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Preface

MATLAB is a software widely used to solve mathematical problems that 
arise in the fields of science and engineering.  These problems require 
profound understanding in the fundamentals of calculus and differential 
equations.  MATLAB can solve many types of calculus problems and 
differential equations symbolically for exact closed-form expressions.  If 
their exact solutions are not available, approximate solutions are obtained 
by using numerical methods.
	 This book, Calculus and Differential Equations with MATLAB, 
explains how to use MATLAB to solve calculus and differential equation 
problems in a clear and easy-to-understand manner.  Essential topics in 
the calculus and differential equation courses are selected and presented.  
These topics include: limit, differentiation, integration, series, special 
functions, Laplace and Fourier transforms, ordinary and partial differential 
equations.  Numerous examples are used to present detailed derivation 
for their solutions.  These solutions are carried out by hands as normally 
done in classes and verified by using the MATLAB commands.  Students 
thus understand detailed mathematical process for obtaining solutions.  
They, at the same time, realize the software capability that can provide 
the same solutions effectively within a short time.  The solutions are then 
plotted to provide clear understanding of their behaviors.  
	 The author would like to thank Miss Kaiumporn Phong-khachorn for 
her fine typing and his graduate students for proof-reading the manuscript.  
He would like to thank Chulalongkorn University Press and Alpha Science 
International for printing and distributing this book.  He appreciates his 
wife Mrs. Yupa Dechaumphai for her support while writing this book.

Pramote  Dechaumphai
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Chapter 
1 

 
 

 

Symbolic Mathematics 

by MATLAB 
 
 
 

 
1.1 Introduction 
 

 Calculus and differential equations are requirement 
courses for science and engineering students.  However, some 
students may not realize the importance of these subjects and 
simply take them for fulfilling their degree requirement.  Such 
subjects, in fact, are essential because they are basis toward 
studying higher level courses so that more realistic problems can be 
solved.  Most of the commercial software for design and analyzing 
scientific and engineering problems today were developed based on 
the knowledge of mathematics and computational methods.  Good 
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background in calculus and differential equations is thus needed 
prior to using the high-level commercial software correctly. 

 As scientists or engineers, solutions obtained from solving 
mathematical problems must be further interpreted so that their 
physical meanings are understood.  They prefer to obtain solutions 
without spending a lot of time deriving them.  There are many 
software today that can provide solutions to a large class of 
mathematical problems.  These software can be used for finding 
roots of algebraic equations, taking derivatives and integrating 
functions, including solving for solutions of many differential 
equations.  As a simple example, the software can perform 
integration, 


3

0

2 dxx  

numerically and returns the result of 9 immediately.  At the same 
time, if preferred, the software can provide symbolic answer, such 
as, 

3

3
2

x
dxx   

The software capability thus helps learning calculus considerably. 
 

 The idea for developing symbolic mathematics software 
started in early 1970’s when a group of researchers at 
Massachusetts Institute of Technology developed a software so 
called MACSYMA (Mac Symbolic Manipulation Program).  It was 
quite astonishing at that time because the solutions can be shown in 
the form of symbolic expressions instead of numbers.  Lately, 
many symbolic manipulation capabilities of the software have been 
improved and can be used to ease learning calculus and differential 
equations. 
 
 
1.2  Symbolic Mathematics Software 
 In the past, students need to memorize formulas when 
learning calculus.  Basic formulas are required for finding deriva-
tive or integral of a given function.  Proper steps must be taken 
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carefully so that the final solutions are derived correctly.  Few 
examples for finding solutions after taking derivative and 
performing integration of some functions are highlighted below.  
 
Example  Find the second-order derivative of the function,  

x
x

f
cos43 

  

 To determine the second-order derivative of the given 
function above, the standard first-derivative formula is applied 
twice.  The final solution is relatively lengthy as, 

 
 3

2

2

2

3cos4

sin2432sin83cos4cos16





x

xxxxxxx
dx

fd
 

Deriving for the above solution by hands, mistake may occur.  
With the help of symbolic computer software, the solution can be 
obtained instantly without any error.  In addition, if the tenth or 
other higher-order derivatives of the above function are needed, the 
software can provide correct solutions in a very short time as well. 
 
Example  Find the first- and second-order derivatives of a more 
complex function, 

 g  
1863

721tan3tan
23

43





xxx

xxxxx
 

Again, the symbolic computer software can be used to provide the 
first-order derivative as, 

 
dx
dg  

 
7

6
43tan

6

504tan2
2

2

22










x

x

x

xx  

and then the second-order derivative as, 
2 2

2 2 3 2 2

2

2

2016 48 tan 4 tan 6 tan 88

( 6) ( 6)

2 tan (tan 1)
                

6

d g x x x x x x

dx x x

x x

x

  
 

 





 

Derivation of these solutions by hands would take a long time and 
is likely to contain error. 
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Example  Integration is another topic learned in calculus course that 
many students do not appreciate.  This is because they have to 
memorize many formulas and do not know when it will be used for 
solving realistic problems.  Examples of integration learned in 
calculus course include indefinite integral, such as, 

   92x
dx  






 

3
tan

3
1

1
x

 

Also the definite integral, such as, 

     

2

1
121 xx

dxx     2ln
3
1

3ln
2
1

  

Students can obtain solutions above in a short time if they use 
symbolic computer software. 
 
Example  Symbolic computer software can help us to solve some 
other types of problems that require a long time to do by hands.  
For example, it can be used to factorize the function,  
   5859157821226 234  xxxxh  

to give,         31397  xxxxh  
within a second. 
 
Example  Solving differential equations is another topic that most 
students do not like.  This is because they are many approaches to 
follow depending on the types of differential equations.  As an 
example, a general solution of the first-order ordinary differential 
equation,  

5 y
dx
dy

 

is,        5 xeCxy  

where C is a constant that can be determined from the given initial 
condition of the problem. 

 Some differential equations are more complicated, such 
as,   

034
2

2

 y
dx
dy

dx
yd
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A general solution for the second-order ordinary differential 
equation above is, 

  xx eCeCxy 3
21

   

where 1C  and 2C  are constants that can be determined from the 
boundary conditions of the problem. 
  With the symbolic computer software, the above solutions 
can be obtained instantly.  The software can also plot the solution 
behavior so that students understand its physical meaning clearly.  
For example, if the constants obtained after applying the boundary 
conditions are 121 CC , the exact solution of the problem is, 

  xx eexy 3   

The distribution of y that varies with x is plotted as shown in the 
figure. 

 

 
 
 
1.3  History and Capability of MATLAB 
 MATLAB (MATrix LABoratory) was developed by 
Professor Cleve Moler, Head of Computer Science Department at 
the University of New Mexico in 1977.  He wrote the LINPACK 

0 0.5 1 1.5 2 

0.2 
0.4 
0.6 
0.8 

1

1.2 
1.4 
1.6 
1.8 

2

x 

  

y(x) 

   xx 3exp1exp1 
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commands for solving algebraic equations and the EISPACK 
commands for analyzing eigenvalue problems, so that his students 
would not have to study FORTRAN language.  Later, in 1983, Jack 
Little founded the Mathworks company to commercialize the 
software.  The key capability of the software was to apply 
mathematical and computational methods through the use of 
matrices for solving academic problems.  Soon, the software has 
received popularity mainly because of its ease of using.  

 In the past decade, MATLAB has included symbolic 
manipulation capability by linking its system operation with Maple 
and MuPad software.  Such additional capability further increases 
the MATLAB popularity because a large class of mathematical 
problems can now be solved.  The output solutions are in the forms 
of symbolic mathematical expressions instead of numbers.  These 
solutions significantly help students in learning calculus and 
differential equation courses. 

 This book concentrates on how to use MATLAB to 
provide solutions in the forms of symbolic expressions similar to 
what we have learnt in classes.  Selected topics which are important 
in calculus and differential equation courses are presented.  
Detailed derivations are illustrated prior to solving the same 
problems by using MATLAB commands.  We will see that the 
same solutions are obtained instantly without any error from the 
software. 

 

 

1.4  MATLAB Fundamentals 
 MATLAB is a huge computer software containing a large 
number of commands.  Because this book concentrates on solving 
calculus problems and differential equations, only essential 
commands related to these topics are presented herein. 
 MATLAB assigns specific letters or names for some well-
known quantities, such as, 

 i and j  denotes imaginary unit which is equal to 1 . 
 Inf  represents infinity which is  , while   is 

denoted by  –Inf. 
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 NaN  refers to Not a Number, such as 00  or InfInf . 

 eps  is the acceptable tolerance which is 16102204.2  . 
 pi denotes  . 

 

The value of  can be displayed up to n significant figures 
by using the command vpa (A, n)  where A denotes the variable.  
As an example, the command for displaying the value of  with 
200 significant figures is, 
 
>> syms pi 
>> vpa(pi,200) 
  

ans = 
 

3.14159265358979323846264338327950288419716939937
5105820974944592307816406286208998628034825342117
0679821480865132823066470938446095505822317253594
0812848111745028410270193852110555964462294895493
0382 
 

Similarly, 2  can be displayed with 200 significant figures by 
using the command, 
 
>> vpa('(2)^(1/2)', 200) 
 

ans = 
  

1.41421356237309504880168872420969807856967187537
6948073176679737990732478462107038850387534327641
5727350138462309122970249248360558507372126441214
9709993583141322266592750559275579995050115278206
05715 
 
 The command syms above is used to declare the specified 
variable as a symbol.  For example, the variable x, y and t in the 
equation below, 

272 tyxu   
can be declared as the three symbols by using the command, 
 

>> syms x y t 
>> u = 2*x - 7*y + t^2 

vpa 

syms 
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u = 
 

t^2 + 2*x - 7*y 

so that MATLAB won’t expect the numerical values for them. 

 MATLAB contains several commands to manipulate and 
simplify algebraic expressions.  These commands help reducing the 
complexity of the final symbolic expressions.  Some useful 
commands are described herein. 
 

  The collect command expands the given expression and 
then collects similar terms together.  For example,  
 

   35  xxf  
 
>> syms x 
>> f = (x+5)*(x-3); 
>> collect(f) 
  

ans = 
  

x^2 + 2*x - 15 
 
i.e., the final result is,               1522  xxf  

  The expand command expands and displays all the terms in 
the given function, e.g., 

 yxg  cos  
 
>> syms x y 
>> g = cos(x+y); 
>> expand(g) 
ans = 
  

cos(x)*cos(y) - sin(x)*sin(y) 
 

i.e.,      cos cos sin sing x y x y   

 The factor command factorizes the given function to 
make it looks simpler.  For example, 
 
 

collect 

expand 
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2116116 23  xxxh  
 

>> h = 6*x^3 + 11*x^2 - 16*x - 21; 
>> factor(h) 
  

ans = 
 

(3*x + 7)*(2*x - 3)*(x + 1) 

i.e.,           13273  xxxh  

  The simplify command simplifies the complex 
expression so that it is compact and easy to understand.  As an 
example, 

yx

yx
u

12
2




  

>> u = (x + 2*y)/(2/x + 1/y); 
>> simplify(u) 
 

ans = 
  

x*y 
 

i.e.,         xyu   
  The simple command is probably the most popular 
command because it combines the capability of the collect, 
expand, factor and simplify commands together.  For 
example, 

52
1455852 45





x

xxx
v  

>> v = (2*x^5 - 5*x^4 + 58*x - 145)/(2*x - 5); 
>> simple(v) 
 

ans = 
  

x^4 + 29 

i.e., the final solution is,          294  xv  

  It is noted that since the simple command contains 
several commands inside, detailed expressions during the 
simplification are appeared on the screen.  These detailed expres-
sions are omitted herein. 

factor 

simplify 

simple 
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  The pretty command is another useful command for 
transforming a symbolic expression into the rational form similar to 
those shown in textbooks.  For example, 

12
sin

2 


x
xx

w  

>> w = x*sin(x)/(x^2+12); 
>> pretty(w) 
  

  x sin(x)  
  --------  
   2  
  x  + 12 

 
  MATLAB contains the ezplot command that can be 
used to plot a given function effectively.  As an example, if we 
would like to plot the w function above, we just simply enter the 
command, 
 
>> ezplot(w) 
 
A plot of the w function will appear on the screen with the axis 
scaling adjusted automatically. 

 

-6 -4 -2 0 2 4 6

-0.15 

-0.1 

-0.05 

0

0.05 

0.1 

    12sin 2 xxx

x

pretty 

ezplot 
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 If we would like to plot the same w  function within the 
interval of  20 20x  along the x-axis, the above command is 
modified slightly to, 
 

>> ezplot(w,[-20,20]) 

 
  MATLAB contains the standard plot command that 
allows us to specify more details for plotting.  For example, we 
want to compute the values of w function above at every x=0.2 for 

400  x .  The values of w will be plotted as circle within the 
range of 15.020.0  w .  The plot also includes labels on both 
horizontal and vertical axes as x and  xw , respectively.  In this 
case, the commands are as follows. 
 
>> x = 0:.2:40; 
>> w = x.*sin(x)./(x.^2+12); 
>> plot(x,w,'ok') 
>> axis([0,40,-.20,.15]) 
>> xlabel('x'), ylabel('w(x)') 
 
If preferred, we can include all the commands above in an m-file so 
that plotting details can be modified easily.  In the argument of the 
plot command, ‘o’ denotes the circle while ‘k’ is for showing all 

-20 -15 -10 -5 0 5 10 15 20 
-0.15 

-0.1 

-0.05 

0

0.05 

0.1 

x

    12sin 2 xxx

ezplot 

plot 
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circles in black.  The plot generated from the commands is shown 
in the figure. 

 
 
1.5  Concluding Remarks 
 In this chapter, the capability of symbolic manipulation 

software was introduced.  The software helps finding solutions of 
basic problems learned in calculus and differential equation 
courses.  These include: finding derivatives of functions, perform 
both definite and indefinite integrations, as well as solving for 
exact solutions of some differential equations.  At present, there are 
many symbolic manipulation software suitable for learning and 
using in research work.  Among them, MATLAB has received 
popularity due to its capability and ease of using. 

 Development history and essential features of MATLAB 
were briefly described.  Few important commands were explained 
by using examples.  These commands can help manipulating 
complex expressions and reduce them into simple forms.  The 
solutions are plotted by using easy commands so that users can 
understand their physical meanings quickly.  The chapter 
demonstrates advantages of using the symbolic manipulation 
software that can significantly reduce the effort for solving basic  

0 5 10 15 20 25 30 35 40 -0.2 

-0.15 

-0.1 

-0.05 

0

0.05 

0.1 

x

 xw
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mathematical problems.  We will appreciate these advantages in 
more details when we study essential calculus and differential 
equation topics in the following chapters. 
 
 
 
 

Exercises 
 
 
1. Study the symbolic manipulation capability in MATLAB by 

entering the command, 
 

  >> doc symbolic 
 

  Then, make conclusions on how to: 

(a) simplify expressions 
(b) plot symbolic functions 

 by setting up examples. 
 
2. Use the command collect, expand, factor, simplify or 

simple to reduce or determine the following quantities, 

   (a)  43   (b) 4316  

    (c)    3 6 4 2 7x x     (d)    143  xx  

    (e) ( )( )a b a b   (f) 212123 693  xxx  
 
3. Use the command simple to simplify the following functions, 

  (a) 
2
23

2

2




xx
xx

  (b) 
12
3

9
12

2

2








x

x
x

xx
 

   (c) 
2
1

42

2





 x

x
x

x
  (d) 

xy

y
x

x
y

11



 

   (e) 
2

212

3233 

 







yx
yx

 (f) 
  

xy

xyyx 2233 34
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4. Determine the product of the function  f  and g for each sub-
problem.  Then, employ the command simple to simplify 
their final expressions, 

   (a) xxf 22   ;  21 xg  

   (b) 1 xf  ; 22  xg  

   (c)  2sin xxf   ;  xxg  2cos  

   (d) 2 xef  ;  3ln  xg  

   (e)  xxf  2sin  ;  xxg 2ln 2   

   (f) xef   ; 22xeg   

 

5. Use the command collect, expand, factor, simplify or 
simple  to yield simplest expressions of the following 
functions,  

  (a) f  5147286 234  xxxx  

  (b) g         73sinsincossincos  xxexxxx x  

  (c) h  
1863

721tan3tan
23

43




xxx
xxxxx

 

  (d) u  2243 2  xxxxx  

  (e) v  
7cos7cos
sin9tansin6tansin

22

2




xxxx
xxxxx

 

  (f) w    xyyxxyyxx
yyxyx

sincossincossincossincos
5315

2

422


  

 
6. Use the command collect, expand, factor, simplify or 

simple to prove that, 

   (a) 55 yx     432234 yxyyxyxxyx   

   (b)  x3sin  xx 3sin4sin3   

   (c)  x4tan  
xx

xx
42

3

tantan61
tan4tan4


  
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   (d) x4cos     xx 4cos
8
12cos

2
1

8
3   

   (e)   xee xx tanh  xx ee   

 
7. Use the command collect, expand, factor, simplify or 

simple to show that, 

   (a) xx 22 hsectanh    1  

   (b) x2tanh   
x

x
2tanh1

tanh2


  

   (c) 
2

cosh x   
2

1cosh  x
 

   (d)  x4cosh   1cosh8cosh8 24  xx  

   (e) x3sinh     xx sinh
4
33sinh

4
1   

 
8. Use the vpa command to calculate and display the roots of the 

following prime numbers with 100 significant figures, 

   (a) 7   (b)   32157  

   (c)   75229   (d)   98443  

   (e)   131587  (f)   3127881  

 
9. Use the ezplot command to plot the following functions, 
   (a) f  xxx 60253 35   

   (b) g  
23

385
2

2





x

xx
 

   (c) h    322 1
4
3

 x  

   (d) u   xsin  

   (e) v       112 34  xxx  

 
10.  Use the plot command to display the functions in Problem 9 

again by showing essential details of their variations. 
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11. Study capabilities of the Mathematica and Maple software.  
Then, highlight their unique features and compare capabilities 
with MATLAB for manipulating symbolic expressions. 

 
12.  Use the factor command to simplify the function, 

35 203 xxp   

  Then, employ the plot command to display the variation of 
this function for (a) 44  x  ; 500500  p  and (b) 

40  x  ; 8080  p . 

 
13.  Use the simplify command to simplify the function, 

32 24  xxq  
  Then, use the ezplot command to display its variation for

33  x .  Plot this function again but by using the plot 
command for 33  x  and  66  q . 

 
14.  Use the ezplot command to plot the following functions, 
   (a) f   13  xx  

   (b) g   xxx  24 3  

   (c) h   xxx 60253 35   

 Then, use the plot command with appropriate scaling in both 
the horizontal and vertical directions to clearly show their 
variations. 

 
15. Use the ezplot command to display the following trigono-

metric functions, 

  (a)  cos 2x   (b) 





 

2
sin


x  

   (c)  xcos   (d)  xtan  

    (e) 







6
cos

x
 (f) 






 

2
cos

x  
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Then, use the plot command with appropriate scaling in both 
the horizontal and vertical directions to show their variations. 

 
16.  Given the function, 

3 31 xf   
  Find a proper command in MATLAB for determining the 

expression for 1f .  Then, plot to compare the variations 

between f  and 1f . 
 
17. Given the function, 









x
xg

10
cos  

  Use the ezplot command to plot its variation within the 
interval of 22  x .  Then, use the plot command again to 
show the variation for 5.05.0  x .  Suggest on how to plot 
the function when x approaches zero so that the variation is 
shown clearly. 

 





 
 

 
 

Chapter 
2 

 
 

 

Calculus 
 
 
 

 
2.1 Introduction 
 

 Calculus is an essential subject in mathematics required 
for science and engineering students.  It contains two main topics 
which are the differentiation and integration of functions.  The 
former one is based on understanding the determination of limits.  
Often, many students do not enjoy studying these topics because 
they have to memorize formulas for deriving solutions.  Some 
solutions require a long time to derive by employing specific 
techniques.  Furthermore, most students do not appreciate learning 
these topics because they don’t know when the solutions will be 
used for realistic problems. 
 

 With the capability of the symbolic manipulation software 
today, solutions to calculus problems can be obtained rapidly.  
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Students can compare solutions obtained from the software with 
those derived by hands.  So they will have more time to understand 
the meanings of the solutions.  This chapter shows standard 
techniques to derive the solutions before using MATLAB 
commands to confirm the validity of them.  Several examples will 
be presented with detailed derivation for the solutions.  These 
solutions will also be plotted to increase understanding of their 
phenomena. 

 
 
2.2  Limits 
 

 Limit of a function  xf  when x approaches a, is defined 
by, 

    lim
x a

L f x


  

 
Example  Given a function, 

  2xxf   

Then,      2 2lim lim
x a x a

L f x x a
 

    

We can use the limit command in MATLAB to obtain the 
solution by entering, 
 

>> syms x a 
>> f = x^2; 
>> limit(f,x,a) 
 

ans = 
 

a^2 
 
Example  Given a function, 

 
ax
ax

xg




22

 

If we follow the simple procedure used above, we get, 

 
0
0

limlim
22






 aa

aa
xgL

axax
 

limit 
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The result cannot be determined and is not correct.  To find the 
correct solution, we should observe the variation of this function 
g(x) by plotting.  If we assign the value of 1a , then, 

 
1
122





x

x
xg  

The plot of this function is shown in the figure.  From the figure, 
the function g(x) becomes 2 as x approaches 1. 

 

 The proper step to determine the limit of this problem is to 
first let hax  , where h  is small.  Then, substitute hax   into 
the function  xg  to get, 

    xg     
aha
aha





22

    
h

hah 22 
  

    ha  2  
Then, let h approaches zero, thus, 

a
ax
ax

L
ax

2lim
22















 

The solution agrees with that shown in the graph at 1a .   

  The same solution can be obtained instantly by using the 
limit command, 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 
1 

1.2 
1.4 
1.6 
1.8 

2 
2.2 
2.4 
2.6 
2.8 

3 

 xg

x

   112  xx
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>> syms x a 
>> g = (x^2-a^2)/(x-a); 
>> limit(g,x,a) 
  

ans = 
  

2*a 
 

 Finding limits of functions may require different methods 
depending on the function types.  The examples below show 
standard techniques to determine limits for different types of 
functions. 
 
Example  Determine the limit, 

5
25

lim
2

5 



 x

x
L

x
 

This example is similar to the preceding example.  The factoring 
technique can be used to find the solution as follows, 

                           L      
5

55
lim

5 



 x

xx
x

     5lim
5




x
x

 

    55         10  

Again, the limit command is employed to obtain the same 
solution, 
 

>> limit('(x^2-25)/(x-5)',x,5) 
 

ans = 
 

10 
 
Example  Determine the limit, 

4
2

lim
4 




 x
x

L
x

 

If we simply substitute 4x , we get 00 , which cannot be 
determined.  A technique to find the limit of such function is to 
multiply its numerator and denominator by the conjugate value of 

the numerator, 2x , before taking the limit.  Detailed derivation 
is as follows, 

limit 

limit 
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 L      
 

 
 2

2
4
2

lim
4 








 x

x
x
x

x
      

  
 

   24

4
lim

4 



 xx

x
x

 
2

1
lim

4 


 xx
 

   
24

1


   

4
1

  

Similarly, we can use the limit command to find such solution by 
entering, 
 

>> limit('(sqrt(x)-2)/(x-4)',x,4) 
  

ans = 
 

1/4 
 
Example  Determine the limit, 

x
xL

x

4
1

4
1

lim
0





 

Again, if we substitute 0x  directly into the function, we get 00 .  
The technique of multiplying by the conjugate value as shown in 
the preceding example is not applicable.  A different technique of 
multiplying the numerator and denominator by an appropriate 
function is needed.  For this particular problem, the appropriate 
function is  44 x  and the detailed procedure is as follows, 

 L      
 44

444
1

4
1

lim
0 










 




 x
x

x
x

x
      

  
 
 44

44
lim

0 



 xx

x
x

  44
lim

0 



 xx

x
x

 

    44
1

lim
0 




 xx
   404

1



  

   
16
1

  
 

The same solution is obtained by using the limit command as, 
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>> limit('(1/(x+4)-1/4)/x',x,0)  
  

ans = 
 

-1/16 
 

 If the given function is more complex, the same limit 
command still provides solution immediately as demonstrated by 
the following examples. 
 
Example  Determine the limit, 

95

4
lim

24 



 x

x
L

x
 

The solution is obtained by typing the limit command followed 
by the given function, variable and limit value as, 
 

>> limit('(4-x)/(5-sqrt(x^2-9))',x,-4) 
  

ans = 
  

-8/(7^(1/2) - 5) 
 

which leads to the solution, 

3981.3
75

8

95

4
lim

24








 x

x
x

 

 

Example  Determine the limit, 

xx

e
L

x

x sincos1

1
lim

3

0 





 

 

>> f = (exp(x^3)-1)/(1-cos(sqrt(x-sin(x)))); 
>> limit(f,x,0) 
  

ans = 
 

12 
 

i.e., the solution is,             12
sincos1

1
lim

3

0





 xx

ex

x
 

limit 
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The solution can be verified by plotting such function through the 
use of the ezplot command as,  
 

>> ezplot(f, [-.5,.5]) 

 

Example  Determine the limit of the function below as x appro-
aches infinity, 

53

49
lim

2 



 x

x
L

x
 

>> limit('(9*x +4)/(sqrt(3*x^2-5))',x,Inf) 
  

ans = 
 

3*3^(1/2) 
 

>> double(ans) 
 

ans = 
 

    5.1962 
 

i.e.,   1962.533
53

49
lim

2





 x

x
x

 

 

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 
11.4 
11.6 
11.8 

12 
12.2 
12.4 
12.6 
12.8 

13 

x

       1sincos1exp 213  xxx

ezplot 

double 
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Example  The limit command can also be used to find the 
solution when the function contains two variables, 

 3
32

2
1

lim
yx

xyyx
L

  y
x 







 

>> syms x y 
>> f = (x^2*y+x*y^3)/(x+y)^3; 
>> L = limit(limit(f,x,-1),y,2) 
  

L = 
 

-6 
 

i.e.,           
 

6lim 3

32

2
1






 yx

xyyx

  y
x

 

 
 
2.3  Differentiation 
 Differentiation is one of the most important topics in 
calculus.  This is because the physics of most science and 
engineering problems are described by differential equations.  
Differential equations contain terms that are derivatives of the 
unknown variables.  Finding for these unknown variables is the 
main objective for solving the differential equations.  Thus, 
knowing how the derivatives of a function can be found is the first 
step toward learning the differential equations. 

 To find derivatives of a function as learned in classes, we 
need to apply basic formulas.  Some formulas are easy to memorize 
while many others are difficult to recall.  Furthermore, taking 
derivative of a complex function consumes a large amount of time 
and is likely to produce error. 

 Before using MATLAB command to find any derivative 
of a function, we start from understanding definition of the 
derivative.  The derivative of a function y(x) with respect to x is 
given by, 

   
x

xfxxf
x
y

dx
dy

xx 







 00

limlim

limit 



2.3  Differentiation  27 

Example  Find the derivative of    2xxfy  . 

    
dx
dy       

x
xfxxf

x 



 0

lim  

      
x

xxx
x 






22

0
lim  

      
x

xxxxx
x 






222

0

2
lim  

     xx
x




2lim
0

 

As 0x , then, 

   02  x
dx
dy

 

or,  x
dx
dy

2  

 
 MATLAB contains the diff command that can be used to 
find the derivative effectively.  In this example, the entered 
commands and solution are, 
 
>> syms x 
>> y = x^2; 
>> diff(y,x) 
 

ans = 
 

2*x 
 
Variation of the function 2xy   can also be plotted easily as 
shown in the figure by using the command, 
 
>> ezplot(y,[-4,4]) 
 
 The derivative dxdy  represents the slope at any x  
location.  For example, at 2x , the derivative   422 dxdy . 
 

diff 

ezplot 
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Example  Find the derivative of    232 xxxfy  . 

  
dx
dy     

x
xfxxf

x 



 0

lim  

        
x

xxxxxx
x 






22

0

3232
lim  

    
x

xxxx
x 






2

0

362
lim  

   xx
x




362lim
0

 

    0362  x  

  
dx
dy  x62   

Again, we can use the diff command to find the derivative of the 
function   232 xxxfy   as follows, 
 

>> syms x 
>> y = 2*x-3*x^2; 
>> diff(y,x) 
  

ans = 
  

2-6*x 

-4 -3 -2 -1 0 1 2 3 4

0

2

4

6

8

10

12

14

16

x

y

dy
dx

2x

diff 
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Example  Find the derivative of a constant function   5 xfy . 
 

  
dx
dy     

x
xfxxf

x 



 0

lim  

   
xx 





55
lim

0
     0lim

0


x
  

   0  
That is, the derivative of a constant is zero. 
 

>> y = 5; 
>> diff(y,x) 
  

ans = 
 

0 
 

Example  Find the derivative of the function   xxfy   for 
0x .  

  
dx
dy     

x
xfxxf

x 



 0

lim  

   
x

xxx
x 




 0
lim  

   
xxx

xxx
x

xxx
x 








 0

lim  

    xxxx

xxx
x 




 0
lim  

   
xxxx 




1
lim

0
 

   
x2

1
  

We can use the diff command to obtain such solution directly, 
 

>> syms x 
>> y = sqrt(x); 
>> diff(y,x) 
  

ans = 
  

1/(2*x^(1/2)) 

diff 
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Example  Find the derivative of the function  
32 


x
x

xfy . 

 
dx
dy     

x
xfxxf

x 



 0

lim  

   
x

x
x

xx
xx

x 










3232
lim

0
      

   
 
 

x
xx
xx

x
x

x
x

xx
xx

x 


















32
32

3232
32

32
lim

0
  

    

After simplifying it, we obtain, 

  
dx
dy    32322

3
lim

0 


 xxxx
 

     32302
3




xx
      

or,  
dx
dy  

 232

3




x
 

 
  If we use the diff command, we can get the same result 
instantly, 
 
>> syms x 
>> y = x/(2*x+3); 
>> diff(y,x) 
 

ans = 
 

3/(2*x + 3)^2 
 

  In general, the given function  xfy   is complicated.  
Finding its derivative by hands consumes a large amount of time 
and may produce error.  The diff command can eliminate such 
difficulty as shown in the following examples. 

diff 
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Example  Find the derivative of the function, 

  5128 34  xxxxfy  

Then, evaluate the result numerically at 0,2x  and 2.  
  Again, we can employ the diff command to find the 
derivative as follows, 
 
>> syms x 
>> y = x^4 - 8*x^3 + 12*x - 5; 
>> dydx = diff(y,x) 
 

dydx = 
 

4*x^3 - 24*x^2 + 12 
 

i.e.,     

dx
dy     12244 23  xx  

  The subs command can then be used to compute the 
numerical results at 0,2x  and 2 as follows, 
 
>> subs(dydx,-2) 
 

ans = 
 

  -116 
 

>> subs(dydx,0) 
 

ans = 
 

    12 
 

>> subs(dydx,2) 
 

ans = 
 

   -52 
 

These computed derivatives represent the slopes at 0,2x  and 2 
as shown in the figure. 

subs 
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Example  Find the derivative of the function, 

    432sin xxxxfy   

If we use the diff command, the result is, 
 
>> syms x 
>> y = (x + (x + sin(x)^2)^3)^4; 
>> dydx = diff(y,x) 
 

dydx = 
 

4*(x + (sin(x)^2 + x)^3)^3*(3*(sin(x)^2 + x)^2* 
(2*cos(x)*sin(x) + 1) + 1) 
 

The result above can be simplified by using the simple command 
to yield, 

       112sinsin3sin4 22
332  xxxxxx

dx
dy

 

 It is noted that the diff command can also be used to find 
solutions of higher order derivatives.  This is done by including the 
derivative order at the end of the command as shown in the 
following examples.  
 

-3 -2 -1 0 1 2 3

-100 

-50

0

50

100 

150 

200   

y

x

5128 34  xxx

  522 
dx
dy

  120 
dx
dy

  1162 
dx
dy
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Example  Find the second-order derivative of the function, 

  5372 23  xxxxfy  

>> syms x 
>> y = 2*x^3 + 7*x^2 - 3*x + 5; 
>> diff(y,x,2) 
 

ans = 
 

12*x + 14 
 

i.e.,  
1412

2

2

 x
dx

yd
 

 
 

 
Example  Find the second- and twentieth-order derivatives of the 
function, 

   xx

x
xfy

cos1

cos1




  

MATLAB can determine derivatives of rather complex function 
above in a short time.  We will use the tic, toc commands to 
measure the computational time. 

 For the second-order derivative, the result and 
computational time are, 
   
>> syms x 
>> y = (1-sqrt(cos(x)))/(x*(1-cos(sqrt(x)))); 
>> tic, diff(y,x,2), toc 
 

ans = 
  

(2*(cos(x)^(1/2)-1))/(x^3*(cos(x^(1/2))-1))-
cos(x)^(1/2)/ (2*x*(cos(x^(1/2))-
1))+(cos(x^(1/2))*(cos(x)^(1/2)-1))/ 
(4*x^2*(cos(x^(1/2))-1)^2)-
(5*sin(x^(1/2))*(cos(x)^(1/2) -
1))/(4*x^(5/2)*(cos(x^(1/2))-
1)^2)+sin(x)/(x^2*cos(x) ^(1/2)*(cos(x^(1/2))-
1))+(sin(x^(1/2))^2*(cos(x)^(1/2)-

diff 

tic, toc 
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1))/(2*x^2*(cos(x^(1/2))-1)^3)- 
sin(x)^2/(4*x*cos(x)^(3/2) *(cos(x^(1/2))-1))-
(sin(x^(1/2))*sin(x))/(2*x^(3/2)* 
cos(x)^(1/2)*(cos(x^(1/2))-1)^2) 
  

Elapsed time is 0.055360 seconds. 

 
That is, MATLAB uses only about 0.05 seconds to determine the 
second-derivative of the given function. 

 For the twentieth-order derivative, the computational time 
is, 

>> tic, diff(y,x,20); toc 
Elapsed time is 2.401116 seconds. 
 

In this latter case, MATLAB requires about 2.4 seconds to 
determine the twentieth-order derivative of such complex function.  
All of the examples above clearly demonstrate the capability of 
MATLAB for finding derivatives of arbitrary functions in a short 
time. 

 The diff command can also be used to determine partial 
derivatives of functions that contain many variables.  Examples for 
finding partial derivatives are shown below. 

 
Example  Given the function, 
 

   22, yxexyxfz   

Determine its partial derivatives with respect to x and y. 

 We can plot the variation of the function above by using 
the meshgrid and mesh commands. 
 

xx = -2:.2:2; yy = -2:.2:2; 
[x,y] = meshgrid(xx,yy); 
z = x.*exp(-(x.^2+y.^2)); 
mesh(x,y,z,'EdgeColor','black') 
 

The plot is shown in the figure. 

mesh 

meshgrid 
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 The partial derivatives of the given z function with respect 
to x and y can be determined by using the diff command as 
follows.  

>> syms x y 
>> z = x*exp(-(x^2+y^2)); 
>> dzdx = diff(z,x) 
 

dzdx = 
 

-(2*x^2 - 1)/exp(x^2 + y^2) 
 

>> dzdy = diff(z,y) 
 

dzdy = 
 

-(2*x*y)/exp(x^2 + y^2) 
 

The results are, 

      222 12 yxex
x
z





 

     222 yxexy
y
z



  

 The derivatives obtained above can be verified by the plot 
of the function  yxfz , .  At 0 yx , the values of 1 xz  

and 0 yz  are obtained by using the subs command as 
follows, 

diff 

z

xy
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>> subs(dzdx,{x,y},{0,0}) 
 

ans = 
 

     1 
 

>> subs(dzdy,{x,y},{0,0}) 
 

ans = 
 

     0 
 
 
2.4  Integration 
 Integration is the inverse process of differentiation and is 
sometimes called anti-differentiation.  It is rather a difficult topic to 
most students because they have to memorize many integration 
formulas.  In addition, complicated functions require some special 
techniques and take a long time to integrate before reaching 
solutions.  In the past, integrating handbooks can alleviate the 
difficulty in finding the integral results.  At present, integration of a 
function can be obtained easily by using the symbolic computer 
software. 

 Integration of a function  xf  is given by, 

  dxxfI  

As an example, the integration of the function   2xxf   is, 

C
x

dxxI   3

3
2  

where C is the integrating constant.  We can verify the result 
obtained by taking its derivative as follows, 

2
23

0
3

3
3

x
x

C
x

dx
d

dx
dI







   

which gives back the original function  xf . 

 It is noted that the integral sign   resembles the capital S 

denoting summation of the area under the function  xf .  The

subs 



2.4  Integration 37

function  xf  is called the integrand, while C is the integrating 
constant that can be determined from the specified condition of the 
problem. 

 Few basic integration formulas learned in calculus course 
are: 

 (a)  dxxn  
1

1






n
xn

 (b)  dx
x
1

 xln  

 (c)  dxxsin  xcos  (d)  dxxcos  xsin  

 (e)  dxx2sec  xtan  (f)  dxx2cosec  xcot  

 (g)  
dx

x21

1
 x1sin  (h)  

dx
x21

1
 x1tan  

 (i)  dxax  
a

ax

ln
  (j)  dxex  xe  

where the integration constant C is omitted herein for simplicity.  
The above basic formulas were used to derive many other 
integrating formulas that are summarized in integration handbooks. 

 MATLAB has the int command that can be employed to 
perform integration of functions effectively.  Examples on the use 
of such command are highlighted below.   

 

Example         xdxx cossin   
 

>> syms x 
>> f = sin(x); 
>> int(f) 
 

ans = 
 

-cos(x) 
 

Example     xdx
x

1
2

tan
1

1


  

 

int 
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>> syms x 
>> int(1/(1+x^2)) 
 

ans = 
 

atan(x) 
 

Example     
a

a
dxa

x
x

ln
  

 

>> syms x a 
>> int('a^x') 
 

ans = 
 

a^x/log(a) 
 

  The integration formulas, such as those given in (a) - (j) 
above, can be applied to find the integrals of more complicated 
functions as follows. 
 
Example  Find the integral of, 

  dxxxxI 71358 23    
 

>> syms x 
>> f = 8*x^3 - 5*x^2 + 13*x - 7; 
>> int(f) 
 

ans = 
 

2*x^4 - (5*x^3)/3 + (13*x^2)/2 - 7*x 
 

i.e., the result is,        xxxxI 7
2

13
3
5

2 234   
 
Example  Find the integral of, 

  dxx x I 2cos4sin3  

>> syms x 
>> f = 3*sin(4*x)*cos(2*x); 
>> int(f) 
ans = 
  

- (3*cos(2*x))/4 - cos(6*x)/4 
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i.e., the result is,        xxI 6cos2cos3
4
1

  
 
Example  Find the integral of, 

dx
e

e
I

x

x 12 
   

>> syms x 
>> f = (exp(2*x)+1)/exp(x); 
>> int(f) 
  

ans = 
 

2*sinh(x) 
 

i.e., the result is,     xI sinh2  

 The basic integration formulas as shown in (a) - (j) can be 
further applied together with the use of some integration 
techniques.  Some techniques are presented in details in the 
examples below. 

 
Example  Find the integral of, 

dxxxI 12    

A technique is to let,         12  xu  

Then,      dxduu 2   and          12  ux  

Thus, the given integral above becomes, 

   I     duuuu 21 22    

       duuuu 224 212    

     duuuu 246 242    

   
3

2
5

4
7

2 357 uuu
  

  I   354215
105
2

24
3

 uu
u

 

int 
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After substituting 1 xu , the final solution is obtained, 

  I        35142115
105

12 2
23




 xx
x

 

      81215
105

12
2

23




 xx
x

 

 The same solution can be obtained easily by using the int 
command, 
 

>> syms x 
>> f = x^2*sqrt(x-1); 
>> int(f) 
  

ans = 
  

(2*(x - 1)^(3/2)*(15*x^2 + 12*x + 8))/105 
 
Example  Find the integral of, 

I     dxxx 34 2cos    

To integrate the above function, a technique different from the 
previous example is needed as follows, 
 

  I    dxxx 34 2cos    

      dxxx 34 42cos
4
1

   

      22cos
4
1

44   xdx  

    2sin
4
1

4  x  

Again, the int command can provide the solution conveniently, 
 

>> syms x 
>> f = x^3*cos(x^4+2); 
>> int(f) 
  

ans = 
  
sin(x^4 + 2)/4 

int 

int 
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 If MATLAB cannot integrate the given function, the 
entering expression is returned with the message stating that the 
explicit integral could not be found.  For example, 

I  dx
xx 421

1


   

>> syms x 
>> int('1/sqrt(1+x^2+x^4)') 
Warning: Explicit integral could not be found.   
  

ans = 
  

int(1/(x^4 + x^2 + 1)^(1/2), x) 
 

 Most of practical problems require solutions of the definite 
integrals for which the lower and upper limits of integration are 
specified.  Techniques for finding definite integrals of some 
functions are shown in the examples below. 
 

Example  Find the definite integral of, 

I  dxx 12
4

0

   

A technique to find the integral above is to assign a new variable, 
12  xu , so that dxdu 2 .  The lower and upper limits are 

changed into the form of new variable u, i.e.,     11020 u  

and     91424 u , respectively.  Then, 

  I  





  duu

2
1

9

1

 
9

1

23

3
2

2
1

u  

    2323 19
3
1

  
3
26

  

Again, we can use the int command to find the same solution by 
simply entering, 
 

>> syms x 
>> int('sqrt(2*x+1)',0,4) 
  

ans = 
  

26/3 
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Example  Find the definite integral of, 

I  dx
x2

0
1

1


 


 

Using a formula in an integrating handbook, the above integral is,  

  I  dx
x

a

a 2
0

1
1

lim


 
  

a

a
x

0

1tanlim 


  

    0tantanlim 11 


 a
a

 0
2



 

   
2


  

>> syms x 

>> int('1/(1+x^2)',0,Inf)  
  

ans = 
  

pi/2 
 
 Multi-dimensional integration can also be performed by 
using the same int command as highlighted in the following 
examples. 
 
Example  Find the two-dimensional indefinite integral of, 
 

  I    dydxyxf ,   

   dydxyx 2  
6

23 yx
  

>> syms x y 
>> f = x^2*y; 
>> I = int(int(f,x),y)   
  

I = 
  

(x^3*y^2)/6 
 
 

int 

int 



2.5  Taylor Series 43

Example  Find the three-dimensional definite integral of, 

  I    dzdydxzyxf  
6

5

4

3

2

1

,,   

   dzdydxzyx  
6

5

4

3

23

2

1

   
8

2035
  

>> syms x y z 
>> f = x^3*y^2*z; 
>> I = int(int(int(f,x,1,2),y,3,4),z,5,6) 
  

I = 
 

2035/8 
 

 

 
2.5  Taylor Series 
 Many solutions to differential equations are in form of 
infinite series.  In calculus course, several types of infinite series 
are thus studied.  Popular infinite series are in the power and 
polynomial form as shown below. 

 xe  2 3 41 1 1
1

2! 3! 4!
x x x x     … 

0

1

!
n

n

x
n





   

 xsin  3 5 71 1 1

3! 5! 7!
x x x x    …  

 
2 1

0

1
1

2 1 !
n n

n

x
n






 
  

 xcos  2 4 61 1 1
1

2! 4! 6!
x x x     …  

 
2

0

1
1

2 !
n n

n

x
n





   

 The function   xexf  ,    xxf sin  and    xxf cos  
above can be derived in form of infinite series by first writing such 
 xf  in the form, 

  xf   
0

n
n

n

c x a




      

       2
0 1 2 ... ...n

nc c x a c x a c x a          

where  ,...,3,2,1, ici   are determined from the derivatives of the 

function as follows, 
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  xf         ......32 12
321  n

n axncaxcaxcc  

  xf       ...433221 2
432  axcaxcc  

  xf       ...543432321 2
543  axcaxcc  

At ax  , the above equations reduce to, 

  af     11c  

  af     221 c  

  af     3321 c  
 

Or, in general,   af n      ncn!  

Thus, nc    
  

!n
af n

 

  Then, the function  xf  can be rewritten as, 

  xf         2

!2
1

axafaxafaf                       

                           ...
!

1
...  nn axaf

n
 

The function  xf  in this form is called the Taylor series at ax  . 

  It is noted that if 0a , the Taylor series reduces to, 

  xf        ...0
!2

1
00 2  xfxff    ...0

!
1

 nn xf
n

 

Or,   xf     nn

n

xf
n

0
!

1

0





  

which is known as the Maclaurin series. 
    MATLAB has the taylor command that can be used to 
display the function  xf  in form of the Taylor and Maclaurin 

 0a  series.  The examples below demonstrate such capability. 
 
Example  Find the Maclaurin series for the function, 
 

  xexf   

Since the given function   xexf  , then   xexf  ,   xexf  ,...,  
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    xn exf  .  But    10 0  ef n  for any n , then the Maclaurin 
series is, 

  ...
!3!2!1

1
!

32

0

 




xxx
n
x

exf
n

n

x  

 We can use the taylor command to generate such series.  
For example, the series with the first three terms can be displayed 
by entering, 
 

>> syms x 
>> f = exp(x); 
>> taylor(f,x,3)         
 

ans = 
 

x^2/2 + x + 1 

i.e.,             
2

1
2x

xexf x   

Similarly, the series with the first five terms can be obtained by 
typing, 
 

>> taylor(f,x,5) 
 

ans = 
 

x^4/24 + x^3/6 + x^2/2 + x + 1 
 

i.e.,      
!4!3!2

1
432 xxx

xexf x   

 In the same manner, the Taylor series ax   with the first 
three terms can be displayed by entering,  
 

>> syms a 
>> taylor(f,x,3,a) 
 

ans = 
 

exp(a) + (exp(a)*(a - x)^2)/2 - exp(a)*(a - x) 
 

i.e.,          2

!2
ax

e
axeeexf

a
aax   

taylor 

taylor 
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Example Find the Maclaurin series for the function, 

  xxf cos  

  Since, 

   xf    xcos  ;   xf     xsin  

   xf     xcos  ;   xf     xsin  

             
    xf n2      xn cos1  ;   xf n 12        xn sin1 1  

At 0x ,   10cos   and   00sin  , then the derivatives of  xf  

are, 

    nnf 102           and            0012 nf  

  Thus, the Maclaurin series  0a  is,   

 

 If we plot the function  xf  by using the series above, we 
see that the series yield results that approach the solution of 
  xxf cos  when more terms on right-hand-side of the series are 

included.  This means the true variation of the cosine function can 
be obtained by computing the function   xxf cos  and its 

derivatives at 0x  as n .  We can use the plot command to 
demonstrate convergence of the results as more terms are added 

           ...0
!

1
...0

!2
1

00 2  nn xf
n

xfxffxf

...
!8

0
!6

0
!4

0
!2

01
8642


xxxx

3n

5n

7n

9n
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into the series.  Comparisons of these results with the true function 
  xxf cos  are shown in the figure. 

 

>> x0=0:.01:10; y0=cos(x0); syms x; y = cos(x); 
   plot(x0,y0,'linewidth',2), axis([0,10,-2,2]); 
   for n=[3:2:21] 
     p=taylor(y,x,n), y1=subs(p,x,x0);  
     line(x0,y1) 
   end 

 
 

Example  Use the taylor command to find the first three terms of 
the function, 

 
1

cos
2 


xx
x

xf  

at 0x  and 2x . 
 

 The first three terms of the Taylor series at 0x  for 
the given function above can be found by entering, 
 

>> syms x 
>> f = cos(x)/(x^2+x+1); 
>> taylor(f,x,3) 
  

ans = 
 

- x^2/2 - x + 1 

0 1 2 3 4 5 6 7 8 9 10 -2 

-1.5 

-1 

-0.5 

0 

0.5 

1

1.5 

2 

x

 xf

xcos

5n 9 13 17

21n

3n

7
11 15 19

taylor 

plot 
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i.e.,      
2

1
1

cos 2

2

x
x

xx
x

xf 


  

 These first three terms at 2x  are, 
 

>> taylor(f,x,3,2) 
  

ans = 
 

cos(2)/7 - (x - 2)*((5*cos(2))/49 + sin(2)/7) –  
(x - 2)^2*((13*cos(2))/686 - (5*sin(2))/49) 
 

i.e.,        



 



 

49
2sin5

686
2cos13

2
7

2sin
49

2cos5
2

7
2cos 2xx  

 
 

2.6  Other Series 
 MATLAB contains the sum and symsum commands that 
can be used to determine the series in the forms of numbers and 
symbols as demonstrated in the following examples. 

 
Example  Determine the result of the series, 

10210
10

0

2...2222  


n

n

S  

We can employ the sum command by entering, 
 

>> S = sum(2.^[0:10]) 
 

S = 
 

        2047 

i.e.,     20472
10

0




n

n

 

 

The symsum command can also be used to give the same result, 
 

>> syms n 
>> symsum(2^n,0,10) 
  

ans = 
  

2047 

taylor 

sum 

symsum 
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Example  Determine the result of the series,, 

...
3
1

2
1

1
11

2222
1

 


 n
S

n

 

  We can employ the symsum command to find the result 
symbolically by entering, 
 
>> syms n 
>> symsum(1/n^2,n,1,Inf) 
  

ans = 
 

pi^2/6 
 

i.e.,     
6

1 2

2
1






 nn

 

Result in the form of   symbol above appears in most of calculus 
textbooks.  Such result can be determined numerically by typing, 

>> format long; double(ans) 
 

ans = 
 

   1.644934066848226 
 

It is noted that this series with the first hundred terms is, 
 
>> format long; sum(1./([1:100].^2)) 
 

ans = 
 

   1.634983900184892 
 

which is different from the exact result starting from the second 
decimal place onward. 

 
Example  Prove the series, 

   3
1

1323
1

1






 nn
n

 

  Again, the symsum command can be used by entering, 
 

double 
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>> syms n 
>> symsum(1/((3*n-2)*(3*n+1)),n,1,Inf) 
 

ans = 
 

1/3 
 
 
2.7  Concluding Remarks 
 In this chapter, we have studied and reviewed essential 
topics in calculus.  These topics are the limitation, differentiation 
and integration of functions.  As we learned in the calculus course, 
several formulas and techniques are needed in order to find 
solutions for these problems.  Some simple formulas can be 
memorized while many others are collected in handbooks.  
Learning these topics, which represents the first step toward 
solving higher mathematical problems, is often difficult to most 
students. 

 MATLAB contains the limit, diff and int commands 
that can be used to find limitation, differentiation and integration of 
a given function, respectively.  The effectiveness of these 
commands was demonstrated through examples by comparing the 
solutions with those carried out by hands.  The commands can 
provide the solutions immediately so that students will have more 
time to understand physical behaviors of the problems.  MATLAB 
also contains the taylor and symsum commands that can be used 
to generate the Taylor, Maclaurin and other series conveniently.  
These series can be expressed symbolically or computed 
numerically.  Understanding these series is the basis for learning 
differential equations in the following chapters. 
 Few key commands presented in this chapter clearly 
demonstrate the capability and efficiency of MATLAB for solving 
calculus problems.  These commands help students to verify their 
solutions derived in the traditional way as learned in classes.  With 
the plot or ezplot command, these solutions can also be plotted 
easily to further increase understanding of the problems.  The 
symbolic computer software today thus can alleviate difficulty in 
learning calculus and increase understanding of the subject 
considerably.

symsum 
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Exercises  
 
 
1. Use the limit command to determine,  

(a) 
1
1

lim
10

6

1 


 x
x

x
 (b) 

x

xx

x

59
lim

0




 

(c) 
x

x
x

24
lim

0




 (d) 
x
x

x 5tan
3tan

lim
0

 

(e) 
20

cos2cos
lim

x
xx

x




 (f) 
44

2
lim

2

2

2 


 xx
xx

x
 

 
2. Use the limit command to determine,  

(a) 
1

1
lim

3

1 


 x

x
x

 (b) 
xx

xx
x 2

23
lim

2

3

2 



 

(c) 
2

2

0

39
lim

x
x

x




 (d) 







 x
x

x

1
sinlim 2

0
 

(e) 
x

xx
x




11
lim

0
 (f)  

h

xhx
h

22

0

11

lim





 
 

 Then, verify the solutions by plotting with the use of ezplot 
command.  

 
3. Use the limit command to determine,  

(a) 
x

x
x cos2

sin
lim


 (b) 






 

 xx

1
2lim  

(c) 
34
75

lim



 x
x

x
 (d) 

154
90160

lim
4.0

4.0








 x
x

x
 

(e) 
3tan

tan
lim

2 


 x
xx

x 
 (f) xxx

x



13lim 2  

 

 Then, verify the solutions by plotting with the use of ezplot 
command.  
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4. Use the limit command to determine the limits of the 
functions containing two variable x and y,  

   (a) 
11

lim
0
0 

 yx

yx

y
x

  

   (b) 
 

  2222

22

0
0

cos1
lim

yx
y
x eyx

yx



 


  

   (c) 
    2222

0
0 1

1

1

1
lim

yxyxy
x 





  

   (d)  
29

22

2
221

1

1
1

sin
lim

yx

yx

     y
yx yx

x
e














    

 
5. Use the diff command to find the first-order derivatives of 

the following functions,  

(a) 432 xx   (b)  xx 520   

(c) 
1

4
2 x

x
 (d) 

1
32




x
xx

 

(e) 24 xx   (f) 522  xx  

 Then, verify the solutions with those derived by hands. 
 
6. Use the diff command to find the first-order derivatives of 

the following functions,  

(a) xx   (b)     3232 11  xx  

(c) 
12
423

2

2




xx
xx

 (d) 
42

32
23 

xx

x
 

(e) xx ln  (f) xsin  
 

 Then, use the ezplot command to verify the solutions by 
plotting at appropriate x locations. 

 
7. Use the diff command to find the first-order derivatives of 

the following trigonometric functions,  
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(a)  23sin xx   (b)    xxxx lnsin 3   

(c) 
x

xxex

tan
sin

 (d) 







 2
ln

2

x
x

 

(e) 2xex  (f)  xe x cosln  

 Then, use the ezplot command to plot comparing the 
variations of the functions and their derivatives.  

 

8. Given, 

y
x

u 1cos  
 

 Use the diff command to show that, 

xy
u

yx
u







 22

 

 

9. Employ the meshgrid command to display the function 
 yxfz , ,  

   (a) z      













 


  8.0

2
10tan11100 1

yx
yyxx  

          for  10  x , 10  y  

   (b) z    xyyxexx  222 2  
         for  33  x , 22  y  

Then, use the diff command to find the expressions of xz   
and yz  .  Compute these expressions at 0 yx  by using 
the subs command. 

 

10.  Use the int command to find solutions of the following 
integrals, 

(a)    dxx 41  (b)    dxx 532  

(c)  
dx

x 3
1

 (d) 
  

dx
x 21

1
 

(e)  dxx3sin  (f)    dxxcos  

 Then, verify the solutions by finding their derivatives. 
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11. Use the int command to find solutions of the following 
integrals, 

(a)  


dx
xx

x

35

52
2

 (b)  
dx

x
x

21
 

(c)  
dx

x
x

cos53
sin

 (d)  
dx

x

x

43

2

 

(e)  


dx
x

x
21

21
 (f)  

dx
x

x
2

2

tan4
sec

 

 Then, verify the solutions by comparing with those derived by 
hands as learned in calculus course. 

 
12.  Use the int command to find the following integrals, 

(a)  
dx

x41

1
 (b)  

dx
xx 4

1
2

 

(c) 
  

dx
x

x
2sin1

cos
 (d)  dxx2tanh  

(e) 


dx
x

x

2

52

 (f) 


dx
x

x
2

83

 

 
13.  Use the int command to determine the following definite 

integrals, 

(a)  
1

0 15

12
dx

x

x
 (b) 

  

2

1
21

1
dx

xx
 

(c)  

3

0
2 9

dx
x

x
 (d)  

2

0
2 4
1

dx
x

 

(e)  
2

0

53 dxx  (f) 
4

1

3sin dxx  

 
14. Use the int command to determine the following definite 

integrals, 

(a) 
5

1

5 dxx  (b) 



4

1

4 dxx  
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(c) 
2

0

2sin


dxx  (d) 
2

0

cos3sin


dxxx  

(e)  
2

0

24 dxx  (f)   
2

1

42 1 dxxx  

 Then, verify the solutions with those derived by hands. 
 

15. Use the int command to find the following multi-dimensional 
integrals, 

   (a)   dydxyxyx  32 57   

   (b)   dydxxx cossin 2   

   (c)      dzdydxyzyx  22 cos8sin   

   (d) dzdydx
z

yx






 

2

1

4

3

6

5

  

 Then, verify the solutions with those derived by hands. 
 

16. Use the taylor command to express the first six terms of the 
Maclaurin series for the following functions, 

(a) xe 5  (b) xex  

(c) xx sin2  (d) xx cos  

(e) 1cos x  (f) x2sin  
 

 17. Use the taylor command to express the first twenty terms of 
the Maclaurin series for the following functions, 

(a) xsinh  (b) x1tan  
(c)  x1ln  (d)   21 xxex   

 Then, plot to compare their variations with the true functions.    
 

18. Use the taylor command to express the first five terms of the 
Taylor series at ax   for the following functions, 

(a) xex sin  (b) 3 8 x  
(c)  xx 21ln   (d) xx 22 cos  

(e) 
42 x

x
 (f) 

2

sin
x

xx 
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19. Use the symsum command to prove the following infinite 
series, 

   (a) ...
7
1

5
1

3
1

1
1

4444    = 
96

4
 

   (b) ...
4
1

3
1

2
1

1
1

2222    = 
12

2
 

   (c) ...
64

1
53

1
42

1
31

1












 = 

4
3

 

   (d) ...
97

1
75

1
53

1
31

1
22222222 











   =   

16
82 

 

 
20. Use the symsum command to show that the following 

functions can be written in the form of infinite series, 

   (a)  x1ln  ...
432

432


xxx

x   11  x  

   (b) xe  ...
!3!2

1
32


xx

x    x  

   (c) xcosh  ...
!6!4!2

1
642


xxx

   x  

   (d) x1sin  ...
7642

531
542

31
32

1 753










xxx

x 1x  

 
21. Use the symsum command to determine the exact solutions of 

the following infinite series, 

   (a) 





 




nn

n 3
1

2
1

1
2 2 3 3

1 1 1 1 1 1
...

2 3 2 3 2 3
                
     

 

   (b)   1545
1

1




 nn
n

   ...
1611

1
116

1
61

1









  

  Then, compute the series by using the sum command that 
contains only the first two hundred terms.  Determine the 
percentage error by comparing the approximate solution with 
the exact solution for each case.    

 
 



 

 

 
 

 
 

Chapter 
3 

 
 

 

Differential Equations 
 
 
 

3.1 Introduction 
 

 Many phenomena surrounding us are explained by 
differential equations.  Water flow in a river or air circulation in a 
room is described by the differential equations representing 
conservations of mass, momentums and energy.  Solving these 
differential equations lead to solutions of flow velocity, pressure 
and temperature.  Temperature distribution of a coffee cup is 
governed by a differential equation that describes the energy 
conservation at any position in the cup.  Solving such differential 
equation leads to the solution of the temperature.  Or, deformation 
of a beam under loading is governed by a differential equation 
representing the equilibrium condition at any location along the 
beam.  Solving the differential equation gives the deformation 
shape as well as the stress.  Solutions obtained from these 
differential equations thus help understanding the problem 
phenomena. 
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 Most commercial scientific and engineering software for 
analysis and design are based on solving differential equations.  
Thus, understanding how the differential equations are solved is 
very important.  The differential equation course is thus required 
for science and engineering students.  Even though the course 
consists of topics just for solving simple forms of differential 
equations, it is still difficult to most students.  This is because there 
are many specific techniques to memorize and follow in order to 
derive for the solutions. 
 With the symbolic computer software today, many 
differential equations learned in class can be solved easily.  
Students can compare solutions obtained from the software with 
those derived by hands, so that they will have more time to spend 
on understanding the solution behaviors.  These will help them to 
appreciate and realize the importance in taking the differential 
equation course. 
 This chapter starts from explaining characteristics and 
types of differential equations typically learned in the course.  
Techniques for solving many types of differential equations are 
presented.  The derived solutions are compared with those obtained 
from using MATLAB.  The derived solutions may be in the forms 
of polynomials or some special functions.  These solutions are 
plotted by using simple MATLAB commands to further increase 
understanding of their behaviors.  
 

 
3.2 Characteristics of Differential Equations 

  In the differential equation course, we studied many types 
of differential equations.  For an example, 

xy
dx
dy

y
dx

yd
x cos423

2

2

  

In the differential equation above, y is the dependent variable that 
varies with the independent variable x.  The dependent variable  

( )y y x  is the solution to the differential equation.  This equation 
is called the second-order differential equation according to the 
highest derivative order that appears in the equation. 
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 A differential equation is linear if the coefficient of each 
term is a constant or function of x.  The differential equation 
becomes nonlinear if the coefficient is function of y.  Thus, the 
differential equation above is nonlinear since the coefficient of the 
first-order derivative term is 2y.  It is noted that exact solutions are 
not available or difficult to find for most nonlinear differential 
equations. 
 A differential equation is called homogeneous if the term 
on the right-hand-side of the equation is zero.  The differential 
equation above is a nonhomogeneous equation because the right-
hand-side term is xcos . 
 In many science and engineering problems, the governing 
differential equations are often in some specific forms.  For 
examples, the Airy equation, 

02

2

 yx
dx

yd
 

the Bessel equation, 

  022
2

2
2  ynx

dx
dy

x
dx

yd
x  

and the Legendre equation, 

    0121
2

2
2  ynn

dx
dy

x
dx

yd
x  

The solutions of these differential equations are normally in the 
forms of specific functions. 
  If a problem contains n dependent variables, then these 
variables must be solved from a system of n differential equations.  
For example, the two dependent variables, 1y  and 2y , are to be 
solved from the two differential equations, 

 2
1 37 y

dx
dy

  16  

 1
2 52 y

dx
dy

  9  

The exact solutions of  xy1  and  xy2  are obtained by solving 
these two differential equations simultaneously. 



60   Chapter 3  Differential Equations 

 

  All of the differential equations above are called ordinary 
differential equations because the dependent variable y is only 
function of the independent variable x.  For most practical 
problems, the dependent variable y is function of many independent 
variables, e.g., 1x  and 2x , 

2
2

2

2
1

2

x
y

x
y






    0  

This latter differential equation is called partial differential 
equation.     
 
 
3.3 Solutions of Differential Equations 
  One way to verify the solution is to substitute it back into 
the differential equation.  The solution must satisfy the differential 
equation as shown in the examples below.    
 
Example  Show that, 

 
x

xxyy
1

2   

is a solution of the second-order linear homogeneous differential 
equation,  

0
2

22

2

 y
xdx

yd  

  The first- and second-order derivatives of the solution are, 

 
dx
dy  

2

1
2

x
x   

 
2

2

dx
yd  

3

2
2

x
  

By substituting these derivative terms into the left-hand-side of the 
differential equation, 

 





 






 

x
x

xx
122

2 2
23

  
33

2
2

2
2

xx
  

   0  
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leading to the result of zero.  This means the given solution is the 
solution of the differential equation. 

   We can use the diff command to verify such result as 
follows, 
 

>> syms x 
>> y = x^2 - 1/x; 
>> diff(y,2) - 2*y/x^2 
 

ans = 
 

0 
 
Example  Use the diff command to show that, 

  xx eCeCxyy 2
21    

where 1C  and 2C  are constants, is a solution of the second-order 
linear homogeneous differential equation, 

02
2

2

 y
dx
dy

dx
yd

 

>> syms x C1 C2 
>> y = C1*exp(-x) + C2*exp(2*x); 
>> diff(y,2) - diff(y,1) - 2*y 
 

ans = 
 

0 
  

It is noted that 1C  and 2C  could be any numerical value, the given 
solution is always the solution of the differential equation above. 

  Solutions of the differential equations may be in many 
forms from simple to complex functions.  We will learn how to 
derive solutions in details in the following chapters.  In this 
chapter, however, we will use the dsolve command to 
conveniently find the solutions.  The objective herein is to show 
that the solutions could be in different forms, such as the 
trigonometric, polynomial and exponential functions. 
 

diff 
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Example  Use the dsolve command to find solution of the first-
order linear nonhomogeneous differential equation, 

2x
dx
dy

  
 

>> syms x 
>> dsolve('Dy = x^2', 'x') 
 

ans = 
 

x^3/3 + C3 
 

i.e.,         3

3

3
C

x
y   

where 3C  is a constant.  
 
Example  Use the dsolve command to find solution of the first-
order linear nonhomogeneous differential equation, 

2xy
dx
dy

  
 

>> syms x 
>> dsolve('Dy - y = x^2', 'x') 
 

ans = 
 

C4*exp(x) - 2*x - x^2 - 2 

i.e.,      22 2
4  xxeCy x  

where 4C  is a constant. 
 
Example  Use the dsolve command to find solution of the first-
order nonlinear homogeneous differential equation, 

02  y
dx
dy  

>> syms x 
>> dsolve('Dy - y^2 = 0', 'x') 
  

ans = 
 

-1/(C5 + x) 

dsolve 

dsolve 
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i.e.,           
xC

y



5

1
 

 where 5C  is a constant. 

   The differential equation in the preceding example is 
nonlinear, 

2y
dx
dy

  

Solution of this differential equation can be plotted to show the 
direction field by using the quiver command.  For example, the 
direction field for 21  x  and 30  y  can be displayed by 
entering,    
 
 

>> [x,y] = meshgrid(-1:0.2:2, 0:0.2:3); 
>> dydx = y.^2; 
>> vl = sqrt(1 + dydx.^2); 
>> quiver(x, y, 1./vl, dydx./vl, 0.5), axis tight 
 

 
where vl is the vector length.  The plot shows the vectors 
representing the direction field of the solution  xy  that varies with 
x. 

 
   Since the solution of the nonlinear differential equation 
above is,   

-1 -0.5 0 0.5 1 1.5 2 0 

0.5 

1

1.5

2 

2.5 

3 

x

y

meshgrid 

quiver 
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  y  
xC 


5

1
 

where 5C  is a constant that depends on the initial condition.  If the 

initial condition is given as   10 y , then the constant 5C  can be 

determined, 

    1  
0

1

5 


C
 

to give 15 C .  Thus, the exact solution corresponding to the 

given initial condition is,  
  y  

x


1
1

 

   We can plot this exact solution by imposing it onto the 
direction field as,  
 

>> hold on 
>> xx=-1:.01:2; 
>> yy = 1./(1.-xx); 
>> plot(xx,yy,'linewidth',2) 

We can see that the exact solution (solid line) from the given initial 
condition is a solution of the direction field. 
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  In the following examples, solutions to the differential 
equations are in the form of special functions, such as the error, 
Airy and Bessel functions.  Details of these functions are given in 
Chapter 11.   

 
Example  Use the dsolve command to find solution of the first-
order linear nonhomogeneous differential equation, 

2xe
dx
dy

  

>> syms x 
>> dsolve('Dy = exp(-x^2)', 'x') 
  

ans = 
  

C6 + (pi^(1/2)*erf(x))/2 
 

i.e.,            
26

xerf
Cy


  

where 6C  is a constant. 

 
Example  Use the dsolve command to find solution of the second-
order linear homogeneous differential equation, 

0
2

2

 xy
dx

yd
 

>> syms x 
>> dsolve('D2y - x*y', 'x') 
 

ans = 
 

C7*airyAi(x, 0) + C8*airyBi(x, 0) 

i.e.,              xBiCxAiCy 87   

where 7C  and 8C  are constants.  The function  xAi  and  xBi  are 

the Airy and Bairy function, respectively.  Values of these two 
functions can be determined at any x location as explained in 
Chapter 11. 
 

dsolve 
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Example  Use the dsolve command to find solution of the second-
order linear homogeneous differential equation, 

  042
2

2
2  yx

dx
dy

x
dx

yd
x  

 

>> syms x 
>> dsolve('x^2*D2y + x*Dy + (x^2-4)*y = 0', 'x') 
  

ans = 
  

C9*besselj(2, x) + C10*bessely(2, x) 
 

i.e.,               xYCxJCy 21029   

where 9C  and 10C  are constants.  The function  xJ2  and  xY2  are 

the Bessel functions of the first and second kind, respectively.  
Again, values of these two functions at any x location can be 
determined as explained in Chapter 11. 

  Solutions of some differential equations may be in implicit 
form as shown in the following examples. 
 
Example  Use the dsolve command to find solution of the first-
order nonlinear nonhomogeneous differential equation, 

2x
dx
dy

y   

>> syms x 
>> dsolve('y*Dy = x^2', 'x') 
  

ans = 
  

  2^(1/2)*(x^3/3 + C11)^(1/2) 
 -2^(1/2)*(x^3/3 + C11)^(1/2) 

The solution of y  has to be determined from the equation, 

02
3

2
11

3
2  C

x
y  

which is in an implicit form. 

  If the initial condition is   00 y , then 011 C  and the 
solution is, 

dsolve 
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32 3xy   

The solution of y  can be plotted on the direction field of the 
general solution as shown in the figure. 

 
 
Example  Use the dsolve command to find solution of the first-
order nonlinear homogeneous differential equation, 

  y
dx
dy

xyyy  sincos  

>> syms x 
>> dsolve('(y*cos(y) - sin(y) + x)*Dy = y', 'x') 
  

ans = 
  

solve(- sin(y) – C12*y = -x, y) 
 
The solution is in an implicit form of, 

xyCy  12sin  

where 12C  is a constant that can be determined from the given 
initial condition. 
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Example  Use the dsolve command to find solution of the first-
order nonlinear nonhomogeneous differential equation, 

145  y
dx
dy

y  

>> syms x 
>> dsolve('y^5*Dy - y^4 = 1', 'x') 
 

ans = 
 

solve(y^2 - atan(y^2) = 2*C13 + 2*x, y) 
 

Again, the solution is in an implicit form of, 

xCyy 22tan 13
212    

where 13C  is a constant that can be determined from the given 

initial condition. 
 

  There are many differential equations that the explicit 
expressions of their solutions cannot be found as shown in the 
following examples. 
 
Example  Use the dsolve command to find solution of the first-
order linear nonhomogeneous differential equation, 

4

2

1 x

x
dx
dy


  

>> syms x 
>> dsolve('Dy = x^2/sqrt(1+x^4)', 'x') 
  

ans = 
 

C14 + int(x^2/(x^4 + 1)^(1/2), x) 
 

In this case, MATLAB returns the solution in the integral form as,  

14
4

2

1
Cdx

x

x
y 


   

where 14C  is an integrating constant. 

 

dsolve 
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Example  Use the dsolve command to find solution of the first-
order nonlinear differential equation, 

yey
dx
dy

  
 

>> syms x 
>> dsolve('Dy - y = exp(-y)', 'x') 
  

ans = 
  

solve(int(exp(y)/(y*exp(y) + 1), y) = C15 + x, y) 
 
This means the solution must be determined from the implicit 
equation containing the integral term of y, 

xCdy
ey
e

y

y


 151

 

where 15C  is an integrating constant. 

 
Example  Use the dsolve command to find solution of the second-
order nonlinear homogeneous differential equation, 

02
2

2

 y
dx
dy

dx
yd

 

>> syms x 
>> dsolve('D2y + Dy + y^2 = 0', 'x') 
Warning: Explicit solution could not be found. 

 
An explicit solution could not be found for the differential equation 
in this last example.  It is noted that there is a large number of 
problems that their explicit solutions are not available.  In this case, 
numerical methods must be applied to provide approximate 
solutions.  Several numerical methods can provide very accurate 
solutions to different types of differential equations.  We will see 
examples that demonstrate such capability in the latter chapters. 
 

dsolve 
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3.4  Concluding Remarks 

 Differential equations occur in many classes of science 
and engineering problems.  They represent the nature of problems, 
such as the mass, momentums and energy must be conserved or a 
system must be in equilibrium.  Solving the differential equations 
lead to solutions that help understanding their physical phenomena. 

 This chapter starts from describing the characteristics of 
the differential equations by using simple examples.  These include 
linear, nonlinear, homogeneous, nonhomogeneous, first- and 
second-order differential equations.  Finding solutions to the 
differential equations depends on their types.  Exact solutions to 
some of these differential equations are easy to find while others 
are difficult or impossible to obtain. 

 This chapter presents how to use the diff command in 
MATLAB to find derivatives of the given functions.  The dsolve 
command is then introduced to find solutions of the differential 
equations.  Examples have shown that these commands help us to 
solve the differential equations conveniently.  We will study 
different types of the differential equations in more details in the 
following chapters.  Solutions of the differential equations will be 
derived by hands prior to using MATLAB to confirm them.  We 
will thus understand how the solutions are derived and, at the same 
time, appreciate the capability of the symbolic computer software. 

    

 
Exercises 

 
1. Identify that each of the following equations is linear, 

nonlinear, homogeneous or nonhomogeneous differential 
equation, 

 

 (a) 123
2

2

 y
dx
dy

dx
yd

  

   (b) xy
dx
dy

x
dx

yd
x cos2

2

2
2   
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   (c) 02  yx
dx
dy

 

   (d)   xyx
dx

yd
sincos

2

2

  

   (e)   xey
dx
dy

x
dx

yd
y  71

2

2
2  

 
2. Identify that each of the following equations is linear, 

nonlinear, homogeneous or nonhomogeneous differential 
equation, 

(a) xyyx   (b) 22 xyyx   

(c) 
22

22

yx
yx

y



  (d) 
yx
yx

y




2

2
 

(e) 02  yyxyx  (f) 22 32 xyyx   

 
3. In each item below, use the diff command to verify that the 

left-hand-side function is a solution to the right-hand-side 
differential equation,  

   (a) 23 xxy    ; 2xyyx   
   (b) xey 3   ; 032  yyy  
   (c) xy cosh   ; 0 yy  
   (d) 21 xy    ; 0452  yyxyx  
   (e) xxy 12    ; yyx 22    

 
4. In each item below, use the diff command to verify that the 

left-hand-side function is a solution to the right-hand-side 
differential equation, 

 (a) xxy 2cos42sin3    ; 04  yy  

 (b) xey 22     ; xeyy 2   

 (c) xxy 2cosh22sinh    ; 04  yy  

 (d) xxy  22    ; 222 yxyyx   

 (e) yyx 1tan    ; 01 22  yyy  



72   Chapter 3  Differential Equations 

 

5. In each item below, use the diff command to verify whether 
the left-hand-side function is a solution to the right-hand-side 
differential equation or not, 

 (a) xxy sin3cos2    ; 0 yy  

 (b) 2sin xxy    ; 22  xyy   

 (c) xy 2cos   ; xxyy 2sin  

 (d) xx eey  32   ; 02  yyy  

 (e) xexy  2sin3   ; xeyy  54   
 
6. Use the diff command to show that, 

  (a) 2xy   is an exact solution of the first-order linear 
homogeneous differential equation, 

y
dx
dy

x 2  

  (b) xey x   is an exact solution of the first-order 
nonlinear nonhomogeneous differential equation,  

  121 222  xexey
dx
dy

xx  

 
7. Use the diff command to show that, 

1ln1
22

22
2

 xxx
xx

y  

is an exact solution of the first-order nonlinear homogeneous 
differential equation, 

y
dx
dy

dx
dy

x 2ln 





  

 
8. Use the diff command to show that each of the solutions 

below, 

 (a) xey     

 (b) 
!

...
!3!2

1
32

n
xxx

xy
n

    



Exercises 

 

73

is an exact solution of the second-order linear homogeneous 
differential equation, 

  02

2

 yn
dx
dy

nx
dx

yd
x  

 where n is any positive integer. 
 
9. If A and B are constants, use the diff command to show that, 

  xy1     xeBxA 3  
 and  xy2     xeBxBA 333   
  are the solutions to the coupled differential equations, 
 

dx
dy1   2y  

 and 
dx
dy2   21 69 yy   

 
10. Use the dsolve command to find solutions of the following 

differential equations, 

 (a)  
dx
dy

yx 2   xy 34    

 (b) 
dx
dy

x2   22 yxyx     

 (c) 
dx
dy

xy2   22 3yx   

 (d)  
dx
dy

yx 2   yx 34   

 (e)  
dx
dy

yx    yx 3  

 
11. Use the dsolve command to find solutions of the following 

differential equations, 

 (a) y
dx

yd


2

2

  x 4    

 (b) y
dx
dy

dx
yd

23
2

2

 0    
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 (c) y
dx
dy

dx
yd

23
2

2

      xex  12  

 (d) y
dx
dy

dx
yd

dx
yd

22
2

2

3

3

   0  

 (e) y
dx
dy

dx
yd

dx
yd

dx
yd

67
2

2

3

3

4

4

    0   

 
12. Use the dsolve command to find solutions of the following 

differential equations, 

 (a) yxyx 23 4    xe   

 (b) y
x

y
1

    x2cos3    

 (c) y     yy
x

 4
3

 

 (d) yx 2    22 yxyx   

 (e) xyyx     y 1    

 
13. Solution of the nonlinear differential equation,  

xy
dx
dy

 2  

is in the form of Bessel function.  Use the dsolve command 
to find such solution and plot it in the form of direction field. 

 
14. Employ the diff command to show that, 
 (a) the equation 032  xy    
   is an implicit solution of the differential equation, 

ydx
dy

2
1

  

 (b) the equation 1sin33  xyxyx    

   is an implicit solution of the differential equation, 

 
 xxx

yxxx
dx
dy

sin3
1sincos




  
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15. Employ the diff command to find the first-order differential 
equations corresponding to the following implicit solutions,  

 (a) yxy ln   0    
 (b) yxy 333    5    
 (c) yyx 41 2    0   
 (d) yy 1tan    xx 1tan    
 (e) 3410622  yxyx   0   
 
16. In each item below, use the diff command to verify whether 

the left implicit equation is the solution to the right differential 
equation, 

 (a) 22 yx   4   ; 
y
x

y   

 (b) yexy   1 x   ; 
xe
ye

y
xy

xy








  

 (c) yy ln  12  x   ; 
1

2



y

xy
y  

 (d) xyeyx    0   ;   11  xyxy yeyxe  
 
17. Employ the diff command (and other commands, if 

necessary) to show that the function  xy  in the implicit 
equation form below,  

 (a) Cee xy  32 23   
   is the solution of the nonlinear differential equation,  

0
1

32   xye
ydx

dy
 

 

 (b) Cyx sincos   

   is the solution of the nonlinear differential equation, 

x
y

dx
dy

cot
tan

  
 

 (c)   C
yy

ex x 
22

11
1   

   is the solution of the nonlinear differential equation, 
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1

3




y
eyx

dx
dy x

 

  where C   is a constant. 
 
18. Employ the quiver command to plot the direction field of the 

differential equation,  

yx
dx
dy

 2  

for the intervals of 44  x  and 44  y .  Then use the 
dsolve command to solve the differential equation with the 
initial condition of   10 y .  Plot the solution by imposing it 
onto the direction field. 

 
19. Employ the quiver command to display the direction field of 

the nonlinear differential equation, 

323y
dx
dy

  

for the intervals of 30  x  and 11  y .   Then use the 
dsolve command to solve the differential equation with the 
initial condition of   02 y .  Plot the solution by imposing it 
onto the direction field. 

 

20. Use the diff command to show that the function of  xy  in 
the implicit form,  

               
2

1 1

2

2 2 1 2
ln tan 2 1 tan 2 1

8 42 1

y y
y y

y y

x C

 
            

 

 

where C  is a constant, is a solution of the nonlinear nonhomo-
geneous differential equation,  

14  y
dx
dy  

Then, plot its direction field for the intervals of 44  x  and 
33  y .  
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21. Use the diff command to show that the function of  xy  in 
the implicit form, 

C
y

y
x







 

33

33

 

where C  is a constant, is a solution of the nonlinear nonhomo-
geneous differential equation, 

2

2

1 y
x

dx
dy


  

Plot the direction field for the intervals of 44  x  and 
44  y .  Then, redisplay the plot by imposing the 

solutions when 3,0,3,5,7 C  and 5  onto the direction 
field.  





 
 

 
 

Chapter 
4 

 
 

 

First-Order  

Differential Equations 
 
 
 
4.1 Introduction 

 The differential equation in the first-order form of,  

 yxf
dx
dy

,  

is probably the simplest form for all types of differential equations.  
The form is thus often used as the first step in learning how to solve 
differential equations.  Exact solution of  xy , which makes the 
differential equation satisfies, is not that difficult to find. 
 This chapter presents standard techniques for finding exact 
solutions of the first-order differential equations in the form above.  
Examples will be used to derive exact solutions by employing these 
techniques.  The derived solutions will be verified by using 
MATLAB commands and plotted to show their variations.  If the 
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exact solutions are not available, numerical methods will be used to 
find the approximate solutions.  This chapter will thus help readers 
to understand how to solve this type of differential equation 
symbolically and numerically.  At the same time, readers will 
appreciate the current capability of the computer software that can 
reduce effort for finding solutions of the first-order differential 
equations.  

 

4.2 Separable Equations 
 Separation of variables is a simple technique for solving 
the first-order differential equations.  The dependent variable y is 
separated from the independent variable x so that they are on the 
opposite sides of the equation.  By doing that, solutions of the 
differential equations can be found easily.  For example, 

  yx
dx
dy

1  
The variable y and x in the equation above can be separated so that 
they are on opposite sides as,  

 dxx
y

dy
1  

Integration is then performed on both sides to obtain the solution of 
y as function of x.  It is noted that the technique cannot apply if 
both variables are not separable, such as, 

7 xy
dx
dy  

 We will apply this technique to derive exact solutions  
of differential equations as shown in the examples below.  The 
derived solutions will be verified by using the MATLAB 
commands.  
 
Example Derive general solution of the first-order linear differen-
tial equation,   
 

dx
dy

 
3
1





x
y  

Then, find the exact solution for the case of   40 y . 
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 The given differential equation above is separable so that 
the variables y and x can be placed on the opposite sides as, 

 
1y

dy
 

3


x
dx  

We can integrate both sides of the equation, 

   1y
dy

  


3x
dx  

to get, 1ln y  Cx  3ln  
where C  is the integrating constant.  If we apply the exponential 
function base e to both sides of the equation,  

 1ln ye  Cxe  3ln  3ln  xCee   
or, 1y  3 xeC  31  xC  
where CeC 1 .  Then, for positive quantity, 
 1y   31  xC  
i.e., the solution is, y    131  xC  
Here, the constant 1C  is to be determined from the given initial 
condition. 
 We can employ the dsolve command in MATLAB to 
obtain the same solution as follows, 
 
>> syms x y 
>> dsolve('Dy = (y-1)/(x+3)', 'x') 
 

ans = 
 

C1*(x + 3) + 1 
 

 By applying the initial condition of   40 y , the constant 

1C  can be determined as,  

 4    1301  C  
 1C  1  
Thus, the exact solution of this problem is,  
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y      131  x   4 x  
The same exact solution can be obtained by using the dsolve 
command,  
 

>> syms x y 
>> dsolve('Dy = (y-1)/(x+3)', 'y(0) = 4', 'x') 
  

ans = 
  
x + 4 
 
Example Derive general solution of the first-order nonlinear 
differential equation,   

 
dx
dy

 xy sin2  

Again, we separate the variables y and x so that they are on 
opposite sides of the equation as,  

 
2y

dy
 dxxsin  

Then, perform integration on both sides to get,  

  2y
dy

  dxxsin  

 
y
1

  Cx  cos  

where C  is the integrating constant.  Thus, the general solution is,  
 y  

Cx 


cos
1  

The same solution can be obtained by using the dsolve command 
as,  
 
>> syms x y 
>> dsolve('Dy = y^2*sin(x)', 'x') 
 

ans = 
 

-1/(C2 - cos(x)) 

dsolve 

dsolve 



4.2  Separable Equations 83

 Depending on the initial conditions, the corresponding 
exact solutions can be determined.  For examples,  

   1.00 y  ; y  
9cos

1



x

 

   2.00 y  ; y  
4cos

1



x

 

   3.00 y  ; y  
3
7

cos

1




x
 

Variations of the exact solutions can be plotted by using the 
ezplot command as shown in the figure. 

 
 

Example  Solve the first-order nonlinear differential equation,   

 
dx
dy

 xey  2  

We can separate the variables y and x so that they are on opposite 
sides of the equation as,  

 
2y

dy
 dxe x  

Then, perform integration on both sides to get,  
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x
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  2y
dy

   dxe x  

  
y
1

  Ce x    

where C  is the integrating constant.  Thus, the general solution is,  
 y  

Ce x 




1  

The same solution is obtained by using the dsolve command,  
 

>> syms x y 
>> dsolve('Dy = y^2*exp(-x)', 'x') 
 

ans = 
 

-1/(C3 - 1/exp(x)) 
 
 

Example Derive exact solution of the first-order nonlinear differ-
rential equation,   

 
dx
dy

y  3cosh  x  

with the initial condition of   0y . 
 The variables y and x in the differential equation can be 
separated so that the equation becomes, 

 dyy   dxx 3cosh   
Integration is performed on both sides of the equation to get, 
  dyy     dxx 3cosh  

 
2

2y
 Cxx  3sinh  

where C  is the integrating constant.  Thus, the general solution is,  
 y   Cxx  3sinh2  
  The integrating constant is determined by applying the 
initial condition of   0y , 

    C 002  

dsolve 
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 C  
2

2
  

Hence, the exact solution is,  

 y  





 

2
3sinh2

2
xx  

 The same solution is obtained by using the dsolve 
command,  
 

>> syms x y 
>> dsolve('y*Dy = cosh(x) + 3', 'y(0) = pi', 'x') 
 

ans = 
 

2^(1/2)*(3*x + sinh(x) + pi^2/2)^(1/2) 
 
Variation of the solution y can be plotted in the interval of 

20  x  by using the ezplot command as,  
 

>> ezplot(ans, [0 2*pi]) 
 

The plot of the variation is shown in the figure. 
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86   Chapter 4  First-Order Differential Equations 

Example Derive the exact solution of the first-order nonlinear 
differential equation,   

 
dx
dy

y 12     243 2  xx  

with the initial condition of   10 y . 

 The terms containing variables y and x are separable so 
that the differential equation can be written as, 

  dyy 12    dxxx 243 2   
By performing integration on both sides of the equation,  
    dyy 12     dxxx 243 2  
we get, yy 22   Cxxx  22 23  
where C  is the integrating constant that can be found from the 
initial condition of   10 y , 

 21   C 000  
  C  3  
  Then, the exact solution is,  
 yy 22   322 23  xxx  
or,  3222 232  xxxyy  0  
i.e., y  4221 23  xxx  
A proper solution is selected according to the initial condition,  

y 4221 23  xxx  
which is the exact solution of this problem. 
  The above exact solution can also be obtained by using the 
dsolve command,  
 

>> syms x y 
>> dsolve('2*(y-1)*Dy = 3*x^2+4*x+2',  
          'y(0) = -1', 'x') 
 

ans = 
 

1 - (x^3 + 2*x^2 + 2*x + 4)^(1/2) 
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Note that the solution obtained from MATLAB may be lengthy.  
The simple command may help reducing the complexity of the 
solution.  The ezplot command can then be used to display the 
variation of y with x as shown in the figure.  
 
>> ezplot(ans, [-2 1])  
 

 
 The exact solution above can also be verified by 
substituting it back into the governing differential equation,  
 

>> y = 1 - (x^3 + 2*x^2 + 2*x + 4)^(1/2); 
>> LHS = 2*(y-1)*diff(y,x) 
 

LHS = 
 

3*x^2 + 4*x + 2 
 

The differential equation must satisfy and the initial condition of 
  10 y  must agree too, 

 

>> subs(y,{x},{0}) 
 

ans = 
 

-1 

-2 -1.5 -1 -0.5 0 0.5 1

-2 

-1.5 

-1 

-0.5 

0

0.5 

  

x

 xy

  2123 4221  xxx

ezplot 

diff 

subs 
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4.3 Linear Equations 
 The first-order linear differential equation is probably the 
simplest equation among the others which is easy to solve.  This 
section presents a popular technique of using the integration factor 
to solve for the solution.  The general form of the first-order linear 
differential equation is, 

     xbyxa
dx
dy

xa  01  

where  xa1 ,  xa0  and  xb  are constants or functions of x only.  

It is noted that, if the coefficient   00 xa , the solution can be 

obtained by integrating the differential equation directly as, 
   xb

dx
dy

xa 1  

i.e.,     
  Cdx
xa
xb

xy  
1

 

where C  is the integrating constant. 
 

 However, when  xa0  is not zero, solution to the full form 

of the differential equation can still be derived conveniently.  The 
full form of the first-order linear differential equation, after 
dividing through by  xa1 , can be rewritten in the form, 

  yxP
dx
dy

   xQ  

If we multiply this differential equation by the integrating factor 
defined by,  
         x    dxxPe  
then, the differential equation becomes, 

         xQxyxPx
dx
dy

x    

or,                    xQxyx
dx
d    

which can be integrated to give the solution directly.  We will learn 
how to use the integrating factor to find solution of the first-order 
differential equation by using the following examples. 
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Example  Use the method of integrating factor to solve the first-
order linear homogeneous differential equation, 

03  y
dx
dy  

 Here,   3xP , then the integrating factor is, 
    xdx eex 33    

By multiplying the differential equation by the integrating factor 
above,  
  ye

dx
dy

e xx 33 3    0  

or,  ye
dx
d

x3  0  
Then, perform integration to get,  
 ye x3  C  
where C  is the integrating constant.  Thus, the general solution is, 
 y  xCe3  
  The same solution can be obtained by using the dsolve 
command as,  
 

>> syms x y 
>> dsolve('Dy - 3*y = 0', 'x') 
 

ans = 
 

C4*exp(3*x) 

 
Example  Use the method of integrating factor to solve the first-
order linear non-homogeneous differential equation, 

xy
dx
dy

 42  

 Here,   2xP , then the integrating factor is, 

    xdx eex 22    

We first multiply the differential equation by the integrating factor,  

dsolve 
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 ye
dx
dy

e xx 22 2    xx exe 224    

Or,  ye
dx
d

x2  xx exe 224    
Then, perform integration on both sides of the equation to get,  

 ye x2  Ceexe xxx   222

4
1

2
1

2  
where C  is the integrating constant.  Thus, the solution is,   

 y  xeC
x 2

24
7

  
 The same solution can be obtained by using the dsolve 
command as,  
 

>> syms x y 
>> dsolve('Dy - 2*y = 4 - x', 'x') 
  

ans = 
 

x/2 + (C5*exp(2*x))/4 - 7/4 
 

 The integrating constant C (C5/4 in MATLAB result 
above) is to be determined from the initial condition.  Variations of 
y(x) according to different initial conditions of   ,75.20 y

,25.2 ,00.2 ,85.1  75.1  and 50.1  are shown in the figure. 
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Example  Use the method of integrating factor to find the exact 
solution of the first-order linear non-homogeneous differential 
equation, 

x
y

x
dx
dy

 23  
with the initial condition of   51 y . 

 
 

 We start by writing the given differential equation in the 
form,  

y
xdx

dy 1
   23x  

Therefore,   xxP 1 , which leads to the integrating factor of, 

  xeex xdx
x  ln
1

  
We then multiply the differential equation by the integrating factor,  

 y
dx
dy

x   33x  

or,   d
x y

dx
 33x  

and perform integration on both sides of the equation to get,  

yx   Cx  4

4
3  

where C  is the integrating constant that can be determined from the 
initial condition of   51 y  as follows, 

   51    C 41
4
3  

 C  
4

17
  

Thus, the exact solution of the problem is,  

  xy  
x

x
4
17

4
3

3   
  The same exact solution is obtained through the use of the 
dsolve command by entering,  
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>> syms x y 
>> dsolve('Dy = 3*x^2 - y/x', 'y(1) = 5', 'x') 
 

ans = 
 

17/(4*x) + (3*x^3)/4 
 
Example  Use the method of integrating factor to derive the exact 
solution of the first-order linear non-homogeneous differential 
equation, 

y
dx
dy

x 2   24x  

with the initial condition of   21 y . 

 Similar to the preceding example, we first write the 
differential equation in the standard form as, 

y
xdx

dy 2
   x4  

Therefore,   xxP 2 , which leads to the integrating factor of, 

    2ln22 xeex xdxx   
Next, we multiply the differential equation by the integrating 
factor,  

 xy
dx
dy

x 22   34x  

or,  yx
dx
dy

2  34x  

Then, perform integration on both sides of the equation to get,  

yx2   Cx  4  
where C  is the integrating constant that can be determined from the 
initial condition of   21 y  as,  

 21 (2)    C 41  
 C  1  
Thus, the exact solution of the problem is,  

  xy  
2

2
1
x

x   
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  The same solution can be obtained by using the dsolve 
command as,  
 

>> syms x y 
>> dsolve('x*Dy + 2*y = 4*x^2', 'y(1) = 2', 'x') 
 

ans = 
 

1/x^2 + x^2 
 

Variation of this exact solution y(x) is plotted by the ezplot 
command as shown in the figure. 

 
 

Example  Use the method of integrating factor to solve the first-
order linear non-homogeneous differential equation, 

 
2

21
x
y

dx
dy

x
  cosx x   

 The given differential equation is first written in the 
standard form for applying the integrating factor technique as,  

 y
xdx

dy 2
  xx cos2  

Therefore,   xxP 2 , so that the integrating factor is,  

    2ln2 2    xeex xdxx  
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By multiplying the integrating factor to the differential equation, 
we get,  

 yx
dx
dy

x 32 2    cos x   

or,  yx
dx
d 2  cos x  

Then, performing integration on both sides to obtain,  

 yx 2  Cx  sin  

where C  is the integrating constant.  Thus, the general solution of 
the given differential equation is,  

  xy  22 sin xCxx   

  Again, the same solution can be obtained by using the 
dsolve command as,  
 
>> syms x y 
>> dsolve('Dy/x - 2*y/x^2 = x*cos(x)', 'x') 
 

ans = 
 

x^2*sin(x) + C6*x^2 
 

  Variations of the solution, y(x), depend on values of the 
integrating constant C (or C6 from MATLAB above) as shown in 
the figure.  
 
 
4.4 Exact Equations 
 

  If the differential equation is in the form of the so called 
exact equation, the idea explained below can be used to find its 
solution conveniently.  We start from the differential equation in 
the form,  

 
 yxN

yxM
dx
dy

,
,

  

where  yxM ,  and  yxN ,  are functions of x and y.  We can 
rewrite this differential equation as, 

dsolve 
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    0,,  dyyxNdxyxM  

But from definition of the total derivative of a function  yx, , 

dy
y

dx
x

d








  

If we could find the function  yx,  such that, 

 yxM
x

,



        and        yxN
y

,

  

Then,  d  0  
 
which means,    C  
 

where C  is a constant. 
 
  This technique could be applied if the given differential 
equation contains the terms  yxM ,  and  yxN ,  that satisfy the 
conditions above.  The differential equation containing the terms 
that meet such requirements is called the exact equation.  We will 
demonstrate the approach for finding solutions to this differential 
equation form by using the examples below. 
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Example Find solution of the first-order linear homogeneous 
differential equation, 

  021 2  xy
dx
dy

x  

  We start from writing the given differential equation in the 
form, 
    dyxdxxy 212   0  

If we compare it with the standard form of,  

    dyyxN dxyxM ,,   0  

we find that, 

  xyyxM 2,     and     21, xyxN   
   Then, if we choose a function,  
   yxy 2  
we notice that, 

 yxMxy
x

,2 



   and     yxNx
y

,1 2 

  

Thus,         02  yxydd  

or,    yxy 2  C  

     21 xy   C  

So, we arrive at the solution of the given differential equation,  

21 x
C

y


  

where C  is a constant that can be determined from the initial 
condition.   
  It is noted that the approach explained above can be 
applied if,  

   
x

yxN
y

yxM






 ,,

 

Such as in the example above, 

   
y

yxM


 ,   xy
y

2



  x2  

and      
x

yxN


 ,
  21 x

x





  x2  
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  We can verify that the derived solution is correct by using 
the diff command.  If we let the integrating constant 1C  and 
substitute the solution into the left-hand-side of the differential 
equation,  
 

>> syms x y 
>> y = 1/(1+x^2); 
>> LHS = (1+x^2)*diff(y,x) + 2*x*y 
 

LHS = 
  

0 
 

we obtain the result of zero which is equal to the value on the right-
hand-side of the equation. 

  We can also use the dsolve command to solve the given 
differential equation by entering,  
 

>> syms x y 
>> dsolve('(1+x^2)*Dy + 2*x*y = 0', 'x') 
 

ans = 
 

C7/(x^2 + 1) 
 

  If the initial condition is   10 y , then the complete 
problem statement of this example is,  

      ,021 2  xy
dx
dy

x     10 y  

which has the exact solution of, 

 
21

1
x

xy


  

>> syms x y 
>> dsolve('(1+x^2)*Dy + 2*x*y = 0', 'y(0) = 1', 
'x') 
  

ans = 
  

1/(x^2 + 1) 
 
  The ezplot command can be used to plot the solution of 
y that varies with x as shown in the figure. 

diff 
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Example  Find solution of the first-order differential equation 
which is in the exact equation form, 

yx
xy

dx
dy

2

2

2
12 

  

  We start by writing the given differential equation in the 
form,  
                                   dxyxM ,   dyyxN ,  0  

i.e.,                              dxxy 12 2   dyyx22  0  

It is in the form of the exact equation because,  

    
y

yxM


 ,  xy4  
 
x

yxN





,
 

   If we choose the function, 
   xyx  22  
we find that, 

 
x

  12 2  xy   yxM ,  

and 
y

  yx22   yxN ,  

This means, from the definition of the total derivative,  
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            d     xyxd  22  0  

or,        xyx 22   C  

where C  is a constant.  Thus, the general solution of the given 
differential equation is,  

x
xC

y


  

   The same solution can be obtained by using the dsolve 
command as,  
 

>> syms x y 
>> dsolve('Dy = -(2*x*y^2+1)/(2*x^2*y)', 'x') 
  

ans = 
  

  (C8 - x)^(1/2)/x 
 -(C8 - x)^(1/2)/x 
 

   In the two examples above, we chose functions  yx,  so 

that  x   yxM ,  and  yxNy , .  In practice, the proper 

functions  yx,  can be derived by using the following procedure. 

  Since  yxMx , , then, 

     ygdxyxMyx   ,,  

If we take derivative of   with respect to y, 

    
y


      yxN

y
g

dxyxM
y

,, 







   

i.e.,   
y
g



      dxyxM
y

yxN 


 ,,  

which can be integrated to find  yg  so that the function   is 
obtained.  We will use this technique to find solutions of the 
differential equations in the following examples. 
 
Example  Find solution of the first-order differential equation, 

    02sec2 22  dyyxdxxxy  

dsolve 
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     The given differential equation is the form of the exact 
equation,  

    dyyxNdxyxM ,,   0  

because  
y

M

  x2     

x
N



  

   The function  yx,  can be found by using the technique 
explained above as follows, 

   yx,       ygdxxxy 2sec2  

    ygxyx  tan2  

Then,  
y


     yxyxN

y
g

x 2, 22 



  

or,          y
y
g

2



 

We integrate to get,       2yg   

So that,  yx,  22 tan yxyx   

    From the definition of the total derivative and the property 
of the exact equation,  

d        0,, 







 dyyxNdxyxMdy
y

dx
x


 

Thus, 

     dyyxdxxxyyxyxd 2sec2tan 2222    0  

Or,         Cyxyx  22 tan  

The solution of  xy  in the equation above is in an implicit form.  

   We can also use the dsolve command to solve for the 
solution of  xy .  The solution obtained from MATLAB is lengthy 
but can be reduced by using the simple command.  
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>> syms x y 
>> dsolve('Dy = -(2*x*y-sec(x)^2)/(x^2+2*y)',  
                                     'x'); 
>> simple(ans) 
ans = 
  

   ((4*sin(x))/cos(x) - 4*C9 + x^4 + 4*i)^(1/2)/2  
                  - x^2/2 - ((4*sin(x))/cos(x) - 4*C9 + x^4 
                  + 4*i)^(1/2)/2 - x^2/2 
 

The solution obtained above contains the constant C9.  Such 
solution can be used to determine the function   for which it must 
be a constant.  If we let  C9 = 1, then   becomes, 
 

>> y = ((4*sin(x))/cos(x)-4*1+x^4+4*i)^(1/2)/2 –  
                                 x^2/2; 
>> phi = x^2*y - tan(x) + y^2; 
>> simple(phi) 
ans = 
 

i - 1 
 

which is a constant as expected.  We can check whether the 
solution  xy  is correct by substituting it back into the differential 
equation,  

 
  1

sec2
2

2

2





dx
dy

xxy
yx

 

>> syms x y 
>> y = ((4*sin(x))/cos(x)-4*1+x^4+4*i)^(1/2)/2 –  
                              x^2/2; 
>> LHS = ((x^2+2*y)/(2*x*y-sec(x)^2))*diff(y,x); 
>> simple(LHS) 
ans = 
  

-1 
 

  In the first step of finding the function   as explained 

above,  yxM ,  must be integrated.  The derivation process would 

be lengthy if  yxM ,  is complicated.  We can start the process by 

integrating  yxN ,  if it is simpler, 

simple 
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     xhdyyxNyx   ,,  

and then find  xh .  This latter process is shown in the following 
examples. 
 
Example   Solve the first-order differential equation, 

    021  dyxedxyxeye xxx  

  The given differential equation is in the form of the exact 
equation, 

    dyyxNdxyxM ,,   0  

because  
y

M

  xx xee   

x
N



  

   To find the function  yx, , we integrate  yxN ,  with 
respect to y,   
  yx,       xhdyxex 2  

    xhyyxex  2  

Then,  
x


 

x
h

yxeye xx




  

Also, 
x


  yxM ,    yxeye xx  1  

By comparing these two equations,  

  
x
h



 1  

so,  h  x  

Then,  yx,  xyyxex  2  

Since, d  0  

Thus,   xyyxex  2  C  

i.e., the solution is, 

     xy   2


 xxe
xC

 

where C  is a constant. 
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   We can use the dsolve command to solve the given 
differential equation which is in the form,  

dx
dy

   
2

1




x

xx

xe
yxeye

 

by entering,  
 
>> syms x y 
>> dsolve('Dy = -(1+exp(x)*y+x*exp(x)*y)/ 
          (x*exp(x)+2)', 'x') 
  

ans = 
  

C10/(x*exp(x) + 2) - x/(x*exp(x) + 2) 
 
MATLAB gives the same solution as we derived earlier.  The 
solution depends on values of the constant C  as shown in the 
figure.  

 

   If the given differential equation is not in the exact 
equation form at the beginning, we may multiply it by an 
integrating factor so that it becomes an exact equation.  Then, we 
can use the same procedure to find the solutions as demonstrated in 
the following examples. 
 

0 0.5 1 1.5 2 0 
0.2 
0.4 
0.6 
0.8 

1 
1.2 
1.4 
1.6 
1.8 

2 

 xy

x

4C

3C

2C

1C
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Example  Use the exact equation technique to solve the first-order  
differential equation,  

    02 22  dyxyxdxyx  

  The given differential equation is not in an exact equation 
form of,  

   dyyxNdxyxM ,,    0  

because   
y

M

 1  which is not equal to  

x
N

   2 1xy  . 

If we multiply both sides by the integrating factor (only function of 
x in this case),  

 
2

1
x

x   

we get,    dy
x

ydx
x
y







 






 

1
2

2
 0  

The differential equation becomes an exact equation because,  

y
M

    

2

1
x

    
x
N



  

   Then, we can use the exact equation technique to find the 
solution similar to the preceding two examples.  The solution of 
 xy  is obtained in an implicit form,  

2
2

2y
x
y

x     C  

  We can use the dsolve command to provide the same 
solution of  xy  but in the explicit form as,  
 

>> syms x y 
>> dsolve('Dy = -(2*x^2+y)/(x^2*y-x)', 'x') 
  

ans = 
  

  ((- 4*x^3 - 2*C11*x^2 + 1)^(1/2) + 1)/x 
 -((- 4*x^3 - 2*C11*x^2 + 1)^(1/2) - 1)/x 

  In general, the integrating factor   may be function of x 
and y.  However, if the integrating factor   is only function of x or 
y, we can find it by determining,  

dsolve 
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 P  
N

xNyM 
  

If the result of  P  is only function of  x, then the integrating factor 
  is, 

 x      dxxPe  

But if this is not the case, we determine,  

Q   
M

yMxN 
  

If the result of  Q  is only function of  y, then the integrating factor 
  is, 

 y      dyyQe  

    We will demonstrate this technique in the example below. 
 
Example  Determine the integrating factor for solving the first-
order differential equation, 

    03 22  dyxyxdxyxy  

   Note that the given differential equation is not in the form 
of the exact equation,  

       dyyxNdxyxM ,,   0  

because  
y

M



 3 2x y   which is not equal to 
x
N



2x y  . 

We first find the integrating factor by determining,  

 P  
N

xNyM 
  

xyx
yxyx




 2

223
 

   yxx
yx




  
x
1

  

Then, the integrating factor is,  

 y     dxxe 1
   x  

  After multiplying this integrating factor into the 
differential equation, we get,  
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                   03 2322  dyyxxdxxyyx  

The differential equation is now in the exact equation form 
because,  

                                        
y

M



   xyx 23 2     
x
N



  

     

   We start deriving the solution to the differential equation 
by finding the function  yx,  from,  

   yx,     ygdxyxM   ,  

     ygdxxyyx   223  

  yx,   yg
yx

yx 
2

22
3  

Then,         yxxyxN
y
g

yxx
y

2323 , 







 

or,   
y
g



 0  

i.e., g  1C  

where 1C  is a constant.   

Hence,          yx,   1

22
3

2
C

yx
yx   

But from the definition of the total derivative and the exact 
equation,  

    0,, 







 dyyxNdxyxMdy
y

dx
x

d
  

Then, 





  1

22
3

2
C

yx
yxd  0  

or, 1

22
3

2
C

yx
yx   2C  

i.e., 
2

22
3

yx
yx   C  

where 2C  and C  are constants.  The solution is in an implicit form 

that can be further determined for  xy . 
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  The dsolve command can again be used to find the 
solution of the differential equation.  The obtained solution is in an 
explicit form as follows,   
 

>> syms x y 
>> dsolve('Dy = -(3*x*y+y^2)/(x^2+x*y)', 'x') 
  

ans = 
  

  x*((exp(C12 - 4*log(x)) + 1)^(1/2) - 1) 
 -x*((exp(C12 - 4*log(x)) + 1)^(1/2) + 1) 
 

It is noted that the explicit solution  xy  obtained from MATLAB 
is in fact identical to the implicit solution derived earlier.  This can 
be verified by substituting the explicit solution  xy  into the left-
hand-side of the implicit expression as follows,  
 

>> syms C12 
>> y = x*((exp(C12 - 4*log(x)) + 1)^(1/2) - 1); 
>> LHS = x^3*y + x^2*y^2/2 
  

LHS = 
  

exp(C12)/2 
 

The result is a constant which is equal to the right-hand-side of the 
implicit expression.      

 
 
4.5 Special Equations 
 Solutions of the first-order differential equations can be 
found easily if the equations are in some special forms.  For 
example, the differential equation in the form,  









x
y

f
dx
dy

 

where only the dxdy  term appears on the left-hand-side while 

every term on the right-hand-side is in the form of xy .  The 
example below shows the procedure to find the solution for this 
type of differential equation. 

syms 



108   Chapter 4  First-Order Differential Equations 

Example  Solve the first-order nonlinear differential equation, 

y
x
y

dx
dy

x 
2

 

 We start from dividing the differential equation by x,  

  
dx
dy

 
x
y

x
y









2

 

If we let uxy  , where  xuu  , then the differential equation 
becomes,  
  u

dx
du

x   uu  2  

or, 
dx
du

 
x

u2

  

We can separate the variables u  and x , so that they are on opposite 
sides of the equation, and then perform integration, 

 
2u

du
  

x
dx

  

to get,  
u
1

  Cx  ln  
where C  is the integrating constant.  Thus, 

  u  
Cx 


ln

1  

By substituting xyu   back, we obtain the solution  xy  as,  

  xy  
Cx

x



ln

 

 The same solution is also obtained by using the dsolve 
command,  
 

>> syms x y 
>> dsolve('x*Dy = y^2/x + y', 'x') 
  

ans = 
  

x/(C13 - log(x)) 
 

dsolve 
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 The technique above can be applied to other differential 
equations with the term xy  on the right-hand-side of the equation.  
For examples, 

 
dx
dy

 
3

3

y
x

  

and, 
dx
dy

 
y
x

x
y







 sin  

etc. 
 

 Bernoulli equation is the first-order differential equation 
that can be solved conveniently by changing the variable.  The 
Bernoulli equation is in the form,  

 yxP
dx
dy

      nyxQ  

where  xP  and  xQ  are continuous functions of x, while n is an 
integer.  If 0n  or 1, the Bernoulli equation reduces from the 
nonlinear to linear equation.  
  The idea for solving the nonlinear Bernoulli equation is to 
transform it into a linear one.  The techniques we learned earlier 
can then be applied to solve for solutions.  Such idea is summarized 
and demonstrated by the examples below. 

  If we divide the Bernoulli equation by ny ,  

  nn yxP
dx
dy

y   1     xQ  

and introduce a new variable v  in form of y as, 

 v  ny  1  

with, 
dx
dv

  
dx
dy

yn n 1  

Then, the Bernoulli equation, after dividing by ny , above becomes 
a linear differential equation in the form,  

 vxP
dx
dv

n


1
1

    xQ  
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Example  Solve the first-order nonlinear differential equation 
which is in form of the Bernoulli equation, 

3

2
5

5 xyy
dx
dy

  

Here,   5xP ,   25xxQ   and 3n .  We first divide the 

given differential equation by 3y  to give, 

  23 5   y
dx
dy

y  x
2
5

  

Then, we assign the new variable 2 yv , so that dv dx   
32y dy dx .  The nonlinear differential equation becomes linear 

as, 

  v
dx
dv

5
2
1

  x
2
5

  

or, v
dx
dv

10  x5  

To solve such linear differential equation, we find the integrating 
factor, which is, 

 dxe 10  xe10  
Then, multiply it into the linear differential equation to get,  

 ve
dx
dv

e xx 1010 10  xxe105  

or,  ve
dx
d

x10  xxe105  

After performing integration on both sides of the equation, we get,  

 ve x10  Ce
x

x 


 10

20
110  

or, v  xCe
x

10

20
1

2
  

where C  is the integrating constant.  The final solution is obtained 
after we substitute the variable 2 yv  back into the above 
solution, 
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2

1
y

 xCe
x 10

20
1

2
  

i.e., y  
xCe

x
10

20
1

2

1




  

 The same solution is obtained by using the dsolve 
command,  
 

>> syms x y 
>> dsolve('Dy - 5*y = -5*x*y^3/2', 'x') 
  
ans = 
  
  1/(x/2 + C14/exp(10*x) - 1/20)^(1/2) 
 -1/(x/2 + C14/exp(10*x) - 1/20)^(1/2) 
 
Example  Solve the first-order nonlinear differential equation 
which is in the form of the Bernoulli equation, 

 y
xdx

dy 1
  323 yx  

Here,   xxP 1 ,   23xxQ   and 3n .  We start from dividing 

the given differential equation by 3y  to give, 

  23
1   y
xdx

dy
y  23x  

Then, we assign a new variable of 2 yv  so that dv dx 
32y dy dx  and the differential equation above becomes, 

 v
xdx

dv 1
2
1

  23x  

or, v
xdx

dv 2
  26x  

  The integrating factor is determined from,  

    2ln2 2    xee xdxx
 

After multiplying the differential equation by the integrating factor, 
we get,  

dsolve 
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 vx
dx
dv

x 32 2    6  

or,  vx
dx
d 2  6  

Then, perform integration on both sides to give,  

 vx 2  Cx  6  
where C  is the integrating constant.  Thus, 

 v  236 Cxx   
The final solution is obtained after substituting 2 yv  into the 
above equation, 
 2y  236 Cxx    

or, y  
236

1

Cxx 


  

  The same solution is obtained by using the dsolve 
command,  
 
>> syms x y 
>> dsolve('Dy + y/x = 3*x^2*y^3', 'x') 
  

ans = 
  

  1/(C15*x^2 - 6*x^3)^(1/2) 
 -1/(C15*x^2 - 6*x^3)^(1/2) 
 

  The Riccati equation is another nonlinear differential 
equation that can be transformed into a linear equation.  The 
general form of the Riccati equation is,  

dx
dy

       xRyxQyxP  2  

Transformation from the nonlinear to linear equation is by 
changing the variable,  

 y   
z

xS
1

  
where  xzz  .  Solving the differential equations in this form is 
demonstrated by the following example. 

dsolve 
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Example Solve the first-order nonlinear differential equation 
which is in the form of the Riccati equation, 

 
dx
dy

 
x

y
x

y
x

211 2   

If we change the variable  xy  into the new variable  xz  by using 
the relation, 

 y  
z
1

1  

then, 
dx
dy

 
dx
dz

z 2

1
  

Thus, the original Riccati equation becomes,  

 
dx
dz

z2

1
  

xzxzx
21

1
11

1
1 2







 






   

or,     z
xdx

dz 3
  

x
1

  

which is in the form of a linear differential equation.  Next, we 
multiply the equation by the integrating factor of 3x  to give, 

 zx
dx
dz

x 23 3  2x  

or,   zx
dx
d 3  2x  

Then, perform integration on both sides of the equation of get,  

 zx3  C
x


3

3

 

or, z  33
1

x
C

  

where C  is the integrating constant.  Thus, the final solution to the 
given differential Riccati equation is, 

 y  
z
1

1   
33

1
1

1

x
C


  

or,  xy  3

3

3
23
xC
xC




   
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 The same solution is obtained by using the dsolve 
command, 
 
>> syms x y 
>> dsolve('Dy = y^2/x + y/x - 2/x', 'x') 
  

ans = 
                                                           

- 3/(x^3*exp(3*C16) - 1) - 2 
 

where the constant  exp(3*C16) is equivalent to C31  in the 
derived solution.   
                  
 

4.6 Numerical Methods 
  There are many first-order differential equations that 
cannot be derived for exact solutions in the form of explicit 
expressions.  For these differential equations, numerical methods 
are used to find their approximate solutions.  MATLAB contains 
many commands, such as ode23, ode45 and ode23s that can 
provide approximate solutions with high accuracy.  Accuracy of the 
solutions strongly depends on the time steps which are adjusted 
automatically.  We will employ the examples below to demonstrate 
the use of these commands.  We will also compare the numerical 
solutions with the exact solutions for the cases when the exact 
solutions are available in order to demonstrate the numerical 
solution accuracy obtained from using these commands.  
 
Example  Employ the ode23 command in MATLAB to solve the 
first-order linear nonhomogeneous differential equation, 

     xe
dx
dy 2     20  x  

with the initial condition of   00 y . 

  This initial value problem has exact solution in the form of 
explicit expression that can be found by using the dsolve 
command,  
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>> syms x y 
>> dsolve('Dy = exp(-2*x)', 'y(0)=0', 'x') 
  

ans = 
  

1/2 - 1/(2*exp(2*x)) 
 
i.e., the exact solution is, 

 x
exact ey 21

2
1   

  The ode23 command in MATLAB uses the combined 
second- and third-order Runge-Kutta method to numerically solve 
the first-order differential equation in the general form of, 

 yxf
dx
dy

,  

To use the ode23 command, we have to supply the function 
 yxf ,  by using the inline command as,   

 
>> f = inline('exp(-2*x)', 'x', 'y') 
 

f = 
 

     Inline function: 
     f(x,y) = exp(-2*x) 
 

The inline command consists of the function  yxf , , indepen-
dent variable x and dependent variable y, respectively.  To find 
numerical solution, the ode23 command is then used by entering, 
 

>> [x,y] = ode23(f,[0:.1:2], 0) 

 

The numbers in the square bracket denote the starting x, interval for 
printing output and ending x, respectively.  The number 0 at the end 
of the command denotes the initial condition of   00 y . 

 We can create a set of commands so that the computed 
numerical solutions can be compared with the exact solution by a 
plot as follows, 
 

dsolve 

inline 

ode23 
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>> f = inline('exp(-2*x)','x','y') 
>> [x,y] = ode23(f,[0:.1:2], 0) 
>> plot(x,y,'ko') 
>> axis([0 2 0 0.55]) 
>> xlabel('x'), ylabel('y(x)') 
>> hold on 
>> x = 0:.005:2 
>> ye = (1 - exp(-2*x))/2 
>> plot(x,ye,'k') 

 

  The generated plot as shown in the figure indicates that the 
numerical solution is very accurate as compared to the exact 
solution.  This is because the ode23 command adjusts the time step 
automatically so that the relative tolerance is always less than 

3101   during the computation. 

 
 
Example  Employ the ode45 command in MATLAB to solve the 
first-order linear nonhomogeneous differential equation, 

     xx
dx
dy

sin2cos2     100  x  

with the initial condition of   00 y .  

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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 xy

x

Exact

Approx.

plot 

axis 

hold on 
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 Matlab also contains the ode45 command that employs 
the combined fourth- and fifth-order Runge-Kutta method to solve 
for numerical solution to the first order differential equation.  The 
ode45 command can provide higher solution accuracy than the 
ode23 command.  We will use this ode45 command to solve for 
numerical solution and compare it with the exact solution.  The 
exact solution can be determined by employing the dsolve 
command as, 
 
>> syms x y 
>> dsolve('Dy = 2*cos(2*x) - sin(x)',  
          'y(0)=0', 'x') 
  

ans = 
  

sin(2*x) + cos(x) - 1 
 
i.e., the exact solution is,  

  1cos2sin  xxyexact  

  We can prepare a set of commands to determine the 
numerical solution and compare it with the exact solution by using 
a plot as follows,  
 
>> f = inline('2*cos(2*x) - sin(x)','x','y') 
>> [x,y] = ode45(f,[0:.5:10], 0) 
>> plot(x,y,'ko') 
>> axis([0 10 -3 1]) 
>> xlabel('x'), ylabel('y(x)') 
>> hold on 
>> x = 0:.1:10 
>> ye = sin(2*x) + cos(x) - 1 
>> plot(x,ye,'k') 

 
The plot as shown in the figure demonstrates that the numerical 
solution obtained from using the ode45 command compares very 
well with the exact solution.   

ode45 

xlabel 
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Example  Employ the ode45 command in MATLAB to solve the 
first-order linear nonhomogeneous differential equation, 

   yexy
dx
dy

3cossin    80  x  

with the initial condition of   2.00 y . 

  For this problem, if we try to find the exact solution by 
using the dsolve command as we did in the preceding examples,  
 
>> syms x y 
>> dsolve('Dy = sin(y) – cos(x) + exp(-3*y)', 
          'y(0) = 0.2', 'x') 
Warning: Explicit solution could not be found. 
 

We found that MATLAB cannot provide an exact solution in   
explicit form.  We need to employ the numerical method to find the 
approximate solution by using a set of commands below.  The plot 
of the computed solution is shown in the figure.  It is noted that 
exact solutions to most of the differential equations are not 
available.  The numerical method is thus an important tool to 
provide us the approximate solutions of the differential equations. 
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>> f = inline('sin(y)-cos(x)+exp(-3*y)',  
              'x', 'y') 
>> [x,y] = ode45(f,[0 8], 0) 
>> plot(x,y,'k') 
>> axis([0 8 -0.5 4]) 
>> xlabel('x'), ylabel('y(x)') 
 

 
  There are some differential equations that their solutions 
change abruptly with x.  These differential equations are classified 
as the stiff equations.  Approximate solutions obtained from 
standard numerical methods may not be accurate because of their 

sudden changes.  MATLAB contains commands such as ode15s, 
ode23s and ode23t to accurately capture the solutions.  Nature of 
the solution to the stiff differential equation and the use of these 
latter commands are demonstrated in the following example. 
 
Example Employ the ode23s command to solve the stiff 
differential equation which is in the form, 

    ye
dx
dy

x 6.020 22100     40  x  

with the initial condition of   5.00 y . 
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  A set of commands that consists of inline, ode23s and 
plot for solving this problem are shown below.  The plot indicates 
that there is a sudden change of the solution  xy  at 2x .  In this 
region, MATLAB uses small time steps to accurately capture the 
sudden change of the solution.  Larger time steps are used in other 
regions where the solution gradients are small to reduce the 
computational time. 
 
>> f = inline('20*exp(-100*(x-2)^2) - 0.6*y', 
              'x','y') 
>> [x,y] = ode23s(f,[0 4], 0.5) 
>> plot(x,y,'k') 
>> axis([0 4 0 3.5]) 
>> xlabel('x'), ylabel('y(x)') 
>> hold on 
>> plot(x,y,'ko') 
 

 
 

 
4.7 Concluding Remarks 
 In this chapter, we learned several techniques for finding 
exact solutions of the first-order differential equations.  Depending 
on the forms of differential equations, proper techniques should be
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selected and applied to solve for solutions.  These include the 
technique of separating variables, the technique of using integrating 
factors for linear and exact equations.  Some specific techniques 
were also introduced to solve differential equations that are in 
special forms, such as the Bernoulli and Riccati equations.  The 
same solutions were obtained by using the dsolve command in 
MATLAB.  These solutions were also plotted by the plot 
command to increase understanding of their behaviors. 

 Numerical methods for solving the differential equations 
were introduced.  MATLAB contains several commands such as 

ode23, ode45 and ode23s that can be used to provide accurate 

solutions.  Approximate solutions obtained from the numerical 
methods were compared with the exact solutions to highlight their 
efficiency.  Since there are many first-order differential equations 
that the exact solutions cannot be found, these commands thus 
provide an alternative way to obtain the approximate solutions with 
high accuracy. 

   
 

Exercises 
   

1. Use the dsolve command to find solutions of the first-order 
differential equations,  

(a) 
dx
dy

 
y
x2

  (b) 
dx
dy

  3

2

1 xy
x


  

(c) 
dx
dy

 
 
 y

x
23

13 2




  (d) 
dx
dy

x  21 y  

(e) 
dx
dy

 xey  2    

Then, use the separable equation technique to verify the 
solutions.  

 
2. Use the dsolve command to find solutions of the first-order 

differential equations,   
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(a) yx
dx
dy

23   0  (b) 
3

1
ydx

dy
x   0  

(c) xy
dx
dy

sin2  0  (d) y
dx
dy

x
2cos2

1
   0  

(e)   21 yx
dx
dy

ex   0    

Then, use the separable equation technique to verify the 
solutions.  

 

3. Use the dsolve command to solve the initial value problems, 

 (a) 
dx
dy

  ,13 yx    0y  3  

 (b)  
dx
dy

 ,6 23 yex    1y  0  

 (c)  
dx
dy

   ,tan1 2 xy   0y  3  

 (d)  
dx
dy

2
1

 ,cos1 xy    y  0  

 (e)  
dx
dy

yx 221  ,sin 1 x   0y  1  

Derive the solutions by using the technique of separable 
equation.  Then, use the ezplot command to plot the solution 
of y(x) that varies with x.  

 

4. Solve the initial value problems below by using the dsolve 
command, 

 (a) 
dx
dy

 ,
2

2 yxy
x


   0y  2  

 (b)  
dx
dy

 ,
52

3 2





y

ex x

  0y  1  

 (c)  
dx
dy

 ,
43 y
ee xx







  0y  1  

 (d)  
dx
dy

 ,
1 2

3

x

xy


   0y  1  

 (e)  
dx
dy

  ,1sin1 2yx    0y  1  
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Then, for each problem, derive the exact solution by using the 
technique of separable equation.  Verify each solution by 
showing that both the differential equation and initial condition 
are satisfied.  

 
5. Use the integrating factor technique to find solutions of the 

first-order differential equations below.  Verify the solutions 
by comparing with those obtained by employing the dsolve 
command. 

(a) 
x
y

dx
dy

   12  x  (b) y
dx
dy

   xe3  

(c) y
dx
dy

4  xex 42   (d) y
dx
dy

x 2   
3

1
x

  

(e)  23 xy
dx
dy

x    
x

xsin
  

 
6. Employ the dsolve command to solve the first-order linear 

differential equations,  

(a) y
dx
dy

3   xex 2  (b) y
dx
dy

   1 xxe  

(c) y
dx
dy

2  23x  (d) y
dx
dy

x 2  xsin  

(e) y
dx
dy

x   xex  2  

 Then, derive their solutions by using the technique of 
integrating factor. 

 
7. Use the technique of integrating factor to solve the initial value 

problems that are governed by the first-order differential 
equations and their initial conditions,  

 (a) y
dx
dy

  ,2 2 xex   0y  1  

 (b)  y
dx
dy

3  ,3xxe   1y  0  

 (c)  y
xdx

dy 2
  ,

cos
2x
x

   y  0  
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 (d)  y
dx
dy

x 2  ,sin x   2y  1  

 (e)  yx
dx
dy

x 23 4 ,xe   1y  0  

  Then, employ the dsolve command to solve these problems 
again.  Plot the solution of y(x) that varies with x by using the 
ezplot command. 

 
8. Solve the following initial value problems by using the 

dsolve command,  

 (a) y
dx
dy

4   ,xe    0y  2  

 (b)  
x
y

dx
dy 3

  ,23  x   1y  1  

 (c)  
2


x

y
dx
dy

 ,3x   3y  4  

 (d)  
x
y

dx
dy

9
5

  ,3 3 xx    1y  0  

 (e)  xy
dx
dy

x cossin  ,sin xx   2y  2  

  In each problem, verify the solution by comparing with that 
obtained from the technique of exact equation with integrating 
factor.  Use the ezplot command to plot the solutions. 

 
9. Check whether the differential equations below are in the exact 

equation form by finding their derivatives with the diff 
command, 

 (a)    dyxdxxy 132 2    0  

 (b)    dy
y
x

dxy  ln1   0  

 (c)     dyyyxdxxyx 2sinsin2coscos    0   

 (d)     dyedxxye xx  1   0  

 (e)  dyyyxdxxy
x

)cos2(2
1 22 






    0  
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10. Solve the differential equations in Problem 9 that are in the 
exact equation form.  Show the derivation of the exact 
solutions in details.  Then, repeat the problems by using the 
dsolve command to verify the derived solutions.  

 
11. Show that the following differential equations are the exact 

equations before deriving for their solutions.  Then, use the 
dsolve command to find solutions and compare with the 
solutions derived.  Hint: Property of the exact equation,

xNyM  , can be verified conveniently by using the 
diff command.  

 (a)    dyydxx 8342     0  

 (c)     dyyxdxxy 2454 22    0  

 (d)  dyxdxx
x
y

)1(ln5 





     0   

 (e)     dyyxexdxeyx yy 23 32     0  

 (f)     dyyxdxyxx coscossinsintan    0  
 
12. Derive the exact solutions of the following initial value 

problems by using the exact equation technique.  Verify the 
derived solutions with those obtained from using the dsolve 
command.  

 (a)    dyxydxyx 323    ,0   0y  0  

 (b)     dyxxydxyx 12 22    ,0   1y  1  

 (c)     dyedxye xx 11    ,0   1y  1  

 (d)     dyyxdxyx cossin2 2   ,0   1y  1  

 (e)     dyxydxxyxx 22 1cossin   ,0   0y  2  
 
13. Solve the following differential equations by using the exact 

equation technique with the integrating factors.  Compare the 
derived solutions with those obtained from using the dsolve 
command.  Hint: The integrating factors for (d) and (e) are 2y  

and xxe , respectively.  
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 (a)    dyxyxdxyx  223   0   

 (b)   dyxdxyxx 4   0   

 (c)    dyxxydxxyy  2422 22   0   

 (d)   dyyxdxxxy 324 42    0   

 (e)   dyyxdxyx cossin2    0   
 

 

14. Solve the following differential equations by using the exact 
equation technique with the integrating factors.  Compare the 
derived solutions with those obtained from using the dsolve 
command. 

 (a)  dyxdxy  1   0   

 (b)    dyyxdxyyxy 22    0   

 (c)    dyxydxxy 232 2    0   

 (d)   dydxey x 2610 3     0   

 (e)  2 sin cosx y dx x y dy    0   
 

15. Solve the following initial value problems that are governed by 
the differential equations and initial conditions.  Derive their 
exact solutions by using the exact equation technique with the 
integrating factors.  Compare the derived solutions with those 
obtained by using the dsolve command. 

 (a)  dyyyxdxx 42    ,0   1y  0   

 (b)    dyxyydxyx  522   ,0   0y  1   

 (c)  dyyxdxxy 2032 22    ,0   0y  1   
 

16. Derive the solutions of the differential equations that contain 
terms in the form of xy  as follows, 

(a) 
dx
dy

  
x
y

y
x
  (b) xy

dx
dy

   2xy  

(c) 
dx
dy

  1
2

2


x
y

x
y

 (d) 
dx
dy

x3   32 yyx   

(e) 
dx
dy

x   y
x
y

x 





 cos  
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Then, use the dsolve command to solve for solutions of these 
differential equations again and compare them with the derived 
solutions. 

 

17. Derive solutions of the following Bernoulli differential 
equations.  Compare the derived solutions with those obtained 
by using the dsolve command.   

(a) 
dx
dy

  y
x

y
x

21
2   (b) y

dx
dy

x    2xy  

(c) xy
dx
dy

   4xy  (d) 
x
y

dx
dy

   33 yx  

(e) 32 y
dx
dy

xy   xx cos  

 

18. Solve the Riccati differential equation,  

122 22  xyyx
dx
dy

 

by changing the variable, 

z
xy

1
  

Show the derivation of the exact solution in detail.  Then, 
verify the solution by comparing with that obtained from using 
the dsolve command.  

 

19. Solve the Riccati differential equation, 

 
x
y

xyx
dx
dy

 23  

by changing the variable, 

z
xy

1
  

Show the derivation of the exact solution in detail.  Then, 
verify the solution by comparing with that obtained from using 
the dsolve command. 

 

20. Employ the dsolve and ode23 commands to find the exact 
and approximate solutions of the initial value problem 
governed by the first-order linear homogeneous differential 
equation, 
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   02  xy
dx
dy

  10  x  

with the initial condition of   10 y .  Plot to compare the two 
solutions of y(x) that vary with x in the interval 10  x .  

 
21. Employ the dsolve and ode45 commands to find the exact 

and approximate solutions of the initial value problem 
governed by the first-order nonlinear nonhomogeneous 
differential equation,  

   222 xy
dx
dy

xy     21  x  

with the initial condition of   21 y .  Plot to compare the two 
solutions of y(x) that vary with x in the interval 21  x . 

 
22. Employ the dsolve and ode45 commands to find the exact 

and approximate solutions of the initial value problem 
governed by the first-order nonlinear nonhomogeneous 
differential equation, 

   xxy
dx
dy

y 52      20  x  

with the initial condition of   20 y .  Plot to compare the two 
solutions of y(x) that vary with x in the interval 20  x .  

 
23. Use the dsolve command to find exact solution of the initial 

value problem governed by the stiff differential equation,  

     ye
dx
dy

x 6.020 22100      40  x  

with the initial condition of   5.00 y .  Then, employ the 
ode23 and ode23s commands to find the approximate 
solutions.  Plot to compare these solutions with the exact 
solution and provide comments on the numerical solution 
accuracy. 
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24. Use the dsolve command to find exact solution of the initial 
value problem governed by the stiff differential equation, 

   32 yy
dx
dy

      20000  x  

with the initial condition of   001.00 y .  Then, employ the 

ode23, ode45 and ode23s commands to find the approximate 

solutions.  Comment on the numerical solution accuracy of 
these solutions that do not have the exact solution to compare. 

 





 
 

 
 

Chapter 
5 

 
 

 

Second-Order Linear 

Differential Equations 
 
 
 
5.1 Introduction 
 
 We learned several techniques for solving many types of 
the first-order differential equations in Chapter 4.  We found that 
proper techniques should be applied according to the types of 
differential equations in order to reach for the solutions.  We also 
found that exact solutions for many differential equations cannot be 
derived in closed-form expressions.  Numerical methods are 
needed to find the approximate solutions.  

 In this chapter, we will learn how to solve the second-
order linear differential equations.  This type of differential 
equation arises in several scientific and engineering problems, such 
as heat transfer, fluid flow, wave propagation, electro-magnetic 
field, etc.  Solving these second-order differential equations is 
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simpler than the first-order differential equations because there are 
only few standard techniques that are easy to follow and 
understand.  We will start from solving the homogeneous second-
order differential equations before extending to the nonhomo-
geneous equations.  Several examples are used and, at the same 
time, the derived solutions are verified by employing MATLAB 
commands.  At the end of the chapter, we will study how to apply 
the numerical methods to solve these second-order differential 
equations.  The numerical methods provide approximate solutions 
when the exact solutions are complicated or not available.    

 
 
5.2 Homogeneous Equations with Constant  

Coefficients 
 

  The second-order linear homogeneous differential equa-
tion with constant coefficients can be conveniently solved for 
solution.  Such differential equation is in the form, 

0
2

2

 by
dx
dy

a
dx

yd
 

where a and b are constants, while the right-hand-side of the 
equation is zero.  A solution to this differential equation is xe  for 
which   is a number. 

  To find the values of  , we substitute this solution xe  
into the differential equation,  

02  xxx ebeae    

then, divide by xe  to get,  
02  ba  

The result is in form of quadratic equation that can be used to find 
values of  .  We call this quadratic equation as the characteristic 
or auxiliary equation.  The roots of this equation are, 

 baa 4
2

1
, 2

21   

Depending on the values of the coefficients a and b, there are three 
possible cases for the values of the roots.  We will consider these 
cases in details in the next three sections. 
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 It is noted that the function in the form of xe  is a solution 
of the second-order differential equation.  For example,  

  xx eexy 32    

where 21   and 32  , is a solution of the second-order 
homogeneous differential equation, 

y
dx
dy

dx
yd

65
2

2

   0  

We can verify this by determining the derivatives of the solution 
and substitute them into the equation, as follows. 

Since, 
dx
dy

 xx ee 32 32    

and, 
2

2

dx
yd

 xx ee 32 94    

then,       
2

2
5 6

d y dy
y

dx dx
     

   2 3 2 34 9 5 2 3x x x xe e e e         2 36 0x xe e     

which is equal to the value on the right-hand-side of the equation. 

The diff command can help us to verify such equation 
conveniently,  
 

>> syms x y 
>> y = exp(-2*x) + exp(-3*x); 
>> LHS = diff(y,x,2) + 5*diff(y,x) + 6*y 
  

LHS = 
 

0 

  If we consider these two functions xe 2  and xe 3 , we see 
that their variations are different and do not depend on each other.  
Or, in the other word, they are linearly independent.   

We can also ensure that the two functions are linearly 
independent by using the Wronski’s test.  The two functions 1y  
and 2y  are linearly independent if the determinant defined by,  

1221

21

21
yyyy

yy

yy
W 


  

diff 
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is not zero.  As in this example, xey 2
1

  and xey 3
2

 , then, 

x

xx

xx

e
ee

ee
W 5

32

32

32









  

which is not zero.  The determinant, so called the Wronskian, can 
be easily obtained by using the det command, 
 

>> y1 = exp(-2*x); 
>> y2 = exp(-3*x); 
>> W = [y1 y2; diff(y1,x) diff(y2,x)]; 
>> det(W)           
  

ans = 
  

-1/exp(5*x) 
 
  Here, the solution, 

  xx eexy 32    

of the differential equation,  

y
dx
dy

dx
yd

65
2

2

   0  

can be also obtained by using the dsolve command, 

>> syms x y 
>> dsolve('D2y + 5*Dy + 6*y = 0', 'x') 
  

ans = 
 

C1/exp(2*x) + C2/exp(3*x) 
 

i.e.,            xx eCeCxy 3
2

2
1

   

where 1C  and 2C  are constants.  If these two constants are deter-
mined from the two initial conditions, such as   00 y  and 
  10 y , we call the problem as the initial value problem.  But if 

they are determined from the two boundary conditions, such as 
  00 y  and   15 y , we call it as the boundary value problem.  

We will solve the initial value problem in this chapter, while 
solving the boundary value problem will be shown in Chapter 9.   

det 

dsolve 
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5.3 Solutions from Distinct Real Roots 
 

  As explained in the preceding section, the second-order 
linear homogeneous differential equation with constant coeffi-
cients,  

by
dx
dy

a
dx

yd


2

2

  0  

has a solution in the form of xe .  By substituting this solution into 
the differential equation above, we obtain the characteristic 
equation, 

02  ba  

which leads to the two roots of,  

 baa 4
2
1

, 2
21   

If 042  ba , the two roots are distinct real numbers as,  

 baa 4
2
1 2

1       and     baa 4
2
1 2

2   

which lead to the solution of,  

  xx eCeCxy 21
21

   

where 1C  and 2C  are constants. 

  We will learn how to solve the differential equation when 
its solution consists of the distinct real roots by using the following 
examples. 
 
Example Derive the general solution of the second-order 
differential equation, 

y
dx
dy

dx
yd

452

2

   0  

  After assuming the solution in the form of xe  and 
substitute it into the differential equation, we get,  

 xxx eee   452   0  

Then, we divide it by xe  to obtain the characteristic equation, 

452     0  
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Or,    41    0  

i.e.,    11      and    42   

Thus, the general solution is,  
xx eCeCy 4

43   

where 3C  and 4C  are constants. 

  We can employ the dsolve command to obtain the same 
solution,  
 

>> syms x y 
>> dsolve('D2y - 5*Dy + 4*y = 0', 'x') 
  

ans = 
  

C3*exp(x) + C4*exp(4*x) 
 
Example Derive the general solution of the second-order 
differential equation, 

y
dx
dy

dx
yd

26 2

2

    0  

  Similar to the preceding example, by assuming the 
solution in the form of xe , the characteristic equation is,  

 26 2    0  

Or,    2312    0  

i.e.,         
2
1

1      and    
3
2

2   

Thus, the general solution is,  
32

6
2

5
xx eCeCy   

  Again, the dsolve command can be used to find the 
solution,  
 

>> syms x y 
>> dsolve('6*D2y + Dy - 2*y = 0', 'x')  
 

ans = 
 

dsolve 

dsolve 
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C5*exp(x/2) + C6/exp((2*x)/3) 
Example Derive the general solution of the second-order 
differential equation, 

dx
dy

dx
yd

72

2

    0  

  If we follow the same procedure as in the preceding two 
examples, we obtain the characteristic equation as, 

  72   0  

Or,  7  0  

i.e.,        01       and     72    

Thus, the general solution is,  
xx eCeCy 7

8
0

7    xeCC 7
87   

 The dsolve command can be employed to give the same 
solution,  
 

>> syms x y 
>> dsolve('D2y - 7*Dy = 0', 'x') 
  

ans = 
  

C7 + C8*exp(7*x) 
 
Example  Derive the exact solution of the initial value problem 
governed by the second-order differential equation, 

y
dx
dy

dx
yd

384 2

2

   0  

with the initial conditions of   10 y  and   210 y . 
  From the given differential equation, the characteristic 
equation is,  

 384 2    0  

Or,   3212    0  

i.e.,      
2
1

1         and        
2
3

2    

Then, the general solution is, 

dsolve 
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  y  23
10

2
9

xx eCeC   

Also,   y  23
10

2
9 2

3
2
1 xx eCeC   

where 9C  and 10C  are constants that can be determined from the 

given initial conditions as follows, 

   0y  1  109 CC   

  0y  
2
1

  109 2
3

2
1

CC   

to give,          19 C        and        010 C  
Hence, the exact solution for this initial value problem is,  

2xey   

 We can use the dsolve command to find the same exact 
solution,  
 

>> syms x y 
>> dsolve('4*D2y - 8*Dy + 3*y = 0', 'y(0) = 1',  
          'Dy(0) = 1/2', 'x') 
  

ans = 
  

exp(x/2) 
 

This exact solution can be plotted by using the ezplot 
command, 
 

ezplot(ans, [0 5]) 
 

Variation of the solution y that varies with x is shown in the figure. 
 

 
5.4 Solutions from Repeated Real Roots 
 

  From the second-order homogeneous differential equation 
with constant coefficients,  

 by
dx
dy

a
dx

yd
2

2

 0  

We assume the solution in the form of xe  and substitute it into the 
differential equation, we obtain the characteristic equation,   

dsolve 
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ba   2   0  

which leads to the two roots of,  

 baa 4
2
1

, 2
21   

If the coefficients a and b in the differential equation are given such 
that,  

ba 42    0  

then, the two roots are the same real number,  

221

a
   

So that, the general solution is, 
2axey   

But the general solution must consist of two functions because the 
differential equation is second order.  Thus, we need to find the 
second function.  If we assume the second function in the form,  

  y    2axexu   

Then,  y  22

2
axax eu

a
eu    

and, y   2
2

22

4
axaxax eu

a
euaeu    

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

2

4

6

8

10 

12 

 2exp x

 xy

x
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By substituting these yy ,  and y   into the differential equation, 
2

2 2 2 2 2

4 2
ax ax ax ax axa a

u e a u e u e a u e u e               
   

  

        2axb u e   0
4

2
2 











  

a
buue ax  

Because   042  ab  in this case and 2axe  could not be zero, 
this means, 
  u   0  

Or,  xu  dcx   

where c and d are constant. 

Hence,         y       2axedcx   

is another function that could be the solution of the differential 
equation.  For simplicity, we may select 1c  and 0d , so that 
the general solution for the case of repeated roots is, 

 y  22 axax xee    

  We will learn how to find general solutions of the 
differential equations when the roots of their characteristic 
equations are repeated by using the following examples.  
 
Example  Derive the general solution of the second-order differen-
tial equation, 

 y
dx
dy

dx
yd

 22

2

 0  

  We first assume the solution in the form of xe  and 
substitute it into the differential equation to get,  

xxx eee    22    0  

Then, we divide it by xe  to obtain the characteristic equation,  

 122    0  

Or,   11    0  

which leads to the two roots of  1 1    and 2 1   .  Since the 

roots are repeated, thus the general solution is,  
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y   xx xeCeC   1211  

where 11C  and 12C  are constants. 

  The same solution is obtained by using the dsolve 
command as,  
 

>> syms x y 
>> dsolve('D2y + 2*Dy + y = 0', 'x') 
 

ans = 
 

C11/exp(x) + (C12*x)/exp(x) 

 
Example Derive the general solution of the second-order 
differential equation, 

y
dx
dy

dx
yd

96
2

2

   0  

  The characteristic equation corresponding to the given 
differential equation is,  

 962    0  

Or,   33    0  

which leads to the repeated real roots of,  

321    

Thus, the general solution is,  

 y  xx xeCeC 3
14

3
13   

where 13C  and 14C  are constants. 

  Again, the dsolve command can provide the same 
solution,  
 

>> syms x y 
>> dsolve('D2y - 6*Dy + 9*y = 0', 'x') 
 

ans = 
 

C13*exp(3*x) + C14*x*exp(3*x) 
 

dsolve 

dsolve 
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Example  Solve the initial value problem governed by the second-
order differential equation, 

y
dx
dy

dx
yd

442

2

    0  

with the initial conditions of   10 y  and   30 y . 

  The corresponding characteristic equation is,  

 442    0  

Or,   22    0  

which leads to the two repeated roots of 21   and 22  .  

Thus, the general solution is,  

y    xx xeCeC 2
16

2
15

   

so that,             y   xxx eCxeCeC 2
16

2
16

2
15 22    

where  15C  and 16C  are constants that can be determined from the 

two given initial conditions,  

  0y  1    015  C  

  0y  3    1615 02 CC   

to give,                       115 C        and       516 C  

Hence, the exact solution to this initial value problem is,  

y   xx xee 22 5    

  The same solution is obtained by using the dsolve 
command,  
 

>> syms x y 
>> dsolve('D2y + 4*Dy + 4*y = 0', 'y(0) = 1', 
          'Dy(0) = 3', 'x') 
 

ans = 
 

1/exp(2*x) + (5*x)/exp(2*x) 
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  The above exact solution can also be verified by 
substituting it back into the differential equation and using the 
diff command,  
 

>> y = 1/exp(2*x) + (5*x)/exp(2*x); 
>> LHS = diff(y,x,2) + 4*diff(y,x) + 4*y 
 

LHS = 
 

0 
 
The exact solution must also satisfy the two initial conditions.  This 
can be checked by using the subs command,  
 

>> y = 1/exp(2*x) + (5*x)/exp(2*x); 
>> subs(y,{x},{0}) 
 

ans = 
 

     1 
 

>> dydx = diff(y,x); 
>> subs(dydx,{x},{0}) 
 

ans = 
 

     3 
 
Example  Solve the initial value problem governed by the second-
order differential equation, 

42

2 y
dx
dy

dx
yd

   0  

with the initial conditions of   10 y  and   310 y . 

  From the given differential equation, the corresponding 
characteristic equation is,  

 
4
12    0  

Or, 





 





 

2
1

2
1   0  

i.e.,       
2
1

1         and       
2
1

2    

diff 

subs 

subs 
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Since the roots are repeated, then the general solution is,  

 y  2
18

2
17

xx xeCeC   

So that, y  2
18

2
18

2
17 2

1
2
1 xxx eCxeCeC   

where 17C  and 18C  are constants which can be determined from the 

two initial conditions, 

  0y  1    017  C  

  0y  
3
1

    1817 0
2
1

CC   

to give,    117 C          and        
6
1

18 C  

Thus, the exact solution to this initial value problem is,  

y    22

6
xx e

x
e   

The same solution is obtained by using the dsolve command, 
 
>> syms x y 
>> dsolve('D2y - Dy + y/4 = 0', 'y(0) = 1',  
                                 'Dy(0) = 1/3', 'x') 
 

ans = 
 

exp(x/2) - (x*exp(x/2))/6 

 
The ezplot command can then be used to plot the variation of y 
that varies with x as shown in the figure. 
 
 
5.5 Solutions from Complex Roots 
 

  From the second-order homogeneous differential equation 
with constant coefficients in the form,  

by
dx
dy

a
dx

yd


2

2

   0  

By assuming the solution in the form of xe  and substitute it into 
the differential equation, we obtain the characteristic equation, 
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ba  2    0  

which leads to two roots of,  

 baa 4
2
1

, 2
21   

If 042  ba , then the two roots are conjugate complex numbers 
 i  and  i  where   might be zero but   is not.  In this 

case, the general solution of the differential equation is, 

y       xixi eBeA     
where A  and B  are constants. 

  By using the Euler’s formula,  

 xie     xix  sincos   
and xie     xix  sincos   
then, the general solution above becomes,  

 xy   xixix eBeAe    
           xixeBxixeA xx   sincossincos   

          xeBAixeBA xx   sincos   

0 1 2 3 4 5 6

0

0.5 

1

1.5 

2

2.5 
 

     62exp2exp xxx 

x

 xy
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This solution can be written in a simpler form if we select 
21 BA , then  xy     xe x  cos .  At the same time, if we 

select BiA  21 , we get  xy     xe x  sin .  Since the two 
solutions must be linearly independent, thus we can write the 
general solution in the form of, 

  xy     xeCxeC xx   sincos 21   

where 1C  and 2C  are constants. 

  In conclusion, for the case when the roots of the 
characteristic equation are complex conjugate numbers,  

21,    baa 4
2
1 2      i  

then, the general solution is in the form, 

 xy      xeCxeC xx   sincos 21   

We will learn how to derive solutions of the differential equations 
when the two roots of their characteristic equations are complex 
conjugate numbers by using following examples.  
 
Example Derive the general solution of the second-order 
differential equation, 

 y
dx
dy

dx
yd

522

2

  0  

  By assuming the solution in the form of xe  and substitute 
it into the differential equation, we get,  

 xxx eee   522   0  

After dividing it through by xe , we obtain the characteristic 
equation, 
 522    0  

The two roots of this equation are complex conjugate numbers,  

1 2,      2042
2
1

    i21  

By comparing the coefficients with those in the equation derived 
earlier, we find that,  
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1          and          2  

Thus, the general solution of the differential equation is,  

y      xeCxeC xx 2sin2cos 2019   

where 19C  and 20C  are constants. 

  The same solution can be obtained by using the dsolve 
command,  
 
>> syms x y 
>> dsolve('D2y - 2*Dy + 5*y = 0', 'x') 
 

ans = 
 

C19*cos(2*x)*exp(x) + C20*sin(2*x)*exp(x) 

 
Example  Derive the general solution of the second-order differen-
tial equation, 

 y
dx
dy

dx
yd

222

2

  0  

  The characteristic equation corresponding to the above 
differential equation is,  

 222    0  

which leads to the two roots of complex conjugates,  

21,    842
2
1

    i 1  

Here,      1          and          1  

Thus, the general solution is,  

y    xeCxeC xx sincos 2221
   

where 21C  and 22C  are constants. 

  Again, the same general solution can be obtained by using 
the dsolve command,  
 

dsolve 
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>> syms x y 
>> dsolve('D2y + 2*Dy + 2*y =0', 'x') 
 

ans = 
  

(C21*cos(x))/exp(x) + (C22*sin(x))/exp(x) 
 
  The two constants of  21C  and 22C  are determined from 
the initial conditions of the problem.  For example, the given initial 
conditions are, 

  10 y          and            20 
dx
dy

 

Since, y  xeCxeC xx sincos 2221
   

then,   

dx
dy    21 22cos sin sin cosx x x xC e x e x C e x e x          

From the given initial conditions, the two equations become, 

 1    01 2221 CC   

and 2     1001 2221  CC  

By solving these two equations, the two constants can be 
determined, 

121 C          and          322 C  

Hence, the exact solution of the differential equation with the initial 
conditions is,  

y   xexe xx sin3cos    

  The dsolve command can also be used to find the exact 
solution of this initial value problem by entering,  
 

>> syms x y 
>> dsolve('D2y + 2*Dy + 2*y =0', 'y(0) = 1',  
          'Dy(0) = 2', 'x') 
  

ans = 
  

cos(x)/exp(x) + (3*sin(x))/exp(x) 

 

dsolve 

dsolve 
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Example  Solve the initial value problem governed by the second-
order differential equation, 

 y
dx
dy

dx
yd

145816 2

2

  0  

with the initial conditions of   20 y  and   10 y . 

  The characteristic equation that corresponds to the 
differential equation is,  

 145816 2    0  

The two roots are complex conjugate numbers,  

21,    
32

9280648 
    i3

4
1
  

By comparing the coefficients of the roots with the equation 
derived earlier, we find that,  

4
1

         and         3  

Thus, the general solution to the differential equation is,  

y        xeCxeC xx 3sin3cos 4
24

4
23   

where 23C  and 24C  are constants that can be determined from the 

given initial conditions of the problem.  For example, if the initial 
conditions are given as   20 y  and   10 y , the exact solution 
can be determined as follows. 

First, we need to find the derivative of the solution y,   

   

   

4 4
23

4 4
24

1
cos 3 3 sin 3

4

1
sin 3 3 cos 3

4

x x

x x

y C e x e x

C e x e x

    
 

   
 

 

We apply the two initial conditions to equations of y  and y , 
respectively, 

 2     01 2423 CC   
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and 1  300
4
1

2423 





  CC  

Then, we solve for the two constants of 23C  and 24C  to get, 

223 C          and          
2
1

24 C  

Thus, the exact solution to the differential equation with the given 
initial conditions is,  

y      xexe xx 3sin
2
1

3cos2 44   

  The same exact solution can be obtained by using the 
dsolve command by entering,  
 
>> syms x y 
>> dsolve('16*D2y-8*Dy+145*y = 0', 'y(0) = -2', 
          'Dy(0) = 1', 'x') 
  
ans = 
  
(sin(3*x)*exp(x/4))/2 - 2*cos(3*x)*exp(x/4) 
 
The ezplot command can then be used to plot the variation of y 
that varies with x as shown in the figure.  

 

0 1 2 3 4 5 6 7 8

-10 

-5 

0 

5 

10 

   
        4exp3cos224exp3sin xxxx 

x

 xy

dsolve 



5.5  Solutions from Complex Roots 151

Example  Solve the initial value problem governed by the second-
order differential equation, 

y
dx
dy

dx
yd

10251664 2

2

    0  

with the initial conditions of   10 y  and   30 y . 

 From the given differential equation, the corresponding 
characteristic equation is,  

10251664 2    0  

The two roots are in the form of complex conjugates as,  

21,
128

400,26225616 
    i4

8
1
  

By comparing the coefficients with those in the equation derived  
earlier, we find that,  

8
1

        and        4  

Then, the general solution to the differential equation is,  

y       xeCxeC xx 4sin4cos 8
26

8
25

   

where 25C  and 26C  are the constants that can be determined from 

the initial conditions.  The process starts from finding the 
derivative of the solution y, 

            y    





   xexeC xx 4sin44cos

8
1 88

25  

                              





   xexeC xx 4cos44sin

8
1 88

26  

and by applying the initial conditions of   10 y  and   30 y  
into these two equations to get, 

 1     01 2625 CC   

 3   400
8
1

2625 





  CC  
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Then, we solve these two equations to obtain,  

125 C          and          
32
23

26 C  

Thus, the exact solution of this initial value problem is,  

y      xexe xx 4sin
32
23

4cos 88    

  The same solution is obtained by using the dsolve 
command,  
 
>> syms x y 
>> dsolve('64*D2y + 16*Dy + 1025*y = 0', 
          'y(0) = -1', 'Dy(0) = 3', 'x') 
 

ans = 
  

(23*sin(4*x))/(32*exp(x/8)) - cos(4*x)/exp(x/8) 
 
The ezplot command can then be used to plot the variation of y 
that varies with x as shown in the figure.  
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5.6 Nonhomogeneous Equations 
 
   In this section and the next two sections, we will concen-
trate on finding the solutions of the second-order linear nonhomo-
geneous differential equations in the form, 

by
dx
dy

a
dx

yd
2

2

    xf  

where the term on the right-hand-side of the equation is only 
function of x.  The coefficients a and b for the terms on the left-
hand-side of the equation are constants.  Since the differential 
equation is linear, then the general solution consists of two parts, 

ph yyy   

where hy  is the solution of the homogeneous differential equation 

we learned earlier.  The function py  is called the particular 

solution that normally depends on the form of the function  xf  on 
the right-hand-side of the differential equation. 

  As an example, a general solution of the nonhomogeneous 
differential equation,  

 xy
dx

yd
2sin32

2

  

is            ph yyy      

      xxxBxA cos1sin2cossin   

The first part of the solution,  

xBxAyh cossin   
where A and B are constants, is the solution of the homogeneous 
differential equation,  

0
2

2

 y
dx

yd
 

The second part of the solution, 

        xxyp cos1sin2   
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is the particular solution that depends on the form of the given 
function    xxf 2sin3  on the right-hand-side of the differential 
equation. 

  We can verify that the solution above is, in fact, the 
general solution of the nonhomogeneous differential equation.  
This can be done by using the diff command to evaluate the terms 
on the left-hand-side of the differential equation as follows,   
 
>> syms x A B 
>> y = A*sin(x) + B*cos(x) - 2*sin(x)*(1+cos(x)); 
>> LHS = diff(y,x,2) + y 
  

LHS = 
  

3*sin(2*x) 

The result is equal to the right-hand-side function of the differential 
equation.  

  The same idea is applied when the given nonhomogeneous 
is more complex.  For example,  

y
dx
dy

dx
yd

232

2

   xe6  

Again, the general solution consists of two parts,  
2x x x

h p
y y y Ae Be e       

The first part is the homogeneous solution, 
xx

h BeAey 2   

of the homogeneous differential equation, 

y
dx
dy

dx
yd

232

2

  0  

where A  and B  are constants.  While the second part, 
x

p ey   

is the particular solution.  Again, we can use the diff command to 
verify the general solution above by evaluating the terms on the 
left-hand-side of the differential equation as follows,  
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>> syms x A B 
>> y = A*exp(-x) + B*exp(-2*x) + exp(x); 
>> LHS = diff(y,x,2) + 3*diff(y,x) + 2*y 
  

LHS = 
  

6*exp(x) 

The result is identical to the function  xf  on the right-hand-side 
of the differential equation. 

  There are several methods for finding the particular 
solution of py .  The two popular methods, which are the method of 

undetermined coefficients and the variation of parameters, are 
presented in the next two sections. 
 
 

5.7 Method of Undetermined Coefficients 
 

  The method of undetermined coefficients is a simple 
method for finding the particular solution of the nonhomogeneous 
differential equation.  The idea is to seek for the particular solution 

py  that contains terms which are in similar forms with the function 

 xf  on the right-hand-side of the equation.  The method works 
well when the function  xf  is in the forms of the exponential, 
polynomials, sine and cosine functions.  The method of un-
determined coefficients is demonstrated by using the following 
examples. 
 
Example  Derive the general solution of the second-order non-
homogeneous differential equation, 

y
dx
dy

dx
yd

432

2

    xe23  

  The homogeneous solution is derived from the given 
differential equation in the homogeneous form of,  

h
hh y

dx
dy

dx
yd

432

2

    0  

to give,        xx
h eCeCy  28

4
27  
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where 27C  and 28C  are constants.  Or, it can be obtained by using 

the dsolve command,   
 

>> syms x y 
>> dsolve('D2y - 3*Dy - 4*y = 0', 'x')   
  

ans = 
  

C27*exp(4*x) + C28/exp(x) 
 

   The particular solution py  is to be determined such that 

the differential equation in the form,  

 p
pp y

dx
dy

dx
yd

43
2

2

  xe23  

is satisfied.  In this case, let us assume, 

x
p Aey 2  

where A is an constant.  We assume the particular solution in the 
exponential form because their derivatives are also in the 
exponential form as, 

xp Ae
dx
dy

22        and        xp Ae
dx

yd
2

2

2

4  

By substituting these derivatives into the differential equation 
above, we get,  

  2(4 6 4 ) xA A A e   xe23  

 xAe26  xe23  

 A  
2
1

  

Then, the particular solution is, 

x
p ey 2

2
1

  

Thus, the general solution of the nonhomogeneous differential 
equation is,  

xxx eeCeCy 2
28

4
27 2

1
   

where 27C  and 28C  are constants. 

dsolve 
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  The same solution can be found by using the dsolve 
command,  
 
>> syms x y 
>> dsolve('D2y - 3*Dy - 4*y = 3*exp(2*x)', 'x')  
  

ans = 
  

C27*exp(4*x) - exp(2*x)/2 + C28/exp(x) 

 
Example Derive the general solution of the second-order non-
homogeneous differential equation, 

y
dx
dy

dx
yd

432

2

    24x  

  Since the terms on the left-hand-side of the differential 
equation are the same as those in the preceding example, thus, the 
homogeneous solution is,  

xx
h eCeCy  28

4
27  

The particular solution py  is to be determined such that the 

differential equation, 

p
pp y

dx
dy

dx
yd

432

2

   24x  

is satisfied.  We may assume the particular solution in the form of 
polynomials, 

CBxAxyp  2  

where A , B  and C  are constants.  By substituting this particular 
solution py  into the differential equation, we get,  

      CBxAxBAxA  24232  24x  

Or,      CBAxBAxA 432464 2   24x  

Comparing the coefficients leads to the three equations,  

 A4  4  
 BA 46   0  
 CBA 432   0  

dsolve 
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Solving these three equations gives, 1A , 23B  and C 

13 8 .  Then, the particular solution is, 

8
13

2
32  xxyp  

Hence, the general solution of the given nonhomogeneous 
differential equation is,  

8
13

2
32

28
4

27   xxeCeCy xx  
  The same solution can be obtained by using the dsolve 
command,  
 

>> syms x y 
>> dsolve('D2y - 3*Dy - 4*y = 4*x^2', 'x') 
  

ans = 
  

(3*x)/2 - x^2 + C27*exp(4*x) + C28/exp(x) - 13/8 

 
Example  Derive the general solution of the second-order non-
homogeneous differential equation, 

 y
dx
dy

dx
yd

432

2

  xsin2  

  Since the terms on the left-hand-side of the given 
differential equation are the same as those in the preceding 
example, then the homogeneous solution is,  

xx
h eCeCy  28

4
27  

The particular py  must satisfy the differential equation, 

 p
pp y

dx
dy

dx
yd

432

2

  xsin2  

Because the derivatives of the sine function are in the form of sine 
and cosine functions, thus we need to assume the particular 
solution in the form,  

xBxAyp cossin   

where A  and B  are constants.  If we substitute this particular 
solution py  into the differential equation, we get,  

dsolve 
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        xBxAxBxAxBxA cossin4sincos3cossin      
    xsin2  

Or,        xBABxABA cos43sin43    xsin2  

Then, comparing the coefficients leads to two equations,  
 ABA 43   2  

and BAB 43   0  

which can be solved to give 175A  and 173B .  Thus, the 
particular solution is, 

xxyp cos
17
3

sin
17
5

  

Hence, the general solution of the nonhomogeneous differential 
equation is,  

xxeCeCy xx cos
17
3

sin
17
5

28
4

27    

  The same solution is obtained by using the dsolve 
command,  
 

>> syms x y 
>> dsolve('D2y - 3*Dy - 4*y = 2*sin(x)', 'x') 
  

ans = 
  

(3*cos(x))/17 - (5*sin(x))/17 + C27*exp(4*x) + 
C28/exp(x) 

 
Example  Solve the initial value problem governed by the second-
order nonhomogeneous differential equation, 

 y
dx
dy

dx
yd

432

2

  xxe x sin243 22   

with the initial conditions of   00 y  and   10 y .  

  The right-hand-side of the differential equation is the 
combination of the functions in the preceding three examples.  
Thus general solution is, 

4 2 2
27 28

1 3 13 5 3
sin cos

2 2 8 17 17
x x xy C e C e e x x x x         

dsolve 
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We can use the dsolve command to verify that the above solution 
is a general solution to the given differential equation,  

>> syms x y 
>> dsolve('D2y - 3*Dy - 4*y = 3*exp(2*x) + 4*x^2  
           + 2*sin(x)', 'x') 
  

ans = 
  

(3*x)/2 - exp(2*x)/2 + (3*cos(x))/17 - 
(5*sin(x))/17 - x^2 + C27*exp(4*x) + 
C28/exp(x) - 13/8 
 

  Since the derivative of the general solution is,  

xxxeeCeCy xxx sin
17
3

cos
17
5

2
3

24 2
28

4
27    

Then, by applying the initial conditions of   00 y  and   10 y , 
we obtain, 

 0  
17
3

8
13

00
2
1

2827  CC  

and 1  0
17
5

2
3

014 2827  CC  

These two equations give 68037327 C  and 5728 C  

  Hence, the exact solution of the initial value problem is,  

4 2 2373 7 1 3 13 5 3
sin cos

680 5 2 2 8 17 17
x x xy e e e x x x x         

The same solution is obtained by using the dsolve command,  
 
>> syms x y 
>> dsolve('D2y - 3*Dy - 4*y = 3*exp(2*x) + 4*x^2  
   + 2*sin(x)', 'y(0) = 0', 'Dy(0) = 1', 'x') 
  

ans = 
  
(3*x)/2 + 7/(5*exp(x)) - exp(2*x)/2 + 
(373*exp(4*x))/680 + (3*cos(x))/17 - 
(5*sin(x))/17 - x^2 - 13/8 

dsolve 
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The ezplot command can then be used to plot the variation of y 
that varies with x as shown in the figure. 

 
 

 
5.8 Variation of Parameters 
 

 The method of undermined coefficients for solving the 
nonhomogeneous differential equation described in the preceding 
section works well when the right-hand-side functions  xf  are in 
the form of exponential, polynomials, sine and cosine functions.  
When the functions  xf  are in the other forms, it may be difficult 
to guess for the solutions.  In this section, we will learn another 
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solutions.  The advantage of this latter method is that we do not 
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method of undermined coefficients.  However, since the method 
involves integration, it may be difficult if the functions  xf  are 
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  We will learn this method by considering the same form of 
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earlier,  
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 by
dx
dy

a
dx

yd
2

2

  xf  

Its general solution consists of two parts,  

  xy     xyxy ph   

where  xyh  is the solution of the homogeneous differential 

equation, 

 h
hh by

dx
dy

a
dx

yd
2

2

 0  

which can be written in the form,  

  xyh     xByxAy 21   

where A  and B  are constants. 

  The idea of the method of variation of parameters is to 
assume the particular solution  xyp  in the same form as the 

homogeneous solution  xyh , i.e.,  

  xyp         xyxvxyxv 2211   

where  xv1  and  xv2  are the functions to be determined so that 

 xyp  satisfies the above nonhomogeneous differential equation.  

  By taking the first-order derivative of the particular 
solution py  above, the result contains four terms, 

 py     22112211 yvyvyvyv   

This means if we determine its second-order derivative, the result 
will contain many more terms.  Furthermore, the second-order 
derivative also includes the terms such as 1v   and 2v  .  To avoid 

this, let us assume the value in the first bracket of py  to be zero,  

 2211 yvyv   0   

So that the expression of py  reduces to, 

 py  2211 yvyv   

Then, if we take derivative of this reduced form of py , we get,  

py    22221111 yvyvyvyv   



5.8  Variation of Parameters 163

 By substituting the expressions of py , py  and py   into the 

differential equation, we obtain,  

 xf  ppp byyay   

      221122112221111 yvyvbyvyvayvyvyvyv   

      222211112211 byyayvbyyayvyvyv   

 002211  yvyv  

i.e., 2211 yvyv   f  

  In conclusion, the process above leads to two equations of,  

 2211 vyvy   0  

and 2211 vyvy   f  

with the two unknown functions of 1v  and 2v .  These two func-
tions can be determined by using the Cramer’s rule to give, 

 1v  
2121

2

yyyy
fy




  

and 2v  
2121

1

yyyy
fy


  

Then, the two functions of 1v  and 2v  can be obtained by perform-
ing integration,  

 1v  dx
yyyy

fy

2121

2




   

and 2v  dx
yyyy

fy

2121

1


   

  From the process explained above, we can see that the 
method of variation of parameters can provide the particular 
solution directly.  Since the process involves integration to find the 
functions 1v  and 2v , difficulty may arise if the function  xf  on 
the right-hand-side of the differential equation is complicated.  We 
will learn how to use the method of variation of parameters to solve 
the nonhomogeneous differential equations through the following 
examples. 
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Example  Use the method of variation of parameters to solve the 
second-order nonhomogeneous differential equation,  

 y
dx

yd


2

2

 xtan  

  We can employ the technique presented in the preceding 
sections to derive the homogeneous solution of the homogeneous 
differential equation,  

 h
h y

dx
yd


2

2

 0  

to get, hy  xCxC sincos 3029   

where 29C  and 30C  are constants.  This homogeneous solution can 

also be obtained conveniently by using the dsolve command,  
 
>> syms x y 
>> dsolve('D2y + y = 0', 'x')  
  

ans = 
  

C29*cos(x) + C30*sin(x) 
 

It is noted that the homogeneous solution obtained above 
is in the form,  

 hy  230129 yCyC   

i.e.,        xy cos1          and         xy sin2     

Since the particular solution for the method of variation of 
parameters is assumed in the form, 

 py  2211 yvyv      

Thus,   py  xvxv sincos 21    

where the functions 1v  and 2v  are determined from, 

1v    dx
yyyy

yf

2121

2




       and     2v    dx
yyyy

yf

2121

1


   

Therefore, by substituting the function  xf  and performing 
integration, we obtain the two functions 1v  and 2v  as follows,    

dsolve 
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  1v    
      dx

xxxx
xx

sinsincoscos
sintan



   

    
dx

xx
xx

22 cossin
sintan




   

     dxxx sintan  

 1v  x
xx

sin1
2

tanln1
2

tanln 





 













 






  

and 2v    
      dx

xxxx
xx

sinsincoscos
costan


   

  dxxsin  

 2v  xcos  

Thus, the particular solution is,  

py ln tan 1 ln tan 1 sin cos sin cos
2 2

x x
x x x x                          

 

       ln tan 1 ln tan 1 cos
2 2

x x
x                        

 

 Hence, the general solution of the given nonhomogeneous 
differential equation is,  

y h py y   

y 29 30cos sin ln tan 1 ln tan 1 cos
2 2

x x
C x C x x                          

 

  The same solution can be obtained by using the dsolve 
command,  
 

>> syms x y 
>> dsolve('D2y + y = tan(x)', 'x') 
  

ans = 
  

log(tan(x/2)-1)*cos(x) - log(tan(x/2)+1)*cos(x) + 
C29*cos(x) + C30*sin(x) 
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Example  Use the method of variation of parameters to solve the 
second-order nonhomogeneous differential equation,  

 y
dx
dy

dx
yd

22

2

  24x  

  The homogeneous solution can be derived from the 
homogeneous differential equation,  

 h
hh y

dx
dy

dx
yd

2
2

2

  0  

to get,  hy  xx eCeC  32
2

31  

where 31C  and 32C  are constants.  Such homogeneous solution can 

also be found by using the dsolve command,  
 
>> syms x y 
>> dsolve('D2y - Dy - 2*y = 0', 'x')  
  

ans = 
  

C31*exp(2*x) + C32/exp(x) 
 

This homogeneous solution is in the form of, 

 hy  232131 yCyC   

i.e.,     xey 2
1            and          xey 2  

  In the method of variation of parameters, the particular 
solution is assumed in the same form as the homogeneous solution,  

 py  2211 yvyv   

Thus, py  xx evev  2
2

1  

Then, the functions 1v  and 2v  can be determined as follows,  

 1v  dx
yyyy

yf

2121

2




   

    
      dx

eeee
ex

xxxx

x








  22

2

2
4  

  dxex x22

3
4

  

dsolve 
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 1v   122
3

2
2




xx
e x

 

and 2v  dx
yyyy

yf

2121

1


   

     
      dx

eeee
ex

xxxx

x

 
  22

22

2
4  

  dxex x2

3
4

  

 2v   22
3

4
2  xx

ex

 

   Hence, the general solution of the given nonhomogeneous 
differential equation is,  

y  h py y   

       
2

2 2 2 2
31 32

4
2 2 1 2 2

3 3

x x
x x x xe e

C e C e x x e x x e


          

y 2 2
31 32 2 2 3x xC e C e x x      

  The same solution can be obtained by using the dsolve 
command,  
 
>> syms x y 
>> dsolve('D2y - Dy - 2*y = 4*x^2', 'x') 
  

ans = 
  

2*x - 2*x^2 + C31*exp(2*x) + C32/exp(x) - 3 
 

Example  Use the method of variation of parameters to solve the 
initial value problem governed by the second-order nonhomo-
geneous differential equation, 

 y
dx
dy

dx
yd

44
2

2

    xex 21  

with the initial conditions of   00 y  and   00 y .  Plot the 
solution of y that varies with x in the interval of 10  x . 

dsolve 
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  The homogeneous solution of the homogeneous differen-
tial equation,  

 h
hh y

dx
dy

dx
yd

44
2

2

  0  

is, hy  xx xeCeC 2
34

2
33   

where 33C  and 34C  are constants.  The homogeneous solution 

above is in the form of,  

hy    234133 yCyC   

Then,     xey 2
1       and     xxey 2

2   

 In the method of variation of parameters, the particular 
solution is assumed in the same form as the homogeneous solution,  

 py  2211 yvyv   

Thus, py  xx xevev 2
2

2
1   

where the functions 1v  and 2v  are determined by integrating the 
functions that are in the form of  xf .  Here,  

 1v  dx
yyyy

yf

2121

2




   

      
     

2 2

2 2 2 2 2

1
2 2

x x

x x x x x

x e xe
dx

e e xe e xe
 


   

 1v  
23

23 xx
  

and 2v  dx
yyyy

yf

2121

1


   

      
     

2 2

2 2 2 2 2

1
2 2

x x

x x x x x

x e e
dx

e e xe e xe



   

 2v  x
x


2

2

 

  Hence, the general solution of the given nonhomogeneous 
differential equation is,   

y ph yy   



5.9  Numerical Methods 169

 y  xxxx xex
x

e
xx

xeCeC 2
2

2
23

2
34

2
33 223 






 






   

Or,  y  





 

26

23

3433
2

xx
xCCe x         

and then, y  





  x

xx
xCCCe x

2
3

3
22

23

343433
2  

where 33C  and 34C  are constants that can be determined from the 

initial conditions as follows,  

  0y  0    0001 33  C  

  0y  0    000021 3433  CC  

which give 033 C  and 034 C .  Hence, the solution of this initial 

value problem is, 

y  3
626

2223
2 






  x

exxx
e

x
x  

  The same solution is obtained by using the dsolve 
command by entering,  
 

>> syms x y 
>> dsolve('D2y - 4*Dy + 4*y = (x+1)*exp(2*x)', 
          'y(0)=0', 'Dy(0)=0', 'x') 
 

ans = 
 

x^2*exp(2*x)*(x + 3))/6 
 

The ezplot command is then used to plot the variation of y that 
varies with x  within the interval of 10  x  as shown in the 
figure. 
 
 

5.9 Numerical Methods 
 

  For most of the initial value problems, their exact 
solutions in closed-form expressions cannot be derived easily.  This 
is because the function  xf  on the right-hand-side of the 
nonhomogeneous differential equation is often complicated.  
Furthermore, if the coefficients of the derivative terms on the left- 

dsolve 
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hand side of the equation are function of y, the differential equation 
becomes nonlinear.  Exact closed-form solutions for most nonlinear 
differential equations are not available.  Thus, the numerical 
methods are needed to provide approximate solutions. 

 In this section, we will use the ode23 and ode45 
commands to find approximate solutions of the second-order 
differential equations.  The commands employ the Runge-Kutta 
method with variable time-stepping to provide accurate solutions.  
The following examples demonstrate how to use these commands 
to solve general initial value problems.  
 
Example  Employ the ode23 command to solve the initial value 
problem that is governed by the second-order nonhomogeneous 
differential equation, 

 y
dx
dy

dx
yd

371236 2

2

  0   100  x  

with the initial conditions of   00 y  and   10 y .  
  It is noted that this initial value problem has the exact 
solution of,  

xey x sin6  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 
0.5 

1 
1.5 

2 
2.5 

3 
3.5 

4 
4.5 

5 
 

 xy

x

    632exp2 xxx
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which can be obtained by using the dsolve command,  
 
>> syms x y 
>> dsolve('36*D2y - 12*Dy + 37*y = 0',  
          'y(0) = 0', 'Dy(0) = 1', 'x') 
  

ans = 
  

exp(x/6)*sin(x) 
 

  If the exact solution is not available, we can use the 
numerical methods to solve for the approximate solution.  In the 
preceding chapter, we learned how to use the numerical methods to 
solve the first-order differential equation.  We can follow the same 
procedure but we have to firstly separate the second-order 
differential equation into two first-order differential equations.  We 
start from writing the given second-order differential equation in 
the form, 

 1
1

2
1

2

371236 y
dx
dy

dx
yd

  0    100  x  

with the initial conditions of,  

  001 y      and          100 2
1  y

dx
dy  

i.e., we assign the new variables yy 1  and 
dx
dy

y 2 . 

  Then, the second-order differential equation above 
becomes the two first-order differential equations as follows,  

 
dx
dy1  2y  

and 
dx
dy2    363712 12 yy   

   To conveniently solve these two first-order differential 
equations simultaneously, a MATLAB m-file should be created.  
As an example, an m-file with the name of example1.m consists 
of the statements,  
 
function yex1 = example1(x,y) 
yex1 = [y(2); (12*y(2)-37*y(1))/36]; 

dsolve 

function 
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The first statement defines the function name while the second 
statement contains descriptions of the two first-order differential 
equations.  We then use the ode23 command to solve this problem 
by typing on the Command Window as follows,   
 
>> [x,y] = ode23('example1', [0 10], [0 1]); 
 

MATLAB will determine the values of 1y  and 2y  at different x 
locations, and print the values of x , 1y  and 2y  on the monitor 
screen.  In the ode23 command above, the numbers in the first 
square bracket denote the interval of 100  x , while the numbers 
in the second square bracket represent the initial conditions of 
  001 y  and   102 y , respectively.   

  The computed solutions of 1y  and 2y  that vary with x  
can be plotted by using the plot command,  
 
>> plot(x,y(:,1),'-k',x,y(:,2),'--k') 
 

 

 The computed solution 1y  from the ode23 command is 
compared with the exact solution as shown in the figure.  The 
figure (scale is enlarged) indicates that the numerical method using 
the ode23 command can provide very accurate solution.  
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1yy 
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ode23 

plot 



5.9  Numerical Methods 173

 
Example  Employ the ode45 command to solve the initial value 
problem governed by the second-order nonhomogeneous differen-
tial equation, 

 y
dx
dy

dx
yd

342

2

  xcos20   120  x  

with the initial conditions of   00 y  and   00 y .  
 The ode45 command uses the combined fourth- and fifth-
order Runge-Kutta method to solve for approximate solution of the 
first-order differential equation.  To apply the command, we first 
write the given second-order differential equation in the form of the 
unknown variable 1y  as, 

 1
1

2
1

2

34 y
dx
dy

dx
yd

  xcos20   120  x  

This second-order differential equation can be separated into two 
first-order differential equations as follows,  

 
dx
dy1  2y  

and 
dx
dy2  12 34cos20 yyx   

together with the initial conditions of,  

0 1 2 3 4 5 6 7 8 9 10
-3 

-2 

-1 
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4 

x

 xy
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  001 y       and           000 2
1  y

dx
dy  

Similar to the preceding example, we create an m-file and name it 
as example2.m,  
 

function yex2 = example2(x,y) 
yex2 = [y(2); 20*cos(x)-4*y(2)-3*y(1)]; 
 

We then employ the ode45 command to solve the two first-order 
differential equations simultaneously by typing on the Command 
Window as, 
 

>> [x,y] = ode45('example2', [0 12], [0 0]); 
 

In the ode45 command above, the numbers in the first square 
bracket denote the interval of 120  x , while the numbers in the 
second square bracket represent the two initial conditions of 
  001 y  and   002 y , respectively. 

  The computed solutions of 1y  and 2y  that vary with x can 
be plotted by using the plot command,  
 

plot(x,y(:,1),'-k',x,y(:,2),'--k') 
 

 

 It is noted that this initial value problem has exact solution 
which can be obtained by using the dsolve command,  
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>> syms x y 
>> dsolve('D2y+4*Dy+3*y = 20*cos(x)', 'y(0) = 0', 
          'Dy(0) = 0', 'x') 
  

ans = 
  

3/exp(3*x) - 5/exp(x) + 2*cos(x) + 4*sin(x) 
 

 The approximate solution from the numerical method 
using the ode45 command is compared with the exact solution as 
shown in the figure.  The figure indicates that the numerical 
method can provide high solution accuracy as compared to the 
exact solution.  The method will be useful when the exact solution 
to the differential equation is not available as demonstrated in the 
following example. 

 

Example  Employ the ode45 command to find the approximate 
solution of the initial value problem governed by the second-order 
nonlinear differential equation, 

 y
dx
dy

y
dx

yd


2

2

 0    200  x  

with the initial conditions of   10 y  and   00 y . 
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  For this problem, the exact solution could not be found by 
using the dsolve command,  
 
>> syms x y 
>> dsolve('D2y + y*Dy + y = 0', 'y(0) = 1',  
          'Dy(0) = 0', 'x') 
Warning: Explicit solution could not be found.  
> In dsolve at 101 
  

ans = 
  

[ empty sym ] 
 

  We will use the ode45 command to determine the approx-
imate solution.  Similar to the preceding examples, we start from 
writing the differential equation in the form of the unknown 
variable 1y  as,  

 1
1

12
1

2

y
dx
dy

y
dx

yd
  0    200  x  

Then, we separate this second-order differential equation into two 
first-order differential equations as,  

 
dx
dy1  2y  

and 
dx
dy2  121 yyy   

together with the initial conditions of,  

  101 y       and         002 y  
We then create an m-file, example3.m, which defines the two 
first-order differential equations, 
 
function yex3 = example3(x,y) 
yex3 = [y(2); -y(1)*y(2) - y(1)]; 
 
To solve the problem, we use the ode45 command by typing on 
the Command Window as follows,  
 
>> [x,y] = ode45('example3', [0 20], [1 0]); 

dsolve 

function 

ode45 
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In the ode45 command above, the numbers in the first square 
bracket denote the interval of 200  x , while the numbers in the 
second square bracket represent the two initial conditions of 
  101 y  and   002 y , respectively. 

 The computed solutions of 1y  and 2y  that vary with x can 
be plotted by using the plot command as shown in the figure.  
 
>> plot(x,y(:,1),'-k',x,y(:,2),'--k') 

 
 

 
5.10  Concluding Remarks 
 
  In this chapter, several methods for solving the second-
order linear differential equations with constant coefficients were 
presented.  For homogeneous differential equations, the exact 
solutions depend on the characteristic equations.  The roots of the 
characteristic equations could be distinct real numbers, repeated 
real numbers or conjugate complex numbers.  For nonhomo-
geneous differential equations, two methods were explained.  These 
are the methods of undetermined coefficients and variation of 
parameters.  The method of undetermined coefficients assumes the 
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particular solution in the same form as the nonhomogeneous 
function.  The method works well only when the nonhomogeneous 
functions are in the forms of exponential, polynomials, sine and 
cosine functions.  Thus, for more general nonhomogeneous 
functions, the method of variation of parameters should be used.  
This later method provides the particular solutions directly.  
However, since the method involves integration of the 
nonhomogeneous function, difficulty may arise if such function is 
complicated. 

 Several examples have been employed to show detailed 
derivation of the exact solutions by using the above methods.  In all 
examples, the derived exact solutions to the differential equations 
were verified by using the MATLAB commands.  Variations of the 
solutions were plotted to help understanding of their physical 
meanings.  Numerical methods for solving these second-order 
linear differential equations were also introduced.  Accurate 
approximate solutions were obtained by using MATLAB com-
mands.  The main advantage of these commands is that they can 
provide approximate solutions when the exact closed-form 
solutions are not available.  Thus, for a given differential equation, 
finding exact closed-form solution should be tried first.  If the exact 
solution is not available, the numerical method is an effective tool 
to provide approximate solution.  Examples have shown that the 
MATLAB commands can provide approximate solutions with high 
accuracy and efficiency. 

 
 
 

Exercises 
 
 

1. In each problem below, show that, 

  (a) xx eey 42 3     is the solution of  
   086  yyy  

 (b) xx eey 35 42    is the solution of  
   0158  yyy
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 (c) xx eey  76   is the solution of 
  056  yyy  

 (d) xx eey 43 52    is the solution of 
  04113  yyy  

 (e) 3789 xx eey    is the solution of 
   0632924  yyy  
 
2. Find the determinant (Wronskian) of each solution in Problem 

1.  Then, verify these determinants by using the det command.  
 
3. Employ the diff command to show that,  

xx xeey 22 73    

is the exact solution of the second-order homogeneous 
differential equation,  

044  yyy  

Then, determine its determinant by using the det command.  
 
4. Employ the diff command to show that, 

xexey xx 2sin2cos   

is the exact solution of the second-order homogeneous 
differential equation, 

052  yyy  

Then, determine its determinant by using the det command.  
 
5. Find the second-order homogeneous differential equations that 

correspond to the following solutions,  

  (a) xx ee 22   (b) xx ee 33    

  (c) xe453    (d) xx ee 487     

  (e) xx ee 53 2   (f) xx ee 32 32    
 
6. Solve the following second-order homogeneous differential 

equations when their roots are distinct real numbers,  
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 (a) yyy 12   0  

 (b) yyy 352    0  

 (c) yyy 456    0  

 (d) yyy 222315    0  

 (e) yyy 637320    0  

Show the derivation of their solutions in detail.  Then, use the 
dsolve command to verify the derived solutions.  

 
7. Solve the following initial value problems that are governed by 

the second-order homogeneous differential equations and 
initial conditions.  The characteristic equations of these 
differential equations contain the roots that are distinct real 
numbers. 

  (a) yyy 6    0  
      00 y ,     10 y  

  (b) yyy 532     0  
     10 y ,     00 y  

  (c) yyy 2039     0  
     00 y ,     20 y  

  (d) yyy 31247     0  
     0y ,     20 y  

Show the derivation of their solutions in detail.  Then, use the 
dsolve command to verify the derived solutions and the 
ezplot command to plot y that varies with x. 

 
8. Solve the following second-order homogeneous differential 

equations when their roots are repeated real numbers, 
 (a) yyy 2510    0  

 (b) yyy  44   0  

 (c) yyy 4129    0  

 (d) yyy 49284    0  

 (e) yyy 93025    0  
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Show the derivation of their solutions in detail.  Then, use the 
dsolve command to verify the derived solutions. 

 
9. Solve the following initial value problems that are governed by 

the second-order homogeneous differential equations and 
initial conditions.  The characteristic equations of these 
differential equations contain the roots that are repeated real 
numbers. 

 (a) yyy 96     0  
     00 y ,     20 y  

 (b) yyy 49284     0  
    10 y ,     00 y  

 (c) yyy  816    0  
    00 y ,     10 y  

 (d) yyy 42849     0  
    10 y ,     00 y  

Show the derivation of their solutions in detail.  Then, use the 
dsolve command to verify the derived solutions. 

 
10. Solve the following second-order homogeneous differential 

equations when their roots are conjugate complex numbers, 
 (a) yyy 62    0  

 (b) yyy 136    0  

 (c) yyy 54    0  

 (d) yyy 183    0  

 (e) yyy 106    0  
Show the derivation of their solutions in detail.  Then, use the 
dsolve command to verify the derived solutions. 

 
11. Solve the following initial value problems that are governed by 

the second-order homogeneous differential equations and 
initial conditions.  The characteristic equations of these 
differential equations contain the roots that are conjugate 
complex numbers. 
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 (a) yyy 54     0  
     10 y ,     00 y  

 (b) yyy 456     0  
    00 y ,     20 y  

 (c) yyy 136     0  
    02 y ,     22  y  

 (d) yyy     0  
    10 y ,     40 y  

Show the derivation of their solutions in detail.  Then, use the 
dsolve command to verify the derived solutions and the 
ezplot command to plot y that varies with x. 

 
12. Employ the dsolve command to solve the second-order 

homogeneous differential equations with constant coefficients 
as follows,  

 (a) yyy 44    0  

 (b) yyy 209    0  

 (c) yyy 9124    0  

 (d) yy    0  

 (e) yyy 256    0  

In each problem, verify the obtained solution with that derived 
by hands.  Or substitute it into the differential equation to 
check whether the differential equation is satisfied. 

 
13. Employ the dsolve command to solve the initial value 

problems governed by the second-order differential equations 
and initial conditions below,  

 (a) yyy 96     0  
     00 y ,      30 y  

 (b) yyy 65      0  
    11 y ,      21 y  

 (c) yyy 54     0  
    10 y ,     00 y  
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 (d) yyy 98     0  
    21 y ,     01 y  
 

In each case, verify that the solution satisfies the differential 
equation and initial conditions. 

 
14. Use the method of undetermined coefficients to solve the 

second-order nonhomogeneous differential equations,  
 

 (a) yyy 2   22x  
 

 (b) yyy 65   xe x cos   
 

 (c) yyy 96    x3sin  
 

 (d) yyy 44   xe3  
 

 (e) yyy 384   xx sin2   
 

 Show the derivation in detail.  Compare the derived solutions 
with those obtained by using the dsolve command. 

 
15. Use the method of undetermined coefficients to solve the 

initial value problems that are governed by the second-order 
nonhomogeneous differential equations and initial conditions, 

 

 (a) yyy 2039     xx cossin   

     10 y ,     00 y  
 

 (b) yyy  816    xx 22   

    00 y ,    10 y  
 

 (c) yy 4     x2cos  

    00 y ,      00 y  
 

 (d) yyy 136     xe  

    10 y ,     00 y  
 

Show detailed derivation of the exact solutions.  Then, verify 
these solutions with those obtained from using the dsolve 
command.  In each case, employ the ezplot command to plot 
the variation of y that varies with x.  
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16. Solve the following second-order nonhomogeneous differential 
equations by the method of variation of parameters.  Show the 
derivation of their solutions in detail.  Then, verify the 
solutions with those obtained by using the dsolve command.  

 

 (a) yy 4   xcot  
 

 (b) yy    xcosh  
 

 (c) yyy  2   xe x ln  
 

 (d) yyy 23    xesin  
 

 (e) yyy  44   22 1 xex   
 
17. Solve the following initial value problems by using the method 

of variation of parameters,  
 

 (a) yy    2xxe  

     10 y ,      00 y  
 

 (b) yyy 82    xx ee   22  
    10 y ,      00 y  
 

 (c) yyy 44      xexx 22 36   

    10 y ,      00 y  
 

 (d) yyy 54    xx 3sin   

    10 y ,      00 y  
 

Show detailed derivation of the exact solutions.  Compare 
these exact solutions with those obtained by using the dsolve 
command.  Then, employ the ezplot command to plot their 
variations for 10  x .  

 
18. Use the ode23 command to find the approximate solution of 

the initial value problem governed by the second-order 
homogeneous differential equation,   

  yyy 65   0    20  x  
 with the initial conditions of   20 y  and   50 y .  Repeat 

solving the problem but by using the dsolve command to find 
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the exact solution.  Plot to compare the two solutions for 
20  x .  

 
19. Use the ode23 command to find the approximate solution of 

the initial value problem governed by the second-order 
nonhomogeneous differential equation, 

  yyy 23    xe3     20  x  
 with the initial conditions of   10 y  and   10 y .  Then, 

use the dsolve command to find the exact solution.  Plot to 
compare the two solutions for 20  x .  

 
20. Use the ode45 command to find the approximate solution of 

the initial value problem governed by the second-order 
nonhomogeneous differential equation, 

   yyy 52     xe x 2cos4    50  x  
 with the initial conditions of   10 y  and   00 y .  Repeat 

solving the problem but by using the dsolve command to find 
the exact solution.  Plot to compare the two solutions for 

50  x .  
 
21. Use the ode45 command to find the approximate solution of 

the initial value problem governed by the second-order 
nonhomogeneous differential equation, 

  yy 4   2cos52 xexx     50  x  
 with the initial conditions of   20 y  and   10 y .  Repeat 

solving the problem but by using the dsolve command to find 
the exact solution.  Plot to compare the two solutions for 

50  x .  
 
22. Use the ode45 command to solve for the approximate solution 

of the Bessel equation,  

  yxyxyx 22     0     61  x  



Chapter 5  Second-Order Linear Differential Equations 
 

186

 with the initial conditions of   01 y  and   11 y .  Plot this 
approximate solution for the interval of 61  x .  Then, check 
whether the dsolve command can provide exact solution.  If 
it can, plot to compare the two solutions. 

 
23. Employ the ode23 command to find the approximate solution 

of the second-order nonlinear equation,  

  4yy    0      20  x  
 with the initial conditions of   10 y  and   30 y .  Plot this 

approximate solution for the interval of 20  x .  Then, 
check whether the dsolve command can provide exact 
solution.  If the exact solution can be obtained, plot to compare 
the two solutions.  

 
24. Employ the ode45 command to solve the initial value problem 

that is governed by the second-order nonlinear differential 
equation,  

     yyyy  21    0     200  x  
 with the initial conditions of   10 y  and   10 y .  Plot the 

computed variations of  xy  and  xy  in the interval of 
200  x .  Then, use the ode23s command to solve this 

problem again when the differential equation changes slightly 
to, 

      yyyy  211000    0     60000  x  
 Plot the solution of  xy  in the interval of 60000  x .  

Provide comments on the accuracy of the approximate solution 
 xy  from its abrupt change within a small interval of x.  

 



 
 

 
 

Chapter 
6 

 
 

 

Higher-Order Linear 

Differential Equations 
 
 
 
6.1 Introduction 
 

  Once we understand how to solve the second-order 
differential equations explained in the preceding chapter, we can 
follow the same procedure to solve the higher-order differential 
equations.  The higher-order linear differential equations arise in 
many scientific and engineering problems, such as the deflection of 
a beam under loading and the laminar flow behavior over a flat 
plate.  Exact solutions obtained from solving these differential 
equations help us to understand more about the problem behaviors. 

 We will start by solving the higher-order homogeneous 
differential equations with constant coefficients.  The roots of their 
characteristic equations could be distinct real, repeated real, 
complex conjugate, or mixed numbers.  Exact solutions obtained 
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from different types of these roots are in different forms.  After 
that, we will extend the idea to solve the nonhomogeneous 
differential equations.  In all cases, we will verify the derived 
solutions by using the MATLAB commands. 

 For more complicated differential equations, their exact 
solutions may not be derived in closed-form expressions.  In these 
cases, we will employ MATLAB commands that use numerical 
methods to solve for approximate solutions.  Plotting commands 
will also be used to display variations of the computed solutions.  
The techniques presented in this chapter will help us to understand 
clearly on how to solve the higher-order differential equations. 

 
 
6.2 Homogeneous Equations with Constant Coefficients 
 

 General form of the nth-order homogeneous linear dif-
ferential equation with constant coefficients is, 

1 2

1 21 2 1 0
........ 0

n n

n nn n

d y d y d y dy
a a a a a y

dxdx dx dx



       

where na , 1na , ....., 2a , 1a  and 0a  are the constant coefficients 

while the right-hand-side of the equation is zero.  A solution of the 
above differential equation is in the form of xe  where   is a 
number.  We can prove this by substituting it into the differential 
equation to get, 

 1 2
1 2 1 0

........ 0n n x
n n

a a a a a e   
       

After dividing through by xe , the characteristic equation is 
obtained,  

1 2
1 2 1 0

........ 0n n
n n

a a a a a   
       

which can be solved for n values of the root  . 
 For example, the third-order homogeneous differential 
equation,  

3 2

3 2
6 11 6

d y d y dy
y

dxdx dx
      0  

has the characteristic equation in the form,  
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 6116 23    0  

or,     321    0  

which leads to the three values of root   as, 

11  ,       22         and       33   
It is noted that MATLAB contains the roots command that can be 
used to factorize the algebraic equation above conveniently, 
 
>> roots([1 -6 11 -6]) 
 

ans = 
 

    3.0000 
    2.0000 
    1.0000 
 
  Thus, the exact solution of the third-order differential 
equation is,  

  xxx eeexy 32   

We can verify this exact solution by taking their derivatives and 
substituting them into the left-hand-side of the differential 
equation,  

 
dx
dy

 xxx eee 32 32   

  
2

2

dx
yd

 xxx eee 32 94   

 
3

3

dx
yd

 xxx eee 32 278   

to get,    

y
dx
dy

dx
yd

dx
yd

6116
2

2

3

3

  2 38 27x x xe e e    

       2 3 2 3 2 36 4 9 11 2 3 6x x x x x x x x xe e e e e e e e e         0  

The result is zero which is equal to the right-hand-side of the 
equation.  It is also noted that the diff command can be used to 
find the derivatives of the solution easily as follows, 

roots 
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>> syms x y 
>> y = exp(x) + exp(2*x) + exp(3*x); 
>> LHS = diff(y,x,3) - 6*diff(y,x,2) +  
                                11*diff(y,x) - 6*y 
 

LHS = 
 

0 
 

  The general solution  xy  contains the three functions of 

xey 1 , xey 2
2   and xey 3

3    which are linearly independent.  

This can be verified by finding the determinant (Wronskian) that 
must not be zero as follows,  

  W  

321

321

321

yyy

yyy

yyy



  

   x

xxx

xxx

xxx

e

eee

eee

eee

6

32

32

32

2

94

32   

The determinant above can be determined conveniently by using 
the det command,  
 
>> W=[y1 y2 y3; diff(y1,x) diff(y2,x) diff(y3,x);  
   diff(y1,x,2) diff(y2,x,2) diff(y3,x,2)]; 
>> det(W)           
 

ans = 
 

2*exp(6*x) 
 
  The roots   from the characteristic equation may be 
distinct real, repeated real or conjugate complex roots which lead to 
different forms of the solutions.  We will learn how to derive the 
solutions according to different types of the roots   in the 
following sections. 

syms 

det 
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6.3 Solutions from Distinct Real Roots 
 

  We will use the following examples to show the derivation 
of exact solutions for the higher-order differential equations when 
roots of their characteristic equations are distinct real numbers.   
 
Example  Find solution of the third-order homogeneous differential 
equation, 

y
dx
dy

dx
yd

dx
yd

 6512
2

2

3

3

  0  

  By assuming the solution in the form of xe  and 
substituting it into the differential equation, we get,   

xxxx eeee    6512 23   0  

After dividing through by xe , the characteristic equation in the 
form of an algebraic equation is obtained,  

 16512 23    0  

Or,     14131    0  

i.e., ,11   312   and 413  . 

  The factor command can be used to factorize the above 
algebraic equation,  
 

>> syms lambda 
>> factor(12*lambda^3- 5*lambda^2 - 6*lambda - 1)  
 

ans = 
  

(lambda - 1)*(3*lambda + 1)*(4*lambda + 1) 
 
  Thus, the general solution of the given third-order 
differential equation is,  

4
3

3
21

xxx eCeCeCy    

where  ,1C  2C  and 3C  are constants.  The same solution is obtained 

by using the dsolve command,  
 

factor 
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>> dsolve('12*D3y - 5*D2y - 6*Dy - y = 0', 'x') 
  
ans = 
  

C1*exp(x) + C2/exp(x/3) + C3/exp(x/4) 

 
Example  Find solution of the fourth-order homogeneous differen-
tial equation, 

4 2

4 2
5 4

d y d y
y

dx dx
    0  

  Similar to the preceding example, we assume the solution 
in the form of xe  and substitute it into the differential equation to 
obtain the characteristic equation,  

 4 25 4    0  

Or,      2211    0  

i.e., 1 1,   2 1,    3 2   and 4 2   .  Thus, the general 

solution is, 

xxxx eCeCeCeCy 2
7

2
654

   

where ,4C  ,5C  6C  and 7C  are constants.  The same solution is 

obtained by using the dsolve command,  
 

>> syms x y 
>> dsolve('D4y - 5*D2y + 4*y = 0', 'x') 
  

ans = 
  

C4*exp(x) + C5/exp(x) + C6*exp(2*x) + C7/exp(2*x) 
 
Example Solve the initial value problem governed by the fourth-
order differential equation, 

y
dx
dy

dx
yd

dx
yd

dx
yd

67
2

2

3

3

4

4

    0  

with the initial conditions of   ,10 y    ,00 y    00 y  and 
  00 y . 

dsolve 
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  We first solve for a general solution of the given 
differential equation.  Assuming the solution in the form of xe  
leads to the characteristic equation,  

67 234      0  

The factor command can be used to factorize the algebraic 
equation above,  
 
>> syms lambda 
>> factor(lambda^4+lambda^3-7*lambda^2-lambda+6) 
  

ans = 
  

(lambda-1)*(lambda-2)*(lambda+1)*(lambda+3) 
 

i.e.,         3121    0  

So that ,11   ,22   13   and 34  .  Thus, the general 

solution is, 

xxxx eCeCeCeCy 3
1110

2
98

   

where ,8C  ,9C  10C  and 11C  are constants that can be determined 

from the initial conditions as follows,  

  0y  ;1  8C    9C    10C       11C   1   

  0y  ;0  8C    92C     10C    113C   0  

  0y   ;0  8C    94C    10C    119C  0   

  0y   ;0  8C    98C     10C    1127C  0  

The results are ,438 C  ,519 C  2110 C  and 20111 C .  

Hence, the exact solution is, 

xxxx eeeey 32

20
1

2
1

5
1

4
3

   

  The same exact solution can be obtained by using the 
dsolve command,  
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>> syms x y 
>> dsolve('D4y+D3y-7*D2y-Dy+6*y=0','y(0)=1',       
          'Dy(0)=0','D2y(0)=0','D3y(0)=0','x') 
 

ans = 
  

1/(2*exp(x)) - exp(2*x)/5 - 1/(20*exp(3*x)) + 
(3*exp(x))/4 
 

The solution of y that varies with x can be plotted by using the 
ezplot command as shown in the figure.  

 
 It is noted that MATLAB contains commands that can 
convert the solutions into other computer language directly.  This is 
convenient when the solution is to be used further in other 
programs.  For example, the solution above is converted to Fortran 
language by using the fortran command,  
 

>> fortran(ans)  
 

ans = 
 
   t0 = exp(-x)*(1.0D0/2.0D0)-exp(x*2.0D0)*(1.0D0/5.0D0)-exp(x*-3.0D0 
  +)*(1.0D0/2.0D1)+exp(x)*(3.0D0/4.0D0) 
 

In the Fortran language above, the executing statements must be in 
between the 7th and 72nd column.  The continuation line (last line 
above) that contains more executing statements is indicated by the 
plus sign in the 6th column.  
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6.4 Solutions from Repeated Real Roots 
 

  In the preceding chapter when the roots of the second-
order differential equations are repeated, we have learnt how to 
derive for their solutions.  For example, if the roots are 31   and 

32  , then the general solution is in the form of, 

xx xeey 33   

We will follow the same procedure to derive solutions of the 
higher-order differential equations when their roots are repeated.  
We will show detailed derivation by using the following examples.  
 
Example  Find solution of the third-order homogeneous differential 
equation, 

y
dx
dy

dx
yd

dx
yd

 33
2

2

3

3

  0  

  We assume the solution in the form of xe , substitute it 
into the differential equation and divide through by xe  to get the 
characteristic equation as, 

 133 23    0  

Or     111    0  

i.e., 1321   .  Thus, the general solution is, 
xxx exCexCeCy 2

141312   

 The same solution is obtained by using the dsolve 
command,  
 

>> syms x y 
>> dsolve('D3y - 3*D2y + 3*Dy - y = 0', 'x') 
  

ans = 
  

C12*exp(x) + C13*x*exp(x) + C14*x^2*exp(x) 
 
Example  Find solution of the fourth-order homogeneous differen-
tial equation, 

y
dx
dy

dx
yd

dx
yd

dx
yd

412136
2

2

3

3

4

4

   0  

dsolve 
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  Similar to the preceding example, by assuming the 
solution in the form of xe , this leads to the characteristic equation,  

412136 234     0  

The factor command is used to factorize the algebraic equation 
above, 
 
>> syms lambda 
>> factor(lambda^4+6*lambda^3+13*lambda^2+12*lambda+4) 
  
ans = 
  
(lambda + 2)^2*(lambda + 1)^2 
 

which gives,     22 21    0  

then,    121         and       243    
  Thus, the general solution of the fourth-order differential 
equation is,  

xxxx xeCeCxeCeCy 2
18

2
171615

   

where ,15C  ,16C  17C  and 18C  are constants.  The same solution is 

obtained by using the dsolve command,  
 
>> syms x y 
>> dsolve('D4y + 6*D3y + 13*D2y + 12*Dy +  
                                        4*y = 0', 'x') 
  

ans = 
  
C15/exp(x) + (C16*x)/exp(x) + C17/exp(2*x) +  
(C18*x)/exp(2*x) 

 
Example Solve the initial value problem governed by the fourth-
order differential equation, 

y
dx

yd
dx

yd
168 2

2

4

4

   0  

with the initial conditions of   ,00 y    ,10 y    00 y  and 
  00 y .  
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  Similar to the preceding example, we start by assuming 
the solution in the form of xe  and substituting into the differential 
equation.  This leads to the characteristic equation in the form of 
algebraic equation as,  

 168 24    0  

Or,     22 22    0  

Then, the roots are,  

221         and       243    

Thus, the general solution is,  

xxxx xeCeCxeCeCy 2
22

2
21

2
20

2
19

   

where  ,19C  ,20C  21C  and 22C  are constants that can be determined 

from the given initial conditions as follows,  

  0y  ;0  19C    0    21C     0  0   

  0y  ;1  192C    20C    212C     22C  1  

  0y   ;0  19C    20C    21C    22C  0   

  0y   ;0  192C    203C    212C     223C  0  
 

  The four equations above give the values of the four 
constants as ,8319 C  ,4120 C  8321 C   and  4122 C .  

Hence, the exact solution of this initial value problem is, 

xxxx xeexeey 2222

4
1

8
3

4
1

8
3    

  The same exact solution is obtained by using the dsolve,  
 

>> syms x y 
>> dsolve('D4y - 8*D2y + 16*y = 0', 'y(0)=0',   
          'Dy(0)=1', 'D2y(0)=0', 'D3y(0)=0', 'x') 
  

ans = 
  

(3*exp(2*x))/8 - 3/(8*exp(2*x)) - x/(4*exp(2*x)) 
- (x*exp(2*x))/4 
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The solution of y that varies with x is plotted as shown in the 
figure.  

 
 

 
6.5 Solutions from Complex Roots 
 Roots of the characteristic equations from the higher-order 
differential equations may be in the form of the conjugate complex 
numbers.  In this case, derivation of the general solutions is more 
complicated as shown by the following examples.  

 
Example  Find solution of the fourth-order homogeneous differen-
tial equation, 

y
dx

yd
dx

yd
45

2

2

4

4

   0  

  By assuming the solution in the form of xe , substituting 
it into the differential equation and dividing through by xe , we 
obtain the characteristic equation as,  

 45 24    0  

which is,    41 22    0  
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Then, i1 , i2 , i23   and i24  , where 1i .  Thus, 

the general solution of the fourth-order differential equation is, 
xixixixi eDeCeBeAy 22    

where A , B , C  and D  are constants.  From the Euler’s formula,  

  xie      xix  sincos   

and xie      xix  sincos   

the general solution can be written in the form of sine and cosine 
functions as,  

       xCxCxCxCy 2sin2cossincos 26252423   

where 23C , 24C , 25C , 26C  are functions of the constants A , B , C , 

D  above. 

  The same solution is obtained by using the dsolve 
command, 
 

>> syms x y 
>> dsolve('D4y + 5*D2y + 4*y = 0', 'x') 
  

ans = 
  

C23*cos(x) + C24*sin(x) + C25*cos(2*x) + 
C26*sin(2*x) 

 
Example Solve the initial value problem governed by the fourth-
order differential equation, 

y
dx

yd
dx

yd
22534

2

2

4

4

   0  

with the initial conditions of   10 y ,   00 y ,   00 y  and 

  00 y .  

  Similar to the preceding example, we assume the solution 
in the form xe  and substitute it into the differential equation.  This 
leads to the characteristic equation as,  

22534 24      0  

dsolve 
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The factor command can be used to factorize the algebraic 
equation above,  
 
>> syms lambda 
>> factor(lambda^4 + 34*lambda^2 + 225) 
  

ans = 
  

(lambda^2 + 9)*(lambda^2 + 25) 

to get,    259 22    0  

Then, i31  , i32  , i53  and i54   where 1i .  

Thus, the general solution of the fourth-order differential equation 
is, 

xixixixi eDeCeBeAy 5533    

where ,A  ,B  C  and D  are constants.  By applying the Euler’s 
formula, the general solution above can be written in the form of 
sine and cosine functions as, 

       xCxCxCxCy 5sin5cos3sin3cos 30292827   

where ,27C  ,28C  29C  and 30C  are to be determined from the four 

initial conditions as follows,  
 

  0y  ;1   27C    0    29C    0  1   
 

  0y  ;0  0   283C    0    305C  0  
 

 0y   ;0  279C    0   2925C    0  0   
 

 0y   ;0  0   2827C    0    30125C  0  

  These four equations give the values of the four constants 
as ,162527 C  ,028 C  16929 C  and 030 C .  Hence, the 

exact solution of this initial value problem is,    

   xxy 5cos
16
9

3cos
16
25

  

 

factor 
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 The same exact solution is obtained by using the dsolve 
command, 
 

>> syms x y 
>> dsolve('D4y + 34*D2y + 225*y = 0', 'y(0)=1',  
          'Dy(0)=0', 'D2y(0)=0', 'D3y(0)=0', 'x') 
  

ans = 
  

(25*cos(3*x))/16 - (9*cos(5*x))/16 
 
Such exact solution can be plotted easily by using the ezplot 
command.  The solution of y that varies with x is shown in the 
figure.    

 
 
 

6.6  Solutions from Mixed Roots 
 
  There are cases when the roots of the characteristic 
equation from the given differential equations are mixed between 
the real and complex numbers.  The same procedure explained 
earlier can be applied to derive for solutions as shown in the 
following examples.  
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Example  Find solution of the fourth-order homogeneous differen-
tial equation, 

y
dx
dy

dx
yd

dx
yd

dx
yd

 222
2

2

3

3

4

4

   0  

  The characteristic equation corresponds to the differential 
equation is,  

 1222 234    0  

or,     11 22    0  

i.e., ,11   ,12   i3  and i4   where 1i .  Since the 

roots consist of repeated real and conjugate complex numbers, then 
the general solution is in the form, 

xixixx eDeCxeBeAy   

where ,A  ,B  C  and D  are constants.  After applying the Euler’s 
formula, the solution can be written in the form of sine and cosine 
functions as,  

   xCxCxeCeCy xx sincos 34333231   

where ,31C  ,32C  33C  and 34C  are constants. 

  The same solution is obtained by using the dsolve 
command,  
 
>> syms x y 
>> dsolve('D4y-2*D3y+2*D2y-2*Dy+y = 0',  'x') 
  

ans = 
  
C31*exp(x)+C32*x*exp(x)+C33*cos(x)+C34*sin(x) 
 
Example  Solve the initial value problem governed by the fourth-
order differential equation, 

 y
dx
dy

dx
yd

dx
yd

dx
yd

 222
2

2

3

3

4

4

 0  

with the initial conditions of   ,00 y    ,20 y    00 y  and 

  00 y .
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  Since the given differential equation is the same as that in 
the preceding example, then the general solution is,  

   xCxCxeCeCy xx sincos 34333231   

where  ,31C  ,32C  33C  and 34C  are to be determined from the given 

initial conditions of,  

  0y  ;0  31C    0   33C    0  0   

  0y  ;2  31C    32C    0    34C  2  

  0y   ;0  31C    322C   33C    0  0   

  0y   ;0  31C    323C    0    34C  0  

By solving the four equations above, the four constants are 
,131 C  ,132 C  133 C  and 234 C .  Hence, the exact solution 

of this initial value problem is,  

   xxxeey xx sin2cos   

  The same exact solution is obtained by using the dsolve 
command,  
 
>> syms x y 
>> dsolve('D4y - 2*D3y + 2*D2y - 2*Dy + y = 0', 
'y(0)=0', 'Dy(0)=2', 'D2y(0)=0', 'D3y(0)=0', 'x') 
  

ans = 
  

cos(x) - exp(x) + 2*sin(x) + x*exp(x) 
 
The solution y that varies with x is plotted by using the ezplot 
command as shown in the figure.  
 
 
6.7 Nonhomogeneous Equations 
 
  The higher-order nonhomogeneous differential equations 
that we will learn how to solve for their solutions are in the form, 
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ya
dx
dy

a
dx

yd
a

dx
yd

a
dx

yd
a

n

n

nn

n

n 012

2

21

1

1 ........ 




     xf  

where the coefficients ,na  ,1na  ....., ,2a  1a  and 0a  are constants.  

The function  xf  on the right-hand-side of the equation may be 
in form of the polynomial, exponential, sine and cosine functions.  
The general solution of such differential equation consists of two 
parts, 

y    ph yy   

where hy  is the homogeneous solution of the homogeneous 

differential equation and py  is the particular solution.  We will 

employ the method of undetermined coefficients learned in the 
preceding chapter to find the particular solution.  The entire process 
for deriving general solutions of the higher-order nonhomogeneous 
differential equations will be demonstrated by using the following 
examples.  
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Example    Find solution of the third-order nonhomogeneous 
differential equation, 

dx
dy

dx
yd

dx
yd

6
2

2

3

3

    13  x  

  The corresponding characteristic equation of the homo-
geneous differential equation above is,  

  23    0  

which leads to the three roots of, 01  , 32   and 23  .  

  Then, the homogeneous solution is,  
xx

h eCeCCy 2
37

3
3635

  

where 35C , 36C  and 37C  are constants.  The same homogeneous 

solution is obtained by using the dsolve command,  
 

>> syms x y 
>> dsolve('D3y - D2y - 6*Dy = 0', 'x') 
  

ans = 
  

C35 + C36*exp(3*x) + C37/exp(2*x) 
 
  In the process of finding the particular solution py  using 

the method of undetermined coefficients, since the function  xf  
on the right-hand-side of the differential equation is 13 x , we 
should assume the solution in form of the polynomials.  The 
assumed polynomials should be second order so that after taking 
derivatives according to the terms on the left-hand-side of the 
equation will yield the first-order polynomials (term 3x) on the 
right-hand-side of the equation.  Thus, we assume the particular 
solution in the form,  

CxBxAyp  2  

where ,A  B  and C  are constants. 

 We substitute the assumed py  into the differential 

equation to get,  

dsolve 
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      )2(620 BAxA   13  x  

    )62(12 BAxA   13  x  

By comparing coefficients, the two algebraic equations are 
obtained,  
 A12  3  

and BA 62   1  

These two equations are solved to give 41A  and 121B .  
Then, the particular solution is, 

xxyp 12
1

4
1

2   

Hence, the exact solution of the third-order nonhomogeneous 
differential equation is,  

124

2
2

37
3

3635

xx
eCeCCy xx    

  The same solution is obtained by using the dsolve 
command,  
 
>> syms x y 
>> dsolve('D3y - D2y - 6*Dy = 3*x + 1', 'x') 
  

ans = 
  

C35 + C36*exp(3*x) + C37/exp(2*x) - x^2/4 - x/12 
 

where 35C , 36C  and 37C  are constants.  

 
Example Find solution of the fourth-order nonhomogeneous 
differential equation, 

y
dx

yd
dx

yd
45

2

2

4

4

    xsin10  

  The corresponding characteristic equation of the homo-
geneous differential equation above is,  

 45 24    0  

or,      2211    0  

dsolve 
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The four roots are ,11   ,12   23   and 24   which lead 

to the homogeneous solution, 

xxxx
h eCeCeCeCy 2

41
2

403938
   

  Since the function  xf  on the right-hand-side of the 
differential equation is in the form of sine function, thus we should 
assume the particular solution in the form of both sine and cosine 
functions as,  

xBxAyp sincos   

where A  and B  are constants.  By substituting the assumed 
particular solution py  into the differential equation,  

     cos sin 5 cos sin 4 cos sinA x B x A x B x A x B x       

   10sin x  

or,         xxBBBxAAA sin10sin45cos45   

i.e.,     xxBxA sin10sin10cos10   

and comparing the coefficients, we obtain 0A  and 1B .  Then, 
the particular solution is,  

xyp sin  

Thus, the general solution of the fourth-order nonhomogeneous 
differential equation is,  

xeCeCeCeCy xxxx sin2
41

2
403938    

  The same solution is obtained by using the dsolve 
command,  
 

>> syms x y 
>> dsolve('D4y - 5*D2y + 4*y = 10*sin(x)', 'x') 
  

ans = 
  

C38*exp(x) + C39/exp(x) + C40*exp(2*x) + 
C41/exp(2*x) + sin(x) 
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Example Find solution of the third-order nonhomogeneous 
differential equation, 

y
dx
dy

dx
yd

dx
yd

 33 2

2

3

3

  xe6  

  Similar to the preceding example, we first assume the 
homogeneous solution in the form of xe , substitute into the 
differential equation and divide through by xe  to get the 
characteristic equation,  

 133 23    0  

or,     111    0  

which leads to the three roots of ,11   12   and 13  .  Then, 

the homogeneous solution is, 
xxx

h exCxeCeCy 2
444342   

  In the process of finding the particular solution, since ,xe  
xxe  and xex2  are solutions of the third-order differential equation, 

thus we should assume the particular solution in the form,  
x

p eAxy 3  

After substituting the assumed solution py  into the differential 

equation, we obtain,   
 xAe6  xe6  

i.e., A  1  

so that,  py  xex3  

  It is noted that the diff command can alleviate the task of 
substituting py  into the left-hand-side of the differential equation,  
 
>> syms A 
>> yp = A*x^3*exp(x); 
>> LHS = diff(yp,x,3)-3*diff(yp,x,2)+    
         3*diff(yp,x)-yp 
  

LHS = 
  

6*A*exp(x) 

diff 
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 Hence, the general solution of the third-order nonhomo-
geneous differential equation is,  

xxxx exexCxeCeCy 32
444342   

The same solution is obtained by using the dsolve command,  
 
>> dsolve('D3y-3*D2y+3*Dy-y = 6*exp(x)', 'x') 
  

ans = 
  

C42*exp(x) + C43*x*exp(x) + C44*x^2*exp(x) + 
x^3*exp(x) 

 
Example Solve the initial value problem governed by the third-
order differential equation, 

dx
dy

dx
yd

dx
yd

2
13

2

2

3

3

  xe  

with the initial conditions of   ,10 y    20 y  and   10 y .  

  We start from finding the homogeneous solution from the 
homogeneous differential equation.  By assuming the solution in 
the form of xe , the corresponding characteristic equation is,  

  
2

13
23   0  

or,  





 

2
13

2   0  

So that the three roots are,  

,01          2 , 3    i
2
5

2
1
  

Then, the homogeneous solution is,  

   25sin25cos 2
47

2
4645 xeCxeCCy xx

h
   

where ,45C  46C  and 47C  are constants to be determined from the 

initial conditions.  

  The particular solution is assumed in the form,  
x

p eAy   
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By substituting the assumed particular solution into the differential 
equation, we obtain,  

 xAe
2

13  xe  

i.e., A  
13
2

  

It is noted that the diff command can help finding the result of the 
three derivative terms on the left-hand-side of the differential 
equation, 
 
>> syms A 
>> yp = A*exp(-x); 
>> LHS = diff(yp,x,3) + diff(yp,x,2) +  
         (13/2)*diff(yp,x) 
  

LHS = 
  
-(13*A)/(2*exp(x)) 
 

  Thus, the general solution of the third-order nonhomo-
geneous differential equation is,  

    xxx exeCxeCCy  
13
2

25sin25cos 2
47

2
4645  

where ,45C  46C  and 47C  are constants that can be determined from 

the initial conditions as follows,  

  0y  ;1  45C    46C      
13
2

 1  

  0y  ;2  0    462
1

C    472
5

C    
13
2

 2  

  0y   ;1  0    466C    472
5

C    
13
2

 1  

These three equations are solved to give ,131745 C  13246 C  
and 654647 C .  Hence, the solution of the initial value problem 

is,

diff 
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    xxx exexey  
13
2

25sin
65
46

25cos
13
2

13
17 22  

  The same solution is obtained by using the dsolve 
command,  
 

syms x y 
>> dsolve('D3y + D2y + (13/2)*Dy = exp(-x)', 
          'y(0)=1','Dy(0)=2','D2y(0)=-1','x') 
  

ans = 
  

(46*sin((5*x)/2))/(65*exp(x/2)) - 
(2*cos((5*x)/2))/(13*exp(x/2)) - 2/(13*exp(x)) + 
17/13 
 

The solution of y that varies with x can be plotted easily by using 
the ezplot command as shown in the figure.   
 

 
 
 

6.8 Numerical Methods 
 For all examples presented earlier in this chapter, the 
higher-order differential equations are linear.  The coefficients of 
the derivative terms are constants so that their exact solutions are 
not difficult to find.  The differential equations become nonlinear if 

0 1 2 3 4 5 6

1 

1.1 

1.2 

1.3 

1.4 

1.5 

1.6 

1.7 

 

 xy

x

       1317...2exp6525sin46 xx

dsolve 
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these coefficients are function of y.  Exact solutions are not 
available for most nonlinear differential equations. 

 In this section, we will employ numerical methods to find 
approximate solutions for both linear and nonlinear differential 
equations.  MATLAB contains many commands that can provide 
approximate solutions with high accuracy.  Several examples are 
presented to demonstrate the capability for finding solutions, 
especially for nonlinear differential equations where their exact 
closed-form solutions are not available.   
 
Example Use the ode23 command to solve the initial value 
problem governed by the third-order homogeneous differential 
equation, 

 y
dx
dy

dx
yd

dx
yd

 1010
2

2

3

3

 0   100  x  

with the initial conditions of   ,00 y    00 y  and   10 y .  
Then, plot to compare the approximate solution with the exact 
solution.  

  The ode23 command uses the combined second- and 
third-order Runge-Kutta method to solve the first-order differential 
equation.  Since the governed differential equation is third order, 
thus we need to separate it into three first-order differential 
equations.  This can be done by first writing the given differential 
equation in the form, 

1
1

2
1

2

3
1

3

1010 y
dx
dy

dx
yd

dx
yd

    0  

If we assign,  

2
1 y

dx
dy

          and          3
2 y

dx
dy

  

then, the given differential equation becomes,  

  1010 321
3 yyy

dx
dy

  

  To solve these three first-order differential simultaneously, 
it is more convenient to create an m-file.  The m-file, example1.m, 
consists of the three first-order differential equations as follows, 
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function yex1=example1(x,y) 
yex1 = [y(2); y(3); (y(1)-10*y(2)+y(3))/10]; 
 

We then employ the ode23 command by typing on the Command 
Window as,  

 
>> [x,y] = ode23('example1', [0 10], [0 0 1]) 
 
MATLAB will compute the values of ,1y  2y  and 3y  at different x 

locations, and at the same time, print the values of ,x  ,1y  2y  and 
3y  on the screen monitor.  In the ode23 command, the values in 

the first square bracket denote the interval of 100  x , while the 
values in the second square bracket are the three initial conditions 
of   ,001 y    002 y  and   103 y , respectively.  

  The computed solutions of ,1y  2y  and 3y  that vary with x 

can be plotted by using the plot command as shown in the figure.  
 

>> plot(x,y(:,1),'-k',x,y(:,2),'--k',x,y(:,3), 
        '-.k') 
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y 
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function 

ode23 

plot 
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  The exact solution of this initial value problem can also be 
found by using the dsolve command, 
 
>> dsolve('10*D3y - D2y + 10*Dy – y = 0', 
   'y(0)=0','Dy(0)=0','D2y(0)=1','x') 
  

ans = 
  

(100*exp(x/10))/101 - (100*cos(x))/101 - 
(10*sin(x))/101 
 

The approximate solution using the ode23 command is compared 
with the exact solution as shown in the figure.  The figure shows 
that both solutions agree very well.  
 

 
 
Example Use the ode45 command to solve the initial value 
problem governed by the fourth-order nonhomogeneous differential 
equation, 

 y
dx

yd
dx

yd
944249

2

2

4

4

  
2

sin
x

x   2000  x  

with the initial conditions of   ,100 y    ,00 y    00 y  and 
  00 y .  Then, plot to compare the approximate solution with 

the exact solution.  
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 The ode45 command employs the fourth- and fifth-order 
Runge-Kutta method to solve the first-order differential equation.  
Thus, before applying the method, the given fourth-order 
differential equation is separated into four first-order differential 
equations.  This can be done by first writing the given differential 
in the form of the unknown 1y  as, 

12
1

2

4
1

4

944249 y
dx

yd
dx

yd
    

2
sin

x
x   

Then, by assigning,  

2
1 y

dx
dy

 ,    3
2 y

dx
dy

         and        4
3 y

dx
dy

  

the fourth-order differential equation becomes,  

494429
2

sin 31
4 






  yy

x
x

dx
dy

 

  To solve the four first-order differential equations simul-
taneously, we create an m-file, example2.m, that contains the 
descriptions as follows,  
 
function yex2=example2(x,y) 
yex2 = [y(2); y(3); y(4); 
        (sin(x) - x/2 - 9*y(1) - 442*y(3))/49]; 
 
Then, we can use the ode45 command by typing on the Window 
Command as,  
 
>> [x,y] = ode45('example2',[0 200], [10 0 0 0]); 
 

The values of ,1y  ,2y  3y  and 4y  at different x locations will be 

determined.  In the ode45 command, the values in the first square 
bracket denote the interval of 2000  x , while the values in the 
second square bracket represent the four initial conditions of 
  ,1001 y    ,002 y    003 y  and   004 y , respectively. 

function 
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 It is noted that the dsolve command can be used to find 
the exact solution for this initial value problem,   
 
>> dsolve('49*D4y+442*D2y+9*y = sin(x)-x/2',  
   'y(0)=10','Dy(0)=0','D2y(0)=0','D3y(0)=0','x') 
  

ans = 
  

(441*cos(x/7))/44 - cos(3*x)/44 - x/18 + 
sin(3*x)/19008 + 1715*sin(x/7)/4224 - sin(x)/384 
 
The exact and approximate solutions are plotted together by using 
the following commands,  
 
>> xe=0:5:200; 
>> ye=(441*cos(xe./7))/44-cos(3.*xe)/44- xe./18 +  
      sin(3.*xe)/19008 + (1715*sin(xe./7))/4224 –  
      sin(xe)./384; 
>> plot(xe,ye,'ok') 
>> axis([0 200 -20 10]) 
>> hold on 
>> plot(x,y(:,1),'-k') 
 
The plot indicates that the approximate solution obtained from the 
ode45 command is very accurate as shown in the figure.  
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Example  For many higher-order linear differential equations, their 
exact solutions are not available.  As an example, MATLAB cannot 
provide exact solution if the term y9  on the left-hand-side of the 
differential equation in the preceding example is changed to y18 , 
i.e.,  

 y
dx

yd
dx

yd
1844249

2

2

4

4

  
2

sin
x

x   2000  x  

with the same initial conditions of   ,100 y    ,00 y    00 y  
and   00 y ,   
 
>> dsolve('49*D4y+442*D2y+18*y = sin(x)-x/2',   
   'y(0)=10','Dy(0)=0','D2y(0)=0','D3y(0)=0','x') 
 

Warning: Explicit solution could not be found.  
> In dsolve at 101 
  

ans = 
  
[ empty sym ] 
 

  In this case, the ode45 command can still be used to find 
the approximate solution.  We can follow the same procedure by 
creating an m-file, example3.m, as follows,   
 
function yex3=example3(x,y) 
yex3 = [y(2); y(3); y(4); 
        (sin(x) - x/2 - 18*y(1) - 442*y(3))/49]; 
 
Then, type the ode45 command on the Command Window as,  
 
>> [x,y] = ode45('example3',[0 200], [10 0 0 0]); 

 
 
The approximate solution is obtained as shown in the figure by 
using the plot command as,  
 
>> plot(x,y(:,1),'-k') 

function 

ode45 

plot 
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6.9 Concluding Remarks 
 

  In this chapter, we started from the general procedure for 
solving the higher-order homogeneous linear differential equations.  
The coefficients of the derivative terms are constants so that the 
exact closed-form solutions can be derived.  The forms of the 
solutions depend on the characteristic equations arisen from the 
differential equations.  The characteristic equations produce roots 
that could be distinct real, repeated real and conjugate complex 
roots including combination of them.  We have learnt how to derive 
the solutions and, at the same time, verify them by using MATLAB 
commands. 

 For the nonhomogeneous differential equations, we used 
the method of undetermined coefficients to find the particular 
solutions.  Several examples have been employed to show detailed 
derivation of the solutions.  The same approach was used to solve 
the initial value problems when their initial conditions are given in 
addition to the differential equations. 

 The numerical methods were introduced in the last section 
to solve the initial value problems.  Examples have shown that the 
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numerical methods in MATLAB can provide approximate solu-
tions with very high accuracy.  The main advantage of using the 
numerical methods is that approximate solutions can be obtained 
when the exact solutions are not available.  This is true for most 
realistic problems when their differential equations are complicated 
and usually in nonlinear form.  

 
 

Exercises 
 
 
 

1. In each sub-problem below, show that the given solution is the 
general solution of the corresponding differential equation,  

   (a) xxx eeey 32 274         
    0652  yyyy  
 

  (b) xxx exxeey 2222 53         
    08126  yyyy  
 

  (c)    xxxxy 2sin32cos5sincos2     

   045  yyy IV  
 

  (d)    xxxeey xx sin5cos432 22    

   04454  yyyyy IV  
 

  (e) xxxx xeexeey 5533 2375       

   022560264  yyyyy IV  
 
2. Employ the det command to determine the determinant 

(Wronskian) of the solution for each sub-problem in Problem 
1.  Note that the diff command can help finding derivatives 
of the solution.   

 
3. Use the diff command to show that,  

322332 7534 xxxx eeeey    

is the exact solution of the fourth-order homogeneous differen-
tial equation,   
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06472436  yyyyy IV  

Then, employ the det command to show that the Wronskian is 
nonzero.  

 
4. Use the diff command to show that, 

552323 235 xxxx xeexeey    

is the exact solution of the fourth-order homogeneous 
differential equation, 

0978109260100  yyyyy IV  

Then, employ the det command to show that the Wronskian is 
nonzero.   

 
5. Use the diff command to show that, 

             37sin537cos42sin32cos2 xxxxy   

is the exact solution of the fourth-order homogeneous 
differential equation, 

04920536  yyy IV  

Then, employ the det command to show that the Wronskian is 
nonzero.  

 
6. Use the diff command to show that, 

   xxxeey xx sin4cos53723   

is the exact solution of the fifth-order homogeneous differen-
tial equation, 

0222  yyyyy IVV  

 
7. Find the third-order differential equations corresponding to the 

following solutions,  

 (a) y  xxx eee 273    

 (b) y  xxx exxee 3233 542   

 (c) y         2cos2sin42cos52sin6 xxxx   
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 (d) y  xxxee xx cos2sin43 22    

 (e) y  272722 xxxx xeexee   

Then, verify the differential equations by substituting these 
solutions into them.  

 
8. Find the fourth-order differential equations corresponding to 

the following solutions,  

 (a) y  xxxx eeee 323    

 (b) y  xxxx xeexee   432 22  

 (c) y     xxxx 2cos92sin7cos6sin5   

 (d) y  xxxee xx cos3sin243   

 (e) y     xxxee xx 3cos43sin35 3737    

Then, verify them by comparing with the solutions obtained 
from the dsolve command.  

 
9. Solve the higher-order homogeneous differential equations 

when roots of the characteristic equations are distinct real 
numbers,  

  (a) yyyy 1496    0  

  (b) yyyyy 67 IV   0  

  (c) yyyyy 1051768616 IV   0  

  (d) yyyyy 6472436 IV    0  

  (e) yyyyyy 4236771423786360  IVV   0  

Show derivation of the solutions in detail and verify them by 
comparing with the solutions obtained from the dsolve 
command.  

 
10. Solve the initial value problems governed by the higher-order 

homogeneous differential equations when roots of the charac-
teristic equations are distinct real numbers,  

  (a) yyyy 6116    0  

      10 y ,    00 y ,    00 y  
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  (b) yyyy 12597930    0  

     00 y ,    10 y ,    00 y  

  (c) yyyyy 1201547114 IV   0  

     10 y ,    00 y ,     00 y ,    00 y  

  (d) yyyyy 21202632120 IV   0  

     10 y ,    00 y ,    00 y ,    00 y  

Show derivation of the solutions in detail and verify them by 
using the dsolve command.  Then, use the ezplot command 
to plot the variation of y in the interval of 20  x .  

 
11. Solve the higher-order homogeneous differential equations 

when roots of the characteristic equations are repeated real 
numbers,  

  (a) yyyy 8126    0  

  (b) yyyyy 4432 IV   0  

  (c) yyyyy 811085412 IV   0  

  (d) yyyyy 40040392 IV   0  

  (e) yyyyyy 84104  IVV   0  

Show derivation of the solutions in detail and verify them by 
comparing with the solutions obtained from the dsolve 
command.  

 
12. Solve the initial value problems governed by the higher-order 

homogeneous differential equations when roots of the 
characteristic equations are repeated real numbers, 

  (a) yyyy 644812      0  

      20 y ,    00 y ,    00 y  

  (b) yyyyy 3612112 IV    0  

     10 y ,    00 y ,    00 y ,    00 y  
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  (c) yyyyy 1632248 IV    0  

     00 y ,    10 y ,    00 y ,    00 y  

  (d) yyyyy 44231236 IV    0  

     30 y ,    00 y ,    00 y ,    00 y  

Show derivation of the solutions in detail and verify them by 
using the dsolve command.  Then, use the ezplot command 
to plot the variation of y in the interval of 20  x .  

 
13. Solve the higher-order homogeneous differential equations 

when roots of the characteristic equations are conjugate com-
plex numbers, 

  (a) yyy 45 IV   0  

  (b) yyy 22534 IV   0  

  (c) yyy 44127736 IV   0  

  (d) yyy 225481144 IV   0  

Show derivation of the solutions in detail and verify them by 
comparing with the solutions obtained from the dsolve 
command.  

 
14. Solve the initial value problems governed by the higher-order 

homogeneous differential equations when roots of the charac-
teristic equations are conjugate complex numbers, 

  (a) yyy 3613 IV   0  

     10 y ,    00 y ,    00 y ,    00 y  

  (b) yyy 14425 IV   0  

     00 y ,    10 y ,    00 y ,    00 y  

  (c) yyy 10024136 IV   0  

     00 y ,    10 y ,    20 y ,    00 y  

  (d) yyy 31361465144 IV   0  

     00 y ,    10 y ,    20 y ,    30 y  
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Show derivation of the solutions in detail and verify them by 
using the dsolve command.  Then, use the ezplot command 
to plot the variation of y in the interval of 100  x .  

 
15. Solve the higher-order homogeneous differential equations 

when roots of the characteristic equations are distinct real, 
repeated real or conjugate complex numbers, 

  (a) yyyy 448489   0  

  (b) yyyyy 3636134 IV  0  

  (c) yyyyy 2252409416 IV  0  

  (d) yyyyy 416253636 IV  0  

  (e) yyyyy 3696289600400 IV  0  

Show derivation of the solutions in detail and verify them by 
comparing with the solutions obtained from the dsolve 
command.  

 
16. Solve the initial value problems governed by the higher-order 

homogeneous differential equations when roots of the 
characteristic equations are distinct real, repeated real or 
conjugate complex numbers,  

  (a) yyyy 24576412      0  

     10 y ,    00 y ,    00 y  

  (b) yyyyy 91214819264 IV    0  

     00 y ,    10 y ,    00 y ,    10 y  

  (c) yyyyy 93061120100 IV    0  

     20 y ,    00 y ,    00 y ,    00 y  

  (d) yyyyy 456205126441 IV    0  

     00 y ,    10 y ,    00 y ,    20 y  

Show derivation of the solutions in detail and verify them by 
using the dsolve command.  Then use the ezplot command 
to plot the variation of y in the interval of 20  x . 
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17. Employ the dsolve command to find general solutions of the 
following higher-order differential equations,  

  (a) 18 117 101 1117 357y y y y y     IV   0  

  (b) 24 214 103 784 161 90y y y y y y      V IV   0  

  (c) 100 100 271 146 214y y y y y    VI V IV  
              6 9y y     0  

  (d) yyyyy  50331112614024 IVVVIVII  
       yy  40246   0  

  (e) 120 634 239 3296 2221y y y y y   VIII VII VI V IV  
       4876 7196 3456 576y y y y        0  

Then, verify them by substituting into the differential equa-
tions.  

 
18. Derive the general solutions of the higher-order nonhomo-

geneous differential equations,  

  (a) yyyy 24103    xe 7  

  (b) yyy  2510   924  xx  

 (c) yyy 9134 IV   xx sin2  

 (d) yyyyy 37550110189 IV  1 xxe  

 (e) yyyyy 25638428821681 IV     

           2cos xxe x    

Show derivation of the solutions in detail and verify them by 
comparing with the solutions obtained from the dsolve 
command.  

 
19. Solve the initial value problems governed by the higher-order 

nonhomogeneous differential equations and the initial condi-
tions,  

  (a) yyyy 3544496       12cos  x  

     00 y ,    00 y ,    00 y  
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  (b) yyy 9229100 IV   xsin  

     00 y ,    00 y ,    00 y ,    00 y  

  (c) yyyyy 924529664 IV    xex  2  

     00 y ,    50 y ,    30 y ,    10 y  

  (d) yyy 25261324 IV   xex  2  

     00 y ,    10 y ,    20 y ,    30 y  

Show derivation of the solutions in detail and verify them by 
comparing with the solutions obtained from the dsolve 
command.  Then use the ezplot command to plot the 
variation of y in the interval of 100  x .  

 
20. Employ the ode23 command to determine approximate 

solution of the initial value problem governed by the third-
order homogeneous differential equation,  

  yyyy 843152     0     10  x  

 with the initial conditions of   00 y ,   10 y  and   20 y .  

Then, use the dsolve command to find the exact solution.  
Plot to compare the two solutions in the interval of 10  x .  

 
21. Employ the ode23 command to determine approximate 

solution of the initial value problem governed by the fourth-
order homogeneous differential equation, 

  yyyyy 2560634624 IV   0     20  x  

 with the initial conditions of   00 y ,   10 y ,   20 y  
and   30 y .  Then, use the dsolve command to find the 
exact solution.  Plot to compare the two solutions in the 
interval of 20  x .  

 
22. Employ the ode45 command to determine approximate 

solution of the initial value problem governed by the fourth-
order nonhomogeneous differential equation, 



Exercises 227

  yyyyy 121575162942 IV    xex cos     

               20  x  

 with the initial conditions of         00000  yyyy . 
Then, use the dsolve command to find the exact solution.  
Plot to compare the two solutions in the interval of 20  x .   

 
23. Employ the ode45 command to determine approximate 

solution of the initial value problem governed by the fourth-
order nonhomogeneous differential equation, 

  yyy 225614 IV    xx 245 2    100  x  

 with the initial conditions of         00000  yyyy .  
Then, use the dsolve command to find the exact solution.  
Plot to compare the two solutions in the interval of 100  x .  

 
24. Check whether the dsolve command can find the exact 

solution of the initial value problem governed by the fourth-
order nonhomogeneous nonlinear differential equation,   

  61 225y y y y IV    xx 245 2      20  x  

 with the initial conditions of         00000  yyyy .  
If the exact solution could not be found, use the ode45 
command to solve for the approximate solution.  Plot to show 
the solution of y that varies with x in the interval of 20  x .    

 





 
 

 
 

Chapter 
7 

 
 

 

Laplace Transforms 

 
 
 
 
7.1 Introduction 
 

  Several practical problems are governed by the higher-
order nonhomogeneous differential equations.  Functions on the 
right-hand-side of the differential equations do have physical 
meanings.  These functions may represent an external force of a 
mechanical system or an impressed voltage in an electrical system.  
Magnitudes of these functions may change abruptly in the form of 
a unit impulse or square wave.  The method for solving the 
nonhomogeneous differential equations presented in the preceding 
chapters is not suitable for solving these types of problems.  The 
Laplace transform that we will learn in this chapter can solve these 
problems effectively.   

Laplace transform is a topic that creates difficulty in 
solving differential equations to most students.  This is mainly 
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because there are several transform formulas that need to 
memorize.  The Laplace transformation process includes both 
forward and inverse transformations.  The forward transformation 
can be carried out without much effort, while the inverse 
transformation is rather difficult and limited to few functions. 

 With the help of MATLAB commands, the task of 
transformations can be carried out easily.  We will start the chapter 
by learning the definition of the Laplace transform.  We will use 
examples to understand the transformation process.  Results of the 
transformations will be verified by using MATLAB commands.  At 
the end of the chapter, we will learn how to apply the method of 
Laplace transform to solve some realistic problems governed by the 
nonhomogeneous differential equations.  These include the mass-
spring-damper system subjected to different types of loadings.  
Solutions will be plotted to increase understanding of the system 
behaviors. 
  
 
7.2 Definitions 

 The Laplace transform is defined by the integration from 
0t  to   of the product between the functions ste  and  tf  as,  

 ℒ     
  

0

stf t e f t dt


   

where  tf  is the function of t for 0t .  The result is denoted by,  

  F s   ℒ     
  

0

stf t e f t dt


   

In the opposite way, the function  tf  is called the inverse Laplace 
transform of  sF ,  

   f t   ℒ   1 F s  

   The function  tf  may be in different forms.  For exam-
ples, if   1tf , the Laplace transform is, 
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ℒ   f t     ℒ  
  

00

1 1
1 st ste dt e

s s

 
      

If   atetf   where a is a constant, then the Laplace transform is,  

  ℒ   f t    ℒ 
0

at st ate e e dt


    

             

0

1 1s a te
a s s a


  

 
 

for 0 as . 

  If   attf sin , then the Laplace transform can be 
obtained as follows,  

  ℒ   f t    ℒ 
0

sin sinstat e at dt


   

                                          









00

cossin dtate
s
a

at
s

e
st

st

 

                                          22 as
a


  
Note that the result above is from integrating by parts, i.e., if we let,  

cL   ℒ cos at          and       sL      ℒ sin at  

then,  

0

cosst
cL e at dt


   

0 0

cos sin
st

ste a
at e at dt

s s


 

   

                                 
1

s

a
L

s s
   

0

sinst
sL e at dt


   

0 0

sin cos
st

st
c

e a a
at e at dt L

s s s


  

   

By substituting cL  from the upper into lower equation, we get,  







  ss L

s
a

ss
a

L
1

        or        
22

2

1
s
a

s
a

Ls 





   

Thus,         sL   ℒ 
2 2

sin
a

at
s a



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Similarly, if we substitute sL  from the lower equation into cL  in 

the upper equation, we get,  







 cc L

s
a

s
a

s
L

1
        or        

ss
a

Lc

1
1

2

2







   

i.e.,       cL     ℒ 
2 2

cos
s

at
s a




 

 This means the Laplace transform has the property of 
linearity as,  

ℒ     a f t b g t a  ℒ   f t b ℒ   g t  
where a and b are constants.  As an example, the hyperbolic sine 
function is,  

       sinh at   1

2
at ate e   

then,  
   ℒ sinh at  

1

2
 (ℒ ate  ℒ ate ) 

                      













asas
11

2
1

 

               22 as
a


   

Similarly, the hyperbolic cosine function is,  

          atat eeat 
2
1

cosh  

then,  

  ℒ cosh at  
1

2
 (ℒ ate  ℒ ate ) 

      













asas
11

2
1

 

       22 as
s


  
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 Laplace transform of a given function  tf  can be ob-
tained without much difficulty.  Many mathematical textbooks 
have shown tables of the Laplace transform for different functions.  
Same results are obtained by using MATLAB commands as will be 
shown in the following sections.  
 
 
7.3 Laplace Transform 

 MATLAB contains the laplace command that can be 
used to obtain result of the Laplace transform of a given function 
 tf .  For examples, if we want the Laplace transform of the 

function, 
  atetf   

we just enter the following,  
 

>> syms t s a 
>> laplace(exp(a*t)) 
 

ans = 
 

-1/(a - s) 
 

i.e., the result is,  

ℒ   f t    ℒ  1ate
a s

 


 

 Or, if we want the Laplace transform of the function,  

  attf sin  

we enter the command, 
 

>> laplace(sin(a*t)) 
 

ans = 
 

a/(a^2 + s^2) 
 

i.e., the result is, 

ℒ   f t    ℒ 
2 2

sin
a

at
a s




 

syms 

laplace 
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 Similarly, if we want the Laplace transform of the func-
tion,  

  attf cos  

we enter the command,  
 
>> laplace(cos(a*t)) 
 

ans = 
 

s/(a^2 + s^2) 
 

i.e., the result is, 

ℒ   f t    ℒ 
2 2

cos
s

at
a s




 

 The Laplace transforms of the hyperbolic sine and cosine 
functions, 

ℒ sinh at          and          ℒ cosh at  

can be obtained conveniently by entering the commands,  
 
>> laplace(sinh(a*t)) 
 

ans = 
 

-a/(a^2 - s^2) 
 

>> laplace(cosh(a*t)) 
 

ans = 
 

-s/(a^2 - s^2) 

 
i.e., the results are, 

            22 sa
a


              and              22 sa
s


  

These results agree with those derived earlier.  
 

  The laplace command can be used to provide the 
Laplace transforms of other functions, such as,  

           ℒ 2t             and             ℒ 7t  

laplace 
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>> laplace(t^2) 
  

ans = 
 

2/s^3 
 

>> laplace(t^7) 
 

ans = 
 

5040/s^8 
 

i.e., the results are,  

3

2
s

         and         8

5040
s

 

which agree with the formula,  

ℒ 
1

!n
n

n
t

s 
  

 The command can be also used to obtain the Laplace 
transforms of more complex functions.  For example, 

         atatatattf sinhcoscoshsin   
 

>> laplace(sin(a*t)*cosh(a*t)-cos(a*t)*sinh(a*t)) 
 

ans = 
 

(4*a^3)/(4*a^4 + s^4) 
 

The simple command may be used to reduce the complexity of 
the result above to yield,  

ℒ         
3

4 4

4
sin cosh cos sinh

4

a
at at at at

a s
 


 

 It is noted that the laplace command employs the 
property of linearity as mentioned earlier.   As an example, 

  ttf 51   

>> laplace(1 + 5*t) 
  

ans = 
 

1/s + 5/s^2 

laplace 
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i.e., the result is, 

ℒ 
2

1 5
1 5t

s s
    

Or, as another example,  

  tetf t 2sin104 3    

 

>> laplace(4*exp(-3*t) - 10*sin(2*t)) 
 

ans = 
 

4/(s + 3) - 20/(s^2 + 4) 
 

i.e., the result is,  

ℒ 3
2

4 20
4 10sin 2

3 4
te t

s s
   

 
 

 
 
7.4  Inverse Laplace Transform 

 MATLAB contains the ilaplace command to provide 
an inverse Laplace transform of a given function  sF .  For 
example, if we want to find the inverse Laplace transform of the 
function, 

 
s

sF
1

  

we enter the commands,  
 
>> syms t s a b 
>> ilaplace(1/s) 
 

ans = 
 

1 
 
i.e., we obtain the result of,  

 f t    ℒ   1 F s   ℒ 1
1

1
s

    
 

ilaplace 
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Or, as another example, to find the inverse Laplace transform of,  

 
as

sF



1

 

>> ilaplace(1/(s-a)) 
 

ans = 
 

exp(a*t) 
 

i.e., the result is,  

 f t   ℒ   1 F s   ℒ 1
1

ate
s a

     
 

And another example, 

  22 sa
a

sF


  

>> ilaplace(a/(a^2 + s^2)) 
  

ans = 
 

sin(a*t) 
 

i.e., 

 f t   ℒ   1 F s   ℒ 1
2 2

sin
a

at
a s

     
 

Also, the inverse Laplace transform of the function,  

  22 as
s

sF


  

>> ilaplace(s/(s^2 - a^2)) 
 

ans = 
 

cosh(a*t) 
 

i.e., 

 
Note that the results obtained may be in form of long expressions.  
The simple command can be used to simplify their complexity.  

     at
as

s
sFtf cosh

22
11 










 ℒ ℒ

ilaplace 
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Many differential equation textbooks provide tables of inverse 
Laplace transforms for some popular forms of  sF . 

  The ilaplace command can reduce effort to find inverse 
Laplace transforms of complicated functions  sF .  For example, 

 
32

73
2 




ss
s

sF  

The process to perform the inverse transformation of this function 
is as follows,  

  f t    ℒ   1 F s    ℒ 1
2

3 7

2 3

s

s s


 
   

 

     ℒ
 

1
2

3 7

1 4

s

s

  
 

   
  ℒ

 
 

1
2

3 1 10

1 4

s

s

   
 

   
 

    3ℒ
 

1
2

1
5

1 4

s

s

    

   
ℒ

 
1

2

2

1 4s

  
 

   
 

   tete tt 2sinh52cosh3   

    ttet 2sinh52cosh3   

   tt ee  34  

In the process shown above, terms must be arranged properly so 
that results could be found from the inverse Laplace transform 
table.  The same result is obtained easily by using the ilaplace 
command,   

>> ilaplace((3*s + 7)/(s^2 - 2*s - 3)) 
 

ans = 
 

4*exp(3*t) - 1/exp(t) 
 

 As another example when  sF  is complicated, 

 
 22 1


s

s
sF  
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The inverse Laplace transform can be obtained easily by using the 
ilaplace command, 
  

 

>> ilaplace(s/((s^2+1)^2)) 
 

ans = 
 

(t*sin(t))/2 
 

i.e., the result of  tf  is,  

 f t   ℒ   1 F s   ℒ
 

1
22 1

s

s

  
 

  
 

       tt sin
2
1

  
 

Variation of the  tf  function is plotted using the ezplot 
command as shown in the figure below. 
 
>> ezplot(ans) 
 

 
  The ilaplace command can provide the inverse Laplace 
transform even though the given function  sF  is quite compli-
cated,  
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     421
962





sss

ss
sF  

 

>> ilaplace((s^2+6*s+9)/((s-1)*(s-2)*(s+4))) 
 

ans = 
 

(25*exp(2*t))/6 + 1/(30*exp(4*t)) - (16*exp(t))/5 
 

i.e., the result of  tf  is,  

 f t   ℒ   1 F s   ℒ
   

2
1

6 9

1 2 4

s s

s s s


  
    

 

                                   ttt eee
5

16
30
1

6
25

42    

which can be plotted by using the ezplot command as shown in 
the figure.  
 
>> ezplot(ans) 
 

 

The figure indicates a sudden change of  tf  in the interval of 
5 4t    .  If we want to amplify the change that occurs in 
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the interval of 22  t , we can modify the ezplot command 
slightly by including the desired interval for plotting as follow,  
 
>> ezplot(ans, [-2, 2]) 
 

The variation of  tf  in the interval of 22  t  is now shown in 
the figure.  

 
 
 

7.5  Solving Differential Equations 

 In this section, we will learn how to apply the method of 
the Laplace transform to solve the initial value problems.  We will 
see that the transformation changes the differential equation to an 
algebraic equation which is easier to solve.  It should be noted that 
the Laplace transform for the first-order derivative of function  tf  
is, 

ℒ   f t s  ℒ     0f t f  

Similarly, the transform for the second-order derivative of function 
 tf  is, 

ℒ    2f t s  ℒ       0 0f t s f f    
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The transformation for the higher-order derivatives of the function  
 tf  can be determined in the same way.  Application of the 

Laplace transform method for solving the initial value problems is 
demonstrated by using the following examples.  
 
Example  Solve the initial value problem governed by the second-
order nonhomogeneous differential equation, 

tyy   

with the initial conditions of   10 y  and   20 y .  We start 
from finding the Laplace transform of the differential equation, 

 ℒ y  ℒ y     ℒ t  

which gives,  
2s ℒ     0 0y s y y   ℒ y  ℒ t  

Since  ℒ  21t s  can be found by using the laplace command,       
 
>> syms t s y 
>> laplace(t) 
 

ans = 
 

1/s^2 
 
With the given initial conditions of   10 y  and   20 y , then 
the equation above becomes, 

2
2 1

2
s

YsYs   

or,          12
1

2
2 






  ss

s
Y  

The inverse Laplace transform of the Y function above is,  

y   ℒ  1 Y  ℒ  1 2
2

1
2 1s s

s
       

  
 

which can be obtained by using the ilaplace command,  
 

syms 

laplace 
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>> ilaplace((1/s^2+s-2)/(s^2+1)) 
 

ans = 
 

t + cos(t) - 3*sin(t) 
 
Thus, the solution of the initial value problem is,  

ttty sin3cos   

  It is noted that if we solve this problem by hands, we need 
to arrange the terms of s on the right-hand-side of the Y equation 
properly so that we can find their inverse Laplace transforms from 
the transform table as follows,  

     1
2

1
1

222 






s
s

ss
Y  

   
1

2
11

11
2222 








ss

s
ss

 

  
1

3
1

1
222 





ss

s
s

 

Then, 

y   ℒ  1 Y  ℒ 1
2 2 2

1 3

1 1

s

s s s
      

 

Thus, the solution is,   

ttty sin3cos   

  Such solution can be plotted by using the ezplot com-
mand as shown in the figure.  
 
>> ezplot(ans, [0, 10]) 
 
The plot shows that both the initial conditions of   10 y  and 
  20 y  are satisfied.  This example demonstrates the advantage 

of the Laplace transform method for solving the initial value 
problem conveniently.  Results of the Laplace and inverse Laplace 
transforms are obtained by using the laplace and ilaplace 
commands, respectively.  

ilaplace 

ezplot 
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Example  Solve the initial value problem governed by the second-
order nonhomogeneous differential equation,  

teyyy 2423   
with the initial conditions of   30 y  and   50 y . 

  We start from finding the Laplace transform of the 
differential equation,  

ℒ  3y  ℒ  2y  ℒ  4y  ℒ 2te  

Here ℒ   2 1 2te s    which is obtained from using the laplace 

command,  
 
>> laplace(exp(2*t)) 
 

ans = 
 

1/(s - 2) 
 

so that the transformed equation is,  

       
2

4
203002


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After applying the initial conditions, the transformed equation 
becomes,  

   
2

4
233532




s
YsYsYs  

which gives,  

 23143
2

4
2 






 


 sss

s
Y  

The solution is then obtained by inverse transformation, 

y   ℒ  1 Y  ℒ  1 2
4

3 14 3 2
2

s s s
s

          
 

which can be done by using the ilaplace command,  
 
>> ilaplace(((4/(s-2))-3*s+14)/(s^2-3*s+2)) 
 

ans = 
 

4*exp(2*t) - 7*exp(t) + 4*t*exp(2*t) 
 
Hence, the solution of the initial value problem is,  

ttt eteey 22 474   

The solution of y that varies with t is plotted by using the ezplot 
command in the interval of 10  t  as shown in the figure.  
 
>> ezplot(ans, [0, 1]) 

 
Example  Solve the initial value problem governed by the fourth-
order homogeneous differential equation, 

0 yyIV  

with the initial conditions of   00 y ,   00 y ,   00 y  and 
  10 y . 

 Again, we start by performing the Laplace transform of 
the given differential equation,  

ℒ IVy   ℒ  0y   

ilaplace 
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to give,  

        00000 234  YyysysysYs  

Then, we apply the initial conditions to obtain,  

010004  YYs  

Thus,   

1
1

4 


s
Y  

After that, we can find the inverse Laplace transform by using the 
ilaplace command,  
 
>> ilaplace(1/(s^4-1)) 
 

ans = 
 

sinh(t)/2 - sin(t)/2 
 
Hence, the solution of this initial value problem is,  

 tty sinsinh
2
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  
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Example  Motion of the mass in the mass-spring-damper system as 
shown in the figure is governed by the second-order nonhomo-
geneous differential equation, 

 tyyy  22  

with the initial conditions of   00 y  and   00 y .  The notation 
 t  on the right-hand-side of the differential equation is the Dirac 

delta function representing a unit impulse applied on the mass.  The 
coefficients in the differential equation are equivalent to the mass 
of 2m , the damping coefficient of 1c  and the spring stiffness 
of 2k .    

 
 

  We can use the method of Laplace transform to solve for 
the mass motion which is the displacement in the vertical direction 
y(t) that varies with time t.  Similar to the preceding examples, we 
start from transforming the differential equation,  

2ℒ y  ℒ  2y  ℒ y  ℒ   t  

which leads to,  

        120002 2  YyYsyysYs  

It is noted that transformation of the Dirac delta function on the 
right-hand-side of the differential equation can be obtained 
conveniently by using the laplace command,  
 

>> laplace(dirac(t)) 
  

ans = 
 

1 

 t
 ty

m

kc

0
0

t

1

 t

laplace 
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We apply the given initial conditions of zero displacement and 
velocity at time 0t  to give,  

    120002 2  YYsYs  

Thus,       
22

1
2 


ss

Y  

  Then, we perform inverse transformation to find the 
solution of the displacement y(t) that varies with time t,  

 y t   ℒ  1 Y  ℒ 1
2

1

2 2s s
  
   

 

This is done by using the ilaplace command,  
 
>> ilaplace(1/(2*s^2+s+2)) 
  

ans = 
  

(2*15^(1/2)*sin((15^(1/2)*t)/4))/(15*exp(t/4)) 
 
Hence, the solution for the motion of the mass is,  

  







  tety t

4
15

sin
15

2
4  

The motion is plotted for the interval of 150  t  by using the 
command >> ezplot(ans, [0, 15]) as shown in the figure.  At 
the early time, the displacement is large from the unit impulse that 
applies on the mass.  The displacement decreases as the time 
increases due to the damping effect.  

 If the system does not include the damper  0c , the 
governing differential equation becomes, 

 tyy  22  

After performing transformation, we get, 

22
1

2 


s
Y  

Then, we find the solution by performing the inverse transforma-
tion,  

ilaplace 
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 y t   ℒ  1 Y  ℒ 1
2

1

2 2s
  
  

 

which can be done by using the ilaplace command,  
 
>> ilaplace(1/(2*s^2+2)) 
 

ans = 
 

sin(t)/2 
 
This leads to the solution of the motion when there is no damper,  

 
2

sin t
ty   

The motion can be plotted by using the ezplot command, 
 
>> ezplot(ans, [0, 15]) 
 
The figure shows that the mass moves up and down as the sine 
function about 0y .   
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Example   Determine the displacement y(t) of the mass if the mass-
spring-damper system in the preceding example is subjected to a 
unit step (Heaviside) function as shown in the figure. 

 

  For the mass-spring-damper system with 2m , 1c  and 
2k  as explained in the preceding example, the corresponding 

differential equation is, 

 tHyyy  22  

The forcing function on the right-hand-side of the equation is, 
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This differential equation is to be solved with the initial conditions 
of zero displacement and velocity at 0t , i.e.,   00 y  and 
  00 y . 

  By considering the differential equation, we can see that as 
t , 0y  and 0y , then the displacement at the 

equilibrium position is 5.021 y . 

  To determine the dynamic response of the mass, the 
Laplace transformation is applied to the differential equation,  

2 ℒ y  ℒ  2y  ℒ y  ℒ   H t  

which gives,  

       
s

YyYsyysYs
1

20002 2   

The transformation of the unit step function on the right-hand-side 
of the equation is obtained easily by using the laplace command,  
 
>> laplace(heaviside(t)) 
 

ans = 
 

1/s 
 
Then, the initial conditions for the displacement and velocity of 
  00 y  and   00 y  are imposed to give,  

   
s

YYsYs
1

20002 2   

i.e., 

 22
1

2 


sss
Y  

  The inverse transformation is performed to yield the 
solution of the displacement y that varies with time t,  

 y t   ℒ  1 Y  ℒ
 

1
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2 2s s s
  
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This can be done by using the ilaplace command,  

laplace 
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>> ilaplace(1/(s*(2*s^2+s+2))) 
  
ans = 
 

1/2 - (cos((15^(1/2)*t)/4) + 
(15^(1/2)*sin((15^(1/2)*t)/4))/15)/(2*exp(t/4)) 
 
which is, 

  
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




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
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4
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1
4
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2
1

2
1

44  

  The vertical movement y that varies with time t is plotted 
by using the ezplot command in the interval of 150  t  as 
shown in the figure,  
 

>> ezplot(sol, [0, 15, 0, .8]) 
 

where sol is the same as ans under the quote sign (‘ ’).  It can be 
seen from the figure that the system approaches the equilibrium 
configuration at the displacement of 5.0y  as expected.  

 
 If we increase the damping coefficient from 1c  to 

2c , then the differential equation becomes,  
 tHyyy  222  
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This leads to the value of Y  after performing transformation,  

 12
1

2 


sss
Y  

Then, the displacement solution is,  

 y t   ℒ  1 Y  ℒ
 

1
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2 1s s s

 
   

 

The ilaplace command is used to find the inverse Laplace 
transform,   
 
>> ilaplace(1/(2*s*(s^2+s+1))) 
  
ans = 
  
1/2 - (cos((3^(1/2)*t)/2) + 
(3^(1/2)*sin((3^(1/2)*t)/2))/3)/(2*exp(t/2)) 
 
i.e., 

  
















  tetety tt

2
3

sin
32

1
2
3

cos
2
1

2
1

22  

The solution above is plotted as shown in the figure.  The figure 
shows that, when the damping coefficient is larger, the mass-
spring-damper system reaches the equilibrium configuration sooner 
with smaller magnitude of oscillation. 

 The technique of Laplace transform can also be applied to 
solve a set of differential equations.  This is explained by using the 
examples as follows. 

 
Example  Solve a set of two first-order differential equations, 

    032  yxx  
    02  xyy  

for the solution of x(t) and y(t) with the initial conditions of 
  80 x  and   30 y .  

 We start by finding the Laplace transform of the first 
differential equation,  

ilaplace 
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     ℒ  2x  ℒ  3x  ℒ  0y    

       0320  YXxXs  

and apply the initial condition to obtain,  
    0328  YXXs  
or,      832  YXs  
Similarly, we find the Laplace transform of the second differential 
equation,  
    ℒ y ℒ  2y  ℒ  0x   

      020  XYyYs  
and apply the initial condition to obtain,  
  023  XYYs  
or,    321  XYs  
  Thus, the Laplace transformation leads to the two alge-
braic equations,  
   832  YXs  

   312  YsX  

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8     

 ty

t



7.5  Solving Differential Equations 255

which can be solved for function X and Y.  We can use the solve 
command to solve them as follows,  
 

>> syms x y s 
>> eq1 = '(s-2)*x + 3*y = 8'; 
>> eq2 = '2*x + (s-1)*y = 3'; 
>> [xx yy] = solve(eq1,eq2) 
 

xx = 
 

-(8*s - 17)/(- s^2 + 3*s + 4) 
 

yy = 
 

-(3*s - 22)/(- s^2 + 3*s + 4) 
 

to obtain,    
43

178
2 




ss
s

X  

and     
43

223
2 



ss

s
Y  

  Then, we perform the inverse transformation,  

   x t   ℒ  1 X   ℒ 1
2

8 17

3 4

s

s s


     
 

and  y t    ℒ  1 Y    ℒ 1
2

3 22

3 4

s

s s


     
 

by using the ilaplace command,  
 
>> ilaplace(-(8*s - 17)/(- s^2 + 3*s + 4)) 
 

ans = 
 

5/exp(t) + 3*exp(4*t) 
 

>> ilaplace(-(3*s - 22)/(- s^2 + 3*s + 4)) 
 

ans = 
 

5/exp(t) - 2*exp(4*t) 
 

  Hence, the solutions of the coupled first-order differential 
equations are,  
      tt eetx 435    

and      tt eety 425    

solve 

ilaplace 
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Example  A mass-spring system consisting of two masses and two 
springs is shown in the figure.  The two masses are 1m  and 2m , 

while the two springs have the spring stiffness of 1k  and 2k , 

respectively.  The motion of the two masses ( 1y  and 2y ) are 
governed by the two differential equations from the Newton’s 
second law. 

 
 
 

 

 

Mass  1m  
      1221111 yykykym   

 

Mass  2m  
 12222 yykym   

If ,11 m ,12 m 61 k  and 
42 k , then the differential 

equations that describe the 
motions of  ty1  and  ty2  at 
any time t  are,  

    0410 211  yyy  
and     044 212  yyy  
 

The coupled differential equations above will be solved with the 
initial conditions of   ,001 y    ,101 y    002 y  and   102 y . 

  We start by transforming the first differential equation,  
   ℒ 1 10y  ℒ 1 4y  ℒ 2 0y   

         041000 21111
2  YYyysYs  

After applying the given initial conditions, we obtain,  
      041010 211

2  YYYs  

or,      1410 21
2  YYs  

  Similarly, we transform the second differential equation, 

1m

1k

2m

2k

1m

1k

2m

2k

1y

2y

1m

2m

11 yk

 122 yyk 
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    ℒ 2 4y  ℒ 1 4y  ℒ 2 0y   

      04400 21222
2  YYyysYs  

After applying the given initial conditions, we obtain,  

     04410 212
2  YYYs  

or,                                          144 2
2

1  YsY  

 Thus, the two algebraic equations after applying the trans-
formation and initial conditions are,  
      1410 21

2  YYs  

     144 2
2

1  YsY  

We can use the solve command to solve for 1Y  and 2Y  as follows,  
 

>> syms y1 y2 s 
>> eq1 = '(s^2+10)*y1 - 4*y2 = 1'; 
>> eq2 = ' 4*y1 - (s^2+4)*y2 = 1'; 
>> [yy1 yy2] = solve(eq1,eq2) 
 

yy1 = 
 

s^2/(s^4 + 14*s^2 + 24) 
 
yy2 = 
 

-(s^2 + 6)/(s^4 + 14*s^2 + 24) 
 

i.e.,   
2414 24

2

1 


ss
s

Y  

    
2414

6
24

2

2 



ss

s
Y  

  Then, we find the inverse Laplace transforms,  

   1y t  ℒ  1
1Y   ℒ

2
1

4 214 24

s

s s
  
   

 

   2y t   ℒ  1
2Y   ℒ

2
1

4 2

6

14 24

s

s s


    
 

by using the ilaplace command,  

solve 
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>> ilaplace(s^2/(s^4 + 14*s^2 + 24)) 
 

ans = 
 

(3^(1/2)*sin(2*3^(1/2)*t))/5 - 
(2^(1/2)*sin(2^(1/2)*t))/10 
 

>> ilaplace(-(s^2 + 6)/(s^4 + 14*s^2 + 24)) 
 

ans = 
 

- (2^(1/2)*sin(2^(1/2)*t))/5 - 
(3^(1/2)*sin(2*3^(1/2)*t))/10 
 

  The solutions of  ty1  and  ty2  representing the displace-

ments of mass 1m  and 2m  that vary with time t are, 

         ttty 2sin
10

2
32sin

5
3

1   

         ttty 32sin
10

3
2sin

5
2

2   

These displacements  ty1  and  ty2  of the mass 1m  and 2m  are 
plotted as shown in the figures.  
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7.6  Concluding Remarks 

   In this chapter, we have studied the method of Laplace 
transform for solving differential equations.  There are many 
practical problems that are governed by the nonhomogeneous 
differential equations for which the forcing functions on the right-
hand-side of the equations are in form of the impulse or step 
functions.  The standard methods learned in the preceding chapters 
are not suitable for solving this type of problems while the method 
of Laplace transformation can handle them very well. 
 We started from understanding the definitions of the 
Laplace transform and inverse Laplace transform.  Several 
examples were presented to show the transformations of many 
functions.  At the same time, the laplace and ilaplace 
commands are used to confirm the derived results.  The method of 
Laplace transform was then applied to solve the nonhomogeneous 
differential equations for the problems mentioned above.  The 
problems may be governed by a single differential equation or 
coupled equations.  The method of Laplace transform changes the 
differential equations into algebraic equations so that they can be 
solved easier.  Several examples have demonstrated the advantage 
of the method to provide solutions to this type of problems 
effectively.      
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Exercises 
 
1. Use the laplace command to find  sF  which are the 

Laplace transforms of the following functions,  
    (a)  tf  21 t         (b)  tf  21t  

   (c)  tf  212  ta  (d)  tf    2122 tba   

   (e)  tf  tbeat cos  (f)  tf  tbt cos  

 where a and b are constants.  
 

2. Use the laplace command to find  sF  which are the 
Laplace transforms of the following functions, 

   (a)  tf  tt 22          (b)  tf   22 3 t  

   (c)  tf  t4sin2  (d)  tf  





 

2
1

3sin t  

   (e)  tf  te t cosh2  (f)  tf  tet 32  
 
3. Use the laplace command to find  sF  which are the 

Laplace transforms of the following functions, 
   (a)  tf  te t 3cos2         (b)  tf  34 23  tt  

   (c)  tf  tat sin3  (d)  tf  tet 24  

   (e)  tf  tbet ta sin  (f)  tf  tbet ta cos  

 where a and b are constants. 
 
4. Use the laplace command to find  sF  which are the 

Laplace transforms of the following functions, 
   (a)  tf  tt 2cos52sin6   

   (b)  tf  tt 5sinh45cosh3    

   (c)  tf   22 35  te   

   (d)  tf   31 tet    

   (e)  tf    tee tbta /     

   (f)  tf   ttbta cossin     

 where a and b are constants. 
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5. Use the ilaplace command to find  tf  which are the 
inverse Laplace transforms of the following functions, 

   (a)  sF  
 2

s

s a



        (b)  sF  

  
1

s a s b


 
 

   (c)  sF  
  

s

s a s b


 
 (d)  sF  

  2 2

s

s a s b


 
 

   (e)  sF  
 222 as

s


  (f)  sF  44 bs

s


  

 where a and b are constants. 
 

6. Use the ilaplace command to find  tf  which are the 
inverse Laplace transforms of the following functions, 

   (a)  sF  tet 4.28.3         (b)  sF  tet 5.043   

   (c)  sF  
 31

7




s
 (d)  sF  

 2




s

 

   (e)  sF  
294

15
2 


ss

 (f)  sF  
124

562
2 




ss
s

 

 

7. Use the ilaplace command to find  tf  which are the 
inverse Laplace transforms of the following functions, 

   (a)  sF  
 42

6




s
        (b)  sF  

16
4

2 


s
 

   (c)  sF  
52

1
2 




ss
s

 (d)  sF  
204

13
2 




ss
s

 

   (e)  sF  
1

1
4 


s

 (f)  sF  
32

1




s
 

 

8. Use the ilaplace command to find  tf  which are the 
inverse Laplace transforms of the following functions, 

   (a)  sF    521 2

2




sss
s

 

   (b)  sF  
 

 
52

15
16

3

2

2
224 










ss
s

ss
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   (c)  sF  
  31243

52





ss

s
  

   (d)  sF  
   542

243
22

2





sss

ss
  

   (e)  sF  
   32

3120
2

2





ss

ss
   

   (f)  sF  423

3024
9

18245
s

s
s
s

s
s 








    

 
9. Use the method of Laplace transform to solve the second-order 

nonhomogeneous differential equation,  

tyy 94   

   with the initial conditions of   00 y  and   70 y . 

 
10. Use the method of Laplace transform to solve the second-order 

nonhomogeneous differential equation, 

tyyy  23  

   with the initial conditions of   10 y  and   00 y . 

 
11. Use the method of Laplace transform to solve the second-order 

nonhomogeneous differential equation, 

teyyy t 2sin52   

   with the initial conditions of   20 y  and   10 y . 

 
12. Use the method of Laplace transform to solve the third-order 

nonhomogeneous differential equation, 

teyy   

   with the initial conditions of       0000  yyy .  
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13. Use the method of Laplace transform to solve the fourth-order 
nonhomogeneous differential equation, 

tyyy sin2 IV  

   with the initial conditions of         00000  yyyy .  

 
14. Use the method of Laplace transform to solve the fourth-order 

homogeneous differential equation, 

04  yy IV  

   with the initial conditions of    0 2, 0 0,y y   0y 

 4, 0 0y  . Then, verify the solution by substituting it into 

the differential equation and initial conditions to check whether 
they are satisfied.  

 
15. Use the method of Laplace transform to solve the fourth-order 

homogeneous differential equation, 

0464  yyyyy IV  

   with the initial conditions of    0 0, 0 1,y y   0 0,y 

 0 1y  .  

 
16. Use the method of Laplace transform to solve the second-order 

nonhomogeneous differential equation, 

 tyy  4  

   where  t  is the Dirac delta function at time 0t  with the 

initial conditions of   00 y  and   00 y .  Plot the solution 

of  ty  in the interval of 100  t .   

 
17. Use the method of Laplace transform to solve the second-order 

nonhomogeneous differential equation, 

 tyyy  42  



Chapter 7  Laplace Transforms 264

   where  t  is the Dirac delta function at time 0t  with the 

initial conditions of   00 y  and   00 y .  Plot the solution 

of  ty  and check whether it satisfies the initial conditions.   
 
18. Use the method of Laplace transform to solve the second-order 

nonhomogeneous differential equation, 

 tHyy  4  

   where  tH  is the Heaviside function at time 0t  with the 

initial conditions of   00 y  and   00 y .  Plot the solution 

of  ty  in the interval of 100  t .   
 
19. Use the method of Laplace transform to solve the set of two 

first-order homogeneous differential equations, 

    yxx   

    xy 2  

   with the initial conditions of   00 x  and   10 y .   
 
20. Use the method of Laplace transform to solve the set of two 

first-order nonhomogeneous differential equations, 

    xyx 22   1  

    yxyx 33   2  

   with the initial conditions of   00 x  and   00 y .  Then, 
verify the solutions by substituting them into the differential 
equations and initial conditions to check whether they are 
satisfied.      

 
21. Use the method of Laplace transform to solve the set of two 

second-order homogeneous differential equations, 

    yxx   0  

   xyy   0  

   with the initial conditions of   ,00 x    ,20 x    00 y  

and   10 y . 
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22. Use the method of Laplace transform to solve the set of two 
second-order nonhomogeneous differential equations, 

    yx   2t  

   yx   t4  

   with the initial conditions of   ,80 x    ,00 x    00 y  and 

  00 y .   

 





 
 

 
 

Chapter 
8 

 
 

 

Fourier Transforms 
 
 
 
8.1 Introduction 
 

 Fourier transform is based on the knowledge of the 
Fourier series used for analyzing some practical problems.  The 
Fourier series consists of the sine and cosine functions suitable for 
representing different types of periodic motions, such as the 
swinging pendulums, telecommunication signals, electric motor 
vibration, etc.  Analysis solutions can provide comprehensive 
understanding of their behaviors. 

 Similar to the Laplace transform method learned in the 
preceding chapter, the Fourier transform can be used to solve some 
specific types of differential equations.  This includes the non-
homogeneous differential equations when the functions on the 
right-hand-side of the equations change abruptly with time. 



268 Chapter 8  Fourier Transforms 

 Before applying the method of Fourier transform to solve 
such differential equations, the definitions of both the Fourier 
transform and inverse Fourier transform will be introduced.  
Examples will be used to show how to perform transformation for 
different types of functions.  At the same time, MATLAB com-
mands will also be employed to confirm the results.  The discrete 
and fast Fourier transforms which have been used in many current 
applications will be explained by examples.  
 
 
8.2 Definitions 
 Fourier transform is a valuable tool in transforming data 
and functions from the time domain into the frequency domain.  It 
has been used widely in the field of telecommunication that 
involves waves and signals.  The idea came from the Fourier series 
which contain the continuous periodic functions, such as sine and 
cosine functions.  The sine function is generally written in the 
form, 

  tA 2sin  

where A is the amplitude,   is the frequency measured by the 
cycle or period per second, t  is time, and   is called the phase 
which may not be zero at time 0t .  The cosine function is in the 
same form except the phase is shifted by 2/ .  Therefore, the 
periodic function  tf  as mentioned can be written in a general 
form as, 

      tBtAtf kkkk

n

k

 2sin2cos
1

 


 

 To understand the concept more clearly, let’s consider the 
periodic function given by,  

       ttttf  2cos44sin2sin5.0   

 If we plot the first term on the right-hand-side of the 
periodic function above in the interval of 50  t ,  
 
 

>> ezplot('0.5*sin(pi*t)', [0 5 -6 6]) 
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We observe that the magnitude of oscillation is 0.5 and the 
frequency is half cycle per second.  

  Similarly, if we plot the second term in the same interval 
of 50  t ,  
 
>> ezplot('2*sin(4*pi*t)', [0 5 -6 6]) 
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we see that the magnitude is now 2 and the frequency is two cycles 
per second. 
   Also, if we plot the last term of the equation in the same 
interval of 50  t , 
>> ezplot('4*cos(2*pi*t)', [0 5 -6 6]) 

 

we see that the magnitude is 4 and the frequency is one cycle per 
second. 

 By combining the three terms together, we can plot the 
oscillating behavior of the function  tf  by using the ezplot 
command as shown in the figure.  
>> ezplot('0.5*sin(pi*t) + 2*sin(4*pi*t) +  
           4*cos(2*pi*t)', [0 5 -6 6]) 
 

 In general, the Fourier series could be in any form that 
may include a large number of terms.  The Fourier transform 
method will help us to identify magnitudes and frequencies of the 
given functions.  It is noted that the analysis of Fourier transform 
method is usually carried out by using the complex numbers.  This 
is because the involved equations will be in simpler forms.  Both 
sine and cosine functions can be written in the form of complex 
numbers by using the Euler’s formula,   
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cos sinie i           and        sincos ie i   

where 1i  is the imaginary unit number.   The two equations 
above lead to,  

cos
2

i ie e 



      and     sin

2

i ie e

i

 



  

After substituting these cos  and sin  functions in the form of  

complex numbers, the expression of  tf  reduces to a more com-
pact form as, 

  



n

nk

tki
k eCtf 2  

where kC  is the magnitude and 
k

  is the frequency.  

 
 
8.3 Fourier Transform 

 In MATLAB, the Fourier transform of a function  tf  is 
defined by,  

ℱ()   i tf t e dt






   
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The definition differs from those defined in most textbooks which 

have the factor of 2  as denominator.  

 Fourier transform requires performing integration from 
  to   of the product between  tf  and tie  .  For example, the 

given function  tf  is, 
 

 











1,0

1,1

x

x
tf  

which has its variation as shown in the figure.  

 

Then, the Fourier transform is,  

    ℱ()   i tf t e dt






   

           



1

1

1 dte ti  

         
1

1




 



i
e ti

    


i
ee ii







 

          


i
i





sin2    
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t
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We can use the int command to perform integration symbolically,  
 

>> syms w t 
>> f = 1; 
>> int(f*exp(-i*w*t),t, -1, 1)   
 

ans = 
 

2*sin(w)/w 
 

The result is plotted by using the command,  
 

>> ezplot('2*sin(w)/w', [-10 10 -1 3]) 

 

The figure shows the result of Fourier transform along  -axis in 
the   scale.  

 
 
  MATLAB contains the fourier command that can be 
used to transform  tf  from the time domain to ℱ() in the 
frequency domain.  The definition of Fourier transform used in 
MATLAB is,   

ℱ()     i tf t e dt






    

3

 ℱ 

2

1

0

1

3 2  32


int 

ezplot 
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 For example,  

  2tetf   

>> syms t w 
>> f = exp(-t^2); 
>> ezplot(f) 
 

Variation of the function with time t is shown in the figure.  

 

We can use the fourier command to find Fourier transform,  
 
>> fourier(f) 
 

ans = 
 

pi^(1/2)/exp(w^2/4) 
 

i.e.,                                     ℱ()   2 4e    
 

The result varies with the frequency   that can be plotted using 
the  ezplot command as shown in the figure.  

>> ezplot(ans)
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 If the function  tf  is given by,  

  tetf   

>> syms t w 
>> f = exp(-abs(t)); 
>> ezplot(f) 
 
which varies with time t as shown in the figure.  
 
  The Fourier transform is obtained by using the fourier 
command with its variation as shown in the figure.  
 
>> fourier(f) 
 

ans = 
 

2/(w^2 + 1) 
 

>> ezplot(ans) 
 
 As another example, if the function  tf  is given by,  

  tettf   
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The Fourier transform is obtained by using the fourier com-
mand,  
 

>> syms t w 
>> f = t*exp(-abs(t)); 
>> fourier(f) 
  

ans = 
  

-(4*w*i)/(w^2 + 1)^2
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i.e.,      ℱ()  
 22

4

1

i


 


  

 
 

8.4 Inverse Fourier Transform 
  MATLAB also contains the ifourier command to find 
the inverse Fourier transform of the function ℱ() from the 
frequency domain to the function  tf  in time domain.  The 
inverse Fourier transform in MATLAB is defined by, 

  1

2
f t







  ℱ() i te d   

  For example, if the function in the frequency domain is, 

ℱ()  2e    

>> syms w t 
>> F = -2*exp(-abs(w)); 
>> ezplot(F) 
 
which varies with the frequency as shown in the figure.  
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We can use the ifourier command to find the inverse Fourier 
transform and plot its variation as follows,  
 

>> ifourier(F,t) 
  

ans = 
  

-2/(pi*(t^2 + 1)) 
  

>> ezplot(ans) 
 
i.e., the result of inverse Fourier transform is,  

   1
2
2 


t

tf   

with the variation as shown in the figure.  

 

It is noted that the symbol t at the end of the ifourier command 
is for assigning it as the independent variable.  Otherwise, 
MATLAB will use the default symbol of x as the independent 
variable.  

  If the function in the frequency domain is given by,  

ℱ()   2 46 e  
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The inverse Fourier transform can be found by entering,  
 

>> F = (6*pi^(1/2))/exp(w^2/4) 
>> f = ifourier(F,t) 
 

f = 
 

6/exp(t^2) 
 

i.e., the result in the time domain is,  

  26 tf t e  
 

 As another example, if the function in the frequency 
domain is given by,  

ℱ()   
1

1 i



 

The inverse Fourier transform can be found by entering,  
 
>> F = 1/(1 + i*w); 
>> f = ifourier(F,t) 
 

f = 
 

heaviside(t)/exp(t) 
 

The result of  tf  in the time domain is shown in the figure.  
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  If the given function contains a quantity that must always 
be positive value, we have to inform that to MATLAB.  As an 
example, the value of a in the function below must be a positive 
quantity, we need to declare it in the syms command as,  
 

>> syms a positive 
 

For example, the function in the frequency domain is,   

        ℱ()  
2 4

2

ae

a


      0a    

where a must be greater than zero.  If we perform the inverse 
transformation without declaring that a > 0 as follows, 
 
>> syms w t a 
>> F = exp(-w^2/(4*a))/sqrt(2*a); 
>> f = ifourier(F) 
  
f = 
 
(2^(1/2)*transform::fourier(1/exp(w^2/(4*a)), w, 
x))/ (4*pi*a^(1/2)) 
 
MATLAB could not find the inverse Fourier transform, i.e., there is 

no result for arbitrary a value. 
  But if we start by declaring that a is only positive value as,  
 
>> syms w t; syms a positive 
>> F = exp(-w^2/(4*a))/sqrt(2*a); 
>> f = ifourier(F) 
 
f = 
 
2^(1/2)/(2*pi^(1/2)*exp(a*t^2)) 
 
we obtain the correct result of the function in the time domain, i.e., 

 
2

2

ate
f t







positive 

ifourier 
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8.5 Fast Fourier Transform 
  All of the functions  tf  we learned in the preceding 
sections are continuous and easy to handle.  For practical problems, 
a large number of data points may be generated from experiments.  
These data points are discrete and not continuous.  The technique 
of the Fourier transform can still be applied to analyze such data.  
We call the analysis of this latter case as the discrete Fourier 
analysis.  The transformation process is known as the Discrete 
Fourier Transform or DFT.  

  To understand the process, we start from a periodic 
function  tf  with the period of 2 .  If we have N data points 
with equal intervals, the distance between each pair of data points 
is,    

   
N

k
tk

2
   1...,,2,1,0  Nk  

The idea is to create a function  tf  to represent the variation of 
these data points in the form of,  

  ktni
N

n
nk eCtf 






1

0

 

where the coefficients ,nC  1...,,2,1,0  Nn , are to be deter-

mined.  It was found that the time used for determining these 
coefficients varies with 2N .  Later, an improved method so called 
the Fast Fourier Transform or FFT was developed.  The method 
significantly reduces the computational time to NN log .  This 
latter method was implemented on MATLAB which can be used by 
calling the fft command.  We will learn how to use this fft 
command to study the signal frequency through a simple example 
as follow.   
 

 Suppose we have a signal composing of the three sine and 
cosine functions,  

       ttttf )100(2sin3)50(2cos4)20(2sin2    

It is noted that the frequencies of these three sine and cosine 
functions are 20, 50 100 Hz, respectively.  The variation of the 
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continuous  tf  function is plotted from 0 to 1 as shown in the 
figure. 

 

 To include the noise similar to that occurs in the data from 
experiment, we first represent the continuous function  tf  by 500 
discrete data points and then add arbitrary noise values randomly 
into it by using the built-in randn command.  The variation of the 
function  tf  after adding noise is shown in the figure.  
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 The variations of the original continuous function  tf  
and after it was represented by 500 data points with noise as seen 
from the figures are slightly different.  It is difficult to identify the 
three frequencies of 20, 50 100 Hz from these two figures.  We will 
use the fast Fourier transform through the fft command to find 
these three frequencies.  The MATLAB file below shows the 
commands to plot the original continuous  tf  function and to 
convert it into 500 data points.  Noise is added randomly into these 
data points before plotting their variation again.  The data points 
are transformed using the fft command to determine the 
amplification.  The amplification is then plotted versus the 
frequency as shown in the figure.  The figure shows that the three 
frequencies of 20, 50 100 Hz are clearly identified after using the 
fft command.  This example thus demonstrates the advantage of 
the fast Fourier transform that can find frequencies of the data with 
noise normally obtained from experiment.  
 
% Number of data points, data point interval, 
% and discrete times 
n = 500; T = 1/n; t = (0:n-1)*T; 
% Discrete data points composing of 3 waves 
ft = 2.*sin(2*pi*20*t) + 4.*cos(2*pi*50*t) + ... 
     3.*sin(2*pi*100*t); 
plot(t(1:n),ft(1:n),'k'); axis([0 1 -10 10]) 
% Add noise randomly into these discrete data 
% points 
fn = ft + 2.*randn(size(t)); 
plot(t(1:n),fn(1:n),'k'); axis([0 1 -10 10]) 
% Perform fast Fourier transform 
nfft = 2^nextpow2(n); 
amp = fft(fn,nfft)/n; 
fre = n/2*linspace(0,1,nfft/2+1); 
plot(fre,2*abs(amp(1:nfft/2+1)),'k') 
xlabel('Frequency (Hz)'); ylabel('Amplitude');  
     axis([0 120 0 4]) 
 
 
 

randn 

fft 
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8.6 Solving Differential Equations 
 The method of Fourier transform can be used to solve the 
differential equations that are in some specific forms.  The Fourier 
transform for the first-order derivative of function  tf  is,  

     ℱ   f t     i F   

Similarly, the Fourier transform for the second-order derivative of 
function  tf  is,  

     ℱ   f t     2i F   

The Fourier transform for the higher-order derivatives of function 
 tf  can be obtained in the same fashion, i.e., 

     ℱ   nf t     ni F   

  We will use examples to demonstrate the method of 
Fourier transform to solve for solutions of some specific types of 
differential equations as follows. 
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Example Solve the first-order nonhomogeneous differential 
equation,   

 tHeyy t44   

where  tH  is the Heaviside function which is equal to one when 
0t  and is equal to zero when 0t .  The differential equation 

can be rewritten as, 

0

0

,

,

,0
4

4












t

te
yy

t

 

  We start by performing the Fourier transform of the 
differential equation,  

ℱ  4y  ℱ y  ℱ   4te H t  

We can use the fourier command to find the Fourier transform 
for the term on the right-hand-side of the equation as,  

>> syms t w 
>> RHS = exp(-4*t)*heaviside(t); 
>> fourier(RHS) 
 

ans = 
 

1/(4 + w*i) 
 
Thus, the Fourier transform of the differential equation is,  

   4
1

4



i

FFi   

or,                   44
1




ii
F   

  Then, we perform inverse transformation by using the 
ifourier command, 
 
>> F = 1/((w*i+4)*(w*i-4)); 
>> ifourier(F,t) 
 

ans = 
 

-heaviside(t)/(8*exp(4*t)) 
 

fourier 

ifourier 
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The result above was simplified by the simple command so that it 
becomes more compact,  

 
8

4te
ty



  
The solution of y that varies with t when 0t  is shown in the 
figure.  

 

  It is noted that the solution can be verified by substituting 
it into the left-hand-side of the differential equation,   
 
>> syms t y 
>> y = -exp(-4*t)/8; 
>> dy = diff(y,t); 
>> LHS = dy - 4*y 
 

LHS = 
 

1/exp(4*t) 
 

The result is equal to the right-hand-side of the differential equation 
when 0t . 
 
Example Solve the second-order nonhomogeneous differential 
equation,   

 tyyy  23
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where  t  is the Dirac delta function which is equal to one at 
0t  and equal to zero at any other t.  

  We start by performing Fourier transform of the differen-
tial equation,  

ℱ  3y  ℱ  2y  ℱ y    ℱ   t  

The fourier command can be used to find the Fourier transform 
of the Dirac delta function,  
 
>> syms t w 
>> fourier(dirac(t)) 
 

ans = 
 

1 
 
Thus, the differential equation after transformation becomes,  

    1232  FFiFi   

i.e.,           
23

1
2 


i

F   

 Then, we perform inverse transformation by using the 
ifourier command to obtain the solution,  
 
>> F = 1/(-w^2 + 3*w*i + 2); 
>> ifourier(F,t) 
 

ans = 
 

heaviside(t)*(exp(t) - 1))/exp(2*t) 
 
i.e., the solution of this differential equation is,  

     tHeety tt 12    

  Again, we can verify the solution by substituting it into the 
left-hand-side of the differential equation, 

fourier 

ifourier 
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>> y = (heaviside(t)*(exp(t) - 1))/exp(2*t); 
>> dy = diff(y,t); 
>> d2y = diff(dy,t); 
>> LHS = d2y + 3*dy + 2*y 
  

LHS = 
 

dirac(t) 
 
The result is the Dirac delta function which is equal to the right-
hand-side of the differential equation.  
 
 
8.7 Concluding Remarks 
  In this chapter, we have learnt the method of Fourier 
transform to solve for solutions of some differential equations.  
Such differential equations arise in many applications for which the 
loads are applied to the problems instantly.  Definitions of the 
Fourier transform and its inverse transformation were first 
explained.  The Fourier transform changes the given function from 
the time domain into another function in the frequency domain.  In 
the opposite way, the inverse Fourier transform changes the 
function in the frequency domain back to the time domain.  The 
fourier and ifourier commands in MATLAB were used to 
obtain the transformation results as demonstrated by examples.  

 For discrete data collected from experiments, the discrete 
Fourier analysis was applied.  The discrete Fourier transform was 
explained by employing the fft command of the fast Fourier 
transform.  The command helps us to identify the frequency 
contents from the signal with noise.  In the last section, the method 
of Fourier transform was applied to solve differential equations.  
Examples have shown that the method can provide solutions 
effectively when the nonhomogeneous functions on the right-hand-
side of the differential equations are in form of the Dirac delta and 
Heaviside functions. 
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Exercises 
 
1. Use the fourier command to find the Fourier transform  ℱ() 

of the following functions,  

 (a)  tf   tH         (b)  tf   tHe t  

 (c)  tf  22te  (d)  tf  21
1
t

  

 (e)  tf   2535  te  (f)  tf  te 5  

 where  tH  is the Heaviside function.  
 
2. Use the fourier command to find the Fourier transform  ℱ() 

of the following functions, 

 (a)  tf  tet  2         (b)  tf  243  te  

 (c)  tf  29 t
t


  (d)  tf  
134

5
2

3




tt
e ti

 

 (e)  tf  293 tet   (f)  tf   tHet t225   
 
3. Use the fourier command to find the Fourier transform  ℱ() 

of the following functions, 

 (a)  tf  t 1         (b)  tf  te 7  

 (c)  tf  216 te  (d)  tf  22tet   

 (e)  tf   23sin t  (f)  tf   25cos t   
 
4. Use the ifourier command to find the inverse Fourier 

transform  tf  of the following functions,  

 (a) ℱ() 
1

1 i



   (b) ℱ() 

i
2

  

 (c) ℱ() ie    (d) ℱ() 
4

1
2 

   

 (e) ℱ() 
9

6
2 

    (f) ℱ()   ii  


12
3
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5. Use the ifourier command to find the inverse Fourier 
transform  tf  of the following functions, 

 (a) ℱ()  
 21

1

i
          

 (b) ℱ()    ii  


21
1

 

 (c) ℱ()    2561
1

 


ii
  

 (d) ℱ()  
 

 289
45








i
i

 

 (e) ℱ()    32247  e   

 (d) ℱ()  
 

 i
e i









34

62

 

 
6. Use the ifourier command to find the inverse Fourier 

transform  tf  of the following functions, 

 (a) ℱ()   32249  e      (b) ℱ()  3 e  

 (c) ℱ() 
i

e i







5

2

 (d) ℱ() 
i

e


5
  

 (e)  ℱ() 
 

 i
e i









53

420

 (f) ℱ() 
 

 i
e i









35

62

 

 
7. A signal is given in the form of two sine functions,  

     tttf )60(2sin2)15(2sin    

  Use the randn command to add noise into the signal similar to 
that explained in section 8.5.  Then, apply the fast Fourier 
transform to find the two frequencies from the amplitude 
versus frequency plot. 
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8. A signal is given in the form of a sine and two cosine 
functions, 

              ttttf )90(2cos4)60(2sin3)30(2cos2    

  Use the randn command to add noise into the signal similar to 
that explained in section 8.5.  Then, apply the fast Fourier 
transform to find the three frequencies from the amplitude 
versus frequency plot. 

 
9. Apply the Fourier transform to solve the first-order nonhomo-

geneous differential equation,  

 tyy 2  

  where  t  is the Dirac delta function.  Plot the solution of 

 ty  and verify it by substituting into the differential equation.  
 
10. Apply the Fourier transform to solve the first-order nonhomo-

geneous differential equation, 

 tHeyy t 5  

  where  tH  is the Heaviside function.  Show detailed deriva-

tion of the solution  ty .  Plot the solution and verify it by 
substituting into the differential equation. 

 
11. Apply the Fourier transform to solve the first-order nonhomo-

geneous differential equation, 

 tHeyy t88   

  where  tH  is the Heaviside function.  Plot the solution of 

 ty  for 0t  and verify it by substituting into the differential 
equation.  

 
12. Apply the Fourier transform to solve the second-order non-

homogeneous differential equation, 

 tyyy  44  
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  where  t  is the Dirac delta function.  Plot the solution of 

 ty  and verify it by substituting into the differential equation. 

 
13. Apply the Fourier transform to solve the second-order non-

homogeneous differential equation, 

 356  tyyy   

  where  t  is the Dirac delta function.  Show detailed deriva-

tion of the solution  ty  and plot its variation in the interval of 
73  t .  Note that the MATLAB command to find Fourier 

transform of  3t  is fourier (dirac (t-3)).  



 
 

 
 

Chapter 
9 

 
 

 

Boundary Value Problems 
 
  
 
9.1 Introduction 

 Solving the boundary value problems that will learn in this 
chapter is the first step toward understanding how to analyze 
practical problems.  We will solve the boundary value problems 
that are governed by the ordinary differential equations together 
with the boundary conditions.  Solving the ordinary differential 
equations is equivalent to solve the one-dimensional problems for 
which their exact solutions are usually available.  If the exact 
solutions cannot be found, we will apply the numerical methods to 
obtain the approximate solutions instead. 

 Learning how to solve the one-dimensional problems is 
important as the basis to continue solving two- and three-
dimensional problems.  For these multi-dimensional problems, the 
governing equations are in the form of partial differential equations 
which are difficult to solve.  In addition, the boundary conditions 
are more complicated and the geometries could be complex too.  In 
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general, their exact solutions are not available and the numerical 
methods are the only way for finding approximate solutions.  
Efficient numerical methods, such as the finite element method 
which will be explained in the following chapter, must be applied 
to solve for their solutions. 

 In this chapter, we will learn how to find exact solutions of 
the one-dimensional boundary value problems that are governed by 
simple ordinary differential equations with boundary conditions.  
We will derive the exact solutions and verify them by using the 
dsolve command.  If the exact solutions are not available, we will 
use the bvp4c command to find their approximate solutions.  The 
materials in this chapter thus represent the first step toward learning 
how to solve the more general boundary value problems. 
 
 
9.2 Two-Point Boundary Value Problems 
 Two approaches are normally used to solve the two-point 
boundary value problems.  The first approach is to find the exact 
solutions when the governing differential equations and boundary 
conditions are not complicated.  The second approach is to find the 
approximate solutions by using the numerical methods.  In the 
latter approach, the methods for solving the initial value problems, 
such as the shooting, Euler and Runge-Kutta methods, are modified 
to include iteration process so that the boundary conditions are 
satisfied.  MATLAB contains the bvp4c command to solve such 
problems for which we will learn how to use it in detail.  

 In this section, we will start by reviewing the derivation of 
exact solutions to the governing differential equations with 
boundary conditions.  We will verify the derived solutions with 
those obtained by using the dsolve command.  We will use the 
following examples to demonstrate the process. 
 
Example  Derive the exact solution of the boundary value problem 
governed by the second-order homogeneous differential equation,  

 y
dx

yd
4

2

2

  0    10  x



9.2  Two-Point Boundary Value Problems  295 

with the boundary conditions of    00 y  and   11 y . 

  The process for deriving the exact solution of the 
boundary value problem is similar to the initial value problem.  We 
first assume a general solution in the form of xe  and substitute it 
into the differential equation to get, 

  xx ee  42   0  

Then, we divide it by xe  to obtain the characteristic equation, 

 42   0  

    22    0  

i.e., 21   and 22  .  Thus, the general solution is, 

y   xx eCeC 2
2

2
1

  

where 1C  and 2C  are constants that can be determined from the 
given boundary conditions as follows,  

  0y  ;0  0  21 CC   

  1y  ;1  1 2
2

2
1

 eCeC  

By solving the two equations above, we obtain the two constants of 

1C  and 2C  as, 

221

1



ee

C         and       
222

1



ee

C  

Hence, the exact solution is,  

 y  
22

2

22

2





 





ee
e

ee
e xx

 

Or, y   
 2sinh
2sinh x

  

 The same exact solution is obtained by using the dsolve 
command.  The solution is plotted using the ezplot command as 
shown in the figure.  
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>> syms x y 
>> dsolve('D2y - 4*y = 0','y(0)=0','y(1)=1','x') 
  

ans = 
  

sinh(2*x)/sinh(2) 
 

>> ezplot(ans, [0, 1])  

 
 

Example Derive the exact solution of the boundary value problem 
governed by the second-order homogeneous differential equation,  

 y
dx

yd
4

2

2

  0    10  x  

with the boundary conditions of    00 y  and   11 y . 
 This example is identical to the previous one except the 
opposite sign of the zeroth-order term in the differential equation.  
The characteristic equation obtained from the differential equation 
above is,  

 42   0  

    ii 22    0  

So, i21   and i22   where 1i .  Thus, the general solu-
tion is, 

0 0.2 0.4 0.6 0.8 1 
0 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 
   2sinh2sinh x

 xy

x

dsolve 

ezplot 
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 y  xixi BeAe 22   

where A  and B  are constants.  By using the Euler’s formula,  

 xie      xix  sincos   

and xie      xix  sincos   

the general solution above can be written in the form of sine and 
cosine functions as,  

y      xCxC 2sin2cos 43   

where 3C  and 4C  are constants that can be determined from the 

given boundary conditions as follows,  

  0y  ;0  0  03  C  

  1y  ;1  1    2sin2cos 43 CC   

The two equations above give values of the two constants as 03 C  
and  2sin14 C .  Hence, the exact solution is, 

y     
 2sin
2sin x

  

  The same exact solution is obtained by using the dsolve 
command.  The solution of y that varies with x is plotted by using 
the ezplot command as shown in the figure.  
 

>> syms x y 
>> dsolve('D2y + 4*y = 0','y(0)=0','y(1)=1','x') 
  

ans = 
  

sin(2*x)/sin(2) 
  

>> ezplot(ans, [0, 1]) 
 
 
9.3 Second-Order Differential Equations 
 Derivation for exact solutions of the boundary value 
problems governed by the second-order differential equations is 
reviewed in the preceding section.  The derived solutions were 
verified by using the dsolve command.  For many second-order  

dsolve 

ezplot 
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differential equations, their exact solutions cannot be derived in 
closed-form expressions.  Numerical methods must be applied to 
find the approximate solutions.  In this section, we will use the 
bvp4c command to solve the boundary value problems.  The 
approximate solutions will be compared with the exact solutions, if 
available, to measure the numerical solution accuracy. 

 The bvp4c command employs the technique similar to the 
commands used for solving the initial value problems.  For 
example, to solve an initial value problem governed by the second-
order differential equation in the interval of 10  x , we start the 
solution from the initial conditions of  0y  and  0y  at 0x .  The 
technique computes the next solutions with the time step of x  
until it reaches 1x .  The final solution of  1y  at 1x  thus 
depends to the differential equation and the two initial conditions.     

 If the same technique is used to solve the boundary value 
problem, it starts with the condition of  0y  at 0x  and must end 

with the specified condition of  1y  at another end of 1x .  Thus, 
an iteration process is needed so that the computed solution agrees 
with the specified boundary condition at 1x .   

0 0.2 0.4 0.6 0.8 1 
0 

0.2 

0.4 

0.6 

0.8 

1 

1.2      2sin2sin x

 xy

x
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 Therefore, to solve the boundary value problems by 
MATLAB, we need to provide the information of: (1) a main 
program that calls the bvp4c command, (2) the differential 
equation, and (3) the boundary conditions at both ends of the 
problem.  We will demonstrate how to solve the boundary value 
problems with the bvp4c command by using the following 
examples.   
 

Example Use the bvp4c command to solve the boundary value 
problem governed by the second-order homogeneous differential 
equation,    

 y
dx
dy

dx
yd

23
2

2

  0    10  x  

with the boundary conditions of   10 y  and   01 y . 

  If we derive the exact solution by first assuming it in the 
form of xe , we obtain two distinct roots of 1  and 2  from the 
characteristic equation.  These two roots give the general solution 
in the form,  
 y  xx eCeC 2

65
   

where 5C  and 6C  are constants to be determined from the given 

boundary conditions of   10 y  and   01 y .  Solving these two 
constants leads to the exact solution of, 

 y   112

1





ee

ee
x

x

 

  The same exact solution is obtained by using the dsolve 
command,  
 

>> syms x y 
>> dsolve('D2y+3*Dy+2*y=0','y(0)=1','y(1)=0','x') 
  

ans = 
  

(exp(1) - exp(x))/(exp(2*x)*(exp(1) - 1)) 
 

Variation of the solution y  with x  is plotted using the ezplot 
command as shown in the figure. 

dsolve 
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ezplot(ans, [0, 1]) 
 

 
 The bvp4c command can be used to find the approximate 
solution of this problem.  To do that, we need to create the script 
file, Ex1.m, containing commands as follows,   
 

%Ex1: D2y+3*Dy+2*y=0 
solinit = bvpinit(linspace(0,1,5), [0 -1]); 
sol = bvp4c('OdeEx1','BcEx1',solinit); 
x = linspace(0,1,20); 
y = deval(sol,x); 
plot(x,y(1,:),'k') 
xlabel('x'); ylabel('y'); hold on; 
xe = 0:0.1:1; 
ye = (exp(1)-exp(xe))./(exp(2.*xe)*(exp(1)-1)); 
plot(xe,ye,'ok') 
 

  The MATLAB command, bvpinit, in the second line 
divides the interval of 10  x  into five sub-intervals by further 
calling the linspace command.  Therefore, there are four inner 
points and two end points in this case.  The two numbers in the 
square bracket 0y  and 1y  are the initial guess values of the 
four inner points at the starting of the iteration process.  These 
initial guess values, which are provided by users, should be closed 
to the final solutions. 

0 0.2 0.4 0.6 0.8 1 
0 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 
 

 xy

x

          11exp2expexp1exp  xx

ezplot 

bvpinit 

bvp4c 

deval 

plot 
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  The bvp4c command in the third line calls the file 
function, OdeEx1, that contains the two first-order differential 
equations arose from the second-order differential equation, 

1
1

2
1

2

23 y
dx
dy

dx
yd

 0  

This second-order differential equation is separated into two first-
order differential equations as, 

2
1 y

dx
dy

        and        12
2 23 yy

dx
dy

  
 

Thus, the OdeEx1 file function contains the details as, 
 

function dydx = OdeEx1(x,y) 
dydx = [y(2); -3*y(2)-2*y(1)]; 
 

  The bvp4c command also calls the file function, BcEx1, 
that contains the initial conditions of   10 y  and   01 y  at both 
ends of the domain as,  
 

function res = BcEx1(ya,yb) 
res = [ya(1)-1; yb(1)-0]; 

Note that the res statement denotes the residual values at both 
ends of the domain.  So that the values of ya(1)-1 and yb(1)-0, 
representing the solution errors at these two points, must be zero.  
The iteration process continues until these conditions are met.   
  The computed solutions at the four inner points are plotted 
as shown in the figure.  The deval command in the 5th line of the 
Ex1.m script file is used to smooth the curve for plotting from the 
discrete solution data at the four inner points.  As shown in the 
figure, the approximate solution compares very well with the exact 
solution.  

 
Example Use the bvp4c command to solve the boundary value 
problem governed by the second-order homogeneous differential 
equation,    

 y
dx
dy

dx
yd

23
2

2

  0    10  x  

function 
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with the boundary conditions of   10 y  and   01 y . 

 
 This example is identical to the preceding one except the 
boundary condition at 1x  is changed from   01 y  to   01 y .  
We can derive the exact solution by ourselves or use the dsolve 
command as follows, 
 
>> syms x y 
>> 
dsolve('D2y+3*Dy+2*y=0','y(0)=1','Dy(1)=0','x') 
  

ans = 
  

(exp(1) - 2*exp(x))/(exp(2*x)*(exp(1) - 2)) 
 

i.e.,   y   2
2

12

1





ee

ee
x

x

 

  The approximate solution can be obtained by creating a 
script file, Ex2.m, that employs the bvp4c command and calls the 
two file functions, OdeEx2 and BcEx2 as follows,  
 
%Ex2: D2y+3*Dy+2*y=0 
solinit = bvpinit(linspace(0,1,5), [0 -1]); 
sol = bvp4c('OdeEx2','BcEx2',solinit); 
x = linspace(0,1,20);
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x

Approx.

Exact

dsolve 

linspace 
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y = deval(sol,x); 
plot(x,y(1,:),'k') 
xlabel('x'); ylabel('y'); hold on; 
xe = 0:0.1:1; 
ye = (exp(1)-2.*exp(xe))./(exp(2.*xe)*(exp(1)- 
      2)); 
plot(xe,ye,'ok') 
 
function dydx = OdeEx2(x,y) 
dydx = [y(2); -3*y(2)-2*y(1)]; 
 
function res = BcEx2(ya,yb) 
res = [ya(1)-1; yb(2)-0]; 
 

 The figure below shows the plot of the approximate 
solution as compared to the exact solution.  The boundary 
conditions of   10 y  and   01 y  are satisfied at the ends of the 
domain.   

 

Example  Use the bvp4c command to solve the boundary value 
problem governed by the second-order nonhomogeneous differen-
tial equation,    

 y
dx
dy

dx
yd


2

2

 91464 23  xxx   10  x  

with the boundary conditions of   10 y  and   11 y . 
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-0.6 

-0.4 

-0.2 

0 

0.2 

0.4 

0.6 

0.8 

1

y

x

Approx.

Exact

xlabel 

plot 



304   Chapter 9  Boundary Value Problems 

 Similar to the preceding examples, we can derive the exact 
solution by ourselves or use the MATLAB command to find it.  
The dsolve command can be used to find the exact solution 
conveniently as follows,  
 
>> syms x y 
>> dsolve('D2y+Dy+y=4*x^3+6*x^2+14*x-9', 
          'y(0)=1','y(1)=1','x') 
  

ans = 
  

4*x^3 - 6*x^2 + 2*x + 1 
 

i.e., the exact solution for this boundary value problem is,  

y    1264 23  xxx  

  If we cannot find the exact solution, we can employ the 
bvp4c command to solve for the approximate solution.  We first 
create the script file, Ex3.m, that calls the two function files 
OdeEx3 and BcEx3.  The script file contains the following 
commands including the commands for plotting as follows, 
 
%Ex3: D2y+Dy+y=4*x^3+6*x^2+14*x-9 
solinit = bvpinit(linspace(0,1,5), [0 -1]); 
sol = bvp4c('OdeEx3','BcEx3',solinit); 
x = linspace(0,1,20); 
y = deval(sol,x); 
plot(x,y(1,:),'k') 
xlabel('x'); ylabel('y'); hold on; 
xe = 0:0.1:1; 
ye = 4.*xe.^3-6.*xe.^2+2.*xe+1; 
plot(xe,ye,'ok') 
 

  The function file, OdeEx3, contains the two first-order 
differential equations,  
 
function dydx = OdeEx3(x,y) 
dydx = [y(2); -y(2)-y(1)+4*x^3+6*x^2+14*x-9]; 
 

which are obtained by separating the second-order differential 
equation as follows, 

dsolve 

bvpinit 

bvp4c 

deval 

plot 
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                 1
1

2
1

2

y
dx
dy

dx
yd

  91464 23  xxx  

Let,         
dx
dy1  2y  

then, 
dx
dy2  91464 23

12  xxxyy  

 The function file, BcEx3, contains the information of the 
two boundary conditions at both ends of the domain, 
 

function res = BcEx3(ya,yb) 
res = [ya(1)-1; yb(1)-1]; 
 

  The approximate solution is plotted to compare with the 
exact solution.  Again, the plot shows that the bvp4c command can 
provide high solution accuracy to the problem.  The method for 
finding the approximate solution is thus valuable when the exact 
solution of the problem is not available. 

 
 
 

9.4 Higher-Order Differential Equations 
 The bvp4c command can also be used to find 
approximate solutions of the boundary value problems that are 
governed by the higher-order differential equations as demon-
strated in the examples below.   
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Example  Use the bvp4c command to solve the boundary value 
problem governed by the third-order homogeneous differential 
equation,    

 y
dx
dy

dx
yd

dx
yd

22
2

2

3

3

  0    40  x  

with the boundary conditions of   00 y ,   10 y  and   04 y . 

  This boundary value problem has an exact solution that 
can be found by using the dsolve command,  
 

>> dsolve('D3y+2*D2y-Dy-2*y=0', 
   'y(0)=0','Dy(0)=1','y(4)=0','x') 
  

ans = 
  

-((exp(x) - 1)*(exp(2*x) - exp(4) - exp(8) +   
   exp(x)))/(exp(2*x)*(exp(4) + exp(8) - 2)) 
 

i.e., the exact solution is,  

y      
 2

1
842

842





eee

eeeee
x

xxx

 

  To employ the bvp4c command for finding the 
approximate solution, we need to break the third-order differential 
equation into three first-order differential equations,  

1
1

2
1

2

3
1

3

22 y
dx
dy

dx
yd

dx
yd

    0  

i.e., if we let,     2
1 y

dx
dy

       and        3
2 y

dx
dy

  

then,       123
3 22 yyy

dx
dy

  

The boundary conditions become   001 y ,   102 y  and 
  041 y . 

  We can create the script file, Ex4.m, that calls the function 
files OdeEx4 and BcEx4.  The function file, OdeEx4, contains 
information of the three first-order differential equations while the 
function file, BcEx4, includes the three boundary conditions.

dsolve 
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Details of the script file (Ex4.m) and the two function files 
(OdeEx4 and BcEx4) are as follows.  
 
%Ex4: D3y+2*D2y-Dy-2*y=0 
solinit = bvpinit(linspace(0,4,5), [0 1 0]); 
sol = bvp4c('OdeEx4','BcEx4',solinit); 
x = linspace(0,4,50); 
y = deval(sol,x); 
plot(x,y(1,:),'k') 
xlabel('x'); ylabel('y'); hold on; 
xe = 0:0.25:4; 
ye = -((exp(xe)-1).*(exp(2.*xe)-exp(4)-exp(8)  
     +exp(xe)))./(exp(2.*xe)*(exp(4)+exp(8)- 2)); 
plot(xe,ye,'ok') 
 
function dydx = OdeEx4(x,y) 
dydx = [y(2); y(3); -2*y(3)+y(2)+2*y(1)]; 
 
function res = BcEx4(ya,yb) 
res = [ya(1)-0; ya(2)-1; yb(1)-0]; 
 

  The approximate solution is compared with the exact 
solution as shown in the figure.  
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Example Use the bvp4c command to solve the boundary value 
problem governed by the fourth-order nonhomogeneous differential 
equation,    

 
4

4

dx
yd  1     10  x  

with the boundary conditions of   00 y ,   00 y ,   01 y  and 
  01 y . 

  This boundary value problem represents the deflection 
behavior of a cantilever beam subjected to a uniform loading as 
shown in the figure.  The beam of a unit length is fixed at the left 
end ( 0x ) so that both the deflection and slope are zero.  The 
right end ( 1x ) is free to move, therefore, both the moment and 
shear are zero.  
 

 

  The exact solution of this problem can be derived by 
performing integration four times and applying the boundary 
conditions.  It can also be found conveniently by using the dsolve 
command as follows,  
 

>> syms x y 
>> dsolve('D4y=-1','y(0)=0','Dy(0)=0', 
          'D2y(1)=0','D3y(1)=0','x') 
  

ans = 
  

- x^4/24 + x^3/6 - x^2/4 
 

i.e., y  
4624

234 xxx
     

  If we prefer to obtain the approximate solution by using 
the bvp4c command, we have to separate the fourth-order 

1
x

dsolve 
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differential equation into four first-order differential equations.  
Since the given differential equation is,   

 4
1

4

dx
yd  1      

If we let,   2
1 y

dx
dy

 ,     3
2 y

dx
dy

     and    4
3 y

dx
dy

  

then, 
dx
dy4  1  

The boundary conditions become   ,001 y    ,002 y    013 y  
and   014 y . 

  Then, we create the script file, Ex5.m, which calls the two 
function files OdeEx5 and BcEx5.  The two function files OdeEx5 
and BcEx5 contain information of the differential equations and 
boundary conditions, respectively.  Details of these files are as 
follows, 
 
%Ex5: D4y=-1 
solinit = bvpinit(linspace(0,1,5), [0 -1 0 0]); 
sol = bvp4c('OdeEx5','BcEx5',solinit); 
x = linspace(0,1,50); 
y = deval(sol,x); 
plot(x,y(1,:),'k') 
xlabel('x'); ylabel('y'); hold on; 
xe = 0:0.1:1; 
ye = - xe.^4/24 + xe.^3/6 - xe.^2/4; 
plot(xe,ye,'ok') 
 
function dydx = OdeEx5(x,y) 
dydx = [y(2); y(3); y(4); -1]; 
 
function res = BcEx5(ya,yb) 
res = [ya(1)-0; ya(2)-0; yb(3)-0; yb(4)-0]; 

  The approximate solution of the beam deflection compares 
very well with the exact solution as shown in the figure.     

function 

linspace 

ylabel 
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Example  Use the bvp4c command to solve the boundary value 
problem governed by the fourth-order nonhomogeneous differential 
equation,    

 
4

4

dx
yd

 1    10  x  

with the boundary conditions of   ,00 y    ,00 y    01 y  and 

  01 y . 

  This example is identical to the preceding one except     
the right boundary conditions at the right end of the domain.  The 
beam is now fixed at both ends so that the deflections and slopes at 
( 0x ) and ( 1x ) are zero as shown in the figure. 

 
 

  In this case, the exact solution can be obtained easily by 
using the dsolve command, 

1
x
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>> syms x y 
>> dsolve('D4y=-1','y(0)=0','Dy(0)=0', 
          'y(1)=0','Dy(1)=0','x') 
  

ans = 
  

- x^4/24 + x^3/12 - x^2/24 
 

i.e., y  
241224

234 xxx
     

  Here, the script file, Ex6.m, and the two function files 
OdeEx6 and BcEx6 are similar to those in the preceding example,  
 
%Ex6: D4y=-1 
solinit = bvpinit(linspace(0,1,5), [0 -1 0 0]); 
sol = bvp4c('OdeEx6','BcEx6',solinit); 
x = linspace(0,1,50); 
y = deval(sol,x); 
plot(x,y(1,:),'k') 
xlabel('x'); ylabel('y'); hold on; 
xe = 0:0.1:1; 
ye = - xe.^4/24 + xe.^3/12 - xe.^2/24; 
plot(xe,ye,'ok') 
 

function dydx = OdeEx6(x,y) 
dydx = [y(2); y(3); y(4); -1]; 
 

function res = BcEx6(ya,yb) 
res = [ya(1)-0; ya(2)-0; yb(1)-0; yb(2)-0]; 
 
  The approximate solution compares very well with the 
exact solution as shown in the figure.  
 
 
 9.5 Complicated Differential Equations 
 Many boundary value problems are governed by 
complicated differential equations.  To solve them, we may start by 
using the dsolve command to find their exact solutions.  If the 
exact solutions are not available, we can use the bvp4c command 
to find the approximate solutions instead.  

dsolve 

bvpinit 

bvp4c 

deval 

plot 

function 
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Example Use the bvp4c command to solve the boundary value 
problem governed by the second-order homogeneous differential 
equation with variable coefficients, 

 y
xdx

dy
xdx

yd
22

2 22
  0    21  x  

The boundary conditions are   51 y  and   32 y . 

  We start from employing the dsolve command to find 
the exact solution,  
 
>> syms x y 
>> dsolve('D2y+(2/x)*Dy-(2/x^2)*y=0', 
          'y(1)=5','y(2)=3','x') 
  

ans = 
  

x + 4/x^2 
 
The exact solution for this boundary value problem is,  

y    
2

4
x

x   

  We can use the bvp4c command to find the approximate 
solution by creating the script file Ex7.m.  The script file calls the 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 -3 

-2.5 

-2 

-1.5 

-1 

-0.5 

0 x 10 -3 

y

x

Approx.

Exact

dsolve 



9.5  Complicated Differential Equations  313 

two function files OdeEx7 and BcEx7 which contain information 
of the differential equation and boundary conditions, respectively.  
 
%Ex7: D2y+(2/x)*Dy-(2/x^2)*y=0 
solinit = bvpinit(linspace(1,2,5), [5 -1]); 
sol = bvp4c('OdeEx7','BcEx7',solinit); 
x = linspace(1,2,20); 
y = deval(sol,x); 
plot(x,y(1,:),'k') 
xlabel('x'); ylabel('y'); hold on; 
xe = 1:0.1:2; 
ye = xe + 4./xe.^2; 
plot(xe,ye,'ok') 
 
function dydx = OdeEx7(x,y) 
dydx = [y(2); -(2/x)*y(2)+(2/x^2)*y(1)]; 
 
function res = BcEx7(ya,yb) 
res = [ya(1)-5; yb(1)-3]; 
 

  Note that the function file OdeEx7 above contains the two 
first-order differential equations that are separated from the given 
second-order differential equation, 

12
1

2
1

2 22
y

xdx
dy

xdx
yd

    0  

where     2
1 y

dx
dy

      then     122
2 22

y
x

y
xdx

dy
  

  The computed approximate solution is compared with the 
exact solution as shown in the figure.  
 
Example  Use the bvp4c command to solve the boundary value 
problem governed by the second-order nonlinear differential 
equation, 

 
2

2

2









dx
dy

dx
yd

y  0   31  x  

with the boundary conditions of   21 y  and   23 y . 

linspace 

Hold on 

plot 

function 
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 The dsolve command can provide the exact solution for 
the nonlinear differential equation with the boundary conditions 
above,  
 

>> syms x y 
>> 
dsolve('y*D2y+Dy^2=0','y(1)=sqrt(2)','y(3)=2','x') 
  

ans = 
  

(x + 1)^(1/2) 
 

i.e.,     1 xy  

  The approximate solution is obtained by using the bvp4c 
command.  The second-order differential equation is separated into 
the two first-order differential equations as follows, 

2
1

2
1

2

1 







dx
dy

dx
yd

y   0  

If we let,      2
1 y

dx
dy

        then       
1

2
22

y
y

dx
dy

  

 Details of the script file, Ex8.m, that calls the two 
function files OdeEx8 and BcEx8 containing information of the 
differential equations and boundary conditions, respectively, are as 
follows, 
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%Ex8: y*D2y+Dy^2=0 
solinit = bvpinit(linspace(1,3,5), [1 1]); 
sol = bvp4c('OdeEx8','BcEx8',solinit); 
x = linspace(1,3,20); 
y = deval(sol,x); 
plot(x,y(1,:),'k') 
xlabel('x'); ylabel('y'); hold on; 
xe = 1:0.2:3; 
ye = sqrt(xe+1); 
plot(xe,ye,'ok') 
 
function dydx = OdeEx8(x,y) 
dydx = [y(2); -y(2)^2/y(1)]; 
 
function res = BcEx8(ya,yb) 
res = [ya(1)-sqrt(2); yb(1)-2]; 
 

 The approximate solution is compared with the exact 
solution as shown in the figure.  The figure shows that the bvp4c 
command can provide accurate approximate solution to this 
nonlinear boundary value problem.  
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Example Use the bvp4c command to solve the boundary value 
problem governed by the second-order nonlinear differential 
equation, 

 
dx
dy

y
dx

yd
2

2

2

  0    10  x  

with the boundary conditions of   10 y  and   211 y . 

  In this case, the dsolve command cannot provide the 
exact solution,  
 

>> syms x y 
>> dsolve('D2y+2*y*Dy=0','y(0)=1','y(1)=1/2','x') 
Warning: possibly missing solutions [solvini]  
Warning: Explicit solution could not be found.  
> In dsolve at 101 
 

ans = 
 

[ empty sym ] 
 

However, it is found that the solution,     
x

y



1

1
 

is an exact solution because it satisfies the differential equation.  
We can check this by using the diff command,  
 

>> y = 1/(1+x); 
>> LHS = diff(y,x,2) + 2*y*diff(y,x) 
 

LHS = 
 

0 
 

The solution also satisfies the two boundary conditions which can 
be verified by using the subs command,  
 
>> subs(y,{x},{0}) 
 

ans = 
 

     1 
 

>> subs(y,{x},{1}) 
 

ans = 
 

    0.5000

diff 

subs 
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 If we cannot find the exact solution of the problem, we can 
use the bvp4c command to find the approximate solution in the 
same fashion as explained in the preceding examples.  We start 
from breaking the second-order differential equation into two first-
order differential equations as follows,  

 
dx
dy

y
dx

yd 1
12

1
2

2  0     

i.e., if we let  2
1 y

dx
dy

 , then 21
2 2 yy

dx
dy

 . 

  We create the script file, Ex9.m, which calls the two 
function files OdeEx9 and BcEx9 containing information of the 
differential equations and boundary conditions, respectively.  
Details of these file are as follows, 

 
%Ex9: D2y+2*y*Dy=0 
solinit = bvpinit(linspace(0,1,5), [1 -1]); 
sol = bvp4c('OdeEx9','BcEx9',solinit); 
x = linspace(0,1,20); 
y = deval(sol,x); 
plot(x,y(1,:),'k') 
xlabel('x'); ylabel('y'); hold on; 
xe = 0:0.1:1; 
ye = 1./(1.+xe); 
plot(xe,ye,'ok') 
 
function dydx = OdeEx9(x,y) 
dydx = [y(2); -2*y(1)*y(2)]; 
 
function res = BcEx9(ya,yb) 
res = [ya(1)-1; yb(1)-0.5]; 
 

  The approximate solution is compared with the exact 
solution as shown in the figure.  Again, the figure shows that the 
bvp4c command can provide accurate approximate solution to this 
nonlinear boundary value problem.   

bvpinit 

bvp4c 

deval 

plot 

function 
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9.6 Concluding Remarks 
 Methods for solving the boundary value problems 
governed by the ordinary differential equations and boundary 
conditions were presented.  For the problems with simple differen-
tial equations, their exact solutions can be derived.  The process for 
deriving exact solutions is similar to that for the initial value 
problems except the application of the boundary conditions instead 
of the initial conditions.  MATLAB contains the dsolve command 
that can be used to find exact solutions for many types of the 
differential equations. 

 For the boundary value problems that are governed by 
more complicated differential equations, such as those with 
variable coefficients and in nonlinear form, their exact solutions 
may not be available.  In this case, the numerical methods must be 
applied to obtain approximate solutions.  MATLAB contains the 
bvp4c command that can provide accurate numerical solutions.  
Users need to break the given higher-order differential equation 
into many first-order differential equations before using the 
command. 
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 The boundary value problems solved in this chapter are all 
in one-dimensional domain.  The problems are governed by the 
ordinary differential equations with simple boundary conditions.  
For two- and three-dimensional problems, they are governed by the 
partial differential equations.  The boundary conditions are more 
complicated and their domains could be arbitrary.  In general, their 
exact solutions cannot be found.  Finding the approximate solutions 
by using the numerical methods is the only way to solve the 
problems.  We will learn a popular method, so called the finite 
element method, for solving these problems in the next chapter.  

 
 
 

Exercises 

 
1. Derive the exact solutions of the following boundary value 

problems,  

 (a) yy 4   0      10  x  
    00 y ,    51 y  

 (b) yy 9    0      20  x  
    40 y ,    12 y  

 (c) yy     0     20  x  
    10 y ,    12 y  

 (d) yyy 2    0    10  x  
    00 y ,    11 y  

 (e) yyy 32     0    10  x  
    10 y ,    21 y  
 

 Verify the solutions with those obtained by using the dsolve 
command.  In each sub-problem, employ the ezplot com-
mand to plot the solution of y that varies with x within the 
given domain. 
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2. Derive the exact solutions of the following boundary value 
problems, 

 (a) yy      2x      10  x  

    00 y ,    01 y  

 (b) yy 4    xcos      10  x  
    00 y ,    01 y  

 (c) yyy  2    x5     10  x  
    00 y ,    01 y  

 (d) yyy  2    12  x    10  x  

    50 y ,    101 y  

 (e) yyy 44       xex 21  10  x  

    30 y ,    01 y  

 Verify the solutions with those obtained by using the dsolve 
command.  In each sub-problem, employ the ezplot com-
mand to plot the solution of y that varies with x within the 
given domain. 
 

3. Use the dsolve command to solve the following boundary 
value problems, 

 (a) yyxyx 332      0     21  x  

    51 y ,    02 y  

 (b) yyxyx 222     0     21  x  
    21 y ,    22 y  

 (c) yyxyx  32    2x     21  x  
    01 y ,    02 y  

 (d) y
x

y 
1

   0    41  x  

    501 y ,    1004 y  

 (e) yyxyx 2    xln    21  x  

    01 y ,    22 y  

In each sub-problem, verify the solution by substituting it into 
the differential equation and boundary conditions. 
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4. Use the diff command to show that,  

 
  



 















 1
2

cos
2

sin
5sin

15cos
32

xx
y  

  is the exact solution of the boundary value problem governed 
by the second-order differential equation,  

                 1

4
y y    8     100  x  

 with the boundary conditions of   00 y  and   010 y .  Then, 
use the dsolve command to check whether MATLAB can 
provide the above solution.    
 

5. Use the diff command to show that,  

     y  xxsin  

  is the exact solution of the boundary value problem governed 
by the second-order nonhomogeneous differential equation, 

     yyxy  2     xx cos12 2    
2

0


 x  

 with the boundary conditions of   00 y  and   22  y .  
Then, use the dsolve command to check whether MATLAB 
can provide the above solution. 
 

6. Use the diff command to show that, 

   y  





 

4
tan


x  

  is the exact solution of the boundary value problem governed 
by the second-order nonlinear differential equation, 

      yyy  2  0     
2

0


 x  

 with the boundary conditions of   10 y  and   12 y .  
Then, use the dsolve command to check whether MATLAB 
can provide the above solution.   
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7. Use the diff command to show that, 

   y  x 1  

  is the exact solution of the boundary value problem governed 
by the second-order nonlinear differential equation, 

       2yyy   0     31  x  

 with the boundary conditions of   21 y  and   23 y .  
Then, use the dsolve command to check whether MATLAB 
can provide the above solution.   

 
8. Employ the bvp4c command to find the approximate solution 

of the boundary value problem governed by the second-order 
homogeneous differential equation,   

     yy   0     10  x  

 with the boundary conditions of   10 y  and   11 y .  Plot 
to compare the approximate solution with the exact solution 
obtained by using the dsolve command.   

 
9. Employ the bvp4c command to find the approximate solution 

of the boundary value problem governed by the second-order 
nonhomogeneous differential equation, 

     yyy  2  2x     10  x  

 with the boundary conditions of   50 y  and   21 y .  Plot to 
compare the approximate solution with the exact solution 
obtained by using the dsolve command.  

 
10. Employ the bvp4c command to find the approximate solution 

of the boundary value problem governed by the second-order 
homogeneous differential equation with variable coefficients, 

     yxyxyx 22   0     81  x  

 The boundary conditions are   11 y  and   08 y .  Plot to 
compare the approximate solution with the exact solution 
obtained by using the dsolve command. 
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11. Employ the bvp4c command to find the approximate solution 
of the boundary value problem governed by the second-order 
homogeneous differential equation with variable coefficients, 

     yyxyx 2  0     31  x  

 The boundary conditions are   11 y  and   43 y .  Plot to 
compare the approximate solution with the exact solution 
obtained by using the dsolve command.  
 

12. Employ the bvp4c command to find the approximate solution 
of the boundary value problem governed by the second-order 
homogeneous differential equation with variable coefficients, 

    yyxyx 26  0     641  x  

 The boundary conditions are   21 y  and   1264 y .  Plot to 
compare the approximate solution with the exact solution 
obtained by using the dsolve command.  
 

13. Employ the bvp4c command to find the approximate solution 
of the boundary value problem governed by the second-order 
nonhomogeneous differential equation with variable coeffi-
cients, 

     yyx   5x     21  x  

 The boundary conditions are   211 y  and   42 y .  Plot to 
compare the approximate solution with the exact solution 
obtained by using the dsolve command. 
 

14. Employ the bvp4c command to find the approximate solution 
of the boundary value problem governed by the second-order 
nonhomogeneous differential equation with variable coeffi-
cients, 

    yyxyx 32   x3     21  x  

 The boundary conditions are   11 y  and   52 y .  Then, use 
the dsolve command to check whether MATLAB can 
provide and exact solution.  If it can, plot to compare the 
approximate solution with the exact solution.  If it cannot, plot 
to show only the approximate solution.   
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15. Employ the bvp4c command to find the approximate solution 
of the boundary value problem governed by the second-order 
nonhomogeneous differential equation with variable coeffi-
cients, 

     yxyxy 2  32x     10  x  

 The boundary conditions are   10 y  and   11 y .  Then, 
use the dsolve command to check whether MATLAB can 
provide and exact solution.  If it can, plot to compare the 
approximate solution with the exact solution.  If it cannot, plot 
to show only the approximate solution. 
 

16. Employ the bvp4c command to find the approximate solution 
of the boundary value problem governed by the second-order 
nonhomogeneous differential equation with variable coeffi-
cients, 

  y
x

y
x

x
y

1
2

1
2

22 



  12 x  10  x  

 The boundary conditions are (0) 2y   and (1) 5 3y  .  Plot to 
compare the approximate solution with the exact solution of, 

2
2

3
6

24

 x
xx

y  

 
17. Employ the bvp4c command to find the approximate solution 

of the boundary value problem governed by the second-order 
nonhomogeneous differential equation with variable coeffi-
cients, 

 y
x

y
x

x
y

1
2

1
2

22 



  12 x   10  x  

 The boundary conditions are (0) (0) 0y y   and (1) (1)y y  
3  .  Plot to compare the approximate solution with the exact 

solution of, 

1
2

3
6

24

 x
xx

y
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18. Employ the bvp4c command to find the approximate solution 
of the boundary value problem governed by the second-order 
homogeneous nonlinear differential equation, 

 2yyy   0     10  x  

 with the boundary conditions of   10 y  and   21 y .  Then, 
use the dsolve command to check whether MATLAB can 
provide and exact solution.  If it can, plot to compare the 
approximate solution with the exact solution.  If it cannot, plot 
to show only the approximate solution. 

 
19. Employ the bvp4c command to find the approximate solution 

of the boundary value problem governed by the second-order 
homogeneous nonlinear differential equation, 

     yyy  2  0     21  x  

 with the boundary conditions of   11 y  and   212 y .  
Then, use the dsolve command to check whether MATLAB 
can provide and exact solution.  If it can, plot to compare the 
approximate solution with the exact solution.  If it cannot, plot 
to show only the approximate solution. 

 
20. Employ the bvp4c command to find the approximate solution 

of the boundary value problem governed by the second-order 
homogeneous nonlinear differential equation, 

     2( )y y y   0     10  x  

 with the boundary conditions of   10 y  and   21 y .  Plot to 
compare the approximate solution with the exact solution of, 

y  13  x  
 
21. Employ the bvp4c command to find the approximate solution 

of the boundary value problem governed by the second-order 
homogeneous nonlinear differential equation, 

     yyy  2  0     10  x  
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 with the boundary conditions of   10 y  and   211 y .  Plot 
to compare the approximate solution with the exact solution of, 

y    11  x  

 
22. Employ the bvp4c command to find the approximate solution 

of the boundary value problem governed by the second-order 
homogeneous nonlinear differential equation, 

      2yxy   0     20  x  

 with the boundary conditions of   20 y  and   42 y .  
Plot to compare the approximate solution with the exact solu-
tion of, 

y   2cot 1 x  

 
23. Derive the exact solutions of the following boundary value 

problems, 
 (a) yyyy 232     xx sin22        20  x  
    00 y ,    10 y ,    02 y  

 (b) yyyy 24103   182024 2  xx  10  x  
    10 y ,    00 y ,    21 y  

 (c) yyy 23     xe 316     20  x  
    20 y ,    262 eey   ,    2632 eey    

 (d) yyyy 128   12cos36sin4  xx  

     00 y ,    0y ,    4 y    x0  
   

 Verify the solutions with those obtained from using the 
dsolve command.  In each sub-problem, employ the ezplot 
command to plot the solution of y that varies with x within the 
given domain. 
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24. Derive the exact solutions of the following boundary value 
problems, 

 (a) yyy  2IV    29 2  xe   10  x  

    30 y ,     20 y ,    21 2  ey ,    221 ey   

 (b) yyy 1610 IV   48sin7  x             x0  
    30 y ,    10 y ,    3y ,    1 y  

 (c) yy IV    1    50  x  
    20 y ,    10 y ,    15 5  ey ,    55 ey   

 (d) yyyyy 1632248 IV   324816 2  xx  
     10 y ,     10 y ,    72 y ,    52 y    20  x  
   

 Verify the solutions with those obtained from using the 
dsolve command.  In each sub-problem, employ the ezplot 
command to plot the solution of y that varies with x within the 
given domain.  

 
25. Use the dsolve command to find the exact solution of the 

boundary value problem governed by the third-order 
homogeneous differential equation, 

     y
dx
dy

dx
yd

dx
yd

22
2

2

3

3

  0    10  x  

 with the boundary conditions of   ,00 y    00 y  and 
  11 y .  Plot the solution of y that varies with x by using the 

ezplot command.  Repeat the problem but by employing the 
bvp4c command to solve for the approximate solution.  Plot to 
compare the approximate solution with the exact solution. 

 
26. If the differential equation in preceding problem becomes 

nonlinear,  

    2
2

2

3

3

2 y
dx
dy

dx
yd

dx
yd

  0    10  x  
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 with the same boundary conditions of   ,00 y    00 y  and 
  11 y , use the dsolve command to check whether it can 

find and exact solution.  If it cannot, employ the bvp4c 
command to find the approximate solution and plot to show its 
variation.  

 
27. Employ the bvp4c command to find the approximate solution 

of the boundary value problem governed by the third-order 
nonhomogeneous nonlinear differential equation, 

     
dx
dy

dx
yd

y 
3

3

 x2    10  x  

 with the boundary conditions of   ,10 y    00 y  and 
  21 y .  Plot to compare the approximate solution with the 

exact solution of, 
y  12  x  

 
28. The velocity profile of a laminar boundary layer flow over a 

flat plate can be found by solving the third-order homogeneous 
nonlinear differential equation,  

     
2

2

3

3

2
dx

yd
y

dx
yd
  0    10  x  

 with the boundary conditions of   ,00 y    00 y  and 
  11 y .  Employ the bvp4c command to find the approximate 

velocity profile y that varies with the depth x in the interval of 
10  x .   

 
29. A simply-support beam of a unit length is subjected to a 

uniform loading as shown in the figure.  The deflection y(x) 
along the beam length in the x-direction can be found by 
solving the fourth-order nonhomogeneous differential equa-
tion, 

     
4

4

dx
yd  1     10  x
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 with the boundary conditions of         01100  yyyy .  
Employ the bvp4c command to find the approximate solution 
of y that varies with x.    Plot to compare the approximate 
solution with the exact solution of,  

y  
241224

34 xxx
  

 

       

 
30. The deflection y of a cantilever beam subjected to an axial 

force P as shown in the figure is governed by the fourth-order 
nonhomogeneous differential equation,  

     2

2

4

4

dx
yd

dx
yd
  1    10  x  

 with the boundary conditions of         01100  yyyy .  
Employ the bvp4c command to find the approximate 
deflection of y that varies with x along the beam length.  Plot to 
compare the approximate solution with the exact solution that 
can be found by using the dsolve command.   

                

 

1
x

P

1
x
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31. Employ the bvp4c command to find the approximate solution 
of the boundary value problem governed by the fourth-order 
nonhomogeneous nonlinear differential equation,  

    y
dx

yd
dx

yd
y 

2

2

4

4

163  xx    10  x  

 with the boundary conditions of   ,10 y    ,00 y    01 y  
and   31 y .  Plot to compare the approximate solution with 
the exact solution of, 

y  13  x  

  Then, check whether the dsolve command can find the exact 
solution above.  If it cannot, verify the exact solution by 
substituting it into the differential equation and boundary 
conditions via the diff and subs commands, respectively.   

 



 
 

 
 

Chapter 
10 

 
 

 

Partial Differential 
Equations 

 
 
 

10.1 Introduction 

  Most scientific and engineering problems are governed by 
partial differential equations for which the dependent variable u 
varies with the three coordinates of x, y, z, and time t.  Solving the 
partial differential equations is more difficult than the ordinary 
differential equations learned earlier in the preceding chapters.  
Their exact solutions are not available, in general, and numerical 
methods are used to obtain the approximate solutions. 

 The widely used numerical methods are the finite 
difference, finite element and finite volume methods.  The finite 
element method is the popular one because it can handle 
complicated boundary conditions and domain geometries 
effectively.  MATLAB contains a toolbox that uses the finite 
element method to solve for approximate solutions of the partial 
differential equations in two dimensions. 
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 This chapter begins with the classification of the partial 
differential equations.  The MATLAB toolbox for solving these 
differential equations is explained.  The toolbox is then used to 
solve the elliptic, parabolic and hyperbolic partial differential 
equations, respectively.  Exact solutions for simple domain 
geometries are derived so that the finite element solutions can be 
compared to measure their accuracy.  More complicated examples, 
for which their exact solutions are not available, are then used to 
demonstrate the efficiency of the finite element method imple-
mented in the toolbox.     

   
 

10.2  Classification of Partial Differential Equations 
 The Partial Differential Equation toolbox (PDE toolbox) is 
used to solve the problems in two dimensions.  The unknown 
dependent variable u is function of x- and y- coordinates and may 
be time t.  The partial differential equations are classified into three 
types: 

(a) Elliptic equation,  

  ua
y
u

c
yx

u
c

x
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(b) Parabolic equation,  
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and (c) Hyperbolic equation,  
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where d, c, a and f are constants or may be function of x, y and u.  

  The boundary conditions consist of,  

  (a) Specifying value of the dependent variable u along the 
boundary (Dirichlet condition) ,  
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ruh   

where h  and r  are constants or function of x, y and u. 
   (b) Specifying gradient value of the dependent variable u 
along the boundary (Neumann condition) ,  

guq
n
u

c 



 

where c, q  and g  are constants or function of x, y and u.  The letter 

n denotes a unit vector normal to the boundary. 

 Solving the elliptic equation does not need the initial 
condition while the parabolic equation needs an initial condition of 
 0,, yxu  at time 0t .  The hyperbolic equation needs two initial 

conditions of  0,, yxu  and   tyxu  0,,  at time 0t . 
 
 
10.3 The Finite Element Toolbox 
 The finite element method is used to solve the partial 
differential equations.  The main advantage of the method is its 
flexibility for modelling arbitrary geometry easily.  The problem 
domain is first divided into small elements connected at nodes 
where the unknowns are located.  The finite element equations for 
each element are derived from the governing differential equation 
of the problems.  These finite element equations are assembled 
together to form a set of simultaneous algebraic equations.  The 
boundary conditions are then imposed prior to solving for solutions 
of the unknowns at nodes.  

 Understanding the finite element procedure above leads to 
the development of the PDE toolbox which contains commands 
under the menus, tool bars, etc. via the Graphical User Interface 
(GUI).  The PDE toolbox can be initialized by simply typing  
>>  pdetool on the Command Window, a graphic interface as 
shown in the figure is displayed. 
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 On the graphic interface, the menu commands are: 

 
File  New, Open…, Save, Save As…, Print…, Exit. 
Edit  Undo, Cut, Copy, Paste…, Clear, Select All. 

 Options  Grid, Grid Spacing…, Snap, Axes Limits…,  
  Axes Equal, Zoom, etc. 

Draw  Draw Mode, Rectangle/square, Ellipse/circle,  
 Polygon, etc. 
Boundary  Boundary Mode, Specify Boundary Conditions, etc. 
PDE  PDE Mode, PDE Specification…, etc. 
Mesh  Mesh Mode, Initialize Mesh, Refine Mesh,  

  Show Node Labels, Show Triangle Labels, etc. 
Solve  Solve PDE, Parameters…, etc. 
Plot  Plot Solution, Parameters…, Export Movie…. 

 
  Icons in the tool bar under the menu bar perform the same 
tasks through the graphic interface.  We will be familiar with this 
graphic interface by solving examples in the following sections. 
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10.4 Elliptic Equations 
 

 The elliptic partial differential equation is in the form,  
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where c, a and f are constants or function of x, y and u.  The partial 
differential equations in the elliptic form above arise in many 
applications.  These include steady-state heat transfer, potential 
flow, cross-sectional stress in a bar under torsion, electric potential, 
underground seepage flow, etc.  We will use the PDE toolbox to 
solve for the solution of u(x,y) from the elliptic differential 
equation with the specified boundary conditions. 
 
Example Use the PDE toolbox to solve the elliptic partial differen-
tial equation,   

2

2

2

2

y
u

x
u








   0  

for the solution of u(x,y) in a rectangular domain with the boundary 
conditions as shown in the figure.  

 
 

It is noted that the exact solution for this problem which is derived 
in the next example is,  

 yxu ,    
   

 2sinh
2sinh2sin


 yx

  

1 

2 

u = 0 u = 0 

u = 0 

x 

y 
 2sin xu 
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 By comparing coefficients of the governing differential 
equation with the standard form of the elliptic differential equation, 
we find that 1c , 0a  and 0f .  This problem is equivalent to 
a steady-state heat conduction in a rectangular plate with the size of 

12 .  Zero temperature ( 0u ) is specified along the left, right 
and bottom edges while the temperature is  2sin xu   along the 
top edge.  

  To use the PDE toolbox, we start by typing,  

>>  pdetool  

on the Command Window.  We select the menu Options, choose 
the sub-menu Grid and click at the Snap option so that the points 
we create will be located at the round off coordinates.  We select 
the Axes Limits as [-0.2  2.2]  and [-0.2  1.2]  for x- and y-axis, 
respectively.  Then, we click Apply and Axes Equal options so 
that the model has equal scalings in both x- and y-directions.  Note 
that if the background grid overflows the screen area, the screen 
resolution should be changed to 7681024 .   
 

 

pdetool 
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  To create the rectangular domain of 12 , we select the 
menu Draw and sub-menu Rectangle/square.  Then, move the 
cursor from the coordinate of (0,1) to the coordinate of (2,0) and 
click at the mouse, a gray rectangle will appear with the letter of R1 
as shown in the figure. 
 

 
 
 Next, to apply the boundary conditions, we select the 
menu Boundary and sub-menu Boundary Mode.  The gray 
rectangle disappears while the rectangle edges become red arrows 
as shown in the figure.  
 To specify the boundary condition along the left edge with 

the value of 0u , we double click at that edge, the Boundary 
Condition dialog box with the equation, 

ruh   
appears.  We enter 1h  and 0r  which mean u is zero along this 
edge and click OK.  We repeat applying the same boundary 
conditions of 0u  for the right and bottom edges.  For the top 
edge, we enter 1h  and  2/.sin xpir  , then click OK.  Note 
that the letter x in the r expression must follow by a period due to 
the expression format requirement in MATLAB. 
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   The next step is to choose the type of the differential 
equation.  We select the menu PDE and sub-menu PDE 
Specification, the PDE Specification dialog box appears.  After 
selecting Type of PDE as Elliptic, we enter 1c , 0a  and 

0f , and click OK.  
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  A finite element mesh can now be constructed.  After 
selecting the menu Mesh and sub-menu Initialize Mesh, a mesh 
with triangular elements is created.  The mesh can be refined by 
clicking at the sub-menu Refine Mesh.  The mesh without the 
background grid is shown in the figure.  
 

 
 

 Then, we can solve for solution of the problem.  We select 
the menu Solve and sub-menu Solve PDE so that the problem is 
executed.  The computed solution is plotted by selecting the menu 
Plot and sub-menu Plot Solution.  To display the colors similar to 
those in commercial finite element software, the Colormap which is 
under the sub-menu Parameter in the Plot Selection dialog box 
should be selected as jet as shown in the figure. 

 We can display the computed solution in the form of color 
fringe plot, line contour plot, deformed plot, plot with arrows, as 
well as generating an animation.  Displaying solution in the form of 
animation is useful to show the solution behaviors of the parabolic 
and hyperbolic problems.  Most of the solutions shown herein are 
in form of the line contour plots for clarity.  Distribution of the  
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computed solution in the form of contour lines for this example is 
shown in the figure.   

 

 
 

 The exact solution in the preceding example can be 
derived by using the method of separation of variable.  Detailed 
derivation of the exact solution is presented in the following 
example. 
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Example Derive the exact solution of the elliptic differential 
equation which is in form of the Laplace equation,  

02

2

2

2









y
u

x
u

 

for a rectangular domain with dimensions of w  as shown in the 
figure.  The boundary conditions along the four edges are,  

  yu ,0  0 ,  yu ,  0  

  0,xu  0 ,  wxu ,   xf  

 
 

  The method of separation of variables is applied by first 
assuming that the solution is in the product form of the functions 
 xX  and  yY , 

  yxu ,     yYxX  

By substituting the assumed solution into the differential equation, 
we obtain,  
 YXYX   0  

where the prime symbol (  ) denotes the derivative order.  The 
equation above can be written as,  

 xfu 

w 0u

0u

0u



y

x

02

2

2

2









y
u

x
u
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2

21
dx

Xd
X

  
2

2

1 d Y
Y dy

   

Since X is only function of x while Y is only function of y, then 
both sides of this equation must be equal to a constant, 

2

21
dx

Xd
X

  
2

2

1 d Y
Y dy

     2  

Thus, the given partial differential equation becomes two ordinary 
differential equations which should be solved easier. 
  If we consider the first ordinary differential equation,  

X
dx

Xd 2
2

2

    0  

Its general solution is in the form of sine and cosine functions, 
  xX  xBxA  cossin   
where A and B are constants.  These two constants are determined 
as follows.  Since the left edge boundary condition is    0,0 yu , 

then     00 yYX , or   00 X , so that 0B .  Similarly, the 

right edge boundary condition is   0, yu  , then     0yYX  , 

or   0X .  Then,  xX  above becomes, 

 X   0    sinA  
But A cannot be zero, thus,  

   n      and             
n

     

where n is an integer.  Hence, in general,  

 n  
n

       ...,3,2,1n  

which are called the eigenvalues.  

  Similarly, if we consider the second ordinary differential 
equation,  

Y
dy

Yd 2
2

2

   0  

which has the general solution of,  
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  yY  yFyE  coshsinh   

where E  and F  are constants.  The constant F is determined from 
the bottom edge boundary condition of   00, xu , i.e., 

    00 YxX .  Then   00 Y , which leads to 0F .  Thus, the 
general solution of the partial differential equation is, 

  yxu ,     yYxX       yExA  sinhsin  
Or,    yxu ,    yxC  sinhsin  

where AEC   denotes a new constant.  Since there are n values of 
 , i.e, 1 , 2 , 3 , ..., n , thus, the general solution can be written 

in the summation form for n values of   as,  

  yxu ,  yxC nnn
n

 sinhsin
1





  

  The constants  nC   are determined from the top edge 

boundary condition at  wy    as, 

  wxu ,     xf    xwC nnn
n

 sinsinh
1





  

Or,    


1

sin
n

nn xD      xf  

where wCD nnn sinh .  This means, once we obtain nD  from the 

above equation, we can find nC  and also the exact solution of 

 yxu , .  

  To solve for nD , we multiply both sides of the equations 

by  xmsin  where m  denotes an integer, and perform integra-
tion from   to   as follows,  

 


 1

sinsin
n

n dx
xmxn

D 





     dx
xm

xf 






sin



  

But from the integration formula,  
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  dx
xmxn







sinsin



 
nm

nm










,0

,
 

which is known as the orthogonal properties.  

  Then, the equation above reduces to,  

  nD    dx
xn

xf 






sin



  

Or, nD    dx
xn

xf 






sin

1



     dx
xn

xf 

 
sin

2

0
  

But  wnCwCD nnnn  sinhsinh  , therefore, 

  dx
xn

xf
wn

Cn 


 
 sin

sinh

2

0
  

Hence, the exact solution of this problem is,  

    dx
xn

xf
xn

wn

yn

yxu
n







 



sinsin

sinh

sinh2
,

01






  

  For the special case in the preceding example, if 

 xf
2

sin
x

  

with the domain sizes of 2  and 1w , the integral in the exact 
solution reduces to, 

  dx
xn

xf 

 
sin

0
    dx

xnx
2

sin
2

sin
2

0


    

1

1

,0

,1










n

n
 

Thus, the exact solution of the preceding example is,  

  yxu ,  
2

sin

2
sinh

2
sinh

2
2 x

y






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Or,  yxu ,     
 2sinh

2sinh2sin


 yx
  

  This exact solution can be plotted to show the distribution 
of  yxu ,  by using the meshgrid and mesh commands as follows,   
 

xx = 0:.05:2;  yy = 0:.05:1; 
[x,y] = meshgrid(xx,yy); 
u = sin(pi.*x/2).*sinh(pi.*y/2)/sinh(pi/2); 
mesh(x,y,u);  view(-37.5,30); 
 

Distribution of the exact solution  yxu ,  is shown in the figure. 

 
Exact solution 

  The finite element solution obtained from the preceding 
example can be plotted in the same fashion as shown in the figure. 

 
Approximate solution 
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Example   Use the PDE toolbox to solve the elliptic partial differen-
tial equation,  

853 2

2

2

2
















 u
y
u

x
u

 

for an arbitrary two-dimensional domain as shown in the figure.  
The domain has the specified boundary condition of 0u  for all 
the edges.  The problem statement is equivalent to the two-
dimensional steady-state heat transfer in a plate.  The plate material 
has its thermal conductivity coefficient of 3 units and is subjected 
to surface convection with the convection coefficient of 5 units.  
The plate is also subjected to a surface heating with the magnitude 
of 8 units. 

 
 

 We begin solving this problem by typing,  

>>  pdetool  
on the Command Window similar to the preceding example.  We 
select the menu Axes Limits as [-0.2  2.2] and [-0.2  1.6] for x- and 
y-axis, respectively, then click the sub-menu Grid Spacing to enter 
-0.2:0.1:2.2 and -0.2:0.1:1.6 into the X-axis and Y-axis boxes, 
respectively, and click Apply.  

   Next, we draw the geometry of the domain by creating the 
rectangle R1, the circle E1 (lower left of the figure), the ellipse E2 
and the square SQ1.  Then, we modify the command in the Set

0u
0u

0u

0u

0u

0u

0u

pdetool 
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formula box to R1-E1-E2-SQ1 which means we subtract the areas 
of E1, E2 and SQ1 from R1 as shown in the figure.   

 
 After that, we select the menu Boundary followed by the 
sub-menu Boundary Mode, the red arrows representing the 
domain boundaries appear as shown in the figure.  
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   Next, we select the type of the differential equation that 
governs the problem.  Here, we select the menu PDE and sub-
menu PDE Specification, then click on Elliptic in PDE 
Specification dialog box and enter ,3c  5a  and 8f  as 
shown in the figure, and click OK. 

 

  A mesh can now be constructed by selecting the menu 
Mesh and sub-menu Initialize Mesh.  If the element sizes are too 
large, we click at the sub-menu Refine Mesh so that smaller 
elements are generated as shown in the figure.  

 

 
 

  The final step is to perform the analysis to find solutions 
of u at nodes.  We select the menu Solve and sub-menu Solve PDE, 
the color fringe plot of the computed solution appears on the
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screen.  If other plotting style is preferred, we select the menu Plot 
followed by sub-menu Parameters and choose different options 
there.  The line contour plot representing the distribution of the 
computed solution is shown in the figure. 

 
 
 

 
10.5 Parabolic Equations 
 

 The parabolic partial differential equation is in the form,  

ua
y
u

c
yx

u
c

xt
u

d 







































   f  

where d , c , a  and f  are constants or may be function of x, y and 

u.  The parabolic equation is more complicated than the elliptic 
equation because of an additional independent variable of t.  
Finding the exact solution is more difficult, especially for domain 
with arbitrary geometry.  The PDE toolbox using the finite element 
method can alleviate such difficulty by finding the approximate 
solution instead. 
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Example Use the PDE toolbox to solve the parabolic partial 
differential equation in the form, 


















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32
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u
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u
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u

  8  

for a circular domain with a unit radius.  The domain has the 
specified boundary condition of 0u  along the edge as shown in 
the figure and the initial condition of   00,, yxu  at time 0t .  
 

 

  
 The problem statement is equivalent to transient heat 
conduction in a circular plate with specified zero temperature along 
the edge and zero initial temperature.  The plate material has the 
thermal conductivity coefficient of 3 units and the specific heat of 2 
units with a unit of material density.  The plate is also subjected to 
a specified surface heating of 8 units. 

  We can create a finite element model for the entire plate 
but, due to symmetry of the solution, only the lower half of the 
plate can be modelled.  As shown in the figure, the boundary 
condition of 0u  is applied along the outer edge.  Along the 
center line, the gradient of u normal to the edge must be equal to 
zero representing the insulated boundary condition. 

 

0u

1
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 Again, to analyze this problem by using the PDE toolbox, 
we begin by entering,  
 

>>  pdetool  

on the Command Window.  We select the menu Option followed 
by sub-menu Grid to show the grid background.  We choose the 
sub-menu Snap so that the constructed points are located at the 
round off coordinates.  Then, we select the sub-menu Axes Equal 
for equal scalings in both x- and y-directions. 

  To construct the domain with half circle geometry, we 
start by clicking at the ellipse icon in the tool bar.  We place the 
cursor arrow head at the coordinates of (0,0) and move it to the 
coordinates of (1,-1), click the mouse, then a circle with the letter 
C1 appears.  We follow the same procedure by choosing the 
rectangle icon in the tool bar.  We place the cursor arrow head at 
the coordinates of (-1,0), drag it to the point at the coordinates of 
(1,-1), click the mouse, a rectangle with the letter R1 appears as 
shown in the figure.  Then, we modify the expression in the Set 

formula box to C1R1, click the icon ?, a half circle domain 

indicated by the red arrows appears as shown in the figure. 

 The next step is to apply the boundary conditions.  We 
double click at the circle centerline, the Boundary condition 
dialog box appears, then choose the Neumann condition type 
followed by OK.  Note that the default boundary condition of 

0u  is automatically applied along the outer edge. 

n̂ 0



n
u

0u

1

pdetool 
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 We now can select the type of the differential equation to 
be solved.  We click the menu PDE and sub-menu PDE 
Specification.  We choose the Parabolic Type of PDE in the PDE 
Specification dialog box, enter ,3c  ,0a  8f  and 2d  as 
shown in the figure, then click OK.   

 
 A finite element mesh consisting of triangular elements 
can now be constructed.  We select the menu Mesh and sub-menu 
Initialize Mesh, the mesh as shown in the figure is generated.  To 
solve for the transient solution, we choose the menu Solve and 
click at the Parameters icon.  In the Solve Parameters dialog box 
as shown in the figure, we enter the values of 0:0.05:1 in the Time 
box which means we perform the calculation for the interval of 

10  t  and save the solution at every 05.0t .    
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 By clicking the   icon in the tool bar, the computed 
solutions at different times are obtained.  These solutions can be 
plotted as contour lines in two dimensions or the carpet plots in 
three dimensions as shown in the figure.  The transient solution 
which varies with time t can be animated by clicking at the 
Animation icon in the sub-menu Plot Selection under the menu 
Plot  Parameters.  Users may try different commands in this 
sub-menu to display solutions in various ways. 
 

  
 

Example Use the PDE tool to solve the parabolic partial 
differential equation, 

u
y
u

x
u

t
u
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

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   4  

on the 23  rectangular domain with small ellipse and rectangular 
holes inside.  The initial condition is   00,, yxu  while the 
boundary conditions are shown in the figure.   

 The procedure for solving this problem is similar to that 
explained the preceding example.  The domain geometry, however, 
is more complicated with the boundary condition along the left 
edge changes abruptly from 0u  to 1u  at 0t .  A finite 
element mesh can be constructed as shown in the figure.  We select 
Parabolic as the type of PDE to be solved in the PDE Specification 
dialog box under the PDE menu with the parameters of ,2c  

,3a  4f  and 1d .  To obtain the transient solution, we enter 
0:0.01:0.5 in the Time box of the Solve Parameters dialog box as 
shown in the figure.    
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  The computed solutions of  tyxu ,,  at 1.0t  and 3.0  are 
plotted using contour lines as shown in the figures. 
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  Animation of the transient solution  tyxu ,,  can help us to 
understand the solution behavior clearly.  A sample of the transient 
solution  yxu ,  at time 1.0t  is shown as a carpet plot in the 
figure.  

 This example demonstrates that the finite element method 
can provide approximate solution to the differential equation with 
complicated boundary conditions and geometry effectively.  The 
next example shows detailed derivation of the exact solution for the 
parabolic differential equation with simple boundary conditions 
and domain geometry.  The example will show that the exact 
solution is not easy to derive even for a simple problem.  These two 
examples thus highlight benefits of using the finite element method 
to obtain approximate solutions for complex problems. 

1.0t

3.0t
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Example Derive the exact solution of the parabolic partial 
differential equation, 

 


















2

2

2

2

y
u

x
u

t
u

 0  

for the w  rectangular domain as shown in the figure.  The 
boundary conditions are, 

  txu ,0,   ,0   twxu ,,  ,0   x0   

   tyu ,,0   ,0   tyu ,,  ,0  wy 0  

and the initial condition is,  

  0,, yxu     yxf ,  0t  
 

  The method of separation of variables is used to solve for 
the exact solution.  We start by assuming the solution  tyxu ,,  as 

the product of the three functions  xX ,  yY  and  tT ,   

  tyxu ,,         tTyYxX   

By substituting it into the differential equation, we obtain,  

  TYXTYXTYX     0
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where the prime symbol (  ) denotes the derivative order.  We 
divide the equation through by TYX  and move some terms to get,     

X
X

Y
Y

T
T 







 

Since the terms on the left-hand-side of the equation are only 
functions of t and y while the term on the right-hand-side of the 
equation is only function of x, then they must be equal to a 
constant,    

Y
Y

T
T 




  
X
X 

    2  

Similarly,  

2


T
T

  
Y
Y 

   2  

Hence, the method of separation of variables changes the given 
partial differential equation into three ordinary differential 
equations as, 

0u

0u



0u

y

w

0
2

2

2

2




















y
u

x
u

t
u

   yxfyxu ,0,, 
0u

x



358   Chapter 10  Partial Differential Equations 

,02  XX         02  YY      and      022  TT   
At the same time, the given boundary conditions become,  

  ,00 X       ,0X        00 Y       and        0wY  

By using the same procedure as shown in the preceding example of 
the elliptic differential equation, the eigenvalues and eigenvectors 
are obtained,  

 m  ,
m

   xXm  





 

xm
sin  

and n  ,
w

n
   yYn  








w
yn

sin  
 

  The ordinary differential equation related to the time t is,  

  022  TT   

Its general solution is in the form,  

 T  t
mn

mneA
2  

where 2
mn  22

nm      
22
















w
nm 

  

  Thus, the general solution is, 

  tyxu ,,  TYX nm
m n










1 1

 

  t
mn

m n
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2
sinsin

1 1
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    

where the constants mnA  are determined from the initial condition 

of    yxfyxu ,0,,   by using the orthogonal properties,  

mnA     dydx
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 As an example, if the initial condition is,  

  0,, yxu   yxf ,      ywyxx  2  

then, the constants mnA  are,  
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Hence, the exact solution for this particular case is,  

  tyxu ,,  
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 The exact solution above is in the form of infinite series.  
We can create a MATLAB script file to compute the solution.  For 
example, the script file for determining the solution of  tyxu ,,   

at 02.0t  for a unit square domain  1 w  consists of the 
following statements, 
 
xx = 0:1/60:1;  yy = 0:1/60:1; 
[x,y] = meshgrid(xx,yy); 
t = 0.02;  u = 0; 
for m = 1:50; 
  for n = 1:50; 
    a = (-1)^m;  b = (-1)^n - 1; 
    c = sin(m*pi.*x);  d = sin(n*pi.*y); 
    ee= (m*m+n*n)*pi*pi*t;  e = exp(-ee); 
    fac = 48/(m^3*n^3*pi^6); 
    u = u + fac*a*b.*c.*d*e; 
  end 
end 
mesh(x,y,u);  view(-37.5,30); 

 
 The same problem is solved by using the PDE toolbox for 
the approximate solution.  The exact and approximate solutions are 
compared in form of the carpet plots as shown in the figures. 

meshgrid 

mesh 
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10.6 Hyperbolic Equations 
 

 The hyperbolic partial differential equation is in the form,  

     ua
y
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u
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  f  

where d, c, a and f are constants or function of x, y and u.  The 
hyperbolic equation is more complicated than the elliptic and 
parabolic equations.  The dependent variable u is function of the 
independent variables x, y and t.  Two initial conditions of 
 0,, yxu  and   tyxu  0,,  are needed for solving the problem. 

 In this section, we will use the PDE toolbox to solve the 
hyperbolic partial differential equation for both simple and 
complex domains.    
 
Example Use the PDE toolbox to solve the hyperbolic partial 
differential equation in the form, 


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

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x
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t
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  0  

for a 22  unit square domain.  The boundary conditions are 0u  
on the left and right edges while 0 yu  on the top and bottom 
edges as shown in the figure.   

 

0u0u
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y
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The initial conditions are,  

   0,, yxu    2costan 1 x  

   tyxu  0,,     2sinsin4 yex   

 To use the PDE toolbox, we start by typing,  

>>  pdetool  
on the Command Window.  We select the menu Options and click 
the Grid and Snap options to show the background grids and to 
place the points exactly at the round off coordinates.  We also 
select Axes Equal option to have equal scalings for both x- and y-
axes.     
 Next, we create a square domain with the dimensions of 

22  units.  We click at the rectangle icon in the tool bar, place the 
cursor arrow head at the coordinate of (-1,1), drag the mouse to 
move the cursor arrow head to the coordinate of (1,-1), then click 
the mouse again, a square domain with the letter SQ1 appears.  
Then, we apply the boundary conditions for the four edges, one at a 
time.  We select the Dirichlet condition for the left and right edges, 
and the Neumann condition for the top and bottom edges. 
 To specify the type of the differential equation, we select 
the menu PDE and sub-menu PDE Specification.  We choose the 

type of PDE as Hyperbolic, and enter the values of 1c , 0a , 
0f  and 1d , and click OK as shown in the figure.   

   

 A finite element mesh can now be constructed.  We select 
the menu Mesh followed by sub-menu Initialize Mesh, a mesh 
with triangular elements appears.  The initial mesh may be 

pdetool 
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too crude, we can click the sub-menu Refine Mesh for couple 
times so that elements become smaller as shown in the figure. 

 To solve the problem, we choose the menu Solve and sub-
menu Parameters, and enter values in the Time box as 0:2:40.  We 
also need to provide the initial conditions of  0,, yxu  and 

  tyxu  0,,  in the next two small boxes as shown in the figure. 

     
 

Then, we execute the problem by choosing the menu 
Solve and the sub-menu Solve PDE.  The computed solutions of 
 10,, yxu  and  20,, yxu  at time 10t  and 20  are shown as the 

contour line plots in the figures.   
 

 

10t 20t
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  To display the solution that changes with time, we can 
select the Animation icon.  Herein, a typical solution at 40t  is 
shown in the figure in form of a carpet plot. 
 
 

 

    
Example Use the PDE toolbox to solve the hyperbolic partial 
differential equation, 

u
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   2  

for a  unit square domain with two small holes inside as shown in 
the figure.  The boundary conditions are 0u  on the left and right 
edges, and 0 yu  on the top and bottom edges while 0 nu  
along inner edges of the holes.  The two initial conditions are,      

  0,, yxu    2costan 1 x  

   tyxu  0,,     2sinsin4 yex 
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 Since this example is similar to the preceding one except 
the differential equation and the two holes inside the domain, we 
can follow the same procedure to solve the problem.  To provide 
information of the differential equation, we select the menu PDE 
and sub-menu PDE Specification, choose the Type of PDE as 
Hyperbolic and enter the values of ,4c  ,3a  2f  and 5d , 
then click OK.  
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 A finite element mesh can be constructed by using the 
same procedure as explained in the preceding example.  The Solve 
Parameter dialog box remains the same as shown in the figure.   

 

     

  Typical solutions of  tyxu ,,  at times 10t  and 40  are 
plotted in the form of contour lines as shown in the figures.  

    

 The solution can be displayed as a carpet plot in three 
dimensions.  A typical solution of  tyxu ,,  at time 40t  in form 
of the carpet plot is shown in the figure.  

10t 40t
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 To highlight the advantage of using the finite element 
method to solve for approximate solution of the hyperbolic 
problem, we will use the example below to show the derivation of 
exact solution for a very simple problem.  We will see that the 
derivation is rather lengthy and complicated.     
 

Example Derive the exact solution of the hyperbolic partial 
differential equation, 
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  0  

for a rectangular domain with the dimensions of w  as shown in 
the figure.  The boundary conditions are,  

  txu ,0,   0 ,  twxu ,,  0 ,  x0   

   tyu ,,0   0 ,  tyu ,,  0 , wy 0  

and the initial conditions are,  

  0,, yxu     yxf , ,        00,, 



yx
t
u  0t  

 The method of separation of variables is again used to 
derive the exact solution.  We first assume the exact solution 
 tyxu ,,  in form of the product of the three functions  ,xX   yY  

and  tT  as, 
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 tyxu ,,         tTyYxX  

By substituting it into the differential equation, we obtain,  

 TYXTYXTYX     0  

where the prime symbol (  ) denotes the derivative order.  We 
divide the equation through by TYX  and move some terms to get,    
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Since the terms on the left-hand-side of the equation are only 
functions of t and y while the term on the right-hand-side of the 
equation is only function of x, then they must be equal to a 
constant,    
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Hence, the method of separation of variables changes the partial 
differential equation into three ordinary differential equations as,  

02  XX  ,    02  YY       and      022  TT   
while the boundary conditions become,  

  00 X ,      0X ,       00 Y       and        0wY  

The process leads to the eigenvalues and the eigenvectors similar to 
those explained in the elliptic and parabolic problems,  

 m  
m

 ,  xXm   

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
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w
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w
yn

sin  

 

  The ordinary differential equation for the time t is,  

  022  TT   

The general solution of this differential equation is in the form of 
sine and cosine functions.  But after applying the initial condition 
of   00,,  tyxu , the solution is only in the form of cosine 
function as,  

  tT   tA mnmn cos  

where 2
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  Thus, the general solution of the partial differential 
equation is,  

  tyxu ,,  TYX nm
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where the constant mnA  can be determined from the initial 

condition of    yxfyxu ,0,,   by using the orthogonal properties 

as explained in the preceding examples.  These constants mnA  are,    
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 As an example, if the initial condition is,  

 0,, yxu    yxf ,      ywyxx    

then, the constants mnA  are, 
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So that the exact solution for this case is,  

      tyxu ,,    
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 The exact solution above is in the form of infinite series.  
To solve for the solution of  tyxu ,,  at 35.0t  for a unit square 

domain  1 w , a MATLAB script file can be created with 
details as follows, 
 
xx = 0:1/60:1;  yy = 0:1/60:1; 
[x,y] = meshgrid(xx,yy); 
t = 0.35;  u = 0; 
for m = 1:50; 
  for n = 1:50; 
    a = (-1)^m - 1;  b = (-1)^n - 1; 
    c = sin(m*pi.*x);  d = sin(n*pi.*y); 
    al= sqrt(m^2*pi^2+n^2*pi^2);  e = cos(al*t); 
    fac = 16/(m^3*n^3*pi^6); 
    u = u + fac*a*b.*c.*d*e; 
  end 
end 
mesh(x,y,u);  view(-30,-10); 

meshgrid 

mesh 
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 The same problem is solved by using the PDE toolbox.  
The approximate solution obtained from the PDE toolbox is 
compared with the exact solution in the form of carpet plot as 
shown in the figures.  The comparison indicates that the finite 
element method in the PDE toolbox can provide accurate 
approximate solution by agreeing very well with the exact solution. 
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10.7 Concluding Remarks 

 In this chapter, we learned three types of the partial 
differential equations which are in the elliptic, parabolic and 
hyperbolic forms.  We solved these partial differential equations for 
their solutions in two dimensions.  Exact solutions can be derived 
only for simple differential equations with plain boundary 
conditions and geometry.  For more complicated problems, we 
have to employ the numerical methods to solve for approximate 
solutions. 

 MATLAB contains the PDE toolbox that uses the  
finite element method to solve these problems for approximate 
solutions.  The toolbox solves the partial differential equations that 
are in different forms.  The boundary conditions may be 
complicated and the geometry could be arbitrary.  The process 
starts from discretizing the problem domain into a number of  
small triangular elements.  These elements are connected at nodes 
where the unknowns are located.  The finite element equations are 
derived for each element and assemble together to form up a set  
of simultaneous equations.  The boundary conditions are then 
imposed on the set of equations before solving them for the 
solutions at nodes.  

 Several examples are used to show derivation of exact 
solutions for simple problems and to find approximate solutions for 
more complicated ones.  The results have demonstrated that the 
PDE toolbox can provide approximate solutions with high accuracy 
if the finite element meshes are refined with small elements.  These 
results highlight the advantages of using the finite element method 
for solving partial differential equations with complicated boundary 
conditions and domain geometries.     
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Exercises 

 
1. Use the PDE toolbox to solve the elliptic partial differential 

equation, 

02
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

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y
u

x
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 for a unit square domain of 10  x  and 10  y  with the 
boundary conditions of, 

    00, xu ,    11, xu    10  x   

   0,0 yu ,    0,1 yu    10  y  

  Plot to compare the solution with the exact solution of,  

 yxu ,    
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 nn
ynxn
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sinhsin4
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2. If the boundary condition along the right edge of the square 

domain in Problem 1 is changed to,  

   1,1 yu     10  y   

use the PDE toolbox to solve the problem again.  Plot to 
compare the solution with the exact solution if it can be 
derived.  

 
3. Use the PDE toolbox to solve the elliptic partial differential 

equation,  
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  for a unit square domain of 10  x  and 10  y .  The four 
edges have the specified boundary conditions of 0u .  Plot to 
compare the solution with the exact solution of, 

 yxu ,    
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3223
531
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4. If there is a circular hole with radius of 0.2 at the center of the 
square domain in Problem 3, use the PDE toolbox to solve the 
problem again when the hole edge has the: (a) Dirichlet 
boundary condition of 0u  and (b) Neumann boundary 
condition of 0 nu .  Plot to compare the two solutions in 
form of the carpet plot.  
 

5. Use the PDE toolbox to solve the elliptic partial differential 
equation, 

02
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
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

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y
u

x
u  

 for a unit square domain of 10  x  and 10  y  with the 
boundary conditions of, 

   00, xu ,    xxu 1,     10  x   

   0,0 yu ,    yyu ,1     10  y  

  Plot to compare the solution with the exact solution of 
  xyyxu , . 

 

6. Use the PDE toolbox to solve Problem 5 again if the 

differential equation is changed to,  
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 Explain the physical meaning of the solution which is different 
from that obtained in Problem 5.  

 
7. Use the PDE toolbox to solve the elliptic partial differential 

equation, 
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2

2









y
u

x
u  

 for a unit square domain of 10  x  and 10  y  with the 
boundary conditions of, 



Exercises  375 

    10, xu ,      21,1, 



xux
y
u

  10  x   

    0,0 



y
x
u

,   0,1 



y
x
u

  10  y  

  Plot to compare the solution with the exact solution of,  

 
2

1,
y

yxu   

 

8. Use the PDE toolbox to solve Problem 7 again if the 
differential equation is changed to,  

952

2

2

2
















 u
y
u

x
u  

 Plot the solution  yxu ,  in form of the carpet plot.  
 
9. Use the PDE toolbox to solve the elliptic partial differential 

equation, 

2

2

2

2

y
u

x
u








   yxeyx 22   

 for a rectangular domain with the size of 12  units, i.e., 
20  x  and 10  y .  The boundary conditions are,  

   0,xu   1 ,  1,xu  xe , 20  x   

   yu ,0   1 ,  yu ,2  ye2 , 10  y  

  Plot to compare the solution with the exact solution of, 

  xyeyxu ,  
 
10. Use the PDE toolbox to solve the elliptic partial differential 

equation, 

2

2

2

2

y
u

x
u








   1662 23  xyxyxx  
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for a unit square domain of 10  x  and 10  y .  The four 
edges have the specified boundary conditions of 0u .  Plot to 
compare the solution with the exact solution of,  

     24, yyxxyxu   
 
11. Use the PDE toolbox to solve the elliptic partial differential 

equation, 

2

2

2

2

y
u

x
u








  20  

  for a circular domain with a unit radius.  The boundary 
condition along the edge is 0u .  Compare the solution with 
the exact solution of,  

   2 2, 5 1u x y x y    

 

  

12.  Use the PDE toolbox to solve Problem 11 again if the circular 
domain contains a small circular hole with radius of 0.3 unit 
and a square hole with dimension of 2.02.0   units as shown 
in the figure.  The boundary conditions for the edges of the 
circular hole and square hole are 0u  and 0 nu , 

respectively.  Plot the solution  yxu ,  in form of the carpet 
plot. 

 x

y

1
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13. Use the PDE toolbox to solve the elliptic partial differential 

equation, 

2

2

2

2

y
u

x
u








   0  

 

 
 

for a square domain with the size of 88  units.  The domain 
contains a circular hole with the radius of 2 units at its center 

x

y
0u

0u
100u

2

0u

0u

8

8

 

1

x

y

4. 4.
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as shown in the figure.  If the boundary conditions of the hole 
and the outer boundary of the domain are 100u  and 0u , 
respectively, solve for the solution of  yxu , .  Then, plot the 
solution in form of the carpet plot. 

 
14. Due to symmetry of the solution in Problem 13, only the upper 

right quarter of the domain as shown in the figure can be used 
for the analysis.  Solve the problem again with the boundary 
conditions as shown in the figure.  Plot the solution in form of 
the carpet plot. 

 
  

15. Use the PDE toolbox to solve the elliptic partial differential 
equation which is in form of the Helmholtz equation,  

 uyxa
y
u

x
u

,2

2

2

2









   yxf ,  

 for a unit square domain of 10  x  and 10  y .  The four 
edges have the specified boundary conditions of 0u .  Find 
the solution if 2a  and  

                 7117, 2222  yxyxxyyxf  

  Plot to compare the solution with the exact solution of, 

     33, yyxxyxu 

x

y

0u

0u

100u

0



n
u

2

0



n
u
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16. Use the PDE toolbox to solve the parabolic partial differential 
equation, 




















2

2

2

2

y
u

x
u

t
u

  0  

for a rectangular domain with the dimensions of 3.0  units, 
i.e.,  x0  and 3.00  y .  The boundary conditions along 

the four edges are 0 nu  and the initial condition is, 

  0,, yxu  cos x  

 Plot to compare the solution with the exact solution of,  

  tyxu ,,  xe t cos  

 when 2.0t . 
 
17. Use the PDE toolbox to solve the parabolic partial differential 

equation, 

 


















2

2

2

2

y
u

x
u

t
u

 2  

 for the rectangular domain of 10  x  and 2.00  y .  The 
boundary conditions are shown in the figure.  The initial 
condition is, 

  0,, yxu     xxx  1sin   

 Plot to compare the solution with the exact solution of,  
  tyxu ,,     xxxe t   1sin2   

 when 1.0t .  Study the solution behavior from animation in 
the form of carpet plot. 

 

0 nu

0 nu

0u0u

x

y

2.0

0.1



380  Chapter 10  Partial Differential Equations 
 

18. Solve Problem 17 again when the domain contains two square 
holes and a circular hole as shown in the figure.  The boundary 
conditions along the edges of the holes are 0 nu .  Provide 
comments on the solution behavior which is different from that 
obtained in Problem 17. 

 
 
19. Use the PDE toolbox to solve the parabolic partial differential 

equation, 




















2

2

2

2

y
u

x
u

t
u

  0  

 for the rectangular domain of 10  x  and 2.00  y  with 
the boundary conditions of, 

  tx
y
u

,0,



  ,0   tx
y
u

,2.0,



 0 , 10  x   

   tyu ,,0   ,1   tyu ,,1  0 , 2.00  y  

 and the initial condition of,  

 0,, yxu    xx  2sin
1

1   

 Plot to compare the solution with the exact solution of,  

 tyxu ,,    xex t 
 2sin

1
1

24  

 when ,01.0t  02.0  and 05.0 .  

y

25.025.025.025.0

0.1 0.1 0.1

1.0
x

2.0

0.1
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20. Use the PDE toolbox to solve the parabolic partial differential 
equation, 

u
y
u

x
u

t
u

347 2

2

2

2




















  12  

 for the 44  unit square domain with two holes as shown in 
the figure.  The boundary conditions along the outer four edges 
are 0u .  The initial condition is given by   00,, yxu .  Find 
the solutions at ,2.0t  5.0  and 0.1  when the boundary 
conditions along the hole edges are: (a) 0u  and (b) 

0 nu .  Plot the solutions in form of the carpet plot.   

        
 

21. Use the PDE toolbox to solve the hyperbolic partial differential 
equation, 

 


















2

2

2

2

2

2

y
u

x
u

t
u

 0  

 

2.1

2.1

5.

x
5.1

7.
4

5.1

4

y
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 for the domain of 10  x  and 2.00  y  with the boundary 
conditions as shown in the figure.  The initial conditions are, 

      0,, yxu   xsin        and     0,, yx
t
u

  0   

 Plot to compare the solution with the exact solution of,  
 tyxu ,,      tx  cossin  

 when 0.1t  and 0.2 .  
 

 
 
 
 

22. Solve Problem 21 again if the rectangular domain contains 
three small circular holes as shown in the figure.  The 
boundary conditions along the hole edges are 0 nu .  
Compare the solution with that obtained in Problem 21 by 
plotting it in form of the carpet plot.  

 

1.0

25.0 25.0 25.0 25.0
0.1

07. 07. 07.

x

y

y

0 nu

0u0u

x

0 nu

2.0

0.1

2.0
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23. Use the PDE toolbox to solve the hyperbolic partial differential 
equation, 




















2

2

2

2

2

2

y
u

x
u

t
u

  xe t sin2   

 for a rectangular domain of 3.0  units, i.e., x0  and 
3.00  y  with the boundary conditions of, 

   tx
y
u

,0,

  0 ,   tx

y
u

,3.0,

   0   x0  

    tyu ,,0  0 ,  tyu ,,  0  3.00  y  
  and the initial conditions of,  

  0,, yxu  xsin      and     0,, yx
t
u



xsin   
  Plot to compare the solution with the exact solution of,  
  tyxu ,,  xe t sin  
 when 2.0t  and 5.0 .  
 
24. Use the PDE toolbox to solve the hyperbolic partial differential 

equation, 




















2

2

2

2

2

2

y
u

x
u

t
u

  0  

  for a rectangular domain of 2.01  units, i.e., 10 x  and 
2.00  y  with the boundary conditions of, 

  tx
y
u

,0,

  ,0   tx

y
u

,2.0,

  0   10  x  

  tyu ,,0  ,0   tyu ,,1  0   2.00  y  
 and the initial conditions of,  

 0,, yxu    x2sin     and     0,, yx
t
u

    x 2sin2  

  Plot to compare the solution with the exact solution of,  
 tyxu ,,         ttx  2cos2sin2sin   

 when 0.3t    and 0.6 .  
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25. Use the PDE toolbox to solve the hyperbolic partial differential 

equation, 

u
y
u

x
u

t
u

253 2

2

2

2

2

2




















   4  

  for a rectangular domain of 46  units with the boundary 
conditions along the outer edges as shown in the figure.  The 
boundary conditions along the hole edges are 0 nu .  The 
initial conditions are given by, 

 0,, yxu    0      and     0,, yx
t
u



   0  

 Find the solutions for the interval of 10  t .  Display the 
solutions at 5.0,3.0t  and 1.0   in form of the carpet plot.  
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11 

 
 

 

Special Functions 
 

 
 
11.1 Introduction 
 

  Special functions often occur while solving mathematical 
problems in science and engineering.  These special functions 
include the error functions, Gamma functions, Beta functions, 
Bessel functions, Airy functions and Legendre functions.  These 
functions are in various forms of the infinite series as well as in the 
integral forms.  In the past, their values could not be determined 
conveniently, so many textbooks have to provide them as tables in 
appendices. 

 MATLAB contains commands for determining these 
functions easily.  The commands can be implemented in a program 
to work together with other numerical methods for solving the 
entire problem.  This chapter begins with the definitions of special 
functions that are generally encountered in mathematics.  The 
MATLAB commands for determining these functions are presented 
by using examples.  The examples demonstrate high efficiency of 
these commands for determining values of the special functions.   
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11.2 Error Functions 
  The error function occurs during solving many forms of 
differential equations in scientific and engineering problems.  The 
definition of the error function is,  

    
x  

t dtexerf
0

22


 

  As an example, the exact solution of the initial value 
problem governed by the first-order ordinary differential equation 
and the initial condition,  

22  yx
dx
dy

           ;            10 y  

is,             xerfexy x  1
2

 

where  xerf  denotes the error function evaluated at x.  

  The exact solution above can be obtained by using the 
dsolve command,  
 
>> syms x y 
>> dsolve('Dy - 2*x*y = 2', 'y(0) = 1', 'x') 
ans = 
 
exp(x^2)*(pi^(1/2)*erf(x) + 1) 
 
The solution of y that varies with x can be plotted by using the 
ezplot command for the interval of 10  x  as shown in the 
figure.  
 
>> ezplot(ans, [0 1]) 
 

 The error function is determined automatically at any x in 
the commands above to provide the solution for plotting.  To 
determine the error function, e.g. for 1x  , we use the erf 
command by entering,  
 

dsolve 

ezplot 
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>> erf(1) 
 

ans = 
 

    0.8427 
 

 

 Note that the error function changes moderately from 1  
to 1  in the interval of 33  x  as shown in the figure.  Values of 
the error function approach 1  and 1 for 3x  and 3x , 
respectively.  
 

 The figure is plotted by using the commands,  
 
 >> syms x f 
>> f = erf(x); 
>> ezplot(f, [-3 3]) 
 

 MATLAB also contains the erfc command to determine 
the complementary error function with the definition of,  

  



x

t dtexerfc 22


 

          xerf 1  
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  xerfey x  1
2

 xy

x

erf 

erf 
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As an example, the complementary error function of 1 is, 
 
>> erfc(1)   
 

ans = 
 

    0.1573 
 

  Variation of the complementary error function from 3  to 
3 is shown in the figure.   
 

 
11.3 Gamma Functions 
 The Gamma function is another function often occurs 
during solving mathematical problems.  The definition of the 
Gamma function is,  

  



0

1 dttex xt  

As an example, the Gamma function when 1x  is,  

-3 -2 -1 0 1 2 3

-1

-0.5

0

0.5

1

 xf

x

 xerff 

 xerf

erfc 
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   1  



0

11 dtte t  



0

dte t  

    
0

te   10     1  

 The Gamma function has the special property of,  

   xxx  1  

which can be verified by performing the integrations by parts as 
follows,  

       dtetxetdtetx
  

txtxtx

  









0

1
0

0

11  

    dtetx tx

  





 1

0

    xx  

Furthermore, if x is a positive integer, then,  

      !1 xx      x = 1, 2, 3, … 

This relation helps determining their values easily.  For examples, 

-3 -2 -1 0 1 2 3

0

0.5

1

1.5

2

x

 xerf1

 xerfc
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 x  0 ;  10   1  !0  1  

 x  1 ;  11   2  !1  1  

 x  2 ;  12   3  !2  2  
 

 MATLAB contains the gamma command for finding 
values of the Gamma function conveniently.  For examples,  
 
>> gamma(1) 
 

ans = 
 

     1 
 

>> gamma(5) 
 

ans = 
 

    24 
 

The latter result can be verified by   241234!45  . 

  If x is not an integer, the gamma command can still be 
used.  For examples,  
 
>> gamma(0.71) 
 

ans = 
 

   1.2825 
 

>> gamma(4.38) 
 

ans = 
 

   9.8639 
 

  We can employ the ezplot command to display variation 
of the Gamma function for 50  x  as shown in the figure.  
 
>> syms x 
>> ezplot('gamma(x)', [0 5 0 25])

gamma 

gamma 
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  If x is a negative integer, the Gamma function has the 
value of infinity.  For examples,  
 
>> gamma(-1) 
 

ans = 
 

   Inf 
 

>> gamma(-5)   
 

ans = 
 

   Inf 
 

If x is not an integer but a negative value, the Gamma function has 
a finite value.  For examples,  
 

>> gamma(-0.71) 
 

ans = 
 

   -4.3664 
 

>> gamma(-4.38) 
 

ans = 
 

   -0.0782 
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We can use the ezplot command together with the grid on 
command to display variation of the Gamma function in the 
interval of 55  x  as shown in the figure. 
 
>> ezplot('gamma(x)', [-5 5 -5 5]), grid on   

 

 
 
  The Gamma function also has other interesting properties,   

  







2
1    

  





 

2
1

x   
x

x
2

12...531 
 ,     x = 1, 2, 3, … 

     xx  1   

xsin

  

    





 

2
1

2 12 xxx   x2   

which can be verified by the gamma command.  For example, the 
first property above,  
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>> gamma(1/2)   
 

ans = 
 

    1.7725 
 

>> sqrt(pi) 
 

ans = 
 

    1.7725 
 

 MATLAB also contains the gammainc command to find 
the incomplete Gamma function.  The definition of the incomplete 
Gamma function is,  

    





x  
nt dtte

n
nxg

0

11
,  

where  x  and  n  are positive values.  As an example, when 5.0x  
and 5.1n , 
 
>> gammainc(0.5,1.5)   
 

ans = 
 

    0.1987 
 

Variations of the incomplete Gamma function when 1, 2n   and 3 
are shown in the figure. 

 Note that if both x and n are very small, the incomplete 
Gamma function may be approximate by,  

  nxnxg ,  

For example, when 002.0x  and 001.0n , then, 
 

>> x = 0.002; n = 0.001; g = x^n 
 

g = 
 

    0.9938 
 

>> gammainc(0.002,0.001)       
 

ans = 
 

    0.9944 

gamma 

gammainc 

gammainc 
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11.4 Beta Functions 
 Definition of the Beta function is given by,  

     
1

0

11 1, dtttyxB yx  

where 0x  and 0y .  For examples, 

   1,1B     
1

0

1111 1 dttt  
1

0

dt  1  

   1,2B     
1

0

1112 1 dttt  
1

0

dtt  
2
1

  

   2,1B     
1

0

1211 1 dttt    
1

0

1 dtt  
2
1

  

  MATLAB contains the beta command that can be used to 
determine values of the Beta function conveniently.  For examples, 
the three functions above are obtained by entering,  

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1n

2n

3n

 nxg ,

x
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>> beta(1,1)   
 

ans = 
 

     1 
 

>> beta(2,1) 
 

ans = 
 

    0.5000 
 

>> beta(1,2) 
 

ans = 
 

    0.5000 
 

Variations of the Beta function with x for 1, 2y   and 3 are shown 
in the figure.  

 
 From the three examples shown above, we found a special 
property of the Beta function, 

   xyByxB ,,   

which can be verified by starting from the definition of the Beta 
function,  

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
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 yxB ,

3y
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1y

x

beta 
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 yxB ,      
1

0

11 1
  

yx dttt  

If we substitute  t  by s1 , we obtain, 

     yxB ,       
0

1

111
  

yx dsss  

       
1

0

11 1
  

xy dsss     xyB ,  

  In addition, the Beta function can be determined from the 
Gamma function,  

 yxB ,   
   
 yx

yx



  

We can also verify this relation by substituting value of x and y.  As 
an example, when 5.1x  and 5.2y , then, 

 5.2,5.1B     
 5.25.1

5.25.1



  

>> LHS = beta(1.5,2.5) 
 

LHS = 
 

    0.1963 
 

>> RHS = gamma(1.5)*gamma(2.5)/gamma(1.5+2.5) 
 

RHS = 
 

    0.1963 
 

 The Beta function also represents the integral value of the 
product between sine and cosine functions in the form,  

 yxB ,    
   
 yx

yx



    


dyx 
2

0

1212 sincos2  

As an example, if we want to find value of the integral,  

beta 
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


dI 
2

0

32 sincos2  

which means when 23x  and 2y , we can determine it from, 

 2,5.1B           or              
 5.3

25.1


  
as follows,  
 

>> beta(1.5,2)  
 

ans = 
 

    0.2667 
 

>> gamma(1.5)*gamma(2)/gamma(3.5) 
 

ans = 
 

    0.2667 
 

The solution above is confirmed by using the int command 
directly,  
 
>> syms theta F 
>> F = cos(theta)^2*sin(theta)^3; 
>> I = 2*int(F,theta,0,pi/2); 
>> double(I) 
 

ans = 
 

    0.2667 
 

 As for another example, if we want to find the solution of 
the integral, 




dI 
2

0

tan2  

We can rewrite this integral in the form,  


 

ddI  
2

0

2121

2

0

sincos2
cos
sin

2  

which means 41x  and 43y .  The solution is obtained from, 

beta 

double 
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 43,41B           or              
 1

4341

  

 

>> beta(1/4,3/4) 
 

ans = 
 

    4.4429 
 

>> gamma(1/4)*gamma(3/4)/gamma(1) 
 

ans = 
 

    4.4429 
 

Again, the solution can be verified by using the int command,  
 

>> F = (tan(theta))^(1/2); 
>> I = 2*int(F,theta,0,pi/2); 
>> double(I) 
 

ans = 
 

    4.4429 
 

 
 

11.5 Bessel Functions 
 Solutions of some differential equations are in the form of 
Bessel functions.  The standard form of the differential equation, so 
called the Bessel differential equation, that yields solution in the 
form of Bessel functions is,   

  0222  ynxyxyx  

where 0n .  The general solution is, 

     xYCxJCxy nn 21   

where 1C  and 2C  are constants that can be determined from the 

initial conditions.  The function  xJn  is called the Bessel function 
of the first kind of order n while the function  xYn  is called the 

Bessel function of the second kind of order n .    

gamma 

int 
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  The Bessel function of the first kind of order n is expressed 
in the form of infinite series containing the Gamma function as,  

     
 











0

2

1!
21

k

knk

n knk
x

xJ  

  MATLAB has the besselj(n,x) command that can 
determine the Bessel function of the first kind of order of n at the 
value of x easily.  As an example, The Bessel function of the first 
kind of order zero at 1x  is obtained by typing,  
 

>> besselj(0,1)       
 

ans = 
 

    0.7652 
 

i.e.,       7652.010 J  

Variation of the Bessel function of the first kind of order zero is 
plotted with x by using the ezplot command as shown in the 
figure.  
 

>> syms x 
>> ezplot('besselj(0,x)', [0 10 -.5 1]), grid on 

  
0 1 2 3 4 5 6 7 8 9 10 -0.5 

0

0.5 

1

x

 xJ0

besselj(0,x) 

besselj 
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 The Bessel functions of the first kind of order zero, one 
and two that vary with x are plotted together by using the ezplot 
and hold on commands as shown in the figure.  

>> ezplot('besselj(0,x)', [0 10 -.5 1]), hold on 
>> ezplot('besselj(1,x)', [0 10 -.5 1]), hold on 
>> ezplot('besselj(2,x)', [0 10 -.5 1]) 
 

 
   The Bessel function of the first kind of order n  can be 
determined from the Bessel function of the first kind of order n  by 
using the relation, 

     xJxJ n
n

n 1  

As an example, for 1n  and 2x , the value on the left-hand-side 
of the equation above is, 
 
>> LHS = besselj(-1,2) 
 

LHS = 
 

   -0.5767 
 

which is equal to the value on the left-hand-side of the equation, 

0 1 2 3 4 5 6 7 8 9 10
-0.5 

0

0.5

1

 xJ 2

 xJ1

 xJ0

 xJn

x

ezplot 

besselj 
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>> RHS = (-1)^1*besselj(1,2) 
 

RHS = 
 

   -0.5767 

 MATLAB can find the derivative of the Bessel function 
symbolically by using the diff command.  For example,  

      xJxJ
x
n

xJ
dx
d

nnn 1  

we enter the commands as follows,  
 

>> syms n x 
>> diff(besselj(n,x)) 
 

ans = 
 

 (n*besselj(n, x))/x - besselj(n + 1, x) 
 

 Similarly, MATLAB can also perform integration of the 
Bessel function symbolically by using the int command.  For 
example,  

   xJxdxxJx n
n

n
n  1  

>> int(x^n*besselj(n-1,x)) 
 

ans = 
 

x^n*besselj(n, x) 

 The Bessel function of the second kind of order n  has the 
definition of,  

       
 

n

xJnxJ
xY nn

n sin
cos 

  

The Bessel function of the second kind of order n  at any x can be 
determined from the bessely(n,x) command.  As an example, 
the Bessel function of the second kind of order zero at 2x  is 
obtained by entering,  
 

besselj 
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>> bessely(0,2) 
 

ans = 
 

   0.5104  
 
i.e.,     5104.020 Y  
 

 The Bessel functions of the second kind of order zero, one 
and two that vary with x are plotted together by using the ezplot 
and hold on commands as shown in the figure.  
 
 

>> syms x 
>> ezplot('bessely(0,x)', [0 10 -2 1]), hold on 
>> ezplot('bessely(1,x)', [0 10 -2 1]), hold on 
>> ezplot('bessely(2,x)', [0 10 -2 1]) 
 

 
 

 To understand the behavior of the Bessel functions, we 
study the oscillation of the mass-spring system as shown in the 
figure. 
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 A mass with 1m  is attached to 
a spring for which its stiffness k varies 
with time t in the form, 

tek 02.0  

The equilibrium condition during oscilla-
tion leads to the governing differential 
equation in the form, 

002.0
2

2

  ye
dt

yd t   

where y is the unknown displacement that varies with time t.  The 
initial conditions are given by a unit displacement and zero velocity 
at time 0t  as,  

  10 y          and            00 
dt
dy  

  To solve for the exact solution in form of the Bessel 
functions, we change the form of the differential equation by 
letting, 

        x  te 01.0100   

so that,    
dt
dx

 xe t 01.001.0    

From the chain rule,  

dx
dy

x
dt
dx

dx
dy

dt
dy

01.0  

and   

  x
dx
dy

x
dx
d

dt
dx

dt
dy

dx
d

dt
yd

01.001.02

2














  

    0.0001
d dy

x x
dx dx

   
 

 

Since         tex 02.02 10000   

then,    202.0 0001.0 xe t 

m

tek 02.0

  10 y
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Thus, the differential equation becomes,  

 02 





 yx

dx
dy

x
dx
d

x  

or,  02
2

2
2  yx

dx
dy

x
dx

yd
x  

which is in form of the Bessel differential equation of order zero.  
The general solution of this differential equation is,  

     xYCxJCxy 0201   

where 1C  and 2C  are constants that can be determined from the 
two initial conditions as follows,  

  0ty  1  or  100xy  1  

and  0t
dt
dy

 0  or  100x
dx
dy

 0  

The two conditions above lead to a set of two simultaneous 
equations,  
      2010 100100 CYCJ     1  

and     2010 100100 CYCJ     0  

After solving for the two constants of 1C  and 2C , we substitute 
them into the general solution to obtain the exact solution of,  

          xJYxYJxy 0101 10010050    

Then, by substituting tex 01.0100  , the exact solution of y can be 
written in form of time t as,  

          tt eJYeYJty 01.0
01

01.0
01 10010010010050     

The solution can be determined for the interval of 1000  t  by 
creating a script file that contains the following commands,  
 

>> t = 0:.01:100; 
>> ex = exp(-.01.*t); 
>> ee = 100.*ex; 
>> J1 = besselj(1,100); 
>> Y0 = bessely(0,ee); 

besselj 

bessely 
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>> Y1 = bessely(1,100); 
>> J0 = besselj(0,ee); 
>> y = 50*pi*(J1.*Y0 - Y1.*J0); 
>> plot(t,y), axis([0 100 -2 2]) 
 
The file generates a plot of the mass movement that varies with 
time as shown in the figure.  The figure shows that the magnitude 
of the mass movement increases with time.  Such behavior agrees 
with the fact that the spring stiffness weakens with time.   

 

 If the sign in front of the third term of the Bessel 
differential equation changes from positive to negative, the 
equation is called the modified Bessel differential equation, 

  0222  ynxyxyx  

The general solution of the modified Bessel differential equation is 
in the form, 

     xKCxICxy nn 21   

where 1C  and 2C  are constants that can be determined from the 

initial conditions.  The function  xIn  is called the modified Bessel 
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function of the first kind of order n , while the function  xKn  is 

called the modified Bessel function of the second kind of order n . 

 MATLAB contains the besseli(n,x) command to 
determine the modified Bessel function of the first kind of order n  
at a value of x.  The modified Bessel functions of the first kind of 
order zero, one and two that vary with x are plotted together by 
using the ezplot and hold on commands as shown in the figure.       
 
>> syms x 
>> ezplot('besseli(0,x)', [0 4 0 6]), hold on 
>> ezplot('besseli(1,x)', [0 4 0 6]), hold on 
>> ezplot('besseli(2,x)', [0 4 0 6]) 
 

 
 

  Similarly, the modified Bessel functions of the second 
kind of order zero, one and two that vary with x can be plotted 
together by using the ezplot and hold on commands as shown in 
the figure.     
 
>> ezplot('besselk(0,x)', [0 2 0 3]), hold on 
>> ezplot('besselk(1,x)', [0 2 0 3]), hold on 
>> ezplot('besselk(2,x)', [0 2 0 3]) 
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11.6 Airy Functions 
 Airy functions are special functions that arise from solving 
the Airy differential equation,  

02

2

 xy
dx

yd
 

The differential equation in the form above occurs while solving 
some problems in physics.  The form looks quite clean but a simple 
solution is not available.  The general solution of the Airy 
differential equation is, 

     xBiCxAiCxy 21   

where 1C  and 2C  are constants.  The  xAi  and  xBi  denote the 
Airy and Bairy functions, respectively.  These two functions are,  

  








 

0

3

3
1

cos
1

dttxtxAi   
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  








 






 

0

3

0

3

3
1

exp
1

3
1

sin
1

dttxtdttxtxBi   

 MATLAB contains the airy(k,x) command for 
determining the Airy and Bairy functions at any x when 0k , 1,  
2 and 3,  
  ;0k  airy(0,x) means  xAi  
 ;1k  airy(1,x) means  xiA   
 ;2k  airy(2,x) means  xBi  
 ;3k  airy(3,x) means  xiB   
where the prime symbol (  ) denotes the derivative order of the 
function.  
 

  For examples, if we want to determine  0Ai , we type,  
 

>> airy(0,0) 
 

ans = 
 

    0.3550 
 

Or, to determine  1iB , we enter,  
 

>> airy(3,-1) 
 

ans = 
 

    0.5924 
 

 Variations of the Airy and Bairy functions can be plotted 
with x as shown in the figure by creating commands as follows,  
 
>> x = [-15:.1:5]; 
>> ai = airy(0,x); 
>> bi = airy(2,x); 
>> plot(x,ai,'-k'), axis([-15 5 -0.5 1])  
>> hold on 
>> plot(x,bi,'--k')

airy 

plot 
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  Similarly, variations for the derivatives of the Airy and 
Bairy functions can also be plotted as shown in the figure.  

 

  Now, we can solve for the solution of the Airy differential 
equation, 

     02

2

 yx
dx

yd
    10  x  

with the initial conditions of   0y  and    0y .   
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The general solution of the differential equation is, 

     xBiCxAiCxy 21   

where 1C  and 2C  are constants that can be determined from the 
two initial conditions as follows,  

     00 21 BiCAiC     

     00 21 iBCiAC     

Results of 1C  and 2C  are in form of the Airy function at 0x  
which can be found by using the airy(k,0) command.  Results 
of the 1C  and 2C  can also be written in form of the Gamma 
functions as,  

  1C     








 32331
3

61

61   

  2C     








 323313 3231

  

where the values of the Gamma functions are obtained from the 
gamma command.  

  If the initial conditions are given by,  

   10  y  and   00  y  

then, 1C  and 2C  become,   

  31
3 61

1 



C  and  313 312 




C  

Thus, the exact solution  xy  of the initial value problem governed 
by the Airy differential equation is, 

     
 

 xBixAixy
31331

3
31

61








 

The exact solution is plotted and compared with the approximate 
solution obtained from using the numerical method via the ode45 
command as shown in the figure.  
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11.7 Legendre Functions 
 Many problems in the fields of applied mathematics, 
physics and chemistry are governed by the differential equations in 
form of the Legendre equation.  The Legendre differential equation 
is,  

      0121 2

2
2  ynn

dx
dy

x
dx

yd
x   10  x  

where n = 0, 1, 2, … are positive integers.  General solution of the 
Legendre differential equation consists of the Legendre functions of 
order n , 

     xQCxPCxy nn 21   

where 1C  and 2C  are constants.  The  xPn  and  xQn  are called 

the Legendre functions of the first and second kind, respectively.  
These functions are given by,  

   xPn   nn

n

n x
dx
d

n
1

!2
1 2   

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

1.05

1.1

1.15 

1.2 

 xy

x

Exact

Numerical
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and  xQn   
x
x

xPn 



1
1

ln
2
1

 

 For example, when 1n ,  

  xP1   1
!12

1
2

1
 x

dx
d

 x  

  xQ1   
x
x

xP




1
1

ln
2
1

1  
x
xx





1
1

ln
2

 

Thus, for 0n  to 5, these functions are, 

  xP0  1  ;  xP1  x  

  xP2   13
2
1 2  x  ;  xP3   xx 35

2
1 3   

  xP4   33035
8
1 24  xx  ;  xP5   xxx 157063

8
1 35   

Variations of Legendre functions of the first kind, 0P  to 4P  are 

shown in the figure. 

 

  Similarly, the Legendre functions of the second kind when 
0n  to 4 are, 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1 
-0.8 
-0.6 
-0.4 
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 nP x

x
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  xQ0  
x
x





1
1

ln
2
1

 ;  xQ1    1
1
1

ln
2






x
xx

 

  xQ2    x
x
x

x
2
3

1
1

ln13
4
1 2 




  

  xQ3   
3
2

2
5

1
1

ln35
4
1 23 




 x
x
x

xx  

  xQ4   4 2 31 1 35 55
35 30 3 ln

16 1 8 24

x
x x x x

x


    


 

Variations of Legendre functions of the second kind, 
0

Q  to 
3

Q  are 

shown in the figure.  

 
  The Legendre functions  xPn  and  xQn  above are solu-

tions of the Legendre differential equations.  For example, when 
1n , the Legendre differential equation reduces to, 

  0221 2

2
2  y

dx
dy

x
dx

yd
x  

If the boundary conditions are given such that both constants 1C  
and 2C  are equal to one, then the exact solution to this boundary 
value problem is, 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1 
-0.8 
-0.6 
-0.4 
-0.2 
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0.4

0.6

0.8

1

3
Q

2
Q

1
Q

0
Q

 xQn

x



414  Chapter 11  Special Functions 

 

          xQxPxy 11   

or,       1
1
1

ln
2






x
xx

xxy  

We can verify the validity of this solution by substituting it into the 
differential equation.  This can be easily done by using the 
symbolic mathematics capability in MATLAB as follows, 
 
>> syms x 
>> P1 = x; 
>> Q1 = (x/2)*log((1+x)/(1-x)) - 1; 
>> y = P1 + Q1; 
>> dy = diff(y,x); 
>> d2y = diff(dy,x); 
>> LHS = (1-x^2)*d2y - 2*x*dy + 2*y; 
>> RHS = simple(LHS) 
 

RHS = 
 

0 
 
The result obtained is zero which is equal to the right-hand-side of 
the differential equation.  This means the solution containing the 
Legendre functions  xP1  and  xQ1  is the solution to the differen-
tial equation above.  

  A more complicated Legendre differential equation is the 
associated Legendre differential equation in the form of,  

      0
1

121 2

2

2

2
2 






 y

x
m

nn
dx
dy

x
dx

yd
x   10  x  

where n  and m  are positive integers.  If 0m , the associated 
Legendre differential equation reduces to the Legendre differential 
equation.  The general solution of the associated Legendre differen-
tial equation is,   

     xQCxPCxy m
n

m
n 21   

where 1C  and 2C  are constants which are determined from the 

given boundary conditions.  The  xPm
n  and  xQm

n  are the 

diff 
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associated Legendre functions of the first and second kind, 
respectively.  These functions are in the forms, 

  xP m
n       xP

dx

d
x nm

m
mm 2211   

and  xQ m
n       xQ

dx

d
x nm

m
mm 2211   

 The associated Legendre function of the first kind has the 
property of,  

     0xP m
n  if   nm   

For example, when 1n  and 1,0m , the associated Legendre 
functions are,  

   xP 0
1   and    2121

1 1 xP   

Variations of 0
1P  and 1

1P  are plotted as shown in the figure.  

 

  The associated Legendre function of order n at any x  
is obtained by using the legendre(n,x) command.  As an 
example, the associated Legendre functions of order 1n  at 

-1 -0.5 0 0.5 1 
-1 

-0.8 
-0.6 
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1 

x

 xPm
1
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5.0,0.0,5.0,0.1 x  and 0.1  are obtained from the following 
commands,  
 

>> x = [-1:0.5:1]; 
>> legendre(1,x) 
 
ans = 
 
   -1.0000  -0.5000        0    0.5000    1.0000 
         0  -0.8660  -1.0000   -0.8660         0 

 
The values in the first line are 0

1P  while the results in the second 

line are 1
1P .  These values agree with those shown in the figure. 

 Similarly, the associated Legendre functions of order 
2n    when 1,0m  and 2 are,   

 13
2
1 20

2  xP     ;     2121
2 13 xxP   ;   22

2 13 xP   

Variations of these functions are plotted as shown in the figure.  

 

 In this case, the associated Legendre function of order 
2n  and 5.0,0.0,5.0,0.1 x  and 0.1  are obtained by entering 

the commands, 

-1 -0.5 0 0.5 1
-1.5 

-1 
-0.5 

0 
0.5 

1 
1.5 

2 
2.5 

3 

x

 xPm
2

0
2P

1
2P

2
2P

legendre 
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>> x = [-1:0.5:1]; 
>> legendre(2,x) 
 

ans = 
 

   1.0000   -0.1250   -0.5000   -0.1250    1.0000 
        0    1.2990         0   -1.2990         0 
        0    2.2500    3.0000    2.2500         0 
 

The values in the first, second and third lines are 0
2P , 1

2P  and 2
2P , 

respectively, at the five x locations.  These values agree with those 
shown in the figure.  The two examples presented above highlight 
the legendre(n,x) command that can be used to find values of 
the associated Legendre functions of order n at any x conveniently.           
 

 
11.8 Special Integrals 
  MATLAB contains commands for determining several 
special integrals.  Different types of special integrals can be found 
by typing,  

>> help mfunlist 

In this section, some special integrals normally encountered while 
solving mathematical problems are presented.   

  The Dawson integral is a special integral that occurs in 
conduction heat transfer and theory of electric oscillation.  The 
integral is in the form,  

  dteexF
x

tx 
0

22
 

The function  xF  above is the exact solution of the differential 
equation, 

12  xF
dx
dF

 

with the initial condition of   00 F .  We can verify that the 

function  xF  above satisfies the differential equation by 
substituting it into the left-hand-side of the equation as follows, 

legendre 

mfunlist 
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>> syms x t 
>> F = exp(-x^2)*int(exp(t^2),t,0,x); 
>> diff(F,x) + 2*x*F 
  

ans = 
 

1 
 
The result is one which is equal to the value on the right-hand-side 
of the equation.  

To find value of the Dawson integral,  xF , MATLAB uses the 
mfun function to call the Dawson command.  For example, we can 
find values and plot variation of the Dawson integral in the interval 
of 55  x  by entering the commands, 
 
>> x = [-5:.01:5]; 
>> d = mfun('Dawson', x); 
>> plot(x,d,'k'); axis([-5 5 -0.6 0.6]); 
 
which lead to the plot of  xF  as shown in the figure.  
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  The dilogarithm integral is another special integral 
normally occurs while solving some mathematical problems.  The 
integral is in a specific form of, 

        
dt

t
t

xf
x

 


1
1
ln

    1x  

We can employ the dilog command via the mfun function to 
determine the dilogarithm integral  xf  at a given x.  For example, 

values of the dilogarithm integral  xf  in the interval of 201  x  
can be plotted as shown in the figure by using the commands, 
 

>> x = [1:.1:20]; 
>> di = mfun('dilog', x); 
>> plot(x,di,'k'); axis([1 20 -6 0]); 

 

 
  The exponential integral is another special integral that 
arises while solving some mathematical problems.  The integral is 
in the form,  

  
 


x

t

dt
t

e
xEi  

MATLAB contains the expint(x) command to determine this 
special integral at a given x.  As an example, the exponential 
integral at 5.0x  is obtained by entering,  

2 4 6 8 10 12 14 16 18 20 -6

-5

-4

-3

-2

-1

0

 xf

x

dilog 
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>> expint(0.5) 
 

ans = 
 

    0.5598 
 

Variation of the exponential integral for 20  x  is plotted as 
shown in the figure.  
 

 
 

 The Fresnel integrals are special integrals that contain 
sine and cosine functions in the form,  

    xS  dtt
x

 







0

2

2
sin


 

and    xC  dtt
x

 







0

2

2
cos


 

Values of the Fresnel integrals,  xS  and  xC , are obtained by 
using the FresnelS and FresnelC commands via calling the 
mfun function.  For example, these two special integrals are 
determined in the interval of 55  x  and plotted as shown in 
the figure by using the commands,   
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>> x = [-5:.01:5]; 
>> s = mfun('FresnelS', x); 
>> plot(x,s,'k'); 
>> axis([-5 5 -0.8 0.8]); 
>> hold on 
>> c = mfun('FresnelC', x); 
>> plot(x,c,'--k'); 
 

   

 It can be seen from the figure that,  

 ( )S   ( )C   1

2
   

 (0)S   0C    0  

and ( )S   ( )C     
2
1

 

 
 
11.9 Concluding Remarks 
  In this chapter, details of special functions and integrals 
normally arise while solving mathematical problems are presented.  
The special functions include the error and complementary error 
functions, the Gamma and incomplete Gamma functions, the Beta 
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functions, the Bessel and modified Bessel functions, the Airy and 
Bairy functions, and the Legendre and associated Legendre 
functions.  The special integrals presented herein are the Dawson 
integral, the dilogarithm integral, the exponential integral and the 
Fresnel integrals.  Because these special functions and integrals are 
in complicated forms, they are tabulated as values and provided in 
appendices in many mathematical textbooks.  

 MATLAB contains commands for determining values of 
these special functions and integrals conveniently.  Several 
examples are presented to demonstrate how to use these com-
mands.  Variations of the special functions and integrals are plotted 
to display their physical meanings.  These commands can be 
included in a computer program to alleviate difficulty for solving 
the complete problem.  The ability of these commands thus helps 
us to solve mathematical problems more effectively.    

   

 

 
Exercises 

 

1. Develop a computer program to find values of the error and 
complementary error functions by using the erf and erfc 
commands.  Show these values in form of a table for 

33  x  with the increment of 05.0x .    
 
2. For a small value of x, the error function may be determined 

from the series,   

        xerf       





 








 ........

!37!25!13
2 753 xxx

x


 

  Compute the percentages of error by comparing the series 
solutions with those obtained by using the erf command for 

01.0x , 0.1 and 0.5, respectively.  
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3. If x is large, the error function may be determined from the 
series,   

         xerf       
    


















........
2

531

2

31
2
1

11 32222

2

xxxx

e x


 

 Compute the percentages of error by comparing the series 
solutions with those obtained by using the erf command for 

5.1x , 2 and 3, respectively.  
 
4. The error function can be written in form of the Maclaurin 

series as,  

   xerf     
 











0

12

12!
12

n

nn

nn
x


 

   





  ......

21642103
2 9753 xxxx

x


 

 Develop a computer program to determine the error function 
from the series above.  Compare the solutions with those 
obtained by using the erf command for 5.0x , 1 and 2, 
respectively.  

 
5. Use the gamma command to find the values of,  
   (a)  37.8         (b)    3.25.1    

   (c)    18.164.3   (d)  1002   

   (e)   5.0log   (f)  6.1e   

 
6. If x is a negative non-integer value, use the gamma command to 

show that,   
 

   
x

x
x

1
  

 Then, plot the variations of  x  and  1 x  for the interval 
of 12  x .  
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7. Develop a computer program to prove that,  

 (a) 





 

2
1

m  
  m

m
2

12...531 
         

 (b) 





 

2
1

m   
 12...531
21





m

mm           

 (c)    321  mmm    
 
 1

13




m

m
         

 where m  is any positive integer.  Show results for two cases 
when 2m  and 4.   

 

8. Plot the variations of  x  and  x1  functions for 
55  x  on the same graph.  Explain the relation between 

the two functions.  
 
9. Plot the Beta function in two dimensions, e.g. for 41  x  and 

41  y , to show that    xyByxB ,,  .  The commands 
given below may help to verify such property.  Additional 
commands, such as the figure orientation, may be needed to 
improve the plotting clarity.  

 

>> x = 1:.1:4; 
>> y = 1:.1:4; 
>> [X,Y] = meshgrid(x,y); 
>> Z = beta(X,Y); 
>> mesh(X,Y,Z) 

 

 
10. Employ the Beta function to determine the following integrals,  

   (a)  
1

0

1 dttt         (b)   
1

0

1 dttt   

   (c)  

1

0 1
dt

t

t
 (d)  

1

0
1
1

dt
t
t

  

   (e) 
2

0

2 cossin


 d  (f) 
2

0

3cossin


 d  
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   Verify the results by comparing with those obtained from 
numerical integration using the int command.  

 
11. Employ the beta command to show that,  

 (a)  xxB ,    ,
2
1

,2 21






  xBx          0x  

 (b)   





 

2
1

,
2
1

, nnBnnB    
 

,
2 14 nn
       ...,3,2,1n  

 
12. For 1m  and 2n , show that, 

 
 










0

1

1
, dt

t

t
nmB nm

m

 

   The value on the left-hand-side of the equation is obtained by 
using the beta command.  The value on the right-hand-side of 
the equation is determined from numerical integration using 
the int command.  Repeat the problem when 2m  and 

3n .  
 
13. Develop a computer program to determine results of the 

following series for x = 0.5, 1, 2 and 3.  Verify the results by 
using the besselj and besseli commands 

 (a)  xJ0  ....
642422

1 222

6

22

4

2

2








xxx

         

 (b)  xJ1  
3 5 7

2 2 2 2 2 2
...

2 2 4 2 4 6 2 4 6 8
x x x x

    
     

 

 (c)  xI0  
2 4 6

2 2 2 2 2 2
1 ...

2 2 4 2 4 6
x x x

    
  

  

 (d)  xI1  ...
8642642422 222

7

22

5

2

3











xxxx
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14. Use the besselj command for the Bessel function of the first 
kind of order n to show that,  

 (a)  xJ 21  x
x 

sin
2
          

 (b)  xJ 21  x
x 

cos
2
  

 (c)  xJ 23  





  x

x
x

x 
cos

sin2
  

 (d)  xJ 23  





  x

x
x

x 
sin

cos2
  

 (e)  xJ 25  



 






  x

x
x

xx 
cos

3
sin1

32
2  

 (f)  xJ 25  











  x

x
x

xx 
cos1

3
sin

32
2  

 
15. Use the besseli command for the modified Bessel function 

of the first kind of order n to show that,  

 (a)  xI 21  x
x 

sinh
2
          

 (b)  xI 21  x
x 

cosh
2
  

 (c)  xI 23  





 

x
x

x
x 

sinh
cosh

2
  

 (d)  xI 23  





 

x
x

x
x 

cosh
sinh

2
  

 (e)  xI 25  



 






  x

x
x

xx 
cosh

3
sinh1

32
2  

 (f)  xI 25  



 






  x

x
x

xx 
sinh

3
cosh1

32
2
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16. Use the besselj and besseli commands for the Bessel and 
modified Bessel functions of the first kind of order n to show 
that,  

 (a)  xJn 1     xJxJ
x
n

nn 1

2
          

 (b)  xIn 1     xI
x
n

xI nn

2
1          

   when n = 1, 2, 3 and x = 0.5, 1, 2, 3.  
 
17. Develop a computer program by using the Bessel function with 

besselj command and the modified Bessel function with 
besseli command to show that,  

 (a) xsin        ...2 531  xJxJxJ          

 (b) xcos        ...22 420  xJxJxJ  

 (c) xsinh        ...2 531  xIxIxI  

 (d) xcosh          ...2 6420  xIxIxIxI  

 
18. Use the Bessel functions with besselj, bessely and 

besseli commands to show that, when x is very large 
 0x , the Bessel functions below can be approximate by, 

 (a)  xJn  





 

42
cos

2 


n
x

x
         

 (b)  xYn  





 

42
sin

2 


n
x

x
 

 (c)  xIn  
x

ex

2
  

 
19. Use the symbolic mathematics diff command to find deriva-

tives of the following Bessel functions, 

 (a)  xJn      xJxJ nn 112
1

           
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 (b)  xJx n     xJnxJx nn  1  

 (c)  xJx n     xJxxJn nn 1  

 (d)   xJx
dx
d

n
n   xJx n

n
1  

 (e)   xJx
dx
d

n
n   xJx n

n
1

  

 (f)  xJn        xJxJxJ nnn 22 2
4
1

   

 (g)  xJn          xJxJxJxJ nnnn 3113 33
8
1

   

 
20. Use the symbolic mathematics diff command to find deriva-

tives of the Bessel functions for validating the following 
relations, 

 (a)  xIn      xIxI nn 112
1

           

 (b)  xIx n     xInxIx nn  1  

 (c)  xIx n     xInxIx nn  1  

 (d)   xIx
dx
d

n
n   xIx n

n
1  

 (e)   xIx
dx
d

n
n   xIx n

n
1

  

 
21. Use the int command to symbolically integrate,  

 (a)   dxxJx 0          (b)   dxxJx 2
0   

 (c)  dxxaJ0

1

0
          (d)   dxxJ 30

0



  

 (e) 
 

dx
x

xJ 32

0



         (f)  dxxJe x
 

20

0




   

   where a  is a constant.   
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22. Use the symbolic mathematics int command together with the 

Bessel function besselj,  bessely and besseli commands 

to show that,  

 (a)  xJ0    



dx
  

sincos
1

0
          

 (b)  xY0     dx
  

coshcos
2

0



  

 (c)  xI0    



dx
  

sinhcos
1

0
  

   when 5.0x , 1, 2  and 3 .   
 
23. In a mass-spring system, the mass and spring stiffness are,  

1m           and           tek 02.0  
 The governing differential equation representing the mass 

motion  ty  is,  

002.0
2

2

 ye
dt

yd t  

  If the initial conditions are, 

  10 y           and            00 
dt
dy  

 solve the initial value problem above for solution in form of 
the Bessel functions.  Plot the solution of the displacement 
 ty  that varies with time t.  Explain the physical meanings of 

the solution.  
 
24. Use the airy command to show that, as x , then,  

     xAi      



   

4
1

3
2

sin 234121 xx  

    xBi      



   

4
1

3
2

cos 234121 xx  
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 In the opposite way, as x , then,  

    xAi  32324121

2
1 xex    

    xBi  32324121 xex   
 
25. Solve the Airy differential equation,  

     02

2

 xy
dx

yd
     20  x  

 with the boundary conditions of   00 y  and   10 y .  Plot 

to compare the exact solution  xy  with the approximate 
solution obtained from solving the same boundary value 
problem by the numerical method.  The ode23 or ode45 
command may be used in the process for obtaining the 
approximate solution.  

 
26. Employ the legendre and gamma commands to validate the 

relation below for the Legendre function of the first kind at 
0x  and n 1, 2, 3. 

     
 1

211
02 




n

n
P

n

n 
  

 
27. Given the Legendre function of the first kind,  

   n

n

n

nn x
dx
d

n
xP 1

!2
1

2    

 Use the symbolic mathematics capability in MATLAB to find 

their derivatives,  xP1 ,  xP2  and  xP3 .  Then, plot their 

variations in the interval of 11  x .   
 
28. Given the Legendre function of the second kind,  

   
x
x

xPxQ nn 



1
1

ln
2
1
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 Use the symbolic mathematics capability in MATLAB to find 
the Legendre function in terms of x when n = 0, 1, 2, 3 and 4.  
Then, plot their variations in the interval of 11  x .    

 
29. Use the symbolic mathematics capability in MATLAB to show 

that,  

     
12

11




  n
xPxP

dxxP nn
n   

 when n 1, 2  and 3 .   
 
30. Use the symbolic mathematics capability in MATLAB to 

verify the orthogonal properties of the Legendre functions,  

         dxxPxP n

  




1

1

  0     n  

 and        dxxPn

  
2

1

1



  
12

2



n

   n  

 when n, 1, 2  and 3 .   
 
31. Develop a computer program to show that the Fresnel integrals 

can be expressed in form of the infinite series, 

    xS   dtt
x  

 







0

2

2
sin


     

    
   
   











0

3412

34!12
21

n

nnn

nn
x

 

  xC   dtt
x  

 







0

2

2
cos


     

       
   











0

142

14!2
21

n

nnn

nn
x
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 Verify the computer program when x 4 , 2 , 0 , 1, 3  by 
comparing the computed results with those obtained from 
using the FresnelS and FresnelC commands.  Also 
compare the results with the numerical integration solutions by 
using the Lobatto integration method with the quadl 
command.  
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Amplitude, 268 
Auxiliary equation, 132 
 
Beam,  

cantilever, 308 
fixed ends, 310 

Bessel function,  
first kind, 398, 406 
integrate, 401 
modified, 406 
second kind, 398, 406 

Boundary condition,  
Dirichlet, 332 
Neumann, 333 

Boundary value problem,  
134, 293 

homogeneous, 296, 301 
linear, 294, 301 
nonhomogeneous, 303, 

310 
nonlinear, 313, 316 
second-order, 295 
two-point, 294 
 

Calculus, 19 
Characteristic equation,  

132, 188, 295 
roots, 132, 295 

Command,  
EISPACK, 6 
LINPACK, 5 

Cycle, 268 
 
Derivative, 36, 44 

Airy function, 408 
Bairy function, 408 
Bessel function, 401 
first-order, 3, 32 
higher-order, 34 
partial, 34 
second-order, 3, 33 

Determinant, 133, 190 
Differential equation, 57 

Airy, 59, 409 
associated Legendre, 414 
Bernoulli, 109, 127 
Bessel, 59, 398, 404 
characteristics, 58 
coefficients, 88, 188 
constant coefficients, 132 
first-order, 4, 79 
fourth-order, 192, 214 
higher-order, 187, 305 
homogeneous, 59, 132 
Legendre, 59, 411, 413 
linear, 59, 88, 97, 131 
nonhomogeneous,  

59, 153, 203 
nonlinear, 118 

59, 62, 67, 118 
ordinary, 60, 131, 187 
partial, 60, 331 
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Riccati, 112 
second-order, 4, 131, 297 
simultaneous, 59, 253, 264 
third-order, 191, 212 
variable coefficients, 97 

Differentiation, 26 
Domain,  

circular, 350 
frequency, 268 
rectangular, 335 
square, 361 
time, 268, 282 
 

Eigenvalues, 342, 358, 369 
Eigenvectors, 342, 358, 369 
Euler’s formula, 145, 199 
Exact equations, 94 
 
Finite element method, 333 
FORTRAN, 6, 194 
Fourier transform, 267 

definition, 268, 271 
differential equation, 284 
discrete, 281 
fast, 281 
inverse, 277 
noise, 282 

Frequency, 268 
Function, 385 

Airy, 65, 407 
Bairy, 65, 407 
Bessel, 66, 398 
Beta, 394 
complementary error, 387 
Dirac delta, 247 
error, 65, 386 
factorize, 4 
Gamma, 388, 396, 410 

Heaviside, 250 
incomplete Gamma, 393 
Legendre, 411 
unit step, 250 
 

Graphic user interface, 333 
Boundary, 336, 351, 362 
Draw, 334, 336, 351, 362 
Edit, 334 
File, 334 
Mesh, 334, 339, 352, 363 
Options, 336, 351, 362 
PDE, 334, 338, 352, 362 
Plot, 334, 339, 352, 363 
Solve, 334, 352, 363 
 

Initial condition, 66, 81, 333 
Initial value problem,  

134, 167, 192 
Integral  

explicit, 41 
sign, 36 

Integrand, 37 
Integrating  

constant, 5, 37 
factor, 88, 91, 105 
formulas, 37 

Integration, 36 
definite, 4, 41 
double, 42, 55 
indefinite, 4, 38 
triple, 43, 55 
 

Laplace transform, 229 
definition, 229, 233 
inverse, 229, 235 

Legendre function,  
first kind, 411 



Index 439 
 

second kind, 411 
Limit, 20, 26 
Linear equations, 88 
 
MACSYMA, 2 
Maple, 6 
Mass-spring system,  

256, 403 
Mass-spring-damper system,  

247 
MATLAB,  

fundamentals, 6 
history, 5 
m-file, 171, 212, 217 

MATLAB command,  
airy, 408 
axis, 11, 47 
besseli, 406 
besselj, 399 
besselk, 406 
bessely, 401 
beta, 394 
bvp4c, 298, 307, 317 
bvpinit, 300, 307, 311 
collect, 8 
conj, 283 
Dawson, 418 
deval, 300, 307, 311 
dialog, 419 
diff, 27, 61, 133, 208 
dirac, 247, 263, 287 
double, 25, 49, 397 
dsolve, 62, 136, 196, 296 
erf, 65, 386 
erfc, 387 
expand, 8 
expint, 419 

ezplot, 10, 83, 241, 386 
factor, 9, 191, 196 
fft, 283 
format long, 49 
fortran, 194 
fourier, 274 
Fresnel, 421 
FresnelC, 421 
gamma, 390 
gammainc, 393 
grid on, 399 
heaviside, 251, 264, 

285 
hold on, 400 
ifourier, 278 
ilaplace, 233, 248 
inline, 119 
int, 37, 42, 68, 398 
laplace, 233, 247 
legendre, 415 
limit, 20, 26 
linewidth, 47, 64 
linspace, 302, 307, 311 
mesh, 34, 345, 359 
meshgrid, 34, 63, 345 
ode23, 115, 170, 213 
ode23s, 120 
ode45, 117, 173, 215 
pdetool, 333 
plot, 11, 47, 64, 172, 216 
pretty, 10 
quiver, 63 
randn, 282 
roots, 189 
simple, 9, 235 
simplify, 9 
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subs, 31, 36, 143 
sum, 48 
symsum, 48, 50 
taylor, 45 
tic, toc, 33 
vpa, 7 
xlabel, ylabel, 11, 116 

MATLAB function,  
axis, 116 
eps, 7 
exp, 24, 35, 115 
hold on, 116 
i, j, 6 
inf, 6, 25, 42, 391 
NaN, 7 
pi, 7, 85, 393 
sqrt, 23, 29, 63 
sym, syms,  7, 40, 158 

MuPad, 6 
 
Nonhomogeneous equation,  

undetermined coefficients,  
155, 205 

variation of parameters,  
161 

Nonlinear equation,  
Bernoulli, 109, 111 
Riccati, 113, 127 

Numerical method,  
114, 169, 211 
 

Orthogonal properties, 344 
 
Partial differential equation,  

331 
approximate solution,  

341, 345, 355, 371 

classification, 332 
elliptic, 332 
exact solution,  

341, 345, 356, 371 
general solution, 343 
hyperbolic, 332 
parabolic, 332 

PDE toolbox, 333 
elliptic equation, 335 
hyperbolic equation, 361 
parabolic equation, 349 

Periodic function, 268 
Phase, 268 
 
Roots,  

complex conjugate,  
144, 198 

distinct real, 135, 191 
mixed, 201 
repeated real, 138, 195 
 

Separable equations, 80 
Separation of variables,  

341, 356, 367 
Series,  

derivative, 44 
infinite, 43, 343, 359, 370 
Maclaurin, 44 
others, 48 
Taylor, 43 

Signal, 282 
Solution,  

carpet plot, 353, 356, 367 
closed-form, 170 
exact, 5, 79, 170, 295, 312 
explicit form, 69 
general, 154 
homogeneous, 153, 162 
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implicit form, 66, 68 
line contours, 340, 355 
particular, 153, 162 

Special equations, 107 
Special functions, 385 
Special integrals, 417 

Dawson, 417 
dilogarithm, 419 
exponential, 419 
Fresnel, 420 

Spring stiffness, 403 
Stiff equation, 119 
Symbolic mathematics, 1 

software, 2 
 

Unit,  
imaginary, 6 
normal vector, 333, 351 

 
Variable,  

dependent, 58, 331 
independent, 58, 331 

Vector field, 63, 67 
 
Wronski’s test, 133, 190 
Wronskian, 134, 19
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