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G=[35/50  −j*3/50;  −1/5  1/10+j*1/10];  I=[1  0]';  V=G\I;
Ix=5*V(2,1)/4; % Multiply Vc by 5 and divide by 4 to get current Ix
magIx=abs(Ix); theta=angle(Ix)*180/pi; % Convert current Ix to polar form
fprintf(' \n'); disp(' Ix = ' ); disp(Ix);...
fprintf('magIx = %4.2f A \t', magIx); fprintf('theta = %4.2f deg \t', theta);...
fprintf(' \n'); fprintf(' \n');

Ix = 2.1176-1.7546i  magIx = 2.75 A theta = -39.64 deg
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Preface
This text is an introduction to the basic principles of electrical engineering. It is the outgrowth of
lecture notes prepared by this author while teaching for the electrical engineering and computer
engineering departments at San José State University, DeAnza college, and the College of San Mateo,
all in California. Many of the examples and problems are based on the author’s industrial experience.
It can be used as a primary text or supplementary text. It is also ideal for self-study.

This book is intended for students of college grade, both community colleges and universities. It
presumes knowledge of first year differential and integral calculus and physics. While some
knowledge of differential equations would be helpful, it is not absolutely necessary. Chapters 9 and 10
include step-by-step procedures for the solutions of simple differential equations used in the
derivation of the natural and forces responses. Appendices B and C provide a thorough review of
complex numbers and matrices respectively.

There are several textbooks on the subject that have been used for years. The material of this book is
not new, and this author claims no originality of its content. This book was written to fit the needs of
the average student. Moreover, it is not restricted to computer oriented circuit analysis. While it is true
that there is a great demand for electrical and computer engineers, especially in the internet field, the
demand also exists for power engineers to work in electric utility companies, and facility engineers to
work in the industrial areas. 

Circuit analysis is comprised of numerous topics. It would be impractical to include all related topics
in a single text. This book, Circuit Analysis I with MATLAB® Applications, contains the standard
subject matter of electrical engineering. Accordingly, it is intended as a first course in circuits and the
material can be covered in one semester or two quarters. A sequel, Circuit Analysis II with MATLAB®
Applications, is intended for use in a subsequent semester or two subsequent quarters.

It is not necessary that the reader has previous knowledge of MATLAB®. The material of this text
can be learned without MATLAB. However, this author highly recommends that the reader studies
this material in conjunction with the inexpensive MATLAB Student Version package that is available
at most college and university bookstores. Appendix A of this text provides a practical introduction
to MATLAB. As shown on the front cover, a system of equations with complex coefficients can be
solved with MATLAB very accurately and rapidly. MATLAB will be invaluable in later studies such as
the design of analog and digital filters.

In addition to several problems provided at the end of each chapter, this text includes multiple-choice
questions to test and enhance the reader’s knowledge of this subject. Moreover, answers to these
questions and detailed solutions of all problems are provided at the end of each chapter. The rationale
Circuit Analysis I with MATLAB Applications
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Preface
is to encourage the reader to solve all problems and check his effort for correct solutions and
appropriate steps in obtaining the correct solution. And since this text was written to serve as a
self-study or supplementary textbook, it provides the reader with a resource to test his
knowledge.

The author has accumulated many additional problems for homework assignment and these are
available to those instructors who adopt this text either as primary or supplementary text, and
prefer to assign problems without the solutions. He also has accumulated many sample exams.

Like any other new book, this text may contain some grammar and typographical errors.
Accordingly, all feedback for errors, advice and comments will be most welcomed and greatly
appreciated. 

Orchard Publications
Fremont, California
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Chapter 1
Basic Concepts and Definitions

his chapter begins with the basic definitions in electric circuit analysis. It introduces the con-
cepts and conventions used in introductory circuit analysis, the unit and quantities used in cir-
cuit analysis, and includes several practical examples to illustrate these concepts.

1.1 The Coulomb

Two identically charged (both positive or both negative) particles possess a charge of one coulomb
when being separated by one meter in a vacuum, repel each other with a force of  newton

where . The definition of coulomb is illustrated in Figure 1.1.

Figure 1.1. Definition of the coulomb

The coulomb, abbreviated as , is the fundamental unit of charge. In terms of this unit, the charge

of an electron is  and one negative coulomb is equal to  electrons. Charge,
positive or negative, is denoted by the letter  or .

1.2 Electric Current and Ampere
Electric current  at a specified point and flowing in a specified direction is defined as the instanta-
neous rate at which net positive charge is moving past this point in that specified direction, that is,

(1.1)

The unit of current is the ampere abbreviated as  and corresponds to charge  moving at the rate of
one coulomb per second. In other words,

(1.2)

T

10 7– c2

c velocity of light 3 108 m s⁄×≈=

Vacuum

q q1 m

F 10 7– c2 N=
q=1 coulomb

C

1.6 10 19–  C× 6.24 1018×
q Q

i

i dq
dt
------ q∆

t∆
------

t∆ 0→
lim= =

A q

1  ampere 1  coulomb
1  ondsec

-----------------------------=
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Chapter 1  Basic Concepts and Definitions
Note: Although it is known that current flow results from electron motion, it is customary to think
of current as the motion of positive charge; this is known as conventional current flow.

To find an expression of the charge  in terms of the current , let us consider the charge  trans-
ferred from some reference time  to some future time . Then, since

the charge  is

or

or

(1.3)

Example 1.1  

For the waveform of current i shown in Figure 1.2, compute the total charge  transferred between

a.  and 

b.  and 

Figure 1.2. Waveform for Example 1.1
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t i td
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Electric Current and Ampere
Solution:

We know that

Then, by calculating the areas, we find that:

a. For 0 < t < 2 s, area = ½ × (2 × 30 mA) = 30 mC 
For 2 < t < 3 s, area = 1 × 30 = 30 mC 
Therefore, for 0 < t < 3 s, total charge = total area = 30 mC + 30 mC = 60 mC.

b. For 0 < t < 2 s, area = ½ × (2 × 30 mA) = 30 mC 
For 2 < t < 6 s, area = 4 × 30 = 120 mC
For 6 < t < 8 s, area = ½ × (2 × 30 mA) = 30 mC
For 8 < t < 9 s, we observe that the slope of the straight line for t > 6 s is −30 mA / 2 s, or −15
mA / s. Then, for 8 < t < 9 s, area =   ½ × {1×(−15)} = −7.5 mC. Therefore, for 0 < t < 9 s, total
charge = total area = 30 + 120 + 30 −7.5 = 172.5 mC.

Convention: We denote the current  by placing an arrow with the numerical value of the current
next to the device in which the current flows. For example, the designation shown in Figure 1.3
indicates either a current of  is flowing from left to right, or that a current of  is moving
from right to left.

Figure 1.3. Direction of conventional current flow

Caution: The arrow may or may not indicate the actual conventional current flow. We will see later
in Chapters 2 and 3 that in some circuits (to be defined shortly), the actual direction of
the current cannot be determined by inspection. In such a case, we assume a direction
with an arrow for said current ; then, if the current with the assumed direction turns out
to be negative, we conclude that the actual direction of the current flow is opposite to the
direction of the arrow. Obviously, reversing the direction reverses the algebraic sign of
the current as shown in Figure 1.3.

In the case of time-varying currents which change direction from time-to-time, it is convenient to
think or consider the instantaneous current, that is, the direction of the current which flows at some
particular instant. As before, we assume a direction by placing an arrow next to the device in which
the current flows, and if a negative value for the current i is obtained, we conclude that the actual
direction is opposite of that of the arrow.

q t 0=
t i td

0

t

∫ Area 0
t= =

i

2 A 2–  A

2 A −2 A

Device

i
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Chapter 1  Basic Concepts and Definitions
1.3 Two Terminal Devices

In this text we will only consider two-terminal devices. In a two-terminal device the current entering
one terminal is the same as the current leaving the other terminal* as shown in Figure 1.4.

Figure 1.4. Current entering and leaving a two-terminal device

Let us assume that a constant value current (commonly known as Direct Current and abbreviated as
DC) enters terminal  and leaves the device through terminal  in Figure 1.4. The passage of cur-
rent (or charge) through the device requires some expenditure of energy, and thus we say that a poten-
tial difference or voltage exists “across” the device. This voltage across the terminals of the device is a
measure of the work required to move the current (or charge) through the device.

Example 1.2  

In a two-terminal device, a current  enters the left (first) terminal. 

a. What is the amount of current which enters that terminal in the time interval ?

b. What is the current at ?

c. What is the charge  at  given that ?

Solution:

a.

b.

c.

* We will see in Chapter 5 that a two terminal device known as capacitor is capable of storing energy.

Two terminal device

Terminal A                  Terminal B

7 A 7 A

A B

i t( ) 20 100πt mAcos=

10 t 20 ms≤ ≤–

t 40 ms=

q t 5 ms= q 0( ) 0=

i t0

t 20 100cos πt
10– 10 3–

×

20 10 3–
× 20 100cos π 20 10 3–×( ) 20 100cos π 10– 10 3–×( )–= =

20 2π 20 π–( )cos–cos 40 mA==

i t 0.4  ms=
20 100cos πt t 0.4  ms=

20 40πcos 20 mA= = =

q t( ) i t q 0( )+d
0

5 10 3–×

∫ 20 100cos πt td
0

5 10 3–×

∫ 0+= =

0.2
π

------- 100πt 0
5 10 3–×sin 0.2

π
------- π

2
--- 0–sin 0.2

π
-------  C= ==
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Voltage (Potential Difference)
1.4 Voltage (Potential Difference)

The voltage (potential difference) across a two-terminal device is defined as the work required to
move a positive charge of one coulomb from one terminal of the device to the other terminal.

The unit of voltage is the volt (abbreviated as  or ) and it is defined as

(1.4)

Convention: We denote the voltage  by a plus (+) minus (−) pair. For example, in Figure 1.5, we
say that terminal  is  positive with respect to terminal  or there is a potential
difference of  between points  and . We can also say that there is a voltage
drop of  in going from point  to point . Alternately, we can say that there is a
voltage rise of  in going from  to .

Figure 1.5. Illustration of voltage polarity for a two-terminal device

Caution: The (+) and (−) pair may or may not indicate the actual voltage drop or voltage rise. As in
the case with the current, in some circuits the actual polarity cannot be determined by
inspection. In such a case, again we assume a voltage reference polarity for the voltage; if
this reference polarity turns out to be negative, this means that the potential at the (+)
sign terminal is at a lower potential than the potential at the (−) sign terminal. 

In the case of time-varying voltages which change (+) and (−) polarity from time-to-time, it is con-
venient to think the instantaneous voltage, that is, the voltage reference polarity at some particular
instance. As before, we assume a voltage reference polarity by placing (+) and (−) polarity signs at
the terminals of the device, and if a negative value of the voltage is obtained, we conclude that the
actual polarity is opposite to that of the assumed reference polarity. We must remember that revers-
ing the reference polarity reverses the algebraic sign of the voltage as shown in Figure 1.6.

 
Figure 1.6.  Alternate ways of denoting voltage polarity in a two-terminal device
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Chapter 1  Basic Concepts and Definitions
Example 1.3  

The  (current-voltage) relation of a non-linear electrical device is given by

(10.5)

a. Use MATLAB®* to sketch this function for the interval 

b. Use the MATLAB quad function to find the charge at  given that 

Solution:

a. We use the following code to sketch .

t=0: 0.1: 10;
it=0.1.*(exp(0.2.*sin(3.*t))−1);
plot(t,it), grid, xlabel('time in sec.'), ylabel('current in amp.')

The plot for  is shown in Figure 1.7.

Figure 1.7. Plot of  for Example 1.3

b. The charge  is the integral of the current , that is,

(1.6)

*  MATLAB and SIMULINK are registered marks of The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA, 01760,
www.mathworks.com. An introduction to MATLAB is given in Appendix A.

i v–

i t( ) 0.1 e0.2 3tsin 1–( )=

0 t 10 s≤ ≤

t 5 s= q 0( ) 0=

i t( )

i t( )

i t( )

q t( ) i t( )

q t( ) i t( ) td
t0

t1

∫ 0.1 e0.2 3tsin 1–( ) td
0

t1

∫= =
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Voltage (Potential Difference)
We will use the MATLAB int(f,a,b) integration function where f is a symbolic expression, and a
and b are the lower and upper limits of integration respectively.

Note 

When MATLAB cannot find a solution, it returns a warning. For this example, MATLAB returns
the following message when integration is attempted with the symbolic expression of (1.6).

t=sym('t');
s=int(0.1*(exp(0.2*sin(3*t))−1),0,10)

When this code is executed, MATLAB displays the following message:

Warning: Explicit integral could not be found.
In C:\MATLAB 12\toolbox\symbolic\@sym\int.m at line 58

s = int(1/10*exp(1/5*sin(3*t))-1/10,t = 0. . 10)

We will use numerical integration with Simpson’s rule. MATLAB has two quadrature functions for
performing numerical integration, the quad* and quad8. The description of these can be seen by
typing help quad or help quad8. Both of these functions use adaptive quadrature methods; this means
that these methods can handle irregularities such as singularities. When such irregularities occur,
MATLAB displays a warning message but still provides an answer.

For this example, we will use the quad function. It has the syntax q=quad(‘f’,a,b,tol), and per-
forms an integration to a relative error tol which we must specify. If tol is omitted, it is understood
to be the standard tolerance of . The string ‘f’ is the name of a user defined function, and a and
b are the lower and upper limits of integration respectively.

First, we need to create and save a function m-file. We define it as shown below, and we save it as
CA_1_Ex_1_3.m. This is a mnemonic for Circuit Analysis I, Example 1.3.

function t = fcn_example_1_3(t); t = 0.1*(exp(0.2*sin(3*t))-1);

With this file saved as CA_1_Ex_1_3.m, we write and execute the following code.

charge=quad('CA_1_Ex_1_3',0,5)

and MATLAB returns

charge =

    0.0170

* For a detailed discussion on numerical analysis and the MATLAB functions quad and quad8, the reader may
refer to Numerical Analysis Using MATLAB® and Spreadsheets by this author, Orchard Publications, ISBN 0-
9709511-1-6. 

10 3–
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Chapter 1  Basic Concepts and Definitions
1.5 Power and Energy

Power  is the rate at which energy (or work)  is expended. That is,

(1.7)

Absorbed power is proportional both to the current and the voltage needed to transfer one coulomb
through the device. The unit of power is the . Then, 

(1.8)

and

(1.9)

Passive Sign Convention: Consider the two-terminal device shown in Figure 1.8.

Figure 1.8. Illustration of the passive sign convention

In Figure 1.8, terminal  is  volts positive with respect to terminal  and current i enters the device
through the positive terminal . In this case, we satisfy the passive sign convention and 
is said to be absorbed by the device.

The passive sign convention states that if the arrow representing the current i and the (+) (−) pair are
placed at the device terminals in such a way that the current enters the device terminal marked with
the (+) sign, and if both the arrow and the sign pair are labeled with the appropriate algebraic quanti-
ties, the power absorbed or delivered to the device can be expressed as . If the numerical
value of this product is positive, we say that the device is absorbing power which is equivalent to saying
that power is delivered to the device. If, on the other hand, the numerical value of the product

 is negative, we say that the device delivers power to some other device. The passive sign con-
vention is illustrated with the examples in Figures 1.9 and 1.10.

 
Figure 1.9. Examples where power is absorbed by a two-terminal device

p W

Power p dW
dt

--------= =

watt

Power p volts amperes× vi joul
coul
----------- coul

sec 
-----------× joul

sec 
---------- watts= = = = = =

1 watt 1 volt 1 ampere×=

 Two terminal device

+ −
v

i
A B

A v B
A power p vi= =

p vi=

p vi=

Two terminal device
A 
+

B
−

−12 v

Same deviceA 
+
B

−
12 v

=
−2 A 2 A

Power = p = (−12)(−2) = 24 w Power = p = (12)(2) = 24 w
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Power and Energy
Figure 1.10. Examples where power is delivered to a two-terminal device

In Figure 1.9, power is absorbed by the device, whereas in Figure 1.10, power is delivered to the
device.

Example 1.4  

It is assumed a 12-volt automotive battery is completely discharged and at some reference time
, is connected to a battery charger to trickle charge it for the next 8 hours. It is also assumed

that the charging rate is

For this 8-hour interval compute:

a. the total charge delivered to the battery 

b. the maximum power (in watts) absorbed by the battery

c. the total energy (in joules) supplied

d. the average power (in watts) absorbed by the battery

Solution:

The current entering the positive terminal of the battery is the decaying exponential shown in Fig-
ure 1.11 where the time has been converted to seconds.

Figure 1.11. Decaying exponential for Example 1.4

Then,

Two terminal device 1
A 
+

B
−

A 
+
B

−

 p = (cos5t)(−5sin5t) = −2.5sin10t w

Two terminal device 2

i=6cos3t

v=−18sin3t v=cos5t

i=−5sin5t

 p = (−18sin3t)(6cos3t) = −54sin6t w

t 0=

i t( ) 8e t 3600⁄–  A     0 t 8  hr≤ ≤         
0                      otherwise⎩

⎨
⎧

=

(A)

t (s)

i(t)

      8

28800

i 8e t 3600⁄–=
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Chapter 1  Basic Concepts and Definitions
a.

b.

Therefore,

c.

d.

Example 1.5  

The power absorbed by a non-linear device is . If , how much
charge goes through this device in two seconds?

Solution:

The power is

then, the charge for 2 seconds is

The two-terminal devices which we will be concerned with in this text are shown in Figure 1.12. 

Linear devices are those in which there is a linear relationship between the voltage across that device
and the current that flows through that device. Diodes and Transistors are non-linear devices, that is,
their voltage-current relationship is non-linear. These will not be discussed in this text. A simple cir-
cuit with a diode is presented in Chapter 3.

q t 0=
15000 i td

0

15000

∫ 8e t 3600⁄– td
0

28800

∫
8

1– 3600⁄
----------------------e t– 3600⁄

0

28800
= = =

8– 3600× e 8– 1–( ) 28800  C  or  28.8  kC≈=

imax 8 A (occurs at t=0)=

pmax vimax 12 8× 96 w= = =

W p td∫ vi td
0

28800

∫ 12 8e t 3600⁄–×
0

28800

∫ dt 96
1– 3600⁄

----------------------e t– 3600⁄
0

28800
= = = =

3.456 105× 1 e 8––( ) 345.6 KJ.≈=

Pave
1
T
--- p td

0

T

∫
1

28800
--------------- 12 8e t 3600⁄–×

0

28800

∫ dt 345.6 103×

28.8 103×
---------------------------- 12 w.= = = =

p 9 e0.16t2

1–( )= v 3 e0.4t 1+( )=

p vi,  i p
v
---

9 e0.16t2

1–( )

3 e0.4t 1+( )
------------------------------- 9 e0.4t 1+( ) e0.4t 1–( )

3 e0.4t 1+( )
--------------------------------------------------- 3 e0.4t 1–( ) A= = = = =

q t0

t i td
t0

t

∫ 3 e0.4t 1–( ) td
0

2

∫
3

0.4
-------e0.4t

0

2
3t 0

2– 7.5 e0.8 1–( ) 6– 3.19 C= = = = =
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Power and Energy
Figure 1.12. Voltage and current sources and linear devices

 

+ − Ideal Independent Voltage Source − Maintains same voltage 
regardless of the amount of current that flows through it.

v or v(t)
Its value is either constant (DC) or sinusoidal (AC).

Ideal Independent Current Source − Maintains same current 
regardless of the voltage that appears across its terminals.

i or i(t) Its value is either constant (DC) or sinusoidal (AC).

+ − Dependent Voltage Source − Its value depends on another 
voltage or current elsewhere in the circuit. Here,      is a

        or constant and      is a resistance as defined in linear devices

Dependent Current Source − Its value depends on another 
current or voltage elsewhere in the circuit. Here,      is a
constant and      is a conductance as defined in linear devices 

      Linear Devices

R

CiC 

        Independent and Dependent Sources

+ −

vR

iR 
R = slo

pe G

+ −vG

Conductance G iG

vG 
G = slo

pe

Resistance R

iC = C 

+ −

dvC   
dt   

vC

vL

 
L = slo

pe

diL   
dt   

Inductance L

LiL 

vL = L

+ −

diL   
dt   

vL

iC

 
C = slo

pe

dvC   
dt   

Capacitance C

k1v k2i

k4vk3i

k1
k2

k3
k4

vR RiR=

vR

iR iG

iG GvG=

below. When denoted as         it is referred to as voltage    

below. 

k2i
k1v

controlled voltage source, and when denoted as        it is 
referred to as current controlled voltage source.

 When denoted as        it is referred to as current    

or

k3i
controlled current source and when denoted as        it is k4v
referred to as voltage controlled current source.
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Chapter 1  Basic Concepts and Definitions
1.6 Active and Passive Devices

Independent and dependent voltage and current sources are active devices; they normally (but not
always) deliver power to some external device. Resistors, inductors and capacitors are passive devices;
they normally receive (absorb) power from an active device.

1.7 Circuits and Networks

A network is the interconnection of two or more simple devices as shown in Figure 1.13.

Figure 1.13. A network but not a circuit

A circuit is a network which contains at least one closed path. Thus every circuit is a network but not
all networks are circuits. An example is shown in Figure 1.14.

Figure 1.14. A network and a circuit

1.8 Active and Passive Networks

Active Network is a network which contains at least one active device (voltage or current source).

Passive Network is a network which does not contain any active device.

1.9 Necessary Conditions for Current Flow

There are two conditions which are necessary to set up and maintain a flow of current in a network
or circuit. These are:

+−

R L C
vS

+−

L C
vS

R1

R2
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1. There must be a voltage source (potential difference) present to provide the electrical work which
will force current to flow.

2. The circuit must be closed.

These conditions are illustrated in Figures 1.15 through 1.17.

Figure 1.15 shows a network which contains a voltage source but it is not closed and therefore, cur-
rent will not flow.

Figure 1.15. A network in which there is no current flow

Figure 1.16 shows a closed circuit but there is no voltage present to provide the electrical work for
current to flow.

Figure 1.16. A closed circuit in which there is no current flow

Figure 1.17 shows a voltage source present and the circuit is closed. Therefore, both conditions are
satisfied and current will flow.

Figure 1.17. A circuit in which current flows

1.10  International System of Units

The International System of Units (abbreviated SI in all languages) was adopted by the General Confer-
ence on Weights and Measures in 1960. It is used extensively by the international scientific commu-
nity. It was formerly known as the Metric System. The basic units of the SI system are listed in Table
1.1.

+−

R L CvS

R1

R2 R3R4

+−

R L

C

I

vS
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Chapter 1  Basic Concepts and Definitions
The SI uses larger and smaller units by various powers of 10 known as standard prefixes. The common
prefixes are listed in Table 1.2 and the less frequently in Table 1.3. Table 1.4 shows some conversion
factors between the SI and the English system. Table 1.5 shows typical temperature values in degrees
Fahrenheit and the equivalent temperature values in degrees Celsius and degrees Kelvin. Other units
used in physical sciences and electronics are derived from the SI base units and the most common
are listed in Table 1.6.

TABLE 1.1  SI Base Units

Unit of Name Abbreviation

Length Metre m

Mass Kilogram kg

Time Second s

Electric Current Ampere A

Temperature Degrees Kelvin °K

Amount of Substance Mole mol

Luminous Intensity Candela cd

Plane Angle Radian rad

Solid Angle Steradian sr
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TABLE 1.2  Most Commonly Used SI Prefixes

Value Prefix Symbol Example

Giga G 12 GHz (Gigahertz) = 12 × 10 9 Hz

Mega M 25 MΩ (Megaohms) = 25 × 10 6 Ω (ohms)

Kilo K 13.2 KV (Kilovolts) = 13.2 × 10 3 volts

centi c 2.8 cm (centimeters) = 2.8 x 10 –2 meter

milli m 4 mH (millihenries) = 4 × 10 –3 henry

micro µ 6 µw (microwatts) = 6 × 10 –6 watt 

nano n 2 ns (nanoseconds) = 2 × 10 –9 second

pico p 3 pF (picofarads) = 3 × 10 -12 Farad

TABLE 1.3  Less Frequently Used SI Prefixes

Value Prefix Symbol Example

Exa E 1 Em (Exameter) = 10 18 meters

Peta P 5 Pyrs (Petayears) = 5 × 10 15 years

Tera T 3 T$ (Teradollars) = 3 × 10 12 dollars

femto f 7 fA (femtoamperes) = 7 x 10 –15 ampere

atto a 9 aC (attocoulombs) = 9 × 10 –18 coulomb

109

106

103

10 2–

10 3–

10 6–

10 9–

10 12–

1018

1015

1012

10 15–

10 18–
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TABLE 1.4  Conversion Factors

1 in. (inch) 2.54 cm (centimeters)

1 mi. (mile) 1.609 Km (Kilometers)

1 lb. (pound) 0.4536 Kg (Kilograms)

1 qt. (quart) 946 cm3 (cubic centimeters)

1 cm (centimeter) 0.3937 in. (inch)

1 Km (Kilometer) 0.6214 mi. (mile)

1 Kg (Kilogram) 2.2046 lbs (pounds)

1 lt. (liter) = 1000 cm3 1.057 quarts

1 Å (Angstrom) 10 –10 meter

1 mm (micron) 10 –6 meter

TABLE 1.5 Temperature Scale Equivalents

°F °C °K

–523.4 –273 0

32 0 273

0 –17.8 255.2

77 25 298

98.6 37 310

212 100 373
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1.11  Sources of Energy

The principal sources of energy are from chemical processes (coal, fuel oil, natural gas, wood etc.)
and from mechanical forms (water falls, wind, etc.). Other sources include nuclear and solar energy.

Example 1.6  

A certain type of wood used in the generation of electric energy and we can get 12,000 BTUs from
a pound (lb) of that wood when burned. Suppose that a computer system that includes a monitor, a
printer, and other peripherals absorbs an average power of 500 w gets its energy from that burned

TABLE 1.6  SI Derived Units

Unit of Name Formula

Force Newton 

Pressure or Stress Pascal  

Work or Energy Joule  

Power Watt 

Voltage Volt 

Resistance Ohm  

Conductance Siemens  or  

Capacitance Farad  

Inductance Henry  

Frequency Hertz 

Quantity of Electricity Coulomb  

Magnetic Flux Weber 

Magnetic Flux Density Tesla  

Luminous Flux Lumen 

Illuminance Lux  

Radioactivity Becquerel 

Radiation Dose Gray  

Volume Litre  

N( ) N kg m⋅ s2⁄=

Pa( ) Pa N m2⁄=

J( ) J N m⋅=

W( ) W J s⁄=

V( ) V W A⁄=

Ω( ) Ω V A⁄=

S( ) Ω 1–( ) S A V⁄=

F( ) F A s⋅ V⁄=

H( ) H V s⋅ A⁄=

Hz( ) Hz 1 s⁄=

C( ) C A s⋅=

Wb( ) Wb V s⋅=

T( ) T Wb m2⁄=

lm( ) lm cd sr⋅=

lx( ) lx lm m2⁄=

Bq( ) Bq s 1–=

Gy( ) S J kg⁄=

L( ) L m3 10 3–×=
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Chapter 1  Basic Concepts and Definitions
wood and it is turned on for 8 hours. It is known that 1 BTU is equivalent to 778.3 ft-lb of energy,
and 1 joule is equivalent to 0.7376 ft-lb.

Compute:

a. the energy consumption during this 8-hour interval

b. the cost for this energy consumption if the rate is $0.15 per kw-hr 

c. the amount of wood in lbs burned during this time interval.

Solution:

a. Energy consumption for 8 hours is

b. Since ,

c. Wood burned in 8 hours,

1.12  Summary

• Two identically charged (both positive or both negative) particles possess a charge of one coulomb
when being separated by one meter in a vacuum, repel each other with a force of  newton

where . Thus, the force with which two electrically charged
bodies attract or repel one another depends on the product of the charges (in coulombs) in both
objects, and also on the distance between the objects. If the polarities are the same (negative/
negative or positive/positive), the so-called coulumb force is repulsive; if the polarities are
opposite (negative/positive or positive/negative), the force is attractive. For any two charged
bodies, the coulomb force decreases in proportion to the square of the distance between their
charge centers.

• Electric current is defined as the instantaneous rate at which net positive charge is moving past
this point in that specified direction, that is,

Energy W Pavet 500 w 8 hrs × 3600 s
1 hr

----------------× 14.4 Mjoules= = =

1 kilowatt hour– 3.6 106 joules×=

Cost $0.15
kw hr–
------------------ 1 kw hr–

3.6 106 joules×
----------------------------------------× 14.4 106×× $0.60= =

14.4 106 joules× 0.7376 f t lb–
joule
---------------- 1 BTU

778.3 f t lb–
-------------------------------× 1 lb

12000 BTU
----------------------------×× 1.137 lb=

10 7– c2

c velocity of light 3 108 m s⁄×≈=

i dq
dt
------ q∆

t∆
------

t∆ 0→
lim= =
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Summary
• The unit of current is the ampere, abbreviated as A, and corresponds to charge q moving at the
rate of one coulomb per second.

• In a two-terminal device the current entering one terminal is the same as the current leaving the
other terminal.

• The voltage (potential difference) across a two-terminal device is defined as the work required to
move a positive charge of one coulomb from one terminal of the device to the other terminal.

• The unit of voltage is the volt (abbreviated as V or v) and it is defined as

• Power p is the rate at which energy (or work) W is expended. That is,

• Absorbed power is proportional both to the current and the voltage needed to transfer one cou-
lomb through the device. The unit of power is the watt and 

• The passive sign convention states that if the arrow representing the current i and the plus (+)
minus (−) pair are placed at the device terminals in such a way that the current enters the device
terminal marked with the plus (+) sign, and if both the arrow and the sign pair are labeled with
the appropriate algebraic quantities, the power absorbed or delivered to the device can be
expressed as . If the numerical value of this product is positive, we say that the device is
absorbing power which is equivalent to saying that power is delivered to the device. If, on the
other hand, the numerical value of the product  is negative, we say that the device delivers
power to some other device.

• An ideal independent voltage source maintains the same voltage regardless of the amount of cur-
rent that flows through it.

• An ideal independent current source maintains the same current regardless of the amount of volt-
age that appears across its terminals.

• The value of an dependent voltage source depends on another voltage or current elsewhere in the
circuit.

• The value of an dependent current source depends on another current or voltage elsewhere in
the circuit.

• Ideal voltage and current sources are just mathematical models. We  will discuss practical voltage
and current sources in Chapter 3.

1  volt 1  joule
1  coulomb
-----------------------------=

Power p dW
dt

--------= =

1 watt 1 volt 1 ampere×=

p vi=

p vi=
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• Independent and Dependent voltage and current sources are active devices; they normally (but
not always) deliver power to some external device.

• Resistors, inductors, and capacitors are passive devices; they normally receive (absorb) power
from an active device.

• A network is the interconnection of two or more simple devices.

• A circuit is a network which contains at least one closed path. Thus every circuit is a network but
not all networks are circuits. 

• An active network is a network which contains at least one active device (voltage or current
source).

• A passive network is a network which does not contain any active device.

• To set up and maintain a flow of current in a network or circuit there must be a voltage source
(potential difference) present to provide the electrical work which will force current to flow and
the circuit must be closed.

• Linear devices are those in which there is a linear relationship between the voltage across that
device and the current that flows through that device.

• The International System of Units is used extensively by the international scientific community. It
was formerly known as the Metric System. 

• The principal sources of energy are from chemical processes (coal, fuel oil, natural gas, wood etc.)
and from mechanical forms (water falls, wind, etc.). Other sources include nuclear and solar
energy.
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1.13  Exercises

Multiple choice

1. The unit of charge is the

A. ampere

B. volt

C. watt

D. coulomb

E. none of the above

2. The unit of current is the

A. ampere

B. coulomb

C. watt

D. joule

E. none of the above

3. The unit of electric power is the

A. ampere

B. coulomb

C. watt

D. joule

E. none of the above

4. The unit of energy is the

A. ampere

B. volt

C. watt

D. joule

E. none of the above

5. Power is

A. the integral of energy
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B. the derivative of energy

C. current times some constant 

D. voltage times some constant 

E. none of the above

6. Active voltage and current sources

A. always deliver power to other external devices

B. normally deliver power to other external devices

C. neither deliver or absorb power to or from other devices

D. are just mathematical models

E. none of the above

7. An ideal independent voltage source

A. maintains the same voltage regardless of the amount of current that flows through it

B. maintains the same current regardless of the voltage rating of that voltage source

C. always delivers the same amount of power to other devices

D. is a source where both voltage and current can be variable

E. none of the above

8. An ideal independent current source

A. maintains the same voltage regardless of the amount of current that flows through it

B. maintains the same current regardless of the voltage that appears across its terminals

C. always delivers the same amount of power to other devices

D. is a source where both voltage and current can be variable

E. none of the above

9. The value of a dependent voltage source can be denoted as

A.  where k is a conductance value

B.  where k is a resistance value

C.  where k is an inductance value

D.  where k is a capacitance value

k

k

kV

kI

kV

kI
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E. none of the above 

10. The value of a dependent current source can be denoted as

A.  where k is a conductance value

B.  where k is a resistance value

C.  where k is an inductance value

D.  where k is a capacitance value

E. none of the above 

Problems

1. A two terminal device consumes energy as shown by the waveform of Figure 1.18 below, and the
current through this device is . Find the voltage across this device at t =
0.5, 1.5, 4.75 and 6.5 ms. Answers: 

Figure 1.18. Waveform for Problem 1

2. A household light bulb is rated 75 watts at 120 volts. Compute the number of electrons per sec-
ond that flow through this bulb when it is connected to a 120 volt source.
Answer: 

3. An airplane, whose total mass is 50,000 metric tons, reaches a height of 32,808 feet in 20 minutes
after takeoff. 

a. Compute the potential energy that the airplane has gained at this height. Answer: 

b. If this energy could be converted to electric energy with a conversion loss of 10%, how much
would this energy be worth at $0.15 per kilowatt-hour? Answer: 

c. If this energy were converted into electric energy during the period of 20 minutes, what aver-
age number of kilowatts would be generated? Answer: 

kV

kI

kV

kI

i t( ) 2 4000πt Acos=

2.5 V 0 V 2.5 V 2.5 V–,,,

1 t (ms)

W (mJ)

0

10

2 753 4 6

5

3.9 1018 electrons s⁄×

1 736 MJ,

$65.10

1 450 Kw,
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4. The power input to a television station transmitter is 125 kw and the output is 100 kw which is
transmitted as radio frequency power. The remaining 25 kw of power is converted into heat.
a. How many BTUs per hour does this transmitter release as heat? 

Answer: 

b. How many electron-volts per second is this heat equivalent to?

  Answer: 

1 BTU 1054.8 J=

85 234 BTU hr⁄,

1 electron volt– 1.6 10 19–  J×= 1.56 10 23×  electron volts–
 sec.

------------------------------------------
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1.14 Answers to Exercises

Dear Reader:

The remaining pages on this chapter contain answers to the multiple-choice questions and solutions
to the exercises.

You must, for your benefit, make an honest effort to answer the multiple-choice questions and solve
the problems without first looking at the solutions that follow. It is recommended that first you go
through and answer those you feel that you know. For the multiple-choice questions and problems
that you are uncertain, review this chapter and try again. If your answers to the problems do not
agree with those provided, look over your procedures for inconsistencies and computational errors.
Refer to the solutions as a last resort and rework those problems at a later date.

You should follow this practice with the multiple-choice and problems on all chapters of this book.
Circuit Analysis I with MATLAB Applications 1-25
Orchard Publications



Chapter 1  Basic Concepts and Definitions
Multiple choice

1. D

2. A

3. C

4. D

5. B

6. B

7. A

8. B

9. B

10. A

Problems

1.

a.

b.

c.

d.

v p
i
--- dW dt⁄

i
----------------- slope

i
--------------= = =

slope 0
1  ms 5 mJ

1 ms
------------ 5 J s⁄= =

v t 0.5  ms=
5 J s⁄

2 4000π 0.5 10 3–×( ) Acos
--------------------------------------------------------------- 5 J s⁄

2 2π Acos
------------------------ 5 J s⁄

2 A
-------------- 2.5 V= = = =

slope 1
2  ms 0=

v t 1.5  ms=
0
i
--- 0 V= =

slope 4
5  ms 5–  mJ

1 ms
--------------- 5–  J s⁄= =

v t 4.75  ms=
5–  J s⁄

2 4000π 4.75 10 3–×( ) Acos
------------------------------------------------------------------ 5–  J s⁄

2 19π Acos
--------------------------- 5–  J s⁄

2 π Acos
--------------------- 5–  J s⁄

2 A–
----------------- 2.5 V= = = = =
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2.

3.

where  and 

Then,

a.

slope 6
7  ms 5–  mJ

1 ms
--------------- 5–  J s⁄= =

v t 6.5 ms=
5–  J s⁄

2 4000π 6.5 10 3–×( ) Acos
--------------------------------------------------------------- 5–  J s⁄

2 26π Acos
--------------------------- 5–  J s⁄

2 A
----------------- 2.5–  V= = = =

i p
v
--- 75 w

120 V
-------------- 5

8
--- A= = =

q i td
t0

t

∫=

q t 1  s=
5
8
--- td

0

1  s

∫
5
8
---t

0

1  s 5
8
--- C s⁄= = =

5
8
--- C s⁄ 6.24 1018 electrons×

1 C
------------------------------------------------------× 3.9 1018 electrons s⁄×=

Wp Wk
1
2
---mv2= =

m mass in kg= v velocity in meters sec.⁄=

33 808 ft 0.3048 m
ft

-----------------------×, 10 000 m, 10 Km= =

20 minutes 60 sec.
min

-----------------× 1 200 sec.,=

v 10 000 m,
1 200 sec.,
-------------------------- 25

3
------ m s⁄= =

50 000 metric tons 1 000 Kg,
metric ton
---------------------------×, 5 107×  Kg=

Wp Wk
1
2
--- 5 107×( ) 25

3
------⎝ ⎠

⎛ ⎞ 2
173.61 107×  J 1 736 MJ,≈= = =
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b.

and with 10% conversion loss, the useful energy is

c.

4.

a.

b.

1 joule 1 watt-sec=

1 736 106J 1 watt-sec
1 joule

--------------------------××, 1 Kw
1 000 w,
---------------------× 1 hr

3 600 sec.,
--------------------------× 482.22 Kw-hr=

482.22 0.9× 482.22 0.9 434 Kw-hr=×=

Cost of Energy $0.15
Kw-hr
---------------- 434 Kw-hr× $65.10= =

Pave
W
t

----- 1 736 MJ,

20 min 60 sec
min

---------------×
---------------------------------------- 1.45 Mw 1450 Kw= = = =

1 BTU 1054.8 J=

25 000 watts 1 joule sec.⁄
watt

-------------------------------×, 1 BTU
1054.8 J
--------------------- 3600 sec.

1 hr
-----------------------×× 85 234 BTU hr⁄,=

1 electron volt– 1.6 10 19–  J×=

1 electron volt–
 sec.

------------------------------------------- 1.6 10 19–  J×
 sec.

------------------------------- 1.6 10 19–  watt×= =

25 000 watts 1 electron volt–  sec.⁄

1.6 10 19–  watt×
----------------------------------------------------------×, 1.56 10 23×  electron volts–

 sec.
------------------------------------------=
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Chapter 2
Analysis of Simple Circuits

his chapter defines constant and instantaneous values, Ohm’s law, and Kirchhoff ’s Current
and Voltage laws. Series and parallel circuits are also defined and nodal, mesh, and loop analy-
ses are introduced. Combinations of voltage and current sources and resistance combinations

are discussed, and the voltage and current division formulas are derived.

2.1 Conventions

We will use lower case letters such as , , and  to denote instantaneous values of voltage, current,
and power respectively, and we will use subscripts to denote specific voltages, currents, resistances,
etc. For example,  and  will be used to denote voltage and current sources respectively. Nota-
tions like  and  will be used to denote the voltage across resistance  and the current
through resistance  respectively. Other notations like  or  will represent the voltage (poten-
tial difference) between point  or point  with respect to some arbitrarily chosen reference point
taken as “zero” volts or “ground”.

The designations  or  will be used to denote the voltage between point  or point  with
respect to point  or  respectively. We will denote voltages as  and  whenever we wish to
emphasize that these quantities are time dependent. Thus, sinusoidal (AC) voltages and currents will
be denoted as  and  respectively. Phasor quantities, to be inroduced in Chapter 6, will be rep-
resented with bold capital letters,  for phasor voltage and  for phasor current. 

2.2 Ohm’s Law

We recall from Chapter 1 that resistance  is a constant that relates the voltage and the current as: 

(2.1)

This relation is known as Ohm’s law. 

The unit of resistance is the Ohm and its symbol is the Greek capital letter . One ohm is the resis-
tance of a conductor such that a constant current of one ampere through it produces a voltage of
one volt between its ends. Thus,

(2.2)

T

v i p

vS iS

vR1 iR2 R1

R2 vA v1

A 1

vAB v12 A 1

B 2 v t( ) i t( )

v t( ) i t( )
V I

R

vR RiR=

Ω

1 Ω 1 V
1 A
--------=
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Chapter 2  Analysis of Simple Circuits
Physically, a resistor is a device that opposes current flow. Resistors are used as a current limiting devices
and as voltage dividers. 

In the previous chapter we defined conductance  as the constant that relates the current and the volt-
age as

(2.3)

This is another form of Ohm’s law since by letting  and , we get

(2.4)

The unit of conductance is the siemens or mho (ohm spelled backwards) and its symbol is  or 
Thus,

(2.5)

Resistances (or conductances) are commonly used to define an “open circuit” or a “short circuit”.
An open circuit is an adjective describing the “open space” between a pair of terminals, and can be
thought of as an “infinite resistance” or “zero conductance”. In contrast, a short circuit is an adjective
describing the connection of a pair of terminals by a piece of wire of “infinite conductance” or a
piece of wire of “zero” resistance. 

The current through an “open circuit” is always zero but the voltage across the open circuit terminals
may or may not be zero. Likewise, the voltage across a short circuit terminals is always zero but the
current through it may or may not be zero. The open and short circuit concepts and their equivalent
resistances or conductances are shown in Figure 2.1.

Figure 2.1. The concepts of open and short circuits

The fact that current does not flow through an open circuit and that zero voltage exists across the
terminals of a short circuit, can also be observed from the expressions  and .

That is, since , infinite  means zero  and zero  means infinite . Then, for a finite volt-

age, say , and an open circuit,

G

iG GvG=

iG iR= vG vR=

G 1
R
---=

S Ω 1–

1 Ω 1– 1 A
1 V
--------=

A +

−

Open
Circuit

i = 0
B

i = 0

R = ∞
G = 0

A+

−B

A +

−

Short
Circuit

B

i
R = 0
G = ∞

A +

−B

i
vAB 0= vAB 0=

vR RiR= iG GvG=

G 1
R
---= R G R G

vG
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Power Absorbed by a Resistor
(2.6)

Likewise, for a finite current, say iR, and a short circuit, 

(2.7)

Reminder:

We must remember that the expressions

and

are true only when the passive sign convention is observed. This is consistent with our classification
of  and  being passive devices and thus  implies the current direction and voltage
polarity are as shown in Figure 2.2.

Figure 2.2. Voltage polarity and current direction in accordance to passive sign convention

But if the voltage polarities and current directions are as shown in Figure 2.3, then,

(2.8)

Figure 2.3. Voltage polarity and current direction not in accordance to passive sign convention

Note:  “Negative resistance,” as shown in (2.8), can be thought of as being a math model that sup-
plies energy.

2.3 Power Absorbed by a Resistor

A resistor, being a passive device, absorbs power. This absorbed power can be found from Ohm’s
law, that is,

and the power relation

iGG 0→
lim GvGG 0→

lim 0= =

vRR 0→
lim RiRR 0→

lim 0= =

vR RiR=

iG GvG=

R G vR RiR=

+ −

R

+−

R IRIR

vRvR

vR R– iR=

+−
R

+ −
R

IRIR

vR vR

vR RiR=
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Chapter 2  Analysis of Simple Circuits
Then,

(2.9)

The voltage, current, resistance and power relations are arranged in the pie chart shown in Figure 2.4.

Figure 2.4. Pie chart for showing relations among voltage, current, resistance, and power

Note: 
A resistor, besides its resistance rating (ohms) has a power rating in watts commonly referred to as
the wattage of the resistor. Common resistor wattage values are ¼ watt, ½ watt, 1 watt, 2 watts, 5 watts
and so on. This topic will be discussed in Section 2.16.

2.4 Energy Dissipated in a Resistor

A resistor, by its own nature, dissipates energy in the form of heat; it never stores energy. The energy
dissipated in a resistor during a time interval, say from  to , is given by the integral of the instan-
taneous power .Thus,

(2.10)

pR vR iR=

pR vR iR RiR( ) iR RiR
2 vR

vR
R
-----⎝ ⎠

⎛ ⎞ vR
2

R
-----= = = = =

P I

RVPR

P
I IR

VI

I 2 R

 V 2

  R
V
R P

V

P R⁄

P
I 2

V 2

  P

V
I

POW
ER (W

att
s)

VOLTAGE (Volts)

CURRENT (Amperes)

RESI
ST

ANCE (O
hm

s)

t1 t2

pR

WR  diss pR td
t1

t2

∫=
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Nodes, Branches, Loops and Meshes
If the power is constant, say , then (2.10) reduces to 

(2.11)

Alternately, if the energy is known, we can find the power by taking the derivative of the energy, that
is,

 (2.12)

Reminder: 
When using all formulas, we must express the quantities involved in their primary units. For
instance in (2.11) above, the energy is in joules when the power is in watts and the time is in seconds.

2.5 Nodes, Branches, Loops and Meshes

Definition 2.1 

A node is the common point at which two or more devices (passive or active) are connected. An
example of a node is shown in Figure 2.5.

Figure 2.5. Definition of node

Definition 2.2 

A branch is a simple path composed of one single device as shown in Figure 2.6.

Figure 2.6. Definition of branch

Definition 2.3 

A loop is a closed path formed by the interconnection of simple devices. For example, the network
shown in Figure 2.7 is a loop.

P

WR  diss Pt=

pR td
d WR diss=

+−

Node

+ −

Node Branch

R C vS
Circuit Analysis I with MATLAB Applications 2-5
Orchard Publications



Chapter 2  Analysis of Simple Circuits
Figure 2.7. Definition of a loop

Definition 2.4 

A mesh is a loop which does not enclose any other loops. For example, in the circuit shown in Figure
2.8,  is both a loop and a mesh, but  is a loop but not a mesh.

Figure 2.8. Example showing the difference between mesh and loop

2.6 Kirchhoff ’s Current Law (KCL)

KCL states that the algebraic sum of all currents leaving (or entering) a node is equal to zero. For example,
in Figure 2.9, if we assign a plus (+) sign to the currents leaving the node, we must assign a minus (−)
sign to the currents entering the node. Then by KCL,

(2.13)

Figure 2.9. Node to illustrate KCL

But if we assign a plus (+) sign to the currents entering the node and minus (−) sign to the currents
leaving the node, then by KCL, 

(2.14)

+−
L

C

RvS

ABEF ABCDEF

+−

A B C

DEF

vS

R1

R2

L C

i1– i2– i3 i4+ + 0=

i4

i1 i2

i3

i1 i2 i3– i4–+ 0=   
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Kirchhoff’s Voltage Law (KVL)
or

(2.15)

We observe that (2.13) and (2.15) are the same; therefore, it does not matter which we choose as
plus (+).

Convention: 
In our subsequent discussion we will assign plus (+) signs to the currents leaving the node.

2.7 Kirchhoff ’s Voltage Law (KVL)

KVL states that the algebraic sum of the voltage drops (voltages from + to −) or voltage rises (voltages from
− to +) around any closed path (mesh or loop) in a circuit is equal to zero. For example, in the circuit
shown in Figure 2.10, voltages , , , and  represent the voltages across devices 1, 2, 3, and 4
respectively, and have the polarities shown.

Figure 2.10. Circuit to illustrate KVL

Now, if we assign a (+) sign to the voltage drops, we must assign a (−) sign to the voltage rises. Then,
by KVL starting at node  and going clockwise we get:

(2.16)

or going counterclockwise, we get:

(2.17)

Alternately, if we assign a (+) sign to the voltage rises, we must assign a (−) sign to the voltage drops.
Then, by KVL starting again at node A and going clockwise we get: 

(2.18)

or going counterclockwise, we get: 

(2.19)

We observe that expressions (2.16) through (2.19) are the same.

i1– i2– i3 i4+ + 0=

v1 v2 v3 v4

Device 1

Device 2

Device 4

Device 3
−

− +
+

−

+

− +
A

v1

v2
v3

v4

A

v1– v2– v3 v4+ + 0=

v4– v3– v2 v1+ + 0=

v1 v2 v3– v4–+ 0=

v4 v3 v2– v1–+ 0=
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Chapter 2  Analysis of Simple Circuits
Convention: 
In our subsequent discussion we will assign plus (+) signs to voltage drops.

Definition 2.5 

Two or more devices are said to be connected in series if and only if the same current flows through
them. For example, in the circuit of Figure 2.11, the same current  flows through the voltage source,
the resistance, the inductance and the capacitance. Accordingly, this is classified as a series circuit.

Figure 2.11. A simple series circuit

Definition 2.6 

Two or more devices are said to be connected in parallel if and only if the same voltage exists across each
of the devices. For example, in the circuit of Figure 2.12, the same voltage  exists across the cur-
rent source, the conductance, the inductance, and the capacitance and therefore it is classified as a
parallel circuit

Figure 2.12. A simple parallel circuit

Convention: 
In our subsequent discussion we will adopt the conventional current flow, i.e., the current that flows
from a higher (+) to a lower (−) potential. For example, if in Figure 2.13 we are given the indicated
polarity, 

Figure 2.13. Device with established voltage polarity

i

+−
L

C

RvS

vAB

L

C

G L CG

A

B

A A A A

B B B B

iSiS

+ −

R

vR
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Kirchhoff’s Voltage Law (KVL)
then, the current arrow will be pointing to the right direction as shown in Figure 2.14.

Figure 2.14. Direction of conventional current flow in device with established voltage polarity

Alternately, if current flows in an assumed specific direction through a device thus producing a volt-
age, we will assign a (+) sign at the terminal of the device at which the current enters. For example,
if we are given this designation a device in which the current direction has been established as
shown in Figure 2.15,

Figure 2.15. Device with established conventional current direction

then we assign (+) and (−) as shown in Figure 2.16.

Figure 2.16. Voltage polarity in a device with established conventional current flow                                     

Note: Active devices, such as voltage and current sources, have their voltage polarity and current
direction respectively, established as part of their notation. The current through and the volt-
age across these devices can easily be determined if these devices deliver power to the rest of the cir-
cuit. Thus with the voltage polarity as given in the circuit of Figure 2.17 (a), we assign a clock-
wise direction to the current as shown in Figure 2.17 (b). This is consistent with the passive
sign convention since we have assumed that the voltage source delivers power to the rest of
the circuit.

                                                                                                                                           

Figure 2.17. Direction of conventional current flow produced by voltage sources

+ −

R

vR

R

+ −

RiR

vR

−
Rest of the

Circuit
+

i

(b)

−
Rest of the

Circuit
+

(a)

vS
vS
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Chapter 2  Analysis of Simple Circuits
Likewise, in the circuit of Figure 2.18 (a) below, the direction of the current source is clockwise, and
assuming that this source delivers power to the rest of the circuit, we assign the voltage polarity
shown in Figure 2.18 (b) to be consistent with the passive sign convention.

                                                         
Figure 2.18. Voltage polarity across current sources

The following facts were discussed in the previous chapter but they are repeated here for emphasis.

There are two conditions required to setup and maintain the flow of an electric current:

1. There must be some voltage (potential difference) to provide the energy (work) which will force electric cur-
rent to flow in a specific direction in accordance with the conventional current flow (from a higher to a lower
potential).

2. There must be a continuous (closed) external path for current to flow around this path (mesh or loop).

The external path is usually made of two parts: (a) the metallic wires and (b) the load to which the elec-
tric power is to be delivered in order to accomplish some useful purpose or effect. The load may be a
resistive, an inductive, or a capacitive circuit, or a combination of these.

2.8 Single Mesh Circuit Analysis

We will use the following example to develop a step-by-step procedure for analyzing (finding current,
voltage drops and power) in a circuit with a single mesh.

Example 2.1  

For the series circuit shown in Figure 2.19, we want to find:

a.  The current i which flows through each device

b.  The voltage drop across each resistor

c.  The power absorbed or delivered by each device

Rest of the

Circuit

Rest of the

Circuit

+

−

v

(a) (b)

iS iS
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Single Mesh Circuit Analysis
Figure 2.19. Circuit for Example 2.1

Solution:

a. Step 1: We do not know which voltage source(s) deliver power to the other sources, so let us
assume that the current  flows in the clockwise direction* as shown in Figure 2.20.

Figure 2.20. Circuit for Example 2.1 with assumed current direction

Step 2: We assign (+) and (−) polarities at each resistor’s terminal in accordance with the estab-
lished passive sign convention.

Step 3: By application of KVL and the adopted conventions, starting at node  and going clock-
wise, we get:

(2.20)

and by Ohm’s law,

Then, by substitution of given values into (2.20), we get

* Henceforth, the current direction will be assumed to be that of the conventional current flow.

+−

+ −

+−

200 V 80 V

64 V

10 Ω 8 Ω

R1

4 Ω 6 Ω

R2

R3R4

vS3
vS1

vS2

i

+−

+ −

+−

200 V 80 V

64 V4 Ω 6 Ω

10 Ω 8 Ω

i

+ − + −

+−+−
A

R1 R2

R3R4

vS1

vS2

vS3

A

vS1– vR1 vS2+ + vR2 vS3 vR3 vR4+ + + + 0=

vR1 R1i      vR2 R2i      vR3 R3i      vR4 R4i====
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Chapter 2  Analysis of Simple Circuits
or

or

(2.21)

b. Knowing the current  from part (a), we can now compute the voltage drop across each resistor
using Ohm’s law .

(2.22)

c. The power absorbed (or delivered) by each device can be found from the power relation .
Then, the power absorbed by each resistor is

(2.23)

and the power delivered (or absorbed) by each voltage source is

(2.24)

From (2.24), we observe that the 200 volt source absorbs −400  watts of power. This means that this
source delivers (supplies) 400 watts to the rest of the circuit. However, the other two voltage sources
receive (absorb) power from the 200 volt source. Table 2.1 shows that the conservation of energy
principle is satisfied since the total absorbed power is equal to the power delivered.

Example 2.2  

Repeat Example 2.1 with the assumption that the current  flows counterclockwise.

Solution:

We denote the current as  (i prime) for this example. Then, starting at Node  and going counter-
clockwise, the voltage drops across each resistor are as indicated in Figure 2.21.

Repeating Steps 2 and 3 of Example 2.1, we get:

(2.25)

Next, by Ohm’s law,

200– 4i 64+ + 6i 80 8i 10i+ + + + 0=

28i 56=

i 2 A=

i
v Ri=

vR1 4 2× 8 V=        vR2 6 2× 12 V=    ==

vR3 8 2× 16 V=       vR4 10 2× 20 V= ==

p vi=

pR1 8 2× 16 w=         pR2 12 2× 24 w=  ==

pR3 16 2× 32 w=       pR4 20 2× 40 w= ==

pVS1
200– 2× 400–  w =    pVS2

64 2× 128 w    = pVS3
80 2× 160 w==  ==

i

i ' A

vR4 vR3 vS3–+ vR2 vS2– vR1 vS1+ + + 0=

vR1 R1i '    vR2 R2i '    vR3 R3i '    vR4 R4i '====
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Single Mesh Circuit Analysis
Figure 2.21. Circuit for Example 2.2

By substitution of given values, we get

or

or

(2.26)

Comparing (2.21) with (2.26) we see that  as expected.

TABLE 2.1  Power delivered or absorbed by each device on the circuit of Figure 2.19

Device Power Delivered (watts) Power Absorbed (watts)

200 V Source 400 

64 V Source 128

80 V Source 160

4 Ω Resistor   16

6 Ω Resistor   24

8 Ω Resistor   32

10 Ω Resistor   40

Total 400 400

+−

+ −

+−

200 V 80 V

64 V4 Ω 6 Ω

10 Ω 8 Ω

+− +−

+ −+ −
A

R1 R2

R3R4

i '

vS2

vS1 vS3

200 4i ' 64–+ 6i ' 80– 8i ' 10i '+ + + 0=

28i ' 56–=

i ' 2– A=

i ' i–=
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Chapter 2  Analysis of Simple Circuits
Definition 2.7 

A single node-pair circuit is one in which any number of simple elements are connected between the
same pair of nodes. For example, the circuit of Figure 2.22 (a), which is more conveniently shown as
Figure 2.22 (b), is a single node-pair circuit.

Figure 2.22. Circuit with a single node-pair

2.9 Single Node-Pair Circuit Analysis 

We will use the following example to develop a step-by-step procedure for analyzing (finding cur-
rents, voltage drop and power) in a circuit with a single node-pair.

Example 2.3  

For the parallel circuit shown in Figure 2.23, find:

a.  The voltage drop across each device

b.  The current i which flows through each conductance

c.  The power absorbed or delivered by each device

Figure 2.23. Circuit for Example 2.3

iS

L

C

G

iS

L CG

A

B

A A A A

B B B B
       (a)                                                  (b)

12 A 24 A18 A

I1 I2 I3
G2G1 G3

4 Ω 1– 6 Ω 1– 8 Ω 1–
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Single Node-Pair Circuit Analysis
Solution:

a. Step 1: We denote the single node-pair with the letters  and  as shown in Figure 2.24. It is
important to observe that the same voltage (or potential difference) exists across each
device. Node  is chosen as our reference node and it is convenient to assume that this

reference node is at zero potential (ground) as indicated by the symbol 

Figure 2.24. Circuit for Example 2.3 with assumed current directions

Step 2: We assign currents through each of the conductances , , and  in accordance
with the conventional current flow. These currents are shown as , , and .

Step 3: By application of KCL and in accordance with our established convention, we choose
node  which is the plus (+) reference point and we form the algebraic sum of the cur-
rents leaving (or entering) this node. Then, with plus (+) assigned to the currents leaving
this node and with minus (−) entering this node we get

(2.27)

and since

(2.28)

by substitution into (2.27),

(2.29)

Solving for , we get

(2.30)

and by substitution of the given values, we get

A B

B

12 A 24 A18 A

iS1 iS2 iS3
G2G1 G3

4 Ω 1– 6 Ω 1– 8 Ω 1–

A A A A A A

vAB

iG1 iG2 iG3

B
B

B B B B

G1 G2 G3

iG1 iG2 iG3

A

i
S1

– iG1 i
S2

iG2 i
S3

– iG3+ + + + 0=

iG1 G1vAB     iG2 G2vAB     iG3 G3vAB===

iS1– G1vAB iS2 G2vAB iS3– G3vAB+ + + + 0=

vAB

vAB
iS1 iS2– iS3+

G1 G2 G3+ +
--------------------------------=
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Chapter 2  Analysis of Simple Circuits
(2.31)

or 

(2.32)

b. From (2.28),

(2.33)

and we observe that with these values, (2.27) is satisfied.

c. The power absorbed (or delivered) by each device can be found from the power relation .
Then, the power absorbed by each conductance is

(2.34)

and the power delivered (or absorbed) by each current source is

(2.35)

From (2.35) we observe that the  and  current sources absorb  and 
respectively. This means that these sources deliver (supply) a total of  to the rest of the cir-
cuit. The  source absorbs power.

Table 2.2 shows that the conservation of energy principle is satisfied since the absorbed power is
equal to the power delivered.

2.10  Voltage and Current Source Combinations

Definition 2.8 

Two or more voltage sources connected in series are said to be series aiding when the plus (+) terminal
of any one voltage source is connected to the minus (−) terminal of another, or when the minus (−)
terminal of any one voltage source is connected to the plus (+) terminal of another.

Two or more series aiding voltage sources may be replaced by an equivalent voltage source whose
value is the algebraic sum of the individual voltage sources as shown in Figure 2.25.

vAB
12 18– 24+

4 6 8+ +
------------------------------=

vAB 1  V=

iG1 4         iG2 6         iG3 8===

p vi=  

pG1 1 4× 4 w==

pG2 1 6× 6 w==

pG3 1 8× 8 w==

pI1 1 12–( )× 12–  w==

pI2 1 18× 18 w=  =

pI3 1 24–( )× 24–  w==

12 A 24 A 12 w– 24 w–

36 w
18 A
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Voltage and Current Source Combinations
Figure 2.25. Addition of voltage sources in series when all have same polarity

A good example of combining voltage sources as series aiding is when we connect several AA size
batteries each rated at  to power up a hand calculator, or a small flashlight.

Definition 2.9 

Two or more voltage sources connected in series are said to be series opposing when the plus (+) ter-
minal of one voltage source is connected to the plus (+) terminal of the other voltage source or
when the minus (−) of one voltage source is connected to the minus (−) terminal of the other volt-
age source. Two series opposing voltage sources may be replaced by an equivalent voltage source
whose value is the algebraic difference of the individual voltage sources as shown in Figure 2.26.

Definition 2.10 

Two or more current sources connected in parallel are said to be parallel aiding when the arrows indi-
cating the direction of the current flow have the same direction. They can be combined into a single
current source as shown in Figure 2.27.

TABLE 2.2  Power delivered or absorbed by each device of Figure 2.23

Device Power Delivered (watts) Power Absorbed (watts)

12 A Source 12

18 A Source 18

24 A Source 24

4  Conductance   4

6  Conductance   6

8  Conductance   8

Total 36 36

Ω 1–

Ω 1–

Ω 1–

+ − + − + −200 V 80 V64 V

200 + 64 + 80 = 344 V

A

−+

B

vAB v1 v2 v3+ +=
v1 v2 v3

1.5 v
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Chapter 2  Analysis of Simple Circuits
Figure 2.26. Addition of voltage sources in series when they have different polarity

Figure 2.27. Addition of current sources in parallel when all have same direction

Definition 2.11 

Two or more current sources connected in parallel are said to be parallel opposing when the arrows
indicating the direction of the current flow have opposite direction. They can be replaced by an
equivalent current source whose value is the algebraic difference of the individual current sources as
shown in Figure 2.28.

Figure 2.28. Addition of current sources in parallel when they have opposite direction

2.11  Resistance and Conductance Combinations

Often, resistors are connected in series or in parallel. With either of these connections, series or par-
allel, it is possible to replace these resistors by a single resistor to simplify the computations of the
voltages and currents. Figure 2.29 shows  resistors connected in series.

+ − +−200 V 64 V

200 − 64 = 136 V

A

−+

B

v1 v2
vAB v1 v2–=

12 A 54 A18 A 24 A

iT i1 i2 i3+ +=i3i1 i2 iT

18 A 6 A24 A

i1 i2

iT i– 1 i2+=
iT

n
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Resistance and Conductance Combinations
Figure 2.29. Addition of resistances in series

The combined or equivalent resistance  is

or 

(2.36)

Example 2.4  

For the circuit of Figure 2.30, find the value of the current  after combining the voltage sources to
a single voltage source and the resistances to a single resistor.

Figure 2.30. Circuit for Example 2.4

Solution:

We add the values of the voltage sources as indicated in Definitions 8 and 9, we add the resistances
in accordance with (2.36), and we apply Ohm’s law. Then, 

(2.37)

A B. . . . 

Rest of the circuit

i
R1 R2 R3 RN

Req

Req
vAB

i
--------

vR1
i

-------
vR2

i
-------

vR3
i

------- …
vRn

i
--------+ + + += =

Req R1 R2 R3 … Rn+ + + + RK
k 1=

n

∑= =

For Resistors in Series

i

+
−

+ −

+−

200 V 80 V

64 V4 Ω 6 Ω

8 Ω10 Ω

v1

v2

v3
R1

R2

R3R4

i

i     
 

-------- 200 64 80+( )–
28

-------------------------------------- 56
28
------ 2 A= = = =

Σv
ΣR
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Chapter 2  Analysis of Simple Circuits
Next, we consider thecase where  resistors are connected in parallel as shown in Figure 2.31.

Figure 2.31. Addition of resistances in parallel

By KCL,

(2.38)

The same voltage exists across each resistor; therefore, dividing each term of (2.38) by , we get 

(2.39)

and since , then  and thus (2.39) can be written as

or 

(2.40)

For the special case of two parallel resistors, (2.40) reduces to

or 

(2.41)

where the designation  indicates that  and  are in parallel.

n

...
.
. .

.A B

R1

R2

Rn

iT iT

i1

i2

in
vAB

iT i1 i2 … in+ + +=

VAB

iT
vAB
--------

i1
vAB
--------

i2
vAB
-------- …

in
vAB
--------+ + +=

v i⁄ R= i v⁄ 1 R⁄=

1
RAB
--------- 1

R1
----- 1

R2
----- … 1

Rn
------+ + +=

1
Req
-------- 1

R1
----- 1

R2
----- … 1

Rn
------+ + +=

For Resistors in Parallel

1
Req
-------- 1

R1
----- 1

R2
-----+=

Req R1 ||R2
R1 R2⋅
R1 R2+
------------------= =

R1 ||R2 R1 R2
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Resistance and Conductance Combinations
Also, since , from (2.38),

(2.42)

that is, parallel conductances combine as series resistors do.

Example 2.5  

In the circuit of Figure 2.32,

a. Replace all resistors with a single equivalent resistance 

b. Compute the voltage  across the current source.

Figure 2.32. Circuit for Example 2.5

Solution:

a. We could use (2.40) to find the equivalent resistance . However, it is easier to form groups of
two parallel resistors as shown in Figure 2.33 and use (2.41) instead. 

Figure 2.33. Groups of parallel combinations for the circuit of Example 2.5.

Then,

G 1 R⁄=

Geq G1 G2 … Gn+ + + Gk
k 1=

n

∑= =

Req

vAB

i

vAB

11
6

------ A

3 Ω 12 Ω 4 Ω 20 Ω

R1 R2 R3
R4

R5

5 Ω

Req

i

11
6

------ A

vAB 3 Ω 12 Ω 4 Ω 20 Ω 5 Ω
R1 R2 R3 R4 R5

R2||R3
12 4×
12 4+
--------------- 3 Ω= =
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Chapter 2  Analysis of Simple Circuits
Also, 

and the circuit reduces to that shown in Figure 2.34.

Figure 2.34. Partial reduction for the circuit of Example 2.5

Next, 

Finally,

and the circuit reduces to that shown in Figure 2.35

Figure 2.35. Reduction of the circuit of Example 2.5 to its simplest form

b. The voltage  across the current source is

(2.43)

2.12  Voltage Division Expressions

In the circuit of Figure 2.36, , , and  are known.

R4||R5
20 5×
20 5+
--------------- 4 Ω= =

i R1

vAB 3 Ω
3 Ω

4 Ω
11
6

------ A

3||3 3 3×
3 3+
------------ 1.5 Ω= =

Req 1.5 ||4 1.5 4×
1.5 4+
---------------- 12

11
------ Ω= ==

i

11
6

------ A

vAB

Req

12
11
------ Ω

vAB

vAB IReq
11
6

------ 12
11
------⋅ 2 V= = =

vS R1 R2
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Voltage Division Expressions
Figure 2.36. Circuit for the derivation of the voltage division expressions

For the circuit of Figure 2.36, we will derive the voltage division expressions which state that:

These expressions enable us to obtain the voltage drops across the resistors in a series circuit simply
by observation.

Derivation:

By Ohm’s law in the circuit of Figure 2.36 where  is the current flowing through i, we get

(2.44)

Also,

or

(2.45)

and by substitution of (2.45) into (2.44) we obtain the voltage division expressions below.

 (2.46)

Example 2.6                

In the network of Figure 2.37, the arrows indicate that resistors and  are variable and that the
power supply is set for . 

a. Compute  and  if  and  are adjusted for  and  respectively.

+
−

vS

R2

R1

vR1
R1

R1 R2+
------------------vS  and  vR2

R2

R1 R2+
------------------vS==

i

vR1 R1i    and    vR2 R2i==

R1 R2+( )i vS=

    i
vS

R1 R2+
------------------=

vR1
R1

R1 R2+
------------------vS    and    vR2

R2

R1 R2+
------------------vS==

VOLTAGE DIVISION EXPRESSIONS

R1 R2

12 V

vR1 vR2 R1 R2 7 Ω 5 Ω
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Chapter 2  Analysis of Simple Circuits
b. To what values should  and  be adjusted so that , , and
?

Figure 2.37. Network for Example 2.6

Solution:

a. Using the voltage division expressions of (2.46), we get

and

b. Since , , and the voltage drops are proportional to the
resistances, it follows that if we let  and , the voltage drops  and  will
be  and  respectively.

2.13   Current Division Expressions

In the circuit shown in Figure 2.38, , , and  are known.

Figure 2.38. Circuit for the derivation of the current division expressions

R1 R2 vR1 3 V= vR2 9 V=

R1 R2+ 12 Ω=

+

−

Power
Supply

(Voltage
Source)

12 V

+

+

−

−

vR1

vR2

R1

R2

vR1
R1

R1 R2+
------------------vS

7
7 5+
------------ 12× 7 V= = =

vR2
R2

R1 R2+
------------------vS

5
7 5+
------------ 12× 5 V= = =

vR1 vR2+ 3 9+ 12 V= = R1 R2+ 12 Ω=

R1 3 Ω= R2 9 Ω= vR1 vR2

3 V 9 V

iS G1 G2

v

iS
iG1

iG2G1 G2
R1( ) R2( )
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For the circuit of Figure 2.38, we will derive the current division expressions which state that

and these expressions enable us to obtain the currents through the conductances (or resistances) in
a parallel circuit simply by observation.

Derivation:

By Ohm’s law for conductances, we get

(2.47)

Also, 

or

(2.48)

and by substitution of (2.48) into (2.47)

(2.49)

Also, since

by substitution into (2.49) we get

 (2.50)

Example 2.7  

For the circuit of figure 2.39, compute the voltage drop 

Solution:

The current source  divides into currents  and  as shown in Figure 2.40.

iG1
G1

G1 G2+
-------------------iS    and    iG2

G2

G1 G2+
-------------------iS==

iG1 G1v    and    iG2 G2v==

G1 G2+( )v iS=

v
iS

G1 G2+
-------------------=

iG1
G1

G1 G2+
-------------------iS    and    iG2

G2

G1 G2+
-------------------iS==

R1
1

G1
------= R2

1
G2
------=

iR1
R2

R1 R2+
------------------iS  and  iR2

R1

R1 R2+
------------------iS==

CURRENT DIVISION EXPRESSIONS

v

iS i1 i2
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Chapter 2  Analysis of Simple Circuits
Figure 2.39. Circuit for Example 2.7

Figure 2.40. Application of current division expressions for the circuit of Example 2.7

We observe that the voltage  is the voltage across the resistor . Therefore, we are only interested
in current . This is found by the current division expression as

and observing the passive sign convention, the voltage  is

or

2.14  Standards for Electrical and Electronic Devices

Standardization of electronic components such as resistors, capacitors and diodes is carried out by
various technical committees. In the United States, the Electronics Industries Association (EIA) and
the American National Standards Institute (ANSI) have established and published several standards
for electrical and electronic devices to provide interchangeability among similar products made by
different manufacturers. Also, the U.S. Department of Defense or its agencies issue standards known

v

+

−

iS

R2
R1

R3

R4

4 Ω

5 Ω

20 Ω

12 Ω
3 A

v

+

−

iS
R2

R1
R3

R4

4 Ω

5 Ω

20 Ω

12 Ω

3 Ai2 i1

v R1

i1

i1
R2 R3 R4+ +

R1 R2 R3 R4+ + +
------------------------------------------- iS⋅ 4 5 20+ +

12 4 5 20+ + +
------------------------------------- 3⋅ 87

41
------ A= = =

v

v i1R1–
87
41
------ 12⋅–

1044
41

------------  V–= = =

v 25.46 V–=
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Resistor Color Code
as Military Standards, or simply MIL-stds. All of the aforementioned standards are updated periodi-
cally. The interested reader may find the latest revisions in the Internet or the local library.

2.15   Resistor Color Code

The Resistor Color Code is used for marking and identifying pertinent data for standard resistors.
Figures 2.41 and 2.42 show the color coding scheme per EIA Standard RS-279 and MIL-STD-
1285A respectively.

Figure 2.41. Resistor Color Code per EIA Standard RS-279

Figure 2.42. Resistor Color Code per MIL-STD-1285A

In a color coded scheme, each color represents a single digit number, or conversely, a single digit
number can be represented by a particular color band as shown in Table 2.3 that is based on MIL-
STD-1285A color code.

As shown in Figure 2.42, the first and second bands designate the first and second significant digits
respectively, the third represents the multiplier, that is, the number by which the first two digits are
multiplied, and the fourth and fifth bands, if they exist, indicate the tolerance and failure rate respec-
tively. The tolerance is the maximum deviation from the specified nominal value and it is given as a
percentage. The failure rate is the percent probability of failure in a 1000-hour time interval.

Let A and B represent the first and second significant digits and C represent the multiplier. Then the
resistance value is found from the expression

(2.51)

  1st
 2nd

  3rd

Significant
Figures

Tolerance
Wider Space to
Identify Direction
of Reading
Left to Right
Multiplier

Significant
Figures

Tolerance

Multiplier

Failure Rate Level
on Established
Reliability Levels
Only

1st
2nd

R 10 A B+×( ) C×10=
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Chapter 2  Analysis of Simple Circuits
Example 2.8  

The value of a resistor is coded with the following colored band code, left to right: Brown, Green,
Blue, Gold, Red. What is the value, tolerance, and probability of failure for that resistor?

Solution:

Table 2.3 yields the following data: Brown (1st significant digit) = 1, Green (2nd significant digit) =
5, and Blue (multiplier) = 1,000,000. Therefore, the nominal value of this resistor is 15,000,000
Ohms or 15 MΩ. The 4th band is Gold indicating a ±5% tolerance meaning that the maximum devi-
ation from the nominal value is 15,000,000 ±5% = 15,000,000 × ±0.05 = ±750,000 Ohms or ±0.75
MΩ. That is, this resistor can have a value anywhere between 14.25 MΩ and 15.75 MΩ. Since the 5th
band is Red, there is a 0.1% probability that this resistor will fail after 1000 hours of operation.

2.16  Power Rating of Resistors

As it was mentioned in Section 2.2, a resistor, besides its resistance rating (ohms) has a power rating
(watts) commonly referred to as the wattage of the resistor, and common resistor wattage values are ¼
watt, ½ watt, 1 watt, 2 watts, 5 watts and so on. To appreciate the importance of the wattage of a
resistor, let us refer to the voltage divider circuit of Example 2.6, Figure 2.37 where the current is

. Using the power relation , we find that the wattage of the  and

TABLE 2.3  Resistor values per MIL-STD-1285A

Color Code
1st & 2nd 

Digits
Multiplier 
(3rd Digit)

Tolerance 
(Percent)

Fail Rate 
(Percent)

Black 0 1

Brown 1 10 1 1

Red 2 100 2 0.1

Orange 3 1000 0.01

Yellow 4 10000 0.001

Green 5 100000 0.5

Blue 6 1000000 0.25

Violet 7 0.1

Gray 8

White 9

Gold 0.1 5

Silver 0.01 10

No Color 20

12 V 12 Ω⁄ 1 A= pR i2R= 7 Ω
2-28 Circuit Analysis I with MATLAB Applications
Orchard Publications



Temperature Coefficient of Resistance
 resistors would be 7 watts and 5 watts respectively. We could also divide the 12 volt source into
two voltages of 7 V and 5 V using a  and a  resistor. Then, with this arrangement the cur-
rent would be . The wattage of the  and  resistors would then be

 and  respectively.

2.17   Temperature Coefficient of Resistance

The resistance of any pure metal, such as copper, changes with temperature. For each degree that
the temperature of a copper wire rises above  Celsius, up to about , the resistance
increases 0.393 of 1 percent of what it was at 20 degrees Celsius. Similarly, for each degree that the
temperature drops below , down to about , the resistance decreases 0.393 of 1 percent
of what it was at . This percentage of change in resistance is called the Temperature Coefficient of
Resistance. In general, the resistance of any pure metal at temperature T in degrees Celsius is given by

(2.52)

where  is the resistance at  and  is the temperature coefficient of resistance at .

Example 2.9  

The resistance of a long piece of copper wire is  at .
a.  What would the resistance be at ?
b.  Construct a curve showing the relation between resistance and temperature.

Solution:

a. The temperature rise is  degrees Celsius and the resistance increases 0.393% for
every degree rise. Therefore the resistance increases by . This represents an
increase of  in resistance or 5.66 Ω. Therefore, the resistance at 50 degrees Celsius
is .

b. The relation of (2.52) is an equation of a straight line with . This straight line is
easily constructed with the Microsoft Excel spreadsheet shown in Figure 2.43.

From Figure 2.43, we observe that the resistance reaches zero value at approximately .

5 Ω
7 kΩ 5 kΩ

12 V 12 kΩ⁄ 1 mA= 7 kΩ 5 kΩ

10 3–( )
2

7 103×× 7 10 3–×  W 7 mW= = 10 3–( )
2

5 103×× 5 mW=

20 °C 200 °C

20 °C 50– °C
20 °C

R R20 1 α20 T 20–( )+[ ]=

R20 20 °C α20 20 °C

48 Ω 20 °C
50°C

50 20– 30=

30 0.393× 11.79%=

0.1179 48 Ω×
48 5.66+ 53.66 Ω=

slope R20α20=

235– °C
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Figure 2.43. Spreadsheet for construction of equation (2.52)

2.18  Ampere Capacity of Wires

For public safety, electric power supply (mains) wiring is controlled by local, state and federal boards,
primarily on the National Electric Code (NEC) and the National Electric Safety Code. Moreover, many
products such as wire and cable, fuses, circuit breakers, outlet boxes and appliances are governed by
Underwriters Laboratories (UL) Standards which approves consumer products such as motors, radios,
television sets etc.

Table 2.4 shows the NEC allowable current-carrying capacities for copper conductors based on the
type of insulation.

The ratings in Table 2.4 are for copper wires. The ratings for aluminum wires are typically 84% of
these values. Also, these rating are for not more than three conductors in a cable with temperature

 or . The NEC contains tables with correction factors at higher temperatures.

2.19   Current Ratings for Electronic Equipment

There are also standards for the internal wiring of electronic equipment and chassis. Table 2.5 pro-
vides recommended current ratings for copper wire based on  (  for wires smaller than 22
AWG. Listed also, are the circular mils and these denote the area of the cross section of each wire
size. A circular mil is the area of a circle whose diameter is 1 mil (one-thousandth of an inch). Since the
area of a circle is proportional to the square of its diameter, and the area of a circle one mil in diame-
ter is one circular mil, the area of any circle in circular mils is the square of its diameter in mils.

A mil-foot wire is a wire whose length is one foot and has a cross-sectional area of one circular mil. 

Temp Resistance
(deg C) (Ohms)

-250 -2.9328
-240 -1.0464
-230 0.84
-220 2.7264
-210 4.6128
-200 6.4992
-190 8.3856
-180 10.272
-170 12.1584
-160 14.0448
-150 15.9312
-140 17.8176

Resistance of Copper Wire versus Temperature

0

20
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100

-250 -200 -150 -100 -50 0 50 100 150 200 250

Degrees Celsius

O
hm

s

30°C 86°F
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Current Ratings for Electronic Equipment
† Dry Locations Only     ‡ Nickel or nickel-coated copper only

 

TABLE 2.4  Current Carrying Capacities for Copper Conductors

Copper Conductor Insulation

Size 
(AWG)

RUH(14-2)
T, TW, UF

RH, RHW, 
RUH,
(14-2)

THW, THWN,
XHHW

TA, TBS, SA,
FEP, FEPB,
RHH, THHN

XHHW† TFE‡

14 15 15 25 40
12 20 20 30 55
10 30 30 40 75
8 40 45 50 95
6 55 65 70 120
4 70 85 90 145
3 80 100 105 170
2 95 115 120 195
1 110 130 140 220
0 125 150 155 250
00 145 175 185 280
000 165 200 210 315
0000 195 230 235 370
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Chapter 2  Analysis of Simple Circuits
The resistance of a wire of length  can be computed by the relation 

(2.53)

TABLE 2.5  Current Ratings for Electronic Equipment and Chassis Copper Wires

Wire Size Maximum Current (Amperes)

AWG Circular Mils

Nominal 
Resistance 

(Ohms/1000 ft)
at 100 °C

Wire in Free 
Air

Wire Confined 
in Insulation

32 63.2 188 0.53 0.32

30 100.5 116 0.86 0.52
28 159.8 72 1.4 0.83
26 254.1 45.2 2.2 1.3
24 404 28.4 3.5 2.1
22 642.4 22 7 5
20 10.22 13.7 11 7.5
18 1624 6.5 16 10
16 2583 5.15 22 13
14 4107 3.2 32 17
12 6530 2.02 41 23
10 10380 1.31 55 33
8 16510 0.734 73 46
6 26250 0.459 101 60
4 41740 0.29 135 80
2 66370 0.185 181 100
1 83690 0.151 211 125
0 105500 0.117 245 150
00 133100 0.092 283 175
000 167800 0.074 328 200
0000 211600 0.059 380 225

l

R ρl
d2
-----=
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Copper Conductor Sizes for Interior Wiring
where  = resistance per mil-foot,  = length of wire in feet,  = diameter of wire in mils, and  is
the resistance at .

Example 2.10  

Compute the resistance per mile of a copper conductor  inch in diameter given that the resis-
tance per mil-foot of copper is  at .

Solution:

and from (2.53)

Column 3 of Table 2.5 shows the copper wire resistance at . Correction factors must be
applied to determine the resistance at other temperatures or for other materials. For copper, the
conversion equation is

 (2.54)

where  is the resistance at the desired temperature,  is the resistance at  for copper,
and  is the desired temperature.

Example 2.11  

Compute the resistance of  of size  copper wire at .

Solution:

From Table 2.5 we find that the resistance of  of size  copper wire at  is
. Then, by (2.54), the resistance of the same wire at  is 

2.20   Copper Conductor Sizes for Interior Wiring

In the design of an interior electrical installation, the electrical contractor must consider two impor-
tant factors:

a. The wiring size in each section must be selected such that the current shall not exceed the cur-
rent carrying capacities as defined by the NEC tables. Therefore, the electrical contractor must
accurately determine the current which each wire must carry and make a tentative selection of
the size listed in Table 2.4.

ρ l d R
20 °C

1 8⁄
10.4 Ω 20 °C

1 8⁄( ) in 0.125 in 125 mils= =

R ρl
d2
----- 10.4 5280×

1252
---------------------------- 3.51 Ω= = =

100°C

RT R100 1 0.004 T 100–( )+[ ]=

RT R100 100°C

T

1000 ft AWG 12 30°C

1000 ft AWG 12 100°C
2.02 Ω 30°C

R30°C 2.02 1 0.004 30 100–( )+[ ] 1.45 Ω= =
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Chapter 2  Analysis of Simple Circuits
b. The voltage drop throughout the electrical system must then be computed to ensure that it does
not exceed certain specifications. For instance, in the lighting part of the system referred to as the
lighting load, a variation of more than  in the voltage across each lamp causes an unpleasant
variation in the illumination. Also, the voltage variation in the heating and air conditioning load
must not exceed .

Important! The requirements stated here are for instructional purposes only. They change from
time to time. It is, therefore, imperative that the designer consults the latest publications
of the applicable codes for compliance.

Example 2.12  

Figure 2.44 shows a lighting load distribution diagram for an interior electric installation. 

Figure 2.44. Load distribution for an interior electric installation

The panel board is 200 feet from the meter. Each of the three branches has 12 outlets for 75 w, 120
volt lamps. The load center is that point on the branch line at which all lighting loads may be consid-
ered to be concentrated. For this example, assume that the distance from the panel to the load center
is 60 ft. Compute the size of the main lines. Use T (thermoplastic insulation) type copper conductor
and base your calculations on  temperature environment.

Solution:

It is best to use a spreadsheet for the calculations so that we can compute sizes for more and differ-
ent branches if need be.

The computations for Parts I and II are shown on the spreadsheet of Figure 2.45 where from the last
line of Part II we see that the percent line drop is  and this is more than twice the allowable 
drop. With the  voltage variation the brightness of the lamps would vary through wide
ranges, depending on how many lamps were in use at one time. 

5%

10%

kw-hr
Meter

Panel
Board

L1

L2

L3

Circuit
Breaker

Utility
Company
Switch

Branch 
Lines

Main
Lines

Lighting
Load

25°C

12.29 5%
12.29%
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Copper Conductor Sizes for Interior Wiring
A much higher voltage than the rated  would cause these lamps to glow far above their rated
candle power and would either burn them immediately, or shorten their life considerably. It is there-
fore necessary to install larger than  main line. The computations in Parts III through V of
the spreadsheet of Figures 2.45 and 2.46 indicate that we should not use a conductor less than size

.

120 V

12 AWG

6 AWG
Circuit Analysis I with MATLAB Applications 2-35
Orchard Publications



Chapter 2  Analysis of Simple Circuits
Figure 2.45. Spreadsheet for Example 2.12, Parts I and II
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Copper Conductor Sizes for Interior Wiring
Figure 2.46. Spreadsheet for Example 2.12, Parts III, IV, and V
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Chapter 2  Analysis of Simple Circuits
2.21  Summary

• Ohm’s Law states that the voltage across a device is proportional to the current through that
device and the resistance is the constant of proportionality.

• Open circuit refers to an open branch (defined below) in a network. It can be thought of as a resis-
tor with infinite resistance (or zero conductance). The voltage across the terminals of an open
may have a finite value or may be zero whereas the current is always zero.

• Short circuit refers to a branch (defined below) in a network that contains no device between its
terminals, that is, a piece of wire with zero resistance. The voltage across the terminals of a short is
always  zero whereas the current may have a finite value or may be zero. 

• A resistor absorbs power.

• A resistor does not store energy. The energy is dissipated in the form of heat.

• A node is a common point where one end of two or more devices are connected.

• A branch is part of a network that contains a device and its nodes.

• A mesh is a closed path that does not contain other closed paths

• A loop contains two or more closed paths.

• Kirchoff ’s Current Law (KCL) states that the algebraic sum of the currents entering (or leaving) a
node is zero.

• Kirchoff ’s Voltage Law (KVL) states that the algebraic sum of the voltage drops (or voltage rises)
around a closed mesh or loop is zero.

• Two or more devices are said to be connected in series if and only if the same current flows
through them.

• Two or more devices are said to be connected in parallel if and only if the same voltage exists
across their terminals.

• A series circuit with a single mesh can be easily analyzed by KVL.

• A parallel circuit with a single node pair can be easily analyzed by KCL.

• If two or more voltage sources are in series, they can be replaced by a single voltage source with
the proper polarity.

• If two or more current sources are in parallel, they can be replaced by a single current source with
the proper current direction.

• If two or more resistors are connected in series, they can be replaced by an equivalent resistance
whose value is 
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Summary
• If two or more resistors are connected in parallel, they can be replaced by an equivalent resis-
tance whose value is

• For the special case of two parallel resistors, the equivalent resistance is found from the relation

• Conductances connected in series combine as resistors in parallel do.

• Conductances connected in parallel combine as resistors in series do.

• For the simple series circuit below 

the voltage division expressions state that:

• For the simple parallel circuit below

the current division expressions state that:

Req R1 R2 R3 … Rn+ + + + RK
k 1=

n

∑= =

1
Req
-------- 1

R1
----- 1

R2
----- … 1

Rn
------+ + +=

Req R1||R2
R1 R2⋅
R1 R2+
------------------= =

+
−

vS

R2

R1

vR1
R1

R1 R2+
------------------vS  and  vR2

R2

R1 R2+
------------------vS==

v

iS
iR1

iR2
R1 R2

iR1
R2

R1 R2+
------------------ iS  and  iR2

R1

R1 R2+
------------------ iS==
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Chapter 2  Analysis of Simple Circuits
• In the United States, the Electronics Industries Association (EIA) and the American National
Standards Institute (ANSI) have established and published several standards for electrical and elec-
tronic devices to provide interchangeability among similar products made by different manufactur-
ers.

• The resistor color code is used for marking and identifying pertinent data for standard resistors.
Two standards are the EIA Standard RS-279 and MIL-STD-1285A.

• Besides their resistance value, resistors have a power rating.

• The resistance of a wire increases with increased temperature and decreases with decreased tem-
perature.

• The current ratings for wires and electronic equipment are established by national standards and
codes.
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Exercises
2.22  Exercises

Multiple Choice

1. Ohm’s Law states that

A. the conductance is the reciprocal of resistance

B. the resistance is the slope of the straight line in a voltage versus current plot

C. the resistance is the sum of the voltages across all the devices in a closed path divided by the
sum of the currents through all the devices in the closed path

D. the sum of the resistances around a closed loop is zero

E. none of the above

2. Kirchoff ’s Current Law (KCL) states that

A. the sum of the currents in a closed path is zero

B. the current that flows through a device is inversely proportional to the voltage across that
device

C. the sum of the currents through all the devices in a closed path is equal to the sum of the volt-
ages across all the devices

D. the sum of the currents entering a node is equal to the sum of the currents leaving that node 

E. none of the above

3. Kirchoff ’s Voltage Law (KCL) states that

A. the voltage across a device is directly proportional to the current through that device

B. the voltage across a device is inversely proportional to the current through that device

C. the sum of the voltages across all the devices in a closed path is equal to the sum of the cur-
rents through all the devices

D. the sum of the voltages in a node is equal to the sum of the currents at that node 

E. none of the above

4. For the three resistors connected as shown on the network of Figure 2.47, the equivalent resis-
tance  is computed with the formula

A. 

B. 

RAB

RAB R1 R2+ R3+=

RAB R1
2 R2

2+ R3
2+=
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Chapter 2  Analysis of Simple Circuits
C. 

D. 

E. none of the above

Figure 2.47. Network for Question 4

5. For the three conductances connected as shown on the network of Figure 2.48, the equivalent
conductance  is computed with the formula

A. 

B. 

C. 

D. 

E. none of the above

Figure 2.48. Network for Question 5

6. For the three resistances connected as shown on the network of Figure 2.49, the equivalent con-
ductance  is 

A.

B. 

RAB
R1R2R3

R1 R2 R3+ +
-------------------------------=

RAB
R1R2R3

R1 R2 R3+ +
-------------------------------=

A B
R1 R2

R3

RAB

GAB

GAB G1 G2+ G3+=

GAB G1
2 G2

2+ G3
2+=

GAB
G1G2G3

G1 G2+ G3+
---------------------------------=

1
GAB
---------- 1

G1
------ 1

G2
------ 1

G3
------+ +=

A B
G1 G2

G3

GAB

GAB

21 Ω 1–

1.5 Ω 1–
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Exercises
C. 

D. 

E. none of the above

Figure 2.49. Network for Question 6

7. In the network shown in Figure 2.50, when , the voltage . When ,
. When ,  is

A.

B. 

C. 

D. 

E. none of the above

Figure 2.50. Network for Question 7

8. The node voltages shown in the partial network of Figure 2.51 are relative to some reference
node not shown. The value of the voltage  is

A.

B. 

C. 

D. 

2 3⁄  Ω 1–

144 19⁄  Ω 1–

GAB 4 Ω 12 Ω 3 Ω

R1 R2 R3

A

B

R 4 Ω= vR 6 V= R 0 Ω=

iR 2 A= R ∞= vR

6 V

24 V

8 V

16 V

+

−

vR
Rest of the

Circuit

iR

R

vX

6–  V

16 V

0 V

10 V
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Chapter 2  Analysis of Simple Circuits
E. none of the above

Figure 2.51. Network for Question 8

9. For the network of Figure 2.52 the value of the voltage  is

A.

B. 

C. 

D. 

E. none of the above

Figure 2.52. Network for Question 9

10. For the circuit of Figure 2.53 the value of the current  is

A.

B. 

C. 

D. 

E. none of the above

+− 8 V
2 A

10 V

2 A 3 Ω

20 V

4 Ω
6 V8 Ω

2 V
vX

v

8 V

2 V

2–  V

8–  V

+−
8 V

4 Ω
v

+

−

i

2 A

0 A

∞ A

1 A
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Exercises
Figure 2.53. Network for Question 10

Problems

1. In the circuit of Figure 2.54, the voltage source and both resistors are variable.

Figure 2.54. Circuit for Problem 1

a. With , , and , compute the power absorbed by .

Answer: 

b. With  and , to what value should  be adjusted so that the power
absorbed by it will be 200 w? Answer: 

c. With  and , to what value should  be adjusted to so that the power
absorbed by  will be 100 w? Answer: 

2. In the circuit of Figure 2.55,  represents the load of that circuit.

Figure 2.55. Circuit for Problem 2

+−
8 V

12 Ω
i

4 Ω

+

−

Power
Supply

(Voltage
Source)

+

+

−

−vS

R1

R2

vS 120 V= R1 70 Ω= R2 50 Ω= R2

50 w

vS 120 V= R1 0 Ω= R2

72 Ω

R1 0 Ω= R2 100 Ω= vS

R2 100 V

RLOAD

+
−

+ −

75 V

24 V5 A

3 A

+

−

iLOAD

pLOADvLOAD

RLOAD

5 Ω

10 Ω

2 Ω
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Chapter 2  Analysis of Simple Circuits
Compute:

a.  Answer: 

b.  Answer: 

c.  Answer: 

3. For the circuit of Figure 2.56, compute the power supplied or absorbed by each device.

Figure 2.56. Circuit for Problem 3

Answers: , , , , 

4. In the circuit of Figure 2.57, compute the power delivered or absorbed by the dependent voltage
source.

Figure 2.57. Circuit for Problem 4

Answer: 

5. In the network of Figure 2.58, each resistor is 10 Ω. Compute the equivalent resistance .

iLOAD 8 A

vLOAD 20 V

pLOAD 160 w

A

B

C

D

E
+

−

+

−

+

−

6 A24 A

12 V 60 V 36 V

pA 288 w= pB 1152 w= pC 1800–  w= pD 144 w= pE 216 w=

+
−

 
+
−

50 V

10 A

5iR2
 V

R4

R3

R2

R1 10 Ω

6 Ω

2 Ω

10 Ω

iR2
 

62.5 w

Req
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Exercises
Figure 2.58. Circuit for Problem 5

Answer: 

6. In the network of Figure 2.59,  and . Compute the current i supplied by
the 15 V source.

Figure 2.59. Circuit for Problem 6

Hint: Start at the right end and by series and parallel combinations of the resistors, reduce the cir-
cuit to a simple series circuit. This method is known as analysis by network reduction.
Answer: 

7. In the circuit of Figure 2.60, use the voltage division expression to compute  and .

Figure 2.60. Circuit for Problem 7

Answers: , 

Req

360 21 Ω⁄

R1 10 Ω= R2 20 Ω=

+
−

15 V

R1 R1 R1R1R1R1R1

R1R2R2R2R2R2R2

i

0.75 A

vX vY

+
−

16 V

5 Ω 20 Ω

10 Ω 40 Ω

+
−

24 V

−

+

−

+

vX

vY

vX 8 3 V⁄= vY 16– 3 V⁄=
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Chapter 2  Analysis of Simple Circuits
8. In the circuit of Figure 2.61, use the current division expression to compute  and .

Figure 2.61. Circuit for Problem 8

Answers: , 

9. A transformer consists of two separate coils (inductors) wound around an iron core as shown in Figure
2.62. There are many turns in both the primary and secondary coils but, for simplicity, only few
are shown. It is known that the primary coil has a resistance of 5.48 Ω at 20 degrees Celsius. After
two hours of operation, it is found that the primary coil resistance has risen to 6.32 Ω. Compute
the temperature rise of this coil.

Figure 2.62. Circuit for Problem 9

Answer: 

10. A new facility is to be constructed at a site which is 1.5 miles away from the nearest electric utility
company substation. The electrical contractor and the utility company have made load calcula-
tions, and decided that the main lines from the substation to the facility will require several cop-
per conductors in parallel. Each of these conductors must have insulation type THHN and must
carry a maximum current of 220 A in a  temperature environment.

a. Compute the voltage drop on each of these conductors from the substation to the facility when
they carry the maximum required current of 220 A in a  temperature environment.
Answer: 

iX iY

16 A 24 A

5 Ω

20 Ω

10 Ω

40 Ω

iX iY

iX 16– 3 V⁄= iY 8– 3 V⁄=

Primary
Coil

Iron Core

Secondary
Coil

36°C

20 °C

20 °C
70 V
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Exercises
b. The power absorbed by each conductor under the conditions stated above.
Answer: 

c. The power absorbed per square cm of the surface area of each conductor under the conditions
stated above.
Answer: 

15.4 Kw

0.02 w cm2⁄
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Chapter 2  Analysis of Simple Circuits
2.23  Answers to Exercises

Multiple Choice

1. B

2. D

3. E

4. E

5. D

6. C

7. B  When , the voltage . Therefore, . Also, when ,

, and thus  (short circuit). When ,  but  has a finite value

and it is denoted as  in the figure below. Now, we observe that the triangles abc and dbe

are similar. Then  or  and thus 

8. D   We denote the voltage at the common node as  shown on the figure of the next page.  Then,

from the branch that contains the  resistor, we observe that  or  and

thus 

R 4 Ω= vR 6 V= iR 6 4⁄ 1.5 A= = R 0 Ω=

iR 2 A= vR 0= R ∞= iR 0= vR

vR ∞=

be
bc
------ de

ac
------= 2.0 1.5–

2.0
--------------------- 6

vR ∞=
--------------= vR ∞= 24 V=

iR A( )

vR V( )

0.5 2.01.51.0

6.0

a

b
c

d

e

vR ∞=

vA

3 Ω
vA 10–

3
----------------- 2= vA 16=

vX 6– 16+ 10 V= =
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Answers to Exercises
9. A  This is an open circuit and therefore no current flows through the resistor. Accordingly, there
is no voltage drop across the resistor and thus .

10. A  The  resistor is shorted out by the short on the right side of the circuit and thus the only
resistance in the circuit is the  resistor.

Problems

1. a. With , , and , the circuit is as shown below.

Using the voltage division expression, we get

Then,

b. With  and , the circuit is as shown below.

We observe that

+− 8 V
2 A

10 V

2 A 3 Ω

20 V

4 Ω
6 V8 Ω

2 V vX

vA

v 8 V=

12 Ω
4 Ω

vS 120 V= R1 70 Ω= R2 50 Ω=

+
−

vS

R2

R1
50 Ω

70 Ω

120 V

vR2

50
70 50+
------------------ 120× 50 V= =

pR2

vR2

2

R2
------- 502

50
-------- 50 w= = =

vS 120 V= R1 0 Ω=

+
−

vS

R2

R1
50 Ω

0 Ω

120 V

vR2
vs 120V= =
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Chapter 2  Analysis of Simple Circuits
and 

or

or

c. With  and , the circuit is as shown below. 

Then,

or

or

or

2. a. Application of KCL at node A of the circuit below yields

b. Application of KVL around Mesh 1 yields

vR2

2

R2
------- 200 w=

1202

R2
----------- 200 w=

R2
1202

200
----------- 72 Ω= =

R1 0 Ω= R2 100 Ω=

+
−

vS

R2

R1
100 Ω

0 Ω

vS
2

R2
------ 100 w=

vS
2

100
--------- 100 w=

vS
2 100 100× 10 000,= =

vS 10 000, 100 V= =

iLOAD 3 5+ 8 A= =

75– 3 5( ) vAB+ + 0=
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Answers to Exercises
or

Application of KVL around Mesh 2 yields

or

or

c.

3. Where not shown, we assign plus (+) and minus (−) polarities and current directions in accor-
dance with the passive sign convention as shown below. 

We observe that  and . Also, by KCL at Node X

Then,

+
−

+ −

75 V

24 V5 A

3 A

+

−

iLOAD

pLOADvLOAD

RLOAD

5 Ω

10 Ω

2 Ω

iLOAD

Mesh 1 Mesh 2

A

B

vAB 60 V=

vAB 24 2iLOAD+ +– vLOAD+ 0=

60– 24 2 8× vLOAD+ + + 0=

vLOAD 20 V=

pLOAD vLOAD iLOAD× 20 8× 160 w absorbed power( )= = =

A

B

C

D

E
+

−

+

−

+

−

6 A24 A

12 V 60 V 36 V

+ +− −

iA
iC iE

iB iD

vA

vB
vC

vD
vE

X

iA iB= iE iD=

iC iB iD+ 24 6+ 30 A= = =
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Chapter 2  Analysis of Simple Circuits
By KVL

or

and thus

Also by KVL

or

and thus

Check: We must show that 

4. We assign voltages and currents , , , , and  as shown in the circuit below.

Figure 2.63. Circuit for Exercise 4

By KVL,

and by Ohm’s law,

pA vA iA 12 24× 288 w  absorbed( )= = =

pE vE iE 36 6× 216 w  absorbed( )= = =

pC vC iC–( ) 60 30–( )× 1800–  w  supplied( )= = =

vA vB+ vC=

vB vC vA– 60 12– 48 V= = =

pB vBiB 48 24× 1152 w  absorbed( )= = =

vD vE+ vC=

vD vC vE– 60 36– 24 V= = =

pD vDiD 24 6× 144 w  absorbed( )= = =

Power supplied Power absorbed=

pC pA pB pC pD+ + + 288 216 1152 144+ + + 1800 w= = =

vR2
vR4

iR3
iR4

iD

+
−

 
+
−

50 V

10 A

iR2

5iR2
 V

R4

R3

R2

R1 10 Ω

6 Ω

2 Ω

10 Ω
+ +

− −

vR2
vR4

iR3

iD

iR4
X

vR2
50 2 10×– 30 V= =
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Answers to Exercises
Therefore, the value of the dependent voltage source is

and

Then,

By KCL at Node X

where

and thus

with the indicated direction through the dependent source. Therefore,

5. The simplification procedure starts with the resistors in parallel which are indicated below.

iR2

vR2
R2
------- 30

6
------ 5 A= = =

5iR2
5 5× 25 V= =

vR4
5iR2

25 V= =

iR4

vR4

R4
------- 25

10
------ 2.5 A= = =

iD iR3
iR4

–=

iR3
10 iR2

– 10 5– 5 A= = =

iD iR3
iR4

– 5 2.5– 2.5 A= = =

pD 5iR2
iD 25 2.5× 62.5 w  absorbed( )= = =

Req Req

10 10

10
10

10
10

10

10

10

10

10

10

10 10

10 10

10

10

10 10

5 5

5 5
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Chapter 2  Analysis of Simple Circuits
6. We start with the right side of the circuit where the last two resistors are in series as shown below. 

Then,

Next,

and so on. Finally, addition of the left most resistor with its series equivalent yields

and thus

Req

10

10

10
10

5 15

5 15

Req

10

6

6
10

5

5

Req

16

16

5

5

Req Req

180 21⁄

180 21⁄

360 21⁄

+
−

15 V

R1 R1 R1R1R1R1R1

R1R2R2R2R2R2R2

i

R1 R1+ 10 10+ 20 Ω= =

20 20|| 10 Ω=

10 10+ 20 Ω=

10 10+ 20 Ω=

i 15 20⁄ 0.75 A= =
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Answers to Exercises
7. We first simplify the given circuit by replacing the parallel resistors by their equivalents. Thus,

and

The voltage sources are in series opposing connection and they can be replaced by a single volt-
age source with value . The simplified circuit is shown below.

Now, by the voltage division expression,

and

or

Check: By application of KVL starting at point A and going counterclockwise, we get

8. We first simplify the given circuit by replacing the series resistors by their equivalents. Thus,

and

The current sources are in parallel opposing connection and they can be replaced by a single cur-
rent source with value . The simplified circuit is shown below.

5 20|| 5 20×
5 20+
--------------- 4 Ω= =

10 40|| 10 40×
10 40+
------------------ 8 Ω= =

24 16– 8 V=

4 Ω

8 Ω

+
−

8 V

−

+

−

+

vX

vY

i
A

vX
4

4 8+
------------ 8× 8

3
--- V= =

v– Y
8

4 8+
------------ 8× 16

3
------ V= =

vY
16
3

------–  V=

vX vY–( ) 8–+ 8
3
--- 16

3
------ 8–+ 0= =

5 20+ 25 Ω=

10 40+ 50 Ω=

24 16– 8 A=
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Chapter 2  Analysis of Simple Circuits
By the current division expression,

and

Check: By application of KCL starting at point  and going counterclockwise, we get

9. We construct the resistance versus temperature plot shown below.

From the similar triangles acd and abe, we get

or

10. a. From Table 2.4 we find that the cable size must be 0000 AWG and this can carry up to .
Also, from Table 2.5 we find that the resistance of this conductor is  at

. Then, the resistance of this conductor that is 1.5 miles long is

8 A
25 Ω 50 Ω

iX iY

iX
50

25 50+
------------------ 8–( )× 16

3
------–  A= =

iY
25

25 50+
------------------ 8–( )× 8

3
---–  A= =

A

8 iX iY+ + 8 16
3
------– 8

3
---– 0= =

0−234.5

R20R0

RX

T °C( )

R Ω( )

T20 TX

a

b

c

de

R20 5.48 Ω=

RX 6.32 Ω=

TX ∆T=
T20 20°C=

RX
R20
--------

234.5 T20 TX+ +

234.5 T20+
----------------------------------------

234.5 20 TX+ +

234.5 20+
--------------------------------------

254.5 TX+

254.5
--------------------------= = =

∆T TX=
RX
R20
-------- 254.5× 254.5–

6.32
5.48
---------- 254.5× 254.5– 36°C= = =

235 A
0.059 Ω 1000 ft⁄

100°C
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Answers to Exercises
To find the resistance of this cable at , we use the relation of (2.54). Thus,

and the voltage drop on each of these conductors is

b. The power absorbed by each conductor is

c. Table 2.5 gives wire sizes in circular mils. We recall that a circular mil is the area of a circle
whose diameter is . To find the diameter in cm, we perform the following conversion:

From Table 2.5 we find that the cross section of a  cable is 211,600 circular mils.

Then, the cross-section of this cable in  is

Therefore, the cable diameter in cm is 

The cross-section circumference of the cable is

and the surface area of the cable is

Then, the power absorbed per  is

0.059  Ω
1000ft
---------------- 5280

1 mile
----------------× 1.5 miles× 0.4673 Ω at 100°C=

20°C

R20 R100 1 0.004 20 100–( )+[ ] 0.4673 1 0.32–( ) 0.3178 Ω= = =

v iR 220 0.3178× 70 V= = =

p vi 70 220× 15 400 w, 15.4 Kw= = = =

0.001 in

1 circular mil π
4
---d2 π

4
--- 0.001( )2 7.854 10 7–  in2×= = =

7.854 10 7–  in2× 2.54 cm( )2

in2
---------------------------× 5.067 10 6–×  cm2==

0000 AWG

cm2

211 600 circular mils 5.067 10 6–×  cm2

circular mil
------------------------------------------×, 1.072 cm2=

d 1.072= 1.035 cm=

πd π 1.035× 3.253 cm= =

Surface area πdl 3.253 cm 1.5 miles 1.609 Km
1 mile

------------------------ 105 cm
1 Km

-----------------××× 7.851 105 cm2×= = =

cm2

p
cm2

Total power
cm2

-------------------------------- 15 400 w,

7.851 105 cm2×
---------------------------------------- 0.02 w cm2⁄= = =
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NOTES
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Chapter 3
Nodal and Mesh Equations - Circuit Theorems

his chapter begins with nodal, loop and mesh equations and how they are applied to the solu-
tion of circuits containing two or more node-pairs and two or more loops or meshes. Other
topics included in this chapter are the voltage-to-current source transformations and vice

versa, Thevenin’s and Norton’s theorems, the maximum power transfer theorem, linearity, superposi-
tion, efficiency, and regulation.

3.1 Nodal, Mesh, and Loop Equations

Network Topology is a branch of network theory concerned with the equations required to completely
describe an electric circuit. In this text, we will only be concerned with the following two theorems.

Theorem 3.1

Let ; then  independent nodal equations are required to
completely describe that circuit. These equations are obtained by setting the algebraic sum of the
currents leaving each of the  nodes equal to zero.

Theorem 3.2

Let , ,  in
a circuit; then  independent loop or mesh equations are required to completely
describe that circuit. These equations are obtained by setting the algebraic sum of the voltage drops
around each of the  loops or meshes equal to zero.

3.2 Analysis with Nodal Equations

In writing nodal equations, we perform the following steps:

1. For a circuit containing N nodes, we choose one of these as a reference node assumed to be zero
volts or ground.

2. At each non-reference node we assign node voltages  where each of these voltages
is measured with respect to the chosen reference node, i.e., ground.

3. If the circuit does not contain any voltage sources between nodes, we apply KCL and write a
nodal equation for each of the node voltages .

T

N number of nodes in a circuit= N 1–

N 1–

L M number of loops or meshes= = B number of branches= N number of nodes=

L M B N– 1+= =

L M B N– 1+= =

v1 v2 … vn 1–, , ,

v1 v2 … vn 1–, , ,
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Chapter 3  Nodal and Mesh Equations - Circuit Theorems
4. If the circuit contains a voltage source between two nodes, say nodes j and k denoted as node vari-
ables  and , we replace the voltage source with a short circuit thus forming a combined node
and we write a nodal equation for this common node in terms of both  and ; then we relate
the voltage source to the node variables  and .

Example 3.1  

Write nodal equations for the circuit shown in Figure 3.1, and solve for the unknowns of these equa-
tions using matrix theory, Cramer’s rule, or the substitution method. Verify your answers with
Excel® or MATLAB®. Please refer to Appendix A for discussion and examples.

Figure 3.1. Circuit for Example 3.1

Solution:

We observe that there are 4 nodes and we denote these as , , , and  (for ground) as shown in
Figure 3.2.

Figure 3.2. Circuit for Example 3.1

For convenience, we have denoted the currents with a subscript that corresponds to the resistor
value through which it flows through; thus, the current that flows through the  resistor is
denoted as , the current through the  resistor is denoted as , and so on. We will follow this
practice in the subsequent examples.

vj vk

vj vk

vj vk

12 A 24 A18 A

4 Ω

8 Ω 10 Ω

6 Ω

G

12 A 24 A18 A

G

v1 v2
v3

i4

i8 i10

i64 Ω 6 Ω

10 Ω8 Ω

4 Ω
i4 8 Ω i8
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Analysis with Nodal Equations
For the circuit of Figure 3.2, we need  nodal equations. Let us choose node G
(ground) as our reference node, and we assign voltages , and  at nodes , , and  respec-
tively; these are to be measured with respect to the ground node G. Now, application of KCL at
node  yields

or

(3.1)

where  is the current flowing from left to right. Expressing (3.1) in terms of the node voltages, we
get

or

or

(3.2)

Next, application of KCL at node  yields

or

(3.3)

where  is the current flowing from right to left * and  is the current that flows from left to
right.

*  The direction of the current through the 8 Ω resistor from left to right in writing the nodal equation at Node 1,
and from right to left in writing the nodal equation at Node 2, should not be confusing. Remember that we wrote
independent node equations at independent nodes and, therefore, any assumptions made in writing the first
equation need not be held in writing the second since the latter is independent of the first. Of course, we could
have assumed that the current through the 8 Ω resistor flows in the same direction in both nodal equations. It is
advantageous, however, to assign a (+) sign to all currents leaving the node in which we apply KCL. The advan-
tage is that we can check, or even write the node equations by inspection. With reference to the above circuit and
equation (3.1) for example, since G = 1/R, we denote the coefficients of v1 (1/4 and 1/8 siemens) as self conduc-
tances and the coefficient of v2 (−1/8) as mutual conductance. Likewise, in equation (3.3) the coefficients of v2
(1/8 and 1/10 siemens) are the self conductances and the coefficients of v1 (−1/8) and v3 (−1/10) are the mutual
conductances. Therefore, we can write a nodal equation at a particular node by inspection, that is, we assign
plus (+) values to self conductances and minus (−) to mutual conductances.

N 1– 4 1– 3= =

v1 v2, v3

i4 i8 12–+ 0=

i4 i8+ 12=

i8

v1
4
-----

v1 v2–

8
----------------+ 12=

1
4
--- 1

8
---+⎝ ⎠

⎛ ⎞ v1
1
8
---v2– 12=

3v1 v2– 96=

i8 i10 18+ + 0=

i8 i10+ 18–=

i8 i10
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Chapter 3  Nodal and Mesh Equations - Circuit Theorems
Expressing (3.3) in terms of node voltages, we get

or

or

(3.4)

Similarly, application of KCL at node  yields

or

where  is the current flowing from right to left. Then, in terms of node voltages,

(3.5)

or

or

or

(3.6)

Equations (3.2), (3.4), and (3.6) constitute a set of three simultaneous equations with three
unknowns. We write them in matrix form as follows: 

(3.7)

v2 v1–

8
----------------

v2 v3–

10
----------------+ 18–=

1
8
---v1– 1

8
--- 1

10
------+⎝ ⎠

⎛ ⎞ v2
1
10
------v3–+ 18–=

5v1 9v2– 4v3+ 720=

i10 i6 24–+ 0=

i10 i6+ 24=

i10

v3 v2–

10
----------------

v3
6
-----+ 24=

1
10
------v2– 1

10
------ 1

6
---+⎝ ⎠

⎛ ⎞ v3+ 24=

3v2– 18v3+ 720=

v2 6– v3 240–=

3 1– 0
5 9– 4
0 1 6–

G

v1

v2

v3

V

96
720
240–

I

=

⎧ ⎪ ⎨ ⎪ ⎩ ⎧ ⎨ ⎩ ⎧ ⎨ ⎩
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Analysis with Nodal Equations
We can use Cramer’s rule or Gauss’s elimination method as discussed in Appendix A, to solve (3.7)
for the unknowns. Simultaneous solution yields , , and . With
these values we can determine the current in each resistor, and the power absorbed or delivered by
each device.

Check with MATLAB®:

G=[3  −1  0; 5  −9  4; 0  1  −6]; I=[96  720  -240]'; V=G\I;...
fprintf(' \n'); fprintf('v1 = %5.2f volts \t', V(1)); ...
fprintf('v2 = %5.2f volts \t', V(2)); fprintf('v3 = %5.2f volts', V(3)); fprintf(' \n')

v1 = 12.00 volts   v2 = -60.00 volts   v3 = 30.00 volts

Check with Excel®:

The spreadsheet of Figure 3.3 shows the solution of the equations of (3.7). The procedure is dis-
cussed in Appendix A.

Figure 3.3. Spreadsheet for the solution of (3.7)

Example 3.2  

For the circuit of Figure 3.4, write nodal equations in matrix form and solve for the unknowns using
matrix theory, Cramer’s rule, or Gauss’s elimination method. Verify your answers with Excel or
MATLAB. Please refer to Appendix A for procedures and examples. Then construct a table show-
ing the voltages across, the currents through and the power absorbed or delivered by each device.

Solution:

We observe that there are 4 nodes and we denote these as , , , and  (for ground) as shown in
Figure 3.5.

v1 12 V= v2 60–  V= v3 30 V=

1
2
3
4
5
6
7
8
9

A B C D E F G H
Spreadsheet for Matrix Inversion and Matrix Multiplication

3 -1 0 96
G= 5 -9 4 I= 720

0 1 -6 -240

0.417 -0.050 -0.033 12
G-1= 0.250 -0.150 -0.100 V= -60

0.042 -0.025 -0.183 30

G
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Chapter 3  Nodal and Mesh Equations - Circuit Theorems
Figure 3.4. Circuit for Example 3.2

Figure 3.5. Circuit for Example 3.2 with assigned nodes and voltages

We assign voltages , and  at nodes , , and  respectively; these are to be measured with
respect to the ground node . We observe that  is a known voltage, that is,  and thus
our first equation is

                  (3.8)

Next, we move to node  where we observe that there are three currents flowing out of this node,
one to the left, one to the right, and one down. Therefore, our next nodal equation will contain three
terms. We have no difficulty writing the term for the current flowing from node  to node , and
for the 18 A source; however, we encounter a problem with the third term because we cannot express
it as term representing the current flowing from node  to node . To work around this problem,
we temporarily remove the 10 V voltage source and we replace it with a “short” thereby creating a
combined node (or generalized node or supernode as some textbooks call it), and the circuit now looks as
shown in Figure 3.6.

12 V 24 A18 A

4 Ω 6 Ω

8 Ω

+

− +

−

10 V

12 V 24 A18 A

4 Ω 6 Ω

8 Ω

+

− +

−

10 V

G

v1 v2 v3

v1 v2, v3

G v1 v1 12 V=

v1 12=
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Analysis with Nodal Equations
Figure 3.6. Circuit for Example 3.2 with a combined node

Now, application of KCL at this combined node yields the equation

or

or

* (3.9)

or

or

(3.10)

To obtain the third equation, we reinsert the 10 V source between nodes  and . Then,

(3.11)

In matrix form, equations (3.8), (3.10), and (3.11) are 

* The combined node technique allows us to combine two nodal equations into one but requires that we use the
proper node designations. In this example, to retain the designation of node 2, we express the current  as

. Likewise, at node 3, we express the current  as .

12 V 24 A18 A

4 Ω 6 Ω

8 Ω

+
−

G

v1 v2 v3

i8

i6

Combined Node

− +

10 V

Removed and
replaced by a
short

i8 18 i6 24–+ + 0  =

i8 i6+ 6=

v2 v1–

8
----------------

v3
6
-----+ 6=

i8

v2 v1–

8
---------------- i6

v3
6
-----

1
8
---v1–

1
8
---v2

1
6
---v3+ + 6=

3v1 3v2 4v3+ +– 144=

v3 v2– 10=
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Chapter 3  Nodal and Mesh Equations - Circuit Theorems
(3.12)

Simultaneous solution yields , , and . From these we can find the
current through each device and the power absorbed or delivered by each device.

Check with MATLAB:

G=[1  0  0; −3  3  4; 0  −1  1]; I=[12  144  10]'; V=G\I;...
fprintf(' \n'); fprintf('v1 = %5.2f volts \t', V(1)); ...
fprintf('v2 = %5.2f volts \t', V(2)); fprintf('v3 = %5.2f volts', V(3)); fprintf(' \n')

v1 = 12.00 volts   v2 = 20.00 volts   v3 = 30.00 volts

Check with Excel:

Figure 3.7. Spreadsheet for the solution of (3.12)

Table 3.1 shows that the power delivered is equal to the power absorbed.

3.3 Analysis with Mesh or Loop Equations

In writing mesh or loop equations, we follow these steps:

1. For a circuit containing  meshes (or loops), we assign a mesh or loop current
 for each mesh or loop.

2. If the circuit does not contain any current sources, we apply KVL around each mesh or loop.

1 0 0
3– 3 4

0 1– 1

G

v1

v2

v3

V

12
144
10

I

=

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ ⎧ ⎨ ⎩ ⎧ ⎨ ⎩

v1 12 V= v2 20 V= v3 30 V=

1
2
3
4
5
6
7
8
9

A B C D E F G H
Spreadsheet for Matrix Inversion and Matrix Multiplication

1 0 0 12
G= -3 3 4 I= 144

0 -1 1 10

1.000 0.000 0.000 12
G-1= 0.429 0.143 -0.571 V= 20

0.429 0.143 0.429 30

M L B N– 1+= =

i1 i2 … in 1–, , ,
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Analysis with Mesh or Loop Equations
3. If the circuit contains a current source between two meshes or loops, say meshes or loops j and k
denoted as mesh variables  and , we replace the current source with an open circuit thus
forming a common mesh or loop, and we write a mesh or loop equation for this common mesh
or loop in terms of both  and . Then, we relate the current source to the mesh or loop vari-
ables  and .

Example 3.3  

For the circuit of Figure 3.8, write mesh equations in matrix form and solve for the unknowns using
matrix theory, Cramer’s rule, or Gauss’s elimination method. Verify your answers with Excel or
MATLAB. Please refer to Appendix A for procedures and examples. Then construct a table show-
ing the voltages across, the currents through, and the power absorbed or delivered by each device.

Figure 3.8. Circuit for Example 3.3

TABLE 3.1  Table for Example 3.2

Power (watts)

Device Voltage (volts) Current (amps) Delivered Absorbed
12 V Source 12 2 24
10 V Source 10 19 190
18 A Source 20 18 360
24 A Source 30 24 720
4 Ω Resistor 12 3 36
6 Ω Resistor 30 5 150
8 Ω Resistor 8 1 8
Total 744 744 

ij ik

ij ik
ij ik

12 V

24 V

36 V 8 Ω

+
−
+
−

+ −

+−

2 Ω

4 Ω 6 Ω 12 Ω
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Solution:

For this circuit we need  mesh or loop equations and we arbi-
trarily assign currents , , and  all in a clockwise direction as shown in Figure 3.9.

Figure 3.9. Circuit for Example 3.3

Applying KVL around each mesh we get:

Mesh #1: Starting with the left side of the  resistor, going clockwise, and observing the passive
sign convention, we get the equation for this mesh as

or

(3.13)

Mesh #2: Starting with the lower end of the  resistor, going clockwise, and observing the pas-
sive sign convention, we get the equation

or 

(3.14)

Mesh #3: Starting with the lower end of the  resistor, going clockwise, and observing the pas-
sive sign convention, we get:

 
or

(3.15)

M L B N– 1+ 9 7– 1+ 3= = = =

i1 i2 i3

12 V

24 V

36 V 8 Ω

+
−
+
−

+ −

+−

2 Ω 10 Ω

4 Ω 6 Ω 12 Ω

i1 i2
i3

2 Ω

2i1 4 i1 i2–( ) 12–+ 0=

6i1 4i2– 12=

4 Ω

4 i2 i1–( ) 36 8i2+ + 6 i2 i3–( )+ 0=

4i1– 18i2 6i3–+ 36–=

6 Ω

6 i3 i2–( ) 10i3 12i3 24+ + + 0=

6i2– 28i3+ 24–=
3-10 Circuit Analysis I with MATLAB Applications
Orchard Publications



Analysis with Mesh or Loop Equations
Note: For this example, we assigned all three currents with the same direction, i.e., clockwise. This,
of course, was not mandatory; we could have assigned any direction in any mesh. It is advantageous,
however, to assign the same direction to all currents. The advantage here is that we can check, or
even write the mesh equations by inspection. This is best explained with the following observations:

1. With reference to the circuit of Figure 3.9 and equation (3.13), we see that current  flows
through the  and  resistors. We call these the self resistances of the first mesh. Their sum,
i.e.,  is the coefficient of current  in that equation. We observe that current  also
flows through the  resistor. We call this resistance the mutual resistance between the first and
the second mesh. Since  enters the lower end of the  resistor, and in writing equation
(3.13) we have assumed that the upper end of this resistor has the plus (+) polarity, then in
accordance with the passive sign convention, the voltage drop due to current  is  and this
is the second term on the left side of (3.13).

2. In Mesh 2, the self resistances are the , , and  resistors whose sum, 18, is the coeffi-
cient of  in equation (3.14). The  and  resistors are also the mutual resistances between
the first and second, and the second and the third meshes respectively. Accordingly, the voltage
drops due to the mutual resistances in the second equation have a minus (-) sign, i.e,  and

.

3. The signs of the coefficients of  and  in (3.15) are similarly related to the self and mutual
resistances in the third mesh.

Simplifying and rearranging (3.13), (3.14) and (3.15) we get:

(3.16)

(3.17)

(3.18)

and in matrix form

(3.19)

Simultaneous solution yields , , and  where the negative val-
ues for  and  indicate that the actual direction for these currents is counterclockwise.

i1

2 Ω 4 Ω
2 4+ 6= i1 i2

4 Ω
i2 4 Ω

i2 4i2–

4 Ω 8 Ω 6 Ω
i2 4 Ω 6 Ω

4i1–

6i3–

i2 i3

3i1 2i2– 6=

2i1 9– i2 3i3+ 18=

3i2 14– i3 12=

3 2– 0
2 9– 3
0 3 14–

R

i1

i2

i3

I

6
18
12

V

=

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ ⎧ ⎨ ⎩ ⎧ ⎨ ⎩

i1 0.4271= i2 2.3593–= i3 1.3627–=

i2 i3
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Chapter 3  Nodal and Mesh Equations - Circuit Theorems
Check with MATLAB:

R=[3  −2  0; 2  −9  3; 0  3  −14]; V=[6  18  12]'; I=R\V;...
fprintf(' \n'); fprintf('i1 = %5.2f amps \t', I(1)); ...
fprintf('i2 = %5.2f amps \t', I(2)); fprintf('i3 = %5.2f amps', I(3)); fprintf(' \n')

i1 = 0.43 amps   i2 = -2.36 amps   i3 = -1.36 amps

Excel produces the same answers as shown in Figure 3.10. 

Figure 3.10. Spreadsheet for the solution of (3.19)

Table 3.2 shows that the power delivered by the voltage sources is equal to the power absorbed by
the resistors.    

TABLE 3.2  Table for Example 3.3

Power (watts)
Device Voltage (volts) Current (amps) Delivered Absorbed

12 V Source 12.000 0.427 5.124
36 V Source 36.000 2.359 84.924
24 V Source 24.000 1.363 32.712
2 Ω Resistor 0.854 0.427 0.365
4 Ω Resistor 11.144 2.786 30.964
8 Ω Resistor 18.874 2.359 44.530
6 Ω Resistor 5.976 0.996 5.952
10 Ω Resistor 13.627 1.363 18.570
12 Ω Resistor 16.352 1.363 22.288
Total 122.760 122.669

1
2
3
4
5
6
7
8
9

A B C D E F G H
Spreadsheet for Matrix Inversion and Matrix Multiplication

3 -2 0 6
R= 2 -9 3 V= 18

0 3 -14 12

0.397 -0.095 -0.020 0.4271
R-1= 0.095 -0.142 -0.031 I= -2.3593

0.020 -0.031 -0.078 -1.3627
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Analysis with Mesh or Loop Equations
Example 3.4  

For the circuit of Figure 3.11, write loop equations in matrix form, and solve for the unknowns
using matrix theory, Cramer’s rule, or Gauss’s elimination method. Verify your answers with Excel
or MATLAB. Please refer to Appendix A for procedures and examples. Then, construct a table
showing the voltages across, the currents through and the power absorbed or delivered by each
device.

Figure 3.11. Circuit for Example 3.4

Solution:

This is the same circuit as that of the previous example where we found that we need 3 mesh or
loop equations. We choose our loops as shown in Figure 3.12, and we assign currents , , and ,
all in a clockwise direction.

Figure 3.12. Circuit for Example 3.4 with assigned loops

Applying of KVL around each loop, we get:

Loop 1 (abgh): Starting with the left side of the  resistor and complying with the passive sign
convention, we get:

12 V

24 V

36 V 8 Ω

+
−
+
−

+ −

+−

2 Ω 10 Ω

4 Ω 6 Ω 12 Ω

i1 i2 i3

12 V

24 V

36 V 8 Ω

+
−
+
−

+ −

+−

2 Ω 10 Ω

4 Ω 6 Ω 12 Ω
i1i2i3

a
b c d

e

fg
h

2 Ω

2 i1 i2 i3+ +( ) 4i1 12–+ 0=
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Chapter 3  Nodal and Mesh Equations - Circuit Theorems
or

or

(3.20)

Loop 2 (abcfgh): As before, starting with the left side of the  resistor and complying with the
passive sign convention, we get:

or

or

(3.21)

Loop 3 (abcdefgh): Likewise, starting with the left side of the  resistor and complying with the
passive sign convention, we get:

or

or

(3.22)

and in matrix form

(3.23)

Solving with MATLAB we get:

R=[3  1  1; 1  8  5; 1  5  16]; V=[6  −12  −24]'; I=R\V;...
fprintf(' \n'); fprintf('i1 = %5.2f amps \t', I(1)); ...
fprintf('i2 = %5.2f amps \t', I(2)); fprintf('i3 = %5.2f amps', I(3)); fprintf(' \n')

i1 = 2.79 amps   i2 = -1.00 amps   i3 = -1.36 amps

6i1 2i2 2i3+ + 12=

3i1 i2 i3+ + 6=

2 Ω

2 i1 i2 i3+ +( ) 36 8 i2 i3+( ) 6i2 12–+ + + 0=

2i1 16i2 10i3+ + 24–=

i1 8i2 5i3+ + 12–=

2 Ω

2 i1 i2 i3+ +( ) 36 8 i2 i3+( ) 10i3+ + + 12i3 24 12–+ + 0=

2i1 10i2 32i3+ + 48–=

i1 5i2 16i3+ + 24–=

3 1 1
1 8 5
1 5 16

R

i1

i2

i3

I

6
12–

24–

V

=

⎧ ⎪ ⎨ ⎪ ⎩ ⎧ ⎨ ⎩ ⎧ ⎨ ⎩
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Analysis with Mesh or Loop Equations
Excel produces the same answers.

Table 3.3 shows that the power delivered by the voltage sources is equal to the power absorbed by
the resistors and the values are approximately the same as those of the previous example.

Example 3.5  

For the circuit of figure 3.13, write mesh equations in matrix form and solve for the unknowns
using matrix theory, Cramer’s rule, or the substitution method. Verify your answers with Excel or
MATLAB. Please refer to Appendix A for procedures and examples.

Figure 3.13. Circuit for Example 3.5

TABLE 3.3  Table for Example 3.4

Power (watts)

Device Voltage (volts) Current (amps) Delivered Absorbed
12 V Source 12.000 0.427 5.124
36 V Source 36.000 2.359 84.924
24 V Source 24.000 1.363 32.712
2 Ω Resistor 0.854 0.427 0.365
4 Ω Resistor 11.146 2.786 31.053
8 Ω Resistor 18.872 2.359 44.519
6 Ω Resistor 5.982 0.997 5.964
10 Ω Resistor 13.627 1.363 18.574
12 Ω Resistor 16.352 1.363 22.283
Total 122.760 122.758

12 V

36 V 8 Ω

+
−
+
−

+ −

2 Ω 10 Ω

4 Ω 6 Ω 12 Ω

5 A
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Chapter 3  Nodal and Mesh Equations - Circuit Theorems
Solution:

This is the same circuit as those of the two previous examples except that the 24 V voltage source
has been replaced by a 5 A current source. As before, we need 
mesh or loop equations, and we assign currents , , and  all in a clockwise direction as shown in
Figure 3.14.

Figure 3.14. Circuit for Example 3.5 with assigned currents

For Meshes 1 and 2, the equations are the same as in Example 3.3 where we found them to be
 

or

(3.24)

and

or

(3.25)

For Mesh 3, we observe that the current  is just the current of the 5 A current source and thus our
third equation is simply

(3.26)

and in matrix form,

M L B N– 1+ 9 7– 1+ 3= = = =

i1 i2 i3

12 V

36 V 8 Ω

+
−
+
−

+ −

2 Ω 10 Ω

4 Ω 6 Ω 12 Ω

5 A

i1 i2
i3

6i1 4i2– 12=

3i1 2i2– 6=

4i1– 18i2 6i3–+ 36–=

2i1 9– i2 3i3+ 18=

i3

i3 5=
3-16 Circuit Analysis I with MATLAB Applications
Orchard Publications



Analysis with Mesh or Loop Equations
(3.27)

Solving with MATLAB we get:

R=[3  −2  0; 2  −9  3; 0  0  1]; V=[6  18  5]'; I=R\V;...
fprintf(' \n'); fprintf('i1 = %5.2f amps \t', I(1)); ...
fprintf('i2 = %5.2f amps \t', I(2)); fprintf('i3 = %5.2f amps', I(3)); fprintf(' \n')

i1 = 2.09 amps   i2 = 0.13 amps   i3 =  5.00 amps

Example 3.6  

Write mesh equations for the circuit of Figure 3.15 and solve for the unknowns using MATLAB or
Excel. Then, compute the voltage drop across the  source.

Figure 3.15. Circuit for Example 3.6

Solution:

Here, we would be tempted to assign mesh currents as shown in Figure 3.16. However, we will
encounter a problem as explained below.

The currents  and  for Meshes 3 and 4 respectively present no problem; but for Meshes 1 and 2
we cannot write mesh equations for the currents  and  as shown because we cannot write a

3 2– 0
2 9– 3
0 0 1

R

i1

i2

i3

I

6
18
5

V

=

⎧ ⎪ ⎨ ⎪ ⎩ ⎧ ⎨ ⎩ ⎧ ⎨ ⎩

5 A

12 V

5 A

36 V 8 Ω

+
−
+
−

+ −
2 Ω

20 Ω

4 Ω
6 Ω

12 Ω
12 V

+
−
+
−

24 V

+ −

10 Ω 16 Ω

18 Ω

i3 i4

i1 i2
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Chapter 3  Nodal and Mesh Equations - Circuit Theorems
term which represents the voltage across the  current source. To work around this problem we
temporarily remove (open) the  current source and we form a “combined mesh” (or generalized mesh
or supermesh as some textbooks call it) and the current that flows around this combined mesh is as
shown in Figure 3.17.

Figure 3.16. Circuit for Example 3.6 with erroneous current assignments

Figure 3.17. Circuit for Example 3.6 with correct current assignments

Now, we apply KVL around this combined mesh. We start at the left end of the  resistor, and we
express the voltage drop across this resistor as  since in Mesh 1 the current is essentially .

5 A
5 A

12 V
5 A

36 V 8 Ω

+
−
+
−

+ −

2 Ω

20 Ω

4 Ω
6 Ω

12 Ω
12 V

+
−
+
−

24 V+ −+ −

10 Ω 16 Ω

18 Ω

i1
i2

i3 i4

12 V

36 V 8 Ω

+
−
+
−

+ −

2 Ω

20 Ω

4 Ω
6 Ω

12 Ω
12 V

+
−
+
−

24 V+ −+ −

10 Ω 16 Ω

18 Ω

Combined
Mesh

i3
i4

2 Ω
2i1 i1
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Analysis with Mesh or Loop Equations
Continuing, we observe that there is no voltage drop across the  resistor since no current flows
through it. The current now enters Mesh 2 where we encounter the 36 V drop due to the voltage
source there, and the voltage drops across the  and  resistors are  and  respectively
since in Mesh 2 the current now is really . The voltage drops across the  and  resistors
are expressed as in the previous examples and thus our first mesh equation is

or

or

(3.28)

Now, we reinsert the 5 A current source between Meshes 1 and 2 and we obtain our second equa-
tion as

(3.29)

For meshes 3 and 4, the equations are

or 

(3.30)

and

or 

(3.31)

and in matrix form

(3.32)

We find the solution of (3.32) with the following MATLAB code.

4 Ω

8 Ω 6 Ω 8i2 6i2

i2 16 Ω 10 Ω

2i1 36 8i2 6i2 16 i2 i4–( ) 10 i1 i3–( ) 12–+ + + + + 0=

12i1 30i2 10– i3 16– i4+ 24–=

6i1 15i2 5– i3 8– i4+ 12–=

i1 i2– 5=

10 i3 i1–( ) 12 i3 i4–( ) 18i3 12–+ + 0=

5i1 20– i3 6i4+ 6–=

16 i4 i2–( ) 20i4 24–+ 12 i4 i3–( )+ 0=

4i2 3i3 12– i4+ 6–=

6 15 5– 8–

1 1– 0 0
5 0 20– 6
0 4 3 12–

R

i1

i2

i3

i4

I

12–

5
6–

6–

V

=

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ ⎧ ⎨ ⎩ ⎧ ⎨ ⎩
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Chapter 3  Nodal and Mesh Equations - Circuit Theorems
R=[6  15  −5  −8; 1 −1  0  0; 5  0  −20  6; 0  4  3  −12];  V=[−12  5  −6  −6]'; I=R\V;...
fprintf(' \n');...
fprintf('i1 = %5.4f amps \t',I(1)); fprintf('i2 = %5.4f amps \t',I(2));...
fprintf('i3 = %5.4f amps \t',I(3)); fprintf('i4 = %5.4f amps',I(4)); fprintf(' \n')

i1=3.3975 amps  i2=-1.6025 amps  i3=1.2315 amps  i4=0.2737 amps 

Now, we can find the voltage drop across the  current source by application of KVL around
Mesh 1 using the following relation:

This yields

We can verify this value by application of KVL around Mesh 2 where starting with the lower end of
the  resistor and going counterclockwise we get

With these values, we can also compute the power delivered or absorbed by each of the voltage
sources and the current source.

3.4 Transformation between Voltage and Current Sources

In the previous chapter we stated that a voltage source maintains a constant voltage between its ter-
minals regardless of the current that flows through it. This statement applies to an ideal voltage
source which, of course, does not exist; for instance, no voltage source can supply infinite current to
a short circuit. We also stated that a current source maintains a constant current regardless of the ter-
minal voltage. This statement applies to an ideal current source which also does not exist; for
instance, no current source can supply infinite voltage when its terminals are open-circuited.

A practical voltage source has an internal resistance which, to be accounted for, it is represented with an
external resistance  in series with the voltage source  as shown in Figure 3.18 (a). Likewise a
practical current source has an internal conductance which is represented as a resistance  (or conduc-
tance ) in parallel with the current source  as shown in Figure 3.18 (b).

5 A

2 3.3975× 4 3.3975 1.6025+( )× v5A 10 3.3975 1.2315–( )× 12–+ + + 0=

v5A 36.455–=

6 w

6 8+( ) 1.6025 36– 4 3.3975 1.6025+( )×+× 36.455– 16 1.6025 0.2737+( )×+ 0=

RS vS

Rp

Gp iS
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Transformation between Voltage and Current Sources
Figure 3.18. Practical voltage and current sources

In Figure 3.18 (a), the voltage of the source will always be  but the terminal voltage  will be
 if a load is connected at points  and . Likewise, in Figure 3.18 (b) the current of

the source will always be  but the terminal current  will be  if a load is connected

at points  and .

Now, we will show that the networks of Figures 3.18 (a) and 3.18 (b) can be made equivalent to each
other.

In the networks of Figures 3.19 (a) and 3.19 (b), the load resistor  is the same in both.

Figure 3.19. Equivalent sources

From the circuit of Figure 3.19 (a),

(3.33)

and

(3.34)

+
−
+
−

(a) (b)

a

b

a

b

vS iS

RS

Rp

vS vab

vab vS vRs
–= a b

iS iab iab iS iRP
–=

a b

RL

+
−
+
−

(a) (b)

a

b

a

b

+ +

− −

RL RLvS iS

RS

vab

iab
RP vab

iab

vab
RL

RS RL+
-------------------= vS

iab
vS

RS RL+
-------------------=
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From the circuit of Figure 3.19 (b), 

(3.35)

and

(3.36)

Since we want  to be the same in both circuits 3.19 (a) and 3.19 (b), from (3.33) and (3.35) we get: 

(3.37)

Likewise, we want  to be the same in both circuits 3.19 (a) and 3.19 (b). Then, from (3.34) and
(3.36) we get:

(3.38)

and for any , from (3.37) and (3.38)

(3.39)

and

(3.40)

Therefore, a voltage source  in series with a resistance  can be transformed to a current source
 whose value is equal to , in parallel with a resistance  whose value is the same as . 

Likewise, a current source  in parallel with a resistance  can be transformed to a voltage source
 whose value is equal to , in series with a resistance whose value is the same as .

The voltage-to-current source or current-to-voltage source transformation is not limited to a single
resistance load; it applies to any load no matter how complex.

Example 3.7  

Find the current  through the  resistor in the circuit of Figure 3.20.

vab
RPRL

Rp RL+
-------------------= iS

iab
RP

Rp RL+
-------------------iS=

vab

vab
RL

RS RL+
-------------------= vS

RPRL
Rp RL+
-------------------iS=

iab

iab
vS

RS RL+
-------------------

Rp
Rp RL+
-------------------iS= =

RL

vS RpiS=

Rp RS=

vS RS

iS vS RS⁄ Rp RS

iS Rp

vS iS RS× Rp

i10 10 Ω
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Transformation between Voltage and Current Sources
Figure 3.20. Circuit for Example 3.7

Solution:

This problem can be solved either by nodal or by mesh analysis; however, we will transform the
voltage sources to current sources and we will replace the resistances with conductances except the

 resistor. We will treat the  resistor as the load of this circuit so that we can compute the
current  through it. Then, the circuit becomes as shown in Figure 3.21.

Figure 3.21. Circuit for Example 3.7 where voltage sources have been transformed to current sources 

Combination of the two current sources and their conductances yields the circuit shown in Figure
3.22.

Figure 3.22. Circuit for Example 3.7 after combinations of current sources and conductances

Converting the  conductance to a resistance and performing current-to-voltage source
transformation, we get the circuit of Figure 3.23.

12 V
32 V

+
−
+
−

2 Ω
4 Ω

+
−

10 Ω

i10

10 Ω 10 Ω
i10

6 A

8 A

10 Ω

i10

0.5 Ω 1– 0.25 Ω 1–

2 A

10 Ω

i10

0.75 Ω 1–

0.75 Ω 1–
Circuit Analysis I with MATLAB Applications 3-23
Orchard Publications
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Figure 3.23. Circuit for Example 3.7 in its simplest form

Thus, the current through the  resistor is

3.5 Thevenin’s Theorem

This theorem is perhaps the greatest time saver in circuit analysis, especially in electronic circuits. It
states that we can replace a two terminal network by a voltage source  in series with a resistance

 as shown in Figure 3.24.

Figure 3.24. Replacement of a network by its Thevenin’s equivalent

The network of Figure 3.24 (b) will be equivalent to the network of Figure 3.24 (a) if the load is
removed in which case both networks will have the same open circuit voltages  and consequently,

Therefore,

(3.41)
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−+
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Thevenin’s Theorem
The Thevenin resistance  represents the equivalent resistance of the network being replaced by
the Thevenin equivalent, and it is found from the relation

(3.42)

where  stands for short-circuit current.

If the network to be replaced by a Thevenin equivalent contains independent sources only, we can
find the Thevenin resistance  by first shorting all (independent) voltage sources, opening all
(independent) current sources, and calculating the resistance looking into the direction that is opposite to
the load when it has been disconnected from the rest of the circuit at terminals  and .

Example 3.8  

Use Thevenin’s theorem to find  and  for the circuit of Figure 3.25.

Figure 3.25. Circuit for Example 3.8

Solution:

We will apply Thevenin’s theorem twice; first at terminals x and y and then at  and  as shown in
Figure 3.26.

Figure 3.26. First step in finding the Thevenin equivalent of the circuit of Example 3.8

Breaking the circuit at , we are left with the circuit shown in Figure 3.27.
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Figure 3.27. Second step in finding the Thevenin equivalent of the circuit of Example 3.8

Applying Thevenin’s theorem at  and  and using the voltage division expression, we get

(3.43)

and thus the equivalent circuit to the left of points  and  is as shown in Figure 3.28.

Figure 3.28. First Thevenin equivalent for the circuit of Example 3.8

Next, we attach the remaining part of the given circuit to the Thevenin equivalent of Figure 3.28, and
the new circuit now is as shown in Figure 3.29.

Figure 3.29. Circuit for Example 3.8 with first Thevenin equivalent
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Thevenin’s Theorem
Now, we apply Thevenin’s theorem at points  and  and we get the circuit of Figure 3.30.

 

Figure 3.30. Applying Thevenin’s theorem at points  and  for the circuit for Example 3.8

Using the voltage division expression, we get

This Thevenin equivalent with the load resistor attached to it, is shown in Figure 3.31.

Figure 3.31. Entire circuit of Example 3.8 simplified by Thevenin’s theorem

The voltage  is found by application of the voltage division expression, and the current
 by Ohm’s law as shown below.

It is imperative to remember that when we compute the Thevenin equivalent resistance, we must
always look towards the network portion which remains after disconnectinf the load at the  and 
terminals. This is illustrated with the two examples that follow.
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Chapter 3  Nodal and Mesh Equations - Circuit Theorems
Let us consider the network of Figure 3.32 (a).

Figure 3.32. Computation of the Thevenin equivalent resistance when the load is to the right

This network contains no dependent sources; therefore, we can find the Thevenin equivalent by
shorting the  voltage source, and computing the equivalent resistance looking to the left of
points  and  as indicated in Figure 3.32 (b). Thus, 

Now, let us consider the network of Figure 3.33 (a).

Figure 3.33. Computation of the Thevenin equivalent resistance when the load is to the left

This network contains no dependent sources; therefore, we can find the Thevenin equivalent by
shorting the  voltage source, and computing the equivalent resistance looking to the right of
points  and  as indicated in Figure 3.33 (b). Thus, 
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Then, compute the 
equivalent resistance
looking to the left of 
points x and y

RTH

240 V
x y

RTH 250 50+( ) 100 300 100×
300 100+
------------------------- 75 Ω= = =
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Thevenin’s Theorem
We observe that, although the resistors in the networks of Figures 3.32 (a) and 3.33 (b) have the
same values, the Thevenin resistance is different since it depends on the direction in which we look
into (left or right).

Example 3.9  

Use Thevenin’s theorem to find  and  for the circuit of Figure 3.34.

Figure 3.34. Circuit for Example 3.9

Solution:

This is the same circuit as the previous example except that a voltage source of  has been
placed in series with the  resistor. By application of Thevenin’s theorem at points  and  as
before, and connecting the rest of the circuit, we get the circuit of Figure 3.35.

Figure 3.35. Circuit for Example 3.9 with first Thevenin equivalent

Next, disconnecting the load resistor and applying Thevenin’s theorem at points  and  we get
the circuit of Figure 3.36.

There is no current flow in the  resistor; therefore, the Thevenin voltage across the  and 
points is the algebraic sum of the voltage drop across the  resistor and the  source, that is,
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Chapter 3  Nodal and Mesh Equations - Circuit Theorems
Figure 3.36. Applying Thevenin’s theorem at points  and  for the circuit for Example 3.9

and the Thevenin resistance is the same as in the previous example, that is,

 

Finally, connecting the load  as shown in Figure 3.37, we compute  and  as fol-
lows:

Figure 3.37. Final form of Thevenin equivalent with load connected for circuit of Example 3.9

Example 3.10  

For the circuit of Figure 3.38, use Thevenin’s theorem to find  and .

Solution:

This circuit contains a dependent voltage source whose value is twenty times the current through the
 resistor. We will apply Thevenin’s theorem at points a and b as shown in Figure 3.39.
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Figure 3.38. Circuit for Example 3.10

Figure 3.39. Application of Thevenin’s theorem for Example 3.10

For the circuit of Figure 3.39, we cannot short the dependent source; therefore, we will find the
Thevenin resistance from the relation

(3.44)

To find the open circuit voltage , we disconnect the load resistor and our circuit now is
as shown in Figure 3.40. 

Figure 3.40. Circuit for finding  of Example 3.10
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Chapter 3  Nodal and Mesh Equations - Circuit Theorems
We will use mesh analysis to find  which is the voltage across the  resistor. We chose mesh
analysis since we only need three mesh equations whereas we would need five equations had we cho-
sen nodal analysis. Please refer to Exercise 16 at the end of this chapter for a solution requiring nodal
analysis.

Observing that , we write the three mesh equations for this network as

(3.45)

and after simplification and combination of like terms, we write them in matrix form as

(3.46)

Using the spreadsheet of Figure 3.41, we find that 

Figure 3.41. Spreadsheet for Example 3.10

Thus, the Thevenin voltage at points a and b is

Next, to find the Thevenin resistance , we must first compute the short circuit current .
Accordingly, we place a short across points a and b and the circuit now is as shown in Figure 3.42
and we can find the short circuit current  from the circuit of Figure 3.43 where 
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Figure 3.42. Circuit for finding  in Example 3.10

Figure 3.43. Mesh equations for finding  in Example 3.10

The mesh equations for the circuit of Figure 3.43 are

(3.47)

and after simplification and combination of like terms, we write them in matrix form as

(3.48)

We will solve these using MATLAB as follows:
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R=[3  −2  0  0; 3  −12  5  0; 10  −15  7  −2; 0  0  −4  11]; V=[4  0  0  0]'; I=R\V;
fprintf(' \n');...
fprintf('i1 = %3.4f A \t',I(1,1)); fprintf('i2 = %3.4f A \t',I(2,1));...
fprintf('i3 = %3.4f A \t',I(3,1)); fprintf('i4 = %3.4f A \t',I(4,1));...
fprintf(' \n');...fprintf(' \n')

i1 = 0.0173 A   i2 = -1.9741 A   i3 = -4.7482 A   i4 = -1.7266 A  

Therefore, 

and

The Thevenin equivalent is as shown in Figure 3.44.

 

Figure 3.44. Final form of Thevenin’s equivalent for the circuit of Example 3.10

Finally, with the load RLOAD attached to points a and b, the circuit is as shown in Figure 3.45.

Figure 3.45. Circuit for finding  and  in Example 3.10

Therefore, using the voltage division expression and Ohm’s law we get
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Norton’s Theorem
3.6 Norton’s Theorem

This theorem is analogous to Thevenin’s theorem and states that we can replace everything, except
the load, in a circuit by an equivalent circuit containing only an independent current source which
we will denote as  in parallel with a resistance which we will denote as , as shown in Figure
3.46.
 

       Figure 3.46. Replacement of a network by its Norton equivalent

The current source  has the value of the short circuit current which would flow if a short were
connected between the terminals x and y, where the Norton equivalent is inserted, and the resis-
tance  is found from the relation 

(3.49)

where  is the open circuit voltage which appears across the open terminals x and y.

Like Thevenin’s, Norton’s theorem is most useful when a series of computations involves changing
the load of a network while the rest of the circuit remains unchanged. 

Comparing the Thevenin’s and Norton’s equivalent circuits, we see that one can be derived from the
other by replacing the Thevenin voltage and its series resistance with the Norton current source and
its parallel resistance. Therefore, there is no need to perform separate computations for each of
these equivalents; once we know Thevenin’s equivalent we can easily draw the Norton equivalent
and vice versa.
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Chapter 3  Nodal and Mesh Equations - Circuit Theorems
Example 3.11  

Replace the network shown in Figure 3.47 by its Thevenin and Norton equivalents.

Figure 3.47. Network for Example 3.11

Solution:

We observe that no current flows through the  resistor; Therefore,  and the dependent
current source is zero, i.e., a short circuit. Thus,

 
and also

 

This means that the given network is some mathematical model representing a resistance, but we
cannot find this resistance from the expression

since this results in the indeterminate form . In this type of situations, we connect an external
source (voltage or current) across the terminals x and y. For this example, we arbitrarily choose to
connect a 1 volt source as shown in Figure 3.48.

Figure 3.48. Network for Example 3.11 with an external voltage source connected to it.
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Norton’s Theorem
In the circuit of Figure 3.48, the  source represents the open circuit voltage  and the current
i represents the short circuit current . Therefore, the Thevenin (or Norton) resistance will be
found from the expression

(3.50)

Now, we can find i from the circuit of Figure 3.49 by application of KCL at Node .

Figure 3.49. Circuit for finding  in Example 3.11

(3.51)

where

 (3.52)

Simultaneous solution of (3.51) and (3.52) yields  and . Then, from (3.50),

and the Thevenin and Norton equivalents are shown in Figure 3.50.

Figure 3.50. Thevenin’s and Norton’s equivalents for Example 3.11
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3.7 Maximum Power Transfer Theorem

Consider the circuit shown in Figure 3.51. We want to find the value of  which will absorb
maximum power from the voltage source  whose internal resistance is .

Figure 3.51. Circuit for computation of maximum power delivered to the load 

The power  delivered to the load is found from

or

  (3.53)

To find the value of  which will make  maximum, we differentiate (3.53) with respect to
. Recalling that

and differentiating (3.53), we get

(3.54)

and (3.54) will be zero if the numerator is set equal to zero, that is,

or

or    
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Linearity
(3.55)

Therefore, we conclude that a voltage source with internal series resistance  or a current source
with internal parallel resistance  delivers maximum power to a load  when  or

. For example, in the circuits of 3.52, the voltage source  and current source 

deliver maximum power to the adjustable* load when 

Figure 3.52. Circuits where  is set to receive maximum power

We can use Excel or MATLAB to see that the load receives maximum power when it is set to the
same value as that of the resistance of the source. Figure 3.53 shows a spreadsheet with various val-
ues of an adjustable resistive load. We observe that the power is maximum when .

The condition of maximum power transfer is also referred to as resistance matching or impedance match-
ing. We will define the term “impedance” in Chapter 6.

The maximum power transfer theorem is of great importance in electronics and communications
applications where it is desirable to receive maximum power from a given circuit and efficiency is
not an important consideration. On the other hand, in power systems, this application is of no use
since the intent is to supply a large amount of power to a given load by making the internal resis-
tance  as small as possible.

3.8 Linearity

A linear passive element is one in which there is a linear voltage-current relationship such as 

(3.56)

* An adjustable resistor is usually denoted with an arrow as shown in Figure 3.52.
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Figure 3.53. Spreadsheet to illustrate maximum power transfer to a resistive load

Definition 3.1 

A linear dependent source is a dependent voltage or current source whose output voltage or current is
proportional only to the first power of some voltage or current variable in the circuit or a linear com-
bination (the sum or difference of such variables). For example,  is a linear relation-

ship but  and  are non-linear.

Definition 3.2 

A linear circuit is a circuit which is composed entirely of independent sources, linear dependent
sources and linear passive elements or a combination of these.
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Superposition Principle
3.9 Superposition Principle

The principle of superposition states that the response (a desired voltage or current) in any branch of a
linear circuit having more than one independent source can be obtained as the sum of the responses
caused by each independent source acting alone with all other independent voltage sources replaced
by short circuits and all other independent current sources replaced by open circuits.

Note: Dependent sources (voltage or current) must not be superimposed since their values depend on the volt-
age across or the current through some other branch of the circuit. Therefore, all dependent
sources must always be left intact in the circuit while superposition is applied.

Example 3.12  

For the circuit of Figure 3.54, compute  by application of the superposition principle.

Figure 3.54. Circuit for Example 3.12

Solution:

Let  represent the current due to the  source acting alone,  the current due to the 
source acting alone, and  the current due to the  source acting alone. Then, by the principle
of superposition,

First, to find  we short the  voltage source and open the  current source. The circuit
then reduces to that shown in Figure 3.55.

Applying Thevenin’s theorem at points x and y of Figure 3.55, we obtain the circuit of Figure 3.56
and from it we get
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Figure 3.55. Circuit for finding  in Example 3.12

Figure 3.56. Circuit for computing the Thevenin voltage to find  in Example 3.12

Next, we will use the circuit of Figure 3.57 to find the Thevenin resistance.

Figure 3.57. Circuit for computing the Thevenin resistance to find  in Example 3.12

We find the current  from Figure 3.58.

12 V

8 Ω

+
−
+
−

2 Ω 10 Ω

4 Ω 6 Ω 12 Ω

x
×

×
y

i'6

i '6

12 V

8 Ω

+
−
+
−

2 Ω

4 Ω

×

×
x

y

i '6

y

8 Ω2 Ω

4 Ω

×

×
x

RTH

i '6

RTH 8 4 2×
4 2+
-------------+

28
3

------ Ω= =

i '6
3-42 Circuit Analysis I with MATLAB Applications
Orchard Publications



Superposition Principle
Figure 3.58. Circuit for computing  in Example 3.12

(3.57)

Next, the current  due to the  source acting alone is found from the circuit of Figure 3.59.

Figure 3.59. Circuit for finding  in Example 3.12

and after combination of the  and  parallel resistors to a single resistor, the circuit simplifies
to that shown in Figure 3.60.

Figure 3.60. Simplification of the circuit of Figure 3.59 to compute  for Example 3.12
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From the circuit of Figure 3.60, we get

(3.58)

Finally, to find , we short the voltage sources, and with the  current source acting alone the
circuit reduces to that shown in Figure 3.61.

Figure 3.61. Circuit for finding  in Example 3.12

Replacing the , , and  resistors by a single resistor, we get

and the circuit of Figure 3.61 reduces to that shown in Figure 3.62.

Figure 3.62. Simplification of the circuit of Figure 3.59 to compute  for Example 3.12

We will use the current division expression in the circuit of Figure 3.62 to find . Thus, 

(3.59)

Therefore, from (3.57), (3.58), and (3.59) we get
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Circuits with Non-Linear Devices
or

(3.60)

and this is the same value as that of Example 3.5.

3.10  Circuits with Non-Linear Devices

Most electronic circuits contain non-linear devices such as diodes and transistors whose i - v (cur-
rent-voltage) relationships are non-linear. However, for small signals (voltages or currents) these cir-
cuits can be represented by linear equivalent circuit models. A detailed discussion of these is beyond
the scope of this text; however we will see how operational amplifiers can be represented by equiva-
lent linear circuits in the next chapter.

If a circuit contains only one non-linear device, such as a diode, and all the other devices are linear,
we can apply Thevenin’s theorem to reduce the circuit to a Thevenin equivalent in series with the
non-linear element. Then, we can analyze the circuit using a graphical solution. The procedure is
illustrated with the following example.

Example 3.13  

For the circuit of Figure 3.63, the  characteristics of the diode  are shown in figure 3.64. We
wish to find the voltage  across the diode and the current  through this diode using a graphical
solution.

Figure 3.63. Circuit for Example 3.13

Solution:

The current  through the diode is also the current through the resistor. Then, by KVL

i6 i '6 i ''6 i '''6+ + 12
23
------ 54

23
------ 70

23
------––

112
23

---------  –= = =

i6 4.87 A–=

i v– D
vD iD

1 V

+
−
+
−

vTH

RTH

Diode; conducts current
only in the indicated direction

 
vD

iD

D

1 KΩ 

iD
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Chapter 3  Nodal and Mesh Equations - Circuit Theorems
Figure 3.64. Diode i-v characteristics

or

or

(3.61)

We observe that (3.61) is an equation of a straight line and the two points are obtained from it by first
letting , then, . We obtain the straight line shown in Figure 3.65 which is plotted on
the same graph as the given diode  characteristics.

The intersection of the non-linear curve and the straight line yields the voltage and the current of the
diode where we find that  and .

Check:
Since this is a series circuit,  also. Therefore, the voltage drop  across the resistor is

. Then, by KVL

           

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

vD (volts)

i D
 (m

illi
am

ps
)

vR vD+ 1 V=

RiD vD– 1+=

iD
1
R
---vD– 1

R
---+=

vD 0= iD 0=

i v–

vD 0.665V = iD 0.335 mA=

iR 0.335 mA= vR

vR 1 kΩ 0.335 mA× 0.335 V= =

vR vD+ 0.335 0.665+ 1 V= =
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Efficiency
Figure 3.65. Curves for determining voltage and current in a diode

3.11  Efficiency

We have learned that the power absorbed by a resistor can be found from  and this power
is transformed into heat. In a long length of a conductive material, such as copper, this lost power is
known as  loss and thus the energy received by the load is equal to the energy transmitted minus

the  loss. Accordingly, we define efficiency  as

The efficiency  is normally expressed as a percentage. Thus,

(3.62)

Obviously, a good efficiency should be close to 

Example 3.14  

In a two-story industrial building, the total load on the first floor draws an average of 60 amperes
during peak activity, while the total load of the second floor draws 40 amperes at the same time. The
building receives its electric power from a  source. Assuming that the total resistance of the

Diode Voltage Diode Current
(Volts) (milliamps)

0.00 0.000
0.02 0.000
0.04 0.000
0.06 0.000
0.08 0.000
0.10 0.000
0.12 0.000
0.14 0.000
0.16 0.000
0.18 0.000
0.20 0.000
0.22 0.000
0.24 0.000
0.26 0.000
0.28 0.000
0.30 0.000

I-V Relationship for Circuit of
 Example 3.13

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
VD (volts)

I D
 (m

ill
ia

m
ps

)

ID=−(1/R)VD+1/R
Diode

pR i 2R=

i 2R

i 2R η

Efficiency η Output
Input

------------------ Output
Output Loss+
-------------------------------------= = =

η

% Efficiency % η Output
Input

------------------ 100× Output
Output Loss+
------------------------------------- 100×= = =

100%

480 V
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cables (copper conductors) on the first floor is  and on the second floor is , compute the
efficiency of transmission.

Solution:

First, we draw a circuit that represents the electrical system of this building. This is shown in Figure
3.66.

Figure 3.66. Circuit for Example 3.14

Power  supplied by the source:

 (3.63)

Power loss between source and 1st floor load: 

(3.64)

Power loss between source and 2nd floor load: 

(3.65)

Total power loss:

(3.66)

Total power  received by 1st and 2nd floor loads:

 (3.67)

(3.68)

1 Ω 1.6 Ω

480 V

0.8 Ω

+
−
+
−

0.5 Ω

0.5 Ω

1st Floor
Load

60 A
2nd Floor

Load

0.8 Ω

40 AvS
i2i1

pS

pS vS i1 i2+( ) 480 60 40+( )× 48 kilowatts= = =

ploss1  i1
2 0.5 Ω 0.5 Ω+( ) 60 2 1× 3.6 kilowatts= = =

ploss2  i2
2 0.8 Ω 0.8 Ω+( ) 40 2 1.6× 2.56 kilowatts= = =

ploss ploss1  ploss2  + 3.60 2.56+ 6.16 kilowatts= = =

pL

pL pS ploss– 48.00 6.16– 41.84 kilowatts= = =

% Efficiency % η Output
Input

------------------ 100× 41.84
48.00
------------- 100× 87.17 %= = = =
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Regulation
3.12   Regulation

The regulation is defined as the ratio of the change in load voltage when the load changes from no
load (NL) to full load (FL) divided by the full load. Thus, denoting the no-load voltage as  and
the full-load voltage as , the regulation is defined as In other words,

The regulation is also expressed as a percentage. Thus,

(3.69)

Example 3.15  

Compute the regulation for the 1st floor load of the previous example.

Solution:

The current drawn by 1st floor load is given as 60 A and the total resistance from the source to the
load as . Then, the total voltage drop in the conductors is . Therefore, the full-
load voltage of the load is  and the percent regulation is

3.13  Summary

• When using nodal analysis, for a circuit that contains  nodes, we must write  independent
nodal equations in order to completely describe that circuit. When the presence of voltage
sources in a circuit seem to complicate the nodal analysis because we do not know the current
through those voltage sources, we create combined nodes as illustrated in Example 3.2.

• When using nodal analysis, for a circuit that contains  meshes or  loops,  branches, and 
nodes, we must write  independent loop or mesh equations in order to com-
pletely describe that circuit. When the presence of current sources in a circuit seem to complicate
the mesh or loop analysis because we do not know the voltage across those current sources, we
create combined meshes as illustrated in Example 3.6.

vNL

vFL

Regulation
vNL vFL–

vFL
----------------------=

%Regulation
vNL vFL–

vFL
---------------------- 100×=

1 Ω 60 1× 60 V=

vFL 480 60– 420 V=( )=

% Regulation
vNL vFL–

vFL
---------------------- 100× 480 420–

420
------------------------ 100× 14.3 %= = =

N N 1–

M L B N
L M B N– 1+= =
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Chapter 3  Nodal and Mesh Equations - Circuit Theorems
• A practical voltage source has an internal resistance and it is represented by a voltage source whose
value is the value of the ideal voltage source in series with a resistance whose value is the value of
the internal resistance.

• A practical current source has an internal conductance and it is represented by a current source
whose value is the value of the ideal current source in parallel with a conductance whose value is
the value of the internal conductance.

• A practical voltage source  in series with a resistance  can be replaced by a current source 
whose value is  in parallel with a resistance  whose value is the same as 

• A practical current source  in parallel with a resistance  can be replaced by a voltage source
 whose value is equal to  in series with a resistance  whose value is the same as 

• Thevenin’s theorem states that in a two terminal network we can be replace everything except the
load, by a voltage source denoted as  in series with a resistance denoted as . The value of

 represents the open circuit voltage where the circuit is isolated from the load and  is the
equivalent resistance of that part of the isolated circuit. If a given circuit contains independent
voltage and independent current sources only, the value of  can be found by first shorting all
independent voltage sources, opening all independent current sources, and calculating the resis-
tance looking into the direction which is opposite to the disconnected load. If the circuit contains
dependent sources, the value of  must be computed from the relation 

• Norton’s theorem states that in a two terminal network we can be replace everything except the
load, by a current source denoted as  in parallel with a resistance denoted as . The value of

 represents the short circuit current where the circuit is isolated from the load and  is the
equivalent resistance of that part of the isolated circuit. If the circuit contains independent voltage
and independent current sources only, the value of  can be found by first shorting all indepen-
dent voltage sources, opening all independent current sources, and calculating the resistance look-
ing into the direction which is opposite to the disconnected load. If the circuit contains dependent
sources, the value of  must be computed from the relation 

• The maximum power transfer theorem states that a voltage source with a series resistance  or a
current source with parallel resistance  delivers maximum power to a load  when

 or 

• Linearity implies that there is a linear voltage−current relationship.

• A linear circuit is composed entirely of independent voltage sources, independent current sources,
linear dependent sources, and linear passive devices such as resistors, inductors, and capacitors.

vS RS iS

vS iS⁄ RP RS

iS RP

vS iS RS× RS RP

vTH RTH

vTH RTH

RTH

RTH RTH vOC iSC⁄=

iN RN

iN RN

RN

RN RN vOC iSC⁄=

RS

RS RLOAD

RLOAD RS= RLOAD RN=
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Summary
• The principle of superposition states that the response (a desired voltage or current) in any
branch of a linear circuit having more than one independent source can be obtained as the sum
of the responses caused by each independent source acting alone with all other independent volt-
age sources replaced by short circuits and all other independent current sources replaced by open
circuits.

• Efficiency is defined as the ratio of output to input and thus it is never greater than unity. It is
normally expressed as a percentage.

• Regulation is defined as the ratio of  to  and ideally should be close to zero. It is
normally expressed as a percentage.

.

vNL vFL– vFL
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Chapter 3  Nodal and Mesh Equations - Circuit Theorems
3.14  Exercises

Multiple Choice

1. The voltage across the  resistor in the circuit of Figure 3.67 is

A.

B.

C.

D.

E.

Figure 3.67. Circuit for Question 1

2. The current  in the circuit of Figure 3.68 is

A.

B.

C.

D.

E.

Figure 3.68. Circuit for Question 2

2 Ω

6 V

16 V

8–  V

32 V

none of the above

8 A

6 V

+
−

+−
2 Ω

8 A

i

2–  A

5 A

3 A

4 A

none of the above

+
−

2 Ω

+ −

2 Ω

2 Ω2 Ω

4 V

10 V i
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3. The node voltages shown in the partial network of Figure 3.69 are relative to some reference
node which is not shown. The current  is

A.

B.

C.

D.

E.

Figure 3.69. Circuit for Question 3

4. The value of the current  for the circuit of Figure 3.70 is

A.

B.

C.

D.

E.

Figure 3.70. Circuit for Question 4

i

4–  A

8 3⁄  A

5–  A

6–  A

none of the above

+
−

2 Ω

+ −

2 Ω

2 Ω

8 V
4 V

i

+ −
8 V

8 V

13 V6 V

6 V

12 V

i

3–  A

8–  A

9–  A

6 A

none of the above

+
−

6 Ω

3 Ω8 A12 V 6 Ω

3 Ω
i
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5. The value of the voltage  for the circuit of Figure 3.71 is

A.

B.

C.

D.

E.

Figure 3.71. Circuit for Question 5

6. For the circuit of Figure 3.72, the value of  is dimensionless. For that circuit, no solution is pos-
sible if the value of  is

A.

B.

C.

D.

E.

Figure 3.72. Circuit for Question 6

v

4 V

6 V

8 V

12 V

none of the above

2 A 2 Ω

2 Ω

+

+ −

−

+

−

v

vX

2vX

k
k

2

1

∞

0

none of the above

2 A 4 Ω

4 Ω

+
−

+

−

v kv
3-54 Circuit Analysis I with MATLAB Applications
Orchard Publications



Exercises
7. For the network of Figure 3.73, the Thevenin equivalent resistance  to the right of terminals
a and b is

A.

B.

C.

D.

E.

Figure 3.73. Network for Question 7

8. For the network of Figure 3.74, the Thevenin equivalent voltage  across terminals a and b is

A.

B.

C.

D.

E.

Figure 3.74. Network for Question 8

RTH

1

2

5

10

none of the above

2 Ω

3 Ω

a

b

RTH

2 Ω

2 Ω 2 Ω

2 Ω

4 Ω

VTH

3 V–

2 V–

1 V

5 V

none of the above

+ −

2 Ω 2 A
2 V

2 Ω

a

b
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9. For the network of Figure 3.75, the Norton equivalent current source  and equivalent parallel
resistance  across terminals a and b are

A.

B.

C.

D.

E.

Figure 3.75. Network for Question 9

10. In applying the superposition principle to the circuit of Figure 3.76, the current  due to the 
source acting alone is 

A.

B.

C.

D.

E.

Figure 3.76. Network for Question 10

IN

RN

1 A 2 Ω,

1.5 A 25 Ω,

4 A 2.5 Ω,

0 A 5Ω,

none of the above

2 A5 Ω

a

b

5 Ω

2 A

i 4 V

8 A

1–  A

4 A

2–  A

none of the above

8 A 2 Ω

2 Ω

4 V+
−

i

2 Ω
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Problems

1. Use nodal analysis to compute the voltage across the 18 A current source in the circuit of Figure
3.77. Answer: 

Figure 3.77. Circuit for Problem 1

2.  Use nodal analysis to compute the voltage  in the circuit of Figure 3.78. Answer: 

Figure 3.78. Circuit for Problem 2

3. Use nodal analysis to compute the current through the  resistor and the power supplied (or
absorbed) by the dependent source shown in Figure 3.79. Answers: 

4.  Use mesh analysis to compute the voltage  in Figure 3.80. Answer: 

5. Use mesh analysis to compute the current through the  resistor, and the power supplied (or
absorbed) by the dependent source shown in Figure 3.81. Answers: 

6.  Use mesh analysis to compute the voltage  in Figure 3.82. Answer: 

1.12 V

12 A 24 A
18 A

+

−

10 Ω 1–

4 Ω 1– 6 Ω 1–

8 Ω 1–

4 Ω 1– 5 Ω 1–

v18  A

v6  Ω 21.6 V

12 A 24 A
18 A

4 Ω 6 Ω

12 Ω 15 Ω

+

−

+ −

36 V

v6Ω

6 Ω
3.9 A 499.17 w–,–

v36A 86.34 V

i6Ω

3.9 A 499.33 w–,–

v10Ω 0.5 V
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Figure 3.79. Circuit for Problem 3

Figure 3.80. Circuit for Problem 4

Figure 3.81. Circuit for Problem 5

12 A 24 A

4 Ω
6 Ω

12 Ω 15 Ω

36 V

+

−

+
−

iX

5iXi6Ω

18 A

12 A

240 V

36 A
4 Ω

6 Ω

8 Ω 12 Ω
+

−

+ −+

−120 V

24 A

4 Ω 3 Ω

v36A

12 A 24 A

18 A

4 Ω
6 Ω

12 Ω 15 Ω

36 V

+

−

+
−i6Ω

iX

5iX
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Figure 3.82. Circuit for Problem 6

7. Compute the power absorbed by the  resistor in the circuit of Figure 3.83 using any method.
Answer: 

Figure 3.83. Circuit for Problem 7

8. Compute the power absorbed by the  resistor in the circuit of Figure 3.84 using any
method. Answer: 

Figure 3.84. Circuit for Problem 8

9. In the circuit of Figure 3.85:

a. To what value should the load resistor  should be adjusted to so that it  will absorb
maximum power? Answer: 

12 V

4 Ω

6 Ω

12 Ω 15 Ω

+

−+

− +

−

24 V

10 Ω

8 Ω v10ΩiX

10iX

10 Ω
1.32 w

12 V

6 Ω

2 Ω

+

−

+

−

24 V

10 Ω
3 Ω

+

−
36 V

20 Ω
73.73 w

12 V

2 Ω

+ −

6 A

3 Ω

20 Ω

8 A

RLOAD

2.4 Ω
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b. What would then the power absorbed by  be? Answer: 

Figure 3.85. Circuit for Problem 9

10.  Replace the network shown in Figure 3.86 by its Norton equivalent.
Answers: 

 
Figure 3.86. Circuit for Problem 10

11. Use the superposition principle to compute the voltage  in the circuit of Figure 3.87.
Answer: 

Figure 3.87. Circuit for Problem 11

RLOAD 135 w

12 A 18 A

4 Ω 6 Ω

12 Ω 15 Ω

+ −

36 V

RLOAD

iN 0 RN 23.75 Ω=,=

iX4 Ω 5 Ω

15 Ω

5iX

a

b

v18A

1.12 V

12 A 24 A
18 A

+

−

10 Ω 1–

4 Ω 1– 6 Ω 1–

8 Ω 1–

4 Ω 1– 5 Ω 1–

v18  A
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12.  Use the superposition principle to compute voltage  in the circuit of Figure 3.88.
Answer: 

Figure 3.88. Circuit for Problem 12

13.In the circuit of Figure 3.89,  and  are adjustable voltage sources in the range
 V, and  and  represent their internal resistances. Table 3.4 shows the results

of several measurements. In Measurement 3 the load resistance is adjusted to the same value as
Measurement 1, and in Measurement 4 the load resistance is adjusted to the same value as Mea-
surement 2. For Measurements 5 and 6 the load resistance is adjusted to . Make the neces-
sary computations to fill-in the blank cells of this table.

Answers: , , , 

TABLE 3.4  Table for Problem 13

Measurement Switch Switch 
 (V)  (V)  (A)

1 Closed Open 48 0 16
2 Open Closed 0 36 6
3 Closed Open 0 −5
4 Open Closed 0 −42
5 Closed Closed 15 18
6 Closed Closed 24 0

v6  Ω

21.6 V

12 A 24 A
18 A

4 Ω 6 Ω

12 Ω 15 Ω

+

−

+ −

36 V

v6Ω

vS1 vS2

50 V 50≤ ≤– RS1 RS2

1 Ω

S1 S2 vS1 vS2 iLOAD

15 V– 7 A– 11 A 24 V–
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Figure 3.89. Network for Problem 13

14.  Compute the efficiency of the electrical system of Figure 3.90. Answer: 

Figure 3.90. Electrical system for Problem 14

15. Compute the regulation for the 2st floor load of the electrical system of Figure 3.91.
Answer: 

Figure 3.91. Circuit for Problem 15

+

− +

−

+

−

1 Ω

1 Ω

Resistive
Load

Adjustable

S2S1

vS2

vS1

RS2
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iLOAD

vLOAD

76.6%

480 V

0.8 Ω

+
−
+
−

0.5 Ω

0.5 Ω

1st Floor
Load

100 A
2nd Floor

Load

0.8 Ω

80 AvS
i2i1

36.4%

480 V

0.8 Ω

+
−
+
−

0.5 Ω

0.5 Ω

1st Floor
Load

100 A
2nd Floor

Load

0.8 Ω

80 AVS i1
i2
3-62 Circuit Analysis I with MATLAB Applications
Orchard Publications



Exercises
16. Write a set of nodal equations and then use MATLAB to compute  and  for the cir-
cuit of Example 3.10 which is repeated as Figure 3.92 for convenience.
Answers: 

Figure 3.92. Circuit for Problem 16

iLOAD vLOAD

0.96 A 7.68 V–,–

+ −

12 V

+
−
+
−

3 Ω 3 Ω

5 Ω
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−
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iLOAD

iX

20iX

vLOAD
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3.15  Answers to Exercises

Multiple Choice

1. E The current entering Node A is equal to the current leaving that node. Therefore, there is no
current through the  resistor and the voltage across it is zero.

2. C From the figure below, . Also,  and . Then,
 a n d  .  T he r e fo r e ,

.

3. A From the figure below we observe that the node voltage at A is  relative to the reference
node which is not shown. Therefore, the node voltage at B is  relative to the
same reference node. The voltage across the resistor is  and the direc-
tion of current through the  resistor is opposite to that shown since Node B is at a higher
potential than Node C. Thus 

2 Ω

8 A

6 V

+
−

+−

2 Ω

8 A

A

8 A 8 A

VAC 4 V= VAB VBC 2 V= = VAD 10 V=

VBD VAD VAB– 10 2– 8 V= = = VCD VBD VBC– 8 2– 6 V= = =

i 6 2⁄ 3 A= =

+
−

2 Ω

+ −

2 Ω

2 Ω2 Ω

4 V

10 V i

A B C

D

6 V
6 12+ 18 V=

VBC 18 6– 12 V= =

3 Ω
i 12 3⁄– 4 A–= =

+
−

3 Ω

+ −

2 Ω

2 Ω

8 V
4 V

i

+ −

8 V

8 V

13 V6 V

6 V

12 V

A

BC
3-64 Circuit Analysis I with MATLAB Applications
Orchard Publications
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4. E We assign node voltages at Nodes A and B as shown below.

At Node A

and at Node B

These simplify to 

and

Multiplication of the last equation by 2 and addition with the first yields  and thus
.

5. E Application of KCL at Node A of the circuit below yields

or

Also by KVL

+
−

6 Ω

3 Ω8 A12 V 6 Ω

3 Ω
i

A B

VA 12–

6
------------------

VA
6

------
VA VB–

3
-------------------+ + 0=

VB VA–

3
-------------------

VB
3

------+ 8=

2
3
---VA

1
3
---VB– 2=

1
3
---– VA

2
3
---VB+ 8=

VB 18=

i 18 3⁄– 6 A–= =

2 A 2 Ω

2 Ω

+

+ −

−

+

−

v

vX

2vX

A

v
2
---

v 2vX–

2
-----------------+ 2=

v vX– 2=
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and by substitution

or

and thus

6. A Application of KCL at Node A of the circuit below yields

or

and this relation is meaningless if . Thus, this circuit has solutions only if .

7. B The two  resistors on the right are in series and the two  resistors on the left shown in
the figure below are in parallel.

Starting on the right side and proceeding to the left we get , , ,
.

v vX 2vX+=

vX 2vX vX–+ 2=

vX 1=

v vX 2vX+ 1 2 1×+ 3 V= = =

2 A 4 Ω

4 Ω

+
−

+

−

v kv

A

v
4
--- v kv–

4
--------------+ 2=

1
4
--- 2v kv–( ) 2=

k 2= k 2≠

2 Ω 2 Ω

2 Ω

3 Ω

a

b

RTH

2 Ω

2 Ω 2 Ω

2 Ω

4 Ω

2 2+ 4= 4 4|| 2= 2 2+ 4=

4 3 2 2||+( )|| 4 3 1+( )|| 4 4|| 2 Ω= = =
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8. A Replacing the current source and its  parallel resistance with an equivalent voltage source
in series with a  resistance we get the network shown below.

By Ohm’s law,

and thus

9. D The Norton equivalent current source  is found by placing a short across the terminals a
and b. This short shorts out the  resistor and thus the circuit reduces to the one shown
below.

By KCL at Node A,

and thus 

The Norton equivalent resistance  is found by opening the current sources and looking to
the right of terminals a and b. When this is done, the circuit reduces to the one shown below.

2 Ω
2 Ω

+ −

2 Ω

2 V

2 Ω

a

b

+
−

4 V

i

i 4 2–
2 2+
------------ 0.5 A= =

vTH vab 2 0.5 4–( )+× 3 V–= = =

IN

5 Ω

2 A

a

b

5 Ω

2 A

ISC IN= A

IN 2+ 2=

IN 0=

RN
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Therefore,  and the Norton equivalent circuit consists of just a  resistor.
10. B With the  source acting alone, the circuit is as shown below. 

We observe that  and thus the voltage drop across each of the  resistors to the
left of the  source is  with the indicated polarities. Therefore,

Problems

1. We first replace the parallel conductances with their equivalents and the circuit simplifies to that
shown below.

Applying nodal analysis at Nodes 1, 2, and 3 we get:

Node 1:

Node 2:

5 Ω

a

b

5 Ω

RN 5 Ω= 5 Ω

4 V

2 Ω

2 Ω

4 V+
−

i

2 Ω

A

B

+
+

−

−

vAB 4 V= 2 Ω

4 V 2 V

i 2– 2⁄ 1 A–= =

12 A 24 A
18 A

+

−
4 Ω 1– 6 Ω 1–

12 Ω 1–

v18  A

v1 v2 v3

1 2 3

15 Ω 1–

16v1 12v2– 12=

12– v1 27v2 15v3–+ 18–=
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Node 3:

Simplifying the above equations, we get:

Addition of the first two equations above and grouping with the third yields

For this problem we are only interested in . Therefore, we will use Cramer’s rule to
solve for . Thus,

and

2. Since we cannot write an expression for the current through the  source, we form a com-
bined node as shown on the circuit below.

At Node 1 (combined node):

and at Node 2,

15– v2 21v3+ 24=

4v1 3v2          – 3=

4– v1 9v2 5v3–+ 6–=

5– v2 7v3+ 8=

6v2 5v3– 3–=

5– v2 7v3+ 8=

v2 v18  A=

v2

v2
D2
∆

------= D2
3– 5–

8 7
21– 40+ 19= = = ∆ 6 5–

5– 7
42 25– 17= = =

v2 v18  A 19 17⁄ 1.12 V= = =

36 V

12 A 24 A
18 A

4 Ω 6 Ω

12 Ω 15 Ω

+

−

+ −

36 V

v6Ω

1
v1

v2

v3

2 3

v1
4
-----

v1 v2–

12
----------------

v3 v2–

15
----------------

v3
6
----- 12 24––+ + + 0=
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Also,

Simplifying the above equations, we get:

Addition of the first two equations above and multiplication of the third by  yields

and by adding the last two equations we get

or

Check with MATLAB:

format rat
R=[1/3  −3/20  7/30; −1/12  3/20  −1/15; 1  0  −1];
I=[36  −18  36]';
V=R\I;
fprintf('\n'); disp('v1='); disp(V(1)); disp('v2='); disp(V(2)); disp('v3='); disp(V(3))

v1=
   288/5     
v2=
  -392/5     
v3=
   108/5

3. We assign node voltages , , ,  and current  as shown in the circuit below. Then,

v2 v1–

12
----------------

v2 v3–

15
----------------+ 18–=

v1 v3– 36=

1
3
---v1

3
20
------v2–

7
30
------v3+ 36=

1
12
------– v1

3
20
------v2

1
15
------v3–+ 18–=

v1                  v3– 36=

1– 4⁄

1
4
---v1

1
6
---v3+ 18=

1
4
---– v1

1
4
---v3+ 9–=

5
12
------v3 9=

v3 v6  Ω
108
5 

--------- 21.6V= = =

v1 v2 v3 v4 iY
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and

Simplifying the last two equations above, we get

and

Next, we observe that ,  and . Then  and by

substitution into the last equation above, we get

or

Thus, we have two equations with two unknowns, that is,

v1
4
-----

v1 v2–

12
---------------- 18 12–+ + 0=

v2 v1–

12
----------------

v2 v3–

12
----------------

v2 v4–

6
----------------+ + 0=

12 A 24 A

4 Ω
6 Ω

12 Ω 15 Ω

36 V
+
−

+
−

iX

5iXi6Ω

18 A
v1 v2 v3

v4

iY

1
3
---v1

1
12
------v2– 6–=

1
12
------v1–

19
60
------v2

1
15
------v3

1
6
---v4––+ 0=

iX
v1 v2–

12
----------------= v3 5iX= v4 36 V= v3

5
12
------ v1 v2–( )=

1
12
------v1–

19
60
------v2

1
15
------ 5

12
------ v1 v2–( )× 1

6
---36––+ 0=

1
9
---v1–

31
90
------v2+ 6=

1
3
---v1

1
12
------v2– 6–=

1
9
---v1–

31
90
------v2+ 6=
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Multiplication of the first equation above by  and addition with the second yields

or

We find  from

Thus,

or

Now, we find  from

Therefore, the node voltages of interest are:

The current through the  resistor is

To compute the power supplied (or absorbed) by the dependent source, we must first find the
current . It is found by application of KCL at node voltage . Thus,

or

1 3⁄

19
60
------v2 4=

v2 240 19⁄=

v1

1
3
---v1

1
12
------v2– 6–=

1
3
---v1

1
12
------ 240

19
---------×– 6–=

v1 282– 19⁄=

v3

v3
5
12
------ v1 v2–( ) 5

12
------ 282–

19
------------ 240

19
---------–⎝ ⎠

⎛ ⎞ 435
38
---------–= = =

v1 282– 19 V⁄=

v2 240 19 V⁄=

v3 435– 38 V⁄=

v4 36 V=

6 Ω

i6  Ω
v2 v4–

6
---------------- 240 19⁄ 36–

6
------------------------------- 74

19
------– 3.9 A–= = = =

iY v3

iY 24– 18–
v3 v2–

15
----------------+ 0=
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and

that is, the dependent source supplies power to the circuit.

4. Since we cannot write an expression for the  current source, we temporarily remove it and
we form a combined mesh for Meshes 2 and 3 as shown below. 

Mesh 1:

Combined mesh (2 and 3):

or

We now re-insert the  current source and we write the third equation as

Mesh 4:

Mesh 5:

or

iY 42 435– 38 240 19⁄–⁄
15

-----------------------------------------------–=

42 915 38⁄
15

-------------------+ 1657
38

------------==

p v3iY
435
38

---------–
1657

38
------------× 72379

145
---------------– 499.17 w–= = = =

36 A

12 A

240 V

4 Ω
6 Ω

8 Ω 12 Ω

+ −+

−120 V

24 A

4 Ω 3 Ω

i1 i2
i3 i4

i5i6

i1 12=

4i1– 12i2 18i3 6i4– 8i5– 12i6–+ + 0=

2i1– 6i2 9i3 3i4– 4i5– 6i6–+ + 0=

36 A

i2 i3– 36=

i4 24–=

8– i2 12i5+ 120=
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Mesh 6:

or

Thus, we have the following system of equations:

and in matrix form

We find the currents  through  with the following MATLAB code:

R=[1  0  0  0  0  0;  −2  6  9  −3  −4  −6;...
      0  1  −1  0  0  0; 0  0  0  1  0  0;...
      0  −2  0  0  3  0; 0  0  −4  0  0  5];
V=[12  0  36  −24  30  −80]';
I=R\V;
fprintf('\n');...
   fprintf('i1=%7.2f A \t', I(1));...
   fprintf('i2=%7.2f A \t', I(2));...
   fprintf('i3=%7.2f A \t', I(3));...
   fprintf('\n');...

2– i2 3i5+ 30=

12– i3 15i6+ 240–=

4– i3 5i6+ 80–=

i1                                             12=

2i1– 6i2 9i3 3i4– 4i5– 6i6–+ + 0=

i2 i3                             – 36=

i4                   24–=

2– i2                  3i5        + 30=

4– i3                   5i6+ 80–=

1 0 0 0 0 0
2– 6 9 3– 4– 6–

0 1 1– 0 0 0
0 0 0 1 0 0
0 2– 0 0 3 0
0 0 4– 0 0 5

R

i1

i2

i3

i4

i5

i6

I

⋅

12
0

36
24–

30
80–

V

=

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩

⎧ ⎨ ⎩ ⎧ ⎨ ⎩

i1 i6
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   fprintf('i4=%7.2f A \t', I(4));...
   fprintf('i5=%7.2f A \t', I(5));...
   fprintf('i6=%7.2f A \t', I(6));...
   fprintf('\n')

i1= 12.00 A   i2=  6.27 A   i3= -29.73 A 
i4= -24.00 A  i5=  14.18 A  i6= -39.79 A 

Now, we can find the voltage  by application of KVL around Mesh 3. Thus,

or

To verify that this value is correct, we apply KVL around Mesh 2. Thus, we must show that

By substitution of numerical values, we find that

5. This is the same circuit as that of Problem 3. We will show that we obtain the same answers using
mesh analysis. 

We assign mesh currents as shown below.

v36  A

12 A

240 V

36 A
4 Ω

6 Ω

8 Ω 12 Ω
+

−

+ −+

−120 V

24 A

4 Ω 3 Ω

v36  A

i5

i3
i2

i1

i6

i4

v36  A v12  Ω v6  Ω+ 12 29.73–( ) 39.79–( )–[ ]× 6 29.73–( ) 24.00( )–[ ]×+= =

v36  A 86.34 V=

v4  Ω v8  Ω v36  A+ + 0=

4 6.27 12–[ ]× 8 6.27 14.18–[ ]× 86.34+ + 0.14=
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Mesh 1:

Mesh 2:

or

Mesh 3:

and since , the above reduces to

or

Mesh 4:

Mesh 5:

Grouping these five independent equations we get:

and in matrix form,

12 A 24 A

18 A

4 Ω
6 Ω

12 Ω 15 Ω

36 V

+

−

+
−i6Ω

iX

5iX

i5

i1 i2

i3 i4

i1 12=

4i1– 22i2 6i3– 12i5–+ 36–=

2i1– 11i2 3i3– 6i5–+ 18–=

6– i2 21i3 15i5– 5iX+ + 36=

iX i2 i5–=

6– i2 21i3 15i5– 5i2 5i5–+ + 36=

i2– 21i3 20i5–+ 36=

i4 24–=

i5 18=

i1                                  12=

2i1– 11i2 3i3–         6i5–+ 18–=

i2– 21i3    20i5–+ 36=

i4          24–=

i5 18=
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We find the currents  through  with the following MATLAB code:

R=[1  0  0  0  0 ;  −2  11 −3  0  −6;  0  −1  21  0  −20; ...
      0  0  0  1  0; 0  0  0  0  1];
V=[12  −18  36  −24  18]';
I=R\V;
fprintf('\n');...
   fprintf('i1=%7.2f A \t', I(1));...
   fprintf('i2=%7.2f A \t', I(2));...
   fprintf('i3=%7.2f A \t', I(3));...
   fprintf('\n');...
   fprintf('i4=%7.2f A \t', I(4));...
   fprintf('i5=%7.2f A \t', I(5));...
   fprintf('\n')

i1=  12.00 A   i2=  15.71 A   i3=  19.61 A 
i4= -24.00 A   i5=  18.00 A

By inspection,

Next,

These are the same answers as those we found in Problem 3.

6.  We assign mesh currents as shown below and we write mesh equations.

1 0 0 0 0
2– 11 3– 0 6–

0 1– 21 0 20–

0 0 0 1 0
0 0 0 0 1

R

i1

i2

i3

i4

i5

I

⋅

12
18–

36
24–

18

V

=

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ ⎧ ⎨ ⎩ ⎧ ⎨ ⎩

i1 i5

i6  Ω i2 i3– 15.71 19.61– 3.9 A–= = =

p5iX
5iX i3 i4–( ) 5 i2 i5–( ) i3 i4–( )= =

5 15.71 18.00–( ) 19.61 24.00+( ) 499.33 w–==
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Mesh 1:

or

Mesh 2:

Mesh 3:

or

Mesh 4:

or

Grouping these four independent equations we get:

and in matrix form,

12 V

4 Ω

6 Ω

12 Ω 15 Ω

+

−+

− +

−

24 V

10 Ω

8 Ω v10ΩiX

10iX

i1
i2 i3

i4

24i1 8i2– 12i4– 24 12–– 0=

6i1 2i2– 3i4– 9=

8– i1 29i2 6i3– 15i4–+ 24–=

6– i2 16i3+ 0=

3– i2 8i3+ 0=

i4 10iX 10 i2 i3–( )==

10i2 10i3– i4– 0=

6i1 2i2            – 3i4– 9=

8– i1 29i2 6i3– 15i4–+ 24–=

3– i2 8i3           + 0=

10i2 10i3– i4– 0=

6 2– 0 3–

8– 29 6– 15–

0 3– 8 0
0 10 10– 1–

R

i1

i2

i3

i4

I

⋅

9
24–

0
0

V

=

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ ⎧ ⎨ ⎩ ⎧ ⎨ ⎩
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We find the currents  through  with the following MATLAB code:

R=[6  −2  0  −3;  −8  29 −6  −15;  0  −3  8  0 ;  0  10  −10  −1];
V=[9  −24  0  0]';
I=R\V;
fprintf('\n');...
   fprintf('i1=%7.2f A \t', I(1));...
   fprintf('i2=%7.2f A \t', I(2));...
   fprintf('i3=%7.2f A \t', I(3));...
   fprintf('i4=%7.2f A \t', I(4));...

     fprintf('\n')

i1= 1.94 A   i2= 0.13 A   i3= 0.05 A   i4= 0.79 A

Now, we find  by Ohm’s law, that is,

The same value is obtained by computing the voltage across the  resistor, that is,

7. Voltage-to-current source transformation yields the circuit below.

By combining all current sources and all parallel resistors except the  resistor, we obtain the
simplified circuit below.

Applying the current division expression, we get

and thus

i1 i4

v10Ω

v10Ω 10i3 10 0.05× 0.5 V= = =

6 Ω

v6Ω 6 i2 i3–( ) 6 0.13 0.05–( ) 0.48 V= = =

10 Ω2 Ω 3 Ω
6 A 8 A 6 A

6 Ω

10 Ω

10 Ω1 Ω

4 A

i10  Ω
1

1 10+
--------------- 4× 4

11
------ A= =

p10  Ω i10  Ω
2 10( ) 4

11
------⎝ ⎠

⎛ ⎞ 2
10× 16

121
--------- 10× 160

121
--------- 1.32 w= = = = =
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8. Current-to-voltage source transformation yields the circuit below.

From this series circuit,

and thus

9. We remove  from the rest of the rest of the circuit and we assign node voltages , , and
. We also form the combined node as shown on the circuit below.

Node 1:

or

Node 2:

12 V
2 Ω

+ − 3 Ω20 Ω

+

−

12 V
+

−

24 Vi

i Σv
ΣR
------- 48

25
------ A= =

p20 Ω i2 20( ) 48
25
------⎝ ⎠

⎛ ⎞ 2
20×=

2304
625

------------ 20× 73.73 w= = =

RLOAD v1 v2

v3

12 A 18 A

4 Ω 6 Ω

12 Ω 15 Ω

+ −

36 V

v1 v2 v3

x

y

×

×

1

2

3

v1
4
-----

v1 v2–

12
---------------- 12–

v3 v2–

15
----------------

v3
6
-----+ + + 0=

1
3
---v1

3
20
------v2–

7
30
------v3+ 12=
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or

Also,

For this problem, we are interested only in the value of  which is the Thevenin voltage ,
and we could find it by Gauss’s elimination method. However, for convenience, we will group
these three independent equations, express these in matrix form, and use MATLAB for their
solution.

and in matrix form,

We find the voltages  through  with the following MATLAB code:

G=[1/3  −3/20  7/30;  −1/12  3/20  −1/15;  1  0  −1];
I=[12  −18  36]'; V=G\I;
fprintf('\n');...
   fprintf('v1=%7.2f V \t', V(1)); fprintf('v2=%7.2f V \t', V(2)); fprintf('v3=%7.2f V \t', V(3));
   fprintf('\n')

v1= 0.00 V   v2= -136.00 V   v3= -36.00 V

Thus,

v2 v1–

12
----------------

v2 v3–

15
----------------+ 18–=

1
12
------– v1

3
20
------v2

1
15
------– v3+ 18–=

v1 v3– 36=

v3 vTH

1
3
---v1

3
20
------v2–

7
30
------v3+ 12=

1
12
------– v1

3
20
------v2

1
15
------– v3+ 18–=

v1              v3– 36=

1
3
--- 3

20
------–

7
30
------

1
12
------–

3
20
------ 1

15
------–

1 0 1–

G

v1

v2

v3

V

⋅

12
18–

36

I

=

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩

⎧ ⎨ ⎩ ⎧ ⎨ ⎩

v1 v3

vTH v3 36 V–= =
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To find  we short circuit the voltage source and we open the current sources. The circuit then
reduces to the resistive network below.

We observe that the resistors in series are shorted out and thus the Thevenin resistance is the par-
allel combination of the  and  resistors, that is,

and the Thevenin equivalent circuit is as shown below.

Now, we connect the load resistor  at the open terminals and we get the simple series cir-
cuit shown below.

a. For maximum power transfer, 

b. Power under maximum power transfer condition is

RTH

4 Ω 6 Ω

12 Ω 15 Ω
x

y

×

×

RTH

4 Ω 6 Ω

4 Ω 6 Ω|| 2.4 Ω=

2.4 Ω

+

−

36 V

RLOAD

2.4 Ω

+

−

36 V

RLOAD 2.4 Ω=

RLOAD 2.4 Ω=
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10.  We assign a node voltage Node 1 and a mesh current for the mesh on the right as shown below. 

 

At Node 1:

Mesh on the right:

and by substitution into the node equation above,

or

but this can only be true if .

Then,

Thus, the Norton current source is open as shown below.

To find  we insert a  current source as shown below.

pMAX i2RLOAD
36

2.4 2.4+
---------------------⎝ ⎠

⎛ ⎞ 2
2.4× 7.52 2.4× 135 w= == =

iX4 Ω 5 Ω

15 Ω

5iX

a

b

1

v1 iX

iX

v1
4
----- iX+ 5iX=

15 5+( )iX v1=

20iX
4

---------- iX+ 5iX=

6iX 5iX=

iX 0=

iN
vOC
RN
---------

vab
RN
-------

5 iX×
RN

------------- 5 0×
RN

------------ 0= = = = =

iX

a

b

RN

RN 1 A
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At Node A:

But

and by substitution into the above relation

or

At Node B:

or

For this problem, we are interested only in the value of  which we could find by Gauss’s elimi-
nation method. However, for convenience, we will use MATLAB for their solution.

iX4 Ω 5 Ω

15 Ω

5iX

a

b

A

vA iX

iX 1 A

vB

B

vA
4
-----

vA vB–

15
-----------------+ 5iX=

vB 5 Ω( ) iX× 5iX= =

vA
4
-----

vA vB–

15
-----------------+ vB=

19
60
------vA

16
15
------vB– 0=

vB vA–

15
-----------------

vB
5
-----+ 1=

1
15
------vA–

4
15
------vB+ 1=

vB

19
60
------vA

16
15
------vB– 0=

1
15
------vA–

4
15
------vB+ 1=
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and in matrix form,

We find the voltages  and  with the following MATLAB code:

G=[19/60  −16/15;  −1/15  4/15];
I=[0  1]'; V=G\I;
fprintf('\n');...
   fprintf('vA=%7.2f V \t', V(1)); fprintf('vB=%7.2f V \t', V(2));
   fprintf('\n')

vA= 80.00 V   vB= 23.75 V

Now, we can find the Norton equivalent resistance from the relation

 

11. This is the same circuit as that of Problem 1. Let  be the voltage due to the  current
source acting alone. The simplified circuit with assigned node voltages is shown below where
the parallel conductances have been replaced by their equivalents.

The nodal equations at the three nodes are

or

19
60
------ 16

15
------–

1
15
------–

4
15
------

G

vA

vB

V

⋅
0
1

I

=

⎧ ⎪ ⎨ ⎪ ⎩

⎧ ⎨ ⎩ ⎧ ⎨ ⎩

v1 v2

RN
Vab
ISC
--------

VB
1

------ 23.75 Ω= = =

v'18A 12 A

12 A

+

−

15 Ω 1–

4 Ω 1– 6 Ω 1–

12 Ω 1–

v'18A

v1 v2 v3

16v1 12v2            – 12=

12v1– 27v2 15v3–+ 0=

15– v2 21v3+ 0=
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Since , we only need to solve for . Adding the first 2 equations above and grouping
with the third we obtain

Multiplying the first by  and the second by  we get

and by addition of these we get

Next, we let  be the voltage due to the  current source acting alone. The simplified cir-
cuit with assigned node voltages is shown below where the parallel conductances have been
replaced by their equivalents.

The nodal equations at the three nodes are

or

4v1 3v2          – 3=

4v1– 9v2 5v3–+ 0=

5– v2 7v3+ 0=

v2 v'18A= v2

6v2 5v3– 3=

5– v2 7v3+ 0=

7 5

42v2 35v3– 21=

25– v2 35v3+ 0=

v2 v'18A
21
17
------ V= =

v''18A 18 A

18 A

+

−

15 Ω 1–

4 Ω 1– 6 Ω 1–

12 Ω 1–

v''18A

vA vB vC

16vA 12vB            – 0=

12vA– 27vB 15vC–+ 18–=

15– vB 21vC+ 0=
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Answers to Exercises
Since , we only need to solve for . Adding the first 2 equations above and group-
ing with the third we obtain

Multiplying the first by  and the second by  we get

and by addition of these we get

Finally, we let  be the voltage due to the  current source acting alone. The simplified
circuit with assigned node voltages is shown below where the parallel conductances have been
replaced by their equivalents.

The nodal equations at the three nodes are

or

4vA 3vB          – 0=

4vA– 9vB 5vC–+ 6–=

5– vB 7vC+ 0=

vB v''18A= vB

6vB 5vC– 6–=

5– vB 7vC+ 0=

7 5

42vB 35vC– 42–=

25– vB 35vC+ 0=

vB v''18A
42–

17
--------- V= =

v'''18A 24 A

24 A

+

−

15 Ω 1–

4 Ω 1– 6 Ω 1–

12 Ω 1–

v'''18A

vX vY vZ

16vX 12vY            – 0=

12vA– 27vY 15vZ–+ 0=

15– vB 21vZ+ 24=
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Chapter 3  Nodal and Mesh Equations - Circuit Theorems
Since , we only need to solve for . Adding the first 2 equations above and grouping
with the third we obtain

Multiplying the first by  and the second by  we get

and by addition of these we get

and thus

This is the same answer as in Problem 1.

12. This is the same circuit as that of Problem 2. Let  be the voltage due to the  current
source acting alone. The simplified circuit is shown below.

The  and  resistors are shorted out and the circuit is further simplified to the one
shown below. 

4vX 3vY          – 0=

4vX– 9vY 5vZ–+ 0=

5– vY 7vZ+ 8=

vY v'''18A= vY

6vY 5vZ– 0=

5– vY 7vZ+ 0=

7 5

42vY 35vZ– 0=

25– vY 35vZ+ 40=

vY v'''18A
40
17
------ V= =

v18A v'18A v''18A v'''18A+ + 21
17
------ 42–

17
--------- 40

17
------+ + 19

17
------ 1.12 V= = = =

v'6  Ω 12 A

12 A

4 Ω 6 Ω

12 Ω 15 Ω

+

−

v'6  Ω

12 Ω 15 Ω
3-88 Circuit Analysis I with MATLAB Applications
Orchard Publications



Answers to Exercises
The voltage  is computed easily by application of the current division expression and mul-
tiplication by the  resistor. Thus,

Next, we let  be the voltage due to the  current source acting alone. The simplified
circuit is shown below. The letters A, B, and C are shown to visualize the circuit simplification
process.

The voltage  is computed easily by application of the current division expression and mul-
tiplication by the  resistor. Thus,

Now, we let  be the voltage due to the  current source acting alone. The simplified
circuit is shown below.

12 A

4 Ω 6 Ω
+

−

v'6  Ω

v'6  Ω

6 Ω

v'6  Ω
4

4 6+
------------ 12×⎝ ⎠

⎛ ⎞ 6× 144
5

--------- V= =

v''6  Ω 18 A

4 Ω 6 Ω

12 Ω 15 Ω

+

−

v''6  Ω

18 A

A B A

C
6 Ω

+

−

v''6  Ω

A

4 Ω

12 Ω

15 Ω

B

18 A

C
6 Ω

+

−

v''6  Ω

A

4 Ω

B

18 A

C

12 15 Ω||

v''6  Ω

6 Ω

v''6  Ω
4

4 6+
------------ 18–( )× 6× 216–

5
------------ V= =

v'''6  Ω 24 A
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Chapter 3  Nodal and Mesh Equations - Circuit Theorems
The  and  resistors are shorted out and voltage  is computed by application of
the current division expression and multiplication by the  resistor. Thus,

Finally, we let  be the voltage due to the  voltage source acting alone. The simplified
circuit is shown below.

By application of the voltage division expression we find that

Therefore,

This is the same answer as that of Problem 2.

13. The circuit for Measurement 1 is shown below.

24 A

4 Ω 6 Ω

12 Ω 15 Ω

+

−

v'''6  Ω

12 Ω 15 Ω v'''6  Ω

6 Ω

v'''6 Ω
4

4 6+
------------ 24×⎝ ⎠

⎛ ⎞ 6× 288
5

--------- V= =

viv
6  Ω 36 V

4 Ω 6 Ω

12 Ω 15 Ω

+

−

+ −

36 V

viv
6  Ω

+

−
36 V

15 Ω

12 Ω

6 Ω

4 ΩA

C

B

A

B

C +

−
viv

6 Ω

viv
6  Ω

6
4 6+
------------ 36–( )× 108

5
---------–= =

v6  Ω v'6  Ω v''6  Ω v'''6  Ω viv
6  Ω+ + + 144

5
--------- 216

5
---------– 288

5
--------- 108

5
---------–+ 108

5
--------- 21.6 V= = = =
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Answers to Exercises
Let . Then,

For Measurement 3 the load resistance is the same as for Measurement 1 and the load current is
given as . Therefore, for Measurement 3 we find that

and we enter this value in the table below.

The circuit for Measurement 2 is shown below.

Let . Then,

For Measurement 4 the load resistance is the same as for Measurement 2 and  is given as
. Therefore, for Measurement 4 we find that

and we enter this value in the table below.

The circuit for Measurement 5 is shown below.

1 Ω

48 V

+
−

iLOAD1
16 A

RLOAD1

RS1

vS1

Req1 RS1 RLOAD1+=

Req1
vS1

iLOAD1
---------------- 48

16
------ 3 Ω= = =

5 A–

vS1 Req1 5–( ) 3 5–( )× 15 V–= = =

1 Ω

36 V

+
−

iLOAD2
6 A

RLOAD2

RS2

vS2

Req2 RS1 RLOAD2+=

Req2
vS2

iLOAD2
---------------- 36

6
------ 6 Ω= = =

vS2

42 V–

iLOAD2
vS2

Req2
---------- 42

6
------– 7 A–= = =
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Chapter 3  Nodal and Mesh Equations - Circuit Theorems
Replacing the voltage sources with their series resistances to their equivalent current sources
with their parallel resistances and simplifying, we get the circuit below.

Application of the current division expression yields

and we enter this value in the table below.

The circuit for Measurement 6 is shown below.

We observe that  will be zero if  and this will occur when . This can be
shown to be true by writing a nodal equation at Node A. Thus,

+

−

+

−

1 Ω

1 Ω

vS2

vS1
RS2

RS1

iLOAD

vLOAD
RLOAD

1 Ω

+

−
18 V

15 V

0.5 Ω

iLOAD

RLOAD

1 Ω33 A

iLOAD
0.5

0.5 1+
---------------- 33× 11 A= =

+

−

1 Ω

1 Ω

vS2

vS1
RS2

RS1

iLOAD

RLOAD

1 Ω

+

−
24 V

A
vA

iLOAD vA 0= vS1 24–=

vA 24–( )–

1
-------------------------

vA 24–

1
----------------- 0+ + 0=
3-92 Circuit Analysis I with MATLAB Applications
Orchard Publications



Answers to Exercises
or 

14.  The power supplied by the voltage source is

The power loss on the 1st floor is

The power loss on the 2nd floor is

and thus the total loss is

Then,

Measurement Sw i t ch S w i t ch
 (V)  (V)  (A)

1 Closed Open 48 0 16
2 Open Closed 0 36 6
3 Closed Open -15 0 −5
4 Open Closed 0 −42 −7
5 Closed Closed 15 18 11
6 Closed Closed −24 24 0

vA 0=

S1 S2 vS1 vS2 iL

pS vS i1 i2+( ) 480 100 80+( ) 86 400 w, 86.4 Kw= = = =

pLOSS1 i1
2 0.5 0.5+( ) 100 2 1× 10 000 w, 10 Kw= = = =

480 V

0.8 Ω

+
−
+
−

0.5 Ω

0.5 Ω

1st Floor
Load

100 A
2nd Floor

Load

0.8 Ω

80 AvS
i2i1

pLOSS2 i2
2 0.8 0.8+( ) 80 2 1.6× 10 240 w, 10.24 Kw= = = =

Total loss 10 10.24+ 20.24 Kw= =
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Chapter 3  Nodal and Mesh Equations - Circuit Theorems
and

This is indeed a low efficiency.

15. The voltage drop on the second floor conductor is

and thus the full-load voltage is

Then,

This is a very poor regulation.

16. We assign node voltages and we write nodal equations as shown below.

Output power Input power power losses– 86.4 20.24– 66.16Kw= = =

% Efficiency η Output
Input

------------------ 100× 66.16
86.4

------------- 100× 76.6%= = = =

vcond RT i2 1.6 80× 128 V= = =

480 V

0.8 Ω

+
−
+
−

0.5 Ω

0.5 Ω

1st Floor
Load

100 A
2nd Floor

Load

0.8 Ω

80 AVS i1
i2

vFL 480 128– 352 V= =

% Regulation
vNL vFL–

vFL
---------------------- 100× 480 352–

352
------------------------ 100× 36.4%= = =
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where  and thus 

Collecting like terms and rearranging we get

and in matrix form

+ −

12 V

+
−
+
−

3 Ω 3 Ω

5 Ω

6 Ω
10 Ω

7 Ω

8 Ω

RL

+

−

4 Ω
iLOAD

iX

20iX

vLOAD

v1
v4v3

v5

v2

combined node

v1 12=

v2 v1–

3
----------------

v2
6
-----

v2 v3–

3
----------------+ + 0=

v3 v2–

3
----------------

v3 v5–

10
----------------

v4 v5–

4
----------------

v4 v5–

7 8+
----------------+ + + 0=

v3 v4– 20iX=

iX
v2
6
-----=

v5
10
3
------v2=

v5
5
-----

v5 v3–

10
----------------

v5 v4–

4
----------------

v5 v4–

7 8+
----------------+ + + 0=

v1                                          12=

1–
3

------v1
5
6
---v2

1–
3

------v3                        + + 0=

          1–
3

------v2
13
30
------v3

19
60
------v4

19
60
------v5–+ + 0=

10
3

------v2   – v3     v4            –+ 0=

1
10
------v3–

19
60
------v4–

37
60
------v5+ 0=
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Chapter 3  Nodal and Mesh Equations - Circuit Theorems
We will use MATLAB to solve the above.

G=[1  0  0  0  0;...
      −1/3  5/6  −1/3  0  0;...
      0  −1/3  13/30  19/60  −19/60;...
      0  −10/3  1  −1  0;...
      0  0  −1/10  −19/60  37/60];

I=[12  0  0  0  0]'; V=G\I;
fprintf('\n');...
   fprintf('v1 = %7.2f V \n',V(1));...
   fprintf('v2 = %7.2f V \n',V(2));...
   fprintf('v3 = %7.2f V \n',V(3));...
   fprintf('v4 = %7.2f V \n',V(4));...
   fprintf('v5 = %7.2f V \n',V(5));...
   fprintf('\n'); fprintf('\n')

v1 =   12.00 V 
v2 =   13.04 V 
v3 =   20.60 V 
v4 =  -22.87 V 
v5 =   -8.40 V

Now,

and

1 0 0 0 0
1–

3
------ 5

6
--- 1–

3
------ 0 0

0 1–
3

------ 13
30
------ 19

60
------ 19

60
------–

0 10
3

------– 1 1– 0

0 0 1
10
------– 19

60
------–

37
60
------

G

v1

v2

v3

v4

v5

V

⋅

12
0
0
0
0

I

=

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩

⎧ ⎨ ⎩ ⎧ ⎨ ⎩

iLOAD
v4 v5–

8 7+
---------------- 22.87– 8.40–( )–

15
------------------------------------------ 0.96 A–= = =

vLOAD 8iLOAD 8 0.96–( )× 7.68 V–= = =
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Chapter 4
Introduction to Operational Amplifiers

his chapter is an introduction to amplifiers. It discusses amplifier gain in terms of decibels (dB)
and provides an overview of operational amplifiers, their characteristics and applications.
Numerous formulas for the computation of the gain are derived and several practical examples

are provided. 

4.1 Signals 

A signal is any waveform that serves as a means of communication. It represents a fluctuating electric
quantity, such as voltage, current, electric or magnetic field strength, sound, image, or any message
transmitted or received in telegraphy, telephony, radio, television, or radar. A typical signal which var-
ies with time is shown in figure 4.1 where  can be any physical quantity such as voltage, current,
temperature, pressure, and so on.

Figure 4.1. A signal that changes with time

4.2 Amplifiers

An amplifier is an electronic circuit which increases the magnitude of the input signal. The symbol of
a typical amplifier is a triangle as shown in Figure 4.2.

Figure 4.2. Symbol for electronic amplifier

An electronic (or electric) circuit which produces an output that is smaller than the input is called an
attenuator. A resistive voltage divider is a typical attenuator.

T

f t( )

t

f t( )

vin vout

        Electronic Amplifier
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Chapter 4  Introduction to Operational Amplifiers
An amplifier can be classified as a voltage amplifier, current amplifier, or power amplifier. 

The gain of an amplifier is the ratio of the output to the input. Thus for a voltage amplifier,

or

(4.1)

The current gain  and power gain  are defined similarly.

Note 1: Throughout this text, the common (base 10) logarithm of a number x will be denoted as
 while its natural (base e) logarithm will be denoted as . 

4.3 Decibels

The ratio of any two values of the same quantity (power, voltage or current) can be expressed in
. For instance, we say that an amplifier has  power gain or a transmission line

has a power loss of  (or gain ). If the gain (or loss) is , the output is equal to the
input.

We must remember that a negative voltage or current gain  or  indicates that there is a 
phase difference between the input and the output waveforms. For instance, if an amplifier has a
gain of −100 (dimensionless number), it means that the output is 180 degrees out-of-phase with the
input. Therefore, to avoid misinterpretation of gain or loss, we use absolute values of power, voltage
and current when these are expressed in dB. 

By definition,                        

(4.2)

Therefore,

It is useful to remember that

Voltage Gain Output Voltage
Input Voltage

-----------------------------------------=

Gv
vout
vin
---------=

Gi Gp

x( )log x( )ln

decibels dB( ) 10 dB
7 dB 7–  dB 0 dB

Gv Gi 180°

dB 10
pout
pin
----------log=

10 dB represents a power ratio of 10

10n dB represents a power ratio of 10 n

20 dB represents a power ratio of 100
30 dB represents a power ratio of 1000
60 dB represents a power ratio of 1000000
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Decibels
Also,

From these, we can estimate other values. For instance,  which is equivalent to
a power ratio of approximately . Likewise,  and this is equiv-
alent to a power ratio of approximately .

Since  and , if we let , the dB values for voltage and cur-
rent ratios become:

(4.3)

and

(4.4)

Example 4.1  

Compute the gain in  for the amplifier shown in Figure 4.3.

Figure 4.3. Amplifier for Example 4.1

Solution:

Example 4.2  

Compute the gain in  for the amplifier shown in Figure 4.4, given that .

Figure 4.4. Amplifier for Example 4.2

1 dB represents a power ratio of approximately 1.25
3 dB represents a power ratio of approximately 2
7 dB represents a power ratio of approximately 5

4 dB 3 dB 1 dB+=

2 1.25× 2.5= 27 dB 20 dB 7 dB+=

100 5× 500=

y x2log 2 xlog= = p v 2 R⁄ i2R= = R 1=

dBv 10
vout
vin
---------

2
log 20

vout
vin
---------log= =

dBi 10
iout
iin
--------

2
log 20

iout
iin
--------log= =

dBw

1 w 10 w

pin pout

dBw 10
pout
pin
----------log 10 10

1
------log 10 10log 10 1× 10  dBw= = = = =

dBv 2log 0.3=

1 v 2 v

vin vout
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Chapter 4  Introduction to Operational Amplifiers
Solution:

4.4 Bandwidth and Frequency Response

Like electric filters, amplifiers exhibit a band of frequencies over which the output remains nearly
constant. Consider, for example, the magnitude of the output voltage  of an electric or elec-
tronic circuit as a function of radian frequency  as shown in Figure 4.5.

Figure 4.5. Typical bandwidth of an amplifier

As shown above, the bandwidth is  where  and  are the lower and upper cutoff fre-

quencies respectively. At these frequencies,  and these two points are known
as the 3-dB down or half-power points. They derive their name from the fact that power

, and for  and  or , the power is
, that is, the power is “halved”. Alternately, we can define the bandwidth as the frequency band

between half-power points.

Most amplifiers are used with a feedback path which returns (feeds) some or all its output to the input
as shown in Figure 4.6.

Figure 4.6. Gain amplifiers used with feedback

In Figure 4.6, the symbol Σ (Greek capital letter sigma) inside the circle denotes the summing point
where the output signal, or portion of it, is combined with the input signal. This summing point may

dBv 20
vout
vin
---------log 20 2

1
---log 20 0.3log 20 0.3× 6  dBv= = = = =

vout

ω

1

0.707

ω

Bandwidth

vout

ω1 ω2

BW ω2 ω1–= ω1 ω2

vout 2 2⁄ 0.707= =

p v 2 R⁄ i2R= = R 1= v 2 2⁄ 0.707= = i 2 2⁄ 0.707= =

1 2⁄

    ΣIn Out

+−

Partial Output Feedback

ΣIn Out

+−

Entire Output Feedback

Gain Amplifier Gain Amplifier

Feedback Path
Feedback Circuit
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The Operational Amplifier
be also indicated with a large plus (+) symbol inside the circle. The positive (+) sign below the sum-
ming point implies positive feedback which means that the output, or portion of it, is added to the
input. On the other hand, the negative (−) sign implies negative feedback which means that the output,
or portion of it, is subtracted from the input. Practically, all amplifiers use used with negative feed-
back since positive feedback causes circuit instability.

4.5 The Operational Amplifier 

The operational amplifier or simply op amp is the most versatile electronic amplifier. It derives it name
from the fact that it is capable of performing many mathematical operations such as addition, multi-
plication, differentiation, integration, analog-to-digital conversion or vice versa. It can also be used
as a comparator and electronic filter. It is also the basic block in analog computer design. Its symbol
is shown in Figure 4.7.

Figure 4.7. Symbol for operational amplifier

As shown above the op amp has two inputs but only one output. For this reason it is referred to as
differential input, single ended output amplifier. Figure 4.8 shows the internal construction of a typical op
amp. This figure also shows terminals  and . These are the voltage sources required to
power up the op amp. Typically,  is +15 volts and  is −15 volts. These terminals are not
shown in op amp circuits since they just provide power, and do not reveal any other useful informa-
tion for the op amp’s circuit analysis.

4.6 An Overview of the Op Amp

The op amp has the following important characteristics:

1.  Very high input impedance (resistance)

2.  Very low output impedance (resistance)

3. Capable of producing a very large gain that can be set to any value by connection of external
resistors of appropriate values

4.  Frequency response from DC to frequencies in the MHz range

5.  Very good stability

6. Operation to be performed, i.e., addition, integration etc. is done externally with proper selection
of passive devices such as resistors, capacitors, diodes, and so on.

1

2
3

+
−

VCC VEE

VCC VEE
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Chapter 4  Introduction to Operational Amplifiers
Figure 4.8. Internal Devices of a Typical Op Amp

An op amp is said to be connected in the inverting mode when an input signal is connected to the
inverting (−) input through an external resistor  whose value along with the feedback resistor 
determine the op amp’s gain. The non-inverting (+) input is grounded through an external resistor R
as shown in Figure 4.9.

For the circuit of Figure 4.9, the voltage gain  is

(4.5)

VCC

VEE

1 2

1 NON-INVERTING INPUT
2  INVERTING INPUT
3  OUTPUT

3

Rin Rf

Gv

Gv
vout
vin
---------

Rf
Rin
--------–= =
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An Overview of the Op Amp
Figure 4.9. Circuit of Inverting op amp

Note 2: The resistor R connected between the non-inverting (+) input and ground serves only as a
current limiting device, and thus it does not influence the op amp’s gain. It will be omitted
in our subsequent discussion.

Note 3: The input voltage  and the output voltage  as indicated in the circuit of Figure
4.9, should not be interpreted as open circuits; these designations imply that an input
voltage of any waveform may be applied at the input terminals and the corresponding
output voltage appears at the output terminals. 

As shown in the formula of (4.5), the gain for this op amp configuration is the ratio  where
 is the feedback resistor which allows portion of the output to be fed back to the input. The

minus (−) sign in the gain ratio  implies that the output signal has opposite polarity from
that of the input signal; hence the name inverting amplifier. Therefore, when the input signal is pos-
itive (+) the output will be negative (−) and vice versa. For example, if the input is +1 volt DC and
the op amp gain is 100, the output will be −100 volts DC. For AC (sinusoidal) signals, the output will
be 180 degrees out-of-phase with the input. Thus, if the input is 1 volt AC and the op amp gain is 5,
the output will be −5 volts AC or 5 volts AC with 180 degrees out-of-phase with the input.

Example 4.3  

Compute the voltage gain  and then the output voltage  for the inverting op amp circuit
shown in Figure 4.10, given that . Plot  and  as  versus time on the same set
of axes.

+
−

R

+

−
− +

vin

Rf

vout

Rin

vin vout

Rf Rin⁄–

Rf

Rf Rin⁄–

Gv vout

vin 1 mV= vin vout mV
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Chapter 4  Introduction to Operational Amplifiers
Figure 4.10. Circuit for Example 4.3

Solution:

This is an inverting amplifier and thus the voltage gain  is

or

and since

the output voltage is

or

The voltages  and  are plotted as shown in Figure 4.11.

Figure 4.11. Input and output waveforms for the circuit of Example 4.3

+
−

+

−
− +

Rin

Rf

vin vout

120 KΩ

20 KΩ

Gv

Gv
Rf
Rin
--------– 120 KΩ

20 KΩ
--------------------–= =

Gv 6–=

Gv
vout
vin
---------=

vout Gvvin 6 1×–= =

vout 6 mV–=

vin vout

-7
-6
-5
-4
-3
-2
-1
0
1
2

Time

v O
U

T 
   
/ v

IN
 (m

illi
vo

lts
)

vIN = 1 mV

vOUT  =  −6 mV
4-8 Circuit Analysis I with MATLAB Applications
Orchard Publications



An Overview of the Op Amp
Example 4.4  

Compute the voltage gain  and then the output voltage  for the inverting op amp circuit
shown in Figure 4.12, given that . Plot  and  as  versus time on the same
set of axes.

Figure 4.12. Circuit for Example 4.4

Solution:

This is the same circuit as that of the previous example except that the input is a sine wave with
unity amplitude and the voltage gain  is the same as before, that is,

and the output voltage is

The voltages  and  are plotted as shown in Figure 4.13. 

Figure 4.13. Input and output waveforms for the circuit of Example 4.4

An op amp is said to be connected in the non-inverting mode when an input signal is connected to the
non-inverting (+) input through an external resistor R which serves as a current limiter, and the
inverting (−) input is grounded through an external resistor  as shown in Figure 4.14. In our sub-
sequent discussion, the resistor R will represent the internal resistance of the applied voltage .

Gv vout

vin t sin mV= vin vout mV

+
−

+

−
− +

Rin

Rf

vin vout

120 KΩ

20 KΩ

Gv

Gv
Rf
Rin
--------– 120 KΩ

20 KΩ
-------------------- 6–=–= =

vout Gvvin 6 tsin×– 6 t sin mV–= = =

vin vout

-8

-6

-4

-2

0

2

4

6

8

v O
U

T 
/ v

IN
 (m

illi
vo

lts
)

vin = sint

vOUT  = −6sint

Time

Rin

vin
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Chapter 4  Introduction to Operational Amplifiers
Figure 4.14. Circuit of non-inverting op amp

For the circuit of Figure 4.14, the voltage gain  is

(4.6)

As indicated by the relation of (4.6), the gain for this op amp configuration is  and there-
fore, in the non-inverting mode the op amp output signal has the same polarity as the input signal;
hence, the name non-inverting amplifier. Thus, when the input signal is positive (+) the output will
be also positive and if the input is negative, the output will be also negative. For example, if the input
is  and the op amp gain is , the output will be . For AC signals the output
will be in-phase with the input. For example, if the input is  and the op amp gain is

, the output will be  and in-phase with the input.

Example 4.5  

Compute the voltage gain  and then the output voltage  for the non-inverting op amp circuit
shown in Figure 4.15, given that . Plot  and  as  versus time on the same set
of axes.

Figure 4.15. Circuit for Example 4.5

Solution:

The voltage gain  is
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An Overview of the Op Amp
and thus
 

The voltages  and  are plotted as shown in Figure 4.16. 

Figure 4.16. Input and output waveforms for the circuit of Example 4.5

Example 4.6  

Compute the voltage gain  and then the output voltage  for the non-inverting op amp circuit
shown in Figure 4.17, given that . Plot  and  as  versus time on the same
set of axes.

Figure 4.17. Circuit for Example 4.6

Solution:

This is the same circuit as in the previous example except that the input is a sinusoid. Therefore, the
voltage gain  is the same as before, that is,
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Chapter 4  Introduction to Operational Amplifiers
and the output voltage is

The voltages  and  are plotted as shown in Figure 4.18.

Figure 4.18. Input and output waveforms for the circuit of Example 4.6

Quite often an op amp is connected as shown in Figure 4.19. 

Figure 4.19. Circuit of unity gain op amp

For the circuit of Figure 4.19, the voltage gain  is

(4.7)

and thus

(4.8)

For this reason, the op amp circuit of Figure 4.19 it is called unity gain amplifier. For example, if the
input voltage is  the output will also be , and if the input voltage is ,
the output will also be . The unity gain op amp is used to provide a very high resistance
between a voltage source and the load connected to it. An example will be given in Section 4.8.
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Active Filters
4.7 Active Filters

An active filter is an electronic circuit consisting of an amplifier and other devices such as resistors
and capacitors. In contrast, a passive filter is a circuit which consists of passive devices such as resis-
tors, capacitors and inductors. Operational amplifiers are used extensively as active filters.

A low-pass filter transmits (passes) all frequencies below a critical (cutoff ) frequency denoted as , and
attenuates (blocks) all frequencies above this cutoff frequency. An op amp low-pass filter is shown in
Figure 4.20 and its frequency response in Figure 4.21.

Figure 4.20. A low-pass active filter

Figure 4.21. Frequency response for amplitude of a low-pass filter

In Figure 4.21, the straight vertical and horizontal lines represent the ideal (unrealizable) and the
smooth curve represents the practical (realizable) low-pass filter characteristics. The vertical scale
represents the magnitude of the ratio of output-to-input voltage , that is, the gain . The
cutoff frequency  is the frequency at which the maximum value of  which is unity, falls
to , and as mentioned before, this is the half power or the  point.
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Chapter 4  Introduction to Operational Amplifiers
A high-pass filter transmits (passes) all frequencies above a critical (cutoff) frequency , and attenu-
ates (blocks) all frequencies below the cutoff frequency. An op amp high-pass filter is shown in Fig-
ure 4.22 and its frequency response in Figure 4.23.

Figure 4.22.  A high-pass active filter

Figure 4.23. Frequency response for amplitude of a high-pass filter

In Figure 4.23, the straight vertical and horizontal lines represent the ideal (unrealizable) and the
smooth curve represents the practical (realizable) high-pass filter characteristics. The vertical scale
represents the magnitude of the ratio of output-to-input voltage , that is, the gain . The
cutoff frequency  is the frequency at which the maximum value of  which is unity, falls to

, i.e., the half power or the  point.

A band-pass filter transmits (passes) the band (range) of frequencies between the critical (cutoff) fre-
quencies denoted as  and , where the maximum value of  which is unity, falls to ,

while it attenuates (blocks) all frequencies outside this band. An op amp band-pass filter and its fre-
quency response are shown below. An op amp band-pass filter is shown in Figure 4.24 and its fre-
quency response in Figure 4.25.
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Active Filters
Figure 4.24.  An active band-pass filter

Figure 4.25. Frequency response for amplitude of a band-pass filter

A band-elimination or band-stop or band-rejection filter attenuates (rejects) the band (range) of frequen-
cies between the critical (cutoff) frequencies denoted as  and , where the maximum value of

 which is unity, falls to , while it transmits (passes) all frequencies outside this band.
An op amp band-stop filter is shown in Figure 4.26 and its frequency response in Figure 4.27.
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Chapter 4  Introduction to Operational Amplifiers
Figure 4.26.  An active band-elimination filter

Figure 4.27. Frequency response for amplitude of a band-elimination filter

4.8 Analysis of Op Amp Circuits

The procedure for analyzing an op amp circuit (finding voltages, currents and power) is the same as
for the other circuits which we have studied thus far. That is, we can apply Ohm’s law, KCL and
KVL, superposition, Thevenin’s and Norton’s theorems. When analyzing an op amp circuit, we must
remember that in any op-amp:

a. The currents into both input terminals are zero 

b. The voltage difference between the input terminals of an op amp is zero

c. For circuits containing op amps, we will assume that the reference (ground) is the common terminal of the
two power supplies. For simplicity, the power supplies will not be shown.
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Analysis of Op Amp Circuits
We will provide several examples to illustrate the analysis of op amp circuits without being con-
cerned about its internal operation; this is discussed in electronic circuit analysis books.

Example 4.7  

The op amp circuit shown in Figure 4.28 is called inverting op amp. Prove that the voltage gain  is
as given in (4.9) below, and draw its equivalent circuit showing the output as a dependent source.

Figure 4.28. Circuit for deriving the gain of an inverting op amp

(4.9)

Proof:

No current flows through the (−) input terminal of the op amp; therefore the current  which flows
through resistor  flows also through resistor . Also, since the (+) input terminal is grounded
and there is no voltage drop between the (−) and (+) terminals, the (−) input is said to be at virtual
ground. From the circuit of Figure 4.28,

where

and thus

or
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− +
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i
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Chapter 4  Introduction to Operational Amplifiers
The input and output parts of the circuit are shown in Figure 4.29 with the virtual ground being the
same as the circuit ground.

Figure 4.29. Input and output parts of the inverting op amp

These two circuits are normally drawn with the output as a dependent source as shown in Figure
4.30. This is the equivalent circuit of the inverting op amp and, as mentioned in Chapter 1, the dependent
source is a Voltage Controlled Voltage Source (VCVS).

Figure 4.30. Equivalent circuit of the inverting op amp

Example 4.8  

The op amp circuit shown in Figure 4.31 is called non-inverting op amp. Prove that the voltage gain 
is as given in (4.10) below, and draw its equivalent circuit showing the output as a dependent source.

Figure 4.31. Circuit of non-inverting op amp

(4.10)
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Analysis of Op Amp Circuits
Proof:

Let the voltages at the (−) and (+) terminals be denoted as  and  respectively as shown in Figure
4.32.

Figure 4.32. Non-inverting op amp circuit for derivation of (4.10)

By application of KCL at 

or

(4.11)

There is no potential difference between the (−) and (+) terminals; therefore,  or

. Relation (4.11) then can be written as

or

Rearranging, we get

and its equivalent circuit is as shown in Figure 4.33. The dependent source of this equivalent circuit
is also a VCVS.
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Chapter 4  Introduction to Operational Amplifiers
Figure 4.33. Equivalent circuit of the non-inverting op amp

Example 4.9  

If, in the non-inverting op amp circuit of the previous example, we replace  with an open circuit
( ) and  with a short circuit ( ), prove that the voltage gain  is

(4.12)

and thus

(4.13)

Proof:

With  open and  shorted, the non-inverting amplifier of the previous example reduces to the
circuit of Figure 4.34.

Figure 4.34. Circuit of Figure 4.32 with  open and  shorted

The voltage difference between the (+) and (−) terminals is zero; then .

We will obtain the same result if we consider the non-inverting op amp gain .

Then, letting , the gain reduces to  and for this reason this circuit is called unity gain
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Analysis of Op Amp Circuits
amplifier or voltage follower. It is also called buffer amplifier because it can be used to “buffer” (isolate)
one circuit from another when one “loads” the other as we will see on the next example.

Example 4.10  

For the circuit of Figure4.35

a. With the load  disconnected, compute the open circuit voltage 

b. With the load connected, compute the voltage  across the load 

c. Insert a buffer amplifier between a and b and compute the new voltage  across the same
load 

Figure 4.35. Circuit for Example 4.10

Solution:

a. With the load  disconnected the circuit is as shown in Figure 4.36.

Figure 4.36. Circuit for Example 4.10 with the load disconnected

The voltage across terminals a and b is

b.  With the load  reconnected the circuit is as shown in Figure 4.37.
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Chapter 4  Introduction to Operational Amplifiers
Figure 4.37. Circuit for Example 4.10 with the load reconnected

Here, we observe that the load  “loads down” the load voltage from  to  and
this voltage may not be sufficient for proper operation of the load.

c. With the insertion of the buffer amplifier between points a and b and the load, the circuit now is
as shown in Figure 4.38.

Figure 4.38. Circuit for Example 4.10 with the insertion of a buffer op amp

From the circuit of Figure 4.38, we observe that the voltage across the load is  as desired.

Example 4.11  

The op amp circuit shown in Figure 4.39 is called summing circuit or summer because the output is the
summation of the weighted inputs. Prove that for this circuit, 

(4.14)
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Analysis of Op Amp Circuits
Figure 4.39. Two-input summing op amp circuit

Proof:

We recall that the voltage across the (−) and (+) terminals is zero. We also observe that the (+) input
is grounded, and thus the voltage at the (−) terminal is at “virtual ground”. Then, by application of
KCL at the (−) terminal, we get

and solving for  we get (4.14). Alternately, we can apply the principle of superposition to derive
this relation.

Example 4.12  

Compute the output voltage  for the amplifier circuit shown in Figure 4.40.

Figure 4.40. Circuit for Example 4.12
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Chapter 4  Introduction to Operational Amplifiers
Solution:

Let  be the output due to  acting alone,  be the output due to  acting alone, and
 be the output due to  acting alone. Then by superposition,

                             
First, with  acting alone and  and  shorted, the circuit becomes as shown in Figure 4.41.

Figure 4.41. Circuit for Example 4.12 with  acting alone

We recognize this as an inverting amplifier whose voltage gain  is

and thus 

(4.15)

Next, with  acting alone and  and  shorted, the circuit becomes as shown in Figure
4.42.

The circuit of Figure 4.42 as a non-inverting op amp whose voltage gain  is

and the voltage at the plus (+) input is computed from the voltage divider circuit shown in Figure
4.43.
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Analysis of Op Amp Circuits
Figure 4.42. Circuit for Example 4.12 with  acting alone

Figure 4.43. Voltage divider circuit for the computation of  with  acting alone

Then,

and thus

(4.16)

Finally, with  acting alone and  and  shorted, the circuit becomes as shown in Figure
4.44.

The circuit of Figure 4.44 is also a non-inverting op amp whose voltage gain  is

and the voltage at the plus (+) input is computed from the voltage divider circuit shown in Figure
4.45.
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Figure 4.44. Circuit for Example 4.12 with  acting alone

Figure 4.45. Voltage divider circuit for the computation of  with  acting alone

Then,

and thus

(4.17)

Therefore, from (4.15), (4.16) and (4.17),

Example 4.13  

For the circuit shown in Figure 4.46, derive an expression for the voltage gain  in terms of the
external resistors , , , and .
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Analysis of Op Amp Circuits
Figure 4.46. Circuit for Example 4.13

Solution:

We apply KCL at nodes  and  as shown in Figure 4.47.

Figure 4.47. Application of KCL for the circuit of Example 4.13
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(4.18)

At node :

or 

(4.19)

and since , we rewrite (4.19) as

(4.20)

Equating the right sides of (4.18) and (4.20) we get

or

Dividing both sides of the above relation by  and rearranging, we get

and after simplification

(4.21)

4.9 Input and Output Resistance

The input and output resistances are very important parameters in amplifier circuits. 

The input resistance  of a circuit is defined as the ratio of the applied voltage  to the current 
drawn by the circuit, that is,

(4.22)
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Input and Output Resistance
Therefore, in an op amp circuit the input resistance provides a measure of the current  which the
amplifier draws from the voltage source . Of course, we want  to be as small as possible;
accordingly, we must make the input resistance  as high as possible.

Example 4.14  

Compute the input resistance  of the inverting op amp amplifier shown in Figure 4.47 in terms
of  and . 

Figure 4.48. Circuit for Example 4.14

Solution:

By definition, 

(4.23)

and since no current flows into the minus (−) terminal of the op amp and this terminal is at virtual
ground, it follows that

 (4.24)

From (4.23) and (4.24) we observe that

(4.25)

It is therefore, desirable to make  as high as possible. However, if we make  very high such as
, for a large gain, say , the value of the feedback resistor  should be . Obviously,

this is an impractical value. Fortunately, a large gain can be achieved with the circuit of Problem 8.

Example 4.15  

Compute the input resistance  of the op amp shown in Figure 4.49.
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Figure 4.49. Circuit for Example 4.15

Solution:

In the circuit of Figure 4.49,  is the voltage at the minus (−) terminal; not the source voltage .
Therefore, there is no current  drawn by the op amp. In this case, we apply a test (hypothetical)
current  as shown in Figure 4.49, and we treat  as the source voltage.

Figure 4.50. Circuit for Example 4.15 with a test current source

We observe that  is zero (virtual ground). Therefore,

By definition, the output resistance  is the ratio of the open circuit voltage to the short circuit current, that is,

(4.26)

The output resistance  is not the same as the load resistance. The output resistance provides a mea-
sure of the change in output voltage when a load which is connected at the output terminals draws
current from the circuit. It is desirable to have an op amp with very low output resistance as illus-
trated by the following example.

+
−

−
+

Rf

vout

vin

100 KΩ

vin vS

iS

iX vin

+
−

−
+

Rf

vout

vin 100 KΩ

iX

vin

Rin
vin
iX
------- 0

iX
---- 0= = =

Rout

Rout
vOC
iSC
---------=

Rout
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Input and Output Resistance
Example 4.16   

The output voltage of an op amp decreases by  when a  load is connected at the output
terminals. Compute the output resistance .

Solution:

Consider the output portion of the op amp shown in Figure 4.51.

Figure 4.51. Partial circuit for Example 4.16

With no load connected at the output terminals,

(4.27)

With a load  connected at the output terminals, the load voltage  is

(4.28)

and from (4.27) and (4.28)

(4.29)

Therefore, 

and solving for  we get 

We observe from (4.29) that as , relation (4.29) reduces to  and by compar-
ison with (4.27), we see that 

10% 5 KΩ
Rout

+

−

−

+

Rout

vout

vout vOC Gvvin= =

RLOAD vLOAD

vLOAD
RLOAD

Rout RLOAD+
--------------------------------- vout×=

vLOAD
RLOAD

Rout RLOAD+
--------------------------------- Gvvin×=

vLOAD
vOC

--------------- 0.9 5 KΩ
Rout 5 KΩ+
-------------------------------= =

Rout

Rout 555 Ω=

Rout 0→ vLOAD Gvvin=

vLOAD vOC=
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Chapter 4  Introduction to Operational Amplifiers
4.10  Summary

• A signal is any waveform representing a fluctuating electric quantity, such as voltage, current, elec-
tric or magnetic field strength, sound, image, or any message transmitted or received in telegraphy,
telephony, radio, television, or radar. al that changes with time.

• An amplifier is an electronic circuit which increases the magnitude of the input signal.

• The gain of an amplifier is the ratio of the output to the input. It is normally expressed in decibel
(dB) units where by definition 

• Frequency response is the band of frequencies over which the output remains fairly constant.

• The lower and upper cutoff frequencies are those where the output is 0.707 of its maximum
value. They are also known as half-power points.

• Most amplifiers are used with feedback where the output, or portion of it, is fed back to the input.

• The operational amplifier (op amp) is the most versatile amplifier and its main features are:

1.  Very high input impedance (resistance)

2.  Very low output impedance (resistance)

3. Capable of producing a very large gain that can be set to any value by connection of external
resistors of appropriate values

4.  Frequency response from DC to frequencies in the MHz range

5.  Very good stability

6. Operation to be performed, i.e., addition, integration etc. is done externally with proper selec-
tion of passive devices such as resistors, capacitors, diodes, and so on.

• The gain of an inverting op amp is the ratio  where  is the feedback resistor which
allows portion of the output to be fed back to the minus (−) input. The minus (−) sign implies that
the output signal has opposite polarity from that of the input signal.

• The gain of an non-inverting op amp is  where  is the feedback resistor which
allows portion of the output to be fed back to the minus (−) input which is grounded through the

 resistor. The output signal has the same polarity from that of the input signal.

• In a unity gain op amp the output is the same as the input. A unity gain op amp is used to provide
a very high resistance between a voltage source and the load connected to it.

• Op amps are also used as active filters.

dB 10 pout pin⁄log=

Rf Rin⁄– Rf

1 Rf Rin⁄+ Rf

Rin
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Summary
• A low-pass filter transmits (passes) all frequencies below a critical (cutoff) frequency denoted as
 and attenuates (blocks) all frequencies above this cutoff frequency.

• A high-pass filter transmits (passes) all frequencies above a critical (cutoff) frequency , and
attenuates (blocks) all frequencies below the cutoff frequency.

• A band-pass filter transmits (passes) the band (range) of frequencies between the critical (cutoff)
frequencies denoted as  and , where the maximum value of  which is unity, falls to

, while it attenuates (blocks) all frequencies outside this band.

• A band-elimination or band-stop or band-rejection filter attenuates (rejects) the band (range) of
frequencies between the critical (cutoff) frequencies denoted as  and , where the maximum
value of  which is unity, falls to , while it transmits (passes) all frequencies outside
this band.

• A summing op amp is a circuit with two or more inputs.

• The input resistance is the ratio of the applied voltage  to the current  drawn by the circuit,
that is, 

• The output resistance (not to be confused with the load resistance) is the ratio of the open circuit
voltage when the load is removed from the circuit, to the short circuit current which is the cur-
rent that flows through a short circuit connected at the output terminals, that is, 

ωC

ωc

ω1 ω2 Gv

0.707 Gv×

ω1 ω2

Gv 0.707 Gv×

vS iS

Rin vS iS⁄=

Ro vOC iSC⁄=
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Chapter 4  Introduction to Operational Amplifiers
4.11   Exercises

Multiple Choice

1. In the op amp circuit of Figure 4.52 , , and it is desired to have
. This will be obtained if the feedback resistor  has a value of

A.

B.

C.

D.

E.

Figure 4.52. Circuit for Question 1

2. In the circuit of Figure 4.53 , , and . Then  will be

A.

B.

C.

D.

E.

Figure 4.53. Circuit for Question 2

vin 2 V= Rin 1 KΩ=

vout 8 V= Rf

1 KΩ

2 KΩ

3 KΩ

4 KΩ

none of the above

+
−

R
+

−
−

+ vout

Rin Rf

vin

vin 6 V= Rin 2 KΩ= Rf 3 KΩ= vout

9–  V

9 V

4–  V

4 V

none of the above

+
−

+

−
− +

Rin Rf

vin vout
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3. In the circuit of Figure 4.54  and . Then  will be

A.

B.

C.

D.

E.

Figure 4.54. Circuit for Question 3

4. In the circuit of Figure 4.55  and . Then  will be

A.

B.

C. indeterminate

D.

E.

Figure 4.55. Circuit for Question 4

5. In the circuit of Figure 4.56 , , , and . Then
 will be

iS 2 mA= Rf 5 KΩ= vout

∞ V

0 V

10 V

10–  V

none of the above

+
−

−
+

Rf

iS vout

iS 4 mA= R 3 KΩ= vout

∞ V

0 V

12–  V

none of the above

+
−

−
+

R
iS

vout

vin 4 V= Rin 12 KΩ= Rf 18 KΩ= RLOAD 6 KΩ=

i
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A.

B.

C.

D.

E.

Figure 4.56. Circuit for Question 5

6. In the circuit of Figure 4.57  and all resistors have the same value. Then  will be

A.

B.

C.

D.

E.

Figure 4.57. Circuit for Question 6

1–  mA

1 mA

4 3⁄–  mA

4 3⁄  mA

none of the above

+
−

+

−

− +

Rin Rf

vin

voutRLOAD

i

vin 1 V= vout

2 V–

2 V

4 V–

4 V

none of the above

+
−

+ −

−

+
vout

Rin1
Rf1

vin

+
−

Rin2
Rf2
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7. In the circuit of Figure 4.58 , , and . Then  will be

A.

B.

C.

D.

E.

Figure 4.58. Circuit for Question 7

8. In the circuit of Figure 4.59 . Then  will be

A.

B.

C.

D.

E.

Figure 4.59. Circuit for Question 8

vin1
2 V= vin2

4 V= Rin Rf 1 KΩ= = vout

2 V–

2 V

8 V–

8 V

none of the above

+
−+

−
− +

Rin Rf

vin1 vout+

−
vin2

vin 30 V= vout

5 V–

10 V–

15 V–

90–  V

none of the above

+
−

+

−
− +vin

10 KΩ

vout

20 KΩ10 KΩ

10 KΩ

10 KΩ
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Chapter 4  Introduction to Operational Amplifiers
9. For the circuit of Figure 4.60, the input resistance  is

A.

B.

C.

D.

E.

Figure 4.60. Network for Question 9

10. For the circuit of Figure 4.61, the current  is 

A.

B.

C.

D.

E.

Figure 4.61. Network for Question 10

Rin

1 KΩ

2 KΩ

4 KΩ

8 KΩ

none of the above

+
−

+
−

vin

4 KΩ

+

−

vout

4 KΩ

2 KΩ

1 KΩ

2 KΩ
Rin

i

40–  A

40 A

400–  A

400 A

none of the above

+

−
2 A

i
40vX

10 Ω
vX

+

−

5 Ω
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Exercises
Problems

1.  For the circuit of Figure 4.62, compute . Answer: 

Figure 4.62. Circuit for Problem 1

2.  For the circuit of Figure 4.63, compute . Answer: 

Figure 4.63. Circuit for Problem 2

3. For the circuit of Figure 4.64, , , and  represent the internal resistances of the input
voltages , , and  respectively. Derive an expression for  in terms of the input
voltage sources and their internal resistances, and the feedback resistance .

Answer: 

vout2 0.9 V–

+
−

10 mV
+

−
−

+ +

−

+ −
−

+ vout2

3 KΩ 27 KΩ
10 KΩ 90 KΩ

vout1
vin2

vin1

i5KΩ 4µA

+
−

60 mV

+

−

3 KΩ

i5KΩ4 KΩ

6 KΩ 5 KΩ

Rin1 Rin2 Rin3

vin1 vin2 vin3 vout

Rf

vout Rf
vin3
Rin3
----------

vin2
Rin2
----------

vin1
Rin1
----------––⎝ ⎠

⎛ ⎞=
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Chapter 4  Introduction to Operational Amplifiers
Figure 4.64. Circuit for Problem 3

4.  For the circuit of Figure 4.65, compute . Answer: 

Figure 4.65. Circuit for Problem 4

5. The op-amp circuit of Figure 4.66 (a) can be represented by its equivalent circuit shown in Figure
4.66 (b). For the circuit of Figure 4.67 (c), compute the value of  so that it will receive maxi-
mum power. Answer: 

Figure 4.66.

+
−

+

−

+

−

Rf

+

−

vout

+

−
vin1

vin2 vin3

Rin1

Rin2 Rin3

vout 40 mV–

40 mV+
−

+

−

+

−

vout

10 KΩ

20 KΩ
40 KΩ

50 KΩ

RL

3.75 KΩ

+

−
+

−−
+

+
−+

−
−

+

(a) (b)

vout

R1

R2

R1 R2
R1
------vin

vin
vin

vout

vout
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Figure 4.67. Circuits for Problem 5

6.  For the circuit of Figure 4.68, compute  using Thevenin’s theorem. Answer: 

Figure 4.68. Circuit for Problem 6

7.  For the circuit of Figure 4.69, compute the gain . Answer: 

Figure 4.69. Circuit for Problem 7

+

−
+

−

−

+

(c)

5 KΩ

vout

2 KΩ

20 KΩ

15 KΩ

RLOAD

vin

v5KΩ 20 mV

+

−

+ −−

+

+

−

vout

72 mV v5KΩ 20 KΩ

12 KΩ

84 KΩ

100 KΩ

5 KΩ

4 KΩ

Gv vout vin⁄= 2 37⁄( ) –

++

−−

vout
vin

R2
R1

R3

R4

R5

200 KΩ

40 KΩ

50 KΩ

50 KΩ

40 KΩ
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8.  For the circuit of Figure 4.70, show that the gain is given by

Figure 4.70. Circuit for Problem 8

Gv
vout
vin
--------- 1

R1
------– R5 R3

R5
R4
------ 1+⎝ ⎠

⎛ ⎞+= =

++

−−

vout
vin

R1

R2

R3 R4
R5
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Answers to Exercises
4.12  Answers to Exercises

Multiple Choice

1. C For  and , the gain must be  or . Therefore,

2.  A   

3.  D  All current flows through  and the voltage drop across it is 

4.  E   All current flows through  and the voltage drop across it is . Since
this circuit is a unity gain amplifier, it follows that  also.

5. C  . Therefore, .
Applying KCL at the plus (+) terminal of  we get

6.  D   The gain of each of the non-inverting op amps is 2. Thus, the output of the first op amp is
 and the output of the second is .

7.  E   By superposition,  due to  acting alone is  and  due to  acting alone is

. Therefore, 

8. B We assign node voltage  as shown below and we replace the encircled port by its equiva-
lent. . Then  will be

We now attach the remaining resistors and the entire equivalent circuit is shown below.

vin 2= vout 8= Gv 4= 1 Rf Rin⁄+ 4=

Rf 3 KΩ=

vout Rf Rin⁄ vin×– 9 V–= =

Rf 2 mA 5 KΩ×( )– 10 V–=

R 4 mA 3 KΩ× 12 V=

vout 12 V=

vout 18 12⁄( ) 4×– 6 V–= = iLOAD vout RLOAD⁄ 6 V 6 KΩ⁄– 1 mA–= = =

vout

i 6 V–
6 KΩ
-------------- 6 V– 4 V–

18 KΩ 12 KΩ+
----------------------------------------+ 1– 1

3
---–

4
3
--- mA–= = =

2 V 4 V

vout1
vin1

2 V– vout2
vin2

8 V vout 2– 8+ 6 V= =

vA

vin 30 V= vout

+
−

+

−
− +vin

10 KΩ

vout

20 KΩ10 KΩ

10 KΩ

10 KΩ vA
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Application of KCL at Node A yields

and thus 
Therefore,

NOTE: For this circuit, the magnitude of the voltage is less than the magnitude of the input
voltage. Therefore, this circuit is an attenuator, not an amplifier. Op amps are not
configured for attenuation. This circuit is presented just for instructional purposes.
A better and simpler attenuator is a voltage divider circuit.

9. C The voltage gain for this circuit is  and thus . The voltage  at
the minus (−) input of the op amp is zero as proved below.

or

Then

− −
+ +

+ +

− −

voutvA

vin 30 V

10 KΩ 10 KΩ

5 KΩ
2vA

A

vA 30–

10
-----------------

vA
5
-----

vA 2vA–( )–

10
----------------------------+ + 0=

vA 30 6⁄ 5 V= =

vout 2vA– 10V–= =

4 KΩ 4 KΩ⁄ 1= vout vin–= v

+
−

+
−

vin

4 KΩ

+

−

vout

4 KΩ

2 KΩ

1 KΩ

2 KΩRin

i

v

v vin–

4
---------------

v vin–( )–

4
-----------------------+ 0=

v 0=

i
vin

4 KΩ
--------------=
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and

10.  A For this circuit,  and thus . Then, 

Problems

1.  

and thus

Then

2. We assign , , and  as shown below.

and by the voltage division expression

and since this is a unity gain amplifier, we get

Then

Rin
vin

vin 4 KΩ⁄
------------------------ 4 KΩ= =

vX 10 V–= 40vX 400 V–= i 400 10⁄– 40 A–= =

vout1 27 3⁄( ) 10×– 90 mV–= =

vin2 vout1 90 mV–= =

vout2 1 90
10
------+⎝ ⎠

⎛ ⎞ 90–( )× 0.9 V–= =

RLOAD v1 vLOAD

+
−

60 mV

+

−

3 KΩ

i5KΩ4 KΩ

6 KΩ
5 KΩ

v1
vLOAD

++

− −

3 KΩ 6 KΩ|| 2 KΩ=

v1
2 KΩ

4 KΩ 2 KΩ+
---------------------------------- 60 mV× 20 mV= =

vLOAD v1 20 mV= =
Circuit Analysis I with MATLAB Applications 4-45
Orchard Publications



Chapter 4  Introduction to Operational Amplifiers
3. By superposition

where

We observe that the minus (−) is a virtual ground and thus there is no current flow in  and
. Also,

and

Then,

4.  We assign voltages  and  as shown below.

i5KΩ
vLOAD
RLOAD
---------------- 20 mV

5 KΩ
---------------- 20 10 3–×

5 103×
----------------------- 4 10 6–  A× 4 µA= = = = =

vout vout1 vout2 vout3+ +=

vout1 vin2 0=

vin3 0=

Rf
Rin1
----------vin1–=

Rin1

Rin2

vout2 vin1 0=

vin3 0=

Rf
Rin2
----------vin2–=

vout3 vin1 0=

vin2 0=

Rf
Rin3
---------- v– in3( )–=

vout Rf
vin3
Rin3
----------

vin2
Rin2
----------

vin1
Rin1
----------––⎝ ⎠

⎛ ⎞=

v− v+

40 mV+
−

+

−

+

−

vout

10 KΩ

20 KΩ
40 KΩ

50 KΩv−
v+
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At the minus (−) terminal

or

At the plus (+) terminal

or

or

Since  we equate the nodal equations and we get

Multiplication by  yields

or

Check with (4.21) using MATLAB:

R1=10000; R2=20000; R3=40000; Rf=50000; Vin=40*10^(−3);
Vout=(R1*R3-R2*Rf)*Vin/(R1*(R2+R3))

Vout =

   -0.0400

5. We attach the , , and  resistors to the equivalent circuit as shown below. By
Thevenin’s theorem

v− 40 mV–

10 KΩ
----------------------------

v− vout–

50 KΩ
---------------------+ 0=

6
50 103×
--------------------v−

1
50 103×
--------------------vout– 4 10 6–×=

v+ 40 mV–

20 KΩ
---------------------------

v+
40 KΩ
-----------------+ 0=

3
40 10 3×
---------------------v+ 2 10 6–×=

v+
80 10 3–×

3
-----------------------=

v+ v−=

6
50 103×
-------------------- 80 10 3–×

3
-----------------------⎝ ⎠

⎛ ⎞ 1
50 103×
--------------------vout– 4 10 6–×=

50 103×

2 80 10 3–×× 50 103××

50 103×
----------------------------------------------------------- vout– 4 10 6–× 50 103××=

vout 40 mV–=

5 KΩ 15 KΩ RLOAD
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or

Because the circuit contains a dependent source, we must compute the Thevenin resistance using
the relation  where  is found from the circuit below.

We observe that the short circuit shorts out the  and thus

Then

and the Thevenin equivalent circuit is shown below.

Therefore, for maximum power transfer we must have 

+
−+

−
2 KΩ

10vinvin

5 KΩ

15 KΩ

×

×

b

a

vTH vOC vab
15 KΩ

5 KΩ 15 KΩ+
------------------------------------- 10vin–( )= = =

vTH 7.5vin–=

RTH vTH iSC⁄= iSC

+
− 10vin

5 KΩ

15 KΩ

×

×

b

a

iSC

15 KΩ

iSC
10vin–

5 KΩ
---------------- 2 10 3– vin×–= =

RTH
7.5vin–

2 10 3– vin×–
------------------------------ 3.75 KΩ= =

+
−

vTH

RTH 3.75 KΩ=

RLOAD

RLOAD RTH 3.75 KΩ= =
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6. This is a non-inverting op amp whose equivalent circuit is shown below.

For this circuit  and the value of the VCVS is

Attaching the external resistors to the equivalent circuit above we get the circuit below.

To find the Thevenin equivalent at points a and b we disconnect the  resistor. When this is
done there is no current in the  and the circuit simplifies to the one shown below.

By KVL

or

Also

+

−
−

++
−

1
Rf
Rin
--------+

⎝ ⎠
⎜ ⎟
⎛ ⎞

vin voutvin

vin v5KΩ=

1
Rf
Rin
--------+

⎝ ⎠
⎜ ⎟
⎛ ⎞

v5KΩ 1 100
20
---------+⎝ ⎠

⎛ ⎞ v5KΩ 6v5KΩ= =

+

−−

+ +
−v5KΩ

72 mV

12 KΩ

4 KΩ

84 KΩ

5 KΩ

×

×

a

b

6v5KΩ

5 KΩ
4 KΩ

+
−

+
−

6v5KΩ

72 mV

12 KΩ 84 KΩ

i

a

b

vab

+

−

12 KΩ 84 KΩ+( )i 6v5KΩ+ 72 mV=

i
72 mV 6v5KΩ–

12 KΩ 84 KΩ+( )
---------------------------------------------=
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or

and thus

The Thevenin resistance is found from  where  is computed with the termi-
nals a and b shorted making  and the circuit is as shown on the left below. We also per-
form voltage-source to current-source transformation and we get the circuit on the right below.

Now

and by the current division expression

Therefore,

and the Thevenin equivalent circuit with the  resistor is shown below.

vTH vab v5KΩ 72 mV 12 KΩ( )i– 72 mV 12 KΩ
72 mV 6v5KΩ–

96 KΩ
-------------------------------------⎝ ⎠

⎛ ⎞–= = = =

72 mV 9 mV–
3
4
---v5KΩ+=

v5KΩ
3
4
---v5KΩ– 63 mV=

vTH vab v5KΩ 252 mV= = =

RTH vOC iSC⁄= iSC

v5KΩ 0=

+
−
72 mV

12 KΩ

84 KΩ
a

biSC

4 KΩ

6 µA

12 KΩ

84 KΩ a

biSC

4 KΩ

12 KΩ 84 KΩ|| 10.5 KΩ=

iSC iab
10.5 KΩ

10.5 KΩ 4 KΩ+
------------------------------------------ 6 µA× 126

29
--------- µA= = =

RTH
vOC
iSC
--------- 252

126 29⁄
------------------- 58 KΩ= = =

5 KΩ

+
− 5 KΩ

a

b

RTH 12 KΩ=

vTH 252 mV=
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Finally,

7. We assign node voltages  and  as shown below and we write node equations observing that
 (virtual ground).

Node 1:

or

Multiplication of each term by  and simplification yields

Node 2:

or

Equating the right sides we get

or

v5KΩ
5

58 5+
--------------- 252× 20 mV= =

v1 v2

v2 0=

++

−−

vout
vin

R2
R1

R3

R4

R5

200 KΩ

40 KΩ

50 KΩ

50 KΩ

40 KΩ
v1 v2

v1 vin–

200 KΩ
--------------------

v1 vout–

40 KΩ
--------------------

v1 0–

50 KΩ
-----------------

v1
50 KΩ
-----------------+ + + 0=

1
200 KΩ
-------------------- 1

40 KΩ
----------------- 1

50 KΩ
----------------- 1

50 KΩ
-----------------+ + +⎝ ⎠

⎛ ⎞ v1
vin

200 KΩ
--------------------

vout
40 KΩ
-----------------+=

200 KΩ

v1
1

14
------ vin 5vout+( )=

0 v1–

50 KΩ
-----------------

0 vout–

40 KΩ
------------------+ 0=

v1
5
4
---vout–=

1
14
------ vin 5vout+( ) 5

4
---vout–=
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Simplifying and dividing both sides by  we get

8.  We assign node voltages  and  as shown below and we write node equations observing that
 (virtual ground).

Node 1:

or

Node 2:

or

or

37
28
------vout

1
14
------vin–=

vin

Gv
vout
vin
--------- 2

37
------–= =

v1 v2

v1 0=

++

−−

vout
vin

R1

R2

R3 R4
R5

v1

v2

0 vin–

R1
---------------

0 v2–

R3
--------------+ 0=

v2
R3
R1
------vin–=

v2 0–

R3
--------------

v2
R4
------

v2 vout–

R5
--------------------+ + 0=

1
R3
------ 1

R4
------ 1

R5
------+ +⎝ ⎠

⎛ ⎞ v2
vout
R5

---------=

v2
1

R5 R3⁄ R5 R4⁄ 1+ +
------------------------------------------------vout=
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Answers to Exercises
Equating the right sides we get

Simplifying and dividing both sides by  we get

1
R5 R3⁄ R5 R4⁄ 1+ +
------------------------------------------------vout

R3
R1
------vin–=

vin

Gv
vout
vin
--------- 1

R1
------– R5 R3

R5
R4
------ 1+⎝ ⎠

⎛ ⎞+= =
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NOTES
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Chapter 5
Inductance and Capacitance

his chapter is an introduction to inductance and capacitance, their voltage-current relation-
ships, power absorbed, and energy stored in inductors and capacitors. Procedures for analyz-
ing circuits with inductors and capacitors are presented along with several examples. 

5.1 Energy Storage Devices

In the first four chapters we considered resistive circuits only, that is, circuits with resistors and con-
stant voltage and current sources. However, resistance is not the only property that an electric circuit
possesses; in every circuit there are two other properties present and these are the inductance and the
capacitance. We will see through some examples that will be presented later in this chapter, that
inductance and capacitance have an effect on an electric circuit as long as there are changes in the
voltages and currents in the circuit.

The effects of the inductance and capacitance properties can best be stated in simple differential
equations since they involve the changes in voltage or current with time. We will study inductance
first.

5.2 Inductance

Inductance is associated with the magnetic field which is always present when there is an electric cur-
rent. Thus, when current flows in an electric circuit the conductors (wires) connecting the devices in
the circuit are surrounded by a magnetic field. Figure 5.1 shows a simple loop of wire and its mag-
netic field represented by the small loops.

Figure 5.1. Magnetic field around a loop of wire

The direction of the magnetic field (not shown) can be determined by the left-hand rule if conven-
tional current flow is assumed, or by the right-hand rule if electron current flow is assumed. The
magnetic field loops are circular in form and are referred to as lines of magnetic flux. The unit of mag-
netic flux is the weber (Wb).

T
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Chapter 5  Inductance and Capacitance
In a loosely wound coil of wire such as the one shown in Figure 5.2, the current through the wound
coil produces a denser magnetic field and many of the magnetic lines link the coil several times.

Figure 5.2. Magnetic field around several loops of wire

The magnetic flux is denoted as  and, if there are N turns and we assume that the flux  passes
through each turn, the total flux, denoted as , is called flux linkage. Then,

(5.1)

Now, we define a linear inductor one in which the flux linkage is proportional to the current through
it, that is,

(5.2)

where the constant of proportionality  is called inductance in webers per ampere.

We also recall Faraday’s law of electromagnetic induction which states that

(5.3)

and from (5.2) and (5.3), 

(5.4)

Alternately, the inductance  is defined as the constant which relates the voltage across and the cur-
rent through a device called inductor by the relation of (5.4).

The symbol and the voltage-current* designations for the inductor are shown in Figure 5.3.

Figure 5.3. Symbol for inductor

* In the first four chapters we have used the subscript LOAD to denote a voltage across a load, a current through
a load, and the resistance of a such load as  to avoid confusion with the subscript L which henceforth will
denote inductance. We will continue using the subscript LOAD for any load connected to a circuit.

ϕ ϕ
λ

λ Nϕ=

λ Li=

L

v dλ
dt
------=

v Ldi
dt
-----=

L

RLOAD

L

+ −
vL

iL
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Inductance
For an inductor, the voltage-current relationship is 

(5.5)

where  and  have the indicated polarity and direction. Obviously,  has a non-zero value only
when  changes with time.

The unit of inductance is the Henry abbreviated as . Since

 (5.6)

we can say that one henry is the inductance in a circuit in which a voltage of one volt is induced by a current
changing at the rate of one ampere per second.

By separation of the variables we rewrite (5.5) as

(5.7)

and integrating both sides we get:

or

or

(5.8)

where , more often denoted as , is the current flowing through the inductor at some ref-
erence time usually taken as , and it is referred to as the initial condition.

We can also express (5.8) as

(5.9)

vL L
diL

dt
-------=

vL iL vL

iL

H

L
vL

td

diL

------- volts
amperes

ondssec
----------------------
----------------------= =

diL
1
L
---vLdt=

id L
i t0( )

i t( )

∫ 1
L
--- vLdt

t0

t

∫=

iL t( ) iL t0( )–
1
L
--- vLdt

t0

t

∫=

iL t( )
1
L
--- vLdt

t0

t

∫ iL t0( )+=

iL t0( ) iL 0( )

t 0=

iL t( ) 1
L
--- vLdt

∞–

t

∫
1
L
--- vLdt

∞–

0

∫
1
L
--- vLdt

0

t

∫+= =
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Chapter 5  Inductance and Capacitance
where the first integral on the right side represents the initial condition.

Example 5.1  

The current  passing through a  inductor is shown in Figure 5.4.

a. Compute the flux linkage  at 

b. Compute and sketch the voltage  for the time interval 

Figure 5.4. Waveform for Example 5.1

Solution:

a. The flux linkage  is directly proportional to the current; then from (5.1) and (5.2)

Therefore, we need to compute the current i at , , , and 

For time interval ,  where  is the slope of the straight line segment, and
b is the  intercept which, by inspection, is . The slope  is

and thus

(5.10)

At , (5.10) yields . Then, the flux linkage is
 

iL t( ) 50 mH

λ t 2 5 9 and 11 ms, , ,=

vL t( ) ∞ t 14 ms< <–

(mA)

0

5
10

15
20

25

−5

−10

−15
−20

t (ms)
10 126

3 8

14

iL t( )

λ

λ Nϕ Li= =

t 2 ms= t 5 ms= t 9 ms= t 11 ms=

0 t 3 ms< < i mt b+= m
i axis– 25 mA m

m 20– 25–
3 0–

---------------------- 15–= =

i t 0=
3  ms 15– t 25+=

t 2 ms= i 5 mA–=
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Inductance
and 

(5.11)

For the time interval ,  where

and thus

To find b we use the fact that at ,  as seen in Figure 5.4. Then,

from which .

Thus, the straight line equation for the time interval  is

(5.12)

and therefore at , , and the flux linkage is

or

(5.13)

Using the same procedure we find that

(5.14)

Also,

(5.15)

and with (5.15),

(5.16)

Likewise,

λ Li 50 10 3–× 5–( )× 10 3–×= =

λ t 2  ms=
250 µWb–=

3 t 6 ms< < i mt b+=

m 15 20–( )–
3 0–

-------------------------- 35
3

------= =

i 35
3

------t b+=

t 3 ms= i 20 mA–=

20–
35
3

------ 3× b+=

b 55–=

3 t 6 ms< <

i t 3  ms=
6  ms 35

3
------t 55–=

t 5 ms= i 10 3 mA⁄=

λ Li 50 10 3–× 10
3

------× 10 3–×= =

λ t 5  ms=
500

3
--------- µWb=

i t 6  ms=
8  ms 12.5– t 90+=

i t 8  ms=
10  ms 7.5t 70–=

λ t 9  ms= Li 125 µWb–= =
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Chapter 5  Inductance and Capacitance
(5.17)

and with (5.17),

(5.18)

b. Since 

to compute and sketch the voltage  for the time interval , we only need to
differentiate, that is, compute the slope of the straight line segments for this interval. These were
found in part (a) as (5.10), (5.12), (5.14), (5.15), and (5.17). Then,

(5.19)

(5.20)

(5.21)

(5.22)

(5.23)

(5.24)

i t 10  ms=
12  ms 2.5– t 30+=

λ t 11 ms= Li 125 µWb= =

vL L
diL
dt
-------=

vL t( ) ∞ t 14 ms< <–

slope ∞– t 0< < 0=

vL ∞– t 0< <
L slope× 0= =

slope 0 t 3 ms< < 15 mA ms⁄– 15 A s⁄–= =

vL 0 t 3  ms< <
L slope× 50 10 3–×  v

A s⁄
---------- 15 A s⁄–( )× 750 mV–= = =

slope 3 t 6 ms< < 35 3⁄  mA ms⁄ 35 3⁄  A s⁄= =

vL 3 t 6  ms< <
L slope× 50 10 3–×  35 3⁄( )× 583.3 mV= = =

slope 6 t 8  ms< < 12.5–  mA ms⁄ 12.5–  A s⁄= =

vL 6 t 8  ms< <
L slope× 50 10 3–×  12.5–( )× 625–  mV= = =

slope 8 t 10  ms< < 7.5 mA ms⁄ 7.5 A s⁄= =

vL 8 t 10 ms< <
L slope× 50 10 3–×  7.5× 375 mV= = =

slope 10 t 12  ms< < 2.5–  mA ms⁄ 2.5–  A s⁄= =

vL 10 t 12  ms< <
L slope× 50 10 3–×  2.5–( )× 125–  mV= = =

slope 12 t 14 ms< < 0=
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Inductance
(5.25)

We now have all values given by (5.19) through (5.25) to sketch  as a function of time. We can 
do this easily with a spreadsheet such as Excel as shown in Figure 5.5.

Figure 5.5. Voltage waveform for Example 5.1

Example 5.2  

The voltage across a  inductor is as shown on the waveform of Figure 5.6, and it is given that
the initial condition is . Compute and sketch the current which flows
through this inductor in the interval 

Figure 5.6. Waveform for Example 5.2

vL 12 t 14  ms< <
L slope× 0= =

vL

t vL(t)
-5.000 0
-4.950 0
-4.900 0
-4.850 0
-4.800 0
-4.750 0
-4.700 0
-4.650 0
-4.600 0
-4.550 0
-4.500 0

Voltage waveform for Example 5.1

-800

-400

0

400

800

0 2 4 6 8 10 12 14

t (ms)
V

ol
ta

ge
 (m

V
)

50 mH
iL t0( ) iL 0( ) 25 mA= =

5 t 5 ms< <–

(V)

0

−0.750

t (ms)
10 1264 8 14

−0.125

−0.250

−0.375
−0.500

−0.625

  0.125

  0.250
  0.375

  0.500

  0.625

2

vL t( ) 1.75 3⁄
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Chapter 5  Inductance and Capacitance
Solution:

The current  in an inductor is related to the voltage  by (5.8) which is repeated here for
convenience.

where  is the initial condition, that is,

From the given waveform,

Then,

that is, the current has dropped linearly from  at  to  at  as shown in
Figure 5.7.

Figure 5.7. Inductor current for , Example 5.2

The same result can be obtained by graphical integration. Thus,

iL t( ) vL t( )

iL t( ) 1
L
--- vLdt

t0

t

∫ iL t0( )+=

iL t0( ) iL 0( ) 25 mA= =

iL ∞– t 0< <
25 mA=

vL
0 t 3 ms< <

0.75 V–=

iL 0 t 3 ms< <

1
50 10 3–×
----------------------- 0.75–( ) td

0

3 ms

∫ 25 10 3–×+=

20 0.75t 0
3 10 3–×

–⎝ ⎠
⎛ ⎞ 25 10 3–×+ 20 2.25 10 3–×–( ) 20 0× 25 10 3–×+ +==

45 10 3–×– 25 10 3–×+ 20– 10 3–× 20 mA–= ==

25 mA t 0= 20 mA– t 3 ms=

(mA)

0

5
10

15
20

25

−5

−10

−15
−20

t (ms)
3

iL t( )

0 t 3 ms< <
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Inductance
and the value of  now becomes our initial condition for the time interval

.

Continuing with graphical integration, we get

and now the current has increased linearly from  at  to  at  as 
shown in Figure 5.8.

Figure 5.8. Inductor current for , Example 5.2

For the time interval , we get

Therefore, the current has decreased linearly from  at  to  at  as
shown in Figure 5.9.

iL t 3 ms=

1
L
--- Area t 0=

3 ms( ) initial condition+=

20 0.750 3 10 3–××–( ) 25 10 3–×+ 20 mA–==

iL t 3 ms=
20 mA–=

3 t 6 ms< <

iL t 6 ms=

1
L
--- Area t 3=

6 ms( ) initial condition+=

20 1.75
3

---------- 3 10 3–××⎝ ⎠
⎛ ⎞ 20 10 3–×– 15 mA==

20–  mA t 3 ms= 15 mA t 6 ms=

(mA)

0

5
10

15
20

25

−5

−10

−15
−20

t (ms)
6

3

iL t( )

0 t 6 ms<<

6 t 8 ms< <

iL t 8 ms=

1
L
--- Area t 6=

8 ms( ) initial condition+=

20 0.625– 2 10 3–××( ) 15 10 3–×+ 10–  mA==

15 mA t 6 ms= 10–  mA t 8 ms=
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Chapter 5  Inductance and Capacitance
Figure 5.9. Inductor current for , Example 5.2

For the time interval  we get

that is, the current has increased linearly from  at  to  at  as shown
in Figure 5.10.

Finally, for the time interval  we get

that is, the current has decreased linearly from  at  to  at  and
remains at zero for  as shown in Figure 5.11.

(mA)

0

5
10

15
20

25

−5

−10

−15
−20

6

3 8
t (ms)

iL t( )

0 t 8 ms<<

8 ms t 10 ms<<

iL t 10 ms=

1
L
--- Area t 8=

10 ms( ) initial condition+=

20 0.375 2 10 3–××( ) 10– 10 3–× 5 mA==

10–  mA t 8 ms= 5 mA t 10 ms=

10 ms t 12 ms<<

iL t 12 ms=

1
L
--- Area t 10=

12 ms( ) initial condition+=

20 0.125– 2 10 3–××( ) 5 10 3–×+ 0==

5 mA t 10 ms= 0 mA t 12 ms=

t 12 ms>
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Power and Energy in an Inductor
Figure 5.10. Inductor current for , Example 5.2

Figure 5.11. Inductor current for , Example 5.2

Example 5.2 confirms the well known fact that the current through an inductor cannot change instanta-
neously. This can be observed from the voltage and current waveforms for this and the previous
example. We observe that the voltage across the inductor can change instantaneously as shown by
the discontinuities at . However, the current through the inductor
never changes instantaneously, that is, it displays no discontinuities since its value is explicitly
defined at all instances of time.

5.3 Power and Energy in an Inductor

Power in an inductor with inductance  is found from

(mA)

0

5
10

15
20

25

−5

−10

−15
−20

t (ms)
106

3 8

iL t( )

0 t 10 ms<<

(mA)

0

5
10

15
20

25

−5

−10

−15
−20

t (ms)
10 126

3 8

14

iL t( )

0 t 12 ms<<

t 0 3 6 8 10 and 12 ms, , , , ,=

L
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Chapter 5  Inductance and Capacitance
 (5.26)

and the energy in an inductor, designated as  is the integral of the power, that is,

or

 

or

and letting  at , we get the energy stored in an inductor as

 (5.27)

Unlike the resistor which dissipates energy (in the form of heat), the (ideal) inductor is a physical
device capable of storing energy in analogy to the potential energy of a stretched spring.

Electric circuits that contain inductors can be simplified if the applied voltage and current sources
are constant as shown by the following example.

Example 5.3  

For the circuit shown in Figure 5.12, compute , , and , after steady-state*conditions have
been reached. Then, compute the power absorbed and the energy consumed by the  inductor.

Solution:

Since both the voltage and the current sources are constant, the voltages and the currents in all
branches of the circuit will be constant after steady-state conditions have been reached.

Since

* By steady state conditions we mean the condition (state) where the voltages and currents, after some transient dis-
turbances, have subsided. Transients will be in Chapter 10.

pL vLiL L td

diL
⎝ ⎠
⎛ ⎞ iL LiL td

diL= = =

WL

WL t0

t pL td
t0

t
∫ L iL td

diL td
i t0( )

i t( )
∫ L iL iLd

i t0( )

i t( )
∫= = =

WL t0

t 1
2
---LiL

2

i t0( )

i t( ) 1
2
---L iL

2 t( ) iL
2 t0( )–[ ]==

WL t( ) WL t0( )–
1
2
---L iL

2 t( ) iL
2 t0( )–[ ]=

iL 0= t 0=

WL t( ) 1
2
---LiL

2 t( )=

v1 v2 v3

5 mH

vL L
diL

dt
------- L

td
d cons ttan( ) 0= = =
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Power and Energy in an Inductor
Figure 5.12. Circuit for Example 5.3

then, all voltages across the inductors will be zero and therefore we can replace all inductors by
short circuits. The given circuit then reduces to the one shown in Figure 5.13 where the  and

 parallel resistors have been combined into a single  resistor.

Figure 5.13. Circuit for Example 5.3 after steady-state conditions have been reached

Now, in Figure 5.13, by inspection,  since the  resistor was shorted out by the 
inductor. To find  and , let us first find and  using nodal analysis.

At Node ,

or 

(5.28)

At Node 

+
−

+ −

+

−

+ −

5 mH

30 mH

40 mH

25 mH

15 mH

20 mH

60 mH

24 V 15 A35 mH

10 Ω

4 Ω 5 Ω

6 Ω
3 Ω

8 Ω

12 Ω

v2

v1

v3

9 Ω

3 Ω
6 Ω 2 Ω

+−

+ −

+

−

+ −

2 Ω 

v1

24 V

4 Ω 9 Ω 5 Ω
v2

15 A

v3

8 Ω

vA vB

v1 0= 12 Ω 60 mH

v2 v2 vA vB

vA

vA 24–

4
-----------------

vA
9
-----

vA vB–

5 2+
-----------------+ + 0=

1
4
--- 1

9
--- 1

7
---+ +⎝ ⎠

⎛ ⎞ vA
1
7
---vB– 6=

vB
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Chapter 5  Inductance and Capacitance
or 

(5.29)

We will use the MATLAB code below to find the solution of (5.28) and (5.29).

format rat % Express answers in rational form
G=[1/4+1/9+1/7  −1/7; −1/7  1/7+1/8]; I=[6  15]'; V=G\I;
disp('vA='); disp(V(1)); disp('vB='); disp(V(2))

vA=
   360/11    
vB=
   808/11   

Therefore,

 

 
and

that is, 

Also, 

or

5.4 Combinations of Series and Parallel Inductors

Consider the circuits of figures 5.14 (a) and 5.14 (b) where the source voltage  is the same for both
circuits. We wish to find an expression for the equivalent inductance which we denote as  in
terms of  in Figure 5.14 (a) so that the current i will be the same for both circuits.

vB vA–

5 2+
----------------- 15–

vB
8
-----+ 0=

1
7
---vA– 1

7
--- 1

8
---+⎝ ⎠

⎛ ⎞ vB+ 15=

vA 360 11⁄  V=

vB 808 11⁄  V=

v2 vA v2– 448 11⁄  V–= =

v3 v2 808 11⁄  V= =

p5 mH v5 mH i5 mH× 0 i5 mH× 0= = =

p5  mH 0 watts=

W5  mH
1
2
---Li5  mH

2 1
2
---L

v3
8
-----⎝ ⎠

⎛ ⎞
2

0.5 5 10 3–×× 808 11⁄
8

-------------------⎝ ⎠
⎛ ⎞ 2

×= = =

W5  mH 0.211 J=

vS

LSeq

L1 L2 … LN, , ,
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Combinations of Series and Parallel Inductors
Figure 5.14. Circuits for derivation of equivalent inductance for inductors in series

From the circuit of Figure 5.14 (a),

or

(5.30)

From the circuit of Figure 5.14 (b),

(5.31)

Equating the left sides of (5.30) and (5.31) we get:

(5.32)

Thus, inductors in series combine as resistors in series do.

Next, we will consider the circuits of Figures 5.15 (a) and 5.15 (b) where the source current  is the
same for both circuits. We wish to find an expression for the equivalent inductance which we denote
as  in terms of  in Figure 5.15 (a) so that the voltage v will be the same for both
circuits.

Figure 5.15. Circuits for derivation of equivalent inductance for inductors in parallel

From the circuit of Figure 5.15 (a)

+−

+

+

−

+
+

−

−
−

+−i
i

(a) (b)

vS L1 L2

LN

vS

LSeq

−

L1
di
dt
----- L2

di
dt
----- … LN

di
dt
-----+ + + vS=

L1 L2 … LN+ + +( ) di
dt
----- vS=

LSeq
di
dt
----- vS=

LSeq L1 L2 … LN+ + +=

iS

LPeq L1 L2 … LN, , ,

+

−
(a)

+

−
(b)

iS

v
L1 L2 LN

LPeq

v
iSi1 iN

i2
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or

or 

(5.33)

From the circuit of Figure 5.15 (b)

(5.34)

Equating the left sides of (5.33) and (5.34) we get:

(5.35)

and for the special case of two parallel inductors

(5.36)

Thus, inductors in parallel combine as resistors in parallel do.

Example 5.4  

For the network of Figure 5.16, replace all inductors by a single equivalent inductor.

Figure 5.16. Network for Example 5.4

i1 i2 … iN+ + + iS=

1
L1
----- v td

∞–

t
∫

1
L2
----- v td

∞–

t
∫ … 1

LN
------ v td

∞–

t
∫+ + + iS=

1
L1
----- 1

L2
----- … 1

LN
------+ + +⎝ ⎠

⎛ ⎞ v td
∞–

t
∫ iS=

1
LPeq
----------- v td

∞–

t

∫ iS=

1
LPeq
----------- 1

L1
----- 1

L2
----- … 1

LN
------+ + +=

LPeq

L1L2

L1 L2+
------------------=

120 mH

45 mH

40 mH35 mH

15 mH

30 mH

90 mH

125 mH 60 mH
Leq
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Capacitance
Solution: 

Starting at the right end of the network and moving towards the left end, we find that
,  ,  ,  and  a l so

. The network then reduces to that shown in Figure 5.17.

Figure 5.17. First step in combination of inductances

Finally, with reference to Figure 5.17, , and 
 as shown in Figure 5.18.

Figure 5.18. Network showing the equivalent inductance of Figure 5.16

5.5 Capacitance

In Section 5.2 we learned that inductance is associated with a magnetic field which is created when-
ever there is current flow. Similarly, capacitance is associated with an electric field. In a simple circuit we
can represent the entire capacitance with a device called capacitor, just as we considered the entire
inductance to be concentrated in a single inductor. A capacitor consists of two parallel metal plates
separated by an air space or by a sheet of some type of insulating material called the dielectric.

Now, let us consider the simple series circuit of Figure 5.19 where the device denoted as , is the 
standard symbol for a capacitor. 

Figure 5.19. Simple circuit to illustrate a charged capacitor
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Leq 30 mH 62.5 mH+ 92.5 mH= =

92.5 mHLeq
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Chapter 5  Inductance and Capacitance
When the switch  closes in the circuit of Figure 5.19, the voltage source will force electrons from
its negative terminal through the conductor to the lower plate of the capacitor and it will accumulate
negative charge. At the same time, electrons which were present in the upper plate of the capacitor will
move towards the positive terminal of the voltage source. This action leaves the upper plate of the
capacitor deficient in electrons and thus it becomes positively charged. Therefore, an electric field has
been established between the plates of the capacitor.

The distribution of the electric field set up in a capacitor is usually represented by lines of force sim-
ilar to the lines of force in a magnetic field. However, in an electric field the lines of force start at the
positive plate and terminate at the negative plate, whereas magnetic lines of force are always com-
plete loops.

Figure 5.20 shows the distribution of the electric field between the two plates of a capacitor.

Figure 5.20. Electric field between the plates of a capacitor

We observe that the electric field has an almost uniform density in the area directly between the 
plates, but it decreases in density beyond the edges of the plates. 

The charge  on the plates is directly proportional to the voltage between the plates and the capaci-
tance  is the constant of proportionality. Thus,

(5.37)

and recalling that the current i is the rate of change of the charge q, we have the relation

or

(5.38)

where  and  in (5.38) obey the passive sign convention.

The unit of capacitance is the Farad abbreviated as F and since

S

+

−

+ ++ ++

− − − − −

q
C

q Cv=

i dq
dt
------

td
d Cv( )= =

iC C
dvC
dt

---------=

iC vC
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Capacitance
(5.39)

we can say that one farad is the capacitance in a circuit in which a current of one ampere flows when the volt-
age is changing at the rate of a one volt per second.

By separation of the variables we rewrite (5.38) as

 (5.40)

and integrating both sides we get: 

or

or

(5.41)

where  is the initial condition, that is, the voltage across a capacitor at some reference time
usually taken as , and denoted as .

We can also write (5.41) as

where the initial condition is represented by the first integral on the right side.

Example 5.5  

The waveform shown in Figure 5.21 represents the current flowing through a  capacitor.
Compute and sketch the voltage across this capacitor for the time interval  given that
the initial condition is .

C
iC

td

dvC
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----------------------= =

dvC
1
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---- iC dt=
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∫
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∞–

0

∫
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Chapter 5  Inductance and Capacitance
Figure 5.21. Waveform for Example 5.5

Solution:

The initial condition , establishes the first point at the coordinates  on the 
versus time plot of Figure 5.22.

Next,

or

and this value establishes the second point of the straight line segment passing through the origin as
shown in Figure 5.22.

Figure 5.22. Straight line segment for  of the voltage waveform for Example 5.5
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Capacitance
This value of  at  becomes our initial condition for the time interval . Con-
tinuing, we get

Thus, the capacitor voltage then decreases linearly from  at  to  at 
as shown in Figure 5.23.

Figure 5.23. Voltage waveform for  of Example 5.5

There is no need to calculate the values of the capacitor voltage   at  and at 
because the waveform of the current  starts repeating itself at , and the initial conditions
and the areas are the same as before. Accordingly, the capacitor voltage  waveform of figure (b)
starts repeating itself also as shown in Figure 5.24.

 

Figure 5.24. Voltage waveform for  of Example 5.5
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Chapter 5  Inductance and Capacitance
Example 5.5 has illustrated the well known fact that the voltage across a capacitor cannot change instan-
taneously. Referring to the current and voltage waveforms for this example, we observe that the cur-
rent through the capacitor can change instantaneously as shown by the discontinuities at

 in Figure 5.21. However, the voltage across the capacitor never changes
instantaneously, that is, it displays no discontinuities since its value is explicitly defined at all instances
of time as shown in Figure 5.24.

5.6 Power and Energy in a Capacitor

Power in a capacitor with capacitance C is found from

and the energy in a capacitor, denoted as  is the integral of the power, that is,

or

and letting  at , we get the energy stored in a capacitor as

  (5.42)

Like an inductor, a capacitor is a physical device capable of storing energy.

It was stated earlier that the current through an inductor and the voltage across a capacitor cannot
change instantaneously. These facts can also be seen from the expressions of the energy in an induc-
tor and in a capacitor, equations (5.27) and (5.42) where we observe that if the current in an inductor
or the voltage across a capacitor could change instantaneously, then the energies  and  would
also change instantaneously but this is, of course, a physical impossibility.

Example 5.6  

In the circuit of figure 5.25, the voltage and current sources are constant. 
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Power and Energy in a Capacitor
a. Compute  and 

b. Compute the power and energy in the  capacitor.

Figure 5.25. Circuit for Example 5.6

Solution:

a. The voltage and current sources are constant; thus, after steady-state conditions have been
reached, the voltages across the inductors will be zero and the currents through the capacitors
will be zero. Therefore, we can replace the inductors by short circuits and the capacitors by open
circuits and the given circuit reduces to that shown in Figure 5.26.

Figure 5.26. First simplification of the circuit of Example 5.6 

We can simplify the circuit of figure 5.26 by first exchanging the  current source and resistor
 for a voltage source of  in series with  as shown in Figure 5.27. We also

combine the series-parallel resistors  through . Thus, . But
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Chapter 5  Inductance and Capacitance
now we observe that the branch in which the current  flows has disappeared; however, this
presents no problem since we can apply the current division expression once i, shown in Figure
5.27, is found. The simplified circuit then is

Figure 5.27. Final simplification of the circuit of Example 5.6 

We can apply superposition here. Instead, we will write two mesh equations and we will solve 
using MATLAB. These in matrix form are

Solution using MATLAB:

format rat; R=[20  −6; −6  14]; V=[24  −120]'; I=R\V; disp(‘i1=’); disp(I(1)); disp(‘i2=’); disp(I(2))

i1=
   -96/61    
i2=

  -564/61

Therefore, with reference to the circuit of Figure 5.28

Figure 5.28. Circuit for computation of  and  for Example 5.6
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Capacitance Combinations
and

b.

and

 

5.7 Capacitance Combinations

Consider the circuits of figures 5.29 (a) and 5.29 (b) in which the source voltage  is the same for 
both circuits. We want to find an expression for the equivalent capacitance which we denote as  
in terms of  in Figure 5.29 (a) so that the current i will be the same in both circuits.

Figure 5.29. Circuits for derivation of equivalent capacitance for capacitors in series

From the circuit of Figure 5.29 (a),

or

or 

(5.43)

From the circuit of Figure 5.29 (b)
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Chapter 5  Inductance and Capacitance
(5.44)

Equating the left sides of (5.43) and (5.44) we get:

(5.45)

and for the special case of two capacitors in series

(5.46)

Thus capacitors in series combine as resistors in parallel do.

Next, we will consider the circuits of figures 5.30 (a) and 5.30 (b) where the source current  is the 
same for both circuits. We wish to find an expression for the equivalent capacitance which we denote 
as  in terms of  in Figure 5.30 (a) so that the voltage  will be the same in both 
circuits.

Figure 5.30. Circuits for derivation of equivalent capacitance for capacitors in parallel

From the circuit of Figure 5.30 (a),

or

or

(5.47)

From the circuit of Figure 5.30 (b),

(5.48)

Equating the left sides of (5.47) and (5.48) we get:
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Capacitance Combinations
(5.49)

Thus, capacitors in parallel combine as resistors in series do.

Example 5.7  

For the network of Figure 5.31, replace all capacitors by a single equivalent capacitor.

Figure 5.31. Network for Example 5.7

Solution:

Starting at the right of the network and moving towards the left, we find that ,
,  ,  and .  The

network then reduces to that shown in Figure 5.32.

Figure 5.32. First step in combination of capacitances

Nex t ,  t h e  s e r i e s  comb ina t i on  o f   y i e l d s   and
. Finally, the series combination of  and  yields

 as shown in Figure 5.33.

Figure 5.33. Network showing the equivalent inductance of Figure 5.16
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Chapter 5  Inductance and Capacitance
5.8 Nodal and Mesh Equations in General Terms

In Examples 5.3 and 5.6 the voltage and current sources were constant and therefore, the steady-
state circuit analysis could be performed by nodal, mesh or any other method of analysis as we
learned in Chapter 3. However, if the voltage and current sources are time-varying quantities we
must apply KCL or KVL in general terms as illustrated by the following example.

Example 5.8  

Write nodal and mesh equations for the circuit shown in Figure 5.34. 

Figure 5.34. Circuit for Example 5.8

Solution:

Nodal Analysis:

We assign nodes as shown in Figure 5.35. Thus, we need  nodal equations.

Figure 5.35. Nodal analysis for the circuit of Example 5.8
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Summary
At Node 4:

Mesh Analysis:

We need  mesh equations. Thus, we assign currents  and  as
shown in Figure 5.36.

Figure 5.36. Mesh analysis for the circuit of Example 5.8

For Mesh 1:

For Mesh 2:

In both the nodal and mesh equations, the initial conditions are included in the limits of integration.
Alternately, we can add the initial condition terms and replace the lower limit of integration  with
zero in the integrodifferential equations above.

5.9 Summary

• Inductance is associated with a magnetic field which is created whenever there is current flow.

• The magnetic field loops are circular in form and are called lines of magnetic flux. The unit of
magnetic flux is the weber (Wb).

• The magnetic flux is denoted as  and, if there are N turns and we assume that the flux  passes
through each turn, the total flux, denoted as , is called flux linkage. Then, 

• For an inductor, the voltage-current relationship is 

• The unit of inductance is the Henry abbreviated as H.

• Unlike the resistor which dissipates energy (in the form of heat), the (ideal) inductor is a physical
device capable of storing energy in analogy to the potential energy of a stretched spring.
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Chapter 5  Inductance and Capacitance
• The energy stored in an inductor is 

• The current through an inductor cannot change instantaneously.

• In circuits where the applied voltage source or current source are constants, after steady-state con-
ditions have been reached, an inductor behaves like a short circuit.

• Inductors in series combine as resistors in series do.

• Inductors in parallel combine as resistors in parallel do.

• Capacitance is associated with an electric field. 

• A capacitor consists of two parallel metal plates separated by an air space or by a sheet of some
type of insulating material called the dielectric.

• The charge  on the plates of a capacitor is directly proportional to the voltage between the plates
and the capacitance  is the constant of proportionality. Thus, 

• In a capacitor, the voltage-current relationship is 

• The unit of capacitance is the Farad abbreviated as F.

• Like an inductor, a capacitor is a physical device capable of storing energy.

• The energy stored in a capacitor is 

• The voltage across a capacitor cannot change instantaneously.

• In circuits where the applied voltage source or current source are constants, after steady-state con-
ditions have been reached, a capacitor behaves like an open circuit.

• Capacitors in series combine as resistors in parallel do.

• Capacitors in parallel combine as resistors in series do.

• In a circuit that contains inductors and/or capacitors, if the applied voltage and current sources
are time-varying quantities, the nodal and mesh equations are, in general, integrodifferential equa-
tions. 

WL t( ) 1 2⁄( )LiL
2 t( )=

q
C q Cv=

iC C dvC dt⁄( )=

WC t( ) 1 2⁄( )CvC
2 t( )=
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Exercises
5.10 Exercises

Multiple Choice

1. The unit of inductance is the

A. Farad

B. Ohm

C. mH

D. Weber

E. None of the above

2. The unit of capacitance is the

A.

B. Ohm

C. Farad

D. Coulomb

E. None of the above

3. Faraday’s law of electromagnetic induction states that

A.

B.

C.

D.

E. None of the above

4. In an electric field of a capacitor, the lines of force

A. are complete loops

B. start at the positive plate and end at the negative plate

C. start at the negative plate and end at the positive plate

D. are unpredictable

E. None of the above

µF

λ Nϕ=

λ Li=

v L di dt⁄( )=

v dλ dt⁄=
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Chapter 5  Inductance and Capacitance
5. The energy in an inductor is

A.

B.

C.

D. dissipated in the form of heat

E. None of the above

6. The energy in a capacitor is

A.

B.

C.

D. dissipated in the form of heat

E. None of the above

7. In an inductor

A. the voltage cannot change instantaneously

B. the current cannot change instantaneously

C. neither the voltage nor the current can change instantaneously

D. both the voltage and the current can change instantaneously

E. None of the above

8. In a capacitor

A. the voltage cannot change instantaneously

B. the current cannot change instantaneously

C. neither the voltage nor the current can change instantaneously

D. both the voltage and the current can change instantaneously

E. None of the above

9. In the circuit of Figure 5.37 after steady-state conditions have been established, the current 
through the inductor will be

1 2⁄( ) Li2( )

1 2⁄( ) Lv2( )

vLiL

1 2⁄( ) Ci2( )

1 2⁄( ) Cv2( )

vCiC

iL
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Figure 5.37. Circuit for Question 9

A.

B.

C.

D.

E. None of the above

10. In the circuit of Figure 5.38 after steady-state conditions have been established, the voltage  
across the capacitor will be

Figure 5.38. Circuit for Question 10

A.

B.

C.

D.

E. None of the above

Problems

1. The current  flowing through a 10 mH inductor is shown by the waveform of Figure 5.39. 
a.  Compute and sketch the voltage  across this inductor for 
b. Compute the first time after  when the power  absorbed by this inductor is

  Answer: 
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Chapter 5  Inductance and Capacitance
c. Compute the first time after  when the power  absorbed by this inductor is
  Answer: 

Figure 5.39. Waveform for Problem 1

2. The current  flowing through a  capacitor is given as , and it is
known that 

a. Compute and sketch the voltage  across this capacitor for 
b. Compute the first time after  when the power  absorbed by this capacitor is

.  Answer: 
c. Compute the first time after  when the power  absorbed by this capacitor is

. Answer: 

3. For the network of Figure 5.40, compute the total energy stored in the series combination of the
resistor, capacitor, and inductor at  if:

a.  and it is known that .  Answer:

b.  and it is known that .  Answer:

Figure 5.40. Network for Problem 3

4. For the circuit of Figure 5.41, compute the energy stored in the  inductor at  given
that .  Answer: 

t 0= pL

pL 50–  µw= t 25 ms=

60

50

302010
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40
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Figure 5.41. Circuit for Problem 4

5. For the circuit of Figure 5.42, replace all capacitors with an equivalent capacitance  and then
compute the energy stored in  at  given that  in all capacitors.
Answer: 

Figure 5.42. Circuit for Problem 5

6. Write nodal equations for the circuit of Figure 5.43.

Figure 5.43. Circuit for Problem 6

7. Write mesh equations for the circuit of Figure 5.44.

Figure 5.44. Circuit for Problem 7

+
−

5 mH

10 mH 7 mH

3 mH

vS t( )

i t( )

10e t–  mV

Ceq

Ceq t 1 ms= vC 0( ) 0=

10 pJ

6 µF

3 µF

8 µF

10 µF

10 µAiS t( )

+
−

R1

C1

L

R2

C2vS t( )

+
−

R1

L2

R2

L1
C1

C2

vS t( )
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Chapter 5  Inductance and Capacitance
5.11 Answers to Exercises

Multiple Choice

1.  E  Henry

2.  C  

3.  D

4.  B

5.  A

6.  B

7.  B

8.  A

9.  E  

10. D

Problems

1. a. In an inductor the voltage and current are related by . Thus, we

need to compute the slope of each segment of the given waveform and multiply it by .

Likewise,

The current, voltage, and power waveforms are shown below.

5 A–

vL L diL dt⁄( ) L slope×= =

L

vL 0

10  ms L slope× L
∆iL
∆t
-------- 10 10 3–× 10 10 3–  A×

10 10 3–  s×
----------------------------× 10 mV= = = =

vL 10

20  ms L slope× L 0× 0 mV= = =

vL 20

40  ms L slope× 10 10 3–× 10– 10( )–[ ] 10 3–  A×

40 20–( ) 10 3–  s×
---------------------------------------------------× 10–  mV= = =

vL 40
50  ms L slope× L 0× 0 mV= = =

vL 0
10  ms L slope× 10 10 3–× 0 10–( )–[ ] 10 3–  A×

60 50–( ) 10 3–  s×
--------------------------------------------------× 10 mV= = =
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Answers to Exercises
b. From the power waveform above, we observe that  occurs for the first
time at point A where 

c. From the power waveform above, we observe that  occurs for the first
time at point A where 

2. a. For this problem  and the current  is a sinusoid given as
 as shown below. The voltage  across this capacitor is found from

60

50

302010

−10

10

0
40

(mA)

t (ms)

iL

10 mH

iL t( )

+ −

vL t( ) 6050302010

−10

10

0 40

(mV)

t (ms)

vL

605030
20

10

−100

100

0 40 t (ms)

pL µ w( )

pL vLiL=

A

B

pL vLiL 50 µw= =

t 5 ms=

pL vLiL 50–  µw= =

t 25 ms=

C 1 µF 10 6–  F= = iC

iC t( ) 100t mAcos= vC t( )

vC t( ) 1
C
---- iC τd

0

t

∫ vC 0( )+ 106 10 3–( ) 100τcos τ 0+d
0

t

∫= =

103 100τcos τd
0

t

∫
103

100
--------- 100τsin

0

t

10 100tsin= ==
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Chapter 5  Inductance and Capacitance
and the waveform of  is shown below.

Now,  or . Then,  or  and

 or 

b. Since  is a sine function and  a cosine function, the first time after zero that their
product will be positive is in the interval  where we want  or

or

Recalling that

iC t( )

t s( )

mA( ) 100tcos

vC t( )

10 100tsin10

10–

vC t( )
V( )

π
50
------π

100
---------

T

ωT 2π= ω 2π T⁄= 10 2π
T

------tsin 10 100tsin= 2π T⁄ 100=

T 2π 100⁄= T π 50⁄=

vC t( ) iC t( )

0 t π 200⁄< < pC vCiC 5 mw= =

pC 10 100tsin( ) 10 3– 100tcos( ) 5 10 3–  w×= =

pC 10 100tsin( ) 100tcos( ) 5 w= =
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Answers to Exercises
it follows that

or

or

c. The time where  will occur for the first time is  after  or
after . Therefore,  will occur for the first time at

3. a. There is no energy stored in the resistor; it is dissipated in the form of heat. Thus, the total
energy is stored in the capacitor and the inductor, that is,

where

and

or

Then,

We’ve used MATLAB as a calculator to obtain the answer, that is,

WT=2.5*10^(−4)*((0.1*exp(−1))^2+((−10)*exp(−1))^2);
fprintf(' \n'); fprintf('WT=%7.4f J',WT); fprintf(' \n')

WT= 0.0034 J

b. For this part

2xsin 2 x xcossin=

pC 5 200tsin 5 w= =

200tsin 1=

t 11–sin
200

--------------- π 2⁄
200
---------- π

400
--------- 0.00785 s 7.85 ms= = = = =

pC 5 mw–= 7.85 ms t π 200⁄  s=

t 1000π 200⁄  ms 5π ms= = pC 5 mw–=

t 7.85 5π+ 7.85 15.71+ 23.56 ms= = =

WT WL WC+
1
2
---LiL

2 1
2
---CvC

2+= =

iL i t( ) 0.1e 100t–= =

vC t( ) 1
C
---- iC τd

0

t

∫ vC 0( )+ 104 0.1e 100τ– τ 10–d
0

t

∫= =

104 0.1×
100–

----------------------e 100τ–

0

t

10– 10e 100τ–
t

0
10 10e 100t–– 10–= ==

vC t( ) 10e 100t––=

WT t 10 ms=

1
2
--- 0.4 10 3–×× 0.1e 100t–( )

2
× 1

2
--- 10 4–× 10e 100t––( )

2
×+=

2.5 10 4– 0.1e 1–( )
2

10e 1––( )
2

+[ ]× 3.4 mJ==
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Chapter 5  Inductance and Capacitance
and

Then,

We observe that the total power is independent of time.

4. Starting with the right side and proceeding to the left, the series-parallel combination of
, , and  reduces the given circuit to the one shown below.

The current  is

Then,

6. We assign node voltages , , and  as shown below.

Then,

iL i t( ) 0.5 5t mAcos= =

vC t( ) 1
C
---- iC τd

0

t

∫ vC 0( )+ 104 10 4–× 5 5τ τ 0+dcos
0

t

∫= =

5τsin 0
t 5tsin==

WT WL WC+
1
2
--- 0.4 10 4–×× 0.5 5tcos( )2× 1

2
--- 10 4–× 5tsin( )2×+= =

0.5 10 4– 52cos t 52 tsin+

1
× 0.05 mJ 50 µJ= == ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩

7 3+ 10= 10 10|| 5= 5 5+ 10 mH=

+
− 10 mH

vS t( )

iL t( )

10e t–  mV

iL t( )

iL t( )
1
L
--- vS τd

0

t

∫ iL 0( )+
1

10 10 3–×
----------------------- 10 10 3–×× e τ– τd

0

t

∫ e τ–– 0

t
e τ–

t

0
1 e t––= = = ==

W5  mH t 1  s=

1
2
--- 5 10 3–×× 1 e t––( )

2
t 1  s=

2.5 10 3– 1 e 1––( )
2

×× 1 mJ≈= =

v1 v2 v3

+
−

R1

C1

L

R2

C2vS t( )

v1

v2 v3
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7. We assign mesh currents , , and  as shown below.

Then,

v1 vS=

C1
d
dt
----- v2 v1–( ) C2

d
dt
----- v2 v3–( )

v2
R1
------+ + 0=

v3 v1–

R2
---------------- C2

d
dt
----- v3 v2–( ) 1

L
--- v3 τd

∞–

t

∫+ + 0=

i1 i2 i3

+
−

R1

L2

R2

L1

C1

C2

vS t( ) i1

i2

i3

1
C1
------ i1 τd

∞–

t

∫ R1 i1 i2–( ) 1
C2
------ i1 i3–( ) τd

∞–

t

∫+ + vS=

R1 i2 i1–( ) L1
di2
dt
------- L2

d
dt
----- i2 i3–( )+ + 0=

1
C2
------ i3 i1–( ) τd

∞–

t

∫ L2
d
dt
----- i3 i2–( ) R2i3+ + 0=
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NOTES
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Chapter 6
Sinusoidal Circuit Analysis

his chapter is an introduction to circuits in which the applied voltage or current are sinusoidal.
The time and frequency domains are defined and phasor relationships are developed for resis-
tive, inductive and capacitive circuits. Reactance, susceptance, impedance and admittance are

also defined. It is assumed that the reader is familiar with sinusoids and complex numbers. If not, it
is strongly recommended that Appendix B is reviewed thoroughly before reading this chapter.

6.1 Excitation Functions

The applied voltages and currents in electric circuits are generally referred to as excitations or driving
functions, that is, we say that a circuit is “excited” or “driven” by a constant, or a sinusoidal, or an
exponential function of time. Another term used in circuit analysis is the word response; this may be
the voltage or current in the “load” part of the circuit or any other part of it. Thus the response may
be anything we define it as a response. Generally, the response is the voltage or current at the output
of a circuit, but we need to specify what the output of a circuit is.

In Chapters 1 through 4 we considered circuits that consisted of excitations (active sources) and
resistors only as the passive devices. We used various methods such as nodal and mesh analyses,
superposition, Thevenin’s and Norton’s theorems to find the desired response such as the voltage
and/or current in any particular branch. The circuit analysis procedure for these circuits is the same
for DC and AC circuits. Thus, if the excitation is a constant voltage or current, the response will also
be some constant value; if the excitation is a sinusoidal voltage or current, the response will also be
sinusoidal with the same frequency but different amplitude and phase.

In Chapter 5 we learned that when the excitation is a constant and steady-state conditions are
reached, an inductor behaves like a short circuit and a capacitor behaves like an open circuit. How-
ever, when the excitation is a time-varying function such as a sinusoid, inductors and capacitors
behave entirely different as we will see in our subsequent discussion.

6.2 Circuit Response to Sinusoidal Inputs

We can apply the circuit analysis methods which we have learned in previous chapters to circuits
where the voltage or current sources are sinusoidal. To find out how easy (or how difficult) the pro-
cedure becomes, we will consider the simple series circuit of Example 6.1.

Example 6.1  

For the circuit shown in Figure 6.1, derive an expression for  in terms of , , , and 
where the subscript p is used to denote the peak or maximum value of a time varying function, and the

T

vC t( ) Vp R C ω

  

    

   
Circuit Analysis I with MATLAB Applications 6-1
Orchard Publications



Chapter 6  Sinusoidal Circuit Analysis
sine symbol inside the circle denotes that the excitation is a sinusoidal function.

Figure 6.1. Circuit for Example 6.1

Solution:

By KVL, 

(6.1)

where

and

Then,

and by substitution into (6.1) we get 

(6.2)

As we know, differentiation (and integration) of a sinusoid of radian frequency  results in another
sinusoid of the same frequency . Accordingly, the solution of (6.2) must have the form

(6.3)

where the amplitude  and phase angle  are constants to be determined from the circuit parame-
ters of , , , and . Substitution of (6.3) into (6.2) yields

(6.4)

and recalling that

and

C

R

+
−

vS Vp ωtcos=
vC t( )i t( )

vR vC+ vS=

vR Ri RiC= =

iC C
dvC
dt

---------=

vR RC
dvC
dt

---------=

RC
dvC
dt

--------- vC+ vS= Vp ωtcos=

ω
ω

vC t( ) A ωt θ+( )cos=

A θ
Vp R C ω

AωRC ωt θ+( ) A ωt θ+( )cos+sin– Vp ωtcos=

x y+( )sin x ycossin x ysincos+=

x y+( )cos x ycoscos x ysinsin–=
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The Complex Excitation Function
we rewrite (6.4) as

Collecting sine and cosine terms, equating like terms and, after some more tedious work, solving for
amplitude  and phase angle  we get:

(6.5)

Obviously, analyzing circuits with sinusoidal excitations when they contain capacitors and/or induc-
tors, using the above procedure is impractical. We will see on the next section that the complex excita-
tion function greatly simplifies the procedure of analyzing such circuits. Complex numbers are dis-
cussed in Appendix B. 

The complex excitation function does not imply complexity of a circuit; it just entails the use of
complex numbers. We should remember also that when we say that the imaginary part of a complex
number is some value, there is nothing “imaginary” about this value. In other words, the imaginary
part is just as “real” as the real part of the complex number but it is defined on a different axis. Thus
we display the real part of a complex function on the axis of the reals (usually the x-axis), and the
imaginary part on the imaginary axis or the y-axis.

6.3 The Complex Excitation Function

We recall that the derivatives and integrals of sinusoids always produce sinusoids of the same frequency
but different amplitude and phase since the cosine and sine functions are 90 degrees out-of-phase.
Thus, if

 
then

and if

then

Let us consider the network of Figure 6.2 which consists of resistors, inductors and capacitors, and
it is driven (excited) by a sinusoidal voltage source . 

AωRC ωt θcossin– AωRC ωt θsincos– A ωt θcoscos A ωt θsinsin–+ Vp ωtcos=

A θ

vC t( )
Vp

1 ωRC( )2+
--------------------------------- ωt tan 1– ωRC( )–( )cos=

v t( ) A ωt θ+( )cos=

td
dv ωA ωt θ+( )sin–=

i t( ) B ωt φ+( )sin=

td
di ωB ωt φ+( )cos=

vS t( )
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Chapter 6  Sinusoidal Circuit Analysis
Figure 6.2. General presentation of a network showing excitation and load

Let us also define the voltage across the load as  * as the response. As we know from Chap-
ter 5, the nodal and mesh equations for such circuits are integrodifferential equations, and it is shown
in differential equations textbooks† that the forced response or particular solution of these circuits have the
form

We also know from Euler’s identity that 

(6.6)

and therefore, the real component is the response due to  and the imaginary component is the
response to  We will use Example 6.2 to illustrate the ease by which we can obtain the
response of a circuit, which is excited by a sinusoidal source, using the complex function

approach. In this text, we will represent all sinusoidal variations in terms of the cosine func-
tion. 

Example 6.2  

Repeat Example 6.1, that is, find the capacitor voltage  for the circuit of Figure 6.3 using the
complex excitation method.

Figure 6.3. Circuit for Example 6.2

* Some textbooks denote the voltage across and the current through the load as  and  respectively. As we stated
previously, in this text, we use the  and  notations to avoid confusion with the voltage  across and
the current  through an inductor.

† This topic is also discussed in Circuit Analysis II with MATLAB® Applications by this author

+

−

L
O

A
D

Linear Network
Consisting of

Resistors,
Inductors and

Capacitors

Excitation

vS t( )
vLOAD t( )

iLOAD t( )

vLOAD t( )

vL iL
vLOAD iLOAD vL

iL

vLD t( ) A ωt( )cos B ωt( )sin+=

A ωtcos jA ωtsin+ Ae jωt
=

ωtcos
ωtsin

Ae jωt

vC t( )

C

R

+
−

vS Vp ωtcos=
vC t( )i t( )
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The Complex Excitation Function
Solution:

Since
 

we let the excitation be

and thus the response will have the form

As in Example 6.1,

 (6.7)

or

or

The last expression above shows that radian frequency  is the same for the response as it is for the
excitation; therefore we only need to be concerned with the magnitude and the phase angle of the
response. Accordingly, we can eliminate the radian frequency  by dividing both sides of that

expression by  and thus the input-output (excitation-response) relation reduces to

from which

This expression above shows the response as a function of the maximum value of the excitation, its
radian frequency and the circuit constants  and . 

If we wish to express the response in complete form, we simply multiply both sides by  and
we get

Finally, since the excitation is the real part of the complex excitation, we use Euler’s identity on both

ωtcos Re e jωt{ }=

vS t( ) Vpe jωt=

vC t( ) VC e j ωt ϕ+( )=

RC
dvC
dt

--------- vC+ Vpe jωt=

RC d
dt
----- VCe j ωt ϕ+( )( ) VCe j ωt ϕ+( )+ Vpe jωt=

jωRC 1+( )VCe j ωt ϕ+( ) Vpe jωt=

ω

ω

e jωt

jωRC 1+( )VCe jϕ Vp=

VCe jϕ Vp
jωRC 1+
-----------------------

Vp

1 ω2+ R2C2e j ωRC( )1–tan[ ]
----------------------------------------------------------------

Vp

1 ω2+ R2C2
--------------------------------e j– ωRC( )1–tan[ ]= = =

R C

e jωt

VCe j ωt ϕ+( ) Vp

1 ω2+ R2C2
---------------------------------e j ωt ωRC( )1–tan–[ ]=
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Chapter 6  Sinusoidal Circuit Analysis
sides and equating reals parts, we get

The first part of the above procedure where the excitation-response relation is simplified to ampli-
tude and phase relationship is known as time-domain to frequency-domain transformation; the second part
where the excitation-response is put back to its sinusoidal form is known as frequency-domain to time-
domain transformation. For brevity, we will denote the time domain as the , and the fre-
quency domain as the .

If a sinusoid is given in terms of the sine function, we must first convert it to a cosine function.
Thus,

(6.8)

and in the  it is expressed as

(6.9)

where  represents a phasor (rotating vector) voltage  or current .

In summary, the , to  transformation procedure is as follows: 

1. Express the given sinusoid as a cosine function

2. Express the cosine function as the real part of the complex excitation using Euler’s identity 

3. Extract the magnitude and phase angle from it.

Example 6.3  

Transform the sinusoid  to its equivalent  expression.

Solution:

For this example, we have

or

vC t( ) VC ωt φ+( )cos
Vp

1 ω
2+ R2C2

-------------------------------- ωt ωRC( )1–tan–[ ]cos= =

t domain–

jω domain–

m t( ) A ωt θ+( )sin A ωt θ 90°–+( )cos= =

jω domain–

M Ae j θ 90°
–( ) A θ 90°–( )∠= =

M V I∗

t domain– jω domain–

v t( ) 10 100t 60°–( )sin= jω domain–

v t( ) 10 100t 60°–( )sin 10 100t 60°– 90°–( )cos= =

v t( ) 10 100t 150°–( )cos= Re 10e j 100t 150°
–( )

⎩ ⎭
⎨ ⎬
⎧ ⎫

=
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The Complex Excitation Function
Since the  contains only the amplitude and phase, we extract these from the bracketed
term on the right side of the above expression, and we get the phasor  as

The  to  transformation procedure is as follows:

1. Convert the given phasor from polar to exponential form

2. Add the radian frequency  multiplied by  to the exponential form

3. Extract the real part from it.

Example 6.4  

Transform the phasor  to its equivalent time-domain expression.

Solution:

First, we express the given phasor in exponential form, that is,

Next, adding the radian frequency  multiplied by  to the exponent of the above expression we
get

and finally we extract the real part from it. Then,

We can add, subtract, multiply and divide sinusoids of the same frequency using phasors as illus-
trated by the following example.

Example 6.5  

It is given that  and . Compute the sum
.

jω domain–

V

V 10e j150–
°

10 150°–∠= =

jω domain– t domain–

ω t

I 120 90°–∠=

I 120 90°–∠ 120e j90–
°

= =

ω t

i t( ) 120e j ωt 90°
–( )

=

i t( ) Re 120e j ωt 90°
–( )

⎩ ⎭
⎨ ⎬
⎧ ⎫

120 ωt 90°–( )cos 120 ωtsin= = =

i1 t( ) 10 120πt 45°+( )cos= i2 t( ) 5 120πt 45– °( )sin=

i t( ) i1 t( ) i2 t( )+=
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Chapter 6  Sinusoidal Circuit Analysis
Solution:

As a first step, we express  as a cosine function, that is,

Next, we perform the  to  transformation and we obtain the phasors

and by addition,

or

and finally transforming the phasor I into the , we get

Also, for brevity, in our subsequent discussion we will designate resistive, inductive and capacitive
circuits as , , and  respectively.

6.4 Phasors in R, L, and C Circuits

The circuit analysis of circuits containing , , and  devices, and which are excited by sinusoidal
sources, is considerably simplified with the use of phasor voltages and phasor currents which we will
represent by the boldface capital letters  and  respectively. We will now derive  and  phasor
relationships in the . We must always remember that phasor quantities exist only
in the .

1.   and  phasor relationship in  branches

Consider circuit 6.4 (a) below where the load is purely resistive. We know from Ohm’s law that
 where the resistance R is a constant. We will show that this relationship also holds

for the phasors  and  shown in circuit 6.4 (b), that is, we will prove that

Proof:

In circuit 6.4 (a) we let  be a complex voltage, that is,

i2 t( )

i2 t( ) 5 120πt 45– °( )sin 5 120πt 45– ° 90°–( )cos 5 120πt 135– °( )cos= = =

t domain– jω domain–

I1 10 45°∠=   and  I2 5 135– °∠=

I I1 I2+ 10 45°∠ 5 135– °∠+ 10 2
2

------- j 2
2

-------+⎝ ⎠
⎛ ⎞ 5 2

2
-------– j 2

2
-------–⎝ ⎠

⎛ ⎞+= = =

I 5 2
2

------- j 2
2

-------+⎝ ⎠
⎛ ⎞ 5 45°∠= =

t domain–

i t( ) 5 120πt 45°+( )cos=

R L C

R L C

V I V I
jω domain–

jω domain–

V I R

vR t( ) RiR t( )=

VR IR

VR RIR=

vR t( )
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Phasors in R, L, and C Circuits
Figure 6.4. Voltage across a resistive load in  and 

(6.10)

and since  is a constant, it will produce a current of the same frequency  and the same phase *

whose form will be

and by Ohm’s law,

(6.11)

Transforming (6.11) to the , we obtain the phasor relationship

 

Since the phasor current  is in-phase with the voltage  (both  and  have the same phase ), we
let

and it follows that

(6.12)

Therefore, the phasor  and  relationship in resistors, obeys Ohm’s law also, and the current
through a resistor is always in−phase with the voltage across that resistor.

Example 6.6  

For the network of Figure 6.5, find  when .

*  The phase will be the same since neither differentiation nor integration is performed here.

+

−

+

−

vS t( )
vR t( )

vR t( ) RiR t( ) Vp ωt θ+( )cos= =

iR t( )

a( )  t domain network– b( )  jω domain phasor( ) network–

VR RIR=

VS

VR
IR

t domain– jω domain–

Vpe j ωt φ+( ) Vp ωt φ+( )cos jVp ωt φ+( )sin+=

R ω φ

Ipe j ωt φ+( ) Ip ωt φ+( )cos jIp ωt φ+( )sin+=

Vpe j ωt φ+( ) RIpe j ωt φ+( )
=

jω domain–

Vpe jφ RIpe jφ
=   or  Vp φ∠ RIp φ∠=

I V I V φ

Vp φ∠ VR=   and  Ip φ∠ IR=

VR RIR=

V I

iR t( ) vR t( ) 40 377t 75°–( )sin=
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Chapter 6  Sinusoidal Circuit Analysis
Figure 6.5. Voltage across the resistive load of Example 6.6

Solution:

We first perform the  to  i.e.,  transformation as follows:

Then,

 

Therefore,

Alternately, since the resistance  is a constant, we can compute  directly from the 
expression for , that is,

 

2.   and  phasor relationship in  branches

Consider circuit 6.6 (a) below where the load is purely inductive.

Figure 6.6. Voltage across an inductive load in  and 

We will prove that the relationship between the phasors  and  shown in circuit 6.6 (b) is

+

−

vS t( )
vR t( )

vR t( ) 40 377t 75°–( )sin=

iR t( )

R = 5 Ω

t domain– jω domain– vR t( ) VR⇔

vR t( ) 40 377t 75°–( )sin 40 377t 165°–( )cos= = VR 40 165°–∠=⇔

IR
VR
R

------- 40 165°–∠
5

------------------------- 8 165° A–∠= = =

IR 8 165° A–∠=

jω domain–

iR t( ) 8 377t 165°–( )cos 8 377t 75°–( ) Asin= =

t domain–
⇔⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩

R iR t( ) t domain–

vR t( )

iR t( )
vR t( )

R
------------ 40 377t 75°–( )sin

5
-------------------------------------------- 8 377t 75°–( ) Asin= = =

V I L

+

−

+

−

vS t( )
vL t( )iL t( )

a( )  t domain network– b( )  jω domain phasor( ) network–

VL jωLIL=

VS

VL
IL

vL t( ) L
diL
dt
-------=

t domain– jω domain–

VL IL
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Phasors in R, L, and C Circuits
(6.13)

Proof:

In circuit 6.6 (a) we let  be a complex voltage, that is,

(6.14)

and recalling that if , that is, differentiation (or inte-
gration) does not change the radian frequency  or the phase angle , the current through the
inductor will have the form

(6.15)

and since

then,

(6.16)

Next, transforming (6.16) to the , we obtain the phasor relationship

and letting

we get

(6.17)

The presence of the  operator in (6.17) indicates that the voltage across an inductor leads the cur-
rent through it by . 

Example 6.7  

For the network of Figure 6.7, find  when .

Solution: 

We first perform the  to  i.e.,  transformation as follows:

VL jωLIL=

vL t( )

Vpe j ωt φ+( ) Vp ωt φ+( )cos jVp ωt φ+( )sin+=

x t( ) ωt φ+( )sin=   then  dx dt⁄ ω ωt φ+( )cos=

ω φ

Ipe j ωt φ+( ) Ip ωt φ+( )cos jIp ωt φ+( )sin+=

vL t( ) L
diL
dt
-------=

Vpe j ωt φ+( ) L d
dt
----- Ipe j ωt φ+( )( ) jωLIpe j ωt φ+( )

= =

jω domain–

Vpe jφ jωLIpe jφ
=   or  Vp φ∠ jωLIp φ∠=

Vp φ∠ VL=   and  Ip φ∠ IL=

VL jωLIL=

j
90°

iL t( ) vL t( ) 40 2t 75°–( )sin=

t domain– jω domain– vL t( ) VL⇔
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Chapter 6  Sinusoidal Circuit Analysis
Figure 6.7. Voltage across the inductive load of Example 6.7

and

Therefore,

3.   and  phasor relationship in  branches

Consider circuit 6.8 (a) below where the load is purely capacitive.

Figure 6.8. Voltage across a capacitive load in  and 

We will prove that the relationship between the phasors  and  shown in the network of Figure
6.8 (b) is

(6.18)

Proof:

In circuit 6.8 (a) we let  be a complex voltage, that is,

+

−

vS t( )
vL t( )iL t( )

vL t( ) 40 2t 75°–( )sin=

L = 5 mH

vL t( ) 40 2t 75°–( )sin 40 2t 165°–( )cos= = VL 40 165° mV–∠=⇔

IL
VL

jωL
--------- 40 165°–∠( ) 10 3–×

j10 10 3–×
------------------------------------------------ 40 165°–∠

10 90°∠
------------------------- 4 255°–∠ 4 105° A∠= = = = =

IL 4 105° A∠=

jω domain–

iL t( ) 4 2t 105°+( )cos 4 2t 165°–( ) Asin= =

t domain–
⇔⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩

V I C

+

−

+

−

vS t( )
vC t( )iC t( )

a( )  t domain network– b( )  jω domain phasor( ) network–

IC jωCVC=

VS

VCIC

iC t( ) C
dvC
dt

---------=

t domain– jω domain–

VC IC

IC jωCVC=

vC t( )
6-12 Circuit Analysis I with MATLAB Applications
Orchard Publications



Phasors in R, L, and C Circuits
then the current through the capacitor will have the form

and since

then 

(6.19)

Next, transforming (6.19) to the , we obtain the phasor relationship

and letting

we get

(6.20)

The presence of the  operator in (6.26) indicates that the current through a capacitor leads the volt-
age across it by .

Example 6.8  

For the circuit shown below, find  when .

Figure 6.9. Voltage across the capacitive load of Example 6.8

Solution:

We first perform the  to  i.e.,  transformation as follows:

Vpe j ωt φ+( ) Vp ωt φ+( )cos jVp ωt φ+( )sin+=

Ipe j ωt φ+( ) Ip ωt φ+( )cos jIp ωt φ+( )sin+=

iC t( )
dvC
dt

---------=

Ipe j ωt φ+( ) C d
dt
----- Vpe j ωt φ+( )( ) jωCVpe j ωt φ+( )

= =

jω domain–

Ipe jφ jωCVpe jφ
=   or  Ip φ∠ jωCVp φ∠=

Ip φ∠ IC=   and  Vp φ∠ VC=

IC jωCVC=

j
90°

iC t( ) vC t( ) 170 60πt 45°–( )cos=

+

−

vS t( )
vC t( )iC t( )

vC t( ) 170 60πt 45°–( )cos=

C=106 nF

t domain– jω domain– vC t( ) VC⇔
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Chapter 6  Sinusoidal Circuit Analysis
Then,

Therefore,

6.5 Impedance

Consider the  circuit in Figure 6.10 (a) and its equivalent phasor circuit shown in Figure
6.10 (b).

Figure 6.10. The  and  relationships in a series RLC circuit

The last equation of the phasor circuit may be written as

vC t( ) 170 60πt 45°–( )cos= VC 170 45°–∠=⇔

IC jωCVC j 60π 106 10 9–××× 170 45°–∠× 1 90°∠ 3.4 10 3–×× 1 45°–∠×= ==

3.4 10 3–× 45°∠ 3.4 45° mA∠==

IC 3.4 45° mA∠=

jω domain–

iC t( ) 3.4 60π 45°+( ) mAcos=

t domain–
⇔⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩

t domain–

+ −
VR

R L

C +
+ −

−

+ −
R L

C ++ −

−
I

VL

vR t( ) RiR t( )=

vL t( ) Ldi
dt
-----=

vC t( ) 1
C
---- i td

∞–

t
∫=

VR IR=

VL jωLI=

VC
1

jωC
----------I=

vR t( ) vL t( ) vC t( )+ + vS t( )= VR VL VC+ + VS=

Ri t( ) Ldi
dt
----- 1

C
---- i td

∞–

t
∫+ + vS t( )=

Integrodifferential Equation
Very difficult to work with( )

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩

RI jωLI 1
jωC
----------I+ + VS=

Algebraic Equation
Much easier to work with( )

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩

vS t( )

i t( )
vC t( )

VS
VC

a( )  t domain network– b( )  jω domain phasor( ) network–

vR t( ) vL t( )

t domain– jω domain–

R jωL 1
jωC
----------+ +⎝ ⎠

⎛ ⎞ I VS=
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Impedance
and dividing both sides of (6.26) by  we obtain the impedance which, by definition, is

(6.21)

Expression (6.21) is referred to as Ohm’s law for AC Circuits.

Like resistance, the unit of impedance is the Ohm (Ω).

We can express the impedance  as the sum of a real and an imaginary component as follows:

Since

then

and thus

(6.22)

We can also express (6.22) in polar form as

(6.23)

We must remember that the impedance is not a phasor; it is a complex quantity whose real part is the
resistance  and the imaginary part is , that is,

(6.24)

The imaginary part of the impedance  is called reactance and it is denoted with the letter . The
two components of reactance are the inductive reactance  and the capacitive reactance , i.e.,

(6.25)

(6.26)

 (6.27)

The unit of the inductive and capacitive reactances is also the Ohm (Ω).

I

Impedance Z Phasor Voltage
Phasor Current 
---------------------------------------

VS
I

------ R jωL 1
jωC
----------+ += = = =

Z

1
j
--- 1

j
--- j

j
-⋅ j

j2
---- j–= = =

1
jωC
---------- j 1

ωC
--------–=

Z R j ωL 1
ωC
--------–⎝ ⎠

⎛ ⎞+=

Z R2
ωL 1

ωC
--------–⎝ ⎠

⎛ ⎞ 2
+ ωL 1

ωC
--------–⎝ ⎠

⎛ ⎞ R⁄
1–

tan∠=

R ωL 1 ωC⁄–

Re Z{ } R=   and  Im Z{ } ωL 1
ωC
--------–=

Z X
XL XC

X XL XC+ ωL 1 ωC⁄–= =

XL ωL=

XC 1 ωC⁄=
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Chapter 6  Sinusoidal Circuit Analysis
−

In terms of reactances, the impedance can be expressed as

 (6.28)

By a procedure similar to that of Chapter 2, we can show that impedances combine as resistances do.

Example 6.9  

For the circuit below, find the current  given that .

Figure 6.11. Circuit for Example 6.9

Solution:

If we attempt to solve this problem in the time-domain directly, we will need to solve an integrodif-
ferential equation. But as we now know, a much easier solution is with the transformation of the
given circuit to a phasor circuit. Here,  and thus

and

Also,

and the phasor circuit is as shown in Figure 6.12.

Figure 6.12. Phasor circuit for Example 6.9

From the phasor circuit of Figure 6.12

Z R jX+ R j XL XC–( )+ R2 XL XC–( )2
+ XL XC–( ) R⁄[ ]1–tan∠= = =

i t( ) vS t( ) 100 100t 30°–( )cos=

+ −
R L

C ++ −

−

vS t( )

i t( )

5 Ω 100 mH

100 µF

vS t( ) 100 100t 30°–( )cos=

ω 100 rad s⁄=

jωL jXL j100 0.1× j10 Ω= ==

1
jωC
---------- j 1

ωC
--------– jXC– j 1

10 2 10 2× 10 6–×
-----------------------------------------– j100–= = = =

VS 100 30°–∠=

+ −
C +

+ −

−
5 Ω

VS ZIS=

I −j100 Ω

j10 ΩVS
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Admittance
and

Therefore,

6.6 Admittance

Consider the  circuit in Figure 6.13 (a) and its equivalent phasor circuit shown in Figure
6.13 (b).

Figure 6.13. The  and  relationships in a parallel RLC circuit

The last equation of the phasor circuit may be written as

 (6.29)

Dividing both sides of (6.29) by , we obtain the admittance, that is, by definition 

Z 5 j10 j100–+ 5 j90– 52 902
+ 90– 5⁄( )1–tan∠ 90.14 86.82°–∠= = = =

I
VS
Z

------ 100 30°–∠
90.14 86.82°–∠
------------------------------------- 1.11 30°– 86.82°–( )–[ ]∠= = =

I 1.11 56.82°∠= i t( )⇔ 1.11 100t 56.82+( )cos=

t domain–

iG t( ) Gv t( )=

iC t( ) Cdv
dt
------=

iL t( ) 1
L
--- v td

∞–

t
∫=

IG GV=

IC jωCV=

IL
1

jωL
---------V=

iG t( ) iL t( ) iC t( )+ + iS t( )= IR IL IC+ + IS=

Gv t( ) Cdv
dt
------ 1

L
--- v td

∞–

t
∫+ + iS t( )=

Integrodifferential Equation
Very difficult to work with( )

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩

GV jωCV 1
jωL
---------V+ + IS=

Algebraic Equation
Much easier to work with( )

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩

a( )  t domain network– b( )  jω domain phasor( ) network–

+

−

V

+

−

CLR R LC

iR t( ) iL t( ) iC t( )iS t( )
v t( )

IS ICIR IL

t domain– jω domain–

G 1
jωL
--------- jωC+ +⎝ ⎠

⎛ ⎞ V IS=

V
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Chapter 6  Sinusoidal Circuit Analysis
(6.30)

Here we observe that the admittance  is the reciprocal of the impedance  as conductance  is
the reciprocal of the resistance . 

Like conductance, the unit of admittance is the siemens or mho .

As with the impedance , we can express the admittance  as the sum of a real component and an
imaginary component as follows:

(6.31)

and in polar form

(6.32)

Like the impedance , the admittance  it is not a phasor; it is a complex quantity whose real part is the

conductance  and the imaginary part is , that is,

(6.33)

The imaginary part of the admittance  is called susceptance and it is denoted with the letter . The
two components of susceptance are the capacitive susceptance  and the inductive susceptance , that is,

(6.34)

(6.35)

(6.36)

The unit of the susceptances  and  is also the siemens .

In terms of susceptances, the admittance  can be expressed as

 (6.37)

By a procedure similar to that of Chapter 2, we can show that admittances combine as conductances
do.

Admit cetan Y Phasor Current
Phasor Voltage 
---------------------------------------

IS
V
----- G 1

jωL
--------- jωC+ + 1

Z
---= = = = =

Y Z G
R

Ω 1–( )

Z Y

Y G j ωC 1
ωL
-------–⎝ ⎠

⎛ ⎞+=

Y G 2
ωC 1

ωL
-------–⎝ ⎠

⎛ ⎞ 2
+ ωC 1

ωL
-------–⎝ ⎠

⎛ ⎞ G⁄
1–

tan∠=

Z Y

G ωC 1
ωL
-------–

Re Y{ } G=   and  Im Y{ } ωC 1
ωL
-------–=

Y B
BC BL

B BC BL+ ωC 1 ωL⁄–= =

BC ωC=

BL 1 ωL⁄=

BC BL Ω 1–( )

Y

Y G jB+ G j BC BL–( )+ G 2 BC BL–( )2
+ BC BL–( ) G⁄[ ]1–tan∠= = =
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Admittance
Duality is a term meaning that there is a similarity in which some quantities are related to others.
The dual quantities we have encountered thus far are listed in Table 6.1.

Example 6.10  

Consider the series and parallel networks shown in Figure 6.14. How should their real and imaginary
terms be related so that they will be equivalent?

Figure 6.14. Networks for Example 6.10

Solution:

For these circuits to be equivalent, their impedances  or admittances  must be equal. Therefore,

and equating reals and imaginaries we get

(6.38)

Relation (6.38) is worth memorizing.

Example 6.11  

Compute  and  for the network of Figure 6.15.

TABLE 6.1  Dual quantities

Series Parallel
Voltage Current
Resistance Conductance
Thevenin Norton
Inductance Capacitance
Reactance Susceptance
Impedance Admittance

C

LR
G LC

YZ

Z Y

Y 1
Z
--- 1

R jX+
--------------- G jB+

1
R jX+
--------------- R jX–

R jX–
---------------⋅ R jX–

R2 X2
+

------------------- R

R2 X2
+

------------------- j X

R2 X2
+

-------------------–= = = = = =

G R

R2 X2
+

-------------------= and B X–

R2 X2
+

-------------------=

Z Y
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Chapter 6  Sinusoidal Circuit Analysis
Figure 6.15. Network for Example 6.11

Solution:

Since this is a parallel network, it is easier to compute the admittance  first. Thus,

Since the impedance is the reciprocal of admittance, it follows that

Example 6.12  

Compute  and  for the circuit shown below. Verify your answers with MATLAB.

Figure 6.16. Network for Example 6.12

Solution:

Let the given network be represented as shown in Figure 6.17 where ,
, and 

Then,

CG LZ, Y

j5 Ω 1–
4 Ω 1– j2–  Ω 1–

Y

Y G 1
jωL
--------- jωC+ + 4 j2– j5+ 4 j3+ 5 36.9°∠= = = =

Z 1
Y
--- 1

5 36.9°∠
--------------------- 0.2 36.9– °∠ 0.16 j0.12–= = = =

Z Y

C1

Z, Y

20 Ω

−j16 Ω

j13 Ω

R2R1

L1

L2
C2

10 Ω

j5 Ω

−j8 Ω

Z1 j13 j8– j5= =

Z2 10 j5+= Z3 20 j16–=

Z Z1
Z2Z3

Z2 Z3+
-----------------+ j5 10 j5+( ) 20 j16–( )

10 j5 20 j16–+ +
-----------------------------------------------+ j5 11.18 26.6°∠( ) 25.61 38.7°–∠( )

31.95 20.1°–∠
----------------------------------------------------------------------------+= = =

j5 8.96 8°∠+ j5 8.87 j1.25+ + 8.87 j6.25+ 10.85 35.2°∠= ===
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Summary
Figure 6.17. Simplified network for Example 6.12

and

Check with MATLAB:

z1=j*5; z2=10+j*5; z3=20−j*16; z=z1+(z2*z3/(z2+z3)) % Find impedance z

z =
   8.8737+ 6.2537i

y=1/z % Find admittance y

y =
   0.0753- 0.0531i

6.7 Summary

• Excitations or driving functions refer to the applied voltages and currents in electric circuits. 

• A response is anything we define it as a response. Typically response is the voltage or current in
the “load” part of the circuit or any other part of it.

• If the excitation is a constant voltage or current, the response will also be some constant value.

• If the excitation is a sinusoidal voltage or current, in general, the response will also be sinusoidal
with the same frequency but with different amplitude and phase.

• If the excitation is a time-varying function such as a sinusoid, inductors and capacitors do not
behave like short circuits and open circuits respectively as they do when the excitation is a con-
stant and steady-state conditions are reached. They behave entirely different.

• Circuit analysis in circuits where the excitation is a time-varying quantity such as a sinusoid is very
difficult and thus impractical in the .

• The complex excitation function greatly simplifies the procedure of analyzing such circuits when
excitation is a time-varying quantity such as a sinusoid.

• The procedure where the excitation-response relation is simplified to amplitude and phase rela-
tionship is known as time-domain to frequency-domain transformation.

Z, Y

Z1

Z2 Z3

Y 1
Z
--- 1

10.85 35.2°∠
------------------------------- 0.092 35.2°–∠ 0.0754 j0.531–= = = =

t domain–
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Chapter 6  Sinusoidal Circuit Analysis
• The procedure where the excitation-response is put back to its sinusoidal form is known as fre-
quency-domain to time-domain transformation.

• For brevity, we denote the time domain as the , and the frequency domain as the
.

• If a sinusoid is given in terms of the sine function, it is convenient to convert it to a cosine function
using the identity  before converting it to the

. 

• The  to  transformation procedure is as follows:

1. Express the given sinusoid as a cosine function

2. Express the cosine function as the real part of the complex excitation using Euler’s identity 

3. Extract the magnitude and phase angle from it.

• The  to  transformation procedure is as follows:

1. Convert the given phasor from polar to exponential form

2. Add the radian frequency  multiplied by  to the exponential form

3. Extract the real part from it.

• The circuit analysis of circuits containing , , and  devices, and which are excited by sinusoidal
sources, is considerably simplified with the use of phasor voltages and phasor currents which we
represent by the boldface capital letters  and  respectively. 

• Phasor quantities exist only in the 

• In the  the current through a resistor is always in−phase with the voltage across that
resistor

• In the  the current through an inductor lags the voltage across that inductor by 90°

• In the  the current through a capacitor leads the voltage across that capacitor by 90°

• In the  the impedance  is defined as

 

• Like resistance, the unit of impedance is the Ohm (Ω).

• Impedance is a complex quantity whose real part is the resistance , and the imaginary part is
, that is,

t domain–

jω domain–

m t( ) A ωt θ+( )sin A ωt θ 90°–+( )cos= =
jω domain–

t domain– jω domain–

jω domain– t domain–

ω t

R L C

V I

jω domain–

jω domain–

jω domain–

jω domain–

jω domain– Z

Impedance Z Phasor Voltage
Phasor Current 
---------------------------------------

VS
I

------ R jωL 1
jωC
----------+ += = = =

R
ωL 1 ωC⁄–
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Summary
• In polar form the impedance is expressed as

• The imaginary part of the impedance  is called reactance and it is denoted with the letter . The
two components of reactance are the inductive reactance  and the capacitive reactance , i.e.,

• The unit of the inductive and capacitive reactances is also the Ohm (Ω).

• In the  the admittance  is defined as

• The admittance  is the reciprocal of the impedance  as conductance  is the reciprocal of the
resistance . 

• The unit of admittance is the siemens or mho .

• The admittance  is a complex quantity whose real part is the conductance  and the imaginary

part is , that is,

• The imaginary part of the admittance  is called susceptance and it is denoted with the letter .
The two components of susceptance are the capacitive susceptance  and the inductive suscep-
tance , that is,

• In polar form the admittance is expressed as

• The unit of the susceptances  and  is also the siemens .

Re Z{ } R=   and  Im Z{ } ωL 1
ωC
--------–=

Z R2
ωL 1

ωC
--------–⎝ ⎠

⎛ ⎞ 2
+ ωL 1

ωC
--------–⎝ ⎠

⎛ ⎞ R⁄
1–

tan∠=

Z X
XL XC

X XL XC– ωL 1
ωC
--------–= =

jω domain– Y

Admit cetan Y Phasor Current
Phasor Voltage 
---------------------------------------

IS
V
----- G 1

jωL
--------- jωC+ + 1

Z
---= = = = =

Y Z G
R

Ω 1–( )

Y G

ωC 1
ωL
-------–

Re Y{ } G=   and  Im Y{ } ωC 1
ωL
-------–=

Y B
BC

BL

B BC BL– ωC 1
ωL
-------–= =

Y G 2
ωC 1

ωL
-------–⎝ ⎠

⎛ ⎞ 2
+ ωC 1

ωL
-------–⎝ ⎠

⎛ ⎞ G⁄
1–

tan∠=

BC BL Ω 1–( )
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Chapter 6  Sinusoidal Circuit Analysis
• Admittances combine as conductances do.

• In phasor circuit analysis, conductance is not necessarily the reciprocal of resistance, and suscep-
tance is not the negative reciprocal of reactance. Whenever we deal with resistance and reactance
we must think of devices in series, and when we deal with conductance and susceptance we must
think of devices in parallel. However, the admittance is always the reciprocal of the impedance

• The ratio  of the phasor voltage to the phasor current exists only in the  and it is
not the ratio  in the . Although the ratio  could yield some value, this
value is not impedance. Similarly, the ratio  is not admittance.

• Duality is a term meaning that there is a similarity in which some quantities are related to others. 

V I⁄ jω domain–

v t( ) i t( )⁄ t domain– v t( ) i t( )⁄
i t( ) v t( )⁄
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Exercises
6.8 Exercises

Multiple Choice

1. Phasor voltages and phasor currents can be used in the  if a circuit contains

A. independent and dependent sources with resistors only

B. independent and dependent sources with resistors and inductors only

C. independent and dependent sources with resistors and capacitors only

D. independent and dependent sources with resistors, inductors, and capacitors

E. none of the above

2. If the excitation in a circuit is a single sinusoidal source with amplitude , radian frequency ,
and phase angle , and the circuit contains resistors, inductors, and capacitors, all voltages and all
currents in that circuit will be of the same

A. amplitude  but different radian frequency  and different phase angle 

B. radian frequency  but different amplitude  and different phase angle 

C. phase angle  but different amplitude  and different radian frequency 

D. amplitude  same radian frequency  and same phase angle 

E. none of the above

3. The sinusoid  in the  is expressed as

A.

B.

C.

D.

E. none of the above

4. A series RLC circuit contains two voltage sources with values  and
. We can transform this circuit to a phasor equivalent to find the cur-

rent by first replacing these with a single voltage source  whose value is

A.

B.

t domain–

A ω
θ

A ω θ

ω A θ

θ A ω

A ω θ

v t( ) 120 ωt 90°+( )sin= jω domain–

V 120e j ωt 90°+( )=

V 120e jωt=

V 120e j90°=

V 120e j0°=

v1 t( ) 100 10t 45°+( )cos=

v2 t( ) 200 5t 60– °( )sin=

v t( ) v1 t( ) v2 t( )+=

v t( ) 300 15t 15– °( )cos=

v t( ) 100 5t 105°+( )cos=
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Chapter 6  Sinusoidal Circuit Analysis
C.

D.

E. none of the above

5. The equivalent impedance  of the network of Figure 6.18 is

A.

B.

C.

D.

E. none of the above

Figure 6.18. Network for Questions 5 and 6

6. The equivalent admittance  of the network of Figure 6.18 is
A.

B.

C.

D.

E. none of the above

7. The resistance of a coil is  and the inductance of that coil is . If a current
of  flows through that coil and operates at the frequency of , the pha-
sor voltage  across that coil is

A.

v t( ) 150 7.5t 15– °( )cos=

v t( ) 150 7.5t 15°+( )cos=

Zeq

1 j1+

1 j1–

j1–

2 j0+

−j2 Ω

j0.5 Ω

2 Ω

2 Ω

Zeq

Yeq

4 j– 1.5

16
73
------ j 6

73
------+

12
37
------ j 2

37
------+

2 j2–

R 1.5 Ω= L 5.3 mH=

i t( ) 4 ωt Acos= f 60Hz=

V

10 53.1° V∠
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B.

C.

D.

E. none of the above

8. A resistor with value  is in series with a capacitor whose capacitive reactance at some
particular frequency  is . A phasor current with value  is flowing
through this series combination. The  voltage across this series combination is

A.

B.

C.

D.

E. none of the above

9. A conductance with value  is in parallel with a capacitor whose capacitive suscep-

tance at some particular frequency  is . A phasor voltage with value
 is applied across this parallel combination. The  total current through

this parallel combination is

A.

B.

C.

D.

E. none of the above

10. If the phasor , then in the   is

A.

B.

C.

D.

E. none of the above

6 0° V∠

5.3 10 3–× 90° V∠

6.8 45° V∠

R 5 Ω=

ω jXC– 5–  Ω= I 8 0° A∠=

t domain–

80 ωtcos

80 ωtsin

56.6 ωt 45°–( )cos

56.6 ωt 45°+( )cos

G 0.3 Ω 1–=

ω jBC j0.3 Ω 1–=

V 10 0°∠= t domain–

3 ωt j3 ωtsin+cos

3 ωt j– 3 ωtsincos

5 ωt 53.2°+( )sin

5 ωt 53.2°+( )cos

I je j π 2⁄( )= t domain– i t( )

ωt π 2⁄+( )cos

ωt π 2⁄+( )sin

ωtcos–

ωtsin–
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Chapter 6  Sinusoidal Circuit Analysis
Problems

1. Express the sinusoidal voltage waveform of Figure 6.18 as , that is, find ,
, and . Answer: 

Figure 6.19. Circuit for Problem 1

2. The current  through a device decays exponentially as shown by the waveform of Figure 6.20,
and two values are known as indicated. Compute , that is, the current at 

Answers: , 

Figure 6.20. Circuit for Problem 2

3. At what frequency  is the network of Figure 6.21 operating if it is known that
 and ?  Answer: 

 
Figure 6.21. Circuit for Problem 3

v t( ) A ωt θ+( )cos= A
ω θ v t( ) 2 1000t 36.1°+( )cos=

−2.2 ms 0.94 ms

1.62 V

0 t (ms)

v (V)

i t( )
i 1( ) t 1 ms=

i t( ) 50e 750t–  mA= 23.62 mA

0 1 2 3 4 5 6

i = 15.00 mA at 1.605 ms

I = 5.27 mA at 3.000 ms

I

t (ms)

i (mA)

f
vS 120 ωt  Vcos= i 12 ωt 36.9°–( )  Acos= f 5.533 KHz=

R L

C8 Ω

1 µF

1 mH

vS
i
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4. In the circuit of Figure 6.22,  and the symbols V and A inside the cir-

cles denote an AC voltmeter* and ammeter respectively. Assume that the ammeter has negligible
internal resistance. The variable capacitor C is adjusted until the voltmeter reads 25 V and the
ammeter 5 A. Find the value of the capacitor.  Answer:  

Figure 6.22. Network for Problem 4

5. For the circuit shown on Figure 6.23, is it possible to adjust the variable resistor  and the vari-
able capacitor  so that  and  have the same numerical value regardless of the operating
frequency? If so, what are these values? Answer: Yes, if  and 

Figure 6.23. Network for Problem 5

* Voltmeters and Ammeters are discussed in Chapter 8. For this exercise, it will suffice to say that these
instruments indicate the magnitude (absolute) values of voltage and current.

vS V 2000t θ+( )  Vcos=

C 89.6 µF=

R

L

C

2 Ω

0.5 mHV

A

Other Part
of the

Network

vS

R1

C ZIN YIN

C 1 F= R1 1 Ω=

1 Ω

1 H
Other Part

of the
Network

R1 R2

ZIN

YIN

L CvS
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6.9 Answers to Exercises

Multiple Choice

1.E  Phasors exist in the  only

2. B

3. D

4. E The voltage sources  and  operate at different frequencies. Therefore, to find the
current we must apply superposition.

5. E   This value is obtained with the MATLAB code z1=2+0.5j; z2=2*(−2j)/(2−2j);
z=z1+z2 

z = 3.0000-0.5000i

6. C
7. A , 

, 

8. C

9. D

10. C

Problems

1. The  crossings define half of the period T. Thus, , and one

period is . The frequency is . Then,  or

Next, we find the phase angle  from the figure above observing that 

or

jω domain–

v1 t( ) v1 t( )

3 j0.5–

ω 2πf 2π 60× 377 r s⁄= = = jXL jωL j 377 5.3 10 3–××× j2 Ω= = =

Z 1.5 j2+ 2.5 53.13°∠= = V ZI 2.5 53.13°∠ 4 0°∠× 10 53.13°∠= = =

t axis– T 2⁄ 2.2 0.94+ 3.14 ms= =

T 6.28 ms= f 1 T⁄ 103 6.28⁄ 103 2π⁄= = = ω 2πf=

ω 2π 103 2π⁄× 1000 r s⁄==

θ π 2⁄ θ+ 2.2 ms=

−2.2 ms 0.94 ms

1.62 V

0 t (ms)

v (V)

θ
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Finally, we find the amplitude  by observing that at , , that is,

or

Therefore,

2. The decaying exponential has the form  where the time is in  and thus for
this problem we need to compute the values of  and  using the given values. Then,

and

Division of the first equation by the second yields

or

or

or

or

and thus

θ 2.2ms π
2
---– 2.2 10 3–  s× 2π rad

6.28 10 3–  s×
-------------------------------- 180°

π rad
--------------×× π

2
---–= =

2.2 2 180°××
6.28

---------------------------------- π
2
---– 126.1° 90°– 36.1°= ==

A t 0= v 1.62 V=

v 0( ) 1.62 A 0 36.1°+( )cos= =

A 1.62
36.1°cos

---------------------- 2 V= =

v t( ) 2 1000t 36.1°+( )cos=

i t( ) Ae αt–  mA= ms
A α

i t 1.605  ms=
15 mA Ae 1.605 10 3–×( )α–= =

i t 3.000  ms=
5.27 mA Ae 3.000 10 3–×( )α–= =

Ae 1.605 10 3–×( )α–

Ae 3.000 10 3–×( )α–
-------------------------------------- 15 mA

5.27 mA
---------------------=

e 1.605 10 3–×( )α– 3.000 10 3–×( )α+ 15
5.27
----------=

e1.395 10 3– α× 15
5.27
----------=

15
5.27
----------⎝ ⎠

⎛ ⎞ln 1.395 10 3– α×=

α 15 5.27⁄( )ln 103×
1.395

--------------------------------------------- 750= =

i t( ) Ae 750t–  mA=
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To find the value of  we make use of the fact that . Then,

or

or

Therefore,

and

 

3. The equivalent phasor circuit is shown below.

In the  , , , and  
Then,

and

or

or

or

or

or

A i t 3  ms=
5.27 mA=

5.27 Ae 750 3 10 3–××–=

A 5.27 10 3–×

e 2.25–
---------------------------=

A 0.050 A 50mA= =

i t( ) 50e 750t–  mA=

i t 1  ms=
50e 750 10 3–×– 23.62 mA= =

R L

C8 Ω

1 µF
vS

I

jωL
j

ωC
--------–

jω domain– VS 120 0° V∠= I 12 36.9° A–∠= jωL j10 3– ω= j ωC⁄– j106– ω⁄=

Z
VS
I

------ 120 0° V∠
12 36.9° A–∠
--------------------------------- 10 36.9°∠= = =

Z 10 R 2 ωL 1 ωC⁄–( )2+= =

R 2 ωL 1 ωC⁄–( )2+ 100=

8 2 ωL 1 ωC⁄–( )2+ 100=

ωL 1 ωC⁄–( )2 36=

ωL 1 ωC⁄– 6=
6-32 Circuit Analysis I with MATLAB Applications
Orchard Publications



Answers to Exercises
or

Solving for  and ignoring the negative value, we get

and

Check: , 

and

4. Since the instruments read absolute values, we are only need to be concerned the magnitudes of
the phasor voltage, phasor current, and impedance. Thus,

or

and after simplification we get

Using MATLAB, we get

p=[500  250*10^(−4)  −625*10^(−8)]; r=roots(p)

and this yields 

The second root of this polynomial is negative and thus it is discarded.

5. We group the series devices as shown below.

ω2 6
L
---ω– 1

LC
-------– 0=

ω2 6 10 3× ω– 10 9– 0=

ω

ω 6 103× 36 106× 4 109×++
2

------------------------------------------------------------------------- 34 765 r s⁄,= =

f ω
2π
------ 34 765 r s⁄,

2π
---------------------------- 5 533 Hz, 5.533 KHz= = = =

jωL j34.765= j– ωC⁄ j28.765–=

Z R j ωL 1 ωC( )⁄–( )+ 8 j 34.765 28.765–( )+ 8 j6+ 10 36.9°∠= = = =

I 120 0°∠
10 36.9°∠
------------------------ 12 36.9°–∠= =

V Z I 25 R 2 ωL 1 ωC⁄–( )2+ 5×= = =

V 2 252 R 2 ωL 1 ωC⁄–( )2+[ ] 25× 4 1 5 10 4–×
C

--------------------–⎝ ⎠
⎛ ⎞

2
+ 25×= = =

100 25 250 10 4–×
C

--------------------------– 625 10 8–×

C 2
--------------------------+ + 625==

500C 2 250 10 4– C× 625 10 8–×–+ 0=

C 89.6 µF=
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Thus , , and

and at any frequency 

Therefore, if the condition  is to hold for all frequencies, the right sides of  and
 must be equal, that is,

Equating reals and imaginaries we get

        

From the first equation above we get  and by substitution of this value into the second
equation we get 

1 Ω

1 H

R1 R2

ZIN

YIN

L C

Z1 Z2

Z1 R1 jω+= Z2 1 j ωC( )⁄–=

ZIN
Z1 Z2⋅
Z1 Z2+
-----------------

R1 jω+( ) 1 j ωC⁄–( )
R1 jω 1 j ωC⁄–+ +

---------------------------------------------------= =

ω

YIN
1

ZIN
--------

R1 jω 1 j ωC⁄–+ +

R1 jω+( ) 1 j ωC⁄–( )
---------------------------------------------------= =

YIN ZIN= ZIN

YIN

R1 jω+( ) 1 j ωC⁄–( )
R1 jω 1 j ωC⁄–+ +

---------------------------------------------------
R1 jω 1 j ωC⁄–+ +

R1 jω+( ) 1 j ωC⁄–( )
---------------------------------------------------=

R1 jω+( ) 1 j ωC⁄–( )[ ] 2 R1 jω 1 j ωC⁄–+ +[ ] 2=

R1 jω+( ) 1 j ωC⁄–( ) R1 jω 1 j ωC⁄–+ +=

R1 j
R1
ωC
--------– jω 1

C
----+ + R1 1 j ω 1

ωC
--------–⎝ ⎠

⎛ ⎞+ +=

R1
1
C
----+⎝ ⎠

⎛ ⎞ j ω
R1
ωC
--------–⎝ ⎠

⎛ ⎞ jω+ + R1 1+( ) j ω 1
ωC
--------–⎝ ⎠

⎛ ⎞+=

R1
1
C
----+ R1 1+= ω

R1
ωC
--------– ω 1

ωC
--------–=

C 1 F=

R1 1 Ω=
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Chapter 7
Phasor Circuit Analysis

his chapter begins with the application of nodal analysis, mesh analysis, superposition, and
Thevenin’s and Norton’s theorems in phasor circuits. Then, phasor diagrams are introduced,
and the input-output relationships for an RC low-pass filter and an RC high-pass filter are

developed. 

7.1 Nodal Analysis

The procedure of analyzing a phasor* circuit is the same as in Chapter 3, except that in this chapter
we will be using phasor quantities. The following example illustrates the procedure.

Example 7.1  

Use nodal analysis to compute the phasor voltage  for the circuit of Figure 7.1.

Figure 7.1. Circuit for Example 7.1

Solution:

As before, we choose a reference node as shown in Figure 7.2, and we write nodal equations at the
other two nodes  and . Also, for convenience, we designate the devices in series as

 as shown, and then we write the nodal equations in terms of these impedances.

* A phasor is a rotating vector

T

VAB VA VB–=

10 0° A∠
5 0° A∠

VBVA

4 Ω

j– 6 Ω

2 Ω
8 Ω

j3 Ω

j– 3 Ω

A B
Z1 Z2 and Z3, ,

Z1 4 j6– 7.211 56.3°–∠= =

Z2 2 j3+ 3.606 56.3°∠= =

Z3 8 j3– 8.544 20.6°–∠= =
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Figure 7.2. Nodal analysis for the circuit for Example 7.1

By application of KCL at ,

or

(7.1)

or

and by substitution for  we get

(7.2)

Next, at :

or

10 0° A∠
5 0° A∠

VBVA

4 Ω

j– 6 Ω

2 Ω
8 Ω

j3 Ω

j– 3 ΩZ1 Z3

Z2

VA

VA
Z1
------

VA VB–

Z2
-------------------+ 5 0°∠=

1
Z1
----- 1

Z2
-----+⎝ ⎠

⎛ ⎞ VA
1
Z2
-----VB– 5 0°∠=

Z1 Z2+

Z1Z2
-----------------⎝ ⎠

⎛ ⎞ VA
1

Z2
------VB– 5 0°∠=

Z1 and Z2

4 j6– 2 j3+ +
7.211 56.3–∠( ) 3.606 56.3°∠( )

--------------------------------------------------------------------------VA
1

3.606 56.3°∠
-------------------------------VB– 5 0°∠=

6 j3–
26.0 0°∠
---------------------VA 0.277 56.3°–∠( )VB– 5 0°∠=

6.708 26.6°–∠
26 0°∠

----------------------------------VA 0.277 56.3°–∠( )VB– 5 0°∠=

0.258 26.6°–∠( )VA 0.277 56.3°–∠( )VB– 5 0°∠=

VB

VB VA–

Z2
-------------------

VB
Z3
------+ 10– 0°∠=
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Nodal Analysis
(7.3)

In matrix form (7.1) and (7.3) are

(7.4)

We will follow a step-by-step procedure to solve these equations using Cramer’s rule, and we will
use MATLAB®* to verify the results.

We rewrite (7.3) as 

(7.5)

and thus with (7.2) and (7.5) the system of equations is

(7.6)

We find  and  from

(7.7)

and

(7.8)

The determinant  is

* If unfamiliar with MATLAB, please refer to Appendix A

1
Z2
-----VA– 1

Z2
----- 1

Z3
-----+⎝ ⎠

⎛ ⎞ VB+ 10– 0°∠=

1
Z1
----- 1

Z2
-----+⎝ ⎠

⎛ ⎞ 1
Z2
-----–

1
Z2
-----– 1

Z2
----- 1

Z3
-----+⎝ ⎠

⎛ ⎞

VA

VB

5
10–

=

1
Z2
-----VA–

Z2 Z3+

Z2Z3
-----------------⎝ ⎠

⎛ ⎞ VB+ 10 180°∠=

1
3.606 56.3°∠
-------------------------------VA–

2 j3 8 j3–+ +
3.606 56.3°∠( ) 8.544 20.6°–∠( )

----------------------------------------------------------------------------VB+ 10 180°∠=

0.277 56.3°–∠( )VA–
10

30.810 35.7°∠
----------------------------------VB+ 10 180°∠=

0.277 56.3°–∠( )VA– 0.325 35.7°–∠( )VB+ 10 180°∠=

0.258 26.6°–∠( )VA 0.277 56.3°–∠( )VB– 5 0°∠=

0.277 56.3°–∠( )VA– 0.325 35.7°–∠( )VB+ 10 180°∠=

VA VB

VA
D1

∆
------=

VB
D2

∆
------=

∆
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Also,

and

Therefore, by substitution into (7.7) and (7.8), we get

and

Finally,

Check with MATLAB:

z1=4−j*6; z2=2+j*3; z3=8−j*3; % Define z1, z2 and z3
Z=[1/z1+1/z2  −1/z2; −1/z2  1/z2+1/z3]; % Elements of matrix Z
I=[5  −10]'; % Column vector I
V=Z\I; Va=V(1,1); Vb=V(2,1); Vab=Va−Vb; % Va = V(1), Vb = V(2) are also acceptable
% With fprintf only the real part of each parameter is processed so we will use disp
fprintf(' \n'); disp('Va = '); disp(Va); disp('Vb = '); disp(Vb); disp('Vab = '); disp(Vab);
fprintf(' \n');

∆ 0.258 26.6°–∠( ) 0.277 56.3°–∠( )–

0.277 56.3°–∠( )– 0.325 35.7°–∠( )
=

0.258 26.6°–∠( ) 0.325 35.7°–∠( )⋅ 0.277 56.3°–∠( ) 0.277– 56.3–∠( )⋅–=

0.084 62.3°–∠( ) 0.077 112.6–∠( )– 0.039 j0.074–( ) 0.023– j0.071–( )––=

0.062 j0.003– 0.062 2.8°–∠=( )=

D1
5 0°∠ 0.277 56.3°–∠( )–

10 180°∠ 0.325 35.7°–∠( )
=

5 0°∠( ) 0.325 35.7°–∠( ) 10 180°∠( ) 0.277 56.3°–∠( )–[ ]–=

1.625 35.7°–∠ 2.770 123.7°∠+( ) 1.320 j0.948– 1.537– j2.305+( )+==

0.217– j1.357+ 1.374 99.1°∠==

D2
0.258 26.6°–∠( ) 5 0°∠
0.277 56.3°–∠( )– 10 180°∠

=

0.258 26.6°–∠( ) 10 180°∠( ) 0.277– 56.3°–∠( ) 5 0°∠( )–=

2.580 153.4°∠ 1.385 56.3°–∠+ 2.307– j1.155 0.769 j1.152–+ +( )==

1.358– j0.003+ 1.358 179.9°∠==

VA
D1

∆
------ 1.374 99.1°∠

0.062 2.8°–∠
------------------------------- 22.161 101.9°∠ 4.570– j21.685+= = = =

VB
D2

∆
------ 1.358 179.9°∠

0.062 2.8°–∠
---------------------------------- 24.807 177.3°–∠ 24.780– j1.169–= = = =

VAB VA VB– 4.570– j21.685 24.780– j1.169–( )–+= =

20.21 j22.85+ 30.5 48.5°∠==
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Va =  -4.1379 + 19.6552i

Vb = -22.4138 - 1.0345i

Vab = 18.2759 + 20.6897i

These values differ by about 10% from the values we obtained with Cramer’s rule where we
rounded the values to three decimal places. MATLAB performs calculations with accuracy of 15
decimal places, although it only displays four decimal places in the short (default) number display
format. Accordingly, we should accept the MATLAB values as more accurate.

7.2 Mesh Analysis

Again, the procedure of analyzing a phasor circuit is the same as in Chapter 3 except that in this
chapter we will be using phasor quantities. The following example illustrates the procedure.

Example 7.2  

For the circuit of Figure 7.3, use mesh analysis to find the voltage , that is, the voltage across
the  current source.

Figure 7.3. Circuit for Example 7.2

Solution:

As in the previous example, for convenience, we denote the passive devices in series as
, and we write mesh equations in terms of these impedances. The circuit then is as

shown in Figure 7.4 with the mesh currents assigned in a clockwise direction.

We observe that the voltage across the  current source is the same as the voltage across the
 and  series combination.

By inspection, for Mesh 1,

(7.9)

V10A

10 0°∠

10 0° A∠
5 0° A∠

4 Ω

j– 6 Ω

2 Ω

8 Ω

j3 Ω

j– 3 Ω

V10A

+

−

Z1 Z2 and Z3, ,

10 0°∠
8 Ω j– 3 Ω

I1 5 0°∠=
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Figure 7.4. Mesh analysis for the circuit of Example 7.2

By application of KVL around Mesh 2,

or

(7.10)

Also, by inspection for Mesh 3,

(7.11)

and in matrix form, (7.9), (7.10), and (7.11) are written as

(7.12)

We use MATLAB for the solution of 7.12.*

Z=[1  0  0;  −(4−j*6)  14−j*6   −(8−j*3);  0  0  1];
V=[5  0  10]';
I=Z\V; i1=I(1); i2=I(2); i3=I(3); fprintf(' \n');
disp('i1 = '); disp(i1); disp('i2 = '); disp(i2); disp('i3 = '); disp(i3); fprintf(' \n');

i1 = 5    i2 = 7.5862 - 1.0345i   i3 = 10

Therefore, the voltage across the  current source is

We observe that this is the same value as that of the voltage  in the previous example.

* As we experienced with Example 7.1, the computation of phasor voltages and currents becomes quite tedious.
Accordingly, in our subsequent discussion we will use MATLAB for the solution of simultaneous equations with
complex coefficients.

10 0° A∠
5 0° A∠

4 Ω

j– 6 Ω

2 Ω

8 Ω

j3 Ω

j– 3 Ω

V10A

+

−

Z2

Z1 Z3

I2I1
I3

Z1I1 Z1 Z2 Z3+ +( )I2 Z3I3–+– 0=

4 j6–( )– I1 14 j6–( )I2 8 j3–( )I3–+ 0=

I3 10 0°∠=

1 0 0
4 j6–( )– 14 j6–( ) 8 j3–( )––

0 0 1

I1

I2

I3

5
0

10

=

10 0° A∠

V10A Z3 I2 I3–( ) 8 j3–( ) 7.586 j1.035– 10–( ) 22.417– j1.038–= = =

VB
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Application of Superposition Principle
7.3 Application of Superposition Principle

As we know from Chapter 3, the superposition principle is most useful when a circuit contains two
or more independent voltage or current sources. The following example illustrates the application
of the superposition principle in phasor circuits.

Example 7.3  

Use the superposition principle to find the phasor voltage across capacitor  in the circuit of Fig-
ure 7.5.

Figure 7.5. Circuit for Example 7.3

Solution:

Let the phasor voltage across  due to the  current source acting alone be denoted as
, and that due to the  current source as . Then,

With the  current source acting alone, the circuit reduces to that shown in Figure 7.6.

Figure 7.6. Circuit for Example 7.3 with the  current source acting alone

By application of the current division expression, the current  through  is

The voltage across  with the  current source acting alone is

C2

10 0° A∠
5 0° A∠

4 Ω

j– 6 Ω

2 Ω
8 Ω

j3 Ω

j– 3 Ω
C2

C2 5 0° A∠

V 'C2 10 0° A∠ V ''C2

VC2 V 'C2 V ''C2+=

5 0° A∠

5 0° A∠

4 Ω

j– 6 Ω

2 Ω
8 Ω

j3 Ω

j– 3 Ω
C2

V 'C2

5 0° A∠

I 'C2 C2

I 'C2
4 j6–

4 j6– 2 j3 8 j3–+ + +
-------------------------------------------------------5 0°∠ 7.211 56.3°–∠

15.232 23.2°–∠
-------------------------------------5 0°∠ 2.367 33.1°–∠= = =

C2 5 0°∠
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Chapter 7  Phasor Circuit Analysis
 (7.13)

Next, with the  current source acting alone, the circuit reduces to that shown in Figure 7.7.

Figure 7.7. Circuit for Example 7.3 with the  current source acting alone

and by application of the current division expression, the current  through  is

The voltage across  with the  current source acting alone is 

(7.14)

Addition of (7.13) with (7.14) yields

or

(7.15)

7.4 Thevenin’s and Norton’s Theorems

These two theorems also offer a very convenient method in analyzing phasor circuits as illustrated by
the following example.

Example 7.4  

For the circuit of Figure 7.8, apply Thevenin’s theorem to compute  and then draw Norton’s
equivalent circuit.

V 'C2 j3–( ) 2.367 33.1°–∠( ) 3 90°–∠( ) 2.367 33.1°–∠( )= =

7.102 123.1°–∠ 3.878– j5.949–==

10 0° A∠

10 0° A∠

4 Ω

j– 6 Ω

2 Ω
8 Ω

j3 Ω

j– 3 Ω
C2

V ''C2

10 0° A∠

I ''C2 C2

I ''C2
4 j6– 2 j3+ +

4 j6– 2 j3 8 j3–+ + +
------------------------------------------------------- 10– 0°∠( )=

6.708 26.6°–∠
15.232 23.2°–∠
-------------------------------------10 180°∠ 4.404 176.6°∠==

C2 10 0°∠

V ''C2 j3–( ) 4.404 176.6°∠( ) 3 90°–∠( ) 4.404 176.6°∠( )= =

13.213 86.6∠ 0.784 j13.189+=( )=

VC2 V 'C2 V ''C2+ 3.878– j5.949– 0.784 j13.189+ += =

VC2 3.094– j7.240+ 7.873 113.1°∠= =

IX
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Thevenin’s and Norton’s Theorems
Figure 7.8. Circuit for Example 7.4

Solution:

With the  resistor disconnected, the circuit reduces to that shown in Figure 7.9.

Figure 7.9. Circuit for Example 7.4 with the  resistor disconnected

By application of the voltage division expression,

 (7.16)

and

 (7.17)

Then, from (7.16) and (7.17),

or

(7.18)

Next, we find the Thevenin equivalent impedance  by shorting the  voltage source.
The circuit then reduces to that shown in Figure 7.10.

170 0° V∠

j100–  Ω85 Ω

50 Ω
100 Ω

j200 Ω

IX

100 Ω

170 0° V∠

j100–  Ω85 Ω

50 Ωj200 Ω

V1 V2

100 Ω

V1
j200

85 j200+
-----------------------170 0°∠ 200 90°∠

217.31 67°∠
------------------------------170 0°∠ 156.46 23°∠ 144 j61.13+= = = =

V2
50

50 j100–
-----------------------170 0°∠ 50

111.8 63.4–( )°∠
---------------------------------------170 0°∠ 76 63.4°∠ 34 j68+= = = =

VTH VOC V12 V1 V2– 144 j61.13 34 j68+( )–+= = = =

VTH 110 j6.87– 110.21 3.6– °∠= =

ZTH 170 0° V∠
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Figure 7.10. Circuit for Example 7.4 with the voltage source shorted

We observe that the parallel combinations  and  are in series as shown in Figure
7.11.

Figure 7.11. Network for the computation of  for Example 7.4

From Figure 7.11,

and with MATLAB,

Zth=85*200j/(85+200j) + 50*(−100j)/(50−100j)

Zth =
 1.1200e+002 + 1.0598e+001i

or

The Thevenin equivalent circuit is shown in Figure 7.12.

j100–  Ω85 Ω

50 Ωj200 Ω

X Y

j100–  Ω85 Ω

50 Ωj200 Ω

X Y

j100–  Ω85 Ω

50 Ωj200 Ω

X Y

j100–  Ω85 Ω

50 Ωj200 Ω

X Y

j100–  Ω85 Ω

50 Ωj200 Ω

X Y ZTH

85 Ω

50 Ω

j200 Ω

X

Y
j100–  Ω

j200 || 85 50 || j100

85 Ωj200 Ω

−j100 Ω50 Ω

Y

X

ZTH

ZTH

ZTH
85 j200×
85 j200+
----------------------- 50 j100–( )×

50 j100–
-------------------------------+=

ZTH 112.0 j10.6+ 112.5 5.4° Ω∠= =
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Thevenin’s and Norton’s Theorems
Figure 7.12. Thevenin equivalent circuit for Example 7.4

With the  resistor connected at X-Y, the circuit becomes as shown in Figure 7.13.

Figure 7.13. Simplified circuit for computation of  in Example 7.4

We find  using MATLAB:

Vth=110−6.87j;  Zth=112+10.6j; Ix=Vth/(Zth+100);
fprintf(' \n'); disp('Ix = '); disp(Ix); fprintf(' \n');

Ix = 0.5160 - 0.0582i

that is,

(7.19)

The same answer is found in Example C.18 of Appendix  where we applied nodal analysis to find
.

Norton’s equivalent is obtained from Thevenin’s circuit by exchanging  and its series  with
 in parallel with  as shown in Figure 7.14. Thus,

and

VTH = 110.21∠−3.6°

112 Ω j10.6 Ω
X

Y

ZTH

        = 110−j6.87

100 Ω

VTH = 110−j6.87 100 Ω

j10.6 Ω

X

Y

112 Ω
IX

IX

IX

IX
VTH

ZTH 100 Ω+
--------------------------------- 0.516 j0.058– 0.519 6.4° A–∠= = =

C
IX

VTH ZTH

IN ZN

IN
VTH
ZTH
---------- 110.21 3.6°–∠

112.5 5.4°∠
---------------------------------- 0.98 9° A–∠= = =

ZN ZTH 112.5 5.4° Ω∠= =
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Figure 7.14. Norton equivalent circuit for Example 7.4

7.5 Phasor Analysis in Amplifier Circuits

Other circuits such as those who contain op amps and op amp equivalent circuits can be analyzed
using any of the above methods.

Example 7.5  

Compute  for the circuit below where .

Figure 7.15. Circuit for Example 7.5

Solution:

As a first step, we perform the , to  transformation. Thus,

and

 

Also,

and the phasor circuit is shown in Figure 5.16.

IN

ZN

iX t( ) vin t( ) 2 30000ωt( ) Vcos=

+

−

+

−
0.2 mH

8 Ω

2 Ω

10 Ω

50 Ω

4 Ω

iX t( )

vC t( )
vin t( )

5vC t( )10 3⁄  µF

t domain– jω domain–

jXL jωL j0.2 10 3– 30 103××× j6= = =

jXC– j–
1

ωC
-------- j–

1

30 103× 10
3

------ 10 6–××
-------------------------------------------------- j10–= = =

VIN 2 0°∠=
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Phasor Analysis in Amplifier Circuits
Figure 7.16. Phasor circuit for Example 7.5

At Node {:

(7.20)

and since

the nodal equation of (7.20) simplifies to

(7.21)

At Node |:

or 

(7.22)

At Node }:

We use MATLAB to solve (7.21) and (7.22).

G=[35/50  −j*3/50;  −1/5  1/10+j*1/10];  I=[1  0]';  V=G\I;
Ix=5*V(2,1)/4; % Multiply Vc by 5 and divide by 4 to get current Ix
magIx=abs(Ix); theta=angle(Ix)*180/pi; % Convert current Ix to polar form
fprintf(' \n'); disp(' Ix = ' ); disp(Ix);...
fprintf('magIx = %4.2f A \t', magIx); fprintf('theta = %4.2f deg \t', theta);...
fprintf(' \n'); fprintf(' \n');

 Ix = 2.1176 - 1.7546i    magIx = 2.75 A    theta = -39.64 deg 

+

−

+

−
−j10 Ω

8 Ω
2 Ω 10 Ω

50 Ω

4 Ω

{
|

}

2 0°∠

+

−

IX

VIN

V1

5VC

VC

V2 V3

j6 Ω

V1 2 0°∠–

2
--------------------------

V1
8 j6+
--------------

V1 VC–

10
-------------------

V1 5VC–

50
----------------------+ + + 0=

1
8 j6+
-------------- 1

8 j6+
-------------- 8 j– 6

8 j– 6
-----------⋅ 8 j– 6

100
----------- 4

50
------ j 3

50
------–= = =

35
50
------ j 3

50
------–⎝ ⎠

⎛ ⎞ V1
1
5
---VC– 1 0°∠=

VC V1–

10
-------------------

VC
j10–

-----------+ 0=

1
10
------V1– 1

10
------ j 1

10
------+⎝ ⎠

⎛ ⎞ VC+ 0=

V3 5VC=
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Therefore,

Example 7.6  

Compute the phasor  for the op amp circuit of Figure 7.17.

Figure 7.17. Circuit for Example 7.6

Solution:

We assign phasor voltages  and  as shown in Figure 7.18, and we apply KCL at these nodes,

while observing that 

Figure 7.18. Application of KCL for the circuit of Example 7.6

At Node {:

or 

(7.23)

At Node |,

I 2.75 39.6°–∠=   i t( ) 2.75 30000t 39.6°–( )cos=⇔

Vout

4 Ω

−j5 Ω

−j10 Ω

5 Ω

10 Ω
Vout

Vin 4 0° V∠=

V1 V +

Vout V +=

4 Ω

−j10 Ω

5 Ω

10 Ω

V1

V +

Vin 4 0° V∠= Vout

{

|

V1 4 0°∠–

4
--------------------------

V1 Vout–

j5–
-----------------------

V1 Vout–

5
-----------------------

V1
j10–

-----------+ + + 0=

9
20
------ j 3

10
------+⎝ ⎠

⎛ ⎞ V1
1
5
--- j15

---+⎝ ⎠
⎛ ⎞ Vout– 1 0°∠=
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Phasor Diagrams
and thus,

or 

(7.24)

Solving (7.23) and (7.24) with MATLAB we get:

format rat
G=[9/20+j*3/10  −1/5−j*1/5;  −1/5−j*1/5  3/10+j*1/5]; I=[1  0]'; V=G\I;
fprintf(' \n');disp(‘V1 = ’); disp(V(1,1)); disp(‘Vout = ’); disp(V(2,1));
format short
magV=abs(V(2,1)); thetaV=angle(V(2,1))*180/pi; 
fprintf('magIx = %5.3f A \t', magIx); fprintf('theta = %4.2f deg \t', theta);...
fprintf(' \n'); fprintf(' \n')

V1 = 68/25 - 24/25i   Vout = 56/25 - 8/25i   

magIx = 2.750 A       theta = -39.64 deg

Therefore,

(7.25)

7.6 Phasor Diagrams

A phasor diagram is a sketch showing the magnitude and phase relationships among the phasor volt-
ages and currents in phasor circuits. The procedure is best illustrated with the examples below.

Example 7.7  

Compute and sketch all phasor quantities for the circuit of Figure 7.19. 

Figure 7.19. Circuit for Example 7.7

V2 V + Vout= =

Vout
10

-----------
Vout V1–

5
-----------------------

Vout V1–

j5–
-----------------------+ + 0=

1
5
--- j15

---+⎝ ⎠
⎛ ⎞– V1

3
10
------ j15

---+⎝ ⎠
⎛ ⎞ Vout+ 0=

Vout 2.263 8.13°–∠=

VS 

VC 
+

−

j3 Ω

−j5 Ω

2 Ω

I

VL VR 

++ −−
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Solution:

Since this is a series circuit, the phasor current I is common to all circuit devices. Therefore, we
assign to this phasor current the value and use it as our reference as shown in the phasor
diagram of Figure 7.20. Then,

Figure 7.20. Phasor diagram for the circuit of Example 7.7

Example 7.8  

Compute and sketch all phasor quantities for the circuit of Figure 7.21.

Figure 7.21. Circuit for Example 7.8

Solution:

Since this is a parallel circuit, the phasor voltage V is common to all circuit devices. Therefore let us
assign this phasor voltage the value  and use it as our reference phasor as shown in the
phasor diagram of Figure 7.22. Then,

I 1 0°∠=

VR 2 Ω( ) 1 0°∠( ) 2 0° V∠= =

VL j3 Ω( ) 1 0°∠( ) j3 3 90° V∠= = =

VC j– 5 Ω( ) 1 0°∠( ) j5– 5 90– ° V∠= = =

VS VR VL VC+( )+ 2 j2– 2 2 45°–∠= = =

I = 1∠0°VR

VL

VC

VL+VC
VS=VR+(VL+VC)

IS 

IC 

j20 Ω −j10 Ω10 Ω
V

IL IR 
+

−

V 1 0°∠=
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Figure 7.22. Phasor diagram for Example 7.8

We can draw a phasor diagram for other circuits that are neither series nor parallel by assigning any
phasor quantity as a reference.

Example 7.9  

Compute and sketch all phasor voltages for the circuit of Figure 7.23. Then, use MATLAB to plot
these quantities in the .

Figure 7.23. Circuit for Example 7.9

Solution:

We will begin by selecting  as our reference as shown on the phasor diagram of Fig-
ure 7.24. Then, 

IR 1 0°∠ 10⁄ 100 0° mA∠= =

IL 1 0°∠ j20⁄ 1 0°∠ 20 90°∠⁄ 50 90– ° m∠= = =

IC 1 0°∠ j– 10( )⁄ 1 0°∠ 10 90– °∠⁄ 100 90° mA∠= = =

IC IL+ 50 90° mA∠=

IS IR IC IL+( )+ 100 j50+ 111.8 26.6°∠= = =

V = 1∠0°

IR

IC

IL

IC+IL
IS=IR+(IC+IL)

t domain–

VS 
VC 

+

−

j3 Ω

−j5 Ω

2 Ω

VL VR1 
++ −−

5 Ω
+

−

VR2 

IR2 

IR2 1 0° A∠=

VR2 5 Ω IR2× 5 1 0°∠×= 5 0°∠= =

VL j3 Ω IR2× 3 90°∠ 1 0°∠×= 3 90°∠= =

VC VL VR2+ 5 0°∠ 3 90°∠+ 5 j3+= 5.83 31°∠= = =
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and

Figure 7.24. Phasor diagram for Example 7.9

Now, we can transform these phasors into time-domain quantities and use MATLAB to plot them.
We will use the voltage source as a reference with the value , and we will apply nodal
analysis with node voltages V1, V2, and V3 assigned as shown in Figure 7.25.

Figure 7.25. Circuit for Example 7.9 with the voltage source taken as reference

The node equations are shown below in matrix form.

 

The MATLAB code is as follows:

VR1 2 Ω IR1× 2 IC IR2+( ) 2
VC
j5–

-------- IR2+⎝ ⎠
⎛ ⎞ 2 5.83 31°∠

5 90°–∠
------------------------ 5 0° ∠+⎝ ⎠

⎛ ⎞== = =

2.33 121° 10 0° ∠+∠ 1.2– j2+ 10+ 8.8 j2+ 9 12.8°∠= = ==

VS VR1 VC+ 8.8 j2 5 j3+ + + 13.8 j5+ 14.7 20°∠= = = =

IR2 1 0° A∠=VR2 5 0°∠=

VL 3 90°∠=

VC 5.83 31°∠=

VR1 9 12.8°∠=

VS 14.7 20°∠=

VS 1 0°∠=

VS 
VC 

+

−

j3 Ω

−j5 Ω

2 Ω

VL VR1 ++ −−

5 Ω
+

−
VR2 

IR2 

V3 V1 V2 

1 0° V∠

1 0 0
1
2
---– 1

2
--- 1

j5–
-------- 1

j3
-----+ +⎝ ⎠

⎛ ⎞ 1
j3
-----–

0 1
j3
-----– 1

j3
----- 1

5
---+⎝ ⎠

⎛ ⎞

G

V1

V2

V3

V

1
0
0

I

=

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩
⎧ ⎨ ⎩ ⎧ ⎨ ⎩
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% Enter the non-zero values of the G matrix
G(1,1)=1;
G(2,1)=−1/2;
G(2,2)=1/2−1/5j+1/3j;
G(2,3)=−1/3j;
G(3,2)=−1/3j;
G(3,3)=1/3j+1/5;
%
% Enter all values of the I matrix
I=[1  0  0]';
%
% Compute node voltages
V=G\I;
%
VR1=V(1)−V(2);
VL=V(2)−V(3);
% Compute magnitudes and phase angles of voltages
magV1=abs(V(1)); magV2=abs(V(2)); magV3=abs(V(3));
phaseV1=angle(V(1))*180/pi; phaseV2=angle(V(2))*180/pi; phaseV3=angle(V(3))*180/pi;
magVR1=abs(VR1); phaseVR1=angle(VR1)*180/pi; 
magVL=abs(VL); phaseVL=angle(VL)*180/pi;
%
% Denote radian frequency as w and plot wt for 0 to 2*pi range
wt=linspace(0,2*pi);
V1=magV(1)*cos(wt-phaseV(1));
V2=magV(2)*cos(wt-phaseV(2));
V3=magV(3)*cos(wt-phaseV(3));
VR1t=magVR1*cos(wt-phaseVR1);
VLt=magVL*cos(wt-phaseVL);
%
% Convert wt to degrees
deg=wt*180/pi;
%
% Print phasor voltages, magnitudes, and phase angles
fprintf(' \n');
% With fprintf only the real part of each parameter is processed so we will use disp
disp('V1 = '); disp(V(1)); disp('V2 = '); disp(V(2)); disp('V3 = '); disp(V(3));
disp('VR1 = '); disp(VR1); disp('VL = '); disp(VL);
fprintf('magV1 = %4.2f V \t', magV1); fprintf('magV2 = %4.2f V \t', magV2);
fprintf('magV3 = %4.2f V', magV3); fprintf(' \n'); fprintf(' \n'); 
fprintf('phaseV1 = %4.2f deg \t', phaseV1);
fprintf('phaseV2 = %4.2f deg \t', phaseV2); fprintf('phaseV3 = %4.2f deg', phaseV3); 
fprintf(' \n'); fprintf(' \n'); 
fprintf('magVR1 = %4.2f V \t', magVR1); fprintf('phaseVR1 = %4.2f deg ', phaseVR1);
fprintf(' \n'); fprintf(' \n'); 
fprintf('magVL = %4.2f V \t', abs(VL)); fprintf('phaseVL = %4.2f deg ', phaseVL);
fprintf(' \n');
%
plot(deg,V1,deg,V2,deg,V3,deg,VR1t,deg,VLt)
fprintf(' \n');

V1 = 1

V2 = 0.7503 - 0.1296i
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V3 = 0.4945 - 0.4263i

VR1 = 0.2497 + 0.1296i

VL = 0.2558 + 0.2967i

magV1 = 1.00 V       magV2 = 0.76 V        magV3 = 0.65 V 

phaseV1 = 0.00 deg   phaseV2 = -9.80 deg   phaseV3 = -40.76 deg 

magVR1 = 0.28 V      phaseVR1 = 27.43 deg  

magVL = 0.39 V       phaseVL = 49.24 deg

and with these values we have

     

   

These are plotted with MATLAB as shown in Figure 7.26.

Figure 7.26. The  plots for Example 7.9

7.7 Electric Filters

The characteristics of electric filters were introduced in Chapter 4 but are repeated below for conve-
nience.

Analog filters are defined over a continuous range of frequencies. They are classified as low-pass, high-
pass, band-pass and band-elimination (stop-band). Another, less frequently mentioned filter, is the all-pass

vS t( ) v1 t( ) ωtcos= = v2 t( ) 0.76 ωt 9.8°–( )cos= v3 t( ) 0.65 ωt 40.8°–( )cos=

vR1 t( ) 0.28 ωt 27.4°+( )cos= vL t( ) 0.39 ωt 49.2°+( )cos=

0 50 1 00 15 0 2 00 25 0 3 00 3 5 0 4 00
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-0 .8
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0 .4
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1

v1 t( ) vS t( )=

v2 t( )
v3 t( )

vR1 t( )

vL t( )
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Basic Analog Filters
or phase shift filter. It has a constant amplitude response but is phase varies with frequency. This is
discussed in Signals and Systems with MATLAB Applications, ISBN 0-9709511-3-2, by this author. 

The ideal amplitude characteristics of each are shown in Figure 7.27. The ideal characteristics are
not physically realizable; we will see that practical filters can be designed to approximate these char-
acteristics. In this section we will derive the passive RC low and high-pass filter characteristics and
those of an active low-pass filter using phasor analysis.

Figure 7.27. Amplitude characteristics of the types of filters

A digital filter, in general, is a computational process, or algorithm that converts one sequence of
numbers representing the input signal into another sequence representing the output signal.
Accordingly, a digital filter can perform functions as differentiation, integration, estimation, and, of
course, like an analog filter, it can filter out unwanted bands of frequency. Digital filters are dis-
cussed in Signals and Systems with MATLAB Applications by this author, Orchard Publications.

7.8 Basic Analog Filters

An analog filter can also be classified as passive or active. Passive filters consist of passive devices such
as resistors, capacitors and inductors. Active filters are, generally, operational amplifiers with resis-
tors and capacitors connected to them externally. We can find out whether a filter, passive or active,
is a low-pass, high-pass, etc., from its the frequency response that can be obtained from its transfer
function. The procedure is illustrated with the examples that follow.

Example 7.10  

Derive expressions for the magnitude and phase responses of the series RC network of Figure 7.28,
and sketch their characteristics.

PASS
BAND

STOP

BAND

Ideal low− pass filter Ideal high− pass filter

(CUTOFF)

BAND
 STOP

PASS
BAND

PASS
BAND

Ideal band− pass Filter Ideal band − elimination filter

BAND
 STOP

BAND
 STOP

PASS
BAND

PASS
BAND BAND

 STOP

1

11

1

Vout
Vin
---------- Vout

Vin
----------

Vout
Vin
----------

Vout
Vin
----------

ωc
ω ω

ω ω

ωc

ω1 ω1ω2 ω2
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Figure 7.28. Series RC network for Example 7.10

Solution:

By the voltage division expression,

and denoting the ratio  as , we get

(7.26)

The magnitude of (7.26) is

 (7.27)

and the phase angle , also known as the argument, is

(7.28)

We can obtain a quick sketch for the magnitude  versus  by evaluating (7.27) at ,
, and . Thus, 

as , 

for , 

and as , 

To obtain a smooth curve, we will use a spreadsheet such as Microsoft Excel to plot  versus
radian frequency for several values of . This is shown in Figure 7.29 where, for convenience, we let

+

−

R
CVin Vout

+
−

Vout
1 jωC⁄

R 1 jωC⁄+
---------------------------Vin=

Vout Vin⁄ G jω( )

G jω( )
Vout
Vin
----------= 1

1 jωRC+
----------------------- 1

1 ω2R2C2+( ) ωRC( )atan∠
------------------------------------------------------------------------= =

1

1 ω2R2C2+
--------------------------------- ωRC( )atan–∠=

G jω( ) Vout
Vin
----------= 1
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G jω( )
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Basic Analog Filters
. The plot shows that this circuit is an approximation, although not a good one, to the
amplitude characteristics of a low-pass filter.

Figure 7.29. Amplitude characteristics of a series RC low-pass filter

We can also obtain a quick sketch for the phase angle, i.e.,  versus  by evaluating

of (11.3) at , , ,  and . Thus,

as , 

for , 

for , 

as , 

and as , 

We use Excel to plot  versus radian frequency for several values of . This is shown in Figure
7.31 where, again for convenience, we let 

Example 7.11  

The network of Figure 7.30 is also a series RC circuit, where the positions of the resistor and capac-
itor have been interchanged. Derive expressions for the magnitude and phase responses, and sketch
their characteristics.

Figure 7.30. RC network for Example 7.11

RC 1=

ω |G(jω)|
0.000 1
0.020 0.9998
0.040 0.9992
0.060 0.9982
0.080 0.99682
0.100 0.99504
0.120 0.99288
0.140 0.99034
0.160 0.98744
0.180 0.98418
0.200 0.98058
0.220 0.97664
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ω 1 RC⁄= θ 1atan– 45°–= =

ω 1– RC⁄= θ 1–( )atan– 45°= =

ω ∞–→ θ ∞–( )atan– 90°= =

ω ∞→ θ ∞( )atan– 90– °= =

θ ω
RC 1=

+

−
R

C
Vin

Vout

+

−
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Figure 7.31. Phase characteristics of a series RC low-pass filter

Solution:

or

 (7.29)

The magnitude of (7.29) is

(7.30)

and the phase angle or argument, is

(7.31)

ω θ
-12.00 85.24
-11.98 85.23
-11.96 85.22
-11.94 85.21
-11.92 85.20
-11.90 85.20
-11.88 85.19
-11.86 85.18
-11.84 85.17
-11.82 85.16
-11.80 85.16
-11.78 85.15
-11.76 85.14
-11.74 85.13
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1 ω2R2C2+
---------------------------------------- ωRC j ωRC+( )

1 ω2R2C2+
--------------------------------------= = = =
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1

ωRC
------------⎝ ⎠

⎛ ⎞atan∠

1 ω2R2C2+
--------------------------------------------------------------------------------- 1

1 1
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-------------------+

--------------------------------- 1
ωRC
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⎛ ⎞atan∠==
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1 1
ω2R2C2
-------------------+

---------------------------------=

θ G jω( ){ }arg 1
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------------⎝ ⎠

⎛ ⎞atan= =
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We can obtain a quick sketch for the magnitude  versus  by evaluating (7.30) at ,
, and . Thus,

as ,  

for , 

and as , 

Figure 7.32 shows  versus radian frequency for several values of  where . The
plot shows that this circuit is an approximation, although not a good one, to the amplitude charac-
teristics of a high-pass filter.

Figure 7.32. Amplitude characteristics of a series RC high-pass filter

We can also obtain a quick sketch for the phase angle, i.e.,  versus , by evaluat-
ing (7.31) at , , , , and . Thus,

as ,  

for , 
for , 

as , 

and as , 

Figure 7.33 shows the phase angle  versus radian frequency for several values of , where

G jω( ) ω ω 0=

ω 1 RC⁄= ω ∞→

ω 0→ G jω( ) 0≅

ω 1 RC⁄= G jω( ) 1 2⁄ 0.707= =

ω ∞→ G jω( ) 1≅

G jω( ) ω RC 1=

ω |G(jω)|
0.000 1E-07
0.020 0.02
0.040 0.03997
0.060 0.05989
0.080 0.07975
0.100 0.0995
0.120 0.11915
0.140 0.13865
0.160 0.15799
0.180 0.17715
0.200 0.19612
0.220 0.21486
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ω ∞→ θ ∞( )atan– 90– °= =

θ ω
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Figure 7.33. Phase characteristics of an RC high-pass filter

7.9 Active Filter Analysis

We can analyze active filters, such as those we discussed in Chapter 4, using phasor circuit analysis.

Example 7.12  

Compute the approximate cut-off frequency of the circuit of Figure 7.34 which is known as a Multi-
ple Feed Back (MFB) active low-pass filter.

Figure 7.34. Low-pass filter for Example 7.12

Solution:

We write the phasor circuit nodal equations as follows:

At Node {:

(7.32)

ω θ
-12.000 -4.7636417
-11.980 -4.7715577
-11.960 -4.7794999
-11.940 -4.7874686
-11.920 -4.7954638
-11.900 -4.8034858
-11.880 -4.8115345
-11.860 -4.8196102
-11.840 -4.827713
-11.820 -4.835843
-11.800 -4.8440004
-11.780 -4.8521853
-11.760 -4.8603978
-11.740 -4.8686381
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At node |:

(7.33)

and since  (virtual ground), relation (7.33) reduces to

(7.34)

and by substitution of (7.34) into (7.32), rearranging, and collecting like terms, we get:

(7.35)

or

(7.36)

By substitution of given values of resistors and capacitors, we get

or

        (7.37)

and now we can use MATLAB to find and plot the magnitude of (7.37) with the following code.

w=1:10:10000; Gjw=−1./(2.5.*10.^(−6).*w.^2−5.*j.*10.^(−3).*w+5);
semilogx(w,abs(Gjw)); grid; hold on
xlabel('Radian Frequency w'); ylabel('|Vout/Vin|');
title('Magnitude Vout/Vin vs. Radian Frequency')

The plot is shown in Figure 7.35 where we see that the cutoff frequency occurs at about
. We observe that the half-power point for this plot is .

v2 v1–

R3
----------------

C2
1 jωC2( )⁄
------------------------=

v2 0=

v1 jωR– 3C2( )vout=

1
R1
------ 1

R2
------ 1

R3
------ jωC1+ + +⎝ ⎠

⎛ ⎞ jωR– 3C2( ) 1
R2
------– vout

1
R1
------vin=

vout
vin
---------- 1

R1
1

R1
------ 1

R2
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R3
------ jωC1+ + +⎝ ⎠

⎛ ⎞ jωR– 3C2( ) 1
R2
------–

----------------------------------------------------------------------------------------------------------------=

vout
vin
---------- 1

2 10 5× 1
20 10 3×
--------------------- j2.5 10 8–× ω+⎝ ⎠

⎛ ⎞ j5 10 4× 10 8–× ω–( ) 1
4 10 4×
------------------–

-----------------------------------------------------------------------------------------------------------------------------------------------------------------------=

G jω( )
vout
vin
---------- 1–

2.5 10 6–× ω2 j5 10 3–× ω 5+–
-------------------------------------------------------------------------==

700 rad s⁄ 0.2 0.707× 0.141=
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Figure 7.35. Plot for the magnitude of the low-pass filter circuit of Example 7.12

7.10 Summary

• In Chapter 3 we were concerned with constant voltage and constant current sources, resistances
and conductances. In this chapter we were concerned with alternating voltage and alternating cur-
rent sources, impedances, and admittances.

• Nodal analysis, mesh analysis, the principle of superposition, Thevenin’s theorem, and Norton’s
theorem can also be applied to phasor circuits.

• The use of complex numbers make the phasor circuit analysis much easier. 

• MATLAB can be used very effectively to perform the computations since it does not require any
special procedures for manipulation of complex numbers.

• Whenever a branch in a circuit contains two or more devices in series or two or more devices in
parallel, it is highly recommended that they are grouped and denoted as , , and so on before
writing nodal or mesh equations.

• Phasor diagrams are sketches that show the magnitude and phase relationships among several pha-
sor voltages and currents. When constructing a phasor diagram, the first step is to select one pha-
sor as a reference, usually with zero phase angle, and all other phasors must be drawn with the cor-
rect relative angles.

• The RC low-pass and RC high-pass filters are rudimentary types of filters and are not used in prac-
tice. They serve as a good introduction to electric filters.
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Exercises
7.11 Exercises

Multiple Choice

1. In the circuit of Figure 7.36 the phasor voltage  is

A.

B.

C.

D.

E. none of the above

Figure 7.36. Circuit for Question 1

2. In the circuit of Figure 7.37 the phasor current  is

A.

B.

C.

D.

E. none of the above

Figure 7.37. Circuit for Question 2

3. In the circuit of Figure 7.38 the voltage across the capacitor  is

A.

B.

V

2 j0 V+

1 j0 V+

1 j– 0 V

1 j V+

IS +

−

−j ΩV

1 0° A∠

1 Ω

j0.5 Ω

I

0 j2 A+

0 j2 A–

1 j0 A+

2 j2 A+

VS 

−j1 Ω2 0° V∠

1 Ω

j1 Ω

1 Ω1 Ω
I 

C2

8 10 4– 2000t 90°+( ) Vsin×

50 2000t 45°–( ) Vcos
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C.

D.

E. none of the above

Figure 7.38. Circuit for Question 3

4. In the circuit of Figure 7.39 the current  through the capacitor is

A.

B.

C.

D.

E. none of the above

Figure 7.39. Circuit for Question 4

5. The Thevenin equivalent voltage  at terminals A and B in the circuit of Figure 7.40 is

A.

B.

C.

D.

E. none of the above

50 2000t 45°+( ) Vcos

50 2000t 90°+( ) Vcos

4 Ω

8 2000t 90°+( )sin

vS t( )

L1

C2

C1

L23 mH
2 mH500 µF

100 µF

iC t( )

4 2000tsin

4 2000t 180°+( )sin

32 2000t 45°–( )cos

32 2000t 90°+( )cos

1 Ω

iC

iS t( ) 4 2000tcos=

0.5 mH500 µF

iS t( )

VTH

10 90° V–∠

10 53.13° V–∠

10 53.13° V∠

10 45° V–∠
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Figure 7.40. Circuit for Questions 5 and 6

6. The Thevenin equivalent impedance  at terminals A and B in the circuit of Figure 7.40 is

A.

B.

C.

D.

E. none of the above

7. In the circuit of Figure 7.41 the phasor voltage  is

A.

B.

C.

D.

E. none of the above

Figure 7.41. Circuit for Question 7

8. In the circuit of Figure 7.42 the phasor voltage  is

A.

B.

VS 

−j5 Ω
10 0° V∠

4 Ω j2 Ω
A

B

ZTH

2 j4 Ω+

4 j2 Ω+

4 j– 2 Ω

j– 5 Ω

VC

5 90° –∠ V

5 45° –∠ V

4 53.1° –∠ V

4 53.1° ∠ V

VS 

− −j4 Ω
20 0° V∠ j3 Ω

+ +
−

4 ΩIX IX 

4IX V

VR5 Ω

20 j0 V+

0 j20 V+
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C.

D.

E. none of the above

Figure 7.42. Circuit for Question 8

9. In the circuit of Figure 7.43 the phasor voltage  is

A.

B.

C.

D.

E. none of the above

Figure 7.43. Circuit for Question 9

10. In the circuit of Figure 7.44 the  voltage  is

A.

B.

C.

D.

20 j20 V+

80 j80–  V

IS 

−4 0° A∠

j4 Ω

+

4 Ω

2VX A

VX 5 Ω

+

−
VR5 Ω

VOUT  2

2 j0 V+

4 j0 V+

4 j– 0 V

1 j1 V+

10 Ω

−

10 Ω

VOUT  1

VIN

1 0°∠
VOUT  2

j5 Ω
j– 5 Ω

t domain– vAB t( )

1.89 ωt 45°+( ) Vcos

0.53 ωt 45– °( ) Vcos

2 ωt Vcos

0.5 ωt 53.1°+( ) Vcos
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E. none of the above

Figure 7.44. Circuit for Question 10

Problems

1. For the circuit of Figure 7.45, . Compute  and .

Figure 7.45. Circuit for Problem 1

2. Write nodal equations and use MATLAB to compute  for the circuit of Figure 7.46 given
that . 

Figure 7.46. Circuit for Problem 2

3. Write mesh equations and use MATLAB to compute  for the circuit of Figure 7.47 given
that .

VS 
j2 Ω

−j Ω

2 Ω

2 0° V∠

2 Ω

A

B

iS t( ) 2 1000t Acos= vAB t( ) iC t( )

8 Ω

A 

6 Ω

5 Ω

7 Ω

20 mH

2 Ω

B 

iC t( )

iS t( )

1000 6⁄  µF

iC t( )

vS t( ) 12 1000t 45°+( ) Vcos=

4 Ω
10 Ω 5 Ω

20 Ω 5 mH

2 Ω

100 µF

+

−

vS t( )

iC t( )

iL t( )

vS t( ) 100 10000t 60°+( ) Vcos=
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Figure 7.47. Circuit for Problem 3

4. For the circuit of Figure 7.48, it is given that  and
. Use superposition to find .

Figure 7.48. Circuit for Problem 4

5. For the circuit of Figure 7.49, find  if , , and
. Plot  using MATLAB or Excel.

Figure 7.49. Circuit for Problem 5

6. For the circuit of Figure 7.50, find the value of  which will receive maximum power.

4 Ω
10 Ω 5 Ω

20 Ω
2 mH

2 Ω

10 µF

+

− vS t( )
iL t( )

vS1 t( ) 40 5000t 60°+( ) Vcos=

vS2 t( ) 60 5000t 60°+( ) Vsin= vC t( )

+

−

25 Ω10 Ω
+

−

+

−
20 µF

5 mH2 mH

vC t( )

vS1 t( )
vS2 t( )

R2R1 L2L1

vC t( ) vS1 15 V= vS2 t( ) 20 1000t Vcos=

iS t( ) 4 2000t Acos= vC t( )

+

− 5 Ω

10 Ω

+
− 500 µF

2 mH1 mH

+

−

vC t( )

vS2 t( )

iS t( )

vS1

ZLD
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Figure 7.50. Circuit for Problem 6

7. For the circuit of Figure 7.51, to what value should the load impedance  be adjusted so that it
will receive maximum power from the voltage source?

Figure 7.51. Circuit for Problem 6

8. For the circuit of Figure 7.52, draw a phasor diagram which shows the voltage and current in
each branch.

Figure 7.52. Circuit for Problem 8

9. For the op amp circuit of Figure 7.53, . Find .

vS 

+

−

ZS 

ZLD

ZLD

4 Ω
10 Ω 5 Ω

20 Ω

+

− j5

−j10170 0°∠

ZLD

4 Ω 10 Ω 5 Ω

20 Ω

+

−
j5

−j10

VS

vin t( ) 3 1000t Vcos= vout t( )
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Figure 7.53. Circuit for Problem 9

vout t( )vin t( )
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7.12 Answers to Exercises

Multiple Choice

1. E  where  and  is found from the nodal equa-

tion  or  or . Therefore,

2. C Denoting the resistor in series with the voltage source as , the resistor in series with the
capacitor as , and the resistor in series with the capacitor as , the equivalent impedance is

and

3. B , , , ,
 and the phasor equivalent circuit is shown below.

, ,

and thus 

4. D , , , , and the pha-
sor equivalent circuit is shown below. 

V VL VC+= VL 1 0°∠ j1 2⁄× j1 2⁄  V= = VC

VC
1

-------
VC

j–
-------+ 1 j0+= 1 j+( )VC 1= VC

1
1 j+
----------- 1 j–

1 j–
----------× 1 j–

2
---------- 1

2
--- j12

--- V–= ==

V j1 2⁄ 1 2⁄ j1 2⁄–+ 1 2⁄ j0 V+= =

z1

z2 z3

Zeq z1
z2 z3⋅
z2 z3+
---------------+ 1 1 j1–( ) 1 j1+( )

1 j1– 1 j1+ +
--------------------------------------+ 1 2

2
---+ 2 j0+= = = =

I
VS
Z

------ 2 j0+
2 j0+
-------------- 1 j0 A+= = =

8 2000t 90°+( )sin 8 2000t 8 0° V∠⇔cos= jωL1 j6= jωL2 j4= j– ωC1⁄ j1–=

j– ωC1⁄ j1–=

VS 

−j5 Ω8 0° V∠

4 Ω j6 Ω

L1

C2

C1

L2

j4 Ω−j1 Ω

I 

+

−

Z 4 j6 j1– j4 j5–+ + 4 j4+= = I
VS
Z

------ 8 j0+
4 j4+
-------------- 8 j0+

4 j4+
-------------- 4 j4–

4 j4–
--------------⋅ 32 j32–

32
-------------------- 1 j1–= = = = =

VC2
j5– 1 j–( )× 5 j5– 50 45°–∠ 50 2000t 45°–( ) Vcos⇔= = =

4 2000t 4 0°∠⇔cos G 1 R⁄ 1 Ω 1–= = jωC j1 Ω 1–= j– ωL⁄ j1 Ω 1––=

IS 

4 0° A∠

IC 1 Ω 1–

j1 Ω 1––

j1 Ω 1–
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Denoting the parallel combination of the conductance and inductance as  and
using the current division expression for admittances we get

and thus

5. B By the voltage division expression

6. C We short the voltage source and looking to the left of points A and B we observe that the
capacitor is in parallel with the series combination of the resistance and inductance. Thus,

7. D , 

and

8. E

and 

9. B

and

10. A We write the nodal equation at Node A for  as

Y1 1 j1–=

IC
jωC

jωC Y1+
---------------------- IS⋅ j1

j1 1 j1–+
------------------------- j1 4 0°∠× 1 90°∠ 4 0°∠× 4 90° A∠= = = = =

iS t( ) 4 2000t 90°+( ) Acos=

VTH VAB
j5–

4 j2 j5–+
------------------------- 10 0°∠⋅ 5 90°–∠ 10 0°∠×

4 j3–
------------------------------------------ 50 90°–∠

5 36.9°–∠
------------------------ 10 53.1° V–∠= = = = =

ZTH
j5–( ) 4 j2+( )

4 j2 j5–+
-------------------------------- 10 j20–

4 j3–
-------------------- 10 j20–

4 j3–
-------------------- 4 j3+

4 j3+
--------------⋅ 100 j50–

25
----------------------- 4 j2–= = = = =

IX
20 0°∠
4 j3+
---------------- 20 0°∠

5 36.9°∠
--------------------- 4 36.9°–∠= = = 4IX 16 36.9°–∠=

IC
4IX

j4–
-------- 16 36.9°–∠

4 90°–∠
--------------------------- 4 53.1°∠= = =

VX
4

4 j4+
-------------- 4 0°∠× j4× 64 90°∠

32 45°∠
----------------------- 64 32×

32
---------------------- 45° 2 32 45°∠=∠= = =

VR5 Ω
2VX 5× 20 32 45°∠× 20 32 2

2
------- j 2

2
-------+⎝ ⎠

⎛ ⎞ 80 j80+= = = =

VOUT  1
10
j5
------ 1 0°∠×– j2 1 0°∠× 2 90°∠ 1 0°∠× 2 90°∠= = = =

VOUT  2
10
j– 5

-------- VOUT  1×– j– 2 2 0°∠× 2 90– °∠ 2 90°∠× 4 0°∠ 4 j0+= = = = =

VAB
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or  and in the  

Problems

1. We transform the current source and its parallel resistance to a voltage source series resistance,
we combine the series resistors, and we draw the phasor circuit below.

For this phasor circuit, ,  and

, , , and 

We observe that  and . At Node A,

and

VAB 2 0°∠–

j–
-----------------------------

VAB
2

---------
VAB

2 j2+
--------------+ + 0=

1
2
--- j 1

2 j2+
--------------+ +⎝ ⎠

⎛ ⎞ VAB 2 90°∠=

VAB
2 90°∠

1 2⁄ j 1 4⁄ j 4⁄–+ +
------------------------------------------------- 2 90°∠

3 4⁄ j3 4⁄+
---------------------------- 2 90°∠

1.06 45°∠
------------------------= = =

VAB 1.89 45°∠= t domain– vAB t( ) 1.89 ωt 45°+( )cos=

8 Ω

A 

6 Ω

5 Ω

15 Ω
8 Ω

B 

+

−

VS

j6 Ω–

IC

j20 Ω

10 0° V∠

C 

z1z2 z3

VS 2 0°∠ 5× 10 0° V∠= = jωL j103 20 10 3–×× j20 Ω= =

j– ωC⁄ j 103 103 6⁄× 10 6–×( )⁄– j6–= = z1 5 Ω= z2 15 j20+( ) Ω= z3 8 j– 6( ) Ω=

VA VAB VAC VCB+ VAC 10 0° V∠+= = = VB 0=

VA VB–

z2
-------------------

VA 10 0°∠–

z1
-----------------------------

VA VB–

z3
-------------------+ + 0=

1
z1
---- 1

z2
---- 1

z3
----+ +⎝ ⎠

⎛ ⎞ VA
10 0°∠

z1
----------------=

1
5
--- 1

15 j20+
-------------------- 1

8 j– 6
-----------+ +⎝ ⎠

⎛ ⎞ VA
10 0°∠

5
---------------- 2 0°∠= =
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Chapter 7  Phasor Circuit Analysis
Then, in the  .

Also,

and

Check with MATLAB:

z1=5; z2=15+20j; z3=8−6j; VA=(10+0j)/(z1*(1/z1+1/z2+1/z3)); fprintf(' \n');...
fprintf('magVA = %5.2f V \t',abs(VA));...
fprintf('phaseVA = %5.2f deg \t',angle(VA)*180/pi); fprintf(' \n'); fprintf(' \n');

magVA = 6.55 V   phaseVA = -5.26 deg

2. The equivalent phasor circuit is shown below where  and

Node :

VA
2 0°∠

0.2 1
25 53.1°∠
------------------------ 1

10 36.9°–∠
---------------------------+ +

------------------------------------------------------------------------ 2 0°∠
0.2 0.04 53.1– °∠ 0.1 36.9°∠+ +
------------------------------------------------------------------------------= =

2 0°∠
0.2 0.04 53.1° j0.04 53.1° 0.1 36.9° j0.1 36.9°sin+cos+sin–cos+
-----------------------------------------------------------------------------------------------------------------------------------------------------------------=

2 0°∠
0.2 0.04 0.6× j0.04 0.8×– 0.1 0.8 j0.1 0.6×+×++
------------------------------------------------------------------------------------------------------------------------------ 2 0°∠

0.304 j0.028+
-----------------------------------==

2 0°∠
0.305 5.26°∠
------------------------------- 6.55 5.26°–∠==

t domain– vAB t( ) 6.55 1000 5.26°+( )cos=

IC
VA
z3
------ 6.55 5.26°–∠

10 36.9°–∠
------------------------------- 0.655 31.7°∠= = =

iC t( ) 0.655 1000 31.7°+( )cos=

jωL j103 5 10 3–×× j5= =

j– ωC⁄ j 103 10 4–×( )⁄– j10–= =

4 Ω

10 Ω 5 Ω

20 Ω

2 Ω

+

−

V2V1 V3
VS

12 45°∠

z1

z2

z3

z4

z5

z6

IC

z7

j5 Ω
j– 10 Ω

V1

V1 VS–

z1
------------------

V1 V2–

z3
------------------

V1
z2
------

V1 V3–

z7
------------------+ + +
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or

Node :

or

Node :

or

and in matrix form

Shown below is the MATLAB code to solve this system of equations.

Vs=12*(cos(pi/4)+j*sin(pi/4)); % Express Vs in rectangular form
z1=4; z2=20; z3=10; z4=5j; z5=5; z6=−10j; z7=2;...
Y=[1/z1+1/z2+1/z3+1/z7  −1/z3  −1/z7;...
−1/z3  1/z3+1/z4+1/z5  −1/z5;...
−1/z7  −1/z5  1/z5+1/z6+1/z7];...
I=[Vs/z1  0  0]'; V=Y\I; Ic=V(3)/z6;...
magIc=abs(Ic); phaseIc=angle(Ic)*180/pi;...
disp('V1='); disp(V(1)); disp('V2='); disp(V(2));...
disp('V3='); disp(V(3)); disp('Ic='); disp(Ic);...
format bank % Display magnitude and angle values with two decimal places
disp('magIc='); disp(magIc); disp('phaseIc='); disp(phaseIc);...
fprintf(' \n');

V1 = 5.9950 - 4.8789i

1
z1
---- 1

z2
---- 1

z3
---- 1

z7
----+ + +⎝ ⎠

⎛ ⎞ V1
1
z3
----V2–

1
z7
----V3–

1
z1
----VS=

V2

V2 V1–

z3
------------------

V2
z4
------

V2 V3–

z5
------------------+ + 0=

1
z3
----V1

1
z3
---- 1

z4
---- 1

z5
----+ +⎝ ⎠

⎛ ⎞ V2+–
1
z5
----V3– 0=

V3

V3 V2–

z5
------------------

V3 V1–

z7
------------------

V2 V3–

z6
------------------+ + 0=

1
z7
----V1

1
z5
----V2– 1

z5
---- 1

z6
---- 1

z7
----+ +⎝ ⎠

⎛ ⎞ V3+– 0=

1
z1
---- 1

z2
---- 1

z3
---- 1

z7
----+ + +⎝ ⎠

⎛ ⎞ 1
z3
----– 1

z7
----–

1
z3
----– 1

z3
---- 1

z4
---- 1

z5
----+ +⎝ ⎠

⎛ ⎞ 1
z5
----–

1
z7
----– 1

z5
----– 1

z5
---- 1

z6
---- 1

z7
----+ +⎝ ⎠

⎛ ⎞

V1

V2

V3

⋅

1
z1
----VS

0
0

=
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Chapter 7  Phasor Circuit Analysis
V2 = 5.9658 - 0.5960i

V3 = 5.3552 - 4.4203i

Ic = 0.4420 + 0.5355i

magIc = 0.69

phaseIc = 50.46

Therefore, 

3. The equivalent phasor circuit is shown below where  and

Mesh :

Mesh :

Mesh :

Mesh :

and in matrix form

IC 0.69 50.46° iC t( )⇔∠ 0.69 1000t 50.46°+( ) Acos= =

jωL j104 2 10 3–×× j20= =

j– ωC⁄ j 104 10× 10 6–×( )⁄– j10–= =

4 Ω

10 Ω 5 Ω

20 Ω

2 Ω

+

−

j10 Ω–

j20 Ω

VS 100 60°∠=

IL

z7

z2

z1

z3

z4

z6

z5

I1

I2

I3

I4

I1

z1 z2+( )I1 z2I3– VS=

I2

z1 z2 z7+ +( )I2 z3I3 z5I4–– 0=

I3

z2I1 z3I2–– z2 z3 z4+ +( )I3 z4I4–+ 0=

I4

z5I2 z4I3–– z4 z5 z6+ +( )I4+ 0=
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Shown below is the MATLAB code to solve this system of equations.

Vs=100*(cos(pi/3)+j*sin(pi/3)); % Express Vs in rectangular form
z1=4; z2=20; z3=10; z4=20j; z5=5; z6=−10j; z7=2;...
Z=[z1+z2  0  −z2  0;...
0  z3+z5+z7  −z3  −z5;...
−z2  −z3  z2+z3+z4  −z4;...
0  −z5  −z4  z4+z5+z6];...
V=[Vs  0  0  0]'; I=Z\V; IL=I(3)−I(4);...
magIL=abs(IL); phaseIL=angle(IL)*180/pi;...
disp('I1='); disp(I(1)); disp('I2='); disp(I(2));...
disp('I3='); disp(I(3)); disp('I4='); disp(I(4));...
disp('IL='); disp(IL);...
format bank % Display magnitude and angle values with two decimal places
disp('magIL='); disp(magIL); disp('phaseIL='); disp(phaseIL);...
fprintf(' \n');

I1 = 5.4345 - 3.4110i

I2 = 4.5527 + 0.7028i

I3 = 4.0214 + 0.2369i

I4 = 7.4364 + 1.9157i

IL= -3.4150- 1.6787i

magIL = 3.81

phaseIL = -153.82

Therefore, 

4. The equivalent phasor circuit is shown below where

z1 z2+ 0 z2– 0
0 z1 z2 z7+ + z3– z5–

z2– z3– z2 z3 z4+ + z4–

0 z5– z4– z4 z5 z6+ +

I1

I2

I3

I4

⋅

VS

0
0
0

=

IL 3.81 153.82°–∠= iL t( )⇔ 3.81 104t 153.82°––( )cos=

jωL1 j5 103× 2 10 3–×× j10= =

jωL2 j5 103× 5 10 3–×× j25= =

j– ωC⁄ j 5 103× 20× 10 6–×( )⁄– j10–= =
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Chapter 7  Phasor Circuit Analysis
We let  where  is the capacitor voltage due to  acting alone, and  is the
capacitor voltage due to  acting alone. With  acting alone the circuit reduces to that
shown below.

By KCL

and with MATLAB

Vs1=40*(cos(pi/3)+j*sin(pi/3)); z1=10+10j; z2=−10j; z3=25+25j; V1c=Vs1/(1+z1/z2+z1/z3)

V1c = 36.7595 - 5.2962i

Therefore,

Next, with  acting alone the circuit reduces to that shown below.

+

−

25 Ω10 Ω
+

−

+

−

VC

j10 Ω j25 Ω

j– 10 Ω

VS1 VS2

40 60° ∠ V 60 30–( )° ∠ V

VC V'C V''C+= V'C VS1 V''C
VS2 VS1

+

−

25 Ω10 Ω

+

−

V'C

j10 Ω j25 Ω

j– 10 Ω

VS1

40 60° ∠ V

z1
z2

z3

V'C VS1–

z1
---------------------

V'C
z2
------

V'C
z3
------+ + 0=

1
z1
---- 1

z2
---- 1

z3
----+ +⎝ ⎠

⎛ ⎞ V'C
VS1
z1

--------=

V'C
VS1

z1
1
z1
---- 1

z2
---- 1

z3
----+ +⎝ ⎠

⎛ ⎞⋅
---------------------------------------------

VS1

1
z1
z2
----

z1
z3
----+ +⎝ ⎠

⎛ ⎞
----------------------------------= =

V'C 36.76 j5.30 V–=

VS2
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By KCL

and with MATLAB

Vs2=60*(cos(pi/6)−j*sin(pi/6));...
z1=10+10j; z2=−10j; z3=25+25j; V1c=36.7595−5.2962j;...
V2c=Vs2/(z3/z1+z3/z2+1); Vc=V1c+V2c; fprintf(' \n');...
disp('V1c = '); disp(V1c); disp('V2c = '); disp(V2c);...
disp('Vc=V1c+V2c'); fprintf(' \n'); disp('Vc = '); disp(Vc);...
fprintf('magVc = %4.2f V \t',abs(Vc));...
fprintf('phaseVc = %4.2f deg \t',angle(Vc)*180/pi);...
fprintf(' \n'); fprintf(' \n');

V1c = 36.7595 - 5.2962i

V2c = -3.1777 - 22.0557i

Vc = V1c+V2c

Vc = 33.5818 - 27.3519i

magVc = 43.31 V   phaseVc = -39.16 deg

Then, 

and

+

−

25 Ω10 Ω
+

−
V''C

j10 Ω j25 Ω

j– 10 Ω

VS2

60 30–( )° ∠ V

z1 z2

z3

V''C
z1
-------

V''C
z2
-------

V''C VS2–

z3
----------------------+ + 0=

1
z1
---- 1

z2
---- 1

z3
----+ +⎝ ⎠

⎛ ⎞ V''C
VS2
z3

--------=

V''C
VS2

z3
1
z1
---- 1

z2
---- 1

z3
----+ +⎝ ⎠

⎛ ⎞⋅
---------------------------------------------

VS2
z3
z1
----

z3
z2
---- 1+ +⎝ ⎠

⎛ ⎞
----------------------------------= =

VC V'C V''C+ 33.58 j27.35– 43.31 27.35°∠= = =

vC t( ) 43.31 5000t 27.35°–( )cos=
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Chapter 7  Phasor Circuit Analysis
5. This circuit is excited by a DC (constant) voltage source, an AC (sinusoidal) voltage source, and
an AC current source of different frequency. Therefore, we will apply the superposition principle. 

Let  be the capacitor voltage due to  acting alone,  the capacitor voltage due to 
acting alone, and  the capacitor voltage due to  acting alone. Then, the capacitor voltage
due to all three sources acting simultaneously will be 

With the DC voltage source acting alone, after steady-state conditions have been reached the
inductors behave like short circuits and the capacitor as an open circuit and thus the circuit is sim-
plified as shown below.

By the voltage division expression

and

Next, with the sinusoidal voltage source  acting alone the reactances are

and the equivalent phasor circuit is as shown below.

V'C vS1 V''C vS2 t( )

V'''C iS t( )

VC V'C V''C V'''C+ +=

+

−
5 Ω

10 Ω

+
−

15 V

+

−

V'C VR5 Ω

V'C VR5 Ω
5

10 5+
--------------- 15⋅ 5 V DC= = =

v'C t( ) 5 V DC=

vS2 t( )

jω1L1 j103 1 10 3–×× j1 Ω= =

jω1L2 j103 2 10 3–×× j2 Ω= =

j– ω1C⁄ j– 103 5 10 4–××( )⁄ j– 2 Ω= =
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By KCL

and with MATLAB

Vs2=20+0j; z1=10+j; z2=−2j; z3=5+2j; V2c=Vs2/(1+z1/z2+z1/z3); fprintf(' \n');...
disp('V2c = '); disp(V2c); fprintf('magV2c = %4.2f V \t',abs(V2c));...
fprintf('phaseV2c = %4.2f deg \t',angle(V2c)*180/pi); fprintf(' \n'); fprintf(' \n');

 
V2c = 1.8089 - 3.5362i

magV2c = 3.97 V phaseV2c = -62.91 deg

Then, 

and

Finally, with the sinusoidal current source  acting alone the reactances are

+

−

25 Ω10 Ω

+

−

V''C

j1 Ω j2 Ω

j– 10 Ω

VS2

20 0° ∠ V

z1
z3

z2

V''C VS2–

z1
----------------------

V''C
z2
-------

V''C
z3
-------+ + 0=

1
z1
---- 1

z2
---- 1

z3
----+ +⎝ ⎠

⎛ ⎞ V''C
VS2
z1

--------=

V''C
VS2

z1
1
z1
---- 1

z2
---- 1

z3
----+ +⎝ ⎠

⎛ ⎞⋅
---------------------------------------------

VS2

1
z1
z2
----

z1
z3
----+ +⎝ ⎠

⎛ ⎞
-----------------------------------= =

V''C 1.81 j3.54– 3.97 62.9– °∠= =

v''C t( ) 3.97 1000t 62.9°–( )cos=

iS t( )

jω2L1 j2 103× 1 10 3–×× j2 Ω= =

jω2L2 j2 103× 2 10 3–×× j4 Ω= =

j– ω2C⁄ j– 2 103× 5 10 4–××( )⁄ j– 1 Ω= =
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Chapter 7  Phasor Circuit Analysis
and the equivalent phasor circuit is as shown below where the current source and its parallel resis-
tance have been replaced with a voltage source with a series resistor.

By KCL

and with MATLAB

Vs3=20+0j; z1=10+2j; z2=−j; z3=5+4j; V3c=Vs3/(z3/z1+z3/z2+1); fprintf(' \n');...
disp('V3c = '); disp(V3c); fprintf('magV3c = %4.2f V \t',abs(V3c));...
fprintf('phaseV3c = %4.2f deg \t',angle(V3c)*180/pi); fprintf(' \n'); fprintf(' \n');

V3c = -1.4395 - 3.1170i

magV3c = 3.43 V phaseV3c = -114.79 deg

Then, 

or

and

These waveforms are plotted below using the following MATLAB code:

wt=linspace(0,2*2*pi); deg=wt*180/pi; V1c=5;
V2c=3.97.*cos(wt−62.9.*pi./180);

+

−

5 Ω10 Ω
+

−
V'''C

j2 Ω j4 Ω

j– 1 Ω

VS3

20 0° ∠ V

z1
z3

z2

V'''C
z1

--------
V'''C
z2

--------
V'''C VS3–

z3
-----------------------+ + 0=

1
z1
---- 1

z2
---- 1

z3
----+ +⎝ ⎠

⎛ ⎞ V'''C
VS3
z3

--------=

V'''C
VS3

z3
1
z1
---- 1

z2
---- 1

z3
----+ +⎝ ⎠

⎛ ⎞⋅
---------------------------------------------

VS3
z3
z1
----

z3
z2
---- 1+ +⎝ ⎠

⎛ ⎞
----------------------------------= =

V'''C 1.44– j3.12– 3.43 114.8– °∠= =

v'''C t( ) 3.43 2000t 114.8°–( )cos=

vC t( ) v'C v''C t( ) v'''C t( )+ + 5 3.97 1000t 62.9°–( )cos 3.43 2000t 114.8°–( )cos+ += =
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V3c=3.43.*cos(2.*wt−114.8.*pi./180); plot(deg,V1c,deg,V2c,deg,V3c, deg,V1c+V2c+V3c)

6. Since  and  are complex quantities, we will express them as 
and  where  and  denote the real and imaginary com-
ponents respectively.

We want to maximize 

The only that can vary are  and  and we must consider them indepen-
dently from each other. 

From the above expression we observe that  will be maximum when the denominator is
minimum and this will occur when , that is, when the imaginary parts of

 and  cancel each other. Under this condition,  simplifies to

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0
-4

-2

0

2

4

6

8

1 0

1 2

1 4

v'C 5 V DC=

vC t( )

v'''C t( ) v''C t( )

ZS ZLOAD ZS Re ZS{ } jIm ZS{ }+=

ZLOAD Re ZLOAD{ } jIm ZLOAD{ }+= Re Im

pLOAD i2
LOAD ZLOAD⋅

vS
2

ZS ZLOAD+( )2
----------------------------------- ZLOAD⋅= =

vS
2 ZLOAD⋅

Re ZS{ } jIm ZS{ } j Re ZLOAD{ } jIm ZLOAD{ }+( )+ +[ ]2
---------------------------------------------------------------------------------------------------------------------------------------=

Re ZLOAD{ } Im ZLOAD{ }

pLOAD

Im ZLOAD{ } Im ZS{ }–=

ZLOAD ZS pLOAD

pLOAD
vS

2 RLOAD⋅

RS RLOAD+( )2
------------------------------------=
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Chapter 7  Phasor Circuit Analysis
and, as we found in Chapter 3, for maximum power transfer . Therefore, the load
impedance  will receive maximum power when

that is, when  is adjusted to be equal to the complex conjugate of .

7. For this, and other similar problems involving the maximum power transfer theorem, it is best to
replace the circuit with its Thevenin equivalent. Moreover, we only need to compute .

For this problem, to find  we remove  and we short the voltage source. The remaining
circuit then is as shown below.

We observe that  is in parallel with  and this combination is shown as  in the simplified cir-
cuit below.

But this circuit cannot be simplified further unless we perform Wye to Delta transformation
which we have not discussed. This and the Delta to Wye transformation are very useful in three-
phase circuits and are discussed in Circuit Analysis II with MATLAB Applications by this author.
Therefore, we will compute  using the relation  where  is the open circuit
voltage, that is,  and  is the current that would flow between the terminals when the load is
replaced by a short. Thus, we will begin our computations with the Thevenin voltage.

We disconnect  from the circuit at points X and Y as shown below.

RLOAD RS=

ZLOAD

ZLOAD ZS∗=

ZLOAD ZS

ZTH

ZTH ZLOAD

z1

X Y

z2

z3

z4

z5

z6

z1 z2 z12

X Y

z12

z3

z4

z5

z6

ZTH ZTH VOC ISC⁄= VOC

VTH ISC

ZLOAD
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We will replace the remaining circuit with its Thevenin equivalent. Thus, with  discon-
nected the circuit simplifies to that shown below.

Now, we will find

At Node 1:

At Node 2:

and with MATLAB

Vs=170; z1=4; z2=20; z3=10; z4=5j; z5=5−10j;... 

4 Ω
10 Ω 5 Ω

20 Ω

+

− j5

−j10170 0°∠

ZLD
X Y

ZLOAD

4 Ω 5 Ω

20 Ω
+

−
170 0°∠

X Y10 Ω

j5 Ω

j– 10 Ω

1 2V1 V2 VYz1

z2

z3

z4

z5VS

VTH VXY VX VY– V1 V2 VR5 Ω
–( )–= = =

V1 VS–

z1
------------------

V1
z2
------

V1 V2–

z3
------------------+ + 0=

1
z1
---- 1

z2
---- 1

z3
----+ +⎝ ⎠

⎛ ⎞ V1
1
z3
----V2–

VS
z1
------=

V2 V1–

z3
------------------

V2
z4
------

V2
z5
------+ + 0=

1
z3
----V1– 1

z3
---- 1

z4
---- 1

z5
----+ +⎝ ⎠

⎛ ⎞ V2+
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Chapter 7  Phasor Circuit Analysis
Y=[1/z1+1/z2+1/z3  −1/z3;  −1/z3  1/z3+1/z4+1/z5]; I=[Vs/z1 0]'; V=Y\I; V1=V(1); V2=V(2);... 
VX=V1; VY=(5/z5)*V2; VTH=VX−VY; fprintf(' \n');...
disp('V1 = '); disp(V1); disp('V2 = '); disp(V2);...
disp('VTH = '); disp(VTH); fprintf('magVTH = %4.2f V ',abs(VTH));...
fprintf('phaseVTH = %4.2f deg ',angle(VTH)*180/pi); fprintf(' \n'); fprintf(' \n');

V1 = 1.1731e+002 + 1.1538e+001i

V2 = 44.2308+46.1538i

VTH = 1.2692e+002 - 1.5385e+001i

magVTH = 127.85 V phaseVTH = -6.91 deg 

Thus, 

Next, we must find  from the circuit shown below.
 

We will write four mesh equations as shown above but we only are interested in phasor current .
Observing that a and b are the same point the mesh equations are

and in matrix form

VTH 127.85 6.91°–∠=

ISC

4 Ω
10 Ω 5 Ω

20 Ω

+

− j5

−j10170 0°∠

X Y

VS

ISC
z1

z2

z3

z4

z5

z6I1

I2 I3

I4

b

a

I4

z1 z2+( ) I1 z2 I2– VS=

z2 I1– z2 z3 z4+ +( ) I2 z4 I3– z3 I4–+ 0=

z4 I2– z4 z5 z6+ +( ) I3 z5 I4–+ 0=

z3 I2– z5 I3– z3 z5+( ) I4+ 0=

z1 z2+ z2– 0 0
z2– z2 z3 z4+ + z4– z3–

0 z4– z4 z5 z6+ + z5–

z3– z5– z3 z5+

I1

I2

I3

I4

⋅

VS

0
0
0

=
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With MATLAB

Vs=170; VTH=126.92−15.39j; z1=4; z2=20; z3=10; z4=5j; z5=5; z6=−10j;... 
Z=[z1+z2  −z2  0  0;  −z2  z2+z3+z4  −z4  −z3;  0  −z4  z4+z5+z6  −z5;  0  −z3  −z5  z3+z5];...
V=[Vs  0  0  0]'; I=Z\V; I1=I(1); I2=I(2); I3=I(3); I4=I(4);... 
ZTH=VTH/I4; fprintf(' \n'); disp('I1 = '); disp(I1); disp('I2 = '); disp(I2);...
disp('I3 = '); disp(I3); disp('I4 ='); disp(I4); disp('ZTH ='); disp(ZTH); fprintf(' \n');

 
I1 = 15.6745 - 2.6300i

I2 = 10.3094 - 3.1559i

I3 = -1.0520 + 10.7302i

I4 = 6.5223 + 1.4728i

ZTH = 18.0084 - 6.4260i

Thus,  and by Problem 6, for maximum power transfer there must be

 or

8. We assign phasor currents as shown below. 

We choose  as a reference, that is, we let

 
Then,

 
and since 

Next,

and

ZTH 18.09 j6.43 Ω–=

ZLOAD Z∗TH=

ZLOAD 18.09 j6.43 Ω+=

4 Ω 10 Ω 5 Ω

20 Ω

+

−
j5

−j10

VS I4

I20

I10

IL

IC

I5

I5

I5 1 0° A∠=

V5 5 0° V∠=

IC I5=

VC IC j10–( )⁄ 1 0°∠ 10 90°–∠⋅ 10 90°–  V∠= = =

VL V5 VC+ 5 0° 10 90°–∠+∠ 5 j10–( )+ 5 j10– 11.18 63.4° V–∠= = = = =
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Chapter 7  Phasor Circuit Analysis
Now

and

Continuing we find

and

Also,

and

Finally,

The magnitudes (not to scale) and the phase angles are shown below.

The phasor diagram above is acceptable. However, it would be more practical if we rotate it by
 to show the voltage source  as reference at  as shown below.

IL VL j5⁄ 11.18 63.4°–∠( ) 5 90°∠( )⁄ 2.24 153.4°–∠ 2– j A–= = = =

I10 IL I5+ 2– j– 1+ 1– j– 2 135° A–∠= = = =

V10 10 2 135°–∠× 10 1– j–( )× 10– j10 V–= = =

V20 V10 VL+ 10– j10– 5 j10–+ 5– j20 V–= = =

I20 V20 20⁄ 5– j20–( ) 20⁄ 0.25– j A–= = =

I4 I20 I10+ 0.25– j– 1– j– 1.25– j2 A–= = =

V4 4I4 4 1.25– j2–( )× 5– j8 V–= = =

VS V4 V20+ 5– j8 5– j20–– 10– j28– 29.73 109.7° V–∠= = = =

IL

VL

I5 IC=

VC
VS

V10

V20

V4

I10I4
I20

109.7° VS 0°

VS

V20

VC

VL
I5 IC=

V4

V10IL

I4
I10

I20
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Answers to Exercises
9. The equivalent phasor circuit is shown below where , , and

Application of KCL yields

and since  the above relation reduces to

or

and with MATLAB

Vin=3; z1=1000; z2=3000; z3=−4000j; Vout=−Vin/(z1/z2+z1/z3);...
fprintf(' \n'); disp('Vout = '); disp(Vout); fprintf('magVout = %5.2f V \t',abs(Vout));...
fprintf('phaseVout = %5.2f deg \t',angle(Vout)*180/pi); fprintf(' \n'); fprintf(' \n');

Vout = -5.7600 + 4.3200i

magVout = 7.20 V   phaseVout = 143.13 deg

Thus,

and

z1 R1 1 KΩ= = z2 R2 3 KΩ= =

z3 j– ωC⁄ j– 10 3 0.25 10 6–××( )⁄ j4 KΩ–= = =

VIN 3 0° V∠=

1 KΩ
3 KΩ

z1

z3

z2

VOUT

V

V VIN–

z1
------------------

V VOUT–

z2
-----------------------

V VOUT–

z3
-----------------------+ + 0=

V 0=

1
z2
---- 1

z3
----+⎝ ⎠

⎛ ⎞ VOUT
VIN–

z1
------------=

VOUT
VIN–

z1
1
z2
---- 1

z3
----+⎝ ⎠

⎛ ⎞⋅
----------------------------------

VIN–

z1
z2
----

z1
z3
----+⎝ ⎠

⎛ ⎞
-------------------------= =

VOUT 5.76– j4.32+ 7.2 143.13° V∠= =

vout t( ) 7.2 1000t 143.13°+( ) Vcos=
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Chapter 8
Average and RMS Values, Complex Power, and Instruments

his chapter defines average and effective values of voltages and currents, instantaneous and
average power, power factor, the power triangle, and complex power. It also discusses electri-
cal instruments that are used to measure current, voltage, resistance, power, and energy. 

8.1 Periodic Time Functions

A periodic time function satisfies the expression

(8.1)

where  is a positive integer and  is the period of the periodic time function. The sinusoidal and
sawtooth waveforms of Figure 8.1 are examples of periodic functions of time.

Figure 8.1. Examples of periodic functions of time

Other periodic functions of interest are the square and the triangular waveforms. 

T

f t( ) f t nT+( )=

n T

T T

cosωt

T T

cos(ωt+θ)

θ

T T T T
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Chapter 8  Average and RMS Values, Complex Power, and Instruments
8.2 Average Values

The average value of any continuous function  such as that shown in Figure 8.2 over an interval
,

Figure 8.2. A continuous time function 

is defined as

 (8.2)

The average value of a periodic time function  is defined as the average of the function over one period.

Example 8.1  

Compute the average value of the sinusoid shown in Figure 8.3, where  denotes the peak (maxi-
mum) value of the sinusoidal voltage. 

Figure 8.3. Waveform for Example 8.1

Solution:

By definition,

f t( )
a t b≤ ≤

a b
t

f t( )

f t( )

f t( )ave
1

b a–
------------ f t( ) td

a

b

∫
1

b a–
------------ area a

b( )= =

f t( )

Vp

0

V p

π /2
π 3π /2

2π

−V p

V p sin ω t

ω t (r)

v(t)

T

Vave
1
T
--- v t( ) td

0

T

∫
1

ωT
------- Vp ωt ωt( )dsin

0

ωT

∫
Vp
2π
------ ωt ωt( )dsin

0

2π

∫= = =

Vp
2π
------ ωtcos–( )

0

2π Vp
2π
------ ωtcos( )

2π

0 Vp
2π
------ 1 1–( ) 0= = ==
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Effective Values
as expected since the net area of the positive and negative half cycles is zero.

Example 8.2  

Compute the average value of the half-wave rectification waveform shown in Figure 8.4.

Figure 8.4. Waveform for Example 8.2

Solution:

This waveform is defined as

(8.3)

Then, its average value is found from

(8.4)

In other words, the average value of the half-wave rectification waveform is equal to its peak value
divided by .

8.3 Effective Values

The effective current  of a periodic current waveform  is defined as the current which produces
heat in a given resistance R at the same average rate as a direct (constant) current , that is,

(8.5)

Also, in a periodic current waveform , the instantaneous power is

Half-Wave Rectifier Waveform

Radians

C
ur

re
nt

 (I
) I p sin ω t

T

π 2π

i t( )
Ip ωt    sin 0 ωt π< <

       0 π ωt 2π< <⎩
⎨
⎧

=

Iave
1

2π
------ Ip ωtsin ωt( )d

0

2π

∫
1

2π
------ Ip ωtsin ωt( ) 0 ωt( )d

π

2π

∫+d
0

π

∫= =

Ip
2π
------ ωt 0

πcos–( )
Ip
2π
------ ωt π

0cos
Ip
2π
------ 1 1–( )–[ ]

Ip
π
----= = ==

π

Ieff i t( )

Idc

Average Power Pave RIeff
2 RIdc

2
= = =

i t( )
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Chapter 8  Average and RMS Values, Complex Power, and Instruments
(8.6)

and

(8.7)

Equating (8.5) with (8.7) we get

or

or

(8.8)

Caution 1: In general,  since the expression  implies that the function i
must first be squared and the average of the squared value is then to be found. On the
other hand,  implies that the average value of the function must first be found
and then the average must be squared. The waveform of Figure 8.5 illustrates this point.

Figure 8.5. Waveforms to illustrate that 

Caution 2: In general, . For example, if  and
, then , and also . Thus, . However,

p t( ) R i
2 t( )=

Pave
1
T
--- p t( ) td

0

T

∫ 1
T
--- Ri2 td

0

T

∫ R
T
--- i2 td

0

T

∫= = =

RIeff
2 R

T
--- i2 td

0

T

∫=

Ieff
2 1

T
--- i 2 td

0

T

∫=

Ieff
1
T
--- i 2 td

0

T

∫ IRoot Mean Square IRMS Ave i2( )= = = =

ave i2( ) iave( )2≠ ave i2( )

iave( )2

i 2

i

ave(i2) ≠ 0

0

sqrt(ave(i2)) ≠ 0

iave = 0, i2ave = 0 and sqrt(i2ave) = 0

ave i2( ) iave( )2≠

Pave Vave Iave×≠ v t( ) Vp ωtcos=

i t( ) Ip ωt ϕ+( )cos= Vave 0= Iave 0= Pave 0=
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Effective (RMS) Value of Sinusoids
8.4 Effective (RMS) Value of Sinusoids

Now, we will derive an expression for the Root Mean Square (RMS) value of a sinusoid in terms of its
peak (maximum) value. We will denote the peak values of voltages and currents as  and 
respectively. The value from positive to negative peak will be denoted as  and , and the
RMS values as  and . Their notations and relationships are shown in Figure 8.6. 

Figure 8.6. Definitions of , , , and  in terms of  and 

Let

then,

and using the identity

we get

Pave
1
T
--- p t( ) td

0

T

∫ 1
T
--- v t( )i t( ) td

0

T

∫ 1
T
--- Vp ωtcos( ) Ip ωt ϕ+( )cos[ ] td

0

T

∫= 0≠= =

Vp Ip

Vp p– Ip p–

VRMS IRMS

Peak (Max) Value = 170 V

Peak (Max) Value = −170 V
90

180 270 360
Time (Degrees)

Peak-to-Peak Value = 340 V

           RMS Value = 0.707 × Peak = 120 V

Vp p– Ip p– VRMS IRMS Vp Ip

i Ip ωt θ–( )cos=

IRMS
2 1

T
--- i2 td

0

T

∫
1

2π
------ Ip

2
ωt θ–( )2cos ωt( )d

0

2π

∫= =

φ2cos 1
2
--- 2φ 1+cos( )=
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Chapter 8  Average and RMS Values, Complex Power, and Instruments
(8.9)

Using the trigonometric identities

and

by substitution into (8.9), we get

and therefore,

(8.10)

We observe that the  value of a sinusoid is independent of the frequency and phase angle, in
other words, it is dependent on the amplitude of the sinusoid only.

Example 8.3  

Compute the  and  for the sawtooth waveform shown in Figure 8.7.

Figure 8.7. Waveform for Example 8.3

Solution:

By inspection, the period  is as shown in Figure 8.8.

IRMS
2 Ip

2

4π
------ 2ωt θ–( )cos ωt( )d ωt( )d

0

2π

∫+
0

2π

∫=

Ip
2

4π
------ 2ωt θ–( )sin

2
------------------------------

0

2π
ωt 0

2π( )+
Ip

2

4π
------ 4π θ–( ) θ–( )sin–sin

2
---------------------------------------------------- 2π+==

x y–( )sin x y x ysincos–cossin=

α–( )sin– αsin=

IRMS
2 Ip

2

4π
------ 4π θcos 4πcos θ θsin+sin–sin

2
---------------------------------------------------------------------------- 2π+

Ip
2

4π
------ 2π( )

Ip
2

2
-----= = =

0 1

IRMS
Ip

2
------- 0.707Ip    = =

FOR SINUSOIDS ONLY

RMS

Iave IRMS

10 A

t

i t( )

T
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RMS Values of Sinusoids with Different Frequencies
 

Figure 8.8. Defining the period for the waveform of Example 8.3

The average value is

To find  we cannot use (8.10); this is for sinusoids only. Accordingly, we must use the definition
of the  value as derived in (8.8). Then,

or

8.5 RMS Values of Sinusoids with Different Frequencies

The  value of a waveform which consists of a sum of sinusoids of different frequencies, is
equal to the square root of the sum of the squares of the  values of each sinusoid. Thus, if

(8.11)

where  represents a constant current, and  represent the amplitudes of the sinusoids.
Then, the  value of i is found from

(8.12)

or

(8.13)

T

10 A

t

i t( )

Iave
Area

Period
------------------ 1 2⁄( ) 10 T××

T
------------------------------------ 5 A= = =

IRMS

RMS

IRMS
2 1

T
--- i2 t( ) td

0

T

∫
1
T
--- 10

T
------t⎝ ⎠

⎛ ⎞ 2
td

0

T

∫
1
T
--- 100

T2
--------- t 3

3
----⋅

⎝ ⎠
⎜ ⎟
⎛ ⎞

0

T
1
T
--- 100

T2
--------- T 3

3
------⋅

⎝ ⎠
⎜ ⎟
⎛ ⎞ 100

3
---------= = = = =

IRMS
100
3

--------- 10
3

------- 5.77 A= = =

RMS
RMS

i I0 I1 ω1t θ1±( )cos I2 ω2t θ2±( )cos … IN ωN t θN±( )cos+ + + +=

I0 I1 I2… IN, ,

RMS

IRMS I0  
2 I1  RMS

2 I2  RMS
2 … IN  RMS

2+ + + +=

IRMS I0  
2 1

2
---I

1  p

2 1
2
---I

2 p

2
… 1

2
---I

N  p

2
+ + + +=
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Chapter 8  Average and RMS Values, Complex Power, and Instruments
Example 8.4  

Find the  value of the square waveform of Figure 8.9 by application of (8.12)

Figure 8.9. Waveform for Example 8.4

Solution:

By inspection, the period  is as shown in Figure 8.9.

Figure 8.10. Determination of the period to the waveform of Example 8.4

Then,
a.

or

(8.14)

b. Fourier series analysis textbooks*  show that the square waveform above can be expressed as 

(8.15)

* Such a textbook is Signals and Systems with MATLAB Applications, ISBN 0-9709511-3-2 by this author.

IRMS

1

−1

ωt

T 2π=

1

−1

ωtπ 2π

IRMS
2 1

T
--- i 2 td

0

T

∫
1

2π
------ i 2

ωt( )d
0

2π

∫
1

2π
------ 1 2

ωt( )d
0

π

∫ 1–( ) 2
ωt( )d

π

2π

∫+= = =

1
2π
------ ωt 0

π
ωt π

2π+[ ] 1
2π
------ π 2π π–+[ ] 1= ==

IRMS 1=

i t( ) 4
π
--- ωtsin 1

3
--- 3ωtsin 1

5
--- 5ωtsin …+ + +⎝ ⎠

⎛ ⎞=
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Average Power and Power Factor
and as we know, the  value of a sinusoid is a real number independent of the frequency
and the phase angle, and it is equal to  times its peak value, that is, .
Then from (8.12) and (8.15),

(8.16)

The numerical accuracy of (8.16) is good considering that higher harmonics have been
neglected.

8.6 Average Power and Power Factor

Consider the network shown in Figure 8.11.

Figure 8.11. Network where it is assumed that  and  are out-of-phase

We will assume that the load current  is  degrees out-of-phase with the voltage ,
i.e., if , then . We want to find an expression for the
average power absorbed by the load.

As we know 

that is,

and the instantaneous power  absorbed by the load is

 (8.17)

Using the trigonometric identity

we express (8.17) as

RMS
0.707 IRMS 0.707 Ip×=

IRMS
4
π
--- 0 1

2
--- 1( )2 1

2
--- 1

3
---⎝ ⎠

⎛ ⎞ 2 1
2
--- 1

5
---⎝ ⎠

⎛ ⎞ 2
…+ + + + 0.97= =

R +

−

Rest of
the Circuit Load

vS t( )

iLOAD t( )

vLOAD t( )

iLOAD t( ) vLOAD t( )

iLOAD t( ) θ vLOAD t( )

vLOAD t( ) Vp ωtcos= iLOAD t( ) Ip ωt θ+( )cos=

p vi=

ins eous powertantan ins eous voltage ins eous currenttantan×tantan=

pLOAD t( )

pLOAD t( ) vLOAD t( ) iLOAD t( )× VpIp ωtcos ωt θ+( )cos×= =

x ycoscos 1
2
--- x y+( ) x y–( )cos+cos[ ]=
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Chapter 8  Average and RMS Values, Complex Power, and Instruments
(8.18)

and the average power is

(8.19)

We observe that the first integral on the right side of (8.19) is zero, and the second integral, being a
constant, has an average value of that constant. Then,

(8.20)

and using the relations

 and

 

we can express (8.19) as

(8.21)

and it is imperative that we remember that these relations are valid for circuits with sinusoidal excitations.

The term  in (8.20) and (8.21) is known as the power factor and thus

 (8.22)

8.7 Average Power in a Resistive Load

The voltage and current in a resistive branch of a circuit are always in phase, that is, the phase angle
. Therefore, denoting that resistive branch with the subscript  we have:

pLOAD t( )
VpIp

2
----------- 2ωt θ+( ) θcos+cos[ ]=

Pave  LOAD
1
T
--- pLD td

0

T

∫
1
T
---

VpIp
2

----------- 2ωt θ+( ) θcos+cos[ ]⎝ ⎠
⎛ ⎞ td

0

T

∫= =

VpIp
2T

----------- 2ωt θ+( )cos[ ]( ) td
0

T

∫
VpIp
2T

----------- θcos td
0

T

∫+=

Pave  LOAD

VpIp
2

---------- θcos=

VRMS
Vp

2
-------=

IRMS
Ip

2
-------=

Pave LOAD
VRMS LOAD IRMS LOAD θcos=

θcos

Power FactorLOAD PFLOAD θLOADcos
Pave LOAD

VRMS LOAD IRMS LOAD
------------------------------------------------------= = =

θ 0°= R
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Average Power in Inductive and Capacitive Loads
(8.23)

or

(8.24)

8.8 Average Power in Inductive and Capacitive Loads

With inductors and capacitors there is a  phase difference between the voltage and current, that

is,  and therefore, denoting that inductive or capacitive branch with the subscript  we get:

 

Of course, the instantaneous power is zero only at specific instants.

Obviously, if the load of a circuit contains resistors, inductors and capacitors, the phase angle 
between  and  will be within , and the power factor  will be
within .

Example 8.5  

For the circuit of Figure 8.11, find the average power supplied by the voltage source, the average
power absorbed by the resistor, the inductor, and the capacitor.

Figure 8.12. Circuit for Example 8.5

Solution:

Since this is a series circuit, we need to find the current I and its phase relation to the source voltage
. Then, 

(8.25)

Pave  R VRMS  R IRMS  R 0° VRMS  R IRMS  R=cos=

Pave  R
VRMS  R

2

R
----------------- IRMS  R

2  R 1
2
---

Vm R
2

R
----------- 1

2
---Ip  R

2  R= = = =

90°

θ 90°= X

Pave  X VRMS  X IRMS  X 90° 0=cos=

θ

VRMS LOAD  IRMS LOAD 0 θ 90°≤ ≤ θcos

0 θcos 1≤ ≤

I

VS 170 0°∠= j– 10 Ω

10 Ω j20 Ω

VS

I
VS
Z
------ 170 0°∠

10 j20 j10–+
---------------------------------- 170 0°∠

10 j10+
-------------------- 170 0°∠

10 2 45°∠
--------------------------- 12 45°–∠= = = = =
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Chapter 8  Average and RMS Values, Complex Power, and Instruments
Relation (8.25) indicates that , , and the power factor is

Therefore, using (8.24) we find that the average power absorbed by the resistor is

(8.26)

The average power absorbed by the inductor and the capacitor is zero since the voltages and cur-
rents in these devices are  out-of-phase with each other.

Check: The average power delivered by the voltage source is

(8.27)

and we observe that (8.26) and (8.27) are in close agreement.

Example 8.6  

For the circuit of Figure 8.13, find the power absorbed by each resistor, and the power supplied (or
absorbed) by the current sources.

Solution:

This is the same circuit as in Example 7.1 where we found that

(8.28)

Figure 8.13. Circuit for Example 8.6

and

(8.29)

Then,

Ip 12 A= θ 45°–=

θcos 45°–( )cos 0.707= =

Pave  R
1
2
---Ip  R

2  R 1
2
--- 12( )210 720 w= = =

90°

Pave  SOURCE

VpIp
2

----------- θcos 170( ) 12( )
2

-------------------------0.707 721 w= = =

VA 4.138– j19.655+ 20.086 101.9°∠= =

8 Ω

2 Ω

4 Ω

j3 Ω

−j6 Ω −j3 Ω
5 0° A∠

10 0° A∠

VBVA

VB 22.414– j1.035– 22.440 177.4– °∠= =
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Average Power in Inductive and Capacitive Loads
and

(8.30)

Also,

and

(8.31)

Likewise,

and

(8.32)

The voltages across the current sources are the same as VA and VB but they are  and 
out-of-phase respectively with the current sources as shown by (8.28) and (8.29). Therefore, we let

 and . Then, the power absorbed by the  source is

(8.33)

and the power absorbed by the  source is

 (8.34)

The negative values in (8.33) and (8.34) indicate that both current sources supply power to the rest
of the circuit.

Check: Total average power absorbed by resistors is

I2  Ω
VA VB–

2 j3+
------------------- 18.276 j20.690+

3.61 56.3°∠
----------------------------------------- 32.430 145.0°∠

3.61 56.3°∠
------------------------------------- 8.983 88.7°∠= = = =

Pave 2  Ω 
1
2
---I

p  2  Ω 
2

2 Ω( ) 1
2
--- 8.9832× 2× 80.70 w= = =

I4  Ω
VA

4 j6–
-------------- 20.086 101.9°∠

7.21 56.3°–∠
------------------------------------- 2.786 158.2°∠= = =

Pave 4  Ω 
1
2
---I

p  4  Ω 
2

4 Ω( ) 1
2
--- 2.786 2× 4× 15.52 w= = =

I8  Ω
VB

8 j3–
-------------- 22.440 177.4– °∠

8.54 20.6°–∠
---------------------------------------- 2.627 156.7– °∠= = =

Pave  8  Ω  
1
2
---I

p  8  Ω  

2
8 Ω( ) 1

2
--- 2.6272× 8× 27.61 w= = =

101.9° 177.4°–

θ1 101.9°= θ2 177.4– °= 5 A

Pave 5  A
VpIp

2
----------- θcos 1

VA 5 A
2

--------------------- 101.9°( )cos= =

20.086 5×
2

------------------------- 0.206–( )× 10.35 w–==

10 A

Pave 10  A
VpIp

2
----------- θcos 2

VB 10 A
2

------------------------ 177.4– °( )cos= =

22.440 10×
2

---------------------------- 0.999–( )× 112.08 w–==
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Chapter 8  Average and RMS Values, Complex Power, and Instruments
and the total average power supplied by current sources is

Thus, the total average power supplied by the current sources is equal to the total average power
absorbed by the resistors. The small difference is due to rounding of fractional numbers.

8.9 Average Power in Non-Sinusoidal Waveforms

If the excitation in a circuit is non-sinusoidal, we can compute the average power absorbed by a
resistor from the relations

(8.35)

Example 8.7  

Compute the average power absorbed by a  resistor when the voltage across it is the half-wave
rectification waveform shown in Figure 8.14.

Figure 8.14. Waveform for Example 8.7

Solution:

We first need to find the numerical value of . It is found as follows:
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or

and since  for , the last term of the expression above reduces to

 

8.10  Lagging and Leading Power Factors

By definition an inductive load is said to have a lagging power factor. This refers to the phase angle of the
current through the load with respect to the voltage across this load as shown in Figure 8.14. 

Figure 8.15. Lagging power factor

In Figure 8.14, the cosine of the angle , that is,  is referred to as lagging power factor and it is
denoted as pf lag. 

The term “inductive load” means that the load is more “inductive” (with some resistance) than it is
“capacitive”. But in a “purely inductive load”  and thus the power factor is

By definition a capacitive load is said to have a leading power factor. Again, this refers to the phase angle
of the current through the load with respect to the voltage across this load as shown in Figure 8.16.

Figure 8.16. Leading power factor
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Chapter 8  Average and RMS Values, Complex Power, and Instruments
In Figure 8.16, the cosine of the angle , that is,  is referred to as leading power factor and it is
denoted as pf lead.

The term “capacitive load” means that the load is more “capacitive” (with some resistance) than it is
“inductive”. But in a “purely capacitive load”  and thus the power factor is

8.11  Complex Power - Power Triangle

We recall that

 (8.36)

This relation can be represented by the so-called power triangle. Figure 8.17 (a) shows the power tri-
angle of an inductive load, and Figure 8.16 (b) shows the power triangle for both a capacitive load.

Figure 8.17. Power triangles for inductive and capacitive loads

In a power triangle, the product  is referred to as the apparent power, and it is denoted as
. The apparent power is expressed in  or . The product  is

referred to as the reactive power, and it is denoted as . The reactive power is expressed in
 or . Thus, for either triangle of Figure 8.17,

(8.37)
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Complex Power - Power Triangle
The apparent power  is the vector sum of the real and reactive power components, that is,

(8.40)

where the (+) sign is used for inductive loads and the (−) sign for capacitive loads. For this reason,
the relation of (8.41) is known as the complex power.

Example 8.8  

For the circuit shown in Figure 8.18, find:

a.  the average power delivered to the load 

b.  the average power absorbed by the line

c.  the apparent power supplied by the voltage source

d.  the power factor of the load

e.  the power factor of the line plus the load

Figure 8.18. Circuit for Example 8.8

Solution: 

For simplicity, we redraw the circuit as shown in Figure 8.19 where the line resistances have been
combined into a single  resistor.

Figure 8.19. Circuit for Example 8.8 with the line resistances combined

From the circuit of Figure 8.19, we find that
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and therefore, the current lags the voltage as shown on the phasor diagram of Figure 8.20.

Figure 8.20. Phasor diagram for the circuit of Example 8.8

Then,

a. The average power delivered to the load is

b. The average power absorbed by the line is

c. The apparent power supplied by the voltage source is

d. The power factor of the load is

e. The power factor of the line plus the load is

 

8.12  Power Factor Correction

The consumer pays the electric utility company for the average or real power, not the apparent
power and, as we have seen, a low power factor (larger angle ) demands more current. This addi-
tional current must be furnished by the utility company which must provide larger current-carrying
capacity if the voltage must remain constant. Moreover, this additional current creates larger 

IRMS
VS  RMS

Rline ZLD+
---------------------------- 480 0°∠

2 10 j10+ +
----------------------------- 480 0°∠

15.62 39.8°∠
------------------------------- 30.73 39.8°–∠= = = =

I

VS
39.8°–

Pave LOAD IRMS
2  Re ZLOAD{ } 30.73( )2 10× 9443 w 9.443 Kw= = = =

Pave  line IRMS
2  Rline 30.73( )2 2× 1889 w 1.889 Kw= = = =

Pa  source VS  RMS IRMS 480 30.73× 14750 w 14.750 Kw= = = =

pfLOAD θLOADcos
Pave LOAD
Pa  LOAD

------------------------ 9443
VRMS LOAD IRMS
--------------------------------------------= = =

9443
480 0°∠ 2 30.73 39.8°–∠( )–( ) 30.73×

------------------------------------------------------------------------------------------------ 9443
434.56( ) 30.73( )

---------------------------------------- 9443
13354
--------------- 0.707= = ==

pf line LOAD+( ) θcos line LOAD+( )

Pave  total
Pa  source
----------------------

Pave line Pave LOAD+

Pa  source
----------------------------------------------------- 1889 9443+

14750
------------------------------ 0.77= = = = =

θ

i2R
8-18 Circuit Analysis I with MATLAB Applications
Orchard Publications



Power Factor Correction
losses in the utility’s transmission and distribution system. For this reason, electric utility companies
impose a penalty on industrial facility customers who operate at a low power factor, typically lower
than . Accordingly, facility engineers must install the appropriate equipment to raise the power
factor.

The power factor correction procedure is illustrated with the following example.

Example 8.9  

In the circuit shown in Figure 8.21, the resistance of the lines between the voltage source and the
load and the internal resistance of the source are considered small, and thus can be neglected.

Figure 8.21. Circuit for Example 8.9

It is desired to “raise” the power factor of the load to 0.95 lagging. Compute the size and the rating
of a capacitor which, when added across the load, will accomplish this.

Solution:

The power triangles for the existing and desired power factors are shown in Figure 8.22.

Figure 8.22. Power triangles for existing and desired power factors

Since the voltage across the given load must not change (otherwise it will affect the operation of it),
it is evident that a load, say , in opposite direction of  must be added, and must be connected
in parallel with the existing load. Obviously, the  load must be capacitive. Accordingly, the circuit
of Figure 8.21 must be modified as shown in Figure 8.23.
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Figure 8.23. Circuit for power factor correction

For the existing load,

and for the desired , the VAR value of  must be reduced to

 

Therefore, the added capacitive load must be a vector  such that

The current  through the capacitive load is found from

Then,

and

Therefore, the capacitive load must consist of a capacitor with the value

However, not any  capacitor will do; the capacitor must be capable of withstanding a maxi-
mum voltage of

and for all practical purposes, we can choose a  capacitor rated at 700 volts or higher.
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8.13  Instruments

Ammeters are electrical instruments used to measure current in electric circuits, voltmeters measure
voltage, ohmmeters measure resistance, wattmeters measure power, and watt-hour meters measure elec-
tric energy. Voltmeters, Ohmmeters, and Milliammeters (ammeters which measure current in milli-
amperes) are normally combined into one instrument called VOM. Figure 8.24 shows a typical ana-
log type VOM, and Figure 8.25 shows a typical digital type VOM. We will see how a digital VOM
can be constructed from an analog VOM equivalent at the end of this section. An oscilloscope is an
electronic instrument that produces an instantaneous trace on the screen of a cathode-ray tube cor-
responding to oscillations of voltage and current. A typical oscilloscope is shown in Figure 8.26.

DC ammeters and voltmeters read average values whereas AC ammeters and voltmeters read RMS values.

The basic meter movement consists of a permanent horse shoe magnet, an electromagnet which
typically is a metal cylinder with very thin wire wound around it which is referred to as the coil, and
a control spring. The coil is free to move on pivots, and when there is current in the coil, a torque is
produced that tends to rotate the coil. Rotation of the coil is restrained by a helical spring so that the
motion of the coil and the pointer which is attached to it, is proportional to the current in the coil.

Figure 8.24. A typical analog VOM

An ammeter measures current in amperes. For currents less than one ampere, a milliammeter or
microammeter may be used where the former measures current in milliamperes and the latter in
microamperes.

Ammeters, milliammeters, and microammeters must always be connected in series with the circuits in which
they are used.

Often, the electric current to be measured, exceeds the range of the instrument. For example, we
cannot directly measure a current of  to  milliamperes with a milliammeter whose range is  to

 milliampere. In such a case, we can use a low range milliammeter with a shunt (parallel) resistor as
5 10 0

1
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shown in Figure 8.27, where the circle with  represents an ideal milliammeter (a milliammeter
with zero resistance). In Figure 8.27  is the total current to be measured,  is the current through
the meter,  is the current through the shunt resistor,  is the milliammeter internal resistance,
and  is the shunt resistance.

Figure 8.25. A typical digital VOM

Figure 8.26. A typical oscilloscope

mA
IT IM

IS RM

RS
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Figure 8.27. Milliammeter with shunt resistor 

From the circuit of Figure 8.27, we observe that the sum of the current flowing through the mil-
liammeter  and the current  through the shunt resistor is equal to the total current , that is,

(8.41)

Also, the shunt resistor  is in parallel with the milliammeter branch; therefore, the voltages across
these parallel branches are equal, that is, 

and since we normally need to calculate the shunt resistor, then

(8.42)

Example 8.10  

In the circuit of Figure 8.28, the total current entering the circuit is  and the milliammeter
range is  to  milliampere, that is, the milliammeter has a full-scale current  of , and its
internal resistance is . Compute the value of the shunt resistor .

Figure 8.28. Circuit for Example 8.10
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Solution: 

The maximum current that the milliammeter can allow to flow through it is  and since the total
current is  milliamperes, the remaining  milliamperes must flow through the shunt resistor, that
is,

The required value of the shunt resistor is found from (8.42), i.e.,

Check: The calculated value of the shunt resistor is ; this is one-fourth the value of the mil-
liammeter internal resistor of . Therefore, the  resistor will allow four times as
much current as the milliammeter to flow through it.

A multi-range ammeter/milliammeter is an instrument with two or more scales. Figure 8.29 shows the
circuit of a typical multi-range ammeter/milliammeter.

Figure 8.29. Circuit for a multi-range ammeter/milliammeter

A voltmeter, as stated earlier, measures voltage in volts. Typically, a voltmeter is a modified milliam-
meter where an external resistor  is connected in series with the milliammeter as shown in Figure
8.30 where
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Figure 8.30. Typical voltmeter circuit

For the circuit of Figure 8.30,

or

(8.43)

Voltmeters must always be connected in parallel with those devices of the circuit whose voltage is to be mea-
sured.

Example 8.11  

Design a voltmeter which will have a  volt full-scale using a milliammeter with  milliampere full-
scale and internal resistance .

Solution: 

The voltmeter circuit consists of the milliammeter circuit and the external resistance  as shown in
Figure 8.31.

Figure 8.31. Circuit for Example 8.11

Here, we only need to compute the value of the external resistor  so that the voltage across the
series combination will be  full scale. Then, from (8.43),
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(8.44)

Therefore, to convert a 1 milliampere full-scale milliammeter with an internal resistance of  to
a  full-scale voltmeter, we only need to attach a  resistor in series with that milliamme-
ter.

Figure 8.32 shows a typical multi-range voltmeter. 

Figure 8.32. Circuit for a multi-range voltmeter

An Ohmmeter measures resistance in Ohms. In the series type Ohmmeter, the resistor  whose
resistance is to be measured, is connected in series with the Ohmmeter circuit shown in Figure 8.33.

Figure 8.33. Circuit for a series type Ohmmeter

We observe from Figure 8.33 that for the series type Ohmmeter, the current  is maximum when
the resistor  is zero (short circuit), and the current is zero when  is infinite (open circuit). For
this reason, the  (zero) point appears on the right-most point of the Ohmmeter scale, and the
infinity symbol appears on the left-most point of the scale.

Figure 8.34 shows the circuit of a shunt (parallel) type Ohmmeter where the resistor  whose value
is to be measured, is in parallel with the Ohmmeter circuit. 

RV
VM
IM
------- RM– 1

10 3–
---------- 100– 1000 100– 900 Ω= = = =

100 Ω
1 volt 900 Ω

mA
RM

VM+ −

900 Ω

9.9 kΩ

99.9 kΩ

100 Ω

IM = 1 mA fs 

100 V

10 V

1 V

I

RX

∞ 0
mA

I

RM Zero
Adjust−

+
VS

RX

I
RX RX

0

RX
8-26 Circuit Analysis I with MATLAB Applications
Orchard Publications



Instruments
Figure 8.34. Circuit for a parallel type Ohmmeter

From Figure 8.34 we see that, for the shunt type Ohmmeter, the current through the milliammeter
circuit is zero when the resistor  is zero (short circuit) since all current flows through that short.
However, when  is infinite (open circuit), the current through the milliammeter branch is maxi-
mum. For this reason, the  (zero) point appears on the left-most point of the Ohmmeter scale, and
the infinity symbol appears on the right-most point of the scale.

An instrument which can measure unknown resistance values very accurately is the Wheatstone Bridge
shown in Figure 8.35. 

Figure 8.35. Wheatstone Bridge Circuit

One of the resistors, say , is the unknown resistor whose value is to be measured, and another
resistor, say  is adjusted until the bridge is balanced, that is, until there is no current flow through
the meter of this circuit. This balance occurs when
 

from which the value of the unknown resistor is found from

(8.45)
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Example 8.12  

In the Wheatstone Bridge circuit of Figure 8.36, resistor  is adjusted until the meter reads zero,
and when this occurs, its value is . Compute the value of the unknown resistor .

Figure 8.36. Circuit for Example 8.12

Solution:

When the bridge is balanced, that is, when the current through the meter is zero, relation (8.45)
holds. Then,

When measuring resistance values, the voltage sources in the circuit to which the unknown resistance is con-
nected must be turned off, and one end of the resistor whose value is to be measured must be disconnected from
the circuit.

Because of their great accuracy, Wheatstone Bridges are also used to accept or reject resistors whose
values exceed a given tolerance.

A wattmeter is an instrument which measures power in watts or kilowatts. It is constructed with two
sets of coils, a current coil and a voltage coil where the interacting magnetic fields of these coils pro-
duce a torque which is proportional to the  product.

A watt-hour meter is an instrument which measures electric energy , where  is the product of the
average power  in watts and time  in hours, that is,  in watt-hours. Electric utility compa-
nies use kilowatt-hour meters to bill their customers for the use of electricity.

Digital meters include an additional circuit called analog-to-digital converter (ADC).

There are different types of analog-to-digital converters such as the flash converter, the time-window
converter, slope converter and tracking converter. We will discuss the flash converter only because of its
simplicity. This and the other types are discussed in digital circuits textbooks.

As shown in Figure 8.37, the flash type ADC consists of a resistive network, comparators (denoted as tri-
angles), and an eight-to-three line encoder.
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Figure 8.37. Typical analog-to-digital converter

† Underflow
‡ Overflow

A digital-to-analog converter (DAC) performs the inverse operation, that is, it converts digital values to
equivalent analog values. 

Figure 8.38 shows a four-bit R-2R ladder network and an op-amp connected to form a DAC.

Analog Input A8 A7 A6 A5 A4 A3 A2 A1 A0 B2 B1 B0

Less than 0 V 0 0 0 0 0 0 0 0 0 x x x†
0 to less than 1.5 V 0 0 0 0 0 0 0 0 1 0 0 0
1.5 to less than 3.0 V 0 0 0 0 0 0 0 1 1 0 0 1
3.0 to less than 4.5 V 0 0 0 0 0 0 1 1 1 0 1 0
4.5 to less than 6.0 V 0 0 0 0 0 1 1 1 1 0 1 1
6.0 to less than 7.5 V 0 0 0 0 1 1 1 1 1 1 0 0
7.5 to less than 9.0 V 0 0 0 1 1 1 1 1 1 1 0 1
9.0 to less than 10.5 V 0 0 1 1 1 1 1 1 1 1 1 0
10.5 to 12 V 0 1 1 1 1 1 1 1 1 1 1 1
Greater than 12 V 1 1 1 1 1 1 1 1 1 x x x‡
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Figure 8.38. A typical digital-to-analog converter

8.14 Summary

• A periodic time function is one which satisfies the relation  where n is a positive
integer and T is the period of the periodic time function.

• The average value of any continuous function  over an interval ,is defined as

 

• The average value of a periodic time function  is defined as the average of the function over
one period.

• A half-wave rectification waveform is defined as
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• The effective current  of a periodic current waveform  is defined as

• For sinusoids only, 

• For sinusoids of different frequencies, 

• For circuits with sinusoidal excitations the average power delivered to a load is

where  is the phase angle between  and  and it is within the range , and
 is known as the power factor defined within the range .

• The average power in a resistive load is

• The average power in inductive and capacitive loads is

 

• If the excitation in a circuit is non-sinusoidal, we can compute the average power absorbed by a
resistor from the relations

• An inductive load is said to have a lagging power factor and a capacitive load is said to have a
leading power factor. 

• In a power triangle
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• The apparent power , also known as complex power, is the vector sum of the real and reactive
power components, that is,

where the (+) sign is used for inductive loads and the (−) sign for capacitive loads.

• A power factor can be corrected by placing a capacitive load in parallel with the load of the cir-
cuit.

• Ammeters are instruments used to measure current in electric circuits. Ammeters, milliammeters,
and microammeters must always be connected in series with the circuits in which they are used.

• Voltmeters are instruments used to measure voltage. Voltmeters must always be connected in par-
allel with those devices of the circuit whose voltage is to be measured.

• Ohmmeters are instruments used to measure resistance. When measuring resistance values, the
voltage sources in the circuit to which the unknown resistance is connected must be turned off,
and one end of the resistor whose value is to be measured must be disconnected from the circuit.

• A Wheatstone Bridge is an instrument which can measure unknown resistance values very accu-
rately.

• Voltmeters, Ohmmeters, and Milliammeters (ammeters which measure current in milliamperes)
are normally combined into one instrument called VOM.

• Wattmeters are instruments used to measure power.

• Watt-Hour meters are instruments used to measure energy.

• An oscilloscope is an electronic instrument that produces an instantaneous trace on the screen of
a cathode-ray tube corresponding to oscillations of voltage and current.

• DC ammeters and DC voltmeters read average values

• AC ammeters and AC voltmeters read RMS values.

• Digital meters include an additional circuit called analog-to-digital converter (ADC).

Pa

Pa P  powerreal jQ± Pave jQ±= =
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8.15 Exercises

Multiple Choice

1. The average value of a constant (DC) voltage of 12 V is

A.

B.

C.

D.

E. none of the above

2. The average value of  is

A.

B.

C.

D.

E. none of the above

3. The RMS value of a constant (DC) voltage of  is

A.

B.

C.

D.

E. none of the above

4. The RMS value of  is

A.

B.

C.

D.

6 V

12 V

12 2⁄  V

12 2×  V

i 5 100t Acos+=

5 2 2⁄  A+

5 2 ×  A

5 2⁄  A

5 A

12 V

12 2⁄  V

6 2 2⁄×  V

12 V

12 2×  V

i 5 100t Acos+=

5 2 2⁄  A+

5 2 ×  A

5 2⁄  A

5 A
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E. none of the above

5. The voltage across a load whose impedance is  is 115 V RMS. The average power
absorbed by that load is

A.

B.

C.

D.

E. none of the above

6. The average value of the waveform of Figure 8.39 is

Figure 8.39. Waveform for Question 6

A.

B.

C.

D.

E. none of the above

7. The RMS value of the waveform of Figure 8.40 is

Figure 8.40. Waveform for Question 7

A.

Z 75 j38 Ω+=

176.33 w

157.44 w

71.3 w

352.67 w

24

4 8 12

v V( )

24 V

16 V

12 V

6 V

10

1 3

i A( )

t s( )

10 2⁄  V
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B.

C.

D.

E. none of the above

8. A current with a value of  is flowing through a load that consists of the series
combination of , , and . The average power absorbed by this
load is

A.

B.

C.

D.

E. none of the above

9. If the average power absorbed by a load is  and the reactive power is , the
apparent power is

A.

B.

C.

D.

E. none of the above

10. A load with a leading power factor of  can be corrected to a lagging power factor of 
by adding 

A. a capacitor in parallel with the load

B. an inductor in parallel with the load

C. an inductor is series with the load

D. a capacitor in series with the load

E. none of the above

10 2×  V

10 3⁄  V

10 3×  V

i 5 10000t Acos=

R 2 Ω= L 1 mH= C 10 µF=

25 w

10 w

5 w

0 w

500 watts 500 VAR

0 VA

500 VA

250 VA

500 2×  VA

0.60 0.85
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Problems

1. The current  through a  inductor is given as . Compute:

a. The average values of the current, voltage and power for this inductor.

b. The  values of the current and voltage.

2. Compute the average and  values of the voltage waveform of Figure 8.41.

 
Figure 8.41. Waveform for Problem 2

3. Compute the  value of the voltage waveform of Figure 8.42.

Figure 8.42. Waveform for Problem 3

4. Compute the  value of 

5. A radar transmitter sends out periodic pulses. It transmits for  and then rests. It sends out
one of these pulses every . The average output power of this transmitter is . Com-
pute: 

a. The energy transmitted in each pulse.

b. The power output during the transmission of a pulse.

iL t( ) 0.5 H iL t( ) 5 10 t Asin+=

RMS

RMS

0

5

15

Vv t( )

t s( )

RMS

0

A

V
v t( )

t s( )

RMS i t( ) 10 2 100t 5 200tsin+cos+=

5 µs
1 ms 750 w
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6. For the circuit of Figure 8.43,  Compute the average power delivered (or
absorbed) by each device. 

Figure 8.43. Circuit for Problem 6

7. For the circuit of Figure 8.44, the input impedance of the PCB (Printed Circuit Board) is
 and the board must not absorb more that  of power; otherwise it

will be damaged. Compute the largest RMS value that the variable voltage source  can be
adjusted to. 

Figure 8.44. Network for Problem 7

8. For the multi-range ammeter/milliammeter shown in Figure 8.45, the meter full scale is .
Compute the values of  so that the instrument will display the indicated values.

Figure 8.45. Multi-range ammeter for Problem 8

vs t( ) 100 1000t V.cos=

2 Ω

5 Ω

200 µF

3 mH
vS t( )

ZIN 100 j100 Ω–= 200 mw

VS

VS 

PCBZIN

1 mA
R1 R2 R3 and R4, , ,

mAIT

IM

IT

R1

+

−

R2

R3

980 Ω

RM =20 Ω

1 A

100 mA

10 mA
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9. The circuit of Figure 8.46 is known as full-wave rectifier. The input and output voltage waveforms
are shown in Figure 8.47. During the positive input half cycle, current flows from point  to
point , through  to point , through the resistor  to point , through diode  to point

, and returns to the other terminal point  of the input voltage source. During the negative
input half cycle, current flows from point F to point E, through diode  to point , through the
resistor  to point , through the diode  to point , and returns to the other terminal point

 of the input voltage source. There is a small voltage drop  across each diode* but it can be
neglected if . Compute the value indicated by the DC voltmeter.

Figure 8.46. Network for Problem 9 

Figure 8.47. Input and output waveforms for the network of Problem 9

* For silicon type diodes, the voltage drop is approximately 0.7 volt.

A
B D2 C R D D3

E F
D4 C

R D D1 B

A vD

vin vD»

I
Diode − Allows current to flow in the indicated direction only

A

B

C

D

E

F

V

+−

DC Voltmeter

vIN

vOUT

R
D4D3

D2D1

0

V p V p sin ω t

ω t (r)

v in (t)

Full Rectified Waveform
Vpsinωt

Vp
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8.16 Answers to Exercises

Multiple Choice

1. B

2. D

3. C

4. A

5. E ,  and thus 

6. B

7. C

8. A

9. D

10. B

Problems

1. , 

a.

 and since , it follows that

. Likewise, . Also,

and using  it follows that  and thus

Z 75 j38+ 84.08 26.87°∠= = IRMS 115 0°∠ 84.08 26.87°∠⁄ 1.37 26.87°–∠= =

Pave VRMS IRMS θcos⋅ 115 1.37 26.87°–( )cos×× 140.54 w= = =

iL 5 10 tsin+= vL L
diL
dt
------- 0.5 d

dt
----- 5 10 tsin+( ) 5 tcos= = =

iL  ave
1
T
--- iL td

0

 T
∫

1
T
--- 5 10 tsin+( ) td

0

 T
∫= =

1
T
--- 10 tsin td

0

 T
∫ 0=

1
T
--- 5 td

0

 T
∫

1
T
--- 5T 5 A= = vL  ave

1
T
--- 5 t tdcos

0

 T
∫ 0= =

pL  ave
1
T
--- pL td

0

 T

∫
1
T
--- vLiL td

0

 T

∫
1
T
--- 5 t 5 10 tsin+( )cos td

0

 T

∫
1
T
--- 25 t 50 t tcossin+cos( ) td

0

 T
∫= = = =

2xsin 2 x xcossin= 50 t tcossin 25 2tsin=

pL  ave
1
T
--- 25 t 25 2tsin+cos( ) td

0

 T
∫ 0= =
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b.

Using  and observing that  and  we get

 and 

For sinusoids  and since  it follows that

2. From the waveform below we observe that  and since

Also,

 

and thus 

3. We choose the period  as shown below. 

IL  RMS
2 1

T
--- iL

2 td
0

 T
∫

1
T
--- 5 10 tsin+( )2 td

0

 T
∫= =

1
T
--- 5 1 2 tsin+( )[ ]2 td

0

 T
∫

25
T
------ 1 4 tsin 4 t2sin+ +( ) td

0

 T
∫==

x2sin 1 2xcos–
2

-----------------------=
1
T
--- 4 t tdsin

0

 T

∫ 0=
1
T
--- 2tcos td

0

 T

∫ 0=

IL  RMS
2 25

T
------ t 0

T 4
2
---t 0

T+⎝ ⎠
⎛ ⎞ 25

T
------ T 2T+( ) 75= = = IL  RMS 75 8.66 A= =

VRMS Vp 2( )⁄ 0.707Vp= = Vp 5=

VRMS 0.707 5× 3.54 V= =

Period T= 5τ=

Vave Area Period⁄ 15τ 20τ+( ) 5τ⁄ 7 V= = =

0

5

15

Vv t( )

t s( )

4ττ

T

VRMS
2 1

T
--- v2 td

0

 T
∫

1
5τ
----- 15( )2 td

0

 τ

∫ 5( )2 td
τ

 5τ

∫+
1

5τ
----- 225τ 125τ 25τ–+( ) 65= = = =

VRMS 65 8.06 V= =

T
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Using the straight line equation  we find that for , . Then,

and

4. The effective (RMS) value of a sinusoid is a real number that is independent of frequency and
phase angle and for current it is equal to . The RMS value of sinusoids with differ-
ent frequencies is given by (8.13). For this problem

5. The waveform representing the transmitter output pulses is shown below.

For this problem we do no know the amplitude  of each  pulse but we know the average
power of one period . Since

0

A

V
v t( )

t s( )

T

v t( ) 2A
T

-------=

y mx b+= 0 t T 2⁄< < v t( ) 2A
T

-------t=

VRMS
2 1

T
--- v2 td

0

 T

∫
1
T
--- 2A

T
-------t⎝ ⎠

⎛ ⎞ 2
td

0

 T 2⁄

∫
1
T
--- 0 td⋅

T 2⁄

 T

∫+
4A2

T 3
--------- t2 td

0

 T 2⁄

∫= = =

4A2

3T3
---------t3

0

T 2⁄
4A2

24
--------- A2 6⁄= ==

VRMS A2 6⁄ 6
6

-------A 0.41A= = =

IRMS Ip 2⁄=

IRMS 102 1
2
---22 1

2
---52+ + 100 2 12.5+ + 10.7 A= = =

5 µs

t s( )

A

1 2

A 5 µs
T 1 s=

Pave 750 w Area
Period
------------------ Area

1 s
------------= = =
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it follows that 

a. Energy transmitted during each pulse is

b. The power during the transmission of a pulse is

6. The phasor equivalent circuit is shown below where  and

By application of KCL

or

or

Also,

and with MATLAB

Vs=100; z1=2; z2=−5j; z3=5+3j;...
Vc=Vs/(1+z1/z2+z1/z3); I2=(Vs−Vc)/z1; Ic=Vc/z2; IL=Vc/z3; fprintf(' \n');...
disp('Vc = '); disp(Vc); disp('magVc = '); disp(abs(Vc));...
disp('phaseVc = '); disp(angle(Vc)*180/pi);...
disp('I2 = '); disp(I2); disp('magI2 = '); disp(abs(I2));...
disp('phaseI2 = '); disp(angle(I2)*180/pi);...

Area of each pulse 750 w s⋅=

P W t⁄ 750 w s⋅ 5 µs⁄ 750 w s⋅ 5 10 6–×⁄ 150 106 w× 150 Mw= = = = =

jωL j103 3 10 3–×× j3 Ω= =

j– ωC⁄ j– 103 2 10 4–××⁄ j5 Ω–= =

2 Ω

5 Ω
VS

100 0°∠

j3 Ω

j5 Ω–

z1
z3

z2

I2  Ω
IC

IL

VC

VC VS–

z1
-------------------

VC
z2
-------

VC
z2
-------+ + 0=

1
z1
---- 1

z2
---- 1

z3
----+ +⎝ ⎠

⎛ ⎞ VC
VS
z1
------=

VC
VS

1
z1
z2
----

z1
z3
----+ +⎝ ⎠

⎛ ⎞
--------------------------------=

I2  Ω
VS VC–

z1
-------------------= IC

VC
z1
-------= IL

VC
z3
-------=
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disp('Ic = '); disp(Ic); disp('magIc = '); disp(abs(Ic));...
disp('phaseIc = '); disp(angle(Ic)*180/pi);...
disp('IL = '); disp(IL); disp('magIL = '); disp(abs(IL));...
disp('phaseIL = '); disp(angle(IL)*180/pi);

Vc = 75.0341-12.9604i

magVc = 76.1452

phaseVc = -9.7998

I2 = 12.4829 + 6.4802i

magI2 = 14.0647

phaseI2 = 27.4350

Ic = 2.5921 + 15.0068i

magIc = 15.2290

phaseIc = 80.2002

IL = 9.8909 - 8.5266i
magIL = 13.0588

phaseIL = -40.7636

The average power delivered by the voltage source  is computed from the relation

where  as shown by the phasor diagram below.

Therefore,

Also,

and 

VS

Pave VRMSIRMS θcos 1
2
---VpIp θcos= =

θ 27.43°=

VS

I2  Ω

θ 27.43°=

PS  ave
1
2
--- VS I2  Ω×× θcos 0.5 100 14.07 27.43°cos××× 624.4 w= = =

P2  Ω ave
1
2
---Ip

2R2  Ω 0.5 14.07( )2× 2× 197.97 w= = =
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Check:

The average power in the capacitor and the inductor is zero since  and 

7. Let us consider the  network below.

Let

and

Then,

and using

we get

We require that the power  does not exceed  or , that is, we must satisfy the con-
dition

and therefore we must find the phase angle . Since  appears also in the , we can
find its value from the given input impedance, that is,  or

P5  Ω  ave
1
2
---IL

2R5  Ω 0.5 13.06( )2× 5× 426.41 w= = =

P2  Ω ave P5  Ω  ave+ 197.97 426.41+ PS  ave 624.4 w= = =

θ 90°= θcos 0=

t domain–

PCBZIN

vS t( )

i t( )

vS Vp ωtcos=

i Ip ωt θ+( )cos=

p vSi VpIp ωt ωt θ+( )cos⋅cos= =

x ycos⋅cos 1
2
--- x y+( )cos x y–( )cos+[ ]=

p
VpIp

2
---------- 2ωt θ+( ) θcos+cos[ ]=

p 200 mw 0.2 w

p
VpIp

2
---------- 2ωt θ+( ) θcos+cos[ ]= 0.2 w≤

θ θ jω domain–

ZIN 100 j100 Ω–=

ZIN ZIN θ∠ 100 2 100 2+ 100–( )1–

100
---------------------tan∠ 100 2 45°–∠= = =
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and in the 

The maximum power  occurs when , that is,

Then, 

and now we can express  in terms of  using the relation  and 
and by substitution

or

and

8. With the switch at the  position, the circuit is as shown below.

Then,

or

  (1)

t domain–

p
VpIp

2
---------- 2ωt 45°–( ) 45°–( )cos+cos[ ]=

p 2ωt 45°–( )cos 1=

pmax
VpIp

2
---------- 1 2

2
-------+⎝ ⎠

⎛ ⎞ 0.2 w= =

VpIp 0.4 1.707⁄=

Ip Vp ZIN 100 2= Ip Vp ZIN⁄=

Vp
2 0.4 100 2×

1.707
------------------------------ 33.14= =

Vp 33.14 5.76= =

VRMS
Vp

2
------- 5.76

1.414
------------- 4.07 V= = =

10 mA

mAR1

+

−

R2

R3

980 Ω

20 Ω

10 mA

10 mA

9 mA

1 mA

9 10 3– R1 R2 R3+ +( )× 980 20+( ) 10 3–×=

R1 R2 R3+ + 1000
9

------------=
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With the switch at the  position, the circuit is as shown below.

Then,

or
  (2)

With the switch at the  position, the circuit is as shown below.

Then,

or
  (3)

Addition of (1) and (3) yields

or

100 mA

mAR1

+

−

R2

R3

980 Ω

20 Ω

100 mA

10 mA

99 mA

1 mA
1 mA

99 10 3– R2 R3+( )× R1 980 20+ +( ) 10 3–×=

R1– 99R2 99R3+ + 1000=

1 A

mAR1

+

−

R2

R3

980 Ω

20 Ω

1 A

1 A 999 mA

1 mA
1 mA

999 10 3– R3× R1 R2 980 20+ + +( ) 10 3–×=

R1– R2– 999R3+ 1000=

1000R3
1000

9
------------ 1000+ 10000

9
---------------= =
8-46 Circuit Analysis I with MATLAB Applications
Orchard Publications



Answers to Exercises
  (4)

Addition of (1) and (2) yields

or

  (5)

Substitution of (4) into (5) yields
  (6)

and substitution of (4) and (6) into (1) yields

  (7)

9. DC instruments indicate average values. Therefore, the DC voltmeter will read the average value
of the voltage  across the resistor. The period of the full-wave rectifier waveform is taken as

.

Then,

As expected, this average is twice the average value of the half-wave rectifier waveform of Exam-
ple 8.2.

R3
10
9

------ Ω=

100R2 100R3+ 1000
9

------------ 1000+ 10000
9

---------------= =

R2 R3+ 100
9

---------=

R2 10 Ω=

R1 100 Ω=

vOUT

π

Full Rectified Waveform
Vpsinωt

Vp

π 2π

vOUT  ave
1
π
--- Vp ωtsin ωt( )d

0

π

∫
Vp
π
------ ωtcos–( )

ωt 0=

π

= =

Vp
π
------ ωtcos

π

0 Vp
π
------ 1 1+( )

2Vp
π

---------= ==
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NOTES
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Chapter 9
Natural Response

his chapter discusses the natural response of electric circuits.The term natural implies that there is
no excitation in the circuit, that is, the circuit is source-free, and we seek the circuit’s natural
response. The natural response is also referred to as the transient response.

9.1  The Natural Response of a Series RL circuit

Let us find the natural response of the circuit of Figure 9.1 where the desired response is the current
i, and it is given that at , , that is, the initial condition is .

Figure 9.1. Circuit for determining the natural response of a series RL circuit

Application of KVL yields

or

(9.1)

Here, we seek a value of i which satisfies the differential equation of (9.1), that is, we need to find the
natural response which in differential equations terminology is the complementary function. As we know,
two common methods are the separation of variables method and the assumed solution method. We
will consider both.

1. Separation of Variables Method

Rearranging (9.1), so that the variables i and t are separated, we get

Next, integrating both sides and using the initial condition, we get

T

t 0= i I0= i 0( ) I0=

+

+

R L

i −

−

vL vR+ 0=

  Ldi
dt
----- Ri+ 0=

di
i

----- R
L
---dt–=

  

    

   
Circuit Analysis I with MATLAB Applications 9-1
Orchard Publications



Chapter 9  Natural Response
where  is a dummy variable. Integration yields

or

or

Recalling that  implies , we get

(9.2)

Substitution of (9.2) into (9.1) yields  and that at , . Thus, both the differential
equation and the initial condition are satisfied.

2. Assumed Solution Method

Relation (9.1) indicates that the solution must be a function which, when added to its first derivative
will become zero. An exponential function will accomplish that and therefore, we assume a solution
of the form

(9.3)

where  and  are constants to be determined. Now, if (9.3) is a solution, it must satisfy the differen-
tial equation (9.1). Then, by substitution, we get:

or

The left side of the last expression above will be zero if , or if , or if . But,
if  or , then every response is zero and this represents a trivial solution. Therefore,

 is the only logical solution, and by substitution into (9.3) we get

1
i
--- id

I0

i
∫

R
L
--- σd

0

t
∫–=

σ

iln I0

i R
L
---σ 0

t
–=

iln I0ln–
R
L
---t–=

i
I0
----ln R

L
---t–=

x yln= y ex=

i t( ) I0 e R L⁄( )t–
=

0 0= t 0= i 0( ) I0=

i t( ) Aest
=

A s

RAest sLAest
+ 0=

s R
L
---+⎝ ⎠

⎛ ⎞ Aest 0=

A 0= s ∞–= s R L⁄–=

A 0= s ∞–=

s R L⁄–=

i t( ) Ae R L⁄( )t–
=
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We must now evaluate the constant . This is done with the use of the initial condition .

Thus,  or  and therefore,

as before. Next, we rewrite it as

(9.4)

and sketch it as shown in Figure 9.2.

Figure 9.2. Plot for  in a series RL circuit

From Figure 9.2 we observe that at , , and  as .

The initial rate (slope) of decay is found from the derivative of  evaluated at , that is,

and thus the slope of the initial rate of decay is 

Next, we define the time constant  as the time required for  to drop from unity to zero assum-
ing that the initial rate of decay remains constant. This constant rate of decay is represented by the
straight line equation

 

and at , . Then,

A i 0( ) I0=

I0 Ae0= A I0=

i t( ) I0e R L⁄( )t–
=

i t( )
I0

-------- e R L⁄( )t–
=

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 1 2 3 4 5
Time Constants

P
er

ce
nt

  i
(t)

 / 
I 0 e−(R/L) t

5%

i(t) / I 0 = −(R / L) t +1

36.8%

13.5%

i t( ) I0⁄

t 0= i I0⁄ 1= i 0→ t ∞→

i I0⁄ t 0=

d
dt
----- i

I0
----⎝ ⎠

⎛ ⎞

t 0=

R
L
---– e R L⁄( )t–

t 0=

R
L
---–= =

R L⁄–

τ i I0⁄

i t( )
I0

-------- R
L
---t– 1+=

t τ= i I0⁄ 0=
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or

(9.5)

Evaluating (9.4) at , we get

or

(9.6)

Therefore, in one time constant, the response has dropped to approximately 36.8% of its initial value.

If we express the rate of decay in time constant intervals as shown in Figure 9.2, we find that
 after , that is, it reaches its final value after five time constants.

Example 9.1  

For the circuit shown in Figure 9.3, in how many seconds after  has the

a.  current  has reached ½ of its initial value?

b.  energy stored in  has reached ¼ of its initial value?

c.  power dissipated in  has reached ¾ of its initial value? 

Figure 9.3. Circuit for Example 9.1

Solution:

From (9.2),

where . Then, 

0 R
L
---τ– 1+=

τ L
R
---=

Time Cons t for RL Circuittan

t τ L R⁄= =

i τ( )
I0

--------- e R L⁄( )τ– e R L⁄( ) L R⁄( )– e 1– 0.368= = = =

i τ( ) 0.368I0=

i t( ) I0⁄ 0≈ t 5τ=

t 0=

i t( )

L

R

+

+

R

i −

−

10 Ω
L

10 mH

i t( ) I0 e R L⁄( )t–
=

I0 iL 0( )=
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The Natural Response of a Series RL circuit
a. The current  will have reached ½ of its initial value when

or

or

and therefore,
 

b. To find the energy stored in  which reaches ¼ of its initial value, we start with

and at , . Then,

and

Therefore,

or

and

This is the same answer as in part (a) since the energy is proportional to the square of the current.

c. To find the power dissipated in  when it reaches ¾ of its initial value, we start with the fact that

the instantaneous power absorbed by the resistor is , and since for the given circuit

then,

i t( )

0.5I0 I0e
10 10 10 3–

×⁄( )t–
I0e 1000t–

= =

e 1000t– 0.5=

1000t– 0.5( )ln 0.693–= =

t 693 µs=

L

WL t( ) 1
2
---Li2 t( )=

t 0= I0 iL 0( )=

WL 0( ) 1
2
---LI0

2
=

1
4
---WL 0( ) 1

4
--- 1

2
---LI0

2
⎝ ⎠
⎛ ⎞=

1
4
---WL t( ) 1

2
---Li2 t( ) 1

2
---L I0 e R L⁄( )t–( )

2 1
4
--- 1

2
---LI0

2
⎝ ⎠
⎛ ⎞= = =

e 2 R L⁄( )t– 1 4⁄=

e 2000t– 1 4⁄=

2000t– 0.25( )ln 1.386–= =

t 693 µs=

R

pR iR
2 R=

i t( ) iR t( ) I0 e R L⁄( )t–
= =
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Chapter 9  Natural Response
and the energy dissipated (in the form of heat) in the resistor is

Also, from part (b) above,

and thus

or

and

In some examples and exercises that follow, the initial condition may not be given directly but it can
be found from the fact that the current through an inductor cannot change instantaneously and
therefore,

(9.7)

where  will be used to denote the time just before a switch is opened or closed, and  will
be used to denote the time just after the change has occurred.

Also, in our subsequent discussion, the expression “long time” will mean that sufficient time has
elapsed so that the circuit has reached its steady-state conditions. As we know from Chapter 5, when
the excitations are constant, at steady state conditions the inductor behaves as a short circuit, and the
capacitor behaves as an open circuit.

Example 9.2  

In the circuit of Figure 9.4, the switch  has been in the closed position for a long time and opens at

. Find  for , , and 

pR I0
2Re 2 R L⁄( )t–

=

WR pR td
0

∞

∫ I0
2R e 2 R L⁄( )t– td

0

∞

∫ I0
2R L

2R
-------–⎝ ⎠

⎛ ⎞ e 2 R L⁄( )t–

0

∞
1
2
---LI0

2
= = = =

WL 0( ) 1
2
---LI0

2
=

3
4
---WR

3
4
---WL 0( ) 1

2
---Li2 t( ) 1

2
---L I0e R L⁄( )t–( )

2 3
4
--- 1

2
---LI0

2
⎝ ⎠
⎛ ⎞= = = =

e 2 R L⁄( )t– 3 4⁄=

e 2000t– 3 4⁄=

2000t– 0.75( )ln 0.288–= =

t 144 µs=

iL 0−( ) iL 0( ) iL 0+( )= =

iL 0−( ) iL 0+( )

S

t 0= iL t( ) t 0> vR 0−( ) vR 0+( )
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The Natural Response of a Series RL circuit
Figure 9.4. Circuit for Example 9.2

Solution:

We are not given an initial condition for this example; however, at  the inductor acts as a
short thereby shorting also the  resistor. The circuit then is as shown in Figure 9.5.

Figure 9.5. Circuit for Example 9.2 at 

From the circuit of Figure 9.5, we see that

and thus the initial condition has now been established as 

We also observe that 

At , the  source and the  resistor are disconnected from the circuit which now is as
shown in Figure 9.6.

Figure 9.6. Circuit for Example 9.2 at 

32 V

+
−

+

−

1 mH

S

20 Ω

iL t( )

10 Ω

vR t( )

t 0=

t 0−=
20 Ω

32 V

+
−

+

−

Circuit at t 0−=

vR t( )
iL t( )

10 Ω

t 0−=

iL 0−( ) iL 0( ) iL 0+( ) 32 10⁄ 3.2A= = = =

I0 3.2 A=

vR 0−( ) 0=

t 0+= 32 V 10 Ω

+

−

1 mH

Circuit at t 0+=

20 Ω iL t( )
vR t( )

t 0+=
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Chapter 9  Natural Response
For the circuit of Figure 9.6,

or 

and

or 

We observe that 

Example 9.3  

In the circuit shown in Figure 9.7, the switch  has been closed for a long time and opens at .

Find:

a.   for 

b.   at 

c.   at 

Figure 9.7. Circuit for Example 9.3

Solution:

a. At  the inductor acts as a short thereby shorting also the  and  resistors. The cir-
cuit then is as shown in Figure 9.8. Then,

iL t( ) I0e R L⁄( )t– 3.2e
20 10 3–⁄( )t–

= =

iL t( ) 3.2e 20000t–
=

vR 0+( ) 20 I0–( ) 20 3.2–( )= =

vR 0+( ) 64 V–=

vR 0+( ) vR 0−( )≠

S t 0=

iL t( ) t 0>

i60 t( ) t 100 µs=

i48 t( ) t 200 µs=

72 V

+
−

1 mH

S

t 0=

48 Ω

4 Ω 30 Ω

60 Ω

24 Ω

i60 t( )
iL t( )

i48 t( )

t 0−= 24 Ω 48 Ω

iT 0−( ) 72 V
4 60 || 30 +
---------------------------- 72 V

4 20+
--------------- 3 A= = =
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The Natural Response of a Series RL circuit
Figure 9.8. Circuit for Example 9.3 at 

and by the current division expression,

and thus the initial condition has been established as 

At , the  source and the  resistor are disconnected from the circuit which now is
as shown in Figure 9.9.

Figure 9.9. Circuit for Example 9.3 at 

From (9.2),

where 

and thus

or

72 V

+
−

Circuit at t 0−=

30 Ω4 Ω

60 Ω
iL 0−( )

iT 0−( )

t 0−=

iL 0−( ) 60
30 60+
------------------ iT 0−( )⋅ 6

9
--- 3× 2 A= = =

I0 2 A=

t 0+= 72 V 4 Ω

1 mH

Circuit at t 0+=

iL t( )

48 Ω

i60 t( ) i48 t( )

60 Ω

30 Ω 24 Ω

t 0+=

iL t( ) I0e
Req L⁄( )t–

=

Req 60 30+( ) || (24+48) 40 Ω= =

iL t( ) 2e 40 10 3–⁄( )t–=

iL t( ) 2e 40000t–=
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Chapter 9  Natural Response
Also,

or

and

or

9.2  The Natural Response of a Series RC Circuit

In this section, we will find the natural response of the  circuit shown in Figure 9.10 where the
desired response is the capacitor voltage , and it is given that at , , that is, the initial
condition is .

Figure 9.10. Circuit for determining the natural response of a series RC circuit

By KCL,

(9.8)

and with

and

by substitution into (9.8), we obtain the differential equation

i60 t( )
t 100 µs=

24 48+( )
30 60+( ) 24 48+( )+

---------------------------------------------------- iL t( )–[ ]
t 100  µs=

=

i60 t( )
t 100 µs=

12
27
------ 2e 40000t––( )

t 100  µs=

8
9
---e 4–– 16.3–  mA= = =

i48 t( )
t 200 µs=

30 60+( )
30 60+( ) 24 48+( )+

---------------------------------------------------- iL t( )–[ ]
t 200  µs=

=

i48 t( )
t 200  µs=

15
27
------ 2e 40000t––( )

t 200  µs=

10
9

------e 8–– 0.373–  mA= = =

RC
vC t 0= vC V0=

v 0( ) V0=

R
+

−
C

iC

vC t( )

iR

iC iR+ 0=

iC C
dvC
dt

---------=

iR
vC
R
-----=
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The Natural Response of a Series RC Circuit
                              (9.9)

As before, we assume a solution of the form

                   
and by substitution into (9.9)

or

(9.10)

Following the same reasoning as with the  circuit, (9.10) will be satisfied when  and
therefore,

The constant  is evaluated from the initial condition, i.e.,  or . There-
fore, the natural response of the  circuit is 

(9.11)

We express (9.11) as

and we sketch it as shown in Figure 9.11. We observe that at , , and  as

The initial rate (slope) of decay is found from the derivative of  evaluated at , that is,

and thus the slope of the initial rate of decay is 

Next, we define the time constant  as the time required for  to drop from unity to zero
assuming that the initial rate of decay remains constant. This constant rate of decay is represented
by the straight line equation

dvC
dt

---------
vC
RC
--------+ 0=

vC t( ) Aest=

Asest Aest

RC
----------+ 0=

s 1
RC
--------+⎝ ⎠

⎛ ⎞ Aest 0=

RL s 1 RC⁄–=

vC t( ) Ae 1 RC⁄( )t–
=

A vC 0( ) V0 Ae0= = A V0=

RC

vC t( ) V0e 1 RC⁄( )t–
=

vC t( )
V0

------------ e 1 RC⁄( )t–
=

t 0= vC V0⁄ 1= i 0→

t ∞→

vC t( ) V0⁄ t 0=

d
dt
-----

vC
V0
------⎝ ⎠

⎛ ⎞

t 0=

1
RC
--------– e 1 RC⁄( )t–

t 0=

1
RC
--------–= =

1 RC( )⁄–

τ vC t( ) V0⁄
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Chapter 9  Natural Response
Figure 9.11. Circuit for determining the natural response of a series RC circuit

(9.12)

and at , . Then,

or

(9.13)

Evaluating (9.11) at , we get

or 

(9.14)

Therefore, in one time constant, the response has dropped to approximately 36.8% of its initial value.

If we express the rate of decay in time constant intervals as shown in Figure 9.11, we find that
 after , that is, it reaches its final value after five time constants.

In the examples that follow, we will make use of the fact that

 (9.15)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 1 2 3 4 5
Time Constants

P
er

ce
nt

  v
c(t

) /
 V

0

e−(1/RC) t

5%

vc(t) / V0 = −(1/RC) t +1

36.8%

13.5%

vC t( )
V0

------------- 1
RC
--------t– 1+=

t τ= vC t( ) V0⁄ 0=

0 1
RC
--------τ– 1+=

τ RC=

Time Cons t for RC Circuittan

t τ RC= =

vC τ( )
V0

------------- e τ RC⁄– e RC RC⁄– e 1– 0.368= = = =

vC τ( ) 0.368V0=

vC t( ) V0⁄ 0≈ t 5τ=

vC 0−( ) vC 0( ) vC 0+( )= =
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The Natural Response of a Series RC Circuit
Example 9.4  

In the circuit of Figure 9.12, the switch  has been in the closed position for a long time, and opens

at . Find  for , , and .

Figure 9.12. Circuit for Example 9.4

Solution:

At  the capacitor acts as an open. The circuit then is as shown in Figure 9.13.

Figure 9.13. Circuit for Example 9.4 at 

From the circuit of Figure 9.13 we see that

and thus the initial condition has been established as . We also observe that

At  the  source and the  resistor are disconnected from the circuit which now is
as shown in Figure 9.14.

From (9.11),

S

t 0= vC t( ) t 0> i 0−( ) i 0+( )

60 V

10 KΩ

50 KΩ

+
−

+

−

S10 µF

i t( ) vC t( )

t 0=

t 0−=

60 V

10 KΩ

50 KΩ

+
−

Circuit at t 0−=

i t( )
vC t( )

t 0−=

vC 0−( ) vC 0+( ) 50 KΩ i 0−( )× 50 60 V
10 KΩ 50 KΩ+
----------------------------------------× 50 V= = = =

V0 50 V=

i 0−( ) 60 V
10 KΩ 50 KΩ+
---------------------------------------- 1 mA= =

t 0+= 60 V 10 KΩ

vC t( ) V0e 1 RC⁄( )t–
=
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Chapter 9  Natural Response
Figure 9.14. Circuit for Example 9.4 at 

where

Then,

and

We observe that . This is true because the voltage across the capacitor cannot change

instantaneously; hence, the voltage across the resistor must be the same at  and at .

Example 9.5  

In the circuit of Figure 9.15, the switch  has been in the closed position for a long time and opens
at . Find:

a.   for 

b.   at 

c.   at 

Figure 9.15. Circuit for Example 9.5

50 KΩ

+
−

10 µF

Circuit at t 0+=

i t( ) vC t( )

t 0+=

RC 50 10 3× 10 10 6–×× 0.5= =

vC t( ) 50e 1 0.5⁄( )t– 50e 2t–= =

i 0+( )
V0
R
------ 50 V

50 KΩ
----------------- 1 mA= = =

i 0+( ) i 0−( )=

t 0−= t 0+=

S
t 0=

vC t( ) t 0>

v60 t( ) t 100 µs=

v10 t( ) t 200 µs=

72 V

30 KΩ

60 KΩ+
−

6 KΩ

10 KΩ

20 KΩ
S

+

−
−

−

+ +

t 0=

v60 t( ) vC t( ) v10 t( )
40
9

------ µF
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The Natural Response of a Series RC Circuit
Solution:

a. At  the capacitor acts as an open and the circuit then is as shown in Figure 9.16.

 

Figure 9.16. Circuit for Example 9.5 at 

From the circuit of Figure 9.16,

and using the current division expression, we get

Then,

and thus the initial condition has been established as 

At , the  source and the  resistor are disconnected from the circuit which now
is as shown in Figure 9.17. 

Figure 9.17. Circuit for Example 9.5 at 

t 0−=

72 V

30 KΩ

60 KΩ+
−

6 KΩ

10 KΩ

20 KΩ

+

−
−

−

+ +

Circuit at t 0−=

v60 t( ) vC t( ) v10 t( )

i10 t( )
iT t( )

t 0−=

iT 0−( ) 72 V
6 KΩ 60 KΩ 60 KΩ||+
------------------------------------------------------------ 72 V

6 KΩ 30 KΩ+
------------------------------------- 2 mA= = =

i10 0−( ) 60 KΩ
60 KΩ 60 KΩ+
---------------------------------------- iT 0−( )⋅ 1

2
--- 2× 1 mA= = =

vC 0−( ) 20 KΩ 10 KΩ+( ) i10 0−( )⋅ 30 V= =

V0 30 V=

t 0+= 72 V 6 KΩ

30 KΩ

60 KΩ 10 KΩ

20 KΩ

+

−
−

−

+ +

Circuit at t 0+=

vC t( )

40
9

------ µF
v60 t( ) v10 t( )

t 0+=
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Chapter 9  Natural Response
From (9.11),

where

Then,

and

b.

or 

c.

or

Example 9.6  

For the circuit of Figure 9.18, it is known that .

a. To what value should the resistor  be adjusted so that the initial rate of change would be
?

b. What would then the energy in the capacitor be after two time constants?

Figure 9.18. Circuit for Example 9.6

vC t( ) V0e
1 ReqC⁄( )t–

=

Req 60 KΩ 30 KΩ+( ) || 20 KΩ 10 KΩ+( ) 22.5 KΩ= =

ReqC 22.5 10 3× 40
9

------ 10 6–×× 0.1= =

vC t( ) 30e 1 0.1⁄( )t– 30e 10t–= =

v60 t( )
t 100  ms=

60 KΩ
30 KΩ 60 KΩ+
---------------------------------------- vC t( )⋅

t 100  ms=

=

v60 t( )
t 100  ms=

2
3
--- 30e 10t–( )

t 100  ms=

20e 1– 7.36 V= = =

v10 t( )
t 200  ms=

10 KΩ
10 KΩ 20 KΩ+
---------------------------------------- vC t( )⋅

t 200  ms=

=

v10 t( )
t 200  ms=

1
3
--- 30e 10t–( )

t 200 ms=

10e 2– 1.35 V= = =

vC 0( ) V0 25 V= =

R
200 V s⁄–

C

+
−

10 µF

RvC t( )
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Summary
Solution:

a. The capacitor voltage decays exponentially as

and with the given values,

Now, if the initial rate (slope) is to be , then

and solving for  we get 

b. After two time constants the capacitor voltage will drop to the value of

Therefore, the energy after two time constants will be

9.3 Summary

• The natural response of the inductor current  in a simple  circuit has the form

 where  denotes the value of the current in the inductor at 

• In a simple  circuit the time constant  is the time required for  to drop from unity to
zero assuming that the initial rate of decay remains constant, and its value is 

• In one time constant the natural response of the inductor current in a simple  circuit has
dropped to approximately  of its initial value.

• The natural response of the inductor current in a simple  circuit reaches its final value, that is,
it decays to zero, after approximately  time constants.

• The initial condition  can be established from the fact that the current through an inductor

cannot change instantaneously and thus  

vC t( ) V0e 1 RC⁄( )t–=

vC t( ) 25e 100000 R⁄( )t–=

200 V s⁄–

dvC
dt

---------
t 0=

100000
R

------------------–⎝ ⎠
⎛ ⎞ 25e 100000 R⁄( )t–

t 0=

2.5 106×
R

----------------------– 200–= = =

R R 12.5 KΩ=

vC 2τ( ) 25e 1 RC⁄( )2τ– 25e 2RC RC⁄( )– 25e 2– 3.38 V= = = =

WC t 2τ=

1
2
---CvC

2 5 10 6–× 3.382× 57.2 µJ= = =

iL t( ) RL

iL t( ) I0 e R L⁄( )t–
= I0 t 0=

RL τ iL t( ) I0⁄

τ L R⁄=

RL
36.8%

RL
5

I0

iL 0−( ) iL 0( ) iL 0+( )= =
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Chapter 9  Natural Response
• The natural response of the capacitor voltage  in a simple  circuit has the form

 where  denotes the value of the voltage across the capacitor at 

• In a simple  circuit the time constant  is the time required for  to drop from unity to
zero assuming that the initial rate of decay remains constant, and its value is 

• In one time constant the natural response of the capacitor voltage in a simple  circuit has
dropped to approximately  of its initial value.

• The natural response of capacitor voltage in a simple  circuit reaches its final value, that is, it
decays to zero after approximately  time constants.

• The initial condition  can be established from the fact that the voltage across a capacitor cannot

change instantaneously and thus 

vC t( ) RC

vC t( ) V0 e 1 RC⁄( )t–
= V0 t 0=

RC τ vC t( ) V0⁄

τ RC=

RC
36.8%

RC
5

V0

vC 0−( ) vC 0( ) vC 0+( )= =
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Exercises
9.4 Exercises

Multiple Choice

1. In a simple  circuit the unit of the time constant  is

A. dimensionless

B. the millisecond

C. the microsecond
D. the reciprocal of second, i.e., 

E. none of the above

2. In a simple  circuit the unit of the term  is

A. the second
B. the reciprocal of second, i.e., 

C. the millisecond

D. the microsecond

E. none of the above

3. In the circuit of Figure 9.19 Switch  has been closed for a long time while Switch  has been
open for a long time. At . Switch  opens and Switch  closes. The current  for all

 is

A. 

B. 

C. 

D. 

E. none of the above

Figure 9.19. Circuit for Question 3

RL τ

s 1–

RC 1 RC⁄

s 1–

S1 S2

t 0= S1 S2 iL t( )

t 0>

2 A

2e 100t–  A

2e 50t–  A

e 50t–  A

t 0=

t 0=
S1

S2

iL t( )

5 Ω

5 Ω2 A

100 mH
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Chapter 9  Natural Response
4. In the circuit of Figure 9.20 Switch  has been closed for a long time while Switch  has been
open for a long time. At . Switch  opens and Switch  closes. The voltage  for all

 is

A. 

B. 

C. 

D. 

E. none of the above

Figure 9.20. Circuit for Question 4

5. In the circuit of Figure 9.21 Switch  has been closed for a long time while Switch  has been
open for a long time. At . Switch  opens and Switch  closes. The power absorbed by
the inductor at  will be

A. 

B. 

C. 

D. 

E. none of the above

Figure 9.21. Circuit for Question 5

S1 S2

t 0= S1 S2 vC t( )

t 0>

10 V

10e 10t–  V

10e t–  V

10e 0.1t–  V

t 0=

t 0=
S1

S2 vC t( )

50 KΩ 50 KΩ

10 V 20 µF

+ +
−−

S1 S2

t 0= S1 S2

t +∞=

0 w

1 w

2 w

0.2 w

t 0=

t 0=
S1

S2

iL t( )

5 Ω

5 Ω2 A

100 mH
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6. In the circuit of Figure 9.22 Switch  has been closed for a long time while Switch  has been
open for a long time. At . Switch  opens and Switch  closes. The power absorbed by
the capacitor at  will be

A. 

B. 

C. 

D. 

E. none of the above

Figure 9.22. Circuit for Question 6

7. In a simple  circuit where  and  the time constant  is

A. 

B. 

C. 

D. 

E. none of the above

8. In a simple  circuit where  and  the time constant  is

A. 

B. 

C. 

D. 

E. none of the above

9. In a simple  circuit the condition(s) ___ are always true

S1 S2

t 0= S1 S2

t +∞=

0 w

10 w

5 w

10 mw

t 0=

t 0=
S1

S2 vC t( )

50 KΩ 50 KΩ

10 V 20 µF

+ +
−−

RL R 10 MΩ= L 10 µH= τ

1 s

100 s

1012 s

10 12–  s

RC R 10 MΩ= C 10 µF= τ

100 s

0.01 s

100 µs

0.01 µs

RL
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A.  and 

B.  and 

C.  and 

D. 

E. none of the above.

10. In a simple  circuit the condition(s) ___ are always true

A.  and 

B.  and 

C. 

D.  and 

E. none of the above.

Problems

1. In the circuit of Figure 9.23, switch  has been closed for a long time and switch  has been
open for a long time. Then, at  switch  opens while  closes. Compute the current

 through switch  for 

Figure 9.23. Circuit for Problem 1

2. In the circuit of Figure 9.24, both switches  and  have been closed for a long time and both
are opened at . Compute and sketch the current  for the time interval 

iL 0−( ) iL 0( ) iL 0+( )= = vL 0−( ) vL 0( ) vL 0+( )= =

iL 0−( ) iL 0( ) iL 0+( )= = iR 0−( ) iR 0( ) iR 0+( )= =

iL 0−( ) iL 0( ) iL 0+( )= = vR 0−( ) vR 0( ) vR 0+( )= =

iL 0−( ) iL 0( ) iL 0+( )= =

RC

vC 0−( ) vC 0( ) vC 0+( )= = iC 0−( ) iC 0( ) iC 0+( )= =

vC 0−( ) vC 0( ) vC 0+( )= = vR 0−( ) vR 0( ) vR 0+( )= =

vC 0−( ) vC 0( ) vC 0+( )= =

vC 0−( ) vC 0( ) vC 0+( )= = iR 0−( ) iR 0( ) iR 0+( )= =

S1 S2

t 0= S1 S2

iS2 t( ) S2 t 0>

15 V

8 Ω

6 Ω+
−

2.5 mH

3 Ω

10 Ω

5 Ω

iS2 t( )

t 0=

t 0=

S2

S1

S1 S2

t 0= iL t( ) 0 t 1 ms≤ ≤
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Exercises
Figure 9.24. Circuit for Problem 2

3. In a series  circuit, the voltage  across the inductor is  and the current 
at  is . Compute the values of  and  for that circuit.

4. In the circuit of Figure 9.25, both switches  and  have been closed for a long time, while
switch  has been open for a long time. At   and  are opened and  is closed.
Compute the current  for .

Figure 9.25. Circuit for Problem 4

5. In the circuit of Figure 9.26, switch  has been closed and  has been open for a long time. At
 switch  is opened and  is closed. Compute the voltage  for .

24 V

8 Ω16 Ω

+
− 4 Ω

10 Ω

12 Ω

+ −

12 V

6 Ω

iL t( )
t 0=

t 0=
S1

S2

10 3 mH⁄

2 Ω

RL vL vL 0.2e 2000t–  V= iL

t 0= iL 0( ) 10 mA= R L

S1 S2

S3 t 0= S1 S2 S3

iL t( ) t 0>

+

−

+

−

+

−+

−
10 mV

1 KΩ

2 KΩ

20 mV

3 mH

10 KΩ

10 KΩ
5 KΩ

iL t( )

vin1

vout

t 0= t 0=

t 0= S3

S1

S2

vin2

S1 S2

t 0= S1 S2 vC2 t( ) t 0>
Circuit Analysis I with MATLAB Applications 9-23
Orchard Publications



Chapter 9  Natural Response
Figure 9.26. Circuit for Problem 5

6. In the circuit of Figure 9.27, switch  has been in the  position for a long time and at  is
thrown in the  position. Compute the voltage  across the capacitor for , and the
energy stored in the capacitor at .

Figure 9.27. Circuit for Problem 6

7. In the circuit of Figure 9.28, switch  has been open for a long time and closes at . Compute
 for 

Figure 9.28. Circuit for Problem 7

12 V

10 KΩ 50 KΩ

+
−

+
−

6 µF

10 KΩ

3 µF

+

−

t 0=t 0=

vC2 t( )vC1 t( )

S1 S2

S A t 0=

B vC t( ) t 0>

t 1 ms=

24 V

16 KΩ4 KΩ

+
−

+

−

S

5 µF

2 KΩ A

B

8 KΩ 6 KΩ

t 0=

vC t( )

S t 0=

iSW t( ) t 0>

36 V

S

100 Ω

3 Ω

6 Ω

10 µF
6 mH

+
−

iSW t( )
t 0=
9-24 Circuit Analysis I with MATLAB Applications
Orchard Publications



Answers to Exercises
9.5 Answers to Exercises

Multiple Choice

1.  E  

2.  B

3.  D

4.  C

5.  A

6.  A

7.  D

8.  B

9.  D

10. C

Problems

1. The circuit at  is as shown below.

Replacing the circuit above with its Thevenin equivalent to the left of points  and  we find

that  and  and attaching the rest of the circuit

to it we get the circuit below.

By voltage-source to current-source transformation we get the circuit below.

τ L R⁄ volt ampere ondsec⁄( )⁄[ ] volt ampere⁄[ ]⁄ ond s( )sec= = =

t 0−=

15 V

8 Ω

6 Ω
+
−

3 Ω

10 Ω

5 Ω

×

×
x

y
iL 0−( )

x y

vTH
6

3 6+
------------ 15⋅ 10 V= = RTH

3 6×
3 6+
------------ 8+ 10 Ω= =

10 V

10 Ω+
−

10 Ω

vTH
RTH

5 Ω

iL 0−( )
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Chapter 9  Natural Response
and by inspection, , that is, the initial condition has been established as

The circuit at  is as shown below.

We observe that the closed shorts out the  and  resistors and the circuit simplifies to that
shown below.

Thus for , 

2. The circuit at  is as shown below and the mesh equations are

Then, 

10 Ω

5 Ω
iL 0−( )

5 Ω

10 Ω

1 A

iL 0−( ) 0.5 A=

iL 0−( ) iL 0( ) iL 0+( ) I0 0.5 A= = = =

t 0+=

8 Ω

6 Ω

2.5 mH

5 Ω

iS2 t( )

Closed
Switch

iL 0+( ) 0.5 A=

6 Ω 8 Ω

2.5 mH

5 Ω

iS2 t( )
iL 0+( ) I0 0.5 A= =

t 0> iS2 t( ) iL t( )– I0e R L⁄( )t–– 0.5e 5 2.5 10 3–×⁄( )t–– 0.5e 2000t–  A–= = = =

t 0−=

20i1            4i3         – 24=

16i2 6i3– 8i4– 12–=

4i1– 6i2– 20i3 10i4–+ 0=

8i2 10i3– 30i4+ 0=

iL 0−( ) i3 i4–=
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Answers to Exercises
and with MATLAB

R=[20  0  −4  0; 0  16  −6  −8;  −4  −6  20  −10;  0  −8  −10  30];...
V=[24  −12  0  0]'; I=R\V; iL0=I(3)-I(4); fprintf(' \n');...
fprintf('i1 = %4.2f A \t', I(1)); fprintf('i2 = %4.2f A \t', I(2));...
fprintf('i3 = %4.2f A \t', I(3)); fprintf('i4 = %4.2f A \t', I(4));...
fprintf('iL0 = %4.2f A \t', I(3)−I(4)); fprintf(' \n'); fprintf(' \n');

i1 = 1.15 A i2 = -1.03 A i3 = -0.26 A i4 = -0.36 A iL0 = 0.10 A

Therefore, 

Shown below is the circuit at  and the steps of simplification.

Thus for , 

and

24 V

8 Ω

16 Ω

+
− 4 Ω

10 Ω

12 Ω

+ −

12 V

6 Ω
iL 0−( )

2 Ω

i4

i3

i2

i1

iL 0−( ) iL 0( ) iL 0+( ) I0 0.1 A= = = =

t 0+=

6 Ω

4 Ω
 

8 Ω

iL 0+( ) 10
3 
------mH

10 Ω
12 Ω

10 Ω 20 Ω
10 Ω

10
3 
------mH

iL 0+( )

20/3 Ω

20/3 Ω

iL 0+( )

10
3 
------mH

t 0>

iL t( ) I0e R L⁄( )t– 0.1e 5000t–  A= =

iL t 0.4  ms=
0.1e 2– 0.0137 A 13.7 mA= = =
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Chapter 9  Natural Response
To compute and sketch the current  for the time interval  we use MATLAB as
shown below.

t=(0: 0.01: 1)*10^(−3);...
iLt=0.1.*10.^(−3).*exp(−5000.*t);...
plot(t,iLt); grid

3. From the figure below  for 

and with , by substitution 

or  Also, from , 

4. The circuit at  is as shown below and using the relation

that was developed in Example 4.11 we have

iL t( ) 0 t 1 ms≤ ≤

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
-3

0

0.2

0.4

0.6

0.8

1
x 10

-4

vL RiL 0.2e 2000t–= = t 0>

iL

vL

++

− −

R L

iL 0( ) 10 mA= R 10 10 3–×( ) 0.2e 0– 0.2= =

R 0.2 10 2–⁄ 20 Ω= = R L⁄ 2000= L 20 2000⁄ 0.01 10 mH= = =

t 0−=

vout Rf
vin1
Rin1
----------

vin2
Rin2
----------+

⎝ ⎠
⎜ ⎟
⎛ ⎞

–=
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and

The circuit at  is as shown below where  with the direction shown.

Then for 

with the direction shown.

5. The circuit at  is as shown below. As we’ve learned in Chapter 5, when a circuit is excited
by a constant (DC) source, after sufficient time has elapsed the capacitor behaves as an open and
thus the voltage across the capacitor  is  as shown.

+

−

+

−

+

−+

−
10 mV

1 KΩ

2 KΩ

20 mV

10 KΩ

5 KΩ

iL

vin2
vout

vin1

vout 10 KΩ 10 2–

1 KΩ
-------------- 2 10 2–×

2 KΩ
--------------------+⎝ ⎠

⎛ ⎞– 10 2 10 2–××– 0.2 V–= = =

iL 0−( ) I0 i5  KΩ
0.2 V–

5 KΩ
---------------- 40 10 6–×  A– 40 µA–= = = = =

t 0+= iL 0+( ) 40 µA=

10 KΩ

3 mH

5 KΩ

iL 0+( )

+

+

−

−

0.2V

3 mH

15 KΩ
iL 0+( ) ++

−−

t 0>

iL t( ) I0e R L⁄( )t 40 10 6–× e 15 103× 3 10 3–×⁄( )t 40e 5 106t×–  µA= = =

t 0−=

C1 12 V
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Chapter 9  Natural Response
The circuit at  is as shown below where the  represents the voltage across capacitor
.

Now,  where  and 

Then,  and thus 

6. The circuit at  is as shown below.

Then,

The circuit at  is as shown below where . 

12 V

10 KΩ

+
− 6 µF

10 KΩ

+

−
vC1 0−( ) 12V=

C1

t 0+= 12 V
C1

12 V

50 KΩ

+
− +

−
6 µF

3 µF
+

−

vC2 t( )C1

C2

vC1

vC2 t( ) vC1e
1 RCeq⁄( )–

= vC1 12 V= Ceq
C1 C2⋅
C1 C2+
------------------ 6 3×

6 3+
------------ 2 µF= = =

1 RCeq⁄ 1 5 104× 2 10 6–××( )⁄ 10= = vC2 t( ) 12e 10t–=

t 0−=

24 V

16 KΩ4 KΩ

+
−

+

−

5 µF

2 KΩ

6 KΩ vC 0−( )

vC 0−( ) V0 v6KΩ
6 KΩ

6 KΩ 6 KΩ+
---------------------------------- 24× 12 V= = = =

t 0+= vC 0+( ) 12 V=
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Series and parallel resistances reduction yields

and the circuit for  reduces to the one shown below. 

Now, ,  and . Also,

7. The circuit at  is as shown below.

Then,  and 

16 KΩ4 KΩ

+

−

5 µF

8 KΩ 6 KΩ
vC 0+( )

Req 8 KΩ 4 KΩ+( ) 6 KΩ||[ ] 16 KΩ+ 12 6×
12 6+
--------------- 16+ 4 16+ 20 KΩ= = = =

t 0>

+

−

5 µF

20 KΩ
vC t( )

ReqC 2 104× 5 10 6–×× 0.1= = 1 ReqC⁄ 10= vC t( ) V0e 10t– 12e 10t–= =

WC 1  ms

1
2
---CvC

2 t( )
1  ms

0.5 5 10 6–×× 144e 20t–× t 1  ms=
= =

360 10 6–× e 20t–
t 1  ms=

0.35 mJ==

t 0−=

36 V

100 Ω

3 Ω

6 Ω

+
−

iL 0−( )

+

−

vC 0−( )

iL 0−( ) 36 V
6 3+( ) Ω

------------------------ 4 A= = vC 0−( ) 3 iL 0−( )× 3 4× 12 V= = =
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Chapter 9  Natural Response
The circuit at  is as shown below and the current  through the switch is the sum of

the currents due to the  voltage source, due to , and due to .

We will apply superposition three times. Thus for :

I. With the  voltage source acting alone where  (open) and  (shorted), the cir-
cuit is as shown below.

Since the  is shorted out, we have

II. With the  current source acting alone the circuit is as shown below where we
observe that the  and  resistors are shorted out and thus  where

, , , ,  and thus

t 0+= iSW t( )

36 V iL 0+( ) 4 A= vC 0+( ) 12 V=

36 V

100 Ω

3 Ω

6 Ω

10 µF
6 mH+

− iSW t( ) vC 0+( ) 12 V=
−

+
iL 0+( ) 4 A=

t 0>

36 V iL 0= vC 0=

36 V

100 Ω

3 Ω

6 Ω

6 mH+
− i'SW t( )

vC t( ) 0=

iL t( ) 0=

100 Ω

i'SW t( ) 36 6⁄ 6 A= =

iL 0+( ) 4 A=

6 Ω 100 Ω i''SW t( ) iL t( )–=

iL t( ) I0e R L⁄( )t–= I0 4 A= R 3 Ω= L 6 mH= R L⁄ 3 6 10 3–×( )⁄ 500= =

i''SW t( ) iL t( )– 4e 500t––= =
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III. With the  voltage source acting alone the circuit is as shown below
where we observe that the  resistor is shorted out. 

and thus

. 
Then, 

Therefore, the total current through the closed switch for  is 

100 Ω

3 Ω

6 Ω

6 mH iSW t( )

vC t( ) 0 V=

iL 0+( ) 4 A=

vC 0+( ) V0= 12 V=

6 Ω

100 Ω

3 Ω

6 Ω

6 mH i'''SW t( )

vC 0+( ) 12 V=

iL t( ) 0=

vC t( ) V0e 1 RC⁄( )t– 12e 1 100 10 5–×( )⁄[ ]t– 12e 1000t–= = =

i'''SW t( ) vC t( ) 100 Ω⁄ 0.12e 1000t–= =

t 0>

iSW t( ) i'SW t( ) i''SW t( ) i'''SW t( )+ + 6 4e 500t–– 0.12e 1000t–  A+= =
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NOTES
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Chapter 10
Forced and Total Response in RL and RC Circuits

his chapter discusses the forced response of electric circuits.The term “forced” here implies
that the circuit is excited by a voltage or current source, and its response to that excitation is
analyzed. Then, the forced response is added to the natural response to form the total

response.

10.1  The Unit Step Function 

A function is said to be discontinuous if it exhibits points of discontinuity, that is, if the function jumps
from one value to another without taking on any intermediate values.

A well-known discontinuous function is the unit step function * that is defined as

(10.1)

It is also represented by the waveform of Figure 10.1.

Figure 10.1. Waveform for 

In the waveform of Figure 10.1, the unit step function  changes abruptly from 0 to 1 at .
But if it changes at  instead, its waveform and definition are as shown in Figure 10.2.

Figure 10.2. Waveform and definition of 

* In some books, the unit step function is denoted as ,that is, without the subscript 0. In this text we will reserve
this designation for any input.

T
u0 t( )

u0 t( )

u t( )

u0 t( )
0 t 0<
1 t 0>⎩

⎨
⎧

=

1

0

u0 t( )

u0 t( )

u0 t( ) t 0=

t t0=

u0 t t0–( )
0 t t0<

1 t t0>⎩
⎨
⎧

=
1

t0
 t

0

u0 t t0–( )

u0 t t0–( )
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Chapter 10  Forced and Total Response in RL and RC Circuits
Likewise, if the unit step function changes from  to  at  as shown in Figure 10.3, it is
denoted as 

Figure 10.3. Waveform and definition of 

Other forms of the unit step function are shown in Figure 10.4.

Figure 10.4. Other forms of the unit step function

Unit step functions can be used to represent other time-varying functions such as the rectangular
pulse shown in Figure 10.5. This pulse is represented as .

Figure 10.5. A rectangular pulse expressed as the sum of two unit step functions

0 1 t t0–=

u0 t t0+( )

u0 t t0+( )
0 t t0–<

1 t t0–>⎩
⎨
⎧

=
t−t0 0

1 u0 t t0+( )

u0 t t0+( )

0
t

t

t t
Τ −Τ

0

00

0 Τ

0

0

t

tt

0 0t t

−Τ

−ΤΤ

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

−A −A −A

−A −A −A

A A A
Au0 t–( )

A– u0 t( ) A– u0 t T–( ) A– u0 t T+( )

Au0 t– T+( ) Au0 t– T–( )

A– u0 t–( ) A– u0 t– T+( ) A– u0 t– T–( )

u0 t( ) u0 t 1–( )–

0 0 0
t t t

1

1

1
u0 t( )

u0 t 1–( )–

u0 t( ) u0 t 1–( )–
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The Unit Step Function
The unit step function offers a convenient method of describing the sudden application of a voltage
or current source. For example, a constant voltage source of  applied at , can be denoted
as . Likewise, a sinusoidal voltage source  that is applied to a circuit at

, can be described as . Also, if the excitation in a circuit is a
rectangular, or triangular, or sawtooth, or any other recurring pulse, it can be represented as a sum
(difference) of unit step functions.

Example 10.1  

Express the square waveform of Figure 10.6 as a sum of unit step functions. The vertical dotted
lines indicate the discontinuities at , and so on.

Figure 10.6. Square waveform for Example 10.1

Solution:

The line segment  has height , starts at , and terminates at  on the time axis. Then,
as in Figure 10.5, this segment can be expressed as

(10.2)

The line segment  has height , starts at , on the time axis, and terminates at . This
segment can be expressed as 

(10.3)

Line segment  has height , starts at , and terminates at . This segment can be
expressed as 

(10.4)

Line segment  has height , starts at , and terminates at . This segment can be
expressed as 

(10.5)

Thus, the square waveform of Figure 10.6 can be expressed as the summation of (10.2) through
(10.5), that is,

24 V t 0=

24u0 t( ) V v t( ) Vm ωt Vcos=

t t0= v t( ) Vm ωtcos( )u0 t t0–( ) V=

T 2T 3T,,

A

−A

tT 3T2T
0

v t( )

A t 0= t T=

v1 t( ) A u0 t( ) u0 t T–( )–[ ]=

A– t T= t 2T=

v2 t( ) A– u0 t T–( ) u0 t 2T–( )–[ ]=

A t 2T= t 3T=

v3 t( ) A u0 t 2T–( ) u0 t 3T–( )–[ ]=

A– t 3T= t 4T=

v4 t( ) A– u0 t 3T–( ) u0 t 4T–( )–[ ]=
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Chapter 10  Forced and Total Response in RL and RC Circuits
(10.6)

Combining like terms, we get

(10.7)

Example 10.2  

Express the symmetric rectangular pulse of Figure 10.7 as a sum of unit step functions.

Figure 10.7. Symmetric rectangular pulse for Example 10.2

Solution:

This pulse has height , it starts at , and terminates at . Therefore, with reference
to Figures 10.3 and 10.4 (b), we get

(10.8)

Example 10.3  

Express the symmetric triangular waveform shown in Figure 10.8 as a sum of unit step functions.

Figure 10.8. Symmetric triangular waveform for Example 10.3

Solution:

As a first step, we derive the equations of the linear segments  and  shown in Figure 10.9.

v t( ) v1 t( ) v2 t( ) v3 t( ) v4 t( )+ + +=

A u0 t( ) u0 t T–( )–[ ] A– u0 t T–( ) u0 t 2T–( )–[ ]=

+A u0 t 2T–( ) u0 t 3T–( )–[ ] A– u0 t 3T–( ) u0 t 4T–( )–[ ]

v t( ) A u0 t( ) 2u0 t T–( )– 2u0 t 2T–( ) 2u0 t 3T–( )– …+ +[ ]=

A

−T/2
t

0 T/2

i t( )

A t T 2⁄–= t T 2⁄=

i t( ) Au0 t T
2
---+⎝ ⎠

⎛ ⎞ Au0 t T
2
---–⎝ ⎠

⎛ ⎞– A u0 t T
2
---+⎝ ⎠

⎛ ⎞ u0 t T
2
---–⎝ ⎠

⎛ ⎞–= =

1

−T/2
t

0 T/2

v t( )
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The Unit Step Function
Figure 10.9. Equations for the linear segments of Figure 10.8

For line segment ,

(10.9)

and for line segment ,

(10.10)

Combining (10.9) and (10.10), we get

(10.11)

Example 10.4  

Express the waveform shown in Figure 10.10 as a sum of unit step functions.

Figure 10.10. Waveform for Example 10.4

Solution:

As in the previous example, we first find the equations of the linear segments  and  shown in
Figure 10.11.

1

−T/2
t

0 T/2

2
T
--- t 1+

2
T
---– t 1+

v t( )

v1 t( ) 2
T
--- t 1+⎝ ⎠

⎛ ⎞ u0 t T
2
---+⎝ ⎠

⎛ ⎞ u0 t( )–=

v2 t( ) 2
T
---– t 1+⎝ ⎠

⎛ ⎞ u0 t( ) u0 t T
2
---–⎝ ⎠

⎛ ⎞–=

v t( ) v1 t( ) v2 t( )+=

2
T
--- t 1+⎝ ⎠

⎛ ⎞ u0 t T
2
---+⎝ ⎠

⎛ ⎞ u0 t( )– 2
T
---– t 1+⎝ ⎠

⎛ ⎞ u0 t( ) u0 t T
2
---–⎝ ⎠

⎛ ⎞–+=

t

1

2

3

1 2 30

v t( )
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Chapter 10  Forced and Total Response in RL and RC Circuits
Figure 10.11. Equations for the linear segments of Figure 10.10

Following the same procedure as in the previous examples, we get

Multiplying the values in parentheses by the values in the brackets, we get

or

and combining terms inside the brackets, we get

(10.12)

Two other functions of interest are the unit ramp function and the unit impulse or delta function. We
will discuss the unit ramp function first.

10.2 The Unit Ramp Function 

The unit ramp function, denoted as , is defined as

(10.13)

where τ is a dummy variable.

t

1

2

3

1 2 30

v t( )

2t 1+ t– 3+

v t( ) 2t 1+( ) u0 t( ) u0 t 1–( )–[ ] 3 u0 t 1–( ) u0 t 2–( )–[ ]+=

 + t– 3+( ) u0 t 2–( ) u0 t 3–( )–[ ]

v t( ) 2t 1+( )u0 t( ) 2t 1+( )u0 t 1–( )– 3u0 t 1–( )+=

3u0 t 2–( )– t– 3+( )u0 t 2–( ) t– 3+( )u0 t 3–( )–+

v t( ) 2t 1+( )u0 t( ) 2t 1+( )– 3+[ ]u0 t 1–( )+=

 + 3– t– 3+( )+[ ]u0 t 2–( ) t– 3+( )u0 t 3–( )–

v t( ) 2t 1+( )u0 t( ) 2 t 1–( )u0 t 1–( )– t– u0 t 2–( ) t 3–( )u0 t 3–( )+=

u1 t( )

u1 t( )

u1 t( ) u0 τ( ) τd
∞–

t

∫=
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The Unit Ramp Function
We can evaluate the integral of (10.13) by considering the area under the unit step function 
from  to  as shown in Figure 10.12.

Figure 10.12. Area under the unit step function from  to  

Therefore,

(10.14)

and since  is the integral of , then  must be the derivative of , i.e.,

(10.15)

Higher order functions of  can be generated by repeated integration of the unit step function. For
example, integrating  twice and multiplying by , we define  as

(10.16)

Similarly,

(10.17)

and in general,

(10.18)

Also,

(10.19)

u0 t( )

∞– t

t
τ

1
Area 1τ τ t= = =

∞– t

u1 t( )
0 t 0<
t t 0≥⎩

⎨
⎧

=

u1 t( ) u0 t( ) u0 t( ) u1 t( )

d
dt
-----u1 t( ) u0 t( )=

t
u0 t( ) 2 u2 t( )

u2 t( )
0 t 0<

t2 t 0≥⎩
⎨
⎧

= or u2 t( ) 2 u1 τ( ) τd
∞–

t

∫=

u3 t( )
0 t 0<

t3 t 0≥⎩
⎨
⎧

= or u3 t( ) 3 u2 τ( ) τd
∞–

t

∫=

un t( )
0 t 0<

t n t 0≥⎩
⎨
⎧

= or un t( ) 3 un 1– τ( ) τd
∞–

t

∫=

un 1– t( ) 1
n
--- d

dt
-----un t( )=
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Chapter 10  Forced and Total Response in RL and RC Circuits
10.3  The Delta Function 

The unit impulse or delta function, denoted as , is the derivative of the unit step . It is gener-
ally defined as

(10.20)

where

(10.21)

To better understand the delta function , let us represent the unit step  as shown in Figure
10.13 (a). 

Figure 10.13. Representation of the unit step as a limit.

The function of Figure 10.13 (a) becomes the unit step as . Figure 10.13 (b) is the derivative of
Figure 10.13 (a), where we see that as ,  becomes unbounded, but the area of the rectan-
gle remains . Therefore, in the limit, we can think of  as approaching a very large spike or
impulse at the origin, with unbounded amplitude, zero width, and area equal to .

Two useful properties of the delta function are the sampling property and the sifting property. 

The Sampling Property of the Delta Function states that 

(10.22)

or

(10.23)

that is, multiplication of any function  by the delta function  results in sampling the function
at the time instants where the delta function is not zero. The study of discrete-time systems is based
on this property.

δ t( )

δ t( ) u0 t( )

δ τ( ) τd
∞–

t

∫ u0 t( )=

δ t( ) 0  for all  t 0≠=

δ t( ) u0 t( )

−ε ε

1
2ε

Figure (a)

Figure (b)Area =1

ε−ε

1

t

t
0

0

ε 0→
ε 0→ 1 2⁄ ε

1 δ t( )
1

f t( )δ t( ) f 0( )δ t( )=

f t( )δ t a–( ) f a( )δ t( )=

f t( ) δ t( )
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The Delta Function
The Sifting Property of the Delta Function states that

(10.24)

that is, if we multiply any function  by  and integrate from −∞ to +∞, we will obtain the
value of  evaluated at .

The proofs of (10.22) through (10.24) and additional properties of the delta function are beyond the
scope of this book. They are provided in Signals and Systems with MATLAB Applications, ISBN 0-
9709511-3-2 by this author, Orchard Publications 2001.

MATLAB has two built-in functions for the unit step and the delta functions. These are designated
by the names of the mathematicians who used them in their work. The unit step  is called
Heavyside(t) and the delta function  is called Dirac(t). Shown below are examples of how they
are being used.

syms k a t
u=k*sym('Heaviside(t-a)')  % Create unit step function at t=a

u =
k*Heaviside(t-a)

d=diff(u)  % Compute the derivative of the unit step function

d =
k*Dirac(t-a)

int(d)  % Integrate the delta function

ans =
Heaviside(t-a)*k

Example 10.5  

For the circuit shown in Figure 10.14, the inputs are applied at different times as indicated. Com-
pute  at:

a.  

b.  

c.  
 

f t( )δ t α–( ) td
∞–

∞

∫ f α( )=

f t( ) δ t α–( )
f t( ) t α–

u0 t( )

δ t( )

vout

t 0.5 s–=

t 1.5 s=

t 5 s=
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Chapter 10  Forced and Total Response in RL and RC Circuits
Figure 10.14. Circuit for Example 10.5

Solution:

Let us first sketch the step functions for each of the inputs.

a. At  only the signal due to  is active; therefore, exchanging the current source and its
parallel resistance with an equivalent voltage source with a series resistance, the input circuit
becomes as shown in Figure 10.15.

+
−

+
−

+

−

3 KΩ

+
−

6 KΩ
5 KΩ

50 KΩ

vin1 0.8u0 t 3–( ) V=

vin2 0.5u0 t 1–( ) V=

iin 0.14 u0 t 1+( ) u0 t 2–( )+[ ] mA=

vin1
vin2

iin

vout

R f

1 2 3
t(s)

0

t(s)

t(s)

−1

1

1 2

0

0

vin1 0.8u0 t 3–( ) V=
u0 t 3–( )

vin2 0.5u0 t 1–( ) V=
u0 t 1–( )

iin 0.14 u0 t 1+( ) u0 t 2–( )+[ ] mA=

u0 t 1+( ) u0 t 2–( )+[ ]

t 0.5 s–= iin
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The Delta Function
Figure 10.15. Input to the circuit of Example 10.5 when  is acting alone

Replacing the circuit of Figure 10.15 with its Thevenin equivalent, we get the network of Figure
10.16.

Figure 10.16. Simplified input to the circuit of Example 10.5 when  is acting alone

Now, we can compute  with the circuit of Figure 10.17.

Figure 10.17. Circuit for computation of 

 (10.25)

b. At  the active inputs are

and

−0.7 V

+
−

3 KΩ

To op amp’s inverting input

6 KΩ
5 KΩ

iin

−0.7 V

+
−

vTH1 V2  KΩ
2 KΩ

2 KΩ 5 KΩ+
----------------------------------- 0.7–( ) 0.2 V–= = =

3 KΩ  6 KΩ 2 KΩ=

RTH1
2 KΩ 5 KΩ×

7 KΩ
----------------------------------- 10 7 KΩ⁄= =

2 KΩ

5 KΩ

−0.2 V

+
−

10 7 KΩ⁄

vTH1

iin

vout1

+
−

+

−−0.2 V

+
−

vout1vTH1

10 7 KΩ⁄ 50 KΩR f

vout1

vout1
50

10 7⁄
-------------⎝ ⎠

⎛ ⎞ vTH1– 35 0.2 mV–( )×– 7 V= = =

t 1.5 s=

iin 0.14 u0 t 1+( ) u0 t 2–( )+[ ] mA=
Circuit Analysis I with MATLAB Applications 10- 11
Orchard Publications



Chapter 10  Forced and Total Response in RL and RC Circuits
Since we already know the output due to  acting alone, we will find the output due to  act-
ing alone and then apply superposition to find the output when both of these inputs are present.
Thus, with the input  acting alone, the input circuit is as shown in Figure 10.18.

Figure 10.18. Input to the circuit of Example 10.5 when  is acting alone

Replacing this circuit of Figure 10.18 with its Thevenin equivalent, we get the network of Figure
10.19.

Figure 10.19. Simplified input to the circuit of Example 10.5 when  is acting alone

Now, we can compute  with the circuit of Figure 10.20.

Figure 10.20. Circuit for computation of 

vin2 0.5u0 t 1–( ) V=

iin vin2

vin2

0.5 V

+
−

3 KΩ

To op amp’s inverting input

5 KΩ
6 KΩ

vin2

0.5 V

+
−

15/8 KΩvTH2 v 15 8⁄( ) KΩ
15 8⁄

15 8⁄ 6+
---------------------- 0.5( ) 5

42
------ V= = =

3 KΩ  5 KΩ 15 8⁄  KΩ=

RTH2 RTH1 10 7⁄  KΩ= =

6 KΩ

+
− 5

42
------ V

10 7⁄  KΩ

vin2

vout2

+
−

+

−
+
−

50 KΩR f

vTH2
5

42
------ V

10 7⁄  KΩ

vout2

vout2
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The Delta Function
(10.26)

Therefore, from (10.25) and (10.26) the op amp’s output voltage at  is

(10.27)

c. At  the active inputs are

and

Since we already know the output due to  acting alone, we will find the output due to 
acting alone and then apply superposition to find the output when both of these inputs are
present. Thus, with the input  acting alone, the input circuit is as shown in Figure 10.21.

Figure 10.21. Input to the circuit of Example 10.5 when  is acting alone

Replacing this circuit of Figure 10.21 with its Thevenin equivalent, we get the network of Figure
10.22.

Figure 10.22. Simplified input to the circuit of Example 10.5 when  is acting alone

Now, we can compute  with the circuit of Figure 10.23.

vout2
50

10 7⁄
-------------⎝ ⎠

⎛ ⎞ vTH2– 35 5
42
------⎝ ⎠

⎛ ⎞×– 25
6
------–  V= = =

t 1.5 s=

vout1 vout2+ 7 25
6

------–
17
6

------ V= =

t 5 s=

vin1 0.8u0 t 3–( ) V=

vin2 0.5u0 t 1–( ) V=

vin2 vin1

vin1

0.8 V

+
−

6 KΩ

To op amp’s inverting input 

5 KΩ

3 KΩ

vin1

0.8 V

+
−

30 /11 KΩ
vTH3 v 30 11⁄( ) KΩ

30 11⁄
30 11⁄ 3+
------------------------- 0.8( ) 10

21
------ V= = =

6 KΩ  5 KΩ 30 11⁄  kΩ=

RTH3 RTH2 RTH1 10 7⁄  KΩ= = =

3 KΩ

+
− 10

21
------ V

10 7⁄  KΩ

vin1

vout3
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Chapter 10  Forced and Total Response in RL and RC Circuits
Figure 10.23. Circuit for computation of 

(10.28)

Therefore, from (10.26) and (10.28) the op amp’s output voltage at  is

(10.29)

10.4  The Forced and Total Response in an RL Circuit

For the circuit shown in Figure 10.24 (a),  is constant. We will derive an expression for the induc-

tor current  for  given that the initial condition is . Here, the inductor
current  will be referred to as the total response.

The switch in Figure 10.24 (a) can be omitted if we multiply the excitation  by the unit step func-
tion  as shown in Figure 10.24 (b).

Figure 10.24. Circuits for derivation of the total response 

We start by applying KVL, that is,

(10.30)

+
−

+

−
+
−

50 KΩR f

vTH3
10
21
------ V

10 7⁄  KΩ

vout3

vout3

vout3
50

10 7⁄
-------------⎝ ⎠

⎛ ⎞ vTH3– 35 10
21
------⎝ ⎠

⎛ ⎞×– 50
3

------–  V= = =

t 5 s=

vout2 vout3+ 25
6

------– 50
3

------– 125
6

---------–  V= =

VS

iL t( ) i t( )= t 0> iL 0−( ) 0=

iL t( )

VS

u0 t( )

+−

R

L +−

R

L

t 0=

VS VS u0 t( )
i t( )i t( )

(a) (b)

iL t( ) i t( )=

Ldi
dt
----- Ri+ VS u0 t( )=
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The Forced and Total Response in an RL Circuit
The initial condition states that ; thus for , 
 
For , we must solve the differential equation 

(10.31)

It is shown in differential equations textbooks that a differential equation such as the above, can be
solved by the method of separation of the variables. Thus, rearranging (10.32), separating the vari-
ables, and integrating we get:

or

or

and referring to a table of integrals, we get

 (10.32)

The constant  in (10.32) represents the constant of integration of both sides and it can be evalu-
ated from the initial condition, and as we stated in the previous chapter

(10.33)

Therefore, at  

or

and by substitution into (10.32), we get

or

or

iL 0−( ) 0= t 0< i t( ) 0=

t 0>

Ldi
dt
----- Ri+ VS=

Ldi
dt
----- VS Ri–=

Ldi 
VS Ri–
----------------- dt=

Ldi 
VS Ri–
-----------------∫ dt∫=

L
R
--- VS Ri–( )ln t k+=–

k

iL 0−( ) iL 0( ) iL 0+( )= =

t 0+=

L
R
--- VS 0–( )ln– 0 k +=

k L
R
---– VSln=

L
R
--- VS Ri–( )ln– t L

R
---– VSln=

  L
R
--- VS Ri–( )ln VSln–[ ]– t=
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Chapter 10  Forced and Total Response in RL and RC Circuits
or

or

or

or

The general expression for all t is

(10.34)

We observe that the right side of (10.34) consists of two terms,  which is constant called the

forced response, and the exponential term  that has the same form as that of the previous

chapter which we call the natural response.

The forced response  is a result of the application of the excitation (forcing) function 
applied to the  circuit. This value represents the steady-state condition reached as  since the
inductor  at this state behaves as a short circuit.

The amplitude of the natural response is  and depends on the values of  and .

The summation of the forced response and the natural response constitutes the total response  or com-
plete response, that is,

 
or 

(10.35)

Now, let us return to the  circuit of Figure 10.24 to find the complete (total) response  by
the summation of the forced and the natural responses as indicated in (10.35).

L
R
--- VS Ri–

VS
-----------------ln– t=

VS Ri–

VS
-----------------ln R

L
--- t–=

VS Ri–

VS
------------------ e R L⁄( ) t–

=

Ri VS VSe R L⁄( ) t–
–=

i t( )
VS
R
------

VS
R
------e R L⁄( ) t–

–=

i t( )
VS
R
------

VS
R
------e R L⁄( ) t–

–⎝ ⎠
⎛ ⎞ u0 t( )=

VS R⁄

VS
R
------e R L⁄( )t––

VS R⁄ VS u0 t( )

RL t ∞→
L

VS R⁄– VS R

i t( )total i t( ) forced response i t( ) natural response+=

itotal if in+=

RL itotal
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The Forced and Total Response in an RL Circuit
The forced response  is found from the circuit of Figure 10.25 where we let 

Figure 10.25. Circuit for derivation of the forced response 

Then, from the circuit of Figure 10.25,

(10.36)

Next, we need to find the natural response. This is found by letting the excitation (forcing function)
 go to zero as shown in the circuit of Figure 10.26. 

Figure 10.26. Circuit for derivation of the natural response 

We found in Chapter 9 that the natural response  has the exponential form

 (10.37)

Therefore, the total response is

(10.38)

where the constant  is evaluated from the initial condition 

Substitution of the initial condition into (10.38) yields

or

if  t ∞→

+−

R
L

Short
Circuit
as t → ∞ VS u0 t( )

if  

if  

if
VS
R
------=

VS u0 t( )

R

LVS u0 t( ) 0= in  

in  

in  

in Ae R L⁄( )t–=

itotal if in+
VS
R
------ Ae R L⁄( )t–

+= =

A iL 0−( ) iL 0( ) iL 0+( )= =

i 0( ) 0
VS
R
------ Ae0+= =

A
VS
R
------–=
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Chapter 10  Forced and Total Response in RL and RC Circuits
and with this substitution (10.38) is rewritten as

 (10.39)

and this is the same as (10.34).

We can sketch  easily if we sketch  and separately and then add these. This is

done with Excel and the plots are shown in Figure 10.27.

Figure 10.27. Curves for forced, natural, and total responses in a series RL circuit

The time constant  is defined as before, and its numerical value can be found from the circuit con-
stants  and  as follows:

The equation of the straight line with  is found from

Assuming constant rate of change as shown in Figure 10.27, at ,

and thus

or

itotal
VS
R
------

VS
R
------– e R L⁄( )t–

⎝ ⎠
⎛ ⎞ u0 t( )=

itotal
VS
R
------

VS
R
------e R L⁄( )t–

–

          Exponential Rise in RL Circuit

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

P
er

ce
nt

 V
S

 / 
R

Time Constantsτ

i(t) = (VS / L) t

VS / R

0.632VS /  R
i(t) = VS /  R −(VS/  R) e−Rt / L

−(VS   /  R) e−Rt / L

τ

R L

slope VS L⁄=

d
dt
----- itotal( )

t 0=

R
L
---

VS
R
------e R L⁄( )t–⋅

t 0=

VS
L
------= =

t τ=

i t( )
VS
R
------=

VS
R
------

VS
L
------τ=

τ L
R
---=
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The Forced and Total Response in an RL Circuit
as before. Also, from (10.39)

or

(10.40)

Therefore, the current in a series  circuit which has been excited by a constant source, in one
time constant has reached  of its final value.

Example 10.6  

For the circuit of Figure 10.28, compute the energy stored in the  inductor at .
 

Figure 10.28. Circuit for Example 10.6

Solution: 

For , the circuit is as shown in Figure 10.29 where the  resistor is shorted out by the induc-
tor.

Figure 10.29.  Circuit of Example 10.6 for 

From the circuit of Figure 10.29,

and this value establishes our initial condition as

(10.41)

i τ( )
VS
R
------ VS

R
------– e R L⁄( ) L R⁄( )– VS

R
------ 1 e 1–

–( )
VS
R
------ 1 0.368–( )= = =

i τ( ) 0.632
VS
R
------=

RL
63.2%

10 mH t 100 ms=

+−
3 Ω

6 Ω

12 V 
10 mH

5u0 t( ) A

iL t( )

t 0< 3 Ω

+−
12 V 

6 Ω

iL t( )

t 0<

iL 0−( ) 12
6

------ 2 A= =

iL 0+( ) 2 A=
Circuit Analysis I with MATLAB Applications 10- 19
Orchard Publications



Chapter 10  Forced and Total Response in RL and RC Circuits
For , the circuit is as shown in Figure 10.30.

Figure 10.30. Circuit of Example 10.6 for 

We will find  from the relation

The forced component  is found from the circuit at steady state conditions. It is shown in Figure
10.31 where the voltage source and its series resistance have been exchanged for an equivalent cur-
rent source with a parallel resistor. The resistors have been shorted out by the inductor.

Figure 10.31. Circuit of Example 10.6 under steady-state conditions

By inspection,  or

(10.42)

To find  we short the voltage source and open the current source. The circuit then reduces to that
shown in Figure 10.32.

Figure 10.32. Circuit of Example 10.6 for determining the natural response

The natural response of  circuit of Figure 10.32 is

t 0>

+−
3 Ω

6 Ω

12 V 
10 mH

5 A

iL t( )

t 0>

iL t( )

iL t( ) if= in+

if

2 A 5 A 
10 mH if

if 2 5–=

if 3 A–=

in

2 Ω10 mH

3 Ω

6 Ω

10 mH

3 Ω || 6 Ω = 2 Ω

inin

RL

in Ae R L⁄( )t– Ae 2 10 10 3–×⁄( )t–= =
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The Forced and Total Response in an RC Circuit
or

(10.43)

The total response is the summation of (10.42) and (10.43), that is,

(10.44)

Using the initial condition of (10.42), we get

or

Finally, by substitution into (10.44) we get

(10.45)

and the energy stored in the inductor at  is

 (10.46)

10.5  The Forced and Total Response in an RC Circuit

For the circuit shown in Figure 10.33 (a),  is constant. We will derive an expression for the capac-

itor voltage  for  given that the initial condition is . Here, the capacitor volt-
age  will be referred to as the total response.

Figure 10.33. Circuits for derivation of the total response  

in Ae 200t–=

itotal if in+ 3– Ae 200t–+= =

iL 0+( ) 2 3– Ae 0–
+= =

A 5=

itotal 3– 5e 200t–
+( )u0 t( )=

t 100 ms=

WL t 100 ms=

1
2
---LiL

2

t 100 ms=

1
2
---10 10 3–× 3– 5e 200 100 10 3–

××–
+⎝ ⎠

⎛ ⎞
2

= =

5 10 3–× 3– 5e 20–
+( )

2
45 mJ==

VS

vC t( ) t 0> vC 0−( ) 0=

vC t( )

+−

R

+−

R

+

−

C C +

−

+ −

VS u0 t( )

VS

t 0=

vC t( ) vC t( )

vR t( )

(a) (b)

vC t( )
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Chapter 10  Forced and Total Response in RL and RC Circuits
The switch in Figure 10.33 (a) can be omitted if we multiply the excitation  by the unit step func-
tion  as shown in Figure 10.33 (b).

We start by applying KVL, that is,
(10.47)

and since

we can express  as

By substitution into (10.47), we get

(10.48)

The initial condition states that ; thus for , 
   
For , we must solve the differential equation 

(10.49)

Rearranging, separating variables and integrating, we get:

or

or

(10.50)

or

 
where k represents the constant of integration of both sides of (10.51). Then,

VS

u0 t( )

vR vC+ VS u0 t( )=

i iC C
dvC

dt
--------= =

vR

vR Ri RC
dvC

dt
--------= =

RC
dvC
dt

--------- vC+ VS u0 t( )=

vC 0−( ) 0= t 0< vC t( ) 0=

t 0>

RC
dvC
dt

--------- vC+ VS=

RCdvC VS vC–( )dt=

dvC
vC VS–
----------------- 1

RC
--------dt–=

dvC
vC VS–
-----------------dt∫

1
RC
-------- dt∫–=

vC VS–( )ln 1
RC
--------t k+–=

vC VS– e 1 RC⁄( ) t k+– eke 1 RC( )⁄( ) t– k1e 1 RC⁄( ) t–= = =
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The Forced and Total Response in an RC Circuit
or

(10.51)

The constant  can be evaluated from the initial condition  where by substi-
tution into (10.51) we get

or

Therefore, the solution of (10.49) is 

(10.52)

As with the  circuit of the previous section, we observe that the solution consists of a forced
response and a natural response. The constant term  is the voltage attained across the capacitor as

 and represents the steady-state condition since the capacitor  at this state behaves as an
open circuit.

The amplitude of the exponential term natural response is .

The summation of the forced response and the natural response constitutes the total response, i.e.,

or

(10.53)

Now, let us return to the  circuit of Figure 10.33 to find the complete (total) response by sum-
ming the forced and the natural responses indicated in (10.53).

The forced response is found from the circuit of Figure 10.34 where we let 

Figure 10.34. Circuit for derivation of the forced response 

Then, from the circuit of Figure 10.34,

vC VS k1e 1 RC⁄( ) t––=

k1 vC 0+( ) vC 0−( ) 0= =

vC 0+( ) 0 VS k1e0–= =

k1 VS=

vC t( ) VS VS e 1 RC⁄( )t–
–( )u0 t( )=

RL
VS

t ∞→ C

VS–

vC t( ) complete response vC t( ) forced response vC t( ) natural response+=

vCtotal vCf  vCn+=

RC

vCf t ∞→

+−

R Open
Circuit
as t → ∞ VS u0 t( )

vCf 

vCf 
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Chapter 10  Forced and Total Response in RL and RC Circuits
(10.54)

Next, we need to find the natural response and this is found by letting the excitation (forcing func-
tion)  go to zero as shown in Figure 10.35.

Figure 10.35. Circuit for derivation of the natural response 

We found in Chapter 9 that the natural response  has the exponential form

and thus the total response is

(10.55)

where the constant  is evaluated from the initial condition 

Substitution of the initial condition into (10.55) yields

or

With this substitution (10.55) is rewritten as

(10.56)

and this is the same as (10.52).

We can sketch  easily if we sketch  and  separately and then add these. This is
done with Excel and the plots are shown in Figure 10.36.

The time constant  is defined as before, and its numerical value can be found from the circuit con-
stants  and  as follows:

vCf VS=

VS u0 t( )

C
VS u0 t( ) 0= vCn

R

vCn

vCn

vCn Ae 1 RC⁄( )t–=

vC t( ) vCf vCn+ VS Ae 1 RC⁄( )t–+= =

A vC 0−( ) vC 0( ) vC 0+( ) 0= = =

vC 0+( ) 0 VS Ae0–= =

A VS–=

vC t( ) VS VS e 1 RC⁄( )t––( )u0 t( )=

vCtotal VS VS e 1 RC⁄( )t–
–

τ

R C
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The Forced and Total Response in an RC Circuit
Figure 10.36. Curves for forced, natural, and total responses in a series RC circuit

The equation of the straight line with  is found from

Assuming constant rate of change as shown in Figure 10.36, at ,

and thus

or

as before. Also, from (10.56)

or

(10.57)

Therefore, the voltage across a capacitor in a series RC circuit which has been excited by a constant
source, in one time constant has reached  of its final value.

          Exponential Rise in RC Circuit
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0.2

0.4

0.6

0.8
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P
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 V
C

 / 
V

 S
Time Constantsτ

vC(t) = (VS / RC) t
VC / V S

0.632VC / V S vC(t) = VS − VS e−t / RC

−VS  e−t / RC

slope VS RC⁄=

d
dt
-----vC t( )

t 0=

1
RC
-------- VS e 1 RC⁄( )t–⋅

t 0=

VS
RC
--------= =

t τ=

vC t( ) VS=

VS
VS
RC
--------τ=

τ RC=

vC τ( ) VS VS– e 1 RC⁄( )RC– VS 1 e 1–
–( ) VS 1 0.368–( )= = =

vC τ( ) 0.632VS=

63.2%
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Chapter 10  Forced and Total Response in RL and RC Circuits
Example 10.7  

For the circuit shown in Figure 10.37 find:

a.   and 

b.   and 

c.   and 

d.   for 

Figure 10.37. Circuit for Example 10.7

Solution:

a. No initial condition is given so we must assume that sufficient time has elapsed for steady-state
conditions to exist for all  We assume time is in seconds since we are not told otherwise.
Then, since there is no voltage or current source present to cause current to flow, we get

and

b. Exchanging the current source and the  resistor with a voltage source with a  series

resistor, the circuit at  is as shown in Figure 10. 38.

Figure 10.38. Circuit for Example 10.7 at 

vC 1−( ) iC 1−( )

vC 1+( ) iC 1+( )

vC t 10 min.=( ) iC t 10 min.=( )

iC t( ) t 1>

C
−
+

60 KΩ

10 µF

20 KΩ

10 KΩ

9u0 t 1–( ) mA

vC t( )

iC t( )

t 1 s.<

vC 1−( ) 0=

iC 1−( ) 0=

10 KΩ 10 KΩ

t 1+=

−
+

60 KΩ 20 KΩ

10 KΩ
+ −iC t( )

C

10 µF

vC t( )

9u0 t 1–( ) V

t 1+=
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The Forced and Total Response in an RC Circuit
Now, since , no current flows through the   resistor at ; if it did,
the voltage across the capacitor would change instantaneously, and as we know, this is a physical
impossibility. Instead, the current path is through the capacitor which at exactly  acts as a

short circuit since . Therefore,

(10.58)

c. The time  is the essentially the same as , and at this time the capacitor voltage
 is constant and equal to the voltage across the  resistor, i.e.,

Also,

d. For 

where from part (c)

and

With the voltage source shorted in the circuit of Figure 10.38, the equivalent resistance is

or

Therefore,

(10.59)

We can evaluate the constant  using (10.59) where

or

vC 1+( ) vC 1−( )= 60 kΩ t 1+=

t 1+=

vC 1+( ) vC 1−( ) 0= =

iC 1+( ) 90 V
20 10+( ) KΩ

---------------------------------- 3 mA= =

t 10 min= t ∞=

vC t 10 min=( ) 60 KΩ

vC t 10 min=( ) vC ∞( )= v60 KΩ
90 V

20 10 60+ +( ) KΩ
---------------------------------------------- 60 KΩ⋅ 60 V= = =

iC t( ) t ∞=
C

dvC

dt
-------- 0= =

t 1>
iC t( )

t 1>
iC f iCn+=

i
Cf ∞( ) 0=

iCn Ae
1 ReqC⁄( ) t–

=

Req 10 KΩ 20 KΩ+( ) || 60 KΩ 20 KΩ= =

ReqC 20 10 3× 10 10 6–×× 0.2 s= =

iCn Ae 1 0.2⁄( ) t– Ae 5t–= =

A

iC 1+( ) 3 mA Ae 5–= =
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Chapter 10  Forced and Total Response in RL and RC Circuits
and by substitution into (10.59),

 (10.60)

Example 10.8  

In the circuit shown in Figure 10.39, the switch is actually an electronic switch and it is open for
 and closed for . Initially, the capacitor is discharged, i.e., . Compute and

sketch the voltage across the capacitor for two repetitive cycles.

Figure 10.39. Circuit for Example 10.8

Solution:

With the switch in the open position the circuit is as shown in Figure 10.40.

Figure 10.40. Circuit for Example 10.8 with the switch in the open position

For the time period the time constant for the circuit of Figure 10.40 is

Thus, at the end of the first period when the switch is open, the voltage across the capacitor is

(10.61)

Next, with the switch closed for  the circuit is as shown in Figure 10.41.

A 3 10 3–×
e 5–

-------------------- 0.445= =

iC t( )
t 1>

iCf iCn+ iCn 0.445e 5t– u0 t 1–( ) mA= = =

15 µs 15 µs vC 0( ) 0=

+−

VS C

−
+

6 V

1 KΩ

350 Ω

250 Ω 

0.02 µF
vC t( )

+−

VS C

−

+

6 V

1 KΩ 250 Ω 

0.02 µF
Switch open

vC t( )

0 topen 15 µs< <

τopen ReqC 1 KΩ 0.25 KΩ+( ) 0.02 10 6–×× 25 µs= = =

vC t( )
t 15 µs=

vCf vCn+ VS VS e t RC⁄–
– 6 6e 4 104× t–– 6 6e 0.6–– 2.71 V= = = = =

15 tclosed 30 µs< <
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Figure 10.41. Circuit for Example 10.8 with the switch in the closed position

Replacing the circuit to the left of points x and y by its Thevenin equivalent, we get the circuit shown
in Figure 10.42.

Figure 10.42. Thevenin equivalent circuit for the circuit of Figure 10.41

The time constant for the circuit of Figure 10.42 where the switch is closed, is

The capacitor voltage  for the circuit of Figure 10.42 is

(10.62)

and the constant  is evaluated from initial condition at  which by (10.62) is

Then,

or

and by substitution into (10.62)

(10.63)

At the end of the first period when the switch is closed, the voltage across the capacitor is

+−

VS C

−
+

6 V

1 KΩ
350 Ω

250 Ω 

0.02 µF

x

ySwitch closed

×

×

vC t( )

+−

VTH C

−
+

1.56 V

259 Ω 250 Ω 

0.02 µF

RTH VTH
350
1350
------------ 6× 1.56 V= =

RTH
350 1000×

1350
--------------------------- 259 Ω= =

vC t( )

τclosed ReqC 259 Ω 250 Ω+( ) 0.02 10 6–×× 10.2 µs= = =

vC t( )

vC t( ) vCf vCn+ VTH A1e 1 RC⁄( ) t 15–( )–
+ 1.56 A1e 1 10.2⁄( ) t 15–( )–

+= = =

A1 t 15 µs=

vC t( )
t 15 µs=

2.71 V=

vC t( )
15 t 30< <  µs

2.71 1.56 A1e 1 10.2⁄( ) 15 15–( )–
+= =

A1 1.15=

vC t( )
15 t 30< <  µs

1.56 1.15e 1 10.2⁄( ) t 15–( )–
+=
Circuit Analysis I with MATLAB Applications 10- 29
Orchard Publications



Chapter 10  Forced and Total Response in RL and RC Circuits
(10.64)

For the next cycle, that is, for  when the switch is open, the time constant  is

the same as before, i.e.,  and the capacitor voltage is

(10.65)

The constant  is computed with (10.65) as

or

and by substitution into (10.65)

(10.66)

At the end of the second period when the switch is open, the voltage across the capacitor is

(10.67)

The second period when the switch is closed is 
Then,

(10.68)

and with (10.67) we get

Therefore,

 (10.69)

and

(10.70)

Repeating the above steps for the third open and closed switch periods, we get

(10.71)

vC t( )
t 30 µs=

1.56 1.15e 1 10.2⁄( ) 30 15–( )–
+ 1.82 V= =

30 topen 45 µs< < τopen

τopen 25 µs=

vC t( ) vCf vCn+ 6 A2e 1 25⁄( ) t 30–( )–
+= =

A2

vC t( )
t 30 µs=

1.82 6 A2e 1 25⁄( ) 30 30–( )–
+= =

A2 4.18–=

vC t( )
30 t 45< <  µs

6 4.18e 1 25⁄( ) t 30–( )–
–=

vC t( )
t 45 µs=

6 4.18– e 1 25⁄( ) 45 30–( )– 3.71 V= =

45 tclosed 60 µs< <

vC t( )
45 t 60< <  µs

vCf vCn+ VTH A3e 1 RC⁄( ) t 45–( )–+ 1.56 A3e 1 10.2⁄( ) t 45–( )–+= = =

A3 2.15=

vC t( )
45 t 60< <  µs

1.56 2.15e 1 10.2⁄( ) t 45–( )–+=

vC t( )
t 60  µs=

1.56 2.15e 1 10.2⁄( ) 60 45–( )–+ 2.05 V= =

vC t( )
60 t 75< <  µs

6 3.95e 1 25⁄( ) t 60–( )––=
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and 

(10.72)

Likewise,

(10.73)

and

(10.74)

and using Excel we get the waveform shown in Figure 10.43.

Figure 10.43. Voltage across the capacitor for the circuit of Example 10.8

10.6 Summary

• The unit step function  is defined as

and it is represented by the waveform below.

• Unit step functions can be used to represent other time-varying functions.

• The unit step function offers a convenient method of describing the sudden application of a volt-
age or current source.

vC t( )
t 75  µs=

3.83 V=

vC t( )
75 t 90< <  µs

1.56 2.27e 1 10.2⁄( ) t 75–( )–+=

vC t( )
t 90  µs=

2.08 V=

0
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4

0 15 30 45 60 75 90
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 (V
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1 t 0>⎩
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⎧
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0

u0 t( )
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Chapter 10  Forced and Total Response in RL and RC Circuits
• The unit ramp function , is defined as the integral of the unit step function, that is,

where τ is a dummy variable. It is also expressed as

• The unit impulse or delta function, denoted as , is the derivative of the unit step . It is
defined as

or

and

• In a simple  circuit that is excited by a voltage source  the current is

where the forced response  represents the steady-state condition reached as . Since the
inductor  at this state behaves as a short circuit, . The natural response  is the sec-

ond term in the parenthesis of the above expression, that is, 

• In a simple  circuit that is excited by a voltage source  the voltage across the capacitor
is

where the forced response  represents the steady-state condition reached as . Since the

capacitor  at this state behaves as an open circuit, . The natural response  is the

second term in the parenthesis of the above expression, that is, . The constant 
must be evaluated from the total response.

u1 t( )

u1 t( ) u0 τ( ) τd
∞–

t

∫=

u1 t( )
0 t 0<
t t 0≥⎩

⎨
⎧

=

δ t( ) u0 t( )

δ τ( ) d
dt
-----u0 t( )=

δ τ( ) τd
∞–

t

∫ u0 t( )=

δ t( ) 0  for all  t 0≠=

RL VS u0 t( )

i t( ) if in+
VS
R
------

VS
R
------e R L⁄( ) t–

–⎝ ⎠
⎛ ⎞ u0 t( )= =

if t ∞→

L if VS R⁄= in

in VS R⁄–( )e R L⁄( ) t–
=

RC VS u0 t( )

vC t( ) vCf  vCn+ VS Ae 1 RC⁄( )t–+( )u0 t( )= =

vCf  t ∞→

C vCf  VS= vCn

vCn Ae 1 RC⁄( )t–= A
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Exercises
10.7 Exercises

Multiple Choice

1. For the circuit of Figure 10.44 the time constant is

A.

B.

C.

D.

E. none of the above

Figure 10.44. Circuit for Question 1

2. For the circuit of Figure 10.45 the time constant is

A.

B.

C.

D.

E. none of the above

Figure 10.45. Circuit for Question 2

3. The forced response component  of the inductor current for the circuit of Figure 10.46 is

A.

B.

0.5 ms

71.43 µs

2 000 s,

0.2 ms

+−
12u0 t( ) V

4 Ω

12 Ω

2 Ω

1 mH

50 ms

100 ms

190 ms

78.6 ms

5u0 t( ) A
10 µF6 KΩ

4 KΩ

10 KΩ

5 KΩ

iLf

16 A

10 A
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C.

D.

E. none of the above

Figure 10.46. Circuit for Question 3

4. The forced response component  of the capacitor voltage for the circuit of Figure 10.47 is

A.

B.

C.

D.

E. none of the above

Figure 10.47. Circuit for Question 4

5. For the circuit of Figure 10.48 . For  the total response of  is

A.

B.

C.

D.

E. none of the above

6 A

2 A

16u0 t( ) A
4 Ω 12 Ω

5 Ω

1 mH

vCf

10 V

2 V

32 3⁄  V

8 V

+−
16u0 t( ) V

4 KΩ

12 KΩ

2 KΩ

1 µF

iL 0−( ) 2 A= t 0> iL t( )

6 A

6e 5000t–  A

6 6e 5000t–  A+

6 4– e 5000t–  A
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Figure 10.48. Circuit for Question 5

6. For the circuit of Figure 10.49 . For  the total response of  is

A.

B.

C.

D.

E. none of the above

Figure 10.49. Circuit for Question 6

7. For the circuit of Figure 10.50 . For  the total response of  is

A.

B.

C.

D.

E. none of the above

16u0 t( ) A
4 Ω 12 Ω

5 Ω

1 mH iL t( )

vC 0−( ) 5 V= t 0> vC t( )

12 V

10 5e 500t–  V–

12 7e 200t–  V–

12 7e 200t–  V+

+−
16u0 t( ) V

4 KΩ

12 KΩ

2 KΩ

1 µF
+

−
vC t( )

iL 0−( ) 2 A= t 0> vL t( )

20e 5000t–  V

20e 5000t–  V

32e 8000t–  V–

32e 8000t–  V
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Figure 10.50. Circuit for Question 7

8. For the circuit of Figure 10.51 . For  the total response  is

A.

B.

C.

D.

E. none of the above

Figure 10.51. Circuit for Question 8

9. The waveform of Figure 10.52 can be expressed as

A.

B.

C.

D.

E. none of the above

16u0 t( ) A
4 Ω 12 Ω

5 Ω

1 mH vL t( )
+

−

vC 0−( ) 5 V= t 0> iC t( )

1400e 200t–  A

1.4e 200t–  A

3500e 500t–  A

3.5e 500t–  A

+−
16u0 t( ) V

4 KΩ

12 KΩ

2 KΩ

1 µF iC t( )

3tu0 t( ) A

3 u0 t( )[ ] 3 u0 t 3–( )[ ] A–

3t u0 t( ) u0 t 1–( )–[ ] 1.5t– 4.5+( ) u0 t 1–( ) u0 t 3–( )–[ ] A+

3t u0 t( ) u0 t 3–( )–[ ] 1.5t– 4.5+( ) u0 t( ) u0 t 3–( )–[ ] A+
10-36 Circuit Analysis I with MATLAB Applications
Orchard Publications



Exercises
Figure 10.52. Waveform for Question 9

10. The waveform of Figure 10.53 can be expressed as

A.

B.

C.

D.

E. none of the above

Figure 10.53. Waveform for Question 10

Problems

1. In the circuit of Figure 10.54, the voltage source  varies with time as shown by the wave-
form of Figure 10.55. Compute, sketch, and express  as a sum of unit step functions for

iL t( ) A

t s( )

1

1 2

2

3

3

2 1 e αt–– e β t––( )u0 t( ) V

2 2e α t––( ) u0 t( ) u0 t 2–( )–[ ] 2e β t–( ) u0 t 2–( ) u0 t 3–( )–[ ] V+

2 2e αt––( ) u0 t( ) u0 t 2–( )–[ ] 2e β t–( )– u0 t 2–( ) u0 t 3–( )–[ ] V

2 2e αt––( ) u0 t( )[ ] 2e βt–( )– u0 t 3–( )[ ] V

vC t( ) V

t s( )

1

1 2

2

3

2 2e α t––

2e βt–

vS t( )

vLOAD t( )

0 t 5 s.≤ ≤
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Figure 10.54. Circuit for Problem 1

Figure 10.55. Waveform for Problem 1

2. In the circuit of Figure 10.56, . Compute  for .

Figure 10.56. Circuit for Problem 2

3. In the circuit of Figure 10.57 (a), the excitation  is a pulse as shown in Figure 10.57 (b).

a. Compute for 

b. Compute and sketch  for all 

+

−
12 Ω

6 Ω 6 Ω

10 Ω

+
vLOAD t( )

vS t( )
−

0

60

120

−60

1 2 3 4 5 6

(V)

t(s)

vS t( )

vS t( ) 15u0 t( ) 30u0 t 2–( ) V–= iL t( ) t 0>

+−

R

L
3 KΩ

1 mH

iL t( )
vS t( )

vS t( )

iL t( ) 0 t 0.3 ms< <

iL t( ) t 0>
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Figure 10.57. Circuit and waveform for Problem 3

4. In the circuit of Figure 10.58, switch  has been open for a very long time and closes at .
Compute and sketch  and  for .

Figure 10.58. Circuit for Problem 4

5. For the circuit of Figure 10.59, compute  for .

Figure 10.59. Circuit for Problem 5

6. For the circuit of Figure 10.60, compute  for  in terms of , , and  given

that 

+− 6 Ω

3 Ω 1 mH 24

t (ms)0.3

6 Ω

(a) (b)

iL t( )

vS t( )

vS t( ) V

S t 0=

iL t( ) iSW t( ) t 0>

+
−

6 Ω
4 Ω

1 H8 Ω20 V

St 0=vS

iSW t( )

iL t( )

vC t( ) t 0>

−
+

38 Ω

50 µF
2 Ω+

−
24 V

vS

vC t( )

10u0 t( ) A

vout t( ) t 0> R C vinu0 t( )

vC 0−( ) 0=
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Figure 10.60. Circuit for Problem 6

7. In the circuit of Figure 10.61, switch S has been open for a very long time and closes at .
Compute and sketch  and  for .

Figure 10.61. Circuit for Problem 7

8. For the circuit of Figure 10.62, it is given that . Compute  for . Hint: Be
careful in deriving the time constant for this circuit.

Figure 10.62. Circuit for Problem 8

R

C

vinu0 t( )
vout t( )

t 0=

vC t( ) vR3 t( ) t 0>

+
−

C
25 KΩ50 KΩ

1 µF

100 KΩ

R1 R2 

R3 

+−

−

+
+

−
S

50 V

t 0=

vC t( )

vR3 t( )

vS1

vS2

100u0 t–( ) V

vC 0−( ) 5 V= iC t( ) t 0>

C
18 Ω

1 F

R1 
R2 

−

+

+
−

12 ΩvC t( )

iC t( )

10iC t( )
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10.8 Answers to Exercises

Multiple Choice

1. D

2. B

3. C

4. E  

5. E 

6. C

7. D

8. A

9. C

10. B

Problems

1. We replace the given circuit shown below with its Thevenin equivalent.

For the Thevenin equivalent voltage at different time intervals is as shown below.

12 V

6 4e 8000t–  A–

+

−
12 Ω

6 Ω 6 Ω

10 Ω

+
vLOAD t( )

vS t( )
×

×

y

x

+

−
10 Ω

10 Ω +

vLOAD t( )

vTH t( )
−−

0

60

120

−60

1 2 3 4 5 6

(V)

t(s)

vS t( )
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and

The waveform of the voltage across the load is as shown below.

The waveform above can now be expressed as a sum of unit step functions as follows:

2. The circuit at  is as shown below and since we are not told otherwise, we will assume that

For  we let  be the inductor current when the  voltage source acts alone and
 when the  voltage source acts alone. Then, 

vTH t( )

12
18
------vs t( ) 2

3
--- 60× 40 V     0 t 1 s< <= =

12
18
------vs t( ) 2

3
--- 120× 80 V     1 t 3 s< <= =

12
18
------vs t( ) 2

3
--- 60–( )× 40–  V     3 t 4 s< <= =

12
18
------vs t( ) 2

3
--- 60× 40 V     t 4>  s= =⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

=

vLOAD t( ) 10
20
------vTH t( ) 0.5vTH t( )

0.5 40× 20 V     0 t 1 s< <=

0.5 80× 40 V     1 t 3 s< <=

0.5 40–( )× 20–  V     3 t 4 s< <=

0.5 40× 20 V     t 4>  s=⎝
⎜
⎜
⎜
⎜
⎛

= = =

vLOAD t( ) V( )

40

20

0

20–

t s( )1 2 3 4 5

vLOAD t( ) 20u0 t( ) 20u0 t 1–( )– 40u0 t 1–( ) 40u0 t 3–( )– 20u0 t 4–( )+ +=

20u0 t 3–( ) 20u0 t 4–( ) 20u0 t 4–( )+ +–

20u0 t( ) 20u0 t 1–( ) 60u0 t 3–( )– 40u0 t 4–( )+ +=

t 0−=

iL 0−( ) 0=

t 0> iL1 t( ) 15u0 t( )

iL2 t( ) 30u0 t 2–( ) iL  TOTAL t( ) iL1 t( ) iL2 t( )+=
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For  the circuit is as shown below.

Then,  where  and 

Thus,  and using the initial condition , we get

 or . Therefore,

  (1)

Next, with the  voltage source acts alone the circuit is as shown below.

Then, ,  and 

Thus,  and the initial condition at  is found from (1)

above as . Therefore,

 or  and

  (2)

3 kΩ
1 mH

iL 0−( ) 0=vS 0−( ) 0=

0 t 2 s< <

+−

3 KΩ

1 mH

iL1 t( )

15 V

iL1 t( ) iL1f iL1n+= iL1f
15

3 KΩ
-------------- 5 mA= = iL1n A1e R L⁄( ) t– Ae 3 106t×–= =

iL1 t( ) 5 A1e 3 106t×–  mA+= iL 0−( ) iL 0+( ) 0= =

iL1 0( ) 5 A1e0 mA+= A1 5–=

iL1 t( ) 5 5e 3 106t×––=

30u0 t 2–( )

+
−

3 KΩ

1 mH

iL t( )
30 V

iL2 t( ) iL2f iL2n+= iL2f
30–

3 KΩ
-------------- 10–  mA= = iL2n A2e R L⁄( ) t 2–( )– Be 3 106 t 2–( )×–= =

iL2 t( ) 10– A2e 3 106 t 2–( )×–  mA+= t 2=

iL1 t 2  s=
5 5e 6 106t×–– 5 mA≈=

iL2 t 2  s=
iL1 t 2  s=

5 10– A2e 3 106 2 2–( )×–  mA+= = = A2 15=

iL2 t( ) 10– 15e 3 106 t 2–( )×–  mA+=
Circuit Analysis I with MATLAB Applications 10- 43
Orchard Publications
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Therefore, the total current when both voltage sources are present is the summation of (1) and
(2), that is,

3.
a. For this circuit  and since we are not told otherwise, we will

assume that . For  the circuit and its Thevenin equivalent are as
shown below.

Then,

and at 

or  and thus for 

  (1)

b. For  the circuit is as shown below. For this circuit

  (2)

and  is found from the initial condition at , that is, with (1) above we get

iL  TOTAL t( ) iL1 t( ) iL2 t( )+ 5 5e 3 106t×–– 10– 15e 3 106 t 2–( )×–  mA+= =

5 5e 3 106t×––– 15e 3 106 t 2–( )×–  mA+=

vS t( ) 24 u0 t( ) u0 t 0.3–( )–[ ]=

iL 0−( ) 0= 0 t 0.3 ms< <

+−

6 Ω3 Ω

1 mH6 Ω iL t( )

vS t( ) 24 u0 t( ) u0 t 0.3–( )–[ ]=
×

×

+−

8 Ω

1 mH iL t( )

vTH t( )

vTH t( ) 16 u0 t( ) u0 t 0.3–( )–[ ]=

vS t( )

iL t( ) iLf iLn+ 16 8⁄ A1e R L⁄( ) t–+ 2 Ae 8000t–+= = =

t 0=

iL 0( ) iL 0−( ) 0 2 A1e0+= = =

A1 2–= 0 t 0.3 ms< <

iL t( ) 2 2– e 8000t–=

t 0.3 ms>

iL t( ) A2e R L⁄( ) t 0.3–( )– A2e 8000 t 0.3–( )–= =

A2 t 0.3 ms=

6 Ω3 Ω

1 mH6 Ω iL t( )

×

×

8 Ω 1 mH iL t( )
vS t( ) 0=
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and by substitution into (2) above

or . Therefore for 

The waveform for the inductor current  for all  is shown below.

4. At  the circuit is as shown below where  and thus the initial
condition has been established.

For  the circuit and its Thevenin equivalent are as shown below where

and

iL t 0.3  ms=
2 2e 8 103 0.3 10 3–×××–– 2 2e2.4– 1.82 A= = =

iL t 0.3  ms=
1.82 A2e 8000 0.3 0.3–( )–= =

A2 1.82= t 0.3 ms>

iL t( ) 1.82e t 0.3 ms–( )–=

iL t( ) t 0>

t ms( )

iL A( )

1.82

0.3

t 0−= iL 0−( ) 20 4 6+( )⁄ 2 A= =

+
−

6 Ω
4 Ω

20 V

vS

iL 0−( )

t 0>

vTH
8

4 8+
------------ 20× 40 3⁄  V= =

RTH
8 4×
8 4+
------------ 6+ 26 3⁄  Ω= =
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Then,

and  is evaluated from the initial condition, i.e., 

from which  and thus for 

  (1)

Next, to find  we observe that this current flows also through the  resistor and this can
be found from  shown on the circuit below.

Now,

and

+
−

6 Ω

4 Ω

1 H8 Ω20 V

vS

iL t( )

Closed
Switch

+
− 1 H

vTH

iL t( )

40 3⁄  V

26 3⁄  ΩRTH

iL t( ) iLf iLn+ 40 3⁄
26 3⁄
------------- Ae R L⁄( )t–+ 20 13⁄ Ae 26 3⁄( )t–+= = =

A

iL 0−( ) iL 0+( ) 2 20 13⁄ Ae0+= = =

A 6 13⁄= t 0>

iL t( ) 20
13
------ 6

13
------e 26 3⁄( )t–+ 1.54 0.46e 8.67t–+= =

iSW t( ) 8 Ω

v8  Ω

+
−

6 Ω

4 Ω

1 H
8 Ω20 V

vS

iL t( )

+

−

iSW t( )

v8  Ω

v8  Ω v6  Ω vL t( )+ 6iL t( ) L
diL
dt
-------+= =

6 1.54 0.46e 8.67t–+( ) 1 d
dt
----- 1.54 0.46e 8.67t–+( )×+=

9.24 2.76e 8.67t– 8.67 0.46e 8.67t–×–+=

9.24 1.23e 8.67t––=
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  (2)

Therefore, from the initial condition, (1) and (2) above we have

and with these values we sketch  and  as shown below.

5. At  the circuit is as shown below where  and thus the initial condition has
been established.

The circuit for  is shown below where the current source has been replaced with a voltage
source.

Now,

iSW t( ) i8  Ω
v8  Ω

8
---------- 9.24 1.23e 8.67t––

8
----------------------------------------- 1.16 0.15e 8.67t––= = = =

iL 0+( ) 2= iL ∞( ) 1.54= iSW 0+( ) 1.16 0.15– 1.01= = iSW ∞( ) 1.16=

iL t( ) iSW t( )

iL t( ) A iSW t( ) A

tt

0.5

2.0

1.5

1.0
1.01

1.16

t 0−= vC 0−( ) 24 V=

−
+

38 Ω

50 µF

2 Ω

+
−

24 V

vS

vC t( )

t 0>

−
+

38 Ω

50 µF

2 Ω
+
−

24 V

vS

vC t( )

+ −

20 V

−

+
40 Ω

50 µF

+
−

4 V

vC t( )

vC t( ) vCf vCn+ 4 Ae 1 RC( )⁄ t–+ 4 Ae 500t–+= = =
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and with the initial condition  from which  we get

6. For  the op amp circuit is as shown below.

Application of KCL at the minus (−) input yields

and since 

or

Integrating both sides and observing that  we get

where  is the constant of integration of both sides and it is evaluated from the given initial condi-
tion. Then,

or . Therefore,

and  is the slope as shown below.

vC 0−( ) vC 0+( ) 24 V 4 Ae0+= = = A 20=

vC t( ) 4 20e 500t–+=

t 0>

R

C

vin t( )
vout t( )

+ +
−

−

v−

+ −

v− vin–

R
------------------- C

dvC
dt

---------+ 0=

v− 0=

C
dvC
dt

---------
vin
R

-------=

dvC
dt

---------
vin
RC
--------=

vout t( ) vC t( )–=

vout t( )
vin
RC
--------t– k+=

k

vC 0−( ) vC 0+( ) 0 0 k+= = =

k 0=

vout t( )
vin
RC
-------- t⎝ ⎠

⎛ ⎞– u0 t( )=

vin RC⁄
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7. At  the circuit is as shown below where  and thus the initial condition has
been established.

The circuit for  is shown below where the voltage source  is absent for all positive time
and the  is shorted out by the closed switch.

For the circuit above

and with the initial condition

from which  and thus for 

To find  we will first find  from the circuit below where

slope vin RC⁄–=

t 0−= vC 0−( ) 150 V=

+
−

175 KΩ

1 µF150 V
+

vC 0−( )−

t 0> vS1

50 KΩ

+
−

125 KΩ

1 µF50 V

+

vC t( )−

vC t( ) vCf vCn+ 50 Ae t RC( )⁄–+ 50 Ae 8t–+= = =

vC 0−( ) vC 0+( ) 150 50 Ae0+= = =

A 100= t 0>

vC t( ) 50 100e 8t–  V+=

vR3 t( ) iC t( )

iC t( ) C
dvC
dt

--------- 10 6– 8 10 4– e 8t–×–( )×= =
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Then,

The sketches below show  and  as they approach their final values.

8. For this circuit we cannot short the dependent source and therefore we cannot find  by com-
bining the resistances  and  in parallel combination in order to find the time constant

. Instead, we will derive the time constant from the differential equation of (9.9) of the
previous chapter, that is,

From the given circuit shown below

or

+
−

25 KΩ
1 µF

100 KΩ50 V
−

+
+

−
vC t( )

vR3 t( )

vR3 t( ) 100 KΩ( )iC 105 8 10 4– e 8t–×–( ) 80e 8t–  V–= = =

vC t( ) vR3 t( )

150

100

50 80–

0

0

vR3 t( ) V
vC t( ) V

t

t

Req

R1 R2

τ RC=

dvC
dt

---------
vC
RC
--------+ 0=

C
18 Ω

1 F

R1 
R2 

−

+

+
−

12 ΩvC t( )

iC t( )

10iC t( )

vC

iC
vC 10iC–

R1
----------------------

vC
R2
------+ +
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or

or

and from this differential equation we see that the coefficient of  is

and thus

and with the given initial condition  we get

Then, using

we find that for 

and the minus (−) sign indicates that the  direction is opposite to that shown.

C
dvC
dt

--------- 1
R1
------ 1

R2
------+⎝ ⎠

⎛ ⎞ vC
10
R1
------C

dvC
dt

---------–+ 0=

1 10
R1
------–⎝ ⎠

⎛ ⎞ C
dvC
dt

---------⎝ ⎠
⎛ ⎞ R1 R2+

R1 R2⋅
------------------⎝ ⎠

⎛ ⎞ vC+ 0=

dvC
dt

---------

R1 R2+

R1 R2⋅
------------------⎝ ⎠

⎛ ⎞

1 10
R1
------–⎝ ⎠

⎛ ⎞ C⋅
------------------------------vC+ 0=

vC

1
ReqC
------------ 1

τ
--- 30 216⁄

1 10
18
------–⎝ ⎠

⎛ ⎞ 1⋅
----------------------------- 30 216⁄

8 18⁄
------------------- 15 9×

4 108×
------------------ 135

432
--------- 5

16
------ 0.3125= = = = = = =

vC t( ) Ae 0.3125t–=

vC 0−( ) V0 A 5 V= = =

vC t( ) 5e 0.3125t–=

iC C
dvC
dt

---------=

t 0>

iC t( ) 1( ) 0.3125 5e 0.3125t–×–( ) 1.5625e 0.3125t––= =

iC t( )
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NOTES
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Appendix A

Introduction to MATLAB®

his appendix serves as an introduction to the basic MATLAB commands and functions, proce-
dures for naming and saving the user generated files, comment lines, access to MATLAB’s Edi-
tor/Debugger, finding the roots of a polynomial, and making plots. Several examples are pro-

vided with detailed explanations.

A.1 MATLAB® and Simulink®

MATLAB and Simulink are products of The MathWorks, Inc. These are two outstanding software
packages for scientific and engineering computations and are used in educational institutions and in
industries including automotive, aerospace, electronics, telecommunications, and environmental
applications. MATLAB enables us to solve many advanced numerical problems fast and efficiently.
Simulink is a block diagram tool used for modeling and simulating dynamic systems such as controls,
signal processing, and communications. In this appendix we will discuss MATLAB only. 

A.2 Command Window

To distinguish the screen displays from the user commands, important terms, and MATLAB func-
tions, we will use the following conventions:

Click: Click the left button of the mouse

Courier Font: Screen displays

Helvetica Font: User inputs at MATLAB’s command window prompt >> or EDU>>* 

Helvetica Bold: MATLAB functions

Times Bold Italic: Important terms and facts, notes and file names

When we first start MATLAB, we see the toolbar on top of the command screen and the prompt
EDU>>. This prompt is displayed also after execution of a command; MATLAB now waits for a new
command from the user. It is highly recommended that we use the Editor/Debugger to write our pro-
gram, save it, and return to the command screen to execute the program as explained below.

To use the Editor/Debugger:

1. From the File menu on the toolbar, we choose New and click on M-File. This takes us to the Editor

* EDU>> is the MATLAB prompt in the Student Version

T
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Window where we can type our code (list of statements) for a new file, or open a previously saved
file. We must save our program with a file name which starts with a letter. Important! MATLAB is
case sensitive, that is, it distinguishes between upper- and lower-case letters. Thus, t and T are two dif-
ferent letters in MATLAB language. The files that we create are saved with the file name we use
and the extension .m; for example, myfile01.m. It is a good practice to save the code in a file
name that is descriptive of our code content. For instance, if the code performs some matrix oper-
ations, we ought to name and save that file as matrices01.m or any other similar name. We should
also use a floppy disk to backup our files. 

2. Once the code is written and saved as an m-file, we may exit the Editor/Debugger window by clicking
on Exit Editor/Debugger of the File menu. MATLAB then returns to the command window.

3. To execute a program, we type the file name without the .m extension at the >> prompt; then, we
press <enter> and observe the execution and the values obtained from it. If we have saved our file
in drive a or any other drive, we must make sure that it is added it to the desired directory in MAT-
LAB’s search path. The MATLAB User’s Guide provides more information on this topic.

Henceforth, it will be understood that each input command is typed after the >> prompt and fol-
lowed by the <enter> key.

The command help matlab\iofun will display input/output information. To get help with other
MATLAB topics, we can type help followed by any topic from the displayed menu. For example, to
get information on graphics, we type help matlab\graphics. The MATLAB User’s Guide contains
numerous help topics.

To appreciate MATLAB’s capabilities, we type demo and we see the MATLAB Demos menu. We
can do this periodically to become familiar with them. Whenever we want to return to the command
window, we click on the Close button.

When we are done and want to leave MATLAB, we type quit or exit. But if we want to clear all pre-
vious values, variables, and equations without exiting, we should use the command clear. This com-
mand erases everything; it is like exiting MATLAB and starting it again. The command clc clears the
screen but MATLAB still remembers all values, variables and equations that we have already used. In
other words, if we want to clear all previously entered commands, leaving only the >> prompt on the
upper left of the screen, we use the clc command. 

All text after the % (percent) symbol is interpreted as a comment line by MATLAB, and thus it is
ignored during the execution of a program. A comment can be typed on the same line as the function
or command or as a separate line. For instance,

conv(p,q)    % performs multiplication of polynomials p and q.

% The next statement performs partial fraction expansion of p(x) / q(x)

are both correct.
A-2 Circuit Analysis I with MATLAB Applications
Orchard Publications



Roots of Polynomials
One of the most powerful features of MATLAB is the ability to do computations involving complex
numbers. We can use either , or  to denote the imaginary part of a complex number, such as 3-4i
or 3-4j. For example, the statement

z=3−4j

displays

z = 3.0000-4.0000i

In the above example, a multiplication (*) sign between 4 and  was not necessary because the com-
plex number consists of numerical constants. However, if the imaginary part is a function, or variable
such as , we must use the multiplication sign, that is, we must type cos(x)*j or j*cos(x) for the
imaginary part of the complex number. 

A.3 Roots of Polynomials

In MATLAB, a polynomial is expressed as a row vector of the form . These
are the coefficients of the polynomial in descending order. We must include terms whose coeffi-
cients are zero. 

We find the roots of any polynomial with the roots(p) function; p is a row vector containing the
polynomial coefficients in descending order.

Example A.1  

Find the roots of the polynomial

Solution:

The roots are found with the following two statements where we have denoted the polynomial as p1,
and the roots as roots_ p1. 

p1=[1  −10  35  −50  24] %  Specify and display the coefficients of p1(x)

p1 =

     1   -10    35   -50    24

roots_ p1=roots(p1) %  Find the roots of p1(x)

roots_p1 =

   4.0000

   3.0000

i j

j

x( )cos

an  an 1–   … a2  a1  a0[ ]

p1 x( ) x
4

10x
3

– 35x
2

50x– 24+ +=
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   2.0000

   1.0000

We observe that MATLAB displays the polynomial coefficients as a row vector, and the roots as a
column vector.

Example A.2  

Find the roots of the polynomial

Solution:

There is no cube term; therefore, we must enter zero as its coefficient. The roots are found with the
statements below, where we have defined the polynomial as p2, and the roots of this polynomial as
roots_ p2. The result indicates that this polynomial has three real roots, and two complex roots. Of
course, complex roots always occur in complex conjugate*  pairs. 

p2=[1  −7   0  16  25  52]

p2 =

     1    -7     0    16    25    52

roots_ p2=roots(p2)

roots_ p2 =

   6.5014         

   2.7428         

  -1.5711         

  -0.3366+ 1.3202i

  -0.3366- 1.3202i

A.4 Polynomial Construction from Known Roots

We can compute the coefficients of a polynomial, from a given set of roots, with the poly(r) function
where r is a row vector containing the roots. 

*  By definition, the conjugate of a complex number  is 

p2 x( ) x
5

7x
4

– 16x
2

25x+ + 52+=

A a jb+= A∗ a jb–=
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Example A.3  

It is known that the roots of a polynomial are . Compute the coefficients of this poly-
nomial.

Solution: 

We first define a row vector, say , with the given roots as elements of this vector; then, we find the
coefficients with the poly(r) function as shown below.

r3=[1  2  3  4] %  Specify the roots of the polynomial

r3 =

     1     2     3     4

poly_r3=poly(r3) %  Find the polynomial coefficients

poly_r3 =

     1   -10    35   -50    24

We observe that these are the coefficients of the polynomial  of Example A.1.

Example A.4  

It is known that the roots of a polynomial are . Find the coefficients
of this polynomial.

Solution:

We form a row vector, say , with the given roots, and we find the polynomial coefficients with the
poly(r) function as shown below.

r4=[ −1   −2   −3   −4+5j   −4−5j ]

r4 =

  Columns 1 through 4 

  -1.0000   -2.0000   -3.0000   -4.0000+ 5.0000i

  Column 5 

  -4.0000- 5.0000i

poly_r4=poly(r4)

poly_r4 =

     1    14   100   340   499   246

1 2 3  and 4, , ,

r3

p1 x( )

1  2  3  4 j5  and  4 j5–+,–,–,–

r4
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Therefore, the polynomial is

A.5 Evaluation of a Polynomial at Specified Values

The polyval(p,x) function evaluates a polynomial  at some specified value of the independent
variable x.

Example A.5  

Evaluate the polynomial

(A.1)

at .

Solution:

p5=[1  −3   0   5  −4   3   2]; % These are the coefficients

% The semicolon (;) after the right bracket suppresses the display of the row vector

%  that contains the coefficients of p5.

%

val_minus3=polyval(p5, −3) % Evaluate p5 at x=−3; no semicolon is used here

% because we want the answer to be displayed

val_minus3 =

        1280

Other MATLAB functions used with polynomials are the following:

conv(a,b) − multiplies two polynomials a and b 

[q,r]=deconv(c,d) −divides polynomial c by polynomial d and displays the quotient q and remain-
der r.

polyder(p) − produces the coefficients of the derivative of a polynomial p. 

Example A.6  

Let 

and

p4 x( ) x
5

14x
4

100x
3

340x
2

499x 246+ + + + +=

p x( )

p5 x( ) x6 3x5
– 5x3 4x2

– 3x 2+ + +=
x 3–=

p1 x5 3x4
– 5x2 7x 9+ + +=
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Compute the product  using the conv(a,b) function.

Solution:

p1=[1  −3   0  5  7  9]; % The coefficients of p1

p2=[2   0  −8  0  4  10  12]; % The coefficients of p2

p1p2=conv(p1,p2) % Multiply p1 by p2 to compute coefficients of the product p1p2

p1p2 =

2  -6  -8  34  18  -24  -74  -88  78  166  174  108

Therefore, 

Example A.7  

Let

and

Compute the quotient  using the [q,r]=deconv(c,d) function.

Solution:

% It is permissible to write two or more statements in one line separated by semicolons

p3=[1   0  −3    0   5   7    9];  p4=[2  −8   0    0   4  10  12];  [q,r]=deconv(p3,p4)

q =

    0.5000

r =

     0     4    -3     0     3     2     3

p2 2x6 8x4
– 4x2 10x 12+ + +=

p1 p2⋅

p1 p2⋅ 2x11 6x10 8x9
–– 34x8 18x7 24x6

–+ +=

74x5 88x4 78x3 166x2 174x 108+ + + +––

p3 x7 3x5– 5x3 7x 9+ + +=

p4 2x6 8x5
– 4x2 10x 12+ + +=

p3 p4⁄
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Therefore,

Example A.8  

Let

Compute the derivative  using the polyder(p) function.

Solution:

p5=[2   0   −8   0   4   10   12]; % The coefficients of p5

der_p5=polyder(p5) % Compute the coefficients of the derivative of p5

der_p5 =

    12     0   -32     0     8    10

Therefore,

A.6  Rational Polynomials

Rational Polynomials are those which can be expressed in ratio form, that is, as

(A.2)

where some of the terms in the numerator and/or denominator may be zero. We can find the roots
of the numerator and denominator with the roots(p) function as before.

As noted in the comment line of Example A.7, we can write MATLAB statements in one line, if we
separate them by commas or semicolons. Commas will display the results whereas semicolons will
suppress the display.

q 0.5= r 4x5 3x4
– 3x2 2x 3+ + +=

p5 2x6 8x4
– 4x2 10x 12+ + +=

d
dx
------p5

d
dx
------p5 12x5 32x3

– 4x2 8x 10+ + +=

R x( ) Num x( )
Den x( )
-------------------

bnxn bn 1– xn 1– bn 2– xn 2– … b1x b0+ + + + +

amxm am 1– xm 1– am 2– xm 2– … a1x a0+ + + + +
-----------------------------------------------------------------------------------------------------------------------= =
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Example A.9  

Let

Express the numerator and denominator in factored form, using the roots(p) function. 

Solution:

num=[1  −3  0  5  7  9]; den=[1  0  −4  0  2  5  6]; % Do not display num and den coefficients
roots_num=roots(num), roots_den=roots(den) % Display num and den roots

roots_num =

   2.4186+ 1.0712i    2.4186- 1.0712i   -1.1633         

  -0.3370+ 0.9961i   -0.3370- 0.9961i

roots_den =

   1.6760+0.4922i     1.6760-0.4922i  -1.9304         

  -0.2108+0.9870i    -0.2108-0.9870i  -1.0000

As expected, the complex roots occur in complex conjugate pairs.

For the numerator, we have the factored form

and for the denominator, we have

We can also express the numerator and denominator of this rational function as a combination of lin-
ear and quadratic factors. We recall that, in a quadratic equation of the form  whose
roots are  and , the negative sum of the roots is equal to the coefficient  of the  term, that is,

, while the product of the roots is equal to the constant term , that is, .
Accordingly, we form the coefficient  by addition of the complex conjugate roots and this is done
by inspection; then we multiply the complex conjugate roots to obtain the constant term  using
MATLAB as follows:

R x( )
pnum
pden
------------ x5 3x4

– 5x2 7x 9+ + +

x6 4x4– 2x2 5x 6+ + +
--------------------------------------------------------= =

pnum x 2.4186– j1.0712–( ) x 2.4186– j1.0712+( ) x 1.1633+( )=

x 0.3370 j0.9961–+( ) x 0.3370 j0.9961+ +( )

pden x 1.6760– j0.4922–( ) x 1.6760– j0.4922+( ) x 1.9304+( )=

x 0.2108 j– 0.9870+( ) x 0.2108 j0.9870+ +( ) x 1.0000+( )

x2 bx c+ + 0=

x1 x2 b x

x1 x2+( )– b= c x1 x2⋅ c=

b
c
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(2.4186 + 1.0712i)*(2.4186 −1.0712i)

ans = 6.9971

(−0.3370+ 0.9961i)*(−0.3370−0.9961i)

ans = 1.1058

(1.6760+ 0.4922i)*(1.6760−0.4922i)

ans = 3.0512

(−0.2108+ 0.9870i)*(−0.2108−0.9870i)

ans = 1.0186

Thus,

We can check this result with MATLAB’s Symbolic Math Toolbox which is a collection of tools (func-
tions) used in solving symbolic expressions. They are discussed in detail in MATLAB’s Users Manual.
For the present, our interest is in using the collect(s) function that is used to multiply two or more
symbolic expressions to obtain the result in polynomial form. We must remember that the conv(p,q)
function is used with numeric expressions only, that is, polynomial coefficients.

Before using a symbolic expression, we must create one or more symbolic variables such as x, y, t,
and so on. For our example, we use the following code:

syms x  % Define a symbolic variable and use collect(s) to express numerator in polynomial form

collect((x^2−4.8372*x+6.9971)*(x^2+0.6740*x+1.1058)*(x+1.1633))

ans =

x^5-29999/10000*x^4-1323/3125000*x^3+7813277909/
1562500000*x^2+1750276323053/250000000000*x+4500454743147/
500000000000

and if we simplify this, we find that is the same as the numerator of the given rational expression in
polynomial form. We can use the same procedure to verify the denominator.

A.7 Using MATLAB to Make Plots

Quite often, we want to plot a set of ordered pairs. This is a very easy task with the MATLAB
plot(x,y) command that plots y versus x. Here, x is the horizontal axis (abscissa) and y is the vertical
axis (ordinate).

R x( )
pnum
pden
------------ x2 4.8372x– 6.9971+( ) x2 0.6740x 1.1058+ +( ) x 1.1633+( )

x2 3.3520x– 3.0512+( ) x2 0.4216x 1.0186+ +( ) x 1.0000+( ) x 1.9304+( )
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------= =
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Example A.10  

Consider the electric circuit of Figure A.1, where the radian frequency ω (radians/second) of the
applied voltage was varied from 300 to 3000 in steps of 100 radians/second, while the amplitude was
held constant. The ammeter readings were then recorded for each frequency. The magnitude of the
impedance |Z| was computed as  and the data were tabulated on Table A.1.

Figure A.1. Electric circuit for Example A.10

Plot the magnitude of the impedance, that is, |Z| versus radian frequency .

Solution:

We cannot type  (omega) in the MATLAB command window, so we will use the English letter w
instead. 

If a statement, or a row vector is too long to fit in one line, it can be continued to the next line by typ-

TABLE A.1  Table for Example A.10

ω (rads/s) |Z| Ohms ω (rads/s) |Z| Ohms
300 39.339 1700 90.603
400 52.589 1800 81.088
500 71.184 1900 73.588
600 97.665 2000 67.513
700 140.437 2100 62.481
800 222.182 2200 58.240
900 436.056 2300 54.611

1000 1014.938 2400 51.428
1100 469.83 2500 48.717
1200 266.032 2600 46.286
1300 187.052 2700 44.122
1400 145.751 2800 42.182
1500 120.353 2900 40.432
1600 103.111 3000 38.845

Z V A⁄=

A

V

R

L

C

ω

ω
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ing three or more periods, then pressing <enter> to start a new line, and continue to enter data. This
is illustrated below for the data of w and z. Also, as mentioned before, we use the semicolon (;) to
suppress the display of numbers that we do not care to see on the screen. 

The data are entered as follows:

w=[300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900....

2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000];

%

z=[39.339  52.789  71.104  97.665  140.437  222.182  436.056.... 

1014.938  469.830  266.032 187.052 145.751 120.353  103.111.... 

90.603  81.088  73.588  67.513  62.481  58.240  54.611  51.468.... 

48.717  46.286  44.122  42.182  40.432  38.845]; 

Of course, if we want to see the values of w or z or both, we simply type w or z, and we press
<enter>. To plot  (y-axis) versus  (x-axis), we use the plot(x,y) command. For this example, we
use plot(w,z). When this command is executed, MATLAB displays the plot on MATLAB’s graph
screen. This plot is shown in Figure A.2.

Figure A.2. Plot of impedance  versus frequency  for Example A.10
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This plot is referred to as the amplitude frequency response of the circuit.

To return to the command window, we press any key, or from the Window pull-down menu, we
select MATLAB Command Window. To see the graph again, we click on the Window pull-down
menu, and we select Figure.

We can make the above, or any plot, more presentable with the following commands:

grid on: This command adds grid lines to the plot. The grid off command removes the grid. The
command grid toggles them, that is, changes from off to on or vice versa. The default* is off.

box off: This command removes the box (the solid lines which enclose the plot), and box on
restores the box. The command box toggles them. The default is on.

title(‘string’): This command adds a line of the text string (label) at the top of the plot.

xlabel(‘string’) and ylabel(‘string’) are used to label the x- and y-axis respectively.

The amplitude frequency response is usually represented with the x-axis in a logarithmic scale. We
can use the semilogx(x,y) command that is similar to the plot(x,y) command, except that the x-axis
is represented as a log scale, and the y-axis as a linear scale. Likewise, the semilogy(x,y) command is
similar to the plot(x,y) command, except that the y-axis is represented as a log scale, and the x-axis as
a linear scale. The loglog(x,y) command uses logarithmic scales for both axes. 

Throughout this text it will be understood that log is the common (base 10) logarithm, and ln is the
natural (base e) logarithm. We must remember, however, the function log(x) in MATLAB is the nat-
ural logarithm, whereas the common logarithm is expressed as log10(x), and the logarithm to the
base 2 as log2(x). 

Let us now redraw the plot with the above options by adding the following statements:

semilogx(w,z); grid;   % Replaces the plot(w,z) command

title('Magnitude of Impedance vs. Radian Frequency');

xlabel('w in rads/sec'); ylabel('|Z| in Ohms')

After execution of these commands, our plot is as shown in Figure A.3.

If the y-axis represents power, voltage or current, the x-axis of the frequency response is more often
shown in a logarithmic scale, and the y-axis in dB (decibels). The decibel unit is defined in Chapter 4.

* A default is a particular value for a variable that is assigned automatically by an operating system and remains
in effect unless canceled or overridden by the operator.
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Figure A.3. Modified frequency response plot of Figure A.2.

To display the voltage  in a dB scale on the y-axis, we add the relation dB=20*log10(v), and we
replace the semilogx(w,z) command with semilogx(w,dB).

The command gtext(‘string’)*  switches to the current Figure Window, and displays a cross-hair that
can be moved around with the mouse. For instance, we can use the command gtext(‘Impedance |Z|
versus Frequency’), and this will place a cross-hair in the Figure window. Then, using the mouse, we
can move the cross-hair to the position where we want our label to begin, and we press <enter>.

The command text(x,y,’string’) is similar to gtext(‘string’). It places a label on a plot in some spe-
cific location specified by x and y, and string is the label which we want to place at that location. We
will illustrate its use with the following example that plots a 3-phase sinusoidal waveform.

The first line of the code below has the form

linspace(first_value, last_value, number_of_values) 

* With MATLAB Versions 6 and 7 we can add text, lines and arrows directly into the graph using the tools provided
on the Figure Window.
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This function specifies the number of data points but not the increments between data points. An
alternate function is

x=first: increment: last

and this specifies the increments between points but not the number of data points.

The code for the 3-phase plot is as follows:

x=linspace(0, 2*pi, 60); %  pi is a built-in function in MATLAB;

%  we could have used x=0:0.02*pi:2*pi or x = (0: 0.02: 2)*pi instead;

y=sin(x); u=sin(x+2*pi/3); v=sin(x+4*pi/3); 

plot(x,y,x,u,x,v); %  The x-axis must be specified for each function

grid on, box on, %  turn grid and axes box on

text(0.75, 0.65, 'sin(x)');  text(2.85, 0.65, 'sin(x+2*pi/3)'); text(4.95, 0.65, 'sin(x+4*pi/3)')

These three waveforms are shown on the same plot of Figure A.4.

Figure A.4. Three-phase waveforms 

In our previous examples, we did not specify line styles, markers, and colors for our plots. However,
MATLAB allows us to specify various line types, plot symbols, and colors. These, or a combination
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of these, can be added with the plot(x,y,s) command, where s is a character string containing one or
more characters shown on the three columns of Table A.2. MATLAB has no default color; it starts
with blue and cycles through the first seven colors listed in Table A.2 for each additional line in the
plot. Also, there is no default marker; no markers are drawn unless they are selected. The default line
is the solid line.

For example, plot(x,y,'m*:') plots a magenta dotted line with a star at each data point, and
plot(x,y,'rs') plots a red square at each data point, but does not draw any line because no line was
selected. If we want to connect the data points with a solid line, we must type plot(x,y,'rs−'). For
additional information we can type help plot in MATLAB’s command screen.

The plots we have discussed thus far are two-dimensional, that is, they are drawn on two axes. MAT-
LAB has also a three-dimensional (three-axes) capability and this is discussed next.

The plot3(x,y,z) command plots a line in 3-space through the points whose coordinates are the ele-
ments of x, y and z, where x, y and z are three vectors of the same length.

The general format is plot3(x1,y1,z1,s1,x2,y2,z2,s2,x3,y3,z3,s3,...) where xn, yn and zn are vectors
or matrices, and sn are strings specifying color, marker symbol, or line style. These strings are the
same as those of the two-dimensional plots.

TABLE A.2 Styles, colors, and markets used in MATLAB

Symbol Color Symbol Marker Symbol Line Style
b blue . point − solid line

g green o circle : dotted line

r red x x-mark −. dash-dot line

c cyan + plus −− dashed line

m magenta * star
y yellow s square
k black d diamond
w white ∨ triangle down

∧ triangle up

< triangle left

> triangle right

p pentagram
h hexagram
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Example A.11  

Plot the function

(A.3)
Solution:

We arbitrarily choose the interval (length) shown on the code below.

x= -10: 0.5: 10; %  Length of vector x 

y= x; % Length of vector y must be same as x

z= −2.*x.^3+x+3.*y.^2−1; %  Vector z is function of both x and y* 

plot3(x,y,z); grid

The three-dimensional plot is shown in Figure A.5.

Figure A.5. Three dimensional plot for Example A.11

In a two-dimensional plot, we can set the limits of the x- and y-axes with the axis([xmin xmax ymin
ymax]) command. Likewise, in a three-dimensional plot we can set the limits of all three axes with

* This statement uses the so called dot multiplication, dot division, and dot exponentiation where the multiplication,
division, and exponential operators are preceded by a dot. These operations will be explained in Section A.8.

z 2x3
– x 3y2 1–+ +=

-10

-5

0

5

10

-10

-5

0

5

10
-2000

-1000

0

1000

2000

3000
Circuit Analysis I with MATLAB Applications A-17
Orchard Publications



Appendix A  Introduction to MATLAB®
the axis([xmin xmax ymin ymax zmin zmax]) command. It must be placed after the plot(x,y) or
plot3(x,y,z) commands, or on the same line without first executing the plot command. This must be
done for each plot. The three-dimensional text(x,y,z,’string’) command will place string beginning
at the co-ordinate (x,y,z) on the plot.

For three-dimensional plots, grid on and box off are the default states.

We can also use the mesh(x,y,z) command with two vector arguments. These must be defined as
 and  where . In this case, the vertices of the mesh

lines are the triples . We observe that x corresponds to the columns of Z, and y
corresponds to the rows.

To produce a mesh plot of a function of two variables, say , we must first generate the X
and Y matrices that consist of repeated rows and columns over the range of the variables x and y. We
can generate the matrices X and Y with the [X,Y]=meshgrid(x,y) function that creates the matrix X
whose rows are copies of the vector x, and the matrix Y whose columns are copies of the vector y.

Example A.12  

The volume  of a right circular cone of radius  and height  is given by

(A.4)

Plot the volume of the cone as  and  vary on the intervals  and  meters.

Solution:

The volume of the cone is a function of both the radius r and the height h, that is,

The three-dimensional plot is created with the following MATLAB code where, as in the previous
example, in the second line we have used the dot multiplication, dot division, and dot exponentiation.
This will be explained in Section A.8.

[R,H]=meshgrid(0: 4, 0: 6); % Creates R and H matrices from vectors r and h

V=(pi .* R .^ 2 .* H) ./ 3;  mesh(R, H, V)

xlabel('x-axis, radius r (meters)'); ylabel('y-axis, altitude h (meters)');

zlabel('z-axis, volume (cubic meters)'); title('Volume of Right Circular Cone'); box on

The three-dimensional plot of Figure A.6, shows how the volume of the cone increases as the radius
and height are increased.

length x( ) n= length y( ) m= m n,[ ] size Z( )=

x j( ) y i( ) Z i j,( ),,{ }

z f x y,( )=

V r h

V 1
3
---πr2h=

r h 0 r 4≤ ≤ 0 h 6≤ ≤

V f r h,( )=
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Figure A.6. Volume of a right circular cone.

This, and the plot of Figure A.5, are rudimentary; MATLAB can generate very sophisticated three-
dimensional plots. The MATLAB User’s manual contains more examples.

A.8 Subplots

MATLAB can display up to four windows of different plots on the Figure window using the com-
mand subplot(m,n,p). This command divides the window into an m × n matrix of plotting areas and
chooses the pth area to be active. No spaces or commas are required between the three integers m, n
and p. The possible combinations are shown in Figure A.7.

We will illustrate the use of the subplot(m,n,p) command following the discussion on multiplica-
tion, division and exponentiation that follows.

Figure A.7. Possible subplot arrangements in MATLAB

0
1

2
3

4

0

2

4

6
0

20

40

60

80

100

120

x-axis, radius r (meters)

Volume of Right Circular Cone

y-axis, altitude h (meters)

z-
ax

is
, 

vo
lu

m
e 

(c
ub

ic
 m

et
er

s)

   111
Full Screen Default

 211
 212

 221  222
 223  224

 121  122

  221  222
 212

 211
 223 224

 221
 223

 122  121
 222
224
Circuit Analysis I with MATLAB Applications A-19
Orchard Publications



Appendix A  Introduction to MATLAB®
A.9  Multiplication, Division and Exponentiation

MATLAB recognizes two types of multiplication, division, and exponentiation. These are the matrix
multiplication, division, and exponentiation, and the element-by-element multiplication, division,
and exponentiation. They are explained in the following paragraphs.

In Section A.2, the arrays , such a those that contained the coefficients of polynomials,
consisted of one row and multiple columns, and thus are called row vectors. If an array has one col-
umn and multiple rows, it is called a column vector. We recall that the elements of a row vector are
separated by spaces. To distinguish between row and column vectors, the elements of a column vec-
tor must be separated by semicolons. An easier way to construct a column vector, is to write it first as
a row vector, and then transpose it into a column vector. MATLAB uses the single quotation charac-
ter (′) to transpose a vector. Thus, a column vector can be written either as b=[−1; 3; 6; 11] or as b=[−
1  3  6  11]'. MATLAB produces the same display with either format as shown below.

b=[−1; 3; 6; 11] 

b =

    -1

     3

     6

    11

b=[−1  3  6  11]' 

b =

    -1

     3

     6

    11

We will now define Matrix Multiplication and Element-by-Element multiplication.

1. Matrix Multiplication (multiplication of row by column vectors)

Let

and
 

a  b  c  …[ ]

A a1   a2   a3   …   an[ ]=

B b1   b2   b3   …   bn[ ]'=
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be two vectors. We observe that A is defined as a row vector whereas B is defined as a column vector,
as indicated by the transpose operator (′). Here, multiplication of the row vector A by the column
vector B, is performed with the matrix multiplication operator (*). Then,

(A.5)

For example, if

and

the matrix multiplication  produces the single value 68, that is,

and this is verified with MATLAB as

A=[1   2    3   4   5]; B=[ −2   6  −3   8   7]';
A*B

ans =

   68

Now, let us suppose that both A and B are row vectors, and we attempt to perform a row-by-row
multiplication with the following MATLAB statements.

A=[1  2   3  4  5]; B=[−2  6  −3  8  7];
A*B

When these statements are executed, MATLAB displays the following message:

??? Error using ==> *

Inner matrix dimensions must agree.

Here, because we have used the matrix multiplication operator (*) in A*B, MATLAB expects vector B
to be a column vector, not a row vector. It recognizes that B is a row vector, and warns us that we
cannot perform this multiplication using the matrix multiplication operator (*). Accordingly, we must
perform this type of multiplication with a different operator. This operator is defined below.

2.Element-by-Element Multiplication (multiplication of a row vector by another row vector)

Let

and
 

A*B a1b1 a2b2 a3b3 … anbn+ + + +[ ] gle valuesin= =

A 1   2   3   4   5[ ]=

B 2–    6   3–    8   7[ ]'=

A*B

A∗B 1 2–( ) 2 6 3 3–( ) 4 8 5 7×+×+×+×+× 68= =

C c1   c2   c3   …   cn[ ]=

D d1   d2   d3   …   dn[ ]=
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be two row vectors. Here, multiplication of the row vector C by the row vector D is performed with
the dot multiplication operator (.*). There is no space between the dot and the multiplication sym-
bol. Thus,

(A.6)

This product is another row vector with the same number of elements, as the elements of C and D. 

As an example, let

and

Dot multiplication of these two row vectors produce the following result.

Check with MATLAB:

C=[1  2   3   4  5]; %  Vectors C and D must have
D=[−2  6 −3   8  7]; %  same number of elements
C.*D % We observe that this is a dot multiplication

ans =
   -2    12    -9    32    35

Similarly, the division (/) and exponentiation (^) operators, are used for matrix division and exponen-
tiation, whereas dot division (./) and dot exponentiation (.^) are used for element-by-element divi-
sion and exponentiation.

We must remember that no space is allowed between the dot (.) and the multiplication, divi-
sion, and exponentiation operators. 

Note: A dot (.) is never required with the plus (+) and minus (−) operators.

Example A.13  

Write the MATLAB code that produces a simple plot for the waveform defined as 

(A.7)

in the  seconds interval.

Solution:

The MATLAB code for this example is as follows:

C.∗D c1d1    c2d2    c3d3    …    cndn[ ]=

C 1   2   3   4   5[ ]=

D 2–    6   3–    8   7[ ]=

C.∗D 1 2–( )×    2 6×    3 3–( )×    4 8   5 7×× 2–    12   9–    32   35= =

y f t( ) 3e 4t– 5tcos 2e 3t– 2tsin– t2

t 1+
-----------+= =

0 t 5≤ ≤
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t=0: 0.01: 5  %  Define t-axis in 0.01 increments
y=3 .* exp(−4 .* t) .* cos(5 .* t)−2 .* exp(−3 .* t) .* sin(2 .* t) + t .^2 ./ (t+1);
plot(t,y); grid; xlabel('t'); ylabel('y=f(t)'); title('Plot for Example A.13')

Figure A.8 shows the plot for this example. 

Figure A.8. Plot for Example A.13

Had we, in this example, defined the time interval starting with a negative value equal to or less than
, say as , MATLAB would have displayed the following message:

Warning: Divide by zero.

This is because the last term (the rational fraction) of the given expression, is divided by zero when
. To avoid division by zero, we use the special MATLAB function eps, which is a number

approximately equal to . It will be used with the next example.

The command axis([xmin xmax ymin ymax]) scales the current plot to the values specified by the
arguments xmin, xmax, ymin and ymax. There are no commas between these four arguments.
This command must be placed after the plot command and must be repeated for each plot.

The following example illustrates the use of the dot multiplication, division, and exponentiation, the
eps number, the axis([xmin xmax ymin ymax]) command, and also MATLAB’s capability of dis-
playing up to four windows of different plots.

Example A.14  

Plot the functions
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in the interval  using 100 data points. Use the subplot command to display these func-
tions on four windows on the same graph.

Solution:

The MATLAB code to produce the four subplots is as follows:

x=linspace(0,2*pi,100); % Interval with 100 data points
y=(sin(x).^ 2);  z=(cos(x).^ 2);  
w=y.* z;
v=y./ (z+eps); %  add eps to avoid division by zero
subplot(221);% upper left of four subplots
plot(x,y);  axis([0 2*pi 0 1]);
title('y=(sinx)^2');
subplot(222); % upper right of four subplots
plot(x,z);  axis([0 2*pi 0 1]);  
title('z=(cosx)^2');
subplot(223); % lower left of four subplots
plot(x,w);  axis([0 2*pi 0 0.3]);
title('w=(sinx)^2*(cosx)^2');
subplot(224); % lower right of four subplots
plot(x,v);  axis([0 2*pi 0 400]);
title('v=(sinx)^2/(cosx)^2');

These subplots are shown in Figure A.9. 

Figure A.9. Subplots for the functions of Example A.14
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The next example illustrates MATLAB’s capabilities with imaginary numbers. We will introduce the
real(z) and imag(z) functions that display the real and imaginary parts of the complex quantity z =
x + iy, the abs(z), and the angle(z) functions that compute the absolute value (magnitude) and
phase angle of the complex quantity z = x + iy = r∠θ. We will also use the polar(theta,r) function
that produces a plot in polar coordinates, where r is the magnitude, theta is the angle in radians, and
the round(n) function that rounds a number to its nearest integer.

Example A.15   

Consider the electric circuit of Figure A.10.

Figure A.10. Electric circuit for Example A.15

With the given values of resistance, inductance, and capacitance, the impedance  as a function of
the radian frequency ω can be computed from the following expression:

(A.8)

a. Plot  (the real part of the impedance Z) versus frequency ω.

b. Plot  (the imaginary part of the impedance Z) versus frequency ω.

c. Plot the impedance Z versus frequency ω in polar coordinates.

Solution:

The MATLAB code below computes the real and imaginary parts of  that is, for simplicity,
denoted as z, and plots these as two separate graphs (parts a & b). It also produces a polar plot (part
c).

w=0: 1: 2000;  %  Define interval with one radian interval
z=(10+(10 .^ 4 −j .* 10 .^ 6 ./ (w+eps)) ./ (10 + j .* (0.1 .* w −10.^5./ (w+eps))));
%
%  The first five statements (next two lines) compute and plot Re{z}
real_part=real(z);  plot(w,real_part);  grid;
xlabel('radian frequency w');  ylabel('Real part of Z');
%

a

b

10 Ω

10 Ω

0.1 H

10 µFZab

Zab

Zab Z 10 104 j 106 ω⁄( )–

10 j 0.1ω 105 ω⁄  –( )+
--------------------------------------------------------+= =

Re Z{ }

Im Z{ }

Zab
Circuit Analysis I with MATLAB Applications A-25
Orchard Publications



Appendix A  Introduction to MATLAB®
%  The next five statements (next two lines) compute and plot Im{z}
imag_part=imag(z);  plot(w,imag_part);  grid;
xlabel('radian frequency w');  ylabel('Imaginary part of Z');
%  The last six statements (next six lines) below produce the polar plot of z
mag=abs(z); %  Computes |Z|
rndz=round(abs(z)); %  Rounds |Z| to read polar plot easier
theta=angle(z); %  Computes the phase angle of impedance Z
polar(theta,rndz); %  Angle is the first argument
grid;
ylabel('Polar Plot of Z');

The real, imaginary, and polar plots are shown in Figures A.11, A.12, and A.13 respectively.

Example A.15 clearly illustrates how powerful, fast, accurate, and flexible MATLAB is.

A.10 Script and Function Files

MATLAB recognizes two types of files: script files and function files. Both types are referred to as
m-files since both require the .m extension.

A script file consists of two or more built-in functions such as those we have discussed thus far.
Thus, the code for each of the examples we discussed earlier, make up a script file. Generally, a script
file is one which was generated and saved as an m-file with an editor such as the MATLAB’s Editor/
Debugger.

Figure A.11. Plot for the real part of the impedance in Example A.15
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Figure A.12. Plot for the imaginary part of the impedance in Example A.15

Figure A.13. Polar plot of the impedance in Example A.15
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A function file is a user-defined function using MATLAB. We use function files for repetitive tasks.
The first line of a function file must contain the word function, followed by the output argument, the
equal sign ( = ), and the input argument enclosed in parentheses. The function name and file name
must be the same, but the file name must have the extension .m. For example, the function file con-
sisting of the two lines below

function y = myfunction(x)

y=x.^ 3 + cos(3.* x)

is a function file and must be saved as myfunction.m

For the next example, we will use the following MATLAB functions.

fzero(f,x) tries to find a zero of a function of one variable, where f is a string containing the name of
a real-valued function of a single real variable. MATLAB searches for a value near a point where the
function f changes sign, and returns that value, or returns NaN if the search fails. 

Important: We must remember that we use roots(p) to find the roots of polynomials only, such as
those in Examples A.1 and A.2.

fmin(f,x1,x2) minimizes a function of one variable. It attempts to return a value of x where  is
minimum in the interval . The string f contains the name of the function to be minimized.

Note: MATLAB does not have a function to maximize a function of one variable, that is, there is no
fmax(f,x1,x2) function in MATLAB; but since a maximum of  is equal to a minimum of ,
we can use fmin(f,x1,x2) to find both minimum and maximum values of a function.

fplot(fcn,lims) plots the function specified by the string fcn between the x-axis limits specified by
lims = [xmin xmax]. Using lims = [xmin xmax ymin ymax] also controls the y-axis limits. The
string fcn must be the name of an m-file function or a string with variable .

Note: NaN (Not-a-Number) is not a function; it is MATLAB’s response to an undefined expression
such as , , or inability to produce a result as described on the next paragraph. We can avoid
division by zero using the eps number, that we mentioned earlier.

Example A.16  

Find the zeros, maxima and minima of the function 

Solution:

We first plot this function to observe the approximate zeros, maxima, and minima using the follow-
ing code.

f x( )
x1 x x2< <

f x( ) f x( )–

x

0 0⁄ ∞ ∞⁄

f x( ) 1
x 0.1–( )2 0.01+

---------------------------------------- 1
x 1.2–( )2 0.04+

---------------------------------------- 10–+=
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x=−1.5: 0.01: 1.5;
y=1./ ((x−0.1).^ 2 + 0.01) −1./ ((x−1.2).^ 2 + 0.04) −10;
plot(x,y); grid

The plot is shown in Figure A.14.

Figure A.14. Plot for Example A.16 using the plot command

The roots (zeros) of this function appear to be in the neighborhood of  and . The
maximum occurs at approximately  where, approximately, , and the minimum
occurs at approximately  where, approximately, .

Next, we define and save f(x) as the funczero01.m function m-file with the following code:

function y=funczero01(x)

% Finding the zeros of the function shown below

y=1/((x−0.1)^2+0.01)−1/((x−1.2)^2+0.04)-10;

Now, we can use the fplot(fcn,lims) command to plot  as follows.

fplot('funczero01', [−1.5  1.5]); grid

This plot is shown in Figure A.15. As expected, this plot is identical to the plot of Figure A.14 that
was obtained with the plot(x,y) command.
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Figure A.15. Plot for Example A.16 using the fplot command

We will use the fzero(f,x) function to compute the roots of  in (A.20) more precisely. The code
below must be saved with a file name, and then invoked with that file name.

x1= fzero('funczero01', -0.2);
x2= fzero('funczero01', 0.3);
fprintf('The roots (zeros) of this function are r1= %3.4f', x1);
fprintf(' and r2= %3.4f \n', x2)

MATLAB displays the following:

The roots (zeros) of this function are r1= -0.1919 and r2= 0.3788

Whenever we use the fmin(f,x1,x2) function, we must remember that this function searches for a
minimum and it may display the values of local minima* , if any, before displaying the function mini-
mum. It is, therefore, advisable to plot the function with either the plot(x,y) or the fplot(fcn,lims)
command to find the smallest possible interval within which the function minimum lies. For this
example, we specify the range  rather than the interval .

The minimum of f(x) is found with the fmin(f,x1,x2) function as follows.
min_val=fmin('funczero01', 0, 1.5)

min_val = 1.2012

* Local maxima or local minima, are the maximum or minimum values of a function within a restricted range of
values in the independent variable. When the entire range is considered, the maxima and minima are considered
be to the maximum and minimum values in the entire range in which the function is defined.

-1.5 -1 -0.5 0 0.5 1 1.5
-40

-20

0

20

40

60

80

100

f x( )

0 x 1.5≤ ≤ 1.5 x 1.5≤ ≤–
A-30 Circuit Analysis I with MATLAB Applications
Orchard Publications



Display Formats
This is the value of x at which  is minimum. To find the value of y corresponding to this
value of x, we substitute it into , that is,

x=1.2012; y=1 / ((x−0.1) ^ 2 + 0.01) −1 / ((x−1.2) ^ 2 + 0.04) −10

y = -34.1812

To find the maximum value, we must first define a new function m-file that will produce . We
define it as follows:

function y=minusfunczero01(x)

% It is used to find maximum value from -f(x)

y=−(1/((x−0.1)^2+0.01)−1/((x−1.2)^2+0.04)−10);

We have placed the minus (−) sign in front of the right side of the last expression above, so that the
maximum value will be displayed. Of course, this is equivalent to the negative of the funczero01
function. 

Now, we execute the following code to get the value of x where the maximum  occurs.

max_val=fmin('minusfunczero01', 0,1)

max_val = 0.0999

x=0.0999;% Using this value find the corresponding value of y
y=1 / ((x−0.1) ^ 2 + 0.01) −1 / ((x−1.2) ^ 2 + 0.04) −10

y = 89.2000

A.11 Display Formats

MATLAB displays the results on the screen in integer format without decimals if the result is an inte-
ger number, or in short floating point format with four decimals if it a fractional number. The format
displayed has nothing to do with the accuracy in the computations. MATLAB performs all computa-
tions with accuracy up to 16 decimal places.

The output format can changed with the format command. The available formats can be displayed
with the help format command as follows:

help format 

FORMAT Set output format.

All computations in MATLAB are done in double precision.

FORMAT may be used to switch between different output display formats as follows:

FORMAT  Default. Same as SHORT.

y f x( )=

f x( )

f x( )–

y f x( )=
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FORMAT SHORT Scaled fixed point format with 5 digits.

FORMAT LONG Scaled fixed point format with 15 digits.

FORMAT SHORT E Floating point format with 5 digits.

FORMAT LONG E  Floating point format with 15 digits.

FORMAT SHORT G Best of fixed or floating point format with 5 digits.

FORMAT LONG G  Best of fixed or floating point format with 15 digits.

FORMAT HEX     Hexadecimal format.

FORMAT +   The symbols +, - and blank are printed for positive, negative and zero elements.
                         Imaginary parts are ignored.

FORMAT BANK    Fixed format for dollars and cents.

FORMAT RAT    Approximation by ratio of small integers.

Spacing:

FORMAT COMPACT Suppress extra line-feeds.

FORMAT LOOSE   Puts the extra line-feeds back in.

Some examples with different format displays age given below.

format short  33.3335  Four decimal digits (default)

format long  33.33333333333334 16 digits

format short e  3.3333e+01  Four decimal digits plus exponent

format short g  33.333  Better of format short or format short e

format bank  33.33 two decimal digits

format +  only + or − or zero are printed

format rat 100/3 rational approximation

The disp(X) command displays the array X without printing the array name. If X is a string, the text
is displayed.

The fprintf(format,array) command displays and prints both text and arrays. It uses specifiers to
indicate where and in which format the values would be displayed and printed. Thus, if %f is used,
the values will be displayed and printed in fixed decimal format, and if %e is used, the values will be
displayed and printed in scientific notation format. With this command only the real part of each
parameter is processed.
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A Review of Complex Numbers

his appendix is a review of the algebra of complex numbers. The basic operations are defined
and illustrated by several examples. Applications using Euler’s identities are presented, and the
exponential and polar forms are discussed and illustrated with examples. 

B.1 Definition of a Complex Number

In the language of mathematics, the square root of minus one is denoted as , that is, . In
the electrical engineering field, we denote  as  to avoid confusion with current . Essentially,  is
an operator that produces a 90-degree counterclockwise rotation to any vector to which it is applied
as a multiplying factor. Thus, if it is given that a vector  has the direction along the right side of the
x-axis as shown in Figure B.1, multiplication of this vector by the operator  will result in a new vec-
tor  whose magnitude remains the same, but it has been rotated counterclockwise by . Also,
another multiplication of the new vector  by  will produce another counterclockwise direc-
tion. In this case, the vector  has rotated  and its new value now is . When this vector is
rotated by another  for a total of , its value becomes . A fourth  rotation
returns the vector to its original position, and thus its value is again . Therefore, we conclude that

, , and .

Figure B.1. The j operator

T
i i 1–=

i j i j

A
j

jA 90°
jA j 90°

A 180° A–

90° 270° j A–( ) jA–= 90°
A

j 2 1–= j 3 j–= j 4 1=

x

y
jA

j jA( ) j2A A–= =

j A–( ) j 3A jA–= =

j jA–( ) j– 2A A= =

A
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Note: In our subsequent discussion, we will designate the x-axis (abscissa) as the real axis, and the y-
axis (ordinate) as the imaginary axis with the understanding that the “imaginary” axis is just as “real”
as the real axis. In other words, the imaginary axis is just as important as the real axis.*

An imaginary number is the product of a real number, say , by the operator . Thus,  is a real number
and  is an imaginary number.

A complex number is the sum (or difference) of a real number and an imaginary number. For example,
the number  where  and  are both real numbers, is a complex number. Then,

 and  where  denotes real part of A, and  the imagi-
nary part of A.

By definition, two complex numbers  and  where  and , are equal if and
only if their real parts are equal, and also their imaginary parts are equal. Thus,  if and only if

 and .

B.2 Addition and Subtraction of Complex Numbers

The sum of two complex numbers has a real component equal to the sum of the real components,
and an imaginary component equal to the sum of the imaginary components. For subtraction, we
change the signs of the components of the subtrahend and we perform addition. Thus, if

 and 
then

and

Example B.1  

It is given that , and . Find  and 

Solution:

and

* We may think the real axis as the cosine axis and the imaginary axis as the sine axis.

r j r
jr

A a jb+= a b
a Re A{ }= b Im A{ }= Re A{ } b Im A{ }=

A B A a jb+= B c jd+=
A B=

a c= b d=

A a jb+= B c jd+=

A B+ a c+( ) j b d+( )+=

A B– a c–( ) j b d–( )+=

A 3 j4+= B 4 j2–= A B+ A B–

A B+ 3 j4+( )= 4 j2–( )+ 3 4+( ) j 4 2–( )+ 7 j2+= =

A B– 3 j4+( )= 4 j2–( )– 3 4–( ) j 4 2+( )+ 1– j6+= =
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B.3 Multiplication of Complex Numbers

Complex numbers are multiplied using the rules of elementary algebra, and making use of the fact
that . Thus, if

 and 
then

and since , it follows that

(B.1)

Example B.2  

It is given that  and . Find 

Solution:

The conjugate of a complex number, denoted as , is another complex number with the same real
component, and with an imaginary component of opposite sign. Thus, if , then

.

Example B.3  

It is given that . Find 

Solution:

The conjugate of the complex number A has the same real component, but the imaginary compo-
nent has opposite sign. Then, 

If a complex number A is multiplied by its conjugate, the result is a real number. Thus, if , then

Example B.4  

It is given that . Find 

Solution:

j 2 1–=

A a jb+= B c jd+=

A B⋅ a jb+( ) c jd+( )⋅ ac jad jbc j2bd+ + += =

j 2 1–=

A B⋅ ac jad jbc b– d+ +=

ac bd–( ) j ad bc+( )+=

A 3 j4+= B 4 j2–= A B⋅

A B⋅ 3 j4+( ) 4 j2–( )⋅ 12 j6– j16 j 28–+ 20 j10+= = =

A∗
A a jb+=

A∗ a j– b=

A 3 j5+= A∗

A∗ 3 j– 5=

A a jb+=

A A∗⋅ a jb+( ) a jb–( ) a2 jab– jab j 2b2–+ a2 b2+= = =

A 3 j5+= A A∗⋅

A A∗⋅ 3 j5+( ) 3 j5–( ) 32 52+ 9 25 34=+= = =
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B.4 Division of Complex Numbers

When performing division of complex numbers, it is desirable to obtain the quotient separated into a
real part and an imaginary part. This procedure is called rationalization of the quotient, and it is done by
multiplying the denominator by its conjugate. Thus, if  and , then,

(B.2)

In (B.2), we multiplied both the numerator and denominator by the conjugate of the denominator to
eliminate the j operator from the denominator of the quotient. Using this procedure, we see that the
quotient is easily separated into a real and an imaginary part.

Example B.5  

It is given that , and . Find 

Solution:

Using the procedure of (B.2), we get

B.5 Exponential and Polar Forms of Complex Numbers

The relations

(B.3)

and

(B.4)

are known as the Euler’s identities.

Multiplying (B.3) by the real positive constant C we get:

(B.5)

A a jb+= B c jd+=

A
B
--- a jb+

c jd+
-------------- a jb+( ) c jd–( )

c jd+( ) c jd–( )
-------------------------------------- A

B
--- B∗

B∗
------⋅ ac bd+( ) j bc ad–( )+

c2 d 2+
-------------------------------------------------------= = = =

ac bd+( )
c2 d 2+

----------------------- j bc ad–( )
c2 d 2+

-----------------------+=

A 3 j4+= B 4 j3+= A B⁄

A
B
--- 3 j4+

4 j3+
-------------- 3 j4+( ) 4 j3–( )

4 j3+( ) 4 j3–( )
-------------------------------------- 12 j9– j16 12+ +

42 32
+

-------------------------------------------- 24 j7+
25

----------------- 24
25
------ j 7

25
------+ 0.96 j0.28+= = = = ==

e jθ
θ j θsin+cos=

    e jθ–
θ j– θsincos=

Ce jθ C θ jC θsin+cos=
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This expression represents a complex number, say , and thus

(B.6)

where the left side of (B.6) is the exponential form, and the right side is the rectangular form.

Equating real and imaginary parts in (B.5) and (B.6), we get

(B.7)

Squaring and adding the expressions in (B.7), we get

Then,

or

(B.8)

Also, from (B.7)

or

(B.9)

To convert a complex number from rectangular to exponential form, we use the expression

(B.10)

To convert a complex number from exponential to rectangular form, we use the expressions

(B.11)

The polar form is essentially the same as the exponential form but the notation is different, that is,

(B.12)

a jb+

Ce jθ a jb+=

a C θcos=   and  b C θsin=

a2 b2+ C θcos( )2 C θsin( )2+ C2 θ2cos θ2sin+( ) C2= = =

C2 a2 b2+=

C a2 b2+=

b
a
--- C θsin

C θcos
--------------- θtan= =

  θ b
a
---⎝ ⎠

⎛ ⎞1–tan=

a jb+ a2 b2+ e
j tan 1–  b

a
---⎝ ⎠

⎛ ⎞
=

Ce jθ C θ jC θsin+cos=

Ce jθ– C θ j– C θsincos=

Ce jθ C θ∠=
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where the left side of (B.12) is the exponential form, and the right side is the polar form.

We must remember that the phase angle  is always measured with respect to the positive real axis, and rotates in
the counterclockwise direction.

Example B.6  

Convert the following complex numbers to exponential and polar forms:

a. 

b. 

c. 

d. 

Solution:

a. The real and imaginary components of this complex number are shown in Figure B.2.

Figure B.2. The components of 

Then,

Check with MATLAB:

x=3+j*4; magx=abs(x); thetax=angle(x)*180/pi;  disp(magx); disp(thetax)

    5
   53.1301

b. The real and imaginary components of this complex number are shown in Figure B.3.

Then, 

θ

3 j4+

1– j2+

2– j–

4 j3–

Re

Im
4

3

5

53.1°

3 j4+

3 j4+ 32 42
+ e

j 4
3
---

1–
tan⎝ ⎠

⎛ ⎞
5e j53.1° 5 53.1°∠= = =

1– j2+ 12 22+ e
j 2

1–
------

1–
tan⎝ ⎠

⎛ ⎞
5ej116.6° 5 116.6°∠= = =
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Figure B.3. The components of 

Check with MATLAB:

y=−1+j*2; magy=abs(y); thetay=angle(y)*180/pi;  disp(magy); disp(thetay)

    2.2361
  116.5651

c. The real and imaginary components of this complex number are shown in Figure B.4. 

Figure B.4. The components of 

Then,

Check with MATLAB:

v=−2−j*1; magv=abs(v); thetav=angle(v)*180/pi;  disp(magv); disp(thetav)

    2.2361
 -153.4349

d. The real and imaginary components of this complex number are shown in Figure B.5.

Then,

Re

Im
2

−1

116.6°
63.4°

5

1– j2+

Re

Im

−2

−1

206.6°

−153.4°(Measured
26.6°

Clockwise)5

2– j–

2– j– 1 22 12
+ e

j 1–
2–

------
1–

tan⎝ ⎠
⎛ ⎞

5ej206.6°
= = 5 206.6°∠ 5ej 153.4–( )° 5 153.4– °∠= = =

4 j– 3 42 32
+ e

j 3–
4

------
1–

tan⎝ ⎠
⎛ ⎞

5e j323.1°
= = 5 323.1°∠ 5e j36.9– ° 5 36.9– °∠= = =
Circuit Analysis I with MATLAB Applications B-7
Orchard Publications



Appendix B  A Review of Complex Numbers
Figure B.5. The components of 

Check with MATLAB:

w=4−j*3; magw=abs(w); thetaw=angle(w)*180/pi;  disp(magw); disp(thetaw)

     5
  -36.8699

Example B.7  

Express the complex number  in exponential and in rectangular forms.

Solution:

We recall that . Since each  rotates a vector by  counterclockwise, then  is the
same as  rotated counterclockwise by . Therefore,

The components of this complex number are shown in Figure B.6.

Figure B.6. The components of 

Then,

Note: The rectangular form is most useful when we add or subtract complex numbers; however, the
exponential and polar forms are most convenient when we multiply or divide complex numbers.

To multiply two complex numbers in exponential (or polar) form, we multiply the magnitudes and
we add the phase angles, that is, if

Re

Im
4

−3
5

323.1°

−36.9°

4 j3–

2 30°∠–

1– j2= j 90° 2 30°∠–

2 30°∠ 180°

2 30°∠– 2 30° 180°+( )∠ 2 210°∠ 2 150°–∠= = =

Re

Im

−1.73

−1

210°

2
−150°(Measured

30°

Clockwise)

2 150°–∠

2 150– °∠ 2e j– 150°
= 2 150° j 150°sin–cos( ) 2 0.866– j0.5–( ) 1.73– j–= = =

A M θ∠=   and  B N φ∠=
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then,

(B.13)

Example B.8  

Multiply  by 

Solution:

Multiplication in polar form yields

and multiplication in exponential form yields

To divide one complex number by another when both are expressed in exponential or polar form,
we divide the magnitude of the dividend by the magnitude of the divisor, and we subtract the phase
angle of the divisor from the phase angle of the dividend, that is, if

then,

(B.14)

Example B.9  

Divide  by 

Solution:

Division in polar form yields

Division in exponential form yields

AB MN θ φ+( )∠ Me jθNe jφ MNe j θ φ+( )
= = =

A 10 53.1°∠= B 5 36.9°–∠=

AB 10 5×( ) 53.1° 36.9°–( )+[ ]∠ 50 16.2°∠= =

AB 10e j53.1°( ) 5e j– 36.9°( ) 50e j 53.1° 36.9°–( ) 50e j16.2°
= = =

A M θ∠=   and  B N φ∠=

A
B
--- M

N
----- θ φ–( )∠ Me jθ

Ne jφ
------------- M

N
----e j θ φ–( )

= = =

A 10 53.1°∠= B 5 36.9°–∠=

A
B
--- 10 53.1°∠

5 36.9°–∠
------------------------ 2 53.1° 36.9°–( )–[ ]∠ 2 90°∠= = =

A
B
--- 10e j53.1°

5e j36.9°–
--------------------- 2e j53.1°e j36.9° 2e j90°

= ==
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Appendix C
Matrices and Determinants

his chapter is an introduction to matrices and matrix operations. Determinants, Cramer’s rule,
and Gauss’s elimination method are reviewed. Some definitions and examples are not applica-
ble to subsequent material presented in this text, but are included for subject continuity, and

reference to more advance topics in matrix theory. These are denoted with a dagger (†) and may be
skipped. 

C.1 Matrix Definition

A matrix is a rectangular array of numbers such as those shown below.

In general form, a matrix A is denoted as

(C.1)

The numbers  are the elements of the matrix where the index i indicates the row, and j indicates the
column in which each element is positioned. Thus,  indicates the element positioned in the
fourth row and third column.

A matrix of m rows and n columns is said to be of  order matrix.

If , the matrix is said to be a square matrix of order m (or n). Thus, if a matrix has five rows and
five columns, it is said to be a square matrix of order 5.

In a square matrix, the elements  are called the main diagonal elements. Alter-
nately, we say that the matrix elements , are located on the main diagonal.

T

2 3 7
1 1– 5

or
1 3 1
2– 1 5–

4 7– 6

A

a11 a12 a13 … a1n

a21 a22 a23 … a2n

a31 a32 a33 … a3n

… … … … …
am1 am2 am3 … amn

=

aij

a43

m n×

m n=

a11  a22  a33  …  ann, , , ,

a11  a22  a33  …  ann, , , ,
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Appendix C  Matrices and Determinants
† The sum of the diagonal elements of a square matrix  is called the trace* of .

† A matrix in which every element is zero, is called a zero matrix.

C.2 Matrix Operations

Two matrices  and  are equal, that is, , if and only if 

(C.2)

Two matrices are said to be conformable for addition (subtraction), if they are of the same order m × n.

If  and  are conformable for addition (subtraction), their sum (difference) will be

another matrix  with the same order as  and , where each element of  is the sum (difference)
of the corresponding elements of  and , that is,

(C.3)

Example C.1  

Compute  and  given that

 and 

Solution:

and

Check with MATLAB:

A=[1  2  3;   0  1  4];  B=[2  3  0; −1  2  5]; % Define matrices A and B
A+B % Add A and B

* Henceforth, all paragraphs and topics preceded by a dagger ( † ) may be skipped. These are discussed in matrix
theory textbooks.

A A

A aij= B bij= A B=

aij bij= i 1 2 3 … m, , , ,= j 1 2 3 … n, , , ,=

A aij= B bij=

C A B C
A B

C A B± aij bij±[ ]= =

A B+ A B–

A 1 2 3
0 1 4

= B 2 3 0
1– 2 5

=

A B+ 1 2+ 2 3+ 3 0+

0 1– 1 2+ 4 5+

3 5 3
1– 3 9

= =

A B– 1 2– 2 3– 3 0–

0 1+ 1 2– 4 5–

1– 1– 3
1 1– 1–

= =
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Matrix Operations
ans =
     3     5     3
    -1     3     9

A−B % Subtract B from A

ans =
    -1    -1     3
     1    -1    -1

If  is any scalar (a positive or negative number), and not [k] which is a  matrix, then multipli-
cation of a matrix  by the scalar  is the multiplication of every element of  by .

Example C.2  

Multiply the matrix

by 

a.  

b. 

Solution:

a.

b.

Check with MATLAB:

k1=5; k2=(−3 + 2*j); % Define scalars k1 and k2
A=[1 −2; 2  3]; % Define matrix A
k1*A % Multiply matrix A by constant k1

ans =
     5   -10

k 1 1×
A k A k

A 1 2–

2 3
=

k1 5=

k2 3– j2+=

k1 A⋅ 5 1 2–

2 3
× 5 1× 5 2–( )×

5 2× 5 3×
5 10–

10 15
= = =

k2 A⋅ 3– j2+( ) 1 2–

2 3
× 3– j2+( ) 1× 3– j2+( ) 2–( )×

3– j2+( ) 2× 3– j2+( ) 3×
3– j2+ 6 j4–

6– j4+ 9– j6+
= = =
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Appendix C  Matrices and Determinants
    10    15

k2*A %Multiply matrix A by constant k2

ans =
  -3.0000+ 2.0000i   6.0000- 4.0000i
  -6.0000+ 4.0000i  -9.0000+ 6.0000i

Two matrices  and  are said to be conformable for multiplication  in that order, only when the
number of columns of matrix  is equal to the number of rows of matrix . That is, the product

 (but not ) is conformable for multiplication only if  is an  matrix and matrix  is
an  matrix. The product  will then be an  matrix. A convenient way to determine if
two matrices are conformable for multiplication is to write the dimensions of the two matrices side-
by-side as shown below. 

For the product  we have: 

For matrix multiplication, the operation is row by column. Thus, to obtain the product , we
multiply each element of a row of  by the corresponding element of a column of ; then, we add
these products.

Example C.3  

Matrices  and  are defined as

 and 

Compute the products  and 

A B A B⋅
A B

A B⋅ B A⋅ A m p× B
p n× A B⋅ m n×

m × p     p × n
A           B

Shows that A and B are conformable for multiplication

Indicates the dimension of the product A ⋅ B 

B A⋅

 Here, B and A are not conformable for multiplication

                     B           A 
      p × n    m × p

A B⋅
A B

C D

C 2 3 4= D
1
1–

2

=

C D⋅ D C⋅
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Special Forms of Matrices
Solution:

The dimensions of matrices  and  are respectively ; therefore the product  is
feasible, and will result in a , that is,

The dimensions for  and  are respectively  and therefore, the product  is also
feasible. Multiplication of these will produce a  matrix as follows:

Check with MATLAB:

C=[2  3  4];  D=[1;  −1;  2]; % Define matrices C and D
C*D % Multiply C by D

ans =
     7

D*C % Multiply D by C

ans =
     2     3     4
    -2    -3    -4
     4     6     8

Division of one matrix by another, is not defined. However, an equivalent operation exists, and it
will become apparent later in this chapter, when we discuss the inverse of a matrix. 

C.3 Special Forms of Matrices

† A square matrix is said to be upper triangular when all the elements below the diagonal are zero.
The matrix  of (C.4) is an upper triangular matrix.

In an upper triangular matrix, not all elements above the diagonal need to be non-zero.

C D 1 3  3 1×× C D⋅
1 1×

C D⋅ 2 3 4
1
1–

2
2( ) 1( )⋅ 3( ) 1–( )⋅ 4( ) 2( )⋅+ + 7= = =

D C 3 1  1 3×× D C⋅
3 3×

D C⋅
1
1–

2
2 3 4

1( ) 2( )⋅ 1( ) 3( )⋅ 1( ) 4( )⋅
1–( ) 2( )⋅ 1–( ) 3( )⋅ 1–( ) 4( )⋅

2( ) 2( )⋅ 2( ) 3( )⋅ 2( ) 4( )⋅

2 3 4
2– 3– 4–

4 6 8

= = =

A
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Appendix C  Matrices and Determinants
(C.4)

† A square matrix is said to be lower triangular, when all the elements above the diagonal are zero. The
matrix  of (C.5) is a lower triangular matrix.

(C.5)

In a lower triangular matrix, not all elements below the diagonal need to be non-zero.

† A square matrix is said to be diagonal, if all elements are zero, except those in the diagonal. The
matrix  of (C.6) is a diagonal matrix.

(C.6)

† A diagonal matrix is called a scalar matrix, if  where k is a scalar.

The matrix  of (C.7) is a scalar matrix with k = 4.

(C.7)

A scalar matrix with , is called an identity matrix . Shown below are , , and 
identity matrices. 

A

a11 a12 a13 … a1n

0 a22 a23 … a2n

0 0 … … …
… … 0 … …
0 0 0 … amn

=

B

B

a11 0 0 … 0
a21 a22 0 … 0
… … … 0 0
… … … … 0

am1 am2 am3 … amn

=

C

C

a11 0 0 … 0
0 a22 0 … 0
0 0 … 0 0
0 0 0 … 0
0 0 0 … amn

=

a11 a22 a33 … ann k= = = = =

D

D

4 0 0 0
0 4 0 0
0 0 4 0
0 0 0 4

=

k 1= I 2 2× 3 3× 4 4×
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Special Forms of Matrices
(C.8)

The MATLAB eye(n) function displays an  identity matrix. For example,

eye(4) % Display a 4 by 4 identity matrix

ans =

     1     0     0     0
     0     1     0     0
     0     0     1     0
     0     0     0     1

Likewise, the eye(size(A)) function, produces an identity matrix whose size is the same as matrix
. For example, let matrix  be defined as

A=[1  3  1; −2  1 −5; 4 −7  6] % Define matrix A

A =
     1     3     1
    -2     1    -5
     4    -7     6
then,

eye(size(A))

displays

ans =

     1     0     0
     0     1     0
     0     0     1

† The transpose of a matrix , denoted as , is the matrix that is obtained when the rows and col-
umns of matrix  are interchanged. For example, if

(C.9)

1 0
0 1

1 0 0
0 1 0
0 0 1

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

n n×

A A

A AT

A

A 1 2 3
4 5 6

=   then  AT
1 4
2 5
3 6

=
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Appendix C  Matrices and Determinants
In MATLAB we use the apostrophe (′) symbol to denote and obtain the transpose of a matrix. Thus,
for the above example, 

A=[1  2  3;  4  5  6] % Define matrix A

A =
     1     2     3
     4     5     6

A' % Display the transpose of A

ans =
     1     4
     2     5
     3     6

† A symmetric matrix  is a matrix such that , that is, the transpose of a matrix  is the same
as . An example of a symmetric matrix is shown below.

(C.10)

† If a matrix  has complex numbers as elements, the matrix obtained from  by replacing each
element by its conjugate, is called the conjugate of , and it is denoted as  

An example is shown below.

MATLAB has two built-in functions which compute the complex conjugate of a number. The
first, conj(x), computes the complex conjugate of any complex number, and the second, conj(A),
computes the conjugate of a matrix . Using MATLAB with the matrix  defined as above, we
get

A = [1+2j   j;  3   2−3j] % Define and display matrix A

A =
  1.0000+ 2.0000i        0+ 1.0000i
  3.0000            2.0000- 3.0000i

conj_A=conj(A) % Compute and display the conjugate of A

conj_A =

A AT A= A
A

A
1 2 3
2 4 5–

3 5– 6
= AT

1 2 3
2 4 5–

3 5– 6
A= =

A A
A A∗

A 1 j2+ j
3 2 j3–

= A∗ 1 j2– j–
3 2 j3+

=

A A
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Determinants
  1.0000- 2.0000i        0- 1.0000i
  3.0000            2.0000+ 3.0000i

† A square matrix  such that  is called skew-symmetric. For example,

Therefore, matrix  above is skew symmetric.

† A square matrix  such that  is called Hermitian. For example,

Therefore, matrix  above is Hermitian.

† A square matrix  such that  is called skew−Hermitian. For example,

Therefore, matrix  above is skew-Hermitian.

C.4 Determinants

Let matrix  be defined as the square matrix

(C.11)

then, the determinant of , denoted as , is defined as

A AT A–=

A
0 2 3–

2– 0 4–

3 4 0

=     AT
0 2– 3
2 0 4
3– 4– 0

A–= =

A

A AT∗ A=

A
1 1 j– 2

1 j+ 3 j
2 j– 0

  AT
1 1 j+ 2

1 j– 3 j–

2 j 0

  AT*
1 1 j+ 2

1 j– 3 j–

2 j 0

A====

A

A AT∗ A–=

A
j 1 j– 2

1– j– 3j j
2– j 0

  AT
j 1– j– 2–

1 j– 3j j
2 j 0

  AT*
j– 1– j+ 2–

1 j+ 3j– j–

2 j– 0

A–====

A

A

A

a11 a12 a13 … a1n

a21 a22 a23 … a2n

a31 a32 a33 … a3n

… … … … …
an1 an2 an3 … ann

=

A detA
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Appendix C  Matrices and Determinants
(C.12)

The determinant of a square matrix of order n is referred to as determinant of order n.

Let  be a determinant of order 2, that is,

(C.13)

Then,

(C.14)

Example C.4  

Matrices  and  are defined as

 and 

Compute  and .

Solution:

Check with MATLAB:

A=[1  2; 3  4]; B=[2  −1; 2  0]; % Define matrices A and B
det(A) % Compute the determinant of A

ans =
    -2

det(B) % Compute the determinant of B

ans =
     2

Let  be a matrix of order 3, that is,

(C.15)

detA a11a22a33…ann a12a23a34…an1 a13a24a35…an2 …
             an1…a22a13… an2– …a23a14 an3…a24a15 …–––

+ + +=

A

A
a11 a12

a21 a22

=

detA a11a22 a21a12–=

A B

A 1 2
3 4

= B 2 1–

2 0
=

detA detB

detA 1 4⋅ 3 2⋅– 4 6– 2–= = =

detB 2 0⋅ 2 1–( )⋅– 0 2–( )– 2= = =

A

A
a11 a12 a13

a21 a22 a23

a31 a32 a33

=
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Determinants
then,  is found from 

(C.16)

A convenient method to evaluate the determinant of order 3, is to write the first two columns to the
right of the 3 × 3 matrix, and add the products formed by the diagonals from upper left to lower
right; then subtract the products formed by the diagonals from lower left to upper right as shown
on the diagram of the next page. When this is done properly, we obtain (C.16) above.

This method works only with second and third order determinants. To evaluate higher order deter-
minants, we must first compute the cofactors; these will be defined shortly.

Example C.5  

Compute  and  if matrices  and  are defined as

 and 

Solution:

or

Likewise,

or
 

detA

detA a11a22a33 a12a23a31 a11a22a33+ +=

a11a22a33 a11a22a33 a11a22a33–––

a11 a12 a13

a21 a22 a23

a31 a32 a33

a11 a12

a21 a22

a31 a32 +

−

detA detB A B

A
2 3 5
1 0 1
2 1 0

= B
2 3– 4–

1 0 2–

0 5– 6–

=

detA
2 3 5 2 3
1 0 1 1 0
2 1 0 2 1

=

detA 2 0× 0×( ) 3 1× 1×( ) 5 1× 1×( )
2 0× 5×( )– 1 1× 2×( ) 0 1× 3×( )––

+ +
11 2– 9= =

=

detB
2 3– 4– 2 3–

1 0 2– 1 2–

0 5– 6– 2 6–

=

detB 2 0× 6–( )×[ ] 3–( ) 2–( )× 0×[ ] 4–( ) 1× 5–( )×[ ]
0 0× 4–( )×[ ]– 5–( ) 2–( )× 2×[ ] 6–( ) 1× 3–( )×[ ]––

+ +
20 38– 18–= =

=
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Appendix C  Matrices and Determinants
Check with MATLAB:

A=[2   3   5;  1   0   1;  2   1   0]; det(A) % Define matrix A and compute detA

ans =
     9

B=[2   −3   −4;  1   0   −2;  0   −5   −6];det(B) % Define matrix B and compute detB

ans =
   -18

C.5  Minors and Cofactors

Let matrix  be defined as the square matrix of order n as shown below.

(C.17)

If we remove the elements of its ith row, and jth column, the remaining  square matrix is called

the minor of , and it is denoted as .

The signed minor  is called the cofactor of  and it is denoted as .

Example C.6  

Matrix  is defined as

(C.18)

Compute the minors ,     ,      and the cofactors ,  and .

A

A

a11 a12 a13 … a1n

a21 a22 a23 … a2n

a31 a32 a33 … a3n

… … … … …
an1 an2 an3 … ann

=

n 1–

A Mij

1–( )i j+
Mij aij αij

A

A
a11 a12 a13

a21 a22 a23

a31 a32 a33

=

M11 M12 M13 α11 α12 α13
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Solution:

and

The remaining minors

and cofactors

are defined similarly.

Example C.7  

Compute the cofactors of matrix  defined as

(C.19)

Solution:

(C.20)

                                                   (C.21)

                        (C.22)

(C.23)

                         (C.24)

M11
a22 a23

a32 a33

=     M12
a21 a23

a31 a33

=     M11
a21 a22

a31 a32

=

α11 1–( )1 1+
M11 M11         α12 1–( )1 2+

M12 M12         α13 M13 1–( )1 3+
M13= =–= == =

M21    M22    M23    M31    M32    M33, , , , ,

α21 α22 α23 α31 α32 and α33, , , , ,

A

A
1 2 3–

2 4– 2
1– 2 6–

=

α11 1–( )1 1+ 4– 2
2 6–

20= =           α12 1–( )1 2+ 2 2
1– 6–

10= =

α13 1–( )1 3+ 2 4–

1– 2
0         α21 1–( )2 1+ 2 3–

2 6–
6= == =

α22 1–( )2 2+ 1 3–

1– 6–
9–= =           α23 1–( )2 3+ 1 2

1– 2
4–= =

α31 1–( )3 1+ 2 3–

4– 2
8–= =         α32 1–( )3 2+ 1 3–

2 2
8–= =,

α33 1–( )3 3+ 1 2
2 4–

8–= =
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Appendix C  Matrices and Determinants
It is useful to remember that the signs of the cofactors follow the pattern

that is, the cofactors on the diagonals have the same sign as their minors.

Let  be a square matrix of any size; the value of the determinant of  is the sum of the products
obtained by multiplying each element of any row or any column by its cofactor.

Example C.8  

Matrix  is defined as

(C.25)

Compute the determinant of  using the elements of the first row.

Solution:

Check with MATLAB:

A=[1  2  −3; 2  −4  2; −1  2  −6];det(A) % Define matrix A and compute detA

ans =
    40

We must use the above procedure to find the determinant of a matrix  of order 4 or higher. Thus, a
fourth-order determinant can first be expressed as the sum of the products of the elements of its first
row by its cofactor as shown below.

+ − + − +
− + − + −
+ − + − +
− + − + −
+ − + − +

A A

A

A
1 2 3–

2 4– 2
1– 2 6–

=

A

detA 1 4– 2
2 6–

= 2 2 2
1– 6–

3 2 4–

1– 2
–– 1 20× 2 10–( )× 3 0×–– 40= =

A
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(C.26)

Determinants of order five or higher can be evaluated similarly.

Example C.9  

Compute the value of the determinant of the matrix  defined as

(C.27)

Solution:

Using the above procedure, we will multiply each element of the first column by its cofactor. Then,

Next, using the procedure of Example C.5 or Example C.8, we find

, , , 
and thus

We can verify our answer with MATLAB as follows:

A=[ 2  −1  0  −3; −1  1  0  −1; 4  0  3  −2;  −3  0  0  1]; delta = det(A)

delta =
   -33

A

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

a11

a22 a23 a24

a32 a33 a34

a42 a43 a44

a21

a12 a13 a14

a32 a33 a34

a42 a43 a44

–

                                            +a31

a12 a13 a14

a22 a23 a24

a42 a43 a44

a41

a12 a13 a14

a22 a23 a24

a32 a33 a34

–

= =

A

A

2 1– 0 3–

1– 1 0 1–

4 0 3 2–

3– 0 0 1

=

A=2
1 0 1–

0 3 2–

0 0 1

a[ ]

1–( )
1– 0 3–

0 3 2–

0 0 1

–

b[ ]

 
+4

1– 0 3–

1 0 1–

0 0 1

c[ ]

3–( )
1– 0 3–

1 0 1–

0 3 2–

–

d[ ]

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩

a[ ] 6= b[ ] 3–= c[ ] 0= d[ ] 36–=

detA a[ ] b[ ] c[ ] d[ ]+ + + 6 3– 0 36–+ 33–= = =
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Appendix C  Matrices and Determinants
Some useful properties of determinants are given below.

Property 1: If all elements of one row or one column are zero, the determinant is zero. An example of this is the
determinant of the cofactor  above.

Property 2: If all the elements of one row or column are m times the corresponding elements of another row or col-
umn, the determinant is zero. For example, if

(C.28)

then,

(C.29)

Here,  is zero because the second column in  is 2 times the first column.

Check with MATLAB:

A=[2  4  1; 3  6  1; 1  2  1];det(A)

ans =
     0

Property 3: If two rows or two columns of a matrix are identical, the determinant is zero. This follows from
Property 2 with .

C.6  Cramer’s Rule

Let us consider the systems of the three equations below

(C.30)

and let

c[ ]

A
2 4 1
3 6 1
1 2 1

=

detA
2 4 1
3 6 1
1 2 1

2 4
3 6
1 2

12 4 6 6 4–– 12–+ + 0= = =

detA A

m 1=

a11x a12y a13z+ + A=

a21x a22y a23z+ + B=

a31x a32y a33z+ + C=

∆
a11 a12 a13

a21 a22 a23

a31 a32 a33

     D1

A a11 a13

B a21 a23

C a31 a33

     D2

a11 A a13

a21 B a23

a31 C a33

     D3

a11 a12 A
a21 a22 B
a31 a32 C

====
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Cramer’s Rule
Cramer’s rule states that the unknowns x, y, and z can be found from the relations

(C.31)

provided that the determinant ∆ (delta) is not zero.

We observe that the numerators of (C.31) are determinants that are formed from ∆ by the substitu-
tion of the known values , , and , for the coefficients of the desired unknown.

Cramer’s rule applies to systems of two or more equations.

If (C.30) is a homogeneous set of equations, that is, if , then,  are
all zero as we found in Property 1 above. Then,  also.

Example C.10  

Use Cramer’s rule to find , , and  if

(C.32)

and verify your answers with MATLAB.

Solution:

Rearranging the unknowns v, and transferring known values to the right side, we get

(C.33)

Now, by Cramer’s rule,

x
D1

∆
------= y

D2

∆
------= z

D3

∆
------=

A B C

A B C 0= = = D1  D2  and D3, ,

x y z 0= = =

v1 v2  v3

2v1 5– v2– 3v3+ 0=

2v3 3v2 4v1––– 8=

v2 3v1 4– v3–+ 0=

2v1 v2– 3v3+ 5=

4v1 3v2 2v3––– 8=

3v1 v2 v3–+ 4=

∆
2 1– 3
4– 3– 2–

3 1 1–

2 1–

4– 3–

3 1

6 6 12– 27 4 4+ + + + 35= = =

D1

5 1– 3
8 3– 2–

4 1 1–

5 1–

8 3–

4 1

15 8 24 36 10 8–+ + + + 85= = =
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Appendix C  Matrices and Determinants
Then, using (C.31) we get

(C.34)

We will verify with MATLAB as follows.

% The following code will compute and display the values of v1, v2 and v3.
format rat % Express answers in ratio form
B=[2  −1  3;  −4  −3  −2;  3  1 −1]; % The elements of the determinant D of matrix B
delta=det(B); % Compute the determinant D of matrix B
d1=[5  -1  3;  8  -3  -2;  4  1  -1]; % The elements of D1
detd1=det(d1); % Compute the determinant of D1
d2=[2  5  3;  -4  8  -2;  3  4  -1]; % The elements of D2
detd2=det(d2); % Compute the determinant of D2
d3=[2  -1  5; -4  -3  8;  3  1  4]; % The elements of D3
detd3=det(d3); % Compute he determinant of D3
v1=detd1/delta; % Compute the value of v1
v2=detd2/delta; % Compute the value of v2
v3=detd3/delta; % Compute the value of v3
%
disp('v1=');disp(v1); % Display the value of v1
disp('v2=');disp(v2); % Display the value of v2
disp('v3=');disp(v3); % Display the value of v3

v1=
    17/7
v2=
   -34/7     
v3=
   -11/7 

These are the same values as in (C.34)

D2

2 5 3
4– 8 2–

3 4 1–

2 5
4– 8
3 4

16– 30– 48– 72– 16 20–+ 170–= = =

D3

2 1– 5
4– 3– 8
3 1 4

2 1–

4– 3–

3 1

24– 24– 20– 45 16– 16–+ 55–= = =

x1
D1

∆
------ 85

35
------ 17

7
------= = = x2

D2

∆
------ 170

35
---------– 34

7
------–= = = x3

D3

∆
------ 55

35
------– 11

7
------–= = =
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Gaussian Elimination Method
C.7  Gaussian Elimination Method

We can find the unknowns in a system of two or more equations also by the Gaussian elimination
method. With this method, the objective is to eliminate one unknown at a time. This can be done by
multiplying the terms of any of the equations of the system by a number such that we can add (or
subtract) this equation to another equation in the system so that one of the unknowns will be elimi-
nated. Then, by substitution to another equation with two unknowns, we can find the second
unknown. Subsequently, substitution of the two values found can be made into an equation with
three unknowns from which we can find the value of the third unknown. This procedure is repeated
until all unknowns are found. This method is best illustrated with the following example which con-
sists of the same equations as the previous example.

Example C.11  

Use the Gaussian elimination method to find , , and  of the system of equations

(C.35)

Solution:

As a first step, we add the first equation of (C.35) with the third to eliminate the unknown v2 and we
obtain the following equation.

(C.36)

Next, we multiply the third equation of (C.35) by 3, and we add it with the second to eliminate .
Then, we obtain the following equation.

(C.37)

Subtraction of (C.37) from (C.36) yields

(C.38)

Now, we can find the unknown  from either (C.36) or (C.37). By substitution of (C.38) into (C.36)
we get

(C.39)

Finally, we can find the last unknown  from any of the three equations of (C.35). By substitution
into the first equation we get

v1 v2  v3

2v1 v2– 3v3+ 5=

4v1 3v2 2v3––– 8=

3v1 v2 v3–+ 4=

5v1 2v3+ 9=

v2

5v1 5v3– 20=

7v3 11  or  v3
11
7
------–=–=

v1

5v1 2 11
7

------–⎝ ⎠
⎛ ⎞⋅+ 9  or  v1

17
7

------==

v2
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(C.40)

These are the same values as those we found in Example C.10.

The Gaussian elimination method works well if the coefficients of the unknowns are small integers,
as in Example C.11. However, it becomes impractical if the coefficients are large or fractional num-
bers.

C.8 The Adjoint of a Matrix

Let us assume that  is an n square matrix and  is the cofactor of . Then the adjoint of ,

denoted as , is defined as the n square matrix below.

(C.41)

We observe that the cofactors of the elements of the ith row (column) of  are the elements of the
ith column (row) of .

Example C.12  

Compute  if Matrix  is defined as

(C.42)

Solution: 

v2 2v1 3v3 5–+ 34
7

------ 33
7

------– 35
7

------– 34
7

------–= = =

A αij aij A

adjA

adjA

α11 α21 α31 … αn1

α12 α22 α32 … αn2

α13 α23 α33 … αn3

… … … … …
α1n α2n α3n … αnn

=

A
adjA

adjA A

A
1 2 3
1 3 4
1 4 3

=

adjA

  3 4
4 3

2 3
4 3

–   2 3
3 4

1 4
1 3

–       1 3
1 3

2 3
3 4

–

1 3
1 4

    1 2
1 4

–   1 2
1 3

7– 6 1–

1 0 1–

1 2– 1

= =
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Singular and Non-Singular Matrices
C.9 Singular and Non-Singular Matrices

An n square matrix  is called singular if ; if ,  is called non-singular.

Example C.13  

Matrix  is defined as

(C.43)

Determine whether this matrix is singular or non-singular.

Solution:

Therefore, matrix  is singular.

C.10   The Inverse of a Matrix

If  and  are n square matrices such that , where  is the identity matrix,  is called

the inverse of , denoted as , and likewise,  is called the inverse of , that is, 

If a matrix  is non-singular, we can compute its inverse  from the relation

(C.44)

Example C.14  

Matrix  is defined as

(C.45)

Compute its inverse, that is, find 

A detA 0= detA 0≠ A

A

A
1 2 3
2 3 4
3 5 7

=

detA
1 2 3
2 3 4
3 5 7

1 2
2 3
3 5

21 24 30 27– 20– 28–+ + 0= = =

A

A B AB BA I= = I B

A B A 1–= A B A B 1–=

A A 1–

A 1– 1
detA
------------adjA=

A

A
1 2 3
1 3 4
1 4 3

=

A 1–
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Solution:

Here, , and since this is a non-zero value, it is possible to com-
pute the inverse of  using (C.44).

From Example C.12,

Then,

(C.46)

Check with MATLAB:

A=[1  2  3;  1  3  4;  1  4  3],  invA=inv(A)      % Define matrix A and compute its inverse

A =
     1     2     3
     1     3     4
     1     4     3

invA =
    3.5000   -3.0000    0.5000
   -0.5000         0    0.5000
   -0.5000    1.0000   -0.5000

Multiplication of a matrix  by its inverse produces the identity matrix , that is,

(C.47)

Example C.15  

Prove the validity of (C.47) for the Matrix  defined as

Proof:

detA 9 8 12 9– 16– 6–+ + 2–= =

A

adjA
7– 6 1–

1 0 1–

1 2– 1

=

A 1– 1
detA
------------adjA 1

2–
------

7– 6 1–

1 0 1–

1 2– 1

3.5 3– 0.5
0.5– 0 0.5
0.5– 1 0.5–

= = =

A A 1– I

AA 1– I   or   A 1– A I ==

A

A 4 3
2 2

=

detA 8 6– 2   and   adjA 2 3–

2– 4
== =
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Solution of Simultaneous Equations with Matrices
Then,

and

C.11  Solution of Simultaneous Equations with Matrices

Consider the relation

(C.48)

where  and  are matrices whose elements are known, and  is a matrix (a column vector) whose
elements are the unknowns. We assume that  and  are conformable for multiplication. Multipli-

cation of both sides of (C.48) by  yields:

(C.49)

or

(C.50)

Therefore, we can use (C.50) to solve any set of simultaneous equations that have solutions. We will
refer to this method as the inverse matrix method of solution of simultaneous equations.

Example C.16  

For the system of the equations

(C.51)

compute the unknowns  using the inverse matrix method.

Solution:

In matrix form, the given set of equations is  where

A 1– 1
detA
------------adjA 1

2
--- 2 3–

2– 4
1 3– 2⁄
1– 2

= = =

AA 1– 4 3
2 2

1 3– 2⁄
1– 2

4 3– 6– 6+

2 2– 3– 4+

1 0
0 1

I= = = =

AX B=

A B X
A X

A 1–

A 1– AX A 1– B IX A 1– B   = = =

X=A 1– B

2x1 3x2 x3+ + 9=

x1 2x2 3x3+ + 6=

3x1 x2 2x3+ + 8=⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

x1 x2  and x3, ,

AX B=
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(C.52)

Then,

(C.53)

or

(C.54)

Next, we find the determinant , and the adjoint 

Therefore,

and by (C.53) we obtain the solution as follows.

(C.55)

To verify our results, we could use the MATLAB’s inv(A) function, and then multiply  by B.
However, it is easier to use the matrix left division operation ; this is MATLAB’s solution of

 for the matrix equation , where matrix X is the same size as matrix B. For this exam-
ple,

A=[2  3  1; 1  2  3; 3  1  2]; B=[9  6  8]';
X=A \ B

A
2 3 1
1 2 3
3 1 2

=   X
x1

x2

x3

=   B
9
6
8

=, ,

X A 1– B=

x1

x2

x3

2 3 1
1 2 3
3 1 2

1–
9
6
8

=

detA adjA

detA 18=    and   adjA
1 5– 7
7 1 5–

5– 7 1

=

A 1– 1
detA
------------ adjA 1

18
------

1 5– 7
7 1 5–

5– 7 1

= =

X
x1

x2

x3

1
18
------

1 5– 7
7 1 5–

5– 7 1

9
6
8

1
18
------

35
29
5

35 18⁄
29 18⁄
5 18⁄

1.94
1.61
0.28

= = = = =

A 1–

X A \ B=

A 1– B A X⋅ B=
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Solution of Simultaneous Equations with Matrices
X =
    1.9444
    1.6111
    0.2778

Example C.17  

For the electric circuit of Figure C.1,

 

Figure C.1. Circuit for Example C.17

the loop equations are

(C.56)

Use the inverse matrix method to compute the values of the currents , , and 

Solution:

For this example, the matrix equation is or , where

The next step is to find . This is found from the relation

(C.57)

Therefore, we find the determinant and the adjoint of . For this example, we find that

+
−

V = 100 v

9 Ω 9 Ω 4 Ω

2 Ω2 Ω1 Ω

I1 I3I2

10I1 9I2– 100=

9I1 20I2 9I3–+– 0=

9I2 15I3+– 0=

I1 I2 I3

RI V  = I R 1– V=

R
10 9– 0

9– 20 9–

0 9– 15

=   V
100

0
0

   and   I
I1

I2

I3

==,

R 1–

R 1– 1
detR
------------ adjR=

R
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(C.58)

Then,

and

Check with MATLAB:

R=[10  −9  0;  −9  20  −9;  0  −9  15]; V=[100  0  0]'; I=R\V

I =
   22.4615
   13.8462
    8.3077

We can also use subscripts to address the individual elements of the matrix. Accordingly, the above
code could also have been written as:

R(1,1)=10; R(1,2)=-9; % No need to make entry for A(1,3) since it is zero.
R(2,1)=-9; R(2,2)=20; R(2,3)=-9; R(3,2)=-9; R(3,3)=15; V=[100 0 0]'; I=R\V

I =
   22.4615
   13.8462
    8.3077

Spreadsheets also have the capability of solving simultaneous equations using the inverse matrix
method. For instance, we can use Microsoft Excel’s MINVERSE (Matrix Inversion) and MMULT
(Matrix Multiplication) functions, to obtain the values of the three currents in Example C.17.

The procedure is as follows:

1. We start with a blank spreadsheet and in a block of cells, say B3:D5, we enter the elements of
matrix R as shown in Figure C.2. Then, we enter the elements of matrix  in G3:G5.

detR 975=   adjR
219 135 81
135 150 90
81 90 119

  =,

R 1– 1
detR
------------adjR 1

975
---------

219 135 81
135 150 90
81 90 119

= =

I
I1

I2

I3

1
975
---------

219 135 81
135 150 90
81 90 119

100
0
0

100
975
---------

219
135
81

22.46
13.85
8.31

= = = =

V
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Solution of Simultaneous Equations with Matrices
2. Next, we compute and display the inverse of R, that is, . We choose B7:D9 for the elements
of this inverted matrix. We format this block for number display with three decimal places. With
this range highlighted and making sure that the cell marker is in B7, we type the formula

=MININVERSE(B3:D5)

and we press the Crtl-Shift-Enter keys simultaneously.

We observe that  appears in these cells.

3. Now, we choose the block of cells G7:G9 for the values of the current I. As before, we highlight
them, and with the cell marker positioned in G7, we type the formula

=MMULT(B7:D9,G3:G5)

and we press the Crtl-Shift-Enter keys simultaneously. The values of I then appear in G7:G9.

Figure C.2. Solution of Example C.17 with a spreadsheet

Example C.18  

For the phasor circuit of Figure C.18

Figure C.3. Circuit for Example C.18

R 1–

R 1–

1
2
3
4
5
6
7
8
9
10

A B C D E F G H
Spreadsheet for Matrix Inversion and Matrix Multiplication

10 -9 0 100
R= -9 20 -9 V= 0

0 -9 15 0

0.225 0.138 0.083 22.462
R-1= 0.138 0.154 0.092 I= 13.846

0.083 0.092 0.122 8.3077

+

−

R1

85 Ω

50 Ω
R2

C

L

R3 = 100 Ω

IX

VS

−j100 Ω

j200 Ω

170∠0°

V1 V2
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the current  can be found from the relation

(C.59)

and the voltages V1 and V2 can be computed from the nodal equations

(C.60)

and

(C.61)

Compute, and express the current  in both rectangular and polar forms by first simplifying like
terms, collecting, and then writing the above relations in matrix form as , where

, , and 

Solution:

The Y matrix elements are the coefficients of  and . Simplifying and rearranging the nodal
equations of (C.60) and (C.61), we get

(C.62)

Next, we write (C.62) in matrix form as

(C.63)

where the matrices , , and  are as indicated.

We will use MATLAB to compute the voltages  and , and to do all other computations. The
code is shown below.

Y=[0.0218−0.005j  −0.01;  −0.01  0.03+0.01j]; I=[2; 1.7j]; V=Y\I;% Define Y, I, and find V
fprintf('\n'); % Insert a line 
disp('V1 = '); disp(V(1)); disp('V2 = '); disp(V(2)); % Display values of V1 and V2

IX

IX
V1 V2–

R3
------------------=

V1 170 0°∠–

85
-------------------------------

V1 V2–

100
------------------

V1 0–

j200
---------------+ + 0=

V2 170 0°∠–

j100–
-------------------------------

V2 V1–

100
------------------

V2 0–

50
---------------+ + 0=

Ix

YV I=

Y Admit cetan= V Voltage= I Current=

V1 V2

0.0218 j0.005–( )V1 0.01V2– 2=

0.01– V1 0.03 j0.01+( )V2+ j1.7=

0.0218 j0.005– 0.01–

0.01– 0.03 j0.01+

Y

V1

V2

V

2
j1.7

I

=

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ⎧ ⎨ ⎩ ⎧ ⎨ ⎩

Y V I

V1 V2
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Solution of Simultaneous Equations with Matrices
V1 = 
 1.0490e+002 + 4.9448e+001i

V2 = 
  53.4162 + 55.3439i

Next, we find  from

R3=100; IX=(V(1)−V(2))/R3 % Compute the value of IX

IX =
   0.5149- 0.0590i

This is the rectangular form of . For the polar form we use

magIX=abs(IX) % Compute the magnitude of IX

magIX =
    0.5183

thetaIX=angle(IX)*180/pi % Compute angle theta in degrees

thetaIX =
   -6.5326

Therefore, in polar form

Spreadsheets have limited capabilities with complex numbers, and thus we cannot use them to com-
pute matrices that include complex numbers in their elements as in Example C.18

IX

IX

IX 0.518 6.53°–∠=
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C.12  Exercises

For Problems 1 through 3 below, the matrices , , , and  are defined as:

1. Perform the following computations, if possible. Verify your answers with MATLAB.

a. b. c. d.

e. f. g. h.

2. Perform the following computations, if possible. Verify your answers with MATLAB.

a. b. c. d. 

e. f. g. h. 

3. Perform the following computations, if possible. Verify your answers with MATLAB.

a. b. c. d. 

e. f. 

4. Solve the following systems of equations using Cramer’s rule. Verify your answers with MATLAB.

a.    b.    

5. Repeat Exercise 4 using the Gaussian elimination method.

6. Solve the following systems of equations using the inverse matrix method. Verify your answers
with MATLAB.

a. b. 

A B C D

A
1 1– 4–

5 7 2–

3 5– 6

=     B
5 9 3–

2– 8 2
7 4– 6

=     C=
4 6
3– 8
5 2–

    D 1 2– 3
3– 6 4–

=

A B+ A C+ B D+ C D+

A B– A C– B D– C D–

A B⋅ A C⋅ B D⋅ C D⋅

B A⋅ C A⋅ D A⋅ D· C⋅

detA detB detC detD

det A B⋅( ) det A C⋅( )

x1 2x2 x3+– 4–=

2x– 1 3x2 x3+ + 9=

3x1 4x2 5x3–+ 0=

x1– 2x2 3x3– 5x4+ + 14=

x1 3x2 2x3 x4–+ + 9=

3x1 3– x2 2x3 4x4+ + 19=

4x1 2x2 5x3 x4+ + + 27=

1 3 4
3 1 2–

2 3 5

x1

x2

x3

⋅
3–

2–

0

=

2 4 3 2–

2 4– 1 3
1– 3 4– 2
2 2– 2 1

x1

x2

x3

x4

⋅

1
10
14–

7

=
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Index
Symbols and Numerics complex excitation function 6-3, 6-21 delta function

complex number(s)      defined 10-8
% (percent) symbol in MATLAB A-2      addition B-2      sampling property 10-8
3-dB down 4-4      conjugate A-4, B-3      sifting property 10-9

     defined A-3, B-2 demos in MATLAB A-2
A      division B-4 dependent source(s)

     exponential form B-5      current 1-10, 3-41
abs(z) in MATLAB A-25      multiplication B-3      voltage 1-10, 3-41
admittance 6-17      polar form B-5 determinant C-9
ampere 1-1, 1-19      rectangular form B-5 device(s)
ampere capacity of wires 2-30      subtraction B-2      active 1-12, 1-20
amplifier 4-1, 4-32 complex power 8-16, 8-17      passive 1-12, 1-20
     buffer 4-20 conductance 2-2 dielectric 5-17, 5-30
     unity gain 4-12, 4-20 conj(A), conj(x) in MATLAB C-8 differential input amplifier 4-5
analog-to-digital converter 8-28, 8-32 conjugate of a complex number B-3 digital filter 7-21
angle(z) in MATLAB A-25 conv(a,b) in MATLAB A-6 diode(s) 1-10
attenuation 4-13, 4-33 conversion factors 1-16 Dirac function 10-9
attenuator 4-1 conductor sizes for interior wiring 2-33 direct current 1-4
average value 8-2, 8-30 coulomb 1-1, 1-18 discontinuous function 10-1
axis in MATLAB A-17, A-18, A-23 Cramer’s rule 3-2, C-16, C-17 disp(A) in MATLAB 7-19, A-32

critical frequency 4-13, 4-33 display formats in MATLAB A-31
B current 1-1 division in MATLAB A-22

current division expressions 2-25 dot multiplication operator in MATLAB A-22
bandwidth 4-4 current flow driving functions 6-1
box in MATLAB A-13      conventional 1-2 duality 6-19, 6-24
branch 2-5      electron 1-2

current gain 4-2 E
C current limiting devices 2-2

current ratings for editor window in MATLAB A-1
capacitance 5-17      electronic equipment 2-30 editor/debugger in MATLAB A-1, A-2
capacitance combinations 5-25 current source effective (RMS) value of sinusoids 8-5
capacitor(s) 1-12, 1-20, 5-17      combinations 2-17, 2-18 effective values 8-3
     in parallel 5-27      ideal 1-11 efficiency 3-47
     in series 5-26      independent 1-11 eight-to-three line encoder 8-28
chemical processes 1-17, 1-20      practical 3-21 electric field 5-17, 5-18, 5-30
circuit(s) cutoff frequency electric filters - see filters
     defined 1-12, 1-20      band-elimination filter 4-15 energy dissipated in a resistor 2-4
     analysis with loop equations 3-8      band-pass filter 4-15 energy stored in a capacitor 5-22
     analysis with mesh equations 3-8      high-pass filter 4-14 energy stored in an inductor 5-12
     analysis with nodal equations 3-1      low-pass filter 4-13 eps in MATLAB A-23, A-28
     with non-linear devices 3-45      lower 4-4 Euler’s identities B-4
clc in MATLAB A-2      upper 4-4 excitations 6-1
clear in MATLAB A-2 exit in MATLAB A-2
combined mesh 3-18 D exponential form of complex numbers B-5
combined node 3-6 exponentiation in MATLAB A-22
command screen in MATLAB A-1 data points in MATLAB A-15 eye(n) in MATLAB C-7
command window in MATLAB A-1 DC (Direct Current) 1-4 eye(size(A)) in MATLAB C-7
commas in MATLAB A-8 decibel 4-2, A-13
comment line in MATLAB A-2 deconv(c,d) in MATLAB A-6, A-7 F
comparators 8-28 default color in MATLAB A-16
complementary function 9-1 default in MATLAB A-13 Farad 5-18, 5-30
complete response 10-16 default line in MATLAB A-16 Faraday’s law of
complex conjugate A-4, B-3 default marker in MATLAB A-16      electromagnetic induction 5-2



feedback 4-4 imaginary M
     negative 4-5      axis B-2
     positive 4-5      number B-2 magnetic field 5-1, 5-17, 5-29
figure window in MATLAB A-14 impedance 6-14 magnetic flux 5-2, 5-29
filter inductance 5-2 matrix, matrices
     active 4-13 inductive     adjoint C-20
     all-pass 7-20      reactance 6-15, 6-23     cofactor of C-12
     analog 7-21      susceptance 6-18, 6-23     conformable for addition C-2
     band-elimination 4-15, 4-33, 7-20 inductor(s)     conformable for multiplication C-4
     band-pass 4-14, 4-33, 7-20      defined 1-12, 1-20, 5-2     congugate of C-8
     band-rejection 4-15, 4-33, 7-20      in parallel 5-16     defined C-1
     band-stop 4-15, 4-33, 7-20      in series 5-15     diagonal of C-1, C-6
     high-pass 4-14, 4-33, 7-20, 7-23 initial condition 5-3     Hermitian C-9
     low-pass 4-13, 4-33, 7-20, 7-21 initial rate of decay 9-3, 9-11     identity C-6
     passive 4-13, 7-21 instantaneous values 2-1     inverse of C-21
     phase shift 7-21 int(f,a,b) in MATLAB 1-7     left division in MATLAB C-24
     RC high-pass 7-23 International System of Units 1-13     lower triangular C-6
     RC low-pass 7-21     minor of C-12
     stop-band 4-15, 4-33, 7-20 J     multiplication using MATLAB A-20
flash converter 8-28     non-singular C-21
flux linkage 5-2, 5-29 j operator B-1     singular C-21
fmax(f,x1,x2) in MATLAB A-28     scalar C-6
fmin(f,x1,x2) in MATLAB A-28, A-30 K     skew-Hermitian C-9
forced response 6-4, 10-16, 10-23     skew-symmetric C-9
format command in MATLAB A-31 KCL 2-6     square C-1
format in MATLAB A-31 Kirchhoff’s Current Law 2-6     symmetric C-8
fplot in MATLAB A-28 Kirchhoff’s Voltage Law 2-7     theory 3-2
fplot(fcn,lims) KVL 2-7     trace of C-2
     in MATLAB A-28, A-29     transpose C-7
fprintf(format,array) L     upper triangular C-5
     in MATLAB 7-19, A-32     zero C-2
frequency response A-13 left-hand rule 5-1 maximum power
frequency-domain to time-domain lims = in MATLAB A-28     transfer theorem 3-38, 7-35
     transformation 6-6, 6-22 linear mechanical forms of energy 1-17, 1-20
full-wave rectification      circuit 3-40 mesh
function file in MATLAB A-26, A-28      devices 1-10     combined 3-18
fzero(f,x) in MATLAB A-28, A-30      factor A-9     defined 2-6

     inductor 5-2     equations 2-10, 3-1, 5-28, 7-5 
G      passive element 3-39     generalized 3-18

linearity 3-39 mesh(x,y,z) in MATLAB A-18
Gaussian elimination method C-19 lines of magnetic flux 5-1, 5-29 meshgrid(x,y) in MATLAB A-18
grid in MATLAB A-13 linspace(values) in MATLAB A-14 metric system 1-13, 1-20
ground ln (natural log) A-13 m-file in MATLAB A-1, A-26
     defined 2-1, 2-15 load mho 2-2
     virtual 4-17      capacitive 8-15, 8-31 Military Standards 2-27
gtext(‘string’) in MATLAB A-14      inductive 8-15, 8-31 MINVERSE in Excel C-26

     lighting 2-34 MMULT in Excel C-26, C-27
H      resistive 8-10 multiplication of complex numbers B-3

log (common log) A-13 multiplication in MATLAB A-20, A-21
half-power points 4-4 log(x) in MATLAB A-13 multirange ammeter/milliammeter 8-24
half-wave rectification 8-3 log10(x) in MATLAB A-13
Heavyside function 10-9 log2(x) in MATLAB A-13 N
Henry 5-3, 5-29 loglog(x,y) in MATLAB A-13

loop NaN in MATLAB A-28
I      defined 2-5 National Electric Code (NEC) 2-30

     equations 3-1, 3-13 natural response
imag(z) in MATLAB A-25      circuits with single 2-10     9-1, 9-10, 10-16, 10-23



NEC 2-30      complex 8-16, 8-17 series connection 2-8, 2-16, 2-17
negative charge 5-18      gain 4-2 short circuit 2-2
network      in a capacitor 5-22 SI Derived Units 1-17
     active 1-12, 1-20      in an inductor 5-11 siemens 2-2
     passive 1-12, 1-20      in a resistor 2-3, 2-4, 2-28 signal 4-1, 4-32
     topology 3-1      instantaneous 8-3 single ended output amplifier 4-5
newton 1-1, 1-18 power factor 8-10 single node-pair parallel circuit 2-14
nodal analysis 2-14, 3-1, 7-1      defined 8-10 slope converter 8-28
node      lagging 8-15 solar energy 1-17, 1-20
     combined 3-6      leading 8-15 sources of energy 1-17, 1-20
     defined 2-5 power factor correction 8-18 standard prefixes 1-14
     generalized 3-6 power triangle 8-16 Standards for Electrical and
     equations 2-14, 3-1, 5-28, 7-1 prefixes 1-14, 1-15     Electronic Devices 2-26
     non-reference 3-1 principle of superposition 3-41 steady-state conditions 5-12
     reference 3-1 string in MATLAB A-18
non-linear devices 1-10 Q subplot(m,n,p) in MATLAB A-19
Norton’s theorem 3-35, 7-8 substitution method  of solving a system
nuclear energy 1-17, 1-20 quad in MATLAB 1-6, 1-7     of simultaneous equations 3-2

quad(‘f’,a,b,tol) in MATLAB 1-7 supermesh 3-18
O quad8 in MATLAB 1-7 supernode 3-6

quadratic factors A-9 superposition principle 3-41, 7-7
Ohm 2-1 quit in MATLAB A-2 susceptance 6-18, 6-23
Ohm’s law 2-1     capacitive 6-18, 6-23
Ohm’s law for AC circuits 6-15 R     inductive 6-18, 6-23
Ohmmeter 8-26
     parallel type 8-26 rational polynomials A-8 T
     series type 8-26 reactance
     shunt type  8-26      capacitive 6-15, 6-23 temperature scales equivalents 1-16
op amp 4-5      inductive 6-15, 6-23 text(x,y,’string’) in MATLAB A-14
     inverting mode 4-6 real text(x,y,z,’string’) in MATLAB A-18
     non-inverting mode 4-9      axis B-2 Thevenin’s theorem 3-24, 7-8
open circuit 2-2      number B-2 time constant 9-3, 9-11, 10-18, 10-24
operational amplifier - see op amp real(z) in MATLAB A-25 time-domain to frequency-domain

regulation 3-49     transformation 6-6, 6-21
P resistance time-window converter 8-28

     defined 2-1 title(‘string’) in MATLAB A-13
parallel connection 2-8, 2-17, 2-18      input 4-28 total response 10-16
particular solution 6-4      output 4-28 tracking converter 8-28
passive sign convention 1-8, 1-19 resistive network 8-28 transient response 9-1
periodic functions of time 8-1 resistors 1-12, 2-2 transistors 1-10
phasor analysis in amplifier circuits 7-12      color code 2-27 trivial solution 9-2
phasor diagram 7-15      failure rate 2-27 two-terminal device 1-4, 1-19
plot(x,y) in MATLAB A-10, A-12, A-16      shunt 8-21
plot3(x,y,z) in MATLAB A-16      tolerance 2-27 U
polar plot in MATLAB A-25 response 6-1, 6-21
polar(theta,r) in MATLAB A-25 right-hand rule 5-1 unit impulse function 10-8, 10-32
poly(r) in MATLAB A-4, A-5 RMS value of sinusoids 8-5 unit ramp function 10-6, 10-32
polyder(p) in MATLAB A-6, A-8 RMS values of sinusoids with unit step function 10-1, 10-31
polynomial construction from      different frequencies 8-7
     known roots in MATLAB A-4 roots(p) in MATLAB A-3, A-8, A-9 V
polyval(p,x) in MATLAB A-6 round(n) in MATLAB A-25
potential difference 1-4 virtual ground 4-17
power S volt 1-5, 1-19
     absorbed 1-8, 1-19 voltage
     average 8-9, 8-14 script file in MATLAB A-26     defined 1-4
          in capacitive loads 8-11 semicolons in MATLAB A-8     dividers 2-2
          in inductive loads 8-11 semilogx(x,y) in MATLAB A-13     division expressions 2-23
          in a resistive loads 8-10 semilogy(x,y) in MATLAB A-13     drop 1-5



     follower 4-20
     gain 4-2
     instantaneous 1-5
     rise 1-5
voltage source
     combinations 2-16, 2-17
     ideal 1-11
     independent 1-11
     practical 3-20
voltmeter 8-24

W

watt 1-8
watt-hour meter 8-28
wattmeter 8-28
weber 5-1, 5-29
Wheatstone bridge 8-27, 8-32

X

xlabel(‘string’) in MATLAB A-13

Y

ylabel(‘string’) in MATLAB A-13

Z

zero potential 2-15
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