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Foreword

We are very happy to present Basic MATLABw, Simulinkw, and Statefloww by
Richard Colgren. We are confident that this comprehensive and in-depth treat-
ment of this widely-used material will be very well received by the technical
community. The book has fourteen chapters and three appendices in about 500
pages.

This author is extremely well qualified to write this book because of his broad
and deep expertise in the area. His command of the material is excellent, and he is
able to organize and present it in a very clear manner.

The AIAA Education Series aims to cover a very broad range of topics in the
general aerospace field, including basic theory, applications, and design. Infor-
mation about the complete list of titles can be found on the last page of this
volume. The philosophy of the series is to develop textbooks that can be used
in a university setting, instructional materials for continuing education and pro-
fessional development courses, and also books that can serve as the basis for
independent study. Suggestions for new topics or authors are always welcome.

Joseph A. Schetz
Editor-in-Chief
AIAA Education Series
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Preface

This book is based on materials developed during more than 22 years of teaching
MATLABw, Simulinkw, and Statefloww in a variety of formats to a diverse range
of audiences. Most of these courses required little to no background in any of
these tools from these students. The book can be used for self-instruction on
all three of these topics. All of these tools are relatively easy to use once the
basics are understood. The hands-on approach taken in this book is designed to
provide the user with just such a background. This book is in no way meant to
be comprehensive in its coverage of these three tool sets. A comprehensive
book on MATLAB was possible 20 years ago. However, with the vast number
of toolboxes and model libraries available today, a comprehensive coverage of
these three subjects would require a bookshelf, not a single book.

When used as a classroom text, this book is formatted to support a MATLAB/
Simulink/Stateflow course designed to take a total of approximately 40 hours,
including in-class exercises. However, the course is designed to be modular
and thus flexible for use in a variety of teaching and time formats. As a class,
this course is best offered within a computer laboratory environment, with the
students working in real time on examples along with the instructor.

Note that all the materials covered within this book were generated using Version
7.3 of MATLAB (Release 2006b) and all associated toolbox versions. The Math-
Works is now supporting a twice-yearly release schedule, with each Service Pack pro-
viding minor upgrades and some new features. These added improvements are
designed to have little effect on the vast majority of capabilities offered by this
large family of analysis tools and thus are relatively seamless to the user.

The format recommended for this course as offered within a computer labora-
tory environment is as follows.

1) A lecture is given on a MATLAB, Simulink, or Stateflow topic from the
appropriate chapter in this book. The students work through the materials on
their computers while the instructor similarly works through the lecture materials.

2) The students work through an exercise given at the end of the chapter after
the lecture.

3) An appropriate break is given at the end of the exercise. Students complet-
ing the exercise early may work on other side topics.

4) Afterward the instructor assigns exercises or homework for the students to
complete.

Richard Colgren
January 2007

xiii



This page intentionally left blank



Acknowledgments

In my more than 25 years of working with MATLABw, Simulinkw, and State-
floww and all of the associated tools, it has been my pleasure to have had the
assistance of, and to have received advice and wisdom from, numerous people.
It is my great pleasure to acknowledge all of them, and my greatest fear is that
I will miss giving the appropriate credit to one or more of these deserving
people. To any of you I have missed, I first state my appreciation for your
support and then ask your forgiveness for missing you.

My first acknowledgment must go to my wife, Nell, for all of her support and
her understanding during the time I have spent teaching, traveling, and writing.
The time she has given up to support these efforts is greatly appreciated, and
her love and patience are acknowledged. I must also express my gratitude to
my parents, who have done so much to support my education and my educational
activities over the years.

My first exposure to MATLAB was in the 1980–81 school year at the Univer-
sity of Washington. The excellent facilities at the university, along with the
excellent engineering faculty, provided me with an early opportunity to work
with these tools and had a profound effect on my career.

At Northrop from 1982 through 1984, I was given detailed insight into the
workings of MATLAB. The person who most greatly contributed to this
insight was Dave Lowry. At Northrop I was first exposed to and received training
on a very early release of Matrix-X, a program that was then very closely related
to the university version of MATLAB. My departure from Northrop and arrival
at Lockheed happened to be almost coincidental with the founding of The
MathWorks.

My first task at Lockheed in mid-April 1984 was to participate in a review of
Ctrl-C, another package very closely related to MATLAB. This review first
brought me into contact with Jack Little, who is currently president of The Math-
Works. This work then lead me to order (for $75) two nine-track tapes with
MATLAB and computer-specific interface programs from Cleve Moler at the
University of New Mexico. Moler developed the original FORTRAN version
of MATLAB and is currently the chief scientist of The MathWorks.

Two of my managers at the Lockheed “Skunk Works,” Bob “Lash” Loschke
and Bob Rooney (both now retired), provided me with the support and encour-
agement to implement MATLAB and associated training programs at Lockheed.
My first task was to implement MATLAB on the “batch” mainframe computers
of the time and to provide an apparently “interactive” interface including color

xv



plotting capabilities. With the support of the small IS group at the Lockheed
Skunk Works, I wrote dynamic JCL code and assembly language interfaces to
accomplish this task.

When MATLAB became commercially available on IBM PCs and Apple
Macintosh computers, these computers were brought into Lockheed along with
this software. With the aid of Hank Donald, then an engineer at Lockheed and
now at Ford (where he has continued to work on MATLAB, Simulink, and State-
flow standards), we brought UNIX workstations and the next generation of
MATLAB and Matrix-X based tools into the Skunk Works. These workstations
were also used to introduce us to early graphical modeling tools including
Grumman’s Protoblock, ISI’s SystemBuild, X-ANALOG’s NL-SIM, and
ADI’s BEACON.

The introduction of MATLAB and additional software tools by The
MathWorks led to the need for additional training modules and instructors.
Hank Donald helped generate the initial training materials for MEX-files. His
desire for a manual Simulink switch and other features within Simulink really
motivated The MathWorks’ developers to improve the early versions of Simulink
and make it the excellent tool you have today. He also participated in many of the
early training courses within Lockheed. Shah Torgenson wrote some of the
earliest training materials on cells and structures and helped tremendously
with several of the training classes we offered at Lockheed. Bob Radford and
Bill Wood were also very helpful in their support and participation in several
MATLAB training classes at Lockheed. The human resources department at
Lockheed and later Lockheed Martin helped support some of this work. Jim
Buffington and his engineers, including Mike Niestroy in Fort Worth,
along with the F-22 program, including Dave Seto, also provided great help in
expanding this training throughout Lockheed Martin.

I appreciated The MathWorks providing a copy of Simulab for early evalu-
ation work. This software then developed into the Simulink modeling package.
Similarly, The MathWorks provided me with the first version of Stateflow
software, which was then not integrated into Simulink. All following versions
of Stateflow software were integrated within the Stateflow environment.

Many others have provided me with assistance at The MathWorks. Again,
I apologize for those that I have missed. Russell Scarlata, who had the Lockheed
account at The MathWorks, provided me with years of excellent help and
support. John Binder also provided several years of excellent support and encour-
aged me to develop this book. Dick Gram, previously at Grumman and then at
The MathWorks, provided many great flight controls modeling ideas. Courtney
Esposito, of the MATLAB Book Program, has provided great software and
publishing support for my previous book, Applications of Robust Control to
Nonlinear Systems, as well as this book.

I would like to thank the University of Kansas Aerospace Engineering Short
Course Program for aiding me in offering MATLAB and Simulink as both an
on-site class and as a course offered to the general public. Finally, I would like
to thank the staff of the Department of Aerospace Engineering at the University
of Kansas for their support in my writing and completing this book.

xvi ACKNOWLEDGMENTS



Basic MATLAB
W



This page intentionally left blank



1
Introduction to MATLABw

1.1 Introduction and Objectives

MATLABw is a high-performance language for technical computing. It
integrates computation, visualization, and programming in an easy-to-use
environment where problems and solutions are expressed in familiar mathemat-
ical notation. This chapter introduces some of the basic matrix computational
tools and graphical user interfaces (GUIs) that are available in MATLAB
through the main Command Window.

Upon completion of this chapter, the reader will be able to 1) identify some
basic computational tools and commands in MATLAB; 2) identify the various
components of the MATLAB GUI; 3) input commands into the Command
Window; 4) obtain help information using on-line help utilities, local contacts,
users groups, and The MathWorks Web site and help lines.

On Windows platforms, to start MATLAB, double-click the MATLAB short-
cut icon on your Windows desktop (see Fig. 1.1).

Fig. 1.1

On UNIX platforms, to start MATLAB, type matlab at the operating system
prompt.

After you have started the MATLAB program, the standard main MATLAB
interface window appears as shown in Fig. 1.2.

You can change the way your desktop looks by opening, closing, moving, and
resizing the tools on it. Use the View menu to open or close the tools. You can
also move tools outside the desktop or move them back onto the desktop. All the
desktop tools provide common features such as context menus and keyboard
shortcuts. You can specify certain characteristics for the desktop tools by select-
ing Preferences from the File menu. For example, you can specify the font
characteristics for Command Window text. For more information on this or
any topic, click the Help button in the Preferences dialog box.

3



Fig. 1.2

In the discussion to follow, the given commands will be entered using the
Command Window. Statements you enter into the Command Window are
logged into the Command History. In the Command History window, you
can view previously run statements and copy and execute selected statements.
You can also use the up and down arrows on your keyboard to place previous
commands directly into the Command Window for execution.

You can run external programs from the MATLAB Command Window. The
exclamation point ! indicates that the rest of the input line is a command to the oper-
ating system. This is useful for invoking utilities or running other programs without
quitting MATLAB. The MATLAB Start button provides easy access to
tools, demos, and documentation. Just click on the button to see the options.

MATLAB file operations use the current directory and the search path as refer-
ence points. Any file you want to run must either be in the current directory or on
the search path. A quick way to view or change the current directory is by using
the Current Directory field in the desktop toolbar.

The MATLAB workspace consists of arrays or matrices generated during your
MATLAB session and stored in memory. You add variables to the workspace by
using functions, running M-files, and loading saved workspaces.

1.2 Entry

To enter a matrix, spaces or commas are put between the elements. Semico-
lons or returns are used to separate the rows. Note that semicolons at the end
of a command suppress the echo print. Brackets are placed around the matrix
data. For example, to enter a 3-by-3 matrix A, type

� A 5 [1 2 3;4 5 6;7 8 0]
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which results in

A ¼

1 2 3

4 5 6

7 8 0

Typing

� A = ½1 2 3

4 5 6

7 8 0�

or A ¼ ½1, 2, 3

4, 5, 6

7, 8, 0�

produces the same results. Remember that a scalar is just a 1-by-1 matrix.
Typing

� e 5 1

produces the result

e ¼

1

MATLAB does not require that numbers be declared as real, integer, et cetera,
nor does it require that matrices be dimensioned. The software has very good
algorithms for deducing variable types. This will be covered in more detail
later.

1.3 Transpose

Next we will run through some basic matrix operations. They are done similar
to the way you might write them on paper. For example, the matrix A can be
transposed with the command

� B 5 A'

which results in the new matrix B

B ¼

1 4 7

2 5 8

3 6 0

Remember that transposing a matrix exchanges its rows and columns. This is a
useful operation in matrix mathematics.

1.4 Addition and Subtraction

Matrix addition and subtraction are done element by element. Note that
matrices must be of the same dimension for this to be valid (unless subtracting
a scalar value from a matrix). Many program errors using matrix addition and
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subtraction fail because of improper dimensioning. MATLAB has tools for
checking matrix dimensions, etc. More later.

Adding our previously generated matrices

� C 5 A 1 B

gives

C ¼

2 6 10

6 10 14

10 14 0

Note that A(1,1) ¼ 1, B(1,1) ¼ 1, and so C(1,1) ¼ A(1,1)þ B(1,1) ¼ 1þ
1 ¼ 2, etc.

Subtracting our previously generated matrices

� C 5 A 2 B

gives

C ¼

0 �2 �4

2 0 �2

4 2 0

Note that A(1,1) ¼ 1, B(1,1) ¼ 1, and so C(1,1) ¼ A(1,1) 2 B(1,1) ¼ 1 2
1 ¼ 0, etc.

What does C 5 A2e give? It subtracts the scalar e from every element in A
and saves it as the matrix C:

� C 5 A 2 e

gives

C ¼

0 1 2

3 4 5

6 7 �1

Note that reusing the same name C has caused the old element data to be over-
written. Matrices can be saved using the save command. The command save
temp C would save the current C in the file temp.mat. To read in the resulting
MAT-file, select Import Data from the File menu, or use the load temp
command. Save Workspace As from the File menu saves everything in the
workspace to the specified MAT-file, which has a .mat extension. If an
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expression is evaluated and no variable is assigned to the result, it is saved as ans.
To see what values we have generated, type

� who

which results in
Your variables are

A B C

e

The command whos gives a table of information including matrix size,
number of elements, number of bytes used, density of the matrix, and whether
it is complex. This is the same information as that given in the Workspace
window. The command clear removes all these data from memory.

1.5 Multiplication

Both matrix and array multiplications are supported in MATLAB. Operations
are defaulted to matrix operations unless denoted by a period . as discussed in the
following two sections.

1.5.1 Matrix Multiplication

Matrix multiplication is indicated with the use of an asterisk *.

� C 5 A * B

producing the new matrix C

C ¼

14 32 23

32 77 68

23 68 113

Note that C(1,1) ¼ A(1,1)*B(1,1)þA(1,2)*B(2,1)þA(1,3)*B(3,1) ¼ 1*1þ 2
2þ 3*3 ¼ 2þ 4þ 9 ¼ 14, etc. This means that the order of multiplication is
important (i.e., A*B and B*A gives different results).

1.5.2 Array Multiplication

Array multiplication is the multiplication of every element in the array by a
scalar value and is indicated with a period before the multiplication asterisk as
follows:

� D 5 A.* 2

producing the new matrix D
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D ¼

2 4 6

8 10 12

14 16 0

1.6 Division

As with multiplication, both matrix and array division are supported in
MATLAB. Operations are defaulted to matrix operations unless denoted by a
period as in the operation ./ as discussed in the following two sections. Note
that both right and left divisions are supported and that they usually do not
result in the same answer.

1.6.1 Matrix Division

Matrix division is indicated with

� X 5 A/B

the solution to X�B ¼ A (right division)

X ¼

�0:3333 0:6667 �0:0000

�3:3333 3:6667 �0:0000

�5:3333 4:6667 1:0000

or

� X 5 A \ B

the solution to A�X ¼ B (left division)

X ¼

�0:3333 �3:3333 �5:3333

0:6667 3:6667 4:6667

�0:0000 �0:0000 1:0000

1.6.2 Array Division

Array division is the division of every element in the array by a scalar value
and is indicated with a period before the multiplication asterisk as follows:

� E 5 A./2

divides every element in A by 2 (right division)

8 BASIC MATLABw, SIMULINKw, AND STATEFLOWw



E ¼

0:5000 1:0000 1:5000

2:0000 2:5000 3:0000

3:5000 4:0000 0

or

� F 5 A.\2

divides 2 by each element in A (left division), or fij ¼ 2/aij. Note that 2/0 ¼ Inf,
giving a divide by zero warning as follows:

Warning: Divide by zero.

F ¼

2:0000 1:0000 0:6667

0:5000 0:4000 0:3333

0:2857 0:2500 Inf

Double-click any variable in the Workspace browser to see it in the Array
Editor. You can use the Array Editor to view and edit a visual representation
of one- or two-dimensional numeric arrays, strings, and cell arrays of strings
that are in the workspace.

1.7 Formats

MATLAB has changed the representation from an integer display to a real
display using “short format.” Long formats (double precision), scientific nota-
tion (both short and long), bank (two decimal places), hex, and sign (þ, 2,
or blank for a 0 element) are available. The X(1,1) element in the previous
matrix can be displayed in each of these formats as follows:

� format short

20.3333

� format short e

23.3333e-01

� format long

20.33333333333333

� format long e

23.333333333333333e-01

� format bank
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20.33

� format hex

bfd5555555555555

� format 1
2

1.8 Matrix Functions

MATLAB provides four functions that generate basic matrices: 1) zeros
(matrix of all zeros), 2) ones (matrix of all ones), 3) eye (matrix of all zeros
except for ones along the diagonal), 4) rand (matrix of uniformly distributed
random elements), and 5) randn (matrix of normally distributed random
elements). A family of functions are available to calculate common matrix
properties and factorizations.

1.8.1 Determinant

As used in matrix inversion

� det(A)

ans ¼

27

1.8.2 Rank

Number of independent rows/columns

� rank(A)

ans ¼

3

1.8.3 Condition Number

Measures sensitivity to data errors, ratio of largest to smallest singular value

� cond(A)

ans ¼

35:1059

1.8.4 Matrix Inverse

Solves A�inv(A) ¼ [I], which is equivalent to 1/e for the scalar case.
MATLAB uses this in solving the matrix division problem:

� inv(A)

ans ¼

�1:7778 0:8889 �0:1111

1:5556 �0:7778 0:2222

�0:1111 0:2222 �0:1111
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1.8.5 Eigenvalues

Gives the nontrivial solutions to the problem Ax ¼ lx. The n values of l are
the eigenvalues, and the corresponding values of x are the right eigenvectors:

� eig(A)

ans ¼

12:1229

�0:3884

�5:7345

We can obtain eigenvectors as well as eigenvalues if we use two arguments on
the left-hand side:

� [v,d] 5 eig(A)

v ¼
0:7471 �0:2998 �0:2763

�0:6582 �0:7075 �0:3884

0:0931 �0:6400 0:8791

d ¼
�0:3884 0 0

0 12:1229 0

0 0 �5:7345

The left eigenvalues (satisfying WA ¼ DW) can be computed by using the
two statements

� [W,D] 5 eig(A'), W 5 W'

The eigenvectors in D computed from W and W0 are the same, although they may
occur in different orders.

The generalized eigenvalue problem is the solution to Ax ¼ lBx, where A and
B are both n-by-n matrices. The values of l that satisfy the equation are the gen-
eralized eigenvalues, and the corresponding values of x are the generalized right
eigenvectors. If B is nonsingular, the problem could be solved by reducing it to a
standard eigenvalue problem inv(B)�A�x ¼ l�x. The command

� [V,D] 5 eig(A,B)

produces the diagonal matrix D of generalized eigenvalues and the full matrix V
whose columns are the corresponding eigenvectors so that A�V ¼ B�V�D.

The eigenvectors are scaled so that the norm of each is 1.
Note that for help about any command in MATLAB you can type the following,

� help [command]

to display information about that command; e.g.,

� help eig

MATLAB provides many more advanced mathematical functions, including
Bessel and gamma functions. Most of these functions accept complex arguments.
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For a list of the elementary mathematical functions, type help elfun. For a list of more
advanced mathematical and matrix functions, type help specfun and help elmat.

Some of the functions, like sqrt and sin, are built into MATLAB. They are part
of the MATLAB core, and so they are very efficient, but the computational details
are not readily accessible. Other functions, like gamma and sinh, are implemented
as M-files. You can see the code and even modify the code if you want.

1.8.6 Singular Value Decomposition

Uses the QR method to produce the diagonal matrix S and unitary matrices U
and V satisfying A ¼ U�S�V0. Operator by itself gives the vector of diagonal
elements of S:

� svd(A)

ans ¼
13.2015
5.4388
0.3760

The full command [U,S,V] 5 svd(A) gives the full matrices U, S, and V.

1.8.7 Matrix Exponential

Generates the exponent of a matrix:

� expm(A)

ans ¼

1:0eþ 04�

3:1591 3:9741 2:7487

7:4540 9:3775 6:4858

6:7431 8:4830 5:8672

Element-wise exponentials are calculated using the command exp(A):

� exp(A)

1:0eþ 03�

0:0027 0:0074 0:0201

0:0546 0:1484 0:4034

1:0966 2:9810 0:0010

1.8.8 Characteristic Polynomial

Gives the nþ 1 element row vector whose elements are the coefficients of the
characteristic polynomial det(sI 2 A). The roots of this polynomial are the eigen-
values of the matrix A:

� p 5 poly(A)

p ¼

1:0000 �6:0000 �72:0000 �27:0000
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The elements of this vector represent the polynomial coefficients in
descending powers.

The roots of this polynomial are, of course, the eigenvalues of A:

� roots(p)

ans ¼

12:1229

�5:7345

�0:3884

� eig(A)

ans ¼

12:1229

�0:3884

�5:7345

For vectors, roots and poly are inverse functions of each other, up to ordering,
scaling, and roundoff error.

1.9 Colon Operator

The colon : is one of the most important MATLAB operators. It occurs
in several forms. The expression 1:10 is a row vector containing integers from
1 to 10:

1 2 3 4 5 6 7 8 9 10

To obtain nonunit spacing, specify an increment. For example, 100:
27:50 is

100 93 86 79 72 65 58 51

Subscript expressions involving colons refer to portions of a matrix. For
example, A(1:k,j) is the first k elements of the jth column of A.

1.10 Useful Interface GUIs

The basic MATLAB demonstrations can be started by selecting the MATLAB
Start button . You can also type demo in the Command Window to open
the Help browser to the Demos tab or go directly to the demos for a specific
product or category. For example, demo matlab graphics lists the demos for
MATLAB Graphics. MATLAB’s help and on-line documentation can always
be started by selecting MATLAB Help from the Help pull-down menu. The
Help interface appears as shown in Fig. 1.3.
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Fig. 1.3

Help is also available at the command line level. Help “topic” gives you help
for the topic of interest. Typing

� help help

provides the following information:
HELP On-line help, display text at command line.
HELP, by itself, lists all primary help topics. Each primary topic corresponds

to a directory name on the MATLABPATH.
HELP TOPIC gives help on the specified topic. The topic can be a command

name, a directory name, or a MATLABPATH relative partial path name (see
HELP PARTIALPATH). If it is a command name, HELP displays information
on that command. If it is a directory name, HELP displays the Table-Of-Contents
for the specified directory. For example, help general and help matlab/general
both list the Table-Of-Contents for the directory toolbox/matlab/general.

HELP FUN displays the help for the function FUN.

T 5 help ('topic')

returns the help text in an /n separated string.
LOOKFOR XYZ looks for the string XYZ in the first comment line of the

HELP text in all M-files found on the MATLABPATH. For all files in which a
match occurs, LOOKFOR displays the matching lines.
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MORE ON causes HELP to pause between screenfuls if the help text runs to
several screens.

In the on-line help, keywords are capitalized to make them stand out. Always
type commands in lowercase because all command and function names are
actually in lowercase.

For tips on creating help for your M-files, type help.m.
See also LOOKFOR, WHAT, WHICH, DIR, MORE.
Overloaded methods

help cvtest/help.m
help cvdata/help.m

Help by itself gives a list of all the available help topics, as follows:

� help

HELP topics

help
HELP topics

matlabngeneral – General purpose commands.

matlabnops – Operators and special characters.

matlabnlang – Programming language constructs.

matlabnelmat – Elementary matrices and matrix manipulation.

matlabnelfun – Elementary math functions.

matlabnspecfun – Specialized math functions.

matlabnmatfun – Matrix functions-numerical linear algebra.

matlabndatafun – Data analysis and Fourier transforms.

matlabnpolyfun – Interpolation and polynomials.

matlabnfunfun – Function functions and ODE solvers.

matlabnsparfun – Sparse matrices.

matlabnscribe – Annotation and Plot Editing.

matlabngraph2d – Two dimensional graphs.

matlabngraph3d – Three dimensional graphs.

matlabnspecgraph – Specialized graphs.

matlabngraphics – Handle Graphics.

matlabnuitools – Graphical user interface tools.

matlabnstrfun – Character strings.

matlabnimagesci – Image and scientific data input/output.

matlabniofun – File input and output.

matlabnaudiovideo – Audio and Video support.

matlabntimefun – Time and dates.

matlabndatatypes – Data types and structures.

matlabnverctrl – Version control.

matlabncodetools – Commands for creating and debugging code.

matlabnhelptools – Help commands.

matlabnwinfun – Windows Operating System Interface Files

(COM/DDE)

matlabndemos – Examples and demonstrations.
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toolboxnlocal – Preferences.

simulinknsimulink – Simulink

simulinknblocks – Simulink block library.

simulinkncomponents – Simulink components.

simulinknfixedandfloat – Simulink Fixed Point utilities.

fixedandfloatnfxpdemos – Fixed-Point Blockset Demos

fixedandfloatnobsolete – (No table of contents file)

simulinknsimdemos – Simulink 4 demonstrations

and samples.

simdemosnaerospace – Simulink: Aerospace model demonstrations

and samples.

simdemosnautomotive – Simulink: Automotive model demonstrations

and samples.

simdemosnsimfeatures – Simulink: Feature demonstrations

and samples.

simfeaturesnmdlref – (No table of contents file)

simdemosnsimgeneral – Simulink: General model demonstrations

and samples.

simdemosnsimnew – Simulink: New features model

demonstrations and samples.

simulinkndee – Differential Equation Editor

sharedndastudio – (No table of contents file)

stateflownstateflow – Stateflow

rtwnrtw – Real-Time Workshop

sharednhds – (No table of contents file)

sharedntimeseries – Shared Time Series Toolbox Library

stateflownsfdemos – Stateflow demonstrations and samples.

stateflowncoder – Stateflow Coder

rtwnrtwdemos – Real-Time Workshop Demos

rtwdemosnrsimdemos – (No table of contents file)

asap2nasap2 – (No table of contents file)

asap2nuser – (No table of contents file)

rtwinnrtwin – Real-Time Windows Target

simulinknaccelerator – Simulink Accelerator

rtwnaccel – (No table of contents file)

aeroblksnaeroblks – Aerospace Blockset

aeroblksnaerodemos – Aerospace Blockset demonstrations

and examples.

aerodemosntexture – (No table of contents file)

bioinfonbioinfo – Bioinformatics Toolbox

bioinfonmicroarray – Bioinformatics Toolbox—Microarray

support functions.
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bioinfonproteins – Bioinformatics Toolbox—Protein

analysis tools.

bioinfonbiomatrices – Bioinformatics Toolbox—Sequence

similarity scoring matrices.

bioinfonbiodemos – Bioinformatics Toolbox—Tutorials,

demos and examples.

cannblocks – (No table of contents file)

configurationnresource – (No table of contents file)

commonntgtcommon – (No table of contents file)

c166nc166 – Embedded Target for Infineon C166

Microcontrollers

c166nblocks – (No table of contents file)

c166nc166demos – (No table of contents file)

ccslinknccslink – Link for Code Composer Studio

ccslinknccsblks – (No table of contents file)

ccslinknccsdemos – Link for Code Composer Studiow Demos

cdmancdma – CDMA Reference Blockset

cdmancdmamasks – CDMA Reference Blockset mask

helper functions.

cdmancdmamex – CDMA Reference Blockset S-Functions.

cdmancdmademos – CDMA Reference Blockset demonstrations

and examples.

commncomm – Communications Toolbox

commncommdemos – Communications Toolbox Demonstrations.

commdemosncommdocdemos – Communications Toolbox

Documentation Examples.

commncommobsolete – Archived MATLAB Files from

Communications Toolbox Version 1.5.

commblksncommblks – Communications Blockset

commblksncommmasks – Communications Blockset mask

helper functions.

commblksncommmex – Communications Blockset S-Functions.

commblksncommblksdemos – Communications Blockset Demos.

commblksobsoletenv2p5 – (No table of contents file)

commblksobsoletenv2 – (No table of contents file)

commblksobsoletenv1p5 – Archived Simulink Files from

Communications Toolbox Version 1.5.

controlncontrol – Control System Toolbox

controlnctrlguis – Control System Toolbox—GUI

support functions.

controlnctrlobsolete – Control System Toolbox—obsolete

commands.

controlnctrlutil – (No table of contents file)
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controlnctrldemos – Control System Toolbox—Demos.

sharedncontrollib – Control Library

curvefitncurvefit – Curve Fitting Toolbox

curvefitncftoolgui – (No table of contents file)

sharednoptimlib – Optimization Library

daqndaq – Data Acquisition Toolbox

daqndaqguis – Data Acquisition Toolbox—Data

Acquisition Soft Instruments.

daqndaqdemos – Data Acquisition Toolbox—Data

Acquisition Demos.

databasendatabase – Database Toolbox

databasendbdemos – Database Toolbox Demonstration Functions.

databasenvqb – Visual Query Builder functions.

datafeedndatafeed – Datafeed Toolbox

datafeedndfgui – Datafeed Toolbox Graphical User Interface

drivendrive – SimDriveline

drivendrivedemos – (No table of contents file)

dspblksndspblks – Signal Processing Blockset

dspblksndspmasks – Signal Processing Blockset mask

helper functions.

dspblksndspmex – DSP Blockset S-Function MEX-files.

dspblksndspdemos – Signal Processing Blockset demonstrations

and examples.

targetsnecoder – Real-Time Workshop Embedded Coder

ecodernecoderdemos – (No table of contents file)

targetsnmpt – (No table of contents file)

mptnmpt – Module Packaging Tool

mptnuser_specific – (No table of contents file)

toolboxnexlink – Excel Link

symbolicnextended – Extended Symbolic Math

filterdesignnfilterdesign – Filter Design Toolbox

filterdesignnquantization – (No table of contents file)

filterdesignnfiltdesdemos – Filter Design Toolbox Demonstrations.

financenfinance – Financial Toolbox

financencalendar – Financial Toolbox calendar functions.

financenfindemos – Financial Toolbox demonstration functions.

financenfinsupport – (No table of contents file)

finderivnfinderiv – Financial Derivatives Toolbox

finfixednfinfixed – Fixed-Income Toolbox

fixedpointnfixedpoint – Fixed-Point Toolbox

fixedpointnfidemos – (No table of contents file)

fixedpointnfimex – (No table of contents file)

toolboxnfixpoint – Simulink Fixed Point
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ftseriesnftseries – Financial Time Series Toolbox

ftseriesnftsdemos – (No table of contents file)

ftseriesnftsdata – (No table of contents file)

ftseriesnftstutorials – (No table of contents file)

fuzzynfuzzy – Fuzzy Logic Toolbox

fuzzynfuzdemos – Fuzzy Logic Toolbox Demos.

toolboxngads – (No table of contents file)

gadsngads – Genetic Algorithm Direct Search Toolbox

gadsngadsdemos – Genetic Algorithm Direct Search Toolbox

garchngarch – GARCH Toolbox

garchngarchdemos – (No table of contents file)

toolboxngauges – Gauges Blockset

hc12nhc12 – Embedded Target for Motorola HC12

hc12nblocks – (No table of contents file)

hc12ncodewarrior – (No table of contents file)

hc12nhc12demos – (No table of contents file)

hdlfilternhdlfilter – Filter Design HDL Coder

hdlfilternhdlfiltdemos – (No table of contents file)

sharednhdlshared – HDL Library

identnident – System Identification Toolbox

identnidobsolete – (No table of contents file)

identnidguis – (No table of contents file)

identnidutils – (No table of contents file)

identniddemos – (No table of contents file)

identnidhelp – (No table of contents file)

imagesnimages – Image Processing Toolbox

imagesnimuitools – Image Processing Toolbox—imuitools

imagesnimdemos – Image Processing Toolbox—demos and

sample images

imagesniptutils – Image Processing Toolbox utilities

imaqnimaq – Image Acquisition Toolbox

imaqnimaqdemos – Image Acquisition Toolbox.

imaqblksnimaqblks – (No table of contents file)

imaqblksnimaqmasks – (No table of contents file)

imaqblksnimaqmex – (No table of contents file)

instrumentninstrument – Instrument Control Toolbox

instrumentninstrumentdemos – (No table of contents file)

instrumentblksninstrumentblks – (No table of contents file)

instrumentblksninstrumentmex – (No table of contents file)

mapnmap – Mapping Toolbox

mapnmapdemos – Mapping Toolbox Demos and Data Sets.

mapnmapdisp – Mapping Toolbox Map Definition

and Display.
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mapnmapformats – Mapping Toolbox File Formats.

mapnmapproj – Mapping Toolbox Projections.

mbcnmbc – Model-Based Calibration Toolbox

mbcnmbcdata – Model-Based Calibration Toolbox.

mbcnmbcdesign – Model-Based Calibration Toolbox.

mbcnmbcexpr – Model-Based Calibration Toolbox.

mbcnmbcguitools – Model-Based Calibration Toolbox.

mbcnmbclayouts – (No table of contents file)

mbcnmbcmodels – Model-Based Calibration Toolbox.

mbcnmbcsimulink – Model-Based Calibration Toolbox.

mbcnmbctools – Model-Based Calibration Toolbox.

mbcnmbcview – Model-Based Calibration Toolbox.

mechnmech – SimMechanics

mechnmechdemos – SimMechanics Demos.

pmimportnpmimport – (No table of contents file)

modelsimnmodelsim – Link for ModelSim

modelsimnmodelsimdemos – (No table of contents file)

mpcnmpc – Model Predictive Control Toolbox

mpcnmpcdemos – (No table of contents file)

mpcnmpcguis – (No table of contents file)

mpcnmpcobsolete – Contents of the previous (obsolete)

version of the MPC Toolbox

mpcnmpcutils – (No table of contents file)

sharednslcontrollib – Simulink Control Design Library

targetsnmpc555dk – (No table of contents file)

commonnconfiguration – (No table of contents file)

mpc555dknmpc555demos – (No table of contents file)

mpc555dknmpc555dk – Embedded Target for Motorola MPC555

mpc555dknpil – (No table of contents file)

blocksetnmfiles – (No table of contents file)

rtnblockset – (No table of contents file)

nnetnnnet – Neural Network Toolbox

nnetnnnutils – (No table of contents file)

nnetnnncontrol – Neural Network Toolbox Control

System Functions.

nnetnnndemos – Neural Network Demonstrations.

nnetnnnobsolete – (No table of contents file)

opcnopc – OPC Toolbox

opcnopcgui – (No table of contents file)

opcnopcdemos – (No table of contents file)

toolboxnoptim – Optimization Toolbox

oseknosek – Embedded Target for OSEK VDX

oseknosekdemos – (No table of contents file)
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oseknblocks – (No table of contents file)

oseknosekworks – (No table of contents file)

oseknproosek – (No table of contents file)

toolboxnpde – Partial Differential Equation Toolbox

powersysnpowersys – SimPowerSystems

powersysnpowerdemo – SimPowerSystems Demos

drivesndrives – (No table of contents file)

drivesndrivesdemo – (No table of contents file)

factsnfacts – (No table of contents file)

factsnfactsdemo – (No table of contents file)

DRnDR – (No table of contents file)

DRnDRdemo – (No table of contents file)

simulinknreqmgt – (No table of contents file)

reqmgtnrmidemos – (No table of contents file)

rfnrf – RF Toolbox

rfnrfdemos – RF Toolbox Demos.

rfnrftool – RF Tool (GUI)

rfblksnrfblks – RF Blockset

rfblksnrfblksmasks – RF Blockset mask helper functions.

rfblksnrfblksmex – RF Blockset S-Functions.

rfblksnrfblksdemos – RF Blockset Demos.

robustnrobust – Robust Control Toolbox

robustnrctutil – (No table of contents file)

robustnrctdemos – (No table of contents file)

rctobsoletenlmi – Robust Control Toolbox-LMI Solvers.

mutoolsncommands – (No table of contents file)

mutoolsnsubs – (No table of contents file)

rptgennrptgen – MATLAB Report Generator

rptgennrptgendemos – (No table of contents file)

rptgenextnrptgenext – Simulink Report Generator

rptgenextnrptgenextdemos – (No table of contents file)

signalnsignal – Signal Processing Toolbox

signalnsigtools – (No table of contents file)

signalnsptoolgui – (No table of contents file)

signalnsigdemos – Signal Processing Toolbox Demonstrations.

slcontrolnslcontrol – Simulink Control Design

slcontrolnslctrlguis – (No table of contents file)

slcontrolnslctrlutil – (No table of contents file)

slcontrolnslctrldemos – (No table of contents file)

slestimnslestdemos – Simulink Parameter Estimation Demos

slestimnslestguis – (No table of contents file)

slestimnslestim – Simulink Parameter Estimation
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slestimnslestmex – Simulink Parameter Estimation S-Function

MEX-files.

slestimnslestutil – (No table of contents file)

sloptimnsloptim – Simulink Response Optimization

sloptimnsloptguis – (No table of contents file)

sloptimnsloptdemos – Simulink Response Optimization Demos.

sloptimnsloptobsolete – (No table of contents file)

simulinknslvnv – Simulink Verification and Validation

simulinknsimcoverage – (No table of contents file)

simcoveragensimcovdemos – (No table of contents file)

toolboxnsplines – Spline Toolbox

toolboxnstats – Statistics Toolbox

toolboxnsymbolic – Symbolic Math Toolbox

tic2000ntic2000 – Embedded Target for TI C2000 DSP(tm)

tic2000ntic2000blks – (No table of contents file)

tic2000ntic2000demos – (No table of contents file)

etargetsnetargets – (No table of contents file)

tic6000ntic6000 – Embedded Target for TI C6000 DSP(tm)

tic6000ntic6000blks – TI C6000 (tm) Blocks

tic6000ntic6000demos – Embedded Target for TI C6000 DSP(tm)

Demos

etargetsnrtdxblks – RTDX (tm) Blocks

vipblksnvipblks – Video and Image Processing Blockset

vipblksnvipmasks – (No table of contents file)

vipblksnvipmex – (No table of contents file)

vipblksnvipdemos – Video and Image Processing Blockset

demonstrations and examples.

vrnvr – Virtual Reality Toolbox

vrnvrdemos – Virtual Reality Toolbox examples.

waveletnwavelet – Wavelet Toolbox

waveletnwavedemo – Wavelet Toolbox Demonstrations.

For help on your specific MATLAB installation, type

� help matlab/general

You will be given information on your software version as follows.

General purpose commands.
MATLAB Version 7.3 (R2006b) 03-Aug-2006

General information.

syntax – Help on MATLAB command syntax.

demo – Run demonstrations.

ver – MATLAB, Simulink and toolbox

version information.
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version – MATLAB version information.

Managing the workspace.

who – List current variables.

whos – List current variables, long form.

clear – Clear variables and functions from memory.

pack – Consolidate workspace memory.

load – Load workspace variables from disk.

save – Save workspace variables to disk.

saveas – Save Figure or model to desired output format.

memory – Help for memory limitations.

recycle – Set option to move deleted files to recycle folder.

quit – Quit MATLAB session.

exit – Exit from MATLAB.

Managing commands and functions.

what – List MATLAB-specific files in directory.

type – List M-file.

open – Open files by extension.

which – Locate functions and files.

pcode – Create pre-parsed pseudo-code file (P-file).

mex – Compile MEX-function.

inmem – List functions in memory.

namelengthmax – Maximum length of MATLAB function

or variable name.

Managing the search path.

path – Get/set search path.

addpath – Add directory to search path.

rmpath – Remove directory from search path.

rehash – Refresh function and file system caches.

import – Import Java packages into the current scope.

finfo – Identify file type against standard file

handlers on path.

genpath – Generate recursive toolbox path.

savepath – Save the current MATLAB path in the

pathdef.m file.

Managing the java search path.

javaaddpath – Add directories to the dynamic java path.

javaclasspath – Get and set java path.

javarmpath – Remove directory from dynamic java path.

Controlling the command window.

echo – Echo commands in M-files.

more – Control paged output in command window.
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diary – Save text of MATLAB session.

format – Set output format.

beep – Produce beep sound.

desktop – Start and query the MATLAB Desktop.

preferences – Bring up MATLAB user settable

preferences dialog.

Operating system commands.

cd – Change current working directory.

copyfile – Copy file or directory.

movefile – Move file or directory.

delete – Delete file or graphics object.

pwd – Show (print) current working directory.

dir – List directory.

ls – List directory.

fileattrib – Set or get attributes of files and directories.

isdir – True if argument is a directory.

mkdir – Make new directory.

rmdir – Remove directory.

getenv – Get environment variable.

! – Execute operating system command (see PUNCT).

dos – Execute DOS command and return result.

unix – Execute UNIX command and return result.

system – Execute system command and return result.

perl – Execute Perl command and return the result.

computer – Computer type.

isunix – True for the UNIX version of MATLAB.

ispc – True for the PC (Windows) version of MATLAB.

Debugging.

debug – List debugging commands.

mexdebug – Debug MEX-files.

Tools to locate dependent functions of an M-file.

depfun – Locate dependent functions of an M-file or P-file.

depdir – Locate dependent directories of an M-file or P-file.

Loading and calling shared libraries.

calllib – Call a function in an external library.

libpointer – Creates a pointer object for use with

external libraries.

libstruct – Creates a structure pointer for use with external

libraries.

libisloaded – True if the specified shared library is loaded.

loadlibrary – Load a shared library into MATLAB.
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libfunctions – Return information on functions in an external

library.

libfunctionsview – View the functions in an external library.

unloadlibrary – Unload a shared library loaded with LOADLIBRARY.

java – Using Java from within MATLAB.

usejava – True if the specified Java feature is supported

in MATLAB.

See also lang, datatypes, iofun, graphics, ops, strfun, timefun, matfun, demos,
graphics, datafun, uitools, doc, punct, arith.

The toolboxes and other utilities you have available in your MATLAB instal-
lation can be accessed using the command

� path

MATLABPATH

C:nProgram FilesnMATLABnR2006bntoolboxnmatlabngeneral
C:nProgram FilesnMATLABnR2006bntoolboxnmatlabnops
C:nProgram FilesnMATLABnR2006bntoolboxnmatlabnlang
C:nProgram FilesnMATLABnR2006bntoolboxnmatlabnelmat
C:nProgram FilesnMATLABnR2006bntoolboxnmatlabnelfun
C:nProgram FilesnMATLABnR2006bntoolboxnmatlabnspecfun
C:nProgram FilesnMATLABnR2006bntoolboxnmatlabnmatfun
C:nProgram FilesnMATLABnR2006bntoolboxnmatlabndatafun
C:nProgram FilesnMATLABnR2006bntoolboxnmatlabnpolyfun
C:nProgram FilesnMATLABnR2006bntoolboxnmatlabnfunfun
C:nProgram FilesnMATLABnR2006bntoolboxnmatlabnsparfun
C:nProgram FilesnMATLABnR2006bntoolboxnmatlabnscribe
C:nProgram FilesnMATLABnR2006bntoolboxnmatlabngraph2d
C:nProgram FilesnMATLABnR2006bntoolboxnmatlabngraph3d
C:nProgram FilesnMATLABnR2006bntoolboxnmatlabnspecgraph
C:nProgram FilesnMATLABnR2006bntoolboxnmatlabngraphics
C:nProgram FilesnMATLABnR2006bntoolboxnmatlabnuitools
C:nProgram FilesnMATLABnR2006bntoolboxnmatlabnstrfun
C:nProgram FilesnMATLABnR2006bntoolboxnmatlabnimagesci
C:nProgram FilesnMATLABnR2006bntoolboxnmatlabniofun
C:nProgram FilesnMATLABnR2006bntoolboxnmatlabnaudiovideo
C:nProgram FilesnMATLABnR2006bntoolboxnmatlabntimefun
C:nProgram FilesnMATLABnR2006bntoolboxnmatlabndatatypes
C:nProgram FilesnMATLABnR2006bntoolboxnmatlabnverctrl
C:nProgram FilesnMATLABnR2006bntoolboxnmatlabncodetools
C:nProgram FilesnMATLABnR2006bntoolboxnmatlabnhelptools
C:nProgram FilesnMATLABnR2006bntoolboxnmatlabnwinfun
C:nProgram FilesnMATLABnR2006bntoolboxnmatlabndemos
C:nProgram FilesnMATLABnR2006bntoolboxnmatlabntimeseries
C:nProgram FilesnMATLABnR2006bntoolboxnmatlabnhds
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C:nProgram FilesnMATLABnR2006bntoolboxnlocal
C:nProgram FilesnMATLABnR2006bntoolboxnsharedncontrollib
C:nProgram FilesnMATLABnR2006bntoolboxnsimulinknsimulink
C:nProgram FilesnMATLABnR2006bntoolboxnsimulinknblocks
C:nProgram FilesnMATLABnR2006bntoolboxnsimulinkncomponents
C:nProgram FilesnMATLABnR2006bntoolboxnsimulinknfixedandfloat
C:nProgram FilesnMATLABnR2006bntoolboxnsimulinknfixedandfloatn

fxpdemos
C:nProgram FilesnMATLABnR2006bntoolboxnsimulinknfixedandfloatn

obsolete
C:nProgram FilesnMATLABnR2006bntoolboxnsimulinknsimdemos
C:nProgram FilesnMATLABnR2006bntoolboxnsimulinknsimdemosn

aerospace
C:nProgram FilesnMATLABnR2006bntoolboxnsimulinknsimdemosn

automotive
C:nProgram FilesnMATLABnR2006bntoolboxnsimulinknsimdemosn

simfeatures
C:nProgram FilesnMATLABnR2006bntoolboxnsimulinknsimdemosn

simgeneral
C:nProgram FilesnMATLABnR2006bntoolboxnsimulinkndee
C:nProgram FilesnMATLABnR2006bntoolboxnsharedndastudio
C:nProgram FilesnMATLABnR2006bntoolboxnstateflownstateflow
C:nProgram FilesnMATLABnR2006bntoolboxnrtwnrtw
C:nProgram FilesnMATLABnR2006bntoolboxnsimulinknsimulinkn

modeladvisor
C:nProgram FilesnMATLABnR2006bntoolboxnsimulinknsimulinkn

modeladvisornfixpt
C:nProgram FilesnMATLABnR2006bntoolboxnsimulinknsimulinknMPlayIO
C:nProgram FilesnMATLABnR2006bntoolboxnsimulinknsimulinkn

dataobjectwizard
C:nProgram FilesnMATLABnR2006bntoolboxnsharednfixedpointlib
C:nProgram FilesnMATLABnR2006bntoolboxnstatefIownsfdemos
C:nProgram FilesnMATLABnR2006bntoolboxnstateflowncoder
C:nProgram FilesnMATLABnR2006bntoolboxnrtwnrtwdemos
C:nProgram FilesnMATLABnR2006bntoolboxnrtwnrtwdemosnrsimdemos
C:nProgram FilesnMATLABnR2006bntoolboxnrtwntargetsnasap2nasap2
C:nProgram FilesnMATLABnR2006bntoolboxnrtwntargetsnasap2nasap2nuser
C:nProgram FilesnMATLABnR2006bntoolboxnrtwntargetsncommonn

cannblocks
C:nProgram FilesnMATLABnR2006bntoolboxnrtwntargetsncommonn

configurationnresource
C:nProgram FilesnMATLABnR2006bntoolboxnrtwntargetsncommonn

tgtcommon
C:nProgram FilesnMATLABnR2006bntoolboxnrtwntargetsnrtwinnrtwin
C:nProgram FilesnMATLABnR2006bntoolboxnsimulinknaccelerator
C:nProgram FilesnMATLABnR2006bntoolboxnsimulinknacceleratorn

acceldemos
C:nProgram FilesnMATLABnR2006bntoolboxnrtwnaccel
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C:nProgram FilesnMATLABnR2006bntoolboxnaeroblksnaeroblks
C:nProgram FilesnMATLABnR2006bntoolboxnaeroblksnaerodemos
C:nProgram FilesnMATLABnR2006bntoolboxnaeroblksnaerodemosntexture
C:nProgram FilesnMATLABnR2006bntoolboxnbioinfonbioinfo
C:nProgram FilesnMATLABnR2006bntoolboxnbioinfonbiolearning
C:nProgram FilesnMATLABnR2006bntoolboxnbioinfonmicroarray
C:nProgram FilesnMATLABnR2006bntoolboxnbioinfonmass_spec
C:nProgram FilesnMATLABnR2006bntoolboxnbioinfonproteins
C:nProgram FilesnMATLABnR2006bntoolboxnbioinfonbiomatrices
C:nProgram FilesnMATLABnR2006bntoolboxnbioinfonbiodemos
C:nProgram FilesnMATLABnR2006bntoolboxnrtwntargetsnc166nc166
C:nProgram FilesnMATLABnR2006bntoolboxnrtwntargetsncl66nblocks
C:nProgram FilesnMATLABnR2006bntoolboxnrtwntargetsncl66ncl66demos
C:nProgram FilesnMATLABnR2006bntoolboxnccslinknccslink
C:nProgram FilesnMATLABnR2006bntoolboxnccslinknccslink_outproc
C:nProgram FilesnMATLABnR2006bntoolboxnccslinknccsblks
C:nProgram FilesnMATLABnR2006bntoolboxnccslinknccsdemos
C:nProgram FilesnMATLABnR2006bntoolboxncommncomm
C:nProgram FilesnMATLABnR2006bntoolboxncommncommdemos
C:nProgram FilesnMATLABnR2006bntoolboxncommncommdemosn

commdocdemos
C:nProgram FilesnMATLABnR2006bntoolboxncommncommobsolete
C:nProgram FilesnN4ATLABnR2006bntoolboxncommblksncommblks
C:nProgram FilesnMATLABnR2006bntoolboxncommblksncommmasks
C:nProgram FilesnMATLABnR2006bntoolboxncommblksncommmex
C:nProgram FilesnMATLABnR2006bntoolboxncommblksncommblksdemos
C:nProgram FilesnMATLABnR2006bntoolboxncommblksncommblks

obsoletenv3
C:nProgram FilesnMATLABnR2006bntoolboxncommblksncommblks

obsoletenv2p5
C:nProgram FilesnMATLABnR2006bntoolboxncommblksncommblks

obsoletenv2
C:nProgram FilesnMATLABnR2006bntoolboxncommblksncommblks

obsoletenv1p5
C:nProgram FilesnMATLABnR2006bntoolboxncontrolncontrol
C:nProgram FilesnMATLABnR2006bntoolboxncontrolnctrlguis
C:nProgram FilesnMATLABnR2006bntoolboxncontrolnctrlobsolete
C:nProgram FilesnMATLABnR2006bntoolboxncontrolnctrlutil
C:nProgram FilesnMATLABnR2006bntoolboxncontrolnctrldemos
C:nProgram FilesnMATLABnR2006bntoolboxnsharednslcontrollib
C:nProgram FilesnMATLABnR2006bntoolboxncurvefitncurvefit
C:nProgram FilesnMATLABnR2006bntoolboxncurvefitncftoolgui
C:nProgram FilesnMATLABnR2006bntoolboxnsharednoptimlib
C:nProgram FilesnMATLABnR2006bntoolboxndaqndaq
C:nProgram FilesnMATLABnR2006bntoolboxndaqndaqguis
C:nProgram FilesnMATLABnR2006bntoolboxndaqndaqdemos
C:nProgram FilesnMATLABnR2006bntoolboxndatabasendatabase
C:nProgram FilesnMATLABnR2006bntoolboxndatabasendbdemos
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C:nProgram FilesnMATLABnR2006bntoolboxndatabasenvqb
C:nProgram FilesnMATLABnR2006bntoolboxndatafeedndatafeed
C:nProgram FilesnMATLABnR2006bntoolboxndatafeedndfgui
C:nProgram FilesnMATLABnR2006bntoolboxndesndesblks
C:nProgram FilesnMATLABnR2006bntoolboxndesndesmasks
C:nProgram FilesnMATLABnR2006bntoolboxndesndesmex
C:nProgram FilesnMATLABnR2006bntoolboxndesndesdemos
C:nProgram FilesnMATLABnR2006bntoolboxnphysmodndrivendrive
C:nProgram FilesnMATLABnR2006bntoolboxnphysmodndrivendrivedemos
C:nProgram FilesnMATLABnR2006bntoolboxndspblksndspblks
C:nProgram FilesnMATLABnR2006bntoolboxndspblksndspmasks
C:nProgram FilesnMATLABnR2006bntoolboxndspblksndspmex
C:nProgram FilesnMATLABnR2006bntoolboxndspblksndspdemos
C:nProgram FilesnMATLABnR2006bntoolboxnrtwntargetsnecoder
C:nProgram FilesnMATLABnR2006bntoolboxnrtwntargetsnecodern

ecoderdemos
C:nProgram FilesnMATLABnR2006bntoolboxnrtwntargetsnmpt
C:nProgram FilesnMATLABnR2006bntoolboxnrtwntargetsnmptnmpt
C:nProgram FilesnMATLABnR2006bntoolboxnrtwntargetsnmptn

user_specific
C:nProgram FilesnMATLABnR2006bntoolboxnexlink
C:nProgram FilesnMATLABnR2006bntoolboxnsymbolicnextended
C:nProgram FilesnMATLABnR2006bntoolboxnfilterdesignnfilterdesign
C:nProgram FilesnMATLABnR2006bntoolboxnfilterdesignnquantization
C:nProgram FilesnMATLABnR2006bntoolboxnfilterdesignnfiltdesdemos
C:nProgram FilesnMATLABnR2006bntoolboxnfinancenfinance
C:nProgram FilesnMATLABnR2006bntoolboxnfinancencalendar
C:nProgram FilesnMATLABnR2006bntoolboxnfinancenfindemos
C:nProgram FilesnMATLABnR2006bntoolboxnfinancenfinsupport
C:nProgram FilesnMATLABnR2006bntoolboxnfinancenftseries
C:nProgram FilesnMATLABnR2006bntoolboxnfinancenftsdemos
C:nProgram FilesnMATLABnR2006bntoolboxnfinancenftsdata
C:nProgram FilesnMATLABnR2006bntoolboxnfinancenftstutorials
C:nProgram FilesnMATLABnR2006bntoolboxnfinderivnfinderiv
C:nProgram FilesnMATLABnR2006bntoolboxnfinfixednfinfixed
C:nProgram FilesnMATLABnR2006bntoolboxnfixedpointnfixedpoint
C:nProgram FilesnMATLABnR2006bntoolboxnfixedpointnfidemos
C:nProgram FilesnMATLABnR2006bntoolboxnfixedpointnfimex
C:nProgram FilesnMATLABnR2006bntoolboxnfixpoint
C:nProgram FilesnMATLABnR2006bntoolboxnfuzzynfuzzy
C:nProgram FilesnMATLABnR2006bntoolboxnfuzzynfuzdemos
C:nProgram FilesnMATLABnR2006bntoolboxngads
C:nProgram FilesnMATLABnR2006bntoolboxngadsngads
C:nProgram FilesnMATLABnR2006bntoolboxngadsngadsdemos
C:nProgram FilesnMATLABnR2006bntoolboxngarchngarch
C:nProgram FilesnMATLABnR2006bntoolboxngarchngarchdemos
C:nProgram FilesnMATLABnR2006bntoolboxngauges
C:nProgram FilesnMATLABnR2006bntoolboxnrtwntargetsnhc12nhc12
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C:nProgram FilesnMATLABnR2006bntoolboxnrtwntargetsnhc12nblocks
C:nProgram FilesnMATLABnR2006bntoolboxnrtwntargetsnhc12ncodewarrior
C:nProgram FilesnMATLABnR2006bntoolboxnrtwntargetsnhc12nhc12demos
C:nProgram FilesnMATLABnR2006bntoolboxnhdlfilternhdlfilter
C:nProgram FilesnMATLABnR2006bntoolboxnhdlfilternhdlfiltdemos
C:nProgram FilesnMATLABnR2006bntoolboxnsharednhdlshared
C:nProgram FilesnMATLABnR2006bntoolboxnidentnident
C:nProgram FilesnMATLABnR2006bntoolboxnidentnidobsolete
C:nProgram FilesnMATLABnR2006bntoolboxnidentnidguis
C:nProgram FilesnMATLABnR2006bntoolboxnidentnidutils
C:nProgram FilesnMATLABnR2006bntoolboxnidentniddemos
C:nProgram FilesnMATLABnR2006bntoolboxnidentnidhelp
C:nProgram FilesnMATLABnR2006bntoolboxnimagesnimages
C:nProgram FilesnMATLABnR2006bntoolboxnimagesnimuitools
C:nProgram FilesnMATLABnR2006bntoolboxnimagesnimdemos
C:nProgram FilesnMATLABnR2006bntoolboxnimagesniptutils
C:nProgram FilesnMATLABnR2006bntoolboxnsharednimageslib
C:nProgram FilesnMATLABnR2006bntoolboxnimagesnmedformats
C:nProgram FilesnMATLABnR2006bntoolboxnimaqnimaq
C:nProgram FilesnMATLABnR2006bntoolboxnsharednimaqlib
C:nProgram FilesnMATLABnR2006bntoolboxnimaqnimaqdemos
C:nProgram FilesnMATLABnR2006bntoolboxnimaqnimaqblksnimaqblks
C:nProgram FilesnMATLABnR2006bntoolboxnimaqnimaqblksnimaqmasks
C:nProgram FilesnMATLABnR2006bntoolboxnimaqnimaqblksnimaqmex
C:nProgram FilesnMATLABnR2006bntoolboxninstrumentninstrument
C:nProgram FilesnMATLABnR2006bntoolboxninstrumentninstrumentdemos
C:nProgram FilesnMATLABnR2006bntoolboxninstrumentninstrumentblksn

instrumentblks
C:nProgram FilesnMATLABnR2006bntoolboxninstrumentninstrumentblksn

instrumentmex
C:nProgram FilesnMATLABnR2006bntoolboxnmapnmap
C:nProgram FilesnMATLABnR2006bntoolboxnmapnmapdemos
C:nProgram FilesnMATLABnR2006bntoolboxnmapnmapdisp
C:nProgram FilesnMATLABnR2006bntoolboxnmapnmapformats
C:nProgram FilesnMATLABnR2006bntoolboxnmapnmapproj
C:nProgram FilesnMATLABnR2006bntoolboxnsharednmapgeodesy
C:nProgram FilesnMATLABnR2006bntoolboxnmbcnmbc
C:nProgram FilesnMATLABnR2006bntoolboxnmbcnmbcdata
C:nProgram FilesnMATLABnR2006bntoolboxnmbcnmbcdesign
C:nProgram FilesnMATLABnR2006bntoolboxnmbcnmbcexpr
C:nProgram FilesnMATLABnR2006bntoolboxnmbcnmbcguitools
C:nProgram FilesnMATLABnR2006bntoolboxnmbcnmbclayouts
C:nProgram FilesnMATLABnR2006bntoolboxnmbcnmbcmodels
C:nProgram FilesnMATLABnR2006bntoolboxnmbcnmbcsimulink
C:nProgram FilesnMATLABnR2006bntoolboxnmbcnmbctools
C:nProgram FilesnMATLABnR2006bntoolboxnmbcnmbcview
C:nProgram FilesnMATLABnR2006bntoolboxnphysmodnmechnmech
C:nProgram FilesnMATLABnR2006bntoolboxnphysmodnmechnmechdemos
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C:nProgram FilesnMATLABnR2006bntoolboxnphysmodnpmimportn
pmimport

C:nProgram FilesnMATLABnR2006bntoolboxnslvnvnsimcoverage
C:nProgram FilesnMATLABnR2006bntoolboxnmodelsimnmodelsim
C:nProgram FilesnMATLABnR2006bntoolboxnmodelsimnmodelsimdemos
C:nProgram FilesnMATLABnR2006bntoolboxnmpcnmpc
C:nProgram FilesnMATLABnR2006bntoolboxnmpcnmpcdemos
C:nProgram FilesnMATLABnR2006bntoolboxnmpcnmpcguis
C:nProgram FilesnMATLABnR2006bntoolboxnmpcnmpcobsolete
C:nProgram FilesnMATLABnR2006bntoolboxnmpcnmpcutils
C:nProgram FilesnMATLABnR2006bntoolboxnrtwntargetsnmpc555dk
C:nProgram FilesnMATLABnR2006bntoolboxnrtwntargetsnmpc555dkn

commonnconfiguration
C:nProgram FilesnMATLABnR2006bntoolboxnrtwntargetsnmpc555dkn

mpc555demos
C:nProgram FilesnMATLABnR2006bntoolboxnrtwntargetsnmpc555dkn

mpc555dk
C:nProgram FilesnMATLABnR2006bntoolboxnrtwntargetsnmpc555dknpil
C:nProgram FilesnMATLABnR2006bntoolboxnrtwntargetsnmpc555dknrtn

blocksetnmfiles
C:nProgram FilesnMATLABnR2006bntoolboxnrtwntargetsnmpc555dknrtn

blockset
C:nProgram FilesnMATLABnR2006bntoolboxnnnet
C:nProgram FilesnMATLABnR2006bntoolboxnnnetnnncontrol
C:nProgram FilesnMATLABnR2006bntoolboxnnnetnnndemos
C:nProgram FilesnMATLABnR2006bntoolboxnnnetnnnet
C:nProgram FilesnMATLABnR2006bntoolboxnnnetnnnetnnnanalyze
C:nProgram FilesnMATLABnR2006bntoolboxnnnetnnnetnnncustom
C:nProgram FilesnMATLABnR2006bntoolboxnnnetnnnetnnndistance
C:nProgram FilesnMATLABnR2006bntoolboxnnnetnnnetnnnformat
C:nProgram FilesnMATLABnR2006bntoolboxnnnetnnnetnnninit
C:nProgram FilesnMATLABnR2006bntoolboxnnnetnnnetnnnlearn
C:nProgram FilesnMATLABnR2006bntoolboxnnnetnnnetnnnnetinput
C:nProgram FilesnMATLABnR2006bntoolboxnnnetnnnetnnnnetwork
C:nProgram FilesnMATLABnR2006bntoolboxnnnetnnnetnnnperformance
C:nProgram FilesnMATLABnR2006bntoolboxnnnetnnnetnnnplot
C:nProgram FilesnMATLABnR2006bntoolboxnnnetnnnetnnnprocess
C:nProgram FilesnMATLABnR2006bntoolboxnnnetnnnetnnnsearch
C:nProgram FilesnMATLABnR2006bntoolboxnnnetnnnetnnntopology
C:nProgram FilesnMATLABnR2006bntoolboxnnnetnnnetnnntrain
C:nProgram FilesnMATLABnR2006bntoolboxnnnetnnnetnnntransfer
C:nProgram FilesnMATLABnR2006bntoolboxnnnetnnnetnnnweight
C:nProgram FilesnMATLABnR2006bntoolboxnnnetnnnguis
C:nProgram FilesnMATLABnR2006bntoolboxnnnetnnnguisnnftool
C:nProgram FilesnMATLABnR2006bntoolboxnnnetnnnguisnnntool
C:nProgram FilesnMATLABnR2006bntoolboxnnnetnnnobsolete
C:nProgram FilesnMATLABnR2006bntoolboxnnnetnnnresource
C:nProgram FilesnMATLABnR2006bntoolboxnnnetnnnutils
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C:nProgram FilesnMATLABnR2006bntoolboxnopcnopc
C:nProgram FilesnMATLABnR2006bntoolboxnopcnopcgui
C:nProgram FilesnMATLABnR2006bntoolboxnopcnopcdemos
C:nProgram FilesnMATLABnR2006bntoolboxnopcnopcdemosnopcblksdemos
C:nProgram FilesnMATLABnR2006bntoolboxnopcnopcblksnopcblks
C:nProgram FilesnMATLABnR2006bntoolboxnopcnopcblksnopcmasks
C:nProgram FilesnMATLABnR2006bntoolboxnoptim
C:nProgram FilesnMATLABnR2006bntoolboxnrtwntargetsnoseknosek
C:nProgram FilesnMATLABnR2006bntoolboxnrtwntargetsnoseknosekdemos
C:nProgram FilesnMATLABnR2006bntoolboxnrtwntargetsnoseknblocks
C:nProgram FilesnMATLABnR2006bntoolboxnrtwntargetsnoseknosekworks
C:nProgram FilesnMATLABnR2006bntoolboxnrtwntargetsnoseknproosek
C:nProgram FilesnMATLABnR2006bntoolboxnpde
C:nProgram FilesnMATLABnR2006bntoolboxnphysmodnpm_utilnpm_util
C:nProgram FilesnMATLABnR2006bntoolboxnphysmodnpowersysnpowersys
C:nProgram FilesnMATLABnR2006bntoolboxnphysmodnpowersysn

powerdemo
C:nProgram FilesnMATLABnR2006bntoolboxnphysmodnpowersysndrivesn

drives
C:nProgram FilesnMATLABnR2006bntoolboxnphysmodnpowersysndrives
ndrivesdemo

C:nProgram FilesnMATLABnR2006bntoolboxnphysmodnpowersysnfactsnfacts
C:nProgram FilesnMATLABnR2006bntoolboxnphysmodnpowersysnfacts
nfactsdemo

C:nProgram FilesnMATLABnR2006bntoolboxnphysmodnpowersysnDRnDR
C:nProgram FilesnMATLABnR2006bntoolboxnphysmodnpowersysnDRn

DRdemo
C:nProgram FilesnMATLABnR2006bntoolboxnslvnvnreqmgt
C:nProgram FilesnMATLABnR2006bntoolboxnslvnvnrmidemos
C:nProgram FilesnMATLABnR2006bntoolboxnrfnrf
C:nProgram FilesnMATLABnR2006bntoolboxnrfnrfdemos
C:nProgram FilesnMATLABnR2006bntoolboxnrfnrftool
C:nProgram FilesnMATLABnR2006bntoolboxnrfblksnrfblks
C:nProgram FilesnMATLABnR2006bntoolboxnrfblksnrfblksmasks
C:nProgram FilesnMATLABnR2006bntoolboxnrfblksnrfblksmex
C:nProgram FilesnMATLABnR2006bntoolboxnrfblksnrfblksdemos
C:nProgram FilesnMATLABnR2006bntoolboxnrobustnrobust
C:nProgram FilesnMATLABnR2006bntoolboxnrobustnrctlmi
C:nProgram FiesnMATLABnR2006bntoolboxnrobustnrctutil
C:nProgram FilesnMATLABnR2006bntoolboxnrobustnrctdemos
C:nProgram FilesnMATLABnR2006bntoolboxnrobustnrctobsoletenrobust
C:nProgram FilesnMATLABnR2006bntoolboxnrobustnrctobsoletenlmi
C:nProgram FilesnMATLABnR2006bntoolboxnrobustnrctobsoletenmutoolsn

commands
C:nProgram FilesnMATLABnR2006bntoolboxnrobustnrctobsoleten

mutoolsnsubs
C:nProgram FilesnMATLABnR2006bntoolboxnrptgennrptgen
C:nProgram FilesnMATLABnR2006bntoolboxnrptgennrptgendemos
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C:nProgram FilesnMATLABnR2006bntoolboxnrptgennrptgenv1
C:nProgram FilesnMATLABnR2006bntoolboxnrptgenextnrptgenext
C:nProgram FilesnMATLABnR2006bntoolboxnxptgenextnrptgenextdemos
C:nProgram FilesnMATLABnR2006bntoolboxnrptgenextnrptgenextv1
C:nProgram FilesnMATLABnR2006bntoolboxnsignalnsignal
C:nProgram FilesnMATLABnR2006bntoolboxnsignalnsigtools
C:nProgram FilesnMATLABnR2006bntoolboxnsignalnsptoolgui
C:nProgram FilesnMATLABnR2006bntoolboxnsignalnsigdemos
C:nProgram FilesnMATLABnR2006bntoolboxnsimbionsimbio
C:nProgram FilesnMATLABnR2006bntoolboxnsimbionsimbiodemos
C:nProgram FilesnMATLABnR2006bntoolboxnslcontrolns1control
C;nProgram FilesnMATLABnR2006bntoolboxnslcontrolnslctrlguis
C:nProgram FilesnMATLABnR2006bntoolboxnslcontrolnslctrlutil
C:nProgram FilesnMATLABnR2006bntoolboxnslcontrolnslctrldemos
C:nProgram FilesnMATLABnR2006bntoolboxnslestimnslestdemos
C:nProgram FilesnMATLABnR2006bntoolboxnslestimnslestguis
C:nProgram FilesnMATLABnR2006bntoolboxnslestimnslestim
C:nProgram FilesnMATLABnR2006bntoolboxnslestimnslestmex
C:nProgram FilesnMATLABnR2006bntoolboxnslestimnslestutil
C:nProgram FilesnMATLABnR2006bntoolboxnsloptimnsloptim
C:nProgram FilesnMATLABnR2006bntoolboxnsloptimnsloptguis
C:nProgram FilesnMATLABnR2006bntoolboxnsloptimnsloptdemos
C:nProgram FilesnMATLABnR2006bntoolboxnsloptimnsloptobsolete
C:nProgram FilesnMATLABnR2006bntoolboxnslvnvnslvnv
C:nProgram FilesnMATLABnR2006bntoolboxnslvnvnsimcovdemos
C:nProgram FilesnMATLABnR2006bntoolboxnsplines
C:nProgram FilesnMATLABnR2006bntoolboxnstats
C:nProgram FilesnMATLABnR2006bntoolboxnsymbolic
C:nProgram FilesnMATLABnR2006bntoolboxnrtwntargetsntic2000n

tic2000
C:nProgram FilesnMATLABnR2006bntoolboxnrtwntargetsntic2000n

tic2000blks
C:nProgram FilesnMATLABnR2006bntoolboxnrtwntargetsntic2000n

tic2000demos
C:nProgram FilesnMATLABnR2006bntoolboxnsharednetargetsnetargets
C:nProgram FilesnMATLABnR2006bntoolboxnsharednetargetsnrtdxblks
C:nProgram FilesnMATLABnR2006bntoolboxnrtwntargetsntic6000ntic6000
C:nProgram FilesnMATLABnR2006bntoolboxnrtwntargetsntic6000n

tic6000blks
C:nProgram FilesnMATLABnR2006bntoolboxnrtwntargetsntic6000n

tic6000demos
C:nProgram FilesnMATLABnR2006bntoolboxnvipblksnvipblks
C:nProgram FilesnMATLABnR2006bntoolboxnvipblksnvipmasks
C:nProgram FilesnMATLABnR2006bntoolboxnvipblksnvipmex
C:nProgram FilesnMATLABnR2006bntoolboxnvipblksnvipdemos
C:nProgram FilesnMATLABnR2006bntoolboxnvrnvr
C:nProgram FilesnMATLABnR2006bntoolboxnvrnvrdemos
C:nProgram FilesnMATLABnR2006bntoolboxnwaveletnwavelet
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C:nProgram FilesnMATLABnR2006bntoolboxnwaveletnwavedemo
C:nProgram FilesnMATLABnR2006bntoolboxnrtwntargetsnxpcnxpc
C:nProgram

FilesnMATLABnR2006bntoolboxnrtwntargetsnxpcntargetnbuildnxpcblocks
C:nProgram FilesnMATLABnR2006bntoolboxnrtwntargetsnxpcnxpcdemos
C:nProgram FilesnMATLABnR2006bntoolboxnrtwntargetsnxpcnxpcn

xpcmngr
C:nProgram FilesnMATLABnR2006bnwork
C:nProgram FilesnMATLABnR2006bntoolboxnphysmodnnetwork_enginen

network_engine
C:nProgram

FilesnMATLABnR2006bntoolboxnphysmodnnetwork_enginenne_sli
C:nProgram

FilesnMATLABnR2006bntoolboxnphysmodnnetwork_enginenlibrary
C:nProgram FilesnMATLABnR2006bntoolboxnphysmodnshnsh
C:nProgram FilesnMATLABnR2006bntoolboxnphysmodnshnshdemos
C:nProgram FilesnMATLABnR2006bntoolboxnphysmodnshnlibrary

This is often a more representative and detailed path listing than is given in
your Launch Pad window.

To find out what version of MATLAB and its toolboxes you are using, type the
command

� ver

It will provide you with version information as follows.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

MATLAB Version 7.3.0.267 (R2006b)

MATLAB License Number: DEMO

Operating System: Microsoft Windows XP Version 5.1 (Build 2600: Service Pack 2)

Java VM Version: Java 1.5.0 with Sun Microsystems Inc. Java HotSpot(TM) Client VM

mixed mode

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

MATLAB Version 7.3 (R2006b)

Simulink Version 6.5 (R2006b)

Aerospace Blockset Version 2.2 (R2006b)

Aerospace Toolbox Version 1.0 (R2006b)

Bioinformatics Toolbox Version 2.4 (R2006b)

Communications Blockset Version 3.4 (R2006b)

Communications Toolbox Version 3.4 (R2006b)

Control System Toolbox Version 7.1 (R2006b)

Curve Fitting Toolbox Version 1.1.6 (R2006b)

Data Acquisition Toolbox Version 2.9 (R2006b)

Database Toolbox Version 3.2 (R2006b)

Datafeed Toolbox Version 1.9 (R2006b)

Embedded Target for Infineon C166 Microcontrollers Version 1.3 (R2006b)

Embedded Target for Motorola MPC555 Version 2.0.5 (R2006b)
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Embedded Target for TI C2000 DSP(tm) Version 2.1 (R2006b)

Embedded Target for TI C6000 DSP(tm) Version 3.1 (R2006b)

Excel Link Version 2.4 (R2006b)

Extended Symbolic Math Toolbox Version 3.1.5 (R2006b)

Filter Design HDL Coder Version 1.5 (R2006b)

Filter Design Toolbox Version 4.0 (R2006b)

Financial Derivatives Toolbox Version 4.1 (R2006b)

Financial Toolbox Version 3.1 (R2006b)

Fixed-Income Toolbox Version 1.2 (R2006b)

Fixed-Point Toolbox Version 1.5 (R2006b)

Fuzzy Logic Toolbox Version 2.2.4 (R2006b)

GARCH Toolbox Version 2.3 (R2006b)

Gauges Blockset Version 2.0.4 (R2006b)

Genetic Algorithm and Direct Search Toolbox Version 2.0.2 (R2006b)

Image Acquisition Toolbox Version 2.0 (R2006b)

Image Processing Toolbox Version 5.3 (R2006b)

Instrument Control Toolbox Version 2.4.1 (R2006b)

Link for Code Composer Studio Version 2.1 (R2006b)

Link for ModelSim Version 2.1 (R2006b)

Link for TASKING Version 1.0.1 (R2006b)

MATLAB Report Generator Version 3.1 (R2006b)

Mapping Toolbox Version 2.4 (R2006b)

Model Predictive Control Toolbox Version 2.2.3 (R2006b)

Model-Based Calibration Toolbox Version 3.1 (R2006b)

Neural Network Toolbox Version 5.0.1 (R2006b)

OPC Toolbox Version 2.0.3 (R2006b)

Optimization Toolbox Version 3.1 (R2006b)

Partial Differential Equation Toolbox Version 1.0.9 (R2006b)

RF Blockset Version 1.3.1 (R2006b)

RF Toolbox Version 2.0 (R2006b)

Real-Time Windows Target Version 2.6.2 (R2006b)

Real-Time Workshop Version 6.5 (R2006b)

Real-Time Workshop Embedded Coder Version 4.5 (R2006b)

Robust Control Toolbox Version 3.1.1 (R2006b)

Signal Processing Blockset Version 6.4 (R2006b)

Signal Processing Toolbox Version 6.6 (R2006b)

SimBiology Version 2.0.1 (R2006b)

SimDriveline Version 1.2.1 (R2006b)

SimEvents Version 1.2 (R2006b)

SimHydraulics Version 1.1 (R2006b)

SimMechanics Version 2.5 (R2006b)

SimPowerSystems Version 4.3 (R2006b)

Simulink Accelerator Version 6.5 (R2006b)

Simulink Control Design Version 2.0.1 (R2006b)

Simulink Fixed Point Version 5.3 (R2006b)

Simulink HDL Coder Version 1.0 (R2006b)
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Simulink Parameter Estimation Version 1.1.4 (R2006b)

Simulink Report Generator Version 3.1 (R2006b)

Simulink Response Optimization Version 3.1 (R2006b)

Simulink Verification and Validation Version 2.0 (R2006b)

Spline Toolbox Version 3.3.1 (R2006b)

Stateflow Version 6.5 (R2006b)

Stateflow Coder Version 6.5 (R2006b)

Statistics Toolbox Version 5.3 (R2006b)

Symbolic Math Toolbox Version 3.1.5 (R2006b)

System Identification Toolbox Version 6.2 (R2006b)

SystemTest Version 1.0.1 (R2006b)

Video and Image Processing Blockset Version 2.2 (R2006b)

Virtual Reality Toolbox Version 4.4 (R2006b)

Wavelet Toolbox Version 3.1 (R2006b)

xPC Target Version 3.1 (R2006b)

If you are interested in all of the M-files and MAT-files you have in your
working directory, type the command

� what

This provides the following information in the MATLAB Command Window:

M-files in the current directory U:nltimatlbnnewltimatlab

ANINTRODUCTION JETDEMO POPDEMO

DEMO ODES RDEMO
DISKDEMO PLOTDEMO WOWPLOT

MAT-files in the current directory U:nltimatlbnnewltimatlab

demo testing trial

If you would like contact information for The MathWorks, type the command

� info

This provides you with the following information:

For information about The MathWorks, go to: http://www.mathworks.com/
company/aboutus/contact_us or +508-647-7000.

Other information on MATLAB and The MathWorks is as follows:

MATLAB is available for Windows, Solaris, HP-UX, LINUX, and
MacIntosh.

For an up-to-date list of MathWorks Products, visit our Web site at
www.mathworks.com.
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24 hour access to our Technical Support problem/solution database as well as
our FAQ, Technical Notes, and example files is also available at
www.mathworks.com.

For MATLAB assistance or information, contact your local representative or:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA

Contact Information:
Phone: +508-647-7000
Fax: +508-647-7001
Web: www.mathworks.com
Newsgroup: comp.soft-sys.matlab
FTP: ftp.mathworks.com

E-mail:

info@mathworks.com Sales, pricing, and general information

support@mathworks.com Technical support for all products

doc@mathworks.com Documentation error reports

bugs@mathworks.com Bug reports

service@mathworks.com Order status, invoice, and license issues

renewals@mathworks.com Renewal/subscription pricing

pricing@mathworks.com Product and pricing information

access@mathworks.com MATLAB Access Program

suggest@mathworks.com Product enhancement suggestions

news-notes@mathworks.com MATLAB News & Notes Editor

connections@mathworks.com MATLAB Connections Program

The MathWorks Web site www.mathworks.com is an excellent resource
for MATLAB third-party routines, program demonstrations, and product
documentation.

When contacting The MathWorks for license updates and trouble calls, it is
very useful to have the Host Identification Number. This is accessed as
follows:

� hostid

‘999666’

To test the performance of MATLAB on your computer, use the command

� bench

ans ¼

0:8493 0:3961 0:3522 0:5232 0:6125 1:8100
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This generates a figure and a table comparing your computer with several others
as in Figs 1.4 and 1.5.

Fig. 1.4

Finally, to see what is new with your version of MATLAB, type the following
command:

� whatsnew

This command brings up the current release notes in the Help window. The
release notes are also accessible from the Contents list on the left-hand
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portion of the Help window. The release notes for Release 2006b corresponding
to MATLAB version 7.3.0.267 appear in Fig. 1.6.

Try out some of these commands and GUIs. You have just taken the first step
in becoming a proficient MATLAB user!

Fig. 1.5
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1.11 Conclusion

This chapter introduces the reader to MATLAB and several of the basic matrix
computational tools and GUIs that are available in MATLAB through the main
Command Window.

Fig. 1.6
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Practice Exercises

1.1 Enter the following matrix and complete the following computations on
this matrix:

a ¼

0:6000 1:5000 2:3000 �0:5000

8:2000 0:5000 �0:1000 �2:0000

5:7000 8:2000 9:0000 1:5000

0:5000 0:5000 2:4000 0:5000

1:2000 �2:3000 �4:5000 0:5000

a) What is the size of a?
b) Is the matrix square?
c) Which elements of the a matrix are equal to 0.5?
d) Use MATLAB to show the negative matrix elements.
e) b ¼ a(:,2)
f) c ¼ a(4,:)
g) d ¼ [10:15]
h) e ¼ [4:9,1:6]
i) f ¼ [ 2 5,5]
j) g ¼ [0.0:0.1:1.0]
k) h ¼ a(4:5,1:3)
l) k ¼ a(1:2:5,:)
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2
Plotting and Graphics

2.1 Introduction and Objectives

This chapter covers the plotting and graphics tools that are available in
MATLABw. This includes generating some simple MATLAB animations.

Upon completion of this chapter, the reader will be able to identify and input
some basic plotting and graphic tools and commands in MATLAB and generate
simple MATLAB movies.

2.2 Plot

The standard linear two-dimensional plot command in MATLAB is plot(x,y),
where x and y are vectors. If either x or y is a matrix, then the vector is plotted
versus the rows or columns of the matrix, whichever line up.

Let us first generate a simple sine wave plot. The variable t goes from 0 to 10
in increments of 0.3. The variable y is the sine of t. The semicolon is used to
suppress the MATLAB echo.

A title is added to the plot using the command of the same name. A hard copy
is generated using the print command. Note that the print can also be generated
by clicking the printer icon on the plot window, by selecting Print . . . from the
File pull-down menu, or by simultaneously pressing the Ctrl and P keys with the
plot window in the foreground. As with many operations in MATLAB, there are
several ways to accomplish the same operation. The best choice depends on the
type of information processing being used (i.e., interactive or preprogrammed)
and on user preference.

� t 5 0:.3:10;
� y 5 sin(t);
� plot(t,y)
� title('A simple X-Y plot')

43



The resulting plot in the MATLAB plot window appears as shown in Fig. 2.1.

Fig. 2.1

Symbols can be used instead of a solid curve by placing the desired symbol in
single quotation marks at the end of the plot command. The grid command is
used to add grid lines at the major tick marks.

Labels can be placed on the abscissa and the ordinate by using the xlabel and
the ylabel commands. The gtext(‘string’) can be used to place a string of text
anywhere on the plot. It waits for the mouse button or keyboard key to be
pressed while the cursor is within the graphics window. This writes the string
onto the graph at the selected location. To see all the possible combinations of
colors, markers, and line types, use the command help plot.

Let us next modify the previous plot commands to generate a plot with a plus
symbol þ marking each data point and with grid lines added. Type the following
into the MATLAB Command Window:

� plot(t,y,' 1 ')
� title('Now with a 1 symbol, and with grid lines')
� grid
� xlabel('I do labels too.')
� ylabel('Hello, World.')
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The resulting plot from the MATLAB plot window appears as shown in Fig. 2.2.

Fig. 2.2

When multiple curves are plotted on the same plot, MATLAB automatically
changes the line type to a variety of colors. Older versions of MATLAB use
dashed curves (see Fig. 2.3). Multiple curves can be plotted by repeating the x
and y vectors within the plot command.

� plot(t,y,t,2�y,t,3�y,t,4�y)
� title('Four different line-types')

Marker types can be used to differentiate between various curves. The markers
are entered in the plot command after the x-y pair to be plotted using that marker.
Note that line types can be combined in the same plot command, as in
plot(x,y,'b-o');, which plots using blue circle markers (see Fig. 2.4).

� t 5 0:.5:10;
� plot(t,t,'.',t,2�t 1 3,' 1 ',t,3�t 1 6,'�',t,4�t 1 9,'o',t,5�t 1 12,'x')
� title('Five different marker-types')
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Fig. 2.3

Fig. 2.4
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2.3 Log and Semilog Plots

Log scale plots are generated using the loglog(x,y) command. The semi-
logx(x,y) command makes a plot using a base 10 logarithmic scale for the
x axis and a linear scale for the y axis. The semilogy(x,y) command makes
a plot using a base 10 logarithmic scale for the y axis and a linear scale for
the x axis (see Fig. 2.5). All three operate identically to the plot command.
Note that .* produces an element-by-element multiplication [t(1)�t(1),
t(2)�t(2), . . . , t(n)�t(n)].

� t 5 .1:.1:3;
� loglog(exp(t),exp(t.�t))
� title('I do loglog and semilog plots')

Fig. 2.5

2.4 Polar Plots

The command polar(theta,rho) makes a polar coordinate plot of the angle
theta (in radians) versus the radius rho (see Fig. 2.6). The line type can be
changed by inserting characters within single quotes as in the plot command
as the third argument. Note that the variable pi is predefined by MATLAB to
be 3.14159265358979 or 4*atan(1).
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� t 5 0:.05:pi 1 .1;
� y 5 sin(5�t);
� polar(t,y)
� title('And polar plots too')

Fig. 2.6

2.5 Subplots

The command subplot(m,n,p) breaks the figure window into an m-by-n
matrix of small rectangular panes, creates an axis in the pth panel, and makes
it current (see Fig. 2.7). The command subplot(h) makes the hth axis current.
Use clf or clf reset to return to the default subplot(1,1,1) configuration.

Note that the commas can be dropped, modifying the result of the command
slightly, and that subplot 5 subplot(1,1,1).

The command subplot(111) without the commas is a special case of subplot
that does not immediately create an axis. Thus subplot(111) is not identical in
behavior to subplot(1,1,1).

It sets up the figure so that the next graphics command executes clf reset in the
figure (deleting all children of the figure) and creates a new axis in the default
position. The delayed clf reset is accomplished by setting the figure’s NextPlot
to replace.
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In this example the figure window is divided into a 2-by-2 space. A different
plot is placed in each space.

� t 5 0:.3:30;
� subplot(221), plot(t,sin(t)),title('Subplots')
� subplot(222), plot(t,t.�sin(t))
� subplot(223), plot(t,t.�sin(t).^2)
� subplot(224), plot(t,t.^2.�sin(t).^2)
� subplot

Fig. 2.7

2.6 Axis

Many of the plot attributes can be modified by using the axis command. These
include using the autoscale mode, entering minimum and maximum axis values,
freezing scalings for subsequent plots, turning axis labeling on and off, and
setting the axes region to be square (see Fig. 2.8). The command axis('state')
returns three strings indicating the current settings of the three axis-labeling proper-
ties. Note that this can also be accomplished using the plot window’s GUI interface.

For example, let us define a vector and then plot a growing cosine wave with
the axes squared:

� t 5 0:(.99�pi/2):500;
� x 5 t.�cos(t);
� plot(x,t)
� axis('square')
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Fig. 2.8

Plotting each point with a period ‘.’ makes the behavior of the cosine wave
much clearer.

� plot(x,t,'.')
� axis('square')

The plot resulting from the previous MATLAB commands is given in Fig. 2.9
for comparison purposes.

Fig. 2.9

Now let us plot the growing cosine versus a growing sine (see Fig. 2.10):

� y 5 t.�sin(t);
� plot(x,y)
� axis('square')
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Fig. 2.10

2.7 Mesh

The standard three-dimensional mesh plot command in MATLAB is mesh
(X,Y,Z,C), where X, Y, and Z are matrices and C specifies the color of the
grid lines. If meshc(X,Y,Z,C) is used, a contour plot is drawn beneath the
mesh. If meshz(X,Y,Z,C) is used, a curtain plot is drawn beneath the mesh.

Consider the function z ¼ cos(x)�sin(y) in the interval 22 , x , 2, 22 , y
, 2. To draw a mesh or contour graph of this function, first form matrices x and y
containing a grid of values in this range (see Fig. 2.11):

� dx 5 1/3

dx ¼
0.3333

� dy 5 1/3

dy ¼
0.3333

� dz 5 1/3
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dz ¼
0.3333

� [x,y] 5 meshgrid(22:dx:2, 2 2:dy:2);

We can evaluate this function at all the points in x and y with

� z 5 cos(x) .� sin(y);
� mesh(z)

Fig. 2.11

The command meshgrid(x,y) transforms the domain specified by the vectors
x and y into arrays X and Y that can be used for the evaluation of functions of two
variables and three-dimensional mesh/surface plots. The rows of the output array
X are copies of the vector x, and the columns of the output array Y are copies of
the vector y. Note that the command mesh(x,y,z) would plot the actual values of
x and y used to generate z.

Another example of the use of the meshgrid command with the mesh family
of commands follows:

� [x,y] 5 meshgrid(22:.2:2, 22:.2:2);
� z 5 x .� exp(2x.^2 2y.^2);
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� mesh(z)
� title('This is a 3-D plot of z 5 x � exp(2x^2 2 y^2)')

This family of commands is extremely useful for generating graphics such as
carpet plots (see Fig. 2.12).

Fig. 2.12

2.8 Contour Diagrams

The command contour(Z) draws a contour plot of the matrix Z. The
command contourc(C) calculates the contour matrix Z for use by the M-file
contour to draw the actual contour plots. The command contour3(Z) produces
a three-dimensional contour plot of a surface defined on a rectangular grid.

A quiver or needle plot of vectors with direction and magnitude are generated
using the quiver(X,Y,DX,DY) command. This command draws arrows at every
pair of elements in the matrices X and Y. The pairs of elements in matrices DX
and DY determine the direction and relative magnitude of the arrows. A final
trailing argument specifies line type and color using any legal line specification
as described under the plot command.

As an example of contour and quiver, the function z 5 cos(x)�sin(y) will
now be analyzed. The gradient of this function is easy to compute analytically:

dz/dx 5 2sin(x)�sin(y)
dz/dy 5 cos(x)�cos(y)
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We can evaluate the partials for all points in x and y using the MATLAB
expressions

� dx 5 1/3; dy 5 1/3;
� [x,y] 5 meshgrid(22:dx:2,22:dy:2);
� z 5 cos(x) .� sin(y);
� dzx 5 2sin(x).�sin(y);
� dzy 5 cos(x).�cos(y);

If the gradient of a function is too complicated to compute analytically, or if
we start with data arrays, the gradient can be computed numerically. The follow-
ing is an example using the MATLAB function gradient:

[pzx,pzy] 5 gradient(z,dx,dy);

Overlaying a contour plot of the function and a quiver plot of the partials puts
directional information on the contour plot. The command hold on retains the
previous plot so that additional information can be overlaid.

Figure 2.13 shows the plot after the contour(z) command is used:

� contour(z)

Fig. 2.13
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Next the quiver(dzx,dzy) result is overlaid with hold on (see Fig. 2.14):

� contour(z), hold on
� quiver(dzx,dzy), hold off

Fig. 2.14

Note that a comma allows multiple command lines to be placed on a single
line:

� contour(z), hold on, quiver(pzx,pzy), hold off

Both of these sets of commands give the same result.

2.9 Flow Diagrams

As an example of three-dimensional contour plotting using MATLAB, the
peaks function is next plotted using the three-dimensional contour graphics
command contour3 along with the following (see Fig. 2.15):

� x 5 23:0.125:3;
� y 5 x;
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� [X,Y] 5 meshgrid(x,y);
� Z 5 peaks(X,Y);
� contour3(X,Y,Z,20)

Fig. 2.15

2.10 Movies

The command movie(M) plays recorded movie frames. The command
movie(M,N) plays the movie N times. If N is negative, it plays the movie
once forward and once backward. The command movie(M,N,FPS) plays the
movie at FPS frames per second. The default is 12 frames per second.

The command moviein(N) creates a matrix large enough to hold N frames for
a movie.

The command getframe returns a column vector with one movie frame. The
frame is a snapshot (pixmap) of the current axis.

The following example generates a movie with n frames:

� z 5 peaks;
� surf(z);
� lim 5 axis;
� M 5 moviein(20);
� for j 5 1:20, surf(sin(2�pi�j/20)�z,z), axis(lim), M(:,j) 5getframe;,
end, movie(M,20)
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Some of the resulting frames from this movie are shown in Figs 2.16 and 2.17. A
MATLAB avi of this movie can also be embedded in electronic documents. You
should also try these commands yourself to see the results of the movie(m,n)
command in action!

Fig. 2.17

Fig. 2.16
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Figure 2.18 is the movie saved using the avifile function.

Fig. 2.18

This concludes the discussion on plotting and graphics.

2.11 Conclusion

This chapter introduced the reader to the plotting and graphics tools that are
available in MATLAB as well as the methods for generating simple MATLAB
animations.
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Practice Exercises

2.1 Use MATLAB commands to generate the linear plot of y ¼ 5x2.
2.2 Use MATLAB commands to generate the semilogx plot of y ¼ 5x2.
2.3 Use MATLAB commands to generate the semilogy plot of y ¼ 5x2.
2.4 Use MATLAB commands to generate the log-log plot of y ¼ 5x2.

Generate the data using the commands

� for ic51:100;,x(ic)5(ic21)/2;,y(ic)55�x(ic)^2;end;
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Notes



3
Introduction to MATLABw Toolboxes

3.1 Introduction and Objectives

This chapter covers a few of the computational and graphics routines that are
available in MATLABw toolboxes. It emphasizes the analysis of aircraft dyna-
mics and uses many commands from the Controls Toolbox.

Upon completion of this chapter, the reader will be able to identify and input
some computational and graphics routines to conduct analysis of aircraft dynamics
and input some commands from the Control Toolbox and related toolboxes.

3.2 Continuous Transfer Functions

Suppose we start with a plant description in transfer function form:

H(s) ¼
0:2 s2 þ 0:3 sþ 1

(s2 þ :4 sþ 1)(sþ :5)

We enter the numerator and denominator coefficients into MATLAB as vectors
in descending powers of s:

�� num 5 [.2 .3 1];
�� den1 5 [1 .4 1];
�� den2 5 [1 .5];

Remember that the Laplace notation is dx/dt ¼ Ẋ ¼ x�s.

3.2.1 Convolution

The denominator polynomial is the product of the two terms. We can use con-
volution to obtain the polynomial product:

�� den 5 conv(den1,den2)

den ¼

1:0000 0:9000 1:2000 0:5000

Working the problem out in longhand,

(s2 þ :4 sþ 1)(sþ :5) ¼ s3 þ 0:9 s2 þ 1:2 sþ 0:5
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3.2.2 Print System

The transfer function can be printed in standard form using the printsys
command. This is one of many commands added to MATLAB to provide
some Mathematica-style symbolic math capabilities:

�� printsys(num,den)

num=den ¼

0:2 s^2þ 0:3 sþ 1

s^3þ 0:9 s^2þ 1:2 sþ 0:5

Because s is the default symbol, the following gives the same result:

�� printsys(num,den,‘s’)

The transfer function can also be printed in standard form using tf:

�� tf(num,den)

Transfer function:

0:2 s^2þ 0:3 sþ 1

s^3þ 0:9 s^2þ 1:2 sþ 0:5

3.2.3 Damping

We can look at the natural frequencies and damping factors of the plant poles:

�� damp(den)

Eigenvalue Damping Freq. (rad/s)

22.00e-001þ 9.80e 2 001i 2.00e 2 001 1.00eþ 000

22.00e-001 2 9.80e 2 001i 2.00e 2 001 1.00eþ 000

25.00e 2 001 1.00eþ 000 5.00e 2 001

Remember that the eigenvalues are roots of the denominator polynominal.
Two of the roots have real coefficients only in their second-order representation.
Here i 5 sqrt(21).

Other ways to generate this information will be demonstrated throughout
this text.

3.2.4 Equivalent Continuous State-Space Model

A state-space representation can be obtained from a transfer function model by
using the tf2ss command. The state-space representation is of the form

ẋ ¼ Axþ Bu

y ¼ Cxþ Du
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�� [a,b,c,d] 5 tf2ss(num,den)

a ¼

�0:9000 �1:2000 �0:5000

1:0000 0 0

0 1:000 0

b ¼

1

0

0

c ¼

0:2000 0:3000 1:0000

d ¼

0

3.3 Root Locus

A root locus can be obtained by using the rlocus command:

�� rlocus(num,den);

The same format rules apply for the time and frequency response functions
shown in Figure 3.1.

Fig. 3.1
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Background materials on the equivalence between these plot types follow in
Table 3.1 for twelve common transfer functions. These show the relationship
between the open-loop transfer function, the Nyquist and Bode diagrams, the
Nichols chart, and the root locus plot.

3.4 Step and Impulse Responses

For systems described in state space or by transfer functions, the step response
is found by using the step command. Similarly, the impulse response is generated
by using the impulse command (see Fig. 3.2):

�� step(num,den);

Fig. 3.2

The following commands would give the same results:

�� step(a,b,c,d,1); �� step(sys);

where the model sys is generated using either sys 5 tf(num,den) or sys 5
ss(a,b,c,d). Also note that when using the state-space representation, the position
of the input must be specified, or all inputs will be plotted.
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3.5 Bode Plot

The frequency response is found by using the Bode command (see Fig. 3.3):

�� bode(num,den); or �� bode(a,b,c,d,1);

Fig. 3.3

To obtain a listing of the actual data values in the Bode plot, use the bode
command:

�� [freq, amp, omega] 5 bode(a,b,c,d,1)

The values in the vector amp are the magnitude of the output divided by the
input magnitude at that frequency.

To generate the amplitude in decibels, use

�� ampdb 5 20�log10(amp)

Finally, user-specified omega values can be used as follows:

�� bode(a,b,c,d,1,omega); or �� bode(num,den,omega);
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3.6 Nichols Chart

The frequency response is also found by using the Nichols command (see Fig. 3.4):

�� nichols(a,b,c,d,1); or �� nichols(num,den);

Fig. 3.4

This format is very good for graphically displaying the gain and phase margins.

3.7 Nyquist Chart

The frequency response plotted in the real-imaginary plane is found by using
the Nyquist command (see Fig. 3.5):

�� nyquist(a,b,c,d,1); or �� nyquist(num,den);

Here 90 degrees of phase lag is equivalent to 0þ 1i or the sqrt(21). An
out-of-phase output is equivalent to 180 degrees of phase lag or 21 on the
Nyquist chart.
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Fig. 3.5

3.8 Linear Quadratic Regulator

A linear quadratic regulator is now designed for this plant.
For control and state penalties,

�� r 5 1;
�� q 5 eye(size(a))

q ¼

1 0 0

0 1 0

0 0 1

The quadratic optimal gains, the associated Riccati solution, and the closed-loop
eigenvalues are

�� [k,s,e] 5 lqr(a,b,q,r)

k ¼

1:1983 1:2964 0:6180
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s ¼

1:1983 1:2964 0:6180

1:2964 3:5400 1:8959

0:6180 1:8959 2:1910

e ¼

�0:7540

�0:6721þ 1:0154i

�0:6721� 1:0154i

Other modern state-space control design methods are included in the Robust
Control and m-Synthesis Toolboxes.

3.9 State-Space Design

This file demonstrates MATLAB’s ability in classical control system design
by going through the design of a yaw damper for a jet transport aircraft using
a state-space representation.

Define the jet transport model as Mach ¼ 0.8 and h ¼ 40,000 ft:

� A = ½�:0558 �:9968 :0802 :0415

:598 �:115 �:0318 0

�3:05 :388 �:4650 0

0 0:0805 1 0�;

� B = ½:0729 :0001

�4:75 1:23

1:53 10:63

0 0�;

� C = ½0 1 0 0

0 0 0 1�;

� D = ½0 0

0 0�;

�� states 5 'beta yaw roll phi';
�� inputs 5 'rudder aileron';
�� outputs 5 'yaw-rate bank-angle';
�� printsys(A,B,C,D,inputs,outputs,states)
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a ¼

beta yaw roll phi

beta �0:05580 �0:99680 0:08020 0:04150

yaw 0:59800 �0:11500 �0:03180 0

roll �3:05000 0:38800 �0:46500 0

phi 0 0:08050 1:00000 0

b ¼

rudder aileron

beta 0:07290 0:00010

yaw�4:75000 1:23000

roll 1:53000 10:63000

phi 0 0

c ¼

beta yaw roll phi

yaw-rate 0 1:00000 0 0

bank-angle 0 0 0 1:00000

d ¼

rudder aileron

yaw-rate 0 0

bank-angle 0 0

These are the state-space matrices for a jet transport during cruise flight. The
model has two inputs and two outputs. The units are radians for beta (sideslip
angle) and phi (bank angle) and radians per second for yaw (yaw rate) and roll
(roll rate). The rudder and aileron deflections are in degrees.

This model has one set of eigenvalues that are lightly damped. They corre-
spond to what is called the Dutch roll mode. We need to design a compensator
that increases the damping of these poles:

�� disp('Open Loop Eigenvalues'), damp(A);

Open-Loop Eigenvalues

Eigenvalue Damping Freq. (rad/s)

20.0073 1.0000 0.0073

20.0329þ 0.9467i 0.0348 0.9472

20.0329 2 0.9467i 0.0348 0.9472

20.5627 1.0000 0.5627
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Our design criteria are to provide damping ratio z . 0.35 with natural frequency
vn , 1.0 radian/second. We want to design the compensator using classical
methods.

Let us do some open-loop analysis to determine possible control strategies.
Time response (we could use step or impulse here) (see Fig. 3.6):

�� step(A,B,C,D);

Note that all inputs and outputs were plotted using this command (see
Fig. 3.7).

�� impulse(A,B,C,D);

Fig. 3.6

72 BASIC MATLABw, SIMULINKw, AND STATEFLOWw



Fig. 3.7

The time responses show that the system is indeed lightly damped. But the
time frame is much too long. Let us look at the response over a smaller time
frame. Define the time vector T before invoking impulse.

Define a time vector from 0 to 20 seconds in steps of 0.2:

�� T 5 0:0.2:20;

Plot the responses as separate graphs (see Fig. 3.8):

�� subplot(221), impulse(A,B,C(1,:),D(1,:),1,T);
�� title('Input 1 Output 1')
�� subplot(222), impulse(A,B,C(2,:),D(2,:),1,T);
�� title('Input 1 Output 2')
�� subplot(223), impulse(A,B,C(1,:),D(1,:),2,T);
�� title('Input 2 Output 1')
�� subplot(224), impulse(A,B,C(2,:),D(2,:),2,T);
�� title('Input 2 Output 2')
�� subplot
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Fig. 3.8

Look at the plot from aileron (input 2) to bank angle (output 2). The aircraft is
oscillating around a nonzero bank angle. The aircraft is turning in response to an
aileron impulse. This behavior will be important later.

Typically yaw dampers are designed using yaw rate as the sensed output and
rudder as the input. Let us look at that frequency response (see Fig. 3.9):

�� bode(A,B,C(1,:),D(1,:),1);

From this frequency response we see that the rudder is effective around the
lightly damped Dutch roll mode (at 1 radian/second).

To make the design easier, extract the subsystem from rudder to yaw rate.
Extracting the subsystem with input 1 and output 1,

�� [a,b,c,d] 5 ssselect(A,B,C,D,1,1);

Let us do some designs. The simplest compensator is a gain. We can determine
values for this gain using the root locus (see Fig. 3.10):

�� rlocus(a,b,c,d);

Oops. Looks like we need positive feedback (negative feedback is assumed)
(see Fig. 3.11):

�� rlocus(a,b,2c,2d); sgrid
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Fig. 3.9

Fig. 3.10
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Fig. 3.11

That looks better. Using just simple feedback, we can achieve a damping ratio
of z ¼ 0.45.

Now it is your turn. Use the capability within rlocus to select the point on the
root locus providing the maximum closed-loop damping.

Select a point in the graphics window using the mouse. MATLAB will return
with the following (see Fig. 3.12):

selected point ¼

�0:3114þ 0:6292i

Note that multiple points may be selected in this manner from the figure
window. We will next use MATLAB to convert this result into a text string to
display with the closed-loop system gains:

�� disp(['You chose gain: ',num2str(k)]),damp(esort(poles));

You chose gain 0.26798.

Eigenvalue Damping Freq. (rad/s)

23.08e 2 001þ 6.30e 2 001i 4.39e 2 001 7.02e 2 001

23.08e 2 001 2 6.30e 2 001i 4.39e 2 001 7.02e 2 001

23.25e 2 001 1.00eþ 000 3.25e 2 001

29.67e 2 001 1.00eþ 000 9.67e 2 001
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Fig. 3.12

Let us form the closed-loop system so that we can analyze the design:

�� [ac,bc,cc,dc] 5 feedback(a,b,c,d,[ ],[ ],[ ],2k);
ac ¼

20:0558 20:9773 0:0802 0:0415

0:5980 21:3879 20:0318 0

23:0500 0:7980 20:4650 0

0 0:0805 1:0000 0

bc ¼
0:0729

24:7500

1:5300

0

cc ¼
0 1 0 0

dc ¼
0

These eigenvalues should match the ones you chose (see Fig. 3.13):

�� disp('Closed loop eigenvalues'), damp(ac);
�� impulse(ac,bc,cc,dc,1,T);
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Fig. 3.13

This response looks pretty good. Let us close the loop on the original model
and see how the response from the aileron looks. This is accomplished using
feedback of output 1 to input 1 of plant.

Feedback with selection vectors assumes positive feedback (see Fig. 3.14):

�� [Ac,Bc,Cc,Dc] 5 feedback(A,B,C,D,[ ],[ ],[ ],k,[1],[1]);
�� disp('Closed loop eigenvalues'), damp(Ac);
�� T 5 0:0.2:20;
�� subplot(221), impulse(Ac,Bc,Cc(1,:),Dc(1,:),1,T);
�� title('Input 1 Output 1')
�� subplot(222), impulse(Ac,Bc,Cc(2,:),Dc(2,:),1,T);
�� title('Input 1 Output 2')
�� subplot(223), impulse(Ac,Bc,Cc(1,:),Dc(1,:),2,T);
�� title('Input 2 Output 1')
�� subplot(224), impulse(Ac,Bc,Cc(2,:),Dc(2,:),2,T);
�� title('Input 2 Output 2')
�� subplot

Look at the plot from aileron (input 2) to bank angle (output 2). When we
move the aileron, the system no longer continues to bank like a normal aircraft.

78 BASIC MATLABw, SIMULINKw, AND STATEFLOWw



Fig. 3.14

We have overstabilized the spiral mode. The spiral mode is typically a very slow
mode and allows the aircraft to bank and turn without constant aileron input.
Pilots are used to this behavior and will not like our design. Our design has
moved the spiral mode so that it has a faster frequency.

What we need to do is make sure the spiral mode doesn’t move farther into the
left half-plane when we close the loop. One way to fix this problem is to use a
washout filter, i.e.,

H(s) ¼
Ks

(sþ a)

Choosing a 50.333 for a time constant of 3 seconds, form the washout:

�� [aw,bw,cw,dw] 5 zp2ss([0],[2.333],1)

aw ¼

20:3330

bw ¼
1

cw ¼

20:3330

dw ¼
1
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Connect the washout in series with our design model:

�� [a,b,c,d] 5 series(a,b,c,d,aw,bw,cw,dw)

a ¼

20:3330 0 1:0000 0 0

0 20:0558 20:9968 0:0802 0:0415

0 0:5980 20:1150 20:0318 0

0 23:0500 0:3880 20:4650 0

0 0 0:0805 1:0000 0

b ¼
0

0:0729

24:7500

1:5300

0

c ¼
20:3330 0 1:0000 0 0

d ¼
0

Do another root locus (see Fig. 3.15):

�� rlocus(a,b,2c,2d); sgrid

Fig. 3.15
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Now the maximum damping is z ¼ 0.25.
Now use rlocus to choose the gain for maximum damping. Selecting a point in

the graphics window gives the following result (see Fig. 3.16):

selected_point ¼

�0:1818þ 0:6956i

Fig. 3.16

�� disp(['You choose gain: ',num2str(k)]), damp(esort(poles));

You choose gain 0.23263 (see Fig. 3.17).

Eigenvalue Damping Freq. (rad/s)

24.07e 2 003 1.00eþ 000 4.07e 2 003

21.82e 2 001þ 6.96e 2 001i 2.53e 2 001 7.19e 2 001

21.82e 2 001 2 6.96e-001i 2.53e 2 001 7.19e 2 001

24.71e 2 001 1.00eþ 000 4.71e 2 001

21.24eþ 000 1.00eþ 000 1.24eþ 000
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Fig. 3.18

Look at the closed-loop response (see Fig. 3.18):

�� [ac,bc,cc,dc] 5 feedback(a,b,c,d,[ ],[ ],[ ],2k)
�� impulse(ac,bc,cc,dc,1,T);

ac ¼

�0:3330 0 1:0000 0 0

�0:0056 �0:0558 �0:9798 0:0802 0:0415

0:3680 0:5980 �1:2200 �0:0318 0

�0:1185 �3:0500 0:7439 �0:4650 0

0 0 0:0805 1:0000 0

bc ¼
0

0:0729

�4:7500

1:5300

0

cc ¼
�0:3330 0 1:0000 0 0

dc ¼
0
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Fig. 3.18

Now form the controller (washoutþ gain):

�� [aw,bw,cw,dw] 5 series(aw,bw,cw,dw,[ ],[ ],[ ],k)

aw ¼

�0:3330

bw ¼
1

cw ¼
�0:0775

dw ¼
0:2326

Close the loop with the original model:

�� [Ac,Bc,Cc,Dc]= feedback(A,B,C,D,aw,bw,cw,dw,[1],[1])
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Ac ¼

�0:0558 �0:9798 0:0802 0:0415 �0:0056

0:5980 �1:2200 �0:0318 0 0:3680

�3:0500 0:7439 �0:4650 0 �0:1185

0 0:0805 1:0000 0 0

0 1:0000 0 0 �0:3330

Bc ¼

0:0729 0:0001

�4:7500 1:2300

1:5300 10:6300

0 0

0 0

Cc ¼

0 1 0 0 0

0 0 0 1 0

Dc ¼

0 0

0 0

The final closed-loop time responses are plotted:

�� subplot(221), impulse(Ac,Bc,Cc(1,:),Dc(1,:),1,T);
�� title('Input 1 Output 1')
�� subplot(222), impulse(Ac,Bc,Cc(2,:),Dc(2,:),1,T);
�� title('Input 1 Output 2')
�� subplot(223), impulse(Ac,Bc,Cc(1,:),Dc(1,:),2,T);
�� title('Input 2 Output 1')
�� subplot(224), impulse(Ac,Bc,Cc(2,:),Dc(2,:),2,T);
�� title('Input 2 Output 2')

Although we didn’t quite meet the criteria, our design increased the damping
of the system substantially (see Fig. 3.19).
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Fig. 3.19

3.10 Digital Design

This example demonstrates MATLAB’s ability in digital system design by
synthesizing a computer hard disk read/write head position controller.

Using Newton’s law, we can model the simplest model for the read/write head
with the following differential equation:

I�theta_ddotþ C�theta_dotþ K�theta ¼ Ki�i

where I is the inertia of the head assembly; C is the viscous damping coefficient
of the bearings; K is the return spring constant; Ki is the motor torque constant;
theta_ddot, theta_dot, and theta are the angular acceleration, angular velocity,
and position of the head; and i is the input current.

Taking the Laplace transform, the transfer function is

H(s) ¼
K i

I s2 þ C sþ K
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Using the values I ¼ 0.01 Kg m2, C ¼ 0.004 Nm/(radians/second),
K ¼ 10 Nm/radians, and Ki ¼ 0.05 Nm/radians, form the transfer function
description of this system:

�� I 5 .01; C 5 0.004; K 5 10; Ki 5 .05;
�� NUM 5 [Ki];
�� DEN 5 [I C K];
�� printsys(NUM,DEN,‘s’);

num=den ¼

0:05

0:01 s^2þ 0:004sþ 10

Our task is to design a digital controller that can be used to provide accurate
positioning of the read/write head. We will do the design in the digital domain.

First we must discretize our plant because it is continuous. MATLAB has
several methods available for this discretization using the function c2dm. Let
us compare all the methods and choose the best one. Note that starting in
version 6.1 the continuous system is represented using the new sys format,
whereas the discrete systems still use the older transformation format. Because
of the number of toolboxes and commands in MATLAB, these types of inconsis-
tencies can be encountered.

Use the sample time ts ¼ 0.005 (5 mseconds) (see Fig. 3.20):

�� Ts 5 0.005;
�� sys 5 tf(NUM,DEN);
�� clf;
�� [magar, phasear,w] 5 bode(sys);
�� bode(sys);
�� title('Bode of Continuous Open Loop Hard Disk Drive');
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Fig. 3.20

Because of the different model structures, the new array format is converted
into the older vector format for comparison with the discrete system responses:

�� ender 5 size(magar);
�� for i 5 1:ender(3)
�� mag(i) 5 magar(1,1,i);
�� phase(i) 5 phasear(1,1,i);
�� end

Now plot the results as a comparison (see Fig. 3.21):

�� [num,den] 5 c2dm(NUM,DEN,Ts,'zoh');
�� [mzoh,pzoh] 5 dbode(num,den,Ts,w);
�� [num,den] 5 c2dm(NUM,DEN,Ts,'foh');
�� [mfoh,pfoh] 5 dbode(num,den,Ts,w);
�� [num,den] 5 c2dm(NUM,DEN,Ts,'tustin');
�� [mtus,ptus] 5 dbode(num,den,Ts,w);
�� [num,den] 5 c2dm(NUM,DEN,Ts,'prewarp',30);
�� [mpre,ppre] 5 dbode(num,den,Ts,w);
�� [num,den] 5 c2dm(NUM,DEN,Ts,'matched');
�� [mmat,pmat] 5 dbode(num,den,Ts,w);
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�� subplot(211);
�� semilogx(w,20�log10(mag)), hold on;
�� semilogx(w,20�log10(mzoh),w,20�log10(mfoh),w,

20�log10(mtus),w,20�log10(mpre),w,20�log10(mmat))

�� hold off;
�� xlabel('Frequency (rad/sec)'), ylabel('Gain dB');
�� title('c2d Comparison Plot');

�� subplot(212);
�� semilogx(w,phase), hold on;
�� semilogx(w,pzoh,w,pfoh,w,ptus,w,ppre,w,pmat), hold off;
�� xlabel('Frequency (rad/sec)'), ylabel('Phase deg');

Fig. 3.21

Looking at these plots, we see that they all seem to be pretty good matches to
the continuous response. However, the matched pole-zero method gives a mar-
ginally better match to the continuous response.

Note that Franklin and Powell’s book Digital Control Systems provides an
excellent discussion of these methods.

Now analyze the discrete system. A summary of some of the
continuous-to-discrete mappings is given in Table 3.2.
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A brief summary of Table 3.2 is that an approximation to the frequency vari-
able can be used to provide a mapping from a continuous transfer function to a
discrete transfer function or from the s plane to the z plane. These approximations
are given in Table 3.3 for each of the preceding methods.

Additional insights into these mappings may be gained by considering them
graphically. In the continuous plane, the s ¼ jv-axis is the boundary separating
the poles of stable systems from the poles of unstable systems. We will next
look at the three mapping rules and will examine how the stable left-half
system appears in the z plane. The inverse mappings from the previous table
are given in Table 3.4.

By using the variable substitution s ¼ jv in the preceding equations, the
boundaries to the shaded z-plane regions are generated for each of these three
cases. These maps are given in Figs 3.22–3.24.

Another very effective method for obtaining the discrete time equivalent to a
continuous transfer function is a pole-zero mapping. If we take the z transforms
of the samples of a continuous signal e(t), then the poles of the discrete transform
are related to the poles of the continuous transform by z ¼ esT. The idea of the

Table 3.2 Discrete representations of H(s) 5 a/(s 1 2)

Forward rectangular rule H(s) ¼
a

(z� 1)=Tþ a

Backward rectangular rule H(s) ¼
a

(z� 1)=Tzþ a

Trapezoid rule or Tustin’s bilinear rule H(s) ¼
a

(2=T)½(z� 1)=(zþ 1)þ a�

Table 3.4 Approximate discrete to continuous mappings

Forward rectangular rule z � 1þ Ts

Backward rectangular rule z � 1

1� Ts

Trapezoid rule or Tustin’s

bilinear rule z � 1þ Ts=2

1� Ts=2

Table 3.3 Approximate continuous to discrete mappings

Forward rectangular rule s � z� 1

T

Backward rectangular rule s � z� 1

Tz
Trapezoid rule or Tustin’s

bilinear rule s � 2(z� 1)

T(zþ 1)
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Fig. 3.22 Forward Rectangular Rule.

Fig. 3.23 Backward Rectangular Rule.

Fig. 3.24 Trapezoid Rule or Tustin’s Bilinear Rule.
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pole-zero mapping technique is that this same relation can also be applied to the
system’s zeros. The following are used to apply this technique.

1) All poles of H(s) are mapped by z ¼ esT.
2) All finite zeros of H(s) are also mapped by z ¼ esT.
3) All zeros of H(s) at s ¼ 1 are mapped to the point z ¼ 21.
4) If a unit delay in the digital system’s response is required, one zero of H(s)

at s ¼ 1 is mapped into z ¼ 1.
5) The gain of the digital system is selected to match that of the continuous

system at either the band center or at a critical frequency. Often this critical fre-
quency is at s ¼ 0.

Application of the preceding rules to

H(s) ¼
a

sþ a

results in the discrete transfer function:

H(z) ¼
1� e�aT

z� e�aT

A final discretization technique is the hold equivalence. The purpose of sam-
plers is to work on only the system’s outputs during each discrete time interval.
Thus, the input-output behavior can be realized as a transfer function. The dis-
crete equivalent is generated by first approximating e(t) from the samples e(k)
and then running this time sequence through H(s). MATLAB contains techniques
for taking this sequence and holding them through each discrete time interval to
produce a continuous signal.

Now we will analyze one of the discrete system equivalents.
Displaying the discrete system generated using the matched technique,

�� printsys(num,den,'z')

num=den ¼

6:2308e� 005 zþ 6:2308e� 005

z^2� 1:9731 zþ 0:998

Plot the step response:

�� dstep(num,den);

The system oscillates quite a bit. This is probably due to very light damping.
We can check this by computing the open-loop eigenvalues (see Fig. 3.25).
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Fig. 3.25

�� disp('Open loop discrete eigenvalues'), ddamp(den,Ts);

Open-loop discrete eigenvalues

Eigenvalue Magnitude Equiv. Damping Equiv. Freq. (rad/s)

0.9865þ 0.1573i 0.9990 0.0063 31.6228

0.9865 2 0.1573i 0.9990 0.0063 31.6228

This concludes our chapter on the use of toolboxes, detailing their use in
dynamic systems analysis.

3.11 Conclusion

This chapter introduced the reader to a few of the computational and graphics
routines available in MATLAB toolboxes. Many other MATLAB toolboxes are
also available to the reader.
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Practice Exercises

Enter the transfer function

H(s) ¼
(sþ 3)

(s2 þ 4s� 12)

3.1 Calculate the partial fraction expansion using residue.
3.2 Convert to state space.
3.3 Use c2d to generate the discrete-time equations, with T ¼ 0.5 seconds.
3.4 Use tf2zp to convert to a zero-pole-gain transfer function.
3.5 Convert the zero-pole-gain representation into state space.
3.6 Generate a Bode plot.
3.7 Generate a root locus.
3.8 Generate a Nyquist plot.
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4
Introduction to MATLAB

W

Cells,
Structures, and M-Files

4.1 Introduction and Objectives

This chapter covers some of the other data types that are available in
MATLABw. It also covers conditional statements and programming M-files.

Upon completion of this chapter, the reader will be able to identify other data
types available in MATLAB (cells and structures) and develop both script and
function M-files using conditional statements.

4.2 Cells

Cell arrays are data types that allow a user to store arbitrary data within each of
the values of its array. For example, the following is a valid cell array:

� myCellf½1 2 3;4 5 6�;'Text in second index';'embedded cell'}}

myCell ¼

½2�3 double� ½1�24 char� {1�1 cell}

Notice that any data type can be located in any index of the array. Cells are
most useful as a place to store strings that have different lengths. To view each
cell type the following command:

� myCell{1}

ans ¼

1 2 3

4 5 6

� myCell{2}

ans ¼

Text in the second index
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� myCell{3}

ans ¼

‘embedded cell’

To view the second row of the array stored in cell 1, type the following
command:

� myCell{1}(2; :)

ans ¼

4 5 6

Two useful commands to examine the structure of cells and the data stored in
the cells are cellplot and celldisp (see Fig. 4.1).

To examine the structure of myCell, use the command:

� cellplot(myCell)

Fig. 4.1
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To examine the data stored within myCell, use the command

� celldispðmyCellÞ

myCell{1} ¼

1 2 3

4 5 6

myCell{2} ¼

Text in the second index

myCell{3}{1} ¼

embedded cell

This concludes the section on cells.

4.3 Structures

Structures are data types that allow a user to store data in a field/value meth-
odology. They are similar to records in a database. The following is an example
of a structure that stores data in useful groupings:

� Data.X.Name5'AOA';
� Data.X.Units5'Deg';
� Data.X.Values51:10;
� Data.Y.Name5'Cl';
� Data.Y.Units5'';
� Data.Y.Values5[11:20]/10;

� Data.X

ans ¼

Name: 'AOA'

Units: 'Deg'

Values : ½1 2 3 4 5 6 7 8 9 10�

� Data.Y

ans ¼

Name: 'Cl'

Units: ''

Values : ½1:1 1:2 1:3 1:4 1:5 1:6 1:7 1:8 1:9 2�

Structures really become useful when you have arrays of them. You can create
additional elements of the Data array to hold other sets of data:

� clear
� Data(2).X.Name5'AOA';
� Data(2).X.Units5'Deg';
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� Data(2).X.Values51:10;
� Data(2).Y.Name5'Cd';
� Data(2).Y.Units5'';
� Data(2).Y.Values5[1:10]/1000;

� Data

Data ¼

132 struct array with fields:

X

Y

Data now has two elements in it containing data for Cl versus AOA and Cd
versus AOA. This structure could be increased in dimension for additional forces
and moments.

4.4 M-Files

MATLAB provides a full programming language that enables you to write a
series of MATLAB statements into a file and then execute them with a single
command. You write your program in an ordinary text file, giving the file a
name of filename.m. The term you use for filename becomes the new
command that MATLAB associates with the program. The file extension of .m
makes this a MATLAB M-file. M-files can be scripts that simply execute a
series of MATLAB statements, or they can be functions that also accept argu-
ments and produce output. You create M-files using a text editor and then use
them as you would any other MATLAB function or command.

There are two kinds of M-files: 1) script M-files and 2) function M-files. Script
M-files do not accept input arguments or return output arguments and operate on
data in the workspace. Scripts are the simplest kind of M-file because they have
no input or output arguments. Function M-files accept input arguments and return
output arguments and use internal variables (local to the function) by default.

Let us construct a MATLAB program or script M-file that generates the movie
from Sec. 2.10 of Chapter 2. We will also examine the commands if and for,
which are often used in M-files.

M-files are ordinary text files that you create using a text editor. MATLAB
provides a built-in editor, although you can use any text editor you like. An
advantage to using the build-in editor is that it can help you execute and debug
your M-file.

Use the pull-down menu File to create a new M-file. Select File, then select
New, and finally select M-file by clicking on the right button. This opens the
MATLAB file editor. After entering the program (the five MATLAB commands
given at the end of Chapter 2 of this book), select File and then the Save As
option. Enter the filename (for example, RDCMovie.m) into the upper left
field of the Save As window. This name must end in .m so that MATLAB recog-
nizes it as an M-file.

To run the M-file RDCMovie.m in MATLAB, type

� RDCMovie
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To modify an existing M-file, select File and Open M-file and then choose the
desired M-file.

M-files can also be created using a normal text editor. The filename must end
in .m for MATLAB to recognize the file as an M-file. The .m portion of the file-
name is not required when executing the file within the MATLAB Command
Window. Also note that the .m portion of the filename is not displayed when
using the what command.

Note that a % is used for comments. Everything after the % on that line is
ignored during execution.

Continuations of lines are denoted with three periods . . . . For example, the vector
G can be entered using the following command, which includes a continuation:

� G=[1.11 2.22 3.33 4.44 5.55 6.66 7.77 . . . 8.88 9.99];

4.4.1 If

The if command conditionally executes statements. The simple form is

if variable, statements end

The statements are executed if the variable has all nonzero elements. The vari-
able is usually the result of

‘expr’ rop ‘expr’

where rop is ¼¼, ,, ., ,¼, .¼, or �¼.
Other operators are

& ¼ and
| ¼ or
~ ¼ not

For example, I and J must either be real positive integers or logical:

if I5J
A(I,J)52;

elseif abs(I 2 J)51
A(I,J)521;

else
A(I,J)50;

end
A

4.4.2 For

The for command repeats statements a specific number of times. An example
of this is

M54;
N55;
for I51:M

INTRODUCTION TO MATLABw CELLS 99



for J51:N
A(I,J)51/(I 1 J 2 1);

end
end
A

A ¼
1.0000 0.5000 0.3333 0.2500 0.2000
0.5000 0.3333 0.2500 0.2000 0.1667
0.3333 0.2500 0.2000 0.1667 0.1429
0.2500 0.2000 0.1667 0.1429 0.1250

4.4.3 While

The while command repeats statements an indefinite number of times. Here is
an example that computes the first integer n for which n! (that is n factorial) is a
10 digit number:

n 5 1;
while prod(1:n) < 1.e10, n5n 1 1;, end

n

This produces the result n ¼ 14.

4.4.4 Strings

Text strings are entered into MATLAB surrounded by single quotes. For
example,

� s 5 ‘Hello’

results in

s ¼
Hello

4.4.5 Function M-Files

This section shows you the basic parts of a function M-file, so that you can
familiarize yourself with MATLAB programming and get started with some
examples:

function f 5 fact(n) % Function definition line
% FACT Factorial. % H1 line
% FACT(N) returns the factorial of N, H! % Help text
% usually denoted by N!
% Put simply, FACT(N) is PROD(1:N).

f 5 prod(1:n); % Function body

This function has some elements that are common to all MATLAB functions.
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1) A function definition line: This line defines the function name and the
number and order of input and output arguments.

2) An H1 line: H1 stands for help 1 line. MATLAB displays the H1 line for a
function when you use look for or request help on an entire directory.

3) Help text: MATLAB displays the help text entry together with the H1 line
when you request help on a specific function.

4) The function body: This part of the function contains code that performs the
actual computations and assigns values to any output arguments.

You can provide user information for the programs you write by including a
help text section at the beginning of your M-file. This section starts on the line
following the function definition and ends at the first blank line. Each line of
the help text must begin with a comment character %. MATLAB displays this
information whenever you type help m-file_name.

You can also make help entries for an entire directory by creating a file with
the special name Contents.m that resides in the directory. This file must contain
only comment lines; that is, every line must begin with a percent sign. MATLAB
displays the lines in a Contents.m file whenever you type help directory_name.

If a directory does not contain a Contents.m file, typing help directory_name
displays the first help line (the H1 line) for each M-file in the directory.

M-files are ordinary text files that you create using a text editor. MATLAB
provides a built-in editor, although you can use any text editor you like. To
open the editor on a PC, from the File menu, choose New and then M-File.
Another way to edit an M-file is from the MATLAB command line using
the edit function. For example, edit my_mfile opens the editor on the file
my_mfile.m. Omitting a filename opens the editor on an untitled file.

As an example, let us construct an M-file function that accepts a structure con-
taining data and then generates a plot using this data.

First we create the function to do the plotting as follows:

function []5myplot(DataArray);
% []5myplot(DataArray)
% Plots data contained in the structure 'DataArray'
%
plot(DataArray.X.Values,DataArray.Y.Values)
xText5[DataArray.X.Name ' (' DataArray.X.Units ')'];
xlabel(xText);
yText5[DataArray.Y.Name ' (' DataArray.Y.Units ')'];
ylabel(yText);

Next we create the data as in Sec. 4.3:

Data.X.Name5'AOA';
Data.X.Units5'Deg';
Data.X.Values51:10;
Data.Y.Name5'Cl';
Data.Y.Units5'';
Data.Y.Values5[11:20]/10;
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Finally we call the new function (see Fig. 4.2)

myplot(Data(1));

Fig. 4.2

To see commands as they are executing, use the echo command. The
command echo off turns off this feature.

This concludes the discussion on M-files.

4.5 Conclusion

This chapter introduced the reader to MATLAB cells and structures. It also
covered conditional statements and programming in MATLAB using M-files.
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Practice Exercises

4.1 Construct a 2-by-2 cell array A as a database matrix containing the fol-
lowing information:

Location: Edwards Air Force Base
Date: 13 June 2006
Times: 6 a.m., 9 a.m., and 12 noon
Temperatures: 76, 79, and 788F at 6 a.m.
Temperatures: 86, 92, and 898F at 9 a.m.
Temperatures: 97, 102, and 978F at 12 noon

4.2 Construct a structure array database containing the following
information:

a) Name
b) Employee number
c) E-mail address
d) The vector [1 2 3 4 5]

4.3 Generate an M-file to calculate a rocket’s trajectory and then save the
data in the array data. The first column is the time, and the second column is
the rocket height. In addition, generate an X-Y plot of the rocket’s trajectory.
Complete the following computations using MATLAB functions/operations.

The performance of the rocket is described by the following equation:

Height 5 60 1 2.13t2 2 0.0013t4 1 0.000034t4.751

The equation gives the height above the ground at time t in feet. The rocket’s
nose (reference point) is initially 60 ft above ground level.

The program should start at time t and end when the rocket hits the ground, or
stop after 100 seconds, computing in two second increments. The program should
then be modified to print the time when the rocket begins to fall and when it
impacts.
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5
Handle GraphicsW and User Interfaces

5.1 Introduction and Objectives

The following chapter provides a brief introduction to Handle Graphicsw and
to developing your own GUIs in MATLABw.

Upon completion of this chapter, the reader will be able to identify MATLAB
graphics objects and their structure and operation and build a simple GUI using
MATLAB’s GUI Layout Editor (GUIDE).

5.2 Handle GraphicsW

Handle Graphics are MATLAB’s graphics objects and their properties. It is
helpful for the user to be able to customize the previously provided MATLAB
graphics. The key MATLAB Handle Graphics Objects and Operations are intro-
duced in this section.

Each instance of an object is associated with a unique identifier called a
handle. Using this handle, you can manipulate the characteristics or object prop-
erties of an existing graphics object. These are organized into a tree-structured
hierarchy. This hierarchy is illustrated in Fig. 5.1.

Root is at the top of this hierarchy, the figure underneath, axes and similar
qualities below that, and image qualities at the lowest level. To draw a line
object, MATLAB needs an axis object to orient and provide a frame of reference
to the line. The axis, in turn, needs a figure window to display the line.

The details on all the different types of graphics objects are found in the
Graphics section of the MATLAB Help Documentation under Graphics:
Handle Graphics Objects: Types of Graphics. The Handle Graphics Objects
and Operations follow. The detailed manipulation of these properties is best
covered later in this section.

Finding and Identifying Graphics Objects

allchild Find all children of specified objects
ancestor Find ancestor of graphics object
copyobj Make copy of graphics object and its children
delete Delete files or graphics objects
findall Find all graphics objects (including hidden handles)
figflag Test if figure is on screen
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findfigs Display off-screen visible figure windows
findobj Find objects with specified property values
gca Get current axes handle
gcbo Return object whose callback is currently executing
gcbf Return handle of figure containing, callback object
gco Return handle of current object
get Get object properties
ishandle True if value is valid object handle
set Set object properties

Object Creation Functions

axes Create axes object
figure Create figure (graph) windows
hggroup Create a group object
hgtransform Create a group to transform
image Create image (two-dimensional matrix)
light Create light object (illuminates Patch and Surface)
line Create line object (three-dimensional polylines)
patch Create patch object (polygons)
rectangle Create rectangle object (two-dimensional rectangle)
rootobject List of root properties
surface Create surface (quadrilaterals)
text Create text object (character strings)
uicontextmenu Create context menu (pop-up associated with object)

Plot Objects

areaseries Property list
barseries Property list
contourgroup Property list
errorbarseries Property list

Fig. 5.1 Handle GraphicsW Tree-structured Hierarchy.
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lineseries Property list
quivergroup Property list
scattergroup Property list
stairseries Property list
stemseries Property list
surfaceplot Property list

Figure Windows

clc Clear figure window
clf Clear figure
close Close specified window
closereq Default close request function
drawnow Complete any pending drawing
figflag Test if figure is on screen
gcf Get current figure handle
hgload Load graphics object hierarchy from a FIG-file
hgsave Save graphics object hierarchy to a FIG-file
newplot Graphics M-file preamble for NextPlot property
opengl Change automatic selection mode of OpenGL rendering
refresh Refresh figure
saveas Save figure or model to desired output format

Axes Operations

axis Plot axis scaling and appearance
box Display axes border
cla Clear axes
gca Get current axes handle
grid Grid lines for two- and three-dimensional plots
ishold Get the current hold state
makehgtform Create a transform matrix

Operating on Object Properties

get Get object properties
linkaxes Synchronize limits of specified axes
linkprop Maintain same value for corresponding properties
set Set object properties

Let us next use Handle Graphics objects to modify the properties of an axis.
First let us make an axis and then plot some data:

� x ¼ 0::01:10;

� plot(x;sin(x):�x:̂ 2);
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The result is shown in Fig. 5.2.

Fig. 5.2

The following command gets all the properties of the current axis:

� get(gca)
ActivePositionProperty ¼ outerposition
ALim ¼ [0 1]
ALimMode ¼ auto
AmbientLightColor ¼ [1 1 1]
Box ¼ on
CameraPosition ¼ [5 10 17.3205]
CameraPositionMode ¼ auto
CameraTarget ¼ [5 10 0]
CameraTargetMode ¼ auto
CameraUpVector ¼ [0 1 0]
CameraUpVectorMode ¼ auto
CameraViewAngle ¼ [6.60861]
CameraViewAngleMode ¼ auto
CLim ¼ [0 1]
CLimMode ¼ auto
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Color ¼ [1 1 1]
CurrentPoint¼[ (2 by 3) double array]
ColorOrder¼[ (7 by 3) double array]
DataAspectRatio ¼ [5 70 1]
DataAspectRatioMode ¼ auto
DrawMode ¼ normal
FontAngle ¼ normal
FontName ¼ Helvetica
FontSize ¼ [10]
FontUnits ¼ points
FontWeight ¼ normal
GridLineStyle ¼ :
Layer ¼ bottom
LineStyleOrder ¼ -
LineWidth ¼ [0.5]
MinorGridLineStyle ¼ :
NextPlot ¼ replace
OuterPosition¼[ (1 by 4) double array]
PlotBoxAspectRatio ¼ [1 1 1]
PlotBoxAspectRatioMode ¼ auto
Projection ¼ orthographic
Position¼[ (1 by 4) double array]
TickLength ¼ [0.01 0.025]
TickDir ¼ in
TickDirMode ¼ auto
Title ¼ [153.004]
Units ¼ normalized
View ¼ [0 90]
XColor ¼ [0 0 0]
XDir ¼ normal
XGrid ¼ off
XLabel ¼ [154.004]
XAxisLocation ¼ bottom
XLim ¼ [0 10]
XLimMode ¼ auto
XMinorGrid ¼ off
XMinorTick ¼ off
XScale ¼ linear
XTick¼[ (1 by 6) double array]
XTickLabel ¼

0
2
4
6
8
10

XTickLabelMode ¼ auto
XTickMode ¼ auto
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YColor ¼ [0 0 0]
YDir ¼ normal
YGrid ¼ off
YLabel ¼ [155.005]
YAxisLocation ¼ left
YLim ¼ [260 80]
YLimMode ¼ auto
YMinorGrid ¼ off
YMinorTick ¼ off
YScale ¼ linear
YTick¼[ (1 by 8) double array]
YTickLabel ¼

260
240
220

0
20
40
60
80

YTickLabelMode ¼ auto
YTickMode ¼ auto
ZColor ¼ [0 0 0]
ZDir ¼ normal
ZGrid ¼ off
ZLabel ¼ [156.005]
ZLim ¼ [21 1]
ZLimMode ¼ auto
ZMinorGrid ¼ off
ZMinorTick ¼ off
ZScale ¼ linear
ZTick ¼ [21 0 1]
ZTickLabel ¼
ZTickLabelMode ¼ auto
ZTickMode ¼ auto
BeingDeleted ¼ off
ButtonDownFcn ¼
Children ¼ [152.006]
Clipping ¼ on
CreateFcn ¼
DeleteFcn ¼
BusyAction ¼ queue
HandleVisibility ¼ on
HitTest ¼ on
Interruptible ¼ on
Parent ¼ [1]
Selected ¼ off
SelectionHighlight ¼ on
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Tag ¼
Type ¼ axes
UIContextMenu ¼ []
UserData ¼ []
Visible ¼ on

Let us next flip the y axis so that negative values are at the top (see Fig. 5.3):

� set(gca,'ydir','reverse');

Fig. 5.3

Let us look up what options are provided for the 'tickDir' property. To do this,
we call set without giving the command a value. MATLAB will then print out all
of the available options:

� set(gca,'tickDir')
[ {in} j out ]

The tick marks are currently set to 'in'. Now we will change the tick marks
from 'in' to 'out' (see Fig. 5.4):

� set(gca,'tickDir','out')
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Now we will put a text string on the graph:

� h 5 text(.5,.5,'my text');

The results are shown in Fig. 5.5.
Now we need to move the position of the text string and change the font size

and weight:

� set(h,'position',[5 240],'fontsize',20,'fontweight','bold')

The resulting figure is plotted next with the modified text string (see Fig. 5.6).

5.3 Graphical User Interface Development Environment

What is a graphical user interface (GUI)? A GUI is a user interface built with
graphical objects—the components of the GUI—such as buttons, text fields,
sliders, and menus. If the GUI is well designed, it should be intuitively
obvious to the user how its components function. For example, when you

Fig. 5.4
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move a slider, a value changes; when you click an OK button, your settings are
applied and the dialog box is closed. Fortunately, most computer users are
already familiar with GUIs and know how to use standard GUI components.
By providing an interface between the user and the application’s underlying
code, GUIs enable the user to operate the application without knowing the
commands that would be required by a command line interface. For this
reason, applications that provide GUIs are easier to learn and use than those
that are run from the command line. The sections that follow describe how to
create GUIs with GUIDE. This includes laying out the components, program-
ming them to do specific things in response to user actions, and saving and
opening the GUI.

GUIDE, the MATLAB graphical user interface development environment,
provides a set of tools for creating GUIs. GUIDE simplifies the process of creat-
ing GUIs by automatically generating the GUI M-file directly from your layout.
GUIDE generates callbacks for each component in the GUI that requires a call-
back. Initially, GUIDE generates just a function definition line for each callback.
You can add code to the callback to make it perform the operation you want.
These tools greatly simplify the process of laying out and programming a GUI.
This section introduces you to GUIDE and the layout tools it provides.

Fig. 5.5
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The GUI Layout Editor is started from MATLAB using the command guide.
Invoking guide displays the GUI Layout Editor opened to a new untitled FIG-file.
By qualifying the command, guide('filename.fig') opens the FIG-file named
filename.fig. You can even specify the path to a file not on your MATLAB
path. The command guide('figure_handles') opens FIG-files in the Layout
Editor for each existing figure listed in figure_handles. MATLAB copies the
contents of each figure into the FIG-file, with the exception of axes children
(i.e., image, light, line, patch, rectangle, surface, and text objects), which are
not copied.

GUIDE provides several templates, which are simple examples that you can
modify to create your own GUIs. The templates are fully functional GUIs:
their callbacks are already programmed. You can view the code for these call-
backs to see how they work and then modify the callbacks for your own purposes.
You can access the templates in two ways.

1) Start GUIDE by entering guide at the MATLAB prompt.
2) If GUIDE is already open, select New from the File menu in the Layout

Editor.
Starting GUIDE displays the GUIDE Quick Start dialog as shown in

Fig. 5.7.

Fig. 5.6
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5.4 Layout Editor

When you open a GUI in GUIDE, it is displayed in the Layout Editor (see Fig.
5.8), which is the control panel for all of the GUIDE tools. The Layout Editor
enables you to lay out a GUI quickly and easily by dragging components, such
as push buttons, pop-up menus, or axes, from the component palette into the
layout area. Once you lay out your GUI and set each component’s properties,
using the tools in the Layout Editor, you can program the GUI with the M-file
Editor. Finally, when you press the Run button on the toolbar, the functioning
GUI appears outside the Layout Editor window.

This view has the option to show component names.

1) Align Objects: The Alignment Tool enables you to position objects with
respect to each other and to adjust the spacing between selected objects. The
specified alignment operations apply to all components that are selected when
you press the Apply button. The Alignment Tool provides two types of alignment
operations: 1) align, which aligns all selected components to a single reference
line, and distribute, which spaces all selected components uniformly with
respect to each other. Both types of alignment can be applied in the vertical
and horizontal directions. Note that, in many cases, it is better to apply align-
ments independently to the vertical or to the horizontal using two separate steps.

2) Menu Editor: MATLAB enables you to create two kinds of menus: 1) menu
bar objects, menus displayed on the figure menubar, and 2) context menus,
menus that pop up when users right-click on graphics objects. You create both
types of menus using the Menu Editor, which you can access from the Menu
Editor item on the Tool menu and from the Layout Editor toolbar.

Fig. 5.7
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3) M-File Editor: The M-file Editor creates a new M-file or opens an existing
M-file in the MATLAB Editor/Debugger.

4) Property Inspector: The Property Inspector enables you to set the prop-
erties of the components in your layout. It provides a list of all settable properties
and displays the current value. Each property in the list is associated with an editing
device that is appropriate for the values accepted by the particular property; for
example, a color picker to change the BackgroundColor, a pop-up menu to set
FontAngle, and a text field to specify the Callback string.

5) Object Browser: The Object Browser displays a hierarchical list of the
objects in the figure. In the following example, we will illustrate a figure
object and its child objects.

6) Run: A GUI can be created to run simulations and plot the results.

The following uicontrol objects are available in the component palette.

1) Push Buttons: Push Buttons generate an action when clicked (e.g., an OK
button may close a dialog box and apply settings). When you click the mouse on a
Push Button, it appears depressed; when you release the mouse, the button
appears raised, and its callback executes.

2) Toggle Buttons: Toggle Buttons generate an action and indicate a binary
state (e.g., on or off). When you click on a Toggle Button, it appears depressed

Fig. 5.8
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and remains depressed until you release the mouse button, at which point the call-
back executes. A subsequent mouse click returns the Toggle Button to the raised
state and again executes its callback.

3) Radio Buttons: Radio Buttons are similar to Check Boxes (to follow) but
are intended to be mutually exclusive within a group of related Radio Buttons (i.e.,
only one button is in a selected state at any given time). To activate a Radio
Button, click the mouse on the object. The display indicates the state of the
button.

4) Check Boxes: Check Boxes generate an action when checked and indicate
their state as checked or not checked. Check Boxes are useful when providing the
user with a number of independent choices that set a mode (e.g., display a toolbar
or generate callback function prototypes).

5) Edit Text: Edit Text controls are fields that enable users to enter or modify
text strings. Use Edit Text when you want text as input. The String property con-
tains the text entered by the user.

6) Static Text: Static Text controls display lines of text. Static Text is typically
used to label other controls, provide directions to the user, or indicate values
associated with a slider. Users cannot change static text interactively, and there
is no way to invoke the callback routine associated with it.

7) Sliders: Sliders accept numeric input within a specific range by enabling
the user to move a sliding bar. Users move the bar by pressing the mouse
button and dragging the slide, by clicking in the trough, or by clicking an
arrow. The location of the bar indicates a numeric value.

8) Frames: Frames are boxes that enclose regions of a figure window.
Frames can make a user interface easier to understand by visually grouping
related controls. Frames have no callback routines associated with them and
only uicontrols can appear within frames (axes cannot).

9) List Boxes: List Boxes display a list of items and enable users to select one
or more items.

10) Pop up Menus: Pop up Menus open to display a list of choices when
users click the arrow.

5.5 Property Inspector

The Property Inspector allows you to directly edit the properties of the
selected object. In Fig. 5.9, you see the properties of a push button. The most
used properties will be String (the label) and Callback (the action to
perform). In Fig. 5.10, you see one way to edit the callback by right-clicking
on the button and selecting Callback. This brings up the MATLAB Editor and
places you at the entry point of the callback that was automatically created for
you. Before you bring up the editor, make sure that you name your control
properly, because the name will be used in the function that is created for you.

The GUI M-file generated by GUIDE controls the GUI and determines how
it responds to a user’s actions, such as pressing a push button or selecting a
menu item. The M-file contains all the code needed to run the GUI, including
the callbacks for the GUI components. While GUIDE generates the framework
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for this M-file, you must program the callbacks to perform the functions you
want them to.

The code shown as follows is a typical default callback that you can then fill in
with your code.

% — Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

Fig. 5.9
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If you would rather call some other function, edit the Callback property in the
inspector to suit your needs. For example, making the Callback property read

myProgram('Push Button')

could be used to alert your myProgram that the button was pushed.
Although you can certainly use MATLAB’s automatically created callbacks, it

is advisable to put all of your analysis code in a separate file to maintain readability
and reusability.

Fig. 5.10
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If we would like to create a GUI that has a graph and a push button that plots a
sine curve when activated, we can proceed as follows.

1) Build the GUI with a graph and a push button. Also include a checkbox to
set an option. Save it as (see Fig. 5.11)

Example1_GUI.

Fig. 5.11
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2) Set the callback for the button to be (see Fig. 5.12)

example1('Button Pushed')

Fig. 5.12
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3) Start a new M-file called example1.m. Load the GUI if no arguments are
called or handle the argument if it is present (see Fig. 5.13).

4) Run the example by typing example1 (see Fig. 5.14).

Fig. 5.13

Fig. 5.14
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5) Now check the status of the checkbox and do another plot if it is checked
(see Fig. 5.15):

case 'Button Pushed'
hCheckBox 5 findobj('tag','checkbox1');
Selected 5 get(hCheckBox,'value');
x 5 1:.01:10;
if Selected;

plot(x,cos(x),'k',x,sin(x),'r');
else;

plot(x,sin(x),'k');
end;

Fig. 5.15

HANDLE GRAPHICSW AND USER INTERFACES 123



5.6 Menu Editor

Menus (as well as complete GUIs) can be created via MATLAB commands.
However, it is easier to build them with the Menu Editor (see Fig. 5.16). Using
the New Menu and New Menu Item buttons, you can create either standard
windows-style menus or your own custom menus. Just like graphical objects,
you interact with your code with callbacks. In Fig. 5.17, a callback is shown
that tells the program to open a file.

Now implement the callback in the example1.m file:

case 'File Open'
[file,path] 5 uigetfile;

Fig. 5.16
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In addition to standard menus, you can create context-sensitive menus that get
activated when you right-click on the figure. One very useful feature is that you
can change any menu at run time. This allows you to update the menu based on
the program status. Items have a checked property that allows check marks to be
placed next to them to indicate that an item is active.

Most of the options that you see in the property inspector can be changed at
run time. Thus, a good knowledge of Handle Graphics will go a long way in
helping you to customize your GUI and make a well-designed program.

5.7 Compiling a Stand-Alone Executable

MATLAB allows you to compile your programs into stand-alone C or Cþþ
executables, complete with GUIs. There are too many options to cover here, but
we can simply compile our example1 program by issuing the following
command at the MATLAB prompt:

� mcc –B sgl example1

This converts the M-file functions into C and compiles them, links them with
the MATLAB libraries, and produces the example1.exe file. To run this from the
MATLAB prompt, simply type !example1.

Fig. 5.17
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To install this program on PCs that do not have MATLAB, you need to do the
following:

1) Copy the executable .fig files and any contents of the \bin directory to the
new machine.

2) Copy any custom mex files that the program uses to the new machine.
3) Run the MATLAB Library installer on the new machine, which is located

on the original computer at $MATLAB\extern\lib\win32\mglinstaller.exe.
Here $MATLAB is the location of the MATLAB installation.

4) Add the . . .\bin\win32 directory that was specified during the installation of
the MATLAB Library to the system path.

5.8 Conclusion

This chapter was a brief introduction to the GUI creation capabilities of
MATLAB. Only a small part of the capabilities were explored. MATLAB
gives users the power to build high-quality programs driven by functional user
interfaces very easily.
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Practice Exercises

5.1 Assignment objective: Design a simple, graphically driven program that
loads in data from a csv-formatted (data only) file and plots it on an axis. The file-
name should be read from an edit box and can be typed in or inserted from
the result of uigetfile call. Your final program should resemble that shown in
Fig. 5.18 for a data file of a sine wave.

Fig. 5.18
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Notes



6
Introduction to MATLAB

W

MEX-Files

6.1 Introduction and Objectives

This chapter covers some of the other data types that are available in
MATLABw. It also covers MEX-files. MEX-files enable routines written in
other programming languages (such as FORTRAN) to interface with MATLAB.

Upon completion of this chapter, the reader will be able to identify other data
types available in MATLAB and set dynamically linked subroutines using
MEX-files.

6.2 Dynamically Linked Subroutines: MEX-Files

Although MATLAB is a complete, self-contained environment for program-
ming and manipulating data, it is often useful to interact with data and programs
external to the MATLAB environment. You can call your own C and FORTRAN
subroutines from MATLAB as if they were built-in functions. MATLAB-callable
C and FORTRAN programs are referred to as MEX-files. MEX-files are dynami-
cally linked subroutines that the MATLAB interpreter can automatically load and
execute.

MEX-files have several applications.
1) Large pre-existing FORTRAN and C programs can be called from

MATLAB without being rewritten as MATLAB M–files.
2) Bottleneck computations (usually for-loops) that do not run fast enough in

MATLAB can be recoded in C or FORTRAN and compiled for faster
execution.

MEX-files are not appropriate for all applications. MATLAB is a high-
productivity system that is designed to eliminate time-consuming, low-level
programming in compiled languages like FORTRAN or C. In general, most pro-
gramming should be done in MATLAB. Don’t use the MEX facility unless your
application requires it.

What kind of things can you do with MEX-files?
1) You can build interfaces to existing libraries. There are many tools avail-

able in the form of libraries. To make use of them, you don’t have to abandon
MATLAB and do all your work in C (or FORTRAN). Just write a MEX-file
wrapper, link against the library, and you can make library calls within
MATLAB.
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2) You can speed up your M-files. Efficiently vectorized M-files run about as
fast as if they were written in C (well, within a factor of 2 or 3). M-files that do
a lot of looping can be significantly slower. Some problems can’t readily be
vectorized (usually problems where future results depend on past results), and
these are ideal candidates for conversion into MEX-files.

6.2.1 Using MEX-Files

MEX-files are dynamically linked subroutines produced from C or FORTRAN
source code; they behave just like M-files (files that end in .m) and built-in
functions. To distinguish them from M-files on disk, MEX-files use the extension
mex followed by the platform-specific identifier. Table 6.1 shows the platform-
specific extensions for MEX-files.

To invoke a MEX-file on your disk, MATLAB looks through the list of
directories on MATLAB’s search path. It scans each directory in order
looking for the first occurrence of the function with the filename extension
mex or m. When it finds one, it loads the file and executes it. MEX-files
behave just like M-files and built-in functions. Whereas M-files have a
platform-independent extension, m, MATLAB identifies MEX-files by
platform-specific extensions. MEX-files take precedence over M-files when
like-named files exist in the same directory.

6.2.2 Matrix Data Structure

Before you can program MEX-files, you must become acquainted with the
internal data structures or objects used by MATLAB. The MATLAB mathemat-
ics language works only with a single object type: the matrix. A matrix can be
square or rectangular, complex or real, and full or sparse. Scalars, vectors, and
text all are represented using the same structure.

Rather than directly manipulating the matrix data structure from C (which is
possible) or from FORTRAN (which is not possible), the MEX-file interface
library provides a set of access subroutines for manipulating matrices.

A matrix object contains the properties listed in Table 6.2.
If the storage class of a matrix is sparse, pr and pi have slightly different

interpretations and the new properties—nzmax, ir, and jc—are relevant (see
Table 6.3).

Table 6.1 MEX-file extensions for different

computer systems

System type MEX-file extension

Sun Solaris.mexsol

HP-UX .mexhpux

Linux .mexglx

MacIntosh .mexmac

Windows .dll
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6.2.3 C Language MEX-Files

MEX-files are built by combining your C source code with a set of routines
provided in the MATLAB External Interface Library.

6.2.3.1 Directory organization. A collection of files associated with the
creation of C language MEX-files is located on the disk in the directory named
$MATLAB/extern, where $MATLAB is the directory in which MATLAB is
installed. Beneath this directory are three subdirectories into which the files are
grouped:

$MATLAB/extern/include
$MATLAB/extern/lib
$MATLAB/extern/src

The /include subdirectory holds header files containing function declarations
for all routines that you can access in the External Interface Library:

mex:h MEX-file function prototypes

matrix:h Matrix access methods prototypes

Table 6.2 Matrix object properties

Property Description

Name Points to a character string array of length mxMAXNAN containing

the null-terminated name of the matrix. mxMAXNUM is defined to

be 20 in the file matrix.h. If the matrix is temporary (the result of an

intermediate expression), the first character in the name is 'n0'.

M The number of rows in the matrix.

N The number of columns in the matrix.

DisplayMode Instructs MATLAB to either display the matrix in numeric form or to

interpret the elements as ASCII values and display the matrix as a

string, if the semicolon is omitted from the statement.

Storage Indicates the storage class; that is, whether the matrix is full or sparse.

pr Points to an array containing the real part of the matrix. The real part

of the matrix consists of a length M�N (length is nzmax if the

matrix is sparse), contiguous, singly subscripted, array of

double-precision (64-bit) floating-point numbers. The elements of

the matrix are stored using FORTRAN. The number of rows in the

matrix is stored using FORTRAN’s column-order convention (not

C’s row-wise convention).

pi Points to an array containing the imaginary part of the matrix. If this

pointer is NULL, there is no imaginary part, and the matrix is purely

real.
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You must include mex.h in your MEX-file source files. Note that
mex.h includes matrix.h, and so there is no need to include matrix.h
explicitly.

The /lib subdirectory contains the object libraries used when linking your
MEX-files.

The /src subdirectory contains source code examples of MEX-files.

6.2.3.2 C language MEX-file examples.
Example 1—a very simple example. The following is an example of a

C language MEX-file to write the string “Hello World” to the command
window:

/*- - - - - - - - - - - - - -simpex.c- - - - - - - - - - - - - -*/
#include "mex.h"
void mexFunction( int nlhs, mxArray *plhs[], int nrhs,
const mxArray *prhs[] ) {
mexPrintf("Hello World\n");
}
/*- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

The important points to notice are as follows.
The entry point is called mexFunction. You can have any number of other

functions, but you must have at least one named mexFunction.
The parameters nlhs and nrhs tell you how many left- and right-hand-side

arguments you supply the MEX-function within MATLAB. They are just like
nargin and nargout. The parameters plhs and prsh are arrays of matrix
structures.

Table 6.3 Array lengths and pointers

Property Description

Nzmax The length of ir, pr and, if it exists, pi. It is the maximum possible number of

nonzero elements in the sparse matrix.

pr Points to the double-precision array of length nzmax containing the real parts

of the nonzero elements in the matrix.

pi NULL, if the matrix is real; otherwise it points to the double-precision array

of length nzmax containing the imaginary parts of the nonzero elements in

the matrix.

ir Points to an integer array of length nzmax containing the row indices for the

corresponding elements in pr and pi.

jc Points to an integer array of length Nþ1 that contains column index

information. For j in the range 0,¼j,¼N-1, jc[j] is the index in ir, pr,

(and pi, if it exists) of the first nonzero entry in the jth column, and

jc[j11]-1 is the index of the last nonzero entry. As a result, jc[N] is also

equal to nnz, the number of nonzero entries in the matrix. If nnz is less

than nzmax, then more nonzero entries can be inserted in the matrix

without allocating additional storage.
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To compile and link this file, we issue the following command:

� mex simpex.c

6.2.3.3 Example 2—MEX-file speed advantages. M-files that do a lot of
looping can be significantly increased in speed by implementation as MEX-files.
One example of this sort of problem is modeling a switch with hysteresis. For
instance, you might want it to turn on if an input is above 0.7 but stay turned
on until it drops below 0.5.

The M-file would look something like this:

function out5hyst(x,min_thresh, max_thresh)
x5x(:);
for n52:length(x),

if x(n) > max_thresh,
x(n)51;

elseif x(n) < min_thresh,
x(n)50;

else,
x(n)5x(n 2 1);
end

end
out5x;

The MEX-file equivalent is only slightly longer.

/*- - - - - - - - - - - - - -hystmex.c- - - - - - - - - */

#include "mex.h"

void mexFunction( int nlhs,
mxArray *plhs[],
int nrhs,
const mxArray *prhs[] )

/* nlhs and nrhs tell you how many left and right hand */
/* arguments you supply to the MEX-function */
/* plhs and prsb are arrays of Matrix structures. */

{
double *pr_out, *pr_in, *on, *off;
long i, len;
mxArray *mpout;

/* This is the gateway portion */
if (nrhs < 3)

mexErrMsgTxt("Not enough input arguments");

len = mxGetN(prhs[0]) * mxGetM(prhs[0]); /*Get first argument size*/
pr_in = mxGetPr(prhs[0]); /* Get pointer to the matrix data */
off = mxGetPr(prhs[1]); /* These are the scalars, so the first */
on = mxGetPr(prhs[2]); /* element of each is the on/off value */

mpout = mxCreateDoubleMatrix(len,1,mxREAL); /* Create a REAL matrix to return */
pr_out = mxGetPr(mpout); /* Get pointer to the matrix data */
pr_out[0] = pr_in[0];
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/* In this example this is the computation portion */
for (i = 1; i < len; i++)
{

if (pr_in[i] < *off)
pr_out[i] = 0;

else if (pr_in[i] > *on)
pr_out[i] = 1;

else
pr_out[i] = pr_out[i - 1];

}

plhs[0] = mpout; /* Assign the first left-hand side */
/* argument to mpout */

return;
}
/*- - - - - - - - - - - - - - - - - - - - - - */

Compile hystmex.c by typing

� mex hystmex.c

How do they compare in speed? This test was run on a SGI Indigo 2
extreme:

x5rand(50000,1);
tic; y5hyst(x,.5,.7);toc

elapsed_time5 4.490 % M-file output due to tic and toc calls

tic; y25hystmex(x,.5,.7);toc
elapsed_time 5 0.0368% M-file output from tic and toc calls

Therefore, the MEX-file is over 122 times faster. Of course, if it takes you
more time to write, debug, and compile the MEX-file than you save due to the
increased speed, it isn’t a net gain (this is often the case).

6.2.3.4 Example 3—three-body problem. Consider the M-file
yprime.m, which contains the differential equations for a restricted three-body
problem. The program yprime.m returns state derivatives, given state values
and time, and can be integrated using the MATLAB function ode23. The
MathWorks recommends that you use its M-file, FORTRAN, and C versions
of this program to validate your compiler and MEX-file implementation
process. The source for yprime.m is the following function:

function yp = yprime(t,y)

% Differential equation system for the restricted three body problem.

% Think of a small third body in orbit about the earth and moon.

% The coordinate system moves with the earth-moon system.

% The 1-axis goes through the earth and the moon.

% The 2-axis is perpendicular, in the plane of motion of the third body.

% The origin is at the center of gravity of the two heavy bodies.

% Let mu = the ratio of the mass of the moon to the mass of the earth.

% The earth is located at (-mu,0) and the moon at (1 - mu,0).

% y(1) and y(3) = coordinates of the third body.
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% y(2) and y(4) = velocity of the third body.

%

% Copyright (c) 1984-98 by The MathWorks, Inc., modified R. Colgren

% All Rights Reserved.

mu = 1/82.45;

mus = 1 - mu;

r1 = norm([y(1)+ mu, y(3)]); % Distance to the earth

r2 = norm([y(1) - mus, y(3)]); % Distance to the moon

yp(1) = y(2);

yp(2) = 2*y(4) + y(1) - mus*(y(1)+mu)/r1^3 - mu*(y(1) - mus)/r2^3;

yp(3) = y(4);

yp(4) = -2*y(2) + y(3) - mus*y(3)/r1^3 - mu*y(3)/r2^3;

The following statements show how this function is used:

yprimeout5yprime(1,[1 2 3 4])

The following is the C language MEX-file version of yprime.m:

/*==========================================================================
*
* YPRIME.C Sample .MEX file corresponding to YPRIME.M
* Solves simple 3 body orbit problem
* Modified function to demonstrate shared library calling
*
* The calling syntax for the mex function is:
*
* [yp] = yprime(t, y)
*
* You may also want to look at the corresponding M-code, yprime.m.
*
* This is a MEX-file for MATLAB.
* Copyright 1984-2002 The MathWorks, Inc., modified R. Colgren
*
*=========================================================================*/
/* $Revision: 1.1.6.2.1 $ */

#include <math.h>
#include "mex.h"
#define EXPORT_FCNS
#include "shrhelp.h"

/* Input Arguments */

#define T_IN prhs[0]

#define Y_IN prhs[1]

/* Output Arguments */

#define YP_OUT plhs[0]

#if !defined(MAX)

#define MAX(A, B) ((A) > (B) ? (A) : (B))

#endif

#if !defined(MIN)

#define MIN(A, B) ((A) < (B) ? (A) : (B))

#endif
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#define PI 3.14159265

static double mu = 1/82.45;

static double mus = 1 - 1/82.45;

EXPORTED_FUNCTION void yprimefcn(

double yp[],

double *t,

double y[]

)

{

double r1,r2;

r1 = sqrt((y[0] + mu)*(y[0]+mu) + y[2]*y[2]);

r2 = sqrt((y[0] -mus)*(y[0]-mus) + y[2]*y[2]);

/* Print warning if dividing by zero. */

if (r1 == 0.0 || r2 == 0.0 ){

mexWarnMsgTxt("Division by zero!\n");

}

yp[0] = y[1];

yp[1] = 2*y[3]+y[0]-mus*(y[0]+mu)/(r1*r1*r1)-mu*(y[0]-mus)/(r2*r2*r2);

yp[2] = y[3];

yp[3] = -2*y[1] + y[2] - mus*y[2]/(r1*r1*r1) - mu*y[2]/(r2*r2*r2);

return;

}

EXPORTED_FUNCTION mxArray* better_yprime(

double t,

mxArray* y_in)

{

double *yp;

double *y;

unsigned int m,n;

mxArray* yp_out;

m = mxGetM(y_in);

n = mxGetN(y_in);

if (!mxIsDouble(y_in) || mxIsComplex(y_in) ||

(MAX(m,n) != 4) || (MIN(m,n) != 1)) {

mexErrMsgTxt("YPRIME requires that Y be a 4 x 1 vector.");

}

/* Create a matrix for the return argument */

yp_out = mxCreateDoubleMatrix(m, n, mxREAL);

/* Assign pointers to the various parameters */

yp = mxGetPr(yp_out);

y = mxGetPr(y_in);

/* Do the actual computations in a subroutine */

yprimefcn(yp,&t,y);

return yp_out;

}

void mexFunction( int nlhs, mxArray *plhs[],
int nrhs, const mxArray*prhs[] )
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{
double *yp;
double *t,*y;
unsigned int m,n;

/* Check for proper number of arguments */

if (nrhs != 2) {
mexErrMsgTxt("Two input arguments required.");

} else if (nlhs > 1) {
mexErrMsgTxt("Too many output arguments.");

}
/* Check the dimensions of Y. Y can be 4 X 1 or 1 X 4. */

m = mxGetM(Y_IN);
n = mxGetN(Y_IN);
if (!mxIsDouble(Y_IN) || mxIsComplex(Y_IN) ||

(MAX(m,n) ! = 4) || (MIN(m,n) ! = 1)) {
mexErrMsgTxt("YPRIME requires that Y be a 4 x 1 vector.");

}

/* Create a matrix for the return argument */
YP_OUT = mxCreateDoubleMatrix(m, n, mxREAL);

/* Assign pointers to the various parameters */
yp = mxGetPr(YP_OUT);

t = mxGetPr(T_IN);
y = mxGetPr(Y_IN);

/* Do the actual computations in a subroutine */
yprimefcn(yp,t,y);
return;

}

To compile and link this file, we issue the following command:

� mex yprime.c

6.2.3.5 MEX-file details. The source file for a MEX-file consists of two dis-
tinct parts: 1) a computational routine that contains the code for performing the
actual numeric computation and 2) a gateway routine that interfaces the compu-
tational routine with MATLAB.

The parameters nlhs and nrhs contain the number of left-hand-side and
right-hand-side arguments, respectively, with which the MEX-function is
called. The parameter prhs is a length nrhs array of pointers to the
right-hand-side matrices; plhs is a length nlhs array where your C function
must put pointers for the returned left-hand-side matrices.

For example, from our previous yprime example we could write

� x 5 yprime(1, [1 2 3 4]);

At the MATLAB prompt, the MATLAB interpreter calls mexFunction with
the arguments

nlhs ¼ 1
nrhs ¼ 2
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plhs 5 ''pointer to'' NULL
prhs ¼ ''first item in array pointer points to'' [1]

''second item in array pointer points to''
[1 2 3 4]

Because there are two right-hand arguments to yprime, nrhs is 2. The para-
meter prhs[0] points to a matrix object containing the scalar [1], whereas
prhs[1] points to the matrix containing [1 2 3 4].

Note that in the C language matrix dimensions start at 0, not 1 as in
FORTRAN. The caller is expecting yprime to return a single matrix. It is the
responsibility of the gateway routine to create an output matrix (using mxCreate
DoubleMatrix) and to store a pointer to that matrix into plhs[0].

The gateway routine should dereference and validate the input arguments and
call mexErrMsgTxt if anything is amiss.

The gateway routine must call mxCreateDoubleMatrix, mxCreateSparse,
or mxCreateString to create matrices of the required sizes in which to return
the results. The return values from these calls should be assigned to the appropri-
ate elements of plhs.

The gateway routine may call mxCalloc to allocate temporary work arrays if
needed.

Finally, the gateway routine should call the computational routine.

6.2.3.6 Debugging C MEX-file. You cannot use a debugger on MEX-files
invoked directly from MATLAB. There are two options available: 1) use the old
standby printf statement and 2) generate a stand-alone executable image that can
be tested outside MATLAB.

6.2.3.7 FORTRAN language MEX-file example. Consider the same
M-file yprime.m as in the C language example, which contains the differential
equations for a restricted three-body problem. The program yprime.m returns
state derivatives, given state values and time, and can be integrated using the
MATLAB function ode23. The source for yprime.m was the previous
MATLAB function yp ¼ yprime(t,y).

The following is the FORTRAN language gateway MEX-file version of
yprime.m called yprimeg.f.

C==================================================================
C YPRIMEG.FOR - Gateway function for YPRIME.FOR
C
C This is an example of the FORTRAN code required for
C interfacing a .MEX file to MATLAB.
C
C This subroutine is the main gateway to MATLAB. When a
C MEX function is executed MATLAB calls the MEXFUNCTION
C subroutine in the corresponding MEX file.
C
C Copyright 1984-2004 The MathWorks, Inc., modified R. Colgren
C $Revision: 1.9.2.1.1 $
C==================================================================
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C
SUBROUTINE MEXFUNCTION(NLHS, PLHS, NRHS, PRHS)

C
C - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
C (pointer) Replace integer by integer*8 on 64-bit platforms
C

INTEGER PLHS(*), PRHS(*)
C
C - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
C

INTEGER NLHS, NRHS
C
C - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
C (pointer) Replace integer by integer*8 on 64-bit platforms
C

INTEGER MXCREATEDOUBLEMATRIX, MXGETPR
C
C - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
C

INTEGER MXGETM, MXGETN
C
C KEEP THE ABOVE SUBROUTINE, ARGUMENT, AND FUNCTION DECLARATIONS FOR USE
C IN ALL YOUR FORTRAN MEX FILES.

C - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
C
C - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
C (pointer) Replace integer by integer*8 on 64-bit platforms
C

INTEGER YPP, TP, YP
C
C - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
C

INTEGER M, N
REAL*8 RYPP(4), RTP, RYP(4)

C
C CHECK FOR PROPER NUMBER OF ARGUMENTS
C

IF (NRHS .NE. 2) THEN
CALL MEXERRMSGTXT('YPRIME requires two input arguments')

ELSEIF (NLHS .GT. 1) THEN
CALL MEXERRMSGTXT('YPRIME requires one output argument')

ENDIF
C
C CHECK THE DIMENSIONS OF Y. IT CAN BE 4 X 1 OR 1 X 4.
C

M = MXGETM(PRHS(2))
N = MXGETN(PRHS(2))

C
IF ((MAX(M,N) .NE. 4) .OR. (MIN(M,N) .NE. 1)) THEN

CALL MEXERRMSGTXT('YPRIME requires that Y be a 4 x 1 vector')
ENDIF

C
C CREATE A MATRIX FOR RETURN ARGUMENT
C

PLHS(1) = MXCREATEDOUBLEMATRIX(M,N,0)
C
C ASSIGN POINTERS TO THE VARIOUS PARAMETERS
C
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YPP = MXGETPR(PLHS(1))
C

TP = MXGETPR(PRHS(1))
YP = MXGETPR(PRHS(2))

C
C COPY RIGHT HAND ARGUMENTS TO LOCAL ARRAYS OR VARIABLES

CALL MXCOPYPTRTOREAL8(TP, RTP, 1)
CALL MXCOPYPTRTOREAL8(YP, RYP, 4)

C
C DO THE ACTUAL COMPUTATIONS IN A SUBROUTINE USING
C CREATED ARRAYS.
C

CALL YPRIME(RYPP,RTP,RYP)
C
C COPY OUTPUT WHICH IS STORED IN LOCAL ARRAY TO MATRIX OUTPUT

CALL MXCOPYREAL8TOPTR(RYPP, YPP, 4)
C

RETURN
END

The following is the computational portion of the FORTRAN MEX-file
called yprime.f.

C=====================================================
C The actual YPRIME subroutine in FORTRAN
C
C Copyright 1984-2000 The MathWorks, Inc., modified R. Colgren
C $Revision: 1.4.1 $
C=====================================================
C

SUBROUTINE YPRIME(YP, T, Y)
REAL*8 YP(4), T, Y(4)

C
REAL*8 MU, MUS, R1, R2

C
MU = 1.0/82.45
MUS = 1.0 - MU

C
R1 = SQRT((Y(1) +MU)**2 + Y(3)**2)
R2 = SQRT((Y(1) -MUS)**2 + Y(3)**2)

C
YP(1) = Y(2)
YP(2) = 2*Y(4) + Y(1) - MUS*(Y(1)+MU)/(R1**3) -

& MU*(Y(1) -MUS)/(R2**3)
C

YP(3) = Y(4)
YP(4) = -2*Y(2) + Y(3) - MUS*Y(3)/(R1**3) -

& MU*Y(3)/(R2**3)
C

RETURN
END

To compile and link these files, we use the following command:

� mex yprime.f yprimeg.f

This command carries out the necessary steps to create the MEX-file.
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6.2.3.8 FORTRAN MEX-file details. The source file for a MEX-file con-
sists of two distinct parts: 1) a computational routine that contains the code for
performing the actual numeric computation and 2) a gateway routine that inter-
faces the computational routine with MATLAB.

The computational and gateway routines must be split into separate files to
“trick” FORTRAN compilers into allowing addresses to be treated as integer
variables (pointers).

A pointer is a C language data type. Because MATLAB is written in C, poin-
ters are used extensively inside MATLAB.

In FORTRAN, when a program calls a subroutine, arrays are passed by refer-
ence (by address). Rather than passing a complete copy of an array to a subrou-
tine, only a copy of the address of the first element is passed. C pointers are like
FORTRAN array names in that they point (i.e., refer) to objects rather than being
the objects themselves. The entry point to the gateway subroutine must be named
mexFunction and have the following parameters:

SUBROUTINE MEXFUNCTION(NLHS, PLHS, NRHS, PRHS)
C-------------------------------------------------------------------------------------------

INTEGER�4 PLHS(�), PRHS(�)
C-------------------------------------------------------------------------------------------

INTEGER NLHS, NRHS

The parameters nlhs and nrhs contain the number of left-hand-side and
right-hand-side arguments, respectively, with which the MEX-function is
called. The parameter prhs is a length nrhs array of pointers to the
right-hand-side matrices. The parameter plhs is a length nlhs array where your
C function must put pointers for the returned left-hand-side matrices.

For example, from our previous yprime example we could write

� x5yprime(1, [1 2 3 4]);

At the MATLAB prompt, the MATLAB interpreter calls mexFunction with
arguments:

nlhs ¼ 1
nrhs ¼ 2
plhs ¼ ''pointer to'' NULL
prhs ¼ ''first item in array pointer points to'' [1]

''second item in array pointer points to'' [1 2 3 4]

Because there are two right-hand arguments to yprime, nrhs is 2. The para-
meter prhs[0] points to a matrix object containing the scalar [1], whereas
prhs[1] points to the matrix containing [1 2 3 4]. Note that in the C language
matrix dimensions start at 0, not 1 as in FORTRAN. The caller is expecting
yprime to return a single matrix.
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It is the responsibility of the gateway routine to create an output matrix
(using mxCreateDoubleMatrix) and to store a pointer to that matrix into plhs[0].

The gateway routine should dereference and validate the input arguments and
call mexErrMsgTxt if anything is amiss.

The gateway routine must call mxCreateDoubleMatrix, mxCreateSparse,
or mxCreateString to create matrices of the required sizes in which to return
the results. The return values from these calls should be assigned to the appropri-
ate elements of plhs.

The gateway routine may call mxCalloc to allocate temporary work arrays if
needed.

Finally, the gateway routine should call the computational routine.

6.2.3.9 Debugging a FORTRAN MEX-file. You cannot use a debugger
on MEX-files invoked directly from MATLAB. There are two options available:
1) use the old standby write statement and 2) generate a stand-alone execu-
table image that can be tested outside MATLAB.

6.3 MATLAB
W

Engine Library

The MATLAB engine library is a set of routines that allows you to call
MATLAB from your C or FORTRAN programs (i.e., MATLAB as a subroutine)
to use its mathematics and graphics routines.

Using this method, MATLAB is run in the background as a separate process
and offers several advantages.

1) It can run on your machine or any other computer on the network, including
machines of different architectures.

2) Instead of requiring MATLAB to be linked to your code (.3 meg), only a
small communications library is needed.

Unfortunately, there is also a disadvantage. This method runs much slower
than if it was all coded in FORTRAN or C.

6.3.1 Engine Library Routines

The engine library contains nine routines. Their names all begin with the
prefix eng. Tables 6.4 and 6.5 list these routines.

Table 6.4 C engine routines

Function Purpose

engOpen Start up MATLAB engine

engClose Shut down MATLAB engine

engGetVariable Get a MATLAB array from the MATLAB engine

engPutVariable Send a MATLAB array to the MATLAB engine

engEvalString Execute a MATLAB command

engOutputBuffer Create a buffer to store MATLAB text output

engOpenSingleUse Start a MATLAB engine session for single, nonshared use

engGetVisible Determine visibility of MATLAB engine session

engSetVisible Show or hide MATLAB engine session
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On UNIX, the engine library communicates with the MATLAB engine
using pipes and, if needed, rsh for remote execution. On Microsoft Windows,
the engine library communicates with MATLAB using a Component Object
Model interface. COM and DDE Support contain a detailed description
of COM.

6.3.2 Engine Library C Example

This program, engtest1.c, illustrates how to call the engine functions from a
stand-alone C program. Additional engine examples are located in the eng_mat
directory.

/*====================================================================
* engtest1.c
*
* This is a simple program that illustrates how to call the
* MATLAB Engine functions from a C program for Windows
*
* The example starts a MATLAB engine process, then calculates the
* Position vs. Time for a falling object. Next, this example
* sends a 3-by-2 real matrix to it, computes the eigenvalues of
* the matrix multiplied by its transpose, gets the matrix back
* to the C program, and prints out the second eigenvalue.
*
* Copyright 1984-2003 The MathWorks, Inc., modified R. Colgren
*====================================================================
*/

/* $Revision: 1.10.4.1 $ */

#include <windows.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "engine.h"

#define BUFSIZE 256

static double Areal[6] = { 1, 2, 3, 4, 5, 6 };

int PASCAL WinMain (HINSTANCE hInstance,
HINSTANCE hPrevInstance,
LPSTR lpszCmdLine,
int nCmdShow)

{
Engine *ep;
mxArray *T = NULL, *a = NULL, *d = NULL;
char buffer[BUFSIZE+1];

Table 6.5 FORTRAN engine routines

Function Purpose

engOpen Start up MATLAB engine

engClose Shut down MATLAB engine

engGetVariable Get a MATLAB array from the MATLAB engine

engPutVariable Send a MATLAB array to the MATLAB engine

engEvalString Execute a MATLAB command

engOutputBuffer Create a buffer to store MATLAB text output
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double *Dreal, *Dimag;
double time[10] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };

/*
* Start the MATLAB engine
*/

if (!(ep = engOpen(NULL))) {
MessageBox ((HWND)NULL, (LPSTR)"Can’t start MATLAB engine",

(LPSTR) "Engwindemo.c", MB_OK);
exit(-1);

}

/*
* PART I
*
* For the first half of this demonstration, we will send data
* to MATLAB, analyze the data, and plot the result.
*/

/*
* Create a variable from our data
*/

T = mxCreateDoubleMatrix(1, 10, mxREAL);
memcpy((char *) mxGetPr(T), (char *) time, 10*sizeof(double));

/*
* Place the variable T into the MATLAB workspace
*/

engPutVariable(ep, "T", T);

/*
* Evaluate a function of time, distance = (1/2)g.*t.^2
* (g is the acceleration due to gravity)
*/

engEvalString(ep, "D = .5.*(-9.8).*T.^2;");

/*
* Plot the result
*/

engEvalString(ep, "plot(T,D);");
engEvalString(ep, "title('Position vs. Time for a falling object');");
engEvalString(ep, "xlabel('Time (seconds)');");
engEvalString(ep, "ylabel('Position (meters)');");

/*
* PART II
*
* For the second half of this demonstration, we will create another mxArray
* put it into MATLAB and calculate its eigenvalues
*/

a = mxCreateDoubleMatrix(3, 2, mxREAL);
memcpy((char *) mxGetPr(a), (char *) Areal, 6*sizeof(double));
engPutVariable(ep, "A", a);

/*
* Calculate the eigenvalue
*/

engEvalString(ep, "d = eig(A*A')");

/*
* Use engOutputBuffer to capture MATLAB output. Ensure first that
* the buffer is always NULL terminated.
*/

buffer[BUFSIZE] = '\0';
engOutputBuffer(ep, buffer, BUFSIZE);

/*
* the evaluate string returns the result into the
* output buffer.
*/
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engEvalString(ep, "whos");
MessageBox ((HWND)NULL, (LPSTR)buffer, (LPSTR) "MATLAB - whos", MB_OK);

/*
* Get the eigenvalue mxArray
*/

d = engGetVariable(ep, "d");
engClose(ep);

if (d == NULL) {
MessageBox ((HWND)NULL, (LPSTR)"Get Array Failed",

(LPSTR)"Engwindemo.c", MB_OK);
}

else {
Dreal = mxGetPr(d);
Dimag = mxGetPi(d);
if (Dimag)

sprintf(buffer,"Eigenval 2: %g+%gi",Dreal[1],Dimag[1]);
else

sprintf(buffer,"Eigenval 2: %g",Dreal[1]);
MessageBox ((HWND)NULL, (LPSTR)buffer, (LPSTR)"Engwindemo.c", MB_OK);

mxDestroyArray(d);
}
/*
* We’re done! Free memory, close the MATLAB engine and exit.
*/

mxDestroyArray(T);
mxDestroyArray(a);

return(0);
}

To compile this code we use

cc engtest1.c -o engtest1 - I$MATLAB/extern/include
$MATLAB/extern/lib/$ARCH/libmat.a -lm

This creates the executable file engtest1.

6.3.3 Engine Library FORTRAN Example

The following is an example written in FORTRAN that illustrates how to call
the engine functions from a stand-alone FORTRAN program.

C=====================================================
C engtest2.f
C
C This program illustrates how to call the MATLAB
C Engine functions from a Fortran program.
C
C Copyright (c) 1984-2000 by The MathWorks, Inc.
C Modified R. Colgren
C $Revision: 1.1.4.7.1 $
C=====================================================

program main

integer engOpen, engClose, engEvalString
integer engGetVariable, engPutVariable
integer mxGetPr, mxCreateDoubleMatrix

INTRODUCTION TO MATLABw MEX-FILES 145



integer ep, T, D
double precision time(10), dist(10)
integer temp, status
data time / 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0,

9.0, 10.0 /

ep = engOpen('matlab')

if (ep .eq. 0) then
write(6,*) 'Can''t start MATLAB engine'
stop

endif

T = mxCreateDoubleMatrix(1, 10, 0)
call mxCopyReal8ToPtr(time, mxGetPr(T), 10)

C
C Place the variable T into the MATLAB workspace.
C

status = engPutVariable(ep, 'T', T)

if (status .ne. 0) then
write(6,*) 'engPutVariable failed'
stop

endif
C
C Evaluate a function of time, distance = (1/2)g.*t.^2
C (g is the acceleration due to gravity).
C

if (engEvalString(ep, 'D = .5.*(-9.8).*T.^2;') .ne. 0)
then

write(6,*) 'engEvalString failed'
stop

endif

C
C Plot the result.
C

if (engEvalString(ep, 'plot(T,D);') .ne. 0) then
write(6,*) 'engEvalString failed'
stop

endif

if (engEvalString(ep, 'title(''Position vs. Time'')')
.ne. 0) then

write(6,*) 'engEvalString failed'
stop

endif

if (engEvalString(ep, 'xlabel(''Time (seconds)'')')
.ne. 0) then

write(6,*) 'engEvalString failed'
stop

endif
C
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if (engEvalString(ep, 'ylabel(''Position (meters)'')')
.ne. 0) then

write(6,*) 'engEvalString failed'
stop

endif
C
C Read from console to make sure that we pause long
C enough to be able to see the plot.
C

print *, 'Type 0 <return> to Exit'
print *, 'Type 1 <return> to continue'

read(*,*) temp

if (temp.eq.0) then
print *, 'EXIT!'
stop

end if

if (engEvalString(ep, 'close;') .ne. 0) then
write(6,*) 'engEvalString failed'
stop

endif

D = engGetVariable(ep, 'D')
call mxCopyPtrToReal8(mxGetPr(D), dist, 10)
print *, 'MATLAB computed the following distances:'
print *, ' time(s) distance(m)'
do 10 i=1,10

print 20, time(i), dist(i)
20 format(' ', G10.3, G10.3)
10 continue

call mxDestroyArray(T)
call mxDestroyArray(D)
status = engClose(ep)

if (status .ne. 0) then
write(6,*) 'engClose failed'
stop

endif

stop
end

To compile this, we would type the following command:

F77 engtest2.f -o engtest2 -I$MATLAB/extern/include
$MATLABIextern/lib/$ARCH/1ibmat.a -lm

This creates the executable file named engtest2.
This concludes our discussion of MATLAB MEX-files.
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6.4 Conclusion

This chapter introduced the reader to some of the other data types available in
MATLAB. It also introduced the reader to MEX-files and methods for calling
MATLAB from C and FORTRAN programs.
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Practice Exercises

6.1 Write a simple MEX-file in C that gets from the user a number, generates
the square of that number, then displays the resulting square of that number back
to the user. To set up a C compiler to use, if not already accomplished, type in the
command

� mex -setup

You will see something similar to the following request:

Please choose your compiler for building external interface (MEX) files:

Would you like mex to locate installed compilers [y]/n? y

(Note that you should select y to have MATLAB find all compilers.)
Select a compiler:

[1] Digital Visual FORTRAN version 6.6 in C:nmsdev
[2] Lcc C version 2.4.1 in C:nPROGRAM FILESnMATLAB\R2006bnsysnlcc
[3] Microsoft Visual C/Cþþ version 7.1 in C:nProgram FilesnMicrosoft

Visual Studio
[0] None

(Note that here we select 2 to use the MATLAB provided LCC C compiler.)

Compiler: 2

Then verify your choices to proceed with the assignment.
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7
Brief Introduction to SimulinkW

and StateflowW

7.1 Introduction and Objectives

This chapter introduces some of the graphics modeling capabilities of
Simulinkw and Statefloww software. It shows the reader how to open, execute,
and modify parameters within these models from the MATLABw Command
Window and from MATLAB M-files.

Upon completion of this chapter, the reader will be able to identify graphics
modeling capabilities of Simulink and Stateflow software, open and close Simu-
link and Stateflow models from the MATLAB Command Window, execute and
simulate systems already implemented in Simulink and Stateflow software from
the Command Window, and modify Simulink and Stateflow model parameters
from MATLAB.

7.2 SimulinkW

Simulink uses block diagrams to represent dynamic systems. Defining a
system is much like drawing a block diagram. Blocks are copied from a
library of blocks.

Typing the command simulink opens the standard block library. The standard
block library is divided into several subsystems, grouping blocks according to
their behavior (see Fig. 7.1).

Examples using the standard block libraries provided with Simulink are shown
next. They include sources (which generate input signals), sinks (places where
output data can be stored), linear blocks, nonlinear blocks, discrete blocks, and
connections. The user can also construct block libraries.

7.3 Van der Pol Equation

This system models a second-order nonlinear system. A description of the
system can be found on the diagram. This example demonstrates the ability of
MATLAB to control the simulation of a system.

We start by loading the system:

� vdp;

MATLAB will next simulate the system for 30 seconds and plot the
time-varying behavior of X1 and X2 (see Fig. 7.2).
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Fig. 7.1

� [t,x] 5 sim('vdp',30);

To generate the time history plots, type the following MATLAB commands
(see Fig. 7.3):

� clf;
� subplot(211);
� title('The State Variables of the Van der Pol System');
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� plot(t,x(:,2));
� ylabel('X1');
� subplot(212);
� plot(t,x(:,1));
� ylabel('X2');
� xlabel('Time in seconds');
� subplot;

Fig. 7.3

Fig. 7.2
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Plotting X1 against X2 results in the phase-plane diagram (see Fig. 7.4):

� clf;
� plot(x(:,1),x(:,2));
� title('The Phase Behavior of the Van der Pol System');
� xlabel('X1'); ylabel('X2');

Fig. 7.4

MATLAB will now run 10 simulations, varying the fraction of X2 that is sub-
tracted from X1, using the following M-file:

% M-file for the Van der Pol Simulation
time 5 20;
iterations 5 10;
step_size 5 0.2;
x 5 ones(time/step_size 1 1,iterations);
y 5 ones(time/step_size 1 1,iterations);
set_param('vdp/Mu','Gain','a');
for n 5 1:iterations

a 5 1 - n/iterations;
[t,sf] 5 euler('vdp',time,[0.25,0.0],[5,step_size,step_size]);
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x(:,n) 5 sf(:,2);
y(:,n) 5 sf(:,1);

end
clf;
mesh(x);
mesh(y);
title('The Effect of Reducing the Negative Feedback of X2');

Note that in the next version of MATLAB the command euler will become
obsolete and may be eliminated. The MathWorks recommends using sim as a
substitute for euler (see Fig. 7.5).

Fig. 7.5

Slices of these surfaces can be displayed as phase-plane diagrams. The following
commands can also be implemented as a MATLAB M-file (see Fig 7.6):

� clf
� subplot(221);
� plot(x(:,1),y(:,1));
� title('-1 * X2');
� xlabel('X1');
� ylabel('X2');
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� subplot(222);
� plot(x(:,3),y(:,3));
� title('-0.7 * X2');
� xlabel('X1');
� ylabel('X2');

� subplot(223);
� plot(x(:,6),y(:,6));
� title('-0.4 * X2');
� xlabel('X1');
� ylabel('X2');

� subplot(224);
� plot(x(:,9),y(:,9));
� title('-0.1 * X2');
� xlabel('X1');
� ylabel('X2');

� subplot

Fig. 7.6

7.4 Conditional System Model

This system provides a demonstration of a simple conditional if test
implemented as a Stateflow model. All the Stateflow portion of this diagram
does is provide the input (Ramp) and the output (Scope).
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The following MATLAB command line loads the system:

� sf_if;

Figure 7.7 shows the model opened.

Fig. 7.7

The Stateflow model is equivalent to the following M-file:

% if test M-file
if condition5 20

If_output 5 condition^2;
elseif condition > 20 & condition < 5 50

If_output 5 50*sin(condition)
Else

If_output 5 condition^2;
end
%
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A double-click on the if block opens the Stateflow model shown in Fig. 7.8.
This model is executed using the following command:

� sim('sf_if ',10)

When the model is executed, the Stateflow model shows the change in state
with time. In this case, the condition is a ramp input with a slope of 10 for the
first 10 seconds. The resulting time response is shown in Fig. 7.9.

Fig. 7.8

Fig. 7.9
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7.5 Combined SimulinkW and StateflowW Systems

This system demonstrates the use of a Stateflow model within Simulink. It also
shows how a custom interface can be written by the user to directly enter par-
ameters into the model without the use of the MATLAB Command Window.
The model is of a forced mass sliding on a surface with friction with spring
damping. The model can be loaded using the following command (see Fig. 7.10):

� sf_stickslip

The state logic for this system was programmed in Stateflow software and was
stored under the Stateflow model name state_logic. This block should have
opened when you opened the Simulink model sf_stickslip. If not, just double-
click on the block in the Simulink window. The state_logic window should
appear as in Fig. 7.11.

Fig. 7.10

BRIEF INTRODUCTION TO SIMULINKw AND STATEFLOWw 161



You can now try different model parameters by double-clicking on the Simu-
link block edit parameters. Doing so will open the window shown in Fig. 7.12.

Fig. 7.11

Fig. 7.12
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Before the model is run, there are no output signals on the scope plot (see
Fig. 7.13). If the scope plot is not open, double-click on the scope labeled
force and position vs. time to open the plot window shown in Fig. 7.10.

Executing the model using the MATLAB command sim('sf_stickslip',20)
will give the plots shown in Figs 7.14 and 7.15.

Fig. 7.13

Fig. 7.14
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You should have been able to see the changes in the states within the Stateflow
model as it executed. Note that the natural frequency of the system is much higher
than that of the excitation force. Now change the mass to M ¼ 1 kg and rerun the
model. Figure 7.16 shows these modified values.

Fig. 7.15

Fig. 7.16
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The results of this action are shown in Figs 7.17 and 7.18.

Fig. 7.17

Fig. 7.18

BRIEF INTRODUCTION TO SIMULINKw AND STATEFLOWw 165



The model can be closed using the following command:

� close_system('sf_stickslip');

These commands would be used if the model was called from a MATLAB
M-file.

7.6 Model Comparison

Compare the implementation of a state-space controller [A,B,C,D] in self-
conditioned form versus the standard state-space form. This model requires the
Control System Toolbox. It provides a simple demonstration of how different
model implementations can be studied using Simulink.

For the self-conditioned state-space controller, if the measured control value is
equal to the commanded value (u_meas 5 u_dem), then the controller imple-
mentation is the typical state-space controller [A,B,C,D]. If the measured
control value (u_meas) is limited, then the poles of the controller become
those defined in the mask dialog box.

The command to load the system is (see Fig. 7.19)

� aeroblk_self_cond_cntr;

To see the system model inside the two different block descriptions, open
them by double-clicking on them.

This system can be simulated from the command line

� sim('aeroblk_self_cond_cntr',10);

The results of a typical state-space controller [A,B,C,D] and a self-conditioned
state-space controller with a limited measured control value are shown in Fig. 7.20.

Fig. 7.19
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Fig. 7.20
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To simulate just the first 2 seconds, rerun the system using the command (see
Fig. 7.21)

� sim('aeroblk_self_cond_cntr',2);

If you click on the aeroblk_self_cond_cntr window, you can start and stop
the simulation of this system yourself from the Simulation menu.

The Simulink model is closed using the command

close_system('aeroblk_self_cond_cntr',0);

Fig. 7.21
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7.7 F-14 Control System

This is a model of the one-dimensional (vertical) behavior of an F-14 fighter. It
shows how data for a Simulink model can be stored in a separate M-file and
loaded as needed for a particular simulation run.

The command to load the data required by the F-14 model is

� f14dat;

This is accomplished by loading and executing the following M-file:

% Numerical data for F-14 demo

% Copyright 1990-2002 The MathWorks, Inc.
% $Revision: 1.16 $

g = 32.2;
Uo = 689.4000;
Vto = 690.4000;
% Stability derivatives
Mw = -0.00592;
Mq = -0.6571;
Md = -6.8847;
Zd = -63.9979;
Zw = -0.6385;
% Gains
cmdgain = 3.490954472728077e-02;
Ka = 0.6770;
Kq = 0.8156;
Kf = -1.7460;
Ki = -3.8640;
% Other constants
a = 2.5348;
Gamma = 0.0100;
b = 64.1300;
Beta = 426.4352;
Sa = 0.005236;
Swg = 3;
Ta = 0.0500;
Tal = 0.3959;
Ts = 0.1000;
W1 = 2.9710;
W2 = 4.1440;
Wa = 10;
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Next load the system and associated numerical constants (see Fig. 7.22):

� f14;

Select the two graphics windows to analyze the system by double-clicking on
the two Scopes Pilot G force Scope and Angle of Attack if they do not open
when the F-14 model opens.

Fig. 7.22
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The resulting time histories are shown in Figs 7.23 and 7.24.

Fig. 7.24

Fig. 7.23
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You can now change values in the M-file f14dat using the MATLAB M-file
Editor.

7.8 Conclusion

This lecture was a very brief introduction to Simulink and its capabilities.
Further examples are given in the Simulink manual. Real-time simulations can
be run using the Real-Time Workshopw software.

Other toolboxes are available from The MathWorks specifically for use with
Simulink.
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Practice Exercises

7.1 Execute the existing Simulink model sldemo_bounce from the
MATLAB Command Window.

In this model a rubber ball is thrown into the air with a velocity of 15 meters/
second from a height of 10 meters. The position of the ball is shown in the lower
plot of the scope, and the velocity of the ball is shown in the upper plot.

This system uses a resetable integrator to change the direction of the ball as it
comes into contact with the ground; the zero-crossing detection prevents the ball
from going below the ground.

From the MATLAB Command Window (see Fig. 7.25), drop the ball from two
different heights (10 meters and 25 meters), and study the effect of different ball
elasticities by testing three different ball elasticity values (20.8, 20.5, 20.2).

Fig. 7.25
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8
Introduction to SimulinkW

8.1 Introduction and Objectives

This lecture introduces the reader to Simulinkw graphical modeling capabilities.
It assumes a basic familiarity with MATLABw.

Upon completion of the second half of this book, the reader will be able to
identify the graphics modeling capabilities of Simulink, open and close Simulink
models from MATLAB, generate Simulink models, execute and simulate
systems implemented in Simulink, modify Simulink model blocks parameters
from Simulink and MATLAB, and modify and generate Statefloww model
blocks and Simulink/Stateflow diagrams.

8.2 Standard Simulinkw Libraries

Simulink uses block diagrams to represent dynamic systems. Defining a
system is much like drawing a block diagram. Blocks are copied from a
library of blocks. Connections and other utilities are similarly drawn from
block libraries. Special purpose blocks can be purchased in the form of toolboxes
from The MathWorks and from third-party vendors. Finally, users can define
their own special purpose blocks.

Simulink is started from the main MATLAB window. After the MATLAB
program is started the standard main MATLAB interface window appears as
shown in Fig. 8.1.
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Typing the command simulink in the MATLAB Command Window opens
the standard block library. The standard block library is divided into several sub-
systems, grouping blocks according to their behavior. Examples using the stan-
dard block libraries provided with Simulink are shown in Fig. 8.2. They
include sources (which generate input signals), sinks (places where output data
can be stored), linear blocks, nonlinear blocks, discrete blocks, and connections.
The user can also construct blocks and block libraries.

Fig. 8.1

176 BASIC MATLABw, SIMULINKw, AND STATEFLOWw



Fig. 8.2
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The following are in the Com-
monly Used Blocks Simulink block
library. They contain a collection of
the most frequently used Simulink
blocks from the other libraries.
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The following are in the Continuous
Simulink block library. They contain
continuous dynamic system models.

The following are in the Discon-
tinuities Simulink block library.
They contain several discontinuous
nonlinearities.
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The following are in the Discrete
Simulink block library. They contain
z-transfer functions and time delays.

The following are in the main
Simulink block library of Lookup
Tables.
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The following are in the Simulink
block library of Logic and Bit Oper-
ations. This library contains a wide
variety of bit operators and value
and interval tests.
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The following
are in the Simulink
block library of
Math Operations.

This library con-
tains a wide variety
of functions, assign-
ments, and logic
elements.
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The following are
in the Simulink
block library of
Signal Attributes.
These are useful in
analyzing the charac-
teristics of the
signals generated by
your model, includ-
ing signals internal
to the model.
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The following are
in the Simulink Model
Verification block
library.

The following are
in the Model-Wide
Utilities Simulink
block library.
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The following are in the
Simulink block library of
Ports & Subsystems.
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The following are Simulink
block library Signal Routing
elements. Included here are several
bus-related models. Several data
storage and recall mechanizations
are included. Go to and from
functions are also available.
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The following are in the Sinks
Simulink block library. Sinks are
used to display plots and data as
the Simulink model is executed.
Scope blocks are the most
common way of displaying plots
of signal data as it is being gener-
ated. Data can also be directly
output into MATLAB using the
To File block. This makes it poss-
ible to do further processing and
analysis within the MATLAB
Command Window.
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The following are in the Sources
Simulink block library. Sources
provide a wide variety of input
signal types. Common input signals
for system testing and analysis, such
as steps, sine waves, pulses, and
random numbers, are provided here.
Users can also generate their own
signals or input signal data from
external sources.
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The following are in the
Simulink block library of
User Defined Functions.
The S-Function is equi-
valent to the M-file written
in the MATLAB command
language, or the MEX-
function written in C,
Cþþ, FORTRAN, and/or
Ada. Although M-files
and MEX functions are
executed in the MATLAB
Command Window,
S-Functions are directly
included within the Simu-
link model. An S-Function
Builder is included to aid
the user in constructing an
S-Function. Note that
MATLAB functions can be
directly incorporated within
the Simulink model using
the MATLAB Fcn block.

The following are in
the Additional Math
& Discrete Simulink
block library.
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8.3 Simulink
W

Aerospace Blockset

Figure 8.3 represents all of the Aerospace Block Libraries contained within
the Simulink Aerospace Blockset. Many different aerospace modeling utilities,
which in the past needed to be constructed as Simulink models or S-Functions,
are now provided by The MathWorks in this set of libraries. The models
contained within this blockset are described within the following sections.

Fig. 8.3
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The following are the
Actuators in the Simu-
link Aerospace Blockset
library. Simple linear
and nonlinear models are
available.

The following are
in the Simulink
Aerospace Aerody-
namics library.

The following are in the Simulink Aero-
space Blockset Animation library.

The following are in the
Simulink Aerospace Blockset
Environment library.

The following are the 3- and
6-DOF Equations of Motion
blocks in the Simulink Aero-
space Blockset library.
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The following are in
the Simulink Aerospace
Blockset Flight Param-
eters library. Calculate the
angles between the body
and the velocity vector
(incidence and sideslip)
and the velocity magnitude
from the components in
body axes (Vb).

The following are in
the Simulink Aerospace
Blockset GNC library. A
large variety of linear state-
space forms are provided
in this library for system
representations.

The following are
in the Simulink Aero-
space Blockset Mass
Properties library. One
block is used to calcu-
late the center of
gravity location. Linear
interpolation is also
used to determine
center of gravity as a
function of mass.
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The following simple
turbofan engine model
is in the Simulink Aero-
space Blockset Propul-
sion library.

The following are the
Transformations in the
Simulink Aerospace Utilities
Blockset library.

8.4 Simulinkw Installation and Demonstrations

The following is the complete MATLAB/Simulink path. It is given for a full
MATLAB/Simulink/Stateflow installation of Release 2006b.

The Simulink toolboxes and other utilities you have available in your
MATLAB installation can be accessed using the command (this is the same as
the command for MATLAB toolboxes, etc.).

�� path

C:\Program Files\MATLAB\R2006b\toolbox\matlab\general
C:\Program Files\MATLAB\R2006b\toolbox\matlab\ops
C:\Program Files\MATLAB\R2006b\toolbox\matlab\lang
C:\Program Files\MATLAB\R2006b\toolbox\matlab\elmat
C:\Program Files\MATLAB\R2006b\toolbox\matlab\elfun
C:\Program Files\MATLAB\R2006b\toolbox\matlab\specfun
C:\Program Files\MATLAB\R2006b\toolbox\matlab\matfun
C:\Program Files\MATLAB\R2006b\toolbox\matlab\datafun
C:\Program Files\MATLAB\R2006b\toolbox\matlab\polyfun
C:\Program Files\MATLAB\R2006b\toolbox\matlab\funfun
C:\Program Files\MATLAB\R2006b\toolbox\matlab\sparfun
C:\Program Files\MATLAB\R2006b\toolbox\matlab\scribe
C:\Program Files\MATLAB\R2006b\toolbox\matlab\graph2d
C:\Program Files\MATLAB\R2006b\toolbox\matlab\graph3d
C:\Program Files\MATLAB\R2006b\toolbox\matlab\specgraph
C:\Program Files\MATLAB\R2006b\toolbox\matlab\graphics
C:\Program Files\MATLAB\R2006b\toolbox\matlab\uitools
C:\Program Files\MATLAB\R2006b\toolbox\matlab\strfun
C:\Program Files\MATLAB\R2006b\toolbox\matlab\imagesci
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C:\Program Files\MATLAB\R2006b\toolbox\matlab\iofun
C:\Program Files\MATLAB\R2006b\toolbox\matlab\audiovideo
C:\Program Files\MATLAB\R2006b\toolbox\matlab\timefun
C:\Program Files\MATLAB\R2006b\toolbox\matlab\datatypes
C:\Program Files\MATLAB\R2006b\toolbox\matlab\verctrl
C:\Program Files\MATLAB\R2006b\toolbox\matlab\codetools
C:\Program Files\MATLAB\R2006b\toolbox\matlab\helptools
C:\Program Files\MATLAB\R2006b\toolbox\matlab\winfun
C:\Program Files\MATLAB\R2006b\toolbox\matlab\demos
C:\Program Files\MATLAB\R2006b\toolbox\matlab\timeseries
C:\Program Files\MATLAB\R2006b\toolbox\matlab\hds
C:\Program Files\MATLAB\R2006b\toolbox\local
C:\Program Files\MATLAB\R2006b\toolbox\shared\controllib
C:\Program Files\MATLAB\R2006b\toolbox\simulink\simulink
C:\Program Files\MATLAB\R2006b\toolbox\simulink\blocks
C:\Program Files\MATLAB\R2006b\toolbox\simulink\components
C:\Program Files\MATLAB\R2006b\toolbox\simulink\fixedandfloat
C:\Program Files\MATLAB\R2006b\toolbox\simulink\fixedandfloat\fxpdemos
C:\Program Files\MATLAB\R2006b\toolbox\simulink\fixedandfloat\obsolete
C:\Program Files\MATLAB\R2006b\toolbox\simulink\simdemos
C:\Program Files\MATLAB\R2006b\toolbox\simulink\simdemos\aerospace
C:\Program Files\MATLAB\R2006b\toolbox\simulink\simdemos\automotive
C:\Program Files\MATLAB\R2006b\toolbox\simulink\simdemos\simfeatures
C:\Program Files\MATLAB\R2006b\toolbox\simulink\simdemos\simgeneral
C:\Program Files\MATLAB\R2006b\toolbox\simulink\dee
C:\Program Files\MATLAB\R2006b\toolbox\shared\dastudio
C:\Program Files\MATLAB\R2006b\toolbox\stateflow\stateflow
C:\Program Files\MATLAB\R2006b\toolbox\rtw\rtw
C:\Program Files\MATLAB\R2006b\toolbox\simulink\simulink\modeladvisor
C:\Program Files\MATLAB\R2006b\toolbox\simulink\simulink\

modeladvisor\fixpt
C:\Program Files\MATLAB\R2006b\toolbox\simulink\simulink\MPlayIO
C:\Program Files\MATLAB\R2006b\toolbox\simulink\simulink\dataobjectwizard
C:\Program Files\MATLAB\R2006b\toolbox\shared\fixedpointlib
C:\Program Files\MATLAB\R2006b\toolbox\stateflow\sfdemos
C:\Program Files\MATLAB\R2006b\toolbox\stateflow\coder
C:\Program Files\MATLAB\R2006b\toolbox\rtw\rtwdemos
C:\Program Files\MATLAB\R2006b\toolbox\rtw\rtwdemos\rsimdemos
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\asap2\asap2
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\asap2\asap2\user
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\common\can\blocks
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\common\configuration\

resource
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\common\tgtcommon
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\rtwin\rtwin
C:\Program Files\MATLAB\R2006b\toolbox\simulink\accelerator
C:\Program Files\MATLAB\R2006b\toolbox\simulink\accelerator\acceldemos
C:\Program Files\MATLAB\R2006b\toolbox\rtw\accel
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C:\Program Files\MATLAB\R2006b\toolbox\aeroblks\aeroblks
C:\Program Files\MATLAB\R2006b\toolbox\aeroblks\aerodemos
C:\Program Files\MATLAB\R2006b\toolbox\aeroblks\aerodemos\texture
C:\Program Files\MATLAB\R2006b\toolbox\bioinfo\bioinfo
C:\Program Files\MATLAB\R2006b\toolbox\bioinfo\biolearning
C:\Program Files\MATLAB\R2006b\toolbox\bioinfo\microarray
C:\Program Files\MATLAB\R2006b\toolbox\bioinfo\mass_spec
C:\Program Files\MATLAB\R2006b\toolbox\bioinfo\proteins
C:\Program Files\MATLAB\R2006b\toolbox\bioinfo\biomatrices
C:\Program Files\MATLAB\R2006b\toolbox\bioinfo\biodemos
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\c166\c166
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\c166\blocks
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\c166\c166demos
C:\Program Files\MATLAB\R2006b\toolbox\ccslink\ccslink
C:\Program Files\MATLAB\R2006b\toolbox\ccslink\ccslink\outproc
C:\Program Files\MATLAB\R2006b\toolbox\ccslink\ccsblks
C:\Program Files\MATLAB\R2006b\toolbox\ccslink\ccsdemos
C:\Program Files\MATLAB\R2006b\toolbox\comm\comm
C:\Program Files\MATLAB\R2006b\toolbox\comm\commdemos
C:\Program Files\MATLAB\R2006b\toolbox\comm\commdemos\

commdocdemos
C:\Program Files\MATLAB\R2006b\toolbox\comm\commobsolete
C:\Program Files\MATLAB\R2006b\toolbox\commblks\commblks
C:\Program Files\MATLAB\R2006b\toolbox\commblks\commmasks
C:\Program Files\MATLAB\R2006b\toolbox\commblks\commmex
C:\Program Files\MATLAB\R2006b\toolbox\commblks\commblksdemos
C:\Program Files\MATLAB\R2006b\toolbox\commblks\commblksobsolete\v3
C:\Program Files\MATLAB\R2006b\toolbox\commblks\commblksobsolete\v2p5
C:\Program Files\MATLAB\R2006b\toolbox\commblks\commblksobsolete\v2
C:\Program Files\MATLAB\R2006b\toolbox\commblks\commblksobsolete\v1p5
C:\Program Files\MATLAB\R2006b\toolbox\control\control
C:\Program Files\MATLAB\R2006b\toolbox\control\ctrlguis
C:\Program Files\MATLAB\R2006b\toolbox\control\ctrlobsolete
C:\Program Files\MATLAB\R2006b\toolbox\control\ctrlutil
C:\Program Files\MATLAB\R2006b\toolbox\control\ctrldemos
C:\Program Files\MATLAB\R2006b\toolbox\curvefit\curvefit
C:\Program Files\MATLAB\R2006b\toolbox\curvefit\cftoolgui
C:\Program Files\MATLAB\R2006b\toolbox\shared\optimlib
C:\Program Files\MATLAB\R2006b\toolbox\daq\daq
C:\Program Files\MATLAB\R2006b\toolbox\daq\daqguis
C:\Program Files\MATLAB\R2006b\toolbox\daq\daqdemos
C:\Program Files\MATLAB\R2006b\toolbox\database\database
C:\Program Files\MATLAB\R2006b\toolbox\database\dbdemos
C:\Program Files\MATLAB\R2006b\toolbox\database\vqb
C:\Program Files\MATLAB\R2006b\toolbox\datafeed\datafeed
C:\Program Files\MATLAB\R2006b\toolbox\datafeed\dfgui
C:\Program Files\MATLAB\R2006b\toolbox\des\desblks
C:\Program Files\MATLAB\R2006b\toolbox\des\desmasks
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C:\Program Files\MATLAB\R2006b\toolbox\des\desmex
C:\Program Files\MATLAB\R2006b\toolbox\des\desdemos
C:\Program Files\MATLAB\R2006b\toolbox\physmod\drive\drive
C:\Program Files\MATLAB\R2006b\toolbox\physmod\drive\drivedemos
C:\Program Files\MATLAB\R2006b\toolbox\dspblks\dspblks
C:\Program Files\MATLAB\R2006b\toolbox\dspblks\dspmasks
C:\Program Files\MATLAB\R2006b\toolbox\dspblks\dspmex
C:\Program Files\MATLAB\R2006b\toolbox\dspblks\dspdemos
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\ecoder
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\ecoder\ecoderdemos
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\mpt
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\mpt\mpt
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\mpt\user_specific
C:\Program Files\MATLAB\R2006b\toolbox\exlink
C:\Program Files\MATLAB\R2006b\toolbox\symbolic\extended
C:\Program Files\MATLAB\R2006b\toolbox\filterdesign\filterdesign
C:\Program Files\MATLAB\R2006b\toolbox\filterdesign\quantization
C:\Program Files\MATLAB\R2006b\toolbox\filterdesign\filtdesdemos
C:\Program Files\MATLAB\R2006b\toolbox\finance\finance
C:\Program Files\MATLAB\R2006b\toolbox\finance\calendar
C:\Program Files\MATLAB\R2006b\toolbox\finance\findemos
C:\Program Files\MATLAB\R2006b\toolbox\finance\finsupport
C:\Program Files\MATLAB\R2006b\toolbox\finance\ftseries
C:\Program Files\MATLAB\R2006b\toolbox\finance\ftsdemos
C:\Program Files\MATLAB\R2006b\toolbox\finance\ftsdata
C:\Program Files\MATLAB\R2006b\toolbox\finance\ftstutorials
C:\Program Files\MATLAB\R2006b\toolbox\finderiv\finderiv
C:\Program Files\MATLAB\R2006b\toolbox\finfixed\finfixed
C:\Program Files\MATLAB\R2006b\toolbox\fixedpoint\fixedpoint
C:\Program Files\MATLAB\R2006b\toolbox\fixedpoint\fidemos
C:\Program Files\MATLAB\R2006b\toolbox\fixedpoint\fimex
C:\Program Files\MATLAB\R2006b\toolbox\fixpoint
C:\Program Files\MATLAB\R2006b\toolbox\fuzzy\fuzzy
C:\Program Files\MATLAB\R2006b\toolbox\fuzzy\fuzdemos
C:\Program Files\MATLAB\R2006b\toolbox\gads
C:\Program Files\MATLAB\R2006b\toolbox\gads\gads
C:\Program Files\MATLAB\R2006b\toolbox\gads\gadsdemos
C:\Program Files\MATLAB\R2006b\toolbox\garch\garch
C:\Program Files\MATLAB\R2006b\toolbox\garch\garchdemos
C:\Program Files\MATLAB\R2006b\toolbox\gauges
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\hc12\hc12
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\hc12\blocks
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\hc12\codewarrior
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\hc12\hc12demos
C:\Program Files\MATLAB\R2006b\toolbox\hdlfilter\hdlfilter
C:\Program Files\MATLAB\R2006b\toolbox\hdlfilter\hdlfiltdemos
C:\Program Files\MATLAB\R2006b\toolbox\shared\hdlshared
C:\Program Files\MATLAB\R2006b\toolbox\ident\ident
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C:\Program Files\MATLAB\R2006b\toolbox\ident\idobsolete
C:\Program Files\MATLAB\R2006b\toolbox\ident\idguis
C:\Program Files\MATLAB\R2006b\toolbox\ident\idutils
C:\Program Files\MATLAB\R2006b\toolbox\ident\iddemos
C:\Program Files\MATLAB\R2006b\toolbox\ident\idhelp
C:\Program Files\MATLAB\R2006b\toolbox\images\images
C:\Program Files\MATLAB\R2006b\toolbox\images\imuitools
C:\Program Files\MATLAB\R2006b\toolbox\images\imdemos
C:\Program Files\MATLAB\R2006b\toolbox\images\iptutils
C:\Program Files\MATLAB\R2006b\toolbox\shared\imageslib
C:\Program Files\MATLAB\R2006b\toolbox\images\medformats
C:\Program Files\MATLAB\R2006b\toolbox\imaq\imaq
C:\Program Files\MATLAB\R2006b\toolbox\shared\imaqlib
C:\Program Files\MATLAB\R2006b\toolbox\imaq\imaqdemos
C:\Program Files\MATLAB\R2006b\toolbox\imaq\imaqblks\imaqblks
C:\Program Files\MATLAB\R2006b\toolbox\imaq\imaqblks\imaqmasks
C:\Program Files\MATLAB\R2006b\toolbox\imaq\imaqblks\imaqmex
C:\Program Files\MATLAB\R2006b\toolbox\instrument\instrument
C:\Program Files\MATLAB\R2006b\toolbox\instrument\instrumentdemos
C:\Program Files\MATLAB\R2006b\toolbox\instrument\instrumentblks\

instrumentblks
C:\Program Files\MATLAB\R2006b\toolbox\instrument\instrumentblks\

instrumentmex
C:\Program Files\MATLAB\R2006b\toolbox\map\map
C:\Program Files\MATLAB\R2006b\toolbox\map\mapdemos
C:\Program Files\MATLAB\R2006b\toolbox\map\mapdisp
C:\Program Files\MATLAB\R2006b\toolbox\map\mapformats
C:\Program Files\MATLAB\R2006b\toolbox\map\mapproj
C:\Program Files\MATLAB\R2006b\toolbox\shared\mapgeodegy
C:\Program Files\MATLAB\R2006b\toolbox\mbc\mbc
C:\Program Files\MATLAB\R2006b\toolbox\mbc\mbcdata
C:\Program Files\MATLAB\R2006b\toolbox\mbc\mbcdesign
C:\Program Files\MATLAB\R2006b\toolbox\mbc\mbcexpr
C:\Program Files\MATLAB\R2006b\toolbox\mbc\mbcguitools
C:\Program Files\MATLAB\R2006b\toolbox\mbc\mbclayouts
C:\Program Files\MATLAB\R2006b\toolbox\mbc\mbcmodels
C:\Program Files\MATLAB\R2006b\toolbox\mbc\mbcsimulink
C:\Program Files\MATLAB\R2006b\toolbox\mbc\mbctools
C:\Program Files\MATLAB\R2006b\toolbox\mbc\mbcview
C:\Program Files\MATLAB\R2006b\toolbox\physmod\mech\mech
C:\Program Files\MATLAB\R2006b\toolbox\physmod\mech\mechdemos
C:\Program Files\MATLAB\R2006b\toolbox\physmod\pmimport\pmimport
C:\Program Files\MATLAB\R2006b\toolbox\slvnv\simcoverage
C:\Program Files\MATLAB\R2006b\toolbox\modelsim\modelsim
C:\Program Files\MATLAB\R2006b\toolbox\modelsim\modelsimdemos
C:\Program Files\MATLAB\R2006b\toolbox\mpc\mpc
C:\Program Files\MATLAB\R2006b\toolbox\mpc\mpcdemos
C:\Program Files\MATLAB\R2006b\toolbox\mpc\mpcguis
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C:\Program Files\MATLAB\R2006b\toolbox\mpc\mpcobsolete
C:\Program Files\MATLAB\R2006b\toolbox\mpc\mpcutils
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\mpc555dk
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\mpc555dk\

common\configuration
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\mpc555dk\

mpc555demos
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\mpc555dk\mpc555dk
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\mpc555dk\pil
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\mpc555dk\rt\

blockset\mfiles
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\mpc555dk\rt\blockset
C:\Program Files\MATLAB\R2006b\toolbox\nnet
C:\Program Files\MATLAB\R2006b\toolbox\nnet\nncontrol
C:\Program Files\MATLAB\R2006b\toolbox\nnet\nndemos
C:\Program Files\MATLAB\R2006b\toolbox\nnet\nnet
C:\Program Files\MATLAB\R2006b\toolbox\nnet\nnet\nnanalyze
C:\Program Files\MATLAB\R2006b\toolbox\nnet\nnet\nncustom
C:\Program Files\MATLAB\R2006b\toolbox\nnet\nnet\nndistance
C:\Program Files\MATLAB\R2006b\toolbox\nnet\nnet\nnformat
C:\Program Files\MATLAB\R2006b\toolbox\nnet\nnet\nninit
C:\Program Files\MATLAB\R2006b\toolbox\nnet\nnet\nnlearn
C:\Program Files\MATLAB\R2006b\toolbox\nnet\nnet\nnnetinput
C:\Program Files\MATLAB\R2006b\toolbox\nnet\nnet\nnnetwork
C:\Program Files\MATLAB\R2006b\toolbox\nnet\nnet\nonperformance
C:\Program Files\MATLAB\R2006b\toolbox\nnet\nnet\nnplot
C:\Program Files\MATLAB\R2006b\toolbox\nnet\nnet\nnprocess
C:\Program Files\MATLAB\R2006b\toolbox\nnet\nnet\nnsearch
C:\Program Files\MATLAB\R2006b\toolbox\nnet\nnet\nntopology
C:\Program Files\MATLAB\R2006b\toolbox\nnet\nnet\nntrain
C:\Program Files\MATLAB\R2006b\toolbox\nnet\nnet\nntransfer
C:\Program Files\MATLAB\R2006b\toolbox\nnet\nnet\nnweight
C:\Program Files\MATLAB\R2006b\toolbox\nnet\nnguis
C:\Program Files\MATLAB\R2006b\toolbox\nnet\nnguis\nftool
C:\Program Files\MATLAB\R2006b\toolbox\nnet\nnguis\nntool
C:\Program Files\MATLAB\R2006b\toolbox\nnet\nnobsolete
C:\Program Files\MATLAB\R2006b\toolbox\nnet\nnresource
C:\Program Files\MATLAB\R2006b\toolbox\nnet\nnutils
C:\Program Files\MATLAB\R2006b\toolbox\opc\opc
C:\Program Files\MATLAB\R2006b\toolbox\opc\opcgui
C:\Program Files\MATLAB\R2006b\toolbox\opc\opcdemos
C:\Program Files\MATLAB\R2006b\toolbox\opc\opcdemos\opcblksdemos
C:\Program Files\MATLAB\R2006b\toolbox\opc\opcblks\opcblks
C:\Program Files\MATLAB\R2006b\toolbox\opc\opcblks\opcmasks
C:\Program Files\MATLAB\R2006b\toolbox\optim
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\osek\osek
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\osek\osekdemos
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\osek\blocks
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C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\osek\osekworks
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\osek\proosek
C:\Program Files\MATLAB\R2006b\toolbox\pde
C:\Program Files\MATLAB\R2006b\toolbox\physmod\pm_util\pm_util
C:\Program Files\MATLAB\R2006b\toolbox\physmod\powersys\powersys
C:\Program Files\MATLAB\R2006b\toolbox\physmod\powersys\powerdemo
C:\Program Files\MATLAB\R2006b\toolbox\physmod\powersys\drives\drives
C:\Program Files\MATLAB\R2006b\toolbox\physmod\powersys\drives\

drivesdemo
C:\Program Files\MATLAB\R2006b\toolbox\physmod\powersys\facts\facts
C:\Program Files\MATLAB\R2006b\toolbox\physmod\powersys\

facts\factsdemo
C:\Program Files\MATLAB\R2006b\toolbox\physmod\powersys\DR\DR
C:\Program Files\MATLAB\R2006b\toolbox\physmod\powersys\DR\DRdemo
C:\Program Files\MATLAB\R2006b\toolbox\slvnv\reqmgt
C:\Program Files\MATLAB\R2006b\toolbox\slvnv\rmidemos
C:\Program Files\MATLAB\R2006b\toolbox\rf\rf
C:\Program Files\MATLAB\R2006b\toolbox\rf\rfdemos
C:\Program Files\MATLAB\R2006b\toolbox\rf\rftool
C:\Program Files\MATLAB\R2006b\toolbox\rfblks\rfblks
C:\Program Files\MATLAB\R2006b\toolbox\rfblks\rfblksmasks
C:\Program Files\MATLAB\R2006b\toolbox\rfblks\rfblksmex
C:\Program Files\MATLAB\R2006b\toolbox\rfblks\rfblksdemos
C:\Program Files\MATLAB\R2006b\toolbox\robust\robust
C:\Program Files\MATLAB\R2006b\toolbox\robust\rctlmi
C:\Program Files\MATLAB\R2006b\toolbox\robust\rctutil
C:\Program Files\MATLAB\R2006b\toolbox\robust\rctdemos
C:\Program Files\MATLAB\R2006b\toolbox\robust\rctobsolete\robust
C:\Program Files\MATLAB\R2006b\toolbox\robust\rctobsolete\lmi
C:\Program Files\MATLAB\R2006b\toolbox\robust\rctobsolete\mutools\

commands
C:\Program Files\MATLAB\R2006b\toolbox\robust\rctobsolete\mutools\subs
C:\Program Files\MATLAB\R2006b\toolbox\rptgen\rptgen
C:\Program Files\MATLAB\R2006b\toolbox\rptgen\rptgendemos
C:\Program Files\MATLAB\R2006b\toolbox\rptgen\rptgenv1
C:\Program Files\MATLAB\R2006b\toolbox\rptgenext\rptgenext
C:\Program Files\MATLAB\R2006b\toolbox\rptgenext\rptgenextdemos
C:\Program Files\MATLAB\R2006b\toolbox\rptgenext\rptgenextv1
C:\Program Files\MATLAB\R2006b\toolbox\signal\signal
C:\Program Files\MATLAB\R2006b\toolbox\signal\sigtools
C:\Program Files\MATLAB\R2006b\toolbox\signal\sptoolgui
C:\Program Files\MATLAB\R2006b\toolbox\signal\sigdemos
C:\Program Files\MATLAB\R2006b\toolbox\simbio\simbio
C:\Program Files\MATLAB\R2006b\toolbox\simbio\simbiodemos
C:\Program Files\MATLAB\R2006b\toolbox\slcontrol\slcontrol
C:\Program Files\MATLAB\R2006b\toolbox\slcontrol\slctrlguis
C:\Program Files\MATLAB\R2006b\toolbox\slcontrol\slctrlutil
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C:\Program Files\MATLAB\R2006b\toolbox\slcontrol\slctrldemos
C:\Program Files\MATLAB\R2006b\toolbox\slestim\slestdemos
C:\Program Files\MATLAB\R2006b\toolbox\slestim\slestguis
C:\Program Files\MATLAB\R2006b\toolbox\slestim\slestim
C:\Program Files\MATLAB\R2006b\toolbox\slestim\slestmex
C:\Program Files\MATLAB\R2006b\toolbox\slestim\slestutil
C:\Program Files\MATLAB\R2006b\toolbox\sloptim\sloptim
C:\Program Files\MATLAB\R2006b\toolbox\sloptim\sloptguis
C:\Program Files\MATLAB\R2006b\toolbox\sloptim\sloptdemos
C:\Program Files\MATLAB\R2006b\toolbox\sloptim\sloptobsolete
C:\Program Files\MATLAB\R2006b\toolbox\slvnv\slvnv
C:\Program Files\MATLAB\R2006b\toolbox\slvnv\simcovdemos
C:\Program Files\MATLAB\R2006b\toolbox\splines
C:\Program Files\MATLAB\R2006b\toolbox\stats
C:\Program Files\MATLAB\R2006b\toolbox\symbolic
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\tic2000\tic2000
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\tic2000\tic2000blks
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\tic2000\tic2000demos
C:\Program Files\MATLAB\R2006b\toolbox\shared\etargets\etargets
C:\Program Files\MATLAB\R2006b\toolbox\shared\etargets\rtdxblks
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\tic6000\tic6000
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\tic6000\tic6000blks
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\tic6000\

tic6000demos
C:\Program Files\MATLAB\R2006b\toolbox\vipblks\vipblks
C:\Program Files\MATLAB\R2006b\toolbox\vipblks\vipmasks
C:\Program Files\MATLAB\R2006b\toolbox\vipblks\vipmex
C:\Program Files\MATLAB\R2006b\toolbox\vipblks\vipdemos
C:\Program Files\MATLAB\R2006b\toolbox\vr\vr
C:\Program Files\MATLAB\R2006b\toolbox\vr\vrdemos
C:\Program Files\MATLAB\R2006b\toolbox\wavelet\wavelet
C:\Program Files\MATLAB\R2006b\toolbox\wavelet\wavedemo
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\xpc\xpc
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\xpc\target\build\

xpcblocks
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\xpc\xpcdemos
C:\Program Files\MATLAB\R2006b\toolbox\rtw\targets\xpc\xpc\xpcmngr
C:\Program Files\MATLAB\R2006b\work
C:\Program Files\MATLAB\R2006b\toolbox\physmod\network_engine\

network_engine
C:\Program Files\MATLAB\R2006b\toolbox\physmod\network_engine\

ne_sli
C:\Program Files\MATLAB\R2006b\toolbox\physmod\network_engine\

library
C:\Program Files\MATLAB\R2006b\toolbox\physmod\sh\sh
C:\Program Files\MATLAB\R2006b\toolbox\physmod\sh\shdemos
C:\Program Files\MATLAB\R2006b\toolbox\physmod\sh\library
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To find out what version of MATLAB, Simulink, and its toolboxes you are
using, type the command

�� ver

It will provide you with version information on MATLAB, Simulink, and all
associated software as follows.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

MATLAB Version 7.3.0.267 (R2006b)

MATLAB License Number: DEMO

Operating System: Microsoft Windows XP Version 5.1 (Build 2600: Service Pack 2)

Java VM Version: Java 1.5.0 with Sun Microsystems Inc. Java HotSpot(TM) Client VM

mixed mode

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

MATLAB Version 7.3 (R2006b)

Simulink Version 6.5 (R2006b)

Aerospace Blockset Version 2.2 (R2006b)

Aerospace Toolbox Version 1.0 (R2006b)

Bioinformatics Toolbox Version 2.4 (R2006b)

Communications Blockset Version 3.4 (R2006b)

Communications Toolbox Version 3.4 (R2006b)

Control System Toolbox Version 7.1 (R2006b)

Curve Fitting Toolbox Version 1.1.6 (R2006b)

Data Acquisition Toolbox Version 2.9 (R2006b)

Database Toolbox Version 3.2 (R2006b)

Datafeed Toolbox Version 1.9 (R2006b)

Embedded Target for Infineon C166 Microcontrollers Version 1.3 (R2006b)

Embedded Target for Motorola MPC555 Version 2.0.5 (R2006b)

Embedded Target for TI C2000 DSP(tm) Version 2.1 (R2006b)

Embedded Target for TI C6000 DSP(tm) Version 3.1 (R2006b)

Excel Link Version 2.4 (R2006b)

Extended Symbolic Math Toolbox Version 3.1.5 (R2006b)

Filter Design HDL Coder Version 1.5 (R2006b)

Filter Design Toolbox Version 4.0 (R2006b)

Financial Derivatives Toolbox Version 4.1 (R2006b)

Financial Toolbox Version 3.1 (R2006b)

Fixed-Income Toolbox Version 1.2 (R2006b)

Fixed-Point Toolbox Version 1.5 (R2006b)

Fuzzy Logic Toolbox Version 2.2.4 (R2006b)

GARCH Toolbox Version 2.3 (R2006b)

Gauges Blockset Version 2.0.4 (R2006b)

Genetic Algorithm Direct Search Toolbox Version 2.0.2 (R2006b)

Image Acquisition Toolbox Version 2.0 (R2006b)

Image Processing Toolbox Version 5.3 (R2006b)

Instrument Control Toolbox Version 2.4.1 (R2006b)

Link for Code Composer Studio Version 2.1 (R2006b)

Link for ModelSim Version 2.1 (R2006b)

Linkfor TASKING Version 1.0.1 (R2006b)
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MATLAB Report Generator Version 3.1 (R2006b)

Mapping Toolbox Version 2.4 (R2006b)

Model Predictive Control Toolbox Version 2.2.3 (R2006b)

Model-Based Calibration Toolbox Version 3.1 (R2006b)

Neural Network Toolbox Version 5.0.1 (R2006b)

OPC Toolbox Version 2.0.3 (R2006b)

Optimization Toolbox Version 3.1 (R2006b)

Partial Differential Equation Toolbox Version 1.0.9 (R2006b)

RF Blockset Version 1.3.1 (R2006b)

RF Toolbox Version 2.0 (R2006b)

Real-Time Windows Target Version 2.6.2 (R2006b)

Real-Time Workshop Version 6.5 (R2006b)

Real-Time Workshop Embedded Coder Version 4.5 (R2006b)

Robust Control Toolbox Version 3.1.1 (R2006b)

Signal Processing Blockset Version 6.4 (R2006b)

Signal Processing Toolbox Version 6.6 (R2006b)

SimBiology Version 2.0.1 (R2006b)

SimDriveline Version 1.2.1 (R2006b)

SimEvents Version 1.2 (R2006b)

SimHydraulics Version 1.1 (R2006b)

SimMechanics Version 2.5 (R2006b)

SimPowerSystems Version 4.3 (R2006b)

Simulink Accelerator Version 6.5 (R2006b)

Simulink Control Design Version 2.0.1 (R2006b)

Simulink Fixed Point Version 5.3 (R2006b)

Simulink HDL Coder Version 1.0 (R2006b)

Simulink Parameter Estimation Version 1.1.4 (R2006b)

Simulink Report Generator Version 3.1 (R2006b)

Simulink Response Optimization Version 3.1 (R2006b)

Simulink Verification and Validation Version 2.0 (R2006b)

Spline Toolbox Version 3.3.1 (R2006b)

Stateflow Version 6.5 (R2006b)

Stateflow Coder Version 6.5 (R2006b)

Statistics Toolbox Version 5.3 (R2006b)

Symbolic Math Toolbox Version 3.1.5 (R2006b)

System Identification Toolbox Version 6.2 (R2006b)

SystemTest Version 1.0.1 (R2006b)

Video and Image Processing Blockset Version 2.2 (R2006b)

Virtual Reality Toolbox Version 4.4 (R2006b)

Wavelet Toolbox Version 3.1 (R2006b)

xPC Target Version 3.1 (R2006b)
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Your Simulink preferences are set using the MATLAB Preferences
dialog box (Fig. 8.4). To open this dialog box, select Preferences from the Simu-
link File menu.

Fig. 8.4

A variety of Simulink demonstrations can be accessed using the demo
command. Simulink demonstrations can always be started by selecting Demos
from the Help pull-down menu. Try typing the command

��demo

This results in the interface window shown in Fig. 8.5. Note that the Simulink
demonstrations are contained under 1 Simulink.

204 BASIC MATLABw, SIMULINKw, AND STATEFLOWw



Fig. 8.5

8.5 Conclusion

A variety of other Simulink block libraries and tools are likely available
on your system. Take a look, and start exploring! In the next lecture we will
start constructing Simulink models.
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Practice Exercises

8.1 Load an existing Simulink model and do some simple analysis using it.
This example is a model of the one-dimensional (vertical) behavior of an
F-14 fighter.

Type the following command into the MATLAB Command Window
to load the data required by the model:

�� f14dat;

Next load the system and associated numerical constants:

�� f14;

The loaded model should look like the one in Fig. 8.6.

Fig. 8.6

Double-click on the Stick Input Scope so that inputs and outputs all are
visible. Go to Simulation and use the pull-down window to select Start. See
what happens. Try using the Autoscale (binoculars) and Zoom functions
(magnifying glass) in the Scope windows. Try other Pilot inputs by opening
the Pilot Signal Generator. Try sine, sawtooth, and random inputs. Try
dragging other blocks from the Simulink Library Browser onto the diagram.
For example, replace the Pilot Signal Generator with other Sources and
execute the simulation again.
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As you initially open the model, the input excitation should be as shown in
Fig. 8.7.

Fig. 8.7
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9
Building a Simple SimulinkW Model

9.1 Introduction and Objectives

This chapter provides the reader with an example of how to build a Simulinkw

model. Further examples are given in the following chapters. This chapter will
provide the reader with the tools to start building simple Simulink models.

Upon completion of this chapter, the reader will be able to generate simple
Simulink models, execute and simulate simple systems implemented in Simulink,
and modify Simulink model block parameters.

9.2 Population Model

Our first Simulink system models a population in which the number of
members over time follows the equation

dm=dt ¼ a �m� b �m �m

In the previous equation, the variable a is taken to represent the reproductive
rate and b represents competition. We will construct the model shown in Fig. 9.1.
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We will name this Simulink model pops.mdl. Then 20 simulations will be run
using different starting populations.

To create the model, first enter Simulink in the MATLABw Command
Window. On Microsoft Windows, the Simulink Library Browser appears as
shown in Fig. 9.2.

Fig. 9.2

Fig. 9.1
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To create a new model in Windows, click the New Model button on the
Library Browser’s toolbar (see Fig. 9.3).

Simulink opens a new model window (Fig. 9.4).

Use File, Save as . . . to rename the file to pops.mdl. Note that for Simulink to
recognize this as a Simulink model the filename must end with a .mdl. The full
name of your file should then be pops.mdl. The name in the upper left corner of
your Simulink model window will now say pops.

You can next start to populate your Simulink model with the required block
elements. The model elements are two gains, an integrator, and a squaring
element. A scope will be used to see the results during each run. All elements
will finally be connected together (see Figs 9.5–9.7).

Fig. 9.3

Fig. 9.4
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Fig. 9.6

Fig. 9.5
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We are now ready to start collecting our model elements and placing them into
the pops window. Go first to the Simulink Library Browser and select the
Continuous library. Next select the Integrator block, and while holding down
the left mouse button, drag the block over into your pops window. The operation
should appear as in the following figures.

Note that an asterisk * appears after pops in the upper left corner of the
window after an unsaved modification is made. This tells you that the Simulink
model has been changed since you last saved the file (see Figs 9.8–9.10).

Fig. 9.7
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Fig. 9.8
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Fig. 9.9

Fig. 9.10
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You next need to add a couple of gains. Open the Math Operations library as
shown in Fig. 9.11.

Fig. 9.11
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Select the Gain block and drag it into the pops window. Repeat this operation
a second time to generate the second gain element. The pops window will appear
as shown in Figs 9.12 and 9.13.

Fig. 9.12

Fig. 9.13
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Now you need a summing junction. You will find this near the bottom of the
Math Operations library (see Figs 9.14 and 9.15).

Fig. 9.14
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Now we need to add the element to square the signal. We select the Math Func-
tion block from the library of Math Operations. We again drag this element into
our pops model. You might consider saving your model again every now and then
during this model-generation process. You would hate to have to start again from
scratch if something bad happened during the construction process (see Fig. 9.16).

Fig. 9.15

Fig. 9.16
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To view the output of this dynamic system, a Scope output block is required.
This is available from the Simulink library of Sinks.

Again, select the Scope using the mouse. Drag the Scope until it is located at
the desired spot in the pops model window. Release the Scope at this location
(see Fig. 9.17).

Fig. 9.17
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Our model now (we hope) looks like the window shown in Fig. 9.18.

We next need to connect all the elements that we generated. This is done by
mouse selection of the output ports of our block elements and connecting them to
the input ports of the other block elements (see Fig. 9.19).

Fig. 9.18

Fig. 9.19
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A helpful hint might appear on the screen as follows. Simulink attempts to aid
you through the connection process.

Remember to use left mouse clicks to select the starting ports, and make sure
to position the mouse close enough to the final in port for Simulink to recognize
the connection. You may need a little practice to get used to making these con-
nections. The dashed lines show connections in progress. Final connections are
shown by solid arrows (see Figs 9.20–9.22).

Fig. 9.20

Fig. 9.21
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Connections are made one at a time (see Figs 9.23 and 9.24).

Fig. 9.22

Fig. 9.23
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Hold the right mouse button to branch from a connecting line (see Figs 9.25
and 9.26).

Fig. 9.24

Fig. 9.25
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We are now branching from the corner of an existing line (see Fig. 9.27).

Fig. 9.26

Fig. 9.27
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By double-clicking on an element we wish to modify, we can open the appro-
priate parameter window. Here we will change the sign of the second summation
into a subtraction. In the list of signs, the second 1 is deleted and a 2 sign is added.
The next window shows the changed parameter. When Apply is selected, the sign
is changed in the pops model diagram. Note that the j element in the List of Signs
denotes a spacer that later will be moved to change the appearance of the Sum
(see Figs 9.28–9.30).

Fig. 9.28
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Fig. 9.29

Fig. 9.30
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We next double-click on the Math Function block to change it into a squaring
block (see Fig. 9.31).

Fig. 9.31
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We then type over the name Math Function to give it the new name u�u (see
Fig. 9.32).

The final changes to the elements are to give the first gain we created the block
title a and assign it a value of 0.02309. Then we change the second block title to b
and give it a value of 0.0005157. Again, double-click on the elements to change
the parameter values. You select the gain element titles to rename them.

These operations are shown in Fig. 9.33.

Fig. 9.32
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Fig. 9.33
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Here we typed in the first gain parameter value of 0.02309.
This value is entered into the gain block by selecting Apply (see Fig. 9.34).

Fig. 9.34

BUILDING A SIMPLE SIMULINKw MODEL 231



Next the name Gain must be selected and changed to the block name a.
To change the name of Gain, use the mouse to select the text, and then type

over the old name with the new name.
The previous process is repeated after selecting the Gain1 element. This

process is summarized in Fig. 9.35.

Fig. 9.35
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Here the value of the second gain element is entered. After this value is applied,
the block label is changed into b. The result of these actions is the modified model
in Fig. 9.36.

We can now open up our Scope and run our population simulation (see
Fig. 9.37).

Fig. 9.36

Fig. 9.37
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To more closely match our block diagram, we will make an additional change to
our Sum. The entry into the summation junction is now modified to match our orig-
inal diagram by removing the spacer at the start of the list of signs. This could also
have been done earlier when we made our change in sign (see Figs 9.38 and 9.39).

Fig. 9.38

Fig. 9.39
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To prepare the model for use in Sec. 9.3 we will select the name Integrator and
change it to pop. We will give it an initial condition of 20.0. The initial condition is
stored under Model Properties (see Fig. 9.40).

Double-clicking on the pop integrator with the mouse opens the Block
Parameters menu shown in Fig. 9.41.

Fig. 9.40

Fig. 9.41
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Note that Model Properties is selected from the pops window using the right
mouse button menu. Type initial_pop ¼ 20.0; into the Callbacks, Model
pre-load function window. Note that preloaded data are only placed into
memory when the model is opened. The advantage of this is that the values
can be updated at any time from MATLAB or from within the Simulink model
without being overwritten by the mode defaults. The disadvantage is that while
the model is being created these data are not entered into memory. You must
both close and then reopen the model to preload the data, or you must manually
enter it into the MATLAB Command Window during the model-creation
process (see Fig. 9.42).

Fig. 9.42
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This value can also be set and reset by typing the same line into the MATLAB
Command Window. We will update this value in Sec. 9.3 using this feature.

From the Simulation pull-down in the pops window, select Configuration
Parameters. This can also be accomplished using the Ctrl-E shortcut. Modify
the Solver to appear as in Fig. 9.43.

Similarly, modify the Workspace I/O to appear as in Fig. 9.43. Check the
radio button in front of the fields that need to be modified but are not currently
active. After making the modifications, deselect the field.

Fig. 9.43
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The Scope plot in Fig. 9.44 shows the response of the system after Simu-
lation, Start is selected from the pull-down menu. As a shortcut, you can use
the triangle symbol to start the simulation.

Note that if you do not get the desired plot scaling, you can use the binocular
symbol to autoscale the plot to the data. You can also use the magnifying glasses
to zoom into and out of the figure.

9.3 Analyzing the Population Model

In this section we will make multiple runs with different initial populations
using the model developed in Sec. 9.2. We have completed our system block
diagram and are now ready to run it. For a first look, double-click on the
Scope to open it. Then select Simulation, Start to execute it.

The following M-file runs our pops Simulink model through 20 simulations
and plots the results. Use the Runge-Kutta integration method to simulate pops
until t ¼ 300.

%Population Simulation M-file
clf
for ind 5 20:-1:1

initial_pop 5 ind�5 1 1;
[t,x] 5 sim('pops',300);
plot(t,x);
hold on;

end

Fig. 9.44
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%
axis([0,300,0,100]);
xlabel('Time');
ylabel('Population Size');

Different numbers in a and b will result in different initial and final popu-
lations. You can change these values and run the simulation again. Do this by
simply opening the gain elements in the model (see Fig. 9.45).

9.4 Conclusion

This chapter provides a first example of how to build a Simulink model.
Further examples are given in the following chapters.

You are now ready to start building simple Simulink models on your own! Try
modifying the pops.mdl file you just created. Take the input line to the scope and
give it a name, like Population Size. This is done by double-clicking on the
signal line. Rearrange the lines to look more like the original diagram. Rearrange
the format of the summation to look more like the original. Hook up scopes to
other parts of the diagram and look at the results.

Fig. 9.45
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Practice Exercises

9.1 The exercise problem is to generate a Simulink model of a forced
pendulum. The model of the pendulum is given in Fig. 9.46.

Fig. 9.46
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The forcing function for this model follows. It is a square wave with a fre-
quency of 0.1 radians/second and amplitude of 1. Initialize theta dot to
0 degrees/second and theta to 45 deg. The resulting output is periodic with the
waveform show on the scope in Fig. 9.47.

After plotting the square wave response, change the excitation function to a
Pulse Generator. Set it to get the same response (use the same amplitude and
period). Next try out other excitations and Sources.

Fig. 9.47
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10
Building Simulinkw Linear Models

10.1 Introduction and Objectives

This chapter provides a brief introduction to using Simulinkw and its library of
models and other elements for dynamic system modeling.

Upon completion of this chapter, the reader will be able to build simple
dynamic single-input, single-output Simulink models using transfer functions
and execute and simulate simple systems implemented in Simulink.

10.2 Transfer Function Modeling in Simulinkw

This system demonstrates the use of a transfer function to model a dynamic
system. The transfer function we will examine is

2sþ 1

2s2 þ 5sþ 3

We will call our model TF.mdl. Open the Simulink Library Browser using the
MATLABw command simulink from the MATLAB Command Window. Then,
from the Simulink Library Browser, select File, New, and then Model. Note
from the following figure that Ctrl+N can be used as a shortcut to accomplish
this. A new, untitled model window is then opened. Save this model under the
name TF.mdl using File, Save as . . . as shown in Figs 10.1–10.3.
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Fig. 10.1
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We will want to add three elements to our model window. The model itself
will require a Transfer Function block. This model will require an input and an
output. The input will be a Function Generator. The output will be a Scope.

Fig. 10.2

Fig. 10.3
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Transfer Fcn block:

Signal Generator block:

Scope block:

The transfer function properties will be as shown in Fig. 10.4.

Fig. 10.4
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The output of the Function Generator will be as shown in Fig. 10.5.

The scope will simply show the system output for the requested run time.
Figure 10.6 is a Scope with the Simulation Parameters set at 150 seconds.

Fig. 10.5

Fig. 10.6
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We will get the Transfer Function block from the library of Continuous
systems under the name Transfer Fcn. The list of elements within this library
is shown in Fig. 10.7.

We will get the input Signal Generator from the library of Sources. This list
is given in Fig. 10.8.

Fig. 10.7

Fig. 10.8
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Finally, the output Scope will be taken from the library of Sinks. This library
is shown in Fig. 10.9.

Fig. 10.9
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This system is next constructed by dragging these three blocks from their
library into the TF Simulink model window. After you perform this action, the
window should appear as in Fig. 10.10.

Next connect the Signal Generator block to the Transfer Fcn block. Repeat
this action by either using the mouse to drag the output arrow from the Transfer
Fcn block to the Scope or by clicking on the Transfer Fcn block while holding
the Ctrl key and then selecting the Scope as a shortcut. After you do this action,
your model should appear as in Fig. 10.11. This might be a good time to save your
work (note the � following the name TF in the upper left corner, which denotes
changes were made to the model since it was last saved).

Note that to generate the following two views I first used the mouse drag and
connect method. Then, for my second connection, I used the Ctrl key shortcut
and let Simulink draw the line for me. When constructing complex block
diagrams, you can modify the connections by selecting and moving them just
like any library element.

Next let us rename the three elements. Click on the first title (Signal Genera-
tor) and change the name to Parameter Variation. Then click on the second title
(Transfer Fcn) and change the name to System Under Test. Finally, click on the
third title (Scope) and change the name to System Output. Note that I have right-
clicked on the name System Under Test and dragged it to its new location above
the block. The result will look as in Fig. 10.11.

Fig. 10.10
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We next need to modify the Parameter Variation input. Double-click on
the block and input the values shown in Fig. 10.12. Then Apply these values and
close the window. The diagram will not appear to have changed.

Fig. 10.11

Fig. 10.12
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Next input the desired transfer function. Double-click on the block and input
the values shown in Fig. 10.13. Then Apply these values and close the window.
The diagram will change to reflect the new transfer function model. This new
model is shown in Fig. 10.14. Note that either spaces or commas could be used
to separate the constant coefficients in the numerator and in the denominator. This
is exactly the same as when using the MATLAB Command Window or when
programming an M-file.

Fig. 10.13

Fig. 10.14
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We are now ready to analyze this model. Select Simulation, then Start. The
square wave will be input into the System Under Test (see Fig. 10.15).

Next open the Scope. You will see the time history of this response. You might
need to use the autoscale option (binoculars symbol) to better view this response.
The response should be as shown in Fig. 10.16.

Fig. 10.15

Fig. 10.16
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Try using the variety of excitation methods available in the Simulink Signal
Generator, and examine the results using the Scope. Then compare these
responses with those generated by the other Source blocks available within
Simulink.

10.3 Zero-Pole Model

In this section we will generate the equivalent Zero-Pole model to the transfer
function model we have been studying:

2sþ 1

2s2 þ 5sþ 3

This is accomplished using the MATLAB command tf2zp.
First enter the numerator and denominator coefficients for our model into the

MATLAB Command Window:

� num 5 [2,1];
� den 5 [2,5,3];

Next we will do a transfer function to zero-pole conversion.
The command [Z, P, K]5tf2zp(num,den) finds the zeros, poles, and gains

H(s) ¼
K(s� z1)(s� z2)(s� z3)

(s� p1)(s� p2)(s� p3)

from a transfer function in polynomial form:

H(s) ¼
NUM(s)

DEN(s)

The vector DEN specifies the coefficients of the denominator in descending
powers of s, and NUM indicates the numerator coefficients with as many rows
as there are outputs. The zero locations are returned within the columns of the
matrix Z; Z has as many columns as there are rows in NUM. The pole locations
are returned within the column vector P, and the gains for each numerator transfer
function are stored within the vector K.

Enter the following into the MATLAB Command Window:

� [Z, P, K]5tf2zp(num,den)
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MATLAB responds with

Z ¼

�0:5000

P ¼

�1:5000

�1:0000

K ¼

1

The equivalent Zero-Pole model is

sþ 0:5

(sþ 1:5)(sþ 1:0)

We will next modify our TF.mdl Simulink linear model. Save a copy of this
model under the name TFZPG.mdl. Next delete the existing Transfer Fcn
block. Obtain your Zero-Pole element from the Simulink Library Browser.
This element is in the Continuous Library. Replace the Transfer Fcn block
in the model TF.mdl with the Zero-Pole model modified with the model data
generated in MATLAB. This results in the model shown in Fig. 10.17, saved
as TFZPG.mdl. Note that this model gives you exactly the same results as are
seen in Sec. 10.2 (see Fig. 10.18).

Fig. 10.17
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10.4 State-Space Model

In this section we will generate the equivalent State-Space model to the
transfer function model we have been studying:

2sþ 1

2s2 þ 5sþ 3

This is accomplished using the MATLAB command tf2ss, which does the
transfer function to state-space conversion.

The MATLAB command [A,B,C,D] ¼ TF2SS(NUM,DEN) calculates the
state-space representation

_x ¼ Axþ Bu

y ¼ Cxþ Du

Fig. 10.18
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of the system

H(s) ¼
NUM(s)

DEN(s)

from a single input. The vector DEN must contain the coefficients of the denomi-
nator in descending powers of s. The matrix NUM must contain the numerator
coefficients with as many rows as there are outputs y. The A, B, C, D matrices
are returned in controller canonical form.

Enter into the MATLAB Command Window the following command:

� [A, B, C, D]5tf2ss(num, den)

MATLAB returns with the equivalent State-Space model:

_x ¼ Axþ Bu

y ¼ Cxþ Du

where for our example

A ¼

�2:5000 �1:5000

1:0000 0

B ¼
1

0

C ¼
1:0000 0:5000

D ¼
0

Replacing the Transfer Fcn block in the model TF.mdl with the State-Space
model results in the model shown in Fig. 10.19.

Fig. 10.19
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Note that this model gives exactly the same results as are seen in Secs. 10.2
and 10.3 (see Fig. 10.20).

10.5 Conclusion

This chapter was a very brief introduction to using Simulink and its library of
Transfer Fcn, Zero-Pole, and State-Space models and other elements for
dynamic system modeling. Further examples are given in the Simulink manual.
In the following chapters and exercises, we will look at a variety of methods to
design and analyze such systems in Simulink. We will also look at using these
tools to build complex multiple-input, multiple-output (MIMO) systems.

Fig. 10.20
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Practice Exercises

10.1 This problem is to implement a transfer function in zero-pole form to
model a dynamic system. The transfer function we will examine is

s2 þ 4sþ 3

2s2 þ 5sþ 2

Use the MATLAB command tf2zp to convert this into zero-pole form. Then
implement this in Simulink. Simulate this model as in Chapter 10. Finally,
convert this into State-Space form. Use the MATLAB command tf2ss to do
this. Replace the element in your model with the State-Space element. Verify
that the time response is the same.

The zero-pole diagram should resemble the window shown in Fig. 10.21.

Fig. 10.21
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11
LTI Viewer and SISO Design Tool

11.1 Introduction and Objectives

This chapter will introduce the reader to using the Simulinkw LTI Viewer for
the analysis of linear, time-invariant dynamic systems. It will also provide a very
brief introduction to using the SISO Design Tool for the design of LTI systems.

Upon completion of this chapter, the reader will be able to design and analyze
simple dynamic single-input, single-output (SISO) Simulink models using the
LTI Viewer and the SISO Design Tool; become familiar with design and
analysis methods, including step and other time domain responses, Bode dia-
grams, Nichols charts, Nyquist charts, and root analysis; and see how to use
these tools for more complex multiple-input, multiple-output (MIMO) systems.

11.2 Introduction to the Simulinkw LTI Viewer

To understand the use of the LTI Viewer, we will use the same transfer func-
tion model we examined in Chapter 10. This system will again be used to demon-
strate the use of a transfer function to model a dynamic system. The transfer
function we will study using the LTI Viewer is

2sþ 1

2s2 þ 5sþ 3

The LTI Viewer is a Simulink graphical user interface (GUI) for the analysis
of linear, time-invariant (LTI) systems. The LTI Viewer is used to view and
compare the response plots of SISO systems. It can also be used to examine
SISO combinations in MIMO systems. Several linear models can be examined
at the same time. You can generate time and frequency response plots as well
as system roots to examine key response parameters. These include the
system’s rise time, maximum overshoot, and stability margins.

The LTI Viewer can display up to eight different plot types simultaneously:
1) step response, 2) impulse response, 3) Bode diagrams (either magnitude
and phase or just magnitude), 4) Nyquist charts, 5) Nichols charts, 6) sigma
plot, 7) pole/zero plots, and 8) I/O pole/zero plots. Using right-click menu
options, you can access several LTI Viewer controls and options, including 1)
Plot Type (changes the plot type), 2) Systems (selects or deselects any of the
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models loaded in the LTI Viewer), 3) Characteristics (displays key response
characteristics and parameters), 4) Grid (adds grids to your plot), and 5) Proper-
ties (opens the Property Editor, where you can customize plot attributes). In
addition to right-click menus, all response plots include data markers. These
allow you to scan the plot data, identify key data, and determine the source
system for a given plot. The LTI Viewer has a tool bar that you can use to do
the following: 1) open a new LTI Viewer, 2) Print, 3) Zoom in, and 4) Zoom out.

11.3 Using the Simulinkw LTI Viewer

For our LTI model we will use the same transfer function that was used in the
TF.mdl we developed in Chapter 10. We will use it to create a new model called
TFLTI.mdl. If you were to generate this model from scratch, you would open the
Simulink Library Browser using the MATLABw command simulink. You
would then select File, New, Model. Remember that Ctrl1N can be used as a
shortcut to accomplish this. A new, untitled model window would be opened.
You would then save this model under the name TFLTI.mdl using File, then
Save as . . . as you have done in previous sections.

We will add three elements to our TFLTI model window. The model itself
will require a Transfer Function block. You can either take the transfer function
from the Continuous systems library as before or make a copy from your TF.mdl
Simulink model. Here we will use the Transfer Fcn model from TF.mdl as was
done in Chapter 10. This model will also require an LTI Input Point and an LTI
Output Point. These Simulink model elements appear as follows.

Transfer Fcn block:

Input and Output: These are used to designate the input and output signals to
be retained in the linear approximation. In general, you choose signals that will be
connected to a controller by right-clicking on a signal and selecting either an
Input Point or an Output Point from the Linearization Points submenu.

If you take the Transfer Fcn model from the Continuous systems library as in
Chapter 10, the transfer function properties will need to be modified using the
Block Parameters window shown in Fig. 11.1.
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The approach we will follow in the remainder of this section is to reuse the
TF.mdl file we developed in Chapter 10. First delete the input Sink and
output Source elements from TF.mdl. It will then appear as in Fig. 11.2.

Fig. 11.2
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The TF.mdl system for use in the LTI Viewer is next constructed by adding
an LTI Input Point and an LTI Output Point and saving the model under the
new name. As mentioned before, this is done to designate the input and output
signals to be retained in the linear approximation. In general, you choose
signals that will be connected to a controller by right-clicking on a signal and
selecting either an Input Point or an Output Point from the Linearization
Points submenu.

We will build our model using the Control System Toolbox library. You may
find it desirable to build the transfer function using the LTI System block and
then launching the LTI Viewer to obtain the LTI Input Point and the LTI
Output Point (see Fig. 11.3).

Fig. 11.3
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The LTI System block accepts both continuous and discrete LTI models as
defined in the Control System Toolbox. Transfer function, state-space, and
zero-pole-gain formats are all supported in this block. Figure 11.4 demonstrates
this modeling and analysis process.

Now select the Input Point from the Linearization Points on the right-click
menu. If you place the Input Point close enough to the input arrow going into the
Transfer Fcn (System Under Test) block, Simulink will automatically connect
these two elements. If it does not, manually connect the elements using either the
mouse drag method or the select and point shortcut covered in Chapters 9 and 10.
After this is accomplished, your diagram will appear as in Fig. 11.5. Note the

Fig. 11.4
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asterisk * showing the unsaved modification to the diagram. We will again save
the model under the new name TFLTI.mdl after we have added the Output
Point.

After we have added the Output Point, the model appears as in Fig. 11.6.

Fig. 11.5

Fig. 11.6
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Now we will save the model under the new name TFLTI.mdl. As a reminder,
this model is saved under a new name first using File, Save as. . . . This process
is repeated graphically in Fig. 11.7.

Fig. 11.7
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We are now ready to launch the LTI Viewer. The LTI Viewer is opened by
selecting Tools, Control Design, and Linear Analysis. . . . This command is
executed as shown in Fig. 11.8. Note that this will take a few seconds and that
you will be shown how close to completion the launch process is as illustrated.

Fig. 11.8
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The LTI Viewer initially appears as in Fig. 11.9. The default system response
is a Step Response. You are initially given the opportunity to have the LTI
Viewer open up the Help window to point specifically to its help documentation.

Fig. 11.9
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The LTI Viewer Help is contained within the MATLAB Help Navigator. If
you were to respond by selecting the Help button from the window in Fig. 11.9,
the Help window in Fig. 11.10 would be opened.

Fig. 11.10
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Next we will use the variety of excitation and plotting methods available in the
Simulink LTI Viewer.

Note that you will need to Get your linearized model (TFLTI.mdl) and load it
into the LTI Viewer. Using the LTI Viewer: TFLTI window, select the Simu-
link pull-down menu and then select Get Linearized Model. The result of this
operation will appear as in Fig. 11.11.

Note that because the default analysis option is set to Step Response, the time
response at the Output Point due to a step input into the Input Point is then
shown in the LTI Viewer window (Fig. 11.12). The plot scale is reset to the
time that the response has reached its steady-state value.

Fig. 11.11
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Fig. 11.12
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It might be useful to refer back to Table 3.1 in Chapter 3 summarizing the
equivalences between the different analysis methods available through the LTI
Viewer. There they are listed for 12 different system types.

We will now examine each of these analysis approaches using the Simulink
LTI Viewer.

There are two methods for selecting response plots in the LTI Viewer:
1) selecting Plot Types from the right-click menu and 2) opening the Plot Con-
figurations window. The Plot Configurations window is listed under the Edit
pull-down menu. If you have a plot open in the LTI Viewer, you can switch
to any other response plot available by selecting Plot Types from the right-click
menu. Figure 11.13 shows the right-click menu with Plot Types selected.

Fig. 11.13
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To change the response plot, select the new plot type from the Plot Types
submenu. The LTI Viewer automatically displays the new response plot.

To change the Properties of the plot you are viewing, select Properties . . .
from the same right-click menu. The available Properties change from plot
type to plot type. Figures 11.14–11.18 list all the Properties for the Step
Response.

Fig. 11.14

Fig. 11.15
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Fig. 11.16

Fig. 11.17
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All of the available plot types are shown in Figs 11.19–11.26 for our system
TFLTI.mdl. Refer to Table 3.1 of 12 different transfer function responses as
required. Note that some of the plots have special grids and other plotting
options available for that particular analysis type.

Fig. 11.18
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Impulse Response:

Fig. 11.19
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Bode Diagram (magnitude and phase):

Bode Diagram (magnitude):

Fig. 11.20

Fig. 11.21
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Nyquist Charts:

Nichols Charts:

Fig. 11.22

Fig. 11.23
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Sigma Plot:

Fig. 11.24
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Pole/Zero Plots:

I/O Pole/Zero Plots:

Fig. 11.25

Fig. 11.26
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The Plot Types feature of the right-click menu works on existing plots, but you
can also add plots to an LTI Viewer by using the Plot Configurations window.

To reconfigure an open viewer, select Plot Configurations. . . under the Edit
menu. This opens the Plot Configurations window. This action and the resulting
Plot Configurations window are shown in Figs 11.27 and 11.28.

Fig. 11.27

Fig. 11.28
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11.4 Equivalent Simulinkw LTI Models

In Chapter 10 we generated equivalent Zero-Pole and State-Space models to
the transfer function model we have been studying:

2sþ 1

2s2 þ 5sþ 3

These equivalent models are as follows. The equivalent Zero-Pole model is

sþ 0:5

(sþ 1:5)(sþ 1:0)

Replacing the Transfer Fcn block in the model TFLTI.mdl with the Zero-
Pole model results in the model shown in Fig. 11.29. Note that it gives exactly
the same results in the LTI Viewer as are seen in Sec. 11.3.

Fig. 11.29
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The equivalent State-Space model is

_x ¼ Axþ Bu

y ¼ Cxþ Du

where

A ¼
�2:5000 �1:5000

1:0000 0

B ¼
1

0

C ¼

1:0000 0:5000

D ¼

0

Replacing the Transfer Fcn block in the model TFLTI.mdl with the State-
Space model results in the model shown in Fig. 11.30. Note that it gives exactly
the same results in the LTI Viewer as are seen in Sec. 11.3.

Fig. 11.30
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A specific block for the LTI Viewer is also available. It is found in the
Control System Toolbox library. The SISO Design Tool discussed in Sec.
11.5 also uses this block (see Fig. 11.31).

11.5 SISO Design Tool

The SISO Design Tool is a Simulink graphical user interface that allows you
to analyze and tune SISO feedback control systems. Using the SISO Design
Tool, you can graphically tune the gains and dynamics of a compensator and a
prefilter using root locus and loop-shaping techniques.

Using the SISO Design Tool, you can use the root locus view to stabilize the
feedback loop and enforce some minimum damping. You can also use the Bode
diagrams to adjust the bandwidth, check the gain and phase margins, or add a
notch filter for disturbance rejection. You can also generate an open-loop
Nichols view or Bode diagram of the prefilter by selecting these items from
the View menu. All views are dynamically linked. Changing any parameter or
element, such as the gain in the root locus, will immediately update the Bode
diagram.

The SISO Design Tool is designed to work closely with the LTI Viewer,
allowing you to rapidly iterate on your design and immediately see the results
in the LTI Viewer. When you make a change in your compensator, the LTI
Viewer associated with your SISO Design Tool automatically updates the
response plots that you have chosen. By default, the SISO Design Tool displays
the root locus and open-loop Bode diagrams for your imported systems. You can
also generate an open-loop Nichols view or prefilter Bode diagram by selecting
these items in the View menu. Imported systems can include any of the elements
of the feedback structure diagram located to the right of the Current

Fig. 11.31
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Compensator panel. You cannot change imported plant or sensor models, but
you can use the SISO Design Tool for designing a new (or for modifying an
existing) prefilter or compensator for your imported plant and sensor configur-
ation. The default SISO Design Tool window appears in Fig. 11.32.

Start the SISO Design Tool from the MATLAB Command Window by
typing the command sisotool. You will be informed on the progress of the tool
launch sequence. You will then be pointed to the MATLAB Help window on
this tool upon your request (see Fig. 11.33).

Fig. 11.32

Fig. 11.33
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The tool window will look as in Fig. 11.34.

You can generate the model for our transfer function model for use in the
SISO Design Tool in the MATLAB Command Window by typing the
following:

� num 5 [2, 1]

num ¼

2 1

� den 5 [2, 5, 3]

den ¼

2 5 3

� sisosys5tf(num,den)

Fig. 11.34
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The resulting transfer function is of the form

2sþ 1

2s2 þ 5sþ 3

Next use File, Import. . . to load the model into the tool (see Fig. 11.35).

Fig. 11.35
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Note that sisosys is already visible under SISO Models (see Fig. 11.36).

Load sisosys into the C block, and set the value of F to near zero. Note that the
SISO Design Tool does not allow you to set a block to exactly zero (you will get
a warning message if you attempt this). Save the model under the name tfsys.
Your Import System Data window will look as in Fig. 11.37.

Fig. 11.36

Fig. 11.37
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When you select OK in the Import System Data window, your SISO Design
Tool window will look as in Fig. 11.38.

Note that these responses are the same as those we saw using the LTI Viewer.
The x and o denote the open-loop poles and zeros, respectively. The squares
denote the roots of the unity feedback system. The response of the system can
now be modified as desired by adjusting the gain value or adding pre- or
postfilters or system feedback. You can also interact with the system response
by adjusting the pole and zero locations. Try out the different design features
and model configurations (use the FS radio button). An example of this
process is shown in Fig. 11.38.

We could also have loaded our system into the SISO Design Tool using the
LTI System block. Try this out yourself. Make a simple system called
test.mdl by creating a Simulink model using an LTI System block. Enter the
same numerator and denominator that we just studied using the SISO Design

Fig. 11.38
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Tool. You need to open the LTI System Block Parameters by double-clicking
on the block element. The Block Parameters window after modification will
look as in Fig. 11.39.

After selecting OK, this Simulink model window will look as in Fig. 11.40.

Fig. 11.39

Fig. 11.40
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Now use the File, Import . . . option to load our new LTI System block into
the SISO Design Tool. Select the Import from, Simulink option into the model
we call tfsys. If the model does not appear in the window explicitly, select the
Browse option to locate it (see Fig. 11.41).

If the model is open, you may get the warning shown in Fig. 11.42.

It does not matter if you select Yes or No, although the safe selection is No.
Select the LTI System from the list of SISO LTI Blocks and replace the pre-
vious compensator with the test as was shown in the Import System Data
window (Fig. 11.41).

Fig. 11.41

Fig. 11.42
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Your system’s response should appear unchanged. You might want to select
File, Save Session for future reference as shown in Fig. 11.43.

11.6 Conclusion

This chapter was an introduction to using the Simulink LTI Viewer for the
analysis of linear, time-invariant dynamic systems. It was also a very brief intro-
duction to using the SISO Design Tool for the design of LTI systems. Further
examples are given in the Simulink Help window. Some of these examples
demonstrate the use of these tools to build complex multiple-input,
multiple-output systems.

Fig. 11.43
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Practice Exercises

11.1 This problem is to put the following transfer function from Chapter 10 into
Zero-Pole form and then analyze it using the LTI Viewer. That transfer function is

s2 þ 4sþ 3

2s2 þ 5sþ 2

In Chapter 10 you used the MATLAB tf2zp command to convert this into Zero-
Pole form and implement this within Simulink. Now replace the inputs and outputs
with those for the LTI Viewer as in Sec. 11.3. Next replace the Zero-Pole elements
in your model with the equivalent State-Space element. In the previous exercise,
you used the MATLAB command tf2ss to do this. Verify that the responses are
the same.

For each of these two system representations generate the eight different plot
types: 1) step response, 2) impulse response, 3) Bode diagrams (either magnitude
and phase or just magnitude), 4) Nyquist charts, 5) Nichols charts, 6) sigma plot,
7) pole/zero plots, and 8) I/O pole/zero plots.
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12
Building a Multiple-Input, Multiple-Output

SimulinkW Model

12.1 Introduction and Objectives

This chapter will introduce the reader to multiple-input, multiple-output
systems implemented in Simulinkw. Its dynamic modeling capabilities will
also be demonstrated.

Upon completion of this chapter, the reader will be able to build dynamic
multiple-input, multiple-output Simulink models using Simulink elements; use
Mux/Demux and Bus methods for generating and using vector signals; generate
subsystem models; use masking; generate libraries; execute and simulate
multiple-input, multiple-output systems implemented in simulink, and directly
interface with these models via MATLABw.

12.2 System Modeling in SimulinkW

Using Simulink, complex multiple-input, multiple-output systems can be
modeled and simulated. A variety of different elements are contained within
the Simulink libraries and can be easily interconnected using Simulink. A
variety of inputs can be examined simultaneously using a large number of differ-
ent output devices. These devices can display this information in either graphical
or numeric form. These data can be made available to MATLAB for further
analysis. Data can also be accessed by the model from MATLAB. The model
itself can be accessed and manipulated from the MATLAB Command
Window or using M-files and MEX-files.

12.3 Parameter Estimation

We will now build a multiple-input, multiple-output system for parameter
estimation. We will duplicate the simple TF system that we generated in
Chapter 10, and then we will connect these two systems together for parameter
estimation. Other elements and connections will be added to complete the
desired system. We will call this new system parmest.mdl.

This system will be used to estimate a single scalar parameter. It will take the
difference between the output of the system under test and the output of a system
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model using the estimated parameter to generate an error signal. The integral of
the product of this error signal and the system input is the estimate of the
unknown parameter. The value of the gain in the block labeled Parameter is
the parameter to be estimated.

One way to think of this is as an experiment to tune a mathematical model of a
system based on the input-output behavior of the system undergoing testing. The
MathWorks provides MATLAB and Simulink tools for such real-time modeling
and data acquisition.

The system we will build looks as follows. We have two Signal Generators,
our two Transfer Fcn systems, and three different Scopes. A variety of other
interconnecting elements are contained within this model.

In this section we will go through the process of generating this system model
in Simulink. In accomplishing this, we will take advantage of the model that we
developed and analyzed in Chapters 10 and 11 (see Fig. 12.1).

First we need to open up a new Simulink model and give it the name par-
mest.mdl. Do this by opening the Simulink Library Browser using the
MATLAB command simulink. Then select File, New, and Model.

Note that Ctrl 1 N can be used as a shortcut to accomplish this action. A new,
untitled model window is opened. Save this model under the name parmest.mdl
using File, then Save as . . . You now have a new Simulink model window in
which to work.

We will now take advantage of the single-input, single output system model
TF.mdl that you generated in Chapter 10. You can have multiple Simulink
models open at the same time. Use the Simulink Library Browser to open up
this model. You can also use Ctrl 1 O as a shortcut to access this model.
Next, go back to the TF model window. Select your model from the window
by using the right mouse button while sweeping the mouse across all three of
the model elements. This will select the model for copying. When you release
the mouse button, you can either use the Ctrl 1 C shortcut to place a copy of

Fig. 12.1
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this model into memory, or you can use the File, Copy option at the top of the TF
window (see Fig. 12.2).

Once you have selected the model, you can paste your model from TF.mdl
into parmest.mdl twice. Your parmest model will now look like the windows
shown in Fig. 12.3.

Fig. 12.2

Fig. 12.3
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After pasting the model twice, your parmest model appears as in Fig. 12.4.

We next need to add four summation junctions (Sum), three multipliers
(Product), one scalar input parameter (Constant), and one additional Scope to
our model. This will be demonstrated next.

The following libraries are used to get these elements.
First, from the library of Math Operations we get the summation junctions

and the multipliers. Note that the default is a circular summation junction. We
will need to change it into a rectangle. Modifying that parameter in the sum-
mation junction’s Parameter Window does this.

We get the integrator from the set of Continuous blocks. To show that mul-
tiple elements can be used to model the same dynamic system, we will use a
Transfer Fcn and build an integrator from it.

We will get our constant input parameter of 10 from the library of Sources.
Finally, we will get our last scope from our library of Sinks. We could also

select one of the Scopes already in the parmest model and copy and paste it
into the model as a shortcut.

To construct the model, first we paste a summation junction (Sum) into our
model and then modify its parameters list to make it rectangular. The result of
this action is shown in Fig. 12.5.

Fig. 12.4
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Note that this is a circular summation junction. We change it into a rectangle
using the summation junction’s Parameter Window as shown in Fig. 12.6.

Fig. 12.5

Fig. 12.6
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Next we make multiple copies of this summation junction (Sum) and paste
them as needed into the diagram. We need to change some of the signs as appro-
priate to match our desired model, using the same Block Parameters window.
After we have completed these actions, our model appears as in Fig. 12.7.

Next we add the Product block to our diagram.
The diagram with all of the Product blocks added is shown in in Fig. 12.8.

Fig. 12.7

Fig. 12.8
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Our diagram is getting a little crowded. To get enough room to paste in the
remaining elements, we must select and drag the elements around in the
window to approximate the final spacing.

The result of the actions to make room for the remaining block elements is
shown in Fig. 12.9.

Now we have the space to add our remaining elements to our model window.
First we need to add the final input parameter. This is a Constant from the
Sources library. The default value for this bias is 1.

Most block elements come with default values or settings. We will need to
change the Constant value later to 10, just as we modified our Sum properties
after placing them into our system diagram. We next select another Transfer
Fcn from the Continuous library and paste it in (see Figs 12.10 and 12.11).

Fig. 12.9

BUILDING A MULTIPLE-INPUT, MULTIPLE-OUTPUT 303



Fig. 12.10

Fig. 12.11
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Now select a Scope from the Sinks library and drop it at the desired location
into our model window (Fig. 12.12).

Double-click on the Constant block, just as we did when we modified
the Sum properties after placing them into our system diagram. Change the
Constant value to 10 (Fig. 12.13).

Fig. 12.12

Fig. 12.13
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The value changes to 10 on the element after Apply is selected (see Fig. 12.14).

Now double-click on the Transfer Fcn and modify its Parameters as shown
in Fig. 12.15.

Fig. 12.14

Fig. 12.15
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Again, when Apply is selected, the Apply text will turn gray and the new
Transfer Fcn model will appear on the block in the parmest diagram as
shown in Fig. 12.16.

We have now successfully added all the elements we need into our parmest
diagram. Now we need to connect the blocks. We start with the Parameter
Variation input and connect it to the summation element. I first use the drag and
release method. Simulink reminds me that a shortcut for this operation is
available (see Fig. 12.17).

Fig. 12.16
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We can repeatedly use this shortcut to connect all the elements across the top
of our parmest Simulink diagram. When these actions are repeated and the
model saved, the model window will appear as follows (see Fig. 12.18).

Also shown next is the remainder of the connections that do not require a
signal to branch (see Fig. 12.19). Branches are selected off of the line elements
in a similar way to how the block elements are created. Just right-click onto
the line where the branch is desired and drag to the desired input location.
This process is demonstrated in Figs 12.20 and 12.21 that follow. Multiples of
these branching connections are required to complete this system diagram.

Fig. 12.17
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Fig. 12.18

Fig. 12.19
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Fig. 12.20

Fig. 12.21
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Note that Simulink does not necessarily route these element-to-element con-
nections in the way that you desire. You can select and move the connections
and change their routings in the same way that you move other Simulink
elements. In Fig. 12.21, the bottom output of the System Under Test1 element
was selected. This output is then connected in a feedback loop to the bottom
input of the previous Sum. Simulink automatically draws the feedback path
over the top of the Transfer Fcn block. Just select this element and drag it
below the bottom of the Transfer Fcn block as desired. Corners of connection
routings can also be similarly moved, and additional segments added to routings.
If Simulink can replace a multiple segment routing with a straight segment, it will
automatically do so (see Fig. 12.22).

The block element names need to be modified to match those desired names
given at the beginning of this section. Some of the names that are not required
need to be deleted from the diagram. Select the desired label. If no name is
required, the name field can be deleted using the Delete key. Note that no Simu-
link element can have the same name. Simulink will add a number after the name
for a repeated element. Simply deleting the characters from a name will not
remove the name field. Two blank text fields will cause Simulink to add a 1 to
the second blank field. The next figure shows the third Scope being given the
name Estimate (see Fig. 12.23).

Fig. 12.22
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The Excitation Signal Generator next needs to be modified as shown in
Figs 12.24 and 12.25.

Fig. 12.23

Fig. 12.24
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The Parameter Variation Signal Generator is similarly modified as shown
in Fig. 12.26.

Fig. 12.25

Fig. 12.26
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Finally, the Simulation Parameters for parmest.mdl need to be modified. Nor-
mally both the Solver and the Workspace I/O need to be modified to the values
you select. Here I have just added a very large Stop time so that the model can be
run through multiple cycles (see Figs 12.27 and 12.28).

Fig. 12.27

Fig. 12.28
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To see what is going on, open (double-click) and position the scopes. Then
select Simulate, Start from the pull-down menu. You will see the time histories
of the system response. The response should be as shown in Fig. 12.29.

Use the binocular symbol to autoscale the data and the magnifying glasses to
zoom into and out of the figure. Try different finish times.

12.4 MATLABW Simulation Interface

After you have tried different options to modify simulation and display par-
ameters for your parmest model in Simulink, let us modify them using the
MATLAB Command Window. First, let us look at one convergence of the esti-
mated model parameter by overriding the simulation end time from MATLAB.

The parmest system can be simulated using the command line

� [t,x] 5 sim('parmest',[0,50]);

The output in the Error and Estimate Scope windows will appear as shown in
Fig. 12.30.

Notice that as the estimate converges on the correct result, the error signal
drops to zero.

Fig. 12.29

Fig. 12.30
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If you select (click on) the parmest window, you can start and stop the simu-
lation of this system yourself from the Simulation menu.

You may find it interesting to change the excitation (open it) and restart the
simulation. Changing the gain in the Parameter block while the simulation is
running also produces interesting behavior. The Simulink model is closed from
MATLAB using the command

close_system('parmest',0);

The system can also be closed from the File menu, or it can be closed by click-
ing on the x at the upper right corner of the parmest model window.

12.5 Subsystems, Masking, and Libraries

Subsystems can be very useful in complex multi-input, multi-output models.
They allow you to create multilevel models. New Simulink blocks can be con-
structed in this way. The models can even be masked, providing custom inter-
faces for these blocks. Finally, new libraries of these elements can be created.

Let us work with the model we built in Sec. 12.3. Some of the elements have
been rearranged slightly to make the process of creating a subsystem a little
easier. Also added are boxes to output data to the MATLAB workspace and to
a mat file (see Fig. 12.31).

To create a subsystem, use the bounding box. Select the elements you want to
place into your subsystem. Note that there is no inverse to this operation, and so
you might want to save before doing this operation. You might also need to
rearrange your diagram so that you can easily select the desired elements (see
Fig. 12.32).

Fig. 12.31
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Once the elements are selected, use Edit, Create subsystem (see Fig. 12.33).

Fig. 12.32

Fig. 12.33
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The diagram now contains a subsystem as shown in Fig. 12.34.

Once the subsystem is created, all you need to do to open it is to doubleclick
on the subsystem block. The subsystem window opens as shown in Fig. 12.35.

Fig. 12.34

Fig. 12.35

318 BASIC MATLABW, SIMULINKW, AND STATEFLOWW



Note that the default can be changed to open the subsystem in your existing
model window rather than in a new window.

If the model is masked, the subsystem model will not be shown. Rather a
Block Parameters window that you have built will be displayed.

In a following window a mask is generated for this model. First select the
Subsystem block. With the selected block use Edit, Mask subsystem . . . . A
Mask editor will then be evoked. Change the block Icon, Parameters, Initiali-
zation, and Documentation as desired.

In our example, the Documentation for this block is modified as shown in
Figs 12.36 and 12.37.

Fig. 12.36
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After the aforementioned changes have been applied, the subsystem model will
be masked. Double-clicking on the block will bring up the shown in Fig. 12.38.

To unmask the system, the Unmask option must be selected from the Mask
editor window.

We can now create a new Simulink Library for our subsystem block. Note
that one or many blocks can be added to our library once it is created. This is
done in a manner nearly identical to the way we create Simulink models. The
libraries even have the same .mdl extension reserved for Simulink models.

To create our Simulink Library go to the Simulink Library Browser and select
File, New, Library. Note that there is not a keyboard shortcut for this operation.

Once this is done, you need to give a name to your library. You also need to
save it.

We will create a library called MyLibrary.mdl. Here it is saved under cdrive.
A copy of the subsystem is then saved in the MyLibrary window. The results of
these actions are shown in Figs 12.39–12.41.

Fig. 12.37

Fig. 12.38
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Fig. 12.39
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Fig. 12.40

Fig. 12.41
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12.6 Vector Signals

When modeling a multiple-input, multiple-output system, you can end up with
a complex and confusing model if you only use scalar signals. Vector signals can
be used to clean up these signal lines. There are two ways to accomplish this:
1) Mux/Demux and 2) Bus Creator/Bus Selector. These are found in the
Simulink Library Browser under Signal Routing. Bus Creator/Bus Selector
might be preferable to Mux/Demux if you are tracking signal names. The
following diagrams show the differences between Mux/Demux and Bus
Creator/Bus Selector.

First, three signals are fed into a Mux element. The Mux element generates a
vector containing three signals. These three signals are converted back into scalar
signals using the Demux element (see Fig. 12.42).

In Fig. 12.43, three signals are fed into a Bus Creator. The Bus Creator element
generates a vector containing three signals. The three signals have been named a, b,
and c. These three signals are converted back to scalar signals using the Bus Selec-
tor element. The Bus Selector has kept track of the names of the signals on the bus.

Fig. 12.42
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It displays the names of the scalar signals as <a> , <b> , and <b> . This can be
very useful when generating large, multilayer block diagrams.

Note that you can eliminate a diagnostic warning by setting the “Automatic solver
parameter selection” diagnostic to “none” in the Diagnostics page of the configur-
ation parameters dialog. Also note that Format, Wide Nonscalar Lines can be
very useful when attempting to differentiate between scalar and vector signals.
Format, Vector Line Widths is very useful because it shows you the number of
separate signals on the vector connection (see Fig. 12.44). Try these out and see
what you think!

Fig. 12.43

Fig. 12.44
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12.7 Using Vector Signals for Math Functions

This section demonstrates the use of Math Operations and vector signals to
accomplish within Simulink some of the mathematical operations demonstrated
within MATLAB in Chapter 1. The Math Operations used are 1) Adjoint of
333 Matrix, 2) Create 333 Matrix, 3) Determinant of 333 Matrix, and
4) Invert 333 Matrix. These are all found within the Aerospace Blockset as
in Fig. 12.45.

The model to accomplish this appears as follows. Constant blocks are used to
enter the matrix elements. The block is used to construct the actual 3�3 matrix.
The adjoint, determinant, and matrix inverse are then calculated using the appro-
priate blocks. Display blocks are used to show the results (see Fig. 12.46).

Fig. 12.45
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Fig. 12.46
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Note that the Display block inputs for the adjoint and the inverse are arrays,
and so the display is a 3�3 array. To see all of the elements after executing the
model, you can resize the block to show more than just the first element. You can
resize the block both vertically and horizontally, and the block will add display
fields in the appropriate directions. The two black triangles indicate that the block
is not displaying all of the input array elements, both in the horizontal and the
vertical directions. For example, Fig. 12.47 shows a model that passes a vector
(one-dimensional array) to a Display block.

Open the Invert 333 Matrix block. You will see that it is constructed using
Adjoint of 333 Matrix and Invert 333 Matrix blocks. It also has an Assertion
block (see Fig. 12.48).

Fig. 12.47

Fig. 12.48
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Open Assertion, which is used to check for a divide by zero (see Fig. 12.49).

There are two Configuration Parameters to set before executing this model
(although it will run with warning messages using the defaults). First, select the
discrete Solver (see Fig. 12.50).

Fig. 12.49

Fig. 12.50
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Next, go to the Diagnostics menu and change the Automatic solver
parameter selection diagnostic from warning to none (see Fig. 12.51).

Executing the adjplay Simulink model will now give the same results as
shown in Secs. 1.8.1 and 1.8.4 without any warning messages.

12.8 Conclusion

This chapter was an introduction to multiple-input, multiple-output systems
implemented in Simulink. Also demonstrated was its dynamic modeling capabili-
ties. Some transfer function models were used. Many more elements are available
to the user, and much more complex models can be created. Further examples are
given in the Simulink manual. Real-time simulations of such systems can be run
using the Real-Time Workshopw software.

Other toolboxes are available from The MathWorks to provide additional
Simulink modeling elements.

Fig. 12.51
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Practice Exercises

12.1 The exercise is to generate and analyze a multi-input, multi-output
system. The example is the MIMO representation of a cart and pendulum.

The block diagram of the system is shown in Fig. 12.52.

The model parameters that need to be loaded into MATLAB for this model
follow:

Plant model constants:

ka ¼ 1
m1 ¼ 1.0
m2 ¼ 1.0

State Estimator Model:
ae ¼

0 1:0000 �31:4507 0

�1:0000 0 44:8537 0

0 0 �46:6599 1:0000

1:0000 0 �89:5750 0

be ¼

0 31:4507

1:0000 �43:8537

0 46:6599

0 88:5750

Fig. 12.52
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ce ¼

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

de ¼

0 0

0 0

0 0

0 0

Feedback Gain:
K =

3:0819 2:4827 0:0804 3:1866

The full system representation is shown in Fig. 12.53.

The system response is to a square wave with a frequency of 0.3 radians/
second and an amplitude of 15. The actual and estimated positions of the response
are shown in Fig. 12.54.

Fig. 12.53
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Fig. 12.54

332 BASIC MATLABW, SIMULINKW, AND STATEFLOWW



Notes



This page intentionally left blank



13
Building SimulinkW S-Functions

13.1 Introduction and Objectives

This chapter will introduce the reader to building and using S-Functions in
Simulinkw. Both hand-coded examples, as well as examples generated using
the S-Function Builder, will be provided.

Upon completion of this chapter, the reader will be able to build Simulink
S-Functions, use the Simulink S-Function Builder, build Simulink models
using S-Functions, execute and simulate Simulink models including
S-Functions, and directly interface with these models via MATLABw.

13.2 SimulinkW S-Functions

Using Simulink, you can construct S-Functions. An S-Function is a computer
language description of a Simulink block. S-Functions can be written in
MATLAB, C, Cþþ, Ada, or FORTRAN. The C, Cþþ, Ada, and FORTRAN
S-Functions are compiled as MEX-files using the mex utility. As with other
MEX-files, they are dynamically linked into MATLAB when needed.
S-Functions use a special calling syntax that enables you to interact with Simu-
link equation solvers. This interaction is very similar to the interaction that takes
place between the solvers and the built-in Simulink blocks.

The form of an S-Function is very general and can accommodate continuous,
discrete, and hybrid systems. S-Functions allow you to add your own blocks to
Simulink models. You can create your blocks in MATLAB, C, Cþþ,
FORTRAN, or Ada. By following a set of simple rules, you can implement
your algorithms in an S-Function. After you write your S-Function and place
its name in an S-Function block (see the User Defined Functions block
library), you can customize the user interface by using masking. You can use
S-Functions with the Real-Time Workshopw software with constraints. You
can also customize the code generated by the Real-Time Workshop software
for S-Functions by writing a Target Language Compiler (TLC) TM file.
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The User Defined Functions block library appears in the Simulink Library
Browser as shown in Fig. 13.1.

Note that there is a major disadvantage to using M-file S-Functions. The
MATLAB parser is invoked at every Simulation step. This results in a longer
simulation run time. Also M-file S-Functions cannot be used when code is gen-
erated using the Real-Time Workshop software. C MEX S-Functions are much
faster and can be included in the generated code. A C MEX S-Function should
be compiled using the mex command. This requires a C compiler on the system.
Your version of MATLAB may come with the Lcc C version 2.4 compiler in the
directory Program FilesnMATLABnR2006bnsysnlcc.

13.3 SimulinkW C and S-Function Example,

Van der Pol Equation

The following is the model of a second-order nonlinear system. A description
of the system can be found on the Simulink diagram in Fig. 13.2. In this section
the diagram is shown directly coded into C and then placed into a Simulink
S-Function.

Fig. 13.1

Fig. 13.2
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To understand how to implement this system as a Simulink S-Function, it
is useful to see how an S-Function is executed. Execution of a Simulink
model proceeds in stages. First comes the initialization phase. In this phase,
Simulink incorporates library blocks into the model; propagates widths, data
types, and sample times; evaluates block parameters; determines block execution
order; and allocates memory. Then Simulink enters a simulation loop. Each pass
through the loop is referred to as a simulation step. During each simulation step,
Simulink executes each of the model’s blocks in the order determined during
initialization. For each block, Simulink invokes functions that compute the
block’s states, derivatives, and outputs for the current sample time. This con-
tinues until the simulation is complete. Figure 13.3 illustrates the stages of the
execution of a Simulink model containing an S-Function.

Fig. 13.3
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The Van der Pol system implemented as C code appears as follows:

/* File : vdpmex.c

* Abstract :

*

* Example MEX-file system for Van der Pol equations

*

* Use this as a template for other MEX-file systems

* which are only composed of differential equations.

*

* Syntax [sys, x0] = vdpmex(t, x, u, flag)

*

* For more details about S-functions, see simulink/src/sfuntmpl_doc.c

*

* Copyright 1990-2004 The MathWorks, Inc., revised R. Colgren

* $Revision: 1.11.4.2.1 $

*/

#define S_FUNCTION_NAME vdpmex

#define S_FUNCTION_LEVEL 2

#include "simstruc.h"

/*====================*

* S-function methods *

*====================*/

/* Function: mdlInitializeSizes

===============================================

* Abstract:

* The sizes information is used by Simulink to determine the S-function

* block’s characteristics(number of inputs, outputs, states, etc.).

*/

static void mdlInitializeSizes(SimStruct *S)

{

ssSetNumSFcnParams(S, 0); /* Number of expected parameters */

if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {

return; /* Parameter mismatch will be reported by Simulink */

}

ssSetNumContStates(S, 2);

ssSetNumDiscStates(S, 0);

if (!ssSetNumInputPorts(S, 0)) return;

if (!ssSetNumOutputPorts(S, 0)) return;

ssSetNumSampleTimes(S, 1);

ssSetNumRWork(S, 0);

ssSetNumIWork(S, 0);

ssSetNumPWork(S, 0);

ssSetNumModes(S, 0);

ssSetNumNonsampledZCs(S, 0);

/* Take care when specifying exception free code - see sfuntmpl_doc.c */

ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE);

}
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/* Function: mdlInitializeSampleTimes

=========================================

* Abstract:

* S-function is comprised of only continuous sample time elements

*/

static void mdlInitializeSampleTimes(SimStruct *S)

{

ssSetSampleTime(S, 0, CONTINUOUS_SAMPLE_TIME);

ssSetOffsetTime(S, 0, 0.0);

ssSetModelReferenceSampleTimeDefaultInheritance(S);

}

#define MDL_INITIALIZE_CONDITIONS

/* Function: mdlInitializeConditions

========================================

* Abstract:

* Initialize both continuous states to zero

*/

static void mdlInitializeConditions(SimStruct *S)
{

real_T *x0 = ssGetContStates(S);

/* int x2 */

x0[0] = 0.25;

/* int x1 */

x0[1] = 0.25;

}

/* Function: mdlOutputs

=======================================================

* Abstract:

* This S-Function has no outputs but the S-Function interface requires

* that a mdlOutputs() exist so we have a trivial one here.

*/

static void mdlOutputs(SimStruct *S, int_T tid)

{

UNUSED_ARG(S); /* unused input argument */

UNUSED_ARG(tid); /* not used in single tasking mode */

}

#define MDL_DERIVATIVES

/* Function: mdlDerivatives

=================================================

* Abstract:

* xdot(x0) = x0*(1-x1^2) -x1

* xdot(x1) = x0

*/

static void mdlDerivatives(SimStruct *S)

{

real_T *dx = ssGetdX(S);

real_T *x = ssGetContStates(S);

dx[0] = x[0] * (1.0 - x[1] * x[1]) - x[1];

dx[1] = x[0];

}
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/* Function: mdlTerminate

=====================================================

* Abstract:

* No termination needed, but we are required to have this routine.

*/

static void mdlTerminate(SimStruct *S)

{

UNUSED_ARG(S); /* unused input argument */

}

#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file? */

#include "simulink.c" /* MEX-file interface mechanism */

#else

#include "cg_sfun.h" /* Code generation registration function */

#endif

Implemented as Simulink S-Function, this system appears as shown in
Fig. 13.4.

Fig. 13.4
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The response of this system as plotted using MATLAB is shown in Fig. 13.5.

Fig. 13.5
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13.4 SimulinkW C and S-Function Builder Example,

Van der Pol Equation

This section will demonstrate the use of the Simulink S-Function Builder to
implement the Van der Pol equation of Section 12.3. Before you begin, make sure
that you have run mex–setup from the MATLAB Command Window to choose
The MathWorks provided Lcc C compiler. Figure 13.6 shows what this looks like
on your computer screen.

Fig. 13.6
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Open up a new Simulink diagram and drag and drop the S-Function Builder
from the User-Defined Functions palette into the new model (see Figs 13.7
and 13.8).

Fig. 13.7
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Fig. 13.8
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Double-click on the S-Function Builder in the model, and you should get the
window shown in Fig. 13.9.

Fig. 13.9
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Make the changes shown in Fig. 13.10 to the Initialization section.

Note that the number of continuous states is 2, and the continuous states’
Initial Conditions (IC) are [0.25,0.25]. There are no discrete states in this model.

Next select the Data Properties=>Output Ports tab and change the output to
a 2-D vector and the number of rows to 2. Pictorially, these selections appear as
shown in Fig. 13.11.

Fig. 13.10

Fig. 13.11
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There are no changes to the Libraries section.
Next select the Outputs tab and insert the code shown in Fig. 13.12.

This sets the two outputs to the values of the two continuous states.
Finally, select the Continuous Derivatives tab and input the code as shown in

Fig. 13.13.

These are the dynamic equations for the Van der Pol equation. These are the
same dynamic equations shown in the Simulink diagram at the start of Sec. 13.3.

Fig. 13.12

Fig. 13.13
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Next select the Build Info tab and then select the Build button at the top right
corner of the window. You should get a successful build indication. If mex–setup
was not run from the MATLAB Command Window and a C compiler selected,
the Simulink S-Function Builder would hang up at this point (see Fig. 13.14).

You should now have a dll that Simulink can use in the simulation of the
model.

The Simulink diagram (after resizing) should now look like that shown in
Fig. 13.15.

Fig. 13.14
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Now select a Clock input from the Sources palette and a Scope from the Sinks
palette. Also select an X Y Graph to duplicate the polar plot generated using
MATLAB. To output the data to MATLAB, select a To Workspace block.
Connect all of these to the output of the S-Function.

Save your diagram under the name sfunvdp.mdl. Your diagram should now
look like the window shown in Fig. 13.16.

Fig. 13.15
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Next you need to choose your simulation parameters. Set the stop time at 20
seconds. Choose a Fixed-step type solver using the Runge-Kutta integration
algorithm (ode4) and a Fixed step size of 0.01 seconds. After completing this
process, select OK (see Fig. 13.17).

Fig. 13.16

Fig. 13.17
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Then run the simulation and check the scope, which should look something
like the window shown in Fig. 13.18.

As you sent the S-Function output to the workspace using the To Workspace
block, you can replicate the phase-plane plot using the plot(simout(:,1),
simout(:,2)) command. The plot in Fig. 13.19 shows the response of the
system in the phase plane.

Fig. 13.18

Fig. 13.19
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13.5 Example of a FORTRAN S-Function

The following is an example of a FORTRAN S-Function. It is a standard
model of the Earth’s atmosphere. Note that it looks like many of the
FORTRAN subroutines that have been developed over the years and are available
in libraries for reuse. FORTRAN S-Functions allow such code reuse in
Simulink.

SUBROUTINE Atmos(alt, sigma, delta, theta)
C
C Calculation of the 1976 standard atmosphere to 86 km.
C This is used to show how to interface Simulink to an
C existing FORTRAN subroutine.
C
C Copyright 1990–2002 The MathWorks, Inc., revised R. Colgren
C
C $Revision: 1.4.1 $
C

IMPLICIT NONE
C
C --- I/O variables
C

REAL alt
REAL sigma
REAL delta
REAL theta

C
C --- Local variables
C

INTEGER i,j,k
REAL h
REAL tgrad, tbase
REAL tlocal
REAL deltah
REAL rearth, gmr

C
C --- Initialize values for 1976 atmosphere
C

DATA rearth/6369.0/! earth radius (km)
DATA gmr /34.163195/ ! gas constant

C
REAL htab(8), ttab(8), ptab(8), gtab(8)
DATA htab/0.0, 11.0, 20.0, 32.0, 47.0, 51.0, 71.0, 84.852/
DATA ttab/288.15, 216.65, 216.65, 228.65, 270.65, 270.65,
& 214.65, 186.946/
DATA ptab/1.0, 2.233611E-1, 5.403295E-2, 8.5666784E-3,
& 1.0945601E-3, 6.6063531E-4, 3.9046834E-5, 3.68501E-6/
DATA gtab/-6.5, 0.0, 1.0, 2.8, 0.0, -2.8, -2.0, 0.0/

C
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C --- Convert geometric to geopotential altitude
C

h ¼ alt�rearth/(altþ rearth)
C
C --- Binary search for altitude interval

i ¼ 1
j ¼ 8

C
100 k ¼ (iþ j)/2

IF (h .lt. htab(k)) THEN
j ¼ k

ELSE
i ¼ k

END IF
IF ( j .le. iþ 1) GOTO 110
GO TO 100

110 CONTINUE
C
C --- Calculate local temperature
C

tgrad ¼ gtab(i)
tbase ¼ ttab(i)
deltah ¼ h - htab(i)
tlocal ¼ tbaseþ tgrad�deltah
theta ¼ tlocal/ttab(1)

C
C --- Calculate local pressure
C

IF (tgrad .eq. 0.0) THEN
delta ¼ ptab(i)�EXP(-gmr�deltah/tbase)

ELSE
delta ¼ ptab(i)�(tbase/tlocal)��(gmr/tgrad)

END IF
C
C --- Calculate local density
C

sigma ¼ delta/theta
C

RETURN
END
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To incorporate an S-Function into a Simulink model, drag an S-Function
block from the Simulink User Defined Functions block library into the model.
Then specify the name of the S-Function in the S-Function name field of the
S-Function block’s dialog box. In this case, the altitude is passed into the subrou-
tine, and the temperature, pressure, and atmospheric density are passed out of the
subroutine. There will be one input to and three outputs from this S-Function
block. This block will appear as shown in Fig. 13.20.

A CMEX S-Function Gateway to this FORTRAN routine needs to be written
to interface it with the S-Function block. This interface is shown in Sec. 13.6.

13.6 Example of a CMEX S-Function Gateway

The following is an example of a Level 2 CMEX S-Function Gateway. It
allows the FORTRAN standard model of the atmosphere in Sec. 13.5 to be
used in an S-Function. It is another way that existing FORTRAN code can be
made available in libraries for reuse.

/*

* File: sfun_atmos.c

*

* Abstract: Example of a Level 2 CMEX S-function gateway

* to a Fortran subroutine. This technique allows you

* to combine the features of level 2 S-functions with

* Fortran code, either new or existing.

*

* This example was prepared to be platform neutral.

* However, there are portability issues with Fortran

* compiler symbol decoration and capitalization (see

* prototype section, below).

*

* On Windows using Microsoft Visual C/C++ and Compaq

* Visual Fortran 6.0 (a.k.a. Digital Fortran) this

* example can be compiled using the following mex

* commands (each command is completely on one line):

*

* >> mex -v COMPFLAGS#"$COMPFLAGS /iface:cref" -c

* sfun_atmos_sub.f -f ..\..\bin\win32\mexopts\df60opts.bat

*

* >> mex -v

* LINKFLAGS#"$LINKFLAGS dformd.lib dfconsol.lib dfport.lib

* /LIBPATH:$DF_ROOT\DF98\LIB" sfun_atmos.c sfun_atmos_sub.obj

*

Fig. 13.20
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* On linux, one can prepare this example for execution using

* g77, gcc, and mex:

*

* % g77 -c sfun_atmos_sub.f -o sfun_atmos_sub.o

* % mex -lf2c sfun_atmos.c sfun_atmos_sub.o

*

* or purely with mex on one line:

*

* >> mex -lf2c sfun_atmos.c sfun_atmos_sub.f

*

* Gnu Fortran (g77) can be obtained for free from many

* download sites, including http://www.redhat.com in

* the download area. Keyword on search engines is ’g77’.

*

* R. Aberg, 01 JUL 2000, revised R. Colgren

* Copyright 1990-2005 The MathWorks, Inc.

*

* $Revision: 1.8.4.5.1 $

*/

#define S_FUNCTION_NAME sfun_atmos

#define S_FUNCTION_LEVEL 2

#include "simstruc.h"

/*

* Below is the function prototype for the Fortran

* subroutine ’Atmos’ in the file sfun_atmos_sub.f.

*

* Note that datatype REAL is 32 bits in Fortran,

* so the prototype arguments must be float.

*

* Your Fortran compiler may decorate and/or change

* the capitalization of ’SUBROUTINE Atmosphere’

* differently than the prototype below. Check

* your Fortran compiler’s manual for options to

* learn about and possibly control external symbol

* decoration.

*

* Additionally, you may want to use CFortran,

* a tool for automating the interface generation

* between C and Fortran ... in either direction.

* Search the web for ’cfortran’.

*/

/*

* Digital Fortran’s external symbols are in capitals

* on Windows platforms; preceding underscore is implicit.

*/

#if defined(_WIN32) && ! defined(_WIN64)

#define atmos_ ATMOS

#endif

/*

* Note that some compilers don’t use a trailing

* underscore on Fortran external symbols

*/
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#if defined(__xlc__) || defined(__hpux) || defined(_WIN64)

#define atmos_ atmos

#endif

extern void atmos_(float *alt,

float *sigma,

float *delta,

float *theta);

/* Parameters for this block */

typedef enum {T0_IDX=0, P0_IDX, R0_IDX, NUM_SPARAMS } paramIndices;

#define T0(S) (ssGetSFcnParam(S, T0_IDX))

#define P0(S) (ssGetSFcnParam(S, P0_IDX))

#define R0(S) (ssGetSFcnParam(S, R0_IDX))

/* Function: mdlInitializeSizes

======================================================

* Abstract:

* Set up the sizes of the S-function’s

* inputs and outputs.

*/

static void mdlInitializeSizes(SimStruct *S)

{

ssSetNumSFcnParams(S,NUM_SPARAMS); /* expected number */

#if defined(MATLAB_MEX_FILE)

if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) goto EXIT_POINT;

#endif

{

int iParam = 0;

int nParam = ssGetNumSFcnParams(S);

for ( iParam = 0; iParam < nParam; iParam++ )

{

ssSetSFcnParamTunable( S, iParam, SS_PRM_SIM_ONLY_TUNABLE );

}

}

ssSetNumContStates( S, 0 );

ssSetNumDiscStates( S, 0 );

ssSetNumInputPorts(S, 1);

ssSetInputPortWidth(S, 0, DYNAMICALLY_SIZED);

ssSetInputPortDirectFeedThrough(S, 0, 1);

ssSetInputPortRequiredContiguous(S, 0, 1);

ssSetNumOutputPorts(S, 3);

ssSetOutputPortWidth(S, 0, DYNAMICALLY_SIZED); /* temperature */

ssSetOutputPortWidth(S, 1, DYNAMICALLY_SIZED); /* pressure */

ssSetOutputPortWidth(S, 2, DYNAMICALLY_SIZED); /* density */

EXIT_POINT:

return;

}
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/* Function: mdlInitializeSampleTimes

======================================================

* Abstract:

* Specify that we inherit our sample time from

* the driving block.

*/

static void mdlInitializeSampleTimes(SimStruct *S)

{

ssSetSampleTime(S, 0, INHERITED_SAMPLE_TIME);

ssSetOffsetTime(S, 0, 0.0);

ssSetModelReferenceSampleTimeDefaultInheritance(S);

}

/* Function: mdlOutputs

======================================================

* Abstract:

* Calculate atmospheric conditions using Fortran subroutine.

*/

static void mdlOutputs(SimStruct *S, int_T tid)

{

double *alt = (double *) ssGetInputPortSignal(S,0);

double *T = (double *) ssGetOutputPortRealSignal(S,0);

double *P = (double *) ssGetOutputPortRealSignal(S,1);

double *rho = (double *) ssGetOutputPortRealSignal(S,2);

int w = ssGetInputPortWidth(S,0);

int k;

float falt, fsigma, fdelta, ftheta;

for (k=0; k<w; k++) {

/* set the input value */

falt = (float) alt[k];

/* call the Fortran routine using pass-by-reference */

atmos_(&falt, &fsigma, &fdelta, &ftheta);

/* format the outputs using the reference parameters */

T[k] = mxGetScalar(T0(S)) * (double) ftheta;

P[k] = mxGetScalar(P0(S)) * (double) fdelta;

rho[k] = mxGetScalar(R0(S)) * (double) fsigma;

}

}

/* Function: mdlTerminate

======================================================

* Abstract:

* This method is required for Level 2 S-functions.

*/

static void mdlTerminate(SimStruct *S)

{

}

#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file? */

#include "simulink.c" /* MEX-file interface mechanism */

#else

#include "cg_sfun.h" /* Code generation registration function */

#endif
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To incorporate an S-Function into a Simulink model, drag an S-Function
block from the Simulink User Defined Functions block library into the model.
Then specify the name of the S-Function in the S-Function name field of the
S-Function block’s dialog box, as illustrated in Fig. 13.21.

Note that extra parameters may be specified in the S-Function parameter field.
You can also use the S-Function builder located in the Simulink Library

Browser to help you build a Simulink S-Function.

13.7 SimulinkW Block Diagram Using S-Function

The following shows a Simulink block diagram constructed using this
S-Function. For this example a single scope with four outputs was constructed.
It is executed in the same way as any other Simulink model. The FORTRAN code
and the CMEX S-Function Gateway are both embedded as text into the diagram
for reference. The color of these text blocks are modified from that of the rest of
the diagram using Format, Background Color, Light Blue for highlighting. The
result of this simulation is shown in Figs 13.22 and 13.23.

Fig. 13.21
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Fig. 13.22

Fig. 13.23
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13.8 Conclusion

This chapter was an introduction to building and using S-Functions in Simu-
link. Examples were provided where the entire S-Function was hand coded or
where it was generated using the S-Function Builder. A CMEX S-Function
Gateway for a FORTRAN S-Function was also shown. Further examples are
given in the Simulink Library Browser.
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Practice Exercises

13.1 The S-Function to be generated in this exercise is a two-input,
two-output continuous-time model programmed in C. A hand-programmed
copy of this model is found in the Simulink Library Browser under S-Function
demos in the C-file S-Functions under Continuous. Select the model Continu-
ous time system. Use the system model Continuous-time state space
S-Function. Excite the system using two signal generators. You will have two
outputs. You will need a Mux bus to make a two-dimensional signal vector to
drive the system. Look at the system output using a Scope.

From the following code, use the S-Function Generator to generate this
S-Function as shown in this chapter.

To test this S-Function, start with two sine wave inputs at a frequency of
1 rad/second and an amplitude of 1. Then try other excitation signals and
examine the response (see Fig. 13.24).

Fig. 13.24
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The C code for this system follows:

/* File : csfunc.c

* Abstract: Example C-file S-function for defining a continuous system.

*

* xdot = Ax + Bu

* y = Cx + Du

*

* For more details about S-functions, see simulink/src/sfuntmpl_doc.c.

* Copyright 1990-2004 The MathWorks, Inc., revised R. Colgren

* $Revision: 1.9.4.2.1 $

*/

#define S_FUNCTION_NAME csfunc

#define S_FUNCTION_LEVEL 2

#include "simstruc.h"

#define U(element) (*uPtrs[element]) /* Pointer to Input Port0 */

static real_T A[2][2]={ { -0.09, -0.01 } ,

{ 1 , 0 }

};

static real_T B[2][2]={ { 1 , -7 } ,

{ 0 , -2 }

};

static real_T C[2][2]={ { 0 , 2 } ,

{ 1 , -5 }

};

static real_T D[2][2]={ { -3 , 0 } ,

{ 1 , 0 }

};

/*====================*

* S-function methods *

*====================*/

/* Function: mdlInitializeSizes

======================================================

* Abstract:

* The sizes information is used by Simulink to determine the S-function

* block’s characteristics (number of inputs, outputs, states, etc.).

*/

static void mdlInitializeSizes(SimStruct *S)

{

ssSetNumSFcnParams(S, 0); /* Number of expected parameters */

if (ssGetNumSFcnParams(S) ! = ssGetSFcnParamsCount(S)) {

return; /* Parameter mismatch will be reported by Simulink */

}
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ssSetNumContStates(S, 2);

ssSetNumDiscStates(S, 0);

if (!ssSetNumInputPorts(S, 1)) return;

ssSetInputPortWidth(S, 0, 2);

ssSetInputPortDirectFeedThrough(S, 0, 1);

if (!ssSetNumOutputPorts(S, 1)) return;

ssSetOutputPortWidth(S, 0, 2);

ssSetNumSampleTimes(S, 1);

ssSetNumRWork(S, 0);

ssSetNumIWork(S, 0);

ssSetNumPWork(S, 0);

ssSetNumModes(S, 0);

ssSetNumNonsampledZCs(S, 0);

/* Take care when specifying exception free code - see sfuntmpl_doc.c */

ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE);

}

/* Function: mdlInitializeSampleTimes

======================================================

* Abstract:

* Specifiy that we have a continuous sample time.

*/

static void mdlInitializeSampleTimes(SimStruct *S)

{

ssSetSampleTime(S, 0, CONTINUOUS_SAMPLE_TIME);

ssSetOffsetTime(S, 0, 0.0);

ssSetModelReferenceSampleTimeDefaultInheritance(S);

}

#define MDL_INITIALIZE_CONDITIONS

/* Function: mdlInitializeConditions

======================================================

* Abstract:

* Initialize both continuous states to zero.

*/

static void mdlInitializeConditions(SimStruct *S)

{

real_T *x0 = ssGetContStates(S);

int_T lp;

for (lp=0;lp<2;lp++) {

*x0++=0.0;

}

}

/* Function: mdlOutputs

======================================================

* Abstract:

* y = Cx + Du

*/
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static void mdlOutputs(SimStruct *S, int_T tid)

{

real_T *y = ssGetOutputPortRealSignal(S,0);

real_T *x = ssGetContStates(S);

InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

UNUSED_ARG(tid); /* not used in single tasking mode */

/* y = Cx + Du */

y[0]=C[0][0]*x[0]+C[0][1]*x[1]+D[0][0]*U(0)+D[0][1]*U(1);

y[1]=C[1][0]*x[0]+C[1][1]*x[1]+D[1][0]*U(0)+D[1][1]*U(1);

}

#define MDL_DERIVATIVES

/* Function: mdlDerivatives

======================================================

* Abstract:

* xdot = Ax + Bu

*/

static void mdlDerivatives(SimStruct *S)

{

real_T *dx = ssGetdX(S);

real_T *x = ssGetContStates(S);

InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

/* xdot=Ax+Bu */

dx[0]=A[0][0]*x[0]+A[0][1]*x[1]+B[0][0]*U(0)+B[0][1]*U(1);

dx[1]=A[1][0]*x[0]+A[1][1]*x[1]+B[1][0]*U(0)+B[1][1]*U(1);

}

/* Function: mdlTerminate

=======================================================

* Abstract:

* No termination needed, but we are required to have this routine.

*/

static void mdlTerminate(SimStruct *S)

{

UNUSED_ARG(S); /* unused input argument */

}

#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file? */

#include "simulink.c" /* MEX-file interface mechanism */

#else

#include "cg_sfun.h" /* Code generation registration function */

#endif
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14
Introduction to Stateflow

W

14.1 Introduction and Objectives

This final chapter introduces the reader to The MathWorks’ Statefloww

graphical modeling capabilities. It assumes a basic familiarity with
MATLABw and Simulinkw.

Upon completion of this chapter, the reader will be able to identify the
graphics modeling capabilities of Stateflow software, open and close Stateflow
models from MATLAB, generate Stateflow models, execute and simulate
systems implemented within Stateflow software, and modify Stateflow model
block parameters from Simulink and MATLAB.

14.2 Opening, Executing, and Saving StateflowW Models

Stateflow software is an excellent tool to dynamically simulate switching and
other state changes within MATLAB’s graphical tools, including Simulink.
Although Stateflow software was originally developed as a stand-alone graphical
modeling environment, it is now combined within Simulink. This offers the
important advantage that Simulink blocks can be used with Stateflow blocks
within the same model.

To provide the reader with an example of the appearance of a Stateflow model,
we will open the following: 1) a Simulink model containing a Stateflow block and
2) the Stateflow library.

First we will open a Simulink model from the MATLAB Command Window.
The model we will open is a simple demonstration of While and Do While loops
modeled within Stateflow software. To open this model titled sf_while.mdl,
simply type the following within the MATLAB Command Window:

� sf_while
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The Simulink model window shown in Fig. 14.1 is opened.

Fig. 14.1
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Note that this model is set to run using a fixed-step discrete integration routine.
To view the Stateflow model called While, simply double-click on this block.
The Stateflow model shown in Fig. 14.2 is opened.

Similarly, to open the Stateflow model called Do While, double-click on the
block with this name. This will open the Stateflow model in Fig. 14.3.

You will next execute this model from Simulink in the same way that you pre-
viously ran Simulink models. For example, you can simply click on the Start
Simulation symbol at the center of the Simulink toolbar. When you run the

Fig. 14.2

Fig. 14.3
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Simulink model sf_while, you will note that the active state flow paths will show
a widened font, whereas the inactive state flow paths will show the standard line
width. This is demonstrated in Figs 14.4 and 14.5. Figure 14.4 shows the initial
entry into the While Stateflow chart, before it does the conditional test.

The second Stateflow chart (Fig. 14.5) shows the While conditional test being
invoked.

Fig. 14.4

Fig. 14.5
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The case where the output5while_output is shown in Fig. 14.6.

Similarly, the case where do_output is invoked is shown in Fig. 14.7.

Note that the simulation’s end time is set to only 1 second for this demon-
stration. To provide sufficient time to fully observe this model executing, let us
reset the simulation run time to end at 100 seconds by restarting the simulation

Fig. 14.6

Fig. 14.7
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from the MATLAB Command Window. This is accomplished using the follow-
ing command:

� sim('sf_while',100);

If you open the Scope, you will see the time offset advance to 100 seconds in
the lower left-hand corner of the Scope plot window. In Fig. 14.8, the simulation
has almost finished executing and displays an execution time of 96 seconds.

Fig. 14.8
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The simulation will stop before executing at a time of 100 seconds, and so the
plot window will appear cleared of the vector of values at the completion of the
simulation run. This result is shown in Fig. 14.9.

To save this model within your MATLAB working directory, simply invoke
the save_system command from the MATLAB Command Window as follows:

� save_system('sf_while');

To close this model, simply invoke the close_system command from the
MATLAB Command Window as follows:

� close_system('sf_while');

Fig. 14.9
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14.3 Constructing a Simple StateflowW Model

A Stateflow model is a version of a finite state machine for controlling a phys-
ical plant. A finite state machine is a representation of an event-driven system. In
an event-driven system, the system responds by making a transition from one
state to another state in response to an event. This occurs when the condition
defining the change is set to true from false.

A Stateflow diagram is a graphical representation of such a finite state
machine, where states and transitions form the basic building blocks of the
system. You can also represent signal flows as stateless diagrams using Stateflow
software. Stateflow software provides you with the elements and construction
tools that you need to include states and transitions within a Simulink model.
Starting with Stateflow Version 14 Service Pack 3, you are also provided with
a Truth Table block.

Stateflow charts are often used to control a physical plant in response to events
such as a temperature or pressure change. The physical plant can also be con-
trolled based on user-driven events. For example, you can use a state machine
to represent the gear selection process in a car’s automatic transmission. The
transmission has a number of operating states: park, reverse, neutral, drive, and
low. As the driver shifts from one position to another, the system makes a tran-
sition from one state to another. Examples of such user-driven events are shifting
from park to reverse, from reverse to drive, from drive to neutral, etc.

The first step in generating a Stateflow model is to invoke the Stateflow program,
which opens the Stateflow library window. This is accomplished by typing

� stateflow

from within the MATLAB Command Window.
The Stateflow block library sflib appears as in Fig. 14.10.

Fig. 14.10
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A Stateflow diagram is created using the block on the left-hand side of sflib. A
Truth Table generator is provided in the center of this window. Stateflow
examples are included within the library block on the right-hand side of this
window.

To start, let us create a new Simulink model and drag a copy of the Stateflow
Chart block into this model’s window. This can be done from sflib by going to
File, New, Model as in Fig. 14.11.

Fig. 14.11
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An untitled Simulink model window appears as in Fig. 14.12.

Next drag a copy of the Stateflow block Chart onto the untitled model
window as shown in Fig. 14.13. Note the asterisk * after untitled in the Title
bar, denoting an unsaved Simulink model.

Fig. 14.12

Fig. 14.13
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Next double-click on the Stateflow block Chart within the untitled Simulink
model to invoke a Stateflow diagram editor window. The Stateflow editor then
appears as in Fig. 14.14.

Fig. 14.14
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Next we will construct a simple on-off switch using Stateflow software and
will use a simple Manual Switch from Simulink to manually toggle the states.
The on-off switch will look like that in Fig. 14.15. The Simulink diagram
driving this switch is also shown.

Fig. 14.15
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First we need to insert two states into our model. One will represent the switch
being on; the other will represent the switch being off. States are accessed using
the upper blue State tool icon in the drawing toolbar or object palette on the
left side of the Stateflow model window. The object palette contains a set of tools
for drawing states, a history junction, a default transition, a connective junc-
tion, a truth table, a function, an embedded MATLAB function, and a box
(see Fig. 14.16).

Fig. 14.16
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Next the state transitions need to be added. Transitions originate with a source
state and terminate at a destination state. Evoking a transition means that the
source state has become inactive and the destination state has become active.
In our switch model, the On state becomes active by moving through the tran-
sition from the Off state to the On state. Once on, the switch goes to off by
moving through an On to Off transition. In our case, we will start our model
with the switch in the Off state. This is accomplished by using a default
transition (see Fig. 14.17).

Fig. 14.17
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Now that we have moved a State into the Stateflow Chart, we need to label
this State. We will make this State our On state and will label it accordingly.
Note that the State block changes to a pink color while it is being edited. It
reverts to black after it is properly labeled. Later you will see that when the simu-
lation is being executed, the active State block is shown in bold blue. These
default colors can be modified as desired by the user (see Fig. 14.18).

Fig. 14.18
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The same procedure is used to create the Off state in our model. Again, while
the State is being modified, it is shown in pink. Note that the previously created
On state is shown in black. As the Simulink model untitled has not yet been
saved, the Title bar shows an asterisk * after the name untitled/Chart given
as a default to this Stateflow model (see Fig. 14.19).

Fig. 14.19
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Next we will draw our first state transition, from the Off state to the On state.
The Off state and the state transition are both shown in pink because they are in
the process of being modified. The state transition is simply drawn by clicking
on the starting State and holding down the left mouse button until the border of
the concluding State is reached. To start the SMART mode, just hold down the s
key while dragging the state transition (see Fig. 14.20).

Fig. 14.20
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Our next task is to draw the state transition from the On state to the Off state.
The On state and the state transition are now both shown in pink, again because
they are in the process of being modified (see Fig. 14.21).

Fig. 14.21
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Our final transition is the default transition. We will set the State Off to be
the default state. Select the default transition (third item from the top in the
object palette) and drag it to the top of the Off state block. As it is being modi-
fied, it will change from blue (Fig. 14.22) to pink (Fig. 14.23). To complete the
default transition, we will need to connect it with the higher-level Simulink
diagram untitled.

Fig. 14.22
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When released, and thus attached to the State Off, the default transition will
continue to be shown in pink. In addition, a question mark will be displayed next
to the default transition. This is to show that the default transition has not
yet been properly connected to the trigger in the Simulink diagram untitled
(see Fig. 14.24).

Fig. 14.23
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We will next use a simple manual switch from Simulink to manually toggle the
states. Locate the Chart block in the lower right corner of the untitled diagram to
make room for the Manual Switch. This action is shown in Fig. 14.25.

Fig. 14.24
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Enlarge the Chart block to make room for the Trigger symbol as shown in the
diagram at the start of this section (see Fig. 14.26).

Fig. 14.25

Fig. 14.26
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Next name the Chart block Controller as in Fig. 14.27.

Two Constant blocks need to be added to the untitled window. Select a
Constant from the Simulink Library Browser as shown in Fig. 14.28.

Fig. 14.27

Fig. 14.28
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The two Constant blocks are next shown after being located in the upper left
corner of the untitled diagram. As the first Constant block was left with the
default name, Simulink automatically renames the second block to be Constant1
(see Fig. 14.29).

The final Simulink block required is a Manual Switch. Locate a Manual
Switch under the Signal Routing Simulink Library and drag a copy into the
untitled model as shown in Fig. 14.30.

Fig. 14.29

Fig. 14.30
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Next start the process of connecting the Simulink blocks (see Fig. 14.31).

Fig. 14.31
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The two Constant blocks are connected to the two sides of the Manual
Switch as we have done previously. The first connection method involves
holding down the Ctrl key while first clicking on the originating block and
then clicking on the completing box. The second method requires that the first
block be selected by clicking on the first block; then the path is completed by
dragging the signal path to the desired input location (see Fig. 14.32).

Fig. 14.32
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Next we need to go into the Controller block and add an input from Simulink
to set the State blocks based on the Manual Switch. To accomplish this, first
select the Add pull-down menu, then Event, then Input from Simulink. This
appears as in Fig. 14.33.

Fig. 14.33
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The default trigger event is Rising. We wish to change this to Either, so that
any manual change to the switch setting will toggle the active state. This is
accomplished from the Trigger pull-down menu. Refer to Figs 14.34 and 14.35.

Fig. 14.34
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Next select Either as the Trigger type.

Fig. 14.35
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Select Apply and OK to complete this action (see Fig. 14.36).

The Controller block will now contain a Trigger input as shown in the upper
center of Fig. 14.37.

Fig. 14.36

Fig. 14.37
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We will use a constant value of 1 into the Trigger to set the active state to On
and a value of 21 to set the active state to Off within the Controller. Therefore,
we next need to change Constant1 from its default value of 1 to a value of 21.
This is accomplished by double-clicking on the Constant1 block or by selecting
this block and then using the right mouse button to bring up the menu and choose
Constant Parameters . . . from the resulting list. Finally, change the Constant
value from 1 to 21 and select OK (see Fig. 14.38).

Fig. 14.38
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We now need to connect the Manual Switch’s output to the Trigger on the
Controller block. This operation is accomplished as we have done previously
with Simulink only diagrams. Select the Manual Switch; then while still
holding down the left mouse button, drag the signal path to the Trigger input.
This operation appears as in Fig. 14.39.

When this operation is completed, the dashed line will turn into a solid line
and will end in an arrowhead. The trigger signal will now drive the states
within the Controller Chart.

Fig. 14.39
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As we have nearly completed this diagram, we should save it within our work
folder. Either click on the disk icon, or go to the File, Save As option from the
pull-down menu (see Fig. 14.40).

Note that the simulation is still set to the default finish time of 10.0 seconds,
and the default continuous time ode45 integrator. Both of these simulation par-
ameters will need to be modified.

Fig. 14.40
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First let us change the simulation end time to infinity (inf ). The quickest
way to do this is to type inf in the end time window in the upper toolbar as in
Fig. 14.41.

Fig. 14.41
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Now we need to select the variable-step discrete-time integration algorithm.
The type of integration algorithm to be used is selected from the Simulation,
Configuration Parameters . . . window. The shortcut to this window is
Ctrl1E. The following two figures show the process of generating this
window and then selecting the discrete (no continuous states) integration
algorithm. Note that the simulation end time can also be modified in the
Configuration Parameters window (see Fig. 14.42).

Fig. 14.42

INTRODUCTION TO STATEFLOW
W

403



To confirm that the correct integration algorithm is now being used, look at
the lower right-hand corner of the MySwitch window (Fig. 14.43). It
now shows that the VariableStepDiscrete integration algorithm is being used
(Fig. 14.44).

Fig. 14.43

Fig. 14.44
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Because the previous operations are seen as modifications to the Simulink/
Stateflow model, you need to save the model to disk again. This can be accom-
plished either by selecting the disk symbol, by using Ctrl-S, or by using File,
Save. You can then check to see that the Stateflow diagram is receiving the
Trigger signal properly by double-clicking on the Controller block. The State-
flow diagram then appears as in Fig. 14.45. Note that all of the transition paths are
blue, denoting proper connection paths.

Fig. 14.45
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We next execute our combined Simulink/Stateflow model. This can be
accomplished using the triangular Start simulation icon from either the Simu-
link or Stateflow toolbar. Once execution starts, the time will increment within
the bottom right-hand corner of the Simulink diagram, as shown in Fig. 14.46.

Note that the message Running is also displayed in the lower left corner of the
window.

Fig. 14.46

406 BASIC MATLABW, SIMULINKW, AND STATEFLOWW



Now we will examine the behavior of the Stateflow model while it is execut-
ing. Double-click on the Manual Switch icon, as was done in Fig. 14.46. This
will change the value sent to the Controller via the Trigger from a value of 1
to a value of 21. This will set the active state to Off and thus will change this
state’s black outline into a bold blue outline. Off will also change from black
to blue (see Fig. 14.47).

Again, double-click on the Manual Switch in the Simulink diagram. You will
see that the switch changes back to input the Constant value of 1 into the Trigger
contained within the Controller Stateflow chart. This is shown in the Simulink
figure (Fig. 14.48).

Fig. 14.47

INTRODUCTION TO STATEFLOW
W

407



Watching the Stateflow diagram MySwitch/Controller, you will briefly see
the transition from Off to On displayed in bold blue as the active state transitions
from Off to On. Once the On state is reached, it is then activated. This is shown
in Stateflow software by displaying the block’s outline in bold blue and the letters
On in blue. The result of this action is shown in Fig. 14.49. Note that the colors
used can be changed by the user as desired.

Fig. 14.48

408 BASIC MATLABW, SIMULINKW, AND STATEFLOWW



This concludes our modeling of a switch within Stateflow software.

Fig. 14.49
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14.4 Using a StateflowW Truth Table

The other element in the Stateflow library is the Truth Table. We will next
construct a model using this element. If the Stateflow library is not open, type

� stateflow

from within the MATLAB Command Window. Then the Stateflow block library
sflib will appear as in Fig. 14.50.

Fig. 14.50
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The Truth Table generator is provided in the center of this window. To start,
create a new Simulink model and drag a copy of the Stateflow Truth Table block
into this model’s window. This can be done from sflib by going to File, New,
Model as shown in Fig. 14.51.

Fig. 14.51
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An untitled Simulink model window appears as in Fig. 14.52.

Fig. 14.52
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Next drag a copy of the Stateflow block Truth Table into the untitled
model window as in Fig. 14.53. Note the asterisk * after untitled in the Title
bar, denoting an unsaved Simulink model.

Fig. 14.53
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Next open the Simulink Library Browser from the MATLAB Command
Library. This can either be accomplished by typing simulink in the
MATLAB Command Window or by double-clicking on the Simulink icon in
the upper toolbar.

We will now construct a model similar to the one in the previous section. An
input value (u) of 1 will be used to set the Truth Table to a value of T (true). An
input value of 21 will be used to set the Truth Table to a value of F (false). The
output (y) will be set to 1 when the input is 1, and the output (y) will be set to 0
when the input is 21. We will use two Constant blocks and a Manual Switch to
create the two possible inputs values as was done in the previous section. These
details are omitted here. The resulting Simulink model appears as in Fig. 14.54.

Fig. 14.54
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Save this model under the name MyTruth. This can be accomplished by
clicking on the Save (disk) icon or by using the File, Save As. . . pull-down
menu (see Fig. 14.55).

Fig. 14.55
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Next open the Configuration Parameters window using either the Simu-
lation pull-down menu or the Ctrl-E shortcut. Set the simulation Stop time to
inf, and select the discrete (no continuous states) equation Solver. When
these modifications are complete, Apply the changes and approve them using
OK. The Configuration Parameters will now appear as in Fig. 14.56.

Fig. 14.56
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A sink is required to display the output from the Truth Table. Select a
Display block from the Simulink Sources library and drag a copy onto the
right-hand side of the Simulink model MyTruth. This model will now appear
as in Fig. 14.57.

Fig. 14.57
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The Truth Table needs to be completed next. Opening the Truth Table
provides the user with the example shown in Fig. 14.58.

Fig. 14.58
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To provide the equivalent Truth Table to the model from the previous
section, we will modify it as follows. We only have one Condition u � 0.
When u � 0, Decision 1 (D1) is set to true (T). When u � 0 is false, Decision
2 (D2) is set to false (F). As Condition number 2 is not needed, simply click
on the 2 box and hit the Delete key to remove it. Next, because Decision 3 is
not needed, simply click on the D3 box and hit the Delete key to remove it.

We will make one of two decisions depending on the truth of the Condition. If
the Condition is true (T), then D1 will specify Action #1 from the Action Table.
In this case, y 5 u, and the output (y) will be set to 1, denoting that the switch is
on. If the Condition is false (F), then D2 will specify Action #2 from the Action
Table. In this case, y 5 0, and the output will be set to 0, denoting that the switch
is off. This is shown in Fig. 14.59.

Fig. 14.59
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Note that if additional conditions are needed, the Append Row icon can be
clicked, or the Edit, Append Row pull-down menu can be used. Similarly, if
additional decisions are needed, the Append Column icon can be clicked,
or the Edit, Append Column pull-down menu can be used.

Our combined Simulink/Stateflow model using a Truth Table is shown
in Fig. 14.60. This model is executed using the Start Simulation icon; the
Simulation, Start pull-down menu; or the Ctrl1T shortcut. The
Display shows a 0, because the Manual Switch is set to the off position,
which is equivalent to selecting as an input a constant value of 21.

Now double-click on the Manual Switch. This will change the position of the
switch, so that the input value is changed to a constant value of 1. This will set
the switch to the on position, denoted by an output value of 1. This value is
shown in Display in Fig. 14.61.

Fig. 14.60
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This concludes this example of Stateflow Truth Tables.

14.5 Conclusion

This chapter concludes our discussion of Stateflow software and our tutorials
on MATLAB, Simulink, and Stateflow products. You are now ready to further
explore the capabilities of these powerful tools on your own!

Fig. 14.61
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Practice Exercises

14.1 The following exercises are provided to give the reader experience in
building and executing a combined Simulink/Stateflow model. You will use
the Stateflow Chart block to include a Stateflow diagram within a Simulink
model. The model must be constructed to accomplish the equivalent to the
following MATLAB statement:

if cond <5 36
output 5 cond^2;

elseif cond > 36 & cond <5 216
output 5 cond^3;

else
output 5 cond;

end

Use Fig. 14.62 to assist you in constructing your Simulink diagram, which will
include a Stateflow Chart block.

The Stateflow block Chart will be constructed to accomplish the equivalent to
the previously provided MATLAB statement as in Fig. 14.63.

This model is constructed using the elements on the left-hand side of the State-
flow window. After constructing this model, simulate it using a Ramp as a
Source to verify that the Chart is functioning as in the MATLAB statement.

Fig. 14.62
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Fig. 14.63
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Notes



Appendix A
History of MATLABw and The MathWorks, Inc.

The history of MATLABw starts with the development of two libraries of
FORTRAN mathematical subroutines in the mid-1970s under a grant from the
National Science Foundation. These two libraries were called LINPACK and
EISPACK. LINPACK was a software library for performing numerical linear
algebra. LINPACK made use of the BLAS (Basic Linear Algebra Subprograms)
libraries for performing basic vector and matrix operations. EISPACK was a soft-
ware library for solving eigenvalue problems and conducting related analyses.
LINPACK was written by Jack Dongarra, Jim Bunch, Cleve Moler, and Pete
Stewart. EISPACK was developed by several authors located primarily at
Argonne National Laboratory, a group that included Dongarra and Moler. The
two libraries have been superseded by LAPACK, whose routines run more effi-
ciently on present-day computer architectures.

Short for “MATrix LABoratory,” MATLAB was developed in the late 1970s
by Cleve Moler. The software has been identified by the name MATLAB since
March 1979. Moler was then chairman of the computer science department at the
University of New Mexico. Moler taught mathematics and computer science for
almost 20 years at the University of New Mexico. He also worked at the Univer-
sity of Michigan and spent sabbatical leaves at Stanford University. The software
was a personal project to provide his students with access to LINPACK and
EISPACK in his linear algebra courses without having to program in
FORTRAN and to take advantage of recently developed interactive computer
system capabilities.

MATLAB soon spread to other universities and found a strong audience
within the applied mathematics community. Moler would provide copies for
use at other universities and institutions, either after giving a talk at that location
or upon request. All he would request was $75 to reimburse his cost for the two
nine-track tapes and the shipping costs.

Others saw the commercial potential of MATLAB and offered upgraded ver-
sions of the product. Two of these products, which were available before The
MathWorks was founded, were Matrix-X and Ctrl-C. Matrix-X initially was
available only for mainframe computers such as IBM and DEC systems. It
added graphics and control system design capabilities to MATLAB’s analysis
capabilities. It was made available on UNIX workstations, such as those by
Apollo, in the mid-1980s. Ctrl-C was a similar, competitive program based on
MATLAB available on DEC computer systems such as the VAX-780 series of
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computers. Jack Little was involved in the development of the Ctrl-C product.
The final competitor to MATLAB at the time, Easy-5, was not based on
MATLAB but on dynamics software developed by Boeing.

In early 1980, when Moler visited Stanford University, Little was first exposed
to MATLAB. Little, an engineer, recognized the potential application of
MATLAB to engineering applications on the relatively recently developed per-
sonal computers (PCs). In 1983, Little, Moler, and Steve Bangert worked to
develop a second-generation, professional version of MATLAB with graphics
capabilities. Little was also involved in the development of the Signal Processing
Toolbox. The MathWorks, Inc., was founded in 1984 to market and continue
development of MATLAB. The headquarters is now located in Natick,
Massachusetts.

Later, Matrix-X was rewritten in C, and its syntax was changed from that used
in MATLAB. Until then, MATLAB commands and programs worked with few
exceptions in Matrix-X and Ctrl-C. Little worked with Moler and Bangert to
rewrite MATLAB into C in the mid-1980s. These rewritten libraries were then
known as the Control System Toolbox. Little’s specialty was as a control
design engineer. This was the first MATLAB toolbox offered by The
MathWorks.

There are now two basic versions of MATLAB: the professional version and
the student edition. For a while the student edition was distributed by Prentice-
Hall; now both are again distributed by The MathWorks, Inc.

Later in the 1980s, graphical modeling environments were developed for these
mathematical software tools. Grumman Aircraft developed Protoblock, a graphi-
cal system for the nonlinear modeling and simulation of dynamic systems in
MATLAB. This system was available as a third-party product for MATLAB
until Northrop acquired Grumman and the product line was dropped. Another
third-party graphical interface was briefly available for MATLAB on IBM PCs
in the late 1980s. Integrated Systems, Inc., which marketed and supported
Matrix-X, developed the System Build graphical system for its product. That
system was mostly offered on UNIX workstations but was ported to other com-
puter systems. Boeing developed a graphical modeling system for Easy-5. ACSL,
a nonlinear simulation based on the older IBM CSMP simulation environment,
was offered with the EASE graphical system.

Simulinkw is the graphical system for the nonlinear modeling and simulation
of dynamic systems within the MATLAB environment. Originally, it was called
SIMULAB, but the name was already copyrighted. Simulink reached the market
in 1990. The principal authors were Joseph Hicklin, who wrote the user interface,
and Andrew Grace, who wrote the numerical routines. Simulink is a graphical,
mouse-driven program that allows systems to be modeled by drawing a block
diagram on the screen. It can handle linear, nonlinear, continuous-time, discrete-
time, multivariable, and multirate systems. It was designed to take full advantage
of windowing technology, including pull-down menus and mouse interactions.

Object or state modeling environments started to be seen in the mid-1990s.
Object-time was an early such environment. Statefloww software was first a sep-
arate environment from Simulink. Stateflow and Simulink models could not be
used together in the first release of Stateflow software. The second version of
Stateflow software integrated these products.
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The MathWorks, Inc., is still run by Little, who is the company’s president and
CEO. Moler is the company’s chairman and chief scientist. The MathWorks is a
privately held company. The over 1,300 employees of The MathWorks refer to
themselves as MathWorkers. The company develops and markets an extensive
family of add-on products to meet the specific needs of the scientific, engineering,
and financial communities. Over one million people and 3,500 universities use
MATLAB and its related products in over 100 countries. The MathWorks has
been profitable every year since its inception.

The list of MATLAB, Simulink, and Stateflow releases follows:

MATLAB—The University of New Mexico
MATLAB 1.3
MATLAB 2.0
MATLAB 2.4
MATLAB 3.0
MATLAB 3.5
MATLAB 4.0
MATLAB 4.1
MATLAB 4.2
MATLAB 5.0 (R8)
MATLAB 5.1 (R9)
MATLAB 5.2 (R10)
MATLAB 5.3 (R11)
MATLAB 5.3.1 (R11.1)
MATLAB 6.0 (R12)
MATLAB 6.1 (R12.1)
MATLAB 6.5 (R13)
MATLAB 6.5.1 (R13SP1)
MATLAB 6.5.2 (R13SP2)
MATLAB 7.0 (R14)
MATLAB 7.0.1 (R14SP1)
MATLAB 7.0.4 (R14SP2)
MATLAB 7.1 (R14SP3)
MATLAB 7.2 (R2006a)
MATLAB 7.3 (R2006b)

SIMULINK—Development of the product
Simulink 1.1
Simulink 1.2
Simulink 1.3
Simulink 2.0 (R8)
Simulink 2.1 (R9)
Simulink 2.2 (R10)
Simulink 3.0 (R11)
Simulink 3.0.1 (R11.1)
Simulink 4.0 (R12)
Simulink 4.1 (R12.1)
Simulink 5.0 (R13)
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Simulink 5.1 (R13SP1)
Simulink 5.2 (R13SP2)
Simulink 6.0 (R14)
Simulink 6.1 (R14SP1)
Simulink 6.2 (R14SP2)
Simulink 6.3 (R14SP3)
Simulink 6.4 (R2006a)
Simulink 6.5 (R2006b)

Stateflow 1.0 (R9)
Stateflow 1.0.6 (R10)
Stateflow 2.0 (R11)
Stateflow 2.0.1 (R11.1)
Stateflow 3.0.2 (R11.1þ)
Stateflow 4.0 (R12)
Stateflow 4.1 (R12.1)
Stateflow 4.1 (R13)
Stateflow 5.1 (R13þ)
Stateflow 5.1.1 (R13SP1)
Stateflow 5.1.2 (R13SP2)
Stateflow 6.0 (R14)
Stateflow 6.1 (R14SP1)
Stateflow 6.2 (R14SP2)
Stateflow 6.3 (R14SP3)
Stateflow 6.4 (R2006a)
Stateflow 6.5 (R2006b)
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Appendix B
Tuning MATLABW, SimulinkW, and

StateflowW Solvers

B.1 Improving Simulation Performance and Accuracy

Simulation performance and accuracy within MATLABw, Simulinkw, and
Statefloww software can be affected by many things, including the model
design and choice of configuration parameters. The MATLAB, Simulink, and
Stateflow solvers handle most model simulations accurately and efficiently
using their default parameter values. However, some models yield better
results if you adjust the solver’s parameters. Also, providing information about
your model’s behavior to the solver can improve your simulation results.

B.1.1 Speeding Up Simulations

Slow simulation speed in MATLAB, Simulink, or Stateflow software can have
many causes. A few of these follow. First, your model includes a MATLAB Fcn
block. When a model includes a MATLAB Fcn block, the MATLAB interpreter is
called at each time step, drastically slowing down the simulation. To improve the
speed of your simulation, use a built-in MATLAB Fcn block or Math Function
block whenever possible. Your simulations can also be slowed if your model
includes an M-file S-Function. M-file S-Functions also cause the MATLAB
interpreter to be called at each time step. Consider either converting the S-Function
to a subsystem or to a C-MEX file S-Function. Another thing that can slow your
model is if it includes a Memory block. Using a Memory block causes the
variable-order solvers (ode15s and ode113) to be reset back to order 1 at each
time step.

Do not set the maximum step size to be too small. If you changed the
maximum step size, try running the simulation again with the default value
(auto). Do not ask for too much accuracy. The default relative tolerance (0.1%
accuracy) is usually sufficient. For models with states that go to zero, if the absol-
ute tolerance parameter is too small, the simulation can take too many steps
around the near-zero state values. See the discussion of error under Maximum
order in the Help window. If the time scale is too long, reduce the time interval.

Problems can arise if the system is stiff but you are using a nonstiff solver. Try
using ode15s. If the model uses sample times that are not multiples of each other,
the solver is forced to take small enough steps to ensure sample time hits for all
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sample times. Your model can also be slowed if it contains an algebraic loop. The
solutions to algebraic loops are iteratively computed at every time step.
Therefore, they severely degrade performance. For more information, look up
Algebraic Loops under Help. Simulink models can be slowed down if a
Random Number block is fed into an Integrator block. For continuous
systems, use the Band-Limited White Noise block in the Sources library

B.1.2 Improving Simulation Accuracy

To check your simulation’s accuracy, run the simulation over a reasonable
time span. Then either reduce the relative tolerance to 1e-4 (the default is
1e-3), or reduce the absolute tolerance, and then run your simulation again.
Next compare the results of both simulation runs. If the results are not signifi-
cantly different, you can feel confident that the solution has converged. If the
simulation misses significant behavior at its start, reduce the initial step size to
ensure that the simulation does not step over the missed significant behavior.

If the simulation results become unstable over time, your system might simply
be unstable! If you are using ode15s, you might need to restrict the maximum
order to two (the maximum order for which the solver is A-stable) or try using
the ode23s solver.

Multiple approaches can be tried if the simulation results do not appear to be
accurate. For a model that has states whose values approach zero, if the absolute
tolerance parameter is too large, the simulation can take too few steps around
areas of near-zero state values. Reduce the parameter value or adjust it for indi-
vidual states using the Integrator’s dialog box. If reducing the absolute toler-
ances does not sufficiently improve the accuracy, reduce the size of the
relative tolerance parameter to reduce the acceptable error and to force smaller
step sizes and more steps.

One of the most commonly used simulation commands is the sim function.
Note that it accepts linear plant models only. If your plant is a nonlinear Simulink
model, you could control it as demonstrated in Nonlinear Plants (see Help). The
full syntax of the command that runs the simulation is

[t,x,y] 5 sim(model, timespan, options, ut);

Only the model parameter is required in the previous command. Parameters
not supplied within the command are taken from the Configuration Parameters
dialog box settings.

For detailed syntax on the sim command, see the Help documentation for the
sim command. The options parameter is a structure that supplies additional
configuration parameters, including the solver name and error tolerances. You
can define the parameters in the options structure using the simset command.

B.1.3 Simulation Commands

The following are the available simulation commands: add_exec_event_
listener, model, sim, simplot, simset, simget, and slbuild.

To follow are some of the important factors in efficiently executing
simulations.
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B.1.3.1 Absolute error tolerance

AbsTol default - positive scalar {1e-6}

This scalar applies to all elements of the state vector. AbsTol applies only to the
variable-step solvers.

B.1.3.2 Relative error tolerance

RelTol default - positive scalar {1e-3}

This property applies to all elements of the state vector. The estimated error in
each integration step satisfies

e(i) <5max(RelTol*abs(x(i)),AbsTol(i))

This property applies only to the variable-step solvers and defaults to 1e-3, which
corresponds to accuracy within 0.1%.

B.1.3.3 Tracing facilities. This property enables simulation tracing facili-
ties. You specify one or more as a comma-separated list. The minstep trace
flag specifies that the simulation stops when the solution changes so abruptly
that the variable-step solvers cannot take a step and satisfy the error tolerances.
By default, Simulink issues a warning message and continues the simulation.
The siminfo trace flag provides a short summary of the simulation parameters
in effect at the start of simulation. The compile trace flag displays the compilation
phases of a block diagram model.

B.1.3.4 ZeroCross. This command enables (default) or disables the
location of the zero crossings. This property applies only to the variable-step
solvers. If set to off, variable-step solvers do not detect zero crossings for
blocks having intrinsic zero-crossing detection. Then the solvers adjust their
step sizes only to satisfy the error tolerance.

B.1.3.5 Debug. The default for debug is off. Setting this to on starts the
simulation in debug mode (see Starting the Debugger in the on-line Simulink
Help documentation for more information). The value of this option can be a
cell array of commands to be sent to the debugger after it starts, e.g.,

opts 5 simset( ' debug ' , . . .
{ ' strace 4 ' , . . .
' diary solvertrace.txt ' , . . .
' cont ' , . . .
' diary off ' , . . .
' cont ' })

sim( ' vdp ' ,[], opts);
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B.2 Selecting Solvers

When running the simulation, Simulink solves the dynamic system using one of
several solvers. You can specify several solver options using the Solver Options
panel in the Options dialog box. The type of solver can be variable step or fixed
step. Variable-step solvers keep the error within specified tolerances by adjusting
the step size the solver uses. Fixed-step solvers use a constant step size. When
your model’s states are likely to vary rapidly, a variable-step solver is often faster.

B.2.1 Variable-Step Solvers

When you select Variable-step as the solver type, you can choose any of the
solvers and integration techniques listed in Table B.1.

See the Simulink Help documentation for information on these solvers.
When you select Variable-step as the solver Type, you can also set several

other parameters that affect the step size of the simulation. These include first
the Maximum step size, the largest step size Simulink can use during a simu-
lation. The Minimum step size is the smallest step size Simulink can use
during a simulation. The Initial step size is the step size Simulink uses to
begin the simulation. The Relative tolerance is the largest allowable relative
error at any step in the simulation. The Absolute tolerance is the largest allow-
able absolute error at any step in the simulation. The Zero crossing control needs
to be set to on for the solver to compute exactly where the signal crosses the x
axis. This is useful when using functions that are nonsmooth and when the
output depends on when a signal crosses the x axis. An example of this would
be the use of absolute values.

By default, Simulink automatically chooses values for these options. To
choose your own values, enter them into the appropriate fields. For more infor-
mation on these options and the circumstances in which to use them, see the
Simulink Help documentation.

B.2.2 Fixed-Step Discrete Solvers

When the Type control of the Solver configuration pane is set to fixed step,
the configuration pane’s solver control allows you to choose one of the set of

Table B.1 Variable-step solvers

Solver Integration technique

Discrete No continuous states

ode45 Dormand-Prince

ode23 Bogacki-Shampine

ode113 Adams

ode15s Stiff/NDF

ode23s Stiff/mod. Rosenbrock

ode23t Mod. Stiff/trapezoidal

ode23tb Stiff/TR-BDF2
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fixed-step solvers that Simulink provides. The set of fixed-step solvers comprises
two types of solvers: discrete and continuous.

B.2.2.1 Choosing a fixed-step discrete solver. The fixed-step discrete
solver computes the time of the next time step by adding a fixed step size to
the time of the current time. The accuracy and length of time of the resulting
simulation depends on the size of the steps taken by the simulation. The
smaller the step size is, the more accurate the results are, but the longer the simu-
lation takes. You can allow Simulink to choose the size of the step size (the
default), or you can choose the step size yourself. If you allow Simulink to
choose the step size, Simulink sets the step size to the fundamental sample
time of the model if the model has discrete states or to the result of dividing
the difference between the simulation’s start and stop time by 50 if the model
has no discrete states. This choice assures that the simulation will hit every simu-
lation time required to update the model’s discrete states at the model’s specified
sample times

B.2.2.2 Fixed-step discrete solver limitations. The fixed-step discrete
solver has a fundamental limitation. It cannot be used to simulate models that
have continuous states. That is because the fixed-step discrete solver relies on
a model’s blocks to compute the values of the states that they define. Blocks
that define discrete states compute the values of those states at each time step
taken by the solver. Blocks that define continuous states, on the other hand,
rely on the solver to compute the states. Continuous solvers perform this task.
You should thus select a continuous solver if your model contains continuous
states.

Note that if you attempt to use the fixed-step discrete solver to update or simu-
late a model that has continuous states, Simulink displays an error message. Thus,
updating or simulating a model is a quick way to determine whether it has
continuous states.

B.2.3 Fixed-Step Continuous Solvers

Simulink provides a set of fixed-step continuous solvers that, like the fixed-
step discrete solver, compute the simulation’s next time by adding a fixed-size
time step to the current time. In addition, the continuous solvers employ numeri-
cal integration to compute the values of a model’s continuous states at the current
step from the values at the previous step and the values of the state derivatives.
This allows the fixed-step continuous solvers to handle models that contain both
continuous and discrete states.

Note that, in theory, a fixed-step continuous solver can handle models that
contain no continuous states. However, that would impose an unnecessary com-
putational burden on the simulation. Consequently, Simulink always uses the
fixed-step discrete solver for a model that contains no states or only discrete
states, even if you specify a fixed-step continuous solver for the model.
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Simulink provides two distinct types of fixed-step continuous solvers: explicit
and implicit solvers. Explicit solvers (see Explicit Fixed-Step Continuous Solvers
under Help) compute the value of a state at the next time step as an explicit func-
tion of the current value of the state and the state derivative, e.g.,

X(nþ 1) ¼ X(n)þ h �DX(n)

where X is the state, DX is the state derivative, and h is the step size. An implicit
solver (see Implicit Fixed-Step Continuous Solvers under Help) computes the
state at the next time step as an implicit function of the state and the state deriva-
tive at the next time step, e.g.,

X(nþ 1)� X(n)� h �DX(nþ 1) ¼ 0

This type of solver requires more computation per step than an explicit solver but
is also more accurate for a given step size. This solver thus can be faster than
explicit fixed-step solvers for certain types of stiff systems.

B.2.3.1 Explicit fixed-step continuous solvers. Simulink provides a set of
explicit fixed-step continuous solvers. The solvers differ in the specific inte-
gration technique used to compute the model’s state derivatives. Table B.2
lists the available solvers and the integration techniques they use.

The integration techniques used by the fixed-step continuous solvers trade
accuracy for computational effort. Table B.2 the solvers in order of the compu-
tational complexity of the integration methods they use from the least complex
(ode1) to the most complex (ode5).

As with the fixed-step discrete solver, the accuracy and length of time of a
simulation driven by a fixed-step continuous solver depend on the size of the
steps taken by the solver. The smaller the step size is, the more accurate
the results are, but the longer the simulation takes. For any given step size, the
more computationally complex the solver, the more accurate the simulation.

If you specify a fixed-step solver type for a model, Simulink sets the solver’s
model to ode3. Simulink chooses a solver capable of handling both continuous
and discrete states with moderate computational effort. As with the discrete
solver, Simulink by default sets the step size to the fundamental sample time
of the model if the model has discrete states or to the result of dividing

Table B.2 Fixed-step solvers

Solver Integration technique

Discrete No continuous states

ode1 Euler’s method

ode2 Heun’s method

ode3 Bogacki-Shampine formula

ode4 Fourth-order Runge-Kutta (RK4) formula

ode5 Dormand-Prince formula
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the difference between the simulation’s start and stop time by 50 if the model has
no discrete states. This assures that the solver will take a step at every simulation
time required to update the model’s discrete states at the model’s specified
sample rates. However, it does not guarantee that the default solver will accu-
rately compute a model’s continuous states or that the model cannot be simulated
in less time with a less complex solver. Depending on the dynamics of your
model, you may need to choose another solver and/or sample time to achieve
acceptable accuracy or to shorten the simulation time.

B.2.3.2 Implicit fixed-step continuous solvers. Simulink provides one
solver in this category: ode14x. This solver uses a combination of Newton’s
method and extrapolation from the current value to compute the value of a
model state at the next time step. Simulink allows you to specify the number
of Newton’s method iterations and the extrapolation order that the solver uses
to compute the next value of a model state (see Fixed-Step Solver Options
under Help). The more iterations and the higher the extrapolation order that
you select, the greater the accuracy, but also the greater the computational
burden per step size.

B.2.3.3 Choosing a fixed-step continuous solver. Any of the fixed-step
continuous solvers in Simulink can simulate a model to any desired level of accu-
racy, given enough time and a small enough step size. Unfortunately, in general,
it is not possible, or at least not practical, to decide a priori which solver and step
size combination will yield acceptable results for a model’s continuous states in
the shortest time. Determining the best solver for a particular model thus gener-
ally requires experimentation.

Here is the most efficient way to choose the best fixed-step solver for your
model experimentally. First, use one of the variable-step solvers to simulate
your model to the level of accuracy that you desire. This will give you an idea
of what the simulation results should be. Next, use ode1 to simulate your
model at the default step size for your model. Compare the results of simulating
your model with ode1 with the results of simulating with the variable-step solver.
If the results are the same within the specified level of accuracy, you have found
the best fixed-step solver for your model, namely ode1. That is because ode1 is
the simplest of the Simulink fixed-step solvers and hence yields the shorted simu-
lation time for the current step size.

If ode1 does not give accurate results, repeat the preceding steps with the other
fixed-step solvers until you find the one that gives accurate results with the least
computational effort. The most efficient way to do this is to use a binary search
technique. First try ode3. If it gives accurate results, try ode2. If ode2 gives accu-
rate results, it is the best solver for your model; otherwise, ode3 is the best. If
ode3 does not give accurate results, try ode5. If ode5 gives accurate results,
try ode4. If ode4 gives accurate results, select it as the solver for your model;
otherwise, select ode5.

If ode5 does not give accurate results, reduce the simulation step size and
repeat the preceding process. Continue in this way until you find a solver that
solves your model accurately with the least computational effort.
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B.3 Non-Real-Time and Real-Time Simulations

The real-time program calculates the next values for the continuous states
based on the derivative vector, dx/dt, for the current values of the inputs and
the state vector. These derivatives are then used to calculate the next values
of the states using a state-update equation. This is the state-update equation for
the first-order Euler method (ode1):

x ¼ xþ (dx=dt) h

where h is the step size of the simulation, x represents the state vector, and dx/dt
is the vector of derivatives. Other algorithms can make several calls to the output
and derivative routines to produce more accurate estimates.

Note, however, that real-time programs use a fixed step size because it is
necessary to guarantee the completion of all tasks within a given amount of
time. This means that, although you should use higher-order integration
methods for models with widely varying dynamics, the higher-order methods
require additional computation time. In turn, the additional computation time
might force you to use a larger step size, which can diminish the improvement
of accuracy initially sought from the higher-order integration method.

Generally, the stiffer the equations (that is, the more dynamics in the system
with widely varying time constants), the higher the order of the method that you
must use. In practice, the simulation of very stiff equations is impractical for real-
time purposes except at very low sample rates. You should test fixed-step-size
integration in Simulink to check stability and accuracy before implementing
the model for use in real-time programs.

For linear systems, it is more practical to convert the model that you are simu-
lating to a discrete time version. For instance, use the c2d function in the Control
System Toolbox.
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Appendix C
MATLAB

W

, Simulink
W

, and Stateflow
W

Quick Reference Guide

Here is a quick reference guide to frequently used MATLABw, Simulinkw,
and Statefloww commands.

Functions (Categorical List)

Basic Information
disp Display text or array
display Overloaded method to display text or array
isempty Determine if input is empty matrix
isequal Test arrays for equality
isequalwithequalnans Test arrays for equality, treating NaNs as equal
isfloat Determine if input is floating-point array
isinteger Determine if input is integer array
islogical Determine if input is logical array
isnumeric Determine if input is numeric array
isscalar Determine if input is scalar
issparse Determine if input is sparse matrix
isvector Determine if input is vector
length Length of vector
ndims Number of dimensions

Operators
þ Addition
þ Unary plus
2 Subtraction
2 Unary minus
� Matrix multiplication
‘ Matrix power
\ Back slash or left matrix divide
/ Slash or right matrix divide
’ Transpose
.’ Nonconjugated transpose
.� Array multiplication (element-wise)
.‘ Array power (element-wise)
.\ Left array divide (element-wise)
./ Right array divide (element-wise)
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Operations and Manipulation
: (colon) Create vectors, array subscripting, and for loop

iterations
accumarray Construct an array with accumulation
blkdiag Block diagonal concatenation
cast Cast variable to different data type
cat Concatenate arrays along specified dimension
cross Vector cross product
cumprod Cumulative product
cumsum Cumulative sum
diag Diagonal matrices and diagonals of matrix
dot Vector dot product
end Indicate last index of array
find Find indices of nonzero elements
fliplr Flip matrices left-right
flipud Flip matrices up-down
flipdim Flip matrix along specified dimension
horzcat Concatenate arrays horizontally
ind2sub Multiple subscripts from linear index
ipermute Inverse permute dimensions of multidimensional array
kron Kronecker tensor product
max Maximum value of array
min Minimum value of array
permute Rearrange dimensions of multidimensional array
prod Product of array elements
repmat Replicate and tile array
reshape Reshape array
rot90 Rotate matrix 90 deg
sort Sort array elements in ascending or descending order
sortrows Sort rows in ascending order
sum Sum of array elements
sqrtm Matrix square root
sub2ind Linear index from multiple subscripts
tril Lower triangular part of matrix
triu Upper triangular part of matrix
vertcat Concatenate arrays vertically

Matrix Analysis
cond Condition number with respect to inversion
condeig Condition number with respect to eigenvalues
det Determinant
norm Matrix or vector norm
normest Estimate matrix 2-norm
null Null space
orth Orthogonalization
rank Matrix rank
rcond Matrix reciprocal condition number estimate
rref Reduced row echelon form
subspace Angle between two subspaces
trace Sum of diagonal elements
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Linear Equations
\ and / Linear equation solution
chol Cholesky factorization
cholinc Incomplete Cholesky factorization
cond Condition number with respect to inversion
condest 1-norm condition number estimate
funm Evaluate general matrix function
inv Matrix inverse
linsolve Solve linear systems of equations
lscov Least-squares solution in presence of known

covariance
lsqnonneg Nonnegative least squares
lu LU matrix factorization
luinc Incomplete LU factorization
pinv Moore-Penrose pseudoinverse of matrix
qr Orthogonal-triangular decomposition
rcond Matrix reciprocal condition number estimate

Eigenvalues and Singular Values
balance Improve accuracy of computed eigenvalues
cdf2rdf Convert complex diagonal form to real block diagonal

form
condeig Condition number with respect to eigenvalues
eig Find eigenvalues and eigenvectors
eigs Find largest eigenvalues and eigenvectors of sparse

matrix
gsvd Generalized singular-value decomposition
hess Hessenberg form of matrix
ordeig Eigenvalues of quasi-triangular matrices
ordqz Reorder eigenvalues in QZ factorization
ordschur Reorder eigenvalues in Schur factorization
poly Polynomial with specified roots
polyeig Polynomial eigenvalue problem
qz QZ factorization for generalized eigenvalues
rsf2csf Convert real Schur form to complex Schur form
schur Schur decomposition
svd Singular-value decomposition
svds Singular values and vectors of sparse matrix

Matrix Logarithms and Exponentials
expm Matrix exponential
logm Matrix logarithm
sqrtm Matrix square root

Factorization
balance Diagonal scaling to improve eigenvalue accuracy
cdf2rdf Complex diagonal form to real block diagonal form
chol Cholesky factorization
cholinc Incomplete Cholesky factorization
cholupdate Rank 1 update to Cholesky factorization
lu LU matrix factorization
luinc Incomplete LU factorization
planerot Givens plane rotation
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qr Orthogonal-triangular decomposition
qrdelete Delete column or row from QR factorization
qrinsert Insert column or row into QR factorization
qrupdate Rank 1 update to QR factorization
qz QZ factorization for generalized eigenvalues
rsf2csf Real block diagonal form to complex diagonal form

Trigonometric
acos Inverse cosine
acosd Inverse cosine, deg
acosh Inverse hyperbolic cosine
acot Inverse cotangent
acotd Inverse cotangent, deg
acoth Inverse hyperbolic cotangent
acsc Inverse cosecant
acscd Inverse cosecant, deg
acsch Inverse hyperbolic cosecant
asec Inverse secant
asecd Inverse secant, deg
asech Inverse hyperbolic secant
asin Inverse sine
asind Inverse sine, deg
asinh Inverse hyperbolic sine
atan Inverse tangent
atand Inverse tangent, deg
atanh Inverse hyperbolic tangent
atan2 Four-quadrant inverse tangent
cos Cosine
cosd Cosine, deg
cosh Hyperbolic cosine
cot Cotangent
cotd Cotangent, deg
coth Hyperbolic cotangent
csc Cosecant
cscd Cosecant, deg
csch Hyperbolic cosecant
hypot Square root of sum of squares
sec Secant
secd Secant, deg
sech Hyperbolic secant
sin Sine
sind Sine, deg
sinh Hyperbolic sine
tan Tangent
tand Tangent, deg
tanh Hyperbolic tangent

Exponential
exp Exponential
expm1 Exponential of x 2 1
log Natural logarithm
log1p Logarithm of 1þ x

440 BASIC MATLABW, SIMULINKW, AND STATEFLOWW



log2 Base 2 logarithm and dissect floating-point numbers
into exponent and mantissa

log10 Common (base 10) logarithm
nextpow2 Next higher power of 2
pow2 Base 2 power and scale floating-point number
reallog Natural logarithm for nonnegative real arrays
realpow Array power for real-only output
realsqrt Square root for nonnegative real arrays
sqrt Square root
nthroot Real nth root

Complex
abs Absolute value
angle Phase angle
complex Construct complex data from real and imaginary parts
conj Complex conjugate
cplxpair Sort numbers into complex conjugate pairs
i Imaginary unit
imag Complex imaginary part
isreal Determine if input is real array
j Imaginary unit
real Complex real part
sign Signum
unwrap Unwrap phase angle

Rounding and Remainder
fix Round toward zero
floor Round toward minus infinity
ceil Round toward plus infinity
round Round toward nearest integer
mod Modulus after division
rem Remainder after division

Discrete Math (e.g., Prime Factors)
factor Prime factors
factorial Factorial function
gcd Greatest common divisor
isprime Determine if input is prime number
lcm Least common multiple
nchoosek All combinations of N elements taken K at a time
perms All possible permutations
primes Generate list of prime numbers
rat, rats Rational fraction approximation

Elementary Matrices and Arrays
: (colon) Create vectors, array subscripting, and for loop

iterations
blkdiag Construct block diagonal matrix from input

arguments
diag Diagonal matrices and diagonals of matrix
eye Identity matrix
freqspace Frequency spacing for frequency response
linspace Generate linearly spaced vectors
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logspace Generate logarithmically spaced vectors
meshgrid Generate X and Y matrices for three-dimensional plots
ndgrid Arrays for multidimensional functions and interpolation
ones Create array of all ones
rand Uniformly distributed random numbers and arrays
randn Normally distributed random numbers and arrays
repmat Replicate and tile array
zeros Create array of all zeros

Specialized Matrices
compan Companion matrix
gallery Test matrices
hadamard Hadamard matrix
hankel Hankel matrix
hilb Hilbert matrix
invhilb Inverse of Hilbert matrix
magic Magic square
pascal Pascal matrix
rosser Classic symmetric eigenvalue test problem
toeplitz Toeplitz matrix
vander Vandermonde matrix
wilkinson Wilkinson’s eigenvalue test matrix

Polynomials
conv Convolution and polynomial multiplication
deconv Deconvolution and polynomial division
poly Polynomial with specified roots
polyder Polynomial derivative
polyeig Polynomial eigenvalue problem
polyfit Polynomial curve fitting
polyint Analytic polynomial integration
polyval Polynomial evaluation
polyvalm Matrix polynomial evaluation
residue Convert between partial fraction expansion and

polynomial coefficients
roots Polynomial roots

Interpolation
dsearch Search for nearest point
dsearchn Multidimensional closest point search
griddata Data gridding
griddata3 Data gridding and hypersurface fitting for

three-dimensional data
griddatan Data gridding and hypersurface fitting (dimension

. ¼ 2)
interp1 One-dimensional data interpolation (table look-up)
interp2 Two-dimensional data interpolation (table look-up)
interp3 Three-dimensional data interpolation (table look-up)
interpft One-dimensional interpolation using fast Fourier

transform method
interpn Multidimensional data interpolation (table look-up)
meshgrid Generate X and Y matrices for three-dimensional plots
mkpp Make piecewise polynomial
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ndgrid Generate arrays for multidimensional functions and
interpolation

pchip Piecewise Cubic Hermite Interpolating Polynomial
(PCHIP)

ppval Piecewise polynomial evaluation
spline Cubic spline data interpolation
tsearchn Multidimensional closest simplex search
unmkpp Piecewise polynomial details

Delaunay Triangulation and Tessellation
delaunay Delaunay triangulation
delaunay3 Three-dimensional Delaunay tessellation
delaunayn Multidimensional Delaunay tessellation
dsearch Search for nearest point
dsearchn Multidimensional closest point search
tetramesh Tetrahedron mesh plot
trimesh Triangular mesh plot
triplot Two-dimensional triangular plot
trisurf Triangular surface plot
tsearch Search for enclosing Delaunay triangle
tsearchn Multidimensional closest simplex search

Convex Hull
convhull Convex hull
convhulln Multidimensional convex hull
patch Create patch graphics object
plot Linear two-dimensional plot
trisurf Triangular surface plot

Voronoi Diagrams
dsearch Search for nearest point
patch Create patch graphics object
plot Linear two-dimensional plot
voronoi Voronoi diagram
voronoin Multidimensional Voronoi diagrams

Domain Generation
meshgrid Generate X and Y matrices for three-dimensional plots
ndgrid Generate arrays for multidimensional functions and

interpolation

Coordinate System Conversion Cartesian
cart2sph Transform Cartesian to spherical coordinates
cart2pol Transform Cartesian to polar coordinates
pol2cart Transform polar to Cartesian coordinates
sph2cart Transform spherical to Cartesian coordinates

Ordinary Differential Equations (IVP)
ode113 Solve nonstiff differential equations, variable-order

method
ode15i Solve fully implicit differential equations, variable-order

method
ode15s Solve stiff ODEs and DAEs Index 1, variable-order

method
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ode23 Solve nonstiff differential equations, low-order method
ode23s Solve stiff differential equations, low-order method
ode23t Solve moderately stiff ODEs and DAEs Index 1,

trapezoidal rule
ode23tb Solve stiff differential equations, low-order method
ode45 Solve nonstiff differential equations, medium-order

method
odextend Extend the solution of an initial value problem
odeget Get ODE options parameters
odeset Create/alter ODE options structure
decic Compute consistent initial conditions for ode15i
deval Evaluate solution of differential equation problem

Delay Differential Equations
dde23 Solve delay differential equations with constant delays
ddeget Get DDE options parameters
ddeset Create/alter DDE options structure
deval Evaluate solution of differential equation problem

Boundary-Value Problems
bvp4c Solve boundary-value problems for ODEs
bvpget Get BVP options parameters
bvpset Create/alter BVP options structure
deval Evaluate solution of differential equation problem

Partial Differential Equations
pdepe Solve initial-boundary-value problems for

parabolic-elliptic PDEs
pdeval Evaluates by interpolation solution computed by pdepe

Optimization
fminbnd Scalar bounded nonlinear function minimization
fminsearch Multidimensional unconstrained nonlinear

minimization, by Nelder-Mead direct search method
fzero Scalar nonlinear zero finding
lsqnonneg Linear least squares with nonnegativity constraints
optimset Create or alter optimization options structure
optimget Get optimization parameters from options structure

Numerical Integration (Quadrature)
quad Numerically evaluate integral, adaptive Simpson

quadrature (low order)
quadl Numerically evaluate integral, adaptive Lobatto

quadrature (high order)
quadv Vectorized quadrature
dblquad Numerically evaluate double integral
triplequad Numerically evaluate triple integral

Specialized Math
airy Airy functions
besselh Bessel functions of third kind (Hankel functions)
besseli Modified Bessel function of first kind
besselj Bessel function of first kind
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besselk Modified Bessel function of second kind
bessely Bessel function of second kind
beta Beta function
betainc Incomplete beta function
betaln Logarithm of beta function
ellipj Jacobi elliptic functions
ellipke Complete elliptic integrals of first and second kind
erf Error function
erfc Complementary error function
erfcinv Inverse complementary error function
erfcx Scaled complementary error function
erfinv Inverse error function
expint Exponential integral
gamma Gamma function
gammainc Incomplete gamma function
gammaln Logarithm of gamma function
legendre Associated Legendre functions
psi Psi (polygamma) function

Elementary Sparse Matrices
spdiags Sparse matrix formed from diagonals
speye Sparse identity matrix
sprand Sparse uniformly distributed random matrix
sprandn Sparse normally distributed random matrix
sprandsym Sparse random symmetric matrix

Full to Sparse Conversion
find Find indices of nonzero elements
full Convert sparse matrix to full matrix
sparse Create sparse matrix
spconvert Import from sparse matrix external format

Working with Sparse Matrices
issparse Determine if input is sparse matrix
nnz Number of nonzero matrix elements
nonzeros Nonzero matrix elements
nzmax Amount of storage allocated for nonzero matrix

elements
spalloc Allocate space for sparse matrix
spfun Apply function to nonzero matrix elements
spones Replace nonzero sparse matrix elements with ones
spparms Set parameters for sparse matrix routines
spy Visualize sparsity pattern

Reordering Algorithms
colamd Column approximate minimum degree permutation
colperm Column permutation
dmperm Dulmage-Mendelsohn permutation
randperm Random permutation
symamd Symmetric approximate minimum degree permutation
symrcm Symmetric reverse Cuthill-McKee permutation
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Linear Algebra
cholinc Incomplete Cholesky factorization
condest 1-norm condition number estimate
eigs Eigenvalues and eigenvectors of sparse matrix
luinc Incomplete LU factorization
normest Estimate matrix 2-norm
spaugment Form least-squares augmented system
sprank Structural rank
svds Singular values and vectors of sparse matrix

Linear Equations (Iterative Methods)
bicg BiConjugate Gradients method
bicgstab BiConjugate Gradients Stabilized method
cgs Conjugate Gradients Squared method
gmres Generalized Minimum Residual method
lsqr LSQR implementation of Conjugate Gradients on

Normal Equations
minres Minimum Residual method
pcg Preconditioned Conjugate Gradients method
qmr Quasi-Minimal Residual method
symmlq Symmetric LQ method

Tree Operations
etree Elimination tree
etreeplot Plot elimination tree
gplot Plot graph, as in “graph theory”
symbfact Symbolic factorization analysis
treelayout Lay out tree or forest
treeplot Plot picture of tree

Math Constants
eps Floating-point relative accuracy
i Imaginary unit
Inf Infinity, 1
intmax Largest possible value of specified integer type
intmin Smallest possible value of specified integer type
j Imaginary unit
NaN Not-a-Number
pi Ratio of a circle’s circumference to its diameter, p
realmax Largest positive floating-point number
realmin Smallest positive floating-point number
cumprod Cumulative product
cumsum Cumulative sum
interp1 One-dimensional data interpolation
interp2 Two-dimensional data interpolation
prod Product of array elements
sort Sort array elements in ascending or descending order
sortrows Sort rows in ascending order
sum Sum of array elements

Correlation
corrcoef Correlation coefficients
cov Covariance matrix
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Finite Differences and Integration
cumtrapz Cumulative trapezoidal numerical integration
del2 Discrete Laplacian
diff Differences and approximate derivatives
gradient Numerical gradient
trapz Trapezoidal numerical integration

Fourier Transforms
abs Absolute value and complex magnitude
angle Phase angle
cplxpair Sort numbers into complex conjugate pairs
fft One-dimensional discrete Fourier transform
fft2 Two-dimensional discrete Fourier transform
fftn N-dimensional discrete Fourier Transform
fftshift Shift DC component of discrete Fourier transform to

center of spectrum
fftw Interface to the FFTW library run-time algorithm for

tuning FFTs
ifft Inverse one-dimensional discrete Fourier transform
ifft2 Inverse two-dimensional discrete Fourier transform
ifftn Inverse multidimensional discrete Fourier transform
ifftshift Inverse fast Fourier transform shift
nextpow2 Next higher power of two
unwrap Unwrap phase angle in radians

Statistics
max Maximum elements of array
mean Average or mean value of arrays
median Median value of arrays
min Minimum elements of array
mode Most frequent value of array
std Standard deviation
var Variance

Time Series General Timeseries
þ 2 .� � ./ / .\ \ Overloaded MATLAB arithmetic operators work with

time series
get (timeseries) Query time-series property values
getdatasamplesize Return size of data sample
getqualitydesc Return data quality descriptions
isempty (timeseries) Determine if timeseries object is empty
length (timeseries) Return length of time vector
plot (timeseries) Plot time series
set (timeseries) Set properties of timeseries object
size (timeseries) Size of time series
timeseries Create timeseries object
tsdata.event Construct time-series event object
tsprops help tsprops provides help on time-series object

properties
tstool Start Time Series Tools GUI
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Time-Series Data and Time Manipulation
addsample Add data sample to timeseries object
ctranspose (timeseries) Transpose timeseries object
delsample Delete sample from timeseries object
detrend (timeseries) Subtract mean or best-fit line and all NaNs from

time-series data
filter (timeseries) Shape frequency content of time-series data
getabstime (timeseries) Extract date-string time vector into cell array
getinterpmethod Get interpolation method for time-series object
getsampleusingtime

(timeseries)
Extract specified samples into new time series

idealfilter (timeseries) Apply ideal (noncausal) filter to time-series object
resample (timeseries) Redefine time series based on new time vector
setabstime (timeseries) Set times of time series as date strings
setinterpmethod Set default interpolation method for time-series object
synchronize Synchronize two time-series objects onto common time

vector
transpose (timeseries) Transpose time-series object
tsdateinterval Generate uniformly spaced sequence of dates and

times
vertcat (timeseries) Vertical concatenation for time series

Time-Series Events
addevent Add event to time series
delevent Remove event objects from time series
gettsafteratevent Return new time series with samples occurring at or

after event
gettsafterevent Return new time series with samples occurring after

event
gettsatevent Return new time series with samples occurring at event
gettsbeforeatevent Return new time series with samples occurring before

or at event
gettsbeforeevent Return new time series with samples occurring before

event
gettsbetweenevents Return new time series with samples occurring

between events

Time-Series Statistical
iqr (timeseries) Interquartile range of time-series data
max (timeseries) Maximum value of time-series data
mean (timeseries) Mean value of time-series data
median (timeseries) Median value of time-series data
min (timeseries) Minimum value of time-series data
std (timeseries) Standard deviation of time-series data
sum (timeseries) Sum of time-series data
var (timeseries) Variance of time-series data

Time-Series Collection General tscollection
get (tscollection) Query time-series collection property values
isempty (tscollection) Determine if tscollection is empty
length (tscollection) Return length of time vector
plot (timeseries) Plot time series
set (tscollection) Set properties of tscollection object
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size (tscollection) Size of time-series collection
tscollection Create time-series collection object
tstool Open Time Series Tools GUI

Time-Series Collection Data and Time Manipulation
General tscollection
addsampletocollection Add sample to time-series collection
addts Add data vector or time-series object to

tscollection
delsamplefromcollection Delete sample from tscollection object
getabstime

(tscollection)
Extract date-string time vector into cell array

getsampleusingtime
(tscollection)

Extract specified samples into new tscollection

gettimeseriesnames Return cell array of names of time series in
tscollection object

horzcat (tscollection) Horizontal concatenation for tscollection
objects

removets Remove time-series objects from collection
resample (tscollection) Redefine tscollection object on new time vector
setabstime (tscollection) Set time of time-series collection as date strings
settimeseriesnames Change time series name
vertcat (tscollection) Vertical concatenation for tscollection object

Programming and Data Types, Data Types Numeric
[ ] Array constructor
arrayfun Apply function to each element of array
cast Cast variable to different data type
cat Concatenate arrays along specified dimension
class Create object or return class of object
find Find indices and values of nonzero array elements
intmax Largest possible value of specified integer type
intmin Smallest possible value of specified integer type
intwarning Control state of integer warnings
ipermute Inverse permute dimensions of multidimensional array
isa Determine if input is object of given class (e.g.,

numeric)
isequal Test arrays for equality
isequalwithequalnans Test arrays for equality, treating NaNs as equal
isnumeric Determine if input is numeric array
isreal Determine if all array elements are real numbers
isscalar Determine if input is scalar (1-by-1)
isvector Determine if input is vector (1-by-N or N-by-1)
permute Rearrange dimensions of multidimensional array
realmax Largest positive floating-point number
realmin Smallest positive floating-point number
reshape Reshape array
squeeze Remove singleton dimensions from array
zeros Create array of all zeros
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Characters and Strings Description of Strings in MATLAB
W

strings MATLAB string-handling description

Creating and Manipulating Strings
blanks Create string of space characters
char Convert to character array (string)
cellstr Create cell array of strings from character array
datestr Convert date and time to string format
deblank Strip trailing blanks from end of string
lower Convert string to lowercase
native2unicode Convert numeric bytes to Unicode characters
sprintf Write formatted data to string
sscanf Read string under format control
strcat Concatenate strings horizontally
strjust Justify character array
strread Read formatted data from string
strrep Find and replace substring
strtrim Remove leading and trailing whitespace from string
strvcat Concatenate strings vertically
unicode2native Convert Unicode characters to numeric bytes
upper Convert string to uppercase

Comparing and Searching Strings
class Create object or return class of object
findstr Find string within another, longer string
isa Determine if input is object of given class (e.g., char)
iscellstr Determine if input is cell array of strings
ischar Determine if input is character array
isletter Detect elements that are alphabetic letters
isscalar Determine if input is scalar (1-by-1)
isspace Detect elements that are ASCII white spaces
isstrprop Determine content of each element of string
isvector Determine if input is vector (1-by-N or N-by-1)
regexp Match regular expression
regexpi Match regular expression, ignoring case
regexprep Replace string using regular expression
strcmp Compare strings
strcmpi Compare strings, ignoring case
strfind Find one string within another
strmatch Find possible matches for string
strncmp Compare first n characters of strings
strncmpi Compare first n characters of strings, ignoring case
strtok Return selected parts of string

Evaluating String Expressions
eval Execute string containing MATLAB expression
evalc Evaluate MATLAB expression with capture
evalin Execute MATLAB expression in specified workspace

Structures
arrayfun Apply function to each element of array
cell2struct Convert cell array to structure array
class Create object or return class of object
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deal Distribute inputs to outputs
fieldnames List field names of structure
getfield Get field of structure array
isa Determine if input is object of given class

(e.g., struct)
isequal Test arrays for equality
isfield Determine if input is structure array field
isscalar Determine if input is scalar (1-by-1)
isstruct Determine if input is structure array
isvector Determine if input is vector (1-by-N or N-by-1)
orderfields Order fields of structure array
rmfield Remove fields from structure
setfield Set value of structure array field
struct Create structure array
struct2cell Convert structure to cell array
structfun Apply function to each field of scalar structure

Cell Arrays
{ } Construct cell array
cell Construct cell array
cellfun Apply function to each cell of cell array
cellstr Create cell array of strings from character array
cell2mat Convert cell array of matrices to single matrix
cell2struct Convert cell array to structure array
celldisp Display cell array contents
cellplot Graphically display structure of cell arrays
class Create object or return class of object
deal Distribute inputs to outputs
isa Determine if input is object of given

class (e.g., cell)
iscell Determine if input is cell array
iscellstr Determine if input is cell array of strings
isequal Test arrays for equality
isscalar Determine if input is scalar (1-by-1)
isvector Determine if input is vector (1-by-N or N-by-1)
mat2cell Divide matrix into cell array of matrices
num2cell Convert numeric array to cell array
struct2cell Convert structure to cell array

Data Type Conversion Numeric
cast Cast variable to different data type
double Convert to double-precision
int8 Convert to signed 8-bit integer
int16 Convert to signed 16-bit integer
int32 Convert to signed 32-bit integer
int64 Convert to signed 64-bit integer
single Convert to single-precision
typecast Convert data types without changing

underlying data
uint8 Convert to unsigned 8-bit integer
uint16 Convert to unsigned 16-bit integer
uint32 Convert to unsigned 32-bit integer
uint64 Convert to unsigned 64-bit integer
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String to Numeric
base2dec Convert base N number string to decimal number
bin2dec Convert binary number string to decimal number
cast Cast variable to different data type
hex2dec Convert hexadecimal number string to decimal number
hex2num Convert hexadecimal number string to

double-precision number
str2double Convert string to double-precision number
str2num Convert string to number

Numeric to String
cast Cast variable to different type
char Convert to character array (string)
dec2base Convert decimal to base N number in string
dec2bin Convert decimal to binary number in string
dec2hex Convert decimal to hexadecimal number in string
int2str Convert integer to string
mat2str Convert matrix to string
num2str Convert number to string

Other Conversions
cell2mat Convert cell array of matrices to single matrix
cell2struct Convert cell array to structure array
datestr Convert date and time to string format
func2str Construct function name string from function handle
logical Convert numeric values to logical
mat2cell Divide matrix into cell array of matrices
num2cell Convert numeric array to cell array
str2func Construct function handle from function name string
str2mat Form blank-padded character matrix from strings
struct2cell Convert structure to cell array

Determine Data Type
is� Detect state
isa Determine if input is object of given class
iscell Determine if input is cell array
iscellstr Determine if input is cell array of strings
ischar Determine if input is character array
isfield Determine if input is character array
isfloat Determine if input is floating-point array
isinteger Determine if input is integer array
isjava Determine if input is Java object
islogical Determine if input is logical array
isnumeric Determine if input is numeric array
isobject Determine if input is MATLAB OOPs object
isreal Determine if all array elements are real numbers
isstruct Determine if input is MATLAB structure array

Arrays Array Operations
[ ] Array constructor
, Array row element separator
; Array column element separator
: Range of array elements
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þ Addition or unary plus
2 Subtraction or unary minus
.� Array multiplication
./ Array right division
.\ Array left division
.‘ Array power
.’ Array (nonconjugated) transpose
arrayfun Apply function to each element of array
end Indicate last index of array

Basic Array Information
disp Display text or array
display Overloaded method to display text or array
isempty Determine if array is empty
isequal Test arrays for equality
isequalwithequalnans Test arrays for equality, treating NaNs as equal
islogical Determine if input is logical array
isnumeric Determine if input is numeric array
isscalar Determine if input is scalar
isvector Determine if input is vector
length Length of vector
ndims Number of array dimensions
numel Number of elements in matrix or cell array
size Array dimensions

Array Manipulation
: Specify range of array elements
blkdiag Construct block diagonal matrix from input arguments
cat Concatenate arrays along specified dimension
circshift Shift array circularly
find Find indices and values of nonzero elements
fliplr Flip matrices left-right
flipud Flip matrices up-down
flipdim Flip array along specified dimension
horzcat Concatenate arrays horizontally
ind2sub Subscripts from linear index
ipermute Inverse permute dimensions of multidimensional array
permute Rearrange dimensions of multidimensional array
repmat Replicate and tile array
reshape Reshape array
rot90 Rotate matrix 90 deg
shiftdim Shift dimensions
sort Sort array elements in ascending or descending order
sortrows Sort rows in ascending order
squeeze Remove singleton dimensions
sub2ind Single index from subscripts
vertcat Concatenate arrays vertically

Elementary Arrays
: Construct regularly spaced vector
blkdiag Construct block diagonal matrix from input arguments
eye Identity matrix
linspace Generate linearly spaced vectors
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logspace Generate logarithmically spaced vectors
meshgrid Generate X and Y matrices for three-dimensional plots
ndgrid Generate arrays for multidimensional functions and

interpolation
ones Create array of all ones
rand Uniformly distributed random numbers and arrays
randn Normally distributed random numbers and arrays
zeros Create array of all zeros

Operators and Operations Special Characters
: Specify range of array elements
( ) Pass function arguments, or prioritize operations
[ ] Construct array
{ } Construct cell array
. Decimal point, or structure field separator
. . . Continue statement to next line
, Array row element separator
; Array column element separator
% Insert comment line into code
! Issue command to operating system
¼ Assignment

Arithmetic Operations
þ Plus
2 Minus
. Decimal point
¼ Assignment
� Matrix multiplication
/ Matrix right division
\ Matrix left division
‘ Matrix power
’ Matrix transpose
.� Array multiplication (element-wise)
./ Array right division (element-wise)
.\ Array left division (element-wise)
.‘ Array power (element-wise)
.’ Array transpose

Bit-Wise Operations
bitand Return bit-wise and
bitcmp Return bit-wise complement
bitget Get bit at specified position
bitmax Return maximum double-precision floating-point

integer
bitor Return bit-wise or
bitset Set bit at specified position
bitshift Shift bits specified number of places
bitxor Return bit-wise xor
swapbytes Swap byte ordering

Relational Operations
, Less than
,¼ Less than or equal to
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. Greater than

.¼ Greater than or equal to
¼¼ Equal to
�¼ Not equal to

Logical Operations
&& Logical and
k Logical or
& Logical and for arrays
j Logical or for arrays
� Logical not
all Determine if all array elements are nonzero
any Determine if any array elements are nonzero
FALSE Return logical 0 (false)
find Find indices and values of nonzero elements
is� Detect state
isa Determine if input is object of given class
iskeyword Determine if string is MATLAB keyword
isvarname Determine if string is valid variable name
logical Convert numeric values to logical
TRUE Return logical 1 (true)
xor Logical exclusive-or

Set Operations
intersect Find set intersection of two vectors
ismember Detect members of set
setdiff Find set difference of two vectors
issorted Determine if set elements are in sorted order
setxor Find set exclusive or of two vectors
union Find set union of two vectors
unique Find unique elements of vector

Date and Time Operations
addtodate Modify date number by field
calendar Display calendar for specified month
clock Return current time as date vector
cputime Return elapsed CPU time
date Return current date string
datenum Convert date and time to serial date number
datestr Convert date and time to string format
datevec Convert date and time to vector of components
eomday Return last day of month
etime Return time elapsed between date vectors
now Return current date and time
tic, toc Measure performance using stopwatch timer
weekday Return day of week

Programming in MATLABW M-File Functions and Scripts
( ) Pass function arguments
% Insert comment line into code
. . . Continue statement to next line
depfun List dependencies of M-file or P-file
depdir List dependent directories of M-file or P-file
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echo Echo M-files during execution
end Terminate block of code
function Declare M-file function
input Request user input
inputname Return variable name of function input
mfilename Return name of currently running M-file
namelengthmax Return maximum identifier length
nargin Return number of function input arguments
nargout Return number of function output arguments
nargchk Validate number of input arguments
nargoutchk Validate number of output arguments
pcode Create preparsed pseudocode file (P-file)
script Script M-file description
varargin Accept variable number of arguments
varargout Return variable number of arguments

Evaluation of Expressions and Functions
arrayfun Apply function to each element of array
builtin Execute built-in function from overloaded method
cellfun Apply function to each cell of cell array
echo Echo M-files during execution
eval Execute string containing MATLAB expression
evalc Evaluate MATLAB expression with capture
evalin Execute MATLAB expression in specified workspace
feval Evaluate function
iskeyword Determine if input is MATLAB keyword
isvarname Determine if input is valid variable name
pause Halt execution temporarily
run Run script that is not on current path
script Script M-file description
structfun Apply function to each field of scalar structure
symvar Determine symbolic variables in expression
tic, toc Measure performance using stopwatch timer

Timer Functions
delete Delete timer object from memory
disp Display information about timer object
get Retrieve information about timer object properties
isvalid Determine if timer object is valid
set Display or set timer object properties
start Start timer
startat Start timer at specified time
stop Stop timer
timer Create timer object
timerfind Return array of all visible timer objects in memory
timerfindall Return array of all timer objects in memory
wait Block command line until timer completes

Variables and Functions in Memory
assignin Assign value to variable in specified workspace
datatipinfo Produce short description of variable for debugger

DataTips
genvarname Construct valid variable name from string
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global Declare global variables
inmem Return names of M-files, MEX-files, Java classes in

memory
mislocked Determine if M-file or MEX-file cannot be cleared from

memory
mlock Prevent clearing M-file or MEX-file from memory
munlock Allow clearing M-file or MEX-file from memory
namelengthmax Return maximum identifier length
pack Consolidate workspace memory
persistent Define persistent variable
rehash Refresh function and file system path caches

Control Flow
break Terminate execution of for or while loop
case Execute block of code if condition is true
catch Specify how to respond to error in try statement
continue Pass control to next iteration of for or while loop
else Conditionally execute statements
elseif Conditionally execute statements
end Terminate conditional block of code
error Display error message
for Execute block of code specified number of times
if Conditionally execute statements
otherwise Default part of switch statement
return Return to invoking function
switch Switch among several cases, based on expression
try Attempt to execute block of code, and catch errors
while Repeatedly execute statements while condition is true

Function Handles
class Create object or return class of object
feval Evaluate function
function_handle Handle used in calling functions indirectly
functions Return information about function handle
func2str Construct function name string from function handle
isa Determine if input is object of given class (e.g.,

function_handle)
isequal Determine if function handles are equal
str2func Construct function handle from function name string

Object-Oriented Programming MATLABW-Classes and Objects
class Create object or return class of object
fieldnames List public fields belonging to object
inferiorto Establish inferior class relationship
isa Determine if input is object of given class
isobject Determine if input is MATLAB OOPs object
loadobj User-defined extension of load function for user

objects
methods Display information on class methods
methodsview Display information on class methods in separate

window
saveobj User-defined extension of save function for user

objects
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subsasgn Overloaded method for A(I) ¼ B, A{I} ¼ B, and
A.field ¼ B

subsindex Overloaded method for X(A)
subsref Overloaded method for A(I) , A{I}, and A.field
substruct Create structure argument for subsasgn or subsref
superiorto Establish superior class relationship

Java Classes and Objects
cell Convert Java array object to cell array
class Create object or return class of object
clear Clear Java import list or Java class definitions
depfun List Java classes used by M-file or P-file
exist Determine if input is Java class
fieldnames List public fields belonging to object
im2java Convert image to instance of Java image object
import Add package or class to current Java import list
inmem Return names of M-files, MEX-files, Java classes in

memory
isa Determine if input is object of given class
isjava Determine if input is Java object
javaaddpath Add entries to dynamic Java class path
javaArray Construct Java array
javachk Generate error message based on Java feature

support
javaclasspath Set and get dynamic Java class path
javaMethod Invoke Java method
javaObject Construct Java object
javarmpath Remove entries from dynamic Java class path
methods Display information on class methods
methodsview Display information on class methods in separate

window
usejava Determine if Java feature is supported in MATLAB
which Display package and class name for method

Error Handling
catch Specify how to respond to error in try statement
error Display error message
ferror Query MATLAB about errors in file input or output
intwarning Control state of integer warnings
lasterr Return last error message
lasterror Last error message and related information
lastwarn Return last warning message
rethrow Reissue error
try Attempt to execute block of code, and catch errors
warning Display warning message

MEX Programming
dbmex Enable MEX-file debugging
inmem Return names of M-files, MEX-files, Java classes in

memory
mex Compile MEX-function from C or FORTRAN source

code
mexext Return MEX-filename extension
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File I/O Filename Construction
fileparts Return parts of filename and path
filesep Return directory separator for platform in use
fullfile Build full filename from parts
tempdir Return name of system’s temporary directory
tempname Return unique string for use as temporary filename

Opening, Loading, Saving Files
importdata Load data from various types of files
load Load workspace variables from disk
open Open files of various types using appropriate editor or

program
save Save workspace variables on disk
uiimport Open Import Wizard interface to import data
winopen Open file in appropriate application (Windows only)

Memory Mapping
disp Display information about memory map object
get Return memmapfile object properties
memmapfile Construct memory map object

Low-Level File I/O
fclose Close one or more open files
feof Test for end-of-file
ferror Query MATLAB about errors in file input or output
fgetl Return next line of file as string without line

terminator(s)
fgets Return next line of file as string with line terminator(s)
fopen Open file or obtain information about open files
fprintf Write formatted data to file
fread Read binary data from file
frewind Rewind open file
fscanf Read formatted data from file
fseek Set file position indicator
ftell Get file position indicator
fwrite Write binary data to file

Text Files
csvread Read numeric data from text file using comma delimiter
csvwrite Write numeric data to text file using comma delimiter
dlmread Read numeric data from text file with specified delimiter
dlmwrite Write numeric data to text file specified delimiter
textread Read formatted data from start of text file
textscan Read formatted data from any point in text file

XML Documents
xmlread Parse XML document
xmlwrite Serialize XML Document Object Model node
xslt Transform XML document using XSLT engine

Microsoft Excel Functions
xlsfinfo Determine if file contains Microsoft Excel (.xls)

spreadsheet
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xlsread Read Microsoft Excel spreadsheet file (.xls)
xlswrite Write Microsoft Excel spreadsheet file (.xls)

Lotus123 Functions
wk1read Read Lotus123 WK1 spreadsheet file into matrix
wk1write Write matrix to Lotus123 WK1 spreadsheet file

Scientific Data Common Data Format (CDF)
cdfepoch Construct cdfepoch object from date string or number
cdfinfo Return information about CDF file
cdfread Read CDF file
cdfwrite Write CDF file
todatenum Convert cdfepoch object to MATLAB datenum

Flexible Image Transport System
fitsinfo Return information about FITS file
fitsread Read FITS file

Hierarchical Data Format (HDF)
hdf Interface to HDF4 files
hdfinfo Return information about HDF4 or HDF-EOS file
hdfread Read HDF4 file
hdftool Start HDF4 Import Tool
hdf5 Describes HDF5 data type objects
hdf5info Return information about HDF5 file
hdf5read Read HDF5 file
hdf5write Write data to file in HDF5 format

Band-Interleaved Data
multibandread Read band-interleaved data from file
multibandwrite Write band-interleaved data to file

Audio and Audio/Video General
audioplayer Create audio player object
audiorecorder Perform real-time audio capture
beep Produce beep sound
lin2mu Convert linear audio signal to mu-law
mmfileinfo Information about multimedia file
mu2lin Convert mu-law audio signal to linear
sound Convert vector into sound
soundsc Scale data and play as sound

SPARCstation-Specific Sound Functions
auread Read NeXT/SUN (.au) sound file
auwrite Write NeXT/SUN (.au) sound file

Microsoft WAVE Sound Functions
wavplay Play sound on PC-based audio output device
wavread Read Microsoft WAVE (.wav) sound file
wavrecord Record sound using PC-based audio input device
wavwrite Write Microsoft WAVE (.wav) sound file

Audio/Video Interleaved (AVI) Functions
addframe Add frame to AVI file
avifile Create new AVI file
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aviinfo Return information about AVI file
aviread Read AVI file
close Close AVI file
movie2avi Create AVI movie from MATLAB movie

Images
exifread Read EXIF information from JPEG and TIFF images
im2java Convert image to instance of Java image object
imfinfo Return information about graphics file
imread Read image from graphics file
imwrite Write image to graphics file

Internet Exchange URL, Zip, Tar, E-Mail
gzip Compress files into the gzip format
gunzip Uncompress files in the gzip format
sendmail Send e-mail message to list of addresses
tar Compress files into a tar-file
untar Extract contents of a tar file
unzip Extract contents of zip file
urlread Read contents at URL
urlwrite Save contents of URL to file
zip Create compressed version of files in zip format

FTP Functions
ascii Set FTP transfer type to ASCII
binary Set FTP transfer type to binary
cd (ftp) Change current directory on FTP server
close (ftp) Close connection to FTP server
delete (ftp) Delete file on FTP server
dir (ftp) List contents of directory on FTP server
ftp Connect to FTP server, creating an FTP object
mget Download file from FTP server
mkdir (ftp) Create new directory on FTP server
mput Upload file or directory to FTP server
rename Rename file on FTP server
rmdir (ftp) Remove directory on FTP server

Graphics Basic Plots and Graphs
box Axis box for two- and three-dimensional plots
errorbar Plot graph with error bars
hold Hold current graph
LineSpec Line specification syntax
loglog Plot using log-log scales
polar Polar coordinate plot
plot Plot vectors or matrices
plot3 Plot lines and points in three-dimensional space
plotyy Plot graphs with Y tick labels on the left and right
semilogx Semi-log scale plot
semilogy Semi-log scale plot
subplot Create axes in tiled positions

Plotting Tools
figurepalette Display figure palette on figure
pan Turn panning on or off

APPENDIX C: MATLABW, SIMULINKW, AND STATEFLOWW 461



plotbrowser Display plot browser on figure
plottools Start plotting tools
propertyeditor Display property editor on figure
zoom Turn zooming on or off

Annotating Plots
annotation Create annotation objects
clabel Add contour labels to contour plot
datetick Date formatted tick labels
gtext Place text on two-dimensional graph using mouse
legend Graph legend for lines and patches
texlabel Produce the TeX format from character string
title Titles for two- and three-dimensional plots
xlabel X-axis labels for two- and three-dimensional plots
ylabel Y-axis labels for two- and three-dimensional plots
zlabel Z-axis labels for three-dimensional plots

Annotation Object Properties
arrow Properties for annotation arrows
doublearrow Properties for double-headed annotation arrows
ellipse Properties for annotation ellipses
line Properties for annotation lines
rectangle Properties for annotation rectangles
textarrow Properties for annotation textbox

Specialized Plotting Area, Bar, and Pie Plots
area Area plot
bar Vertical bar chart
barh Horizontal bar chart
bar3 Vertical three-dimensional bar chart
bar3h Horizontal three-dimensional bar chart
pareto Pareto char
pie Pie plot
pie3 Three-dimensional pie plot

Contour Plots
contour Contour (level curves) plot
contour3 Three-dimensional contour plot
contourc Contour computation
contourf Filled contour plot
ezcontour Easy-to-use contour plotter
ezcontourf Easy-to-use filled contour plotter

Direction and Velocity Plots
comet Comet plot
comet3 Three-dimensional comet plot
compass Compass plot
feather Feather plot
quiver Quiver (or velocity) plot
quiver3 Three-dimensional quiver (or velocity) plot
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Discrete Data Plots
stem Plot discrete sequence data
stem3 Plot discrete surface data
stairs Stairstep graph

Function Plots
ezcontour Easy-to-use contour plotter
ezcontourf Easy-to-use filled contour plotter
ezmesh Easy-to-use three-dimensional mesh plotter
ezmeshc Easy-to-use combination mesh/contour plotter
ezplot Easy-to-use function plotter
ezplot3 Easy-to-use three-dimensional parametric curve plotter
ezpolar Easy-to-use polar coordinate plotter
ezsurf Easy-to-use three-dimensional colored surface plotter
ezsurfc Easy-to-use combination surface/contour plotter
fplot Plot a function

Histograms
hist Plot histograms
histc Histogram count
rose Plot rose or angle histogram

Polygons and Surfaces
convhull Convex hull
cylinder Generate cylinder
delaunay Delaunay triangulation
dsearch Search Delaunay triangulation for nearest point
ellipsoid Generate ellipsoid
fill Draw filled two-dimensional polygons
fill3 Draw filled three-dimensional polygons in 3-space
inpolygon True for points inside a polygonal region
pcolor Pseudocolor (checkerboard) plot
polyarea Area of polygon
ribbon Ribbon plot
slice Volumetric slice plot
sphere Generate sphere
tsearch Search for enclosing Delaunay triangle
voronoi Voronoi diagram
waterfall Waterfall plot

Scatter/Bubble Plots
plotmatrix Scatter plot matrix
scatter Scatter plot
scatter3 Three-dimensional scatter plot

Animation
frame2im Convert movie frame to indexed image
getframe Capture movie frame
im2frame Convert image to movie frame
movie Play recorded movie frames
noanimate Change EraseMode of all objects to normal
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Bit-Mapped Images
frame2im Convert movie frame to indexed image
image Display image object
imagesc Scale data and display image object
imfinfo Information about graphics file
imformats Manage file format registry
im2frame Convert image to movie frame
im2java Convert image to instance of Java image object
imread Read image from graphics file
imwrite Write image to graphics file
ind2rgb Convert indexed image to RGB image

Printing
frameedit Edit print frame for Simulink and Stateflow diagram
orient Hardcopy paper orientation
pagesetupdlg Page setup dialog box
print Print graph or save graph to file
printdlg Print dialog box
printopt Configure local printer defaults
printpreview Preview figure to be printed
saveas Save figure to graphic file

Handle GraphicsW Finding and Identifying Graphics Objects
allchild Find all children of specified objects
ancestor Find ancestor of graphics object
copyobj Make copy of graphics object and its children
delete Delete files or graphics objects
findall Find all graphics objects (including hidden handles)
findfigs Display off-screen visible figure windows
findobj Find objects with specified property values
gca Get current Axes handle
gcbo Return object whose callback is currently executing
gcbf Return handle of figure containing callback object
gco Return handle of current object
get Get object properties
ishandle True if value is valid object handle
set Set object properties

Object Creation Functions
axes Create axes object
figure Create figure (graph) windows
hggroup Create a group object
hgtransform Create a group to transform
image Create image (two-dimensional matrix)
light Create light object (illuminates Patch and Surface)
line Create line object (three-dimensional polylines)
patch Create patch object (polygons)
rectangle Create rectangle object (two-dimensional rectangle)
rootobject List of root properties
surface Create surface (quadrilaterals)
text Create text object (character strings)
uicontextmenu Create context menu (popup associated with object)
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Plot Objects
areaseries Property list
barseries Property list
contourgroup Property list
errorbarseries Property list
lineseries Property list
quivergroup Property list
scattergroup Property list
stairseries Property list
stemseries Property list
surfaceplot Property list

Figure Windows
clc Clear figure window
clf Clear figure
close Close specified window
closereq Default close request function
drawnow Complete any pending drawing
gcf Get current figure handle
hgload Load graphics object hierarchy from a FIG-file
hgsave Save graphics object hierarchy to a FIG-file
newplot Graphics M-file preamble for NextPlot property
opengl Change automatic selection mode of OpenGL

rendering
refresh Refresh figure
saveas Save figure or model to desired output format

Axes Operations
axis Plot axis scaling and appearance
box Display axes border
cla Clear axes
gca Get current axes handle
grid Grid lines for two- and three-dimensional plots
ishold Get the current hold state
makehgtform Create a transform matrix

Operating on Object Properties
get Get object properties
linkaxes Synchronize limits of specified axes
linkprop Maintain same value for corresponding properties
set Set object properties

Three-Dimensional Visualization Surface and Mesh Plots Creating
Surfaces and Meshes
hidden Mesh hidden line removal mode
meshc Combination mesh/contourplot
mesh Three-dimensional mesh with reference plane
peaks A sample function of two variables
surf Three-dimensional shaded surface graph
surface Create surface low-level objects
surfc Combination surf/contourplot
surfl Three-dimensional shaded surface with lighting
tetramesh Tetrahedron mesh plot
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trimesh Triangular mesh plot
triplot Two-dimensional triangular plot
trisurf Triangular surface plot

Domain Generation
griddata Data gridding and surface fitting
meshgrid Generation of X and Y arrays for three-dimensional

plots

Color Operations
brighten Brighten or darken colormap
caxis Pseudocolor axis scaling
colormapeditor Start colormap editor
colorbar Display color bar (color scale)
colordef Set up color defaults
colormap Set the color look-up table (list of colormaps)
ColorSpec Ways to specify color
graymon Graphics figure defaults set for gray-scale monitor
hsv2rgb Hue-saturation-value to red-green-blue conversion
rgb2hsv RGB to HSV conversion
rgbplot Plot colormap
shading Color shading mode
spinmap Spin the colormap
surfnorm Three-dimensional surface normals
whitebg Change axes background color for plots

Colormaps
autumn Shades of red and yellow colormap
bone Gray scale with a tinge of blue colormap
contrast Gray colormap to enhance image contrast
cool Shades of cyan and magenta colormap
copper Linear copper-tone colormap
flag Alternating red, white, blue, and black colormap
gray Linear gray-scale colormap
hot Black-red-yellow-white colormap
hsv Hue-saturation-value (HSV) colormap
jet Variant of HSV
lines Line color colormap
prism Colormap of prism colors
spring Shades of magenta and yellow colormap
summer Shades of green and yellow colormap
winter Shades of blue and green colormap

View Control Controlling the Camera Viewpoint
camdolly Move camera position and target
camlookat View specific objects
camorbit Orbit about camera target
campan Rotate camera target about camera position
campos Set or get camera position
camproj Set or get projection type
camroll Rotate camera about viewing axis
camtarget Set or get camera target
cameratoolbar Control camera toolbar programmatically
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camup Set or get camera up-vector
camva Set or get camera view angle
camzoom Zoom camera in or out
view Three-dimensional graph viewpoint specification
viewmtx Generate view transformation matrices

Setting the Aspect Ratio and Axis Limits
daspect Set or get data aspect ratio
pbaspect Set or get plot box aspect ratio
xlim Set or get the current x-axis limits
ylim Set or get the current y-axis limits
zlim Set or get the current z-axis limits

Object Manipulation
pan Turns panning on or off
reset Reset axis or figure
rotate Rotate objects about specified origin and direction
rotate3d Interactively rotate the view of a three-dimensional

plot
selectmoveresize Interactively select, move, or resize objects
zoom Zoom in and out on a two-dimensional plot

Selecting Region of Interest
dragrect Drag XOR rectangles with mouse
rbbox Rubberband box

Lighting
camlight Cerate or position Light
light Light object creation function
lightangle Position light in sphereical coordinates
lighting Lighting mode
material Material reflectance mode

Transparency
alpha Set or query transparency properties for objects in

current axes
alphamap Specify the figure alphamap
alim Set or query the axes alpha limits

Volume Visualization
coneplot Plot velocity vectors as cones in three-dimensional

vector field
contourslice Draw contours in volume slice plane
curl Compute curl and angular velocity of vector field
divergence Compute divergence of vector field
flow Generate scalar volume data
interpstreamspeed Interpolate streamline vertices from vector-field

magnitudes
isocaps Compute isosurface end-cap geometry
isocolors Compute colors of isosurface vertices
isonormals Compute normals of isosurface vertices
isosurface Extract isosurface data from volume data
reducepatch Reduce number of patch faces
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reducevolume Reduce number of elements in volume data set
shrinkfaces Reduce size of patch faces
slice Draw slice planes in volume
smooth3 Smooth three-dimensional data
stream2 Compute two-dimensional stream line data
stream3 Compute three-dimensional stream line data
streamline Draw stream lines from two- or three-dimensional

vector data
streamparticles Draws stream particles from vector volume data
streamribbon Draws stream ribbons from vector volume data
streamslice Draws well-spaced stream lines from vector volume

data
streamtube Draws stream tubes from vector volume data
surf2patch Convert surface data to patch data
subvolume Extract subset of volume data set
volumebounds Return coordinate and color limits for volume (scalar

and vector)

Creating Graphical User Interfaces Predefined Dialog Boxes
dialog Create and display dialog box
errordlg Create and display error dialog box
helpdlg Create and display help dialog box
inputdlg Create and display input dialog box
listdlg Create and display list selection dialog box
msgbox Create and display message dialog box
pagesetupdlg Display page setup dialog box
printdlg Display print dialog box
questdlg Display question dialog box
uigetdir Display standard dialog box for retrieving a directory
uigetfile Display standard dialog box for retrieving files
uigetpref Display dialog box for retrieving preferences
uiputfile Display standard dialog box for saving files
uisave Display standard dialog box for saving workspace

variables
uisetcolor Display standard dialog box for setting an object’s

ColorSpec
uisetfont Display standard dialog box for setting an object’s

font characteristics
waitbar Display waitbar
warndlg Display warning dialog box

Deploying User Interfaces
guidata Store or retrieve GUI data
guihandles Create a structure of handles
movegui Move GUI figure to specified location onscreen
openfig Open new copy or raise existing copy of GUI figure

Developing User Interfaces
guide Start the GUI Layout Editor
inspect Display Property Inspector

Working with Application Data
getappdata Get value of application-defined data
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isappdata True if application-defined data exists
rmappdata Remove application-defined data
setappdata Specify application-defined data
guidata Store or retrieve GUI data

Interactive User Input
ginput Graphical input from a mouse or cursor
waitfor Wait for conditions before resuming execution
waitforbuttonpress Wait for key/buttonpress over figure

Working with Preferences
addpref Add preference
getpref Get preference
ispref Test for existence of preference
rmpref Remove preference
setpref Set preference
uigetpref Display dialog box for retrieving preferences
uisetpref Manage preferences used in uigetpref

User Interface Objects
menu Generate menu of choices for user input
uibuttongroup Create container object to exclusively manage radio

buttons and toggle buttons
uicontextmenu Create context menu
uicontrol Create user interface control object
uimenu Create menus on figure windows
uipanel Create panel container object
uipushtool Create push button on a toolbar
uitoggletool Create toggle button on a toolbar
uitoolbar Create toolbar on a figure

Finding Objects from Callbacks
findall Find all graphics objects
findfigs Find visible off-screen figures
findobj Locate graphics objects with specific properties
gcbf Return handle of figure containing object whose

callback is executing
gcbo Return handle of object whose callback is executing

GUI Utility Functions
selectmoveresize Select, move, resize, or copy axes and uicontrol

graphics objects
textwrap Return wrapped string matrix for given uicontrol
uistack Restack objects

Controlling Program Execution
uiresume Resume program execution halted with uiwait
uiwait Halt program execution, restart with uiresume

External Interfaces Dynamic Link Libraries
calllib Call function in external library
libfunctions Return information on functions in external library
libfunctionsview Create window displaying information on functions

in external library
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libisloaded Determine if external library is loaded
libpointer Create pointer object for use with external libraries
libstruct Construct structure as defined in external library
loadlibrary Load external library into MATLAB
unloadlibrary Unload external library from memory

Java
class Create object or return class of object
fieldnames Return property names of object
import Add package or class to current Java import list
inspect Display graphical interface to list and modify

property values
isa Determine if input is object of given class
isjava Determine if input is Java object
ismethod Determine if input is object method
isprop Determine if input is object property
javaaddpath Add entries to dynamic Java class path
javaArray Construct Java array
javachk Generate error message based on Java feature

support
javaclasspath Set and get dynamic Java class path
javaMethod Invoke Java method
javaObject Construct Java object
javarmpath Remove entries from dynamic Java class path
methods Display information on class methods
methodsview Display information on class methods in separate

window
usejava Determine if Java feature is supported in MATLAB

Component Object Model and ActiveX
actxcontrol Create ActiveX control in figure window
actxcontrollist List all currently installed ActiveX controls
actxcontrolselect Display graphical interface for creating ActiveX

control
actxserver Create COM Automation server
addproperty Add custom property to object
class Create object or return class of object
delete Delete COM control or server
deleteproperty Remove custom property from object
enableservice Enable DDE or COM Automation server
eventlisteners Return list of events attached to listeners
events Return list of events the control can trigger
Execute Execute MATLAB command in server
Feval Evaluate MATLAB function in server
fieldnames Return property names of object
get Get property value from interface, or display

properties
GetCharArray Get character array from server
GetFullMatrix Get matrix from server
GetVariable Returns data from variable in server workspace
GetWorkspaceData Get data from server workspace
inspect Display graphical interface to list and modify

property values
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interfaces List custom interfaces to COM server
invoke Invoke method on object or interface, or display

methods
isa Detect object of given MATLAB class or Java class
iscom Determine if input is COM object
isevent Determine if input is event
isinterface Determine if input is COM interface
ismethod Determine if input is object method
isprop Determine if input is object property
load Initialize control object from file

MaximizeCommandWindow Display server window on
Windows desktop

methods List all methods for control or server
methodsview Display graphical interface to list method

information
MinimizeCommandWindow Minimize size of server window
move Move or resize control in parent window
propedit Display built-in property page for control
PutCharArray Store character array in server
PutFullMatrix Store matrix in server
PutWorkspaceData Store data in server workspace
Quit Terminate MATLAB server
registerevent Register event handler with control’s event
release Release interface
save Serialize control object to file
send Obsolete—duplicate of events
set Set object or interface property to specified value
unregisterallevents Unregister all events for control
unregisterevent Unregister event handler with control’s event

Dynamic Data Exchange
ddeadv Set up advisory link
ddeexec Send string for execution
ddeinit Initiate DDE conversation
ddepoke Send data to application
ddereq Request data from application
ddeterm Terminate DDE conversation
ddeunadv Release advisory link

Web Services
callSoapService Send SOAP message off to endpoint
createClassFromWsdl Create MATLAB object based on WSDL file
createSoapMessage Create SOAP message to send to server
callSoapService Convert response string from SOAP server to

MATLAB type

Serial Port Devices
clear Remove serial port object from MATLAB

workspace
delete Remove serial port object from memory
disp Display serial port object summary information
fclose Disconnect serial port object from the device
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fgetl Read from device and discard the terminator
fgets Read from device and include the terminator
fopen Connect serial port object to the device
fprintf Write text to the device
fread Read binary data from the device
fscanf Read data from device and format as text
fwrite Write binary data to the device
get Return serial port object properties
instrcallback Display event information when an event occurs
instrfind Return serial port objects from memory to the

MATLAB workspace
isvalid Determine if serial port objects are valid
length Length of serial port object array
load Load serial port objects and variables into

MATLAB workspace
readasync Read data asynchronously from the device
record Record data and event information to a file
save Save serial port objects and variables to MAT-file
serial Create a serial port object
serialbreak Send break to device connected to the serial port
set Configure or display serial port object properties
size Size of serial port object array
stopasync Stop asynchronous read and write operations

C Programs
MEX-Files Perform operations in the MATLAB environment f

rom your C MEX-files
MATLAB Engine Call MATLAB from your own C programs
MX Array Manipulation Create and manipulate MATLAB arrays from

C MEX and Engine routines
MAT-File Access Incorporate and use MATLAB data in your own

C programs

FORTRAN Programs
MEX-Files Perform operations in the MATLAB environment

from your FORTRAN MEX-files
MATLAB Engine Call MATLAB from your own FORTRAN programs
MX Array Manipulation Create and manipulate MATLAB arrays from

FORTRAN MEX and Engine routines
MAT-File Access Incorporate and use MATLAB data in your own

FORTRAN programs

472 BASIC MATLABW, SIMULINKW, AND STATEFLOWW



Bibliography

Chapman, S. J., MATLAB Programming for Engineers, 3rd ed., Thomson Engineering,

2005.

Etter, D., Kuncicky, D., and Moore, H., Introduction to MATLAB 7, Prentice-Hall,

Upper Saddle River, NJ, 2005.

Gilat, A., MATLAB: An Introduction with Applications, 2nd ed., Wiley, New York,

2005.

Hanselman, D. C., and Littlefield, B. L., Mastering MATLAB 7, Prentice-Hall, Upper

Saddle River, NJ, 2005.

Magrab, E. B., Azarm, S., Balachandran, B., Duncan, J., Herold, K., and Walsh, G., An

Engineer’s Guide to MATLAB, with Applications from Mechanical, Aerospace, Electrical,

and Civil Engineering, 2nd ed., Prentice-Hall, Upper Saddle River, NJ, 2005.

Palm, W. J., III, Introduction to MATLAB 7 for Engineers, McGraw-Hill, New York,

2005.

Stanley, W. D., Technical Analysis and Applications with MATLAB, Thomson Delmar

Learning, 2005.

Aerospace Blockset User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Bioinformatics Toolbox User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Carlson, E. S., Efficient MATLAB for Engineers, OtFringe, 2004.

CDMA Reference Blockset User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Communications Blockset User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Communications Toolbox User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Control System Toolbox User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Curve Fitting Toolbox User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Dabney, J. B., and Harman, T. L., Mastering Simulink, Prentice-Hall, Upper Saddle

River, NJ, 2004.

Data Acquisition Toolbox User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Database Toolbox User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Datafeed Toolbox User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Distributed Computing Toolbox User’s Guide, The MathWorks, Natick, MA, 3 Aug.

2006.

Embedded Target for Infineon C166w Microcontrollers User’s Guide, The

MathWorks, Natick, MA, 3 Aug. 2006.

Embedded Target for Motorolaw HC12 User’s Guide, The MathWorks, Natick, MA,

3 Aug. 2006.

Embedded Target for Motorolaw MPC555 User’s Guide, The MathWorks, Natick,

MA, 3 Aug. 2006.

473



Embedded Target for OSEK/VDXw User’s Guide, The MathWorks, Natick, MA,

3 Aug. 2006.

Embedded Target for TI C2000
TM

DSP User’s Guide, The MathWorks, Natick, MA,

3 Aug. 2006.

Embedded Target for TI C6000
TM

DSP User’s Guide, The MathWorks, Natick, MA,

3 Aug. 2006.

Excel Link User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Extended Symbolic Math Toolbox User’s Guide, The MathWorks, Natick, MA, 3 Aug.

2006.

Filter Design HDL Coder User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Filter Design Toolbox User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Financial Derivatives Toolbox User’s Guide, The MathWorks, Natick, MA, 3 Aug.

2006.

Financial Time Series Toolbox User’s Guide, The MathWorks, Natick, MA, 3 Aug.

2006.

Financial Toolbox User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Fixed-Income Toolbox User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Fixed-Point Toolbox User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Fuzzy Logic Toolbox User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

GARCH Toolbox User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Gauges Blockset User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Genetic Algorithm and Direct Search Toolbox User’s Guide, The MathWorks, Natick,

MA, 3 Aug. 2006.

Image Acquisition Toolbox User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Image Processing Toolbox User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Instrument Control Toolbox User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Link for Code Composer Studio
TM

User’s Guide, The MathWorks, Natick, MA, 3 Aug.

2006.

Link for ModelSimw User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Mapping Toolbox User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

MATLABw Builder for COM User’s Guide, The MathWorks, Natick, MA, 3 Aug.

2006.

MATLABw Builder for Excel User’s Guide, The MathWorks, Natick, MA, 3 Aug.

2006.

MATLABw Compiler User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

MATLABw Distributed Computing Engine User’s Guide, The MathWorks, Natick,

MA, 3 Aug. 2006.

MATLABw Report Generator User’s Guide, The MathWorks, Natick, MA, 3 Aug.

2006.

MATLABw User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

MATLABw Web Server User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Model-Based Calibration Toolbox User’s Guide, The MathWorks, Natick, MA, 3 Aug.

2006.

Model Predictive Control Toolbox User’s Guide, The MathWorks, Natick, MA, 3 Aug.

2006.

Neural Network Toolbox User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

OPC Toolbox User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Optimization Toolbox User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

474 BIBLIOGRAPHY



Partial Differential Equation Toolbox User’s Guide, The MathWorks, Natick, MA,

3 Aug. 2006.

Real-Time Windows Target User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Real-Time Workshopw Embedded Coder User’s Guide, The MathWorks, Natick,

MA, 3 Aug. 2006.

Real-Time Workshopw User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

RF Blockset User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

RF Toolbox User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Robust Control Toolbox User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Signal Processing Blockset User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Signal Processing Toolbox User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

SimDriveline User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

SimMechanics User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

SimPowerSystems User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Simulinkw Accelerator User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Simulinkw Control Design User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Simulinkw Fixed Point User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Simulinkw Parameter Estimation User’s Guide, The MathWorks, Natick, MA, 3 Aug.

2006.

Simulinkw Report Generator User’s Guide, The MathWorks, Natick, MA, 3 Aug.

2006.

Simulinkw Response Optimization User’s Guide, The MathWorks, Natick, MA, 3 Aug.

2006.

Simulinkw User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Simulinkw Verification and Validation User’s Guide, The MathWorks, Natick, MA,

3 Aug. 2006.

Spline Toolbox User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Stateflow Coder User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Statefloww User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Statistics Toolbox User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Symbolic Math Toolbox User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

System Identification Toolbox User’s Guide, The MathWorks, Natick, MA, 3 Aug.

2006.

Video and Image Processing Blockset User’s Guide, The MathWorks, Natick, MA,

3 Aug. 2006.

Virtual Reality Toolbox User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Wavelet Toolbox User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

xPC TargetBoxw User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

xPC TargetBoxw Embedded Option User’s Guide, The MathWorks, Natick, MA,

3 Aug. 2006.

xPC TargetBoxw User’s Guide, The MathWorks, Natick, MA, 3 Aug. 2006.

Lyshevski, S. E., Engineering and Scientific Computations Using MATLAB, Wiley,

New York, 2003.

Hunt, B. R., Lipsman, R. L., Rosenberg, J. M., Coombes, K. R., Osborn, J. E., and

Stuck, G. J., A Guide to MATLAB: For Beginners and Experienced Users, Cambridge

Univ. Press, 2001.

Palm, W. J., III, MATLAB for Engineering Applications, WCB/McGraw-Hill,

New York, 1999.

BIBLIOGRAPHY 475



Etter, D. M., Engineering Problem Solving with MATLAB, 2nd ed., Prentice-Hall,

Upper Saddle River, NJ, 1997.

Etter, D. M., and Kuncicky, D., Introduction to MATLAB for Engineers and Scientists,

Prentice-Hall, Upper Saddle River, NJ, 1996.

476 BIBLIOGRAPHY



Index

Absolute error tolerance, 431
Action table, 419
Actuator demand, 167
Actuators, 192
Addition, 5
Additional Math & Discrete library, 190
Adjoint of 3 � 3 Matrix block, 325
Aerospace Blockset, 325

Aerodynamics library, 192
Animation library, 192
Environment library, 192
Flight Parameters library, 193
GNC library, 193
library, 192
Mass Properties library, 193
Propulsion library, 194
Utilities library, 194

Align Objects, 115
Animation, 463
Annotating plots, 462
Annotation object properties, 462
Append column icon, 420
Append row icon, 420
Application data

working with, 468–469
Apply, 226, 251, 306, 307
Arithmetic operations, 454
Array

array operations, 452–453
basic information, 453
cell, 451
division, 8
Editor, 9
elementary, 441–442, 453–454
lengths, 132
manipulation, 453
multiplication, 7
pointers, 132

Aspect ratio, 467

Assertion block, 327
Audio and Audio/Video general, 460
Audio/Video Interleaved (AVI)

functions, 460–462
Automatic solver parameter selection,

324, 329
Autoscale, 206
avifile, 58
axis, 49–50, 105

all properties command, 108–111
flip, 111
limits, 467
object, 105
operations, 107, 465
properties modification, 107

Band-interleaved data, 460
Bit-mapped images, 464
Bit operations, 181

bench, 37
Benchmark, 37

Block Parameters, 230, 262, 319
menu, 235
Transfer Fcn, 306
window, 291, 302

Blocks, connecting, 393
Bode, 67
Bode diagrams, 261, 278
Bottleneck computations, 129
Boundary-value problems, 444
Browser

Simulink Library, 414
Bubble plots, 461
Bus Creator block, 323
Bus methods, 297
Bus Selector block, 323

Callback, 117
Model pre-load function window, 236
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cells, 95–102
CDF, 460
C2d, 93
C2dm, 86
Cell arrays, 451
celldisp, 96
cellplot, 96
Cells, 95–96
C engine routines, 142
Characteristic polynomial, 12
Characteristics, 262
characters description, 450
Chart block, 389
Check Boxes, 117
C language MEX-file, 131
classes and objects, 457–458
clear, 7
Clock block, 349
Closed-loop damping, 76
Closed-loop eigenvalues, 69
close_system, 166
CMEX S-Function, 336
CMEX S-Function gateway, 354–357
Colon operator, 13
Colormaps, 466
Color operations, 466
Combined Simulink and Stateflow

systems, 161–165
Command History, 4
Command Library, 414
Command Window, 3, 39, 99, 153, 176,

210, 236, 243, 252, 286, 297, 315,
342

control, 23–24
Stateflow software, 369

Common Data Format (CDF), 460
Commonly Used Blocks library, 178
Compiling a stand-alone executable, 125
Component object model and ActiveX,

470–471
COM Support, 143
Conditional system model, 158–160
cond, 10
Condition number, 10
Configuration Parameters, 237, 328, 403,

416
Connecting blocks, 393
Constant block, 303, 305, 325, 392, 394,

399
Contents list, 37
Contents.m file, 101
Continuous blocks, 300

Continuous library, 179, 213, 248, 255,
262, 303

Continuous-to-discrete mappings, 88, 89
Continuous transfer functions, 61–62, 89
contour, 53
Contour diagrams, 53–54, 462
Control Design Tools, 268
Controller block, 395, 398–400, 407
Controlling program execution, 469
Controls analysis methods, 65–66
Control System Toolbox, 61, 265

library, 264, 285
Convex hull, 443
conv, 61
Convolution, 61
Coordinate system conversion Cartesian,

443
Correlation, 446
C programs, 129, 472
Create 3 � 3 Matrix block, 325
Current Compensator panel, 285–286
Current Directory, 4

Damping, 62
Data array, 97
Data type conversion numeric, 451
Data type determination, 452
Date and time operations, 455
DDE Support, 143
Debug, 431
Debugging, 24

C MEX-files, 138
FORTRAN MEX-file, 142

Default transition, 381, 387
Delaunay triangulation and tessellation,

443
Delay differential equations, 444
Delete key, 311
Demo, 204
Demux element, 323
Demux methods, 297
Deploying user interfaces, 468
Determinant, 10
Determinant of 3 � 3 Matrix block, 325
Developing user interfaces, 468
Diagnostics menu, 329
Diagnostics page, 324
Digital system design, 85–91
Direction and velocity plots, 462
Directory organization, 131
Discontinuities library, 179
Discrete data plots, 463
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Discrete library, 180
Discrete math, 441
Discrete representations, 89
Discrete Solver, 328
Discrete-to-continuous mappings, 89
Discrete transfer functions, 89
Display blocks, 325
Division, 8

array, 8
matrix, 8

Documentation block, 319
Domain generation, 443, 466
Do While, 371
Drawing toolbar, 381
Dutch roll mode, 71
Dynamic Data Exchange, 471

echo, 102
edit, 101
Edit parameters, 161
Edit Text, 117
Eigenvalues, 11

closed-loop, 69
open-loop, 71
open-loop discrete, 92

EISPACK, 425
Elementary matrices and arrays,

441–442, 453–454
Embedded MATLAB

function, 381
Engine library, 142–147

C example, 143
FORTRAN example, 145

Equations of Motion library, 192
Equivalent continuous state-space

model, 62
Error handling, 458
euler, 157
Excel, 459–460
Exponential, 438

matrix, 12, 439
Expressions, 456
External interfaces dynamic link

libraries, 469–470

Factorization, 439–440
F-14 control system, 169–172
figure, 105
figure_handles, 114
Figure Windows, 107, 465
File menu, 3
Finite difference and integration, 447

fixed-step continuous solvers, 433–434
fixed-step discrete solvers, 432–433
Fixed-step solver, 350
Flexible image transport system, 460
Flow diagrams, 55
for, 99
format, 9

Vector Line Widths, 324
Wide Nonscalar Lines, 324

FORTRAN, 129
engine routines, 143
MEX-file details, 141
MEX-file example, 138
programs, 472
S-Function, 352–353

Forward rectangular rule, 90
Fourier transforms, 447
Frames, 117
Frames per second, 56
Frequency response, 67

functions, 63
FTP functions, 461
Full to sparse conversion, 445
Function, 437, 456

handles, 456–457
management, 23
M-files, 100
plots, 463
Stateflow, 381

Functions programming, 455–456

Gain block, 217, 232
getframe, 56
Get Linearized Model, 271
gradient, 54
Graphical User Interface (GUI), 261

customizing, 125
definition, 112
development environment, 112–114
graph creation, 120
utility functions, 469

Graphics objects
finding and identifying, 105

grid, 44
LTI Viewer, 262

GUI, 468
guide, 114

Handle Graphics, 105–111
finding and identifying graphics

objects, 464
Tree-structured hierarchy, 106

INDEX 479



Handles,
function, 456–457

help, 11
Help browser, 13
Help button, 3, 270
Help Navigator, 270
Help topics, 15–22
Help window, 269, 286, 293
Hierarchical Data Format (HDF), 460
Histograms, 463
History, 425–428
History Junction, 379
hold on, 64

Images, 461
qualities, 105

implicit fixed-step continuous solvers, 435
Import Data, 6
Import from, Simulink, 292
Import System Data, 289, 290
improving simulation accuracy, 430
improving simulation performance and

accuracy, 429
impulse, 72
Impulse response, 261
include subdirectory, 131
Input and Output, 262
Input Point, 262
Integrator, 235

continuous time, 401
Integrator block, 213
Interactive user input, 469
Interpolation, 442–443
Invert 3 � 3 Matrix block, 327
I/O Pole/Zero plots, 261, 281
Iterative methods, 439, 446

Java, 470
classes and objects, 458
search path management, 23

LAPACK, 425
Laplace transform, 85
Layout Editor, 114, 115–116
Libraries. See also Specific types

building interfaces, 129
Library Browser, 191, 262
Lighting, 467
Linear algebra, 446
Linear Analysis, 268
Linear equation, 439, 446
Linearization Points, 262

lqr, 69
Linear Quadratic Regulator (LQR), 69
Line object, 106
LINPACK, 425
List Boxes, 117
List of Signs, 226
load, 6
Loading files, 6, 459
Log plots, 47

loglog, 47
semilog x, 47
semilog y, 47

Logarithms and exponentials
matrix, 439

Logical operations, 455
Logic and Bit operations, 181
Lookup Tables library, 180
Lotus123 functions, 460
Low-level file I/O, 459
LTI Viewer, 261–284

Manual Switch block
icon, 407
Simulink, 390, 393
Stateflow, 389, 394–395, 400, 407

Mask editor, 320
Math constants, 446
Math Function block, 219, 228
Math Operations, 182–183, 325

library, 216, 300
MathWorks, The, 342

contact information, 35–36
e-mail, 35–36
history, 425–428

MATLAB, 3. See also Specific topic
MATLAB Command Window. See

Command Window
Matrix

analysis, 438
data structure, 130
division, 8
elementary, 441–442
elementary sparse, 445
exponential, 12
functions, 10–12
inverse, 10
logarithms and exponentials, 439
multiplication, 7
object properties, 131

matrix.h, 132
Matrix Laboratory. See MATLAB
Matrix-X, 425–426
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Memory
functions, 456–457
mapping, 459
variables, 456–457

Menu Editor, 115, 124
Meshes, 465–466
mesh, 52
meshgrid, 52
Mesh plots, 52, 465–466
mexErrMsgTxt, 142
MEX-file, 129–148

details, 137
different computer systems, 130
extensions, 130
interface library, 130
speed advantages, 133
three-body problem, 133
using, 130

mexFunction, 132, 137, 141
mex.h, 132
MEX programming, 129–148, 458
M-File Editor, 116
M-files, 95–102, 455–456

converting, 125
functions, 100, 125
S-Function, 336
speeding up, 130
types, 98

Model, 298
comparison, 166–168
Properties, 235
Verification library, 185

Model-Wide Utilities library, 185
Movies, 56–57
Multiplication, 7

array, 7
matrix, 7

mu-Synthesis Toolbox, 70
Mux/Demux, 323
Mux element, 323
Mux methods, 297
mxCalloc, 138, 142
mxCreateDoubleMatrix, 138, 142
mxCreateSparse, 138, 142
mxCreateString, 138, 142

nargin, 132
nargout, 132
New Menu Item buttons, 124
New Model button, 211
Newton’s law, 85
NextPlot, 48

nichols, 68
Nichols Charts, 68, 261, 279
non-real-time and real-time simulations,

436
Numerical integration (quadrature), 444
Numeric to string, 452
nyquist, 68
Nyquist Charts, 68, 261, 279

Object Browser, 116
Object creation functions, 106, 464
Object manipulation, 467
object-oriented programming, 457–458
Object palette, 381
Object Properties, 107, 465

matrix, 131
ode23, 134
ode45, 401
Off state, 382
OK button, 113
On state, 382
Opening files, 459
Open-loop eigenvalues

continuous, 71
discrete, 92

Open M-file, 99
Operating system commands, 24
Operations and manipulations, 437–438
Operators, 437, 454
Optimization, 444
Ordinary differential equations, 443–444
Output Point, 262

Parameter estimation, 297–314
Parameter Window, 300–301
Partial differential equations, 444
path, 25–33
peaks, 55
Plot, 47

area, 462
annotating, 462
bar chart, 462
Bode, 67, 261, 278
Configurations window, 273, 282
contour, 53, 54, 462
direction and velocity, 462
discrete data, 463
function, 463
I/O pole/zero, 261, 281
LTI Types, 261, 273
log scale, 47
NextPlot, 48
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Plot (Continued)
Nichols, 68, 261, 279
Nyquist, 68, 279
Objects, 106–107, 465
pie chart, 462
polar, 47
pole/zero, 261, 281
Properties, 274
scatter/bubble, 463
Scope, 163, 238, 374
semilog, 47
sigma, 261, 280
tools, 461–462

Pointers
array, 132

Polar plots, 47
Pole-zero mapping, 89
Pole-zero method, 88
Pole-zero plots, 261, 281
Polygons and surfaces, 463
Polynomials, 442
Population model, 209–237

analyzing, 238
Popup Menu, 117
Ports & Subsystems library, 186
Precision. See Format
Preferences, 3, 469

dialog box, 204
Prime factors, 441

print, 43
Print, 262
Printing, 464
Printsys, 62
Product block, 302
Program execution

controlling, 469
programming, 455–456
Programming and numeric data types,

449
Properties, 262

LTI Viewer plot, 274
Property Editor, 262
Property Inspector, 116–123
Protoblock, 426
Pulse Generator block, 241
Push Buttons, 116

Quick Reference Guide, 437–472
quiver, 53

Radio Buttons, 117
Ramp block, 159

rank, 10
Relational operations, 454–455
Release Notes, 39
releases, 427
Reordering algorithms, 445
Riccati solution, 69
rlocus, 63, 64, 76, 81
Robust Control toolbox, 70
roots, 105
Root locus, 63, 64, 76, 81
Rounding and remainder, 441
Run button, 115–116
Runge-Kutta integration, 238, 350

Save, 6, 401, 459
Save As, 98
save_system, 375
Save Workspace As, 6
Scatter/bubble plots, 463
Scientific data CDF, 460
Scope, 159, 233, 245, 298

block, 220, 246
Simulink plot, 163, 238
Stateflow plot, 374

Scripts, 455–456
Search path management, 23
Selecting region of interest, 467
selecting solvers, 432
Semilog plots, 47
Serial port devices, 471–472
Set operations, 455
sflib, 376
S-Function, 190, 335–360

C example, 336–351
FORTRAN example, 352–354

S-Function Builder, 190, 335, 345–348
Shared libraries, 24–25
Sigma Plot, 261, 280
Signal Attributes library, 184
Signal Generator block, 246, 254,

298, 313
Signal Routing library, 187
Sim, 163, 315
Simulation, 206, 253

accuracy, 430
Configuration Parameters, 403
fixed-step continuous solvers,

433–434
fixed-step discrete solvers, 432–433
implicit fixed-step continuous solvers,

435
menu, 168, 316
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Simulation (Continued)
performance, 429
Start, 238, 315
tracing facilities, 431
tuning, 429–437
variable-step solvers, 432

simulation commands, 430–431
simulation interface, 315
Simulink, 153, 176, 243, 262, 298.

See also Specific topic
LTI models, 283–284
LTI viewer, 262–282
releases, 427–428
S-Function, 335–360

C example, 336–351
FORTRAN example, 352–354

solvers, 432
Van der Pol equation, 336–351

versions, 202
Simulink Library Browser, 154, 206, 210,

243, 255, 298, 320, 414
Singular value decomposition, 12
Singular Values, 439
Sinks library, 188, 249, 300
sisotool, 286
SISO Design Tool, 285–292
Sliders, 117
SMART mode, 385
Sound functions, 460
Sources library, 189, 206, 241, 248, 254,

263, 303
SPARCstation-specific sound

functions, 460
Sparse matrices, 445
Specialized math, 444–445
Specialized matrices, 442
speeding simulations, 429–430
Square wave, 241, 331
Start simulation 206, 253, 406

icon, 420
Stateflow, 369–421. See also Specific

topic
Chart block, 160, 377
diagram editor, 376, 379
models

constructing, 376–409
opening, executing, saving, 369–

375
releases, 428
sflib, 376
truth table, 410–420, 411

example, 421

State-Space
block, 294
design, 70–84, 256–258
model, 256–257, 259, 283

State transitions, 382
Static Text, 117
Statistics, 447
step, 72
Step response, 64–66, 261, 269, 271
Stop time, 314
String, 117, 450
String to numeric, 452
Structures, 95–102, 450–451
Subplots, 48
Subsystems

create, 317
libraries, 316–322
Mask, 319

strings description, 450
structures, 95–102
Subtraction, 5–6
Sum block, 226, 234

properties, 303
System Build, 426
system modeling, 297

Target Language Compiler (TLC), 335
Text files, 459
Text strings, 100

on graph, 112
tf, 62
tf2ss, 62, 256
Three-dimensional visualization,

465–466
tickDir, 111
Timer functions, 456
Time-series

data, 448–449
events, 448
statistics, 448

To File block, 188
Toggle Buttons, 116–117
Toolboxes

MATLAB, 61–92
special purpose blocks, 175

tracing facilities, 431
Transfer Fcn, block, 246, 248, 255, 258,

262, 298, 303, 311. See also
Transfer Function

Transfer Function, 61–62, 245, 262
tf, 62
Simulink, 243–253
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Transformations library, 194
Transparency, 467
Transpose, 5
Trapezoid rule, 90
Tree operations, 446
Trigger, 390, 396–400, 407

input, 398, 400
symbol, 390

Trigonometric functions, 440
Truth Table block, 376, 381, 411, 418

diagram, 377
example, 421
generator, 377, 411

tuning, 429–437
Tustin’s bilinear rule, 90

uicontrol objects, 116
uigetfile, 127
Unmask, 320
User Defined Functions, 190, 335, 342
User interface objects, 469

Van der Pol equation, 153–157, 336
Van der Pol system

implemented as C code, 338
variable-step solvers, 432

Vector signals, 323–324
math functions, 325–328

versions, 33–35, 202, 426
View control, 466–467
Visualization, 465–466
Volume visualization, 467–468
Voronoi diagrams, 443

WAVE (.wav), 460
Web services, 471
what command, 99
while, 100
Workspace

browser, 9
I/O, 237, 314
management, 23
window, 7

xlabel, 44
XML documents, 459

ylabel, 44

ZeroCross, 431
Zero-Pole block, 254–255, 258, 283, 294
Zoom, 262
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