BAsiC MAT]SAB SIMULINK
AND STATEFLOW

Richard Colgren

W “‘. “‘“ ' : ;. o
‘t" ‘R’}‘}&‘ K fﬁf e ‘

(S &“\ fq,

*f?
i
IE‘? i

*., ,r:«"# 1‘»‘;\ G20
8 \\\\
‘\‘i‘\

o
’ ’ i -"""
a"f

AIAA EDUCATION SERIES
JOSEPH A. SCHETZ
EDITOR-IN-CHIEF

GAIAA

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

Basic MATLAB®, Simulink®,
and Stateflow®™

JAIAA.

The Worlds Forum for emspos Lssdwesip Purchased from American Institute of Aeronautics and Astronautics

This page intentionally left blank

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

Basic MATLAB®, Simulink®,
and Stateflow®™

Richard Colgren
The University of Kansas
Lawrence, Kansas

EDUCATION SERIES

Joseph A. Schetz

Series Editor-in-Chief

Virginia Polytechnic Institute and State University
Blacksburg, Virginia

Published by
American Institute of Aeronautics and Astronautics, Inc.
1801 Alexander Bell Drive, Reston, VA 20191-4344

@JAIAA

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

MATLAB®, Simulink®, Stateflow®, Handle Graphics®, Real-Time Worksh0p®, and xPC Targetb0x®
are registered trademarks of The MathWorks, Inc.

American Institute of Aeronautics and Astronautics, Inc., Reston, Virginia

1 2 3 45

Library of Congress Cataloging-in-Publication Data
Colgren, Richard D. (Richard Dean).
Basic MATLAB, Simulink, and Stateflow / Richard Colgren.
p. cm. -- (Education series)
ISBN-13: 978-1-56347-838-3
ISBN-10: 1-56347-838-2 (hardcover : alk. paper)
1. MATLAB. 2. SIMULINK. 3. Stateflow. 4. Computer simulation—Computer
programs. 5. Engineering mathematics. 6. Aeronautics—Mathematics. 1. Title.

TA345.C598 2007
620.001'13--dc22
2006101307

Copyright ©) 2007 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.
Printed in the United States of America. No part of this publication may be reproduced, distributed,
or transmitted, in any form or by any means, or stored in a database or retrieval system, without the
prior written permission of the publisher.

Data and information appearing in this book are for informational purposes only. AIAA is not respon-
sible for any injury or damage resulting from the use or reliance, nor does AIAA warrant that the use or
reliance will be free from privately owned rights.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

AIAA Education Series

Editor-in-Chief
Joseph A. Schetz

Virginia Polytechnic Institute and State University

Takahira Aoki
University of Tokyo

Edward W. Ashford

Karen D. Barker
The Brahe Corporation

Robert H. Bishop
University of Texas
at Austin

Claudio Bruno
University of Rome

Aaron R. Byerley
U.S. Air Force Academy

Richard Colgren
University of Kansas

Kajal K. Gupta
NASA Dryden Flight
Research Center

Rikard B. Heslehurst

Australian Defence Force Academy

David K. Holger
lowa State University

Editorial Board

Rakesh K. Kapania
Virginia Polytechnic Institute
and State University

Brian Landrum
University of Alabama
Huntsville

Tim C. Lieuwen
Georgia Institute of Technology

Michael Mohaghegh
The Boeing Company

Conrad F. Newberry
Naval Postgraduate School

Mark A. Price
Queen’s University Belfast

James M. Rankin
Ohio University

David K. Schmidt
University of Colorado
Colorado Springs

David M. Van Wie
Johns Hopkins University

JAIAA.

The Worlds Forum for emspos Lssdwesip Purchased from American Institute of Aeronautics and Astronautics

This page intentionally left blank

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

Foreword

We are very happy to present Basic MATLAB®, Simulink®, and Stateflow® by
Richard Colgren. We are confident that this comprehensive and in-depth treat-
ment of this widely-used material will be very well received by the technical
community. The book has fourteen chapters and three appendices in about 500
pages.

This author is extremely well qualified to write this book because of his broad
and deep expertise in the area. His command of the material is excellent, and he is
able to organize and present it in a very clear manner.

The AIAA Education Series aims to cover a very broad range of topics in the
general aerospace field, including basic theory, applications, and design. Infor-
mation about the complete list of titles can be found on the last page of this
volume. The philosophy of the series is to develop textbooks that can be used
in a university setting, instructional materials for continuing education and pro-
fessional development courses, and also books that can serve as the basis for
independent study. Suggestions for new topics or authors are always welcome.

Joseph A. Schetz
Editor-in-Chief
AIAA Education Series

JAIAA.

The Worlds Forum for emspos Lssdwesip Purchased from American Institute of Aeronautics and Astronautics

This page intentionally left blank

GAIAA

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

Table of Contents

Preface xiii
Acknowledgments XV
Basic MATLAB®
Chapter 1. Introduction to MATLAB® 3
1.1 Introduction and Objectives 3
1.2 Entry . ..o 4
1.3 Transpose o vt e 5
1.4 Addition and Subtraction. L oL 5
1.5 Multiplication. 7
1.6 DIvision 8
1.7 Formats. 9
1.8 Matrix Functions. 10
1.9 Colon Operator. it 13
1.10 Useful Interface GUIs. 13
1.11 Conclusion 39

Chapter 2. Plotting and Graphies 43
2.1 Introduction and Objectives 43
2.2 Plot . . . 43
23 Logand Semilog Plots 47
2.4 PolarPlots. 47
2.5 Subplots 48
2.6 AXIS. o o 49
2.7 Mesh 51
2.8 Contour Diagramst 53
2.9 Flow Diagrams. 55
210 0 MOVIES . . o v vt 56
211 Conclusion 58

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

X TABLE OF CONTENTS

Chapter 3. Introduction to MATLAB® Toolboxes 61
3.1 Introduction and Objectives 61
32 Continuous Transfer Functions 61
33 RootLocus i 63
34 Step and Impulse Responses 64
35 BodePlot 67
3.6 Nichols Chart. 68
3.7 Nyquist Chart. 68
3.8 Linear Quadratic Regulator 69
3.9 State-Space Design 70
3.10 Digital Design 85
311 Conclusion 92

Chapter 4. Introduction to MATLAB® Cells, Structures, and M-Files 95

4.1 Introduction and Objectives 95
4.2 Cells 95
4.3 Structures e 97
4.4 M-Files. 98
4.5 Conclusion 102
Chapter 5. Handle Graphics® and User Interfaces 105
5.1 Introduction and Objectives 105
52 Handle Graphics® 105
53 Graphical User Interface Development Environment 112
54 Layout Editor. 115
5.5 Property Inspector. 117
5.6 Menu Editor. 124
5.7 Compiling a Stand-Alone Executable. 125
5.8 ConcClusiont 126
Chapter 6. Introduction to MATLAB® MEX-Files 129
6.1 Introduction and Objectives 129
6.2 Dynamically Linked Subroutines: MEX-Files. 129
63 MATLAB® Engine Library 142
6.4 ConClusiont 148
Basic Simulink®
Chapter 7. Brief Introduction to Simulink® and Stateflow®™ 153
7.1 Introduction and Objectives 153
7.2 Simulink® . ..o 153
7.3 Vander Pol Equation. 153
7.4 Conditional System Model 158

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

TABLE OF CONTENTS Xi

7.5 Combined Simulink® and Stateflow® Systems. 161
7.6 Model Comparison, 166
7.7 F-14 Control System 169
7.8 Conclusion 172
Chapter 8. Introduction to Simulink® 175
8.1 Introduction and Objectives 175
8.2 Standard Simulink® Libraries. 175
8.3 Simulink® Aerospace Blockset. 191
8.4 Simulink® Installation and Demonstrations 194
8.5 Conclusion 205
Chapter 9. Building a Simple Simulink® Model 209
9.1 Introduction and Objectives 209
9.2 Population Model 209
93 Analyzing the Population Model. 238
9.4 Conclusion 239
Chapter 10. Building Simulink® Linear Models 243
10.1 Introduction and Objectives 243
10.2 Transfer Function Modeling in Simulink® 243
10.3 Zero-Pole Model L 254
10.4 State-Space Model 256
10.5 ConClusion. 258
Chapter 11. LTI Viewer and SISO Design Tool 261
11.1 Introduction and Objectives 261
11.2 Introduction to the Simulink®™ LTI Viewer. 261
113 Using the Simulink® LTI Viewer. 262
11.4 Equivalent Simulink® LTI Models. 283
11.5 SISO Design Tool 285
11.6 Conclusion. i 293

Chapter 12. Building a Multiple-Input, Multiple-Output

Simulink® Model 297
12.1 Introduction and Objectives 297
12.2 System Modeling in Simulink®. 297
12.3 Parameter Estimation 297
12.4 MATLAB® Simulation Interface 315
12.5 Subsystems, Masking, and Libraries. 316
12.6 Vector Signals. 323
12.7 Using Vector Signals for Math Functions 325

12.8 Conclusion. 329

GdAIAA

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

Xii TABLE OF CONTENTS
Chapter 13. Building Simulink® S-Functions 335
13.1 Introduction and Objectives 335
13.2 Simulink® S-Functions 335
133 Simulink® C and S-Function Example,
Van der Pol Equation 336
13.4 Simulink® C and S-Function Builder Example,
Van der Pol Equation. 342
13.5 Example of a FORTRAN S-Function. 352
13.6 Example of a CMEX S-Function Gateway. 354
13.7 Simulink® Block Diagram Using S-Function 358
13.8 Conclusion. 360

Basic Stateflow®

Chapter 14. Introduction to Stateflow®™ 369
14.1 Introduction and Objectives 369
14.2 Opening, Executing, and Saving Stateflow® Models 369
143 Constructing a Simple Stateflow® Model. 376
14.4 Using a Stateflow®™ Truth Table. 410
14.5 Conclusion. 421

Appendix A. History of MATLAB® and The MathWorks, Inc. 425

Appendix B. Tuning MATLAB®, Simulink®, and

Stateflow® Solvers 429
B.1 Improving Simulation Performance and Accuracy. 429
B.2 Selecting Solvers 432
B3 Non-Real-Time and Real-Time Simulations. 436

Appendix C. MATLAB®, Simulink®, and Stateflow™

Quick Reference Guide 437
Bibliography 473
Index e 477
Supporting Materials L 485

Software download information can be found at the end of
the book on the Supporting Materials page.

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

Preface

This book is based on materials developed during more than 22 years of teaching
MATLAB®, Simulink®, and Stateflow™ in a variety of formats to a diverse range
of audiences. Most of these courses required little to no background in any of
these tools from these students. The book can be used for self-instruction on
all three of these topics. All of these tools are relatively easy to use once the
basics are understood. The hands-on approach taken in this book is designed to
provide the user with just such a background. This book is in no way meant to
be comprehensive in its coverage of these three tool sets. A comprehensive
book on MATLAB was possible 20 years ago. However, with the vast number
of toolboxes and model libraries available today, a comprehensive coverage of
these three subjects would require a bookshelf, not a single book.

When used as a classroom text, this book is formatted to support a MATLAB/
Simulink /Stateflow course designed to take a total of approximately 40 hours,
including in-class exercises. However, the course is designed to be modular
and thus flexible for use in a variety of teaching and time formats. As a class,
this course is best offered within a computer laboratory environment, with the
students working in real time on examples along with the instructor.

Note that all the materials covered within this book were generated using Version
7.3 of MATLAB (Release 2006b) and all associated toolbox versions. The Math-
Works is now supporting a twice-yearly release schedule, with each Service Pack pro-
viding minor upgrades and some new features. These added improvements are
designed to have little effect on the vast majority of capabilities offered by this
large family of analysis tools and thus are relatively seamless to the user.

The format recommended for this course as offered within a computer labora-
tory environment is as follows.

1) A lecture is given on a MATLAB, Simulink, or Stateflow topic from the
appropriate chapter in this book. The students work through the materials on
their computers while the instructor similarly works through the lecture materials.

2) The students work through an exercise given at the end of the chapter after
the lecture.

3) An appropriate break is given at the end of the exercise. Students complet-
ing the exercise early may work on other side topics.

4) Afterward the instructor assigns exercises or homework for the students to
complete.

Richard Colgren
January 2007

Xiii

JAIAA.

The Worlds Forum for emspos Lssdwesip Purchased from American Institute of Aeronautics and Astronautics

This page intentionally left blank

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

Acknowledgments

In my more than 25 years of working with MATLAB®, Simulink®, and State-
flow® and all of the associated tools, it has been my pleasure to have had the
assistance of, and to have received advice and wisdom from, numerous people.
It is my great pleasure to acknowledge all of them, and my greatest fear is that
I will miss giving the appropriate credit to one or more of these deserving
people. To any of you I have missed, I first state my appreciation for your
support and then ask your forgiveness for missing you.

My first acknowledgment must go to my wife, Nell, for all of her support and
her understanding during the time I have spent teaching, traveling, and writing.
The time she has given up to support these efforts is greatly appreciated, and
her love and patience are acknowledged. I must also express my gratitude to
my parents, who have done so much to support my education and my educational
activities over the years.

My first exposure to MATLAB was in the 1980—81 school year at the Univer-
sity of Washington. The excellent facilities at the university, along with the
excellent engineering faculty, provided me with an early opportunity to work
with these tools and had a profound effect on my career.

At Northrop from 1982 through 1984, I was given detailed insight into the
workings of MATLAB. The person who most greatly contributed to this
insight was Dave Lowry. At Northrop I was first exposed to and received training
on a very early release of Matrix-X, a program that was then very closely related
to the university version of MATLAB. My departure from Northrop and arrival
at Lockheed happened to be almost coincidental with the founding of The
MathWorks.

My first task at Lockheed in mid-April 1984 was to participate in a review of
Ctrl-C, another package very closely related to MATLAB. This review first
brought me into contact with Jack Little, who is currently president of The Math-
Works. This work then lead me to order (for $75) two nine-track tapes with
MATLAB and computer-specific interface programs from Cleve Moler at the
University of New Mexico. Moler developed the original FORTRAN version
of MATLAB and is currently the chief scientist of The MathWorks.

Two of my managers at the Lockheed “Skunk Works,” Bob “Lash” Loschke
and Bob Rooney (both now retired), provided me with the support and encour-
agement to implement MATLAB and associated training programs at Lockheed.
My first task was to implement MATLAB on the “batch” mainframe computers
of the time and to provide an apparently “interactive” interface including color

XV

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

Xvi ACKNOWLEDGMENTS

plotting capabilities. With the support of the small IS group at the Lockheed
Skunk Works, I wrote dynamic JCL code and assembly language interfaces to
accomplish this task.

When MATLAB became commercially available on IBM PCs and Apple
Macintosh computers, these computers were brought into Lockheed along with
this software. With the aid of Hank Donald, then an engineer at Lockheed and
now at Ford (where he has continued to work on MATLAB, Simulink, and State-
flow standards), we brought UNIX workstations and the next generation of
MATLAB and Matrix-X based tools into the Skunk Works. These workstations
were also used to introduce us to early graphical modeling tools including
Grumman’s Protoblock, ISI’s SystemBuild, X-ANALOG’s NL-SIM, and
ADI’s BEACON.

The introduction of MATLAB and additional software tools by The
MathWorks led to the need for additional training modules and instructors.
Hank Donald helped generate the initial training materials for MEX-files. His
desire for a manual Simulink switch and other features within Simulink really
motivated The MathWorks’ developers to improve the early versions of Simulink
and make it the excellent tool you have today. He also participated in many of the
early training courses within Lockheed. Shah Torgenson wrote some of the
earliest training materials on cells and structures and helped tremendously
with several of the training classes we offered at Lockheed. Bob Radford and
Bill Wood were also very helpful in their support and participation in several
MATLAB training classes at Lockheed. The human resources department at
Lockheed and later Lockheed Martin helped support some of this work. Jim
Buffington and his engineers, including Mike Niestroy in Fort Worth,
along with the F-22 program, including Dave Seto, also provided great help in
expanding this training throughout Lockheed Martin.

I appreciated The MathWorks providing a copy of Simulab for early evalu-
ation work. This software then developed into the Simulink modeling package.
Similarly, The MathWorks provided me with the first version of Stateflow
software, which was then not integrated into Simulink. All following versions
of Stateflow software were integrated within the Stateflow environment.

Many others have provided me with assistance at The MathWorks. Again,
I apologize for those that I have missed. Russell Scarlata, who had the Lockheed
account at The MathWorks, provided me with years of excellent help and
support. John Binder also provided several years of excellent support and encour-
aged me to develop this book. Dick Gram, previously at Grumman and then at
The MathWorks, provided many great flight controls modeling ideas. Courtney
Esposito, of the MATLAB Book Program, has provided great software and
publishing support for my previous book, Applications of Robust Control to
Nonlinear Systems, as well as this book.

I would like to thank the University of Kansas Aerospace Engineering Short
Course Program for aiding me in offering MATLAB and Simulink as both an
on-site class and as a course offered to the general public. Finally, I would like
to thank the staff of the Department of Aerospace Engineering at the University
of Kansas for their support in my writing and completing this book.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

Basic MATLAB"

JAIAA.

The Worlds Forum for emspos Lssdwesip Purchased from American Institute of Aeronautics and Astronautics

This page intentionally left blank

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

1
Introduction to MATLAB®

1.1 Introduction and Objectives

MATLAB® is a high-performance language for technical computing. It
integrates computation, visualization, and programming in an easy-to-use
environment where problems and solutions are expressed in familiar mathemat-
ical notation. This chapter introduces some of the basic matrix computational
tools and graphical user interfaces (GUIs) that are available in MATLAB
through the main Command Window.

Upon completion of this chapter, the reader will be able to 1) identify some
basic computational tools and commands in MATLAB; 2) identify the various
components of the MATLAB GUI; 3) input commands into the Command
Window; 4) obtain help information using on-line help utilities, local contacts,
users groups, and The MathWorks Web site and help lines.

On Windows platforms, to start MATLAB, double-click the MATLAB short-
cut icon on your Windows desktop (see Fig. 1.1).

57

MATLAB R2006b

Fig. 1.1

On UNIX platforms, to start MATLAB, type matlab at the operating system
prompt.

After you have started the MATLAB program, the standard main MATLAB
interface window appears as shown in Fig. 1.2.

You can change the way your desktop looks by opening, closing, moving, and
resizing the tools on it. Use the View menu to open or close the tools. You can
also move tools outside the desktop or move them back onto the desktop. All the
desktop tools provide common features such as context menus and keyboard
shortcuts. You can specify certain characteristics for the desktop tools by select-
ing Preferences from the File menu. For example, you can specify the font
characteristics for Command Window text. For more information on this or
any topic, click the Help button in the Preferences dialog box.

3

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

4 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

3 manp W b

Fig. 1.2

In the discussion to follow, the given commands will be entered using the
Command Window. Statements you enter into the Command Window are
logged into the Command History. In the Command History window, you
can view previously run statements and copy and execute selected statements.
You can also use the up and down arrows on your keyboard to place previous
commands directly into the Command Window for execution.

You can run external programs from the MATLAB Command Window. The
exclamation point ! indicates that the rest of the input line is a command to the oper-
ating system. This is useful for invoking utilities or running other programs without
quitting MATLAB. The MATLAB Start button distart | provides easy access to
tools, demos, and documentation. Just click on the button to see the options.

MATLARB file operations use the current directory and the search path as refer-
ence points. Any file you want to run must either be in the current directory or on
the search path. A quick way to view or change the current directory is by using
the Current Directory field in the desktop toolbar.

The MATLAB workspace consists of arrays or matrices generated during your
MATLAB session and stored in memory. You add variables to the workspace by
using functions, running M-files, and loading saved workspaces.

1.2 Entry

To enter a matrix, spaces or commas are put between the elements. Semico-
lons or returns are used to separate the rows. Note that semicolons at the end
of a command suppress the echo print. Brackets are placed around the matrix
data. For example, to enter a 3-by-3 matrix A, type

>A=[123;456;780]

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO MATLAB® 5
which results in
A =
1 2 3
4 5 6
7 8 0
Typing
>A=[1 2 3 or A=11, 2,3
4 5 6 4,5, 6
7 8 0] 7, 8, 0]
produces the same results. Remember that a scalar is just a 1-by-1 matrix.
Typing
> e=1

produces the result
c =

1

MATLAB does not require that numbers be declared as real, integer, et cetera,
nor does it require that matrices be dimensioned. The software has very good
algorithms for deducing variable types. This will be covered in more detail
later.

1.3 Transpose

Next we will run through some basic matrix operations. They are done similar
to the way you might write them on paper. For example, the matrix A can be
transposed with the command

> B=A'

which results in the new matrix B

B =

(ST S
AN L A~
(e cREN|

Remember that transposing a matrix exchanges its rows and columns. This is a
useful operation in matrix mathematics.

1.4 Addition and Subtraction

Matrix addition and subtraction are done element by element. Note that
matrices must be of the same dimension for this to be valid (unless subtracting
a scalar value from a matrix). Many program errors using matrix addition and

GAIAA

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

6 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

subtraction fail because of improper dimensioning. MATLAB has tools for
checking matrix dimensions, etc. More later.
Adding our previously generated matrices

> C=A+B
gives
C=
2 6 10
6 10 14
10 14 0

Note that A(l,1)=1, B(1,1)=1, and so C(1,1) = A(l,1) +B(l,1) =1+

1 =2, etc.
Subtracting our previously generated matrices
> C=A-B
gives
C=
0 -2 —4
2 0 -2
4 2 0

Note that A(1,1)=1, B(1,1)=1, and so C(1,1)=A{,1) - B(,1)=1—
1=0, etc.

What does C = A—e give? It subtracts the scalar e from every element in A
and saves it as the matrix C:

> C=A—-e
gives
C=
0 1 2
3 4 5
6 7 -—1

Note that reusing the same name C has caused the old element data to be over-
written. Matrices can be saved using the save command. The command save
temp C would save the current C in the file temp.mat. To read in the resulting
MAT-file, select Import Data from the File menu, or use the load temp
command. Save Workspace As from the File menu saves everything in the
workspace to the specified MAT-file, which has a .mat extension. If an

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO MATLAB® 7

expression is evaluated and no variable is assigned to the result, it is saved as ans.
To see what values we have generated, type

> who

which results in
Your variables are

A B C
e

The command whos gives a table of information including matrix size,
number of elements, number of bytes used, density of the matrix, and whether
it is complex. This is the same information as that given in the Workspace
window. The command clear removes all these data from memory.

1.5 Multiplication

Both matrix and array multiplications are supported in MATLAB. Operations
are defaulted to matrix operations unless denoted by a period . as discussed in the
following two sections.

1.5.1 Matrix Multiplication
Matrix multiplication is indicated with the use of an asterisk #.

> C=A*B

producing the new matrix C

C=
14 32 23
32 77 68
23 68 113

Note that C(1,1) = A(1,1)*B(1,1) + A(1,2)*B(2,1) + A(1,3)*B(3,1) = 1*1 42
2+43*3=24449 = 14, etc. This means that the order of multiplication is
important (i.e., A¥*B and B*A gives different results).

1.5.2 Array Multiplication

Array multiplication is the multiplication of every element in the array by a
scalar value and is indicated with a period before the multiplication asterisk as
follows:

> D=A*2

producing the new matrix D

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

8 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®
D=
2 4 6
8 10 12
14 16 0

1.6 Division

As with multiplication, both matrix and array division are supported in
MATLAB. Operations are defaulted to matrix operations unless denoted by a
period as in the operation . / as discussed in the following two sections. Note
that both right and left divisions are supported and that they usually do not
result in the same answer.

1.6.1 Matrix Division
Matrix division is indicated with

> X =A/B

the solution to X*B = A (right division)

X =
—0.3333 0.6667 —0.0000
—3.3333 3.6667 —0.0000
—5.3333 4.6667 1.0000
or
> X=A\B

the solution to A*X = B (left division)

X =
—0.3333 —3.3333 —5.3333
0.6667 3.6667 4.6667
—0.0000 —0.0000 1.0000

1.6.2 Array Division

Array division is the division of every element in the array by a scalar value
and is indicated with a period before the multiplication asterisk as follows:

> E = A./2

divides every element in A by 2 (right division)

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO MATLAB® 9
E =
0.5000 1.0000 1.5000
2.0000 2.5000 3.0000
3.5000 4.0000 0
or
> F=A\

divides 2 by each element in A (left division), or fij = 2/aij. Note that 2/0 = Inf,
giving a divide by zero warning as follows:
Warning: Divide by zero.

F =
2.0000 1.0000 0.6667
0.5000 0.4000 0.3333
0.2857 0.2500 Inf

Double-click any variable in the Workspace browser to see it in the Array
Editor. You can use the Array Editor to view and edit a visual representation
of one- or two-dimensional numeric arrays, strings, and cell arrays of strings
that are in the workspace.

1.7 Formats

MATLAB has changed the representation from an integer display to a real
display using “short format.” Long formats (double precision), scientific nota-
tion (both short and long), bank (two decimal places), hex, and sign (4+, —,
or blank for a 0 element) are available. The X(1,1) element in the previous
matrix can be displayed in each of these formats as follows:

> format short
—0.3333

> format short e
—3.3333e-01

> format long
—0.33333333333333

> format long e
—3.333333333333333e-01

> format bank

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

10 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

—-0.33
> format hex
bfd5555555555555

> format +

1.8 Matrix Functions

MATLAB provides four functions that generate basic matrices: 1) zeros
(matrix of all zeros), 2) ones (matrix of all ones), 3) eye (matrix of all zeros
except for ones along the diagonal), 4) rand (matrix of uniformly distributed
random elements), and 5) randn (matrix of normally distributed random
elements). A family of functions are available to calculate common matrix
properties and factorizations.

1.8.1 Determinant

As used in matrix inversion

> det(A)

ans =

27

1.8.2 Rank
Number of independent rows/columns
> rank(A)

ans =
3

1.8.3 Condition Number
Measures sensitivity to data errors, ratio of largest to smallest singular value
> cond(A)

ans =
35.1059

1.8.4 Matrix Inverse

Solves A*inv(A) = [I], which is equivalent to 1/e for the scalar case.
MATLAB uses this in solving the matrix division problem:

> inv(A)

ans =
—1.7778 0.8889 —0.1111
1.5556 —0.7778 0.2222
—0.1111 0.2222 —0.1111

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO MATLAB® 11

1.8.5 Eigenvalues

Gives the nontrivial solutions to the problem Ax = Ax. The n values of A are
the eigenvalues, and the corresponding values of x are the right eigenvectors:

> eig(A)

ans =
12.1229
—0.3884
—5.7345

We can obtain eigenvectors as well as eigenvalues if we use two arguments on
the left-hand side:

> [v,d] = eig(A)

VvV =
0.7471 —0.2998 —0.2763
—0.6582 —0.7075 —0.3884
0.0931 —0.6400 0.8791
d =
—0.3884 0 0
0 12.1229 0
0 0 —5.7345

The left eigenvalues (satisfying WA = DW) can be computed by using the
two statements

> [W,D] = eig(A), W = W'

The eigenvectors in D computed from W and W’ are the same, although they may
occur in different orders.

The generalized eigenvalue problem is the solution to Ax = ABx, where A and
B are both n-by-n matrices. The values of A that satisfy the equation are the gen-
eralized eigenvalues, and the corresponding values of x are the generalized right
eigenvectors. If B is nonsingular, the problem could be solved by reducing it to a
standard eigenvalue problem inv(B)*A*x = A*x. The command

> [V,D] = eig(A,B)

produces the diagonal matrix D of generalized eigenvalues and the full matrix V
whose columns are the corresponding eigenvectors so that A*V = B*V*D.

The eigenvectors are scaled so that the norm of each is 1.

Note that for help about any command in MATLAB you can type the following,

> help [command]
to display information about that command; e.g.,
> help eig

MATLAB provides many more advanced mathematical functions, including
Bessel and gamma functions. Most of these functions accept complex arguments.

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

12 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

For a list of the elementary mathematical functions, type help elfun. For a list of more
advanced mathematical and matrix functions, type help specfun and help elmat.

Some of the functions, like sqrt and sin, are built into MATLAB. They are part
of the MATLAB core, and so they are very efficient, but the computational details
are not readily accessible. Other functions, like gamma and sinh, are implemented
as M-files. You can see the code and even modify the code if you want.

1.8.6 Singular Value Decomposition

Uses the QR method to produce the diagonal matrix S and unitary matrices U
and V satisfying A = U*S*V'. Operator by itself gives the vector of diagonal
elements of S:

> svd(A)

ans =
13.2015
5.4388
0.3760

The full command [U,S,V] = svd(A) gives the full matrices U, S, and V.

1.8.7 Matrix Exponential

Generates the exponent of a matrix:
> expm(A)

ans =
1.0e + 04*
3.1591 3.9741 2.7487
7.4540 9.3775 6.4858
6.7431 8.4830 5.8672

Element-wise exponentials are calculated using the command exp(A):

> exp(A)
1.0e + 03*
0.0027 0.0074 0.0201
0.0546 0.1484 0.4034
1.0966 2.9810 0.0010

1.8.8 Characteristic Polynomial

Gives the n + 1 element row vector whose elements are the coefficients of the
characteristic polynomial det(sI — A). The roots of this polynomial are the eigen-
values of the matrix A:

> p = poly(A)

p:
1.0000 —6.0000 —72.0000 —27.0000

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO MATLAB® 13

The elements of this vector represent the polynomial coefficients in
descending powers.
The roots of this polynomial are, of course, the eigenvalues of A:

> roots(p)
ans =
12.1229
—5.7345
—0.3884

> eig(A)

ans =
12.1229
—0.3884
—5.7345

For vectors, roots and poly are inverse functions of each other, up to ordering,
scaling, and roundoff error.

1.9 Colon Operator

The colon : is one of the most important MATLAB operators. It occurs
in several forms. The expression 1:10 is a row vector containing integers from
1 to 10:

1 23 45 6 7 8 9 10

To obtain nonunit spacing, specify an increment. For example, 100:
—7:50 is

100 93 8 79 72 65 58 51

Subscript expressions involving colons refer to portions of a matrix. For
example, A(1:Kk,j) is the first k elements of the jth column of A.

1.10 Useful Interface GUIs

The basic MATLAB demonstrations can be started by selecting the MATLAB
Start button distart| You can also type demo in the Command Window to open
the Help browser to the Demos tab or go directly to the demos for a specific
product or category. For example, demo matlab graphics lists the demos for
MATLAB Graphics. MATLAB’s help and on-line documentation can always
be started by selecting MATLAB Help from the Help pull-down menu. The
Help interface appears as shown in Fig. 1.3.

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

14

for the topic of interest. Typing

W GO Favorites Desktop Window Help

Coriterts | index | Search | Demos

© Bagin

Here
ot

¥ @ Gelting Started

s Examples

% 8 Desitop Tools and Development Ervronment
th

@) 3-D Visushzation

+ B Creating Graphical User Interfacas

ategorical List

Ajphabetcal List

B Handle Graphics Proparty Browser

3 B External Interfaces

s B External Interfaces Reference

33 Release Notes
B Printable Documentation (POF)
@ Froduct Page (Web)

& Excel Link

& & MATLAB Report G

& Bioinformatics To
& Communications Toolbox

% & Control System Toolbox

@ Cunve Fitting Tootbox

& & Data Acquisition Toolox

+ & Database Toolbox

& & Datatosd Toolbox

& Filer Dasign Toobox

& & Fifter Design HOL Codar

& & Financial Toolbox

% & Financial Denvatives Toolbox

@ Financial Time Senes Toolbox

& Fixed-Incoma Toobox

& M Erund Daink Tontho
<

anerator
i

. | Tats: | MATLAD® -

| MATLAB'

BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

-

& W

== e<$>5>=—— - |
Functions:

» By Cateqory
« In Alphabetical Order

Handle Graphics:
« Ohjoct Properies

Documentation Set

= Gatting Started
Wtrmdutes MATLAS and gets you stated usng i

= Uiy Guidws
Provides tutorials and comprehensve information about MATLAB
* Latol s Cuges,

» Programming Ti

Provdes helphul techniques snd shedcuts for programimeng in MATLAB
« Examples In Documasntatisn

Lists major examples in the MATLAS documentation

Product Demos

« MATLAR Demos
Preserts a collection of demos 1hat you can run from the Help beowser 1o help you leam the
produet

What's Mew

» Raloasn Notes

Summaizes new faatures, bug Fres, upgrade issues, e

Printing the Documentation Set

« Printable varsions of the MATLAB dacumantation and related papers on the Web

| [12322005 The Mathiworks, Inc. » Terms of Use » Pataniy » T

The MathWorks Web Site Resources
= Plaf

» Do

Fig. 1.3

Help is also available at the command line level. Help “topic” gives you help

> help help

provides the following information:

HELP On-line help, display text at command line.
HELP, by itself, lists all primary help topics. Each primary topic corresponds
to a directory name on the MATLABPATH.
HELP TOPIC gives help on the specified topic. The topic can be a command
name, a directory name, or a MATLABPATH relative partial path name (see
HELP PARTIALPATH). If it is a command name, HELP displays information
on that command. If it is a directory name, HELP displays the Table-Of-Contents
for the specified directory. For example, help general and help matlab/general
both list the Table-Of-Contents for the directory toolbox/matlab/general.
HELP FUN displays the help for the function FUN.

T = help ("topic')

returns the help text in an /n separated string.
LOOKFOR XYZ looks for the string XYZ in the first comment line of the
HELP text in all M-files found on the MATLABPATH. For all files in which a
match occurs, LOOKFOR displays the matching lines.

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO MATLAB® 15

MORE ON causes HELP to pause between screenfuls if the help text runs to
several screens.

In the on-line help, keywords are capitalized to make them stand out. Always
type commands in lowercase because all command and function names are
actually in lowercase.

For tips on creating help for your M-files, type help.m.

See also LOOKFOR, WHAT, WHICH, DIR, MORE.

Overloaded methods

help cvtest/help.m
help cvdata/help.m

Help by itself gives a list of all the available help topics, as follows:

> help
HELP topics

help

HELP topics

matlab\ general General purpose commands.

matlab\ops Operators and special characters.

matlab\lang Programming language constructs.

matlab\elmat Elementary matrices and matrix manipulation.

matlab\elfun Elementary math functions.

matlab\specfun Specialized math functions.

matlab\matfun Matrix functions-numerical linear algebra.

matlab\datafun Data analysis and Fourier transforms.

matlab\polyfun Interpolation and polynomials.

matlab\ funfun Function functions and ODE solvers.

matlab\sparfun Sparse matrices.

matlab\scribe Annotation and Plot Editing.

matlab\ graph2d Two dimensional graphs.

matlab\graph3d Three dimensional graphs.

matlab\specgraph Specialized graphs.

matlab\graphics Handle Graphics.

matlab\uitools Graphical user interface tools.

matlab\strfun Character strings.

matlab\imagesci Image and scientific data input/output.

matlab\iofun File input and output.

matlab\audiovideo Audio and Video support.

matlab\timefun Time and dates.

matlab\datatypes Data types and structures.

matlab\verctrl Version control.

matlab\codetools Commands for creating and debugging code.

matlab\helptools Help commands.

matlab\winfun Windows Operating System Interface Files
(COM/DDE)

matlab\demos Examples and demonstrations.

GAIAA

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

16 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

toolbox\local Preferences.

simulink\ simulink Simulink

simulink\blocks Simulink block library.

simulink\components Simulink components.

simulink\ fixedandfloat Simulink Fixed Point utilities.

fixedandfloat\ fxpdemos Fixed-Point Blockset Demos

fixedandfloat\obsolete (No table of contents file)

simulink\simdemos Simulink 4 demonstrations
and samples.

simdemos\ aerospace Simulink: Aerospace model demonstrations
and samples.

simdemos\automotive Simulink: Automotive model demonstrations
and samples.

simdemos\simfeatures Simulink: Feature demonstrations
and samples.

simfeatures\mdlref (No table of contents file)

simdemos\simgeneral Simulink: General model demonstrations
and samples.

simdemos\ simnew Simulink: New features model
demonstrations and samples.

simulink\dee Differential Equation Editor

shared\dastudio (No table of contents file)

stateflow\stateflow Stateflow

rtw\rtw Real-Time Workshop

shared\hds (No table of contents file)

shared\timeseries Shared Time Series Toolbox Library

stateflow\ sfdemos Stateflow demonstrations and samples.

stateflow\ coder Stateflow Coder

rtw\rtwdemos Real-Time Workshop Demos

rtwdemos\rsimdemos (No table of contents file)

asap2\asap2 (No table of contents file)

asap2\user (No table of contents file)

rtwin\rtwin Real-Time Windows Target

simulink\accelerator Simulink Accelerator

rtw\accel (No table of contents file)

aeroblks\aeroblks Aerospace Blockset

aeroblks\aerodemos Aerospace Blockset demonstrations
and examples.

aerodemos) texture (No table of contents file)

bioinfo\bioinfo Bioinformatics Toolbox

bioinfo\microarray Bioinformatics Toolbox—Microarray

support functions.

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO MATLAB® 17

bioinfo\proteins
bioinfo\biomatrices
bioinfo\biodemos

can'\blocks
configuration\resource
common)\tgtcommon
c166\c166

c166\blocks
c166\c166demos
ccslink\ccslink
ceslink\ccsblks
ccslink\ccsdemos
cdma\cdma
cdma\cdmamasks

cdma\cdmamex
cdma\cdmademos

comm\comm
comm\commdemos
commdemos\commdocdemos

comm)\commobsolete

commblks\commblks
commblks\commmasks

commblks\commmex
commblks\commblksdemos
commblksobsolete\v2p5
commblksobsolete\v2
commblksobsolete\v1p5

control\control
control\ctrlguis

control\ctrlobsolete

control\ctrlutil

Bioinformatics Toolbox—Protein
analysis tools.

Bioinformatics Toolbox—Sequence
similarity scoring matrices.
Bioinformatics Toolbox—Tutorials,
demos and examples.

(No table of contents file)

(No table of contents file)

(No table of contents file)

Embedded Target for Infineon C166
Microcontrollers

(No table of contents file)

(No table of contents file)

Link for Code Composer Studio

(No table of contents file)

Link for Code Composer Studio®™ Demos
CDMA Reference Blockset

CDMA Reference Blockset mask
helper functions.

CDMA Reference Blockset S-Functions.
CDMA Reference Blockset demonstrations
and examples.

Communications Toolbox
Communications Toolbox Demonstrations.
Communications Toolbox
Documentation Examples.

Archived MATLAB Files from
Communications Toolbox Version 1.5.
Communications Blockset
Communications Blockset mask

helper functions.

Communications Blockset S-Functions.
Communications Blockset Demos.

(No table of contents file)

(No table of contents file)

Archived Simulink Files from
Communications Toolbox Version 1.5.
Control System Toolbox

Control System Toolbox—GUI
support functions.

Control System Toolbox—obsolete
commands.

(No table of contents file)

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

18 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

control\ctrldemos Control System Toolbox—Demos.

shared\controllib Control Library

curvefit\curvefit Curve Fitting Toolbox

curvefit\cftoolgui (No table of contents file)

shared\optimlib Optimization Library

daq\daq Data Acquisition Toolbox

daq\daqguis Data Acquisition Toolbox—Data
Acquisition Soft Instruments.

daq\dagdemos Data Acquisition Toolbox—Data
Acquisition Demos.

database\database Database Toolbox

database\dbdemos Database Toolbox Demonstration Functions.

database\vgb Visual Query Builder functions.

datafeed\datafeed Datafeed Toolbox

datafeed\dfgui Datafeed Toolbox Graphical User Interface

drive\drive SimDriveline

drive\drivedemos (No table of contents file)

dspblks\dspblks Signal Processing Blockset

dspblks\dspmasks Signal Processing Blockset mask
helper functions.

dspblks\dspmex DSP Blockset S-Function MEX-files.

dspblks\dspdemos Signal Processing Blockset demonstrations
and examples.

targets\ecoder Real-Time Workshop Embedded Coder

ecoder\ecoderdemos (No table of contents file)

targets\mpt (No table of contents file)

mpt\mpt Module Packaging Tool

mpt\user_specific (No table of contents file)

toolbox\exlink Excel Link

symbolic\extended Extended Symbolic Math

filterdesign\filterdesign
filterdesign\quantization
filterdesign\ filtdesdemos
finance\finance

finance\ calendar
finance)\ findemos
finance\ finsupport
finderiv\finderiv
finfixed\finfixed
fixedpoint\ fixedpoint
fixedpoint\fidemos
fixedpoint\ fimex
toolbox \ fixpoint

Filter Design Toolbox

(No table of contents file)

Filter Design Toolbox Demonstrations.
Financial Toolbox

Financial Toolbox calendar functions.
Financial Toolbox demonstration functions.
(No table of contents file)

Financial Derivatives Toolbox
Fixed-Income Toolbox

Fixed-Point Toolbox

(No table of contents file)

(No table of contents file)

Simulink Fixed Point

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO MATLAB® 19

ftseries\ ftseries
ftseries\ ftsdemos
ftseries\ftsdata
ftseries\ftstutorials
fuzzy\fuzzy
fuzzy\fuzdemos
toolbox\ gads
gads\gads
gads\gadsdemos
garch\garch
garch\ garchdemos
toolbox\ gauges
hc12\hc12
hc12\blocks
hc12\codewarrior
hc12\hc12demos
hdlfilter\hdlfilter
hdlfilter\ hdlfiltdemos
shared\ hdlshared
ident\ident
ident\idobsolete
ident\idguis
ident\idutils
ident\iddemos
ident\idhelp
images\images
images\imuitools
images\imdemos

images \iptutils

imaq\imaq

imaq\imaqdemos
imagblks\imaqblks
imagblks\imaqmasks
imagblks\imagmex
instrument\ instrument
instrument\instrumentdemos
instrumentblks\instrumentblks
instrumentblks)\ instrumentmex
map\map

map\mapdemos

map\mapdisp

Financial Time Series Toolbox

(No table of contents file)

(No table of contents file)

(No table of contents file)

Fuzzy Logic Toolbox

Fuzzy Logic Toolbox Demos.

(No table of contents file)

Genetic Algorithm Direct Search Toolbox
Genetic Algorithm Direct Search Toolbox
GARCH Toolbox

(No table of contents file)

Gauges Blockset

Embedded Target for Motorola HC12
(No table of contents file)

(No table of contents file)

(No table of contents file)

Filter Design HDL Coder

(No table of contents file)

HDL Library

System Identification Toolbox

(No table of contents file)

(No table of contents file)

(No table of contents file)

(No table of contents file)

(No table of contents file)

Image Processing Toolbox

Image Processing Toolbox—imuitools
Image Processing Toolbox—demos and
sample images

Image Processing Toolbox utilities
Image Acquisition Toolbox

Image Acquisition Toolbox.

(No table of contents file)

(No table of contents file)

(No table of contents file)

Instrument Control Toolbox

(No table of contents file)

(No table of contents file)

(No table of contents file)

Mapping Toolbox

Mapping Toolbox Demos and Data Sets.
Mapping Toolbox Map Definition

and Display.

GAIAA

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

20 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®
map\mapformats Mapping Toolbox File Formats.
map\mapproj Mapping Toolbox Projections.
mbc\mbc Model-Based Calibration Toolbox
mbc\mbcdata Model-Based Calibration Toolbox.
mbc\mbcdesign Model-Based Calibration Toolbox.
mbc\mbcexpr Model-Based Calibration Toolbox.
mbc\mbcguitools Model-Based Calibration Toolbox.
mbc\mbclayouts (No table of contents file)
mbc\mbcmodels Model-Based Calibration Toolbox.
mbc\mbcsimulink Model-Based Calibration Toolbox.
mbc\mbctools Model-Based Calibration Toolbox.
mbc\mbcview Model-Based Calibration Toolbox.
mech\mech SimMechanics
mech\mechdemos SimMechanics Demos.
pmimport\pmimport (No table of contents file)
modelsim\modelsim Link for ModelSim
modelsim\ modelsimdemos (No table of contents file)
mpc\mpc Model Predictive Control Toolbox
mpc\mpcdemos (No table of contents file)
mpc\mpcguis (No table of contents file)
mpc\mpcobsolete Contents of the previous (obsolete)
version of the MPC Toolbox
mpc\mpcutils (No table of contents file)
shared\slcontrollib Simulink Control Design Library
targets\mpc555dk (No table of contents file)
common)configuration (No table of contents file)
mpcS555dk\mpc555demos (No table of contents file)
mpcS555dk\mpc555dk Embedded Target for Motorola MPC555
mpc555dk\pil (No table of contents file)
blockset\mfiles (No table of contents file)
rt\blockset (No table of contents file)
nnet\nnet Neural Network Toolbox
nnet\nnutils (No table of contents file)
nnet\nncontrol Neural Network Toolbox Control
System Functions.
nnet\nndemos Neural Network Demonstrations.
nnet\nnobsolete (No table of contents file)
opc\opc OPC Toolbox
opc\opcgui (No table of contents file)
opc\opcdemos (No table of contents file)
toolbox\optim Optimization Toolbox
osek\osek Embedded Target for OSEK VDX

osek\osekdemos

(No table of contents file)

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO MATLAB® 21

osek\blocks

osek\ osekworks
osek\proosek
toolbox\pde
powersys\powersys
powersys\powerdemo
drives\drives
drives\drivesdemo
facts\facts
facts\factsdemo
DR\DR
DR\DRdemo
simulink\reqmgt
reqmgt\rmidemos
rf\rf

rf\rfdemos

rf\rftool
rfblks\rfblks
rfblks\rfblksmasks
rfblks\rfblksmex
rfblks\rfblksdemos
robust\robust
robust\rctutil
robust\rctdemos
rctobsolete\ Imi
mutools\commands
mutools\subs
rptgen\rptgen
rptgen\rptgendemos
rptgenext\rptgenext
rptgenext\rptgenextdemos
signal\signal
signal\sigtools
signal\sptoolgui
signal\sigdemos
slcontrol\slcontrol
slcontrol\slctrlguis
slcontrol\slctrlutil
slcontrol\slctrldemos
slestim)slestdemos
slestim\slestguis
slestim\slestim

(No table of contents file)

(No table of contents file)

(No table of contents file)

Partial Differential Equation Toolbox
SimPowerSystems
SimPowerSystems Demos

(No table of contents file)

(No table of contents file)

(No table of contents file)

(No table of contents file)

(No table of contents file)

(No table of contents file)

(No table of contents file)

(No table of contents file)

RF Toolbox

RF Toolbox Demos.

RF Tool (GUI)

RF Blockset

RF Blockset mask helper functions.
RF Blockset S-Functions.

RF Blockset Demos.

Robust Control Toolbox

(No table of contents file)

(No table of contents file)

Robust Control Toolbox-LMI Solvers.
(No table of contents file)

(No table of contents file)
MATLAB Report Generator

(No table of contents file)

Simulink Report Generator

(No table of contents file)

Signal Processing Toolbox

(No table of contents file)

(No table of contents file)

Signal Processing Toolbox Demonstrations.
Simulink Control Design

(No table of contents file)

(No table of contents file)

(No table of contents file)

Simulink Parameter Estimation Demos
(No table of contents file)

Simulink Parameter Estimation

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

22 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

slestim)\slestmex

Simulink Parameter Estimation S-Function
MEX-files.

slestim)\slestutil — (No table of contents file)
sloptim\sloptim — Simulink Response Optimization
sloptim\ sloptguis — (No table of contents file)
sloptim\sloptdemos — Simulink Response Optimization Demos.
sloptim\sloptobsolete — (No table of contents file)
simulink\slvnv — Simulink Verification and Validation
simulink\simcoverage — (No table of contents file)
simcoverage\simcovdemos — (No table of contents file)
toolbox\splines — Spline Toolbox
toolbox\stats — Statistics Toolbox
toolbox\symbolic — Symbolic Math Toolbox
tic2000\tic2000 — Embedded Target for TI C2000 DSP(tm)
tic2000\tic2000blks — (No table of contents file)
tic2000\tic2000demos — (No table of contents file)
etargets\etargets — (No table of contents file)
tic6000\tic6000 — Embedded Target for TI C6000 DSP(tm)
tic6000\tic6000blks — TI C6000 (tm) Blocks
tic6000\tic6000demos — Embedded Target for TI C6000 DSP(tm)
Demos
etargets\rtdxblks — RTDX (tm) Blocks
vipblks\vipblks — Video and Image Processing Blockset
vipblks\vipmasks — (No table of contents file)
vipblks\vipmex — (No table of contents file)
vipblks\vipdemos — Video and Image Processing Blockset
demonstrations and examples.
vr\vr — Virtual Reality Toolbox
vr\vrdemos — Virtual Reality Toolbox examples.
wavelet\wavelet — Wavelet Toolbox
wavelet\wavedemo — Wavelet Toolbox Demonstrations.

For help on your specific MATLAB installation, type
> help matlab/general

You will be given information on your software version as follows.

General purpose commands.
MATLAB Version 7.3 (R2006b) 03-Aug-2006

General information.
syntax — Help on MATLAB command syntax.
demo — Run demonstrations.
ver — MATLAB, Simulink and toolbox
version information.

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO MATLAB® 23

version -

Managing the workspace.
who -
whos -
clear -
pack -
load -
save -
saveas -
memory -
recycle -
quit -
exit -

MATLAB version information.

List current variables.

List current variables, long form.

Clear variables and functions from memory.
Consolidate workspace memory.

Load workspace variables from disk.

Save workspace variables to disk.

Save Figure or model to desired output format.
Help for memory limitations.

Set option to move deleted files to recycle folder.
Quit MATLAB session.

Exit from MATLAB.

Managing commands and functions.

what -
type -
open -
which -
pcode -
mex -
inmem -
namelengthmax -

Managing the search path.
path -
addpath -
rmpath -
rehash -
import -
finfo -

genpath -
savepath -

List MATLAB-specific files in directory.
List M-file.

Open files by extension.

Locate functions and files.

Create pre-parsed pseudo-code file (P-file).
Compile MEX-function.

List functions in memory.

Maximum length of MATLAB function
or variable name.

Get/set search path.

Add directory to search path.

Remove directory from search path.

Refresh function and file system caches.
Import Java packages into the current scope.
Identify file type against standard file
handlers on path.

Generate recursive toolbox path.

Save the current MATLAB path in the
pathdef.m file.

Managing the java search path.

javaaddpath -
javaclasspath -
javarmpath -

Add directories to the dynamic java path.
Get and set java path.
Remove directory from dynamic java path.

Controlling the command window.

echo -
more -

Echo commands in M-files.
Control paged output in command window.

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

24 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

diary
format
beep
desktop
preferences

Save text of MATLAB session.

Set output format.

Produce beep sound.

Start and query the MATLAB Desktop.
Bring up MATLAB user settable
preferences dialog.

Operating system commands.

cd
copyfile
movefile
delete
pwd
dir
Is
fileattrib
isdir
mkdir
rmdir
getenv
!
dos
unix
system
perl
computer
isunix
ispc
Debugging.
debug
mexdebug

Change current working directory.

Copy file or directory.

Move file or directory.

Delete file or graphics object.

Show (print) current working directory.

List directory.

List directory.

Set or get attributes of files and directories.

True if argument is a directory.

Make new directory.

Remove directory.

Get environment variable.

Execute operating system command (see PUNCT).
Execute DOS command and return result.
Execute UNIX command and return result.
Execute system command and return result.
Execute Perl command and return the result.
Computer type.

True for the UNIX version of MATLAB.

True for the PC (Windows) version of MATLAB.

List debugging commands.
Debug MEX-files.

Tools to locate dependent functions of an M-file.

depfun
depdir

Locate dependent functions of an M-file or P-file.
Locate dependent directories of an M-file or P-file.

Loading and calling shared libraries.

calllib
libpointer

libstruct

libisloaded
loadlibrary

Call a function in an external library.

Creates a pointer object for use with

external libraries.

Creates a structure pointer for use with external
libraries.

True if the specified shared library is loaded.
Load a shared library into MATLAB.

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO MATLAB® 25

libfunctions — Return information on functions in an external

library.
libfunctionsview — View the functions in an external library.
unloadlibrary — Unload a shared library loaded with LOADLIBRARY.
java — Using Java from within MATLAB.
usejava — True if the specified Java feature is supported

in MATLAB.

See also lang, datatypes, iofun, graphics, ops, strfun, timefun, matfun, demos,
graphics, datafun, uitools, doc, punct, arith.

The toolboxes and other utilities you have available in your MATLAB instal-
lation can be accessed using the command

> path

MATLABPATH

C:\Program Files\MATLAB\R2006b\toolbox\matlab\ general
C:\Program Files\MATLAB\R2006b\toolbox\matlab\ops
C:\Program Files\MATLAB\R2006b\toolbox\matlab\lang
C:\Program Files\MATLAB\R2006b\toolbox\matlab\elmat
C:\Program Files\MATLAB\R2006b\toolbox\matlab\elfun
C:\Program Files\MATLAB\R2006b\toolbox\matlab\specfun
C:\Program Files\MATLAB\R2006b\toolbox\matlab\matfun
C:\Program Files\MATLAB\R2006b\toolbox\matlab\datafun
C:\Program Files\MATLAB\R2006b\toolbox\matlab\polyfun
C:\Program Files\MATLAB\R2006b\toolbox\matlab\funfun
C:\Program Files\MATLAB\R2006b\toolbox\matlab\sparfun
C:\Program Files\MATLAB\R2006b\toolbox\matlab\scribe
C:\Program Files\MATLAB\R2006b\toolbox\matlab\graph2d
C:\Program Files\MATLAB\R2006b\toolbox\matlab\graph3d
C:\Program Files\MATLAB\R2006b\toolbox\matlab\specgraph
C:\Program Files\MATLAB\R2006b\toolbox\matlab\ graphics
C:\Program Files\MATLAB\R2006b\toolbox\matlab\uitools
C:\Program Files\MATLAB\R2006b\toolbox\matlab\strfun
C:\Program Files\MATLAB\R2006b\toolbox\matlab\imagesci
C:\Program Files\MATLAB\R2006b\toolbox\matlab\iofun
C:\Program Files\MATLAB\R2006b\toolbox\matlab\audiovideo
C:\Program Files\MATLAB\R2006b\toolbox\matlab\timefun
C:\Program Files\MATLAB\R2006b\toolbox\matlab\datatypes
C:\Program Files\MATLAB\R2006b\toolbox\matlab\ verctrl
C:\Program Files\MATLAB\R2006b\toolbox\matlab\codetools
C:\Program Files\MATLAB\R2006b\toolbox\matlab\helptools
C:\Program Files\MATLAB\R2006b\toolbox\matlab\winfun
C:\Program Files\MATLAB\R2006b\toolbox\matlab\demos
C:\Program Files\MATLAB\R2006b\toolbox\matlab\timeseries
C:\Program Files\MATLAB\R2006b\toolbox\matlab\hds

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

26 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

C:\Program Files\MATLAB\R2006b\toolbox\local

C:\Program Files\MATLAB\R2006b\toolbox\shared\controllib

C:\Program Files\MATLAB\R2006b\toolbox\simulink\simulink

C:\Program Files\MATLAB\R2006b\toolbox\simulink\blocks

C:\Program Files\MATLAB\R2006b\toolbox\simulink\components

C:\Program Files\MATLAB\R2006b\toolbox\simulink\fixedandfloat

C:\Program Files\MATLAB\R2006b\toolbox\simulink\fixedandfloat\
fxpdemos

C:\Program Files\MATLAB\R2006b\toolbox\simulink\fixedandfloat\
obsolete

C:\Program Files\MATLAB\R2006b\toolbox\simulink\simdemos

C:\Program Files\MATLAB\R2006b\toolbox\simulink\simdemos\
aerospace

C:\Program Files\MATLAB\R2006b\toolbox\simulink\simdemos\
automotive

C:\Program Files\MATLAB\R2006b\toolbox\simulink\simdemos\
simfeatures

C:\Program Files\MATLAB\R2006b\toolbox\simulink\simdemos\
simgeneral

C:\Program Files\MATLAB\R2006b\toolbox\simulink\dee

C:\Program Files\MATLAB\R2006b\toolbox\shared\dastudio

C:\Program Files\MATLAB\R2006b\toolbox\stateflow\stateflow

C:\Program Files\MATLAB\R2006b\toolbox\rtw\rtw

C:\Program Files\MATLAB\R2006b\toolbox\simulink\simulink
modeladvisor

C:\Program Files\MATLAB\R2006b\ toolbox\simulink\simulink\
modeladvisor\ fixpt

C:\Program Files\MATLAB\R2006b\toolbox\simulink\simulink\MPlaylO

C:\Program Files\MATLAB\R2006b\toolbox\simulink\simulink\
dataobjectwizard

C:\Program Files\MATLAB\R2006b\toolbox\shared\fixedpointlib

C:\Program Files\MATLAB\R2006b\toolbox\stateflow\sfdemos

C:\Program Files\MATLAB\R2006b\toolbox\stateflow\coder

C:\Program Files\MATLAB\R2006b\toolbox\rtw\rtwdemos

C:\Program Files\MATLAB\R2006b\toolbox\rtw\rtwdemos\rsimdemos

C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\asap2\asap2

C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\asap2\asap2\user

C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\common\
can\blocks

C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\common\
configuration\resource

C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\common\
tgtcommon

C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\rtwin\rtwin

C:\Program Files\MATLAB\R2006b\toolbox\simulink\accelerator

C:\Program Files\MATLAB\R2006b\toolbox\simulink\accelerator\
acceldemos

C:\Program Files\MATLAB\R2006b\toolbox\rtw\accel

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO MATLAB® 27

C:\Program Files\MATLAB\R2006b\toolbox\aeroblks\aeroblks
C:\Program Files\MATLAB\R2006b\toolbox\aeroblks\aerodemos
C:\Program Files\MATLAB\R2006b\toolbox\aeroblks\aerodemos\texture
C:\Program Files\MATLAB\R2006b\toolbox\bioinfo\bioinfo
C:\Program Files\MATLAB\R2006b\toolbox\bioinfo\biolearning
C:\Program Files\MATLAB\R2006b\toolbox\bioinfo\microarray
C:\Program Files\MATLAB\R2006b\toolbox\bioinfo\mass_spec
C:\Program Files\MATLAB\R2006b\toolbox\bioinfo\proteins
C:\Program Files\MATLAB\R2006b\toolbox\bioinfo\biomatrices
C:\Program Files\MATLAB\R2006b\toolbox\bioinfo\biodemos
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\c166\c166
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\cl66\blocks
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\cl66\cl66demos
C:\Program Files\MATLAB\R2006b\toolbox\ccslink\ccslink
C:\Program Files\MATLAB\R2006b\toolbox\ccslink\ccslink_outproc
C:\Program Files\MATLAB\R2006b\toolbox\ccslink\ccsblks
C:\Program Files\MATLAB\R2006b\toolbox\ccslink\ccsdemos
C:\Program Files\MATLAB\R2006b\toolbox\comm\comm
C:\Program Files\MATLAB\R2006b\toolbox\comm\commdemos
C:\Program Files\MATLAB\R2006b\ toolbox\comm\commdemos\
commdocdemos
C:\Program Files\MATLAB\R2006b\toolbox\comm\commobsolete
C:\Program Files\N4ATLAB\R2006b\toolbox\commblks\commblks
C:\Program Files\MATLAB\R2006b\toolbox\commblks\commmasks
C:\Program Files\MATLAB\R2006b\toolbox\commblks\commmex
C:\Program Files\MATLAB\R2006b\toolbox\commblks\commblksdemos
C:\Program Files\MATLAB\R2006b\toolbox\commblks\commblks
obsolete\v3
C:\Program Files\MATLAB\R2006b\toolbox\commblks\commblks
obsolete\v2p5
C:\Program Files\MATLAB\R2006b\toolbox\commblks\commblks
obsolete\v2
C:\Program Files\MATLAB\R2006b\toolbox\commblks\commblks
obsolete\v1p5
C:\Program Files\MATLAB\R2006b\toolbox\control\control
C:\Program Files\MATLAB\R2006b\toolbox\control\ctrlguis
C:\Program Files\MATLAB\R2006b\toolbox\control\ctrlobsolete
C:\Program Files\MATLAB\R2006b\toolbox\control\ctrlutil
C:\Program Files\MATLAB\R2006b\toolbox\control\ctrldemos
C:\Program Files\MATLAB\R2006b\toolbox\shared\slcontrollib
C:\Program Files\MATLAB\R2006b\toolbox\curvefit\curvefit
C:\Program Files\MATLAB\R2006b\toolbox\curvefit\cftoolgui
C:\Program Files\MATLAB\R2006b\toolbox\shared\optimlib
C:\Program Files\MATLAB\R2006b\toolbox\daq\daq
C:\Program Files\MATLAB\R2006b\toolbox\daq\daqguis
C:\Program Files\MATLAB\R2006b\toolbox\daq\daqdemos
C:\Program Files\MATLAB\R2006b\toolbox\database\database
C:\Program Files\MATLAB\R2006b\toolbox\database\dbdemos

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

28 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

C:\Program Files\MATLAB\R2006b\toolbox\database\vqb
C:\Program Files\MATLAB\R2006b\toolbox\datafeed\datafeed
C:\Program Files\MATLAB\R2006b\toolbox\datafeed\dfgui
C:\Program Files\MATLAB\R2006b\toolbox\des\desblks
C:\Program Files\MATLAB\R2006b\toolbox\des\desmasks
C:\Program Files\MATLAB\R2006b\toolbox\des\desmex
C:\Program Files\MATLAB\R2006b\toolbox\des\desdemos
C:\Program Files\MATLAB\R2006b\toolbox\physmod\drive\drive
C:\Program Files\MATLAB\R2006b\toolbox\physmod\drive\drivedemos
C:\Program Files\MATLAB\R2006b\toolbox\dspblks\dspblks
C:\Program Files\MATLAB\R2006b\toolbox\dspblks\dspmasks
C:\Program Files\MATLAB\R2006b\toolbox\dspblks\dspmex
C:\Program Files\MATLAB\R2006b\toolbox\dspblks\dspdemos
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\ecoder
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\ecoder\
ecoderdemos
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\mpt
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\mpt\mpt
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\mpt\
user_specific
C:\Program Files\MATLAB\R2006b\toolbox\exlink
C:\Program Files\MATLAB\R2006b\toolbox\symbolic\extended
C:\Program Files\MATLAB\R2006b\toolbox \filterdesign\filterdesign
C:\Program Files\MATLAB\R2006b\toolbox\filterdesign\quantization
C:\Program Files\MATLAB\R2006b\toolbox\filterdesign\filtdesdemos
C:\Program Files\MATLAB\R2006b\toolbox\finance\finance
C:\Program Files\MATLAB\R2006b\toolbox\finance\calendar
C:\Program Files\MATLAB\R2006b\toolbox\finance\findemos
C:\Program Files\MATLAB\R2006b\toolbox\finance\finsupport
C:\Program Files\MATLAB\R2006b\toolbox\finance\ftseries
C:\Program Files\MATLAB\R2006b\toolbox\finance\ ftsdemos
C:\Program Files\MATLAB\R2006b\toolbox\finance\ftsdata
C:\Program Files\MATLAB\R2006b\toolbox\finance\ ftstutorials
C:\Program Files\MATLAB\R2006b\toolbox\finderiv\finderiv
C:\Program Files\MATLAB\R2006b\toolbox\finfixed\finfixed
C:\Program Files\MATLAB\R2006b\toolbox\fixedpoint\fixedpoint
C:\Program Files\MATLAB\R2006b\toolbox\fixedpoint\fidemos
C:\Program Files\MATLAB\R2006b\toolbox\fixedpoint\fimex
C:\Program Files\MATLAB\R2006b\toolbox\fixpoint
C:\Program Files\MATLAB\R2006b\toolbox\fuzzy\fuzzy
C:\Program Files\MATLAB\R2006b\toolbox\fuzzy\fuzdemos
C:\Program Files\MATLAB\R2006b\toolbox\gads
C:\Program Files\MATLAB\R2006b\toolbox\gads\gads
C:\Program Files\MATLAB\R2006b\toolbox\gads\gadsdemos
C:\Program Files\MATLAB\R2006b\toolbox\garch\garch
C:\Program Files\MATLAB\R2006b\toolbox\garch\garchdemos
C:\Program Files\MATLAB\R2006b\toolbox\gauges
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\hc12\hc12

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO MATLAB® 29

C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\hc12\blocks

C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\hc12\codewarrior

C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\hc12\hc12demos

C:\Program Files\MATLAB\R2006b\toolbox\hdlfilter\hdlfilter

C:\Program Files\MATLAB\R2006b\toolbox\hdlfilter\ hdlfiltdemos

C:\Program Files\MATLAB\R2006b\toolbox\shared\hdlshared

C:\Program Files\MATLAB\R2006b\toolbox\ident\ident

C:\Program Files\MATLAB\R2006b\toolbox\ident\idobsolete

C:\Program Files\MATLAB\R2006b\toolbox\ident\idguis

C:\Program Files\MATLAB\R2006b\toolbox\ident\idutils

C:\Program Files\MATLAB\R2006b\toolbox\ident\iddemos

C:\Program Files\MATLAB\R2006b\toolbox\ident\idhelp

C:\Program Files\MATLAB\R2006b\toolbox\images\images

C:\Program Files\MATLAB\R2006b\toolbox\images\imuitools

C:\Program Files\MATLAB\R2006b\toolbox\images\imdemos

C:\Program Files\MATLAB\R2006b\toolbox\images\iptutils

C:\Program Files\MATLAB\R2006b\toolbox\shared\imageslib

C:\Program Files\MATLAB\R2006b\toolbox\images\medformats

C:\Program Files\MATLAB\R2006b\toolbox\imaq\imaq

C:\Program Files\MATLAB\R2006b\toolbox\shared\imaqlib

C:\Program Files\MATLAB\R2006b\toolbox\imaq\imaqgdemos

C:\Program Files\MATLAB\R2006b\toolbox\imaq\imaqblks\imaqblks

C:\Program Files\MATLAB\R2006b\toolbox\imaq\imagblks\imagmasks

C:\Program Files\MATLAB\R2006b\toolbox\imaq\imagblks\imagmex

C:\Program Files\MATLAB\R2006b\toolbox\instrument\instrument

C:\Program Files\MATLAB\R2006b\toolbox\instrument\instrumentdemos

C:\Program Files\MATLAB\R2006b\toolbox\instrument\instrumentblks\
instrumentblks

C:\Program Files\MATLAB\R2006b\toolbox\instrument\instrumentblks\
instrumentmex

C:\Program Files\MATLAB\R2006b\toolbox\map\map

C:\Program Files\MATLAB\R2006b\toolbox\map\mapdemos

C:\Program Files\MATLAB\R2006b\toolbox\map\mapdisp

C:\Program Files\MATLAB\R2006b\toolbox\map\mapformats

C:\Program Files\MATLAB\R2006b\toolbox\map\mapproj

C:\Program Files\MATLAB\R2006b\toolbox\shared\mapgeodesy

C:\Program Files\MATLAB\R2006b\toolbox\mbc\mbc

C:\Program Files\MATLAB\R2006b\toolbox\mbc\mbcdata

C:\Program Files\MATLAB\R2006b\toolbox\mbc\mbcdesign

C:\Program Files\MATLAB\R2006b\toolbox\mbc\mbcexpr

C:\Program Files\MATLAB\R2006b\toolbox\mbc\mbcguitools

C:\Program Files\MATLAB\R2006b\toolbox\mbc\mbclayouts

C:\Program Files\MATLAB\R2006b\toolbox\mbc\mbcmodels

C:\Program Files\MATLAB\R2006b\toolbox\mbc\mbcsimulink

C:\Program Files\MATLAB\R2006b\toolbox\mbc\mbctools

C:\Program Files\MATLAB\R2006b\toolbox\mbc\mbcview

C:\Program Files\MATLAB\R2006b\toolbox\physmod\mech\mech

C:\Program Files\MATLAB\R2006b\toolbox\physmod\mech\mechdemos

GAIAA

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

30 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

C:\Program Files\MATLAB\R2006b\toolbox\physmod\pmimport\
pmimport
C:\Program Files\MATLAB\R2006b\toolbox\slvnv\simcoverage
C:\Program Files\MATLAB\R2006b\toolbox\modelsim\modelsim
C:\Program Files\MATLAB\R2006b\toolbox\modelsim\modelsimdemos
C:\Program Files\MATLAB\R2006b\toolbox\mpc\mpc
C:\Program Files\MATLAB\R2006b\toolbox\mpc\mpcdemos
C:\Program Files\MATLAB\R2006b\toolbox\mpc\mpcguis
C:\Program Files\MATLAB\R2006b\toolbox\mpc\mpcobsolete
C:\Program Files\MATLAB\R2006b\toolbox\mpc\mpcutils
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\mpc555dk
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\mpc555dk\
common)configuration
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\mpc555dk\
mpcS555demos
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\mpc555dk\
mpc555dk
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\mpc555dk\pil
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\mpc555dk\rt\
blockset\mfiles
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\mpc555dk\rt\
blockset
C:\Program Files\MATLAB\R2006b\toolbox\nnet
C:\Program Files\MATLAB\R2006b\toolbox\nnet\nncontrol
C:\Program Files\MATLAB\R2006b\toolbox\nnet\nndemos
C:\Program Files\MATLAB\R2006b\toolbox\nnet\nnet
C:\Program Files\MATLAB\R2006b\toolbox\nnet\nnet\nnanalyze
C:\Program Files\MATLAB\R2006b\toolbox\nnet\nnet\nncustom
C:\Program Files\MATLAB\R2006b\toolbox\nnet\nnet\nndistance
C:\Program Files\MATLAB\R2006b\toolbox\nnet\nnet\nnformat
C:\Program Files\MATLAB\R2006b\toolbox\nnet\nnet\nninit
C:\Program Files\MATLAB\R2006b\toolbox\nnet\nnet\nnlearn
C:\Program Files\MATLAB\R2006b\toolbox\nnet\nnet\nnnetinput
C:\Program Files\MATLAB\R2006b\toolbox\nnet\nnet\nnnetwork
C:\Program Files\MATLAB\R2006b\toolbox\nnet\nnet\nnperformance
C:\Program Files\MATLAB\R2006b\toolbox\nnet\nnet\nnplot
C:\Program Files\MATLAB\R2006b\toolbox\nnet\nnet\nnprocess
C:\Program Files\MATLAB\R2006b\toolbox\nnet\nnet\nnsearch
C:\Program Files\MATLAB\R2006b\toolbox\nnet\nnet\nntopology
C:\Program Files\MATLAB\R2006b\toolbox\nnet\nnet\nntrain
C:\Program Files\MATLAB\R2006b\toolbox\nnet\nnet\nntransfer
C:\Program Files\MATLAB\R2006b\toolbox\nnet\nnet\nnweight
C:\Program Files\MATLAB\R2006b\toolbox\nnet\nnguis
C:\Program Files\MATLAB\R2006b\toolbox\nnet\nnguis\nftool
C:\Program Files\MATLAB\R2006b\toolbox\nnet\nnguis\nntool
C:\Program Files\MATLAB\R2006b\toolbox\nnet\nnobsolete
C:\Program Files\MATLAB\R2006b\toolbox\nnet\nnresource
C:\Program Files\MATLAB\R2006b\toolbox\nnet\nnutils

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO MATLAB® 31

C:\Program Files\MATLAB\R2006b\toolbox\opc\opc

C:\Program Files\MATLAB\R2006b\toolbox\opc\opcgui

C:\Program Files\MATLAB\R2006b\toolbox\opc\opcdemos

C:\Program Files\MATLAB\R2006b\toolbox\opc\opcdemos\opcblksdemos

C:\Program Files\MATLAB\R2006b\toolbox\opc\opcblks\opcblks

C:\Program Files\MATLAB\R2006b\toolbox\opc\opcblks\opcmasks

C:\Program Files\MATLAB\R2006b\toolbox\optim

C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\osek\osek

C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\osek\osekdemos

C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\osek\blocks

C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\osek\osekworks

C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\osek\proosek

C:\Program Files\MATLAB\R2006b\toolbox\pde

C:\Program Files\MATLAB\R2006b\toolbox\physmod\pm_util\pm_util

C:\Program Files\MATLAB\R2006b\toolbox\physmod\powersys\powersys

C:\Program Files\MATLAB\R2006b\toolbox\physmod\powersys\
powerdemo

C:\Program Files\MATLAB\R2006b\toolbox\physmod\powersys\drives\
drives

C:\Program Files\MATLAB\R2006b\toolbox\physmod\powersys\drives
\drivesdemo

C:\Program Files\MATLAB\R2006b\toolbox\physmod\powersys\facts\facts

C:\Program Files\MATLAB\R2006b\toolbox\physmod\powersys\facts
\factsdemo

C:\Program Files\MATLAB\R2006b\toolbox\physmod\powersys\DR\DR

C:\Program Files\MATLAB\R2006b\toolbox\physmod\powersys\DR\
DRdemo

C:\Program Files\MATLAB\R2006b\toolbox\slvnv\reqmgt

C:\Program Files\MATLAB\R2006b\toolbox\slvnv\rmidemos

C:\Program Files\MATLAB\R2006b\toolbox\rf\rf

C:\Program Files\MATLAB\R2006b\toolbox\rf\rfdemos

C:\Program Files\MATLAB\R2006b\toolbox\rf\rftool

C:\Program Files\MATLAB\R2006b\toolbox\rfblks\rfblks

C:\Program Files\MATLAB\R2006b\toolbox\rfblks\rfblksmasks

C:\Program Files\MATLAB\R2006b\toolbox\rfblks\rfblksmex

C:\Program Files\MATLAB\R2006b\toolbox\rfblks\rfblksdemos

C:\Program Files\MATLAB\R2006b\toolbox\robust\robust

C:\Program Files\MATLAB\R2006b\toolbox\robust\rctlmi

C:\Program Fies\MATLAB\R2006b\toolbox\robust\rctutil

C:\Program Files\MATLAB\R2006b\toolbox\robust\rctdemos

C:\Program Files\MATLAB\R2006b\toolbox\robust\rctobsolete\robust

C:\Program Files\MATLAB\R2006b\toolbox\robust\rctobsolete\lmi

C:\Program Files\MATLAB\R2006b\toolbox\robust\rctobsolete\ mutools\
commands

C:\Program Files\MATLAB\R2006b\toolbox\robust\rctobsolete\
mutools\subs

C:\Program Files\MATLAB\R2006b\toolbox\rptgen\rptgen

C:\Program Files\MATLAB\R2006b\toolbox\rptgen\rptgendemos

GAIAA

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

32 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

C:\Program Files\MATLAB\R2006b\toolbox\rptgen\rptgenvl
C:\Program Files\MATLAB\R2006b\toolbox\rptgenext\rptgenext
C:\Program Files\MATLAB\R2006b\toolbox\xptgenext\rptgenextdemos
C:\Program Files\MATLAB\R2006b\toolbox\rptgenext\rptgenextvl
C:\Program Files\MATLAB\R2006b\toolbox\signal\signal
C:\Program Files\MATLAB\R2006b\toolbox\signal\sigtools
C:\Program Files\MATLAB\R2006b\toolbox\signal\sptoolgui
C:\Program Files\MATLAB\R2006b\toolbox\signal\sigdemos
C:\Program Files\MATLAB\R2006b\toolbox\simbio\simbio
C:\Program Files\MATLAB\R2006b\toolbox\simbio\simbiodemos
C:\Program Files\MATLAB\R2006b\toolbox\slcontrol\s1control
C;\Program Files\MATLAB\R2006b\toolbox\slcontrol\slctrlguis
C:\Program Files\MATLAB\R2006b\toolbox\slcontrol\slctrlutil
C:\Program Files\MATLAB\R2006b\toolbox\slcontrol\slctrldemos
C:\Program Files\MATLAB\R2006b\toolbox\slestim\slestdemos
C:\Program Files\MATLAB\R2006b\toolbox\slestim\slestguis
C:\Program Files\MATLAB\R2006b\toolbox\slestim\slestim
C:\Program Files\MATLAB\R2006b\toolbox\slestim\slestmex
C:\Program Files\MATLAB\R2006b\toolbox\slestim\slestutil
C:\Program Files\MATLAB\R2006b\toolbox\sloptim\sloptim
C:\Program Files\MATLAB\R2006b\toolbox\sloptim\sloptguis
C:\Program Files\MATLAB\R2006b\toolbox\sloptim\sloptdemos
C:\Program Files\MATLAB\R2006b\toolbox\sloptim\sloptobsolete
C:\Program Files\MATLAB\R2006b\toolbox\slvnv\slvnv
C:\Program Files\MATLAB\R2006b\toolbox\slvnv\simcovdemos
C:\Program Files\MATLAB\R2006b\toolbox\splines
C:\Program Files\MATLAB\R2006b\toolbox\stats
C:\Program Files\MATLAB\R2006b\toolbox\symbolic
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\tic2000\
tic2000
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\tic2000\
tic2000blks
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\tic2000\
tic2000demos
C:\Program Files\MATLAB\R2006b\toolbox\shared\etargets\etargets
C:\Program Files\MATLAB\R2006b\toolbox\shared\etargets\rtdxblks
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\tic6000\tic6000
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\tic6000\
tic6000blks
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\tic6000\
tic6000demos
C:\Program Files\MATLAB\R2006b\toolbox\ vipblks\vipblks
C:\Program Files\MATLAB\R2006b\toolbox\vipblks\vipmasks
C:\Program Files\MATLAB\R2006b\toolbox\vipblks\vipmex
C:\Program Files\MATLAB\R2006b\toolbox\vipblks\vipdemos
C:\Program Files\MATLAB\R2006b\toolbox\vr\vr
C:\Program Files\MATLAB\R2006b\toolbox\vr\vrdemos
C:\Program Files\MATLAB\R2006b\toolbox\wavelet\wavelet

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO MATLAB® 33

C:\Program Files\MATLAB\R2006b\toolbox\wavelet\wavedemo

C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\xpc\xpc

C:\Program
Files\MATLAB\R2006b\ toolbox\rtw\ targets\xpc\ target\ build\ xpcblocks

C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\xpc\xpcdemos

C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\xpc\xpc\
xpcmngr

C:\Program Files\MATLAB\R2006b\work

C:\Program Files\MATLAB\R2006b\toolbox\physmod\network_engine\
network_engine

C:\Program
Files\MATLAB\R2006b\toolbox\physmod\network_engine\ne_sli

C:\Program
Files\MATLAB\R2006b\toolbox\physmod\network_engine\library

C:\Program Files\MATLAB\R2006b\toolbox\physmod\sh\sh

C:\Program Files\MATLAB\R2006b\toolbox\physmod\sh\shdemos

C:\Program Files\MATLAB\R2006b\toolbox\physmod\sh\library

This is often a more representative and detailed path listing than is given in
your Launch Pad window.

To find out what version of MATLAB and its toolboxes you are using, type the
command

> ver

It will provide you with version information as follows.

MATLAB Version 7.3.0.267 (R2006b)

MATLAB License Number: DEMO

Operating System: Microsoft Windows XP Version 5.1 (Build 2600: Service Pack 2)
Java VM Version: Java 1.5.0 with Sun Microsystems Inc. Java HotSpot(TM) Client VM
mixed mode

MATLAB Version 7.3 (R2006b)
Simulink Version 6.5 (R2006b)
Aerospace Blockset Version 2.2 (R2006b)
Aerospace Toolbox Version 1.0 (R2006b)
Bioinformatics Toolbox Version 2.4 (R2006b)
Communications Blockset Version 3.4 (R2006b)
Communications Toolbox Version 3.4 (R2006b)
Control System Toolbox Version 7.1 (R2006b)
Curve Fitting Toolbox Version 1.1.6 (R2006b)
Data Acquisition Toolbox Version 2.9 (R2006b)
Database Toolbox Version 3.2 (R2006b)
Datafeed Toolbox Version 1.9 (R2006b)
Embedded Target for Infineon C166 Microcontrollers Version 1.3 (R2006b)

Embedded Target for Motorola MPC555 Version 2.0.5 (R2006b)

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

34 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

Embedded Target for TI C2000 DSP(tm) Version 2.1 (R2006b)
Embedded Target for TI C6000 DSP(tm) Version 3.1 (R2006b)
Excel Link Version 2.4 (R2006b)
Extended Symbolic Math Toolbox Version 3.1.5 (R2006b)
Filter Design HDL Coder Version 1.5 (R2006b)
Filter Design Toolbox Version 4.0 (R2006b)
Financial Derivatives Toolbox Version 4.1 (R2006b)
Financial Toolbox Version 3.1 (R2006b)
Fixed-Income Toolbox Version 1.2 (R2006b)
Fixed-Point Toolbox Version 1.5 (R2006b)
Fuzzy Logic Toolbox Version 2.2.4 (R2006b)
GARCH Toolbox Version 2.3 (R2006b)
Gauges Blockset Version 2.0.4 (R2006b)
Genetic Algorithm and Direct Search Toolbox Version 2.0.2 (R2006b)
Image Acquisition Toolbox Version 2.0 (R2006b)
Image Processing Toolbox Version 5.3 (R2006b)
Instrument Control Toolbox Version 2.4.1 (R2006b)
Link for Code Composer Studio Version 2.1 (R2006b)
Link for ModelSim Version 2.1 (R2006b)
Link for TASKING Version 1.0.1 (R2006b)
MATLAB Report Generator Version 3.1 (R2006b)
Mapping Toolbox Version 2.4 (R2006b)
Model Predictive Control Toolbox Version 2.2.3 (R2006b)
Model-Based Calibration Toolbox Version 3.1 (R2006b)
Neural Network Toolbox Version 5.0.1 (R2006b)
OPC Toolbox Version 2.0.3 (R2006b)
Optimization Toolbox Version 3.1 (R2006b)
Partial Differential Equation Toolbox Version 1.0.9 (R2006b)
RF Blockset Version 1.3.1 (R2006b)
RF Toolbox Version 2.0 (R2006b)
Real-Time Windows Target Version 2.6.2 (R2006b)
Real-Time Workshop Version 6.5 (R2006b)
Real-Time Workshop Embedded Coder Version 4.5 (R2006b)
Robust Control Toolbox Version 3.1.1 (R2006b)
Signal Processing Blockset Version 6.4 (R2006b)
Signal Processing Toolbox Version 6.6 (R2006b)
SimBiology Version 2.0.1 (R2006b)
SimDriveline Version 1.2.1 (R2006b)
SimEvents Version 1.2 (R2006b)
SimHydraulics Version 1.1 (R2006b)
SimMechanics Version 2.5 (R2006b)
SimPowerSystems Version 4.3 (R2006b)
Simulink Accelerator Version 6.5 (R2006b)
Simulink Control Design Version 2.0.1 (R2006b)
Simulink Fixed Point Version 5.3 (R2006b)

Simulink HDL Coder Version 1.0 (R2006b)

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO MATLAB®

Simulink Parameter Estimation Version 1.1.4
Simulink Report Generator Version 3.1
Simulink Response Optimization Version 3.1
Simulink Verification and Validation Version 2.0
Spline Toolbox Version 3.3.1
Stateflow Version 6.5
Stateflow Coder Version 6.5
Statistics Toolbox Version 5.3
Symbolic Math Toolbox Version 3.1.5
System Identification Toolbox Version 6.2
SystemTest Version 1.0.1
Video and Image Processing Blockset Version 2.2
Virtual Reality Toolbox Version 4.4
Wavelet Toolbox Version 3.1
xPC Target Version 3.1

35

(R2006b)
(R2006b)
(R2006b)
(R2006b)
(R2006b)
(R2006b)
(R2006b)
(R2006b)
(R2006b)
(R2006b)
(R2006b)
(R2006b)
(R2006b)
(R2006b)
(R2006b)

If you are interested in all of the M-files and MAT-files you have in your

working directory, type the command

> what

This provides the following information in the MATLAB Command Window:

M-files in the current directory U:\Itimatlb\newltimatlab

ANINTRODUCTION JETDEMO POPDEMO

DEMO ODES RDEMO

DISKDEMO PLOTDEMO WOWPLOT
MAT-files in the current directory U:\ltimatlb\newltimatlab

demo testing trial

If you would like contact information for The MathWorks, type the command

> info

This provides you with the following information:

For information about The MathWorks, go to: http://www.mathworks.com/

company/aboutus/contact_us or +508-647-7000.
Other information on MATLAB and The MathWorks is as follows:
MATLAB is available for Windows, Solaris, HP-UX, LINUX, and
Maclntosh.

For an up-to-date list of MathWorks Products, visit our Web site at
www.mathworks.com.

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

36 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

24 hour access to our Technical Support problem/solution database as well as
our FAQ, Technical Notes, and example files is also available at
www.mathworks.com.

For MATLAB assistance or information, contact your local representative or:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA

Contact Information:
Phone: +508-647-7000
Fax: +508-647-7001
Web: www.mathworks.com
Newsgroup: comp.soft-sys.matlab
FTP: ftp.mathworks.com

E-mail:

info@mathworks.com Sales, pricing, and general information
support@mathworks.com Technical support for all products
doc@mathworks.com Documentation error reports

bugs @mathworks.com Bug reports

service @mathworks.com Order status, invoice, and license issues
renewals @mathworks.com Renewal /subscription pricing

pricing @mathworks.com Product and pricing information
access @mathworks.com MATLAB Access Program
suggest@mathworks.com Product enhancement suggestions
news-notes @mathworks.com MATLAB News & Notes Editor
connections @mathworks.com MATLAB Connections Program

The MathWorks Web site www.mathworks.com is an excellent resource
for MATLAB third-party routines, program demonstrations, and product
documentation.

When contacting The MathWorks for license updates and trouble calls, it is
very useful to have the Host Identification Number. This is accessed as
follows:

> hostid
‘999666’
To test the performance of MATLAB on your computer, use the command

> bench

ans =

0.8493 0.3961 0.3522 0.5232 0.6125 1.8100

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO MATLAB® 37

This generates a figure and a table comparing your computer with several others
as in Figs 1.4 and 1.5.

) MATLAB Benchmark

Relative Speed

AMD Opteron, 2.1 GHz Dual

Intel Pentium 4, 3.0 GHz g

Intel Pentium 4, 2.0 GHz |]

Macintosh G5, 2.0 GHz Dual | 1

This machine

AMD Athlon, 2.0 GHz Dual

Macintosh G4, 1.25 GHz Dual R

Sun UltraSPARC-IIl 1.2 GHz Dual

HP-UX, 875MHz Dual

2 4 6 8101214161820222426208303234363840424448

o

Fig. 14

Finally, to see what is new with your version of MATLAB, type the following
command:

> whatsnew

This command brings up the current release notes in the Help window. The
release notes are also accessible from the Contents list on the left-hand

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

38 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

Computer Name LU FFT ODE Sparse 2D 3D
Intel Pentiumd, 3.0 GHz 0.2403 D462 D.3570 04872 05140 0.3712
AMD Opteron, 2.1 GHz Dual 0.2624 0.7638 0.2568 0.5057 0.4338 0.4458
Macintosh G5, 2.0 GHz Dual 0.2294 0.4331 0.4488 0.5245 1.1705 1.0063
Intel Pentiumnd, 2.0 GHz 0.3851 07719 0.4970 D.7627 0.7330 0.8325
AMD Athlon, 16686MHz Dual 0.5539 05706 05583 0.7464 06437 1.2954
This machine 0.4850 0DE250 07190 0.7350 1.2190 1.8750
Macintosh G4, 1.25 GHz Dual D.E1E9 0.8963 D.BE28 1.1381 13614 1.2008
Sun UltraSPARC-IIl 1.2 GHz Dual 0.6674 06024 09442 1.4168 1.4444 3.3702
HP-UX, 875MHz Dual D.4555 1.6940 1.0813 1.2837 1.3216 26716
Place the cursor near a computer name for system and version details. Before using
this data to compare different versions of MATLAB, or to download an updated timing data file,
see the help for the bench function by typing ‘help bench’ at the MATLAB prompt.

Fig. 1.5

portion of the Help window. The release notes for Release 2006b corresponding
to MATLAB version 7.3.0.267 appear in Fig. 1.6.

Try out some of these commands and GUIs. You have just taken the first step
in becoming a proficient MATLAB user!

F 1 from American Institute of Aeronautics and Astronautics

INTRODUCTION TO MATLAB®

& & Release Notes
®-Summary of New Features
#-Mew Products
® R2006b Products with License-Related Changes
& Discontinued Products
COMA Reference Blockset
MATLAB Web Server
w-Compatibility Considerations
System Requirements
Release Summany
& Installabon
& @ MATLAB
#- @ Gelting Started
w4 Examples
& 8 Desidop Tools and Development Emironment
= B Mathematics
® @ Data Analysis
& B Programming
= @ Graphics
@ 3-D Visualization
B Creating Graphical User Interfaces
® @ Functions - By Category
8 Functions - Alphabetical List
Handle Graphics Property Browssr
% @ Extemal Interfaces
8 C and Fortran Functions - By Categery
& C and Fortran Functions - Alphabetical List
% [Release Notes
18 Printable Documentation (PDF)
@ Product Page (Wab)
@& Fined-Point Toolbax
® - Simulink
& Stateflow
@ Support and Web Services

-S| S M
Tite: | Relaase Motes for R2006b (Release Notes for RL2006b)
Release Notes for R2006b

Release Notes for R2006b

Highlights of R2006b

Release 20060 (R20060) includes updates to MATLAB®, Simulink®, and StateflowE,
plus three new products released since R2006a, three new products for R2006b,
major updates to six products and minor updates and bug fives to 73 products

Mew capabdlities for the MATLAB product family include

« Additional support for large data set handing in MATLAB

+ MATLAB application deployment to Java™

« Distnbuted compauting tools suppart for Windows® Compute Cluster Server
2003, distnbuted arrays, and paraliel math functions

» Graphical interface for performing common optimization tasks
Mewy capabilities for the Simulink product family include

« Modeling standards checking for Simulink modets and Stateflow diagrams

+ Managing tests and analyzing resulls for system verification and validabon

= HOL code generalion directly from Simulink models and Statefiow diagrams

+ Lagacy code tool for quick incorporation of legacy C/C++ code

« Modeling Mealy and Moore semantics to support C and HDL code generation
 Involdng filter design and analysis lools diractly from Simulink blocks

Summary of New Features [#]

© 1984-2006 The MathWorks, Inc. « Terms of Use « Patents « Trademarks «
Acknowladgments

Fig. 1.6

1.1

This chapter introduces the reader to MATLAB and several of the basic matrix
computational tools and GUIs that are available in MATLAB through the main
Command Window.

Conclusion

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

40 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

Practice Exercises

1.1 Enter the following matrix and complete the following computations on
this matrix:
a—=
0.6000 1.5000 2.3000 —0.5000
8.2000 0.5000 —0.1000 —2.0000
5.7000 8.2000 9.0000 1.5000
0.5000 0.5000 2.4000 0.5000
1.2000 —2.3000 —4.5000 0.5000

a) What is the size of a?

b) Is the matrix square?

¢) Which elements of the a matrix are equal to 0.5?

d) Use MATLAB to show the negative matrix elements.

e) b=a(:,2)

f) c=a4,)

g) d =[10:15]
h) e =[4:9,1:6]
i) f=[-15,5]

i) g=10.0:0.1:1.0]
k) h = a(4:5,1:3)
D) k=a(1:2:5,)

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

Notes

JAIAA.

The Worlds Forum for emspos Lssdwesip Purchased from American Institute of Aeronautics and Astronautics

This page intentionally left blank

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

2
Plotting and Graphics

2.1 Introduction and Objectives

This chapter covers the plotting and graphics tools that are available in
MATLAB®. This includes generating some simple MATLAB animations.

Upon completion of this chapter, the reader will be able to identify and input
some basic plotting and graphic tools and commands in MATLAB and generate
simple MATLAB movies.

2.2 Plot

The standard linear two-dimensional plot command in MATLAB is plot(x,y),
where x and y are vectors. If either x or y is a matrix, then the vector is plotted
versus the rows or columns of the matrix, whichever line up.

Let us first generate a simple sine wave plot. The variable t goes from 0 to 10
in increments of 0.3. The variable y is the sine of t. The semicolon is used to
suppress the MATLAB echo.

A title is added to the plot using the command of the same name. A hard copy
is generated using the print command. Note that the print can also be generated
by clicking the printer icon on the plot window, by selecting Print . . . from the
File pull-down menu, or by simultaneously pressing the Ctrl and P keys with the
plot window in the foreground. As with many operations in MATLAB, there are
several ways to accomplish the same operation. The best choice depends on the
type of information processing being used (i.e., interactive or preprogrammed)
and on user preference.

> t = 0:3:10;

>y = sin(t);

> plot(t,y)

> title('A simple X-Y plot')

43

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

44 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

The resulting plot in the MATLAB plot window appears as shown in Fig. 2.1.

-} Figure 1 Q@|gl

Fle Edit View Insert Took Desktop Window Help
D& h RAM® v 0E =20

A Simple X-Y Plot

04} 1

Fig. 2.1

Symbols can be used instead of a solid curve by placing the desired symbol in
single quotation marks at the end of the plot command. The grid command is
used to add grid lines at the major tick marks.

Labels can be placed on the abscissa and the ordinate by using the xlabel and
the ylabel commands. The gtext(‘string’) can be used to place a string of text
anywhere on the plot. It waits for the mouse button or keyboard key to be
pressed while the cursor is within the graphics window. This writes the string
onto the graph at the selected location. To see all the possible combinations of
colors, markers, and line types, use the command help plot.

Let us next modify the previous plot commands to generate a plot with a plus
symbol + marking each data point and with grid lines added. Type the following
into the MATLAB Command Window:

> plot(t,y,' +")

> title('Now with a + symbol, and with grid lines')
> grid

> xlabel('I do labels too.")

> ylabel('Hello, World.")

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

PLOTTING AND GRAPHICS 45

The resulting plot from the MATLAB plot window appears as shown in Fig. 2.2.

) Figure 1 E|@|Z|

Fle Edit View Insert Tools Desktop Window Help
D& hRaAaMe |w 0B | eO
Now with a + symbol, and with grid lines
e H ' I o
| R R T jpvesTis s g rassaansy ki e 1
K @ z o
| e TR ssmls iy -
3| IS N S SR A
. : | | # |
E 02 ~ -------- Fi st t +-
= ! : : :
3_ - e e e I e P e e e - TP S e et
kel . . i :
G, 1) IV S < A SO S +.|
é : + :
| e e
08+ S E
i+ '
H + H
1 | | + . 1 1
0 2 4 6 8 10
| do labels too.
Fig. 2.2

When multiple curves are plotted on the same plot, MATLAB automatically
changes the line type to a variety of colors. Older versions of MATLAB use
dashed curves (see Fig. 2.3). Multiple curves can be plotted by repeating the x
and y vectors within the plot command.

> plot(t,y,t,2"y,t,3"y,t,4"y)
> title('Four different line-types')

Marker types can be used to differentiate between various curves. The markers
are entered in the plot command after the x-y pair to be plotted using that marker.
Note that line types can be combined in the same plot command, as in
plot(x,y,'b-0');, which plots using blue circle markers (see Fig. 2.4).

> t = 0:5:10;
> plot(t,t,'." t,2*t + 3,' + ',t,3*t + 6,"",t,4*t + 9,'0",t,5*t + 12,'x")
> title('Five different marker-types')

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

46 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

. -} Figure 1 [;|E|g

Ble Edt Yew Insert Toos Desktop Window Hep
DEES QA9 (€ 08 a0

Four different line-types

=%

b

-) Figure 1 Al Ri

Fle Edit View Insert Tools Desktop Window Help
DFESE K QAN & 08 u0
Five different marker-types
70 T T T T
60| <]
50} 1
» =
40t e : .
Y ¢ 1
*
"
a0+ . * " 4
3 -
*
o *
® * 4
20¢ d o T gk 3 1
. ® P
x + .
* 4
w0 ©,*" e+t .
T oy * L+ 1 . . o+
4 i + L m e .
0 Pl S f I I I
0 2 4 6 8 10

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

PLOTTING AND GRAPHICS 47

2.3 Log and Semilog Plots

Log scale plots are generated using the loglog(x,y) command. The semi-
logx(x,y) command makes a plot using a base 10 logarithmic scale for the
x axis and a linear scale for the y axis. The semilogy(x,y) command makes
a plot using a base 10 logarithmic scale for the y axis and a linear scale for
the x axis (see Fig. 2.5). All three operate identically to the plot command.
Note that .* produces an element-by-element multiplication [t(1)*t(1),
t(2)*t(2), ..., tn)*t(n)].

> t=.1:1:3;
> loglog(exp(t),exp(t.*t))
> title('I do loglog and semilog plots')

-} Figure 1 Q@@

File Edit View Insert Tooks Desktop Window Help ¥

D& h aaMse | 08 80
4 | do loglog and semilog plots
10 T
10°} -
10°} .
101 F 3
100 i //. . — 11 " N POV R .
10 10 10

Fig. 2.5

2.4 Polar Plots

The command polar(theta,rho) makes a polar coordinate plot of the angle
theta (in radians) versus the radius rho (see Fig. 2.6). The line type can be
changed by inserting characters within single quotes as in the plot command
as the third argument. Note that the variable pi is predefined by MATLAB to
be 3.14159265358979 or 4*atan(1).

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

48 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

> t = 0:.05:pi + .1;

> y = sin(5*t);

> polar(t,y)

> title('And polar plots too')

-} Figure 1 ||
Fle Edit View Insert Tools Desktop Window Help Y
D& K RAQNS® ¥ 0B =8O

And polar plots too

180

270

Fig. 2.6

2.5 Subplots

The command subplot(m,n,p) breaks the figure window into an m-by-n
matrix of small rectangular panes, creates an axis in the pth panel, and makes
it current (see Fig. 2.7). The command subplot(h) makes the hth axis current.
Use clf or clf reset to return to the default subplot(1,1,1) configuration.

Note that the commas can be dropped, modifying the result of the command
slightly, and that subplot = subplot(1,1,1).

The command subplot(111) without the commas is a special case of subplot
that does not immediately create an axis. Thus subplot(111) is not identical in
behavior to subplot(1,1,1).

It sets up the figure so that the next graphics command executes clf reset in the
figure (deleting all children of the figure) and creates a new axis in the default
position. The delayed clf reset is accomplished by setting the figure’s NextPlot
to replace.

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

PLOTTING AND GRAPHICS 49

In this example the figure window is divided into a 2-by-2 space. A different
plot is placed in each space.

> t=0:3:30;

> subplot(221), plot(t,sin(t)),title('Subplots')

> subplot(222), plot(t,t.*sin(t))

> subplot(223), plot(t,t.*sin(t)."2)

> subplot(224), plot(t,t."2.*sin(t)."2)

> subplot
-} Figure 1
Fle Edt View Insert Tools Desktop Window Help -
Ded& e*aMms ¥ 0B =0
Subplots

-

= / /fn\\ :Z f\
B VU Y

(=]

(=]
)

I_/

.
e
S

iy
-‘-—_‘_‘—\—u

0 0 0 10 20 30
30 1000
800 '
20
f || ps f
10 \/\ J\ / \ J 400 /\ [\)II
5 200
0 \ﬁﬁ ! 0 .-1/\}\/ \k
0 10 20 30 0 10 20 30
Fig. 2.7

2.6 Axis

Many of the plot attributes can be modified by using the axis command. These
include using the autoscale mode, entering minimum and maximum axis values,
freezing scalings for subsequent plots, turning axis labeling on and off, and
setting the axes region to be square (see Fig. 2.8). The command axis('state')
returns three strings indicating the current settings of the three axis-labeling proper-
ties. Note that this can also be accomplished using the plot window’s GUI interface.

For example, let us define a vector and then plot a growing cosine wave with
the axes squared:

> t = 0:(.99*pi/2):500;
> x = t.*cos(t);

> plot(x,t)

> axis('square')

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

50 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

J Figure 1 r: '-D R
Fle EQt View lnsert Took Deskiop Window Heb N
DRSS & RANS ¢ 08 = O

50—

=
k3
0

Fig. 2.8

Plotting each point with a period ¢.” makes the behavior of the cosine wave
much clearer.

> plot(x,t,".")
> axis('square')

The plot resulting from the previous MATLAB commands is given in Fig. 2.9
for comparison purposes.

) Figure 1 [:er-R
fle Edt View [rmert Took Desktop Window Help -
DEFEs K AaNe &« 08 D

500

450 ™,

400

Fig. 2.9
Now let us plot the growing cosine versus a growing sine (see Fig. 2.10):

> y = t.5sin(t);
> plot(x,y)
> axis('square')

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

PLOTTING AND GRAPHICS 51

File Edit View Insert Tools Desktop Window Help — >
Ded&s k aaNew € 0B 80

500

400

200

100

-100

-200

2.7 Mesh

The standard three-dimensional mesh plot command in MATLAB is mesh
(X,Y,Z,C), where X, Y, and Z are matrices and C specifies the color of the
grid lines. If meshe(X,Y,Z,C) is used, a contour plot is drawn beneath the
mesh. If meshz(X,Y,Z,C) is used, a curtain plot is drawn beneath the mesh.

Consider the function z = cos(x)*sin(y) in the interval —2 < x <2, -2 <y
< 2. To draw a mesh or contour graph of this function, first form matrices x and y
containing a grid of values in this range (see Fig. 2.11):

> dx=1/3

dx =
0.3333

> dy=1/3

dy =
0.3333

> dz=1/3

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

52 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®
dz =

0.3333

> [x,y] = meshgrid(—2:dx:2, — 2:dy:2);

We can evaluate this function at all the points in x and y with

> z = cos(x) .* sin(y);
> mesh(z)

-} Figure 1

Fle Edt View Insert Tooks Desktop Window Help ~
DEeE& Kh QAaMe | 08 8O0

Fig. 2.11

The command meshgrid(x,y) transforms the domain specified by the vectors
x and y into arrays X and Y that can be used for the evaluation of functions of two
variables and three-dimensional mesh/surface plots. The rows of the output array
X are copies of the vector X, and the columns of the output array Y are copies of
the vector y. Note that the command mesh(x,y,z) would plot the actual values of
x and y used to generate z.

Another example of the use of the meshgrid command with the mesh family
of commands follows:

> [x,y] = meshgrid(—2:.2:2, —2:.2:2);
> z=x." exp(—x."2 —y.*2);

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

PLOTTING AND GRAPHICS 53
> mesh(z)
> title('This is a 3-D plot of z = x * exp(—x"2 — y"2)")

This family of commands is extremely useful for generating graphics such as
carpet plots (see Fig. 2.12).

Fle Edit View Insert Tools Desktop Window Help

D& K QAaAM® v 08 8O0
This is 4 3-D plot of z=x* exp(-¢ - y%)

S—

Fig. 2.12

2.8 Contour Diagrams

The command contour(Z) draws a contour plot of the matrix Z. The
command contourc(C) calculates the contour matrix Z for use by the M-file
contour to draw the actual contour plots. The command contour3(Z) produces
a three-dimensional contour plot of a surface defined on a rectangular grid.

A quiver or needle plot of vectors with direction and magnitude are generated
using the quiver(X,Y,DX,DY) command. This command draws arrows at every
pair of elements in the matrices X and Y. The pairs of elements in matrices DX
and DY determine the direction and relative magnitude of the arrows. A final
trailing argument specifies line type and color using any legal line specification
as described under the plot command.

As an example of contour and quiver, the function z = cos(x)*sin(y) will
now be analyzed. The gradient of this function is easy to compute analytically:

dz/dx = —sin(x)*sin(y)

dz/dy = cos(x)*cos(y)

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

54 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

We can evaluate the partials for all points in x and y using the MATLAB
expressions

> dx =1/3;dy = 1/3;

> [x,y] = meshgrid(—2:dx:2,—2:dy:2);

> z = cos(x) .* sin(y);

> dzx = —sin(x).*sin(y);

> dzy = cos(x).*cos(y);

If the gradient of a function is too complicated to compute analytically, or if

we start with data arrays, the gradient can be computed numerically. The follow-
ing is an example using the MATLAB function gradient:

[pzx,pzy] = gradient(z,dx,dy);

Overlaying a contour plot of the function and a quiver plot of the partials puts
directional information on the contour plot. The command hold on retains the
previous plot so that additional information can be overlaid.

Figure 2.13 shows the plot after the contour(z) command is used:

> contour(z)

J Figure 1 [:|@g|

Fle Edit View Insert Tools Desktop Window Help
DedsE hh RaMHe (L 08 =0

12 I' 'il 1

10 T ——— a

12

JAIAA.

The Workls From i Aempas Laodirdip. Purchased from American Institute of Aeronautics and Astronautics

PLOTTING AND GRAPHICS 55

Next the quiver(dzx,dzy) result is overlaid with hold on (see Fig. 2.14):

> contour(z), hold on
> quiver(dzx,dzy), hold off

=) Figure 1
File Edit View Insert Tools Desktop Window Help
DEeEd& Kk QAaMe € 08| O

T _'_-‘_‘-?"A
12 -

10 Hi__h,f—?

Fig. 2.14

Note that a comma allows multiple command lines to be placed on a single
line:

> contour(z), hold on, quiver(pzx,pzy), hold off

Both of these sets of commands give the same result.

2.9 Flow Diagrams

As an example of three-dimensional contour plotting using MATLAB, the
peaks function is next plotted using the three-dimensional contour graphics
command contour3 along with the following (see Fig. 2.15):

> x = —3:0.125:3;
>y =X

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

56 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

> [X,Y] = meshgrid(x,y);
> 7 = peaks(X,Y);
> contour3(X,Y,Z,20)

) Figure 1 |:|@g

Fle Edt View Insert Tools Desktop Window Hep
DEd& K *RafN® ¥ 0B =0

Fig. 2.15

2.10 Movies

The command movie(M) plays recorded movie frames. The command
movie(M,N) plays the movie N times. If N is negative, it plays the movie
once forward and once backward. The command movie(M,N,FPS) plays the
movie at FPS frames per second. The default is 12 frames per second.

The command moviein(N) creates a matrix large enough to hold N frames for
a movie.

The command getframe returns a column vector with one movie frame. The
frame is a snapshot (pixmap) of the current axis.

The following example generates a movie with n frames:

> z = peaks;

> surf(z);

> lim = axis;

> M = moviein(20);

> for j = 1:20, surf(sin(2*pi*j/20)*z,z), axis(lim), M(:,j) =getframe;,
end, movie(M,20)

GAIAA.

The Workds f dusip Purct 1 from American Institute of Aeronautics and Astronautics

PLOTTING AND GRAPHICS 57

Some of the resulting frames from this movie are shown in Figs 2.16 and 2.17. A
MATLAB avi of this movie can also be embedded in electronic documents. You
should also try these commands yourself to see the results of the movie(m,n)
command in action!

dﬁ"'l" W
ST
P i, % 1!/;;,0 o 3
T AN 'o'o,o:g‘ o
S A

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

58 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

Figure 2.18 is the movie saved using the avifile function.

example

Fig. 2.18

This concludes the discussion on plotting and graphics.

2.11 Conclusion

This chapter introduced the reader to the plotting and graphics tools that are
available in MATLAB as well as the methods for generating simple MATLAB
animations.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

PLOTTING AND GRAPHICS

Practice Exercises

2.1 Use MATLAB commands to generate the linear plot of y = 5x°.
2.2 Use MATLAB commands to generate the semilogx plot of y = 5x°.
2.3 Use MATLAB commands to generate the semilogy plot of y = 5x°.
2.4 Use MATLAB commands to generate the log-log plot of y = 5x7.

Generate the data using the commands

> for ic=1:100;,x(ic)= (ic—1)/2;,y(ic)= 5*x(ic)"2;end;

59

JAIAA

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

Notes

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

3
Introduction to MATLAB® Toolboxes

3.1 Introduction and Objectives

This chapter covers a few of the computational and graphics routines that are
available in MATLAB® toolboxes. It emphasizes the analysis of aircraft dyna-
mics and uses many commands from the Controls Toolbox.

Upon completion of this chapter, the reader will be able to identify and input
some computational and graphics routines to conduct analysis of aircraft dynamics
and input some commands from the Control Toolbox and related toolboxes.

3.2 Continuous Transfer Functions

Suppose we start with a plant description in transfer function form:

02s2+03s+1
2+ 4s+1D(s+.5

H(s) =

We enter the numerator and denominator coefficients into MATLAB as vectors
in descending powers of s:

> num = [.2.31];
> denl =[1 4 1];
> den2 = [1 .5];

Remember that the Laplace notation is dx/dt = X = x*s.

3.2.1 Convolution

The denominator polynomial is the product of the two terms. We can use con-
volution to obtain the polynomial product:

> den = conv(denl,den2)

den =
1.0000 0.9000 1.2000 0.5000

Working the problem out in longhand,
"+ 4s+Ds+.5=s+09s+125+0.5

61

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

62 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

3.2.2 Print System

The transfer function can be printed in standard form using the printsys
command. This is one of many commands added to MATLAB to provide
some Mathematica-style symbolic math capabilities:

>> printsys(num,den)

num/den =

025"2403s+1
s"34+09s"2+1.2s5+0.5

Because s is the default symbol, the following gives the same result:
> printsys(num,den,‘s’)

The transfer function can also be printed in standard form using tf:
> tf(num,den)

Transfer function:
02s"24+03s+1
s?"3+09s72+1.2s4+0.5

3.2.3 Damping

We can look at the natural frequencies and damping factors of the plant poles:

> damp(den)

Eigenvalue Damping Freq. (rad/s)

—2.00e-001 +9.80e — 001i 2.00e — 001 1.00e + 000
—2.00e-001 — 9.80e — 001i 2.00e — 001 1.00e 4 000
—5.00e — 001 1.00e +000 5.00e — 001

Remember that the eigenvalues are roots of the denominator polynominal.
Two of the roots have real coefficients only in their second-order representation.
Here i = sqrt(—1).

Other ways to generate this information will be demonstrated throughout
this text.

3.2.4 Equivalent Continuous State-Space Model

A state-space representation can be obtained from a transfer function model by
using the tf2ss command. The state-space representation is of the form

X = Ax + Bu
y =Cx+Du

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO MATLAB® TOOLBOXES 63

> [a,b,c,d] = tf2ss(num,den)

a=
—0.9000 —1.2000 —0.5000
1.0000 0 0
0 1.000 0
b=
1
0
0
c=
0.2000 0.3000 1.0000
d=

0

3.3 Root Locus
A root locus can be obtained by using the rlocus command:
> rlocus(num,den);

The same format rules apply for the time and frequency response functions
shown in Figure 3.1.

-} Figure 1 F;|E| g|

Fle Edt View Insert Tools Desktop Window Help
D& K RaM® € 08 =0

Root Locus

Imaginary Axis

L I I I
S -16 14 -1.2 -1 -0g 6 04 02 o 02

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

64 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

Background materials on the equivalence between these plot types follow in
Table 3.1 for twelve common transfer functions. These show the relationship
between the open-loop transfer function, the Nyquist and Bode diagrams, the

Nichols chart, and the root locus plot.

3.4 Step and Impulse Responses

For systems described in state space or by transfer functions, the step response
is found by using the step command. Similarly, the impulse response is generated
by using the impulse command (see Fig. 3.2):

> step(num,den);

Fle Edt View Irert Tools Desktop Window Help
D& kK aAQfe € 0B s O

Amplitude

Step Response

b 8 10 12 14 16 18
Time (sec)

Fig. 3.2

The following commands would give the same results:

> step(a,b,c,d,1);

> step(sys);

where the model sys is generated using either sys = tf(num,den) or sys =
ss(a,b,c,d). Also note that when using the state-space representation, the position
of the input must be specified, or all inputs will be plotted.

@

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

65

INTRODUCTION TO MATLAB® TOOLBOXES

panuuo)

‘ugIsop

WIQISAS [OIJUOD [BOTSSB[O

ut [00} Jueprodwl uy

‘ure3 doo[-paso[o puy 0}
pasn "o pue 3 oyr1oads e Je
ures o) puy uayJ, ‘d[qeisun
SOWO099q WAISAS) dIAYM
ured oy puy uay) ‘ouerd s
QY ur s3oo1 Jo 100] 3y joid
‘Kugur 01 () woiy ures ay)

HE)DY + 1

©o M

‘paxmbar are (Ym)
Kouonbaiy [einjeu

pedwepun pue
(3) oner Surdwep

Krea ‘1], door-pasopo ay) purg SNUL Ym ‘9 Y[() ureS ym T, ogroads © uayp SNoo[100y z
‘(1) owm Sumas (syndut — g1 ‘paxmbai
oy} pue ‘(L) ULBISUOD (s)ndino a1 - ¢(SSQ)
own a2y} (3) oner Jurdwep ™ wojsuery doepde g 10119 91BIS-Apeals
Ay} puy ‘Aqiqers aSpnl 559 K109Y) onfeA [eur] ‘§ I0/pue)00YSIdA0
‘sj001 31 puy ‘uonjenbo din K109 onfeA Tentuy ‘¢ XeN “(s1) ouwmn
OTSTIR)ORILYD SIT pUy s} uonenbe onsieyoeIRy) "7 Sumes ‘(1) JueISuod urewrop
‘waIsAs Ay Jo 41, oyl pur =} ‘L (41) uonounj 1oJsuel], ‘] own dYyroads e uaym g, I
poyjout jord eord£y, So[qeLIeA suonenba juelroduy {pasn poylowr "ON
Jo Arewuns /syrewoy jueytoduy poyIow STy} ST USYA SISATeuy

SPOYIATAl SISA[BUY S[OIJU0)) UIIM}IQ uosLiedwio) [°€ I[qeL,

@

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

66

‘OINTIN ST WISKs

"SpoyIoW W)SAS soe)S na+xo=4x) pue Jeaur|
[OTIUOD UISPOW JSOUI UT PAs() ¢ pue [seoweS ‘QD 4V na+xv=x ST QO Y} uaypy ooeds el ¥
‘u3IS9p SWASAS [0NUOD .
[ed1sse[o ur [00) Jueroduwr
IOUJOUY SUIRISAS
dooj-pasoo pue dooj-uado , ‘paxmbaz
yjoq I0J pas() ‘Aouenboiy oSt gp) %mo_ 0C=W Qe " ‘YIpimpueq (qord
sns1oA J1ys aseyd 1 I 4 Io/pue ‘uidrewr apog ‘39)
pue spmuew ay) puy usy) |f”] E e ._" ¢ (¢ +1m)uIs®y = °2 aseyd ‘urdrewr asuodsar
‘AL oy ut of yym s ooepdoy e W G@)uis'y ='2 ured oyroads B uayp Kouanbaig €
poyouwr jord eord£ so[qerIeA suorjenba jueyrodwy {pasn poylouwx "ON
Jo Arewwuns /syIewoy jueytodury POYIOW STY) ST USYAA SIsATeuy

(panunuo)) SPoYRIA SISA[euy S[0IJU0)) UIIMIIQ uosiredwo) [°¢ Iqe],

JAIAA.

The Workls From i Aempas Laodirdip. Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO MATLAB® TOOLBOXES 67

3.5 Bode Plot
The frequency response is found by using the Bode command (see Fig. 3.3):

> bode(num,den); or > bode(a,b,c,d,1);

0

»

File Edt View Insert Tools Desktop Window Help
DEedae h Qe ¢ 08 =0
Bode Diagram
n .
@. -10
@ 200
-
=3
T 30+
e
= 40
-50
B0 1 | 1
0
45
_Ef 90 |-
@ 135
o
-180
-226 - 1 - L - et i
10™ 10° 10° 10° 10°
Frequency (rad/sec)

Fig. 3.3

To obtain a listing of the actual data values in the Bode plot, use the bode
command:

> [freq, amp, omega] = bode(a,b,c,d,1)

The values in the vector amp are the magnitude of the output divided by the
input magnitude at that frequency.
To generate the amplitude in decibels, use

> ampdb = 20*logl10(amp)
Finally, user-specified omega values can be used as follows:

> bode(a,b,c,d,1,o0mega); or > bode(num,den,omega);

JAIAA.

The Workls From i Aempas Laodirdip. Purchased from American Institute of Aeronautics and Astronautics

68 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

3.6 Nichols Chart

The frequency response is also found by using the Nichols command (see Fig. 3.4):

> nichols(a,b,c,d,1); or > nichols(num,den);

) Figure 1 E|E|g|

Fle Edit View Insert Tools Desktop Window Help
DeE& K RQAN9 € 08 =0

Nichols Chart
10 T
0+
10}
i)
=
=
S
a -20
o
5
=
2
© a0t
40
50 1 1
-225 -180 -135 -90 45 0
Open-Loop Phase (deg)
Fig. 3.4

This format is very good for graphically displaying the gain and phase margins.

3.7 Nyquist Chart

The frequency response plotted in the real-imaginary plane is found by using
the Nyquist command (see Fig. 3.5):

> nyquist(a,b,c,d,1); or > nyquist(num,den);

Here 90 degrees of phase lag is equivalent to O+ li or the sqrt(—1). An
out-of-phase output is equivalent to 180 degrees of phase lag or —1 on the
Nyquist chart.

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO MATLAB® TOOLBOXES 69

) Figure 1 L_ @|Z|

Fle Edt View Insert Tools Desktop Window Help
Deds Kk QA9 ¥ 08 =0

Nyquist Diagram
r 2

251

Imaginary Axis
(=]
T

05}
At
A5}
21
25 | L 1 1
-1.5 4 0.5 0 0.5 1 1.5 2
Real Axis
Fig. 3.5

3.8 Linear Quadratic Regulator

A linear quadratic regulator is now designed for this plant.
For control and state penalties,

>r=1;
> q = eye(size(a))
q =

S O =
S = O
- O O

The quadratic optimal gains, the associated Riccati solution, and the closed-loop
eigenvalues are

>> [k’s’e] = lqr(a,b’q’r)

k=
1.1983 1.2964 0.6180

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

70

s =
1.1983 1.2964
1.2964 3.5400
0.6180 1.8959

e =
—0.7540

0.6180
1.8959
2.1910

—0.6721 4+ 1.0154i
—0.6721 — 1.0154i

BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

Other modern state-space control design methods are included in the Robust
Control and w-Synthesis Toolboxes.

3.9 State-Space Design
This file demonstrates MATLAB’s ability in classical control system design
by going through the design of a yaw damper for a jet transport aircraft using

a state-space representation.
Define the jet transport model as Mach = 0.8 and h = 40,000 ft:

> A=[—.0558
598
~3.05

0

> B=[.0729
—475
1.53

0

> C=[0100
0001];

>D=[00
0 0];

—.9968 .0802
—115 —.0318
388 —.4650
0.0805 1
.0001
1.23
10.63
0];

>> states = 'beta yaw roll phi';
> inputs = 'rudder aileron';

> outputs = 'yaw-rate bank-angle';

.0415

0];

>> printsys(A,B,C,D,inputs,outputs,states)

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO MATLAB® TOOLBOXES 71
a =
beta yaw roll phi

beta —0.05580 —0.99680 0.08020 0.04150

yaw 0.59800 —0.11500 —0.03180 0

roll —3.05000 0.38800 —0.46500 0

phi 0 0.08050 1.00000 0
b =

rudder aileron

beta 0.07290 0.00010

yaw —4.75000 1.23000

roll 1.53000 10.63000

phi 0 0
CcC =

beta yaw roll phi

yaw-rate 0 1.00000 O 0

bank-angle 0 0 0 1.00000
d =

rudder aileron
yaw-rate 0 0
bank-angle 0 0

These are the state-space matrices for a jet transport during cruise flight. The
model has two inputs and two outputs. The units are radians for beta (sideslip
angle) and phi (bank angle) and radians per second for yaw (yaw rate) and roll
(roll rate). The rudder and aileron deflections are in degrees.

This model has one set of eigenvalues that are lightly damped. They corre-
spond to what is called the Dutch roll mode. We need to design a compensator
that increases the damping of these poles:

> disp('Open Loop Eigenvalues'), damp(A);

Open-Loop Eigenvalues

Eigenvalue Damping Freq. (rad/s)
—0.0073 1.0000 0.0073
—0.0329 + 0.94671 0.0348 0.9472
—0.0329 — 0.9467i 0.0348 0.9472

—0.5627 1.0000 0.5627

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

72 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

Our design criteria are to provide damping ratio ¢ > 0.35 with natural frequency
, < 1.0 radian/second. We want to design the compensator using classical

methods.
Let us do some open-loop analysis to determine possible control strategies.

Time response (we could use step or impulse here) (see Fig. 3.6):
> step(A,B,C,D);

Note that all inputs and outputs were plotted using this command (see
Fig. 3.7).

> impulse(A,B,C,D);

M

- OX

J Figure 1
File Edit View Insert Tools Desktop Window Help
Ned&g h RAOMe |08 5O

Step Response
From: In(1) From: In(2)

50 1

To: Out(1)

-200
3000

2000
1000

Amplitude

-1000
-2000
-3000
-4000 0

To: Out(2)

200 400 600 8000 200 400 600 800
Time (sec)

Fig. 3.6

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO MATLAB® TOOLBOXES 73

J Figure 1 r;[@l@

File Edit View Insert Tools Desktop Window Help ¥
Ded& k| aaMe v 0B e

Impulse Response
From: In(1) From: In(2)

To: Out(1)

Amplitude

To: Out(2)

0 200 400 600 8000 200 400 600 800
Time (sec)

Fig. 3.7

The time responses show that the system is indeed lightly damped. But the
time frame is much too long. Let us look at the response over a smaller time
frame. Define the time vector T before invoking impulse.

Define a time vector from 0 to 20 seconds in steps of 0.2:

> T = 0:0.2:20;
Plot the responses as separate graphs (see Fig. 3.8):

> subplot(221), impulse(A,B,C(1,:),D(1,:),1,T);
> title('Input 1 Output 1')

> subplot(222), impulse(A,B,C(2,:),D(2,:),1,T);
> title('Input 1 Qutput 2')

> subplot(223), impulse(A,B,C(1,:),D(1,:),2,T);
> title('Input 2 Output 1')

> subplot(224), impulse(A,B,C(2,:),D(2,:),2,T);
> title('Input 2 Output 2')

> subplot

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

74 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

) Figure 1 r;| E|g|

Fie Edt View Insert Tools Desktop Window Help
Ded& kh AaM® ¥ 08 =0
; Input 1 Output 1 . Input 1 Output 2
LA R ——__
E‘ - g 201 /\
-30 ¢ w
5 . . . 4! A
0 5 10 15 20 0 5 10 15 20
Time (sec) Time (sec)
Input 2 Output 1 Input 2 Output 2
14 25
12 20}
2 1I g 15
g\ / /N e
0 5[/ /
04 ")) .
] 5 10 15 20 0 5 10 15 20
Time (sec) Time (sec)
Fig. 3.8

Look at the plot from aileron (input 2) to bank angle (output 2). The aircraft is
oscillating around a nonzero bank angle. The aircraft is turning in response to an
aileron impulse. This behavior will be important later.

Typically yaw dampers are designed using yaw rate as the sensed output and
rudder as the input. Let us look at that frequency response (see Fig. 3.9):

> bode(A,B,C(1,:),D(1,:),1);

From this frequency response we see that the rudder is effective around the

lightly damped Dutch roll mode (at 1 radian/second).
To make the design easier, extract the subsystem from rudder to yaw rate.

Extracting the subsystem with input 1 and output 1,
> [a,b,c,d] = ssselect(A,B,C,D,1,1);

Let us do some designs. The simplest compensator is a gain. We can determine
values for this gain using the root locus (see Fig. 3.10):

> rlocus(a,b,c,d);

Oops. Looks like we need positive feedback (negative feedback is assumed)
(see Fig. 3.11):

> rlocus(a,b,—c,—d); sgrid

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO MATLAB® TOOLBOXES

) Figure 1
Fle Edt View Insert Tools Desktop Window Help
DEHESE kQaMHe ¥ 08 =0

Bode Diagram

Magnitude (dB)

Phasge (den)

Frequency (rad/sec)

Fig. 3.9
-} Figure 1
File Edit View Insert Toolks Desktop Window Help
Ded& K aaMa « 08 80
1 T T T T
08
0.6
04l
w 02r
<
5 0pe—o o
£ {
7]
E g2t 1
04} ?
—
] <
D6 : \
i /
08 : ’,-/
: =
1 = 1 1 1 1
06 04 -0.2 0 02 04 06 08
Real Axis

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

76 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

-} Figure 1 L IBX

5l Ecit View Imsert Tools Desktop Window Help
DS | AQAMH® « 08 sO
Root Locus
1 —r —poe- —— .
0.64:7" 05- 038] 7
0.8 ’ - ke LT
0.8 ;
0.6 R 2
04 o.94.
w 02 e
% iy
E 021 ‘s
048 ST
; 04
e
06 s meill -r.__.- : o
08 g . v, ST a1
MIJ 05" 0380 --..0.28 0 ——0-8
= L3 L 1 1 e
-1 09 08 07 06 05 04 03 02 01 0
Real Axis
Fig. 3.11

That looks better. Using just simple feedback, we can achieve a damping ratio
of {=0.45.

Now it is your turn. Use the capability within rlocus to select the point on the
root locus providing the maximum closed-loop damping.

Select a point in the graphics window using the mouse. MATLAB will return
with the following (see Fig. 3.12):

selected point =
—0.3114 4 0.6292i

Note that multiple points may be selected in this manner from the figure
window. We will next use MATLAB to convert this result into a text string to
display with the closed-loop system gains:

> disp(['You chose gain: ';num2str(k)]),damp(esort(poles));
You chose gain 0.26798.

Eigenvalue Damping Freq. (rad/s)
—3.08e — 001 + 6.30e — 001i 4.39¢ — 001 7.02e — 001
—3.08¢e — 001 — 6.30e — 001i 4.39¢ — 001 7.02e — 001
—3.25¢ — 001 1.00e + 000 3.25¢ — 001

—9.67e — 001 1.00e 4- 000 9.67e — 001

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO MATLAB® TOOLBOXES 77

J Figure 1 E|E|g|

File Edit View Insert Tools Desktop Window Help
a8 K aaMe € 08| 8O
; Root Locus
' 084 0B. 038
08
OBF
U4 ragy.
e 02+
=
g o o
= -
£ 0 | I it i
T e e A
a4f AT
e
U 3 . 06
S N T o8
088~ 05 Uume.-p2E OT—ode
St | -1 - | | 1 | ik T
-1 -0.9 -0.8 -07 0.6 0.5 -0.4 3.3 0.2 0.1 0
Real Axis
Fig. 3.12

Let us form the closed-loop system so that we can analyze the design:
> [ac,be,ce,dc] = feedback(a,b,c,d,[L[L[1,—k);

ac =
—0.0558 —0.9773 0.0802 0.0415
0.5980 —1.3879 —0.0318 0
—3.0500 0.7980 —0.4650 0
0 0.0805 1.0000 0
bc =
0.0729
—4.7500
1.5300
0
cc =
01 0 0
dc =
0

These eigenvalues should match the ones you chose (see Fig. 3.13):

>> disp('Closed loop eigenvalues'), damp(ac);
>> impulse(ac,be,cc,dc,1,T);

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

78 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

=) Figure 1 QE |g|

Fle Edt View Insert Tools Desktop Window Hep
Dedé h e € 08 80

Impulse Response

Amplitude

0 2 4 6 8 10 12 14 16 18 20
Time (sec)

Fig. 3.13

This response looks pretty good. Let us close the loop on the original model
and see how the response from the aileron looks. This is accomplished using
feedback of output 1 to input 1 of plant.

Feedback with selection vectors assumes positive feedback (see Fig. 3.14):

> [Ac,Bc,Ce,De] = feedback(A,B,C,D,[L[1,[Lk,[11,[1]);
> disp('Closed loop eigenvalues'), damp(Ac);

> T = 0:0.2:20;

> subplot(221), impulse(Ac,Bc,Cc(1,:),Dc(1,:),1,T);
>> title('Input 1 Output 1')

>> subplot(222), impulse(Ac,Bc,Cc(2,:),De(2,:),1,T);
> title('Input 1 Output 2')

>> subplot(223), impulse(Ac,Bc,Cc(1,:),De(1,:),2,T);
> title('Input 2 Output 1')

> subplot(224), impulse(Ac,Bc,Cc(2,:),Dc(2,:),2,T);
> title('Input 2 Output 2')

> subplot

Look at the plot from aileron (input 2) to bank angle (output 2). When we
move the aileron, the system no longer continues to bank like a normal aircraft.

JAIAA.

The Workls From i Aempas Laodirdip. Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO MATLAB® TOOLBOXES 79

=)} Figure 1 g@lgl

Fie Edt View Irsert Tooks Desktop Window Help
D& kK QadN® ¥ 0B =0

Input 1 Output 1 Input 1 Output 2

Amplitude
Amplitude

0 5 10 15 20 o 5 10 15 20
Time (sec) Time (sec)
Input 2 Output 1 : Input 2 Output 2

Amplitude
Amplitude

10 15 20 "o 5 10 15 20
Time (sec) Time (sec)

Fig. 3.14

We have overstabilized the spiral mode. The spiral mode is typically a very slow
mode and allows the aircraft to bank and turn without constant aileron input.
Pilots are used to this behavior and will not like our design. Our design has
moved the spiral mode so that it has a faster frequency.

What we need to do is make sure the spiral mode doesn’t move farther into the
left half-plane when we close the loop. One way to fix this problem is to use a
washout filter, i.e.,

Ks
(s+a)
Choosing a =0.333 for a time constant of 3 seconds, form the washout:
> [aw,bw,ew,dw] = zp2ss([0],[—.333],1)

aw =
—0.3330

bw =

H(s) =

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

80 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

Connect the washout in series with our design model:

> [a,b,c,d] = series(a,b,c,d,aw,bw,cw,dw)

a =
—0.3330 0 1.0000 0 0
0 —0.0558 —0.9968 0.0802 0.0415
0 0.5980 —0.1150 —0.0318 0
0 —3.0500 0.3880 —0.4650 0
0 0 0.0805 1.0000 0
b=
0
0.0729
—4.7500
1.5300
0
c=
—0.3330 0 1.0000 0 O
d=
0

Do another root locus (see Fig. 3.15):

> rlocus(a,b,—c,—d); sgrid

) Figure 1
: Root Locus
084" 05 03803 042!
08} 7. W P AR
06} -
0.88
04l

| T

E ;

ENaL
o i
o .88 2ty ST TS e
Bl oL

- ' o P08
e Tt ; N 08
064~ 05 U3E 024 0.2~y !
4 0.8 06 04 0.2 0 0.2 0.4
Real Axis

JAIAA.

The Workls From i Aempas Laodirdip. Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO MATLAB® TOOLBOXES 81

Now the maximum damping is { = 0.25.
Now use rlocus to choose the gain for maximum damping. Selecting a point in
the graphics window gives the following result (see Fig. 3.16):

selected_point =
—0.1818 + 0.6956i1

) Figure 1 r:‘@lﬁ|

File Edit View Insert Took Desktop Window Help »
D& kRAQAN9 E 0B 80
Root Locus
TAF Y T s e | =
035 026 __....--0A7- Q8 :
14 L TS S .
09104477 / _______ 0.3]
w 08f i S « R, |
Z { X -0.1818 1
<
= DR | Y- 056986 o7
8 0frggq.—- . 3 W R
E e . . :
= ™ " N) L 06
064 . 3 s :
i i { . : | | a ! | |
04 0.3 0.2 0.1 0 01
Real Axis
Fig. 3.16

> disp(['You choose gain: ';num2str(k)]), damp(esort(poles));
You choose gain 0.23263 (see Fig. 3.17).

Eigenvalue Damping Freq. (rad/s)
—4.07e — 003 1.00e + 000 4.07e — 003
—1.82e — 001 + 6.96e — 001i 2.53e — 001 7.19e — 001
—1.82e — 001 — 6.96e-0011i 2.53e — 001 7.19¢ — 001
—4.71e — 001 1.00e + 000 4.71e — 001

—1.24e + 000 1.00e + 000 1.24e 4+ 000

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

82 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

-} Figure 1 r;| |E| E|

Fie Edt View Insert Took Desktop Window Hep x
Deds h QN9 v 0H =8O
Root Locus
" 0Bt~ 05, _038-703F 012X
gg;.ﬂ-.?_s_- : M e & /03
BGE- - ..Syslem. sys .“10&
[0.88 Gain: 0.24 S
| Pole: 0.179+ 069 -, 0%]
| Damping: 0.252 - ="~ 3 Vol
g nzii__“?' e Frequeri":[{.sr:;;ls{:?]!l‘?é : |
5 of i R R i
£ | 1
E02r, o i R
04}
L o.85
06/
.oa;_-o.l,g w =y AR
. 08~ 057 TUSE-...028 072 .
g 08 06 04 02 02 04
Real Axis
Fig. 3.18
Look at the closed-loop response (see Fig. 3.18):
> [ac,be,cc,dc] = feedback(a,b,c,d,[1,[1,[1,—k)
> impulse(ac,be,cc,dc,1,T);
ac =
—0.3330 0 1.0000 0 0
—0.0056 —0.0558 —0.9798 0.0802 0.0415
0.3680 0.5980 —1.2200 —-0.0318 0
—0.1185 —3.0500 0.7439 —0.4650 0
0 0 0.0805 1.0000 0
bc =
0
0.0729
—4.7500
1.5300
0
cc =
—0.3330 0 1.0000 0 0
dc =

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO MATLAB® TOOLBOXES

J Figure 1
Fie Edit View Insert Tools Desktop Window Help
DeE& K QaM® | 08| ed

Impulse Response

Amplitude

0 2 4 6 8 10 12 14 16 18
Time (sec)

20

Fig. 3.18

Now form the controller (washout + gain):
> [aw,bw,cw,dw] = series(aw,bw,cw,dw,[1,[1,[].k)
aw =
—0.3330

bw =
1

cW =
—0.0775

dw =
0.2326

Close the loop with the original model:

> [Ac,Bc,Ce,Dc]= feedback(A,B,C,D,aw,bw,cw,dw,[1],[1])

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

84 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

Ac =
—0.0558 —0.9798 0.0802 0.0415 —0.0056
0.5980 —1.2200 —0.0318 0 0.3680
—3.0500 0.7439 —0.4650 0 —0.1185
0 0.0805 1.0000 0 0
0 1.0000 0 0 —0.3330
Bc =

0.0729 0.0001
—4.7500 1.2300
1.5300 10.6300

0 0
0 0
Cc =
01 0 0O
0O 0 0 10
Dc =
0O 0
0O 0

The final closed-loop time responses are plotted:

> subplot(221), impulse(Ac,Bc,Cc(1,:),Dc(1,:),1,T);
> title('Input 1 OQutput 1')
> subplot(222), impulse(Ac,Bc,Cc(2,:),Dc(2,:),1,T);
> title('Input 1 Output 2')
> subplot(223), impulse(Ac,Bc,Cc(1,:),Dc(1,:),2,T);
> title('Input 2 Qutput 1')
> subplot(224), impulse(Ac,Bc,Cc(2,:),Dc(2,:),2,T);
> title('Input 2 Qutput 2')

Although we didn’t quite meet the criteria, our design increased the damping
of the system substantially (see Fig. 3.19).

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO MATLAB® TOOLBOXES 85

) Figure 1 CEX

Fie Edt View Insert Toolks Desktop Window Help
Dede K aaM® v 08 s @
Input 1 Output 1 . Input 1 Output 2
2 1
E E /\a._../f_h
5 -30
0 5 10 15 20 0 5 10 15 20
Time (sec) Time (sec)
Input 2 Output 1 Input 2 Output 2
15 20
15
@ 1 @
s s
g 2 10
& o0s £
~ 5
0 0
0 & 10 15 20 0 5 10 15 20
Time (sec) Time (sec)
Fig. 3.19

3.10 Digital Design

This example demonstrates MATLAB’s ability in digital system design by
synthesizing a computer hard disk read /write head position controller.

Using Newton’s law, we can model the simplest model for the read /write head
with the following differential equation:

I*theta_ddot + C*theta_dot + K*theta = Ki*i

where I is the inertia of the head assembly; C is the viscous damping coefficient
of the bearings; K is the return spring constant; Ki is the motor torque constant;
theta_ddot, theta_dot, and theta are the angular acceleration, angular velocity,
and position of the head; and i is the input current.

Taking the Laplace transform, the transfer function is

Ki

Hs) =————
(s) Is24+Cs+K

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

86 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

Using the values I=0.01Kg m?, C=0.004 Nm/(radians/second),
K = 10 Nm/radians, and Ki = 0.05 Nm/radians, form the transfer function
description of this system:

>1=.01; C = 0.004; K = 10; Ki = .05;
> NUM = [Ki];

> DEN = [I C K];

>> printsys(NUM,DEN,‘s’);

num/den =

0.05
0.01 s72 4 0.004s + 10

Our task is to design a digital controller that can be used to provide accurate
positioning of the read/write head. We will do the design in the digital domain.

First we must discretize our plant because it is continuous. MATLAB has
several methods available for this discretization using the function c2dm. Let
us compare all the methods and choose the best one. Note that starting in
version 6.1 the continuous system is represented using the new sys format,
whereas the discrete systems still use the older transformation format. Because
of the number of toolboxes and commands in MATLAB, these types of inconsis-
tencies can be encountered.

Use the sample time 7, = 0.005 (5 mseconds) (see Fig. 3.20):

> Ts = 0.005;

> sys = tf(NUM,DEN);

> clf;

> [magar, phasear,w] = bode(sys);

> bode(sys);

> title('Bode of Continuous Open Loop Hard Disk Drive');

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO MATLAB® TOOLBOXES 87

J Figure 1 r;|gi

Fle Edit View Insert Took Desktop Window Help
D& kh RAGY|E 0EH 8O0

Bode of Continuous Open Loop Hard Disk Drive

201

40+

60

Magnitude (dB)

80 +

-100

120 : e
0

45

Phase (deg)

-135

180 & sl -]
10° 10 107 107
Freguency (rad/sec)

Fig. 3.20

Because of the different model structures, the new array format is converted
into the older vector format for comparison with the discrete system responses:

> ender = size(magar);

> for i = 1:ender(3)

> mag(i) = magar(1,1,i);
> phase(i) = phasear(1,1,i);
> end

Now plot the results as a comparison (see Fig. 3.21):

> [num,den] = c2dm(NUM,DEN,Ts,'zoh");

>> [mzoh,pzoh] = dbode(num,den,Ts,w);

> [num,den] = c2dm(NUM,DEN,Ts,'foh");

>> [mfoh,pfoh] = dbode(num,den,Ts,w);

> [num,den] = c2dm(NUM,DEN,Ts,'tustin');

> [mtus,ptus] = dbode(num,den,Ts,w);

> [num,den] = c2dm(NUM,DEN,Ts,'prewarp',30);
> [mpre,ppre] = dbode(num,den,Ts,w);

> [num,den] = c2dm(NUM,DEN,Ts,'matched');
>> [mmat,pmat] = dbode(num,den,Ts,w);

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

88 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

> subplot(211);

> semilogx(w,20*log10(mag)), hold on;

> semilogx(w,20*log10(mzoh),w,20*log10(mfoh),w,
20*log10(mtus),w,20*log10(mpre),w,20*logl 0(mmat))

> hold off;

> xlabel('Frequency (rad/sec)'), ylabel('Gain dB");

> title('c2d Comparison Plot');

> subplot(212);

> semilogx(w,phase), hold on;

> semilogx(w,pzoh,w,pfoh,w,ptus,w,ppre,w,pmat), hold off;

> xlabel('"Frequency (rad/sec)'), ylabel('Phase deg');

File Edit View Insert Tools Desktop Window Help
Ded& h @aaQaMe | 08| 0
3 c2d comparison plot
A
g 0 e, 1
£)
m - #
O 100} \4
-150 - L .
10” 10' 10° 10°
Frequency (rad/sec)
0
m
& 100+ l /—
i1
% i--._..____ ¥
& -200F T f,f .
~
-300 T ——— .
10 10' 10° 10°
Frequency (rad/sec)
Fig. 3.21

Looking at these plots, we see that they all seem to be pretty good matches to
the continuous response. However, the matched pole-zero method gives a mar-
ginally better match to the continuous response.

Note that Franklin and Powell’s book Digital Control Systems provides an
excellent discussion of these methods.

Now analyze the discrete system. A summary of some of the
continuous-to-discrete mappings is given in Table 3.2.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO MATLAB® TOOLBOXES 89

Table 3.2 Discrete representations of H(s) = a/(s + 2)

Forward rectangular rule H(s) = _*
z—1)/T+a

Backward rectangular rule H(s) = ﬁ
z— z+a

Trapezoid rule or Tustin’s bilinear rule H(s) = a

@/Dlz—-1D/z+1) +a]

A brief summary of Table 3.2 is that an approximation to the frequency vari-
able can be used to provide a mapping from a continuous transfer function to a
discrete transfer function or from the s plane to the z plane. These approximations
are given in Table 3.3 for each of the preceding methods.

Additional insights into these mappings may be gained by considering them
graphically. In the continuous plane, the s = jw-axis is the boundary separating
the poles of stable systems from the poles of unstable systems. We will next
look at the three mapping rules and will examine how the stable left-half
system appears in the z plane. The inverse mappings from the previous table
are given in Table 3.4.

By using the variable substitution s = jo in the preceding equations, the
boundaries to the shaded z-plane regions are generated for each of these three
cases. These maps are given in Figs 3.22-3.24.

Another very effective method for obtaining the discrete time equivalent to a
continuous transfer function is a pole-zero mapping. If we take the z transforms
of the samples of a continuous signal e(t), then the poles of the discrete transform
are related to the poles of the continuous transform by z = ¢*'. The idea of the

Table 3.3 Approximate continuous to discrete mappings

Forward rectangular rule S ~ z—1
T
z—1
Backward rectangular rule S ~
R ., Tz
Trapezoid rule or Tustin’s 2z - 1)
bilinear rule S~ ———
T(z+1)

Table 3.4 Approximate discrete to continuous mappings

Forward rectangular rule z~14Ts
1
1 —-Ts

L 1+Ts2
1—Ts/2

Backward rectangular rule z

Trapezoid rule or Tustin’s
bilinear rule

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

90 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

1N
ANV

Fig. 3.22 Forward Rectangular Rule.

1N
D/

Fig. 3.23 Backward Rectangular Rule.

1N
N

Fig. 3.24 Trapezoid Rule or Tustin’s Bilinear Rule.

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO MATLAB® TOOLBOXES 91

pole-zero mapping technique is that this same relation can also be applied to the
system’s zeros. The following are used to apply this technique.

1) All poles of H(s) are mapped by z = ¢*".

2) All finite zeros of H(s) are also mapped by z = ¢°".

3) All zeros of H(s) at s = o are mapped to the point z = —1.

4) If a unit delay in the digital system’s response is required, one zero of H(s)
at s = o0 is mapped into z = co.

5) The gain of the digital system is selected to match that of the continuous
system at either the band center or at a critical frequency. Often this critical fre-
quency is at s = 0.

Application of the preceding rules to

a
H(s) =
s+ a
results in the discrete transfer function:
1— efaT
H(z) = pa—

A final discretization technique is the hold equivalence. The purpose of sam-
plers is to work on only the system’s outputs during each discrete time interval.
Thus, the input-output behavior can be realized as a transfer function. The dis-
crete equivalent is generated by first approximating e(t) from the samples e(k)
and then running this time sequence through H(s). MATLAB contains techniques
for taking this sequence and holding them through each discrete time interval to
produce a continuous signal.

Now we will analyze one of the discrete system equivalents.

Displaying the discrete system generated using the matched technique,

> printsys(num,den,'z')

num/den =

6.2308e — 005 z 4 6.2308e — 005
z"2 —1.9731 z + 0.998

Plot the step response:

> dstep(num,den);

The system oscillates quite a bit. This is probably due to very light damping.
We can check this by computing the open-loop eigenvalues (see Fig. 3.25).

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

92 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®
J Figure 1
Fle Edt View Insert Tools Desktop Window Help ¥
D& k RANe | ¥ 0B =0
Step Response
0.01
0.009 ‘ .
0.008
0.007 ‘ .
0006 |‘ |H | 1
= i i
,_E' 0.005 Ill!'; ':I"|;|:5|||E|I ||I I| L !
& I
000:1 HE 1
0.003 ‘ '
0.002
0.001 -
00 1000 20;]0 3000 4000 50:00 6000
Time (sec)
Fig. 3.25

>> disp('Open loop discrete eigenvalues'), ddamp(den,Ts);

Open-loop discrete eigenvalues

Eigenvalue Magnitude Equiv. Damping Equiv. Freq. (rad/s)
0.9865 + 0.1573i 0.9990 0.0063 31.6228
0.9865 — 0.1573i 0.9990 0.0063 31.6228

This concludes our chapter on the use of toolboxes, detailing their use in
dynamic systems analysis.

3.11 Conclusion

This chapter introduced the reader to a few of the computational and graphics
routines available in MATLAB toolboxes. Many other MATLAB toolboxes are
also available to the reader.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO MATLAB® TOOLBOXES 93

Practice Exercises

Enter the transfer function

(s+3)

HO =G -0

3.1 Calculate the partial fraction expansion using residue.

3.2 Convert to state space.

3.3 Use c2d to generate the discrete-time equations, with T = 0.5 seconds.
3.4 Use tf2zp to convert to a zero-pole-gain transfer function.

3.5 Convert the zero-pole-gain representation into state space.

3.6 Generate a Bode plot.

3.7 Generate a root locus.

3.8 Generate a Nyquist plot.

JAIAA

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

Notes

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

4
Introduction to MATLAB” Cells,
Structures, and M-Files

4.1 Introduction and Objectives

This chapter covers some of the other data types that are available in
MATLAB®. It also covers conditional statements and programming M-files.

Upon completion of this chapter, the reader will be able to identify other data
types available in MATLAB (cells and structures) and develop both script and
function M-files using conditional statements.

4.2 Cells

Cell arrays are data types that allow a user to store arbitrary data within each of
the values of its array. For example, the following is a valid cell array:

> myCell{[12 3;4 5 6],'Text in second index','embedded cell'}}
myCell =
[2%x3 double] [1x24 char] ({1xI1 cell}

Notice that any data type can be located in any index of the array. Cells are
most useful as a place to store strings that have different lengths. To view each
cell type the following command:

> myCell{1}

ans =
1 2 3
4 5 6

> myCell{2}
ans =

Text in the second index

95

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

96 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

> myCell{3}
ans =
‘embedded cell’

To view the second row of the array stored in cell 1, type the following
command:

> myCell{1}(2,:)

ans =
4 5 6

Two useful commands to examine the structure of cells and the data stored in
the cells are cellplot and celldisp (see Fig. 4.1).
To examine the structure of myCell, use the command:

>> cellplot(myCell)

=) Figure 1

Fle Edit Vew [nsert Tools Desktop Window Help <
DEE& h RaH € 0E =0

Fig. 4.1

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO MATLAB® CELLS 97

To examine the data stored within myCell, use the command
> celldisp(myCell)

myCell{1} =

1 2 3
4 5 6

myCell{2} =

Text in the second index

myCell{3}{1} =
embedded cell

This concludes the section on cells.

4.3 Structures

Structures are data types that allow a user to store data in a field/value meth-
odology. They are similar to records in a database. The following is an example
of a structure that stores data in useful groupings:

> Data.X.Name='AOA';

> Data.X.Units="'Deg';

> Data.X.Values=1:10;

> Data.Y.Name="Cl';

> Data.Y.Units="";

> Data.Y.Values=[11:20]/10;

> Data.X
ans =
Name: 'AOA'
Units: 'Deg’
Values: [1234567 89 10]
> Data.Y
ans =
Name: 'CI'
Units: "'

Values: [1.1 1.21.3141.51.61.71.81.92]

Structures really become useful when you have arrays of them. You can create
additional elements of the Data array to hold other sets of data:

> clear
> Data(2).X.Name="'AOA';
> Data(2).X.Units="'Deg';

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

98 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

> Data(2).X.Values=1:10;

> Data(2).Y.Name="Cd';

> Data(2).Y.Units="";

> Data(2).Y.Values=[1:10]/1000;

> Data
Data =
1 X 2 struct array with fields:

X
Y

Data now has two elements in it containing data for Cl versus AOA and Cd
versus AOA. This structure could be increased in dimension for additional forces
and moments.

4.4 M-Files

MATLAB provides a full programming language that enables you to write a
series of MATLAB statements into a file and then execute them with a single
command. You write your program in an ordinary text file, giving the file a
name of filename.m. The term you use for filename becomes the new
command that MATLAB associates with the program. The file extension of .m
makes this a MATLAB M-file. M-files can be scripts that simply execute a
series of MATLAB statements, or they can be functions that also accept argu-
ments and produce output. You create M-files using a text editor and then use
them as you would any other MATLAB function or command.

There are two kinds of M-files: 1) script M-files and 2) function M-files. Script
M-files do not accept input arguments or return output arguments and operate on
data in the workspace. Scripts are the simplest kind of M-file because they have
no input or output arguments. Function M-files accept input arguments and return
output arguments and use internal variables (local to the function) by default.

Let us construct a MATLAB program or script M-file that generates the movie
from Sec. 2.10 of Chapter 2. We will also examine the commands if and for,
which are often used in M-files.

M-files are ordinary text files that you create using a text editor. MATLAB
provides a built-in editor, although you can use any text editor you like. An
advantage to using the build-in editor is that it can help you execute and debug
your M-file.

Use the pull-down menu File to create a new M-file. Select File, then select
New, and finally select M-file by clicking on the right button. This opens the
MATLARB file editor. After entering the program (the five MATLAB commands
given at the end of Chapter 2 of this book), select File and then the Save As
option. Enter the filename (for example, RDCMovie.m) into the upper left
field of the Save As window. This name must end in .m so that MATLAB recog-
nizes it as an M-file.

To run the M-file RDCMovie.m in MATLAB, type

> RDCMovie

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO MATLAB® CELLS 99

To modify an existing M-file, select File and Open M-file and then choose the
desired M-file.

M-files can also be created using a normal text editor. The filename must end
in .m for MATLAB to recognize the file as an M-file. The .m portion of the file-
name is not required when executing the file within the MATLAB Command
Window. Also note that the .m portion of the filename is not displayed when
using the what command.

Note that a % is used for comments. Everything after the % on that line is
ignored during execution.

Continuations of lines are denoted with three periods Forexample, the vector
G can be entered using the following command, which includes a continuation:

> G=[1.11 2.22 3.33 4.44 5.55 6.66 7.77...8.88 9.99];
4.4.1 If

The if command conditionally executes statements. The simple form is

if variable, statements end

The statements are executed if the variable has all nonzero elements. The vari-
able is usually the result of

‘expr’ rop ‘expr’

where rop is ==, <, >, <=, >=, or ~=.
Other operators are

& = and
| =or
~ = not

For example, I and J must either be real positive integers or logical:

ifI=]
ALY)=2;
elseif abs(I — J)=1
else
ALLY)=0;
end
A

4.4.2 For

The for command repeats statements a specific number of times. An example
of this is

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

100 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

for J=1:N
ALDH=1/A+J - 1);
end
end
A
A=
1.0000 0.5000 0.3333 0.2500 0.2000
0.5000 0.3333 0.2500 0.2000 0.1667
0.3333 0.2500 0.2000 0.1667 0.1429
0.2500 0.2000 0.1667 0.1429 0.1250
4.4.3 While

The while command repeats statements an indefinite number of times. Here is
an example that computes the first integer n for which n! (that is n factorial) is a
10 digit number:

n=1;

while prod(1:n) < 1.e10, n=n + 1;, end
n

This produces the result n = 14.

4.4.4 Strings

Text strings are entered into MATLAB surrounded by single quotes. For
example,

> s = ‘Hello’
results in

S =
Hello

4.4.5 Function M-Files

This section shows you the basic parts of a function M-file, so that you can
familiarize yourself with MATLAB programming and get started with some
examples:

function f = fact(n) % Function definition line

% FACT Factorial. % H1 line

% FACT(N) returns the factorial of N, H! % Help text
% usually denoted by N!

% Put simply, FACT(N) is PROD(1:N).

f = prod(1:n); % Function body

This function has some elements that are common to all MATLAB functions.

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO MATLAB® CELLS 101

1) A function definition line: This line defines the function name and the
number and order of input and output arguments.

2) An H1 line: H1 stands for help 1 line. MATLAB displays the H1 line for a
function when you use look for or request help on an entire directory.

3) Help text: MATLAB displays the help text entry together with the HI1 line
when you request help on a specific function.

4) The function body: This part of the function contains code that performs the
actual computations and assigns values to any output arguments.

You can provide user information for the programs you write by including a
help text section at the beginning of your M-file. This section starts on the line
following the function definition and ends at the first blank line. Each line of
the help text must begin with a comment character %. MATLAB displays this
information whenever you type help m-file_name.

You can also make help entries for an entire directory by creating a file with
the special name Contents.m that resides in the directory. This file must contain
only comment lines; that is, every line must begin with a percent sign. MATLAB
displays the lines in a Contents.m file whenever you type help directory_name.

If a directory does not contain a Contents.m file, typing help directory_name
displays the first help line (the H1 line) for each M-file in the directory.

M-files are ordinary text files that you create using a text editor. MATLAB
provides a built-in editor, although you can use any text editor you like. To
open the editor on a PC, from the File menu, choose New and then M-File.
Another way to edit an M-file is from the MATLAB command line using
the edit function. For example, edit my_mfile opens the editor on the file
my_mfile.m. Omitting a filename opens the editor on an untitled file.

As an example, let us construct an M-file function that accepts a structure con-
taining data and then generates a plot using this data.

First we create the function to do the plotting as follows:

function [][=myplot(DataArray);

% []=myplot(DataArray)

% Plots data contained in the structure 'DataArray’

%

plot(DataArray.X.Values,DataArray.Y.Values)
xText=[DataArray.X.Name ' (' DataArray.X.Units ")'];
xlabel(xText);

yText=[DataArray.Y.Name ' (' DataArray.Y.Units ')'];
ylabel(yText);

Next we create the data as in Sec. 4.3:

Data.X.Name="'AQOA";
Data.X.Units='Deg';
Data.X.Values=1:10;
Data.Y.Name="Cl';
Data.Y.Units="";
Data.Y.Values=[11:20]/10;

JAIAA.

The Workls From i Aempas Laodirdip. Purchased from American Institute of Aeronautics and Astronautics

102 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®
Finally we call the new function (see Fig. 4.2)

myplot(Data(1));

J Figure 1 E‘@8|

File Edit View Insert Tools Desktop Window Help
D& hRQAMe (€ 0E =0

18+ E

16+ .

Cl()

ESl E

13+ .

1_1 L L 1 1
1 2 3 H 5 6 7 8 9 10

AOA (Deg)

Fig. 4.2

To see commands as they are executing, use the echo command. The
command echo off turns off this feature.
This concludes the discussion on M-files.

4.5 Conclusion

This chapter introduced the reader to MATLAB cells and structures. It also
covered conditional statements and programming in MATLAB using M-files.

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO MATLAB® CELLS 103

Practice Exercises

4.1 Construct a 2-by-2 cell array A as a database matrix containing the fol-
lowing information:

Location: Edwards Air Force Base

Date: 13 June 2006

Times: 6 a.m., 9 a.m., and 12Qn00n

Temperatures: 76, 79, and 78UF at 6 a.m.

Temperatures: 86, 92, and 89 F at 9 a.m.

Temperatures: 97, 102, and 97 F at 12 noon

4.2 Construct a structure array database containing the following
information:

a) Name

b) Employee number

¢) E-mail address

d) The vector [1 234 5]

4.3 Generate an M-file to calculate a rocket’s trajectory and then save the
data in the array data. The first column is the time, and the second column is
the rocket height. In addition, generate an X-Y plot of the rocket’s trajectory.
Complete the following computations using MATLAB functions/operations.

The performance of the rocket is described by the following equation:
Height = 60 + 2.13t> — 0.0013t* + 0.000034t*7>!

The equation gives the height above the ground at time t in feet. The rocket’s
nose (reference point) is initially 60 ft above ground level.

The program should start at time t and end when the rocket hits the ground, or
stop after 100 seconds, computing in two second increments. The program should
then be modified to print the time when the rocket begins to fall and when it
impacts.

JAIAA

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

Notes

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

5
Handle Graphics® and User Interfaces

5.1 Introduction and Objectives

The following chapter provides a brief introduction to Handle Graphics® and
to developing your own GUIs in MATLAB®.

Upon completion of this chapter, the reader will be able to identify MATLAB
graphics objects and their structure and operation and build a simple GUI using
MATLAB’s GUI Layout Editor (GUIDE).

5.2 Handle Graphics®

Handle Graphics are MATLAB’s graphics objects and their properties. It is
helpful for the user to be able to customize the previously provided MATLAB
graphics. The key MATLAB Handle Graphics Objects and Operations are intro-
duced in this section.

Each instance of an object is associated with a unique identifier called a
handle. Using this handle, you can manipulate the characteristics or object prop-
erties of an existing graphics object. These are organized into a tree-structured
hierarchy. This hierarchy is illustrated in Fig. 5.1.

Root is at the top of this hierarchy, the figure underneath, axes and similar
qualities below that, and image qualities at the lowest level. To draw a line
object, MATLAB needs an axis object to orient and provide a frame of reference
to the line. The axis, in turn, needs a figure window to display the line.

The details on all the different types of graphics objects are found in the
Graphics section of the MATLAB Help Documentation under Graphics:
Handle Graphics Objects: Types of Graphics. The Handle Graphics Objects
and Operations follow. The detailed manipulation of these properties is best
covered later in this section.

Finding and Identifying Graphics Objects

allchild Find all children of specified objects
ancestor Find ancestor of graphics object
copyobj Make copy of graphics object and its children

delete Delete files or graphics objects
findall Find all graphics objects (including hidden handles)
figflag Test if figure is on screen

105

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

106 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

Root
]
Figure
| -
. idden
Ul Objects Axes Annotation Axes

Core Objects| | Plot Cbjects | |Group Objects| |Annotation Objects

Fig. 5.1 Handle Graphics® Tree-structured Hierarchy.

findfigs Display off-screen visible figure windows
findobj Find objects with specified property values

gca Get current axes handle

gcbo Return object whose callback is currently executing
gcbf Return handle of figure containing, callback object
gco Return handle of current object

get Get object properties

ishandle True if value is valid object handle

set Set object properties

Object Creation Functions

axes

figure
hggroup
hgtransform
image

light

line

patch
rectangle
rootobject
surface

text
uicontextmenu

Plot Objects

areaseries
barseries
contourgroup
errorbarseries

Create axes object

Create figure (graph) windows

Create a group object

Create a group to transform

Create image (two-dimensional matrix)

Create light object (illuminates Patch and Surface)
Create line object (three-dimensional polylines)
Create patch object (polygons)

Create rectangle object (two-dimensional rectangle)
List of root properties

Create surface (quadrilaterals)

Create text object (character strings)

Create context menu (pop-up associated with object)

Property list
Property list
Property list
Property list

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

HANDLE GRAPHICS® AND USER INTERFACES

lineseries Property list
quivergroup Property list
scattergroup Property list
stairseries Property list
stemseries Property list
surfaceplot Property list

Figure Windows

cle

clf

close
closereq
drawnow
figflag
gef
hgload
hgsave
newplot
opengl
refresh
saveas

Clear figure window

Clear figure

Close specified window

Default close request function

Complete any pending drawing

Test if figure is on screen

Get current figure handle

Load graphics object hierarchy from a FIG-file
Save graphics object hierarchy to a FIG-file
Graphics M-file preamble for NextPlot property
Change automatic selection mode of OpenGL rendering
Refresh figure

Save figure or model to desired output format

Axes Operations

axis
box
cla
gea
grid
ishold

Plot axis scaling and appearance

Display axes border

Clear axes

Get current axes handle

Grid lines for two- and three-dimensional plots
Get the current hold state

makehgtform Create a transform matrix

Operating

get
linkaxes
linkprop
set

on Object Properties

Get object properties

Synchronize limits of specified axes

Maintain same value for corresponding properties
Set object properties

107

Let us next use Handle Graphics objects to modify the properties of an axis.
First let us make an axis and then plot some data:

>x=0

:.01:10;

> plot(x,sin(x).*x. 2);

JAIAA.

The Workls From i Aempas Laodirdip. Purchased from American Institute of Aeronautics and Astronautics

108 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

The result is shown in Fig. 5.2.

-} Figure 1
File Edt View Insert Tools Desktop Window Help
Dedée k| aaMe € 08 =0

EEX

80 T T

60

40

20+

20

40t

_60 | 1
0

10

Fig. 5.2

The following command gets all the properties of the current axis:

> get(gcea)
ActivePositionProperty = outerposition
ALim = [0 1]
ALimMode = auto
AmbientLightColor = [1 1 1]
Box =on
CameraPosition = [5 10 17.3205]
CameraPositionMode = auto
CameraTarget = [5 10 0]
CameraTargetMode = auto
CameraUpVector = [0 1 0]
CameraUpVectorMode = auto
CameraViewAngle = [6.60861]
CameraViewAngleMode = auto
CLim = [0 1]
CLimMode = auto

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

HANDLE GRAPHICS® AND USER INTERFACES

Color=1[111]
CurrentPoint=[(2 by 3) double array]
ColorOrder=[(7 by 3) double array]
DataAspectRatio = [5 70 1]
DataAspectRatioMode = auto
DrawMode = normal
FontAngle = normal
FontName = Helvetica
FontSize = [10]
FontUnits = points
FontWeight = normal
GridLineStyle = :
Layer = bottom
LineStyleOrder = -
LineWidth = [0.5]
MinorGridLineStyle = :
NextPlot = replace
OuterPosition=[(1 by 4) double array]
PlotBoxAspectRatio = [1 1 1]
PlotBoxAspectRatioMode = auto
Projection = orthographic
Position=[(1 by 4) double array]
TickLength = [0.01 0.025]
TickDir = in
TickDirMode = auto
Title = [153.004]
Units = normalized
View = [0 90]
XColor = [0 0 0]
XDir = normal
XGrid = off
XLabel = [154.004]
XAxisLocation = bottom
XLim = [0 10]
XLimMode = auto
XMinorGrid = off
XMinorTick = off
XScale = linear
XTick=[(1 by 6) double array]
XTickLabel =

0

2

4

6

8

10
XTickLabelMode = auto
XTickMode = auto

109

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

110 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

YColor = [0 0 0]
YDir = normal
YGrid = off
YLabel = [155.005]
Y AxisLocation = left
YLim = [—60 80]
YLimMode = auto
YMinorGrid = off
YMinorTick = off
YScale = linear
YTick=[(1 by 8) double array]
YTickLabel =
—60
—40
—-20
0
20
40
60
80
YTickLabelMode = auto
YTickMode = auto
ZColor = [0 0 0]
ZDir = normal

ZGrid = off
ZILabel = [156.005]
ZLim =[—1 1]

ZLimMode = auto
ZMinorGrid = off
ZMinorTick = off
ZScale = linear
ZTick =[—101]
ZTickLabel =
ZTickLabelMode = auto
ZTickMode = auto
BeingDeleted = off
ButtonDownFcn =
Children = [152.006]
Clipping = on
CreateFcn =
DeleteFcn =
BusyAction = queue
HandleVisibility = on
HitTest = on
Interruptible = on
Parent = [1]

Selected = off
SelectionHighlight = on

JAIAA.

The Workls From i Aempas Laodirdip. Purchased from American Institute of Aeronautics and Astronautics

HANDLE GRAPHICS® AND USER INTERFACES 111
Tag =
Type = axes

UlContextMenu = []
UserData = []
Visible = on

Let us next flip the y axis so that negative values are at the top (see Fig. 5.3):

> set(gca,'ydir','reverse');

) Figure 1 |
File Edt View Insert Tools Desktop Window Hep &
DSE& h|QRQM® ¥ 0B O

‘6{] T T T T

40t

-20

20 -

40

60

8{] 1 1 1 1

Fig. 5.3

Let us look up what options are provided for the 'tickDir' property. To do this,
we call set without giving the command a value. MATLAB will then print out all
of the available options:

> set(gca,'tickDir')
[{in} | out]

The tick marks are currently set to 'in'. Now we will change the tick marks
from 'in' to 'out' (see Fig. 5.4):

> set(gca,'tickDir','out')

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

112 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

J Figure 1 g@@

File Edit View Insert Tools Desktg_p Window Help ¥
Ded&e kh QaQO® E 08 =0

60 : ' : :
40 L
-20 -
o—0 L
20 F
40 L

60 -

80

0 2 4 6 8 10

Fig. 5.4

Now we will put a text string on the graph:
> h = text(.5,.5,'my text');

The results are shown in Fig. 5.5.
Now we need to move the position of the text string and change the font size
and weight:

> set(h,'position',[S —40],'fontsize',20,'fontweight','bold")

The resulting figure is plotted next with the modified text string (see Fig. 5.6).

5.3 Graphical User Interface Development Environment

What is a graphical user interface (GUI)? A GUI is a user interface built with
graphical objects—the components of the GUI—such as buttons, text fields,
sliders, and menus. If the GUI is well designed, it should be intuitively
obvious to the user how its components function. For example, when you

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

HANDLE GRAPHICS® AND USER INTERFACES 113

-} Figure 1 Q@g

File Edt View Insert Tools Desktop Window Help ¥
D& b RAQAOMe || 0E a0

50 1 1 1 1

40 L

-20 -

0_ L

20 -

40

60 -

80 T T T T
0 2 4 6 8 10

Fig. 5.5

move a slider, a value changes; when you click an OK button, your settings are
applied and the dialog box is closed. Fortunately, most computer users are
already familiar with GUIs and know how to use standard GUI components.
By providing an interface between the user and the application’s underlying
code, GUIs enable the user to operate the application without knowing the
commands that would be required by a command line interface. For this
reason, applications that provide GUIs are easier to learn and use than those
that are run from the command line. The sections that follow describe how to
create GUIs with GUIDE. This includes laying out the components, program-
mlng them to do specific things in response to user actions, and saving and
opening the GUI.

GUIDE, the MATLAB graphical user interface development environment,
provides a set of tools for creating GUIs. GUIDE simplifies the process of creat-
ing GUIs by automatically generating the GUI M-file directly from your layout.
GUIDE generates callbacks for each component in the GUI that requires a call-
back. Initially, GUIDE generates just a function definition line for each callback.
You can add code to the callback to make it perform the operation you want.
These tools greatly simplify the process of laying out and programming a GUI.
This section introduces you to GUIDE and the layout tools it provides.

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

114 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

-} Figure 1 g@g

File Ecit View Insert Tools Desktop Window Help ¥
D& h ANy ¢ 08 =0

60 1 ! . "
-40- my text i
-20 + I
0+ L
20+ -
40+

60 =

80 T T T L
0 2 B 6 8 10

Fig. 5.6

The GUI Layout Editor is started from MATLAB using the command guide.
Invoking guide displays the GUI Layout Editor opened to a new untitled FIG-file.
By qualifying the command, guide('filename.fig') opens the FIG-file named
filename.fig. You can even specify the path to a file not on your MATLAB
path. The command guide('figure_handles') opens FIG-files in the Layout
Editor for each existing figure listed in figure_handles. MATLAB copies the
contents of each figure into the FIG-file, with the exception of axes children
(i.e., image, light, line, patch, rectangle, surface, and text objects), which are
not copied.

GUIDE provides several templates, which are simple examples that you can
modify to create your own GUIs. The templates are fully functional GUISs:
their callbacks are already programmed. You can view the code for these call-
backs to see how they work and then modify the callbacks for your own purposes.
You can access the templates in two ways.

1) Start GUIDE by entering guide at the MATLAB prompt.

2) If GUIDE is already open, select New from the File menu in the Layout
Editor.

Starting GUIDE displays the GUIDE Quick Start dialog as shown in
Fig. 5.7.

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

HANDLE GRAPHICS® AND USER INTERFACES 115

GUIDE Quick Start g

Create New GUI | open Existing 6UI |

GUIDE templates Preview

=): Blank GUI (Default)

o\ GUI with Uicontrols

4\ GUI with Axes and Menu
<\ Modal Question Dialog

BLANK

[[] save on startup as: |

[oK J[Cancel J[Help J

Fig. 5.7

5.4 Layout Editor

When you open a GUI in GUIDE, it is displayed in the Layout Editor (see Fig.
5.8), which is the control panel for all of the GUIDE tools. The Layout Editor
enables you to lay out a GUI quickly and easily by dragging components, such
as push buttons, pop-up menus, or axes, from the component palette into the
layout area. Once you lay out your GUI and set each component’s properties,
using the tools in the Layout Editor, you can program the GUI with the M-file
Editor. Finally, when you press the Run button on the toolbar, the functioning
GUI appears outside the Layout Editor window.

This view has the option to show component names.

1) Align Objects: The Alignment Tool enables you to position objects with
respect to each other and to adjust the spacing between selected objects. The
specified alignment operations apply to all components that are selected when
you press the Apply button. The Alignment Tool provides two types of alignment
operations: 1) align, which aligns all selected components to a single reference
line, and distribute, which spaces all selected components uniformly with
respect to each other. Both types of alignment can be applied in the vertical
and horizontal directions. Note that, in many cases, it is better to apply align-
ments independently to the vertical or to the horizontal using two separate steps.

2) Menu Editor: MATLAB enables you to create two kinds of menus: 1) menu
bar objects, menus displayed on the figure menubar, and 2) context menus,
menus that pop up when users right-click on graphics objects. You create both
types of menus using the Menu Editor, which you can access from the Menu
Editor item on the Tool menu and from the Layout Editor toolbar.

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

116 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

Alignment Tool Menu Editor M-file Editor Property Inspecor Object Browser

Run Button
Uindo .

<) untitled.fig

(= 3

Fle Edt Temloyot TooksMep N\ ' :
De@|:oBgo bl A~
Redo —-""'ﬁ;ﬁ

L]
[Toggle Button
M Checkbox

Component < o EditTed |

Palette

T Slalic Text

== Slider
| Frame

Sl Listhox

=3 Popup Menu

i{‘,{Axes

Figure Resize Tob

Fig. 5.8

3) M-File Editor: The M-file Editor creates a new M-file or opens an existing
M-file in the MATLAB Editor/Debugger.

4) Property Inspector: The Property Inspector enables you to set the prop-
erties of the components in your layout. It provides a list of all settable properties
and displays the current value. Each property in the list is associated with an editing
device that is appropriate for the values accepted by the particular property; for
example, a color picker to change the BackgroundColor, a pop-up menu to set
FontAngle, and a text field to specify the Callback string.

5) Object Browser: The Object Browser displays a hierarchical list of the
objects in the figure. In the following example, we will illustrate a figure
object and its child objects.

6) Run: A GUI can be created to run simulations and plot the results.

The following uicontrol objects are available in the component palette.

1) Push Buttons: Push Buttons generate an action when clicked (e.g., an OK
button may close a dialog box and apply settings). When you click the mouse on a
Push Button, it appears depressed; when you release the mouse, the button
appears raised, and its callback executes.

2) Toggle Buttons: Toggle Buttons generate an action and indicate a binary
state (e.g., on or off). When you click on a Toggle Button, it appears depressed

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

HANDLE GRAPHICS® AND USER INTERFACES 117

and remains depressed until you release the mouse button, at which point the call-
back executes. A subsequent mouse click returns the Toggle Button to the raised
state and again executes its callback.

3) Radio Buttons: Radio Buttons are similar to Check Boxes (to follow) but
are intended to be mutually exclusive within a group of related Radio Buttons (i.e.,
only one button is in a selected state at any given time). To activate a Radio
Button, click the mouse on the object. The display indicates the state of the
button.

4) Check Boxes: Check Boxes generate an action when checked and indicate
their state as checked or not checked. Check Boxes are useful when providing the
user with a number of independent choices that set a mode (e.g., display a toolbar
or generate callback function prototypes).

5) Edit Text: Edit Text controls are fields that enable users to enter or modify
text strings. Use Edit Text when you want text as input. The String property con-
tains the text entered by the user.

6) Static Text: Static Text controls display lines of text. Static Text is typically
used to label other controls, provide directions to the user, or indicate values
associated with a slider. Users cannot change static text interactively, and there
is no way to invoke the callback routine associated with it.

7) Sliders: Sliders accept numeric input within a specific range by enabling
the user to move a sliding bar. Users move the bar by pressing the mouse
button and dragging the slide, by clicking in the trough, or by clicking an
arrow. The location of the bar indicates a numeric value.

8) Frames: Frames are boxes that enclose regions of a figure window.
Frames can make a user interface easier to understand by visually grouping
related controls. Frames have no callback routines associated with them and
only uicontrols can appear within frames (axes cannot).

9) List Boxes: List Boxes display a list of items and enable users to select one
or more items.

10) Pop up Menus: Pop up Menus open to display a list of choices when
users click the arrow.

5.5 Property Inspector

The Property Inspector allows you to directly edit the properties of the
selected object. In Fig. 5.9, you see the properties of a push button. The most
used properties will be String (the label) and Callback (the action to
perform). In Fig. 5.10, you see one way to edit the callback by right-clicking
on the button and selecting Callback. This brings up the MATLAB Editor and
places you at the entry point of the callback that was automatically created for
you. Before you bring up the editor, make sure that you name your control
properly, because the name will be used in the function that is created for you.

The GUI M-file generated by GUIDE controls the GUI and determines how
it responds to a user’s actions, such as pressing a push button or selecting a
menu item. The M-file contains all the code needed to run the GUI, including
the callbacks for the GUI components. While GUIDE generates the framework

JAIAA.

The Workls From i Aempas Laodirdip. Purchased from American Institute of Aeronautics and Astronautics

118 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

FTTETE]

jg{ axes (axes1)
- ALim 01) |
ALimMade >|auto
[+ AmbientLightColor)| I—
- BeingDeleted off
— Box >|of
— BusyAction 1] queue
— ButtonDownFen
[+ CLim o1
- CLimMode | auto
[+ CameraPosition [0.505916]
— CameraPositionMode __'-_rJ auto il
[+ CameraTarget [050505]
— CameraTargetMode _ﬂ auto
[+ CameralpVvector 010
— CameraUpVectoriode w]auto
— CameraViewAngle 6.609
— CameraViewAngleMode 1] auto
— Clipping >|on
[+ Color Ql[:
— CreateFcn
[+— CurrentPoint o0
[+ DataAspectRatio [111]
—— DataAspectRatioMade 1] auto
— DeleteFcn
— Drawhode >|normal
— FontAngle | normal
FontMame Helvetica
— FontSize 100
- FontUnits :I points
— Fontweight :! normal =

Fig. 5.9

for this M-file, you must program the callbacks to perform the functions you
want them to.

The code shown as follows is a typical default callback that you can then fill in
with your code.

% — Executes on button press in pushbuttonl.

function pushbuttonl_Callback(hObject, eventdata, handles)

% hObject handle to pushbuttonl (see GCBO)

% eventdata reserved — to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

HANDLE GRAPHICS® AND USER INTERFACES 119

W Example1.fig E'@l g:

Fie Edt View Layout Toos Help
D dheo- | aBh Q% >

[check Box Push But== I
—5 1 Cu

Copy

& Clear
Duplicate
Bring to Front
Send lo Back

]
Property Inspector

Object Browser
M-file Editor

CreateFecn

DeleteFcn
BusionDownFcn
KeyPressFon

Fig. 5.10

If you would rather call some other function, edit the Callback property in the
inspector to suit your needs. For example, making the Callback property read

myProgram('Push Button')

could be used to alert your myProgram that the button was pushed.

Although you can certainly use MATLAB’s automatically created callbacks, it
is advisable to put all of your analysis code in a separate file to maintain readability
and reusability.

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

120 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

If we would like to create a GUI that has a graph and a push button that plots a
sine curve when activated, we can proceed as follows.

1) Build the GUI with a graph and a push button. Also include a checkbox to
set an option. Save it as (see Fig. 5.11)

Examplel_GUL

% Examplei_GULfig

Fie Edt View Layout Took Help
DFE sRm-c s WS BxY > :
=
® |4 .
o | I:‘ Check Box Push Elullnnl
=] 5l [
(ot
[E]EE axes’
=X
% >

Fig. 5.11

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

HANDLE GRAPHICS® AND USER INTERFACES 121
2) Set the callback for the button to be (see Fig. 5.12)

examplel('Button Pushed')

% Property Inspector

uicontrol (pushbutton1 "Push Button")

% BackgroundColor [—

- BeingDeleted of
BusyAction E] queue
ButtonDownFcn
CData HE
Callback example1 (Button Pushed’
Clipping on
CreateFcn
DeleteFcn
Enable E] on

E] normal

FontAngle
FaontName MS Sans Serif
FontSize 8.0
FontUnits [3 points
Fontweight () normal

+ ForegroundColor ®
HandleVisibility on
HitTest (»]on
HorizontalAlignment E] center
Interruptible E] on
KeyPressFeon
ListboxTop 1.0

Fig. 5.12

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

122 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

3) Start a new M-file called examplel.m. Load the GUI if no arguments are
called or handle the argument if it is present (see Fig. 5.13).

B) u:\ Training\matlab' exercise\ examplel.m 1 :“I“Jmﬁl
File Edt Wew Text Debug Breakpoints Web Window Help
DSH| BB | S|(ds| Q8|20 QA sue x
1 function examplel({Action): —
2
3|-| 4if nargin == 0;
4 % load the GUI
= hFig=Examplel GUI:
B6|=| else:
7= switch Action
8= case 'Button Pushed'
al= x=1:.01:10;
10| = plot(x,sin(x),'k'):
11|— end;
12/=| end:
13 | |
| I
|examplet [lLn13 col1

Fig. 5.13

4) Run the example by typing examplel (see Fig. 5.14).

) Example1_GUI

[check Box
7\ /
\\ f

/

0
05
1 -
0 7 10

Fig. 5.14

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

HANDLE GRAPHICS® AND USER INTERFACES 123

5) Now check the status of the checkbox and do another plot if it is checked
(see Fig. 5.15):

case 'Button Pushed'
hCheckBox = findobj('tag','checkbox1');
Selected = get(hCheckBox,'value');
x = 1:.01:10;
if Selected;
plot(x,cos(x),'k',x,sin(x),'r");
else;
plot(x,sin(x),'k");
end;

T 1=

v Checkbox
e Push Button

05t

051

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

124 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®
5.6 Menu Editor

(reale a new menu ilem

(reale a new conlexi menu ~ Move selecled menu ilem

(reale a new menu
Delete seleded item

=k Menu Editor

=10l

[Properties
Click New Menu bution iNm selected.

on toolbar

Menu Bar | ContextMenus |

Fig. 5.16

Menus (as well as complete GUIs) can be created via MATLAB commands.
However, it is easier to build them with the Menu Editor (see Fig. 5.16). Using
the New Menu and New Menu Item buttons, you can create either standard
windows-style menus or your own custom menus. Just like graphical objects,
you interact with your code with callbacks. In Fig. 5.17, a callback is shown
that tells the program to open a file.

Now implement the callback in the examplel.m file:

case 'File Open'
[file,path] = uigetfile;

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

HANDLE GRAPHICS® AND USER INTERFACES 125

9 [

File Edit

¥ Checkbox Push Button [

1
Roccrictoope 2]
Look inc | 3 TEMP | « @& ck B
0.5] _ISTMPO.DIR C1CNexto1.rol CJjunk [_1PPTS.
__I _ISTMP1.DIR __I DataExportPlugin |;1 Lastrac.1.1.1 ;1 pves
_IAcrobat Distiler5 [__JExcels.0 CILM_Geometry Cevest
0 :J Bitmaps _‘J FrontPageTempDir I:J msoclipl ':J Quesl
;I CATReport O intel_a |_j msohtmll !_j regsh
_1CATTemp Cinternet CIppT10.0 [sampl
o5l K ia
File name: | Open
1 Files of type: | Al MATLAB Files | Cancel |
1 = 0 I) o T (=]) ™
Fig. 5.17

In addition to standard menus, you can create context-sensitive menus that get
activated when you right-click on the figure. One very useful feature is that you
can change any menu at run time. This allows you to update the menu based on
the program status. Items have a checked property that allows check marks to be
placed next to them to indicate that an item is active.

Most of the options that you see in the property inspector can be changed at
run time. Thus, a good knowledge of Handle Graphics will go a long way in
helping you to customize your GUI and make a well-designed program.

5.7 Compiling a Stand-Alone Executable

MATLAB allows you to compile your programs into stand-alone C or C++
executables, complete with GUIs. There are too many options to cover here, but
we can simply compile our examplel program by issuing the following
command at the MATLAB prompt:

> mcc -B sgl examplel

This converts the M-file functions into C and compiles them, links them with
the MATLAB libraries, and produces the examplel.exe file. To run this from the
MATLAB prompt, simply type !examplel.

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

126 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

To install this program on PCs that do not have MATLAB, you need to do the
following:

1) Copy the executable .fig files and any contents of the \bin directory to the
new machine.

2) Copy any custom mex files that the program uses to the new machine.

3) Run the MATLAB Library installer on the new machine, which is located
on the original computer at $SMATLAB\extern\lib\win32\mglinstaller.exe.
Here $SMATLAB is the location of the MATLAB installation.

4) Add the . . \bin\win32 directory that was specified during the installation of
the MATLAB Library to the system path.

5.8 Conclusion

This chapter was a brief introduction to the GUI creation capabilities of
MATLAB. Only a small part of the capabilities were explored. MATLAB
gives users the power to build high-quality programs driven by functional user
interfaces very easily.

GAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

HANDLE GRAPHICS® AND USER INTERFACES 127

Practice Exercises

5.1 Assignment objective: Design a simple, graphically driven program that
loads in data from a csv-formatted (data only) file and plots it on an axis. The file-
name should be read from an edit box and can be typed in or inserted from
the result of uigetfile call. Your final program should resemble that shown in
Fig. 5.18 for a data file of a sine wave.

[Jexercisesgui =1oix|
Load Fie.. | Flnnas 1 U\ Trarng\matisb\datalie. dat

[= | |

T

0.6¢

04t

0.2}

Fig. 5.18

JAIAA

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

Notes

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

6
Introduction to MATLAB” MEX-Files

6.1 Introduction and Objectives

This chapter covers some of the other data types that are available in
MATLAB®. It also covers MEX-files. MEX-files enable routines written in
other programming languages (such as FORTRAN) to interface with MATLAB.

Upon completion of this chapter, the reader will be able to identify other data
types available in MATLAB and set dynamically linked subroutines using
MEX-files.

6.2 Dynamically Linked Subroutines: MEX-Files

Although MATLAB is a complete, self-contained environment for program-
ming and manipulating data, it is often useful to interact with data and programs
external to the MATLAB environment. You can call your own C and FORTRAN
subroutines from MATLAB as if they were built-in functions. MATLAB-callable
C and FORTRAN programs are referred to as MEX-files. MEX-files are dynami-
cally linked subroutines that the MATLAB interpreter can automatically load and
execute.

MEX-files have several applications.

1) Large pre-existing FORTRAN and C programs can be called from
MATLAB without being rewritten as MATLAB M-—files.

2) Bottleneck computations (usually for-loops) that do not run fast enough in
MATLAB can be recoded in C or FORTRAN and compiled for faster
execution.

MEX-files are not appropriate for all applications. MATLAB is a high-
productivity system that is designed to eliminate time-consuming, low-level
programming in compiled languages like FORTRAN or C. In general, most pro-
gramming should be done in MATLAB. Don’t use the MEX facility unless your
application requires it.

What kind of things can you do with MEX-files?

1) You can build interfaces to existing libraries. There are many tools avail-
able in the form of libraries. To make use of them, you don’t have to abandon
MATLAB and do all your work in C (or FORTRAN). Just write a MEX-file
wrapper, link against the library, and you can make library calls within
MATLAB.

129

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

130 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

2) You can speed up your M-files. Efficiently vectorized M-files run about as
fast as if they were written in C (well, within a factor of 2 or 3). M-files that do
a lot of looping can be significantly slower. Some problems can’t readily be
vectorized (usually problems where future results depend on past results), and
these are ideal candidates for conversion into MEX-files.

6.2.1 Using MEX-Files

MEX-files are dynamically linked subroutines produced from C or FORTRAN
source code; they behave just like M-files (files that end in .m) and built-in
functions. To distinguish them from M-files on disk, MEX-files use the extension
mex followed by the platform-specific identifier. Table 6.1 shows the platform-
specific extensions for MEX-files.

To invoke a MEX-file on your disk, MATLAB looks through the list of
directories on MATLAB’s search path. It scans each directory in order
looking for the first occurrence of the function with the filename extension
mex or m. When it finds one, it loads the file and executes it. MEX-files
behave just like M-files and built-in functions. Whereas M-files have a
platform-independent extension, m, MATLAB identifies MEX-files by
platform-specific extensions. MEX-files take precedence over M-files when
like-named files exist in the same directory.

6.2.2 Matrix Data Structure

Before you can program MEX-files, you must become acquainted with the
internal data structures or objects used by MATLAB. The MATLAB mathemat-
ics language works only with a single object type: the matrix. A matrix can be
square or rectangular, complex or real, and full or sparse. Scalars, vectors, and
text all are represented using the same structure.

Rather than directly manipulating the matrix data structure from C (which is
possible) or from FORTRAN (which is not possible), the MEX-file interface
library provides a set of access subroutines for manipulating matrices.

A matrix object contains the properties listed in Table 6.2.

If the storage class of a matrix is sparse, pr and pi have slightly different
interpretations and the new properties—nzmax, ir, and je—are relevant (see
Table 6.3).

Table 6.1 MEX-file extensions for different
computer systems

System type MEX-file extension
Sun Solaris.mexsol
HP-UX .mexhpux

Linux .mexglx

Maclntosh .mexmac

Windows dil

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO MATLAB® MEX-FILES 131

Table 6.2 Matrix object properties

Property Description

Name Points to a character string array of length mxMAXNAN containing
the null-terminated name of the matrix. mxMAXNUM is defined to
be 20 in the file matrix.h. If the matrix is temporary (the result of an
intermediate expression), the first character in the name is '\0".

M The number of rows in the matrix.
N The number of columns in the matrix.
DisplayMode Instructs MATLAB to either display the matrix in numeric form or to

interpret the elements as ASCII values and display the matrix as a
string, if the semicolon is omitted from the statement.

Storage Indicates the storage class; that is, whether the matrix is full or sparse.

pr Points to an array containing the real part of the matrix. The real part
of the matrix consists of a length M*N (length is nzmax if the
matrix is sparse), contiguous, singly subscripted, array of
double-precision (64-bit) floating-point numbers. The elements of
the matrix are stored using FORTRAN. The number of rows in the
matrix is stored using FORTRAN’s column-order convention (not
C’s row-wise convention).

pi Points to an array containing the imaginary part of the matrix. If this
pointer is NULL, there is no imaginary part, and the matrix is purely
real.

6.2.3 C Language MEX-Files

MEX-files are built by combining your C source code with a set of routines
provided in the MATLAB External Interface Library.

6.2.3.1 Directory organization. A collection of files associated with the
creation of C language MEX-files is located on the disk in the directory named
$MATLAB/extern, where SMATLAB is the directory in which MATLAB is
installed. Beneath this directory are three subdirectories into which the files are
grouped:

$MATLAB/extern/include
$MATLAB/extern/lib
$MATLAB/extern/src

The /include subdirectory holds header files containing function declarations
for all routines that you can access in the External Interface Library:

mex.h MEX-file function prototypes
matrix.h Matrix access methods prototypes

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

132 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

Table 6.3 Array lengths and pointers

Property Description

Nzmax The length of ir, pr and, if it exists, pi. It is the maximum possible number of
nonzero elements in the sparse matrix.

pr Points to the double-precision array of length nzmax containing the real parts
of the nonzero elements in the matrix.

pi NULL, if the matrix is real; otherwise it points to the double-precision array
of length nzmax containing the imaginary parts of the nonzero elements in
the matrix.

ir Points to an integer array of length nzmax containing the row indices for the
corresponding elements in pr and pi.

jc Points to an integer array of length N+-1 that contains column index

information. For j in the range 0<=j<=N-1, je[j] is the index in ir, pr,
(and pi, if it exists) of the first nonzero entry in the jth column, and
jelj+1]-1 is the index of the last nonzero entry. As a result, je[N] is also
equal to nnz, the number of nonzero entries in the matrix. If nnz is less
than nzmax, then more nonzero entries can be inserted in the matrix
without allocating additional storage.

You must include mex.h in your MEX-file source files. Note that
mex.h includes matrix.h, and so there is no need to include matrix.h
explicitly.

The /lib subdirectory contains the object libraries used when linking your
MEX-files.

The /sre subdirectory contains source code examples of MEX-files.

6.2.3.2 C language MEX-file examples.
Example 1—a very simple example. The following is an example of a
C language MEX-file to write the string “Hello World” to the command

window:

J*= = = - - - - - - - - - - - simpex.c- - - - - - - - - - - — - - */
#include "mex.h"

void mexFunction(int nlhs, mxArray *plhs[], int nrhs,

const mxArray *prhs[]) {

mexPrintf ("Hello World\n") ;

The important points to notice are as follows.

The entry point is called mexFunction. You can have any number of other
functions, but you must have at least one named mexFunction.

The parameters nlhs and nrhs tell you how many left- and right-hand-side
arguments you supply the MEX-function within MATLAB. They are just like
nargin and nargout. The parameters plhs and prsh are arrays of matrix
structures.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO MATLAB® MEX-FILES 133

To compile and link this file, we issue the following command:

>> mex simpex.c

6.2.3.3 Example 2—MEX-file speed advantages. M-files that do a lot of
looping can be significantly increased in speed by implementation as MEX-files.
One example of this sort of problem is modeling a switch with hysteresis. For
instance, you might want it to turn on if an input is above 0.7 but stay turned
on until it drops below 0.5.

The M-file would look something like this:

function out=hyst(x,min_thresh, max_thresh)
x=x(3);
for n=2:length(x),

if x(n) > max_thresh,

x(m)=1;
elseif x(n) < min_thresh,
x(n)=0;
else,
x(n)=x(n — 1);
end
end
out=x;

The MEX-file equivalent is only slightly longer.

#include "mex.h"

void mexFunction(int nlhs,
mxArray *plhs([],
int nrhs,
const mxArray *prhs(]

/* nlhs and nrhs tell you how many left and right hand */
/* arguments you supply to the MEX-function */
/* plhs and prsb are arrays of Matrix structures. */

{
double *pr_out, *pr_in, *on, *off;
long i, len;
mxArray *mpout;

/* This is the gateway portion */
if (nrhs < 3)
mexErrMsgTxt ("Not enough input arguments");

len = mxGetN(prhs[0]) * mxGetM(prhs[0]); /*Get first argument size*/

pr_in = mxGetPr(prhs[0]); /* Get pointer to the matrix data */

off = mxGetPr (prhs(1]); /* These are the scalars, so the first */

on = mxGetPr (prhs[2]); /* element of each is the on/off value */
mpout = mxCreateDoubleMatrix(len,l,mxREAL); /* Create a REAL matrix to return */
pr_out = mxGetPr (mpout) ; /* Get pointer to the matrix data */

pr_out[0] = pr_in[0];

JAIAA

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

134 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

/* In this example this is the computation portion */
for (i = 1; i < len; i++)
{

if (pr_in[i] < *off)

pr_out[i] = 0;
else if (pr_in([i] > *on)
pr_out[i] = 1;
else
pr_out[i] = pr_out[i - 1];
}
plhs[0] = mpout; /* Assign the first left-hand side */
/* argument to mpout */
return;
}
2 *)

Compile hystmex.c by typing
> mex hystmex.c

How do they compare in speed? This test was run on a SGI Indigo 2
extreme:

x=rand(50000,1);
tic; y=hyst(x,.5,.7);toc
elapsed_time = 4.490 % M-file output due to tic and toc calls

tic; y2=hystmex(x,.5,.7);toc
elapsed_time = 0.0368 % M-file output from tic and toc calls

Therefore, the MEX-file is over 122 times faster. Of course, if it takes you
more time to write, debug, and compile the MEX-file than you save due to the
increased speed, it isn’t a net gain (this is often the case).

6.2.3.4 Example 3—three-body problem. Consider the M-file
yprime.m, which contains the differential equations for a restricted three-body
problem. The program yprime.m returns state derivatives, given state values
and time, and can be integrated using the MATLAB function ode23. The
MathWorks recommends that you use its M-file, FORTRAN, and C versions
of this program to validate your compiler and MEX-file implementation
process. The source for yprime.m is the following function:

function yp = yprime(t,y)

e

Differential equation system for the restricted three body problem.

oe

Think of a small third body in orbit about the earth and moon.

o0

The coordinate system moves with the earth-moon system.

The l-axis goes through the earth and the moon.

The 2-axis is perpendicular, in the plane of motion of the third body.
The origin is at the center of gravity of the two heavy bodies.

Let mu = the ratio of the mass of the moon to the mass of the earth.
The earth is located at (-mu,0) and the moon at (1 - mu,0).

o0 P 00 o0 o° o

v(1l) and y(3) = coordinates of the third body.

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO MATLAB® MEX-FILES 135

% y(2) and y(4) = velocity of the third body.

%

% Copyright (c) 1984-98 by The MathWorks, Inc., modified R. Colgren
% All Rights Reserved.

mus = 1 - mu;

rl = norm([y(1l)+ mu, y(3)]); % Distance to the earth

r2 = norm([y (1) - mus, y(3)]); % Distance to the moon

yp(l) = vy(2);

yp(2) = 2*y(4) + y (1) - mus*(y(1l)+mu)/rl"3 - mu*(y(l) - mus)/r2"3;
yp(3) = y(4);

yp(4) = -2*%y(2) + y(3) - mus*y(3)/rl"3 - mu*y(3)/r2"3;

The following statements show how this function is used:
yprimeout=yprime(1,[1 2 3 4])

The following is the C language MEX-file version of yprime.m:

)*¥==
*

* YPRIME.C Sample .MEX file corresponding to YPRIME.M

* Solves simple 3 body orbit problem

* Modified function to demonstrate shared library calling
*

* The calling syntax for the mex function is:

*

* lyp] = yprime(t, y)

*

* You may also want to look at the corresponding M-code, yprime.m.
*

* This is a MEX-file for MATLAB.

* Copyright 1984-2002 The MathWorks, Inc., modified R. Colgren

*

/* $Revision: 1.1.6.2.1 $ */

#include <math.h>
#include "mex.h"
#define EXPORT_FCNS
#include "shrhelp.h"

/* Input Arguments */

#define T_IN prhs[0]
#define Y_IN prhs[1]

/* Output Arguments */

#define YP_OUT plhs[0]

#if !defined (MAX)
#define MAX (A, B) ((A) > (B) ? (A) : (B))
#endif

#if !defined (MIN)
#define MIN(A, B) ((A) < (B) ? (A) : (B))
#endif

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

136 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

#define PI 3.14159265

static double mu = 1/82.45;
static double mus = 1 - 1/82.45;

EXPORTED_FUNCTION void yprimefcn (

double ypll,
double *t,
double yI]

)

double rl,r2;

rl = sqgrt((y[0] + mu)*(y[0]+mu) + y[2]*y[2]);
r2 = sqgrt((y[0] -mus)*(y[0]l-mus) + y[2]*y[2]);
/* Print warning if dividing by zero. */

if (rl == 0.0 || r2 == 0.0)¢
mexWarnMsgTxt ("Division by zero!\n");
}
yp[0] = yI[1];
yvpll]l = 2*y[3]1+y[0]-mus* (y[0]+mu) / (rl*rl*rl) -mu* (y[0]-mus)/ (xr2*r2*r2);
ypl2] = yI[3];
yvpl[3] = -2*y[1l] + y[2] - mus*y[2]/(rl*rl*rl) - mu*y[2]/(r2*r2*r2);
return;

}

EXPORTED_FUNCTION mxArray* better_yprime (
double t,
mxArray* y_in)

double *yp;
double *y;
unsigned int m,n;

mxArray* yp_out;

m = mxGetM(y_in);
n = mxGetN(y_in);
if (!mxIsDouble(y_in) || mxIsComplex(y_in) ||
(MAX(m,n) != 4) || (MIN(m,n) != 1)) {
mexErrMsgTxt ("YPRIME requires that Y be a 4 x 1 vector.");
}
/* Create a matrix for the return argument */

vp_out = mxCreateDoubleMatrix(m, n, mxREAL);

/* Assign pointers to the various parameters */
vp = mxGetPr (yp_out) ;

vy = mxGetPr(y_in);

/* Do the actual computations in a subroutine */
yprimefcn (yp, &t,y) ;
return yp_out;

}

void mexFunction(int nlhs, mxArray *plhs[],
int nrhs, const mxArray*prhs([])

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO MATLAB® MEX-FILES 137

double *yp;
double *t,*y;
unsigned int m,n;

/* Check for proper number of arguments */

if (nrhs !'= 2) {
mexErrMsgTxt ("Two input arguments required.");
} else if (nlhs > 1) {
mexErrMsgTxt ("Too many output arguments.");
}
/* Check the dimensions of Y. Y can be 4 X 1 or 1 X 4. */

= mxGetM(Y_IN) ;
= mxGetN(Y_IN) ;
f (!mxIsDouble(Y_IN) || mxIsComplex(Y_IN) ||
(MAX(m,n) ! = 4) || (MIN(m,n) ! = 1)) {
mexErrMsgTxt ("YPRIME requires that Y be a 4 x 1 vector.");
}

m
n
i

/* Create a matrix for the return argument */
YP_OUT = mxCreateDoubleMatrix(m, n, mxREAL);

/* Assign pointers to the various parameters */
yp = mxGetPr (YP_OUT) ;

t
y

mxGetPr (T_IN)
mxGetPr (Y_IN)

i
i

/* Do the actual computations in a subroutine */
yprimefcn (yp, t,y);
return;

To compile and link this file, we issue the following command:

>> mex yprime.c

6.2.3.5 MEX-file details. The source file for a MEX-file consists of two dis-
tinct parts: 1) a computational routine that contains the code for performing the
actual numeric computation and 2) a gateway routine that interfaces the compu-
tational routine with MATLAB.

The parameters nlhs and nrhs contain the number of left-hand-side and
right-hand-side arguments, respectively, with which the MEX-function is
called. The parameter prhs is a length nrhs array of pointers to the
right-hand-side matrices; plhs is a length nlhs array where your C function
must put pointers for the returned left-hand-side matrices.

For example, from our previous yprime example we could write

> x = yprime(l, [1 2 3 4]);
At the MATLAB prompt, the MATLAB interpreter calls mexFunction with
the arguments

nlhs = 1
nrhs = 2

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

138 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

plhs = "pointer to'" NULL

prhs = "first item in array pointer points to'' [1]
""second item in array pointer points to''
[1234]

Because there are two right-hand arguments to yprime, nrhs is 2. The para-
meter prhs[0] points to a matrix object containing the scalar [1], whereas
prhs[1] points to the matrix containing [1 2 3 4].

Note that in the C language matrix dimensions start at 0, not 1 as in
FORTRAN. The caller is expecting yprime to return a single matrix. It is the
responsibility of the gateway routine to create an output matrix (using mxCreate
DoubleMatrix) and to store a pointer to that matrix into plhs[0].

The gateway routine should dereference and validate the input arguments and
call mexErrMsgTxt if anything is amiss.

The gateway routine must call mxCreateDoubleMatrix, mxCreateSparse,
or mxCreateString to create matrices of the required sizes in which to return
the results. The return values from these calls should be assigned to the appropri-
ate elements of plhs.

The gateway routine may call mxCalloc to allocate temporary work arrays if
needed.

Finally, the gateway routine should call the computational routine.

6.2.3.6 Debugging C MEX-file. You cannot use a debugger on MEX-files
invoked directly from MATLAB. There are two options available: 1) use the old
standby printf statement and 2) generate a stand-alone executable image that can
be tested outside MATLAB.

6.2.3.7 FORTRAN language MEX-file example. Consider the same
M-file yprime.m as in the C language example, which contains the differential
equations for a restricted three-body problem. The program yprime.m returns
state derivatives, given state values and time, and can be integrated using the
MATLAB function ode23. The source for yprime.m was the previous
MATLAB function yp = yprime(t,y).

The following is the FORTRAN language gateway MEX-file version of
yprime.m called yprimeg.f.

C==
C YPRIMEG.FOR - Gateway function for YPRIME.FOR

C

C This is an example of the FORTRAN code required for

C interfacing a .MEX file to MATLAB.

C

C This subroutine is the main gateway to MATLAB. When a

C MEX function is executed MATLAB calls the MEXFUNCTION

C subroutine in the corresponding MEX file.

C

C Copyright 1984-2004 The MathWorks, Inc., modified R. Colgren
C SRevision: 1.9.2.1.1 $

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO MATLAB® MEX-FILES 139
C
SUBROUTINE MEXFUNCTION (NLHS, PLHS, NRHS, PRHS)
C
C_________________________________
C (pointer) Replace integer by integer*8 on 64-bit platforms
C
INTEGER PLHS(*), PRHS(*)
c_________________________________
INTEGER NLHS, NRHS
C
C_________________________________
C (pointer) Replace integer by integer*8 on 64-bit platforms
C
INTEGER MXCREATEDOUBLEMATRIX, MXGETPR
C_________________________________
INTEGER MXGETM, MXGETN
C
C KEEP THE ABOVE SUBROUTINE, ARGUMENT, AND FUNCTION DECLARATIONS FOR USE
C IN ALL YOUR FORTRAN MEX FILES.
C_________________________________
C
c_________________________________
C (pointer) Replace integer by integer*8 on 64-bit platforms
C
INTEGER YPP, TP, YP
C
c,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
C
INTEGER M, N
REAL*8 RYPP(4), RTP, RYP(4)
C
C CHECK FOR PROPER NUMBER OF ARGUMENTS
C
IF (NRHS .NE. 2) THEN
CALL MEXERRMSGTXT ('YPRIME requires two input arguments')
ELSEIF (NLHS .GT. 1) THEN
CALL MEXERRMSGTXT ('YPRIME requires one output argument')
ENDIF
C
C CHECK THE DIMENSIONS OF Y. IT CAN BE 4 X 1 OR 1 X 4.
C
M = MXGETM (PRHS(2))
N = MXGETN (PRHS(2))
C
IF ((MAX(M,N) .NE. 4) .OR. (MIN(M,N) .NE. 1)) THEN
CALL MEXERRMSGTXT ('YPRIME requires that Y be a 4 x 1 vector')
ENDIF
C
C CREATE A MATRIX FOR RETURN ARGUMENT
C
PLHS (1) = MXCREATEDOUBLEMATRIX(M,N,0)
C
C ASSIGN POINTERS TO THE VARIOUS PARAMETERS

JAIAA

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

140

(@]

c
C DO THE ACTUAL COMPUTATIONS IN A SUBROUTINE USING
c CREATED ARRAYS.
C
CALL YPRIME (RYPP,RTP,RYP)
c
C COPY OUTPUT WHICH IS STORED IN LOCAL ARRAY TO MATRIX OUTPUT
CALL MXCOPYREALS8TOPTR (RYPP, YPP, 4)
c
RETURN
END
The following is the computational portion of the FORTRAN MEX-file
called yprime.f.
C=======================—==—=—===—=—====—==—=—====—============
C The actual YPRIME subroutine in FORTRAN
c
C Copyright 1984-2000 The MathWorks, Inc., modified R. Colgren
C SRevision: 1.4.1 §
C====================—===—==—=—===—=—==—=—=—==—=—===—=============
C
SUBROUTINE YPRIME (YP, T, Y)
REAL*8 YP(4), T, Y(4)
C
REAL*8 MU, MUS, R1l, R2
c
MU = 1.0/82.45
MUS = 1.0 - MU
C
R1 = SQRT((Y (1) +MU)**2 + Y (3)**2)
R2 = SQRT((Y(1l) -MUS)**2 + Y (3)**2)
C
YP(1) = Y(2)
YP(2) = 2*Y(4) + Y(1) - MUS*(Y(1l)+MU)/(R1**3)
& MU* (Y (1) -MUS)/(R2**3)
c
YP(3) = Y(4)
YP(4) = -2*Y(2) + Y(3) - MUS*Y(3)/(R1**3) -
& MU*Y(3)/ (R2**3)
c

BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

YPP = MXGETPR(PLHS(1))

TP = MXGETPR (PRHS (1))
YP MXGETPR (PRHS (2))

COPY RIGHT HAND ARGUMENTS TO LOCAL ARRAYS OR VARIABLES

CALL MXCOPYPTRTOREALS (TP, RTP, 1)
CALL MXCOPYPTRTOREALS (YP, RYP, 4)

RETURN
END

To compile and link these files, we use the following command:

> mex yprime.f yprimeg.f

This command carries out the necessary steps to create the MEX-file.

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO MATLAB® MEX-FILES 141

6.2.3.8 FORTRAN MEX-file details. The source file for a MEX-file con-
sists of two distinct parts: 1) a computational routine that contains the code for
performing the actual numeric computation and 2) a gateway routine that inter-
faces the computational routine with MATLAB.

The computational and gateway routines must be split into separate files to
“trick” FORTRAN compilers into allowing addresses to be treated as integer
variables (pointers).

A pointer is a C language data type. Because MATLAB is written in C, poin-
ters are used extensively inside MATLAB.

In FORTRAN, when a program calls a subroutine, arrays are passed by refer-
ence (by address). Rather than passing a complete copy of an array to a subrou-
tine, only a copy of the address of the first element is passed. C pointers are like
FORTRAN array names in that they point (i.e., refer) to objects rather than being
the objects themselves. The entry point to the gateway subroutine must be named
mexFunction and have the following parameters:

SUBROUTINE MEXFUNCTIONNLHS, PLHS, NRHS, PRHS)
C

INTEGER*4 PLHS(*), PRHS(*)
C

INTEGER NLHS, NRHS

The parameters nlhs and nrhs contain the number of left-hand-side and
right-hand-side arguments, respectively, with which the MEX-function is
called. The parameter prhs is a length nrhs array of pointers to the
right-hand-side matrices. The parameter plhs is a length nlhs array where your
C function must put pointers for the returned left-hand-side matrices.

For example, from our previous yprime example we could write

> x=yprime(l, [1 2 3 4]);

At the MATLAB prompt, the MATLAB interpreter calls mexFunction with

arguments:
nlhs = 1
nrhs = 2
plhs = "pointer to'' NULL
prhs = '"first item in array pointer points to'' [1]

""second item in array pointer points to'' [1 2 3 4]

Because there are two right-hand arguments to yprime, nrhs is 2. The para-
meter prhs[0] points to a matrix object containing the scalar [1], whereas
prhs[1] points to the matrix containing [1 2 3 4]. Note that in the C language
matrix dimensions start at 0, not 1 as in FORTRAN. The caller is expecting
yprime to return a single matrix.

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

142 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

It is the responsibility of the gateway routine to create an output matrix
(using mxCreateDoubleMatrix) and to store a pointer to that matrix into plhs[0].

The gateway routine should dereference and validate the input arguments and
call mexErrMsgTxt if anything is amiss.

The gateway routine must call mxCreateDoubleMatrix, mxCreateSparse,
or mxCreateString to create matrices of the required sizes in which to return
the results. The return values from these calls should be assigned to the appropri-
ate elements of plhs.

The gateway routine may call mxCalloc to allocate temporary work arrays if
needed.

Finally, the gateway routine should call the computational routine.

6.2.3.9 Debugging a FORTRAN MEX-file. You cannot use a debugger
on MEX-files invoked directly from MATLAB. There are two options available:
1) use the old standby write statement and 2) generate a stand-alone execu-
table image that can be tested outside MATLAB.

6.3 MATLAB" Engine Library

The MATLAB engine library is a set of routines that allows you to call
MATLAB from your C or FORTRAN programs (i.e., MATLAB as a subroutine)
to use its mathematics and graphics routines.

Using this method, MATLAB is run in the background as a separate process
and offers several advantages.

1) It can run on your machine or any other computer on the network, including
machines of different architectures.

2) Instead of requiring MATLAB to be linked to your code (>3 meg), only a
small communications library is needed.

Unfortunately, there is also a disadvantage. This method runs much slower
than if it was all coded in FORTRAN or C.

6.3.1 Engine Library Routines
The engine library contains nine routines. Their names all begin with the

prefix eng. Tables 6.4 and 6.5 list these routines.

Table 6.4 C engine routines

Function Purpose

engOpen Start up MATLAB engine

engClose Shut down MATLAB engine

engGetVariable Get a MATLAB array from the MATLAB engine
engPutVariable Send a MATLAB array to the MATLAB engine
engEvalString Execute a MATLAB command

engOutputBuffer Create a buffer to store MATLAB text output
engOpenSingleUse Start a MATLAB engine session for single, nonshared use
engGetVisible Determine visibility of MATLAB engine session

engSetVisible Show or hide MATLAB engine session

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO MATLAB® MEX-FILES 143

Table 6.5 FORTRAN engine routines

Function Purpose

engOpen Start up MATLAB engine

engClose Shut down MATLAB engine

engGetVariable Get a MATLAB array from the MATLAB engine
engPutVariable Send a MATLAB array to the MATLAB engine
engEvalString Execute a MATLAB command

engOutputBuffer Create a buffer to store MATLAB text output

On UNIX, the engine library communicates with the MATLAB engine
using pipes and, if needed, rsh for remote execution. On Microsoft Windows,
the engine library communicates with MATLAB using a Component Object
Model interface. COM and DDE Support contain a detailed description
of COM.

6.3.2 Engine Library C Example

This program, engtestl.c, illustrates how to call the engine functions from a
stand-alone C program. Additional engine examples are located in the eng_mat
directory.

engtestl.c

This is a simple program that illustrates how to call the
MATLAB Engine functions from a C program for Windows

The example starts a MATLAB engine process, then calculates the
Position vs. Time for a falling object. Next, this example
sends a 3-by-2 real matrix to it, computes the eigenvalues of
the matrix multiplied by its transpose, gets the matrix back

to the C program, and prints out the second eigenvalue.

Copyright 1984-2003 The MathWorks, Inc., modified R. Colgren

/* S$Revision: 1.10.4.1 $ */

#include <windows.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "engine.h"

#define BUFSIZE 256
static double Areall6] = { 1, 2, 3, 4, 5, 6 };

int PASCAL WinMain (HINSTANCE hInstance,
HINSTANCE hPrevInstance,
LPSTR lpszCmdLine,
int nCmdShow)

Engine *ep;
mxArray *T = NULL, *a = NULL, *d = NULL;
char buffer[BUFSIZE+1];

JAIAA

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

144 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

double *Dreal, *Dimag;
double time[10] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };

/*
* Start the MATLAB engine
*/
if (! (ep = engOpen (NULL))) {
MessageBox ((HWND)NULL, (LPSTR)"Can’'t start MATLAB engine",
(LPSTR) "Engwindemo.c", MB_OK) ;
exit(-1);

* PART I

* For the first half of this demonstration, we will send data
* to MATLAB, analyze the data, and plot the result.

*/
/*
* Create a variable from our data
*/
T = mxCreateDoubleMatrix (1, 10, mxREAL) ;
memcpy ((char *) mxGetPr(T), (char *) time, 10*sizeof (double));
/%
* Place the variable T into the MATLAB workspace
*/
engPutVariable(ep, "T", T);
/*
* Evaluate a function of time, distance = (1/2)g.*t.”2
* (g is the acceleration due to gravity)
*/
engEvalString(ep, "D = .5.%(-9.8).*T."2;");
/*
* Plot the result
*/
engEvalString(ep, "plot(T,D);");
engEvalString(ep, "title('Position vs. Time for a falling object');");

engEvalString(ep, "xlabel('Time (seconds)');");
engEvalString(ep, "ylabel ('Position (meters)');");

/~k

* PART II

*

* For the second half of this demonstration, we will create another mxArray
* put it into MATLAB and calculate its eigenvalues

*/

a = mxCreateDoubleMatrix (3, 2, mxREAL);
memcpy ((char *) mxGetPr(a), (char *) Areal, 6*sizeof (double));
engPutVariable(ep, "A", a);

/*
* Calculate the eigenvalue
*/
engEvalString(ep, "d = eig(A*A')");

/*
* Use engOutputBuffer to capture MATLAB output. Ensure first that
* the buffer is always NULL terminated.

*/

buffer [BUFSIZE] = '\0';

engOutputBuffer (ep, buffer, BUFSIZE);

/*

* the evaluate string returns the result into the
* output buffer.

*/

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO MATLAB® MEX-FILES 145

engEvalString(ep, "whos");
MessageBox ((HWND)NULL, (LPSTR)buffer, (LPSTR) "MATLAB - whos", MB_OK);

/*
* Get the eigenvalue mxArray
*/

d = engGetVariable(ep, "d");

engClose (ep) ;

if (d == NULL) {
MessageBox ((HWND)NULL, (LPSTR)"Get Array Failed",
(LPSTR) "Engwindemo.c", MB_OK) ;
}
else {
Dreal = mxGetPr(d);
Dimag = mxGetPi (4);
if (Dimag)
sprintf (buffer, "Eigenval 2: %g+%gi",Dreal([l],Dimag[l]);
else
sprintf (buffer, "Eigenval 2: %g",Dreal[l]);
MessageBox ((HWND)NULL, (LPSTR)buffer, (LPSTR)"Engwindemo.c", MB_OK) ;
mxDestroyArray (d) ;
}
/*
* We’'re done! Free memory, close the MATLAB engine and exit.
*/
mxDestroyArray (T) ;
mxDestroyArray(a) ;

return(0) ;

To compile this code we use

cc engtestl.c -o engtestl - ISMATLAB/extern/include
$MATLAB /extern/lib/$ARCH/libmat.a -Im

This creates the executable file engtestl.

6.3.3 Engine Library FORTRAN Example

The following is an example written in FORTRAN that illustrates how to call
the engine functions from a stand-alone FORTRAN program.

engtest2.f

This program illustrates how to call the MATLAB
Engine functions from a Fortran program.

Copyright (c) 1984-2000 by The MathWorks, Inc.
Modified R. Colgren
SRevision: 1.1.4.7.1 S

oNeHe N NN NONONONS!

program main

integer engOpen, engClose, engEvalString
integer engGetVariable, engPutVariable
integer mxGetPr, mxCreateDoubleMatrix

JAIAA

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

146

[oNeNe!

[oNeNoNe!

then

[oNeNe!

BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

integer ep, T, D

double precision time(10), dist(10)

integer temp, status

data time / 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0,
9.0, 10.0 /

ep = engOpen('matlab')

if (ep .eqg. 0) then
write(6,*) 'Can''t start MATLAB engine'
stop

endif

T = mxCreateDoubleMatrix(1l, 10, 0)
call mxCopyReal8ToPtr (time, mxGetPr(T), 10)

Place the variable T into the MATLAB workspace.
status = engPutVariable(ep, 'T', T)

if (status .ne. 0) then

write(6,*) 'engPutVariable failed'
stop
endif
Evaluate a function of time, distance = (1/2)g.*t.”2

(g is the acceleration due to gravity).

if (engEvalString(ep, 'D = .5.%*(-9.8).*T.”2;') .ne. 0)
write(6,*) 'engEvalString failed'
stop

endif

Plot the result.

if (engEvalString(ep, 'plot(T,D);') .ne. 0) then
write(6,*) 'engEvalString failed'
stop
endif
if (engEvalString(ep, 'title(''Position vs. Time'')')
.ne. 0) then
write(6,*) 'engEvalString failed'
stop
endif
if (engEvalString(ep, 'xlabel(''Time (seconds)'')')
.ne. 0) then
write(6,*) 'engEvalString failed'
stop
endif

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

N NNN

20
10

INTRODUCTION TO MATLAB® MEX-FILES 147

if (engEvalString(ep, 'ylabel(''Position (meters)'')"')
.ne. 0) then

write(6,*) 'engEvalString failed'

stop
endif

Read from console to make sure that we pause long
enough to be able to see the plot.

print *, 'Type 0 <return> to Exit'
print *, 'Type 1 <return> to continue'

read(*,*) temp

if (temp.eqg.0) then
print *, 'EXIT!'
stop

end if

if (engEvalString(ep, 'close;') .ne. 0) then
write(6,*) 'engEvalString failed'
stop

endif

D = engGetVariable(ep, 'D')
call mxCopyPtrToReal8 (mxGetPr (D), dist, 10)
print *, 'MATLAB computed the following distances:'
print *, ' time(s) distance(m)'
do 10 i=1,10
print 20, time(i), dist (i)
format (' ', G10.3, G10.3)
continue

call mxDestroyArray (T)
call mxDestroyArray (D)
status = engClose(ep)

if (status .ne. 0) then
write(6,*) 'engClose failed'
stop

endif

stop
end

To compile this, we would type the following command:

F77 engtest2.f -o engtest2 -ISMATLAB /extern/include
$MATLABIextern/lib/$ARCH/1libmat.a -Im

This creates the executable file named engtest2.
This concludes our discussion of MATLAB MEX-files.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

148 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

6.4 Conclusion

This chapter introduced the reader to some of the other data types available in
MATLAB. It also introduced the reader to MEX-files and methods for calling
MATLAB from C and FORTRAN programs.

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO MATLAB® MEX-FILES 149

Practice Exercises

6.1 Write a simple MEX-file in C that gets from the user a number, generates
the square of that number, then displays the resulting square of that number back
to the user. To set up a C compiler to use, if not already accomplished, type in the
command

> mex -setup

You will see something similar to the following request:
Please choose your compiler for building external interface (MEX) files:
Would you like mex to locate installed compilers [y]/n? y

(Note that you should select y to have MATLAB find all compilers.)
Select a compiler:

[1] Digital Visual FORTRAN version 6.6 in C:\msdev

[2] Lee C version 2.4.1 in C:\PROGRAM FILES\MATLAB\R2006b\sys\Icc

[3] Microsoft Visual C/C++ version 7.1 in C:\Program Files\Microsoft
Visual Studio

[0] None

(Note that here we select 2 to use the MATLAB provided LCC C compiler.)
Compiler: 2

Then verify your choices to proceed with the assignment.

JAIAA

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

Notes

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

Basic Simulink®

JAIAA.

The Worlds Forum for emspos Lssdwesip Purchased from American Institute of Aeronautics and Astronautics

This page intentionally left blank

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

7
Brief Introduction to Simulink®
and Stateflow®

7.1 Introduction and Objectives

This chapter introduces some of the graphics modeling capabilities of
Simulink® and Stateflow® software. It shows the reader how to open, execute,
and modify parameters within these models from the MATLAB® Command
Window and from MATLAB M-files.

Upon completion of this chapter, the reader will be able to identify graphics
modeling capabilities of Simulink and Stateflow software, open and close Simu-
link and Stateflow models from the MATLAB Command Window, execute and
simulate systems already implemented in Simulink and Stateflow software from
the Command Window, and modify Simulink and Stateflow model parameters
from MATLAB.

7.2 Simulink®

Simulink uses block diagrams to represent dynamic systems. Defining a
system is much like drawing a block diagram. Blocks are copied from a
library of blocks.

Typing the command simulink opens the standard block library. The standard
block library is divided into several subsystems, grouping blocks according to
their behavior (see Fig. 7.1).

Examples using the standard block libraries provided with Simulink are shown
next. They include sources (which generate input signals), sinks (places where
output data can be stored), linear blocks, nonlinear blocks, discrete blocks, and
connections. The user can also construct block libraries.

7.3 Van der Pol Equation

This system models a second-order nonlinear system. A description of the
system can be found on the diagram. This example demonstrates the ability of
MATLAB to control the simulation of a system.

We start by loading the system:

> vdp;
MATLAB will next simulate the system for 30 seconds and plot the
time-varying behavior of X1 and X2 (see Fig. 7.2).

153

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

154 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

[l

File Edit View Help
O 4= dh |

Continuous: simulink/Continuous

= § Simulink -
2 Commonly Used Blocks ~ |
2 Continuous
21 Discontinuities
2 Discrete
2+ Logic and Bit Operations
24 Lookup Tables
21 Math Operations
3| Model Verification =
#{ Model-Wide Utilities |
Ports & Subsystems !
2 signal Attributes l
2 Signal Routing

] Sinks ‘

s| Commonly Used Blocks

=

Discontinuities

i

Discrete

Logic and Bit Operations
Lookup Tables

] Sources Math Operations
2 User-Defined Functions

- 3 Additional Math & Discre

W Aerospace Blockset

B CDMA Reference Blockset

W Communications Blockset

W Control System Toolbox

Model Verification

lo®7] 2

]

Model-Wide Utilities

] -F

)

= ¥ Embedded Target for Infine Poits & Suhsystams
= # Embedded Target for Motor
- W Embedded Target for Motor Signal Attributes
- W Embedded Target for OSEK
- B Embedded Target for TI C2 Signal Routing
- W Embedded Target for TI C6
- W Fuzzy Logic Toolbox Sinks
@ B Gauges Blockset

W Image Acquisition Blockset

W Instrument Control Blockset Sources

B Link for ModelSim |

User-Defined Functions

W Model Predictive Control To
B Neural Network Blockset |
@ W RF Blockset [Festsoaka Additional Math & Discrete
W Real-Time Windows Target | *
W Real-Time Workshop
W Real-Time Workshop Embe
W Report Generator
W Signal Processing Blockset
¥ SimDriveline =

»

Ready &

&

+

@

&

®

aF

Fig. 7.1

> [t,x] = sim('vdp',30);
To generate the time history plots, type the following MATLAB commands
(see Fig. 7.3):

> clf;
> subplot(211);
>> title('The State Variables of the Van der Pol System');

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

BRIEF INTRODUCTION TO SIMULINK® AND STATEFLOW® 155

1 vdp r;|@|gl

Fle Edt View Simulation Format Took Help

DEE&E Bles || n o Normal 'I & |
van der Pol Equation

|
Scope
Out2
Ready 100% odeds

Fig. 7.2

> plot(t,x(:,2));

> ylabel('X1");

> subplot(212);

> plot(t,x(:,1));

> ylabel('X2'");

> xlabel('Time in seconds');
> subplot;

) Figure 1 = |
Fle Edt View Insert Took Desktop Window Hep -
DeEs k aaMe |« 08|/ =0

4

2

=3

x

' l\ I// \ | .f’"‘l /_I/ 1
\// \ \/ \\\Jf/ \ \j \\\/

-2
= 15 20 25 30

4

R

NG N\ N N
\\/f \\,/ \/ \\\// \

Fig. 7.3

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

156 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

Plotting X1 against X2 results in the phase-plane diagram (see Fig. 7.4):

> clfs

> plot(x(:,1),x(:,2));

> title('The Phase Behavior of the Van der Pol System');
> xlabel('X1'); ylabel('X2');

Fle Edit View Insert Took Desktop Window Help
DEedée kh aa®e ¥ 08 =0
5 The Phase behavior of the Van der Pol System
2 L -
1 - .
L or 4
4+ 4
21 .
3 1 1 L 1 L
-3 2 -1 0 1 2 3
X1
Fig. 7.4

MATLAB will now run 10 simulations, varying the fraction of X2 that is sub-
tracted from X1, using the following M-file:

% M-file for the Van der Pol Simulation
time = 20;
iterations = 10;
step_size = 0.2;
x = ones(time/step_size + 1,iterations);
y = ones(time/step_size + 1,iterations);
set_param('vdp/Mu','Gain','a");
for n = 1l:iterations
a = 1 - n/iterations;
[t,sf] = euler('vdp',time,[0.25,0.0],[5,step_size,step_size]);

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

BRIEF INTRODUCTION TO SIMULINK® AND STATEFLOW® 157

x(:,n) = sf(:,2);
y(:,n) = sf(:,1);
end
clf;
mesh(x);
mesh(y);
title('The Effect of Reducing the Negative Feedback of X2');

Note that in the next version of MATLAB the command euler will become
obsolete and may be eliminated. The MathWorks recommends using sim as a
substitute for euler (see Fig. 7.5).

) Figure 1
File Edit View Insert Took Desktop Window Help -
D& B ARaAN® ¥ 08 80

The Effect of Reducing the Negative Feedback of X2

Fig. 7.5

Slices of these surfaces can be displayed as phase-plane diagrams. The following
commands can also be implemented as a MATLAB M-file (see Fig 7.6):

> clf

> subplot(221);

> plot(x(:,1),y(:,1));
> title('-1 * X2');
> xlabel('X1");

> ylabel('X2'");

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

158

>
>
>
>
>

>
>
>
>
>

>
>
>
>
>

>

BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

subplot(222);
plot(x(:,3),y(:,3));
title('-0.7 * X2');
xlabel('X1');
ylabel('X2');

subplot(223);
plot(x(:,6),y(:,6));
title('-0.4 * X2');
xlabel('X1');
ylabel('X2');

subplot(224);
plot(x(:,9),y(:,9));
title('-0.1 * X2'");
xlabel('X1');
ylabel('X2');

subplot

) Figure 1 EWE_R]
File Edt View Insert Took Desktop Window Help »
DEE& kh RaN® € 0EH a0
1% X2 0.7* X2
4 4
2 2 ﬁ
-2 -2
4—4 2 0 2 4 -4—4 2 1] 2 4
X1 X1
047X2 0.1*X2
4 4
2 y 2 Q
/ //ﬂ 3
go 74 9 o/)
s (o) ()
2 e 4 R
44 2 0 2 4 -42 0 2 4
X1 X1
Fig. 7.6

7.4 Conditional System Model

does is provide the input (Ramp) and the output (Scope).

This system provides a demonstration of a simple conditional if test
implemented as a Stateflow model. All the Stateflow portion of this diagram

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

BRIEF INTRODUCTION TO SIMULINK® AND STATEFLOW® 159

The following MATLAB command line loads the system:
> sf_if;

Figure 7.7 shows the model opened.

1sf if Q@@

Ele Edit View Simulation Format Tools Help

O E2Ea B &= 4 Sl p = 100 [Nomal v| B &

IF Statement Demonstration

<If_output> !

Ramp r—h

Scope

Double click Double click

here for here for
Simulink\Stateflow information on
Help this demanstration
|Reacty 111% odeds
Fig. 7.7

The Stateflow model is equivalent to the following M-file:

% if test M-file

if condition= 20
If_output = condition”2;

elseif condition > 20 & condition < = 50
If_output = 50*sin(condition)

Else
If_output = condition”2;

end

%

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

160 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

=} Stateflow (chart) sf_ifnif

Bl Edt Yiew Smulstion Took Add Hep B
—3°F] RE == HE» » MSERARAD B
=]
2] Egquivalent M-Code:
.
ﬁl if condition <= 20
ﬂ If_output = condition”2:
E] elseif condition > 20 & condition <=50
If_output = 50*sin(condition)
alse
= If_ouptut = condition;
m] end
N
oy
W
L |
fd

Fig. 7.8

A double-click on the if block opens the Stateflow model shown in Fig. 7.8.
This model is executed using the following command:

> sim('sf_if',10)
When the model is executed, the Stateflow model shows the change in state

with time. In this case, the condition is a ramp input with a slope of 10 for the
first 10 seconds. The resulting time response is shown in Fig. 7.9.

<) Scope g@&|
SEHE LLLY ARBIE B AR ,

<If_output>
400 .

300
200
100
0
=100

Time offset: 0

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

BRIEF INTRODUCTION TO SIMULINK® AND STATEFLOW® 161

7.5 Combined Simulink® and Stateflow® Systems

This system demonstrates the use of a Stateflow model within Simulink. It also
shows how a custom interface can be written by the user to directly enter par-
ameters into the model without the use of the MATLAB Command Window.
The model is of a forced mass sliding on a surface with friction with spring
damping. The model can be loaded using the following command (see Fig. 7.10):

> sf stickslip

! sf_stickslip QE|E]

Fle Edit Vew Simulation Format Tools Help
NEEES IBBE| = 1| b =20 Nomal | 09 g4 [& (8

sf_stickslip.mdl

force and
position
ws. time

The input force linearly compresses
the spring, but friction resists this
mowvement. The magnitude of

position
friction depends on the state of motion.

VE.
foree

position
NV\ - Fin zeto thresheld

}Iggggl H Arelocity

Input '[ﬂ]
Force

g i Fsum

mechanical
maotion

state_logic

C) l:l With the default parameters, the natural
gdjg frequency is much higher than that of the
excitation force. For contrast, change
pammezers the parameter values to:

4>|I| M=0.1 kg and Fsliding = 0.1 N.

Timekeeping

Stick-slip Friction Simulation
To run, choose Start from the Simud ation menat.

Ready 100% odelSs

Fig. 7.10

The state logic for this system was programmed in Stateflow software and was
stored under the Stateflow model name state_logic. This block should have
opened when you opened the Simulink model sf_stickslip. If not, just double-
click on the block in the Simulink window. The state_logic window should
appear as in Fig. 7.11.

JAIAA

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

162 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

File Edit Wew Simulation Tools Add Help

W

&’ |® |@

¥4

) EBEE

o
&
#

;HS Bl =4 HE)» 1 = g BEOM "

Fig. 7.11

You can now try different model parameters by double-clicking on the Simu-
link block edit parameters. Doing so will open the window shown in Fig. 7.12.

s Figure 1: system parameters

-]

Ele Edit View [nsert Tools Desktop Window Help ~
P 0.001 mass, kg
K 1 spring rate, N/m
F static 1 static friction force, N
Fsliding 1 kinetic friction force, N

[QK l [Cancel l [Default]

Fig. 7.12

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

BRIEF INTRODUCTION TO SIMULINK® AND STATEFLOW® 163

Before the model is run, there are no output signals on the scope plot (see
Fig. 7.13). If the scope plot is not open, double-click on the scope labeled
force and position vs. time to open the plot window shown in Fig. 7.10.

=) force (yellow) and position (purple) E|®
8B LRH hEE O A w =

0
Time offset: 0

Fig. 7.13

Executing the model using the MATLAB command sim('sf_stickslip',20)
will give the plots shown in Figs 7.14 and 7.15.

=) force (yellow) and position (purple) g@|®
FEREE EEEEE :

10

5
0

Time offset: 0

Fig. 7.14

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

164 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

) position vs. force E‘@

XY Plot
6 .
5 L 4
4 L -
o 3t]
z
> 2r 1
1 A =
0 L =
_1 1 1 L
0 2) 6
K Axis
Fig. 7.15

You should have been able to see the changes in the states within the Stateflow
model as it executed. Note that the natural frequency of the system is much higher
than that of the excitation force. Now change the mass to M = 1 kg and rerun the
model. Figure 7.16 shows these modified values.

J Figure 1: system parameters [:J@@

Fle Edit View Insert Tools Desktop Window Help

i [1 | mass, kg

K [1 ‘ spring rate, N/m

F static ‘ 1 . static friction force, N

Fsliding | 1 ‘ kinetic friction force, N
(QK |l Cancel |l Default |

Fig. 7.16

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

BRIEF INTRODUCTION TO SIMULINK® AND STATEFLOW® 165

The results of this action are shown in Figs 7.17 and 7.18.

-} force (yellow) and position (purple) Q@@
B LPL2L AEE B A= e

10

5
0

Time offset: 0O

Fig. 7.17

-} position vs.

XY Plot
6 .
5- N
41 J
S E
Z
2 .
1 | -
0_ .
-1 : : L
0 2 4 6
A Axs

JAIAA.

The Workls From i Aempas Laodirdip. Purchased from American Institute of Aeronautics and Astronautics

166 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

The model can be closed using the following command:
> close_system('sf_stickslip');

These commands would be used if the model was called from a MATLAB
M-file.

7.6 Model Comparison

Compare the implementation of a state-space controller [A,B,C,D] in self-
conditioned form versus the standard state-space form. This model requires the
Control System Toolbox. It provides a simple demonstration of how different
model implementations can be studied using Simulink.

For the self-conditioned state-space controller, if the measured control value is
equal to the commanded value (u_meas = u_dem), then the controller imple-
mentation is the typical state-space controller [A,B,C,D]. If the measured
control value (u_meas) is limited, then the poles of the controller become
those defined in the mask dialog box.

The command to load the system is (see Fig. 7.19)

> aeroblk_self_cond_cntr;

roblk_self_cond_cnt !ﬂ

0 =W& B | &= 1 2| » =100 [Nomal -

| =
SeltConditioned

ot
JA.B.C.D) Modal of ackuater demand 04
autharity limits 02

H5.08]
0

Copyright 1950-2008 The MathWoss, Ine. 02

Step ati=tz on
Nacking arror st
o the contraller

Ready 100% 0deds Timsoffset. O

Fig. 7.19

To see the system model inside the two different block descriptions, open
them by double-clicking on them.
This system can be simulated from the command line

> sim('aeroblk_self cond_cntr',10);

The results of a typical state-space controller [A,B,C,D] and a self-conditioned
state-space controller with a limited measured control value are shown in Fig. 7.20.

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

BRIEF INTRODUCTION TO SIMULINK® AND STATEFLOW® 167

} Actuator demand D@@

8B LLL ARE P A & ~

02
0

2

Time offset: 0

Fig. 7.20

JAIAA.

The Workls From i Aempas Laodirdip. Purchased from American Institute of Aeronautics and Astronautics

168 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

To simulate just the first 2 seconds, rerun the system using the command (see
Fig. 7.21)

> sim('aeroblk_self_cond_cntr',2);

J) Actuator demand g@@

SH LLL ABE B AR >

0.6
0.4
0.2

0

0.2
0

Time offset: 0O

Fig. 7.21

If you click on the aeroblk_self_cond_cntr window, you can start and stop
the simulation of this system yourself from the Simulation menu.
The Simulink model is closed using the command

close_system('aeroblk_self_cond_cntr',0);

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

BRIEF INTRODUCTION TO SIMULINK® AND STATEFLOW® 169

7.7 F-14 Control System

This is a model of the one-dimensional (vertical) behavior of an F-14 fighter. It
shows how data for a Simulink model can be stored in a separate M-file and
loaded as needed for a particular simulation run.

The command to load the data required by the F-14 model is

> fl4dat;

This is accomplished by loading and executing the following M-file:

Numerical data for F-14 demo

o

e

Copyright 1990-2002 The MathWorks, Inc.
SRevision: 1.16 $

o

g = 32.2;

Uo = 689.4000;

Vto = 690.4000;

% Stability derivatives
Mw = -0.00592;

Mg -0.6571;

Md -6.8847;

zd = -63.9979;

Zzw = -0.6385;

% Gains

cmdgain = 3.490954472728077e-02;
Ka = 0.6770;

Kg = 0.8156;

Kf = -1.7460;

Ki = -3.8640;

% Other constants
a = 2.5348;

Gamma = 0.0100;
b = 64.1300;
Beta = 426.4352;
Sa = 0.005236;
Swg = 3;

Ta = 0.0500;

Tal = 0.3959;

Ts = 0.1000;
wl = 2.9710;
W2 = 4.1440;

Wa = 10;

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

170 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

Next load the system and associated numerical constants (see Fig. 7.22):

> fl4;

5f14 I;IEI@

Fle Edt View Simulation Format Tools Help

e = i
DeE& B s o=y 5Bt [Nomel v BEHBE . REBEE
—u
; Pilot g force ()
Stick Input g
= Pilot G forca
Nz pilat Scope
u caleulation
Stick Ingutt (in)
P{alpha (rad) Sevator Command (deg)] ! ion d (deg) Nz Pilot (g)
Tast1
g (radizec) A ‘ertical Velocity o (ftisen) ——
Controll Actuator
R Modal
iertioal Gust wGust (ftizsec
Angle of
Attack
Pich Rate q (radises) |2
wous Rotary Gust qGust (rad/sec] » s —>®
alpha (rad)
Aircraft
Dryden Wind h Dynamics
Gust Models Model

F-14 Flight Control

(Double clidk on the *7 for more info) Double olide
i

hate for
To start and stop the simulation, use the "Start" and Simulink Help
*Stop" selections in the "Simulation® pull-d SRR
Ready 100% odeds
Fig. 7.22

Select the two graphics windows to analyze the system by double-clicking on
the two Scopes Pilot G force Scope and Angle of Attack if they do not open
when the F-14 model opens.

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

BRIEF INTRODUCTION TO SIMULINK® AND STATEFLOW® 171

The resulting time histories are shown in Figs 7.23 and 7.24.

Time offset; O

Fig. 7.23

J Angle of Attack [:‘@@

S8 |LLL AEE B A%

Time offset: 0

Fig. 7.24

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

172 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

You can now change values in the M-file fl4dat using the MATLAB M-file
Editor.

7.8 Conclusion

This lecture was a very brief introduction to Simulink and its capabilities.
Further examples are given in the Simulink manual. Real-time simulations can
be run using the Real-Time Workshop® software.

Other toolboxes are available from The MathWorks specifically for use with
Simulink.

B
The Workls From i Aempas Laodirdip. Purchased from American Institute of Aeronautics and Astronautics

BRIEF INTRODUCTION TO SIMULINK® AND STATEFLOW® 173

Practice Exercises

7.1 Execute the existing Simulink model sldemo_bounce from the
MATLAB Command Window.

In this model a rubber ball is thrown into the air with a velocity of 15 meters/
second from a height of 10 meters. The position of the ball is shown in the lower
plot of the scope, and the velocity of the ball is shown in the upper plot.

This system uses a resetable integrator to change the direction of the ball as it
comes into contact with the ground; the zero-crossing detection prevents the ball
from going below the ground.

From the MATLAB Command Window (see Fig. 7.25), drop the ball from two
different heights (10 meters and 25 meters), and study the effect of different ball
elasticities by testing three different ball elasticity values (—0.8, —0.5, —0.2).

ﬁ sldemo_bounce Q@lg|

Fle Edit Yiew Simuaton Format Tools Help

D& 2|~ = 1 (2262 b =20 |Nnrmal v | BB S
Bouncing Ball Model
Gravity Velocity Sou 1D
-—' Pasition

VS
<12
h 4

Yy v

£
*o

[T] "
4 | £g z
Initial Velocity Terminatar
"o
| Ground

Ball
Elasticity

) 4

Initial Position

<=0

Note the use of Zero Crossings to
keep the ball above the ground

|Ready 100% ode23

Fig. 7.25

JAIAA

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

Notes

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

8
Introduction to Simulink®

8.1 Introduction and Objectives

This lecture introduces the reader to Simulink® graphical modeling capabilities.
It assumes a basic familiarity with MATLAB®.

Upon completion of the second half of this book, the reader will be able to
identify the graphics modeling capabilities of Simulink, open and close Simulink
models from MATLAB, generate Simulink models, execute and simulate
systems implemented in Simulink, modify Simulink model blocks parameters
from Simulink and MATLAB, and modify and generate Stateflow®™ model
blocks and Simulink/Stateflow diagrams.

8.2 Standard Simulink® Libraries

Simulink uses block diagrams to represent dynamic systems. Defining a
system is much like drawing a block diagram. Blocks are copied from a
library of blocks. Connections and other utilities are similarly drawn from
block libraries. Special purpose blocks can be purchased in the form of toolboxes
from The MathWorks and from third-party vendors. Finally, users can define
their own special purpose blocks.

Simulink is started from the main MATLAB window. After the MATLAB
program is started the standard main MATLAB interface window appears as
shown in Fig. 8.1.

175

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

176 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

Fig. 8.1

Typing the command simulink in the MATLAB Command Window opens
the standard block library. The standard block library is divided into several sub-
systems, grouping blocks according to their behavior. Examples using the stan-
dard block libraries provided with Simulink are shown in Fig. 8.2. They
include sources (which generate input signals), sinks (places where output data
can be stored), linear blocks, nonlinear blocks, discrete blocks, and connections.
The user can also construct blocks and block libraries.

GAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO SIMULINK® 177

E Simulink Library Browser
Be Edt Vew Hep

0w -+=

Commonly Used Blocks: simulink/Commonly
Used Blocks

= W Simuirk A
] Commorty Used Blocks
B Continucus
3 Dreconbrubes]
3 Drscrete
1 Logic and Bit Operations =
3 Lookup Tables
%1 Math Operations %
& Mode Verification
3 Model-Wide Utities
3 Ports 8 Subsystems
& Signal Attributes
& Signd Routing
3 Srks =
& Sources
&) User-Defined Functions =

- 3 Adkditional Math & Discrete

W rerospace Blockser =

W Communications Blocksat

W Contral System Toobox %

W Embedded Target for Infnecn C166@ Microcontrolers

W Embedded Target for Motorola® HC 12 2]

+ W Embadded Target for Motorcla® MPCSSS

W Embedded Target for CSEKNDXE -

W Embedded Target for T1 C2000 DSP

W Embedded Target for T CE000 DSP 5

W Fuzzy Loge Toolbox

+ W Gauges Blockset

W Image Acqusition Tookox

W Instrument Control Toolbox

:mawmmcmv = Mdm’onal Math & Discrate

W Meura Network Toolbox

W OPC Toobox

W RF Blockset

B Red-Time Windows Target

W Fed-Time Workshop

W Rea-Time Workshop Embedded Coder

W Report Generator

+ W Signal Processing Blocksat

W Smbriveine

W SimMechanics

W SimPowerSystems

W Simuirk Control Design

W Simuiri Extras

W Simuiri Parameter Estimation

W Simuink Response Optimization

W Simuink Verfication and Valdation -

Ready

Continuous

Discontinuites

Discrete

3
e

Logic and Bit Operations

T

2]

O

Lookup Tables

Math Dperations

Model Verification

Mize ModelWide Utikties

Pors & Subsystems

Signal Aftibutes

Signal Fiouting

-EM Sinks

+

Sources

User-Defined Functions

.

+

Fig. 8.2

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

178 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

The following are in the Com-

monly Used Blocks Simulink block Bus Creator
library. They contain a collection of
the most frequently used Simulink I Bus Selector
blocks from the other libraries.

1 Constant

coert | Data Type Conversion

I Demux

KTs

Discrete-Time Integrator

Gain

z-1
>
E Ground
@D
1

(1) In

Integrator

AND | Logical Operator

I hux

Outl
X Product
4= Relational Operator
Saturation
Scope

Sum

Switch

Terminator

(.
Subsystem
&
i‘_
1
z

Unit Delay

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO SIMULINK® 179

The following are in the Continuous) -
Simulink block library. They contain i i Dcrvative

continuous dynamic system models.

Integrator

W=

x = Ax+Bu

¥ LD State-Space

Transfer Fcn

Transport Delay

s@g@?‘i

Variable Transport Delay

(=1}

Zero-Pole
s{s+1)

The following are in the Discon-
tinuities Simulink block library. Backlash
They contain several discontinuous

nonlinearities.

Coulomb & Viscous Friction

Dead Zone

©

Dead Zone Dynamic

Hit Crossing
Quantizer
Rate Limiter
::7|/— Rate Limiter Dynamic
| Relay
Saturation
::7|C ¢| Saturation Dynamic
JZI'_ Wrap To Zero

GAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

180 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

The following are in the Discrete
Simulink block library. They contain
z-transfer functions and time delays.

The following are in the main
Simulink block library of Lookup
Tables.

i
2

|

[

7
-
=5

K%U Discrete Derivative

7
Discrete Filter

1+0.5z°1

Discrete State-Space

1 "
—— | Discrete Transfer Fen
=05

(z1)
=20.5)
KT

Discrete Zero-Fole

Discrete-Time Integrator
First-Order Hold

Integer Delay

Memory

Tapped Delay

Transfer Fen First Order

Transfer Fcn Lead or Lag

. Transfer Fcn Real Zero

IZI Unit Delay

Weighied Moving Average
Zero-Order Hold

Direct Lockup Table (n-D)

=

Interpolation (n-D) using PreLookup

Lookup Table

I

Lookup Table (2-0)

Lookup Table (n-0)
wdat v| Lookup Table Dynamic
ydat
= .| PrelLookup Index Search
shgpro | Sine

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO SIMULINK® 181

The following are in the Simulink
block library of Logic and Bit Oper-
ations. This library contains a wide
variety of bit operators and value
and interval tests.

Clear
bito

Set
bit0

Bitwise
AND
0xD9

[ii]

U ~= Uiz

U=Uiz

U=0
& NOT
Uz=<0

U==0
& NOT
Uiz==0

U>uiz

Us=0
& NOT
Uz==0

u=0
& NOT
uz=0

Exractit
Upper Hatr

Bit Set

Bitwise Operator
Comhinatorial Logic
Compare To Constant
Compare To Zero
Detect Change

Detect Decrease
Detect Fall Negative
Detect Fall Nonpositive
DetectIncrease

Detect Rise Nonnegative
Detect Rise Positive

Extract Bits

JL
o

AND

W=\ "2
Qy=Q1>>3
By= Et

Interval Test

Interval Test Dynamic
Logical Operator
Felational Operator

Shift Arithmetic

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

182 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

The following
are in the Simulink [u| Abs
block library of
Math Operations.

This library con- Add
tains a wide variety +
of functions, assign-

' Sone : :
ments, and logic |,y = ;| Algebraic Constraint
elements. !

UT=Y y
uz > vg) ¥ |Assignment

u+0.0 | Bias

S_,u| Complexto Magnitude-Angle

3
Fnwy| Complexto Reallmag

Divide

He X

. Dot Product

> Gain

I;,I =] Magnitude-Angle to Complex

u

e Math Function

Horz Cat
]I:I [I Matrix Concatenation

min MinMax

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO SIMULINK® 183

u

r Mincuy) v | MinMax Running Resettable

Fu) :
OF)= 5 Polynomial
X Froduct

]_f Product of Elements

Fme} Feallmag to Complex

Uc:) Reshape

floor Fiounding Function

Sign

t'n\Ur Sine Wawe Function

1 Slider Gain

Subtract

Sum

] ©

sum of Elements

sin Trigonometric Function

“u Unary Minus

wTs| Weighted Sample Time Math

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

184 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

The following are |
in the Simulink Data Type Conversian
block library of |
Signal Attributes.
These are useful in
analyzing the charac-

conert | Data Type Conversion Inherited

teristics of the Same :

signals generated by bT D TyRs Buplicas
your model, includ- Rerl |

ing signals internal Rat2 Data Type Propagation
to the model.

n | Data Type Propagation Examples

Data Type Scaling Strip

Ic

Wi, Ta g f € 0, 5460 FD Probe

[
—+1| Rate Transition

EI Signal Conwversion
Signal Specification

Ts YWeighted Sample Time

= "Width

JAIAA.

The Workls From i Aempas Laodirdip. Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO SIMULINK®

The following are
in the Simulink Model
Verification block

library.

The following are
in the Model-Wide
Utilities Simulink
block library.

185

Assertion

Check Discrete Gradient

Check Dynamic Gap

Check Dynamic Lower Bound

Check Dynamic Range

Check Dynamic UpperBound

Check Input Resolution

Check Static Gap

Check Static Lower Bound

Check Static Range

Check Static Upper Bound

B aer! |Block Support Table
Lok | DocBlock
Text
Wodel Info | Model Info
Tl Timed-Based Linearization
F . . o
Trigger-Based Linearization

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

186 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

The following are in the
Simulink block library of
Ports & Subsystems.

Configurable Subsystem
Atomic Subsystem
CodeReuseSubsystem

Il Enable

Enabled and Triggered
Subsystem

[~]
Enabled Subsystem
For terator Subsystem

Function-Call Generator

Function-Call Subsystem

C m
Model
() oun

4 Subsystem Examples

cme[1} | .
|m suas, | IitCh Case

i{} . ,
"% oun| Switch Case Action Subsystem

Trigaer

Triggered Subsystem

While Iterator Subsystem

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO SIMULINK® 187

The following are Simulink
block library Signal Routing
elements. Included here are several
bus-related models. Several data
storage and recall mechanizations
are included. Go to and from
functions are also available.

Bus
Bus
= signal

|] [[] |]] e

Sim
Out

(A

]

A

é?/‘gKJ-

Merge

AL —EE

Bus Assignment
Bus Creator

Bus Selector

Data Store Memary
Data Store Read
Data Store White
Demux
Enviranment Cantroller
From

Goto

Goto Tag Visibility
Index \ector
hManual Switch
Merge

Multiport Switch
hux

Selector

Switch

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

188 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

The following are in the Sinks
Simulink block library. Sinks are |C———%1 | [Djs P'E‘y’
used to display plots and data as
the Simulink model is executed.
Scope blocks are the most
common way of displaying plots
of signal data as it is being gener-
ated. Data can also be directly
output into MATLAB using the
To File block. This makes it poss-
ible to do further processing and

[]
analysis within the MATLAB D Scope

Floating Scope

Outl

Command Window.

Stop Simulation

— Terminator

untitled.mat| To File

simout | To Workspace

XY Graph

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO SIMULINK®

The following are in the Sources
Simulink block library. Sources
provide a wide variety of input
signal types. Common input signals
for system testing and analysis, such
as steps, sine waves, pulses, and
random numbers, are provided here.
Users can also generate their own
signals or input signal data from
external sources.

W

==

12:34

untitled.mat

simin

;\EE]@II

‘H"'\-u.
p——

= [~

E Signal 1

oooo
Reled

Band-Limited White Noise
Chirp Signal

Clock

Constant

Counter Free-Running
Counter Limited
Digital Clock

From File

From Workspace
Ground

In1

Pulse Generator
Ramp

Random Number
Repeating Sequence
Repeating Sequence
Internnlated
Repeating Sequence Stair
Signal Builder

Signal Generator
Sine Wave

Step

Uniform Random Number

189

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

190 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

The following are in the
Simulink block library of |+ =2 +| Embedded MATLAB Function
User Defined Functions.

The S-Function is equi- -

valent to the M-file written fu) Fen

in the MATLAB command

language, or the MEX- | mifie | M-file (level-2) S-Function
function written in C

C++, FORTRAN, and/or
Ada. Although M-files MATLAB | MATLAB Fen
and MEX functions are Lo
executed in the MATLAB

Command Window, system | S-Function
S-Functions are directly
included within the Simu- b

system S-Function Builder

link model. An S-Function
Builder is included to aid —
the user in constructing an unction| . ;

S-Function. Note that [SSMElEs S EcRon Exaipies
MATLAB functions can be

directly incorporated within

the Simulink model using

the MATLAB Fcn block.

The following are in

the Additional Math Additional Discrete
& Discrete Simulink *‘&

block library. ++

[+

Additional Math: Increment - Decrement

[#

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO SIMULINK® 191

8.3 Simulink” Aerospace Blockset

Figure 8.3 represents all of the Aerospace Block Libraries contained within
the Simulink Aerospace Blockset. Many different aerospace modeling utilities,
which in the past needed to be constructed as Simulink models or S-Functions,
are now provided by The MathWorks in this set of libraries. The models
contained within this blockset are described within the following sections.

] simulink Library Browser
fle Edt Vew Hep

D& = |
Actuators: asrolibv] fActuators

s ==
3 Commonly Used Blocks . Actuatars
;I gvos:onmmes <= | Aerodynamics
5 Discrete
_—
Logic and Bit Operations J -'DDH mation
& Lookup Table: rax
i-lj Mzmugperau;w % ‘qﬁ Enviranment
;I mmvmaikzn:;ﬁ ';_J;:“_t%&. Equations of Motion
2+ Ports B Subsyst I
; Signa Am—bu:e:ms ::Et_:" Flight Parameters
Signd Routing ='=. -
& Sirks A ne
Sol

; ok - | & | MessProperties

£ ’a " %

- W e B Ma FOeTeR @D -4 Propulsion

B Actuators [T .
] Aerodynamics B RPN

+ B Animation

+ 3 Erwironment
+ & Equations of Motion
& Flight Parameters
B GNC
| Mass Froperties
3 Propulsion
+ 3 Utiines -

Ready

Fig. 8.3

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

192 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

The following are the
Actuators in the Simu- |4csm 2| Second Order Linear Actuator
link Aerospace Blockset
library. Simple linear
and nonlinear models are [4csm sea: | Second Order Nonlinear Actuator
available.

The following are —
in the Simulink 12 Aerodynamic Forces and Moments
Aerospace Aerody- | M,
namics library.

The following are in the Simulink Aero- T=
space Blockset Animation library. A 1DoF Animation

6DoF Animation

The following are in the
Simulink Aerospace Blockset e X
Environment library. |—=5 Atmosphere
+
_ | Gravity
E‘ poec e
L —
mryy Wind
|._'.; RS

The following are the 3- and
6-DOF Equations of Motion
4 (f_’ 3DoF

blocks in the Simulink Aero-
space Blockset library. +

E;YE|] EDoF
2 I

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO SIMULINK® 193

The following are in
the Simulink Aerospace v | Dynamic Pressure
Blockset Flight Param- ’
eters library. Calculate the
angles between the body [i7» ==w=|ldeal Airspeed Correction
and the velocity vector
incidence and sidesli « . :
Elnd the velocity magnitu(li)e)t " g Incidence & Airspeed
from the components in
body axes (Vy,). v p

=
F

Incidence, Sideslip, & Airspeed

usch | bach Number

X, v Radius at Geocentric Latitucle

Ly, | Relative Ratio

soan - |Wind Angular Rates

The following are in
the Simulink Aerospace M.L’\ Cantral
Blockset GNC library. A [H(5)
large variety of linear state- Ml""

space forms are provided H(s) Guidance

in this library for system [

representations. M.-/\ —
avigation

The following are
in the Simulink Aero- = a“Q o
space Blockset Mass |3m® ===
Properties library. One —
block is used to calcu- I » Estimate Inertia Tensor
late the center of :
gravity location. Linear
interpolation is also
used to determine

center of gravity as a ‘T Symmetric Inertia Tensor
function of mass. «

Estimate Center of Gravity

f&‘—" “[Moments about CG due to Forces

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

194 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

The following simple == —
turbofan engine model us Turbofan Engine System
is in the Simulink Aero- |*=+M "=t
space Blockset Propul-
sion library.

The following are the R
. . 4 .

Transformations in the | L | Axes Transformations
Simulink Aerospace Ultilities ¥ X
Blockset library.

+ — ;

= 5 | Math Operations

E *

ft«—-m| LInit Conversions

8.4 Simulink® Installation and Demonstrations

The following is the complete MATLAB /Simulink path. It is given for a full
MATLAB/Simulink/Stateflow installation of Release 2006b.

The Simulink toolboxes and other utilities you have available in your
MATLAB installation can be accessed using the command (this is the same as
the command for MATLAB toolboxes, etc.).

> path

C:\Program Files\MATLAB\R2006b\toolbox\matlab\general
C:\Program Files\MATLAB\R2006b\toolbox\matlab\ops
C:\Program Files\MATLAB\R2006b\toolbox\matlab\lang
C:\Program Files\MATLAB\R2006b\toolbox\matlab\elmat
C:\Program Files\MATLAB\R2006b\toolbox\matlab\elfun
C:\Program Files\MATLAB\R2006b\toolbox\matlab\specfun
C:\Program Files\MATLAB\R2006b\toolbox\matlab\matfun
C:\Program Files\MATLAB\R2006b\toolbox\matlab\datafun
C:\Program Files\MATLAB\R2006b\toolbox\matlab\polyfun
C:\Program Files\MATLAB\R2006b\toolbox\matlab\funfun
C:\Program Files\MATLAB\R2006b\toolbox\matlab\sparfun
C:\Program Files\MATLAB\R2006b\toolbox\matlab\scribe
C:\Program Files\MATLAB\R2006b\toolbox\matlab\graph2d
C:\Program Files\MATLAB\R2006b\toolbox\matlab\graph3d
C:\Program Files\MATLAB\R2006b\toolbox\matlab\specgraph
C:\Program Files\MATLAB\R2006b\toolbox\matlab\graphics
C:\Program Files\MATLAB\R2006b\toolbox\matlab\uitools
C:\Program Files\MATLAB\R2006b\toolbox\matlab\strfun
C:\Program Files\MATLAB\R2006b\toolbox\matlab\imagesci

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO SIMULINK® 195

C:\Program Files\MATLAB\R2006b\toolbox\matlab\iofun

C:\Program Files\MATLAB\R2006b\toolbox\matlab\audiovideo

C:\Program Files\MATLAB\R2006b\toolbox\matlab\timefun

C:\Program Files\MATLAB\R2006b\toolbox\matlab\datatypes

C:\Program Files\MATLAB\R2006b\toolbox\matlab\verctrl

C:\Program Files\MATLAB\R2006b\toolbox\matlab\codetools

C:\Program Files\MATLAB\R2006b\toolbox\matlab\helptools

C:\Program Files\MATLAB\R2006b\toolbox\matlab\winfun

C:\Program Files\MATLAB\R2006b\toolbox\matlab\demos

C:\Program Files\MATLAB\R2006b\toolbox\matlab\timeseries

C:\Program Files\MATLAB\R2006b\toolbox\matlab\hds

C:\Program Files\MATLAB\R2006b\toolbox\local

C:\Program Files\MATLAB\R2006b\toolbox\shared\controllib

C:\Program Files\MATLAB\R2006b\toolbox\simulink\simulink

C:\Program Files\MATLAB\R2006b\toolbox\simulink\blocks

C:\Program Files\MATLAB\R2006b\toolbox\simulink\components

C:\Program Files\MATLAB\R2006b\toolbox\simulink\fixedandfloat

C:\Program Files\MATLAB\R2006b\toolbox\simulink\fixedandfloat\fxpdemos

C:\Program Files\MATLAB\R2006b\toolbox\simulink\fixedandfloat\obsolete

C:\Program Files\MATLAB\R2006b\toolbox\simulink\simdemos

C:\Program Files\MATLAB\R2006b\toolbox\simulink\simdemos\aerospace

C:\Program Files\MATLAB\R2006b\toolbox\simulink\simdemos\automotive

C:\Program Files\MATLAB\R2006b\toolbox\simulink\simdemos\simfeatures

C:\Program Files\MATLAB\R2006b\toolbox\simulink\simdemos\simgeneral

C:\Program Files\MATLAB\R2006b\toolbox\simulink\dee

C:\Program Files\MATLAB\R2006b\toolbox\shared\dastudio

C:\Program Files\MATLAB\R2006b\toolbox\stateflow\stateflow

C:\Program Files\MATLAB\R2006b\toolbox\rtw\rtw

C:\Program Files\MATLAB\R2006b\toolbox\simulink\simulink\modeladvisor

C:\Program Files\MATLAB\R2006b\toolbox\simulink\simulink\
modeladvisor\fixpt

C:\Program Files\MATLAB\R2006b\toolbox\simulink\simulink\MPlayIO

C:\Program Files\MATLAB\R2006b\toolbox\simulink\simulink\dataobjectwizard

C:\Program Files\MATLAB\R2006b\toolbox\shared\fixedpointlib

C:\Program Files\MATLAB\R2006b\toolbox\stateflow\sfdemos

C:\Program Files\MATLAB\R2006b\toolbox\stateflow\coder

C:\Program Files\MATLAB\R2006b\toolbox\rtw\rtwdemos

C:\Program Files\MATLAB\R2006b\toolbox\rtw\rtwdemos\rsimdemos

C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\asap2\asap2

C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\asap2\asap2\user

C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\common\can\blocks

C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\common\configuration\
resource

C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\common\tgtcommon

C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\rtwin\rtwin

C:\Program Files\MATLAB\R2006b\toolbox\simulink\accelerator

C:\Program Files\MATLAB\R2006b\toolbox\simulink\accelerator\acceldemos

C:\Program Files\MATLAB\R2006b\toolbox\rtw\accel

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

196 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

C:\Program Files\MATLAB\R2006b\toolbox\aeroblks\aeroblks

C:\Program Files\MATLAB\R2006b\toolbox\aeroblks\aerodemos

C:\Program Files\MATLAB\R2006b\toolbox\aeroblks\aerodemos\texture

C:\Program Files\MATLAB\R2006b\toolbox\bioinfo\bioinfo

C:\Program Files\MATLAB\R2006b\toolbox\bioinfo\biolearning

C:\Program Files\MATLAB\R2006b\toolbox\bioinfo\microarray

C:\Program Files\MATLAB\R2006b\toolbox\bioinfo\mass_spec

C:\Program Files\MATLAB\R2006b\toolbox\bioinfo\proteins

C:\Program Files\MATLAB\R2006b\toolbox\bioinfo\biomatrices

C:\Program Files\MATLAB\R2006b\toolbox\bioinfo\biodemos

C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\c166\c166

C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\c166\blocks

C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\c166\c166demos

C:\Program Files\MATLAB\R2006b\toolbox\ccslink\ccslink

C:\Program Files\MATLAB\R2006b\toolbox\ccslink\ccslink\outproc

C:\Program Files\MATLAB\R2006b\toolbox\ccslink\ccsblks

C:\Program Files\MATLAB\R2006b\toolbox\ccslink\ccsdemos

C:\Program Files\MATLAB\R2006b\toolbox\comm\comm

C:\Program Files\MATLAB\R2006b\toolbox\comm\commdemos

C:\Program Files\MATLAB\R2006b\toolbox\comm\commdemos\
commdocdemos

C:\Program Files\MATLAB\R2006b\toolbox\comm\commobsolete

C:\Program Files\MATLAB\R2006b\toolbox\commblks\commblks

C:\Program Files\MATLAB\R2006b\toolbox\commblks\commmasks

C:\Program Files\MATLAB\R2006b\toolbox\commblks\commmex

C:\Program Files\MATLAB\R2006b\toolbox\commblks\commblksdemos

C:\Program Files\MATLAB\R2006b\toolbox\commblks\commblksobsolete\v3

C:\Program Files\MATLAB\R2006b\toolbox\commblks\commblksobsolete\v2p5

C:\Program Files\MATLAB\R2006b\toolbox\commblks\commblksobsolete\v2

C:\Program Files\MATLAB\R2006b\toolbox\commblks\commblksobsolete\v1p5

C:\Program Files\MATLAB\R2006b\toolbox\control\control

C:\Program Files\MATLAB\R2006b\toolbox\control\ctrlguis

C:\Program Files\MATLAB\R2006b\toolbox\control\ctrlobsolete

C:\Program Files\MATLAB\R2006b\toolbox\control\ctrlutil

C:\Program Files\MATLAB\R2006b\toolbox\control\ctrldemos

C:\Program Files\MATLAB\R2006b\toolbox\curvefit\curvefit

C:\Program Files\MATLAB\R2006b\toolbox\curvefit\cftoolgui

C:\Program Files\MATLAB\R2006b\toolbox\shared\optimlib

C:\Program Files\MATLAB\R2006b\toolbox\daq\daq

C:\Program Files\MATLAB\R2006b\toolbox\daq\daqguis

C:\Program Files\MATLAB\R2006b\toolbox\dag\dagdemos

C:\Program Files\MATLAB\R2006b\toolbox\database\database

C:\Program Files\MATLAB\R2006b\toolbox\database\dbdemos

C:\Program Files\MATLAB\R2006b\toolbox\database\vgb

C:\Program Files\MATLAB\R2006b\toolbox\datafeed\datafeed

C:\Program Files\MATLAB\R2006b\toolbox\datafeed\dfgui

C:\Program Files\MATLAB\R2006b\toolbox\des\desblks

C:\Program Files\MATLAB\R2006b\toolbox\des\desmasks

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO SIMULINK® 197

C:\Program Files\MATLAB\R2006b\toolbox\des\desmex

C:\Program Files\MATLAB\R2006b\toolbox\des\desdemos

C:\Program Files\MATLAB\R2006b\toolbox\physmod\drive\drive
C:\Program Files\MATLAB\R2006b\toolbox\physmod\drive\drivedemos
C:\Program Files\MATLAB\R2006b\toolbox\dspblks\dspblks
C:\Program Files\MATLAB\R2006b\toolbox\dspblks\dspmasks
C:\Program Files\MATLAB\R2006b\toolbox\dspblks\dspmex
C:\Program Files\MATLAB\R2006b\toolbox\dspblks\dspdemos
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\ecoder
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\ecoder\ecoderdemos
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\mpt
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\mpt\mpt
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\mpt\user_specific
C:\Program Files\MATLAB\R2006b\toolbox\exlink

C:\Program Files\MATLAB\R2006b\toolbox\symbolic\extended
C:\Program Files\MATLAB\R2006b\toolbox\filterdesign\filterdesign
C:\Program Files\MATLAB\R2006b\toolbox\filterdesign\quantization
C:\Program Files\MATLAB\R2006b\toolbox\filterdesign\filtdesdemos
C:\Program Files\MATLAB\R2006b\toolbox\finance\finance
C:\Program Files\MATLAB\R2006b\toolbox\finance\calendar
C:\Program Files\MATLAB\R2006b\toolbox\finance\findemos
C:\Program Files\MATLAB\R2006b\toolbox\finance\finsupport
C:\Program Files\MATLAB\R2006b\toolbox\finance\ftseries
C:\Program Files\MATLAB\R2006b\toolbox\finance\ftsdemos
C:\Program Files\MATLAB\R2006b\toolbox\finance\ftsdata

C:\Program Files\MATLAB\R2006b\toolbox\finance\ftstutorials
C:\Program Files\MATLAB\R2006b\toolbox\finderiv\finderiv
C:\Program Files\MATLAB\R2006b\toolbox\finfixed\finfixed
C:\Program Files\MATLAB\R2006b\toolbox\fixedpoint\fixedpoint
C:\Program Files\MATLAB\R2006b\toolbox\fixedpoint\fidemos
C:\Program Files\MATLAB\R2006b\toolbox\fixedpoint\fimex
C:\Program Files\MATLAB\R2006b\toolbox\fixpoint

C:\Program Files\MATLAB\R2006b\toolbox\fuzzy\fuzzy

C:\Program Files\MATLAB\R2006b\toolbox\fuzzy\fuzdemos
C:\Program Files\MATLAB\R2006b\toolbox\gads

C:\Program Files\MATLAB\R2006b\toolbox\gads\gads

C:\Program Files\MATLAB\R2006b\toolbox\gads\gadsdemos
C:\Program Files\MATLAB\R2006b\toolbox\garch\garch

C:\Program Files\MATLAB\R2006b\toolbox\garch\garchdemos
C:\Program Files\sMATLAB\R2006b\toolbox\gauges

C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\hc12\hc12
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\hc12\blocks
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\hc 12\codewarrior
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\hc12\hc12demos
C:\Program Files\MATLAB\R2006b\toolbox\hdlfilter\hdlfilter
C:\Program Files\MATLAB\R2006b\toolbox\hdlfilter\hdlfiltdemos
C:\Program Files\MATLAB\R2006b\toolbox\shared\hdlshared
C:\Program Files\MATLAB\R2006b\toolbox\ident\ident

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

198 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

C:\Program Files\MATLAB\R2006b\toolbox\ident\idobsolete

C:\Program Files\MATLAB\R2006b\toolbox\ident\idguis

C:\Program Files\MATLAB\R2006b\toolbox\ident\idutils

C:\Program Files\MATLAB\R2006b\toolbox\ident\iddemos

C:\Program Files\MATLAB\R2006b\toolbox\ident\idhelp

C:\Program Files\MATLAB\R2006b\toolbox\images\images

C:\Program Files\MATLAB\R2006b\toolbox\images\imuitools

C:\Program Files\MATLAB\R2006b\toolbox\images\imdemos

C:\Program Files\MATLAB\R2006b\toolbox\images\iptutils

C:\Program Files\MATLAB\R2006b\toolbox\shared\imageslib

C:\Program Files\MATLAB\R2006b\toolbox\images\medformats

C:\Program Files\MATLAB\R2006b\toolbox\imaq\imaq

C:\Program Files\MATLAB\R2006b\toolbox\shared\imaqlib

C:\Program Files\MATLAB\R2006b\toolbox\imaq\imagdemos

C:\Program Files\MATLAB\R2006b\toolbox\imaq\imagblks\imaqgblks

C:\Program Files\MATLAB\R2006b\toolbox\imaq\imagblks\imagmasks

C:\Program Files\MATLAB\R2006b\toolbox\imaq\imagblks\imagmex

C:\Program Files\MATLAB\R2006b\toolbox\instrument\instrument

C:\Program Files\MATLAB\R2006b\toolbox\instrument\instrumentdemos

C:\Program Files\MATLAB\R2006b\toolbox\instrument\instrumentblks\
instrumentblks

C:\Program Files\MATLAB\R2006b\toolbox\instrument\instrumentblks\
instrumentmex

C:\Program Files\MATLAB\R2006b\toolbox\map\map

C:\Program Files\MATLAB\R2006b\toolbox\map\mapdemos

C:\Program Files\MATLAB\R2006b\toolbox\map\mapdisp

C:\Program Files\MATLAB\R2006b\toolbox\map\mapformats

C:\Program Files\MATLAB\R2006b\toolbox\map\mapproj

C:\Program Files\MATLAB\R2006b\toolbox\shared\mapgeodegy

C:\Program Files\MATLAB\R2006b\toolbox\mbc\mbc

C:\Program Files\MATLAB\R2006b\toolbox\mbc\mbcdata

C:\Program Files\MATLAB\R2006b\toolbox\mbc\mbcdesign

C:\Program Files\MATLAB\R2006b\toolbox\mbc\mbcexpr

C:\Program Files\MATLAB\R2006b\toolbox\mbc\mbcguitools

C:\Program Files\MATLAB\R2006b\toolbox\mbc\mbclayouts

C:\Program Files\MATLAB\R2006b\toolbox\mbc\mbcmodels

C:\Program Files\MATLAB\R2006b\toolbox\mbc\mbcsimulink

C:\Program Files\MATLAB\R2006b\toolbox\mbc\mbctools

C:\Program Files\MATLAB\R2006b\toolbox\mbc\mbcview

C:\Program Files\MATLAB\R2006b\toolbox\physmod\mech\mech

C:\Program Files\MATLAB\R2006b\toolbox\physmod\mech\mechdemos

C:\Program Files\MATLAB\R2006b\toolbox\physmod\pmimport\pmimport

C:\Program Files\MATLAB\R2006b\toolbox\slvnv\simcoverage

C:\Program Files\MATLAB\R2006b\toolbox\modelsim\modelsim

C:\Program Files\MATLAB\R2006b\toolbox\modelsim\modelsimdemos

C:\Program Files\MATLAB\R2006b\toolbox\mpc\mpc

C:\Program Files\MATLAB\R2006b\toolbox\mpc\mpcdemos

C:\Program Files\MATLAB\R2006b\toolbox\mpc\mpcguis

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO SIMULINK® 199

C:\Program Files\MATLAB\R2006b\toolbox\mpc\mpcobsolete
C:\Program Files\MATLAB\R2006b\toolbox\mpc\mpcutils
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\mpc555dk
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\mpc555dk\
common\configuration
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\mpc555dk\
mpcS555demos
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\mpc555dk\mpc555dk
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\mpc555dk\pil
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\mpc555dk\rt\
blockset\mfiles
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\mpc555dk\rt\blockset
C:\Program Files\MATLAB\R2006b\toolbox\nnet
C:\Program Files\sMATLAB\R2006b\toolbox\nnet\nncontrol
C:\Program Files\MATLAB\R2006b\toolbox\nnet\nndemos
C:\Program Files\MATLAB\R2006b\toolbox\nnet\nnet
C:\Program Files\MATLAB\R2006b\toolbox\nnet\nnet\nnanalyze
C:\Program Files\MATLAB\R2006b\toolbox\nnet\nnet\nncustom
C:\Program Files\MATLAB\R2006b\toolbox\nnet\nnet\nndistance
C:\Program Files\MATLAB\R2006b\toolbox\nnet\nnet\nnformat
C:\Program Files\MATLAB\R2006b\toolbox\nnet\nnet\nninit
C:\Program Files\MATLAB\R2006b\toolbox\nnet\nnet\nnlearn
C:\Program Files\sMATLAB\R2006b\toolbox\nnet\nnet\nnnetinput
C:\Program Files\MATLAB\R2006b\toolbox\nnet\nnet\nnnetwork
C:\Program Files\MATLAB\R2006b\toolbox\nnet\nnet\nonperformance
C:\Program Files\MATLAB\R2006b\toolbox\nnet\nnet\nnplot
C:\Program Files\MATLAB\R2006b\toolbox\nnet\nnet\nnprocess
C:\Program Files\MATLAB\R2006b\toolbox\nnet\nnet\nnsearch
C:\Program Files\MATLAB\R2006b\toolbox\nnet\nnet\nntopology
C:\Program Files\MATLAB\R2006b\toolbox\nnet\nnet\nntrain
C:\Program Files\MATLAB\R2006b\toolbox\nnet\nnet\nntransfer
C:\Program Files\MATLAB\R2006b\toolbox\nnet\nnet\nnweight
C:\Program Files\MATLAB\R2006b\toolbox\nnet\nnguis
C:\Program Files\MATLAB\R2006b\toolbox\nnet\nnguis\nftool
C:\Program Files\MATLAB\R2006b\toolbox\nnet\nnguis\nntool
C:\Program Files\MATLAB\R2006b\toolbox\nnet\nnobsolete
C:\Program Files\sMATLAB\R2006b\toolbox\nnet\nnresource
C:\Program Files\MATLAB\R2006b\toolbox\nnet\nnutils
C:\Program Files\MATLAB\R2006b\toolbox\opc\opc
C:\Program Files\MATLAB\R2006b\toolbox\opc\opcgui
C:\Program Files\MATLAB\R2006b\toolbox\opc\opcdemos
C:\Program Files\MATLAB\R2006b\toolbox\opc\opcdemos\opcblksdemos
C:\Program Files\MATLAB\R2006b\toolbox\opc\opcblks\opcblks
C:\Program Files\MATLAB\R2006b\toolbox\opc\opcblks\opcmasks
C:\Program Files\MATLAB\R2006b\toolbox\optim
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\osek\osek
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\osek\osekdemos
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\osek\blocks

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

200 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\osek\osekworks

C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\osek\proosek

C:\Program Files\MATLAB\R2006b\toolbox\pde

C:\Program Files\MATLAB\R2006b\toolbox\physmod\pm_util\pm_util

C:\Program Files\MATLAB\R2006b\toolbox\physmod\powersys\powersys

C:\Program Files\MATLAB\R2006b\toolbox\physmod\powersys\powerdemo

C:\Program Files\MATLAB\R2006b\toolbox\physmod\powersys\drives\drives

C:\Program Files\MATLAB\R2006b\toolbox\physmod\powersys\drives\
drivesdemo

C:\Program Files\MATLAB\R2006b\toolbox\physmod\powersys\facts\facts

C:\Program Files\MATLAB\R2006b\toolbox\physmod\powersys\
facts\factsdemo

C:\Program Files\MATLAB\R2006b\toolbox\physmod\powersys\DR\DR

C:\Program Files\MATLAB\R2006b\toolbox\physmod\powersys\DR\DRdemo

C:\Program Files\MATLAB\R2006b\toolbox\slvnv\reqmgt

C:\Program Files\MATLAB\R2006b\toolbox\slvhv\irmidemos

C:\Program Files\MATLAB\R2006b\toolbox\rf\rf

C:\Program Files\MATLAB\R2006b\toolbox\rf\rfdemos

C:\Program Files\MATLAB\R2006b\toolbox\rf\rftool

C:\Program Files\MATLAB\R2006b\toolbox\rfblks\rfblks

C:\Program Files\MATLAB\R2006b\toolbox\rfblks\rfblksmasks

C:\Program Files\MATLAB\R2006b\toolbox\rfblks\rfblksmex

C:\Program Files\MATLAB\R2006b\toolbox\rfblks\rfblksdemos

C:\Program Files\MATLAB\R2006b\toolbox\robust\robust

C:\Program Files\MATLAB\R2006b\toolbox\robust\rctlmi

C:\Program Files\MATLAB\R2006b\toolbox\robust\rctutil

C:\Program Files\MATLAB\R2006b\toolbox\robust\rctdemos

C:\Program Files\MATLAB\R2006b\toolbox\robust\rctobsolete\robust

C:\Program Files\MATLAB\R2006b\toolbox\robust\rctobsolete\Imi

C:\Program Files\MATLAB\R2006b\toolbox\robust\rctobsolete\mutools\
commands

C:\Program Files\MATLAB\R2006b\toolbox\robust\rctobsolete\mutools\subs

C:\Program Files\MATLAB\R2006b\toolbox\rptgen\rptgen

C:\Program Files\MATLAB\R2006b\toolbox\rptgen\rptgendemos

C:\Program Files\MATLAB\R2006b\toolbox\rptgen\rptgenvl

C:\Program Files\MATLAB\R2006b\toolbox\rptgenext\rptgenext

C:\Program Files\MATLAB\R2006b\toolbox\rptgenext\rptgenextdemos

C:\Program Files\MATLAB\R2006b\toolbox\rptgenext\rptgenextv1

C:\Program Files\MATLAB\R2006b\toolbox\signal\signal

C:\Program Files\MATLAB\R2006b\toolbox\signal\sigtools

C:\Program Files\MATLAB\R2006b\toolbox\signal\sptoolgui

C:\Program Files\MATLAB\R2006b\toolbox\signal\sigdemos

C:\Program Files\MATLAB\R2006b\toolbox\simbio\simbio

C:\Program Files\MATLAB\R2006b\toolbox\simbio\simbiodemos

C:\Program Files\MATLAB\R2006b\toolbox\slcontrol\slcontrol

C:\Program Files\MATLAB\R2006b\toolbox\slcontrol\slctrlguis

C:\Program Files\M ATLAB\R2006b\toolbox\slcontrol\slctrlutil

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO SIMULINK® 201

C:\Program Files\MATLAB\R2006b\toolbox\slcontrol\slctrldemos

C:\Program Files\MATLAB\R2006b\toolbox\slestim\slestdemos

C:\Program Files\MATLAB\R2006b\toolbox\slestim\slestguis

C:\Program Files\MATLAB\R2006b\toolbox\slestim\slestim

C:\Program Files\MATLAB\R2006b\toolbox\slestim\slestmex

C:\Program Files\MATLAB\R2006b\toolbox\slestim\slestutil

C:\Program Files\MATLAB\R2006b\toolbox\sloptim\sloptim

C:\Program Files\MATLAB\R2006b\toolbox\sloptim\sloptguis

C:\Program Files\MATLAB\R2006b\toolbox\sloptim\sloptdemos

C:\Program Files\MATLAB\R2006b\toolbox\sloptim\sloptobsolete

C:\Program Files\MATLAB\R2006b\toolbox\slvnv\slvnv

C:\Program Files\MATLAB\R2006b\toolbox\slvnv\simcovdemos

C:\Program Files\MATLAB\R2006b\toolbox\splines

C:\Program Files\MATLAB\R2006b\toolbox\stats

C:\Program Files\MATLAB\R2006b\toolbox\symbolic

C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\tic2000\tic2000

C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\tic2000\tic2000blks

C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\tic2000\tic2000demos

C:\Program Files\MATLAB\R2006b\toolbox\shared\etargets\etargets

C:\Program Files\MATLAB\R2006b\toolbox\shared\etargets\rtdxblks

C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\tic6000\tic6000

C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\tic6000\tic6000blks

C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\tic6000\
tic6000demos

C:\Program Files\MATLAB\R2006b\toolbox\vipblks\vipblks

C:\Program Files\MATLAB\R2006b\toolbox\vipblks\vipmasks

C:\Program Files\MATLAB\R2006b\toolbox\vipblks\vipmex

C:\Program Files\MATLAB\R2006b\toolbox\vipblks\vipdemos

C:\Program Files\MATLAB\R2006b\toolbox\vr\vr

C:\Program Files\MATLAB\R2006b\toolbox\vr\vrdemos

C:\Program Files\sMATLAB\R2006b\toolbox\wavelet\wavelet

C:\Program Files\MATLAB\R2006b\toolbox\wavelet\wavedemo

C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\xpc\xpc

C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\xpc\target\build\
xpcblocks

C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\xpc\xpcdemos

C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\xpc\xpc\xpcmngr

C:\Program Files\MATLAB\R2006b\work

C:\Program Files\MATLAB\R2006b\toolbox\physmod\network_engine\
network_engine

C:\Program Files\MATLAB\R2006b\toolbox\physmod\network_engine\
ne_sli

C:\Program Files\MATLAB\R2006b\toolbox\physmod\network_engine\
library

C:\Program Files\MATLAB\R2006b\toolbox\physmod\sh\sh

C:\Program Files\MATLAB\R2006b\toolbox\physmod\sh\shdemos

C:\Program Files\MATLAB\R2006b\toolbox\physmod\sh\library

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

202 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

To find out what version of MATLAB, Simulink, and its toolboxes you are
using, type the command

> ver

It will provide you with version information on MATLAB, Simulink, and all
associated software as follows.

MATLAB Version 7.3.0.267 (R2006b)

MATLAB License Number: DEMO

Operating System: Microsoft Windows XP Version 5.1 (Build 2600: Service Pack 2)
Java VM Version: Java 1.5.0 with Sun Microsystems Inc. Java HotSpot(TM) Client VM
mixed mode

MATLAB Version 7.3 (R2006b)
Simulink Version 6.5 (R2006b)
Aerospace Blockset Version 2.2 (R2006b)
Aerospace Toolbox Version 1.0 (R2006b)
Bioinformatics Toolbox Version 2.4 (R2006b)
Communications Blockset Version 3.4 (R2006b)
Communications Toolbox Version 3.4 (R2006b)
Control System Toolbox Version 7.1 (R2006b)
Curve Fitting Toolbox Version 1.1.6 (R2006b)
Data Acquisition Toolbox Version 2.9 (R2006b)
Database Toolbox Version 3.2 (R2006b)
Datafeed Toolbox Version 1.9 (R2006b)
Embedded Target for Infineon C166 Microcontrollers Version 1.3 (R2006b)
Embedded Target for Motorola MPC555 Version 2.0.5 (R2006b)
Embedded Target for TI C2000 DSP(tm) Version 2.1 (R2006b)
Embedded Target for TI C6000 DSP(tm) Version 3.1 (R2006b)
Excel Link Version 2.4 (R2006b)
Extended Symbolic Math Toolbox Version 3.1.5 (R2006b)
Filter Design HDL Coder Version 1.5 (R2006b)
Filter Design Toolbox Version 4.0 (R2006b)
Financial Derivatives Toolbox Version 4.1 (R2006b)
Financial Toolbox Version 3.1 (R2006b)
Fixed-Income Toolbox Version 1.2 (R2006b)
Fixed-Point Toolbox Version 1.5 (R2006b)
Fuzzy Logic Toolbox Version 2.2.4 (R2006b)
GARCH Toolbox Version 2.3 (R2006b)
Gauges Blockset Version 2.0.4 (R2006b)
Genetic Algorithm Direct Search Toolbox Version 2.0.2 (R2006b)
Image Acquisition Toolbox Version 2.0 (R2006b)
Image Processing Toolbox Version 5.3 (R2006b)
Instrument Control Toolbox Version 2.4.1 (R2006b)
Link for Code Composer Studio Version 2.1 (R2006b)
Link for ModelSim Version 2.1 (R2006b)

Linkfor TASKING Version 1.0.1 (R2006b)

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO SIMULINK® 203
MATLAB Report Generator Version 3.1 (R2006b)
Mapping Toolbox Version 2.4 (R2006b)
Model Predictive Control Toolbox Version 2.2.3 (R2006b)
Model-Based Calibration Toolbox Version 3.1 (R2006b)
Neural Network Toolbox Version 5.0.1 (R2006b)
OPC Toolbox Version 2.0.3 (R2006b)
Optimization Toolbox Version 3.1 (R2006b)
Partial Differential Equation Toolbox Version 1.0.9 (R2006b)
RF Blockset Version 1.3.1 (R2006b)
RF Toolbox Version 2.0 (R2006b)
Real-Time Windows Target Version 2.6.2 (R2006b)
Real-Time Workshop Version 6.5 (R2006b)
Real-Time Workshop Embedded Coder Version 4.5 (R2006b)
Robust Control Toolbox Version 3.1.1 (R2006b)
Signal Processing Blockset Version 6.4 (R2006b)
Signal Processing Toolbox Version 6.6 (R2006b)
SimBiology Version 2.0.1 (R2006b)
SimDriveline Version 1.2.1 (R2006b)
SimEvents Version 1.2 (R2006b)
SimHydraulics Version 1.1 (R2006b)
SimMechanics Version 2.5 (R2006b)
SimPowerSystems Version 4.3 (R2006b)
Simulink Accelerator Version 6.5 (R2006b)
Simulink Control Design Version 2.0.1 (R2006b)
Simulink Fixed Point Version 5.3 (R2006b)
Simulink HDL Coder Version 1.0 (R2006b)
Simulink Parameter Estimation Version 1.1.4 (R2006b)
Simulink Report Generator Version 3.1 (R2006b)
Simulink Response Optimization Version 3.1 (R2006b)
Simulink Verification and Validation Version 2.0 (R2006b)
Spline Toolbox Version 3.3.1 (R2006b)
Stateflow Version 6.5 (R2006b)
Stateflow Coder Version 6.5 (R2006b)
Statistics Toolbox Version 5.3 (R2006b)
Symbolic Math Toolbox Version 3.1.5 (R2006b)
System Identification Toolbox Version 6.2 (R2006b)
SystemTest Version 1.0.1 (R2006b)
Video and Image Processing Blockset Version 2.2 (R2006b)
Virtual Reality Toolbox Version 4.4 (R2006b)
Wavelet Toolbox Version 3.1 (R2006b)

xPC Target Version 3.1 (R2006b)

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

204

Your Simulink preferences are set using the MATLAB Preferences
dialog box (Fig. 8.4). To open this dialog box, select Preferences from the Simu-

BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

link File menu.

)

Preferences

General
Fonts
Colors

S ommand YWindow

Keyhoard & Indenting
Command History
EditorDebugaer
Help
Wieb
Currert Directory
Wiorkspace
Array Editor
GUIDE

| Figure Copy Template

Report Gererator
Instrument Control
Wirtual Realty

| Simulink

Command Window Preferences

Text display-
Mumeric format: __Shl?[‘l | ‘\l'_.

Numeric display: | loose ¥ |

Display
[] wwap lines

D Limit matrix display wicth to eighty columns

Nurber of fines in command window scroll buffer: | 5,000 |

Accessibility

D Arrow keys navigate instead of recaliing history

[ok][cencel |[apoly][Hep |

A variety of Simulink demonstrations can be accessed using the demo
command. Simulink demonstrations can always be started by selecting Demos

Fig. 8.4

from the Help pull-down menu. Try typing the command

>demo

This results in the interface window shown in Fig. 8.5. Note that the Simulink

demonstrations are contained under + Simulink.

GAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO SIMULINK® 205

& Help |
Be Edt Yew Go Fgworites Desktop Window Help -
Hip Iavigator Yl & W

Tithe: | Gettng Stared with Damos ~

Contents | Index | Search
o
4 MATLAB
=4\ Toolboxes
&\ Bicinformatics
& o\ Communications

r

Choosing a Demo

4 Control System Expand the product anea in the bt pane 1o wew & list of its demos. The right pane displays 8 thumbnai

5 4\ Curve Filling image and type for each demo. Demo types are

@ < Data Acouisihon [} Mfile Dwmos that tell 3 stop-by-step story, including source code, commentary, and output
+-dh Database They are pablished from Mfile scrpts 1o HTML using the EdierDebugger coll and fis

5 & Fiter Dasign pubilizhing features.

+ o Filter Dasign HOL Coder B MGUI Stand-slone tools for expiceing @ feature.

o\ Financial Bl Model Block disgrams

4 o Fixad-Poirt H Video Movies that highleght key fastures in & taol. Require phug-ins.

s\ Fuzzy Logic

® -4 GARCH Running a Demo

% o Genstic Algorithm and Direct Search Select @ demc froen the list ard then view information sbout the demo in the ight pane. Use links a1 the
-4 Image Acquisition 1ap to periorm these aclions.

+ 4\ Image Processiny
+4himag g Open... For Mils and M-GUl type demos, viaw the souce code in the EditorDsbugger You can

i o Instrument Control exaeute Milo 1ype demos ane section [coll] at 4 timo using the Cell > Evaluate Coll
-« Link for Code Composer Studio(tm) and Advance mens fem
5 o Link for ModalSim

For Model type demas, open the black diagram in Simulink
+ 4 Mapping
4\ Model Predictive Control
% A Newral Netwark
4 OPC)
& 4\ Optimization Run dema in the Command Window 10 open the Holp browsar to the Demes tab, Add an argumant to
2 e e ge directly ta the demes for & specific preduct o categary
4\ Parbal Differential Equation
w4 OF T Control Design
+ 4 RF demo matlab geaphics
s -4\ Robust Control
« 4 Signal Processing For more information, see the refgrarce page for the dema function
= 4 Spline
+-dh Statistics
o Symbolic Math
4 4\ System Identificaion
o 4@ Virtual Reality
&\ Wavelet

B Simulink

= W Blockssts

Run... Execute the demo

Function Alternative

Far example, 10 list demas for MATLAB Graphics, un

Fig. 8.5

8.5 Conclusion

A variety of other Simulink block libraries and tools are likely available
on your system. Take a look, and start exploring! In the next lecture we will
start constructing Simulink models.

JAIAA.

The Workls From i Aempas Laodirdip. Purchased from American Institute of Aeronautics and Astronautics

206 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

Practice Exercises

8.1 Load an existing Simulink model and do some simple analysis using it.
This example is a model of the one-dimensional (vertical) behavior of an
F-14 fighter.

Type the following command into the MATLAB Command Window
to load the data required by the model:

> fl4dat;
Next load the system and associated numerical constants:

> fl14;

The loaded model should look like the one in Fig. 8.6.

=
ODFES ‘R = - RELE » = |hied =]

J Angle of Attack =10l

8@ 0PL ABEIBE 5

Fig. 8.6

Double-click on the Stick Input Scope so that inputs and outputs all are
visible. Go to Simulation and use the pull-down window to select Start. See
what happens. Try using the Autoscale (binoculars) and Zoom functions
(magnifying glass) in the Scope windows. Try other Pilot inputs by opening
the Pilot Signal Generator. Try sine, sawtooth, and random inputs. Try
dragging other blocks from the Simulink Library Browser onto the diagram.
For example, replace the Pilot Signal Generator with other Sources and
execute the simulation again.

JAIAA

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO SIMULINK®

207

As you initially open the model, the input excitation should be as shown in

Fig. 8.7.

Fle it Wew Seuistion Fomat Took bsp

DFES '@

ESE I e (TR R

BRE#®

4 Fight Corml
o e

‘et

Prwaer

Warnto [oqn
gl

i
Frmpamcy
[o/500000

(121 Py

B intepeet vector casameten 0 10

o careel |

]

JAIAA

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

Notes

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

9
Building a Simple Simulink® Model

9.1 Introduction and Objectives

This chapter provides the reader with an example of how to build a Simulink®
model. Further examples are given in the following chapters. This chapter will
provide the reader with the tools to start building simple Simulink models.

Upon completion of this chapter, the reader will be able to generate simple
Simulink models, execute and simulate simple systems implemented in Simulink,
and modify Simulink model block parameters.

9.2 Population Model

Our first Simulink system models a population in which the number of
members over time follows the equation

dm/dt = a*m —b*m*m

In the previous equation, the variable a is taken to represent the reproductive
rate and b represents competition. We will construct the model shown in Fig. 9.1.

209

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

210 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

P aton Siz; 1
Scope
l ’. c
S Uy
pop Uy

Fig. 9.1

We will name this Simulink model pops.mdl. Then 20 simulations will be run
using different starting populations.

To create the model, first enter Simulink in the MATLAB® Command
Window. On Microsoft Windows, the Simulink Library Browser appears as
shown in Fig. 9.2.

=3 simulink Library Browser i =101
Fie Edit View Help
Db

Commonly Used Blocks: simulink/Commonly
Used Blocks

= B Ssimulink

3 Commonly Used Blocks
3+ Continuous

1] Discontinuities . Confinuous
3 Discrete

Logic and Bit Operations
% Lookup Tables [
2| Math Operations Discrete
2| Model Verification =
3 Model-wide Uitilkies a5
3] Ports & Subsystems L
2| Signal Attributes

[+

Discontinuities

5| Logic and Bit Dperations
-

signal Routing |t] Lookup Tables
+ ol
2] Sinks [~ o
3+ Sources | Math Operations
3 User-Defined Functions =
@ 2| Additional Math & Discrete | ®@ Model 'V esification
E “ Real-Time Workshop H
@ W Simulink Extras PO ModeiWide Uitiiss
B stateflow B

| E Poits & Subsystems

s

Ready

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

BUILDING A SIMPLE SIMULINK® MODEL 211

To create a new model in Windows, click the New Model button on the
Library Browser’s toolbar (see Fig. 9.3).

= simulink Library Browser i =100 x|
Fila Edit View Help

New model butlon ———— .1y = o aa |

Commonly Used Blocks: simulnk/Commanky
Used Blocks

| 21| Commonly Used Elocks

Fig. 9.3

Simulink opens a new model window (Fig. 9.4).

~loi x|

File Edit “iew Simulation Format Tools Help

D& 2R &) IIanmai VI|@E|H‘}@

Ready 100% | lodeds 4

Fig. 9.4

Use File, Save as . . . to rename the file to pops.mdl. Note that for Simulink to
recognize this as a Simulink model the filename must end with a .mdl. The full
name of your file should then be pops.mdl. The name in the upper left corner of
your Simulink model window will now say pops.

You can next start to populate your Simulink model with the required block
elements. The model elements are two gains, an integrator, and a squaring
element. A scope will be used to see the results during each run. All elements
will finally be connected together (see Figs 9.5-9.7).

GAIAA.

The Workds f dusip Purct 1 from American Institute of Aeronautics and Astronautics

212 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

_ =lolx|
File Edit Wiew Simulstion Format Tools Help

o e (BIE) e @Sl BB S
Close Chri+iw

Source control »

Model properties

Preferences. ..

Save the model under a different name |100% | lodeds 4

Fig. 9.5

File Edit Wiew Simulation Format Tools Help

savens R T DR Y

Savein: | 3 STUDENTS_TOP -] « & eF B

Filename: |popsmdl | Save I
Save as ype: | Simulink Models (*.md) | Cancel |

Ready |100% | \odedS 7

Fig. 9.6

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

BUILDING A SIMPLE SIMULINK® MODEL 213

File Edit “iew Simulation Format Tools Help

D,D"‘El§|¥:’qﬁ|'_’"_‘|b IINDlmai VI|@|:|H‘}'@

Ready 100% | lodeds 4

Fig. 9.7

We are now ready to start collecting our model elements and placing them into
the pops window. Go first to the Simulink Library Browser and select the
Continuous library. Next select the Integrator block, and while holding down
the left mouse button, drag the block over into your pops window. The operation
should appear as in the following figures.

Note that an asterisk * appears after pops in the upper left corner of the
window after an unsaved modification is made. This tells you that the Simulink
model has been changed since you last saved the file (see Figs 9.8-9.10).

GAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

214

L"'_'_.;Simulink Library Browser
File Edit VYiew Help

BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

o]

O & Ha find |

| Derivative: Numerical derivative: du/dt.

= gl simulink
. Continuous
- Discontinuities
.= Discrete
-2 Look-Up Tables
| Math Operations
| Model Verification
- 2| Model-wide Utilities
-2 Ports & Subsystems
-2 signal Attributes
-2 signal Routing
-2 sinks
-2 Sources
| User-Defined Functions
Aerospace Blockset
- 2 Actuators
. 2 Animation
- 23 Environment
#- 23 Equations of Motion
. 2+ Propulsion
- 2] Transformations
B Communications Blockset
.| Control System Toolbox
- | DSP Blockset
B Fixed-Point Blockset
Ej Fuzzy Logic Toolbox
B MCD Blockset
- [Neural Network Blockset
- B Real-Time Workshop
B Report Generator
- B 5-function demos
B simPowerSystems
B simulink Extras
B stateflow
-\ System ID Blocks

Ready

du/dt

il
8

* = Ax+Bu
vy = G Du

2+1

%y
r=n
szt1)

Fig. 9.8

Derivative

Integrator

State-Space

Transfer Fon

Transport Delay

Vanable Transport Delay

Zero-Pole

dedip Purchased from American Institute of Aeronautics and Astronautics

BUILDING A SIMPLE SIMULINK® MODEL 215

[Choeman leary somer i}

Fle Edt Vew Heb Fis Lt Ve Simdetion Pomel Touk My

D@H@| L LR = b afod ME: BET®

& Contiuoa
2 Ducontrtan
5 vucrete
2 Lokl Tables 5
pr— s...am
2 Hodel verfication .
2 Madel-Wie Lo Tianudes Fon

| ———

0&! Wanatle Tinrapon Delay

on 4
st |43 || Dowr | cvom-.. | G| Gws.. | Aowirise] Gt | et [N Bass | dhivte | et | Wows | [RESET oo

Fig. 9.9

Cloops~ N | < L.

File Edt View Smulation Format Tools Help
BRET®

D|ﬁﬂ§|$%ﬁ|9&]) llNorma! 'I|@

Ready [100% | f lodes /4

Fig. 9.10

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

216 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

You next need to add a couple of gains. Open the Math Operations library as
shown in Fig. 9.11.

lul Abs

= % % |Algebraic Constraint

-

1) IR p o

e-avg " szignment
bitwise o .
AMD Bitwise Logical Dperator
'FFFF

[5 ii] Combinatorial Logic

= Complex to Magnitude-&ngle

i) Complex to Reallmag

. Dat Praduct

> Gain

AND Logical Operatar

s Magnitude-Angle to Complex

sY Math Function

[”:“] Matrix Concatenation
@ Matrix Gain

Fig. 9.11

GAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

BUILDING A SIMPLE SIMULINK® MODEL 217

Select the Gain block and drag it into the pops window. Repeat this operation
a second time to generate the second gain element. The pops window will appear
as shown in Figs 9.12 and 9.13.

=lolx|

File Edit View Simulation Format Tools Help

>

Gem'

Integrator

Ready [100% [[lodeds 4
Fig. 9.12
=10 x|

File Edt Wiew Simulation Format Tools Help

DSHS SBR[» =|Nomd S RBE T ®

Giain
Integrator
-
=
-
Gaint
Ready |100% | | ‘ndeds Y

Fig. 9.13

GAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

218 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

Now you need a summing junction. You will find this near the bottom of the
Math Operations library (see Figs 9.14 and 9.15).

m Simulink Library Browser

Fle Edt View Hep
D& 4= 84 |
Sum: Add or subtractinputs. Specify one of the following: B
a) string containing + or - for each input port, | for spacer between ports (e.g. ++|-|++) =
= "] Sifl‘luhkl I Al [w ‘Lomplex 10 Niagnituae-Kngie =
Commeonly Used Blocks m -
i Conunuor{s Complexto Reallmag
| Discontinuities =
% Discrete Divide
% Logic and Bit Operations
%4 Lookup Tables D Dot Product
% Math Operations e
2 Model Verfication I> ain
54 Model-Wide Utiities T~ .
% Ports & Subsystems ;~| Magnitude-Angle to Complex
% Signal Attributes .
%1 Signal Routing E] Math Function
| Sinks Horiz Cat
z sources (]| Mstrx Concatenation
2 User-Defined Functions)
+ % Additional Math & Discret E MinMax
« T Aerospace Blockset =
+ § CDMA Reference Blockset MinMax Running Resetiable
+ W Communications Blockset =5 _
W Control System Toolbox povi Polynomial
+ Wl Dials & Gauges Blockset
+ Wi Embedded Target for Infinec Product
+ W Embedded Target for Moton
+ W Embedded Target for Motor Product of Elements
+ W Embedded Target for OSEK/ Rew
+ Wil Embedded Target for T1 C2¢ | Realimagto Complex
+ W Embedded Target for TI C6(
= §Hl Fuzzy Logic Toobox Reshape
W Link for ModelSim _ _
+ B Model Predictive Control Toc Rounding Function
+ B Neural Network Blockset _
+ W RF Blockset Sign
W Real-Time Windows Target _
+ W Real-Time Workshop @ Sine Wave Function
+ B Real-Time Workshop Embed _
W Report Generator D Slider Gain
+ Wl Signal Processing Blockset
+ W SimMechanics Subtract
+ B SimPowerSystems N
+ B Simuink Control Design & B
£ Simulink Extras b
< - | > Sum of Elements @
Ready

Fig. 9.14

GAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

BUILDING A SIMPLE SIMULINK® MODEL 219
=1pops * = =10l =|
File Edit View Format Tools Help
DRSS $BR |2 » = im S RE T ®
Ready [100% I | loded5 4

Fig. 9.15

Now we need to add the element to square the signal. We select the Math Func-
tion block from the library of Math Operations. We again drag this element into
our pops model. You might consider saving your model again every now and then
during this model-generation process. You would hate to have to start again from
scratch if something bad happened during the construction process (see Fig. 9.16).

R A1 O alalzl
Pie Tk Yo thi Fhe £ vew Seeson Foms ook tep
0 e | DEFES L0 | e[HE e RE e
= I S 3
B Contrums El L
5] tmeorerten
Do ot conn >
B Lokt Tablin e
5 o permtons - &> T v
et o @ =
[T —— o R T P — B e
Iy ys—" [mr .
B Sgna arirttes D=
b s - L
B ks —
= P 0] ool o Magnite drie
] Usee-Dofnad Furtions
farp e thbant B Comgin s Peatinag
L0
B Actustoes
& prwaticn . Dod Pracht el T I ol
P —- .]
- 2] Equatiorn of Mot
: v fisn
Sow >
B Progaduce,
e [i
i I Commuricatons Msce -
W Cortrol System Tookan | Mg dnge 1o Congien
0 et
T PPk Bocksst lz‘ Magh Furction
W ey Lok Packan
o
Tt okt (0| v cemeraten
[T —— |

W e T nebaton D v

T EEre—— *

B Hunction descs.]

St b BB

T S Eras

v s

T Srtom I ok

[] e
ne| Resinagio Compis
=l

= 3

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

220 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

To view the output of this dynamic system, a Scope output block is required.
This is available from the Simulink library of Sinks.

Again, select the Scope using the mouse. Drag the Scope until it is located at
the desired spot in the pops model window. Release the Scope at this location
(see Fig. 9.17).

Display

Flaating Scope

Outl

Scope

Stop Simulation

T erminator

m ([0 [Dm

untitied.mat | To File

gimout | ToWoarkspace

& Graph

Fig. 9.17

GAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

BUILDING A SIMPLE SIMULINK® MODEL 221

Our model now (we hope) looks like the window shown in Fig. 9.18.

)

File Edit ‘iew Simulation Format Tools Help

DSEH&E $BR <2 » =[nom Ve RE T

)D) Scope
Giain

Intagrator Math
Function

Gainl

Ready 100% | I loceds 4

Fig. 9.18

We next need to connect all the elements that we generated. This is done by
mouse selection of the output ports of our block elements and connecting them to
the input ports of the other block elements (see Fig. 9.19).

=lofx|

File Edit Yiew Simulation Format Tools Help

- Scops
Gain |
@
Intagrator Math
Function
Gainl
Ready [100% [odeds /4

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

222 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

A helpful hint might appear on the screen as follows. Simulink attempts to aid
you through the connection process.

Remember to use left mouse clicks to select the starting ports, and make sure
to position the mouse close enough to the final in port for Simulink to recognize
the connection. You may need a little practice to get used to making these con-
nections. The dashed lines show connections in progress. Final connections are
shown by solid arrows (see Figs 9.20-9.22).

File Edt View Simulation Format Tools Help

DSE& BB [2= b #[Noma HdESH wmt+ @

A

Scops
Gizin
Integrator Math
Function
D) Automatic Block Connection Tip =101 x|
Gainl

To quickly connect blocks. select the source block(s), then hald
down the Cil key while left-clicking on the destination block.

[~ Do not show this message again
Ready 1o Help I Close | 4|

Fig. 9.20

=1pops * I [=] 5]
Fle Edit View Simulation Format Tools Help

DSEE s mR(2 > s ZBSE BE TS

Scope
Gain
: Integrator Math
I Funation
Ciain 1
Ready [100% [| |odeds 4

Fig. 9.21

GAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

BUILDING A SIMPLE SIMULINK® MODEL 223

EETCE ol

File Edit Wiew Simulation Format Tools Help

Scope
Integrator Math
Funection
Gaini
Ready 1100% | |odeds v
Fig. 9.22

Connections are made one at a time (see Figs 9.23 and 9.24).

~=loix|

File Edit W¥iew Simulation Format Tools Help

Scope
Intagrator Math
Function
Gaini
Ready |100% | lodeds v

Fig. 9.23

GAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

224 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

BLTE

File Edit Wiew Simulation Format Tools Help

Scops
a ‘--I
Integrator Math
Funetion
| & |
e]
Ready 1100% | lode4s 4
Fig. 9.24

Hold the right mouse button to branch from a connecting line (see Figs 9.25
and 9.26).

Cloops* R T=TE]

File Edit View Simulation Format Tools Help

Integrator Math
Function

Ready [100% [| odeds 4

Fig. 9.25

GAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

BUILDING A SIMPLE SIMULINK® MODEL 225

ol

File Edit View Simulation Format Tools Help

Ready [100% I lodeds 4

Fig. 9.26

We are now branching from the corner of an existing line (see Fig. 9.27).

oK

File Edt View Simulation Format Tools Help

Ready |100% [lode4s 4

Fig. 9.27

GAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

226 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

By double-clicking on an element we wish to modify, we can open the appro-
priate parameter window. Here we will change the sign of the second summation
into a subtraction. In the list of signs, the second + is deleted and a — sign is added.
The next window shows the changed parameter. When Apply is selected, the sign
is changed in the pops model diagram. Note that the | element in the List of Signs
denotes a spacer that later will be moved to change the appearance of the Sum
(see Figs 9.28-9.30).

|Ready

100%|

ﬂ

Scope

Integrator

Math
Function

EJ Block Parameters: Sum
Sum

Add or subtractinputs. Specify one ofthe following:

a) string containing + or - for each input port. | for spacer between ports (e.g.
Hl-

b) scalar>=1. Avalue > 1 sums all inputs: 1 sums elements of a single input
vector

[Main| |Sigﬂal data types !

Icon shape: | round -]
List of signs:

=

Sample time (-1 for inherited):
]

| OK | Cancel] Help] Apply

Fig. 9.28

1 from American Institute of Aeronautics and Astronautics

BUILDING A SIMPLE SIMULINK® MODEL 227

a Block Parameters: Sum

~Sum

Add or subtractinputs. Specify one of the following:

a) string containing + or - for each input port, | for spacer between ports (e.g.
‘¢|A|++}

b) scalar >= 1. A value > 1 sums all inputs. 1 sums elemenis of a single input
vector

iﬁ;llﬂ |Signal data types |

Icon shape: | round |
List of signs:

lle+

Sample time (-1 for inherited):

-1

0K I Cancel | Help | Apply

Fig. 9.29

]|
[

?X

ﬂ Block Parameters: Sum

Add or subractinputs. Specify one of the following:

) sting containing + or - for each input port, | for spacer between ports (e.g.
++Her)

b) scalar >= 1. Avalue > 1 sums all inputs: 1 sums elements of a single input
wector

[Msin [Signal data types |
lcon shape: I round l!

List of signs:

Sample time (-1 for inherited):

=]
[ok | cgancel | Help Apply

Fig. 9.30

GAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

228 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

We next double-click on the Math Function block to change it into a squaring
block (see Fig. 9.31).

=101 x]

File Edit WView Simulation Format Tools Help

Dlﬁ"ﬂél&%ﬁlﬂfﬂb lINolrnal 'I|@|‘_‘||ﬁﬁ@

" |:||
Scopa
oY
Integrator Math
Function
Ready [100% | | looeds 4
Block Parameters: Math Function B x|

-~ Math
Mathematical functions including logarithmic, exponential, power, and
modulus functions. When the function has more than one argumerit, the
first argument comesponds to the top [or left] input paort.

r~ Parameters
Function: exp _:I
Dutput sig| ﬁ‘;
10%u H

log10
! 0l mﬁitude“.?

sqrt

pow

conj
reciprocal
hypot
rem

micd
hranspose
hermitian

Fig. 9.31

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

BUILDING A SIMPLE SIMULINK® MODEL 229

We then type over the name Math Function to give it the new name u*u (see
Fig. 9.32).

=10f x|

File Edit View Simulation Format Tools Help

Ready |100% | lodeds 4

Fig. 9.32

The final changes to the elements are to give the first gain we created the block
title a and assign it a value of 0.02309. Then we change the second block title to b
and give it a value of 0.0005157. Again, double-click on the elements to change
the parameter values. You select the gain element titles to rename them.

These operations are shown in Fig. 9.33.

Purchased from American Institute of Aeronautics and Astronautics

230 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

D zR& ¥%&

2

ormat T !

2> 5P [Nomal v| HERE | B

)

Scope

u=u

E} Block Parameters: a

1 Gain

Element-wise gain (y = K.*u) or matrix gain (y = K'u ory = u™K).

Main ISignaldata types | Parameter datatypes |
Gain:
|0.02309
Multiplication: | Element-wise(K "u) ;[
Sample time (-1 for inherited):

B

OK I Cancel l

Fig. 9.33

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

BUILDING A SIMPLE SIMULINK® MODEL 231

Here we typed in the first gain parameter value of 0.02309.
This value is entered into the gain block by selecting Apply (see Fig. 9.34).

Llpops * i =101 x|
Fle Edt View Smuation Format Tooks Help

Integrator

Ready |100% l [lodeds 4

Fig. 9.34

GAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

232 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

Next the name Gain must be selected and changed to the block name a.
To change the name of Gain, use the mouse to select the text, and then type

over the old name with the new name.
The previous process is repeated after selecting the Gainl element. This

process is summarized in Fig. 9.35.

[~ pops *
DEES sRE D = » npY |Nomal »| BEHEE - B

@

Scope

E] Block Parameters: b
Ready Gain
Element-wise gain (y = K *u) or matrix gain (y = K*'u or y = u"K).

Main |Signal data types l Parameter data types]

Gain:

[0.0005157

Muttiplication: | Element-wise(K *u) =
Sample ime (-1 for inhented):

5l

oK I Cancel Hep | Apply |

Fig. 9.35

JAIAA.

The Workls From i Aempas Laodirdip. Purchased from American Institute of Aeronautics and Astronautics

BUILDING A SIMPLE SIMULINK® MODEL 233

Here the value of the second gain element is entered. After this value is applied,
the block label is changed into b. The result of these actions is the modified model
in Fig. 9.36.

(I I |=T

File Edit View Simulation Format Tools Help

D& Bl » llNolmaI '“@i'“‘f@

Ready [100% [] deds

™

Fig. 9.36

We can now open up our Scope and run our population simulation (see

Fig. 9.37).
T - 10)| PR .i0ix]
it 5 @EBE(crl ABE BE %

DEEG SR 2> sfom FHSe RET®

= g

Fpady 1007 I ‘odeds A1

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

234 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

To more closely match our block diagram, we will make an additional change to
our Sum. The entry into the summation junction is now modified to match our orig-
inal diagram by removing the spacer at the start of the list of signs. This could also
have been done earlier when we made our change in sign (see Figs 9.38 and 9.39).

Block Parameters: Sum g x|
— Sum
Add or subtract inputs. Specify one of the following:
a) stiing containing + or - for each input port, | for spacer between ports
[e.q. ++-|++]
b] scalar »=1. & value > 1 sums all inputs; 1 sums elements of a single
input vector
~ Parameters - -
leon shape -
List of signs:
[-
[Show additional parameters -------------
| 0K I Cancel | Help | Spply |
Fig. 9.38
Cloops* =10l x|

File Edit View Simulation Format Tools Help

DSEE| 2| <] r = Nome e RE @

£

Scope

Ready [100% [lodeds 4|

Fig. 9.39

GAIAA

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

BUILDING A SIMPLE SIMULINK® MODEL 235

To prepare the model for use in Sec. 9.3 we will select the name Integrator and
change it to pop. We will give it an initial condition of 20.0. The initial condition is
stored under Model Properties (see Fig. 9.40).

Fie Edt View Simulation Format Took Help
DS $BF = = » =B [Nomal Vlgfﬂ@@ REBE ®

=l
¥
€
"

Ready

100% ode4s

Fig. 9.40

Double-clicking on the pop integrator with the mouse opens the Block
Parameters menu shown in Fig. 9.41.

r— Fle Edt Vew Srmiton Format Took Hep

Contructss-me intagranon of e isput signal NSHS 1o » 2 E [fown | HwBE - REE®
Faamaten

Extemal iwset | none = :I
il condition source. [maemal -l

ral conddion:

[inaal_pop

sezn ™
I~ Limd oetput
Uppes satarabon fmt -
Lowes saturabon fenit Pt

T ignome lenit and resel whes Ineniizing
= Erable 2er0 crossing cetecicn

B] om |_teo |

eady

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

236 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

Note that Model Properties is selected from the pops window using the right
mouse button menu. Type initial_pop = 20.0; into the Callbacks, Model
pre-load function window. Note that preloaded data are only placed into
memory when the model is opened. The advantage of this is that the values
can be updated at any time from MATLAB or from within the Simulink model
without being overwritten by the mode defaults. The disadvantage is that while
the model is being created these data are not entered into memory. You must
both close and then reopen the model to preload the data, or you must manually
enter it into the MATLAB Command Window during the model-creation
process (see Fig. 9.42).

B Model Properties @

Histary | Description

kain

‘Model callbacks | Model pre-load function:

PreLoadFcn ' initial_pop=20;
PostLoadFcn

InitFcn

StartFcn

StopFen

PreSawveFcn

PostSaveFcn

CloseFcn

[OK][Cancel ” Help] Apply

Fig. 9.42

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

BUILDING A SIMPLE SIMULINK® MODEL 237

This value can also be set and reset by typing the same line into the MATLAB
Command Window. We will update this value in Sec. 9.3 using this feature.

From the Simulation pull-down in the pops window, select Configuration
Parameters. This can also be accomplished using the Ctrl-E shortcut. Modify
the Solver to appear as in Fig. 9.43.

Similarly, modify the Workspace I/O to appear as in Fig. 9.43. Check the
radio button in front of the fields that need to be modified but are not currently
active. After making the modifications, deselect the field.

E] Configuration Parameters: pops/Configuration

Select Load from workspace
—Solver I input [
Data impod/Expodt I iniial state [
Opbmization
- Disgnostics Save to workspace
Sample Time -
Diata Intagrity I Time: |J
Conversion I States |r m
|~ Connectivity r
Output yout
|- Compatibility i [2
Mode! Refarencing | | Final states: [Fina
Hardware Implemantat
Model Referencing Save options
= Real-Time Workshop I~ Limit data points to last [1000 Decimation P
-C nis S 2
S;r':::s Format Array | Signal logging name: [logsoul
Custom Code Output ophions: | Refine output =] Refine factor. 1
Debug
Interface

0K | Cancal |_ ,l-_'l__a_lp_l Apply I

Fig. 9.43

JAIAA

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

238 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

The Scope plot in Fig. 9.44 shows the response of the system after Simu-
lation, Start is selected from the pull-down menu. As a shortcut, you can use
the triangle symbol to start the simulation.

Fig. 9.44

Note that if you do not get the desired plot scaling, you can use the binocular
symbol to autoscale the plot to the data. You can also use the magnifying glasses
to zoom into and out of the figure.

9.3 Analyzing the Population Model

In this section we will make multiple runs with different initial populations
using the model developed in Sec. 9.2. We have completed our system block
diagram and are now ready to run it. For a first look, double-click on the
Scope to open it. Then select Simulation, Start to execute it.

The following M-file runs our pops Simulink model through 20 simulations
and plots the results. Use the Runge-Kutta integration method to simulate pops
until t = 300.

% Population Simulation M-file
clf
for ind = 20:-1:1
initial_pop = ind*S + 1;
[t,x] = sim('pops',300);
plot(t,x);
hold on;
end

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

BUILDING A SIMPLE SIMULINK® MODEL 239

%

axis([0,300,0,100]);
xlabel('Time');
ylabel('Population Size');

Different numbers in a and b will result in different initial and final popu-
lations. You can change these values and run the simulation again. Do this by
simply opening the gain elements in the model (see Fig. 9.45).

100 1 1 T T T

80 .

Population Size

0 50 100 150 200 250 300
Time

Fig. 9.45

9.4 Conclusion

This chapter provides a first example of how to build a Simulink model.
Further examples are given in the following chapters.

You are now ready to start building simple Simulink models on your own! Try
modifying the pops.mdl file you just created. Take the input line to the scope and
give it a name, like Population Size. This is done by double-clicking on the
signal line. Rearrange the lines to look more like the original diagram. Rearrange
the format of the summation to look more like the original. Hook up scopes to
other parts of the diagram and look at the results.

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

240 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

Practice Exercises

9.1 The exercise problem is to generate a Simulink model of a forced
pendulum. The model of the pendulum is given in Fig. 9.46.

oooo
fee]
Applied
Mormant M
.
Scops

cllmfln2)
2 .3%sin{u)
gsinithata) deg/md

Fig. 9.46

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

BUILDING A SIMPLE SIMULINK® MODEL 241

The forcing function for this model follows. It is a square wave with a fre-
quency of 0.1 radians/second and amplitude of 1. Initialize theta dot to
0 degrees/second and theta to 45 deg. The resulting output is periodic with the
waveform show on the scope in Fig. 9.47.

After plotting the square wave response, change the excitation function to a
Pulse Generator. Set it to get the same response (use the same amplitude and
period). Next try out other excitations and Sources.

=101 |

9700 5800 9300

Fig. 9.47

JAIAA

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

Notes

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

10
Building Simulink® Linear Models

10.1 Introduction and Objectives

This chapter provides a brief introduction to using Simulink® and its library of
models and other elements for dynamic system modeling.

Upon completion of this chapter, the reader will be able to build simple
dynamic single-input, single-output Simulink models using transfer functions
and execute and simulate simple systems implemented in Simulink.

10.2 Transfer Function Modeling in Simulink®

This system demonstrates the use of a transfer function to model a dynamic
system. The transfer function we will examine is

2s+1
2s2 +55+3

We will call our model TF.mdl. Open the Simulink Library Browser using the
MATLAB® command simulink from the MATLAB Command Window. Then,
from the Simulink Library Browser, select File, New, and then Model. Note
from the following figure that Ctrl+N can be used as a shortcut to accomplish
this. A new, untitled model window is then opened. Save this model under the
name TF.mdl using File, Save as . . . as shown in Figs 10.1-10.3.

243

GAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

244

BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

Clase

Ctrl+0 Library I

'mwu!_l

m Simulink Library Browser :
File Edit View Help

=101

Preferences. ..

2+ Discontinuities
. 2| Discrete
L 2+ Look-Up Tables
- 2| Math Operations
21 Model Verification
2 Model-Wide Utiities
3 Ports & Subsystems
L -2 Signal Attributes
- 2 Signal Routing
- 2 Sinks
: - 2] Sources
" 3 User-Defined Functions
= B Aerospace Blockset
2 Actuators
2] Animation
- 2 Environment
El | Equations of Mation
2 GNC
;}j Propulsion
@ 2 Transformations
- Communications Blockset
B Control System Toolbox
- W8 DSP Blockset
- B Fixed-Point Blockset
B Fuzzy Logic Toolbox
B NCD Blockset
- W Neural Network Blockset
B Real-Time Workshop
¥ Report Generator
7 W S-function demos
B simPowerSystems
- Simulink Extras
- Stateflow
- B System ID Blocks

=

& E-E-E

Create a new Simulink maodel

duidt

® = Ax+Bu
= G Du

8| |sB| |£l-

sle+1)

Fig. 10.1

Derivative

Integrator

State-Space

Transter Fen

Transport Delay

Varnable Transport Delay

Zemo-Fole

N

GAIAA

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

BUILDING SIMULINK® LINEAR MODELS 245

ol

File Edit View Simulation Format Tools Help

DSHE| SBR[> afora @S| BE TS

Ready [100% [[oded5 4

Fig. 10.2

_. =[olx|
Fle Edit View Smulation Format Tools Help

New ‘Bl s alera MBS E | RET®

Saurce control ¥

Model properties

Preferences...

Prink setup...

Exit MATLAB Chrl+Q

Save the model under a different name [100% | | lode4s 7

Fig. 10.3

We will want to add three elements to our model window. The model itself
will require a Transfer Function block. This model will require an input and an
output. The input will be a Function Generator. The output will be a Scope.

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

246 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

Transfer Fcn block:

=1
Signal Generator block:
gooo
L
Scope block:
|

The transfer function properties will be as shown in Fig. 10.4.

Block Parameters: Transfer Fcn % x|

— Transfer Fcn

Matrix expression for numerator, vector expression for denominator.
Output width equals the number of rows in the numerator. Coefficients are
for descending powers of s.

— Parameters
MNumerator:

Denominatar;
f[25.3]

Absolute tolerance:

Iauh:n

QK Cancel Help Apply

Fig. 10.4

JAIAA.

The Workls From i Aempas Laodirdip. Purchased from American Institute of Aeronautics and Astronautics

BUILDING SIMULINK® LINEAR MODELS 247

The output of the Function Generator will be as shown in Fig. 10.5.

Block Parametets: Parameter Yariation x|
— Signal Generator

Output various wave forms.

— Parameters
‘whave form: square ‘:J

Amplitude:
|4_nﬂnaun

Frequency:
|0.100000

Unrits: I rad/sec j

v Interpret vector parameters as 1-D

oK | Cancel l Help Apply |

Fig. 10.5

The scope will simply show the system output for the requested run time.
Figure 10.6 is a Scope with the Simulation Parameters set at 150 seconds.

5
0

Time offset: 0O

Fig. 10.6

GAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

248 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

We will get the Transfer Function block from the library of Continuous
systems under the name Transfer Fen. The list of elements within this library

is shown in Fig. 10.7.

&4 Commonly Used Blocks
#] Continuous

Discontinuities

] Discrete

3 Logic and Bit Operations
3 Lookup Tables

2] Math Operations

3 Model Verification

34 Model-Wide Utiities

] Ports & Subsystems

&4 Signal Attributes

3] Signal Routing

* Sinks

#| Sources

= B Simulink ~

Derivative
IE‘ Integrator
State-Space
[
Transport Delay
Variable Transport Delay

1)
—— |Zero-Pole
s{s+1)

Fig. 10.7

We will get the input Signal Generator from the library of Sources. This list

is given in Fig. 10.8.

= B Smuink
2 Commonly Used Blocks
] Continuous
2 Discontinuities
& Discrete
2 Logic and Bit Operations
2 Lookup Tables
24 Math Operations
Model Verification
2 Model-Wide Utiities
] Ports & Subsystems
2 Signal Attributes
Signal Routing
Sinks
& Sources
] User-Defined Functions
+ 3 Additional Math & Discret
= W@ Aerospace Blockset
+ W CDMA Reference Blockset
= B Communications Blockset

W Control Svstem Toobox ¥
< >

Ground

In1

Pulse Generator
Ramp

Random Number
Repeating Sequence

Repeating Sequence Interpolated

I
2]
o
@
w
(-2
S
'=]
w
[
o
=
[
=
(2]
@
w
)

IESENE 0 B

Signal Builder
Signal Generator

A\ sinewave

2a

Fig. 10.8

GAIAA

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

BUILDING SIMULINK® LINEAR MODELS 249

Finally, the output Scope will be taken from the library of Sinks. This library
is shown in Fig. 10.9.

F} Simulink Library Browser
Fle Edt View Help

DE 4=

Scope: simulink/Sinks/Scope

= B Simuink A .
% Commonly Used Blocks |§|D|splay

#{ Continuous _
> Discontinuities Floating Scope
*| Discrete

[outl
2 Logic and Bit Operations

3 Lookup Tables E] Scope
%] Math Operations RS

2| Model Verfiication Stop Simulation
| Model-Wide Utiities
& Ports & Subsystems Terminator

Signal Attributes

i Ssgnksai Routing e
> Sources -
2] User-Defined Functions ToWorkspace

= 2+ Additional Math & Discret
+ W Aerospace Blockset e K¥:Gitaph
< | >
Ready

Fig. 10.9

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

250 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

This system is next constructed by dragging these three blocks from their
library into the TF Simulink model window. After you perform this action, the
window should appear as in Fig. 10.10.

Fie Edt WView Simulation Format Toolk Help

DeEd&l e 2 P =500 [Nomal v| BERS WEBE T ®

gooo
o I A [

Paramater Systemn Output
Varistion

Ready 100% ode45

Fig. 10.10

Next connect the Signal Generator block to the Transfer Fen block. Repeat
this action by either using the mouse to drag the output arrow from the Transfer
Fen block to the Scope or by clicking on the Transfer Fen block while holding
the Ctrl key and then selecting the Scope as a shortcut. After you do this action,
your model should appear as in Fig. 10.11. This might be a good time to save your
work (note the * following the name TF in the upper left corner, which denotes
changes were made to the model since it was last saved).

Note that to generate the following two views I first used the mouse drag and
connect method. Then, for my second connection, I used the Ctrl key shortcut
and let Simulink draw the line for me. When constructing complex block
diagrams, you can modify the connections by selecting and moving them just
like any library element.

Next let us rename the three elements. Click on the first title (Signal Genera-
tor) and change the name to Parameter Variation. Then click on the second title
(Transfer Fcn) and change the name to System Under Test. Finally, click on the
third title (Scope) and change the name to System Qutput. Note that I have right-
clicked on the name System Under Test and dragged it to its new location above
the block. The result will look as in Fig. 10.11.

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

BUILDING SIMULINK® LINEAR MODELS 251

He Edt Vew Smuaton Format Took Hebp
D SHS IBE > |2z «fi5it | BoBRE REE®

I]ODOEI a] N m

"1

Patameter System System Output
Variation Undui Tent
G [100% s
Fig. 10.11

We next need to modify the Parameter Variation input. Double-click on
the block and input the values shown in Fig. 10.12. Then Apply these values and
close the window. The diagram will not appear to have changed.

El Source Block Parameters: Parameter... 8‘

Signal Generator

Output various wave forms:
Y(t) = Amp*Waveform(Freq. t)

—~Parameters

Wave form: :

Time (t): i Use simulation time j

Amplitude:
|4.

Frequency:
[
Units: | radfsec L]

¥ Interpret vector parameters as 1-D

QK | Cancel] Help ‘

Fig. 10.12

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

252 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

Next input the desired transfer function. Double-click on the block and input
the values shown in Fig. 10.13. Then Apply these values and close the window.
The diagram will change to reflect the new transfer function model. This new
model is shown in Fig. 10.14. Note that either spaces or commas could be used
to separate the constant coefficients in the numerator and in the denominator. This
is exactly the same as when using the MATLAB Command Window or when
programming an M-file.

L-] Function Block Parameters: System Under Test m

~ Transfer Fcn

Matrix expression for numerator, vector expression for denominator.
Outputwidth equals the number of rows in the numerator. Coefficients
are for descending powers of s
Parameters

Numerator:

211

Denominator:

[125.3]

Absolute tolerance:

[auto

OK | Cancel Help Apply

Fig. 10.13

e Edt View Simulation Format Tools Hep

DEHS sRe | o (2| 500 BoPDE&e: REERS

oooo »]
oo Py
Pasamater System Sysiam Ovipat
Valasion Undar Tast

Ready 100% odeqs

Fig. 10.14

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

BUILDING SIMULINK® LINEAR MODELS 253

We are now ready to analyze this model. Select Simulation, then Start. The
square wave will be input into the System Under Test (see Fig. 10.15).

L OX

Fie Edt View ESIINELEGE Format Tooks Hep
DEE& o Bope- REES®
Configuration Parameters... Ciri+E I
oooao
» [l >
00 21248043
Parameter System Ayt riput
Vaslation Undes Test
Istart the simulation 1100% odeds

Fig. 10.15

Next open the Scope. You will see the time history of this response. You might
need to use the autoscale option (binoculars symbol) to better view this response.
The response should be as shown in Fig. 10.16.

-} System Output
S8 LRLL ABRE B AR

-5
0

Time ofiset: 0

Fig. 10.16

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

254 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

Try using the variety of excitation methods available in the Simulink Signal
Generator, and examine the results using the Scope. Then compare these
responses with those generated by the other Source blocks available within
Simulink.

10.3 Zero-Pole Model

In this section we will generate the equivalent Zero-Pole model to the transfer
function model we have been studying:

2s+ 1
282 +5s+3

This is accomplished using the MATLAB command tf2zp.
First enter the numerator and denominator coefficients for our model into the
MATLAB Command Window:

> num = [2,1];
> den = [2,5,3];

Next we will do a transfer function to zero-pole conversion.
The command [Z, P, K]=tf2zp(num,den) finds the zeros, poles, and gains

K(s — z1)(s — z2)(s — z3)

H =
) = s pI)Xs = p2)(s — p3)

from a transfer function in polynomial form:

NUM(s)
DEN(s)

H(s) =

The vector DEN specifies the coefficients of the denominator in descending
powers of s, and NUM indicates the numerator coefficients with as many rows
as there are outputs. The zero locations are returned within the columns of the
matrix Z; Z has as many columns as there are rows in NUM. The pole locations
are returned within the column vector P, and the gains for each numerator transfer
function are stored within the vector K.

Enter the following into the MATLAB Command Window:

> [Z, P, K]=tf2zp(num,den)

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

BUILDING SIMULINK® LINEAR MODELS 255

MATLAB responds with

7 =
—0.5000
P=
—1.5000
—1.0000
K=
1

The equivalent Zero-Pole model is

s+0.5
(s+1.5)(s+ 1.0)

We will next modify our TF.mdl Simulink linear model. Save a copy of this
model under the name TFZPG.mdl. Next delete the existing Transfer Fcn
block. Obtain your Zero-Pole element from the Simulink Library Browser.
This element is in the Continuous Library. Replace the Transfer Fcn block
in the model TF.mdl with the Zero-Pole model modified with the model data
generated in MATLAB. This results in the model shown in Fig. 10.17, saved
as TFZPG.mdl. Note that this model gives you exactly the same results as are
seen in Sec. 10.2 (see Fig. 10.18).

=13l

File Edit ‘iew Simulation Format Tools Help

Dliﬂﬂ@|:{:ﬂﬁ1|i?_i’ llNormaI 'I|@|:|:ag‘®

s —H]
e1e] R T T
=+ 1.5)(=+1.0)

P =
p Zam-Folk Ot

Yarnation

Ready |100% [| lodeds 4

Fig. 10.17

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

256 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

) System Output =0l x|
lemlopp ABRB BE =

Fig. 10.18

10.4 State-Space Model

In this section we will generate the equivalent State-Space model to the
transfer function model we have been studying:

2s+1
2s2 4+ 55+ 3

This is accomplished using the MATLAB command tf2ss, which does the
transfer function to state-space conversion.
The MATLAB command [A,B,C,D] = TF2SS(NUM,DEN) calculates the
state-space representation
X = Ax +Bu

y =Cx+ Du

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

BUILDING SIMULINK® LINEAR MODELS 257
of the system
H(s) = NUMC(s)
DEN(s)

from a single input. The vector DEN must contain the coefficients of the denomi-
nator in descending powers of s. The matrix NUM must contain the numerator
coefficients with as many rows as there are outputs y. The A, B, C, D matrices
are returned in controller canonical form.

Enter into the MATLAB Command Window the following command:

> [A, B, C, D]=tf2ss(num, den)

MATLAB returns with the equivalent State-Space model:
x = Ax+Bu
y =Cx+Du

where for our example

A=
—2.5000 —1.5000
1.0000 0
B =
0

C=
1.0000 0.5000

D=
0

Replacing the Transfer Fen block in the model TF.mdl with the State-Space
model results in the model shown in Fig. 10.19.

_ioix

File Edit Wiew Simulation Format Tools Help

D SEHS| @2 > o | BHSH BET S

aaan ® = Ax+Bu

Fammeater State Space Systam Output
Varation

Ready 100% | odeds
A

Fig. 10.19

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

258 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

Note that this model gives exactly the same results as are seen in Secs. 10.2
and 10.3 (see Fig. 10.20).

-) System Output I =10l x|
e LrpPp HEBE BE S

Fig. 10.20

10.5 Conclusion

This chapter was a very brief introduction to using Simulink and its library of
Transfer Fcn, Zero-Pole, and State-Space models and other elements for
dynamic system modeling. Further examples are given in the Simulink manual.
In the following chapters and exercises, we will look at a variety of methods to
design and analyze such systems in Simulink. We will also look at using these
tools to build complex multiple-input, multiple-output (MIMO) systems.

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

BUILDING SIMULINK® LINEAR MODELS 259

Practice Exercises

10.1 This problem is to implement a transfer function in zero-pole form to
model a dynamic system. The transfer function we will examine is

s +4s+3
282 +5s +2

Use the MATLAB command tf2zp to convert this into zero-pole form. Then
implement this in Simulink. Simulate this model as in Chapter 10. Finally,
convert this into State-Space form. Use the MATLAB command tf2ss to do
this. Replace the element in your model with the State-Space element. Verify
that the time response is the same.

The zero-pole diagram should resemble the window shown in Fig. 10.21.

Eltreee i =10/ x|

File Edit View Simulation Format Tools Help

Dﬁﬂ&l&@aﬁ|ﬁ:|) llNormaI VH@[QI“‘U’@

0000 0.5(+3) o+ 1)
i (#+2) (s+0.5)
Fammater Zem-Pol Zem-Polet System Output
Waration
Ready [100% [[lode4s 7

Fig. 10.21

JAIAA

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

Notes

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

11
LTI Viewer and SISO Design Tool

11.1 Introduction and Objectives

This chapter will introduce the reader to using the Simulink®™ LTI Viewer for
the analysis of linear, time-invariant dynamic systems. It will also provide a very
brief introduction to using the SISO Design Tool for the design of LTI systems.

Upon completion of this chapter, the reader will be able to design and analyze
simple dynamic single-input, single-output (SISO) Simulink models using the
LTI Viewer and the SISO Design Tool; become familiar with design and
analysis methods, including step and other time domain responses, Bode dia-
grams, Nichols charts, Nyquist charts, and root analysis; and see how to use
these tools for more complex multiple-input, multiple-output (MIMO) systems.

11.2 Introduction to the Simulink® LTI Viewer

To understand the use of the LTI Viewer, we will use the same transfer func-
tion model we examined in Chapter 10. This system will again be used to demon-
strate the use of a transfer function to model a dynamic system. The transfer
function we will study using the LTI Viewer is

2s+1
2s2 + 55+ 3

The LTI Viewer is a Simulink graphical user interface (GUI) for the analysis
of linear, time-invariant (LTI) systems. The LTI Viewer is used to view and
compare the response plots of SISO systems. It can also be used to examine
SISO combinations in MIMO systems. Several linear models can be examined
at the same time. You can generate time and frequency response plots as well
as system roots to examine key response parameters. These include the
system’s rise time, maximum overshoot, and stability margins.

The LTI Viewer can display up to eight different plot types simultaneously:
1) step response, 2) impulse response, 3) Bode diagrams (either magnitude
and phase or just magnitude), 4) Nyquist charts, 5) Nichols charts, 6) sigma
plot, 7) pole/zero plots, and 8) I/O pole/zero plots. Using right-click menu
options, you can access several LTI Viewer controls and options, including 1)
Plot Type (changes the plot type), 2) Systems (selects or deselects any of the

261

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

262 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

models loaded in the LTI Viewer), 3) Characteristics (displays key response
characteristics and parameters), 4) Grid (adds grids to your plot), and 5) Proper-
ties (opens the Property Editor, where you can customize plot attributes). In
addition to right-click menus, all response plots include data markers. These
allow you to scan the plot data, identify key data, and determine the source
system for a given plot. The LTI Viewer has a tool bar that you can use to do
the following: 1) open a new LTI Viewer, 2) Print, 3) Zoom in, and 4) Zoom out.

11.3 Using the Simulink® LTI Viewer

For our LTI model we will use the same transfer function that was used in the
TF.mdl we developed in Chapter 10. We will use it to create a new model called
TFLTILmdI. If you were to generate this model from scratch, you would open the
Simulink Library Browser using the MATLAB® command simulink. You
would then select File, New, Model. Remember that Ctrl4+ N can be used as a
shortcut to accomplish this. A new, untitled model window would be opened.
You would then save this model under the name TFLTLmdl using File, then
Save as. . . as you have done in previous sections.

We will add three elements to our TFLTI model window. The model itself
will require a Transfer Function block. You can either take the transfer function
from the Continuous systems library as before or make a copy from your TF.mdl
Simulink model. Here we will use the Transfer Fen model from TF.mdl as was
done in Chapter 10. This model will also require an LTI Input Point and an LTI
Output Point. These Simulink model elements appear as follows.

Transfer Fen block:

1] 2a+1

=+ 1 26245043
or (TF.mdl}

Input and Output: These are used to designate the input and output signals to
be retained in the linear approximation. In general, you choose signals that will be
connected to a controller by right-clicking on a signal and selecting either an
Input Point or an Output Point from the Linearization Points submenu.

If you take the Transfer Fen model from the Continuous systems library as in
Chapter 10, the transfer function properties will need to be modified using the
Block Parameters window shown in Fig. 11.1.

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

LTI VIEWER AND SISO DESIGN TOOL 263

Block Parameters: Transfer Fcn B f x|

— Transfer Fen

Matrix expression for numerator, vector expression for denominator.
Output width equals the number of rows in the numerator. Coefficients are
far descending powers of s.

— Parameters
Mumerator:

2]

Denominatar:
|25.3]

Absolute tolerance:

|autn:-

oK Cancel Help Apply

The approach we will follow in the remainder of this section is to reuse the
TF.mdl file we developed in Chapter 10. First delete the input Sink and
output Source elements from TF.mdl. It will then appear as in Fig. 11.2.

=lojx|

File Edit Wiew Simuation Format Tools Help

DSE&| 2R |2 =|Nomal S s RE T ®

Sy=erm Under Test
Z2e+1

g e >
2e=+543

AR

Ready [100% [I lode4s A
Fig. 11.2

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

264 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

The TF.mdl system for use in the LTI Viewer is next constructed by adding
an LTI Input Point and an LTI Output Point and saving the model under the
new name. As mentioned before, this is done to designate the input and output
signals to be retained in the linear approximation. In general, you choose
signals that will be connected to a controller by right-clicking on a signal and
selecting either an Input Point or an Output Point from the Linearization
Points submenu.

We will build our model using the Control System Toolbox library. You may
find it desirable to build the transfer function using the LTI System block and
then launching the LTI Viewer to obtain the LTI Input Point and the LTI
Output Point (see Fig. 11.3).

E} Simulink Library Browser
File Edit View Help

D= 4= 8

LTI System: The LTI Systern block accepts both continuous and discrete LTI models as
defined in the Control System Toolbox. Transfer function, state-space, and zero-pole-gain
formats are all supported in this block.

MNate: Initial states are only meaningful for state-space systems.

- W Simulink i e
] Commonly Used Blocks Ell Syston

Continuous
3 Discontinuities
= Discrete
3 Logic and Bit Operations
3 Lookup Tables
3| Math Operations
| Model Verification
3] Model-Wide Utilities
2 Ports & Subsystems
%] Signal Atiributes
2 Signal Routing
= Sinks
] Sources
3+ User-Defined Functions
+- 3 Additional Math & Discrete
- Bl Aerospace Blockset
= B Communications Blockset
B Control System Toolbox v
< >

|Ready

Fig. 11.3

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

LTI VIEWER AND SISO DESIGN TOOL 265

The LTI System block accepts both continuous and discrete LTI models as
defined in the Control System Toolbox. Transfer function, state-space, and
zero-pole-gain formats are all supported in this block. Figure 11.4 demonstrates
this modeling and analysis process.

Fle Edit View Simulation Format Tools Help

D& &+ =R 2 » s[100 [Nomal v| BEHBRES~ B

<], i | "tl|
U |

= Coy
Delete
Highlight To Source

Highlight To Destination

Signal & Scope Manager...

Input point lode4s

Create Viewer »

Signal Properties... _
Output Point
Input-Qutput Point
Output-Input Point
Open Loop
Output Constraint

Fig. 114

Now select the Input Point from the Linearization Points on the right-click
menu. If you place the Input Point close enough to the input arrow going into the
Transfer Fcn (System Under Test) block, Simulink will automatically connect
these two elements. If it does not, manually connect the elements using either the
mouse drag method or the select and point shortcut covered in Chapters 9 and 10.
After this is accomplished, your diagram will appear as in Fig. 11.5. Note the

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

266 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

asterisk * showing the unsaved modification to the diagram. We will again save
the model under the new name TFLTILmdl after we have added the Output
Point.

Fle Edt View Simulaton Format Tools Help
DEHES $BE|[== ¢ (2= » =f00 [Nomel ~| BB

2524E543

Signal Transter Fen Display
Generator

Ready 100% 0deds

Fig. 11.5

After we have added the Output Point, the model appears as in Fig. 11.6.

Fle Edit Vew Simulation Format Took Help

DEEEG $BE 2 [» =00 |Nomal ~| HEBS | B

ooon| % REEEE i
e o[=] —=
Signal Transfer Fen Display
Ganerator
Ready 100% ' ode45

Fig. 11.6

GAIAA.

4 Purcl 1 from American Institute of Aeronautics and Astronautics

LTI VIEWER AND SISO DESIGN TOOL 267

Now we will save the model under the new name TFLTIL.mdl. As a reminder,
this model is saved under a new name first using File, Save as. . . . This process

is repeated graphically in Fig. 11.7.

DEES $BE | - » =00 |Norma| 'I FEHRS | B

oooo|# 2+1 (]
= P —]

Signal Transfer Fen Display
Generator

Savein: |) work o = e 2

= models
| Ready [8 forcedpendulum

[® TFssLTT
M TFssLTI

File name: {TFLTI
Save as type: ISimuIink Models (*.mdl) L' Cancel

Fig. 11.7

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

268 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

We are now ready to launch the LTI Viewer. The LTI Viewer is opened by
selecting Tools, Control Design, and Linear Analysis. ... This command is
executed as shown in Fig. 11.8. Note that this will take a few seconds and that
you will be shown how close to completion the launch process is as illustrated.

CiTrLT*
Fle Edit View Simulation Format RSl Help
D& %88 <> | Smuink Debugger.. SERE -

Fixed-Point Settings...
Model Advisor...

Lookup Table Editor...
Data Class Designer...

Bus Editor...
oooo| %
el i e Profier
Signal T Coverage Settings...

Generator

Signal & Scope Manager...

Real-Time Workshop L4
External Mode Control Panel...

Control Desan -

Open linearization tool 100% Parameter Estimation... Model Discretizer...
Report Generator... [

Fig. 11.8

GAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

LTI VIEWER AND SISO DESIGN TOOL 269

The LTI Viewer initially appears as in Fig. 11.9. The default system response
is a Step Response. You are initially given the opportunity to have the LTI
Viewer open up the Help window to point specifically to its help documentation.

DEE& LB 2 - » = [00 [vomal = Q&Iﬁ&'\

¥ prr— Anatyes W02 | Oper Poirts | Linearization Resuls
W Prowct - TRLT) | s
= gt
Lk Detous Coersting P |[acve Bk Hame OuptPort Configurston Open Loop
= | el TRLTUSgnel Generstor | 1 -
i wies | M [TFLTVTeenster Fon 11

b pep—

IE3
|

Fig. 11.9

GAIAA

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

270 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

The LTI Viewer Help is contained within the MATLAB Help Navigator. If
you were to respond by selecting the Help button from the window in Fig. 11.9,
the Help window in Fig. 11.10 would be opened.

Fle Edt View Go Favorites Deskbop Window Hep
FllesC & 8

Tithe: | LTI Viewer - Analyzing Models (Getting Started)

Gatting Started I
LTI Viewer

Thie LTI Wit i a GLU for wewang and manspulating the response plats of ineas models. You can desplay the Rollzwing plat typees for knear models using the LT) Viewss
« Step and impulse responses
» Bode and Nyquist plots
= Nechols plats
» Smgular valees of the frequency responss
= Pole/zem plots
+ Response to & general mput signal
« Unforced response lafing from grven initisl statze (only for slate-space modets)

MNate that time responses and pole/zero plots are avalable only for transfer function, stale-space, and zero/pole/gain models

Hote The LTI Viewer displays up to six different plot 1ypes simuftaneously. You can also analyze the response plots of seversl linear models &t once.

This figure shows an LTI Vigwer with two responze plots

ENIETE—— =1mixd| Use the File menu o
: B RO SR, impar! modek and the
Mmoo — ORI o
and out, ul;d ddllqlnds, o Step Fetponte Sciling ones,
fﬂwli“h‘. i,..................... . . N
u_i st Righl-chck amywhere ino
iu“i' // [phot region to open o
o - menu of options for thel
DnL/ B 1] 5] = E -
Tima (20¢)
Igute Fesponae Left-dlick directly on o
oo — |- curve for informaion
| .l/ L | about the curve at that
Eon.;(o] parficular point.
o L3 10 ‘MI:‘E] 0 - X
IWbmr

The LTI Viewsr with Step and Impulse Response Plots

The next section presents an example that shows you how 1o import & system mto the LTI WigWer and how o customize the WEWeR 1o fit your requirements

Analyzing Modsls
2 19342005 The MathWorks, Inc. « Terms of Use « Pelenis « Trademarks

Example: Time and Frequency Responzes of the DC Motor [$

Fig. 11.10

GAIAA

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

LTI VIEWER AND SISO DESIGN TOOL 271

Next we will use the variety of excitation and plotting methods available in the
Simulink LTI Viewer.

Note that you will need to Get your linearized model (TFLTLmdl) and load it
into the LTI Viewer. Using the LTI Viewer: TFLTI window, select the Simu-
link pull-down menu and then select Get Linearized Model. The result of this
operation will appear as in Fig. 11.11.

Note that because the default analysis option is set to Step Response, the time
response at the Output Point due to a step input into the Input Point is then
shown in the LTI Viewer window (Fig. 11.12). The plot scale is reset to the
time that the response has reached its steady-state value.

. Control and Estimation Tools Manager - [BIX
ﬂ\i\?«:x o Anelysis 10s | Oparating Points | Linearization Results
: =ﬁ20m—ralnql’oﬂs Select Inearization 0= by right clicking on the desired line in your Simulink modsl
I:énsmmperm"tram Block Name OupitPort Configurstion Open Loop
= 5 qne atce | 1 p e
= ™ [1 foapt ~| H |

LTl Viewer is being launched. Please wait ..
I 20

mmmﬁsmns | step response plt |
< >

- Launching the LTI Viewer... |
b |

Fig. 11.11

P d from American Institute of Aeronautics and Astronautics

272 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

' LTI Viewer: Linearization Quick Plot

D& 2H

045

 Step Response
From: TFLTW/Signal Generator (1) To: TELTWTransfer Fen (1)

) Getting Started with the LTI Viewer

The LTI Viewer is a graphical user interface that simplifies the analysis of linear,

1

iant sy

Click the Help button to find out more about the LTI Viewer

[] Do not show me this agsin Close I | Help

Fig. 11.12

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

LTI VIEWER AND SISO DESIGN TOOL

273

It might be useful to refer back to Table 3.1 in Chapter 3 summarizing the
equivalences between the different analysis methods available through the LTI
Viewer. There they are listed for 12 different system types.

We will now examine each of these analysis approaches using the Simulink

LTI Viewer.

There are two methods for selecting response plots in the LTI Viewer:
1) selecting Plot Types from the right-click menu and 2) opening the Plot Con-
figurations window. The Plot Configurations window is listed under the Edit
pull-down menu. If you have a plot open in the LTI Viewer, you can switch
to any other response plot available by selecting Plot Types from the right-click
menu. Figure 11.13 shows the right-click menu with Plot Types selected.

) LTI Viewer: TFLTI -0l x|
File Edit Simulink Window Help
Ina| 2 e
Stap Response
From: Input Point To: Output Point
0.45 T T T T T
04}
035 -
03+
g 025 skt Frp viis
= Systems r Impulse
E ozl Characteristics » Bode
= : Bode Magnitude
Gk Myquist
0.15 Normalize :
v Ful ¥ Mo
on il Singular Yalue
: Properties... PolefZero
0.06 IO PolefZero
0 L 1 1 1 L
0 1 2 3 4 5 6
Time (gac)

Select Simulink -> Get Lineanzed Model ta import system.

Fig. 11.13

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

274 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

To change the response plot, select the new plot type from the Plot Types
submenu. The LTI Viewer automatically displays the new response plot.

To change the Properties of the plot you are viewing, select Properties. . .
from the same right-click menu. The available Properties change from plot
type to plot type. Figures 11.14—11.18 list all the Properties for the Step

Response.
=10l
los 22
i Slap Racoponse
0as /_hf__ﬂ,___,___——-—-—
0 /
2
o0es ,/
4
g e /
: 001s| // Use the right-dick
menu lo manipulate
001t / this plot.
Q005
C»/ 05 1 1
Tima {sac)
ILII Viewer
Fig. 11.14
~ioix

Lebels | Limts | Unts | Style | Characteristics |

. Labels

Title:

H-Label:

W-Label:

Step Response

Time

L mplitude

Close

Help

Fig. 11.15

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

) Property Editor: Step Response

LTI VIEWER AND SISO DESIGN TOOL

. =loix|

Labels Lints | unts | Style | Characteristics |

- X-Limits
Auto-Scale: [v

Limits: |0 to |5

~ ¥-Limits
Auto-Scale: [V

Limits: |u to |0.45

Close | Help

Fig. 11.16

<) Property Editor: Step Response IR =101 x|

Labels | Limits] Unts Style | Characteristics I

~Grid
I Show grid

“Fonts
Title: & pt v| " Bod I staiic
XiY-Labels: 8 pt ¥| I Bod I stasic

Tick Labels: gpt | [Bod [gaiic

11O-Names: apt i [Bold [iaric
~Colors
Axes foreground: I[CIA 0.404] Select... |
Cloze | Help |

Fig. 11.17

275

JAIAA.

The Workls From i Aempas Laodirdip. Purchased from American Institute of Aeronautics and Astronautics

276 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

<} Property Editor: Step Response 3 =10 x|

Labets | Limts | Units | Style Characteristics |

Characteristics
showy zettling time within |2 g

Showy tise time from |1 0 | to |g|:| %

Close Help

Fig. 11.18

All of the available plot types are shown in Figs 11.19—11.26 for our system
TFLTLmdI. Refer to Table 3.1 of 12 different transfer function responses as
required. Note that some of the plots have special grids and other plotting
options available for that particular analysis type.

d from American Institute of Aeronautics and Astronautics

LTI VIEWER AND SISO DESIGN TOOL

Impulse Response:

277

Fig. 11.19

The Worlds Forum fo 4 Purchased from American Institute of Aeronautics and Astronautics

278 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

Bode Diagram (magnitude and phase):

Fig. 11.20

Bode Diagram (magnitude):

TI View TFLTI

Fig. 11.21

d from American Institute of Aeronautics and Astronautics

T

279

LTI VIEWER AND SISO DESIGN TOOL

Nyquist Charts:

. 11.22

12

F

Nichols Charts:

Fig. 11.23

The Worlds Forum fo 4 Purchased from American Institute of Aeronautics and Astronautics

280 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

Sigma Plot:

Fig. 11.24

Privel

The Worlds Forum fo fudip P d from American Institute of Aeronautics and Astronautics

LTI VIEWER AND SISO DESIGN TOOL 281

Pole/Zero Plots:

Fig. 11.25

I/0O Pole/Zero Plots:

Fig. 11.26

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

282

BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

The Plot Types feature of the right-click menu works on existing plots, but you
can also add plots to an LTI Viewer by using the Plot Configurations window.
To reconfigure an open viewer, select Plot Configurations. . . under the Edit
menu. This opens the Plot Configurations window. This action and the resulting
Plot Configurations window are shown in Figs 11.27 and 11.28.

TCTEES—— =T
Fie | Edit Smulink Window Help
H 0 Plot Configurations. .. I
Refresh Systems
Delete Systems... Foke-Zaro Map
From: Input Point To: Output Point
fos e T 08B..--" 0B | 04036 012
Viewer Preferences... i T) 5
osr” T
06} 2 % -
Odroar . S b P
@ 02 / st ST,
s ok 1.4: 1.2.' 1 0'8. O.SI o 0.4
‘5 H y ' r % o S
g o02(! e i -2
M L - g
08, s 2 A S .
09 . i B
08F ., . 3 2 Frisiees 2alony
“og.--" L 02" O¥---.026 012
-1.6 -1 -06 (o]
Real Axie
LTI Wiewer
Fig. 11.27
Select a response plol configuiation - 5
. : 3
L . i ‘ ; (o8 ' 1. [Bode =]
¢ 2 [Step =l
E 3)
3 [imputse = Select Response type for each
o - ' 4 [Grewrsma. = > pane in the seledled arrangement.
1 2 1 |z 1 2] 3
5: [Irvtial Coneiti
3 | s 3 H 4 ” 5 afs] s
6 I:'Ir_-“ﬁrylr?Jl'J' -|
J
ok | Concel | Hen | appy |

Fig. 11.28

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

LTI VIEWER AND SISO DESIGN TOOL 283

11.4 Equivalent Simulink® LTI Models

In Chapter 10 we generated equivalent Zero-Pole and State-Space models to
the transfer function model we have been studying:

2s 4+ 1
2s2 + 55+ 3

These equivalent models are as follows. The equivalent Zero-Pole model is

s+0.5
(s +1.5)(s+1.0)

Replacing the Transfer Fen block in the model TFLTL.mdl with the Zero-
Pole model results in the model shown in Fig. 11.29. Note that it gives exactly
the same results in the LTI Viewer as are seen in Sec. 11.3.

Fle Edit View Simulation Format Tools Help

DEEd& dBR < » = |1D.D |Norma| .ll ul’l:;l s

mowt | [een |2 N (—
e e £l
Signal Discrete Display
Generstor Zero-Pole
Ready 100% T=0.00 ode45

Fig. 11.29

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

284 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

The equivalent State-Space model is

X = Ax + Bu
y =Cx+ Du
where
A=
—2.5000 —1.5000
1.0000 0
B =
1
C =
1.0000 0.5000
D=

0

Replacing the Transfer Fen block in the model TFLTI.mdl with the State-
Space model results in the model shown in Fig. 11.30. Note that it gives exactly
the same results in the LTI Viewer as are seen in Sec. 11.3.

I TFLTIZ *
Fle Edit View Simulation Format Tools Help

D& s8R < | » =00 |Norma|L|nE.].§

oooo| o= axmu |3 .
L ey N (—
Signal State-Spaoe Display
Generstor
Ready 100% T=0.00 ode45

Fig. 11.30

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

LTI VIEWER AND SISO DESIGN TOOL 285

A specific block for the LTI Viewer is also available. It is found in the
Control System Toolbox library. The SISO Design Tool discussed in Sec.
11.5 also uses this block (see Fig. 11.31).

I TFLTIS * =]

Fie Edit View Simulation Format Tools Help
D=zE& ¥ B =R (8] [100 |Norma|L| S @ ¢

|'1c>uc>EIIJ b » w212sy |3 =»
Signsl LTI System Display
Generator

Ready 100% T=0.00 ode45

Fig. 11.31

11.5 SISO Design Tool

The SISO Design Tool is a Simulink graphical user interface that allows you
to analyze and tune SISO feedback control systems. Using the SISO Design
Tool, you can graphically tune the gains and dynamics of a compensator and a
prefilter using root locus and loop-shaping techniques.

Using the SISO Design Tool, you can use the root locus view to stabilize the
feedback loop and enforce some minimum damping. You can also use the Bode
diagrams to adjust the bandwidth, check the gain and phase margins, or add a
notch filter for disturbance rejection. You can also generate an open-loop
Nichols view or Bode diagram of the prefilter by selecting these items from
the View menu. All views are dynamically linked. Changing any parameter or
element, such as the gain in the root locus, will immediately update the Bode
diagram.

The SISO Design Tool is designed to work closely with the LTI Viewer,
allowing you to rapidly iterate on your design and immediately see the results
in the LTI Viewer. When you make a change in your compensator, the LTI
Viewer associated with your SISO Design Tool automatically updates the
response plots that you have chosen. By default, the SISO Design Tool displays
the root locus and open-loop Bode diagrams for your imported systems. You can
also generate an open-loop Nichols view or prefilter Bode diagram by selecting
these items in the View menu. Imported systems can include any of the elements
of the feedback structure diagram located to the right of the Current

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

286 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

Compensator panel. You cannot change imported plant or sensor models, but
you can use the SISO Design Tool for designing a new (or for modifying an
existing) prefilter or compensator for your imported plant and sensor configur-
ation. The default SISO Design Tool window appears in Fig. 11.32.

o]
Fle EGR View Compensators Andysis Tools Window Help The menu bar
[Rxo% & timE XN The fool bar
fumk Com |' The Current
c)= | o - Compensator panel
; Root Lecus Editer (C) i Opan-Loop Bodke Editor (C) — T||e Fe&d!lﬂ(k Structure
i E b] Root locus plot
06 1 p
04 2 ————————— Bode magnitude plot
: G]
oz i O8I e Nan T Bode phase plot
e T LA PR e L 1 4 Stable kop
0z 1 f Status panel
04 05
06 0
08 5 251 Pt -180 ceg
4 : .y LFreq: O raclsec
-1 0.5 0 06 1 0 10" 10° 0" 16™
Rieal Axis Frequancy {raciseq
Right-click on the plots for more design options. [|
Fig. 11.32

Start the SISO Design Tool from the MATLAB Command Window by
typing the command sisotool. You will be informed on the progress of the tool
launch sequence. You will then be pointed to the MATLAB Help window on
this tool upon your request (see Fig. 11.33).

SIS0 Design GUI is loading. Please wait...
O l

Fig. 11.33

GAIAA

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

LTI VIEWER AND SISO DESIGN TOOL

The tool window will look as in Fig. 11.34.

) SISO Design Tool

File Edit View Compensators Analysis Tools Window Help

287

DY 2 of = <

’zsl?ﬂm |+r.) E E % FS

: Aoot Locus Editor () Opan-Loop Bode Edftor (C)
086
0.4 The SIS0 Design Tool is an interactive graphical user interface that 1
= facilitates the design of compensators for single-input, single-output (5150
02 feedback loops.
- Click the Help button to find out more about the 51S0 Design Tool.
02 I~ Do ot show me this again Close | Help
0.4 : - |
06 : l o
-08 1 50 -
& -05 0 05 1 40! e 10

Real Axis

Frequency (radisec)

Use Import Model... off the File menu to import the plant data,

Fig. 11.34

You can generate the model for our transfer function model for use in the
SISO Design Tool in the MATLAB Command Window by typing the

following:

> num = [2, 1]

num =
2 1

> den = [29 59 3]

den =
2 5 3

> sisosys=tf(num,den)

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

288 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®
The resulting transfer function is of the form

2s+1
2s2 4+ 55+ 3

Next use File, Import. .. to load the model into the tool (see Fig. 11.35).

) sis0pesignfool =lol x|

File Edit View Compensators Analysis Tools Window Help

oot~ — " [

Export:..
SaYE SEs5I0M
Load Session..,
Toolbox Preferences...
" Cpan-Loop B Editor (C
Print... e | 20 Fen il A
Print to Figure
Close Chrl+w 10
: 0 J
04
02 ; 10
o -------------------------------------- n _20 i
02 I
o 50
08 : o 1
-08 ' 50 4
-1 L 1 N — PP g
-1 -06 0 06 1 45! 100 10!
Real Axis Frequency (radisec)

Use Import Model... off the File menu ta impart the plant data.

Fig. 11.35

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

LTI VIEWER AND SISO DESIGN TOOL 289

Note that sisosys is already visible under SISO Models (see Fig. 11.36).

Import System Data §|
— System Name — System Data
Mame: nfitled
>
— Import from
SIS0 Models
= eisosie Y [other.. |
() Workspace
(O MAT-file 6= (Plant)
) Simulink
3 H= |y (Sensor)
F= |y (Prafilter)
C=) (Compensator)
~|
’ Cancel] I Help l

Fig. 11.36

Load sisosys into the C block, and set the value of F to near zero. Note that the
SISO Design Tool does not allow you to set a block to exactly zero (you will get
a warning message if you attempt this). Save the model under the name tfsys.
Your Import System Data window will look as in Fig. 11.37.

) Import System Data r;' = Z|

— System Name __ System Data

Name: untitled

— Import from

SISO Models

(8) Workspace

() MAT-file G= lsisosys (Planty
() Simulink He Sanson
E F= [y (Prefilter)
E C= |4 (Compensator)
]
[oK] ’ Cancel] [Help]

Fig. 11.37

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

290 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

When you select OK in the Import System Data window, your SISO Design
Tool window will look as in Fig. 11.38.

Note that these responses are the same as those we saw using the LTI Viewer.
The x and o denote the open-loop poles and zeros, respectively. The squares
denote the roots of the unity feedback system. The response of the system can
now be modified as desired by adjusting the gain value or adding pre- or
postfilters or system feedback. You can also interact with the system response
by adjusting the pole and zero locations. Try out the different design features
and model configurations (use the FS radio button). An example of this
process is shown in Fig. 11.38.

=) SISO Design Tool

Fle Edit View Compensators Analysis Tools Window Help
kixo £+ tim I XN
Current Comy tor
]
cC— G
'
Root Locus Editor (C) Cpen-Loop Bode Editor (C)
1 0
S -10 '—’_MN\
0.6
-20
0.4+
G.M.: Inf
il 30
0.2 X Freq: MaN
ol - D -e- 5 Stable loop ; . \
i) 45
04 0 ée\\(
06
-45
08} P.M.: Inf k,
- . ; a0 Freq: NaN :
4 4 2 -1 o 4! 10° 10’ 10°
Real Axis Frequency (rad/sec)
Imported model data. Right-click on the plots for design options.

Fig. 11.38

We could also have loaded our system into the SISO Design Tool using the
LTI System block. Try this out yourself. Make a simple system called
test.mdl by creating a Simulink model using an LTI System block. Enter the
same numerator and denominator that we just studied using the SISO Design

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

LTI VIEWER AND SISO DESIGN TOOL 291

Tool. You need to open the LTI System Block Parameters by double-clicking
on the block element. The Block Parameters window after modification will
look as in Fig. 11.39.

Block Parameters: LTI System e x|
— LTI Block [mask] (link]

The LTI System block accepts both continuous and discrete LTI madels
as defined in the Control System Toolbox. Transfer function, state-space,
and zero-pole-gain formats are all supported in this block.

MNote: Initial states are only meaningful for state-space systems.

— Parameters
LTI system wvariable

[t12. 1112, 5. 3])

Initral'states [state-space only]

[0

oK Cancel Help Apply

Fig. 11.39

After selecting OK, this Simulink model window will look as in Fig. 11.40.

5] test E[@gl

Fle Edit View Simulation Format Tools Help
hzR& BleD 3 (2| r =il [Noma v DB
[z 1253 p
LTI System

|Ready 100% lodeds

Fig. 11.40

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

292 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

Now use the File, Import. . . option to load our new LTI System block into
the SISO Design Tool. Select the Import from, Simulink option into the model
we call tfsys. If the model does not appear in the window explicitly, select the
Browse option to locate it (see Fig. 11.41).

-} Import System Data

o ystem Name — System Data

Name: ltfsys

— Import from
SISO LTI Blocks
() Workspace
O MAT-file G= LTI System (Plant)
® Simulink '

H= | (Sensor)

-
)

Simulink Diagram (Prefilter)
test
J C= i (Compensator)
vl
I 0K | | Cancel ‘] Help

Fig. 11.41

If the model is open, you may get the warning shown in Fig. 11.42.

-} Import Warning

@ A Simulink model with the same name is already open.

Do you want to replace the open model with the specified mod

l_ Yes l [Mo] [CanceJ]

Fig. 11.42

It does not matter if you select Yes or No, although the safe selection is No.
Select the LTI System from the list of SISO LTI Blocks and replace the pre-
vious compensator with the test as was shown in the Import System Data
window (Fig. 11.41).

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

LTI VIEWER AND SISO DESIGN TOOL 293

Your system’s response should appear unchanged. You might want to select
File, Save Session for future reference as shown in Fig. 11.43.

J SISO Design for System tfsys

N Edt View Compensators Analysis Tools Window Help
Import.., ol 4
Export.
Save S o
Load Session...
Toolbox Preferences...
Print... Ctl+P
Print to Figure | :
Close cri+w I (€) . Open-Loop Bode Editor (C)
08 40
06
-20
0.4
G.M.: Inf
02 1 = Freq: Mal
0 = -0 - g Stable loop
02 &
0.4 1 0
06
45
08 P.M.: Inf
Freq. NalN
§ oL "
A -3 2 -1 0 g 10° 10! 10’
Real Axis Frequency (rad/sec)
Imported model data. Right-click on the plots for design options.

Fig. 11.43

11.6 Conclusion

This chapter was an introduction to using the Simulink LTI Viewer for the
analysis of linear, time-invariant dynamic systems. It was also a very brief intro-
duction to using the SISO Design Tool for the design of LTI systems. Further
examples are given in the Simulink Help window. Some of these examples
demonstrate the use of these tools to build complex multiple-input,
multiple-output systems.

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

294 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

Practice Exercises

11.1 This problem is to put the following transfer function from Chapter 10 into
Zero-Pole form and then analyze it using the LTI Viewer. That transfer function is

s> +4s+3
282 +5s+2

In Chapter 10 you used the MATLAB tf2zp command to convert this into Zero-
Pole form and implement this within Simulink. Now replace the inputs and outputs
with those for the LTI Viewer as in Sec. 11.3. Next replace the Zero-Pole elements
in your model with the equivalent State-Space element. In the previous exercise,
you used the MATLAB command tf2ss to do this. Verify that the responses are
the same.

For each of these two system representations generate the eight different plot
types: 1) step response, 2) impulse response, 3) Bode diagrams (either magnitude
and phase or just magnitude), 4) Nyquist charts, 5) Nichols charts, 6) sigma plot,
7) pole/zero plots, and 8) 1/0 pole/zero plots.

JAIAA

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

Notes

JAIAA.

The Worlds Forum for emspos Lssdwesip Purchased from American Institute of Aeronautics and Astronautics

This page intentionally left blank

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

12
Building a Multiple-Input, Multiple-Output
Simulink® Model

12.1 Introduction and Objectives

This chapter will introduce the reader to multiple-input, multiple-output
systems implemented in Simulink®. Its dynamic modeling capabilities will
also be demonstrated.

Upon completion of this chapter, the reader will be able to build dynamic
multiple-input, multiple-output Simulink models using Simulink elements; use
Mux/Demux and Bus methods for generating and using vector signals; generate
subsystem models; use masking; generate libraries; execute and simulate
multiple-input, multiple-output systems im®plemented in simulink, and directly
interface with these models via MATLAB ™.

12.2 System Modeling in Simulink®

Using Simulink, complex multiple-input, multiple-output systems can be
modeled and simulated. A variety of different elements are contained within
the Simulink libraries and can be easily interconnected using Simulink. A
variety of inputs can be examined simultaneously using a large number of differ-
ent output devices. These devices can display this information in either graphical
or numeric form. These data can be made available to MATLAB for further
analysis. Data can also be accessed by the model from MATLAB. The model
itself can be accessed and manipulated from the MATLAB Command
Window or using M-files and MEX-files.

12.3 Parameter Estimation

We will now build a multiple-input, multiple-output system for parameter
estimation. We will duplicate the simple TF system that we generated in
Chapter 10, and then we will connect these two systems together for parameter
estimation. Other elements and connections will be added to complete the
desired system. We will call this new system parmest.mdl.

This system will be used to estimate a single scalar parameter. It will take the
difference between the output of the system under test and the output of a system

297

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

298 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

model using the estimated parameter to generate an error signal. The integral of
the product of this error signal and the system input is the estimate of the
unknown parameter. The value of the gain in the block labeled Parameter is
the parameter to be estimated.

One way to think of this is as an experiment to tune a mathematical model of a
system based on the input-output behavior of the system undergoing testing. The
MathWorks provides MATLAB and Simulink tools for such real-time modeling
and data acquisition.

The system we will build looks as follows. We have two Signal Generators,
our two Transfer Fen systems, and three different Scopes. A variety of other
interconnecting elements are contained within this model.

In this section we will go through the process of generating this system model
in Simulink. In accomplishing this, we will take advantage of the model that we
developed and analyzed in Chapters 10 and 11 (see Fig. 12.1).

oooo
(el =]

System Under Test

22+1 _D

Parmmetsr
Yaration

26245843 v
System Output
Pammetar
oooo
L = e
Excitation 2845043
Emor

Estirmated

% 1 l Paramster =ﬂ
g]

Estirmate

Fig. 12.1

First we need to open up a new Simulink model and give it the name par-
mest.mdl. Do this by opening the Simulink Library Browser using the
MATLAB command simulink. Then select File, New, and Model.

Note that Ctrl + N can be used as a shortcut to accomplish this action. A new,
untitled model window is opened. Save this model under the name parmest.mdl
using File, then Save as... You now have a new Simulink model window in
which to work.

We will now take advantage of the single-input, single output system model
TF.mdl that you generated in Chapter 10. You can have multiple Simulink
models open at the same time. Use the Simulink Library Browser to open up
this model. You can also use Ctrl + O as a shortcut to access this model.
Next, go back to the TF model window. Select your model from the window
by using the right mouse button while sweeping the mouse across all three of
the model elements. This will select the model for copying. When you release
the mouse button, you can either use the Ctrl + C shortcut to place a copy of

GAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

BUILDING A MULTIPLE-INPUT, MULTIPLE-OUTPUT 299

this model into memory, or you can use the File, Copy option at the top of the TF
window (see Fig. 12.2).

=lolx|

File Edit View Simulation Format Tools Help

D SHE&| & B[22 |» = [Noma S s RE T ®

System Under Test
oooo 2e+1 |
. g ’I i
Pam r oy
Varh“!‘l.;:: SymerOvewt
| Ready [100% [lodeds 7
Fig. 12.2

Once you have selected the model, you can paste your model from TF.mdl
into parmest.mdl twice. Your parmest model will now look like the windows
shown in Fig. 12.3.

[=10] x|

File Edit Wiew Simulation Format Tools Help

DEE& & @5 = » »|Nomal Yl @ wmm T ®

-|of x|
File | Edit View Simulation Format Tools Help
Undo Block Name Cir+Z R S .lel E]IE@@IHE?@
| Gan'lredo Chrl+Y
Cut Chrl+x
Paste Ctrey
Clear Delete
Select all Chri+A
Copy Jel to cint j Sv‘mn;Un?orTnt 'D
Find... CHE o >
! 20%45043 "
Create subsystem Ctrl+G Syetam Output
IMask subisysten.. Ctrl+m
Look under mask Ctri+u
Link options v
Update diagram Chrl+D | 4]
Copy the selected objects to the dipboard [100% [[lode4S 4

Fig. 12.3

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

300 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

After pasting the model twice, your parmest model appears as in Fig. 12.4.

O 1ol

File Edit View Simulation Format Tcols Help

NDeEd&| 2| | =[Nma g RE T @

Syeztem Under Test

oooo 28+1
> |
© 2624 Be43

Pammatar Syetem Dutput
Vanation

Systam Undar Tast1

oooo Z2o+1
oe 26246043

Fammetar System Cutputl
Varnation

Ready 100% I lode4s 7

Fig. 12.4

We next need to add four summation junctions (Sum), three multipliers
(Product), one scalar input parameter (Constant), and one additional Scope to
our model. This will be demonstrated next.

The following libraries are used to get these elements.

First, from the library of Math Operations we get the summation junctions
and the multipliers. Note that the default is a circular summation junction. We
will need to change it into a rectangle. Modifying that parameter in the sum-
mation junction’s Parameter Window does this.

We get the integrator from the set of Continuous blocks. To show that mul-
tiple elements can be used to model the same dynamic system, we will use a
Transfer Fen and build an integrator from it.

We will get our constant input parameter of 10 from the library of Sources.

Finally, we will get our last scope from our library of Sinks. We could also
select one of the Scopes already in the parmest model and copy and paste it
into the model as a shortcut.

To construct the model, first we paste a summation junction (Sum) into our
model and then modify its parameters list to make it rectangular. The result of
this action is shown in Fig. 12.5.

GAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

BUILDING A MULTIPLE-INPUT, MULTIPLE-OUTPUT 301

=10] x|
Fie Edt Vew Smuation Format Tools Help
DII‘-"H&I&'&EIQQI) -!Normal

Jess hET@®
’ Syetom Under Test
oooo | 2t I
P 7| 26745043 "
Pammater Systern Output
Varation
Systern Under Test]
noon 224
226@»3
FPammeter Systern Cugputl
Vanation1
Ready [100% [[lodeds v
Fig. 12.5

Note that this is a circular summation junction. We change it into a rectangle
using the summation junction’s Parameter Window as shown in Fig. 12.6.

-. T =lolx|
File Edt View Simulstion Format Tools Help

Q Systerm Under Teat
oooo 2a+1
oo 26245043

Pammetsr

Systam Output
Waraton
Syatem UnderTestl
2
o0
+58+3
Fammater System Outputi
Varaton1

Block Parameters: Sum

Add or sublract inputs. Specify ane of the following:
?]ﬁﬁﬂ*u-!ﬂewhiplmhlhmhﬂwmmm
eq ++

b) scalar >=1. A value > 1 sums all inputs; 1 sums elements of a single
Ready | | input vector

Icon shape: |round ;]
List of sigrs: _rm "]
[lH—

| Show additional parameters -

[Tok] concel | Hep |

Apply |

Fig. 12.6

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

302 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

Next we make multiple copies of this summation junction (Sum) and paste
them as needed into the diagram. We need to change some of the signs as appro-
priate to match our desired model, using the same Block Parameters window.
After we have completed these actions, our model appears as in Fig. 12.7.

lparmest il =5 | Dlél
Fle Edit View Smulation Format Tools Help

Dz0& sl

'Bmm UnderTest
lll:lnu 2241
26245043
Pammatar Systam Output
Varation
+
_ p Swystem UnderTest!
oooo +
ac: 2ot1 |
26245043 =
Pammatar - mOutputl
Vanation | e ®
Ready [100% | [lodeds 4
Fig. 12.7

Next we add the Product block to our diagram.
The diagram with all of the Product blocks added is shown in in Fig. 12.8.

=lol x|

F:te Edk View Simulation Format Tnols Help

DESHS YRB 2| sford 4 SH BET @

lmmUndarTm
+5a~3
Fammeter | w b Systam Output
Vanation
Product
Pmd o _ P System Under Test]
nunn 2041
g e]
FPammatsr Systam Outputl
Vanation 1

Product1

Ready [100% [jodeds &

Fig. 12.8

JAIAA.

The Workls From i Aempas Laodirdip. Purchased from American Institute of Aeronautics and Astronautics

BUILDING A MULTIPLE-INPUT, MULTIPLE-OUTPUT 303

Our diagram is getting a little crowded. To get enough room to paste in the
remaining elements, we must select and drag the elements around in the
window to approximate the final spacing.

The result of the actions to make room for the remaining block elements is
shown in Fig. 12.9.

-lolx
File Edit View Simulation Format Tools Help

O SRE BB 22 » IlNormd "'||@I*I|a}®

oooo
o0

8 rd ﬂ Syetar Undar Taat
@ rE e tEr
Variation + 1.1 1 [een ol
>| 1 AT 7] 26245043 i
Poduct System Output

:|—‘ Syztam Undar Tastl

uouuu = : » Zose E
0 = L r

| I pal A 2245043 =]

Syste m Ouputl

Fammeater
Yanatonl

Ready |100% | lodeds

Fig. 12.9

Now we have the space to add our remaining elements to our model window.
First we need to add the final input parameter. This is a Constant from the
Sources library. The default value for this bias is 1.

Most block elements come with default values or settings. We will need to
change the Constant value later to 10, just as we modified our Sum properties
after placing them into our system diagram. We next select another Transfer
Fen from the Continuous library and paste it in (see Figs 12.10 and 12.11).

GAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

304 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

loix

File Edit View Simulation Format Tools Help

DSHEHS R[22 » l[Normd 'I|®L’_ﬂ|“5?®

[+1:]
ey B y Syztam Under Test
Varation + >| | >|* |_ 2841]
= L T 17| 26245043 il
Product Systermn Qutput
1 P
onatant Systerm Under Testl
oooo XL >|+ o) 2e+i -
Re NI R P =]
Pammatar b Systerm Output]
Vanationl
Product!
Ready [100% | | oded5 4
Fig. 12.10
[Cloarmest =T
File Edit Wiew Simulation Format Tools Help
DZE&S $BE|2 = » = [Nm e s mE T @®
g
el
Systermn Under Test
Parameatsr *
Variation| +)1 | >i"' | ol 241 o]
Pmduct System Output
Gonstant ﬂ Systern Under Test1
oooo x +
L] S N ™Y 3>]
L1 7| 2P+5er3 -
Froductz
Fammetar System Qutput!
Vanation
x b A
a+1
Product! Transfar Fon
Ready f1o0% | | loded5 4

Fig. 12.11

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

BUILDING A MULTIPLE-INPUT, MULTIPLE-OUTPUT 305

Now select a Scope from the Sinks library and drop it at the desired location
into our model window (Fig. 12.12).

Coormes -loix]
File Edit View Simulati Format Tools Help

ODeEd&E8 tde |0

» lluarmal '||@‘_‘J|aﬂ?®

.
23
Parametar + System Under Test
Vanation +)I | >|+ | 2841 B
> il O =20 § >

26545043

v

Product Systermn Cutput

Constant ﬂ Syetem Unde-Test]
I@ = + g E

O 17 edesens : il
Pammater Producs Syatem Output]
Varation 1
{ =}
% b ——
a1 |)
Pmoduct! Tranafar Fon Scope
Ready [100% | I lodeds y
Fig. 12.12

Double-click on the Constant block, just as we did when we modified
the Sum properties after placing them into our system diagram. Change the
Constant value to 10 (Fig. 12.13).

Block Parameters: Constant i x|
— Constant

Output the constant specified by the 'Constant value' parameter. If
'Constant value' is a vector and 'Interpret vector parameters as 1-D' is on,
treat the constant value as a 1-D array. Othernwise, output a matris with the
same dimensions as the constant value.

— Parameters
Constant value:

i

v Interpret vector parameters as 1-D

| oK I Cancel Help Apply

Fig. 12.13

GAIAA

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

306 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

The value changes to 10 on the element after Apply is selected (see Fig. 12.14).

F.’ parmest - [I:I]z[
File Edit View Simulation Format Tooks Help

DZE& $BdR < » u [Nomal =R

e le]
System Undar Test
e S R S o W o W J
T s =1 7| 26%+5ee3 gt

n Predust Systern Output
m‘ ﬂ System Under Test]
G N

1 7| 2fesma 1

FPammatar System Output]
Vanaton1

BET®

-
Product! Tmnefar Fan Seope
Ready [100% [[loded5 4
Fig. 12.14

Now double-click on the Transfer Fen and modify its Parameters as shown
in Fig. 12.15.

Block Parameters: Transfer Fcn L 5"

— Transfer Fcn

Matrix expression for numerator, vector expression for denorminator.
Output width equals the number of rows in the numerator. Coefficients are
for descending powers of s.

— Parameters
Numerator:

f(1]

Denominator;

[(1 ol

Absolute tolerance:

| auto

| 0K I Cancel Help Apply

Fig. 12.15

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

BUILDING A MULTIPLE-INPUT, MULTIPLE-OUTPUT 307

Again, when Apply is selected, the Apply text will turn gray and the new
Transfer Fen model will appear on the block in the parmest diagram as
shown in Fig. 12.16.

Clrarmes: JR1=TEY
File Edit ‘iew Simulstion Format Tools Help

D& &R |5 >I|N0(mal ']|@|'*5|“*}@

oooo
o0
Syetam Undar Tast

e L B W (=

Y

26245843

Product Syetam Ouput
Constant System Urdar Test!
oooo X >|* | 20+ 1
o0 T » "

= 7| 2feseea =]

Pammetar

System Output]
Vanation

: E

X p = P
E-3
Fmduct] Tranafar Fen Scopa
Ready 1100% | [lodeds 7

Fig. 12.16

We have now successfully added all the elements we need into our parmest
diagram. Now we need to connect the blocks. We start with the Parameter
Variation input and connect it to the summation element. I first use the drag and
release method. Simulink reminds me that a shortcut for this operation is
available (see Fig. 12.17).

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

308 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

Fie Edit View Simulation Format Tools Help

D EES R b s SES: BB+ ®

o0
System Under Test
Parmnater +
Vanation + % b 28+ 1
= 2e2+5043
Product

=

Systam Ouput

Constant ﬂ System Under Test1
5500 xp o] [zen +]
T

Produet }1' 2248043 -
Fammatwr Systerm Output!
Vanaton1
=
To quickly connect blocks, select the source block(s]. then hold)EI
down the Cul key whil left.clicking on the destination block. Toanete: Fon i

[~ Do not show this message again

Hdvlﬂmelh

Fig. 12.17

We can repeatedly use this shortcut to connect all the elements across the top
of our parmest Simulink diagram. When these actions are repeated and the
model saved, the model window will appear as follows (see Fig. 12.18).

Also shown next is the remainder of the connections that do not require a
signal to branch (see Fig. 12.19). Branches are selected off of the line elements
in a similar way to how the block elements are created. Just right-click onto
the line where the branch is desired and drag to the desired input location.
This process is demonstrated in Figs 12.20 and 12.21 that follow. Multiples of
these branching connections are required to complete this system diagram.

GAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

BUILDING A MULTIPLE-INPUT, MULTIPLE-OUTPUT 309

[Slparmest

=101
Fle Edt View Smulaton Format Tools Help
DIEE&| 2R 2= » =N e RE T ®

k= Under Test
Fammatar v inderTe
Vanation 2e+ | i
2674543 v
Systerm Output
Constant Symtam Under Test]
0ooo 28+ 1
oo P o 7]
= 2681 5ee3 -
Frodus2
Fammeter Syatem Ouput!
Vanation 1
1II' : {:::J
X Pp - P
.
Product] TrnsfarFen Scope
Ready 100% [[lode45 4
Fig. 12.18
lgix]

Fie Edt View Simulation Format Tools Help

oooo
o0
Swyetern Undar Test
Fammatsr + sl
Varaton + 5 + 2041 LI[||
26245543 g |
Prdust Systam Ouput
10
Conetant Systern Undar Test! -
Prduwe 224503 r—a
Pammater Systam Output!
Vanation1
1
.
I 2
Froductl Transfar Fon Soope
Ready |100% [[|odeds Y

Fig. 12.19

GAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

310 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

&
“iparmest

File Edt YView Simulation Format Tools Help

DI2E&| Y 2e || = [Nom e RE T ®

oooo
(2]
Comra . Systerm Under Test
Vanation + % * 2at1 » 1
= 26245043
Prduct System Output
10
Constant System Under Test]
0000 X + Coit i3
il — 2e=+5a+3 —
Produce M
Pammetar Systam Output]
Variation 1 |
' 1
. 4@
@
Product1 Transfar Fon Scope
Ready |100% | |

Fig. 12.20

ol
File Edt Yiew Simulation Format Tools Help

System Under Test
Fammatsr
Variation 28+1 Y |
26246043
Constant Systern Under Test!
- i =
0 _ﬁ_ A
Produe
Fammater | Systam Cutput]
Varation 1 1
1
=
8
Prduct! Transfer Fan Scope
Ready [100% [[[odeds 7

Fig. 12.21

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

BUILDING A MULTIPLE-INPUT, MULTIPLE-OUTPUT 311

Note that Simulink does not necessarily route these element-to-element con-
nections in the way that you desire. You can select and move the connections
and change their routings in the same way that you move other Simulink
elements. In Fig. 12.21, the bottom output of the System Under Testl element
was selected. This output is then connected in a feedback loop to the bottom
input of the previous Sum. Simulink automatically draws the feedback path
over the top of the Transfer Fcn block. Just select this element and drag it
below the bottom of the Transfer Fen block as desired. Corners of connection
routings can also be similarly moved, and additional segments added to routings.
If Simulink can replace a multiple segment routing with a straight segment, it will
automatically do so (see Fig. 12.22).

-Ioix]

File Edit VYiew Simulation Format Tools Help

DEEE| LfBR | 22 IINormaI S RE T ®

Systarm Undar Test
Pammeter
Varation 2841 > D
25245043
System Output
Gonstant Systam Under Test1
oooo Zes1
Lo
2e245243
Pammatar Systerm Cutput!
Vanation 1
1
.
8
Product! Transfer Fen Scope
Ready [100% | [lodeds 4
Fig. 12.22

The block element names need to be modified to match those desired names
given at the beginning of this section. Some of the names that are not required
need to be deleted from the diagram. Select the desired label. If no name is
required, the name field can be deleted using the Delete key. Note that no Simu-
link element can have the same name. Simulink will add a number after the name
for a repeated element. Simply deleting the characters from a name will not
remove the name field. Two blank text fields will cause Simulink to add a 1 to
the second blank field. The next figure shows the third Scope being given the
name Estimate (see Fig. 12.23).

GAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

312 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

Ioix]
File Edit Yiew Simulation Format Tools Help

[=2 = = e = R S [T NHE s BE T ®

=|I_I[
L
Systom Output
Pammetsr
o0
Exoitation
Ready [100% [[l0de45 #

Fig. 12.23

The Excitation Signal Generator next needs to be modified as shown in
Figs 12.24 and 12.25.

=10(x]
File Edit View Simulation Format Tools Help

De@&| sl 22 » IINouna! '“Eﬁ@lﬂ”n?@

Fammstar
Variation Systam Under Test
2ot N[
26245043
Systam Output
Pammeter Estimatad
oooo
o0
ation —b@
Ermor
1
.
L]
Ready ilm% | | lode45 S

Fig. 12.24

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

BUILDING A MULTIPLE-INPUT, MULTIPLE-OUTPUT 313

Block Parameters: Excitation i x|

— Signal Generator
Output various wave forms.

— Parameters
Wave form: | sawtooth LI
Amplitude:

[1.94

Frequency:

[2.00]
Units: Iradx’sec ﬂ
¥ Interpret vector parameters as 1-D

[ok | concel Help bpply |

Fig. 12.25

The Parameter Variation Signal Generator is similarly modified as shown
in Fig. 12.26.

Block Parameters: Parameter ¥Yariation

— Signal Generatar

Output various wave forms.

— Parameters
Wwhave form:

Amplitude:
4.0

Frequency:
|01

Units: Irad:’sec 3

IV Interpret vector parameters as 1-D

oK Cancel Help bopy |

Fig. 12.26

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

314 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

Finally, the Simulation Parameters for parmest.mdl need to be modified. Nor-
mally both the Solver and the Workspace I/0 need to be modified to the values
you select. Here I have just added a very large Stop time so that the model can be
run through multiple cycles (see Figs 12.27 and 12.28).

B Configuration Parameters: parmest/Configuration

Select ' Load from workspace
| [Input o]
] Initial state: [|
Optimization | =
= Diagnostics | - Save toworkspace
Sample ‘.I'ufne] Time: [tout |
Data Validity s T
Type Conversion D Saas i.reul l
Connectivity [output. |vout |
Compatibility [] Final states: ~ [xFinal |
|

Model Referen.. Signallogging: [logsout
Hardware Impleme. b
Model Reterencing

= Real-Time Worksh... | - Save options

]:| Inspect signal logs when simulation is paused/stopped

g:rr::;:!s [[] Limit deta paints to last {1000 oo l
Custom Code Format: ;A"QY J |
Debug Output options: | Refine output | Refine factor: 1 1
Interface |
T >
I‘ oK ” Cancel " Help | Apply

Fig. 12.27

Lj Configuration Parameters: parmest/Configuration

Select Simulation time
Starttime: 0.0 Stop time: 10000
Data Impor/Expon | : .
Optimization Soblver options
- Dingnestica Type: Variable-step ~|Sobver. oded5 (Dormand-FPrince) v
Sample Time : : :
Data Validity Max step size: .auln Felafive tolerance: _1 8- |
Type Conversion | Min step size: P_L[F_o_: ._A.hsolule iolerance: 1_Q_—l§
Connactivity Initial step size: jauts |
Compatibility Zero crossing control| Use local settings |
ModalFalaren. 14 ally handle data tasks
Hardware Impleme... |
Model Referencing
= Real-Time Warksh.. |
Comments
Symbols
Custom Code
Debug
Interface
< >

[ok][cencel J[Help] aepiv

Fig. 12.28

JAIAA.

The Workls From i Aempas Laodirdip. Purchased from American Institute of Aeronautics and Astronautics

BUILDING A MULTIPLE-INPUT, MULTIPLE-OUTPUT 315

To see what is going on, open (double-click) and position the scopes. Then
select Simulate, Start from the pull-down menu. You will see the time histories
of the system response. The response should be as shown in Fig. 12.29.

=101 FET BITETY) estinate =10/ x|
S8R ,LL ABE BT l@eE Llre ABE BE & sErPpLe ABE B E &

é«l G000 S200 9400 SED0 SO0 10000
[Time offest. O

Fig. 12.29

Use the binocular symbol to autoscale the data and the magnifying glasses to
zoom into and out of the figure. Try different finish times.

12.4 MATLAB® Simulation Interface

After you have tried different options to modify simulation and display par-
ameters for your parmest model in Simulink, let us modify them using the
MATLAB Command Window. First, let us look at one convergence of the esti-
mated model parameter by overriding the simulation end time from MATLAB.

The parmest system can be simulated using the command line

> [t,x] = sim('parmest',[0,50]);

The output in the Error and Estimate Scope windows will appear as shown in
Fig. 12.30.

-0/ || ECEE . -l
lemorp ARBIPE & ||leBopo ABEB A &

Estimated Paramster

Fig. 12.30

Notice that as the estimate converges on the correct result, the error signal
drops to zero.

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

316 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

If you select (click on) the parmest window, you can start and stop the simu-
lation of this system yourself from the Simulation menu.

You may find it interesting to change the excitation (open it) and restart the
simulation. Changing the gain in the Parameter block while the simulation is
running also produces interesting behavior. The Simulink model is closed from
MATLAB using the command

close_system('parmest',0);

The system can also be closed from the File menu, or it can be closed by click-
ing on the x at the upper right corner of the parmest model window.

12.5 Subsystems, Masking, and Libraries

Subsystems can be very useful in complex multi-input, multi-output models.
They allow you to create multilevel models. New Simulink blocks can be con-
structed in this way. The models can even be masked, providing custom inter-
faces for these blocks. Finally, new libraries of these elements can be created.

Let us work with the model we built in Sec. 12.3. Some of the elements have
been rearranged slightly to make the process of creating a subsystem a little
easier. Also added are boxes to output data to the MATLAB workspace and to
a mat file (see Fig. 12.31).

=] parmestsub 10 x
Fie Edt Veew Smulsion Fomst Took Help
Desd& DR w [ome Sl RmE G ®

Fig. 12.31

To create a subsystem, use the bounding box. Select the elements you want to
place into your subsystem. Note that there is no inverse to this operation, and so
you might want to save before doing this operation. You might also need to
rearrange your diagram so that you can easily select the desired elements (see
Fig. 12.32).

Purct 1 from American Institute of Aeronautics and Astronautics

BUILDING A MULTIPLE-INPUT, MULTIPLE-OUTPUT 317
Sl parmestsub =lal=l
Fle EcR View Siulation Format Took Help
DeE& @2 » =[toms g hE TS
s 1
:
Rlaady [100% I lodeds £

Fig. 12.32

Once the elements are selected, use Edit, Create subsystem (see Fig. 12.33).

Sdation =loi=l|
Fie [View Fomat Took Hebp
» '—‘ﬁ?? Q?ﬁ | » = [Nams HMeE | RE T ®
e o
Copy Chke
Paste Ctriy
o Delate System Under Test
ChrkA]
2041
ChlF 2efalaed
Syewm OuBut
Ex
A=
Tl st
Emr
{ R e
= g |
o
To Worapese
ToFie
Flace the | d

Fig. 12.33

GAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

318 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

The diagram now contains a subsystem as shown in Fig. 12.34.

[lparmestsub * = i =lolx|

H-D. Iﬁv‘ H 5' fli:lﬁ 'Q '._' !“) = |Nomal ‘Ij & RE TR

Fammeer Sysem Under Test
varston ey
o) o1
P 1
Sysmm Ouput
Pammetr
009 |
o » Era
Extaton — 4-:|Z|—9E—>|:
Emor
Subysern Extrraed
L Pammes
. L]
] =
To Worspece
To File
Ready 100% lodads. -~

Fig. 12.34

Once the subsystem is created, all you need to do to open it is to doubleclick
on the subsystem block. The subsystem window opens as shown in Fig. 12.35.

mparmestsuh;"Suhsvstem ¥ = |D|E]

File Edit Yiew Simulation Format Tools Help

D & 2 BE@ 2| » = |Noma M=

In1 X 2o+ 1
C 25245243
In2 Outl
Ready |100% | |ode4s Y

Fig. 12.35

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

BUILDING A MULTIPLE-INPUT, MULTIPLE-OUTPUT

model window rather than in a new window.

Note that the default can be changed to open the subsystem in your existing

If the model is masked, the subsystem model will not be shown. Rather a

Block Parameters window that you have built will be displayed.

zation, and Documentation as desired.

In a following window a mask is generated for this model. First select the
Subsystem block. With the selected block use Edit, Mask subsystem A
Mask editor will then be evoked. Change the block Icon, Parameters, Initiali-

In our example, the Documentation for this block is modified as shown in
Figs 12.36 and 12.37.

File | Edt View Smustion Format Tools Help
0] | [/ thsioteys EHT || » = [Noma Gl S RE T ®
Cut kit
Cogry CHC
Paste Cti+y
Cloar Dealata Sy Under Test
Salect ol Cirkta »
Copy madel to cipboard il .t (.
Find... ChriF Pammater =l
Baing SrwmOupa
Open block Ewrated
SubSystem parameters,
Elock properties. ..
Creste subsystem ChieG e | B]
| tasksboyston.____Cub | Y]
ook it - Emr
nz

Konton .
Update disgram D 0 e e [T)

TR =

pamrdats Esterate
To Worapace
Ta Fis

Crasta tha mask For the salactad subsystam

Fig. 12.36

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics
320 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

) Mok ditor subsystem ol

icon | Parameters | Initialization Documentation I

[Mask type -
[Math Mode! of System Under Test

r Mask description
Model to be tuned using parameter estimation. -

i Mask help
ITo see this model, use Unmask. =

Unmask | 0K Cancel Help Apply

Fig. 12.37

After the aforementioned changes have been applied, the subsystem model will
be masked. Double-clicking on the block will bring up the shown in Fig. 12.38.

Block Parameters: Subsystem : x|

Model to be tuned using parameter estimation.

‘* tath Model of System Under Test [mask)

| 0K I Cancel Help Spply

Fig. 12.38

To unmask the system, the Unmask option must be selected from the Mask
editor window.

We can now create a new Simulink Library for our subsystem block. Note
that one or many blocks can be added to our library once it is created. This is
done in a manner nearly identical to the way we create Simulink models. The
libraries even have the same .mdl extension reserved for Simulink models.

To create our Simulink Library go to the Simulink Library Browser and select
File, New, Library. Note that there is not a keyboard shortcut for this operation.

Once this is done, you need to give a name to your library. You also need to
save it.

We will create a library called MyLibrary.mdl. Here it is saved under cdrive.
A copy of the subsystem is then saved in the MyLibrary window. The results of
these actions are shown in Figs 12.39—-12.41.

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

BUILDING A MULTIPLE-INPUT, MULTIPLE-OUTPUT 321

[F] simulink Library Browser] |

File Edit View Help
ogs_cvi_|

Open... Cike0 ,
Close - uous [s-domain) systems. Band-
Preferences. ..
=- ﬁ Simulink 3 Constant |
- 2 Continuous

"... %] Discontinuiti
R et =
e | Look-Up Tables

. 23] Math Operations From Workspace

" 23 Model Verification

L 3 Model-Wide Utilities From File

.. 2] Ports & Subsystems
- 2 Signal Attributes

. Ground
- 2 Signal Routing

. 2] Sinks In1

. 2 Sources

- 3] User-Defined Functions
- Wl Aerospace Blockset

- B Communications Blackset

. B Control System Toolbox

@ W DSP Blockset

- Wl Fixed-Point Blockset

i W Fuzzy Logic Toolbox

- W NCD Blockset

Pulse Generator

Ramp

Random Number

SIEINEER

7 Repeating Sequence
(#- W] Meural Network Blockset
(- ¥ Real-Time Workshop L] [t
... W Report Generator . 1gnat aenerator
- Bl S-function demos
i [— . 0
(- W SimPowerSystems Sigd 1/ Signal Builder
ﬂ Simulink Extras
EJ Stateflaw F\V Sine Wave
- Bl System ID Blocks

Step

M Uniform Random Mumber _

-

Create a new Simulink library 4

Fig. 12.39

GAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

322 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

Save in:I{_j cdrive ~| « % B
File name: IM v Library. md| Save
Save as type: | Simuiink Models (*md) = Cancel

Fig. 12.40

[=1Library: MyLibrary il ol x|
File Edit “iew Format Help
DEES&E 282 &
In1
Qutt
HIn2
Subsystarn
Ready [100% Unlacked 4

Fig. 12.41

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

BUILDING A MULTIPLE-INPUT, MULTIPLE-OUTPUT 323

12.6 Vector Signals

When modeling a multiple-input, multiple-output system, you can end up with
a complex and confusing model if you only use scalar signals. Vector signals can
be used to clean up these signal lines. There are two ways to accomplish this:
1) Mux/Demux and 2) Bus Creator/Bus Selector. These are found in the
Simulink Library Browser under Signal Routing. Bus Creator/Bus Selector
might be preferable to Mux/Demux if you are tracking signal names. The
following diagrams show the differences between Mux/Demux and Bus
Creator /Bus Selector.

First, three signals are fed into a Mux element. The Mux element generates a
vector containing three signals. These three signals are converted back into scalar
signals using the Demux element (see Fig. 12.42).

W muxing r;|@|81

Fle Edit View Simulation Format Tools Help

D& s < =|» =100 [Nomal V[&@I@ =

| »
L
Display

Constant

| 2 I » > =I |
Constant? Display1
L
Constant2
Display2
Ready 100% oded5

Fig. 12.42

InFig. 12.43, three signals are fed into a Bus Creator. The Bus Creator element
generates a vector containing three signals. The three signals have been named a, b,
and c. These three signals are converted back to scalar signals using the Bus Selec-
tor element. The Bus Selector has kept track of the names of the signals on the bus.

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

324

BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

It displays the names of the scalar signals as <a>, ,and . This can be
very useful when generating large, multilayer block diagrams.

=1 bussel

- OX

Fle Edit View Simulaion Format Tools Help
- =] 2| &= 1|0 b = 100 |Normal ~|!
" s — | 1
Constanl.=a Dizplay
2 > »l 7]
b b3
Constant=b Display1
s — L3
Constant=c Display2
|Ready 100% 'VariabIeStepDiscrete

Fig. 12.43

Note that you can eliminate a diagnostic warning by setting the “Automatic solver
parameter selection” diagnostic to “none” in the Diagnostics page of the configur-
ation parameters dialog. Also note that Format, Wide Nonscalar Lines can be
very useful when attempting to differentiate between scalar and vector signals.
Format, Vector Line Widths is very useful because it shows you the number of
separate signals on the vector connection (see Fig. 12.44). Try these out and see

what you think!

I configuration Paramete

Salect
Soher
Data iImpor/Export
Oiptirmization
= Diagnoshcs
Sample Tima
Diata Vilickty
Type Conversion
Connectnaty
Compatibility
Model Refarencing
Hardware lmplemeantaban
Mode| Reterencing
= FeskTime Workshop
Comments
Symbaolz
Custom Code
Debug
Interiace

bussel/Configuration

Simulakon ime

Starttime: I
Sobver oplions
Type anable-step
Mex step size

Zero crossing contral| Use local settings

suto

[] Automatically handle dats transfers between tasks

Stop time:| 10.0

» Solver discrete (no continuous states) -

discrete (no contin 35

ode4s [Dormand-Prnce)
ode?3 [Bogacki-Shamping)
odel13 (Adams)

ode5s (shfNDF)

oded3s (stffMod Fosenbrock)
ode?3t (Mod ssTrapezodal)
ode23ih (s TR-B0FZ)

ok [cencet J[Hew][Apew]

Fig. 12.44

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

BUILDING A MULTIPLE-INPUT, MULTIPLE-OUTPUT 325

12.7 Using Vector Signals for Math Functions

This section demonstrates the use of Math Operations and vector signals to
accomplish within Simulink some of the mathematical operations demonstrated
within MATLAB in Chapter 1. The Math Operations used are 1) Adjoint of
3Xx3 Matrix, 2) Create 3xX3 Matrix, 3) Determinant of 3X3 Matrix, and
4) Invert 3x3 Matrix. These are all found within the Aerospace Blockset as
in Fig. 12.45.

The model to accomplish this appears as follows. Constant blocks are used to
enter the matrix elements. The block is used to construct the actual 3 x 3 matrix.
The adjoint, determinant, and matrix inverse are then calculated using the appro-
priate blocks. Display blocks are used to show the results (see Fig. 12.46).

1] adjplay
Fe Edt Yew Smulaston Format Took Help
0 oS R | == = b = fild [Nomel | BEES REE®
Constantil
Condanti2
C—t-
Censtant13
[f—
Conftant [=]l = 3]
AdgA) az L]
] | L] A "|p4: » 11 10]
Constantzz Prprry L 11 LI} 3]
it ot
s ":’ a3 Matiix Ll 1]
Constant23
A
det(A)
Constant3!)
QJ—’& Detarminast of Datarminant
Tl 33 Matrix
Contantid 2
o } *|*n [| sk) |
orintza 12 | 1. | 222
Crasts 30 M & | —wm [[
Invart
T Matrix L]
Ready 100%: VanableStepDicrets

Fig. 12.45

GAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

326

BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

ll:—: Simulink Library Browser

+

ey

+

+

o

+

£y

Fle Edit View Hep

D= = &

Adjoint of 3x3 Matrix: Compute the adjoint matrix for the input matrix

= W Aerospace Blockset

2 Actuators
B Aerodynamics
% Animation
+ 3 Environment
+ & Equations of Motion
& Flight Parameters
B GNC
3 Mass Properties
3 Proputsion
- B Utiites
B Axes Transformations

+

3 Unit Conversions
W Communications Blockset
W Control System Toobox
W Embedded Target for Infineon C166@ Microcontrollers
W Embedded Target for Motorola® HC 12
W Embedded Target for Motorola® MPCSS5
W Embedded Target for OSEKNDX®
W Embedded Target for TI C2000 DSP
W Embedded Target for TI C000 DSP
B Fuzzy Logic Toobox
W Gauges Blockset
B Image Acquisition Toolbox
W Instrument Control Toolbox
B Lirk for ModelSim
W Model Predictive Control Toolbox
B Meural Network Toobox
W OPC Toolbox
W RF Blockset
W Real-Time Windows Target
W Rea-Time Workshop
W Real-Time Workshop Embedded Coder
B Report Generator
W Signal Processing Blockset:
W SimDriveline
W SimMechanics

Ready

4

=

sin{u)
cos(u)

3x3 Cross Product
Adjoint of 3x3 Matrix
Create 3x3 Matrix
Dieterminant of 3x3 Matrix
Invert 3x3 Matrix
Quaternion Conjugate
Quaternion Division
Cuaternion Inverse
Cuatermion Modulus
CQuaternion Multiplication
Cuaternion Morm
CQuaternion Normalize
Quaternion Rotation

SinCos

Fig. 12.46

JAIAA.

The Workls From i Aempas Laodirdip. Purchased from American Institute of Aeronautics and Astronautics

BUILDING A MULTIPLE-INPUT, MULTIPLE-OUTPUT 327

Note that the Display block inputs for the adjoint and the inverse are arrays,
and so the display is a 3x 3 array. To see all of the elements after executing the
model, you can resize the block to show more than just the first element. You can
resize the block both vertically and horizontally, and the block will add display
fields in the appropriate directions. The two black triangles indicate that the block
is not displaying all of the input array elements, both in the horizontal and the
vertical directions. For example, Fig. 12.47 shows a model that passes a vector
(one-dimensional array) to a Display block.

—r-'.

Adjoint
Fig. 12.47

Open the Invert 3x 3 Matrix block. You will see that it is constructed using
Adjoint of 3x 3 Matrix and Invert 3 X 3 Matrix blocks. It also has an Assertion
block (see Fig. 12.48).

=] Link: adjplay/Iinvert 3x3 Matrix

File Edit View Simulation

ormat Tools Help
D Bﬁ n & T = 5 “_r . 3 J ITUU |Nc|rmﬁ| LI

> adjiA)
(343)
Adjoint of

353 Matrix

o atrizd
©1 > det(A) >l
(3x3)

M atrix
Determinant of @

3343 Matrix

Y
x

¥

Assertion

Ready 100% YariableStepDiscrete

Fig. 12.48

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

328 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

Open Assertion, which is used to check for a divide by zero (see Fig. 12.49).

E] Sink Block Parameters: Assertion z‘

Assertion

Assertthatthe input signal is non-zera. The default behaviarin the

absence of a callback is to output an error message when the
asserion fails.

Parameters

[V]: Enable assertion:

Simulation callback when assertion fails:
‘dlsprj_"r-rlairi): ig singular. No matrix inverse.”)
Stop simulation when assertion fails

Sample time (-1 for inherited):
-1

0K H Cancel H Help Apply

Fig. 12.49

There are two Configuration Parameters to set before executing this model

(although it will run with warning messages using the defaults). First, select the
discrete Solver (see Fig. 12.50).

\=] Configuration Parameters: adjplay/Configuration

Select 5 an tene
Startime:|0.0 Stop tme: 100
Diata ImparyExport
Optimization Sohvier opticns
= Diagrostcs
1eq Type Varnable-step »|Sobver | discrete (no continuous states) -
elion M dine et}
Diate Validay o $26p sire it d i I e
Type Comeesnn Zeo crossing convl | Use local setings o ode45 [Dormand-Frince)
C % n ode?3 (Bogack-Shamping)
Connactnaty [Automescally handie data yansiors betwaen tasks odel13 (Adams)
Carnpatinlity

odel 5% (s8HNDF)

ode s (siMod Rosenbrock)
ode2)t (Mod s¥Trapercidal)
ode? th (st TR-BOFZ)

Maodel Referencing
Hardware Implemeniation
Model Refarencing

= Reoal-Time Workshop

Carmmests
Symbals
Cugtom Code
Debug
Intertace

ok [Cencel |[Hew |

Fig. 12.50

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

BUILDING A MULTIPLE-INPUT, MULTIPLE-OUTPUT 329

Next, go to the Diagnostics menu and change the Automatic solver
parameter selection diagnostic from warning to none (see Fig. 12.51).

B(_nnfi;nraliun Parameters: adjplay/Configuration

R Soher

Soher Algebraic loop. waming bt
Diata Impor/Export Minimine algebraic loop waming ~
Optimization Block prionty violation waming -
1 vinlat WA, -

Semple Time M.m #lep size violation iming
Dota Validity Unspecied inhertability of sample time; waming ~
Type Corversion Sobver data inconsistancy: neng hd
Connecthaty Automatic sobver parameter selection. | none ~
-

Camg E discrate signada. emor
Model Referencing

Hardware Implementaton

Model Referencing

= RealTime Woikshop

Cormments
Symbols
Custom Code
Diebug
Intertace

o coen J e

Fig. 12.51

Executing the adjplay Simulink model will now give the same results as
shown in Secs. 1.8.1 and 1.8.4 without any warning messages.

12.8 Conclusion

This chapter was an introduction to multiple-input, multiple-output systems
implemented in Simulink. Also demonstrated was its dynamic modeling capabili-
ties. Some transfer function models were used. Many more elements are available
to the user, and much more complex models can be created. Further examples are
given in the Simulink manual. Real-time simulations of such systems can be run
using the Real-Time Workshop® software.

Other toolboxes are available from The MathWorks to provide additional
Simulink modeling elements.

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

330 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

Practice Exercises

12.1 The exercise is to generate and analyze a multi-input, multi-output
system. The example is the MIMO representation of a cart and pendulum.
The block diagram of the system is shown in Fig. 12.52.

oooo
[eR o]

| D 1L

Actual
Position

In1

| 2 g
Inputs &
Feadback Sansors
gain using
LQR design.
=
:I. ﬁ- I:I
= —a
Inputz & Estimatad
Senzorzi Fosition

Fig. 12.52

The model parameters that need to be loaded into MATLAB for this model
follow:

Plant model constants:

ka=1

ml =1.0

m2=1.0

State Estimator Model:
ae =

0 1.0000 —31.4507 0

—1.0000 0 44.8537 0
0 0 —46.6599 1.0000
1.0000 0 —89.5750 0
be =
0 31.4507
1.0000 —43.8537
0 46.6599

0 88.5750

GAIAA.

The Works Forom f drdip Purchased from American Institute of Aeronautics and Astronautics
BUILDING A MULTIPLE-INPUT, MULTIPLE-OUTPUT 331
ce =
1 0 00
0100
0010
00 0 1
de =
0 0
0 0
0 0
0 0

Feedback Gain:
K=

3.0819 2.4827 0.0804 3.1866

The full system representation is shown in Fig. 12.53.

B¢ | CarPend/itae Est

DFAS tar b e o] BwbE . wEA® e
y+CueDa
Faranates
= =
- FOT00. wwmi 0 hami GOOD1Amm2 0 warmd Of
= N
nton
=3
froensotacnig
o
frorowi
B
(]
o 5S frue
et I - O

T L —— p—] -

U ot tarieg ko apcn @ mct checked
¥ ewemens) b swcol o
= iz k) o s gt

¥ > daamarnalaman o 1 e e aou

h bhack's e (remmal] of 84 igu ot (antamal)
Faramany

(OSSR e

index mads [Cne tased

Lo Lol o

Eiamares (1401wl semereny
ny

gt panh

h

e

B btepret vechn paramenen a8 1O

Lo | cow | wwe | son]

Fig. 12.53

The system response is to a square wave with a frequency of 0.3 radians/
second and an amplitude of 15. The actual and estimated positions of the response
are shown in Fig. 12.54.

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

332 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

.-_LI:.I_.I

Fig. 12.54

JAIAA

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

Notes

JAIAA.

The Worlds Forum for emspos Lssdwesip Purchased from American Institute of Aeronautics and Astronautics

This page intentionally left blank

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

13
Building Simulink® S-Functions

13.1 Introduction and Objectives

This chapter will introduce the reader to building and using S-Functions in
Simulink®. Both hand-coded examples, as well as examples generated using
the S-Function Builder, will be provided.

Upon completion of this chapter, the reader will be able to build Simulink
S-Functions, use the Simulink S-Function Builder, build Simulink models
using S-Functions, execute and simulate Simulink models including
S-Functions, and directly interface with these models via MATLAB®.

13.2 Simulink® S-Functions

Using Simulink, you can construct S-Functions. An S-Function is a computer
language description of a Simulink block. S-Functions can be written in
MATLAB, C, C++, Ada, or FORTRAN. The C, C++, Ada, and FORTRAN
S-Functions are compiled as MEX-files using the mex utility. As with other
MEX-files, they are dynamically linked into MATLAB when needed.
S-Functions use a special calling syntax that enables you to interact with Simu-
link equation solvers. This interaction is very similar to the interaction that takes
place between the solvers and the built-in Simulink blocks.

The form of an S-Function is very general and can accommodate continuous,
discrete, and hybrid systems. S-Functions allow you to add your own blocks to
Simulink models. You can create your blocks in MATLAB, C, C+4+,
FORTRAN, or Ada. By following a set of simple rules, you can implement
your algorithms in an S-Function. After you write your S-Function and place
its name in an S-Function block (see the User Defined Functions block
library), you can customize the user interface by using masking. You can use
S-Functions with the Real-Time Workshop® software with constraints. You
can also customize the code generated by the Real-Time Workshop software
for S-Functions by writing a Target Language Compiler (TLC) TM file.

335

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

336 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

The User Defined Functions block library appears in the Simulink Library
Browser as shown in Fig. 13.1.

flu) Fcn

MATLAB | \ATLAB Fen

Function

systermn | S5-Function

Oy

myElem S-Function Builder

Fig. 13.1

Note that there is a major disadvantage to using M-file S-Functions. The
MATLAB parser is invoked at every Simulation step. This results in a longer
simulation run time. Also M-file S-Functions cannot be used when code is gen-
erated using the Real-Time Workshop software. C MEX S-Functions are much
faster and can be included in the generated code. A C MEX S-Function should
be compiled using the mex command. This requires a C compiler on the system.
Your version of MATLAB may come with the Lee C version 2.4 compiler in the
directory Program Files\MATLAB\R2006b\sys\lcc.

13.3 Simulink® C and S-Function Example,
Van der Pol Equation

The following is the model of a second-order nonlinear system. A description
of the system can be found on the Simulink diagram in Fig. 13.2. In this section
the diagram is shown directly coded into C and then placed into a Simulink
S-Function.

=1
1-u"y
Fen .
” Outl
Mu
2
o | Mux > I:I
-
Scope

Fig. 13.2

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

BUILDING SIMULINK® S-FUNCTIONS 337

To understand how to implement this system as a Simulink S-Function, it
is useful to see how an S-Function is executed. Execution of a Simulink
model proceeds in stages. First comes the initialization phase. In this phase,
Simulink incorporates library blocks into the model; propagates widths, data
types, and sample times; evaluates block parameters; determines block execution
order; and allocates memory. Then Simulink enters a simulation loop. Each pass
through the loop is referred to as a simulation step. During each simulation step,
Simulink executes each of the model’s blocks in the order determined during
initialization. For each block, Simulink invokes functions that compute the
block’s states, derivatives, and outputs for the current sample time. This con-
tinues until the simulation is complete. Figure 13.3 illustrates the stages of the
execution of a Simulink model containing an S-Function.

Initialize model

A
Calculate time of next sample hit
(only for variable sample time blocks)

h 4

Y

Calculate outputs

|

Update discrete states

5 Clean up at final
time step

y

Calculate derivatives

h 4

Calculate outputs

Simulation loop

> Integration

(minor time step)

Calculate derivatives

|

Locate zero crossings

Fig. 13.3

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

338 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

The Van der Pol system implemented as C code appears as follows:

/* File : vdpmex.c
* Abstract

* Example MEX-file system for Van der Pol equations

*

* Use this as a template for other MEX-file systems

* which are only composed of differential equations.

*

* Syntax [sys, x0] = vdpmex(t, x, u, flag)

*

* For more details about S-functions, see simulink/src/sfuntmpl_doc.c

* Copyright 1990-2004 The MathWorks, Inc., revised R. Colgren
* SRevision: 1.11.4.2.1 $
*/

#define S_FUNCTION_NAME vdpmex
#define S_FUNCTION_LEVEL 2

#include "simstruc.h"

* Abstract:

* The sizes information is used by Simulink to determine the S-function
* block’s characteristics (number of inputs, outputs, states, etc.).
*/

static void mdlInitializeSizes (SimStruct *S)

{

ssSetNumSFcnParams (S, 0); /* Number of expected parameters */
if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount (S)) {

return; /* Parameter mismatch will be reported by Simulink */

ssSetNumContStates (S, 2);
ssSetNumDiscStates (S, 0);

if (!ssSetNumInputPorts(S, 0)) return;
if (!ssSetNumOutputPorts (S, 0)) return;

ssSetNumSampleTimes (S, 1);
ssSetNumRWork (S, 0);
ssSetNumIWork (S, 0);
ssSetNumPWork (S, 0);
ssSetNumModes (S, 0);
ssSetNumNonsampledzCs (S, 0);

/* Take care when specifying exception free code - see sfuntmpl_doc.c */
ssSetOptions (S, SS_OPTION_EXCEPTION_FREE_CODE) ;

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

BUILDING SIMULINK® S-FUNCTIONS 339

/* Function: mdlInitializeSampleTimes

* Abstract:
* S-function is comprised of only continuous sample time elements
*/
static void mdlInitializeSampleTimes (SimStruct *S)
{
ssSetSampleTime (S, 0, CONTINUOUS_SAMPLE_TIME) ;
ssSetOffsetTime (S, 0, 0.0);
ssSetModelReferenceSampleTimeDefaultInheritance(S) ;

}

#define MDL_INITIALIZE_CONDITIONS

/* Function: mdlInitializeConditions

* Abstract:
* Initialize both continuous states to zero
*/
static void mdlInitializeConditions (SimStruct *S)
{

real_ T *x0 = ssGetContStates(S);

/* int x2 */
x0[0] = 0.25;

/* int x1 */
x0[1] = 0.25;
}

/* Function: mdlOutputs

* Abstract:

* This S-Function has no outputs but the S-Function interface requires
* that a mdlOutputs() exist so we have a trivial one here.
*/
static void mdlOutputs (SimStruct *S, int_T tid)
{
UNUSED_ARG (S) ; /* unused input argument */
UNUSED_ARG (tid); /* not used in single tasking mode */
}

#define MDL_DERIVATIVES

/* Function: mdlDerivatives

* Abstract:

* xdot (x0) = x0*(1-x1"2) -x1
* xdot (x1) = %0
*/
static void mdlDerivatives (SimStruct *3)
{
real T *dx = ssGetdX(S);
real T *x = ssGetContStates(S);
dx[0] = x[0] * (1.0 - x[1] * x[1]) - xI[1];
dx[1] = x[0];

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

340 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

/* Function: mdlTerminate

* Abstract:

* No termination needed, but we are required to have this routine.
*/

static void mdlTerminate (SimStruct *S)

{

UNUSED_ARG(S); /* unused input argument */

#ifdef MATLAB_MEX_ FILE /* Is this file being compiled as a MEX-file? */
#include "simulink.c" /* MEX-file interface mechanism */

#else

#include "cg_sfun.h" /* Code generation registration function */
#endif

Implemented as Simulink S-Function, this system appears as shown in
Fig. 13.4.

File Edit View Simulation Format Tools Help

D FE& +tB2R Q2> lINurmaI |

vdprmax — |:|

S-Function Scopa

R|100%] lode45 4

Fig. 13.4

GAIAA

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

BUILDING SIMULINK® S-FUNCTIONS 341

The response of this system as plotted using MATLAB is shown in Fig. 13.5.

3 - T T T
2+ ™ /]'| ."”]' /lll 4
/A }(| i |II |
il y I|I / l', / | /-" \ |
/o 7\ am y
= Of .r'/ \ .’f { f l\ |
| A | AN / \ f \, /
TN I.' % i N \ | N\
2 ..\\ | \\ |II \ |'I \ |'I I."\ |
V \ \J - J
3 L L
0 5 10 15 20 25 30
3 T T
2n 3 ! /\ ~ G —~ .-\\ i
“, | I" \ ! % / \
1\ | / \ / A
L \ / \ \ / i
/ / \ j \ /

1 2 \ / \ / \ / \
2 " g \\4"' \ g .
3 1 L 1 L L

0 5 10 15 20 25 30
Time in seconds
" The Phase behavior of the Van der Pol System
T T T T T T T T
2L -
1
8 of -
-1
2
1 1 1] 1 1 1]
2.5 2 -1.5 -1 -0.5] 0.5 1 15 2 25
X1

Fig. 13.5

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

342 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

13.4 Simulink® C and S-Function Builder Example,
Van der Pol Equation

This section will demonstrate the use of the Simulink S-Function Builder to
implement the Van der Pol equation of Section 12.3. Before you begin, make sure
that you have run mex-setup from the MATLAB Command Window to choose
The MathWorks provided Lee C compiler. Figure 13.6 shows what this looks like
on your computer screen.

J MATLAB

Fle EoR Text Col Took Debug Desktop Window Hep

D@t mB o o B ¥ comtmcey CMATLASI ok +|[] G

Srorteits [F] How o At (2] vty b

[! O |

Go 8 @B _ : .

Al Fies Fhe Typa = | Last Wocsties | Descripnon |

T TV e T, 20 A

[mesang mdi Model Diec 17, 2004 1 -

»> mex -setuf

Pleaze chooze your compiler for bullding external interface (MEX) files:

Would you like mex to locate installed compilers [y]/n? y

Select a compller:

[1] ital Vizual Fortran version 6.0 in C:\Program Flles\Microsoft Visual Studic

[2] Lec © version 2.4 in C:\MATLABTO1\=zys\lcc

[3] Microsoft Visual C/fC++ version 7.0 in C:\PFrogram Files\Microsoft visual Studic .MET

[4] Microsoft Visual C/C++ version 7.1 in C:\Progcam Files‘\Microsoft Visual 5 o .MET 2003

[5] Microsoft Visual C/C++ version 6.0 in Ci\Program Files\Microsoft Visual stud

[0] Hone

Compiler: 3

Pleasa verify your choices:

Compiler: Microsoft Visual C/C+ 7.0

Location: C:\Program Files\Microzoft Visual Studioc .KET

Are these correct?{[yl/n}: y

Try to update options file: C:\Documents and Settings\Shah\Application Data\MathMerks\MATLAB\R1{\mexopts.bat

From template: C:\MATLABTOL\BIN\WIMNIZ\mexoptsimavcTilopts . bat

Done . . .

> -
mand Histor x
mER-FETUP |
clear
mex-setup
mex -mety -

o 5tan |

Fig. 13.6

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

BUILDING SIMULINK® S-FUNCTIONS 343

Open up a new Simulink diagram and drag and drop the S-Function Builder
from the User-Defined Functions palette into the new model (see Figs 13.7
and 13.8).

ﬁ Simulink Library Browser
Fle Edit View Help

D@ 4= d |

S-Function Builder: si'mu'lihRjUser-Deﬁned'Funcﬁons',"'S-'FUnction Builder

= W Simulink i
2| Commonly Used Blocks
% Continuous

+ ®=] Embedded MATLAB Function

w |F

Discontinuities : e

i E:;;;i — mifile | M-fle (level-2) S-Function
e i WATLAS | MATLAB Fen

2 Math Operations :

| Model Verification s 1
] Model-Wide Utilities

% Ports & Subsystems ' &) . _
sistem S-Function Builde
2] Signal Attributes | SRS

2 Signal Routing
2 Sinks
* Sources
2 User-Defined Functions
+- 2| Additional Math & Discret
- | Aerospace Blockset
- W CDMA Reference Blockset
+ W Communications Blockset
B Control Svst|em Toolbox ¥
< >

Ready

system | S-Function

S-Function Examples

i+

Fig. 13.7

GAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

344 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

=T

File Edit View Simulation Format Tools Help

D SES| 4B [» = [Nom |

S-Function Builder

Ready [100% [|ode4s #4

Fig. 13.8

GAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

BUILDING SIMULINK® S-FUNCTIONS 345

Double-click on the S-Function Builder in the model, and you should get the
window shown in Fig. 13.9.

) 5-Function Builder: untitled /S-Function Builder i =1 1]

S-funclion name:

| operties | Libraries | Outputs | Cortinuous Derivatives | Discrete Update | Buid info |

The S-Function Bulder block crestes & wrapper C-S-Tunction with muiple nput ports, multipls output ports:

and varkable number of scalar, vector or matrix parsmeters. The inputs and output ports can propagats Smulink
buil-in data types, complex, frame, 1-0“2-9% “Yiou can use this block o anler YOUr 0Wn COS2 of Import
legacy C code. This block sk o states. Th be of type real. Optionally
mummm*ﬂm.ncmhmmmmmwwumm

Numiber of discrete states E Sample mode: hheited =

Dizcrete states IC: E Sermts e e I

Number of contiowous states: o

Fig. 13.9

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

346 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

Make the changes shown in Fig. 13.10 to the Initialization section.

o'« 5-Function Builder: untitled/S-Function Builder

S-function name: | vio_s_tunction]
Neene: Data type Vele
L]
e s Dals Properties | Libraries | Oulputs | Continuous Derivatives | Discrete Updale | Build Info
= W nput Ports
ud
= “2“ Porte The S-Function Bulder block creates a wrapper C-S-function with multiple input ports, multipls output ports
i‘ arw variable rumber of scalar, veclor of matrix parameters, The inpuls and oulput ports can propagate Simulink
& buit-in ciata types, complec, frame, 1.0 and 2.0 signaéz. You can use this block to enber your own code or import
Paramelors lagacy C code_ This biock alzo supports discrete and continuous states. The stabes must be of type real. Cptionally
the: S-Function Bulkder biock 'will generate a TLC file to be used wih Real Time Workshop for code generation
FS-tunction setfings:
Humber of discrete states: [] Samplemode | inbherted W
Discrete stales IC (i}
Number of continuous states: | 2
Contnuous states IC: 25025
Fig. 13.10

Note that the number of continuous states is 2, and the continuous states’
Initial Conditions (IC) are [0.25,0.25]. There are no discrete states in this model.
Next select the Data Properties=>Output Ports tab and change the output to

a 2-D vector and the number of rows to 2. Pictorially, these selections appear as
shown in Fig. 13.11.

S-Function Builder: untitled/5-Function Builder

S-tunclion name: wilp_s_function
=
abridnboloi Indtiskzation | Data Properties | Libraies | Outputs | Contimucus Derivadives | Discrete Update | Bulld Info
= Wput Ports -
wo"n Uze the Add atons ports and to the S-function. Use the table below to
= W Outout Ports gure the data type, i ond of each S-tunction peet and to configure the data
Ps ’ type and complecity of each perametes.
rPort mnd Parameter
Input ports | Outpud ports | Parameters | Data type attribules
El Porl name. Duransions. Rows Calumns. Complaxty Frama
I [[|
2
¥

Fig. 13.11

GAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

BUILDING SIMULINK® S-FUNCTIONS

347

There are no changes to the Libraries section.
Next select the Outputs tab and insert the code shown in Fig. 13.12.

S-Function Builder: untitled/S-Function Builder

S-tunchion name | velp _s_tuncton

s _ |

Intiakzation Data Properties | Libearies | CUlpus | Continuous Dertvatives | Discrete Uipdate | Build Info

= leowpcm e
w
your C-code or call slgorthen_ If svadabis decrete hate
sﬁmiﬂms ;: bt

D[0]. xDyn, xC[0] xCln] respectively. Inpul ports, output ports and parameters should be relersnced mﬂu
supeumdnlhe oparties. Thezs wmmyll ~function,

[0)].re = u
y0[0).im = v
y;ID].:-:- = [
vi[0].im = ul([0

y0[0]=xC(0];
0 [1]=xC[1]:

[V] nputs are nesded inthe outpad function(deect feadthrough)

1€

Fig. 13.12

This sets the two outputs to the values of the two continuous states.
Finally, select the Continuous Derivatives tab and input the code as shown in
Fig. 13.13.

. . 5-Function Builder: untitled/5-Function Builder

S-tunction name: [wip_z_function

s
L _ |
®
e Initialization | Data Properties | Libraries | Outputs | Contirous Derfvalives | Discrate Update | Buld info
= Irgut Ports A
Guw This: section is optional and use to calculste the derivatives. i t= caled only If the S-function has one or more continuous
= W outsut Ports states. The states and derivaiives of the S-function are of type doutie and et be referenced 83 xC(0], xCl1], etc and dx{0]
= j o} and d1] etc respectivety. Input ports, output ports and p g the symbols specified in the
) Parameters [Dsts Properties. These references appear dinectly in the genersled S-funclion.
dx[0] = ®xC[0])] * (1.0 - xC[1] * =C[1]) - =C[1]:
dx[1] = xC[0]:

Fig. 13.13

These are the dynamic equations for the Van der Pol equation. These are the
same dynamic equations shown in the Simulink diagram at the start of Sec. 13.3.

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

348 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

Next select the Build Info tab and then select the Build button at the top right
corner of the window. You should get a successful build indication. If mex—setup
was not run from the MATLAB Command Window and a C compiler selected,
the Simulink S-Function Builder would hang up at this point (see Fig. 13.14).

(&'« S-Function Builder: untitled/S-Function Builder

s K
Lo Inislization | Data Properties | Libraries | Outputs | Cortiruous Derivatives | Discrete Update | Buldinfo
= W rpuponts riomplation di i
Yuw
= W Cutput Ports
- m Comphing vdp_s_functionc Please walt
§ Parameters

rErdd cptans
[shaw compite steps Genorate wrapper TLC [Addtional methocds .]
[creste a debuggabie MEX-fie []save code orty

cose J[_teo]

Fig. 13.14

You should now have a dll that Simulink can use in the simulation of the
model.

The Simulink diagram (after resizing) should now look like that shown in
Fig. 13.15.

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

BUILDING SIMULINK® S-FUNCTIONS 349

=T

File Edit WView Simulation Format Tools Help

D SE8& &B2R |2 2> =|Noma RAER

o

ul wdp_s_function yOp

S-Function Builder

Ready [100% [lode4s

Fig. 13.15

Now select a Clock input from the Sources palette and a Scope from the Sinks
palette. Also select an X Y Graph to duplicate the polar plot generated using
MATLAB. To output the data to MATLAB, select a To Workspace block.
Connect all of these to the output of the S-Function.

Save your diagram under the name sfunvdp.mdl. Your diagram should now
look like the window shown in Fig. 13.16.

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

350 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

-l x|

Flle Edit Wiew Simulation Format Tools Help

DSE&| =R 22> 5 Noma e @ T

™

ud vdp_s_function ¥0 >]

Clook

S-Function Buider

{IOJ

XY Graph

Ready [100% | [lode4 Y

Fig. 13.16

Next you need to choose your simulation parameters. Set the stop time at 20
seconds. Choose a Fixed-step type solver using the Runge-Kutta integration
algorithm (ode4) and a Fixed step size of 0.01 seconds. After completing this
process, select OK (see Fig. 13.17).

) Simulation Parameters: untitled =101 x|

Solver

Workspace I:’Dl Diagnoslictl Advancedl HaaI-TimeWorkshopl

Simulation time
Start time: I 0.0 Stop time: I 20

Solver options
Type: I Fixed-step j I oded [Runge-Kutta] L]

Fized step size: | 0m Mode:]Auln "l

Output options

IF‘.efine autput j Eefine factar: I 1

0K | Cancel [Hep [e

Fig. 13.17

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

BUILDING SIMULINK® S-FUNCTIONS 351

Then run the simulation and check the scope, which should look something
like the window shown in Fig. 13.18.

-} Scope E”E‘B_]
SH LLL ABREB BA R ~

Time offset: 0

Fig. 13.18

As you sent the S-Function output to the workspace using the To Workspace
block, you can replicate the phase-plane plot using the plot(simout(:,1),
simout(:,2)) command. The plot in Fig. 13.19 shows the response of the
system in the phase plane.

XY Plot

Y Axis
e

X AXis

Fig. 13.19

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

352 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

13.5 Example of a FORTRAN S-Function

The following is an example of a FORTRAN S-Function. It is a standard
model of the Earth’s atmosphere. Note that it looks like many of the
FORTRAN subroutines that have been developed over the years and are available
in libraries for reuse. FORTRAN S-Functions allow such code reuse in

Simulink.

SUBROUTINE Atmos(alt, sigma, delta, theta)
C
C Calculation of the 1976 standard atmosphere to 86 km.
C This is used to show how to interface Simulink to an
C existing FORTRAN subroutine.
C
C Copyright 1990-2002 The MathWorks, Inc., revised R. Colgren
C

C $Revision: 1.4.1 $
C
IMPLICIT NONE
C
C --- 1/0 variables
C
REAL alt
REAL sigma
REAL delta
REAL theta
C
C --- Local variables
C
INTEGER 1i,j.,k
REAL h
REAL tgrad, tbase
REAL tlocal
REAL deltah
REAL rearth, gmr
C
C --- Initialize values for 1976 atmosphere
C
DATA rearth/6369.0/! earth radius (km)
DATA gmr /34.163195/ ! gas constant

REAL htab(8), ttab(8), ptab(8), gtab(8)

DATA htab/0.0, 11.0, 20.0, 32.0, 47.0, 51.0, 71.0, 84.852/

DATA ttab/288.15, 216.65, 216.65, 228.65, 270.65, 270.65,

& 214.65, 186.946/

DATA ptab/1.0, 2.233611E-1, 5.403295E-2, 8.5666784E-3,

& 1.0945601E-3, 6.6063531E-4, 3.9046834E-5, 3.68501E-6/
DATA gtab/-6.5, 0.0, 1.0, 2.8, 0.0, -2.8, -2.0, 0.0/

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

BUILDING SIMULINK® S-FUNCTIONS 353

C --- Convert geometric to geopotential altitude
C
h = alt*rearth/(alt 4 rearth)
C
C --- Binary search for altitude interval
i=1
ji=38
C
100 k = (i+j)/2
IF (h .1t. htab(k)) THEN
i=k
ELSE
i=k
END IF
IF (j .le.i4+ 1) GOTO 110
GO TO 100
110 CONTINUE
C
C --- Calculate local temperature
C
tgrad = gtab(i)
tbase = ttab(i)
deltah = h - htab(i)
tlocal = tbase + tgrad*deltah
theta = tlocal /ttab(1)
C
C --- Calculate local pressure
C
IF (tgrad .eq. 0.0) THEN
delta = ptab(i)*EXP(-gmr*deltah /tbase)
ELSE
delta = ptab(i)*(tbase/tlocal)**(gmr/tgrad)
END IF
C
C --- Calculate local density
C
sigma = delta/theta

RETURN
END

JAIAA

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

354 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

To incorporate an S-Function into a Simulink model, drag an S-Function
block from the Simulink User Defined Functions block library into the model.
Then specify the name of the S-Function in the S-Function name field of the
S-Function block’s dialog box. In this case, the altitude is passed into the subrou-
tine, and the temperature, pressure, and atmospheric density are passed out of the
subroutine. There will be one input to and three outputs from this S-Function
block. This block will appear as shown in Fig. 13.20.

R
> fiitige,Jly| Sfun_etmos pogsopg oo ‘
e LY
Density, kgfmd &
S-Functian
Fig. 13.20

A CMEX S-Function Gateway to this FORTRAN routine needs to be written
to interface it with the S-Function block. This interface is shown in Sec. 13.6.

13.6 Example of a CMEX S-Function Gateway

The following is an example of a Level 2 CMEX S-Function Gateway. It
allows the FORTRAN standard model of the atmosphere in Sec. 13.5 to be
used in an S-Function. It is another way that existing FORTRAN code can be
made available in libraries for reuse.

/*

* File: sfun_atmos.c

*

* Abstract: Example of a Level 2 CMEX S-function gateway
* to a Fortran subroutine. This technique allows you

* to combine the features of level 2 S-functions with

* Fortran code, either new or existing.

*

* This example was prepared to be platform neutral.

* However, there are portability issues with Fortran

* compiler symbol decoration and capitalization (see

* prototype section, below).

*

* On Windows using Microsoft Visual C/C++ and Compagq

* Visual Fortran 6.0 (a.k.a. Digital Fortran) this

* example can be compiled using the following mex

* commands (each command is completely on one line):

*

* >> mex -v COMPFLAGS#"$COMPFLAGS /iface:cref" -c

* sfun_atmos_sub.f -f ..\..\bin\win32\mexopts\df60opts.bat
*

* >> mex -v

* LINKFLAGS#"SLINKFLAGS dformd.lib dfconsol.lib dfport.lib

* /LIBPATH:$SDF_ROOT\DF98\LIB" sfun_atmos.c sfun_atmos_sub.obj

JAIAA

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

BUILDING SIMULINK® S-FUNCTIONS 355

* On linux, one can prepare this example for execution using
* g77, gcc, and mex:

*

* % g77 -c sfun_atmos_sub.f -o sfun_atmos_sub.o

* % mex -1f2c sfun_atmos.c sfun_atmos_sub.o

*

* or purely with mex on one line:

*

* >> mex -1f2c sfun_atmos.c sfun_atmos_sub.f

*

* Gnu Fortran (g77) can be obtained for free from many
* download sites, including http://www.redhat.com in

* the download area. Keyword on search engines is ‘g77'.
*

* R. Aberg, 01 JUL 2000, revised R. Colgren

* Copyright 1990-2005 The MathWorks, Inc.

*

* $Revision: 1.8.4.5.1 $

*/

#define S_FUNCTION_NAME sfun_atmos
#define S_FUNCTION_LEVEL 2

#include "simstruc.h"

/*

* Below is the function prototype for the Fortran
* subroutine ‘Atmos’ in the file sfun_atmos_sub.f.

* Note that datatype REAL is 32 bits in Fortran,

* so the prototype arguments must be float.

* Your Fortran compiler may decorate and/or change
* the capitalization of ‘SUBROUTINE Atmosphere’

* differently than the prototype below. Check

* your Fortran compiler’s manual for options to

* learn about and possibly control external symbol
* decoration.

* Additionally, you may want to use CFortran,

* a tool for automating the interface generation

* between C and Fortran ... in either direction.

* Search the web for ’‘cfortran’.

*/

/*

* Digital Fortran’s external symbols are in capitals
* on Windows platforms; preceding underscore is implicit.
*/

#if defined(_WIN32) && ! defined(_WIN64)

#define atmos_ ATMOS

#endif

/*

* Note that some compilers don’t use a trailing

* underscore on Fortran external symbols

*/

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

356 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

#if defined(__xlc__) || defined(__hpux) || defined(_WIN64)
#define atmos_ atmos
#endif

extern void atmos_ (float *alt,
float *sigma,
float *delta,
float *theta);

/* Parameters for this block */
typedef enum {TO_IDX=0, PO_IDX, RO_IDX, NUM_SPARAMS } paramIndices;

#define TO(S) (ssGetSFcnParam(S, TO0_IDX))
#define PO(S) (ssGetSFcnParam(S, PO_IDX))
#define RO(S) (ssGetSFcnParam(S, RO_IDX))

/* Function: mdlInitializeSizes

* Abstract:

* Set up the sizes of the S-function’s
* inputs and outputs.
*/

static void mdlInitializeSizes (SimStruct *S)
{
ssSetNumSFcnParams (S, NUM_SPARAMS) ; /* expected number */
#if defined (MATLAB_MEX_FILE)
if (ssGetNumSFcnParams (S) != ssGetSFcnParamsCount(S)) goto EXIT_POINT;
#endif
{
int iParam = 0;
int nParam = ssGetNumSFcnParams (S) ;

for (iParam = 0; iParam < nParam; iParam++)

{
ssSetSFcnParamTunable(S, iParam, SS_PRM_SIM_ONLY_TUNABLE) ;

ssSetNumContStates(S, 0);
ssSetNumDiscStates(S, 0);

ssSetNumInputPorts (S, 1);
ssSetInputPortwidth (s, 0, DYNAMICALLY_SIZED) ;
ssSetInputPortDirectFeedThrough(s, 0, 1);
ssSetInputPortRequiredContiguous (S, 0, 1);

i

ssSetNumOutputPorts (S, 3

)
ssSetOutputPortWidth (S, 0, DYNAMICALLY_SIZED); /* temperature */
ssSetOutputPortWidth (S, 1, DYNAMICALLY_SIZED); /* pressure */
ssSetOutputPortWidth (S, 2, DYNAMICALLY_ SIZED); /* density */

EXIT_POINT:

return;

JAIAA

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

BUILDING SIMULINK® S-FUNCTIONS 357

/* Function: mdlInitializeSampleTimes

* Abstract:
Specify that we inherit our sample time from
* the driving block.
*/
static void mdlInitializeSampleTimes (SimStruct *S)
{
ssSetSampleTime (S, 0, INHERITED_SAMPLE_TIME) ;
ssSetOffsetTime (S, 0, 0.0);
ssSetModelReferenceSampleTimeDefaultInheritance(S) ;

/* Function: mdlOutputs

* Abstract:

*

*/
static void mdlOutputs (SimStruct *S, int_T tid)
{

Calculate atmospheric conditions using Fortran subroutine.

double *alt =
double *T =

double *) ssGetInputPortSignal(S,0);
double *) ssGetOutputPortRealSignal(S,0);
double *P = (double *) ssGetOutputPortRealSignal(S,1);
double *rho = (double *) ssGetOutputPortRealSignal(S,2);
int w = ssGetInputPortWidth(s,0) ;

int k;

float falt, fsigma, fdelta, ftheta;

(
(
(
(

for (k=0; k<w; k++) {

/* set the input value */
falt = (float) alt[k];

/* call the Fortran routine using pass-by-reference */
atmos_ (&falt, &fsigma, &fdelta, &ftheta);

/* format the outputs using the reference parameters */
T[k] = mxGetScalar(T0(S)) * (double) ftheta;

P[k] = mxGetScalar(PO(S)) * (double) fdelta;

rho[k] = mxGetScalar(RO(S)) * (double) fsigma;

/* Function: mdlTerminate

* Abstract:
* This method is required for Level 2 S-functions.
*/

static void mdlTerminate (SimStruct *S)

{

}

#ifdef MATLAB_MEX FILE /* Is this file being compiled as a MEX-file? */
#include "simulink.c" /* MEX-file interface mechanism */

#else

#include "cg_sfun.h" /* Code generation registration function */

#endif

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

358 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

To incorporate an S-Function into a Simulink model, drag an S-Function
block from the Simulink User Defined Functions block library into the model.
Then specify the name of the S-Function in the S-Function name field of the
S-Function block’s dialog box, as illustrated in Fig. 13.21.

Block Parameters: C-MEX Gateway S-Functio 1%; x|

— S-Function

IJser-definable block. Blocks may be written in M, C. Fortran or Ada and
must conform to S-function standards. tx,u and flag are automatically
passed to the S-function by Simulink. “Estra" parameters may be
specified in the 'S-function parameters field.

— Parameters
S-function name:

S-function parameters:
288.15,101325.0,0.0103

0k Cancel Help Apply

Fig. 13.21

Note that extra parameters may be specified in the S-Function parameter field.
You can also use the S-Function builder located in the Simulink Library
Browser to help you build a Simulink S-Function.

13.7 Simulink® Block Diagram Using S-Function

The following shows a Simulink block diagram constructed using this
S-Function. For this example a single scope with four outputs was constructed.
It is executed in the same way as any other Simulink model. The FORTRAN code
and the CMEX S-Function Gateway are both embedded as text into the diagram
for reference. The color of these text blocks are modified from that of the rest of
the diagram using Format, Background Color, Light Blue for highlighting. The
result of this simulation is shown in Figs 13.22 and 13.23.

JAIAA.

The Workls From i Aempas Laodirdip. Purchased from American Institute of Aeronautics and Astronautics

BUILDING SIMULINK® S-FUNCTIONS 359

=loi x|

File Edit WYiew Simulation Format ools Help l
D SE&S| % B[]y =omd]| @S| |
Alttude, km
Tarb, K »
sfun_atmos Farn, Fa e
Gonstant . »
Density, kg/md e
G-MEX Gataway Scope
S-Function
to Fortmn
Sine Wave _
[Fonmn: matisbotsimuinkerisfun_stmos_sut |
Ready [100% | | lodet Z
Fig. 13.22
=10] x

@B op o ABEB| O & %

Fig. 13.23

GAIAA

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

360 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

13.8 Conclusion

This chapter was an introduction to building and using S-Functions in Simu-
link. Examples were provided where the entire S-Function was hand coded or
where it was generated using the S-Function Builder. A CMEX S-Function
Gateway for a FORTRAN S-Function was also shown. Further examples are
given in the Simulink Library Browser.

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

BUILDING SIMULINK® S-FUNCTIONS 361

Practice Exercises

13.1 The S-Function to be generated in this exercise is a two-input,
two-output continuous-time model programmed in C. A hand-programmed
copy of this model is found in the Simulink Library Browser under S-Function
demos in the C-file S-Functions under Continuous. Select the model Continu-
ous time system. Use the system model Continuous-time state space
S-Function. Excite the system using two signal generators. You will have two
outputs. You will need a Mux bus to make a two-dimensional signal vector to
drive the system. Look at the system output using a Scope.

From the following code, use the S-Function Generator to generate this
S-Function as shown in this chapter.

To test this S-Function, start with two sine wave inputs at a frequency of
1 rad/second and an amplitude of 1. Then try other excitation signals and
examine the response (see Fig. 13.24).

gooo
fele]
Signal « P
Cenamtor | BRATK & B
¥ =G + OFU
Scopa
cgou i Continuo us-time P
state =pace
Signal S-Function
Genamtord

Fig. 13.24

JAIAA

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

362

/*

*

The C code for this system follows:

File csfunc.c
Abstract:
xdot = Ax + Bu
\% = Cx + Du
For more details about S-functions,
Copyright 1990-2004 The MathWorks,
SRevision: 1.9.4.2.1 $
/

#define S_FUNCTION_NAME csfunc
#define S_FUNCTION_LEVEL 2

#i

#define U(element)

st

st

st

st

nclude "simstruc.h"

(*uPtrs[element])

see simulink/src/sfuntmpl

Inc., revised R. Colgren

/* Pointer to Input Port0O */

BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

Example C-file S-function for defining a continuous system.

_doc.c.

etc.).

atic real T A[2][2]={ { -0.09, -0.01 } ,
{ 1 B 0 }
}i
atic real T B[2][2]={ { 1 , =7 }
{ 0 , —2 }
}i
atic real T C[2][2]1={ { O , o
{1 ;=5 }
Yi
atic real T D[2][2]={ { -3 , 0 ,
{ , 0
Yi
====================%
S-function methods *
—===================%/
Function: mdlInitializeSizes
Abstract:
The sizes information is used by Simulink to determine the S-function
block’s characteristics (number of inputs, outputs, states,
/

*

static void mdlInitializeSizes (SimStruct *S)

{

0);
(ssGetNumSFcnParams (S) ! =

ssSetNumSFcnParams (S,
if

return;

/* Number of expected parameters */
ssGetSFcnParamsCount (S)) |

/* Parameter mismatch will be reported by Simulink */

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

BUILDING SIMULINK® S-FUNCTIONS 363

ssSetNumContStates (S, 2);
ssSetNumDiscStates (S, 0);

if (!ssSetNumInputPorts(S, 1)) return;
ssSetInputPortwidth(s, 0, 2);
ssSetInputPortDirectFeedThrough(S, 0, 1);

if (!ssSetNumOutputPorts(S, 1)) return;
ssSetOutputPortwidth (S, 0, 2);

ssSetNumSampleTimes (S, 1);
ssSetNumRWork (S, 0);
ssSetNumIWork (S, 0);
ssSetNumPWork (S, 0);
ssSetNumModes (S, 0);
ssSetNumNonsampledZCs (S, 0);

/* Take care when specifying exception free code - see sfuntmpl doc.c */
ssSetOptions (S, SS_OPTION_EXCEPTION_FREE_CODE) ;

/* Function: mdlInitializeSampleTimes

* Abstract:
* Specifiy that we have a continuous sample time.
*/
static void mdlInitializeSampleTimes (SimStruct *S)
{
ssSetSampleTime (S, 0, CONTINUOUS_SAMPLE_TIME) ;
ssSetOffsetTime (S, 0, 0.0);
ssSetModelReferenceSampleTimeDefaultInheritance(S) ;

#define MDL_INITIALIZE_CONDITIONS

/* Function: mdlInitializeConditions

* Abstract:
* Initialize both continuous states to zero.
*/
static void mdlInitializeConditions(SimStruct *S)
{
real T *x0 = ssGetContStates(S);
int_T 1p;

for (1lp=0;1p<2;1lp++) {
*x0++=0.0;

/* Function: mdlOutputs

* y = Cx + Du
*/

JAIAA

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

364 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

static void mdlOutputs (SimStruct *S, int_T tid)

{
real_T *y = ssGetOutputPortRealSignal (S, 0) ;
real_T *x = ssGetContStates(S) ;
InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);
UNUSED_ARG(tid); /* not used in single tasking mode */
/* y = Cx + Du */
y[01=C[0] [0]*x[0]+C[0][1]*x[1]+D[0][0]1*U(0)+D[0][1]1*U(1);
y[1]=C[1][0]*x[0]+C[1][1]1*x[1]1+D[1][0]*U(0)+D[1][1]1*U(1);

}

#define MDL_DERIVATIVES
/* Function: mdlDerivatives

* Abstract:

* xdot = Ax + Bu
*/
static void mdlDerivatives (SimStruct *3)
{
real_T *dx = ssGetdX(S) ;
real T *x = ssGetContStates(S);
InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);
/* xdot=Ax+Bu */
dx[0]=A[0] [0]1*x[0]+A[0] [1]1*x[1]+B[0][0]1*U(0)+B[0][1]1*U(1);
Ax[1]=A[1]1[0]*x[0]+A[1][1]*x[1]+B[1][0]*U(0)+B[1][1]1*U(1);
}

/* Function: mdlTerminate

* Abstract:

* No termination needed, but we are required to have this routine.

*/
static void mdlTerminate (SimStruct *S)

{

UNUSED_ARG(S); /* unused input argument */

}

#ifdef MATLAB_MEX_ FILE /* Is this file being compiled as a MEX-file? */
#include "simulink.c" /* MEX-file interface mechanism */

#else

#include "cg_sfun.h" /* Code generation registration function */

#endif

JAIAA

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

Notes

JAIAA.

The Worlds Forum for emspos Lssdwesip Purchased from American Institute of Aeronautics and Astronautics

This page intentionally left blank

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

Basic Stateflow®

JAIAA.

The Worlds Forum for emspos Lssdwesip Purchased from American Institute of Aeronautics and Astronautics

This page intentionally left blank

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

14
Introduction to Stateflow”

14.1 Introduction and Objectives

This final chapter introduces the reader to The MathWorks’ Stateflow®™
graphical modeling capabilities. It assumes a basic familiarity with
MATLAB® and Simulink®.

Upon completion of this chapter, the reader will be able to identify the
graphics modeling capabilities of Stateflow software, open and close Stateflow
models from MATLAB, generate Stateflow models, execute and simulate
systems implemented within Stateflow software, and modify Stateflow model
block parameters from Simulink and MATLAB.

14.2 Opening, Executing, and Saving Stateflow® Models

Stateflow software is an excellent tool to dynamically simulate switching and
other state changes within MATLAB’s graphical tools, including Simulink.
Although Stateflow software was originally developed as a stand-alone graphical
modeling environment, it iS now combined within Simulink. This offers the
important advantage that Simulink blocks can be used with Stateflow blocks
within the same model.

To provide the reader with an example of the appearance of a Stateflow model,
we will open the following: 1) a Simulink model containing a Stateflow block and
2) the Stateflow library.

First we will open a Simulink model from the MATLAB Command Window.
The model we will open is a simple demonstration of While and Do While loops
modeled within Stateflow software. To open this model titled sf_while.mdl,
simply type the following within the MATLAB Command Window:

> sf_while

369

B
The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

370 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

The Simulink model window shown in Fig. 14.1 is opened.

ﬁ sf_while Q@[Zl

Fle Edit View Simulaion Format Tools Help
DSEES| BB |22 » uf |Normal vl ey
WHILE and DO-WHILE Loop Demonstration
% output 10x1
Whille |
0] 7|
11 »
] Scope
% do_outpuiJ L5
Do While
Double click Double click
here for
Simulink\Stateflow inf:r':,":uf;‘,: on
Help this demonstration
|Ready 112% | FixedStepDiscrete 7

Fig. 14.1

B
The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO STATEFLOW" 371

Note that this model is set to run using a fixed-step discrete integration routine.
To view the Stateflow model called While, simply double-click on this block.
The Stateflow model shown in Fig. 14.2 is opened.

-} Stateflow (chart) sf_while/While

fe Edt Vew Smuston Toos Add tep .
FHS (mE =3 HME > 0 - EE BREAD W
[E] A
gl . Equivalent C-Code:
\ [condition < 20]
o {While_outputfi] =condition;i++; while(condition < 20)
Ve tian+=""
% Sondition+=27} While_outputll] = condition;
] it
@ / condition+=2;
lal 3 F'..
. --"2 {output=while_output:}
120% .\'
b
=
! 5]
Ready

Fig. 14.2

Similarly, to open the Stateflow model called Do While, double-click on the
block with this name. This will open the Stateflow model in Fig. 14.3.

-} Stateflow (chart) sf_while/Do While

Ele Edt Vew Smuaton Took Add Hep 2
EEHS 'hE = BHE)» = e BERAD B

« |
@I [condition<20}{condition+=2;i++}
ﬁl —— Equivalent C-Code
= dog
Ej ; | do_outputfij=condition;

/ dition+=2;
@ {c!o_outpul[i]=c0ndition:}“-,_,L. r.-" :ﬁ "
m ba J while{condition=20);
© \ {do_output;)
2 Y
186% i
b
_lJ

Ready

Fig. 14.3

You will next execute this model from Simulink in the same way that you pre-
viously ran Simulink models. For example, you can simply click on the Start
Simulation symbol i+ at the center of the Simulink toolbar. When you run the

B

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

372 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

Simulink model sf_while, you will note that the active state flow paths will show
a widened font, whereas the inactive state flow paths will show the standard line
width. This is demonstrated in Figs 14.4 and 14.5. Figure 14.4 shows the initial
entry into the While Stateflow chart, before it does the conditional test.

-} Stateflow (chart) sf_while/While

Ee Vlew Simustion Took Hep .
SES ‘B 3/ BE 0 Gea BRAD W

Equivalent C-Code:
[condition < 20]
_ {while_outputfi] =condition;i++; while{condition < 20)
s~ condifion+=2;} {

while_output{i] = condition;
) i+

/ condition+=2;
N S
M /

9 > 1
", {output=while_output;}

SCEEEERE

&
£

4

Feady (CED)

Fig. 14.4

The second Stateflow chart (Fig. 14.5) shows the While conditional test being
invoked.

-) Stateflow (chart) sf_while/While
Fle View Simulation Tooks Heip =
FEHS J A =1 HE» 1 » woa BN R
=]
® i Equivalent C-Code:
— [condition < 20]
%E’ {while_output{i] =condition;i++; while(condition < 20)
e e —_
= 5 SGORKonRT=2 4 while_outputfi] = condition;
B 4
[condition+=2;
i/ ’
, {output=while_outpLit}
e
hd
]
[K|
Feady (ICED)

Fig. 14.5

B
The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO STATEFLOW" 373

The case where the output=while_output is shown in Fig. 14.6.

-} Stateflow (chart) sf_while/While
Ble ©1 View Smuation Took Hep =
FEHS J A =1 HE» 1 » wou BN R
® =
@ Equivalent C-Code:
— [condition < 20]
%‘: {while_output{i] =condition;i++; }Vhﬂe{mﬂdmoﬂ <20)
— it ="
s B \Sonditdii=Z b while_output]i] = condition:
B 4
[condition+=2;
i ’
2 {output=while_output;}
e
hd
]
[£
Feady (ICED)

Fig. 14.6

Similarly, the case where do_output is invoked is shown in Fig. 14.7.

-} Stateflow (chart) sf_while/Do While

He Cot View Simulation Took Help in
FHS ' 3 BHE» » » uou BEAO R
® B
6 [condition<20}{condition+=2ii++:}
— Equivalent C-Code
=] | “
E do_output[i]=condition;
E {do_outputfi]=condition;} If fff:dﬁm*:z.
} while(condition<20);
1) 2
{do_output;}
=
b
——— — —— e ——— —_ 7]
1 |
Ready

Fig. 14.7

Note that the simulation’s end time is set to only 1 second for this demon-
stration. To provide sufficient time to fully observe this model executing, let us
reset the simulation run time to end at 100 seconds by restarting the simulation

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

374 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

from the MATLAB Command Window. This is accomplished using the follow-
ing command:

> sim('sf_while',100);
If you open the Scope, you will see the time offset advance to 100 seconds in

the lower left-hand corner of the Scope plot window. In Fig. 14.8, the simulation
has almost finished executing and displays an execution time of 96 seconds.

SBE|ILLL HARBRE T A &

0
Time offset: 96

Fig. 14.8

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO STATEFLOW® 375

The simulation will stop before executing at a time of 100 seconds, and so the
plot window will appear cleared of the vector of values at the completion of the
simulation run. This result is shown in Fig. 14.9.

CENEEE Y EHEE

0
Time offset: 100

Fig. 14.9

To save this model within your MATLAB working directory, simply invoke
the save_system command from the MATLAB Command Window as follows:

> save_system('sf_while');

To close this model, simply invoke the close_system command from the
MATLAB Command Window as follows:

> close_system('sf_while');

B
The Workls From i Aempas Laodirdip. Purchased from American Institute of Aeronautics and Astronautics

376 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

14.3 Constructing a Simple Stateflow® Model

A Stateflow model is a version of a finite state machine for controlling a phys-
ical plant. A finite state machine is a representation of an event-driven system. In
an event-driven system, the system responds by making a transition from one
state to another state in response to an event. This occurs when the condition
defining the change is set to true from false.

A Stateflow diagram is a graphical representation of such a finite state
machine, where states and transitions form the basic building blocks of the
system. You can also represent signal flows as stateless diagrams using Stateflow
software. Stateflow software provides you with the elements and construction
tools that you need to include states and transitions within a Simulink model.
Starting with Stateflow Version 14 Service Pack 3, you are also provided with
a Truth Table block.

Stateflow charts are often used to control a physical plant in response to events
such as a temperature or pressure change. The physical plant can also be con-
trolled based on user-driven events. For example, you can use a state machine
to represent the gear selection process in a car’s automatic transmission. The
transmission has a number of operating states: park, reverse, neutral, drive, and
low. As the driver shifts from one position to another, the system makes a tran-
sition from one state to another. Examples of such user-driven events are shifting
from park to reverse, from reverse to drive, from drive to neutral, etc.

The first step in generating a Stateflow model is to invoke the Stateflow program,
which opens the Stateflow library window. This is accomplished by typing

> stateflow

from within the MATLAB Command Window.
The Stateflow block library sflib appears as in Fig. 14.10.

File Edit View Simulation Format Tools Help
D EH&| $tEBR|([ED 4|22 »

Examples
% Sl v

(Double click to open the
Chart Truth Table Stateflow Examples Librany)

W

F1100% ode45 4

Fig. 14.10

B
The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO STATEFLOW" 377

A Stateflow diagram is created using the block on the left-hand side of sflib. A
Truth Table generator is provided in the center of this window. Stateflow
examples are included within the library block on the right-hand side of this
window.

To start, let us create a new Simulink model and drag a copy of the Stateflow
Chart block into this model’s window. This can be done from sflib by going to
File, New, Model as in Fig. 14.11.

H sflib

#CM Edit View Simulation Format Tools Help

odel Cut+

Open... Ctrl+0 | Library 1
Close Crl+w
Examples
Save Ctrl+S
Double click to open the
Save As... tatefloww Examples Librany)

Source Control LN !Fode45 AI

Model Properties

Preferences...

Print... Ctrl+P
Print Details...
Print Setup...

Exit MATLAB Ctrl+Q

Fig. 14.11

B
The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

378 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

An untitled Simulink model window appears as in Fig. 14.12.

ﬁ untitled E|@|[Z|

File Edit Vew Simulaion Format Tools Help
DEEH& *2RB|&= 422> =00 [Nomal v'l 8
Readly 100% | [odeds 4
Fig. 14.12

Next drag a copy of the Stateflow block Chart onto the untitled model
window as shown in Fig. 14.13. Note the asterisk * after untitled in the Title
bar, denoting an unsaved Simulink model.

[—'-TT untitled * E|@[z|

Fle Edit View Simulaton Format Tools Help
DSE& 2R e 42 b =00 [Noma v &E

Chart

Ready 100% | [odeds 7

Fig. 14.13

B
The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO STATEFLOW" 379

Next double-click on the Stateflow block Chart within the untitled Simulink
model to invoke a Stateflow diagram editor window. The Stateflow editor then
appears as in Fig. 14.14.

) Stateflow (chart) untitled/Chart *

=+ sHE 'aEa BE)>» = @l BRAO B
|
100%
V|
=)
I 4
Ready

Fig. 14.14

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

380 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

Next we will construct a simple on-off switch using Stateflow software and
will use a simple Manual Switch from Simulink to manually toggle the states.
The on-off switch will look like that in Fig. 14.15. The Simulink diagram
driving this switch is also shown.

On

™~ Off
‘\&“H
1
Constant_|—p—q\
| Manual Switch
-1
Constantt
Y
4 it N
\. /
Controller

Fig. 14.15

B
The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO STATEFLOW® 381

First we need to insert two states into our model. One will represent the switch
being on; the other will represent the switch being off. States are accessed using
the upper blue State tool icon & in the drawing toolbar or object palette on the
left side of the Stateflow model window. The object palette contains a set of tools
for drawing states, a history junction, a default transition, a connective junc-
tion, a truth table, a function, an embedded MATLAB function, and a box

(see Fig. 14.16).
-) Stateflow (chart) untitled/Chart * EIE|EJ

Fie Edt View Simulation Tools Add Hep =

EHS thE =3 S » e
state ———4 (&) =
History Junction —19'
Default Transition —lél
Connective Junction —1:’&
Truth Table E’
Function —l@l
Embedded MATLAB Function ——— @I
Box —1- B
Zoom ——1 -

T4
e

Fig. 14.16

B
The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

382 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

Next the state transitions need to be added. Transitions originate with a source
state and terminate at a destination state. Evoking a transition means that the
source state has become inactive and the destination state has become active.
In our switch model, the On state becomes active by moving through the tran-
sition from the Off state to the On state. Once on, the switch goes to off by
moving through an On to Off transition. In our case, we will start our model
with the switch in the Off state. This is accomplished by using a default
transition (see Fig. 14.17).

<) Stateflow (chart) untitled/Chart * E|@gl
k]

File Edit View Simulaon Tooks Add Hep
SEES 'R =+ HE» I = EHSE BRAO B

=

7o’ |e @

g
#

4

State

Fig. 14.17

B
The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO STATEFLOW" 383

Now that we have moved a State into the Stateflow Chart, we need to label
this State. We will make this State our On state and will label it accordingly.
Note that the State block changes to a pink color while it is being edited. It
reverts to black after it is properly labeled. Later you will see that when the simu-
lation is being executed, the active State block is shown in bold blue. These
default colors can be modified as desired by the user (see Fig. 14.18).

-} Stateflow (chart) untitled/Chart *
File Edit ¥iew Simulation Tools Add Help ~
SEHE ‘BB =4 2>« Bl BRAO B

Fig. 14.18

B
The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

384 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

The same procedure is used to create the Off state in our model. Again, while
the State is being modified, it is shown in pink. Note that the previously created
On state is shown in black. As the Simulink model untitled has not yet been
saved, the Title bar shows an asterisk * after the name untitled/Chart given
as a default to this Stateflow model (see Fig. 14.19).

-} Stateflow (chart) untitled/Chart *

Fle Edt View Simulation Tools Add Help —
SHE YRR =3 28> 0 He@l BRAO B

®

g EE @[|e

8
3

4

Off

Fig. 14.19

B
The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO STATEFLOW® 385

Next we will draw our first state transition, from the Off state to the On state.
The Off state and the state transition are both shown in pink because they are in
the process of being modified. The state transition is simply drawn by clicking
on the starting State and holding down the left mouse button until the border of
the concluding State is reached. To start the SMART mode, just hold down the s
key while dragging the state transition (see Fig. 14.20).

=) Stateflow (chart) untitled/Chart * _
Eile Edit View Simulation Tools Add Help ¥
EEE LA 93 2C s el BRAO B

®

SlES]E R Y

8
e

<

Off

2 fid|

Press the 's' key once while dragging to tocale the SMART mode

Fig. 14.20

B
The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

386 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

Our next task is to draw the state transition from the On state to the Off state.
The On state and the state transition are now both shown in pink, again because
they are in the process of being modified (see Fig. 14.21).

J Stateflow (chart) untitled/Chart * r;l@|g|
Ble Edit ‘iew Simulation Tools Add Help ¥
SHS {2E 23 2F > Bl BRMAO B
|
8| [on
&
#
B
@l
B
= \\
© \
100% :
V|
\\
S Off
s
\\a______
-l
d| a
Press the 's' key once while dragaing to togale the SMART mode

Fig. 14.21

B
The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO STATEFLOW® 387

Our final transition is the default transition. We will set the State Off to be
the default state. Select the default transition (third item from the top in the
object palette) and drag it to the top of the Off state block. As it is being modi-
fied, it will change from blue (Fig. 14.22) to pink (Fig. 14.23). To complete the
default transition, we will need to connect it with the higher-level Simulink
diagram untitled.

<) Stateflow (chart) untitled/Chart *

Eile Edit ‘jew Simulation Tools Add Help »
SEHES I RE 9 ¢ 2F) 1 HeE BRAO B
=|
e B,
£|:: N,
Il. %
'.\ %
AY \
\\..
\
i %
=l
d! '
Defaﬁi}ransition

Fig. 14.22

B
The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

388 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

) Stateflow (chart) untitled/Chart * r-_‘@‘ﬁi

Gile Edit View Simulation Toolks Add Help
SHE shE =1 28> 1 = | {Heill BRHAO B

=

@

ECRAED
/

= I
0] [z
=

8
*

4

Ready

Fig. 14.23

When released, and thus attached to the State Off, the default transition will
continue to be shown in pink. In addition, a question mark will be displayed next
to the default transition. This is to show that the default transition has not
yet been properly connected to the trigger in the Simulink diagram untitled
(see Fig. 14.24).

B
The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO STATEFLOW" 389

J Stateflow (chart) untitled/Chart * E‘@|®

Ble Edit View Simulation Took Add Help
EHE t2E =223 28> 1 = HEeE BERAO B

5 BB i o’ e

5] \
\\ A
i) \ \
\\\ \\
e
R“‘“x‘
(|]

- |

Fig. 14.24

We will next use a simple manual switch from Simulink to manually toggle the
states. Locate the Chart block in the lower right corner of the untitled diagram to
make room for the Manual Switch. This action is shown in Fig. 14.25.

&
The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

390 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

[untitied * LIEX

Fle Edit View Simuaton Format Tools Help
DEE® SRR ¢ 2| r =00 o -] BEHBESE BE
%
Chart
Ready 100% odeds
Fig. 14.25

Enlarge the Chart block to make room for the Trigger symbol as shown in the
diagram at the start of this section (see Fig. 14.26).

=] untitled *

Fle Edit Mew Simulaton Format Tools Help

DEES BR(Es 72 nfil0 [Nomal ~| BHE S BRE
Chart

Ready 100% oded5

Fig. 14.26

GAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO STATEFLOW"

391

Next name the Chart block Controller as in Fig. 14.27.

] untitled *

Fle Edt View Simulation Format Tools Help

DBE& =8 == 0 == » 5[0 [Noma v| BEBRS RE
__Convlro!ltt

Ready 100% odeds y

Fig. 14.27

Two Constant blocks need to be added to the untitled window. Select a
Constant from the Simulink Library Browser as shown in Fig. 14.28.

[simulink Library Browser
Fe Edt Vew Heb

D=l

Constant: Output th

= W Sk
B Commanty Used Blocks
2 Confinuous
2 Decontrumes
2 Discrete
2 Logc a7 Bit Operators
& Lockup Tabks
2 Math Operations
5] Mode Verfication
& Ports B Subsystems
%] Signdl Atbutes
4 Signal Aioung
& Srks
] Sources
& User-Defined Functions
& Additona Math & Decret
+ W Aerospace Blockset
+ Wi Communicaons Blockset
N Control System Tockeo:
<]

[Reacy

paramater. ¥ 'Constant valug' s 8 vector and Teerprat vecior
parameters as 1-0) is on, teetthe constantvalue as & 1-D amey.
Otharwise. oulput & makicwith the same dimensions &5 e congtan

e 'C -

Band-Limed -
White MNaise

==

Chirp Signal

Clack

Courter
Froe-Funning

ElE|Rke

Countar Limaed
[Joigmiciee
]
[Comie] Fromworkspace

&

Pl r =00 [ome v BmBe o BE

DFES s -~

[}

Constant

1

Cantrsliar

Fig. 14.28

B

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

392 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

The two Constant blocks are next shown after being located in the upper left
corner of the untitled diagram. As the first Constant block was left with the
default name, Simulink automatically renames the second block to be Constant1
(see Fig. 14.29).

5] untitled *

Fle Edit View Simulation Format Tools Help
D SE& $RB|== ¢ 22 2> =00 [Noma ~| SHEBES - | BE

Constant

Constantl

@

Controller

Ready [100% lode45

Fig. 14.29

The final Simulink block required is a Manual Switch. Locate a Manual
Switch under the Signal Routing Simulink Library and drag a copy into the
untitled model as shown in Fig. 14.30.

[} simutink Library Browser
Fe EdU View Hep

DFw=m

Manual Switch: Outputtagglas beswean o inputs by doublecicking | IR 1
onthe block. -

DEES LB ~= + 2 sfill [hema ~| BRBEE RE

= N Simuirk -~ Erennmant -
& Commenty Lsed Blocks wrw | Contralles
;_ ;rp:mmm @ Fow o
5 Decrete
& Logc and Bit Operabons
2 Lockup Tabkes:
& Msth Operatione
B Model Verfcation
& Model-Wids Leites
& Portz & Subsystems
& Sgnal Attrbutes
&4 Signal Routng
&) Sris
& Sources

‘Y.

Manesl Setch

Canstantt

5 Liser-Defined Functons
3 Adduond Math B Decret
+ Wl Aerospace Blockset
« W Commuricanons Blockset

T Control System Toobox
+ W Embedded Target for Infine
< »
Reacy

Iw ico ot
-

Fig. 14.30

B
The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO STATEFLOW" 393

Next start the process of connecting the Simulink blocks (see Fig. 14.31).

=] untitled * E”§”2|

Fle Edit View Simulaton Format Tools Help
DBE& ‘=B =53 22 sfill [Noma] BEHBS - BE
o
Manual Switch
Constantl
7 e
.)
Cantroller
Ready 100% ' odeds A

Fig. 14.31

B

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

394

BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

The two Constant blocks are connected to the two sides of the Manual
Switch as we have done previously. The first connection method involves
holding down the Ctrl key while first clicking on the originating block and
then clicking on the completing box. The second method requires that the first
block be selected by clicking on the first block; then the path is completed by
dragging the signal path to the desired input location (see Fig. 14.32).

1 untitled *
Fle Edit View Simulation Format Tocls Help
D& R E=> 1 |2 &)‘:lllﬂ MNomal » | EHE B E - RE

Constant .

o
Manual Switch
Constantl
Controller

Ready 100% odeds

Fig. 14.32

B
The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO STATEFLOW" 395

Next we need to go into the Controller block and add an input from Simulink
to set the State blocks based on the Manual Switch. To accomplish this, first
select the Add pull-down menu, then Event, then Input from Simulink. This
appears as in Fig. 14.33.

J Stateflow (chart) untitled/Controller *

W

T I RLYLIECEE]

%]

_ Target.. | OutputtoSimuink.. | M

Fil|e

(=1}
=1

8 = |E |E

8
#
i

4

Fig. 14.33

B
The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

396 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

The default trigger event is Rising. We wish to change this to Either, so that
any manual change to the switch setting will toggle the active state. This is
accomplished from the Trigger pull-down menu. Refer to Figs 14.34 and 14.35.

Name: | ERE ‘
Parent: (chart) untitled/Controller

Scupe:;rnlnputirom Simulink ~. F’Unzh v Trigger:‘_Rising V‘

Debugger breakpoints: [| Start of Broadcast [| End of Broadcast

Description:

Document Link:‘

I OK][Cancel ” Help] Apply

Fig. 14.34

B
The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO STATEFLOW" 397

Next select Either as the Trigger type.

Name: ‘
Parent: (chart) untitted/Controller

Scope: "Inpuﬁrom Simulink v Port:h v] Trigger: 'Rising

Debugger breakpoints: [| Stert of Broadcast [| E

Rising
Description: Falling

Function call
Document Link:

[ok [cancel |[Help | Apply

Fig. 14.35

B
The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

398 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

Select Apply and OK to complete this action (see Fig. 14.36).

E Event event @
|

MName: ‘event
Parent; (chart) untitted/Controller

SCnpe:[lnputfrom Simulink \:| Port:['T v Triggen[FEither v-‘

Debugger breakpoints: || Startof Broadcast [| End of Broadcast

Description:

Document Link: |

L OK i[Cancel][Help][Apply

Fig. 14.36

The Controller block will now contain a Trigger input as shown in the upper
center of Fig. 14.37.

] _ [
1
]]
Controller

Fig. 14.37

B
The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO STATEFLOW" 399

We will use a constant value of 1 into the Trigger to set the active state to On
and a value of —1 to set the active state to Off within the Controller. Therefore,
we next need to change Constantl from its default value of 1 to a value of —1.
This is accomplished by double-clicking on the Constant1 block or by selecting
this block and then using the right mouse button to bring up the menu and choose
Constant Parameters. . . from the resulting list. Finally, change the Constant
value from 1 to —1 and select OK (see Fig. 14.38).

E] Source Block Parameters: Constanti

Constant

Output the constant specified by the 'Constant value' parameter. If ‘Constant
wvalue' is a vector and 'Interpret vector parameters as 1-D' is on, treat the constant
value as a 1-D aray. Otherwise, output & matrix with the same dimensions as the

|7 untitled *

constant value.
DBSES $wE | |
Main | Signal data types
Constant value:
.-||
e > Interpret vector parameters as 1-D
Sample time:
Manual Switch
inf
Constanti
(oK][Cancel J[_Hep]
FA
Contraller &
[Ready 100% lodeds

Fig. 14.38

B
The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

400 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

We now need to connect the Manual Switch’s output to the Trigger on the
Controller block. This operation is accomplished as we have done previously
with Simulink only diagrams. Select the Manual Switch; then while still
holding down the left mouse button, drag the signal path to the Trigger input.
This operation appears as in Fig. 14.39.

51 untitled * D@|g|

Fle Edit View Simulaton Format Took Help

= = B &= a2 P = [100 [Nomel ~||HERDE - BE
ElJ—M::IWM

|
|
Constantt |
|

Controllar v

Ready 100% oded5

Fig. 14.39

When this operation is completed, the dashed line will turn into a solid line
and will end in an arrowhead. The trigger signal will now drive the states
within the Controller Chart.

B
The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO STATEFLOW" 401

As we have nearly completed this diagram, we should save it within our work
folder. Either click on the disk icon, or go to the File, Save As option from the

pull-down menu (see Fig. 14.40).

?

21X

Save As

LI « B oy BB

Sawve in: |_onrk

Smyfes
sty

Dslprj
chap1dmd1
®pops

sl | Bsreontrolt
e

DS el - HE d
File name: [MySwitch
El—‘ Save as type: ISimuImk Models (*mdl) :I Cancel
Constant e

Manual Switch

Constant!

-l
[

@

Controllar

100% 0deds

Ready

Fig. 14.40

Note that the simulation is still set to the default finish time of 10.0 seconds,
and the default continuous time ode45 integrator. Both of these simulation par-
ameters will need to be modified.

B
The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

402 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

First let us change the simulation end time to infinity (inf). The quickest
way to do this is to type inf in the end time window in the upper toolbar as in
Fig. 14.41.

=] MySwitch * I:I@IFZI

Ele Edit View Simulaton Format Tooks Help
DEed& R | 4|2k mint |Normnl 'I FEbE s BB
Constant | -
Manual Swatch
Constantl
A
£t
Controllar
Ready 100% odeds

Fig. 14.41

B
The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO STATEFLOW" 403

Now we need to select the variable-step discrete-time integration algorithm.
The type of integration algorithm to be used is selected from the Simulation,
Configuration Parameters. .. window. The shortcut to this window is
Ctrl+E. The following two figures show the process of generating this
window and then selecting the discrete (no continuous states) integration
algorithm. Note that the simulation end time can also be modified in the
Configuration Parameters window (see Fig. 14.42).

Fie Edt View BEIGNELSEM Format Tools Help
ODed& Start Cr+T T [Nomal 'Igm@ mEE
-~
Configuration Parameters.,, Cul+E
1
Constant | ¥ Normal
Accelerator
External
Constantt
r
it
Controller w
Show the active configuration parameters dislog | 100% oded5

Fig. 14.42

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

404

Select
Solver
Data Impor/Export
Optmization
= Diagnostics
Sample Time
Dot \mlichity
Type Comsersion
Connectniy
Compatibility
Model Referencing
Hasdwara Implemantstion
Model Referencng
= ReakTime Workshop
Camments
Symbals
Custom Code
Debug
Intertace

BASIC MATLAB®, SIMULINK®,

(| Configuration Parameters: MySwitch/Configuration

Swnulation ime

Stanttime: | {J

Sohwer options
Type:

Mex step size
Zero crossing control.| Use local settings

[] Automatically handle dats transters between tasks

Variabla-step
auto

AND STATEFLOW®

Stop time: inf

~ Sobvar | discrote (no connuous states) w

ode?d (Bogack-Shamping)
odel13 (Adams)

odelSs (ssNDF)

odedds (stMod. Rosenbrock)
ode?dt (Mod. stiff Trapezokdal)
ode23th (st TR-BOFZ)

ok [cancet J[Heip][appv |

Fig. 14.43

To confirm that the correct integration algorithm is now being used, look at
the lower right-hand corner of the MySwitch window (Fig. 14.43). It
now shows that the VariableStepDiscrete integration algorithm is being used

(Fig. 14.44).

=) MySwitch *

Fle Edt View Simulation Format Tools Hep
D EH& Blea g2 » =l [Nomal v|| HHBR S WBEE
~
Constant
Manual Switch
Constantl
h 4
n
Conbioller v
Ready 100% VariableStepDiscrete

Fig. 14.44

B
The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO STATEFLOW® 405

Because the previous operations are seen as modifications to the Simulink/
Stateflow model, you need to save the model to disk again. This can be accom-
plished either by selecting the disk symbol, by using Ctrl-S, or by using File,
Save. You can then check to see that the Stateflow diagram is receiving the
Trigger signal properly by double-clicking on the Controller block. The State-
flow diagram then appears as in Fig. 14.45. Note that all of the transition paths are
blue, denoting proper connection paths.

=) Stateflow (chart) MySwitch/Controller

File Edit Yiew Simulation Tools Add Help »
SEHE i@ e BE)>» 1« | HSE BRAO B

B8
/

) BE
~
B

=]

Qo
&
L.
—e

Fig. 14.45

B
The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

406 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

We next execute our combined Simulink/Stateflow model. This can be
accomplished using the triangular Start simulation icon from either the Simu-
link or Stateflow toolbar. Once execution starts, the time will increment within
the bottom right-hand corner of the Simulink diagram, as shown in Fig. 14.46.

=1 MySwitch
Ele Edt Wew Simulation Format Tools Help
D& B | Es 2282 0 . jinf Normal »| B 1 &5 W B

~

Constant » . L

" =
. Manual Switch
A

Constant!

@

Controller -

Running 100% (11| T=2,337e+(VariableStepDiscrete

Fig. 14.46

Note that the message Running is also displayed in the lower left corner of the
window.

B

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO STATEFLOW®

407

Now we will examine the behavior of the Stateflow model while it is execut-
ing. Double-click on the Manual Switch icon, as was done in Fig. 14.46. This
will change the value sent to the Controller via the Trigger from a value of 1
to a value of —1. This will set the active state to Off and thus will change this
state’s black outline into a bold blue outline. Off will also change from black

to blue (see Fig. 14.47).

) Stateflow (chart) MySwitch/Controller

-n

File ECE View Simulation Tools ~ Help

L OX

FEHS ' mE E=a>d BE» 10 |Gl BRA0 | R

ElEIEl Sl E)

2

g
#

4

Off

E

Ready (ICED)

Fig. 14.47

Again, double-click on the Manual Switch in the Simulink diagram. You will
see that the switch changes back to input the Constant value of 1 into the Trigger
contained within the Controller Stateflow chart. This is shown in the Simulink

figure (Fig. 14.48).

B
The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

408 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

1] MySwitch
File Edt Wew Simulation Format Tools Help
DS S e 20 omfnt [Nomal v S S| B

~

c%-

. =
. Manual Switch
-1

Constant!

@

Controller ~

RuUNNING 100% Wl T=1.622e+(VariableStepDiscrete

Fig. 14.48

Watching the Stateflow diagram MySwitch/Controller, you will briefly see
the transition from Off to On displayed in bold blue as the active state transitions
from Off to On. Once the On state is reached, it is then activated. This is shown
in Stateflow software by displaying the block’s outline in bold blue and the letters
On in blue. The result of this action is shown in Fig. 14.49. Note that the colors
used can be changed by the user as desired.

B

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO STATEFLOW" 409

) Stateflow (chart) MySwitch/Controller
It Miew Simulation Took A0
HE i@ =1 HE»I» sigi B3RN0 »

LTl

LOX

Help

On

b EEEER e ®

Lk
.

S off
\

|

Ready (ICED)

Fig. 14.49

This concludes our modeling of a switch within Stateflow software.

B
The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

410 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

14.4 Using a Stateflow® Truth Table

The other element in the Stateflow library is the Truth Table. We will next
construct a model using this element. If the Stateflow library is not open, type

> stateflow

from within the MATLAB Command Window. Then the Stateflow block library
sflib will appear as in Fig. 14.50.

File Edit Yew Simulaton Format Tools Help

O =EH&| fBR|Es 4%

Examplas
slu v
(Double clidkto open the
Chart Truth Table Stateflow Examples Librany)
F 100% _ , oded5 y
—

Fig. 14.50

B
The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO STATEFLOW" 411

The Truth Table generator is provided in the center of this window. To start,
create a new Simulink model and drag a copy of the Stateflow Truth Table block
into this model’s window. This can be done from sflib by going to File, New,
Model as shown in Fig. 14.51.

=8 Edit View Simulation Format Tools Help

)

Open... Ctrl+0 | Lbrary
Close Ctri+w
Examples
Save Ctri+S _
Save As... :tl:lt:; El::LZ:T_T::;)
Source Contro ’ 0deds >

Model Properties

Preferences...

Print... Cirl+P
Print Details., ..
Print Setup...

Exit MATLAB Crl+Q

Fig. 14.51

B
The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

412 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

An untitled Simulink model window appears as in Fig. 14.52.

F‘ untitled

File Edit View Simulaton Format Tools Help

DEEH& »2R | < 4|22y =]‘IU_IJ |N0rmal VIH

B
=

|ready 100% odeds

Fig. 14.52

B
The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO STATEFLOW" 413

Next drag a copy of the Stateflow block Truth Table into the untitled
model window as in Fig. 14.53. Note the asterisk * after untitled in the Title
bar, denoting an unsaved Simulink model.

File Edt View Simulaion Format Tools Help

DR dBR|EF 4| Q2| |1D.U |N0rrnal - || 35 &4
NGRS
Truth Table

Ready 100% ode45

Fig. 14.53

B
The Workls From i Aempas Laodirdip. Purchased from American Institute of Aeronautics and Astronautics

414 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

Next open the Simulink Library Browser from the MATLAB Command
Library. This can either be accomplished by typing simulink in the
MATLAB Command Window or by double-clicking on the Simulink icon in
the upper toolbar.

We will now construct a model similar to the one in the previous section. An
input value (u) of 1 will be used to set the Truth Table to a value of T (true). An
input value of —1 will be used to set the Truth Table to a value of F (false). The
output (y) will be set to 1 when the input is 1, and the output (y) will be set to 0
when the input is —1. We will use two Constant blocks and a Manual Switch to
create the two possible inputs values as was done in the previous section. These
details are omitted here. The resulting Simulink model appears as in Fig. 14.54.

E untitled *
File Edit View Simulation Format Tools Help
D& &L 2R = 4|22 |1U.El |N0rmal Vl EE Ml

Constant |)

Manual Switch

v {5 vp

Truth Table

Constant1

Ready 100% ode45

Fig. 14.54

B

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO STATEFLOW" 415

Save this model under the name MyTruth. This can be accomplished by

clicking on the Save (disk) icon or by using the File, Save As. .. pull-down
menu (see Fig. 14.55).

Save in: Id wiork

Camyfiles
(©Dsfprg
(Dslpri
chap14md1
MySwitch

File name: Iy T ruth

Save as type:]Simulink Models (*.mdl) L] Cancel |

Fig. 14.55

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

416 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

Next open the Configuration Parameters window using either the Simu-
lation pull-down menu or the Ctrl-E shortcut. Set the simulation Stop time to
inf, and select the discrete (no continuous states) equation Solver. When
these modifications are complete, Apply the changes and approve them using
OK. The Configuration Parameters will now appear as in Fig. 14.56.

il Configuration Parameters: MyTruth/Canfiguration

Select Sirmulation time)
Sabver Starttime:| 0.0 Stap time:| [
Diata Impor/Export
Optimization Solver opions
= Diagnostics
Type Vanable-ste ~ Sohver| discrete (no continuous states) ~
Sample Time i B (.)

o Mex stap size: auto discrate (no cantinuous s
Data Validity d
Type Conversion Zero crossing control. Use local settings = ode45 (Domand-Prince)
. ' : ode23 (Bogacki-Shamping)
Connectivity D Automatically handle data transfers between tasks ode113 (Adams)
Compatibility

odel5s (stiNDF)

ode23s (siffMod. Rosenbrock)
ode23t Mod. stiff Trapezoidal)
ode23tb (st TR-BOF2)

Model Referancing
Hardware Implementa.
Model Referencing

= Real-Time Warkshop

Comments

Symbols

Custom Code

Debug

Intertaca

I OF. “ Cancel “ Help Apply

Fig. 14.56

B

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

A sink is required to display the output from the Truth Table. Select a
Display block from the Simulink Sources library and drag a copy onto the
right-hand side of the Simulink model MyTruth. This model will now appear

INTRODUCTION TO STATEFLOW"

as in Fig. 14.57.

File Edit
D2E&

Yiew Simulation

Format Tools Help

| » mfnf Normal « || 5F 4

Constant .

»u B v]
Manual Switch Display
Truth Table
Constant1
Ready 100% VariableStepDiscrete

Fig. 14.57

B
The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

418 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

The Truth Table needs to be completed next. Opening the Truth Table
provides the user with the example shown in Fig. 14.58.

J Block: sflib/Truth Table
Fle Edit Settings Add Help
8 *:hE oo 3 a0

Condition Table
Description Condition D1 D2 D3

Exanple condition 1 ux=10

Exanple condition 2 u~2«<=1]1

Actions: Specify a row
from the Action Table 1 1 2

lAction Table
Description Action
Exanple action 1 ¥ = w

called from D1 ¢ D2
colunn in condition
rahle

Example action 2 y=1/u
called from D3 column
in condition table

Fig. 14.58

B
The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO STATEFLOW® 419

To provide the equivalent Truth Table to the model from the previous
section, we will modify it as follows. We only have one Condition u > 0.
When u > 0, Decision 1 (D1) is set to true (T). When u > 0 is false, Decision
2 (D2) is set to false (F). As Condition number 2 is not needed, simply click
on the 2 box and hit the Delete key to remove it. Next, because Decision 3 is
not needed, simply click on the D3 box and hit the Delete key to remove it.

We will make one of two decisions depending on the truth of the Condition. If
the Condition is true (T), then D1 will specify Action #1 from the Action Table.
In this case, y = u, and the output (y) will be set to 1, denoting that the switch is
on. If the Condition is false (F), then D2 will specify Action #2 from the Action
Table. In this case, y = 0, and the output will be set to 0, denoting that the switch
is off. This is shown in Fig. 14.59.

+} Block: MyTruth/Truth Table g@@

File Edit Settings Add Help
B8 "isH -~ H BB+
ndition Table
Description | Condition [D1 | D2]
|switch on u>=0

1 TNl ¥

Actions: Specify a row
from the Action Table 1 2

Action Table

Descrption Action

hcl:ion 1 called from ¥y = u;
D1 column in condition
table,

liction 2 called from v = 0;
2 D2 column in condition
table.

Fig. 14.59

B
The Workls From i Aempas Laodirdip. Purchased from American Institute of Aeronautics and Astronautics

420 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

Note that if additional conditions are needed, the Append Row icon “: can be
clicked, or the Edit, Append Row pull-down menu can be used. Similarly, if
additional decisions are needed, the Append Column icon % can be clicked,
or the Edit, Append Column pull-down menu can be used.

Our combined Simulink/Stateflow model using a Truth Table is shown
in Fig. 14.60. This model is executed using the Start Simulation icon; the
Simulation, Start pull-down menu; or the Ctrl+T shortcut. The
Display shows a 0, because the Manual Switch is set to the off position,
which is equivalent to selecting as an input a constant value of —1.

ﬁMyTruth
Fle Edt Vew Simulation Format Tools Help
h=2Ed& 2 | = 1 |Z26=[0 m |inf Normal || G2 i [

Manual Switch Display
Truth Table

Constantt

Paused 100% (11] T=5.626e+(VariableStepDiscrete

Fig. 14.60

Now double-click on the Manual Switch. This will change the position of the
switch, so that the input value is changed to a constant value of 1. This will set
the switch to the on position, denoted by an output value of 1. This value is
shown in Display in Fig. 14.61.

B
The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO STATEFLOW" 421

) MyTruth Q@‘B|

File Edt ¥iew Simulaton Format Tools Help

D=E& R e 42 n wfof [Nomal +] F

[] L] =
Manual Switch Display
Truth Table

Constantt

RUNMING 100% T=9.324e+(VariableStepDiscrete

Fig. 14.61

This concludes this example of Stateflow Truth Tables.

14.5 Conclusion

This chapter concludes our discussion of Stateflow software and our tutorials
on MATLAB, Simulink, and Stateflow products. You are now ready to further
explore the capabilities of these powerful tools on your own!

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

422 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

Practice Exercises

14.1 The following exercises are provided to give the reader experience in
building and executing a combined Simulink/Stateflow model. You will use
the Stateflow Chart block to include a Stateflow diagram within a Simulink
model. The model must be constructed to accomplish the equivalent to the
following MATLAB statement:

if cond <= 36
output = cond”"2;

elseif cond > 36 & cond <= 216
output = cond”"3;

else
output = cond;

end

Use Fig. 14.62 to assist you in constructing your Simulink diagram, which will
include a Stateflow Chart block.

v

condition ﬁ outpL]

h 4

Ramp

Scope

Fig. 14.62

The Stateflow block Chart will be constructed to accomplish the equivalent to
the previously provided MATLAB statement as in Fig. 14.63.

This model is constructed using the elements on the left-hand side of the State-
flow window. After constructing this model, simulate it using a Ramp as a
Source to verify that the Chart is functioning as in the MATLAB statement.

B
The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

INTRODUCTION TO STATEFLOW" 423

[cond<==36] {output=cond"2;}

.
.. \, _d_,f_ﬂ_——_'_—a__ =
N / B
e
"._ S ‘.\\
et [cond>36 &8 cond<=216] N
\ . {output=cond"3)} N
TR A
“'Il i S 9 \\
\ S
\ \‘x\
\\ \“"‘x\ \
\\ K‘x \\
\ e
N s .LJI
{output=cond} 5 \(_* ~
\,\Hx ’/ _ \x.
F== " ~

Fig. 14.63

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

Notes

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

Appendix A
History of MATLAB® and The MathWorks, Inc.

The history of MATLAB® starts with the development of two libraries of
FORTRAN mathematical subroutines in the mid-1970s under a grant from the
National Science Foundation. These two libraries were called LINPACK and
EISPACK. LINPACK was a software library for performing numerical linear
algebra. LINPACK made use of the BLAS (Basic Linear Algebra Subprograms)
libraries for performing basic vector and matrix operations. EISPACK was a soft-
ware library for solving eigenvalue problems and conducting related analyses.
LINPACK was written by Jack Dongarra, Jim Bunch, Cleve Moler, and Pete
Stewart. EISPACK was developed by several authors located primarily at
Argonne National Laboratory, a group that included Dongarra and Moler. The
two libraries have been superseded by LAPACK, whose routines run more effi-
ciently on present-day computer architectures.

Short for “MATrix LABoratory,” MATLAB was developed in the late 1970s
by Cleve Moler. The software has been identified by the name MATLAB since
March 1979. Moler was then chairman of the computer science department at the
University of New Mexico. Moler taught mathematics and computer science for
almost 20 years at the University of New Mexico. He also worked at the Univer-
sity of Michigan and spent sabbatical leaves at Stanford University. The software
was a personal project to provide his students with access to LINPACK and
EISPACK in his linear algebra courses without having to program in
FORTRAN and to take advantage of recently developed interactive computer
system capabilities.

MATLAB soon spread to other universities and found a strong audience
within the applied mathematics community. Moler would provide copies for
use at other universities and institutions, either after giving a talk at that location
or upon request. All he would request was $75 to reimburse his cost for the two
nine-track tapes and the shipping costs.

Others saw the commercial potential of MATLAB and offered upgraded ver-
sions of the product. Two of these products, which were available before The
MathWorks was founded, were Matrix-X and Ctrl-C. Matrix-X initially was
available only for mainframe computers such as IBM and DEC systems. It
added graphics and control system design capabilities to MATLAB’s analysis
capabilities. It was made available on UNIX workstations, such as those by
Apollo, in the mid-1980s. Ctrl-C was a similar, competitive program based on
MATLAB available on DEC computer systems such as the VAX-780 series of

425

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

426 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

computers. Jack Little was involved in the development of the Ctrl-C product.
The final competitor to MATLAB at the time, Easy-5, was not based on
MATLAB but on dynamics software developed by Boeing.

In early 1980, when Moler visited Stanford University, Little was first exposed
to MATLAB. Little, an engineer, recognized the potential application of
MATLAB to engineering applications on the relatively recently developed per-
sonal computers (PCs). In 1983, Little, Moler, and Steve Bangert worked to
develop a second-generation, professional version of MATLAB with graphics
capabilities. Little was also involved in the development of the Signal Processing
Toolbox. The MathWorks, Inc., was founded in 1984 to market and continue
development of MATLAB. The headquarters is now located in Natick,
Massachusetts.

Later, Matrix-X was rewritten in C, and its syntax was changed from that used
in MATLAB. Until then, MATLAB commands and programs worked with few
exceptions in Matrix-X and Ctrl-C. Little worked with Moler and Bangert to
rewrite MATLAB into C in the mid-1980s. These rewritten libraries were then
known as the Control System Toolbox. Little’s specialty was as a control
design engineer. This was the first MATLAB toolbox offered by The
MathWorks.

There are now two basic versions of MATLAB: the professional version and
the student edition. For a while the student edition was distributed by Prentice-
Hall; now both are again distributed by The MathWorks, Inc.

Later in the 1980s, graphical modeling environments were developed for these
mathematical software tools. Grumman Aircraft developed Protoblock, a graphi-
cal system for the nonlinear modeling and simulation of dynamic systems in
MATLAB. This system was available as a third-party product for MATLAB
until Northrop acquired Grumman and the product line was dropped. Another
third-party graphical interface was briefly available for MATLAB on IBM PCs
in the late 1980s. Integrated Systems, Inc., which marketed and supported
Matrix-X, developed the System Build graphical system for its product. That
system was mostly offered on UNIX workstations but was ported to other com-
puter systems. Boeing developed a graphical modeling system for Easy-5. ACSL,
a nonlinear simulation based on the older IBM CSMP simulation environment,
was offered with the EASE graphical system.

Simulink® is the graphical system for the nonlinear modeling and simulation
of dynamic systems within the MATLAB environment. Originally, it was called
SIMULAB, but the name was already copyrighted. Simulink reached the market
in 1990. The principal authors were Joseph Hicklin, who wrote the user interface,
and Andrew Grace, who wrote the numerical routines. Simulink is a graphical,
mouse-driven program that allows systems to be modeled by drawing a block
diagram on the screen. It can handle linear, nonlinear, continuous-time, discrete-
time, multivariable, and multirate systems. It was designed to take full advantage
of windowing technology, including pull-down menus and mouse interactions.

Object or state modeling environments started to be seen in the mid-1990s.
Object-time was an early such environment. Stateflow® software was first a sep-
arate environment from Simulink. Stateflow and Simulink models could not be
used together in the first release of Stateflow software. The second version of
Stateflow software integrated these products.

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

APPENDIX A: HISTORY OF MATLAB® AND THE MATHWORKS 427

The MathWorks, Inc., is still run by Little, who is the company’s president and
CEO. Moler is the company’s chairman and chief scientist. The MathWorks is a
privately held company. The over 1,300 employees of The MathWorks refer to
themselves as MathWorkers. The company develops and markets an extensive
family of add-on products to meet the specific needs of the scientific, engineering,
and financial communities. Over one million people and 3,500 universities use
MATLAB and its related products in over 100 countries. The MathWorks has
been profitable every year since its inception.

The list of MATLAB, Simulink, and Stateflow releases follows:

MATLAB—The University of New Mexico
MATLAB 1.3

MATLAB 2.0

MATLAB 2.4

MATLAB 3.0

MATLAB 3.5

MATLAB 4.0

MATLAB 4.1

MATLAB 4.2

MATLAB 5.0 (R8)
MATLAB 5.1 (R9)
MATLAB 5.2 (R10)
MATLAB 5.3 (R11)
MATLAB 5.3.1 (R11.1)
MATLAB 6.0 (R12)
MATLAB 6.1 (R12.1)
MATLAB 6.5 (R13)
MATLAB 6.5.1 (R13SP1)
MATLAB 6.5.2 (R13SP2)
MATLAB 7.0 (R14)
MATLAB 7.0.1 (R14SP1)
MATLAB 7.0.4 (R14SP2)
MATLAB 7.1 (R14SP3)
MATLAB 7.2 (R2006a)
MATLAB 7.3 (R2006b)

SIMULINK—Development of the product
Simulink 1.1

Simulink 1.2
Simulink 1.3

Simulink 2.0 (R8)
Simulink 2.1 (R9)
Simulink 2.2 (R10)
Simulink 3.0 (R11)
Simulink 3.0.1 (R11.1)
Simulink 4.0 (R12)
Simulink 4.1 (R12.1)
Simulink 5.0 (R13)

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

428 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

Simulink 5.1 (R13SP1)
Simulink 5.2 (R13SP2)
Simulink 6.0 (R14)

Simulink 6.1 (R14SP1)
Simulink 6.2 (R14SP2)
Simulink 6.3 (R14SP3)
Simulink 6.4 (R2006a)
Simulink 6.5 (R2006b)

Stateflow 1.0 (R9)
Stateflow 1.0.6 (R10)
Stateflow 2.0 (R11)
Stateflow 2.0.1 (R11.1)
Stateflow 3.0.2 (R11.1+)
Stateflow 4.0 (R12)
Stateflow 4.1 (R12.1)
Stateflow 4.1 (R13)
Stateflow 5.1 (R13+)
Stateflow 5.1.1 (R13SP1)
Stateflow 5.1.2 (R13SP2)
Stateflow 6.0 (R14)
Stateflow 6.1 (R14SP1)
Stateflow 6.2 (R14SP2)
Stateflow 6.3 (R14SP3)
Stateflow 6.4 (R2006a)
Stateflow 6.5 (R2006b)

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

Appendix B
Tuning MATLAB®, Simulink®, and
Stateflow® Solvers

B.1 Improving Simulation Performance and Accuracy

Simulation performance and accuracy within MATLAB®, Simulink®, and
Stateflow® software can be affected by many things, including the model
design and choice of configuration parameters. The MATLAB, Simulink, and
Stateflow solvers handle most model simulations accurately and efficiently
using their default parameter values. However, some models yield better
results if you adjust the solver’s parameters. Also, providing information about
your model’s behavior to the solver can improve your simulation results.

B.1.1 Speeding Up Simulations

Slow simulation speed in MATLAB, Simulink, or Stateflow software can have
many causes. A few of these follow. First, your model includes a MATLAB Fcn
block. When a model includes a MATLAB Fen block, the MATLAB interpreter is
called ateach time step, drastically slowing down the simulation. To improve the
speed of your simulation, use a built-in MATLAB Fcn block or Math Function
block whenever possible. Your simulations can also be slowed if your model
includes an M-file S-Function. M-file S-Functions also cause the MATLAB
interpreter to be called at each time step. Consider either converting the S-Function
to a subsystem or to a C-MEX file S-Function. Another thing that can slow your
model is if it includes a Memory block. Using a Memory block causes the
variable-order solvers (odel5s and odel13) to be reset back to order 1 at each
time step.

Do not set the maximum step size to be too small. If you changed the
maximum step size, try running the simulation again with the default value
(auto). Do not ask for too much accuracy. The default relative tolerance (0.1%
accuracy) is usually sufficient. For models with states that go to zero, if the absol-
ute tolerance parameter is too small, the simulation can take too many steps
around the near-zero state values. See the discussion of error under Maximum
order in the Help window. If the time scale is too long, reduce the time interval.

Problems can arise if the system is stiff but you are using a nonstiff solver. Try
using odelSs. If the model uses sample times that are not multiples of each other,
the solver is forced to take small enough steps to ensure sample time hits for all

429

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

430 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

sample times. Your model can also be slowed if it contains an algebraic loop. The
solutions to algebraic loops are iteratively computed at every time step.
Therefore, they severely degrade performance. For more information, look up
Algebraic Loops under Help. Simulink models can be slowed down if a
Random Number block is fed into an Integrator block. For continuous
systems, use the Band-Limited White Noise block in the Sources library

B.1.2 Improving Simulation Accuracy

To check your simulation’s accuracy, run the simulation over a reasonable
time span. Then either reduce the relative tolerance to le-4 (the default is
le-3), or reduce the absolute tolerance, and then run your simulation again.
Next compare the results of both simulation runs. If the results are not signifi-
cantly different, you can feel confident that the solution has converged. If the
simulation misses significant behavior at its start, reduce the initial step size to
ensure that the simulation does not step over the missed significant behavior.

If the simulation results become unstable over time, your system might simply
be unstable! If you are using odelSs, you might need to restrict the maximum
order to two (the maximum order for which the solver is A-stable) or try using
the ode23s solver.

Multiple approaches can be tried if the simulation results do not appear to be
accurate. For a model that has states whose values approach zero, if the absolute
tolerance parameter is too large, the simulation can take too few steps around
areas of near-zero state values. Reduce the parameter value or adjust it for indi-
vidual states using the Integrator’s dialog box. If reducing the absolute toler-
ances does not sufficiently improve the accuracy, reduce the size of the
relative tolerance parameter to reduce the acceptable error and to force smaller
step sizes and more steps.

One of the most commonly used simulation commands is the sim function.
Note that it accepts linear plant models only. If your plant is a nonlinear Simulink
model, you could control it as demonstrated in Nonlinear Plants (see Help). The
full syntax of the command that runs the simulation is

[t,x,y] = sim(model, timespan, options, ut);

Only the model parameter is required in the previous command. Parameters
not supplied within the command are taken from the Configuration Parameters
dialog box settings.

For detailed syntax on the sim command, see the Help documentation for the
sim command. The options parameter is a structure that supplies additional
configuration parameters, including the solver name and error tolerances. You
can define the parameters in the options structure using the simset command.

B.1.3 Simulation Commands

The following are the available simulation commands: add_exec_event_
listener, model, sim, simplot, simset, simget, and slbuild.

To follow are some of the important factors in efficiently executing
simulations.

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

APPENDIX B: MATLAB®, SIMULINK®, AND STATEFLOW® 431

B.1.3.1 Absolute error tolerance
AbsTol default - positive scalar {le-6}

This scalar applies to all elements of the state vector. AbsTol applies only to the
variable-step solvers.

B.1.3.2 Relative error tolerance
RelTol default - positive scalar {le-3}

This property applies to all elements of the state vector. The estimated error in
each integration step satisfies

e(i) <=max(RelTol*abs(x(i)),AbsTol(i))

This property applies only to the variable-step solvers and defaults to 1e-3, which
corresponds to accuracy within 0.1%.

B.1.3.3 Tracing facilities. This property enables simulation tracing facili-
ties. You specify one or more as a comma-separated list. The minstep trace
flag specifies that the simulation stops when the solution changes so abruptly
that the variable-step solvers cannot take a step and satisfy the error tolerances.
By default, Simulink issues a warning message and continues the simulation.
The siminfo trace flag provides a short summary of the simulation parameters
in effect at the start of simulation. The compile trace flag displays the compilation
phases of a block diagram model.

B.1.3.4 ZeroCross. This command enables (default) or disables the
location of the zero crossings. This property applies only to the variable-step
solvers. If set to off, variable-step solvers do not detect zero crossings for
blocks having intrinsic zero-crossing detection. Then the solvers adjust their
step sizes only to satisfy the error tolerance.

B.1.3.5 Debug. The default for debug is off. Setting this to on starts the
simulation in debug mode (see Starting the Debugger in the on-line Simulink
Help documentation for more information). The value of this option can be a
cell array of commands to be sent to the debugger after it starts, e.g.,

opts = simset('debug’, ..
{'strace4',...
' diary solvertrace.txt', ...
'cont',...
'diary off', ...
'cont'})

sim(' vdp ' ,[], opts);

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

432 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

B.2 Selecting Solvers

When running the simulation, Simulink solves the dynamic system using one of
several solvers. You can specify several solver options using the Solver Options
panel in the Options dialog box. The type of solver can be variable step or fixed
step. Variable-step solvers keep the error within specified tolerances by adjusting
the step size the solver uses. Fixed-step solvers use a constant step size. When
your model’s states are likely to vary rapidly, a variable-step solver is often faster.

B.2.1 Variable-Step Solvers

When you select Variable-step as the solver type, you can choose any of the
solvers and integration techniques listed in Table B.1.

See the Simulink Help documentation for information on these solvers.

When you select Variable-step as the solver Type, you can also set several
other parameters that affect the step size of the simulation. These include first
the Maximum step size, the largest step size Simulink can use during a simu-
lation. The Minimum step size is the smallest step size Simulink can use
during a simulation. The Initial step size is the step size Simulink uses to
begin the simulation. The Relative tolerance is the largest allowable relative
error at any step in the simulation. The Absolute tolerance is the largest allow-
able absolute error at any step in the simulation. The Zero crossing control needs
to be set to on for the solver to compute exactly where the signal crosses the x
axis. This is useful when using functions that are nonsmooth and when the
output depends on when a signal crosses the x axis. An example of this would
be the use of absolute values.

By default, Simulink automatically chooses values for these options. To
choose your own values, enter them into the appropriate fields. For more infor-
mation on these options and the circumstances in which to use them, see the
Simulink Help documentation.

B.2.2 Fixed-Step Discrete Solvers

When the Type control of the Solver configuration pane is set to fixed step,
the configuration pane’s solver control allows you to choose one of the set of

Table B.1 Variable-step solvers

Solver Integration technique
Discrete No continuous states
ode45 Dormand-Prince
ode23 Bogacki-Shampine
odel13 Adams

odel5s Stiff/NDF

ode23s Stiff/mod. Rosenbrock
ode23t Mod. Stiff/trapezoidal

ode23tb Stiff/TR-BDF2

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

APPENDIX B: MATLAB®, SIMULINK®, AND STATEFLOW® 433

fixed-step solvers that Simulink provides. The set of fixed-step solvers comprises
two types of solvers: discrete and continuous.

B.2.2.1 Choosing a fixed-step discrete solver. The fixed-step discrete
solver computes the time of the next time step by adding a fixed step size to
the time of the current time. The accuracy and length of time of the resulting
simulation depends on the size of the steps taken by the simulation. The
smaller the step size is, the more accurate the results are, but the longer the simu-
lation takes. You can allow Simulink to choose the size of the step size (the
default), or you can choose the step size yourself. If you allow Simulink to
choose the step size, Simulink sets the step size to the fundamental sample
time of the model if the model has discrete states or to the result of dividing
the difference between the simulation’s start and stop time by 50 if the model
has no discrete states. This choice assures that the simulation will hit every simu-
lation time required to update the model’s discrete states at the model’s specified
sample times

B.2.2.2 Fixed-step discrete solver limitations. The fixed-step discrete
solver has a fundamental limitation. It cannot be used to simulate models that
have continuous states. That is because the fixed-step discrete solver relies on
a model’s blocks to compute the values of the states that they define. Blocks
that define discrete states compute the values of those states at each time step
taken by the solver. Blocks that define continuous states, on the other hand,
rely on the solver to compute the states. Continuous solvers perform this task.
You should thus select a continuous solver if your model contains continuous
states.

Note that if you attempt to use the fixed-step discrete solver to update or simu-
late a model that has continuous states, Simulink displays an error message. Thus,
updating or simulating a model is a quick way to determine whether it has
continuous states.

B.2.3 Fixed-Step Continuous Solvers

Simulink provides a set of fixed-step continuous solvers that, like the fixed-
step discrete solver, compute the simulation’s next time by adding a fixed-size
time step to the current time. In addition, the continuous solvers employ numeri-
cal integration to compute the values of a model’s continuous states at the current
step from the values at the previous step and the values of the state derivatives.
This allows the fixed-step continuous solvers to handle models that contain both
continuous and discrete states.

Note that, in theory, a fixed-step continuous solver can handle models that
contain no continuous states. However, that would impose an unnecessary com-
putational burden on the simulation. Consequently, Simulink always uses the
fixed-step discrete solver for a model that contains no states or only discrete
states, even if you specify a fixed-step continuous solver for the model.

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

434 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

Simulink provides two distinct types of fixed-step continuous solvers: explicit
and implicit solvers. Explicit solvers (see Explicit Fixed-Step Continuous Solvers
under Help) compute the value of a state at the next time step as an explicit func-
tion of the current value of the state and the state derivative, e.g.,

X(n + 1) = X(n) + h*DX(n)

where X is the state, DX is the state derivative, and h is the step size. An implicit
solver (see Implicit Fixed-Step Continuous Solvers under Help) computes the
state at the next time step as an implicit function of the state and the state deriva-
tive at the next time step, e.g.,

X+ 1) — X(n) —h*DX(n +1) =0

This type of solver requires more computation per step than an explicit solver but
is also more accurate for a given step size. This solver thus can be faster than
explicit fixed-step solvers for certain types of stiff systems.

B.2.3.1 Explicit fixed-step continuous solvers. Simulink provides a set of
explicit fixed-step continuous solvers. The solvers differ in the specific inte-
gration technique used to compute the model’s state derivatives. Table B.2
lists the available solvers and the integration techniques they use.

The integration techniques used by the fixed-step continuous solvers trade
accuracy for computational effort. Table B.2 the solvers in order of the compu-
tational complexity of the integration methods they use from the least complex
(odel) to the most complex (odeS).

As with the fixed-step discrete solver, the accuracy and length of time of a
simulation driven by a fixed-step continuous solver depend on the size of the
steps taken by the solver. The smaller the step size is, the more accurate
the results are, but the longer the simulation takes. For any given step size, the
more computationally complex the solver, the more accurate the simulation.

If you specify a fixed-step solver type for a model, Simulink sets the solver’s
model to ode3. Simulink chooses a solver capable of handling both continuous
and discrete states with moderate computational effort. As with the discrete
solver, Simulink by default sets the step size to the fundamental sample time
of the model if the model has discrete states or to the result of dividing

Table B.2 Fixed-step solvers

Solver Integration technique

Discrete No continuous states

odel Euler’s method

ode2 Heun’s method

ode3 Bogacki-Shampine formula

oded Fourth-order Runge-Kutta (RK4) formula

ode5 Dormand-Prince formula

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

APPENDIX B: MATLAB®, SIMULINK®, AND STATEFLOW® 435

the difference between the simulation’s start and stop time by 50 if the model has
no discrete states. This assures that the solver will take a step at every simulation
time required to update the model’s discrete states at the model’s specified
sample rates. However, it does not guarantee that the default solver will accu-
rately compute a model’s continuous states or that the model cannot be simulated
in less time with a less complex solver. Depending on the dynamics of your
model, you may need to choose another solver and/or sample time to achieve
acceptable accuracy or to shorten the simulation time.

B.2.3.2 Implicit fixed-step continuous solvers. Simulink provides one
solver in this category: odel4x. This solver uses a combination of Newton’s
method and extrapolation from the current value to compute the value of a
model state at the next time step. Simulink allows you to specify the number
of Newton’s method iterations and the extrapolation order that the solver uses
to compute the next value of a model state (see Fixed-Step Solver Options
under Help). The more iterations and the higher the extrapolation order that
you select, the greater the accuracy, but also the greater the computational
burden per step size.

B.2.3.3 Choosing a fixed-step continuous solver. Any of the fixed-step
continuous solvers in Simulink can simulate a model to any desired level of accu-
racy, given enough time and a small enough step size. Unfortunately, in general,
it is not possible, or at least not practical, to decide a priori which solver and step
size combination will yield acceptable results for a model’s continuous states in
the shortest time. Determining the best solver for a particular model thus gener-
ally requires experimentation.

Here is the most efficient way to choose the best fixed-step solver for your
model experimentally. First, use one of the variable-step solvers to simulate
your model to the level of accuracy that you desire. This will give you an idea
of what the simulation results should be. Next, use odel to simulate your
model at the default step size for your model. Compare the results of simulating
your model with odel with the results of simulating with the variable-step solver.
If the results are the same within the specified level of accuracy, you have found
the best fixed-step solver for your model, namely odel. That is because odel is
the simplest of the Simulink fixed-step solvers and hence yields the shorted simu-
lation time for the current step size.

If odel does not give accurate results, repeat the preceding steps with the other
fixed-step solvers until you find the one that gives accurate results with the least
computational effort. The most efficient way to do this is to use a binary search
technique. First try ode3. If it gives accurate results, try ode2. If ode2 gives accu-
rate results, it is the best solver for your model; otherwise, ode3 is the best. If
ode3 does not give accurate results, try odeS. If odeS gives accurate results,
try oded. If oded gives accurate results, select it as the solver for your model;
otherwise, select odeSs.

If odeS does not give accurate results, reduce the simulation step size and
repeat the preceding process. Continue in this way until you find a solver that
solves your model accurately with the least computational effort.

JAIAA.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

436 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

B.3 Non-Real-Time and Real-Time Simulations

The real-time program calculates the next values for the continuous states
based on the derivative vector, dx/dt, for the current values of the inputs and
the state vector. These derivatives are then used to calculate the next values
of the states using a state-update equation. This is the state-update equation for
the first-order Euler method (odel):

X = x + (dx/dt) h

where h is the step size of the simulation, x represents the state vector, and dx/dt
is the vector of derivatives. Other algorithms can make several calls to the output
and derivative routines to produce more accurate estimates.

Note, however, that real-time programs use a fixed step size because it is
necessary to guarantee the completion of all tasks within a given amount of
time. This means that, although you should use higher-order integration
methods for models with widely varying dynamics, the higher-order methods
require additional computation time. In turn, the additional computation time
might force you to use a larger step size, which can diminish the improvement
of accuracy initially sought from the higher-order integration method.

Generally, the stiffer the equations (that is, the more dynamics in the system
with widely varying time constants), the higher the order of the method that you
must use. In practice, the simulation of very stiff equations is impractical for real-
time purposes except at very low sample rates. You should test fixed-step-size
integration in Simulink to check stability and accuracy before implementing
the model for use in real-time programs.

For linear systems, it is more practical to convert the model that you are simu-
lating to a discrete time version. For instance, use the ¢2d function in the Control
System Toolbox.

GdAIAA

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

Appendix C

MATLAB", Simulink’, and Stateflow"
Quick Reference Guide

Here is a quick reference guide to frequently used MATLAB®, Simulink®,
and Stateflow commands.

Basic Information
disp

display

isempty

isequal
isequalwithequalnans
isfloat

isinteger

islogical

isnumeric

isscalar

issparse

isvector

length

ndims

Operators

Functions (Categorical List)

Display text or array

Overloaded method to display text
Determine if input is empty matrix
Test arrays for equality

or array

Test arrays for equality, treating NaNs as equal
Determine if input is floating-point array

Determine if input is integer array
Determine if input is logical array
Determine if input is numeric array
Determine if input is scalar
Determine if input is sparse matrix
Determine if input is vector

Length of vector

Number of dimensions

Addition

Unary plus

Subtraction

Unary minus

Matrix multiplication

Matrix power

Back slash or left matrix divide
Slash or right matrix divide
Transpose

Nonconjugated transpose

Array multiplication (element-wise)
Array power (element-wise)

Left array divide (element-wise)
Right array divide (element-wise)

437

GdAIAA

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

438 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

Operations and Manipulation

: (colon)

accumarray
blkdiag
cast

cat
cross
cumprod
cumsum
diag

dot

end

find

fliplr
flipud
flipdim
horzcat
ind2sub
ipermute
kron
max

min
permute
prod
repmat
reshape
rot90
sort
sortrows
sum
sqrtm
sub2ind
tril

triu
vertcat

Matrix Analysis
cond
condeig
det

norm
normest
null

orth

rank
rcond

rref
subspace
trace

Create vectors, array subscripting, and for loop
iterations

Construct an array with accumulation

Block diagonal concatenation

Cast variable to different data type

Concatenate arrays along specified dimension

Vector cross product

Cumulative product

Cumulative sum

Diagonal matrices and diagonals of matrix

Vector dot product

Indicate last index of array

Find indices of nonzero elements

Flip matrices left-right

Flip matrices up-down

Flip matrix along specified dimension

Concatenate arrays horizontally

Multiple subscripts from linear index

Inverse permute dimensions of multidimensional array

Kronecker tensor product

Maximum value of array

Minimum value of array

Rearrange dimensions of multidimensional array

Product of array elements

Replicate and tile array

Reshape array

Rotate matrix 90 deg

Sort array elements in ascending or descending order

Sort rows in ascending order

Sum of array elements

Matrix square root

Linear index from multiple subscripts

Lower triangular part of matrix

Upper triangular part of matrix

Concatenate arrays vertically

Condition number with respect to inversion
Condition number with respect to eigenvalues
Determinant

Matrix or vector norm

Estimate matrix 2-norm

Null space

Orthogonalization

Matrix rank

Matrix reciprocal condition number estimate
Reduced row echelon form

Angle between two subspaces

Sum of diagonal elements

GdAIAA

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

APPENDIX C: MATLAB®, SIMULINK®, AND STATEFLOW® 439

Linear Equations

\and / Linear equation solution

chol Cholesky factorization

cholinc Incomplete Cholesky factorization

cond Condition number with respect to inversion

condest 1-norm condition number estimate

funm Evaluate general matrix function

inv Matrix inverse

linsolve Solve linear systems of equations

Iscov Least-squares solution in presence of known
covariance

Isqnonneg Nonnegative least squares

lu LU matrix factorization

luinc Incomplete LU factorization

pinv Moore-Penrose pseudoinverse of matrix

qr Orthogonal-triangular decomposition

rcond Matrix reciprocal condition number estimate

Eigenvalues and Singular Values

balance Improve accuracy of computed eigenvalues

cdf2rdf Convert complex diagonal form to real block diagonal
form

condeig Condition number with respect to eigenvalues

eig Find eigenvalues and eigenvectors

eigs Find largest eigenvalues and eigenvectors of sparse
matrix

gsvd Generalized singular-value decomposition

hess Hessenberg form of matrix

ordeig Eigenvalues of quasi-triangular matrices

ordgz Reorder eigenvalues in QZ factorization

ordschur Reorder eigenvalues in Schur factorization

poly Polynomial with specified roots

polyeig Polynomial eigenvalue problem

qz QZ factorization for generalized eigenvalues

rsf2csf Convert real Schur form to complex Schur form

schur Schur decomposition

svd Singular-value decomposition

svds Singular values and vectors of sparse matrix

Matrix Logarithms and Exponentials

expm Matrix exponential

logm Matrix logarithm

sqrtm Matrix square root

Factorization

balance Diagonal scaling to improve eigenvalue accuracy

cdf2rdf Complex diagonal form to real block diagonal form

chol Cholesky factorization

cholinc Incomplete Cholesky factorization

cholupdate Rank 1 update to Cholesky factorization

lu LU matrix factorization

luinc Incomplete LU factorization

planerot Givens plane rotation

GAIAA

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

440 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

qr
grdelete
grinsert
qrupdate
qz
rsf2csf

Trigonometric
acos
acosd
acosh
acot
acotd
acoth
acsc
acscd
acsch
asec
asecd
asech
asin
asind
asinh
atan
atand
atanh
atan2
cos
cosd
cosh
cot
cotd
coth
csc
cscd
csch
hypot
sec
secd
sech
sin
sind
sinh
tan
tand
tanh

Exponential
exp

expm1i

log

log1p

Orthogonal-triangular decomposition

Delete column or row from QR factorization

Insert column or row into QR factorization

Rank 1 update to QR factorization

QZ factorization for generalized eigenvalues

Real block diagonal form to complex diagonal form

Inverse cosine

Inverse cosine, deg

Inverse hyperbolic cosine
Inverse cotangent

Inverse cotangent, deg
Inverse hyperbolic cotangent
Inverse cosecant

Inverse cosecant, deg
Inverse hyperbolic cosecant
Inverse secant

Inverse secant, deg

Inverse hyperbolic secant
Inverse sine

Inverse sine, deg

Inverse hyperbolic sine
Inverse tangent

Inverse tangent, deg
Inverse hyperbolic tangent
Four-quadrant inverse tangent
Cosine

Cosine, deg

Hyperbolic cosine
Cotangent

Cotangent, deg

Hyperbolic cotangent
Cosecant

Cosecant, deg

Hyperbolic cosecant
Square root of sum of squares
Secant

Secant, deg

Hyperbolic secant

Sine

Sine, deg

Hyperbolic sine

Tangent

Tangent, deg

Hyperbolic tangent

Exponential
Exponential of x — 1
Natural logarithm
Logarithm of 1 + x

JAIAA

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

APPENDIX C: MATLAB®, SIMULINK®, AND STATEFLOW® 441

log2

log10
nextpow2
pow2
reallog
realpow
realsqgrt
sqrt
nthroot

Complex
abs
angle
complex
conj
cplxpair
i

imag
isreal

J

real

sign
unwrap

Base 2 logarithm and dissect floating-point numbers
into exponent and mantissa

Common (base 10) logarithm

Next higher power of 2

Base 2 power and scale floating-point number

Natural logarithm for nonnegative real arrays

Array power for real-only output

Square root for nonnegative real arrays

Square root

Real nth root

Absolute value

Phase angle

Construct complex data from real and imaginary parts
Complex conjugate

Sort numbers into complex conjugate pairs
Imaginary unit

Complex imaginary part

Determine if input is real array

Imaginary unit

Complex real part

Signum

Unwrap phase angle

Rounding and Remainder

fix
floor
ceil
round
mod
rem

Round toward zero

Round toward minus infinity
Round toward plus infinity
Round toward nearest integer
Modulus after division
Remainder after division

Discrete Math (e.g., Prime Factors)

factor
factorial
gcd
isprime
lcm
nchoosek
perms
primes
rat, rats

Prime factors

Factorial function

Greatest common divisor

Determine if input is prime number

Least common multiple

All combinations of N elements taken K at a time
All possible permutations

Generate list of prime numbers

Rational fraction approximation

Elementary Matrices and Arrays

: (colon)
blkdiag

diag

eye
freqspace
linspace

Create vectors, array subscripting, and for loop
iterations

Construct block diagonal matrix from input
arguments

Diagonal matrices and diagonals of matrix

Identity matrix

Frequency spacing for frequency response

Generate linearly spaced vectors

JAIAA

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

442 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

logspace
meshgrid
ndgrid
ones
rand
randn
repmat
zeros

Specialized Matrices

compan
gallery
hadamard
hankel
hilb
invhilb
magic
pascal
rosser
toeplitz
vander
wilkinson

Polynomials
conv
deconv
poly
polyder
polyeig
polyfit
polyint
polyval
polyvalm
residue

roots

Interpolation
dsearch
dsearchn
griddata
griddata3

griddatan

interp1
interp2
interp3
interpft

interpn
meshgrid
mkpp

Generate logarithmically spaced vectors

Generate X and Y matrices for three-dimensional plots
Arrays for multidimensional functions and interpolation
Create array of all ones

Uniformly distributed random numbers and arrays
Normally distributed random numbers and arrays
Replicate and tile array

Create array of all zeros

Companion matrix

Test matrices

Hadamard matrix

Hankel matrix

Hilbert matrix

Inverse of Hilbert matrix

Magic square

Pascal matrix

Classic symmetric eigenvalue test problem
Toeplitz matrix

Vandermonde matrix

Wilkinson’s eigenvalue test matrix

Convolution and polynomial multiplication

Deconvolution and polynomial division

Polynomial with specified roots

Polynomial derivative

Polynomial eigenvalue problem

Polynomial curve fitting

Analytic polynomial integration

Polynomial evaluation

Matrix polynomial evaluation

Convert between partial fraction expansion and
polynomial coefficients

Polynomial roots

Search for nearest point

Multidimensional closest point search

Data gridding

Data gridding and hypersurface fitting for
three-dimensional data

Data gridding and hypersurface fitting (dimension
>=2)

One-dimensional data interpolation (table look-up)

Two-dimensional data interpolation (table look-up)

Three-dimensional data interpolation (table look-up)

One-dimensional interpolation using fast Fourier
transform method

Multidimensional data interpolation (table look-up)

Generate X and Y matrices for three-dimensional plots

Make piecewise polynomial

GdAIAA

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

APPENDIX C: MATLAB®, SIMULINK®, AND STATEFLOW® 443

ndgrid Generate arrays for multidimensional functions and
interpolation

pchip Piecewise Cubic Hermite Interpolating Polynomial
(PCHIP)

ppval Piecewise polynomial evaluation

spline Cubic spline data interpolation

tsearchn Multidimensional closest simplex search

unmkpp Piecewise polynomial details

Delaunay Triangulation and Tessellation

delaunay Delaunay triangulation

delaunay3 Three-dimensional Delaunay tessellation

delaunayn Multidimensional Delaunay tessellation

dsearch Search for nearest point

dsearchn Multidimensional closest point search

tetramesh Tetrahedron mesh plot

trimesh Triangular mesh plot

triplot Two-dimensional triangular plot

trisurf Triangular surface plot

tsearch Search for enclosing Delaunay triangle

tsearchn Multidimensional closest simplex search

Convex Hull

convhull Convex hull

convhulln Multidimensional convex hull

patch Create patch graphics object

plot Linear two-dimensional plot

trisurf Triangular surface plot

Voronoi Diagrams

dsearch Search for nearest point

patch Create patch graphics object

plot Linear two-dimensional plot

voronoi Voronoi diagram

voronoin Multidimensional Voronoi diagrams

Domain Generation

meshgrid Generate X and Y matrices for three-dimensional plots

ndgrid Generate arrays for multidimensional functions and

interpolation

Coordinate System Conversion Cartesian

cart2sph Transform Cartesian to spherical coordinates

cart2pol Transform Cartesian to polar coordinates

pol2cart Transform polar to Cartesian coordinates

sph2cart Transform spherical to Cartesian coordinates

Ordinary Differential Equations (IVP)

ode113 Solve nonstiff differential equations, variable-order
method

ode15i Solve fully implicit differential equations, variable-order
method

ode15s Solve stiff ODEs and DAEs Index 1, variable-order

method

GdAIAA

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

444 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

o0de23 Solve nonstiff differential equations, low-order method

ode23s Solve stiff differential equations, low-order method

ode23t Solve moderately stiff ODEs and DAEs Index 1,
trapezoidal rule

ode23tb Solve stiff differential equations, low-order method

ode45 Solve nonstiff differential equations, medium-order
method

odextend Extend the solution of an initial value problem

odeget Get ODE options parameters

odeset Create/alter ODE options structure

decic Compute consistent initial conditions for odel5i

deval Evaluate solution of differential equation problem

Delay Differential Equations

dde23 Solve delay differential equations with constant delays

ddeget Get DDE options parameters

ddeset Create/alter DDE options structure

deval Evaluate solution of differential equation problem

Boundary-Value Problems

bvp4c Solve boundary-value problems for ODEs

bvpget Get BVP options parameters

bvpset Create/alter BVP options structure

deval Evaluate solution of differential equation problem

Partial Differential Equations

pdepe Solve initial-boundary-value problems for
parabolic-elliptic PDEs

pdeval Evaluates by interpolation solution computed by pdepe

Optimization

fminbnd Scalar bounded nonlinear function minimization

fminsearch Multidimensional unconstrained nonlinear
minimization, by Nelder-Mead direct search method

fzero Scalar nonlinear zero finding

Isgnonneg Linear least squares with nonnegativity constraints

optimset Create or alter optimization options structure

optimget Get optimization parameters from options structure

Numerical Integration (Quadrature)

quad Numerically evaluate integral, adaptive Simpson
quadrature (low order)

quadl Numerically evaluate integral, adaptive Lobatto
quadrature (high order)

quadv Vectorized quadrature

dblquad Numerically evaluate double integral

triplequad Numerically evaluate triple integral

Specialized Math

airy Airy functions

besselh Bessel functions of third kind (Hankel functions)

besseli Modified Bessel function of first kind

besselj Bessel function of first kind

JAIAA

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

APPENDIX C: MATLAB®, SIMULINK®, AND STATEFLOW® 445

besselk Modified Bessel function of second kind
bessely Bessel function of second kind

beta Beta function

betainc Incomplete beta function

betaln Logarithm of beta function

ellipj Jacobi elliptic functions

ellipke Complete elliptic integrals of first and second kind
erf Error function

erfc Complementary error function

erfcinv Inverse complementary error function
erfcx Scaled complementary error function
erfinv Inverse error function

expint Exponential integral

gamma Gamma function

gammainc Incomplete gamma function

gammaln Logarithm of gamma function

legendre Associated Legendre functions

psi Psi (polygamma) function

Elementary Sparse Matrices

spdiags Sparse matrix formed from diagonals
speye Sparse identity matrix

sprand Sparse uniformly distributed random matrix
sprandn Sparse normally distributed random matrix
sprandsym Sparse random symmetric matrix

Full to Sparse Conversion

find Find indices of nonzero elements

full Convert sparse matrix to full matrix
sparse Create sparse matrix

spconvert Import from sparse matrix external format

Working with Sparse Matrices

issparse Determine if input is sparse matrix

nnz Number of nonzero matrix elements

nonzeros Nonzero matrix elements

nzmax Amount of storage allocated for nonzero matrix
elements

spalloc Allocate space for sparse matrix

spfun Apply function to nonzero matrix elements

spones Replace nonzero sparse matrix elements with ones

spparms Set parameters for sparse matrix routines

spy Visualize sparsity pattern

Reordering Algorithms

colamd Column approximate minimum degree permutation
colperm Column permutation

dmperm Dulmage-Mendelsohn permutation

randperm Random permutation

symamd Symmetric approximate minimum degree permutation

symrcm Symmetric reverse Cuthill-McKee permutation

JAIAA

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

446 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

Linear Algebra
cholinc

condest

eigs

luinc

normest
spaugment
sprank

svds

Incomplete Cholesky factorization

1-norm condition number estimate
Eigenvalues and eigenvectors of sparse matrix
Incomplete LU factorization

Estimate matrix 2-norm

Form least-squares augmented system
Structural rank

Singular values and vectors of sparse matrix

Linear Equations (lterative Methods)

bicg
bicgstab
cgs
gmres
Isqr

minres
pcg
amr
symmiq

Tree Operations
etree

etreeplot

gplot

symbfact
treelayout

treeplot

Math Constants
eps

|

Inf
intmax
intmin

J

NaN

pi
realmax
realmin
cumprod
cumsum
interp1
interp2
prod

sort
sortrows
sum

Correlation
corrcoef
cov

BiConjugate Gradients method

BiConjugate Gradients Stabilized method

Conjugate Gradients Squared method

Generalized Minimum Residual method

LSQR implementation of Conjugate Gradients on
Normal Equations

Minimum Residual method

Preconditioned Conjugate Gradients method

Quasi-Minimal Residual method

Symmetric LQ method

Elimination tree

Plot elimination tree

Plot graph, as in “graph theory”
Symbolic factorization analysis
Lay out tree or forest

Plot picture of tree

Floating-point relative accuracy

Imaginary unit

Infinity, oo

Largest possible value of specified integer type
Smallest possible value of specified integer type
Imaginary unit

Not-a-Number

Ratio of a circle’s circumference to its diameter, =
Largest positive floating-point number

Smallest positive floating-point number
Cumulative product

Cumulative sum

One-dimensional data interpolation
Two-dimensional data interpolation

Product of array elements

Sort array elements in ascending or descending order
Sort rows in ascending order

Sum of array elements

Correlation coefficients
Covariance matrix

JAIAA

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

APPENDIX C: MATLAB®, SIMULINK®, AND STATEFLOW® 447

Finite Differences and Integration

cumtrapz Cumulative trapezoidal numerical integration
del2 Discrete Laplacian

diff Differences and approximate derivatives
gradient Numerical gradient

trapz Trapezoidal numerical integration

Fourier Transforms

abs Absolute value and complex magnitude

angle Phase angle

cplxpair Sort numbers into complex conjugate pairs

fft One-dimensional discrete Fourier transform

fft2 Two-dimensional discrete Fourier transform

fftn N-dimensional discrete Fourier Transform

fftshift Shift DC component of discrete Fourier transform to
center of spectrum

fitw Interface to the FFTW library run-time algorithm for
tuning FFTs

ifft Inverse one-dimensional discrete Fourier transform

ifft2 Inverse two-dimensional discrete Fourier transform

ifftn Inverse multidimensional discrete Fourier transform

ifftshift Inverse fast Fourier transform shift

nextpow2 Next higher power of two

unwrap Unwrap phase angle in radians

Statistics

max Maximum elements of array

mean Average or mean value of arrays

median Median value of arrays

min Minimum elements of array

mode Most frequent value of array

std Standard deviation

var Variance

Time Series General Timeseries

+ = >/ /N Overloaded MATLAB arithmetic operators work with
time series

get (timeseries) Query time-series property values

getdatasamplesize Return size of data sample

getqualitydesc Return data quality descriptions

isempty (timeseries) Determine if timeseries object is empty

length (timeseries) Return length of time vector

plot (timeseries) Plot time series

set (timeseries) Set properties of timeseries object

size (timeseries) Size of time series

timeseries Create timeseries object

tsdata.event Construct time-series event object

tsprops help tsprops provides help on time-series object
properties

tstool Start Time Series Tools GUI

JAIAA

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

448

BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

Time-Series Data and Time Manipulation

addsample

ctranspose (timeseries)
delsample

detrend (timeseries)

filter (timeseries)
getabstime (timeseries)
getinterpmethod
getsampleusingtime
(timeseries)
idealfilter (timeseries)
resample (timeseries)
setabstime (timeseries)
setinterpmethod
synchronize

transpose (timeseries)
tsdateinterval

vertcat (timeseries)
Time-Series Events
addevent

delevent
gettsafteratevent
gettsafterevent

gettsatevent
gettsbeforeatevent

gettsbeforeevent

gettsbetweenevents

Time-Series Statistical

igr (timeseries)
max (timeseries)
mean (timeseries)
median (timeseries)
min (timeseries)
std (timeseries)
sum (timeseries)
var (timeseries)

Add data sample to timeseries object

Transpose timeseries object

Delete sample from timeseries object

Subtract mean or best-fit line and all NaNs from
time-series data

Shape frequency content of time-series data

Extract date-string time vector into cell array

Get interpolation method for time-series object

Extract specified samples into new time series

Apply ideal (noncausal) filter to time-series object

Redefine time series based on new time vector

Set times of time series as date strings

Set default interpolation method for time-series object

Synchronize two time-series objects onto common time
vector

Transpose time-series object

Generate uniformly spaced sequence of dates and
times

Vertical concatenation for time series

Add event to time series

Remove event objects from time series

Return new time series with samples occurring at or
after event

Return new time series with samples occurring after
event

Return new time series with samples occurring at event

Return new time series with samples occurring before
or at event

Return new time series with samples occurring before
event

Return new time series with samples occurring
between events

Interquartile range of time-series data
Maximum value of time-series data
Mean value of time-series data
Median value of time-series data
Minimum value of time-series data
Standard deviation of time-series data
Sum of time-series data

Variance of time-series data

Time-Series Collection General tscollection

get (tscollection)
isempty (tscollection)
length (tscollection)
plot (timeseries)

set (tscollection)

Query time-series collection property values
Determine if tscollection is empty

Return length of time vector

Plot time series

Set properties of tscollection object

GdAIAA

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

APPENDIX C: MATLAB®, SIMULINK®, AND STATEFLOW® 449

Size of time-series collection
Create time-series collection object
Open Time Series Tools GUI

size (tscollection)
tscollection
tstool

Time-Series Collection Data and Time Manipulation

General tscollection
addsampletocollection
addts

delsamplefromcollection

getabstime
(tscollection)

getsampleusingtime
(tscollection)

gettimeseriesnames

horzcat (tscollection)

removets
resample (tscollection)

setabstime (tscollection)

settimeseriesnames
vertcat (tscollection)

Add sample to time-series collection

Add data vector or time-series object to
tscollection

Delete sample from tscollection object

Extract date-string time vector into cell array

Extract specified samples into new tscollection

Return cell array of names of time series in
tscollection object
Horizontal concatenation for tscollection

objects
Remove time-series objects from collection
Redefine tscollection object on new time vector
Set time of time-series collection as date strings
Change time series name
Vertical concatenation for tscollection object

Programming and Data Types, Data Types Numeric

[]

arrayfun
cast

cat

class

find
intmax
intmin
intwarning
ipermute
isa

isequal
isequalwithequalnans
isnumeric
isreal
isscalar
isvector
permute
realmax
realmin
reshape
squeeze
zeros

Array constructor

Apply function to each element of array

Cast variable to different data type
Concatenate arrays along specified dimension
Create object or return class of object

Find indices and values of nonzero array elements
Largest possible value of specified integer type
Smallest possible value of specified integer type
Control state of integer warnings

Inverse permute dimensions of multidimensional array

Determine if input is object of given class (e.g.,
numeric)

Test arrays for equality

Test arrays for equality, treating NaNs as equal

Determine if input is numeric array

Determine if all array elements are real numbers

Determine if input is scalar (1-by-1)

Determine if input is vector (1-by-N or N-by-1)

Rearrange dimensions of multidimensional array

Largest positive floating-point number

Smallest positive floating-point number

Reshape array

Remove singleton dimensions from array

Create array of all zeros

GdAIAA

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

450 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

Characters and Strings Description of Strings in MATLAB"

strings

MATLAB string-handling description

Creating and Manipulating Strings

blanks

char

cellstr

datestr
deblank

lower
native2unicode
sprintf

sscanf

strcat

strjust

strread

strrep

strtrim

strvcat
unicode2native

upper

Create string of space characters

Convert to character array (string)

Create cell array of strings from character array
Convert date and time to string format

Strip trailing blanks from end of string

Convert string to lowercase

Convert numeric bytes to Unicode characters
Write formatted data to string

Read string under format control

Concatenate strings horizontally

Justify character array

Read formatted data from string

Find and replace substring

Remove leading and trailing whitespace from string
Concatenate strings vertically

Convert Unicode characters to numeric bytes
Convert string to uppercase

Comparing and Searching Strings

class
findstr
isa
iscellstr
ischar
isletter
isscalar
isspace
isstrprop
isvector
regexp
regexpi
regexprep
stremp
strempi
strfind
strmatch
strncmp
strncmpi
strtok

Create object or return class of object

Find string within another, longer string

Determine if input is object of given class (e.g., char)
Determine if input is cell array of strings

Determine if input is character array

Detect elements that are alphabetic letters
Determine if input is scalar (1-by-1)

Detect elements that are ASCII white spaces
Determine content of each element of string
Determine if input is vector (1-by-N or N-by-1)
Match regular expression

Match regular expression, ignoring case

Replace string using regular expression

Compare strings

Compare strings, ignoring case

Find one string within another

Find possible matches for string

Compare first n characters of strings

Compare first n characters of strings, ignoring case
Return selected parts of string

Evaluating String Expressions

eval
evalc
evalin

Structures
arrayfun
cell2struct
class

Execute string containing MATLAB expression
Evaluate MATLAB expression with capture
Execute MATLAB expression in specified workspace

Apply function to each element of array
Convert cell array to structure array
Create object or return class of object

GdAIAA

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

APPENDIX C: MATLAB®, SIMULINK®, AND STATEFLOW® 451

deal
fieldnames
getfield

isa

isequal
isfield
isscalar
isstruct
isvector
orderfields
rmfield
setfield
struct
struct2cell
structfun

Cell Arrays
{}

cell
cellfun
cellstr
cell2mat
cell2struct
celldisp
cellplot
class

deal

isa

iscell
iscellstr
isequal
isscalar
isvector
mat2cell
num2cell
struct2cell

Distribute inputs to outputs

List field names of structure

Get field of structure array

Determine if input is object of given class
(e.g., struct)

Test arrays for equality

Determine if input is structure array field

Determine if input is scalar (1-by-1)

Determine if input is structure array

Determine if input is vector (1-by-N or N-by-1)

Order fields of structure array

Remove fields from structure

Set value of structure array field

Create structure array

Convert structure to cell array

Apply function to each field of scalar structure

Construct cell array
Construct cell array
Apply function to each cell of cell array
Create cell array of strings from character array
Convert cell array of matrices to single matrix
Convert cell array to structure array
Display cell array contents
Graphically display structure of cell arrays
Create object or return class of object
Distribute inputs to outputs
Determine if input is object of given

class (e.g., cell)
Determine if input is cell array
Determine if input is cell array of strings
Test arrays for equality
Determine if input is scalar (1-by-1)
Determine if input is vector (1-by-N or N-by-1)
Divide matrix into cell array of matrices
Convert numeric array to cell array
Convert structure to cell array

Data Type Conversion Numeric

cast
double
int8
int16
int32
int64
single
typecast

uint8

uint16
uint32
uinté4

Cast variable to different data type
Convert to double-precision
Convert to signed 8-bit integer
Convert to signed 16-bit integer
Convert to signed 32-bit integer
Convert to signed 64-bit integer
Convert to single-precision
Convert data types without changing
underlying data
Convert to unsigned 8-bit integer
Convert to unsigned 16-bit integer
Convert to unsigned 32-bit integer
Convert to unsigned 64-bit integer

JAIAA

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

452

String to Numeric
base2dec

BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

Convert base N number string to decimal number

bin2dec Convert binary number string to decimal number

cast Cast variable to different data type

hex2dec Convert hexadecimal number string to decimal number

hex2num Convert hexadecimal number string to
double-precision number

str2double Convert string to double-precision number

str2num Convert string to number

Numeric to String
cast

Cast variable to different type

char Convert to character array (string)

dec2base Convert decimal to base N number in string
dec2bin Convert decimal to binary number in string
dec2hex Convert decimal to hexadecimal number in string
int2str Convert integer to string

mat2str Convert matrix to string

numa2str Convert number to string

Other Conversions

cell2mat Convert cell array of matrices to single matrix
cell2struct Convert cell array to structure array

datestr Convert date and time to string format

func2str Construct function name string from function handle
logical Convert numeric values to logical

mat2cell Divide matrix into cell array of matrices

num2cell Convert numeric array to cell array

str2func Construct function handle from function name string
str2mat Form blank-padded character matrix from strings
struct2cell Convert structure to cell array

petermine Data Type

is* Detect state

isa Determine if input is object of given class
iscell Determine if input is cell array

iscellstr Determine if input is cell array of strings
ischar Determine if input is character array

isfield Determine if input is character array

isfloat Determine if input is floating-point array
isinteger Determine if input is integer array

isjava Determine if input is Java object

islogical Determine if input is logical array

isnumeric Determine if input is numeric array

isobject Determine if input is MATLAB OOPs object
isreal Determine if all array elements are real numbers
isstruct Determine if input is MATLAB structure array

Arrays Array Operations

[1] Array constructor

, Array row element separator

; Array column element separator
: Range of array elements

JAIAA

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

APPENDIX C: MATLAB®, SIMULINK®, AND STATEFLOW® 453

S N N

érrayfun
end

Addition or unary plus

Subtraction or unary minus

Array multiplication

Array right division

Array left division

Array power

Array (nonconjugated) transpose

Apply function to each element of array
Indicate last index of array

Basic Array Information

disp
display
isempty
isequal
isequalwithequalnans
islogical
isnumeric
isscalar
isvector
length
ndims
numel
size

Array Manipulation

blkdiag
cat
circshift
find

fliplr
flipud
flipdim
horzcat
ind2sub
ipermute
permute
repmat
reshape
rot90
shiftdim
sort
sortrows
squeeze
sub2ind
vertcat

Elementary Arrays

blkdiag
eye
linspace

Display text or array

Overloaded method to display text or array
Determine if array is empty

Test arrays for equality

Test arrays for equality, treating NaNs as equal
Determine if input is logical array
Determine if input is numeric array
Determine if input is scalar

Determine if input is vector

Length of vector

Number of array dimensions

Number of elements in matrix or cell array
Array dimensions

Specify range of array elements

Construct block diagonal matrix from input arguments
Concatenate arrays along specified dimension

Shift array circularly

Find indices and values of nonzero elements

Flip matrices left-right

Flip matrices up-down

Flip array along specified dimension

Concatenate arrays horizontally

Subscripts from linear index

Inverse permute dimensions of multidimensional array
Rearrange dimensions of multidimensional array
Replicate and tile array

Reshape array

Rotate matrix 90 deg

Shift dimensions

Sort array elements in ascending or descending order
Sort rows in ascending order

Remove singleton dimensions

Single index from subscripts

Concatenate arrays vertically

Construct regularly spaced vector

Construct block diagonal matrix from input arguments
Identity matrix

Generate linearly spaced vectors

JAIAA

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

454 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

logspace Generate logarithmically spaced vectors

meshgrid Generate X and Y matrices for three-dimensional plots

ndgrid Generate arrays for multidimensional functions and
interpolation

ones Create array of all ones

rand Uniformly distributed random numbers and arrays

randn Normally distributed random numbers and arrays

zeros Create array of all zeros

Operators and Operations Special Characters

Specify range of array elements

Pass function arguments, or prioritize operations
Construct array

Construct cell array

Decimal point, or structure field separator
Continue statement to next line

, Array row element separator

; Array column element separator

(
[
{

Matrix power

Matrix transpose

Array multiplication (element-wise)
Array right division (element-wise)
Array left division (element-wise)
Array power (element-wise)

Array transpose

% Insert comment line into code
! Issue command to operating system
= Assignment

Arithmetic Operations

+ Plus

- Minus

. Decimal point

= Assignment

* Matrix multiplication

/ Matrix right division

\A Matrix left division

eI

Bit-Wise Operations

bitand Return bit-wise and

bitcmp Return bit-wise complement

bitget Get bit at specified position

bitmax Return maximum double-precision floating-point
integer

bitor Return bit-wise or

bitset Set bit at specified position

bitshift Shift bits specified number of places

bitxor Return bit-wise xor

swapbytes Swap byte ordering

Relational Operations
< Less than
<= Less than or equal to

GdAIAA

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

APPENDIX C: MATLAB®, SIMULINK®, AND STATEFLOW® 455

> Greater than

>= Greater than or equal to

== Equal to

~= Not equal to

Logical Operations

&& Logical and

I Logical or

& Logical and for arrays

| Logical or for arrays

~ Logical not

all Determine if all array elements are nonzero
any Determine if any array elements are nonzero
FALSE Return logical 0 (false)

find Find indices and values of nonzero elements
is* Detect state

isa Determine if input is object of given class
iskeyword Determine if string is MATLAB keyword
isvarname Determine if string is valid variable name
logical Convert numeric values to logical

TRUE Return logical 1 (true)

xor Logical exclusive-or

Set Operations

intersect Find set intersection of two vectors
ismember Detect members of set

setdiff Find set difference of two vectors

issorted Determine if set elements are in sorted order
setxor Find set exclusive or of two vectors

union Find set union of two vectors

unique Find unique elements of vector

Date and Time Operations

addtodate Modify date number by field

calendar Display calendar for specified month

clock Return current time as date vector

cputime Return elapsed CPU time

date Return current date string

datenum Convert date and time to serial date number
datestr Convert date and time to string format
datevec Convert date and time to vector of components
eomday Return last day of month

etime Return time elapsed between date vectors
now Return current date and time

tic, toc Measure performance using stopwatch timer
weekday Return day of week

Programming in MATLAB® M-File Functions and Scripts

() Pass function arguments

% Insert comment line into code

. Continue statement to next line

depfun List dependencies of M-file or P-file

depdir List dependent directories of M-file or P-file

JAIAA

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

456 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

echo

end
function
input
inputname
mfilename
namelengthmax
nargin
nargout
nargchk
nargoutchk
pcode
script
varargin
varargout

Echo M-files during execution

Terminate block of code

Declare M-file function

Request user input

Return variable name of function input
Return name of currently running M-file
Return maximum identifier length

Return number of function input arguments
Return number of function output arguments
Validate number of input arguments
Validate number of output arguments
Create preparsed pseudocode file (P-file)
Script M-file description

Accept variable number of arguments
Return variable number of arguments

Evaluation of Expressions and Functions

arrayfun
builtin
cellfun
echo
eval

evalc
evalin
feval
iskeyword
isvarname
pause
run

script
structfun
symvar
tic, toc

Timer Functions
delete

disp

get

isvalid

set

start
startat
stop

timer
timerfind
timerfindall
wait

Apply function to each element of array

Execute built-in function from overloaded method
Apply function to each cell of cell array

Echo M-files during execution

Execute string containing MATLAB expression
Evaluate MATLAB expression with capture
Execute MATLAB expression in specified workspace
Evaluate function

Determine if input is MATLAB keyword
Determine if input is valid variable name

Halt execution temporarily

Run script that is not on current path

Script M-file description

Apply function to each field of scalar structure
Determine symbolic variables in expression
Measure performance using stopwatch timer

Delete timer object from memory

Display information about timer object

Retrieve information about timer object properties
Determine if timer object is valid

Display or set timer object properties

Start timer

Start timer at specified time

Stop timer

Create timer object

Return array of all visible timer objects in memory
Return array of all timer objects in memory

Block command line until timer completes

Variables and Functions in Memory

assignin
datatipinfo

genvarname

Assign value to variable in specified workspace

Produce short description of variable for debugger
DataTips

Construct valid variable name from string

JAIAA

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

APPENDIX C: MATLAB®, SIMULINK®, AND STATEFLOW® 457

global
inmem

mislocked

mlock

munlock
namelengthmax
pack

persistent
rehash

Control Flow
break
case
catch
continue
else
elseif

end

error

for

if
otherwise
return
switch

try

while

Function Handles

class

feval
function_handle
functions
func2str

isa

isequal
str2func

Declare global variables

Return names of M-files, MEX-files, Java classes in
memory

Determine if M-file or MEX-file cannot be cleared from
memory

Prevent clearing M-file or MEX-file from memory

Allow clearing M-file or MEX-file from memory

Return maximum identifier length

Consolidate workspace memory

Define persistent variable

Refresh function and file system path caches

Terminate execution of for or while loop

Execute block of code if condition is true

Specify how to respond to error in try statement
Pass control to next iteration of for or while loop
Conditionally execute statements

Conditionally execute statements

Terminate conditional block of code

Display error message

Execute block of code specified number of times
Conditionally execute statements

Default part of switch statement

Return to invoking function

Switch among several cases, based on expression
Attempt to execute block of code, and catch errors
Repeatedly execute statements while condition is true

Create object or return class of object

Evaluate function

Handle used in calling functions indirectly

Return information about function handle

Construct function name string from function handle

Determine if input is object of given class (e.g.,
function_handle)

Determine if function handles are equal

Construct function handle from function name string

Object-Oriented Programming MATLAB®-Classes and Objects

class
fieldnames
inferiorto
isa
isobject
loadobj

methods
methodsview

saveobj

Create object or return class of object

List public fields belonging to object

Establish inferior class relationship

Determine if input is object of given class

Determine if input is MATLAB OOPs object

User-defined extension of load function for user
objects

Display information on class methods

Display information on class methods in separate
window

User-defined extension of save function for user
objects

JAIAA

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

458 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

subsasgn

subsindex
subsref
substruct
superiorto

Overloaded method for Ad) = B, A{I} = B, and
A.field =B

Overloaded method for X(A)

Overloaded method for A(I), A{I}, and A.field

Create structure argument for subsasgn or subsref

Establish superior class relationship

Java Classes and Objects

cell

class

clear
depfun
exist
fieldnames
im2java
import
inmem

isa

isjava
javaaddpath
javaArray
javachk

javaclasspath
javaMethod
javaObject
javarmpath
methods
methodsview

usejava
which

Error Handling
catch
error
ferror
intwarning
lasterr
lasterror
lastwarn
rethrow
try
warning

MEX Programming
dbmex

inmem

mex

mexext

Convert Java array object to cell array

Create object or return class of object

Clear Java import list or Java class definitions

List Java classes used by M-file or P-file

Determine if input is Java class

List public fields belonging to object

Convert image to instance of Java image object

Add package or class to current Java import list

Return names of M-files, MEX-files, Java classes in
memory

Determine if input is object of given class

Determine if input is Java object

Add entries to dynamic Java class path

Construct Java array

Generate error message based on Java feature
support

Set and get dynamic Java class path

Invoke Java method

Construct Java object

Remove entries from dynamic Java class path

Display information on class methods

Display information on class methods in separate
window

Determine if Java feature is supported in MATLAB

Display package and class name for method

Specify how to respond to error in try statement
Display error message

Query MATLAB about errors in file input or output
Control state of integer warnings

Return last error message

Last error message and related information
Return last warning message

Reissue error

Attempt to execute block of code, and catch errors
Display warning message

Enable MEX-file debugging

Return names of M-files, MEX-files, Java classes in
memory

Compile MEX-function from C or FORTRAN source
code

Return MEX-filename extension

GdAIAA

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

APPENDIX C: MATLAB®, SIMULINK®, AND STATEFLOW® 459

File 1/0 Filename Construction

fileparts
filesep
fullfile
tempdir
tempname

Return parts of filename and path

Return directory separator for platform in use

Build full filename from parts

Return name of system’s temporary directory
Return unique string for use as temporary filename

Opening, Loading, Saving Files

importdata
load
open

save
uiimport
winopen

Memory Mapping
disp

get

memmapfile

Low-Level File 1/0
fclose

feof

ferror

fgetl

fgets
fopen
fprintf
fread
frewind
fscanf
fseek
ftell
fwrite

Text Files
csvread
csvwrite
dimread
dimwrite
textread
textscan

XML Documents
xmlread

xmlwrite

xslt

Load data from various types of files

Load workspace variables from disk

Open files of various types using appropriate editor or
program

Save workspace variables on disk

Open Import Wizard interface to import data

Open file in appropriate application (Windows only)

Display information about memory map object
Return memmapfile object properties
Construct memory map object

Close one or more open files

Test for end-of-file

Query MATLAB about errors in file input or output

Return next line of file as string without line
terminator(s)

Return next line of file as string with line terminator(s)

Open file or obtain information about open files

Write formatted data to file

Read binary data from file

Rewind open file

Read formatted data from file

Set file position indicator

Get file position indicator

Write binary data to file

Read numeric data from text file using comma delimiter
Write numeric data to text file using comma delimiter
Read numeric data from text file with specified delimiter
Write numeric data to text file specified delimiter

Read formatted data from start of text file

Read formatted data from any point in text file

Parse XML document
Serialize XML Document Object Model node
Transform XML document using XSLT engine

Microsoft Excel Functions

xlIsfinfo

Determine if file contains Microsoft Excel (.xls)
spreadsheet

GdAIAA

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

460 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

xlsread Read Microsoft Excel spreadsheet file (.xls)
xlswrite Write Microsoft Excel spreadsheet file (.xls)
Lotus123 Functions

wkiread Read Lotus123 WK1 spreadsheet file into matrix
wk1write Write matrix to Lotus123 WK1 spreadsheet file
Scientific Data Common Data Format (CDF)

cdfepoch Construct cdfepoch object from date string or number
cdfinfo Return information about CDF file

cdfread Read CDF file

cdfwrite Write CDF file

todatenum Convert cdfepoch object to MATLAB datenum
Flexible Image Transport System

fitsinfo Return information about FITS file

fitsread Read FITS file

Hierarchical Data Format (HDF)

hdf Interface to HDF4 files

hdfinfo Return information about HDF4 or HDF-EQOS file
hdfread Read HDF4 file

hdftool Start HDF4 Import Tool

hdf5 Describes HDF5 data type objects

hdf5info Return information about HDF5 file

hdf5read Read HDFS5 file

hdf5write Write data to file in HDF5 format
Band-Interleaved Data

multibandread Read band-interleaved data from file
multibandwrite Write band-interleaved data to file

Audio and Audio/Video General

audioplayer Create audio player object

audiorecorder Perform real-time audio capture

beep Produce beep sound

lin2mu Convert linear audio signal to mu-law
mmfileinfo Information about multimedia file

mu2lin Convert mu-law audio signal to linear

sound Convert vector into sound

soundsc Scale data and play as sound
SPARCstation-Specific Sound Functions

auread Read NeXT/SUN (.au) sound file

auwrite Write NeXT/SUN (.au) sound file

Microsoft WAVE Sound Functions

wavplay Play sound on PC-based audio output device
wavread Read Microsoft WAVE (.wav) sound file
wavrecord Record sound using PC-based audio input device
wavwrite Write Microsoft WAVE (.wav) sound file
Audio/Video Interleaved (AVI) Functions

addframe Add frame to AVI file

avifile Create new AVI file

JAIAA

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

APPENDIX C: MATLAB®, SIMULINK®, AND STATEFLOW® 461

aviinfo
aviread
close
movie2avi

Images
exifread
im2java
imfinfo
imread
imwrite

Return information about AVI file

Read AVI file

Close AVI file

Create AVI movie from MATLAB movie

Read EXIF information from JPEG and TIFF images
Convert image to instance of Java image object
Return information about graphics file

Read image from graphics file

Write image to graphics file

Internet Exchange URL, Zip, Tar, E-Mail

gzip
gunzip
sendmail
tar

untar
unzip
urlread
urlwrite
zip

FTP Functions
ascii
binary

cd (ftp)
close (ftp)
delete (ftp)
dir (ftp)
ftp

mget
mkdir (ftp)
mput
rename
rmdir (ftp)

Compress files into the gzip format
Uncompress files in the gzip format

Send e-mail message to list of addresses
Compress files into a tar-file

Extract contents of a tar file

Extract contents of zip file

Read contents at URL

Save contents of URL to file

Create compressed version of files in zip format

Set FTP transfer type to ASCII

Set FTP transfer type to binary

Change current directory on FTP server
Close connection to FTP server

Delete file on FTP server

List contents of directory on FTP server
Connect to FTP server, creating an FTP object
Download file from FTP server

Create new directory on FTP server
Upload file or directory to FTP server
Rename file on FTP server

Remove directory on FTP server

Graphics Basic Plots and Graphs

box
errorbar
hold
LineSpec
loglog
polar
plot
plot3
plotyy
semilogx
semilogy
subplot

Plotting Tools
figurepalette
pan

Axis box for two- and three-dimensional plots
Plot graph with error bars

Hold current graph

Line specification syntax

Plot using log-log scales

Polar coordinate plot

Plot vectors or matrices

Plot lines and points in three-dimensional space
Plot graphs with Y tick labels on the left and right
Semi-log scale plot

Semi-log scale plot

Create axes in tiled positions

Display figure palette on figure
Turn panning on or off

JAIAA

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

462 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

plotbrowser
plottools
propertyeditor
zoom

Annotating Plots
annotation
clabel
datetick
gtext
legend
texlabel
title

xlabel
ylabel
zlabel

Display plot browser on figure
Start plotting tools

Display property editor on figure
Turn zooming on or off

Create annotation objects

Add contour labels to contour plot

Date formatted tick labels

Place text on two-dimensional graph using mouse
Graph legend for lines and patches

Produce the TeX format from character string
Titles for two- and three-dimensional plots

X-axis labels for two- and three-dimensional plots
Y-axis labels for two- and three-dimensional plots
Z-axis labels for three-dimensional plots

Annotation Object Properties

arrow
doublearrow
ellipse

line
rectangle
textarrow

Properties for annotation arrows

Properties for double-headed annotation arrows
Properties for annotation ellipses

Properties for annotation lines

Properties for annotation rectangles

Properties for annotation textbox

Specialized Plotting Area, Bar, and Pie Plots

area

bar

barh

bar3
bar3h
pareto

pie

pie3
Contour Plots
contour
contour3
contourc
contourf
ezcontour
ezcontourf

Area plot

Vertical bar chart

Horizontal bar chart

Vertical three-dimensional bar chart
Horizontal three-dimensional bar chart
Pareto char

Pie plot

Three-dimensional pie plot

Contour (level curves) plot
Three-dimensional contour plot
Contour computation

Filled contour plot

Easy-to-use contour plotter
Easy-to-use filled contour plotter

Direction and Velocity Plots

comet
comet3
compass
feather
quiver
quiver3

Comet plot

Three-dimensional comet plot

Compass plot

Feather plot

Quiver (or velocity) plot
Three-dimensional quiver (or velocity) plot

JAIAA

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

APPENDIX C: MATLAB®, SIMULINK®, AND STATEFLOW® 463

Discrete Data Plots
stem

stem3

stairs

Function Plots
ezcontour
ezcontourf
ezmesh
ezmeshc
ezplot
ezplot3
ezpolar
ezsurf
ezsurfc
fplot

Histograms
hist

histc

rose

Plot discrete sequence data
Plot discrete surface data
Stairstep graph

Easy-to-use contour plotter

Easy-to-use filled contour plotter

Easy-to-use three-dimensional mesh plotter
Easy-to-use combination mesh/contour plotter
Easy-to-use function plotter

Easy-to-use three-dimensional parametric curve plotter
Easy-to-use polar coordinate plotter

Easy-to-use three-dimensional colored surface plotter
Easy-to-use combination surface/contour plotter

Plot a function

Plot histograms
Histogram count
Plot rose or angle histogram

Polygons and Surfaces

convhull
cylinder
delaunay
dsearch
ellipsoid
fill

fill3
inpolygon
pcolor
polyarea
ribbon
slice
sphere
tsearch
voronoi
waterfall

Scatter/Bubble Plots
plotmatrix

scatter

scatter3

Animation
frame2im
getframe
im2frame
movie
noanimate

Convex hull

Generate cylinder

Delaunay triangulation

Search Delaunay triangulation for nearest point
Generate ellipsoid

Draw filled two-dimensional polygons

Draw filled three-dimensional polygons in 3-space
True for points inside a polygonal region
Pseudocolor (checkerboard) plot

Area of polygon

Ribbon plot

Volumetric slice plot

Generate sphere

Search for enclosing Delaunay triangle

Voronoi diagram

Waterfall plot

Scatter plot matrix
Scatter plot
Three-dimensional scatter plot

Convert movie frame to indexed image
Capture movie frame

Convert image to movie frame

Play recorded movie frames

Change EraseMode of all objects to normal

JAIAA

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

464 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

Bit-Mapped Images

frame2im
image
imagesc
imfinfo
imformats
im2frame
im2java
imread
imwrite
ind2rgb

Printing
frameedit
orient
pagesetupdig
print

printdig
printopt
printpreview
saveas

Convert movie frame to indexed image

Display image object

Scale data and display image object
Information about graphics file

Manage file format registry

Convert image to movie frame

Convert image to instance of Java image object
Read image from graphics file

Write image to graphics file

Convert indexed image to RGB image

Edit print frame for Simulink and Stateflow diagram
Hardcopy paper orientation

Page setup dialog box

Print graph or save graph to file

Print dialog box

Configure local printer defaults

Preview figure to be printed

Save figure to graphic file

Handle Graphics® Finding and Identifying Graphics Objects

allchild
ancestor
copyobj
delete
findall
findfigs
findobj
gca
gcbo
gcbf
gco

get
ishandle
set

Find all children of specified objects

Find ancestor of graphics object

Make copy of graphics object and its children
Delete files or graphics objects

Find all graphics objects (including hidden handles)
Display off-screen visible figure windows

Find objects with specified property values

Get current Axes handle

Return object whose callback is currently executing
Return handle of figure containing callback object
Return handle of current object

Get object properties

True if value is valid object handle

Set object properties

Object Creation Functions

axes
figure

hggroup
hgtransform
image

light

line

patch
rectangle
rootobject
surface

text
uicontextmenu

Create axes object

Create figure (graph) windows

Create a group object

Create a group to transform

Create image (two-dimensional matrix)

Create light object (illuminates Patch and Surface)
Create line object (three-dimensional polylines)
Create patch object (polygons)

Create rectangle object (two-dimensional rectangle)
List of root properties

Create surface (quadrilaterals)

Create text object (character strings)

Create context menu (popup associated with object)

JAIAA

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

APPENDIX C: MATLAB®, SIMULINK®, AND STATEFLOW® 465

Plot Objects
areaseries
barseries
contourgroup
errorbarseries
lineseries
quivergroup
scattergroup
stairseries
stemseries
surfaceplot

Figure Windows
cle

clf

close
closereq
drawnow
gcf
hgload
hgsave
newplot
opengl

refresh
saveas

Axes Operations
axis

box

cla

gca

grid

ishold

makehgtform

Property list
Property list
Property list
Property list
Property list
Property list
Property list
Property list
Property list
Property list

Clear figure window

Clear figure

Close specified window

Default close request function

Complete any pending drawing

Get current figure handle

Load graphics object hierarchy from a FIG-file

Save graphics object hierarchy to a FIG-file

Graphics M-file preamble for NextPlot property

Change automatic selection mode of OpenGL
rendering

Refresh figure

Save figure or model to desired output format

Plot axis scaling and appearance

Display axes border

Clear axes

Get current axes handle

Grid lines for two- and three-dimensional plots
Get the current hold state

Create a transform matrix

Operating on Object Properties

get
linkaxes
linkprop
set

Get object properties

Synchronize limits of specified axes

Maintain same value for corresponding properties
Set object properties

Three-Dimensional Visualization Surface and Mesh Plots Creating

Surfaces and Meshes

hidden
meshc
mesh
peaks
surf
surface
surfc

surfl
tetramesh

Mesh hidden line removal mode

Combination mesh/contourplot
Three-dimensional mesh with reference plane
A sample function of two variables
Three-dimensional shaded surface graph
Create surface low-level objects

Combination surf/contourplot
Three-dimensional shaded surface with lighting
Tetrahedron mesh plot

JAIAA

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

466 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

trimesh
triplot
trisurf

Domain Generation

griddata
meshgrid

Color Operations

brighten
caxis

colormapeditor

colorbar
colordef
colormap
ColorSpec
graymon
hsv2rgb
rgb2hsv
rgbplot
shading
spinmap
surfnorm
whitebg

Colormaps
autumn
bone
contrast
cool
copper
flag
gray

hot

hsv

jet

lines
prism
spring
summer
winter

Triangular mesh plot
Two-dimensional triangular plot
Triangular surface plot

Data gridding and surface fitting
Generation of X and Y arrays for three-dimensional
plots

Brighten or darken colormap

Pseudocolor axis scaling

Start colormap editor

Display color bar (color scale)

Set up color defaults

Set the color look-up table (list of colormaps)
Ways to specify color

Graphics figure defaults set for gray-scale monitor
Hue-saturation-value to red-green-blue conversion
RGB to HSV conversion

Plot colormap

Color shading mode

Spin the colormap

Three-dimensional surface normals

Change axes background color for plots

Shades of red and yellow colormap

Gray scale with a tinge of blue colormap
Gray colormap to enhance image contrast
Shades of cyan and magenta colormap
Linear copper-tone colormap

Alternating red, white, blue, and black colormap
Linear gray-scale colormap
Black-red-yellow-white colormap
Hue-saturation-value (HSV) colormap
Variant of HSV

Line color colormap

Colormap of prism colors

Shades of magenta and yellow colormap
Shades of green and yellow colormap
Shades of blue and green colormap

View Control Controlling the Camera Viewpoint

camdolly
camlookat
camorbit
campan
campos
camproj
camroll
camtarget
cameratoolbar

Move camera position and target

View specific objects

Orbit about camera target

Rotate camera target about camera position
Set or get camera position

Set or get projection type

Rotate camera about viewing axis

Set or get camera target

Control camera toolbar programmatically

JAIAA

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

APPENDIX C: MATLAB®, SIMULINK®, AND STATEFLOW® 467

camup Set or get camera up-vector

camva Set or get camera view angle

camzoom Zoom camera in or out

view Three-dimensional graph viewpoint specification
viewmtx Generate view transformation matrices

Setting the Aspect Ratio and Axis Limits

daspect Set or get data aspect ratio

pbaspect Set or get plot box aspect ratio

xlim Set or get the current x-axis limits

ylim Set or get the current y-axis limits

zlim Set or get the current z-axis limits

Object Manipulation

pan Turns panning on or off

reset Reset axis or figure

rotate Rotate objects about specified origin and direction

rotate3d Interactively rotate the view of a three-dimensional
plot

selectmoveresize Interactively select, move, or resize objects

zoom Zoom in and out on a two-dimensional plot

Selecting Region of Interest

dragrect Drag XOR rectangles with mouse

rbbox Rubberband box

Lighting

camlight Cerate or position Light

light Light object creation function

lightangle Position light in sphereical coordinates

lighting Lighting mode

material Material reflectance mode

Transparency

alpha Set or query transparency properties for objects in
current axes

alphamap Specify the figure alphamap

alim Set or query the axes alpha limits

Volume Visualization

coneplot Plot velocity vectors as cones in three-dimensional
vector field

contourslice Draw contours in volume slice plane

curl Compute curl and angular velocity of vector field

divergence Compute divergence of vector field

flow Generate scalar volume data

interpstreamspeed Interpolate streamline vertices from vector-field
magnitudes

isocaps Compute isosurface end-cap geometry

isocolors Compute colors of isosurface vertices

isonormals Compute normals of isosurface vertices

isosurface Extract isosurface data from volume data

reducepatch Reduce number of patch faces

GdAIAA

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

468 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

reducevolume
shrinkfaces
slice

smooth3
stream2
stream3
streamline

streamparticles
streamribbon
streamslice

streamtube
surf2patch
subvolume
volumebounds

Reduce number of elements in volume data set

Reduce size of patch faces

Draw slice planes in volume

Smooth three-dimensional data

Compute two-dimensional stream line data

Compute three-dimensional stream line data

Draw stream lines from two- or three-dimensional
vector data

Draws stream particles from vector volume data

Draws stream ribbons from vector volume data

Draws well-spaced stream lines from vector volume
data

Draws stream tubes from vector volume data

Convert surface data to patch data

Extract subset of volume data set

Return coordinate and color limits for volume (scalar
and vector)

Creating Graphical User Interfaces Predefined Dialog Boxes

dialog
errordlg
helpdig
inputdig
listdlg
msgbox
pagesetupdig
printdig
questdig
uigetdir
uigetfile
uigetpref
uiputfile
uisave

uisetcolor
uisetfont

waitbar
warndlg

Create and display dialog box

Create and display error dialog box

Create and display help dialog box

Create and display input dialog box

Create and display list selection dialog box

Create and display message dialog box

Display page setup dialog box

Display print dialog box

Display question dialog box

Display standard dialog box for retrieving a directory

Display standard dialog box for retrieving files

Display dialog box for retrieving preferences

Display standard dialog box for saving files

Display standard dialog box for saving workspace
variables

Display standard dialog box for setting an object’s
ColorSpec

Display standard dialog box for setting an object’s
font characteristics

Display waitbar

Display warning dialog box

Deploying User Interfaces

guidata
guihandles
movegui
openfig

Store or retrieve GUI data

Create a structure of handles

Move GUI figure to specified location onscreen
Open new copy or raise existing copy of GUI figure

Developing User Interfaces

guide
inspect

Start the GUI Layout Editor
Display Property Inspector

Working with Application Data

getappdata

Get value of application-defined data

GdAIAA

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

APPENDIX C: MATLAB®, SIMULINK®, AND STATEFLOW® 469

isappdata True if application-defined data exists

rmappdata Remove application-defined data

setappdata Specify application-defined data

guidata Store or retrieve GUI data

Interactive User Input

ginput Graphical input from a mouse or cursor

waitfor Wait for conditions before resuming execution

waitforbuttonpress Wait for key/buttonpress over figure

Working with Preferences

addpref Add preference

getpref Get preference

ispref Test for existence of preference

rmpref Remove preference

setpref Set preference

uigetpref Display dialog box for retrieving preferences

uisetpref Manage preferences used in uigetpref

User Interface Objects

menu Generate menu of choices for user input

uibuttongroup Create container object to exclusively manage radio
buttons and toggle buttons

uicontextmenu Create context menu

uicontrol Create user interface control object

uimenu Create menus on figure windows

uipanel Create panel container object

uipushtool Create push button on a toolbar

uitoggletool Create toggle button on a toolbar

uitoolbar Create toolbar on a figure

Finding Objects from Callbacks

findall Find all graphics objects

findfigs Find visible off-screen figures

findobj Locate graphics objects with specific properties

gcbf Return handle of figure containing object whose
callback is executing

gcbo Return handle of object whose callback is executing

GUI Utility Functions

selectmoveresize Select, move, resize, or copy axes and uicontrol
graphics objects

textwrap Return wrapped string matrix for given uicontrol

uistack Restack objects

Controlling Program Execution

uiresume Resume program execution halted with uiwait
uiwait Halt program execution, restart with uiresume
External Interfaces Dynamic Link Libraries

calllib Call function in external library

libfunctions Return information on functions in external library
libfunctionsview Create window displaying information on functions

in external library

JAIAA

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

470 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

libisloaded
libpointer
libstruct
loadlibrary
unloadlibrary

Java
class
fieldnames
import
inspect

isa

isjava
ismethod
isprop
javaaddpath
javaArray
javachk

javaclasspath
javaMethod
javaObject
javarmpath
methods
methodsview

usejava

Determine if external library is loaded

Create pointer object for use with external libraries
Construct structure as defined in external library
Load external library into MATLAB

Unload external library from memory

Create object or return class of object

Return property names of object

Add package or class to current Java import list

Display graphical interface to list and modify
property values

Determine if input is object of given class

Determine if input is Java object

Determine if input is object method

Determine if input is object property

Add entries to dynamic Java class path

Construct Java array

Generate error message based on Java feature
support

Set and get dynamic Java class path

Invoke Java method

Construct Java object

Remove entries from dynamic Java class path

Display information on class methods

Display information on class methods in separate
window

Determine if Java feature is supported in MATLAB

Component Object Model and ActiveX

actxcontrol
actxcontrollist
actxcontrolselect

actxserver
addproperty
class

delete
deleteproperty
enableservice
eventlisteners
events
Execute
Feval
fieldnames
get

GetCharArray
GetFullMatrix
GetVariable
GetWorkspaceData
inspect

Create ActiveX control in figure window

List all currently installed ActiveX controls

Display graphical interface for creating ActiveX
control

Create COM Automation server

Add custom property to object

Create object or return class of object

Delete COM control or server

Remove custom property from object

Enable DDE or COM Automation server

Return list of events attached to listeners

Return list of events the control can trigger

Execute MATLAB command in server

Evaluate MATLAB function in server

Return property names of object

Get property value from interface, or display
properties

Get character array from server

Get matrix from server

Returns data from variable in server workspace

Get data from server workspace

Display graphical interface to list and modify
property values

JAIAA

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

APPENDIX C: MATLAB®, SIMULINK®, AND STATEFLOW® 471

interfaces
invoke

isa

iscom
isevent
isinterface
ismethod
isprop
load

MaximizeCommandWindow

methods
methodsview

MinimizeCommandWindow
move

propedit
PutCharArray
PutFullMatrix
PutWorkspaceData
Quit

registerevent
release

save

send

set
unregisterallevents
unregisterevent

Dynamic Data Exchange
ddeadv

ddeexec

ddeinit

ddepoke

ddereq

ddeterm

ddeunadv

Web Services
callSoapService
createClassFromWsdl
createSoapMessage
callSoapService

Serial Port Devices
clear

delete
disp
fclose

List custom interfaces to COM server

Invoke method on object or interface, or display
methods

Detect object of given MATLAB class or Java class

Determine if input is COM object

Determine if input is event

Determine if input is COM interface

Determine if input is object method

Determine if input is object property

Initialize control object from file

Display server window on
Windows desktop
List all methods for control or server
Display graphical interface to list method
information
Minimize size of server window
Move or resize control in parent window
Display built-in property page for control
Store character array in server
Store matrix in server
Store data in server workspace
Terminate MATLAB server
Register event handler with control’'s event
Release interface
Serialize control object to file
Obsolete—duplicate of events
Set object or interface property to specified value
Unregister all events for control
Unregister event handler with control’s event

Set up advisory link

Send string for execution
Initiate DDE conversation
Send data to application
Request data from application
Terminate DDE conversation
Release advisory link

Send SOAP message off to endpoint

Create MATLAB object based on WSDL file

Create SOAP message to send to server

Convert response string from SOAP server to
MATLAB type

Remove serial port object from MATLAB
workspace

Remove serial port object from memory

Display serial port object summary information

Disconnect serial port object from the device

JAIAA

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

472 BASIC MATLAB®, SIMULINK®, AND STATEFLOW®

fgetl

fgets

fopen

fprintf

fread

fscanf

fwrite

get
instrcallback
instrfind

isvalid
length
load

readasync
record
save

serial
serialbreak
set

size
stopasync

C Programs
MEX-Files

MATLAB Engine
MX Array Manipulation

MAT-File Access

FORTRAN Programs
MEX-Files

MATLAB Engine
MX Array Manipulation

MAT-File Access

Read from device and discard the terminator

Read from device and include the terminator

Connect serial port object to the device

Write text to the device

Read binary data from the device

Read data from device and format as text

Write binary data to the device

Return serial port object properties

Display event information when an event occurs

Return serial port objects from memory to the
MATLAB workspace

Determine if serial port objects are valid

Length of serial port object array

Load serial port objects and variables into
MATLAB workspace

Read data asynchronously from the device

Record data and event information to a file

Save serial port objects and variables to MAT-file

Create a serial port object

Send break to device connected to the serial port

Configure or display serial port object properties

Size of serial port object array

Stop asynchronous read and write operations

Perform operations in the MATLAB environment f
rom your C MEX-files

Call MATLAB from your own C programs

Create and manipulate MATLAB arrays from
C MEX and Engine routines

Incorporate and use MATLAB data in your own
C programs

Perform operations in the MATLAB environment
from your FORTRAN MEX-files

Call MATLAB from your own FORTRAN programs

Create and manipulate MATLAB arrays from
FORTRAN MEX and Engine routines

Incorporate and use MATLAB data in your own
FORTRAN programs

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

Bibliography

Chapman, S. J., MATLAB Programming for Engineers, 3rd ed., Thomson Engineering,
2005.

Etter, D., Kuncicky, D., and Moore, H., Introduction to MATLAB 7, Prentice-Hall,
Upper Saddle River, NJ, 2005.

Gilat, A., MATLAB: An Introduction with Applications, 2nd ed., Wiley, New York,
2005.

Hanselman, D. C., and Littlefield, B. L., Mastering MATLAB 7, Prentice-Hall, Upper
Saddle River, NJ, 2005.

Magrab, E. B., Azarm, S., Balachandran, B., Duncan, J., Herold, K., and Walsh, G., An
Engineer’s Guide to MATLAB, with Applications from Mechanical, Aerospace, Electrical,
and Civil Engineering, 2nd ed., Prentice-Hall, Upper Saddle River, NJ, 2005.

Palm, W. J, 11, Introduction to MATLAB 7 for Engineers, McGraw-Hill, New York,
2005.

Stanley, W. D., Technical Analysis and Applications with MATLAB, Thomson Delmar
Learning, 2005.

Aerospace Blockset User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Bioinformatics Toolbox User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Carlson, E. S., Efficient MATLAB for Engineers, OtFringe, 2004.

CDMA Reference Blockset User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Communications Blockset User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Communications Toolbox User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Control System Toolbox User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Curve Fitting Toolbox User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Dabney, J. B., and Harman, T. L., Mastering Simulink, Prentice-Hall, Upper Saddle
River, NJ, 2004.

Data Acquisition Toolbox User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Database Toolbox User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Datafeed Toolbox User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Distributed Computing Toolbox User’s Guide, The MathWorks, Natick, MA, 3 Aug.
2006.

Embedded Target for Infineon CI66® Microcontrollers User’s Guide, The
MathWorks, Natick, MA, 3 Aug. 2006.

Embedded Target for Motorola® HC12 User’s Guide, The MathWorks, Natick, MA,
3 Aug. 2006.

Embedded Target for Motorola® MPC555 User’s Guide, The MathWorks, Natick,
MA, 3 Aug. 2006.

473

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

474 BIBLIOGRAPHY

Embedded Target for OSEK/VDX® User’s Guide, The MathWorks, Natick, MA,
3 Aug. 2006.

Embedded Target for TI C2000" DSP User’s Guide, The MathWorks, Natick, MA,
3 Aug. 2006.

Embedded Target for T C6000™ DSP User’s Guide, The MathWorks, Natick, MA,
3 Aug. 2006.

Excel Link User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Extended Symbolic Math Toolbox User’s Guide, The MathWorks, Natick, MA, 3 Aug.
2006.

Filter Design HDL Coder User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Filter Design Toolbox User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Financial Derivatives Toolbox User’s Guide, The MathWorks, Natick, MA, 3 Aug.
2006.

Financial Time Series Toolbox User’s Guide, The MathWorks, Natick, MA, 3 Aug.
2006.

Financial Toolbox User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Fixed-Income Toolbox User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Fixed-Point Toolbox User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Fuzzy Logic Toolbox User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

GARCH Toolbox User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Gauges Blockset User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Genetic Algorithm and Direct Search Toolbox User’s Guide, The MathWorks, Natick,
MA, 3 Aug. 2006.

Image Acquisition Toolbox User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Image Processing Toolbox User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Instrument Control Toolbox User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Link for Code Composer Studi()TM User’s Guide, The MathWorks, Natick, MA, 3 Aug.
2006.

Link for ModelSim® User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Mapping Toolbox User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

MATLAB® Builder for COM User’s Guide, The MathWorks, Natick, MA, 3 Aug.
2006.

MATLAB® Builder for Excel User’s Guide, The MathWorks, Natick, MA, 3 Aug.
2006.

MATLAB® Compiler User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

MATLAB® Distributed Computing Engine User’s Guide, The MathWorks, Natick,
MA, 3 Aug. 2006.

MATLAB® Report Generator User’s Guide, The MathWorks, Natick, MA, 3 Aug.
2006.

MATLAB® User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

MATLAB® Web Server User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Model-Based Calibration Toolbox User’s Guide, The MathWorks, Natick, MA, 3 Aug.
2006.

Model Predictive Control Toolbox User’s Guide, The MathWorks, Natick, MA, 3 Aug.
2006.

Neural Network Toolbox User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

OPC Toolbox User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Optimization Toolbox User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

BIBLIOGRAPHY 475

Partial Differential Equation Toolbox User’s Guide, The MathWorks, Natick, MA,
3 Aug. 2006.

Real-Time Windows Target User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Real-Time Workshop® Embedded Coder User’s Guide, The MathWorks, Natick,
MA, 3 Aug. 2006.

Real-Time Workshop® User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

RF Blockset User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

RF Toolbox User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Robust Control Toolbox User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Signal Processing Blockset User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Signal Processing Toolbox User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

SimDriveline User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

SimMechanics User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

SimPowerSystems User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Simulink® Accelerator User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Simulink® Control Design User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Simulink® Fixed Point User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Simulink® Parameter Estimation User’s Guide, The MathWorks, Natick, MA, 3 Aug.
2006.

Simulink® Report Generator User’s Guide, The MathWorks, Natick, MA, 3 Aug.
2006.

Simulink® Response Optimization User’s Guide, The MathWorks, Natick, MA, 3 Aug.
2006.

Simulink® User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Simulink® Verification and Validation User’s Guide, The MathWorks, Natick, MA,
3 Aug. 2006.

Spline Toolbox User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Stateflow Coder User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Stateflow® User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Statistics Toolbox User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Symbolic Math Toolbox User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

System Identification Toolbox User’s Guide, The MathWorks, Natick, MA, 3 Aug.
2006.

Video and Image Processing Blockset User’s Guide, The MathWorks, Natick, MA,
3 Aug. 2006.

Virtual Reality Toolbox User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Wavelet Toolbox User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

xPC TargetBox® User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

xPC TargetBox® Embedded Option User’s Guide, The MathWorks, Natick, MA,
3 Aug. 2006.

xPC TargetBox® User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Lyshevski, S. E., Engineering and Scientific Computations Using MATLAB, Wiley,
New York, 2003.

Hunt, B. R., Lipsman, R. L., Rosenberg, J. M., Coombes, K. R., Osborn, J. E., and
Stuck, G. J., A Guide to MATLAB: For Beginners and Experienced Users, Cambridge
Univ. Press, 2001.

Palm, W. J., Ill, MATLAB for Engineering Applications, WCB/McGraw-Hill,
New York, 1999.

JAIAA.

The Workd's Frum e dsropom Landeedip. - Purchased from American Institute of Aeronautics and Astronautics

476 BIBLIOGRAPHY

Etter, D. M., Engineering Problem Solving with MATLAB, 2nd ed., Prentice-Hall,
Upper Saddle River, NJ, 1997.

Etter, D. M., and Kuncicky, D., Introduction to MATLAB for Engineers and Scientists,
Prentice-Hall, Upper Saddle River, NJ, 1996.

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

Absolute error tolerance, 431
Action table, 419
Actuator demand, 167
Actuators, 192
Addition, 5
Additional Math & Discrete library, 190
Adjoint of 3 x 3 Matrix block, 325
Aerospace Blockset, 325
Aerodynamics library, 192
Animation library, 192
Environment library, 192
Flight Parameters library, 193
GNC library, 193
library, 192
Mass Properties library, 193
Propulsion library, 194
Utilities library, 194
Align Objects, 115
Animation, 463
Annotating plots, 462
Annotation object properties, 462
Append column icon, 420
Append row icon, 420
Application data
working with, 468—-469
Apply, 226, 251, 306, 307
Arithmetic operations, 454
Array
array operations, 452—453
basic information, 453
cell, 451
division, 8
Editor, 9
elementary, 441-442, 453-454
lengths, 132
manipulation, 453
multiplication, 7
pointers, 132
Aspect ratio, 467

Index

Assertion block, 327

Audio and Audio/Video general, 460

Audio/Video Interleaved (AVI)
functions, 460—462

Automatic solver parameter selection,

324, 329
Autoscale, 206
avifile, 58

axis, 49-50, 105
all properties command, 108—111
flip, 111
limits, 467
object, 105
operations, 107, 465
properties modification, 107

Band-interleaved data, 460
Bit-mapped images, 464
Bit operations, 181
bench, 37
Benchmark, 37
Block Parameters, 230, 262, 319
menu, 235
Transfer Fen, 306
window, 291, 302
Blocks, connecting, 393
Bode, 67
Bode diagrams, 261, 278
Bottleneck computations, 129
Boundary-value problems, 444
Browser
Simulink Library, 414
Bubble plots, 461
Bus Creator block, 323
Bus methods, 297
Bus Selector block, 323

Callback, 117
Model pre-load function window, 236

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

478 INDEX

cells, 95-102

CDF, 460

C2d, 93

C2dm, 86

Cell arrays, 451

celldisp, 96

cellplot, 96

Cells, 95-96

C engine routines, 142

Characteristic polynomial, 12

Characteristics, 262

characters description, 450

Chart block, 389

Check Boxes, 117

C language MEX-file, 131

classes and objects, 457—-458

clear, 7

Clock block, 349

Closed-loop damping, 76

Closed-loop eigenvalues, 69

close_system, 166

CMEX S-Function, 336

CMEX S-Function gateway, 354-357

Colon operator, 13

Colormaps, 466

Color operations, 466

Combined Simulink and Stateflow
systems, 161-165

Command History, 4

Command Library, 414

Command Window, 3, 39, 99, 153, 176,
210, 236, 243, 252, 286, 297, 315,
342

control, 23-24
Stateflow software, 369

Common Data Format (CDF), 460

Commonly Used Blocks library, 178

Compiling a stand-alone executable, 125

Component object model and ActiveX,
470-471

COM Support, 143

Conditional system model, 158—-160

cond, 10

Condition number, 10

Configuration Parameters, 237, 328, 403,
416

Connecting blocks, 393

Constant block, 303, 305, 325, 392, 394,
399

Contents list, 37

Contents.m file, 101

Continuous blocks, 300

Continuous library, 179, 213, 248, 255,
262, 303

Continuous-to-discrete mappings, 88, 89

Continuous transfer functions, 61-62, 89

contour, 53

Contour diagrams, 53—-54, 462

Control Design Tools, 268

Controller block, 395, 398—-400, 407

Controlling program execution, 469

Controls analysis methods, 65—66

Control System Toolbox, 61, 265

library, 264, 285

Convex hull, 443

conv, 61

Convolution, 61

Coordinate system conversion Cartesian,
443

Correlation, 446

C programs, 129, 472

Create 3 x 3 Matrix block, 325

Current Compensator panel, 285-286

Current Directory, 4

Damping, 62
Data array, 97
Data type conversion numeric, 451
Data type determination, 452
Date and time operations, 455
DDE Support, 143
Debug, 431
Debugging, 24

C MEX-files, 138

FORTRAN MEX-file, 142
Default transition, 381, 387
Delaunay triangulation and tessellation,

443

Delay differential equations, 444
Delete key, 311
Demo, 204
Demux element, 323
Demux methods, 297
Deploying user interfaces, 468
Determinant, 10
Determinant of 3 x 3 Matrix block, 325
Developing user interfaces, 468
Diagnostics menu, 329
Diagnostics page, 324
Digital system design, 85-91
Direction and velocity plots, 462
Directory organization, 131
Discontinuities library, 179
Discrete data plots, 463

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

Discrete library, 180
Discrete math, 441
Discrete representations, 89
Discrete Solver, 328
Discrete-to-continuous mappings, 89
Discrete transfer functions, 89
Display blocks, 325
Division, 8

array, 8

matrix, 8
Documentation block, 319
Domain generation, 443, 466
Do While, 371
Drawing toolbar, 381
Dutch roll mode, 71
Dynamic Data Exchange, 471

echo, 102
edit, 101
Edit parameters, 161
Edit Text, 117
Eigenvalues, 11
closed-loop, 69
open-loop, 71
open-loop discrete, 92
EISPACK, 425
Elementary matrices and arrays,
441-442, 453-454
Embedded MATLAB
function, 381
Engine library, 142-147
C example, 143
FORTRAN example, 145
Equations of Motion library, 192
Equivalent continuous state-space
model, 62
Error handling, 458
euler, 157
Excel, 459-460
Exponential, 438
matrix, 12, 439
Expressions, 456
External interfaces dynamic link
libraries, 469-470

Factorization, 439-440

F-14 control system, 169—172
figure, 105

figure_handles, 114

Figure Windows, 107, 465

File menu, 3

Finite difference and integration, 447

INDEX 479

fixed-step continuous solvers, 433-434
fixed-step discrete solvers, 432—433
Fixed-step solver, 350
Flexible image transport system, 460
Flow diagrams, 55
for, 99
format, 9
Vector Line Widths, 324
Wide Nonscalar Lines, 324
FORTRAN, 129
engine routines, 143
MEX-file details, 141
MEX-file example, 138
programs, 472
S-Function, 352-353
Forward rectangular rule, 90
Fourier transforms, 447
Frames, 117
Frames per second, 56
Frequency response, 67
functions, 63
FTP functions, 461
Full to sparse conversion, 445
Function, 437, 456
handles, 456-457
management, 23
M-files, 100
plots, 463
Stateflow, 381
Functions programming, 455-456

Gain block, 217, 232
getframe, 56
Get Linearized Model, 271
gradient, 54
Graphical User Interface (GUI), 261
customizing, 125
definition, 112
development environment, 112—-114
graph creation, 120
utility functions, 469
Graphics objects
finding and identifying, 105
grid, 44
LTI Viewer, 262
GUI, 468
guide, 114

Handle Graphics, 105-111
finding and identifying graphics
objects, 464
Tree-structured hierarchy, 106

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

480 INDEX
Handles, Iqr, 69
function, 456457 Linear Quadratic Regulator (LQR), 69

help, 11

Help browser, 13

Help button, 3, 270

Help Navigator, 270

Help topics, 15-22

Help window, 269, 286, 293
Hierarchical Data Format (HDF), 460
Histograms, 463

History, 425-428

History Junction, 379

hold on, 64

Images, 461
qualities, 105
implicit fixed-step continuous solvers, 435
Import Data, 6
Import from, Simulink, 292
Import System Data, 289, 290
improving simulation accuracy, 430
improving simulation performance and
accuracy, 429
impulse, 72
Impulse response, 261
include subdirectory, 131
Input and Output, 262
Input Point, 262
Integrator, 235
continuous time, 401
Integrator block, 213
Interactive user input, 469
Interpolation, 442-443
Invert 3 x 3 Matrix block, 327
I/O Pole/Zero plots, 261, 281
Iterative methods, 439, 446

Java, 470
classes and objects, 458
search path management, 23

LAPACK, 425

Laplace transform, 85

Layout Editor, 114, 115-116

Libraries. See also Specific types
building interfaces, 129

Library Browser, 191, 262

Lighting, 467

Linear algebra, 446

Linear Analysis, 268

Linear equation, 439, 446

Linearization Points, 262

Line object, 106
LINPACK, 425
List Boxes, 117
List of Signs, 226
load, 6
Loading files, 6, 459
Log plots, 47
loglog, 47
semilog x, 47
semilog y, 47
Logarithms and exponentials
matrix, 439
Logical operations, 455
Logic and Bit operations, 181
Lookup Tables library, 180
Lotus123 functions, 460
Low-level file I/0O, 459
LTI Viewer, 261-284

Manual Switch block
icon, 407
Simulink, 390, 393
Stateflow, 389, 394-395, 400, 407
Mask editor, 320
Math constants, 446
Math Function block, 219, 228
Math Operations, 182—183, 325
library, 216, 300
MathWorks, The, 342
contact information, 35-36
e-mail, 35-36
history, 425-428
MATLAB, 3. See also Specific topic
MATLAB Command Window. See
Command Window
Matrix
analysis, 438
data structure, 130
division, 8
elementary, 441-442
elementary sparse, 445
exponential, 12
functions, 10-12
inverse, 10
logarithms and exponentials, 439
multiplication, 7
object properties, 131
matrix.h, 132
Matrix Laboratory. See MATLAB
Matrix-X, 425-426

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

Memory
functions, 456-457
mapping, 459
variables, 456—457
Menu Editor, 115, 124
Meshes, 465-466
mesh, 52
meshgrid, 52
Mesh plots, 52, 465-466
mexErrMsgTxt, 142
MEX-file, 129-148
details, 137
different computer systems, 130
extensions, 130
interface library, 130
speed advantages, 133
three-body problem, 133
using, 130
mexFunction, 132, 137, 141
mex.h, 132
MEX programming, 129-148, 458
M-File Editor, 116
M-files, 95-102, 455-456
converting, 125
functions, 100, 125
S-Function, 336
speeding up, 130
types, 98
Model, 298
comparison, 166—168
Properties, 235
Verification library, 185
Model-Wide Utilities library, 185
Movies, 56-57
Multiplication, 7
array, 7
matrix, 7
mu-Synthesis Toolbox, 70
Mux/Demux, 323
Mux element, 323
Mux methods, 297
mxCalloc, 138, 142
mxCreateDoubleMatrix, 138, 142
mxCreateSparse, 138, 142
mxCreateString, 138, 142

nargin, 132

nargout, 132

New Menu Item buttons, 124
New Model button, 211
Newton’s law, 85

NextPlot, 48

INDEX 481

nichols, 68

Nichols Charts, 68, 261, 279

non-real-time and real-time simulations,
436

Numerical integration (quadrature), 444

Numeric to string, 452

nyquist, 68

Nyquist Charts, 68, 261, 279

Object Browser, 116
Object creation functions, 106, 464
Object manipulation, 467
object-oriented programming, 457-458
Object palette, 381
Object Properties, 107, 465
matrix, 131
ode23, 134
ode45, 401
Off state, 382
OK button, 113
On state, 382
Opening files, 459
Open-loop eigenvalues
continuous, 71
discrete, 92
Open M-file, 99
Operating system commands, 24
Operations and manipulations, 437-438
Operators, 437, 454
Optimization, 444
Ordinary differential equations, 443444
Output Point, 262

Parameter estimation, 297-314
Parameter Window, 300-301
Partial differential equations, 444
path, 25-33
peaks, 55
Plot, 47
area, 462
annotating, 462
bar chart, 462
Bode, 67, 261, 278
Configurations window, 273, 282
contour, 53, 54, 462
direction and velocity, 462
discrete data, 463
function, 463
I/0 pole/zero, 261, 281
LTI Types, 261, 273
log scale, 47
NextPlot, 48

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

482 INDEX

Plot (Continued)
Nichols, 68, 261, 279
Nyquist, 68, 279
Objects, 106—107, 465
pie chart, 462
polar, 47
pole/zero, 261, 281
Properties, 274
scatter /bubble, 463
Scope, 163, 238, 374
semilog, 47
sigma, 261, 280
tools, 461-462
Pointers
array, 132
Polar plots, 47
Pole-zero mapping, 89
Pole-zero method, 88
Pole-zero plots, 261, 281
Polygons and surfaces, 463
Polynomials, 442
Population model, 209-237
analyzing, 238
Popup Menu, 117
Ports & Subsystems library, 186
Precision. See Format
Preferences, 3, 469
dialog box, 204
Prime factors, 441
print, 43
Print, 262
Printing, 464
Printsys, 62
Product block, 302
Program execution
controlling, 469
programming, 455-456
Programming and numeric data types,
449
Properties, 262
LTI Viewer plot, 274
Property Editor, 262
Property Inspector, 116—123
Protoblock, 426
Pulse Generator block, 241
Push Buttons, 116

Quick Reference Guide, 437-472
quiver, 53

Radio Buttons, 117
Ramp block, 159

rank, 10

Relational operations, 454—-455
Release Notes, 39

releases, 427

Reordering algorithms, 445
Riccati solution, 69

rlocus, 63, 64, 76, 81

Robust Control toolbox, 70
roots, 105

Root locus, 63, 64, 76, 81
Rounding and remainder, 441
Run button, 115-116
Runge-Kutta integration, 238, 350

Save, 6, 401, 459
Save As, 98
save_system, 375
Save Workspace As, 6
Scatter/bubble plots, 463
Scientific data CDF, 460
Scope, 159, 233, 245, 298
block, 220, 246
Simulink plot, 163, 238
Stateflow plot, 374
Scripts, 455-456
Search path management, 23
Selecting region of interest, 467
selecting solvers, 432
Semilog plots, 47
Serial port devices, 471-472
Set operations, 455
sflib, 376
S-Function, 190, 335-360
C example, 336-351
FORTRAN example, 352-354
S-Function Builder, 190, 335, 345-348
Shared libraries, 24-25
Sigma Plot, 261, 280
Signal Attributes library, 184
Signal Generator block, 246, 254,
298, 313
Signal Routing library, 187
Sim, 163, 315
Simulation, 206, 253
accuracy, 430
Configuration Parameters, 403
fixed-step continuous solvers,
433-434
fixed-step discrete solvers, 432—-433
implicit fixed-step continuous solvers,
435
menu, 168, 316

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

INDEX 483

Simulation (Continued)
performance, 429
Start, 238, 315
tracing facilities, 431
tuning, 429-437
variable-step solvers, 432
simulation commands, 430-431
simulation interface, 315
Simulink, 153, 176, 243, 262, 298.
See also Specific topic
LTI models, 283-284
LTI viewer, 262—-282
releases, 427-428
S-Function, 335-360
C example, 336-351
FORTRAN example, 352-354
solvers, 432
Van der Pol equation, 336-351
versions, 202
Simulink Library Browser, 154, 206, 210,
243, 255, 298, 320, 414
Singular value decomposition, 12
Singular Values, 439
Sinks library, 188, 249, 300
sisotool, 286
SISO Design Tool, 285-292
Sliders, 117
SMART mode, 385
Sound functions, 460
Sources library, 189, 206, 241, 248, 254,
263, 303
SPARCstation-specific sound
functions, 460
Sparse matrices, 445
Specialized math, 444 -445
Specialized matrices, 442
speeding simulations, 429-430
Square wave, 241, 331
Start simulation 206, 253, 406
icon, 420
Stateflow, 369-421. See also Specific
topic
Chart block, 160, 377
diagram editor, 376, 379
models
constructing, 376-409
opening, executing, saving, 369—
375
releases, 428
sflib, 376
truth table, 410-420, 411
example, 421

State-Space
block, 294
design, 70—84, 256-258
model, 256-257, 259, 283
State transitions, 382
Static Text, 117
Statistics, 447
step, 72
Step response, 64—66, 261, 269, 271
Stop time, 314
String, 117, 450
String to numeric, 452
Structures, 95-102, 450-451
Subplots, 48
Subsystems
create, 317
libraries, 316—-322
Mask, 319
strings description, 450
structures, 95-102
Subtraction, 5-6
Sum block, 226, 234
properties, 303
System Build, 426
system modeling, 297

Target Language Compiler (TLC), 335
Text files, 459
Text strings, 100
on graph, 112
tf, 62
tf2ss, 62, 256
Three-dimensional visualization,
465-466
tickDir, 111
Timer functions, 456
Time-series
data, 448-449
events, 448
statistics, 448
To File block, 188
Toggle Buttons, 116—117
Toolboxes
MATLAB, 61-92
special purpose blocks, 175
tracing facilities, 431
Transfer Fcn, block, 246, 248, 255, 258,
262, 298, 303, 311. See also
Transfer Function
Transfer Function, 61-62, 245, 262
tf, 62
Simulink, 243-253

The Worlds Forum for kemspos Lssdwesip - Purchased from American Institute of Aeronautics and Astronautics

484 INDEX
Transformations library, 194 Vector signals, 323-324
Transparency, 467 math functions, 325-328
Transpose, 5 versions, 33-35, 202, 426
Trapezoid rule, 90 View control, 466—467
Tree operations, 446 Visualization, 465-466
Trigger, 390, 396-400, 407 Volume visualization, 467-468
input, 398, 400 Voronoi diagrams, 443
symbol, 390
Trigonometric functions, 440 WAVE (.wav), 460
Truth Table block, 376, 381, 411, 418 Web services, 471
diagram, 377 what command, 99
example, 421 while, 100
generator, 377, 411 Workspace
tuning, 429-437 browser, 9
Tustin’s bilinear rule, 90 I1/0, 237,314
management, 23
uicontrol objects, 116 window, 7
uigetfile, 127
Unmask, 320 xlabel, 44
User Defined Functions, 190, 335, 342 XML documents, 459
User interface objects, 469
ylabel, 44
Van der Pol equation, 153-157, 336
Van der Pol system ZeroCross, 431
implemented as C code, 338 Zero-Pole block, 254255, 258, 283, 294

variable-step solvers, 432 Zoom, 262

	Cover
	Title
	Copyright
	Foreword
	Table of Contents
	Preface
	Acknowledgements
	Basic MATLAB
	Chapter 1. Introduction to MATLAB
	Chapter 2. Plotting and Graphics
	Chapter 3. Introduction to MATLAB Toolboxes
	Chapter 4. Introduction to MATLAB Cells,Structures, and M-Files
	Chapter 5. Handle Graphics and User Interfaces
	Chapter 6. Introduction to MATLAB MEX-Files

	Basic Simulink
	Chapter 7. Brief Introduction to Simulink and Stateflow
	Chapter 8. Introduction to Simulink
	Chapter 9. Building a Simple Simulink Model
	Chapter 10. Building Simulink Linear Models
	Chapter 11. LTI Viewer and SISO Design Tool
	Chapter 12. Building a Multiple-Input, Multiple-Output Simulink Model
	Chapter 13. Building Simulink S-Functions

	Basic Stateflow
	Chapter 14. Introduction to Stateflow

	Appendix A. History of MATLAB and The MathWorks, Inc.
	Appendix B. Tuning MATLAB, Simulink, and Stateflow Solvers
	Appendix C. MATLAB, Simulink, and Stateflow Quick Reference Guide
	Bibliography
	Index

