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Preface

MATLAB is a software widely used to solve mathematical problems that
arise in the fields of science and engineering. These problems require
profound understanding in the fundamentals of calculus and differential
equations. MATLAB can solve many types of calculus problems and
differential equations symbolically for exact closed-form expressions. If
their exact solutions are not available, approximate solutions are obtained
by using numerical methods.

This book, Calculus and Differential Equations with MATLAB,
explains how to use MATLAB to solve calculus and differential equation
problems in a clear and easy-to-understand manner. Essential topics in
the calculus and differential equation courses are selected and presented.
These topics include: limit, differentiation, integration, series, special
functions, Laplace and Fourier transforms, ordinary and partial differential
equations. Numerous examples are used to present detailed derivation
for their solutions. These solutions are carried out by hands as normally
done in classes and verified by using the MATLAB commands. Students
thus understand detailed mathematical process for obtaining solutions.
They, at the same time, realize the software capability that can provide
the same solutions effectively within a short time. The solutions are then
plotted to provide clear understanding of their behaviors.

The author would like to thank Miss Kaiumporn Phong-khachorn for
her fine typing and his graduate students for proof-reading the manuscript.
He would like to thank Chulalongkorn University Press and Alpha Science
International for printing and distributing this book. He appreciates his
wife Mrs. Yupa Dechaumphai for her support while writing this book.

Pramote Dechaumphai
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Chapter
1

Symbolic Mathematics
by MATLAB

1.1 Introduction

Calculus and differential equations are requirement
courses for science and engineering students. However, some
students may not realize the importance of these subjects and
simply take them for fulfilling their degree requirement. Such
subjects, in fact, are essential because they are basis toward
studying higher level courses so that more realistic problems can be
solved. Most of the commercial software for design and analyzing
scientific and engineering problems today were developed based on
the knowledge of mathematics and computational methods. Good
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background in calculus and differential equations is thus needed
prior to using the high-level commercial software correctly.

As scientists or engineers, solutions obtained from solving
mathematical problems must be further interpreted so that their
physical meanings are understood. They prefer to obtain solutions
without spending a lot of time deriving them. There are many
software today that can provide solutions to a large class of
mathematical problems. These software can be used for finding
roots of algebraic equations, taking derivatives and integrating
functions, including solving for solutions of many differential
equations. As a simple example, the software can perform
integration,

3
JXZ dx
0

numerically and returns the result of 9 immediately. At the same
time, if preferred, the software can provide symbolic answer, such
as,
X3
2 - —
I x2dx = 3

The software capability thus helps learning calculus considerably.

The idea for developing symbolic mathematics software
started in early 1970’s when a group of researchers at
Massachusetts Institute of Technology developed a software so
called MACSYMA (Mac Symbolic Manipulation Program). It was
quite astonishing at that time because the solutions can be shown in
the form of symbolic expressions instead of numbers. Lately,
many symbolic manipulation capabilities of the software have been
improved and can be used to ease learning calculus and differential
equations.

1.2 Symbolic Mathematics Software

In the past, students need to memorize formulas when
learning calculus. Basic formulas are required for finding deriva-
tive or integral of a given function. Proper steps must be taken
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carefully so that the final solutions are derived correctly. Few
examples for finding solutions after taking derivative and
performing integration of some functions are highlighted below.

Example Find the second-order derivative of the function,

X

b= 3 Zcosx

To determine the second-order derivative of the given
function above, the standard first-derivative formula is applied
twice. The final solution is relatively lengthy as,

d2f 16 xc0s? X + 4c0os X (3x —8sin x) — 32x + 24sin x

dxz (4cosx—3)’

Deriving for the above solution by hands, mistake may occur.
With the help of symbolic computer software, the solution can be
obtained instantly without any error. In addition, if the tenth or
other higher-order derivatives of the above function are needed, the
software can provide correct solutions in a very short time as well.

Example Find the first- and second-order derivatives of a more
complex function,
xtan x — 3tan x — 21x3 + 7x4
X3 —3x2 +6Xx—18
Again, the symbolic computer software can be used to provide the
first-order derivative as,

dg 2xtanx +504 tan?x + 43

— = - >+ 5 +7

dx (X2 +6) X2 +6

and then the second-order derivative as,
d’g _ 2016x—48tanx 4xtan®x —6tanx +88x
dx? (x? +6)° (x? +6)?
2tan x (tan? x +1)
+ 2
X“+6

Derivation of these solutions by hands would take a long time and
is likely to contain error.
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Example Integration is another topic learned in calculus course that
many students do not appreciate. This is because they have to
memorize many formulas and do not know when it will be used for
solving realistic problems. Examples of integration learned in
calculus course include indefinite integral, such as,

j—dx = Lo
x2+9 3 3
Also the definite integral, such as,

: X dx
!GTWECB B

Students can obtain solutions above in a short time if they use
symbolic computer software.

%ma-éma

Example Symbolic computer software can help us to solve some
other types of problems that require a long time to do by hands.
For example, it can be used to factorize the function,

h = x4+ 26x3-212x2-1578x + 5859
to give, h = (x+7)(x-9)(x-3)(x+31)
within a second.

Example Solving differential equations is another topic that most
students do not like. This is because they are many approaches to
follow depending on the types of differential equations. As an
example, a general solution of the first-order ordinary differential
equation,

dy _
a'i'y = 5
is, y(x) = Cex+5

where C is a constant that can be determined from the given initial
condition of the problem.

Some differential equations are more complicated, such
as,

—— +4—=+3y = 0
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A general solution for the second-order ordinary differential
equation above is,

y(x) = C,ex+C,e

where C, and C, are constants that can be determined from the
boundary conditions of the problem.

With the symbolic computer software, the above solutions
can be obtained instantly. The software can also plot the solution
behavior so that students understand its physical meaning clearly.
For example, if the constants obtained after applying the boundary
conditions are C, =C, =1, the exact solution of the problem is,

y(x) = ex+ex

The distribution of y that varies with x is plotted as shown in the
figure.

Iexp(x) +1/exp(3x).

y(x)

1.3 History and Capability of MATLAB

MATLAB (MATrix LABoratory) was developed by
Professor Cleve Moler, Head of Computer Science Department at
the University of New Mexico in 1977. He wrote the LINPACK
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commands for solving algebraic equations and the EISPACK
commands for analyzing eigenvalue problems, so that his students
would not have to study FORTRAN language. Later, in 1983, Jack
Little founded the Mathworks company to commercialize the
software. The key capability of the software was to apply
mathematical and computational methods through the use of
matrices for solving academic problems. Soon, the software has
received popularity mainly because of its ease of using.

In the past decade, MATLAB has included symbolic
manipulation capability by linking its system operation with Maple
and MuPad software. Such additional capability further increases
the MATLAB popularity because a large class of mathematical
problems can now be solved. The output solutions are in the forms
of symbolic mathematical expressions instead of numbers. These
solutions significantly help students in learning calculus and
differential equation courses.

This book concentrates on how to use MATLAB to
provide solutions in the forms of symbolic expressions similar to
what we have learnt in classes. Selected topics which are important
in calculus and differential equation courses are presented.
Detailed derivations are illustrated prior to solving the same
problems by using MATLAB commands. We will see that the
same solutions are obtained instantly without any error from the
software.

1.4 MATLAB Fundamentals

MATLAB is a huge computer software containing a large
number of commands. Because this book concentrates on solving
calculus problems and differential equations, only essential
commands related to these topics are presented herein.

MATLAB assigns specific letters or names for some well-
known quantities, such as,

e i and j denotesimaginary unit which is equal tov-1.
e Inf represents infinity which is +o , while —oo is
denoted by —Inf.
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e NaN refers to Not a Number, such as 0/0 or Inf/Inf.

e eps is the acceptable tolerance which is 2.2204 x107°.
e pi denotes .

The value of = can be displayed up to n significant figures
by using the command vpa (A, n) where A denotes the variable.
As an example, the command for displaying the value of © with
200 significant figures is,

>> syms pi
>> vpa(pi,200) vpa

ans =

3.14159265358979323846264338327950288419716939937
5105820974944592307816406286208998628034825342117
0679821480865132823066470938446095505822317253594
0812848111745028410270193852110555964462294895493
0382

Similarly, ~/2 can be displayed with 200 significant figures by
using the command,

>> vpa("(2)”(1/2)", 200)
ans =

1.41421356237309504880168872420969807856967187537
6948073176679737990732478462107038850387534327641
5727350138462309122970249248360558507372126441214
9709993583141322266592750559275579995050115278206
05715

The command syms above is used to declare the specified
variable as a symbol. For example, the variable x, y and t in the
equation below,

u = 2x—-7y+tz2

can be declared as the three symbols by using the command,

>> U = 2% - T*y + t2
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u =
th2 + 2%x - T*y
so that MATLAB won’t expect the numerical values for them.

MATLAB contains several commands to manipulate and
simplify algebraic expressions. These commands help reducing the
complexity of the final symbolic expressions. Some useful
commands are described herein.

The col lect command expands the given expression and
then collects similar terms together. For example,

f o= (x+5)(x-3)

>> syms X
>> F = (x+5)*(x-3);

>> collect(f)

ans =

X"N2 + 2*x - 15

i.e., the final result is, f = x2+2x-15

The expand command expands and displays all the terms in
the given function, e.g.,

g = cos(x+y)

>> syms X Yy
>> g = cos(x+y);

>> expand(@)
ans =

cos(xX)*cos(y) - sin(xX)*sin(y)

i.e., g = COsSXcosy-sinxsiny

The factor command factorizes the given function to
make it looks simpler. For example,



1.4 MATLAB Fundamentals 9

h = 6x3+11x2-16x-21
>> h = 6*X"3 + 11*x"2 - 16*x - 21;

>> factor(h)

ans =
(3*x + 7)*(2*x - 3)*(x + 1)
ie., h = (3x+7)(2x-3)(x+1)

The simplify command simplifies the complex
expression so that it is compact and easy to understand. As an
example,

X+ 2y
2 1

_+_
Xy

>> u = (X + 2*y)/(2/x + 1/y);

>> simplify(u)

ans =

X*y
ie., u = Xy

The simple command is probably the most popular
command because it combines the capability of the collect,
expand, factor and simplify commands together. For
example,

2X5 —5x4 + 58x —145
2X—5

>> v = (2*x"5 - 5*x™4 + 58*x - 145)/(2*x - 5);
>> simple(v)

XN+ 29
i.e., the final solution is, vV = x4+29

It is noted that since the simple command contains
several commands inside, detailed expressions during the
simplification are appeared on the screen. These detailed expres-
sions are omitted herein.
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The pretty command is another useful command for
transforming a symbolic expression into the rational form similar to
those shown in textbooks. For example,

X Sin X
X2 +12

>> w = x*sin(xX)/(x"2+12);

= pretey()

MATLAB contains the ezplot command that can be
used to plot a given function effectively. As an example, if we
would like to plot the w function above, we just simply enter the
command,

>> ezplot(w)

A plot of the w function will appear on the screen with the axis
scaling adjusted automatically.

(xsin(x))/(x2 +12)
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If we would like to plot the same w function within the
interval of —20< x <20 along the x-axis, the above command is
modified slightly to,

>> ezplot(w, [-20,20])

(xsin(x))/(x? +12)

| | | | | | |
-20 -15 -10 -5 0 5 10 15 20

MATLAB contains the standard plot command that
allows us to specify more details for plotting. For example, we
want to compute the values of w function above at every x=0.2 for
0<x<40. The values of w will be plotted as circle within the
range of —0.20<w<0.15. The plot also includes labels on both
horizontal and vertical axes as x and w(x), respectively. In this
case, the commands are as follows.

>> X 0:.2:40;

>> w = x.*sin(x)./(x."2+12);

>> plot(x,w, "ok") -plot
>> axis([0,40,-.20,.15])

>> xlabel("x"), ylabel("w(xX)")

If preferred, we can include all the commands above in an m-file so
that plotting details can be modified easily. In the argument of the
plot command, ‘o’ denotes the circle while ‘k’ is for showing all
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circles in black. The plot generated from the commands is shown
in the figure.

0.17‘% )

0.05

‘wooo‘ooO

ooOoooOOO

w(Xx)

e}
[¢]
[¢]
o
[¢]
o
o
o
-0.05 o

o
(e]
o
o
o
o
(e]
o
o
-0.1 - o
o

(¢]

®

-0.15

-0.2 L L L L L I I

1.5 Concluding Remarks

In this chapter, the capability of symbolic manipulation
software was introduced. The software helps finding solutions of
basic problems learned in calculus and differential equation
courses. These include: finding derivatives of functions, perform
both definite and indefinite integrations, as well as solving for
exact solutions of some differential equations. At present, there are
many symbolic manipulation software suitable for learning and
using in research work. Among them, MATLAB has received
popularity due to its capability and ease of using.

Development history and essential features of MATLAB
were briefly described. Few important commands were explained
by using examples. These commands can help manipulating
complex expressions and reduce them into simple forms. The
solutions are plotted by using easy commands so that users can
understand their physical meanings quickly.  The chapter
demonstrates advantages of using the symbolic manipulation
software that can significantly reduce the effort for solving basic
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mathematical problems. We will appreciate these advantages in
more details when we study essential calculus and differential
equation topics in the following chapters.

Exercises

1. Study the symbolic manipulation capability in MATLAB by
entering the command,

>> doc symbolic

Then, make conclusions on how to:
(a) simplify expressions
(b) plot symbolic functions

by setting up examples.

2. Use the command col lect, expand, factor, simplify or
simple to reduce or determine the following quantities,

(a) (_ 3)4 (b) 16-3/4
() 3(x+6)+4(2x-7) (d) (x—3)(4x+1)
() (Wa+vb)(a-vb) (f) 3x¥2 —9x¥2 + 6x-V2

3. Use the command simple to simplify the following functions,

X2 4+3X+2 2X2 —x-1 x+3
(@) X2 —X—2 (b) X2 -9  2x+1
y_Xx
X2 X+1 X 'y
(C) X2_4_X_2 (d) 1_1
y X
3x3/2y3)2 (4x3y2)(3xy2)’
e) | —2- f
© (3 o B
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4. Determine the product of the function f and g for each sub-
problem. Then, employ the command simple to simplify
their final expressions,

@@ f = x2-2x g = (x+17
b f = Vx-1 ;g = Vx2+2
(c) f = sin(x—x2) ; g = cos(x2+x)
(d f = ex2 ;g = In(x+3)
e) f = sin(x2-x) ; g = In(x2+2x)
M f = e , g = e

5. Use the command collect, expand, factor,simplifyor
simple to yield simplest expressions of the following
functions,

(@) f = 6x*+28x3-7x%2+14x-5
(b) g = (cosx—sinx)(cosx+sinx)(ex+sinx)(3x—7)
xtan x —3tan x — 21x3 + 7x*

© h = X _3x2 1 6x 18

d) U = 3X+X2+4VX +2xX + 2

(€) v = sinxtan22x+63inxtanx+93inx
XCOS? X — X — 7C0S2 X + 7

0 _ 15X + 3xy? + 5y2 + y4

x2(cosxsin y —cos ysin X) — cos xsin y — cos ysin x

6. Use the command collect, expand, factor, simplify or
simple to prove that,

(@ x5 -y = (x=y)(x* + 33y +x2y2 +xy3 +y*)

(b) sin(3x) 3sinx — 4sin®x

4tan x — 4tan3 x

tan(4x) =
(c) tan(4x) 1-6tan2 x + tan4 x
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(d) cos*x = g+ %cos(Zx) + %cos(4x)

(e) (ex+e*)tanhx = ex—ge*

7. Use the command collect, expand, factor,simplifyor
simple to show that,

(a) tanh?x+sech?x = 1

_ 2tanhx
(b) tanh2x = 1+ tanh? x
x _  |coshx+1
(c) cosh 5 =\
(d) cosh(4x) = 8cosh*x—8cosh? x+1
() sinhdx = %sinh(Sx)—%sinhx

8. Use the vpa command to calculate and display the roots of the
following prime numbers with 100 significant figures,

(@) 7 (b) (157)"°
(c) (229)" (d) (443)"°
(e) (587)"" (f) (881"

9. Use the ezplot command to plot the following functions,
(@ f = 3x5-25x3+60x

5x2 +8x -3
(b) g 3X2 + 2

© h = %(xz—l)m
(d) u = sin(z/x)
) v = (x=2)"(x+1)°(x-1)

10. Use the plot command to display the functions in Problem 9
again by showing essential details of their variations.
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11.

12.

13.

14.

15.

Chapter 1 Symbolic Mathematics by MATLAB

Study capabilities of the Mathematica and Maple software.
Then, highlight their unique features and compare capabilities
with MATLAB for manipulating symbolic expressions.

Use the factor command to simplify the function,

p = 3x5-20x8
Then, employ the plot command to display the variation of
this function for (a) —4<x<4 ; -500< p<500 and (b)
0<x<4;-80<p<80.

Use the simplify command to simplify the function,

q = x4-2x2-3
Then, use the ezplot command to display its variation for

—3<x<3. Plot this function again but by using the plot
command for —3<x<3 and -6<(q<6.

Use the ezplot command to plot the following functions,
@ f = x3-x+1
(b) g = x*#-3x2+X
() h = 3x5—-25x3+60x
Then, use the plot command with appropriate scaling in both

the horizontal and vertical directions to clearly show their
variations.

Use the ezplot command to display the following trigono-
metric functions,

(@) cos(2x) (b) sin(x —%)

(c) cos(x+ ) (d) tan(x+7)

(e) cos(%j ) cos(;r+%)
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16.

17.

Then, use the plot command with appropriate scaling in both
the horizontal and vertical directions to show their variations.

Given the function,

f = Y1-x

Find a proper command in MATLAB for determining the
expression for f-2. Then, plot to compare the variations

between f and f-1.
Given the function,
= XCO0S E
g = X

Use the ezplot command to plot its variation within the
interval of —2<x<2. Then, use the plot command again to
show the variation for —0.5<x<0.5. Suggest on how to plot
the function when x approaches zero so that the variation is
shown clearly.






Chapter
2

Calculus

2.1 Introduction

Calculus is an essential subject in mathematics required
for science and engineering students. It contains two main topics
which are the differentiation and integration of functions. The
former one is based on understanding the determination of limits.
Often, many students do not enjoy studying these topics because
they have to memorize formulas for deriving solutions. Some
solutions require a long time to derive by employing specific
techniques. Furthermore, most students do not appreciate learning
these topics because they don’t know when the solutions will be
used for realistic problems.

With the capability of the symbolic manipulation software
today, solutions to calculus problems can be obtained rapidly.
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Students can compare solutions obtained from the software with
those derived by hands. So they will have more time to understand
the meanings of the solutions. This chapter shows standard
techniques to derive the solutions before using MATLAB
commands to confirm the validity of them. Several examples will
be presented with detailed derivation for the solutions. These
solutions will also be plotted to increase understanding of their
phenomena.

2.2 Limits

Limit of a function f(x) when x approaches a, is defined

by,
L = limf(x)

X—a

Example Given a function,

f(x) = x2
Then, L = limf(x) = limx2 = a2

We can use the ITimit command in MATLAB to obtain the
solution by entering,

>> syms X a
>> F = x"2;

>> Limit(F,x,a)

ans =

an2

Example Given a function,

X2 — aZ

9() = S,
If we follow the simple procedure used above, we get,
. . az-—az2 0
L = 'x'i'lg(x) - !(eré]l a-—a 0
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The result cannot be determined and is not correct. To find the
correct solution, we should observe the variation of this function
g(x) by plotting. If we assign the value of a=1, then,
X2 —12
9(x) = S

The plot of this function is shown in the figure. From the figure,
the function g(x) becomes 2 as x approaches 1.

(x2 ~1)/(x-1)

2.8

26
24

22

g0 2

]
|
|
|
|
|
|
|
I
I
I
I
I
|
I
0 02 04 06 08 1 12 14 16 18 2
X

The proper step to determine the limit of this problem is to
first letx=a+h, where h is small. Then, substitute x=a-+h into
the function g(x) to get,

_ (a+hy’-az  2ah+h?
9() = a+h-a h
= 2a+h
Then, let h approaches zero, thus,
. X? —a?
L = Ixmg1 —a | - 2a

The solution agrees with that shown in the graph at a=1.

The same solution can be obtained instantly by using the
limit command,
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>> syms X a
>> g = (xM2-an2)/(x-a);

>> limit(g,X,a)

ans =
2*a

Finding limits of functions may require different methods
depending on the function types. The examples below show

standard techniques to determine limits for different types of
functions.

Example Determine the limit,

. Xx2-25
L = leﬂg X—5

This example is similar to the preceding example. The factoring
technique can be used to find the solution as follows,

L = Iir@% - |irr;(x+5)
= 5+5 = 10

Again, the limit command is employed to obtain the same
solution,

>> limit(" (x*2-25)/(x-5)",%,5)

ans =

10

Example Determine the limit,

lim V=2

x>4 X—4
If we simply substitute x=4, we get 0/0, which cannot be
determined. A technique to find the limit of such function is to
multiply its numerator and denominator by the conjugate value of
the numerator, ~/x + 2, before taking the limit. Detailed derivation
is as follows,

L
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(x-2) (x+2)

S LV CE R NPy
_ lim— (=4 = lim
X—’4(X—4)(\/;+2) o4 X+ 2
1 1
- Va2 -4

Similarly, we can use the Fimit command to find such solution by
entering,

>> limit(" (sqrt(x)-2)/(x-4)",x,4)
ans =

174

Example Determine the limit,
11
L = [limXt4 4

Xx—0 X

Again, if we substitute x =0 directly into the function, we get 0/0.

The technique of multiplying by the conjugate value as shown in
the preceding example is not applicable. A different technique of
multiplying the numerator and denominator by an appropriate
function is needed. For this particular problem, the appropriate
function is 4(x + 4) and the detailed procedure is as follows,

2}
. X+4 4) 4x+4
L= lim X '4Ex+4%
= |mw = ||m_—X
-0 4X(X+4) x—0 AX(X +4)
= lim——t N
x>0 4(X +4) 4(0+4)
_ 1
16

The same solution is obtained by using the Iimit command as,
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>> Limit(" (17 (x+4)-1/4)/x" ,x,0)

ans =

-1/16

If the given function is more complex, the same limit
command still provides solution immediately as demonstrated by
the following examples.

Example Determine the limit,

L = “n1__j£:li__

X—>—4 5 — A/ X2 — 9

The solution is obtained by typing the limit command followed
by the given function, variable and limit value as,

>> Limit(" (4-xX)/(5-sqrt(x*2-9))",x,-4)
ans =

-8/(7~(1/72) - 5)

which leads to the solution,

. 4 —X 8
lim = = 3.3981
>4 5 \/x2 -9 57

Example Determine the limit,

) e —1
L = Ilim -
x-0 1 — c0S+/ X —Sin X

>> T = (exp(x™3)-1)/(1-cos(sgrt(x-sin(x))));
>> limit(f,x,0)
ans =

12

. . . ¥ _1
i.e., the solution is, lim € - = 12
x>0 1 — €0S~/ X —Sin X
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The solution can be verified by plotting such function through the
use of the ezplot command as,

>> ezplot(f, [-.5,.5])
— (exp(x2)-1)/(cos((x - sin(x))**)-1)

131

128

126

124

122+

12+

1.8

1.6

1.4 /1

| | | | | | | |
-05 -04 -03 -0.2 -0.1 0.1 0.2 0.3 0.4 0.5

xXer

Example Determine the limit of the function below as x appro-
aches infinity,

L = lim2X*r%
x>© /3x2 =5

>> imit("(9*x +4)/(sqrt(3*x"2-5))",x, InfT)

ans =

3*31(1/2)
>> double(ans)
ans =
5.1962
ie. lim-2X*%  _ 3/3 - 51062

X—>0 4/3)(2 — 5
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Example The Bimit command can also be used to find the
solution when the function contains two variables,

2 3
L = lim 22

o1 (x+y)

>> syms X y
>> F = (X"2*y+x*y"3)/ (X+y)"3;

>> L = limit(limit(F,x,-1),y,2)

. ) X2V + Xy3
ie., lim y—);
ot (x+y)

2.3 Differentiation

Differentiation is one of the most important topics in
calculus. This is because the physics of most science and
engineering problems are described by differential equations.
Differential equations contain terms that are derivatives of the
unknown variables. Finding for these unknown variables is the
main objective for solving the differential equations.  Thus,
knowing how the derivatives of a function can be found is the first
step toward learning the differential equations.

To find derivatives of a function as learned in classes, we
need to apply basic formulas. Some formulas are easy to memorize
while many others are difficult to recall. Furthermore, taking
derivative of a complex function consumes a large amount of time
and is likely to produce error.

Before using MATLAB command to find any derivative
of a function, we start from understanding definition of the
derivative. The derivative of a function y(x) with respect to X is
given by,

dy . Ay . f(x+AX) - f(x)
dx AUTOH B AIJLno AX
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Example Find the derivative of y= f(x)= x2.

dy _ Iimf(x+Ax)—f(x)
dx a0 AX
o (x+AX) - X2
N Allino AX
X2 4+ 2XAX + (AX) — X2
= lim
Ax—0 AX
= |im 2x + AX
AX—0
As AX — 0, then,
dy _
X - 2x+0
dy _
or, - 2X

MATLAB contains the diff command that can be used to
find the derivative effectively. In this example, the entered
commands and solution are,

>> syms X
>> y = X"2;

>> diff(y,x)

ans =
2*X

Variation of the function y=x2 can also be plotted easily as
shown in the figure by using the command,

>> ezplot(y,[-4.,4])

The derivative dy/dx represents the slope at any x
location. For example, at x =2, the derivative dy/dx =2(2)=4.
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Example Find the derivative of y= f(x)=2x-3x2.

dy
dx

dy
dx

lim f(x+Ax)— f(x)

Ax—0 AX
2(x+AX) = 3(x + Ax)” — (2x —3x?)
lim
AXx—0 AX
. 2AX - 6XAX - 3(Ax)?
lim
AX—0 AX
lim 2 — 6x — 3Ax
Ax—0
2-6x-3(0)
2 — bX

Again, we can use the diff command to find the derivative of the
function y = f(x)=2x-3x2 as follows,

>> syms X

>> y = 2*X-3*X"N2;

>> diff(y,x)
ans =
2-6*X
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Example Find the derivative of a constant function y = f(x)=5.
dy lim f(x+Ax)— f(x)

dx AX—0 AX
5-5 .

= M= = limo

=0
That is, the derivative of a constant is zero.
>> y = 5;
>> diff(y,x) diff
ans =
0

Example Find the derivative of the function y= f(x)=+/x for

Xx>0.
dy lim f(x+Ax)— f(x)

dx AX—0 AX
~ lim \/X+A ~Jx
AXx—0
. \/X+AX—\/; \/X+AX+\/;
= |lim .
Mx>0 AX X+ AX + X
. X+ AX — X
= |im
AHOAx(x/x+Ax +x)
= |lim———
AHOx/x+A Ix+AX + 4%
B 1
24/x

We can use the diff command to obtain such solution directly,

>> syms X

>> y = sqrt(x);
>> diff(y,x)

ans =
1/(2*x™(1/2))
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Example Find the derivative of the function y = f(x)= 2x)13'
dy _ lim f(x+Ax)— f(x)
dx a0 AX
X+AX X
lim 2(X+Ax)+3  2x+3
AX—0 AX

X+AX  2x+3 X 2(x+Ax)+3
lim 2(x+AX)+3 2x+3 2x+3 2(x+Ax)+3
Ax—0 AX

After simplifying it, we obtain,

@ _ lim 3
dx  ao0(2X+2AXx+3)(2x +3)
B 3
~ (2x+0+3)(2x+3)
dy 3
or, = = —
dx (2x + 3

If we use the diff command, we can get the same result
instantly,

>> syms X
>> y = xX/(2*x+3);

S

ans =

3/(2*x + 3)"2

In general, the given function y = f(x) is complicated.
Finding its derivative by hands consumes a large amount of time
and may produce error. The diff command can eliminate such
difficulty as shown in the following examples.
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Example Find the derivative of the function,
y = f(x) = x4-8x3+12x-5
Then, evaluate the result numerically at x=-2,0 and 2.

Again, we can employ the diff command to find the
derivative as follows,

>> syms X
>>y = XM - 8x"3 + 12*x - 5;
>> dydx = diff(y,x)

dydx =
A*XN3 - 24%xN2 + 12
ie.,

dy = 4x3-24x2 +12
dx

The subs command can then be used to compute the
numerical results at x=—-2,0 and 2 as follows,

>> subs(dydx,-2)

ans =
-116

>> subs(dydx,0) -subs
ans =

12
>> subs(dydx,2)
ans =

-52

These computed derivatives represent the slopes at x=-2,0 and 2
as shown in the figure.
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X4 —-8x3+12x-5

200 -

150

100

dy _
a (—2)_OI 116

Y —
e (0)=12

%(2) - 5

-100 -

Example Find the derivative of the function,
y = f(x) = [x+(x+sin2x)]’
If we use the di FF command, the result is,

>> syms X

>> y = (X + (X + sinQ)"2)"3)"4;

>> dydx = diff(y,x)

dydx =

4*(x + (sin(xX)"2 + xX)N)IN3*(B*(sin(X)"N2 + x)N2*
(2*cos(X)*sin(x) + 1) + 1)

The result above can be simplified by using the simple command
to yield,

% = 4x+(sin2x+x)°| [3(sin? x + x)*(sin 2x +1) +1]

It is noted that the diff command can also be used to find
solutions of higher order derivatives. This is done by including the
derivative order at the end of the command as shown in the
following examples.
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Example Find the second-order derivative of the function,
y = f(x) = 2x3+7x2-3x+5

>> syms X
>> y = 2*X"3 + 7*XN2 - 3*Xx + 53
>> diff(y,x,2) diff
ans =
12*x + 14
ie.,

dzy

— = 12x+14

dx?

Example Find the second- and twentieth-order derivatives of the
function,

y o= f(x) = 1-+/cosx
xil—cos&i

MATLAB can determine derivatives of rather complex function
above in a short time. We will use the tic, toc commands to
measure the computational time.

For the second-order derivative, the result and
computational time are,

>> syms X
>>y = (1-sqrt(cos(x)))/ (x*(1-cos(sqrt(x))));

>> tic, diff(y,x,2), toc

ans =

@*(cos(IN(1/2)-1))/ (x"3*(cos(x™M(1/2))-1))-
cosQOON(1/2)/ (2*x*(cos(x™N(1/2))-

1)) +(cos(xN(L7/2))*(cos(xIN(1/2)-1))/
(4*Fx"2*(cos(x™N(1/2))-1)"2)-
G*Fsin(x™M(1/72))*(cos(x)ON(1/2) -

1))/ (4*xN(5/2)*(cos(x(1/2))-

DN2)+sin(X)/ (x"2*cos(x) M(1/2)*(cos(x™M(1/2))-
D))+(sin(xM(1/2))"2*(cos(x)DN(L/2)-
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1))/ (2*x"2*(cos(x™M(1/2))-1)"3)-
sin(x)"2/(4*x*cos(xX)N(372) *(cos(xX™N(1/2))-1))-
In(xX™N(1/72))*sin(xX))/ (2*xN(3/2)*
cosQOON(L/2)*(cos(xN(1/2))-1)H)N2)

Elapsed time is 0.055360 seconds.

That is, MATLAB uses only about 0.05 seconds to determine the
second-derivative of the given function.

For the twentieth-order derivative, the computational time
is,
>> tic, diff(y,x,20); toc
Elapsed time is 2.401116 seconds.

In this latter case, MATLAB requires about 2.4 seconds to
determine the twentieth-order derivative of such complex function.
All of the examples above clearly demonstrate the capability of
MATLAB for finding derivatives of arbitrary functions in a short
time.

The diff command can also be used to determine partial
derivatives of functions that contain many variables. Examples for
finding partial derivatives are shown below.

Example Given the function,

z = f(xy) = xelZ?)
Determine its partial derivatives with respect to x and y.

We can plot the variation of the function above by using
the meshgrid and mesh commands.

XX = =2:.2:2; yy = -2:.2:2;

[x,y] = meshgrid(xx,yy);

z = x.*exp(-(X."2+y."2));

mesh(x,y,z, "EdgeColor™, "black™)

The plot is shown in the figure.
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The partial derivatives of the given z function with respect
to x and y can be determined by using the diff command as
follows.

>> syms X Yy
>> z = x*exp(-(x"2+y"2));

>> dzdx = diff(z,x) diff
dzdx =

-(2*x"2 - 1)/exp(xX"2 + y"2)

>> dzdy = diff(z,y)

dzdy =

-(2*x*y)/exp(xX"2 + y"2)

The results are,

% = —(2x2-1)e-b+?)
5 - @yt

The derivatives obtained above can be verified by the plot
of the function z = f(x,y). At x=y=0, the values of 6z/ox =1

and 0z/oy=0 are obtained by using the subs command as
follows,
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>> subs(dzdx,{x,y},{0,0}p)

ans =

1
>> subs(dzdy,{x,y}.{0,0})
ans =

0

2.4 Integration

Integration is the inverse process of differentiation and is
sometimes called anti-differentiation. It is rather a difficult topic to
most students because they have to memorize many integration
formulas. In addition, complicated functions require some special
techniques and take a long time to integrate before reaching
solutions. In the past, integrating handbooks can alleviate the
difficulty in finding the integral results. At present, integration of a
function can be obtained easily by using the symbolic computer
software.

Integration of a function f(x) is given by,
| = j f (x)dx

As an example, the integration of the function f(x)=x2 is,

3
| = IXZdX = X?+C

where C is the integrating constant. We can verify the result
obtained by taking its derivative as follows,

dl d (x3 3x2
x &(?*C) = 3t =

which gives back the original function f(x).

It is noted that the integral sign J' resembles the capital S
denoting summation of the area under the function f(x). The
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function f(x) is called the integrand, while C is the integrating

constant that can be determined from the specified condition of the
problem.

Few basic integration formulas learned in calculus course

are:
xn+1 1
@) Ix dx = i1 (b) J';dx = Inx
(©) _[sinxdx = —cosx (d) Icosx dx = sinx
(e) J' sec2xdx = tanx ) J' cosec2xdx = -—cotx
1 . 1
9) _[ =y dx = sintx  (h) IW dx = tanx
. ax .
(i) J.ax dx = 13 () jex dx = e

where the integration constant C is omitted herein for simplicity.
The above basic formulas were used to derive many other
integrating formulas that are summarized in integration handbooks.

MATLAB has the int command that can be employed to
perform integration of functions effectively. Examples on the use
of such command are highlighted below.

Example Isinxdx = —CO0SX

>> syms X
>> F = sin(X);
>> int(F) int

ans =

-cos(x)

Example j1+1x2 dx = tantx
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>> syms X
>> Int(1/(1+x"2))

ans =
atan(x)

aX
Ina

Example j ax dx

>> syms X a
>> int(Ta™x")

ans =
a™x/l1og(a)

The integration formulas, such as those given in (a) - (j)
above, can be applied to find the integrals of more complicated
functions as follows.

Example Find the integral of,
| = j(8x3—5x2+13x—7)dx
>> syms X
>> F = 8*x"3 - 5*x"2 + 13*x - 7;
>> int(fF)
ans =
2*%x"4 - (5*x73)/3 + (13*x"2)/2 - 7*X

i.e., the result is, I = 2x4 —gx3 +%x2 —7X

Example Find the integral of,
| = J'(Ssin4x0052x)dx

>> syms X

>> F = 3*sin(4*x)*cos(2*x);
>> int(f)

ans =

- (3*cos(2*x))/4 - cos(6*x)/4
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i.e., the result is, I —%(3cos(2x)+cos(6x))

Example Find the integral of,

| = e +1
_j -

dx

>> syms X
>> F = (exp(@*x)+1)/exp(X);
>> int(fF) int

ans =
2*sinh(x)

i.e., the result is, I = 2sinhx

The basic integration formulas as shown in (a) - (j) can be
further applied together with the use of some integration
techniques. Some techniques are presented in details in the
examples below.

Example Find the integral of,

I = ijx—l dx
A technique is to let, uz = x-1
Then, 2udu = dx and X = uz+1

Thus, the given integral above becomes,
| = I(uz +1)°u (2u du)
[ (u#+2u2 +1)(202) du
= [ (208 +4us+2u2) du
2u7 N 4u’ N 2u3
7 5 3
2w

- 4 2
I 105(15u +42u2 + 35)
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After substituting u =+ x—1, the final solution is obtained,

132
| - gghél—h&X—Dz+4XX—D+3ﬂ
_1\d2
- 39%%%—a5ﬂ+¢2x+&

The same solution can be obtained easily by using the int
command,

>> syms X

>> T = x"2*sqrt(x-1); .
>> int(f) int
ans =

(2*(x - DN(B/2)*(15*x™2 + 12*x + 8))/105
Example Find the integral of,
| = jcos(x4+2) X3 dx

To integrate the above function, a technique different from the
previous example is needed as follows,

I cos(x4 + 2)x3 dx

= %J' cos(x4 +2)(4x3) dx
= %I cos(x*+2)d(x4 +2)
= %sin(x4 +2)

Again, the int command can provide the solution conveniently,

>> syms X

>> f = x"3*cos(xX"4+2);

>> int(f) int
ans =

sin(x™M + 2)/4
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If MATLAB cannot integrate the given function, the
entering expression is returned with the message stating that the
explicit integral could not be found. For example,

V1+x24x4

>> syms X
>> Int("1/sqrt(1+x"2+xM) 7))
Warning: Explicit integral could not be found.

ans =
INt(L/(x*4 + x*2 + 1)7(1/2), X)

Most of practical problems require solutions of the definite
integrals for which the lower and upper limits of integration are
specified. Techniques for finding definite integrals of some
functions are shown in the examples below.

Example Find the definite integral of,
4
I = j«/2x+1 dx
0

A technique to find the integral above is to assign a new variable,
u=2x+1, so that du=2dx. The lower and upper limits are
changed into the form of new variable u, i.e., u(0)=2(0)+1=1
and u(4)=2(4)+1=9, respectively. Then,

9

9
1 12
= - - —.Zuyv2
| _[x/a(zduj 5 3u 1
1 26
- — 3/2_3/2 -
3(9 192) 3

Again, we can use the int command to find the same solution by
simply entering,

>> syms X

>> int("sqre(2*x+1)",0,4)
ans =

26/3
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Example Find the definite integral of,

<1
= e

Using a formula in an integrating handbook, the above integral is,

= dim[ L dx = lim(anix)|°
= E“fm x = lim(an-x)|
. T
= lim(tana—-tan-10) = =-0
a0 2
-
)
>> syms X
>> int("1/(1+x~2)",0, Inf) int
ans =
pi/2

Multi-dimensional integration can also be performed by
using the same int command as highlighted in the following
examples.

Example Find the two-dimensional indefinite integral of,

I ” f(x,y)dxdy

3y2
= szydxdy = xg/
>> syms X Yy
>> F = x"N2*y;
>> 1 = int(int(f,x),y) int

|1 =
(x"3*y"2)/6
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Example Find the three-dimensional definite integral of,

64 2

| = If(x,y,z)dxdydz

]
6 42

”J.x3y22dxdydz = —
531

>> syms X Y Z

>> F = x"3*y"2*z;

>> | = int(int(int(f,x,1,2),y,3,4),2z,5,6)
| =

2035/8

2.5 Taylor Series

43

Many solutions to differential equations are in form of
infinite series. In calculus course, several types of infinite series
are thus studied. Popular infinite series are in the power and

polynomial form as shown below.

eX:1+x+ix2+£x3+lx4+... = lxn
2! 3! 41 = n!
. 1 1 1 = n
sinX = X——=x3+=X°— -1
3! 5! HZ;( )
Cosx = 1— x4 S xt —lx6 Z
2! 41 6! = (2n)

(2n +l)

X2n+l

2n

The function f(x)=ex, f(x):sm(x) and f(x)=cos(x)
above can be derived in form of infinite series by first writing such

f(x) in the form,

0

f(x) = D c,(x-a)

n=0

= ¢ +G(x—a)+C,(x—a)’ +..+¢,(x=a)" +...
where c,,i=1,2,3,..., 0 are determined from the derivatives of the

function as follows,
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f'(x) = ¢ +2c,(x—a)+3c,(x—a)’ +...+nc,(x—a)" +
f"(x) = 1-2¢,+2-3c,(x—a)+3-4c,(x—a)* +

f"(x) = 1-2-3c,+2-3-4c,(x—a)+3-4-5¢,(x—a)’ +
At x = a, the above equations reduce to,

f'la) = 1c,

f'(a) = 1-2c,

f"(a) = 1-2-3c,
Or, in general, fm@) = (nYc,
Thus, c, = f<”r>]!(a)

Then, the function f(x) can be rewritten as,

f(x) = f(a)+f(a)(x a)+—f”(a)(x—a)2

Tt f (a)(x—a)" +
The function f(x) in thIS form is called the Taylor seriesat x=a..

It is noted that if a=0, the Taylor series reduces to,
f(x) = f(0)+ f’(O)x+— f"(0)x% +. +— f<”>(0)xn
1
or, f(x) = > o (M(0)x"

n=0
which is known as the Maclaurin series.
MATLAB has the taylor command that can be used to
display the function f(x) in form of the Taylor and Maclaurin

(a=0) series. The examples below demonstrate such capability.

Example Find the Maclaurin series for the function,

f(x)

Since the given function f(x)=ex, then f'(x)=ex, f"(x)=ex,..,
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fm(x)=ex. But fM(0)=e>=1 for any n, then the Maclaurin
series is,
X" x x* X3

f(x) = e = nZ; po= legtogr gt

We can use the taylor command to generate such series.
For example, the series with the first three terms can be displayed
by entering,

>> syms X
>> f = exp(X);
>> taylor(f,x,3)

ans =

x"N2/2 + x + 1

: X2
e, f(x) = ex = 1+x+?

Similarly, the series with the first five terms can be obtained by
typing,

>> taylor(f,x,5)

ans =
XN/24 + x"3/6 + xN2/2 + x + 1

X2 x3 x4

In the same manner, the Taylor series x = a with the first
three terms can be displayed by entering,

>> syms a
>> taylor(f,x,3,a)
ans =

exp(a) + (exp(a)*(a - x)"2)/2 - exp(a)*(a - x)

i X a a — i _a)?
e, f(x) = ex ~ ea+ea(x—a)+ 2!(x a)
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Example Find the Maclaurin series for the function,

f(x) = cosx
Since,
f(x) = COS X ; f'(x) = —sinx
f'(x) = —€OS X ; f"(x) = sinx
fen(x) = (-1)"cosx ;  fe(x) = (=1)"sinx

At x=0, cos(0)=1 and sin(0)=0, then the derivatives of f(x)
are,
feu(©) = (-1 and f 2n+1)(0)

Thus, the Maclaurin series (a =0) is,

f(x) = f(0)+f(0)x+ F0)X? + . +—f(")(0)x”

2 4 6 8
= 1+0- x O+X—+0—X—+O+X—+...

8!
- n= 3——{

y

n=9

If we plot the function f(x) by using the series above, we
see that the series yield results that approach the solution of
f(x)=cos x when more terms on right-hand-side of the series are
included. This means the true variation of the cosine function can
be obtained by computing the function f(x)=cosx and its

derivatives at x=0 as n — c. We can use the plot command to
demonstrate convergence of the results as more terms are added
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into the series. Comparisons of these results with the true function
f(x)=cos x are shown in the figure.

>> x0=0:.01:10; yO=cos(x0); syms x; y = cos(X);
plot(x0,y0, "linewidth*,2), axis([0,10,-2,2]);
for n=[3:2:21]
p=taylor(y,X,n), yl=subs(p,x,x0);
line(x0,yl)
end

+— COS X

Example Use the taylor command to find the first three terms of
the function,

COS X
X2+ x+1

f(x) =
at x=0and x=2.
The first three terms of the Taylor series at x=0 for

the given function above can be found by entering,

>> syms X
>> T = cos(X)/(xX"2+x+1);

>> taylor(f,x,3)

ans =
- x"N2/2 - x + 1
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. COS X X2
e 0 = et = X7

These first three terms at X =2 are,
>> taylor(f,x,3,2)
ans =

cos(2)/7 - (X - 2)*((5*cos(2))/49 + sin(2)/7) -
(x - 2)"2*((13*cos(2))/686 - (5*sin(2))/49)

. cos2 5c0s2 sin2 »[13cos2 5sin2
e, T_(X_Z)[Tg+7}(x_2)[ 686 49 }

2.6 Other Series

MATLAB contains the sum and symsum commands that
can be used to determine the series in the forms of numbers and
symbols as demonstrated in the following examples.

Example Determine the result of the series,

10
S = Y20 = 204204224+..420

n=0
We can employ the sum command by entering,

>> S = sum(2.7[0:10]) sum
S =
2047

10
ie., >2" = 2047

n=0

The symsum command can also be used to give the same result,

>> syms n
>> symsum(2°n,0,10)
ans =

2047



2.6 Other Series 49

Example Determine the result of the series,,
1 1 1 1

S A A O

:MS

We can employ the symsum command to find the result
symbolically by entering,

>> syms n
>> symsum(1/n”™2,n,1,Inf)

ans =

pin2/6

. © 1 72.2
l.e. - = __
e, ; = 5

Result in the form of ~ symbol above appears in most of calculus
textbooks. Such result can be determined numerically by typing,

>> format long; double(ans)

ans = double

1.644934066848226

It is noted that this series with the first hundred terms is,

>> format long; sum(1./([1:100].72))
ans =
1.634983900184892

which is different from the exact result starting from the second
decimal place onward.

Example Prove the series,

1
Z (3n- 2)(3n+1) -3

Again, the symsum command can be used by entering,
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>> syms n

>> symsum(1/((3*n-2)*(3*n+1)),n,1, Inf)
ans =

1/3

2.7 Concluding Remarks

In this chapter, we have studied and reviewed essential
topics in calculus. These topics are the limitation, differentiation
and integration of functions. As we learned in the calculus course,
several formulas and techniques are needed in order to find
solutions for these problems. Some simple formulas can be
memorized while many others are collected in handbooks.
Learning these topics, which represents the first step toward
solving higher mathematical problems, is often difficult to most
students.

MATLAB contains the Limit, diff and int commands
that can be used to find limitation, differentiation and integration of
a given function, respectively. The effectiveness of these
commands was demonstrated through examples by comparing the
solutions with those carried out by hands. The commands can
provide the solutions immediately so that students will have more
time to understand physical behaviors of the problems. MATLAB
also contains the taylor and symsum commands that can be used
to generate the Taylor, Maclaurin and other series conveniently.
These series can be expressed symbolically or computed
numerically. Understanding these series is the basis for learning
differential equations in the following chapters.

Few key commands presented in this chapter clearly
demonstrate the capability and efficiency of MATLAB for solving
calculus problems. These commands help students to verify their
solutions derived in the traditional way as learned in classes. With
the plot or ezplot command, these solutions can also be plotted
easily to further increase understanding of the problems. The
symbolic computer software today thus can alleviate difficulty in
learning calculus and increase understanding of the subject
considerably.
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Exercises

1. Use the Iimit command to determine,

. x6 -1 . Ox —Bx
@ lim ®) lim
o Ix+4-2 . tan 3x
(c) lim — (d) lim tan 5x
COS 2X — COS X . X2 — 2X
) leirg X2 () le_rg X2 —4x+4

2. Use the Iimit command to determine,

.ox3-1 . X8 —-3x+2
(@) IXILT X —1 (b) XILmz X2 + 2X
. Jx2+9-3 i o ain( L
() IXIEJT (d) IXILTJX sin| >

1 1

. Al x —V1- 2 x2

0 i T gy G

Then, verify the solutions by plotting with the use of ezplot
command.

3. Use the Iimit command to determine,

. sin X . 1
@ iMoo cosx (b) [im (2‘;)
. bx-7 . 160x94 +90
© lﬂl 4x -3 (d) lm 4x-94 +15
(e) lim tanx - x (M lim Vx2+3x+1+x

xor tan2 X + 3 X—>—o0

Then, verify the solutions by plotting with the use of ezplot
command.
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4. Use the limitcommand to determine the limits of the
functions containing two variable x and y,

(@ lim——L
DoUxy+1-1
1-cos(x2 + y?)
I
(b) )y(l:r;él (X2 + y2)ex2+y2
© lim !

+
20 =X +y? @ x) +ye

P, X+9y2
@ lim evben2) S X(g, 1
Yy X y

y—>

5. Use thediffcommand to find the first-order derivatives of
the following functions,

(@) 2x3 — x4 (b) x(20-5x)
© i1 © T
(e) xv4-—x2 H vx2+2x+5

Then, verify the solutions with those derived by hands.

6. Use thediffcommand to find the first-order derivatives of
the following functions,

@) x-—+/x (b) (x-1)"°—(x+1)**
3x2+2x—4 2X+3

© 2 —x+1 @ —2e+a

e) vVxInx (f) +sinx

Then, use the ezplot command to verify the solutions by
plotting at appropriate x locations.

7. Use thediffcommand to find the first-order derivatives of
the following trigonometric functions,
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(@) sin(x3 —x2) (b) (sinx+x)(x3—Inx)
ex + Xsin x X2

© anx @ n(35)

(e) xex* (f) In(ecosx + x)

Then, use the ezplot command to plot comparing the
variations of the functions and their derivatives.

[x
u = cost,|—
y

Use the di £Ff command to show that,
o2 o2u

Xoy oy ox
9. Employ the meshgrid command to display the function
z=f(xy),
X+Y
a) z = 100x(1-x)y(l-y)tan| 10 ————-0.8
@ - ya-y)tan(10 7Y ~08))
for 0<x<1,0<y<1

(X2 — 2x)ex2-y2-x
for —3<x<3,-2<y<2

8. Given,

(b) z

Then, use the diff command to find the expressions of 0z/ox
and 0z/dy . Compute these expressions at x =y =0 by using
the subs command.

10. Use the int command to find solutions of the following

integrals,
@ [@-x)"dx (b) [(2x-3)° dx
1
(c) J‘%dx (d) I(l——x)zdx
(e j sin 3x dx )] j cos(z — x) dx

Then, verify the solutions by finding their derivatives.
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11. Use the int command to find solutions of the following

integrals,
2X -5 X
@ e ® O e
sin x X2
(©) J-3+5003x0|X @ J.«/3x+ dx
1+2
© [ g o O [ 75ty O

Then, verify the solutions by comparing with those derived by
hands as learned in calculus course.

12. Use the int command to find the following integrals,

1 1
a dx b) | ———dx
()IV1+X4 ()jx X2 —4
COS X
() Imdx (d) jtanhzxdx
X3 +8
® [
13. Use the intcommand to determine the following definite
integrals
2x+1 A
b
() I (b) j e
2
ALY
2
() j\/3x+5 dx (f) jsin 3x dx
0 1

14. Use the intcommand to determine the following definite
integrals,

(@) fx5dx (b) f«/x+4dx
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72 72
© Isin2xdx (d) '[sin 3x cos x dx
() j\/4—x2 dx (f) jx(xz—l)“ dx

Then, verify the solutions with those derived by hands.

15. Use the int command to find the following multi-dimensional
integrals,
@) ” (x2 —7xy +5y3)dx dy
(b) ” (sin2 x cos x) dx dy
(c) j” (x2ysin(z)+8cos2(y)) dx dy dz

642

(d) jjj[xﬁy) dx dy dz

531
Then, verify the solutions with those derived by hands.

16. Use the taylor command to express the first six terms of the
Maclaurin series for the following functions,

(a) @-5x (b) X ex
(c) x2sinx (d) xcoszx
(e) cosvx+1 (f) sinzx

17. Use the taylor command to express the first twenty terms of
the Maclaurin series for the following functions,
(@) sinhx (b) tan-tx
(€) In(1+x) (d) (ex—1-x)/x2

Then, plot to compare their variations with the true functions.

18. Use the taylor command to express the first five terms of the
Taylor series at x=a for the following functions,

(@) exsinx (b) 8+ x

(c) xIn(1+2x) (d) x2cos?x
X X —Sin x

© = M =
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19. Use the symsumcommand to prove the following infinite

series,

(a) i+i+i+i+ = 7[_4
143 5t Tt - 96
1 1 1 1 o

O g7tz gt Y

(©) i+ L + L + L + - 3
1.3 2.4 35 4.6 7 = 4

) T 1 1 1 _ -8
12.32 7 3.52 ' 52.72 72.92 7 16

20. Use the symsum command to show that the following
functions can be written in the form of infinite series,

2 3 4
(@ Inl+x) = x—X?+X?—XT+... -1l<x<1
2 X3
(b) ex = 1+x+§+?+ —00< X <00
2 4 6
(c) coshx = 1+ )él X )él —00 < X < 00
. 1x3 1.3 x* 1.3.5 x’
-1 — - o -
(d) sintx +23+2-45+2-4-67+'"|X|<1

21. Use the symsum command to determine the exact solutions of
the following infinite series,

0 3(E2)- G2

11 1
(b) Z(5n 4)(5n+1) T 167611 11.16

Then, compute the series by using the sum command that
contains only the first two hundred terms. Determine the
percentage error by comparing the approximate solution with
the exact solution for each case.
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3

Differential Equations

3.1 Introduction

Many phenomena surrounding us are explained by
differential equations. Water flow in a river or air circulation in a
room is described by the differential equations representing
conservations of mass, momentums and energy. Solving these
differential equations lead to solutions of flow velocity, pressure
and temperature. Temperature distribution of a coffee cup is
governed by a differential equation that describes the energy
conservation at any position in the cup. Solving such differential
equation leads to the solution of the temperature. Or, deformation
of a beam under loading is governed by a differential equation
representing the equilibrium condition at any location along the
beam. Solving the differential equation gives the deformation
shape as well as the stress. Solutions obtained from these
differential equations thus help understanding the problem
phenomena.
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Most commercial scientific and engineering software for
analysis and design are based on solving differential equations.
Thus, understanding how the differential equations are solved is
very important. The differential equation course is thus required
for science and engineering students. Even though the course
consists of topics just for solving simple forms of differential
equations, it is still difficult to most students. This is because there
are many specific techniques to memorize and follow in order to
derive for the solutions.

With the symbolic computer software today, many
differential equations learned in class can be solved easily.
Students can compare solutions obtained from the software with
those derived by hands, so that they will have more time to spend
on understanding the solution behaviors. These will help them to
appreciate and realize the importance in taking the differential
equation course.

This chapter starts from explaining characteristics and
types of differential equations typically learned in the course.
Techniqgues for solving many types of differential equations are
presented. The derived solutions are compared with those obtained
from using MATLAB. The derived solutions may be in the forms
of polynomials or some special functions. These solutions are
plotted by using simple MATLAB commands to further increase
understanding of their behaviors.

3.2 Characteristics of Differential Equations

In the differential equation course, we studied many types
of differential equations. For an example,

dzy dy

3XW ax

In the differential equation above, y is the dependent variable that

varies with the independent variable x. The dependent variable

y = y(x) is the solution to the differential equation. This equation

is called the second-order differential equation according to the
highest derivative order that appears in the equation.

+2y——+4y = CO0SX
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A differential equation is linear if the coefficient of each
term is a constant or function of x. The differential equation
becomes nonlinear if the coefficient is function of y. Thus, the
differential equation above is nonlinear since the coefficient of the
first-order derivative term is 2y. It is noted that exact solutions are
not available or difficult to find for most nonlinear differential
equations.

A differential equation is called homogeneous if the term
on the right-hand-side of the equation is zero. The differential
equation above is a nonhomogeneous equation because the right-
hand-side term is cos x .

In many science and engineering problems, the governing
differential equations are often in some specific forms. For
examples, the Airy equation,

d?y

the Bessel equation,

g;z+xg—x+(x2 n2)y = 0

and the Legendre equation,

X2

(a- 2)d : x%+n(n+1)y =0
The solutions of these differential equations are normally in the
forms of specific functions.
If a problem contains n dependent variables, then these
variables must be solved from a system of n differential equations.
For example, the two dependent variables, y, and vy,, are to be

solved from the two differential equations,

dyl+3y2 = 16
dx
d
OlszFSy1 = -9

The exact solutions of y,(x) and y,(x) are obtained by solving
these two differential equations simultaneously.
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All of the differential equations above are called ordinary
differential equations because the dependent variable y is only
function of the independent variable x. For most practical
problems, the dependent variable y is function of many independent
variables, e.g., x, and x,,

oy 02y

oxz | oxz
This latter differential equation is called partial differential
equation.

3.3 Solutions of Differential Equations

One way to verify the solution is to substitute it back into
the differential equation. The solution must satisfy the differential
equation as shown in the examples below.

Example Show that,

1

Vo= Y0 = X

is a solution of the second-order linear homogeneous differential
equation,
dzy 2
e xy =0
The first- and second-order derivatives of the solution are,

dy 1
& = 2X+ﬁ

d2y 2

dx2 X3
By substituting these derivative terms into the left-hand-side of the
differential equation,

2 2 1 2 2
- | = 2 _ - —
(2-2)-p(e-3) - 2-5-2+2

=0
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leading to the result of zero. This means the given solution is the
solution of the differential equation.

We can use the diffcommand to verify such result as
follows,

>> syms X
>> y = X2 - 1/x;

>> diff(y,2) - 2*y/x"2

ans =

0

Example Use the diff command to show that,
y = y(x) = Cex+C,ex

where C, and C, are constants, is a solution of the second-order
linear homogeneous differential equation,

>> syms x C1 C2
>> y = Cl*exp(-x) + C2*exp(2*x);
>> diff(y,2) - diff(y,1) - 2*y

ans =

0

It is noted that C, and C, could be any numerical value, the given
solution is always the solution of the differential equation above.

Solutions of the differential equations may be in many
forms from simple to complex functions. We will learn how to
derive solutions in details in the following chapters. In this
chapter, however, we will use the dsolve command to
conveniently find the solutions. The objective herein is to show
that the solutions could be in different forms, such as the
trigonometric, polynomial and exponential functions.
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Example Use the dsolve command to find solution of the first-
order linear nonhomogeneous differential equation,

>> syms X

>> dsolve("Dy = x/2", *x%)
ans =

x"3/3 + C3

ie., y = X?3+C3

where C, is a constant.

Example Use the dsolve command to find solution of the first-
order linear nonhomogeneous differential equation,

dy

- = X2
dx

>> syms X
>> dsolve("Dy - y = x™"2", "x")

ans =
Ca*exp(x) - 2*X - xN2 - 2
.e., y = Cex—-2x—-x2-2

where C, is a constant.

Example Use the dsolve command to find solution of the first-
order nonlinear homogeneous differential equation,

V=0

>> syms X

ans =

~1/(C5 + Xx)
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ie., y = -

where C; is a constant.

The differential equation in the preceding example is

nonlinear,
dy
x -

Solution of this differential equation can be plotted to show the

direction field by using the quiver command. For example, the

direction field for —1<x<2 and 0<y<3 can be displayed by

entering,

>> [x,y] = meshgrid(-1:0.2:2, 0:0.2:3);
>>

dydx = y."2;
>> vl = sqrt(l + dydx.”2);
>> quiver(x, y, 1./vl, dydx./vl, 0.5), axis tight

quiver

where vl is the vector length. The plot shows the vectors

representing the direction field of the solution y(x) that varies with
X.
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Since the solution of the nonlinear differential equation
above is,
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1
C,+X
where C; is a constant that depends on the initial condition. If the

initial condition is given as y(0)=1, then the constant C, can be
determined,

y = -

1
C,+0
to give C,=-1. Thus, the exact solution corresponding to the
given initial condition is,

1= -

B 1
y_1—x

We can plot this exact solution by imposing it onto the
direction field as,

>> hold on
>> xx=-1:.01:2;
>> yy = 1./(1.-xX);

>> plot(xx,yy, " linewidth",2)

We can see that the exact solution (solid line) from the given initial
condition is a solution of the direction field.

y=1/(1-x)
T‘f

—
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In the following examples, solutions to the differential
equations are in the form of special functions, such as the error,
Airy and Bessel functions. Details of these functions are given in
Chapter 11.

Example Use the dsolve command to find solution of the first-
order linear nonhomogeneous differential equation,

>> syms X

>> dsolve("Dy = exp(-x~2)", "Xx")
ans =

C6 + (PIr(L/2)*erf(x))/2

e, y = CG+—x/;e2rf(x)

where C, is a constant.

Example Use the dsolve command to find solution of the second-
order linear homogeneous differential equation,

o -
>> syms X

>> dsolve("D2y - x*y~, *x%)

ans =

C7*airyAi(x, 0) + C8*airyBi(x, 0)
ie., y = C,Ai(x)+ CyBi(x)

where C, and C, are constants. The function Ai(x) and Bi(x) are

the Airy and Bairy function, respectively. Values of these two
functions can be determined at any x location as explained in
Chapter 11.
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Example Use the dsolve command to find solution of the second-
order linear homogeneous differential equation,

X2 (;:(Z +x%+(x2—4)y =0

>> syms X
>> dsolve(*x"2*D2y + x*Dy + (X"2-4)*y = 0%, "x")

ans =

C9*besselj(2, x) + ClO*bessely(2, x)
e, y = CyJ,(x)+ C,Y,(x)

where C, and C,, are constants. The function J,(x) and Y,(x) are

the Bessel functions of the first and second kind, respectively.
Again, values of these two functions at any x location can be
determined as explained in Chapter 11.

Solutions of some differential equations may be in implicit
form as shown in the following examples.

Example Use the dsolve command to find solution of the first-
order nonlinear nonhomogeneous differential equation,

dy

-2 = X2

Y ax
>> syms X
>> dsolve("y*Dy = x"2", "x%)
ans =

27 (1/2)*(x"3/3 + C11)~(1/2)
27 (1/2)*(x"3/3 + C11)™(1/2)
The solution of y has to be determined from the equation,

2X3
y? _T_zcll =0

which is in an implicit form.

If the initial condition is y(0)=0, then C,, =0 and the
solution is,
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y = £.2x3/3

The solution of y can be plotted on the direction field of the
general solution as shown in the figure.
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Example Use the dsolve command to find solution of the first-
order nonlinear homogeneous differential equation,
: dy
(ycosy—siny+ x)& =y

>> syms X
>> dsolve("(y*cos(y) - sin(y) + X)*Dy = y", "x")

ans =

solve(- sin(y) — Cl2*y = -x, Yy)

The solution is in an implicit form of,
siny+CpLy = X

where C,, is a constant that can be determined from the given
initial condition.
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Example Use the dsolve command to find solution of the first-
order nonlinear nonhomogeneous differential equation,

dy
57 _ y4 —
y dx y 1
>> syms X
>> dsolve("y"5*Dy - y™ = 17, "x")
ans =

solve(y™2 - atan(y”™2) = 2*Cl1l3 + 2*x, Yy)
Again, the solution is in an implicit form of,
y2 —tan-ty?z = 2C, +2X

where C, is a constant that can be determined from the given
initial condition.

There are many differential equations that the explicit
expressions of their solutions cannot be found as shown in the
following examples.

Example Use the dsolve command to find solution of the first-
order linear nonhomogeneous differential equation,

dy _ _ ¥
dx V14 x4

>> syms X
>> dsolve("Dy = x"2/sqrt(1+x"4)", "x")

ans =
Cl4 + Int(x"2/(x™ + 1)M(1/2), X)

In this case, MATLAB returns the solution in the integral form as,

X2
Vo= ] e G

where C,, is an integrating constant.
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Example Use the dsolve command to find solution of the first-
order nonlinear differential equation,

dy
dx

>> syms X
>> dsolve("Dy - y = exp(-y)", "x")

ans =

solve(int(exp(y)/(y*exp(y) + 1), y) = Cl15 + x, y)

This means the solution must be determined from the implicit
equation containing the integral term of y,

& 4 =
Ier+1 y = Cg+xX

where C,, is an integrating constant.

Example Use the dsolve command to find solution of the second-
order nonlinear homogeneous differential equation,

d2y dy
dxz T dx

>> Syms X dsolve
>> dsolve("D2y + Dy + y™2 = 0%, °"x")

Warning: Explicit solution could not be found.

+y2 =0

An explicit solution could not be found for the differential equation
in this last example. It is noted that there is a large number of
problems that their explicit solutions are not available. In this case,
numerical methods must be applied to provide approximate
solutions. Several numerical methods can provide very accurate
solutions to different types of differential equations. We will see
examples that demonstrate such capability in the latter chapters.
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3.4 Concluding Remarks

Differential equations occur in many classes of science
and engineering problems. They represent the nature of problems,
such as the mass, momentums and energy must be conserved or a
system must be in equilibrium. Solving the differential equations
lead to solutions that help understanding their physical phenomena.

This chapter starts from describing the characteristics of
the differential equations by using simple examples. These include
linear, nonlinear, homogeneous, nonhomogeneous, first- and
second-order differential equations. Finding solutions to the
differential equations depends on their types. Exact solutions to
some of these differential equations are easy to find while others
are difficult or impossible to obtain.

This chapter presents how to use the diff command in
MATLAB to find derivatives of the given functions. The dsolve
command is then introduced to find solutions of the differential
equations. Examples have shown that these commands help us to
solve the differential equations conveniently. We will study
different types of the differential equations in more details in the
following chapters. Solutions of the differential equations will be
derived by hands prior to using MATLAB to confirm them. We
will thus understand how the solutions are derived and, at the same
time, appreciate the capability of the symbolic computer software.

Exercises

1. Identify that each of the following equations is linear,
nonlinear, homogeneous or nonhomogeneous differential

equation,
dzy . ,dy _
@) 3dx2+2dx y =1
(b) x2 Zy dy = COSX

dx
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(c) ﬂ+xy2 =0

dx

dzy o
(d) dXz+cos(x+y) = sinx
(e) (1+y2)d2y+xd—y+7y = ex

dx? dx

Identify that each of the following equations is linear,
nonlinear, homogeneous or nonhomogeneous differential
equation,

@ xy'+y = x (b) x2y'+y = x2
;o X24y? ;o X+2y

(e) x2y"+xy'+y = 0 H x2y'-2y = 3x2

In each item below, use the diff command to verify that the
left-hand-side function is a solution to the right-hand-side
differential equation,

@ y = 3x+x2 ; Xy'—y = x2

(b) y = e ; y"+2y'=3y = 0
() y = coshx ; y'—y =0

d y = 1/x2 ; x2y"+5xy'+4y = 0
€ vy = x2=-lUx x2y" = 2y

In each item below, use the diff command to verify that the
left-hand-side function is a solution to the right-hand-side
differential equation,

(@ y = 3sin2x+4cos2x ; y'+4y = 0

(b) y2 = ex LYy = e

(c) y = sinh2x+2cosh2x ; y"—-4y = 0

(d) y2 = x2-x ;o2Xyy = x2+y?

(e) x+y = tanty ; l+yz+y2y’ = 0
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In each item below, use the diff command to verify whether
the left-hand-side function is a solution to the right-hand-side
differential equation or not,

@ y = 2cosx-3sinx ; y'+y =0

(b) y = sinx+x2 ;o y'+y = x2+42
() y = cos2x ;Y +Xy = sin2x
d y = e -3ex , Y' -y -2y =0
() y = 3sin2x+e-x ; y'+4y = bex

Use the di fF command to show that,

(@ y=x2 is an exact solution of the first-order linear
homogeneous differential equation,

dy
x& = 2y
(b) y=ex—x is an exact solution of the first-order
nonlinear nonhomogeneous differential equation,

ﬂ 2 = 2X — X 2 _
oty o= e +(@-2x)ex+x2 -1

Use the di £F command to show that,
2
y = X?+%«/x2 +1+Invxvyx?+1

is an exact solution of the first-order nonlinear homogeneous
differential equation,

Use the diff command to show that each of the solutions
below,

@ y = ¢
2 X3 Xn

X
(b) vy 1+X+§+§+---+ﬁ
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is an exact solution of the second-order linear homogeneous
differential equation,

d?y dy _
XW—(x+n)&+ny =0

where n is any positive integer.

9. If A and B are constants, use the diff command to show that,

and

y,(x) = (A+Bx)es
Y,(x) = (3A+B+3Bx)e
are the solutions to the coupled differential equations,
@
dx 2
d
% = -9y, +6y,

and

10. Use the dsolve command to find solutions of the following
differential equations,

(@)
(b)
(©
(d)
(€)

(2x - y)% = 4y-3X
XZ% = X2+ Xy+Yy?
2xyg—i = X2 +3y?
(2x + y)% = —4x-3y
(x-E = x+3y

11. Use the dsolve command to find solutions of the following
differential equations,

(@)
(b)

dzy
dx2

d2y ,dy _
dx2_3ﬁ+2y =0

-y = 4-X
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©) G 3ux

(d) o T Cdxe T dx
(©) dty ddy d?y dy

12. Use the dsolve command to find solutions of the following
differential equations,

(@ x3y'+4x2y = e

(b) y’+%y = 3C0s2X

, X
© v = zY(4-y)
(d) xzy’ = X2+ Xy+ Y2
() xy' +xy = 1-y

13. Solution of the nonlinear differential equation,
dy
dx
is in the form of Bessel function. Use the dsolve command
to find such solution and plot it in the form of direction field.

= Y2+X

14. Employ the diff command to show that,
(@) the equation y2+x-3 = 0
is an implicit solution of the differential equation,
dy 1
d ~ 2y

(b) the equation Xy3—xydsinx = 1
is an implicit solution of the differential equation,
dy (xcosx+sinx-1)y

dx 3(x—xsinx)
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15. Employ the diff command to find the first-order differential
equations corresponding to the following implicit solutions,
(@ xy-Iny =0
(b) y*-3x+3y = 5
() 1+x2y+4y = 0
(d) y+tanty X + tan-1 x
(&) x2+y2-6x+10y+34 = 0

16. In each item below, use the diff command to verify whether
the left implicit equation is the solution to the right differential
equation,

@ x2+y2 = 4 ;Y = §
. oy 1 - e 4
(b) ey_|_y = X 1 ’ y - e Xy 4+ X
_ VA
) y-Iny = x2+1 ; y = V-1
(d) x+y+evy = 0 ;  (@Q+xev)y'+yevy = -1

17. Employ the diff command (and other commands, if
necessary) to show that the function y(x) in the implicit

equation form below,
(@) 3ev? = 2e%+C
is the solution of the nonlinear differential equation,

ﬂ+ley2+3x — 0
dx "y

(b) cosxsiny = C
is the solution of the nonlinear differential equation,

dy _ tany
dx  cotx
1 1

() (x—21ex = V+2y2+C

is the solution of the nonlinear differential equation,
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18.

19.

20.
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dy _ xy®ex
dx y+1

where C is a constant.

Employ the quiver command to plot the direction field of the
differential equation,

dy

dx
for the intervals of —4 <x<4 and —4<y<4. Then use the
dsolve command to solve the differential equation with the
initial condition of y(0)=1. Plot the solution by imposing it
onto the direction field.

X2 -y

Employ the quiver command to display the direction field of
the nonlinear differential equation,

dy ,

=y /3

dx 3y

for the intervals of 0 <x<3and —1<y<1. Then use the

dsolve command to solve the differential equation with the
initial condition of y(2)=0. Plot the solution by imposing it
onto the direction field.

Use the diff command to show that the function of y(x) in
the implicit form,

V2 (y2+2y+1) 2
?In(%j+7[tan1(x/§y+1)+tan1(x/§y—l)]

= x+C

where C is a constant, is a solution of the nonlinear nonhomo-
geneous differential equation,

dy

dx

Then, plot its direction field for the intervals of —4 <x <4 and
-3<y<3.

= y*+1
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21. Use the diff command to show that the function of y(x) in
the implicit form,

X3 y3 _
Solrs) - e

where C is a constant, is a solution of the nonlinear nonhomo-
geneous differential equation,

dy X2

dx ~ 1+y?
Plot the direction field for the intervals of —4 <x<4 and
—4<y<4. Then, redisplay the plot by imposing the
solutions when C =-7,-5,-3,0,3 and 5 onto the direction
field.






Chapter
4

First-Order
Differential Equations

4.1 Introduction
The differential equation in the first-order form of,

dy _
ax - f(xy)

is probably the simplest form for all types of differential equations.
The form is thus often used as the first step in learning how to solve
differential equations. Exact solution of y(x), which makes the

differential equation satisfies, is not that difficult to find.

This chapter presents standard techniques for finding exact
solutions of the first-order differential equations in the form above.
Examples will be used to derive exact solutions by employing these
techniques. The derived solutions will be verified by using
MATLAB commands and plotted to show their variations. If the
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exact solutions are not available, numerical methods will be used to
find the approximate solutions. This chapter will thus help readers
to understand how to solve this type of differential equation
symbolically and numerically. At the same time, readers will
appreciate the current capability of the computer software that can
reduce effort for finding solutions of the first-order differential
equations.

4.2 Separable Equations

Separation of variables is a simple technique for solving
the first-order differential equations. The dependent variable y is
separated from the independent variable x so that they are on the
opposite sides of the equation. By doing that, solutions of the
differential equations can be found easily. For example,

d

G = (xDy
The variable y and x in the equation above can be separated so that
they are on opposite sides as,

d—;/ = (x+1)dx

Integration is then performed on both sides to obtain the solution of
y as function of x. It is noted that the technique cannot apply if
both variables are not separable, such as,
dy
dx
We will apply this technique to derive exact solutions
of differential equations as shown in the examples below. The
derived solutions will be verified by using the MATLAB
commands.

Xy + 7

Example Derive general solution of the first-order linear differen-
tial equation,

dy _ y-1

dx — x+3
Then, find the exact solution for the case of y(0)=4.
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The given differential equation above is separable so that
the variables y and x can be placed on the opposite sides as,

dy  dx
y-1 ~ x+3

We can integrate both sides of the equation,

dy dx
JViI B Ix+3

to get, In|y —1]

Injx+3|+C

where C is the integrating constant. If we apply the exponential
function base e to both sides of the equation,

gnly-1 = ghlx+3lsc —  gCghnlx+3]
or, ly-1] = e°|x+3] = C/|x+3|
where C, =ec¢. Then, for positive quantity,
y-1 = C,(x+3)
i.e., the solution is, y = C(x+3)+1

Here, the constant C, is to be determined from the given initial
condition.

We can employ the dsolve command in MATLAB to
obtain the same solution as follows,

>> syms X y
>> dsolve("Dy = (y-1)/(x+3)", *X")
ans =
Cl*(x + 3) +1
By applying the initial condition of y(0)= 4, the constant
C, can be determined as,
4 C,(0+3)+1
C, =1
Thus, the exact solution of this problem is,
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y = )(x+3)+1 = x+4
The same exact solution can be obtained by using the dsolve
command,

>> syms X y
>> dsolve("Dy = (y-1)/(x+3)", “y(0) = 47, "x")

ans = dsolve

X + 4

Example Derive general solution of the first-order nonlinear
differential equation,

dy

dx
Again, we separate the variables y and x so that they are on
opposite sides of the equation as,

dy

F = sin xdx

= y2sinx

Then, perform integration on both sides to get,
j Yy = I sin x dx

y2
1 = —cosx+C
y
where C is the integrating constant. Thus, the general solution is,
3 1
Y= Tosx-C

The same solution can be obtained by using the dsolve command
as,

>> syms X y
>> dsolve("Dy = y"2*sin(x)", "x%)

ans =
-1/(C2 - cos(x))
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Depending on the initial conditions, the corresponding
exact solutions can be determined. For examples,

1
y(0)=0.1 ’ Y T Cosx+9
1

W0)=02 5y = oy
1

y(0)=03 y = -

COSX+ —=

3

Variations of the exact solutions can be plotted by using the
ezplot command as shown in the figure.

0.8

0.7 -

0.6

y(x) 041

Example Solve the first-order nonlinear differential equation,
dy
dx
We can separate the variables y and x so that they are on opposite
sides of the equation as,

= y2 e-x

dy
v’
Then, perform integration on both sides to get,

= e~>xdx
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I% = J‘e*X dx
—% = —e*x+C
where C is the integrating constant. Thus, the general solution is,
1
Y = e _¢c

The same solution is obtained by using the dsolve command,

>> syms X y

>> dsolve("Dy = y"2*exp(-x)", "x")

ans =
~1/(C3 - 1/exp(x))

Example Derive exact solution of the first-order nonlinear differ-
rential equation,

dy
Y dx
with the initial condition of y(0)= 7.

The variables y and x in the differential equation can be
separated so that the equation becomes,

= coshx+3

ydy = (coshx+ 3)dx
Integration is performed on both sides of the equation to get,
_[ ydy = j (cosh x + 3)dx

y2
2

where C is the integrating constant. Thus, the general solution is,
y = +/2(sinhx+3x+C)

The integrating constant is determined by applying the
initial condition of y(0)= 7,

7 = 4/2(0+0+C)

= sinhx+3x+C
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Hence, the exact solution is,

2
y = X/Z(Sinhx+3x+%)

The same solution is obtained by using the dsolve
command,

>> syms X y
>> dsolve("y*Dy = cosh(x) + 3%, "y(0) = pi~", "x%)

ans =

2A(1/2)*(3*x + sinh(x) + pit2/2)~(1/2)

Variation of the solution y can be plotted in the interval of
0<x< 27z by using the ezplot command as,

>> ezplot(ans, [0 2*pi])

The plot of the variation is shown in the figure.

242(3x +sinh(x) + 72/2)"’
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Example Derive the exact solution of the first-order nonlinear
differential equation,

2(y—1)% = 3x2+4x+2

with the initial condition of y(0)=-1.

The terms containing variables y and x are separable so
that the differential equation can be written as,

2(y-1)dy = (3x2+4x+2)dx

By performing integration on both sides of the equation,
I 2(y-dy = J.(3x2 +4x+2)dx
we get, y2—-2y = XxX3+2x2+2x+C
where C is the integrating constant that can be found from the
initial condition of y(0)=-1,
1+2 = 0+0+0+C
C = 3
Then, the exact solution is,

y2 -2y = X3+42x2+2x+3

or, y2 -2y —(x3+2x2+2x+3) = 0

ie., y = 1+Vx3+2x2+2x+4

A proper solution is selected according to the initial condition,
y= 1-Vx3+2x2+2x+4

which is the exact solution of this problem.

The above exact solution can also be obtained by using the
dsolve command,

>> syms X Yy

>> dsolve("2*(y-1)*Dy = 3*X"2+4*x+2",
y(0) = -17, "Xx%)

ans =

1 - (X3 + 2*x"2 + 2*x + HN(1/2)
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Note that the solution obtained from MATLAB may be lengthy.
The simple command may help reducing the complexity of the
solution. The ezplot command can then be used to display the
variation of y with x as shown in the figure.

>> ezplot(ans, [-2 1])

1—(X3+2X2 +2x+4)"?

0.5 H -

The exact solution above can also be verified by
substituting it back into the governing differential equation,

S>y = 1 - (X3 + 2%x"2 + 2% + A)N(1/2);
>> LHS = 2*(y-1)*diff(y,x) diff

LHS =
3*XN2 + 4*X + 2

The differential equation must satisfy and the initial condition of
y(0) = -1 must agree too,

>> subs(y,{x},{0})
ans =

-1
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4.3 Linear Equations

The first-order linear differential equation is probably the
simplest equation among the others which is easy to solve. This
section presents a popular technique of using the integration factor
to solve for the solution. The general form of the first-order linear
differential equation is,

a0 +a 0y = b

where a,(x), a,(x) and b(x) are constants or functions of x only.
It is noted that, if the coefficient a,(x)=0, the solution can be
obtained by integrating the differential equation directly as,

a0 = b(x)

ie., y(x) = I;(T);))dx+c

where C is the integrating constant.

However, when a,(x) is not zero, solution to the full form

of the differential equation can still be derived conveniently. The
full form of the first-order linear differential equation, after
dividing through by a,(x), can be rewritten in the form,

PPy = QW)

If we multiply this differential equation by the integrating factor
defined by,

IU(X) — eJP(X)dX
then, the differential equation becomes,

uOD s 4 (OPY = u(x)QM)

or, D100yl = M(x)QX)

which can be integrated to give the solution directly. We will learn
how to use the integrating factor to find solution of the first-order
differential equation by using the following examples.
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Example Use the method of integrating factor to solve the first-
order linear homogeneous differential equation,

dy _
&—3)/ =0

Here, P(x)=-3, then the integrating factor is,
ub) = el < e

By multiplying the differential equation by the integrating factor
above,

dy
-3x =L _ -3x —
e ey = 0

or, %[e-”y] =0
Then, perform integration to get,
ey = C
where C is the integrating constant. Thus, the general solution is,
y = Ce¥

The same solution can be obtained by using the dsolve
command as,

>> syms X y

>> dsolve("Dy - 3*y = 0", "x")

ans =

Ca4*exp(3*x)

Example Use the method of integrating factor to solve the first-
order linear non-homogeneous differential equation,

—-2y = 4-X
Here, P(x)=-2, then the integrating factor is,
ux) = el = e

We first multiply the differential equation by the integrating factor,
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e-2x % — 2e—2xy = 4e-2x — xe-2x

d
—|e—-2x — -2X — -2X
Or, X [e-2xy] 4e xe

Then, perform integration on both sides of the equation to get,
1 1
ey = -2 4+-Xxex+—e2x+C
y 2 4
where C is the integrating constant. Thus, the solution is,

7 X
- - 2Xx
y it Ce
The same solution can be obtained by using the dsolve
command as,

>> syms X y
>> dsolve("Dy - 2*y = 4 - x*, "Xx")
ans =
x/2 + (C5*exp(2*x))/4 - 7/4

The integrating constant C (C5/4 in MATLAB result
above) is to be determined from the initial condition. Variations of
y(x) according to different initial conditions of y(0)=-2.75,
—2.25,-2.00,-1.85, —1.75 and —1.50 are shown in the figure.

0~
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Example Use the method of integrating factor to find the exact
solution of the first-order linear non-homogeneous differential
equation,

- oge Y
dx 3 X
with the initial condition of y(1)=5.

We start by writing the given differential equation in the
form,
dy 1. )
ax +Yy = 3X
Therefore, P(x)=1/x, which leads to the integrating factor of,

1
y(X) — e.[idx = ehx = ¥
We then multiply the differential equation by the integrating factor,

d — 3
x& +y = 3X
d
or, —|x = 3x®
3 XY
and perform integration on both sides of the equation to get,
3
Xy = ZX4 +C

where C is the integrating constant that can be determined from the
initial condition of y(1)=5 as follows,

WE) = S0 +C

17
¢C=7
Thus, the exact solution of the problem is,
(X) - §X3+£
YOO = 2% " 4x

The same exact solution is obtained through the use of the
dsolve command by entering,
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>> syms X Yy
>> dsolve("Dy = 3*x™2 - y/x*, "y(1) =57, "x%)

ans =
17/(4*x) + (3*x"3)/4

Example Use the method of integrating factor to derive the exact
solution of the first-order linear non-homogeneous differential
equation,

dy

_ — 2
xdx+2y 4x

with the initial condition of y(1)=2.

Similar to the preceding example, we first write the

differential equation in the standard form as,
v + 2 = 4x
dx X

Therefore, P(x)=2/x, which leads to the integrating factor of,

,LI(X) — eJ.(Z/x)dx = @2hx = x2

Next, we multiply the differential equation by the integrating
factor,

dy
22 — 3
X i + 2Xy 4x
dy 2 — 3
or, i [x2y] = 4x
Then, perform integration on both sides of the equation to get,
X2y = x4+C

where C is the integrating constant that can be determined from the
initial condition of y(1)=2 as,

1?(2) = (1)'+cC
C =1
Thus, the exact solution of the problem is,

VX) = %o
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The same solution can be obtained by using the dsolve
command as,

>> syms X y
>> dsolve("x*Dy + 2*y = 4*x~2", "y(1) = 27, "x")

ans =
1/x72 + xXN2

Variation of this exact solution y(x) is plotted by the ezplot
command as shown in the figure.

1/x2 + x2

y(X) 2o}

Example Use the method of integrating factor to solve the first-
order linear non-homogeneous differential equation,

= —=2 = XCOSX

The given differential equation is first written in the

standard form for applying the integrating factor technique as,
a_2 = X2COSX
dx x

Therefore, P(x)=—2/x, so that the integrating factor is,

/,[(X) — eJ.(fZ/X)dX — e|nx—2 — X_2
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By multiplying the integrating factor to the differential equation,
we get,

dy

-2 _9y-3y —

X i 2X73y COS X

or i(x-zy) = COSX
' dx

Then, performing integration on both sides to obtain,

X2y = sinx+C
where C is the integrating constant. Thus, the general solution of
the given differential equation is,

y(x) = x%sinx+Cx?

Again, the same solution can be obtained by using the
dsolve command as,

>> syms X Yy
>> dsolve("Dy/x - 2*y/x"2 = x*cos(xX)", "x")

ans = dsolve

xX"2*sin(x) + C6*x"2

Variations of the solution, y(x), depend on values of the
integrating constant C (or C6 from MATLAB above) as shown in
the figure.

4.4 Exact Equations

If the differential equation is in the form of the so called
exact equation, the idea explained below can be used to find its
solution conveniently. We start from the differential equation in
the form,

dy _ _M(xy)
dx N(X,y)

where M(x,y) and N(x,y) are functions of x and y. We can
rewrite this differential equation as,
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150

100 -

50 -

y(x) =

-100 |
-150 |

-200

-250

M(x,y)dx+ N(x,y)dy = 0
But from definition of the total derivative of a function #(x, y),

_ 04, 09
dg = axdx+aydy

If we could find the function ¢(x,y) such that,

o _ o _
x - M(X,y) and — = N(xy)

oy
Then, dg = 0
which means, ¢ = C

where C is a constant.

This technique could be applied if the given differential
equation contains the terms M(x,y) and N(x,y) that satisfy the
conditions above. The differential equation containing the terms
that meet such requirements is called the exact equation. We will
demonstrate the approach for finding solutions to this differential
equation form by using the examples below.
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Example Find solution of the first-order linear homogeneous
differential equation,
1+ xz)% +2xy = 0
We start from writing the given differential equation in the
form,
(2xy)dx+(1+x?)dy = 0
If we compare it with the standard form of,
M(x,y)dx+ N(x,y)dy = 0
we find that,
M(x,y) = 2xy and N(x,y) = 1+x2
Then, if we choose a function,
g = y+x3y
we notice that,

% = 2xy = M(x,y) and % = 1+x2 = N(x,y)
Thus, dg = d(y+x?y) = 0
or, y+x2y = C
yd+x2) = C
So, we arrive at the solution of the given differential equation,
C
Y7 1Toe

where C is a constant that can be determined from the initial
condition.
It is noted that the approach explained above can be
applied if,
OM(xy) _ ON(xY)

oy OX
Such as in the example above,
oM (X,Y) 0
—1r = —(2X = 2X
oy oy (&Y

ON(x,y) 0
and — = &(1+x2)

ey 2X
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We can verify that the derived solution is correct by using
the diff command. If we let the integrating constant C =1 and
substitute the solution into the left-hand-side of the differential
equation,

>> syms X Yy
>> y = 1/(1+x"2);

>> LHS = (L+x™2)*diff(y,x) + 2*x*y

LHS =

0

we obtain the result of zero which is equal to the value on the right-
hand-side of the equation.

We can also use the dsolve command to solve the given
differential equation by entering,

>> syms X Yy
>> dsolve("(1+x"2)*Dy + 2*x*y = 0", "x")

ans =
C7/(x*2 + 1)

If the initial condition is y(0)=1, then the complete
problem statement of this example is,

1+ x2)%+2xy =0 y0 =1
which has the exact solution of,

y(x) = L

1+ x2

>> syms X Yy

>> dsolve(" (1+x"2)*Dy + 2*x*y = 0%, "y(0) = 1-,
IX-)

ans =

1/(x"2 + 1)

The ezplot command can be used to plot the solution of
y that varies with x as shown in the figure.
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/(¢ +1)

y(x)

-5 0 5
X

Example Find solution of the first-order differential equation
which is in the exact equation form,

dy _ 2xy?+1
dx 2x2y
We start by writing the given differential equation in the
form,
M(x,y)dx + N(x,y)dy =
ie., (2xy? +1)dx + 2x2ydy =
It is in the form of the exact equation because,
M(x.y) _ ON(x, )
y - X
If we choose the function,
¢ = X?y?2+X
we find that,
o ) 3
- 2xy2+1 = M(x,Y)
0 _ oy _
and N - 2x2y = N(xy)

This means, from the definition of the total derivative,
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dg¢ = d(x2y2+x) = 0
or, X2y2+x = C
where C is a constant. Thus, the general solution of the given
differential equation is,

C-x
y = ¢ X

The same solution can be obtained by using the dsolve
command as,

>> syms X Yy
>> dsolve("Dy = -(2*x*y"2+1)/(2*x"2*y)", "X%)

ans = dsolve

(C8 - x)™(1/2)/x
~(C8 - x)N(1/2)/x

In the two examples above, we chose functions ¢(x,y) so
that og/ox = M(x,y) and 0¢/dy = N(x,y). In practice, the proper
functions ¢(x, y) can be derived by using the following procedure.

Since d¢/ox =M(X,y), then,

g(xy) = [MOxy)dx+g(y)
If we take derivative of ¢ with respect toy,

o 0 g
99 _ WJ'M(x,y)dx+— = N(x,y)

oy oy
. g 0
ie., N N(x,y _WJ- M (x,y)dx

which can be integrated to find g(y) so that the function ¢ is

obtained. We will use this technique to find solutions of the
differential equations in the following examples.

Example Find solution of the first-order differential equation,
(2xy —sec)dx + (x2 +2y)dy = O
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The given differential equation is the form of the exact
equation,

M(x,y)dx+ N(x,y)dy = 0

M = N

oy OX

because

The function ¢(x,y) can be found by using the technique
explained above as follows,

p(xy) = [ (2xy-secx)de+g(y)
= x2y—tanx+g(y)
o¢ a9
Then, 2y - X¥t3 = Ny) = x2+2
B By (x,y) y
a9
or, -~ = 2
2y y
We integrate to get, g = y?
So that, g(x,y) = x2y—tanx+y?

From the definition of the total derivative and the property
of the exact equation,

d¢ = g—fdx+%dy = M(xy)dx+N(x,y)dy = 0

Thus,

d(x2y —tanx+y2) = (2xy-—sec2x)dx+(x2+2y)dy = 0
Or, ¢ = Xy—-tanx+y?2 = C
The solution of y(x) in the equation above is in an implicit form.

We can also use the dsolve command to solve for the
solution of y(x). The solution obtained from MATLAB is lengthy

but can be reduced by using the simple command.
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>> syms X Yy
>> dsolve("Dy = -(2*x*y-sec(x)"2)/(x"2+2*y)",
IXI);
>> simple(ans)
ans =
((@*sin(x))/cos(xX) - 4*C9 + x™M + 4*i)N(1/2)/2
- x"2/2 - ((4*sin(xX))/cos(xX) - 4*C9 + x™M
+ 4*)NL/2)/2 - xN2/2

The solution obtained above contains the constant C9. Such
solution can be used to determine the function ¢ for which it must

be a constant. If we let C9 =1, then ¢ becomes,
>> y = ((4*sin(x))/cos(X)-4*1+x +4*i)N(1/2)/2 —

XN2/2;
>> phi = x"2*y - tan(xX) + y"™2;

ans =

i -1

which is a constant as expected. We can check whether the
solution y(x) is correct by substituting it back into the differential
equation,

(x2+2y) dy

(2xy —sec? x) dx -1

>> syms X Yy
>> y = ((4*sin(X))/cos(X)-4*1+x M+4*i)™N(1/2)/2 —
xN2/2;

>> LHS = ((x"2+2*y)/ (2*x*y-sec(xX)"2))*diff(y,x);
>> simple(LHS)
ans =
-1

In the first step of finding the function ¢ as explained
above, M(x,y) must be integrated. The derivation process would
be lengthy if M(x,y) is complicated. We can start the process by

integrating N(x,y) ifitis simpler,
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g(xy) = [N(xy)dy+h(x)

and then find h(x). This latter process is shown in the following
examples.

Example Solve the first-order differential equation,
(L+exy+xexy)dx+(xex+2)dy = 0
_ The given differential equation is in the form of the exact
equation,
M(x,y)dx+ N(x,y)dy = 0

because M- ex + xex = N
oy X
To find the function ¢(x,y), we integrate N(X,y) with
respect to y,

p(x,y) = _[ (xex + 2)dy + h(x)
= xexy +2y+h(x)
a¢ — X X a_h

Then, 5 = evExey+—
Also, % = M(Xx,y) = 1+exy+xexy
By comparing these two equations,

LI

ox
S0, h = x
Then, #(X,y) = Xxexy+2y+Xx
Since, d¢ = 0
Thus, xexy+2y+x = C
i.e., the solution is,

C-x
y(x) = m

where C is a constant.
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We can use the dsolve command to solve the given

differential equation which is in the form,
dy _  l+exy+xery

dx Xex + 2

by entering,

>> syms X Yy
>> dsolve("Dy = -(1+exp(X)*y+x*exp(xX)*y)/
*exp()+2)", "x7)

ans =

C10/ (x*exp(x) + 2) - x/(x*exp(x) + 2)

MATLAB gives the same solution as we derived earlier.

The

solution depends on values of the constant C as shown in the

figure.

1.8
1.6
147
1.2
y(x)
0.8 r
0.6
0.4r

02

If the given differential equation is not in the exact
equation form at the beginning, we may multiply it by an
integrating factor so that it becomes an exact equation. Then, we
can use the same procedure to find the solutions as demonstrated in

the following examples.
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Example Use the exact equation technique to solve the first-order
differential equation,

(2x2+y)dx +(x2y—x)dy = 0
The given differential equation is not in an exact equation
form of,
M(x,y)dx+ N(x,y)dy = 0

because M =1 which is not equal to N _ (2xy —1).

oy ox
If we multiply both sides by the integrating factor (only function of
X in this case),

1
u(x) = X2
Y gy -
we get, [2+X2)dx+[y X)dy =0
The differential equation becomes an exact equation because,
M 1N
oy X2 0OX

Then, we can use the exact equation technique to find the
solution similar to the preceding two examples. The solution of
y(x) is obtained in an implicit form,

Y.y o
2X x+2 = C

We can use the dsolve command to provide the same
solution of y(x) but in the explicit form as,

>> syms X Yy
>> dSOlve('Dy = _(Z*X/\2+y)/(x/\2*y_x) ", 'X')

((- 4*xX"3 - 2*C11*x"2 + 1)N(A/2) + 1)/X
—((- 4*x"3 - 2*C11*x"2 + DN(1/2) - 1)/x
In general, the integrating factor » may be function of x
and y. However, if the integrating factor , is only function of x or
y, we can find it by determining,
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oM /oy — ON /ox

N
If the result of P is only function of X, then the integrating factor
y7i iS,

P =

,u(X) — ej P(x)dx

But if this is not the case, we determine,

ON/ox — oM Jay
Q= M

If the result of Q is only function of vy, then the integrating factor
y7i iS,

uly) = ej. Q(y)dy

We will demonstrate this technique in the example below.
Example Determine the integrating factor for solving the first-
order differential equation,

(Bxy+y2)dx+(x2+xy)dy = 0
Note that the given differential equation is not in the form
of the exact equation,
M(x,y)dx+ N(x,y)dy = 0
oM o oN
because - 3x + 2y which is not equal to i 2X+ Y.
We first find the integrating factor by determining,

b OM/oy— N/ox _ 3x+2y-2X-y

N X2 + Xy
_X+y _ 1
X(X+Y) X
Then, the integrating factor is,
uy) = V=«

After multiplying this integrating factor into the
differential equation, we get,



106 Chapter 4 First-Order Differential Equations

(3x2y + xy2)dx + (x3+ x2y)dy = 0

The differential equation is now in the exact equation form
because,

M oy - N
a_y_3x+2Xy_6‘x

We start deriving the solution to the differential equation
by finding the function #(x, y) from,

p(xy) = [Mxy)dx+g(y)
= [ 3x2y+xy?)dx+g(y)

plxy) = Xy + %+ g(y)

o¢ a9
Then, - = X+ Xy+= N(X, = x34x?
oy Y+%y (x,y) y
a9
or, — =0
oy
le., g = C

where C, is a constant.

XZyZ
Hence, #(X,y) = x3y+T+ C,
But from the definition of the total derivative and the exact

equation,

dg = g—fdx+%dy = M(x,y)dx+N(x,y)dy = 0
X2y2
Then, d(X3Y+T+Clj = 0
2y/2
or, x3y+X2y +C, = C,
2y/2
ie., x3y+% = C

where C, and C are constants. The solution is in an implicit form
that can be further determined for y(x).
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The dsolve command can again be used to find the
solution of the differential equation. The obtained solution is in an
explicit form as follows,

>> syms X Yy

ans =
x*((exp(Cl2 - 4*log(x)) + DHN1/2) - 1)
-x*((exp(Cl2 - 4*log(x)) + DHN1/2) + 1)

It is noted that the explicit solution y(x) obtained from MATLAB
is in fact identical to the implicit solution derived earlier. This can
be verified by substituting the explicit solution y(x) into the left-
hand-side of the implicit expression as follows,

>> syms C12

>> y = x*((exp(Cl2 - 4*log(x)) + DHN1/2) - 1);
>> LHS = x"3*y + x"2*yn2/2

LHS =
exp(C12)/2

The result is a constant which is equal to the right-hand-side of the
implicit expression.

4.5 Special Equations

Solutions of the first-order differential equations can be
found easily if the equations are in some special forms. For
example, the differential equation in the form,

d (Y
dx X

where only the dy/dx term appears on the left-hand-side while
every term on the right-hand-side is in the form of y/x. The

example below shows the procedure to find the solution for this
type of differential equation.
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Example Solve the first-order nonlinear differential equation,

dy _ y?
ix = x Y

We start from dividing the differential equation by X,

2
dy (1) Y
dx X X
If we let y=ux, where u=u(x), then the differential equation
becomes,

du )
X——+U = Uu2+u
dx
or du  u?
’ dx X

We can separate the variables u and x, so that they are on opposite
sides of the equation, and then perform integration,

du dx
w - )X
1
to get, -5 = In|x|+C
where C is the integrating constant. Thus,
- -t
In|x|+C

By substituting u = y/x back, we obtain the solution y(x) as,

X

O F{ETd

The same solution is also obtained by using the dsolve
command,

>> syms X y

>> dsolve(*x*Dy = yA2/x + y", "x")

ans =

x/(C13 - log(x))
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The technique above can be applied to other differential
equations with the term y/x on the right-hand-side of the equation.
For examples,

dy _ x
dx — y3

and, d_y = sin(lj—i
dx X) 'y

etc.

Bernoulli equation is the first-order differential equation
that can be solved conveniently by changing the variable. The
Bernoulli equation is in the form,

Yip@y = Quyr

where P(x) and Q(x) are continuous functions of x, while n is an

integer. 1f n=0 or1, the Bernoulli equation reduces from the
nonlinear to linear equation.

The idea for solving the nonlinear Bernoulli equation is to
transform it into a linear one. The techniques we learned earlier
can then be applied to solve for solutions. Such idea is summarized
and demonstrated by the examples below.

If we divide the Bernoulli equation by yn,

d
VPOV = Q)

and introduce a new variable v in form of y as,

vV = yl—n
: dv. . dy
with, i (1-n)y i

Then, the Bernoulli equation, after dividing by y», above becomes
a linear differential equation in the form,

1 d
e POV = Q)
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Example Solve the first-order nonlinear differential equation
which is in form of the Bernoulli equation,

dy 5 .

&—Sy = -3 Xy

Here, P(x)=-5, Q(x)=-5x/2 and n=3. We first divide the
given differential equation by y3 to give,

dy 5
3 _gy-2 — _>
y dx 2 2 X

Then, we assign the new variable v=y-2, so that dv/dx=
—2y-3dy/dx. The nonlinear differential equation becomes linear
as,

—EQ—SV — —EX
2 dx -2
or, ﬂ+10v = 5%
dx

To solve such linear differential equation, we find the integrating
factor, which is,

eflodx —  lox

Then, multiply it into the linear differential equation to get,

dv
glox ot 10e'™v = 5 xelox

d
— (el0x — 10X
or, ™ (et0xv) 5 xe

After performing integration on both sides of the equation, we get,

10x -1
10x — 10x
gloxy 20 elox + C

x 1
= —_——— -10x
or, Vv 550" Ce
where C is the integrating constant. The final solution is obtained
after we substitute the variable v=y-2 back into the above

solution,
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L ox_ 1 mon
v T 2 20tCe
i.e 1
€., y =
X 1 -10x
\/E‘%+Ce

The same solution is obtained by using the dsolve
command,

>> syms X y
>> dsolve("Dy - 5%y = -5*x*yA3/2%, "x")

ans =

1/(x/2 + Cl4/exp(10*x) - 1/20)~(1/2)
-1/(x/2 + Cl4/exp(10*x) - 1/20)~(1/2)

Example Solve the first-order nonlinear differential equation
which is in the form of the Bernoulli equation,

—+1y = 3x?y3

Here, P(x)=1/x, Q(x)=3x? and n=3. We start from dividing
the given differential equation by y3 to give,
dy 1

32 L —y-2 _— 2
y dx+xy 3x

Then, we assign a new variable of v=y-2 so that dv/dx=
—2y-3dy/dx and the differential equation above becomes,
ldv 1

4= = 2
2ax Tx! 3
or, ﬂ—gv = —6x?
dx X

The integrating factor is determined from,
ol @K anx2) 2

After multiplying the differential equation by the integrating factor,
we get,
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dv
-2 _ -3 —_
X i 2X73y = 6
d -2 —
or, dX(x V) = -6

Then, perform integration on both sides to give,
X% = -6x+C
where C is the integrating constant. Thus,
v = —6x3+Cx?

The final solution is obtained after substituting v =y-2 into the

above equation,
y? = —6x3+Cx?

+1
or, - —-=
y A/—6X3 4+ Cx2

The same solution is obtained by using the dsolve
command,

>> syms X Yy

>> dsolve("Dy + y/x = 3*xA2*yA3" | "x")

ans =
1/(C15*x2 - 6*x"3)"(1/2)
~1/(C15*x"2 - 6*x"3)"(1/2)

The Riccati equation is another nonlinear differential
equation that can be transformed into a linear equation. The
general form of the Riccati equation is,

Y~ Py + QU + R(Y)

Transformation from the nonlinear to linear equation is by
changing the variable,

y = S(x)+%

where z = z(x). Solving the differential equations in this form is
demonstrated by the following example.
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Example Solve the first-order nonlinear differential equation
which is in the form of the Riccati equation,
dy 1. 1 2
& T ox) X Tx
If we change the variable y(x) into the new variable z(x) by using

the relation,

1
y = 1 + ;
dy 1 dz
then, & = —2—2&

Thus, the original Riccati equation becomes,

1 dz 1, 1Y 1(, 1\ 2
——— = |1+ + 1+ |-
72 dx X Z X Z X

dz 3 1
or, —4—7 = —-=
dx x X

which is in the form of a linear differential equation. Next, we
multiply the equation by the integrating factor of x3 to give,

x3$ +3x?2 = —X?
dx
d 3 — 2
or, &(x Z) = —X
Then, perform integration on both sides of the equation of get,
3 XS C
X'z = -5+
or z = - 1 + <
' - 3 X8

where C is the integrating constant. Thus, the final solution to the
given differential Riccati equation is,

1 1
y = 1+7 = 1+_1+£
3 x3
3C +2x3
o Y = e
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The same solution is obtained by using the dsolve
command,

>> syms X Yy
>> dsolve("Dy = y"2/x + y/x - 2/x", "X%)

ans =
- 3/(x"3*exp(3*C16) - 1) - 2

where the constant exp(3*C16) is equivalent to 1/3C in the
derived solution.

4.6 Numerical Methods

There are many first-order differential equations that
cannot be derived for exact solutions in the form of explicit
expressions. For these differential equations, numerical methods
are used to find their approximate solutions. MATLAB contains
many commands, such as ode23, ode45 and ode23s that can
provide approximate solutions with high accuracy. Accuracy of the
solutions strongly depends on the time steps which are adjusted
automatically. We will employ the examples below to demonstrate
the use of these commands. We will also compare the numerical
solutions with the exact solutions for the cases when the exact
solutions are available in order to demonstrate the numerical
solution accuracy obtained from using these commands.

Example Employ the ode23 command in MATLAB to solve the
first-order linear nonhomogeneous differential equation,
dy
dx

with the initial condition of y(0)=0.

= e 0<x<?2

This initial value problem has exact solution in the form of
explicit expression that can be found by using the dsolve
command,
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>> syms X y
>> dsolve("Dy = exp(-2*x)", "y(0)=0", "x")

ans = dsolve

172 - 1/(2*exp(2*x))
i.e., the exact solution is,

1
Yoact = 5(1_e—2x)

The ode23 command in MATLAB uses the combined
second- and third-order Runge-Kutta method to numerically solve
the first-order differential equation in the general form of,

dy _
ax f(xy)

To use the ode23 command, we have to supply the function
f(x,y) by using the inline command as,

>> f = inline("exp(-2*x)", "X", "y")

f =

Inline function:
T(X,y) = exp(-2*x)

The inline command consists of the function f(x,y), indepen-

dent variable x and dependent variable y, respectively. To find
numerical solution, the ode23 command is then used by entering,

>> [x,y] = ode23(f,[0:.1:2], 0)

The numbers in the square bracket denote the starting x, interval for
printing output and ending x, respectively. The number O at the end
of the command denotes the initial condition of y(0)=0.

We can create a set of commands so that the computed
numerical solutions can be compared with the exact solution by a
plot as follows,



116 Chapter 4 First-Order Differential Equations

>> F = inline(Cexp(-2*x)","x","y")
>> [x,y] = ode23(f,[0:.1:2], 0)
>> plot(x,y, "ko")

>> axis([0 2 0 0.55])

>> xlabel("x"), ylabel("y(xX)")

>> hold on hold on
>> x = 0:.005:2
>> ye = (1 - exp(-2*x))/2

The generated plot as shown in the figure indicates that the
numerical solution is very accurate as compared to the exact
solution. This is because the ode23 command adjusts the time step
automatically so that the relative tolerance is always less than
1x10-3 during the computation.

0.5
0.4 -

y(x) os; Exact

0.2 -

Approx.

0.1

o3

-
-
>
-
~
-
>F
-
®
N

| | | |
0.2 0.4 0.6 0.8

Example Employ the ode45 command in MATLAB to solve the
first-order linear nonhomogeneous differential equation,

dy
dx

with the initial condition of y(0)=0.

= 2c0s(2x)—sinx 0<x<10
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Matlab also contains the ode45 command that employs
the combined fourth- and fifth-order Runge-Kutta method to solve
for numerical solution to the first order differential equation. The
ode45 command can provide higher solution accuracy than the
ode23 command. We will use this ode45 command to solve for
numerical solution and compare it with the exact solution. The
exact solution can be determined by employing the dsolve
command as,

>> syms X y

>> dsolve("Dy = 2*cos(2*x) - sin(x)",
"y(0)=0%, *x%)

ans =

sin(2*x) + cos(x) - 1

i.e., the exact solution is,

Yexat = Sin(ZX)—i-COSX—l

We can prepare a set of commands to determine the
numerical solution and compare it with the exact solution by using
a plot as follows,

>> f = inline("2*cos(2*x) - sin(X)","x","y")

>> [x,y] = oded45(f,[0:.5:10], O)
>> plot(x,y, "ko")

>> axis([0 10 -3 1])

>> xlabel("x"), ylabel("y(x)")
>> hold on

>> x = 0:.1:10
>> ye = sin(2*x) + cos(x) - 1
>> plot(x,ye, "k")

The plot as shown in the figure demonstrates that the numerical
solution obtained from using the ode45 command compares very
well with the exact solution.
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Example Employ the ode45 command in MATLAB to solve the
first-order linear nonhomogeneous differential equation,
dy

vl siny — COSX + e-3y 0<x<8

with the initial condition of y(0)=0.2.

For this problem, if we try to find the exact solution by
using the dsolve command as we did in the preceding examples,

>> syms X Yy

>> dsolve("Dy = sin(y) — cos(x) + exp(-3*y)-,
"y(0) = 0.27, *x%)

Warning: Explicit solution could not be found.

We found that MATLAB cannot provide an exact solution in
explicit form. We need to employ the numerical method to find the
approximate solution by using a set of commands below. The plot
of the computed solution is shown in the figure. It is noted that
exact solutions to most of the differential equations are not
available. The numerical method is thus an important tool to
provide us the approximate solutions of the differential equations.
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>> F = inline("sin(y)-cos(x)+exp(-3*y) ",

IVCHRA
>> [x,y] = odea5(F, [0 81, 0)
>> plot(x,y, k")

>> axis([0 8 -0.5 4])

>> xlabel("x"), ylabel("y(xX)")

y(x)

There are some differential equations that their solutions
change abruptly with x. These differential equations are classified
as the stiff equations. Approximate solutions obtained from
standard numerical methods may not be accurate because of their

sudden changes. MATLAB contains commands such as odel5s,

ode23s and ode23t to accurately capture the solutions. Nature of
the solution to the stiff differential equation and the use of these
latter commands are demonstrated in the following example.

Example Employ the ode23s command to solve the stiff
differential equation which is in the form,

% = 20e-100-2? — 0.6y 0<x<4

with the initial condition of y(0)=0.5.



120 Chapter 4 First-Order Differential Equations

A set of commands that consists of inline, ode23s and
plot for solving this problem are shown below. The plot indicates
that there is a sudden change of the solution y(x) at x=2. In this

region, MATLAB uses small time steps to accurately capture the
sudden change of the solution. Larger time steps are used in other
regions where the solution gradients are small to reduce the
computational time.

>> f = inline("20%exp(-100*(x-2)"2) - 0.6*y",

X

>> [x.y] = ode23s(f,[0 4], 0.5)

>> plot(Xx,y, "k")
>> axis([0 4 0 3.5])

>> xlabel("x"), ylabel("y(xX)")

>> hold on

>> plot(x,y, "ko")

4.7 Concluding Remarks

In this chapter, we learned several techniques for finding
exact solutions of the first-order differential equations. Depending
on the forms of differential equations, proper techniques should be
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selected and applied to solve for solutions. These include the
technique of separating variables, the technique of using integrating
factors for linear and exact equations. Some specific techniques
were also introduced to solve differential equations that are in
special forms, such as the Bernoulli and Riccati equations. The
same solutions were obtained by using the dsolve command in
MATLAB. These solutions were also plotted by the plot
command to increase understanding of their behaviors.

Numerical methods for solving the differential equations
were introduced. MATLAB contains several commands such as

ode23, ode45 and ode23s that can be used to provide accurate

solutions.  Approximate solutions obtained from the numerical
methods were compared with the exact solutions to highlight their
efficiency. Since there are many first-order differential equations
that the exact solutions cannot be found, these commands thus
provide an alternative way to obtain the approximate solutions with
high accuracy.

Exercises

1. Use the dsolve command to find solutions of the first-order
differential equations,

dy  x? dy X2
@ g% = y ®) 4% = y(1+x3)
dy _ (3x2-1) dy
(© ax = m (d) x& = 4J1-y2
dy _ »
(e) i yZe
Then, use the separable equation technique to verify the
solutions.

2. Use the dsolve command to find solutions of the first-order
differential equations,
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dy dy 1 _
(a) &_3x2y = 0 (b) XdX y3 = 0

dy Lo 1dy B
(©) ﬁjt y2sinx = 0 (d) ;&—ZCOSZy =0

Y _
(e) e &—(x+1)y2 =0

Then, use the separable equation technique to verify the
solutions.

3. Use the dsolve command to solve the initial value problems,

(a) % = x3(1-y), y(0) = 3
0 ¥ = eoe, ya) = o
(c) % = (@+y?)tanx,  y(0) = 3
@ 3 = Jyricosx,  y(x) = 0
@ Viey Y = sinix y0) = 1

Derive the solutions by using the technique of separable
equation. Then, use the ezplot command to plot the solution
of y(x) that varies with x.

4. Solve the initial value problems below by using the dsolve

command,
@ G - o y0) = 2
0 - 5 yo) = 1
© F Sray y) = 1
@ g = o y0) - 1
@ L= Virsinx(+y?) yO) - 1

dx
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Then, for each problem, derive the exact solution by using the
technique of separable equation. Verify each solution by
showing that both the differential equation and initial condition
are satisfied.

5. Use the integrating factor technique to find solutions of the
first-order differential equations below. Verify the solutions
by comparing with those obtained by employing the dsolve

command.
dy y dy .
(a) ﬁ—y = 2x+1 (b) &— = @3
dy B a dy 1
(© &+4y = X%+ (d) x&+2y =
ﬂ sin X

(e) xdx+3(y+x2) =

6. Employ the dsolve command to solve the first-order linear
differential equations,

dy 3 o dy 3 »
@) &+3y = X+e32 (b) WY = oxe +1
dy B dy o
(c) 2&+y = 3x2 (d) x&+2y = sinx
dy — 2 p—X
(9) X&— = X<e

Then, derive their solutions by using the technique of
integrating factor.

7. Use the technique of integrating factor to solve the initial value
problems that are governed by the first-order differential
equations and their initial conditions,

@ Yoy = 2xex, y(0)

dx =1
dy B o B
(b) g3y = x>, y@®) = 0
d 2 COSX
(© L+Zy = y(z) = 0

dx X x2 '
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1

(d) x%+2y = sinx, y(7/2)

(e) xs% +4x2y = e, y(-1)

Then, employ the dsolve command to solve these problems
again. Plot the solution of y(x) that varies with x by using the
ezplot command.

0

8. Solve the following initial value problems by using the
dsolve command,

(a) %My = e, y(0) = 2
(b) %+37y = 3x-2, y@ = 1
(c) %+XTy2 = 3, y(3) = 4
(d) %+g—§ = 3x3+X, y(-1) = 0
(e) sinx%Jr ycosx= xsinx, y(z/2) = 2

In each problem, verify the solution by comparing with that
obtained from the technique of exact equation with integrating
factor. Use the ezplot command to plot the solutions.

9. Check whether the differential equations below are in the exact
equation form by finding their derivatives with the diff
command,

(@ (2xy+3)dx+(x2-1)dy = 0
(b) (1+Iny)dx+§dy -0

(c) (cosxcosy+2x)dx+(sinxsiny+2y)dy = 0
(d) ex(y—x)dx+(@1+ex)dy = 0

(e) (%+2xy2)dx—(2x2y—cosy)dy =0
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10.

11.

12.

13.

Solve the differential equations in Problem 9 that are in the
exact equation form. Show the derivation of the exact
solutions in details. Then, repeat the problems by using the
dsolve command to verify the derived solutions.

Show that the following differential equations are the exact
equations before deriving for their solutions. Then, use the
dsolve command to find solutions and compare with the
solutions derived. Hint: Property of the exact equation,
oM /oy =0N/ox, can be verified conveniently by using the

diff command.
(@) (2x+4)dx +(3y —8)dy =0

(c) (4xy2—5)dx + (4x2y+2)dy =0
(d) (%+5xjdx+(lnx—l)dy -0
(e) (3x2y+ey)dx + (x3+xey —2y)dy =0
(f) (tanx—sinxsiny)dx+(cosxcosy)dy = 0

Derive the exact solutions of the following initial value
problems by using the exact equation technique. Verify the
derived solutions with those obtained from using the dsolve
command.

(@) (3x?y)dx+(y+x*)dy = 0, y(0) = 0
(b) (x+y)*dx+(2xy +x2 —1)dy =0, y1) =1
(c) (exy+1)dx +(ex —1)dy =0 y@@ =1
(d) (2xsiny)dx + (x2cosy)dy =0 y@ =1
(e) (sinxcosx—xy2)dx+y(l—x2)dy = 0, y(0) = 2

Solve the following differential equations by using the exact
equation technique with the integrating factors. Compare the
derived solutions with those obtained from using the dsolve
command. Hint: The integrating factors for (d) and (e) are y?2

and xex, respectively.
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(@) (3x2+y)dx +(x2y—x)dy
(b) (x4—x+y)dx — xdy

(€) (2y2+2y+4x?)dx +(2xy +x)dy =

(d) (2xy*+ x)dx + 4x2y3dy
(e) (x+2)sinydx+ xcosydy

o O O o o

14. Solve the following differential equations by using the exact
equation technique with the integrating factors. Compare the
derived solutions with those obtained from using the dsolve

15.

16.

command.
(@) ydx+(1-x)dy
(b) (xy+y?+y)dx+(x+2y)dy
(c) (2y? +3x)dx + (2xy)dy
(d) (10-6y+e-3x)dx —2dy
(e) (x+2)sinydx+ xcosydy

Il
o O O O O

Solve the following initial value problems that are governed by
the differential equations and initial conditions. Derive their
exact solutions by using the exact equation technique with the
integrating factors. Compare the derived solutions with those
obtained by using the dsolve command.

(@) xdx+(x2y+4y)dy =

(b) (x*+y?-5)dx —(y+xy)dy
(c) xydx+(2x2+3y?-20)dy =

0, y@ =0
0, y(0) =
0, y(0) =

Derive the solutions of the differential equations that contain

terms in the form of y/x as follows,

dy _ x_y

@ 4 = v X (b)
dy _ ¥y

(©) dx —  x? x+1 (d)

dy _ y
(e) Xax = xcos(?j+y

dy 3 )

Wy =
dy

32y _ 2y _ y3

X dx Xy—-y
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Then, use the dsolve command to solve for solutions of these
differential equations again and compare them with the derived
solutions.

17. Derive solutions of the following Bernoulli differential
equations. Compare the derived solutions with those obtained
by using the dsollve command.

dy 1, 2 dy 3 )
(a) ax - ;y +;y (b) Xﬁer = Xy
dy gyt dy ¥ _ s
(c) ﬁﬂLXy = Xy (d) &JF; = Xy
d
2 2 3
(e) xy dx+y X COS X

18. Solve the Riccati differential equation,

dY L ooy _oxye =
dX+2xy 2xy? =1

by changing the variable,
1
y = X3

Show the derivation of the exact solution in detail. Then,
verify the solution by comparing with that obtained from using
the dsolve command.

19. Solve the Riccati differential equation,

ﬂ_s_zl
o = =T+

by changing the variable,
1
y = X+3

Show the derivation of the exact solution in detail. Then,
verify the solution by comparing with that obtained from using
the dsolve command.

20. Employ the dsolve and ode23 commands to find the exact
and approximate solutions of the initial value problem
governed by the first-order linear homogeneous differential
equation,
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dy _
X +2xy = 0 0<x<1
with the initial condition of y(0)=1. Plot to compare the two

solutions of y(x) that vary with x in the interval 0 < x<1.

Employ the dsolve and ode45 commands to find the exact
and approximate solutions of the initial value problem
governed by the first-order nonlinear nonhomogeneous
differential equation,

dy

2xy&—y2 = X2 1<x<2

with the initial condition of y(1)=2. Plot to compare the two
solutions of y(x) that vary with x in the interval 1<x<2.

Employ the dsolve and ode45 commands to find the exact
and approximate solutions of the initial value problem
governed by the first-order nonlinear nonhomogeneous
differential equation,

dy

Yax

with the initial condition of y(0)=2. Plot to compare the two
solutions of y(x) that vary with x in the interval 0<x < 2.

+Xy2 = 5x 0<x<2

Use the dsollve command to find exact solution of the initial
value problem governed by the stiff differential equation,

% = 20e100-2% — 0.6y O<x=<4

with the initial condition of y(0)=0.5. Then, employ the

ode23 and ode23s commands to find the approximate
solutions. Plot to compare these solutions with the exact
solution and provide comments on the numerical solution
accuracy.
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24. Use the dsolve command to find exact solution of the initial
value problem governed by the stiff differential equation,

dy _
o« = y2 —y3 0<x<2000

with the initial condition of y(0)=0.001. Then, employ the

ode23, ode45 and ode23s commands to find the approximate

solutions. Comment on the numerical solution accuracy of
these solutions that do not have the exact solution to compare.






Chapter
5

Second-Order Linear
Differential Equations

5.1 Introduction

We learned several techniques for solving many types of
the first-order differential equations in Chapter 4. We found that
proper techniques should be applied according to the types of
differential equations in order to reach for the solutions. We also
found that exact solutions for many differential equations cannot be
derived in closed-form expressions. Numerical methods are
needed to find the approximate solutions.

In this chapter, we will learn how to solve the second-
order linear differential equations. This type of differential
equation arises in several scientific and engineering problems, such
as heat transfer, fluid flow, wave propagation, electro-magnetic
field, etc. Solving these second-order differential equations is
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simpler than the first-order differential equations because there are
only few standard techniques that are easy to follow and
understand. We will start from solving the homogeneous second-
order differential equations before extending to the nonhomo-
geneous equations. Several examples are used and, at the same
time, the derived solutions are verified by employing MATLAB
commands. At the end of the chapter, we will study how to apply
the numerical methods to solve these second-order differential
equations. The numerical methods provide approximate solutions
when the exact solutions are complicated or not available.

5.2 Homogeneous Equations with Constant
Coefficients

The second-order linear homogeneous differential equa-
tion with constant coefficients can be conveniently solved for
solution. Such differential equation is in the form,

2
%+a%+by =0
where a and b are constants, while the right-hand-side of the
equation is zero. A solution to this differential equation is e*x for

which A is a number.

To find the values of 4, we substitute this solution e4x
into the differential equation,
A2eix +atletx +peix = 0

then, divide by e“x to get,
AZ+atl+b = 0
The result is in form of quadratic equation that can be used to find

values of 2. We call this quadratic equation as the characteristic
or auxiliary equation. The roots of this equation are,

A A, = %(—ai\/az —4b)

Depending on the values of the coefficients a and b, there are three
possible cases for the values of the roots. We will consider these
cases in details in the next three sections.
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It is noted that the function in the form of e4x is a solution
of the second-order differential equation. For example,
y(x) = e2x+e3x

where 4, =-2 and 4, =-3, is a solution of the second-order
homogeneous differential equation,

d2y . dy _

W + 5& + 6y = 0
We can verify this by determining the derivatives of the solution
and substitute them into the equation, as follows.

Since, d_y = —2e-2x —3e-
dx
d2y — -2X -3x
and, o + 4e-2x 4+ 9e
2
then, M+5ﬂ+6y
dx?2 dx

= (4e2+9e)+5(-2e2x-3e) +6(e > +e %) = 0
which is equal to the value on the right-hand-side of the equation.

The diff command can help us to verify such equation
conveniently,

>> syms X Yy
>> y = exp(-2*x) + exp(-3*x);

>> LHS = diff(y,x,2) + 5*diff(y,x) + 6*y( diff ]

LHS =
0

If we consider these two functions e-2x and e-3x, we see
that their variations are different and do not depend on each other.
Or, in the other word, they are linearly independent.

We can also ensure that the two functions are linearly
independent by using the Wronski’s test. The two functions vy,

and vy, are linearly independent if the determinant defined by,
Yi Yo
i Yo

W = A A
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is not zero. As in this example, y, =e-2x and y, = e-3x, then,
e-2x e-3x
— 29—2x _3e—3x

which is not zero. The determinant, so called the Wronskian, can
be easily obtained by using the det command,

W =

= — e—5x

>> yl = exp(-2*x);

>> y2 = exp(-3*x);

>> W = [yl y2; diff(yl,x) diff(y2,x)];

>> det(W) det

ans =

-1/exp(5*x)

Here, the solution,
y(x) = e2x+e3x
of the differential equation,

dzy _dy _
e +5&+6y = 0

can be also obtained by using the dsolve command,

>> syms X y dsolve

>> dsolve("D2y + 5*Dy + 6*y = 0", "x")

ans =
Cl/exp(2*x) + C2/exp(3*x)
e, y(x) = Ce+C,e3x

where C, and C, are constants. If these two constants are deter-
mined from the two initial conditions, such as y(0)=0 and
y'(0)=1, we call the problem as the initial value problem. But if
they are determined from the two boundary conditions, such as
y(0)=0 and y(5)=1, we call it as the boundary value problem.
We will solve the initial value problem in this chapter, while
solving the boundary value problem will be shown in Chapter 9.
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5.3 Solutions from Distinct Real Roots

As explained in the preceding section, the second-order
linear homogeneous differential equation with constant coeffi-
cients,

dzy ~_dy _
W‘f‘a&-f-by = 0

has a solution in the form of e4x. By substituting this solution into
the differential equation above, we obtain the characteristic
equation,

A2+al+b =0
which leads to the two roots of,

A, A, = %(—aix/aZ —4b)
If va2—4b > 0, the two roots are distinct real numbers as,

A = %(—a+ a2—4b) and A4, = %(—a— a2—4b)
which lead to the solution of,

y(x) = C,en* +C,ex
where C, and C, are constants.

We will learn how to solve the differential equation when
its solution consists of the distinct real roots by using the following
examples.

Example Derive the general solution of the second-order
differential equation,

dzy _dy _
W—5&+4y = O

After assuming the solution in the form of e#x and
substitute it into the differential equation, we get,

A2eix —5etx + 4etx = 0
Then, we divide it by ex to obtain the characteristic equation,
2-51+4 = 0
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Or, A-1)(1-4) = 0
.e., A, =1 and 4, =4
Thus, the general solution is,

y = Cex+C,e¥
where C, and C, are constants.

We can employ the dsolve command to obtain the same
solution,

>> syms X y
>> dsolve("D2y - 5*Dy + 4*y = 0", "x")

ans =

C3*exp(x) + Ca4*exp(4*x)

Example Derive the general solution of the second-order

differential equation,

d?y dy

axz T ax
Similar to the preceding example, by assuming the

solution in the form of e+x, the characteristic equation is,

6 2y = 0

6A2+1-2 =0
Or, 22-1)(B2+2) = 0
. 1 2
L.e., A = > and A, = -3

Thus, the general solution is,
y = C,e/2+C,e2

Again, the dsolve command can be used to find the
solution,

>> syms X y
>> dsolve("6*D2y + Dy - 2*y = 0%, "x%)

ans =
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C5*exp(x/2) + C6/exp((2*x)/3)
Example Derive the general solution of the second-order
differential equation,

2
d’y dy _

dx? dx

If we follow the same procedure as in the preceding two
examples, we obtain the characteristic equation as,

2-71 = 0
Or, AA-7) = 0
e, A =0 and 4, =7
Thus, the general solution is,
y = C,ex+Cie™ = C,+Cye™

The dsolve command can be employed to give the same
solution,

>> syms X Yy
>> dsolve("D2y - 7*Dy = 0", "X")

ans =
C7 + C8*exp(7*x)

Example Derive the exact solution of the initial value problem
governed by the second-order differential equation,

with the initial conditions of y(0)=1 and y'(0)=1/2.
From the given differential equation, the characteristic
equation is,

422 -82+3 = 0
or, (22-1)(22-3) = 0
. 1 3
I'e'y /11 = § and /12 = E

Then, the general solution is,
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y = Cye¥2+Cye¥/?
, 1 3

AISO, y = ECg ex/2 +§C10 e3x/2

where C, and C,, are constants that can be determined from the
given initial conditions as follows,

y(0) = 1 = Cy+Cy

, 1 1 3
y'(0) = 2~ ECQ + §C10
to give, C =1 and C,=0
Hence, the exact solution for this initial value problem is,
y — ex/Z

We can use the dsolve command to find the same exact
solution,

>> syms X Y
>> dsolve("4*D2y - 8*Dy + 3*y = 0", "y(0) = 1-,

"Dy(0) = 1/27, "x")

ans =
exp(x/2)

This exact solution can be plotted by using the ezplot
command,

ezplot(ans, [0 5])

Variation of the solution y that varies with x is shown in the figure.

5.4 Solutions from Repeated Real Roots

From the second-order homogeneous differential equation
with constant coefficients,
d?y _dy _
oz T qax by = 0
We assume the solution in the form of e#* and substitute it into the
differential equation, we obtain the characteristic equation,
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exp(x/2)

A2+al+b = 0
which leads to the two roots of,

And, = %(—ai\/az —4b)

If the coefficients a and b in the differential equation are given such
that,
az2-4b = 0

then, the two roots are the same real number,
a
/11 S /12 = —§

So that, the general solution is,

y — e—ax/z

But the general solution must consist of two functions because the
differential equation is second order. Thus, we need to find the
second function. If we assume the second function in the form,

u(x)e-a/2

<
I

Then, y' = u’e*ax/z—%ue*ax/2

2
and, y" = u"e®2_—au'e®?+ aTUefax/z
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By substituting these y, y" and y” into the differential equation,

2
(u”eax/Z _ au’efaX/Z + a_u efaX/Z +a u’efaX/Z _Eu efaX/Z
4 2

+b(ue™?) = e-ﬁ*”[u’#u(b—a{ﬂ =0

Because (b—a2/4)=0 in this case and e-2/2 could not be zero,
this means,

u = 0
Or, u(x) = cx+d
where ¢ and d are constant.
Hence, y = (cx+d)e/2

is another function that could be the solution of the differential
equation. For simplicity, we may select c=1 and d =0, so that
the general solution for the case of repeated roots is,

y = @2 4 xp-a/2

We will learn how to find general solutions of the
differential equations when the roots of their characteristic
equations are repeated by using the following examples.

Example Derive the general solution of the second-order differen-
tial equation,
d?y ,dy _
e +2&+y =0

We first assume the solution in the form of e4x and
substitute it into the differential equation to get,

Aeix 42 et +etx = 0

Then, we divide it by e4x to obtain the characteristic equation,
2+22+1 = 0

Or, A2+)(2+1) = 0

which leads to the two roots of 4, =-1and A,=-1. Since the
roots are repeated, thus the general solution is,
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y = C,e*x+C,xe
where C,, and C,, are constants.

The same solution is obtained by using the dsolve
command as,

>> syms X y
>> dsolve("D2y + 2*Dy + y = 0", "x")

ans =

Cll/exp(xX) + (C12*x)/exp(X)

Example Derive the general solution of the second-order
differential equation,
dzy dy
dx2 dx
The characteristic equation corresponding to the given
differential equation is,

0
0

A2 —-64+9
Or, (1-3)(1-3)
which leads to the repeated real roots of,

A = A, =3

Thus, the general solution is,
y = Cex+C,xe¥
where C,, and C,, are constants.

Again, the dsolve command can provide the same
solution,

>> syms X Y
>> dsolve("D2y - 6*Dy + 9*y = 0", "x")

ans =

C13*exp(3*x) + Cl4*x*exp(3*x)



142 Chapter 5 Second-Order Linear Differential Equations

Example Solve the initial value problem governed by the second-
order differential equation,

d? d
dx¥+4d—i+4y =0

with the initial conditions of y(0)=1 and y'(0)=3.

The corresponding characteristic equation is,

A2+41+4 = 0
Or, 1+2)4+2) = 0
which leads to the two repeated rootsof 4, = -2 and 4, = -2.
Thus, the general solution is,
y = Cge®+Cpyxe®
so that, y' = —2C e2x-2C xe?* +Ce>

where C, and C,, are constants that can be determined from the
two given initial conditions,

y0) = 1 = C,+0
y'(0) = 3 = -2C,-0+C
to give, C: =1 and Ce =5
Hence, the exact solution to this initial value problem is,
y = e?2*+5xe?
The same solution is obtained by using the dsolve
command,

>> syms X Yy
>> dsolve("D2y + 4*Dy + 4*y = 0", "y(0) = 1",
"Dy(0) = 3%, "x")

ans =

1/exp(2*x) + (5*x)/exp(2*x)
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The above exact solution can also be verified by
substituting it back into the differential equation and using the
diff command,

>> y = 1/exp(2*x) + (5*x)/exp(2*x);
>> LHS = diff(y,x,2) + 4*diff(y,x) + 4*y

LHS =
0

The exact solution must also satisfy the two initial conditions. This
can be checked by using the subs command,

>> y = 1/exp(2*x) + (5*x)/exp(2*X);
>> subs(y,{x3,{0})

ans =
1
>> dydx = diff(y,x);

>> subs(dydx, {x},{0})

ans =

3

Example Solve the initial value problem governed by the second-
order differential equation,

dy dy 'y _
x atg =0
with the initial conditions of y(0)=1 and y'(0)=1/3.
From the given differential equation, the corresponding
characteristic equation is,

1
2 _ J— =
A /1+4 0
1 1\
or, (1)) - o
. 1 1
ie., =5 ad 2, =
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Since the roots are repeated, then the general solution is,

y = C,e¥2+Cy,xe/?
' 1 X/2 1 x/2 X/2
So that, y' = §C17 ex2 + ECB xe¥2 + C,e

where C, and C,; are constants which can be determined from the
two initial conditions,

y(0) =1 C,+0
: 1 1
y'(0) = 3 = 7017 +0+Cp
to give, C, =1 and C, = _%

Thus, the exact solution to this initial value problem is,
X
— x/2 _ 2 ax/2
y e 5¢
The same solution is obtained by using the dsolve command,

>> syms X Yy
>> dsolve("D2y - Dy + y/4 = 0", "y(0) = 1",
"Dy(0) = 1/3", "x")

ans =
exp(x/2) - (x*exp(x/2))/6

The ezplot command can then be used to plot the variation of y
that varies with x as shown in the figure.

5.5 Solutions from Complex Roots

From the second-order homogeneous differential equation
with constant coefficients in the form,

dzy _dy _

o Tqax T by = 0
By assuming the solution in the form of e4x and substitute it into
the differential equation, we obtain the characteristic equation,
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exp(x/2)- (xexp(x/2))/6

A2+al+b =0
which leads to two roots of,

Ay, = %(—ai«/az —4b)

If a> —4b <0, then the two roots are conjugate complex numbers
a+if and a —if where o might be zero but A is not. In this

case, the general solution of the differential equation is,
y = Aele+ig)x 1 B ela-if)x

where A and B are constants.

By using the Euler’s formula,
e#x = cos(Bx)+isin(Bx)
and e-ifx = cos(Bx)—isin(Bx)
then, the general solution above becomes,
y(x) = e«X(Aefx + Beifx)
Aeex(cos(Bx)+isin(Bx))+ Be**(cos(Bx)—isin(Bx))
(A+B)e=xcos(Sx)+i(A-B)e“xsin(Sx)
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This solution can be written in a simpler form if we select
A=B=1/2, then y(x) = e=cos(fx). At the same time, if we
select A=1/2i=-B, we get y(x) = e=sin(f#x). Since the two
solutions must be linearly independent, thus we can write the
general solution in the form of,

y(x) = C,e*xcos(Bx)+ C,e=xsin(Sx)
where C, and C, are constants.

In conclusion, for the case when the roots of the
characteristic equation are complex conjugate numbers,

Ady = %(—aix/az—4b) = atifp

then, the general solution is in the form,
y(x) = C,e**cos(fx)+C,e“*sin(fSx)
We will learn how to derive solutions of the differential equations

when the two roots of their characteristic equations are complex
conjugate numbers by using following examples.

Example Derive the general solution of the second-order
differential equation,

d2y _dy _

By assuming the solution in the form of e4x and substitute
it into the differential equation, we get,

Aeix —22e4x +5e4x = 0
After dividing it through by e*x, we obtain the characteristic

equation,
2-22+5 =0

The two roots of this equation are complex conjugate numbers,
hidy = exva-20) = 1:2i

By comparing the coefficients with those in the equation derived
earlier, we find that,
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a =1 and p = 2
Thus, the general solution of the differential equation is,
y = Cyexcos(2x)+Cye*sin(2x)
where C,, and C,, are constants.

The same solution can be obtained by using the dsolve
command,

>> syms X Yy
>> dsolve("D2y - 2*Dy + 5*y = 0", "Xx")

ans =

C1l9*cos(2*x)*exp(x) + C20*sin(2*x)*exp(x)

Example Derive the general solution of the second-order differen-
tial equation,
dy

d2
dx¥+2ﬁ+2y =0

The characteristic equation corresponding to the above
differential equation is,

A24+214+2 = 0

which leads to the two roots of complex conjugates,

Iy = (-2:4A78) = -1ti

Here, a = -1 and g =1
Thus, the general solution is,
y = C,e>cosx+Cy,exsinx

where C,, and C,, are constants.

Again, the same general solution can be obtained by using
the dsolve command,
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>> syms X y
>> dsolve("D2y + 2*Dy + 2*y =0%, "x%)

ans =

(C21*cos(x))/exp(x) + (C22*sin(x))/exp(X)

The two constants of C, and C,, are determined from

the initial conditions of the problem. For example, the given initial
conditions are,

o =1 ad D) = 2
Since, y = C,e*cosx+C,e>sinx
then,
dy
dx
From the given initial conditions, the two equations become,
1= Can (1) +C,, (0)
and 2 = C,(-1-0)+C,(0+1)

= C21 (_e7X COSX—e X Sin X) + CZZ (_e*X Sin X +€e-*Ccos X)

By solving these two equations, the two constants can be
determined,

C, =1 and C, = 3

Hence, the exact solution of the differential equation with the initial
conditions is,

Yy = excosXx+3e-xsinx

The dsolve command can also be used to find the exact
solution of this initial value problem by entering,

>> syms X y
>> dsolve("D2y + 2*Dy + 2*y =0", "y(0) = 1°,

"Dy(0) = 27, "x7) -dsolve
ans =

cos(xX)/exp(x) + (B*sin(x))/exp(x)
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Example Solve the initial value problem governed by the second-
order differential equation,

dzy ,dy _
16 gz —84 T145y = O

with the initial conditions of y(0)=-2 and y'(0)=1.

The characteristic equation that corresponds to the
differential equation is,

1642 -84+145 = 0
The two roots are complex conjugate numbers,

A, = 8i«/6§2—9280 _ %i3i

By comparing the coefficients of the roots with the equation
derived earlier, we find that,

1

a = 7 and g =3
Thus, the general solution to the differential equation is,
y = C,eX*cos(3x)+C,,e¥*sin(3x)

where C,; and C,, are constants that can be determined from the

given initial conditions of the problem. For example, if the initial
conditions are given as y(0)= -2 and y'(0)=1, the exact solution
can be determined as follows.

First, we need to find the derivative of the solution y,

y' = Cn(%ex/“cos(3x)—3ex/4sin(3x)j

+C,, (%ex/“ sin(3x)+3ex* cos(3x)j

We apply the two initial conditions to equations of y and y’,
respectively,

-2 = Cza (1) + C24 (0)
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and 1 = cC, (%—Oj +C,, (0+3)
Then, we solve for the two constants of C,; and C,, to get,
Cyp = -2 and C, = %

Thus, the exact solution to the differential equation with the given
initial conditions is,

y = —2ex/4cos(3x)+%ex/“sin(Bx)

The same exact solution can be obtained by using the
dsolve command by entering,

>> syms X y
>> dsolve("16*D2y-8*Dy+145*y = 0", "y(0) = -2",

ELCREAES

ans =
(sin(B*x)*exp(x/4))/2 - 2*cos(3*x)*exp(x/4)

The ezplot command can then be used to plot the variation of y
that varies with x as shown in the figure.

(sin(3x)exp(x/4))/2 —2cos(3x)exp(x/4)
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Example Solve the initial value problem governed by the second-
order differential equation,

d?y . 16y _
64dX2+16d—X+1025y =0

with the initial conditions of y(0)=-1 and y'(0)=3.

From the given differential equation, the corresponding
characteristic equation is,

6442 +164 +1025 = O

The two roots are in the form of complex conjugates as,
—16 + /256 — 262,400 1 .

= d = ——=4
AL A, 128 gt 4

By comparing the coefficients with those in the equation derived
earlier, we find that,

1

a = -3 and p = 4
Then, the general solution to the differential equation is,
y = C,e*8cos(4x)+ C,,e8sin(4x)

where C,. and C,, are the constants that can be determined from

the initial conditions. The process starts from finding the
derivative of the solution y,

y' = Czs(—%e—x/s cos(4x)—4e/2sin (4x)j
+Co (— %e*x/8 sin (4x)+ 4e-*/8cos (4x)j

and by applying the initial conditions of y(0)=-1and y'(0)=3
into these two equations to get,

-1 Czs (1) + Cze (0)

3 - CZS(—%—0)+C26(O+4)
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Then, we solve these two equations to obtain,

C, = -1 and Cyx = 23

32
Thus, the exact solution of this initial value problem is,

y = —e*8cos(4x)+ %e-x/8sin(4x)

The same solution is obtained by using the dsolve
command,

>> syms X y
>> dsolve("64*D2y + 16*Dy + 1025*y = 0-,
"y(0) = -1°, "Dy(0) = 3%, "X7)

ans =

(23*sin(4*x) )/ (32*exp(x/8)) - cos(4*x)/exp(x/8)

The ezplot command can then be used to plot the variation of y
that varies with x as shown in the figure.

(23sin(4x))/(32exp(x/8))—cos(4x)/exp(x/8)

0.5

y(X) of

-0.5
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5.6 Nonhomogeneous Equations

In this section and the next two sections, we will concen-
trate on finding the solutions of the second-order linear nonhomo-
geneous differential equations in the form,

dzy _dy _

e +ad—x+by = f(x)
where the term on the right-hand-side of the equation is only
function of x. The coefficients a and b for the terms on the left-
hand-side of the equation are constants. Since the differential
equation is linear, then the general solution consists of two parts,

Y = %ty

where y, is the solution of the homogeneous differential equation

we learned earlier. The function y, is called the particular

solution that normally depends on the form of the function f(x) on
the right-hand-side of the differential equation.

As an example, a general solution of the nonhomogeneous
differential equation,

2
%+y = 3sin(2x)

is y = YntY,
= Asinx + Bcosx — 2sin x(1+cosx)
The first part of the solution,

y, = Asinx+ Bcosx

where A and B are constants, is the solution of the homogeneous
differential equation,
dzy
dx2
The second part of the solution,

+y =0

Yy, = —2sinx(l+cosx)
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is the particular solution that depends on the form of the given
function f(x)=3sin(2x) on the right-hand-side of the differential
equation.

We can verify that the solution above is, in fact, the
general solution of the nonhomogeneous differential equation.

This can be done by using the diff command to evaluate the terms
on the left-hand-side of the differential equation as follows,

>> syms X A B
>> y = A*sin(x) + B*cos(x) - 2*sin(xX)*(1+cos(x));
>> LHS = diff(y,x,2) +y

LHS =
3*sin(2*x)

The result is equal to the right-hand-side function of the differential
equation.

The same idea is applied when the given nonhomogeneous
is more complex. For example,

2
3x¥ +3%+ 2y = 6ex

Again, the general solution consists of two parts,

y = Yy, ty, = Ae*+Be™+e
The first part is the homogeneous solution,
Yo = Ae*+Be*

of the homogeneous differential equation,

e &+2y =0
where A and B are constants. While the second part,
y, = €

is the particular solution. Again, we can use the di ff command to
verify the general solution above by evaluating the terms on the
left-hand-side of the differential equation as follows,
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>> syms X A B
>> y = A*exp(-x) + B*exp(-2*x) + exp(X);
>> LHS = diff(y,x,2) + 3*diff(y,x) + 2*y

LHS =
6*exp(x)

The result is identical to the function f(x) on the right-hand-side
of the differential equation.

There are several methods for finding the particular
solution of y,. The two popular methods, which are the method of

undetermined coefficients and the variation of parameters, are
presented in the next two sections.

5.7 Method of Undetermined Coefficients

The method of undetermined coefficients is a simple
method for finding the particular solution of the nonhomogeneous
differential equation. The idea is to seek for the particular solution
y, that contains terms which are in similar forms with the function

f(x) on the right-hand-side of the equation. The method works
well when the function f(x) is in the forms of the exponential,
polynomials, sine and cosine functions. The method of un-
determined coefficients is demonstrated by using the following
examples.

Example Derive the general solution of the second-order non-
homogeneous differential equation,
d2y _dy B ”r
W—3&—4y = 3e
The homogeneous solution is derived from the given
differential equation in the homogeneous form of,

a2y, _4dyn

dx? dx —4% = 0

to give, Y, = Ce*+Ce
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where C,, and C,, are constants. Or, it can be obtained by using
the dsolve command,

>> syms X y
>> dsolve("D2y - 3*Dy - 4*y = 0", "x")

ans =

C27*exp(4*x) + C28/exp(x)

The particular solution y, is to be determined such that
the differential equation in the form,
dzy, _ 3%
dx2 dx
is satisfied. In this case, let us assume,

-4y, = 3ex

yp — Ae2x

where A is an constant. We assume the particular solution in the
exponential form because their derivatives are also in the
exponential form as,

dyp — 2x dzyp
o - 2he and e

By substituting these derivatives into the differential equation
above, we get,

4 Ae2x

(AA—BA—4A)e?* — 3e2x

—6Ae* = 3e
1
A= 3
Then, the particular solution is,
— 1 2X
yp - _Ee

Thus, the general solution of the nonhomogeneous differential
equation is,
y = C27e“X+C28e‘X—%e2X

where C,, and C,, are constants.
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The same solution can be found by using the dsolve
command,

>> Syms Xy
>> dsolve("D2y - 3*Dy - 4*y = 3*exp(2*x)", "x")

dsolve
ans =

C27*exp(4*x) - exp(2*x)/2 + C28/exp(x)

Example Derive the general solution of the second-order non-
homogeneous differential equation,
dzy ,dy Ay
ae Sa W T
Since the terms on the left-hand-side of the differential
equation are the same as those in the preceding example, thus, the
homogeneous solution is,

Yo = Cpue™+Cue

The particular solution y, is to be determined such that the
differential equation,
Y, W,
dx? dx

is satisfied. We may assume the particular solution in the form of
polynomials,

-4y, = 4x?

Yy, = AxX*+Bx+C

where A, B and C are constants. By substituting this particular
solution y, into the differential equation, we get,

(2A)-3(2Ax+B)-4(Ax2+Bx+C) = 4x?
Or, (~4A)X2 + (-6A—4B)x+(2A-3B-4C) = 4x2
Comparing the coefficients leads to the three equations,
—4A = 4
~6A-4B = 0

2A-3B-4C = 0
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Solving these three equations gives, A=-1, B=3/2 and C =
—13/8. Then, the particular solution is,

,, 3, 13
Yo = —X4oX-g
Hence, the general solution of the given nonhomogeneous
differential equation is,
3. 13
y = C, e +Cue*—x2 toX-g
The same solution can be obtained by using the dsolve

command,
>> syms X y
>> dsolve("D2y - 3*Dy - 4*y = 4*x"2", "x")

ans = dsolve

(3*X)/2 - x"2 + C27*exp(4*x) + C28/exp(x) - 13/8

Example Derive the general solution of the second-order non-
homogeneous differential equation,

dzy _dy B .
an &—4y = 2sinX

Since the terms on the left-hand-side of the given
differential equation are the same as those in the preceding

example, then the homogeneous solution is,
Yo = Cye™+Cyue

The particular y, must satisfy the differential equation,
ary, L dy,

dx?2 dx

Because the derivatives of the sine function are in the form of sine

and cosine functions, thus we need to assume the particular
solution in the form,

Yy, = Asinx+Bcosx

—-4y, = 2sinx

where A and B are constants. If we substitute this particular
solution y, into the differential equation, we get,
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(— Asin x — Bcos x) — 3(Acos x — Bsin x) — 4(Asin x + B cos x)
= 2sinx
Or, (-A+3B-4A)sinx+(—-B-3A—-4B)cosx = 2sinX
Then, comparing the coefficients leads to two equations,
—-A+3B-4A = 2
and -B-3A-4B = 0
which can be solved to give A=-5/17 and B =3/17. Thus, the
particular solution is,

= —isinx+icosx
o = 713 17

Hence, the general solution of the nonhomogeneous differential
equation is,

5 . 3
y = C27e4x+C28e-X—ﬁsmx+ﬁcosx

The same solution is obtained by using the dsolve
command,

>> Syms X y
>> dsolve("D2y - 3*Dy - 4*y = 2*sin(x)", "X")

ans = dsolve

(3*cos(x))/17 - (5*sin(x))/17 + C27*exp(4*x) +
C28/exp(x)

Example Solve the initial value problem governed by the second-

order nonhomogeneous differential equation,
d?y _dy 3 o ) .
dx2_36§_4y = 3e2¥+4x2 + 2sin x

with the initial conditions of y(0)=0 and y'(0)=1.

The right-hand-side of the differential equation is the
combination of the functions in the preceding three examples.
Thus general solution is,

313 5

1 . 3
=C._.e**+C e ¥ ——e2X - x2 4 —X————SiNX+—CO0SX
y=ba 28 2 2" 8 17 17
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We can use the dsolve command to verify that the above solution
is a general solution to the given differential equation,

>> syms X y
>> dsolve("D2y - 3*Dy - 4*y = 3*exp(2*x) + 4*x"2
+ 2*sin(xX)", "x")

ans =

(B*x)/2 - exp(2*x)/2 + (3*cos(x))/17 -
(5*sin(x))/17 - x"2 + C27*exp(4*x) +
C28/exp(x) - 13/8

Since the derivative of the general solution is,

3 5 3 .
r_ 4x __ -X _ @a2x _ - - —
y' = 4C,e C,e e 2X + 5 ~ 17 C0SX —77SInX
Then, by applying the initial conditions of y(0)=0 and y'(0)=1,
we obtain,

0 = C27+C28—%—0+0—§+%
3 5
and 1 = 4027—028—1—0+§—ﬁ—0

These two equations give C,, =373/680 and C,, =7/5

Hence, the exact solution of the initial value problem is,

373 7 1 3. 13 5 . 3
y=——e" +—e ¥ —=—eX - X2+ —X————SINX+-—COSX
680 5 2 2 8 17 17

The same solution is obtained by using the dsolve command,

>> syms X Yy
>> dsolve("D2y - 3*Dy - 4*y = 3*exp(2*x) + 4*x/2
+ 2*sin(x)", "y(0) = 0", "Dy(0) = 1, "x")

(B*x)/2 + 7/(5*exp(x)) - exp(2*x)/2 +

(373*exp(4*x))/680 + (3*cos(x))/17 -
(5*sin(x))/17 - x~2 - 13/8
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The ezplot command can then be used to plot the variation of y
that varies with x as shown in the figure.

(3x)/2+7/(5exp(x))—exp(2x)/2+....—13/8

25

20 -

5.8 Variation of Parameters

The method of undermined coefficients for solving the
nonhomogeneous differential equation described in the preceding
section works well when the right-hand-side functions f(x) are in

the form of exponential, polynomials, sine and cosine functions.
When the functions f(x) are in the other forms, it may be difficult

to guess for the solutions. In this section, we will learn another
method so called the variation of parameters to find the particular
solutions. The advantage of this latter method is that we do not
have to guess the solutions in some specific forms as we did in the
method of undermined coefficients. However, since the method
involves integration, it may be difficult if the functions f(x) are

complicated.
We will learn this method by considering the same form of

the second-order nonhomogeneous differential equation used
earlier,
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d? d
d7¥+ad—§+by = f(x)

Its general solution consists of two parts,
y(x) = Ya(X)+Y,(x)
where y,(x) is the solution of the homogeneous differential

equation,

dzy, dy, _
e +aW+byh =0

which can be written in the form,
Ya(X) = Ay,(x)+ By,(x)
where A and B are constants.

The idea of the method of variation of parameters is to
assume the particular solution y,(x) in the same form as the

homogeneous solution y, (x), i.e.,

yp(x) = Vl(X)yl(X)+ Vz(x)yz(x)
where v,(x) and v,(x) are the functions to be determined so that
yp(x) satisfies the above nonhomogeneous differential equation.

By taking the first-order derivative of the particular
solution y, above, the result contains four terms,

Yo = (Y, +ViY,)+ (VY +V,Y5)
This means if we determine its second-order derivative, the result

will contain many more terms. Furthermore, the second-order
derivative also includes the terms such as v, and v;. To avoid

this, let us assume the value in the first bracket of y| to be zero,
vy, +v,y, = 0

So that the expression of y reduces to,
Yo = WiYi+V,Y;

Then, if we take derivative of this reduced form of y, we get,

Yo = ViYi+ViYr+ VoY + VY
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By substituting the expressions of y_, y; and y; into the
differential equation, we obtain,
f(x) = y;; +ay’p + byp
= (VY VY VoY VoY) +a(v Y + Vo Y;) + b(v Y, +V,Y,)
= (Viyr +Vay;) + Vi (Y +ay; +by,) + v, (y; +ay; +by,)
= Vy, +V,y, +0+0
ie., vy, +vyy, = f
In conclusion, the process above leads to two equations of,
AR A 0
and v, +yv, = f
with the two unknown functions of v; and v,. These two func-
tions can be determined by using the Cramer’s rule to give,

V- - fYZ

1 - ' !
ylyz - y1y2
and v, = #
Yi¥o — Yi¥e

Then, the two functions of v, and v, can be obtained by perform-
ing integration,

- fy,
Vi = ————=— X
' Iwn—wh
J’ fyl
A A

From the process explained above, we can see that the
method of variation of parameters can provide the particular
solution directly. Since the process involves integration to find the
functions v, and v, , difficulty may arise if the function f(x) on
the right-hand-side of the differential equation is complicated. We
will learn how to use the method of variation of parameters to solve
the nonhomogeneous differential equations through the following
examples.

and v, dx
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Example Use the method of variation of parameters to solve the
second-order nonhomogeneous differential equation,
dzy
dx2

We can employ the technique presented in the preceding
sections to derive the homogeneous solution of the homogeneous
differential equation,

+y = tanx

d2y,

dx2 W = 0

to get, Y, = C,cosx+Cysinx
where C,, and C,, are constants. This homogeneous solution can
also be obtained conveniently by using the dsolve command,

>> syms X y

>> dsolve("D2y + y = 07, "x%)

ans =
C29*cos(x) + C30*sin(x)
It is noted that the homogeneous solution obtained above
is in the form,
Yo = Cu¥i+CyY,
Le., y, = COSX and y, = sinx

Since the particular solution for the method of variation of
parameters is assumed in the form,

yp = VY, + VLY,

Thus, Y, = V,C0S8X+V,sinX
where the functions v, and v, are determined from,

v, = I#dx and v, = I#dx
Yi¥2 = V1Yo Yi¥2 = V1Yo

Therefore, by substituting the function f(x) and performing

integration, we obtain the two functions v, and v, as follows,
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— (tan x)(sin x)
% .[ (cos x)(cos x) — (—sin x)(sin x)
_ j- —_(tan x)(sin x) dx
sin2 x + cos2 X
= —I (tanx)(sinx) dx
v, = In(tan(gj—l)— In(tan(g)JrquLsinx
(tan x)(cos x)
and V2 = j (cos x)(cos x) — (—sin x)(sin x)
= j sinx dx
v, = —COSX

Thus, the particular solution is,
Y, = {In (tan (g)—lj— In (tan (%)4‘1}4‘5”‘ x} COS X — SiNn X COS X
= {In (tan (5) —1] —1In (tan (ﬁj +1ﬂ COoSs X
2 2

Hence, the general solution of the given nonhomogeneous
differential equation is,

Y=¥tY,

y = CycosXx+ Cyysin X + {In (tan (g)—lj— In (tan (§)+1ﬂ COS X

The same solution can be obtained by using the dsolve
command,

>> syms X y
>> dsolve("D2y + y = tan(x)", "x")

ans =

log(tan(x/2)-1)*cos(x) - log(tan(x/2)+1)*cos(x) +
C29*cos(x) + C30*sin(X)
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Example Use the method of variation of parameters to solve the

second-order nonhomogeneous differential equation,
d?y dy _
g “dx Y T

The homogeneous solution can be derived from the
homogeneous differential equation,

—dzyh %_ZYh =0

dxz  dx
to get, Y, = C,e2+Cpe

where C,; and C,, are constants. Such homogeneous solution can
also be found by using the dsolve command,

>> syms X Yy
>> dsolve("D2y - Dy - 2*y = 0", "x%)

ans =

C31l*exp(2*x) + C32/exp(x)

This homogeneous solution is in the form of,

Yo = Ca¥i +CyY,
e, y, = e and y, = e
In the method of variation of parameters, the particular
solution is assumed in the same form as the homogeneous solution,
yp = iy, t VLY,

Thus, Y, = V82 +vex

Then, the functions v, and v, can be determined as follows,
-fy,
v, = ———5—dX
! '[ Yi¥o = W1¥e
[ —le)en)
(e2)(-e~) - (2e>)(e)

f %xze-2x dx
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e—2x
V1 = —T(ZXZ‘FZX +1)
and VZ = '[ ,f—yl, dX
y1y2 - ylyZ
o
(e2)(—e) - (2e2)(e)
= —f %XZex dx
v, = —%(x2 —2X+2)

Hence, the general solution of the given nonhomogeneous
differential equation is,

Y=¥tY,

—2X

3
y=C,e2*+C,e*-2x2+2x-3

e
— 2 -
= C, e +Cye X —

(2x2 +2x+1)e> — 4%(x2 —2x+2)ex

The same solution can be obtained by using the dsolve
command,

>> syms X Yy

ans =

2%x - 2*x"2 + C31*exp(2*x) + C32/exp(X) - 3

Example Use the method of variation of parameters to solve the
initial value problem governed by the second-order nonhomo-
geneous differential equation,

with the initial conditions of y(0)=0 and y'(0)=0. Plot the
solution of y that varies with x in the interval of 0 < x <1.
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The homogeneous solution of the homogeneous differen-
tial equation,

d2y, dy, _
e Aot = 0
Is, Y, = C,e2x+C,,xex

where C,, and C,, are constants. The homogeneous solution
above is in the form of,

Yo = CaYi+CaY,
Then, y, = ex and vy, = xex

In the method of variation of parameters, the particular
solution is assumed in the same form as the homogeneous solution,

yp = VY, VLY,
Thus, Yp = VX +v,Xxex

where the functions v, and v, are determined by integrating the
functions that are in the form of f(x). Here,
- fy,
Vi = ——— 55— X
' '[ Yi¥o = V1¥Ys
J» —(x +1)e2x(xe2x)
(e2x)(e2x + 2xe2x) — (2e2X)(xe2X)

X3 x2
W T3
and v, = I#dx
Yi¥o = V1¥s
3 J- (x +1)e2x(e2x)
(e2x)(e2x + 2xe2x) — (2e2X)(xe2X)
X2
VvV, = 7+X

Hence, the general solution of the given nonhomogeneous
differential equation is,

Y= YntY,
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X3 X2 X?
y = C,ex+C,xexx — (?+ —jeZX + (?+ xj Xe2x

2
X3 X2
Or, y = eZX(ng +xC,, +?+7j
' X3  3x2
andthen, y" = e2x(2c33 +Cay +2XCyp + 5+ 5+ x)

where C,, and C,, are constants that can be determined from the
initial conditions as follows,

y(0) = 0 (1)(C,;+0+0+0)
y'(0) = 0 (1)(2C,; +C,, +0+0+0+0)

which give C,; =0 and C,, =0. Hence, the solution of this initial
value problem is,

X3 X2 X2e2x
= 22X — 4 — =
y= e (6 + 2) 5 (x+3)

The same solution is obtained by using the dsolve
command by entering,

>> syms X y
>> dsolve("D2y - 4*Dy + 4*y = (X+1)*exp(2*x)-,

"y(0)=0", "Dy(0)=0", "x%)
dsolve

x"2*exp(2*x)*(x + 3))/6

The ezplot command is then used to plot the variation of y that
varies with x within the interval of 0<x<1 as shown in the
figure.

5.9 Numerical Methods

For most of the initial value problems, their exact
solutions in closed-form expressions cannot be derived easily. This
Is because the function f(x) on the right-hand-side of the
nonhomogeneous differential equation is often complicated.
Furthermore, if the coefficients of the derivative terms on the left-
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(x2exp(2x)(x+3))/6

| | | | | | | | |
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hand side of the equation are function of y, the differential equation
becomes nonlinear. Exact closed-form solutions for most nonlinear
differential equations are not available. Thus, the numerical
methods are needed to provide approximate solutions.

In this section, we will use the ode23and ode45
commands to find approximate solutions of the second-order
differential equations. The commands employ the Runge-Kutta
method with variable time-stepping to provide accurate solutions.
The following examples demonstrate how to use these commands
to solve general initial value problems.

Example Employ the ode23 command to solve the initial value
problem that is governed by the second-order nonhomogeneous
differential equation,

d?y dy _
36 gz 124, +37y = 0 0<x<10

with the initial conditions of y(0)=0 and y'(0)=1.

It is noted that this initial value problem has the exact
solution of,
y = e¥ésinx
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which can be obtained by using the dsolve command,

>> syms X Yy
>> dsolve("36*D2y - 12*Dy + 37*y = 0",

"y(0) = 0%, "Dy(0) =17, "x")

exp(x/6)*sin(x)

ans =

If the exact solution is not available, we can use the
numerical methods to solve for the approximate solution. In the
preceding chapter, we learned how to use the numerical methods to
solve the first-order differential equation. We can follow the same
procedure but we have to firstly separate the second-order
differential equation into two first-order differential equations. We
start from writing the given second-order differential equation in
the form,

dzy dy
36-got 12 gL +37y, = 0 0<x<10

with the initial conditions of,
w© = o ad Y = y0 -1

I.e., we assign the new variables y, =y and vy, =g—i.
Then, the second-order differential equation above

becomes the two first-order differential equations as follows,

dy, _
a = Y,
dy,
and d_X = (12y2_37y1)/36

To conveniently solve these two first-order differential
equations simultaneously, a MATLAB m-file should be created.
As an example, an m-file with the name of examplel.m consists
of the statements,

function yexl = examplel(X,y)

yexl = [y(2); (12*y(2)-37*y(1))/36];
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The first statement defines the function name while the second
statement contains descriptions of the two first-order differential
equations. We then use the ode23 command to solve this problem

by typing on the Command Window as follows,

>> [x,y] = ode23("examplel®, [0 10], [0 1]);

MATLAB will determine the values of y, and vy, at different x
locations, and print the values of x, y, and y, on the monitor
screen. In the ode23 command above, the numbers in the first
square bracket denote the interval of 0 < x <10, while the numbers
in the second square bracket represent the initial conditions of
y,(0)=0 and y,(0)=1, respectively.

The computed solutions of y, and y, that vary with x
can be plotted by using the plot command,

>> plot(x,y(:,1),"-k",x,y(z,2),"--k")

The computed solution y, from the ode23 command is
compared with the exact solution as shown in the figure. The
figure (scale is enlarged) indicates that the numerical method using
the ode23 command can provide very accurate solution.
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Example Employ the ode45 command to solve the initial value
problem governed by the second-order nonhomogeneous differen-
tial equation,
dzy  ,dy _
e +4d—x+3y = 20cosx 0<x<12

with the initial conditions of y(0)=0 and y'(0)=0.

The ode45 command uses the combined fourth- and fifth-
order Runge-Kutta method to solve for approximate solution of the
first-order differential equation. To apply the command, we first
write the given second-order differential equation in the form of the
unknown variable vy, as,

d’y, . ,dy
dle +4d_xl+3yl = 20cosx 0<x<12

This second-order differential equation can be separated into two
first-order differential equations as follows,

dy,
e Y,
dy,
and r 20cos x — 4y, — 3y,

together with the initial conditions of,
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$(0) = 0  and %%®)= y,(0) = 0

Similar to the preceding example, we create an m-file and name it
as example2.m,

function yex2 = example2(X,y)
yex2 = [y(2); 20*cos(X)-4*y(2)-3*y(1)];

We then employ the ode45 command to solve the two first-order
differential equations simultaneously by typing on the Command

Window as,

>> [x,y] = ode45("example2®, [0 12], [0 01);

In the ode45 command above, the numbers in the first square
bracket denote the interval of 0< x <12, while the numbers in the
second square bracket represent the two initial conditions of
y,(0)=0 and y,(0)=0, respectively.

The computed solutions of y, and y, that vary with x can
be plotted by using the plot command,

plot(x,y(:,1),"-k",x,y(z,2),"--k")

dy S
dX - y2 '\/,’

It is noted that this initial value problem has exact solution
which can be obtained by using the dsolve command,
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>> syms X Y
>> dsolve("D2y+4*Dy+3*y = 20*cos(x)", "y(0) = 0~,
"Dy(0) = 0", *x")

ans =
3/exp(3*x) - 5/exp(X) + 2*cos(X) + 4*sin(x)

The approximate solution from the numerical method
using the ode45 command is compared with the exact solution as
shown in the figure. The figure indicates that the numerical
method can provide high solution accuracy as compared to the
exact solution. The method will be useful when the exact solution
to the differential equation is not available as demonstrated in the
following example.

Example Employ the ode45 command to find the approximate
solution of the initial value problem governed by the second-order
nonlinear differential equation,

dzy . dy _
oz T Vax TV < 0 0<x<20

with the initial conditions of y(0)=1 and y'(0)=0.
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For this problem, the exact solution could not be found by
using the dsolve command,

>> dsolve("D2y + y*Dy + y = 0", "y(0) = 1°,
"Dy(0) = 0%, "x7)

Warning: Explicit solution could not be found.

> In dsolve at 101

ans =
[ empty sym ]

We will use the ode45 command to determine the approx-
imate solution. Similar to the preceding examples, we start from
writing the differential equation in the form of the unknown
variable y, as,

dzy dy
dx21+y1d_xl+yl =0 0<x<20

Then, we separate this second-order differential equation into two
first-order differential equations as,

dy, _
W—Yz

d
and % = =YY, ¥

together with the initial conditions of,
y(0) = 1 and y,(0) = 0

We then create an m-file, example3.m, which defines the two
first-order differential equations,

function yex3 = example3(x,y) T -
* - t
yex3 = [y(2): -y(D*y(2) - yD1; e

To solve the problem, we use the ode45 command by typing on

the Command Window as follows,

>> [x,y] = ode45("example3®, [0 20], [1 O1);
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In the ode45 command above, the numbers in the first square
bracket denote the interval of 0< x <20, while the numbers in the
second square bracket represent the two initial conditions of
y,(0)=1 and y,(0) =0, respectively.

The computed solutions of y, and y, that vary with x can
be plotted by using the plot command as shown in the figure.

>> plot(x,y(:,1),"-k",x,y(z,2),"--k")

0 2 4 6 8 10 12 14 16 18 20

5.10 Concluding Remarks

In this chapter, several methods for solving the second-
order linear differential equations with constant coefficients were
presented. For homogeneous differential equations, the exact
solutions depend on the characteristic equations. The roots of the
characteristic equations could be distinct real numbers, repeated
real numbers or conjugate complex numbers. For nonhomo-
geneous differential equations, two methods were explained. These
are the methods of undetermined coefficients and variation of
parameters. The method of undetermined coefficients assumes the
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particular solution in the same form as the nonhomogeneous
function. The method works well only when the nonhomogeneous
functions are in the forms of exponential, polynomials, sine and
cosine functions.  Thus, for more general nonhomogeneous
functions, the method of variation of parameters should be used.
This later method provides the particular solutions directly.
However, since the method involves integration of the
nonhomogeneous function, difficulty may arise if such function is
complicated.

Several examples have been employed to show detailed
derivation of the exact solutions by using the above methods. In all
examples, the derived exact solutions to the differential equations
were verified by using the MATLAB commands. Variations of the
solutions were plotted to help understanding of their physical
meanings. Numerical methods for solving these second-order
linear differential equations were also introduced. Accurate
approximate solutions were obtained by using MATLAB com-
mands. The main advantage of these commands is that they can
provide approximate solutions when the exact closed-form
solutions are not available. Thus, for a given differential equation,
finding exact closed-form solution should be tried first. If the exact
solution is not available, the numerical method is an effective tool
to provide approximate solution. Examples have shown that the
MATLAB commands can provide approximate solutions with high
accuracy and efficiency.

Exercises

1. Ineach problem below, show that,
@ y = e2+3e“ isthesolution of
y"+6y'+8y = 0
(b) y = 2e5 +4e3¥ isthe solution of
y"-8y'+15y = 0
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() y = exs+T7ex is the solution of
6y"+5y'—-y = 0

(d y = 2ex3+5e4 isthe solution of
3y"+11y'—4y = 0

() y = e e jsthe solution of

24y" +29y'-63y = 0

2. Find the determinant (Wronskian) of each solution in Problem
1. Then, verify these determinants by using the det command.

3. Employ the diff command to show that,
y = 3e2x-7xe?

is the exact solution of the second-order homogeneous
differential equation,

y'+4y'+4y = 0
Then, determine its determinant by using the det command.

4. Employ the diff command to show that,
y = €XC0S2X + exsin 2x

is the exact solution of the second-order homogeneous
differential equation,

y'—2y'"+5y = 0
Then, determine its determinant by using the det command.

5. Find the second-order homogeneous differential equations that
correspond to the following solutions,

(@) ex + 2e2x (b) 3e-x + e3x
(c) 3+ 5e#x (d) 7e-x+8ex
(e) e3> + 2e5x (f) 2e2x + 3e-3«

6. Solve the following second-order homogeneous differential
equations when their roots are distinct real numbers,
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(@ y'+y-12y =
(b) y"+2y" 35y =
(c) 6y"-5y -4y =
(d) 15y"—23y'—22y =
(e) 20y"+73y'+63y = 0

Show the derivation of their solutions in detail. Then, use the
dsolve command to verify the derived solutions.

o O O o

7. Solve the following initial value problems that are governed by
the second-order homogeneous differential equations and
initial conditions.  The characteristic equations of these
differential equations contain the roots that are distinct real
numbers.

(@ y'-y-6y =0
y(0)=0, y'(0)=1
(b) 2y"+3y'-5y = 0
y(0)=1, y(0)=0
() 9y"+3y'-20y = 0
y(0)=0, y'(0)=2
(d) 7y"-24y'-31ly = 0
y()=x, y(0)=2r
Show the derivation of their solutions in detail. Then, use the

dsolve command to verify the derived solutions and the
ezplot command to plot y that varies with x.

8. Solve the following second-order homogeneous differential
equations when their roots are repeated real numbers,

@ y"-10y'+25y = 0
(b) 4y"+4y'+y =0
(c) 9y"-12y'+4y = 0
(d) 4y"+28y"+49y = 0
(e) 25y"-30y"+9y = O
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10.

11.

Show the derivation of their solutions in detail. Then, use the
dsolve command to verify the derived solutions.

Solve the following initial value problems that are governed by
the second-order homogeneous differential equations and
initial conditions.  The characteristic equations of these
differential equations contain the roots that are repeated real
numbers.

@ y"+6y'+9y = 0
y(0)=0, y'(0)=2
(b) 4y"-28y"+49y = 0
y(0)=1, y'(0)=0
(c) 16y"-8y'+y = 0
y(0)=0, y'(0)=1
(d) 49y"+28y'+4y = 0
y(0)=1, y'(0)=0
Show the derivation of their solutions in detail. Then, use the
dsolve command to verify the derived solutions.

Solve the following second-order homogeneous differential
equations when their roots are conjugate complex numbers,

@ y'-2y'+6y = 0

(b) y"+6y"+13y = 0

() y"+4y'+5y = 0

(d) y"+3y' +18y 0

(e) y"-6y'+10y = 0
Show the derivation of their solutions in detail. Then, use the
dsolve command to verify the derived solutions.

Solve the following initial value problems that are governed by
the second-order homogeneous differential equations and
initial conditions.  The characteristic equations of these
differential equations contain the roots that are conjugate
complex numbers.
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12.

13.

Chapter 5 Second-Order Linear Differential Equations

@ y"+4y'+5y = 0
y(0)=1, y'(0)=0
(b) y"—-6y'+45y = 0
y(0)=0, y'(0)=2
(c) y"-6y"+13y = 0
y(z/2)=0, y(z/2)=2
@d y'-y+y =0
y(0)=1, y'(0)=4
Show the derivation of their solutions in detail. Then, use the

dsolve command to verify the derived solutions and the
ezplot command to plot y that varies with x.

Employ the dsolve command to solve the second-order
homogeneous differential equations with constant coefficients
as follows,

(@ y'-4y'+4y =0
(b) y"-9y'+20y = 0
(c) 4y"-12y'"+9y = 0
@ y'+y =0
(e) y"—-6y'+25y = 0

In each problem, verify the obtained solution with that derived
by hands. Or substitute it into the differential equation to
check whether the differential equation is satisfied.

Employ the dsolve command to solve the initial value
problems governed by the second-order differential equations
and initial conditions below,
@ y"-6y'+9y = 0
y(0)=0, y'(0)=3
(b) y"-5y'+6y = 0
y@)=1, y@)=2
() y"+4y'+5y = 0
y(0)=1, y(0)=0
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14.

15.

(d y"+8y -9y = 0
y)=2, y@)=0

In each case, verify that the solution satisfies the differential
equation and initial conditions.

Use the method of undetermined coefficients to solve the
second-order nonhomogeneous differential equations,

@ y'-y-2y = 2x

(b) y"-5y'+6y = e*x+cosx
(c) y"-6y +9y = sin(3x)
(d) y"+4y' +4y = 3ex

(e) 4y"-8y'+3y = X2+sinx

Show the derivation in detail. Compare the derived solutions
with those obtained by using the dsolve command.

Use the method of undetermined coefficients to solve the
initial value problems that are governed by the second-order
nonhomogeneous differential equations and initial conditions,

(@ 9y"+3y'—20y = sinXx+cosx
y(0)=1, y(0)=0
(b) 16y" -8y +y = X2+ 2xX
y(0)=0, y'(0)=1
(c) y"+4y = cos(2x)
y(0)=0, y(0)=0
(d) y"—-6y' +13y = ex
y(0)=1, y(0)=0
Show detailed derivation of the exact solutions. Then, verify
these solutions with those obtained from using the dsolve

command. In each case, employ the ezplot command to plot
the variation of y that varies with x.
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16. Solve the following second-order nonhomogeneous differential
equations by the method of variation of parameters. Show the
derivation of their solutions in detail. Then, verify the
solutions with those obtained by using the dsolve command.

(@ y"+4y = cotx
(b) y"-vy = cosh x
() y"+2y'+y = exInx

(d) y"+3y'+2y = sinex
(e) 4y"—4y'+y = ex2J1-x?

17. Solve the following initial value problems by using the method
of variation of parameters,
@ y'-y = xex
y(0)=1, y(0)=0
(b) y"+2y' -8y = 2e2—gx
y(0)=1, y(0)=0
(c) y'—4y' +4y = (6x2—3x)e2x
y(0)=1, y(0)=0
(d) y"—4y' +5y = sinx+3x
y(0)=1, y(0)=0
Show detailed derivation of the exact solutions. Compare
these exact solutions with those obtained by using the dsolve

command. Then, employ the ezplot command to plot their
variations for 0 < x <1.

18. Use the ode23 command to find the approximate solution of
the initial value problem governed by the second-order
homogeneous differential equation,

y"+5y' +6y = 0 0<x<2
with the initial conditions of y(0)=2 and y'(0)=5. Repeat
solving the problem but by using the dsolve command to find
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19.

20.

21.

22.

the exact solution. Plot to compare the two solutions for
0<x<2.

Use the ode23 command to find the approximate solution of
the initial value problem governed by the second-order
nonhomogeneous differential equation,

y' =3y’ +2y = e¥x 0<x<2

with the initial conditions of y(0)=1 and y'(0)=-1. Then,

use the dsolve command to find the exact solution. Plot to
compare the two solutions for 0 <x<2.

Use the ode45 command to find the approximate solution of
the initial value problem governed by the second-order
nonhomogeneous differential equation,

y"+2y'+5y = 4excos(2x) 0<x<5

with the initial conditions of y(0)=1 and y'(0)=0. Repeat

solving the problem but by using the dsolve command to find
the exact solution. Plot to compare the two solutions for
0<x<5.

Use the ode45 command to find the approximate solution of
the initial value problem governed by the second-order
nonhomogeneous differential equation,

4y"—y = X—2-5C08X —e¥? 0<x<5

with the initial conditions of y(0)=2 and y'(0)=1. Repeat

solving the problem but by using the dsolve command to find
the exact solution. Plot to compare the two solutions for
0<x<5.

Use the ode45 command to solve for the approximate solution
of the Bessel equation,

x2y"+xy'+x2y = 0 1<x<6
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23.

24,
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with the initial conditions of y(1)=0 and y'(1)=1. Plot this

approximate solution for the interval of 1< x <6. Then, check
whether the dsolve command can provide exact solution. If
it can, plot to compare the two solutions.

Employ the ode23 command to find the approximate solution
of the second-order nonlinear equation,

y'—y+ = 0 0<x<2

with the initial conditions of y(0)=1 and y'(0)=-3. Plot this

approximate solution for the interval of 0<x<2. Then,
check whether the dsolve command can provide exact
solution. If the exact solution can be obtained, plot to compare
the two solutions.

Employ the ode45 command to solve the initial value problem
that is governed by the second-order nonlinear differential
equation,

y'—(1-y2)y'+y = 0 0<x<20

with the initial conditions of y(0)=1 and y'(0)=1. Plot the
computed variations of y(x) and y'(x) in the interval of

0<x<20. Then, use the ode23s command to solve this
problem again when the differential equation changes slightly
to,

y"—10001-y2)y'+y = O 0<x <6000

Plot the solution of y(x) in the interval of 0<x<6000.
Provide comments on the accuracy of the approximate solution
y(x) from its abrupt change within a small interval of x.



Chapter
6

Higher-Order Linear
Differential Equations

6.1 Introduction

Once we understand how to solve the second-order
differential equations explained in the preceding chapter, we can
follow the same procedure to solve the higher-order differential
equations. The higher-order linear differential equations arise in
many scientific and engineering problems, such as the deflection of
a beam under loading and the laminar flow behavior over a flat
plate. Exact solutions obtained from solving these differential
equations help us to understand more about the problem behaviors.

We will start by solving the higher-order homogeneous
differential equations with constant coefficients. The roots of their
characteristic equations could be distinct real, repeated real,
complex conjugate, or mixed numbers. Exact solutions obtained
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from different types of these roots are in different forms. After
that, we will extend the idea to solve the nonhomogeneous
differential equations. In all cases, we will verify the derived
solutions by using the MATLAB commands.

For more complicated differential equations, their exact
solutions may not be derived in closed-form expressions. In these
cases, we will employ MATLAB commands that use numerical
methods to solve for approximate solutions. Plotting commands
will also be used to display variations of the computed solutions.
The techniques presented in this chapter will help us to understand
clearly on how to solve the higher-order differential equations.

6.2 Homogeneous Equations with Constant Coefficients

General form of the n"™-order homogeneous linear dif-
ferential equation with constant coefficients is
dny dn—ly d2y

a dx”+a”‘1W+ ........ +a > dx 2+a1d =0

where a,, a, 4, ..., &,, & and a, are the constant coefficients

while the right-hand-side of the equation is zero. A solution of the
above differential equation is in the form of e*x where A4 is a
number. We can prove this by substituting it into the differential
equation to get,

(aiA"+a A"+ +a,A?+al+a))et* = 0

After dividing through by e#x, the characteristic equation is
obtained,

al"+a A"+ +a,A?+ai+a, = 0

which can be solved for n values of the root 1.
For example, the third-order homogeneous differential
equation,
d’y d%
o Ve T = 0

has the characteristic equation in the form,
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A3-642+111-6
or, (A-1)(A-2)(1-3)
which leads to the three values of root A as,

A =1, A,=2 and A4, =3

It is noted that MATLAB contains the roots command that can be
used to factorize the algebraic equation above conveniently,

>> roots([1 -6 11 -6])

ans =

I Il
o O

3.0000
2.0000
1.0000

Thus, the exact solution of the third-order differential
equation is,
y(X) = ex+e4ex
We can verify this exact solution by taking their derivatives and

substituting them into the left-hand-side of the differential
equation,

¥ ex + 2e2x + 3e%
dx
d2y — X 2X 3X
W = ex+4e2x 4+9e
d3y — X 2X 3x
e - ex + 8e2x + 27e

to get,

3 2

4y _ 6M +11ﬂ — 6y =(e*+8e2* +27e%)

dx? dx? dx
—6(ex +4e2 +9e3 ) +11(e* +2e2* +3e%) —6(e* +e2* +e%) =0
The result is zero which is equal to the right-hand-side of the

equation. It is also noted that the diff command can be used to
find the derivatives of the solution easily as follows,
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>> syms X y syms

>> y = exp(X) + exp(2*x) + exp(3*x);
>> LHS = diff(y,x,3) - 6*diff(y,x,2) +
11*diff(y,x) - 6*y

LHS =
0

The general solution y(X) contains the three functions of

y,=€x, y,=e> and y, =e¥ which are linearly independent.

This can be verified by finding the determinant (Wronskian) that
must not be zero as follows,

Yi Y2 Y
W = |y, ¥, Vs

" " "
Yi Y2 Y3

ex er eSx

— ex 292)( 3e3x — 266x

ex  4ex Qe

The determinant above can be determined conveniently by using
the det command,

>> W=[yl y2 y3; diff(yl,x) diff(y2,x) diff(y3,x);
diff(yl,x,2) diff(y2,x,2) diff(y3,x,2)];
>> det(W) det

ans =

2*exp(6*x)

The roots A from the characteristic equation may be
distinct real, repeated real or conjugate complex roots which lead to
different forms of the solutions. We will learn how to derive the
solutions according to different types of the roots A in the
following sections.
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6.3 Solutions from Distinct Real Roots

We will use the following examples to show the derivation
of exact solutions for the higher-order differential equations when
roots of their characteristic equations are distinct real numbers.

Example Find solution of the third-order homogeneous differential
equation,
dsy _dzy .dy _
L% Pde Pa Y 7 O

By assuming the solution in the form of e#x and
substituting it into the differential equation, we get,

1243etx -5 2etx —6Aeix —eix =

After dividing through by e#x, the characteristic equation in the
form of an algebraic equation is obtained,

1243 -542 -64 -1
or, (A-1)(34+1)(42 +1)
ie, 4, =1 4, =-1Y3and 4, =-1/4.

The factor command can be used to factorize the above
algebraic equation,

>> syms lambda

>> factor(12*lambdan3- 5*lambda”™2 - 6*lambda - 1)

I I
o o

ans =

(lambda - 1)*(3*lambda + 1)*(4*lambda + 1)

Thus, the general solution of the given third-order
differential equation is,

y = Cex+Cex3+CpexH

where C;, C, and C, are constants. The same solution is obtained
by using the dsolve command,
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>> dsolve("12*D3y - 5*D2y - 6*Dy - y = 0", "Xx")
ans =

Cl*exp(x) + C2/exp(x/3) + C3/exp(x/4)

Example Find solution of the fourth-order homogeneous differen-
tial equation,

d'y _d?y
—-5—+4y = 0
dx*  dx? y
Similar to the preceding example, we assume the solution
in the form of e4x and substitute it into the differential equation to

obtain the characteristic equation,
At —BA% +4 0
Or, (A-1)(A+1)(1-2)(1+2) 0
e, 4 =1 4,=-1 4;=2and 4, =-2.  Thus, the general
solution is,

y = Cper+Ce*+Ce?x+Ce

where C,, C., C, and C, are constants. The same solution is
obtained by using the dsolve command,

>> syms X y

>> dsolve("D4y - 5*D2y + 4*y = 07, "x")

ans =
C4*exp(x) + C5/exp(x) + C6*exp(2*x) + C7/exp(2*x)
Example Solve the initial value problem governed by the fourth-
order differential equation,

dvy dsy _d2y dy _
e Tae ax T =0
with the initial conditions of y(0)=1 y'(0)=0, y"(0)=0 and
ym(O):O.
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We first solve for a general solution of the given

differential equation. Assuming the solution in the form of e4x
leads to the characteristic equation,

M+ A3-TA2-2+6 = 0

The factor commandcan be used to factorize the algebraic
equation above,

>> syms lambda
>> factor(lambda”4+lambdan3-7*lambda”2-l1ambda+6)

ans =
(lambda-1)*(lambda-2)*(lambda+1)*(lambda+3)

ie., A-1)(A1-2)(21+)(1+3) = 0

So that 4, =1 4, =2, ,,=-1and4,=-3. Thus, the general
solution is,

y = Cgex+Cee2x+Cex+C e

where C;, C,, C,, and C, are constants that can be determined
from the initial conditions as follows,

y0) = 1 c, + C, + C, + C, =1

y© =0 C +2C, - C, - 3C, = 0
y'(0) = 0 C, +4C, + C, + 9C, = 0
y’”(O) = 0 C +8C, - C, - 27(311 = 0

The results are C,=3/4, C,=-15, C,=12and C, =-1/20.
Hence, the exact solution is,

— Eex _leZX +£e—x _ie—Sx
Yy = 3% 7552 T
The same exact solution can be obtained by using the

dsolve command,
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>> syms X Yy

>> dsolve("D4y+D3y-7*D2y-Dy+6*y=0","y(0)=1",
"Dy(0)=07,"D2y(0)=0", "D3y(0)=0", "Xx")

ans =

1/(2*exp(x)) - exp(2*x)/5 - 1/(20*exp(3*x)) +

(B*exp(x))/4

The solution of y that varies with x can be plotted by using the
ezplot command as shown in the figure.

y(x) 2|

It is noted that MATLAB contains commands that can
convert the solutions into other computer language directly. This is
convenient when the solution is to be used further in other
programs. For example, the solution above is converted to Fortran
language by using the fortran command,

>> fortran(ans)

ans =

t0 = exp(-x)*(1.0D0/2.0D0)-exp(x*2.0D0)*(1.0D0/5.0D0)-exp(x*-3.0D0
+)*(1.0D0/2.0D1)+exp(x)*(3-.0D0/4.0D0)

In the Fortran language above, the executing statements must be in
between the 7" and 72" column. The continuation line (last line
above) that contains more executing statements is indicated by the
plus sign in the 6™ column.
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6.4 Solutions from Repeated Real Roots

In the preceding chapter when the roots of the second-
order differential equations are repeated, we have learnt how to

derive for their solutions. For example, if the roots are 4, =3 and
A, =3, then the general solution is in the form of,
y = e+ xex

We will follow the same procedure to derive solutions of the
higher-order differential equations when their roots are repeated.
We will show detailed derivation by using the following examples.

Example Find solution of the third-order homogeneous differential
equation,

We assume the solution in the form of e4x, substitute it

into the differential equation and divide through by e** to get the
characteristic equation as,

A8 =342 +31-1 0
Or (A-1)(21-1)(1-1) 0
le., 4, =4, =4, =1. Thus, the general solution is,

y = Cpex+C,xex+C,x%*

The same solution is obtained by using the dsolve
command,

>> Syms X y
>> dsolve("D3y - 3*D2y + 3*Dy - y = 0", "Xx")

ans = dsolve

Cl2*exp(x) + C1l3*x*exp(x) + Cl4*x"2*exp(x)

Example Find solution of the fourth-order homogeneous differen-
tial equation,

g;§’+6gx33’+13‘; Z+123y+4y - 0
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Similar to the preceding example, by assuming the
solution in the form of e+x, this leads to the characteristic equation,

A4 +643+1342+124+4 = 0

The factor command is used to factorize the algebraic equation
above,

>> syms lambda
>> factor(lambda™4+6*lambda”3+13*lambda”2+12*lambda+4)

ans =

(lambda + 2)72*(lambda + 1)72

which gives, (A+1)(A+2° = 0
then, A=4=-1 and A4 =4,=-2

Thus, the general solution of the fourth-order differential
equation is,
y = Cex+Cxex+CLe 2 +Cyxe
where C, C,, C; and C; are constants. The same solution is
obtained by using the dsolve command,

>> syms X y

>> dsolve("D4y + 6*D3y + 13*D2y + 12*Dy +
4*y = 0%, "x")

ans =

Cl5/exp(x) + (Cl6*x)/exp(xX) + Cl7/exp(2*x) +

(C18*x)/exp(2*x)

Example Solve the initial value problem governed by the fourth-
order differential equation,
d2y

d4y B
e _8W+16y = 0

with the initial conditions of y(0)=0, y'(0)=1 y"(0)=0 and
y"(0)=0.
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Similar to the preceding example, we start by assuming
the solution in the form of e4x and substituting into the differential
equation. This leads to the characteristic equation in the form of
algebraic equation as,

A4—-812+16 = 0
or, (=2 (A +2)
Then, the roots are,

A=4=2 and A =4=-2

Thus, the general solution is,

|
o

y = C,e% +Cyxex +C,e2x+C,,xe

where C,, C,, C,, and C,, are constants that can be determined
from the given initial conditions as follows,

y(0) = 0©; C, + 0+C, + 0=0
y’(O) = 1 2C, + Cp —26, + Cp =1
y”(O) = 0 Co + Cp +C - Cp =0
y"(0) = 0 2C, +3C, —2C,, + 3C, = 0

The four equations above give the values of the four
constants as C, =3/8, C,,=-1/4, C,,=-3/8 and C,, =-1/4.
Hence, the exact solution of this initial value problem is,

— 3 ZX_E 2x_§ —ZX_E —2X
y = ge 4X6 8e 4xe

The same exact solution is obtained by using the dsolve,

>> syms X y
>> dsolve("D4y - 8*D2y + 16*y = 0", "y(0)=0",
"Dy(0)=1", "D2y(0)=07", "D3y(0)=0%", "x%)

ans =

(B*exp(2*x))/8 - 3/(B8*exp(2*x)) - x/(4*exp(2*x))
- (x*exp(2*x))/4
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The solution of y that varies with x is plotted as shown in the
figure.

y(X) 2

6.5 Solutions from Complex Roots

Roots of the characteristic equations from the higher-order
differential equations may be in the form of the conjugate complex
numbers. In this case, derivation of the general solutions is more
complicated as shown by the following examples.

Example Find solution of the fourth-order homogeneous differen-
tial equation,
d4y dzy B
W + SW + 4y = 0
By assuming the solution in the form of e4x, substituting
it into the differential equation and dividing through by e#x, we
obtain the characteristic equation as,
A*+512+4

which is, (12 +1)(A2 +4)

I I
o O
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Then, 4, =i, 4, =—1, 1, =2i and 4, =-2i, where i=v-1. Thus,
the general solution of the fourth-order differential equation is,
y = Ae*x+Be™x+Ce?x+ De2i
where A, B, C and D are constants. From the Euler’s formula,
eisx = cos(fX)+ isin(pX)
and e-sx = cos(Sx)—isin(Sx)

the general solution can be written in the form of sine and cosine
functions as,

y = Cycos(x)+ C,,sin(x)+ Cy cos(2x) + C,g sin(2x)
where C,;, C,,, C,,, C,, are functions of the constants A, B, C,
D above.

The same solution is obtained by using the dsolve
command,

>> syms X Yy

>> dsolve("D4y + 5*D2y + 4*y = 0", "x")

ans =

C23*cos(x) + C24*sin(x) + C25*cos(2*x) +
C26*sin(2*x)

Example Solve the initial value problem governed by the fourth-
order differential equation,

d4y dzy B
W+34W+225y = 0
with the initial conditions of y(0)=1, y'(0)=0, y"(0)=0 and
y"(0)=0.
Similar to the preceding example, we assume the solution
in the form e4x and substitute it into the differential equation. This
leads to the characteristic equation as,

A*+3442+225 = 0
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The factor command can be used to factorize the algebraic
equation above,

>> syms lambda

>> factor(lambda™4 + 34*lambda”2 + 225)

ans =

(lambdan2 + 9)*(lambdan2 + 25)

to get, (12+9)(12+25) = 0

Then, 4, =31, 4, =-3i, A4, =5 and 4, =-51 where i=v-1.
Thus, the general solution of the fourth-order differential equation
is,
y — Ae3iX+Be73iX +Ce5iX+De75iX
where A, B, C and D are constants. By applying the Euler’s
formula, the general solution above can be written in the form of
sine and cosine functions as,
y = C,,c08(3x)+ C,sin(3x)+ C,,cos(5x) + Cy, sin(5x)

where C,,, C,, C, and C,, are to be determined from the four
initial conditions as follows,

y(0) 1 C,, + 0 + C, + 0 =1
y(0) = o; 0+ 3, + 0+ 5C, =0
y'(0) = 0; -9C,, + 0 — 25C, + 0 =0
y"(0) = o 0 - 27C,, + 0 —125C, = 0

These four equations give the values of the four constants
as C,, =25/16, C, =0, C,,=-9/16 and C,,=0. Hence, the
exact solution of this initial value problem is,

25 9
y = Ecos(sx)—ﬁcos(Sx)
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The same exact solution is obtained by using the dsolve
command,

>> syms X y dsolve

>> dsolve("D4y + 34*D2y + 225*y = 0", "y(0)=1",
"Dy(0)=0", "D2y(0)=0", "D3y(0)=0", "x")

ans =
(25*cos(3*x))/16 - (9*cos(5*x))/16
Such exact solution can be plotted easily by using the ezplot

command. The solution of y that varies with x is shown in the
figure.

(25c0s(3x))/16 —(9cos(5x))/16

05

y(X) of

05|

6.6 Solutions from Mixed Roots

There are cases when the roots of the characteristic
equation from the given differential equations are mixed between
the real and complex numbers. The same procedure explained
earlier can be applied to derive for solutions as shown in the
following examples.
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Example Find solution of the fourth-order homogeneous differen-
tial equation,
dy ,d3 _d?y _dy _
e 2O|3 2O|2 2d—+y =0
The characteristic equation corresponds to the differential
equation is,

At =248 +222 =24 +1
o, (A-1)° (A2 +1)
ie, 4=1 4,=1 A =iand4, =—i wherei=v—1. Since the

roots consist of repeated real and conjugate complex numbers, then
the general solution is in the form,

y = Ae*+Bxe*+Ce*+De

where A, B, C and D are constants. After applying the Euler’s

formula, the solution can be written in the form of sine and cosine
functions as,

y = C,ex+C,xex + C,co8(x) + Cyysin(x)
where C,,, C,,, C,; and C,, are constants.

The same solution is obtained by using the dsolve
command,

>> syms X y
>> dsolve("D4y-2*D3y+2*D2y-2*Dy+y = 0", “x")

ans =

C31*exp(X)+C32*x*exp(x)+C33*cos(x)+C34*sin(x)
Example Solve the initial value problem governed by the fourth-
order differential equation,

dty ,d%y ,dzy ,dy . _

d Y TPk Cax Y = O
with the initial conditions of y(0)=0, y'(0)=2, y"(0)=0 and
ym(o) — O )




6.7 Nonhomogeneous Equations 203

Since the given differential equation is the same as that in
the preceding example, then the general solution is,

y = C,ex+C,xex+C,,cos(x)+ C,,sin(x)

where C,, C,,, C,; and C,, are to be determined from the given
initial conditions of,

y0) = 0; C, + 0 +Cy, + 0 =0
y©0 =2 ¢C, + C, + 0 + C,, = 2
y0 =0, C, + 2, - C,+ 0 =0
y"0) = 0, C, + 3, + 0 - C,, =0

By solving the four equations above, the four constants are
C,=-1 C,,=1 C,=1and C,, =2. Hence, the exact solution

of this initial value problem is,
y = —ex+xe<+cos(x)+ 2sin(x)

The same exact solution is obtained by using the dsolve
command,

>> syms X Yy

>> dsolve("D4y - 2*D3y + 2*D2y - 2*Dy + y = 0",
"y(0)=0", "Dy(0)=2", "D2y(0)=0%, "D3y(0)=0", "x%)
ans =

cos(X) - exp(xX) + 2*sin(x) + x*exp(x)

The solution y that varies with x is plotted by using the ezplot
command as shown in the figure.

6.7 Nonhomogeneous Equations

The higher-order nonhomogeneous differential equations
that we will learn how to solve for their solutions are in the form,



204 Chapter 6 Higher-Order Linear Differential Equations

cos(x)—exp(x)+ 2sin(x)+ xexp(x)

500 -
450 -
400 -

350 -

Y(X) .0l

200 -
150 -
100 -

50 -

dn dn-t d2 d
a8 S ey = 109

where the coefficients a,, a, ,, ..., @,, 8 and a, are constants.

The function f(x) on the right-hand-side of the equation may be
in form of the polynomial, exponential, sine and cosine functions.
The general solution of such differential equation consists of two
parts,

y = yh+yp

where vy, is the homogeneous solution of the homogeneous
differential equation and y, is the particular solution. We will

employ the method of undetermined coefficients learned in the
preceding chapter to find the particular solution. The entire process
for deriving general solutions of the higher-order nonhomogeneous
differential equations will be demonstrated by using the following
examples.
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Example Find solution of the third-order nonhomogeneous
differential equation,
dsy d2y .dy _
de e Cax - L
The corresponding characteristic equation of the homo-
geneous differential equation above is,

AA=-3)(1+2) = 0
which leads to the three roots of, 4, =0, 4,=3 and 4, =-2.

Then, the homogeneous solution is,
Yo = Gy +Cye® +Cye
where C,., C;; and C,, are constants. The same homogeneous
solution is obtained by using the dsolve command,

>> syms X Yy

>> dsolve("D3y - D2y - 6*Dy = 0", "x")
ans =

C35 + C36*exp(3*x) + C37/exp(2*x)

In the process of finding the particular solution vy using

the method of undetermined coefficients, since the function f(x)
on the right-hand-side of the differential equation is 3x+1, we
should assume the solution in form of the polynomials. The
assumed polynomials should be second order so that after taking
derivatives according to the terms on the left-hand-side of the
equation will yield the first-order polynomials (term 3x) on the
right-hand-side of the equation. Thus, we assume the particular
solution in the form,

Yy, = AxX2+Bx+C
where A, B and C are constants.

We substitute the assumed vy, into the differential
equation to get,
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(0)— (2A) - 6(2AX+B) = 3x+1
(-12A)x + (-2A—6B) = 3x+1

By comparing coefficients, the two algebraic equations are
obtained,

-12A = 3
and -2A-6B =1
These two equations are solved to give A=-1/4 and B=-1/12.
Then, the particular solution is,
Yo = —5X2—5X

Hence, the exact solution of the third-order nonhomogeneous
differential equation is,
X2 X
y = C35+C3693X+C37e_zx_7_ﬁ
The same solution is obtained by using the dsolve
command,

>> Syms X y

ans = dsolve

C35 + C36*exp(3*Xx) + C37/exp(2*X) - x"2/4 - x/12

where C,,, C,, and C,, are constants.

Example Find solution of the fourth-order nonhomogeneous
differential equation,
d2y

d4y :
Xt 5d—+4y = 10sin x

The corresponding characteristic equation of the homo-
geneous differential equation above is,

A —512 4 4
or, (A=) (A +1)(A-2)(A+2)

I |
o o
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The four roots are 4, =1, A4, =-1, A4, =2 and 4, =-2 which lead
to the homogeneous solution,

Yy, = Cguex+Cyex+C,e2x+C,e2x

Since the function f(x) on the right-hand-side of the

differential equation is in the form of sine function, thus we should
assume the particular solution in the form of both sine and cosine
functions as,

Y, = Acosx+ Bsinx

where A and B are constants. By substituting the assumed
particular solution y  into the differential equation,

(Acos x+ Bsinx)—5(—Acos x—Bsin x)+4(Acos x+ Bsin x)

= 10sinx
or, (A+5A+4A)cosx +(B+5B+4B)sinx = 10sinx
ie., (L0A)cosx + (10B)sinx = 10sinx

and comparing the coefficients, we obtain A=0 and B=1. Then,
the particular solution is,

Yy, = sinx

Thus, the general solution of the fourth-order nonhomogeneous
differential equation is,
y = Cuex+Cuex+C,e2x+Cpe 2 +sinXx

The same solution is obtained by using the dsolve
command,

>> syms X Yy
>> dsolve("D4y - 5*D2y + 4*y = 10*sin(x)", "x")

ans =

C38*exp(x) + C39/exp(x) + C40*exp(2*x) +
C41/exp(2*x) + sin(x)
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Example Find solution of the third-order nonhomogeneous
differential equation,

ds d? d
d_><¥_3d_>g+3d_§_y = ©Gex

Similar to the preceding example, we first assume the

homogeneous solution in the form of e4x, substitute into the

differential equation and divide through by e+x to get the

characteristic equation,
A3-32+31-1 = 0
or, 1-1)(A-1)(1-1) = 0
which leads to the three roots of 4, =1, 4,=1and A, =1. Then,
the homogeneous solution is,
y, = C,ex+Cpxex+C,x2ex
In the process of finding the particular solution, since e*,

xex and x2ex are solutions of the third-order differential equation,
thus we should assume the particular solution in the form,

y, = Axdex

After substituting the assumed solution y, into the differential
equation, we obtain,

6Aex = 6ex
ie., A =1
so that, y, = X%

It is noted that the di ff command can alleviate the task of
substituting y, into the left-hand-side of the differential equation,

>> syms A

>> yp = A*X"3*exp(X);

>> LHS = diff(yp,x,3)-3*diff(yp,x,2)+
3*diff(yp,x)-yp diff

LHS =

6*A*exp(x)
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Hence, the general solution of the third-order nonhomo-
geneous differential equation is,

y = C,ex+C,xex+C,x%x + X3
The same solution is obtained by using the dsolve command,

>> dsolve("D3y-3*D2y+3*Dy-y = 6*exp(X)", "x")
ans =

CaA2*exp(X) + CA3*x*exp(X) + C44*x"2*exp(x) +
xX"3*exp(X)

Example Solve the initial value problem governed by the third-
order differential equation,

dsy d2y 13dy
o Tdxe T2 dx
with the initial conditions of y(0)=1, y'(0)=2 and y"(0)=-1.

— -X

We start from finding the homogeneous solution from the
homogeneous differential equation. By assuming the solution in
the form of e+x, the corresponding characteristic equation is,

l3+/12+%/1 = 0

or, /1(/12 +/1+%j = 0
So that the three roots are,
1 5.
= = —— 4+ —
A 0, Ay A 5t 2|
Then, the homogeneous solution is,
Y, = C,+C,e2cos(5x/2)+ C,e2sin(5x/2)
where C,, C,, and C,, are constants to be determined from the
initial conditions.

The particular solution is assumed in the form,
y, = Ae
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By substituting the assumed particular solution into the differential
equation, we obtain,

13, .
—?Ae = €
. 2
l1.e., A = —E

It is noted that the d i £f command can help finding the result of the
three derivative terms on the left-hand-side of the differential
equation,

>> syms A

>> yp = A*exp(-X);

>> LHS = diff(yp,x,3) + diff(yp,x,2) + diff
(1372)*diff(yp,x)

LHS =

-(13*A)/(2*exp(x))

Thus, the general solution of the third-order nonhomo-
geneous differential equation is,

y = C,+C,e*2cos(5x/2)+ C,e*2sin(5x/2) - 1—23e—x

where C,,, C,, and C,, are constants that can be determined from
the initial conditions as follows,

y(O) =1 C45 + C46 - ﬁ =1
' 1 5 2
Yy (0) = 2 0 - E C w6 T E C 4z T ﬁ = 2
" . 5 2
y (O) = -1 0 - 6C46 - E C47 - E = -1

These three equations are solved to give C,, =17/13, C,, =—2/13
and C,, =46/65. Hence, the solution of the initial value problem
IS,



6.8 Numerical Methods 211

17 2 46 . 2
— . _ = a-x2 a2 _ —X
y 13 13° cos(5x/2)+65e sin(5x/2) 3¢
The same solution is obtained by using the dsolve
command,

syms X Yy

>> dsolve("D3y + D2y + (13/2)*Dy = exp(-x)",
"y(0)=1","Dy(0)=2","D2y(0)=-1","X")

ans =

(46*sin((56*x)/2))/(65*exp(x/2)) -

(2*cos((5*x)/2))/(13*exp(x/2)) - 2/(13*exp(x)) +

17/13

The solution of y that varies with x can be plotted easily by using
the ezplot command as shown in the figure.

(46sin((5%)/2))/(65exp(x/2)) ... +17/13

6.8 Numerical Methods

For all examples presented earlier in this chapter, the
higher-order differential equations are linear. The coefficients of
the derivative terms are constants so that their exact solutions are
not difficult to find. The differential equations become nonlinear if
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these coefficients are function of y. Exact solutions are not
available for most nonlinear differential equations.

In this section, we will employ numerical methods to find
approximate solutions for both linear and nonlinear differential
equations. MATLAB contains many commands that can provide
approximate solutions with high accuracy. Several examples are
presented to demonstrate the capability for finding solutions,
especially for nonlinear differential equations where their exact
closed-form solutions are not available.

Example Use the ode23 command to solve the initial value
problem governed by the third-order homogeneous differential
equation,

dsy dzy . dy B
lom—mﬁ'l(}&— =0 0<x<10
with the initial conditions of y(0)=0, y'(0)=0 and y"(0)=1.
Then, plot to compare the approximate solution with the exact
solution.

The ode23 command uses the combined second- and
third-order Runge-Kutta method to solve the first-order differential
equation. Since the governed differential equation is third order,
thus we need to separate it into three first-order differential
equations. This can be done by first writing the given differential
equation in the form,

ds d2 d
10 dxy;— dx¥1+1o d’)’(l—y1 "

If we assign,

dy, _ ay, _
- g =Y

then, the given differential equation becomes,

d
% = (y1_10y2+Y3)/10

To solve these three first-order differential simultaneously,
it is more convenient to create an m-file. The m-file, examplel.m,
consists of the three first-order differential equations as follows,
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function yexl=examplel(X,y)

yexl = [y(2); y(3); (y(1)-10*y(2)+y(3))/10];

We then employ the ode23 command by typing on the Command

Window as,

>> [x,y] = ode23("examplel®, [0 10], [0 O 1])

MATLAB will compute the values of y,, y, and y, at different x
locations, and at the same time, print the values of X, y,, y, and
y, on the screen monitor. In the ode23 command, the values in

the first square bracket denote the interval of 0 < x <10, while the
values in the second square bracket are the three initial conditions
of y,(0)=0, y,(0)=0 and y,(0)=1, respectively.

The computed solutions of y,, y, and y, that vary with x
can be plotted by using the plot command as shown in the figure.

>> plot(x,y(:,1), "-k",x,y(:,2),"--k",x,y(:,3),

=K
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The exact solution of this initial value problem can also be

found by using the dsolve command,

>> dsolve("10*D3y - D2y + 10*Dy — y
"y(0)=0", "Dy(0)=0", "D2y(0)=1", "X
ans =

(100*exp(x/10))/101 - (100*cos(x))/101 -
(10*sin(x))/101

9

The approximate solution using the ode23 command is compared
with the exact solution as shown in the figure. The figure shows
that both solutions agree very well.

3.51

3 Exact

2,51

y(x) 2

1.51

Approx.

0.5r

Example Use the ode45 command to solve the initial value
problem governed by the fourth-order nonhomogeneous differential
equation,

d4y dzy o X

dx4+442W+9y = smx—E 0<x<200
with the initial conditions of y(0)=10, y'(0)=0, y"(0)=0 and
y"(0)=0. Then, plot to compare the approximate solution with
the exact solution.

49
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The ode45 command employs the fourth- and fifth-order
Runge-Kutta method to solve the first-order differential equation.
Thus, before applying the method, the given fourth-order
differential equation is separated into four first-order differential
equations. This can be done by first writing the given differential
in the form of the unknown vy, as,

d4y, d2y, . X
49 X + 442 e +9y, = smx—i
Then, by assigning,
d d d
d_))/(l = Y % = Y and % = Y,

the fourth-order differential equation becomes,

dy, (. X
i (Slnx—§—9y1—442y3)/49

To solve the four first-order differential equations simul-
taneously, we create an m-file, example2.m, that contains the
descriptions as follows,

function yex2=example2(x,y)
yex2 = [y(2); y(3); y(4);
(sin(x) - x/2 - 9*y(1) - 442*y(3))/49];

Then, we can use the ode45 command by typing on the Window
Command as,

>> [Xx,y] = ode45("example2®,[0 200], [10 O O 0O]);

The values of y,, y,, y, and y, at different x locations will be

determined. In the ode45 command, the values in the first square
bracket denote the interval of 0<x <200, while the values in the
second square bracket represent the four initial conditions of
y,(0)=10, y,(0)=0, y,(0)=0 and y,(0)=0, respectively.
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It is noted that the dsolve command can be used to find
the exact solution for this initial value problem,

>> dsolve("49*D4y+442*D2y+9*y = sin(x)-x/2",
"y(0)=10","Dy(0)=0","D2y(0)=0", "D3y(0)=0", "x")

ans =

(441*cos(x/7))/44 - cos(3*x)/44 - x/18 +
sin(3*x)/19008 + 1715*sin(x/7)/4224 - sin(x)/384

The exact and approximate solutions are plotted together by using
the following commands,

>> xe=0:5:200;

>> ye=(441*cos(xe./7))/44-cos(3.*xe)/44- xe./18 +
sin(3.*xe)/19008 + (1715*sin(xe./7))/4224 —
sin(xe)./384;

>> plot(xe,ye, "ok")

>> axis([0 200 -20 10])

>> hold on

>> plot(x,y(:,1),"-k") plot

o))
X
Il

The plot indicates that the approximate solution obtained from the
ode45 command is very accurate as shown in the figure.

Exact

Approx.

0 50 100 150 200
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Example For many higher-order linear differential equations, their
exact solutions are not available. As an example, MATLAB cannot
provide exact solution if the term 9y on the left-hand-side of the

differential equation in the preceding example is changed to 18y,
i.e.,

d4y dzy o X
49W+442W+18y = S|nx—§ 0<x<200

with the same initial conditions of y(0)=10, y'(0)=0, y"(0)=0
and y"(0)=0,

>> dsolve(49*DAy+442*D2y+18*y = sin(x)-x/2",
"y(0)=10", "Dy(0)=0", "D2y(0)=0", "D3y(0)=0", "x")

Warning: Explicit solution could not be found.
> In dsolve at 101

ans =
[ empty sym ]

In this case, the ode45 command can still be used to find
the approximate solution. We can follow the same procedure by
creating an m-file, example3.m, as follows,

function yex3=example3(x,Yy)

yex3 = [y(2); y(3); y(4);
(sin(x) - x/2 - 18*y(1) - 442*y(3))/49];

Then, type the ode45 command on the Command Window as,

>> [x,y] = oded5("example3”,[0 200], [10 0 O O]);

The approximate solution is obtained as shown in the figure by
using the plot command as,

>> plot(x,y(:,1),"-k")
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10k 4

-15 ! ] w
0 50 100 150 200

6.9 Concluding Remarks

In this chapter, we started from the general procedure for
solving the higher-order homogeneous linear differential equations.
The coefficients of the derivative terms are constants so that the
exact closed-form solutions can be derived. The forms of the
solutions depend on the characteristic equations arisen from the
differential equations. The characteristic equations produce roots
that could be distinct real, repeated real and conjugate complex
roots including combination of them. We have learnt how to derive
the solutions and, at the same time, verify them by using MATLAB
commands.

For the nonhomogeneous differential equations, we used
the method of undetermined coefficients to find the particular
solutions. Several examples have been employed to show detailed
derivation of the solutions. The same approach was used to solve
the initial value problems when their initial conditions are given in
addition to the differential equations.

The numerical methods were introduced in the last section
to solve the initial value problems. Examples have shown that the
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numerical methods in MATLAB can provide approximate solu-
tions with very high accuracy. The main advantage of using the
numerical methods is that approximate solutions can be obtained
when the exact solutions are not available. This is true for most
realistic problems when their differential equations are complicated
and usually in nonlinear form.

1.

2.

Exercises

In each sub-problem below, show that the given solution is the
general solution of the corresponding differential equation,

(@)

(b)

(©

(d)

(€)

y = 4dex+7e —2e¥

y" -2y"-5y"+6y = 0

y = e*—3xe? +5x%

y"—-6y"+12y' -8y = 0

y = 2co0sx—sinX+5co0s(2x)— 3sin(2x)
yv +5y"+4y = 0

y = 2ex —3xe2 +4cos(x)—5sin(x)
yv —4y" +5y"—4y'+4y = 0

y = 5e3¥ 4 7xe3x —3e-5x + 2xe-5x

yv +4y" —26y" —60y"+ 225y = O

Employ the det command to determine the determinant
(Wronskian) of the solution for each sub-problem in Problem
1. Note that the diff command can help finding derivatives
of the solution.

Use the di fF command to show that,

y = 4e¥2+4+3e/3 +5e%2 4 723

Is the exact solution of the fourth-order homogeneous differen-
tial equation,
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36y +24y" —47y"+y' +6y = 0

Then, employ the det command to show that the Wronskian is
nonzero.

4. Use the di ff command to show that,
y = e¥245xe32 4 3e-%5 + 2xe¥/5

is the exact solution of the fourth-order homogeneous
differential equation,

100y~ —260y" +109y" +78y"+9y = 0

Then, employ the det command to show that the Wronskian is
nonzero.

5. Use the di ff command to show that,
y = 2cos(x/2)+3sin(x/2)+ 4cos(7 x/3) + 5sin(7x/3)

is the exact solution of the fourth-order homogeneous
differential equation,

36y +205y" +49y = 0

Then, employ the det command to show that the Wronskian is
nonzero.

6. Use the di fFf command to show that,
y = 23+ 7e*—3xe* —5c0s(x) + 4sin(x)

is the exact solution of the fifth-order homogeneous differen-
tial equation,

yv _2ylv +2ym_2yn+ yr — 0

7. Find the third-order differential equations corresponding to the
following solutions,

@ y = ex+3ex+7ex
(b) y = 2e3 + 4xe3x —5x2e3x
) vy 6sin(2x) + 5¢cos(2x) — 4sin(x/2) + cos(x/2)
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10.

(d) y = 3e2+4xe2x+sinX+ 2C0SX
() Yy = ex2+xey2+e7x/2 4 xe’v?2

Then, verify the differential equations by substituting these
solutions into them.

Find the fourth-order differential equations corresponding to
the following solutions,

(@ y = eVdt+ex—e&+e¥

(b) y = 2e* +xe* +3e*+4xe*

(c) y = b5sinx+6cosx —7sin(2x)—9cos(2x)
(d) y = 3e*+4xe*+2sinx+ 3cosx

(e) y = e7/3+5xe 73+ 3sin(3x) + 4cos(3x)

Then, verify them by comparing with the solutions obtained
from the dsolve command.

Solve the higher-order homogeneous differential equations
when roots of the characteristic equations are distinct real
numbers,

@ y"+6y"-9y'-14y = 0

() yv+y"-7y"-y'+6y = 0

(c) yv -16y" +86y"—-176y'+105y = 0

(d) 36yv +24y" —47y"+y' +6y = 0

(e) 360y — 786y —23y" +714y" —367y' +42y = 0

Show derivation of the solutions in detail and verify them by
comparing with the solutions obtained from the dsolve
command.

Solve the initial value problems governed by the higher-order
homogeneous differential equations when roots of the charac-
teristic equations are distinct real numbers,

(@ y"-6y"+11y'-6y = 0

y(0)=1, y'(0)=0, y"(0)=0
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11.

12.
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(b) 30y" —-79y"+59y'-12y = 0
y(0)=0, y(0)=1, y"(0)=0

(c) yv +14y" +71y"+154y"+120y = O
y(0)=1, y(0)=0, y'(0)=0, y"(0)=0

(d) 120yv —2y" —263y"—20y'+21ly = 0
y(0)=1, y(0)=0, y"(0)=0, y"(0)=0

Show derivation of the solutions in detail and verify them by
using the dsolve command. Then, use the ezplot command
to plot the variation of y in the interval of 0<x<2.

Solve the higher-order homogeneous differential equations
when roots of the characteristic equations are repeated real
numbers,

(@ y"-6y"+12y' -8y =
(b) yv —2y"-3y"+4y' +4y

(c) yv +12y" +54y" +108y’' + 81y
(d) yv +2y"—-39y"-40y"+400y =

Il
o o o o o

(e) yv+4yv +y"-10y" -4y'+8y

Show derivation of the solutions in detail and verify them by
comparing with the solutions obtained from the dsolve
command.

Solve the initial value problems governed by the higher-order
homogeneous differential equations when roots of the
characteristic equations are repeated real numbers,

@ y"+12y"+48y'+64y = 0
y(0)=2, y(0)=0, y"(0)=0

(b) yv —-2y"-11y"+12y"+36y = 0
y(0)=1, y(0)=0, y"(0)=0, y"(0)=0
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13.

14.

(c) yv -—-8y"+24y"-32y'+16y = 0
y(0)=0, y'(0)=1, y"(0)=0, y"(0)=0
(d) 36yv +12y" -23y"—-4y'+4y = 0
y(0)=3, y(0)=0, y"(0)=0, y"(0)=0
Show derivation of the solutions in detail and verify them by

using the dsolve command. Then, use the ezplot command
to plot the variation of y in the interval of 0<x<2.

Solve the higher-order homogeneous differential equations
when roots of the characteristic equations are conjugate com-
plex numbers,

(@ yv +5y"+4y

(b) yv +34y" + 225y

(c) 36yv +277y" + 441y
(d) 144yv + 481y" + 225y

Show derivation of the solutions in detail and verify them by
comparing with the solutions obtained from the dsolve
command.

0
0
0
0

Solve the initial value problems governed by the higher-order
homogeneous differential equations when roots of the charac-
teristic equations are conjugate complex numbers,

(@ yv+13y"+36y = 0

y(0)=1, y(0)=0, y"(0)=0, y"(0)=0
(b) yv +25y"+144y = 0

y(0)=0, y(0)=1, y"(0)=0, y"(0)=0
(c) 36y™ +241y"+100y = O

y(0)=0, y(0)=1, y"(0)=2, y"(0)=0
(d) 144yv +1465y"+3136y = 0

y(0)=0, y(0)=1, y"(0)=2, y"(0)=3
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Show derivation of the solutions in detail and verify them by
using the dsolve command. Then, use the ezplot command
to plot the variation of y in the interval of 0 < x <10.

15. Solve the higher-order homogeneous differential equations
when roots of the characteristic equations are distinct real,
repeated real or conjugate complex numbers,

(@ y"+9y"—48y" — 448y =0
(b) yv —4y" +13y" —36Yy" + 36y =0
() yv +16y" +94y" + 240y’ + 225y =0
(d) 36yv +36y" +25y" +16Yy' + 4y =0
(e) 400y™ —600y" +289y" —96y'+36y = O

Show derivation of the solutions in detail and verify them by
comparing with the solutions obtained from the dsolve
command.

16. Solve the initial value problems governed by the higher-order
homogeneous differential equations when roots of the
characteristic equations are distinct real, repeated real or
conjugate complex numbers,

(@ 12y"+64y"+7y' —245y = 0
y(0)=1, y(0)=0, y'(0)=0
(b) 64yv —192y" +148y" —12y"+9y = 0
y(0)=0, y(0)=1, y"(0)=0, y"(0)=1
(c) 100yv —120y" +61y"—-30y"+9y = 0
y(0)=2, y(0)=0, y"(0)=0, y"(0)=0
(d) 441yv +126y" + 205y" +56y"'+4y = 0
y(0)=0, y(0)=1, y"(0)=0, y"(0)=2

Show derivation of the solutions in detail and verify them by
using the dsolve command. Then use the ezplot command
to plot the variation of y in the interval of 0<x<2.
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17. Employ the dsolve command to find general solutions of the
following higher-order differential equations,

(@) 18y~ —117y" -101y" +1117y'-357y = O
(b) 24yv —214yv —103y" +784y" —161y'—90y = O
(c) 100yv —100yv —271yv +146y" + 214y"
+6y'+9y = 0
(d) 24yvn +140yv +126yv — 311y —503y”
—246y"—-40y" = 0
(e) 120yv +634yv — 239y —3296yv + 2221y
+4876y" —7196y" + 3456y’ — 576y = 0
Then, verify them by substituting into the differential equa-
tions.
18. Derive the general solutions of the higher-order nonhomo-
geneous differential equations,
(@ y"-3y"-10y'+24y = e7x
(b) y"-10y"+25y" = x*-—-x2+9
(c) 4yv +13y"+9y = x2sinx
(d) 9yv —18y" —110y"-50y' —375y = xe* +1
(e) 8lyw +216y" + 288y" + 384y’ + 256y
= €e7XCOSX+ X2

Show derivation of the solutions in detail and verify them by
comparing with the solutions obtained from the dsolve
command.

19. Solve the initial value problems governed by the higher-order
nonhomogeneous differential equations and the initial condi-
tions,

(@) 6y”+49y"+44y' -35y = cos(2x)+1
y(0)=0, y(0)=0, y"(0)=0
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20.

21.

22.
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(b) 100yv +229y"+9y = sinx
y(0)=0, y'(0)=0, y"(0)=0, y"(0)=0

(c) 64yv +96y" +52y"+24y' +9y = x2—ex
y(0)=0, y'(0)=5, y"(0)=3, y"(0)=1

(d) 324yv +261y" +25y = x2 —ex
y(0)=0, y(0)=1, y"(0)=2, y"(0)=3

Show derivation of the solutions in detail and verify them by
comparing with the solutions obtained from the dsolve
command. Then use the ezplot command to plot the
variation of y in the interval of 0 < x <10.

Employ the ode23 command to determine approximate
solution of the initial value problem governed by the third-
order homogeneous differential equation,

2y" -5y"-31ly'+84y = 0 0<x<1

with the initial conditions of y(0)=0, y'(0)=1 and y"(0)=2.

Then, use the dsolve command to find the exact solution.
Plot to compare the two solutions in the interval of 0 < x<1.

Employ the ode23 command to determine approximate
solution of the initial value problem governed by the fourth-
order homogeneous differential equation,

24yv +46y" —63y" —60y' +25y = 0  0<X<2

with the initial conditions of y(0)=0, y'(0)=-1, y"(0)=-2
and y”(0)=-3. Then, use the dsolve command to find the

exact solution. Plot to compare the two solutions in the
interval of 0<x<2.

Employ the ode45 command to determine approximate
solution of the initial value problem governed by the fourth-
order nonhomogeneous differential equation,
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23.

24,

42yv —29y" —516y" —157y' —12y = ex+CosX
0<x<2
with the initial conditions of y(0)=y'(0)=y"(0)=y"(0)=0.

Then, use the dsolve command to find the exact solution.
Plot to compare the two solutions in the interval of 0<x<2.

Employ the ode45 command to determine approximate
solution of the initial value problem governed by the fourth-
order nonhomogeneous differential equation,

4yv +61y" +225y = 5x2-24x 0<x<10

with the initial conditions of y(0)=y'(0)=y"(0)=y"(0)=0.
Then, use the dsolve command to find the exact solution.
Plot to compare the two solutions in the interval of 0 < x <10.

Check whether the dsolve command can find the exact
solution of the initial value problem governed by the fourth-
order nonhomogeneous nonlinear differential equation,

yyv +61y"+225y = b5x2—24x 0<x<2

with the initial conditions of y(0)=y'(0)=y"(0)=y"(0)=0.
If the exact solution could not be found, use the ode45

command to solve for the approximate solution. Plot to show
the solution of y that varies with x in the interval of 0<x<2.
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Laplace Transforms

7.1 Introduction

Several practical problems are governed by the higher-
order nonhomogeneous differential equations. Functions on the
right-hand-side of the differential equations do have physical
meanings. These functions may represent an external force of a
mechanical system or an impressed voltage in an electrical system.
Magnitudes of these functions may change abruptly in the form of
a unit impulse or square wave. The method for solving the
nonhomogeneous differential equations presented in the preceding
chapters is not suitable for solving these types of problems. The
Laplace transform that we will learn in this chapter can solve these
problems effectively.

Laplace transform is a topic that creates difficulty in
solving differential equations to most students. This is mainly
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because there are several transform formulas that need to
memorize. The Laplace transformation process includes both
forward and inverse transformations. The forward transformation
can be carried out without much effort, while the inverse
transformation is rather difficult and limited to few functions.

With the help of MATLAB commands, the task of
transformations can be carried out easily. We will start the chapter
by learning the definition of the Laplace transform. We will use
examples to understand the transformation process. Results of the
transformations will be verified by using MATLAB commands. At
the end of the chapter, we will learn how to apply the method of
Laplace transform to solve some realistic problems governed by the
nonhomogeneous differential equations. These include the mass-
spring-damper system subjected to different types of loadings.
Solutions will be plotted to increase understanding of the system
behaviors.

7.2 Definitions

The Laplace transform is defined by the integration from
t=0 to oo of the product between the functions e-st and f(t) as,

LL (1) = je f(t)dt

where f(t) is the function of t for t >0. The result is denoted by,

F(s) = £{f(t)} = festf(t)dt

In the opposite way, the function f(t) is called the inverse Laplace
transform of F(s),

F(t) = £H{F(s)}
The function f(t) may be in different forms. For exam-
ples, if f(t)=1, the Laplace transform is,
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" 1

( ( ( —st — _1 —st _
e{f(t)) = {1 = {e dt = o 0 5

If f(t)=e* whereais a constant, then the Laplace transform is,

L{f(t)) = <t} = Te—S‘ e dt

1

— e—(s—a)t
a—s=s

oL

0 s—a

fors—a>0.
If f(t)=sinat, then the Laplace transform can be
obtained as follows,

¢{f(t)} = «{sinat} = Testsin at dt

st
= sin at
—-S

o0 a o0
+— j e-stcos at dt
0 S 0

a
s +a’
Note that the result above is from integrating by parts, i.e., if we let,
L, = £{cosat} and L, = £{sinat}

C

then,
“ B —st @ aoo .
L, :j estcosatdt = cos at ——_[ e~ sin at dt
0 ) 0 S 0
1 a
= Z-ZL,
s s
“ —st *® 2
L = je*st sinat dt = sin at +EI estcosatdt = ELC
0 -S o S S

By substituting L, from the upper into lower equation, we get,

2
Lo 2fl_a o Lf1+2] =2
s s\s s ° s X 2

Thus, L, = £{sinat} =
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Similarly, if we substitute L, from the lower equation into L, in
the upper equation, we get,

2
L, = l—i(il_cj or Lc(l+a—j _ 1
S S\S 52

S
s? +a?

v |

e, L, = £{cosat} =

C

This means the Laplace transform has the property of
linearity as,

glaf(t)+bg(t)} = ag{f(t)}+bs{g(t)}

where a and b are constants. As an example, the hyperbolic sine
function is,

sinh at

%(eat _ e—at )

then,

£{sinh at} %(%{eat} ~¢{ea})

_ o1
- 2ls—a s+a

=ra
Similarly, the hyperbolic cosine function is,
coshat = %(eat +e )
then,
£{coshat} = %(:@{eat} +L{e})

1( 1 1 )
= - —4+—
2{s—a s+a

S
SZ_aZ
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Laplace transform of a given function f(t) can be ob-

tained without much difficulty. Many mathematical textbooks
have shown tables of the Laplace transform for different functions.
Same results are obtained by using MATLAB commands as will be
shown in the following sections.

7.3 Laplace Transform

MATLAB contains the lTaplace command that can be
used to obtain result of the Laplace transform of a given function
f(t). For examples, if we want the Laplace transform of the

function,

we just enter the following,

>> laplace(exp(a*t)) laplace

ans =

-1/(a - s)

syms
>> syms t s a

i.e., the resultis,

[f () = tlen) = ——

a-s
Or, if we want the Laplace transform of the function,
f(t) = sinat
we enter the command,
>> laplace(sin(a*t))
ans =

a/(an"2 + s™2)

i.e., the resultis,
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Similarly, if we want the Laplace transform of the func-
tion,

f(t) = cos at
we enter the command,
>> laplace(cos(a*t))
ans =
s/(an2 + s™2)
i.e., the result is,

S
a2 +s?

¢{f(t)} = £{cosat} =

The Laplace transforms of the hyperbolic sine and cosine
functions,

£{sinh at} and ¢{cosh at}
can be obtained conveniently by entering the commands,
>> laplace(sinh(a*t))
ans =
-a/(@"2 - s™2)
>> laplace(cosh(a*t))
ans =

-s/(a"2 - s™2)

i.e., the results are,

a g S
az-s? an a?z-s?

These results agree with those derived earlier.

The laplace command can be used to provide the
Laplace transforms of other functions, such as,

£{t?} and £{t7}
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>> laplace(t"2)

2/s"3
>> laplace(t"7)
ans =

5040/s"8

i.e., the results are,

2 5040
- and 5
S S

which agree with the formula,

n!
Sn+1

it} =
The command can be also used to obtain the Laplace
transforms of more complex functions. For example,
f(t) = sin(at) cosh (at) — cos (at) sinh (at)

>> laplace(sin(a*t)*cosh(a*t)-cos(a*t)*sinh(a*t))
ans =
(4*an3)/(4*a™4 + s™N4)

The simple command may be used to reduce the complexity of
the result above to yield,
4a3
4a* +s*
It is noted that the laplace command employs the
property of linearity as mentioned earlier. As an example,

f(t) = 1+5t

£{sin(at) cosh(at)—cos(at)sinh(at)} =

>> laplace(1 + 5*t)
ans =
1/s + 5/s"2
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i.e., the result is,
£{1+5t} = EL
s s
Or, as another example,

f(t) = 4e3t —10sin 2t

>> laplace(4*exp(-3*t) - 10*sin(2*t))
ans =

4/(s + 3) - 20/(s"2 + 4)

i.e., the result is,

4 20

£{4e% -10sin2t} = <13 2.4
s+3 s2+

7.4 Inverse Laplace Transform

MATLAB contains the ilaplace command to provide
an inverse Laplace transform of a given function F(s). For

example, if we want to find the inverse Laplace transform of the
function,

F(s) = %

we enter the commands,

>> syms t sab _
>> ilaplace(1/s)

ans =
1

i.e., we obtain the result of,

f(t) = £ H{F(s)} = ;f—l{—} =1
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Or, as another example, to find the inverse Laplace transform of,

o -
>> ilaplace(1/(s-3a))
ans =
exp(a*t)

i.e., the result is,
f(t) = £{F(s)} = ;ﬁ—l{i} = e

And another example,

a
F6) = wre
>> ilaplace(a/(a”™2 + s™2))
ans =
sin(a*t)
i.e.,

f(t) = £ H{F(s)} = 561{ a } = sin at

a?+s?

Also, the inverse Laplace transform of the function,

RO =
>> 1laplace(s/(s™2 - a™2))
ans =
cosh(a*t)
ie.,

f(t) = ¢1{F(s)} = :ﬁl{szfaz} = cosh at

Note that the results obtained may be in form of long expressions.
The simple command can be used to simplify their complexity.



238 Chapter 7 Laplace Transforms

Many differential equation textbooks provide tables of inverse
Laplace transforms for some popular forms of F(s).

The ilaplace command can reduce effort to find inverse
Laplace transforms of complicated functions F(s). For example,

3s+7
F(S) T $2-25-3

The process to perform the inverse transformation of this function

is as follows,
Ft) = £YF(s) = x—l{ﬂ}
§2-25-3

zl{ 35+7 } ~ jﬁl{3(3—1)+10}
(s-1°-4] (s—1)° -4

3%1{—5_1 }+5:&1{—2 }
(s—-1)° -4 (s—1)* -4

= 3e' cosh 2t + 5e' sinh 2t
e' (3cosh 2t +5sinh 2t)

= 4e* —¢"

In the process shown above, terms must be arranged properly so
that results could be found from the inverse Laplace transform
table. The same result is obtained easily by using the ilaplace
command,

>> ilaplace((3*s + 7)/(s™2 - 2*s - 3))

ans =

4*exp(3*t) - 1/exp(t)

As another example when F(s) is complicated,

S

F(s) = (SZ+1)2
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The inverse Laplace transform can be obtained easily by using the
i laplace command,

>> ilaplace(s/((s"2+1)"2))

ans =
(t*sin(t))/2
i.e., the result of f(t) is,

f(t) = £{F(s)} = %1{ > }

(s2+1)°

1 .
= Et sint

Variation of the f(t) function is plotted using the ezplot
command as shown in the figure below.

>> ezplot(ans)

(tsin(t))/2

The ilaplace command can provide the inverse Laplace
transform even though the given function F(s) is quite compli-

cated,
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$2+65+9
Fs) = (5-1)(:-2)+(s+4)

>> ilaplace((s"2+6*s+9)/((s-1)*(s-2)*(s+4)))
ans =
(25*exp(2*t))/6 + 1/(30*exp(4*t)) - (16*exp(t))/5

i.e., the result of f(t) is,
- v $2+6s+9
0 = 21RO} = e

_ 2, 1 , 16
= %% T30° 5

which can be plotted by using the ezplot command as shown in
the figure.

>> ezplot(ans)

06 (25exp(2t))/6+1/(30exp(4t))—(16exp(t))/5

et

1+ j
ok 4
Il Il Il Il Il Il Il
-6 -4 -2 0 2 4 6

t

The figure indicates a sudden change of f(t) in the interval of
-5<t<-4. If we want to amplify the change that occurs in
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the interval of —2<t<2, we can modify the ezplot command
slightly by including the desired interval for plotting as follow,

>> ezplot(ans, [-2, 2])

The variation of f(t) in the interval of —2 <t <2 is now shown in
the figure.

(25exp(2t))/6+1/(30exp(4t))— (16 exp(t))/5

f(t)

7.5 Solving Differential Equations

In this section, we will learn how to apply the method of
the Laplace transform to solve the initial value problems. We will
see that the transformation changes the differential equation to an
algebraic equation which is easier to solve. It should be noted that
the Laplace transform for the first-order derivative of function f(t)

IS,
{10} = se{T(R)}-1(0)

Similarly, the transform for the second-order derivative of function
f(t) is,

L{E (1) = s2e{f (1)} —sf(0)- f'(0)
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The transformation for the higher-order derivatives of the function
f(t) can be determined in the same way. Application of the

Laplace transform method for solving the initial value problems is
demonstrated by using the following examples.

Example Solve the initial value problem governed by the second-
order nonhomogeneous differential equation,

y'+y =t

with the initial conditions of y(0)=1and y'(0)=-2. We start
from finding the Laplace transform of the differential equation,

£{yt+2ly} = <
which gives,

s2e{y}-s y(0)-y'(0)+£{y} = £{t]
Since ¢£{t} =1/s? can be found by using the laplace command,

>> Syms € s y

>> laplace(t) laplace

ans =

1/s"2

With the given initial conditions of y(0)=1 and y'(0)=-2, then
the equation above becomes,

$2Y —s+2+Y = iz
S

or, Y = (S—lz+s—2)/(sz+1)

The inverse Laplace transform of the Y function above is,

y = £y} = %1{(812+s—2)/(52+1)}

which can be obtained by using the i laplace command,
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>> jlaplace((1/s"2+s-2)/(s"2+1))

ans =

t + cos(t) - 3*sin(b)
Thus, the solution of the initial value problem is,

y = t+cost—3sint

It is noted that if we solve this problem by hands, we need
to arrange the terms of s on the right-hand-side of the Y equation
properly so that we can find their inverse Laplace transforms from
the transform table as follows,

_ 1 +s—2

©s%(s?+1)  s2+1

11 s 2

082 52471 s241 s2+41
1 S 3

_+—_—
§2 5241 s?2+41

1 S 3
= LY} = L —+ -
y s {52 s2+1 52+1}

Then,

Thus, the solution is,
y = t+cost—3sint

Such solution can be plotted by using the ezplot com-
mand as shown in the figure.

>> ezplot(ans, [0, 10])

The plot shows that both the initial conditions of y(0)=1 and
y'(0)=-2 are satisfied. This example demonstrates the advantage
of the Laplace transform method for solving the initial value
problem conveniently. Results of the Laplace and inverse Laplace
transforms are obtained by using the laplace and ilaplace
commands, respectively.
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t+cost—3sint

Example Solve the initial value problem governed by the second-
order nonhomogeneous differential equation,

y' -3y +2y = 4e%
with the initial conditions of y(0)=-3 and y'(0)=5.

We start from finding the Laplace transform of the
differential equation,

iy =3e{yh+ 2Ly} = 4¢{er]

Here £{e?'} =1/(s—2) which is obtained from using the laplace
command,

>> laplace(exp(2*t))

ans =
1/(s - 2)

so that the transformed equation is,

(5 - /(0)- y/(0)-3(6sY - yo) + 2 = 5



7.5 Solving Differential Equations 245

After applying the initial conditions, the transformed equation
becomes,

(s2Y +35-5)—3(sY +3)+ 2Y = s+42
which gives,

Y = (i—33+14)/(52 3s+2)

The solution is then obtained by inverse transformation,

y = £HY} = %1{(8:12—3%14}/(32—3“2)}

which can be done by using the i laplace command,

>> ilaplace(((4/(s-2))-3*s+14)/(s"N2-3*s+2))

ans = ilaplace

4*exp(2*t) - 7*exp(t) + 4*t*exp(2*t)

Hence, the solution of the initial value problem is,
y = 4e -Te' +4te?

The solution of y that varies with t is plotted by using the ezplot
command in the interval of 0 <t <1 as shown in the figure.

>> ezplot(ans, [0, 1]

Example Solve the initial value problem governed by the fourth-
order homogeneous differential equation,

yY-y =0
with the initial conditions of y(0)=0, y'(0)=0, y"(0)=0 and
y"(0)=1.

Again, we start by performing the Laplace transform of
the given differential equation,

LV - £yp = 0
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dexp(2t)—T7exp(t)+4texp(2t)

to give,
s*Y —s%y(0)-s2y'(0)-sy"(0)-y"(0)-Y = 0
Then, we apply the initial conditions to obtain,
Y -0-0-0-1-Y =0
Thus,

Tosé—1

After that, we can find the inverse Laplace transform by using the
ilaplace command,

>> ilaplace(1/(s™4-1))
ans =

sinh(t)/2 - sin(t)/2
Hence, the solution of this initial value problem is,

y = %(sinht —sint)
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Example Motion of the mass in the mass-spring-damper system as
shown in the figure is governed by the second-order nonhomo-
geneous differential equation,

2y"+y' +2y = 5(t)
with the initial conditions of y(0)=0 and y'(0)=0. The notation

o(t) on the right-hand-side of the differential equation is the Dirac

delta function representing a unit impulse applied on the mass. The
coefficients in the differential equation are equivalent to the mass
of m =2, the damping coefficient of ¢ =1 and the spring stiffness
of k =2.

5(t)
C L—! k
2 1
! “
t
5(t) " 0 0o ¢

We can use the method of Laplace transform to solve for
the mass motion which is the displacement in the vertical direction
y(t) that varies with time t. Similar to the preceding examples, we
start from transforming the differential equation,

2e{y"} +{y}+2¢{y} = £{5(1))
which leads to,
2(s?Y —sy(0)-y'(0))+(sY —y(0))+2Y =1
It is noted that transformation of the Dirac delta function on the

right-hand-side of the differential equation can be obtained
conveniently by using the laplace command,

>> laplace(dirac(t))
ans =
1



248 Chapter 7 Laplace Transforms

We apply the given initial conditions of zero displacement and
velocity at time t =0 to give,
2(s2Y -0-0)+(sY-0)+2Y =1

1
Thus, Y = 55582

Then, we perform inverse transformation to find the
solution of the displacement y(t) that varies with time t,

o) = 2y = et

252 +5+2

This is done by using the i laplace command,

>> jlaplace(1/(2*s"2+s+2))

ans =

(2*157~(1/2)*sin((15~(1/2)*1t)/4)) / (15%exp(t/4))

Hence, the solution for the motion of the mass is,
2 (15

t) = —et4sin| ——t

o = = [ i }

The motion is plotted for the interval of 0<t <15 by using the
command >>ezplot(ans, [0, 15]) as shown in the figure. At
the early time, the displacement is large from the unit impulse that
applies on the mass. The displacement decreases as the time
increases due to the damping effect.

If the system does not include the damper (c=0), the
governing differential equation becomes,
2y"+2y = 4(t)

After performing transformation, we get,
3 1
282 +2
Then, we find the solution by performing the inverse transforma-
tion,
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0.35 -
0.3 -
0.25 -
0.2

0.15 -

y(t) o

0.05 /_\
0

-0.05 -

-0.1 F

-0.15 |

) = Yy = e |

252 +2

which can be done by using the i laplace command,

>> ilaplace(1/(2*s"2+2))

ans =

sin(t)/2

This leads to the solution of the motion when there is no damper,

The motion can be plotted by using the ezplot command,

>> ezplot(ans, [0, 15])

The figure shows that the mass moves up and down as the sine
function about y=0.
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06F w w 3

041 |

0.2 B

y(t) o

-0.2 -

-06F ‘ ‘ i

t

Example Determine the displacement y(t) of the mass if the mass-
spring-damper system in the preceding example is subjected to a
unit step (Heaviside) function as shown in the figure.

H(t)
C L=y K
z Al
i
y(t)
H(t) 0 0 ~

For the mass-spring-damper system with m=2, c=1 and

k =2 as explained in the preceding example, the corresponding
differential equation is,

2y"+y' +2y = H(t)
The forcing function on the right-hand-side of the equation is,

0, t<0
H(t) =
1, t>0
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This differential equation is to be solved with the initial conditions
of zero displacement and velocity at t=0, i.e., y(0)=0 and

y'(0)=0.

By considering the differential equation, we can see that as
t—>ow, Y>>0 and Yy —0, then the displacement at the

equilibrium position is y=1/2=0.5.

To determine the dynamic response of the mass, the
Laplace transformation is applied to the differential equation,

2£{y"}+2{y'}+2£{y} = £{H (1)}
which gives,
2(s*Y =5 y(0) - Y'(0))+(sY - y(0) +2Y = %

The transformation of the unit step function on the right-hand-side
of the equation is obtained easily by using the laplace command,

>> laplace(heaviside(t))

ans =
1/s
Then, the initial conditions for the displacement and velocity of
y(0)=0 and y'(0)=0 are imposed to give,
2(s’Y —=0-0)+(sY —0)+2Y = %

1
~ s(2s2+5+2)

The inverse transformation is performed to yield the
solution of the displacement y that varies with time t,

o - ey = et

S(2s2+s+2)

This can be done by using the i laplace command,



252 Chapter 7 Laplace Transforms

>> 1laplace(1/(s*(2*s"2+s+2)))
ans =

172 - (cos((15~(1/2)*t)/4) +
(157(1/2)*sin((157(1/72)*t)/4))/15)/ (2*exp(t/4))

1 V15 1 . (15
— —e-t4cos t|— e-t/4sin| ——t
2 [4 j 215 (4 J

The vertical movement y that varies with time t is plotted
by using the ezplot command in the interval of 0<t<15 as
shown in the figure,

>> ezplot(sol, [0, 15, 0, .8])

where sol is the same as ans under the quote sign (< 7). It can be
seen from the figure that the system approaches the equilibrium
configuration at the displacement of y = 0.5 as expected.

which is,

y(t) =

N

0.8

0.7 -

y(t) os \\/

03

0.2

0.1

0

Il Il
0 5 10 15

t

If we increase the damping coefficient from c=1 to
¢ = 2, then the differential equation becomes,

2y"+2y'+2y = H(t)
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This leads to the value of Y after performing transformation,

1
2s(s?+s+1)

Then, the displacement solution is,

y(t) = £y} = i_l{m}

The ilaplace command is used to find the inverse Laplace
transform,

>> jlaplace(1/(2*s*(s"2+s+1)))

ans =

Y =

172 - (cos((3™(1/2)*t)/2) +
(BM(1/2)*sIn((3M(172)*1)72))/3)/ (2*exp(t/2))

1 1 V3 1 (43
y(t) = E_Ee /2 cos(Tt]—me t/Zsm[Tt]

The solution above is plotted as shown in the figure. The figure
shows that, when the damping coefficient is larger, the mass-
spring-damper system reaches the equilibrium configuration sooner
with smaller magnitude of oscillation.

The technique of Laplace transform can also be applied to
solve a set of differential equations. This is explained by using the
examples as follows.

ie.,

Example Solve a set of two first-order differential equations,
X'-2x+3y =0
y—y+2x =0
for the solution of x(t) and y(t) with the initial conditions of
x(0)=8 and y(0)=3.

We start by finding the Laplace transform of the first
differential equation,
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0.8

0.7 4
0.6 B

y(t) os AN

041 .

0.3} B

02 -

0.1F -

t
£{x}-2£{x} +3£{y} = 0
(s X —x(0))—2X +3Y
and apply the initial condition to obtain,
sX-8-2X+3Y =0
or, (s—2)X +3Y

Similarly, we find the Laplace transform of the second differential
equation,

Il
o

Il
oo

£y -£{yp+2£{x} = 0
(sY-y(0)-Y+2X =0

and apply the initial condition to obtain,
sY-3-Y+2X =0
or, (s-1)Y +2X = 3

Thus, the Laplace transformation leads to the two alge-
braic equations,
(s—2)X +3Y =8
2X +(s-1)Y = 3
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which can be solved for function X and Y. We can use the solve
command to solve them as follows,

>> Syms X y S

>> eql = "(s-2)*x + 3*y = 87;

>> eg2 = "2*x + (s-1)*y = 3°;

>> [xx yy] = solve(eql,eq2)

XX =
-(8*s - 17)/(- s™2 + 3*s + 4)
Yy =
-(8*s - 22)/(- s"2 + 3*s + 4)

. 8s-17
to obtain, X = ~Ts213s54

3s-22

and [

Then, we perform the inverse transformation,

x(t) = £X}) = z—l{——SS_N }

—s2+3s+4
3s—22
and t) = £y} = £ ———
by using the i laplace command,
>> 1laplace(-(8*s - 17)/(- s™2 + 3*s + 4))
5/exp(t) + 3*exp(4*t)
>> ilaplace(-(3*s - 22)/(- s™2 + 3*s + 4))
ans =
5/exp(t) - 2*exp(4*t)
Hence, the solutions of the coupled first-order differential

equations are,
X(t) = 5et+3e*

and y(t) = 5e™" —2e"
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Example A mass-spring system consisting of two masses and two
springs is shown in the figure. The two masses are m, and m,,

while the two springs have the spring stiffness of k, and k,,
respectively. The motion of the two masses (y, and vy,) are

governed by the two differential equations from the Newton’s
second law.

Mass m,
my; = =k +k(y,— V)
K.Yy
Mass m,
my; = —k(Y, = V)
If m=1 m,=1 k=6 and
K,(Y,—Y,) k2:4.1, then the dlfferentlal
equations that describe the
motions of y,(t) and y,(t) at
any time t are,

yy+10y, -4y, = 0
and Y, -4y, +4y, =0

The coupled differential equations above will be solved with the
initial conditions of y,(0)=0, y;(0)=1, y,(0)=0 and y,(0)=-1.

We start by transforming the first differential equation,
£{yy +10£{y,} —4£{y,} = 0
(s2Y,-sy,(0)-y;(0)) +10Y, —4Y, = 0
After applying the given initial conditions, we obtain,
(s2Y,-0-1)+10Y,-4Y, = 0
or, (s2+10)Y, -4y, =1

Similarly, we transform the second differential equation,
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L1y} — 4Ly} +4L]Y,} 0
(SZYz =S yz(o)_ y;(O)) —4Y, +4Y, = 0
After applying the given initial conditions, we obtain,
(s°Y,—0+1)—4Y, +4Y, = 0
or, 4Y, - (s2+4)Y, =1
Thus, the two algebraic equations after applying the trans-
formation and initial conditions are,
(s2 +10)Y, — 4Y,
4Y, —(s2+4)Y, =1

We can use the solve command to solve for Y, and Y, as follows,

>> syms yl y2 s

>> eql -(S/\2+10)*y1 _ 4*y2 1-;

>> eq2 = " 4*yl - (s72+4)*y2 = 17;

>> [yyl yy2] = solve(eql,eq2)

yyl =
SN2/ (SN + 14*sM2 + 24)

yy2 =
—(s"2 + 6)/(sM4 + 14*s™2 + 24)

. s2

e, N VT Y
y - __ s'+6
2 st 41452+ 24

Then, we find the inverse Laplace transforms,

W) = ey = e

st +14s2 +24

(®) = 24y} = e

441457 + 24
by using the i laplace command,
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>> ilaplace(s"2/(s™4 + 14*s72 + 24))

ans =

(37 (1/2)*sin(2*3~(1/2)*t))/5 -
(2~ (1/72)*sin(27(1/2)*1))7/10

>> ilaplace(-(s"™2 + 6)/(s™M + 14*s"2 + 24))
ans =

- (27 (1/2)*sin(@(1/2)*t))/5 -
(3N(1/2)*sin(2*3~(1/2)*1)) /10

The solutions of y,(t) and y,(t) representing the displace-
ments of mass m, and m, that vary with time t are,

y,(t) = ?sin(b@t)— 1£023in(x/§t)

y,(t) = —%sin(\/ﬁt)— 1£§sin(2\/§t)

These displacements y,(t) and y,(t) of the mass m, and m, are
plotted as shown in the figures.

0.5

04/
031
0.2 H
0.1
yi(t) of
01
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7.6 Concluding Remarks

In this chapter, we have studied the method of Laplace
transform for solving differential equations. There are many
practical problems that are governed by the nonhomogeneous
differential equations for which the forcing functions on the right-
hand-side of the equations are in form of the impulse or step
functions. The standard methods learned in the preceding chapters
are not suitable for solving this type of problems while the method
of Laplace transformation can handle them very well.

We started from understanding the definitions of the
Laplace transform and inverse Laplace transform.  Several
examples were presented to show the transformations of many
functions. At the same time, the laplace and ilaplace
commands are used to confirm the derived results. The method of
Laplace transform was then applied to solve the nonhomogeneous
differential equations for the problems mentioned above. The
problems may be governed by a single differential equation or
coupled equations. The method of Laplace transform changes the
differential equations into algebraic equations so that they can be
solved easier. Several examples have demonstrated the advantage
of the method to provide solutions to this type of problems
effectively.
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Exercises

1. Use the laplace command to find F(s) which are the
Laplace transforms of the following functions,

@@ f(t) = t¥? (b) f(t) = t¥2
© f(t) = a’t™? d) f(t) = (a+b)t"?
(e) f(t) = excosht (f) f(t) = tcosht

where a and b are constants.

2. Use the laplace command to find F(s) which are the
Laplace transforms of the following functions,

(@) f(t) = t2-2t (b) f(t) = (t2-3)
(c) f(t) = sin24t (dy f(t) = sin(3t—%)
(e) f(t) = e?tcosht (f) () = t2e

3. Use the laplace command to find F(s) which are the
Laplace transforms of the following functions,

(@) f(t) = e?cos3t (b) f(t) = t3+4t2+3
(c) f(t) = t3sinat (d) ft) = t4e
(e) f(t) = te2tsinbt (f) f(t) = textcosht

where a and b are constants.

4. Use the laplace command to find F(s) which are the

Laplace transforms of the following functions,
(@) f(t) = 6sin2t—5cos2t

(b) f(t) = 3cosh5t—4sinh5t
(© f(t) = (5e2-3)
d f(t) = @Q+tet)

(e) f(t) = (eat—ebdt)/t
(f) f(t) (sinat —cosbt)t
where a and b are constants.
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5. Use the ilaplace command to find f(t) which are the
inverse Laplace transforms of the following functions,

S 1
(@ F(s) = (S—a)2 (b) F(s) = m
s s
©FS) =5 @FY = e
s S
(€) F(s) = m (f) F(s) = St _pt

where a and b are constants.

6. Use the ilaplace command to find f(t) which are the
inverse Laplace transforms of the following functions,

(@) F(s) = 3.8te2# (b) F(s) = -3tée0st
_ T R

(© F(s) = = (d) F(s) = i

15 2556

(e) F(s) = 2145529 ) F(s) = 2 _4s_12

7. Use the ilaplace command to find f(t) which are the
inverse Laplace transforms of the following functions,

6 4
@ F(s) = m (b) F(s) = 2416
© FO) = gigs OFO = olim
1 1
(e) F(S) = 41 () F(S) = m

8. Use the ilaplace command to find f(t) which are the
inverse Laplace transforms of the following functions,
32
F p—
@ F) (s+1)(s2+2s+5)

2 N 3 N 5(s +1)
(s+2) s*+16 s2+2s+5

(b) F(s)
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10.

11.

12.

Chapter 7 Laplace Transforms

@ e - (38:—318)(_211)3

@ F(s) = (stSzzs:Sj;é_@

() F(s) = %

O o - B, 2

Use the method of Laplace transform to solve the second-order
nonhomogeneous differential equation,

y'+4y = ot
with the initial conditions of y(0)=0 and y'(0)=7.
Use the method of Laplace transform to solve the second-order
nonhomogeneous differential equation,
y' =3y’ +2y =t
with the initial conditions of y(0)=1 and y’(0)=0.

Use the method of Laplace transform to solve the second-order
nonhomogeneous differential equation,

y"+2y'+5y = etsin2t
with the initial conditions of y(0)=2 and y'(0)=-1.
Use the method of Laplace transform to solve the third-order
nonhomogeneous differential equation,
y'-y = ¢
with the initial conditions of y(0)=y'(0)=y"(0)=0.

"
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13.

14.

15.

16.

17.

Use the method of Laplace transform to solve the fourth-order
nonhomogeneous differential equation,

yv +2y"+y = sint
with the initial conditions of y(0)=y'(0)=y"(0)=y"(0)=0.

Use the method of Laplace transform to solve the fourth-order
homogeneous differential equation,

yv -4y = 0
with the initial conditions of y(0)=2, y'(0)=0, y"(0)=

—4, y"(0)=0. Then, verify the solution by substituting it into

the differential equation and initial conditions to check whether
they are satisfied.

Use the method of Laplace transform to solve the fourth-order
homogeneous differential equation,

y'V _4ym+ 6y”_4y! + y — O
with the initial conditions of y(0)=0, y'(0)=1 y"(0)=0,
ym(O):l.

Use the method of Laplace transform to solve the second-order
nonhomogeneous differential equation,

y'+4y = 4(t)

where &(t) is the Dirac delta function at time t =0 with the
initial conditions of y(0)=0 and y'(0)=0. Plot the solution
of y(t) in the interval of 0 <t <10.

Use the method of Laplace transform to solve the second-order
nonhomogeneous differential equation,

2y"+y' +4y = 5(1)
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where &(t) is the Dirac delta function at time t =0 with the
initial conditions of y(0)=0 and y'(0)=0. Plot the solution
of y(t) and check whether it satisfies the initial conditions.

18. Use the method of Laplace transform to solve the second-order
nonhomogeneous differential equation,

y'+4y = H(t)
where H(t) is the Heaviside function at time t=0 with the
initial conditions of y(0)=0 and y'(0)=0. Plot the solution
of y(t) in the interval of 0<t<10.

19. Use the method of Laplace transform to solve the set of two
first-order homogeneous differential equations,

X' = —=X+y
y' = 2X

with the initial conditions of x(0)=0 and y(0)=1.

20. Use the method of Laplace transform to solve the set of two
first-order nonhomogeneous differential equations,

2X'+y' -2x =1
X'+y -3x-3y =2
with the initial conditions of x(0)=0 and y(0)=0. Then,

verify the solutions by substituting them into the differential
equations and initial conditions to check whether they are
satisfied.

21. Use the method of Laplace transform to solve the set of two
second-order homogeneous differential equations,

X"+x-y =0

y+y-x =0
with the initial conditions of x(0)=0, x'(0)=-2, y(0)=0
and y'(0)=1.
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22. Use the method of Laplace transform to solve the set of two
second-order nonhomogeneous differential equations,

X!/+ y/! — t2

X” _ y” — 4t
with the initial conditions of x(0)=8, x'(0)=0, y(0)=0 and
y'(0)=0.






Chapter
8

Fourier Transforms

8.1 Introduction

Fourier transform is based on the knowledge of the
Fourier series used for analyzing some practical problems. The
Fourier series consists of the sine and cosine functions suitable for
representing different types of periodic motions, such as the
swinging pendulums, telecommunication signals, electric motor
vibration, etc. Analysis solutions can provide comprehensive
understanding of their behaviors.

Similar to the Laplace transform method learned in the
preceding chapter, the Fourier transform can be used to solve some
specific types of differential equations. This includes the non-
homogeneous differential equations when the functions on the
right-hand-side of the equations change abruptly with time.
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Before applying the method of Fourier transform to solve
such differential equations, the definitions of both the Fourier
transform and inverse Fourier transform will be introduced.
Examples will be used to show how to perform transformation for
different types of functions. At the same time, MATLAB com-
mands will also be employed to confirm the results. The discrete
and fast Fourier transforms which have been used in many current
applications will be explained by examples.

8.2 Definitions

Fourier transform is a valuable tool in transforming data
and functions from the time domain into the frequency domain. It
has been used widely in the field of telecommunication that
involves waves and signals. The idea came from the Fourier series
which contain the continuous periodic functions, such as sine and
cosine functions. The sine function is generally written in the
form,

Asin(27 ot +¢)

where A is the amplitude, @ is the frequency measured by the
cycle or period per second, t is time, and ¢ is called the phase

which may not be zero at time t=0. The cosine function is in the
same form except the phase is shifted by z/2. Therefore, the
periodic function f(t) as mentioned can be written in a general
form as,
f(t) = D (A cos(2r w t)+ B, sin(27 e, 1))
k=1

To understand the concept more clearly, let’s consider the
periodic function given by,

f(t) = 0.5sin(xt)+ 2sin(4xt)+4cos(2xt)

If we plot the first term on the right-hand-side of the
periodic function above in the interval of 0<t <5,

>> ezplot("0.5*sin(pi*t)", [0 5 -6 6])
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. 0.5sin(7t)

al i
2l i
0

2l i
4l i
% o5 1 15 2 2{5 5 85 4 45 5

We observe that the magnitude of oscillation is 0.5 and the
frequency is half cycle per second.

Similarly, if we plot the second term in the same interval
of 0<t<5,

>> ezplot("2*sin(4*pi*t)*, [0 5 -6 6])

2sin(4rt)

AAAAAAAAAA
JVVVVVV VY

o




270 Chapter 8 Fourier Transforms

we see that the magnitude is now 2 and the frequency is two cycles
per second.

Also, if we plot the last term of the equation in the same
interval of 0 <t <5,

>> ezplot("4*cos(2*pi*t)", [0 5 -6 6])

4cos(2rt)

A
VUV

we see that the magnitude is 4 and the frequency is one cycle per
second.

By combining the three terms together, we can plot the
oscillating behavior of the function f(t) by using the ezplot
command as shown in the figure.

>> ezplot("0.5*sin(pi*t) + 2*sin(4*pi*t) +
4*cos(2*pi*t)", [0 5 -6 6])

IS

N

o

'
N

In general, the Fourier series could be in any form that
may include a large number of terms. The Fourier transform
method will help us to identify magnitudes and frequencies of the
given functions. It is noted that the analysis of Fourier transform
method is usually carried out by using the complex numbers. This
is because the involved equations will be in simpler forms. Both
sine and cosine functions can be written in the form of complex
numbers by using the Euler’s formula,
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0.5sin(zt)+2sin(4zt)+4cos(2zt)

AL
i

IS

N

o

)

A

0

i

el = cos@+isind and e = cos@—isind

where i =+/—1 is the imaginary unit number. The two equations
above lead to,
eire? and  sing = & __e_le
2i
After substituting these cosé@ and siné functions in the form of
complex numbers, the expression of f(t) reduces to a more com-
pact form as,

cosf =

f(t) — Z Ck e27ria)kt
k=-n

where C, is the magnitude and e, is the frequency.

8.3 Fourier Transform

In MATLAB, the Fourier transform of a function f(t) is
defined by,

Fw) = T f(t)e-iot dt

—00
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The definition differs from those defined in most textbooks which
have the factor of ~/27 as denominator.

Fourier transform requires performing integration from
—oo to oo of the product between f(t) and e*. For example, the
given function f(t) is,

1, |x|<1
f(t) =
0, [x|>1
which has its variation as shown in the figure.
f(t)
A
2+
1
o —1 0 1 '

Then, the Fourier transform is,

o) = T f(t)eiot dt

—00

= j' (De-Tet dt

1

e—ia)t g-io _pio
—io | —iw
-2isinw 2sinw

—-iw 10}
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We can use the int command to perform integration symbolically,

>> syms w t

>>f:l; _
>> int(Frexp(-i*w*t),t, -1, 1) int
ans =

2*sin(w)/w

The result is plotted by using the command,

>> ezplot("2*sin(w)/w", [-10 10 -1 3])

The figure shows the result of Fourier transform along o -axis in
the 7 scale.

?ﬂ(a))

3t

N N .
-3 —ZM—H 0 7[\/27[ 3

-1r

MATLAB contains the fourier command that can be
used to transform f(t) from the time domain to (@) in the

frequency domain. The definition of Fourier transform used in
MATLAB is,

Fw) = T f(t)e-iot dt

—00
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For example,
f(t) = et
>> syms t w
>> T = exp(-t™2);
>> ezplot(f)
Variation of the function with time t is shown in the figure.
1/exp(t?)

f(t)

We can use the fourier command to find Fourier transform,

>> fourier(f)

ans =
pin(1/2)/exp(wr2/4)
ie., Fw) = Jmeoh

The result varies with the frequency @ that can be plotted using
the ezplot command as shown in the figure.

>> ezplot(ans)
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7[1/2/‘exp‘(a)2/‘4)

7(w)

If the function f(t) is given by,

f(t) = eltl

>> syms t w
>> f = exp(-abs(t));
>> ezplot(f)

which varies with time t as shown in the figure.

The Fourier transform is obtained by using the fourier
command with its variation as shown in the figure.

>> fourier(f)

ans =
2/(Wr2 + 1)

>> ezplot(ans)

As another example, if the function f(t) is given by,

f(t) = te
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_ Yexp(abs(t))

£(t)

7(w)

The Fourier transform is obtained by using the fourier com-
mand,

>> syms t w
>> F = t*exp(-abs(t));

>> fourier(f)

ans =
—(AFWEI) /W2 + 1)N2
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4dwi

i.e., ?(CO) = —(a)2—+1)2

8.4 Inverse Fourier Transform

MATLAB also contains the ifourier command to find
the inverse Fourier transform of the function 7(w) from the
frequency domain to the function f(t) in time domain. The
inverse Fourier transform in MATLAB is defined by,

f(t) = %T H(w) et do

For example, if the function in the frequency domain is,
Fw) = —2el®l

>> syms w t
>> F = -2*exp(-abs(w)); 3
>> ezplot(F) ezplot

which varies with the frequency as shown in the figure.

—2/exp(abs(w))
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We can use the i fourier command to find the inverse Fourier
transform and plot its variation as follows,

>> jfourier(F,t) ifourier

ans =
—2/(Pi* ("2 + 1))

>> ezplot(ans)

i.e., the result of inverse Fourier transform is,

2
S Y

with the variation as shown in the figure.

—2lr (" +1)

£(t) os

It is noted that the symbol t at the end of the ifourier command
is for assigning it as the independent variable. Otherwise,
MATLAB will use the default symbol of x as the independent
variable.

If the function in the frequency domain is given by,

Fw) = 6re?
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The inverse Fourier transform can be found by entering,
>> F = (6*pinN(1/72))/exp(wr2/4)

>> f = ifourier(F,t)

¥ =
6/exp(t"2)

I.e., the result in the time domain is,
f(t) = 6e?
As another example, if the function in the frequency

domain is given by,
1

1+iw
The inverse Fourier transform can be found by entering,

o) =

> F = 1/(1 + i*w);
>> f = 1fourier(F,t)
f =

heaviside(t)/exp(t)

The result of f(t) in the time domain is shown in the figure.
Heaviside(t)/exp(t)

0.8

0.6

f |

0.2
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If the given function contains a quantity that must always
be positive value, we have to inform that to MATLAB. As an
example, the value of a in the function below must be a positive
quantity, we need to declare it in the syms command as,

>> syms a positive
For example, the function in the frequency domain is,

e—w2/4a

V2a

where a must be greater than zero. If we perform the inverse
transformation without declaring that a > 0 as follows,

Fw) = a>0

>> syms w t a

>> F = exp(-wr2/(4*a))/sqrt(2*a);
>> F = i1fourier(F)

¥f =

@cr@ars2)*transform: s fourier(/exp(wh2/(4*a)), w,
x))/ (4*pi*an(1/2))

MATLAB could not find the inverse Fourier transform, i.e., there is
no result for arbitrary a value.

But if we start by declaring that a is only positive value as,

>> syms w t; syms a positive

>> F = exp(-wr2/(4*a))/sqrt(2*a);
>> T = i1fourier(F)
¥ =

27 (L/2)/ (2*pi~(1/2) *exp(a*tr2))

we obtain the correct result of the function in the time domain, i.e.,
e—at2

() = —
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8.5 Fast Fourier Transform

All of the functions f(t) we learned in the preceding
sections are continuous and easy to handle. For practical problems,
a large number of data points may be generated from experiments.
These data points are discrete and not continuous. The technique
of the Fourier transform can still be applied to analyze such data.
We call the analysis of this latter case as the discrete Fourier
analysis. The transformation process is known as the Discrete
Fourier Transform or DFT.

To understand the process, we start from a periodic
function f(t) with the period of 2. If we have N data points
with equal intervals, the distance between each pair of data points
IS,

t, = 2’|\Iz—k k=0,12,..,N -1
The idea is to create a function f(t) to represent the variation of

these data points in the form of,
N-1 )
ft) = D Ce™
n=0

where the coefficients C,, n=0,1,2,..., N -1, are to be deter-

mined. It was found that the time used for determining these
coefficients varies with N*. Later, an improved method so called
the Fast Fourier Transform or FFT was developed. The method
significantly reduces the computational time to NlogN. This
latter method was implemented on MATLAB which can be used by
calling the fft command. We will learn how to use this fft
command to study the signal frequency through a simple example
as follow.

Suppose we have a signal composing of the three sine and
cosine functions,

f(t) = 2sin(27(20)t)+ 4cos(27 (50)t)+ 3sin (27 (100)t)

It is noted that the frequencies of these three sine and cosine
functions are 20, 50 100 Hz, respectively. The variation of the
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continuous f(t) function is plotted from 0 to 1 as shown in the
figure.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t
To include the noise similar to that occurs in the data from
experiment, we first represent the continuous function f(t) by 500
discrete data points and then add arbitrary noise values randomly
into it by using the built-in randn command. The variation of the
function f (t) after adding noise is shown in the figure.

10

8t 4
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The variations of the original continuous function f(t)

and after it was represented by 500 data points with noise as seen
from the figures are slightly different. It is difficult to identify the
three frequencies of 20, 50 100 Hz from these two figures. We will
use the fast Fourier transform through the ¥t command to find
these three frequencies. The MATLAB file below shows the
commands to plot the original continuous f(t) function and to

convert it into 500 data points. Noise is added randomly into these
data points before plotting their variation again. The data points
are transformed using the fft command to determine the
amplification.  The amplification is then plotted versus the
frequency as shown in the figure. The figure shows that the three
frequencies of 20, 50 100 Hz are clearly identified after using the
fft command. This example thus demonstrates the advantage of
the fast Fourier transform that can find frequencies of the data with
noise normally obtained from experiment.

% Number of data points, data point interval,

% and discrete times

n=>500; T=1/n; t = (0:n-1)*T;

o Discrete data points composing of 3 waves

ft = 2.*sin(2*pi*20*t) + 4.*cos(2*pi*50*t) + ...
3.*sin(2*pi*100*t);

plot(t(1:n),ft(1:n), "k"); axis([0 1 -10 10])

% Add noise randomly into these discrete data

% points

ffn = ft + 2_*randn(size(t));

plot(t(1:n),fn(1:n),"k"); axis([O 1 -10 10])

% Perform fast Fourier transform

nfft = 2™nextpow2(n);

amp = ffe(fn,nfft)/n; fft

fre = n/2*linspace(0,1,nfft/2+1);

plot(fre,2*abs(amp(1l:nfft/2+1)),"k")

xlabel ("Frequency (Hz)"); ylabel("Amplitude®);
axis([O 120 0 4D

=S¢
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Amplitude

L L L I L
0 20 40 60 80 100 120
Frequency (Hz)

8.6 Solving Differential Equations

The method of Fourier transform can be used to solve the
differential equations that are in some specific forms. The Fourier
transform for the first-order derivative of function f(t) is,

F{H'(V)) = (0i) F(o)
Similarly, the Fourier transform for the second-order derivative of
function f(t) is,

FUE(1) = (@) F(o)

The Fourier transform for the higher-order derivatives of function
f (t) can be obtained in the same fashion, i.e.,

FLE () = (o) F(o)

We will use examples to demonstrate the method of
Fourier transform to solve for solutions of some specific types of
differential equations as follows.
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Example Solve the first-order nonhomogeneous differential
equation,

y' -4y = e* H(t)

where H(t) is the Heaviside function which is equal to one when
t>0 and is equal to zero when t<0. The differential equation

can be rewritten as,
et t>0
y'—4y =

0, , t<0

We start by performing the Fourier transform of the
differential equation,

Fly}—47{y} = Fle* H(t)}
We can use the fourier command to find the Fourier transform
for the term on the right-hand-side of the equation as,

>> syms t w
>> RHS = exp(-4*t)*heaviside(t);

>> fourier(RHS)

ans =
1/(4 + w*i)
Thus, the Fourier transform of the differential equation is,
: 1
(a)|)F —4F = m
or = L
' - (wi+4)(wi-4)

Then, we perform inverse transformation by using the
i fourier command,

>> F = 1/((W*i+4)*(W*i-4)); -
>> ifourier(F,t)

ans =

-heaviside(t)/(8*exp(4*t))
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The result above was simplified by the simple command so that it
becomes more compact,

ot
yt) = -4

The solution of y that varies with t when t>0 is shown in the
figure.

0.02

-0.02
-0.04 |
y(E) oss|
-0.08 |

-0.1

-0.12

-0.14

| | |
0 0.5 1 1.5 2

t

It is noted that the solution can be verified by substituting
it into the left-hand-side of the differential equation,

>> syms ty
>> y = -exp(-4*1)/8;

>> dy = diff(y,t);

>> LHS = dy - 4*y
LHS =
1/exp(4*t)

The result is equal to the right-hand-side of the differential equation
when t > 0.

Example Solve the second-order nonhomogeneous differential
equation,

Yy +3y' +2y = ()
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where §(t) is the Dirac delta function which is equal to one at
t =0 and equal to zero at any other t.

We start by performing Fourier transform of the differen-
tial equation,

Flyy +3F{y1+27{y} = F{o(1)]

The fourier command can be used to find the Fourier transform
of the Dirac delta function,

>> syms t w

>> fourier(dirac(t))

ans =

1

Thus, the differential equation after transformation becomes,

(wi)’F +3(@i)F +2F =1

1

e F T Crseir2

Then, we perform inverse transformation by using the
i fourier command to obtain the solution,

>> F = 1/(-w”2 + 3*w*i + 2);
>> jfourier(F,t)

ans =

heaviside(t)*(exp(t) - 1))/exp(2*t)
i.e., the solution of this differential equation is,
y(t) = e (e'=1)H(t)

Again, we can verify the solution by substituting it into the
left-hand-side of the differential equation,
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>> y = (heaviside(t)*(exp(t) - 1))/exp(2*t);
>> dy = diff(y,t);

>> d2y = diff(dy,t);

>> LHS = d2y + 3*dy + 2*y
LHS =

dirac(t)

The result is the Dirac delta function which is equal to the right-
hand-side of the differential equation.

8.7 Concluding Remarks

In this chapter, we have learnt the method of Fourier
transform to solve for solutions of some differential equations.
Such differential equations arise in many applications for which the
loads are applied to the problems instantly. Definitions of the
Fourier transform and its inverse transformation were first
explained. The Fourier transform changes the given function from
the time domain into another function in the frequency domain. In
the opposite way, the inverse Fourier transform changes the
function in the frequency domain back to the time domain. The
fourier and ifourier commands in MATLAB were used to
obtain the transformation results as demonstrated by examples.

For discrete data collected from experiments, the discrete
Fourier analysis was applied. The discrete Fourier transform was
explained by employing the fft command of the fast Fourier
transform. The command helps us to identify the frequency
contents from the signal with noise. In the last section, the method
of Fourier transform was applied to solve differential equations.
Examples have shown that the method can provide solutions
effectively when the nonhomogeneous functions on the right-hand-
side of the differential equations are in form of the Dirac delta and
Heaviside functions.
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Exercises

1. Use the fourier command to find the Fourier transform 7(w)
of the following functions,

@ f(t) = H() (b) f(t) = e'H()
© f@) = eth @ t) = 5 +1t2
(&) f(t) = 5et® () f(t) = el

where H(t) is the Heaviside function.

2. Use the fourier command to find the Fourier transform 7(w)
of the following functions,

@ f(t) = tell (b) f(t) = 3ed2

t 5e3it
() f(t) = 9 @d f) = s 13
(e) f(t) = 3te°? (f) f(t) = 25te H(t)

3. Use the fourier command to find the Fourier transform 7(w)
of the following functions,

@ f@) = 1-[t (b) f(t) = e
) f(t) = e d) f(t) = tet?/
(e) f(t) = sin(3t2) (f) f(t) = cos(r+5t2)

4. Use the ifourier command to find the inverse Fourier
transform f(t) of the following functions,

1 2
@ H) = O) T = o
(© #a) = zell  (d) Hw) = w21+ ;
© Ha) = — 3

prar- B U C Bl pessy sty
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5. Use the ifourier command to find the inverse Fourier
transform f(t) of the following functions,

1
(@) (o) = L oi)
1
b) 7o) = TraneTan
1
©) #e) = (1+ wi)(6+5wi — @?)
54 + wi)

@ 7@ = Grgai-w?)

() Ha) = Te 'l

e(20-6)i
(d) #(w) = —G-o)

6. Use the ifourier command to find the inverse Fourier
transform f (t) of the following functions,

(@) F(w) = elo-o?/f (b) #F(w) = me3ol

© 7@ = g @ #a) = T
e(20-4w)i e(20-6)i

(e) #(w) = 3-G-a) (f) 7o) = 5_(G-a)i

7. Asignal is given in the form of two sine functions,
f(t) = sin(2z(15)t)+ 2sin (27 (60)t)

Use the randn command to add noise into the signal similar to
that explained in section 8.5. Then, apply the fast Fourier
transform to find the two frequencies from the amplitude
versus frequency plot.
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8.

10.

11.

12.

A signal is given in the form of a sine and two cosine
functions,

f(t) = 2cos(27(30)t)+3sin(27(60)t)+ 4cos(27(90)t)

Use the randn command to add noise into the signal similar to
that explained in section 8.5. Then, apply the fast Fourier
transform to find the three frequencies from the amplitude
versus frequency plot.

Apply the Fourier transform to solve the first-order nonhomo-
geneous differential equation,

2y'+y = S(t)

where &(t) is the Dirac delta function. Plot the solution of
y(t) and verify it by substituting into the differential equation.

Apply the Fourier transform to solve the first-order nonhomo-
geneous differential equation,

y' +5y = etH(t)
where H(t) is the Heaviside function. Show detailed deriva-

tion of the solution y(t). Plot the solution and verify it by
substituting into the differential equation.

Apply the Fourier transform to solve the first-order nonhomo-
geneous differential equation,

y' -8y = e® H(t)
where H(t) is the Heaviside function. Plot the solution of

y(t) for t >0 and verify it by substituting into the differential
equation.

Apply the Fourier transform to solve the second-order non-
homogeneous differential equation,

y'+4y' +4y = 5(t)
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where &(t) is the Dirac delta function. Plot the solution of
y(t) and verify it by substituting into the differential equation.

13. Apply the Fourier transform to solve the second-order non-
homogeneous differential equation,

y"+6y +5y = 5(t-3)

where 5(t) is the Dirac delta function. Show detailed deriva-
tion of the solution y(t) and plot its variation in the interval of

3<t<7. Note that the MATLAB command to find Fourier
transform of 5(t —3) is fourier (dirac (t-3)).
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9

Boundary Value Problems

9.1 Introduction

Solving the boundary value problems that will learn in this
chapter is the first step toward understanding how to analyze
practical problems. We will solve the boundary value problems
that are governed by the ordinary differential equations together
with the boundary conditions. Solving the ordinary differential
equations is equivalent to solve the one-dimensional problems for
which their exact solutions are usually available. If the exact
solutions cannot be found, we will apply the numerical methods to
obtain the approximate solutions instead.

Learning how to solve the one-dimensional problems is
important as the basis to continue solving two- and three-
dimensional problems. For these multi-dimensional problems, the
governing equations are in the form of partial differential equations
which are difficult to solve. In addition, the boundary conditions
are more complicated and the geometries could be complex too. In



294 Chapter 9 Boundary Value Problems

general, their exact solutions are not available and the numerical
methods are the only way for finding approximate solutions.
Efficient numerical methods, such as the finite element method
which will be explained in the following chapter, must be applied
to solve for their solutions.

In this chapter, we will learn how to find exact solutions of
the one-dimensional boundary value problems that are governed by
simple ordinary differential equations with boundary conditions.
We will derive the exact solutions and verify them by using the
dsolve command. If the exact solutions are not available, we will
use the bvp4c command to find their approximate solutions. The
materials in this chapter thus represent the first step toward learning
how to solve the more general boundary value problems.

9.2 Two-Point Boundary Value Problems

Two approaches are normally used to solve the two-point
boundary value problems. The first approach is to find the exact
solutions when the governing differential equations and boundary
conditions are not complicated. The second approach is to find the
approximate solutions by using the numerical methods. In the
latter approach, the methods for solving the initial value problems,
such as the shooting, Euler and Runge-Kutta methods, are modified
to include iteration process so that the boundary conditions are
satisfied. MATLAB contains the bvp4c command to solve such
problems for which we will learn how to use it in detail.

In this section, we will start by reviewing the derivation of
exact solutions to the governing differential equations with
boundary conditions. We will verify the derived solutions with
those obtained by using the dsolve command. We will use the
following examples to demonstrate the process.

Example Derive the exact solution of the boundary value problem
governed by the second-order homogeneous differential equation,

d2y
dx2_4y =0 0<x<1
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with the boundary conditions of y(0)=0 and y(1)=1.

The process for deriving the exact solution of the
boundary value problem is similar to the initial value problem. We
first assume a general solution in the form of e4x and substitute it
into the differential equation to get,

Azeix —deix = 0
Then, we divide it by e4x to obtain the characteristic equation,
A2—4 = 0
(A-2)(4+2) = 0
i.e., 4, =2 and A4, =-2. Thus, the general solution is,
y = Cex+Ce2
where C, and C, are constants that can be determined from the
given boundary conditions as follows,
y(0) = 0 0 = C,+C,
yl = & 1 = Ce2+Cupe
By solving the two equations above, we obtain the two constants of
C, and C, as,

1 1
Cl = m and C2 = T

Hence, the exact solution is,

e2x e—2x
y = e2 _e—2 _e2 _e—2
_sinh(2x)
or, Y = Sinh@)

The same exact solution is obtained by using the dsolve
command. The solution is plotted using the ezplot command as
shown in the figure.
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>> syms X Yy
>> dsolve("D2y - 4*y = 07,"y(0)=0", "y(1)=1","x")

ans = dsolve

sinh(2*x)/sinh(2)

>> ezplot(ans, [0, 1])

sinh (‘2x)/sinh‘(2)

y(x)

Il Il Il Il
0 0.2 0.4 0.6 0.8 1
X

Example Derive the exact solution of the boundary value problem
governed by the second-order homogeneous differential equation,

dzy
dx?2

with the boundary conditions of y(0)=0 and y(1)=1.

This example is identical to the previous one except the
opposite sign of the zeroth-order term in the differential equation.
The characteristic equation obtained from the differential equation
above is,

+4y =0 0<x<1

A2+4 =0
(A-2i)(A+2i) = 0

So, 4, =2i and A, =—2i where i=+v—1. Thus, the general solu-
tion is,
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y = Ae2ix + Be-2ix
where A and B are constants. By using the Euler’s formula,

eifx = cos(px)+isin(SXx)
and g-ifx cos(x) —isin(px)

the general solution above can be written in the form of sine and
cosine functions as,

y = C,co8(2x)+ C,sin(2x)

where C, and C, are constants that can be determined from the
given boundary conditions as follows,
y(0) = 0 0 = C,+0
vyl = 1 1 = C,cos(2)+C,sin(2)
The two equations above give values of the two constants as C, =0
and C, =1/sin(2). Hence, the exact solution is,
sin(2x)
sin(2)
The same exact solution is obtained by using the dsolve

command. The solution of y that varies with x is plotted by using
the ezplot command as shown in the figure.

>> syms X Yy
>> dsolve("D2y + 4*y = 0,"y(0)=0","y(1)=1","x")

ans = dsolve

sin(2*x)/sin(2)

>> ezplot(ans, [0, 1])

9.3 Second-Order Differential Equations

Derivation for exact solutions of the boundary value
problems governed by the second-order differential equations is
reviewed in the preceding section. The derived solutions were
verified by using the dsolve command. For many second-order
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sin(‘2x)/sin(‘2)

differential equations, their exact solutions cannot be derived in
closed-form expressions. Numerical methods must be applied to
find the approximate solutions. In this section, we will use the
bvp4c command to solve the boundary value problems. The
approximate solutions will be compared with the exact solutions, if
available, to measure the numerical solution accuracy.

The bvp4c command employs the technique similar to the
commands used for solving the initial value problems. For
example, to solve an initial value problem governed by the second-
order differential equation in the interval of 0 < x <1, we start the
solution from the initial conditions of y(0) and y'(0) at x=0. The
technique computes the next solutions with the time step of Ax
until it reaches x=1. The final solution of y(1) at x=1 thus
depends to the differential equation and the two initial conditions.

If the same technique is used to solve the boundary value
problem, it starts with the condition of y(0) at x=0 and must end
with the specified condition of y(1) at another end of x=1. Thus,

an iteration process is needed so that the computed solution agrees
with the specified boundary condition at x =1.
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Therefore, to solve the boundary value problems by
MATLAB, we need to provide the information of: (1)a main
program that calls the bvp4c command, (2)the differential
equation, and (3) the boundary conditions at both ends of the
problem. We will demonstrate how to solve the boundary value
problems with the bvp4c command by using the following
examples.

Example Use the bvp4c command to solve the boundary value
problem governed by the second-order homogeneous differential
equation,

2
3X¥+3%+2y =0 0<x<1

with the boundary conditions of y(0)=1 and y(1)=0.
If we derive the exact solution by first assuming it in the

form of e#x, we obtain two distinct roots of 4, and A, from the

characteristic equation. These two roots give the general solution
in the form,

y = Cex+Ce?
where C, and C; are constants to be determined from the given

boundary conditions of y(0)=1and y(1)=0. Solving these two
constants leads to the exact solution of,

B el _eX
YT e

The same exact solution is obtained by using the dsolve
command,

>> syms X Yy
>> dsolve("D2y+3*Dy+2*y=0","y(0)=1", "y(1)=0","x")

ans = dsolve

(exp(1) - exp(x))/(exp(2*x)*(exp(l) - 1))

Variation of the solution y with x is plotted using the ezplot
command as shown in the figure.
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ezplot(ans, [0, 1])
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The bvp4c command can be used to find the approximate
solution of this problem. To do that, we need to create the script
file, Ex1.m, containing commands as follows,

YEx1: D2y+3*Dy+2*y=0 bvpinit
solinit = bvpinit(linspace(0,1,5), [0 -1]);

sol = bvp4c("0deEx1l", "BCcEx1",solinit);
x = linspace(0,1,20); bvp4c
y = deval(sol,x);
plot(x,y(1,:), k")

xlabel("x"); ylabel("y"); hold on;
xe = 0:0.1:1;

ye = (exp(1)-exp(xe))./(exp(2.-*xe)*(exp(1)-1));
plot(xe,ye, "ok") plot

deval

The MATLAB command, bvpinit, in the second line
divides the interval of 0 < x <1 into five sub-intervals by further
calling the linspace command. Therefore, there are four inner
points and two end points in this case. The two numbers in the
square bracket y=0 and y'=-1 are the initial guess values of the
four inner points at the starting of the iteration process. These
initial guess values, which are provided by users, should be closed
to the final solutions.
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The bvp4c command in the third line calls the file
function, OdeEx1, that contains the two first-order differential
equations arose from the second-order differential equation,

d2y, dy,

de T
This second-order differential equation is separated into two first-
order differential equations as,

dy,
dx

Thus, the 0OdeEx1 file function contains the details as,

function dydx = OdeEx1(x,Yy)

dydx = [y(2); -3*y(2)-2*y(1)];

The bvp4c command also calls the file function, BcEx1,
that contains the initial conditions of y(0)=1and y(1)=0 at both
ends of the domain as,

+2y,= 0

dy,

=Y and ax -3y, -2y,

function res = BcEx1(ya,yb)
res = [ya(1)-1; yb(1)-0];

Note that the res statement denotes the residual values at both
ends of the domain. So that the values of ya(1)-1 and yb(1)-0
representing the solution errors at these two points, must be zero.
The iteration process continues until these conditions are met.

The computed solutions at the four inner points are plotted
as shown in the figure. The deval command in the 5" line of the
Ex1.m script file is used to smooth the curve for plotting from the
discrete solution data at the four inner points. As shown in the
figure, the approximate solution compares very well with the exact
solution.

Example Use the bvp4c command to solve the boundary value
problem governed by the second-order homogeneous differential
equation,

322’+3gy +2y = 0 0<x<1
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with the boundary conditions of y(0)=1 and y'(1)=0.

]
0.9r
0.8f
0.71
06k Approx.
Y osf
047 Exact
0.31
0.2r
0.1p
O0 0‘.2 0‘.4 0‘.6 0‘.8 1
X

This example is identical to the preceding one except the
boundary condition at x=1 is changed from y(1)=0 to y'(1)=0.

We can derive the exact solution by ourselves or use the dsolve
command as follows,

>> syms X Yy

-
dsolve("D2y+3*Dy+2*y=0","y(0)=1", "Dy(1)=0","Xx")
ans =

(exp(1) - Z*exp(X))/(exp(2*x)*(exp(1l) - 2))

: et —2ex
l.e., y = m

The approximate solution can be obtained by creating a
script file, Ex2.m, that employs the bvp4c command and calls the
two file functions, OdeEx2 and BcEx2 as follows,

%BEX2: D2y+3*Dy+2*y=0
solinit = bvpinit(linspace(0,1,5), [0 -1]);
sol = bvp4c("0deEx2", "BCcEx2",solinit);

x = linspace(0,1,20);
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y = deval(sol,x);
plot(x,y(1,:), k")

xlabel("x"); ylabel("y"); hold on;

xe 0:0.1:1; 'IHI@HE!.

ye (exp(D)-2.*exp(xe)) ./(exp(2.*xe)*(exp(1)-
2));

plot(xe,ye, "ok™)

plot

function dydx = OdeEx2(X,y)
dydx = [y(2); -3*y(2)-2*y(D];

function res = BcEx2(ya,yb)
res = [ya(1)-1; yb(2)-0];

The figure below shows the plot of the approximate
solution as compared to the exact solution. The boundary
conditions of y(0)=1 and y'(1)=0 are satisfied at the ends of the

domain.
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Example Use the bvp4c command to solve the boundary value
problem governed by the second-order nonhomogeneous differen-
tial equation,

2
3X¥+%+y — 4%+ 6x2 +14X— 9 0<x<1

with the boundary conditions of y(0)=1and y(1)=1.
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Similar to the preceding examples, we can derive the exact
solution by ourselves or use the MATLAB command to find it.
The dsolve command can be used to find the exact solution
conveniently as follows,

>> syms X Yy
>> dsolve("D2y+Dy+y=4*x"3+6*x"2+14*x-9" ,

"y(0)=1","y(1)=1","x")
ans =

4*XN3 - 6FXN2 + 2*X + 1
i.e., the exact solution for this boundary value problem is,
y = 4x3-6x2+2x+1

If we cannot find the exact solution, we can employ the
bvp4c command to solve for the approximate solution. We first
create the script file, Ex3.m, that calls the two function files
OdeEx3 and BcEx3. The script file contains the following
commands including the commands for plotting as follows,

%EX3: D2y+Dy+y=4*x"3+6*x"2+14*x-9
solinit = bvpinit(linspace(0,1,5), [0 -1]);

sol = bvp4c("0deEx3", "BcEx3",solinit); bvpac
x = linspace(0,1,20);
y = deval(sol,x);

plot(x,y(1,:), k")

xlabel("x"); ylabel("y"); hold on;
xe = 0:0.1:1;

ye = 4.*xe."3-6_.*xe._N2+2_*xe+1;

plot(xe,ye, "0ok")

The function file, 0OdeEx3, contains the two first-order
differential equations,

function dydx = 0deEx3(X,y)
dydx = [y(2); -y(2)-y(1)+4*x"3+6*x"2+14*x-9] ;

which are obtained by separating the second-order differential
equation as follows,
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2
d ler%er1 = 4x3+6x*+14x-9

dx2
Let, % =Y,
dy, 3 2
then, dx -V, =Y, +4x3+6x%+14x -9

The function file, BcEx3, contains the information of the
two boundary conditions at both ends of the domain,

function res = BcEx3(ya,yb)
res = [ya(1)-1; yb(1)-1];

The approximate solution is plotted to compare with the
exact solution. Again, the plot shows that the bvp4c command can
provide high solution accuracy to the problem. The method for
finding the approximate solution is thus valuable when the exact
solution of the problem is not available.

1.25

9.4 Higher-Order Differential Equations

The bvp4c command can also be used to find
approximate solutions of the boundary value problems that are
governed by the higher-order differential equations as demon-
strated in the examples below.
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Example Use the bvp4c command to solve the boundary value
problem governed by the third-order homogeneous differential
equation,

dsy ,d2zy dy _
with the boundary conditions of y(0)=0, y'(0)=1 and y(4)=0.

This boundary value problem has an exact solution that
can be found by using the dsolve command,

>> dsolve("D3y+2*D2y-Dy-2*y=0",
"y(0)=0","Dy(0)=1","y(4)=0","x")
ans =
-((exp(x) - 1)*(exp(2*x) - exp(4) - exp(8) +
exp(x)))/(exp(2*x)*(exp(4) + exp(8) - 2))
i.e., the exact solution is,
__(ex=1)(e> —e* et +e¥)
y = e2x(e4 +e8 —2)

To employ the bvp4c command for finding the
approximate solution, we need to break the third-order differential
equation into three first-order differential equations,

a2y, +2dzyl —%—Zy1 =0

dx3 dx2  dx
i.e., if we let, % =y, and % = Y,
then, % = =2y, +Y,+2y

The boundary conditions become v,(0)=0, y,(0)=1 and

y1(4):0-

We can create the script file, Ex4 . m, that calls the function
files OdeEx4 and BcEx4. The function file, OdeEx4, contains
information of the three first-order differential equations while the
function file, BcEx4, includes the three boundary conditions.
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Details of the script file (Ex4.m) and the two function files
(OdeEx4 and BcEx4) are as follows.

WEx4: D3y+2*D2y-Dy-2*y=0

solinit = bvpinit(linspace(0,4,5), [0 1 0]);

sol = bvp4c("0deEx4", "BCcEx4" ,solinit);
x = linspace(0,4,50);

y = deval(sol,x); deval

plot(x,y(1,:), k")

xlabel("x"); ylabel("y"); hold on;

xe 0:0.25:4;

ye = -((exp(xe)-1).*(exp(2.*xe)-exp(4)-exp(8)
+texp(xe))) -/(exp(2-*xe)*(exp(4)+exp(8)- 2));

plot(xe,ye, "0ok")

function dydx = OdeEx4(X,y)
dydx = [y(2); y(3); -2*y(3)+y(2)+2*y(1)]:

function res = BcEx4(ya,yb)

res = [ya(1)-0; ya(2)-1; yb(1)-0];

The approximate solution is compared with the exact
solution as shown in the figure.
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Example Use the bvp4c command to solve the boundary value
problem governed by the fourth-order nonhomogeneous differential
equation,
d4y
dx+
with the boundary conditions of y(0)=0, y'(0)=0, y"(1)=0 and
y"(1)=0.

This boundary value problem represents the deflection
behavior of a cantilever beam subjected to a uniform loading as
shown in the figure. The beam of a unit length is fixed at the left
end (x=0) so that both the deflection and slope are zero. The
right end (x=1) is free to move, therefore, both the moment and
shear are zero.

-1 0<x<1

A
[EEN
A\

The exact solution of this problem can be derived by
performing integration four times and applying the boundary
conditions. It can also be found conveniently by using the dsolve
command as follows,

>> syms X y

>> dsolve("D4y=-1","y(0)=0", "Dy(0)=0", dsolve
.D2y(1):0.,.D3y(1)=0.,.x.)

ans =

- XM/24 + x"3/6 - x"2/4

. X4+ x3 X2

e, y = —ﬂ'F?—T

If we prefer to obtain the approximate solution by using
the bvp4c command, we have to separate the fourth-order
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differential equation into four first-order differential equations.
Since the given differential equation is,

d4y, _ _
x4 1
dy, _ dy, _ dy, _
If we let, ax - Ve 9 T Ve and ax - Ve
dy, _
then, X 1

The boundary conditions become y,(0)=0, y,(0)=0, y,(1)=0
and y,(1)=0.

Then, we create the script file, Ex5.m, which calls the two
function files OdeEx5 and BcEx5. The two function files OdeEx5
and BcEx5 contain information of the differential equations and
boundary conditions, respectively. Details of these files are as
follows,

%ExX5: D4y=-1

solinit = bvpinit(linspace(0,1,5), [0 -1 0 O]);
sol = bvp4c("0deEx5", "BCcEx5",solinit);

x = linspace(0,1,50);
y = deval(sol,x);
plot(x,y(1,:), k")
xlabel("x"); ylabel("y"); hold on; ylabel
xe = 0:0.1:1;

ye = - xe.N/24 + xe."N3/6 - xe.N2/4;
plot(xe,ye, "0ok™)

function dydx = O0deEx5(X,y)
dydx = [y(2); y(3); y(4); -11;

function res = BcEx5(ya,yb)

res = [ya(1)-0; ya(2)-0; yb(3)-0; yb(4)-0];

The approximate solution of the beam deflection compares
very well with the exact solution as shown in the figure.
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Example Use the bvp4c command to solve the boundary value
problem governed by the fourth-order nonhomogeneous differential
equation,
d4y
dx4
with the boundary conditions of y(0)=0, y'(0)=0, y(1)=0 and
y'(1)=0.

This example is identical to the preceding one except
the right boundary conditions at the right end of the domain. The
beam is now fixed at both ends so that the deflections and slopes at
(x=0) and (x=1) are zero as shown in the figure.

'Y vy v vy

_>X

< »
- -

-1 0<x<1

In this case, the exact solution can be obtained easily by
using the dsolve command,
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>> syms X y

>> dsolve("D4y=-1","y(0)=0","Dy(0)=0",
"y(1)=0","Dy(1)=0","x")
ans =

- XM/24 + xN3/12 - x"N2/24

. X+ x3 x?

Here, the script file, Ex6.m, and the two function files
OdeEx6 and BcEx6 are similar to those in the preceding example,

WEX6: Ddy=-1

solinit = bvpinit(linspace(0,1,5), [0 -1 0 0]);
sol = bvp4c("0deEx6", "BCEx6" ,solinit);

x = linspace(0,1,50);
y = deval(sol,x); deval
1ot Gy (i K
xlabel("x"); ylabel("y"); hold on;

xe = 0:0.1:1;

ye = - xe.™M/24 + xe.N3/12 - xe."2/24;

plot(xe,ye, "ok")

function dydx = 0deEx6(x,Yy)
dydx = [y(2); y(@3); y(4); -11; _ _
function res = BcEx6(ya,yb)

res = [ya(1)-0; ya(2)-0; yb(1)-0; yb(2)-0];

The approximate solution compares very well with the
exact solution as shown in the figure.

9.5 Complicated Differential Equations

Many boundary value problems are governed by
complicated differential equations. To solve them, we may start by
using the dsolve command to find their exact solutions. If the
exact solutions are not available, we can use the bvp4c command
to find the approximate solutions instead.
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Example Use the bvp4c command to solve the boundary value
problem governed by the second-order homogeneous differential
equation with variable coefficients,
d2y 2dy 2
& T e

The boundary conditions are y(1)=5 and y(2)=3.

0 1<x<2

We start from employing the dsolve command to find
the exact solution,

>> syms X y

>> dsolve("D2y+(2/x)*Dy-(2/x"2)*y=0",

"y(1)=57,"y(2)=3","x")
ans =

X + 4/xX"2

The exact solution for this boundary value problem is,

B 4
y = X+55

We can use the bvp4c command to find the approximate
solution by creating the script file Ex7.m. The script file calls the
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two function files OdeEx7 and BcEx7 which contain information
of the differential equation and boundary conditions, respectively.

%EX7: D2y+(2/x)*Dy-(2/x"2)*y=0 linspace
solinit = bvpinit(linspace(1,2,5), [5 -1]);

sol = bvp4c("0deEx7", "BcEx7",solinit);

x = linspace(1,2,20);

y = deval(sol,x);

plot(x,y(1,:), k")

xlabel("x"); ylabel("y"); hold on; Hold on
xe = 1:0.1:2;

ye = xe + 4._./xe."2;
plot(xe,ye, "ok") plot

function dydx = OdeEx7(Xx,y)
dydx = [y(2); -(2/x)*y(2)+(2/x*2)*y(1)1;

function res = BcEx7(ya,yb) function
res = [ya(1)-5; yb(1)-3];

Note that the function file OdeEx7 above contains the two
first-order differential equations that are separated from the given
second-order differential equation,

d2y, N 2dy, 2

o Txdax e =0

dy dy, _ 2,2
where x - )V then I - T xVetyeh

The computed approximate solution is compared with the
exact solution as shown in the figure.

Example Use the bvp4c command to solve the boundary value
problem governed by the second-order nonlinear differential
equation,

dx

with the boundary conditions of y(1)=+2 and y(3)=2.

2 2
y%‘l-(ﬂ) =0 1<x<3
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The dsolve command can provide the exact solution for
the nonlinear differential equation with the boundary conditions
above,

>> syms X Yy
>>

dsolve("y*D2y+Dy"2=0", "y(1)=sqrt(2) ", "y(3)=2","x")
ans =
x + DHNA/2)

i.e., y = +Jx+1

The approximate solution is obtained by using the bvp4c
command. The second-order differential equation is separated into
the two first-order differential equations as follows,

d2 dy, \’
_ dy, _ _¥3
If we let, ix - ) then ™ STy
Details of the script file, Ex8.m, that calls the two
function files 0OdeEx8 and BcEx8 containing information of the
differential equations and boundary conditions, respectively, are as
follows,

dy,
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%EX8: y*D2y+Dy”"2=0

solinit = bvpinit(linspace(1,3,5), [1 1]);
sol = bvp4c("0deEx8", "BcEx8" ,solinit);

x = linspace(1,3,20);

y = deval(sol,x);

plot(x,y(1,:), k")

xlabel("x"); ylabel("y"); hold on;

xe = 1:0.2:3;

ye = sgrt(xe+l);

plot(xe,ye, "0ok")

function dydx = OdeEx8(x,y)
dydx = [y(2); -y(2)"2/y(D)];

function res = BcEx8(ya,yb)
res = [ya(l)-sqrt(2); yb(1)-2];

The approximate solution is compared with the exact
solution as shown in the figure. The figure shows that the bvp4c
command can provide accurate approximate solution to this
nonlinear boundary value problem.

Exact

Approx.




316 Chapter 9 Boundary Value Problems

Example Use the bvp4c command to solve the boundary value
problem governed by the second-order nonlinear differential
equation,

dzy dy _

ot 2y& =0 0<x<1
with the boundary conditions of y(0)=1 and y(1)=1/2.

In this case, the dsolve command cannot provide the
exact solution,

>> syms X Yy

>> dsolve("D2y+2*y*Dy=0", "y(0)=1", "y(1)=1/2","x")
Warning: possibly missing solutions [solvini]
Warning: Explicit solution could not be found.

> In dsolve at 101

ans =
[ empty sym ]

However, it is found that the solution, y = %

IS an exact solution because it satisfies the differential equation.
We can check this by using the diff command,

>>y = 1/(1+x);

>> LHS = diff(y,x,2) + 2*y*diff(y,x)
LHS =

0

The solution also satisfies the two boundary conditions which can
be verified by using the subs command,

>> subs(y,{x},{0})

ans =
1

>> subs(y,{x},{1})

ans =

0.5000
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If we cannot find the exact solution of the problem, we can
use the bvp4c command to find the approximate solution in the
same fashion as explained in the preceding examples. We start
from breaking the second-order differential equation into two first-
order differential equations as follows,

d2 d

o g = O
P dy, _ dy, _
i.e., if we let ax y,, then W_—Zylyz.

We create the script file, Ex9.m, which calls the two
function files 0OdeEx9 and BcEx9 containing information of the
differential equations and boundary conditions, respectively.
Details of these file are as follows,

bvpinit

%EX9: D2y+2*y*Dy=0
solinit = bvpinit(linspace(0,1,5), [1 -1]);
sol = bvp4c("0deEx9", "BCEx9",solinit);
x = linspace(0,1,20);
y = deval(sol,x); deval
plot(x,y(1,:), k")

xlabel("x"); ylabel("y"); hold on;
xe = 0:0.1:1;

ye = 1./(1.+xe);

plot(xe,ye, "ok™) plot

bvp4c

function dydx = OdeEx9(x,y)
dydx = [y(2); -2*y(1)*y(2)]:

function res = BCEx9(ya,yb) function
res = [ya(1)-1; yb(1)-0.5];

The approximate solution is compared with the exact
solution as shown in the figure. Again, the figure shows that the
bvp4c command can provide accurate approximate solution to this
nonlinear boundary value problem.
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9.6 Concluding Remarks

Methods for solving the boundary value problems
governed by the ordinary differential equations and boundary
conditions were presented. For the problems with simple differen-
tial equations, their exact solutions can be derived. The process for
deriving exact solutions is similar to that for the initial value
problems except the application of the boundary conditions instead
of the initial conditions. MATLAB contains the dsolve command
that can be used to find exact solutions for many types of the
differential equations.

For the boundary value problems that are governed by
more complicated differential equations, such as those with
variable coefficients and in nonlinear form, their exact solutions
may not be available. In this case, the numerical methods must be
applied to obtain approximate solutions. MATLAB contains the
bvp4c command that can provide accurate numerical solutions.
Users need to break the given higher-order differential equation
into many first-order differential equations before using the
command.
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The boundary value problems solved in this chapter are all
in one-dimensional domain. The problems are governed by the
ordinary differential equations with simple boundary conditions.
For two- and three-dimensional problems, they are governed by the
partial differential equations. The boundary conditions are more
complicated and their domains could be arbitrary. In general, their
exact solutions cannot be found. Finding the approximate solutions
by using the numerical methods is the only way to solve the
problems. We will learn a popular method, so called the finite
element method, for solving these problems in the next chapter.

Exercises

1. Derive the exact solutions of the following boundary value

problems,

@ y'+4y =0 0<x<1
y(0)=0, y(1)=5

(b) y"+9y =0 0<x<2
y(0)=4, y(2)=1

c) y+y =0 0<x<nx/2
y(0)=-1, y(/2)=1

d y"+y+2y =0 0<x<1
y(0)=0, y(1)=1

(e) y"+2y-3y =0 0<x<1

y(0)=1, y(1)=2

Verify the solutions with those obtained by using the dsolve
command. In each sub-problem, employ the ezplot com-
mand to plot the solution of y that varies with x within the
given domain.
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2. Derive the exact solutions of the following boundary value

problems,

@ Y-y = x 0<x<1
y(0)=0, y(1)=0

(b) y"+4y = cosx 0<x<1
y(0)=0, y(1)=0

(c) y'+2y'+y = bx 0<x<1
y(0)=0, y(1)=0

@d y'-2y'+y = x*-1 0<x<1

y(0)=5, y(1)=10
() Yy -4y +4y = (x+1)ex 0<x<1
y(0)=3, y(1)=0
Verify the solutions with those obtained by using the dsolve
command. In each sub-problem, employ the ezplot com-

mand to plot the solution of y that varies with x within the
given domain.

3. Use the dsolve command to solve the following boundary
value problems,

(@ x2y"+3xy'+3y = 0 1<x<2
y1)=5, y(2)=0

(b) x2y"-2xy'+2y = 0 1<x<2
y)=-2, y(2)=2

(c) x2y"+3xy'+y = x2 1<x<2
y1)=0, y(2)=0

(d) y"+%y’ =0 1<x<4
y(1)=50, y(4)=100

(e) x2y"—xy'+y = Inx 1<x<2

y1)=0, y(2)=-2
In each sub-problem, verify the solution by substituting it into
the differential equation and boundary conditions.
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4. Use the di ff command to show that,

B cos(5)-1 . (x X
y = 32[Sin—(5)sm(§j—cos(§j+l}
is the exact solution of the boundary value problem governed
by the second-order differential equation,

y”+%y = 8 0<x<10

with the boundary conditions of y(0)=0 and y(10)=0. Then,

use the dsolve command to check whether MATLAB can
provide the above solution.

5. Use the di ff command to show that,
y = Xsinx

is the exact solution of the boundary value problem governed
by the second-order nonhomogeneous differential equation,

y'+2xy'—y = 2(1+ x2)cosx OSXS%

with the boundary conditions of y(0)=0 and y(z/2)=r/2.

Then, use the dsolve command to check whether MATLAB
can provide the above solution.

6. Use the di ff command to show that,

T
y = tan(x—z)

is the exact solution of the boundary value problem governed
by the second-order nonlinear differential equation,

y'-2yy = 0 0<x<%

with the boundary conditions of y(0)=-1 and y(z/2)=1.

Then, use the dsolve command to check whether MATLAB
can provide the above solution.
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7. Use the di ff command to show that,
y = ~1+x

is the exact solution of the boundary value problem governed
by the second-order nonlinear differential equation,

yy'+(y')2 = 0 1<x<3

with the boundary conditions of y(1)=+2 and y(3)=2.

Then, use the dsolve command to check whether MATLAB
can provide the above solution.

8. Employ the bvp4c command to find the approximate solution
of the boundary value problem governed by the second-order
homogeneous differential equation,

y"+y =0 0<x<1

with the boundary conditions of y(0)=1 and y(1)=-1. Plot

to compare the approximate solution with the exact solution
obtained by using the dsolve command.

9. Employ the bvp4c command to find the approximate solution
of the boundary value problem governed by the second-order
nonhomogeneous differential equation,

Y'+2y'+y = x2 0<x<1
with the boundary conditions of y(0)=5 and y(1)=2. Plot to

compare the approximate solution with the exact solution
obtained by using the dsolve command.

10. Employ the bvp4c command to find the approximate solution
of the boundary value problem governed by the second-order
homogeneous differential equation with variable coefficients,

x2y"+xy'+x2y = 0 1<x<8
The boundary conditions are y(1)=1 and y(8)=0. Plot to

compare the approximate solution with the exact solution
obtained by using the dsolve command.



Exercises 323

11.

12.

13.

14.

Employ the bvp4c command to find the approximate solution
of the boundary value problem governed by the second-order
homogeneous differential equation with variable coefficients,

X2y"_xy'+y =0 1<x<3

The boundary conditions are y(1)=1 and y(3)=4. Plot to

compare the approximate solution with the exact solution
obtained by using the dsolve command.

Employ the bvp4c command to find the approximate solution
of the boundary value problem governed by the second-order
homogeneous differential equation with variable coefficients,

6x2y"+xy'+y = 0 1<x<64

The boundary conditions are y(1)=2 and y(64)=12. Plot to

compare the approximate solution with the exact solution
obtained by using the dsolve command.

Employ the bvp4c command to find the approximate solution
of the boundary value problem governed by the second-order
nonhomogeneous differential equation with variable coeffi-
cients,

Xy"—y = x5 1<x<2

The boundary conditions are y(1)=1/2 and y(2)=4. Plot to

compare the approximate solution with the exact solution
obtained by using the dsolve command.

Employ the bvp4c command to find the approximate solution
of the boundary value problem governed by the second-order
nonhomogeneous differential equation with variable coeffi-
cients,

x2y"+xy' -3y = 3X 1<x<2

The boundary conditions are y(1)=1 and y(2)=5. Then, use

the dsolve command to check whether MATLAB can
provide and exact solution. If it can, plot to compare the
approximate solution with the exact solution. If it cannot, plot
to show only the approximate solution.
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15. Employ the bvp4c command to find the approximate solution
of the boundary value problem governed by the second-order
nonhomogeneous differential equation with variable coeffi-
cients,

y'+xy' —x2y = 2x3 0<x<1

The boundary conditions are y(0)=1 and y(1)=-1. Then,

use the dsolve command to check whether MATLAB can
provide and exact solution. If it can, plot to compare the
approximate solution with the exact solution. If it cannot, plot
to show only the approximate solution.

16. Employ the bvp4c command to find the approximate solution
of the boundary value problem governed by the second-order
nonhomogeneous differential equation with variable coeffi-
cients,

14 _ 2X !+

X2 +1y X2 +1y
The boundary conditions are y(0) =2 and y(1) =5/3. Plot to
compare the approximate solution with the exact solution of,

= X—4—%+x+2
YT 52

= X241 0<x<1

y

17. Employ the bvp4c command to find the approximate solution
of the boundary value problem governed by the second-order
nonhomogeneous differential equation with variable coeffi-
cients,

" _ 2X !+

X2 +1y X2 +1y
The boundary conditions are y(0)+y’(0)=0 and y()-y'(2)
=-3. Plot to compare the approximate solution with the exact
solution of,

= X241 0<x<1

y

= X—4+3L2+x—1
y = 57173
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18.

19.

20.

21.

Employ the bvp4c command to find the approximate solution
of the boundary value problem governed by the second-order
homogeneous nonlinear differential equation,

y'+y-y2 =0 0<x<1

with the boundary conditions of y(0)=1 and y(1)=2. Then,

use the dsolve command to check whether MATLAB can
provide and exact solution. If it can, plot to compare the
approximate solution with the exact solution. If it cannot, plot
to show only the approximate solution.

Employ the bvp4c command to find the approximate solution
of the boundary value problem governed by the second-order
homogeneous nonlinear differential equation,

y'=2yy = 0 1<x<?2

with the boundary conditions of y(1)=1 and y(2)=1/2.

Then, use the dsolve command to check whether MATLAB
can provide and exact solution. If it can, plot to compare the
approximate solution with the exact solution. If it cannot, plot
to show only the approximate solution.

Employ the bvp4c command to find the approximate solution
of the boundary value problem governed by the second-order
homogeneous nonlinear differential equation,

yy"+(y)? = 0 0<x<1

with the boundary conditions of y(0)=1 and y(1)=2. Plot to
compare the approximate solution with the exact solution of,

y = +3x+1

Employ the bvp4c command to find the approximate solution
of the boundary value problem governed by the second-order
homogeneous nonlinear differential equation,

y'+2yy = 0 0<x<1
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with the boundary conditions of y(0)=1 and y(1)=1/2. Plot
to compare the approximate solution with the exact solution of,

y = Y(x+1)

22. Employ the bvp4c command to find the approximate solution
of the boundary value problem governed by the second-order
homogeneous nonlinear differential equation,

y'=x(y) =0 0<x<2

with the boundary conditions of y(0)= /2 and y(2)= /4.

Plot to compare the approximate solution with the exact solu-
tion of,

y = cot(x/2)
23. Derive the exact solutions of the following boundary value
problems,
(@ Y"+2y"+3y'+2y = —-2(x+2)sinx 0<x<rx/2
y(0)=0, y'(0)=1, y(z/2)=0
(b) y"—-3y"-10y'+24y = 24x2-20x+18 0<x<1
y(0)=1, y(0)=0, y@1)=2
© y"-3y+2y = -16e™ 0<x<2
y(0)=2, y(2)=ebt—e2, y'(2)=—-3eb—e2
(d) y"—y"-8y'+12y = 4sinx—36cosx +12
y(0)=0, y(r)=0, y'(z)=—4 0<x<rx

"

Verify the solutions with those obtained from using the
dsolve command. In each sub-problem, employ the ezplot
command to plot the solution of y that varies with x within the
given domain.
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24,

25.

26.

Derive the exact solutions of the following boundary value
problems,

(@ yv-2y"+y = Qexx+2 0<x<1
y(0)=3, y'(0)=2, yl)=e2+2, y'(1)=2e2

(b) yv +10y"+16y = 7sinx+48 0<x<r7
y(0)=3, y(0)=1, y(7)=3, y(z)=-1

) yv-y = -1 0<x<5

y(0)=2, y(0)=1, y(5)=e5+1, y'(5)=e°
(d) yv —8y" +24y"-32y' +16y = 16x2 —48x+32
y(0)=1, y'(0)=1, y(2)=7, y'(2)=5 0<x<2

Verify the solutions with those obtained from using the
dsolve command. In each sub-problem, employ the ezplot
command to plot the solution of y that varies with x within the
given domain.

Use the dsolve command to find the exact solution of the
boundary value problem governed by the third-order
homogeneous differential equation,

dsy ,d2y dy

dx3—2W—&+2y =0 0<x<1

with the boundary conditions of y(0)=0, y'(0)=0 and

y(1)=1. Plot the solution of y that varies with x by using the

ezplot command. Repeat the problem but by employing the
bvp4c command to solve for the approximate solution. Plot to
compare the approximate solution with the exact solution.

If the differential equation in preceding problem becomes
nonlinear,
dey ,dzy dy

Y o= VY e =
e 2dx2 dX+y 0 0<x<1
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with the same boundary conditions of y(0)=0, y'(0)=0 and
y(1)=1, use the dsolve command to check whether it can

find and exact solution. If it cannot, employ the bvp4c
command to find the approximate solution and plot to show its
variation.

27. Employ the bvp4c command to find the approximate solution
of the boundary value problem governed by the third-order
nonhomogeneous nonlinear differential equation,

ddy dy
Yo ~ dx
with the boundary conditions of y(0)=1, y'(0)=0 and

y(1)=2. Plot to compare the approximate solution with the
exact solution of,

—2X 0<x<1

y = x2+1

28. The velocity profile of a laminar boundary layer flow over a
flat plate can be found by solving the third-order homogeneous
nonlinear differential equation,

dsy d2y

axs Yk
with the boundary conditions of y(0)=0, y'(0)=0 and

y(1)=1. Employ the bvp4c command to find the approximate

velocity profile y that varies with the depth x in the interval of
0<x<1.

0<x<1

29. A simply-support beam of a unit length is subjected to a
uniform loading as shown in the figure. The deflection y(x)
along the beam length in the x-direction can be found by
solving the fourth-order nonhomogeneous differential equa-
tion,

d4y

v -1 0<x<1
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with the boundary conditions of y(0)=y"(0)=y(1)=y"(1)=0.
Employ the bvp4c command to find the approximate solution

of y that varies with x. Plot to compare the approximate
solution with the exact solution of,

X4 X3 X

YT Twtn
SRR N
AR :

30. The deflection y of a cantilever beam subjected to an axial
force P as shown in the figure is governed by the fourth-order
nonhomogeneous differential equation,

d4y d?y

d +W = -1 0<x<1

with the boundary conditions of y(0)=y'(0)=y(1)=y"(1)=0.

Employ the bvp4c command to find the approximate

deflection of y that varies with x along the beam length. Plot to

compare the approximate solution with the exact solution that
can be found by using the dsolve command.

o hoiorcien

A
[N
\
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31. Employ the bvp4c command to find the approximate solution
of the boundary value problem governed by the fourth-order
nonhomogeneous nonlinear differential equation,

d4y d?y
dx4  dx2
with the boundary conditions of y(0)=-1, y'(0)=0, y(1)=0
and y'(1)=3. Plot to compare the approximate solution with
the exact solution of,
y = x3-1

+y= x3-6x-1 0<x<1

Then, check whether the dsolve command can find the exact
solution above. If it cannot, verify the exact solution by
substituting it into the differential equation and boundary
conditions via the di ff and subs commands, respectively.



Chapter
10

Partial Differential
Equations

10.1 Introduction

Most scientific and engineering problems are governed by
partial differential equations for which the dependent variable u
varies with the three coordinates of x, y, z, and time 7. Solving the
partial differential equations is more difficult than the ordinary
differential equations learned earlier in the preceding chapters.
Their exact solutions are not available, in general, and numerical
methods are used to obtain the approximate solutions.

The widely used numerical methods are the finite
difference, finite element and finite volume methods. The finite
element method is the popular one because it can handle
complicated boundary conditions and domain geometries
effectively. MATLAB contains a toolbox that uses the finite
element method to solve for approximate solutions of the partial
differential equations in two dimensions.
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This chapter begins with the classification of the partial
differential equations. The MATLAB toolbox for solving these
differential equations is explained. The toolbox is then used to
solve the elliptic, parabolic and hyperbolic partial differential
equations, respectively.  Exact solutions for simple domain
geometries are derived so that the finite element solutions can be
compared to measure their accuracy. More complicated examples,
for which their exact solutions are not available, are then used to
demonstrate the efficiency of the finite element method imple-
mented in the toolbox.

10.2 Classification of Partial Differential Equations

The Partial Differential Equation toolbox (PDE toolbox) is
used to solve the problems in two dimensions. The unknown
dependent variable « is function of x- and y- coordinates and may
be time ¢. The partial differential equations are classified into three

types:
(a) Elliptic equation,

()3 -

(b) Parabolic equation,

) E) -

and  (c) Hyperbolic equation,

({2 e

where d, ¢, a and f'are constants or may be function of x, y and u.

The boundary conditions consist of,

(@) Specifying value of the dependent variable « along the
boundary (Dirichlet condition) ,
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hu = r
where 4 and r are constants or function of x, y and u.

(b) Specifying gradient value of the dependent variable u
along the boundary (Neumann condition) ,

ca—u+u—
an q = &

where ¢, g and g are constants or function of x, y and u. The letter
n denotes a unit vector normal to the boundary.

Solving the elliptic equation does not need the initial
condition while the parabolic equation needs an initial condition of

u(x,y,0) at time #=0. The hyperbolic equation needs two initial
conditions of u(x, y,0) and du(x, y,0)/0¢ attime t=0.

10.3 The Finite Element Toolbox

The finite element method is used to solve the partial
differential equations. The main advantage of the method is its
flexibility for modelling arbitrary geometry easily. The problem
domain is first divided into small elements connected at nodes
where the unknowns are located. The finite element equations for
each element are derived from the governing differential equation
of the problems. These finite element equations are assembled
together to form a set of simultaneous algebraic equations. The
boundary conditions are then imposed prior to solving for solutions
of the unknowns at nodes.

Understanding the finite element procedure above leads to
the development of the PDE toolbox which contains commands
under the menus, tool bars, etc. via the Graphical User Interface
(GUI). The PDE toolbox can be initialized by simply typing
>> pdetool on the Command Window, a graphic interface as
shown in the figure is displayed.
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On the graphic interface, the menu commands are:

File New, Open..., Save, Save As..., Print..., Exit.

Edit Undo, Cut, Copy, Paste..., Clear, Select All.

Options  Grid, Grid Spacing..., Snap, Axes Limits...,
Axes Equal, Zoom, etc.

Draw Draw Mode, Rectangle/square, Ellipse/circle,
Polygon, etc.

Boundary Boundary Mode, Specify Boundary Conditions, etc.

PDE PDE Mode, PDE Specification..., etc.

Mesh Mesh Mode, Initialize Mesh, Refine Mesh,
Show Node Labels, Show Triangle Labels, etc.

Solve Solve PDE, Parameters..., etc.

Plot Plot Solution, Parameters..., Export Movie....

Icons in the tool bar under the menu bar perform the same
tasks through the graphic interface. We will be familiar with this
graphic interface by solving examples in the following sections.
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10.4 Elliptic Equations

The elliptic partial differential equation is in the form,

(2)-8(e8)om -

where ¢, a and fare constants or function of x, y and u. The partial
differential equations in the elliptic form above arise in many
applications. These include steady-state heat transfer, potential
flow, cross-sectional stress in a bar under torsion, electric potential,
underground seepage flow, etc. We will use the PDE toolbox to
solve for the solution of wu(x,y) from the elliptic differential
equation with the specified boundary conditions.

Example Use the PDE toolbox to solve the elliptic partial differen-
tial equation,
0’u  0u
T
for the solution of u(x,y) in a rectangular domain with the boundary
conditions as shown in the figure.

Qf in(r+/2)
u=SIN(zx

=0

|
o

/ \_.

— =
<
I

=

u=20
2

It is noted that the exact solution for this problem which is derived
in the next example is,
_sin(zx/2)sinh(7y/2)
u(x,y) = sinh(r/2)
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By comparing coefficients of the governing differential
equation with the standard form of the elliptic differential equation,
we find that c=1, a=0 and f =0. This problem is equivalent to
a steady-state heat conduction in a rectangular plate with the size of
2x1. Zero temperature (u=0) is specified along the left, right
and bottom edges while the temperature is u =sin(zx/2) along the
top edge.

To use the PDE toolbox, we start by typing,

>> pdetool

on the Command Window. We select the menu Options, choose
the sub-menu Grid and click at the Snap option so that the points
we create will be located at the round off coordinates. We select
the Axes Limits as [-0.2 2.2] and [-0.2 1.2] for x- and y-axis,
respectively. Then, we click Apply and Axes Equal options so
that the model has equal scalings in both x- and y-directions. Note
that if the background grid overflows the screen area, the screen
resolution should be changed to 1024 x 768.
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To create the rectangular domain of 2x1, we select the
menu Draw and sub-menu Rectangle/square. Then, move the
cursor from the coordinate of (0,1) to the coordinate of (2,0) and
click at the mouse, a gray rectangle will appear with the letter of R1
as shown in the figure.

File @&t Options Ovaw Boundary POE  Mesh Sohve Plot Window Help

O @ @] 2| gl roe| A S| = | o] B e scwe ] *

St formun

12 ! ! ! ! i

. S, S S
1 1 1

| Wilu  Drivwe e et 2.0 gromedry bry s the Drw and Bl v opbors l e |

Next, to apply the boundary conditions, we select the
menu Boundary and sub-menu Boundary Mode. The gray
rectangle disappears while the rectangle edges become red arrows
as shown in the figure.

To specify the boundary condition along the left edge with
the value of © =0, we double click at that edge, the Boundary
Condition dialog box with the equation,

h*u = r

appears. We enter 2=1 and » =0 which mean « is zero along this
edge and click OK. We repeat applying the same boundary
conditions of =0 for the right and bottom edges. For the top
edge, we enter A=1 and r=sin(pi*x./2), then click OK. Note
that the letter x in the » expression must follow by a period due to
the expression format requirement in MATLAB.
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The next step is to choose the type of the differential
equation.  We select the menu PDE and sub-menu PDE
Specification, the PDE Specification dialog box appears. After
selecting Type of PDE as Elliptic, we enter ¢=1, a=0 and
f =0, and click OK.

Ecation: —div(ctgradiuyysatu=t

Type of FOE Coefficiert

® Eliptic
©) Paraboiic

(©) Hyperbolic

) Eigenmodes.
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A finite element mesh can now be constructed. After
selecting the menu Mesh and sub-menu Initialize Mesh, a mesh
with triangular elements is created. The mesh can be refined by
clicking at the sub-menu Refine Mesh. The mesh without the
background grid is shown in the figure.
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Then, we can solve for solution of the problem. We select
the menu Solve and sub-menu Solve PDE so that the problem is
executed. The computed solution is plotted by selecting the menu
Plot and sub-menu Plot Solution. To display the colors similar to
those in commercial finite element software, the Colormap which is
under the sub-menu Parameter in the Plot Selection dialog box
should be selected as jet as shown in the figure.

We can display the computed solution in the form of color
fringe plot, line contour plot, deformed plot, plot with arrows, as
well as generating an animation. Displaying solution in the form of
animation is useful to show the solution behaviors of the parabolic
and hyperbolic problems. Most of the solutions shown herein are
in form of the line contour plots for clarity. Distribution of the
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B 0 e

Flot type: Property, User ertry. Flat style:

Color 1 1 y
- interpolated shad. -

(7] contour

[C] Arrows —gradiu) - proportional -

[ Deformed mesh -grad(u) hd

[7] Height (3-D piot) u - continuous. -

[] Animation Options...

[T Piot in x-y grid Cortour plot levels. ! Plot solution automatically

[ Show mesh Colarmap = | Time for plot

computed solution in the form of contour lines for this example is
shown in the figure.
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The exact solution in the preceding example can be
derived by using the method of separation of variable. Detailed
derivation of the exact solution is presented in the following
example.
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Example Derive the exact solution of the elliptic differential
equation which is in form of the Laplace equation,
ou 0%
—_ + —_
Ox2 5\)}2
for a rectangular domain with dimensions of /xw as shown in the
figure. The boundary conditions along the four edges are,

=0

u(0,y) = 0, u(l,y) = 0
u(x,0) = 0, ulx,w) = f(x)
Y u= f(x)
V|V u=0 %4_%:0 u=0
u=0 T
< ¢ >

The method of separation of variables is applied by first
assuming that the solution is in the product form of the functions

X(x) and Y(y),
u(x,y) = X(x)Y(y)
By substituting the assumed solution into the differential equation,

we obtain,
X'Y+XY =0

where the prime symbol ( ' ) denotes the derivative order. The
equation above can be written as,
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1d*X 14d%Y

X dxr Y dy?

Since X is only function of x while Y is only function of y, then
both sides of this equation must be equal to a constant,

1dx 1y,
X dx? Y dy?
Thus, the given partial differential equation becomes two ordinary
differential equations which should be solved easier.
If we consider the first ordinary differential equation,
d’X
dx?
Its general solution is in the form of sine and cosine functions,

X(x) = Asinix+ BcosAx
where 4 and B are constants. These two constants are determined
as follows. Since the left edge boundary condition is u«(0,y)=0,
then X(0)Y(y)=0, or X(0)=0, so that B=0. Similarly, the
right edge boundary condition is u(/,y)=0, then X(¢)Y(y)=0,
or X(¢£)=0. Then, X(x) above becomes,

+2Xx =0

X(0) = 0 = AsinAs
But 4 cannot be zero, thus,

Al = nrx and A = %
where n is an integer. Hence, in general,
A = % n=1273,..

which are called the eigenvalues.

Similarly, if we consider the second ordinary differential
equation,
d?Y
dy?
which has the general solution of,

-A2Y =0
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Y(y) = EsinhAy+ Fcoshly

where E and F are constants. The constant £ is determined from
the bottom edge boundary condition of u(x,0)=0, i.e.,
X(x)Y(0)=0. Then Y(0)=0, which leads to F=0. Thus, the
general solution of the partial differential equation is,

u(x,y) = X(x)Y(y) = (4sinix)(EsinhAy)

Or, u(x,y) = CsinixsinhAy
where C=AE denotes a new constant. Since there are »n values of
N - A P , thus, the general solution can be written

in the summation form for n values of A as,
u(x,y) = > C,sin, xsinhA,y
n=1

The constants C, are determined from the top edge
boundary conditionat y=w as,

ulx,w) = f(x) = Zw:(CnSinhlnw)sinxinx

n=1
Or, > D,sini,x = f(x)
n=1

where D, = C,sinh A4, w. This means, once we obtain D, from the
above equation, we can find C, and also the exact solution of
u(x,y).

To solve for D, , we multiply both sides of the equations
by sin(mzx/¢) where m denotes an integer, and perform integra-
tion from — 7 to ¢ as follows,

mrnwXx

/
ZD sm—sm ;= If(x)SM%dx
- -

But from the integration formula,
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nTXxX . Mrx l, m=n
Ism—sm dx =
0, m#n

which is known as the orthogonal properties.

Then, the equation above reduces to,

J"f(x)singdx

Or, D, = Ejf( )sm—dx =

But D, =C,sinh A, w=C,sinh(nzw/(), therefore,

C, = —J.f(x)sm—dx

Hence, the exact solution of this problem is,

sinh—nﬂy
23 L2
u(x,y) = ?Zl: — S If( )Sln—dx
= sinh
l
For the special case in the preceding example, if
f(x)= sin%
with the domain sizes of /=2 and w=1, the integral in the exact
solution reduces to,
1 n=1
jsm—smmd =
0, n#l

Thus, the exact solution of the preceding example is,

X
u(x,y) = 5 sin—-
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sin(zx/2)sinh(zy/2)
sinh(r/2)

Or, u(x,y)

This exact solution can be plotted to show the distribution
of u(x, y) by using the meshgrid and mesh commands as follows,

xX = 0:.05:2; vyy = 0:.05:1;

[X,y] = meshgrid(xx,yy);

u = sin(pi.*x/2).*sinh(pi.*y/2)/sinh(pi/2);
mesh(x,y,u); view(-37.5,30);

Distribution of the exact solution u(x, ) is shown in the figure.
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Exact solution

The finite element solution obtained from the preceding
example can be plotted in the same fashion as shown in the figure.

Approximate solution
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Example Use the PDE toolbox to solve the elliptic partial differen-

tial equation,
ou 0%u
_3(_8x2+_8y2j+5u = 8

for an arbitrary two-dimensional domain as shown in the figure.
The domain has the specified boundary condition of =0 for all
the edges. The problem statement is equivalent to the two-
dimensional steady-state heat transfer in a plate. The plate material
has its thermal conductivity coefficient of 3 units and is subjected
to surface convection with the convection coefficient of 5 units.
The plate is also subjected to a surface heating with the magnitude
of 8 units.

u=0

We begin solving this problem by typing,

>> pdetool

on the Command Window similar to the preceding example. We
select the menu Axes Limits as [-0.2 2.2] and [-0.2 1.6] for x- and
y-axis, respectively, then click the sub-menu Grid Spacing to enter
-0.2:0.1:2.2 and -0.2:0.1:1.6 into the X-axis and Y-axis boxes,
respectively, and click Apply.

Next, we draw the geometry of the domain by creating the
rectangle R1, the circle E1 (lower left of the figure), the ellipse E2
and the square SQ1. Then, we modify the command in the Set
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formula box to R1-E1-E2-SQ1 which means we subtract the areas
of E1, E2 and SQ1 from R1 as shown in the figure.
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After that, we select the menu Boundary followed by the
sub-menu Boundary Mode, the red arrows representing the
domain boundaries appear as shown in the figure.
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Next, we select the type of the differential equation that
governs the problem. Here, we select the menu PDE and sub-
menu PDE Specification, then click on Elliptic in PDE
Specification dialog box and enter ¢=3, a«=5 and f=8 as

shown in the figure, and click OK.

A mesh can now be constructed by selecting the menu
Mesh and sub-menu Initialize Mesh. If the element sizes are too
large, we click at the sub-menu Refine Mesh so that smaller
elements are generated as shown in the figure.
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The final step is to perform the analysis to find solutions
of u at nodes. We select the menu Solve and sub-menu Solve PDE,
the color fringe plot of the computed solution appears on the
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screen. If other plotting style is preferred, we select the menu Plot
followed by sub-menu Parameters and choose different options
there. The line contour plot representing the distribution of the
computed solution is shown in the figure.
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10.5 Parabolic Equations

The parabolic partial differential equation is in the form,

() ) -

where d, ¢, a and f are constants or may be function of x, y and

u. The parabolic equation is more complicated than the elliptic
equation because of an additional independent variable of z.
Finding the exact solution is more difficult, especially for domain
with arbitrary geometry. The PDE toolbox using the finite element
method can alleviate such difficulty by finding the approximate
solution instead.
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Example Use the PDE toolbox to solve the parabolic partial
differential equation in the form,

ou ou ou?
25*’(@*@) =

oo

for a circular domain with a unit radius. The domain has the
specified boundary condition of « =0 along the edge as shown in

the figure and the initial condition of u(x,,0)=0 at time ¢=0.

The problem statement is equivalent to transient heat
conduction in a circular plate with specified zero temperature along
the edge and zero initial temperature. The plate material has the
thermal conductivity coefficient of 3 units and the specific heat of 2
units with a unit of material density. The plate is also subjected to
a specified surface heating of 8 units.

We can create a finite element model for the entire plate
but, due to symmetry of the solution, only the lower half of the
plate can be modelled. As shown in the figure, the boundary
condition of u=0 is applied along the outer edge. Along the
center line, the gradient of « normal to the edge must be equal to
zero representing the insulated boundary condition.
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Again, to analyze this problem by using the PDE toolbox,
we begin by entering,

>> pdetool

on the Command Window. We select the menu Option followed
by sub-menu Grid to show the grid background. We choose the
sub-menu Snap so that the constructed points are located at the
round off coordinates. Then, we select the sub-menu Axes Equal
for equal scalings in both x- and y-directions.

To construct the domain with half circle geometry, we
start by clicking at the ellipse icon in the tool bar. We place the
cursor arrow head at the coordinates of (0,0) and move it to the
coordinates of (1,-1), click the mouse, then a circle with the letter
C1 appears. We follow the same procedure by choosing the
rectangle icon in the tool bar. We place the cursor arrow head at
the coordinates of (-1,0), drag it to the point at the coordinates of
(1,-1), click the mouse, a rectangle with the letter R1 appears as
shown in the figure. Then, we modify the expression in the Set

formula box to C1xR1, click the icon ?Q), a half circle domain
indicated by the red arrows appears as shown in the figure.

The next step is to apply the boundary conditions. We
double click at the circle centerline, the Boundary condition
dialog box appears, then choose the Neumann condition type
followed by OK. Note that the default boundary condition of
u =0 is automatically applied along the outer edge.
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We now can select the type of the differential equation to
be solved. We click the menu PDE and sub-menu PDE
Specification. We choose the Parabolic Type of PDE in the PDE
Specification dialog box, enter c=3, a=0, f=8 and d =2 as
shown in the figure, then click OK.

B POE Specification SRR X

Esquation drutdivctarad(u)patu=t

Type of PDE Coefficiert Value

) Eliptic c 3.0

@ Parabolic a

*) Hyperbolic t 5.0
d

*) Eigenmodes 20

A finite element mesh consisting of triangular elements
can now be constructed. We select the menu Mesh and sub-menu
Initialize Mesh, the mesh as shown in the figure is generated. To
solve for the transient solution, we choose the menu Solve and
click at the Parameters icon. In the Solve Parameters dialog box
as shown in the figure, we enter the values of 0:0.05:1 in the Time
box which means we perform the calculation for the interval of
0 <r <1 and save the solution at every ¢ =0.05.

B Solve Parameters SRRCEC X

Time:

0:0.05:1

utoy.

0.0

Relative tolerance:

0.01

Absolute tolerance:

0.001
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By clicking the = icon in the tool bar, the computed
solutions at different times are obtained. These solutions can be
plotted as contour lines in two dimensions or the carpet plots in
three dimensions as shown in the figure. The transient solution
which varies with time ¢ can be animated by clicking at the
Animation icon in the sub-menu Plot Selection under the menu
Plot — Parameters. Users may try different commands in this
sub-menu to display solutions in various ways.

Example Use the PDE tool to solve the parabolic partial
differential equation,

ou o*u  ou?
E_ZKW-FWJ-FBM = 4

on the 3x2 rectangular domain with small ellipse and rectangular
holes inside. The initial condition is u(x,y,0)=0 while the
boundary conditions are shown in the figure.

The procedure for solving this problem is similar to that
explained the preceding example. The domain geometry, however,
is more complicated with the boundary condition along the left
edge changes abruptly from #=0 to u=1 at +=0. A finite
element mesh can be constructed as shown in the figure. We select
Parabolic as the type of PDE to be solved in the PDE Specification
dialog box under the PDE menu with the parameters of ¢ =2,

a=3, f=4and d=1. To obtain the transient solution, we enter

0:0.01:0.5 in the Time box of the Solve Parameters dialog box as
shown in the figure.
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The computed solutions of u(x,y,z) at t=0.1 and 0.3 are
plotted using contour lines as shown in the figures.
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Animation of the transient solution u(x, y,#) can help us to
understand the solution behavior clearly. A sample of the transient
solution u(x,y) at time #=0.1 is shown as a carpet plot in the
figure.

This example demonstrates that the finite element method
can provide approximate solution to the differential equation with
complicated boundary conditions and geometry effectively. The
next example shows detailed derivation of the exact solution for the
parabolic differential equation with simple boundary conditions
and domain geometry. The example will show that the exact
solution is not easy to derive even for a simple problem. These two
examples thus highlight benefits of using the finite element method
to obtain approximate solutions for complex problems.
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Example Derive the exact solution of the parabolic partial
differential equation,

ot \ox? o2

for the /xw rectangular domain as shown in the figure. The
boundary conditions are,

u(x,0,1) = 0, u(x,wi)
u(0, y, t) 0, u(l, y,t) = 0, 0<y

and the initial condition is,
u(x, 5,00 = f(xy) t>0

The method of separation of variables is used to solve for
the exact solution. We start by assuming the solution u(x, y, f) as

the product of the three functions X(x), ¥(y) and 7(¢),

ulx, 1) = X(x)Y(y)T()
By substituting it into the differential equation, we obtain,
XYT'-(X"YT+XY'T) = 0

Il
o

0<x

</
<

w
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i
u=0

(2,0 _
o \ax?2 o2 )

u(x,»,0) = f(x»)

—» X

u=0

< »
-t »

where the prime symbol ( ') denotes the derivative order. We
divide the equation through by X YT and move some terms to get,
T! Y!! X”

T Y X
Since the terms on the left-hand-side of the equation are only
functions of ¢ and y while the term on the right-hand-side of the
equation is only function of x, then they must be equal to a
constant,

Z_L" 3 X" B _Z(Z

T Y X
Similarly,

T! ) 3 Y" B B )

THE =y T H

Hence, the method of separation of variables changes the given
partial differential equation into three ordinary differential
equations as,
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X'+ 2X=0, Y'+uY=0 and T +(2+p*)T=0
At the same time, the given boundary conditions become,
X(0)=0, X(¥)=0, Y(0)=0 and Y(w)=

By using the same procedure as shown in the preceding example of
the elliptic differential equation, the eigenvalues and eigenvectors
are obtained,

mim . mmXx

A, = 0 X, (x) = sm( 7 )

. nr _ ain( 7Y

and By = 5 Y,(») Sln( - )

The ordinary differential equation related to the time ¢ is,
+(Z+2)T = 0

Its general solution is in the form,

T = Amneiaimt

mimw 2 nrw 2

wher = Antuy o= ||

e a = B = (M) ()
Thus, the general solution is,
l/l(x,y,t) = ZZXmYnT

m=1n=1
= ZZA sm( )sin(n”yje‘afmf
m=1n=1 w

where the constants 4,,, are determined from the initial condition
of u(x,y,0)= f(x,y) by using the orthogonal properties,

lw

A J.If(x y) Sln( = jsin(m;y)dx dy
0

As an example, if the initial condition is,

u(x,.0) = flxy) = x({—x?)y(w-y)
then, the constants 4, are,
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! w

b, C Nan[mrx\ . (nxy
4, = m}[!x(ﬁ x2) y(w y)Sln( 7 )Sln( o )dxdy

48/6 W m n
= (-1 (- -1

Hence, the exact solution for this particular case is,

u(x, 1) ii 48 /2w y (( 1) - )

o mmr2

sin (m;rx ) sin [ nﬂy) (2] 222 )

w

The exact solution above is in the form of infinite series.
We can create a MATLAB script file to compute the solution. For

example, the script file for determining the solution of u(x,y,?)
at +=0.02 for a unit square domain (¢/=w=1) consists of the
following statements,

xx = 0:1/60:1; vyy = 0:1/60:1;

[x.y]l = meshgrid(xx,yy); _eshgrid
t = 0.02; u = 0;
for m 1:50;

for n = 1:50;
= (D™; b =DM - 1;
= sin(m*pi.*x); d = sin(n*pi.*y);
ee= (m*m+n*n)*pi*pi*t; e = exp(-ee);
fac = 48/(M"3*n"3*pi~Nb);
u = u + fac*a*b.*c.*d*e;

end
end

mesh(x,y,u); view(-37.5,30);

The same problem is solved by using the PDE toolbox for
the approximate solution. The exact and approximate solutions are
compared in form of the carpet plots as shown in the figures.
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10.6 Hyperbolic Equations

The hyperbolic partial differential equation is in the form,

() £l -

where d, ¢, a and fare constants or function of x, y and u. The
hyperbolic equation is more complicated than the elliptic and
parabolic equations. The dependent variable « is function of the
independent variables x, y and ¢« Two initial conditions of

u(x,y,0) and du(x,y,0)/0¢ are needed for solving the problem.
In this section, we will use the PDE toolbox to solve the

hyperbolic partial differential equation for both simple and
complex domains.

Example Use the PDE toolbox to solve the hyperbolic partial
differential equation in the form,

O’u (0% N ou\ 0
ot \ox2 o)

fora 2x 2 unit square domain. The boundary conditions are u =0
on the left and right edges while du/dy =0 on the top and bottom
edges as shown in the figure.

y A
o _
(-11) oy L1
u=0 u=0
> X
(-1,-1) Ou 0 L -1
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The initial conditions are,
u(x,»,0) = tan*(cos(zx/2))
ou(x,y,0)/or = 4sin(zx)esn=/?
To use the PDE toolbox, we start by typing,

>> pdetool

on the Command Window. We select the menu Options and click
the Grid and Snap options to show the background grids and to
place the points exactly at the round off coordinates. We also
select Axes Equal option to have equal scalings for both x- and y-
axes.

Next, we create a square domain with the dimensions of
2x 2 units. We click at the rectangle icon in the tool bar, place the
cursor arrow head at the coordinate of (-1,1), drag the mouse to
move the cursor arrow head to the coordinate of (1,-1), then click
the mouse again, a square domain with the letter SQ1 appears.
Then, we apply the boundary conditions for the four edges, one at a
time. We select the Dirichlet condition for the left and right edges,
and the Neumann condition for the top and bottom edges.

To specify the type of the differential equation, we select
the menu PDE and sub-menu PDE Specification. We choose the

type of PDE as Hyperbolic, and enter the values of ¢c=1, a =0,
f=0and d =1, and click OK as shown in the figure.

PDE Specification SNACE X

Egjuation: dru-divicrgraciu)+atu=t

Type of PDE Coefficient Walue
Eliptic: ® 1.0
Parabolic & 0o

@ Hyperbolic t 0.0

Eigenmodes

oK Cancel

A finite element mesh can now be constructed. We select
the menu Mesh followed by sub-menu Initialize Mesh, a mesh
with triangular elements appears. The initial mesh may be
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too crude, we can click the sub-menu Refine Mesh for couple
times so that elements become smaller as shown in the figure.

To solve the problem, we choose the menu Solve and sub-
menu Parameters, and enter values in the Time box as 0:2:40. We

also need to provide the initial conditions of u(x,y,0) and
du(x,y,0)/0¢ in the next two small boxes as shown in the figure.

- .
B Solve Parameters (o o |

Time:

0:2:40
wito)

atan(cos{pi %d2))
o)

4*sin(pitx}.*exp(sin(pi.=y/2})
Relative tolerance:

0.01

Absolte tolerance:

0.001

h ) [ ok | Cancel
L I I I I 'l I i I I i ——
1 a8 46 a4 a2 '] 0z 04 [+ 1] oo 1 T

Then, we execute the problem by choosing the menu
Solve and the sub-menu Solve PDE. The computed solutions of

u(x,»,10) and u(x,y,20) at time =10 and 20 are shown as the
contour line plots in the figures.

t=10 t=20
AN W il
D =)
Wl =" )
)/ //H‘\\JW///f =, “Zé///}
s w4
=
N N
A \ iﬁfgf{m///f \)
Ml i UL A
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To display the solution that changes with time, we can
select the Animation icon. Herein, a typical solution at # =40 is
shown in the figure in form of a carpet plot.

Example Use the PDE toolbox to solve the hyperbolic partial
differential equation,

0%u O0u 0%
561‘2 _4(8x2 +6y2j+3u = 2

for a unit square domain with two small holes inside as shown in
the figure. The boundary conditions are # =0 on the left and right

edges, and ou/dy =0 on the top and bottom edges while du/dn =0
along inner edges of the holes. The two initial conditions are,

u(x, y,0)

ou(x, y,0)/ ot

tan-(cos(zx/2))

4sin(zx)esn=r/2)



10.6 Hyperbolic Equations

365

Yy
&
(-11) oy (L1)
u=0 u=0
I
(-1-1) au_, (-11)
oy

Since this example is similar to the preceding one except
the differential equation and the two holes inside the domain, we
can follow the same procedure to solve the problem. To provide
information of the differential equation, we select the menu PDE
and sub-menu PDE Specification, choose the Type of PDE as
Hyperbolic and enter the values of c=4, a=3, f=2and d =5,
then click OK.

B} PDE Specification

Eguation:

dru-aliv(c grad(u))+atu=t

Type of PDE
*) Elliptic

") Parabolic
@ Hyperbolic

_) Eigenmodes

Coetficient

Walue

40

3.0

20
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A finite element mesh can be constructed by using the
same procedure as explained in the preceding example. The Solve
Parameter dialog box remains the same as shown in the figure.

- R
Solve Parameters E‘E‘g

Time:

0:2:40

uto)

atan(cos(pi2°x)}

W0
| 4*sin(pi*x). *expisin(pi2*y})

Relative tolerance:

0.01

Absohte tolerance:

0.001

Cancel

Typical solutions of u(x, y,t) at times =10 and 40 are
plotted in the form of contour lines as shown in the figures.

The solution can be displayed as a carpet plot in three
dimensions. A typical solution of u(x,y,t) at time ¢ =40 in form
of the carpet plot is shown in the figure.
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To highlight the advantage of using the finite element
method to solve for approximate solution of the hyperbolic
problem, we will use the example below to show the derivation of
exact solution for a very simple problem. We will see that the
derivation is rather lengthy and complicated.

Example Derive the exact solution of the hyperbolic partial
differential equation,

0

O’u  (0%u N ou\
o \ox? o)
for a rectangular domain with the dimensions of ¢ x w as shown in
the figure. The boundary conditions are,

u(x,0,¢) = 0, ulx,wmt) = 0, 0<x</

u(0, y, 1) 0, u(l,yi)
and the initial conditions are,

u(x 3,0 = flxy). w0 = 0 150

The method of separation of variables is again used to
derive the exact solution. We first assume the exact solution

u(x, y, t) in form of the product of the three functions X(x), Y(»)
and T(¢) as,

|
o
o
IA

<
IA
S
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82u_ 62u+8u2 _ 0
o \ox? o)

w u=0 u(x,y,0) = f(x,y) u=0

ou
E(x,y,O) =0

u=0

< >
-t

ulx, y,1) = X(x)Y(y)T()
By substituting it into the differential equation, we obtain,
XYT"—(X"YT+XY'T) = 0

where the prime symbol (' ) denotes the derivative order. We
divide the equation through by X YT and move some terms to get,
T” Y” X”

T Y X
Since the terms on the left-hand-side of the equation are only
functions of ¢ and y while the term on the right-hand-side of the
equation is only function of x, then they must be equal to a
constant,

T_H_er _ Xﬂ _ _ﬂz

T Y X
. T” ) B Y” _ )
which leads to, T+ﬁ = 5 = ~H
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Hence, the method of separation of variables changes the partial
differential equation into three ordinary differential equations as,

X'+2X=0, Y'+2Y=0 and T"+(A2+4?)T=0
while the boundary conditions become,
X(0)=0, X(¢)=0, Y(0)=0 and Y(w)=0

The process leads to the eigenvalues and the eigenvectors similar to
those explained in the elliptic and parabolic problems,

mrw . mmx

A, = 5 X, (x) = sm( 7 j

. onr _ ein[ 7Y

and By = Y,(») Sm(—w j

The ordinary differential equation for the time ¢ is,
T"+(XR2+))T = 0
The general solution of this differential equation is in the form of
sine and cosine functions. But after applying the initial condition

of ou(x,y,0)/0t =0, the solution is only in the form of cosine
function as,

T() = A,co8(a,t)

2 2
where at, = A2+p: o= (mT;[) +(ﬂj

w

Thus, the general solution of the partial differential
equation is,

o0

22X, 1T

o0
m=1n=1
o0

u(x, ;)

o0

> 4, sin(mm ) sin(n”yj cos(a,,t)
- l w

m=1 n=1

where the constant A4,, can be determined from the initial
condition of u(x,y,0)= f(x,y) by using the orthogonal properties
as explained in the preceding examples. These constants 4,,, are,
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4 ¢f . (mrx\ . (nxy
A, = m'!.!f(x,y) sm( 7 )sm( o )dxdy
As an example, if the initial condition is,

ux,»,0) = flxy) = x({—x)py(w-y)

then, the constants 4, are,
‘w

A, ”x(ﬁ x) y(w—1y) sm( max )sin(nfvy)dxdy

= ooy )y -

So that the exact solution for this case is,

u(x, y,1) :ii 16 %v” = ()" 1) (-1 -1)

m=1 n=1 mn 2)

sin (m—“j sin (ﬂ) cos(a,,,t)
l w

The exact solution above is in the form of infinite series.
To solve for the solution of u(x,y,z) at t=0.35 for a unit square
domain (/=w=1), a MATLAB script file can be created with
details as follows,

X = 0:1/60:1; vyy = 0:1/60:1;
[X,y] = meshgrid(xx,yy);
t =0.35; u=0;
for m = 1:50;
for n = 1:50;
a=ED™ -1; b=CDM - 1;
c = sin(m*pi.*x); d = sin(n*pi.*y);
al= sgrt(m"2*pi™2+n"2*pi~2); e = cos(al*t);
fac = 16/(M"3*n"3*pi~Nb);
u = u + Fac*a*b.*c.*d*e;
end
end

mesh(x,y,u); view(-30,-10);
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The same problem is solved by using the PDE toolbox.
The approximate solution obtained from the PDE toolbox is
compared with the exact solution in the form of carpet plot as
shown in the figures. The comparison indicates that the finite
element method in the PDE toolbox can provide accurate
approximate solution by agreeing very well with the exact solution.

x 10 e - B
e -7 o
7T—zl___--"" -7 i S |
T oo - S i
: ! - -7 -
64— -, _ ! - |
| “‘:' - -7
| <:< /7/ 7T -7
47»‘,¥_4‘<A; /// /,\,f’ |
| ‘:>»~ﬁ‘ -7 e
E | / - [ |
8 "‘“7*<«;,:, &///"' T o
| 7 - | -
2+ — — _ | ! [ |
N -
| - /. AN —o T -
| LY, - -
N H | - |
14— OO seviany, 227 Ehe
%
“‘\\\Q\\\Q\\\\\\\&.b.'u"’tl/ /),\\\\\\\\s\’lt,'lu’ll/i ” .QQ.‘.}\\\&Q..'IIIIIIII////’ i
NN .’ ORI — - =
NI N N - ‘
Ny - N~ -
CR 7 ! S LT !
T T R - 0
| - =2 -
3-
0

0.8 1 1

Exact solution

Time=0.35 Height: u

3 - ==

A

. U G |

Approximate solution
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10.7 Concluding Remarks

In this chapter, we learned three types of the partial
differential equations which are in the elliptic, parabolic and
hyperbolic forms. We solved these partial differential equations for
their solutions in two dimensions. Exact solutions can be derived
only for simple differential equations with plain boundary
conditions and geometry. For more complicated problems, we
have to employ the numerical methods to solve for approximate
solutions.

MATLAB contains the PDE toolbox that uses the
finite element method to solve these problems for approximate
solutions. The toolbox solves the partial differential equations that
are in different forms. The boundary conditions may be
complicated and the geometry could be arbitrary. The process
starts from discretizing the problem domain into a number of
small triangular elements. These elements are connected at nodes
where the unknowns are located. The finite element equations are
derived for each element and assemble together to form up a set
of simultaneous equations. The boundary conditions are then
imposed on the set of equations before solving them for the
solutions at nodes.

Several examples are used to show derivation of exact
solutions for simple problems and to find approximate solutions for
more complicated ones. The results have demonstrated that the
PDE toolbox can provide approximate solutions with high accuracy
if the finite element meshes are refined with small elements. These
results highlight the advantages of using the finite element method
for solving partial differential equations with complicated boundary
conditions and domain geometries.
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Exercises

1. Use the PDE toolbox to solve the elliptic partial differential

equation,
o’u o
g7 T 0

for a unit square domain of 0<x<1 and 0<y <1 with the
boundary conditions of,
u(x0) = 0, u(xl) =1 0<x<1
u0,y) = 0, uly) = 0 0<y<1

Plot to compare the solution with the exact solution of,

u(x,y) = % i sin(nzx)sinh(nzy)

n=135,.. n Sinh(””)

2. If the boundary condition along the right edge of the square
domain in Problem 1 is changed to,

uly) =1 0<y<1

use the PDE toolbox to solve the problem again. Plot to
compare the solution with the exact solution if it can be
derived.

3. Use the PDE toolbox to solve the elliptic partial differential
equation,
0’u  0u

g - L

for a unit square domain of 0 <x<1 and 0<y<1. The four

edges have the specified boundary conditions of # =0. Plot to
compare the solution with the exact solution of,

u(x,y) = 71T_(j Z sin(izx) sin(jzy)

352 | 2 3
ij=135,... rjt+ryg
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4. If there is a circular hole with radius of 0.2 at the center of the
square domain in Problem 3, use the PDE toolbox to solve the
problem again when the hole edge has the: (a) Dirichlet
boundary condition of =0 and (b) Neumann boundary

condition of du/on=0. Plot to compare the two solutions in
form of the carpet plot.

5. Use the PDE toolbox to solve the elliptic partial differential

equation,
o’u O
g7 T O

for a unit square domain of 0<x<1and 0<y<1 with the
boundary conditions of,

u(x0) = 0, uxl) = x 0<x<1
u©y) = 0, uly) =y 0<y<1

Plot to compare the solution with the exact solution of
u(x,y)=xy.

6. Use the PDE toolbox to solve Problem 5 again if the
differential equation is changed to,

’u 0%
—5($+W)+7u = 10

Explain the physical meaning of the solution which is different
from that obtained in Problem 5.

7. Use the PDE toolbox to solve the elliptic partial differential
equation,
0°u 0%

g =0

for a unit square domain of 0 <x<1 and 0<y <1 with the
boundary conditions of,
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10.

u(x0) = 1, %(x,l)+u(x,l) - 2 0<x<l

ou ou

“ = = = <y<
70y = 0, =y =0 0<y<1
Plot to compare the solution with the exact solution of,
u(x,y) = 1+ %

Use the PDE toolbox to solve Problem 7 again if the
differential equation is changed to,

2 2
—(%+2y—2)+5u =9

Plot the solution u(x, y) in form of the carpet plot.

Use the PDE toolbox to solve the elliptic partial differential
equation,

ox?  0y?
for a rectangular domain with the size of 2x1 units, i.e.,
0<x<2 and 0<y<1. The boundary conditions are,

= (F+yP)e”

u(x,0) = 1, u(x,) = e, 0<x<2
u@,y) = 1, u(2,y) = ¥, 0<y<1
Plot to compare the solution with the exact solution of,

u(x,y) = ev

Use the PDE toolbox to solve the elliptic partial differential
equation,

o’u 0w

P 57 2x(x® —6xy+6x)% —1)
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for a unit square domain of 0 <x <1 and 0<y<1. The four

edges have the specified boundary conditions of # =0. Plot to
compare the solution with the exact solution of,

u(x,y) = (x=x*)(y-»?)

11. Use the PDE toolbox to solve the elliptic partial differential
equation,
o’u 0%

atgr =

for a circular domain with a unit radius. The boundary
condition along the edge is © =0. Compare the solution with
the exact solution of,

u(x,y) = 5(1-x-)?)

yll

12. Use the PDE toolbox to solve Problem 11 again if the circular
domain contains a small circular hole with radius of 0.3 unit
and a square hole with dimension of 0.2x0.2 units as shown
in the figure. The boundary conditions for the edges of the

circular hole and square hole are u=0 and Ou/on=0,
respectively. Plot the solution u(x,y) in form of the carpet
plot.
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13. Use the PDE toolbox to solve the elliptic partial differential

equation,
Fu u
ox?  0y*
VA 4=0
A
u=0
8 - X

for a square domain with the size of 8x8 units. The domain
contains a circular hole with the radius of 2 units at its center
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as shown in the figure. If the boundary conditions of the hole
and the outer boundary of the domain are # =100 and u =0,

respectively, solve for the solution of u(x,y). Then, plot the
solution in form of the carpet plot.

14. Due to symmetry of the solution in Problem 13, only the upper
right quarter of the domain as shown in the figure can be used
for the analysis. Solve the problem again with the boundary
conditions as shown in the figure. Plot the solution in form of
the carpet plot.

15. Use the PDE toolbox to solve the elliptic partial differential
equation which is in form of the Helmholtz equation,

ou 02
87‘2‘+§‘2‘+a(x,y)u = f(x,y)

for a unit square domain of 0 <x<1 and 0<y<1. The four

edges have the specified boundary conditions of # =0. Find
the solution if a =-2 and

f(xy) = w[(@-7)1-y*)+1-x*)(»*-7)]
Plot to compare the solution with the exact solution of,

u(x,y) = (x=x°)(y—»°)
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16.

17.

Use the PDE toolbox to solve the parabolic partial differential

equation,
ou _ (@_u . @_uj _ 0
ot ox?  0y?
for a rectangular domain with the dimensions of 7 x 0.3 units,
i.e., 0<x<x and 0<y<0.3. The boundary conditions along
the four edges are du/dn =0 and the initial condition is,
u(x,y,0) = cosx
Plot to compare the solution with the exact solution of,
u(x,y,t) = e'cosx
when ¢t=0.2.

Use the PDE toolbox to solve the parabolic partial differential
equation,

a_u_ @4_@ = 2

or \ox? o)
for the rectangular domain of 0<x<1 and 0<y<0.2. The

boundary conditions are shown in the figure. The initial
condition is,

u(x,y,0) = sin(zx)+ x(1-x)
Plot to compare the solution with the exact solution of,
u(x,y,t) = e sin(zx)+ x(1-x)

when ¢=0.1. Study the solution behavior from animation in
the form of carpet plot.

Y
T ou/on =0
02 4=0 u=0
ulon =0 ¥
- 1.0 >
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Solve Problem 17 again when the domain contains two square
holes and a circular hole as shown in the figure. The boundary

conditions along the edges of the holes are ou/on=0. Provide

comments on the solution behavior which is different from that
obtained in Problem 17.

y

T

f 01~ =101~ 101~
02 + + +
!
—>x
b 025 s« 025 >~ 025 s« 025 »
- 1.0 -

19.

Use the PDE toolbox to solve the parabolic partial differential
equation,

a_u_ @4_@ =0

o \ox* o?)

for the rectangular domain of 0<x<1 and 0<y<0.2 with
the boundary conditions of,

ou ou
@(X,O,t) = O, @(X,OZJ)

|
o
o
IN
=
A\
[N

u(0,y,() = 1, ulLy,t) = 0, 0<y<0.2

and the initial condition of,
u(x,y,0) = 1-x- %Sin(Zﬁx)
Plot to compare the solution with the exact solution of,
u(x,y,t) = 1-x- %e“”z’ sin(2zx)

when #=0.01, 0.02 and 0.05.
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20. Use the PDE toolbox to solve the parabolic partial differential

equation,
ou 0’u 0%u
75—4(W+—52j+3u = 12

for the 4x 4 unit square domain with two holes as shown in
the figure. The boundary conditions along the outer four edges
are u =0. The initial condition is given by u(x,y,0)=0. Find
the solutions at ¢=0.2, 0.5 and 1.0 when the boundary
conditions along the hole edges are: (@) u=0 and (b)
du/on=0. Plot the solutions in form of the carpet plot.

y
T 12
A T
1.2
5, |
i 7
N
15
| o
] 5—»
- 4 >

21. Use the PDE toolbox to solve the hyperbolic partial differential

equation,
0’u (0*u 0%u
a7 \ataz) = °




382

Chapter 10 Partial Differential Equations

for the domain of 0 <x<1 and 0<y<0.2 with the boundary
conditions as shown in the figure. The initial conditions are,

u(x,y,0) = sin(zx) and g—b;(x,y,O) =0

Plot to compare the solution with the exact solution of,
u(x,y,t) = sin(zx)coy rzt)
when ¢r=1.0 and 2.0.

y
T ou/on =0
' —x
ou/on =0
- 1.0 >
22. Solve Problem 21 again if the rectangular domain contains

three small circular holes as shown in the figure. The
boundary conditions along the hole edges are ou/dn=0.

Compare the solution with that obtained in Problem 21 by
plotting it in form of the carpet plot.

1

t

0.2

l

oy
} |« 025—»<«—0.25—»<—025—»~—0.25—»

< 1.0 >




Exercises 383

23.

24,

Use the PDE toolbox to solve the hyperbolic partial differential

equation,
O —(qu + ézu) = 2e'sinx
o2\ ox*  oy?
for a rectangular domain of 7 x0.3 units, i.e., 0<x<7x and
0<y<0.3 with the boundary conditions of,

Il
o
o
IA
=
A
3

ou ou
E(X,O,t) = 0, 5(x,03,t)

u(0,y,t) = 0, u(7, y,t)
and the initial conditions of,

Il
o
o
IN

<
IN
o
w

u(x,y,0) = sinx and %(x,y,O) = —sinx
Plot to compare the solution with the exact solution of,

u(x,y,t) = e’'sinx
when r=0.2 and 0.5.

Use the PDE toolbox to solve the hyperbolic partial differential
equation,

O’u  (%u N ofu) 0

ot \ox2 o)

for a rectangular domain of 1x0.2 units, i.e.,, 0<x<1 and
0<y<0.2 with the boundary conditions of,

ou ou
@(x,O,t) = 0, @(x,O.Z,t) =0 0<x<1

u@yt) = 0, ullyt)
and the initial conditions of,

0 0<y<02

u(x,y,0) = sin(2zx) and %(x,y,O) = 27sin(27x)

Plot to compare the solution with the exact solution of,
u(x, y,t) = sin(2zx)[sin(27t)+cos27t)]
when r=0.3 and 0.6.
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25. Use the PDE toolbox to solve the hyperbolic partial differential

equation,
2 2 2
Qa”—5(8“+a“)+2u _ 4

~or o2 0)?

for a rectangular domain of 6x4 units with the boundary
conditions along the outer edges as shown in the figure. The
boundary conditions along the hole edges are cu/on=0. The
initial conditions are given by,

u(x,»b,0) = 0 and %(x,y,O) =0

Find the solutions for the interval of 0<¢<1. Display the
solutions at #=0.3,0.5 and 1.0 in form of the carpet plot.

< 3 >
I*.75 > ouf/on=0

oufon =0 22—




Chapter
11

Special Functions

11.1 Introduction

Special functions often occur while solving mathematical
problems in science and engineering. These special functions
include the error functions, Gamma functions, Beta functions,
Bessel functions, Airy functions and Legendre functions. These
functions are in various forms of the infinite series as well as in the
integral forms. In the past, their values could not be determined
conveniently, so many textbooks have to provide them as tables in
appendices.

MATLAB contains commands for determining these
functions easily. The commands can be implemented in a program
to work together with other numerical methods for solving the
entire problem. This chapter begins with the definitions of special
functions that are generally encountered in mathematics. The
MATLAB commands for determining these functions are presented
by using examples. The examples demonstrate high efficiency of
these commands for determining values of the special functions.
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11.2 Error Functions

The error function occurs during solving many forms of
differential equations in scientific and engineering problems. The
definition of the error function is,

erf(x) = %je‘tz dt
0

As an example, the exact solution of the initial value
problem governed by the first-order ordinary differential equation
and the initial condition,

dy _ : _
ooy =2 ; y(0) = 1

is, y(x) = e’ [1+ Jr erf (x)]
where erf (x) denotes the error function evaluated at x.

The exact solution above can be obtained by using the
dsolve command,

>> syms X Yy
>> dsolve('Dy - 2*x*y = 2%, 'y(o) = 1", 'X')

ans = dsolve

exp(xX"2)*(piN(1/2)*erf(x) + 1)

The solution of y that varies with x can be plotted by using the
ezplot command for the interval of 0<Xx<1 as shown in the
figure.

>> ezplot(ans, [0 1])

The error function is determined automatically at any x in
the commands above to provide the solution for plotting. To
determine the error function, e.g. for x=1, we use the erf
command by entering,
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y = e’ [1+x/;erf(x)]

>> erf(1) erf
ans =
0.8427

Note that the error function changes moderately from —1
to 1 in the interval of —3<x<3 as shown in the figure. Values of
the error function approach -1 and 1 for x<-3 and X>3,
respectively.

The figure is plotted by using the commands,

>> syms x F
>> f = erf(X); erf
>> ezplot(f, [-3 3]

MATLAB also contains the erfc command to determine
the complementary error function with the definition of,

erfc(x) = %J‘e—t2 dt
T X

= 1-erf(x)
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erf (x)

0.5

f(X) ot

-0.5

As an example, the complementary error function of 1 is,

>> erfc(l)

ans =

0.1573

Variation of the complementary error function from —3 to
3 is shown in the figure.

11.3 Gamma Functions

The Gamma function is another function often occurs
during solving mathematical problems. The definition of the
Gamma function is,

r(x) = [e'tdt

0

As an example, the Gamma function when X =1 is,
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1-erf (x)

=
[

N
|

= j e 't dt
0

= e = -0+1 =1

0

T e dt
0

The Gamma function has the special property of,
[(x+1) = xI'(x)

which can be verified by performing the integrations by parts as
follows,

I(x+1) =

O t—3

tretdt = [t(-et)]; - [ xty(-D)e dt
0

= xJ'tHeft dt = xI'(x)
0

Furthermore, if X is a positive integer, then,
r(x+1) = x x=1,23, ...

This relation helps determining their values easily. For examples,
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x =0; T0+)=rQ1 =0 =1
x = 1; rA+1) =12 =1 =1
x = 2; T@+)=T(3) =2 = 2

MATLAB contains the gamma command for finding
values of the Gamma function conveniently. For examples,

>> gamma(l)

ans =
1
>> gamma(5)
ans =
24

The latter result can be verified by I'(5)=41=4-3-2-1=24,

If x is not an integer, the gamma command can still be
used. For examples,

>> gamma(0.71)

ans =
1.2825
>> gamma(4.38)

ans =
9.8639

We can employ the ezplot command to display variation
of the Gamma function for 0 < x <5 as shown in the figure.

>> syms X
>> ezplot("gamma(x)", [0 5 0 25])
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If x is a negative integer, the Gamma function has the
value of infinity. For examples,

>> gamma(-1)

ans =
Inf
>> gamma(-5)
ans =
Inf

If x is not an integer but a negative value, the Gamma function has
a finite value. For examples,

>> gamma(-0.71)
ans =

-4_.3664
>> gamma(-4.38)
ans =

-0.0782
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We can use the ezplot command together with the grid on
command to display variation of the Gamma function in the
interval of —5<X <5 as shown in the figure.

>> ezplot("gamma(x)", [-5 5 -5 5]), grid on

7(%)
i T /
: | /
: Vi
'(x) ;
LN
3 \
) | A
5 4 3 L -1/ \o 1 2 3 4 5

The Gamma function also has other interesting properties,
1
r@ Jz

r(x+1j L35 2=z _1 55

2 2x '
r(x)Tl-x) = ﬁ
277 T(x) F(x - %j = 7 I(2x)

which can be verified by the gamma command. For example, the
first property above,
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>> gamma(1/2)

ans =
1.7725
>> sqrt(pi)
ans =
1.7725
MATLAB also contains the gammainc command to find

the incomplete Gamma function. The definition of the incomplete
Gamma function is,

1 ¢ on
g(x,n) = m‘c[ett ' dt

where x and n are positive values. As an example, when X =0.5
and n=1.5,

>> gammainc(0.5,1.5)

ans =

0.1987
Variations of the incomplete Gamma function when n=1, 2 and 3
are shown in the figure.

Note that if both x and n are very small, the incomplete
Gamma function may be approximate by,

g(x,n) = x
For example, when X =0.002 and n=0.001, then,

n

>> x = 0.002; n =0.001; g = xX™n

g =

0.9938
>> gammainc(0.002,0.001)
ans =

0.9944
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0.9 -
0.8 -
0.7 -

0.6 -

g(x,n) osf
o4r n=3
0.3

0.2+

0.1+

11.4 Beta Functions
Definition of the Beta function is given by,

B(x,y) = jlt“(l—t)yl dt

where x>0 and y >0. For examples,

1

1

BL) = [t @-tytdt = [dt =1
0 0

1 1 1

B(21) = [t'(-t)tdt = [tdt =3
0 0

1 1 1

BL2) = [t7(@-t"dt = [@-t)dt = >
0 0

MATLAB contains the beta command that can be used to
determine values of the Beta function conveniently. For examples,
the three functions above are obtained by entering,
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>> peta(l,1)
ans =
1
>> peta(2,1)
ans =
0.5000
>> beta(l,2)
ans =
0.5000

395

Variations of the Beta function with x for y =1, 2 and 3 are shown

in the figure.

From the three examples shown above, we found a special
property of the Beta function,

B(x,y) = B(Y,x)

which can be verified by starting from the definition of the Beta

function,
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B(x,y) = ft“ (1-t)"" dt

0

If we substitute t by 1—s, we obtain,

B(x,Y)

JQ (1-s) " sV (—ds)

J'lsv-l (1-s)tds = B(y,x)

In addition, the Beta function can be determined from the
Gamma function,

e - S

We can also verify this relation by substituting value of x and y. As
an example, when Xx=15 and y=2.5, then,

I(L5)T(2.5)
I(1.5+25)

>> LHS = beta(l.5,2.5)

LHS =

B(1.525) =

0.1963
>> RHS = gamma(1.5)*gamma(2.5)/gamma(l.5+2.5)
RHS =

0.1963

The Beta function also represents the integral value of the
product between sine and cosine functions in the form,

_ F(X)F(y) _ £ 2x-1 ir2y-1
B(X,y) = m = 2-([(:03 ésin 0do

As an example, if we want to find value of the integral,
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/2

| = choszesin30d9
0

which means when x =3/2 and y =2, we can determine it from,

r@1.5)r()
B(l5,2) or W
as follows,
>> beta(l.5,2)
ans =
0.2667

>> gamma(l.5)*gamma(2)/gamma(3.5)
ans =

0.2667

The solution above is confirmed by using the int command
directly,

>> syms theta F
>> F = cos(theta)”2*sin(theta)”"3;
>> | = 2*int(F,theta,0,pi/2);

>> double(l)

ans =

0.2667

As for another example, if we want to find the solution of

the integral,
/2

| = 2J'x/tan0d9
0

We can rewrite this integral in the form,
" [sing 2

I = 2.[ —da = ZIcos-Vzesinl/Zede
: cosé .

which means x =1/4 and y =3/4. The solution is obtained from,
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T(1/4)I'(3/4)
B(1/4,3/4) or o

>> beta(1/4,3/4)

ans =
4.4429
>> gamma(1/4)*gamma(3/4)/gamma(l)
ans =
4.4429
Again, the solution can be verified by using the int command,
>> F = (tan(theta))™N(1/2); _
>> | = 2*int(F,theta,0,pi/2); int
>> double(l)
ans =
4.4429

11.5 Bessel Functions

Solutions of some differential equations are in the form of
Bessel functions. The standard form of the differential equation, so
called the Bessel differential equation, that yields solution in the
form of Bessel functions is,

Xy +xy +(x*-n?)y = 0
where n>0. The general solution is,
y(x) = CJ,.(x)+C,Y (x)
where C, and C, are constants that can be determined from the

initial conditions. The function J,(x) is called the Bessel function
of the first kind of order n while the function Y,(x) is called the

Bessel function of the second kind of order n .
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The Bessel function of the first kind of order n is expressed
in the form of infinite series containing the Gamma function as,

(1) (g2
In(x) = § k!r(nx+/k+1)

MATLAB has the besselj(n,x) command that can
determine the Bessel function of the first kind of order of n at the
value of x easily. As an example, The Bessel function of the first
kind of order zero at X =1 is obtained by typing,

>> besselj(0,1)

ans =
0.7652

ie., J,() = 07652

Variation of the Bessel function of the first kind of order zero is
plotted with x by using the ezplot command as shown in the
figure.

>> syms X
>> ezplot("besselj(0,x)", [0 10 -.5 1]), grid on

besselj(0,x)

0.5

35(%) N

-0.5
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The Bessel functions of the first kind of order zero, one
and two that vary with x are plotted together by using the ezplot
and hold on commands as shown in the figure.

>> ezplot("besselj(0,x)", [0 10 -.5 1]), hold on
>> ezplot("besselj(1,x)", [0 10 -.5 1]), hold on

>> ezplot("besselj(2,x)", [0 10 -.5 1]
ezplot

05

Jn(X) Jz(x)

-0.5

The Bessel function of the first kind of order —n can be
determined from the Bessel function of the first kind of order n by
using the relation,

(¥ = (=17 3,(x)

As an example, for n=1 and x=2, the value on the left-hand-side
of the equation above is,

>> LHS = besselj(-1,2)

LHS =
-0.5767

which is equal to the value on the left-hand-side of the equation,
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>> RHS = (-1)"1*besselj(1,2)
RHS =
-0.5767

MATLAB can find the derivative of the Bessel function
symbolically by using the diff command. For example,

d n
&(‘]n(x)) - ;’Jn(x)_ ‘]n+1(X)
we enter the commands as follows,

>> syms n X
>> diff(besselj(n,x))

ans =

(n*besselj(n, x))/x - besselj(n + 1, X)

Similarly, MATLAB can also perform integration of the
Bessel function symbolically by using the int command. For
example,

Ix” J,,(x)dx = x"J.(x)

>> Iint(x*n*besselj(n-1,x))
ans =
x~n*besselj(n, x)

The Bessel function of the second kind of order n has the
definition of,

J.(x)cos(nz)—J_.(x)

Y(x) = sin(nrx)

The Bessel function of the second kind of order n at any x can be
determined from the bessely(n,x) command. As an example,
the Bessel function of the second kind of order zeroat X=2 is
obtained by entering,
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>> bessely(0,2)

ans =

0.5104
ie., Y,(2) = 05104

The Bessel functions of the second kind of order zero, one
and two that vary with x are plotted together by using the ezplot
and hold on commands as shown in the figure.

>> syms X

>> ezplot("bessely(0,x)", [0 10 -2 1]), hold on
>> ezplot("bessely(1,x)", [0 10 -2 1]), hold on
>> ezplot(“bessely(2,x)", [0 10 -2 1])

Y, (x) -5t

To understand the behavior of the Bessel functions, we
study the oscillation of the mass-spring system as shown in the
figure.
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A mass with m=1 is attached to
a spring for which its stiffness k varies
with time t in the form,

k — e70.02t

- The equilibrium condition during oscilla-
y(0)=1 tion leads to the governing differential
equation in the form,

k = e-0.02t

y

d? y L+ e-0o2t
dt?

where y is the unknown displacement that varies with time t. The
initial conditions are given by a unit displacement and zero velocity
attime t=0 as,

y =0

y(0) = 1 and %(O) =0

To solve for the exact solution in form of the Bessel
functions, we change the form of the differential equation by
letting,

X = 100e°%

dx _0.01t

so that, g —e = —0.01x
From the chain rule,
dy _ dydx _ dy
at T dxar - OO
and
d’y  d(dy)dx _ d dy
= &(EJE = a(—O.le&)(—O.le)
B d( dy
= 0.0001x&(x&)
Since x> = 10000e

then, e %% = 0.0001x?
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Thus, the differential equation becomes,

d(_dy 2
x&(x&j+xy =0

dzy ~_dy
2 et 2 —
dx2+xdx+xy 0

which is in form of the Bessel differential equation of order zero.
The general solution of this differential equation is,

y(x) = C1J0(X)+C2Y0(X)
where C, and C, are constants that can be determined from the
two initial conditions as follows,

yt=0) =1 or y(x =100)

or, X

1
dy . o4y _ dy . _ _
and E(t—o) =0 or &(x_loo) =0

The two conditions above lead to a set of two simultaneous
equations,

1
0

J,(100) C, +Y,(100)C,
and J}(100) C, +Y,(100) C,

After solving for the two constants of C, and C,, we substitute
them into the general solution to obtain the exact solution of,

y(x) = 507[J;(100)Y,(x)—Y,(100) J(x)]
Then, by substituting x =100e-901 | the exact solution of y can be
written in form of time t as,
y(t) = 507 [J,(100)Y,(100e°%)-Y,(100)J,(100e 2" )]

The solution can be determined for the interval of 0<t<100 by
creating a script file that contains the following commands,

>> t = 0:.01:100;

>> ex = exp(--01.*t); -
>> J1 = besselj(1,100);
>> YO = bessely(0,ee);
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>> Y1 = bessely(1,100);

>> JO = besselj(0,ee);

>> y = 50*pi*(J1.-*Y0 - Y1.*JO);
p

>> plot(t,y), axis([0 100 -2 2])

The file generates a plot of the mass movement that varies with
time as shown in the figure. The figure shows that the magnitude
of the mass movement increases with time. Such behavior agrees
with the fact that the spring stiffness weakens with time.

0.5

y(t) of
.05 L

Ak

15+

-2

0 1 b 26 (;0 46 56 (;0 7‘0 86 96 100
t
If the sign in front of the third term of the Bessel

differential equation changes from positive to negative, the
equation is called the modified Bessel differential equation,

X2y"+xy' —(x*+n?)y = 0

The general solution of the modified Bessel differential equation is
in the form,

yx) = C1,(x)+C, K, (x)

where C, and C, are constants that can be determined from the
initial conditions. The function 1 () is called the modified Bessel
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function of the first kind of order n, while the function K (x) is
called the modified Bessel function of the second kind of order n.

MATLAB contains the besseli(n,x) command to
determine the modified Bessel function of the first kind of order n
at a value of x. The modified Bessel functions of the first kind of
order zero, one and two that vary with x are plotted together by
using the ezplot and hold on commands as shown in the figure.

>> syms X
>> ezplot("besseli(0,x)", [0 4 0 6]), hold on
>> ezplot("besseli(1,x)", [0 4 0 6]), hold on

>> ezplot("besseli(2,x)", [0 4 0 6])

1, (X)

Similarly, the modified Bessel functions of the second
kind of order zero, one and two that vary with x can be plotted
together by using the ezplot and hold on commands as shown in
the figure.

>> ezplot("besselk(0,x)", [0 2 0 3]), hold on
>> ezplot("besselk(1,x)", [0 2 0 3]), hold on

>> ezplot("besselk(2,x)", [0 2 0 3]
esselk
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11.6 Airy Functions

Airy functions are special functions that arise from solving
the Airy differential equation,

d?y
dx?
The differential equation in the form above occurs while solving
some problems in physics. The form looks quite clean but a simple

solution is not available. The general solution of the Airy
differential equation is,

y(x) = C,Ai(x)+C,Bi(x)

-xy =0

where C, and C, are constants. The Ai(x) and Bi(x) denote the
Airy and Bairy functions, respectively. These two functions are,

Ai(x) = %I cos(xt+%t3)dt
0
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oo 1% 1., 1% 1.,
Bi(x) = ;! sm(xt+§t )dt+;£ exp(xt—gt )dt

MATLAB contains the airy(k,x) command for
determining the Airy and Bairy functions at any x when k =0, 1,
2 and 3,

k=0; airy(0,x) means Ai(x)
k=1, airy(1,x) means Ai'(x)
k=2 airy(2,x) means Bi(x)
k=3; airy(3,x) means Bi'(x)

where the prime symbol ( ' ) denotes the derivative order of the
function.

For examples, if we want to determine Ai(0), we type,
7> 2.0
ans =

0.3550

Or, to determine Bi'(—1), we enter,
>> airy(3,-1)
ans =

0.5924

Variations of the Airy and Bairy functions can be plotted
with x as shown in the figure by creating commands as follows,

>> x = [-15:.1:5];

>> ai = airy(0,x);

>> bi = airy(2,X);

>> plot(x,ai,"-k"), axis([-15 5 -0.5 1]) plot
>> plot(x, (Cptot )
>> plot(x,bi,"--k*")
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Similarly, variations for the derivatives of the Airy and

Bairy functions can also be plotted as shown in the figure.

X

Now, we can solve for the solution of the Airy differential

equation,

d2

g—xy =0

dx

with the initial conditions of y(0)

=A.

a and y'(0)
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The general solution of the differential equation is,
y(x) = C,Ai(x)+C,Bi(x)

where C, and C, are constants that can be determined from the
two initial conditions as follows,

C,Ai(0)+C,Bi(0) = «
C,Ai'(0)+C,Bi'(0) = B

Results of C, and C, are in form of the Airy function at x=0
which can be found by using the airy(k,0) command. Results
of the C, and C, can also be written in form of the Gamma

functions as,
_ 35 B
. = 7| 1y s,

G,

= n[ 31/31%/3) + 32/31?(2/ 3)}

where the values of the Gamma functions are obtained from the
gamma command.

If the initial conditions are given by,
yO) = « =1 and VY0 = g8 =0
then, C, and C, become,
6
73’ and C, = %(]/3)
Thus, the exact solution y(x) of the initial value problem governed
by the Airy differential equation is,

3vs
(

y(x) = %Ai(xpm Bi(x)

The exact solution is plotted and compared with the approximate
solution obtained from using the numerical method via the ode45
command as shown in the figure.
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1.2

115

y(x) 1} Exact

Numerical

1.05 -

11.7 Legendre Functions

Many problems in the fields of applied mathematics,
physics and chemistry are governed by the differential equations in
form of the Legendre equation. The Legendre differential equation
IS,

d’ . dy
p— 2 —— — —_— =
(1-x )dxz 2xdx+n(n+1)y 0 O<x<1
wheren =0, 1, 2, ... are positive integers. General solution of the
Legendre differential equation consists of the Legendre functions of
order n,

y(x) = C,P,(x)+C,Q,(x)

where C, and C, are constants. The P,(x) and Q,(x) are called

the Legendre functions of the first and second kind, respectively.
These functions are given by,

1 d" n
P(x) = ﬂw(xz—l)
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1 1+x
and Q(x) = EPn(x)lnm
For example, when n=1,
1 d
- _—  _— (x2 — —
P(X) = 0?1 = x
1 1+X X, 1+X
Q) = FR)INT— = 3T
Thus, for n=0 to 5, these functions are,
R(X) =1 » R(X) = x
PO = 3B -1) L RM - 26¢-34)
P(x) = %(35x4—30x2+3); R(X) = %(63x5—70x3+15x)

Variations of Legendre functions of the first kind, P, to P, are
shown in the figure.

| | | | | | | | | | |
-1 -0.8 -06 -04 -02 0 0.2 0.4 0.6 0.8 1
X

Similarly, the Legendre functions of the second kind when
n=0 to4 are,
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1, 1+x X, 1+X

Q) = 5Ihi— QK = At
Q(x) = FB¢-Dni X Sy

QX = %(5X3—3x)lni—§_gx2+%

Q(x) = %(35X4—30X2+3)|ni—§_%x3 +§x

Variations of Legendre functions of the second kind, Q, to Q, are
shown in the figure.

08
06
0.4
021

Qu(X) o

-0.2

04

-0.6 |

-0.8 -

The Legendre functions P,(x) and Q,(x) above are solu-

tions of the Legendre differential equations. For example, when
n=1, the Legendre differential equation reduces to,

2
(1- xz)% — ZX% +2y =0
If the boundary conditions are given such that both constants C,
and C, are equal to one, then the exact solution to this boundary
value problem is,
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y(x) = R(X)+Q(x)

X, 1+X
or, y(x) = x+§lnm—
We can verify the validity of this solution by substituting it into the
differential equation. This can be easily done by using the

symbolic mathematics capability in MATLAB as follows,

1

>> syms X

>> P1 = Xx;

>> Q1 = (X/2)*log((1+x)/(1-x)) - 1;

>>y = P1 + Q1;

>> dy = diff(y,x); diff
>> d2y = diff(dy,x);

>> LHS = (1-x72)*d2y - 2*x*dy + 2*y;

>> RHS = simple(LHS)

RHS =

0

The result obtained is zero which is equal to the right-hand-side of
the differential equation. This means the solution containing the

Legendre functions B(x) and Q,(x) is the solution to the differen-
tial equation above.

A more complicated Legendre differential equation is the
associated Legendre differential equation in the form of,

d?y d m?
(1—x2)dX2—2xd—i+[n(n+1)—l_xz}y =0 0<x<1

where n and m are positive integers. If m=0, the associated
Legendre differential equation reduces to the Legendre differential
equation. The general solution of the associated Legendre differen-
tial equation is,

y(x) = CR'(x)+CQ;(x)

where C, and C, are constants which are determined from the
given boundary conditions. The P"(x) and QT(x) are the
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associated Legendre functions of the first and second Kkind,
respectively. These functions are in the forms,

m/2 dm

PP = (17X SR
and Qr(x) = (1"a-x)" jxr; Q.(x)

The associated Legendre function of the first kind has the
property of,

P"(x) = 0 if m>n

For example, when n=1and m=0,1, the associated Legendre
functions are,

P” = x and P! = —(1—x2)]/2

Variations of P and P, are plotted as shown in the figure.

e
08 f

06 f

0.4f

02t

R"(x) of
0.2

-0.4

0.6

0.8

-1 F

The associated Legendre function of order n at any x
is obtained by using the legendre(n,x) command. As an
example, the associated Legendre functions of order n=1 at
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x=-1.0,-0.50.0,0.5 and 1.0 are obtained from the following
commands,

>> x = [-1:0.5:1];
>> legendre(1,x)

ans =

-1.0000 -0.5000 0 0.5000 1.0000
0 -0.8660 -1.0000 -0.8660 0]

The values in the first line are B’ while the results in the second
line are P'. These values agree with those shown in the figure.

Similarly, the associated Legendre functions of order
n=2 when m=0,1 and 2 are,

L

Variations of these functions are plotted as shown in the figure.

(Bx2-1) ; P = —3x(-x2)"; P2 = 31-x%)

3
251
ol
15T
Ph(x) |
05
ol

-0.5

-1 -0.5 0 0.5 1
X

In this case, the associated Legendre function of order
n=2and x=-1.0,-0.5,0.0,0.5 and 1.0 are obtained by entering

the commands,
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>> x = [-1:0.5:1];

>> legendre(2,x)

ans =
1.0000 -0.1250 -0.5000 -0.1250 1.0000
0 1.2990 0 -1.2990 0
0 2.2500 3.0000 2.2500 0

The values in the first, second and third lines are Py, P, and P/,

respectively, at the five x locations. These values agree with those
shown in the figure. The two examples presented above highlight
the legendre(n,x) command that can be used to find values of
the associated Legendre functions of order n at any x conveniently.

11.8 Special Integrals

MATLAB contains commands for determining several
special integrals. Different types of special integrals can be found

by typing,
>> help mfunlist

In this section, some special integrals normally encountered while
solving mathematical problems are presented.

The Dawson integral is a special integral that occurs in
conduction heat transfer and theory of electric oscillation. The
integral is in the form,

X

F(x) = e’ je

0
The function F(x) above is the exact solution of the differential
equation,

2

dt

d—F+2xF =1

dx
with the initial condition of F(0)=0. We can verify that the
function F(x) above satisfies the differential equation by

substituting it into the left-hand-side of the equation as follows,
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>> syms X t int
>> F = exp(—x"2)*int(exp(t"2),t,0,x);
>> diff(F,x) + 2*x*F

ans =
1

The result is one which is equal to the value on the right-hand-side
of the equation.

To find value of the Dawson integral, F(x), MATLAB uses the

mfun function to call the Dawson command. For example, we can
find values and plot variation of the Dawson integral in the interval
of —5<Xx<5 by entering the commands,

>> X

[-5:.01:5]; Dawson
>> d = mfun(“Dawson®, X);

>> plot(x,d,"k"); axis([-5 5 -0.6 0.6]);

which lead to the plot of F(x) as shown in the figure.
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The dilogarithm integral is another special integral
normally occurs while solving some mathematical problems. The
integral is in a specific form of,

f()_j'”(t)dt x> 1

We can employ the dilog command via the mfun function to
determine the dilogarithm integral f(X) at a given x. For example,
values of the dilogarithm integral f(x) in the interval of 1< x <20
can be plotted as shown in the figure by using the commands,

>> x = [1:.1:20];

>> di = mfun("dilog®, X);

>> plot(x,di,"k"); axis([1 20 -6 0]);

0

f(x) =t

The exponential integral is another special integral that
arises while solving some mathematical problems. The integral is
in the form,

Ei(x) = T eT

MATLAB contains the expint(x) command to determine this
special integral at a given x. As an example, the exponential
integral at x =0.5 is obtained by entering,
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>> expint(0.5)

ans =
0.5598

Variation of the exponential integral for 0 <x <2 is plotted as
shown in the figure.

Ei(x) |
0.8
0.6 -
0.4

0.2

The Fresnel integrals are special integrals that contain
sine and cosine functions in the form,

¢ (7.,

= j sm(ft jdt
0

X 72_ )

'([ cos(ft )dt

Values of the Fresnel integrals, S(x) and C(x), are obtained by
using the FresnelS and FresnelC commands via calling the
mfun function. For example, these two special integrals are
determined in the interval of —5<x <5 and plotted as shown in
the figure by using the commands,

wn

—~~
>

N
I

and C(x)
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>> X
>> S

[-5:.01:5];

mfun("FresnelS™, Xx); FresnelS
>> plot(x,s, "k");

>> axis([-5 5 -0.8 0.8]);

>> hold on

>> ¢ = mfun("FresnelC®, x);

>> plot(x,c, " --k");

It can be seen from the figure that,

S(-0) = C(-0) = _%
SO = CcO) = 0
and S(w) = C(w) = %

11.9 Concluding Remarks

In this chapter, details of special functions and integrals
normally arise while solving mathematical problems are presented.
The special functions include the error and complementary error
functions, the Gamma and incomplete Gamma functions, the Beta
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functions, the Bessel and modified Bessel functions, the Airy and
Bairy functions, and the Legendre and associated Legendre
functions. The special integrals presented herein are the Dawson
integral, the dilogarithm integral, the exponential integral and the
Fresnel integrals. Because these special functions and integrals are
in complicated forms, they are tabulated as values and provided in
appendices in many mathematical textbooks.

MATLAB contains commands for determining values of
these special functions and integrals conveniently.  Several
examples are presented to demonstrate how to use these com-
mands. Variations of the special functions and integrals are plotted
to display their physical meanings. These commands can be
included in a computer program to alleviate difficulty for solving
the complete problem. The ability of these commands thus helps
us to solve mathematical problems more effectively.

Exercises

1. Develop a computer program to find values of the error and
complementary error functions by using the erf and erfc
commands. Show these values in form of a table for
—3 < x <3 with the increment of Ax=0.05.

2. For a small value of x, the error function may be determined
from the series,

erf (x) = 2 x—X3+ X X +
- Jz 3152 T

Compute the percentages of error by comparing the series
solutions with those obtained by using the erf command for
x=0.01, 0.1 and 0.5, respectively.
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3. If x is large, the error function may be determined from the
series,

2
. e (. 1 13 135
erf (x) = 1 \/;X[l 2X2+(2X2)2 (2x2)3+ ........ j

Compute the percentages of error by comparing the series
solutions with those obtained by using the erf command for
x=1.5, 2 and 3, respectively.

4. The error function can be written in form of the Maclaurin
series as,

0 n,2n+l

erf (x) = 2 > (1) x
_ 2 x e XX
T U7\ 3710 42216 v

Develop a computer program to determine the error function
from the series above. Compare the solutions with those
obtained by using the erf command for x=0.5, 1 and 2,
respectively.

5. Use the gamma command to find the values of,

(@) I(8.37) (b) T(L5)[(2.3)
(c) T(3.64)/T(L.18) (d) T(-1002)
(e) log('(0.5)) (f) e'@®

6. If x is a negative non-integer value, use the gamma command to
show that,

Then, plot the variations of T'(x) and I'(x+1) for the interval
of —2<x<-1.
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7. Develop a computer program to prove that,

@ F(m+%j _ 135.(m-1) —

2m
L (-1" 2"z

where m is any positive integer. Show results for two cases
when m=2 and 4.

8. Plot the variations of T(x) and 1T(x) functions for

—5<x<5 on the same graph. Explain the relation between
the two functions.

9. Plot the Beta function in two dimensions, e.g. for 1< x<4 and
1<y<4, to show that B(x,y)=B(y,x). The commands

given below may help to verify such property. Additional
commands, such as the figure orientation, may be needed to
improve the plotting clarity.

>> X 1:.1:4;

>> 1:.1:4;

>> [X Y] = meshgrid(x,y);
>> Z = beta(X,Y);

>> mesh(X,Y,2Z2)

10. Employ the Beta function to determine the following integrals,

@a) .l[tx/th dt (b) 'l[w/t(l—t) dt
© j—dt ) j 1”
/2 /2

() jsinzecosede () _[sin&cos%’d@
0 0
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11.

12.

13.
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Verify the results by comparing with those obtained from

numerical integration using the int command.

Employ the beta command to show that,

(@ B(xx) = (2)“*3()(,%),

(b) B(n,n)B(n+%,n+%) - (2)“+1n

For m=1 and n=2, show that,

AR L
B(m,n) = | ———dt
(m.n) ! L+t)™"

x>0

n=123,..

The value on the left-hand-side of the equation is obtained by
using the beta command. The value on the right-hand-side of
the equation is determined from numerical integration using
the int command. Repeat the problem when m=2 and

n=3.

Develop a computer program to determine results of the
following series for x = 0.5, 1, 2and 3. Verify the results by

using the bessel j and bessel i commands

+..

X2 x* x®

(a) ‘]O(X) = 1_?+22-42_22'42'62+.'..
X x3 X5 X/

(b) ‘Jl(x) - 5_22_4+22_42_6_22,42.62.8

X2 x4 x5
©) l(x) = 1"‘?*‘22_42"'22_42_62"""'

3 5 7

@ L) = Satr ;

2 A e 2 aeg
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14. Use the bessel j command for the Bessel function of the first
kind of order n to show that,

@ Jp,(x) = \/%sinx
(b) J.,,(x) = \/%cosx

(€) Jgp(x) = i(Siﬂ—cosxj

x| x
(d) J.,,(x) = 2 COSX  sinx
92 X\ X
2 3 . 3
(@ Jgp(x) = H[(F—ljsmx—;cosx}

M Jgx) = \/%[%sinx+(%—ljcosx}

15. Use the besseli command for the modified Bessel function
of the first kind of order n to show that,

@ lp(x) = \/%Sinhx

) 10 = |2 coshx

© 10 - |2 (cosh x-S0

@ 13200 = |2 [sinh ( - comx)

@ 100 = & [[ s Zoosns]
EA(ER

() 1g(x)

><
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16. Use the besselj and besseli commands for the Bessel and
modified Bessel functions of the first kind of order n to show
that,

@ 3,400 = 203,003,

2n
(b) In+1(X) = In—l(x) - 7 In(X)
whenn=1,2,3andx=0.5,1, 2, 3.
17. Develop a computer program by using the Bessel function with

besselj command and the modified Bessel function with
bessel i command to show that,

@@ sinx = 2[J,(X)—I;(X)+ I(x)—...]
(b) cosx = J,(x)—2J,(x)+2J,(x)—...
(c) sinhx = 2[1,(X)+ 1,(x)+ 15(X)+...]
(d) coshx = 1,(X)+2[1,(X)+ 1,(x)+ I5(x)+..]
18. Use the Bessel functions with besselj, bessely and

besseli commands to show that, when x is very large
(x>>0), the Bessel functions below can be approximate by,

@ 200 ~ [ Feax-"7 1)
0 %0 = (Zosn(- -
© LK ~ 2

19. Use the symbolic mathematics diff command to find deriva-
tives of the following Bessel functions,

@ 3 = [,.00-3,.()]
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() xJ;(x) = xJ,4(x)=nJy(x)
(C) X‘]r;(x) = an(X)_X‘Jm-l(X)

@ o 3,x]

Xn ‘]n—l(x)

(e) %[Xn ‘]n(X)] -x" ‘]n+1(x)

0 3(X) = F0,.(0-23,(0+3,.,(x)]
@ %) = 5[, 5(0-33,,(0+33,,(x)~ I, .5 ()]

20. Use the symbolic mathematics diff command to find deriva-
tives of the Bessel functions for validating the following
relations,

@ 1) = a0+ 1]
(0) X1 = Xl,4(X)=n1,(x)

) xI/(x) = xI_,(x)+nl (x)

@ Sl = XL

© Sl 1,0] = x4

21. Use the int command to symbolically integrate,

(a) IxJo(x)dx (b) J.xJoz(x)dx
(©) jJO(ax/;)dx (d) TJO(Bx)dx
(e) TJZ()?X) dx ) Te‘XJO(Z&)dx

where a is a constant.
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22. Use the symbolic mathematics int command together with the
Bessel function besselj, bessely and besseli commands
to show that,

@ J,(x) = %fcos(xsin@)dé’

(b) Y,(x) = —%fcos(xcosh@)d@
€ l,(x) = %fcosh(xsin@)d@

when x=0.5,1, 2 and 3.

23. In a mass-spring system, the mass and spring stiffness are,
m =1 and k = "™
The governing differential equation representing the mass
motion y(t) is,
d?y
dt?
If the initial conditions are,

+e0.02ty — O

y(0) =1 and 3—){(0) =0

solve the initial value problem above for solution in form of
the Bessel functions. Plot the solution of the displacement

y(t) that varies with time t. Explain the physical meanings of
the solution.

24. Use the airy command to show that, as x — —, then,

Ai(x) = zl/z(—x)V4sin[§(—x)3/2+%7z}
Bi(x) = 72— x) ¥ COSE(— x)3/2+%4
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In the opposite way, as x — o, then,

Ai(x)

N

1 3/2
Eﬂ—yzx—l/ﬂ,e—zx/ /3

Bi(X) Y2y Ve

N

25. Solve the Airy differential equation,
d?y

dx?

with the boundary conditions of y(0)=0 and y'(0)=1. Plot

to compare the exact solution y(x) with the approximate

solution obtained from solving the same boundary value
problem by the numerical method. The ode23 or ode45
command may be used in the process for obtaining the
approximate solution.

-xy =0 0<x<2

26. Employ the legendre and gamma commands to validate the
relation below for the Legendre function of the first kind at
x=0and n=1, 2, 3.

(~1)'T(n+1/2)

P,(0) =
n(0) VrT(n+1)
27. Given the Legendre function of the first kind,
1 d n n
P.(X) = nnl dxn (x2 1)

Use the symbolic mathematics capability in MATLAB to find
their derivatives, P(x), P/(x) and Bj(x). Then, plot their
variations in the interval of —1<x<1.

28. Given the Legendre function of the second kind,

Q(x) = ZP,(X)Ix
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Use the symbolic mathematics capability in MATLAB to find
the Legendre function in terms of x when n=0, 1, 2, 3 and 4.
Then, plot their variations in the interval of —1<x<1.

29. Use the symbolic mathematics capability in MATLAB to show
that,

J'pn(x)dx _ Pn+1();)n_+ljr_]_l(X)

when n=1, 2 and 3.

30. Use the symbolic mathematics capability in MATLAB to
verify the orthogonal properties of the Legendre functions,
1

[ P00, () dx

-1

0 (£#n)

and I[Pn(x)]2 d = 5 (¢=n)

when /,n=1, 2 and 3.

31. Develop a computer program to show that the Fresnel integrals
can be expressed in form of the infinite series,

X ) 7.,
jsm(it jdt

0 ( 1)( /2)2n+1 4n+3
- zo (2n+1)(4n +3)

C(x) = f cos( j

(-2)'(/2)""x"
- z (2n)(4n+1)

S(x)

n=0
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Verify the computer program when x=-4, -2,0, 1, 3 by
comparing the computed results with those obtained from
using the FresnelS and FresnelC commands. Also
compare the results with the numerical integration solutions by
using the Lobatto integration method with the quadl
command.
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Riccati, 112
second-order, 4, 131, 297
simultaneous, 59, 253, 264
third-order, 191, 212
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Differentiation, 26
Domain,
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time, 268, 282
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Exact equations, 94

Finite element method, 333
FORTRAN, 6, 194
Fourier transform, 267
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Function, 385
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Dirac delta, 247
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factorize, 4
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Edit, 334
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Options, 336, 351, 362
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Initial condition, 66, 81, 333
Initial value problem,
134, 167, 192
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explicit, 41

sign, 36
Integrand, 37
Integrating

constant, 5, 37

factor, 88, 91, 105

formulas, 37
Integration, 36

definite, 4, 41

double, 42, 55
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triple, 43, 55

Laplace transform, 229
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first kind, 411
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second kind, 411
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MACSYMA, 2

Maple, 6

Mass-spring system,

256, 403
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MATLAB,
fundamentals, 6
history, 5
m-file, 171, 212, 217

MATLAB command,
airy, 408
axis, 11, 47
besseli, 406
bessel j, 399
besselk, 406
bessely, 401
beta, 394
bvp4c, 298, 307, 317
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collect, 8
conj, 283
Dawson, 418
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diff, 27, 61, 133, 208
dirac, 247, 263, 287
double, 25, 49, 397
dsolve, 62, 136, 196, 296
erf, 65, 386
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ezplot, 10, 83, 241, 386
factor, 9, 191, 196
fft, 283
format long, 49
fortran, 194
fourier, 274
Fresnel, 421
FresnelC, 421
gamma, 390
gammainc, 393
gridon, 399
heaviside, 251, 264,
285
hold on, 400
ifourier, 278
ilaplace, 233, 248
inline, 119
int, 37,42, 68, 398
laplace, 233, 247
legendre, 415
limit, 20, 26
linewidth, 47, 64
linspace, 302, 307, 311
mesh, 34, 345, 359
meshgrid, 34, 63, 345
ode23, 115, 170, 213
ode23s, 120
ode45, 117,173, 215
pdetool, 333
plot, 11, 47,64, 172, 216
pretty, 10
quiver, 63
randn, 282
roots, 189
simple, 9, 235
simplify, 9
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subs, 31, 36, 143

sum, 48

symsum, 48, 50

taylor, 45

tic, toc, 33

vpa, 7

xlabel, ylabel, 11, 116
MATLAB function,

axis, 116

eps, 7

exp, 24, 35, 115

hold on, 116

i,J,6

inf, 6, 25, 42, 391

NaN, 7

pi, 7,85, 393

sqrt, 23, 29, 63

sym, syms, 7,40, 158
MuPad, 6

Nonhomogeneous equation,
undetermined coefficients,
155, 205
variation of parameters,
161
Nonlinear equation,
Bernoulli, 109, 111
Riccati, 113, 127
Numerical method,
114,169, 211

Orthogonal properties, 344

Partial differential equation,
331
approximate solution,
341, 345, 355, 371

classification, 332
elliptic, 332
exact solution,

341, 345, 356, 371
general solution, 343
hyperbolic, 332
parabolic, 332

PDE toolbox, 333
elliptic equation, 335
hyperbolic equation, 361
parabolic equation, 349
Periodic function, 268
Phase, 268

Roots,
complex conjugate,
144,198
distinct real, 135, 191
mixed, 201
repeated real, 138, 195

Separable equations, 80
Separation of variables,
341, 356, 367
Series,
derivative, 44
infinite, 43, 343, 359, 370
Maclaurin, 44
others, 48
Taylor, 43
Signal, 282
Solution,
carpet plot, 353, 356, 367
closed-form, 170
exact, 5, 79, 170, 295, 312
explicit form, 69
general, 154
homogeneous, 153, 162
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implicit form, 66, 68 software, 2
line contours, 340, 355
particular, 153, 162 Unit,
Special equations, 107 imaginary, 6
Special functions, 385 normal vector, 333, 351
Special integrals, 417
Dawson, 417 Variable,
dilogarithm, 419 dependent, 58, 331
exponential, 419 independent, 58, 331
Fresnel, 420 Vector field, 63, 67
Spring stiffness, 403
Stiff equation, 119 Wronski’s test, 133, 190

Symbolic mathematics, 1 Wronskian, 134, 19
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