assumed: Cj = 1pF, η = 1, T = 1000 K, λ = 0.85 µm. MATLAB code is provided in an
Appendix, Listing 10A.1.

10.3 Receiver analysis

Optical detection theory is extensively discussed, e.g. by Einarsson [12]. The problem in-
volves detection of signals with noise. In optical systems the information is transmitted
using light which consists of photons. Due to their statistical nature, the transmitted in-
formation will always show random fluctuations. Those fluctuations determine the lowest
limit on transmitted power. In addition, there exist other noise contributions which originate
from various processes. Some of them have already been discussed.

Digital signal under consideration operates at a bit rate B. The time slot (or bit interval)
T is

T = 1

B
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and it is the inverse of the bit rate. The input data sequence in the communication system
is denoted by {bk}. The optical power p(t) falling on the photodetector is the sequence of
pulses and it is written as

p(t) =
k=+∞∑
k=−∞

bk hp(t − k · T ) (10.17)

where k is a parameter denoting the k-th time slot and hp(t) represents the pulse shape of
an isolated optical pulse at the photodetector input.

It is assumed that [5]

1

T

∫ +∞

−∞
hp(t)dt = 1 (10.18)

so that bk represents the received optical power in the k-th time slot.
Eq. (10.17) is based on the assumption that the system consisting of transmitter and

optical fibre is a linear one and time-invariant. bk in Eq. (10.17) can take two values b0

and b1, which correspond to logical values in the k-th time slot being ZERO or ONE. In
an ideal case one would expect the b0 to be zero so no optical power is transmitted for the
logical ZERO. However, semiconductor lasers always operate at the nonzero bias current,
so there is always some small optical power transmitted.

10.3.1 BER of an ideal optical receiver

There are several ways to measure bit error rate (BER), that is the rate of error occurrence
in a digital data stream. It is equal to number of errors occurring over some time interval
divided by total number of pulses (both ones and zeros).

The simplest method to define BER is [13]

BER = Ne

Np
= Ne

B · t
(10.19)

where Ne is the number of errors appearing over time interval t, Np is the number of pulses
transmitted during that interval, B = 1/T is the bit rate and T is the bit interval.

The required BER for high-speed optical communication systems today is typically
10−12, which means that on average one bit error is allowed for every terabit of data
transmitted. BER depends on the various signal-to-noise ratio (SNR) of the fibre system,
like the receiver noise level.

Direct optical detection is a process of determining the presence or absence of light
during a bit interval. No light is interpreted as logical ZERO; some of the light present
signals is logical ONE.

In a real life, the detection process is not so simple because of the random nature of
photons arriving at the receiver. Their arrival is modelled as a Poisson random process. The
random process, in time arrivals of photons at the photodetector, is shown in Fig. 10.12.

For an ideal optical receiver we will assume that there are no noise sources in the system.
The average number of photons arriving at the photodetector, with hνc being the energy of
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time

T

Fig. 10.12 Random arrivals of photons at photodetector are described by the Poisson process. Each photon is represented by a box
and they all have the same amplitude.

a single photon, is thus

N = p(t)

hνc
(10.20)

where p(t) is power of light signal, h is Planck’s constant and νc is the carrier frequency.
The optical power impinging on the photodetector is expressed by Eq. (10.17).

A simple expression for BER for ideal receiver (no noise) can be obtained as follows
(following Ramaswani and Sivarajan [2]).

The probability that n photons are received during a bit interval T is

e− N
B

(
N
B

)n

n!

where N is the average number of photons given by Eq. (10.20). Probability of not receiving
any photons (n = 0) is exp (−N/B). Assume equal probabilities of receiving ZERO and
ONE. The BER of an ideal receiver is thus

BER = 1

2
e−N/B ≡ 1

2
e−M (10.21)

where M = N
B = p

hνcB represents the average number of photons received during one bit.
Expression (10.21) represents BER for an ideal receiver and it is called the quantum

limit. To get a typical bit rate of 10−12, the average number of photons is M = 27 per one
bit.

10.3.2 Error probability in the receiver

Assume that a binary signal current at the photodetector is [4]

itot(t) =
+∞∑

n=−∞
Bn · hp(t − nTB) + ID + inoise(t)

= iph(t) + ID + inoise(t)

where iph(t) is due to the amplitude modulated pulse signal, ID is the dark current of the
photodiode and inoise(t) is the noise current. Bn takes two values BH and BL corresponding
to logical ONE and logical ZERO, respectively.

Assume (after Liu [4]) that H (ω) is the combined transfer function of the front-end
receiver and equalizer. The output at the equalizer is

yout (t) = itot(t) ⊗ h(t) (10.22)
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where ⊗ denotes convolution and h(t) corresponds to the transfer function H (ω). The
signal component at the output of the equalizer is

ys(t) = iph(t) ⊗ h(t) =
+∞∑

n=−∞
Bn · hp(t − nTB) ⊗ h(t)

≡
+∞∑

n=−∞
Bn · hp(t − nTB)

The signal output of the equalizer is sampled at the bit rate and compared with a threshold.
This process allows for detection of the amplitudes Bn. The output signal after equalizer
without (constant) dark current is

yout (t) =
+∞∑

n=−∞
Bn · pp(t − nTB)

where pp(t) contains signal and noise. The above is sampled and the output at time
nTB + τ (0 < τ < TB) is

yout,n(t) ≡ yout (nTB + τ ) =
∑

k

Bk · pp([n − k]TB + τ ) + ynoise,n

≡ Bn · pp[0] + ISIn + ynoise,n (10.23)

with the following definitions:

pp[n] = pp(nTB + τ )

ISIn =
∑
k �=n

Bk · pp([n − k])

and

ynoise,n = ynoise,out (nTB + τ )

is the sampled noise term. ISIn refers to the intersymbol interference.
In a practical receiver, the decision as which bit (ZERO or ONE) was transmitted in each

bit interval is done by sampling current after equalizer. With the presence of noise, there is
nonzero probability of an error. The errors are typically described by BER (bit error rate).

Introduce yth as a threshold used in error detection. From Eq. (10.23), one can observe
that errors occur when

Bk = BH when yout,n < yth

or

Bk = BL when yout,n > yth

Therefore, the probability of an error detection is [14]

Perror = p0P
(
yout,n > yth|Bk = BL

)+ p1P
(
yout,n < yth|Bk = BH

)
Here p0 and p1 are a priori probabilities for bits ZERO and ONE.
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Fig. 10.13 Determination of bit error rate for a Gaussian process.

The decision taken involves comparison of the measured photocurrent I with a threshold
Ith. If I > Ith, one decides that a ONE bit was transmitted; otherwise for I < Ith a bit ZERO
was transmitted.

10.3.3 BER and Gaussian noise

In optical digital communication the transmitted signal is never perfectly recovered. Noise,
adjacent channel interference, amplified spontaneous emission, all result in creation of
errors. Additionally, pulses are broadened due to fibre dispersion, device nonlinearity or
slow photodiode response. Created signal distortion is known as an intersymbol interference
(ISI) and it arises when adjacent bits are corrupted. It results in possible detection errors
for the transmitted bits. ISI is random because the binary bits in a digital signal are random.
To minimize ISI, an equalizer is generally used.

We analyse the performance of real receiver with noise [15]. We want to establish
connection between the signal-to-noise ratio (SNR) and BER. By referring to Fig. 10.13,
we assume that VH (high voltage at the output of the receiver) and VL (low voltage at the
output of the receiver) are random variables described by the Gaussian probability density
function (pdf) as

p(x) = 1√
2π

e− x2

2 (10.24)

BER is defined in terms of two conditional probabilities P(0|1) and P(1|0) as

BER = p0P(0|1) + p1P(1|0) (10.25)

where p0 and p1 are a priori probabilities for bits ZERO and ONE. Their values are p0 =
p1 = 1

2 . Conditional probability P(A|B) for two events A and B is defined as

P(A|B) = P(A · B)

P(B)
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Fig. 10.14 Plot of bit error rate versus Q.

The conditional probabilities P(0|1) and P(1|0) are shown in Fig. 10.13. Assuming Gaus-
sian pdf, they are determined as

P(0|1) = 1√
2π

∞∫
Q1

e− x2

2 dx

P(1|0) = 1√
2π

∞∫
Q2

e− x2

2 dx

where functions Q1 = Vth−VL

σnoise
and Q1 = VH −Vth

σnoise
are integration limits. We assume that

distributions of ZERO and ONE are identical and that noise variance σnoise is the same for
both. It follows that the optimum threshold is 1

2 (VH + VL). Thus

Q = Q1 = Q2 = VH − VL

2σnoise

Using definition (10.25), the BER is evaluated as

BER = 1

2
P(0|1) + 1

2
P(1|0)

= 1√
2π

∞∫
Q

e− x2

2 dx

The above function relates BER to the signal-to-noise ratio Q. It is plotted in Fig. 10.14.
For a typical BER of 10−6, Q = 6. MATLAB code used to create this figure is shown in
Appendix, Listing 10A.2.
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The average incident input power P is defined as

P = 1

2
(PH + PL) (10.26)

where PH and PL are optical powers corresponding to logical ONE and ZERO (high and
low), respectively. Those powers are related to voltages VH and VL introduced earlier as

VH = R · PH · ys,max(t) (10.27)

VL = R · PL · ys,max(t) (10.28)

where R is the responsivity of the detector and ys,max(t) is the maximum output voltage of
the receiver during a given bit period. In terms of the above quantities, the average power
P is evaluated as follows:

P = 1

2
(PH + PL) = 1

2

PH + PL

PH − PL
(PH − PL)

= 1

2
· 1 + PL

PH

1 − PL
PH

· 1

R
· 1

ys,max(t)
· (VH − VL)

= 1

2
· 1 + r

1 − r
· 1

R
· Q ·

√
n2

out

ys,max(t)
(10.29)

The above expression gives the average incident input power level necessary to obtain a
given BER. In the above derivation, we have used σ 2

noise = n2
out , where n2

out is the variance
of the output noise. We also defined extinction ratio r as

r = PL

PH
(10.30)

For a PIN photodiode, the receiver sensitivity takes the form

ηP = hν

q
· 1 + r

1 − r
· Q ·

√
n2

out

ys,max(t)
(10.31)

Ideal sensitivity is obtained where no power is transmitted (r = 0) as

ηP = hν

q
· Q ·

√
n2

out

ys,max(t)
(10.32)

Using the above results, one can analyse receiver sensitivity for various types of noise
filters. We refer to the literature for a more detailed discussion [15], [14], [4].

10.4 Modelling of a photoelectric receiver

A schematic of the receiver is shown in Fig. 10.15. It is modelled by a filter function H (ν),
see Geckeler [16]. As a front end it contains an avalanche photodiode, with M being the
multiplication factor of the photocurrent and G the gain factor of an electronic amplifier.
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Fig. 10.15 Block scheme of the receiver which is described by a filter functionH (ν)with parameter τ .

Both M and G are assumed to be frequency-independent. Frequency dependence of the
receiver is described by a low-pass filter function H (ν), which we assume to be a real
function (not complex). Possible phase distortions which will result in function H (ν) being
complex can be compensated by an equalizer.

In Fig. 10.15 S1(ν) is the frequency spectrum of the input, S2(ν) is the output frequency
spectrum, s(t) is the temporal output signal and P1 is the average power arriving at the
photoelectric receiver. Parameter τ characterizes filter function H (ν).

10.5 Problems

1. Determine rise time τr for a simple RC circuit. Relate it to 3 dB bandwidth.
2. Analyse noise in an avalanche photodiode (APD). Determine signal-to-noise ratio in

terms of gain of APD.
3. Analyse signal limitations for an analogue transmission. Determine signal power in

terms of S/N ratio.

10.6 Projects

1. Conduct small-signal equivalent circuit analysis of a photodetector [1]. Write a MAT-
LAB program. Determine frequency dependence of the small signal impedance of a
photodiode.

2. Analyse frequency response of a photodiode [17]. Determine the upper limit of the
frequency response of GaAs p-n junction photodiode assuming data provided in [17].

Appendix 10A: MATLAB listings

In Table 10.3 we provide a list of MATLAB files created for Chapter 10 and a short
description of each function.
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Table 10.3 List of MATLAB functions for Chapter 10.

Listing Function name Description

10A.1 min power.m Determines minimum signal power
10A.2 berQ.m Plots bit error rate versus Q

Listing 10A.1 Function min power.m. MATLAB function which determines minimum
signal power for a PIN photodetector for three values of temperature.

% File name: min_power.m

% Determines minimum signal power required to give S/N ratio of one

% for a PIN detector

clear all

h_Planck = 6.6261d-34; % Planck’s constant (J s)

c_light=299.80d6; % speed of light (m/s)

k_B= 1.3807d-23; % Boltzmann constant (J/K)

e=1.602d-19; % electron’s charge (C)

%

C_j = 1d-12; % junction capacitance (1pF)

eta = 1; % quantum efficiency

lambda = 0.85d-6; % wavelength (0.85 microns)

B = 1d6:1d5:1d10; % range of detector bandwidth

%

for T_eff = [500 1000 1500]

P_min=(2*h_Planck*c_light/(eta*e*lambda))*sqrt(2*pi*k_B*T_eff*C_j)*B;

loglog(B,P_min,’LineWidth’,1.5)

hold on

end

%

xlabel(’Detector bandwidth (Hz)’,’FontSize’,14);

ylabel(’Minimum signal power (W)’,’FontSize’,14);

text(1d9, 4d-7, ’500K’,’Fontsize’,14)

text(5d7, 4d-7, ’1500K’,’Fontsize’,14)

set(gca,’FontSize’,14); % size of tick marks on both axes

grid on

pause

close all

Listing 10A.2 Program berQ.m. MATLAB program which plots bit error rate versus Q.
Takes one minute to execute.

% File name: berQ.m

% Plots bit error rate versus Q

syms x % defines symbolic variable
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f=(1/sqrt(2*pi))*exp(-x^2/2); % defines function for plot

Q_i = 3.5; Q_f = 8; Q_step = 0.5; % defines range and step

yy = double(int(f,x,Q_i,inf));

for Q = Q_i+Q_step:Q_step:Q_f

y = double(int(f,x,Q,inf));

yy = [yy,y];

end

Qplot = Q_i:Q_step:Q_f; % defines Q for plot

semilogy(Qplot,yy,’LineWidth’,1.5)

xlabel(’Q’,’FontSize’,14);

ylabel(’Bit Error Rate’,’FontSize’,14);

set(gca,’FontSize’,14); % size of tick marks on both axes

grid on

pause

close all
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11 Finite difference time domain (FDTD) formulation

The finite-difference time-domain (FDTD) method is a widely used numerical scheme for
approximate description of propagation of electromagnetic waves. It can be used to study
such phenomena as pulse propagation in various media. It is a simple scheme and can be
mastered relatively fast.

Definite reference on the subject is a book by Taflove and Hagness [1]. Several other
books can be cited: Kunz and Luebbers [2], Sullivan [3], Yu et al. [4], Elsherbeni and Demir
[5]. Also, recently published books by Bondeson et al. [6] and by Garg [7] have instructive
chapters on the FDTD method.

11.1 General formulation

To develop a general formulation, one starts from Maxwell’s equations which we cast in the
form suitable for 1D, 2D and 3D discretizations. In the following, we assume that J = 0
and ρ = 0; i.e there is no flow of current and no free charges. Assume also nonmagnetic
material and therefore set μ = μ0. General Maxwell’s equations are

∇ × H = ∂D

∂t
(11.1)

∇ × E = −μ0
∂H

∂t
(11.2)

Here E and H are, respectively, electric and magnetic fields and D is the electric displacement
flux density which is related to electric field E. The relation between E and D will be
summarized in later sections for more detailed models.

First we write the above equations in terms of components. The following cases are
typically considered:

1. 1D (one-dimensional) case: infinite medium in y-direction and z-direction and no change
in those directions and therefore ∂

∂y = ∂
∂z = 0.

2. 2D (two-dimensional) case: infinite medium in z-direction and no change in z-direction
and therefore ∂

∂z = 0.
3. 3D (three-dimensional) case: no restriction on variations in all three directions.

In this chapter we will not discuss the 3D case in detail since it requires significant
hardware resources for typical calculations.

262
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11.1.1 Three-dimensional formulation

Use general mathematical formula

∇ × H =

∣∣∣∣∣∣∣
ax ay az
∂
∂x

∂
∂y

∂
∂z

Hx Hy Hz

∣∣∣∣∣∣∣
= ax

(
∂Hz

∂y
− ∂Hy

∂z

)
− ay

(
∂Hz

∂x
− ∂Hx

∂z

)
+ az

(
∂Hy

∂x
− ∂Hx

∂y

)
By applying the above expression, Maxwell’s equations can be written as

∂Dx

∂t
= ∂Hz

∂y
− ∂Hy

∂z

−∂Dy

∂t
= ∂Hz

∂x
− ∂Hx

∂z
∂Dz

∂t
= ∂Hy

∂x
− ∂Hx

∂y
(11.3)

−μ0
∂Hx

∂t
= ∂Ez

∂y
− ∂Ey

∂z

μ0
∂Hy

∂t
= ∂Ez

∂x
− ∂Ex

∂z

−μ0
∂Hz

∂t
= ∂Ey

∂x
− ∂Ex

∂y

These are general equations used as a starting point for 3D implementation, see e.g. [1].

11.1.2 Two-dimensional formulation

In the 2D model we assume that ∂
∂z = 0 and evaluate

∇ × H =

∣∣∣∣∣∣∣
ax ay az
∂
∂x

∂
∂y 0

Hx Hy Hz

∣∣∣∣∣∣∣ = ax
∂Hz

∂y
− ay

∂Hz

∂x
+ az

(
∂Hy

∂x
− ∂Hx

∂y

)

where ax, ay, az are (as before) unit vectors defining coordinate system. Using the above
expression, Maxwell’s equations in terms of components become

ax
∂Hz

∂y
− ay

∂Hz

∂x
+ az

(
∂Hy

∂x
− ∂Hx

∂y

)
= ax

∂Dx

∂t
+ ay

∂Dy

∂t
+ az

∂Dz

∂t

ax
∂Ez

∂y
− ay

∂Ez

∂x
+ az

(
∂Ey

∂x
− ∂Ex

∂y

)
= −μ0

(
ax

∂Hx

∂t
+ ay

∂Hy

∂t
+ az

∂Hz

∂t

)
The above equations are then usually split into two groups, see [1] and [8].
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Group 1:

∂Dx

∂t
= ∂Hz

∂y
(11.4)

∂Dy

∂t
= −∂Ez

∂x
(11.5)

∂Hz

∂t
= −μ0

(
∂Ey

∂x
− ∂Ex

∂y

)
(11.6)

Group 2:

∂Hx

∂t
= − 1

μ0

∂Hz

∂y
(11.7)

∂Hy

∂t
= 1

μ0

∂Ez

∂x
(11.8)

∂Dz

∂t
= ∂Hy

∂x
− ∂Hx

∂y
(11.9)

The first group is called T Ex mode by Taflove and TE to z polarization by Umashankar,
and the group 2 is called T Mz mode by Taflove and TM to z polarization by Umashankar.

11.1.3 One-dimensional model

In one dimension, the medium extends to infinity in the y-direction and z-direction. There-
fore ∂

∂y = ∂
∂z = 0. Using the following result,

∇ × E =

∣∣∣∣∣∣∣
ax ay az
∂
∂x 0 0

Hx Hy Hz

∣∣∣∣∣∣∣ = −ay
∂Hz

∂x
+ az

∂Hy

∂x

one can write Maxwell’s equations in two groups according to field vector components.
First group is

∂Hy

∂t
= 1

μ0

∂Ez

∂x
(11.10)

∂Dz

∂t
= ∂Hy

∂x
(11.11)

Taflove [1] classifies this group as the x-directed, z-polarized TEM mode. It contains Dy

and Hy.
The second group is

∂Hz

∂t
= − 1

μ0

∂Ey

∂x
(11.12)

∂Dy

∂t
= −∂Hz

∂x
(11.13)

This group is referred to as the x-directed, y-polarized TEM mode. It contains Dy and Hz.
In the following, we will concentrate on group 2. The equations describe wave propagating
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Fig. 11.1 Gaussian pulse (left), and modulated Gaussian pulse (right).

in the x-direction with electric field oriented in the y-direction and magnetic field oriented
in the z-direction.

We finish this section with a discussion of the Gaussian pulse and modulated Gaussian
pulse.

11.1.4 Gaussian pulse andmodulated Gaussian pulse

In practice one often analyses propagation of the Gaussian pulse or modulated Gaussian
pulse. A Gaussian pulse centred at t0 is defined as

g(t) = exp

[
− (t − t0)

2

w2

]
(11.14)

where w is the width of the pulse in space. Define also the modulation signal as

m(t) = sin (2π f0 · t) (11.15)

where f0 = c/λ0 = 1/T0. Here T0 is the period of the modulation signal m(t). A continuous
Gaussian pulse is created by multiplying Eqs. (11.14) and (11.15):

g(t) = sin (2π f0 · t) · exp

[
− (t − t0)

2

w2

]
(11.16)

Its discretized version is

g(n) = sin (2π f0 · n · �t) · exp

[
− (n · �t − t0)

2

w2

]
(11.17)

In Fig. 11.1 we plot Gaussian and modulated Gaussian pulses. The results were obtained
with MATLAB code presented in Appendix, Listings 11A.1 and 11A.2.
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11.2 One-dimensional Yee implementation without dispersion

In this section, we discuss the basic implementation of FDTD method in 1D. It is known
as the 1D-Yee algorithm since it was first proposed by Yee [9] for the 3D case. We also
introduce the concept of a staggered grid [3], [7]. To illustrate basic principles of FDTD
method, let us develop first the 1D lossless case.

11.2.1 Lossless case

Our formulation is based on the second group of Eqs. (11.12) and (11.13). We supplement
those equations with the relation between Dy and Ey, which for the free space is

Dy = ε0Ey (11.18)

The equations take the form

∂Hz

∂t
= − 1

μ0

∂Ey

∂x
(11.19)

∂Ey

∂t
= − 1

ε0

∂Hz

∂x
(11.20)

In order to introduce 1D Yee discretization, let us introduce the following notation:

Ey(i · �x, n · �t) ≡ (
Ey

)n

i

Hz(i · �x, n · �t) ≡ (
Hy

)n

i

To discretize Eqs. (11.19) and (11.20), we use central-difference approximation for space
and time derivatives. They are second-order accurate in the space and time increments:

∂Ey

∂x
(i · �x, n · �t) = (Ey)

n
i+1/2 − (Ey)

n
i−1/2

�x
+ O(�x)2

∂Ey

∂t
(i · �x, n · �t) = (Ey)

n+1/2
i − (Ey)

n−1/2
i

�t
+ O(�t)2

In the Yee algorithm [9] E and H components are interleaved in the space lattice at intervals
of �x/2. Such an approximation is called the staggered grid approximation. They are also
interleaved in time at intervals �t/2, see Fig. 11.2.

At time t = 0, values of Ey are placed at x = i · �x, with i = 0, 1, 2, . . . N . (Total N + 1
components).

At time t = 1
2�t, values of Hz are placed at x = (i − 1

2 ) · �x, with i = 1, 2, . . . N . (Total
N components).

In general

(Ey)
n
i = Ey((i − 1) · �x, n · �t), i = 1, 2, . . . N + 1; n = 0, 1, 2 . . .

(Hz)
n
i = Hz

((
i − 1

2

)
· �x,

(
n − 1

2

)
· �t

)
, i = 1, 2, . . . N; n = 0, 1, 2 . . .
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Fig. 11.2 One-dimensional formulation of the FDTD method. Orientations ofHz andEy fields are shown.
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Fig. 11.3 Visual illustration of numerical dependencies in the 1D FDTD method.

Initial values (corresponding to n = 0), i.e. E(. . . , t = 0) and H (. . . , t = 0), in most cases
are set to zero.

The discretized equations are

(Ey)
n+1/2
i − (Ey)

n−1/2
i

�t
= − 1

ε0

(Hz)
n
i+1/2 − (Hz)

n
i−1/2

�x

(Hz)
n+1
i+1/2 − (Hz)

n
i+1/2

�t
= − 1

μ0

(Ey)
n+1/2
i+1 − (Ey)

n−1/2
i+1

�x

The space-time interdependencies of Ey and Hz fields at different grid points are illustrated
in Fig. 11.3. Here, squares represent Ey field and circles represent Hz field. One can observe
that the value of a field at any point is determined by three previous values: two from two
neighbours of opposite field from the previous half time step and one from the same field
at a single previous time step.
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Fig. 11.4 FDTD simulation of a Gaussian pulse after several time steps.

Constants ε0 and μ0 appearing in these equations differ by several orders of magnitude.
Therefore, one usually introduces a new scaled variable defined as [3]

Ẽy =
√

ε0

μ0
Ey

Scaled equations are

Ẽn+1/2
y (i) = Ẽn−1/2

y (i) − 1√
ε0μ0

�t

�x

[
H n

z (i + 1/2) − H n
z (i − 1/2)

]
H n+1

z (i + 1/2) = H n
z (i + 1/2) − 1√

ε0μ0

�t

�x

[
Ẽn+1/2

y (i + 1) − Ẽn+1/2
y (i)

]
In our simulations, due to stability reasons we set

1√
ε0μ0

�x

�t
= 1

2
(11.21)

The value of v = �x/�t is chosen to be the maximum phase velocity of the wave expected
in the medium. The above system has been implemented. The MATLAB program is shown
in Appendix, Listing 11A.3. Two versions of MATLAB code have been produced: one of
which uses regular loop and one that takes advantage of parallel capabilities of MATLAB.
The reader should analyse speed of operation for both versions.

The results of propagation of Gaussian pulse using that code are shown in Fig. 11.4.
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11.2.2 Determination of cell size

In one dimension the cell size is just �x. In 2D it is a square and a cube in 3D. The
fundamental question is how to determine size of basic cell.

For a detailed discussion we refer to the book by Kunz and Luebbers [2]. For us, it is
enough to notice that cell size should be much less than the smallest wavelength and typical
rule is to take it as λ/10. Such choice should provide accurate results.

11.2.3 Dispersion and stability

Here, we discuss some general properties of the wave equation. It was formulated before.
Its discretized version is (here we use index r instead of i to avoid conflict with a symbol
i = √−1)

En+1
r − 2En

r + En−1
r

�t2
= c2 En

r+1 − 2En
r + En

r−1

�x2
(11.22)

As usual, n refers to time and r is the space index. Explicitly En
r = E(r · �z, n · �t). The

dispersion relation for Eq. (11.22) is found by assuming

En
r = ei(ω·n·�t−k·r·�x)

Substituting these assumptions into Eq. (11.22) gives[
eiω·�t·(n+1) − 2eiω·�t·n + eiω·�t·(n−1)

]
e−ik·r·�x

= c2�t2

�x2

[
e−ik·�z·(r+1) − 2e−ik·r·�x + e−ik·�x·(r−1)

]
eiω·�t·n

Dividing the above by exp[i (ω · n · �t − k · r · �x)]:

eiω·�t − 2 + e−iω·�t = c2�t2

�z2

(
e−ik·�z − 2 + eik·�z

)
The above can be written as a square:(

eiω·�t/2 − e−iω·�t/2
)2 = c2�t2

�x2

(
eik·�x/2 − e−ik·�x/2

)2

Finally, using trigonometric relation eiα−e−iα = 2i sin α, one obtains formula for numerical
dispersion:

sin
1

2
ω · �t = ±c�t

�x
sin

1

2
k · �x (11.23)

The important case is that of linear dispersion, i.e. when ω = c · k. Eq. (11.23) then holds
when �x = c�t. For such a linear case different frequency components propagate with
the same speed, just c. For nonlinear dispersion relations, different frequencies of a pulse
numerically propagate with different velocities and therefore pulse will change shape.

Introduce parameter

α = c
�t

�z
(11.24)
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Fig. 11.5 Illustration of numerical dispersion for various values of parameterα.

In Fig. 11.5 we showed numerical dispersions as described by Eq. (11.23) for several values
of parameter α. MATLAB code is shown in Appendix, Listing 11A.4. Depending on the
value of α, one can distinguish the following cases:

1. α = 1. In this case �t = �x
c . Numerical dispersion is linear and given by ω = ±c·k. This

choice of time step �t is called the magic time step [10]. In this case wave propagates
exactly one cell (or �x) per time step in both x-directions.

2. α < 1. In this case �t < �x
c . One observes numerical dispersion which increases when

α decreases.
3. α > 1. In this case �t > �x

c . This inequality implies that numerical front propagates
faster than physical speed (given by c). In this case, the scheme becomes unstable.

Because of its importance, we provide next a separate discussion of the stability criterion.

11.2.4 Stability criterion

Stability criterion imposes condition on �x
�t ratio. It is known as Courant-Friedrichs-Levy

(CFL) condition [11]. It explains convergence of various schemes.
For the 1D model, the CFL condition is illustrated in Fig. 11.6. Each row of points

represents the sampling points in space at a given instant of time (say n). The solution at
point A is determined using previous values at the indicated points. In the figure we show
characteristics which correspond to stable (left) and unstable (right) situations.

The stability criterion summarizes the physical fact that speed of numerical propagation
should not exceed the physical speed. A summary of stability criteria for various dimensions
is presented in Table 11.1 [10].
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Table 11.1 Summary of stability criteria for various dimensions.

Dimensionality Criterion

1D medium v �t ≤ �x

2D medium v �t ≤
(

1
�x2 + 1

�y2

)−1/2

3D medium v �t ≤
(

1
�x2 + 1

�y2 + 1
�z2

)−1/2

t

x

A

Δt

Δx

i i+1i-1

n

n-3

n-1

n-2

i-2 i+2

t

x

A

i i+1i-1

n

n-3

n-1

n-2

i-2 i+2

Fig. 11.6 Illustration of the CFL condition. For the parameters chosen within the dashed lines, the propagation is stable (left
figure) and becomes unstable (right figure.)

11.2.5 One-dimensional model with losses

When we consider ohmic losses, Maxwell’s Eq. (11.1) is modified as

∇ × H = ∂D

∂t
+ σE (11.25)

where σ is the conductivity.
The discretization of Eqs. (11.25) and (11.2) with losses is done in a similar way as for

the lossless case. The resulting equations after scaling are

(Ey)
n+1/2
i − (Ey)

n−1/2
i

�t
= − 1

εr
√

ε0μ0

(Hz)
n
i+1/2 − (Hz)

n
i−1/2

�x

− σ

2εrε0

(
(Ey)

n+1/2
i + (Ey)

n−1/2
i

)
(11.26)

and

(Hz)
n+1
i+1/2 − (Hz)

n
i+1/2

�t
= − 1

μ0

(Ey)
n+1/2
i+1 − (Ey)

n−1/2
i

�x
(11.27)
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Fig. 11.7 Illustration of propagating wave close to the left boundary.

When selecting the time step given by Eq. (11.21), one arrives at the following equations:

(Ey)
n+1/2
i − (Ey)

n−1/2
i = − 1

2εr

(
(Hz)

n
i+1/2 − (Hz)

n
i−1/2

)− σ�t

2εrε0

(
(Ey)

n+1/2
i + (Ey)

n−1/2
i

)
(Hz)

n+1
i+1/2 − (Hz)

n
i+1/2 = − 1

μ0

�t

�x

(
(Ey)

n+1/2
i+1 − (Ey)

n−1/2
i

)
Solving the first equation for En+1/2

y (i) gives

(Ey)
n+1/2
i =

1 − σ�t
2εrε0

1 + σ�t
2εrε0

(Ey)
n−1/2
i − 1

2εr

(
1 + σ�t

2εrε0

) ((Hz)
n
i+1/2 − (Hz)

n
i−1/2

)
(11.28)

Implementation and analysis of the above equations is left as a project.

11.3 Boundary conditions in 1D

11.3.1 Mur’s first-order absorbing boundary conditions (ABC)

Here, based on intuitive arguments we derive the so-called Mur’s first-order absorbing
boundary conditions [12]. Consider plane wave φ(x, t) travelling left at the left boundary,
see Fig. 11.7.

Reflections of this wave will be eliminated if [7]

φ(x, t) = φ(x − �x, t + �t) (11.29)

Perform Taylor expansion

φ(x − �x, t + �t) = φ(x, t) − ∂φ

∂x
�x + ∂φ

∂t
�t
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Velocity of the propagating wave is

c = �x

�t

Substitute into Eq. (11.29) and have

φ(x, t) = φ(x, t) − ∂φ

∂x
c�t + ∂φ

∂t
�t

or
∂φ

∂x
= 1

c

∂φ

∂t
(11.30)

It describes ABC for a plane wave incident from the right.
Finite difference of Eq. (11.30) close to the left boundary is

φ
n+1/2
1 − φ

n+1/2
0

�x
= 1

c

φn+1
1/2 − φn

1/2

�t
(11.31)

The values at half grid points and half time steps are determined as

φn+1/2
i = 1

2

(
φn+1

i + φn
i

)
φn

i+1/2 = 1

2

(
φn

i+1 + φn
i

)
Substitute the above into Eq. (11.31) and obtain an expression for φn+1

0 :

φn+1
0 = φn

1 + c�t − �x

c�t + �x

(
φn+1

1 + φn
0

)
(11.32)

The formula (11.32) determines the new (updated) field value at the boundary node point
at x = 0.

The above expression is known as the first-order Mur’s absorbing boundary conditions
(ABC). A similar derivation can be performed for right boundary. It is left as an exercise.

11.3.2 Second-order boundary conditions in 1D

We will provide a more rigorous discussion of the boundary conditions based on the work
by Umashankar [8] and Taflove [10]. It allows for the introduction of the second-order
Mur’s radiation boundary conditions.

We start with a 1D wave equation for any scalar component of the field

∂2U

∂x2
− 1

c2

∂2U

∂t2
= 0 (11.33)

Introduce operator L defined as

L = ∂2

∂x2
− 1

c2

∂2

∂t2
= D2

x − 1

c2
D2

t

The wave equation can therefore be written as

LU = 0
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Fig. 11.8 Illustration of derivation of ABC in one dimension.

The above operator can be factored as

LU = L+L−U = 0

where L+ = Dx + 1
c Dt and L− = Dx − 1

c Dt .
Suppose that 1D computational region extends from 0 to h; i.e. one has 0 ≤ x ≤ h.

Engquist and Majda [13] showed that at x = 0 the application of an operator L− to U
exactly absorbs a plane wave propagating towards the boundary. A similar relation holds
for an operator L+ operating at x = h.

In light of the above, the PDE that can be numerically implemented as a first-order
accurate ABC at x = 0 grid boundary is

L−U =
(

Dx − 1

c
Dt

)
u = 0

Multiplying the above by an operator Dt , one finds

Dt

(
Dx − 1

c
Dt

)
U = 0

In the full form
∂2U

∂t∂x
− 1

c

∂2U

∂t2
= 0 (11.34)

which is a second-order ABC at x = 0. For the above equation original numerical schemes
have been proposed by Mur [12]. Here, we followed an improved scheme as described by
Taflove [10].

Let U represent a Cartesian component of E or H located on the Yee grid, see Fig. 11.8.
We use central differences expansion around an auxiliary grid point x = 1/2 and time
tn = n · �t. The derivatives are approximated as follows:

∂2U

∂t∂x

∣∣∣∣n
1/2

= 1

2�t

[
∂U

∂x

∣∣∣∣n+1

1/2

− ∂U

∂x

∣∣∣∣n−1

1/2

]

= 1

2�t

[
U n+1

1 − U n+1
0

�x
− U n−1

1 − U n−1
0

�x

]
and

∂2U

∂t2

∣∣∣∣n
1/2

= 1

2

[
∂2U

∂t2

∣∣∣∣n
0

+ ∂2U

∂t2

∣∣∣∣n
1

]

= 1

2

[
U n+1

0 − 2U n
0 + U n−1

0

�t2
+ U n+1

1 − 2U n
1 + U n−1

1

�t2

]
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Substitution of the above results into Eq. (11.34) and solving for U n+1
0 gives

U n+1
0 = U n−1

0 + c�t − �x

c�t + �x

(
U n+1

1 + U n−1
0

)+ 2�x

c�t + �x

(
U n

1 + U n
0

)
(11.35)

That expression determines the value of the field U (x, t) at the next time tn+1 = (n+1) ·�t
for x = 0.

In exactly the same way one obtains the updated equation at the right boundary. The
ABC wave equation is

∂2U

∂t∂x
+ 1

c

∂2U

∂t2
= 0 (11.36)

The derivatives are approximated as follows:

∂2U

∂t∂x

∣∣∣∣n
N−1/2

= 1

2�t

[
∂U

∂x

∣∣∣∣n+1

N−1/2

− ∂U

∂x

∣∣∣∣n−1

N−1/2

]

= 1

2�t

[
U n+1

N − U n+1
N−1

�x
− U n−1

N − U n−1
N−1

�x

]
and

∂2U

∂t2

∣∣∣∣n
N−1/2

= 1

2

[
∂2U

∂t2

∣∣∣∣n
N

+ ∂2U

∂t2

∣∣∣∣n
N−1

]

= 1

2

[
U n+1

N − 2U n
N + U n−1

N

�t2
+ U n+1

N−1 − 2U n
N−1 + U n−1

N−1

�t2

]
Substituting the last result into Eq. (11.36) and solving for U n+1

0 gives

U n+1
N = U n−1

N−1 + c�t − �x

c�t + �x

(
U n+1

N−1 + U n−1
N

)+ 2�x

c�t + �x

(
U n

N + U n
N−1

)
(11.37)

11.4 Two-dimensional Yee implementation without dispersion

We assume medium with the constitutive relation of the form

Dy = ε0εrEy

Using the above constitutive relation, from the group 2 (Eqs. 11.8) (also called T Mz mode)
of Maxwell’s equations one has (ε = ε0εr)

∂Ez

∂t
= 1

ε

(
∂Hy

∂x
− ∂Hx

∂y

)
∂Hx

∂t
= − 1

μ0

∂Hz

∂y

∂Hy

∂t
= 1

μ0

∂Ez

∂x
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Fig. 11.9 Yee mesh in 2D for theTMz mode.

For 2D discretization we introduce the Yee mesh, shown in Fig. 11.9. A Yee cell is formed
around point (i, j). The electric field distribution within each cell is assumed to be constant
and the z-component Ez of electric field is defined at the midpoint of each cell. We also
introduce (i, j) = (i�x, j�y) and Fn(i, j) = F (i�x, j�y, n�t). Maxwell’s equations are
approximated as

En+1
z (i, j) − En

z (i, j)

�t
= 1

ε0εr(i, j)

H n+1/2
y (i + 1/2, j) − H n+1/2

y (i − 1/2, j)

�x
(11.38)

− 1

ε0εr(i, j)

H n+1/2
x (i, j + 1/2) − H n+1/2

x (i, j − 1/2)

�y

H n+1/2
x (i, j + 1/2) − H n−1/2

x (i, j + 1/2)

�t
= − 1

μ0

En
z (i, j + 1) − En

z (i, j)

�y
(11.39)

H n+1/2
y (i + 1/2, j) − H n−1/2

y (i + 1/2, j)

�t
= 1

μ0

En
z (i + 1, j) − En

z (i, j)

�x
(11.40)

From the above equations one determines the time-stepping numerical algorithm for the
interior region. For the same reason as in the 1D case, we need to perform scaling. As
before we introduce new scaled variable Ẽz as follows:

Ẽz =
√

ε0

μ0
Ez (11.41)

An algorithm for scaled variables is

Ẽn+1
z (i, j) = Ẽn

z (i, j) + �t

ε0εr(i, j)

1√
ε0μ0

{
H n+1/2

y (i + 1/2, j) − H n+1/2
y (i − 1/2, j)

�x

− H n+1/2
x (i, j + 1/2) − H n+1/2

x (i, j − 1/2)

�y

}
(11.42)



277 Absorbing boundary conditions (ABC) in 2D

0
20

40
60

0
20

40
60
0

0.5

1

x

time = 20

y

E
z

0
20

40
60

0
20

40
60
0

0.5

1

x

time = 30

y

E
z

0
20

40
60

0
20

40
60
0

0.5

1

x

time = 40

y

E
z

0
20

40
60

0
20

40
60
0

0.5

1

x

time = 60

y

E
z

Fig. 11.10 Propagation of a Gaussian pulse initiated in the middle and travelling outwards. Four values of time are shown.

H n+1/2
x (i, j + 1/2) = H n−1/2

x (i, j + 1/2) − �t

�y

1√
ε0μ0

[
Ẽn

z (i, j + 1) − Ẽn
z (i, j)

]
(11.43)

H n+1/2
y (i + 1/2, j) = H n−1/2

y (i + 1/2, j) − �t

�y

1√
ε0μ0

[
Ẽn

z (i + 1, j) − Ẽn
z (i, j)

]
(11.44)

The above equations were implemented in MATLAB for the propagation of Gaussian
pulse. A MATLAB program implementing 2D propagation of the Gaussian pulse is shown
in Appendix, Listing 11A.6.

Propagation of the Gaussian pulse initiated in the middle and travelling outwards is
shown in Fig. 11.10. We illustrate pulse shape at four values of time. One can then observe
its spread in time.

11.5 Absorbing boundary conditions (ABC) in 2D

Absorbing boundary conditions (ABC) in 2D are derived here. We follow the methodology
based on the wave equation used in the 1D case [7] and [10]. The two-dimensional wave
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Fig. 11.11 Rectangular region used to illustrate derivations of ABC.

equation for scalar component U is

1

c2

∂2U

∂t2
= ∂2U

∂x2
+ ∂2U

∂y2

In a rectangular coordinate system, the plane-wave time-harmonic solution to wave equation
is

U (x, y, t) = ei(ωt−kxx−kyy)

Substituting into a wave equation gives the condition

k2
x + k2

y = ω2

c2
≡ k2

Solution for kx is therefore

kx = ±
(

k2 − k2
y

)1/2

= ±k

(
1 − k2

y

k2

)1/2

� ±k

(
1 − 1

2

k2
y

k2

)
The last result can be written as

kkx = ±k2 ∓ 1

2
k2

y (11.45)

From the above relation, we can reconstruct partial differential equations that can be nu-
merically implemented as a second-order accurate ABC. First observe that for a rectangular
region shown in Fig. 11.11 near x = 0 boundary, the left travelling wave is described by the
following equation:

1

c

∂2U

∂x∂t
= 1

c2

∂2U

∂t2
− 1

2

∂2U

∂y2
(11.46)

Analogously, at the x = h boundary

1

c

∂2U

∂x∂t
= − 1

c2

∂2U

∂t2
+ 1

2

∂2U

∂y2
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Fig. 11.12 Numerical boundary conditions.

To obtain numerical boundary conditions, we approximate the above derivatives around the
central point ( 1

2 , j), see Fig. 11.12.
One obtains

∂2U n
1/2, j

∂x∂t
= 1

2�t

{
∂U n+1

1/2, j

∂x
−

∂U n−1
1/2, j

∂x

}

=
U n+1

1, j − U n+1
0, j

2�t�x
−

U n−1
1, j − U n−1

0, j

2�t�x

The second-order derivative with respect to time t is implemented as an average of time
derivatives at the adjacement points (0, j) and (1, j) as

∂2U n
1/2, j

∂t2
= 1

2

{
∂2U n

0, j

∂t2
+ ∂2U n

1, j

∂t2

}

=
U n+1

0, j − 2U n
0, j + U n−1

0, j

2�t2
+

U n+1
1, j − 2U n

1, j + U n−1
1, j

2�t2

Also, as an average of the y derivatives we implement

∂2U n
1/2, j

∂y2
= 1

2

{
∂2U n

0, j

∂y2
+ ∂2U n

1, j

∂y2

}

= U n
0, j+1 − 2U n

0, j + U n
0, j−1

2�y2
+ U n

1, j+1 − 2U n
1, j + U n

1, j−1

2�y2

Substitute the above results into Eq. (11.46) and have

U n+1
1, j − U n+1

0, j

2�t�x
−

U n−1
1, j − U n−1

0, j

2�t�x

= − 1

c22�t2

(
U n+1

0, j − 2U n
0, j + U n−1

0, j + U n+1
1, j − 2U n

1, j + U n−1
1, j

)
(11.47)

= − 1

4�y2

(
U n

0, j+1 − 2U n
0, j + U n

0, j−1 + U n
1, j+1 − 2U n

1, j + U n
1, j−1

)
From the above we can find the time-stepping algorithm for the component of U along
x = 0 boundary, i.e. U n+1

0, j .
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11.6 Dispersion

Dispersion exists when medium properties are frequency-dependent. Examples include
dielectric constant and/or conductivity which can vary with frequency. Generally, the fol-
lowing situations exist [1]:

• linear dispersion
• nonlinearity
• nonlinear dispersion
• gain.

Here, we will only summarize the most important models of material dispersion and
briefly outline one of the possible numerical approaches to dispersion.

11.6.1 Material dispersion

Usually, the dependencies are established in frequency domain. The defining equation is

D(ω) = ε0εr(ω)E(ω)

The physics is contained in εr(ω). We assume non-conducting media. Main cases are:

• Debye medium (first order)

ε(ω) = ε∞ + εs − ε∞
1 + jωt0

(11.48)

• Lorentz medium

εr(ω) = εr + ε1

1 + 2 jδ0

(
ω
ω0

)
−
(

ω
ω0

)2

Specific analytical and numerical work with the inclusion of dispersion is left as a project.

11.7 Problems

1. Derive an expression for the first-order Mur’s boundary conditions at the right
interface.

2. Determine the residual reflection produced by Mur’s first-order ABC. Assume the
existence of the following wave at the boundary:

φ(x, t) = exp (iωt) · [exp (ikx) + R exp (−ikx)] (11.49)

Analyse reflection coefficient R.
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Table 11.2 List of MATLAB functions for Chapter 11.

Listing Function name Description

11A.1 gauss.m Plots Gaussian pulse
11A.2 gauss modul.m Plots modulated Gaussian pulse
11A.3 f dtd f ree.m Propagation of Gaussian pulse in a free space
11A.4 num disp.m Illustrates numerical dispersion
11A.5 gm f .m Animates Gaussian pulse in a free space (not used in text)
11A.6 f dtd 2D.m Propagation of Gaussian pulse in 2D

11.8 Projects

1. Implement a 1D FDTD approach with losses. Analyse propagation of Gaussian and
super-Gaussian pulses.

2. Implement boundary conditions for 1D and 2D problems.
3. Use a convolution integral approach which relates D and E:

D(t) = ε∞ε0E(t) + ε0

∫ t

0
E(t − t ′)χ(t ′)dt ′ (11.50)

to develop discretization scheme for the first-order Debye medium as described by
Eq. (11.48). Implement in MATLAB the resulting numerical scheme. For more details,
consult the book by Kunz and Lubbers [2].

4. Conduct similar analysis for the first-order Drude dispersion; i.e.

ε(ω) = 1 + ω2
p

ω ( jνc − ω)
(11.51)

where ωp is the plasma frequency and νc is the collision frequency.

Appendix 11A: MATLAB listings

In Table 11.2 we provide a list of MATLAB files created for Chapter 11 and a short
description of each function.

Listing 11A.1 Program gauss.m. MATLAB program which creates Gaussian pulse.

% File name: gauss.m

% Plots Gaussian pulse

clear all;

%

t_zero = 20.0; % center of incident pulse
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width = 6.0; % width of the incident pulse

%

N = 300.0;

time = linspace(0,50,N);

pulse = exp(-0.5*((t_zero - time)/width).^2); % Gaussian pulse

plot(time,pulse,’LineWidth’,1.5)

xlabel(’time’,’FontSize’,14);

ylabel(’amplitude’,’FontSize’,14);

set(gca,’FontSize’,14); % size of tick marks on both axes

pause

close all

Listing 11A.2 Program gauss modul.m. MATLAB program which creates a modulated
Gaussian pulse.

% File name: gauss_modul.m

% Plots modulated Gaussian pulse

alpha = 0.6;

mu_0=4*pi*1e-7; e_0=8.854e-12; % fundamental constants

c=1/sqrt(mu_0*e_0); % velocity of light

dx = 4.2e-2; % step in space

dt=alpha*dx/c; % time step

f_mod = 2e9; % modulating frequency (2 GHz)

t_0 = 3e-09; % peak position of Gaussian pulse in time

T = t_0/3; % pulse width

N_x = 400;

spec = [0:N_x];

for n = 1:100

y(n) = exp(-(((n-1)*dt-t_0)/T).^2).*cos(2*pi*f_mod*((n-1)*dt-t_0));

end

plot(y,’LineWidth’,1.5)

xlabel(’time’,’FontSize’,14); ylabel(’amplitude’,’FontSize’,14);

set(gca,’FontSize’,14); % size of tick marks on both axes

pause

close all

Listing 11A.3 Function fdtd free.m MATLAB program which describes propagation of
a Gaussian pulse in a free space using the FDTD method.

% File name: fdtd_free.m

% Plots E and H components of Gaussian pulse in a free space

% after some number of time steps using FDTD method

% No animation

clear all;

N_x = 200; % number of x-cells
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N_time = 100; % number of time steps

time = 0.0;

E_y = zeros(N_x,1); % Initialize fields to zero at all points

H_z = zeros(N_x,1);

t_zero = 40.0; % center of incident pulse

width = 12; % width of the incident pulse

tic; % start timer

for istep = 1:N_time % time loop

time = time + 1;

pulse = exp(-0.5*((t_zero - time)/width)^2); % Gaussian pulse

for i = 2:(N_x)

E_y(120) = pulse; % location of initial pulse

E_y(i) = E_y(i) - 0.5*(H_z(i) - H_z(i-1));

end

%

for i = 1:(N_x -1)

H_z(i) = H_z(i) - 0.5*(E_y(i+1) - E_y(i));

end

end

toc % measure elapsed time since last call to tic

subplot(2,1,1); plot(E_y)

ylabel(’E_y’); xlabel(’FDTD cells’)

axis([0 200 -1 1])

subplot(2,1,2); plot(H_z)

ylabel(’H_z’); xlabel(’FDTD cells’)

axis([0 200 -1 1])

pause

close all

Listing 11A.4 Function num disp.m. MATLAB program used to produce Fig. 11.5 to
illustrate numerical dispersion.

% File name: num_disp.m

% Illustrates numerical dispersion

N_max = 10; % number of points for plot

x = linspace(0,pi,N_max);

hold on

for alpha = [1.0 0.8 0.2]

y = 2*asin(alpha*sin(x/2));

plot(x,y,’LineWidth’,1.5)

end

xlabel(’k \Delta z’,’FontSize’,14)

ylabel(’\omega \Delta x /c’,’FontSize’,14)

set(gca,’FontSize’,14); % size of tick marks on both axes
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text(2.5, 3, ’\alpha = 1’,’Fontsize’,12)

text(2.5, 2, ’\alpha = 0.8’,’Fontsize’,12)

text(2.5, 0.5, ’\alpha = 0.2’,’Fontsize’,12)

pause

close all

Listing 11A.5 Function gmf.m. MATLAB program which generates and animates prop-
agation of a Gaussian pulse in a free space.

% File name: gmf.m

% gauss, modulated, free space

% Animation of propagation of Gaussian pulse in a free space

% without boundary conditions

% Program not used in the main text

clear all

alpha = 0.5; % alpha = c*dt/dx

mu0=4*pi*1e-7; % magnetic permeability

e0=8.854e-12; % electric permittivity

c=1/sqrt(mu0*e0); % velocity of light in a vacuum

dx = 4.2e-2; % space step

dt=alpha*dx/c; % time step

f_mod = 1e9; % modulating frequency

lambda = c/f_mod; % wavelength

x_end = 400;

t_0 = 3e-09; % peak position of Gaussian pulse in time

dxl = dx/lambda;

index=[0:x_end];

e=zeros(length(index),1); h=e; e1=e; h0=e;

ha = plot(e); % get the handle to the plot

set(ha,’EraseMode’,’xor’) % for simulation of wave propagation

%

t_end = 500; % number of time steps

for n = 1:t_end

for i=1:400 % simulate for h-nodes

h(i) = h(i) - (e(i+1)-e(i))*dt/dx/mu0;

end

for i=2:400 % simulate for e-nodes

e(i) = e(i) - (h(i)-h(i-1))*dt/dx/e0;

end

% launch Gaussian or modulated Gaussian pulse

T = t_0/3; % specify pulse width

y(n) = exp(-(((n-1)*dt-t_0)/T).^2).*cos(2*pi*f_mod*((n-1)*dt-t_0));

% y(n) = exp(-(((n-1)*dt-t_0)/T).^2);

e(1)= y(n); % Gauss pulse starts here

drawnow; %refresh data and plot the current condition of the pulse
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set(ha,’YData’,(e));

end

pause

close all

Listing 11A.6 Function fdtd 2D.m. MATLAB program which describes propagation of
a Gaussian pulse in 2D.

% File name: fdtd_2D.m

% Program for finite-difference time-domain method in 2D

% Propagation of Gaussian pulse

clear all;

N_x = 60; % number of steps in x-direction

N_y = 60; % number of steps in y-direction

N_steps = 60; % number of time steps

%

N_x_middle = N_x/2.0; % middle point; location of pulse

N_y_middle = N_y/2.0; %

%

delta_x = 0.01; % cell size

delta_t = delta_x/6e8; % time step

epsilon = 8.8e-12;

%

% Initialization

E_z = zeros(N_x,N_y); % Initialize field to zero at all points

H_x = zeros(N_x,N_y);

H_y = zeros(N_x,N_y);

%

t_zero = 20.0; % center of incident pulse

width = 6.0; % width of the incident pulse

time = 0.0;

%

for istep = 1:N_steps % main loop

time = time + 1;

% calculate E_z field

for i = 2:N_x

for j = 2:N_y

E_z(i,j)=E_z(i,j)+0.5*(H_y(i,j)-H_y(i-1,j)-H_x(i,j)+H_x(i,j-1));

end

end

% Gaussian pulse in the middle

pulse = exp(-0.5*((t_zero - time)/width)^2); % Gaussian pulse

E_z(N_x_middle,N_y_middle) = pulse;

%

% Calculate H_x field

for i = 1:(N_x-1)

for j = 1:(N_y-1)



286 Finite difference time domain (FDTD) formulation

H_x(i,j) = H_x(i,j) - 0.5*(E_z(i,j+1) - E_z(i,j));

end

end

%

% Calculate H_y field

for i = 1:(N_x-1)

for j = 1:(N_y-1)

H_y(i,j) = H_y(i,j) + 0.5*(E_z(i+1,j) - E_z(i,j));

end

end

end

%----------- Plotting------------------------------

[x,y] = meshgrid(0:1:N_x-1,0:1:N_y-1);

mesh(x,y,E_z);

xlabel(’\bfx’,’FontSize’,14);

ylabel(’\bfy’,’FontSize’,14);

zlabel(’\bfE_z’,’FontSize’,14);

set(gca,’FontSize’,14); % size of tick marks on both axes

axis([0 60 0 60 0 1])

text(50,40,0.5, ’time = 60’, ’Fontsize’, 14)

pause

close all
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12 Beam propagationmethod (BPM)

In this chapter we summarize the beam propagation method (BPM). The method is widely
used for the numerical solution of the Helmholtz equation and also for the numerical
solution to the nonlinear Schroedinger equation (to be discussed in Chapter 15 dealing
with solitons). It is the most powerful technique for studying the propagation of light in
integrated optics. The method was originally introduced by Feit and Fleck in the late 1970s
[1]. The BPM was initially based on FFT algorithm. Later on it has been extended to
finite-difference based BPM schemes (FD-BPM) and finite-element BPM (FE-BPM) and
many others. The main characteristics [2] of FD-BPM are the ability to simulate structures
with large index discontinuity, less memory and time consumption in modelling complex
structures, the possibility to incorporate wide-angle and full vector algorithms and the
ability to incorporate transparent boundary conditions.

There is a large number of algorithms available in the literature and almost all of them
are based on the concept of a propagator. Propagators are mathematical ‘objects’ which
propagate fields from one space coordinate to another. An example of the system where
propagation takes place, known as an optical waveguide, is shown in Fig. 12.1. It splits
input optical signal into two arms, see also Fig. 12.2. The role of BPM is to determine field
profile along the waveguide knowing the distribution of refractive index over the whole
waveguide.

There is a huge amount of literature on the principles of BPM and its applications in
integrated photonics. We recommend books by Kawano and Kitoh [3], Pollock and Lipson
[4], Okamoto [5] and Lifante [6]. We start our discussion by illustrating the principles of
BPM in the paraxial approximation.

12.1 Paraxial formulation

12.1.1 Introduction

We start this section by outlining the simplest version of BPM, where one assumes scalar
electric field and paraxial approximations which restrict its applicability to the fields prop-
agating at small angles with respect to the axis of the waveguide (guiding axis), which
we define as the z axis. The geometry of the waveguide is determined by refractive index
n(x, y, z). The method consists of the repeated propagation of the electric field from a
perpendicular plane at a given position along the waveguide to the next parallel plane. To

288
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Fig. 12.1 Example of a planar waveguide. Here we show the beam splitter.

Fig. 12.2 Schematical illustration of a typical problem solved by BPM. Knowing the input electric field on the left, determine
fields at the output (shown by dotted lines on the right).

illustrate the method, one starts from the wave equation for a monochromatic wave:

∂2E

∂x2
+ ∂2E

∂y2
+ ∂2E

∂z2
+ k2(x, y, z)E = 0 (12.1)

Here, the spatially dependent wavenumber is given by k(x, y, z) = k0n(x, y, z) and k0 =
2π/λ is the wavenumber in free space. The main assumption is that the phase variation due
to propagation along the z axis represents the fastest variation in the field E. This variation
is exemplified by introducing slowly varying field u and expressing E as

E(x, y, z) = u(x, y, z)e− jβz (12.2)

where β is a constant that represents the characteristic propagation wave vector, β = n0ω/c.
Here n0 is a reference refractive index which can be, for example, the refractive index of
the substrate or cladding. β represents the average phase variation of the field E and it is
known as propagation constant. Substituting Eq. (12.2) into Eq. (12.1) yields the equation
equivalent to the exact Helmholtz for the slowly varying field

−∂2u

∂z2
+ 2 jβ

∂u

∂z
= ∂2u

∂x2
+ ∂2u

∂y2
+ (k2 − β2)u (12.3)

At this stage one assumes the slow variation of optical field in the propagation direction
(SVEA or slowly varying envelope approximation), which requires∣∣∣∣∂2u

∂z2

∣∣∣∣ �
∣∣∣∣2β

∂u

∂z

∣∣∣∣ (12.4)
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This approximation allows us to ignore the first term on the left hand side of Eq. (12.3)
with respect to the second one. It is also known as Fresnel approximation. Eq. (12.3) thus
reduces to

2iβ
∂u

∂z
= ∂2u

∂x2
+ ∂2u

∂y2
+ (k2 − β2)u (12.5)

which is known as a Fresnel or paraxial equation. It is a starting point for the description
of the evolution of electric (or magnetic) field in inhomogeneous medium, for example an
optical waveguide. It does not describe polarization effects. It determines the evolution of
the field for z > 0 given an input u(x, y, z = 0).

The above equation can be expressed as

2 jβ
∂u

∂z
= D̂u + Ŵ u (12.6)

with the operators on the right hand side being

D̂ = 1

2 jβ

(
∂2

∂x2
+ ∂2

∂y2

)
(12.7)

Ŵ = 1

2 jβ

(
k2 − β2

)
(12.8)

Operator D̂ represents free-space propagation (diffraction) and operator Ŵ describes guid-
ing effects.

Assuming that operators are z-independent, the solution is symbolically written as

u(x, y, z + �z) = e(D̂+Ŵ )�zu(x, y, z)

Use the Baker-Hausdorf lemma [7]

eÂeB̂ = eÂ+B̂e
1
2 [Â,B̂]

given that Â and B̂ each commutes with [Â, B̂]. Using it, we can approximate

u(x, y, z + �z) ≈ eD̂�zeŴ �zu(x, y, z)

From the above, it follows that actions due to both operators can be considered indepen-
dently.

The action of operator D̂ is better understood in the spectral domain. It will be de-
scribed in the next section. The second operator Ŵ describes the effect of propagation
in the presence of medium inhomogeneities and its action is incorporated in the spatial
domain.

12.1.2 Operators D̂ andŴ

Consider an equation containing only operator D̂:

2 jβ
∂u(x, y, z)

∂z
=
(

∂2

∂x2
+ ∂2

∂y2

)
u(x, y, z) (12.9)
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Define 2D continuous Fourier transform as

ũ(kx, ky, z) =
+∞∫

−∞
u(x, y, z)e− j(kxx+kyy)dxdy ≡ Fx,y {u(x, y, z)}

and its inverse

u(x, y, z) =
+∞∫

−∞
ũ(kx, ky, z)e j(kxx+kyy)dkxdkyF−1

x,y {ũ(x, y, z)}

Apply the 2D FT to Eq. (12.9) and have for Fourier components

2 jβ
∂

∂z
ũ(x, y, z) = −(k2

x + k2
y )ũ(x, y, z)

Integrate the above from z to z + �z and have

ũ(x, y, z + �z) = e− 1
2 jβ (k2

x +k2
y )�zũ(x, y, z)

≡ Ĥ (kx, ky,�z)ũ(x, y, z) (12.10)

To analyse operator Ŵ , introduce the relation

β = k0ne f f (12.11)

Write also refractive index n as

n = ne f f + �n (12.12)

Substituting the above into Eq. (12.8) gives an expression for operator Ŵ to the first order
in �n

Ŵ = − jk0�n (12.13)

12.1.3 The implementation using the Fourier transform split-step method

A general scheme of FD-BPM is described by the propagator U , which we use to advance
field as

Ẽt (z + �z) = U (�z)Ẽt (z)

PropagatorU can take many forms depending on the chosen BPM technique. Its operation
is illustrated in Fig. 12.3. In practice two versions of BPM are used: 1 + 1 FD-BPM and
1 + 2 FD-BPM. The nomenclature refers to one dimension along the propagation direction
(usually the z-axis) and one or two perpendicular dimensions (along x-axis (1D case) or
in x-y plane (2D case)). Finite difference discretization in the 1 + 1 and 1 + 2 cases is
illustrated in Fig. 12.4.

We illustrate the application of Fourier transform split-step BPM for the propagation of
a two-dimensional Gaussian pulse. The guiding structure is divided into a large number of
segments. During each segment of length �z, the optical pulse is propagated as shown in
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z
z + Δz

Fig. 12.3 Illustration of the BPM scheme. Field profile is propagated from the position within one plane to a position within
another plane along the z-axis.

XX X X

j

i-1

i-1

i

i

i+1

i+1

j+1

j-1

x

1 + 2 FD-BPM

1 + 1 FD-BPM

y

Fig. 12.4 Illustration of finite-difference discretization for 1D and 2D BPM.

the flow diagram, see Fig. 12.5. The accompanying MATLAB script is shown in Appendix,
Listing 12B.1. The results of a 3D view of pulse before propagation and after propagation
are shown in Fig. 12.6. One can observe spread of pulse width as expected.

12.2 General theory

12.2.1 Introduction

Polarization effects are not included in the previous version of BPM. When one wants to
describe polarization effects, the vector wave equation must replace the scalar Helmholtz
equation used earlier. In this section we will outline a general approach to systematically
handle those effects. General formulation is based on an approach established by W. P.
Huang’s group [8], [9]. As usual, one starts from Maxwell’s equations in the frequency
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Initial profile u(x,y,z = 0)

Finished?

Yes

No

u(k ,k ,z) = F {u(x,y,z)}x y xy
~

u(k ,k ,z + z) = H(k ,k z) u(k ,k ,z)x y x y x yΔ Δ,~ ~ˆ

u'(x,y,z + z) = F {u(k ,k ,z+ z)}Δ Δxy x y
~-1

u(x,y,z + z) = e    u '(x,y,z + z)Δ ΔSΔz
^

Fig. 12.5 Flow diagram for the BPM split-step method.

domain:

∇ × E = − jωμ0H (12.14)

∇ × H = jωε0n2E (12.15)

∇ · n2E = 0 (12.16)

where we have introduced refractive index n as ε = ε0n2. We separate all quantities into
longitudinal (along z-axis) and transversal components, as follows:

∇ = ∇t + ẑ
∂

∂z
, E = Et + ẑEz, H = Ht + ẑHz

where

∇t =
[

∂

∂x
,

∂

∂y
, 0

]
, Et = [Ex, Ey, 0], Ht = [

Hx, Hy, 0
]
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Fig. 12.6 Initial Gaussian pulse (top). Pulse after propagation (bottom).

are the transversal components and ẑ = [0, 0, 1] is the unit vector along z-axis. Eq. (12.16)
can be rearranged as follows:

∇ · n2E = 0



295 General theory

or

∇t · n2Et + ∂

∂z
n2Ez = 0

or

∇t · n2Et + Ez
∂n2

∂z
+ n2 ∂Ez

∂z
= 0

∂

∂x
n2Ex + ∂

∂y
n2Ey + ∂

∂z
n2Ez = 0

The z-derivative is

∂Ez

∂z
= − 1

n2
Ez

∂n2

∂z
− 1

n2
∇t · n2Et (12.17)

If the refractive index varies slowly along z-axis, we can set ∂n2

∂z ≈ 0 (z-invariant structures
[9]) and obtain

∂Ez

∂z
≈ − 1

n2
∇t · n2Et

= − 1

n2

∂

∂x
n2Ex − 1

n2

∂

∂y
n2Ey (12.18)

The above relation is exact for z-invariant systems, i.e. when there is no change of refractive
index n2 along z-axis.

The wave equation is derived by taking ∇ × · · · operation on Eq. (12.14). One finds

∇ × ∇ × E = − jωμ0∇ × H = ω2μ0ε0n2E (12.19)

In the last step we have used Eq. (12.15). Next, we use the following general relation which
holds for arbitrary vector

∇ × ∇ × E = ∇ (∇ · E) − ∇2E

Applying it to expression (12.19), we obtain wave equation

−∇2E + ∇ (∇ · E) = n2k2
0E (12.20)

where ω2μ0ε0 = k2
0 .

Transversal components of the wave equation (12.20) are

−∇2Ex + ∂

∂x
(∇ · E) = n2k2

0Ex (12.21)

−∇2Ey + ∂

∂y
(∇ · E) = n2k2

0Ey (12.22)

where ∇2Ex = ∂2Ex

∂x2 + ∂2Ex

∂y2 + ∂2Ex

∂z2 . We will analyse the behaviour of Ez component. In the
above equations, term ∇ · E is expanded as

∇ · E =∂Ex

∂x
+ ∂Ey

∂y
+ ∂Ez

∂z
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and the last term is replaced using relation (12.18). One finds

∇ · E =∂Ex

∂x
+ ∂Ey

∂y
− 1

n2

∂

∂x
n2Ex − 1

n2

∂

∂y
n2Ey (12.23)

Substituting (12.23) into (12.21), one obtains

∂

∂x

1

n2

∂

∂x
n2Ex + ∂2Ex

∂y2
+ ∂2Ex

∂z2
+ ∂

∂x

1

n2

∂

∂y
n2Ey − ∂2Ey

∂x∂y
+ n2k2

0Ex = 0 (12.24)

Similarly, from (12.22) we have

∂

∂y

1

n2

∂

∂x
n2Ex − ∂2Ex

∂y∂x
+ ∂2Ey

∂x2
+ ∂2Ey

∂z2
+ ∂

∂y

1

n2

∂

∂y
n2Ey + n2k2

0Ey = 0 (12.25)

The above equations in a matrix form are⎡⎢⎢⎣
∂

∂x

1

n2

∂

∂x
n2 + ∂2

∂y2
+ ∂2

∂z2
+ n2k2

0

∂

∂x

1

n2

∂

∂y
n2 − ∂2

∂x∂y
∂

∂y

1

n2

∂

∂x
n2 − ∂2

∂y∂x

∂

∂y

1

n2

∂

∂y
n2 + ∂2

∂x2
+ ∂2

∂z2
+ n2k2

0

⎤⎥⎥⎦[Ex

Ey

]
= 0

(12.26)
Those equations form the starting point for detailed approximations.

12.2.2 Slowly varying envelope approximation (SVEA)

Assume that the transversal field components Ex and Ey are of the form

Ex(x, y, z) = ux(x, y, z)e− jβz (12.27)

Ey(x, y, z) = uy(x, y, z)e− jβz (12.28)

SVEA requires that ∣∣∣∣∂2ui

∂z2

∣∣∣∣ � 2β

∣∣∣∣∂ui

∂z

∣∣∣∣ (12.29)

Applying SVEA to term ∂2

∂z2 where (i = x, y), one obtains

∂2

∂z2
Ei = ∂2

∂z2
uie

− jβz = e− jβz

{
∂2ui

∂z2
− 2 jβ

∂ui

∂z
− β2ui

}
� e− jβz

{
−2 jβ

∂ui

∂z
− β2ui

}
Using SVEA in Eqs. (12.24) and (12.25) results in the paraxial wave equations [9]

j
∂ux

∂z
= Axxux + Axyuy (12.30)

j
∂uy

∂z
= Ayxux + Ayyuy (12.31)
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where the differential operators are defined by [9]

Axxux = 1

2β

{
∂

∂x

1

n2

∂

∂x
n2

x + ∂2
x

∂y2
+ ∂2

x

∂z2
+ (

n2k2
0 − β2

)}
ux (12.32)

Axyuy = 1

2β

{
∂

∂x

1

n2

∂

∂y
n2

y − ∂2
y

∂x∂y

}
uy (12.33)

Ayxux = 1

2β

{
∂

∂y

1

n2

∂

∂x
n2

x − ∂2
x

∂y∂x
+ ∂2

y

∂x2

}
ux (12.34)

Ayyuy = 1

2β

{
∂2

y

∂x2
+ ∂2

y

∂z2
+ ∂

∂y

1

n2

∂

∂y
n2

y + (
n2k2

0 − β2
)}

uy (12.35)

The above can be written in a matrix form:

j
∂

∂z

[
ux

uy

]
=
[

Axx Axy

Ayx Ayy

] [
ux

uy

]
(12.36)

The evolution of electric field described by Eq. (12.36) is known as vectorial BPM [9]. It
takes into account the polarization (Axx �= Ayy) and includes coupling between Ex and Ey

(Axy �= Ayx).

12.2.3 Semi-vector BPM

Often the coupling between two polarizations is weak and may be neglected. The two
polarizations are decoupled as long as they are not synchronized with some mechanism
within the device. The resulting equations which describe semi-vector formulation are

j
∂ux

∂z
= Axxux

j
∂uy

∂z
= Ayyuy

Under the semi-vector approximation, the polarization dependencies of the EM waves are
taken into account.

12.2.4 Scalar formulation

If the structure is weakly guiding and/or the polarization dependence is not important, we
can neglect it. The resulting scalar approximation is described by the equation

j
∂u

∂z
= Au (12.37)

where the operator A is

A = 1

2β

{
∂2

x

∂x2
+ ∂2

x

∂y2
+ (

n2k2
0 − β2

)}
The above reproduces a simple theory summarized in the introductory section.
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We finish this section with the remark that similar equations can be derived for the
magnetic field, known as the H-formulation (consult [9] for more details).

12.2.5 Finite-difference (FD) approximations

In this section we provide finite-difference discretization of the above equations. Due to its
simplicity, the FD is the popular numerical method of solving such problems. One replaces
continuous space by a discrete lattice where all fields are determined at the lattice’s points.
The lattice points are defined by xi = i · �x and y j = j · �y, see Fig. 12.4. Some details
of discretization are provided in Appendix 12A. The final discrete form of the previous
equations for E-formulation is [9] (here we made a replacement ε = n2)

Axxux

= 1

2β

{
Ti, j+1ux(i, j + 1) − [

2 − Ri, j+1 − Ri−1, j

]
ux(i, j) + Ti−1, jux(i − 1, j)

�x2

+ ux(i, j + 1) − 2ux(i, j) + ux(i, j − 1)

�y2
+ [

εi, j,k − β2
]

ux(i, j)

}
(12.38)

Ayyuy

= 1

2β

{
Ti+1, jux(i + 1, j) − [

2 − Ri+1, j − Ri−1, j

]
uy(i, j) + Ti, j−1uy(i, j − 1)

�y2

+ uy(i + 1, j) − 2uy(i, j) + uy(i − 1, j)

�x2
+ [

εi, j,k − β2
]

k2uy(i, j)

}
(12.39)

Axyuy

= 1

8β�x�y

{(
εi+1, j+1,k

εi+1, j,k
− 1

)
ux(i + 1, j + 1) −

(
εi+1, j−1,k

εi+1, j,k
− 1

)
ux(i + 1, j − 1)

−
(

εi−1, j+1,k

εi−1, j,k
− 1

)
ux(i − 1, j + 1) +

(
εi−1, j−1,k

εi−1, j,k
− 1

)
ux(i − 1, j − 1)

}
(12.40)

Ayxux

= 1

8β�x�y

{(
εi+1, j+1,k

εi, j+1,k
− 1

)
ux(i + 1, j + 1) −

(
εi−1, j+1,k

εi, j−1,k
− 1

)
ux(i − 1, j + 1)

−
(

εi+1, j−1,k

εi, j+1,k
− 1

)
ux(i + 1, j − 1) +

(
εi−1, j−1,k

εi, j−1,k
− 1

)
ux(i − 1, j − 1)

}
(12.41)

In the previous equations

Ti±1, j = 2εi±1, j,k

εi±1, j,k + εi, j,k
(12.42)

Ri+1, j = Ti±1, j − 1 (12.43)
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are the transmission and reflection coefficients across index interfaces between points i and
i + 1. Similarly,

Ti, j±1 = 2εi, j±1,k

εi, j±1,k + εi, j,k
(12.44)

Ri, j±1 = Ti, j±1 − 1 (12.45)

are the transmission and reflection coefficients across index interfaces between points j and
j + 1.

12.3 The 1 + 1 dimensional FD-BPM formulation

If we can neglect y-dependence of the refractive index (wide waveguides), the scalar
formulation described by Eq. (12.37) can be further simplified to the 1 + 1 description.
Cross-sectional dependence of the refractive index is n = n(x, z). The relevant Helmholtz
equation is [10]

2 jβ
∂u

∂z
= ∂2

x u

∂x2
+ (

n2k2
0 − β2

)
u (12.46)

where u is the only electric field component of the TE mode of the waveguide. This equation
will now be analysed using two methods. The second method will be implemented.

12.3.1 Simple approach

Here we discuss the FD-BPM formulation as described by Chung and Dagli [10]. First,
replace continuous field u(z, x) by its discrete values as

ui ≡ u(i · �x, z), i = 0, 1, 2 . . . N − 1

Second derivative is approximated as

∂2u

∂x2
= ui−1 − 2ui + ui+1

�x2

The resulting finite difference equation is

2 jβ
∂ui

∂z
= ui−1 − 2ui + ui+1

�x2
+ (

n2
i k2

0 − β2
)

ui ≡ fi(z)

Integrate the equation using trapezoidal rule

2 jβ

∫ ui(z+�z)

ui(z)
dui =

∫ z+�z

z
fi(z)dz

and have

2 jβ [ui(z + �z) − ui(z)] = 1

2
�z [ fi(z + �z) + fi(z)]
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Using the definition of fi(z) in the above formula and combining relevant terms, one finds
[10]

−aui+1(z + �z) + bui(z + �z) − aui−1(z + �z) = aui+1(z) + cui(z) + aui−1(z)

(12.47)

where

a = �z

2�x2

b = �z

�x2
− 1

2
�z
[
k2

0n2
i (z + �z) − β2

]+ 2 jβ

c = − �z

�x2
+ 1

2
�z
[
k2

0n2
i (z) − β2

]+ 2 jβ

The scheme results in a tridiagonal system of linear equations. For more details, see [10].

12.3.2 Propagator approach

Approach 1

When one approximates propagation within the waveguide by a one-dimensional approach
using variables (z, x) with z as the propagation direction, the y dependence is irrelevant and
one then sets ∂/∂y = 0. The resulting equation is

2 jβ
∂u

∂z
= ∂2u

∂x2
+ (k2 − β2)u (12.48)

where k = nk0.
The finite-difference discretization of Eq. (12.48) in 1D is the following:

j
un+1

i − un
i

h
= 1

2β

un
i+1 − 2un

i + un
i−1

�x2
+ 1

2β
(k2

i − β2) (12.49)

where k2
i = k2

0 n2
i (x) ≡ k2

0 n2(xi). With an introduction of the propagation operator P, the
above scheme is

j
un+1

i − un
i

h
=

N∑
k=1

Pik un
k (12.50)

The matrix elements of the operator P are

Pik = 1

2β

1

�x2
(δi+1,k − 2 δi,k + δi−1,k ) + 1

2β
(k2

i δi,k − β2) (12.51)

The solution of Eq. (12.50) can be written as

−→u n+1 =
(←→

I − jh
←→
P
)−→u n (12.52)

where −→u n is a column vector which consists of elements un
i ,

←→
I is the identity matrix and←→

P is the propagation matrix operator having elements given by Eq. (12.51). The scheme
is known as the explicit scheme. It is numerically unstable if the h step is too large.



301 The 1 + 1 dimensional FD-BPM formulation

The improvement is made by applying operator P to the future value of u [11]. From
Eq. (12.50)

j
un+1

i − un
i

h
=

N∑
k=1

Pik un+1
k (12.53)

or

−→u n+1 = −→u n − jh
←→
P −→u n+1

or (←→
I + jh

←→
P
)−→u n+1 = −→u n

The solution is

−→u n+1 =
(←→

I + jh
←→
P
)−1 −→u n (12.54)

The scheme is called implicit method, and it is stable, see Problem.
The combination of the above two methods is created by taking the average between

implicit and explicit schemes. The new scheme is known as the Crank-Nicolson method
[11]. It is both more accurate and stable. Adding Eqs. (12.50) and (12.53), one obtains (the
Crank-Nicolson scheme)

2 j
un+1

i − un
i

h
=

N∑
k=1

Pik

(
un

k + un+1
k

)
(12.55)

In matrix form

−→u n+1 = −→u n − 1

2
jh

←→
P
(
un

k + un+1
k

)
(12.56)

The above can be expressed as(←→
I + 1

2
jh

←→
P

)
−→u n+1 =

(←→
I − 1

2
jh

←→
P

)
−→u n (12.57)

or

L+ −→u n+1 = L− −→u n (12.58)

where

L+ = ←→
I + 1

2
jh

←→
P (12.59)

and

L− = ←→
I − 1

2
jh

←→
P (12.60)

From that equation, the final form which can be implemented is

−→u n+1 = L−1
+ L− −→u n (12.61)
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Approach 2

The above derivation can be made more formal. For that purpose, write Eq. (12.48) as

j
∂u

∂z
= P · u (12.62)

where the propagation operator P is defined as

P = 1

2β

[
∂2

x + (k2 − β2)
]

(12.63)

The solution of Eq. (12.62) is

u(z) = e− jzPu(0)

or, when one introduces ‘small’ step h:

u(z + h) = e− jhPu(z) (12.64)

For a small step, the solution (12.64) can be approximated as

u(z + h) ≈ (1 − jhP) u(z) (12.65)

One might notice that the solution (12.64) can also be written as

e jhPu(z + h) = u(z) (12.66)

or

(1 + jhP) u(z + h) ≈ u(z) (12.67)

or

u(z + h) ≈ (1 + jhP)−1 u(z) (12.68)

To solve this problem, a practically important method is known as the Crank-Nicolson
scheme which is obtained from the solutions (12.65) and (12.68). One thus makes the
following manipulations:

u(z + h) =
(

1 + jh

2
P

)−1

u

(
z + h

2

)
=
(

1 + jh

2
P

)−1 (
1 + jh

2
P

)
u(z) (12.69)

using Eq. (12.65) for h → h/2. The implementation of this scheme is shown in Appendix,
Listing 12A.2. It is used to propagate a Gaussian pulse in an empty space. In our im-
plementation we assumed that β = n · k0. With this choice, last term in propagator P
vanishes.

Profiles of a Gaussian pulse at various locations along the propagation direction in a
free space are shown in Fig. 12.7. One can observe reduction of a peak value and also the
effects of reflections from the boundaries of the computational window. Elimination of those
reflections will be discussed in the next sections. In Fig. 12.8 we show a three-dimensional
view of profiles of Gaussian pulses shown in Fig. 12.7.
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Fig. 12.7 Profiles of Gaussian pulses at various locations along z-axis.
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Fig. 12.8 Three-dimensional view of profiles shown in Fig. 12.7 of Gaussian pulses propagating in a free space.

Approach 3

Before starting the discussion of boundary conditions, we want to summarize yet another
possible numerical approach to Eq. (12.48). It will then be used to derive details of trans-
parent boundary conditions.

Assuming an equidistant step along x-axis and using standard formulas (h ≡ �z)

∂u

∂z
= un+1

i − un
i

h
(12.70)

∂2u

∂x2
= ui+1 − 2ui + ui−1

�x2
(12.71)
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the discretized version of Eq. (12.48) is

2 jβ
un+1

i − un
i

h
= ui+1 + ui−1

�x2
+
[
− 2

�x2
+ (

k2
i − β2

)]
ui (12.72)

Introduce modifications on the right hand side of Eq. (12.72):

ui+1 = 1

2

(
un+1

i+1 + un
i+1

)
(12.73)

ui−1 = 1

2

(
un+1

i−1 + un
i−1

)
(12.74)

k2
i = 1

2

[
k2

i (n + 1) + k2
i (n)

]
(12.75)

After new algebraic steps, Eq. (12.72) can be expressed as

un+1
i + jh

2

{
1

2β

1

�x2

(
un+1

i+1 − 2un+1
i + un+1

i−1

)+ 1

2β

[
k2

i (n + 1) − β2
]

un+1
i

}
= un

i − jh

2

{
1

2β

1

�x2

(
un

i+1 − 2un
i + un

i−1

)+ 1

2β

[
k2

i (n) − β2
]

un
i

}
(12.76)

Note the different n dependence in k2
i . The final form of the above in a condensed form is

L+(n + 1)
−→u n+1 = L−(n)

−→u n (12.77)

where

L+(n + 1)
−→u n+1 = un+1

i + jh

2

{
1

2β

1

�x2

(
un+1

i+1 − 2un+1
i + un+1

i−1

)
+ 1

2β

[
k2

i (n + 1) − β2
]

un+1
i

}
(12.78)

and

L−(n)
−→u n = un

i − jh

2

{
1

2β

1

�x2

(
un

i+1 − 2un
i + un

i−1

)+ 1

2β

[
k2

i (n) − β2
]

un
i

}
(12.79)

12.3.3 Transparent boundary conditions

To eliminate reflections shown in the previous example, one needs to introduce appropriate
boundary conditions outside the computational window. The popular solution is to introduce
the so-called transparent boundary conditions (TBC) which were invented by Hadley [12],
[13]. TBC have been extensively discussed in the literature [14], [15], [16], [17].

Consider the system with left and right boundaries as shown in Fig. 12.9. Nodes x0 and
xN+1 are outside the system; however, they are needed in the implementation of numerical
scheme.
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i=0 1 2 3 N N+1N-1

x0

x
x1 x3 xN-1 xN xN+1x2

Fig. 12.9 Numbering of nodes used in deriving transparent boundary conditions.

Left-hand boundary

Analyse the left boundary first. Assume that near the boundary the field is approximated as

u(x, z) ≈ A(z) eikxx (12.80)

For the first left points shown in Fig. 12.9, one obtains

u0 = u(x0) = A(z) eikxx0 (12.81)

u1 = u(x1) = A(z) eikxx1 (12.82)

u2 = u(x2) = A(z) eikxx2 (12.83)

From the above equations one finds

u2

u1
= eikxx2

eikxx1
= eikx(x2−x1) ≡ eikx�x (12.84)

and
u1

u0
= eikxx1

eikxx0
= eikx(x1−x0) ≡ eikx�x (12.85)

assuming uniform grid; i.e. �x = x2 − x1 = x1 − x0. From the above equations, one
determines value of the field at the outside point x0:

u0 = u1 eikx�x (12.86)

Wave number kx is determined from known fields using Eq. (12.84):

kx = 1

i�x
ln

u2

u1
(12.87)

For a field travelling leftward (an outgoing wave), the real part of kx, Re(kx) is positive.
The implementation of TBC at the left point for operator Ln+1

+ will be illustrated now.
Consider the first element for i = 1, which from Eq. (12.78) is

Ln+1
+ (1) = un+1

1 + 1

2
jh

1

2β

1

�x2
(−2)un+1

1 + 1

2
jh

1

2β

1

�x2
un+1

0 (12.88)

Replacing un+1
0 using Eq. (12.86) gives

Ln+1
+ (1) = un+1

1 + 1

2
jh

1

2β

1

�x2
(−2)un+1

1 + 1

2
jh

1

2β

1

�x2
un+1

1 e jkx�x

=
(

1 + 1

2
jh

1

2β

1

�x2
(−2) + 1

2
jh

1

2β

1

�x2
e jkx�x

)
un+1

1

= (old term + left correction) un+1
1 (12.89)
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The last expression is directly implemented. For operator Ln+1
− there is only a change of

sign. Similar steps can be taken for the right boundary, which is left as a problem.

Right-hand boundary

At the right-hand boundary, the point xN+1 is outside the system and the field there must
be determined. One starts with assuming the following expression for the right-travelling
field:

u(x) ≈ A(z) e−ikxx (12.90)

Based on this assumption, we can write fields at three points around the right boundary:

uN−1 = u(xN−1) = A(z) e−ikxxN−1 (12.91)

uN = u(xN ) = A(z) e−ikxxN (12.92)

uN+1 = u(xN+1) = A(z) e−ikxxN+1 (12.93)

Here uN−1 and uN are fields within the system and uN+1 is outside. From the above relations
one determines the outside field as

uN+1 = uN e−ikx�x (12.94)

where the wavenumber is

kx = 1

i�x
ln

u2

u1
(12.95)

Cross sections are shown in Fig. 12.10. One can observe that reflections were eliminated.
The three-dimensional view of an initial Gaussian pulse at various positions is shown in
Fig. 12.11. MATLAB code is shown in Appendix, Listings 12B.3 and 12B.3.1.

12.4 Concluding remarks

A few years ago an article was published with the title ‘What is the future for beam
propagation methods?’ [18]. The role played by BPM in the simulations of photonic
devices was discussed. The authors also provided an extensive literature summary on the
following issues associated with the BPM: transverse discretization, explicit and implicit
formulations, vector effects, wide angle effects, reflective schemes and time domain BPM.
They concluded with highlighting the outstanding issues (as of 2004) of BPM, which
were: flexible meshing, development of wide-angle schemes, improvement of boundary
conditions and creation of hybrid BPM schemes, e.g. with time and/or frequency domain
methods.

A more recent assessment of BPM (and also Eigenmode Expansion Method and Finite
Difference Time Domain) for Photonic CAD is reported by Gallagher [19]. He summa-
rizes the main algorithms used in photonic modelling and discusses their strengths and
weaknesses.
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Fig. 12.10 Comparison of field profiles at various locations along z-axis of Gaussian pulse propagating in a free space by BPMwith
transparent boundary conditions. One observes reduction of its peak value and spreading of pulse. No reflections are
observed.

−5

0

5

0

20

40
0

0.5

1

xz

Fig. 12.11 Three-dimensional view of Gaussian pulse shown in Fig. 12.10 propagating in a free space by BPMwith transparent
boundary conditions.

12.5 Problems

1. Develop H-formulation of BPM.
2. Perform von Neumann stability analysis for the implicit method.
3. Based on the example in the text for TBC for the left boundary, develop expressions

for the right TBC.
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12.6 Project

1. Implement 1-1 FD-BPM as discussed in Section 12.3.1. Consult work by [10]. Analyse
waveguides described in Ref. [10].

Appendix 12A: Details of derivation of the FD-BPM equation

We describe details of discretization of the earlier equations, like Eq. (12.32). We present
details for the 1D case only. Generalization to 2D is straightforward. A typical term which
needs discretization is

K = ∂

∂x

1

ε

∂

∂x
(εu) ≡ ∂

∂x
g(x)

Simple approach

First-order derivative is
∂φ

∂x
= φp+1 − φp

�x

where φ = εu. Applying the above formula with difference centred around the points p+ 1
2

and p − 1
2 , one finds

K = 1

�x

{
1

εp+ 1
2

φp+1 − φp

�x
− 1

εp− 1
2

φp − φp−1

�x

}
where

φp±1 = εp±1up±1

φp = εpup

We also use the following intuitive relations (which will be proved in the next section):

εp+ 1
2

= εp+1 + εp

2

εp− 1
2

= εp+1 + εp−1

2

Combining the above relations, one obtains

K = 1

�x

2

εp+1 + εp

εp+1up+1 − εpup

�x
− 1

�x

2

εp + εp−1

εpup − εp−1up−1

�x

= 2

�x2

{
εp+1

εp+1 + εp
up+1 −

[
εp

εp+1 + εp
+ εp

εp + εp−1

]
up + εp−1

εp + εp−1
up−1

}
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Taylor series approach

We differentiate

K = ∂

∂x

1

ε

∂

∂x
(εu) = ∂

∂x

1

ε

(
∂ε

∂x

)
u + ∂2u

∂x2

First term is evaluated as follows. First, we expand around point p:(
1

ε

(
∂ε

∂x

)
u

)
p± 1

2

=
(

1

ε

(
∂ε

∂x

)
u

)
p

± �x

2

∂

∂x

1

ε

(
∂ε

∂x

)
u

∣∣∣∣
p

Subtracting gives

∂

∂x

1

ε

(
∂ε

∂x

)
u

∣∣∣∣
p

= 1

�x

{(
1

ε

(
∂ε

∂x

)
u

)
p+ 1

2

−
(

1

ε

(
∂ε

∂x

)
u

)
p− 1

2

}
(12.96)

From the above, one can observe that the values of u and ε are needed at intermediate points
p + 1

2 and p − 1
2 . Those can be obtained by performing expansions

up+1 = up+ 1
2
+ ∂u

∂x

∣∣∣∣
p+ 1

2

�x

2

and

up = up+ 1
2
− ∂u

∂x

∣∣∣∣
p+ 1

2

�x

2

Adding the above gives

up+ 1
2

= 1

2
(up + up+1) (12.97)

Expansions of ε gives

εp+1 = εp+ 1
2
− ∂ε

∂x

∣∣∣∣
p+ 1

2

�x

2

and

εp = εp+ 1
2
− ∂ε

∂x

∣∣∣∣
p+ 1

2

�x

2

Adding the above gives

εp+ 1
2

= 1

2
(εp + εp+1) (12.98)

Subtracting gives

∂ε

∂x

∣∣∣∣
p+ 1

2

= 1

2
(εp+1 − εp) (12.99)
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From Eqs. (12.98) and (12.99) we have

1

ε

∂ε

∂x

∣∣∣∣
p+ 1

2

= 2

�x

εp+1 − εp

εp + εp+1
(12.100)

Using Eqs. (12.97) and (12.100), we obtain

1

ε

∂ε

∂x
u

∣∣∣∣
p+ 1

2

= 1

�x

εp+1 − εp

εp + εp+1
(up + up+1) (12.101)

In exactly the same way, performing the relevant expansions around point p − 1
2 one

finds
1

ε

∂ε

∂x
u

∣∣∣∣
p− 1

2

= 1

�x

εp − εp−1

εp + εp−1
(up + up−1) (12.102)

Substituting Eqs. (12.101) and (12.102) into (12.96), we obtain an intermediate result

∂

∂x

1

ε

(
∂ε

∂x

)
u

∣∣∣∣
p

= 1

�x2

{
εp+1 − εp

εp + εp+1
(up + up+1) − εp − εp−1

εp + εp−1
(up + up−1)

}
(12.103)

A complete derivative is obtained by combining discretization for a second derivative

∂2u

∂x2
= 1

�x2

(
up+1 − 2up + up−1

)
with expression (12.103). The result is

K = ∂

∂x

1

ε

∂

∂x
(εu)

= 2

�x2

{
εp+1

εp + εp+1
up+1 − εp

(
1

εp + εp+1
+ 1

εp + εp+1

)
up + εp−1

εp + εp−1
up−1

}
The last result is the same as the one obtained by Lidgate [20].

Appendix 12B: MATLAB listings

In Table 12.1 we provide a list of MATLAB files created for Chapter 12 and a short
description of each function.

Table 12.1 List of MATLAB functions for Chapter 12.

Listing Function name Description

12B.1 pbpm.m Gaussian pulse in free space in the paraxial approximation
12B.2 f d bpm f ree.m Gaussian pulse in free space (Crank-Nicholson)
12B.3 bpm tbc.m Transparent boundary conditions
12B.3.1 prop.m Function called by bpm tbc.m. Performs single step
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Listing 12B.1 Function pbpm.m. Function performs propagation of a two-dimensional
Gaussian pulse using the Fourier transform split-step beam propagation method in the
paraxial approximation.

% File name: pbpm.m

% Propagation of 2D Gaussian pulse by paraxial FT split-step BPM

clear all N= 10; delta_x = 1/N;

x = -5:delta_x:5; % creation of space arguments

y = -5:delta_x:5; % creation of space arguments

delta_z = 5.0; % step size along z-axis

delta_n = 0.4; k_zero = 100;

beta = 20; % propagation constant

%

u_init=(exp(-x.^2))’*exp(-y.^2); % initial Gaussian pulse

mesh(x,y,abs(u_init)); % plots original pulse

pause close all

%

k_x = -5:1/N:5; % creation of Fourier variables

k_y = -5:1/N:5; % creation of Fourier variables

%

temp = delta_z/(2*beta); H_transfer =

(exp(1i*temp*k_x.^2))’*(exp(1i*temp*k_y.^2)); H_transfer =

fftshift(H_transfer); S_phase = exp(-1i*k_zero*delta_n);

%

for n=1:100

z = fft2(u_init);

zz = z.*H_transfer;

u_prime = ifft2(zz);

u = S_phase.*u_prime;

u_init = u;

end

%

mesh(x,y,abs(u_init)) % plots pulse after propagation

pause close all

Listing 12B.2 Program fd bpm free.m. Illustrates propagation of a Gaussian pulse in a
free space.

% File name: fd_bpm_free.m

% Propagation of Gaussian pulse in a free space by Crank-Nicholson method

% No boundary conditions are introduced

clear all

L_x=10.0; % transversal dimension (along x-axis)

w_0=1.0; % width of input Gaussian pulse

lambda = 0.6; % wavelength
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n=1.0; % refractive index of the medium

k_0=2*pi/lambda; % wavenumber

N_x=128; % points on x axis

Delta_x=L_x/(N_x-1); % x axis spacing

h=5*Delta_x; % propagation step along z-axis

N_z=100; % number of propagation steps

plotting=zeros(N_x,N_z); % storage for plotting

x=linspace(-0.5*L_x,0.5*L_x,N_x); % coordinates along x-axis

x = x’;

E=exp(-(x/w_0).^2); % initial Gaussian field

%

% beta = n*k_0. With this choice, last term in propagator vanishes

prefactor = 1/(2*n*k_0*Delta_x^2); main = ones(N_x,1); above =

ones(N_x-1,1); below = above;

P = prefactor*(diag(above,-1)-2*diag(main,0)+diag(below,1)); % matrix P

%

step_plus = eye(N_x) + 0.5i*h*P; % step forward

step_minus =eye(N_x)-0.5i*h*P; % step backward

%

z = 0; z_plot = zeros(N_z); for r=1:N_z

z = z + h;

z_plot(r) = z + h;

plotting(:,r)=abs(E).^2;

E=step_plus\step_minus*E;

end;

%

for k = 1:N_z/10:N_z % choosing 2D plots every 10-th step

plot(plotting(:,k),’LineWidth’,1.5)

set(gca,’FontSize’,14); % size of tick marks on both axes

hold on

end pause close all

%

for k = 1:N_z/10:N_z % choosing 3D plots every 10-th step

y = z_plot(k)*ones(size(x)); % spread out along y-axis

plot3(x,y,plotting(:,k),’LineWidth’,1.5)

hold on

end grid on xlabel(’x (mm)’,’FontSize’,14)

ylabel(’z (mm)’,’FontSize’,14) % along propagation direction

set(gca,’FontSize’,14); % size of tick marks on both axes

pause close all

Listing 12B.3 Program bpm tbc.m. Illustrates propagation of Gaussian pulse in a free
space with transparent boundary conditions.

% File name: bpm_tbc.m

% Illustrates propagation of Gaussian pulse in a free space
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% using BPM with transparent boundary conditions

% Operator P is determined in a separate function

clear all

L_x=10.0; % transversal dimension (along x-axis)

w_0=1.0; % width of input Gaussian pulse

lambda = 0.6; % wavelength

n=1.0; % refractive index of the medium

k_0=2*pi/lambda; % wavenumber

N_x=128; % number of points on x axis

Delta_x=L_x/(N_x-1); % x axis spacing

h=5*Delta_x; % propagation step

N_z=100; % number of propagation steps

plotting=zeros(N_x,N_z); % storage for plotting

x=linspace(-0.5*L_x,0.5*L_x,N_x); % coordinates along x-axis

x = x’;

E=exp(-(x/w_0).^2); % initial Gaussian field

%

z = 0;

z_plot = zeros(N_z);

for r=1:N_z % BPM stepping

z = z + h;

z_plot(r) = z + h;

plotting(:,r)=abs(E).^2;

E = step(Delta_x,k_0,h,n,E); % Propagates pulse over one step

end;

%

for k = 1:N_z/10:N_z % choosing 2D plots every 10-th step

plot(plotting(:,k),’LineWidth’,1.5)

set(gca,’FontSize’,14); % size of tick marks on both axes

hold on

end

pause

close all

%

for k = 1:N_z/10:N_z % choosing 3D plots every 10-th step

y = z_plot(k)*ones(size(x)); % spread out along y-axis

plot3(x,y,plotting(:,k),’LineWidth’,1.5)

hold on

end

grid on

xlabel(’x’,’FontSize’,14)

ylabel(’z’,’FontSize’,14) % along propagation direction

set(gca,’FontSize’,14); % size of tick marks on both axes

pause

close all
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Listing 12B.3.1 Function step.m used by bpm tbc.m. Function performs a single step in
BPM.

% File name: step.m

function E_new = step(Delta_x,k_0,h,n,E_old)

% Function propagates BPM solution along one step

N_x = size(E_old,1); % determine size of the system

%--- Defines operator P outside of a boundary

prefactor = 1/(2*n*k_0*Delta_x^2);

main = ones(N_x,1);

above = ones(N_x-1,1);

below = above;

P = prefactor*(diag(above,-1)-2*diag(main,0)+diag(below,1)); % matrix P

%

L_plus = eye(N_x) + 0.5i*h*P; % step forward

L_minus = eye(N_x)-0.5i*h*P; % step backward

%

%---- Implementation of boundary conditions

%

pref = 0.5i*h/(2*k_0*Delta_x^2);

k=1i/Delta_x*log(E_old(2)/E_old(1));

if real(k)<0

k=1i*imag(k);

end;

left = pref*exp(1i*k*Delta_x); % left correction for next step

L_plus(1) = L_plus(1)+left;

L_minus(1) = L_minus(1)-left;

%

k=-1i/Delta_x*log(E_old(N_x)/E_old(N_x-1));

if real(k)<0

k=1i*imag(k);

end;

right = pref*exp(1i*k*Delta_x); % right correction for nest step

L_plus(N_x) = L_plus(N_x) + right;

L_minus(N_x) = L_minus(N_x) - right;

%

E_new = L_minus\L_plus*E_old; % determine new solution
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13 Somewavelength divisionmultiplexing
(WDM) devices

Wavelength division multiplexing (WDM) is a modern practical method of increasing
transmission capacity in fibre communication systems. It uses the principle that optical
beams with different wavelengths can propagate simultaneously over a single fibre without
interfering with one another. In the wavelength range of 1280–1650 nm (like an AllWave
fibre [1]) the useable bandwidth of a single mode fibre is about 53 THz. In recent years an
improved (denser) WDM system known as DWDM is under development.

In this chapter we discuss some of the WDM devices and also provide some applications
of BPM developed earlier to simulate those devices. We start by summarizing the basic
WDM system.

13.1 Basics of WDM systems

WDM is the main technique used in the realization of all optical networks. WDM is the
technology which combines a number of wavelengths onto the same fibre.

Key features include:

• capacity upgrade
• transparency (each optical channel can carry any transmission format)
• wavelength routing
• wavelength switching

Implementation of a typical WDM system employing N channels is shown in Fig. 13.1.
In the shown system three wavelengths are multiplexed in one fibre to increase transmission
capacity. The light of laser diodes with wavelengths recommended by the ITU is launched
into the inputs of a wavelength multiplexer (MUX) where all wavelengths are combined
and coupled into a single-mode fibre. When needed, propagating light can be amplified by
an optical fibre amplifier and eventually imputed at the wavelength demultiplexer (DMUX)
which separates all optical channels and sends them to different outputs.

In order to find the optical bandwidth corresponding to a spectral width in optical region,
we use the relation c = λ · ν, where λ is wavelength and ν carrier frequency and c velocity
of light. Differentiating

dν = c
d

dλ

(
1

λ

)
dλ = − c

λ2
dλ
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Fig. 13.1 Implementation of a typical WDM link.

or

|�ν| = c

λ2
|�λ| (13.1)

The above equation describes the frequency change �ν which corresponds to the wave-
length change �λ around λ. Using the above formula, we can estimate the usable wavelength
range for a standard single-mode fibre. Assuming that telecommunication wavelength range
extends from λ1 = 1280 nm to λ2 = 1625 nm, the ultimate bandwidth of optical fibre is
40 THz [2]. Assuming 50 or 25 GHz channel spacing, there is the possibility to transmit
800–1600 wavelength channels.

In the remainder of this chapter, we will consider some of the basic devices used in WDM
systems and provide two applications of the beam propagation method (BPM) to simulate
simple structures.

13.2 Basic WDM technologies

In an ideal WDM system where nonlinear effects are neglected, the discrete wavelengths
can be optically processed, i.e. routed and/or switched without interfering with each other.
Optical processing can be performed using passive or active components.

One refers to passive components where there is no external control of their operation.
Typically, they are used to split or combine signals. Examples of passive components are:
N × N couplers, power splitters and star couplers.

Active components, which can be controlled electronically, include tunable optical filters,
tunable sources, optical amplifiers. Here, we will concentrate on passive components.

Basic technologies which are used to develop WDM devices are [3]: fibre Bragg grating
(FBG), array waveguide grating (AWG), thin-film filter (TFF) and diffraction grating (DG).

Another classification of main WDM components used in fibre optic communication
systems is described by Agrawal [4] and includes: tunable optical filters (Fabry-Perot
filters, Mach-Zehnder filters, grating-based filters, application-based filters), multiplexers
and demultiplexers, add/drop multiplexers and filters, broadcast star couplers, wavelength
routers, optical cross-connects, wavelength converters and WDM transmitters and receivers.

In the following, we will discuss basic WDM technologies. We start with fibre Bragg
grating.



318 Some wavelength division multiplexing (WDM) devices
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Fig. 13.2 Fibre grating operating as an optical filter.

λ1

λ2

λ3

λ1 λ2 λ3

Fig. 13.3 Schematic illustration of a simple array waveguide demultiplexer.

13.2.1 Fibre Bragg grating

Fibre Bragg grating (FBG) devices are based on the principle discovered by Bragg in 1913
and demonstrated in fibre by Hill in 1978 [5]. It is illustrated in Fig. 13.2.

In a fibre’s core a periodic change of the refractive index (known as grating) is created
using the effect of photosensitivity in germanium-doped optical fibre [5]. When a light
signal consisting of several wavelengths travels in optical fibre (here from left to right),
the signal with a wavelength which obeys the Bragg condition is reflected. The reflected
wavelength centred at λB that fulfills the Bragg condition is

λB = 2�ne f f (13.2)

where � is the grating period and ne f f is the effective group refractive index of the core.
Applications of Bragg grating are numerous and include filters and dispersion compen-

sation. A comprehensive review on FBG including fibre grating lasers and amplifiers was
written by Kashyap [6].

13.2.2 Array waveguide grating

Array waveguide grating (AWG) is shown schematically in Fig. 13.3 [2]. It is formed by
several waveguides with different lengths. At both ends all waveguides are converging to
the same points. Light composed of several wavelenths (λ1, λ2, . . .) enters the device on
the left. The length of each waveguide is carefully designed so to provide precise phase
difference between neighbouring waveguides at the end of the guiding structure (on the
right). At the output, a diffraction pattern is created which allows output waveguide to
collect light at a particular wavelength. AWG can be used as a passive optical multiplexer
and/or demultiplexer.
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Fig. 13.4 Y-branch power splitter.
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Fig. 13.6 Integrated optics directional coupler.

13.2.3 Couplers and splitters

Optical couplers are passive devices which either split optical signal into multiple paths, or
combine several signals into one path. A prime characteristic of couplers is the number of
input and output ports, which is typically expressed as an N × M configuration, where N
represents the number of inputs and M represents the number of outputs.

A splitter is a modification of a coupler. As an example, a Y-branch power splitter is shown
in Fig. 13.4. Typically, such Y-branch splits power evenly between the two output ports. By
combining several Y-branches more outputs can be provided, as shown in Fig. 13.5.

Couplers can be constructed within the waveguide structure as shown in Fig. 13.6. Such
a structure can be formed by ion exchange, ion implantation or chemical vapour deposition.

Couplers can also be constructed by twisting two or more fibres together and melting
them in a flame. The process creates a fused coupler, a very popular device.

These techniques can be used to make 50−50% or 99−1% couplers. The numbers
indicate splitting ratios. The length of the coupling region (fused region) as well as the
twisting determines the splitting ratio. Such couplers are simple to construct but fabrication
requires significant experience.

In the coupler shown in Fig. 13.6, the optical signal enters port 1. Some of its power exits
in port 2 and some in port 3. In an ideal situation, no light reaches port 4 and also no power
is lost. In practice, however, a few tenths of a dB are lost and the coupling to port 4 is about
30 dB relative to input power at port 1. The percentage of light coupled to different ports
can be varied by changing the coupling length L.
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a b
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y

Fig. 13.7 Two coupled optical waveguides. Distribution of electric fields is also shown.

Some of the common applications of couplers and splitters are

• to monitor output of light locally (usually 99−1% couplers are used)
• to distribute an incoming signal to several locations simultaneously. For example, a

four-part splitter (Fig. 13.5) allows a signal to drive four receivers.

Next, we provide a summary of the mathematical description of a passive coupler.

13.2.4 Mathematical theory of a passive coupler

Consider two waveguides ‘a’ and ‘b’ (Fig. 13.7), see [7]. For a single waveguide, say ‘a’,
one can express the field as

�E (x, y, z) = �E (a) (x, y) a (z)

�H (x, y, z) = �H (a) (x, y) a (z)

and where

a (z) = a0eiβaz

where �E (a) (x, y) and �H (a) (x, y) are modal distributions in (x, y) plane. They are normalized
as

1

2
Re

∫ ∫
�E (a)∗ (x, y) × �H (a)∗dxdy · ẑ = 1

Also
da (z)

dz
= iβaa (z)

Total guided power

P = 1

2

∫ ∫
�E (a)∗ (x, y, z) × �H ∗ (x, y, z) · ẑdxdy

= |a (z)|2

For two parallel waveguides, fields in each one are written as

�E (x, y, z) = a (z) �E (a) (x, y) + b (z) �E (b) (x, y) (13.3)

�H (x, y, z) = a (z) �H (a) (x, y) + b (z) �H (b) (x, y) (13.4)
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Amplitudes a (z) and b (z) satisfy the following (coupled-mode) equations:

da(z)

dz
= iβaa(z) + iκabb(z) (13.5)

db(z)

dz
= iκbaa(z) + iβbb(z) (13.6)

where κab and κba are coupling coefficients. Guided power is

P = sa |a (z)|2 + sb | b (z)|2 + Re
{
a (z) b∗ (z)Cba + b (z) a∗ (z)Cab

}
(13.7)

where

Cpq = 1

2

∫ +∞∫
−∞

�E (q) (x, y) × �H (p)∗ ( x, y) · ẑdxdy (13.8)

In the above, sa, sb = +1 is for propagation in the +z direction and sa, sb = −1 is for
propagation in the −z direction.

Coupled mode equations can be written in a matrix form as

d

dz

[
a(z)
b(z)

]
= i

←→
M

[
a(z)
b(z)

]
(13.9)

where

←→
M =

[
βa κab

κba βb

]
(13.10)

The solution is assumed to be [
a(z)
b(z)

]
=
[

A
B

]
eiβz (13.11)

After substitution into Eq. (13.9), one finds[←→
M −β

←→
1
] [A

B

]
= 0 (13.12)

where
←→
1 is an identity matrix. In the full form[

βa − β κab

κba βb − β

] [
A
B

]
= 0 (13.13)

For non-trivial solutions, a determinant must vanish:

det = (βa − β) (βb − β) − κab · κba = 0 (13.14)

From the above, two eigenvalues are found as

β = 1

2
(βa + βb) ± γ ≡

{
β+
β−

(13.15)

where

γ =
√

�2 + κab · κba, � = 1

2
(βb − βa) (13.16)
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Eigenvectors are

�V1 =
[

κab

� + γ

]
or

[−� + γ

κba

]
for β+ (13.17)

and

�V2 =
[

κab

� − γ

]
or

[−� − γ

κba

]
for β− (13.18)

The general solution is therefore[
a(z)
b(z)

]
= ←→

V

[
eiβ+z 0

0 eiβ−z

]←→
V −1

[
a(0)

b(0)

]
(13.19)

where matrix
←→
V is formed from eigenvectors as

←→
V =

[
�V1; �V2

]
(13.20)

After some algebra, one finds the final solution[
a(z)
b(z)

]
= ←→

S (z)

[
a(0)

b(0)

]
(13.21)

with

←→
S (z) =

[
cos γ z − i�

γ
sin γ z i κba

γ
sin γ z

i κba

γ
sin γ z cos γ z + i�

γ
sin γ z

]
· e

i
2 (βa+βb)z (13.22)

As a special case, consider a situation when at z = 0 the optical power is incident only
in waveguide 1, a (0) = 1, b (0) = 0. One finds in this case

|b (z)|2 =
∣∣∣∣κba

γ

∣∣∣∣2 sin2 γ z

At γ z = π
2 , 3π

2 , . . . , (2n + 1) π
2 , the power transfer from guide ‘a’ to guide ‘b’ is maximum.

Since ∣∣∣∣κba

γ

∣∣∣∣2 = |κba|2[
1
2 (βb − βa)

]2 + |κba|2
< 1

for βa �= βb the power transfer between waveguides is never complete. For more discussion
consult Chuang [7].

13.2.5 Optical isolators

An optical isolator is a passive device which allows the transmission of an optical signal
in only one direction. At the same time the reflections in the opposite direction will be
eliminated.

Two key parameters of an isolator are: the insertion loss which is the loss in the forward
direction, and its isolation which is the loss in the reverse direction. Typical insertion loss
is about 1 dB, whereas the isolation loss is 40–50 dB.
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Fig. 13.8 Illustration of the principle of Faraday rotation.

An optical isolator based on the Faraday effect is shown in Fig. 13.8. The device consists
of two linear polarizers and a 45◦ Faraday rotator. A light beam entering the device from the
left passes through a linear polarizer which polarizes it vertically. Then it passes through a
Faraday rotator which rotates it (here, say by 45◦) with respect to vertical direction. After
passing through a rotator, it travels through another linear polarizer aligned at 45◦ which
allows the beam to pass through. Therefore, a vertically polarized beam can be transmitted
through the device. However, all beams polarized at other angles will be blocked.

The angle of rotation α in a Faraday rotator is given by

α = V BL (13.23)

where V is the Verdet constant, B is magnetic induction and L is the interaction length.
For glass (crown) at a temperature of 18◦C, the Verdet constant is V = 2.68 × 10−5 deg/
Gauss· mm.

13.3 Applications of BPM to photonic devices

The development of new types of components for WDM applications requires accurate
modelling before any fabrication attempts. Over the years many approaches and numerical
methods have been developed. They can generally be divided into two main groups [8]: time-
harmonic (monochromatic CW operation) and general time-dependent (pulse operation).
The important role in numerical analysis of those components is played by BPM.

There are many specific applications of the BPM to modelling different aspects of pho-
tonic devices or circuits, such as passive waveguiding devices [9], channel-dropping filters
[10], multimode waveguide devices [11], polarization splitters [12], multimode interference
devices [13] and many more.
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Fig. 13.9 Propagation of Gaussian pulse in a waveguide by BPM.
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Fig. 13.10 Propagation of Gaussian pulse in a tapered waveguide by BPM.

For a recent summary on integrated optics consult the recent book by Hunsperger [14].
In this section we show the results of applications of the BPM developed earlier to the

simplest two waveguiding structures which are the building blocks of WDM devices. Here,
we consider a rib waveguide and a tapered waveguide. In Figs. 13.9 and 13.10 we show
propagation of a Gaussian pulse and also profiles of the refractive indices. The MATLAB
code used to generate those figures is provided in the Appendix, Listings 13A.1 and 13A.2.

To avoid reflections at the boundaries, transparent boundary conditions were imple-
mented.
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13.4 Projects

1. Function y junction.m provided in the Appendix can be used to create a Y-junction.
Use this function and other BPM routines to develop a program which will propagate
a Gaussian pulse in the Y-junction. Analyse various configurations from the literature.
Consult Refs. [15] and [16].

2. Implement the method of finding propagation constants using BPM. Consult Refs. [17]
and [18].

3. Write MATLAB code to analyse propagation of Gaussian pulses in a coupled rib wave-
guide. Determine coupling length. Consult Refs. [19] and [20].

4. Analyse a fibre Bragg grating filter using BPM.

Appendix 13A: MATLAB listings

In Table 13.1 we provide a list of MATLAB files created for Chapter 13 and a short
description of each function.

Listing 13A.1 Program bpm wg.m. Describes propagation of a Gaussian pulse in a
waveguide using BPM.

% File name: bpm_wg.m

% Driver function which propagates Gaussian pulse

% in a strip waveguide using BPM with transparent boundary conditions

clear all

x_0 = 1; % center of Gaussian pulse

L_x=10.0; % transversal dimension (along x-axis)

w_0=1.0; % width of input Gaussian pulse

lambda = 1.6; % wavelength

k_0=2*pi/lambda; % wavenumber

Table 13.1 List of MATLAB functions for Chapter 13.
Listing Function name Description

13A.1 bpm wg.m Gaussian pulse in a waveguide with TBC
13A.1.1 wg struct.m Constructs waveguiding structure used by bpmwg.m
13A.1.2 step.m Propagates BPM solution along one step
13A.2 bpm taper.m Gaussian pulse in a tapered waveguide with TBC
13A.2.1 taper struct.m Constructs tapered structure used by bpmtaper.m
13A.3 plot y.m Plots Y-junction
13A.3.1 y junction.m Function defines Y-junction
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N_x=128; % points on x axis

Delta_x=L_x/(N_x-1); % x axis spacing

h=5*Delta_x; % propagation step

N_z=100; % number of propagation steps

plot_index=zeros(N_x,N_z); % storage for plotting ref. index

plot_field=zeros(N_x,N_z); % storage for plotting field

x=linspace(-0.5*L_x,0.5*L_x,N_x); % coordinates along x-axis

x = x’;

E=exp(-((x - x_0)/w_0).^2); % initial Gaussian field

ref_index = wg_struct(x); % structure is uniform along z-axis

n_eff = 1.40; % assumed value of prop. constant

%

z = 0; z_plot = zeros(N_z); for r=1:N_z

z = z + h;

z_plot(r) = z + h;

plot_index(:,r)=wg_struct(x);

plot_field(:,r)=abs(E).^2;

E = step(Delta_x,k_0,h,ref_index,n_eff,E);

end;

%

for k = 1:N_z/10:N_z % choosing 2D plots every 10-th step

plot(x,plot_index(:,k),’LineWidth’,1.2)

plot(x,plot_field(:,k),’LineWidth’,1.5)

hold on

end pause close all

%

for k = 1:N_z/10:N_z % choosing 3D plots every 10-th step

y = z_plot(k)*ones(size(x)); % spread out along y-axis

plot3(x,y,plot_index(:,k),’LineWidth’,1.2)

plot3(x,y,plot_field(:,k),’LineWidth’,1.5)

hold on

end grid on xlabel(’x’)

ylabel(’z’) % along propagation direction

pause close all

Listing 13A.1.1 Program wg struct.m. Constructs a waveguiding structure.

function ref_index = wg_struct(x)

% Construction of the waveguide structure used by BPM

width = 2.0; % film width

n_c = 1.48; % refractive index of cover

n_s = 1.49; % refractive index of substrate

n_f = 1.52; % refractive index of film

ref_index = n_s*(x<0)+n_f*((x>=0)&(x<=width))+n_c*(x>width);
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Listing 13A.1.2 Function step.m is slightly modified from the function of the same name
used in Chapter 12.

% File name: step.m

function E_new = step(Delta_x,k_0,h,ref_index,n_eff,E_old)

% Function propagates BPM solution along one step

N_x = size(E_old,1); % determine size of the system

last_term = k_0^2*Delta_x^2*(ref_index.^2 - n_eff^2);

prefactor = 1/(2*k_0*n_eff*Delta_x^2);

main = ones(N_x,1) - 0.5*last_term; above = ones(N_x-1,1); below =

above;

P = prefactor*(diag(above,-1)-2*diag(main,0)+diag(below,1)); % matrix P

%

L_plus = eye(N_x) + 0.5i*h*P; % step forward

L_minus = eye(N_x)-0.5i*h*P; % step backward

%

%---- Implementation of boundary conditions

%

pref = 0.5i*h/(2*k_0*Delta_x^2);

k=1i/Delta_x*log(E_old(2)/E_old(1)); if real(k)<0

k=1i*imag(k);

end;

left = pref*exp(1i*k*Delta_x); % left correction for next step

L_plus(1) = L_plus(1)+left; L_minus(1) = L_minus(1)-left;

%

k=-1i/Delta_x*log(E_old(N_x)/E_old(N_x-1)); if real(k)<0

k=1i*imag(k);

end;

right = pref*exp(1i*k*Delta_x); % right correction for nest step

L_plus(N_x) = L_plus(N_x) + right; L_minus(N_x) = L_minus(N_x) -

right;

%

E_new = L_minus\L_plus*E_old; % determine new solution

Listing 13A.3 Function plots a Y-junction.

% File name: plot_y.m

% Plots y-junction

clear all

L_x=10.0; % computational window along x-axis

N_x=100; % number of steps along x-axis
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L_z = 20; N_z = 100;

h = L_z/N_z; % step size

plotting=zeros(N_x,N_z); % storage for plotting

z=0;

%

for i=1:N_z

z = z + h;

z_plot(i) = z + h;

x = linspace(-L_x,L_x,N_x);

plotting(:,i)=y_junction(z,x,N_x,N_z);

end

%

for k = 1:10:N_z % choosing 3D plots every 10-th step

y = z_plot(k)*ones(size(x)); % spread out along y-axis

plot3(x,y,plotting(:,k),’.-’,’LineWidth’,1.0)

hold on

end xlabel(’x’); grid on pause close all

Listing 13A.3.1 Function defines a Y-junction.

function index = y_junction(z,x,N_x,N_z)

% Construction of the Y-junction structure used by BPM

% z - coordinate along propagation direction

% x - perpendicular coordinate

% Structure is described in only 2D, so we do not need cover

%

w = 2.0; % film width

n_s = 1.0; % refractive index of substrate

n_f = 1.52; % refractive index of film

a = 10; b = 20;

% Construction of Y-junction

slope = 0.1;

%

%index = zeros(N_x,N_z);

upper_1 = w/2 + slope*z; upper_2 = slope*z; lower_1 = - slope*z;

lower_2 = -w/2- slope*z;

%

n_1 = n_s*(x<-w/2)+n_f*((x>=-w/2)&(x<=w/2))+n_s*(x>w/2);

n_2 = n_s*(x<=lower_2)+n_f*((x>=lower_2)&(x<=lower_1))+...

n_s*((x>=lower_1)&(x<=upper_2))+n_f*((x>=upper_2)&(x<=upper_1))+...

n_s*(x>upper_1);

index = ((0<z)&(z<=a))*n_1+((a<z)&(z<=b))*n_2; end
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14 Optical link

In the present chapter we will combine some of the methods developed earlier to create
the simple point-to-point optical simulator which represents the simplest photonic system.
It involves the transmitter, optical fibre and receiver. Some issues of how to quantify the
quality of transmission in such a system will also be reviewed. Performance evaluation and
tradeoff analysis are the central issues in the design of any communication system. Using
only analytical methods, it is practically impossible to evaluate realistic communication
systems. One is therefore left with computer-aided techniques.

In the last 10–15 years the design of photonic systems has moved from the back-of-the-
envelope calculations to the use of sophisticated commercial simulators, see for example,
products advertised by Optiwave, like OptiSystem [1], by RSoft Design Group the Optical
Communication Design Suite [2] and by VPI Photonics line of products [3], to just name
a few important players. They contain sophisticated physical models and allow for rapid
assessment of new component technologies in the system under design.

Around 1995 the design of optical communication systems (operating over medium
distances) would involve only a balance of power losses and pulse spreading. Later on,
the demand on billion-dollar systems required complex analysis during the design process.
This in turn created the need for sophisticated simulators.

Computer simulations can quickly provide answers to several important questions essen-
tial to every engineer designing optical communication system, like: what repeater spacing
is needed for a given bit rate, or what is the required power generated by a transmitter?

There exists extensive literature on the subject of modelling and simulation of fibre optic
communication systems. Early extensive work on the description and calculation of the
transmission properties of optical fibres for communications was published by Geckeler
[4]. There were several books published by van Etten and van der Plaats [5], Einarsson [6],
Liu [7], Lachs [8], Keiser [9] and Palais [10], to list a few.

Literature published in journals is also extensive. Some of the relevant journal publica-
tions are: [11], [12], [13], [14], [15], [16], [17], [18], [19], [20]; that includes statistical
design of long optical fibre systems is [21]. A general review intended for wide audience
was written by Lowery [22].

14.1 Optical communication system

A generic optical link consisting of a transmitter, optical fibre and receiver was shown in
the Introduction, Fig. 1.1. In that figure we showed a transmitter which employs a laser

331
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Fig. 14.1 More realistic optical link.
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Fig. 14.2 Principle of regeneration of optical signals. O-E means optical to electronic; E-O means electronic to optical.

diode to generate light, a channel which is formed by an optical fibre and a receiver whose
main element is a photodetector. Actual systems are more complicated.

In Fig. 14.1 we show a block diagram of a digital lightwave system (after Lima et al.
[23]). Several detailed elements of the receiver are displayed. Some of them were already
discussed in the earlier chapters. In the figure we also show notation for signals used to
characterize operation of the particular elements.

Sequence Ak denotes the data values which are independent and identically distributed,
Hf (ω) is the transfer function of the optical fibre and Bk is the output data sequence created
by the receiver.

When light is transmitted over long distances, optical pulses degenerate due to various
effects discussed previously. As a result, maximum transmission distance is limited. In
order to increase that distance, repeaters are installed. Typical structure of the repeater is
schematically shown in Fig. 14.2. An optical pulse is converted into electrical form, then
amplified and regenerated and then converted back to light.

Such a process is costly and has also other limitations. Intensive research is conducted
to have this process done entirely in the optical domain without conversion to an electronic
regime.

Regenerators are devices which regenerate signals by removing noise and distortion after
amplification. The process is normally possible only in digital systems. It serves 2R or 3R
purposes. In general, the following terminology has been established:

• 1R (Re-amplification only) – signal is amplified only.
• 2R (Re-amplification and Re-shaping). Re-shaping corrects a pulse’s shape.
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Table 14.1 Typical values of losses for various components.

Wavelength [nm] Losses [dB km−1]

850 1.81
1300 0.35
1310 0.34
1380 0.40
1550 0.19

Table 14.2 Typical values of losses for various components.

Type of element Losses [dB]

Connector 0.1–0.2
Splice losses 0.3

• 3R (Re-amplification, Re-shaping and Re-timing). Re-timing corrects the time drift in
an optical pulse.

As a result of the regeneration process, clean digital pulses are created. The distance
between repeaters varies, typically 50–70 km.

14.2 Design of optical link

There is a vast amount of literature on the design of optical communications links. Some of
the useful papers and books are: Carnes et al. [24], Pepeljugoski and Kuchta [25], Iannone
et al. [26], Binh [27], Mortazy et al. [28], Zheng et al. [29], Lowery et al. [30], Sabella et
al. [31], de Melo et al. [32].

The design of the optical link involves several interrelated variables which describe
operating characteristics of transmitter, fibre and receiver. The key practical requirements
are: transmission distance, data rate and bit error rate.

The simplest approach to the design of optical link is based on the evaluation of power
budget and rise time budget [33]. Power budget analysis is needed to ensure that the system
will work over the proposed distance with given components. The rise times of the source,
fibre and the detector will determine the bandwidth available for transmission.

In the tables we will summarize losses in typical optical components. Losses of
a single-mode fibre from Corning Glass Works at various wavelengths are summa-
rized in Table 14.1 [33]. Typical values of losses of other components are provided in
Table 14.2.
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14.2.1 Power budget analysis

In the analysis of power budget one determines the total allowed optical power loss between
the transmitter and the receiver. Typical components which contribute to losses are: fibre,
connector, splices, couplers and splitters. Typical values of losses in standard components
are summarized in Table 14.2.

In Fig. 14.3 we show a typical power budget which illustrates loss of power over existing
components as a function of distance from transmitter. In our example losses are created
within connectors, splices and within an optical fibre.

In calculating power budget one considers passive and active components of the link.
Passive loss is made up of fibre loss, connectors, splices, couplers and splitters, among
others. An example of a system power budget is illustrated in Table 14.3.

In this example, one has an excess power margin of 29 dB − 28 dB = 1 dB (total 7 dB
with the included system margin). As a general rule, the link loss margin should be greater
than 3 dB to allow for link degradation over time, ageing of transmitters, etc. If during
operation cables are accidentally cut, excess margin is needed to accommodate splices for
restoration.

14.2.2 Rise time budget

The rise time budget is needed to determine whether the link will operate at the required
bit rate. The bit rate is mostly limited by the dispersion. As explained earlier, dispersion
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Table 14.3 Illustration of power budget determination.

Transmitter
Output power −13 dBm

Receiver
Rx sensitivity −42 dBm

Margin 29 dBm

System loss
Fibre (3.5 × 5 km) 17.5 dB
Connector (1 dB × 2) 2 dB
Splicing (0.5 dB × 5) 2.5 dB
System margin 6 dB

Total 28 dB

is responsible for pulse broadening as it travels through the fibre. Those effects introduce
rise time due to the material dispersion (τmat ) and modal dispersion (τmod). Additionally,
the response of the transmitter and the receiver must also be included. Therefore, total link
rise time of the system is determined by the rms sum of all the rise times [33]:

τsys =
√√√√ N∑

i=1

τ 2
i =

√
τ 2

tx + τ 2
mat + τ 2

mod + τ 2
rx (14.1)

For two main data coding schemes, namely RZ and NRZ, a general rule is that the system
rise time should be determined as

τsys,RZ ≤ 0.35

B
, RZ (14.2)

τsys,NRZ ≤ 0.70

B
, NRZ (14.3)

where B is the bit rate. The rise times of the optical transmitter and receiver are known
from the manufacturer. The rise time for multimode step index fibre is determined as [33]
(subscript im stands for intermodal)

τim = n1�

c
L (14.4)

For material dispersion

τmat � 85L�λps (λ0 ∼ 850 nm)

0.5L�λps (λ0 ∼ 1300 nm)

� 20L�λps (λ0 ∼ 1500 nm)

(14.5)

where L is in km and �λ in nm.
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Table 14.4 Illustration of rise-time budget.

Component Rise time (ns)

System budget (NRZ) 1.75

Light source 1.0
Fibre 0.23
Photodetector

Transit time 0.5
Circuit 1.3
Total 1.4

System rise time 1.75 1.75

For single-mode fibres

τ f � D · L · �λ

� 2 · L · �λ (λ0 ∼ 1300 nm, λz ∼ 1300 nm)

� 16 · L · �λ (λ0 ∼ 1550 nm, λz ∼ 1300 nm)

� 2 · L · �λ (λ0 ∼ 1550 nm, λz ∼ 1550 nm)

(14.6)

with D � 2 ps/km·nm at 1300 nm and ∼ 16 ps/km·nm at 1550 nm with fibres with
λz ∼ 1300 nm. Also D � 2 ps/km·nm at 1550 nm for fibres with λz ∼ 1550 nm. Here �λ

is the source spectral width, L is fibre length, λ0 is the operating wavelength and λz is the
zero dispersion wavelength.

Typical rise time budget calculations are summarized in Table 14.4 [10].

14.3 Measures of link performance

There are various requirements which determine the performance of optical networks. One
of them is network security, which will not be discussed here.

The simplest optical network is formed by a point-to-point optical link. Performance of
such a link can be determined by the amount of information received at the acceptable level
of errors [34]. Loss of information can be caused by a number of factors, of which some
typical ones are (a) decrease in the amplitude of the received signal and (b) loss of timing.

Signal quality is determined by analysing the so-called eye diagram and also signal-to-
noise ratio (SNR). The main parameter determining the quality of a digital link is the bit
error rate (BER). The smaller the bit error rate, the better the link transmission quality.
Typical error rates for optical fibre telecommunication systems range from 10−9 to 10−12

[35]. They depend on the SNR at the receiver. BER was discussed in Chapter 10 dealing
with receivers. Here, we only discuss the eye diagram.
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Fig. 14.5 Construction of an eye diagram for 3-bits.

14.3.1 Eye diagram

The eye diagram technique is a simple and convenient method of diagnosing problems
with data systems. The eye diagram is generated in the time domain using an oscilloscope
connected to the demodulated data, see Fig. 14.4. Pseudorandom data are generated and
applied to the test system. After being transmitted through the test system, the data are
applied to the vertical input of an oscilloscope. The oscilloscope is triggered at every
symbol period (here using data from a separate line) or fixed multiple of symbol periods.
As a result, the signal is retraced and superimposed on the same plot. Construction of an
eye diagram for a 3-bit long sequence of data is shown in Fig. 14.5.

The result is an overlap of consecutive received symbols which form an eye pattern on the
oscilloscope. The eye diagram provides a lot of information about the system’s performance
or about performance of its elements.

A created sequence of Gaussian pulses with random component for a predefined logical
combination is shown in Fig. 14.6. For this sequence, the eye diagram is shown in Fig. 14.7.
MATLAB code used in the generation of those results is shown in Appendix, Listing 14A.1.
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Fig. 14.6 Sequence of six Gaussian pulses with a random term. The logical data sequence is: 010101.
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Fig. 14.7 Generated eye diagram for the sequence of Gaussian pulses shown in Fig. 14.6. Eye opening is located in the middle of
all pulses.

14.4 Optical fibre as a linear system

In this section we consider the optical fibre modelled as a linear system and illustrate
propagation of signals in such a system.

When an optical pulse propagates through optical fibre, it exhibits attenuation, delay
and distortion. Delay can be handled through appropriate synchronization. Attenuation
of a particular fibre determines the ultimate distance between transmitter and receiver.
Distortion causes pulse broadening known as dispersion; it can produce situations when
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Fig. 14.8 Illustration of pulse transmission in an optical fibre represented as a linear system described by the impulse response
function h(t). (a) Schematic of optical fibre and its representation as a linear system, (b) pulse broadening during
propagation.

one cannot distinguish between pulses representing different logical information due to
their overlap.

Attenuation and dispersion determine practical limits on the information transmission
performance of optical communication systems. Additional distortions, including noise,
are produced in the receiver.

Propagation of optical signal of frequency ω through fibre of length L having attenuation
coefficient α is schematically illustrated in Fig. 14.8. In a first approximation, the optical
fibre is considered as a linear system with an impulse response h(t). Its Fourier transform
H (ω) known as a transfer function is

H (ω) =
∫ +∞

−∞
h(t) e−iωt dt (14.7)

The fibre is not an ideal system. Therefore during the passage, the properties of the trans-
mitted pulse described by its time function s(t) or its spectral function S(ω) are distorted,
see Fig. 14.8. (Spectral function S(ω) and the time function s(t) are related by the FT
relation.)

In the frequency domain, the pulse propagation is described by the transfer function
H (ω) as

H (ω) = Sout (ω)

Sin(ω)
= e−α(ω)−iφ(ω) (14.8)

where α(ω) is the system’s attenuation and φ(ω) its phase. Sout (ω) and Sin(ω) are FT of
output and input time functions of a propagating pulse.

Some of the examples of spectral functions H (ω) which are used to model pulse spectra
and filter functions will now be summarized. These functions are easy to program. All are
dimensionless, normalized low-pass functions approaching unity at ν = 0 and zero for
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ν −→ ∞ (we use the relation ω = 2πν, where ω is angular frequency and ν is frequency).
They are real functions and symmetric with respect to ν = 0. The functions are [36]:

a) Gaussian pulse

HG(ν) = exp
(−πν2τ 2

)
(14.9)

b) Rectangular pulse of duration τ

HRP(ν) = sin (πντ )

πντ
(14.10)

c) Raised cosine spectrum

HRC(ν) = cos2
(πντ

2

)
= 1

2
(1 + cos πντ ) (14.11)

d) Spectrum of a trapezoidal pulse of duration τ and rise time tr

HT P(ν) = sin (πντ )

πντ
· 1

2
(1 + cos πνtr) (14.12)

e) Spectrum with Nyquist slope

HN (ν) = 1

2

[
1 − sgn (1 − 2ντ ) ((1 − |2ντ |)N − 1)

]
(14.13)

where N is the parameter which controls roll-off of this function.
f) Receiver filter that equalizes

HE (ν) = 1 + cos πντ

2 exp
(−πν2τ 2Q

) (14.14)

We will now summarize a description of the three main elements of an optical link:
transmitter, fibre and receiver.

14.5 Model of optical link based on filter functions

In a typical practical situation the optical system transmits pulses. As they propagate from
the transmitter to the receiver, they broaden and also their slopes get distorted. A presence
of noise in all of a system’s components also adds to the modification of propagating pulse.

We start with a simple analysis where the whole system is modelled by a single function.
Here, we only consider a rectangular pulse.

14.5.1 Test analysis for a rectangular pulse

In this section we present the analysis of propagation of a rectangular pulse. Although not
a very realistic situation, it serves as a test.

In Fig. 14.9 on the left we show the input rectangular pulse. It propagates through the
system modelled as a rectangular filter (shown on right). The output after propagation is
shown in Fig. 14.10. MATLAB code in shown in the Appendix, Listing 14A.2.
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Fig. 14.9 Rectangular pulse (left) and rectangular filter.
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Fig. 14.10 Rectangular pulse after regeneration.
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Fig. 14.11 Main elements of the transmission system.

Next, we build a more realistic model of the optical link, which is done in the following
section. We summarize simple models for all the main components that constitute optical
fibre system and then develop a program which allows for the analysis of pulse propagation
in such a system.

Our approach is based on the work by Geckeler [36]. Main parts of transmission system
are shown in Fig. 14.11. Here, E0 is the energy of the optical pulse produced by the
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Table 14.5 Parameters of typical generated pulses.

Parameter Symbol Value

Bit rate R0 50 Mbits/s−1

Power P0 0.5 mW
Normalized pulse width T0 0.7

transmitter, τ0 is the width of that pulse and H0(ω) is the spectral function of the produced
optical pulse. Detailed discussion of all the three elements now follows.

14.5.2 Transmitter

It is usually a semiconductor laser which can be directly modulated by changing bias
current or by employing an external modulator. The main characteristics of light source are:
wavelength, output power, modulation speed, spectral width, noise. For a directly modulated
semiconductor laser, the performance is determined by frequency chirping (discussed in
Chapter 7).

Here we assume a particular optical pulse as produced by a transmitter. Optical pulses
were discussed in Chapter 6. Of particular importance are rectangular and Gaussian pulses.

Pulse produced by the transmitter in the time domain is described by the function p0(t).
Its Fourier spectrum is

S0(ω) =
∫ +∞

−∞
p0(t) e− jωt dt

Fourier spectrum is related to spectral function H0(ω) as

S0(ω) = p0,max · τ0 · H0(ω)

Parameters of the generated pulse are provided in Table 14.5. They refer to a system with
a bit rate R0 = 50 Mbits/s−1 and an LED transmitter operating at 1.3 µm wavelength with
a maximum launched power of 0.5 mW.

14.5.3 Fibre

The frequency spectrum of propagating pulse after it leaves fibre is obtained by multiplying
pulse spectral function and fibre spectrum.

Pulse propagation in the fibre is described by the product of two functions: D1 which
describes losses and its transfer function H1(ω). Losses are represented by

D1 = E1

E0
= 10− αL1

10dB (14.15)

The function H1(ω) is a normalized filter function approximately expressed as a Gaussian
low-pass filter:

H1(ω) = e− 1
4π

πω2τ 2
1 (14.16)
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Table 14.6 Parameters of typical fibre.

Parameter Symbol Value

Losses α 3 dB
Length L1 15 km
Mode coupling length Lc 10 km
Bandwidth-length BL 500 MHz· km
Fibre parameter τ1 Eq. (14.17)

The parameter τ1 can be determined from the measured bandwidth B1 of a fibre. Fibre
parameters are listed in Table 14.6.

The fibre parameter τ1 is related to the bandwidth as

τ1 = 1

2B1
(14.17)

Bandwidth is modelled after Geckeler [36] as

B1 = BL

(
1

L1
+ 1

3Lc

)
(14.18)

where Lc is the mode coupling length and BL is the bandwidth-length product. The ap-
proximation (14.18) is valid for 0 < L1 < 3Lc. The parameters BL and Lc are empirical
parameters. Their values are summarized in Table 14.6.

14.5.4 Receiver

An optical receiver is described by the low-pass filter transfer function

H2(ω) = 1

2

[
1 + cos

(
1

2
ωτ2

)]
at |ω| ≤ 2π

τ2
(14.19)

with the parameter τ2.
The signal spectrum at the receiver output is determined as [4]

S2(ω) = iT · T · M · R · G · H0(ω) · H1(ω) · H2(ω) (14.20)

where M is the multiplication factor of an avalanche photodiode (if used), G is its amplifi-
cation factor and

iT = P0,max · τ0

T
· D1

ηe

hν
(14.21)

is the mean photocurrent of a pulse in a time slot of duration T .
The parameter of the receiver is provided in Table 14.7.

14.5.5 Implementation of link model

The above approach has been implemented following work by Geckeler [36] and [4]. MAT-
LAB code is shown in Appendix, Listing 14A.3. Typical results are shown in Fig. 14.12.
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Table 14.7 Parameter of a typical receiver.

Parameter Symbol Value

Receiver parameter τ2 0.7
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Fig. 14.12 Spectrum of rectangular pulse before (dotted line) and after propagation (solid line).

The signal spectrum generated by the transmitter is sin(πντ0)/(πντ0), which represents
rectangular pulse of duration τ0. Input pulse is shown as a dotted line, the output signal
after the receiver as a solid line. More details were provided by Geckeler in Refs. [36] and
[4].

14.6 Problems

1. Analyse spectral functions summarized in Section 14.4. Plot the time dependence of
each function. Evaluate Fourier transform and plot frequency spectra.

2. Analyse Gaussian pulse using the filter approach.
3. Analyse transmission of a Gaussian pulse by a single-mode fibre system. Determine

the output pulse width as a function of the input pulse width.

14.7 Projects

1. Write MATLAB code to construct an eye diagram for the program link.m.
2. Add noise component to program link.m. Analyse the effect of noise on a system’s

performance.
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Table 14.8 List of MATLAB functions for Chapter 14.

Listing Function name Description

14A.1 bits gen eye.m Generates pattern of Gaussian pulses and eye diagram
14A.2 rectangular.m Rectangular pulse before and after filtering
14A.3 link.m Simulation of optical link (rectangular pulse)

Appendix 14A: MATLAB listings

In Table 14.8 we provide a list of MATLAB files created for Chapter 14 and a short
description of each function.

Listing 14A.1 Function bits gen eye.m Function generates a 6-bits long pattern of Gaus-
sian pulses with random terms and eye diagram.

% File name: bits_gen_eye.m

% Purpose:

% Generates 6-bits long pattern of Gaussian pulses with random terms

% Based on generated sequence, eye diagram is created

%

clear all

bits = [0 1 0 1 0 1]; % def. of bit’s sequence

T_period = 50d-9; % pulse period [s]

t_zero = 20d-9; % center of incident pulse [s]

width = 6d-9; % width of the incident pulse [s]

% Generation of current pattern corresponding to bit pattern

I_p = 0;

N_div = 50; % number of divisions within each bit interval

t = linspace(0, T_period, N_div); % the same time interval is

% generated for each bit

g = exp(-0.5*((t_zero - t)/width).^2); % def. of a single Gaussian pulse

%

if bits(1)==0, I_p_1 = rand(1)*(1- g); % generates first bit

elseif bits(1)==1, I_p_1 = rand(1)*g;

end

temp = I_p_1;

number_of_bits = length(bits);

for k = 2:number_of_bits % generation of remaining bits

if bits(k)==1

A = rand(1)*g;

elseif bits(k)==0, A = rand(1)*(1- g);

end

A = [temp,A];
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temp = A;

end

temp_t = t;

for k = 2:number_of_bits

t = linspace(0, T_period, N_div);

t = [temp_t,(k-1)*T_period+t];

temp_t = t;

end

%

h = plot(t,A,’LineWidth’,1.5);

xlabel(’time [s]’,’FontSize’,14); % size of x label

set(gca,’FontSize’,14); % size of tick marks on both axes

pause

close all

%

%=============== Eye diagram ============================

% put all bit plots on the first one

t_eye = linspace(0, T_period, N_div);

hold on

for m = 1:number_of_bits

A_temp = A((1+(m-1)*N_div):(m*N_div));

e = plot(t_eye,A_temp);

set(e,’LineWidth’,1.5); % thickness of plotting lines

set(gca,’FontSize’,14); % size of tick marks on both axes

end

pause

close all

Listing 14A.2 Function rectangular.m. Function which shows a rectangular pulse before
and after filtering.

% File name: rectangular.m

% Analysis of rectangular pulse after filtering

%

clear all

hwidth = 10; % half-width of a pulse

time_step = 0.001; % time step

range = 40;

t = -range:time_step:range; % time range

%------ Creation of rectangular pulse -------

y = (5/2)*(sign(t+hwidth)-sign(t-hwidth));

plot(t,y,’LineWidth’,1.5);

xlabel(’time (a.u’,’FontSize’,14);

ylabel(’Pulse amplitude’,’FontSize’,14);

set(gca,’FontSize’,14); % size of tick marks on both axes

axis([-range range 0 6]);
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pause

% %----- Fourier transform of a rectangular pulse -------

y_shift = fftshift(fft(y));

N=length(y_shift);

n=-(N-1)/2:(N-1)/2;

%------ Definitions of different filters ------------------

filter = (1/2)*(sign(n+100)-sign(n-100));

%filter = exp(-pi*n*0.0001);

%filter = 0.1*cos(pi*n*0.005).^2;

%filter = (1 + cos(0.05*n))/2;

plot(n,filter,’LineWidth’,1.5);

axis([-3*range 3*range 0 1.5]);

xlabel(’Frequency (a.u.)’,’FontSize’,14);

ylabel(’Amplitude’,’FontSize’,14);

set(gca,’FontSize’,14); % size of tick marks on both axes

pause

%-------- Regeneration of signal using filtered output ----------

y_reg=filter.*y_shift; % Filter original frequency spectrum

y_reg_inv=ifft(y_reg); % Inverse Fourier transform

plot (t,abs(y_reg_inv),’LineWidth’,1.3);

axis([-range range 0 6]);

xlabel(’Time(a.u.)’,’FontSize’,14);

ylabel(’amplitude’,’FontSize’,14);

set(gca,’FontSize’,14); % size of tick marks on both axes

pause

close all

Listing 14A.3 Function link.m. Function models propagation of a rectangular pulse in
an optical link.

% File name: link.m

% Optical link simulations

% Follow code on p.133 of S. Geckeler (1983) paper

% No model of a transmitter

% No noise

%

clear all

%----------- Pulse produced by transmitter ----------------------

R_0 = 50d5; % Bit rate of binary digital signal, 50 Mbit/s

P_0 = 5d-4; % Max power of optical pulse, 0.5 mW

T_0 = 0.7; % Normalized pulse duration = tau_0/T

%------------- Fibre parameters -------------------------

L_1 = 15; % Fibre length, 15 km

A_L = 3.0; % Attenuation coefficient, 3 dB/km

D_1 = 10^(-A_L*L_1/10); % Power ratio

P_1 = P_0*T_0*D_1/2; % Mean optical power at the end of fibre
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B_L = 5d8; % Bandwidth-length product, 500 MHz km

L_C = 10; % Coupling length of a multimode fibre, 10 km

B_1 = B_L/L_1 + B_L/(3*L_C); % Fibre bandwidth

T_1 = R_0/(2*B_1);

%-------------- Receiver parameters -------------------------

T_2 = 0.7;

%============== System evaluation =======================================

% Output signal spectrum

D_F = pi/(20*T_2);

N = 32;

f = zeros(1,N);

f_A = zeros(1,N);

f_B = zeros(1,N);

f_C = zeros(1,N);

H_F = zeros(1,N);

H_F(1) = 1.0;

for j = 1:N

f(j) = j*D_F;

f_A(j) = sin(f(j)*T_0)/(f(j)*T_0); % transmitter

f_B(j) = exp(-f(j)^2*T_1*T_1/pi); % fibre

f_C(j) = (1/2)*(1 + cos(f(j)*T_2)); % receiver

H_F(j) = f_A(j)*f_B(j)*f_C(j);

end

%

plot(f,f_A,’.’,f,H_F,’LineWidth’,1.5) % Plot signal after propagation

xlabel(’Frequency (a.u.)’,’FontSize’,14);

set(gca,’FontSize’,14); % size of tick marks on both axes

pause

s = ifft(H_F);

s = s/max(s);

ff = linspace(0,2/3,N);

%

plot(fftshift(abs(s)),’LineWidth’,1.5);

xlabel(’time’,’FontSize’,14);

ylabel(’time output function’,’FontSize’,14);

set(gca,’FontSize’,14); % size of tick marks on both axes

grid

pause

close all
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15 Optical solitons

In this chapter we concentrate on optical solitons and their propagation in optical fibre.
They are pulses of a special shape and owe their existence due to the presence of dispersion
and nonlinearity in optical fibre. They are able to propagate ultra-long distances while
maintaining their shape.

Here, we provide some basic knowledge for understanding the underlying physical
principles of soliton creation and propagation. We generalize the theory of linear pulses
developed in Chapter 5 and include the nonlinear part of polarization. We will then derive
a nonlinear equation which describes propagation of solitons in optical fibre.

Soliton propagation in an optical fibre was first demonstrated at Bell Laboratories by
L. F. Mollenauer, R. S. Stolen and J. P. Gordon. We refer to the book by Mollenauer and
Gordon [1] for the description of basic principles and a brief history of solitons.

Some other relevant books on optical solitons and also on applications in optical com-
munications are [2], [3], [4], [5], [6].

15.1 Nonlinear optical susceptibility

Solitons exist due to nonlinearity and dispersion. Dispersion was discussed earlier in the
book. Here, we will concentrate on nonlinear effects. Optical responses including nonlinear
effects are described as [7]

P(t) = ε0
{
χ(1)E(t) + χ(2)E2(t) + χ(3)E3(t) + · · · } (15.1)

≡ P(1)(t) + P(2)(t) + P(3)(t) + · · ·

where we have expressed polarization P(t) as a power series in the field strength E(t). The
quantities χ(1), χ (2), χ (3) are known as susceptibilities; χ(1) is a linear susceptibility and
χ(2), χ (3) are known as the second order- and third-order nonlinear susceptibilities.

For a typical solid-state system χ(1) is of the order of unity whereas χ(2) is of the order of
1/Eat and χ(3) of the order of 1/E2

at , where Eat = e/(4πε0a2
0) is the characteristic atomic

electric field strength and a0 = 4πε0�
2/me2 is the Bohr radius of the hydrogen atom.

Explicitly [7]

χ(2) � 1.94 × 10−12m/V

χ(3) � 3.78 × 10−24m2/V 2

351
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Formal expression for the third-order susceptibility is [7]

Pi(ω0 + ωn + ωm) = ε0D
∑

jkl

χ
(3)

i jkl (ω0 + ωn + ωm, ω0, ωn, ωm)

× Ej(ω0) Ek(ωn) El (ωm)

where i, j, k, l refer to the Cartesian components of the fields and the degeneracy factor D
represents the number of distinct permutations of the frequencies ω0, ωn, ωm.

χ( j) ( j = 1, 2, . . .) is the j-th order susceptibility. The linear susceptibility χ(1) con-
tributes to the linear refractive index n0 (real and imaginary parts; the imaginary part
being responsible for attenuation). The second-order susceptibility χ(2) is responsible for
the second harmonic generation. For SiO2 the second-order nonlinear effect is negligible
since SiO2 has the inversion symmetry. Therefore optical fibres normally do not show the
second-order nonlinear effects.

The third-order susceptibility χ(3) is responsible for the lowest order nonlinear effects
in optical fibres. Generally, it manifests itself as the change in the refractive index with
optical power or as a scattering phenomenon. It is linked with the optical Kerr effect, four-
wave mixing, third-harmonic generation, stimulated Raman scattering, etc. An excellent
discussion of third-order optical susceptibilities has been reported by Hellwarth [8].

Assuming linear polarization of propagating light and neglecting tensorial character of
χ

(3)

i jkl , one finds the following relation for the nonlinear polarization:

PNL(ω) = 3ε0χ
(3) (ω = ω + ω − ω) |E(ω)|2E(ω)

Total polarization, which consists of linear and nonlinear parts, is written as

P(ω) = ε0χ
(1)E(ω) + 3ε0χ

(3)|E(ω)|2E(ω)

= ε0χeff E(ω)

The effective susceptibility is field dependent as

χeff = χ(1) + 3χ(3)|E(ω)|2

and it is linked to refractive index as

n = 1 + χ(3) ≡ n0 + n2I (15.2)

Here I denotes the time-averaged intensity of the optical field. We start with the discussion
of the main features of nonlinear effects.

15.2 Main nonlinear effects

15.2.1 Kerr effect

It was discovered by J. Kerr in 1875. He found that a transparent liquid becomes dou-
bly refracting (birefringent) when placed in a strong electric field. Generally, Kerr effect
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E(z,t)

(a) (b)

t

A(z,t)

E(z,ω)
~

Δω

ω0

ω

Fig. 15.1 Illustration of the propagating modulated pulse (a) and its spectrum (b).

describes situations where refractive index depends on electric field as

n
(
ω, |E|2) = n0 (ω) + n2 (ω) E|2

Here, n2 is known as Kerr coefficient and it is related to susceptibility as

n2 (ω) = 3

4π
χ(3)

xxx

for a linearly polarized wave in the x direction. For silica its value is approximately 1.3 ×
10−22 m2/V2. Kerr effect originates from the non-harmonic motion of electrons bound in
molecules. Consequently, it is fast effect, the response time of the order of 10−15s.

15.2.2 Stimulated Raman scattering

Scattering phenomena are responsible for Raman and Brillouin effects. During those
scatterings, the energy of the optical field is transferred to local phonons: in Raman
scattering optical phonons are generated whereas in the Brillouin scattering the acoustic
phonons.

15.3 Derivation of the nonlinear Schrödinger equation

Solitons in optical fibres are described by the so-called nonlinear Schrödinger (NSE)
equation, which will be now derived. In the derivation we use the concept of the Fourier
spectrum of the propagating pulse, see Fig. 15.1.

A medium where solitons propagate exhibits Kerr nonlinearity. In such a medium,
refractive index depends on intensity of electric field I(t) given by Eq. (15.2), again
reproduced here:

n(t) = n0 + n2 · I(t) (15.3)
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where [7]

I(t) = 2n0ε0c|A(z, t)|2 (15.4)

Here A(z, t) is the slowly varying envelope connected to the optical pulse described by the
optical pulse E(z, t) as, see Fig. 15.1:

E(z, t) = A(z, t) ei(ω0t−β0z) (15.5)

Fourier transform of the optical field is [3], [9]

E(z, t) =
∫ +∞

−∞
dω Ẽ(z, ω) ei(ωt−βz) (15.6)

where Ẽ(z, ω) is the Fourier spectrum of the pulse, β propagation constant and ω0 the
frequency at which the pulse spectrum is centered (also known as carrier frequency), see
Fig. 15.1.

For quasi-monochromatic pulses with �ω ≡ ω − ω0 � ω0, it is useful to expand
propagation constant β(ω) in a Taylor series:

β(ω) = β0 + β1 · (ω − ω0) + 1

2
β2 · (ω − ω0)

2 + �βNL (15.7)

where we have neglected higher order derivatives. Here �βNL = n2k0I is the nonlinear
contribution to the propagation constant.

Substitute expansion (15.7) into Eq. (15.6):

E(z, t) = e−iβ0z

∫ +∞

−∞
d(�ω) Ẽ(z, ω) exp

(
iωt − iβ1z�ω − 1

2
iβ2z�ω2 − i · z · �βNL

)
= ei(ω0t−β0z)

∫ +∞

−∞
d(�ω) Ẽ(z, ω0 + �ω)

× exp

(
it�ω − iβ1z�ω − 1

2
iβ2z�ω2 − i · z · �βNL

)
≡ ei(ω0t−β0z) A(z, t)

where we have introduced

A(z, t) =
∫ +∞

−∞
d(�ω) Ẽ(z, ω0 + �ω)

× exp

(
it�ω − iβ1z�ω − 1

2
iβ2z�ω2 − i · z · �βNL

)
≡
∫ +∞

−∞
d(�ω) Ẽ(z, ω0 + �ω) eig(z,t) (15.8)

Our next step is to obtain a differential equation describing evolution of the amplitude
A(z, t) from Eq. (15.8) which is in the integral form. To do this, one needs to take partial
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derivatives of Eq. (15.8). One obtains

∂A(z, t)

∂t
=
∫ +∞

−∞
d(�ω) Ẽ(z, ω0 + �ω) i�ω eig(z,t)

∂2A(z, t)

∂t2
=
∫ +∞

−∞
d(�ω) Ẽ(z, ω0 + �ω) (i�ω)2 eig(z,t)

∂A(z, t)

∂z
=
∫ +∞

−∞
d(�ω) Ẽ(z, ω0 + �ω)

(
−iβ1�ω − 1

2
iβ2�ω2 − i · �βNL

)
eig(z,t)

When evaluating time derivatives, we have assumed in the above that I(t) does not depend
on time. Addition of the above combination of derivatives produces

∂A(z, t)

∂z
+ β1

∂A(z, t)

∂t
− i

1

2
β2

∂2A(z, t)

∂t2

=
∫ +∞

−∞
d(�ω) Ẽ(z, ω0 + �ω)

×
[(

−iβ1�ω − 1

2
iβ2�ω2 − i · �βNL

)
+ β1i�ω − i

1

2
β2(i�ω)2

]
× eig(z,t)

(15.9)

The term in the bracket is, [· · · ] = −i · �βNL = −in2k0I . Eq. (15.9) thus gives

∂A(z, t)

∂z
+ β1

∂A(z, t)

∂t
− i

1

2
β2

∂2A(z, t)

∂t2

=
∫ +∞

−∞
d(�ω) Ẽ(z, ω0 + �ω) (−in2k0I ) eig(z,t)

= −in2k0I

∫ +∞

−∞
d(�ω)Ẽ(z, ω)eig(z,t)

≡ −in2k0I A(z, t)

when using (15.8). The final equation describing solitons is therefore [3], [10]

∂A(z, t)

∂z
+ β1

∂A(z, t)

∂t
+ i

1

2
β2

∂2A(z, t)

∂t2
= iγ |A(z, t)|2 A(z, t) − α

2
A(z, t) (15.10)

where we have defined nonlinear coefficient γ (after [3]) as

γ = 2πn2

λAeff
(15.11)

Here Aeff is the effective core area.
Our interests here lie in the pulse evolution during propagation and not in the time of pulse

arrival. We can therefore simplify the above equation by transforming it to a coordinate
system which moves with group vg. In this moving frame, new time T and new coordinate
Z are

Z = z (15.12)

T = t − β1z
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To obtain the transformed equation, we must evaluate derivatives with respect to new
variables as follows:

∂A

∂t
= ∂A

∂T

∂T

∂t
+ ∂A

∂|Z
∂Z

∂t
= ∂A

∂T

since ∂T
∂t = 1 and ∂Z

∂t = 0. From the above one finds

∂2A

∂t2
= ∂2A

∂T 2

Using the above results, one has

∂A

∂z
= ∂A

∂T

∂T

∂z
+ ∂A

∂|Z
∂Z

∂z
= −β1

∂A

∂T
+ ∂A

∂|Z
The last result is used in Eq. (15.10) to replace ∂A

∂t . The transformed equation is

∂A

∂z
+ i

1

2
β2

∂2A

∂T 2
− iγ |A|2A + 1

2
αA = 0 (15.13)

where in the final step we replaced Z by z. It is known as a nonlinear Schrödinger equation
(NSE).

To further analyse NSE, we will introduce two characteristic lengths describing dispersion
(LD) and nonlinearity (LNL). Those are defined as

LD = T 2
0

|β2| = T 2
0 2πc

|D|λ2
(15.14)

and

LNL = 1

γ P0
(15.15)

where P0 is the peak power of the slowly varying envelope A(z, T ) and T0 is a temporal
characteristic value of the initial pulse, which is often defined as full width half maximum
(the pulse 3 dB width). Those two lengths characterize how far a pulse must propagate to
show the respective effect. Physically, LD is the propagation length at which a Gaussian
pulse broadens by a factor of

√
(2) due to group velocity dispersion (GVD).

GVD dominates pulse propagation in fibres whose length L is L � LNL and L ≥ LD.
In such situation. the nonlinearity in NLSE can be ignored and the equation can be solved
analytically. Nonlinear effects dominate in fibre where L � LD and L ≥ LNL. In this limit
the dispersion term can be ignored.

Typical values of parameters used in the simulations are summarized in Table 15.1.
For numerical analysis normalize variables

U = 1√
P0

A and τ = T

T0
(15.16)

The width parameter T0 is related to the full-width at half-maximum (FWHM) intensity of
the input pulse. Specifically

Ts = 2T0ln(1 +
√

(2)) ≈ 1.763T0 (15.17)
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Table 15.1 Typical parameters used in simulation of solitons.

Parameter Symbol Value Unit

wavelength λ 1.55 µm
nonlinear coeff. γ 1.3 1/ kmW
GVD β2 15 × 10−24 s2/km
width parameter T0 100 ps
peak power P0 0.15 mW
losses α 0.01 dB/km−1

chirp parameter c 1.2 dimensionless
soliton period z0 1047.2 km

After simple algebra, Eq. (15.13) takes the form

∂U

∂z
− i

sign(β2)

2LD

∂2U

∂τ 2
+ i

1

LNL
|U |2U + 1

2
αU = 0 (15.18)

Another normalized form of the Schrödinger equation exists in the literature. We obtain it
in the lossless case, i.e. with α = 0. To derive it, normalize the z coordinate as follows:

ξ = z

LD
(15.19)

After a few algebraic steps, one obtains

∂U

∂ξ
− i

sign(β2)

2

∂2U

∂τ 2
+ iN2|U |2U = 0 (15.20)

where N is known as soliton order and is defined as

N2 = LD

LNL
= γ P0T 2

0

|β2| (15.21)

The last popular form of the NLSE is found by introducing u as

u = NU =
(

γ P0T 2
0

|β2|
)1/2

A (15.22)

Eq. (15.20) then takes the form

∂u

∂ξ
− i

sign(β2)

2

∂2u

∂τ 2
− i|u|2u = 0 (15.23)

15.4 Split-step Fourier method

In this section we will discuss the numerical solution of the nonlinear Schrödinger equation
(NSE) which describes propagation of optical solitons using the so-called split-step Fourier
method (SSFM).
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Fig. 15.2 Illustration of split-step Fourier method. (a) Division of optical fibre intoN regions (hereN = 11) of equal lengths.
(b) Illustration of operation of linear and nonlinear operations at arbitrary segments.

The SSFM is a numerical technique used to solve nonlinear partial differential equations
like the NSE. The method relies on computing the solution in small steps and on taking into
account the linear and nonlinear steps separately. The linear step (dispersion) can be made
in either frequency or time domain, while the nonlinear step is made in the time domain.
The method is widely used for studying nonlinear pulse propagation in optical fibres. For
more detail see [11]

A nonlinear Schrödinger equation, Eq. (15.13) contains dispersive and nonlinear terms.
To introduce SSFTM, write the NLSE equation in the following form:

∂A(z, T )

∂z
= (̂

L + N̂
)

A(z, T ) (15.24)

where

L̂A = −α

2
− i

2
β2

∂2A

∂T 2
(15.25)

contains losses and dispersion in the linear medium and nonlinear term

N̂A = iγ |A|2A (15.26)

accounts for the nonlinear effects in the medium.
The basis of the SSFM is to split a propagation from z to z + h (h is a small step) into

two operations (assuming that they act independently): during first step nonlinear effects
are included and in the second step one accounts for linear effects, see Fig. 15.2.
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Formal solution of Eq. (15.24) over a small step h is thus

A(z + h, t) = eh(L̂+N̂)A(z, t) (15.27)

In the first-order approximation, the above formula can be written as

A(z + h, t) = ehL̂ ehN̂ A(z, t) + O(h2) (15.28)

The basis of this approximation is established by Baker-Hausdorf lemma [12], which is

eÂ eB̂ = eÂ+B̂ e
1
2 [Â,B̂] (15.29)

given that operators Â and B̂ commute with [Â, B̂].
The basis of the method is suggested by Eq. (15.28). It tells us that A(z + h, t) can be

determined by applying the two operators independently. The propagation from z to z + h
is split into two operations: first the nonlinear step and then the linear step assuming that
they act independently. If h is sufficiently small, Eq. (15.28) gives good results.

The value of step h can be determined by assuming that the maximum phase shift
φmax = γ |Ap|2h, where Ap is the peak value of A(z, t) due to the nonlinear operator is
smaller than the predefined value. Iannone et al. [2] reported that φmax ≤ 0.05 rad.

For a practical implementation of the SSFM, we need to establish practical expressions
for dispersive and nonlinear terms. In the following we will therefore analyse the effect of
both terms independently neglecting losses.

Let us analyse the effect of the dispersive term alone. For that we temporally switch off
the nonlinear term. After Fourier transform, the ‘linear equation’ becomes

∂Ã(z, ω)

∂z
= − i

2
ω2β2Ã(z, ω)

which has the solution

Ã(z, ω) = Ã(0, ω)e−iω2β2z/2

The action of the nonlinear term alone is described by the equation

∂A(z, t)

∂z
= iγ |A(z, t)|2A(z, t)

The ‘natural’ solution is in the time domain. It produces

A(z, t) = A(0, t)eiγ |A|2A

15.4.1 Split-step Fourier transformmethod

The propagation medium (say, cylindrical optical fibre) is divided into small segments, each
of length h, see Fig. 15.2. Further, each individual segment of length h is subdivided into
two of equal lengths. The linear operator operates over each subsegment in the frequency
domain, whereas the nonlinear operator operates only locally at the central point.
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Operation of the linear operator L̂, Eq. (15.25) over first subsegment is done as follows:

ehL̂/2A(z, t) = F−1
{

ehL̂/2 F {A(z, t)}
}

(15.30)

i.e. one must Fourier transform original amplitude from time domain into frequency domain,
apply linear operator L̂ and then apply inverse Fourier transform to get the amplitude back
to time domain.

The operation of nonlinear operator defined by Eq. (15.26) is as follows:

Ai+1/2,L(z, t) = Ai+1/2,R(z, t) eh N̂ (15.31)

where Ai+1/2,L is the value of field amplitude at an infinitesimal point left from i+ 1
2 . Finally,

the operation of linear operator over second subsegment of length h
2 is done exactly the

same way as over the first segment.
To summarize, the method over each segment of length h consists of three steps:

step 1

⎧⎪⎨⎪⎩
Ãi(z, ω) = F {Ai(z, t)}
Ãi−(z, ω) = Ãi(z, ω) · exp

(−i 1
2ω2β2h

)
Ai−(z, t) = F−1

{
Ãi−(z, ω)

}
step 2 Ai+(z, t) = Ai−(z, t) · exp

(
iγ |A|2Ah

)
step 3

⎧⎪⎨⎪⎩
Ãi+1(z, ω) = F {Ai+1(z, t)}
Ãi+1(z, ω) = Ãi+1(z, ω) · exp

(−i 1
2ω2β2h

)
Ai+1(z, t) = F−1

{
Ãi+(z, ω)

}
where F indicates Fourier transform (FT) and F−1 inverse FT.

15.4.2 Symmetrized split-step Fourier transformmethod (SSSFM)

The simulation time of Eq. (15.28) essentially depends on the size of step h. To reduce
simulation time, a new method was invented which allows us to use larger steps, h.

Mathematically, one uses the following second-order approximation:

A(z + h, t) = e
1
2 hL̂ exp

{∫ z+h

z
N̂ (z′)dz′

}
e

1
2 hL̂A(z, t) + O(h3) (15.32)

In this approach one assumes that the nonlinearities are distributed over h, which is more
realistic. For small h, one can approximately evaluate∫ z+h

z
N̂ (z′)dz′ ≈ h

2

[
N̂ (z) + N̂ (z + h)

]
In the SSSFM algorithm Eq. (15.31) is replaced by

Ai+1/2,L(z, t) = Ai+1/2,R(z, t) eh[N̂ (z)+N̂ (z+h)] (15.33)

The above scheme requires iteration to find Ai+1 since it is not known at z + 1
2 h. Initially

N̂ (z + h) will be assumed to be the same as N̂ (z).
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Fig. 15.3 Evolution in time over one soliton period forN = 1 soliton.
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Fig. 15.4 Evolution in time over one soliton period forN = 1 soliton with damping.

15.5 Numerical results

Based on the developed software, in this section we will report on numerical analysis of
soliton propagation in optical fibre. The SSFM has been implemented and MATLAB code
is provided in Appendix, Listing 15A.1. We start with the single solitons.

15.5.1 Single solitons

In our analysis we used fibre and pulse parameters summarized in Table 15.1. The input
soliton was considered to be in the form

Ain (ξ = 0, T ) = √
A0 sech

(
T

T0

)
(15.34)

where N is the soliton order given by Eq. (15.21). In Fig. 15.3 we illustrated the propagation
of N = 1 soliton without damping and in Fig. 15.4 the evolution of the same soliton with
damping (α = 0.01 dB km−1).
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Fig. 15.5 Evolution in time over one soliton period forN = 3 soliton. Note soliton splitting near z0 = 0.5 and its recovery
beyond that point.
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Fig. 15.6 Evolution in time over one soliton period forN = 3 soliton with damping.

A higher-order soliton with N = 3 is defined as

Ain (ξ = 0, T ) = N3√A0 sech

(
T

T0

)
(15.35)

Propagation of higher-order soliton with N = 3 is shown in Fig. 15.5 (no damping) and in
Fig. 15.6 (with damping). One can observe periodic evolution of the undamped soliton.

15.5.2 Chirped solitons

Here we analyse how chirp affects single soliton propagation. We assume the following
input:

Ain (ξ = 0, T ) = √
A0 sech

(
T

T0

)
exp

[
−iC/2

(
T

T0

)2
]

(15.36)



363 Numerical results

−1000
0

1000

0

500

1000
0

0.005

0.01

0.015

0.02

time (ps)distance (km)

Fig. 15.7 Evolution in time of a chirped soliton forN = 1without damping.
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Fig. 15.8 Evolution in time of two interacting solitons without damping.

where C is the chirped parameter. Evolution of such soliton in the case of N = 1 and
C = 1.6 is shown in Fig. 15.7. The pulse is initially compressed and then broadens.

15.5.3 Two interacting solitons

The effect of nonlinearity produces mutual interaction between soliton pulses if they are
launched close together [13]. This interaction is important from a practical point of view
and also from a fundamental perspective related to soliton propagation. For example, it was
shown [13] that nonlinear interaction between solitons can result in a bandwidth reduction
by a factor of 10. See also the review in [14].

First, we consider an interaction between two solitons of the same strength and N = 1.
We assume the initial pulses of the form [15]

Ain (ξ = 0, T ) = √
A0sech

(
T

T0
− 1

)
+ √

A0sech

(
T

T0
+ 1

)
(15.37)

The result of two interacting solitons is shown in Fig. 15.8.
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Fig. 15.9 Stream of solitons.

15.6 A few comments about soliton-based communications

As mentioned at the beginning of this chapter, an important application of solitons is in
the transmission of information in optical fibre systems. Soliton pulses are stable when
they propagate over long distances. Losses in fibres are an important limiting factor, so it
becomes necessary to compensate periodically for fibre loss. This can be done by using
EDFA.

In the transmission of information, solitons are considered like linear pulses. In a bit
stream each soliton has its own bit slot and it represents logical one or zero, see Fig. 15.9.
Here TB is the duration of the bit slot and it is related to bit rate B as

TB = 1

B
= 2aT0 (15.38)

where T0 is the soliton width and 2a specifies the distance between neighbouring solitons.
To prevent their interactions, the neighbouring solitons should be well separated.

Solitons are very well suited for long-haul communication because of their high
information carrying capacity and the possibility of periodic amplification. However,
soliton systems are still waiting for the full field deployment. The reader might con-
sult recent publications on soliton-based optical communication systems [16], [17],
[18], [19].

15.7 Problems

1. Implement a symmetrized SSFM based on Eq. (15.33).
2. Generalize the implementation by including the third-order dispersion effect where

β3 �= 0. Analyse the influence of β3 on propagation of N = 1 and N = 3
solitons.

3. Implement SSFM for a normalized form of NLSE given by Eq. (15.23). Using your
implementation, conduct the analysis for N = 1 and N = 3 solitons.

4. Analyse the propagation of Gaussian pulses in fibres with nonlinearity using SSFM.
Consider regular Gaussian and also chirped Gaussian pulses.
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Table 15.2 List of MATLAB functions for Chapter 15.

Listing Function name Description

15A.1 ss f tm f ull.m Analysis of various types of solitons

Appendix 15A: MATLAB listings

In Table 15.2 we provide a list of MATLAB files created for Chapter 15 and a short
description of each function.

Listing 15B.1 Program ssftw full.m. Here we conduct analysis of various solitons using
the split-step Fourier transform method.

% File name: ssftm_full.m

% Split-step Fourier transfer method for the analysis of solitons

% Contains the following initial pulses

% N=1 soliton

% N=3 solitons

% Chirp N=1 soliton

% Two interacting solitons

% For the analysis of the appropriate case it should be uncommented

%

clear all

tic;

%===== Material parameters ===================

%alpha=0.01; % Fibre loss (dB/km)

alpha = 0.0;

alpha=alpha/(4.343); % Fibre loss (1/km)

gamma = 1.3; % Fibre nonlinearity [1/W/km]

beta_2=15d-24; % 2nd order disp. (s^2/km)

%====== Time parameters ===========

T =- 512e-12:1e-12: 511e-12;

delta_t=1e-12;

%======= Input pulse and its parameters ========

T_0 = 100d-12; % Initial pulse width (s)

P_0 = 0.15d-3; % Input power (Watts)

A_0 = sqrt(P_0);

L_D =((T_0^2)/(abs(beta_2))); % Dispersion length in [km]

L_NL = (1/(gamma*P_0));

h = 2d0; % step size [km]

z_plot = (0:h:((pi/2)*L_D)); % z-values to plot [in km]

n = 1; % controls stepping

z_0 = (pi/2)*L_D; % Soliton period [km]

N = 3; % Soliton number
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%A = N^2*A_0*sech(T/T_0); % N=3 soliton

%A = A_0*sech(T/T_0); % N=1 soliton

C = 1.6; % chirp parameter

%A = A_0*sech(T/T_0).*exp((-1i*C/2).*(T/T_0).^2); % N=1 soliton with chirp

A = A_0*sech(T/T_0-1.6)+A_0*sech(T/T_0+1.6); % interacting solitons

%

L = max(size(A));

Delta_omega=1/L/delta_t*2*pi;

omega = (-L/2:1:L/2-1)*Delta_omega;

A_f = fftshift(fft(A)); % Pulse in frequency domain

for jj=h:h:z_0

A_f = A_f.*exp(-alpha*(h/2)-1i*beta_2/2*omega.^2*(h/2));

A_t =ifft(A_f); % Pulse in time domain

A_t = A_t.*exp(1i*gamma*((abs(A_t)).^2)*(h));

A_f = fft(A_t);

A_f = A_f.*exp(-alpha*(h/2)-1i*beta_2/2*omega.^2*(h/2));

A_t = ifft(A_f);

plotting(:,n) = abs(A_t);

n = n+1;

end

toc;

cputime=toc;

%

z_plot = h:h:z_0; % creates distance for plotting

length(z_plot)

for k = 1:80:length(z_plot) % Choosing 3D plots every 10-th step

y = z_plot(k)*ones(size(T));% Spread out along y-axis

plot3(T*1d12,y,plotting(:,k),’LineWidth’,1.5)

hold on

end

xlabel(’time (ps)’,’FontSize’,14);

ylabel(’distance (km)’,’FontSize’,14);

set(gca,’FontSize’,14); % size of tick marks on both axes

grid on

pause

close all
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16 Solar cells

In this chapter we provide the fundamentals of solar cell operations. We outline basic
physical principles, summarize a model based on equivalent circuit and discuss ways to
increase efficiency of single-junction solar cell by employing multijunction structures or
by creating intermediate bands.

General introductory books describing solar cells are [1], [2] and [3]. Anderson [1] and
Rabl [2] provide a practical background in solar-energy conversion including techniques
for estimating the solar radiation incident upon a collector, fundamentals of optics for solar
collectors, discussion of types of concentrators and economical analysis, among others.
Moeller [3] concentrates on fundamental, physical and material aspects of semiconductors
for photovoltaic energy conversion.

16.1 Introduction

World consumption of electric energy circa 2009 was around 12–13 TW [4]. This energy
was created by several methods. Let us look briefly at two of them: nuclear power and solar
energy.

Assuming that a single nuclear plant produces 1 GW of power, creation of 10 TW of
power would require 10 000 nuclear power plants. This huge number will certainly create
social problems. Also, the uranium needed for those plants could be diminished in less than
20 years.

As far as the solar energy is concerned, the Sun supplies more solar energy on Earth
in one hour than we use globally in one year. To make another comparison, a football
field covered with silicon solar cells with an efficiency around 17% at 1-Sun illumination
produces approximately 500 kW of power. The USA uses about 3 TW, so to produce that
amount one will need about 6 million football fields. However, by increasing efficiency
of solar cells, for example by using multijunction devices and increasing concentration of
solar energy, the area of semiconductor solar cells can be significantly reduced [5].

Those rough estimates indicate that solar energy can be a practical alternative as a source
of electric energy, and also that increasing the efficiency of solar cells is important. One
should, however, remember that the incidence of solar energy is not uniform.

Solar irradiation spectrum (spectrum of solar energy) is shown in Fig. 16.1. This graph
will be important later when we discuss in detail multijunction cells. In the figure we
show spectral intensity, that is intensity of solar energy per unit wavelength. Above the
Earth’s atmosphere it is denoted as AM0 (air-mass zero). The integrated (over the whole

368
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Fig. 16.2 Definition of air-mass.

spectrum) intensity above the Earth’s atmosphere is constant and its approximate value is
1.353 kW m2. It gives the total power flow through a unit area perpendicular to the direction
of the Sun.

The Earth’s atmosphere significantly absorbs radiation from the Sun. In Fig. 16.1 the
radiation at the Earth’s surface is labelled as AM1.5. In the figure several absorption bands
and lines due to various effects are shown. For comparison, the spectrum of black body
radiation at the temperature of 6000 K is also shown. One can notice that the solar spectrum
above the Earth’s atmosphere (AM0) resembles black body radiation.

The air mass coefficient defines the direct optical path length through the Earth’s at-
mosphere, expressed as a ratio relative to the path length vertically upwards, i.e. at the
zenith.

Let us finish this section with an explanation of AM (air-mass) convention. Generally air
mass m (AMm) is defined (see Kasap [6]) as the ratio of the actual radiation path h to the
shortest path h0, m = h/h0 = cos �, see Fig. 16.2.

Changing the light intensity incident on a solar cell changes all solar cell parameters,
including the short-circuit current, the open-circuit voltage, the efficiency and the impact
of series and shunt resistances. The light intensity on a solar cell is measured in the number
of ‘suns’, where 1 sun corresponds to standard illumination at AM1.5, or 1 kW m2. For
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sunlight
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Fig. 16.3 A p-n junction operating as a solar cell.

example, a system with 10 kW m2 incident on the solar cell would be operating at 10 suns,
or at 10X.

16.2 Principles of photovoltaics

The simplest solar cell (or photovoltaic (PV) cell) is a single p-i-n junction operating
under forward bias. It is formed by using, e.g. properly doped silicon, see Fig. 16.3. It can
produce potential difference, thus acting as a battery. It contains a very narrow and heavily
doped n-region. It is covered with thin antireflecting coating to reduce sun reflection which
penetrates p-n junction from n-side, see Fig. 16.4 for more details.

Short wavelengths penetrate only the n-region, longer wavelengths penetrate depletion
region of width w, and finally the longest wavelengths reach the p-region, see Fig. 16.5.

Photons of frequency ν having energies hν ≥ Eg, where Eg is the bandgap energy,
generate electron-hole (e-h) pairs. Due to a built-in electric field E0 in the depletion region,
electrons move towards metal contact in the n-region whereas holes travel in opposite
direction towards metallic contact in the p-region. Since the n-region is very narrow, most
of the photons are absorbed in the depletion region. Each generated electron increases
charge in the n-region by −e; similarly each hole makes the p-region more positive by +e.
Thus potential difference is created between metallic electrodes.

A semiconductor can only efficiently convert photons into current with energies equal to
the bandgap. Photons with energies smaller than the bandgap are not absorbed, and photons
with higher energies reduce their energies to the bandgap energy by thermalization of the
photogenerated carriers; a process which involves losses.

The basic relation which provides the link between photons’ energy and their wavelength
is

λ[µm] = 1.24

E[eV ]
(16.1)

If both terminals of solar cell are shorted, the excess electrons on the n-side will start
flowing through an external wire contributing to electrical current known as photocurrent,



371 Principles of photovoltaics

bottom
contact

top contact

incident light

p+ layer

p-layer

n-layer

antireflection
coating

Fig. 16.4 Solar cell perspective.

+

–

Ev

EFc

Ec

Eg

AR coating
n-region p-region

Iph
w

E

λ

0

Fig. 16.5 The principle of photocurrent generation in a solar cell in short circuit.

Iph, see Fig. 16.6. The short circuit conventional current Isc flows opposite to photocurrent.
If Ilight is the light intensity, one can write

Isc = −Iph = −K · Ilight

where K is some (device dependent) constant.
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When the illuminated solar cell is loaded with resistance R, the conventional current I is
I = Id − Iph, see Fig. 16.6, where Id is a forward diode current:

Id = I0

[
exp

(
eV

ηkBT

)
− 1

]
(16.2)

and where I0 is a constant, V is the voltage across diode and η is known as diode fidelity
factor. It is equal to 1 for diffusion controlled and 2 for space charge layer recombination
controlled characteristics.

The I-V characteristic of solar cell is shown in Fig. 16.7. It is obtained from a dark
diode by shifting its I-V curve downward by Iph. The analytical expression for conventional
current is

I = −Iph + I0

[
exp

(
eV

ηkBT

)
− 1

]
(16.3)

With the load resistance R connected to the solar cell, see Fig. 16.6, the current-voltage
relation is

I = −V

R
(16.4)

Operating point of solar cell with load resistance R is obtained by solving Eqs. (16.3) and
(16.4). The graphical solution is illustrated in Fig. 16.8., where we have plotted Eqs. (16.3)
and (16.4). Crossing of both lines determines operating point (V1, I1) of a solar cell.

The point at which a characteristic intersects the vertical current axis is known as a short
circuit condition and the corresponding current as short-circuit current Isc. Similarly, the
point at which I-V characteristic intersects the horizontal voltage axis is known as the open



373 Equivalent circuit of solar cells

Isc     –Iph

V

I
Voc

P (operating point)

=

Fig. 16.8 Finding an operating point of a solar cell.Voc is an open-circuit voltage.

Iph Id

I

Rs

Rsh
V

Fig. 16.9 Equivalent circuit of a solar cell.

circuit condition. It defines the open-circuit voltage Voc, which is the maximum voltage
which can be drawn from the solar cell. It corresponds to zero current.

Power delivered to the load R is Pload = I1 · V1, which is the area of the rectangle, see
Fig. 16.7. The goal of the solar cell design is to maximize that power.

16.3 Equivalent circuit of solar cells

Over the years several methods of modelling solar cells have been introduced. The simplest
approach is based on equivalent circuit models. Some recently published works with an
emphasis on using MATLAB are [7], [8], [9].

16.3.1 Basic model

The equivalent circuit of solar cell which includes parasitic effects is shown in Fig. 16.9.
It consists of current source which generates photoelectric current Iph, ideal diode, shunt
resistor and series resistor. Based on this model, the goal is to obtain current-voltage relation.
From Kirchoff rule one obtains (from now on we reverse direction of flow of conventional
current, which is a common practice)

I = Iph − Id (16.5)

where I is the cell total current and Id is the diode current. Combining the above and
relation (16.3), one finds

I = Iph − I0

[
exp

(
eVd

ηkBT

)
− 1

]
(16.6)
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This equation describes an ideal situation without parasitic effects. In a real solar cell
there exists leakage current flowing through shunt resistance Rsh. Potential drop across the
device is represented by series resistance Rs. The inclusion of shunt resistance modifies
solar current I as

I = Iph − Id − Vd

Rsh
(16.7)

The impact of series resistance is included as

Vd = V + I · Rs (16.8)

With the parasitic effects included, the solar current I takes the form

I = Iph − I0

[
exp

(
eVd

ηkBT

)
− 1

]
− V + I · Rs

Rsh
(16.9)

The photocurrent Iph depends on the solar insolation and cell’s temperature and it is given
by [10], [11]

Iph = [
Isc + KI

(
Tc − Tre f

)]
Sin (16.10)

where Isc is the cell’s short-circuit current at a 25◦ C and 1 kW m2, KI is the cell’s short-
circuit current temperature coefficient, Tre f is the cell’s reference temperature and Sin is the
solar insolation in kW m2.

The expression for I0 is [10], [11]

I0 = IRS

(
Tc

Tre f

)3/n

exp

⎡⎣ Egap

AkB

(
1

Tre f
− 1

Tc

)
⎤⎦ (16.11)

where IRS is cell’s reverse saturation at a reference temperature and a solar radiation, Egap

is the bandgap energy of the semiconductor used in the cell and A is an ideal factor which
depends on PV technology. Some typical values are: A = 1.2 for Si-mono, A = 1.3 for
Si-poly and A = 1.5 for CdTe (after [10]).

16.3.2 Other models

There exist other models of solar cells which are based on a basic model. Here, we will
only mention two such models: the double exponential model and ideal PV cell model.

Double exponential model [12] is shown in Fig. 16.10. This model contains a light
generated current source, two diodes D1 and D2 and a series and parallel resistances. The
model is derived from the physics of the p-n junction and can describe cells constructed
from polycrystalline silicon.

Simple models. The shunt resistance Rsh is inversely related to shunt leakage current to
the ground. PV efficiency shows little sensitivity to the variation of Rsh and one can assume
that Rsh = ∞. The resulting model is similar to the basic one, shown in Fig. 16.9, without
Rsh. The current-voltage expression for this model is

I = Iph − I0

[
exp

(
e (V + I · Rs)

ηkBT

)
− 1

]
(16.12)
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Table 16.1 Parameters for equivalent circuit model of Si solar cell.

Description of parameter Symbol Value

Illumination Iph 10 mA
eta η 1.5
Current I0 3 × 10−6 mA
Series resistance Rs 0 �, 20 �, 50 �

Shunt resistance Rsh 415 �

Iph

I

RsD2D1

Rsh V

Fig. 16.10 Double exponential model of a solar cell.
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Fig. 16.11 Current-voltage characteristics of an ideal solar cell based on Si for several values of series resistance.

An ideal PV cell model assumes no series loss and no leakage to ground; i.e. Rs = 0 and
Rsh = ∞. The equivalent circuit consists of only current source and one diode. Current is
expressed as

I = Iph − I0

[
exp

(
eV

ηkBT

)
− 1

]
(16.13)

We conducted analysis using typical parameters, which are summarized in Table 16.1.
Current-voltage characteristics for several values of series resistance are shown in Fig. 16.11
and in Fig. 16.12 we presented current-voltage characteristics at three different values
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Fig. 16.12 Current-voltage characteristics of an ideal solar cell based on Si for several values of temperature.

of temperatures. MATLAB code used to generate those characteristics is shown in the
Appendix, Listings 16A.1, 16A.2 and 16A.3. These are typical results as reported in the
literature.

16.4 Multijunctions

As determined by Shockley and Queisser [13], the maximum theoretical limit for a single
junction solar cell is about 31%. In order to increase theoretical efficiency one needs to
increase number of p-n junctions in the cell. Henry [14] found that maximum theoretical
efficiency at a concentration of 1 sun is 31%. At a concentration of 1000 suns with the cell
at 300 K, the maximum efficiencies are 37%, 50%, 56% and 72% for cells with 1, 2, 3 and
36 p-n junctions (with different, properly chosen energy gaps), respectively.

Increase in efficiencies can be obtained by splitting solar spectrum into several parts
and using different materials for conversion in various parts. This principle is illustrated in
Fig. 16.13 for a triple solar cell built from Ga0.49In0.51P(1.9 eV), Ga0.99In0.01As(1.4 eV) and
Ge(0.7 eV) (adopted from Dimroth [15]). Germanium is used mainly due to its robustness
and its low cost of production. Those different semiconductor materials are grown on
one substrate. Tunnel junctions are used to form an electrical series connection of the
subcells.

Suitable materials must be chosen for each cell so that photons of appropriate wavelengths
are absorbed. The bandgap of each material is determined using Eq. (16.1). Energy bandgap
Eg must decrease from top cell to bottom cell in order not to absorb all photons by the top
cell. Also, all layers of semiconductors must be lattice matched, so that there is no built-in
strain.

The anti-reflective (AR) coating typically consists of several layers. Design of AR layers
can be performed using methods discussed in Chapter 3.



377 Multijunctions

0.2

0.5

1.0

1.5

2.0

2.5

0.4
0.6

0.8
1.0

1.2
1.4

1.6
1.8

w
avelength (μm

)
visible range

A
M

0 radiation

M
iddle
cell

B
ottom

 cell
Top cell

Energy distribution (kW/ m2 μm)

Tunnel junction

AR coating

wavelength

long middle short

Top cell: GaInP

Middle cell: GaAs

Bottom cell: Ge

Ge substrate

Tunnel junction

Contact

Contact

Fig. 16.13 Triple-junction solar cell. (From F. Dimroth, High-efficiency solar cells from III-V compound semiconductors, Phys. Stat.
Sol. (c) 3, 373–9 (2006). Copyright Wiley-VCH Verlag GmbH and Co. KGaA. Reproduced with permission.)

The presence of tunnel junctions is to provide low electrical resistance between subcells.
Modelling of those layers specifically for the purpose of MJ solar cells has been described
recently by Baudrit and Algora [16].

16.4.1 Quantum dots in multijunctions

The triple-junction subcells shown are connected in series and their voltages add up, but
the current flowing through the structure is determined by the smallest current produced by
subcells. Total power generated by the structure is greater than that of the single junction
cell.

The thickness of each subcell is determined by its absorption and the light power available
in the spectral range where the subcell operates. Referring to Fig. 16.13, the bottom cell
(formed by Ge, including substrate) is much thicker than two upper subcells. Due to this
and also because it covers much larger spectral range, the Ge subcell produces much larger
current compared to two upper subcells.

One of the possible solutions of reducing current of the Ge subcell and at the same
time increasing current of the GaAs subcell, is to introduce InAs-based quantum dots into
the GaAs subcell [17]. These quantum dots are designed to have an effective bandgap
slightly smaller than that of GaAs. Therefore they can ‘steal’ current from bottom Ga
subcell roughly by about 15%. Increasing also the thickness of top GaInP subcell to match
the increased current of GaAs results in an overall current increase by about 15%. With
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Fig. 16.14 Illustration of a concept of intermediate-band solar cell.

the minimal change in voltage over GaAs subcell, this concept resulted in an increase of
triple-junction conversion efficiency by about 13%.

16.4.2 Intermediate band solar cells (IBSC)

The concept of intermediate band solar cells (IBSC) was first described by Luque and Marti
[18] and by Wolf [19]. The main idea was to create an additional band between conduction
and valence bands, see Fig. 16.14. The additional intermediate band can be created using
several approaches, like, for example, minibands.

The standard cell is only able to absorb photons with energy equal to or greater than
Egap = Ec − Ev . Within this new scheme it is possible to have additional absorption via
the IB.

The electronic states in the IB should be accessible via direct transitions. Therefore
photon of energy EIV can transfer an electron from the valence band into IB whereas
another photon with energy ECI will be able to pump electrons from IB to conduction band.
Thus the performance of solar cell is increased.

Solar cells based on this design are attractive because of their predicted photon conver-
sion efficiency of up to about 60% [20]. The authors of Ref. [20] show that the ordered
three-dimensional arrays of quantum dots, i.e., quantum dot supracrystals, can be used to
implement the intermediate-band solar cell with the efficiency significantly exceeding the
Shockley-Queisser limit for a single junction cell. The increase is due to the utilization of
photogenerated hot carriers which can produce higher voltages and higher photocurrents.

Modelling of such structures has been conducted using the CFD Research Corporation
3D device simulator, NanoTCAD [21]. They performed accurate simulations of quantum
dot solar cell performance and degradation due to effects of space radiation.

A recent summary of some aspects of intermediate-band solar cells was published in
Nature Photonics [22].

16.4.3 Role of simulations

Numerical simulations and modelling of solar cells play an important role. One particular
example has been mentioned in the preceding section. Optimization of modern structures,
especially for multijunction or quantum dots by experimental trial-and-error methods, is
definitely too costly. This opens the room for simulations.
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The optical and electrical interactions between the numerous layers in a multi-junction
solar cell are very complex. Over the years several groups have developed simulation models
of various levels of sophistication. The simplest approach based on equivalent circuits
model was summarized in an earlier section. There were also many successful attempts to
develop microscopic models of various complexity. Full discussion of microscopic models,
including those based on drift-diffusion approach, is beyond the scope of this book.

Also, a few commercial products are found on the market: Sentaurus from Synopsys,
Atlas from Silvaco or Solar Cell utility from RSoft. Some recent examples of using com-
mercial software to simulate and design solar cells are described in [23], [24] and [25].
The authors of Ref. [25] describe details of using Sentaurus to simulate quantum well solar
cells.

More sophisticated approaches to designing of quantum well solar cells using quantum
transport are also under development [26], [27]. Such approaches combine elements from
semiconductor optics and quantum transport in nanostructures. A very fundamental
approach based on non-equilibrium Green’s functions (NEGF) is discussed extensively
in [26]. The developed approach treats absorption, transport and relaxation on equal foot-
ing and within a framework based on non-equilibrium quantum statistical mechanics.

We finish this discussion by mentioning the role played by plasmonics in improving
properties of photovoltaic devices, see a recent summary [28]. Plasmonics describe guiding
and localizing light at the nanoscale smaller than the wavelength of light in free space.
Using plasmonics allows for new designs of solar cells in which light is fully absorbed in a
single quantum well. Proposed solutions can result in improved absorption in photovoltaic
devices.

Appendix 16A: MATLAB listings

In Table 16.2 we provide a list of MATLAB files created for Chapter 16 and a short
description of each function.

Listing 16A.1 Program solar Si.m. MATLAB program which plots I-V characteristics of
an ideal solar cell for several values of series resistance based on equivalent circuit model.

% File name: solar_Si.m

% Simulates ideal solar cell based on Si

Table 16.2 List of MATLAB functions for Chapter 16.

Listing Function name Description

16A.1 solar Si.m Generates I-V characteristics for several values of series resistance
16A.2 current V.m Function used by solar Si.m and solar Si T.m
16A.3 solar Si T.m Generates I-V characteristics for several values of temperature
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clear all

eta = 1.5;

I_ph = 0.02; % illumination current, in mA

T = 330;

V_init = 0;

V_final = 1.0;

V_step = 0.01;

V=0;

hold on

for R_s = [0.01 20 50] % series resistance, in ohms

curr_total = fzero(@(curr) current_V(curr,V,T,eta,I_ph,R_s),0.2);

for V = V_init:V_step:V_final

curr = fzero(@(curr) current_V(curr,V,T,eta,I_ph,R_s),0.2);

curr_total = [curr_total, curr];

end

V_plot = V_init:V_step:V_final; % creation voltage values for plot

V_plot = [0, V_plot];

plot(V_plot, curr_total,’LineWidth’,1.5)

set(gca,’FontSize’,14); % size of tick marks on both axes

axis([0 V_final*0.8 0 I_ph*1.2]);

ylabel(’Current (mA)’,’Fontsize’,14)

xlabel(’Voltage (V)’,’Fontsize’,14)

text(0.65, 0.01, ’R_s = 0 \Omega’,’Fontsize’,14)

text(0.45, 0.01, ’R_s = 20 \Omega’,’Fontsize’,14)

text(0.2, 0.01, ’R_s = 50 \Omega’,’Fontsize’,14)

end

pause

close all

Listing 16A.2 Function current V.m. MATLAB function which creates an expression for
current in the equivalent circuit model.

function fun = current_V(I,V,T,eta,I_ph,R_s)

% Expression for current used in solar cell model based on equivalent

% circuit

q = 1.6d-19; % charge of electron

k_B = 1.38d-23; % Boltzmann constant

R_sh = 415; % shunt resistance in ohms

I_0 = 3d-9; % reverse saturation current of the diode

VV = V+I*R_s;

fun = I_ph - I - I_0*(exp(q*VV/(eta*k_B*T))-1) - VV/R_sh;

Listing 16A.3 Function solar Si T.m. MATLAB program which plots current-voltage
characteristics of an ideal solar cell for three temperatures using the equivalent circuit
model.
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% File name: solar_Si_T.m

% Simulates effect of temperature for ideal solar cell based on Si

clear all

eta = 1.5;

I_ph = 0.02; % illumination current, in mA

R_s = 10; % series resistance, in ohms

V_init = 0;

V_final = 1.0;

V_step = 0.01;

V=0;

hold on

for T = [300 325 350] % temperature

curr_total = fzero(@(curr) current_V(curr,V,T,eta,I_ph,R_s),0.2);

for V = V_init:V_step:V_final

curr = fzero(@(curr) current_V(curr,V,T,eta,I_ph,R_s),0.2);

curr_total = [curr_total, curr];

end

V_plot = V_init:V_step:V_final; % creation voltage values for plot

V_plot = [0, V_plot];

plot(V_plot, curr_total,’LineWidth’,1.5)

set(gca,’FontSize’,14); % size of tick marks on both axes

axis([0 V_final*0.8 0 I_ph*1.2]);

ylabel(’Current (mA)’,’Fontsize’,14)

xlabel(’Voltage (V)’,’Fontsize’,14)

text(0.65, 0.005, ’300K’,’Fontsize’,14)

text(0.38, 0.01, ’350K’,’Fontsize’,14)

end

pause

close all
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17 Metamaterials

In this chapter we review the basic concept of metamaterials as those possessing simulta-
neously negative permittivity and permeability over the same frequency range. Theoretical
principles and basic experimental results are reviewed. Possible applications including
cloaking, slow light and optical black holes are described.

17.1 Introduction

Metamaterials are artificially created structures with predefined electromagnetic properties.
They are fabricated from identical elements (atoms) which form one-, two- or three-
dimensional structures. They resemble natural solid state structures. Metamaterials typically
form a periodic arrangement of artificial elements designed to achieve new properties
usually not seen in Nature [1]. In a sense, they are composed of elements in the same way
as matter consists of atoms.

Metamaterials are characterized and defined by their response to electromagnetic wave.
Optical properties of such materials are determined by an effective permittivity εeff and
permeability μeff valid on a length scale greater than the size of the constituent units.
In order to introduce such a description, one requires that the size of artificial inclusions
characterized by d be much smaller than wavelength λ, i.e. d � λ.

The name meta originates from Greek, μετα and means ‘beyond’. Main characteristics
of metamaterials (MM) are:

• man-made,
• have properties not found in Nature,
• have rationally designed properties,
• are constructed by placing inclusions at desired locations.

With modern fabrication techniques it is possible to create structures which are much
smaller than the wavelength of visible light. An example of the unusual properties that such
structures could have is the negative refractive index. Although the problem has a long
history (for example, Mandelstam [2] in 1945 discussed negative refraction and negative
group velocity), it was only in 1967 when Victor Veselago [3] indicated the possibility
of materials having simultaneously negative μ and ε. He demonstrated the technological
potential that materials with a negative refractive index could have for applications in
imaging. It recently made its way to optics, mostly due to rapid progress in nanofabrication.

384
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Fig. 17.1 Schematics of the elementary cells and the wavelength of external electromagnetic wave in two extreme cases.

The most well-known property of metamaterials is the negative index of refraction
(NIM – negative index materials). Another popular name used is left-handed material. This
terminology will soon be explained.

The situation is illustrated in Fig. 17.1. For a longer wavelength, one cannot sense
the properties of individual constituent atoms, shown on the left, whereas the shorter
wavelength, on the order of the distance between ‘atoms’, can effectively be used to
determine some of the atom’s properties (like their locations). In metamaterials we deal
with the situation on the left.

Metamaterials can have controlled magnetic and electric responses over a broad range of
frequencies. Those responses depend on the properties of individual elements (atoms). In
the long-wavelength limit, where a � λ, where a is the characteristic dimension and λ is the
wavelength of electromagnetic wave, one should perform some sort of averaging procedure
to determine effective parameters of MM. Details of those procedures are discussed in the
literature [4]. In the end, it is possible to achieve the condition where εeff < 0 and μeff < 0.

A diagram which illustrates the classification of metamaterials is shown in Fig. 17.2. In
general negative index materials do not exist in Nature; the rare exception is bismuth, which
when placed in a waveguide shows a negative refractive index at a wavelength of λ = 60µm
[5]. There are no known naturally occurring NIMs in the optical range. However, artificially
designed materials (metamaterials) can act as NIM. One should, however, notice that the
occurrence of NIM needs both negative εeff < 0 and μeff < 0 over the same frequency
range.

Metamaterials can open new avenues to achieve unprecedented physical properties and
functionality unattainable with naturally existing materials. Optical NIMs promise to create
entirely new prospects for controlling and manipulating light, optical sensing and nanoscale
imaging and photolithography.

17.1.1 Short history of MM

The earliest discussion of the concept of negative refraction goes probably to Schuster
[6]. In the book entitled An Introduction to the Theory of Optics he noted that negative
dispersion of the refractive index with respect to wavelength, i.e. dn/dλ < 0, can produce
negative refraction of light entering such a medium from a vacuum. Some other early works
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Fig. 17.2 Classification of materials according to the sign of electric permittivity and magnetic permeability.

on negative refraction include Lamb [7] published in 1904 and Pocklington [8] published
in 1905. Historical aspects were summarized by Simovski and Tretyakov [9] and by Moroz
[10].

In recent years the field of metamaterials has received remarkable attention with the
number of published papers growing exponentially. This is due to unusual properties of
such systems (see [4] for a recent review) and also important practical applications like
perfect lenses [11], invisibility cloaking [12], [13], slow light [14] and enhanced optical
nonlinearities [15]. Parallel to theoretical developments, there has been noted spectacular
experimental progress in the field [16].

The subject of metamaterials is attracting enormous attention from researchers. We
searched ISI Web of Knowledge, and as of October, 2011 there were 4545 published papers
on the subject of ‘metamaterials’. The plot of the number of published papers is shown in
Fig. 17.3. As can be seen, the number of published papers grows exponentially with some
saturation observed recently.

The modern research progress started in 1999 with the pioneering work by Pendry
and collaborators [17] who discussed artificial electromagnetic structures, such as split-
ring resonators (SRR) (in general, two concentric split rings), for which they predicted the
existence of negative magnetic permeability. In those structures the incident electromagnetic
wave excites circulating currents in the loops. These currents in turn create oscillating
magnetic dipole moments. With proper design, those currents are resonantly enhanced,
leading to a negative magnetic permeability.

An SRR meta-atom can, in the long-wavelength (quasi-static) regime, be modelled as
a resistor/inductor/capacitor (RLC) resonant circuit [18]. Stacks of such structures exhibit
negative permeability.

The creation of a negative electric permittivity is relatively easy. For instance, it is well-
known that metals at optical frequencies exhibit a plasmon-like permittivity that can assume
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negative values. At smaller (e.g. microwave) frequencies, it was shown by Pendry et al.
in 1996 [19] that an array of long wires acts as a diluted Drude metal when the electric
field is oriented along the wire axis. Such a system allows for the existence of a negative
permittivity below the effective plasma frequency. A combination of both magnetic and
electric elements in a suitable design leads to negative index of refraction over a specified
frequency band.

A report on the first negative-index material (NIM) designed and fabricated along the
above principles was published in 2000 by Smith et al. [20]. It operated at microwave
frequencies. The individual SRR had its resonance frequency at 4.845 GHz. The diameter
of the wires was about 0.8 mm, which resulted in a plasma frequency of ωp = 13× 109s−1.
There, the authors performed transmission measurements on a NIM structure having a
range of frequencies over which the refractive index was negative for one direction of
propagation. In a subsequent paper, Shelby et al. [21] (again in a transmission experiment)
demonstrated a negative refraction of microwaves incident on the interface between air and
NIM.

In 2003, a group from Boeing Phantom Works reported [22] a very accurate measure-
ments of a Snell’s law using a NIM wedge at frequencies from 12.6 to 13.2 GHz.

Following those pioneering demonstrations, in the next few years the operation fre-
quency has been increased by more than four orders of magnitude. In particular, Yen
et al. [23] demonstrated a NIM response at 1 THz (λ = 300 µm) by making use of
SRRs placed on a double-sided polished quartz substrate. Further design and fabrica-
tion improvements have led to the possibility of creating a three-dimensional double-
negative medium with subwavelength meta-atoms in the optical regime [24], [25]. Indeed,
in 2008, a three-dimensional photonic NIM at optical frequencies has been demonstrated in
Ref. [26].
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17.2 Veselago approach

In this section we summarize an early approach as developed by Veselago [3].

17.2.1 Wave equation

In order to proceed with a quantitative description, at this stage we will introduce Maxwell’s
equations, which in the absence of free charges and currents are

∇ × E = − μ
∂H

∂t
and ∇ × H =ε

∂E

∂t
(17.1)

Take ∇× (rotation) operation on the first equation and then use second equation

∇ × ∇ × E = − ε
∂

∂t
(∇ × H) = −με

∂2E

∂t2

Use general relation valid for arbitrary vector A

∇ × ∇ × A = ∇ (∇ · A) − ∇2A = −∇2A

In the last step, we used ∇ · E =0. One obtains the wave equation

∇2E = −με
∂2E

∂t2
= 0 (17.2)

If we disregard losses and consider ε and μ as real numbers, then one can observe that
wave equation is unchanged when we simultaneously change signs of ε and μ.

17.2.2 Left-handedmaterials

Start with the basic Maxwell’s equations (17.1). Assume time-harmonic fields

E(x, y, z, t) = E(x, y, z)eiωt + c.c.

and introduce wave vector k by assuming plane-wave dependence

E, H ∼ eik·r

Maxwell’s equations take the form

k × E = −μωH (17.3)

k × H = εωE (17.4)

From Eqs. (17.3) and (17.4) and definition of cross product, one can immediately see
that for ε > 0 and μ > 0 vectors E, H and k form a right-handed triplet of vectors, and if
ε < 0 and μ < 0 they form a left-handed system, see Fig. 17.4.
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Fig. 17.4 (a) Right-hand orientation of vectors E, H, k for the case when ε > 0, μ > 0. (b) Left-hand orientation of vectors
E, H, k for the case when ε < 0, μ < 0. The figure is taken, with permission of the Canadian Association of
Physicists (CAP), from an article by Wartak et al. [27].
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Fig. 17.5 Reflection and refraction in negative index material. The figure is taken, with permission of the Canadian Association
of Physicists (CAP), from an article by Wartak et al. [27].

17.2.3 The refraction of a ray

Consider propagation of a ray through the boundary between left-handed and right-handed
media, in Fig. 17.5. Light crossing the interface at non-normal incidence undergoes
refraction, that is a change in its direction of propagation. The angle of refraction depends
on the absolute value of the refractive index of the medium. Here, 1 is the incident ray,
2 is the reflected ray, 3 is the refracted ray assuming medium ′2′ is right-handed, and 4
is the refracted ray when assuming that medium ′2′ is left-handed. In a metamaterial the
refraction of light would be on the same side of the normal as the incident beam, see
Fig. 17.5. The relation between angles is determined by Snell’s law.

17.3 How to createmetamaterial?

17.3.1 Metamaterials with negative effective permittivity in the microwave regime

At optical frequencies metals are characterized by an electric permittivity that varies with
frequency according to Drude relation

ε(ω) = ε0

[
1 − ω2

p

ω(ω + iγ )

]
(17.5)
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Fig. 17.6 Schematic illustration of a periodic arrangement of infinitely long thin wires along z direction used in the creation of
an effective plasma medium at microwave frequencies. The figure is taken, with permission of the Canadian
Association of Physicists (CAP), from an article by Wartak et al. [27].

Here ω2
p = Ne2

mε0
is the plasma frequency, i.e. the frequency with which the plasma consisting

of free electrons oscillates in the presence of an external electric field. Typical values for ωp

are in the ultraviolet regime. The other symbols are: N is the electron density; e is charge of
an electron and m its mass. The parameter γ describes damping and its value, for example
for copper is γ ≈ 4 × 1013 rad s−1.

In the limit when γ = 0, from Eq. (17.5) it follows that ε < 0 for ω < ωp; i.e. the
medium is characterized by a negative permittivity. Considering typical values of ωp, the
resulting range of negative values of ε is in the ultraviolet regime. Unfortunately, in this
frequency range ω � γ , and as a result losses dominate the behaviour of ε. Thus, using
metals to achieve negative ε over this frequency range will be impractical (high losses) and
the propagation of light will be mainly evanescent.

To achieve negative ε at microwave frequencies, Pendry et al. [28] proposed to use
periodic structure consisting of long thin metallic wires of radius r arranged on a horizontal
plane (xy), see Fig. 17.6. The unit cell of this periodic structure is a square whose sides
have length equal to a.

When electric field E = E0e−i(ωt−kz)z is incident on this structure, it forces free electrons
to move inside the wires in the direction of the incident field. Effective electron density Neff

of such structures which participate in plasma oscillations is Neff = N πr2

a2 (with N being
the electron density inside each wire, r the radius of a wire and a distance between wires),
which is significantly smaller compared to N , thus reducing the effective plasma frequency.
For example, for a wire with radius r = 1 µm and wire spacing a =5 mm, one finds that
Neff ≈ 1.3 × 10−7N; i.e. the effective electron density of the new medium is reduced by
seven orders of magnitude compared to that of the free electron gas inside an isolated wire.

Additionally, in such engineered structures the effective mass meff of the electrons is
significantly larger compared to that of a free electron. To determine effective mass of an
electron in this wired medium, we use the classical equation of motion of a moving electron:

d(mv)/dt = e[E + v × B] → d

dt
[mv + eA] = −e∇(ϕ − v · A) (17.6)

where e is the charge of an electron and v the velocity of an electron. One also has B = ∇×A
and E = −∇ϕ − ∂A/∂t. We divide the xy plane into circles of radius Rc, centred at each
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wire and having area equal to that of the square unit cell; i.e. Rc = a/
√

π . Furthermore,
we assume that the wires are sufficiently apart from each other so that the magnetic field
inside each circle arises only from the current I that flows perpendicularly to the centre of
the circle, and that the field at the circumference of each circle vanishes; i.e. H (Rc) = 0.
Magnetic field intensity at a distance R from each wire is given by

H = I

2πR

(
1 − R2

R2
c

)
(17.7)

Magnetic field H associated with a vector potential A according to the relation H =
μ−1

0 ∇ × A gives the following expression for the vector potential A:

A = μ0I

2π

(
ln(Rc/R) + R2 − R2

c

2R2
c

)
z (17.8)

where z is a unit vector along the z-direction. It has been assumed that A(R ≥ Rc) = 0. For
distances very close to the wires, i.e. for R → r << Rc, Eq. (17.8) gives

A ≈ μ0I

2π
ln(a/r)z (17.9)

Since both v and A point along z, the right hand side of the second part of Eq. (17.6) will
vanish (for a given R); i.e. the so-called ‘conjugate momentum’ (mv + eA) of an electron
will be conserved along the z-direction. As a result, an electron will be moving in the above
engineered medium with an effective mass, meff = eA(r)/v. Realizing that the current I can
be simply re-expressed as I = −(πr2)(Nev), we finally obtain using Eq. (17.9) the effective
mass of a moving electron inside our effective medium meff = 0.5 × μ0Ne2r2ln(a/r).
Thus, for copper wires of radius r = 1 µm, being separated by a =5 mm, we obtain: meff ≈
1.3×104 m; i.e. the effective mass of an electron in our engineered medium is increased by
more than four orders of magnitude. This, combined with the fact that the effective electron
density is reduced by approximately seven orders of magnitude, leads to an effective plasma
frequency that is in the microwave regime:

ω2
p = Neff e2

meff ε0
= 5.1 × 1010[rad s−1]2

→ νp = ωp/2π = 8.2 GHz (17.10)

It should be noted that, based on Eq. (17.10), the calculated wavelength, λp = c/νp, which
corresponds to our medium’s effective plasma frequency, turns out to be considerably larger
compared to the periodicity of the structure (λp ≈ 7a), justifying the description of the
periodic structure as an effective medium. Therefore we are able to construct an engineered
medium that can exhibit a negative electric permittivity in the microwave regime with
reasonably low losses.

17.3.2 Magnetic properties: split-ring resonators

In the previous section, we examined how to construct an artificial structure possessing
negative effective permittivity ε. Here, we will show how to create negative effective
permeability μ in the microwave regime using the so-called split-ring resonators (SRR).
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Fig. 17.7 Perspective view of split-ring resonator.
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Fig. 17.8 Arrangement of SRR in space. Reprinted with permission from H. Chen et al., J. Appl. Phys., 100, 024915 (2006).
Copyright 2006, American Institute of Physics.

The perspective view of SRR is shown in Fig. 17.7. The structure consists of two cut
cylinders. The model used to represent SRR is illustrated in Fig. 17.8. Here we will describe
description of split-ring resonators (SRR) based on equivalent circuit model approach [18].
The structure under consideration is shown in Fig. 17.8.
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Fig. 17.9 Equivalent circuit of SRR.

We will establish the equivalent circuit model of this structure and show that it can
produce negative effective permittivity μ. The unit cell shown above can be modelled using
equivalent circuit model shown in Fig. 17.9.

Apply a time-varying external magnetic field H0 in the y-direction. It will induce a
current I flowing in each SRR unit. From Faraday’s law, the voltage V due to the external
field H0 is

V = iωμ0πr2H0 (17.11)

where r is the radius of the ring. Along the y-direction, SRR loops form a column (stack)
which behaves like a solenoid. In each loop there is a current I flowing. Neglect the fringing
effects, i.e. spreading of the magnetic field lines. The magnetic flux in such a column is
thus

� = πr2μ0
I

l
(17.12)

where l is the separation between loops. The inductance L appearing in the circuit model is

L = μ0π
r2

l
(17.13)

The inductance L is defined per ring of an infinite column of rings.
Let L′ be the total inductance of the SRR units in the other column (excluding column

represented by inductance L). Coupling between L and L′ is represented by the mutual
inductance M . For very long columns in y-direction, the mutual inductance M is

M = �L

I
= lim

n→∞
πr2

na2

φd

I
= lim

n→∞
πr2

na2
(n − 1) L

= πr2

a2
L = F · L (17.14)

Here �L is the flux of the depolarization field located in the interior of L, � = L · I is the
depolarization field generated by one column of the rings, φd = (n − 1) � = (n − 1) L · I
is the flux of the total depolarization field, and F = πr2

a2 is the fractional volume of the
periodic unit cell in the xz plane occupied by the interior of the SRR.
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Applying Kirchoff’s voltage drop law for a loop in the equivalent circuit shown in
Fig. 17.9 gives

V = R · I + I

−iωC
+ (−iωL) I − (−iωM ) I (17.15)

where C = 1
2Cg is the total capacitance in the loop.

From the previous equations

V = iωμ0πr2H0 = iωL I H0 (17.16)

From Eq. (17.15) one has

V =
(

R − 1

iωC
− iωL + iωM

)
I

Solving for current

I = V

R − 1
iωC − iωL + iωM

= iω L I H0

R − 1
iωC − iωL + iωF · L

(17.17)

= L H0
R

iωL + 1
ω2LC − 1 + F

= −L H0

(1 − F ) − 1
ω2LC + i R

ωL

Magnetic dipole moment per unit volume of the material is

M = πr2

la2
I

with the current I inferred from the above equation to be

I = − H0l

(1 − F ) − 1/(ω2LC) + iR/(ωL)
(17.18)

As a result, the (relative) effective magnetic permeability associated with this medium will
be (in the direction, x, that the incident magnetic field is polarized)

μr = B/μ0

B/μ0 − Md
= 1 − F

1 − 1/(ω2LC) + iR/(ωL)
(17.19)

From Eq. (17.19) we can see that μ assumes negative values in the range: 1/
√

LC <

ωp < 1/
√

LC(1 − F ), where ωm0 = 1/
√

LC is the resonance frequency of the Lorentzian
variation of the medium’s magnetic permeability, and ωmp = 1/

√
LC(1 − F ) is the cor-

responding plasma frequency (where Re{μ} = 0). Crucially, we note that the resonant
wavelength (λm0) of the structure depends entirely on the rings’ effective inductance (L)

and capacitance (C), and can therefore be made considerably larger than the periodicity (a)

of the structure, thereby fully justifying its description as an effective medium.
Plot of real and imaginary parts of effective magnetic permeability is shown in Fig. 17.10

and the MATLAB code is in Appendix, Listing 17A.1.
The combination of long wires and SRR in a unit cell is shown in Fig. 17.11. The effect

of both results in a negative effective permittivity and permeability over the same frequency
band.

We finish this section by showing in Fig. 17.12 schematic plots of effective permittivity
(εeff ) and permeability (μeff ).
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Fig. 17.10 Real and imaginary parts of magnetic permeability.
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Fig. 17.11 Elementary cell of metamaterial formed by SRR and thin wire. The figure is taken, with permission of the Canadian
Association of Physicists (CAP), from an article by Wartak et al. [27].
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Fig. 17.12 (a) Permittivity of wire medium demonstrating plasma-like frequency dependent permittivity and (b) Frequency
response of effective permeability. The figure is taken, with permission of the Canadian Association of Physicists (CAP),
from an article by Wartak et al. [27].

17.4 Some applications of metamaterials

Materials with such unusual properties allow for unusual applications. We do not attempt
to review all of them; we just concentrate on a few interesting possibilities. We start with
the possibility of creating a so-called ‘perfect lens’.
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source focus refocus

RH LH RH

Fig. 17.13 Double focussing of a source with a planar double negative (left-handed) metamaterials slab surrounded by regular
(right-handed) dielectrics.

17.4.1 Perfect lenses

Until recently, it was thought that the manipulation of light is limited by the fundamental
law of diffraction to a relatively long wavelengths (say around 0.5λ). The sub-wavelength
details are carried by evanescent harmonics which decay exponentially and are also subject
to noise. A conventional lens only collects the propagating waves. The evanescent waves
are lost due to their decay.

A planar slab consisting of NIM with sufficient thickness can act as a lens, known
as Veselago lens. Such a slab lens with refractive index n = −1 placed in vacuum (see
Fig. 17.13) can resolve details of an object with subwavelength precision [11]. Detailed
mathematical analysis is discussed, for example, by Ramakrishna and Grzegorczyk [4] and
Cai and Shalaev [29].

To understand the problem, consider a slab of thickness d and refractive index of, e.g.
n = −1, surrounded by air. It will bring all rays emanating from a source to a double focus:
first, at a point inside the NIM slab, at a distance s = l < d, where l is the distance of the
source from the slab, and second at a point outside the slab, at a distance d − l. Hence, such
a slab acts like a lens, and is able to bring the rays radiated by a source to a focus outside
the slab, without reflections occurring at the media interfaces because the n = −1 slab is
impedance-matched to free space.

Evanescent waves are associated with the high spatial frequencies of the electromagnetic
waves created by source. They carry fine (subwavelength) features of the source. Therefore,
a NIM slab can, in principle, enable us to obtain the image of an object with ‘perfect’
resolution, containing all the subwavelength features of an object and overcoming the usual
diffraction limitations that characterize conventional lenses.

17.4.2 Stopped light in metamaterials

For decades scientists maintained that optical data cannot be stored statically and must be
processed and switched on the fly. The reason for this conclusion was that stopping and
storing an optical signal by dramatically reducing the speed of light itself was thought to
be unfeasible.

At present, some of the most successful slow-light designs based on photonic-crystals
(PhCs) [30] or coupled-resonator optical waveguides (CROWs) [31], can indeed slow
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a teff >a
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Fig. 17.14 Classical G-H shift in regular dielectrics. The figure is taken, with permission of the Canadian Association of Physicists
(CAP), from an article by Wartak et al. [27].

a 0<teff<aA ABB

Fig. 17.15 G-H shift in NIM forming central layer. The figure is taken, with permission of the Canadian Association of Physicists
(CAP), from an article by Wartak et al. [27].

down light efficiently by a factor of only 40; otherwise, large group-velocity-dispersion
and attenuation-dispersion occur; i.e. the guided light pulses broaden and the attainable
bandwidth is severely restricted.

Recently Tsakmakidis et al. [14] proposed a new method that can allow for a true
stopping of light in NIM. The stopping of light in the proposed configuration is associated
with a negative Goos-Hänchen (G-H) phase shift, a lateral displacement of light ray when
it is totally reflected at the interface of two different dielectric media. Classical G-H shift
between dielectrics having positive refractive indices is illustrated in Fig. 17.14.

In a structure where the central layer is formed by NIM, the G-H shift is reversed as it is
illustrated in Fig. 17.15.

To more precisely understand the manner in which light is decelerated in this structure,
let us imagine a ray of light propagating in a zig-zag fashion along a waveguide with a
negative-index (‘left-handed’) core. The ray experiences negative Goos-Hänchen lateral
displacements each time it strikes the interfaces of the core with the positive-index (‘right-
handed’) claddings, see Fig. 17.15. Accordingly, the cross points of the incident and reflected
rays will sit inside the left-handed core and the effective thickness of the guide will be
smaller than its natural thickness. It is reasonable to expect that by gradually reducing
the core physical thickness, the effective thickness of the guide will eventually vanish.
Obviously, beyond that point the ray will not be able to propagate further down, and will
effectively be trapped inside the negative index metamaterial (NIM) heterostructure, see
Fig. 17.16.

The authors of [14] proposed stopping a light pulse by varying the thickness of the
waveguide core to the point where the cycle-averaged power flow in the core and the
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a
teff = 0A=B

Fig. 17.16 G-H shift in NIM at critical thickness. The figure is taken, with permission of the Canadian Association of Physicists
(CAP), from an article by Wartak et al. [27].

cladding become comparable. At the degeneracy point, where the magnitudes of these
powers become equal, the total time-averaged power flow directed along the central axis
of the core vanishes. At this point the group (or energy) velocity goes to zero and the
path of the light ray forms a double light cone (‘optical clepsydra’) where the negative
GH lateral shift experienced by the ray is equal to its positive lateral displacement as it
travels across the core. Adiabatically reducing the thickness of the NIM core layer may
thus, in principle, enable complete trapping of a range of light rays, each corresponding to
a different frequency contained within a guided wavepacket.

This ability of metamaterial-based heterostructures to dramatically decelerate or even
completely stop [32] light under realistic experimental conditions, has recently led to a series
of experimental works [33], [34] that have reported an observation of so-called ‘trapped
rainbow’ light-stopping in metamaterial waveguides.

17.4.3 Cloaking (invisibility)

Unusual light-bending properties constitute a rather generic feature of metamaterials. Part
of the excitement surrounding these materials is that they could be engineered to ‘cloak’
objects from electromagnetic radiation such as light: that is, make them seem invisible at
specific frequencies. A metamaterial ‘invisibility’ cloak can be designed such that it does not
reflect waves back nor scatter them in other directions. Several methods were proposed to
make extended bodies invisible, such as those based on cancellation of scattering [35] or on
coordinate transformations. The method suggested by Pendry et al. [36] (see also Leonhardt
[12]) relies on controlling the paths of electromagnetic waves. It was applied to a spherical
volume and uses coordinate transformation that expels the paths of electromagnetic waves
(rays) from a spherical volume, squeezing them into a spherical shell around the volume
that is to be cloaked, thereby making it invisible to incident radiation, see Fig. 17.17. The
light rays smoothly avoid the cloaked object and flow around it like a fluid. They appear
to have properties of the free space when observed externally. The rays make a detour
around the hidden part of the device. On the left side they must arrive at the same time
as if they were propagating through empty space. Since in the cloaking region they travel
longer distances, their phase velocity must exceed c. This is in principle possible [37] (for
a specific frequency).
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Fig. 17.17 The rays go around the inner object and then go to the eye. An observer at the left of the cloak would see the point
source.

To introduce the relevant transformation, one starts with a mathematical point (placing it
at the origin of a coordinate system), which is obviously invisibly small. To hide an extended
object, say a sphere of radius R1, we transform the mathematical point at the origin into a
sphere of radius R1 and the vicinity of the sphere into another sphere of radius R2 > R1.
The transformation which does this is

r′ = R1 + R2 − R1

R2
r, θ ′ = θ, φ′ = φ (17.20)

Maxwell’s equations are form-invariant to coordinate transformations like the one above.
Only the components of μ and ε are affected by the transformation. They become spatially
varying and anisotropic tensors. Their forms were determined by Pendry et al. [36] and for
R1 < r < R2 are

ε′
r′ = μ′

r′ = R2

R2 − R1

(
r′ − R1

)2

r′

ε′
θ ′ = μ′

θ ′ = R2

R2 − R1
(17.21)

ε′
φ′ = μ′

φ′ = R2

R2 − R1

Inside the sphere with radius R1 the permittivity and permeability can be arbitrary, whereas
the space between the spheres is filled with a material having the permittivity and per-
meability tensors determined by Eqs. (17.21). As a result, any object inside the sphere
with radius r < R1 is concealed. These conclusions follow from exact manipulations of
Maxwell’s equations and are not restricted to a ray approximation.

17.4.4 Optical black holes

By extending the concept behind the invisibility cloak, one can speculate on the possibility
of creating an optical analogue of a black hole. In this concept, by proper design of a
new class of metamaterials, one can expect to concentrate and trap light waves, similarly
to what can happen in a ‘black hole’, see Fig. 17.18. In such a system, light will be
permanently trapped. Such a black hole design has recently been proposed by Narimanov
and Kildishev [38]. Numerical simulations showed a highly efficient light absorption. The
electromagnetic black hole was built recently [39], [40] and it operates at microwave
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Fig. 17.18 Metamaterial black hole fabricated from properly crafted gradient-index material.

frequencies. The structure is composed of 60 concentric layers, and each layer is a thin
printed circuit board etched with a numbers of subwavelength unit structures on one side and
coated with 0.018 mm thick copper on the other side. The permittivity changes radially in
the shell of the microwave black hole, and hence the unit cells are identical in each layer but
have different sizes in adjacent layers. The structure can efficiently absorb electromagnetic
waves coming from all directions owing to the local control of electromagnetic fields. It is
expected that such a microwave black hole could find important applications in solar-light
harvesting, thermal emitting, and cross-talk reduction in microwave circuits and devices.
These specially designed analogues of black holes could also be used for controlling,
slowing and trapping electromagnetic waves [40], as well as for investigating some of the
more exotic physics associated with celestial mechanics.

17.5 Metamaterials with an active element

This last section is intended to briefly discuss the problem of losses in metamaterials and
how to compensate for them.

As mentioned before, metamaterials show large losses which at present are orders of
magnitude too large for practical applications and are considered as an important factor
limiting practical applications of metamaterials. For example, detailed analytical studies
show that losses limit the superresolution of a theoretical superlens [41]. There was some
controversy whether loss elimination can be feasible [42], but as shown by Webb and Thylen
[43] it is possible to completely eliminate losses in metamaterials.

Very recently, several computational [44], [45], [46] and experimental [47] works have
demonstrated that optical losses can be fully overcome in realistic negative-refractive-
index metamaterials. The specific loss-free design considered in [44] and [47] consisted of
two metallic films perforated with small rectangular holes (‘fishnets’), and with an active
medium (laser dye) spacer between two films. Additionally, several reports [48], [49],
[50] speculated about possible compensation for losses in metamaterials by introducing a
gain element. For example, Wegener et al. [49] formulated a simple model where gain is
represented by a fermionic two-level system which is coupled via a local-field to a single
bosonic resonance representing the plasmonic resonance of the metamaterial. Also recently,
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Fang et al. [50] described a model where the gain system is modelled by a generic four-
level atomic system. They conducted numerical analysis using the FDTD technique. Gain
material was introduced in the gap region of the split-ring resonators (SRR). The system
had a magnetic resonance frequency at 100 THz. Some other reports of the design and
analysis of active metamaterials are by Yuan et al. [51] and Sivan et al. [32].

17.6 Annotated bibliography

We finish this short review by highlighting some recently published textbooks where further
useful information about metamaterials can be found. We start with the most recent:

• T. J. Cui, D. R. Smith, R. Liu, eds., Metamaterials. Thory, Design, and Applications,
Springer, 2010.

Concentrates on the recent progress in metamaterials, in particular the optical trans-
formation theory, invisible cloaks, new type of antennas and optical metamaterials.

• W. Cai and V. Shalaev, Optical Metamaterials. Fundamentals and Applications, Springer,
2010.

Details recent advances on optical metamaterials from fundamental aspects to current
implementations.

• F. Capolino, ed., Metamaterials Handbook. Vol. 1: Theory and Phenomena of Metama-
terials, Vol. 2: Applications of Metamaterials, CRC Press, Boca Raton, 2009.

A very broad collection of topics covered by many authors.
• L. Solymar and E. Shamonina, Waves in Metamaterials, Oxford University Press, 2009.

Offers a comprehensive treatment of all aspects of research in this field at a level
that should appeal to final year undergraduates in physics or in electrical and electronic
engineering.

• S. A. Ramakrishna and T. M. Grzegorczyk, Physics and Applications of Negative Refrac-
tive Index Materials, SPIE and CRC Press, 2009.

Discussion of principles of negative refraction and comparison with other media that
exhibit similar properties.

Appendix 17A: MATLAB listings

In Table 17.1 we provide a list of MATLAB files (in fact, only one file) created for Chapter 17
and a short description of its function.

Table 17.1 List of MATLAB functions for Chapter 17.

Listing Function name Description

17A.1 ChenFig3.m Reproduces Fig. 3 from the paper by Chen et al. [18]
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Listing 17A.1 Program ChenFig3.m.

% File name: ChenFig3.m

% Matlab code to plot Fig.3 of Chen et al

% using equivalent circuits approach

% Plot Fig3. of Chen et al, JAP,v.100, 024915 (2006)

clear all

% Fundamental constants

epsilon_zero=8.8542d-12; % epsilon zero (F/m)

mu_zero = 4*pi*10^-7; % mu zero (H/m)

%

% Geometrical dimensions, see Fig.1 of Chen

r = 2.0; % internal radius = 2 mmm

a = 5.0; % distance between elements = 5 mm

l_vert = 1.0; % vertical separation = 1 mm

L_c = 1.0; % Dimension of capacitor = 1 mm

t = 0.8; % Dimension of capacitor = 0.8 mm

d_c = 0.2; % Dimension of capacitor = 0.2 mm

eps_r = 4.0; % permittivity of the gap

sigma = 10^-6; % resistance per unit length

%

% Intermediate parameters

F = pi*r^2/(a^2); % fractional volume (dimensionless)

C_g = (epsilon_zero*eps_r*L_c*t/d_c)*10^-3; % gap capacitance unit (F)

L = (mu_zero*pi*r^2/l_vert)*10^-3; % Eg.(2) unit (H)

% pause

R = 2*pi*r*sigma; % resistance of the ring

C = C_g/2.0; % total capacitance in the loop

%

% Determination of frequency range

N_max = 200; % number of points for plot

% in the interval [0,10] GHz

freq_GHz = linspace(0,10,N_max); % creation of frequency arguments

freq_Hz = freq_GHz*10^9;

omega_Hz = 2.0*pi*freq_Hz;

%

tt = 1./(omega_Hz.^2*L*C);

ttt = R./(omega_Hz.*L);

temp = 1./tt + 1i*ttt;

%

% effective permeability without coupling M, Eq.(9) of Chen

extra = F./(1. + F - tt + 1i*ttt);

%

mu_eff = 1. - F./(1. + F - tt + 1i*ttt);

result_re = real(mu_eff);

result_im = imag(mu_eff);
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%

% plot(freq_GHz,result_im);

% pause

plot(freq_GHz,result_re,freq_GHz,result_im,’.’,’LineWidth’,1.5);

axis([0 10 -20 20])

xlabel(’Frequency (GHz)’,’FontSize’,14);

ylabel(’Effective permeability’,’FontSize’,14);

set(gca,’FontSize’,14); % size of tick marks on both axes

grid

pause

close all
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A Appendix A Basic MATLAB

In this Appendix we discuss basic elements of MATLAB, including code design and
specific examples of programming in MATLAB. Some introductory books are: MATLAB
Programming for Engineers by Chapman [1], MATLAB. An Introduction with Applications
by Gilat [2] and Mastering MATLAB 5. A Comprehensive Tutorial and Reference by
Hanselman and Littlefield [3] – a reference book with a broad range of examples.

MATLAB can operate in two modes:

1. from the command window (interactive mode), where one introduces commands at
MATLAB prompt

2. from the m-file (script). All commands are written in a file (with *.m extension). Such
files are activated (run) by typing their names (without an extension) at MATLAB
prompt. Each *.m file can call several other *.m files.

We would always advocate using m-files. They can be reused, combined with other
programs, etc. In short, all code can be used in both ways.

The Appendix is divided into several sections, each dealing with different aspects of
MATLAB. In the code provided, we put many comments describing its workings. We
suggest that in each case the reader runs the code and analyses its outputs.

In Table A.1 we provide a list of MATLAB files created for this Appendix A and a short
description of each function.

Before we start a more detailed description of MATLAB and its rules, we will introduce
and run sessions dealing with fundamental MATLAB issues.

Table A.1 List of MATLAB functions for Chapter A.

Listing Function name Description

A.1 intro session.m Preliminary use of MATLAB
A.2 memory.m Compares execution times for various memory handling
A.3 loops.m Compares execution times for various loops
A.4 basic 2D plot.m Basic 2D MATLAB plot
A.5 sub plots.m Introduces subplots
A.6 pview.m 3D plot
A.7 f ile write.m Writes to a file
A.8 f ile read.m Reads from file
A.9 deriv.m Numerical differentiation using MATLAB function di f f ()
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A.1 Working session withm-files

Here, we will illustrate preliminary use of MATLAB using the m-file. The full code named
introsession.m is shown below. We suggest run this code and observe the results. Try also
to modify it and analyse the outputs. We put many comments inside the code to explain its
operation.

% File name: intro_session.m

%----------------------- Initialization --------------------------

clear all

’its me’ % outputs text on screen

pause

d=6; % assigns value 6 to variable d

C=[1 2 3; 3 2 1; 4 5 6];% defines matrix C

C

who % lists defined matrices

pause

whos % lists the matrices and their sizes

pause

%------------------ Colon operator -------------------------------

x =C( : , 3) % selects third column of C matrix

pause

format long % shows variables on a screen in a long format

% format short

t = 0:0.1:2;

t % lists value of t

pause

t’ % transpose operator, creates vertical vector

pause

%------------- Special values and special matrices -----------------

pi % shows the value of pi

1i

Inf

clock % year, month, day, hour, minute, seconds

pause

date % date in string format

eps % the smallest number on my computer

pause

A = zeros(4) % creates 4x4 matrix consisting of zeros

B = zeros(4,3) % creates 3x4 matrix consisting of zeros

pause

A1 = ones(3) % creates 3x3 matrix consisting of ones

B1 = ones(4,3) % creates 3x4 matrix consisting of ones
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G = ones(1,5) % creates vector, length 5 consisting of ones

pause

D = eye(3) % creates identity matrix

z=input(’input z’);

z % shows inputed number

pause

%------------- Prints a short table of cos values ----------------

clc % clears screen

n = 21; x = linspace(0,1,n); y = cos(2*pi*x);

disp(’ ’)

disp(’k x(k) cos(x(k))’)

disp(’------------------------’)

for k=1:n

degrees = (k-1)*360/(n-1);

fprintf(’ %2.0f %5.0f %8.3f \n’,k,degrees,y(k));

end

disp( ’ ’);

disp(’x(k) is given in degrees.’)

pause

%------------- Output Options ------------------------------------

a = 1.23456789;

format short

a % display a in short format

pause

format long

a % display a in long format

disp(a) % another display of a in long format

fprintf(’Its me,\n %4.24f ’, a)

pause

%--------------------- Data files ----------------------------

save data_1 x y; % as *.mat file

pause

load data_1;

z=x’

save data_5.dat z /ascii;

pause

%------------- Scalar and array operations -----------------------

clear all

2+5

A=[1 2 3; 3 2 1; 4 5 6]; B=[2 3 4; 4 5 6; 5 6 7];

%

C1=A+B % addition of two matrices

C2=A*B % matrix multiplication
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C3=A.*B % element by element multiplication

C4=A./B % element by element division

C5=A.^B % element by element exponentiation

pause

A.2 Basic rules

Several of the special symbols used in MATLAB are listed in Table A.2. All variables
in MATLAB are treated as matrices. Each operation is therefore considered as a matrix
operation and as such has been optimized for vector and matrix operations. For the best
use, one should vectorize algorithms and loops and also reserve in advance memory for all
objects (matrices). We summarize basic rules and illustrate them with preliminary examples.

• vectorization of loops. This means replacement of for and while loops by proper vector
or matrix notation.

Suppose that we need to generate 101 values of sin function in the interval from 0 to 1.

It can be done in two ways:
1. using f or loop (no vectorization)

t0 = clock; for n = 0:0.001:1

x = sin(n)

end

time_no_vect = etime(clock,t0)

Run time on my computer is time no vect = 0.2300.

2. applying vectorization as shown below

t0 = clock;

n = 0:0.001:1;

Table A.2 Some of the special symbols used in MATLAB.

Symbol Description

= assigning value
[] construction of an array
+ array addition
− array subtraction
.∗ array multiplication
∗ matrix multiplication
./ array right division
′ transpose operator
% beginning of a comment
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x = sin(n);

time_vect = etime(clock,t0);

Now, run time on the same machine is time vect = 0.0810. In order to determine
time difference between start and end points, we used MATLAB function etime, which
accurately computes time differences over many orders of magnitude.

• reserve memory.
• use colon (:) notation
• limit using f or in loops
• use m-files with functions instead of scripts
• provide extensive comments
• create descriptive names for variables
• use dot (.) notation

Some of the above rules will be discussed now in more detail.

A.3 Some rules about good programming in MATLAB

Here we summarize several general rules of programming including those specific to
MATLAB (but not solely).

1. Always comment your program, so another person (even yourself after several months)
can understand it.
• use meaningful variable names,
• use units consistently in your formulas or (better) work with dimensionless (or scaled)

variables.
2. All calculations in MATLAB can be either performed in the Command Window or m-

files can be created containing the same source code as typed in the Command Window.
m-files play the role of functions or subroutines.

3. A semicolon at the end of all MATLAB statements suppresses printing the assigned
values on the screen, in the Command Window. This speeds up program execution.

A.3.1 Preallocate memory

Always preallocate memory for the generated matrix. It increases execution speed because
MATLAB does not need to increase matrix size after determining each element. Run
and experiment with program memory res.m shown below. A significant difference in the
execution time can be observed.

% File name: memoryMSW.m

% comparison of execution time with and without memory reservation

clear all

% regular loop without memory allocation



411 Some rules about good programming in MATLAB

% we use functions tic and toc to measure elapsed time

N = 10000;

tic; % start timer

n = 0;

for x = 1:N

n = n + 1;

y(n) = cos(2*pi*x);

end

toc % measure elapsed time since last call to tic

%

% the same loop with preallocated memory

tic

n = 0;

y =zeros(1,N);

for x = 1:N

n = n + 1;

y(n) = cos(2*pi*x);

end

toc

A.3.2 Vectorize loops

MATLAB has been designed for vectorial operations. They execute much faster than regular
loops. The comparison of both methods is illustrated in the program loops.m shown below.
We use MATLAB functions tic and toc to measure elapsed time.

% File name: loops.m

% comparison of execution time for regular loop and vector loop

clear all

% regular loop is executed first

% we use functions tic and toc to measure elapsed time

tic; % start timer

n = 0;

for x = 1:0.1:1000

n = n + 1;

y(n) = cos(2*pi*x);

end

toc % measure elapsed time since last call to tic

%

% the same loop is vectorized below

tic

x = 0:0.1:1000;

y = cos(2*pi*x);

toc
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A.4 Basic graphics

Very good quality graphics is one of the reasons for MATLAB’s popularity. Here we
summarize the basic rules.

A.4.1 Basic 2D plot

A basic plot is produced in two steps:
1. Creating two arrays of equal lengths, one containing values of independent variable x

and the other containing dependent variable y = f (x).
Creation of an array of values of independent variable can be done in several ways. Below

we created arrays of points ranging from 0 to 2π using different methods.

x1 = 0:pi/100:2*pi; % 100 evenly spaced points

x2 = [0:0.25:2*pi]; % predefined spacing of 0.25

x3 = linspace(0,2*pi,100); % 100 evenly spaced points

2. Inputting created arrays x and y into the MATLAB plot function.
The steps are illustrated in the MATLAB program below.

clear all % clears all variables in memory

x = 0:pi/100:2*pi; % creates array containing independent variable

y = cos(2*x); % creates array containing function values

plot(x,y) % creates generic plot, without description

pause % pause, to view the plot

close all % closes all figures

A.4.2 Two-dimensional plots

The main function used here is plot. It can be called up with different number of arguments

plot(y) plot(x,y plot(x,y,’line_type’)

Here, we illustrate several ways to use it.
Listing: Basic 2D plot.
Here we show creation of the simplest two-dimensional plot by plotting function y = 3x,

adding basic description and grid. The graph generated by basic 2D plot.m file is shown
in Fig. A.1.

MATLAB code is shown below. It explains creation of a basic two-dimensional graph.

% File name: basic_2D_plot.m

% Basic plotting of MATLAB are explained.

clear all

% Generate data for plot

n = 100; % number of plotting points

x = linspace(0,10,n); % generates points on x-axis
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Fig. A.1 Basic two-dimensional plot.

y = 3*x; % function to be plotted

% Creation of basic plot and adding description

h = plot(x,y); % basic plot

pause % stop to analyse plot

title(’Plot of function 3*x’,’FontSize’,14) % adding title

xlabel(’x value’,’FontSize’,14);% adding text on x-axis and size of x label

ylabel(’y value’,’FontSize’,14);% adding text on y-axis and size of y label

%

pause(2) % stop for 2 seconds

grid % adding grid

set(h,’LineWidth’,1.5); % new thickness of plotting lines

set(gca,’FontSize’,14); % new size of tick marks on both axes

%

pause % final stop

close all % closing all windows

Listing: Creating subplots.
Function subplot (2,2,1) divides the Figure window into 2 vertical and 2 horizontal

windows and places the current plot into window 1 (top, left). In the remaining code other
types of plots are created and placed in the remaining subwindows.

The results of sub plots.m are shown in Fig. A.2. MATLAB code is shown below. It
explains the creation of subplots.

% File name: sub_plots.m

% Creation of subplots with different properties.

clear all

% Generate data for plot
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Fig. A.2 Creation of subplots with different properties.

n = 100; % number of plotting points

x = linspace(0,10,n); % generates points on x-axis

y = 3*x.^2; % function to be plotted

subplot(2,2,1) % division of Figure window

h1 = plot(x,y); % basic plot shown in top-left window

set(gca,’FontSize’,10); % size of tick marks on both axes

pause % stop to contemplate effects

% The above function is now plotted on different log scales

% and plots are placed in the remaining sub-windows

subplot(2,2,2)

h2 = semilogx(x,y); % log scale on x-axis

set(gca,’FontSize’,14); % size of tick marks on both axes

subplot(2,2,3)

h3 = semilogy(x,y); % log scale on y-axis

set(gca,’FontSize’,15); subplot(2,2,4)

h4 = loglog(x,y); % log scale on both axes

set(gca,’FontSize’,16); % size of tick marks on both axes

%

% Below we set new thicknesses of plotting lines

set(h1,’LineWidth’,1.5); set(h2,’LineWidth’,2);

set(h3,’LineWidth’,2.5); set(h4,’LineWidth’,3.5);

pause

close all

Types of lines (both colours and symbols) are summarized in Table A.3. Colours are
automatically selected by MATLAB.
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Table A.3 Colours and symbols used to create lines.

Symbol Colour Symbol Type of line

y yellow . point
m magenta o circle
c cyan x shown symbol
r red + shown symbol
g green * shown symbol
b blue - continuous
w white : shown symbol
k black -. dash-dotted line
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Fig. A.3 A 3D plot.

A.4.3 Some 3D plots

We show how to put several 2D plots on one graph and make it look like a 3D plot. The
code is shown below and the generated graph is as Fig. A.3.

% File name: pview.m

% Allows multiple 2D plots to be stacked next to one another

% along one dimension; also provides 3D view of all plots

clear all

x = linspace(0,3*pi).’; % x-axis data

Z = [sin(x) sin(2*x) sin(3*x) sin(4*x)];

% Code below gives each curve different value on y-axis

Y = [zeros(size(x)) ones(size(x))/3 (2/3)*ones(size(x)) ones(size(x))];

plot3(x,Y,Z,’LineWidth’,1.5)

grid on

xlabel(’x’,’FontSize’,14)
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ylabel(’y’,’FontSize’,14)

zlabel(’z’,’FontSize’,14)

set(gca,’FontSize’,14); % size of tick marks on both axes

view(-40,60)

pause

close all

A.5 Basic input-output

A.5.1 Writing to a text file

To save the results of some calculations to a file in text format requires the following steps:

a) Open a new file, or overwrite an old file, keeping a ‘handle’ for the file.
b) Print the values of expressions to the file, using the file handle.
c) Close the file, using the file handle.

The file handle is just a variable which identifies the open file in your program. This
allows you to have any number of files open at any one time.

% File name: file_write.m

% open file

fid = fopen(’myfile.txt’,’wt’); % ’wt’ means "write text"

if (fid < 0)

error(’could not open file "myfile.txt"’);

end;

for i=1:10 % write to file

fprintf(fid,’Number = %3d Square = %6d\n’,i,i*i);

end;

fclose(fid); % close the file

A.5.2 Reading from a text file

To read some results from a text file is straightforward if you just want to load the whole
file into the memory. This requires the following steps:

a) Open an existing file, keeping a ‘handle’ for the file.
b) Read expressions from the file into a single array, using the file handle.
c) Close the file, using the file handle.

The fscanf() function is the inverse of fprintf(). However, it returns the values it reads as
values in a matrix. You can control the ‘shape’ of the output matrix with a third argument.

% File name: file_read.m

% open file
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fid = fopen(’myfile.txt’,’rt’); % ’rt’ means "read text"

if (fid < 0)

error(’could not open file "myfile.txt"’);

end;

% read from file into table with 2 rows and 1 column per line

out = fscanf(fid,’Number = %d Square = %d\n’,[2,inf]);

fclose(fid); % close the file

xx = out’; % convert to 2 columns and 1 row per line.

xx % output results to screen

A.6 Numerical differentiation

We will illustrate numerical differentiation using MATLAB function diff(x). It computes
the difference between elements in an array.

Given a vector x = {...xk−1, xk, xk+1...} containing points xk , one can derive approxima-
tions to the first derivative f ′(x) = dy

dx of the function y = f (x). Three basic possibilities
are [4]

Backward difference, f ′(xk ) ≈ f (xk ) − f (xk−1)

xk − xk−1
(A.1)

Forward difference, f ′(xk ) ≈ f (xk+1) − f (xk )

xk+1 − xk
(A.2)

Central difference, f ′(xk ) ≈ f (xk+1) − f (xk−1)

xk+1 − xk−1
(A.3)

To compute first derivative we use MATLAB function diff(x), which determines the
difference between adjacent values of the vector x. The derivative is then determined as

dy = diff(y)./diff(x);

The returned array of differences contains one less element than the original array. One
should observe that trimming the last value of x produces a forward difference and trimming
the first value gives a backward difference.

To obtain the second derivative, we apply the above algorithm a second time. Using
backward difference, one has

f ′′(xk ) ≈ f ′(xk ) − f ′(xk−1)

xk − xk−1
(A.4)

% File name: deriv.m

% Program evaluates first and second derivatives and plots results

clear all

font_size = 18;

N_max = 190;

x = linspace(0,2,N_max);
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y1 = sin(pi.*x);

h1 = plot(x,y1); % plot of original function

xlabel(’x’,’FontSize’,font_size);

ylabel(’Original function’,’FontSize’,font_size);

grid on

pause

%

temp1 = y1;

dy1 = diff(temp1)./diff(x);

xnew1 = x(1:length(x)-1);

h2 = plot(xnew1,dy1); % plots first derivative

xlabel(’x’,’FontSize’,font_size);

ylabel(’First derivative’,’FontSize’,font_size);

grid on

pause

%

temp2 = dy1;

dy2 = diff(temp2)./diff(xnew1);

xnew2 = xnew1(1:length(xnew1)-1);

h3 = plot(xnew2,dy2); % plots second derivative

xlabel(’x’,’FontSize’,font_size);

ylabel(’Second derivative’,’FontSize’,font_size);

grid on

pause

close all

A.7 Review questions

1. How are variables represented in MATLAB?
2. What is the role of the semicolon (;) operator in MATLAB?
3. What does MATLAB function linspace(0, 1, 10)?
4. What is the role of dot (.) operator in MATLAB?
5. What does MATLAB function subplot(3, 2, 1)?
6. Perform a polar plot.
7. Estimate π using the random method.
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B Appendix B Summary of basic numerical methods

In a book like this, the development of computer programs for various tasks and also
execution of simulations for different processes and devices, plays an essential role. The
fundamentals of many computer programs are supported by numerical methods. Therefore,
in this Appendix we summarize main elements of numerical analysis with an emphasis on
methods related to the development of programs used in this book, and also to understanding
of operation of those programs.

There are many excellent textbooks devoted to numerical analysis. We found the books
by Koonin [1], DeVries [2], Garcia [3], Gerald and Wheatley [4], Rao [5], Heath [6] and
Recktenwald [7] of significant pedagogical value. The books by Press et al. [8] stand on
their own as an excellent source of practical computer codes ready to use.

We concentrate on description and implementation of some practical numerical methods
and not on the problems which those methods are typically used for. We start our discussion
with a summary of methods of solving nonlinear equations.

There are many textbooks aimed to the introduction of numerical methods and their ap-
plications. Some of the most popular are: Applied Numerical Analysis Using MATLAB by
Fausett [9], Numerical Methods for Physics by Garcia [3], Introduction to Scientific Com-
puting by van Loan [10], Advanced Engineering Mathematics with MATLAB by Harman
et al. [11], A Friendly Introduction to Numerical Analysis by Bradie [12].

They contain extensive code written in MATLAB (sometimes also in other languages)
which should help with understanding and could be easily adopted to a particular problem.

Our aim here is to summarize some of the numerical methods and techniques which are
directly relevant to the problems discussed in the main text.

In Table B.1 we provide a list of MATLAB files created for this Appendix B and a short
description of each function.

B.1 One-variable Newton’s method

The very efficient and popular method, also known as Newton-Raphson method, is used to
find roots. Here we establish its principles by showing how to find root x∗ for an arbitrary
function of single variable f (x) such that

f (x∗) = 0 (B.1)

420
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Table B.1 List of MATLAB functions for Appendix B.

Listing Function name Description

B.1 muller.m Function implements Muller’s method
B.2 dmuller.m Driver to test Muller’s method
B.3 f muller.m Test functions for Muller’s method
B.4 ode single.m Driver for RK method (single eq.)
B.5 f unc ode.m Function called by ode single.m
B.6 f unc ode sys.m Function called by ode sys.m
B.7 ode sys.m Driver for RK method (system of eqs.)
B.8 square wave.m Implements Fourier series for square wave
B.9 FT example 1.m Preliminary Fourier transform
B.10 FT example 2.m Testing Fourier transform in MATLAB

x

f(x)

x1x2x*

Fig. B.1 Graphical illustration of Newton’s method.

The Newton method is based on a linear approximation of the function by employing a
tangent to this function at a particular point. In Fig. B.1 we provide graphical illustration
of Newton’s method.

One starts from an initial guess point, say x1, which should be not too far from root x∗.
Evaluating tangent at point x1 and its intersection with the x axis creates new point x2 and
the process is repeated. The relevant mathematical formulas are obtained by writing the
Taylor expansion of f (x) around initial guess x1:

f (x∗) = f (x1 − δx) = f (x1) − df (x1)

dx
δx + O(δx2) (B.2)

In the previous, f (x∗) = 0. Solving for δx, one finds

δx = f (x1)

f ′(x1)

From Fig. B.1 one observes that point x2 can be obtained as

x2 = x1 − δx = x1 − f (x1)

f ′(x1)
(B.3)

The procedure can be generalized and for arbitrary step n, one has

xn+1 = xn − f (xn)

f ′(xn)
, n = 1, 2, . . . (B.4)
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B.2 Muller’s method

Muller’s method is an efficient technique of finding both real and complex roots of a
scalar-valued function f (x) of a single variable x where there is no information about
its derivatives. It uses quadratic interpolation involving three points [13]. The method is
described in several textbooks, including Atkinson [14] and Fausett [9].

In order to illustrate how the method works, let us start with three initial guesses x0, x1, x2.
By applying Muller’s method, a new improved approximate point x3 is determined. In this
method one uses quadratic function y(x) which is used in fitting original function f (x).
Function y(x) is of the form

y(x) = a (x − x2)
2 + b (x − x2) + c (B.5)

It contains three constants a, b, c which can be determined by evaluating Eq. (B.5) at points
x0, x1, x2. One obtains

for x = x2 f (x2) = c

for x = x1 f (x1) = a (x1 − x2)
2 + b (x1 − x2) + c

or f (x1) − f (x2) = a (x1 − x2)
2 + b (x1 − x2)

for x = x0 f (x0) = a (x0 − x2)
2 + b (x0 − x2) + c

or f (x0) − f (x2) = a (x0 − x2)
2 + b (x0 − x2)

Introduce notation u0 = x0 − x2 and u1 = x1 − x2, which allows us to write the above
equations as

f (x0) − f (x2) = a u2
0 + b u0 (B.6)

f (x1) − f (x2) = a u2
1 + b u1 (B.7)

The system of Eqs. (B.6) and (B.7) can be solved by any standard method and one obtains

a = u1
[

f (x0) − f (x2)

]− u0
[

f (x1) − f (x2)

]
(x0 − x2) (x1 − x2) (x0 − x1)

b = u2
0

[
f (x1) − f (x2)

]− u2
1

[
f (x0) − f (x2)

]
(x0 − x2) (x1 − x2) (x0 − x1)

With the above information at hand and using Eq. (B.5), one can determine roots of

y(x) = 0

in order to generate a new approximation of the root of f (x). One obtains

x − x2 = −b ± √
b2 − 4ac

2a
(B.8)

Out of the above two roots we choose the one which is closest to x2. To avoid round-off errors
due to subtraction of nearly equal numbers, one multiplies numerator and denominator of
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(B.8) by −b ∓ √
b2 − 4ac and obtains (we call new solution x by x3)

x3 − x2 =
(
−b ± √

b2 − 4ac
) (

−b ∓ √
b2 − 4ac

)
2a
(
−b ∓ √

b2 − 4ac
)

= − 2c

−b ± √
b2 − 4ac

(B.9)

Once x3 is determined, the ‘oldest’ point x0 is ignored by setting x0 = x1, x1 = x2, x2 = x3

and the process is repeated. MATLAB implementation of Muller’s method using the above
algorithm is shown below.

% File name: muller.m

function out = muller(f, x0, x1, x2 , epsilon, max)

% Finds zeroes using Muller’s method, good for complex roots.

% Variable description:

% out - result of search

% x1,x2,x3 - previous guesses

% epsilon - tolerance

% max - max number of iterations

%

y0 = f(x0);

y1 = f(x1);

y2 = f(x2);

iter = 0;

while (iter <= max)

iter = iter + 1;

a =( (x1 - x2)*(y0 - y2) - (x0 - x2)*(y1 - y2)) / ...

( (x0 - x2)*(x1 - x2)*(x0 - x1) );

%

b = ( ( x0 - x2 )^2 *( y1 - y2 ) - ( x1 - x2 )^2 *( y0 - y2 )) / ...

( (x0 - x2)*(x1 - x2)*(x0 - x1) );

%

c = y2;

%

if (a ~= 0)

disc = b*b - 4*a*c;

q1 = b + sqrt(disc);

q2 = b - sqrt(disc);

if (abs(q1) < abs(q2))

dx = - 2*c/q2;

else

dx = - 2*c/q1;

end

elseif (b ~= 0)

dx = - c/b;

end
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x3 = x2 + dx;

x0 = x1;

x1 = x2;

x2 = x3;

%

y0 = y1;

y1 = y2;

y2 = f(x2);

%

if (abs(dx) < epsilon)

out = x2; break;

end

end

Driver for the Muller method is shown below:

% File name: dmuller.m

% Driver to test Muller’s method

clear all

format short

max = 100;

epsilon = 1e-6;

% starting points

x1 = 0.5;

x2 = 1.5;

x3 = 1.0;

% call to Muller’s method

out = muller(@fmuller, x1, x2, x3 , epsilon, max)

Test functions for the Muller method are shown below. One can make appropriate choices.

% File name: fmuller.m

function out = fmuller(x)

% Test functions for Muller’s method

out = x.^6 - 2;

%out = x.^10 - 0.5;

%out = x - x.^3/3;

%out = x.^3 - 5*x.^2 + 4*x;

B.2.1 Tests of Muller’s method

Using the above functions, we tested Muller’s algorithm on two functions:

1. calculations of 6
√

2, after Fausett [9]. We define function f (x) = x6 − 2, and assume
starting values to be: x0 = 0.5, x1 = 1.5, x2 = 1.0. Obtained solution is x = 1.1225.
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2. finding root of f (x) = ex + 1 = 0. The analytical method gives x = iπ . Assuming
starting values x0 = 1, x1 = 0, x2 = −1, one obtains from Muller’s method x =
−0.0000 + 3.1416i.

B.3 Numerical differentiation

Very often scientific and engineering problems are formulated in terms of differential
equations. To solve them numerically, we need to establish schemes to replace derivatives
by finite differences.

A typical scientific or engineering problem is described by the second-order differential
equation. Examples include Newton’s second law m

..
x = F , or Laplace’s equation V ′′(x) =

0. General second-order differential equation is written as

d2y(x)

dx2
+ a(x)

dy(x)

dx
= b(x)

with a(x) and b(x) known functions. The above can be rewritten as two first-order equations:

dy(x)

dx
= z(x)

dz(x)

dx
= b(x) − a(x)z(x)

where z(x) is a new variable. The process can be generalized for a differential equation
of arbitrary order, say n − th order, and when applied, results in n first-order differential
equations, as

dyi(x)

dx
= fi(x, y1, y2, . . . yn), i = 1, 2, . . . n

where the functions fi on the right-hand side are known.
In order to have a well-defined mathematical problem, the above set of equations must

be supplemented by boundary (or initial) conditions. Boundary conditions are algebraic
conditions on the value of the functions yi to be satisfied at discrete specified points, but
not between those points.

The (first) derivative of a function f (x) is defined as

df (x)

dx

∣∣∣∣
x0

= f ′(x0) = lim
x→x0

f (x) − f (x0)

x − x0

For a finite (and nonzero) value of �x = x−x0, the above derivative can be approximated
as

f ′(x0) ≈ f (x) − f (x0)

�x

In Table B.2 we summarize common finite-difference formulas.
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Table B.2 Summary of common finite-difference formulas.

Type of approximation Formula Truncation error

Forward differences f ′
i = fi+1 − fi

h
O(h)

f ′′
i = fi+2 − 2 fi+1 + fi

h2

Backward differences f ′
i = fi − fi−1

h
O(h)

f ′′
i = fi − 2 fi−1 + fi−2

h2

Central differences f ′
i = fi+1 − fi−1

2h
O(h2)

f ′′
i = fi+1 − 2 fi + fi−1

h2

xxi xi+1xi-1 xi+2
xi-2

fi fi+1fi-1 fi+2fi-2

f(x)

Fig. B.2 Illustration used in determining derivatives.

B.3.1 Numerical differentiation using Taylor’s series expansion

We want to determine a derivative of function f (x) at point xi and also its second derivative.
Using notation from Fig. B.2, we write Taylor expansions

fi+1 = fi + h f ′
i + 1

2
h2 f ′′

i + 1

6
h3 f ′′′

i + O(h4) (B.10)

fi−1 = fi − h f ′
i + 1

2
h2 f ′′

i − 1

6
h3 f ′′′

i + O(h4) (B.11)

where the following notation has been used:

fn = f (xn), xn = n · h, n = 0,±1,±2, . . .

All numerical schemes defining the first derivative are derived from the above equations.
From Eq. (B.10) we obtain the forward formula

f ′
i = fi+1 − fi

h
+ O(h)

From Eq. (B.11) we obtain the backward formula

f ′
i = fi − fi−1

h
+ O(h)
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xxi
xi+1xi-1

fi

f i+1

fi-1

f(x)

h h

Fig. B.3 Illustration of interpolation process.

Subtracting both, we obtain the central formula

f ′
i = fi+1 − fi−1

2h

Taylor expansion for next points (i ± 2) gives

fi+2 = fi + 2h f ′
i + 1

2
(2h)2 f ′′

i + 1

6
(2h)3 f ′′′

i + O(h4) (B.12)

and

fi−2 = fi − 2h f ′
i + 1

2
(2h)2 f ′′

i − 1

6
(2h)3 f ′′′

i + O(h4) (B.13)

Multiplying Eq. (B.10) by 2 and adding to Eq. (B.12), we obtain

fi+2 − 2 fi+1 = fi + 2h f ′
i + 2h2 f ′′

i − 2 fi − 2h f ′
i − h2 f ′′

i + O(h3)

= − fi + h2 f ′′
i + O(h3)

or

f ′′
i = fi+2 − 2 fi+1 + fi

h2

Other schemes can be obtained in a similar way.

B.3.2 Numerical differentiation using interpolating polynomials

To illustrate a basic concept, consider a second-order polynomial f (x) passing through
three data points, Fig. B.3:

(xi, fi) , (xi+1, fi+1) , (xi+2, fi+2)

The analytical form of that polynomial is

f (x) = a0 + a1x + a2x2 (B.14)
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Function f (x) has to pass through all three points defined previously. This requirement
creates three equations:

fi = a0 + a1xi + a2x2
i

fi+1 = a0 + a1(xi + h) + a2(xi + h)2

fi+2 = a0 + a1(xi + 2h) + a2(xi + 2h)2

The above equations will now be solved to find coefficients a0, a1, a2. The scheme must
be independent of the choice of point xi, so we can choose xi = 0, which significantly
simplifies algebra. One obtains

fi = a0

fi+1 = a0 + a1h + a2h2

fi+2 = a0 + 2a1h + 4a2h2

The solutions are

a0 = fi

a1 = − fi+2 + 4 fi+1 − 3 fi

2h
(B.15)

a2 = fi+2 − 2 fi+1 + fi

2h2

Differentiate Eq. (B.14) and use Eqs. (B.15) to obtain

f ′
i = f ′(xi = 0) = a1 = − fi+2 + 4 fi+1 − 3 fi

2h

f ′′
i = f ′′(xi = 0) = 2a2 = fi+2 − 2 fi+1 + fi

h2

The above are forward-difference approximations of the order O(h2).
Given a vector x = {. . . xk−1, xk, xk+1 . . .} containing points xk , one can derive approxi-

mations to the first derivative f ′(x) = dy
dx of the function y = f (x). Three basic possibilities

are [1]:

Backward difference, f ′(xk ) ≈ f (xk ) − f (xk−1)

xk − xk−1
(B.16)

Forward difference, f ′(xk ) ≈ f (xk+1) − f (xk )

xk+1 − xk
(B.17)

Central difference, f ′(xk ) ≈ f (xk+1) − f (xk−1)

xk+1 − xk−1
(B.18)

To compute first derivative we use MATLAB function diff(x), which determines the
difference between adjacent values of the vector x. The returned array of differences
contains one less element than the original array. One should observe that trimming the
last value of x produces a forward difference and trimming the first value gives a backward
difference.
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To obtain the second derivative, we apply the above algorithm a second time. Using the
backward difference, one has

f ′′(xk ) ≈ f ′(xk ) − f ′(xk−1)

xk − xk−1
(B.19)

B.3.3 Crank-Nicolson method

We illustrate the method on the diffusion equation, which we write in the form

∂u

∂t
= ∂2u

∂x2
(B.20)

The Crank-Nicolson (CN) method is the finite-difference discretization of the above equa-
tion. It was invented to overcome stability limitations and to improve the rate of convergence
of the solution of diffusion equation. It has O (�t)2 convergence rate compared to O (�t)
of the implicit and explicit methods.

The CN method is essentially an average of the implicit and explicit methods. It is
created as follows. Applying a forward difference approximation to the time derivative in
the diffusion equation gives the explicit scheme

un+1
i − un

i

�t
+ O (�t) = un

i+1 − 2un
i + un

i−1

(�x)2
+ O (�x)2 (B.21)

When using backward difference to the same equation, one creates the implicit scheme

un+1
i − un

i

�t
+ O (�t) = un+1

i+1 − 2un+1
i + un+1

i−1

(�x)2
+ O (�x)2 (B.22)

The algebraic average of the two schemes gives

un+1
i − un

i

�t
+ O (�t) = 1

2

{
un

i+1 − 2un
i + un

i−1

(�x)2
+ un+1

i+1 − 2un+1
i + un+1

i−1

(�x)2

}
+ O (�x)2

(B.23)
From the above equation one finally obtains the Crank-Nicolson scheme

un+1
i − 1

2
α
(
un+1

i+1 − 2un+1
i + un+1

i−1

) = un
i + 1

2
α
(
un

i+1 − 2un
i + un

i−1

)
(B.24)

where α = �t
(�x)2 . One can show (see Problems) that the scheme is accurate to O (�t)2

rather than O (�t). Note that in CN scheme un+1
i+1 , un+1

i , un+1
i−1 are determined implicitly in

terms of un
i+1, un

i , un
i−1.

B.3.4 Simple methods of numerical differentiation

Euler method

The simplest method is the Euler method, which is

yn+1 = yn + h f (xn, yn)
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which advances a solution from xn to xn+1 = xn + h. It is not a practical method, because it
is not very accurate and also not very stable (see discussion below).

Let us illustrate several methods which originate from the Euler method. We will use
definition of an acceleration in one-dimensional motion as an illustration. It is

d2x(t)

dt2
= a(x, v)

In general, acceleration can depend on position and velocity. First, write the above equation
as a system of two first-order differential equations:

dv

dt
= a(x, v) (B.25)

dx

dt
= v

Introduce τ as a time step. The right-derivative formula for a general function g(t) is

dg(t)

dt
= g(t + τ ) − g(t)

τ
+ O(τ )

Application of that formula to a system (B.25) gives

v(t + τ ) − v(t)

τ
+ O(τ ) = a(x(t), v(t))

x(t + τ ) − x(t)

τ
+ O(τ ) = v(t)

We have explicitly indicated the dependence of all quantities involved on the specific time.
From the above

v(t + τ ) = v(t) + τ · a(x(t), v(t)) + O(τ 2)

x(t + τ ) = x(t) + τ · v(t) + O(τ 2)

For the future use, let us introduce the following notation:

gn ≡ g((n − 1)τ ), n = 1, 2, 3, . . . (B.26)

and

g1 ≡ g(t = 0)

In the above, n refers to time steps. In our notation, the Euler method for the acceleration
problem reads

vn+1 = vn + τ · an

xn+1 = xn + τ · vn

The algorithm based on Euler method goes as follows:

1. specify initial conditions (i.e. values corresponding to t = 0) x1 and v1

2. choose time step τ

3. calculate acceleration for current values of xn and vn
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4. use Euler method to compute new x and v
5. loop through step 3, until all time steps are done.

An implementation of the Euler method is left as a problem.

Euler-Cromer (E-C) andmid-point methods

Both of these methods are simple modifications of the Euler method just discussed. E-C
method consists in replacing vn by vn+1, the value of velocity at the next time step (it must
be calculated first, so the calculations must be done in a proper sequence). Explicitly, the
E-C method is

vn+1 = vn + τ · an

xn+1 = xn + τ · vn+1

Another possible modification (and in a similar spirit) results in a mid-point method:

vn+1 = vn + τ · an

xn+1 = xn + τ · 1

2
(vn + vn+1)

where the last term represents algebraic average of velocities at present and the next time
steps.

Leap-frog method

The development of this method starts with Eqs. (B.25). Use the central derivative approach
to write (note that central time value is different for both equations)

v(t + τ ) − v(t − τ )

2τ
+ O(τ 2) = a(x(t))

x(t + 2τ ) − x(t)

2τ
+ O(τ 2) = v(t + τ )

Applying notation (B.26), the above system reads

vn+1 − vn−1

2τ
= a(xn)

xn+2 − xn

2τ
= vn+1

or

vn+1 = vn−1 + 2τ · a(xn)

xn+2 = xn + 2τ · vn+1

In order that this scheme works, we need to know values at proper initial points. Note
that position and velocity are evaluated at different points, as

position is evaluated at points: x1, x3, x5, . . .

velocity is evaluated at points: v2, v4, v6, . . .
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Verlet method

To develop the Verlet method, instead of using Eqs. (B.25), we will write them as [3]

dx

dt
= v

d2x

dt2
= a

Use central difference formulas for first and second derivatives and obtain

xn+1 − xn−1

2τ
+ O(τ 2) = vn

xn+1 + xn−1 − 2xn

τ 2
+ O(τ 2) = an

From above, we obtain formulas which define Verlet method:

vn = 1

2τ
(xn+1 − xn−1)

xn+1 = 2xn − xn−1 + τ 2an

B.4 Runge-Kutta (RK) methods

B.4.1 Second-order Runge-Kutta

Our goal is to solve linear system of linear differential equations

d−→x (t)

dt
= −→

f (
−→x (t), t)

with vector −→x expressed as −→x = [x1x2 . . . xn]. In order to establish second-order RK
method, let us start with the simple Euler approximation to the first derivative (which is
also Taylor expansion to first order):

−→x (t + τ ) = −→x (t) + τ · −→
f (

−→x (ξ ), ξ )

where τ is some arbitrary time step and t < ξ < t + τ. We have freedom to choose ξ

to have the most convenient value for us. The second-order RK method originates when
ξ = t + τ/2 and also

−→x (t + τ ) = −→x (t) + τ · −→
f (

−→x ∗(t + τ/2), t + τ/2)

where

−→x ∗(t + τ/2) = −→x (t) + 1/2 · τ · −→
f (

−→x (t), t)
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B.4.2 Fourth-order Runge-Kutta

This is one of the best schemes available and is commonly used in practice. It is defined as

−→x (t + τ ) = −→x (t) + 1/6 · τ · (
−→
F 1 + 2

−→
F 2 + 2

−→
F 3 + −→

F 4)

where
−→
F 1 = −→

f (
−→x , t)

−→
F 2 = −→

f (
−→x + τ/2 · −→

F 1, t + τ/2)

−→
F 3 = −→

f (
−→x + τ/2 · −→

F 2, t + τ/2)

−→
F 4 = −→

f (
−→x + τ · −→

F 3, t + τ )

MATLAB has some built-in routines implementing RK methods.

B.5 Solving differential equations

Here we provide some practical methods of solving ordinary differential equations (ODE),
both single and systems, using MATLAB function ode45.m.

B.5.1 Single differential equation

To start with, consider an equation with an initial condition

dx(t)

dt
= x(t)

(
2

t
− 1

)
, x(0) = 0.009 (B.27)

We want to solve it and plot the solution in the interval [0.1, 10]. MATLAB code is divided
into two m-files: one (the driver) contains all needed parameters and calls the appropriate
m-function which defines the function.

% File name: ode_single.m

% Illustrates application of R-K method to a single diff. equation

% Results are compared with an exact solution

%

clear all

tspan = [0.1 10]; % time interval

x0 = 0.009; % initial value

%

[t,x] = ode45(’func_ode_single’,tspan,x0);

t_ex = linspace(0.1, 10, 100);

x_ex = t_ex.^2.*exp(-t_ex); % Exact solution

plot(t,x,t_ex,x_ex,’.’,’LineWidth’,1.5)
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Fig. B.4 Comparison of the solution of a single ordinary differential equation using numerical and analytical methods.

xlabel(’t’,’FontSize’,14)

ylabel(’x’,’FontSize’,14)

set(gca,’FontSize’,14); % size of tick marks on both axes

pause

close all

The function itself is

function xdot = func_ode_single(t,x)

% Function called by ode_single.m

xdot = x*(2/t -1);

The result of solving the above problem is plotted in Fig. B.4 along with an exact solution,
which is x(t) = t2e−t .

B.5.2 System of differential equations

To illustrate application of ode45.m function in solving systems of differential equations,
consider the Lorenz model [3] defined by the following system:

dx1(t)

dt
= σ (x2 − x1)

dx2(t)

dt
= rx1 − x2 − x1x3 (B.28)

dx3(t)

dt
= x1x2 − bx3

where σ, r, b are positive constants. This system was originally developed to describe
buoyant convection in a fluid. It shows chaotic behaviour. The following initial conditions
are assumed: x1(t) = 1, x2(t) = 1, x3(t) = 10.04. The analysis is conducted in the time
interval [0, 10]. That system of equations is coded as
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function xdot = func_ode_sys(t,x)

% Function called by ode_sys.m

%

sigma = 10; b = 7/3; r = 25; % parameters

%

xdot(1) = sigma*(x(2) - x(1));

xdot(2) = r*x(1) - x(2) - x(1)*x(3);

xdot(3) = x(1)*x(2) - b*x(3);

xdot = xdot’;

The MATLAB code of the driver of the above system is

% File name: ode_sys.m

% Illustrates application of R-K method to system of diff. equations

%

clear all

tspan = [0 10]; % time interval

x0 = [1, 1, 10.04]; % initial value

%

[t,x] = ode45(’func_ode_sys’,tspan,x0);

plot(t,x(:,1), t,x(:,2), t,x(:,3),’LineWidth’,1.5)

xlabel(’time’,’FontSize’,14)

set(gca,’FontSize’,14); % size of tick marks on both axes

pause

close all

The results of two runs using the above functions are shown in Fig. B.5.

B.6 Numerical integration

The problem is to calculate a numerically definite integral

I =
∫ b

a
f (x)dx

The interval [a, b] can be split into equidistant subintervals with total number N = b−a
h ,

with h separation between neighbours. The above integral is thus replaced by

I =
∫ b

a
f (x)dx =

∫ xi

a
f (x)dx +

∫ x2

xi

f (x)dx + · · · =
∑

i

Ai

where Ai is the area of an elementary element. In the following, we therefore only consider
an integral within a single subinterval:

Ai =
∫ xi

xi−1

f (x)dx (B.29)

Different schemes will originate depending on how we evaluate the above integral.
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Fig. B.5 Solution of a system of ordinary differential equations showing chaos for two different values of initial conditions;
[1,1,10.04] (top) and [1,1,10.02] (bottom).

B.6.1 Euler’s rule

Subarea is defined within an interval xi−1 < xi < xi+1. The integral (B.29) thus takes the
form

Ai =
∫ xi

xi−1

f (x)dx ≈ h · fi

with fi = f (xi) taken at the right end of subinterval. The value of the function can also be
taken at the left point, or in fact at any point within the subinterval xi−1 < xi < xi+1. Total
area is thus

I ≈
∑

i

Ai

= h · ( f1 + f2 + · · · fn)
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B.6.2 Trapezoidal rule

In this method the integral is approximated by a series of trapezoids. The area of each
subinterval is evaluated as

Ai =
∫ xi

xi−1

f (x)dx ≈ 1

2
( fi−1 + fi) · (xi − xi−1)

with h = xi − xi−1. Taking h as a constant, the integral is

I =
∫ b

a
f (x)dx ≈

∑
i

1

2
( fi−1 + fi) · h

= 1

2
h {( f0 + f1) + ( f1 + f2) + ( f2 + f3) + · · · + ( fn−2 + fn−1) + ( fn−1 + fn)}

= 1

2
h { f0 + 2 f1 + 2 f2 + · · · 2 fn−1 + fn}

In a condensed form, the integral is

I = h
n−1∑
i=1

fi + 1

2
h ( f0 + fn)

B.6.3 Simpson’s rule

Simpson’s method gives more accurate results than trapezoidal rule. Trapezoidal rule con-
nects consecutive points by a straight line; Simpson’s rule connects three points. Normally,
a second-order polynomial (a parabola) is used to do so. Consider one:

p(x) = c2x2 + c1x + c0

Without loss of generality, we can take xi = 0. Then, xi−1 = −h and xi+1 = h. Evaluating
the above polynomial gives

p(−h) = c2h2 − c1h + c0 = fi−1

p(0) = c0 = fi

p(h) = c2h2 + c1h + c0 = fi+1

Solving the above system gives

c0 = fi

c1 = 1

2h
( fi+1 − fi−1)

c2 = 1

2h2
( fi+1 + fi−1 − 2 fi)
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Evaluating elementary integral for an area Ai gives

Ai =
∫ h

−h
p(x)dx

=
∫ h

−h

{
1

2h2
( fi+1 + fi−1 − 2 fi) x2 + 1

2h
( fi+1 − fi−1) x + fi

}
dx

= 1

3
h ( fi−1 + 4 fi + fi+1)

The complete integral is

I =
∫ b

a
f (x)dx =

∑
i

Ai

= 1

3
h { f0 + 4 f1 + 2 f2 + 4 f3 + · · · + 2 fn−2 + 4 fn−1 + fn}

B.7 Symbolic integration in MATLAB

MATLAB allows us to perform symbolic manipulations. It uses Maple, a powerful com-
puter algebra system, to manipulate and solve symbolic expressions. To use symbolic
mathematics, we must use the syms operator to tell MATLAB that we are using a symbolic
variable, and that it does not have a specific value.

In this book we only use symbolic manipulations to evaluate indefinite integral. We
illustrate symbolic concepts of MATLAB with the example below.

Example Evaluate integral of the function f (x) = x2.
The shortest method is to type on a prompt: >> int(x2). The answer is ans = x3/3.
Alternatively, we can define x symbolically first, and then remove the single quotes in

the int statement.

>> syms x

>> int(x^2)

ans =

x^3/3

B.8 Fourier series

According to Fourier, any function can be expressed in the form known as the Fourier
series:

f (t) = 1

2
a0 +

∞∑
n=1

an cos nt +
∞∑

n=1

bn sin nt (B.30)
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Fourier series representation is useful in describing functions over a limited region, say
[0, T ], or on the infinite interval (−∞,+∞) if the function is periodic. We assume that
the Fourier series converges for any problem of interest, see Arfken [15]. Cosine and sine
functions form a complete set and are orthonormal on any 2π interval. Therefore they may
be used to describe any function. The orthogonality relations are∫ 2π

0
sin mt sin nt dt =

{
πδm,n, m �= 0

0, m = 0
(B.31)

∫ 2π

0
cos mt cos nt dt =

{
πδm,n, m �= 0

2π, m = n = 0
(B.32)

∫ 2π

0
sin mt cos nt dt = 0, all integral m and n (B.33)

One also has the relation
1

2π

∫ 2π

0

(
eimt
)∗

eint dt = δm,n (B.34)

Using the above orthogonality relations, the coefficients of expansion in Eq. (B.30) are

an = 1

π

∫ 2π

0
f (t) cos nt dt (B.35)

and

bn = 1

π

∫ 2π

0
f (t) sin nt dt (B.36)

Also, the exponential form of the Fourier series is often used where the function is expanded
as

f (t) =
n=+∞∑
n=−∞

cn eint (B.37)

Comparison of the above relations gives formulas for coefficients cn as

c0 = 1
2 a0 n = 0

cn = 1
2 (an − ibn) n > 0

c−n = 1
2

(
a|n| + ib|n|

)
n < 0

(B.38)

B.8.1 Change of interval

In the above formulation, the discussion has been restricted to an interval [0, 2π ]. If the
function f (t) is periodic with the period 2T , we may write

f (x) = 1

2
a0 +

∞∑
n=1

an cos nt +
∞∑

n=1

bn sin nt (B.39)

where

an = 1

T

∫ T

−T
f (t ′) cos

nπt ′

T
dt ′, n = 0, 1, 2, 3, . . . (B.40)
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1

-1

T 2T t

f (t)

Fig. B.6 Square wave.

and

bn = 1

T

∫ T

−T
f (t ′) sin

nπt ′

T
dt ′, n = 1, 2, 3, . . . (B.41)

Expressions (B.30) and (B.39) are related by obvious change of variables, namely t = πt ′
T .

The choice of the symmetric interval [−T, T ] is not essential; in fact, for periodic function
with a period 2T it is possible to choose any interval [t0, t0 + 2T ].

B.8.2 Example

Use the Fourier series to approximate a square wave function f (t) as shown in Fig. B.6.
Using Heaviside step function H (t), the function f (t) can be written as

f (t) = 2

[
H

(
t

T

)
− H

(
t

T
− 1

)]
− 1

where

H (t) =
{

0 t < 0

1 t > 0

Determine coefficients an and bn in the Fourier series expansion. Write a MATLAB program
which plots the above approximation for various number of terms in the series.

From Fig. B.6 one observes that f (t) = f (2T − t); i.e. function f (t) is odd. Therefore
coefficients an vanish. Coefficients bn are evaluated as follows:

bn = 1

T

∫ 2T

0
f (t) sin

(
nπt

T

)
dt = 1

T

∫ T

0
sin

(
nπt

T

)
dt − 1

T

∫ 2T

T
sin

(
nπt

T

)
dt =

= 1

nπ

∫ nπ

0
sin xdx − 1

nπ

∫ 2nπ

nπ

sin xdx

=
{

4
nπ

n odd

0 n even

The Fourier series is

f (t) = 4

π

∞∑
n=1,3,5,...

1

n
sin

(
nπt

T

)
The MATLAB program which evaluates the above is shown overleaf. The result is shown
in Fig. B.7.
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Fig. B.7 Fourier series approximation to the square wave. Line with oscillations corresponds toN = 20 terms; the other one
was obtained using 100 terms.

% File name: square_wave.m

clear all

L = 0.5;

t = [0:100]/100; % arguments of independent variable

hold on

for N = [20 100];

f = zeros(1,101); % function initialization

for n = 1:2:N

pref = 4/(pi*n); % evaluate prefactor

f = f + pref*sin(n*pi*t/L); % summation of function

end

plot(t,f,’LineWidth’,1.5)

end

axis([-0.2 1.2 -1.2 1.2])

ylabel(’f(t)’,’FontSize’,14)

xlabel(’t’,’FontSize’,14)

set(gca,’FontSize’,14); % size of tick marks on both axes

pause

close all

B.9 Fourier transform

Based on the results from previous section, we now introduce Fourier transform (FT).
Consider function f (t) to be nonperiodic on the infinite interval. FT is introduced by
considering first a Fourier series representation (B.30) of the function which is periodic on
the interval [0, T ], where T is the period. First, make substitution

t → π

T
t
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in Eq. (B.37) and obtain

f (t) =
n=+∞∑
n=−∞

cn ein πt
T , cn = 1

T

∫
f (t) e−in πt

T dt (B.42)

Next, introduce discrete angular frequencies

ωn = n
π

T

The difference between two successive frequencies �ω is evaluated as

�ω = ωn+1 − ωn = (n + 1)
π

T
− n

π

T
= π

T

Using the above definition, the original series given by Eq. (B.42) can be written as

f (t) =
n=+∞∑
n=−∞

cn eint�ω, cn = 1

T

∫ +T

−T
f (t) e−int�ωdt (B.43)

Introducing new function g by the relation

cn = �ω√
2π

g (n · �ω) (B.44)

one obtains

g (n�ω) = 1√
2π

∫ +T

−T
f (t) e−int�ωdt (B.45)

and

f (t) = 1√
2π

n=+∞∑
n=−∞

�ωg (n�ω) eint�ω (B.46)

Taking the limit T → ∞, summation becomes an integral and n�ω becomes continuous
variable ω. One finds

g(ω) = 1√
2π

∫ +∞

−∞
f (t) e−iωtdt (B.47)

and

f (t) = 1√
2π

∫ +∞

−∞
g(ω) eiωtdt (B.48)

The above relations are known as the Fourier transform and inverse Fourier transform.
There is a freedom in choosing prefactor in Eq. (B.44). By making different choices, one
can introduce different Fourier transforms.
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B.10 FFT in MATLAB

Fast Fourier transform (FFT) in MATLAB is defined as

X (k) =
N∑

n=1

x(n)e− j2π(k−1)(n−1)/N , 1 ≤ k ≤ N (B.49)

which corresponds to the analytical definition (B.47) but without 1√
2π

factor. FFT in MAT-
LAB is performed by the function fft.m.

The inverse FFT (IFFT) which is performed by MATLAB function ifft.m is defined in
MATLAB as

x(n) = 1

N

N∑
k=1

X (k)e j2π(k−1)(n−1)/N , 1 ≤ k ≤ N (B.50)

and it corresponds to the analytical definition (B.48). Again, the 1√
2π

factor is absent. Let
us illustrate a simple application of FT in MATLAB.

Example 1 As the simplest illustration of fft.m and ifft.m functions, we provide below
MATLAB code to conduct FT and its inverse for a Gaussian pulse. In the end, one recovers
original Gaussian pulse.

% File name: FT_example_1.m

% Doing preliminary Fourier transform in Matlab

clear all

N = 320;

T_0 = 10;

T_domain = 200;

Delta_t = T_domain/N;

T = Delta_t*(-N/2:1:(N/2)-1);

A_in = exp(-(T/T_0).^2); % input gaussian pulse

plot(A_in) % plot of input gaussian pulse

pause

A_freq = fft(A_in);

plot(A_freq) % not a correct pulse

pause % (I explain it in the next example)

orig = ifft(A_freq);

plot(orig) % plots original input gaussian pulse

pause

close all

Example 2 As the previous example shows, Fourier transform in MATLAB must be done
carefully. In this example we illustrate the workings of FFT in MATLAB. MATLAB code
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Fig. B.8 Original Gaussian pulse (left) and and its FT (right).

is shown in the following. First, a Gaussian pulse is created and plotted against a number
of points along the x-axis. When needed, one can also plot it against x values. At the top of
each figure (as a title) we provide an expression for the plotted function.

As the second figure, we plotted normalized Fourier transform using MATLAB function
f f t(). The plot does not resemble the expected result because the Fourier transform
produces a complex function of the frequency. Vector F contains complex numbers and
when you plot it in MATLAB, it plots the real part against the imaginary part.

To correct for the above deficiency, in the third figure we plotted the above transform
plus the MATLAB abs() function. Altogether, both functions produce the desired result,
i.e. magnitude of the Fourier transform of the Gaussian pulse.

In the remaining two figures we performed the inverse Fourier transform of the created
Fourier transform.

Observe the use of function fftshift.m which puts the negative frequencies before the
positive frequencies. The reason for using it is that when MATLAB function fft.m computes
FFT, it outputs the positive frequency components first and then outputs the negative
frequency components.

Below we show full MATLAB code for this exercise and all the figures created starting
with an initial Gaussian pulse. In Figs. B.8–B.10, we show Gaussian pulse in time and its
Fourier transform. It was obtained with the following MATLAB program.

% File name: FT_example_2.m

% Testing Fourier transform in Matlab

clear all;

x=-4:0.1:4; % Interval of independent variable

y=exp(-x.^2); % Define Gaussian function

plot(y,’LineWidth’,1.5); % Plot Gaussian (Fig.1)

xlabel(’Number of points’,’FontSize’,14); ylabel(’y(x)’,’FontSize’,14);

set(gca,’FontSize’,14); % size of tick marks on both axes
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Fig. B.9 The next steps in the application of Fourier transform to the Gaussian pulse. After application of function abs() (left),
and f f tshi f t() (right).
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Fig. B.10 Steps in producing inverse Fourier transform of an original Gaussian pulse. After application of i f f t() (left), and
after application of fftshift(ifft()) (right).

title(’y=exp(-x^2)’);

pause

%

F=fft(y); % Calculate FFT

plot(F,’LineWidth’,1.5); % Plot of FT (Fig.2)

title(’F=fft(y)’);

pause

%

plot(abs(F),’LineWidth’,1.5); % Plot of abs value (Fig.3)
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title(’abs(F)’); % Take absolute value and plot

pause

%

plot(fftshift(abs(F)),’LineWidth’,1.5); % Use Matlab fftshift function

xlabel( ’Spatial frequency’); ylabel(’|F|’); % (Fig.4)

title(’FT of a Gaussian: fftshift(abs(F)))’);

pause

%--------------------------------------------------------

% Take inverse Fourier transform

%--------------------------------------------------------

plot(ifft(abs(F)),’LineWidth’,1.5); % Use Matlab function ifft (Fig.5)

title(’ifft(abs(F))’);

pause

%

plot(fftshift(ifft(abs(F))),’LineWidth’,1.5); % Use functions fftshift

title(’Inverse FT: fftshift(ifft(abs(F)))’); % and ifft (Fig.6)

xlabel(’number of points’); ylabel(’y(x)’);

pause

close all

B.11 Problems

1. Use Newton’s method to find roots of the following function: ex = 1 − cos3x. Plot it
first and use the graph to determine the starting point used by Newton’s method.

2. Verify orthogonality relations, Eqs. (B.35) and (B.36) (where the limits of integration
are [0, 2π ]) for another limit, i.e. [−π, π].

3. Derive expressions for coefficients an, bn, cn using new limits.
4. Show that the Crank-Nicolson scheme is accurate to O(�t)2.
5. Use the 2D version of Euler method to analyse projectile motion [3].
6. Analyse the effect of scaling within Fourier transform in MATLAB.
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Index

absorption
coefficient, 181
in a two-level system, 168, 169
infrared, 109
of power in photodetectors, 242
spectrum, 243
ultraviolet, 109

acceptance angle, see critical angle
active region, 173, 176

in a VCSEL, 173
air mass, 369
amplifier gain, 206
amplifier, erbium-doped fibre (EDFA),

209–13
typical characteristics, 213, 215

amplifier, semiconductor (SOA)
Fabry-Perot (FPA), 223
travelling-wave (TWA), 223, 227

antireflection (AR) coating, 50–1, 205
half-wave layer, 53
quarter-wave layer, 53

array waveguide grating (AWG), 318
asymmetry parameter, 67
attenuation, see loss

band gap, 243
in solar cells, 376

bandwidth
3-dB, 207
of a photodetector, 247
of an NRZ signal, 144
of an optical amplifier, 207
of an RZ signal, 143
of gain, 206, 224

Bessel functions
modified, 113, 114, 129, 132, 133
ordinary, 113, 129, 131, 132

bit error rate (BER), 240, 252–7, 259,
336

bit-pattern independency, 242
bit-rate transparency, 241
boundary conditions

absorbing (ABC) in 1D, 272–5
absorbing (ABC) in 2D, 277–9
for a magnetic field, 37–8
for an electric field, 36–7
Mur’s first order, 272–3

Bragg mirror, 53, 54, 62
reflectivity spectrum, 57, 62

Brewster’s angle, 49–50

C-band, see transmission bands
carrier

generation rate, 182
leakage rate, 183
lifetime, 184
recombination rate, 183

chirping, 192–3
cloaking, 398–9
coefficient of finesse, 29
coordinate transformation, 398
Courant-Friedrichs-Levy (CFL) stability

condition, 270
Crank-Nicolson scheme, 301, 302
critical angle, 18, 30, 64, 106
cross-gain modulation (XGM), 234–5
cross-phase modulation (XPM), 233,

235
current

bias, 144
dark, 246
forward diode, 372
injection, 143
leakage, 182
photocurrent, 242, 245, 371, 374
reverse saturation, 374
short-circuit, 369
threshold, 143

current density, 35
cutoff wavelength

in optical fibres, 122–3, 128
in photodiodes, 245

Debye medium, 280
depletion region, 370
detection

coherent, 240
incoherent (direct), 240

diffraction, 396
dispersion

equation of the waveguide, 66
group velocity (GVD), 106, 124
in free space, 24
material, 124–8, 136, 280

448
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modal, 124
multipath, 108
numerical, 269, 270, 283
of a 1D wave, 21
of a Debye medium, 280
of a Lorentz medium, 280
of a pulse in optical fibre, 127–8
waveguide, 124–127

distributed Bragg reflector (DBR), 173,
174

Drude relation, 389
dynamic range, 241

E-band, see transmission bands
effective index method, 89–92
effective medium, 391, 394
effective thickness of a slab waveguide, 77
EH modes, 116, 117, 119
electric

boundary conditions, 36–37
field intensity, 35
flux, 35

electron, see carrier
emission

amplified spontaneous (ASE), 215, 248,
255

spontaneous, 168, 169, 208
stimulated, 168, 169

equivalent circuit, 193
for bulk laser, 194–6
for PIN photodetector, 245, 250
for solar cell, 373–6, 380

error function, 231
Euler differentiation method, 429–31
Euler’s rule (integration method), 436
Euler-Cromer differentiation method, 431
evanescent waves, 396
excited state, 168
external modulator, 6, 193
eye diagram, 337

Fabry-Perot (FP)
interferometer, 29–30
resonance conditions, 171
resonant modes, 171, 172
resonator, 170

Faraday rotator, 323
Fast Fourier transform (FFT), 443–4
Fermi golden rule, 180
Fermi level, 176
fibre Bragg grating, 318
filter function, 258
finite difference method, 425–9

backward differences, 426
central differences, 426
forward differences, 426

finite-difference (FD) approximation, 297–9

focal
length, 19, 20
plane, 19, 20
point, 19

four-wave mixing (FWM), 233, 352
Fourier series, 438–9

change of interval, 439–40
of a square wave, 440–1

Fourier transform, 441–2
of a chirped Gaussian pulse, 142
of a Gaussian pulse, 141
of a rectangular pulse, 139, 140, 158
of an electric field, 146

Fresnel
coefficients and phases for TE polarization, 44–7
coefficients and phases for TM polarization,

47–8
reflection, 45, 47

Fresnel approximation, 290

gain
approximate formula, 206
differential, 178
in an EDFA, 213
in semiconductors, 177–81
peak, 178, 180
ripple, 227, 237
saturation, 190, 207, 216, 234
spectrum of semiconductor laser, 172

Gaussian probability density function (pdf), 255
generation of carriers

in laser didoes, 183
in PIN photodiodes, 244
in solar cells, 371

geometrical optics, 17–21
Goos-Hänchen (G-H) shift, 58–9, 397
graded index, 20, 107
grid, see mesh
GRIN system, 20–1
group

delay, 124–5, 148
velocity, 32

guides modes
in optical fibres, 114
in slab waveguides, 65–6

HE modes, 116, 117, 119
Helmholtz equation, 288, 289, 292, 299
hole, see carrier
hybrid modes, 116, 119

impedance, 41
interference

in dielectric films, 26–7
intersymbol (ISI), 255
multiple, 27–9

invisibility cloak, see cloaking



450 Index

L-band, see transmission bands
large-signal analysis (in laser diodes), 192
laser diode

distributed feedback laser (DFB), 173, 174
in-plane laser, 172
vertical cavity surface-emitting laser (VCSEL),

172, 173
leap-frog differentiation method, 431
left-handed materials (LHM), see negative index

materials (NIM)
lens

perfect, 396
thin, 19

linear system, 338
linewidth enhancement factor (Henry factor), 228
Lorentz medium, 280
loss

extrinsic, 110
in optical fibres, 108, 129
intrinsic, 109–10

LP modes, 119–20

Mach-Zehnder interferometer (MZI), 235
magic time step, 270
magnetic

boundary conditions, 37–8
field intensity, 35
flux, 35

Maxwell’s equations, 262
differential form, 35
in cylindrical coordinates, 111–12
integral form, 36
source-free, 69, 388

mesh
1D generation algorithm, 102
staggered grid, 266
Yee grid in 1D, 266, 267
Yee grid in 2D, 276

mid-point differentiation method, 431
mode number

azimuthal, 116
radial, 116

modulation format
non-return-to-zero (NRZ), 143–5
return-to-zero (RZ), 143–5

modulation of semiconductor lasers, 143, 144
modulation response function, 188, 190–2
Muller’s method, 100, 422–5

negative index materials (NIM), 385, 386
Newton’s method, 420–1
noise

Gaussian, 255–7
in optical amplifiers, 208–9
in photodetectors, 248–9
shot, 249
thermal (Johnson), 249–50

nonlinear Schrödinger equation, 353–7
normalized guide index, 67, 94
Numerical aperture (NA), 65, 106–7

O-band, see transmission bands
optical black holes, 399–400
optical cavity, 168

Fabry-Perot, 170
optical communication system, 331–3
optical coupler, 319–22
optical fibre

bit-rate, 108
extrinsic loss, 110
intrinsic loss, 109–10
modes, 116–17
single-mode, 122–3

optical isolator, 322–3
optical splitter, 319–20

p-n junction
double heterostructure, 176–7
homogeneous (homojunction), 175–6
multijunction, 376–7

paraxial approximation, 288–92
permeability, 35

negative, 386, 391–5
permittivity, 35

negative, 387, 389–91, 395
plasmon-like, 386

photocurrent, 245
in photodiodes, 242
in solar cells, 370, 371, 374

photodiode
avalanche (APD), 242, 248, 258
metal-semiconductor-metal (MSM),

246
PIN, 242, 244
power, 252
sensitivity, 241, 257

photon
density, 183
lifetime, 183, 184, 187

Planck’s radiation law, 169
plane wave , 40–1
plasma, 390

frequency, 390, 391
Poisson distribution, 249, 252, 253
polarization

circular, 42–3
elliptical, 42–3
linear, 42
transverse electric (TE), 44
transverse electric (TM), 47

polarization of dielectric medium, 148
population inversion, 167, 204, 208
power budget, 333–4
Poynting vector, 59–60
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propagation constant, 41, 42
in slab waveguides, 66, 95

pulse broadening, 12, 151
in optical fibres, 106

pulse half-width, 142
pulse type

chirped Gaussian, 141–2, 159
Gaussian, 139–40, 159, 163, 164, 281–6
rectangular, 138–9, 157, 340–2, 344
Super-Gaussian, 140–1, 159, 162

pulse wave, see waveform
pumping, 167, 168

quantum efficiency, 247
quantum well, 173, 232
quasi-Fermi level, 175, 176

rate equations in EDFA, 211
rate equations in laser diodes

for an electric field, 184–7
for carriers, 182–3
for photons, 183
parameters, 184

ray optics, 17
in metamaterials, 389
in slab waveguides, 64–9

Rayleigh scattering, 110
receiver, 331, 343
recombination of carriers, 183
reflection

at a plane interface, 17, 18
coefficient, 17, 45, 46, 48
external, 48, 49
internal, 48
of TE polarized waves, 44–7, 61
of TM polarized waves, 48, 61
total internal, see critical angle

refractive index, 17
in GRIN structures, 20
negative, 384
numerical values for popular materials, 18
relative difference, 65

relaxation-oscillation frequency, 189
Resonant cavity, see optical cavity
rise time, 144
rise time budget, 333–6
Runge-Kutta method

fourth order, 433
second order, 432

S-band, see transmission bands
Sellmeier equation, 31, 125–6, 135
signal-to-noise ratio (SNR), 208, 248,

336
Simpson’s rule (integration method), 437–8
slowly varying envelope approximation (SVEA), 150,

296–7

small-signal analysis (in laser diodes)
with linear gain, 188–9
with non-linear gain, 189–92

Snell’s law, 18
soliton

interactions, 363
period, 362

spectral
intensity of solar energy, 368, 369
responsivity, 247

split-ring resonator (SRR), 391–4
split-step Fourier method, 357–60
steady-state analysis

in a laser diode, 187
in an EDFA, 211–12

step index, 107
Stokes relations, 24–6
susceptibility, 186

TE modes
in optical fibres, 116–18
in slab waveguides, 71–2

three-level system, 210
threshold

carrier density, 178, 182
current, 143

time constant in photodetectors, 246, 247
time division multiplexing (TDM), 11
time-harmonic field, 39–41
TM modes

in optical fibres, 116–18
in slab waveguides, 71–2

train of pulses, see waveform
transatlantic telecommunications cable (TAT), 6
transfer function, 339
transfer matrix approach

for antireflection (AR) coatings, 51–3
for Bragg mirrors, 54–7
for slab waveguides, 79–85

transitions
in a two-level system, 169–70
in semiconductors, 174–5

transmission bands, 10
transmittance of Fabry-Perot interferometer, 29, 33
transmitter, 331, 342
transparency density, 178
transparent boundary conditions, 304–6
transverse resonance condition, 66–7

normalized form, 67–9
trapezoidal rule (integration method), 437
two-level system (TLS), 167, 169

U-band, see transmission bands

velocity
group, 23–4, 124, 126
phase, 21–3, 32

Verlet differentiation method, 432



452 Index

wave equation, 38–9
for TE modes, 72
for TM modes, 72
in cylindrical coordinates, 112
in metamaterials, 388

waveform, 145, 160
waveguide

2D, 88–92
asymmetric slab (planar), 75–9, 95
cylindrical (optical fibre), 110–23
lossy, 86

symmetric slab (planar), 72–5
wavevector, see propagation constant
weakly guiding approximation (wga),

118–19
wire medium, 395

Y-junction, 14, 325, 327
Yee algorithm

lossless in 1D, 266–8, 282
lossless in 2D, 275–7, 285
lossy in 1D, 271–2
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